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PREFACE

The finite element method has become one of the most important and useful
engineering tools for engineers and scientists. This book presents introductory and
some advanced topics of the Finite Element Method (FEM). Finite element theories,

formulations, and various example programs written in MATLAB! are presented. The
book is written as a textbook for upper level undergraduate and lower level graduate
courses, as well as a reference book for engineers and scientists who want to write
quick finite element analysis programs.

Understanding basic program structures of the Finite Element Analysis (FEA) is
an important part for better comprehension of the finite element method. MATLAB

ie aanarially canveniont tn unufo and nnderatand finits alameant anaslvaia nragrara
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because a MATLAB program manipulates matrices and vectors with ease. These
algebraic operations constitute major parts of the FEA program. In addition,
MATLAB has built-in graphics features to help readers visualize the numerical results
in two- and/or three-dimensional plots. Graphical presentation of numerical data is
important to interpret the finite element results. Because of these benefits, many
examples of finite element analysis programs are provided in MATLAB.

The book contains extensive illustrative examples of finite element analyses using
MATLAB program for most problems discussed in the book. Subroutines (MATLAB
functions) are provided in the appendix and a computer diskette which contains all
the subroutines and example problems is also provided.

Chapter 1 has a brief summary of useful MATLAB commands which can be
used in programming FEA. Readers may refer to MATLAB manuals for additional
information. However, this chapter may be a good start for readers who have no

ience with MATLAR.
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Subsequent chapters are presented in a logical order. Chapter 2 discusses the
weighted residual method which is used for the formulation of FEA in the remaining
chapters. Initially, continuous trial functions are used to obtain approximate solutions
using the weighted residual method. Next, piecewise continuous functions are selected
to achieve approximate solutions. Then, FEM is introduced from the concept
of piecewise continuous functions. Finally, classical variational formulations are
compared with the weighted residual formulations.

Chapter 3 shows the basic program structure of FEA using ordinary differential
equations for an one-dimensional system. MATLAB programs are provided to explain
the programming. Both program input and output as well as internal program
structure are fully discussed. A direct FEM approach using simple mechanics is
presented in Chapter 4. This chapter: presents the basic concept of FEM using an
intuitive and physical approach.

IMATLAB is a registered trademark of The MathWorks, Inc. For additional
informationa contact:
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760
phone: (508) 647-7000, fax: (508) 647-7001



Finite element formulations for partial differential equations are presented in
Chapter 5. This chapter explains not only domain integration for computation of
the finite element matrices but also boundary integration to compute column vectors.
Applications of Laplace’s equation to two- and three-dimensional domains as well
as an axially symmetric domain are presented for both steady-state and transient
problems.

Chapter 6 shows concepts and programming of isoparametric finite elements.
Because a complex shape of domain with curved boundary can be easily handled using
isoparametric finite elements, these elements are very useful and common in FEA.
Both one-dimensional and two-dimensional isoparametric elements are presented. A
numerical technique and its programming concept are also discussed. As a program
example, Laplace’s equation is solved using isoparametric elements.

Chapters 7 and 8 discuss truss and frame structures. Static, dynamic, and
eigenvalue problems are solved. In addition, one-, two- and three-dimensional
structures are considered. As a result, coordinate transformation from local to global
axes is explained. In particular, various formulations for the beam structure are
compared; the relative advantages and disadvantages of each are cited. Modeling of
laminated beams with embedded cracks is also discussed. Further, Chapter 8 presents
the modal analysis and Fast Fourier Transform.

Elasticity is studied in chapter 9. Plane stress/strain, axisymmetric and three
dimensional problems are included. Both static and dynamic analyses are presented.
The finite element formulations are presented in terms of the weighted residual
method. However, an energy method is also discussed for comparison. Plate
bending is given in Chapter 10. Similar to beam formulations, different plate bending
formulations are presented for comparison.

Finally, structural control using FEM is presented in Chapter 11. This chapter
is intended to provide a broad understanding of the basic concepts of control law in
conjunction with FEM. Due to limited space, only a few major control theories are
presented. It is assumed that readers are already familiar with fundamentals of linear
dynamic systems analysis.

This book contains more material than can be covered in a one-semester. Thus,
materials may be selected depending on course objectives. For an introductory FEM
course, Chapters 2 through 9 are recommended. Depending on the desired course
contents, some sections may be deleted.

We would like to thank individuals who have contributed to this book. The
authors would like to express our appreciation to Professor Aleksandra Vinogradov
for reviewing the manuscript and providing us with many useful suggestions. We
are also indebted to the staffs of CRC Press for their professional guidance in the
production of this book. Finally but not lastly the authors sincerely appreciate the
lifelong support and encouragement by their parents.

Y. W. Kwon
H. C. Bang



CHAPTER ONE

INTRODUCTION TO MATLAB

1.1 Finite Element Method

In order to analyze an engineering system, a mathematical model is developed to
describe the system. While developing the mathematical model, some assurnptions are

made for simplification. Finally, the governing mathematical expression is developed

to describe the behavior of the system. The mathematical expression usually consists
of differential equations and given conditions.

These differential equations are usually very difficult to obtain solutions which
explain the behavior of the given engineering system. With the advent of high perfor-
mance computers, it has become possible to solve such differential equations. Various
numerical solution techniques have been developed and applied to solve numerous en-
gineering problems in order to find their approximate solutions. Especially, the finite
element method has been one of the major numerical solution techniques. One of the
major advantages of the finite element method is that a general purpose computer

program can be developed easily to analyze various kinds of problems. In particular,
any complex shape of problem domain with prescribed conditions can be handled with

ease using the ﬁnlte element method.
The finite element method requires division of the problem domain into many

md ML ) . N |
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domain consists of many finite element patches.

1.2 Overview of the Book

This book is written as a textbook for engineering students as well as a reference
book for practicing engineers and researchers. The book consists of two parts: theory
and program. Therefore, each chapter has initial sections explaining fundamental
theories and formulations of the finite element method, and subsequent sections
showing examples of finite element programs written in the MATLAB program. The
collection of MATLAB function files (i.e. m-files) used in the example programs is
summarized in Appendix A and provided in a separate computer disc.

1



2 Introduction to MATLAB Chapter 1

A brief summary of some of MATLAB commands is provided in the following
sections for readers who are not familar with them. Those are the commands which
may be used in finite element programs. Especially, the MATLAB commands for
matrix operation and solution are most frequently used in the programs. For visual-
ization of the finite element solution, some plotting commands are also explained.

1.3 About MATLAB

MATLAB is an interactive software which has been used recently in various areas
of engineering and scientific applications. It is not a computer language in the normal
sense but it does most of the work of a computer language. Writing a computer code
is not a straightforward job; typically boring and time consuming for beginners. One
attractive aspect of MATLAB is that it is relatively easy to learn. It is written on
an intuitive basis and it does not require in-depth knowledge on operational principle
of computer programming like compiling and linking in most of other programming
languages. This could be regarded as a disadvantage since it prevents users from
understanding the basic principle in computer programming. The interactive mode
of MATLAB may reduce computational speed in some applications.

The power of MATLAB is represented by the length and simplicity of the code.
For example, one page of MATLAB code may be equivalent to many pages of other
computer language source codes. Numerical calculation in MATLAB uses collections
of well written scientific/mathematical subroutines such as LINPACK and EISPACK.
MATLAB provides Graphical User Interface {(GUI) as well as three-dimensional
graphical anmimation.

In general, MATLAB is a useful tool for vector and matrix manipulations.
Since the majority of the engineering systems are represented by matrix and vector
equations, we can relieve our workload to a significant extent by using MATLAB.
The finite element method is a well defined candidate for which MATLAB can be
very useful as a solution tool. Matrix and vector manipulations are essential parts in
the method. MATLAB provides help menu so that we can type help command when
we need help to figure out a command. The help utility is quite convenient for both
beginners and experts.

1.4 Vector and Matrix Manipulations

Once we get into the MATLAB, we meet a prompt >> called MATLAB prompt.
This prompt receives a user command and processes it providing the output on the
next line. Let us try the following command to define a matrix.

>>A=11,3,6,2,7,8;0,3,9]
Then the output appears in the next line as shown below.

1 3 6
A=2 T 8
0 3 9
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Thus, a matrix is entered row by row, and each row is separated by the semi-colon(;).
Within each row, elements are separated by a space or the comma(,). Commands
and variables used in MATLAB are case-sensitive. That is, lower case letters are
distinguished from upper case letters. The size of the matrix is checked with

>> size(A)

ans=3 3

Transpose of a matrix In order to find the transpose of matrix A, we type
>> A
The result is

1 2 0
ans=3 7 3
6 8 9

Column or row components MATLAB provides columnwise or rowwise operation
of a matrix. The following expression

>> A(5,3)
yields

ans =

(o2 -« Y

which is the third column of matrix A. In addition,
>> A(l,:)
represents the first row of A as
ans=1 3 6
We can also try
>> A(L,:) + A(3,:)
as addition of the first and third rows of A with the result
ans=1 6 15
Now let us introduce another matrix B as

>> B = [3,4,5;6,7,2;8,1,0];

Then there seems to be no output on the screen. MATLAB does not prompt output
on the screen when an operation ends with the semi-colon(;) at the end.

If we want to check the B matrix again, we simply type
>> B

The screen output will be
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o

]
o > w
—-Jd
O N O

Matrix addition Adding two matrices is straightforward like

>C=A+1HB
4 7 11
C=8 14 10
8 4 9

Thus we defined a new matrix C as sum of the previous two matrices.

Matrix subtraction In order to subtract matrix B from matrix A, we type

>(C=A-B
-2 -1 1
C=-4 0 6
-8 2 9

Note that C is now a new matrix not the summation of A and B any more.

Matrix multiplication Similarly, matrix multiplication can be done as

>C=AxB
69 31 11

C=112 65 24
90 30 6

1.5 Matrix Functions

Manipulation of matrices is a key feature of the MATLAB functions. MATLAB
is a useful tool for matrix and vector manipulations. Collections of representative
MATLAB matrix functions are listed in Table 1.5.1. Examples and detailed explana-
tions are provided for each function below.

Matrix inverse The inverse of a matrix is as simple as
>> inv(A)
ans

1.8571 —0.4286 -—0.8571
—0.8571 0.4286  0.1905
0.2857 —0.1429 0.0476

In order to verify the answer, we can try

>> Axinv(A);
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Table 1.5.1 Basic Matrix Functions

Symbol Explanations

inv inverse of a matrix

det determinant of a matrix

rank rank of a matrix

cond condition number of a matrix
eye(n) the n by n i1dentity matrix
trace summation of diagonal elements of a matrix

zeros(n,m) the n by m matrix consisting of all zeros

which should be a 3 by 3 identity matrix.

Determinant of a matrix
>> d =det(A)
produces the determinant of the matrix A. That is,

d = 21

Rank of a matrix The rank of a matrix A, which is the number of independent
rows or columns, is obtained from

>>rank(A);

Identity matrix
>> eye(3)

yields

ans =

OO -
D =D
—_0 O

eye(n) produces an identity matrix of size n by n. This command is useful when we
initialize a matrix.

Matrix of random numbers A matrix consisting of random numbers can be

generated using the following MATLAB function.

>>rand(3, 3)

0.2190 0.6793 0.5194
ans = 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346
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That is, rand(3,3) produces a 3 by 3 matrix whose elements consist of random
numbers. The general usage is rand(n, m).

trace Summation of diagonal elements of a matrix can be obtained using the trace
operator.

For example,
>C=[139;, 672 8 -1 -2

Then, trace(C) produces 6, which is the sum of diagonal elements of C.

zero matrix
>> zeros(5, 4)

produces a b by 4 matnx consisting of all zero elements. In general, zeros(n,m) is
used for an n by m zero matrix.

condition number The command cond(A) is used to calculate the condition
number of a matrix A. The condition number represents the degree of singularity
of a matrix. An identity matrix has a condition number of unity, and the condition
number of a singular matrix is infinity.

>>cond(eye(6))

ans =

1

An example matrix which is near singular is

4 M 1 1
B [1 1+10-° J
The condition number is
>>cond(A)

ans =

4.0000e+006

Further matrix functions are presented in Table 1.5.2. They do not include all
matrix functions of the MATLAB, but represent only a part of the whole MATLAB
functions. Readers can use the MATLAB Reference’s Guide or help command to
check when they need more MATLAB functions.

e d —_—

b O W s_1 mL fF AN 3 il L B
IV1ALr1X expolienuiai 1€ expm\ﬂ) proauces vile €aponeiitial o
other words,

>> A =rand(3,3)

0.2190 0.6793 0.5194
A= 0.0470 0.9347 0.8310
0.6789 0.3835 0.0346
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Table 1.5.2 Basic Matrix Functions (Continued)

Symbol Explanations
expm exponential of a matrix
eig eigenvalu;es/ eigenvectors of a matrix
la LU decomposition of a matrix
svd singular value decomposition of a matrix
qr QR decomposition of a matrix
\ used to solve a set of linear algebraic equations
>>expm(A)

1.2448 0.0305 0.6196
ans = 1.0376 15116 1.3389
1.0157 0.1184 2.0652

Eigenvalues The eigenvalue problem of a matrix is defined as
Ad = A¢

where A is the eigenvalue of matrix A, and ¢ is the associated eigenvector.
~ s —aamead AN
~> € —t!lg(.{i}

gives the eigenvalues of A, and
>> [V, D] =eig(A)

produces V' matrix, whose columns are eigenvectors, and the diagonal matrix D whose
values are eigenvalues of the matrix A.
For example,

>>A=[5632 146 972
>> [V, D] =eig(A)

0.4127 0.5992  0.0459
V = 0.5587 -0.7773 —0.6388
0.7217 0.1918  0.7680

12.5361 0 0
D= 0 1.7486 0
0 0 —3.2847

LU Decomposition The LU decomposition command is used to decompose a
matrix into a combination of upper and lower triangular matrices, respectively.

>>A=[135 248, 47 3]
>> [L,U] =la(A)
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P WY o

0.2500 1.0000 0
L = 0.5000 0.4000 1.0000
1.0000 0 0

4.0000 7.0000 3.0000
U= 0 1.2500 4.2500
0 0 4.8000

In order to check the result, we try

>>LxU
1 3 b
ans= |2 4 8
4 7 3
Mha lnuwar ¢rrangilar mmotrrv T 1c Nt norfartleyy tetanonlor Thawa 10 annthan cArraan Al
A 11T IVYWTL ‘lllallsulal 1I1aAUL LA I7 1D 11V PUI. u:blu.‘y Ullallsulall- A 1ICLT 1D AilVUlITL COUilllliAaliul
available

>> [L, U, P] =lu(A)

1.0000 0 0
L = 0.2500 1.0000 0
0.5000 0.4000 1.0000

4.0000 7.0000 3.0000
U= 0 1.2500 4.2500

0 0 4.8000
0 01
P=1 0 0
0 10

Here, the matrix P is the permutation matrix such that P* A= L U.

Singular value decomposition The svd command is used for singular value
decomposition of a matrix. For a given matrix,

A=UZV'

where X is a diagonal matrix consisting of non-negative values. For example, we define
a matrix D like

>>D=[137 295 28 5

The singular value decomposition of the matrix is
>> [U, Sigma, V] =svd(D)

which results in

0.4295 0.8998 —0.0775
U= 106629 -0.3723 —0.6495
0.6133 -0.2276 0.7564
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[ 15.6492 0 0
Sigma = 0 4.1333 0
0 0 0.1391

07771 —-0.5982 —0.1956

0.1905 —-0.0726 0.9790
V=
0.5999 0.7980 —0.0576

QR decomposition A matrix can be also decomposed into a combination of an
orthonormal matrix and an upper triangular matrix. In other words,

A=QR

where () is the matrix with orthonormal columns, and R is the upper triangular
JUSEN.S P, e a1 <re

S . S mL._ "D _1.. — L ___*1_ | . 2 g | e A A ___ 1
Imalrrix. 1I1l€ Wil algOTILIIN 1as WIG€ applicatlOils 1l wle allalySis Ol IIlatrices aina
assoclated linear systems. For example,

0.0470 0.9347 0.8310

0.2190 0.6793 0.5194
A=
0.6789 0.3835 0.0346

Application of the qr operator follows as
>> [Q, R] =qr(4)
yields

[—0.3063 —0.4667 —0.8297]

@ =|-0.0668 —0.8591 0.5076
—0.9497 0.2101 0.2324

Wedi AV e div 'R

[—(.7149 —0.6338 —0.2466
R= 0 —1.0395 —0.9490
0 0 —0.0011 |

Solution of linear equations The solution of a linear system of equations is
frequently needed in the finite element method. The typical form of a linear system
of algebraic equations is written as

Az =y

and the solution is obtained by
v s —amaerd AN o s

P —II.IVKA} *y

or we can use \ sign as
>>z = A\y

For example

>>A=[134 578, 23 5]
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Table 1.6.1 Data Analysis Functions

Symbol Explanations
min(max) minimum(maximum) of a vector
sum sum of elements of a vector
std standard deviation of a data collection
sort sort the elements of a vector
mean mean value of a vector
used for componentwise operation of a vector

o
[

>>y = [10; 9; 8];
Let us compare two different approaches.
>> [inv(A) xy A\y]

—4.,2500 —4.2500
ans = 1.7500 1.7500
2.2500 2.2500

1.6 Data Analysis Functions

Up

MATLAB has also data analysis functions for a vector or a column of a atrlx In
Table 1.6.1, some operators for data manipulation are listed.

:‘F

o now, we discussed matrix related functions and operators

O nNow Lol ALl iA 1CIAuTl = e

Minimum (maximum) The min (max) finds a minimum (maximum) value of a
given vector. For example,

>>v=[11 23 73 25 49 92 28 23};
>>min(v)
yields

ans =
11

>>max(v)
ans =

92

sum The sum command produces the summation of elements of a vector. For
example,
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>> sum(v)
yields

ans =

324

Standard deviation The std command calculates the standard deviation of a
vector. For example,

>>std([l 4 10 —5 6 9 — 20])
ans =

10.4517

Sort a vector The sort command is used to sort a vector in the ascending order.
>>sort([l1 4 10 —5 6 9 —20])

ans =

20 -5 14 6 9 10

Mean value of a vector The mean calculates the mean value of a vector.
>>mean([1 4 10 -5 6 9 —20))

ans =

0.7143

Vector componentwise operation Let us define two vectors
>> v = [1,5,6,7v2 = [0,2,3,5);

Sometimes we want to multiply components of v; with the corresponding components
of v3. The operation is

>> U3 = v1.% Uy

ans =

0 10 18 35

va=0 04 0.5 0.7143

Note that the data analysis tools explained in the above are applicable to matrices
too. Each matrix column is regarded as a vector for data analysis.
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Table 1.7.1 Polynomial Functions

Symbol Explanations

poly converts collection of roots into a polynomial equation
roots finds the roots of a polynomial equation
polyval evaluates a polynomial for a given value

conv multiply two polynomials
deconv decompose a polynomial into a dividend and a residual
polyfit curve fitting of a given polynomial

1.7 Tools for Polynomials

Polynomials are frequently used in the analysis of linear systems. MATLAB
provides some tools for handling polynomials. The summary of polynomial functions
is provided in Table 1.7.1.

Roots of a polynomial equation A polynomial equation is given by
a1z” +axz" '+ +anz+any =0

The roots of the polynomial equation is solved using roots command

P 1

kT - - \
TOOUS{|G1 a2 '+ G Gp4l})

For example,
gt + 423 — 522 +62—-9=0

>>roots([1 4 —5 6 —9])

yields
ans =

-5.2364

1.2008

0.0178 + 1.1963i

0.0178 - 1.1963:
Generation of a polynomial equation using roots The poly command takes
the roots, and converts them into a polynomial equation. For instance, if we know

[r1, r2, -+, ma]in
(x_rl)(m_rz)...(x_rn)=m"+a1m"‘"1+agmn"2+'--+anmlm+an

then
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>>poly([r1, r2, --+, )

provides us the coefficients( [a1, az, - - -, an]) of the polynomial equation. For example,
>>poly([-1 —24+2%i —2—-2xi —54+Txi —5—Tx1i))

produces

ans =

1 15 136 498 968 592
In order to check the result, we use roots command again.
>>roots([1 15 136 498 968 592])
The result should be [-1 —2+4+2%i —2—2%7 —5+7%i —5—Txi].
Polynomial value When we want to calculate the value of a polynomial at a certain
point, we can use polyval.
>>y=polyval([1 3 4 -5 ],2)

ans =

23
which evaluates the polynomial s* + 353 +4s —5 at s = 2.

Multiplication of two polynomials The conv command is used to multiply two
polynomials. For example,

a(s) = 82 +3s — 1, b(s) =8> — 25> + 65— 7

The multiplication of a(s) and b(s) follows as
>>c=conv([l 3 —-1],[1 -2 6 —-T7))

C =
11 -1 13 -27 7

In other words, we obtain the coefficient vector ¢ of the product of a(s) and b(s).

Decomposition of a polynomial The deconv is used to decompose a polynomial
as a multiplicand and a residue. Let

a(s) = b(s)m(s) + r(s)
That is, the polynomial a(s) is represented in terms of a multiplicand m(s) and a
residue r(s) via b(s). The MATLAB command is
>> [m,r] =deconv(a, b)

where the parameters are coefficient vectors for given polynomials. An example is
given by

>> [m,r] =deconv([l -2 6 —-7],[1 3 -1])

m=



14 Introduction to MATLAB Chapter 1

r —

0 0 22 -12
If we change the order of polynomials,

>> [m,r] =deconv([1 3 —1],[1 -2 6 —7])

m =
r =
lynomial fit The polyfit command is to generate a polynomial curve s fits

—~ o~ wrl s nla .

V11114 CUL VO WILLICLL LU
t

polynomial and the given data set. The synopsis is

p = polyfit(z,y,n)

where 2 and y are vectors of the given data set in (2, y) form, and n is the order of the
desired polynomial to fit the data set. The output result is p, the coefficient vector of
the fitting polynomial. An example is provided below,

>>z=[123 45 6];
>>y=[-1352 -3 1];
>> p =polyfit(z,y,1)

p =
2.1714 -1.2667

A linear curve fitting is performed for data set (z,y).

1.8 Making Complex Numbers

In order to make a complex number 2 + 3 * ¢, we use

>> 24 3+
or

>> 2+ 3%j
MATLAB takes i and j as a pure complex number. In case ¢ or j is defined already,
we can use v/—1 as

>> ¢ =sqrt(—1)

¢ = 0+ 1.0000i
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Table 1.9.1 Functions for Nonlinear Algebraic Equations

Symbol Explanations
fmin finds minimum of a function of one variable
fzero solves a nonlinear algebraic equation of one variable

abs, angle For a given complex number, we use abs and angle commands to find
out the magnitude (abs) and phase angle (angle) of the given complex number. For
example, if

>>c=-1+71
then

>> abs(c)

ans = 1.4142

>> angle(c)

ans = 2.3562

Real, imaginary parts of a complex number The real and imag are used to
take the real and imaginary parts of a complex number. For example,

>>e=-104+9%:
>> [real(c) imag(c)]
ans=-—10 9

Conjugate The conj command is used to generate a complex conjugate number.
For example

>> conj(—1+ 5 * i)

ans = —1 — 5%

1.9 Nonlinear Algebraic Equations

Nonlinear algebraic equations are frequently adopted in many different areas.
The nonlinear equations are different from linear equations, and there is no unique
analysis tool to the nonlinear equations. MATLAB is equipped with some functions
which can handle nonlinear equations. The list is presented in Table 1.9.1.

Minimum of a function The MATLAB command finin minimizes a function by
finding out a value which minimizes the given function. The synopsis is

fmin(' func', z1, z2)
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Table 1.10.1 Numerical Techniques for Differential Equations

Symbol Explanations
ode23 solution using the 2nd/3rd order Runge-Kutta algorithm
ode45 solution using the 4th/6th order Runge-Kutta algorithm

where ’func’ is the name of a function to be minimized and z,(z2) represents a
lower(upper) limit of the interval of the function argument. For example,

>>fmin('z * cos(z)’, ~2,2)
produces

ans = —0.8603

Solution of a nonlinear algebraic equation When a nonlinear algebraic equation
is written as
23 4+ 3xsin(z) —2° =0
the MATLAB function fzero can be used to find a solution of the nonlinear algebraic
equation. The synopsis is
>> sol =fzero(’ function’, 20)

where function’ is a MATLAB function subroutine and #0 is an initial condition

o £l LN B DIGEEE o JHPENY S . ey [ SN <IN SN PRIV 5. Y iy S,
vector OI Lile variables. ror wie givell exainpie, we wriite a 1UullCiiOll Subrouune jcoin.m
as

function [f] =fctn(z);
[ =23+ z xcos(x) — 4x;

Then, we use fzero command as
>> sol =fzero(' fctn', —5)
sol = -2.1281

In order to check the solution
>>fetn(—2.1281)

ans =

1.9192e-004

The error is due to the numerical format error. The number is truncated for screen
display purpose, even if it is calculated using double precision format inside MATLAB.

1.10 Solving Differential Equations

Linear and nonlinear differential equations can be also solved using MATLAB.
List of numerical techniques solving differential equations is in Table 1.10.1.
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Runge-Kutta second and third order algorithm MATLAB uses the Runge-
Kutta algorithm to solve a differential equation or a set of differential equations. The
general synopsis is

[t, 2] = ode23(’ func',t0,tf, 20);

where ’func’ is a function containing the derivative information, t0 (¢f) is the initial
(final) time, and #0 is an initial condition vector. The outputs are ¢, which contains
the returned time points, and z which is the integrated output.

For example, we want to solve

&+ sin(z) =0
which can be rewritten as

.’i?]_ =Ty

£9 = —sin(z1)

where £, = = and z2 = £. The ’func’ function should be provided as an independent
function subroutine as func.m in a directory, which MATLAB can locate. Now we
execute the ode23 command

>> [t, z] =ode23(’ func',0, 10, £0);

o- ()

is an initial condition and func.m is provided as

where

function [f] =func(t,x);
[f] = zeros(2,1);

F(1) = 2(2);

f(2) = —sin(z(1));

Runge-Kutta Fourth and Fifth order algorithm There is another Runge-Kutta
algorithm ode45 which is more accurate than ode23.

[t,z] = oded5(’ func’,t0,1f, z0)

The same calling synopsis as ode23 can be applied to make use of the ode45
function.

1.11 Loop and Logical Statement

There are some logical statements available in MATLAB which help us writing
combinations of MATLAB commands. Furthermore, loop commands can be used as
in other programming languages. In fact, we can duplicate the majority of existing
programs using MATLAB commands, which significantly reduces the size of the source
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Table 1.11.1 Loop and Logical Statements

Symbol Explanations
for loop command similar to other languages
while used for a loop combined with conditional statement
if produces a conditional statement
elseif, else used in conjunction with if command
break breaks a loop when a condition is satisfied

codes. A collection of loop and logical statements in MATLAB is presented in Table
1.11.1.

for loop The for is a loop command which ends with end command.

