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PREFACE

This book is intended as an introduction to multigrid methods at graduate
level for applied mathematicians, engineers and physicists. Multigrid methods
have been developed only relatively recently, and as yet only one monograph
has appeared that gives a fairly complete coverage, namely the work by
Hackbusch (1985). This fine book requires more knowledge of mathematics
than many (potential) users of multigrid method have at their disposal. The
present book is aimed at a wider audience, including senior and graduate stu-
dents in non-mathematical but computing-intensive disciplines, and merely
assumes a basic knowledge of analysis, partial differential equations and
numerical mathematics. It has grown out of courses of lectures given in Delft,
Bristol, Lyons, Zurich and Beijing.

An effort has been made not only to introduce the reader to principles,
methods and applications, but also to the literature, including the most recent.
The applicability of multigrid principles ranges wide and far. Therefore a
selection of topics had to be made. The scope of the book is outlined in
Chapter 1.

The author owes much to fruitful contacts with colleagues at home and
abroad. In particular the cooperation with staff members of the Centre for
Mathematics and Informatics in Amsterdam under the guidance of P. W.
Hemker is gratefully acknowledged, as is the contribution that Zeng Shi
(Tsinghua University, Beijing) made to the last chapter.

Last, but not least, I thank Tineke, Pauline, Rindert and Gerda for their
graceful support.

P. Wesseling
Delft, February 1991



1 INTRODUCTION

Readership

The purpose of this book is to present, at graduate level, an introduction to
the application of multigrid methods to elliptic and hyperbolic partial
differential equations for engineers, physicists and applied mathematicians.
The reader is assumed to be familiar with the basics of the analysis of partial
differential equations and of numerical mathematics, but the use of more
advanced mathematical tools, such as functional analysis, is avoided. The
book is intended to be accessible to a wide audience of users of computational
methods. We do not, therefore, delve deeply into the mathematical founda-/
tions. The excellent monograph by Hackbusch (1985) treats more aspects of
multigrid than this book, and also contains many practical details. The
present book is, however, more accessible to non-mathematicians, and pays
more attention to applications, especially in computational fluid dynamics.

Other introductory material can be found in the article by Brandt (1977),
the first three chapters of Hackbusch and Trottenberg (1982), Briggs and
McCormick (1987), Wesseling (1987) and the short elementary introductidn
by Briggs (1987).

Significance of multigrid methods for scientific computation

Needless to say, elliptic and hyperbolic partial differential equations are, by
and large, at the heart of most mathematical models used in engineering and
physics, giving rise to extensive computations. Often the problems that one
would like to solve exceed the capacity of even the most powerful computers,
or the time required is too great to allow inclusion of advanced mathematical
models in the design process of technical apparatus, from microchips to air-
craft, making design optimization more difficult. In Chapter 9 the compu-
tational complexity of problems in computational fluid dynamics will be
discussed in more detail. Multigrid methods are a prime source of important
advances in algorithmic efficiency, finding a rapidly increasing number of
users. Unlike other known methods, multigrid offers the possibility of solving
problems with N unknowns with O(N) work and storage, not just for special
cases, but for large classes of problems.



2 Introduction

Historical development of multigrid methods

Table 1.1, based on the multigrid bibliography in McCormick (1987),
illustrates the rapid growth of the multigrid literature, a growth which has
continued unabated since 1985.

As shown by Table 1.1, multigrid methods have been developed only
recently. In what probably was the first ‘true’ multigrid publication,
Fedorenko (1964) formulated a multigrid algorithm for the standard five-
point finite difference discretization of the Poisson equation on a square,
proving that the work required to reach a given precision is O(NV). This work
was generalized to the central difference discretization of the general linear
elliptic partial differential equation (3.2.1) in Q = (0, 1) X (0, 1) with variable
smooth coefficients by Bachvalov (1966). The theoretical work estimates were
pessimistic, and the method was not put into practice at the time. The first
practical results were reported in a pioneering paper by Brandt (1973), who
published another paper in 1977, clearly outlining the main principles and the
practical utility of multigrid methods, which drew wide attention and marked
the beginning of rapid development. The multigrid method was discovered
independently by Hackbusch (1976), who laid firm mathematical foundations
and provided reliable methods (Hackbusch 1978, 1980, 1981). A report by
Frederickson (1974) describing an efficient multigrid algorithm for the Poisson
equation led the present author to the development of a similar method for
the vorticity—stream function formulation of the Navier—Stokes equations,
resulting in an efficient method (Wesseling 1977, Wesseling and Sonneveld
1980).

At first there was much debate and scepticism about the true merits of
multigrid methods. Only after sufficient initiation satisfactory results could be
obtained. This led a number of researchers to the development of stronger and
more transparent convergence proofs (Astrakhantsev 1971, Nicolaides 1975,
1977, Hackbusch 1977, 1981, Wesseling 1978, 1980, 1982a) (see Hackbusch
(1985) for a survey of theoretical developments). Although rate of conver-
gence proofs of multigrid methods are complicated, their structure has now
become more or less standardized and transparent. The basics will be dis-
cussed in Chapter 6. Other authors have tried to spread confidence in multi-
grid methods by providing efficient and reliable computer programs, as much
as possible of ‘black-box’ type, for discretizations of (2.1.1), for uninitiated
users. A survey will be given in Section 8.8. The ‘multigrid guide’ of Brandt
(1982, 1984) was provided to give guidelines for researchers writing their own
multigrid programs.

Table 1.1. Yearly number of multigrid publications

Year 64 66 71 72 73 75 76 77 78 79 80 81 82 83 84 85
Number 1 1 1 1 1 1 3 11 10 22 31 70 78 96 94 149
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Scope of the book

The following topics will not be treated here: parabolic equations, eigenvalue
problems and integral equations. For an introduction to the application of
multigrid methods to these subjects, see Hackbusch (1984a, 1985) and Brandt
(1989). There is relatively little material in these areas, although multigrid can
be applied profitably. For important recent advances in the field of integral
equations, see Brandt and Lubrecht (1990) and Venner (1991). A recent publi-
cation on parabolic multigrid is Murata et al. (1991). Finite element methods
will not be discussed, but finite volume and finite difference discretization will
be taken as the point of departure. Although most theoretical work has been
done in a variational framework, most applications use finite volumes or finite
differences. The principles are the same, however, and the reader should have
no difficulty in applying the principles outlined in this book in a finite element
context. , B

Multigrid principles are much more widely applicable than just to the
numerical solution of differential and integral equations. Applications in such
diverse areas as control theory, optimization, pattern recognition, compu-
tational tomography and particle physics are beginning to appear. For a
survey of the wide ranging applicability of multigrid principles, see Brandt
(1988, 1989).

Within the confines of the present book special emphasis will be laid on the
formulation of algorithms, choice of smoothing methods and smoothing
analysis, problems with discontinuous coefficients, details of Galerkin coarse
grid approximation and applications in computational fluid dynamics.
Material scattered through the literature will be gathered in a unified frame-
work and completed where necessary. -

Notation

The notation is explained as it occurs. Latin letters like u denote unknown
functions. The bold version u denotes a grid function, with value u; in grid
point x;, intended as the discrete approximation of u(x;).



2 THE ESSENTIAL
PRINCIPLE OF
MULTIGRID METHODS
FOR PARTIAL
DIFFERENTIAL
EQUATIONS

2.1. Introduction

In this chapter, the essential principle of multigrid methods for partial
differential equations will be explained by studying a one-dimensional model
problem. Of course, one-dimensional problems do not require application of
multigrid methods, since for the algebraic systems that result from discretiz-
ation, direct solution is efficient, but in one dimension multigrid methods can
be analysed by elementary methods, and their essential principle is easily
demonstrated.

Introductions to the basic principles of multigrid methods are given by
Brandt (1977), Briggs (1987), Briggs and McCormick (1987) and Wesseling
(1987). More advanced expositions are given by Stiiben and Trottenberg
(1982), Brandt (1982) and Hackbusch (1985, Chapter 2).

2.2. The essential principle

One-dimensional model problem

The following model problem will be considered

—dZ%ujdx?*=f(x) inQ2=(0,1), u(0)=du(l)fdx=0 (2.2.1)

The essential principle 5
A computational grid is defined by
G={xeRix=xj=jh,j=1,2,...,2n,h=1[2n} 2:2.2)

The points {x;} are called the vertices of the grid.
Equation (2.2.1) is discretized with finite differences as

h2Qui - w) = fi
R 2 (—ujoy+ 25— wje1) = fj, j=2,3,...,2n—1 2.2.3)
h_z(‘uZn—l + u2n) = il'f2n

where fi= f(x;) and u; is intended to approximate u(x;). The solution of
Equation (2.2.1) is denoted by u, the solution of Equation (2.2.3) by u# and
the value of u in x; by u;. u; approximates the solution in the vertex x;; thus
Equation (2.2.3) is called a vertex-centred discretization. The number of
meshes in G is even, to facilitate application of a two-grid method. The system
(2.2.3) is denoted by

Au=f (2.2.4)

Gauss—Seidel iteration

In multidimensional applications of finite difference methods, the matrix A is
large and sparse, and the non-zero pattern has a regular structure. These cir-
cumstances favour the use of iterative methods for solving (2.2.4). We will
present one such method. Indicating the mth iterand by a superscript m, the
Gauss—Seidel iteration method for solving (2.2.3) is defined by, assuming an
initial guess u° is given,

2u{"=u5""l+h2f1
—ul +2ul =uliit +hif, j=2,3,...,2n-1 2.2.5)
_u'Znn—l“'ug:l:%hszn

Fourier analysis of convergence

For ease of analysis, we replace the boundary conditions by periodic
boundary conditions:

u(l) =u(0) 2.2.6)
Then the error ¢™ = u™ — u” is periodic and satisfies

—el1+2ef"=¢efi7', ef'=efian 2.2.7)
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As will be discussed in more detail in Chapter 7, such a periodic grid function
can be represented by the following Fourier series

2n~-1 .
el"= E c e g, = maln 2.2.8)
a=0

Because of the orthogonality of (e}, it suffices to substitute
e~ =cmteW= in (2.2.7). This gives e)” = ¢ "% with

el = g@Ba)cr ™!, g(ba)=e’[(2—e ) (2.2.9)

The function g(0.) is called the amplification factor. It measures the growth
or decay of a Fourier mode of the error during an iteration. We find

| 2(8)| = (5 — 4 cos 8,)~ 12 (2.2.10)

At first sight it seems that Gauss—Seidel does not converge, because

max{| g(0s)|:0a = 1afn,a=0,1,...,2n-1} =] g0)| =1 (2.2.11)

however, with periodic boundary conditions the solution of (2.2.11) is deter-
mined up to a constant only, so-that there is no need to require that the
Fourier mode o = 0 decays during iteration. Equation (2.2.11), therefore, is
not a correct measure of convergence, but the following quantity is:

max{| g(6u)|:0a=7afn,a=1,2,....,2n -1} = | g(61) |
={1+20}+00)) 2 =1—-4ax2n> + O(h*). (2.2.12)

It follows that the rate of convergence deteriorates as | 0. Apart from special
cases, in the context of elliptic equations this is found to be true of all so-
called basic iterative methods (more on these in Chapter 4; well known
examples are the Jacobi, Gauss—Seidel and successive over-relaxation
methods) by which a grid function value is updated using only neighbouring
vertices. This deterioration of rate of convergence is found to occur also with
other kinds of boundary conditions.

The essential multigrid principle

The rate of convergence of basic iterative methods can be improved with
multigrid methods. The basic observation is that (2.2.10) shows that | g(6) |
decreases as « increases. This means that, although long wavelength Fourier
modes (« close to 1) decay slowly (| g(f)|=1— O(h?)), short wavelength
Fourier modes are reduced rapidly. The essential muitigrid principle is to
approximate the smooth (long wavelength) part of the error on coarser grids.
The non-smooth or rough part is reduced with a small number (independent
of h) of iterations with a basic iterative method on the fine grid.

The essential principle 7

Fourier smoothing analysis

In order to be able to verify whether a basic iterative method gives a good
reduction of the rough part of the error, the concept of roughness has to be
defined precisely.

Definition 2.2.1. The set of rough wavenumbers O is defined by
O,= {0, =7mafn,azcn,a=12,..,2n—-1} (2.2.13)
where 0 < c < 1 is a fixed constant independent of n.

The performance of a smoothing method is measured by its smoothing factor
p, defined as follows.

Definition 2.2.2, The smoothing factor p is defined by
p=max{| g(0.)|:0x€ O} (2.2.14)

When for a basic iterative method p <1 is bounded away from 1 umfo‘rmly
in h, we say that the method is a smoother. Note that p depends on the
iterative method and on the problem. For Gauss—Seidel and the present model
problem p is easily determined. Equation (2.2.10) shows that | g |/decreases
monotonically, so that

p=(5-4cos cx)" 12 (2.2.15)

Hence, for the present problem Gauss—Seidel is a smoother.

It is convenient to standardize the choice of c¢. Only the Fourier modes that
cannot be represented on the coarse grid need to be reduced by the basic
iterative method; thus it is natural to let these modes constitute 8,. We choose
the coarse grid by doubling the mesh-size of G. The Fourier modes on this
grid have wavenumbers 8, given by (2.2.8) with 2n replaced by n (assuming
for simplicity n to be even). The remaining wavenumbers are defined to be
non-smooth, and are given by (2.2.13) with

c=1 (2.2.16)

Equation (2.2.15) then gives the following smoothing factor for Gauss—Seidel
p=5"12 (2.2.17)

This type of Fourier smoothing analysis was originally introduced by
Brandt (1977). It is a useful and simple tool. When the boundary conditions

are not periodic, its predictions are found to remain qualitatively correct,
except in the case of singular perturbation problems, to be discussed later.
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With smoothly varying coefficients, experience shows that a smoother which
performs well in the ‘frozen coefficient’ case, will also perform well for vari-
able coefficients. By the ‘frozen coefficient’ case we mean a set of constant
coefficient cases, with coefficient values equal to the values of the variable
coefficients under consideration in a sufficiently large sample of points in the
domain.

Exercise 2.2.1. Determine the smoothing factor of the dampled Jacobi
method (defined in Chapter 4) to problem (2.2.5) with boundary conditions
(2.2.6). Note that with damping parameter w = 1 this is not a smoother.
Exercise 2.2.2. Determine the smoothing factor of the Gauss—Seidel method
to problem (2.2.5) with Dirichlet boundary conditions u(0) = u(1)=0, by
using the Fourier sine series defined in Section 7.3. Note that the smoothing
factor is the same as obtained with the exponential Fourier series.

Exercise 2.2.3. Determine the smoothing factor of the Gauss—Seidel method

for the convection—diffusion equation ¢ duf/dx — & d*ufdx* = f. Show that
for |c|hfe > 1 and ¢ < 0 we have no smoother.

2.3. The two-grid algorithm
In order to study how the smooth part of the error can be reduced by means

of coarse grids, it suffices to study the two-grid method for the model
problem.

Coarse grid approximation

A coarse grid G is defined by doubling the mesh-size of G:
= {xeRix=x;=jh, j=1,2,...,n, h=1/n) 2.3.1)

The vertices of G also belong to G; thus this is called vertex-centred
coarsening. The original grid G is called the fine grid. Let

UG—-R, U:G—-R (2.3.2)

be the sets of fine and coarse grid functions, respectively. A prolongation
operator P:U — U is defined by linear interpolation:

Puyi=u;, Phyje= %(l_lj + Tjs1) (2.3.3)

Overbars indicate coarse grid quantities. A restriction operator R:U — U is

The two-grid algorithm 9
defined by the following weighted average
Ruj=§uzj-1+ 33+ it2je1 2.3.4)

where u; is defined to be zero outside G. Note that the matrices P and R are
related by R =1P7, but this property is not essential.

The fine grid equation (2.2.4) must be approximated by a coarse grid
equation

Aa=f

Like the fine grid matrix A, the coarse grid matrix A may be obtained by dis-
cretizing Equation (2.2.1). This is called discretization coarse grid
approximation. An attractive alternative is the following. The fine grid
problem (2.2.4) is equivalent to

(Au,v)=(f,v), ueU, voeU 2.3.5)

with (., .) the standard inner product on U. We want to find an approximate
solution P@ with & ¢ U. This entails restriction of the test functions v to a
subspace with the same dimension as U, that is, test functions of the type Py
with ¢ U, and P a prolongation operator that may be different from P:

(APq, Pv) = (f,PD), acU,vieU , (2.3.6)

or
(P*AP#, 7) = (P*f,0), acU, voeU 2.3.7)

where now of course (., .) is over U, and superscript * denotes the adjoint (or
transpose in this case). Equation (2.3.7) is equivalent to

Aa=f 2.3.8)
with
A =RAP (2.3.9)
and f=Rf; we have replaced P* by R. This choice of A is called Galerkin
coarse grid approximation.

With A, P and R given by (2.2.3), (2.3.3) and (2.3.4), Equation (2.3.9)
results in the following A

h 2 Qay - i)
R 2=y + 20— Bjv1), j=2,3,...,n—1 2.3.10)
’_1 (_ﬁn—1+l—‘n) ’

e I ]

u
uj
u
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which is the coarse grid equivalent of the left-hand side of (2.2.3). Hence, in
the present case there is no difference between Galerkin and discretization
coarse grid approximation. The derivation of (2.3.10) is discussed in
Exercise 2.3.1. The formula (2.3.9) has theoretical advantages, as we shall see.

Coarse grid correction

Let 4 be an approximation to the solution of (2.2.4). The error e= 4 ~u is
to be approximated on the coarse grid. We have

Ae=-r=Ai-f (2.3.11)
The coarse grid approximation # of — e satisfies
A =Rr (2.3.12)

In a two-grid method it is assumed that (2.3.12) is solved exactly. The coarse
grid correction to be added to 4 is Pu:

4:=i+Pa (2.3.13)

Linear two-grid algorithm

The two-grid algorithm for linear problems consists of smoothing on the
fine grid, approximation of the required correction on the coarse grid, pro
longation of the coarse grid correction to the fine grid, and again smoothing
on the fine grid. The precise definition of the two-grid algorithm is

comment Two-grid algorithm;
Initialize u%;

for i:= 1 stepl until ntg do
u?:= 5w’ A, f,n);

r=f-Au'’

:=A"'Rr; 2.3.149)
uw?? = y'? + Pa;

u':==SwW?3 A, f, n);

u® = uts

’

od

The number of two-grid iterations carried out is ntg. S@°, A, f, v1) stands for
»1 smoothing iterations, for example with the Gauss—Seidel method discussed

Two-grid analysis 11

earlier, applied to Au = f, starting with #°. The first application of S is called
pre-smoothing, the second post-smoothing.

Exercise 2.3.1. Derive (2.3.10). (Hint. It is easy to write down RAu; in the
interior and at the boundaries. Next, one replaces u; by Pu;.)

2.4. Two-grid analysis

The purpose of two-grid analysis (as of multigrid analysis) is to show that the
rate of convergence is independent of the mesh-size . We will analyse algor-
ithm (2.3.14) for the special case »1 =0 (no pre-smoothing).

Coarse grid correction

From (2.3.14) it follows that after coarse grid correction the error

e?? = u?¥3 — u satisfies

82/3=e1/3+Pu—1/3/= Eel/3 (241)

with the iteration matrix or error amplification matrix E defined by
E=1-PA'RA (2.4.2)
We will express e2”3 explicitly in terms of e'?. This is possible only in the
present simple one-dimensional case, which is our main motivation for

studying this case. Let

e =d+Pé, with g = e} 2.4.3)

Then it follows that
e*?=Ee'*=Ed (2.4.4)

We find from (2.4.3) that

dyi=0, dys1= el +elfdi-1elf32 (2.4.5)
Furthermore,
RAd=0 (2.4.6)
so that
e¥i=d 2.4.7)
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Smoothing

Next, we consider the effect of post-smoothing by one Gauss—Seidel iteration.
From (2.2.5) it follows that the error after post-smoothing e! =u'—u is
related to e2? by

2el =€}’
—el1+2e}=€1), j=2,3,..,2n—1 (2.4.8)

1 1
—€2n-1+ €2 =0

Using (2.4.5)—(2.4.7) this can be rewritten as

el=0

edi=3dys1+3edjoa, ehi=%el, j=1,2,...,n—-1 (2.4.9)
1 _ 1

€2p = €2p-1

By induction it is easy to see that
ledi| <2|ld]|w |id]le=max{|dj|:j=1,2,...,2n) (2.4.10)

Since d = e??, we see that Gauss—Seidel reduces the maximum norm of the
error by a factor 2/3 or less.

Rate of convergence

It follows that
lle'fle <3lle® e (2.4.11)

This shows that the rate of convergence is independent of the mesh size h.
From the practical point of view, this is the main property of multigrid
methods.

Again: the essential principle

How is the essential principle of multigrid, discussed in Section 2.2, recog-
nized in the foregoing analysis? Equations (2.4.6) and (2.4.7) show that

RAe*?=0 2.4.12)

Application of R means taking a local weighted average with positive weights;
thus (2.4.12) implies that Ae*’’ has many sign changes, and is therefore
rough. Since Ae*’? = Au?” — f is the residual, we see that after coarse grid
correction the residual is rough. The smoother is efficient in reducing this
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non-smooth residual further, which explains the A-independent reduction
shown in (2.4.11). These intuitive notions will later be formulated in a more
abstract and rigorous mathematical framework.

Exercise 2.4.1. In the definitions of G (2.2.2) and G (2.3.1) we have not
included the point x =0, where a Dirichlet condition holds. If a Neumann
condition is given at x =0, the point x = 0 must be included in G and G. If
one wants to write a general multigrid program for both cases, x =0 has to
be included. Repeat the foregoing analysis of the two-grid algorithm with
x =0 included in G and G. Note that including x = 0 makes A non-symmetric.
This difficulty does not occur with cell-centred discretization, to be discussed
in the next chapter. :

-



3 FINITE DIFFERENCE
AND FINITE VOLUME
DISCRETIZATION

3.1. Introduction

In this chapter some essentials of finite difference and finite volume discretiz-
ation of partial differential equations are summarised. For a more complete
elementary introduction, see for example Forsythe and Wason (1960) or
Mitchell and Griffiths (1980). We will pay special attention to the handling of
discontinuous coefficients, because there seem to be no texts giving a compre-
hensive account of discretization methods for this situation. Discontinuous
coefficients arise in important application areas, and require special treatment
in the multigrid context.

. A]i mentioned in Chapter 1, finite element methods are not discussed in this

ook.

3.2. An elliptic equation

Cartesian tensor notation is used with conventional summation over repeated

Greek subscripts (not over Latin subscripts). Greek subscripts stand for

dimension indices and have range 1,2, ..., d with d the number of space

dimensions. The subscript . denotes the partial derivative with respect to x,.
The general single second-order elliptic equation can be written as

Lu= —(aug0) g+ (bott),a+cu=s in QC R? (3.2.1)

The diffusion tensor ag is assumed to be symmetric: @.g = @g.. The boundary
conditions will be discussed later. Uniform ellipticity is assumed: there exists
a constant C > 0 such that

Aaplalp 2 Cvava, YvE [Rd (3.2.2)

For d =2 this is equivalent to Equation (3.2.9).
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The domain O

The domain Q is taken to be the d-dimensional unit cube. This greatly
simplifies the construction of the various grids and the transfer operators
between them, used in multigrid. In practice, multigrid for finite difference
and finite volume discretization can in principle be applied to more general
domains, but the description of the method becomes complicated, and general
domains will not be discussed here. This is not a serious limitation, because
the current main trend in grid generation consists of decomposition of the
physical domain in subdomains, each of which is mapped onto a cubic com-
putational domain. In general, such mappings change the coefficients in
(3.2.1). As a result, special properties, such as separability or the coefficients
being constant, may be lost, but this does not seriously hamper the application
of multigrid, because this approach is applicable to (3.2.1) in its general form.
This is one of the strengths of multigrid as compared with older methods.

The weak formulation

Assume that a is discontinuous along some manifold I' C @, which we will call
an interface; then Equation (3.2.1) is called an interface problem. Equation
(3.2.1) now has to be interpreted in the weak sense, as follows. From 3.2.1)
it follows that

(Lu,v)=(s,v), VveH, (u,v)= S uv dQ (3.2.3)
1]
where H is a suitable Sobolev space. Define

a(u,v) = S Aol U8 A2 — S aopld ongv dI
b a0
(3.2.4)
b(u,v) = S (batt) a0 dQ
Q

with ng the xg component of the outward unit normal on the boundary 8% of
Q. Application of the Gauss divergence theorem gives

(Lu,v)=a(u,v)+ b(u,v)+ (cu,v) (3.2.5)
The weak formulation of (3.2.1) is
Find u € H such that a(u, v) + b(u, v) + (cu, v) =(s,v), YV € H (3.2.6)

For suitable choices of H, H and boundary conditions, existence and unique-
ness of the solution of (3.2.6) has been established. For more details on the



16 Finite difference and finite volume discretization

weak formulation (not needed here), see for example Ciarlet (1978) and Hack-
busch (1986).

The jump condition

Consider the case with one interface I', which divides @ in two parts 2, and
2, in each of which a.g is continuous. At I, a.s(x) is discontinuous. Let
indices 1 and 2 denote quantities on I' at the side of 2! and Q2, respectively.
Application of the Gauss divergence theorem to (3.2.5) gives, if u is smooth
enough in Q! and Q2,

a(u,v)= — Sn (@aptt,0) pv AR + L (@opu'e — alguinbv dy (3.2.7)

Hence, the solution of (3.2.6), if it is smooth enough in ' and Q2, satisfies
(3.2.1) in O\T', together with the following jump condition on the interface T

alguling = algutng onT (3.2.8)

This means that where a.s is discontinuous, so is #,. This has to be taken
into account in constructing discrete approximations.

Exercise 3.2.1. Show that in two dimensions Equation (3.2.2) is equivalent to

anaz—-ah >0 (3.2.9

3.3. A one-dimensional example

The basic ideas of finite difference and finite volume discretization taking dis-
continuities in aqg into account will be explained for the following example

—(au))1=s, x€Q=(0,1) 3.3.1)
Boundary conditions will be given later.
Finite difference discretization
A computational grid G C @ is defined by
G={x€R:x=x;=jh, j=0,1,2,...,n, h=1/n} (3.3.2)
Forward and backward difference operators are defined by

Auj= (Wsr—wplh, Vuj=(uj—uj-1)|h (3.3.3)
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A finite difference approximation of (3.3.1) is obtained by replacing d/dx by
A or V. A nice symmetric formula is

~1(V(aA) + A(@V)uy=sj, j=1,2,..,n—1 (3.3.4)

where s; = s(x;) and u; is the numerical approximation of u(x;). Written out
in full, Equation (3.3.4) gives

(—(@j=1 + @p)ujo1 + (@jo1 + 20+ @is DU — (@ + @js 1 )Uj+1} 2R = 55,
J=1L2,...,n—1 (3.3.5)

If the boundary condition at x = 0 is #(0) = f (Dirichlet), we eliminate u#o from
(3.3.5) with ue = f. If the boundary condition is a(0)u,1(0) = f (Neumann),
we write down (3.3.5) for =0 and replace the quantity
—(a-1+ ao)u-1+(a-1+ a)up by 2f. If the boundary condition is
c1u,1(0) + cau(0) = f (Robbins), we again write down (3.3.5) for j=0, and
replace the quantity just mentioned by 2(f— ciue)a(0)/c;. The boundary
condition at x=1 is handled in a similar way.

An interface problem

In order to show that (3.3.4) can be inaccurate for interface problems, we
consider the following example

a(x)=¢6 0<x<x* a(x)=1, x*<x<1 (3.3.6)

The boundary conditions are: #(0) =0, u(1) = 1. The jump condition (3.2.8)
becomes

€ lim u,; =lim u, 3.3.7
xx* xlx*

By postulating a piecewise linear solution the solution of (3.3.1) and (3.3.7)
is found to be

Uu=ax, 0<x<x* u=eax+l-—ea, x*<x<1, (3.3.8)
a=1/(x*-ex*+¢) .
Assume xx < x* € xx+1. By postulating a piecewise linear solution

ui=aj, 0<j<k, wyy=8j—-pn+1, k+1<j<n (3.3.9)

one finds that the solution of (3.3.5), with the boundary conditions given
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above, is given by (3.3.9) with

_ (. 1-¢ -1
B=¢eta, a= (8 1+8+£(n—k)+k) (3.3.10)
Hence
X
ux = L (3.3.11)

eh(1-e)fA+e)+ (1 —€e)xi+ €
Let x*= xx+1. The exact solution in xy is

Xk

ux)=——m—amnm—
) = e 7 e (3.3.12)
Hence, the error satisfies
uk_u(x")=0<el_:£" (3.3.13)
1+e¢ 3.

Afs another example, let x* = x + 4/2. The numerical solutions in x is still
given by (3.3.11). The exact solution in x is

- Xk
“H) = T om T er hd Y (3.3.14)
The error in xx satisfies
uk—u(xk)=0((l_€)2 h (3.3.15)
e(1+¢) 2

When a(x) is continuous (¢ = 1) the error is zero. For general continuous a(x)
the error is O(h%). When a(x) is discontinuous, the error of (3.3.4) increases
to O(h).

Finite volume discretization
By starting from the weak formulation (3.2.6) and using finite volume dis-
cretization one may obtain O(#2%) accuracy for discontinuous a(x). The
domain Q is (almost) covered by cells or finite volumes Qj,

Q=(xi~h{2, x;+hf2), j=1,2,....,n—1 (3.3.16)

Let v(x) be the characteristic function of Q;

v(x)=0, x¢Q; v(x)=1, xeQ; (3.3.17)
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A convenient unified treatment of both cases: a(x) continuous and a(x) dis-
continuous, is as follows. We approximate a(x) by a piecewise constant func-
tion that has a constant value @; in each ;. Of course, this works best if
discontinuities of a(x) lie at boundaries of finite volumes ;. One may take
a;= a(xj), or

aj=h"" S a dq.
v

R
With this approximation of a(x) and v according to (3.3.17) one obtains
from (3.2.7)

a(u,v)= — Sn (au);1 d0
b
xj+h/2

if1<jgn—1 (3.3.18)
o —h/2

—au,

By taking successively j=1,2,...,n—1, Equation (3.2.6) leads to n—-1
equations for the n—-1 unknowns u;j (uo=0 and u,=1 are given), after
making further approximations in (3.3.18).

In order to approximate au,(x;+ hf2) we temporarily introduce u;+ 1/2 as
an approximation to u#(x;+ hf2). The jump condition (3.2.8) holds at
Xj+ hf2. With the approximations

a'uly = 2a;(ujs 12— u)lh, @*uh =2aj.1(Uje1— uj+12)[h  (3.3.19)
the jump condition enables us to eliminate u; 4+ 1/2:

Uj+172=(Qu; + ajs 1 1) (@ + @je1) (3.3.20)

Next, we approximate au,(x;+ hf2) in (3.3.18) by 2a;j(¥;+1,2— u;)/h or by
2aj+1(Uje1 — uj+172)[h. With (3.3.20) one obtains

au i(xj+ h2) = wi(uj+1 — w)lh (3.3.21)
with w; the harmonic average of a; and aj.:
wj=2a;aj1f (@ + Qj+1) (3.3.22)

With Equations (3.3.18) and (3.2.21), the weak formulation (3.2.6) leads to
the following discretization

wi_1(j — - 1)h — wiwjs1 —up)fh=hs;, j=1,2,...,n—1 (3.3.23)
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with
si=h"! S s dx.
17

When a(x) is smooth, w;= (aj+ aj+1)/2, and we recover the finite
difference approximation (3.3.5).

Equation (3.3.23) can be solved in a similar way as (3.3.5) for the interface
problem under consideration. Assume xo = xx + hf2. Hence

wi=¢g, 1<j<k; wr =2¢/ (1 + €); wi=1, k<j<n-1. (3.3.24)
Again postulating a solution as in (3.3.9) one finds
B=cae, a=w/le—wek+1—n)+ wk] (3.3.25)
or
a=[(1-¢&)2+e(n—k)+k] "‘ =h{[(xx+h[2)(1 —e)+ €] (3.3.26)

Comparison with (3.3.8) shows that u; = u(x;): the numerical error is zero. In
more general circumstances the error will be O(#2). Hence, finite volume dis-
cretization is more accurate than finite difference discretization for interface
problems.

Discontinuity inside a finite volume

What happens when a(x) is discontinuous inside a finite volume £;, at
x*= xj, say? One has, with v as before, according to (3.2.7):

xi+h/2
+lim au; - lim auy (3.3.27)
xi—h/2  xtx; xlx;

a(u,v)= —au,

The exact solution u satisfies the jump condition (3.2.8); thus the last two
terms cancel. Approximating u,; by finite differences one obtains

a(u,v) = — aj+ 1241 — U h + aj_1/2(; — ;1) h (3.3.28)

This leads to the following discretization
[~ aj—12uj1+ (@j-12+ aj+ 1204 — aj+1/2)je11[h = hs;  (3.3.29)
For smooth a(x) this is very close to the finite difference discretization (3.3.5),

but for discontinuous a(x) there is an appreciable difference: (3.3.29) remains
accurate to O(h?) like (3.3.23), the proof of this left as an exercise.
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We conclude that for interface problems finite volume discretization is more
suitable than finite difference discretization.

Exercise 3.3.1. The discrete maximum and /A norms are defined by,
respectively,

n 1/2
| 4| = max{ju;|:0 < j < n, |u|o=h{'z%) u,z} (3.3.30)

Estimate the error in the numerical solution given by (3.3.9) in these norms.

Exercise 3.3.2. Show that the solution of (3.3.29) is exact for the model
problem specified by (3.3.6).

3.4. Vertex-centred discretization

Vertex-centred grid

We now turn to the discretization of (3.2.1) in more dimensions. It suffices to
study the two-dimensional case. The computational grid G is defined by

G= (x€Q: x=jh, j=(j2)s Ja=0,1,2, ..., 00, h=(h1, h2), ha=1[n0)
(3.4.1)

G is the union of a set of cells, the vertices of which are the grid points x€ G.
This is called a vertex-centred grid. Figure 3.4.1 gives a sketch. The solution
of (3.2.1) or (3.2.6) is approximated in x€ G, resulting in a vertex-centred
discretization.

X
2
! 1
1 - 1 T 1 T 1
- 4~ 4+ —=t—+—-1-%+=1-1T=F 1 - —
3 i $ 4 ¢ i
(RS (PR TS QU N (DU QR WS g Hp
IS G S b Gl Sl P o
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-—-:— -—:—-——l—-——l— L — L -+ A T
N 1 1 : {
N | | |
e
—_—

Figure 3.4.1 Vertex-centred grid. (@ grid points; ——— finite volume boundaries.)
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Finite difference discretization

Forward and backward difference operators — A, and V, are defined by
Aguj= (Ujye,— U)hay Voltj= (uj— uj—ea)/ha (3.4.2)

where e; = (1,0), e, = (0, 1). Of course, the summation convention does not
apply here. Finite difference approximations of (3.2.1) are obtained by
replacing 3/dx. by A, or V, or a linear combination of the two.

We mention a few possibilities. A nice symmetric formula is

—1{Ve(QupAo) + Ag(aupVa)lt + 1 (Vo + Ax) (batt) + cu = s
in the interior of G (3.4.3)

The finite difference scheme (3.4.3) relates u; to u in the neighbouring grid
points Xjxe,, Xj*e Te. This set of grid points together with x; is called the
stencil of (3.4.3). It is depicted in Figure 3.4.2(a). This stencil is not sym-
metric. The points xj+¢, 3., enter only in the stencil when a2 # 0. The local
discretization error is O(h%, #3), and so is the global discretization error, if the
right-hand-side of (3.2.1) is sufficiently smooth, if the boundary conditions
are suitably implemented, and if a.g is continuous. It is left to the reader to
write down a finite difference approximation with stencil Figure 3.4.2(b). The
average of Figures 3.4.2(a) and 3.4.2(b) gives 3.4.2(c), which has the advan-
tage of being symmetric. This means that when the solution has a certain sym-
metry, the discrete approximation will also have this symmetry. With Figure
3.4.2(a) or 3.4.2(b) this will in general be only approximately the case. A dis-
advantage of Figure 3.4.2(c) is that the corresponding matrix is less sparse.

(a) {b) {c)

Figure 3.4.2 Discretization stencils.

Boundary conditions

Although elementary, a brief discussion of the implementation of boundary
conditions is given, because a full discussion with a2(x) # 0 is hard to find
in the literature. If x;€4Q and a Dirichlet condition is given, then (3.4.3) is
not used in xj, but we write u;= f with f the given value. The treatment of
a Neumann condition is more involved. Suppose we have the following
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Neumann condition
aru, (1, x2) = f(x2) (3.4.4)

(in physical applications (3.4.4) is more common than the usual Neumann
condition u,; = f, and (3.4.4) is somewhat easier to implement numerically).

Let x; lie on x; = 1. Equation (3.4.3) is written down in x;. This involves
u; values in points outside G (virtual points). By means of (3.4.4) the virtual
values are eliminated, as follows. First the virtual values arising from the
second-order term are discussed. Let us write

3 {V8(@opla) + Ap(@asVa Y hi = G Uj- s + Q7 Ujr e - e + @ Uj— e,
+ q?“i"‘ q}"j+en + CIJZ'“j-ex+ez + q;uj+ez (3.4.5)
with

g;i %= —(anj-e+ an)2h} — (a12,j- e + ar2,))[2M1h2

g7 = (a12,j- e+ ai2,j+e)[2h1h2
g;'=—(ai,j-e + @11,)[2hT — (@12, &, + a12,))[ 21172 (3.4.6)

‘Ijl = qf*-leu qu = QJ'_-zel + e 41‘3 = Qjc+sez
af=-2 a7
By Taylor expansion one finds that approximately

=G = Uj—e) + @ Wjrer = U)) ~ G = Uj-ei+er)

_ 2
+ Qi U -e— W) = i Gepalx) =f(r) (.47)

Equation (3.4.7) is used to eliminate the virtual values from (3.4.5). The first-
order term (bu),; is discretized as follows at x = x;

(hu),1 = b+ b,y = by gu+ b1 (f — arau,2)f ans (3.4.8)

and u,, is replaced by 1 (Az + V2)u;.

Finite volume discretization

For smooth a.g(x) there is little difference between finite difference and finite
volume discretization, but for discontinuous a.g(x) it is more natural to use
finite volume discretization, because this uses the weak formulation (3.2.6),
and because it is more accurate, as we saw in the preceding section.
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The domain & is covered by finite volumes or cells Q;, satisfying
e=UQ 9NQ=0, ixj (3.4.9)
J

The boundaries of the finite volumes are the broken lines in Figure 3.4.1.
Except at the boundaries, the grid points x; are at the centre of Q;.

The point of departure is the weak formulation (3.2.6), with a(u, v) given
by (3.2.7). Let v be the characteristic function of ;:

v(x)=0, x¢Q, v(x)=1, xeQ; (3.4.10)

The exact solution satisfies the jump condition; thus the integral along I in
(3.2.7) can be neglected. One obtains

a@,v)+ bu,v)+cu,v)= — S (aopla),g AQ
Q;

+ S (batt) o A9 + S cu dg
Q; q;

- § Gastt.ang AT + S baune dT + S cu dQ
T i

r; Q;

S s dgQ G.4.11)
Q;

where we have used the Gauss divergence theorem, assuming that @.s(x) is
continuous in Q;, and where I'; is the boundary of ;. We approximate the
terms in (3.4.11) separately, as follows

S sdQ = | Q] s;, S cu dQ = | Q;| qu; (3.4.12)
2; Q2

where | ;] is the area of Q;. For the integrals over I'; we first discuss the inte-
gral over the part AB of T', with A = x; + (]2, — h2[2), B = xj+ (h1/2, h2[2);
{; is assumed not to be adjacent to Q. On AB, n; =1, n, =0, and dI" = dx;.
The following approximations are made

B

SA biu dxs = hy(bat)c (3.4.13)

B
s Aol dX2 = ha(@aitto)c (3.4.19)
4
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where C is the centre of AB: C= x;+ (h/2,0). The right-hand sides of
(3.4.13) and (3.4.14) have to be approximated further.

Continuous coefficients

First, assume that a.s(x) is continuous. Then we write

B
5 bt dxs = haby (C)(j + Ujres)|2 (3.4.15)
A
B
S anu,; dx; = haan(C)A 14 (3.4.16)
A
and
B » .
S aipu 2 dxp = h2ai(CHVatdjre, + Azu,-)/z (3.4.17)
A
or
B
S auz Xz = h2a2(C) (A2 + V2) () + tjser )4 (3.4.18)
A
or
B
S anauz dx; = h2a12(CY(Az2ujse, + Vaii)]2 (3.4.19)
A

Discontinuous coefficients

Assume that a,g(x) is continuous in Qj, but may be discontinuous at the
boundaries of ;. In the approximation of the right-hand sides of (3.4.13) and
(3.4.14), the jump condition (3.2.8) has to be taken into account. At C this
condition gives, approximating a.s(x) by constant values in the finite
volumes,

a1, U (C) = @11, jrett2(C) + (@12, jre, — @12, U 2(C)  (3.4.20)

where the superscripts 1 and 2 indicate the limits approaching C from inside
and from outside Q;, respectively. Note that u does not jump because u.is
continuous. Equation (3.4.20) is approximated by

2au,j(uc — uj)|h1 =211, jre,(Ujre, — Uc) M1 + (@12, j+e, — Q12,7 U ,2(C)
(3.4.21)
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In (3.4.21), u> has to be approximated further. This involves gradients over
other cell faces, where again the jump condition has to be satisfied. As a result
it is not straightforward to deduce from (3.4.21) a simple expression relating
uc to neighbouring grid points, if a.g(x) is not continuous everywhere.
This situation has not yet been explored in the literature, and making an
attempt here would fall outside the scope of this book. We therefore assume
from now on that a@;2(x)=0. The situation is now analogous to the one-
dimensional case, treated in the preceding section. Equation (3.4.21) gives

uc = (a1, jij + @iy, jrejive)f (@11,j+ 11, j1er) (3.4.22)
One obtains
B
SA anu,1 dx; =2 ayy, j(uc — u;)f hy (3.4.23)
= hawiA Uj
with
w; = 2au,jan,jsf (@, + @, jse) (3.4.24)

The convective term is approximated as follows, using (3.4.13) and (3.4.22):

B
5,4 biu dx; = habi (C)(an, juj+ Wit jreddjve ) (@11, + @11, j1e)) (3.4.25)

The integrals along the other faces of {; are approximated in a similar
fashion.

Just as in the one-dimensional example discussed earlier, one may also
assume that a,g(x) is continuous across the boundaries of the finite volumes,
but may be discontinuous at the solid lines in Figure 3.4.1. Then we approxi-
mate a.g(x) by a constant in each cell bounded by solid lines. The integral
over AB is split into two parts: over AC and over CB. One obtains, for
example,

c
S Aol dx2 = ha{an(A)Au;+ a12(A)u 2} (3.4.26)
A

where u > has to be approximated further.

Now the case a12(x) # 0 is easily handled, because the jump conditions do
not interfere with the approximation of u », for example, in Equation (3.4.21):

Uz = Voltj+ tj+e,)[2 (3.4.27)
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For the convective term the following approximation may be used
(cf. (3.4.13))

B
S b dxz = by (C) (i + tae)]2 (3.4.28)
A

Further details are left to the reader.

Boundary conditions

The boundary conditions are treated as follows. If we have a Dirichlet con-
dition at x; we simply substitute the given value for u;. Suppose we have a
Neumann condition, for example at x; = 1

o1tl,o (1, X2) = f(x2) (3.4.29)

Let AB lie on x; = 1. Then we have

B
S attl.a A2 = haf(x2.5) (3.4.30)
A
and
B
S biu dxz = haby, juj (3.4.31)
A

Exercise 3.4.1. Derive a discretization using the stencil of Figure 3.4.2(b).
(Hint: only the discretization of the mixed derivative needs to be changed.)

3.5. Cell-centred discretization

Cell-centred grid

The domain  is divided in cells as before (solid lines in Figure 3.4.1), but now
the grid points are the centres of the cells, see Figure 3.5.1. The computational
grid G is defined by

G= {xeﬂ:x:x.i:(j_ S)h, j=(jl’j2)a S=(%,%),
h= (hly hz): ja= 112, ceey Nay hot = llna’ (3.5.1)

The cell with centre x; is called Q;. Note that in a cell-centred grid there are
no grid points on the boundary 3Q.
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Figure 3.5.1 Cell-centred grid. (@ grid points; ————— finite volume

boundaries.)

Finite difference discretization

Finite difference discretizations are obtained in the same way as in Section 3.4.
Equation (3.4.3) can be used as well.

Boundary conditions

Suppose Q; is adjacent to x; = 1. Let a Dirichlet condition be given at x; = 1:
u(l, x2) = f(x2). Then (3.4.3) is written down at x;, and u values outside G
are eliminated with the Dirichlet condition:

Ujre, = 2f(X2,7) — U; (3.5.2)

When we have a Neumann condition at x = 1 as given in (3.4.4) then the pro-
cedure is similar to that in Section 3.4. Equation (3.4.3) is written down at x;.
Quantities involving values outside G (virtual values) are eliminated with the
Neumann condition. Using the notation of Equation (3.4.6), we have approxi-
mately

@ Wise,— ) + @7 (Wjre-er — W5) = — @rati o1, X2)[ B = — f(x2)[hy  (3.5.3)

Equation (3.5.3) is used to eliminate the virtual values.

Finite volume discretization

In the interior, cell-centred finite volume discretization is identical to vertex-
centred finite volume discretization. When a.g(x) is continuous in @ then one
obtains Equations (3.4.15) to (3.4.19). When a.s(x) is continuous in Q; but
is allowed to be discontinuous at the boundaries of Q; then one obtains
Equations (3.4.23) to (3.4.25). We require a;2(x) =0 in this case. When
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a.s5(x) is allowed to be discontinuous only at line segments connecting cell
centres in Figure 3.5.1, then one obtains Equations (3.4.26) to (3.4.28).

Boundary conditions

Because now there are no grid points on the boundary, the treatment of
boundary conditions is different from the vertex-centred case.

Let the face AB of the finite volume Q; lie at x; = 1. If we have a Dmchlet
condition u(1, x3) = f(x2) then we put

B
SA Qoo X2 = 2h2a11 ;(F(C) — up)hs + haarz Af(C)dxz  (3.5.4)

and
B
S,, b dxz = by (C)f(C) (.5.5)

where C is the midpoint of AB.
If a Neumann condition (3.4.29) is given at x; = 1 then we use (3.4.30) and

SB biu dxz = hab (CYu(C) (3.5.6)

A

where #(C) has to be approximated further. With upwind differencing, to be
discussed shortly, this is easy. Higher order accuracy can be obtained with

u(C) = u; + L hu 1 (C) (3.5.7)

where the trick is to find a simple approximation to u,;(C). If a@as(x) is
continuous everywhere, then we can put, using (3.4.29),

u1(C) = {f(C) - 012 JU2(C)an,j

(3.5.8)
= [f(C) ~} a2, j(V2 + A2)uj}] any, j

If aap(x) is discontinuous only at boundaries of finite volumes then we restrict
ourselves to a12(x) =0, as discussed in Section 3.4, so that (3.4.29) gives

u,1(C)= f(C)fan,; 3.5.9)

If a.g(x) is discontinuous only at lines connecting finite volume centres (grid
points) then (3.4.29) gives

at1, ju,1(C) + at, u%(C) = £(C)

3.5.10
at1,u1(C) + alz, ju’(C) = f(C) ¢ )
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where the superscripts 1 and 2 indicate limy,tx,(c) and limy,i x(c), respectively.
Taking the average of the preceding two equations and approximating u > one
obtains

u,1(C) = {A(C) - ahaaup/aty,j+ 1 LAC) — al2Vouj) [ aly,; (3.5.11)

3.6. Upwind discretization

The mesh Péclet number condition
Assume g;2 = 0. Write the discretization obtained in the interior of Q with one
of the methods just discussed as

-3 -
Q7 Ujmey + G Ui, + QU+ QJUljre + Qs = 5) (3.6.1)

As will be discussed in Chapter 4, for the matrix A of the resulting linear
system to have the desirable property of being an M-matrix, it is necessary
that

qg;<0, v=%1,%3 (3.6.2)
Let us see whether this is the case. First, take a,g(x) and b,(x) constant.
Then, apart from a scaling factor, all discretization methods discussed lead in

the interior of Q to

q; = —$hibs — haxnlh:
qji'= —1hbi — hran/h

q} = %hzbl — hzdu/hl (3.63)
q} =1mb: — hian/h
ai=-2 g

From (3.6.2) it follows that the mesh Péclet numbers P,, defined as
P, =|bo| hofase (no summation) (3.6.4)
must satisfy
P, <2 (3.6.5)

With variable a.s(x) and b.(x) the expressions for ¢q% become more compli-
cated. Let us take, for example, cell-centred finite volume discretization, with
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a.s(x) continuous inside the finite volumes, but possibly discontinuous at
their boundaries. Then one obtains

git= —hbj-eyj-ef2an,j e — MUj-efh2

3_
gi'= —hbrj-enaWj—ef2a11,j-e — haWj-ef/ 1
qj = b j+ e2wif2a11,j — hawil by (3.6.6)

g} = hb2,j+ ev2vjf2an,j— hvjlh
q) = hivj-afh2 + hawj— e[ h1 + hawjl by + h1vj hy
+hobyjre2wif2a11,j+ e — I2b1j-e2Wj-ef 2011, -
+ b2+ e/20)202,i+ e = Mib2,j- e2Vj - &f 2022, e,
where w; is defined by (3.4.24), and vj=2a2,ja2,+ef(a2,)+ @2,j+e)-

Again, for A to be an M-matrix, Equation (3.6.5) must be satisfied, with P,
replaced by P, j, defined by

Py j=|baj+es2| haf@aa,j (nO summation) (3.6.7)

Upwind discretization

In computational fluid dynamics applications, often (3.6.5) or (3.6.7) are not
satisfied. In order to have an M-matrix, the first derivatives in the equation
may be discretized differently, namely by upwind discretization. This gener-
ates only non-positive contributions to gj, v # 0.

First we describe the concept of flux splitting. The convective fluxes b.u are
split according to

bati=fa +fa~ (3.6.8)
First-order upwind discretization is obtained by the following splitting
T =3(bou x | bu|u) (3.6.9)

Upwind differencing is obtained by the following finite difference approxi-
mation

(batd)o = Vafa +Acfa ' (3.6.10)

In the finite volume context, upwind discretization is obtained with (cf.
(3.4.15), (3.4.25), (3.4.28) and (3.5.6))

B ‘ .
§ b dxz = ha(fij+ fiijve) - (3.6.11)
A
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Upwind discretization reduces the truncation error to O(h,). Much has
been written in the computational fluid dynamics literature about the pros and
cons of upwind discretization. We will not go into this here. The interested
reader may consult Roache (1972) or Gresho and Lee (1981).

The mixed derivative

When a;2(x) # 0, condition (3.6.2) may be violated, even when P,=0. In
practice, however, usually a,2(x) # 0 does not cause the matrix A to deviate
much from the M-matrix property, so that the behaviour of the numerical sol-
ution methods applied is not seriously affected. See Mitchell and Griffiths
(1980) and Exercise 3.6.1 for discretizations of the mixed derivative that leave
(3.6.2) intact.

Boundary conditions

Upwind discretization makes the application of boundary conditions easier
than before, provided we have the physically common situation of a Dirichlet
condition at an inflow toundary (b1, < 0 with n the outward normal on Q).

In the vertex-centred case, if x; =1 is an inflow boundary, the Dirichlet
condition is applied directly, and (3.6.11) is not required. If x;=1 is an
outflow boundary (b; > 0), (3.6.10) gives

(b)), = V ff; (3.6.12)

wheres (3.6.11) becomes
B
S byt dx, = haf 1 (3.6.13)
A

so that no virtual values need to be evaluated. In the cell-centred case with
finite differences, if x; =1 is an inflow boundary, a suitable approximation at
this boundary is

(biu),1 = 2(b1(1, x2)g(x2) — b1, ju;) by (3.6.14)

with g(x:) the prescribed Dirichlet value, whereas in the outflow case we have
(3.6.12). With finite volumes we have in the case of inflow

B
S bu dxz = habi(1, x2)g(x2) (3.6.15)
A

and Equation (3.6.13) in the case of outflow.
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Exercise 3.6.1. Show that in order to satisfy (3.6.2) in the case that a1 # 0
one should use the seven-point stencil of Figure 3.4.2(a) if @12 <0 and the
stencil of Figure 3.4.2(b) if a1z > 0 (cf. Exercise 3.4.1). Assume dqp = con-
stant and b, = ¢ =0, and determine conditions that should be satisfied by a:2
for (3.6.2) to hold; compare these with (3.2.9).

3.7. A hyperbolic system

Hyperbolic system of conservation laws

In this section we consider the following hyperbolic system of conservation
laws:

u @) BW_ ()€, 1e©,T] 3.7.1)
at ax -ay

where
w0, T] XxXQ—>S. CR?, s:[0,7] xQ~— R?, f,g:S.a—RP (3.7.2)

Here S, is the set of admissible states. For example, if one of the p unknowns,
u; say, is the fluid density or the speed of sound in a fluid mechanics appli-
cation, then u; < 0 is not admissible. Equation (3.7.1) is a system of p
equations with p unknowns. Here we abandon Cartesian tensor notation for
the more convenient notation above. Equation (3.7.1) is assumed to be hyper-
bolic.

Definition 3.7.1. Equation (3.7.11) is called hyperbolic with respect to # if
there exist for all ¢ € [0, 27) and admissible # a real diagonal matrix D(u, ¢)
and a non-singular matrix R(u, ¢) such that

A, ¢)R@, 0) =R, 0D, ) (3.1.3)
where
A(u, o) =cos cp‘—aféguu—)+sin © ai;,,(l—‘u—) 3.7.9

The main example to date of systems of type (3.7.1) to which multigrid
methods have been applied successfully are the Euler equations of gas
dynamics. See Courant and Friedrichs (1949) for more details on the mathe-
matical properties of these equations and of hyperbolic systems in general.
For numerical aspects of hyperbolic systems, see Richtmyer and Morton
(1967) or Sod (1985).
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For the discretization of (3.7.1), schemes of Lax—Wendroff type (see
Richtmyer and Morton 1967) have long been popular and still are widely used.
These schemes are explicit and, for time-dependent problems, there is no need
for multigrid: stability and accuracy restrictions on the time step At are about
equally severe. If the time-dependent formulation is used solely as a means to
compute a steady state, then one would like to be unrestricted in the choice
of At andfor use artificial means to get rid of the transients quickly.

Ni (1982) has proposed a method to do this using multiple grids. This
method has been developed further by Johnson (1983), Chima and Johnson
(1985) and Johnson and Swisshelm (1985). The method is restricted to Lax—
Wendroff type formulations. To limit the scope of this work, this method will
not be discussed further. We will concentrate on finite volume discretization,
which permits both explicit and implicit time discretization, and direct compu-
tation of steady states.

Finite volume discretization

Following the main trend in contemporary computational fluid dynamics, we
discuss only the cell-centred case. The grid is given in Figure 3.5.1. Integration
of (3.7.1) over Q; gives, using the Gauss divergence theorem,

d
> Sn,» u dQ+ Sp,. (f@)n; + g@)ny) dr' = Sn,. S dg (3.7.5)

where TI'; is the boundary of ©;. With the approximations
Sn_udnr_ |95 L_ 5de=|9|s (3.7.6)
where | ;]| is the area of ©;, Equation (3.7.5) becomes
19| dujfdt + S , @+ g@m) dr =195 G.1.7)

The time discretization will be discussed in a later Chapter. The space dis-
cretization takes place by approximating the integral over T'j.

Let 4 = x;+ (M2, — haf2), B= x;j+ (12, hy[2), so that AB is part of T';.
On AB, ny=1 and n, =0. We write

B
S,, f) dx; = b f@)e (.7.8)

with C the midpoint of AB. Central space discretization is obtained with

f@)e = 1) +3fWjse,) 3.7.9
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In the presence of shocks, this does not lead to the correct weak solution,
unless thermodynamic irreversibility is enforced. This may be done by intro-
ducing artificial viscosity, an approach followed by Jameson (1988a). Another
approach is to use upwind space discretization, obtained by flux splitting:

J@)y=f"w)+f" @) (3.7.10)

with f%(u) chosen such that the eigenvalues of the Jacobians of [ () satisfy
NGf*[3u) >0, NOf[du) <0 3.7.11)

There are many splittings satisfying (3.7.11). For a survey of flux splitting, see

Harten ef al. (1983) and van Leer (1984). With upwind discretization, f(u)c
is approximated by

SJwye=f"* @) +f~ (Wjve) (3.7.12)
The implementation of boundary conditions for hyperbolic systems is not

simple, and will not be discussed here; the reader is referred to the literature
mentioned above.

Exercise 3.7.1. Show that the flux splitting (3.6.9) satisfies (3.7.11).



4 BASIC ITERATIVE
METHODS

4.1. Introduction
Smoothing methods in multigrid algorithms are usually taken from the class

of basic iterative methods, to be defined below. This chapter presents an
introduction to these methods.

Basic iterative methods

Suppose that discretization of the partial differential equation to be solved
leads to the following linear algebraic system

Ay=>b 4.1.1)
Let the matrix A be split as
A=M-N 4.1.2)

with M non-singular. Then the following iteration method for the solution of
(4.1.1) is called a basic iterative method:

My”™*1=Ny™+b (4.1.3)
Let us also consider methods of the following type
y™i=8y™ + Th (4.1.4)
Obviously, methods of type (4.1.3) are also of type (4.1.4), with
S=M"IN, T=M"! 4.1.5)

Under the following condition the reverse is also true.
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Definition 4.1.1. The iteration method defined by (4.1.1) is called consistent
if the exact solution y* is a fixed point of (4.1.4).