>> forz=1:100
a(?,1) = 2 % 4;
end

In the above example, i is a loop index which starts from 1 and ends at 100. There
may be also multiple loops.

>>for:=1:100
for j =1:50
for k=1:50
a(i, ) = b(z, k) x c(k, ) + a(3, 7);
end
end
end

while The while command is useful for an infinite loop in conjunction with a
conditional statement. The general synopsis for while command is as follows

while condition
statements
end

For example,

=1
while (i < 100)
i=14+1;
end

Another example of the while command is

n = 1000;
var = [ ];
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while (n > 0)
n=n/2-1;
var = [var, n);
end

The result is

var =
Columns 1 through 6

4.9900e+002 2.4850e4-002 1.2325¢+002 6.0625e+001 2.9313e+001 1.3656e+001

Columns 7 through 9
5.8281e+-000 1.9141e+000 -4.2969e-002

where we used [ ] in order to declare an empty matrix.

if, elseif, else The if, elseif, and else commands are conditional statements which
are used in combination.

if condition #1
statement #1
elseif condition #2
statement #2

else

statement #3

end

For example,

n = 100;

if (rem(n, 3) == 0)
r=0;

elseif (rem(n,3) == 1)
r=1

else
r=2

where rem(x,y) is used to calculate the remainder of # divided by y.

break The break command is used to exit from a loop such as if and while. For

example,
for : =1:100
t=1t1+ 1;
tf (i == 10) break;
end

end
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Table 1.11.2 Loop and Logical Statements

Symbol Explanations

== two conditions are equal

= two conditions are not equal

<=(>=) one is less (greater) than or equal to the other
<(>) one is less (greater) than the other
& and operator - two conditions are met

~

not operator

| or operator - either one condition is met

Logical and relational operators  The logical and relational operators of
MATLAB are as listed in Table 1.11.2.

The above command sets are used in combination.

1.12 Writing Function Subroutines

MATLAB provides a convenient tool, by which we can write a program using
collections of MATLAB commands. This approach is similar to other common
programming languages. It is quite useful especially when we write a series of
MATLAB commands in a text file. This text file is edited and saved for later use.

The text file should have filename.m format normally called m-file. That is,
all MATLAB subroutines should end with .m extension, so that MATLAB recognizes
them as MATLAB compatible files. The general procedure is to make a text file using
any text editor. If we generate a file called funcl.m, then the file funcl.m should start

with the following file header
function[ov, , ovs,...] = funcl(ivy,iv,,...)
where ivy,ivq,... are input variables while ov1,o0vs,... are output variables. The

input variables are specific variables and the output variables are dummy variables,
for which we can use any variables.

For example, let us solve a second order algebraic equation.
ax?+bx+ec=0
The solution is given in analytical form as

—btVb2—4xaxc
T =

2%a




Section 1.12 Writing Function Subroutines 21

We want to write an m-file with the name secroot.m, which produces the analytical
solution.

function [rl,r2]=secroot(a,b,c);

%

% Find Determinant —— Any command in MATLAB which starts with
% % sign is a comment statement

Det =b02—4xaxc

if (Det <0),

rl = (=b+ j * sqrt(—Det))/2/a;

r2 = (—b — j * sqrt(—Det))/2/aq;

disp('The two roots are compler conjugates’);
elseif( Det == 0),

rl=—-b/2/a;

r2=-b/2/a;

disp('There are two repeated roots’);

else(Det > 0)

rl = (—b+ sqrt(Det))/2/aq;

r2 = (—b— sqrt(Det))/2/a;

disp(The two roots are real’);

end

Some commands appearing in the above example will be discussed later. Once the
secroot.m is created, we call that function as

>> [r1,r2]=secroot(3,4, 5)
or
>> [pl, p2] =secroot(3,4,5)

One thing important about the function command is to set up the m-file
pathname. The m-file should be in the directory which is set up by MATLAB
configuration set up stage. In the recent version of MATLAB, the set up procedure is
relatively easy by simply adding a directory which we want to access in a MATLAB
configuration file.

Another function subroutine fef.m is provided below.

function [f] =fct(z)
f=(0-2)%

The above function represents f(x) = (1 — z)?. In the MATLAB command prompt,
we call the function as

>> y =fct(9);

The function subroutine utility of MATLAB allows users to write their own subrou-
tines. It provides flexibility of developing programs using MATLAB.
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Table 1.13.1 File Manipulation Commands

Symbol Explanations

save save current variables in a file

load load a saved file into MATLAB environment
diary save screen display output in text format

1.13 File Manipulation

Manipulating files is another attractive feature of MATLAB. We can save
MATLAB workspace, that is, all variables used, in a binary file format and/or a
text file format. The saved file can be also reloaded in case we need it later on. The
list of file manipulation commands is presented in Table 1.13.1.

save The save command is used to save variables when we are workin

The save command isu ve variables when w working in MATL

The synopsis is as follows

where filename is the filename and we want to save the variables, var,,vary, .... The

A
filename generated by save command has extension of .mat, called a mat-file. If we

do not include the variables name, then all current variables are saved automatically.
In case we want to save the variables in a standard text format, we use

save filename var, vary ...Jascii/double

load The load command is the counter-part of save. In other words, it reloads
the variables in the file which was generated by save command. The synopsis is as

follows
load filename wvary, vars ..

where filename is a mat-file saved by save command. Without the variables name
specified, all variables are loaded. For example,

>>a=1[1 3 4]

>>b=23;

>>save {lest

>>clear all % clear all variables

>>who % display current variables being used
>>load test

>>who

diary Using diary command, we can capture all MATLAB texts including command
and answer lines which are displayed on the screen. The texts will be saved in a file,
so that we can edit the file later. For example,

>>diary on
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Table 1.14.1 Input-Output Functions

Symbol Explanations
input save current variables in a file

disp load a saved file into MATLAB environment
format check the file status in the directory

>>a=1;, b=4; c=5;
>>[a b c ]
>>d=axb
>>e=gx*h

Now we can use any text editor to modify the diery file. The diary command is
useful displaying the past work procedures. Also, it can be used to save data in a text
format.

1.14 Basic Input-Output Functions

Input/output functions in MATLAB provide MATLAB users a friendly pro-
gramming environment. Some input/output functions are listed in Table 1.14.1.

input The input command is used to receive a user input from the keyboard. Both
numerical and string inputs are available. For example,

>> age= input('How Old are you?)
>> name =input('What is your name’/s’)

The ’s’ sign denotes the input type 1s string.

disp The disp command displays a string of text or numerical values on the screen. It
18 useful when we write a function subroutine in a user-friendly manner. For example,

>> disp('This is a MATLAB tutorial!)
>> ¢c=3%4;
>> disp('The computed value of c turns out to be’)

>>c

format The format command 1s used to display numbers in different formats.
MATLAB calculates floating numbers in the double precision mode. We do not want
to, in some situations, display the numbers in the double precision format on the
screen. For a display purpose, MATLAB provides following different formats

>>c=1/9
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Table 1.15.1 Plotting Commands
Symbol Explanations
plot basic plot command
xlabel(ylabel) attach label to x(y) axis
axis manually scale x and y axes
text place a text on the specific position of graphic screen
title place a graphic title on top of the graphic
ginput produce a coordinate of a point on the graphic screen
gtext receives a text from mouse input
grid add a grid mark to the graphic window
pause hold graphic screen until keyboard is hit
subplot breaks a graphic window into multiple windows
x = 0.1111

>>format short e
z = 1.1111e — 001
>>format long
z=0.11111111111111

format long
L]

z=1111111111111111e — 001

\%
v
Q

e

>>format hex
x = 3fbcTleTlcT1cT1e

1.153 Plotting Tools

MATLAB supports some plotting tools, by which we can display the data in
a desired format. The plotting in MATLAB is relatively easy with various options
available. The collection of plotting commands is listed in Table 1.15.1.

A sample plotting command is shown below.

>>t=0:0.1:10;
>> y = sin(t);
>> plot(y)

>> title(’plot(y)’)
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The resultant plot is presented at the top of Fig. 1.15.1.

>>t=10:0.1:10;
>> y = sin(t);

>> plot(t, y)

>> title(’plot(t,y)’)

The resultant plot is presented at the bottom of Fig. 1.15.1. In the above example,
t = 0:0.1: 10 represents a vector ¢ which starts from 0 and ends at 10 with an
interval of 0.1. We can use just y or both y and t together. In the first case, the
horizontal axis represents number of data, from 0 to 101. In the second case, the
horizontal axis is the actual time scale ¢ in the plot(t,y) command.

Plotting multiple data We plot multiple data sets as shown below.

>>t=0:1:100;

>> yl = sin(t). * t;

>> y2 = cos(t). *t;

>> plot(¢,y1,-,t,92,-)

where -’ and >-’ represent line styles. The line styles, line marks, and colors are
listed in Table 1.15.2.

For example, if we want to plot a data in a deshed blue line, the command becomes

>> plot(y,’-b’);

xlabel, ylabel The xlabel(’tezt’) and ylabel(’tezt’) are used to label the = and y
axes.

axis The axis command sets up the limits of axes. The synopsis is

axis [.’l!min y Tmaz Ymin, ymax]

text The text command is used to write a text on the graphic window at a designated
point. The synopsis is
text(z,y, text contents’)

where z, y locates the z,y position of the "text contents’. In case we want to normalize
the graphic window size from 0 to 1, we use

text(z,y, text contents') sc')

ginput This command allows us to pick up any point on a graphic window. The
Synopsis is
[z,y] = ginput
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Figure 1.15.1 A Sample Plot

10

Chapter 1

We can pick as many points as we want on the graphic screen. The vector [z, y] then

contains all the points.

gtext The gtext command is used to place a text on the graphic window using the

mouse input. The synopsis is

gtext(‘text’)
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Table 1.15.2 Line, Mark, and Color Styles

Style Line marks Color
solid . point . red r
dashed -’ star ¥ green g
dotted !’ circle o blue b
dashdot -’ plus + white w

x-mark x invisible 1

Once the above command is entered or read in a function subroutine, the cursor on
the graphic window is activated waiting for the mouse input, so that the ’tezt’ is
located at the point selected by the mouse.

grid The grid command adds grids to the graphic window. It is useful when we
want to clarify axis scales.

An example plot constructed using some of the commands described above is
presented in Fig. 1.15.2. The following commands are used for the plot output.

>> t=0:0.1:20;

>> plot(t, sin(t))

>> xlabel(‘Time(sec)’))

>> ylabel(‘ydata’)

>> title('T'his is a plot example’)
>> grid

>> gtext(’sin(t)’)

>> axis([0 20 — 1.5 1.5])

pause This command is useful when we display multiple graphic windows sequen-
tially. It allows us to display one at a time with the keyboard interrupt.

subplot The subplot is used to put multiple plots on the same MATLAB figure
window. The command is

>> subplot(pgr)

The plot size is adjusted by a p by ¢ matrix on the whole size of the graphic window.
Then the third index » picks one frame out of the p by ¢ plot frames. An example
subplot is presented in Fig. 1.15.3 with the following commands entered.

>>z =0:0.1:3=*pi;y = sin(z); z = cos(z);
>> subplot(222)

>> plot(z,y)

>> title(’x and y’)

>> subplot(223)

>> plot(z, z)
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Figure 1.15.2 A Plot Example With Some Commands
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Figure 1.15.3 A Subplot Example

>> title(’x and z’)
>> subplot(224)
>> plOt(Z, y!’ _l; z, Z,’ _"'")
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>> title(’x and [y z}’)

where pi is an internally defined variable equivalent to .






CHAPTER TWO

APPROXIMATION TECHNIQUES

2.1 Methods of Weighted Residual

Methods of weighted residual are useful to obtain approximate solutions to a
differential governing equation. In order to explain the methods, we consider the
following sample problem:

{%—u:—m, <<l (2.1.1)
u(0) =0, and (1) =0 o
The first step in the methods of weighted residual is to assume a trial function which
contains unknown coefficients to be determined later. For example, a trial function,
#t = ax(l — z), is selected as an approximate solution to Eq. (2.1.1). Here, ~ denotes
an approximate solution which is usually different from the exact solution. The trial
function is chosen here such that it satisfies the boundary conditions (i.e., @(0) = 0
and u(1) = 0), and it has one unknown coefficient a to be determined.

In general, accuracy of an approximated solution is dependent upon proper
selection of the trial function. However, a simple form of trial function is selected for
the present example to show the basic procedure of the methods of weighted residual.
Once a trial function is selected, residual is computed by substituting the trial function
into the differential equation. That is, the residual R becomes

R=Zz—;;mﬁ+x=—2a—az(l—z)+x (2.1.2)
Because # is different from the exact solution, the residual does not vanish for all
values of z within the domain. The next step is to determine the unknown constant a
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a test (or weighting) function w is selected and the weighted average of the residual
over the problem domain is set to zero. That is,

1 1 2
I::j wRd:c:/ w(d—g‘—ﬁ+x)dx
0 0 dx
1
=/ w{~2a — ax(l —2z)+ z}dzr =0 (2.1.3)
0

31
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Table 2.1.1 Comparison of Solution to Eq. (2.1.1) at x=0.5

Exact Solution Collocation Least Squares Galerkin

0.0566 0.0656 0.0576 0.0568

The next step is to decide the test function. The resulant approximate solution
differs depending on the test function. The methods of weighted residual can be
classified based on how the test function is determined. Some of the methods of
weighted residual are explained below. Readers may refer to Refs [1-3] for other
methods.

1.  Collocation Method. The Dirac delta function, 6(x — z;), is used as the test
function, where the sampling point #; must be within the domain, 0 < z; < 1.

In other words,
w=6(x — ;) (2.1.4)

Let #; = 0.5 and we substitute the test function into the weighted residual,
Eq. (2.1.3), to find ¢ = 0.2222. Then, the approximate solution becomes
4 = 0.2222z(1 — z).

2. Least Squares Method. The test function is determined from the residual such

that
dR
= — 2.1.
e (2.1.5)
Applying Eq.(2.1.5) to Eq. (2.1.2) yields w = —2—z(1 — z). Substitution of the
test function into Eq. (2.1.3) results in a = 0.2305. Then i = 0.2305z(1 — z).

3. Galerkin’s Method. For Galerkin’s method, the test function comes from the
chosen trial function. That is,
di
W= T (2.1.6)
For the present trial function, w = 2(1 — z). Applying this test function to
Eq. (2.1.3) gives a = 0.2272 so that % = 0.2272z(1 — z). Comparison of these
three approximate solutions to the exact solution at £ = 0.5 is provided in Table
2.1.1. As seen in the comparison, all three methods result in reasonably accurate
approximate solutions to Eq. (2.1.1).

In order to improve the approximate solutions, we can add more terms to
the previously selected trial function. For example, another trial function is % =
a12(1 — z) + az2?(1 — z). This trial function has two unknown constants to be
determined. Computation of the residual using the present trial function yields

R=a(-2-24+2)+a;2—-62—224+2°) 42 (2.1.7)

We need the same number of test functions as that of unknown constants so that the
constants can be determined properly. Table 2.1.2 summarizes how to determine test
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Table 2.1.2 Test Functions for Methods of Weighted Residual

Method Description

Collocation w; =6z —2;), t=1,2,..,n

where z; 1s a point within the domain

Least Squares w; = 8R[8a;, t=1,2,...,n,
where R is the residual and

a; is an unknown coefficient in the trial function

Galerkin w; = 0ifda;, 1=1,2,....,n

where 1 is the selected trial function

functions for a chosen trial function which has n unknowns coefficients. Application
of Table 2.1.2 to the present trial function results in the following test functions for
each method.

Collocation Method : wy = é(z — z,), wq = é(z — z2) (2.1.8)
Least Squares Method : w; = -2 —z + 2%, wy=2—6z—2?+2% (2.1.9)
Galerkin’s Method : w; = z(1 — z), we = 2%(1 —z) (2.1.10)

For the collocation method, =, an z3 must be selected such that the resultant weighted
residual, i.e. Eq. (2.1.3), can produce two independent equations to determine
unknowns a, and a, uniquely. The least squares method produces a symmetric matrix
regardless of a chosen trial function. Example 2.1.1 shows symmetry of the matrix
resulting from the least squares method. Galerkin’s method does not result in a
symmetric matrix when it is applied to Eq. (2.1.1). However, Galerkin’s method may
produce a symmetric matrix under certain conditions as explained in the next section.

& Example 2.1.1 A differential equation is written as
Liu)=f (2.1.11)

where L is a linear differential operator. A trial solution is chosen such that

S

i=S ag (2.1.12)

i=1

in which g¢; is a known function in terms of the spatial coordinate system and it
is assumed to satisfy boundary conditions. Substitution of Eq. (2.1.12) into Eq.
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(2.1.11) and collection of terms with the same coefficient a; yield the residual as
seen below;

R=) aihi+p (2.1.13)
i=1

Here, h; and p are functions in terms of the spatial coordinate system. Test
functions for the least squares method are

wy=h;, 7=1,2,...,n (2.1.14)

The weighted average of the residual over the domain yields the matrix equation
n
I:/w_,-RdQ:ZA,-ja,-—bj:O, i=12,...,n (2.1.15)
t i=1

where

Ay = f hih;dS2 (2.1.16)
o

Equation (2.1.16) shows that A;; = A;; (symmetry). {

2.2 Weak Formulation

We consider the previous sample problem, Eq. (2.1.1), again. The formulation
described in the preceeding section is called the strong formulation of the weighted

residual method. The strong formulation requires evaluation of fol w(0%ii/8x?)dz,
which includes the highest order of derivative term in the differential equation. The
integral must have a non-zero finite value to yield a meaningful approximate solution
to the differential equation. This means a trial function should be differentiable twice
and its second derivative should not vanish.

So as to reduce the requirement for a trial function in terms of order of
differentiability, integration by parts is applied to the strong formulation. Then Eq.

(2.1.3) becomes
1 2
I=/ w(% —ﬁ+m)dm
0

1 dwda da]t
_fo (—Ea—wu+mw)dm+ [wa;]o—O (2.2.1)

As seen in Eq. (2.2.1), the trial function needs the first order differentiation instead
of the second order differentiation. As a result, the requirement for the trial function
is reduced for Eq. (2.2.1). This formulation is called the weak formulation.

Weak formulation has an advantage for Galerkin’s method where test functions
are obtained directly from the selected trial function. If a governing differential equa-
tion is the self-adjoint operator, Galerkin’s method along with the weak formulation
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Figure 2.3.1 Piecewise Linear Functions
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Figure 2.3.2 Piecewise Linear Trial Function

results in a symmetric matrix in terms of unknown coefficients of the trial function.
Using a trial function & = az(1 — z) for the weak formulation, Eq. (2.2.1) results

in the same solution as obtained from the strong fnrmwlahnn as exnected However,

A2a vizw wiviiiv DA lavaSTas o oAiVVias uaaS Qs fremRtasele S LAPOLLTAR.

when a piecewise function is selected as a trial function, we see the advantage of the
weak formulation over the strong formulation.

2.3 Piecewise Continuous Trial Function

Regardless of the weak or strong formulation, the accuracy of an approximate
solution so much depends on the chosen trial function. However, assuming a proper
trial function for the unknown exact solution is not an easy task. This is especially
true when the unknown exact solution is expected to have a large variation over
the problem domain, the domain has a complex shape in two-dimensional or three-
dimensional problems, and/or the problem has complicated boundary conditions. In

order to overcome these problems, a trial function can be described using niecewise

order ercome these problems, a trial function can be described using piecewise
continuous functions.

Consider piecewise linear functions in an one-dimensional domain as defined
below:

((L‘,‘+1 - (L‘)/h,'.'.] fOl' ;i S T S Ti41 (231)
0 otherwise

(z — zi—1)/hi for ;1 <z <L x;
$i(z) = {

The function defined in Eq. (2.3.1) 1s plotted in Fig. 2.3.1 and Example 2.3.1
illustrates the use of the function as a trial function.
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% Example 2.3.1  Consider the same problem as given in Eq. (2.1.1). It is
rewritten here

{ﬁ'i—u=—m, <<l

’31(:6) =0, andu(l)=0 (2.11)

The weak formulation is also rewritten as below:

1 -
24
I:f0 w(ﬂ—u+m)dm

L odwdd dii]’
_L (—d—mc—i—a—;—wu+mw)dm+ [w&;]o =0 (2.2.1)

A trial function is chosen such that & = a;¢1(z) + az¢2(2) in which a; and a
are unknown constants to be determined, and ¢; and ¢, are defined as below:

3z, 0<z< i

$1(z) =< 2 -3z, égmgé (2.3.2)
0, ESICS].
0, 0<z<i

d2(z) = ¢ 3z -1, 551}5:}3- (2.3.3)
3—322, '3'st1

#1(z) and ¢a(z) are plotted in Fig. 2.3.2. For the present trial function,
the problem domain is divided into three subdomains and two piecewise linear
functions are used. Of course, more piecewise functions can be used along with
more subdomains to improve accuracy of the approximate solution. The trial
function can be rewritten as

a,(3z), ogxgi
i= a¢2—uy+@@m—n,%gm5§ (2.3.4)
as(3 — 3z), £<z<1
Use of Galerkin’s method yields the following test functions
3z, 0<z< :—;
wy =< 2— 3z, % <z <% (2.3.5)
O, 3 S i g 1
and
0, 0<e< %z
wy =< 3z — 1, —lg <z<L % (2.3.6)
3 — 3(13, 3 S T S 1
Averaged weighted residuals are
1 ~
dwy d -
L = ./o (—%ﬁ — w il + zw;)dz = 0 (2.3.7

1 dw, dit ~
I, = j(; —72-:3% — wytli + zwy)der =0 (2.3.8)
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where [w %]}, is omitted because w;{0) =w; (1)=wy(0)=w,(1)=0. Substitution
of both trial and test functions into Eq. (2.3.7) and Eq. (2.3.8) respectively gives

1

L= ]0 *[=3(3a1) — 3¢(3a12) + o(3z)|do+
/: [3(—3a1 + 3a2) — (2 — 3z)(2a1 — 3a12 + 3azz — ay) (2.3.9)

1

+ z(2— 3z))dz + f Odx
2
3

= — 6.222a; + 2.9444a, + 0.1111 =10

1 2
L= [ 0de+ [ [~3(~3as + 3a3)
Jy 0,
~ (3z — 1)(2a; — 3a1z + 3a2z — a3) + z(3z — 1)]dz+ (2.3.10)

/21 [3(—3a2) — (3 — 3z)(3a2 — 3aqzz) + (3 — 3z))dz

=2.9444a, ~ 6.2222a5 + 0.2222 = 0

Solutions for a; and ay are a; = 0.0488 and a; = 0.0569 from Eq. (2.3.9)
and Eq. (2.3.10). That is, the approximate solution is & = 0.0448¢;(z) +
0.0569¢2(x). If the trial function Eq. (2.3.4) were used for the strong
formulation Eq. (2.1.3), it would not give a reasonable, approximate solution

2 -
because g}“’% vanishes completely over the domain. i

2.4 Galerkin’s Finite Element Formulation

As seen 1n the previous section, use of piecewise continuous functions for the trial
function has advantages. As we increase the number of subdomains for the piecewise
functions, we can represent a complex function by using sum of simple piecewise linear
functions. Later, the subdomains are called finite elements. From now on, ~ used to
denote a trial function is omitted unless there is any confusion.

This section shows how to compute weighted residual in a systematic manner
using finite elements and piecewise continuous functions. In the previous section, the
piecewise continuous functions were defined in terms of the generalized coefficients
(i.e. ay, az, etc.). For a systematic formulation, the piecewise continuous functions
are defined in terms of nodal variables.

Consider a subdomain or a finite element shown in Fig. 2.4.1. The element has
two nodes, one at each end. At each node, the corresponding coordinate value (z; or
zi+1) and the nodal variable (u; or u;;1) are assigned. Let us assume the unknown
trial function to be

u=ciz+coy (24.1)
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Figure 2.4.1 Two-Node Linear Element

We want to express Eq. (2.4.1) in terms of nodal variables. In other words, ¢;
and ¢s need to be replaced by u; and ;4. To this end, we evaluate u at z = z; and
r=Tiqy1- Then

u(z;) = eyz; + ca = (2.4.2)
u(Zig1) = C1Zigy + €2 = Ui (2.4.3)

Solving Eq. (2.4.2) and Eq. (2.4.3) simultaneously for ¢; and ¢4 gives

o = M1 T W (2.4.4)
i1 — Ty
Cp = ik T Wid1 i (2.4.5)

Tiv1 — i

Substitution of Eq. (2.4.4) and Eq. (2.4.5) back into Eq. (2.4.1) and rearrangement
of the resultant expression result in

u = Hy(z)u; + Ha(z)uipy (2.4.6)
where
Hy(z) = ”'_’f;l"_“’ (2.4.7)
(]
Hy(z) =2 ;_’”‘ (2.4.8)
1
hi =zip1 — a; (2.4.9)

Equation (2.4.6) gives an expression for the variable u in terms of nodal variables,
and Eq. (2.4.7) and Eq. (2.4.8) are called linear shape functions. The shape functions
are plotted in Fig. 2.4.2. These functions have the following properties:

1. The shape function associated with node i has a unit value at node ¢ and vanishes
at other nodes. That is,

Hl(.’l:,') = 1, H1($i+1) = 0, Hz(.’l!,’) = 0, H2(2:§+1) = 1 (2410)
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Figure 2.4.2 Linear Shape Functions
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Figure 2.4.3 Finite Element Mesh With 3 Linear Elements

2.  Sum of all shape functions is unity.
2
> Hiz) =1 (2.4.11)
i=1

These are important properties for shape functions. The first property, Eq.
(2.4.10), states that the variable u must be equal to the corresponding nodal variable
at each node (i.e. u(z;) = u; and u(z;41) = u;41 as enforced in Eq. (2.4.2) and Eq.
(2.4.3)). The second property, Eq. (2.4.11), tells that the variable u can represent
a uniform solution within the element. If the solution remains constant within the
element, u = u; = u;4;. Substitution of this condition into Eq. (2.4.6) gives

u={Hi(z)+ Ha(z) }u; = u; (2.4.12)
Equation (2.4.12) results in the second property of shape functions, Eq. (2.4.10).

& Example 2.4.1  We solve the same problem as given in Example 2.3.1
using the linear finite elements. The weighted residual can be written as

-3

Ligl 1
(_d_w@ —wu + a:w) dz + [u’w] =0 (2.4.13)
— e dz dx 0

for n elements. If the problem domain is discretized into three equal size of
elements, i.e. n = 3, Fig. 2.4.3 shows the corresponding finite element mesh.