Exercise 4.1.1 shows that consistent iteration methods of type (4.1.4) with
regular T are also of type (4.1.3). Henceforth we will only consider methods
of type (4.1.3), so that we have

ymtl=Gym + M~ 'p, S=M"'N, N=M-A (4.1.6)

The matrix S is called the iteration matrix of iteration method (4.1.6).
Basic iterative methods may be damped, by modifying (4.1.6) as follows

Y =Sy"+M b

Y=yt + (1- o)™ LD
By elimination of y* one obtains
y i =8*y" + oMb (4.1.8)
with
S*=wS+(1-w) 4.1.9)

The eigenvalues of the undamped iteration matrix S and the damped iteration
matrix S* are related by

ASH=uAS)+1-w (4.1.10)

Although the possibility that a divergent method (4.1.6) or (4.1.8) is a good
smoother (a concept to be explained in Chapter 7) cannot be excluded, the
most likely candidates for good smoothing methods are to be found among
convergent methods. In the next section, therefore, some results on conver-
gence of basic iterative methods are presented. For more background, see
Varga (1962) and Young (1971).

Exercise 4.1.1. Show that if (4.1.4) is consistent and T is regular, then (4.1.4)
is equivalent with (4.1.3) with M=T" !, N=T !~ A.

Exercise 4.1.2. Show that (4.1.8) corresponds to the splitting

M*=M/w, N*=A-M* 4.1.11)
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4.2. Convergence of basic iterative methods

Convergence

In the convergence theory for (4.1.3) the following concepts play an important
role. We have My = Ny + b, so that the error e¢™ = y™ — y satisfies

em*! =Se™ 4.2.1)

The residual »” =b — Ay™ and e™ are related by r™ = — Ae™, so that (4.2.1)
gives

Pt = ASAT 1 4.2.2)

We have e™ = S™e®, where the superscript on S is an exponent, so that
eIl < IS™ [ [l “2.3)
for any vector norm || - ||; || 8™ || = supx=o{|| S™x||/|| x ||} is the matrix norm

induced by this vector norm. || S| is called the contraction number of the
iterative method (4.1.4).

Definition 4.2.1. The iteration method (4.1.3) is called convergent if

lim ||S™||=0 (4.2.4)

with S =M™IN.

From (4.2.3) it follows that limmu—-.e™ =0 for any e°. The behaviour of
[|S™|| as m — oo is related to the eigenstructure of S as follows.

Theorem 4.2.1. Let S be an n X n matrix with spectral radius o(S) > 0. Then
S| ~ cm?~ ' (p(S)}" **! asm—> 4.2.5)

where p is the largest order of all Jordan submatrices J, of the Jordan normal
form of A with p(J,)=p(A), and c is a positive constant.

Proof. See Varga (1962) Theorem 3.1. O

From Theorem 4.2.1 it is clear that p(S) < 1 is sufficient for convergence.
Since || S || = p(S) it may happen that ||S || > 1, even though p(S) < 1. Then
it may happen that e™ increases during the first few iterations, but eventually
e™ will start to decrease. This is reflected in the behaviour of || S™|| as given
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by (4.2.5). The condition 0(S) < 1is also necessary, as may be seen by taking
e° to be the eigenvector belonging to (one of) the absolutely largest eigen-
values. Hence we have shown the following theorem.

Theorem 4.2.2. Convergence of (4.1.3) is equivalent to -

o)< 1 @.2:6)

Regular splittings and M- and K-matrices

Definition 4.2.2. The splitting (4.1.2) is called regular if M™' > 0and N> 0
(elementwise). The splitting is convergent when (4.1.3) converges.

Definition 4.2.3. (Varga 1962, Definition 3.3). The matrix A is called an
M-matrix if a; <0 for all i,j with i j, A is non-singular and A l>0
(elementwise).

Theorem 4.2.3. A regular splitting of an M-matrix is convergent.

Proof. See Varga (1962) Theorem 3.13. (0

A smoothing method is to have the smoothing property, which will be defined
in Chapter 7. Unfortunately, a regular splitting of an M-matrix does not
necessarily have the smoothing property. A counterexample is the Jacobi
method (to be discussed shortly) applied to Laplace’s equation (see
Chapter 7). In practice, however, it is easy to find good smoothing methods
if A is an M-matrix. As discussed in Chapter 7, a convergent iterative method
can always be turned into a method having the smoothing property by intro-
duction of damping. We will find in Chapter 7 that often the efficacy,of
smoothing methods can be enhanced significantly by damping. -Damped
versions of the methods to be discussed are obtained easily, using equations
(4.1.8), (4.1.9) and (4.1.10).

Hence, it is worthwhile to try to discretize in such a way that the resulting
matrix A is an M-matrix. In order to make it easy to see if a discretization
matrix is an M-matrix we present some theory.

Definition 4.2.4. A matrix A is called irreducible if from (4.1.1) one cannot
extract a subsystem that can be solved independently.

Theorem 4.2.4. If a; > 0 for all i and if a; < O for all i, j with i # j, then A
is an M-matrix if and only if the spectral radius p(B) < 1, where B = D~ IC,
D = diag(A), and C=D — A.

Proof. See Young (1971) Theorem 2.7.2. O
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Definition 4.2.5. A matrix A has weak diagonal dominance if
lail =2 | ayl, alli 4.2.7)
it

with strict inequality for at least one i.

Theorem 4.2.5. If A has weak diagonal dominance and is irreducible, then
det(A) = 0 and a;; # 0, all i.

Proof. See Young (1971) Theorem 2.5.3. OO

Theorem 4.2.6. If A has weak diagonal dominance and is irreducible, then
the spectral radius p(B) < 1, with B defined in Theorem 4.2.3.

Proof. (See also Young (1971) p. 108). Assume p(B) > 1. Then B has an
eigenvalue p  with  |u|>1. Furthermore, det(B—xT)=0 and
det(1 — u~"B) =0. A is irreducible; thus so is Q=1— " 'B, |p~'| < I, thus.
Q has weak diagonal dominance. From Theorem 4.2.5, det(Q) = 0, so that we
have a contradiction. O}

The foregoing theorems allow us to formulate a sufficient condition for A
to be an M-matrix that can be verified simply by inspection of the elements
of A. The following property is useful.

Definition 4.2.6. A matrix A is called a K-matrix if

@i >0, Vi, 4.2.8)
aiy <0, Vi,j with i # j 4.2.9)

and
> a;>0,vi, (4.2.10)

J
with strict inequality for at least one /.
Theorem 4.2.7. An irreducible K-matrix is an M-matrix.

Proof. According to Theorem 4.2.6, p(B) < 1. Then Theorem 4.2.4 gives the
desired result. [}

Theorem 4.2.7 leads to the condition on the mesh Péclet numbers given in
(3.6.5). Note that inspection of the K-matrix property is easy.
The following theorem is helpful in the construction of regular splittings.
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Theorem 4.2.8. Let A be an M-matrix. If M is obtained by replacing certain
elements ag; with i ## j by values by satisfying ai; < b;; <0, then A=M-N
is a regular splitting.

Proof. This theorem is an easy generalization of Theorem 3.14 in Varga
(1962), suggested by Theorem 2.2 in Meijerink and van der Vorst (1977). O

The basic iterative methods to be considered all result in regular splittings,
and lead to numerically stable algorithms, if A is an M-matrix. This is one
reason why it is advisable to discretize the partial differential equation to be
solved in such a way that the resulting matrix is an M-matrix. Another reason
is the exclusion of numerical wiggles in the computed solution.

Rate of convergence

Suppose that the error is to be reduced by a factor e™?. Then In||$™|| < — d,
so that the number of iterations required satisfies .

~

m > d|Rm(S) " (4.2.11)
with the average rate of converge R,(S) defined by

Rm(S) = —% Inf|$™ | 4.2.12)

From Theorem 4.2.1 it follows that the asymptotic rate of convergence R«(S)
is given by

Rx(S)= —In p(S) (4.2.13)

Exercise 4.2.1. The /;-norm is defined by
n
lxlli= 25 | x1-
Jj=1
Let

s=<())‘ D

Show that ||S™ ||, ~ m{p(S)} ™!, without using Theorem 4.2.1.

T
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4.3. Examples of basic iterative methods: Jacobi and
Gauss—Seidel

We present a number of (mostly) common basic iterative methods by defining
the corresponding splittings (4.1.2).

Point Jacobi. M = diag(A).

].}lock Jacobi. M is obtained from A by replacing a; for all i,j with
J # i,i * 1 by zero. With the forward ordering of Figure 4.3.1 this gives hori-
ZOl‘ltt.ll line Jacobi; with the forward vertical line ordering of Figure 4.3.2 one
obtains vertical line Jacobi. One horizontal line Jacobi iteration followed by
one vertical line Jacobi iteration gives alternating Jacobi.

16 17 18 19 20 5 4 3 2.1 18 9 19 10 20
11 12 13 14 15 10 9 8 7 6 6 16 7 17 8
6 7 8 9 10 15 14 13 12 11 13 4 14 5 15
i 2 3 4 5 20 19 18 17 16 111 2 12 3
Forward Backward White—black
10 14 17 i9 20 16 19 17 20 18 17 13 9 5 1
6 9 13 16 18 11 14 12 15 13 19 15 11 7 3
3 5 8 12 15 6 9 7 10 8 18 14 10 6 2
1 2 - 4 7 1 1 4 2 5 3 20 16 12 8 4
Diagonal Horizontal forward Vertical backward

white—black white—black

Figure 4.3.1 Grid point orderings for point Gauss—Seidel.

4 8 12 16 20 16 17 18 19 20 4 16 8 20 12
3 7 11 15 19 6 7 8 9 10 315 7 19 11
2 6 10 14 18 11 12 13 14 15 2 14 6 18 10
1 5 9 13 17 1 2 3 4 5 1 13 5 17 9
Forward Horizontal Vertical
vertical line zebra zebra

Figure 4.3.2 Grid point orderings for block Gauss—Seidel.
I_’oin't Gauss—Seidel. M is obtained from A by replacing a;; for all i, j with
J > i by zero. '

l.lloc.k Gauss—Seidel. M is obtained from A by replacing a;; for all i, j with
J>i+1 by zero.
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From Theorem 4.2.8 it is immediately clear that, if A is an M-matrix, then
the Jacobi and Gauss—Seidel methods correspond to regular splittings.

Gauss—Seidel variants

It turns out that the efficiency of Gauss—Seidel methods depends strongly on
the ordering of equations and unknowns in many applications. Also, the
possibilities of vectorized and parallel computing depend strongly on this
ordering. We now, therefore, discuss some possible orderings. The equations
and unknowns are associated in a natural way with points in a computational
grid. It suffices, therefore, to discuss orderings of computational grid points.
We restrict ourselves to a two-dimensional grid G, which is enough to illus-
trate the basic ideas. G is defined by

G=1G,Jj)yi=12,...,I j=12,...,J} “4.3.1)

The points of G represent either vertices or cell centres (cf. Sections 3.4 and
3.5).

Forward or lexicographic ordering

The grid points are numbered as follows

k=i+ (G-I 4.3.2)

Backward ordering

This ordering corresponds to the enumeration

k=L+1-i-(-1I (4.3.3)

White—black ordering

This ordering corresponds to a chessboard colouring of G, numbering first the
black points and then the white points, or vice versa; cf. Figure 4.3.1.

Diagonal ordering

The points are numbered per diagonal, starting in a corner; see Figure 4.3.1.
Different variants are obtained by starting in different corners. If the matrix
A corresponds to a discrete operator with a stencil as in Figure 3.4.2(b), then
point Gauss—Seidel with the diagonal ordering of Figure 4.3.1 is mathemati-
cally equivalent to forward Gauss—Seidel.
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Point Gauss—Seidel—Jacobi

We propose this variant in order to facilitate vectorized and parallel comput-
ing; more on this shortly. M is obtained from A by replacing a;; by zero except
a;; and a;,;- . We call this point Gauss—Seidel—Jacobi because this is a com-
promise between the point Gauss—Seidel and Jacobi methods discussed above.
Four different methods are obtained with the following four orderings: the
forward and backward orderings of Figure 4.3.1, the forward vertical line
ordering of Figure 4.3.2, and this last ordering reversed. Applying these
methods in succession results in four-direction point Gauss—Seidel—Jacobi.

White—black line Gauss—Seidel

This can be seen as a mixture of lexicographic and white—black ordering. The
concept is best illustrated with a few examples. With horizontal forward
white—black Gauss—Seidel the grid points are visited horizontal Line by hori-
zontal line in order of increasing j (forward), while per line the grid points are
numbered in white—black order, cf. Figure 4.3.1. The lines can also be taken
in order of decreasing j, resulting in horizontal backward white—black
Gauss—Seidel. Doing one after the other gives horizontal symmetric
white—black Gauss—Seidel. The lines can also be taken vertically; Figure 4.3.1
illustrates vertical backward white—black Gauss—Seidel. Combining hori-
zontal and vertical symmetric white—black Gauss—Seidel gives alternating
white—black Gauss—Seidel. White—black line Gauss—Seidel ordering has been
proposed by Vanka and Misegades (1986).

Orderings for block Gauss—Seidel

With block Gauss—Seidel, the unknowns corresponding to lines in the grid are
updated simultaneously. Forward and backward horizontal line Gauss—Seidel
correspond to the forward and backward ordering, respectively, in
Figure 4.3.1. Figure 4.3.2 gives some more orderings for block Gauss—Seidel.

Symmetric horizontal line Gauss—Seidel is forward horizontal line
Gauss—Seidel followed by backward horizontal line Gauss—Seidel, or vice
versa. Alternating zebra Gauss—Seidel is horizontal zebra followed by vertical
zebra Gauss—Seidel, or vice versa. Other combinations come to mind easily.

A solution method for tridiagonal systems

The block-iterative methods discussed above require the solution of tri-
diagonal systems. Algorithms may be found in many textbooks. For com-
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pleteness we present a suitable algorithm. Let the matrix A be given by

d e
2 d e .
A= : 4.3.4).
.'-"dn—l.en—l T
* Cn dx
Let an LU factorization be given by
1 &
&1 5 1 & .
A=LU={| 2 2. 4.3.5)
.'. . ."._ 'Cn—l
Cn On -
with
i=d, e1=elfd
ok = dix — Ck€x-1, kK=2,3,...,n “4.3.6)
& = ex/ by, k=2,3,...n—-1

The solution of Au = b is obtained by backsubstitution:

}"1=b1/51, }’k=(bk—0k}’k—1)/5k, k=2’37 o

4.3.7)
Un= Vn, Uk=Yi— EYk-1, k=n—-1,n-2,...,1
The computational work required for (4.3.6) and (4.3.7) is
W = 8n — 6 floating point operations (4:%.8\)

The storage required for 8 and € is 2n — 1 reals.

The following theorem gives conditions that are sufficient to ensure that
(4.3.6) and (4.3.7) can be carried out and are stable with respect to rounding
€rrors.

Theorem 4.3.1. If

|di|>1e] >0, |du|2]en|>0

(4.3.9)
|de| = lex|+ | ex], crex#0, k=2,3,...,n—1
then det(A) = 0, and
ler] <1, 0<|die|—]ee| <|8k|<|di}+]cl 4.3.10

The same is true if ¢ and e are interchanged.
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Proof. This is a slightly sharpened version of Theorem 3.5 in Isaacson and
Keller (1966), and is easily proved along the same lines. [J

When the tridiagonal matrix results from application of a block iterative
method to a system of which the matrix is a K-matrix, the conditions
Theorem 4.3.1 are satisfied.

Vectorized and parallel computing

The basic iterative methods discussed above differ in their suitability for com-
puting with vector or parallel machines. Since the updated quantities are
mutually independent, Jacobi parallizes and vectorizes completely, with
vector length I'xJ. If the structure of the stencil [A] is as in Figure 3.4.2(c),
then with zebra Gauss—Seidel the updated blocks are mutually independent,
and can be handled simultaneously on a vector or a parallel machine. The
same is true for point Gauss—Seidel if one chooses a suitable four-colour
ordering scheme. The vector length for horizontal or vertical zebra
Gauss—Seidel is J or I, respectively. The white and black groups in
white—black Gauss—Seidel are mutually independent if the structure of [A] is
given by Figure4.3.3. The vector length is I=* J[2. With diagonal
Gauss—Seidel, the points inside a diagonal are mutually independent if the
structure of [A] is given by Figure 3.4.2(b), if the diagonals are chosen as in
Figure 4.3.1. The same is true when [A] has the structure given in
Figure 3.4.2(a), if the diagonals are rotated by 90°. The average vector length
is roughly /2 or JJ2, depending on the length of largest the diagonal in the
grid. With Gauss—Seidel—Jacobi lines in the grid can be handled in parallel;
for example, with the forward ordering of Figure 4.3.1 the points on vertical
lines can be updated in parallel, resulting in a vector length J. In white—black
line Gauss~Seidel points of the same colour can be updated simultaneously,
resulting in a vector length of /2 or JJ2, as the case may be.

Figure 4.3.3 Five-point stencil.

Exercise 4.3.1. Let A=L+ D+ U, with lj=0 for j =i, D=diag(A), and

ui=0 for j<i Show that the iteration matrix of symmetric point
Gauss—Seidel is given by

S=U+D)"'LIL+D)"'U 4.3.11)

Exercise 4.3.2. Prove Theorem 4.3.1.
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4.4. Examples of basic iterative methods: incomplete point
LU factorization

Complete LU factorization

When solving Ay = b directly, a factorization A = LU is constructed, with .L
and U a lower and an upper triangular matrix. This we call c?mplete Jfactoriz-
ation. When A represents a discrete operator with stencil structure, for
example, as in Figure 3.4.2, then L and U turn out to be much less sparse than
A, which renders this method inefficient for the class of problems under
consideration.

Incomplete point factorization

With incomplete factorization or incomplete LU factorization (ILU) one gen-
erates a splitting A = M — N with M having sparse and easy to compute lower
and upper triangular factors L and U:

M=LU @A)

If A is symmetric one chooses a symmetric factorization:
M=LL"T 4.4.2)
An alternative factorization of M is
M=LD'U (4.4.3)

With incomplete point factorization, D is chosen to be a diagonal matrix,
and diag(L) = diag(U) =D, so that (4.4.3) and (4.4.1) are equivalent. I.J,. D
and U are determined as follows. A graph % of the incomplete decomposition
is defined, consisting of two-tuples (i, ) for which the elements /;;, di; and
are allowed to be non-zero. Then L, D and U are defined by

ID W)= aw, Vk,DeY 4.4.9)

We will discuss a few variants of ILU factorization. These result in a splitting
A=M-—N with M=LD"'U. Modified incomplete point Sactorization is
obtained if D as defined by (4.4.4) is changed to D + oD, with o€ R a par-
ameter, and D a diagonal matrix defined by dik = Zi=« | niks|. From now on
the modified version will be discussed, since the unmodified ver_sion fc?llows
as a special case. This or similar modifications have been investxgatefi in the
context of multigrid methods by Hemker (1980), Oertel and Stiiben’ (1989),
Khalil (1989, 1989a) and Wittum (1989a, 1989c). We will discuss a few
variants of modified ILU factorization.
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Five-point ILU
Let the grid be given by (4.3.1), let the grid points be ordered according to

(4.3.2), and let the structure of the stencil be given by Figure 4.3.3. Then the
graph of A is

=k, k- 1), (k,k=1), (k. k), (k,k+ 1), (k,k+ I)} (4.4.5)

For brevity the following notation is introduced

k= Qkk-1, Ck=Qkk-1, k= ark, Gk=Akk+1, k= ark+1 (4.4.6)
Let the graph of the incomplete factorization be given by (4.4.5), and let the
non-zero elements of L, D and U be called o, vk, 8, pr and ni; the locations
of these elements are identical to those of ax, ..., 8k, respectively. Because the
graph contains five elements, the resulting method is called JSive-point ILU.

Let a, ..., be the IJ» IJ matrices with elements ay »e05 Nk, FESpectively, and
similarly for a, ..., g. Then one can write

LD " W=a+ Y+o+pu+n+tad lu+ad ™y +v8 u+ 5"l (4.4.7)

From (4.4.4) it follows

a=a, y=¢ p=¢qg, n=¢g (4.4.8)
and, introducing modification as described above,
8+ad”'g+cd'g=d+ad (4.4.9)
The rest matrix N is given by
N=ad"'g+cs 'g+od (4.4.10)

The only non-zero entries of N are

Piee-1+1= @di21qe-1, M kr1-1= ki t18k—1 @.4.11)
Nk =0(| nik—re1| + | Mirr-1])

Here and in the following elements in which indices outside the range [1, 1J]
occur are to be deleted. From (4.4.9) the following recursion is obtained:

Ok = di — akdi 2 1gic—1— ciditiqu—1 + nux 4.4.12)

This factorization has been studied by Dupont ef al. (1968).
From (4.4.12) it follows that § can overwrite d, so that the only additional
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storage required is for N. When required, the residual b — Ay™*! can be com-
puted as follows without using A:
b-Ay™ =N@y™'-y™ (4.4.13)

which follows easily from (4.1.3). Since N is usually more sparse tham A,
(4.4.13) is a cheap way to compute the residual. For all meth_ods of type
(4.1.3) one needs to store only M and N, and A can be overwritten.

Seven-point ILU

The terminology seven-point ILU indicates that the graph of the incomplete
factorization has seven elements. The graph ¢ is chosen as follows:

g=(kkx D), kkxIF D), (k,kx1), (k,k) “4.4.14)

Let the graph of A be contained in €. For brevity we write ax = @rk-1,
bi = Qkk-1+1, Ck = Ahk—1, Ak = Aiky Gk = i k+1s S = Biek+1-1, 8k = Ak k+1-

The ,structure of the stencil associated with the matrix A is as iIn
Figure 3.4.2(a). Let the elements of L, D and U be calied ax, Ok, ks 511:, IZ»
¢« and n¢. Their locations are identical to those ot: Bcs -5 8k respectively. As
before, let o, ..., and a, ..., g be the I/ * IJ matrices with elements ok, ..., Nk
and ax, ..., gk Tespectively. One obtains:

LD W=a+8+y+8+p+i+n+(a+B+y)8 e+ ¢+n) (4.4.15)
From (4.4.4) it follows that, with modification,

a=a,B+ad"lu=0>b, y+adlt=c e
S+ad g+ Bt +y6 u=d+ad - (4.4.16)
p+B8'n=q, £+ n=/ n=¢

The error matrix N=88"lu+ 871 + ad so that its only non-zero elements
are
—1
Mick-1+2 = Bidkc 2o 1pic—1+1,  Micier1-2= Yadk-18k-1 4.4.17)
odi = e = o(| N k— 142 + | Rk +1-2])

From (4.4.16) we obtain the following recursion:

_ 1
ok = Ak, Bk = bk —_ akak—llﬂk—h Yk = Ck — akak-[{k—l
_ —1
8k = dx — adit1gk—1— Brdi re18k-1+1 — Yibk-1pk-1 + Nk

k= Gk — Bk re18k-141, Sk =S — VKO 18k-1, k= 8k
(4.4.18)
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Terms that are not defined because an index occurs outside the range [1, 1J]
are to be deleted.

From (4.4.18) it follows that L, D and U can overwrite A. The only

additional storage required is for N, Or, if one prefers, elements of N can be
computed when needed.

Nine-point ILU

The principles are the same as for five- and seven-point ILU. Now the graph
% has nine elements, chosen as follows

€=G Uk, kx I+ (4.4.19)

with &, given by (4.4.14). Let the graph of A be included in ¥, and let us write
for brevity:

2= Qrk-1-1s k= Aek-1, bk = Qk-141, Ck= i1 dr= ark
Q= xk+1, Je=akk+1-1, k= Akk+l, Di= Akxr1s; (44.20)

The structure of the stencil of A is as in Figure 3.4.2(c). Let the elements of
L, D and U be called wx, ak, B, v, 8, sk, $k, me and 7x. Their locations are

identica! to those of z,..., px, respectively. Using the same notational
conventions as before, one obtains

LD W=w+a+B+y+8+u+i+n+r
+t@+ta+B+9)0 '(u+s+0+7) (4.4.21)

From (4.4.4) one obtains, with modification:

w=z, a+wd lp=a, B+adbtu=b, Y+wb lp+adlt=c
S+ lr+ad T+ B8 + 45 lu= d+ od, pradlr+ B8 ly=¢q
C+v8'n=f, n+ydlr=g, 1=p (4.4.22)

The error matrix is given by
N=wd ¢+ 88" u+ 8" 7+ v ¢ +0d (4.4.23)
so that its only non-zero elements are

— =1 =
Pick~1+2 = BrOk-1+ 1k -1+1, Mik—2 = Wkdk21-18k—1-1

Mik+2 = BdK 1o 1Th-1+1, Mierr-2 = yidit18k-1 4.4.249)

aJk=nkk=a 2 Inkjl
%k
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From (4.4.22) we obtain the following recursion

Wk =2k, Ok = Ak — OkOk21-1pk-1-1, Bk = bk — axdilmpx—1
Yk = Ck — Wbk Lr— 1k —1-1 — oSk 2 k-1,
bk = di — i - 1Tk—1-1 — Ok~ 1 — BBk 141 Sh—101 — VRO 1k~ 1 + Nk
ke = Gk — ki Lk —1 — Bidk Lre ti-1+1, k= S — bk 21mk-1

M= 8k — Yk 1 Tk—1, Tk =Dk (4.4.25)

Terms in which an index outside the range [1, IJ] occurs are to be deleted.
Again, L D and U can overwrite A.

Alternating ILU

Alternating ILU consists of one ILU iteration of the type just discussed or
similar, followed by a second ILU iteration based on a different ordering of
the grid points. As an example, alternating seven-point ILU will be discussed.
Let the grid be defined by (4.3.1), and let the grid points be numbered
according to :

k=1J+1—-j—(-1)J (4.4.26)

This ordering is illustrated in Figure 4.4.1, and will be called here the second
backward ordering, to distinguish it from the backward ordering defined by
(4.3.3). The ordering (4.4.26) will turn out to be preferable in applications to
be discussed in Chapter 7.

Let the graph of A be included in ¢ defined by (4.4.14), and write for
brevity ax= @kk+1, bk = Qe k-s+1, Ck= Qikrs, die= Akx, Qk = Qik-J,
Jk = Qk,k+J-1, 8k = ax,x-1. To distinguish the resulting decomposition from
the one obtained with the standard ordering, the factors are denoted by LD
and U. Let the graph of the incomplete factorization be defined by (4.4.14),
and let the elements of L, D and U be called ax, Bk, V&, ok, fik, {x and x,
with locations identical to those of gk, bk, gk, dk, ak, fx and cx, respectively.
Note that, as before, &, Bk, 7« and &, are elements of L, & of D, and &,
jix, {x and 7% of U. For LD~'U one obtains (4.4.15), and from (4.4.4) it

17 13 9 5 1
18 14 10 6 2
19 15 11 7 3
20 16 12 8 4

Figure 4.4.1 Illustration of second backward ordering.
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follows that, with modification,
& q, B+ablp=b, F+ab =g
+ 4.4.27)
S+ 'a=f, a=c
The error matrix is given by N = 86 + 36 1{ + od, so that its only non-zero
elements are
ﬁk,k—]+2-= E_kgk_—l.l+ lﬂlf—-J+l, flk,k+-1—2 = Tadit1$k-1 (4.4.28)
o0d = fikk = 0(| ik, kg2 | + | Ak kra-2 ).

From (4.4.27) the following recursion is obtained
ok =Gk, Bx=bk— qdiliik-1, Ti= 8k — padklsCu-s
Ok = dic — Qi tack -1 — BBk 2y i 1&k-r41 = Ficdk 1fik—1 + Mk (4.4.29)
fi = aK — Biditrs1Ck—se1s k= fe— YudkltiCko1, Tk =cCk
Terms that are not defined because an index occurs outside the range {1, 1J]
are to be deleted. From (4.4.29) it follows that L, D and U can overwrite A.
If, however, alternating ILU is used, L, D and U are already stored in the

place of A, so that additional storage is required for L, D and U. N can be
stored, or is easily computed, as one prefers.

General ILU

Other ILU variants are obtained for the other choices of ¥. See Meijerink and
van der Vorst (1981) for some possibilities. In general it is advisable to choose
¢ equal to or slightly larger than the graph of A. If ¥ is smaller than the
graph of A then nothing changes in the algorithms just presented, except that
the elements of A outside ¥ are subtracted from N.

The following algorithm (Wesseling (1982a) computes an ILU factorization

for general ¢ by incomplete Gauss elimination. A is an # X n matrix. We
choose diag(L) = diag(U).

Algorithm 1. Incomplete Gauss elimination

A’=A
for r:= 1 step 1 until n do
begin a;,:= sqrt (a; )
for j>rA(r,j)€ € do ajj:= ali 'al,
for i>rA(i,r)e 9 do al:= ab/a’,
for (i, )€ GNi>TrAj>rA(,r)e YA (r,j) € € do
ajj:=afi ' — akal;
od od od
end of algorithm 1.

Examples of basic iterative methods: incomplete point LU factorization 53

A" contains L and U. Hackbusch (1985) gives an algorithm for the LD 'U
version of ILU, for arbitrary ¥. See Wesseling and Sonneveld (1980) and
Wesseling (1984) for applications of ILU with a fairly complicated ¥
(Navier—Stokes equations in the vorticity—stream function formulation).

Final remarks

Existence of ILU factorizations and numerical stability of the associated
algorithms has been proved by Meijerink and Van der Vorst (1977) if A is an
M-matrix; it is also shown that the associated splitting is regular, so that ILU
converges according to Theorem 4.2.3. For information on efficient
implementations of ILU on vector and parallel computers, see Hemker et al.

(1984), Hemker and de Zeeuw (1985), Van der Vorst (1982, 1986, 1989,
1989a), Schlichting and Van der Vorst (1989) and Bastian and Horton (1990).

Exercise 4.4.1. Derive algorifhms to compute symmetric ILU factorizations
A=LD 'LT-Nand A=LLT— N for A symmetric. See Meijerink and Van
der Vorst (1977).

Exercise 4.4.2. Let A=L+D+U, with D=diag(A), /;=0, j>i and
u;j =0, j < i. Show that (4.4.3) results in symmetric point Gauss—Seidel (cf.
Exercise 4.3.1). This shows that symmetric point Gauss—Seidel is a special
instance of incomplete point factorization.

4.5. Examples of basic iterative methods: incomplete block
LU factorization

Complete line LU factorization

The basic idea of incomplete block LU-factorization (IBLU) (also called
incomplete line LU-factorization (ILLU) in the literature) is presented by
means of the following example. Let the stencil of the difference equations to
be solved be given by Figure 3.4.2(c). The grid point ordering is given by
(4.3.2). Then the matrix A of the system to be solved is as follows:

B, U
L, B, Uy,
Ao Sl 4.5.1)
.'._.".‘.Ul—l
‘L - B;

with L;, B; and U; Ix I tridiagonal matrices.
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First, we show that there is a matrix D such that

A=(L+D)D!(D+U) 4.5.2)
where
0. 0oy
L, 0
L= - , U= .
. *Us-1
L, 0 0
D,
D= D, 4.5.3)
b,

We call (4.5.2) a line LU factorization of A, because the blocks in L, D and

U correspond to (in our case horizontal) lines in the computational grid. From
(4.5.2) it follows that

A=L+D+U+LD U 4.5.9)

One finds that LD~ U is the following block-diagonal matrix

0
-1
LD 'U= LaD; U‘,. 4.5.5)
" LDiMNU,,

From (4.5.4) and (4.5.5) the following recursion to compute D is obtained
D:=B,, D;=B,-LD;2\U;, j=2,3,..,n (4.5.6)

Provided D! exists, this shows that one can find D such that (4.5.2) holds.

Nine-point IBLU

The matrices D; are full; therefore incomplete variants of (4.5.2) have been
proposed. An incomplete variant is obtained by replacing L,D;~4U; in (4.5.6)

by its tridiagonal part (i.e. replacing all elements with indices i, m with
m#i,ix 1 by zero):

ﬁl =B,, ﬁj =B;— tridiag(Ljf)j'_llUj) 4.5.7)
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The IBLU factorization of A is defined as
A=L+D)P'M@+U)-N 4.5.8)

There are three non-zero elements per row in L, D and U; thus we cell this
nine-point IBLU. _ _ N

Wf will now show how D and D~' may be compu.tefl. C_gn_sltﬁer
tridiag(Ljﬁ,-"_llU,-_ 1), or, temporarily dropping the subscripts, tridiag(LD U).
Let the elements of D! be s;;; we will see shortly how to compute them. The
elements of ¢;; of tridiag(LD~'U) can be computed as follows

1
ok = Z Ii,i+jsi+j,i+k) k: —2, —l,...,z
J=-1 4.5.9)

. 1
Livk= 2, Okejivkeiivks k=-1,0,1
i=-1

The elements required s;; of D! can be obtained as follows. Let D be given by

a Ci
b .
D= 2'-a2"?. R (4.5.10)
) “br-i " ar-1° c1-1
b[ ar
Let
D=E+DF 'd+G) 4.5.11)

be a triangular factorization of D. The non-zero elements of E, F, G are €ii-1,
fi and gii+1. Call these elements e;, f; and g; for brevity. They can be com-
puted with the following recursion

fil=a, gi=cafi
ei=bifi-1, fi'l=ai—efiligi-i i=2,3,...,1 4.5.12)
gi=cfi, i=2,3,...,1-1

In Sonneveld er al. (1985) it is shown that the elements s; of D! can be
formed from the following recursion

sir= fi

si = fi+ gi€i+1Si+1,i+1 (4.5.13)
Sii-j= — €i—j+1Sii—j+1
Si—j,i = = 8i-jSi—j+1,i
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The algorithm to compute the IBLU factorization (4.5.8) can be summarized
as follows. It suffices to compute D and its triangular factorization.

Algorithm 1. Computation of IBLU factorization

begin
ﬁl = Bl
for j:= 2 step 1 until J do
(i) Compute the triangular factorization of I_,j—l according to

(4.5.11) and (4.5.12)

(ii) Compute the seven main dia; - )
gonals of D,_
(4.5.13) i_1 according to

(iii) Compute tridiag (L;D;_1U;-1) according to (4.5.9)
(iv) Compute D; with (4.5.7)

od

Compute the triangular factorization of D i
and (4.5.12) s according to (4.5.11)

end of algorithm 1.

This may not be the computationally most efficient implementation, but we
confine ourselves here to discussing basic principles.

The IBLU iterative method
With IBLU, the basic iterative method (4.1.3) becomes

r=b- Ay™ (4.5.14)
@L+D)D'D+Uy™ ' =r 4.5.15)
yrrli= pmily ym (4.5.16)

Equation (4.5.15) is solved as follows

Solve(L + D)y™* ! =r 4.5.17)
r:=Dy™*! (4.5.18)
Solve(@ + L)y"*!=r 4.5.19)

With the block partitioning used before, and with y; and r; denoting
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I-dimensional vectors corresponding to block j, Equation (4.5.17) is solved as
follows: ;

ﬁly{'+l=r1’ ﬁjy}""‘:rj—Lj_]y}l_l, j=2,3,...,J (4.520)

Equation (4.5.19) is solved in a similar fashion.

Other IBLU variants

Other IBLU variants are obtained by taking other graphs for L, D and U.
When A corresponds to the five-point stencil of Figure 4.3.3, L and U are
diagonal matrices, resulting in five-point IBLU variants. When A corresponds
to the seven-point stencils of Figure 3.4.2(a), (b), L and U are bidiagonal,
resulting in seven-point IBLU. There are also other possibilities to approxi-
mate Ljf)j-lUj by a sparse matrix. See Axelsson et al. (1984), Concus ef al.
(1985), Axelsson and Polman (1986), Polman (1987) and Sonneveld ef al.
(1985) for other versions of IBLU; the first three publications also give exist-
ence proofs for ﬁj if A is an M-matrix; this condition is slightly weakened in
Polman (1987). Axelsson and Polman (1986) also discuss vectorization and
parallelization aspects.

Exercise 4.5.1. l.)er_ive an algorithm to compute a symmetric IBLU factoriz-
ation A=(@L+ D)D"(D+LT)— N for A symmetric. See Concus et al.
(1985).

Exercise 4.5.2. Prove (4.5.13) by inspection.

4.6. Some methods for non-M-matrices

When non-self-adjoint partial differential equations are discretized it may
happen that the resulting matrix A is not an M-matrix. This depends on the
type of discretization and the values of the coefficients, as discussed in
Section 3.6. Examples of other applications leading to non-M-matrix discre-
tizations are the biharmonic equation and the Stokes and Navier—Stokes
equations of fluid dynamics.

Defect correction

Defect correction can be used when one has a second-order accurate dis-
cretization with a matrix A that is not an M-matrix, and a first-order dis-
cretization with a matrix B which is an M-matrix, for example because B is
obtained with upwind discretization, or because B contains artificial viscosity.
Then one can obtain second-order results as follows.
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Algorithm 1. Defect correction

begin Solve By =%
for i:= 1 step 1 until # do
Solve By=5b- Ay + By
y=y
od
end of algorithm 1.

It suffices in practice to take n =1 or 2. For simple problems it can be shown
that for 7 = 1 already y has second-order accuracy. B is an M-matrix; thus the
methods discussed before can be used to solve for y.

Distributive iteration
Instead of solving Ay = b one may also solve

ABy=b, y=By 4.6.1)
This may be called post-conditioning, in analogy with Ppreconditioning, where
one solves BAy=Bb. B is chosen such that AB is an M-matrix or a small
perturbation of an M-matrix, such that the splitting

AB=M-N (4.6.2)

leads to a convergent iteration method. From (4.6.2) follows the following
splitting for the original matrix A

A=MB ! -NB-! (4.6.3)

This leads to the following iteration method
MB~'y™*! = NB-Yym , p (4.6.4)

or

y T l=p™ + BM (b — Ap™) 4.6.5)
The iteration method is based on (4.6.3) rather than on (4.6.2), because if M
is modified so that (4.6.2) does not hold, then, obviously, (4.6.5) still con-
verges to the right solution, if it converges. Such modifications of M occur in

applications of post-conditioned iteration to the Stokes and Navier—Stokes
equations.
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Iteration method (4.6.4) is called distributive iteration, because the.correc-
tion M~ (b — Ay™) is distributed over the elements of y by the matrix B. A
general treatment of this approach is given by Wittum (19.86, 1.989b, 1990,
1990a, 1990b), who shows that a number of well known iterative m.ethc?ds
for the Stokes and Navier—Stokes equations can be interpreted as distributive
iteration methods. Examples will be given in Section 9.7. o

Taking B = AT and choosing (4.6.2) to be the Gauss—Seidel or Jacobi .spllt-
ting results in the Kaczmarz (1937) or Cimmino (1938) methods, resgectwely.
These methods converge for every regular A4, because Gauss—Seidel an.d
Jacobi converge for symmetric positive definite matrices (a proof of this
elementaty result may be found in Isaacson and Keller (1966)). Convergence
is, however, usually slow.



5 PROLONGATION AND
RESTRICTION

5.1. Introduction

In this chapter the transfer operators between fine and coarse grids are
discussed.

Fine grids

The domain @ in which the partial differential equation is to be solved is
assumed to be the d-dimensional unit cube, as discussed in Section 3.2. In the
case of vertex-centred discretization, the computational grid is defined by

G=[xe€RY N x=jh, j={(j1,j2r-rr Ja)» B =(l1, b2, ..., ha),
Ja=0,1,2,...,n0, ha=1[ne, a=1,2,...,d} (5.1.1)

cf. Section 3.4. In the case of cell-centred discretization, G is defined by

G=[(xeR%: x=(j— s)h, j=(j1, jo, - Jd), s=(1,1,..., 12,
h=(hi,hz, ..., ha), ja=1,2,...,04, Ba=1[Ng, a=1,2,..., d) (5.1.2)

cf. Section 3.5. These grids, on which the given problem is to be solved, are
called fine grids. Without danger of confusion, we will also consider G to be
the set of d-tuples j occurring in (5.1.1) or (5.1.2).

Coarse grids

In this chapter it suffices to consider only one coarse grid. From the vertex-
centred grid (5.1.1) a coarse grid is derived by vertex-centred coarsening, and
from the cell-centred grid (5.1.2) a coarse grid is derived by cell-centred
coarsening. It is also possible to apply cell-centred coarsening to vertex-
centred grids, and vice versa, but this will not be studied, because new
methods or insights are not obtained. Coarse grid quantities will be identified
by an overbar.
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Figure 5.1.1 Vertex-centred and cell-centred coarsening in one dimension. (@ grid
points.)

Vertex-centred coarsening consists of deleting every other vertex in each
direction. Cell-centred coarsening consists of taking unions of fine grid cel!s
to obtain coarse grid cells. Figures 5.1.1 and 5.1.2 give an illustration. It is
assumed that n, in (5.1.1) and (5.1.2) is even.

Denote spaces of grid functions by U:

U=wG-R}, U={a:G—- R (5.1.3)
/2 6 le 6
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3 3 ° [ ) *
2 3
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sz g Ilz g
2
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1
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(o} 1 2 —/, 1 2 —J,
Vertex -centred Celi-centred

Figure 5.1.2 Vertex-centred and cell-centred coarsening in two dimensions. (@ grid
points.)



62 Prolongation and restriction

The transfer operators are denoted by P and R:
P:U-U, RU-U (5.1.4)

P is called prolongation, and R restriction.

5.2. Stencil notation

In order to obtain a concise description of the transfer operators, stencil
notation will be used.

Stencil notation for operators of type U— U

Let A:U— U be a linear operator. Then, using stencil notation, Ax can be
denoted by

(Au)i= 2, AG, Duisj, i€G (5.2.1)
jeze

with Z = (0, 1, +2,...}. The subscript i = (i1, iz, ..., is) identifies a point in
the computational grid in the usual way; cf. Figure 5.1.2 for the case d = 2.
The set S4 defined by

Sa={j€2Z% 3i€ G with A(, j)#0) (5.2.2)

is called the structure of A. The set of values A(i, j) with j € S4 is called the
stencil of A at grid point i. Often the word ‘stencil’ refers more specifically
to an array of values denoted by [A]; in which the values of A(j, j) are given;
for example, in two dimensions,

A(l,—er+e&) A@ e)
[Ali=] AW, —e1) A@,0) A(, er) (5.2.3)
A(,—e) AG,e—e)

where e; =(1,0) and e, = (0, 1).
The discretization given in (3.4.3) has a stencil of type (5.2.3).
Three-dimensional stencils are represented as follows. Suppose [A] has the
three-dimensional seven-point structure of Figure 5.2.1. Then we can rep-
resent [A]; as follows

[ 0 0
[AI{"=]0 Al —e3) 0]. [A]§"=[0 A(i, e3) 0]
0 0

A, e2)
[Al®=|AG, —e1) AG0) A, er) (5.2.4)
A@, - e)

Lo o
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Figure 5.2.1 Three-dimensional stencil.

where
ey = (1) 0’ 0)9 e = (Ov 190)) ey = (0, 0, 1) (5.25)

Example 5.2.1. Consider Equation (3.3.1) with @ = 1, discretized according
to (3.3.4), with a Dirichlet boundary condition at x=0 and a Neumann
boundary condition at x = 1. This discretization has the following stencil

[Ali=h™2[-w; 2 —e] (5.2.6)

with wo=0; wi=1,i=1,2,...n—1; wp=2; ei=1,i=0,1,...,n—1; en=0.
Equation (5.2.6) means that A(, —1)= —wih® A(i,0)=2/h?
A(i, 1) = — ejfh*. Often one does not want to exhibit the boundary modifi-
cations, and simply writes

[Ali=h72[-12 -1] 5.2.7

Stencil notation for restriction operators

Let R:U — U be a restriction operator. Then, using stencil notation, Ru can
be represented by

Ru)i= 2 RG, Huzivj, i€G (5.2.8)
Jjeze
Example 5.2.2. Consider vertex-centred grids G,G for d=1 as defined by
(5.1.1) and as depicted in Figure 5.1.1. Let R be defined by
Ru; = wittzi-1 + %uz.‘ + eiuziv1, i=0,1,..., n/2 (5.2.9

with wo=0; wi=1/4,i = 0; e;=1/4,i# nf2; e,»=0. Then we have (cf.
(5.2.8)): '

R@G, —-D=w, RG0=1/2, RG1)=¢ (5.2.10)

or

[R]i= [wi 1/2 e} (6.2.11)
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We can also write [R] = [1 2 1]/4 and stipulate that stencil elements that
refer to values of u at points outside G are to be replaced by 0.

Example 5.2.3. Consider cell-centred grids G,G for d=2 as defined by
(5.1.2) and as depicted in Figure 5.1.2. Let R be defined by

Rui={u2i-22j+ 1+ U2i- 1,054 1 + U2i-22j+ Buzi— 1,2j + 2uzi 25+ Ui 12j-1
+3uU2i2j- 1+ Wi 12— 1+ Uzigj -2 + Uit 1,2j-2}[16 (5.2.12)

where values of u in points outside G are to be replaced by 0. Then we have
(cf. (5.2.8))

RG (=2,1)=R(, (-1, 1)) =R(;,(-2,0) =R, (1, - 1)
=R(, 0, -2))=R(, (1, —2)) = 1/16

R(,(0,0)=R(,(—1, - 1)) =1/8 (5.2.13)
R(, (- 1,0) =R, (0, — 1)) = 3/16
or
1)z
1 1 1
_1 1 3 2 0
T 2 3 1] -1 (5.2.14)
1 1] -2
-2 -1 0 L =5

For completeness the j, and j; indices of j in R(i, J) are shown in (5.2.14).

The relation between the stencil of an operator and that of its adjoint

For prolongation operators, a nice definition of stencil notation is less obvious
than for restriction operators. As a preparation for the introduction of a suit-
able definition we first discuss the relation between the stencils of an operator
and its adjoint. Define the inner product on U in the usual way:

W, v)= 2 u; (5.2.15)
i€z

where u and v are defined to be zero outside G. Define the transpose A™ of
A:U~- U in the usual way by

(Au,v)=(u, A*v), vu,velU (5.2.16)
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Defining A(f, /) =0 for i¢ G or j¢Sa we can write
(Au,v) = ZZ} A, Duirjvi= _ZZ; A,k — Dugv; )
i,jeZ i,keZ (5 2. 17)

=3 e 2 Al k—ivi=(u,A%v)
keZ¢ i€2?

with
A=Y, Al k—Doi= 2 AG+k, —Doksi= 2 A*(Kk,Dvkri (5.2.18)
i€z i€z i€z

Hence, we obtain the following relation between the stencils of A and A*:

Ak, )y=Alk +i, =) (5.2.19)

Stencil notation for prolongation operators

If R:U— U, then R*:U — U is a prolongation. The stencil of R* is obtained
in similar fashion as that of A*. Defining R(i, j) =0 for i¢ G or j¢ Sr, we
have

Ru, 9) = 2,2, R, juziejbi = Zgj R(, k — 20)uxb;
ikeZ?

IR (5.2.20)
= 3, ux 2, R@, k—2i)ii=(u,R*v) o
kez? iez?
with R*:U - U defined by
®R*D) = 2, RG>, k- 20)D; (5.2.21)
i€z

Equation (5.2.21) shows how to define the stencil of a prolongation operator
P:U- U:

Pa)i= Y, P*(j,i—2))a; (5.2.22)
jez?

Hence, a convenient way to define P is by specifying P*. Equation (5.2.22)
is the desired stencil notation for prolongation operators.

Suppose a rule has been specified to determine Pu for given #, then
P*(k, m) can be obtained as follows. Choose & = &* as follows

Si=1, 8k=0, j=k (5.2.23)



66 Prolongation and restriction
Then (5.2.22) gives P*(k, i — 2k) = (P&*);, or

P*(k, j) = (P5*)ox+j, k€G,i€G. (5.2.24)
In other words, [P*]y is precisely the image of §* under P

The usefulness of stencil notation will become increasingly clear in what
follows.

Exercise 5.2.1. Verify that (5.2.19) and (5.2.21) imply that, if A and R are
represented by matrices, A* and R* follow from A and R by interchanging
rows and columns. (Remark: for d =1 this is easy; for d > 1 this exercise is
a bit technical in the case of R.)

Exer'cise 5.2.2. Show that if the matrix representation of A:U— U is sym-
metric, then its stencil has the property A(k,i)=A(k+i, —i).

5.3. Interpolating transfer operators

We begin by giving a number of examples of prolongation operators, based
on interpolation.

Vertex-centred prolongations

Let d=1, and let G and G be vertex-centred (cf. Figure 5.1.1). Defining
P:U— U by linear interpolation, we have

Pa)=u;, (Pa)i+1 =530+ Bisy) (5.3.1)

Using (5.2.24) we find that the stencil of P* is given by
P*1=111 2 1] (5.3.2)
In two dimensions, linear interpolation is exact for functions S, )=

1, x1, X2, and takes place in triangles, cf. Figure 5.3.1. Choosing triangles
ABD and ACD for interpolation, one obtains ua = Ta, ua=2(iis + Uis),

» o0
» o o
we O

Figure 5.3.{ Interpolation in two dimensions, vertex-centred grids. (Coarse grid
points: capital letters; fine grid points: capital and lower case letters.)
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=1(#a + @ip) etc. Alternatively, one may choose triangles ABC and BDC,
whxch makes no essential difference. Bilinear interpolation is exact for func-
tions f(x1, x2) = 1, x1, X2, X1 X2, and takes place in the rectangle ABCD. The
only difference with linear interpolation is that now e = ¢ 2 (ua + up + uc + up).
In other words: Uzite,+er=s(Hi+ Hive + Hive, + Biterve;), With er=(1, 0)
and e; = (0, 1).

A disadvantage of linear interpolation is that, because of the arbitrariness
in choosing the direction of the diagonals of the interpolation triangles, there
may be a loss of symmetry, that is, if the exact solution of a problem has a
certain symmetry, it may happen that the numerical solution does not repro-
duce this symmetry exactly, but only with truncation error accuracy. Bilinear
(or trilinear in three dimensions) interpolation preserves symmetry exactly,
but linear interpolation is cheaper, because of greater sparsity. More details
on this will be given later.

Interpolatory prolongation in three dimensions is straightforward. For
example, with trilinear interpolation (exact for f(xi, X2, x3) = 1, X1, X2, X3,
X1X2, X2X3, X3X1, X1X2X3) one obtains

Pir)2i = u; Pa)2i+e, =5 + Hire,)
Pia)sise+e=3@i+Uive, tUives+ Uive +e)

Pha)zive +ertes

1 & - _ _ - _
=§<u,-+ Z Uive, Y Hivey+etUiva+est Uites+ra T Uite+ar+e (5.3.3)

a=1

In three dimensions, linear interpolation takes place in tetrahedra. Consider
the cube ABCDEFGH (Figure 5.3.2) whose vertices are coarse grid points. A
suitable division in tetrahedra is: GEBF, GBFH, GBDH, BAEG, BACG,

Figure 5.3.2 Cube consisting of coarse grid points.
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BGCD. The edges of these tetrahedra have been selected such that the i, co-
ordinates change in the same direction (positive or negative) along these edges.
Linear interpolation in these tetrahedra leads to, with G having index 2/ on
the finest grid,
®Pa)yi=, (PU)ite,=3i+Hive)
Pi)2iveu+en=3(Ti + Tive,+es) (5.3.9)

Pa)iverere =3+ Hire +e+e)

Cell-centred prolongations

Let d=1, and let G and G be cell-centred (cf. Figure 5.1.1). Defining
P:U—-U by piecewise constant mterpolatlon gives

Pz = Pa)u=u; (5.3.5)

Notice 'that the coarse grid cell with centre at i is the union of two fine grid
cells with centres at 2/ — 1 and 2i. Linear interpolation gives

Pa)i-1 =30+ 501, PU)u=3i+ 304, (5.3.6)

_In tW(? dimensions we have the cell centre arrangement of Figure 5.3.3. Bil-
inear interpolation gives

(P#)a = {5 (9%a + 3up + 3iic + Hp) 5.3.7

The values of P# in b, ¢, d follow by symmetry.

. Linear interpolation in the triangles ABD and ACD gives @if A has index
i, then a has index 2/)

Pua)i=5GUi+ Tivei+e)
Pa)ive,=3QuUive,+ Ui+ Uive +e) (5.3.8)
Pia)siie +e =%(17i +3Uite +e)

In three dimensions we have the cell centre arrangement of Figure 5.3.4.

b
A B
Figure 5.3.3 Cell-cent{ed grid point configuration in two dimensions. (Coarse cell
centres: A, B, C, D. Fine cell centres: a, b, c, d.)
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LH —_—

Figure 5.3.4 Cell-centred grid point conﬁguration in three dimensions. (Coarse cell
centres: A, B, ..., H. Fine cell centres: a,b,...,h.)

Trilinear interpolation gives

(Pit)a = & (274a + 90 + 9c + 9ig + 3ir + 3up + 3l + 4u) (5.3.9)

The values of PiZ in b, c, ..., h follow by symmetry. For linear interpolation
the cube is dissected in the same tetrahedra as in the vertex-centred case. The
relation between coarse and fine cell indices is analogous to that in the two-
dimensional case represented in Figure 5.1.2. The coarse cell i is the union of
the eight fine cells 2/,2i — e,, 2i—ex—es (B # @), 2i —e1— e2— €. Choosing
the i, axes as indicated in Figure 5.3.4, then g has index 2i, if G has index i.
Linear interpolation gives, for example,

(Pi), = 1 (3lic + ) (5.3.10)
(P@)n = § (20m + fic + Tn)

The general formula is very simple
Pi)zive =3 QUise + V) (5.3.11)

where I = Ui+ Uite,+er+es, €=(0,0,0) Or e=e, (@d=1,2,3) or e=ex+ &g
(@;8=1,2,3, a%B)ore=e1+ e+ es.
The stencils of these cell-centred prolongations are given in Exercise 5.3.3.

Boundary modifications

In the cell-centred case modifications are required near boundaries, see for
example Figure 5.3.5. In the case of a Dirichlet boundary condition the cor-
rection to the fine grid solution is zero at the boundary, so that we obtain
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1 2
Fine 2—0—ﬁ—~—+—

1 2
Coarse 2 - $ * $

Figure 5.3.5 Fine and coarse grid cells.

(P&) =3 #,. Hence, we obtain stencil (5.3.24) with w = 0. The general case is
taken into account in (5.3.24) to (5.3.28). When an element in the stencil, with
value w say, refers to a function value at a point outside the grid G, w=0 in
the whole stencil at that point, otherwise w = 1; and.similarly for e, n, s, f, r.
In practice this is found to work fine for other types of boundary condition
as well. If instead of a correction an approximation to the solution is to be
prolongated (as happens in nested iteration, to be discussed later), then the
boundary values have to be taken into account, which is not difficult to do.

Restrictions

Having presented a rather exhaustive inventory of prolongations based on
linear interpolation, we can be brief about restrictions. One may simply take

R=oP* (5.3.12)

with ¢ a suitable scaling factor. The scaling of R, i.e. the value of 2R3, j),
is important. If Ru is to be a coarse grid approximation of u (this situation
occurs in non-linear multigrid methods, which will be discussed in Chapter 8),
then one should obviously have T ;R(/,j)=1. If however, R is used to
transfer the residual r to the coarse grid, then the correct value of 2 ARG, J)
depends on the scaling of the coarse and fine grid problems. The rule is that
the coarse grid problem should be consistent with the differential problem in
the same way as the fine grid problem. This means the following. Let the
differential equation to be solved be denoted as

Lu=s (5.3.13)

and the discrete approximation on the fine grid by
Au=5> (5.3.149)

Suppose that (5.3.14) is scaled such that it is consistent with A*Lu = h®s with
h a measure of the mesh-size of G. Finite volume discretization leads naturally
to a = d with d the number of dimensions; often (5.3.14) is scaled in order
to get rid of divisions by 4. Let the discrete approximation of (5.3.13) on the
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coarse grid G be denoted by
A =Rb (5.3.15)

and let A approximate #°L. Then Rb should approximate h=s. Since b
approximates A%s, we find a scaling rule, as follows.

Rule for scaling of R:

2 RG,j)= ()" (5.3.16)
J

We emphasize that this rule applies only if R is to be applied to right-hand
sides andfor residuals. Depending on the way the boundary conditions are
implemented, at the boundaries o may be different from the interior. Hence
the scaling of R should be different at the boundary. Another reason why
% R(, /) may come out different at the boundary is that use is made of the
fact that due to the boundary conditions the residual to be restricted is known
to be zero in certain points. An example is R = P* with P* given by (5.3.24),
(5.3.25), (5.3.26), (5.3.27) or (5.3.28).

A restriction that cannot be obtained by (5.3.12) with any of the prolon-
gations that have been discussed is injection in the vertex-centred case:

(Ru);i = ouy; (5.3.17)

Accuracy condition for transfer operators

The proofs of mesh-size independent rate of convergence of MG assume that
P and R satisfy certain conditions (Brandt 1977a, Hackbusch 1985). The last
author (p. 149) gives the following simple condition:

mp+ mg > 2m (5.3.18)

The necessity of (5.3.18) has been shown by Hemker (1990). Here orders mp,
mg of P and R are defined as the highest degree plus one of polynomials that
are interpolated exactly by P or sR*, respectively, with s a scaling factor that
can be chosen freely, and 2m is the order of the partial differential equation
to be solved. For example, (5.3.5) has mp =1, (5.3.6) has mp = 2. Practical
experience (see e.g. Wesseling 1987) confirms that (5.3.18) is necessary. This
will be illustrated by a numerical example in Section 6.6.