Consider the ** element (i.e. =1, 2, or 3). The integral for this element is

Tt [ dw du
,[x,- (_El_:;d_x - wu+ mw) dx (2.4.14)
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The trial function u is expressed as
U = Hl(:c)u,- + Hg(:c)u,-_,_l (246)

and test functions for Galerkin’s method are w; = Hl(.'l:) and wy = Hz((l}).
Putting these u and w into Eq. (2.4.13) gives

[ (U s (3 ponm)ee .

Tit1 H
+jz,- z { H; } dz (2.4.15)

where H denotes dHilz) ,nd H; is given in Eq. (2.4.7) and Eq. (2.4.8).

Computation of these integrals finally yields

E+h Lk . By (g, .
- [ NN, ] { i }+ { 8 (i +2“")} (2.4.16)
—ntE mtE dln T (22ip + i)
For each element, Eq. (2.4.16) can be written as
Element #1
(—3.111 29444 ] [, 0.0185
| 29444 —3.111 {uz} {0.0370} (2.4.17)
Element #2
[—3.111 29444 ] [ us 0.0741
20444 —3.111 {u3 } + {0.0926} (2.4.18)
Element #3

r 9111 n 1000 )
—o.lll  £.99%% 0.1296
l2.9444 -3. 111J { } {o 1481} (2.4.19)

As shown in Eq. (2.4.13), we need to sum Eqs (2.4.17) through (2.14.19). Each
element has different nodes associated with it. As a result, we expand each
equation such that the equation has a matrix and a vector of size " which is
the total number of degrees of freedom in the system. For the present problem,
m = 4. The number of total degrees of freedom is the same as the total number
of nodes because each node has one degree of freedom for the present problem.
Rewriting Eq. (2.4.17) for the exparded matrix and vector gives

—-3.111 29444 0 O Uy 0.0185
2944 -3.111 0 O U 0.0370
0 0 0 0 us + 0 (2.4.20)
0 0 0 0 Uy 0
Similarly, Eq. (2.4.18) and Eq. (2.4.19) can be rewritten as
0 0 0 0 Uy 0
0 -3.111 29444 0 Ug 0.0741
0 29444 —31111 0| Yus { T ) 0.0026 (2.421)
0 0 0 0 Ug 0



Section 2.4 Galerkin’s Finite Element Formulation 41

0 0 0 0 Uy 0
0 0 0 0 Uy 0
0 0 —3.1111 29444 | Yus ( T ) 0.1296 (2.4.22)
0 0 29444 -3.1111 Ugq 0.1481
Adding directly Egs. (2.4.20) through (2.4.22) results in
—-3.1111  2.9444 0 0 Uy
2.9444 —6.2222 2.9444 0 Uy
0 29444 —-6.2222 2.9444 us
0 0 2.9444 -3.1111 Uq
0.0185 — u'(0)
0.1111 B
+ 0.2299 =0 (2.4.23)

L 0.1481 + w'(1) J

The Neuman boundary conditions are added to the right-hand side vector from
Eq. (2.4.13). For the present problem, the Dirichlet boundary conditions are
provided at both ends (i.e. u; = 0 and uqg = 0). Therefore, the Neumann
boundary conditions (i.e. u'(0) and u/(1)) are not provided. Equation (2.4.23)
can be solved with the given boundary conditions, #; = 0 and us4 = 0, to
find the rest of nodal variables and unknown Neumann boundary conditions.
In actual finite element programming, Eqs (2.4.17) through (2.4.19) are directly
summed into Eq. (2.4.23) without using Eqs (2.4.20) through (2.4.22). Equations
(2.4.20) through (2.4.22) are used here only to help the conceptual understanding
of the assembly process. Furthermore, in computer programming, unknown
nodal values, called the primary variables, are solved first and then the unknown
boundary conditions are solved later. To this end, Eq. (2.4.23) is modified with
the known boundary conditions.

1 o 0 0 uy 0
29444 -6.2222 29444 0 uy | _ ) —0.1111 (2.4.24)
0 29444 —6.2222 2.9444 ug [~ | —0.2222 o

0 0 0 1 Uy 0

The first and last equations in Eq. (2.4.23) are replaced by the Dirichlet
boundary conditions. From Eq. (2.4.24), the solution gives u; = 0, us = 0.0448,
uz = 0.0569, and uq = 0. These nodal solutions can be substituted into Eq.
(2.4.23) to find ¥/(0) and u'(1). Once the nodal variables are determined,
the solution within each element can be obtained from corresponding nodal
variables and shape functions. For example, the solution within the first element

(0 <z < 3)is u= Hi(z)ur + Ha(z)uy = 0.13442. |
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2.5 Variational Method

The variational method is also commonly used to derive the finite element matrix
equation. We want to derive the functional for the sample problem

d2
s —u=-z, 0<z<l
{H(O) =0, and 4(1) =0 (2.1.1)

The variational expression for Eq. (2.1.1) is

1
6J = / (—— +u-— a:) budx + [@615] (2.5.1)
de ],

where 6 is the wariational operator. The first term in the above equation is
the differential equation and the second term is the unknown Neumann boundary
condition (or natural boundary condition). Applying integration by parts to the first
term of Eq. {2.5.1) yields

1/ du d(6u)
6]-/0 (;i_a; Iz +u6u—m6u)dm (2.5.2)

Since the wvariational operator is commutative with both differential and integral
operators (i.e. i%z—l = 6(%) and [éudr = 6 [udz), Eq. (2.5.2) can be written

i 67 = 5] { (d“) %uz—mu}dm (2.5.3)

The functional is obtained from Eq. {2.5.3) as

101 fdu\? 1,
J_/o {g(c—i_x—) +§u —xu}dm - (2.5.4)

Conversely, taking variation of Eq. (2.5.4) will result in the differential equation as
given in Eq. (2.1.1). Functional represents energy in many engineering applications.
For example, the total potential energy in solid mechanics is a functional. The solution
to the governing equation is obtained by minimizing the functional. The principle of
minimum total potential energy in solid mechanics is one example to determine the
stable equilibrium solution [4,5]. Energy principles are discussed in later chap*ers.
For more detailed information for variational method, readers may refer to Refs [6-8].

2.6 Rayleigh-Ritz Method

The Rayleigh-Ritz method obtains an approximate solution to a differential
equation with given boundary conditions using the functional of the equation. The
procedure of this technique can be summarized in two steps as given below:
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1. Assume an admissible solution which satisfies the Dirichlet boundary condition
(or essential boundary condition) and contains unknown coefficients.

2. Substitute the assumed solution into the functional and find the unknown
coeflicients to minimize the functional.

& Example 2.6.1  In order to solve Eq. (2.1.1) using the Rayleigh-Ritz
method, we assume the following function as an approximate solution,

u=az(l —z) (2.6.1)

where @ is an unknown coefficient. This function satisfies the essential boundary
conditions. Substituting Eq. (2.6.1) into the functional, Eq. (2.5.4), yields

1., M1 . , , L
J= %azj: [(1-2z)*+z*(1 — z)°)dz — aj: (1 — z)de (2.6.2)

Minimizing the functional with respect to the unknown coefficient a, i.e. %‘—i—:: ,

yields a=0.2272. Therefore, the approximate solution is u = 0.2272z(1 — z)
which is the same as that obtained in Sec. 2.1 using Galerkin’s method. In order
to improve the approximate solution, we need to add more terms. For example,
Wwe may assume

u = a1z(l — z) + azz®(1 - 2) (2.6.3)

where a; and a; are two unknown coefficients. We substitute the expression
into the functional and take derivatives with respect to a; and as in order to
minimize the functional.

—S—’;T— =0 and -;?—J— =0 (2.6.4)
oai das ' ‘

This operation will give solutions for unknown coefficients a; and a3.

2.7 Rayleigh-Ritz Finite Element Method

The Rayleigh-Ritz method can be applied to a problem domain using continuous
piecewise functions. As a result, the problem domain is divided into subdomains of
finite elements. For elements with two nodes apiece, the linear shape functions as
in Eqs (2.4.7) and (2.4.8) can be used for the Rayleigh-Ritz method. The following
example explains the finite element procedure using the Rayleigh- Ritz method.

& Example 2.7.1  We will solve Example 2.4.1 again using the Rayleigh-
Ritz method. The problem domain and its discretization are shown in Fig. 2.4.3.
The functional can be expressed for the discretized domain as

N VL A
J_Z/;,,-,- {E(d_:c) +-2"u —:cu}da: (2.7.1)

i=1
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where n = 3, 21 =0, 3 = 1/3, 3 = 2/3 and z4 = 1 as shown in Fig. 2.4.3.

Using the linear shape functions, the solution u for the i** element is expressed

u = Hy(z) w + Ho(x) uigr = [H]{v'} (2.7.2)

where
[H] =[H:1 H;] (2.7.3)
{w'} = {ui wya}” (2.7.4)

5]

and H: and H ar

into the functional yields

[ {2(3:) + 0 - oulds = /{% {u‘-}T[czz] e

given in E

s (2.4.7) and (2.4.8). Substituting E
\F 7 \= (=]

‘.'l

1. . . :
i{u‘}T[H]T [H{u'} — {u'}T [H]T:c}d:c (2.7.5)
in which
dH]| |dH, dH;
[dm] - [ dz dz ] (2.7.6)
Evaluation of the integral in Eq. (2.7.5) gives
1 'I:_,- + %‘ —% + i6i U
2{us u;+1}[_h%+m _1,_,_% Uit
hi
_ . 6 (Ii—{-l + 21::)
{us Ut+1} { %‘(217;4-1 + z;) (2-7'7)

Here, the matrix expression in Eq. (2.7.7) came from the first and second terms of
the right-hand side of Eq. (2.7.5) while the vector expression came from the last
term. Summing Eq. (2.7.7) over the total number of elements and substituting
proper values give the functional

3.1111  —-2.9444 0 0 Uy
1 {—2.9444 6.2222 -—2.9444 0 ] I Us 1
J=::{u1 u2u3u4_} ~ .YV N OOnn LY. YUV
2 I- U —2.9444 0.2422 — Z.Y44 J l'U3 J
0 0 -29444 31111 J Lu,
0.0185
0.1111
- {u1 Uz uUg U4} 0.2922 (278)
0.1481

The summation process for Eq. (2.7.8) is the same as explained in Example 2.4.1.
In order to find the solution, we need to minimize the functional with respect to
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the unknown nodal vector {u} = {u; us us u4}T. Invoking E%II}- = 0 results

in

31111 -2.9444 0 0 u
_2.0444 69292 —2.9444 O s
0 29444 62922 -2.9444] Y us
0 0  —2.9444 31111 J L,

0.0185

0.1111

~902222 ( =0 (2.1.9)
0.1481

Applying the boundary conditions u; = 0 and ug4 = 0 to Eq. (2.7.9) yields
Eq. (2.4.24) in Example 2.4.1. The solutions for nodal variables are u; = 0,
ug = 0.0448, uz = 0.0569, and u4 = 0 again as before. }



46

2.1

2.2
2.3
24

2.5
2.6
2.7

2.8
29
2.10

2.11

Approximation Techniques Chapter 2

Problems

Find an approximate solution to the boundary value problem

2
%:m O<z<1

#(0)=0 and u(1)=0

Use a trial function u = az(1—z) where a is a constant to be determined. Apply
the collocation method with a collocation point located at = = 0.5.

Redo Prob. 2.1 using the least squares method.
Redo Prob. 2.1 using Galerkin’s method.

Solve the following two-point boundary value problem using the collocation
method.

od?u

T dz?

u(1) =0 and u(2)=0

—2u=1 1l<z<?2

Use a trial function u = a(z — 1)(z — 2) where a is a constant to be determined.
Redo Prob. 2.4 using the least squares method.
Redo Prob. 2.4 using Galerkin’s method.

Determine an approximate solution to the differential enqation

1% 7

du du
2 y — 2z
dz dr

T 4+2u=0 l<z<4

u(l)=0 and u(4) =12
Use a quadratic polynomial for the trial function and the collocation method.
Redo Prob. 2.7 using the least squares method.
Redo Prob. 2.7 using Galerkin’s method.

Apply Galerkin’s .method to find an approximate solution to the following
differential equation:

d?u  du

uw(0)=0 and u(l)=1

Assume (a) a quadratic polynomial and (b) a cubic polynomial as a trial
function, respectively.

Redo Prob. 2.10 using the collocation method.
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0 1 2

Figure P2.14 Problem 2.14

2.12
2.13

2.14

2.15

2.16

Redo Prob. 2.10 using the least squares method.

Use Galerkin’s method to determine an approximate solution to

d?*u  du
E+E-—2u—m O<e<l

u(0) =0 and u(1l)=1
Assume a quadratic polynomial as a trial function.

Solve the problem given below using Galerkin’s method and piecewise linear
functions. The piecewise function is shown in Fig. P.2.14.

d?u
@—1 0<x <2

(0) =0 and u(2)=0

Solve the boundary value problem using piecewise linear functions.

d?y
@—1 0<e<3

©(0)=0 and u(3)=0

(a) Derive the weak fomulation. (b) Develop the matrix equation using three

1 59

equal sizes of subdomains. {c) What is the approximate solution at £=1.57
Apply the piecewise linear functions to

d?u  du
m+£—2u_0 O<z<li

u(0) =0 and u(l)=1

Divide the domain into three equal sizes of subdomains.
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Figure P2.17 Problem 2.17
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Figure P2.19 Problem 2.19

2.18
2.19

220

2.21

1L Lilal BUALION witil il S COILQLILIONS 12 5%

d?u du
mza——g+2md—+2 0 I1<zx<4

4(1)=1 and u(4) =0

(a) Derive the weak formulation. (b) Compute element matrices and vectors for
the given mesh discretization using linear shape functions. (c) Assemble them
into the global matrix and vector. (d) Apply the boundary conditions to the
matrix equation. (e) Solve for the unknown nodal values.

Redo Prob. 2.16 using the linear finite elements.

(a) For a finite element with two end nodes, derive shape functions using the
polynomial u(z) = a + bz?. In other words, find H,(z) and Hy(z) such that
u(z) = Hi(x)us + Ha(z)uy. (b) Using the shape functions obtained from (a),
compute the following integral:

where w is the test function. Use Galerkin’s method.

For a two-node element, (a) develop the shape functions Hy(x) and Ha(z)
using u(z) = az + bz? such that u(x) = Hi(z)us + Ha(z)us, and (b) compute
f_ll w4 de using Galerkin’s method. (c) Does the element converge as the mesh
is refined? Explain why.

(a) Develop the functional of the differential equation given in Prob. 2.1. (b)
With the functional derived in (a), redo Prob. 2.1 using the Rayleigh-Ritz
method.
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Figure P2.20 Problem 2.20

222 (a) Develop the functional of the differential equation given in Prob. 2.14. (b)
With the functional derived in (a), redo Prob. 2.14 using the Rayleigh-Ritz
method.

2.23 Redo Prob. 2.21 using the Rayleigh-Ritz finite element method along with linear
elements.

2.24 Redo Prob. 2.22 using the Rayleigh-Ritz finite element method along with linear
elements.






CHAPTER THREE

FINITE ELEMENT PROGRAMMING

3.1 Overall Program Structure

In order to understand fundamental concepts of the finite element method, it
is very useful (or sometimes essential) to understand the skeleton of the program
structure of the finite element analysis. This chapter explains the basic structure of
the program. The main procedures in the finite element analysis are

Read input data and allocate proper array sizes.

Calculate element matrices and vectors for every element.

Assemble element matrices and vectors into the system matrix and vector.
Apply constraints to the system matrix and vector.

Solve the matrix equation for the primary nodal variables.

Compute secondary variables.

Plot and/or print desired results.

NSO N

Each procedure is explained in the subsequent sections using the following second
order ordinary differential equation

d*u du
aa—z-Fva'—Fcu—f(&B), O<x< L
u(0) =0 and u(L)=0 (3.1.1)

The weak formulation of the equation is

ILr dwdu . 2 du . ] 7 [L £6 N T _ r du.lL
+ow——+cwujaa:=j wfizjar — [aw—
0

./0 1_65;1_3:_ dz dz ],

—
)
[
)

R

If we use the linear shape functions, Eqs (2.4.7) and (2.4.8), the element matrix for
the i** element becomes

(K] = /z o (—-a { ‘gé } [H! H] +b { g; } [HHL + ¢ { g; } [H1H2]) dz (3.1.3)

51
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where ( )’ denotes the derivative with respect to . Evaluation of the integration gives

Rt IR R ) F o | B

On the other hand, the element vector 1s

Fe - L f’“ f(@) { g; } de (3.1.5)

If f(z) =1, the element vector becomes

pe= B [1] 3.1.6
=341} (3.1.6)

3.2 Input Data

The major input parameters needed for the finite element analysis program for
Eq. (3.1.1) are

the number of total nodes in the system,

the number of total elements in the system,

coordinate values of every node in terms of the global coordinate system,

types of every element,

informations for boundary conditions, and

coefficients for Eq. (3.1.1).
Most of these input data are associated with the finite element mesh upon which a
user decides. The mesh can be generated either using an automatic mesh generation
program so called pre-processor or manually. The type of element incudes how many
nodes per element as well as how many degrees of freedom for each node of the element.
If the same type of elements are used over the whole domain, these informations are
needed for one element. However, if the system (or domain) has many different types
of elements, these informations should be supplied for every different elements. For
the present problem, Eq. (3.1.1), we use the same type of finite elements for the
sake of simplicity. The problem domain is discretized in Fig. 3.2.1. Here five equal
size of linear elements are used. Therefore, the number of total nodes in the system
(nnode) is 6 and the number of total elements in the system (nel) is 5. Since it is a
one-dimensional problem, each node has only & coordinate value. If gcoord denotes
the array storing the coordinate values, then

geoord(1)=0.0, gcoord(2)=0.2, gcoord(3)=0.4,
gcoord(4)=0.6, gcoord(5)=0.8, gcoord(6)=1.0

in which the index in the parenthesis is the node number which varies from 1 to 6 and
the size of array gcoord is the same as the total node number nnode. The number of
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elem # 1 2

+++##+x

X;=0 X2=0.2 x3=0.4 %X4=0.6 x5=0.8 xs=1
Uy Uz Uz Ug Us Ug

Figure 3.2.1 A Mesh With 5 Linear Elements

nodes per element (nnel) is 2 and the number of degrees of freedom per node (ndof)
is 1. Then the number of degrees of freedom per system is sdof=nnode*ndof.

In general, information for nodal connectivity for each element is an input to
the program. This is also called element topology. This information is important
to evaluate element matrices and vectors as well as to assemble these matrices and
vectors into the system (or global) matrix and vector. For the present one-dimensional
problem using linear elements, this information can be constructed in the program in
a simple way if the node numbering and element numbering are sequential from one
end of the domain to the other end of the domain. It is stored in array called nodes.
The array is a two-dimensional array. The first index indicates the element number
and the second index denotes the nodes associated with element. For the example

problem, the i** element has two nodes, i*® and (i 4+ 1)** nodes. That is,
nodes(i,1)=i and nodes(1,2)=1+1 for 1=1,2,3,4,5

This can be coded easily in the program and it is shown in examples in the later
section.

Information for boundary conditions includes the nodal degrees of freedoms
where constraints and external forces (or fluxes) are applied. In order to specify the
nodal degrees of freedom, we need to provide node numbers and corresponding degrees
of freedom of the specified nodes. In addition, the prescribed constraint values should
be provided. For the present problem, the information for constrained nodes is

bedof(1)=1, bedof(2)=6

where bcdof contains the node numbers where constraints are given. In other words,
the size of array bcdof 1s 2 because there are two constrained nodes, and the first
and second constrained node numbers are 1 and 6, respectively. Furthermore, the
constrained values are read in bcval such as :

beval(1)=0.0 and beval(2)=0.0.

Here the first value is for node 1 and the second value is for node 6.

The element matrix Eq. (3.1.4) is derived for arbitrary constants a, b and ¢ as in
Eq. (3.1.1). As a result, the coefficients should be provided. For the present problem,
leta=1,b=—-1and c=2.
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3.3 Assembly of Element Matrices and Vectors

The element matrix and vector are expressed in Eqgs (3.1.4) and (3.1.6). These
expressions are function of the length of each element. As a result, the length of
each element is computed from the coordinate values of the nodes associated with the
element. For example, the i*® element is associated with the i** and (i + 1)** nodes.
The coordinate values of the nodes are gecoord(i} and gcoord(:+1). As a result, the
element length h; is equal to gcoord(i + 1) — gcoord(i). If the element length is the
same for the whole domain, the length can be provided as an input.

Once, these matrices and vectors are computed, they need to be assembled into
the system matrix and vector. To this end, we need the information where the element
matrix and vector are to be located in the system matrix and vector. This information
is obtained from array indez whose size equals to the number of degrees of freedom
per element, i.e. 2 for the present problem. Because each node has a single degree of
freedom (i.e. nodf=1), the size of array indez is the same as that for array nodes.

indez(1)=i and indez(2)=i+1 for the i** element

The following example shows assembly of element matrices and vectors.

& Example 3.3.1  Let k and f be the element matrix and vector for any
element. In addition, kk and ff are the system matrix and vector. Array indez
contains the degrees of freedom associated with the element. Then, k and f are
stored into kk and ff in the following way. This is repeated for every element.

edof=nnel*ndof; % edof=number of degrees of freedom per pode
for ir = l:edof; % loop for element rows
irs = index(ir); % address for the system row
fi(irs) = f(ir); % assembly into the system vector
for ic = l:edof; % loop for element columns
ics = index(ic); - % address for the system column
kk(irs,ics) = kk(irs,ics) + k(ir,ic); % assembly into system matrix
end % end of row loop
end % end of column loop 1}

3.4 Application of Constraints

The information for constraints or boundary conditions is provided in arrays
called bedofand bcval as described in the previous section. The system matrix equation
is modified using this information. The size of system matrix equation is equal to the
total number of degrees of freedom in the system. Without applying the constraints to
the system of equations, the matrix equation is singular so that it cannot be inverted.
In context of solid/structural mechanics, this means that the matrix equation contains
rigid body motions. As a result, the constraints prevent the matrix equation from
being singular. If a constraint is applied to the n'® degree of freedom in the matrix

equation, the n*? equation in the matrix is replaced by the constraint equation.
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& Example 3.4.1  For the present example, the system of matrix equation
18

[kk){u} = {ff} (3.4.1)

The size of the matrix equation is sdof=6 and there are two constraints. These
constraints are applied to the system matrix equation as shown below:

for ic = 1:2; % loop for two constraints
id = bedof(ic); % extract the degree of freedom of a constraint
val = bceval(ic); % extract the corresponding constrained value
for 1 = 1:sdof; % loop for number of equations in system
kk(id,i) = 0; % set all the id™ row to zero
end
kk(id,;id) = 1; % set the id"" diagonal to unity
fi(id) = val; % put the constrained value in the column
end 1§

The algorithm shown in Example 3.4.1 destroys the symmetry if the system
matrix, before applying the boundary conditions, is symmetric. If we want to maintain
the symmetry even after applying the boundary conditions, the next example shows
the algorithm.

& Example 3.4.2 This example shows another way to apply the boundary
condition without destroying the symmetry of the system matrix.

for ic = 1:2; % loop for two constraints

id = bedof(ic); % extract the degree of freedom for constraint

val = beval(ic); % extract the corresponding constrained value
for 1 = l:sdof; % loop for number of equations in system

fi(i) = ff(i)-val*kk(i,id) % modify column using constrained value
kk(id,i) = 0; % set all the id"™ row to zero
kk(i,id) = 0; % set all the id'” column to zero
end
kk(id,id) = 1; % set the id™ diagonal to unity
fi(id) = val; % put the constrained value in the column
end 1

Once the system of matrix equation is modified as shown in the above example,
the modified matrix equation is solved for the primary nodal unknowns. In the
MATLAB program, it can be solved as

u=kk'\ff
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where kk’ denotes the modified matrix equation. Once the primary nodal variable
u is determined from the matrix equation, the natural boundary conditions (i.e. the
secondary variable) are found from

ff = kk*u

3.5 Example Programs

This section shows examples of finite element analysis programs. The second-
order ordinary differential equations are used as governing equations.

& Example 3.5.1 We want to solve Eq. (3.1.1) using the finite element
method. The coefficients in the differential equation are assumed a = 1, b = =3
and ¢ = 2 while function f(z) is assumed 1. The domain size is equal to 1 (i.e.
L = 1) and five linear elements of equal size are used for the present analysis.
The computer program written in MATLAB is provided below along with the
results. The main program is first shown below.

%
% EX3.5.1.m

% to solve the ordinary differential equation given as
%auw”+buwt+cu=1,0<z<1

% u(0) =0and u(1) =0

% using 5 linear elements

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

174
/0

%

174
/0

% input data for control parameters

%

nel=>5; % number of elements
nnel=2; % number of nodes per element
ndof=1; % number of dofs per node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs

%
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o7,

/0

% input data for nodal coordinate values

geoord(1)=0.0; gcoord(2)=0.2; gcoord(3)=0.4; gcoord(4)=0.6;
geoord(5)=0.8; gcoord(6)=1.0;

%

% input data for nodal connectivity for each element

%
nodes(1,1)=1; nodes(1,2)=2; nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4; nodes(4,1)=4; nodes(4,2)=5;
nodes(5,1)=35; nodes(5,2)=6;

%

%

% input data for coefficients of the ODE

o7

acoef=1; % coefficient ’a’ of the diff eqn
bcoef=-3; % coefficient 'b’ of the diff eqn
ccoef=2; % coefficient ’c’ of the diff eqn
%

%

% input data for boundary conditions

%

bedof(1)=1; % first node is constrained
beval(1)=0; % whose described value is 0
bcdof(2)=6; ’ % 6th node is constrained
beval(2)=0; % whose described value is 0
%

%

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros{nnel*ndof,1); % initialization of index vector
%

o7

AL
% computation of element matrices and vectors and their assembly

%

for iel=1:nel % loop for the total number of elements
%

nl=nodes(iel,1); nr=nodes(iel,2); % extract nodes for (iel)-th element
xl=gcoord{nl); xr=gcoord{nr); 70 extract nodal coord values
eleng=xr-xl; % element length
index=feeld of1(iel,nnel,ndof ); % extract system dofs associated
%

k=feode2l(acoef,bcoef,ccoef,eleng); % compute element matrix
f=fef11(xl,xr); % compute element vector

[kk,ff]=feasmbl2(kk ff k,f,index); % assemble element matrices and vectors

97
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%

end % end of loop for total elements
%

% apply boundary conditions

[V 4
/0

[kk, ff]=feaplyc2(kk,f,bcdof, beval);
%

% solve the matrix equation

%
fsol=Kkk\ff;
%

%
% analytical solution

o7
/0

c1=0.5/exp(1});
c2=-0.5*(141/exp(1)};

for i=1:nnode

x=gcoord(i);
esol(i)=cl*exp(2*x)+c2*exp(x)+1/2;
end

%

o
/0

% print both exact and fem solutions

The function programs (i.e. m-files) used in the main program are also given
below.

function [kk,ff]=feaplyc2(kk,ff,bcdof,bcval)
o7
% Purpose:

% Apply constraints to matrix equation [kk]x=£
%

% Synopsis:

% [kk,ff]=feaplybc(kk,ff,bcdof beval)

%

07 Yowinhla Nagarintian:
/0 Yariaoi€ L/esCripuion.

% kk - system matrix before applying constraints
% ff - system vector before applying constraints
% bcdof - a vector containing constrained d.o.f
% bcval - a vector containing constrained value

%

% For example, there are constraints at d.o.f=2 and 10
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% and their constrained values are 0.0 and 2.5,
% respectively. Then, bedof(1)=2 and bcdof(2)=10; and
% beval(1)=1.0 and beval(2)=2.5.

o7,
T4\

%
n=length(bcdof);
sdof=size(kk);
%

for i=1:n
c=bcdof(1);
for j=1:sdof
kk(c,j)=0;
end

%

kk(c,c)=1;
fi(c)=bcval(i);
end

%

function [kk,ff}=feasmbl2(kk,f k,f,index)
%

A\

% Purpose:

% Assembly of element matrices into the system matrix and
% Assembly of element vectors into the system vector
%

% Synopsis:

% [kk,ff]=feasmbl2(kk,ft,k,f,index)

%

% Variable Description:

% kk - system matrix

% ff - system vector

% k - element matrix

% 1 - element vector

% index - d.o.f. vector associated with an element

Al

%

edof = length(index);
for i=1:edof
ii=index(i);

fF(31)=1(ii) +£();

for j=1:edof
jj=index(j);

Kk (i, ) =k (1,35) -+ )
end

end

[V 4
/0

59
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function [index]=feeldofl(iel,nnel,ndof)
%,

Chapter 3

%
% Pur
% Compute system dofs associated with each element in one-
% dimensional problem

%

% Synopsis:

% [index]=feeldofl(iel,nnel,ndof)

%

% Variable Description:

% index - system dof vector associated with element zel

% 1el - element number whose system dofs are to be determined
% nnel - number of nodes per element

% ndof - number of dofs per node

%
%

edof = nnel*ndof;

start = (iel-1)*(nnel-1)*ndof;
%

for i=1:edof
index(i)=start-H;

end

174
70

function [fl=fefll(xl,xr)
A
%o

% Purpose:

% element vector for f(x)=1

% using linear element

%

% Synopsis:

% [f]=fef1l(xl,xr)

%

% Variable Description:

% { - element vector (size of 2x1)

% x1 - coordinate value of the left node

% xr - coordinate value of the right node
o

U

%
% element vector

(1,4
/70

% eleng=xr-xl; % element length

f=[ eleng/2; eleng/2};
%

/70
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function [k]=feode2l(acoef,bcoef,ccaef, eleng)

%0 —
% Purpose:

% element matrix for (a v” + b’ + ¢ u)

% using linear element

%

% Synopsis:

% [k]=feode2l(acoef, bcoef,ccoef,eleng)

%

% Variable Description:

% k - element matrix (size of 2x2)

% acoef - coefficient of the second order derivative term
% bcoef - coefficient of the first order derivative term

% ccoef - coefficient of the zero-th order derivative term
% eleng - element length

%
%

% element matrix

%

al=-(acoef/eleng); a2=bcoef/2; a3=ccoef*eleng/6;
k=[ al-a2+42*a3 -al+a2-+al;...

-al-a2+4a3 al+a24-2%a3);

174
/0

The finite element solutions are compared to the exact solutions at the nodal

points.

results =

node # fem sol exact sol

1.0000 0.00000 0.00660 % solution at £=0
2.0000 -0.0621 -0.0610 % solution at £=0.2
3.0000 -0.1133 -0.1110 % solution at £=0.4
4.0000 -0.1388 -0.1355 % solution at £=0.6
5.0000 -0.1142 -0.1111 % solution at £=0.8
6.0000 0.00000 0.00000 % solution at r=1

& Example 3.5.2 The same differential equation as that in Example 3.5.1
is solved here. However, the boundary conditions are different. They are

du(1)

u(0) =0 and <

=1 (3.5.1)

The left end is the essential boundary condition as before while the right end is
the natural boundary condition. As seen in Eq. (3.1.2), the boundary condition

with a known value of g—g contributes to the right hand side column vector. For
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example, Eq. (2.4.23) shows how the natural boundary condition is incorporated
into the column vector. Because the column vector moves to the right-hand-side

It U T SN ST S IUTY )1 ¢ § S AP
Ol L€ 11atrlX €guatiVil, we €It IVIL SUDLIACLIILE T — 1 1rOill tilC LgI-nana-
side column vector. The program list is given below for completeness. Comparing

the program to that given in the previous example tells the difference between

the essential (i.e. ¥(1) = 0) and natural (i.e. d_:;%) = 1) boundary conditions.

%
% EX3.5.2.m

% to solve the ordinary differential equation given as

%aw +bw+cu=10<z<1

% u(0) = 0 and w’(1) =1

% using 5 or 10 linear elements

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

r4l)

%

%

% input data for control parameters

o7,

V4!l

nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=1; % number of dofs per node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%

% input data for nodal coordinate values
%
gcoord(1)=0.0; gcoord(2)=0.2; gcoord(3)=0.4; gcoord(4)=0.6;
geoord(5)=0.8; gcoord(6)=1.0;

%

%
% input data for nodal connectivity for each element
%
nodes(1,1)=1; nodes(1,2)=2; nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4; nodes(4,1)=4; nodes(4,2)=5;
nodes(5,1)=5; nodes(5,2)=6;

%
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% input data for coefficients of the ODE

Al

acoef=1; % coefficient ’a’ of the diff eqn
bcoef=-3; % coefficient *b’ of the diff eqn
ccoef=2; % coeflicient ’c’ of the diff eqn
%

Al

% input data for boundary conditions

/v

bedof(1)=1; _ % first node is constrained
beval(1)=0; % whose described value is 0
%
o

/0

% initialization of matrices and vectors

o7
fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

%
% computation of element matrices and vectors and their assembly

%

for iel=1:nel % loop for the total number of elements
%

nl=nodes(iel,1); nr=nodes(iel,2); % extract nodes for (iel)-th element
xl=gcoord(nl); xr=gcoord(nr); % extract nodal coord values
eleng=xr-xl; % element length
index=feeldofl(iel,nnel,ndof); % extract system dofs associated
%

k=feode2l(acoef,bcoef,ccoef,eleng); % compute element matrix
f=fef11(xl,xr); % compute element vector

[kk,ff]=feasmbl2(kk,ff k,f,index); % assemble element matrices and vectors
%

end % end of loop for total elements

%

o7,
/0

% apply the natural boundary condition at the last node
oy

(4AY

fi(nnode)=ff(nnode)-1; % include /%(1) = 1 in column vector

%

U

% apply boundary conditions

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%
%

% solve the matrix equation

63
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i 4
/0

fsol=klk\ fF;
%

%
% analytical solution

o7
/0

c1=(1+0.5%exp(1))/(2*exp(2)-exp(1));
c2=-(1+exp(2))/(2*exp(2)-exp(1));
for i=1:nnode

x=gcoord(i);
esol(i)=cl*exp(2*x)+c2*exp(x)+1/2;
end

%

oy 4
N7
/U

% print both exact and fem solutions
%
num=1:1:sdof;

results=[num’ fsol esol’]
o7

U

The solutions using 5 elements and 10 elements are shown below, respectively.
Comparing the two finite element solutions to the exact solution shows the
convergence of the finite element solution as the mesh is refined.

results for five elements=

node # fem sol exact sol

1.0000 0.00000 0.00000 % solution at £=0
2.0000 -0.0588 -0.0578 % solution at £=0.2
3.0000 -0.1043 -0.1024 % solution at =0.4
4.0000 -0.1203 -0.1180 % solution at £=0.6
5.0000 -0.0802 -0.0792 % solution at £=0.8
6.0000 0.0586 0.0546 % solution at =1
results for ten elements=

node # fem sol exact sol

1.0000 0.00000 0.00000 % solution at £=0
2.0000 -0.0300 -0.0298 % solution at £=0.1
3.0000 -0.0580 -0.0578 % solution at £=0.2
4.0000 -0.0829 -0.0825 % solution at £=0.3
5.0000 -0.1028 -0.1024 % solution at £=0.4
6.0000 -0.1157 -0.1151 % solution at £=0.5
7.0000 -0.1186 -0.1180 % solution at £=0.6
8.0000 -0.1080 -0.1075 % solution at £=0.7
9.0000  -0.0794  -0.0792 % solution at £=0.8
10.000 -0.0273 -0.0275 % solution at £=0.9
11.000 0.0556 0.0546 % solution at z=1
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& Example 3.5.3 This example solves the following differential equation:

,0%u Ou 2

322 52 , 10<z<20 (35.2)

with the boundary conditions u(10) = 0 and u(20) = 100. The weak
formulation of Eq. (3.5.2) is

o 0w 0u Ou 20, s Oul®
/ ( 52 52 +4xwa— +4wu)da: = /;0 wr*dr + [Z w'ga;] . (3.5.3)

Discretizing the domain into a number of linear elements and evaluating the
element matrix and vector using Galerkin’s method yield

1 [422z; — 62,2 — 22 + 32 2riz; — 22 — &3
ey _ _* r l ot ! 2a 3 I
[K°] = [ —2z.z} + 23 + o3 62z, - 4z,x} — 322 + 23 (3.5.4)
and
1 —4z,23 + 2} + 32}
= — rel r {

where h, is the length of the linear element, and 2; and z, are nodal coordinate
values of left and right nodes of the element. The MATLAB program using 10
elements is provided below along with new necessary functions,

% EX3.5.3.m

% to solve the ordinary differential equation given as

% zZu -2xw-du=2%10<z<20

% u(10) = 0 and u(20) = 100

% using 10 linear elements

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% index = a vector containing system dofs associated with each element
% bedof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

%
%
%
% input data for control parameters
%
nel=10; % number of elements
nnel=2; % number of nodes per element
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ndof=1; % number of dofs per node
nnode=11; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%

o7

AN

% input data for nodal coordinate values

gcoord(1)=10; gcoord(2)=11; gcoord(3)=12; gcoord(4)=13;
gecoord(5)=14; gcoord(6)=15; gcoord(7)=16; gcoord(8)=17;
gcoord(9)=18; gcoord(10)=19; gcoord(11)=20;

)

Y%
% input data for nodal connectivity for each element

4
70

nodes(1,1)==1; nodes(1,2)=2; nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4; nodes(4,1)=4; nodes(4,2)=5;
nodes(5,1)=>5; nodes(5,2)=6; nodes(6,1)=6; nodes(6,2)=7;
nodes(7,1)=7; nodes(7,2)=8; nodes(8,1)=8; nodes(8,2)=9;
nodes(9,1)=9; nodes(9,2)=10; nodes(10,1)=10; nodes(10,2)=11;
%

%

% input data for boundary conditions

o7,

bedof(1)=1; % first node is constrained
beval(1)=0; % whose described value is 0
bedof(2)=11; % 11th node is constrained
beval(2)=100; % whose described value is 100
%

%o

% initialization of matrices and vectors

Yo

fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

%

% computation of element matrices and vectors and their assembly

o7
/70

for iel=1:nel % loop for the total number of elements
%
nl=nodes(iel,1); nr=nodes(iel,2); % extract nodes for (iel)-th element

xl=gcoord(nl); xr=gcoord(nr); % extract nodal coord values

eleng=xr-xl; % element length
index=feeld of1(iel,nnel,ndof); % extract system dofs associated
%

k=feodex2l(xl,xr); % compute element matrix
f=fefx21(xl,xr); % compute element vector

[kk,ff]=feasmbl2(kk,ff.k f,index); % assemble element matrices and vectors
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%
end % end of loop for total elements
Yo
%

% apply boundary conditions

.
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%

[/ 4
/0

% solve the matrix equation
%
fsol=kk\ff;
%

%
% analytical solution

oz,
/0

for i=1:nnode

x=gcoord(i);
esol(1)=0.00102*x"4-0.16667*x"2+64.5187/x;
%

%

% print both exact and fem solutions

o
/0

num=1:1:3dof;
results={num’ fsol esol’]

o7
/0

function [k]=feodex2](xl,xr)
%
% Purpose:

% element matrix for (a:2 w” - 2x v’ -4u)

% using linear element

Yo

% Synopsis:

% [k]=feodex2](xl,xr)

%

% Variable Description:

% k - element matrix (size of 2x2)

% x1 - coordinate value of the left node of the linear element

% vy . coordinate valne of the richt nad
/0 XT - coordmnate vaiue of the right nod

.
of the insar alament
WAL VAL ALLMIWRLE WIVALAW ALY

%
%

% element matrix

%

eleng=xr-xl;

k=(1/eleng”2)*[ (4*xr"2*x]-6*xr*x1"2-x1"3+4+3*x1"3) ...
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(2*xr"2*xl-xr" 3-x1"3);...
(-2*xr*x1"24xr"3+x173) ...
(6*xr"2*xl-4*xr*x1"2-3*xr"3+x1"3));
a7

Chapter 3

U

function [f]l=fefx2](xl,xr}

14

Al

% Purpose:

% element vector for f(x)=x>

% using linear element

%

% Synopsis:

% [f)=fefx2](xl,xr)

%

% Variable Description:

% f - element vector {size of 2x1)
% x1 - coordinate value of the left node

% xr - coordinate value of the right node
o

/0

%
% element vector
%

eleng=xr-xi;

f=(1/(12%eleng))*[ (-4*xr*xl"34+xr"443*x1"4);...

(-4*xr"3*x143*xr"44x1"4)];
%

% element length

The results are

node # fem sol exact sol
1.0000 0.0000 0.0000
2.0000 0.6046 0.6321
3.0000 2.4650 2.5268
4.0000 5.8421 5.9280
5.0000 11.028 11.126
6.0000 18.343 18.438
7.0000 28.137 28.212
8.0000 40.785 40.819
9.0000 56.689 56.659
10.000 76.276 76.155
11.000 100.00 100.00

% solution at £=0
% solution at £=0.1
% solution at £=0.2
% solution at £=0.3
% solution at £=0.4
% solution at £=0.5
% solution at £=0.6
% solution at £=0.7
% solution at £=0.8
% solution at £=0.9

% solution at £=1
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Problems

Modify the MATLAB programs provided in Sec. 3.5 and solve Prob. 2.15 using
the programs.

Solve Prob. 2.16 using the modified computer program.
Solve Prob. 2.17 using the modified computer program.

Redo Prob. 3.1 using twice more elements as that used in the problem. Compare
the two finite element solutions to the exact solution.

Redo Prob. 3.2 with increasing number of elements and observe the convergence
to the exact solution.






DIRECT APPROACH WITH SPRING SYSTEM

4.1 Linear Spring

Consider a linear spring as shown in Fig. 4.1.1 (a). The displacements of the
two end points of the spring are u; and uy and the two points are subjected to axial
forces fi and f,, respectively. Both displacements and forces are assumed in the
right-hand side direction which is assumed to be positive in the present finite element
formulation. If the spring is in equilibrium, the sum of forces becomes zero. That is,

Jitfa=0 (4.1.1)
As aresult, f, = —f; and Fig. 4.1.1 (b) shows the equilibrated linear spring. The

spring is compressed by these forces and the contraction of the spring is proportional
to them. Using the spring constant k, the force and displacement relationship becomes

k(u1 - u2) = f1 (412)
From Eqs (4.1.1) and (4.1.2), we obtain
k(—-u1 + U2) = f2 (4.13)

Rewriting Eqs (4.1.2) and (4.1.3) in matrix form yields

| — |
[
bl
W
| VUSRS
——
2 2
N
S—v
Il
——
ey
—v
—~~
ba
fry
[1o9
p —

This is the matrix equation for a linear spring. A spring is like a linear finite element.
As a result, the matrix is called the element siiffness mairiz and the right-hand side

71
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7, k 7,

Figure 4.1.1 Linear Spring

vector is called the element force vector. A system consisting of serial and parallel
linear springs can be analyzed using the finite element analysis concept.

& Example 4.1.1 Consider three springs connected in series as shown
in Fig. 4.1.2. The matrix equation for each spring is similar to Eq. (4.1.4).
Assembling them into the system of matrix equation yields

kl _kl 0 0 Uy fl
—~ky (k1 + k2) —ks 0 u | _ ) fa
0 —k3 (k2 + k3) —k3 us [ | fa (4.15)
|.0 0 —k3 ka.]l‘!h;) lf4}

Depending on the constraints, the system may be statically determinate or
statically indeterminate. For example, only u; is constrained to be zero, the
system is statically determinate. On the other hand, if both 4; and u4 are
constrained to zero, then the system becomes statically indeterminate. In terms
of the finite element formulation, there is no distinction between the statically
determinate and indeterminate systems because the formulation uses not only
equilibrium equations but also compatibility of the displacements. As an example
of a statically indeterminate system, let k&; = 20 MN/m, k3 = 30 MN/m
and k3 = 10 MN/m. In addition, an external force is applied at node 2, i.e.
f2 = 1000 N. Then, the matrix equation becomes

F20 —20 0 07 (w1 ( fi
sl—=20 50 —-30 o0 | Jw | _ ) 1000

10°1 o _30 40 —10]Yus(=3 0 (4.1.6)
0 0 10 10 Ug fa

Note that f3 is set to zero because there is no external force applied at the node.
Applying the constraints 4y = 0 and u4 = 0 to the above equation results in
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Figure 4.1.2 Linear Springs in Serial Connection
the modified matrix equation
[ 1 0 0 0 ] ! U1 l ! 0
-20 50 =30 O u 1000 1 ;
6 2 —
091 o 30 40 —10{Jusf{~) 0 (4.1.7)
Lo o o 11luw) Uo)
Solution of the matrix equation yields the displacements us = 36.36 x 10~ ®m
and u3 = 27.27 x 10~%m. Substitution of these displacements along with the
constrained displacements into Eq. (4.1.6) determines the reaction forces at both
constrained ends, i.e. fi; = —727.3N and fo = —272.7N. 1§
& Example 4.1.2 Linear springs are connected as shown in Fig. 4.1.3.
The rigid and massless plates are assumed to move vertically without rotation.
We want to find the deflection of the system. Each spring constitutes one linear
element and there are 7 elements in the system. The number of total nodes in
the system is 6 because some nodes are shared by more than two elements. As
a result, the number of degrees of freedom before applying the constraint is 6.
Assembling these elements into the system matrix yields
r 1 -1 0 0 0 07 (=) ( f1)
-1 7 -2 -1 -3 0 Zq w
6 -2 3 -1 0 O z3 | Jw
k 0 —1 —1 4 -2 0 J 4 ¢ = J w 4 (4.1.8)
6 -3 0 -2 7 -2 zs5 w
L 0 0 0 0 -2 2 1\ .'Eej . 0 J
There is no weight at node 6 and the sixth component of the right-hand-side
column vector is zero as the result. In addition, f; is unknown here because
27 = 0 is known. Applying the constraint to Eq. (4.1.8) gives
r1l -1 0 0 0 07 (=) r 0
-1 7 -2 -1 -3 0 Ty w
60 -2 3 -1 0 O z3 | _Jw
0 1 -1 4 -2 0o (=Yu( (4.1.9)
0 -3 0 -2 7 =2 zs5 w
| 0 0 0 0 -2 2 3\ Lg / L 0 )
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Figure 4.1.3 A Mass-Spring System

The matrix equation determines the displacements of the springs. I

4.2 Axial Member

The linear spring can represent various systems in engineering applications. One direct
application is the axial member. Consider an axial member with length L, uniform cross-
section A and elastic modulus E£. The elongation é of the axial member subjected to an
axial force P is computed from

5= % (4.2.1)
Rewriting Eq. (4.2.1) gives
P= é—b-z& (4.2.2)
L
As a result, the equivalent spring constant for the axial bar is
keg = AL (4.2.3)

L
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Figure 4.2.1 Axial Members Represented by Equivalent Springs

& Example 4.2.1 Axial members can be represented by serial and/or
parallel linear springs. For example, a bar of telescoped shape can be replaced
by a series of springs as shown in Fig. 4.2.1. There are three linear spring
elements and each element has matrix expression as shown in Eq. (4.1.4) with
proper spring constant k;. Assembling them gives

k1 —k1 0 0 Uy fi
—ki ki+ ks —kq 0 ug | _ 0
0 —kq ko + ks —k3 uz [ 0 (424)
0 0 —ks k3 J N Ug s \ P
where k; = AL‘? “ and f; is the unknown reaction force at the left end support.

Instead, u; = 0 is given as the boundary condition. Solution of Eq. (4.2.4} with
this boundary condition will result in f; = — P which can be alsc obtained from
the static equilibrium. However, the finite element formulation already includes
equations of static equilibrium so that we may not use additional equilibrium
equations. These equations are redundant. ]

& Example 4.2.2 Consider a statically indeterminant system as shown in
Fig. 4.2.2. The axial member can be replaced by two linear springs as seen in
the figure. The finite element matrix equation for this system is

0.5k —0.5k 0 U1 fl
—0.5k 15k —k ug p =< 0 (4.2.5)
0 -k k u3 f3
where k = ~AL—E and fi and f3 are the unknown forces at the supports. Because

the system is statically indeterminate, we cannot find the forces from the static
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Figure 4.2.3 A Spring Representing a Statically Indeterminate System

equilibrium equation only. However, the finite element formulation includes not
only equilibrium but also geometric compatibility (compatibility of deformation).
Therefore, Eq. (4.2.5) along with boundary conditions u; = uz = 0 can solve
the deformation as well as the reaction forces.

Another statically indeterminate system made of axial rods can be represented
by a spring constant as shown in Fig. 4.2.3. I
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Figure 4.3.1 Torsional Members

4.3 Torsional Member

A circular rod subjected to a twisting moment produces an angle of twist

b= TL (4.3.1)

G 7 (4.49.1)

in which @ is the angle of twist, T is the applied torque, L is the length of the member,

G is the shear modulus, and J is the polar moment of inertia of the circular cross-
section. Rewriting the equation yields

GJ
=20 (4.3.2)

The equivalent spring constant is k., = L . Torque T corresponds to the spring force
7 and angle of twist @ to the spring displacement u. As examples, both statically
determinate and indeterminate torsional members are shown in Fig. 4.3.1 along with
their equivalent spring systems.

4.4 Other Systems

Other frequently used engineering systems, which can be easily substituted with
a spring system, are heat conduction, simple fluid flow along pipes and electric cir-
cuits. For one-dimensional heat conduction, heat flux is proportional to temperature
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Figure 4.4.1 Mechanical Forces From Newton’s Third Law

difference. That is, heat flux ¢ is
= —k: AT (4.4.1)

where k; 1s the heat uond..‘,tlw. r-oem cient and AT is the temperature di
between two end pomts of a one-dimensional bar. The minus sign in the equation
denotes heat flux is in the opposxte direction as the temperature increases along the
positive axis. The equivalent spring system has the spring constant k., = —k:, the
spring force F' = g and the spring displacement v = T'.

Fluid flow rate through a pipe of constant cross-section is proportional to the

pressure difference of the two ends. That is,

Q = —k,Ap (4.4.9)
Here, @ is the flow rate, Ap is the pressure difference, and k, is the proportional
constant. For a laminar flow, the proportional constant can be expressed as

rd*
kp =
128ulL

where u is the fluid viscocity, d is the pipe diameter, and L is the pipe length. The
equivalent spring system has the spring constant k., = —k,, the spring force F = Q

and the spring displacement u = p.
Electric current flow ¢ through a resistance R is

(44.3)

i=% (44.4)

where V is voltage. The equivalent spring system has spring constant k., = &, force

F = i, and displacement © = V. One may think what about V = 7 R such that
F =V, keg = R and u = i. Which one is correct? Is the equivalent spring constant
R or %? One is right and the other is wrong. One way to select the right form is
to understand the nature of spring force and to find the parameter equivalent to the
force. Then, the rest of parameters can be determined accordingly.

When two springs are separated each other, internal forces occur between the
two springs. These forces are equal in mamnhlde and opposite in direction. When the

two springs are put together, the forces cancel each other and become zero if there is
no external force applied at the joint as seen in Fig. 4.4.1. This is known as Newton’s
third law. When considering electric current, its sum at the joint of resistants (i.e.
the middle point in Fig. 4.4.2) is also zero like the force. However, voltage does not
vanish at such a joint. As a result, electric current is similar to the mechanical force.

Therefore, the equivalent spring constant for the electric circuit is % but not R.
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Figure 4.4.2 Flow Through a Pipe System

& Example 4.4.1 Consider a pipe system for fluid flow as seen in Fig.
4.4.2. The pressure at the inlet is 200 while the flow rate at the outlet is 50,
The proportional constants kp in Eq. (4.4.2) are given in the figure. All units
are assumed consistent. We want to determine the flow rate between node 3 and

node 4.

Using the linear spring equivalency, the matrix equation becomes

(—1 1 0 0 0 0 7 (m) ( Q1 )
1 —-13 4 -8 0 0 s 0
0 4 -22 2 16 0 ps | _ 0
0 8 9 11 1 o J wt=1 o | (4.4.5)
0 o0 16 1 -49 32| |ps 0
Lo o o o 32 -320 lps) UQs=50)

Applying the known pressure p; = 200 to this equation yields the following
—t -

pressure :
py =150, ps = 142.2, py=147.6, ps =139.6, ps =138
Therefore, the flow rate between nodes 3 and 4 is
Qs_q = —2 x (147.6 — 142.2) = —10.8

Hence, the flow is upward with rate of 10.8. I
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k=200 k=400 k=100 k=300
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Figure P4.1 Problem 4.1

4.1

4.2

4.3

4.4

4.5

4.6

Problems

Find the system of equations for the spring system shown in Fig. P4.1. Solve
the matrix equation to find the displacements of the nodal points.

A arcular shaft is made of two different materials and fixed at both ends. It is
subjected to torsions as shown in Fig. P4.2. The diameter of the shaft is 0.1 m.
Find the angles of twist at the nodal points.

For the given mass-spring system (see Fig. P4.3), (a) develop the system mass
and stiffness matrices to determine natural frequencies of the system. (b) Apply
the given boundary conditions to the matrix equations.