Exercise 5.3.1. Vertex-centred prolongation. Take d=2, and define P by
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linear interpolation. Using (5.2.24), show

. .l 11
P~} =3 1.2 1 (5.3.19)
11
Define P by bilinear interpolation, and show
1 21
[P*] =1 2 4 2 (5.3.20)
1 21

Exercise 5.3.2. Vertex-centred prolongation. Like Exercise 5.3.1, but for
d = 3. Show that trilinear interpolation gives

121
P o= prw=lly 4 2
811 21
5.3.21
J2 42 ( )
[l>*]‘°)=§ 4 8 4
: 2 42
and that linear interpolation gives
. 000 Jo 1t
P*1P=41 1 0], [P*]‘°>=51 2 1
110 110
(5.3.22)

Jo 1t
[1>*]“)=5 01 1
000

Exercise 5.3.3. Cell-centred prolongation. Using (5.2.24), show that (5.3.9),
(5.3.6), (5.3.7), (5.3.8), (5.3.9) and (5.3.11) lead to the stencils given below by
(5.3.23), (5.3.24), (5.3.25), (5.3.26), (5.3.27) and (5.3.28) respectively, where
w=e=n=s=f=r=1, unless one (or more) of these quantities refers to
grid point values outside the grid, in which case it is replaced by zero.

P*1=11 1) (5.3.23)
P*1=w 2+w 2+e ¢ (5.3.24)
nw n2+w) ni2+e) ne

[P*] = 11 Q+mw Q2+n)2+w) 2+n)2+e) (+n)e
16l @+ Sw 2C+s5)2+w) Q2+s5)2+e) 2+ s)e
sw s2+w) s2+e) se

(5.3.25)
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0 0 e e
[P*]=% 0 2, e (5.3.26)
w w 0 0
(P*)P =L (P"lap,  with [P*]2p given by (5.3.25); (5.3.27a)

P*]¢D = 2+r P*]20, (P*1© = 2+f[P] [P*](l)=_6_f; [P*]20

(5.3.27b)
0 0 0O 0 0 00
10 0 00 s-p_l1l0 2 20
*1(~2) _ 2 - 3.
P17 =0w w oo of (P 4lw 2+w 2 0 (5328?‘_)
w w 00 w w 00 /\/zﬂ“f
. . v* b
0 0 e e 0 0 e e - ka’n
1|0 2 2+e e * 1] 0 0 e e
*100) _ 1 m__ 3.
P1%=210 2 "2 of ®1 =210 00 0 (5.3.280)
00 0 O 0000

5.4. Operator-dependent transfer operators

If the coefficients dqg in (3.2.1) are discontinuous across certain interfaces
between subdomains of different physical properties, then u ¢ c'(Q), and
linear interpolation across discontinuities in u,q is inaccurate. (See Section 3.3
for a detailed analysis of (3.2.1) in one dimension.) Instead of interpolation,
operator-dependent prolongation has to be used. Such prolongations aim to
approximate the correct jump condition by using information from the dis-
crete operator. Operator-dependent prolongations have been proposed by
Alcouffe e al. (1981), Kettler and Meijerink (1981), Dendy (1982) and Kettler
(1982). They are required only in vertex-centred multigrid, but not in cell-
centred multigrid.

One-dimensional example

Let the stencil of a vertex-centred discretization of (3.3.1) be given by
[Ali=[AG, - 1) AG,0) AG1)] +(5:4.1)
Let G and G be the vertex-centred grids of Figure 5.1.1. We define, as usual:

Pi) = i (5.4.2)
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(Pia)y; 4 is defined by (AP#)zi41 = 0, which gives
Pa)iv1=(AQi+1, —1)®E)i + AQi+ 1, 1) (Pit)2is2} A Qi+ 1,0) (5.4.3)
Because A is involved in the definition of P, we call this operator-dependent
or matrix-dependent prolongation.

Consider the example of Section 3.3. Let a(x) be given by (3.3.6) with

x.*= X2i + hf2 the location of the discontinuity. Then for the discretization
given by (3.3.23) and (3.3.24) we have

[Alzis1=[—w2 wai+was1  —wasil/h (5.4.9)
with wa; = 2¢[ (1 + €), waiy1 = 1. Equations (5.4.2) to (5.4.4) give:

2 _ 1+¢ _
1+3e“l+mui+l (5.4.5)

Pa)2iv1 = (Waill; + Wiy 1Hie 1) (Wai + Wajyy) =

We will no.v&f compare (5.4.5) with piecewise linear interpolation, taking the
Jump condition (3.2.8) into account. In the present case the jump condition
becomes

.odu .. du
e lim — = lim —
xer‘ dx x‘g‘. dx (5.4.6)

g‘lecewme linear interpolation between u;; = #; and Uziv2 = Uiy gives, with
= X — X2i:

u)=ui+at, 0<E<h2

u()=uis1+b2h—¢), hj2<E<2h G47)
Continuity gives
Ui+ ah|2 =01 + 3bh(2 (5.4.8)
The jump condition (5.4.6) gives
ga=—b (5.4.9)

Equations (5.4.8) and (5.4.9) result in bk =2e(#t; — Ui+1)/ (1 + 3e). With
uz.-+1.= Uiv1 + bh we obtain (Pu)yi.; as given by (5.4.5). This demonstrates
tl?at in this example operator-dependent prolongation results in the correct
piecewise linear interpolation.

Note that for ¢ greatly different from 1 (large diffusion coefficient) straight-
ff)rward linear interpolation gives a value for (Piz)2i+1 which differs appre-
ciably from (5.4.5). This explains why multigrid with interpolating transfer
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operators does not converge well when interpolation takes place across
an interface where the diffusion coefficients a.s in (3.2.1) are strongly

discontinuous. .

Two-dimensional case
Let the stencil of a vertex-centred discretization of (3.2.1) be given by
A(,—a+e) Al,e) Al a+e)

[A]li= A, —e) A(@,0) A(, er) (5.4.10)
A(l,—e1—e) A(,—e) Al,e-e)

Let.G and G be the vertex-centred grids of Figure 5.1.2. We define, as usual
Pa)y; = 1 (5.4.11)

Unlike the one-dimensional case, it is not possible to interpolate # in the
remaining points of G by means of Au. A is, therefore, lumped into one-
dimensional operators by summing rows or columns in (5.4.10). Thus we
obtain the lumped operators A,, defined by

1
Al G = 2 AGS, Ji=-1,0.1
T (5.4.12)

1
Az, 0,720 = X AGJ) J2=-10.1

==

These operators can be used to define (P@)ai+e, in the same way as in the
one-dimensional case: (AoP#)zite.=0, a=1,2 (no sum over «). Next,
(Pi1)2ise,+¢, 15 determined by (AP#@)aise, +e; = 0. This gives:

Pa)zite,= — { 2 A2t ea,j)(Pl_l)Zi:eu-o—j]/Aa(Zi t e.,0), a=1,2
Jj#0
‘ (5.4.13)

AQ2i+(a,8),0),

-

Pt )i+ (a,8)= — {/;o AQi+ (H,B),j)(Pl_‘)Zi+(a.B)+j}

a=+1,8=%1. (5.4.14)

‘The resulting P* is given in Exercise 5.4.2.

This can be generalized to three dimensions using the same principles. The
details are left to the reader.

In more dimensions matrix-dependent prolongation cannot be so nicely
justified for interface problems as in one dimension, and must be regarded as
a heuristic procedure. It has been found that in certain cases (5.4.13) and
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(5.4.14) do not work, but that nice convergence is obtained if A is replaced
by C defined by

Cu,H)=A0)), j=0

CG.0) = —#ZOA(i,j) if JZA(i,j)/jZ}oA(i,j)'<10"’ (5.4.15)
A@,0) otherwise

There is no explanation available why (5.4.15) is required. The choice of pis
problem dependent.

For the restriction operator for vertex-centred multigrid for interface pro-
blems one takes R = oP*, cf. (5.3.12).

Operator-dependent transfer operators can also be useful when the coef-
ficients are continuous, but first-order derivatives dominate, cf. de Zeeuw
(1990), who proposes an operator-dependent prolongation operator that will
be presented shortly.

Cell-centred multigrid for interface problems

It has been shown (Wesseling 1988, 1988a, 1988b, Khalil 1989, Khalil and
Wesseling 1991) that cell-centred multigrid can handle interface problems with
simple interpolating transfer operators. A suitable choice is zeroth-order inter-
polation for P, i.e.

* 11
[P7] = [1 1] (5.4.16)
and the adjoint of (bi-) linear interpolation for R, i.e. R = oP* with P* given
by (5.3.7), (5.3.8), (5.3.9) or (5.3.11). This gives mp = I, mg =2, so that
(5.3.18) is satisfied. Note that zeroth-order interpolation according to (5.4.16)
does not presuppose C! continuity. A theoretical justification for the one-
dimensional case is given by Wesseling (1988). Generalization to three dimen-
sions is easy: the required transfer operators have already been discussed in
Section 5.3.

Coarse grid approximation

If aopin (3.2.1) is discontinuous then not only should the transfer operations
be adapted to this situation, but also the coarse grid equations should be
formulated in a special way, namely by Galerkin coarse grid approximation,
discussed in Chapters 2 and 6.

The prolongation operator of de Zeeuw

For second-order differential equations with dominating first-order deriva-
tives, standard coarse grid approximation tends to be somewhat inaccurate;
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we will come back to this later. De Zeeuw (1990) has proposed an operato.r-
dependent vertex-centred prolongation operator which together with Galerkin
coarse grid approximation handles this case well, and is accurate for interface
problems at the same time. This prolongation is defined as follows. '

First, the operator A is split into a symmetric and an antisymmetric part:
S=1(A+A%), T=A-8 (5.4.17)

that is (cf. (5.2.19))
SGN=AGH+AG+ ], -)) (5.4.18)

Next, one writes for brevity

S7 S8 89 t7 3 Uy
(Sli=| s4a 55 ss|, [Tli=|ta 15 (5.4.19)
S1 2 83 L L

and defines :
dw=max(| 51+ se+ s7], | 51}, | s7])
de=max(|s3+ s+ So,|83],|591)
dn=max(|s7+ 53+ 59!, | s71,]89])
ds=max(|si+s2+ s3], | s1],|s3])

9
1- Z sifts )
ci=8it+ts+tto—th—la— U
we=0[1+(dw— de)/(dw+ de)+cl/(dw+de+ dn + ds)]

i=1
We =20— Wy

(5.4.20)

a=%min(l,

Let i=2k+ (1,0). Then we define

(Pi1); = wwilic + Wellk +1

. (5.4.21)
wyw = min(2g, max(0, wy)), we=min(20, max(0, w;))

The case i = 2k + (0, 1) is handled similarly. Finally, the case i =2k + (1, 1) is
done with (5.4.14). De Zeeuw (1990) gives a detailed motivation of this
prolongation operator, and presents numerical experiments illustrating its
excellent behaviour.

Exercise 5.4.1. Using (5.2.24), show that in one dimension

P*(k, £1)= —AQk L F1)AQKk £ 1,0), P*k,0)=1. (5.4.22)
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Exercise 5.4.2. Using (5.2.24), show that (5.4.11)—(5.4.14) give
P*(k,0)=1 (5.4.23)

P*(k, te)=—ARRk ey, F e)[Aa(Rk £ 2,,0), a=1,2 (5.4.24)
P*(k,j)= — (AQk +j, - )
+AQk+ j, (= j1, )P (&, (0, /)
+AQk+Jj, 0, - 2)P*(k, (1, ARk + /,0) ji=%1,j=*1
(5.4.25)

Exercise 5.4.3. Let & = 1, and assume Xjx0 A(i, /) = A(/, 0). Show that the

operator dependent prolongations (5.4.13), (5.4.14) and (5.4.21) mean we
have

Pa=1 (5.4.26)
(Hint. In the case of (5.4.21), show that wy, + w. = 25.)

Exercise 5.4.4. Show that if A is a K-matrix (Section 4.2) then w,= wu,
We = W, in (5.4.21) (de Zeeuw 1990).

Exercise 5.4.5. Let an=an=4a, az=b,=c=0 in (3.2.1), and let
a= aL =constant, x; < ith; a= ag = constant, x; > i1h with ar # ar. Let A
be the discretization matrix of (3.2.1) obtained with the finite volume method
according to Section 3.4, and let i=2k+ (1,0). Show that (5.4.13) and
(5.4.21) give the correct piecewise linear interpolation

- aL — a —
(Pu):= A+ R Uk+1
aL + ag aL + ar

6 COARSE GRID
APPROXIMATION
AND TWO-GRID
CONVERGENCE

6.1. Introduction

In this chapter we need to consider only two grids. The number of dimensions
is d. Coarse grid quantities are identified by an overbar. The problem to be
solved on the fine grid is denoted by

Au=f (6.1.1)

The two-grid algorithm (2.3.14) requires an appro_ximation A of A on the
coarse grid. There are basically two ways to chose A, as already discussed in
Chapter 2.

(i) Discretization coarse grid approximation (DCA): like A, A is obtained
by discretization of the partial differential equation.
(ii) Galerkin coarse grid approximation (GCA):

A =RAP (6.1.2)

A discussion of (6.1.2) has been given in Chapter 2.

The construction of A with DCA does not need to be discussed further; see
Chapter 3. We will use stencil notation to obtain simple formulae to compute
A with GCA. The two methods will be compared, and some theoretical back-
ground will be given.
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6.2. Computation of the coarse grid operator with Galerkin
approximation

Explicit formula for coarse grid operator

The matrices R and P are very sparse and have a rather irregular sparsity pat-
tern. Stencil notation provides a very simple and convenient storage scheme.
Storage rather than repeated evaluation is to be recommended if R and P are
operator-dependent. We will derive formulae for A using stencil notation. We
have (cf. (5.2.22))

®a)=3; P*(j,i-2))a; (6.2.1)
J

Unless indicated otherwise, summation takes place over Z¢. Equation (5.2.1)
gives

(APR); =D AG, k)P =2, 2, AGKP (j,i+k~2))a;  (6.2.2)
k k j
Finally, equation (5.2.8) gives

(RAPZ); = Y, R(i, m)(AP@)2i4 m
" (6.2.3)
=2, 20 2 RUMAQi+m, k)P*(j,2i + m + k — 2));
m k j

With the change of variables j =i+ n this becomes
(Am);i = 'Z"] ; 2 R(G, m)AQi+m, K)P*(i+ nym+k —2n)ien  (6.2.4)
from which it follows that
A(i,n)= %} ; R@,m)AQi+m, kP (i +n,m+k—2n) (6.2.5)

For calculation of A by computer the ranges of m and k have to be finite. Sa
is the structure of A as defined in (5.2.2), and Sg is the structure R, i.e.

Sr= {j€Z%3ie G with R(, j) # 0) (6.2.6)
Equation (6.2.5) is equivalent to

AG,n)= 2, 2 REmMAQI+m kP *(i+n,m+k—2n) (6.2.7)

meSn k€Sa

With this formula, computation of A is straightforward, as we will now show.
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Calculation of coarse grid operator by computer

For efficient computation of A it is useful to first determine Sz. This can be
done with the following algorithm

Algorithm STRURAP.

comment Calculation of Sa
begin SA =90
for g€ Sp* do
for me Sg do
for k€ Sa do
begin n=(m+k— q)|2
if (n€Zd) then Si= SaUn
end
od od od
end STRURAP

Having determined Sj it is a simple matter to compute A. This can be done
with the following algorithm

Algorithm CALRAP

comment Calculation of A
begin A=0
for ne Sx do
for me Sk do
for k€ Sa do
g=m+k—2n
if q € Sp* then
Gi=1i€G:2i+meG)Ni€eG:i+neG)
for ie G, do
A@,n)=A(@,n)+ R4, mAQIi+m, KP*(i+n,q)
od od od od
end CALRAP

Keeping computation on vector and parallel machines in mind, the algorithm
has been designed such that the innermost loop is the longest.



82 Coarse grid approximation and two-grid convergence

To illustrate how G is obtained we given an example in two dimensions.
Let G and G be given by

Then i € G; is equivalent so
max(— ju, —Maf2,0) € io € Min(Ne — M2, Ny — jur, Na) a=1,2

It is easy to see that the inner loop vectorizes along grid lines.

Comparison of discretization and Galerkin coarse grid approximation

Although DCA seems more straightforward, GCA has some advantages. The
coarsest grids employed in multigrid methods may be very coarse. On such
very coarse grids DCA may be unreliable if the coefficients are variable,
because these coeflicients are sampled in very few points. An example where
multigrid fails because of this effect is given in Wesseling (1982a). The situ-
ation can be remedied by not sampling the coefficients pointwise on the coarse
grids, but taking suitable averages. This is, however, precisely that GCA does
accurately and automatically. For the same reason GCA is to be used for
interface problems (discontinuous coeflicients), in which case the danger of
pointwise sampling of coefficients is most obvious. Another advantage of
GCA is that it is purely algebraic in nature; no use in made of the underlying
differential equation. This opens the possibility of developing autonomous or
‘black box’ multigrid subroutines, which are perceived by the user as any
other linear algebra solution subroutine, requiring as input only a matrix and
a right-hand side. On the other hand, for non-linear problems and for systems
of differential equations there is no general way to implement GCA. Both
DCA and GCA are in widespread use.

6.3. Some examples of coarse grid operators

Structure of coarse grid operator stencil

Galerkin coarse grid approximation will be useful only if Sz is not (much)
larger than Sa, otherwise the important property of MG, that computing
work is proportional to the number of unknowns, may get lost. We give a few
examples of Sa, with A = RAP, obtained with the algorithm STRURAP of
the preceding section. The symbol * stands for any real value, including zero.
Below we give combinations of [R], [A] and [P*] with the resulting [A]:
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Some examples of vertex-centred multigrid in two dimensions are

[R] [ * *T - [ -
[Al}=1* * =|=[A]l=|* * = 6.3.1)
') L[+ + | [+ +
[R] (% % *W _ [« % *]
[A] =|* * *{=[Al=]* * = 6.3.2)
[P*] L* o+ *] [+ * *]

Examples of cell-centred MG in two dimensions are

B %* *T j
*  *
[R]= % *
[A] = * #:[A]: * o * (6.3.3)
* *
[P*]z * *:|
¥ * J
[ * * * j
®i=f; .
L* * K *x
Al =]+ *» = b= [A] = * * 6.3.4)
| * * *
. _ % %
P’] B *] )

If in (6.3.3) or (6.3.4) [R] and [P*] are interchanged, Si remains the same.
Choosing Sp* = Sr in (6.3.3) results in Sa larger than Sa, which is to be
avoided; and similarly for Sp* = Sr in (6.3.4).

We see that in (6.3.1) to (6.3.4) Sa = Sa, which is nice. Note that in all
cases P and R can be chosen such that the requirement (5.3.18) is satisfied.

In three dimensions, the situation is much the same. We give only a few
examples. First we consider vertex-centred multigrid. Let [A]?, [A]1® and
[A]® have the following structure

* %k
* % x (6.3.5)
*
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Then with [P*] and [R] having the structure of (5.3.21), SA = Sa. Next, let
[A] have the following structure:

[A1<Y=

* *® O
* o O

0 * %
0], [A1D=|x* =
0 *
: (6.3.6)
(A1 =

SO O
S * *
S x %

Then with [P*] and [R] having the structure of (5.3.22), Si = Sa. Like
(6.3.5), the stencil (6.3.6) allows discretization of an arbitrary second-order
differential equation including mixed derivatives.

For cell-centred multigrid we give the following examples. Let [A]¢Y
[A]? and [A]” have the structure given by (6.3.5). Then with [P*]¢D ané
[P*]1 having the structure

[: :] 6.3.7)

(* =1 gives us the three-dimensional equivalent of (5.3.23)) and {R*] having
the structure (5.3.27), Sa = Sa. This is also true for the combination (6.3.6),
(6.3.7) and [R*] having the structure (5.3.28). Also, Sa = Sa if the structures
of R and P* are interchanged.

Notice that if

R = sP* (6.3.8)

with s € R some scaling factor, then A = RAP is symmetric if A is. Equation
.(6.3.8) doeg not hold in the cell-centred case in the examples just given, so that
in general A will not be symmetric. In certain special cases, however, A is still
found to be symmetric, if A is. One such example is the case where A is the
discretization of (3.2.1) with bo=c=0 and a.s=0 if 8 # «.

Eigenstructure of RAP

Suppose the domain is infinite and the coefficients are constant. Then A is
determined completely by the 7 elements of [A]. In the case of (6.3.2), which
we take as an fxample, we have n =9, and [A] also has nine elements. In the
case [R] = [P*] with [P*] given by (5.3.20) de Zeeuw (1990) gives a complete
analysis of the eigenstructure of the linear operation RAP. There are nine
stencils [A;] such that

[A]l = N[A], i=1,2,...9 (6.3.9)
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with real eigenvalues \;. Using explicit expressions for [Ai] and \; it is found
that if A is the upwind discretization of u,1, i.e.

0 0 0 .
[A]=]-1 1 O (6.3.10
0 0O

then, after m applications of RAP (so now, temporarily, we consider m coarse
grids)

[ 2 -] g [-r oot
Al=L]-4 8 -4l+3|-4 0 4
217 2 -1 2]{-1 01
S o (6.3.11)
—-m -m
+200 2 0 2|+l -2 4 -2
217 o 1 2] 1 -2 1

If R and P* are given by (5.3.19) and A by (6.3.10) then m applications of
RAP result in (P. M. de Zeeuw, private communication)

0 0 -1 1
[A] =271 -1 2 —1}|+i2m -2 0 2
0 0 -1
(6.3.12)
1 -1
+327" -1 0 1
1 -1 s
Loss of K-matrix property under RAP \

Equations (6.3.11) and (6.3.12) show that although A corresponds to a K-
matrix (see Section 4.2), A does not. This effect occurs generally with
A = RAP, when interpolating transfer operators are used and A is a dis-
cretization of a differential equation containing both first and second deriva-
tives. Such loss of diagonal dominance on coarse grids may lead to
deterioration of smoothing performance, resulting in inaccurate coarse grid
correction. For illustrations of these effects, see de Zeeuw and van Asselt
(1985). Operator-dependent transfer operators can maintain the K-matrix
property on the coarse grids with Galerkin coarse grid approximation (cf. de
Zeeuw 1990). On the other hand, as will be seen in Chapter 7, there exist very
powerful smoothers for the case of dominating first derivatives, coming close
to exact solvers, so that inaccuracy of the coarse grid correction is compen-
sated by the smoother on the finest grid.
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Exercise 6.3.1. Assume

P*1=[p 1 pl, RI=Irn 1 r], [Al=[ar 1 a] (6.3.13)
Show that

[RAP] = [a1 a3 a:]
ai=na+ p(a+r)
aGx=rax+ pi(az+r2)
a=pila+n)+p(@+r)+tl+rna+na

(6.3.14)

Take pi=p2=ri=r;=1/2, and show that [Al=[-} 1 -3] is left
invariant under the operation RAP, apart from scaling. Discuss the loss of the
K-matrix property in relation to the mesh-Péclet number if A is the central
and the upwind discretization of the the convection—diffusion equation with
constant coefficients.

Exercise 6.3.2. Let [A] be given by (6.3.13). Show that operator-dependent
prolongation gives

PY1=[-a 1 -—a] (6.3.15)

Take R =P*, and show that [A] = [—1 1 0] is left invariant under the
operation RAP.

Exercise 6.3.3. Let [A] be given by (6.3.13), [P*] by (6.3.15) and let R = P*.
Show that if A is a K-matrix, then RAP is a K-matrix.

6.4. Singular equations

Consistency condition

It may happen that the solution of (6.1.1) is determined only up to a constant,

for example, when the differential equation to be solved has boundary con-

ditions of Neumann type only. In this case A is singular, and we have
Ker(A)={velU: v=ae,a€R}, or Ae=0 6.4.1)

We recall the fundamental properties

Ker(A) = Range(A*)*, Range(A)= Ker(A*)* (6.4.2)

Let w be a basis for Ker(A*). Then (6.1.1) has solutions only if the consistency
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condition is satisfied:

fLKer(A*) or (f,w)=0 6.4.3)
where the inner product is defined as usual
(fiw)= 2 fiwi (6.4.4)
i€G

If the solution of (6.1.1) is determined only up to a constant we have

w=e (6.4.5)

with e;=1, Vi€ G, or we can achieve this by suitable scaling.

Solvability of coarse grid equation

Unless certain conditions are satisfied, multigrid may not work satisfactorily
in the singular case considered here. It suffices to consider the two-grid algor-
ithm of Section 2.3. In this algorithm the following coarse grid problem has
to be solved

Aa=Rr, r=f-Au"”"? (6.4.6)

If A is obtained by discretization or Galerkin coarse grid approximation it will
also be singular. Let # be a basis for Ker(A*) with quite likely, after suitable
scaling,

w=e 6.4.7)
withe; =1, Vie G. For (6.4.6) to have solutions we must have (Rr, w) = 0, or
r,R*w)=0 " (6.4.8)

Assuming (6.4.3) to hold, we have (r, w) = 0. Hence (6.4.8) is satisfied if

R*w=sw for some s€R, (6.4.9)

Now suppose that A is obtained by Galerkin coarse grid approximatipn.
Then, if (6.4.9) holds o

A*H =P*A*R*Ww = sP*"A*w =0 (6.4.10)
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Hence, again A is singular, with € a basis for Ker(A*); but (6.4.6) is consis-
tent. To sum up, (6.4.9) ensures consistency of the coarse grid equation in the
singular case.-

In practice good multigrid convergence is often obtained also when (6.4.9)
is not satisfied, provided the non-consistent coarse grid equation is solved with
a suitable method, for example QR factorization. This implies that the right-
hand side on G is effectively the projection of Rr on Range(A).

Making the solution unique

In order to make the solution unique one might be inclined to impose an
additional condition on # on the finest grid, for example

ur=0 for some k€G 6.4.11)

or

(,e)=0 (6.4.12)

The pointwise condition (6.4.11) is, however, poorly approximated on the
coarser grids, resulting in deterioration of multigrid convergence. The fine
grid matrix should be left intact. On the coarse grid correction that satisfies
(6.4.6) one may impose

(u,e)=0. (6.4.13)
Suppose that P satisfies
P'e=ceé, a€R (6.4.14)
Then we have
(Pit,e) = (@, P*e)=(i1,6) =0 (6.4.15)

so that (u*3,e)=u'?e). The two-grid method will converge modulo
(Ker(A¥)). After convergence one may simply satisfy (6.4.12) by subtracting
its average from the final iterand.

These considerations carry over easily from two-grid to multigrid. In the
multigrid case, one additional remark is in order. Experience shows that in the
singular case it is necessary to compute the solution on the coarsest grid accu-
rately. If the equations on the coarsest grid are not consistent, a suitable
method has to be used, such as QR factorization.

For a discussion of more general singular problems, for example when
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Ker(A*) is more general, or of eigenvalue problems, see Hackbusch (1985)
Chapter 12.

6.5. Two-grid analysis; smoothing and approximation
properties

Introduction

In this section a few remarks will be made on the convergence properties of
the two-grid algorithm of Section 2.3. Let /4 be a measure of the mesh-size of
the computational grid G. The purpose of two-grid analysis is to show that
the rate of convergence of the two-grid method is independent of A. For a
simple one-dimensional problem a convergence analysis has already been pre-
sented in Section 2.4. Under simplifying assumptions (constant coefficients,’
special combinations of smoother and boundary conditions, or infinite
domains) a two-grid convergence analysis can be given with Fourier methods.
Such analyses can be found in Stiiben and Trottenberg (1982) and in Mandel
et al. (1987), and will not be presented here. We will restrict ourselves to
qualitative considerations that will help to make the requirements to be
satisfied by the smoother and the transfer operators P and R more precise.

The smoothing iteration matrix

Let the smoothing method S(u, A, f, ») in the two-grid algorithm of Sec-
tion 2.3 be defined for » = 1 by one application of iteration method (4.1.3):

w=Su+M7Yf, S=M"IN, M-N=A 6.5.1)

Applying this iteration method v times, we obtain
=S +Te)f, TE)=EF"1+8 2+ +DM™’ (6.5.2)
Note that according to Exercise 4.1.1 iteration method (6.5.2) is again of type
(4.1.3), with M=T(»)"!, N=M— A. According to (4.2.1) and (4.2.2) the

error and the residual satisfy:

e =§e® "'(6.5.3)
r'2=AS"A7Y° 6.5.4)

Since S=M™!'N=I-M"'A, and hence AS"'A™' = I-AM™ 1y, we can
replace (6.5.4) by

P28 §=ASA l=1- AM"' (6.5.5)
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The coarse grid correction matrix

From the two-grid algorithm of Section 2.3 it follows that
u3=Cu"?+PA'Rf (6.5.6)
with the coarse grid correction matrix C given by
C=I-PA'RA 6.5.7)
For the error and the residual we obtain
e =Ce!? (6.5.8)

r3=Cr3, €=1-APA 'R 6.5.9

The two-grid iteration matrix

From the two-grid algorithm and the results above it follows that
e!=Qe’ (6.5.10)
with the two-grid iteration matrix Q given by
Q=S8"CS" (6.5.11)
Furthermore,
r'=Qr’, Q=8§" (6.5.12)

Two-grid rate of convergence; smoothing and approximation properties
The convergence of the two-grid method is governed by its contraction
number || Q ||. For || - || we choose the Euclidean norm. For the study of || Q ||
the following splitting introduced by Hackbusch (1985) is useful. It is assumed
for simplicity that v, = 0. One may write:
Q=(A"'-PA'R)(AS") (6.5.13)

so that

lQl <A™ -PA~'R||||AS™ | (6.5.14)

The separate study of the two factors in (6.5.14) leads to the following defi-
nitions (Hackbusch 1985).
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Definition 6.5.1. Smoothing property. S has the smoothing property if there
exist a constant Cs and a function n(») independent of A such that

| AS*|| < Csh™2™q(»), n(»)—=0 for »— o (6.5.15)
where 2m is the order of the partial differential equation to be solved.

Definition 6.5.2. Approximation property. The approximation property
holds if there exists a constant C,4 independent of & such that

| A™' —PA'R|| < C4h>™ (6.5.16)
where 2m is the order of the differential equation to be solved.

If these two properties hold, h-independent rate of convergence of the two-
grid method (with y» = 0) follows easily.

Theorem 6.1.1. h-independent two-grid rate of convergence. Let the
smoothing property (6.5.15) and the approximation property (6.5.16) hold.
Then there exists a number » independent of A such that

vy
1QIl < CsCam(p) <1, vy ¥ (6.5.17)
Proof. From (6.5.14) we have
QI € CsCan(»)

According to (6.5.15) we have a » independent of A such that (6.5.17)
holds. (OJ '

We also have the following theorem.

Theorem 6.5.2. The smoothing property implies that the smoothing method
is a convergent iteration method.

Proof.
Is"ll < WA |AS”[ < [A7Y ]| Csh™*™n(»)
Hence lim,-«{|S”||=0. O
We remark that in general || A~} || is not independent of 4; in general the rate
of convergence of the smoothing method depends on 4. Most smoothing

methods are convergent, such as those that were considered in Chapter 4. In
principle multigrid may, however, also work with a divergent smoothing
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method, as long as it smooths the error rapidly enough and does not diverge
too fast. This has led Hackbusch (1985) to formulate the smoothing property
in a slightly more general way, allowing divergent smoothers.

For a more general discussion of two-grid convergence, including the case
v2 # 0, see Hackbusch (1985), where an extensive discussion of conditions
implying the smoothing and approximation properties is given. In practice it
is often difficult to prove the smoothing and approximation properties rigor-
ously. In Chapter 7 various heuristic measures of the smoothing behaviour of
iterative methods will be discussed. The main conditions for the approxi-
mation property are that P and R satisfy (5.3.18) and that A and A (A = RAP
suffices) are sufficiently accurate discretizations.

An algebraic definition of smoothness

The notion of smoothness plays an important role in multigrid methods. The
concept of smoothness is usually employed in an intuitive way. The smoothing
property just introduced is defined precisely mathematically, but does not
imply a criterion by which to split a grid-function into a smooth and a non-
smooth part. It is, however, possible to do this rigorously, as will now be
shown.

From (6.5.9) it follows that, if A = RAP (Galerkin coarse grid approxi-
mation), then Rr?¥’> =0, or

r*3 eKer(R) (6.5.18)
Since R (usually) is a weighted average of neighbouring grid function values
with positive weights, (6.5.18) implies that r*° has many sign changes. In
other words, r*’? is non-smooth, or rough. This inspires the following orthog-
onal decomposition of U:G — R in smooth and rough grid functions:

U=Us ® U, U;=Ker(R) (6.5.19)

Hence,

. = Range(R™) (6.5.20)
One could also define U, = Range(P), and U; = U. If R=P*, as often hap-
pens, this makes no difference.

The orthogonal projection operator on Ker(R) is given by

O=1-R*(RR*)" 'R (6.5.21)

Every grid-function v € U can be decomposed into a smooth and a rough part.
These parts are defined by the following definition.
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Definition 6.5.3. The smooth part vs and the rough part v, of v € U are defined
by

v.=Hv, vi=(»0-I)v. (6.5.22)

We now take a closer look at coarse grid approximation. Let
r3=rl3 +rl3. We see that :

r¥3=0, r¥=r¥3+rd? (6.5.23)

It is seen once more that coarse grid correction does a good job of annihilating
the smooth part of the residual, but we see that there is also a possibility
that the non-smooth part is amplified. If this amplification is too great; multi-
grid will not work properly. To avoid this, P and R must satisfy condition
(5.3.18). A numerical illustration will be given in Section 6.6.

Smoothing factors

The smoothing method needs to reduce only the rough part of the residual,
since, as we just saw, the residual after coarse grid correction has no smooth
part. We have (cf. (6.5.23)) r! = §"r2% = §T1r*3 so that the smoothing per-
formance is measured by || 8”7 ||.

We therefore make the following definition.

Definition 6.5.4. The algebraic smoothing factor of the smoothing method
given by u:= S’u + T(v) f is defined by

pa(v) =S| (6.5.24)

This definition is related to the reduction of the residual. The dual view-
point of considering the error leads to analogous results. If A = RAP, then
CP =0, so that if e'/> ¢ Range(P), then ¢*> = 0. Defining the set of smooth
and rough grid functions as Us = Range(P) and U, = Ker(P"), respectively,
then the purpose of pre-smoothing is to reduce the part of the error in U,. This
reduction is measured by

pa(v) = || 1157 | (6.5.25)

with IT the projection operator on Ker(P"). The quantity p, given by (6.5.25)
has been defined and used by McCormick (1982).

Either one of the smoothing factors (6.5.24) and (6.5.25) may be used.
Because of the inverse in IT, pa can only be investigated numerically, in gen-
eral. This may be useful during the development of a multigrid code, as an
independent check that the smoother works. We have a good smoother if and
only if pa < 1 independent of A.
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Another smoothing factor, based on the smoothing property, has been
proposed by Hackbusch (1985), who calls it the smoothing number.

Definition 6.5.5. The smoothing number of the smoothing method given by
u:= Su+T(v)f is defined by

pa(v) = || AS™||/|| A || (6.5.26)

If the smoothing property holds, then || A || € 5(0), and we have

pa(¥) < n()[n(0) (6.5.27)

so that pa(v) < 1 for » large enough, independently of 4. For A symmetric
positive definite, Hackbusch (1985) proves the smoothing property for various
smoothing methods of Gauss—Seidel type and for Richardson iteration, of
which damped Jacobi is an example. Wittum (1986, 1989a, 1990) has proved
the smoothing property for ILU type smoothing.

6.6. A numerical illustration

Consider the convection—diffusion equation, which is the following special
case of (3.2.1):

— €U qa+c0s6 u,1 +5inf uz=0 inR=(0,1)x(0,1) (6.6.1)

with Dirichlet boundary conditions. The parameter 8 is constant. This
equation is discretized on a cell-centred grid with the finite volume method,
using upwind discretization. The grid is uniform and consists of 2" x 2" cells.
Cell-centred coarsening is used. The coarsest grid has 2 x 2 cells. In the results
to be presented, 6 = 135°,

The transfer operators are given by

[R] = [P*] =E :] 6.6.2)
which implies
(Pu)2i = (Pia)zi-e, = Pit)2i-e, = (Pil)2i—e,—e, = Hi (6.6.3)

wit_h .el =(1,0), ez =(0,1). First, we determine p,(1) as defined by (6.5.24).
This is facilitated by the fact that in the present case

RP =41 (6.6.4)

so that the projection operator IT defined by (6.5.21) is readily determined.
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Table 6.6.1. Algebraic smoothing factor pa(1)

€ n=2 n=3 n=4 n=S5 n=6

107 0.21 0.23 0.23 0.23 0.24
1077 0.33 0.39 0.43 0.43 0.42

Table 6.6.2. Multigrid results

£ n=2 n=3 - n=4 n=5 n=6

107  0.02,0.01,8 0.16,007,8 042, 0.158 0.65, 0.20,8 0.80,0.22, 8
1077 0.03, 1073, 4 0.10,10°% 6 0.14,0.02,8 0.20,0.14,8 0.29,0.19, 8

First, the algebraic smoothing factor is determined. We have
pa(l) = || SII | = (p@I*S*SIT)} ' (6.6.5)

with p the spectral radius, computed by the power method, which is found to
converge rapidly. The smoothing method is point Gauss—Seidel iteration.

Table 6.6.1 gives results. We see that p, (1) is bounded away from 1 uniformly
in n, as it should be, for multigrid to be effective. Next, a multigrid method
is applied. Galerkin coarse grid approximation is used. The multigrid schedule
is the V-cycle with no presmoothing and one postsmoothing (sawtooth cycle);
more on multigrid schedules in Chapter 8. The algorithm is given by
subroutine LMG of Section 8.3 with » =0, v« =1, ¢ = 1. Results are given in
Table 6.6.2. The first number of each triplet is the maximum of the reduction
factor of the h-norm of the residual that was observed, the second is the
average reduction factor, and the third is the number of iterations that was
performed. The average reduction factor of the residual r is defined -as
g™ I/itr° 1) Y™ with m the number of iterations.

For =107 we are solving something very close to the Poisson equatlon
Clearly, multigrid does not work: the maximum reduction factor tends to 1
as n increases. The cause of failure is not the smoothing process; according
to Table 6.6.1, we have a good smoother. Failure occurs because prolongation
and restriction are not accurate enough for a second order equation. With R
and P defined by (6.6.2) we have mp = mg =1, so that rule (5.3.18) is viol-
ated. The operator C generates in (6.5.23) a rough residual component that
is too large. It is found that || r?|}/]|7*”*|| > 1; this ratio increases with n,
with 4.7 a typical value for # = 6. Increasing the number of smoothing steps
or using a W-cycle does not help very much.

For e = 10~7 we are effectively solving a first-order equation. According to
rule (5.3.18), P and R should be sufficiently accurate, and indeed Table 6.6.2
shows that multigrid works well. These results confirm rule (5.3.18).



7 SMOOTHING
ANALYSIS

7.1. Introduction

The convergence behaviour of a multigrid algorithm depends strongly on the
smoother, which must have the smoothing property (see Section 6.5). The effi-
ciency of smoothing methods is problem-dependent. When a smoother is
efficient for a large class of problems it is called robust. This concept will be
made more precise shortly for a certain class of problems. Not every conver-
gent method has the smoothing property, but for symmetric matrices it can
be shown that by the introduction of a suitable amount of damping every con-
vergent method acquires the smoothing property. This property says little
about the actual efficiency. A convenient tool for the study of smoothing effi-
ciency is Fourier analysis, which is also easily applied to the non-symmetric
case. Fourier smoothing analysis is the main topic of this chapter.

Many different smoothing methods are employed by users of multigrid
methods. Of course, in order to explain the basic principles of smoothing
analysis it suffices to discuss only a few methods by way of illustration. To
facilitate the making of a good choice of a smoothing method for a particular
application it is, however, useful to gather smoothing analysis results which are
scattered through the literature in one place, and to complete the information
where results for important cases are lacking. Therefore the Fourier
smoothing analysis of a great number of methods is presented in this chapter.
The reader who is only interested in learning the basic principles needs to read
only Sections 7.2 to 7.4 and 7.10.

7.2. The smoothing property
A class of smoothing methods

The smoothing method is assumed to be a basic iterative method as defined
by (4.1.3). We will assume that A is a K-matrix. Often, the smoother is
obtained in the way described in Theorem 4.2.8; in practice one rarely encoun-
ters anything else. Noting that A is a discretization of a partial differential
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operator of order 2m, Gerschgorin’s theorem gives in this case
IM|| < Cuh™>" (7.2.1)

with Car some constant.

The smoothing property and convergence

From Theorem 6.5.2 we known that the smoothing property implies conver-
gence of a basic iterative method. The converse is not, however, true; a
counterexample is given in Section 7.6. Wittum (1989a) has, however, shown,
for the case that A and M are symmetric positive definite, that a convergent
method can always be turned into a smoother by the introduction of
damping. The basic iterative method (4.1.3) can be written as.

ymrioym o sym sym=(S—-Iy"+M7'b, S=M"'N. (7.2.2)
The damped version of this method is
yrrl=y" 4 wby” (7.2:3)

with 8y™ given by (7.2.2) and » some real number. The iteration matrix
associated with (7.2.3) is

Sw=I-wM A, (7.2.4)

Sufficient conditions for the smoothing property are given by the following
theorem.

Theorem 7.2.1. (Wittum 1989a). Let A and M be symmetric positive definite,
and let M satisfy (7.2.1). Suppose furthermore that the eigenvalues of S satisfy

AS)= —-8> —-1 . (7.2.5)
Then the smoothing property (6.5.15) holds with Cs= Cux and
7(») = no(r) = max{s’[ (v + 1Y*1,6°(1 + 0)) (7.2.6)

Proof. First we remark that (7.2.5) makes sense, because A (S) is real, since
M!?SM~1/2 is symmetric. We can write AS’=M'> I -X)X"M!? with
X = M~ V2NM~Y2, 50 that || AS”|| < | M| || @ = X)X"||. X is symmetric and
has the same spectrum as S. Hence (7.2.5) gives AM(X) 2 — 0. Furthermore,
X-I= -M-2AM~"2, so that X -1 is negative definite. Hence,
_9<AX) <1, so that ||d—X)X"|| € max_s<x<1 (1 - x)x"| = ns{»).
The proof is completed by using (7.2.1). [
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Not every convergent method satisfies (7.2.5). By introducing damping,
every convergent method can, however, be made to satisfy (7.2.5), as noted
by Wittum (1989a). This is easily seen as follows. Let the conditions of
Theorem 7.2.1. be satisfied, except (7.2.5), and let S be convergent. \(S) is
real (as seen in the preceding proof), and A(M~'A) =1 — A(S); thus we have
AMM™!A) < 2. Let

O0Sw<Kwe=(01+0)2 (7.2.7)
Then we have for the smallest eigenvalue of S, =1— oM™ 'A:
Moin(So) =1 —AmaxMTA) 21 -1 +0)= -0 (7.2.8)

so that S, satisfies (7.2.5).

Discussion

In Hackbusch (1985) the smoothing property is shown for a number of
iterative methods. The smoothing property of incomplete factorization
methods is studied in Wittum (1989a, 1989¢). Non-symmetric problems can be
handled by perturbation augments, as indicated by Hackbusch (1985). When
the non-symmetric part is dominant, however, as in singular perturbation
problems, this does not lead to useful results. Fourier smoothing analysis
(which, however, also has its limitations) can handle the non-symmetric case
easily, and also provides an easy way to optimize values of damping par-
ameters and to predict smoothing efficiency. The introduction of damping
does not necessarily give a robust smoother. The differential equation may
contain a parameter, such that when it tends to a certain limit, smoothing effi-
ciency deteriorates. Examples and further discussion of robustness will
follow.

7.3. Elements of Fourier analysis in grid-function space

As preparation we start with the one-dimensional case.

The one-dimensional case

Theorem 7.3.1. Discrete Fourier transform. Let 7= {0, 1,2,...,n — 1}. Every
u:/— R can be written as

m+p

u= 2 ), ¥y0x)=exp(ijbx), Ox=2wkln, jeI (71.3.1)

=-m
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where p=0, m=(n—1)/2 for n odd and p=1, m=nf2 — 1 for n even, and
n—-1

ce=n"1 D, upi(—8k) (7.3.2)
j=0

The functions ¢ (@) are called Fourier modes or Fourier components. For
the proof of this theorem we need the following lemma.

Lemma 7.3.1. Orthogonality
n—1
2 YiO(—01) = néu (1.3.3)
j=0

with 84 the Kronecker delta.

Proof. Obviously,
n-1
jz(:) YOI (—0i) = n.

If k = [ we have a geometric series
n—1 n-1 N
2 ¥iO(-0) = 2 explij(0— 0]
Jj=0 Jj=

= {1 —explin(k — 1)2x/n]}/{1 — exp[i(k — I)2x/n]} =0 D

Proof of Theorem 7.3.1. Choose cx according to (7.3.2). We show that
(7.3.1) follows:

m+p m+p n-1
k_Z Ck¢j(9k)=ﬂ_lk_z_l [Z(:) uri(— 0 )y (0k)

n— n—1
=n-t IZI w kz exp [27 (k — m)(j— 1)[n]
=0

=0

n-1

il

=

I
L
i

n-1
w; exp [i2xm(l - j)[n] kZ_IO Vi (0)¥r(—61) = u;

Next, assume that (7.3.1) holds. We show that (7.3.2) follows.

m+p n- m+p

2« _Zl V(=00 = 2, cdu=ck. O
7~

n—1
- =1
n~t 2 ui(—6k)=n
ji=0 I=—m 0 1="m
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We can use Theorem 7.3.1 to represent grid-functions by Fourier series. Let
U= {u:G — R}, with G given by

G={xeRx=jh, j=0,1,2,....n—1, h=1[n} (7.3.4)
(vertex-centred grid) or by
G={xeRx=(j+1/2)h, j=0,1,2,...,n—1, h=1[n) (7.3.5)
(cell-centred grid). Then u € U can be represented by the Fourier series (7.3.1).
By means of the series the definition of #; can be periodically extended for

values of j¢{0,1,2,...,n—1}. Hence, (7.3.1) is especially suitable for
periodic boundary conditions.

Dirichlet boundary conditions
For homogeneous Dirichlet conditions the Fourier sine series of Theorem
7.3.2 is appropriate.

Theorem 7.3.2. Discrete Fourier sine transform. Let 7= (1,2,...,n—-1}.
Every u:1— R can be written as

n—1
uj= 2, cksin jox, Ox=mkln (1.3.6)
k=1
with
2.n—1
ck== Y, ujsin joi 1.3.7)
n j=

Proof. The proof of this theorem is similar to the proof of Theorem 7.3.1,
using Lemma 7.3.2 below. (J

Lemma 7.3.2. Orthogonality
n—-1
D) sin jOk sin jO;=3indw, Oc=wkln, k,l€{1,2,...,n—1} (71.3.8)
j=1

with 65 the Kronecker delta.

Proof. We have

n—1
g;_ (Wi (O + 0)(2) — ¥i((0x ~ 61)[2)} (7.3.9)

-

n-1
>, sin jox sin jo;= —
Jj=1 J
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with ;(0«) defined as before. These are geometric series. If kK #/ we have
n-1
2 Y0 —0)[2)= — (- D*
Jj=1-n

and if k=1
n—1
X k-0 =2n—1

J=1-n

whereas
n—1
2 G+ 00D = (=D

for the range of k, / given by (7.3.8), and the lemma follows. [
Define the vertex-centred grid G by
G={xeR:x=jh, j=0,1,2,...,n, h=1/n) (7.3.10)

and use (7.3.6) to extend the domain of u to j€ {0,1,2,...,n}. Thenu:G— R,
u given by (7.3.6), satisfies homogeneous Dirichlet boundary conditions
ug = u, = 0. The fact that the boundary condition is assumed to be homo-
geneous does not imply loss of generality, since smoothing analysis is applied
to the error, which is generally zero on a Dirichlet boundary. In the case of
a cell-centred grid

G=[xeR:x=(j—1/2)h, j=1,2,...,n, h=1]n} (7.3.11)

homogeneous Dirichlet boundary conditions imply that the virtual values
Uo, Un+1 Satisfy

Uo= —U1, Un+1= —Up (7.3.12)

In the case the appropriate Fourier sine series is given by

uj= kzl ck sin(j ~ 1/2)0k, Ok = kx/n (7.3.13)
2 & o
=2 2 u; sin(j — 1/2)6 (7.3.19)
J=1

In the case of Neumann boundary conditions the appropriate Fourier series
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is, in the vertex-centred case,

n—1
ui= kz_lo Ck oS JjOx (7.3.15)
2 n—1 . 1 n-1
ck== 2, ujcos jdxk, k>0, co== 2, u; (7.3.16)
n j=o n j=o

Neumann boundary conditions will not be discussed further. We have a
special reason to include the Dirichlet case, which will become clear in
Section 7.4.

The muiti-dimensional case
Define
¥;(0) = exp(ij6) (71.3.17)
with j€ I, 6 € O, with
I={:j=0UnJ2s oo da)s Jo=0,1,2,...,na— LLa=1,2,...,d}] (7.3.18)

8= [0:0=(01,02,...,04), oa =27rka/nou
ko= —Ma, —Ma+1,..., Mo+ pa,aa=1,2,...d} (7.3.19)

where pe =0, mq = (ne—1)/2 for n, odd and pa=1, my=n./2 -1 for n,
zven. Furthermore,

d
8= 2] juba (7.3.20)

a=1

The generalization of Lemma 7.3.1 to d dimensions is given by

Lemma 7.3.3. Orthogonality. Let 6, v € ©. Then

d
Z Ny, v=40
(D — _ a=1
pa YiOWi(—») 0. yeo (7.3.21)
Proof. One can write
d
Z \1’1(0)11’](_ l') = H (Z exp[ija(oa - Vm)])
Jjel a=1 Jo

so that the lemma follows immediately from Lemma 7.3.1. OJ
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Theorem 7.3.3. Discrete Fourier transform in d dimensions. Every u:/— R
can be written as

uj= 2, cov;(0) (7.3.22)
€0
with
. d
co=N"! Z;u,ij(—o), N= 11 na. (7.3.23)
Je a=1 o

Proof. The proof is an easy generalization of the proof of Theorem 7.3.1.0

The Fourier series (7.3.22) is appropriate for d-dimensional vertex- or cell-
centred grids with periodic boundary conditions.

Dirichlet boundary conditions
Define
d
¢i@)= II sin joba (1.3.24)
a=1
with j = (j1, J2, .-es Ja), 0€O7,
e+ = [0 = (01, 02; LELEY 0d); oa = Tka/nu, ka = l, 2, cery N — 1} (7.3.25)

The generalization of Lemma 7.3.2 to d dimensions is given by the following
lemma.

Lemma 7.3.4. Orthogonality. Let 8, v€©*. Then

. d
27N, N= ] ne ifr=8
a=1

(@)oi(v) = 7.3.26
jez; i(@)pi(v) 0, fy20 ( )

Proof. We can write

d
ﬁz; ei®)ei(v) = 11 (Z $in jafa sin J'ava>

a=1 \ja

so that the lemma follows immediately from Lemma 7.3.2. O
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Theorem 7.3.4. Discrete Fourier sine transform in d dimensions. Let

1= (j=(jlrj2’ ~-~’jd)’ jot= 1,2, ceey Moy — 1}.

Every u:I— R can be written as

ui= 2 c(®p;0) (7.3.27)
feO*
with
d
co=2%N 3 ujpi(®), N= [] na (7.3.28)
Jjer a=1

Proof. The proof is an easy generalization of the proof of Theorem 7.3.2. T

The Fourier series (7.3.27) satisfies a homogeneous Dirichlet boundary con-
dition on a d-dimensional vertex-centred grid. On a cell-centred grid with this
boundary condition the appropriate Fourier modes are given by

d

10j(0) = H Sin(jat - %)00,,

a=1

of. (7.3.13).

Additional remarks

From the foregoing it should be clear how to proceed in other circumstances.
When we have a combination of Dirichlet and periodic boundary con-
ditions, for example, in two dimensions, u(xy, x2)=u(x1 + 1, x3),
u(x1,0) =u(x;,1)=0, then the appropriate Fourier modes are given by
©4(6) = exp(ij10:)sin j20,. For Neumann boundary conditions one can use

d
0@ = ] cos juba,

a=1

cf. (7.3.15). These facts may be easily verified by the reader.

Exercise 7.3.1. Prove (7.3.13), (7.3.14), (7.3.15) and (7.3.16).

Exercise 7.3.2. Develop a Fourier cosine series representation for a cell-
centred grid with Neumann boundary conditions.
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7.4. The Fourier smoothing factor
Definition of the local mode smoothing factor

Let the problem to be solved on grid G be denoted by

Au=f (71.4.1)

and let the smoothing method to be used be given by (4.1.6):

u=Su+MY, S=M"'N, M—-N=A (7.4.2)

According to (4.2.1) the relation between the error before and after »
smoothing iterations is

e'=8%" (7.4.3)

We now make the following assumption.

Assumption (i). The operator S has a complete set of eigenfunctions or local
modes denoted by y(6), 8 €O, with © some discrete index set.

Hence

S*¥(6) = N (@)W (6) (7.4.9
with A(8) the eigenvalue belonging to ¥(f). We can write

=, (), a=0,1
[ =]

and obtain

ch=N(0)? (7.4.5)

The eigenvalue \(0) is also called the amplification factor of the local mode

¢(0)' . . -
Next, assume that among the eigenfunctions ¢ (f) we somehow distinguish

between smooth eigenfunctions (6 € ©;) and rough eigenfunctions (6 € 6;):

0=06,U06, 6;,N6;=0 (7.4.6)

We now make the following definition.
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Definition 7.4.1. Local mode smoothing factor. The local mode smoothing
factor p of the smoothing method (7.4.2) is defined by

o =sup{| A\(8)|:0€6,) (7.4.7)

Hence, after » smoothings the amplitude of the rough components of the
error are multiplied by a factor p” or smaller.

Fourier smoothing analysis

In order to obtain from this analysis a useful tool for examining the quality
of smoothing methods we must be able to easily determine p, and to choose
O; such that an error e = {/(8), 0 € O, is well reduced by coarse grid correction.
This can be done if Assumption (i) is satisfied.

Assumption (ii). The eigenfunctions ¢ (6) of S are periodic functions.

This assumption means that the series preceding (7.4.5) is a Fourier series.
When this is so p is also called the Fourier smoothing factor. In the next
section we will give conditions such that Assumption (ii) holds, and show how
p is easily determined; but first we discuss the choice of O;.

Aliasing

Consider the vertex-centred grid G given by (5.1.1) with n, even, and the cor-
responding coarse grid G defined by doubling the mesh-size:

G=(xeR% x=jh, j=U j2y.-rJa), A= (1, b2, ..., ha),

Ja=0,1,2, ..., fg, ha = 1Pa, «=1,2,...,d} (7.4.8)

with 7ia = nof2. Let d =1, and assume that the eigenfunctions of S on the fine
grid G are the Fourier modes of Theorem 7.3.1: ¢;(8) = exp(ij6), with

0€0=(0: ©=2ukn1, k=—m[2+]1, —nyf2+2,..,mf2) (1.4.9)

so that an arbitrary grid function v on G can be represented by the following
Fourier series

vi= 2, coyy(d) (7.4.10)

0eO

An arbitrary grid function @ on G can be represented by

=D, Eo;(6) (7.4.11)

#ed
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with ¥(8): G— R, ¢,;(@) = exp(ij#), and
O=1{0:0=2nklAy, k=—mf2+1, —m2+2,...,m[2}) (7.4.12)

assumning for simplicity that 7, is even. The coarse grid point X; = jA coincides
with the fine grid point xz;= 2jh (cf. Figure 5.1.1). In these points the coarse
grid Fourier mode ¢(#) takes on the value

¥;(6) = exp(ij8) = exp(i2,8) (7.4.13)

For —mf4+ 1<k < m/4 the fine grid Fourier mode y(f) takes on in the
coarse grid points x; the values of ¥;(8x) = exp(2xi jlc/ﬁl) = y;(2xk[7;), and
we see that it coincides with the coarse grid mode ¥ (6x) in the coarse grid
points. But this is also the case for another fine grid mode. Define k' as
follows

0<k
— 2

fl1/22 k' = —n1/2+k

7.4.14
k<0: kK'=mf2+k (7:4.14)

<
<

Then the fine grid Fourier mode ¥ (8«) also coincides with ¥ (fx) in the coarse
grid points. On the coarse grid, ¥ (6x’) cannot be distinguished from ¢ (fx).
This is called aliasing: the rapidly varying function ¥(6«’) takes on the
appearance of the much smoother function ¥ (6«) on the coarse grid.