An electric circuit is shown in Fig. P4.4. Find the current flow using the
equivalent spring system.

For a laminar pipe flow, the flow rate is proportional to pressure difference.
Construct the system of equations for the given pipe flow as shown in Fig. P4.5
in order to find the flow rate through each pipe.

Heat conduction through a circular pipe is expressed as

7= — 2wk L AT
In(ro/7)

in which k is the heat conduction coefficient, L is the length of the cylinder, and

r, and r; are the outer and inner radii of the cylinder, respectively. Therefore,

two concentric cylinders with radii » < rs < r3 can be represented by two

springs in serial connection. Find the equivalent spring constants for the two

linear springs in Fig. P4.6 and construct the system of equations.



Problems

22 KN—m 22 KN—-m

B e e

Fixed elem #1 elem #2 | elem #3 |Fixed

'.4 2m I 2m I 1.5m I

Diometer = 01 m

Element 1 & 2 :+ G = 80 GPa
Element 3 + G = 40 GPa
Figure P4.2 Problem 4.2
rigid bar
9 '_(5 |/
k F k MWW 7
1 K4
A MMy -, 2
A Kg J
~ W\
rigid bar
— U, l——B Up l——s Us I-——B Uy l———a Us

Figure P4.3 Problem 4.3

y (J

10 Q g0

T 10 volts

n
W\
N
o]
o
|

6 Q 10 Q

Figure P4.4 Problem 4.4



82 Direct Approach With Spring System Chapter 4

6%
W Ky Ko
L AAAA L AAAA
——VVV - y\yWV—
M 1 E 3
03950 %%

Figure P4.6 Problem 4.6




CHAPTER FIVE

LAPLACE’S AND POISSON’S EQUATIONS

5.1 Governing Equation

Laplace’s and Poisson’s equations are common field governing equations to de-
scribe various physical natures. For example, these differential equations can represent
heat conduction, potential flow and torsion of noncircular members. Therefore, we
study the finite element formulation of these equations. Laplace’s equation is

Vig=0 (5.1.1)
while Poisson’s equation 1s
Viu=g (5.1.2)

Because Poisson’s equation is more general than Laplace’s equation as seen above, we
consider Poisson’s equation in the following formulation.
Poisson’s equation in terms of the Cartesian coordinate system becomes

9%y 0%u.

for the two-dimensional domain 2. The boundary conditions are

u=u onl, (5.1.4)
and 5
u -
3, =0 on r, (5.1.5)

where 4 and § denote known variable and flux boundary conditions, and n in Eq.
(5.1.5) is the outward normal unit vector at the boundary. Furthermore, I'; and T,
are boundaries for essential and natural boundary conditions, respectively. For the
well-posed boundary value problem,

L.UT,=T (5.1.6)

83
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and
r.nr,=49 (5.1.7)

in which U and N denote sum and intersection respectively, and I is the total boundary
of the domain €.

Integration of weighted residual of the differential equation and boundary
condition is

8u  0? d
I= /nw(a—;z‘; + 53}-‘; - g(:c,y)) s - wa—:d[‘ (5.1.8)

In order to develop the weak formulation of Eq. (5.1.8), integration by parts is applied
to reduce the order of differentiation within the integral. The subsequent example
shows the integration by parts.

o Example 5.1.1 Consider a two-dimensional domain as seen in Fig. 5.1.1.
First of all, we want to evaluate the first term of Eq. (5.1.8)

The domain integral can be expressed as

Y2 T2 62
/ (] w—udx)dy (5.1.10)
131 Z1 6

where y; and Y2 are the minimum and maximum values of the domain in the
y-axis as the strip along the r-axis moves in the y-direction as seen in Fig. 5.1.1.

Integration by parts with respect to = yields
3 Qw Ou var Qul™
— — —dzdy +/ [w—] dy (5.1.11)
~/!;1 Ty 31: 6 LAY 61: T

and rewriting the expression using the domain and boundary integrations as
shown in Fig. 5.1.1 results in

Ow Gu du Ou
3:1: Bmdg . wa—znde‘ - /Fl wa—znxdf (5.1.12)

in which n, is the z-component of the unit normal vector which is assumed to
be positive in the outward direction as shown in Fig. 5.1.1. Finally combining
the two boundary integals gives

[ Uw UU
/ 52 5,00+ f w—n,,.dr (5.1.13)

where the boundary integral is in the counter-clockwise direction
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Figure 5.1.1 Two-Dimensional Domain

Similarly, the second term in Eq. (5.1.8) can be written as

B [ Owdu [ Bun -
Jo 0y 3™t f ey

Adding Eqs (5.1.13) and (5.1.14) produces

/ (32 a2 )0 -

Owdu Owdu du Ou
“fn(?ﬂé;*aya)dmrf (62: +6_y"y)dr

Since the boundary integral can be written as

du Ou ou

—_— = —n_. 4+ —n.
O Oz * By ”*

we can rewrite Eq. (5.1.15) as
d%u 32

dwdu Owlu fu
_]n(a_xﬂJ’ = ay)dﬂ ) wadr

85

o~
_CJ"
[y
—
W
e’

(5.1.15)

(51 16\

(5.1.17)

The symbol f to denote the line integral around a closed boundary is replaced

by [ for simplicity in the following text. Equation (5.1.17) is known as Green’s

theorem. 1}
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Use of Eq. (5.1.17) to Eq. (5.1.8) results in

Owdlu Owlu du
I= ‘/,,(5;3—2 + gy‘a—y)dﬂ - /ﬂwy(m,y)dﬂ + /F we—dl (5.1.18)

The first volume integral becomes a matrix term while both the second volume integral
and the line integral become a vector term. In the context of heat conduction, the
second volume integral is related to heat source or sink within the domain, and the
line integral denotes the heat flux through the natural boundary.

5.2 Linear Triangular Element

Discretization of the domain in Eq. (5.1.18) is performed using selected two-
dimensional finite elements. One of the simplest two-dimensional elements is the
three-noded triangular element. This is also known as linear triangular element. The
element is shown in Fig. 5.2.1. It has three nodes at the vertices of the triangle and
the variable interpolation within the element is linear in z and y like

u=2a; +ayr+ agsy (521)
or
a
u=[1 z y]< ay (5.2.2)
as

where a; is the constant to be determined. The interpolation function, Eq. (5.2.1),

) .
should represent the nodal variables at the three nodal points. Therefore, su

the z and y values at each nodal point gives

31 1 21w a
o = 1 ro2 Y2 a9 (5.2.3)
U3 1 zs Y3 as

Here, z; and y; are the coordinate values at the i*®* node and u; is the nodal variable
as seen in Fig. 5.2.1. Inverting the matrix and rewriting Eq. (5.2.3) give

az 1 oYz — X3Yy2 3Y1— T1Yas T1Y2— T2y1 uy
ar 0 =57 Y2 — U3 Yys— i Vyi— ¥ U (5.2.4)
as 3 — T2 ry — X3 o — Ty Uz
where
1 1 z1 n
A= —2—det 1 z2 yo (5.2.5)
1 z3 ys3

Magnitude of A is equal to the area of the linear triangular element. However, its value
is positive if the element node numbering is in the counter-clockwise direction and
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(x1 » yf ) uz

Figure 5.2.1 Linear Triangular Element

negative otherwise. For the finite element computation, the element nodal sequence
must be in the same direction for every element in the domain.
Substitution of Eq. (5.2.4) into Eq. (5.2.2) produces

u = Hy(z,y)us + Ho(z,y)us + Ha(z, y)us (5.2.6)

in which H;(z,y) is the shape function for linear triangular element and it is given
below:

Hy = 5 [(@20s —~ 251) + (12— v5)2 + (23 — 2)4] (5.2.7)
Hy = 5 {(z3wn — 2138) + (s = 1)z + (21 ~ 25)y] (528)
Hg = i[(ﬂuyz - -’023}1) + (y1 - yz):c + (mz - xl)y] (5-2-9)

These shape functions also satisfy the conditions

Hi(z;,y;) = &i; (5.2.10)
and
3
S Hi=1 (5.2.11)
i=1

Here, 6;; is the Kronecker delta. That is,

o _J1 £ i=y
6;1—{0 Ny 1__#1} (5.2.12)

A problem domain is discretized into a number of finite elements using the linear
triangular elements. An example of finite element mesh discretization is illustrated in
Fig. 5.2.2. As seen in the discretization, the actual curved boundary is approximated
by a piecewise linear boundary. The crude mesh in the figure may be refined for
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Figure 5.2.2 Finite Element Discretization

Chapter 5

closer approximation of the actual boundary using linear triangular elements. Another
alternative is to use higher order finite elements which can fit the curved boundary

using higher order of polynomial expressions.

For a linear triangular element shown in Fig. b5.2.1, the element matrix is

computed as derived below.

e 0w Ou

8H,
dy 1
9H, [ 8H, SH,

1 Il o oy oy )t

dy
8H;
0y

g3
8xr

where 2¢ is the element domain.

%.L
Ow Ou z
= \dQ = 8H4 aH, 8Hy
ORRAE 3T

a£3}+

—
o
b
[y
o

S’

Performing integration after substituting the shape functions Egs (5.2.7) through

(5.2.9) into Eq. (5.2.13) gives

ki1 kg ki3
[K® = | ka1 koo kas
kai ka2 kas
in which
1

ki = o l(es — 22) + (v2 — v5)°]

kig = 4%4[(1:3 —z3)(z1 — 23) + (Y2 — y¥3)(y3 — 11)]

kiz = 4%4[(1:3 —z2)(z2 — z1) + (y2 — y3)(v1 — y2)]

ka1 = ki

(5.2.14)

(5.2.15)
(5.2.16)

(5.2.17)

(5.2.18)
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4 7 2
(o.,0) (1,0)

Figure 5.2.3 Triangular Domain With One Element

koo = 4—1-A[(a:1 - 2:3)2 + (ya — yl)g)] (5.2.19)

kaz = ﬁ[(h —z3)(22 — 1) + (y3 — 11 )(y1 — ¥2)] (5.2.20)
ka1 = k13 (5221)

kaz = ka3 (5.2.22)

kaz = le[(ﬂ?z — & )2 + (y1 — y2)?)] (5.2.23)

Because %%‘ and %%‘ are constant for the linear triangular element, the integrand

in Eq. (5.2.13) is constant. As a result, the integration in Eq. (5.2.13) becomes the
integrand multiplied by the area of the element domain and the result is given in Eqs
(5.2.15) through (5.2.23).

& Example 5.2.1 We compute the element matrix for Poisson’s equation
for the linear triangular element shown in Fig. 5.2.3. Element node numbering
is in the counter-clockwise direction. The area of the triangular element is 0.5
and the element matrix is

10 —-05 —0.5
[K]=|-05 05 0 (5.2.24)
-05 0 05

The other domain integral term to be evaluated in Eq. (5.1.18) is

/ wy(z, y) (5.2.25)
Q2
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This integration results in a column vector as shown below. Computation of this
integral over each linear triangular element yields

H,
/ { Hy } 9(z,y)d (5.2.26)
- | H,

Analytical integration may not be simple depending on function g(x,y). Then, a
numerical integration technique may be applied to compute this integral. Some
numerical techniques are discussed in Chapter 6.

5.3 Bilinear Rectangular Element

The bilinear rectangular element is shown in Fig. 5.3.1. The shape functions
for this element can be derived from the following interpolation function:

U= a; + as X + asy + asxy (531)

This function is linear in both = and y. Applying the same procedure as used in the
previous section results in

H = Zi—c (b—z)(c—y) (5.3.2)
Hy = Z];T- (b+2)(c —y) (5.3.3)
Hs = Z})—c(b +2)(c+y) (5.3.4)
He= Z})_c (b —2)(c+y) (5.3.5)

where 26 and 2c¢ are length and height of the element, respectively.
The shape functions Eqgs (5.3.2) through (5.3.5) can be obtained by product of
two sets of one-dimensional shape functions. Let the linear shape functions in the

z-direction with nodes located at r = —b and z = b be
1
= —(b-— .
$1(z) = (b —2) (5.3.6)
and )
1
¢2(z) = %(b + z) (5.3.7)
Similarly, the linear shape functions in the y-direction are
1
Pi(z) = %(C ) (5.3.8)

and L
Ya(z) = 5 (c+y) (5.3.9)
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Figure 5.3.1 Bilinear Element

Product of Eqs (5.3.6) and (5.3.7) and Eqgs (5.3.8) and (5.3.9) yields Egs (5.3.2)
through (5.3.5). The shape functions obtained by products as shown above are called
the Lagrange shape functions.

& Example 5.3.1 We want to compute the element matrix for Peisson’s
equation using the bilinear shape functions.

dH
1=

dH oH oH 8H
[ bz 8.'1:2 8:1:3 * ] +

-

o0H,
dy
2 8H aH
dy 1 2 OHs 0QH,
a1y [ S 3 % ]) d (5.3.10)
y
8H,
8y
where H; is the bilinear shape function. This will be a matrix of 4X4. The first

component is
0H, 0H, aH1 0H,
Kll—/ [c[ Bz 33: By oy ]dyd:c

- /_b/:cm[(y-c)u(x—b)?]dydz

~ 3be

Performing integrations for all terms results in the following element matrix for
the bilinear rectangular element.

(5.3.11)

kyy k12 kiz kia

k12 k22 koz ko
K¢ = 3.12
[K°] kiz kos kss kaa (53.12)

kia koa kza kaa
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in which
bz +c2
ki = T (6.3.13)
b? — 2¢?
k1o = 6bo (5.3.14)
b2 +c2
ki3 = — 6ba (5.3.15)
c? — 2b?
ks = 6o (5.3.16)
kaz = k13 (5.3.17)
ka3 = k14 (5.3.18)
k24 = k13 (5319)
k3z = k11 (5.3.20)
k34 = k12 (5321)
kag = kyy (5.3.22)
¥
The other domain integral becomes
H,y
/b/C Hy o2, y)dyde (5.3.23)
] Hs g\z,y)ay 9.
Hy

This is similar to that in Eq. (5.2.26).

5.4 Boundary Integral

The boundary integral in Eq. (5.1.18) is

Ou Ou
/l;n w-a—;df‘ = Z/; w%dr (5.4.1)

where subscript n denotes the natural boundary and superscript e indicates the
element boundary. Here, the summation is taken over the elements which are located
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Figure 5.4.1 Elements at Boundary

at the boundary of the domain and whose element boundaries are subjected to the
natural boundary condition as shown in Fig. 5.4.1.

For simplicity, we consider an element boundary which is parallel to the z-axis
as seen in Fig. 5.4.2. The element boundary is subjected to a positive constant
flux. That is, the flux is in the outward direction which is assumed to be positive.
Since linear triangular elements are used for the domain discretization, the element
boundary has two nodes as shown in Fig. 5.4.2. As a result, linear one-dimensional
shape functions are used to interpolate the element boundary. The boundary integral
along the element boundary becomes

du
—dI' =
Te wax
. - ] _
- 4 ::,-—.z'.- — gﬁ?_ 1
q/ri {f]___i;}dx_ 5 {1} (5.4.2)
where
hi; = z; — z; :length of the element boundary (5.4.3)

This colume vector is added to locations associated with nodes ¢ and j. If the element
boundary is along the y-axis or is in an arbitrary orientation about the xy-axes, the
result is obtained as long as h;; is the length of the element boundary.

& Example 5.4.1 We consider a heat conduction problem with a triangular
shape of domain which is discretized into four linear triangular elements (see
Fig. 5.4.3). There are six nodes in the domain. One boundary is insulated or
symmetric so that there is no flux (g—z = () through the boundary. Another
boundary has a constant heat flux and the third boundary has a known
temperature. Find the temperature at the nodal points.

Each element matrix can be obtained from Eqs (5.2.14) through (5.2.23). The
local and global node numbering is shown for each element in Fig. 5.4.4. The
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£y

=g=constant

Figure 5.4.2 Triangular Element Subjected to Constant Flux

global node numbering is used to identify what nodes are associated with each
element while the local node numbering is related to the assignment of shape
functions to the nodes. Therefore, the local node numbers are always 1, 2 and
3 for the linear triangular element. For the present elements, element matrices
are the same and one of them is given below:

05 —05 0.0
[K¢]=|-05 10 —0.5 (5.4.4)
00 —-05 05

If the local node numbering changes for each element, the element matrix
becomes different from that in Eq. (5.4.4). Assembling the element matrices
into the system matrix based on the global node numbers results in

- 05 —05 00 00 00 00-
~05 20 -10 —-05 00 00
100 -10 20 00 -10 00
[K]=1 00 —05 00 10 -05 00 (54.5)
00 00 —-10 -05 20 —05
00 00 00 00 —05 05

for the system nodal vector { 1 u2 uz ug Us ug }.

The system column vector is obtained from the boundary integration of the given

flux. Element boundaries with specified nonzero flux are boundaries 4 — 5 and
5 — 6. Using Eq. (5.4.2), the equivalent nodal fluxes are

and

Fy
Fs

Fs
Fg

}=
}:

4
2}

(5.4.6)

(5.4.7)
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2.0 4.0
u=0

Figure 5.4.3 A Triangular Domain

On the other hand, element boundaries 1 — 3 and 3 — 6 have zero nodal fluxes
because they are insulated. Combining all these vectors yields the system column
vector

{Fy={F F, 00 F, 40 20} (5.4.8)

where Fi, F» and F4 are unknown nodal fluxes. At node 4 flux is known at the
edge 4 — 5 but it is not known at the edge 2 — 4. The nodal flux at node 4 is
affected by fluxes at the both edges and one of them is not known. As a result,
Fy is unknown. The same explanation holds for F}. Since temperature is known
at nodes 1, 2 and 4, we can solve the matrix equation

[K]{u} = {F} (5.4.9

with u; = 0.0, us = 0.0 and u4 = 0.0. The solution gives us = 3.0, us = 6.0
and ug = 10.0. §

& Example 5.4.2 One common boundary condition in heat transfer is heat
convection at the boundary. This boundary condition is expressed as

Ou
e a(u — u,) (5.4.10)

where a is the heat convection coefficient and u, is the ambient temperature.
That is, heat flux is proportional to the temperature difference of the body
surface and the environment. Rewritting this in a more general expression gives

g—: =au+b (5.4.11)
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globo:l node #
local node #

ANV

@ @ @ @ @

element # 1 element #2 element #3 element j4

Figure 5.4.4 Elements With Local and Global Node Numbers

where @ and b are known functions because u, is a known value. Substituting
Eq. (5.4.11) into the element boundary integral in Eq. (5.4.1) results in

du
[ wgmar= ]P wla(e,g)u +b(z, )}T (5.4.12)

Whenever there is a product of test function and trial function, the term becomes
a matrix while the test function only produces a vector. As a result, the first
term of Eq. (5.4.12) becomes using linear shape functions to interpolate the
element boundary

o~
ot
e
i
Qo
g

where s; and 5; are the coordinate values of the local axis located along the
element boundary as seen in Fig. 5.4.4, and u; and u; are the nodal variables at
the element boundary. This integral results in a matrix of 2 X 2 for an element
with two nodes on the boundary. This matrix should be added to the system
matrix. The rest term in Eq. (5.4.12) can be dealt in the same way described in
this section I

5.5 Transient Analysis

The governing equation for transient heat conduction is

ou 1/6% 08%u\ .

where ¢t denotes time and a is a known function. Usually, for heat conduction problems
with constant material properties a is equal to p—;“- where k is the coefficient of heat
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conduction, p is density and c, is specific heat. Here, heat generation or heat sink is
neglected.

Applying the method of weighted residual to Eq. (5.5.1) in the same way as
given in Section 5.1 gives

dwdu Owdu 1 du
I= / —dQ [(6:: 6w+ 3y 6y)dﬂ a/r‘ wa—dI‘ (5.5.2)

As noticed here, the method of weighted residual is applied to the spatial domain but
not to the temporal domain regardless it is a steady state or a transient problem. As
a result, the difference between the transient and steady state problems is the first
term in Eq. (5.5.2). The other difference is, of course, the variable u is a function of
both space and time for the transient problem.

The variable u = 'u,(:r Y, t\ is interpolated within a finite element in a similar

way as before using shape functlons

u(z,y, ) = Z Hi(z,y)ui(t) 2533)

i=1

where H;(z,y) is the shape function and n is the number of nodes per element. One
thing to be noted here is that the shape functions are used to interpolate the spatial
variation within the element while the temporal variation is related with the nodal
variables. Applying Eq. (5.5.3) to the first term in Eq. (5.5.2) yields

Hl 'al
[Me]zLe{gg}{Hl H2 Ha}dﬂ{ug} (554)

for a linear triangular element. On the other hand, the matrix and vector obtained

from the second and third integrals of Eq. (5.5.2) are the same as those developed in

the previous sections other than that a should be included in the matrix.
Computation of Eq. (5.5.4) results in

[M°1=§[

D
kD =
B = =

} (5.5.5)

where A is the area of the triangular element. Similarly, the bilinear rectangular
element yields

|'4 2 1 2"
e __!i 2 4 2 1
21 2 4

Therefore, the final matrix equation for Eq. (5.5.1) becomes

[MI{a} + [K]{u}' = {F}’ (5.5.7)
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Because this equation should be true at any time, we put superscript ¢ in Eq. (5.5.7)
to denote the time when the equation is satisfied. Furthermore, matrices [M] and [K]
are independent of time. Now, the parabolic differential equation has transformed
into a set of ordinary differential equations using the finite element method. In order
to solve the equations, we use the finite difference method for the time derivative.
The next sections show the solution techniques.

5.6 Time Integration Technique

First of all, we explain the forward difference method for time derivative. The
forward difference is expressed as

fay = L =t (5.6.1)
Substitution of Eq. (5.6.1) into Eq. (5.5.7) results in
[M]{u}**2" = At({F} - [K]{u}') + [M{u}’ (5.6.2)

In the above equation, all the terms defined at time ¢ are put on the right-hand
side of the equation while the term associated with time ¢ + At is at the left-hand
side. Equation (5.6.2) can be solved from the given initial condition {u}° and known
boundary conditions {F}' as explained below:

1. Setting ¢t = 0 in Eq. (5.6.2) can find the solution for {u}4* from {u}® and {F}°.
Once {u}2? is found, we can continue the previous step again by setting ¢t = At

in Eq. (5.6.2) in order to determine {u}?4!. This step is repeated until the
solution reaches the final time.

The forward difference technique in Eq. (5.6.1) has the local truncation error

O(At?) and the global truncation error O(At) where O denotes the order of error.
The forward difference technique is conditionally stable so that a proper size of time
step At should be used to have a stable solution.

The next technique is the backward difference technique. For this technique,
Eq. (5.5.7) can be rewritten at time ¢ + At.

[MI{a}+a% + [K]{u}+00 = {F}H+3 (5.6.3)

The time derivative in the backward difference is

erar _ 1upte — {u}
{u}itat = = (5.6.4)

Use of Eq. (5.6.4) with Eq. (5.6.3) results in

([M] + At{K){u} 2 = A{F}+AT 4 [M]{u)! (5.6.5)



Section 5.6 Time Integration Technique 99

The solution procedure is similar to that for the forward difference technique. The
local and global truncation errors are also the same as those for the forward difference
technique. However, the backward difference technique is unconditionally stable.
Therefore, any size of At can be used without worrying about stability. However,
the time step size is, of course, important for accuracy because of the truncation
error.

The other technque is the Crank-Nicolson method. For this technique, we write

Eg. (5.5.7) at time ¢ + 4 instead of £. Then,

[M){a}+ 8 + [K{u}t 5 = (Fy+Y (5.6.6)
The time derivative term is expressed using the central difference technique like

{,a}t+A1 —_ {“}ﬁ-éi - {u}i

At (5.6.7)
On the other hand, the other terms are computed as average like
{u)t+4 = %({u}t + {u)t+an (5.6.8)
and
(FYF¥ = SUFY + () (569

Substitution of Eqs (5.6.7) through (5.6.9) into Eq. (5.6.6) yields

The Crank-Nicolson method is also unconditionally stable and the global truncation
error is O(At?) so that it is one-order higher than the other two techniques.

& Example 5.6.1 Let us solve the following set of ordinary differential
equations using the backward difference method.

[M]{u} + [K{u} = {F} (5.6.11)
where
[2 10 0]
M=1|l 410 (5.6.12)
l16[0141J \OB 28
001 2
1 -1 0 0
k=2 109 (5.6.13)
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and
(FY={F, 0 0 F4)}7 (5.6.14)
Here, F|, and Fj are unknown while 3 = 100 and ug4 = 100 are known

as boundary conditions. In addition, the initial condition states {u}® = 0
Substitution of Eqs (5.6.12) through (5.6.14) into Eq. (5.6.5) yields

? +At 1-At 0 0 ufta
— At %4 2At ;} ~At 0 t“" B
0 ——At £ 4+ 26t %—At ‘““ -
L0 0 §— At 3+ At *W
(iul + %zutz + F\At
Luf +2uf + bul
. §u§+§u§+ iui (5.6.15)

\ 6U3+ +F4At

Applying the boundary conditions with Af = 1 as the time step size, Eq. (5.6.15)
becomes

1 0 0 0 uita 100
-5 & _5 t+At ot 4 24t 4 1ot

& 3% £ 5 t+At =<9 t1+2 t2+_?_ 3 (5.6.16)
0 % 3 8 sU2 + aU3 + gus

0 0 0 1 t+m 100

Let ¢ = 0 in Eq. (5.6.16) and use the initial condition to find the solution at
t = 1. The soluation is

{u; ul u} uj}={100 455 455 100} (5.6.17)
where superscript 1 denotes the solution at time £ = 1. To continue the solution,
let t = 1 in Eq. (5.6.16) and use the previous solution in Eq. (5.6.17). Then,
the solution at time { = 2 is

{v} w? v} wi}={100 754 754 100} (5.6.18)

L¥]l *Z2 3 M4 ) — | +vvy WS avx AUV Yy (Weveau

This process continues until the final time. As expected, the solution approaches
to the steady state of uniform value of 100. §

& Example 5.6.2 Let us solve Example 5.6.1 using the Crank-Nicolson
method. Applying Eqs (5.6.12) through (5.6.14) to Eq. (5.6.10) yields

'%+At 4§~—At 0 0 uf ot
3-At 4288 5-Ar 0 ‘+A’ _
0 ——At §+26t 1_ At ‘+A‘ -
L0 0 I-At I+ ‘+“
r2 At L4 AL 0 0 U
Toar oAt Lpar 0 1 [u‘]

1At :f—zAt %——I—AtJ 1u§j+
 AL(F} + FE+AY)
0
0

\ At(F} + FitaY)

(5.6.19)
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Figure 5.7.1 Cylindrical Coordinate

Applying the boundary conditions u; = 100 and u4 = 100 with At = 1 results
in the following matrix equation.

1 0 0 0 ul At 100
2 10 _2 0 t+At 3ui_g §+5 5
o 2o 2 it ¢ = 113 _,_Z : (5.6.20)
3 3 3 Ug At 32 373 3 Uy
0 0 0 1 ubt 100
Applying the initial condition with { = Q yields the solution at time ¢ = 1.
{ui u; ui ui}={100 25 25 100} (5.6.21)

The solution at the next step, i.e. t = 2, becomes
{u} v} wi wi}={100 81.3 81.3 100} (5.6.22)
using the solution in Eq. (5.6.21) and ¢t = 2 for Eq. (5.6.20). }

5.7 Axisymmetric Analysis

Laplace’s equation in the cylindrical coordinate system is written as below:

0%  18u | 108% 8%
e +r8r+r26¢2+_ 0 (5.7.1)

where r, ¢ and z are the radial, circumferential, and axial axes, respectively, as
shown in Fig. 5.7.1. For the axisymmetric problem, variable u is independent of the
circumferential axis ¢. This is the case where the domain is axisymmetric and all the
described loading and/or boundary conditions are also axisymmetric. Therefore, the
governing equation is simplified to

8%u 106u  O%u
ﬁ+;g+ﬁ—0 (5.7.2)

for the axisymmetric analysis.
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Let us apply the weighted residual method. The integral becomes

%y 18u 0%

The first two terms in Eq. (5.7.3) can be rewritten as

18 /[ du 0%y

Now, the domain integral can be expressed as

j[ f(r, 2)d$2 jjj[f(r,z ¢drdz
o

p / / rf(r, 2)drdz (5.7.5)

where f(r,z) is any function which is independent of ¢. Applying Eq. (5.7.5) to Eq.

(5.7.4) gives
27r// {61'( 6"‘) gzz}dn (5.7.6)

The weak formulation of Eq. (5.6.7) using the integration by parts becomes

_or / [ 9w 0u ‘Z‘” a”\d dr + / rwo—dl" (5.7.7)

where the boundary integral is on the rz-plane and n is also the outward normal unit
vector to the boundary.

Equation (5.7.7) is now expressed in terms of the radial and axial axes, i.e. r
and z. As a result, we need a finite element discretization in the rz-plane like a
two-dimensional analysis. The same kinds of shape functions can be used for both
two-dimensional and axisymmetric analyses of Laplace’s equation. However, there is
one difference between the two formulations. The axisymmetric analysis contains r
within the integral while the two-dimensional analysis does not include r. Let us use
the linear triangular element for the axisymmetric analysis. The element matrix for
the triangular element can be written as

A, o

[K"]=27r/r/z ({i}{“’ o o)

ar
8H,
9z
H H 8H <174
+{%ﬂ} o 22 E‘})drdz (5.7.8)
8H;
oz
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Figure 5.7.2 Triangular Axisymmetric Element

where H; is given in Eqs (5.2.7) through (5.2.9) with replacing z and y by » and
z. The element is shown in Fig. 5.7.2. As discussed in Sec. 5.2, % and %‘ are
independent of r and z. We also know that

f]rdrdz = Ar, (5.7.9)

where A is the area of the triangular element as defined in Eq. (5.2.5), and
re = %(r; + ra +r3) is the r coordinate value of the centroid of the triangle as seen in

Fig. 5.7.2. Consequently, the element matrix for the linear triangular axisymmetric

element is

|-k11 k12 k13.|
ko1 kap ks

|_ k31 k32 ka3 J

in which k;; is the same as given in Eqs (5.2.15) through (5.2.23) except that z; and
y; are replaced by r; and z; for the axisymmetric analysis.

The flux at the boundary is also handled in the similar way as the two-
dimensional analysis. However, the boundary integral for the axisymmetric analysis
also contains r. If there is a uniform flux on the boundary of a linear triangular
element for the axisymmetric problem as shown in Fig. 5.7.3, the equivalent nodal
flux vector becomes n7gl{1 1}T where # = 1(r; +r;) is the average r coordinate value

of the two boundary nodes ¢ and j, q is the value of uniform flux per unit area, and [
is the side length of the element as seen in Fig. 5.7.3.

—
&t
=~
|d
o

p —

5.8 Three-Dimensional Analysis

For the three-dimensional analysis of Poisson’s equation, Eq. (5.1.18) can be
extended directly into

Owdu Owdu Owidu
I__/(-a—z—a;—+ M 8y+ s az)dﬂ /wg(:c y,z)dﬂ+/ w—~dI‘ (5.8.1)
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mrql

gl

After discretization of the domain into finite elements, we can compute element
matrices and vectors as before. For further explanation, we use a tetrahedral element
as shown in Fig. 5.8.1. The variable interpolation for this element is assumed

u = {X}7{C} (5.8.2)
where
{C} = {cl C2 €3 C4 }T (5.8.3)
and
(X}={1 z y z}* (5.8.4)

That is, the interpolation function is assumed to be linear in terms of every axis.
Evaluation of the variable at the nodal points gives

U1 1 r1 N1 2 Ci

uz | _ |1 22 y2 2 (i (5.8.5)
ug 1 z3 ys 23 c3 e
Uy 1 z4 ya 24 Cq

or Eq. (5.8.5) can be put in the following way

{u} = [X]{C} (5.8.6)
in which
{u}={w w2 uz w} (5.8.7)
After taking the inverse of matrix [X] and pre-multiplying it to both sides of Eq
(5.8.6), we substitute the resulting expression into Eq. (5.8.2). Then we obtain
w={X}[X]"{u} = {H} {u} (5.8.8)

where
{HYT ={H, H, Hs H4}={X}T[X]! (5.8.9)
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Figure 5.8.1 Tetrahedral Element

are the shape functions for the tetrahedral element with four nodes.
Substitution of the shape functions into Eq. (5.8.1) with element discretization
results in an element matrix which is

8H, 8H,
oz 8y
8H, 8H,
[Ke] - 8 {OH] 8H; 8Hz 8Hy }+ 8y { dH, 0H4 0H; 8H,4 }
. %ﬂ. o oz or dx %g dy dy dy dy
T Y
0H,4 8H4
oxr 8y
8H,
9z
J o 1 aH 8H aH aH )
dz i1y Uiz Odiz Jil4
+9 o, ({5 B¢ 65 e ) )dQ (5.8.10)
l Oz 4
H 4
8z

From Eq. (5.8.9), let

@11 a2 a3 a4

[}'(]--1= @21 @22 G223 Ga24 (5.8.11)
@31 az2 azz asq

@41 G432 @43 Q44

Then, the shape functions can be expressed as

Hi(z,y,2) = a11 + a1z + az1y + a2 (5.8.12)
Hy(z,y,2) = a1z + axz + azay + a422 (5.8.13)
Hs(z,y, z) = a13 + azsz + asay + 643z (5.8.14)
Ha(z,y,2) = a14 + a24% + 34y + Ga42 (5.8.15)

Inserting Eqgs (5.8.12) through (5.8.15) into Eq. (5.8.10) yields
kin kg ki3 kg
kot koo kog kos
k31 ksz kaz ka4
kar ka2 kaz k4

(5.8.16)
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in which
ki1 = (a21)® + (az1)? + (aq1)? (5.8.17)
k12 = az21a22 + a31032 + a41a42 (5.8.18)
ki3 = a31823 + a31833 + 41043 (5.8.19)
k14 = @124 + 031034 + @41a44 (5.8.20)
ka1 = k12 (5.8.21)
ka2 = (a22)® + (a32)? + (a42)? (5.8.22)
ka3 = azzaz3 + 32033 + aszaq3 (5.8.23)
k24 = a22a24 + 32034 + aq2044 (5.8.24)
k31 = k13 (5.8.25)
k32 = ka3 (5.8.26)
kas = (a23)” + (as3)® + (aas)? (5.8.27)
k34 = azaazs + 33034 + asza4s (5.8.28)
kay = k1a (5.8.29)
ka2 = k24 (5.8.30)
kag = kaa (5.8.31)
kas = (a24)* + (a34)? + (a44)* (5.8.32)

Furthermore, V is the element volume.

The flux boundary condition on the three-dimensional analysis can be treated in
the following way. For a uniform flux on one side of the tetrahedral element, the flux
column vector becomes ia'-l{l 1 1}T for the nodes on the element boundary as shown
in Fig. 5.8.2. Here, A, is the surface area of the element side on which a uniform flux
of ¢ is applied.

The element matrix for the transient term (ie. 2%)is

2111

a_ V|1 211

MT=3511 1 2 1 (5.8.33)
111 2
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for the tetrahedral element.
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This section shows some examples for two-dimensional steady state problems
using MATLAB programs. Both linear triangular and bilinear rectangular elements

are used.
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& Example 5.9.1 We want to solve the two-dimensional Laplace equation
for the following given conditions. The domain and the finite element discretiza-
tion is shown in Fig. 5.9.1.
?u 0%y
32 T o7
for 0 < 2 < 5 and 0 < y < 10. The boundary conditions are u(z,0) = 0
for 0 <z < 5, u(0,y) = 0 for 0 < y < 10, u(z,10) = 100sin(xz/10) for

0 <z <5, and a—"‘%‘u = 0for 0 < y < 10. The MATLAB main program
along with function programs are listed below. Some function programs listed
in previous chapters are not listed here. Appendix A lists all the function files.

=0 (5.9.1)

% EX5.9.1.m

% to solve the two-dimensional Laplace equation given as
%uxx+uyy=00<x<50<y<10

% u(x,0) = 0, u(x,10) = 100sin(pi*x/10),

% u(0,y) = 0, u,x(5,y) =0

% using linear triangular elements

%(see Fig. 5.9.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

%

%

% input data for control parameters

o
nel=32; % number of elements
nnel=3; % number of nodes per element
ndof=1; % number of dofs per node
nnode=25; % total number of nodes in system

ratam Anfe

adnf—nnadaknd . or 4+ -
GO1, O v BY5uEIIl UOILS

DUUL=—I1L1IVUuT il

%

o7

% input data for nodal coordinate values

% gcoord(i,j) where i-> node no. and j-> xory
%
gcoord(1,1)=0.0; gcoord(1,2)=0.0;




Section 5.9 MATLAB Application to 2-D Steady State 109

gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gecoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;

gcoord(6,1)=0.0; gcoord(6,2)=2.5;
gcoord(7,1)=1.25; gcoord(7,2)=2.5;
gcoord(8,1)=2.5; gcoord(8,2)=2.5;
gcoord(9,1)=3.75; gcoord(9,2)=2.5;
gcoord(10,1)=5.0; gcoord(10,2)=2.5;
gcoord(11,1)=0.0; gcoord(11,2)=5.0;
gcoord(12,1)=1.25; gcoord(12,2)=5.0;
gcoord(13,1)=2.5; gcoord(13,2)=5.0;
gcoord(14,1)=3.75; gcoord(14,2)=5.0;
gcoord(15,1)=>5.0; geoord(15,2)=5.0;
gcoord(16,1)=0.0; gcoord(16,2)=7.5;
gcoord(17,1)=1.25; gcoord(17,2)="7.5;
gcoord(18,1)=2.5; gcoord(18,2)=7.5;
gcoord(19,1)=3.75; gcoord(19,2)=7.5;
gcoord(20,1)=5.0; gcoord(20,2)=17.5;
gcoord(21,1)=0.0; gcoord(21,2)=10.;
gcoord(22,1)=1.25; gcoord(22,2)=10.;
gcoord(23,1)=2.5; gcoord(23,2)=10;
gcoord(24,1)=3.75; gcoord(24,2)=10.;
gcoord(25,1)=5.0; gcoord(25,2)=10.;

%

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
[/ 4

nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=T;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9;
nodes(4,1)=4; nodes(4,2)=>5; nodes(4,3)=10;
nodes(5,1)=1; nodes(5,2)=T; nodes(5,3)=6;
nodes(6,1)=2; nodes(6,2)=8; nodes(6,3)=T7;
nodes(7,1)=3; nodes(7,2)=9; nodes(7,3)=8;
nodes(8,1)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,1)=6; nodes(9,2)=T; nodes(9,3)=12;
nodes(10,1)=7; nodes(10,2)=8; nodes(10,3)=13;
nodes(11,1)=8; nodes(11,2)=9; nodes(11,3)=14;
nodes(12,1)=9; nodes(12,2)=10; nodes(12,3)=15;
nodes(13,1)=6; nodes(13,2)=12; nodes(13,3)=11;
nodes(14,1)=7; nodes(14,2)=13; nodes(14,3)=12;
nodes(15,1)=8; nodes(15,2)=14; nodes(15,3)=13;
nodes(16,1)=9; nodes(16,2)=15; nodes(16,3)=14;
nodes(17,1)=11; nodes(17,2)=12; nodes(17,3)=17;
nodes(18,1)=12; nodes(18,2)=13; nodes(18,3)=18;
nodes(19,1)=13; nodes(19,2)=14; nodes(19,3)=19;
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nodes(20,1)=14; nodes(20,2)=15; nodes(20,3)=20;
nodes(21,1)=11; nodes(21,2)=17; nodes(21,3)=16;
nodes(22,1)=12; nodes(22,2)=1; nodes(22,3)=17;

nodes(23,1)=13; nodes(23,2)=19; nodes(23,3)=18;
nodes(24,1)=14; nodes(24,2)=20; nodes(24,3)=19;
nodes(25,1)=16; nodes(25,2)=17; nodes(25,3)=22;
nodes(26,1)=17; nodes(26,2)=18; nodes(26,3)=23;
nodes(27,1)=18; nodes(27,2)=19; nodes(27,3)=24;
nodes(28,1)=19; nodes(28,2)=20; nodes(28,3)=25;
nodes(29,1)=16; nodes(29,2)=22; nodes(29,3)=21;
nodes(30,1)=17; nodes(30,2)=23; nodes(30,3)=22;
nodes(31,1)=18; nodes(31,2)=24; nodes(31,3)=23;
nodes(32,1)=19; nodes(32,2}=25; nodes(32,3)=24;

%

v

% input data for boundary conditions

Yo
bedof(1)=1;

beval (1)==0;
bedof(2)=2;
beval(2)=0;
bedof(3)=3;
beval(3)=0;
bcdof(4)=4;
bceval(4)=0;
bedof(5)=5;
beval(5)=0;
bedof(6)==6;

beval (6)=0;
bedof(7)=11;
beval(7)=0;
bedof(8)=16;
bcval(8)=0;
bedof(9)=21;
beval(9)=0;
bedof(10)=22;
bcval(10)=38.2683;
bedof(11)=23;
beval(11)=70.7107;
bedof(12)=24;
beval(12)=92.3880;

hodaf(12Y—=9E.
U\,u\u.\.lu’—au,

bcval (13)=100;
%

% first node is constrained
% whose described value is 0
% second node is constrained
% whose described value is 0

% third node is constrained
% whose described value is 0

% 4th node is constrained
% whose described value is 0

% 5th node is constrained
% whose described value is 0

% 6th node is constrained
% whose described value is 0

% 11th node is constrained
% whose described value is 0

% 16th node is constrained
% whose described value is 0

% 21st node is constrained
% whose described value is 0

% 22nd node is constrained

% whose described value is 38.2683

% 23rd node is constrained

% whose described value is 70.7107

% 24th node is constrained

% whose described value is 92.3880

07 GE4h nada ia rangtrainad
UV LUl 11UMT 1D LWildvidadilcu

% whose described value is 100

v

% initialization of matrices and vectors

174

v

fi=zeros(sdof,1);

% initialization of system force vector

Chapter 5
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kk=zeros(sdof,sdof); : % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

%

% computation of element matrices and vectors and their assembly

%

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element

x1=gcoord (nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
%

ind ex=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felp2dt3(x1,y1,x2,y2,x3,y3); % compute element matrix
%

kk=feasmbl1(kk, k,index); % assemble element matrices
%

end

%

%
% apply boundary conditions

[kk,ff]=feaplyc2(kk,ff,bcdof, beval);
o7

'
(At

%

% solve the matrix equation

fsol=kk\ff;
%
%

% analytical solution

for i=1:nnode

x=gcoord(i,1); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x) /sinh (3.1415927);
end

%

o7
U

% print both exact and fem solutions

num=1:1:sdof;
store=[num’ fsol esol’]

%

o7

o
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function [kk]=feasmbl1(kk k,index)
o
% Purpose:

% Assembly of element matrices into the system matrix
%

% Synopsis:

% [kk]=feasmbl1(kk,k,index)

%

% Variable Description:

% kk - system matrix

% k - element matri
% index - d.o.f. vector associated with an element

%

%

edof = length(index);
for i=1:edof

ii=index(i);

for j=1:edof
ji=index(j);
k(i) =i (i)
end

end

A

function [index]=feeldof(nd,nnel,ndof)
o

LAY

% Purpose:

% Compute system dofs associated with each element
%

% Synopsis:

% {index]=feeldof(nd,nnel,ndof)

%

% Variable Description:

% index - system dof vector associated with element zel
% nd - element node numbers whose system dofs are to be determined
% nnel - number of nodes per element

% ndof - number of dofs per node

%

edof = nnel*ndof;

k=0;

for i=1:nnel

start = (nd(i)-1)*ndof;

for j=1:ndof

k=k~+1;

index(k)=start+j;
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end

end
%

function [kj=felp2dt3(x1,y1,x2,y2,x3,y3)
%
% Purpose:

% element matrix for two-dimensional Laplace’s equation

% using three-node linear triangular element

%

% Synopsis:

% [k]=felp2dt3(x1,y1,x2,y2,x3,y3)

%

% Variable Description:

% k - element stiffness matrix (size of 3x3)

% x1, y1 - x and y coordinate values of the first node of element

% x2, y2 - x and y coordinate values of the second node of element
% x3, y3 - x and y coordinate values of the third node of element

%
%

% element matrix

%

A=0.5%(x2%y3+x1¥y2+x3*y1-x2¥y1-x1*y3-x3*y2);

% % area of the triangle
k(1,1)=((x3-x2)*(x3-x2)+(y2-y3)*(y2-y3))/(4*A);
k(1,2)=((x3-x2)*(x1-x3)+(y2-y3)*(y3-y1))/ (4*A);
k(1,8)=((x3-x2)*(x2-x1 )+ (y2-y3)*(y1-y2))/ (4*A);

k(2,1)=k(1,2);

k(2 ‘n—({vaQ\*!‘n x3)+(y3-

B SHE TN RATRS ) (KRR
k(3,1)_k(1 3);
k(3,2)=k(2,3);

k(3,3)=((x2-x1)*(x2-x1)+(y1-y2)*(y1-y2))/ (4*A);
%

The finite element and analytical solutions are compared below:

store =

dof # fem sol exact

1.0000 0.0000 0.0000 % at x=0.00 and y=0.0
2.0000 0.0000 0.0000 % at x=1.25 and y=0.0
3.0000 0.0000 0.0000 % at x=2.50 and y=0.0
4.0000 0.0000 0.0000 % at x=3.75 and y=0.0
5.0000 0.0000 0.0000 % at x=5.00 and y=0.0
6.0000 0.0000 0.0000 % at x=0.00 and y=2.5
7.0000 3.6896 2.8785 % at x=1.25 and y=2.5

8.0000 6.5689 5.3187 % at x=2.50 and y=2.5
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Figure 5.9.2 Mesh With Bilinear Elements
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9.0000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000

——

8.4046
9.0361
0.0000
10.621
17.312
21.626
23.124
0.0000
14.044
37.568
46.108
49.199
0.0000
38.268
70.711
92.388
100.00

& Example 5.9.2

AE AT 4T 1 s 11 1
MALLAD programs are listed below.

——

6.9492
7.5218
0.0000
7.6257
14.090
18.410
19.927
0.0000
17.324
32.010
41.823
45.269
0.0000
38.268
70.711
92.388
100.00

Chapter 5

% at x=3.75 and y=2.5
% at x=>5.00 and y=2.5
% at x=0.00 and y=5.0
% at x=1.25 and y=5.0
% at x=2.50 and y=5.0
% at x=3.75 and y=5.0
% at x=>5.00 and y=5.0
% at x=0.00 and y=7.5
% at x=1.25 and y=17.5
% at x=2.50 and y=7.5
% at x=3.75 and y=17.5
% at x=5.00 and y=7.5
% at x=0.00 and y=10.
% at x=1.25 and y=10.
% at x=2.50 and y=10.
% at x=3.75 and y=10.
% at x=5.00 and y=10.

We solve the same problem as given in Example 5.9.1
using bilinear rectangular elements. The mesh is shown in Fig. 5.9.2 and the

oz
/0

% EXS.

9.2.m
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% to solve the two-dimensional Laplace equation given as

% u,xx + 2,yy =0,0<x<50<y<10

% u(x,0) = 0, u(x,10) = 100sin(pi*x/10),

% u(OaY) = 0, u,x(5,y) = 0

% using bilinear rectangular elements

%(see Fig. 5.9.2 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

%

%

% input data for control parameters

(174
Y
nel=16; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=25; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%

o7

LAY

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> xory

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=2.5;
gcoord(7,1)=1.25; gecoord(7,2)=2.5;
gcoord(8,1)=2.5; gcoord(8,2)=2.5;
gcoord(9,1)=3.75; gcoord(9,2)=2.5;
gcoord(10,1)=5.0; gcoord(10,2)=2.5;
gcoord(11,1)=0.0; gcoord(11,2)=5.0;
gcoord(12,1)=1.25; gcoord(12,2)=5.0;
gcoord(13,1)=2.5; gcoord(13,2)=5.0;
gcoord(14,1)=3.75; gcoord(14,2)=5.0;
gcoord(15,1)=>5.0; gcoord(15,2)=5.0;
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gcoord(16,1)=0.0; gcoord(16,2)=7.5;
gcoord(17,1)=1.25; gcoord(17,2)="7.5;
gcoord(18,1)=2.5; gcoord(18,2)=7.5;
gcoord(19,1)=3.75; gcoord(19,2)=7.5;
geoord(20,1)=5.0; gcoord(20,2)=7.5;
gcoord(21,1)=0.0; gcoord(21,2)=10;
gcoord(22,1)=1.25; gcoord(22,2)=10.;
gcoord(23,1)=2.5; gcoord(23,2)=10.;
gecoord(24,1)=3.75; gcoord(24,2)=10,;
gcoord(25,1)=5.0; gcoord(25,2)=10.;
%
Yo
% input data for nodal connectivity for each element
% nodes(i,j} where i-> element no. and j-> connected nodes
o
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=T7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=T;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3}=12; nodes(5,4)=11;
nodes(6,1)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
nodes(9,1)=11; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=16;
nodes(10,1)=12; nodes(10,2)=13; nodes(10,3)=18; nodes(10,4)=17;
nodes(11,1)=13; nodes(11,2)=14; nodes(11,3)=19; nodes(11,4)=18,;
nodes(12,1)=14; nodes(12,2)=15; nodes(12,3)=20; nodes(12,4)=19;
nodes(13,1}=16; nodes(13,2)=17; nodes(13,3)=22; nodes(13,4)=21;
nodes(14,1)=17; nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22;
nodes(15,1)=18; nodes(15,2)=19; nodes(15,3)=24; nodes(15,4)=23;
nodes(16,1)=19; nodes(16,2)=20; nodes(16,3)=25; nodes(16,4)=24;
%
%
% input data for boundary conditions
o7
bedof(1)=1; % first node is constrained
beval(1)=0; % whose described value is 0
bedof(2)=2; % second node is constrained
beval(2)=0; % whose described value is 0
bedof(3)=3; % third node is constrained
beval(3)=0; % whose described value is 0
bedof(4)=4; % 4th node is constrained
bcval(4)=0; % whose described value is 0
bedof(5)=5; % 5th node is constrained
beval(5)=0; % whose described value is 0
bedof(6)=6; % 6th node is constrained
beval(6)=0; % whose described value is 0

bedof(7)=11; % 11th node is constrained
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beval(7)=0;
bedof(8)=16;
bcval(8)=0;
bcdof(9)=21;
bcval(9)=0;
bcdof(10)=22;
bcval(10)=38.2683;
bcdof(11)=23;
bcval(11)=70.7107;
bcdof(12)=24;
bcval(12)=92.3880;
bedof(13)=25;
bcval(13)=100;

%

MATLAB Application to 2-D Steady State

% whose described value is 0

% 16th node is constrained

% whose described value is 0

% 21st node is constrained

% whose described value is 0

% 22nd node is constrained

% whose described value is 38.2683
% 23rd node is constrained

% whose described value is 70.7107
% 24th node is constrained

% whose described value is 92.3880

% whose described value is 100

44

% initialization of matrices and vectors

o
AN
%

fi=zeros(sdof,1);

N Sl L 8 UQ\D“UL’D“V&J )
index=zeros(nnel*ndof,1);

%

% initialization of system force vector

07 iniéinll . -
Z initialiontinn of cvetam matriy
70 1lliviQuiZawlll UL 5ySvliil IMiaullixX

% initialization of index vector

Pird
Uz
v

% computation of element matrices and vectors and their assembly

%
for iel=1:nel

%

for i=1:nnel
nd(i)=nodes(iel,i);
x(i)=gcoord(nd(i),1);

ndfi) 2).
NGiy,«),

%

xieng = x(2)-x(1);

yleng = y(4)-y(1);
index=feeldof(nd,nnel,ndof);
%

k=felp2dr4(xleng,yleng);

%

kk=feasmbl1(kk,k,index);

%

end

%

rdY

% apply boundary conditions

o7
/0

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%

% loop for the total number of elements

% loop for number of nodes per element
% extract connected node for (iel}-th element

% extract x value of the node

trart v valna
Wldilv j Yauul

=X

av Aftha nada
CX Ol uwi oac

% length of the element in x-axis
% length of the element in y-axis

% extract system dofs for the element

% compute element matrix

% assemble element matrices

117
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o7
/0

% solve the matrix equation
o7

U

fsol=kk\ff;

% analytical solution

for i=1:nnode
x=gcoord(i,1); y=gcoord(i,2);

esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x)/sinh(3.1415927);

end
%

(174
Fi\l

% print both exact and fem solutions

num=1:1:sdof;
store=[num’ fsol esol’]

%

function [k]=felp2dr4(xleng,yleng)

Chapter 5

% Purpose:

% element matrix for two-dimensional Laplace’s equation
% using four-node bilinear rectangular element
%

% Synopsis:

% [kj=felp2dr4(xleng,yleng)

%

% Variable Description:

% k - element stiffness matrix (size of 4x4)

% xleng - element size in the x-axis

% yleng - element size in the y-axis

Al

%

% element matrix

%

k{1,1)=(xleng*xleng+yleng*yleng)/(3*xleng*yleng);
k(1,2)=(xleng*xleng-2*yleng*yleng)/(6*xleng*yleng);
k(1,3)=-0.5%k(1,1);
k(1,4)=(yleng*yleng-2*xleng*xleng)/(6*xleng*yleng);
k(2,1)=k(1,2); k(2,2)=k(1,1); k(2,3)=k(1,4); k(2,4)=k(1,3);
k(3,1)=Kk(1,3); k(3,2)=k(2,3); k(3,3)=k(1,1); k(3,4)=k(1,2);
k(4,1)=k(1,4); k(4,2)=k(2,4); k(4,3)=k(3,4); k(4,4)=k(1,1);
(174

i
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The finite element solution is shown below. The same number of nodes were
used for this case as that in the previous example, By comparing the two finite
element solutions using either linear triangular elements or bilinear rectangular
elements, we see that the rectangular elements produced more accurate solution
in the present example.

store =

dof # fem sol exact

1.0000 0.0000 0.0000 % at x=0.00 and y=0.0
2.0000 0.0000 0.0000 % at x=1.25 and y=0.0
3.0000 0.0000 0.0000 % at x=2.50 and y=0.0
4.0000 0.0000 0.0000 % at x=3.75 and y=0.0
5.0000 0.0000 0.0000 % at x=5.00 and y=0.0
6.0000 0.0000 0.0000 % at x=0.00 and y=2.5
7.0000 2.6888 2.8785 % at x=1.25 and y=2.5
8.0000 4.9683 5.3187 % at x=2.50 and y=2.5
9.0000 6.4914 6.9492 % at x=3.75 and y=2.5
10.000 7.0263 7.5218 % at x=5.00 and y=2.5
11.000 0.0000 0.0000 % at x=0.00 and y=5.0
12.000 7.2530 7.6257 % at x=1.25 and y=5.0
13.000 13.402 14.090 % at x=2.50 and y=5.0
14.000 17.510 18.410 % at x=3.75 and y=5.0
15.000 18.953 19.927 % at x=5.00 and y=5.0
16.000 0.0000 0.0000 % at x=0.00 and y=17.5
17.000 16.876 17.324 % at x=1.25 and y=1.5
18.000 31.182 32.010 % at x=2.50 and y=17.5
19.000 40.742  41.823 % at x=3.75 and y=T.5
20.000 44.098 45.269 % at x=5.00 and y=T7.5
21.000 0.0000 0.0000 % at x=0.00 and y=10.
22.000 38.268 38.268 % at x=1.25 and y=10.
23.000 70.711 70.711 % at x=2.50 and y=10.
24.000 92.388 92.388 % at x=3.75 and y=10.
25.000 100.00 100.00 % at x=5.00 and y=10.