Smooth and rough Fourier modes

Because on the coarse grid G the rapidly varying function ¢(6x') cannot be
approximated, and cannot be distinguished from ¢ (fx), there is no hope that
the part of the error which consists of Fourier modes ¥ (0«'), k’ given by
(7.4.14), can be approximated on the coarse grid G. This part of the error is
called rough or non-smooth. The rough Fourier modes are defined to be
¥(0x), with k' given by (7.4.14), that is

kKe(—mf2+1, —m[2+2,..., —m[8U{mf4,m[4+1,...,m[2} (7.4.15)

This gives us the set of rough wavenumbers 6, = {#: 0 = 2xk'[/n;: k' according
to (7.4.]4)] , Or

O.=(0:0=27klm, k= —mf2+ 1, —nif2+2,...,m[2
and 0¢ [—x, —7/2) U [7[2, 7]} (7.4.16)

The set of smooth wavenumbers O; is defined as ©; = 6\O,;, © given by
(7.3.19) with d=1, or

O:=(0:0=2mk[ny, k= —mf2+1, —m[2+2,...,m/[2
: and 0¢€ (- #/2,%(2)} (7.4.17)
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The smooth and rough parts vs and v, of a grid function v: G — R can now
be defined precisely by

vi= 2, co¥(8), vi= 3 cod(6)
6€6;

0€O,
(7.4.18)

n—-

1
co=ny’ Z% viYi(—8)

Jj=

Generalization.of the definition of smooth and rough to other Fourier modes,
such as those in Theorem 7.3.2, or to the multidimensional case is straight-
forward. In the case of the Fourier sine series of Theorem 7.3.2 we define

O=1{0:0=7klm, k=1,2,...,n1— 1}

6:=0N[x/2,x], O5=0O\6, 7.4.19)

Ind fiimensions the generalization of (7.4.16) and (7.4.17) (periodic boundary
conditions) is

O =[0:0=(01,03,...,00), Oo=27kaNey ko= —naf2+1,...,n02)
(7.4.20)

d
0,=0N 1]1 (—7/2,72), O,=0O\O;

Figure 7.4.1 Smooth (©;) and rough (©,, hatched) wavenumb i i
ik s » €] t. =
sions, standard coarsening. ' ) " scts in two dimen

The Fourier smoothing factor 109
The generalization of (7.4.19) (Fourier sine series) to d dimensions is

0= {0:0=(01’02, ..-,Od), 6= Tka/na, ko= 1,2, veey M — l] N ‘}f.
(7.4.21)

d :
0,=0Nn [ ©0,7/2), ©.=6\6;
a=1

Figure 7.4.1 gives a graphical illustration -of the smooth and rough
wavenumber sets (7.4.20) for d = 2. ©; and O; are discrete sets in the two con-
centric squares. As the mesh-size is decreased (n,, is increased) these discrete
sets become more densely distributed.

Semi-coarsening

The above definition of ©; and O, in two dimensions is appropriate for stan-
dard coarsening, i.e. G is obtained from G by doubling the mesh-size Ay in
all directions a=1,2, ..., d.

With semi-coarsening there is at least one direction in which A, in G is the
same as in G. Of course, in this direction no aliasing occurs, and all Fourier
modes on G in this direction can be resolved on G, so they are not included
in ©,. To give an example in two dimensions, assume k1 = hy (semi-coarsening
in the xp-direction). Then (7.4.20) is replaced by

es=en[[—-1r,‘n'] X(‘1l’/2,7('/2)l’ er=e\es (74-22)

Figure 7.4.2 gives a graphical illustration.

577

- L

/ _7/2 ////
i i
-r
Figure 7.4.2 Smooth (6,) and rough (©;, hatched) wavenumber sets in two dimen-
sions, semi-coarsening in X, direction.
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Alternative coarse grid corrections

Semi-coarsening is an example of a coarse grid correction strategy where more
modes are approximated on the coarse grid in order to make the task of the
smoother less demanding. A more powerful coarse grid correction strategy is
the frequency-decomposition method of Hackbusch (1988, 1989). This
method is very robust, even with weak smoothers. Here a grid gives rise to
not one but four coarse grids. Another method to obtain a strengthened
coarse grid correction, alleviating the demands on the smoother, has been pro-
pf)sed I?y Mulder (1989). In this method two coarse grids are used (in two
dimensions), each with semi-coarsening in a different direction. The methods

of Hackbusch and Mulder have not yet been widely applied, and will not be
discussed here.

Mesh-size independent definition of smoothing factor

V\”ﬁe have a smoothing method on the grid G if uniformly in n, there exists a
p such that

p<p*<l, Vne, a=1,2,...d (7.4.23)

However, p as d?fmed by (7.4.7) depends on n., because O, depends on n,.
In order to gbtam a mesh:independent condition which implies (7.4.23) we
define a set ©; D O, with 6, independent of n., and define

p=supf| \(0)|:0¢ 6, (7.4.24)

50 that
p<p (7.4.25)

and we have a smoothing metyod if p < 1. For example, if O, is defined by
(7.4.20), then we may define 8, as follows:

_ d d
O = Hl [—r,vrl\ Hl (—7/2,7/2) (7.4.26)
a= a=
or in the case of the Fourier sine series, where O is defined by (7.4.21),

~ d d
e.= ]I o, ”]\.,11 (7/2,7) (7.4.27)

a=1

This type of Fourier analysis, and definition (7.4.24) of the smoothing
factor, have been introduced by Brandt (1977).
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Modification of smoothing factor for Dirichlet boundary conditions

If A(6) is smooth, then p—p=OS) for some m > 1. It may, however,
happen that there is a parameter in the differential equation, say ¢, such that
for example 6 — p = O(h ﬁ,/ ¢). Then, for ¢ < 1, for practical values of A, there
may be a large difference between p and p. For example, even if p=1, one
may still have a good smoother. Large discrepancies have been found to be
caused by the fact that with the Fourier sine series values , = 0 do not occur
in ©; (cf. (7.4.21)), but are included in 6, (cf. (7.4.27)). A further complic-
ation arises, when we have Dirichlet conditions, but the sine-functions
(7.3.24) are not eigenfunctions of the smoothing operator. Then, for lack of
anything better, the exponential Fourier series is used, implying periodic
boundary conditions. Again it turns out that discrepancies due to the fact that
the boundary conditions are not of the assumed type arise mainly from the
presence or absence of wavenumber components 8, = 0 (present with periodic
boundary conditions, absent with Dirichlet boundary conditions). It has beer
observed (Chan and Elman 1989, Khalil 1989, Wittum 1989c) that when using
the exponential Fourier series (7.3.22) for smoothing analysis of a practical
case with Dirichlet boundary conditions, often better agreement with practical
results is obtained by leaving wavenumbers with 6, =0 out, changing the
definition of O, in (7.4.7) from (7.4.20) to

GD£‘0:0=(01,02,...,04), 0a=21rku/na,ka¢0, ko= _na/2+1,-~-yncz/2}

d
oP=0°n ] (-=/2,%/2), 6P=06™\8? (7.4.28)
a=1 .

where the superscript D serves to indicate the case of Dirichlet boundary con-
ditions. The smoothing factor is now defined as

pp =sup(| A (0) |:0€ O} (7.4.29)

Figure 7.4.3 gives an illustration of OP, which is a discrete set within the
hatched region, for d = 2. Further support for the usefulness of definitions
(7.4.28) and (7.4.29) will be given in the next section.

Notice that we have the following inequality

pp<p<h (7.4.30)

If we have a Neumann boundary condition at both x, =0 and x, =1, then
0. = 0 cannot be excluded, but if one has for example Dirichlet at x, =0 and
Neumann at x. = 1 then the error cannot contain a constant mode in the Xo
direction, and 8, = 0 can again be excluded.

Exercise 7.4.1. Give the appropriate Fourier series in the case of periodic
boundary conditions in the x; direction and Dirichlet boundary conditions in
the the x; direction, and define ©,, O;.
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%

=

7 //

N

Figure 7.4.3 Rough wavenumber set (6P, hatched) in two dimensions, with exclusion
of 8, = 0 modes; standard coarsening.

\
3

E.xercis‘e 7.4.2. Suppose ky = phy (hi: mesh-size of G, h;: mesh-size of G, one-
dimensional case, x some integer), and assume periodic boundary conditions.
Show that we have aliasing for

Ok =27k[n1, kK €ZN((—mf2, —m[2p] U [n1/2p, m[2]}

and define appropriate sets O, O;.

7.5. Fourier smoothing analysis
Explicit expression for the amplification factor

In order to determine the smoothing factors p, 5 or pp according to definitions
(7.4.7), (7.4.24) and (7.4.29) we have to solve the eigenvalue problem
SY(@)=N(@)¢ (@) with S given by (7.4.2). Hence, we have to solve
Ny (0) = N(@)My(0). In the stencil notation of Section 5.2 this becomes

2, N(m, jWmej@) = NO) 2, MM, [)¥m.;(6) (7.5.1)
JeZ Jjez?

We now assume the following.

Assumption (i). M(m, j) and N(m, j) do not depend on m.
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This assumption is satisfied if the coefficients in the partial differential
equation to be solved are constant, the mesh-size of G is uniform and the
boundary conditions are periodic. We write M(j), N(j) instead of M(m, j),
N(m, j). As a consequence of Assumption (i), Assumption (ii) of Section 7. 4
is satisfied: the eigenfunctions of § are given by (7.3.17), since

3
1

E, N(Jj)exp{i(j + m)f] = exp(imb) .Z,, N(/)exp(ijo)
JeZ JjeZ
5o that ym(9) = exp(imf) satisfies (7.5.1) with
NOE .Z., N(j)exp(ijﬁ)/ _Zd M(j)exp(ijo) (7.5.2)
JjeZ jeZ

Periodicity requires that exp(imafa) = €xp [i(7a + 12)04], Or explinada) = 1.
Hence 6 € O, as defined by (7.3.19), assuming 7, to be even. Hence, the eigen-
functions are the Fourier modes of Theorem 7.3.3.

Assumption (i) is not enough to make the sine functions of Theorem 7.3.4
eigenfunctions. If, however, we make the following assumption.

Assumption (ii). M(j) and N (/) are even in jo,a=1,2, ..., d, that is

M( j s "-vjot’ -"’jd) = M(jlr eney —jd’ -":jd)
n _ che (7.5.3)
N(jls wees Jos "-rjd) = N(Jl) veey T Jas -"a.ld)’ Va € [lr29 seey d]
then @(#) as defined by (7.3.24) are eigenfunctions of (7.5.1), provided we
have homogeneous Dirichlet boundary conditions, and provided Assumption

(i) holds, except at the boundaries, of course. This we now show. We have
the following Lemma.

Lemma 7.5.1. Let N(/) satisfy Assumption (ii). Then
. d VI . d

2 N(Dem+j0)=2%m®) 2 NG) I cos juba  (7.5.9)
JEZ JENS a=1

where @m(0) =T1%_ sin m.8., £’ means that terms for which 8 components
of j are zero are to be multiplied by 27#, and No= {0,1,2,...}.

Proof. Induction. The verification for d =1 is left to the reader. Assummg
(7.5.4) to hold for d=1,2,. .,d—1, we have, writing d instead of d, and
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j, = (jlij’ '--ajd—l)a

2, N(j)em(0)

JeZ

d-1

= sin(mgq + ja)6 i i i
J'JZG:Z (a+ Ja)ba j’s;" N al_=Il $in(Ma + Ja)ba

. a-1 d-1
= 3 . d— 3 Ty .
Y sin(ma+ ja)0a-2%"" ] sin mafe JEZN]; NG ja) T cos jube
a=1

Ja€Z a=1
d-1 d-1 ’ d-1
=2 II sin m.8, 3 COS jobo Sin mabfq
a=1 JENE™' a=1
X {(N(j’,0)+2 2;2 N, ja)cos jded)}
Ja€

d
=2%m(8) X' N() II cos jubo O
jENS a=1
Using Lemma 7.5.1 we see that

d
Ym(@)= JI sin mafa
a=1

satisfies (7.5.1) with

' 5 . ~ d
MO)=2" N(j) II cos Jaoa/z’ M@) T cos juba  (1.5.5)
JENG a=1 Jjezd a=1

The homogeneous Dirichlet boundary conditions imply that sin 7.8, = 0, or
Bo = ®KafNey ko= 1,2, ...,0,— 1, as for the Fourier sine series.

Justification of Definitions (7.4.28) and (7.4.29)

If Assum‘ption (ii) holds, then the amplification factor A(f) obtained with the
expopentfa] Fourier series in (7.5.2) is identical to \(¢) obtained with the
Fourier sine series in (7.5.5). The only difference between the two cases is the
range of #, which is © (defined by (7.3.19)) for the exponential series, and 6P
(defined by (7.4.28)) for the sine series. Since the sine series is appro;;riate for
the case of Dirichlet boundary conditions, we expect to obtain better results
for Dirichlet boundary conditions with the exponential series (to be used if
(7.5.?). is not satisfied), if © is replaced by ©°. This is the motivation for the
definition of pp according to (7.4.29). As noted before, this indeed gives better
agreement with practical experience.
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Variable coefficients, robustness of smoother

In general the coefficients of the partial differential equation to be solved will
be variable, of course. Hence Assumption (i) will not be satisfied. The
assumption of uniform mesh-size is less demanding, because often the compu-
tational grid G is a boundary fitted grid, obtained by a mapping from the
physical space and is constructed such that G is rectangular and has uniform
mesh size. This facilitates the implementation of the boundary conditions and
of a multigrid code. For the purpose of Fourier smoothing analysis the
coefficients M(m, j) and N(m, j) are locally ‘frozen’. We may expect to have
a good smoother if g <1 for ail values M(j), N(j) that occur. This is
supported by theoretical arguments advanced by Hackbusch (1985),
Section 8.2.2.

A smoother is called robust if it works for a large class of problems.
Robustness is a qualitative property, which can be defined more precisely once
a set of suitable test problems has been defined.

Test problems

In order to investigate and compare efficiency and robustness of smoothing
methods the following two special cases of (3.2.1) in two dimensions are
useful '

—(ec? + sP)un — 2(e — Vesuyz — (es? + P2 =0 (7.5.6)
~e(un+un)+cuy+suz=0 (1.5.7)

with ¢=cos 8, s=sin 8. There are two constant parameters to be varied:
£>0 and 8. Equation (7.5.6) is called the rotated anisotropic diffusion
equation, because it is obtained by a rotation of the coordinate axes over an
angle 8 from the anisotropic diffusion equation:

—&Un—U2n2=S (7.5.8)

Equation (7.5.6) models not only anisotropic diffusion, but also variation of
mesh aspect ratio, because with 8=0, =1 and mesh aspect ratio
hy/ho = 517% discretization results in the same stencil as with =38, hifh2 = 1,
apart from a scale factor. With 8 # kx/2, k=0,1,2,3, (7.5.6) also brings
in a mixed derivative, which may arise in practice because of the use of
non-orthogonal boundary-fitted coordinates. Equation (7.5.7) is the convec-
tion-diffusion equation. It is not self-adjoint. For £ < 1 it is almost hyper-
bolic. Hyperbolic, almost hyperbolic and convection-dominated problems are
common in fluid dynamics.

Equations (7.5.6) and (7.5.7) are not only useful for testing smoothing
methods, but also for testing complete multigrid algorithms. Multigrid con-
vergence theory is not uniform in the coefficients of the differential equation,
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and the theoretical rate of convergence is not bounded away from 1 as €10
or e—’. . In the absence of theoretical justification, one has to resort to
nume‘ncal experiments to validate a method, and equations (7.5.6) and (7.5.7)
constitute a set of discriminating test problems.

Finite difference discretization according to (3.4.3) results in the following
stencil for (7.5.6), assuming A; = A, = A and multiplying by A%

[A] = (ec’+ s2)[-1 2 -—1]

1 -1 0 : -1
+(—Des| -1 2 —1l+@Es?+cy)| 2] (7.5.9
0 -1 1 -1

The matrix corresponding to this stencil is not a K-matrix (see Definition

4.'2.6) if (¢— Dcs > 0. If that is the case one can replace the stencil for the
m;xed derivative by

0 1 -1
1. -2 1 (7.5.10
-1 1 0 )

We will not, however use (7.5.10) in what follows.
A more symmetric stencil for [A] is obtained if the mixed derivative is

approlximated by the average of the stencils employed in (7.5.9) and (7 .5.10)
namely ’

1 1 0 -1
5 0 0 0 (7.5.11)
2 -1 0 1

I;Ilote that for [A] in (7.5.9) to correspond to a K-matrix it is also necessary
that

ec’+s*+(e-Des >0 and es*+c2+(e—1)es >0 (7.5.12)

This condition will be violated if ¢ differs enough from 1 for certain values
qf ¢=cos B, s=sin 8. With (7.5.11) there are always (if (¢ — 1) ¢s 0) posi-
tive off-diagonal elements, so that we never have a K-matrix. On the other
han.d, the ‘wrong’ elements are a factor 1/2 smaller than with the other two
options. Smoothing analysis will show which of these variants lend themselves
most for multigrid solution methods.
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Finite difference discretization according to (3.4.3) resuits in the following
stencil for (7.5.7), with A, = h; = h and multiplying by h*

-1 h h 1
Al =¢] -1 4 -1 +c§[—1 0 11+s- 0 (7.5.13)

-1 2 -1

In (7.5.13) central differences have been used to discretize the convection
terms in (7.5.7). With upwind differences we obtain :

-1
[Al=¢]-1 4 -1 +g[—-c-—|c| 2{c] e—}ell
-1
n s—|s|
+5| 218l (1.5.14)
-s—|s|

Stencil (7.5.13) gives a K-matrix only if the well known conditions on the
mesh Péclet numbers are fulfilled:

lclhfe<?2, |s|hle<2 (1.5.15)

Stencil (7.5.14) always results in a K-matrix, which is the main motivation for |
using upwind differences. Often, in applications (for example, fluid dynamics)
conditions (7.5.15) are violated, and discretization (7.5.13) is hard to handle
with multigrid methods; therefore discretization (7.5.14) will mainly be
considered.

Definition of robustness

We can now define robustness more precisely: a smoothing method is called
robust if, for the above test problems, p < p* < 1 or pp < p* < 1 with. ot
independent of € and A, ho = h > 0.

Numerical calculation of Fourier smoothing factor

Using the explicit expressions (7.5.2) or (7.5.5) for A (@), it is not difficult to
compute | A(8) |, and to find its largest value on the discrete set ©;0r OP and
hence the Fourier smoothing factors p or pp. By choosing in the definition of
O, (for example (7.4.20), (7.4.21) or (7.4.22)) various values of n, one may
gather numerical evidence that (7.4.23) is satisfied. Computation of the mesh-
independent smoothing factor p defined in (7.4.24) is more difficult numeri-
cally, since this involves finding a maximum on an infinite set. In simple cases
p can be found analytically, as we shall see shortly. Extrema of | A(8)] on O
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are found where 3| A(8) |/30a =0, a=1,2, ..., d, and at the boundary of ©,.
Of course, for a specific application one can compute p for the values of 7,
occurring in this application, without worrying about the limit n, = . In the
following, we often present results for n; = n, = n = 64. It is found that the
smoothing factors p, pp do not change much if » is increased beyond 64,
except in those cases where p and pp differ appreciably. An analysis will be
given of what happens in those cases.

All smoothing methods to be discussed in this chapter have been defined in
Sections 4.3 to 4.5.

Local smoothing

Local freezing of the coefficients is not realistic near points where the coef-
ficients are not smooth. Such points may occur if the computational grid has
been obtained as a boundary fitted coordinate mapping of a physical domain
with non-smooth boundary. Near points on the boundary which are the
images of the points where the physical domain boundary is not smooth, and
where the mapping is singular, the smoothing performance often deteriorates.
This effect may be counterbalanced by performing additional local smoothing
in a few grid points in a neighbourhood of these singular points. Because only
a few points are involved, the additional cost is usually low, apart from con-
siderations of vector and parallel computing. This procedure is described by
Brandt (1984) and Bai and Brandt (1987) and analyzed theoretically by
Stevenson (1990).

7.6. Jacobi smoothing
Anisotropic diffusion equation

Point Jacobi

Point Jacobi with damping corresponds to the following splitting (cf. Exercise
4.1.2), in stencil notation:

M@O)=w 'A00), M()=0,j#0 (7.6.1)

Assuming periodic boundary conditions we obtain, using (7.5.9) and (7.5.2),
in the special case c=1, s=0

AO)=1+w(ecos 61— e+cos 62— 1)[(1 +¢) (7.6.2)

Becauée of symmetry O, can be confined to the hatched region of Figure 7.6.1.
Clearly, p 2 |p(m, 7)| =|1—2w| > 1 for wg (0, 1). For w€ (0, 1) we have for
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ez
" 7 / 0
w/2 e ]
7
A /B 8
/2 T 1

Figure 7.6.1 Rough wavenumbers for damped Jacobi.

6 € CDEF: A(x, 7) < \@0) <N\ 0,7/[2), or 1 - 20 < M) € 1-wf(1 +¢). For
9 € ABCG we have

M, 7/2) < N O) < Mx/2,0),
or 1-[(1+2e)(1+8)]w<A@) <1~ [+

Hence

W

5=max{|l—2w|,‘l——— 2

} (‘7.6.3)

1+¢ 1+¢

’ ‘1__1+2e

Let 0 <e< 1. Then p=max{|1-2w|,{1- le/(1 +€)lw|}. The minimum
value of 5 and the corresponding optimum value of « are

F=Q2+e)2+3€), w=@Q2+20)Q+3e) (7.6.4)

For e = 1 (Laplace’s equation) we have p = 3/S, w=4/[5. For £ < 1 this is not
a good smoother, since limeo p = 1. The case £ > 1 follows from the case
e < 1 by replacing € by 1/e.

Note that  is attained for 6 € Oy, so that here

p=0 (1.6.5)
For o = 1 we have p = 1, so that we have an example of a convergent method
which is not a smoother.

Dirichlet boundary conditions

i i i ier si ies is applicable, so
In the case of point Jacobi smoothing the Fourier sine series 1S a
that Dirichlet boundary conditions can be handled exactly. It is found dthat
with the sine series A(9) is still given by (7.6.?), S0 a!l that needs to be done
is to replace ©; by ©D in the preceding analysis. This is an example where our
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heuristic dell;'mition of pp leads to the correct result. Assume n; = n, = n. The
whole of ©+ is within the hatched region of Figure 7.6.1. Reasoning as before
we obtain, for 0 < e < 1: '

A, m) S MO) S NQ7fn, 7f2), Nw, 7/2) < MB) < AN(x/2,2x[n) (7.6.6)

Hence pp= max[|_1 —2w|, |1 —ew(l +27%n?)|(1 +¢€)|, so that pp=
p+0O(n ?, and again we conclude that point Jacobi is not a robust smoother
for 'ghe anisotropic diffusion equation.

Line Jacobi

We st.ar.t aga.jn with some analytical considerations. Damped vertical line
Jacobi 1t'erat10n applied to the discretized anisotropic diffusion equation
(7.5.9) with ¢=1, s=0 corresponds to the splitting

-1
Ml=w'|0 242¢ 0 (7.6.7)
-1
The amplification factor is given by
ANO)=we cos 01/(1+e—cos B2) +1—w (7.6.8)

both for the exponential and the sine Fourier series. We note immediately that
_| A, 0)| =1 if w=1, so that for w = 1 this seems to be a bad smoother. This
is surprising, because as £{0 the method becomes an exact solver. This
apparent contradiction is resolved by taking boundary conditions into
account. In Example 7.6.1 it is shown that

po= |\, p)|=€/(1+e~cos ¢) forw=1 (7.6.9)
where ¢ = 2x/n. As n— o we have
pp = (1 +27%h*e)™! (7.6.10)

so that indeed limeio pp = 0. Better smoothing performance may be obtained
by varying w. In Example 7.6.1 it is shown that 5 is minimized by

2+ 2¢
3+2¢

=

(7.6.11)

the that for 0 < £ < 1 we have 2/3 < w < 4/3, so that the optimum value of
w is only weakly dependent on £. We also find that for « in this range the
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smoothing factor depends only weakly on w. We will see shortly that fortu-
nately this seems to be true for more general problems also.
With w according to (7.6.11) we have

p=(1+2e)/(1+3¢) (7.6.12)
Choosing w = 0.7 we obtain

p=max{l -0.7/(1 + £), 0.6} (7.6.13)

which shows that we have a good smoother for all 0 < e< 1, with an
e-independent w.

Example 7.6.1. Derivation of (7.6.9) and (7.6.11). Note that \(f) is real, 'and
that we need to consider only 6, > 0. It is found that d\/36, =0 only férﬂ
0, = 0, x. Starting with pp, we see that max{|\(0)|: 6 € OP} is attained on the
boundary of ©P. Assume ny; =n; =n, and define ¢ = 2x[n. 1t is easily seen
that max {| A(#) |: 8 € ©) will be either | Mg, w/2)] or | N(m, @) |. f 0 =11t s
| X(x, )|, which gives us (7.6.9). We will determine the optimum value of w
not for pp but for p. It is sufficient to look for the maximum of | A(8)| on
the boundary of ©,. It is easily seen that

p=max(| N0, 7/2)|, | A(x, 0) |} = max(l — o/ (1 + ), | 1 - 20}

which shows that we must take 0 < w < 1. We find that the optimal  is given
by (7.6.11). Note that in this case we have p =p.

Equation (7.5.8), for which the preceding analysis was done, corresponds to
B =0in (7.5.6). For 8= =/2 damped vertical line Jacobi does not work, but
damped horizontal line Jacobi should be used. The general case may be
handled by alternating Jacobi: vertical line followed by horizontal line Jacobi.
Each step is damped separately with a fixed problem-independent value of w.
After some experimentation w = 0.7 was found to be suitable; cf. (7.6.12) and
(7.6.13). Table 7.6.1 presents results. Here and in the remainder of this
chapter we take ny = nz=n, and 8 is sampled with intervals of 15°, unless
stated otherwise. The worst case found is included in the tables that follow.
Increasing n, or finer sampling of 8 around 45° or 0°, does not result’in
larger values of p and pp than those listed in Table 7.6.1. It may be concluded
that damped alternating Jacobi with a fixed damping parameter of w=0.71s
an efficient and robust smoother for the rotated anisotropic diffusion
equation, provided the mixed derivative is discretized according to (7.5.11).
Note the good vectorization and parallelization potential of this method.
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Table 7.6.1. Fourier smoothing factors
p,pp for the rotated anisotropic diffusion
equation (7.5.6) discretized according to
(7.5.9) or (7.5.11); damped alternating
Jacobi smoothing; w=0.7; n=64

(7.5.9 (7.5.11)
€ Ps PD B P PD B
1 0.28 any 0.28 any

107! 0.63 45° 0.38 45°
1072 0.95 45° 0.44 45°
1073 1.00 45° 0.45 45°
10°3 1.00 45° 0.45 45°
10°8 1.00 45° 0.45 45°

Convection—diffusion equation
Point Jacobi

For the convection—diffusion equation discretized with stencil (7.5.14) the
amplification factor of damped point Jacobi is given by

AMO) = w(2 cos 01+ 2 cos 2+ Pre™ % + Pre 3)[(4+ Py + P2)+ 1 —w
(7.6.14)

where Py = chfe, P, = sh|e. Consider the special case: Py =0, P; = 4/5. Then
AM#x,0=1-—w+w/(1+5) (7.6.15)

so that | N(w,0)| = 1 as 61 0, for all w, hence there is no value of w for which
this smoother is robust for the convection—diffusion equation.

Line Jacobi

Let us apply the line Jacobi variant which was found to be robust for the
rotated anisotropic diffusion equation, namely damped alternating Jacobi
with @ = 0.7, to the convection—diffusion test problem. Results are presented
in Table 7.6.2.

Finer sampling of 8 around 8 =0° and increasing »n does not result in sig-
nificant changes. Numerical experiments show w = 0.7 to be a good value. It
may be concluded that damped alternating Jacobi with a fixed damping par-
ameter (for example, w = 0.7) is a robust and efficient smoother for the con-
vection—diffusion test problem. The same was found to be true for the rotated
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Table 7.6.2. Fourier smoothing factors
p,pp for the convection—diffusion
equation discretized according to
(7.5.14); damped alternating line Jacobi
smoothing; w=0.7; n=64

€ P 8. o B
1 0.28 0° 0.28 0°
107! 0.28 0° 0.29 0°
1072 0.29 0° 0.29 0°
1073 0.29 0° 0.29 0°
1073 0.40 0° 0.30 0°
107% 0.39 0° 0.30 0°

anistropic diffusion test problem. The method vectorizes and parallelizes
easily, so that all in all this is an attractive smoother.

Exercise 7.6.1. Consider damped vertical line Jacobi smoothing, applied to
(7.5.8). Assume Dirichlet boundary conditions. Show that the Fourier sine
series is applicable, and determine p. Show that pl0 as £€10. Use a.tlso the
exponential Fourier series to determine p and pp, and verify that pp gives the
correct result.

Exercise 7.6.2. Assume semi-coarsening as discussed in Section 7.4: h= ﬁl,
> = hy/2. Show that damped point Jacobi is a good smoother for equation
(7.5.8) with 0<e< 1.

Exercise 7.6.3. Show that limsp =1 for alternating Jacobi with damping
parameter w = 1 applied to the convection—diffusion test problem.

7.7. Gauss—Seidel smoothing

Anisotropic diffusion equation
Point Gauss—Seidel

Forward point Gauss—Seidel iteration applied to (7.5.6) with c¢=1, s=0
corresponds to the splitting

0
Ml=|—-¢ 2+2 0], [N]I=|0
-1

e (7.7.1)

oo -
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Assumption (ii) of Section 7.5 is not satisfied, so that the sine Fourier series
is not applicable. The amplification factor is given by

AB) = (ee'? + ei%2)(—ee ™I + 26 + 2 — e71%2) 1.7.2)
For e =1 (Laplace’s equation) one obtains
p=|Nx[2, cos'(4/5) | =1/2 (7.7.3)

To illustrate the technicalities that may be involved in determining p analytic-
ally, we give the details of the derivation of (7.7.3) in the following example.

Example 7.7.1. Smoothing factor of forward point Gauss—Seidel for Laplace
equation. We can write

| A@)|*=( +cos /3)/(9— 8 cos % cos g+ cos /3) (1.7.4)
with o =6 +_02, B =0, —0,. Because of symmetry only «,3 > 0 has to be
considered. We have

3| M0) |} o ~0 for sin(a/2)cos(82) =0 (1.1.5)

This gives o = 0 or & = 27 or 8 = 7. For 8 = 7 we have a minimum: | A {*>=0.
With «=0 we have |\(8)|?=cos?(8/2)/(2 — cos(B/2))?, which reaches
a maximum for 8=2x, i.e. at the boundary of ©,. With a =2x we are
also on the boundary of ©,. Hence, the maximum of |\(8)| is
reached on the boundary of ©,. We have |\(x/2,62)|%=(1+sin6,)/
(9+sinb,—4 cos 62), of which the 60, derivative equals 0 if 8
Acos B, —4sinf, —4=0, hence 6= —xf2, which gives a minimum, or
0, = tcos™! (4/5). The largest maximum is obtained for 8, = cos~* (4/5). The
extrema of | \(=, 02) | are studied in similar fashion. Since X (81, 82) = \(82,61)
there is no need to study |A(8:,%/2)| and |01, w)|. Equation (7.7.3)
follows.

We will not determine 5 analytically for £ # 1, because this is very cumber-
some. To do this numerically is easy, of course. Note that limg—~, A(%,0) =1,
limg—w A(w,0)= —1, so that forward point Gauss—Seidel is not a robust
smoother for the anisotropic diffusion equation, if standard coarsening is
used. See also Exercise 7.7.1.

With semi-coarsening in the x direction we obtain in Example 7.7.2:
5 < {1+ &)/ (5 +€)} 2, which is satisfactory for e < 1. For £ > 1 one should
use semi-coarsening in the x; direction. Since in practice one may have ¢ < 1
in one part of the domain and € ® 1 in another, semi-coarsening gives a robust
method with this smoother only if the direction of semi-coarsening is varied
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in the domain, which results in a more complicated code than standard
multigrid.

Example 7.7.2. Influence of semi-coarsening. We will show
p<LU+0)G+01? (1.1.6)

for the smoother defined by (7.7.1) with semi-coarsening in the x; direction.
From (7.7.2) it follows that one may write | A(0) |72 =1+ (2 +2¢e)u() with
n(0) = (2 + 2¢e — 2¢ cos 8, - 2 cos 62)/[1+ £2 + 2¢ cos(f: — 62)]. In this case,
O, is given in Figure 7.4.2. On ©; we have

u(@) > 2+ 2e—2¢e cos 61— 2 cos 62)[ (1 + el =2/(1+e)
Hence | M(0)| < [1+4/(1 + £)] 7%, and (7.7.6) follows.

For backward Gauss—Seidel the amplification factor is A(—9), with AB)
given by (7.7.2), so that the amplification factor of symmetric Gauss—Seidel
is given by N\(—6)\(8). From (7.7.2) it follows that | N(@) | = | N(—0) ], so that
the smoothing factor is the square of the smoothing factor for forward point
Gauss—Seidel, hence, symmetric Gauss—Seidel is also not robust for the aniso-
tropic diffusion equation. Also, point Gauss—Seidel—Jacobi (Section 4.3) does
not work for this test problem.

The general rule is: points that are strongly coupled must be updated simul-
taneously. Here we mean by strongly coupled points: points with large coef-
ficients (absolute) in [A]. For example, in the case of Equation (7.5.8) with
€ < 1 points on the same vertical line are strongly coupled. Updating these
points simultaneously leads to the use of line Gauss—Seidel.

Line Gauss—Seidel

Forward vertical line Gauss—Seidel iteration applied to the anisotropic
diffusion equation (7.5.8) corresponds to the splitting

-1 0
Ml=|—¢ 2+2 0|, [NI=]0 0 e (7.7.7
-1 - 0
The amplification factor is given by
A (@) = eei?| (26 + 2 — 2 cos 62 — e ™) (7.7.8)

and we find in Example 7.7.3, which follows shortly:

p=max(5"V%, e+ 1)) (7.7.9)
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Hence, limgy0 p = 5712, This is surprising, because for £ =0 we have, with
Dirichlet boundary conditions, uncoupled non-singular tridiagonal systems
along vertical lines, so that the smoother is an exact solver, just as in the case
of line Jacobi smoothing, discussed before. The behaviour of this smoother
in practice is better predicted by taking the influence of Dirichlet boundary
conditions into account. We find in Example 7.7.3 below:

e< (1+5)/2: pp=e[e®+(2e+2—2 cos o) ~1/2 (7.7.10
ez (1+5)2: pp=cle’ + Qe +2)(2e+2—2¢ cos )]~V O

with ¢ =27k, h = 1/n, assuming for simplicity #; = n, = n. For e < (1+52
and 410 this can be approximated by

pp=[1+ 2+ p?e)?] ~1/2 (7.7.11)

and we see that the behaviour of pp as £ 0, 4| 0 depends on o*le=4xhYe.
For h 1 0 with ¢ fixed we have pp = 4 and recover (7.7.9); for £l 0 with A fixed
we obtain pp = 0. To give a practical example, with & =1/128 and £=10"¢
we have pp = 0.0004.

Example 7.7.3. Derivation of (1.7.9) and (7.7.10). It is convenient to work
with | A(@) | 2. We have:

IN@)| ™= [(2e + 2 — £ cos 6; — 2 cos 62)* + &2 sin? 6:1/€>.

Min{| \(8)|2:60 € ©P} is determined as follows. We need to consider only
0o 2 0. It is found that 3| A(6)|7%/30,=0 for 6:=0,x only. Hence the
minimum is attained on the boundary of 6P, Choose for simplicity
ni=n; =n, and define ¢ = 2x/n. It is easily seen that in ©° we have

IO @) |72 2 | Mx/2,0) |72, | Me,62) |72 > | Mo, 7/2) |2,
I, 02172 2 [ N, 0)| 72, | M@ 7/2) |72 > | Mo, 7/2) |2,
IN/2,0:) |72 2 [ N(x{2,0) |72, | N@1, %) |72 2 | Mg, )| 2

For £< (1+5)/2 the minimum is | A(x/2, )| % for &> (1+J5)/2, the
minimum is | A(e, /2) | 2. This gives us (7.7.10). We continue with (7.7.9).
The behaviour of | A(6)| on the boundary of &, is found simply by letting
# = 0 in the preceding results. Now there is also the possibility of a minimum
in the interior of 6,, because 6, =0 is allowed, but this leads to the minimum
in (x[2,0), which is on the boundary, and (7.7.9) follows.

Equations (7.7.9) and (7.7.10) predict bad smoothing when £3 1. Of
course, for €% 1 horizontal line Gauss—Seidel should be used. A good
smoother for arbitrary ¢ is alternating line Gauss—Seidel. In that case we have
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M) = Ma(8)\p(8), with subscripts a, b referring to horizontal and vertical line
Gauss—Seidel, respectively. Hence .
p < PaPb, PD K PDaPDL (1.7:12)

We have \a((61, 62); €) = Mo((82, 61); 1/¢). Since ©; is invariant when 6; and 6,
are interchanged we have pa(€) = pv(1/€), so that

fa=max{5~ "2, Qe+ 1)"Y) (1.7.13)
Hence for alternating line Gauss—Seidel we have

0ge<(5-1f2: <52 Qe+ 1)}
B-D2<e<(5+1)2: <15 (1.7.14)
B+n2<e 5<52Qe+ 7!

Corresponding expressions for pp are easily derived. I-.Ienc.e, we find alt.er-
nating line Gauss—Seidel to be robust for the anisotropic diffusion equation
“ 'VS&}E)\;vill not attempt to determine smoothing factors analytically for the case
with mixed derivatives (7.5.6). Table 7.7.1 presents numerical values of p and
pp for a number of cases. We take ni=nm=n=64, = k7r/12., k=
0,1,2,...,23 in (7.5.6), and present results only for a value of.B fo.r which the
largest p or pp is obtained. In the cases listed, p = pp. Alterqatmg h.ne F}aus.s—
Seidel is found to be a robust smoother for the rotated anisotropic diffusion
equation if the mixed derivative is discretized according to (7.5 A1), bl:lt not
if (7.5.9) is used. Using under-relaxation does not change this conclusion.

Table 7.7.1. Fourier smoothing factors p, pp
for the rotated anisotropic diffusion equation
(7.5.6) discretized according to (7.5.9) and
(7.5.11); alternating line Gauss—Seidel
smoothing; n =64

(1.5.9) 7.5.11)
€ £ PD ﬁ £ PD B
1 0.15 any 0.15 any
10-! 0.38 105° 0.37 15°
1072 0.86 45° 054 1s°
1072 098 45° 058 1s°
1073 1.00 4s° 0.59 15
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Convection—diffusion equation
Point Gauss—Seidel

Forward point Gauss—Seidel iteration applied to the central discretization of
the convection-diffusion equation (7.5.13) has the following amplification
factor:

elf1(1 — Py2) + €!%2(1 — P,J2)

MO = T Py e 1+ P2+ 4

(7.7.15)

with Py = chfe, P, = shje the mesh-Péclet numbers (for simplicity we assume
ny = n3). Hence

I N(x, 7) | = |(P1 + P2 — 9] (P1 + P2 + 12)| (7.1.16)

so that 5 > 1 for Py + P,= —4, and p= o for Py + P, = — 12, so that this
is not a good smoother. In fluid mechanics applications one often has P, » 1.
For the upwind discretization (7.5.14) one obtains, assuming ¢ > 0, s > O:

@) = e [1+ (| Pi|— P)f2] +e2[1 +(| P2| - P2)2]
44| P+ | Pl —e U [1 4+ (Pi+ ]| Pi])2] —e '%[1+ (P2 + | P:])[2)

(7.7.17)

For P1 >0, P, <0 we have | A0, 7)| = | P2/ (4 — P;)|, which tends to 1 as
| P,| — . To avoid this the order in which the grid points are visited has to
be reversed: backward Gauss—Seidel. Symmetric point Gauss—Seidel (forward
followed by backward) therefore is more promising for the convection—
diffusion equation. Table 7.7.2 gives some numerical results for p, for
ni=n=64. We give results for a value of B in the set
{B=knl12:k=0,1,2,...,23} for which the largest p and pp are obtained.

Although this is not obvious from Table 7.7.2, the type of boundary con-
dition may make a large difference. For instance, for 8 =0 and ¢! 0 one finds
numerically for forward point Gauss—Seidel: p = | A(0, 7/2) | = 1//5, whereas
limgyo pp = 0, which is more realistic, since as & | 0 the smoother becomes an
exact solver. The difference between p and pp is explained by noting that for
61=¢p=2rh and e<1 we have |\, 7/2)|>=1/(G+y+3iy?) with
y=2xh?¥e.

For ¢ <1 and 8 = 105° Table 7.7.2 shows rather large smoothing factors.
In fact, symmetric point Gauss—Seidel smoothing is not robust for this test
problem. This can be seen as follows. If P; <0, P; > 0 we find

)\<1l"0) 1—P|+l. 1+ P—i (7.7.18)

2" ) T3P +i3-Pi+ P,—i(l- Py)
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Table 7.7.2. Fourier smoothing factors
p,pop for the convection—diffusion
equation  discretized according to
(7.5.14); symmetric point Gauss—Seidel

smoothing
£ P oD B

1 0.25 0.25 0
107! 0.27 0.25 00
1072 0.45 0.28 1050
1073 0.71 0.50 105°
1073 0.77 0.71 105

Choosing P, = —aP, one obtains, assuming P; > 1,aP2» 1 |
\x(% 0)‘ =(1+a)? (1.7.19)

so that p may get close to 1 if a is small. The remedy is to include more swe.ep
directions. Four-direction point Gauss—Seidel (consisting of four su'ccesswe
sweeps with four orderings: the forward and l.)ackward ordenngs of
Figure 4.3.1, the forward vertical line ordering of lj“lgure 4.3.2, and this last
ordering reversed) is robust for this test problem, as illustrated by Table 7.7.3.

As before, we have taken = kx/12, k=0,1,2, ..., 23; Table 7.7.3 glves
results only for a value of g for which the largest p and pp are obtained.
Clearly, four-direction point Gauss—Seidel is an excellent smootht?r for the
convection—diffusion equation. It is found that p and pp change little when

n is increased further. ' o .
Another useful smoother for this test problem is four-direction point

Table 7.7.3. Fourier smoothing factors
o, pp for the convection—diffusion equation
discretized according to (7.4.15); four-
direction point Gauss—Seidel smoothing;

n=64
P P ‘ pD 8 :
1 0.040 0.040 o: v
1071 0.043 0.042 oo
1072 0.069 0.068 o
1073 0.16 0.12 0
10-3 0.20 0.0015 15
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Gauss—Seidel-Jacobi, defined in Section 4.3. As an example, we give for
discretization (7.5.14) the splitting for the forward step:

0 h

Ml=el-1 4 0f+7[-c—|c| 2fc| 0]
0 (71.7.20)
[N] = [M] — [A]

The amplification factor is easily derived. Table 7.7.4 gives results, sampling
3 as before. The results are satisfactory, but there seems to be a degradation
of smoothing performance in the vicinity of 8=0° (and similarly near
B8 =kx/2, k=1,2,3). Finer sampling with intervals of 1° gives the results of
Table 7.7.5.

This smoother is clearly usable, but it is found that damping improves per-
formance still further. Numerical experiments show that w=0.8 is a good
value; each step is damped separately. Results are given in Table 7.7.6.
Clearly, this is an efficient and robust smoother for the convection—diffusion
equation, with w fixed at w = 0.8. Choosing w =1 gives a little improvement
for e/h = 0.1, but in practice a fixed value of w is to be preferred, of course.

Table 7.7.4. Fourier smoothing
factors p,pp for the convection—
diffusion equation discretized
according to (7.5.14); four-direction
point Gauss—Seidel-Jacobi smooth-

ing; n=64
€ p pD 8

1 0.130 0.130 0°
107! 0.130 0.130 45°
102 0.127 0.127 45°
10-3 0.247 0.242 15°
107%  0.509 0.494 15°
10°¢ 0.514 0.499 15°

Table 7.7.5. Fourier smoothing factors p, pp for
the convection—diffusion equation discretized
according to (7.5.14); four-direction point
Gauss—Seidel-Jacobi smoothing

€ n p 8 PD B8

1072 64  0.947 1° 0562 8°
10-¢ 128 0.949 1° 0.680 5°
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Table 7.7.6. Fourier smoothing factors, p, pp
for the convection—diffusion equation dis-
cretized according to (7.5.14); four-direction
point Gauss—Seidei—Jacobi smoothing with
damping parameter « =0.8; n=64

& P, PD ﬁ
1.0 0.214 0°
107! 0.214 0°
1072 0.214 45°
1073 0217  45°
1073 0.218 45°
107 0.218 45°

Line Gauss—Seidel

For forward vertical line Gauss—Seidel we have

N@) = e [1- (P~ | P[] {4+ ]| Pr|+]| P2| e [1+(Pr+ | PLD2)
—eifi[1 +(| P2| - P2)[21 —e ' [1+ (P2 + | P2 )21} (7.7.21)

For P, < 0, P, > 0 this gives | A\(x,0)| = (1 — P1)/(3 — Py), which te.nds to 1
as | Pi|— o, so that this smoother is not robust. Alternating line
Gauss—Seidel is also not robust for this test problem. If P,<O,
Pi=aPy,a>0and | P,| > 1, |aP;| > 1 then

MO, 7[2) = ief (1 + a — i) (7.1.22)

so that | A0, 7/2)| = of [(1 +a)® + 112, which tends to 1 if « >.1. Sypl-
metric (forward followed by backward) horizontal and vertical line
Gauss—Seidel are robust for this test problem. Table 7.7.7 presents some

Table 7.7.7. Fourier smoothing factors, p, pp for
the convection—diffusion equation discretized
according to (7.5.14); symmetric vertical line
Gauss—Seidel smoothing; n =64

P o B PD +]

1 0.20 90° 0.20 o:
10~} 0.20 90° 0.20 %°
1072 0.20 90° 0.20 9%0°
1073 0.30 0° 0.26 0°
10°3 0.33 0° 0.0019 75




132 Smoothing analysis

results. Again, n=64 and f=kn[12, k=0,1,2,...,23; Table 7.7.7 gives
results only for the worst case in 3.

We will not analyse these results further. Numerically we find that for 8 =0
and e <1 that p= A0, 7/2)=(1+ P)](9+3P)) = 1/3. As €10, pp depends
on the value of ne. It is clear that we have a robust smoother.

We may conclude that alternating symmetric line Gauss—Seidel is robust for
both test problems, provided the mixed derivative is discretized according to
(7.5.11). A disadvantage of this smoother is that it does not lend itself to vec-
torized or parallel computing.

The Jacobi-type methods discussed earlier and Gauss—Seidel with pattern
orderings (white—black, zebra) are more favourable in this respect. Fourier
smoothing analysis of Gauss—Seidel with pattern orderings is more involved,
and is postponed to a later section.

Exercise 7.7.1. Show that damped point Gauss—Seidel is not robust for the
rotated anisotropic diffusion equation with c=1, s=0, with standard
coarsening.

Exercise 7.7.2. As Exercise 7.7.1, but for the Gauss—Seidel—Jacobi method.

7.8. Incomplete point LU smoothing

For Fourier analysis it is necessary that [M] and [N] are constant, i.e. do not
depend on the location in the grid. For the methods just discussed this is the
case if [A] is constant. For incomplete factorization smoothing methods this
is not, however, sufficient. Near the boundaries of the domain [M] (and hence
(N] = [M] — [A]) varies, usually tending rapidly to a constant stencil away
from the boundaries. Nevertheless, useful predictions about the smoothing
performance of incomplete factorization smoothing can be made by means of

Fourier analysis. How this can be done is best illustrated by means of an
example.

Five-point ILU

This incomplete factorization has been defined in Section 4.4, in standard
matrix notation. In Section 4.4 A was assumed to have a five-point stencil.
With application to test problem (7.5.9) in mind, A is assumed to have the
seven-point stencil given below. In stencil notation we have

S g 0 ]
[Al=|c d q|, Lli=]|c & 0
. ‘ 7.8.1
0 ¢ (7.8.1)
Dl;i={0 & 0f, WUL=|0 & ¢
0 0
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where i = (i1, iz). We will study the unmodified version. For & we have the
recursion (4.4.12) with ¢=0:

8i=d— agldi—e,— cqfbi-e, (1.8.2)

where e, =(1,0), e2=(0,1). Terms involving negative \(alues of iy, =1 o1
2, are to be replaced by zero. We will show the following Lemma.

Lemma 7.8.1. If

a+c+d+q+g=20, acq,8<0, d>0 (7.8.3)
then
lim &=6=d/2+ [d*4 - (ag + cq@)1'? (7.8.4)
iy,

The proof will be given later. Note that (7.8.3) is satisfied if b= f=0 anq :
is a K-matrix (Section 4.2). Obviously, & is real, and 6 < d. Th.e rate at whlcf
the limit is reached in (7.8.4) will be studied shoﬁrtly. A sufficient nupre:jcl)
mesh points away from the boundaries of the grid G we tx?ve approximately .
;= &, and replacing &; by & we obtain for [M] = L}m-1ul:

cglé g
Mi=|c¢c d gq (7.8.5)
a aglé

and standard Fourier smoothing analysis can bfe appli?d. Equation
(7.8.5) is derived easily by noting that ir} sFencﬂ. notation .(ABu); =
i Sk A, JIBG A+ J, K)tivjrk, 5O that A(i, /)B( +. Js k.) gives a contltlbutxofl Ito
C(, j+ k), where C=AB; by summing all COIltl‘l‘:)u.thn'S or'le obt.ams‘ Cu,n.
An explicit expression for C(#, /) is C(},/) = T A, ))BG + j,1— Jj), since one
can write (Cu)i= Zi /A G BG + j, 1 — Nutisr.

Behaviour of elements of L, D, U away from grid boundaries

Before proving Lemma 7.8.1 we prove a preliminary lemma. For brevity we
write (J, k) instead of (i1, i2)-

Lemma 7.8.2. If (7.8.3) is satisfied, then
6 <0k <81k, 0K Ok < Gjk—1 (7.8.6)
i 172
Proof. We have oo = d, 810 = d — cg|d < boo. Define 8, = df2 + (d’[4 ~ cq} .

ing 6 < 8jo < dj-1,0
Hence 6, < d, and 8, = d — ¢g/éx, so that 810 = 0x. Assuming 0y & 00 < 0j-1,
we see tilat 8j+1,0=d —cql8jpo > d — cq[dx= 85, and dj+1,0 < djo. In the same



134 Smoothing analysis

way one can show 8, < dox < So,k—1, With & = df2 + (d*/4 — ag)/?. Since
oy, 8y > & we have established for s=0:

8 < djs < -1,y Vi> 58 0K 0k < bs,k-1, Vk>s (7.8.7)

In the same way it is easy to show for s=1:
0001y ViZs K0k KOsk-1, Vhk2 5. (7.8.8)

By induction it is easy to establish (7.8.8) for arbitrary s. [J

Proof of Lemma 7.8.1. According to Lemma 7.8.2, the sequence {85} is non-
increasing and bounded from below, and hence converges. The limit A
satisfies A > 6, and A = d — (ag + cq)[A. Hence A =4. [

Lemmas 7.8.1 and 7.8.2 are also to be found in Wittum (1989c).

Smoothing factor of five-point ILU

The modified version of incomplete factorization will be studied. As remarked
by Wittum (1989a) modification is better than damping, because if the error
matrix N is small with ¢ = 0 it will also be small with ¢ # 0. The optimum ¢
depends on the problem. A fixed o for all problems is to be preferred. From
the analysis and experiments of Wittum (1989a, 1989¢c) and our own exper-
iments it follows that ¢ = 0.5 is a good choice for all point-factorizations con-
sidered here and all problems. Results will be presented with ¢ =0 and ¢ =0.5.
The modified version of the recursion (4.4.12) for &k is

Sk =d— agldx-1— cqlék-1+ o] ag/dk-1—b| +|cgléi-1— |} (7.8.9)
The limiting value § in the interior of the domain, far from the boundaries,

satisfies (7.8.9) with the subscripts omitted, and is easily determined numeri-
cally by the following recursion

Sk+1=d—(aq+ cq)|bc+of| ag/éx —b| + | cglo—f|} (7.8.10)

The amplification factor is given by

N@) = {(aq/5 — b)exp[i(6: — 62)] + (cg[d — flexpli(d2 — 61)] + op}/
{a exp(—i02) + aq exp[i(61 — 62)1/5 + ¢ exp(—i1) + d+ ap
+ g exp(ify) + cg exp[i(f2 — 81)1/8 + g exp(if2)} (7.8.11)

where p=|aqg/é—b|+ |cgls - f|.
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Anisotropic diffusion equation

For the (non-rotated 8 = 0°) anisotropic diffusion equation with discretizati.on
(7.59) wehave g=a=—1,c=q=—¢,d=2+2¢, b= f=0, and we obtain:
5=1+e+ [2e(1+0)]'2 and

NO) = [ cos(61 — 02)]8 + ve/d]/
[1+ &+ oe/d — € cos 61 — cos 02 + € cos(61 — 62)/6] _(7.8~.-12)

We will study a few special cases. For e=1 and o=0 we find in
Example 7.8.1:

p=|Nx[2, —7[3)| =B +J6—1)7" =0.2035 (7.8.13)

The case e=1, o #0 is analytically less tractable. For ¢ <1 we find in
Example 7.8.1:

0<o<1f2: p=|Nx0|=(1-0)(20-1+0) (7.8.14)

1/2€0< 1t p=|Nx[2,0)|=0/(0+0)
0<o<1/2: pp=|Nm1)|=(-0)(26—1+0+57%2) (7.8.15)

12€a<: pp=|Nx[2,7)|=(0+ 1)/(a+6+612/2£)
where 7= 2x/n,. These analytical results are confirmed by Table 7.8.1. For
example, for €= 1073, n; = 64 and ¢ = 1/2 equation (7.8.15) gives pp = 0.090,
p = 1f3. Table 7.8.1 includes the worst case for 8 in the set {8=k=/12,
k=0,1,2,...,23).

Table 7.8.1. Fourier smoothing factors, p, pp for the rotated aniso-
tropic diffusion equation discretized according to (7.5.9); five-point

ILU smoothing; n = 64. In the cases marked with *, 8 =45° vy,
P P R PD o o PD o

€ P g=0°,9° Bg=15 8=0°,90 g=15

1 0 0.20 0.20 0.20 0.20
107 0 0.48 1.48 0.46 1.44
10°r o 0.77 7.84 0.58 6.90
1072 o 0.92 13.0 0.16 10.8
107 0 0.99 13.9 0.002 11.5

1 0.5 020 0.20 0.20 0.20
107! 0.5  0.26 0.78* 0.26 0.78*
1072 05 0.30 1.06 0.025 1.01
107 0.5 032 1.25 0.089 1.18
10 0.5 0.33 1.27 0.001 1.20
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Here we have another example showing that the influence of the type of the
boundary conditions on smoothing analysis may be important. For the non-
rotated anisotropic diffusion equation (8 = 0% or 8 =90°) we have a robust
smoother both for ¢ = 0 and ¢ = 1/2, provided the boundary conditions are of
Dirichlet type at those parts of the boundary that are perpendicular to the
direction of strong coupling. When g is arbitrary, five-point ILU is not a
robust smoother with ¢ =0 or ¢ = 1/2. We have not experimented with other
values of g, because, as it will turn out, there are other smoothers that are
robust, with a fixed choice of ¢, that does not depend on the problem.

Example 7.8.1. Derivation of (7.8.13) to (7.8.15). It is easier to work with 1/x
than with N\. We can write 1/\(8) = 1 + 6» (81, ¥) with

v(01,¥) = [1+¢&—ecos 6; —cos(: — ¥)]/ [£ cos ¥ + eo]

where y = 6; — 6;. From d»/36; = 0 it follows that ¢ sin §; + sin 6, = 0. With
e=1 this ~gives 6= -0, or 6,=6:+x. Taking ¢=0 one finds
1/\(01,01 + 7) =1—25. Furthermore, »(8;, —6;)=2(l — cos 61)[cos 26,.
Extrema of this function are to be found in 6,=0,8% 7 where
6*=cos™'(1 - Jf1/2) = 73°. Note that (0,0) and (0%, —6*) are not in O,.
Further extrema are to be found on the boundaries of ©,. For example,
»(7[2, 62) = (2 — cos 62)/sin 8, which has extrema in §, = % #/3. Inspection of
all extrema on the boundary of O, results in (7.8.13). Continuing with ¢ < 1
and 0 < ¢ < 1, from e sin 6; + sin 6, = 0 found above we have 6; = 0, . One
finds »(6:,0)= —1+ (o+ 1){(0 + cos §;), which has extrema in 6; =0, .
Hence, all extrema in O; are on the boundary of &,. We have & = 1, so that
| I/A@)] = |1+ »(8)|. Inspection of the extrema leads to (7.8.14). The
extrema in O are expected to be close to those in ©;, and hence are to be
expected in (w, £7), 7=2n/n;, for 0<o<1/2, and (x/2, *7) for
1/2 € o < 1. This gives us (7.8.15).

Convection—diffusion equation

Let us take Py = ~aP;, a >0, P, > 0, where P, =chle, P, = shfe. Then we
have for the convection—diffusion equation discretized according to (7.5.14):
a=—-1-P, b=f=0,c=-1,d=4+(1+a)P, g=—-1—aP;, g=—1.
After some manipulation one finds that if « <1, P,» 1, aP, > 1, then
A(x[2,0) =1 as P; — oo, This is in accordance with Table 7.8.2. The worst
case obtained when § is varied according to 8=kxf12, k=0,1,2,...,23 is
listed. Clearly, five-point ILU is not robust for the convection—diffusion
equation, at least for ¢ =0 and 0 =0.5.