5.10 MATLAB Application to Axisymmetric Analysis

This section shows an example of an axisymmetric steady state problem using
MATLAB programs. Linear triangular elements are used.

é Example 5.10.1 An axisymmetric Laplace equation is solved using
linear triangular elements. The governing equation is given in Eq. (5.7.2) for a
cylinder whose inside and outside radii are 4 and 6, and whose height is 1. The
finite element mesh used for the present analysis is shown in Fig. 5.10.1. The

boundary conditions are u = 100 at the inside of the cylinder and g—:f = 20
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Figure 5.10.1 An Infinite Cylinder Modeled With Symmetric Boundaries

at the outside of the cylinder. Both top and bottom surfaces of the cylinder

have g—'; = (, i.e. insulated. Ten triangular elements with 12 nodes are used

and the MATLAB programs are provided below. As seen in the main program,
the constant flux at the outside surface is converted into the nodal flux at the
outside surface. Each node takes a half of the total flux over the element which
is 2w7ql = 240m where r=6, ¢=20 and /=1 as explained in Sec. 5.7.

oz
/0

% EX5.10.1.m

% to solve the axisymmetric Laplace equation given as
% u,rr + (u,r)/r+ 10,22 =0,4<1r<6,0<z<1

% u(4,2z) = 100, u,r(6,z) = 20

% u,z(r,0) = 0, u,z(r,1) =0

% using linear triangular elements

%(see Fig. 5.10.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% { = element vector

% kk = system matrix

% ff = system vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector contaiming boundary condition values associated with
% the dofs in bedof

%

%

A\

% input data for control parameters

Al



Section 5.10 MATLAB Application to Axisymmetry 121

nel=10; % number of elements
nnel=3; % number of nodes per element
ndof=1; % number of dofs per node
nnode=12; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%

o7

il
% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

o
gcoord(1,1)=4.0; gcoord(1,2)=0.0; gcoord(2,1)=4.0; gcoord(2,2)=1.0;
gcoord(3,1)=4.4; gcoord(3,2)=0.0; gcoord(4,1)=4.4; gcoord(4,2)=1.0;
gcoord(5,1)=4.8; gcoord(5,2)=0.0; gcoord(6,1)=4.8; gcoord(6,2)=1.0;
gcoord(7,1)=5.2; gcoord(7,2)=0.0; gcoord(8,1)=>5.2; gcoord(8,2)=1.0;
gcoord(9,1)=5.6; gcoord(9,2)=0.0; gcoord(10,1)=5.6; gcoord(10,2)=1.0;
gcoord(11,1)=6.0; gcoord(11,2)=0.0; gcoord(12,1)=6.0; gcoord(12,2)=1.0;
%

%
% input data for nodal connectivity for each element

% nodes(i,j) where i-> element no. and j-> connected nodes
07,

nodes(1,1)=1; nodes(1,2)=4; nodes(1,3)=2;
nodes(2,1)=1; nodes(2,2)=3; nodes(2,3)=4;
nodes(3,1)=3; nodes(3,2)=6; nodes(3,3)=4;
nodes(4,1)=3; nodes(4,2)=>5; nodes(4,3)=6;
nodes(5,1)=>5; nodes(5,2)=8; nodes(5,3)=86;
nodes(6,1)=5; nodes(6,2)="T; nodes(6,3)=8;
nodes(7,1)=7; nodes(7,2)=10; nodes(7,3)=8;
nodes(8,1)=7; nodes(8,2)=9; nodes(8,3)=10;
nodes(9,1)=9; nodes(9,2)=12; nodes(9,3)=10;
nodes(10,1)=9; nodes(10,2)=11; nodes(10,3)=12;
%

L4

T4AY

% input data for boundary conditions

o,
T4
bedof(1)=1; % first node is constrained
bcval(1)=100; % whose described value is 100
bcdof(2)=2; % second node is constrained
beval(2)=100; % whose described value is 100
%

Yo

% initialization of matrices and vectors

(174
i\l
fi=2zeros(sdof,1); % 1initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

pi=4*atan(1); % define pi
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ff(11)=120*pi; % nodal flux at the outside boundary
ff(12)=120*pi; % nodal flux at the outsdie boundary
%
%

% computation of element matrices and vectors and their assembly

70

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
rl=gcoord(nd(1),1); z1=gcoord(nd(1),2); % coordinate of 1st node
r2=gcoord(nd(2),1); z2=gcoord(nd(2),2); % coordinate of 2nd node
r3=gcoord(nd(3),1); z3=gcoord(nd(3),2); % coordinate of 3rd node
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felpaxt3(r1,21,r2,22,r3,23); % compute element matrix
%

kk=feasmbl1(kk,k,index); % assemble element matrices
%

end

%

%

% apply boundary conditions

o7
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%

Al

% solve the matrix equation

%
fsol=kk\ff;
%

(14

raY

% analytical solution
o7

rdY

for i=1:nnode

r=gcoord(i,1); z=gcoord(i,2);
esol(i)=100-6*20*log(4)+6*20*log(r);
end

%

(-4
/0

% print both exact and fem solutions

%
num=1:1:sdof;
store=[num’ fsol esol’]

%

o7
/0
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function [k]=felpaxt3(rl,z1,r2,22,r3,23)

79

% Purpose:

% element matrix for axisymmetric Laplace equation

% using three-node linear triangular element
%

% Synopsis:

% [k]=felpaxt3(rl,z1,r2,22,r3,2z3)

%

% Variable Description:

% k - element stiffness matrix (size of 3x3)

% 11, 21 - r and z coordinate values of the first node of element
% 12, 22 - r and z coordinate values of the second node of element
% 13, 23 - r and z coordinate values of the third node of element

Al

%
% element matnx

%
A=0.5*%(r2*23+11*22413*21-r2*21-11*23-13*22);

% area of the triangle

re=(rl+r2+413)/3; % 1 coordinate value of the element centroid

twopirc==8*atan(1)*rc;
k(1,1)=((r3-12)*(r3-r2)+(22-23)*(22-23)) / (4*A);
k(1,2)=((r3-r2)*(r1-13)+(22-23)*(23-z1)) /(4*A);
k(1,3)=((r3-12)*(r2-r1)+(22-23)*(z1-22))}/ (4*A);
k(2,1)=k(1,2);
k(2,2)=((r1-13)*(r1-r3)+(23-z1)*(23-21)) /(4*A);
k(2,3)=((r1-r3)*(x2-r1)+(23-21)*(z1-22)) /(4*A);
k(3,1)=k(1,3);

k(3,2)=k(2,3);
k(3,3)=((x2-r1)*(x2-r1)+(21-22)*(z1-22))/ (4*A);
k=twopirc*k;

%o

o
/0

The results are

store =

dof # fem sol exact
1.0000 100.000 100.000
2.0000 100.000 100.000
3.0000 111.413 111.437
4.0000 111.444 111.437

E Oannn 191 24 191 Q270
J.UUUy 141.000 1a1.Giv

6.0000 121.889 121.879
7.0000 131.427 131.484
8.0000 131.501 131.484
9.0000 140.290 140.377
10.000 140.417 140.377
11.000 148.510 148.656

% at r=4.0 and 2=0.0
% at r=4.0 and 2=1.0
% at r=4.4 and z=0.0
% at r=4.4 and z=1.0

W ot v— AR and o=0 0
0 av 1 —"x.0 Qllu 4—JU.U

% at 1=4.8 and z=1.0
% at r=5.2 and 2=0.0
% at r=5.2 and z=1.0
% at r=5.6 and z=0.0
% at 1=5.6 and z=1.0
% at r=6.0 and z=0.0

123
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175

70
.0
u=7100 u=r00
x
1.25 2.5 3.75 5.0
Figure 5.11.1 Mesh With Triangular Element
12.000 148.749 148.656 % at r=6.0 and z=1.0

5.11 MATLAB Application to Transient Analysis

Examples are given for some transient analyses using MATLAB programs.
Forward difference, backward difference and Crank-Nicolson techniques are used.

é Example 5.11.1 The transient Laplace equation as described below
is solved using the forward difference technique for time integration. The
differential equation is
ou 8*u  A%u
=75t (5.11.1)
ot 8z Jy?
over a rectangular domain defined by 0 < £ < 5 and 0 < ¥y < 2. The whole
domain has the initial value of u = (), and suddenly the left and right boundaries
(i.e. edges with x=0 and x=5) are maintained at u = 100. On the other hand,

the top and bottom boundaries (i.e. edges with y=0 and y=2) are insulated (i.e.

g—; = (). We want to find the solution as a function of time. A finite element

mesh of the domain is shown in Fig. 5.11.1 using 16 linear triangular elements.
The finite element analysis program is shown below.

(174

% EX5.11.1.m

% to solve the transient two-dimensional Laplace’s equation
%ut=uxx+uyy,0<x<50<y<2

% boundary conditions:

% u(0,y,t) = 100, u(5,y,t) = 100,
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% u,y(x,0,t) = 0, n,y(x,2,t) =0

% initial condition:

% u(x,y,0} = 0 over the domain

% using linear triangular elements and forward difference method

%(see Fig. 5.11.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix for time-independent term (u,xx + u,yy)

% m = element matrix for time-dependent term (u,t)

% f = element vector

% kk = system matrix of k

% mm = system matrix of m

% ff = system vector

% fn = effective system vector

% fsol = solution vector

% sol = time history solution of selected nodes

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

%

clear
o

Y

% input data for control parameters

o

nel=16; % number of elements
nnel=3; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.1; % time step size for transient analysis
stime=0.0; % initial time
ftime=10; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
%

% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y

o
/0

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=1.0;
gcoord(7,1)=1.25; gcoord(7,2)=1.0;
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gcoord(8,1)=2.5; gcoord(8,2)=1.0;
gcoord(9,1)=3.75; gcoord(9,2)=1.0;
gcoord(10,1)=5.0; gcoord(10,2)=1.0;
gcoord(11,1)=0.0; gcoord(11,2)=2.0;
gcoord(12,1)=1.25; gcoord(12,2)=2.0;
gcoord(13,1)=2.5; gcoord(13,2)=2.0;
gcoord(14,1)=3.75; gcoord(14,2)=2.0;
gcoord(15,1)=5.0; gcoord{15,2)=2.0;
%

(174

r4

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes

nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=T7;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10;
nodes(5,1)=1; nodes(5,2)=T7; nodes(5,3)=6;
nodes(6,1)=2; nodes(6,2)=8; nodes(6,3)=T7;
nodes(7,1)=3; nodes(7,2)=9; nodes(7,3)=8;
nodes(8,1)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,1)=6; nodes(9,2)=7; nodes(9,3)=12;
nodes(10,1)=T7; nodes(10,2)=8; nodes(10,3)=13;
nodes(11,1)=8; nodes(11,2)=9; nodes(11,3)=14;
nodes(12,1)=9; nodes(12,2)=10; nodes(12,3)=15;
nodes{13,1)=6; nodes(13,2)=12; nodes(13,3)=11;
nodes(14,1)=T7; nodes(14,2)=13; nodes(14,3)=12;
nodes(15,1)=8; nodes(15,2)=14; nodes(15,3)=13;
nodes(16,1)=9; nodes(16,2)=15; nodes(16,3)=14;

%

%

% input data for boundary conditions

o

bedof(1)=1; % 1st node is constrained
bcval (1)=100; % whose described value is 100
bedof(2)=5; % 5th node is constrained
bcval(2)=100; % whose described value is 100
bcdof(3)=6; % 6th node is constrained
bcval(3)=100; % whose described value is 100
bcdof(4)=10; % 10th node is constrained
bcval(4)=100; % whose described value is 100
bedof(5)=11; % 11th node is constrained
becval(5)=100; % whose described value is 100
bedof(6)=15; % 15th node is constrained
bcval(6)=100; % whose described value is 100
%

%

% initialization of matrices and vectors
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/U -

fi=zeros(sdof,1}; % initialization of system vector
fn=zeros(sdof,1); % initialization of effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(2,ntime+1); % vector containing time history solution
kk=zeros(sdof,sdof); % initialization of system matrix
mm=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

Y

% computation of element matrices and vectors and their assembly

%

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felp2dt3(x1,y1,x2,y2,x3,y3); % compute element matrix
m=felpt2t3(x1,y1,x2,y2,x3,y3); % compute element matrix
%o

kk=feasmbl1(kk k,index}); % assemble element matrices
mm=feasmbll(mm,m,index); % assemble element matrices
%

end

%

4

Al

% loop for time integration

%

for in=1:sdof

fsol(in)=0.0; % initial condition
end

%

sol(1,1)=fsol(8); % store time history solution for node no. 8
sol(2,1)=fsol(9); % store time history solution for node no. 9
%

for it==1:ntime % start loop for time integration
%

fn=deltt*ff+ (mm-deltt*kk)*fsol; % compute effective column vector
%

[mm,fn]=feaplyc2(mm,n,bcdof,bcval); % apply boundary condition
%

fsol=mm\fn; % solve the matrix equation
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%

sol(1,it+1)=fsol(8); % store time history solution for node no. 8
sol(2,1t+1)=fsol(9); % store time history solution for node no. 9
%

end

%

%
% plot the solution at nodes 8 and 9
o

74

time=0:deltt:ntime*deltt;
plot(time,sol(1,:),"’ time,s0l(2,:),-");
xlabel(*Time’)

ylabel(’Solution at nodes’)

%

Al 3

function [m]=felpt2t3(x1,y1,x2,y2,x3,y3)

4\

% Purpose:

% element matrix for transient term of two-dimensional

% Laplace’s equation using linear triangular element

%

% Synopsis:

% [m)=felpt2t3(x1,y1,x2,y2,x3,y3)

%

% Variable Description:

% m - element stiffness matrix (size of 3x3)

% x1, yl - x and y coordinate values of the first node of element
% x2, y2 - x and y coordinate values of the second node of element
% x3, y3 - x and y coordinate values of the third node of element

%
%o
% element matrix
%
A=0.5%(x2*y3+x1*y2+x3*y1l-x2*y1-x1*y3-x3*y2);
% area of the triangle
%
m=(A/12)*[211;
121;
112];

o
70

The finite element solutions are plotted in Fig. 5.11.2 and Fig. 5.11.3. Time-
history of nodes 8 and 9 in Fig. 5.11.1 is plotted in both figures. While At = 0.1
was used for Fig. 5.11.2, At = (.12 was used for Fig. 5.11.3. As noticed, the
finite element solution is unstable when Af = 0.12 is used because the forward
difference technique is conditionally stable.

i
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x 10"

Figure 5.11.3 Finite Element Solution With At=0.12

& Example 5.11.2  The same example as Example 5.11.1 is solved using
bilinear rectangular elements. The mesh is the same as that shown in Fig. 5.11.1
except that 8 rectangular elements are used instead of 16 triangular elements.

{174
/0

% EX5.11.2.m

% to solve the transient two-dimensional Laplace’s equation
%ut=uxx+1uyy,0<x<50<y<2

% boundary conditions:

% u(0,y,t) = 100, u(5,y,t) = 100,

% u,y(x,0,t) =0, u,y(x,2,t) =0

% 1initial condition:

% u(x,y,0) = 0 over the domain

% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.1 for the finite element mesh except for

129
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% 8 rectangular elements imstead of 16 triangular elements)

%

% Variable descriptions

% k = element matrix for time-independent term (u,xx + u,yy)

% m = element matrix for time-dependent term (u,t)

% f = element vector

% kk = system matrix of k

% mm = system matrix of m

% ff = system vector

% fn = effective system vector

% fsol = solution vector

% sol = time history solution of selected nodes

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in bcdof

%%
clear
o

v

% input data for control parameters

T4t

nel=8; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.1; % time step size for transient analysis
stime=0.0; % initial time
ftime=10; % termination time
ntime=fix((ftime-stime}/deltt); % number of time increment
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=1.0;
gcoord(7,1)=1.25; gcoord(7,2)=1.0;
gcoord(8,1)=2.5; gcoord(8,2)=1.0;
gcoord(9,1)=3.75; gcoord(9,2)=1.0;
gcoord(10,1)=5.0; gcoord(10,2)=1.0;
gcoord(11,1)=0.0; gcoord(11,2)=2.0;
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gcoord(12,1)=
gcoord(13,1)=
gcoord(14,1)=
gcoord(15,1)=

%
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1.25; gcoord(12,2)=2.0;
2.5; gcoord(13,2)=2.0;
3.75; gcoord(14,2)=2.0;
5.0; gcoord(15,2)=2.0;

Pl

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes

Al

nodes(1,1)=1;
nodes(2,1)=2;
nodes(3,1)=3;
nodes(4,1)=4;

nodes(1,2)=2; nodes(1,3)=7; nodes(1,4)=6;
nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=T7;
nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,2)=>5; nodes(4,3)=10; nodes(4,4)=9;

nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;

nodes(6,1)=7;
nodes(7,1)=8;
nodes(8,1)=9;

nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;

% 1st node is constrained

%

% input data for boundary conditions
o

bcdof(1)=1;

bcval(1)=100;

bcdof(2)=5;

bcval(2)=100;

bcdof(3)=6;

bcval (3)=100;

bcdof(4)=10;

bcval(4)=100;

bcdof(5)=11;

beval (5)=100;

bcdof(6)=15;

bcval(6)=100;

%

% whose described value is 100
% 5th node is constrained

% whose described value is 100
% 6th node is constrained

% whose described value is 100
% 10th node is constrained

% whose described value is 100
% 11th node is constrained

% whose described value is 100
% 15th node is constrained

% whose described value is 100

o
/0

% initialization of matrices and vectors

rAl]

fi=zeros(sdof,1);
fn=zeros(sdof,1);
fsol=zeros(sdof,1);
sol=zeros(2,ntime+1);
LY —rparnalad f adaf)

AN —— ﬂCLUD\DuUL’BuULI’

mm=zeros(sdof,sdof);
index=zeros(nnel*ndof,1);

%o

% initialization of system vector

% initialization of effective system vector
% solution vector

% vector containing time history solution

07 30i4inlimntinn nf avetom matr
/70 1lliviAalioavivil VL BJ DuCilL ll.lll-llll.A

% initialization of system matrix
% initialization of index vector

o
/0

% computation of element matrices and vectors and their assembly

o7,
/0

131
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for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd{3)=nodes(iel,3); % 3rd connected node for (iel)-th element
nd(4)=nodes(iel,3); % 4th connected node for (iel)-th element

x1=gcoord(nd(1),1}; yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
x4=gcoord(nd(4),1); y4=gcoord{nd(4),2); % coord values of 4th node

xleng=x2-x1; % element size in x-axis
yleng=y4-y1; % element size in y-axis
%

index=feeldof(nd,nnel,ndof); %

k=felp2dr4(xleng,yleng); % time-independent element matrix
m=felpt2r4(xleng,yleng); % transient element matrix
%

kk=feasmbl1(kk,k,index}); % assemble element matrices
mm=feasmbll{mm,m,index}); % assemble element matrices
%

end

%

Y

% loop for time integration
o,

v

%

for in=1:sdof

fsol(in)=0.0; % initial condition
end

%

sol(1,1)=fsol(8); % store time history solution for node no. 8
sol(2,1)=fsol(9); % store time history solution for node no. 9
%

for it=1:ntime % start loop for time integration
%

fn=deltt*ff+(mm-deltt*kk)*fsol; % compute effective column vector
%

[mm,fn]=feaplyc2(mm,fn,bcdof,becval); % apply boundary condition
%

fsol=mm \fn; % solve the matrix equation
%

sol{1,it+1)=1s0l(8}; % store time history solution for node no. 8
sol(2,1t+1)=fsol(9); % store time history solution for node no. 9
%

end

%

%

% analytical solution at node 8
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%
pi=4*atan(1);

esol=zeros(1,ntime+1);

xx=2.5; x1=5;

ii=0;

for ti=0:deltt:ntime*deltt;

ii=ii+1;

for i=1:100

esol(ii}=esol(ii)+(1/i)*exp(-1*i*pi*pi*ti/ (x1*x1) )*sin(i*pi*xx fx1);
end

end

esol=100-(100*4 /pi)*esol;

%

% plot fem and exact solutions at node 8

time=0:deltt:ntime*deltt;
plot(time,sol(1,:),"*’,time,esol,’’);
xlabel(*Time’)

ylabel(’Solution at nodes’)

%

o
Al

function [m]=felpt2r4(xleng,yleng)

%
% Purpose:

% element matrix of transient term for two-dimensional Laplace’s
% equation using four-node bilinear rectangular element

%

% Synopsis:

% [m]=felpt2r4(xleng,yleng)

%

% Variable Description:

% m - element stiffness matrix (size of 4x4)

% xleng - element size in the x-axis

% yleng - element size in the y-axis

%
%

% element matrix

%

m=(xleng*yleng/36)*{4 2 1 2;

92 491.
&4 T &1,

12472
212 4]
%

The finite element solution obtained using rectangular elements is comparable
to that obtained using triangular elements. Figure 5.11.4 compares the finite
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Solution &t nodes

Figure 5.11.5 Time History of Nodes 8 and 9

element solution to the exact solution at node 8 (see Fig. 5.11.1). The finite
element solution approaches the steady state solution slower than the exact
solution. This is due to the very crude mesh in the z-direction.

¥

& Example 5.11.3  The present example solves the same problem as that

i Bwamanla B 11 1 mainme thae herlbwaoard Aiffarance tacrhnicang far tima intaoratin.
ili LRAAIMPIC J.11.1 USIGE Vi€ UaCKWwala GinceiciiCe wliiiiqucl 101 viinc fivCgrawion.

Because this technique is unconditionally stable, we use a time step size At = 0.4
which exceeds the critical time step size for the forward difference technique.
Figure 5.11.5 shows the time-history of nodes 8 and 9.