Seven-point ILU

Seven-point ILU tends to be more efficient and robust than five-point ILU.
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Table 7.8.2. Fourier smoothing factoxts p, pp for Fhe
convection—diffusion equation discretized according
to (7.5.14); five-point ILU smoothing; n = 64

€ p oD B P PD
o=0 o=0.5
1 020 020 0° 0.20 0.20
107! 0.21 0.21 0° 0.20 0.20

1072 0.24 0.24 120° 0.24 0.24
1073 0.60 0.60 105° 0.48 0.48
10-% 0.77 0.71 105° 0.59 0.58

Assume
‘ J
Al =|c q (7.8.16)
b
The seven-point incomplete factorization A =LD 'U-N discussed in
Section 4.4 is defined in stencil notation as follows:

0 O 0 0 $iomi
Lli=|v & 0|, D= 0 & 0], [Uli=|0 & m (7.8.17)
ai Bi 0 0 0 0

We have, taking the limit i — o in (4.4.18), assuming the limit exists and
writing lim;-« a; = a etc.,

a=a, B=b— aufd, y=c- atlé, (7.8.18)
p=q-Bgls, ¢=r—v&s, n1=8
with & the appropriate root of

5=d—(ag+ B¢ +vu)d+a(| Buld| +|vE[8)) (7.8.19)

Numerical evidence indicates that the limiting 6 r_esult.ing .from (4.4.181)8 a}s
i— oo is the same as that for the following recursion, inspired by (4.4.18):

Bo=b! Yo=¢, 60=d7”'0=q’ §-0=f
Bi+1=b— awldj, vir1=c— asild; (7.8.20)
8js1 = d — (ag + Biw18s+ v+ )8+ 0 Biv a8 | + | vis1$il 851
piv1=q—Bi+18[8 S1=S— vi+18/68j
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For M we find M=LD~'U=A + N, with

D2 0 0 0 p1=ﬂu/6’ D= 3‘5,
[N] =[ 0 ps O , 2=l (7.8.21)
0 0 D1

0 pi=a(|pi|+|p2|1)

The conve¥gence analysis of (7.8.20) involves greater technical difficulties than
the analysis of (7.8.2), and is not attempted.
The amplification factor is given by

A0) = {ps + p1 exp[i(26; - 6,)] + p; exp[—i(28: — 6,)]}/
{a exp(—i62) + b exp[i(8; — 61)] + p1 exp[i(26; ~ 6,)} + ¢ exp(—ib;)
+d+ p3+q exp(i01) + p; exp[—i(26; — 8,)]
+ fexp[—i(0: — 62)] + g exp(if2)} (7.8.22)

Anisotropic diffusion equation

For the anisotropic diffusion problem discretized according to (7.5.9) we have
symmetry: u=+v, { =8, g=a, f=5b, g=c, so that (7.8.22) becomes

AB) = [op + p cos(26, - 6,]/
[a cos 82 + b cos(8: — 82) + ¢ cos 8; + df2 +ap+ p cos(20, - 6:)] (7.8.23)

with p = Bu/é.
With rotation angle 8 =90° and ¢ < 1 we find in Example 7.8.2:

0<0<1/2: p=|NO,7)| = (1-0)p
2€+ap—p
(7.8.24)
12<0<1: j=|NO,n[2)| = —2P
E+op

0< o< 1f2: ppzl)\(cp,ir)|=|(a—l+2¢2)/[82(2+¢2/2€)+a—1]|
12€0<1: po=|Ne,7/2)| = |(0+20) [6°(1 + p¥26) + 0 — 2¢] |

(7.8.25)

with ¢ =2x/n,. These results agree approximately with Table 7.8.3. For
example, for e=1073, n; = 64 equation (7.8.25) gives pp = 0.152 for ¢ =0
and pp = 0.103 for ¢ =0.5. ’

Table 7.8.3 includes the worst case for B in the set
{B=kx[12,k=0,1,2,...,23}. Equations (7.8.24) and (7.8.25) and
Table 7.8.3 show that the boundary conditions may have an important influ-
ence. For rotation angle 8=0o0r 8= 90°, seven-point ILU is a good smoother
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Table 7.8.3. Fourier smoothing factors p,pp for the rotated anisotropic diffusion
equation discretized according (7.5.9); seven-point ILU smoothing; n = 64

P P fD fD

e o =0 B=9%" p,8 B=0° B=90°" pp,B

1 0 0.13 0.13 0.13, any 0.12 0.12 0.12, any
107" o0 0.17 0.27 0.45, 75°  0.16 0.27 0.44, 75°
1072 o 0.17 0.61 1.35,75°  0.11 0.45 1.26, 75°
1072 0 0.17 0.84 1.69, 75°  0.02 0.16 1.55, 75°
107 0 0.17 0.98 1.74, 715° 10~* 0.002 1.59, 75°

1 0.5 0.11 0.11 1.13, any  0.11 0.11 0.11, any
107! 05  0.089 0.23 0.50, 60°  0.087 0.23 0.50, 60°
1072 0.5 0.091 0.27 0.77, 60°  0.075 0.25 0.77, 60°
107 05  0.091 0.31 0.82, 60°  0.029 0.097 0.82, 60°
107 0.5 0.086  0.33 0.83, 60° 4x10™* 1073 0.82, 60°

for the anisotropic diffusion equation. With ¢=0.5 we have a robust
smoother; finer sampling of 8 and increasing n gives results indicating that p
and pp are bounded away from 1. For some values of 8 this smoother is not,
however, very effective. One might try other values of o to diminish pp. But
we did not find a fixed, problem-independent choice that would do. A more
efficient and robust ILU type smoother will be introduced shortly. In Example
7.8.3 it is shown that ¢ = 1/2 is optimal for 8 = 45°.

Example 7.8.2. Derivation of (7.8.24) and (7.8.25). This example is similar to
Example 7.8.1. We have a=g=—-¢, b=f=0, c=qg=-1, d=2-2¢.
Equation (7.8.18) gives y= —1+&%y[6%, hence v= —1, B=¢/6 and
p=¢/6%. Furthermore, 6= d— (¢*+£%/6% + 1)[6 + 20¢/6% = d + 20¢ — 1/5,
so that &=1+ [(1 +0)2¢]"%. Writing 26, — 6=y we have \(0) ‘=
1+ »(61, ¢) with p(81,¥) = [1 +&—cos 61 — € cos(261 — ¥)1[(ep + p cos ¥).
From 9v/36, =0 it follows that sin 6; + 2¢ sin(26; — ) =0. For £ <1 this
implies 8; = 0 or w. One finds

[X(0,82)| = | (op + p cos 82)[(e+ap— € cos 62+ p cos 62)| = | M(x, 62) |

and (7.8.24) follows. Max{\(6):0 ¢ 6P will be reached close so (* ¢, 7) or
(* ¢, 7/2), and (7.8.25) results.

Example 7.8.3. Show that for 8=45° and e < 1

g
o+1

} (7.8.26)

o—1
g+ 1|

p=max{

Hence, the optimal value of o for this case is ¢=0.5, for which p = 1/3.
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Equation (7.8.26) can be derived as follows. We have a=c=¢g=g= —¢,
b=f=(e-1)/2, d=3e+1. Symmetry means that u=v, =8, 3=o.
Equations (7.8.18), (7.8.19) and (7.8.21) give: a=a, B=b— av/s,
y=a(l-BJ8), pr=p2=p=0+[, §=d—(a*+B>++)[6+20|p]|. For
e < 1 this gives 8= —1/2 +1e+ O(e?), y= —2e + O(¥?), p=2¢+ O(>?),
d=1%+ [2(1 + 0)e]"* + O(¢). With p = 2¢ and keeping only O(1) terms in the
(7.5.14) gives a= —e—hs, b=0, c= —¢, d=4e—ch+ sh, g= —e+ hc,
Hence, | N(0)| = o when 6; — ;. The maximum of | \(8)| is, therefore,
expected to occur for 6, =6;, when O(e) terms are included in the
denominator. Equation (7.8.22) gives A(61,0:) = (cos 8; + a)/(1+0). To
determine p it suffices to consider the set 6, € [#/2, 7], and (7.8.26) follows.

Convection—diffusion equation

Table 7.8.4 gives some results for the convection—diffusion equation. The
worst case for 8 in the set {8=kxn[12:k=0,1,2,...,23] is listed. It is found
numerically that p < 1 and pp < 1 when ¢ < 1, except for 8 close to 0° or
180°, where p and pp are found to be much larger than for other values of
8, which may spell trouble. We, therefore, do some analysis. Numerically it
is found that for e < 1 and | s| < 1 we have p = | \(0, 7/2)|, both for 6 =0
and o= 1/2. We proceed to determine (0, 7/2). Assume ¢ < 0, s > 0; then
(7.5.14) gives a= —e—hs, b=0, c= —¢, d=4e—ch+sh, g= —¢e+ hc,
f=0, g= —e¢. Equations (7.8.18) and (7.8.19) give, assuming £ < 1, | s| < 1
and keeping only leading terms in € and s, 8 = (¢ + sh)ch[6, v = ~¢€, u = ch,
§=0,8=(s—0)h, p1 = (e+ sh)c*/(s—c)* p>=0. Substitution in (7.8.22)
and neglect of a few higher order terms results in

_ (0-D)r+1) |
MO = e St By + o+ +ii-2rtanp %

Table 7.8.4. Fourier smoothing factors p, pp for the convec-
tion—diffusion equation discretized according to (7.5.14);
seven-point JILU smoothing; n = 64

g=0 o=0.5
€ o PD 8 . o PD 8
1 0.13 0.12 90° 0.11 0.11 0°
107! 0.13 0.13 90° 0.12  0.12 0°
1072 0.16 0.16 0° 0.17 0.17 165°

1073 0.44 0.43 165° 0.37 0.37 165°
10-° 0.58 0.54 165° 0.47 0.47 165°
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where 7= shfe, so that

pt= (r+ 1)@+ D/{IGr+2)(1 -2 tan B) +o(1 + 7]+ (1 - 27 tan B)’}
(7.8.28)

hence,

p? < (0*+ 1)f (e +1)? (7.8.29)

Choosing o= 1/2, (7.8.29) gives p € %Jg = (.75, so that the smoother. is
robust. With ¢ = 0, inequality (7.8.29) does not keep p away from 1. Equation

(7.8.28) gives, for o=10:

lim p=1/{5, lim p=(1—4tan +8tan’§)""*  (7.8.30)

70

This is confirmed by numerical experiments. With o= 1/% we have a robtfst
smoother for the convection—diffusion equation. Alternating ILU, to be d1§-
cussed shortly, may, however, be more efﬁcienot. With o= 0,p < 1 except.m
a small neighbourhood of 8= 0° and B =180". Since in practice 7 remains
finite, some smoothing effect remains. For example, for .?= 01 (8= 17,4.3?,
h=1/64 and £=10"" we have 7=156 and (7.8.‘30) gives p = 0.82. This
explains why in practice seven-point ILU witho=0 is a satisfactory smoother
for the convection—diffusion equation but ¢ = 1/2 gives a better smoother.

Nine-point ILU

Assume

(A] =

NS
R Q0
>3

] (7.8.31)

Reasoning as before, we have

0 0 0 0O § n 7
Lj=ly & 0], D=|0 5 0, U=1]0 &6 g (7.8.32)
w o 0 00 0 0 O

For w, , ..., 7 we have equations (4.4.22), here interpreted as equations for

<
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scalar u'nk.nowns. The relevant solution of these equations may be obtained
as the limit of the following recursion, inspired by (4.4.25):

a0=4a, Bo=b, yo=c, do=d, pw=q, fo=f, n=g
ajr1=a—2p{8j, Bjs1=b— jr1pfd;
Vi1 =€ — (20 + 0188
nisr={| Birwi| + | 28| + | Bjrrp | + | vi+18511/85

7.8.
8jv1=d — (P + ajr i+ Biv1$i + vie 1) 85 + onjy (7:8.39)
#ir1 =g — (@410 + Bie 19841
Sivr1=f—vemil8j, nj+1=8— vj+10[8j41
For M we find M=LD~!U = A + N, with
1 & 0 0 O
N =§ z¢8 0 on 0 Bp (7.8.34)
0 0 0 Bu

with n=|~y¢| +|zf|+|Bp|+|Bu|. The amplification factor is given by

A@)=B@)/ {(B@®)+ A(9)) (7.8.35)

where

B(0) = {v{ expli(02 ~ 261)] + z¢ exp(—2i6;)
+ Bp exp(2i61) + Bp exp[i(261 — 821 + on}/6

and

A@) =z exp[~i(6, + 02)] + a exp(—i62) + b expli(: — 62)] + ¢ exp(—if;)
+ d+q expl(if1) + f expli(62 — 01)] + g exp(if2) + p expli(61 + 62)]

Anisotropic diffusion equation

F_or the anisotropic diffusion equation discretized according to (7.5.9) the
nine-point ILU factorization is identical to the seven-point ILU factorization.
Table 7.8.5 gives results for the case that the mixed derivative is discretized
acFording to (7.4.11). In this case seven-point ILU performs poorly. When the
mixed derivative is absent (8 =0° or 8 =90°) nine-point ILU is identical to
seven-point ILU. Therefore Table 7.8.5 gives only the worst case for 8 in the
set {8=k/2x, k=0,1,2,...,23}). Clearly, the smoother is not robust for
o= 0. But also for o = 1/2 there are values of 8 for which this smoother is not
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Table 7.8.5. Fourier smoothing factors p, pp for the rotated anisotropic
diffusion equation discretized according to (7.5.9), but the mixed deriva-
tive discretized according to (7.5.11); nine-point ILU smoothing; n =64

1

o=0 g=3
e P B oD 8 P B pp 8
1 0.13 any 0.12 any 0.11 any 0.11 any

100! o052 715° 0.50 75° 0.42 715° 042 60
1072 1.51 75° 134 75° 0.63 15° 063 75
1072 187 75 162 75° 068 715 068 75
10~% .92  75° 1.66 715° 068 15° 068 15°- .

very effective. For example, with finer sampling of 8 around 75° one finds a
local maximum of approximately pp = 0.73 for 8 =85°.

Alternating seven-point ILU

The amplification factor of the second part (corresponding to the second
backward grid point ordering defined by (4.4.26)) of alternating seven-point
ILU smoothing, with factors denoted by L, D, U, may be determined as
follows. Let [A] be given by (7.8.16). The stencil representation of the
incomplete factorization discussed in Section 4.4 is

0 ¢
o, [ﬁ]= 0 0], U=|7
B 0

Equation (4.4.27) and (4.4.29) show that o, B, ..., 7 are given by (7.8.18) and
(7.8.19), provided the following substitutions are made:

0
L1=10 0| (7.8.36)

0

S ™I
O OO
® OO

a-gq, b=b, c>g d—d q—a [f—f g—c (1837

The iteration matrix is M = LD~ 'U = A + N. According to (4.4.28), T

Nl (7.8.38)

1l

coco¥
oo

—

VWooo

with p1 = Bi/§, b2 = ¥§[8, b3 = o(| b1| + | P2|). It follows that the amplification
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factor 5\(0) of the second step of alternating seven-point ILU smoothing is
given by

MO) = (B3 + b1 expli(8: ~ 26,)] + p, expli(20; - 611}/
(@ exp(~i6;) + b exp[i(6; — 6,)] + ¢ exp(if1) + d + ps + g exp(i6;)
+Sexp[~i(0: - 62)] + g exp(i6,) + py exp[i(: — 26,)]
+D2 expli(26; - 6,)] (7.8.39)

The ampilification factor of alternating seven-point ILU is given by A\ (0)x ),
with X\(9) given by (7.8.22).

Anisotropic diffusion equation

Table 7.8.6 gives some results for the rotated anisotropic diffusion equation.
The worst case for 8 in the set B=kx[12,k=0,1,2, ..., 23} is included. We
see that with 6= 0.5 we have a robust smoother for this test case. Similar
results (not given here) are obtained when the mixed derivative is approxi-
mated by (7.5.11) with alternating nine-point ILU.

Table 7.8.6. Fourier smoothing factors p, pp for the rotated aniso-
tropic diffusion equation discretized according to (7.5.9); alter-
nating seven-point ILU smoothing; n = 64

P D

€ o 8=0° 90° B=0°,9° ,, 4p 8

1 0 9x 1073 9% 1073 9%x1073 any
10! 0 0.021 0.021 0.061 30°
1072 0 0.041 0.024 0.25 45°
10-: 0 0.057 3x1073 0.61 45°-
10- 0 0.064 10~ 0.94 45°

1 0.5 4x 1073 4x1073 4x10°3 any
107! 0.5 0.014 0.014 0.028 15°
1072 0.5 0.020 0.012 0.058 45°
1073 0.5 0.026 2x1073 0.090 45°
10°3 0.5 0.028 0 0.11 45°

Convection—diffusion equation

Symmetry considerations, mean that we expect that the second step of alter-
nating seven-point ILU smoothing has, for ¢ < 1, p = 1 for 8 around 90° and
270°, Here, however, the first step has p < 1. Hence, we expect the alternating
smoother to be robust for the convection—diffusion equation. This is con-
firmed by the results of Table 7.8.7. The worst case for B in the set
B=kxf12:k=0,1, 2,...,23} is listed.

To sum up, alternating modified point ILU is robust and very efficient in
all cases. The use of alternating ILU has been proposed by Oertel and Stiiben
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Table 7.8.7. Fourier smoothing factors p, pp f(?r the L
convection-diffusion equation discretized acFordlng to
(7.5.14); alternating seven-point ILU smoothing; n = 64

o=0 o 0=0.5
£ #,pD B P, PD B
1.0 9x 1073 0’ 4x107? o:
107! 9% 1073 0° 4x1073 o°
1072 0.019 105° 7% 1073 0’
103 0.063 105° 0.027 120°
1073 0.086 105° 0.036 105

(1989). Modification has been analyzed and tested by Hemker (1980), Oertel
and Stiiben (1989), Khalil (1989, 1989a) and Wittum (1989a, 1989c).

7.9. Incomplete block factorization smoothing

Smoothing analysis

in to (4.5.8), the iteration matrix M is given by
I\Aacio(rf +g1’))f)-‘(1')( + U)), with L and U parts of A as defined by (4.5.1) and
(4.5.3),and D a tridiagonal matrix defined by (4.5.3) .and (4.5.7). Far enou%h
away from the boundaries the stencil [M] becomes lndept?nd§nt of the gl.‘ld
location, and this stencil must be determined for the application of Fourier
smoothing analysis, as before. This can be done as f_‘ollows.~ . .
For brevity, the looked for i-independent values of D; ;_,, D,:,- an.d D; i1 are
denoted by b, a, ¢, respectively; those of the triangular fac}cirllz.atlon “4.5.11)
are denoted by &, £, z; and the i-independent values s;; °f~131 in (4.§.13) are
denoted by §j_;= sy, those of #; (elements of tridiag(LD™'U) by t,~-,-=.ti,-.
Based on Algorithm 1 of Section 4.5 we find b, @, ¢ by means of the following
iterative method:

Algorithm 1 Computation of [D]
beginb=c, a=d, é=gq, f=1/a, g=¢f
do until convergence

é=bf, f=1/(@-eg /), g=¢f

So=f](1—88), §-1= — 85, §.2=—&5_1, §-3= — 35
§1= 8%, 1= — g8, fi= - ¢

k=-2,-1,..,2: ox = Z8k41 + ask + bSi -,
k=-1,0,1: Ik = fors1 + gok + pox—,

b=c-i., a=d—1, é=q-F

od
end
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Smoothing analysis

Once [Dl={h & €] has been determined, Fourier smoothing analysis
proceeds as follows.

The amplification factor \@) is i i
amplificat given by (7.5.2), with
M =(L+D)D 'M+U)and N=M— A. The constant coefficient operators
L, D, U and A share the same set of eigenvectors. We can, therefore, write

j§1 M()exp[i(m + j)8] = (A (8)\3(8)/N2(8)}exp(imb) (7.9.1)

with
M) = P2 (L) + D(j)}exp(ijo) (7.9.2)
A2(0) =jezz:‘ D (j)exp(ij6) (7.9.3)
0= 2, DU) +UG)exp(jo) (7.9.4)
Furthermore,

2, N()expli(m + j)6]
Jj€Z
= 2, M)~ AGIexp(i8) = MEM O N0) - M @) (7.9.5)

where Aa(0) = Zjez2 A (j)exp(ijf).
Hence, the amplification factor is given by

AO) =1 - M0 (@) M (O)N3(0) (7.9.6)

Anisotropic diffusion equation

Tables 7.9.1 and 7.9.2 give results for the two discretizations (7.5.9) and
'(7.5.11) of the rotated anisotropic diffusion equation. The worst cases for 3
¥n the set {8=kx[12,k=0,1,2, ..., 23} are included. In cases where Algor-
ithm 1 does not converge rapidly, in practical applications the elements of D
do not settle down quickly to values independent of location as one moves

away frqm the grid boundaries, so that in these cases Fourier smoothing
analysis is not realistic.
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Table 7.9.1. Fourier smoothing factors p,pp for the rotated anisotropic diffusion
equation discretized according to (7.5.9); IBLU smoothing; 7 =64. The symbol *
indicates that algorithm 1 did not converge within six decimals in 100 iterations; there-
fore the corresponding value is not realistic

L o P o o o D °©
€ 8=0 8=90 Iy =0 8=90 oD, B
1 0.058 0.058 0.058, any 0.056 0.056 0.056, any
107" 0.108 0.133 0.133, 90° 0.102 0.116 0.116, 90°
1072 0.149 0.176 0.131, 45° 0.095 0.078 0.131, 45°
10°3 0.164*  0.194 0.157*, 45° 0.025*  0.005 0.157%, 45°
1073 0.141*  0.120 0.166*, 45° 0" 0 0.166*, 45°

Table 7.9.2. Fourier smoothing factors p,pp for the
rotated anisotropic diffusion equation discretized
according to (7.5.9) but with mixed derivative
according to (7.5.11); IBLU smoothing; n = 64. The
symbol * indicates that algorithm 1 did not converge
within six decimals in 100 iterations; the corresponding
values are not realistic

P P PD PD
€ g=0" B=%° g=0° g=90°
1 0.058 0.058 0.056 0.056
10°! 0.108 0.133 0.102 0.116
1072 0.49 0.176 0.096 0.078
1073 0.164* 0.194 0.025* 5%x1073
103 0.141* 0.200 0.000* 0.000

Table 7.9.3. Fourier smoothing factors
p, pp for the convection—diffusion equation
discretized according to (7.5.14); IBLU
smoothing; n =64

£ P 8 D [
1.0 0.058 0° 0.056 0°
10! 0.061 0° 0.058 0°
1072 0.092 0° 0.0%0 0°
1073 0.173 0° 0.121 0°
1073 0.200 0° 1073 15°
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Convection—diffusion equation

:at})le 7.9.3 gives results for the convection—diffusion equation, sampling 3 as
efore.

It is clear .th?t IBLU is an efficient smoother for all cases. This is confirmed
by the multigrid results presented by Sonneveld et al. (1985).

7.10. Fourier analysis of white—black and zebra Gauss—Seidel
smoothing

The Fourier analysis of white~black and zebra Gauss—Seidel smoothing
requires special treatment, because the Fourier modes ¥(f) as defined in
Section 7.3 are not invariant under these iteration methods. The Fourier
analysis of these methods is discussed in detail by Stiiben and Trottenberg
(1982). They use sinusoidal Fourier modes. The resulting analysis is applicable
only to special cases of the set of test problems defined in Section 7.5. There-
fore we will continue to use exponential Fourier modes.

The amplification matrix

Specializing to two dimensions and assuming n; and n, to be even, we have
¥i(0) = exp(i,j9) (7.10.1)

with
J=Unj2)s Jje=0,1,2,...,0,~1 (7.10.2)

and

0€0 = ((61,02), 0o = 2mkaf Ny ko = — Mgy —tig + 1, ..., My + 1} (7.10.3)
where m, = n,f2 — 1. Define

0'e€6:=ON[-n2,7/2)?, 67=0'- (Sign("?)’f
sign(83)x

03___01_<‘ 0l ), 94 = g1 _ sign(® )«
sign(63)r 0

wpere sign(t) = — 1, 1 < 0; sign(fr)=1,7 > 0. Note that Os almost coincides
with the slet of szmooth wavenumbers O, defined by (7.4.20). As we will see,
Span{y(8°), ¥(%), ¥(6*), ¥(8*)) is left invariant by the smoothing methods
considered in this section.

Let ¥(6) = ($(6"), ¥(6%), ¥(6°), ¥(6*))". The Fourier representation of an

(7.10.9)
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arbitrary periodic grid function (7.3.22) can be rewritten as

up= 2, ci¥;(0) (7.10.5)

6O

with ¢ a vector of dimension 4.
If the error before smoothing is c§ ¥ (8), then after smoothing it is given by
(A(0)cs)™ ¥ (9), with A(f) a 4 x 4 matrix, called the amplification matrix.

The smoothing factor

The set of smooth wavenumbers O, has been defined by (7.4.20). Comparison
with ©; as defined by (7.10.4) shows that ¥ (6%), k =2, 3, 4 are rough Fourier
modes, whereas ¢(8') is smooth, except when 8} = — /2 or 83 = — /2. The
projection operator on the space spanned by the rough Fourier modes is,
therefore, given by the following diagonal matrix

5(6) .
Q@) = ! (7.10.6)

with §(0) =1 if 6, = — =/2 and/or 6, = — /2, and §(#) = 0 otherwise. Hence,
a suitable definition of the Fourier smoothing factor is

p=max{x(Q(0)A(0)):6 € O3] (7.10.7)

with x the spectral radius.

The influence of Dirichlet boundary conditions can be taken into account
heuristically in a similar way as before. Wavenumbers of the type (0, #3) and
(63,0), s=1,3,4, are to be disregarded (note that 62 = 0 cannot occur), that
is, the corresponding elements of cy are to be replaced by zero. This can be
implemented by replacing QA by PQA with

pi(9)
1 0

0 p3(0)
pa(0)

P@)= (7.10.8)

where p;(0) =0 if 6, =0 andfor 6, =0, and p;(9) =1 otherwise; p3() =0 if
6, =0 (hence 6} =0), and p3(8) =1 otherwise; similarly, p4(8) =0 if 6, =0
(hence 03=0), and ps(@) =1 otherwise. The definition of the smoothing
factor in the case of Dirichlet boundary conditions can now be given as

op = max{x(P(0)Q(0)A(9)):0 € O3 (7.10.9)
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Analogous to (7.10.24) a mesh-size independent smoothing factor p is defined
as

p=sup{x(QB)A(8)):0¢ 6;) (7.10.10)

with 6, = (—7/2, 7/2)2.

White—black Gauss—Seidel

Let A have the five-point stencil given by (7.8.1) with b= f=0. The use of
white—black Gauss—Seidel makes no sense for the seven-point stencil (7.8.1)
or the nine-point stencil (7.8.31), since the unknowns in points of the same
colour cannot be updated independently. For these stencil multi-coloured
Gauss—Seidel can be used, but we will not go into this.

Define grid points (j1, j2) with j; + j2 even to be white and the remainder
black. We will study white—black Gauss—Seidel with damping. Let €° be the
initial error, €'® the error after the white step, €23 the error after the black
step, and €' the error after damping with parameter w. Then we have

e} = —(ae)-e, + CEJ-e, + q€ve, + gESrer)[d, ji+ Jo even

13 = 9, J1+ j2 odd.

(7.10.11)
£j

The relation between e2/® and €!/? is obtained from (7.10.11) by interchanging
even and odd. The final error e! is given by

e}: we}/s +(1 - w)e}’ (7.10.12)

Let the Fourier representation of &%, a =0, 1/3, 2/3, 1 be given by
e =2, ciT¥;0).
€05
If &)= y;(6°), s=1,2,3 or 4, then

/3 _ YA H j }

611/3 n(® 3%(0 )s {1 +{2 even (7.10.13)
e}’ = 4;(0°), Ji+Jj2 0dd
with u(8) = — [a exp(—i62) + ¢ exp(—i6:) + g exp(if:) + g exp(if>)/d. Hence

e} =1(u(0%) + Dexp(ijo*) + 3(n(@°) - 1)
X exp[iji1 (05 — )] exp[ij2(05 — )] (7.10.14)
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so that
l4pm -1-m 0O 0
plfm-t dom 0 0 18, 6eco: (7.10.15)
s 2 0 0 l+p —1—p2
0 0 -1 1-p

where p1 = u(0), p2 = (a exp(—if2) — c exp(—if1) — ¢ exp(i(h). + g exp(if2))/d.
If the black step is treated in a similar way one finds, combining the two steps
and incorporating the damping step,

ch=(wA®)+ (1 - w)I}c? (7.10.16)
with
p(l+p) —pa(l+pm) 0 g ;
1 (=) p{pr—1) 0 7.10.17)
A(G)_i 0 0 pa(l 4+ p2)  —pa(l +p2) (
0 0 p2(1—p2) p2(p2 — 1)
Hence
P(6)Q(9)A(O)
pd(1+p1) —pidpa (1 + p1) 0 0
1 i Q—p) pr(p—1) 0 0
=3 0 0 Dapa(l+p2)  — papa(l + p2)
0 0 DPapa(l — p2) Dapa(p2 — 1)
(7.10.18)

The eigenvalues of PQA are

MO)Y=0, N0 =1ipmfm—1+ p1d(1+m)i,
M@)=0, MN@)=3p2lps— ps+m(ps+ps)) (7.10.19)

and the two types of Fourier smoothing factor are found to be
p,pp=max{|wh (@) +1 - w|, |oM@)+1 -w|:0€04 (7.10.20)

where py = p3s = ps = 1 in (7.10.19) gives p, and choosing p1, ps3, D4 as defined
after equation (7.10.8) gives pp in (0, 0).

With w=1 we have p=p=1/4 for Laplace’s equation (Stiiben and
Trottenberg 1982). This is better than lexicographic Gauss—Seidel, for wlfich
5 =1/2 (Section 7.7). Furthermore, obviously, white—black Gauss—Seidel
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lends itself very well for vectorized and parallel computing. This fact,
combined with the good smoothing properties for the Laplace equation, has
led to some of the fastest Poisson solvers in existence, based on multigrid with
white—black smoothing (Barkai and Brandt 1983, Stiiben ez al. 1984).

Convection—diffusion equation

With 8 =0 equation (7.5.14) gives a= —¢, c= ~e—h, d=4e+h, g= —¢,
g= —¢, so that p12(0, —#/2)=(2+ P)/(4+ P), with P=h[e the mesh
Péclet number. Hence, with p1=ps=ps=1 we have M4(0, —7/2)=
2+ P)’/(4 + P)?, so that p = 1 as P — o for all w, and the same is true for
pp. Hence white—black Gauss—Seidel is not a good smoother for this test
problem.

Smoothing factor of zebra Gauss—Seidel

Let A have the following nine-point stencil:

f g p
[Al=|c d ¢ (7.10.21)
z a b

Let us consider horizontal zebra smoothing with damping. Define grid points
(1, J2) with j, even to be white and the remainder to be black. Let £° be the
initial error, e'® the error after the ‘white’ step, €** the error after the
‘black’ step, and €' the error after damping with parameter w. Then we have

/
ce}d + de}® + qe}3,

(1] 0 0 (1] (1] 0
= —(Z€j—ei—es+ AEj-e; + DEjrei~er + fE€j-e+er + BEjre, + PEj1er+er),
J2 even
ij = 8}), J2 odd

(7.10.22)

where e; = (1,0) and e> = (0, 1).

The relation between €2/* and €3 is obtained from (7.10.22) by interchan-
ging even and odd, and the final error €! is given by (7.10.12).

It turns out that zebra iteration leaves certain two-dimensional subspaces
invariant in Fourier space (see Exercise 7.10.1). In order to facilitate the
analysis of alternating zebra, for which the invariant subspaces are the same
as for white-black, we continue the use of the four-dimensional subspaces
¥(0) introduced earlier.
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Let the Fourier representation of &%, «=0,1/3,2/3,1 be given by
€f = Taco; c§ T¥;(0). If €] = ¥;(0°), s=1,2,3,4, then

£} =1(u(0°) + Dexp(ij0°) + 3(1(9°) — Dexp(ij1f1)exp [ij2(6% — O
(7.10.23)
with

w(0) = — {z exp(—i(61 + 62)] + a exp(—i62) + b exp[i(f: — 62)]
+ fexpli(fz2 — 61)] + g exp(82) + p exp[i(6: + 62)}/
[c exp(—i61) + d + q exp(i61)]

We conclude that

pr+1 0 —p—1 0
1 0 N ‘L2+1 0 —#2_1 0
173 — _ c 7.10.24
=3 1 0 1= 0 ] ( )
0 -1 0 1-p

where 1 = p1(0) = p(8) and g = p2(6) = p(61 — 7, 62 — 7). If the black step is
treated in the same way one finds c§’> = A(0)c§ with

pr(l+p1) 0 = (1 +p1) 0
A(o)_l 0 l"2(1+ﬂ'2) 0 _ﬂ2(1+ﬂ2)
T2\ m(-m) 0 —pa(l —p1) 0
0 p2(1 = p2) 0 —p2(l — p2)
(1.10.25)
Hence
P(0)Q®)A(6)
P16 (1 + p1) 0 —p1dpu (1 + p1) 0 .
_1 0 p2(l + p2) 0 —p2(l + p2)
T2\ Pyl - ) 0 papr(p—1) 0
0 Dapa(1 — p2) 0 DPapz2(p2— 1)
(7.10.26)

The cigenvalues of P(9)Q(0)A(0) are

MO)=0, M) =1ipdui(l+pu)—3papa(l—p1), A(8) =((’)7.10.27)
M) =1p2(1 + p2) + 3 papa(p2 — 1)

The two types of Fourier smoothing factor are given by (7.10.20), taking
Az, A from (7.10.27).
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Anisotropic diffusion equation

For £=1 (Laplace’s equation), w=1 (no damping) and p;=pi=ps=1
(periodic boundary conditions) we have pi(8)=cos 6/(2 —cos 6;) and
#2(0) = —cos 02/ (2 + cos 81). One finds max{| \2(8) |: 0 € O} = | Ma(%[2,0) | =1}
and max{| \s(0) |: 0 € ©5) = | M(x/2, 7[2) | =1, so that the smoothing factor is
p=p=%

For £ < 1 and the rotation angle 8 =0 in (7.5.6) we have strong coupling
in the vertical direction, so that horizontal zebra smoothing is not expected
to work. We have j(0)= —cosbf(1+e+ecosf;), so that
| Na(x[2,0) | = (1 + &)~2, hence lim¢ip p > 1. Furthermore, with ¢ =2x[n, we
have | \e(n/2), @) | = cos? ¢ (1 + £)?, so that lims pp > 1 — O(h?). Damping
does not help here. We conclude that horizontal zebra is not robust for the
anisotropic diffusion equation, and the same is true for vertical zebra, of
course.

Convection-diffusion equation

With convection angle 8 = #/2 in (7.5.14) we have
p2(6) = [(1 + P)exp(—i02) + exp(if2)]/ (4 + P + 2 cos 6,),

where P = hfe is the mesh Péclet number. With ps =1 (periodic boundary
conditions) we have As=pu3, so that \(x/2,0)= (2 + P)*/(4+ P)?, and
we see that wh(af2,00+1-w=1 for P» 1, so that p» 1 for P» 1
for any damping factor . Furthermore, with ¢ =2x/n,
| M2, 0)| = | u3(x/2,0)| = |2+ P—ipP|*[(4+ PP?|—>1 for P» 1, so
that pp = 1 for P» 1 for all w. Hence, zebra smoothing is not suitable for
the convection—diffusion equation at large mesh Péclet number.

Smoothing factor of alternating zebra Gauss—Seidel

As we saw, horizontal zebra smoothing does not work when there is strong
coupling (large diffusion coefficient or strong convection) in the vertical direc-
tion. This suggests the use of alternating zebra: horizontal and vertical zebra
combined. Following the suggestion of Stiiben and Trottenberg (1982), we
will arrange alternating zebra in the following ‘symmetric’ way: in vertical
zebra we do first the ‘black’ step and then the ‘white’ step, because this gives
slightly better smoothing factors, and leads to identical results for 8 = 0° and
B8=90°. The 4 x 4 amplification matrix of vertical zebra is found to be

vi(y1+1) 0 0 ri(y1+1)
_ l 0 va(pa+1) r2(p2+1) 0
Ai6)= > 0 mvz—1) ra(va—1) 0 (7.10.28)

V1(V1 - 1) 0 0 Vl(”l - 1)
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v

where

v1(0) = — {z exp[—i(61 +02)] + b exp[i(61 — 02)] + ¢ exp(—i01)
+q exp(i61) + f exp[i(2 — 01)] + p expli(6r + 62)]}/
[a exp(—i62) + d + g exp(if:)]

and »2(0) = v1(0; — 7,0, — ). We will consider two types of damping:
damping the horizontal and vertical steps separately (to be referred to as
double damping) and damping only after the two steps have been completed.
Double damping results in an amplification matrix given by

A =PQ[(1 - wa)l + waAv] [ (1 — wa)I + waAn] (7.10.29)

where Ay, is given by (7.10.25). In the case of single damping, put wg=1 in
(7.10.29) and replace A by

Ar=(1 —ws)l + wsA (7.10.30)

The eigenvalues of the 4 X 4 matrix A are easily determined numerically.

Anisotropic diffusion equation

Tables 7.10.1 and 7.10.2 give results for the smoothing factors p, pp for the
rotated anisotropic diffusion equation. The worst cases for the rotation angle
B in the set {8=k=x/12,k=0,1,2,...,23} are included. For the results of
Table 7.10.1 no damping was used. Introduction of damping (wq # 1 or
ws # 1) gives no improvement. However, as shown by Table 7.10.2, if the
mixed derivative is discretized according to (7.5.11) good results are obtained.
For cases with e=1 or 8=0° or 8 = 90° the two discretizations are identical
of course, so for these cases without damping Table 7.10.1 applies. For

Table 7.10.1. Fourier smoothing factors p, pp for the
rotated anisotropic diffusion equation discretized
according to (7.5.9); alternating zebra smoothing;

n=64
e o o #p -3 o

€ =0, 9 8=0, 90 P, PD B
1 0.048 0.048 0.048  any
107 0.102 0.100 0.480  45°
1072 0.122 0.121 0924  45°
107 0.124 0.070 0.992  45°
1075 0.125 0.001 1.000  45°
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Table 7.10.2. Fourier smoothing factors p,pp for the
rotated anisotropic diffusion equation discretized
according to (7.5.9) but with the mixed derivative approxi-
mated by (7.5.11); alternating zebra smoothing with single
damping; n = 64

ws=1 ws=0.7
P, pD ° .

e 2.PD 8 "=0°,9° p,pp B8

1 0.048 any 0.317 0.317 any
107! 0.229 30° 0.302 0.460 34°
1072 0.426 14° 0.300 0.598 14°
1073 0.503 8° 0.300 0.653 8°
1073 0.537 4° 0.300 0.668 8°
1078 0.538 4° 0.300 0.668 8°

Table 7.10.2 8 has been sampled with an interval of 2°. Symmetry means that
only B€[0°,45°] needs to be considered. Results with single damping
{(ws = 0.7) are included. Clearly, damping is not needed in this case and even
somewhat disadvantageous. As will be seen shortly, this method, however,
works for the convection diffusion test problem only if damping is applied.
Numerical experiments show that a fixed value of ws = 0.7 is suitable, and that
there is not much difference between single damping and double damping. We
present results only for single damping. :

Convection—diffusion equation

For Table 7.10.3, 8 has been sampled with intervals of 2°; the worst cases are
presented. The results of Table 7.10.3 show that alternating zebra without

Table 7.10.3. Fourier smoothing factors p for the convec-
tion—diffusion equation discretized according to (7.5.14);
alternating zebra smoothing with single damping; n = 64

ws=1 wy=0.7
€ p B oD 8 2,PD 8

1 0.048 ° 0.048 0° 0317 0°
107! 0.049 ° 0.049 0° 0.318 20°

10°° 0.948
108 0.995

0.584 22° 0.443

0
0
1072 0.080 28° 0.079 26° 0.324 42°
4
4
2 0.587 22° 0.448

1073 0.413 2 0.369 28° 0.375 44°
4
4
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damping is a reasonable smoother for the convection—diffusion equation. If
the mesh Péclet numbers A cos 8/e or h sin /e become large (> 100, say), p
approaches 1, but pop remains reasonable.

A fixed damping parameter ws = 0.7 gives good results also for p. The value
ws = 0.7 was chosen after some experimentation.

We see that with ws = 0.7 alternating zebra is robust and reasonably efficient
for both the convection—diffusion and the rotated anisotropic diffusion
equation, provided the mixed derivative is discretized according to (7--’,’.-1;1)'.

Smoothing factor of alternating white—black Gauss—Seidel for the
convection—diffusion equation

The purpose of this smoother, described in Section 4.3, is to improve
smoothing efficiency for the convection—diffusion equation compared with
the white—black and zebra methods, while maintaining the advantage of easy
vectorization and parallelization. The basic idea is that in accordance with the
almost hyperbolic nature of the convection—diffusion equation discretized
with upwind differences at high mesh Péclet numbers there should also be
directional dependence in the smoother. Since we do not solve exactly for lines
the method is not expected to be robust for the anisotropic diffusion equation.
We will, therefore, treat only the convection—diffusion equation. The stencil
[A] is assumed to be given by

[A] = |c (7.10.32)

Q Q0
£Q

The 4 x 4 amplification matrix can be obtained as follows. The smoothing
method is divided in four steps. First we take horizontal lines in forward
(direction of increasing j) order. Let €%, a =0, 1/2, 1, be the error at the start
of the treatment of a line, after the update of the white (j; even) grid points
and after the update of the black (j; odd) grid points, respectively. Then we
have

2 0 0 ;
de}/3 + aej_’il = —Ce_‘i)—ez —Qg€j+e, — BEj+ers J1 €VEN

1/3

_ (7.10.33)
e}?=¢ J1 od

Note that €2, can be considered known, because the corresponding grid

point lies on a grid line that has already been visited. Assume €)= y;(8°),
s=1,2,3 or 4, 6° € O3 and postulate

£} = agj(0°) + Bsy;(0°), €} = A (0°) + Boy;(6")  (7.10.34)
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where =5 — 5. Then one finds that (7.10.33) is satisfied if

(As + B)m1(0°) + (o5 + Bs)d = — 2 (0°) — u3(6°), as—Bs=1 (7.10.35)
where u1(0) = a exp(—i62), p2(0) = g exp(if2), u3 (@) = c exp(—ib1) + g exp(id:).
Continuing with the black points (ir_lterchanging even and odd in (7.10.33))

gives

(As — Bs)(u1(6°) + @) + (s + Bs)pa(6°) = —p2(8°), s+ Bs=As+ Bs
(7.10.36)

Solving for A; and B from (7.10.35) and (7.10.36) one obtains

al (,L,(owz(o‘)+u3(0’»_2uz(e’)+m(0‘)) (7.10.37)

2 (11(6°) + d)? (@) +d
_1 (13(0)(a(0°) + p3(8°)) | p3(6°)
B:=3 ( m@+d  TmeH+ d) (7.10.38)

Hence, the amplification matrix A;(6) for this part of alternating white—black
iteration is given by

Ay O 0 B
0 A By O
0 B, A3 O
B 0 0 A,

A@O)= (7.10.39)

where 8 =0'¢©;, and 6° is related to #' according to (7.10.4). In a similar
fashion one finds that for the second step (taking the horizontal lines in
reverse order) the amplification matrix A»(@) is given by

A 0 0 B
[0 4, By 0
Ax(0) = 9 B, A 9 (7.10.40)
B, 0 0 A,

where A,, B, are given by (7.10.37) and (7.10.38), but with x; and g, inter-
changed. In the third step we take vertical lines in the forward (increasing ji)
direction. For illustration we give the equations for the white points:

ds}/3 + Cejz—/gl = - as_(i)—ez - q€?+e1 - ge_([?+e1, j2 €ven

7.10.41
e)3=¢ Jjo2 odd ( )

Now the relation between s and ¢ is given by (s, )= (1, 3),(2,4), (3, 1), (4, 2).
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Proceeding as before the amplification matrix for the third step is found to be

Ci 0 D3y O
N LY C; 0 D
As;(0)= D, 0 C O (7.10.42)
0 D, 0 G4

with C; and D; given by (7.10.37) and (7.10.38), respectively, but with p;
defined by

p1(8) =c exp(—ifh), p2(0) =g exp(i1), p3(8) = a exp(—if2) + g exp(ib2)
(7.10.43)

Finally, for the amplification factor of the fourth step (taking vertical lines in
decreasing ji direction) one obtains

¢t 0 Dy 0
[0 C 0 D

MO=\p o & o (7.10.44)
0 D, 0 C

with C,, D, defined as Cs, Ds, but with p; and p; interchanged.
The amplification matrix for the complete process is

A(6) = A4(6)A3(0)A2(0)A. ().

With damping we have
A@):=0A@)+ (1 -,

and the smoothing factor is defined by (7.10.7), (7.10.9) or (7.10.10), as the
case may be. We have found no explicit expressions for the eigenvalues of
A(0), but it is easy to solve the eigenvalue problem numerically using a
numerical subroutine library. Results for the convection—diffusion equation
are collected in Table 7.10.4, for which 8 has been sampled with an interval
of 2°; the worst cases are presented.

For w=1p—1as €0, but pp remains reasonably small. When n increases,
op = p. To keep p bounded away from.1 as €0 damping may be applied.
Numerical experiments show that w=0.75 is a suitable fixed value. We see
that this smoother is efficient and robust for the convection—diffusion
equation.

Exercise 7.10.1. Show that Span{y(8), ¢'(#)} is invariant under horizontal
zebra smoothing, and that Span{y(6), ¥2(0)) is invariant.under vertical zebra
smoothing, where }(8) = (— 1)’y;(6) and vH0) = (— 1)'¢(0).
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Table 7.10.4. Fourier smoothing factors p,pp for the convection—
diffusion equation discretized according to (7.5.14), alternating
white—black smoothing; n =64

w=1 w=0.75

€ P 8 D +] P B 2. 8

1.0 002 0 002 0° 026 0° 02 0°
107! 002 0©° 0.02 0° 027 o©° 027 0°
1072 0.05 o’ 0.04 0° 0.28 0° 028 0°
107 020 0° 0.17 0° 040 0° 035 O©°
1073 0.87 2° 0.52 10° 050 0° 042 4°
1078 0.98 2° 0.53 10° 050 ©° 0.43 6°

7.11. Multistage smoothing methods

As we will see, multistage smoothing methods are also of the basic iterative
method type (4.1.3) (of the semi-iterative kind, as will be explained), but in
the multigrid literature they are usually looked upon as techniques to solve
systems of ordinary differential equations, arising from the spatial discretiz-
ation of systems of hyperbolic or almost hyperbolic partial differential
equations.

The convection—diffusion test problem (7.5.7) is of this type, but (7.5.6) is
not. We will, therefore, consider the application of multistage smoothing to
(7.5.7) only. Multistage methods have been introduced by Jameson et al.
(1981) for the solution of the Euler equations of gas dynamics, and as
smoothing methods in a multigrid approach by Jameson (1983). For the
simple scalar test problem (7.5.7) multistage smoothing is less efficient than
the better ones of the smoothing methods discussed before. The simple test
problem (7.5.7), however, lends itself well for explaining the basic principles
of multistage smoothing, which is the purpose of this section. Applications in
fluid dynamics will be discussed in a later chapter.

Artificial time-derivative

The basic idea of multistage smoothing is to add a time-derivative to the
equation to be solved, and to use a time-stepping method to damp the short
wavelength components of the error. The time-stepping method is of multi-
stage (Runge—Kutta) type. Damping of short waves occurs only if the dis-
cretization is dissipative, which . implies that for hyperbolic or almost
hyperbolic problems some form of upwind discretization must be used, or an
artificial dissipation term must be added. This is not a disadvantage, since
such measures are required anyway to obtain good solutions, as will be seen
in a later chapter.

Multistage smoothing methods 161

The test problem (7.5.7) is replaced by

%? e+ u) +cuy+sup=f (7.11.1)

Spatial discretization according to (7.5.13) or (7.5.14) gives a system of
ordinary differential equations denoted by

du_ _ p-apyyf (7.11.2)
dt
where A is the operator defined in (7.5.13) or (7.5.14); u is the vector of grid

function values.

Multistage method

The time-derivative in (7.11.2) is an artefact; the purpose is to solve Au = hf.
Hence, the temporal accuracy of the discretization is irrelevant. Denoting the
time-level by a superscript # and stage number k by a superscript (k), a
p-stage (Runge—Kutta) discretization of (7.11.2) is given by

u®=y"
u® =y b AR * D L gAY, k=1,2,...,p
uttl=yg® (7.11.3)

with ¢, = 1. Here » = At[h is the so-called Courant—Friedrichs—Lewy (CFL)
number. Eliminating #‘®, this can be rewritten as

u™ = Po(—vh A" + Qp-1(—vh A (7.11.4)
with the amplification polynomial P, a polynomial of degree p defined by
Ppy(z) =1+z(1 +cp-12(1 + cp-22(...(1 + C12)-..) (7.11.5)

and Qp-; is a polynomial of degree p—1 which plays no role in further
discussion.

Semi-iterative méthods

Obviously, equation (7.11.4) can be interpreted as an iterative method fc?r
solving #~2Au = f of the type introduced in Section 4.1 with iteration matrix

S= P,(—vh™'A) (7.11.6)

Such methods, for which the iteration matrix is a polynomial in the matrix of
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the system to be solved, are called semi-iterative methods. See Varga (1962)
for the theory of such methods. For p =1 (one-stage method) we have

S=I-vh'A (7.11.7)
which is in fact the damped Jacobi method (Section 4.3) with diagonal scaling
(diag(A) = 1), also known as the one-stage Richardson method. As a solution
method for differential equations this is known as the forward Euler method.
Following the trend in the multigrid literature, we will analyse method (7.11.3)

as a multistage method for differential equations, but the analysis could be
couched in the language of linear algebra just as well.

The amplification factor

The time step At is restricted by stability. In order to assess this stability
restriction and the smoothing behaviour of (7.11.4), the Fourier series (7.3.22)
is substituted for u. It suffices to consider only one component & = ¢ (), 8 ¢ ©.
We have vh™'Ay(0) = vh™'u(0)¢¥(8). With A defined by (7.5.14) one finds

p@)=4e+h(c|+|s|)— Qe+ h|c|)os 6,
— (2e+ k| s|)cos 62 + ihc sinb, + iks sin 0, (7.11.6)

and
u'tt=gu" (7.11.7)

with the amplification factor g(6) given by
86) = Pp(—»u(0)/h) (7.11.8)
The smoothing factor
The smoothing factor is defined as before:
p=max{| g(#)|:0€ O, (7.11.9)
in the case of periodic boundary conditions, and
op =max{| g(@)]:0€ 6D} (7.11.10)

for Dirichlet boundary conditions.
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Stability condition
Stability requires that
lg@)| <1, v8e®© (7.11.11).

The stability domain D of the multistage method is defined as
D={zeC:|Py(2)| £ 1} (7.11.12)

Stability requires that v is chosen such that z= —vu(9)/h€ D, ¥0€0O.If p < 1
but (7.11.11) is not satisfied, rough modes are-damped but smooth modes are
amplified, so that the multistage method is unsuitable.

Local time-stepping

When the coefficients ¢ and s in the convection—diffusion equation (7.11.1)
are replaced by general variable coefficients v; and v, (in fluid mechanics
applications vy, v; are fluid velocity components), an appropriate definition of
the CFL number is

v=vAtlh, v=|o|+ |02 (7.11.13)

Hence, if Atf is the same in every spatial grid point, as would be required for
temporal accuracy, » will be variable if v is not constant. For smoothing pur-
poses it is better to fix » at some favourable value, so that At will be different
in different grid points and on different grids in multigrid applications. This
is called local time-stepping.

Optimization of the coeflicients

The stability restriction on the CFL number » and the smoothing factor p
depend on the coefficients c¢x. In the classical Runge—Kutta methods for
solving ordinary differential equations these are chosen to optimize stability
and accuracy. For analyses see for example Van der Houwen (1977),
Sonneveld and Van Leer (1985). For smoothing ¢ is chosen not to enhance
accuracy but smoothing; smoothing is also influenced by ». The optimum
values of » and ¢ are problem dependent. Some analysis of the optimization
problem involved may be found in Van Leer et al. (1989). In general, this
optimization problem can only be solved numerically.
We proceed with a few examples.

One-stage method

As remarked before, the one-stage or forward Euler method is (in our case
where the elements of diag(A) are equal) fully equivalent to damped Jacobi,
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S0 it is not necessary to present again a full set of smoothing analysis results
for the test problems (7.5.6) and (7.5.7). We merely give a few illustrative
examples. We have P;i(z)=1+z, and according to (7.11.12) the stability
domain is given by D= {z€ C: |1 + z] < 1}, which is the unit disk with centre
at z= —1. Let us take the convection—diffusion equation (7.5.7) with £ =0,
B =0 with upwind discretization (7.5.14), so that () as given by (7.11.6)
becomes p(f)=~h[1—exp(—if;)], which gives g@)=1- [l ~exp(ity)].
Hence

| &)=~ »)?+2(1 - »)» cos 6, + »> (7.11.14)

For v > 1 we have max{| g(6)|*0€0) =] g(x,02)|>=(1 - 2»)> > 1, so the
method is unstable. For »=1, | g(8)|*=1, so we have no smoothing. For
O0<v<1 we find

max(| g(0)|*6€ 0} =] g(0,6:)|=1 (7.11.15)

so we have stability. According to (7.11.10) one finds o> = | £(0,6.)|>=1 for
any 6, so that we have no smoother. This is a problem occurring with all
multistage smoothers: when the flow is aligned with the grid (8=0 or
8 =90°), waves perpendicular to the flow are not damped, if there is no cross-
flow diffusion term. This follows from p (0, 6,) = 0, v62, and P,(0) = 1, for all
P, given by (7.11.5). In practice such waves will be slowly damped because
of the influence of the boundaries. When the flow direction is not aligned with
the grid we have smoothing. For example, for B =45° one obtains

=1-2Xp- —ig) - —i 11,
2@ Ji [2 — exp(—i0) — exp(—i6,)] ‘ (7.11.16)

Hence | g(m,x)|={1-2»02|, so that » <1/{2 is required for stability.
Taking »=1/2 one obtains numerically p = 0.81, which is not very
impressive, but we have a smoother. Adding diffusion (choosing ¢ > 0 in
(7.11.1)) does not improve the smoothing performance very much.

Central discretization according to (7.5.13) gives, with e = 0:

p(0) =ih(c sin 6, + s sin 6,) (7.11.17)
0 that z= —pu(f)/h is imaginary, and hence outside the stability domain.

A four-stage method

Based upon an analysis of Catalano and Deconinck (private communication),
in which optimal coefficients ¢y and CFL number » are sought for the upwind
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Table 7.11.1. Smoothing factor p for (7.11.1) dis-
cretized according to (7.5.14); four-stage method;

n=6.4

P g=0° B=15° B=30° B=45°
0 1.00 0.593 0.477 0.581

107° 0.997 0.591 0.482 0.587

discretization (7.5.14) of (7.11.1) with £=0, we choose
c1=0.07, ¢=0.19, ¢3=042, »=20 (7.11.18)

Table 7.11.1 gives some results.

It is found that pp differs very little from p. It is not necessary to c_hsoose
8 outside [0°,45°], since the results are symmetric in 8. For € = 10 tl'le
method becomes unstable for certain values of 8. Hence, for problems in
which the mesh Péclet number varies widely in the domain it would seem
necessary to adopt ¢k and » to the local stencil.

A five-stage method

The following method has been proposed by Jameson and B.aker (1984) for
a central discretization of the Euler equations of gas dynamics:

a=1/4, cz=1/6, c3=3[8, ca=1/2 (7.11.19)

The method has also been applied to the compressible Navier—Stokes
equations by Jayaram and Jameson (1988). We will apply this methoc.i to
test problem (7.11.1) with the central discretization (7.5.13). Since
1(8) = ik (c sin 8; + s sin 6;) we have u(0, 7) =0, hence | g(0, )| =1, so that
we have no smoother. An artificial dissipation term is therefore added to
(7.11.2), which becomes

%: —-h2Au—-h"'Bu+f (7.11.20)

with

-4
Bl=x|1 -4 12 -4 1 (7.11.21)
-4

where x is a parameter.
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Table 7.11.2. Smoothing factor p
for (7.11.1) discretized according to
(7.5.13); five-stage method; n = 64

g 0 15° 30° 45°

P 0.70 0.77 0.82 0.82

We have By(8) = 7(0)y(#) with
7(0) = 4x [(1 — cos 0;)* + (1 — cos 62)%] (7.11.22)

For. reasons of effu.:iency Jameson and Baker (1984) update the artificial dissi-
pation term only in the first two stages. This gives the following five-stage
method:

U =y @ _cp(h A+ Bk, k=12
u® =uy® —cy(h'Au* Y + Bu®), k=3,4,5 (7.11.23)
The amPlliﬁcation polynomial now depends on two arguments z;, z; defined by
z1=vh™"u(0), z2 = vy(@), and is given by the following algorithm:

Pi=1-c(@zi+22), Pr=l-c(u+2)P:
P3 =1- C321Pz - C3ZzP1, P4 =1~ C4Z[P3 - C422P1 (7.11.24)
Ps(zi,22) =1 —21Ps — 22 Py

In one dimension Jameson and Baker (1984) advocate » = 3 and x = 0.04; for
stability » should not be much larger than 3. In two dimensions
max{vh~'|u(0)|} = »(c + s) < »2. Choosing »2=3 gives » =2.1. With
v=2.1 and x =0.04 we obtain the results of Table 7.11.2, for both £=0
and e = 107°. Again, pp = p. This method allows only € < 1; for example, for
£=10"% and 8 =45° we find p =0.96. ’

Final remarks

..Ad\fantages of multistage smoothing are excellent vectorization and parallel-
ization potential, and easy generalization to systems of differential equations.
Mu'ltistage methods are in widespread use for hyperbolic and almost hyper-
bolic systems in computational fluid dynamics. They are not, however,
robust, because, like all point-wise smoothing methods, they do not work
when the unknowns are strongly coupled in one direction due to high mesh
aspect ratios. Also their smoothing factors are not small. Various stratagems
have been proposed in the literature to improve multistage smoothing, such
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as residual averaging, including implicit stages, and local adaptation of ¢k, but
we will not discuss this here; see Jameson and Baker (1984), Jayaram and
Jameson (1988) and Van Leer ef al. (1989).

7.12. Concluding remarks

In this chapter Fourier smoothing analysis has been explained, and efficiency
and robustness of a great number of smoothing methods has been investigated
by determining the smoothing factors p and pp for the two-dimensional test
problems (7.5.6) and (7.5.7). The following methods work for both problems,
assuming the mixed derivative in (7.5.6) is suitably discretized, either with
(7.5.9) or (7.5.11):

(i) - Damped alternating Jacobi;

(i) Alternating symmetric line Gauss—Seidel;

(iii) Alternating modified incomplete point factorization;
(iv) Incomplete block factorization;

(v) Alternating damped zebra Gauss—Seidel.

Furthermore, the following vectorizable and parallelizable smoothers are
efficient for the convection-diffusion test problem (7.5.7):

(i) Four-direction damped point Gauss—Seidel—Jacobi;
(i) Alternating damped white—black Gauss—Seidel.

Where damping is needed the damping parameter can be fixed, independent
of the problem.

It is important to take the type of boundary condition into account. The
heuristic way in which this has been done within the framework of Fourier
smoothing analysis correlates well with multigrid convergence results obtained
in practice.

Generalization of incomplete factorization to systems of differential
equations and to nonlinear equations is less straightforward than for the other
methods. Application to the incompressible Navier-Stokes equations has,
however, been worked out by Wittum (1986, 1989b, 1990, 1990a, 1990b) and
will be discussed in Chapter 9. )

Of course, in three dimensions robust and efficient smoothers are more
elusive than in two dimensions. Incomplete block factorization, the most
powerful smoother in two dimensions, is not robust in three dimensions
(Kettler and Wesseling 1986). Robust three-dimensional smoothers can be
found among methods that solve accurately in planes (plane Gauss—Seidel)
(Thole and Trottenberg 1986). For a successful multigrid approach to a com-
plicated three-dimensional problem using ILU type smoothing, see Van der
Wees (1984, 1986, 1988, 1989).



8 MULTIGRID
ALGORITHMS

8.1. Introduction

The order in which the grids are visited is called the multigrid schedule.
Several schedules will be discussed. All multigrid algorithms are variants of
what may be called the basic multigrid algorithm. This basic algorithm is
nonlinear, and contains linear multigrid as a special case.

The most elegant description of the basic multigrid algorithm is by means
of a recursive formulation. FORTRAN does not allow recursion, thus we also
present a non-recursive formulation. This can be done in many ways, and
various flow diagrams have been presented in the literature. If, however, one
constructs a structure diagram not many possibilities remain, and a well struc-
tured non-recursive algorithm containing only one goto statement results. The
decision whether to go to a finer or to a coarser grid is taken in one place only.

8.2. The basic two-grid algorithm

Preliminaries

Let a sequence {G*:k=1,2,...,K} of increasingly finer grids be given. Let
U* be the set of grid functions G* - R on G*; a grid function u* € U* stands
for m functions in the case where we want to solve a set of equations for m
unknowns. Let there be given transfer operators P*: U¥~!— U* (prolon-

gation) and R*: U*~! — U* (restriction). Let the problem to be solved on G*
be denoted by

L*w*)=b* 8.2.1)

The operator L* may be linear or non-linear. Let on every grid a smoothing
algorithm be defined, denoted by S (u, v, f, v, k). S changes an initial guess u*
into an improved approximation v* with right-hand side f* by v iterations
with a suitable smoothing method. The use of the same symbol u* for the sol-
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ution of (8.2.1) and for approximations of this solution will not cause con-
fusion; the meaning of #* will be clear from the context. On the coarsest grid
G! we sometimes wish to solve (8.2.1) exactly; in general we do not wish to
be specific about this, and we write S(u, v, f, -, 1) for smoothing or solving on
G

The nonlinear two-grid algorithm

Let us first assume that we have only two grids G¥ and G*~'. The following
algorithm is a generalization of the linear two-grid algorithm discussed in
Section 2.3. Let some approximations &* of the solution on G be given. How
ii* may be obtained will be discussed later. The non-linear two-grid algorithm
is defined as follows. Let f* = b*.

Subroutine TG (G, u, f, k)
comment nonlinear two-grid algorithm
begin
(4] S@,u,f,v, k)
) rf=f - L")
3 Choose @*7", sk-1
(4) fk—l — Lk—l(ﬁk—l) + Sk_le_lrk
5) S@,u,f, k-1
©6) uk=u*+ sk )PH@E —a )
@) S, u,f,p, k)
end of TG

A call of TG gives us one two-grid iteration. The fdllowing program
performs ntg two-grid iterations:

Choose a*

Fept

for i=1 step 1 until ntg do
TG (@, u,f, k)
d=u

od

Discussion

Subroutine TG is a straightforward implementation of the basic multigrid
principles discussed in Chapter 2, but there are a few subtleties involved.
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We proceed with a discussion of subroutine TG. Statement (1) represents
vx smoothing iterations (pre-smoothing), starting from an initial guess #*. In
(2) the residual r* is computed; r* is going to steer the coarse grid correction.
Because ‘short wavelength accuracy’ already achieved in #* must not get lost,
u* is to be kept, and a correction du* (containing ‘long wavelength infor-
mation’) is to be added to u*. In the non-linear case, r* cannot be taken for
the right-hand side of the problem for éu*; L(6u*) = r* might not even have
a solution. For the same reason, R*~!r* cannot be the right-hand side for the
coarse grid problem on G*~1, Instead, it is added in (4) to L*~! (#*~!), with
@*~! an approximation to the solution of (1) in some sense (e.g.
PXi*~! = solution of equation (8.2.1)). Obviously, L !(u*~!)= L¥@* 1)
has a solution, and if R* %% is not too large, then
LY 1@* 1y = L*@* ') + R* ¥ can also be solved, which is done in state-
ment (5) (exactly or approximately).

R“"17* will be small when i is close to the solution of equation (8.2.1),
i.e. when the algorithm is close to convergence. In order to cope with situ-
ations where R*~'r* is not small enough, the parameter sx_; is introduced.
By choosing sk_; small enough one can bring %! arbitrarily close to L*~?
@*~1). Hence, solvability of L¥~! (@*~!)=f*-1 can be ensured. Further-
more, in bifurcation problems, #*~! can be kept on the same branch as #*~*
by means of sx_;. In (6) the coarse grid correction is added to #*. Omission
of the factor 1/s;y would mean that only part of the coarse grid correction is
added to u*, which amounts to damping of the coarse grid correction; this
would slow down convergence. Finally, statement (7) represents ux smoothing
iterations (post-smoothing).

The linear two-grid algorithm

It is instructive to see what happens when L* is linear. It is reasonable to
assume that then L*! is also linear. Furthermore, let us assume that the
smoothing method is linear, that is to say, statement (5) is equivalent to
T AR AR A Al (8.2.2)
with B¥~? some linear operator. With f*~! from statement (4) this gives
w =gkt 4 5 BYTIRA A 8.2.3)
Statement (6) gives

uk=u*+ P*B*'R* ¥ (8.2.4)

and we see that the coarse grid correction P*B*~!R*~'#* is independent of
the choice of sx_; and #*~! in the linear case. Hence, we may as well choose
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sk-1=1 and i*~1=0 in the linear case. This gives us the following linear
two-grid algorithm.

Subroutine LTG @@, u, f, k)
comment linear two-grid algorithm
begin
S@i,u, f,v, k)
k= Lu* N~
fk—l —Rf 1K o
i '=0
S@,u,f, . k-1)
uk — uk + Pkuk—l
S, u,fyp k)
end of LTG

Choice of i*~! and sx_;

There are several possibilities for the choice of #*~'. One possibility is

G =Ry (8.2.5)

where R*~! is a restriction operator which may or may not be the same as
R

With the choice sk—; =1 this gives us the first non-linear multigrid algor-
ithm that has appeared, the FAS (full approximation storage) algorithm pro-
posed by Brandt (1977). The more general algorithm embodied in subroutine
TG, containing the parameter sx—1 and leaving the choice of #@ix—1 open, has
been proposed by Hackbusch (1981, 1982, 1985). In principle it is possible to
keep #ix-: fixed, provided it is sufficiently close to the solution of L*!
*~')=b*~". This decreases the cost per iteration, since L*~" @*~1) needs
to be evaluated only once, but the rate of convergence may be slower than
with &*~! defined by (5). We will not discuss this variant. Another choice of
@"~1 is provided by nested iteration, which will be discussed later.

Hackbusch (1981, 1982, 1985) gives the following guidelines for the choice
of @#* ' and the parameter sc_;. Let the non-linear equation
L5~ 1u*~')=f*"! be solvable for ||f* | < pe-1. Let |L*'@* N <
pk_1/2. Choose sk, such that || se-1R*7'r" || < px-1/2, for example:

Sk-1=3pr-1f | RE7Ir4 . (8.2.6)

Then || f*~'|| < pk-1, so that the coarse grid problem has a solution.
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8.3. The basic multigrid algorithm
The recursive non-linear multigrid algorithm

The tfasic multigrid algorithm follows from the two-grid algorithm by
replacing tl?e coarse grid solution statement (statement (5) in subroutine TG)
by v« muitigrid iterations. This leads to

Subroutine MG1 (i, u, f, k, v)
comment recursive non-linear multigrid algorithm
begin
if (k eq 1) then
1 S@,u,f, -, k)
else
) S@,u, f,v, k)
(€ rf=f*~ L*@*)
4 Choose %!, si_;
5 Fl = LA 15 1) 4 5 RE
Jor i=1 step 1 until v do
(6) MGI1 (G, u, f,k—1,v)
) Gkl =gkt
od
®) u=u*+ (1 sk )PF@*-1 - g1
)] S(u,u, f,p, k)
endif
end of MG1

After our discussion of the two-grid algorithm, this algorithm is self-
exp.lanatory.. According to our discussion of the choice of #*~! in the pre-
cledmg section, statement (7) could be deleted or replaced by something
else.

The following program carries out nmg multigrid iterations, starting on
the finest grid GX:

Program 1:

Choose %

fK = bK

Jor i=1 step 1 until nmg do
MG1 (G, u, f, K, v)
u"'K = uK

od
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The recursive linear multigrid algorithm

The linear multigrid algorithm follows easily from the linear two-grid algor-
ithm LTG:

Subroutine LMG (4, u, f, k)
comment recursive linear multigrid algorithm
begin
if (k=1) then
S@,u,f, -, k)
else
S@,u,f,v, k)
r* =fk — L*u*
fel= RY-1,k
al=0
Jor i=1 step 1 until v do
LMG (@i, u, f,k—1)
Gkl = yk-1
od
uk=uk+P
S(u,u, f,u, k)
endif
end LMG

kuk-l

Multigrid schedules

The order in which the grids are visited is called the multigrid schedule or
multigrid cycle. If the parameters vx, k=1,2,...,K—1 are fixed in advance
we have a fixed schedule; if v« depends on intermediate computational results
we have an adaptive schedule. Figure 8.3.1 shows the order in which the grids
are visited with yx =1 and v« =2, k=1,2, ..., K~ 1, in the case K=4. A dot
represents a smoothing operation. Because of the shape of these diagrams,
these schedules are called the V-, W- and sawtooth cycles, respectively. The
sawtooth cycle is a special case of the V-cycle, in which smoothing before
coarse grid correction (pre-smoothing) is deleted. A schedule intermediate
between these two cycles is the F-cycle. In this cycle coarse grid correction
takes place by means of one F-cycle followed by one V-cycle. Figure 8.3.2
gives a diagram for the F-cycle, with K'=3.
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Figure 8.3.1 V-, W- and sawtooth-cycle diagrams.

N A

=y

Figure 8.3.2 F-cycle diagram.

Recursive algorithm for V-, F- and W-cycle

A version of subroutine MG1 for the V-, W- and F-cycles is as follows. The
parameter v is now an integer instead of an integer array.

Subroutine MG2 (i, u, f, k,v)
comment nonlinear multigrid algorithm V-, W- or F-cycle
begin
if (k eq 1) then
S@,u, f,, k)
if (cycle eq F) then v =1 endif
else
A
for i=1 step 1 until v do
MG2 (@, u, f,k—1,v)

u~k—1 = uk—l
od
B N
if (k eq K and cycle eq F) then v =2 endif
endif

end MG2
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Here A and B represent statements (2) to (5) and (8) and (9) in subroutine
MG]1. The following program carries out nmg V-, W- or F-cycles.

Program 2:
Choose i*
fK — bK
if (cycle eq W or cycle eq F) then v = 2else y=1
for i=1 step 1 until nmg do
MG?2 (i, u, f, K, v)
X = uX
od

Adaptive schedule

An example of an adaptive strategy is the following. Suppose we do not carry
out a fixed number of multigrid iterations on level G*, but wish to continue
to carry out multigrid interactions, until the problem on G* is solved to within
a specified accuracy. Let the accuracy requirement be

| L @*) - F5 || < e = 0se || LA @) — <1 | 8.3.1)

with 8 € (0, 1) a parameter.
At first sight, a more natural definition of ¥ would seem to be £* = & || /“||.

Since f* does not, however, go to zero on convergence, this would lead to
skipping of coarse grid correction when u**! approaches convergence.
Analysis of the linear case leads naturally to condition (8.3.1). An adaptive
multigrid schedule with criterion (8.3.1) is implemented in the following algor-
ithm. In order to make the algorithm finite, the maximum number of

multigrid iterations allowed is v.

Subroutine MG3 (&, u, f, k)
comment recursive nonlinear multigrid algorithm with adaptive
schedule
begin
if (k eq ) then
S@,u, f, . k)
else
A
) te-1= || r¥ || — &
ek-1=8se-1fl r¥|

Ng-1=%
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while (tx-1> 0 and ng—; > 0)
MG3 @, u, f,k—1)
Gkl = gkt
Ne—1=Ng—1—1
te-r= | L* @ - 7 - e
od
B
endif

end MG3

Here A and B stand for the same groups of statements as in subroutine MG2.
The purppse of statement (1) is to allow the possibility that the required
accgracy is already reached by pre-smoothing on G*, so that coarse grid cor-
reFtlon can be skipped. The following program solves the problem on G*
within a specified tolerance, using the adaptive subroutine MG3:

Program 3:
Choose i*
fE=b%; ex=tol* || b¥X||; tx = || LX@*) - ¥ || — ex
n=nmg
while (tx > 0 and n 2 0) do
MG3(d, u, /,K)
aX =uX
n=n-1
tx= || L¥@*) - b¥|| — ex
od

The number of iterations is limited by nmg.

Storage requirements

Let the finest grid G* be either of the vertex-centred type given by (5.1.1) or
of the cell-centred type given by (5.1.2). Let in both cases ng = n& = m, - 2%,
Let th.e coarse grids G'f, k=K-1,K-2,...,1 be constructed by successive
dqublmg of the mesh-sizes A, (standard coarsening). Hence, the number of
grid-points Ny of G* is

d
Ne= I (1 +ma-2%)= M2H 8.3.2)

a=1
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in the vertex-centred case, with

d
M= 1] ma,
a=1
and
Ne = M2*¢ (8.3.3)

in the cell-centred case. In order to be able to solve efficiently on the coarsest
grid G' it is desirable that mq is small. Henceforth, we will not distinguish
between the vertex-centred and the cell-centred case, and assume that Nk is
given by (8.3.3).)

It is to be expected that the amount of storage required for the computa-
tions that take place on G* is given by c1 Nk, with ¢; some constant indepen-
dent of k. Then the total amount of storage required is given by

2 -1

Hence, as compared to single grid solutions on GX with the smoeothing-
method selected, the use of multigrid increases the storage required by a factor
of 2%/ (2% - 1), which is 4/3 in two and 8/7 in three dimensions, so that the
additional storage requirement posed by multigrid seems modest.

Next, suppose that semi-coarsening (cf. Section 7.3) is used for the
construction of the coarse grids G*, k < K. Assume that in one coordinate
direction the mesh-size is the same on all grids. Then

K 2d
e1 Y Ne=zg— cailNk (8.3.4)
k=1 -

Ni = M2K+k@-D (8.3.5)

and the total amount of storage required is given by
K 24 -1
a Ne =531 1Nk (8.3.6)
k=1 -

Now the total amount of storage required by multigrid compared with single
grid solution on GX increases by a factor 2 in two and 4/3 in three dimensions.
Hence, in two dimensions the storage cost associated with semi-coarsening
multigrid is not negligible.

Computational work

We will estimate the computational work of one iteration with the fixed
schedule algorithm MG2. A close approximation of the computational work
wi to be performed on Gi will be wx = ¢2 Nk, assuming the number of pre-
and post-smoothings vk and pi are independent of k, and that the operators
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L* are of similar complexity (for example, in the linear case, L are matrices
.Of equal §parsity). More precisely, let us define Wi to be all computing work
mvolve'd in MG2 (4, u, f, k), except the recursive call of MG2. Let W, be all
work involved in MG2 (@ u,f, k). Let = Y, k=2,3,...,K—1, in

Fsrl;)broutine MG2 (e.g., the V- or W-cycles). Assume standard coarsening
en '

Wi=cM2*  yw,_, 8.3.7)

One may write

Wk= CzMZKd(l + ‘Y(Z_d+ 7(2_2d + o+ 72(1-1()4)-"))
= Nk(1 +")7+-72+...+,7K~l) (8.3.8)

with § = v/2%. Here we have assumed W, = c2M~2°. This may be inaccurate
since W1 does not depend on v in reality, and, moreover, often a solutior;
f:los.e to machine accuracy is required on G!, for example when the problem
1s singular (e.g. with Neumann boundary conditions.) Since W, is small

anyway, this inaccuracy is, however, of no conse :
: ’ uence. F
follows that quence. From (8.3.8) it

We=(1-7)0-5), 521

ok 7o, (8.3.9)
where W = W/ (caNx). If 7 < 1 one may write
Wk<W=1/(1-7) 8.3.10)

~Tl?e followipg conclusions may be drawn from (8.3.8), (8.3.9) and (8.3.10).
Wk is the ratio of multigrid work and work on the finest grid. The bulk of
the work onfthe finest grid usually consists of smoothing. Hence, Wy - 1 is
a measure of the additional work required to accelerate smooth’i

: ng on th
finest grid G* by means of multigrid. & onfe

If 721 the work Wk is superlinear in the numb
er of unk
because from (8.3.8) it follows that nowns Nk,

Wk > (c2Nk| 737" = (c2Nk/ ) (Nx/ M) 3dIn2 (8.3.11)
Hence, if §>1 Wk is superlinear in Ng. If $=1 equation (8.3.8) gives
Wk = c2NxkK = c; Nk In(Nk/M)/d In 2 (8.3.12)
again showing superlinearity of Wy. If ¥ < 1 equation (8.3.10) gives

Wk < e2Nkf(1-7) (8.3.13)
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so that Wy is linear in Nk. It is furthermore significant that the constant of
proportionality ¢/ (1 — ¥) is small. This because c; is just a little greater than
the work per grid point of the smoothing method, which is supposed to be a
simple iterative method (if not, multigrid is not applied in an appropriate
way). Since an (perhaps the main) attractive feature of multigrid is the possi-
bility to realize linear computational complexity with small constant of pro-
portionality, one chooses ¥ < 1, or y < 29, In practice it is usually found that
v > 2 does not result in significantly faster convergence. The rapid growth of
Wx with v means that it is advantageous to choose v < 2, which is why the
V- and W-cycles are widely used. i .

The computational cost of the F-cycle may be estimated as follows. In
Figure 8.3.3 the diagram of the F-cycle has been redrawn, distinguishing
between the work that is done on G* preceding coarse grid correction (pre-
work, statements A in subroutine MG2) and after coarse grid correction
(post-work, statements B in subroutine MG2). The amount of pre- and post-
work together is c;M2*%4, as before. It follows from the diagram, that on G*
the cost of pre- and post-work is incurred jx times, with jy=K—-k+1,
k=2,3,...,K, and j; = K- 1. For convenience we redefine j; = K, bearing
our earlier remarks on the inaccuracy and unimportance of the estimate of the
work on G! in mind. One obtains

K
Wk=cM >, (K- k+1)2% (8.3.14)
k=1
We have
S ka2 20 pad 1y 2 8.3.15
& ey gy G

as is checked easily. It follows that

Wik =M &*D 4 K+ 1- K2%) 29 - 1)?

o

N WD »

—

Figure 8.3.3 F-cycle (O pre-work, @ post-work).
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Table 8.3.1. Values of W,
standard coarsening

d 2 3
V-cycle 4/3 8/7
F-cycle 16/9 64/49
W-cycle 2 4/3
y=3 4 8/5
so that
Wy < W=1/(1-2"%) (8.3.16)

Table: 8.3.1 gives W as given by (8.3.10) and (8.3.16) for a number of cases
The ratio 9f multigrid over single grid work is seen to be not large especiall);
in three dimensions. The F-cycle is not much cheaper than the V’V-cycle In
three dimensions the cost of the V-, F- and W-cycles is almost the same.

-Su;{pose next that semi-coarsening is used. Assume that in one coordir;ate
dlrecilon the mesh-size is the same on all grids. The number of grid-points N,
of G® is given by (8.3.5). With yx =+, k=2,3,...,K—1 we obtain )

Wi=caM2X+*@-D 4w, (8.3.17)

Hence Wk is given by (8.3.8) and W by (8.3.10) with 4 = ~/2¢-!
Faoyle we obein y (8.3.10) with ¥ =+/27"', For the

K
Wi = caM2X K~k k(-1
kg)l ( +1)2 (8.3.18)
Hence

Wx< W=1/(1-2'"9)

Table 8.3.2. Values of W,
semi-coarsening

d 2 3
V-cycle 2 4/3
F-cycle 4 16/9
W-cycle — 2
v=3 - 4
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Table 8.3.2 gives W for a number of cases. In two dimensions y=2 or 3 is

not useful, because § > 1. It may happen that the rate of convergence of the

V-cycle is not independent of the mesh-size, for example if a singular pertur-

bation problem is being solved (e.g. convection—diffusion problem with -
£ < 1), or when the solution contains singularities. With the W-cycle we.have

%=1 with semi-coarsening, hence Wi =K. In practice, K is usually not.
greater than 6 or 7, so that the W-cycle is still affordable. The F-cycle may

be more efficient.

Work units

The ideal computing method to approximate the behaviour of a given physical
problem involves an amount of computing work that is proportional to the
number and size of the physical changes that are modeled. This has been put
forward as the ‘golden rule of computation’ by Brandt (1982). As has been
emphasized by Brandt in a number of publications, e.g. Brandt (1977, 1977a,
1980, 1982), this involves not only the choice of methods to solve (8.2.1), but
also the choice of the mathematical model and its discretization. The dis-
cretization and solution processes should be intertwined, leading to adaptive
discretization. We shall not discuss adaptive methods here, but regard (8.2.1)
as given. A practical measure of the minimum computing work to solve
(8.2.1) is as follows. Let us define one work unit (WU) as the amount of com-
puting work required to evaluate the residual LX@X) - b* of Equation
(8.2.1) on the finest grid G¥. Then it is to be expected that (8.2.1) cannot be
solved at a cost less than a few WU, and one should be content if this is
realized. Many publications show that this goal can indeed be achieved with
multigrid for significant physical problems, for example in computational
fluid dynamics. In practice the work involved in smoothing is by far the domi-
nant part of the total work. One may, therefore, also define one work unit,
following Brandt (1977), as the work involved in one smoothing iteration on
the finest grid G*. This agrees more or less with the first definition only if the
smoothing algorithm is simple and cheap. As was already mentioned, if this
is not the case multigrid is not applied in an appropriate way. One smoothing
iteration on G* then adds 2¢¢* ) WU to the total work. It is a good habit,
followed by many authors, to publish convergence histories in terms of work
units. This facilitates comparisons between methods, and helps in developing
and improving multigrid codes.

8.4. Nested iteration

The algorithm

Nested iteration, also called full multigrid (FMG, Brandt (1980, 1982)) is
based on the following idea. When no a priori information about the solution
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is available to assist in the choice of the initial guess & on the finest grid GX
it is obviously wasteful to start the computation on the finest grid, as is doné
by subroutines MGi, i = 1,2, 3 of the the preceding section. With an unfortu-
nate cho'ice of aX, the algorithm might even diverge for a nonlinear problem.
Computlpg on the coarse grids is so much cheaper, thus it is better to use the
coarse grids to provide an informed guess for #X. At the same time, this gives

us a.choice for &% k < K. Nested iteration is defined by the following
algorithm.

Program 1
comment nested iteration algorithm

Choose 4!
M| s@af-,1)
Jor k=2 step 1| until K d

@ ak =Pkt '
Jor i=1 step 1 until Y« do
3 MG (@, u, £, k)
@ a*=u*
od
od

Of course, the value of v inside MG may be different from .

Choice of prolongation operator

The prolongation operator P* does not need to be identical to P*, In fact
therf: may b? good reason to choose it differently. As will be discussed in
Section 8.6, it is often advisable to choose P* such that

mp > me (8.4.1)

where m 5 is the order of the prolongation operator as defined in Section 5.3,
and m¢ is the order of consistency of the discretizations L*, here assumed to
be the same on all grids. Often m. = 2 (second-order schemes). Then (8.4.1)
implies that P* is exact for second-order polynomials.

Note that nested iteration provides @*; this is an alternative to (8.2.5).

As will be discussed in the next section, if MG converges well then the
nested iteration algorithm results in a #* which differs from the solution of
(8.2.1) by an amount of the order of the truncation error. If one desires, the
accuracy of u* may be improved further by following the nested iteration
algorithm with a few more multigrid iterations.
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Computational cost of nested iteration

Let yx =9, k=2,3,...,K, in the nested iteration algorithm, let Wi be the
work involved in MG (i, &, f, k), and assume for simplicity that the (negli-
gible) work on G! equals W,. Then the computational work Wy; of the nested
iteration algorithm, neglecting the cost of P¥, is given by

X
Wi = kz FWie (8.4.2)
=1

Assume inside MG yx=v, k=2,3,...,K and let §=v/2¢ < 1. Note that y
and 4 may be different. Then it follows from (8.3.10) that

K -~

. C2 2y
Wni —_— =——-———7—N 8-43
<71_ikz=]lNk T-ma—29 (8.4.3)

Defining a work unit as 1 WU = ¢, N, i.e. approximately the work of (v + p)
smoothing iterations on the finest grid, the cost of a nested iteration is

Wai=4/[1-9)1-2"%)] WU (8.4.9)

Table 8.4.1 gives the number of work units required for nested iteration for
a number of cases. The cost of nested iteration is seen to be just a few work
units. Hence the fundamental property, which makes multigrid methods so
attractive: multigrid methods can solve many problems to within truncation
error at a cost of c¢N arithmetic operations. Here N is the number of
unknowns, and c is a constant which depends on the problem and on the mul-
tigrid method (choice of smoothing method and of the parameters v, pk, vx)-
If the cost of the residual 5% — LX(uX) is dN, then ¢ need not be larger than
a small multiple of d. Other numerical methods for elliptic equations require
O(N®) operations with a > 1, achieving O(N In N) only in special cases (e.g.
separable equations). A class of methods which is competitive with multigrid
for linear problems in practice are preconditioned conjugate gradient
methods. Practice and theory (for special cases) indicate that these require
O(N™) operations, with «=5[4 in two and « =9/8 in three dimensions.
Comparisons will be given later.

Table 8.4.1. Computational cost of
nested iteration in work units; =1

d
¥ 2 3
1 16/9 64/49
2 8/3 4821




184 Multigrid algorithms

8.5. Rate of convergence of the multigrid algorithm

Preliminaries

For a full treatment of multigrid convergence theory, see Hackbusch (1985).
See also Mandel et al. (1987). Here only an elementary introduction is
presented, following the framework developed by Hackbusch (1985).

The problem to be solved

L¥uX = p¥ 8.5.1)

is assumed to be linear. Two-grid convergence theory has been discussed in

Section 6.5. We will extend this to multiple grids. |- || will denote the
Euclidean norm.

The smoothing and approximation properties

The smoothing method is assumed to be linear and of the type discussed in
Section 4.1, with iteration matrix S* on grid G*, k=2,3, ..., K. It is assumed
that on G' exact solution takes place. The smoothing and approximation
properties are defined as follows, cf. Definitions 6.5.1 and 6.5.2.

Definition 8.5.1. Smoothing property. S* has the smoothing property if there
exist a constant Cs and a function (») independent of Ak such that

NL*S Yl < Cshic?™q(»), 7(»)— 0 for v — oo (8.5.2)
where 2m is the order of the partial differential equation to be solved.

Definition 8.5.2. Approximation property. The approximation property
holds if there exists a constant C4 independent of A such that

@)™ = PEELE ) IR* Y| < Cah2™ (8.5.3)

where 2m is the order of the differential equation to be solved.

The multigrid iteration matrix

The multigrid algorithm is defined by subroutine LMG of Section 8.3. Let
vi=v,ux=p and yx =+ be independent of k. The error e* is defined as
e*=u— (L*)"'f*. The error ef and e* before and after execution of
LMG (@, u, f, k) satisfies '

et =Q% (v, p)ek (8.5.4)
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with Q¥ the k-grid iteration matrix. QF is given by:
Theorem 8.5.1. The iteration matrix Q¥ (g, ») of LMG (@, u, £, k) satisfies
Q*(n, v)=Q%(p,») (8.5.52)
Q (s ») = 04 (1) + B*PPHQ @) RFILAEHY (3.5.5D)
where
QF(u, v) = S I - P ) 'RFILY SFY
is the iteration matrix of method LTG of Section 8.2.
Proof. From (6.5.11) it follows that Q*(p,») is the iteration matrix of
LTG (i, u, f, k). Equation (8.5.5a) is obviously true. Equation (8.5.5bl +1§
proved by induction. Let e§*', ef4', ef4' and e5*! be the error on G

before LMG (i, u, f, k), after pre-smoothing, after coarse grid correction and
after post-smoothing, respectively. We have

e{c/-;l =(sk+l)ve(1)c+1 (8_5.6)

The coarse grid problem to be solved is
Liu* = —RFL**lef4! (8.5.7)

with initial guess u* = 0. Hence the initial error e§ equals minus the exact sol-
ution on G, i.e. ef=(@L*)"'R¥L *'ef4'. After coarse grid correction the
error on G* is (Q%)’e§. Hence the coarse grid correction is given by
(—I+(Q%)"}e§. Therefore

eiAl = el 4 PR 1+ (Q¥))eb (8.5.8)
— {l _ Pk+l(Lk)-—1RkLk+l + Pk+l(Qk)'y(Lk)—leLk+l ]e’l‘/3
Finally,

e{(+1 =(Sk+l)}te£(/‘§1 (8.59)

Combining (8.5.6), (8.5.8) and (8.5.9) gives (8.5.5b) with & replaced by k + 1,
which completes the proof. [

Rate of convergence

We will prove that the rate of convergence of LMG is independent of the
mesh-size only for =0 (no post-smoothing). For the more general case,
which is slightly more complicated, we refer to Hackbusch (1985).
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Lemma 8.5.1. Let the smoothing property hold, and assume that there exists
a constant ¢, independent of k such that

IP a2 et [k ], va*~! (8.5.10)
Then

I@* ) REILESHY | < 61+ Q4O ) ®.5.11)

Proof. 1t has been shown in Theorem 6.5.2 that, if S8 has the smoothing
property, then the smoothing method is convergent. Hence we can choose »
such that

S Y| <1 (8.5.12)
Furthermore,
F@* DT REILESH Y || < o || PR ) TIREILE S Y|
and

Pk(Lk—l)—le—lLk(Sk)v
=65 - (@Y7 - P TIREYLAS Y = 84 - G40, ).

Using (8.5.10) and (8.5.12), (8.5.11) follows. (I
It will be necessary to study the following recursive inequality
G186 S <SE+CEL, k22 8.5.13)

For this we have the following Lemma.

Lemma 8.5.2. Assume Cy> 1. If

v22, t<f= 7—;—1 (C) VoD (8.5.14)

then any solution of (8.5.13) is bounded by
ez (8.5.15)
where z is related to ¢ by

t=z-C2" (8.5.16)
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and z satisfies

22— ¢ (8.5.17)
-

Proof. We have ¢k < zx, with zx defined by

a=¢ zm=¢+Czk (8.5.18)
Since {z*} is monotonically increasing, we have zx < z, with z the smallest sol-
ution of (8.5.16). Consider f(z) =z — Cz". The maximum of f(z) is reached

inz=z*=(yC)"V-D <1, and f(z*) = {. For { < { Equation (8.5.16) has
a solution z < z* < 1. We have

1 -1
g'=z—Cz">z——z=—7 z,
) Y Y

which gives (8.5.17). O

Theorem 8.5.2. Rate of convergence of linear multigrid method. Let the
smoothing and approximation properties (8.5.2) and (8.5.3) hold. Assume
v > 2. Let P* satisfy (8.5.10) and

| P*u*~"|| < Cp|lu*"|, C, independent of k. (8.5.19)

Let { € (0, 1) be given. Then there is a number » independent of K such that
the iteration matrix Q% (0, ») defined by Theorem 8.5.1 satisfies

Q¥ 0l < i <1 (8.5.20)
ity > 7.

Proof. QX is defined by the recursion (8.5.5). According to Theorem 6.5.1
we have

| Q*(»,0) || < CsCan(») (8.5.21)
Choose a number { € (0, {) with { satisfying (8.5.14) and a number 7 such that
CsCan(v) <, vy (8.5.22)

and that (8.5.12) is satisfied for » = ».
From (8.5.5), (8.5.12), (8.5.19) and Lemma 8.5.1 it follows that

e < 0+ Cotlorcp(l+§) < £+ CElos 78.5.23)



188 Multigrid algorithms

with C=2Cpcp and ¢ = || Q¥(0, »)||. The recursion (8.5.23) has been ana-
lyzed in Lemma 8.5.2. It follows that

;kg—"T £<1, k=2,3,..,K (8.5.24)
-

If necessary, increase » such that { < [(y — 1)[y]1§. O

This theorem works only for v > 2. Hence the V- and F-cycles are not
included. For self-adjoint problems, a similar theory is available for the
V-cycle (Hackbusch 1985, Mandel, ef al. 1987), which naturally includes the
F-cycle.

The difficult part of multigrid convergence theory is to establish the
smoothing and approximation properties. (See the discussion in Section 6.5.)

Convergence theory for the non-linear multigrid algorithm MG is more
difficult than for LMG, of course. Hackbusch (1985) gives a global outline of
a non-linear theory. A detailed analysis has to depend strongly on the nature
of the problem. Reusken (1988) and Hackbusch and Reusken (1989) give a
complete analysis for the following class of differential equations in two
dimensions

— (Aogtt ) 6+ 8@) = f (8.5.25)

with g non-linear, g’(t) > 0, vt.

In general it is difficult to say in advance how large » should be. Practical
experience shows that quite often with 5 =1, 2 or 3 one already has { < 0.1,
even with the V-cycle. Defining a work unit to be the cost of one smoothing
on the finest grid, it follows that quite often with multigrid methods the cost
of gaining a decimal digit accuracy is just a few work units, independent of
the mesh-size of the finest grid.

Exercise 8.5.1. Consider the one-dimensional case, and define P* by (5.3.1).
Show that (8.5.10) and (8.5.19) are satisfied with ¢, = 1, Cp = (3/2)"/%
8.6. Convergence of nested iteration

For a somewhat more extensive analysis of the convergence of nested iter-
ation, see Hackbusch (1985), on which this section leans heavily.

Preliminaries

Let the (non-linear) differential equation to be solved be denoted by

L)=> (8.6.1)

e i i 8
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and let the discrete approximation on the grids G* be denoted by
L*@u*)=b* 8.6.2)
Define the global discretization error e* by
X =u*- {u)* (8.6.3)
where {1} * indicates the trivial restriction of u to G*:
()i = u(x) (8.6.4)
Let the order of the discretization error of L*bem, k=1,2,...,K, i.e.
ekl g 2™, k=1,2,...,K (8.6.5)

where || - || is a norm which is not necessarily Euclidean and which we do not
specify further; m depends on the choice of || -||. In (8.6.5) we assume that
27% is proportional to the step sizes on G*, i.e. the step sizes on G* are
obtained from those on G*~! by halving.

Recursion for the error of nested iteration

Denote the result of statement (2) in the nested iteration Algorithm (para-
graph 1 of Section 8.4) by u&, and the result of Statement (4) by @*. Let { be
an upper bound for the contraction number of the multigrid algorithm, and
let 9« =%, k=2,3,...,K. Then -

[l @ —u*|| < §7| w6 —u®|| (8.6.6)
(#* is the solution of (8.6.2)). We have, for k=2,
lud —u?)| = || P’ —u?|| = CQ) 8.6.7)

defining

Clk) = || P u*" — u*|| (8.6.8)
Estimates for C(k) will be provided later. It follows that

|a%-u?| < CQ)7 (8.6.9)
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For general k,

lleef — a* | = | P*a* " — ||
= || PAu*t —uk + PE@G - — kY| (8.6.10)
SCk)+ Coll @' —u* 1|

assuming that
1B < Cpy k=2,3,...K (8.6.11)
Let ¢ = || @* — u*||, then (8.6.6), (8.6.9) and (8.6.10) give
8 < SHCKk) + Cpdic-1), 62 < CR)$T (8.6.12)
Hence

- K -
k< &Y k};z Ck)(TC,)¥* (8.6.13)

We will provide estimates of C(k) of the form

Ck) < C277* (8.6.14)
Substitution in (8.6.13) gives
) K-2
Sk S 7C27PK 3 1%, r=2P¢1C, (8.6.15)
k=0
Assume
r=2°C, < 1 (8.6.16)

Then (8.6.15) gives the following result

| @% — uX|| < £7C27PX1(1 - 1) (8.6.17)

Accuracy of prolongation in nested iteration

We nO\: estimate C(k). We want to compare #* — u* with the discretization
error €°. Suppose we have the following asymptotic expansion for &*

f= (e} 2™ + (e} %, (e} =02 ™) (8.6.18)
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This will hold if the solution of (8.6.1) is sufficiently smooth, and if (8.6.5)
is satisfied. One may write

Prukt —u* = Pruy* ! — up* + 27K P (e} !

Mk (e 1k + 02-™) (8.6.19)
Assume
Byt — )|l < G2~ (8.6.20)
and
Ple}* = (e}  +0(1) (8.6.21)

Then it follows from (8.6.19) that
| B u* —u* || < C277F + @™ = D) || fer} ¥ [| 27 + 027™F)  (8.6.22)

The inequalities (8.6.11), (8.6.20) and (8.6.21) are discussed further in
Exercise 8.6.1.

Error after nested iteration

First assume
mp>m (8.6.23)
as announced in (8.4.1); mp has been defined in Section 5.3. Then p>m
in (8.6.22), cf Exercise 8.6.1. Furthermore, for reasonable norms, ||{e;}*|l is
uniformly bounded in k:
| (e} %]l < Ce=supt] (e ||: k=2,3,...,) (8.6.24)
Then (8.6.22) may be rewritten as
P a1t —u¥|| < @™ - DC2™™ + 0(2™™) (8.6.25)
Neglecting higher order terms, we have
Clk) < Q™ -1)C2™™ (8.6.26)
Substitution in (8.6.14) gives

Cn=Q™"-1C., p=m (8.6.27)
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so that (8.6.17) becomes
| &% - u®|| < £7@™ - 1DC2™ ™51 (1 - r) (8.6.28)

Comparison with (8.6.18) and (8.6.24) gives us the following theorem, noting
that (8.6.16) becomes

r=2"C, < 1 (8.6.29)

Theorem 8.6.1. Error after nested iteration. If conditions (8.6.11), (8.6.18),
(8.6.20), (8.6.23), (8.6.24) and (8.6.29) are fulfilled, then the error after nested
iteration satisfies, neglecting higher order terms,

&% —u®|| <D, ) || 5| (8.6.30)

where

D¢, 7)) =™ -1j(1-r) (8.6.31)

This theorem says that after nested iteration the solution on G¥ is approxi-
mated within D(¢,¥) times the discretization error. How large is D, 9)?
Assume Cp < 2, which is usually the case, cf. Exercise 8.6.1. Assume that
m =2 (second-order discretization). Then Condition (8.6.29) becomes

<18 (8.6.32)

From (8.6.31) it follows with m =2 that D(¢, 4) < 1 for {7 € 1/7. Hence, if
we want the error after nested iteration to be smaller than the discretization
error 4 should satisfy

v2 —In8/ln ¢ (8.6.33)

Taking { = 14 as a typical value of the multigrid contraction number, §=2
is sufficient. This shows that with nested iteration, multigrid gives the discrete
solution within truncation error accuracy in a small number of work units,
regardless of the mesh size.

Less accurate prolongation

For second-order accurate discretizations (m = 2) equation (8.6.23) implies
that P* should be exact for polynomials of degree at least 2. For second-order
differential equations, however, the multigrid method requires only prolonga-
tions that are exact for polynomials of degree 1 (i.e. mp =2, since usually
mr 21, so that mp+mgr>2 is satisfied). We will now investigate the
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accuracy of the nested iteration result if mp=2. Again assuming m =2,
Equation (8.6.22) can be written as

| B u*-1 —u*|| < G272 + 0(27%%) (8.6.34)
so that (8.6.14) holds with p=2, néglecting higher order terms. Assuming
r=2%%C, < 1 (8.6.35)

Equation (8.6.17) gives us the following theorem.

Theorem 8.6.2. Error after nested iteration. If mp =2 and if conditions
(8.6.11), (8.6.20) (with p = 2) and (8.6.35) are satisfied and if m = 2 in (8.6.5)
then the error after nested iteration satisfies, neglecting higher order terms,

&X —uX| < £7C272K1(1-r) (8.6.36)

This theorem shows that with mp =2 after nested iteration the error is
0O(2-X), like the discretization error. Hence, it is also useful to apply nested
iteration with P* = P* (assuming mp = 2), avoiding the use of a higher order
prolongation operator. There is, however, now no guarantee that the iteration
error will be smaller than the discretization error.

Exercise 8.6.1. Let the one-dimensional vertex-centred prolongation operator
P* be defined by

P =£[-1 9 16 9 -1) (8.6.37)

Show that mp = 4. Define || - || by

2k
uk|2=2"% 2 @y’ (8.6.38)
. A
and show (cf. 8.6.11))
I B* | < Cp = (41/32)"? (8.6.39)

Show that (8.6.20) holds with

d*u 0
Cu=32sup|-—|, p=4 (8.6.40)
xe | dx

Show that this implies (8.6.21).
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8.7. Non-recursive formulation of the basic multigrid
algorithm

Structure diagram for fixed multigrid schedule

In FORTRAN, recursion is not allowed: a subroutine cannot call itself. The
subroutines MG1,2,3 of Section 8.3 cannot, therefore, be implemented
directly in FORTRAN. A non-recursive version will, therefore, be presented.
At the same time, we will allow greater flexibility in the decision whether to
go to a finer or to a coarser grid.

Various flow diagrams describing non-recursive multigrid algorithms have
been published, for example in Brandt (1977) and Hackbusch (1985). In order
to arrive at a well structured program, we begin by presenting a structure dia-
gram. A structure diagram allows much less freedom in the design of the
control structure of an algorithm than a flow diagram. We found basically
only one way to represent the multigrid algorithm in a structure diagram
(Wesseling 1988, 1990a). This structure diagram might, therefore, be called
the canonical form of the basic multigrid algorithm. The structure diagram is
given in Figure 8.7.1. This diagram is equivalent to Program 2 calling MG2
to do nmg multigrid iterations with finest grid G* in Section 8.3. The schedule
is fixed and includes the V-, W- and F-cycles. Parts A and B are specified after
subroutine MG2 in Section 8.3. Care has been taken that the program also
works as a single grid method for K=1.

FORTRAN implementation of while clause

Apart from the while clause, the structure diagram of Figure 8.7.1 can be
expressed directly in FORTRAN. A FORTRAN implementation of a while
clause is as follows. Suppose we have the following program

while (n(K) > 0) do
Statement 1
n(K)=---
Statement 2

od

A FORTRAN version of this program is

10 if (n(K) > 0) then
Statement 1
nK)=-
Statement 2
goto 10

endif

Choose @ and v

comment y = 1: V-cycle: y=2; W-cycle
fX=b%; k=K; nx=nmg

if (cycle eq F) then v =2 endif

while (nx > 0) do

ncegQorkeqgl
F T
kegl
A F T
k=k—l S(ﬁ)uaf"’k)
ne=7 if (cycle eq F) then :
v=1
endif
keq K
F T
k=k+1 if (cycle eg F) then
B y=2
endif
He=ne—1
i* = u*

Figure 8.7.1 Structure diagram of non-recursive multigrid algorithm with fixed
schedule, including V-, W- and F-cycles. o
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The goto statement required for the FORTRAN version of the while clause
is the only goto needed in the FORTRAN implementation of the structure
diagram of Figure 8.7.1. This FORTRAN implementation is quite obvious,
and will not be given.

Structure diagram for adaptive multigrid schedule

Figure 8.7.2 gives a structure diagram for a non-recursive version of
Program 3 of Section 8.3, using subroutine MG3 with adaptive schedule. To
ensure that the algorithm is finite, the number of iterations on G¥ is limited
by nmg and on G*, k < K by +.

There is great similarity to the structure diagram for the fixed schedule. This
is due to the fundamental nature of these structure diagrams. It is hard, if not
impossible, to fit the algorithm into a significantly different structure diagram.
The reason is that structure diagrams impose programming without gote. The
flow diagrams of multigrid algorithms that have appeared show significant
differences, even if they represent the same algorithm.

FORTRAN subroutine

The great similarity of the two structure diagrams means that it is easy to join
them in one structure diagram. We will not do this, because this makes the
basic simplicity of the algorithm less visible. Instead, we give a FORTRAN
subroutine which incorporates the two structure diagrams (cf. Khalil and
Wesseling 1991).

Subroutine MG(ut,u,b,K,cycle,nmg,tol)
¢ Nonlinear multigrid algorithm including V-, W-, F- and

¢ adaptive cycles.

¢ Problem to be solved: L(u;K) = b(K) on grid G(K).
character cycle
dimension ut(.),u(.),b(.)

¢ ut (input: initial approximation.

¢ u (output): current solution.

¢ b (input): right-hand-side on finest grid.

¢ K (input): number of finest grid.

c cycle (input): V,W.F or A; A gives adaptive cycle.

¢ nmg (input): fixed cycle: number of iterations.

c adaptive cycle: maximum number of

c iterations.

¢ tol (input): accuracy requirement for adaptive cycle:

c | {L(u;K) — b(K) | < tol | b(K) |
dimension f(.),r(.),n,eps,t(1:K)

¢ f: right-hand-sides

c r: residuals

Choose i*, tol and §;

fX=b%, k=K; nx=nmg

ex=tol #[| b* ||; txc = || LX@*) - F*|| — ex
while (tx > 0 and nx 2 0)

te <0orngeqOorkeqgl
F T
kegl
A F T
tor= || e*) — & ‘ S, u, f, -, k)
ex-y = dse—1||r|
k=k-1
keqgK
g =y F T
k=k+1
B
ne=ng—1
it =u*
te= || L*@") - f*l - e

Figure 8.7.2 Structure diagram of non-recursive multigrid algorithm with adaptive
schedule.
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O 0 o0 o0

eps:

Multigrid algorithms

counter of coarse grid iterations
tolerances for coarse grid solutions with
adaptive cycles

t(k) < 0 implies coarse grid convergence within
tolerance

logical go on,finer

if (cycle.eq.’A’) then

tol=...

delta=...

eps(K) = tol*anorm(b(K))

t(K) = anorm(L(ut;K) — b(K)) — eps(K)

igamma=...
The number of coarse grid corrections is limited by igamma for the
A-cycle.
else if (cycle.eq.’V') then
igamma = 1
else if (cycle.eq.’ W’ .or.cycle.eq.’F’) then
igamma =2 .
else
igamma = ...
endif
endif
endif
f(K) = b(K)
k=K
n(K) = nmg

10

if (cycle.eq.”A’) then

go on = t(K).gt.0.and.n(K).ge.0
else

go on = n(K).ge.0

endif

if (go on) then

finer = n(k).eq.0.or.k.eq.1
if (cycle.eq.’A’) then
finer = finer.or.t(k).le.0
endif

if (finer) then

if (k.eq.1)then
S(ut,u,f,.,k) then

if (cycle.eq.'F')

igamma =1

endif

endif

if (k.eq.K) then
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if (cycle.eq.’F')
igamma = 2
else
¢ go to finer grid
k=k+1
B
endif
nk) =nk) -1
ut(k) = u(k)
if (cycle.eq.’A’) then
t(k) = anorm(L(ut;k) — f(k)) — eps(k)
endif
else
¢ go to coarser grid
A
if (cycle.eq.’A’) then
t(k — 1) = anorm(r(k)) — eps(k)
eps(k — 1) = delta*s(k — 1)*anorm(r(k))
endif
k=k-1
n(k) = igamma
endif
goto 10
endif A
return
end

After our discussion of the structure diagrams of Figures 8.7.1 and 8.7.2 no
further explanation of subroutine MG is necessary.

Testing of multigrid software

A simple way to test whether a multigrid algorithm is functioning properly is
to measure the residual before and after each smoothing operation, and
before and after each visit to coarser grids. If a significant reduction of the
size of the residual is not found, then the relevant part of the algorithm
(smoothing or coarse grid correction) is not functioning properly. For simple
test problems predictions by Fourier smoothing analysis and the contraction
number of the multigrid method should be correlated. If the coarse grid
problem is solved exactly (a situation usually approximately realized with the
- W-cycle) the multigrid contraction number should usually be approximately
equal to the smoothing factor.
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Local smoothing

It may, however, happen that for a well designed multigrid algorithm the con-
traction number is significantly worse than predicted by the smoothing factor.
This may be caused by the fact that Fourier smoothing analysis is locally not
applicable. The cause may be a local singularity in the solution. This occurs
for example when the physical domain has a reentrant corner. The coordinate
mapping from the physical domain onto the computational rectangle is sin-
gular at that point. It may well be that the smoothing method does not reduce
the residual sufficiently in the neighbourhood of this singularity, a fact that
does not remain undetected if the testing procedures recommended above are
applied. The remedy is to apply additional local smoothing in a small number
of points in the neighbourhood of the singularity. This procedure is recom-
mended by Brandt (1982, 1988, 1989) and Bai and Brandt (1987), and justified
theoretically by Stevenson (1990). This local smoothing is applied only to a
small number of points, thus the computing work involved is negligible.

8.8. Remarks on software

Multigrid software development can be approached in various ways, two of
which will be examined here.

The first approach is to develop general building blocks and diagnostic
tools, which helps users to develop their own software for particular appli-
cations without having to start from scratch. Users will, therefore, need a
basic knowledge of multigrid methods. Such software tools are described by
Brandt and Ophir (1984).

The second approach is to develop autonomous (black box) programs, for
which the user has to specify only the problem on the finest grid. A program
or subroutine may be called autonomous if it does not require any additional
input from the user apart from problem specification, consisting of the linear
discrete system of equations to be solved and the right-hand side. The user
does not need to know anything about multigrid methods. The subroutine is
perceived by the user as if it were just another linear algebra solution method.
This approach is adopted by the MGD codes (Wesseling 1982, Hemker et al.
1983, 1984, Hemker and de Zeeuw 1985, Sonneveld et al. 1985, 1986), which
are available in the NAG library, and by the MGCS code (de Zeeuw 1990).

Of course, it is possible to steer a middle course between the two
approaches just outlined, allowing or requiring the user to specify details
about the multigrid method to be used, such as offering a selection of
smoothing methods, for example. Programs developed in this vein are
BOXMG (Dendy 1982, 1983, 1986), the MGOO series of codes (Foerster and
Witsch 1981, 1982, Stiiben ef al. 1984) which is available in ELLPACK (Rice
and Boisvert 1985), MUDPACK (Adams 1989, 1989a), and the PLTMG code
(Bank 1981, 1981a, Bank and Sherman 1981). Except for PLTMG and MGD,
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the user specifies the linear differential equation to be solved and the program
generates a finite difference discretization. PLTMG generates adaptive finite
element discretizations of non-linear equations, and therefore has a much
wider scope than the other packages. As a consequence, it is not (meant to
be) a solver as fast as the other methods.

By sacrificing generality for efficiency very fast multigrid methods can be
obtained for special problems, such as the Poisson or the Helmholtz equation.
In MGOO this can be done by setting certain parameters. A very fast multigrid
code for the Poisson equation has been developed by Barkai and Brandt
(1983). This is probably the fastest two-dimensional Poisson solver in
existence.

If one wants to emulate a linear algebraic systems solver, with only the fine
grid matrix and right-hand side supplied by the user, then the use of coarse
grid Galerkin approximation (Section 6.2) is mandatory. Coarse grid Galerkin
approximation is also required if the coefficients in the differential equations
are discontinuous. Coarse grid Galerkin approximation is used in MGD,
MGCS and BOXMG; the last two codes use operator-dependent .transfer
operators and are applicable to problems with discontinuous coefficients.

In an autonomous subroutine the method cannot be adapted to the pro-
blem, so that user expertise is not required. The method must, therefore, be
very robust. If one of the smoothers that were found to be robust in Chapter 7
is used, the required degree of robustness is indeed obtained for linear
problems.

Non-linear problems may be solved with multigrid codes for linear pro-
blems in various ways. The problem may be linearized and solved iteratively,
for example by a Newton method. This works well as long as the Jacobian
of the non-linear discrete problem is non-singular. It may well happen, how-
ever, that the given continuous problem has no Fréchet derivative. In that case
the condition of the Jacobian deteriorates as the grid is refined, and the
Newton method does not converge rapidly or not at all. An example of this
situation will be given in Section 9.4. The non-linear multigrid method can be
used safely and efficiently, because the global system is not linearized. A syste-
matic way of applying numerical software outside the class of problems to
which the software is directly applicable is the defect correction approach.
Auzinger and Stetter (1982) and Béhmer et al. (1984) point out how this ties
in with multigrid methods.

8.9. Comparison with conjugate gradient methods

Although the scope and applicability of multigrid principles are much
broader, multigrid methods can be regarded as very efficient ways to solve
linear systems arising from discretization of partial differential equations. As
such multigrid can be viewed as a technique to accelerate the convergence of
basic iterative methods (called smoothers in the multigrid context). Another
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powerful technique to accelerate basic iterative methods for linear problems
that also has come to fruition relatively recently is provided by conjugate
gradient and related methods. In this section we will briefly introduce these
methods, and compare them with multigrid. For an introduction to conjugate
gradient acceleration of iterative methods, see Hageman and Young (1981) or
Golub and Van Loan (1989).

Conjugate gradient acceleration of basic iterative methods

Consider the basic iterative method (4.1.3). According to (4.2.2) after » iter-
ations the residual satisfies

"=y (AM™Y0, Ya(x)=(1 - x)" 8.9.1)

Until further notice it is assumed that A is symmetric positive definite. Let us
also assume that M ™! is symmetric positive definite, so that we may write

M !'=ETE (8.9.2)
Since for arbitrary m we have
(AE'E)* = E"'(EAET)*E 8.9.3)
we can rewrite (8.9.1) as
Er" = y,(EAET)Er° (8.9.4)

Let the linear system to be solved be denoted by
Ay=b> (8.9.5)

The conjugate gradient method will be applied to the following precon-
ditioned system

EAETE Ty)=Eb (8.9.6)

The conjugate gradient algorithm that will be presented below has the
following fundamental property

Er" = ¢,(EAET)Er° 8.9.7)
with
¢n = arg min{|| $o(EAET)Er° || : ¢, € I1}} (8.9.8)

where the norm is defined by

Nrif=r*A”'r (8.9.9)
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and the set I1} by .
I} = {0,: 6, is a polynomial of degree < n and 8(0)=1} (8.9.10)

Since V¥ in (8.9.4) belongs to I, we see that the number of iterations required

" is likely to be reduced by application of the conjugate gradient method.

Preconditioned conjugate gradient algorithm

Application of the conjugate gradient method to the preconditioned system
(8.9.6) leads to the following algorithm (for a derivation see, for example,
Sonneveld et al. (1985)):

Choose y°
p1=0, r°=b—-Ay°, po=r"ETEr"
forn=1,2,...,do »
pn= ’"TETErn, Bn= Pn/pn-l
pn = ETErn + ﬁ"pn—l
0n=p""AP", Atn = pnf0n
yn+l =yn+ anpn
Pl Ap”
od

There are other variants, corresponding to other choices of the norm in
(8.9.8), which need not be discussed here.

Computation of ETEr" is equivalent to carrying out an iteration w1th the
basic iterative method (4.1.3) that is to be accelerated. Some further work is
required for Ap”; the rest of the work is small. A conjugate gradient iteration
therefore does not involve much more work than an iteration with the basic

iterative method (4.1.3).

Rate of convergence

The rate of convergence of conjugate gradient methods can be estimated in
an elegant way, cf. Axelsson (1977). It can be shown that from the funda-
mental property (8.9.8) it follows that

| Er* |2 = || Er®||? = min[max {(\)*: N\ Sp(B)}: y €13}  (8.9.11)

where Sp(B) is the set of eigenvalues of B = EAET. From this it may be shown
that
IEr™||/ W Er®|| < 2 exp{—2n cond,(B)~ '} (8.9.12)

with cond,(B) the condition number measured in the spectral norm.
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It has been shown by Meijerink and Van der Vorst (1977) that an effective
preconditioning is obtained by choosing E = L~! with

LLT=A+N (8.9.13)

which is the symmetric (Choleski) variant of incomplete LU factorization. It
is found that in many cases cond,(L."!AL~T) < condz(A). For a full expla-
nation of the acceleration effect of the conjugate gradient method, not just the
condition number but the eigenvalue distribution should be taken into
account, cf. Van der Sluis and Van der Vorst (1986, 1987). For a special case,
the five-point discretization of the Laplace equation in two dimensions,
Gustafsson (1978) shows that preconditioning with modified incomplete LL”
factorization results in cond;(L™'AL~T)=O(#"!), so that according to
(8.9.12) the computational cost is O(N>/*) with N the number of unknowns,
which comes close to the O(N) of multigrid methods. Theoretical estimates
of cond> (L~ 'AL"T) for more general cases are lacking, whereas for multigrid
O(N) complexity has been established for a large class of problems. It is sur-
prising that, although the algorithm is much simpler, the rate of convergence
of conjugate gradient methods is harder to estimate theoretically than for
multigrid methods. Nevertheless, the result of O(N>/#) computational com-
plexity (and probably O(N®?) in three dimensions) seems to hold approxi-
mately quite generally for conjugate gradient methods preconditioned by
approximate factorization.

Conjugate gradient acceleration of multigrid

The conjugate gradient method can be used to accelerate any iterative
method, including multigrid methods. Care must be taken that the precon-
ditioned system (8.9.6) is symmetric. This is easy to achieve if the multigrid
iteration matrix Q¥ (u, ») is symmetric. From Theorem 8.5.1 it follows that
this is the case if » = u, R*~! = (P*)* and §* = (§¥)*, i.e. the smoother must
be symmetric. These conditions are easily satisfied, and choosing
E = {Q%(u, #)} ! in the preconditioned conjugate gradient algorithm gives us
conjugate gradient acceleration of multigrid. If the multigrid algorithm is well
designed and fits the problem it will converge fast, making conjugate gradient
acceleration superfluous or even wasteful. If multigrid does not converge fast
one may try to remedy this by improving the algorithm (for example, intro-
ducing additional local smoothing near singularities, or adapting the smoother
to the problem), but if this is impossible because an autonomous (black box)
multigrid code is used, or difficult because one cannot identify the cause of
the trouble, then conjugate gradient acceleration is an easy and often very effi-
cient way out. The reason for the often spectacular acceleration of a weakly
convergent multigrid method by conjugate gradients is as follows. In the case
of deterioration of multigrid convergence, quite often only a few eigenmodes
are slow to converge. This means that Sp(B): B = (Q*) A (Q*)~! will be
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highly clustered around just a few values, so that Y(\)in (8.9.11) will be srpall
on Sp(B) for n = no with ne the number of clusters, indicating that no iter-
ations will suffice. Numerical examples are given by Kettler (1982), who finds
indeed that multigrid is much accelerated by the conjugate gradient methpd
for some difficult test problems, using non-robust smoothers. Hence conju-
gate gradient acceleration may, if necessary, be used to improve the r9bust-
ness of multigrid methods. Furthermore, Kettler (1982) finds the C(.)njugat.e
gradient method by itself, using as preconditioner the smoother u§ed in multi-
grid; to be about equally efficient as multigrid on medium-sized grids (50 X 50,
say). As the number of unknowns increases multigrid becomes more efficient.

The non-symmetric case

Severe limitations of conjugate gradient methods are their restriction to linear
systems with symmetric positive definite matrices. A number of conjugate
gradient type methods have been proposed that are applicable to the non-
symmetric case. Although no theoretical estimates are available, their rate of
convergence is often satisfactory in practice. We will present one such
method, namely CGS (conjugate gradients squared), described in Sonneveld
et al. (1985, 1986) and Sonneveld (1989). Good convergence is expected if tt'1e
eigenvalues of A have positive real part, cf. the remarks on convergence in
Sonneveld (1989).
As preconditioned system we choose

EAFF 'y)=b 8.9.14)
The preconditioned CGS algorithm is given by

r°=E®-Ay°), i®=r°
¢°=p7'=0,p1=1
forn=0,1,2,...,do
pn=Fr", Bn = pufon-1
u=r"+Baq"
P =u"+Bx(@"+np" ")
v" = EAFp”
0n=F"U", an = pnfon
qn+1 =u"— ap"
V" = a F@" +gq"h)
r’l+1 = rll _ EAUI!
yn+1 =yn + vn :
od 5o
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In numerical experiments with convection—diffusion type test problems with
ILU and IBLU preconditioning Sonneveld (1989) finds CGS to be more ef-
ficient than some other non-symmetric conjugate gradient type methods. With
ILU one chooses for example E=L"!, F = U™ 'D whereas with IBLU one
may choose for example E = (L + D), F = (U + D)"'D. Multigrid may be
accelerated with CGS by choosing E = Q¥ (g, »), F=L

Comparison of conjugate gradient and multigrid methods

Realistic estimates of the performance in practice of conjugate gradient and
multigrid methods by purely theoretical means are possible only for very
simple problems. Therefore numerical experiments are necessary to obtain
insight and confidence in the efficiency and robustness of a particular method.
Numerical experiments can be used only to rule out methods that fail, not to
guarantee good performance of a method for problems that have not yet been
attempted. Nevertheless, one strives to build up confidence by carefully
choosing tests problems, trying to make them representative for large classes
of problems, taking into account the nature of the mathematical models that
occur in the field of application that one has in mind. For the development
of conjugate gradient and multigrid methods, in particular the subject areas
of computational fluid dynamics, petroleum reservoir engineering and
neutron diffusion are pace-setting.

Important constant coefficient test problems are (7.5.6) and (7.5.7). Pro-
blems with constant coefficients are thought to be representative of problems
with smoothly varying coefficients. Of course, in the code to be tested the fact
that the coefficients are constant should not be exploited. As pointed out by
Curtiss (1981), one should keep in mind that for constant coefficient problems
the spectrum of the matrix resulting from discretization can have very special
properties, that are not present when the coefficients are variable. Therefore
one should also carry out tests with variable coefficients, especially with con-
jugate gradient methods, for which the properties of the spectrum are very
important. For multigrid methods, constant coefficient test problems are often
more demanding than variable coefficient problems, because it may happen
that the smoothing process is not effective for certain combinations of ¢ and
B. This fact goes easily unnoticed with variable coefficients, where the
unfavourable values of & and « perhaps occur only in a small part of the
domain.

In petroleum reservoir engineering and neutron diffusion problems quite
often equations with strongly discontinuous coefficients appear. For these
problems equations (7.5.6) and (7.5.7) are not representative. Suitable test
problems with strongly discontinuous coefficients have been proposed by
Stone (1968) and Kershaw (1978); a definition of these test problems may also
be found in Kettler (1982). In Kershaw’s problem the domain is non-
rectangular, but is a rectangular polygon. The matrix for both problems is
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symmetric positive definite. With vertex-centred multigrid, operator-
dependent transfer operators have to be used, of course.

The four test problems just mentioned, i.e. (7.5.6), (7.5.7) and the problems
of Stone and Kershaw, are gaining acceptance among conjugate gradient and
multigrid practitioners as standard test problems. Given these test problems,
the dilemma of robustness versus efficiency presents itself. Should one try to
devise a single code to handle all problems (robustness), or develop codes thz?.t
handle only a subset, but do so more efficiently than a robust code? This
dilemma is not novel, and just as in other parts of numerical mathematics, we
expect that both approaches will be fruitful, and no single ‘best’ code will
emerge.

Numerical experiments for the test problems of Stone and Kershaw and
equations (7.5.6) and (7.5.7), comparing CGS and multigrid, are described by
Sonneveld et al. (1985), using ILU and IBLU preconditioning and smoothing.
As expected, the rate of convergence of multigrid is unaffected when the mesh
size is decreased, whereas CGS slows down. On a 65 X 65 grid there is no great
difference in efficiency. Another comparison of conjugate gradients and multi-
grid is presented by Dendy and Hyman (1981). Robustness and efficiency of
conjugate gradient and multigrid methods are determined to a large extent‘by
the preconditioning and the smoothing method respectively. The smoothing
methods that were found to be robust on the basis of Fourier smoothing
analysis in Chapter 7 suffice, also as preconditioners. It may be concluded that
for medium-sized linear problems conjugate gradient methods are about
equally efficient as multigrid in accelerating basic iterative methods. As such
they are limited to linear problems, unlike multigrid. On the other hand,
conjugate gradient methods are much easier to program, especially when the
computational grid is non-rectangular.



9 APPLICATIONS OF
MULTIGRID
METHODS IN
COMPUTATIONAL
FLUID DYNAMICS

9.1. Introduction

The discipline to which multigrid has been applied most widely and shown its
usefulness is computational fluid dynamics (CFD). We will, therefore, discuss
some applications of multigrid in this field. It should, however, be emphasized
:algain that multigrid methods are much more widely applicable, as discussed
in Chapter 1. An early outline of applications to computational fluid
dynamics is given in Brandt (1980); a recent survey is given by Wesseling
(1990).

The principal aim of computational fluid dynamics is the computation of
flows in complicated three-dimensional geometries, using accurate mathe-
matical models. Thanks to advances in computer technology and numerical
algorithms, this goal is now coming within reach. For example, in 1986 the
Eulfar equations were solved numerically for the flow around a complete four-
eng_med aircraft (Jameson and Baker 1986), probably for the first time. The
main obstacles to be overcome are computing time requirements and the
generation of computational grids in complex three-dimensional geometries.
Multigrid can be a big help in overcoming these obstacles.

Grid generation

Grid generation can be assisted by multigrid by using overlays of locally
refined grids in difficult subregions. By comparing solutions on overlapping
gr?ds of different mesh-size local errors can be assessed and local adaptive
grid refinements can be implemented. Some publications in this area are:
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Hackbusch (1985), Bai and Brandt (1987), Bassi ef al. (1988), Fuchs (1990),
Gustafson and Leben (1986), Hart et al. (1986), Henshaw and Chesshire
(1987, Heroux et al. (1988), Mavripilis and Jameson (1988), McCormick and
Thomas (1986), McCormick (1989), Schmidt and Jacobs (1988), Stiiben and
Linden (1986), and a number of papers in Mandel et al. (1989). Here we will
not discuss adaptive grid generation, but concentrate on the aspect of com-
puting time.

Computational complexity of computational fluid dynamics

The two main dimensionless parameters governing the nature of fluid flows
are the Mach number (ratio of flow velocity and sound speed (= 300 ms™!in

the atmosphere at sea level)) and the Reynolds number, defined as
Re=UL[» 9.1.1)

where U is a characteristic velocity, L a characteristic length and » the kine-
matic viscosity coefficient (» = 0.15 X 107 m? s™! for air at sea-level at 15 °C,
and »=0.11 x 10~5 m?s~! for water at 15°C). The Reynolds number is a
measure of the ratio of inertial and viscous forces in a flow. From the values
of v just quoted it follows that Re » 1 in most industrial flows. For example,
Re = 7 x 10% for flow of air at 1 ms™~! past a flat plate 1 m long.

One of the most surprising and delightful features of fluid dynamics is the
phenomenon that a rich variety of flows evolve as Re - . The intricate and
intrigning flow patterns accurately rendered in masterful drawings by
Leonardo da Vinci, or photographically recorded in Van Dyke (1982) are sur-
prising, because the underlying physics (for small Mach numbers) is just a
simple mass and momentum balance. A ‘route to chaos’, however, develops
as Re — oo, resulting in turbulence. :

Turbulence remains one of the great unsolved problems of physics, in the
sense that accurate prediction of turbulent flows starting from first principles
is out of the question, and other fundamentally sound prediction methods
have not (yet) been found. The difficulty is that turbulence is both non-linear
and stochastic. The strong dependence of flows on Re complicates predictions
based on scaled down experiments. At Re= 107 a flow may be significantly
different from the flow at Re = 10°, in the same geometry. A typical Reynolds
number for a large aircraft is Re = 107 (based on wing chord). The impossi-
bility of full-scale experiments means that computational fluid dynamics plays
an important role in extrapolating to full scale. Ideally, one would like to
simulate turbulent flows directly on the computer, solving the equations of
motion that will be presented shortly. This involves solving the smallest scales
of fluid motion that occur. The ratio of the length scales n and L of the
smallest and largest turbulent eddies satisfies o

7/ L = O(Re™**) (5.1.2)
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(Tennekes and Lumley 1972) with Re based on L. The size of the flow domain
will be bigger than L, whereas the mesh size will need to be smaller than 5,
so that the required number of cells in the grid will be at least

(L/n)3.= O(Re**) (9.1.3)

Hence, direct simulation of turbulent flows is out of the question.

As far as accuracy is concerned, the next best thing is /arge eddy simulation.
With this method large turbulent eddies are resolved, and small eddies are
modelled heuristically. Their structure is to a large extent independent of the
particular geometry at hand and largely universal. For large aircraft at
Re = 107, Chapman (1979) has estimated a requirement of 8 x 10® grid cells
and 10* M words storage, assuming that large eddies are resolved only where
they occur, namely in the thin boundary layer on the surface of aircraft, and
in the wake. A crude estimate of the computational cost of a large eddy com-
putation for a large aircraft may be obtained as follows. Taking as a rough
guess for the cost per grid cell and per time step 10 flop (floating point oper-
ation), and assuming 10? time steps are required, we arrive at an estimate of
8 x 10* G flop (1 G flop = 10° flop) for the computational cost. Such a compu-
tation is not feasible on present-day computers, but Teraflop (= 10> G flop)
machines are expected to arrive during this decade, so that such computations
will come within reach. Computations such as this would be of great techno-
logical value, and there are many other fluid mechanical disciplines where
computations of similar scale would be very useful. As a consequence, the
demands posed by CFD are a prime factor in stimulating the development of
faster and larger computers, and more efficient algorithms.

In contemporary CFD technology simplified mathematical models are used
to reduce storage and computing time requirements. In order of increasing
complexity we have potential equations, Euler equations, Navier—Stokes
equations (neglecting turbulence), Reynolds-averaged Navier—Stokes
equations (crude turbulence modelling), large eddy simulation and direct
simulation.

We will discuss the application of multigrid methods to the potential, Euler
and Navier—Stokes equations. Table 9.1.1 (from Gentzsch er al. 1988) gives
estimates of the required number of floating point operations for certain

Table 9.1.1. Computing work for compressible inviscid flow computation

Number of Number of
Model Flopjcell/cycle cells cycles Total Gflop
Potential, 3D 500 104 100-200 5-10
Euler, 2D 400 5x10% 5001000 1-2
Euler, 3D 950 10° 200-500 20-50
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Table 9.1.2. Estimates of lower bounds for computing

work

Model Number of cells 10 WU Gflop
Potential, 3D 104 0.050

Euler, 2D 5x 103 0.025

Euler, 3D 10° 0.500

codes (by Jameson c.s.) to compute steady compres.siblc inviscid flows, w}th -
the potential and Euler equations. Typical‘computat.lons 'that one vyouldj*_hke

to carry out with the Euler or Navier—Stokes equations in three dlmen519ns

involve a computing task of the order of a Teraflop and a mgmory require-

ment of the order of a G word. Multigrid methods are a prime source of
improvement in computing efiiciency. We define a w9rk unit (WU) as the

number of operations involved in the definition of the dlsc'rete c?perator in one
cell or grid point, times N: the total number of cells or grl(:l points. A reason-
able estimate of the minimum computing work required is thus a few WU..

Multigrid methods make it possible to attain this lower b9und, although this
has not yet been completely achieved in many areas. Taking as a very. ;ough
guess 1 WU = 500 N for a typical fluid mechanics problem and assuming tl.le
work required to be 10 WU, we obtain the estimated lower bounds quo.ted in
Table 9.1.2. Comparison of Tables 9.1.1 and 9.1.2 indicates that much is still
to be gained from algorithmic improvements.

9.2. The governing equations

Navier—Stokes equations

Fluid dynamics is a classical discipline. The physical principles ur}derlying ‘the
flow of simple fluids such as water and air have been understood since the time
of Newton, and the mathematical formulation has been complete for a
century and a half. The equations describing the flow of t.]ulds are the
Navier—Stokes equations. These give the laws of conservation of mass,
momentum and energy. Let p, p, T, e and u, be the pressure, density, tem-
perature, total energy and velocity components in a Cartesian reference frame
with coordinates x,. The conservation laws have the form

dq
4+ Fgp=0 9.2.1)
ot + I'g.g

using Cartesian tensor notation and the summation conver:,pion: summation
takes place over repeated Greek indices (Fg,g= g 0Fg/dx®). For the mass
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conservation equation we have
q=p, Fg=pus . 9.2.2)
For the x*-momentum conservation equation we have
qd={go=pla, Fg= Fog=pu.lg+ Péog— 0up 9.2.3)
with oqg the viscous stress tensor, given by
Oag = p(Ua,s + Ug,a) — § pBaplly,y (9-2.9)

with p = pv the dynamic viscosity coefficient. For the energy conservation
equation we have

g=pe, Fg=(pe+ pyug—ogu,—1T, 6.2.5)

with 7 the heat conduction coeflicient. The system of equations is completed
by the equation of state for a perfect gas: p=pRT, with R a constant. The
temperature 7 is related to e by ¢,T = e — L u,u,, with the coefficient ¢, the
specific heat at constant volume. Noting that R = ¢, — ¢y (¢, is the specific
heat at constant pressure), elimination of T gives

p=(y— Dp(e—3iualia) (9.2.6)

with y the ratio of specific heats; y = 7/5 for air.

The Navier—Stokes equations are of parabolic type. In the time-
independent case they are elliptic. For the computation of time-dependent
flows the time step should be small with respect to the timescale of the
physical phenomena to be modelled. As a consequence, the result of the
previous time step is usually a good approximation of the solution at the
new time level, so that often relatively simple iteration methods suffice, and
multigrid does not lead to such drastic efficiency improvements as in the
time-independent case. Henceforth we shall consider only the latter case.

Euler and potential equations

Neglecting viscosity and heat conduction (u = 7 = 0), equations (9.2.1) reduce
to the Euler equations. These form a system that is hyperbolic in time.
From the Euler equations, the potential flow model is obtained by

postulating

Uy = Q.0 9.2.7)

with ¢ the velocity potential. Substitution of (9.2.7) in the mass conservation
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equation gives, neglecting time dependence,
' (Pp.)a=0 9.2.8)

which is the potential equation. It can be shown that (cf. Fletcher 1988,
Section 14.3.1) in potential flow the density is related to the magnitude of the
velocity by

- lb (y-1
o= pe (1 +1—2— M3(1- qzlqi)) 9.2.9)

Here the subscript « denotes some reference state, for example upstream
infinity, g = uqUa; M= gfc, with ¢ the speed of sound, is the Mach number.

The potential equation is elliptic where the local velocity is subsonic, and
hyperbolic where it is supersonic. Hence, in transonic flow it is of mixed type.
In order to distinguish (9.2.8) and (9.2.9) from more simplified models (used
in classical aerodynamics) involving various approximations in (9.2.9),
Equation (9.2.8) with p given by (9.2.9) is often called the Sull potential
equation. y

For more information on the basic equations and on the boundary con-
ditions, see texts on fluid dynamics, such as Landau and Lifshitz (1959),or
texts on computational fluid dynamics, such as Richtmyer and Morton (1967),
Peyret and Taylor (1983), Fletcher (1988) or Hirsch (1988, 1990).

9.3. Grid generation

For the discretization of the governing equations a computational grid has to
be chosen. One of the distinguishing features of present-day computational
fluid dynamics is the geometric complexity of the domains in which flows of
industrial interest take place. The generation of grids in complicated three-
dimensional domains is a far from trivial affair, and is one of the major
problem areas in computational fluid dynamics at present. Much research is
going on. For a survey of the state-of-the-art in grid generation in compu-
tational fluid dynamics and introduction to the literature, see Sengupta et al.
(1988), Thompson and Steger (1988), Thompson ef al. (1985) and Thompson
(1987).

Boundary conforming grids

There are various types of grids. This is not the place to discuss their relative
merits; see Wesseling (1991). The present trend in computational fluid
dynamics seems to favour structured boundary conforming grids. A mapping

x=x(§), x€Q, t€C 9.3.1)
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VAN

Figure 9.3.1 Structured boundary conforming grid.

is constructed, with Q the physical domain and G a cube. The boundary 9Q
consists of segments on each of which we have £* =0 for some «, which is
why the grid is called boundary conforming or boundary fitted. This feature
facilitates the accurate implementation of boundary conditions. A uniform
grid is chosen in G; its image is the computational grid in physical space, cf.
Figure 9.3.1. The local topological structure (number of neighbouring cells,
etc.) is uniform, this type of grid is called structured. This feature simplifies
the data structures required, and facilitates efficient vector and parallel com-
puting. The coarse grids required for multigrid are constructed in the standard
way by doubling the mesh size in G. Henceforth it is assumed that a structured
boundary conforming grid is used.

Some tensor analysis

Since the £* coordinates are arbitrary, it is convenient to express the equation
in an invariant (i.e. coordinate independent) form. The tool for this is tensor
analysis. The fundamentals of tensor analysis, especially in relation to con-
tinuum mechanics, may be found in Aris (1962), Sedov (1977) or Sokolnikoff
(1964). We present some elementary facts. The covariant base vectors a()
and metric tensor g.s are defined by

d
() ‘—‘»é', 8o = Ao * A(B) 9.3.2)
The determinant of gus is called g and follows from

g =aw - @ Naw) (9.3.3)

In two dimensions this becomes

g% = alyaly - alyaly 9.3.4)
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where afs) are the Cartesian components of a(g); here and in the fo'llox.;ving
lower case letters indicate Cartesian components, whereas capitals indicate
components in a general reference frame. The quantity g'? equals the
Jacobian of the mapping x = x(£). The contravariant base vectors ¢ and
metric tensor g*° are defined by

ag*)=g—§7, gt =d-a® 9.3.5)

The independent variables on the computational grid are £, thus( c;'(‘;,) is
easily obtained by finite difference approximation, but & is not. & can,
however, be obtained from a() by using

a® - agy =083 (9.3.6)
with & the Kronecker delta. In two dimensions this gives

1
a® = —}/—2 (aky, —aly), a®=—17 (- aly, alp) (9.3.7)
g g

The covariant and contravariant components of a vector field u are given by,
respectively,

C=u-ad®, Us=u-aw (9.3.8)

Equation (9.3.8) shows how the components of a vector field change under
coordinate transformation. Superscripts may be raised or lowered by contrac-
tion (i.e. multiplication and summation) with g°® or ges, for example

U™ = g*Us, - Ua= guplU® 9.3.9)

The divergence of a vector field u is given by

N B
~

1 9 1/257a ‘2 i
divu=U%=—5 — (g 7°U"%) 9.3.10
v u B gl/2 agct

For the definition of the covariant derivative U%, not needed here, the reader
is referred to the literature. The covariant derivative of a scalar ¢ is defined by

0.0 = 0 3L (9.3.11)

Generation of structured boundary conforming grids

A widely used method to construct structured boundary conforming grids is
elliptic grid generation. An introduction to this method is given by Thompson
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et al. (1985). The mapping § = £(x) is defined as the solution of a Poisson
equation:

2
M"f,—i‘,: P(§), xeQ 9.3.12)
The functions P*(§) and the boundary conditions are used to influence the
position and the orientation of the grid lines. The boundary 49 is divided in
segments in a suitable way. On each of these segments a constant value is
assigned to £* for some «; this makes the grid boundary conforming. A
relation between x and the remaining components of £ is chosen, which deter-
mines the position of the grid lines at 9Q.

Since the grid is generated by specifying grid lines in the &-plane, the
mapping x = x (&) is required instead of ¢ = £(x). Therefore the dependent and
the independent variables in (9.3.12) have to be reversed. This can be done as
follows. Suppose we have a quantity ¢ satisfying

3%

W=0, x€eq (9.3.13)

Changing to £-coordinates satisfying (9.3.12) one obtains
a0 2 (ap 92
3 at®

—dPa 20 g D ey D0

a%P g ot at?
ey 07 %" 3
— oBY L @
& P or t ax ax= 9i”
2
=gt 0 . pagy I8 9.3.14)

FY S aEP

Choosing ¢ = x* Equation (9.3.13) holds, and (9.3.14) gives (renaming &
by «a):

o O o ax
87W+P (5)@—0, teG. (9.3.15)

This, together with appropriate boundary conditions, defines the mapping
X = x(£). Choosing the boundary conditions and the control functions P?(¥)
such as to obtain a grid with the desired properties is quite an art. For further
information, see the literature.

Equation (9.3.15) may be solved numerically as follows. A uniform grid is
chosen in G, and (9.3.15) is discretized by standard central finite differences.
The resulting non-linear algebraic system does not need to be solved accu-
rately, since the sole aim is to obtain a reasonable distribution of grid points
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in ©. Multigrid methods are easily applied, and efficient. One possil?ility.is to
let g7 lag behind in an iterative procedure, and to solve the resulting lmea.r
system approximately with a standard linear multigrid code. Another possi-
bility is to apply a few non-linear multigrid iterations. A non-linear .smoother
is easily obtained by letting g% lag behind. In both cases, a start with nested
iteration is to be recommended.

An example: generation of a grid around an airfoil

The geometrical situation is sketched in Figure 9.3.2. The domain is t.wc.>-
dimensional, and consists of the region exterior to an airfoil. The domain is

=

.
1 A - = B
outer circle
Aer—— %
B b=l T
b
g l H
3 ~
3 3
[ S — c| ¢
— airfoil surface 1
Physical plane Computational plane

- Figure 9.3.2 Mapping from computational plane to physical plane.

Figure 9.3.3 Part of the grid around an airfoil.
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made finite for numerical reasons by truncation at a large distance from the
airfoil by some curve, for which we take a circle. The mapping x = x(¢) maps
a computational rectangle onto the physical domain, according to
Figure 9.3.2.

The physical domain is doubly connected. It is made simply connected by
a cut emanating from the trailing edge. A uniform grid is chosen in the com-
putational rectangle. Figure 9.3.3 shows part of the grid (the image of the
computational grid) in the physical plane. The outer boundary and the airfoil
consist of curves £2=constant; on the cut we have #!=constant with
different constants on both sides of the cut.

9.4. The full potential equation

It is assumed that the flow is transonic. The first numerical method for the
resulting nonlinear elliptic—hyperbolic problem appeared in 1971 (Murman
and Cole 1971). It has been possible to reduce the required computing time
drastically by means of multigrid. Many publications have appeared in this
field; see the multigrid bibliography in McCormick (1987), and the papers by
Becker (1988), Liu Chaoqun and McCormick (1988), Van der Wees et al.
(1983) and Van der Wees (1984, 1985, 1986, 1989).

We will see that the treatment of the full potential equation involves in
addition to standard techniques in the numerical approximation of partial
differential equations some special considerations, which are typical for
computational fluid dynamics.

Invariant formulation of the full potential equation

It is assumed that the flow is time independent. The invariant (i.e. coordinate
independent) form of the continuity equation (9.2.2) is

div pu=0 9.4.1)
using (9.3.10) this becomes
gi % (g pl/zU“)\= 0 9.4.2)
Equation (9.2.7) gives, using (9.3.9)
U*=g*Ppp 9.4.3)
The density p is given by (9.2.9), with

@ =UU,=g0.u05 9.4.4)
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We restrict ourselves to the two-dimensional case. The coordinate mapping
and the grid are presented in Figures 9.3.2 and 9.3.3.

The boundary conditions

The flow must be tangential to the airfoil surface. On the airfoil we have
£2 =0, hence

uen|g=0=0 (9.4.5)

with the normal at the airfoil. Since 7 || @®, equation (9.4.5) is equivalent to,
using (9.3.8), U?|s2=0=0, or

g%¥pplir-0=0 9.4.6)

" Assuming that at mﬁmty the magnitude of the velocity is g and that the
flow is parallel to the X' axis in a suitably rotated Cartesian frame !, )
the potential at the outer circle is prescribed as

olE-1=guX 9.4.7)

The fact that (9.4.7) is prescribed at a finite distance from the airfoil instead
of at infinity (in which case one would work with ¢' = ¢ — g.X instead of with
¢, which becomes infinite of course) causes an inaccuracy, which may be
diminished by employing an asymptotic expansion for the far field of poten-
tial flow. Assuming at infinity the flow is subsonic, a more accurate condition
than (9.4.7) is (Ludford 1951)

ele=1=quX+ % tan~ ' ((1 — M%)*x/y) (9.4.8)

Here I is the circulation around the airfoil, which has to be determined as
part of the solution.

Determination of the circulation

A condition along the cut (¢! =0, 1, cf. Figure 9.3.2) is obtained as follows.
The pressure is continuous. In potential flow the magnitude of the velocity is
a continuous function of the pressure. Assuming the velocity field to be
non-singular this implies that the tangential velocity component at the-cut'is
continuous, hence ¢ (0, £2) — ¢(1, £2) = constant. As suggested by (9.4.8), this
constant equals I':

(0,8 - o(1,£%) =T 9.4.9)
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Of course, the mass conservation equation (9.4.2) must also be applied across
Fhe cut, taking (9.4.9) into account. This is done as follows. Assume point Z
lies on the cut. Corresponding to Z € Q there are two point Z', Z” € G with
coordinates (0, £%7) and (1, £%). When differences of ¢ are formed approxi-
mating (9.4.3), ¢z or ¢z is used, such that differences across the cut are
avoided. Next, ¢z is eliminated using (9.4.9).

The circulation I' follows from the Kutta condition, which requires that the
velocity field is smooth at a sharp trailing edge, i.e.

lim g(¢',0)=1i 10
Hm q¢, 0 lim q(£',0) 9.4.10)

Finite volume discretization

Figure 9..4.1 sl}ows part of the computational grid, with an ad Aoc numbering
of the grid pomts: The potential ¢ is approximated in the vertices of the grid
(vertex-centred discretization). Equation (9.4.2) is integrated over a finite

vplume Q surrounding point 5, indicated by broken lines in Figure 9.4.1. This
gives

d
SS F (gl/Zpuu) dEl d£2= (gl/ZPUl)lé 6EZ+(g1/sz2)|g 6El (9.4.11)

Q

When pqint-S lies ::)/rzx the airfoil surface we apply boundary condition (9.4.6)
by substituting (g'%pU*)p = —(g'*pU?)s. The Kutta condition (9.4.10) is
handled as follows. Let point 5 lie at the trailing edge. The corresponding

contr.o} vol.ume, consisting of two parts, is depicted in Figure 9.4.2. The Kutta
condition is implemented as ga = gc. We have

on-waoilaoD)] - e 5] + (2] ]

A

12 7 8 9
5 |
r-t-1
11 4 'c |s 'a |6
j i
-4 4
10 1 2 3

Figure 9.4.1 Part of computational grid in £ plane.
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Figure 9.4.2 A finite volume at the trailing edge.

hence, the Kutta condition gives

ax\2  [ax2\2] V2 ax\2  [ax?\]-V?
(s ‘pS)[(aE‘) + (az‘)]A = (ps m)[(aé‘) + (321)]c (9.4.12)
In addition to (9.4.12) we have the discretization over the finite volume of
Figure 9.4.2.

A discrete system is obtained by substitution of (9.4.3) in (9.4.11), discreti-
zing ¢, with central differences. In the interior, the nine-point stencil con-
sisting of the points 1 to 9 in Figure 9.4.1 results. The circulation I' may be
determined as follows. Two values for the circulation I'* and I'** are chosen,
and the corresponding solutions ¢* and ¢** are determined, neglecting
(9.4.12). Then « is determined such that ¢= we* + (1 —w)p™™* satisfies
(9.4.12). The new estimate for the circulation  becomes
*:= o™ + (1 — @)['**; a new I'** that does not differ much from r*is
chosen, and the process is repeated.

Retarded density

Before the discretization can be considered complete a final complication
needs to be discussed. When M. is sufficiently close to 1 a local supersonic
zone appears adjacent to the airfoil, usually terminated at the downstream
side by a shock. In the shock dissipation takes place, which is an irreversible
thermodynamic process, resulting in an increase in entropy. The potential
fiow model is completely reversible (free from dissipation). As a consequence
it allows not only (isentropic approximations of ) compression shocks, but also
expansion shocks, which are unphysical. To avoid these some irreversibility
must be built in. One way to do this is to use the retarded density concept
(Holst 1978, Hafez et al. 1979). In regions where the flow is locally supersonic
the density p is not evaluated in the point where it should be according to
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(9.4.11), but in the neighbouring grid point in the upstream direction. Our
grid is shaped such that near the airfoil the flow is roughly aligned with the
¢! coordinate lines, so that it will suffice to displace the density in the £* direc-
tion; p is replaced by g defined by

p=p—v(M)Dip (9.4.13)

with Dip the upwind undivided difference on the grid, and »(M) the following
smooth switching function

»y=0, M|M. < (1+¢)"'?
v=(MYM?* —1—ePlde, (1+e)" V2K M/M. < (1-¢)"?
“y=1, MIM: > (1-¢)"'? 9.4.14)

where M. and € are parameters to be chosen: M. slightly less than 1. As a con-
sequence of retarding the density, the accuracy of the discretization is only
first order in supersonic zones.

Multigrid method

One way to solve the non-linear system of equations just described is to use
Newton iteration on the global system, and to solve the resulting linear
systems by a standard linear multigrid method, for example one of the codes
discussed in Section 8.8. This approach has been followed by Nowak and
Wesseling (1984), where it is found that multigrid solves the linear problems
efficiently. The Newton process also converges rapidly for subsonic flow, but
for transonic flow the convergence of the Newton process is erratic and
requires many iterations, because the Fréchet derivative of the system is ill
conditioned. This approach is not, therefore, to be recommended.

As has already been mentioned in Section 8.8, a very nice property of the
non-linear multigrid algorithm is that global linearization is not required.
Only in the smoother a local linearization is applied. This has been done by
Nowak (1985). As a result non-linear multigrid converges fast, even though
the global Fréchet derivative is ill conditioned. All that has to be done is to
choose the coarse grids, the transfer operators P*¥ and R¥, and the smoothing
method. The coarse grids are constructed by successive doubling of the mesh
size. P* and R¥ can be chosen using linear or bilinear interpolation according
to Section 5.3 with R* = s(P*)*, choosing s such that the sum of the elements
of [R¥] equals 1. This gives us mp+ mr=4>2m=2, satisfying rule
(5.3.18). The choice of the smoothing method is less straightforward.

Smoothing method

In order to find out how the smoothing method should be chosen we study
the small disturbance limit of (9.4.2) in Cartesian coordinates, that is, the
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airfoil is assumed to be very thin and the flow is assumed to deviate little from
the uniform flow field u. = (1, 0). Denoting the Cartesian components of the
velocity disturbance by u® we have

u=(+u',u? (9.4.15)

with | 4| < 1. From (9.2.9) it follows that

p = pw(l — Mau') (9.4.16)

Taking §=x, substituting (9.4.15) in (9.4.11) and writing U®*=u"=¢,a
results in the following discretization, with 8¢' = 8¢2

1+ )} [&+ op2d |B=0 (9.4.17)

If M%Z <1 then p is not replaced by 5 (cf. (9.4.13). Equation (9.4.17) is
approximated further by, using (9.4.16), '

(1-Mi)p,|&+¢2|B=0 (9.4.18)
If MZ% > 1 then p is replaced by j according to (9.4.13) and we obtain
{1-MiD:-1}p1|&+02|B=0 (9.4.19)

Note that (9.4.18) and (9.4.19) correspond to an elliptic partial differential
equation if M2 < 1, and to a hyperbolic equation if M2 > 1.
Discretizing the derivatives equation (9.4.19) becomes

Vie|s — Ma(ps — 204 + o11) = 0 (9-4.20)

Discretization (9.4.20) is stable for M2 > 1, but (9.4.18) is not; this is another
justification of the retarded density formula (9.4.13). For further discussion,
see Hirsch (1990), Vol. 2 Section 5.1.

The smoother has to be chosen such that it works for (9.4.18) with M2 < 1
and for (9.4.20) with M2 > 1. Furthermore, in transonic flows | M3 —1| < 1.
Equation (9.4.18) is equivalent to test problem (7.5.6) with =0 and €< 1,
so possible candidates are the smoothers discussed in Chapter 7 that work for
this test problem. Smoothing analysis for (9.4.20) is carried out in
Example 9.4.1, according to the principles set out in Chapter 7.

Example 9.4.1. Smoothing analysis for equation (9.4.20). A method that

works for (9.4.18) is backward vertical line Gauss—Seidel. The amplification

factor of this smoother applied to (9.4.20) is easily found to be -
(1 +2MLye™ " - M%Le~ %0

9.4.21

4—2cos 61 —e ( )

AO) =
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Table 9.4.1. Fourier smoothing factor p
for equation (9.4.20). Forward vertical
line Gauss—Seidel smoothing; n = 64

Mo 1.0 1.1 1.3 1.7

o 0.34 0.34 0.35 0.38

Hence |\(r,0)|=(3M%+1)/5, so that |A(x,0)|=0.8 for Mw=1 and
| N(m,0)| =1 for M > (4/3)"/% = 1.15, so that this is not a good smoother
if M. = 1. This is not surprising, since for M. > 1 the underlying problem
is hyperbolic, and information flows from left to right, so that we are
sweeping in the wrong direction. Forward vertical line Gauss—Seidel (also a
good smoother for (9.4.18)) sweeps in the right direction, and is found to be
a good smoother. The derivation of the amplification factor is left to the
reader. Table 9.4.1 presents some values of the smoothing factor. Clearly, this
is a satisfactory smoother.

Essential ingredients for the numerical solution of the transonic potential
equation are the use of different discretizations in the subsonic and supersonic
parts of the flow (cf (9.4.13)), and the use of forward vertical line
Gauss—Seidel iteration; this is the approach that led to the first successful
numerical method for this problem (Murman and Cole 1971). Most multigrid
methods applied to this problem, starting with South and Brandt (1976)
include, therefore, some form of forward vertical line Gauss—Seidel
smoothing. If in parts of the physical space the mesh is strongly stretched in
the £2-direction (corresponding to 8 = #/2 and ¢ < 1 in test problem (7.4.7))
then horizontal line Gauss—-Seidel smoothing must also be incorporated. ILU
smoothing can also be used (Nowak and Wesseling 1984, Van der Wees et al.
1983, Van der Wees 1984, 1985, 1986, 1989). Zebra smoothing has not been
investigated, but is expected to work, provided damping is used, because of
the hyperbolic nature in the supersonic zone; cf. the results of Fourier
smoothing analysis of alternating zebra for the convection-diffusion equation
in Section 7.10.

9.5. The Euler equations of gas dynamics

We consider the two-dimensional case only. Although the grid is curvilinear,
it is not necessary to use general tensor notation. We will use Cartesian tensor
notation. Putting u =4 =0, equations (9.2.1) reduce to the Euler equations.
These can be written as

dq =
P + g8p=S 9.5.1)
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with q = (p, pu1, puz, pe)’, g1 = (piis, purtty + p, puritz, (€ + pu1)’,
g2 = ( puz, pu1tt2, puatiz + p, (e + p)uz)' . The system of equations is com-
pleted by (9.2.6). A known source term s has been added for generality. Even
if s =0, there will be a non-zero right-hand side on the coarse grids when a
multigrid method is used.

For a discussion of the boundary conditions that should accompany
the hyperbolic system (9.5.1) the reader is referred to Hirsch (1990,
Chapter 19).

Finite volume discretization

Discretization of (9.5.1) may take place by means of the finite element
method, or the finite volume method, or the finite difference method. There
is not much difference between the last two methods. Finite difference
methods of Lax—Wendroff type, especially the MacCormack variant (see
Hirsch 1990) have long been popular -and are still widely used, but are being
superseded by finite volume methods. For brevity, we restrict ourselves to the
finite volume method. : .

Equations (9.5.1) constitute a hyperbolic system. Solutions often exhibit
discontinuities (shock waves, contact discontinuities). These discontinuities
should be accurately represented in numerical approximations. It is desirable
to have: (i) second-order accuracy; (i) monotonicity; (iii) fulfillment of the
entropy condition; (iv) crisp resolution of discontinuities. By monotonicity we
mean that the numerical scheme produces no artificial extrema as time pro-
gresses, so that there are no numerical ‘wiggles’ near discontinuities. The
entropy condition refers to a thermodynamic property of the dissipation
process that occurs in shocks, and which is not modelled by the Buler
equations, because all dissipation is neglected, since u =n=0. The entropy
condition states that the entropy should be non-decreasing, so that non-
physical expansion shocks are ruled out. The entropy condition can be
fulfilled by building in some form of irreversibility in the numerical scheme,
as was done in the preceding section by retarding the density p. For a fuller
discussion of the entropy condition see Hirsch (1990) Chapter 21. Require-
ments (i) and (i) can only be satisfied by non-linear numerical schemes, ie.
schemes that are non-linear, even if (1) is linear. This is because of the fact
that linear monotone schemes are necessarily of at most first order accufacy
(Harten ef al. (1976)).

Figure 9.5.1 presents part of a computational grid. The unknowns ¢ may
be assigned to the vertices of the cells or finite volumes (such as A, B, C, D)
or to the centres. For the former approach, see Hall (1986), Jameson (1988),
Mavripilis (1988) and Morton and Paisley (1989). We proceed with the
cell-centred approach, the fundamentals of which have been presented in
Section 3.7.

Equation (9.5.1) is integrated over each of the cells separately. Integration
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Figure 9.5.1 Part of computational grid in physical space.

over the finite volume ;= ABCD gives

d
@3 W+t S 8p dSg = aijsij 9.5.2)
with ay the area of @, gi; the value of g at the centre of Q; and S;; the
boundary of Q;;. The contour integral in (9.5.2) is approximated by, taking the
part AB as an example,

B
SA ge dSs = goanys| AB | (9.5.3)

where n is the outward normal on Si; and gg(as) is a suitable approximation
of gz on AB, on which the properties of the discretization depend strongly.
Central differences may be used:

88aB) = 7 (26(qij) + £8(qi+1,5)) (9.5.4)

resulting in second-order accuracy. In order to satisfy requirements (ii)—(iv),
artificial non-linear dissipation terms must be added. This approach is fol-
lowed by Jameson c.s. is a widely used set of computer codes (Jameson ef al.
1981, Jameson 1985a, 1985b, 1986, 1988, Jameson and Yoon 1986), and has
been adopted by many authors.

Flux splitting

Another widespread approach, not requiring artificial parameters, is flux
splitting. First, the rotational invariance of gg is exploited as follows. We have

gsan(@)ns = Q' g1an(Qq) 9.5.5)
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with the rotation matrix Q defined by

1 0 0 0 . “
10 ng n 0 5
Q= 0 —m -m 0 (9.5.6)

0 0 0 1

Next, it is assumed that giapy depends only on the two adjacent states:

g141(Qq) = 21(Qqy, Qgi+j. ;) 9.5.7)

There are several good possibilities for choosing g;. For a survey, see Harten
et al. (1983), Van Leer (1984) and Hirsch (1990). One possibility is to intro-
duce a splitting

si=gf +g1 (9.5.8)

such that the Jacobians dgi/dq and dgi/dg have non-negative and non-
positive eigenvalues, respectively. There are various ways to do this; see the
literature just cited. Next, we choose

£1(Qqi, Qqi+1,)) = &1 (Qqy) + 81 (Qqi+1,5) (9.5.9)

A crude intuitive motivation of this procedure is that, as in upwind discretiz-
ation of scalar convection—diffusion equations, the main diagonal is enhanced
in the resulting discrete system. (cf. Exercise 9.5.1). In the linear case the
matrix is an M-matrix, ensuring monotonicity, and allowing simple effective
iterative and smoothing methods. Another way of looking at (9.5.9) is that the
physical direction of the flow of information is simulated numerically; this is
especially clear if g; is derived from a (approximate) Riemann probiem
solution.

The scheme resulting from (9.5.9) has first-order accuracy, is monotone,
and has crisp resolution of discontinuities that are approximately aligned with
the grid lines. For sharp resolution of discontinuities with general orientation
adaptive local grid refinement is required, as in Bassi er al. (1988). Further-
more, the entropy condition is satisfied: the ‘one-sidedness’ of (9.5.9) implies
irreversibility. Second-order discretizations may be obtained by assuming
linear distribution of ¢ in each finite volume; monotonicity has to be ensured
by adding non-linear ‘limiters’ (Spekreijse 1987, 1987a, Sweby 1984, Van
Albada et al. 1982, Van Leer 1977). Multigrid is not directly applicable to
these second-order discretizations; defect correction (Section 4.6) can be used.
This has been done by Hemker (1986), Hemker et al. (1986), Koren (1988)
and Koren and Speckreijse (1987, 1988). We will describe the principles of
multigrid applied to flux-splitting discretizations of the Euler equations, and
of defect correction.

The discretization resulting from (9.5.2), (9.5.3), (9.5.5) and (9.5.9) looks
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as follows:

d
a = N(g)ij + sij (9.5.10)

N@)y= - aiu [| AB| Qid{gi (Qangy) + g7 (Qangis1,)))

+|BC|Qad{g{ (Qvcay) + g7 (Qucgi, j+1))
+|CD|Qchlgi (Qcpgyi) + g1 (Qcpgi-1,;)}

+ | AD| Qab{g{ (Qapgy) + g1 (Qangi, j-1)}] 9.5.11)

where Qag is the rotation matrix for cell face AB, etc.

Boundary conditions

The numerical implementation of the boundary conditions has great influence
on the accuracy. Artificial numerical reflections from the boundaries are to be
avoided as much as possible. The simplest (but not the best) approach is to
prescribe g on the whole boundary. Due to the asymmetric differencing of gi
the scheme automatically selects the appropriate information. For more
accurate approaches, see Hirsch (1990) Chapter 19.

Time discretization

Let us assume that the aim is to obtain steady (time-independent) solutions of
(9.5.10). One way to achieve this has been proposed by Jameson et af. (1981),
namely Runge—Kutta time stepping, as described in Section 7.11. Conver-
gence to steady state is enhanced by choosing the Runge—Kutta coefficients
such as to increase the stability domain, by choosing the maximum time step
allowed by stability in each finite volume separately (since the transient behav-
iour of g; is not of interest), and by introducing a multigrid method: time
stepping takes place alternating on coarser and finer grids, driving transient
waves out rapidly by the large time steps allowed on coarse grids (Jameson
1983, 1985a, 1985b, 1986, 1988, 1988a, Jameson and Baker 1984, Hall 1986).
The performance of Runge—Kutta time stepping as a smoothing method was
analysed in Section 7.11.

Another approach is to discretize (9.5.10) with the backward Euler method:

(@5 — gh)At=N(gi*") + s§*! (9.5.12)

Now At is unconstrained by stability, and one may step to ‘/ = «’ in very few
steps. Equation (9.5.12) may be solved by the standard non-linear multigrid
method described in Chapter 8. Some publications in which this approach is
taken are: Anderson and Thomas (1988), Dick (1985, 1989, 1989b, 1990),

N e e N
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Duane Melson and Von Lavante (1988), Hemker and Spekreijse (1985, 1986),
Hemker, et al. (1986), Jespersen (1983), Koren and Spekreijse (1987,
1988), Koren (1989a), Mulder (1985, 1985a, 1988), Shaw and Wesseling
(1986), Spekreijse (1987, 1987a) and Von Lavante et al. (1990). We will
discuss this approach in more detail.

Multigrid method

The grid on which equation (9.5.12) is to be solved is called G¥, and is the
finest in a sequence of grids G¥, k=1,2, ..., K, G* finer than G*~'. Equation
(9.5.12) can be rewritten as

L¥@*)=r* 9.5.13)

with LX=1- AN, u¥=¢"*! and fX=¢" + Ats"*'. Equation (9.5.13) may
be solved by the standard non-linear multigrid algorithms described in
Sections 8.3 and 8.7. ,

Coarse grids are constructed by cell-centred coarsening (see Section 5.1). It
is assumed that the only information available about the grid geometry is the
location of the cell vertices. For the cell boundaries we take straight lines; this
is implicit in the finite volume discretization discussed before. Figure 9.5.2
shows four fine cells and the corresponding coarse cell. Prolongation and
restriction operators P* and R* are chosen as follows. Equation (9.5.11) con-
stitutes a first-order system, thus it follows from (5.3.18) that P* and R¥ are
sufficiently accurate if mp = mgr=1. Inspection of (9.5.11) shows that we
have o = 0 in the scaling rule (5.3.16); hence we should have

2 R¥(G, ), (m,n)) =1 (9.5.14)
_m,n
1t follows that we may choose
k 111 k k~1y%
RT=21, || P =4R") 9.5.15)

(27-1,27)

Figure 9.5.2 Fine cells and coarse cell.
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that is,
k-1
R uryy=tubia+ubioi i+ ubig 1+ ubiciao) 9.5.16)
and
P u* iz = @ u*" i 125= P " Naigjo1= @ 0 o1 1= uf !

9.5.17)

The coarse grid operators are obtained by discretizing the differential equation
on the coarse grids. The problem to be solved on the coarse grids G¥, k < K
can be denoted as

L*u*)=b* (9.5.18)

with L = I — A¢rN*; N* is obtained by discretizing the differential equation on
G*; b* follows from the non-linear multigrid algorithm.

Smoothing method

A suitable smoothing method is collective Gauss—Seidel smoothing. In finite
volume (7, j) Equation (9.5.18) gives a non-linear algebraic relation between
the unknowns in neighbouring finite volumes, which we may denote as
(deleting the superscript k& for brevity)

AUy, Ui, j, Ui j+1, ... ) = by (9.5.19)

The finite volumes are visited in a predetermined sequence. In each cell u;; is
updated, keeping u fixed in neighbouring cells. The update may consist of a
single Newton iteration. This involves solution of a linear system for the
unknowns represented by w;; (in the two-dimensional Euler case, these are
P, pUy, pu2, pe, cf. (9.5.1)). The adjective ‘collective’ refers to the fact that
these unknowns are updated simultaneously. It may happen that Newton
iteration does not converge. In that case one may decrease A¢, which is
tantamount to damping the Newton process.

The order in which the finite volumes are visited can be any of the orderings
for which point-wise iteration methods are found to be robust for the convec-
tion—diffusion equation with the Fourier smoothing analysis of Chapter 7.
The convection—diffusion equation is the relevant test problem, because it
simulates hyperbolic behaviour as ! 0. Hence, suitable methods are: four-
direction point Gauss—Seidel (Section 7.7), four-direction point
Gauss—Seidel—Jacobi (Section 7.7), and alternating white—black
Gauss—Seidel (Section 7.10). The first method can be vectorized/parallelized
to a reasonable extent by using diagonal ordering (Section 4.3), because we
have the five-point stencil, which is a special case of the seven-point stencil of
Figure 3.4.2(b). The last two methods vectorize and parallelize in a natural
way. These point-wise methods do not work for the anistropic diffusion
equation, and as a consequence the smoothing methods just discussed fail for
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the Euler equations on grids where cells with high mesh aspect ratios occur.
Then one may apply semi-coarsening (Section 7.4), decreasing mesh aspect
ratios on coarser grids. Or line Gauss—Seidel methods must be used, which
means that rows or columns of finite volumes are updated simultaneously,
that is, taking rows for example, in (9.5.19) u;; and u;+),; are updated simul-
taneously, letting the other arguments of A lag behind. This leads to a more
complicated nonlinear system to be solved, of course, but this approach is
feasible in practice. The line versions of Sections 7.7 and 7.10 that work both
for the convection—diffusion and anisotropic diffusion equation shogld be
used, of course.

Defect correction

The smoothers discussed before work only for flux-splitting discretization of
first order. In practice however second-order discretization is usually
desirable. We will not discuss second order discretization here; see Hirsch
(1990) Chapter 21 for an introduction. Using the multigrid method just
described, second order accuracy may be obtained by means of defect correc-
tion, described in Section 4.6. This method has been used by Hemker (1986),
Hemker ef al. (1986), Koren (1988), Koren and Spekreijse (1987, 1988) and
Hemker and Koren (1988).

Let a first-(m = 1) and second-(m = 2) order spatial discretization of the
Euler equations be given by (cf. (9.5.12)):

(gh*' —qf)ar= N"™(gf* ) +si*!, m=1,2 (9.5.20)
Then, instead of solving (9.5.12), the following algorithm is carried out
Solve (g* — g")]At= NP (g*)

for i=1 step 1 until s do

= n - NW(5 D%y - ND(g* ) |
scilve_(q g")jat= Nt (q_)+N @) -N"g) 9.5.21)
a=4q C
od

qn+l=q*

This algorithm carries out s defect corrections. Usually s can be taken small.
With one non-linear multigrid iteration (V-cycle with one symmetric collective
Gauss—Seidel pre- and postsmoothing) per defect correction Koren (1988)
obtains second-order engineering accuracy after about five defect corrections
for the Euler equations for two-dimensional supercritical airfoil flows. This
amounts to about 14 work units (one work unit is the cost of one symmetric
Gauss—Seidel iteration on the finest grid). The savings in computing time due
to the use of multigrid is large in this type of application.
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Exercise 9.5.1. Show that in the case of one unknown flux-splitting is equiva-

lent to upwind discretization, by applying flux splitting discretization to
equation (7.5.7) with e=0.

9.6. The compressible Navier—Stokes equations

The Navier—Stokes equations for compressible flows have been presented in
Section 9.2. It is convenient to write them as

d
5‘% + 88+ Gpa=s5s (9.6.1)

with gg defined after equation (9.5.1), and Gg defined by

G1=(0, 011, 012, — 014, —'qT,l)Z ©.6.2)
02 = (07 021, 022y, — 024Uy, — 177.',2)

with gas defined by Equation (9.2.4). Here gs is called the inviscid flux func-
tion and Gg the viscous flux function. Equation (9.6.1) is a generalization of
the Euler equations (9.5.1), and numerical methods for the compressible
Navier—Stokes equations generally resemble those for the Euler equations, so
that not much needs to be added compared to the preceding section.

Finite volume discretization

As in the preceding section, we restrict ourselves to finite volume discretiz-
ation. The inviscid terms ggg can be discretized as before. A slight compli-
cation may, however, arise. At solid walls, with the Euler equations the
tangential velocity component is left free, whereas with the Navier—Stokes
equations it is prescribed to be zero (no-slip condition). Suppose flux-splitting
(9.5.8) is employed, using the method of Van Leer (1982). This flux-splitter
has the property that the no-slip condition has the effect of bringing the
tangential velocity down close to zero in the vicinity of the wall. This leads
to large discretization errors, because the no-slip boundary condition should
influence only the viscous terms, but not the inviscid terms. Schwane and
Hinel (1989) have proposed a modification of Van Leer’s Euler flux-splitting
that removes this defect; other Euler flux-splittings do not need to be modified
for use with Navier—Stokes.

Integration of (9.6.1) over the finite volume Q;; = ABCD (Figure 9.5.1) gives
(cf. (9.5.2)):

aij i qij + S &8 ng + S Gﬁ dSﬂ = Qi;Sij (9.63)
dr Sy Si

e o

S e
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The treatment of the first integral is given in the preceding section. All that
remains to be done is to discretize the second integral.

Discretization of viscous terms

The second contour integral in (9.6.3) is approximated by, taking the part AB
as an example,

B
S Gs dSs = Gaanyng| AB| 9.6.4)
A

where n is the outward normal on Sj; and Ggap) is a suitailble. approximation
of Gg on AB, which has to be obtained by further discretization, because Gg
contains derivatives. We have

Gyapyts| AB| = (G1ax* — G2Ax")ap 0.6.5)

where Ax%s = x§ — xi. It suffices to show how to ha‘ndle one of the terms
occurring in Gg, for example pu1 1. This term is appromm?ted as a mean value
over a suitably chosen secondary finite volume surrouang AB, for example
EFGH (cf. Figure 9.5.1), to be denoted as Qi+1/2,j, with boundary Siv1/2,j
and area a;+1/,2,j. Then we can write

1 2
S U1, dQ = — - u dx” = P
Qi+172,j Qv : Ai+1/2,j JSivin2.j i—1/2,j

X [(1Ax2)er + (1AX)eG + (14X )ou + (1Ax*)ue]  (9.6.6)

U1,1(AB) =

where uyep is a mean value of u; on EF, etc., and wherf: A.xz(p_p,
= X2 — X26)- The following approximations complete the discretization of

this term
UiEeF) = W16+ 1,/) ‘ 9.6.7)
tye) = (1) + WG+ 1))+ UG+ D F UG+ Lj+ n)

Repeating this type of procedure for the other tenps in (?3 completes the_ dis-
cretization of (9.6.1). The resulting stencil is of nmgpomt type, as deplf:ted
in Figure 3.4.2(c). A seven-point stencil as given by Figure 3.4.2(a) is obtained
if the interpolation in (9.6.7) is changed to (without loss of accuracy)

u1(FG) = L Ui+ 1,5y + wiGi.j+ 1)) (9.6.8)

and using similar suitably chosen averages for the other‘ terms in Gg. A seven-
point stencil as given by Figure 3.4.2(b) is obtained if, instead of (9.6.§), one

uses

wirG) = g + Ui+ 1,5+ 1) 9.6.9)
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and choosing averages for the other terms in G in a similar appropriate way.
These possibilities are analogous to the options for the discretization of the
mixed derivative in the rotated anisotropic diffusion problem discussed in
Section 7.5. As remarked in Section 4.3, in the case of seven-point stencils,
diagonal ordering is equivalent to forward ordering in Gauss—Seidel iteration;
of course, there is an equivalent diagonal ordering also for backward ordering
and successive orderings in other corners. Because with diagonal ordering
Gauss—Seidel vectorizes along diagonals, the seven-point discretization is
more amenable to Gauss—Seidel iteration than the nine-point discretization.
On the other hand, we saw in Chapter 7 that typical smoothing methods tend
to work better for the nine-point version of the anisotropic diffusion test case.
It may be expected that this will also be so in the Navier—Stokes case. In prac-
tice mixed derivatives arise due to the use of non-orthogonal coordinates, and
their role becomes significant only when the grid is highly skewed. Grid gener-
ation methods try to avoid this for reasons of accuracy.

The way in which boundary conditions are accounted for in the discretiz-
ation of the viscous terms is standard and will not be discussed here.

Time discretization

As in the preceding section we assume that the aim is to obtain steady
solutions of (9.6.3). Again, Runge—Kutta time-stepping may be used as a
smoother accelerated by multigrid. Usually this approach is combined with
central discretization of the inviscid terms ggg accompanied by artificial
diffusion terms, thus leading to a viscous version of the Euler solution
methods developed by Jameson c.s. (see the literature cited in the preceding
section). This approach is developed in Haase ef al. (1984), Martinelli et al.
(1986), Martinelli and Jameson (1988), Jayaram and Jameson (1988) and used
by many authors.

Also widespread is the approach just described, using flux splitting for the
inviscid terms. Multigrid methods for the resulting discrete version of (9.6.3),
using time-discretization of the type (9.5.12), have been developed by Shaw
and Wesseling (1986), Hemker and Koren (1988), Koren (1989b, 1989¢, 1990,
1990a), Hinel, et al. (1989) and Schwane and Héinel (1989).

Second-order accuracy may be obtained with defect correction (Hemker
and Koren 1988, Koren (1989b, 1989¢, 1990).

Runge—Kutta time-stepping smoothing and collective Gauss—Seidel
smoothing have been compared for several flux-splitting discretizations by
Hinel et al. (1989).

Turbulence

A multigrid method for the three-dimensional compressible Navier—Stokes
equations with k—¢ turbulence modelling (Launder and Spalding 1974) has
been described by Yokota (1990). An ILU factorization smoother is used. The
k—¢ turbulence model is included on the finest grid only.
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Multigrid method

The muitigrid method to be employed for the compr.essible Navier—Stokes
equations can be the same as for the Euler equat.lor.ls, apart from one
important modification: prolongation andfor restriction must be more
accurate. The Navier—Stokes equations are of second order, thus rule (5.3.18)

gives
mp+mr>2 (9.6.10)

P is, therefore, now chosen to be linear or'bilinear interPolation: The
implementation is a straightforward generalization to non-uniform grlds of
the cell-centred prolongations discussed in Chapter S. R.eferrmg to-
Figure 9.5.2 and taking bilinear interpolation as an.example, a bll.mea: fupc-
tion @+ @x' + axx? + asx'x* is determined that interpolates gr‘ld function
values in the coarse grid cell centres (i, j), (i +1,/), G Jj+ 1), (Ht 1,7+ 1).
This function is used to determine prolongated grid function values in the fine
grid cell centres, and has mp = 2. Restriction can be defined by (9.5.15),

which gives mr=1.

9.7. The incompressible Navier—Stokes and Boussinesq
equations

The governing equations

In the incompressible case p is constant along streamlines. As a consequence
the energy equation (9.2.5) and equation (9.2.6) are no longer ne.eded.
Assuming that the streamlines emanate from a region of constant density we
have

p = constant 9.7.1)

With this simplification the equation of mass conservation follows from
(9.2.1) and (9.2.2) as

Ugo=0 ‘(‘9.‘1.23

For greater generality it is assumed that the temperature 7 is non-uniform,
and that the density of the fluid is a decreasing function of the temperatur.e
only. The derivation of a suitable mathematical model whe_n tempera.ture vari-
ations are not large is one of the more subtle things in fluid dynan.ncs. If the
velocity of the flow is small compared to the speed of sound, and if .the tem-
perature differences are not too large (more precisely: yAT <1, w.1th v the
thermal expansion coefficient of the fluid), it can be shown (Rayleigh 1916)
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that to a good degree of approximation the density can still be taken constant,
except in the vertical momentum balance, assuming we have a vertical gravity
force. As a result, vertical buoyancy forces will occur in the fluid when the
temperature is non-uniform. The resulting equations are called the Boussinesq
equations, and are given by (taking » constant, although in reality » varies
with 7T')

duy

2y + (Ueka).6 = = P+ Vidaps + 8YT20 9.7.3)
with v the thermal expansion coefficient of the fluid, g the acceleration of
gravity, and § the Kronecker delta. It is assumed that gravity acts in the nega-
tive xz direction. The temperature is governed by the energy equation (9.2.5),
which reappears in the following form:

g—{+ UaT) o= =T aa 9.7.4)

with 5 the heat diffusion coefficient, taken constant.
The equations may be made non-dimensional as follows. Let U be a charac-

teristic velocity, L a characteristic length and Tp a characteristic temperature,
and define dimensionless variables by (not changing notation for convenience)

Xa'= XafL, Uai=usJU, p:=p|U?, T:=T|To, t:=tLIU (9.7.5)
then the dimensionless form of (9.7.3) and (9.7.4) is obtained as

duq Gr

—_ -1 M
T (ugtta)p= — p.a+Re U qa + R T2 (9.7.6)
aT 1
v ﬂT o = -0 oo afa
ar Y WeDe= —g 5 T ©.7.7)

where Re= UL[» is the Reynolds number, Gr =~ygL>3T/»? is the Grashof
number and Pr = [y is the Prandtl number.

The staggered grid

As in the applications discussed before, the success of multigrid depends
strongly on the properties of the discretization. We will, therefore, give a
detailed discussion of a suitable discretization method.

There is an essential difference between the compressible and the incom-
pressible case, arising from the fact that in the present case a time-derivative
is lacking for one of the unknowns, namely p. If the space discretization
employed in the previous section is used here, artificial checkerboard type
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Figure 9.7.1 Staggered grid, with quantities labelled i in cell Q. (- ui-points,
t uz-points, @ p- and T-points.)

fluctuations may occur in the numerical solution for the pressure, due to a
lack of coupling between velocity components and pressure in adjacent
points. For discussions of this phenomenon, see Patankar (1980) or Hirsch
(1990) Section 23.3.4. The problem may be remedied by the use of a staggered
grid, as introduced by Harlow and Welch (1965). Unfortunately, staggered
discretization in general coordinates is a complicated affair. Here we rest;ict
ourselves to a uniform Cartesian grid in two dimensions. The unknowns u;,
uy, p and T are assigned to different grid points, as shown in Figure 9.7.1. The
physical domain Q, taken to be the unit square for simplicity, is uniformly
divided into square cells or finite volumes with sides of length 4. The u; vari-
ables are located in the centres of the vertical sides, the u; variables are located
in the centres of the horizontal sides, and the p and T variables are located
in the centres of the cells. The cell with centre at ((i — 1/2)h, (j — 1/2)h) is
called Q. The variables located in the centre of {J;; and the centres of the left
and lower faces are labelled ij, so that for example u;; is located at

(= Dh, (- 12)h).

Finite volume discretization
The mass conservation equation (9.7.2) is integrated over Q. This gives in
straightforward fashion

(Uiiv1,j— i+ uije1 —uz)h=0 (9.7.8)

The momentum equation (9.7.6) in x; direction (o = 1) is integrated over a
shifted finite volume, which is again a square with sides of length A and centre
at the uy,;; point, i.e. at (({ — 1)h,(j — 1/2)h). For the time being, the steady
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G
D + of
He —_— *F
A + B
E

Figure 9.7.2 Shifted control volume for the ¥; momentum.

case is considered. The shifted finite volume is given in Figure 9.7.2. The
result is

R h+un |8 = —-hp|E+Re hna |E+w2]8) (9.7.9)

Since u, is not given in E, F, G, H further approximations have to be made.

Hybrid scheme for convective terms

Central approximations of uir is given by
2
1,

utp=31@ly+uliisp) (9.7.10)

and similarly for u$ u. One obtains
uffi=t@hivri—utic1) 9.7.11)

which is A times the standard central difference approximation of (u?);.
Because (9.7.6) resembles a convection—diffusion equation, central approxi-
mation of the convection term (ugu.),s may lead to numerical wiggles in the
solution and to deterioration of the smoothing method if the mesh Reynolds
numbers exceed 2. For the approximation of u?r the appropriate definition
of the mesh Reynolds number is

Reyivis2,j=|u1,i+172,/| h Re 9.7.12)
where

Uiv172,j =5 (U1 + U1isL)) (9.7.13)

The problems just mentioned may be avoided by upwind discretization. To
this end (9.7.10) is replaced by

ufp =31+ s e 2. )uli+ (1 = sniv iz Jubiv 1.j 9.7.14)

where sy,i+ 172, = sign(u1,i+1/2,5)-
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A good strategy is to use upwind approximation of u}r according to
(9.7.14) if Rey,i+1,2,; > 2 and otherwise central approximation according to
(9.7.10). Convergence of iterative methods is generally enhanced by making
the switch between upwind and central approximation smooth, as follows

utr=wnivi2putr+ (1 —eniv2,)ulr (9.7.15)

with uf . given by (9.7.14) and ulr. given by (9.7.10). Note that (9.7.15)
can be written as

utp=3{uty+utici+oniv2i(ug|wg— | uie| wiv,))

(9.7.16)

Here wi,i+1/2,j = w(Rewi+1/2,5), with w(r) a switching function which increases
from 0 to 1 in the vicinity of r= 2, and may be given for example by

w()=0, 0<r<19
w(r)=(r-1.9)0.1, 19<r<?2 9.7.17)
wir)=1, rz2

The function w(r) does not need to be chosen precisely this way, and it is easy
to think of different prescriptions, avoiding IF statements if one so desires for
purposes of vectorized computing.

In cells where the scheme has switched to upwind discretization the
numerical viscosity due to the discretization error exceeds the physical vis-
cosity. To be more precise, the local discretization error in the upwind
discretization of (#%),; is approximately u,Au;, 11, which exceeds the physical
term Re 'uy,11 if Re; > 2. The term Re™'u;,11 may as well, therefore, be
deleted under these circumstances. This we will do by multiplying the discrete
approximation of (u;,1)r (which is still to be specified) by 1 — wy,i+1/2,5. The
resulting scheme is often called the hybrid scheme, and has been introduced
by Spalding (1972). It is further discussed by Patankar (1980). Needless to say,
the physical flow is not approximated at the true value of Re with the hybrid
scheme if Rey > 2, a =1 or 2. Defect correction as described in Section 4.6
may be used to approximate the physical situation for Re 1 more closely.
A second-order discretization is immediately available by putting w, = 0.

The treatment of the term u? g is similar to that of #% . The term (u1u2)c
has to be treated a little differently, because u; and w are not given in the
same point. The procedure is a straightforward adaptation of what was just
done for ulr. We write

(u1t2)G = U2,i-1/2,j+141,G (9.7.18)
where

U2,i-1/2,j+1= %(uc + up) = %(uz,i,jﬂ +u2i-1,j+1) 9.7.19)
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and u;,¢ is approximated with the hybrid scheme:

u1,6c = 2 (U1, + Ui+ 1)

(9.7.20)
oo =5 {(1 + s2,i—1/2,j+ DL+ (1 — $2,i—1/2,j+ 1)UL, j+ 1)

with §2,;_1/2,j+1 = sign(uz,i—1/2,j+1). We define the following mesh Reynolds
number:

Rezi—1s2,j+1=|u2i-1/2,j+1| h Re 9.7.21)

The resulting hybrid approximation of (#:1u42)c can be written as

(1u2)a = § {U2,i-172,5+ 1(L,5 + U1 i j+1)
+ @2,i-1/2,j+1 | Uz i- 1241 | (Wi — uij+ 1)) (9.7.22)

where wz,i-1/2,j+1= w(Rez,i-1/2,j+1). The viscous flux (u1,2)c is multiplied by

d — wz,i—1/2,j+1, if the hybrid scheme is applied.

Note that upwind approximation is not applied to u#», but to u;. This is as
it should be, since in the convection—diffusion-like Equation (9.7.6) with
a =1, uy is to be regarded as unknown, and u; is to be regarded as (and will
be in the iterative method to be described) a known coefficient.

De Henau et al. (1989) have proposed a method to improve the accuracy
of the pressure when upwind discretization is used.

Linearization of convection terms

In iterative solution methods the convection terms are to be linearized. In the
framework of the non-linear multigrid algorithm a natural way to do this is
as follows. Before smoothing starts an approximate solution #, has already
been generated by the non-linear multigrid algorithm. Equations (9.7.16) and
(9.7.22) are replaced by

utF =% (g + dnie 1, ULiv g

+ wniv /20 di | ung — | Bivri W)} 9.7.23)
and

(uiu2)c =3 (l2,i—172,j+ 1(01 55 + Us,ij+1)
R + w2 1/i,j+[ | ﬂZ,i— 172,j+1 l (ul,ij — ULij+ l)] (9'7'24)

ky

and Re, is evaluated using #,.
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Approximation of the remaining terms

The pressure term in (9.7.9) can be maintained as it stands:
—hp|i= —h(pij— Pi-1.)) 9.7.25)
For (u;,1)r one takes of course
@, )F = (1 ~ wiir12,) @417 — Uil h (9.7.26)

and similarly for the remaining viscous terms.

The equation for w2 (@ =2 in (9.7.6)) can be discretized in the same way.
Now finite volume integration takes place over a control volume that is shifted
vertically, with centre at the point where u5,;; is located. An additional buoy-
ancy term 1Gr Re~%(Ty; + T;,j-1)h? appears in the right-hand side. Space dis-
cretization of the temperature Equation (9.7.7) takes place by integration over
the control volumes ;; defined for the mass conservation equation. The con-
vection term is again approximated by the hybrid scheme, according to the
principles just discussed. Details are left to the reader.

Boundary conditions

This not being a text on computational fluid dynamics, it would lead too far
to discuss all possible boundary conditions that occur in practice. For brevity
it is assumed that the velocity is prescribed on the boundary. Let the u; cell
ABCD of Figure 9.7.2 lie at the lower boundary, i.e. AB is part of the
boundary, where u, is given. Where the interior scheme asks for u;,, this is
eliminated using

u,i0 = 2U1,E — U1,il 9.7.27)

The u equation is handled similarly. The temperature may be either
prescribed at the wall (Dirichlet condition), or the wall may be thermally
insulated:

aTlan=0 (9.7.28)

(homogeneous Neumann condition). Other cases will not be considered. In
the Dirichlet case one proceeds in the same way as for the #; equation. In the
Neumann case one has to approximate T, at the boundary, which is simply
replaced by 0, of course.
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Time discretization

Introductions to methods suitable for the approximation of time-dependent
solutions may be found in Fletcher (1988) and Hirsch (1990). Here we will
restrict ourselves to the steady case, where the pay-off of multigrid is greatest.

Summary of the discrete equations

The discretized Boussinesq equations can be summarized as follows. The
system of equations can be written as

Q)@+ Gapiy— FoaTij=5« a=1,2 (9.7.29)
Qe)(@)Tii= 53 (9.7.30)
Galta,ij= 54 9.7.31)

where the source terms s, s3 and sy arise from the boundary conditions, and
the notation () indicates that the summation convention does not apply. The
operators in these equations are defined as follows. The equations resulting
from the finite volume procedure are scaled with appropriate powers of A,
such that the operators in (9.7.29) to (9.7.31) approximate the differential
operators occurring in the Boussinesq equations. We have, according to
(9.7.9) (after scaling by 1/A*):

Gipij = (P — pi-1, )R, Gapii=(Di.j— Pii-1)|h (9.7.32)

As already suggested by the notation, G2 is the adjoint (transpose) of G (t0
show this is left to the reader) and is given by

G Fuy= (g — uric1, Db, Giuziy= (uz,i—uzi+)fh  (9.7.33)

Furthermore,

2

FoTy=" 62 Gr Re™(Ty+ Tijo) 9.7.34)
and

Qe)(#)her,if = Cree)(@) Uhaij + D)) U ij (9.7.35)
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Here C«)(i#)u.,;j represents the convection terms, and is found to be given by

_ 1 sty N )
Cop@uy= 50 (@) 225+ wnisizi( @1 | w) s,
+apio1/,( @ un) |- 1,
+ i 1/2,j4 LG+ Ui+ 1) = B2,i- 172, (1,5 + Ui j-1)
+ (w2 | 2 Dic vz jertn | o1 + (w2 | @2 )iz 172,511 Igj_ ) (9.7.36)

. ) S
Coy(@)uz,;; = 2 @,i41,5- 17202, + Ui 1))

— i j- 1225 + uzi-1,) + (@ | B Dis1j- 12z |V, 1.
+ (w1 | @ Dij-rawz |+ @D 15T

+ wijev2| iz | w2l oy + w2, 12| 2 | u2)¥i-1) 9.7.37)

The diffusion terms are represented by D, )(fi)us,i; with

- 1 i "
Dy (@)ur = 7 Re (A — wriv12.)u |1+ A —wri-12.9u1 |71,

+(1 = i1y Dt | + (A — wriz |42 (9.7.38)

. 1 i .
Doy uzj =3 3p- (A = oriv1j-vua [+ (L= @rij- v |i-
+ (1= wzije1u2 |V + (A = i j- 12U “:{j— » 0.7.39

The tc?mpe.rature equation (9.7.30) can be similarly split in a convection part
and a diffusion part. The convection part is given by

- 1 . . .
Co(@)Ty= 5 @i+ 1,0(Tyj + Tivrj) — i (T + Tiz1,j) + (w1 | 1 Die1,5T | Y1)
+ (@1 | i DT o rj+ di2,ijo Ty + Tije 1)
— i (Tyj+ Tj-1) + (w2 | 2 it T |1 + (w2 | 2 DTV 1)
(9.7.40)

The derivation of the diffusion part D, is left to the reader.

Further remarks on the discretization of the incompressible Navier—Stokes
equations

The main advantages of the hybrid scheme and the staggered grid just
described are accuracy, stability, suitability for various iteration methods
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including multigrid, and the fact that this discretization is free of artificial par-
ameters. A disadvantage of the staggered grid is that we have no unknown
vector quantities in the grid points, but only components of vectors. This
encumbers the formulation in general coordinates, which is why we have
specialized to a Cartesian grid here. Work is, however, in progress on stag-
gered grid formulations in general coordinates; see for example Demirdzic
et 4l. (1987), Rosenfeld et al. (1988), Katsuragi and Ukai (1990), and Mynett
et al. (1991). Discretization in general coordinates is easier if all unknowns are
assigned to the same grid points (colocated approach). A colocated approach
can be followed by introducing artificial compressibility, modifying (9.7.2) to

za
9P tpu=0 9.7.41
8 Y, s (9.7.41)

For a discussion of this method, see Fletcher (1988) and Hirsch (1990). The
temporal behaviour of the solution makes no physical sense if 8 # 0, but when
steady state is reached a physical solution is approximated. Unfortunately, the
convergence of methods to iterate to steady state depends strongly on 8. Fur-
thermore, when steady state is reached the solution may contain unphysical
fluctuations. With 8=0 the colocated approach may still be followed if
certain derivatives are approximated by one-sided differences, or artificial
averaging terms are added. Publications where this approach is compared
with the staggered formulation are Fuchs and Zhao (1984) and Peric et al.
(1988). The price paid is loss of accuracy, and dependence on artificial
parameters. i
Another approach has been proposed by Dick (1988, 1988a, 1989a) and
Dick and Linden (1990), consisting of a flux-splitting discretization on a col-
ocated grid, in the spirit of the compressible case. This discretization is stable
and allows efficient iterative solution methods, but is only first-order accurate.
There are many publications using the staggered and the colocated formu-
lations; we refrain from giving a survey. Both approaches are in widespread
use. <.
" Of course, it would be very attractive to be able to handle both the incom-
pressible and the compressible case by a unified method. A recent attempt in
this direction is described by Demirdzic et al. (1990); see this paper for further
references to the literature. The staggered formulation is used. We will not go
into this further.

Distributive iteration

We will now turn to multigrid methods for solving (9.7.29) to (9.7.31). The
special mathematical nature of the incompressible Navier—Stokes equations,
which led us to the use of the staggered grid formulation, also necessitates the
use of special smoothing methods, for example of the distributive iteration
type introduced in Section 4.6. As a consequence, we will have more to say
about smoothing methods than in the compressible case.

The incompressible Navier—Stokes and Boussinesq equations 245

The system of discrete equations (9.7.29) to (9.7.31) can be presented as

Q(l) 0 0 G u, 51
0 Qp -F G u\ | s
0 0 @ o\ 7]\ s 9.7.42)
Gi G3 0 0 p 54
The system (9.7.42) may be further abbreviated as
Ay=b>b (9.7.43)

If the unknowns are ordered linearly the operator A may be identified with
its matrix representation, but where convenient A will also be regarded as a
(finite difference) operator, so that it is meaningful to say, for example, A
equals zero in the interior.

Clearly, a classical splitting A =M — N with M regular and easy to invert
is not possible, because of the occurrence of a zero block on the main diagonal
in (9.7.42). Therefore smoothing methods for (9.7.42) cannot be of the basic
iterative type discussed in Chapter 4. The smoothers that have been proposed
are of the distributive type discussed in Section 4.6, that is, the system (9.7.43)
is postconditioned by a matrix B and the resulting system is split:

AB=M-N (9.7.49)
As shown in Section 4.6 the iterative method becomes
ym+1=ym+BM—l(b_Ayrn) (9.7.45)

The matrices B in (9.7.44) and (9.7.45) need not be the same.

The distributive smoothers that have appeared in the literature are usually
presented in various ad hoc ways, but fit in the framework given by (9.7.44)
and (9.7.45), as shown by Hackbusch (1985) and Wittum (1986, 1989b, 1990,
1990a, 1990b). The advantage of the formulation in terms of splitting of a
postconditioned operator is that this creates a common framework for the
various methods, facilitates analysis, makes the consistency of these methods
obvious, and makes it easy to introduce modifications that do not violate con-
sistency. However, identifying the operators B and M corresponding to the
methods proposed in the literature can be somewhat of a puzzle. We will,
therefore, do this for several methods. Most of these have been formulated
for simplified versions of (9.7.29), such as the Stokes or Navier—Stokes
equations, but generalization to the Boussinesq equations (9.7.42) is
straightforward.
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Distributive Gauss—Seidel smoothing method

This method has been introduced by Brandt and Dinar (1979) and formulated
in the form (9.7.45) by Hackbusch (1985). We choose the following postcon-
ditioning operator:

I1 0O G
Y U G2
B={o 01 o (9.7.46)
0 0 0 GiG,
This gives
Qu 0 0 Q:G: + G,G2G.,
*
- (xGa
aB=| © Qw -F  QG+GE (9.7.47)
0 0 Qe 0
G} G3 0 GG,

Note that the zero diagonal block has disappeared.

. For the Stokes equations (obtained by deleting the unknown T and the con-
vection terms) the first two elements of the last column vanish in the interior;
the proof is left as an exercise. This suggests the following splitting
AB=M-N:

P, 0 0 0
| o P, -F, 0

M= | o P, 0 (9.7.48)
G G3 0 R

where P, P; and R define further splittings of Q), Q) and GXG, such that
My = c is easily solvable. For clarity we present a possible method in full. The
basic algorithm is given by (9.7.45). We have

51 Qw 0 0 G\ /ul n
Caum_ | S2)_ 0 Qx -F; G: uf _{ "
b-Ay"=1 0 0 Q» O\ T rs
54 G} G’ 0 0 p" rs

(9.7.49)

A temperature correction 8 7" is computed by solving

P36T=r3 (9.7.50)
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Preliminary velocity corrections 8#, are computed by solving

Pl 0 6&1 _ ri
(0 Pz) (6172) h <rz + F26T> (9.7.51)

Next, a preliminary pressure correction 8P is computed by solving
RSP = ry — Gabdila (9.7.52)

As prescribed by (9.7.45) and (9.7.46) the final velocity and pressure correc-
tions are obtained as

5(;‘; - zlf(:, g_;ap (9.7.53)
The iteration step is completed by u™*'=ul+6u,, TT*'=T"+6T,
pm+1 = pm + Fy p.

In the distributive Gauss—Seidel method of Brandt and Dinar (1979) P, cor-
responds to point Gauss—Seidel iteration, and R = diag(G*G), corresponding
to point Jacobi, but other choices are possible , of course. Fourier smoothing
analysis of the distributive Gauss—Seidel method is described by Brandt and
Dinar (1979). The smoothing factor is found to be p =1/2 for the Stokes
equation.

Distributive ILU smoothing method

This method has been introduced by Wittum (1986, 1989b). The postcon-
ditioning operator B is the same as for the preceding method, but the splitting
of AB (given by (9.7.47) is provided by ILU factorization:

AB=LU~-N (9.7.54)

Theoretical background for this method, the distributive Gauss—Seidel
method and the SIMPLE method (to be discussed next) is given by Wittum
(1986, 1989b, 1990, 1990a, 1990b), for the Stokes and Navier—Stokes
equations. Numerical experiments (Wittum 1989b) show distributive ILU to
be more efficient and robust than distributive Gauss—Seidel.

SIMPLE method

The SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations)
has been introduced by Patankar and Spalding (1972) and is discussed in
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deiail in Patankar (1980). This method is obtained by choosing

I 0 0 -S{'G
o 1 0 -S7'G;
B=ly o 1 o (9.7.55)
0 0 o0 I

where Sz} is an easy to evaluate approximation of Q@). This yields

Qo 0 0 G- Q(l)sl_iGI
0 Q» -F: G- Q»S: G2
AB = 7.
0 0 Qs 0 (-7.56)

Gt G5 0 -GISi'G-G3:S:'G;

An appropriate splitting AB =M — N is defined by (9.7.48) where now R is an
appropriate splitting of — GTS1'G; — G387 'G;. Depending on the choice of
P., S, P3 and R various variants of the SIMPLE method are obtained. The
algorithm proceeds as follows. First, 87, 6i. and 8 are computed as before,
except that R is different. In the original SIMPLE method one chooses
S, = diag(Q)). This makes GIS1'G: + G387 'G; easy to determine; it has a
five-point stencil to which a suitable iteration may be applied, such as point-
or line Gauss—Seidel, thus determining R. The iteration is completed with the
distribution step, according to

Stty = Bily — waSz 'GadP (nO summation) 9.7.57)

8p = wpdp (9.7.58)

where w, and wp are relaxation parameters.

The Fourier smoothing factor of this type of smoothing method has been
determined by Shaw and Sivaloganathan (1988) for the Navier—Stokes
equations. For Re=1, which is close to the Stokes equations, they find
p =0.62. On the basis of multigrid experiments, Sivaloganathan and Shaw
(1988) advise to take we = 0.5, wp=1.

An ILU variant is obtained by using ILU factorization for (9.7.56). This
has been explored by Wittum (1990b), who finds, however, that distributive
ILU based on (9.7.47) is more efficient.

Symmetric coupled Gauss—Seidel method

This smoothing method has been proposed by Vanka (1986). The symmetric
coupled Gauss—Seidel (SCGS) method is best explained without using the
framework of distributive iteration (but see Wittum (1990) for a description

The incompressible Navier—Stokes and Boussinesq equations 249

as a ‘local’ distributive method). Each cell is visited in turn in some prescribed
order. The six unknowns associated with Qy, namely wiy, u1is+1,j, U2,ij,
U2, j+1, Tij and p;; are updated simultaneously. Hence, at a given stage during
the course of an iteration, some variables have already been updated, others
not, similar to Gauss—Seidel iteration. Note that the velocity variables are
associated with two cells (for example, u,,;; belongs to Q;_;,; and Q;;). Hence
they are updated twice during an iteration. Let the residual before the update
of Q;; be given by

ry 51 Qw 0 0 G, iy
rpli_{(s)_[ 0 Q» -F G: || &

rs S3 0 0 Qo 0 7 (9.7.59)
7 Sa, G} G? 0 0 )7,

where (diy, 2, T, p)T represents the current approximate solution. The correc-
tion (8u,, 6uz, 8T, 5p) required to obtain the final solution satisfies

Quw 0 0 G, Suy r

0 Q(z) -F G, ouz | n

0* 0 Qs 0 T rs (9.7.60)
Gi G: 0 0 ép rs

In Gauss—Seidel fashion, the correction is put zero in all cells except Q;;. This
results in a local 6 x 6 system for the six unknowns associated with Q;; which
may be denoted by

@i Aisrj 0 0 0 h! duy ij

AQ2,ij  A2i+1,j 0 0 0 . 5141_,‘..,1,]'

0 0 asij Qs j+1 by i h! buy i

0 0 asij Gaij-1 biijer —h7 || Suz i

0 0 0 0 baij 0 8Ty

R~ —m' BTt —ptt g 0 8Dij
Ty
Tiivl,j

=| ™ | @161

r2,i,j+1
T3 i
Ta,ij

The values of the coefficients in (9.7.61) are easily deduced from (9.7.32) to
(9.7.40). The system is simplified by dropping some terms, and damping is
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introduced by dividing the diagonal elements by damping factors. The system
replacing (9.7.61) is given by, solving 67;; from (9.7.61),

al,,-,-/al 0 0 0 h_l 6u1,,-,-
0 az,i+1,jl01 0 0 -h! Uy iv1,j
0 0 as,ijl o2 0 h? dua i
0 0 0 asje1foz — ! Suz i, j+1
ht -n! Al —-h? 0 opij
rij
i+ 1,j
= rai— b1,ii8 T (9.7.62)
rzij+1—b1ij+ 18Ty
I‘4,ij

This system can be written in the following partitioned form

A A VU1 _ (b
(A; 0 ) (Uz) = (b2> (9.7.63)

and is solved by the following explicit formula:
Ur=AT (b1 - Alh) Un=(ATAT!b - b2)|ATAT'A; (9.7.64)

We put 1,5 = f1,i + duy,i etc., recompute the elements of 71, r2, r3, 74 that are
affected by the update of #, and T, and proceed with the next cell. The
method is called symmetric because the four velocity variables associated with
a cell are treated the same way, it is called a coupled method because the six
unknowns associated with a cell are updated simultaneously, and it is called
a Gauss—Seidel method because the cells are visited sequentially in
Gauss—Seidel fashion.

Suitable values for the underrelaxation factors ¢, must be determined
empirically. Usually one can take o; = 02, and optimum values are found to
vary between 0.5 and 0.8 (Vanka 1986), decreasing with increasing Reynolds
number. Wittum (1990) finds, however, that with o, =1 SCGS is still an
acceptable smoother. This paper also shows that it does not pay to solve
(9.7.61) instead of (9.7.62).

Fourier smoothing analysis results for the SCGS method are presented by
Shah et al. (1990). For Re =1 they find p =0.32 with a1 =02 =0.7. These
authors also present a more efficient version, in which the pressure variables
in rows or columns of cells are solved in a coupled manner (but not the velo-
cities) by solving tridiagonal systems. Wittum (1990) gives numerical multigrid
results comparing distributive ILU variants with SCGS, finding that ILU is a
little more efficient. Sivaloganathan ef al. (1988) find SCGS to be more effi-
cient than SIMPLE smoothing.
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Further remarks on smoothing methods

The temperature equation is a convection—diffusion equation, but also the
momentum equations are basically of this type. This is reflected in the
iterative methods just discussed. For example, the operators P, P; in (9.7.48)
correspond to an iteration method for a single convection—diffusion equation,
so that the smoothing analysis presented in Chapter 7 carries over directly.
Keeping in mind that flow direction is variable and that mesh Péclet numbers
are often large in fluid dynamics, it follows that P,, P3 should correspond to
a robust smoothing method for the convection—diffusion equation, a number
of which have been identified in Chapter 7. When large mesh aspect ratios
occur P, P; should also be robust for the anisotropic diffusion equation,
unless semi-coarsening is used.

In Vanka’s method the equations remain coupled, and no single convec-
tion—diffusion is operated on during an iteration. The lessons learned in
Chapter 7, however, carry over qualitatively. For example, the order in which
the cells are visited with the SCGS method should be such that when this order
is used in a point Gauss—Seidel method for the convection—diffusion test pro-
blem, we have a smoother. When large mesh aspect ratios occur all unknowns
(not just the pressure, as in the SCGS version proposed by Shah et al. (1990))
in rows and/or columns of cells must be updated simultaneously; for distribu-
tive ILU no change is required. This leads to simple tridiagonal systems,
except in the case of SCGS, where the system for the unknowns in rows or
columns is more involved; however, Thompson and Ferziger (1989) report an
increase of only 50% in computing time per sweep as compared to cell-wise
SCGS.

The remarks made in Chapters 4 and 7 on vectorized and parallelized com-
puting also carry over to the present case, at least qualitatively. Vector and
parallel implementation of the SCGS method is discussed by Vanka and
Misegades (1986), who propose to visit the cells in the white—black
Gauss—Seidel order given in Section 4.3.

Coarse grid approximation

It suffices to consider only one coarse grid. Coarse grid quantities are denoted
by an overbar. The coarse grid cells are obtained by taking unions of fine grid
cells (cell-centred coarsening, cf. Section 5.1), as follows:

Qi = Qaizj U Daim 1,2 U Qai2j—1 U Qaim1,1j-1 (9.7.65)

cf. Figure 9.7.3. The coarse grid equations are obtained by discretizing the
differential equations on G in the same way as on G.
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Figure 9.7.3 Coarse and fine grid cells.

Accuracy rule for transfer operators

The transfer operators are assumed to be of block-diagonal form. That is, for
example, with r= (71, 72,73, 74)* defined by (9.7.49), we have

N -.'{";,

Rr= (Rir1, Rorz, Rars, Rara)* (9.7.66)
and similarly for prolongation, writing y = (u1, uz, T, p)*:
P} = (P;ul, quz, P3T, P4p)T (9.7.67)

The accuracy rule for the transfer operators (5.3.18) generalizes to our system
as follows:

mp,+ mg,>2m;,, s=1,2,3,4 (9.7.68)
where 2m; is the order of differential equation number s:
2my=2my=2my=2, 2my=1 (9.7.69)

The theory developed by Wittum (1990a) assumes accuracy of higher order
than prescribed by (9.7.68), but (9.7.68) is found to suffice in practice.

Restriction

Since the residuals may be regarded as integrals over finite volumes, a natural
way to define Ryrs, s=1,2,3 or 4 is to add contributions from the appropriate
fine grid cells, followed by scaling following the scaling rule (5.3._16). Let us
call the shifted finite volume for the #:,; momentum equation $;-1/2,; (cf.
Figure 9.7.2). This consists of the unions of the following shifted fine grid
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finite volumes: @i-3/22j, i-322j-1 and half of Qai-sn2;, Qai-s2.2i-1,
i-12,2 and Qa;_1/2,2j—1. This gives

Rirn)i=5{rai-1,2i+ 2121+ 2(n2-22j
+r2i-2,2j-1+n2i2j+ n2i2i-1)} (9.7.70)

Similarly, one obtains

Ror2)y =% {r22i-12j-1+ r2i2j-1 + $ (r2,2i-1,2j-2
+r22i2i-2+ r22i-1,.2; + r22i2))  (9.7.71)

(Rors)ij = §(rs,2i2j + Fs2i- 1,2 + Fs2i2j—1+ Fs2i=1,2j-1) (9.7.72)

for s=3,4. This defines the restriction operator in the non-linear two-grid
algorithm TG presented in Section 8.2. If the approximate coarse grid sol-
ution & occurring in TG is obtained by (8.2.5) then an additional restriction
operator R is required, operating not on the residuals but on the unknowns.
R may be defined by interpolation:

Ryur)y =3 (r,2- 1,2+ U1,2i-1,25-1) (9.7.73)
(Raoutz )y = 3 (U2,2i2j-1 + U2,2i-1,2j-1) (9.7.74)
(RsT)y =3(Toizj+ Tai-125+ Trizj—1 + Taic1,2j-1) (9.7.75)

and Rup is defined similar to R;T.

Prolongation

Prolongation may be defined by bilinear interpolation. This gives

— l — — - -
Prity )2i2j = g Blr,ij + 301,54 1,5+ Trije1 + Hyiv1,ja1)
- 19 - - -
(Prity)2i,2j-1 =g By ij + i1, j + Ar,ij-1 + Brisr,j-1)

P1l1)2i-1,2j = 1305 + B j+1) ©-7.76)
(P1#t1)2i-1,2j-1 =5 Bty + ui j-1)
Determining P>#%; is left to the reader. For P37 one obtains
(1137')2:,21' = #(9@,' + 37:':'+ 1+ 3Tije1+ Tivrje1)
P3T2i-12j =76 OTy+ 3Ti-1,j+ 3Tijer + Tic1,j+1) ©9.7.77)

®P32i2j-1 =0Ty +3Tis1,+ 3T j-1+ Tivrj-1)
®3T)2i-12j-1=15OTj+3Ti-1,j+3T1j-1+ Ti-1,j-1)

P.p is defined similar to P3T.
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_These transfer operators satisfy
mp,=2, mg,=1 (9.7.78)
Hence, the accuracy rule (9.7.68) is satisfied. For P4 one could also use
| (PP )aizj = Paplri—1,2i= Papl2izj—1= Paphi-1,2-1=py. (9.7.79)

which gives mp, = 1, still satisfying (9.7.68). Niestegge and Witsch (1990)
present Fourier two-grid analysis results for the Stokes equations, comparing
various smoothing methods and transfer operators, confirming that the
transfer operators defined above will work.

Application to a free convection flow

We will now describe the application of the multigrid method just described
to the computation of a flow problem described by Roux (1990, 1990a). The
domain is a rectangular cavity, see Figure 9.7.4. The height of the cavity is
taken as the unit of length. The aspect ratio is ». The temperature equals 71
at xy=1 and Ty + Ty at x; =0. Taking advantage of the fact that the
Boussinesq equations leave the velocity field invariant under addition of a
constant to the temperature (cf. Exercise 9.7.3) we define the dimensionless
temperature by

T=(T-T)|To (9.7.80)

The horizontal walls are perfectly conducting, so that there T varies linearly.
This gives the following Dirichlet boundary conditions for T’

TO,x)=1, T@, x2)=0, T(x1,0)=7T(x1,1)=(—x1)[r (9.7.81)

The walls are at rest, so that #, = 0 at the boundary. The other physical quan-

od

r

Figure 9.7.4 Rectangular cavity for free convection flow.
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tities that determine the problem are (cf. (9.7.3) (9.7.4)) v, g and u. The unit
of length L is the height of the cavity. This specifies the Grashof number:

Gr = ygL*To/v? (9.7.82)

The flow is completely driven by the buoyancy force, represented by the last
term of (9.7.3). A reasonable velocity unit U is, therefore, such that this term

has coefficient 1 in the dimensionless form (6). This implies Re = Gr/?, or

U= (vgTo)'? (9.7.83)

The resulting dimensionless equations are given by (9.7.2) (9.7.6) and (9.7.7),
with Re = Gr'/2. Note that in Roux (1990, 1990a) the Grashof number is
defined a little differently, and equals Gr/r. We take r=4, and Pr < 1.

Physical characteristics of the flow

The resulting flow has the following interesting features. For Gr < 10° a
steady flow results. This flow is centro-symmetric and consists of a main
central cell and two adjacent small cells (called the S;» state). For Gr = 10°
the steady flow becomes unstable, and bifurcates to a laminar unsteady flow.
At Gr = 1.2 x 10° the flow is periodic and centro-symmetric, but after several
tens of periods suddenly changes to a quasi-periodic flow which is no longer
centro-symmetric. At Gr=1.2x10° and Gr=2x 10° a steady flow also
exists, which is centro-symmetric and has two cells; this is called the S; state.
At Gr = 1.6 x 10° also an oscillating solution exists, which after many periods
suddenly switches to the S, state. These features, described by Roux (1990,
1990a) have been found by a number of investigators by numerical means.
Their reproduction is a demanding test for numerical methods. For example,
the hybrid scheme misses the transition from the S;, state to the periodic state,
because the numerical diffusion is too great, unless a very fine mesh is used,
such that the hybrid scheme is switched to the central scheme.

Application of a multigrid method

The work to be described here has been carried out in cooperation with Zeng
Shi (Tsinghua University, Beijing). Both time-dependent and time-
independent calculations have been carried out. Denoting the nonlinear
stationary discrete equations described before by

A)=0b (9.7.84)
the time-dependent discrete equations are chosen as follows

" -y M)At +0A (YT + (1 — DAY =6 + (1 —0)b"  (9.7.85)
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where the superscript n denotes the time level. We take 0= 1/2
(Crank—Nicolson scheme). Hence, for every time step one has to solve

yr+l L AIA (Y™ ) =y — (1 — 0)ATA(Y") + 0AtD™ ! + (1 — O)AD"  (9.7.86)

Both (9.7.84) and (9.7.86) are solved with the non-linear multigrid algorithm
with adaptive schedule, of which the structure dlagram is given in
Figure 8.7.2. First, nested iteration is applled which gives us 7*. Next multi-
grid iteration is applied to (9.7.84), taking y k from the preceding iteration. In
the time-dependent case the solution of (9.7.84) is taken as initial solution; y*
is obtained from the preceding iteration or the preceding time level, as the case
may be. Of course, solving (9.7.86) with the same method as used for (9.7.84)
may not be the most efficient; for special multigrid methods for parabolic
initial value problems see Hackbusch (1984a, 1985) and Murata et al. (1991).

The multigrid method is further specified as follows. One pre- and one post-
smoothing is carried out with the SCGS method with ¢ = 0.6. On the coarsest
grid 11 smoothings are carried out. The parameters governing the multigrid
schedule are tol = 1078, 6 = 0.2. The residual norm is defined by

4 172
nru={z ||r,||2} L M= NS g s %3
s=1 b (9.7.87)

|| 3]|> = Pr*N3! § r}i

where N; is the number of grid points associated with r;. We scale || r3]|* with
PZin order to balance the residuals for Pr < 1, thus avoiding to demand much
more accuracy for T than for the other unknowns. After the multigrid method
has converged defect correction may or may not be applied.

The stationary case

Solutions are computed for Gr=10"° and Pr=0.15x 10"'!, on grids with
64 % 16, 128 x 32 and 256 x 64 cells. The coarsest grid has 8 x 2 cells. Defining
the work unit (WU) as the cost of one smoothing on the finest grid, the sol-
ution on the three grids with one defect correction is obtained in about
140 WU (counting only smoothing work), showmg a mesh-size-independent
rate of convergence. Note that with tol = 10~% we converge well beyond engin-
eering accuracy, and probably also well beyond discretization accuracy, which
we did not try to estimate. The solution on the 256 x 64 grid is shown in
Figure 9.7.5(a). It is centro-symmetric, and in close agreement with the results
of other authors as presented in Roux (1990, 1990a). This is the S;» state
referred to earlier. The solution on the 128 x 32 grid is quite similar to the one
on the 256 x 64 grid, but on the coarser grids the two smaller vortices are not
resolved. Without defect correction the solution is quite similar to the one
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Figufe 9.7.5 Streamline patterns for free convection problem. For further infor-
mation, see the text.

with defect correction on the 256 X 64 grid, presumably because the hybrid
scheme is largely switched to the central scheme on this fine grid. On the
128 x 32 grid, however, the hybrid scheme does not resolve the two small
vortices.

.Although the savings in computing time due to multigrid are very great in
this case, it is hard to estimate these savings, because SCGS is not a very good
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single grid iteration method. In the first 100 work units SCGS as a single grid
méthdd drives down the residual norm by about a factor 10, but the next
factor 10 requires about 1000 WU.

In computing Navier—Stokes solutions for the flow in a driven cavity, of
which no further details will be given here, it was found that the ratios of the
computing times using the adaptive multigrid schedule used here, the W-cycle
and the V-cycle was roughly 1:1.3:2.7; these figures are approximate and
problem-dependent. It is found that the adaptive schedule expends relatively
more effort on the coarser grids than the W-cycle and, a forteriori, than the
V-cycle.

The non-stationary case

Non-stationary calculations are carried out on the 128 X 32 grid. We take
Gr = 1.2 x 10°, Pr=0.15 x 10~ and A¢ = 2, which is about 1/8 of the period
of the oscillations that should occur. Without defect correction no oscillations
occur, which is thought to be due to the damping effect of the numerical vis-
cosity inherent in the hybrid scheme. With defect correction periodic oscil-
lations occur with flow patterns closely resembling those found by other
authors (Roux 1990, 1990a). The cost of a time-step is about 23 WU. The flow
pattern is centro-symmetric. The computations were not continued long
enough to observe the transition to quasi-periodic oscillations which should
occur.

Choosing At =2 and Gr = 1.6 X 10° periodic oscillations with period about
20 are found, followed by a transition lasting from ¢ = 200 until ¢ = 280 to
thé,S_} ‘state, which persists. The S state is shown in Figure 9.7.5(b). Figures
9.7.5(c,d) give flow patterns, half a period apart, which occur during the
periodic osciflations preceding transition. With Az =1 transition takes place
from £ = 240 until ¢ = 280. These results and the observed flow patterns are
in agreement with the results presented in Roux (1990, 1990a).

It could have been thought that the multigrid method might have trouble
computing this kind of flow, because on the coarse grids with the hybrid
scheme the correct solution branch cannot be found. We have, however, seen
that this difficulty does not materialize, and that it is sufficient to drive the
non-linear multigrid algorithm with the correct residual on the finest grid.

We may conclude that the non-linear multigrid method combined with
defect correction is a dependable, robust and efficient method to solve compli-
cated problems from computational fluid dynamics.

Literature

There is a rapidly growing literature on the application of multigrid methods
to the numerical solution of the incompressible Navier—Stokes equations.
A (no doubt incomplete) list of recent publications using the staggered
formulation is: Arakawa et al. (1988), Becker et al. (1989), Bruneau and
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Jouron (1990), Fuchs (1984), Fuchs and Zhao (1984), Hortmann ef al. (1990),
Lonsdale (1988), Maitre et al. (1985), Shaw and Sivaloganathan (1988, 1988a),
Sivaloganathan and Shaw (1988), Sivaloganathan et al. (1988), Thompson
et al. (1988), Thompson and Ferziger (1989), Vanka (1985, 1986, 1986a,
1986b, 1987), Vanka and Misegades (1986) and Wittum (1989b, 1989¢, 1990,
1990a, 1990b).

The colocated formulation is employed by Barcus et al. (1988), Majumdar
et al. (1988), Michelsen (1990), Orth and Schéning (1990) Dick (1988, 1988a,
1989a), and Dick and Linden (1990).) Compared with single grid methods,
large speed-up factors are found that increase when the grid is refined to 100
and beyond.

Exercise 9.7.1. Prove that for the Stokes equations the first two elements of
the last column in (9.7.47) vanish in the interior.

Exercise 9.7.2. Show that G (defined in (9.7.33)) is the adjoint of G, (defined
in (9.7.32).

Exercise 9.7.3. Show that the Boussinesq equations (9.7.2), (9.7.6) and (9.7.7)
have the following property: if ua,p,T is a solution, then u.,
p+Gr-Re 2ATx,, T+AT is also a solution (provided the boundary
conditions for T are adjusted accordingly).

9.8. Final remarks

An introduction has been given to the application of multigrid methods in
computational fluid dynamics. The subject has been only partially covered.
No mention has been made of computation of flow in porous media (reservoir
engineering), where the use of multigrid methods is also developing (see for
example Behie and Forsyth 1982, Schmidt and Jacobs 1988, Schmidt 1990).
We have also neglected the subject of grid generation, where multigrid
methods are evolving rapidly, especially for the purpose of adaptive dis-
cretization. In the application areas discussed multigrid methods have been
investigated thoroughly, generating enough confidence to stimulate wide-
spread use, permitting large gains in computing time and bringing larger scale
models within reach.
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irreversible thermodynamic process 221
isentropic 221
iteration error 193
iteration matrix 11, 37, 97, 143, 161,
184, 185, 187

Jacobi 6, 39, 43, 46, 59, 132, 247
Jacobi smoothing 118
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Jordan 38
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K-matrix 39, 40, 46, 78, 85, 86, 96,
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Kaczmarz 59

k — € turbulence model 234
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kinematic viscosity coefficient 209

Kutta condition 220, 221
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Laplace 39, 119, 124, 151, 152, 154,
204
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large eddy simulation 210
Lax—Wendroff 34, 225
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line LU factorization 54
linear interpolation 66, 68, 69, 72, 73,
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linear multigrid 168
algorithm 173
code 217
method 187, 222
linear two-grid algorithm 10, 169, 170,
171, 173
linearization 240
local discretization error 22
local linearization 222
local mode 105
smoothing factor 105, 106
local singularity 200
local smoothing 118, 200, 204
local time-stepping 163
locally refined grid 208
loss of diagonal dominance 85
LU factorization 45, 47
lumped operator 75

M-matrix 30, 31, 32, 39, 40, 41, 43, 53,
57, 58, 227

MacCormack 225

Mach number 209, 213

mapping 15, 213, 215, 216, 218

mass balance 209

mass conservation 211, 235
mass conservation equation 212, 220,
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matrix-dependent prolongation 74, 75
memory requirement 211
mesh aspect ratio 115, 251
mesh Péclet number 30, 40, 86, 117,
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mesh Reynolds number 238, 240
mesh-size independent 71
metric tensor 214, 215
MGO00 200, 201
MGCS 201
MGD 200, 201
microchips 1
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121, 127, 132, 142, 143, 144,
147, 155, 156, 157, 167, 234
mixed type 213
model problem 4, 7, 8
modification 48, 49, 50, 52, 145
modified ILU factorization 47
modified incomplete factorization 134
modified incomplete LLT 204
modified incomplete point factorization
47
momentum balance 209, 236
momentum conservation 211
momentum equation 212, 237, 251
monotone scheme 225
monotonicity 225, 227
MUDPACK 200
multi-coloured Gauss—Seidel 150
multigrid 3, 15
analysis 11
algorithm 2, 36, 96, 115, 168, 184,
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bibliography 2, 218
cycle 173
code 93, 115, 181, 201, 204
contraction number 199
convergence 88, 115, 167, 184, 188,
204
iteration matrix 184
literature 2
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principles 3, 201
program 2, 13
schedule 95, 168, 173
software 199, 200
work 178, 180
multistage method 161, 162, 163
multistage smoother 164
multistage smoothing 160, 166
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nested iteration algorithm 183, 189
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neutron diffusion 206
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nine-point IBLU 54, 55
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nine-point stencil 150, 233
no-slip condition 232
non-dimensional 236
non-linear multigrid 217, 231
algorithm 171, 174, 188, 222, 229,
230, 240, 256, 258
methods 70, 201, 228, 258
non-linear smoother 217
non-linear theory 188
non-linear two-grid algorithm 169, 253
non-consistent 88
non-orthogonal coordinates 234
non-recursive 196
formulation 168, 194
multigrid algorithm 195, 197
non-robustness 205
non-self-adjoint 57
non-smooth 6, 7, 13, 107
part 92, 93
non-symmetric 13, 98, 205
non-uniform grid 235
non-zero pattern 5
numerical experiments 206
numerical software 201
numerical viscosity 239, 258

one-sided difference 244
one-stage method 162, 163
operator-dependent 80
prolongation 73, 74, 78, 86
transfer operator 73, 76, 85, 201, 207
vertex-centred prolongation operator
77
optimization 3
order of the discretization error 189
orthogonal decomposition 92
orthogonal projection 92
orthogonality 6, 99, 100, 102, 103
outflow boundary 32

packages 201

parabolic 3, 212
boundary conditions 5, 6
initial value problem 256

parallel computers 53

parallel computing 43, 44, 46, 118, 132,
152, 214, 251

parallelization 57, 121, 157, 166, 167

parallelize 123, 230

parallel machines 46, 81

particle physics 3

pattern recognition 3

pattern ordering 132

Péclet 30, 152

perfect gas 212

perfectly conducting 254

periodic boundary conditions 5, 6, 7,
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113, 118, 154, 162

periodic grid function 6

periodic oscillation 258

piecewise constant interpolation 68

plane Gauss—Seidel 167

PLTMG 200, 201

point Jacobi 42, 118, 119, 122

point-factorization 134

point Gauss—Seidel 42, 43, 46, 95, 128

point Gauss—Seidel—Jacobi 44, 125

point-wise smoothing 166

Poisson 2, 95, 201, 216

Poisson solver 152, 201

porous media 259

post-conditioning 58, 246, 247

post-smoothing 11, 12, 95, 170, 177,
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post-work 179

post conditioned 245

potential 210, 211, 212, 213, 219, 220,
221

potential equation 210

power method 95

Prandtl 236

pre-smoothing 11, 93, 95, 170, 173,
176, 177, 185, 256

pre-work 179

preconditioned conjugate gradient 183,
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preconditioned CGS algorithm 205

preconditioned system 202, 203, 204

preconditioner 205

preconditioning 58, 204, 207

pressure 211, 219, 237, 247, 250, 251

pressure term 241

program 169, 172, 175, 176, 182, 194,
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235, 252, 253
operator 182
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QR factorization 88
quasi-periodic flow 255
quasi-periodic oscillation 258
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203, 204, 205, 207, 256

recursion 194

recursive 178

recursive algorithm 172, 173, 174, 175

recursive formulation 168
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relaxation parameter 248
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residuial averaging 167

rest matrix 48
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retarded density 221, 223
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grid function 92
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shifted finite volume 237, 252
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shock wave 225
SIMPLE method 247, 248
SIMPLE smoothing 250
simple iterative method 179
simply connected 218
single damping 155, 156
single grid work 180
singular 86, 87, 88, 118, 178, 200
singular perturbation 7, 98, 181
singularities 181, 204
skewed 234
small disturbance limit 222
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grid function 92
modes 163
part 8, 92, 93, 108
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smoothing 10, 199
algorithm 168, 181
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convergence 97
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iteration 105, 181
iteration matrix 89
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168, 184, 200
number 94
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Sobolev 15
software 200
software tools 200
solution branch 258
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sparsity 67, 178
sparsity pattern 80
specific heat 212
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split 36
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120, 123, 125, 130, 227, 245,
246, 247, 248
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stability domain 163, 164
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staggered formulation 258,
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stochastic 209
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storage 1, 45, 49, 50, 52, 80, 176, 177,
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strong coupling 136, 154
strongly coupled 125, 166
structure 48, 49, 50, 62, 80, 82, 83, 84
diagram 168, 194, 195, 196, 199, 256
structured grid 213, 214, 215
structured program 194
structured non-recursive algorithm 168
subroutine 95, 159, 169, 170, 171, 172,
173, 174, 175, 176, 178, 179,
182, 184, 194, 196, 199, 200

subsonic 213, 219, 222, 224
successive over-relaxation 6
supercritical flow 231
superlinear 178
supersonic 213, 221, 222, 224
switching function 222, 239
symmetric 22, 47, 53, 77, 84, 96, 97,
116, 131, 204
collective Gauss—Seidel 231
coupled Gauss—Seidel 248
Gauss—Seidel 125
horizontal line Gauss—Seidel 44
IBLU factorization 57
ILU factorization 53
point Gauss—Seidel 46, 53, 128, 129
positive definite 59, 94, 97, 202, 205,
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vertical line Gauss—Seidel 131
symmetry 67, 68, 69

Taylor 23

temperature 211, 235, 236, 241, 246,
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temperature equation 243, 250

tensor analysis 214

tensor notation 224

test problems 115, 116, 117, 128, 129,
132, 160, 167, 205, 206, 207,
223, 230, 251

thermal expansion coefficient 235, 236

thermally insulated 241

thermodynamic irreversibility 35

three dimensions 167

three-dimensional smoothers 167

time discretization 34, 228, 234, 242

time-stepping 160

tolerance 176, 198

topological structure 214

total energy 211

trailing edge 220, 221

transfer operator 15, 60, 62, 66, 71, 76,
89, 94, 168, 222, 252, 254

transient waves 228

transonic 213, 218, 222, 223

transonic potential equation 224

transpose 9, 64, 242

tridiagonal matrix 46

tridiagonal systems 44

trilinear interpolation 67, 69, 72

trivial restriction 189

truncation error 67, 182, 183, 192

turbulence 209, 234

turbulence modelling 210

turbulent eddies 209, 210
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turbulent flow 210

two-grid algorithm 8, 10, 13, 79, 87,
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two-grid analysis 11, 89

two-grid convergence 79, 92, 184

two-grid iteration 10

two-grid iteration matrix 90

two-grid method §, 8, 10, 89, 91

two-grid rate of convergence 90, 91

under-relaxation 127
under-relaxation factor 250
uniform ellipticity 14
unique 88
uniqueness 15
unstable 164, 165
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approximation 239
difference 117
discretization 30, 31, 32, 57, 85, 86,
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239, 240

V-cycle 95, 173, 174, 175, 178, 179,
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231, 258

variational 3

vector computers 53

vector field 215

vector length 46

vector machines 46, 81

vectorization 57, 121, 157, 166, 167

vectorize 82, 123, 230, 234

védtorized computing 43, 44, 46, 118,

T 132, 152, 214, 239, 251
velocity potential 212
vertex S, 6, 8, 21, 61, 229

vertex-centred 29, 32, 66, 68, 69, 71,
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coarsening 8, 60, 61
discretization 5, 21, 28, 60, 75, 220
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multigrid 73, 76, 83
prolongation 66, 71, 72, 193
vertical backward white—black 42, 44
vertical line Gauss~Seidel 127, 131
vertical line Jacobi 42
vertical zebra 42, 154, 159
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vorticity-stream function formulation 2,
53
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wake 210

wavenumber 7

weak formulation 15, 16, 19, 23, 24

weak solution 35

while clause 194, 196

white—black 42, 132, 157

white—black Gauss—Seidel 46, 148, 150,
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white—black line Gauss—Seidel 44, 46

white—black ordering 43, 44

wiggles 41, 225, 238

work 1, 2, 45, 179, 203, 256,

work unit 181, 183, 188, 192, 211, 256,
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WU 181, 211, 256, 258

zebra 132, 157, 224
zebra Gauss—Seidel 46, 148, 152
zeroth-order interpolation 76