%
% EX5.11.3.m
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% to solve the transient two-dimensional Laplace’s equation
Put=uxx+uyy,0<x<50<y<?2

% boundary conditions:

% u(0,y,t) = 100, u(5,y,t) = 100,

% u,y(x,0,t) = 0, w,y(x,2,t) =0

% initial condition:

% u(x,y,0) = 0 over the domain

% using linear triangular elements and backward difference method
%(see Fig. 5.11.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix for time-independent term (u,xx -+ u,yy)

% m = element matrix for time-dependent term (u,t)

% f = element vector

% kk = system matrix of k

% mm = system matrix of m

% ff = system vector

% fn = effective system vector

% fsol = solution vector

% sol = time history solution of selected nodes

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

%

clear

%

% input data for control parameters

%

nel=16; % number of elements
nnel=3; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.4; % time step size for transient analysis
stime=0.0; % initial time
ftime=10; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x or y

o,
gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
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gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=1.0;
gcoord(7,1)=1.25; gcoord(7,2)=1.0;
gcoord(8,1)=2.5; gcoord(8,2)=1.0;
gcoord(9,1)=3.75; gcoord(9,2)=1.0;
gcoord(10,1)=5.0; gcoord(10,2)=1.0;
gcoord(11,1)=0.0; gcoord(11,2)=2.0;
gecoord(12,1)=1.25; gcoord(12,2)=2.0;
gcoord(13,1)=2.5; gcoord(13,2)=2.0;
gcoord(14,1)=3.75; gcoord(14,2)=2.0;
gcoord(15,1)=5.0; gcoord(15,2)=2.0;
%

i\

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes

%

nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10;
nodes(5,1)=1; nodes(5,2)=7; nodes(5,3)=6;
nodes(6,1)=2; nodes(6,2)=8; nodes(6,3)=7;
nodes(7,1)=3; nodes(7,2)=9; nodes(7,3)=8;
nodes(8,1)=4; nodes(8,2)=10; nodes(8,3)=9;
nodes(9,1)=6; nodes(9,2)=7; nodes(9,3)=12;
nodes(10,1)=7; nodes(10,2)=8; nodes(10,3)=13;
nodes(11,1)=8; nodes(11,2)=9; nodes(11,3)=14;
nodes(12,1)=9; nodes(12,2)=10; nodes(12,3)=15;
nodes(13,1)=6; nodes(13,2)=12; nodes(13,3)=11;
nodes(14,1)=T7; nodes(14,2)=13; nodes(14,3)=12;
nodes(15,1)=8; nodes(15,2)=14; nodes(15,3)=13;
nodes(16,1)=9; nodes(16,2)=15; nodes(16,3)=14;
%

% input data for boundary conditions

0

Chapter 5

bedof(1)=1; % 1st node is constrained
bcval(1)=100; % whose described value is 100
bedof(2)=5; % 5th node is constrained
beval(2)=100; % whose described value is 100

hordafl 1) =K. o7

cnnatwainad

f+th
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bcval(3)=100; % whose described value is 100
bedof(4)=10; % 10th node is constrained
bcval(4)=100; % whose described value is 100
bedof(5)=11; % 11th node is constrained
beval(5)=100; % whose described value is 100
becdof(6)=15; % 15th node is constrained
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beval(6)=100; - % whose described value is 100
%

%

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % imitialization of system vector
fn=zeros(sdof,1); % initialization of effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(2,ntime+1); % vector containing time history solution
kk=zeros(sdof,sdof); % initialization of system matrix
mm=zeros(sdof,sdof ); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

o7

LAY

% computation of element matrices and vectors and their assembly

%o
for iel=1:nel % loop for the total number of elements
%
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node

%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felp2dt3(x1,y1,x2,y2,x3,y3); % compute element matrix
m=felpt2t3(x1,y1,x2,y2,x3,y3); % compute element matrix
%

kk=feasmbli(kk,k,index}); % assemble element matrices
mm=feasmbl1(mm,m,index); % assemble element matrices
%

end

%

%

% loop for time integration

%

for in=1:sdof

fsol(in)=0.0; % initial condition
end

%

sol(1,1)=fsol(8); % sol contains time-history solution of node 8
sol(2,1)=fsol(9); % sol contains time-history solution of node 9
%

kk=mm+deltt*kk;

%

for it=1:ntime
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Figure 5.11.6 Finite Element Mesh

%
fn=deltt*ff+mm*fsol; % compute effective column vector
%
[kk,fn]=feaplyc2(kk,fn,bcdof,beval); % apply boundary condition
%
fsol=kk\fn; % solve the matrix equation
%
sol(1,it+1)=fs0l(8); % sol contains time-history solution of node 8
sol(2,it+1)=fso0l(9); % sol contains time-history solution of node 9
%
end
%
%
% plot the solution at nodes 8 and 9
%

time=0:deltt:ntime*deltt;
plot(time,sol(1,:),"** time,s0l(2,:),’-%);
xlabel(*Time’)

ylabel(’Solution at nodes’)

%

%

é Example 5.11.4 A plate of size 0.02 m by 0.01 m, whose heat conduction
coefficient is k = 0.3 W/mC, is initially at a temperature of 300 C. While its left
and right sides are maintained at the same temperature of 300 C, the bottom
side is insulated and the top side is subjected to heat convection with convection
coefficient of he = 100 W/m? C and the ambient temperature of 50 C. The

material has also density p=1600 Kg/m? and specific heat ¢=0.8 J/KgC. The
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Solution at the center

Figure 5.11.7 Time History Plot

MATLAB program using the backward difference technique is listed below and
the mesh is shown in Fig. 5.11.6. The time-history of the solution of node 8 is
given in Fig. 5.11.7.

%
% EX5.11.4.m

% to solve the transient two-dimensional Laplace’s equation

% a*u,t = uxx + u,yy, 0 < x < 0.02,0 <y < 0.01

% boundary conditions:

% u(0,y,t) = 300, u(0.02,y,t) = 300,

% u,y(x,0,t) = 0, u,y(x,0.01,t) = 20(u-50)

% initial condition:

% u(x,y,0) = 0 over the domain

% using bilinear rectangular elements and forward difference method
%(see Fig. 5.11.6 for the finite element mesh)

%

% Variable descriptions

% k = element matrix for time-independent term (u,xx + u,yy)

% m = element matrix for time-dependent term (u,t)

% f = element vector

% kk = system matrix of k

% mm = system matrix of m

% ff = system vector

% in = effective system vector

% fsol = solution vector

% sol = time-history solution vector of selected nodes

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in bedof
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% k1 = element matrix due to Cauchy-type flux
% f1 = element vector due to flux boundary condition
% index1 = index for nodal dofs with flux

%

clear

%

% input data for control parameters

%

nel=8; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=15; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.1; % time step size for transient analysis
stime=0.0; % initial time
ftime=1.0; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
a=4266.7; % coefficient for the transient term
nf=4; % number of element boundaries with flux
nnels=2; % number of nodes per side of each element
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

gcoord(1,1)=0.0; gcoord(1,2)=0.0;

geoord(2,1)=0.005; gcoord(2,2)=0.0;

gcoord(4,1)=0.015; gcoord(4,2)=0.0;

gcoord(5,1)=0.020; gcoord(5,2)=0.0;

gcoord(6,1)=0.0; gcoord(6,2)=0.005;

gcoord(7,1)=0.005; gcoord(7,2)=0.005;

gcoord(8,1)=0.010; gcoord(8,2)=0.005;

gcoord(9,1)=0.015; gcoord(9,2)=0.005;

gcoord(10,1)=0.020; gcoord(10,2)=0.005;

gcoord(11,1)=0.0; gcoord(11,2)=0.01;

gcoord(12,1)=0.005; gcoord(12,2)=0.01;

gcoord(13,1)=0.010; gcoord(13,2)=0.01;
gcoord(14,1)=0.015; gcoord(14,2)=0.01;
gcoord(15,1)=0.020; gcoord(15,2)=0.01;

%

%—

% input data for nodal connectivity for each element

% nodes(i,j) where i-> element no. and j-> connected nodes
%
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=T;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
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nodes(4,1)=4; nodes(4,2)=>5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;
nodes(6,1)=T7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;

%

%

% input data for boundary conditions

%

bedof(1)=1; % 1st node is constrained
bcval(1)=300; % whose described value is 300
bedof(2)=5; % 5th node is constrained
beval(2)=300; % whose described value is 300
bcdof(3)=6; % 6th node is constrained
bcval (3)=300; % whose described value is 300
bedof(4)=10; % 10th node is constrained
bcval(4)=300; % whose described value is 300
bedof(5)=11; % 11th node is constrained
beval(5)=300; % whose described value is 300
bcdof(6)=15; % 15th node is constrained
bcval(6)=300; % whose described value is 300
%

o,

% input for flux boundary conditions
% nflx(i,j) where i-> element no. and j-> two side nodes

o,

nfix(1,1)=11; nfix(1,2)=12; % nodes on 1st element side with flux
nfix(2,1)=12; nflx(2,2)=13; % nodes on 2nd element side with flux
nfix(3,1)=13; nfix(3,2)=14; % nodes on 3rd element side with flux
nfix(4,1)=14; nfix(4,2)=15; % mnodes on 4th element side with flux
%

b=100; c=50; %

%o

% initialization of matrices and vectors

fi=zeros(sdof,1); % system vector
fon=zeros(sdof,1); % effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(1,ntime+1); % time-history of a selected node
kk=zeros(sdof,sdof); % of system matrix
mm=zeros(sdof,sdof); % system matrix
index=zeros(nnel*ndof,1); % index vector
fl=zeros(nnels*ndof,1); % element flux vector
kl=zeros(nnels*ndof,nnels*ndof); % flux matrix
index1=zeros(nnels*ndof,1); % fiux index vector
%

%o

% computation of element matrices and vectors and their assembly
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A\l

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
nd(4)=nodes(iel,4); % 4th connected node for (iel)-th element

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
x4=gcoord(nd(4),1); y4=gcoord(nd(4),2); % coord values of 4th node

xleng=x2-x1; % element size in x-axis
yleng=y4-y1; % element size in y-axis
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felp2dr4(xleng,yleng); % compute element matrix
m=a*felpt2r4(xleng,yleng); % compute element matrix
%

kk=feasmbl1(kk, k index); % assemble element matrices
mm=feasmbl1(mm,m,index); % assemble element matrices
%

end

%

%

% additional computation due to flux boundary condition

L1/ 4

for ifx=1:nf

%

nds(1)=nflx(ifx,1); % node with flux BC for (ifx)-th element
nds(2)=nflx(ifx,2); % node with flux BC for (ifx)-th element
x1=gcoord(nds(1),1); yl=gcoord(nds(1),2); % noda.l coordinate
x2=gcoord (nds(2), 1), y2--gcoord(nds(2) 2); % nodal coordinate
eleng=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); % element side length
%

index1=feeldof(nds,nnels,ndof); % find related system dofs
%

ki=b*feflxl2(eleng); % compute element matrix due to flux
fl=b*c*fef11(0,eleng); % compute element vector due to flux
%

[kk,ff]=feasmbl2(kk,ff k1,{1 index1); % assembly
%

end

%

7V

% loop for time integration

o7
/70

for in=1:sdof
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fsol (in)=300.0; % initial condition
end

%

sol(1)=fsol(8); % sol contains time-history solution at node 8
%

kk=mm-+deltt*kk; % effective system matrix
%

for it=1:ntime

%

fn=deltt*ff4+mm*fsol; % compute effective column vector
%

[kk,fn]=feaplyc2(kk,fn,bcdof,bcval); % apply boundary condition
%

fsol=kk\fn; % solve the matrix equation
%

sol(it+1)=fsol(8); % sol contains time-history solution at node 8
%

end

%

(74

% plot the solution at node 8
%
time=0:deltt:ntime*deltt;
plot(time,sol);

xlabel(*Time’)

ylabel(’Solution at the center’)
%

o

function [k}=feflx12(eleng)

% Purpose:

% element matrix for Cauchy-type boundary such as du/dn=a(u-b)
% using linear element where a and b are known constants.
%

% Synopsis:

% [k]=feflx12(eleng)

%

% Variable Description:

% k - element vector (size of 2x2)

% eleng - length of element side with given flux

Al

%
% element matrix

%
k=(eleng/6)*[ 2 1;
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Figure 5.11.8 Transient Finite Element Solution

12];
%
%

& Example 5.11.5 We use the Crank-Nicolson technique to solve the
following problem.

Ou _ O*u  Ou
5 00 T oy

The problem domain is the same as that shown in Fig. 5.9.1 and the boundary
conditions are the same as those described in Example 5.9.1. The initial condition
is 100. The transient solution is plotted in Fig. 5.11.8. The steady state solution
is that obtained in Example 5.9.1. As a result, the present sclution must approach
the steady state solution. The program is given below.

0.04 (5.11.2)

%
% EX5.11.5.m

% to solve the two-dimensional Laplace’s equation given as
% 0.04%u,t = u,xx + u,yy ,0<x <5 0<y <10

% u(x,0) = 0, u(x,10) = 100sin({pi*x/10),

% u(0,y) = 0, ux(5,y) =0

% using linear triangular elements

% (see Fig. 5.9.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% { = element vector

% kk = system matrix

% ff = system vector
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% fn = effective system vector

% kn = effective system matrix

% fsol = solution vector

% sol = time-history solution of selected nodes

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

o

clear

LA
70

% input data for control parameters

FAl

nel=16; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=25; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
deltt=0.04; % time step size for transient analysis
stime=0.0; % initial time
ftime=2; % termination time
ntime=fix((ftime-stime)/deltt); % number of time increment
a=0.04; % coefficient
%

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and }-> xor y

o7
/0

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=2.5;
gcoord(7,1)=1.25; gcoord(7,2)=2.5;
gcoord(8,1)=2.5; gcoord(8,2)=2.5;
gcoord(9,1)=3.75; gcoord(9,2)=2.5;
gcoord(10,1)=5.0; gcoord(10,2)=2.5;
gcoord(11,1)=0.0; gcoord(11,2)=5.0;
gcoord(12,1)=1.25; gcoord(12,2)=5.0;
gcoord(13,1)=2.5; gcoord(13,2)=5.0;
gcoord(14,1)=3.75; gcoord(14,2)=5.0;
gcoord(15,1)=5.0; gcoord(15,2)=5.0;
gcoord(16,1)=0.0; gcoord(16,2)=7.5;
gecoord(17,1)=1.25; gcoord(17,2)=7.5;
gcoord(18,1)=2.5; gcoord(18,2)=17.5;
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gcoord(19,1)=3.75; gcoord(19,2)="1.5;
gcoord(20,1)=5.0; gcoord(20,2)=7.5;
gcoord(21,1)=0.0; gcoord(21,2)=10.;
gcoord(22,1)=1.25; gcoord(22,2)=10;
gcoord(23,1)=2.5; gcoord(23,2)=10.;
gcoord(24,1)=3.75; gcoord(24,2)=10.;
gcoord(25,1)=5.0; gcoord(25,2)=10.;
%

Y
% input data for nodal connectivity for each element

% nodes(i,j) where i-> element no. and j-> connected nodes

o,
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=7;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8;
nodes(4,1)=4; nodes(4,2)=5; nodes(4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;
nodes(6,1)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
nodes(9,1)=11; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=16;

Chapter b

nodes(10,1)=12; nodes(10,2)=13; nodes(10,3)=18; nodes(10,4)=17;
nodes(11,1)=13; nodes(11,2)=14; nodes(11,3)=19; nodes(11,4)=18;
nodes(12,1)=14; nodes(12,2)=15; nodes(12,3)=20; nodes(12,4)=19;
nodes(13,1)=16; nodes(13,2)=17; nodes(13,3)=22; nodes(13,4)=21;
nodes(14,1)=17; nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22;
nodes(15,1)=18; nodes(15,2)=19; nodes(15,3)=24; nodes(15,4)=23;

nodes(16,1)=19; nodes(16,2)=20; node

LU, 22RAE

%
%

% input data for boundary conditions
o7

bedof(1)=1;
beval(1)=0;
bedof(2)=2;
beval(2)=0;
bedof(3)=3;
beval(3)=0;
bedof(4)=4;
bcval(4)=0;
bedof(5)=5;

hemgalf EX N
OCVail I J=u;

bedof(6)=6;
beval(6)=0;
bedof(7)=11;
bcval(7)=0;
bedof(8)=16;
bcval(8)=0;

s(16.3)=25; nodes(16.4)=24:
\ 3T 7 Y ivy 7

% 1st node is constrained
% whose described value is 0
% 2nd node is constrained
% whose described value is 0
% 3rd node is constrained
% whose described value is 0
% 4th node is constrained
% whose described value is 0
% 5th node is constrained

0 whane dacerihad valus ia 1

% whose described value is 0
% 6th node is constrained

% whose described value is 0
% 11th node is constrained
% whose described value is 0
% 16th node is constrained
% whose described value is 0
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bcdof(9)=21; % 21st node is constrained
beval(9)=0; % whose described value is 0
bedof(10)=22; % 22nd node is constrained
bcval(10)=38.2683; % whose described value is 38.2683
bcdof(11)=23; % 23rd node is constrained
bcval(11)=70.7107; % whose described value is 70.7107
bedof(12)=24; % 24th node is constrained
bcval{12)=92.3880; % whose described value is 92.3880
bedof(13)=25; % 25th node is constrained
bcval(13)=100; % whose described value is 100
%

of

4"

% initialization of matrices and vectors

o

fi=zeros(sdof,1); % system vector
fn=zeros(sdof,1); B % effective system vector
fsol=zeros(sdof,1); % solution vector
sol=zeros(1,ntime+1); % time-history solution
kk=zeros(sdof,sdof); % initialization of system matrix
mm=zeros(sdof,sdof); % initialization of system matrix
kn=zeros(sdof,sdof); % effective system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
%

% computation of element matrices and vectors and their assembly

o,

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
nd(4)=nodes(iel,4); % 4th connected node for (iel)-th element
x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node

x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
x4==gcoord(nd(4),1); y4¢=gcoord(nd(4),2); % coord values of 4th node

xleng=x2-x1; % element size in x-axis
yleng=y4-y1; % element size in y-axis
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=felp2dr4(xleng,yleng); % compute element matrix
m=a*felpt2r4(xleng,yleng); % compute element matrix
%
kk=feasmbl1(kk k,index); % assemble element matrices
mm=feasmbll(mm,m index); % assemble element matrices
%

end
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%
Y%
% loop for time integration
%
for in=1:sdof
fsol(in)=100.0; % initial condition
end
%
sol(1)=fsol(13); % sol contains time-history solution at node 13
%
kn=2*mm-+deltt*kk; % compute effective system matrix
%
for it=1:ntime
%
fn=deltt*ff+(2*mm-del tt*kk)*fsol; % compute effective vector
%
{kn,fn]=feaplyc2(kn,fn,bcdof,bcval); % apply boundary condition
%
fsol=kn\fn; % solve the matrix equation
%o
sol(it+1)=fsol(13); % sol contains time-history at node 13
%
end
%
%
% plot the solution at node 13
Yo
time=0:deltt:ntime*deltt;
plot(time,sol);
xlabel(*Time’)
ylabel(’Solution at the center’)
%

rAY

5.12 MATLAB Application to 3-D Steady State Analysis

& Example 5.12.1 A pyramid shape of three-dimensional domain as seen
in Fig. 5.12.1 is analyzed for the Laplace equation. The bottom face of the
pyramid has specified nodal variables as given in the figure while the side faces

a8u

have no flux (i.e. 3. = 0). Four tetrahedral elements are used for the present

three-dimensional analysis. The MATLAB program is also listed.
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(0.5,0.5,1)
ug =100

X

Figure 5.12.1 A Pyramid With Four Tetrahedral Elements

o7,

% EX5.12.1.m
% to solve the three-dimensional Laplace equation
% for a pyramid shape of domain

% using four-node tetrahedral elements.

% Bottom face has essential boundary condition and the

% side faces are insulated.

%(see Fig. 5.12.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% o the dofs in bedof

%

%

% input data for control parameters

o7

4\l

nel=4; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs

%

149
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% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

o7
/0

gcoord(1,1)=0.0; gcoord(1,2)=0.0; gcoord(1,3)=0.0;
gcoord(2,1)=1.0; gcoord(2,2)=0.0; gcoord(2,3)=0.0;
gcoord(3,1)=0.5; gcoord(3,2)=0.5; gcoord(3,3)=0.0;
gcoord(4,1)=0.0; gcoord(4,2)=1.0; gcoord(4,3)=0.0;
gcoord(5,1)=1.0; gcoord(5,2)=1.0; gcoord(5,3)=0.0;
gcoord(6,1)==0.5; gcoord(6,2)=0.5; gcoord(6,3)=1.0;
%

%
% input data for nodal connectivity for each element

% nodes(i,j) where i-> element no. and j-> connected nodes

174
nodes(1,1)=4; nodes(1,2)=1; nodes(1,3)=3; nodes(1,4)=6;
nodes(2,1)=1; nodes(2,2)=2; nodes(2,3)=3; nodes(2,4)=6;
nodes(3,1)=2; nodes(3,2)=5; nodes(3,3)=3; nodes(3,4)=6;
nodes(4,1)=>5; nodes(4,2)=4; nodes(4,3)=3; nodes(4,4)=6;

% input data for boundary conditions

AN

bedof(1)=1; % 1st node is constrained
bcval(1)=0; % whose described value is 0
bedof(2)=2; % 2nd node is constrained
bcval(2)=20; % whose described value is 20
bedof(3)=4; % 4th node is constrained
bcval(3)=50; % whose described value is 50
bedof(4)=5; % 5th node is constrained
beval(4)=100; % whose described value is 100
% :

% initialization of matrices and vectors

oz

fi=zeros(sdof,1); % system vector
kk=zeros(sdof,sdof); % system matrix
index=zeros(nnel*ndof,1); % index vector
%

Al

% computation of element matrices and vectors and their assembly

o
for iel=1:nel % loop for the total number of elements
%
nd(1)=nodes(iel,1); % 1st connected node for (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element

nd(4)=nodes(iel,4); % 4th connected node for (iel)-th element
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x(1)=gcoord(nd(1),1); y(1)=gcoord({nd(1),2);

z(1)=gcoord(nd(1),3); % coordinate of 1st node
x(2)=gcoord(nd(2),1); y(2)=gcoord(nd(2),2);

z(2)=gcoord(nd(2),3); % coordinate of 2nd node
x(3)=gcoord(nd(3),1); y(3)=gcoord(nd(3),2);

z(3)=gcoord(nd(3),3); % coordinate of 3rd node
x(4)=gcoord(nd(4),1); y(4)=gcoord(nd(4),2);

z(4)=gcoord(nd(4),3); % coordinate of 4th node
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=felp3dt4(x,y,z); % compute element matrix
%

kk=feasmbl1(kk,.k,index); % assemble element matrices
%

end

%

%

% apply boundary conditions

{kk,ff}]=feaplyc2(kk,ff,bcdof,bcval);
%

o7
/0

% solve the matrix equation
o

fsol=kk\ff;
%

o7

70

% print both exact and fem sclutions

o7
/0

num=1:1:sdof;
store=[num’ fsol}

%

oz
70

function [k]=felp3dt4(x,y.z)
%
% Purpose:

% element matrix for three-dimensional Laplace’s equation

% using four-node tetrahedral element
%

% Synopsis:

% [k]=felp3dt4(x,y,z)

%

% Variable Description:

% k - element matrix (size of 4x4)
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% x - x coordinate values of the four nodes
% y - y coordinate values of the four nodes
% z - z coordinate values of the four nodes

FAM

%

xbar= [ 1 x(1) y(1) z(1);

1 x(2) y(2) 2(2);

1 x(3) ¥(3) 2(3)

1 x(4) v(4) 2(4) )

xinv = inv(xbar);

vol = (1/6)*det(xbar); %

% element matrix

%
k(1,1)=xinv(2,1)*xinv(2,1)+xinv(3,1)*xinv(3,1)+xinv(4,1)*xinv(4,1);
k(1,2)=xinv(2,1)*xinv(2,2)+xinv(3,1)*xinv(3,2)+xinv(4,1)*xinv(4,2);
k(1,3)=xinv(2,1)*xinv(2,3)+xinv(3,1)*xinv(3,3)+xinv(4,1)*xinv(4,3);
k(1,4)=xinv(2,1)*xinv(2,4)+xinv(3,1)*xinv(3,4)+xinv(4,1)*xinv(4,4);
k(2,1)=k(1,2);
k(2,2)=xinv(2,2)*xinv(2,2)+xinv(3,2)*xinv(3,2)+xinv(4,2)*xinv(4,2);
k(2,3)=xinv(2,2)*xinv(2,3)+xinv(3,2)*xinv(3,3)+xinv(4,2)*xinv(4,3);
k(2,4)=xinv(2,2)*xinv(2,4)+xinv(3,2)*xinv(3,4)+xinv(4,2)*xinv(4,4);
k(3,1)=k(1,3);

k(3,2)=k(2,3);
k(3,3)=xinv(2,3)*xinv(2,3)+xinv(3,3)*xinv(3,3)+xinv(4,3)*xinv(4,3);
k(3,4)=xinv(2,3)*xinv(2,4)+xinv(3,3)*xinv(3,4)+xinv(4,3)*xinv(4,4);
k(4,1)=k(1,4);

k(4,2)=k(2,4);

k(4,3)=k(3,4);
k(4,4)=xinv(2,4)*xinv(2,4)+xinv(3,4)*xinv(3,4)+xinv(4,4)*xinv(4,4);
k=vol*k;

%

%

The finite element solution is

store =

node ne. fem sol
1.0000 0.00000
2.0000 20.0000
3.0000 42.5000
4.0000 50.0000
5.0000 100.000
6.60060 42.5600
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Problems
Repeat Example 5.1.1 to derive Eq. (5.1.14).

A square domain is modeled using either one bilinear element or two linear
triangular elements as shown in Fig. P5.2. Compute the system matrix for the
Laplace equation for each discretization.

Flux through an element boundary is shown in Fig. P5.3. Determine the
equivalent nodal fluxes.

A uniformly distributed flux is given on a side of a biquadratic element as shown
in Fig P5.4. Compute the boundary integral to determine the equivalent nodal
flux. The interpolation functions for the boundary nodes are

Hy(z) = 5(z = 1)z~ 2)
Hy(z)=2(2 — z)

H3(z) = %m(w —1)

A linear triangular element has three vertices like (21, y1), (z2,y2) and (z3, y3)-
Evaluate Eq. (5.2.26) for the element vector if a concentrated source of
magnitude Q is located at (z,,y,) which lies within the element.

Explain how to incorporate the boundary condition given at the edge of Fig.
P5.6 into the finite element equation for the Laplace equation.

Apply the Galerkin method and the Crank-Nicolson method to solve the
following parabolic partial differential equation.

du 1 6%u
L
51 1052 0 0<z<3

Initially u is 50 all over the domain and the domain is subjected to boundary
conditions u=100 at the left end and g—: = 100e~" at the right end. Using At=1,

find the nodal solution at time t=1. The domain is discretized into two linear
elements. As a result, the three nodal points are located at z;=0, z2=1, and
r3=3, respectively.

Redo Prob. 5.7 using the backward difference method.

For a thermally orthotropic material, the two-dimensional heat conduction

equation is
lij du i Oou
7 (65e) + 5 (g ) +@=0

where k, and k, are heat conduction coefficients along the orthotropic axes z
and y, respectively. @ is heat generation per unit volume. Develop the element
matrix equation using linear triangular elements.
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Figure P5.2 Froblem 5.2

Figure P5.3 Problem 5.3
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Figure P5.4 Problem 5.4

510 Repeat Example 5.9.1 for various mesh patterns ehown in Fig. P3.10 vsing the
computer program. Compare the solutions at the center of the domain.

5.11 A domaic is normalized such that 0« z <1 and < y <1. Solve the Laplace
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B =—10u+Su-1(

REREDE

5 :

Figure P6.& Problem 5.6

Figure PE.10 Prabiem 5.10

012

5.13

5.14

315

5.16

equation over the domain using the provided program and 16 bilipear elements
(4 elements in the x and y-axis, respectively). The boundary conditions are u=0
gt r=0, u=100 2t =1, x=0 st y=D, and =200 3t p=).

Solve the Laplace equation for the domain shown in Fig, P§.12, The boundary
condition is alse shown in the figure.

Redo Prob. §.11 using the transient analysis assuming initisl condition u=0 al)
over the domain. Use the forward difference time integration technigue.

Redo Prob. k.11 using the transient analysis assuming initial condition u=0 all
over the domain. Use the backward difference time integration technique.

Redo Prob. 5.11 using the transient analysis assuming initisl condition u=0 al]
over the domain, Use the Crank-Nicolson time integration technique.

Redo Prob. 5.12 using the transient analysis with initial condition u=400. Uge
the Crank-Nicolson technique for time integration.
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Figure P5.12 Probles 517
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CHAPTER SIX

ISOPARAMETRIC ELEMENTS

6.1 One-Dimensional Elemants

[soparametric elements [10] use mathematical mapping from one coordinate
aystem into the other coordinate system. The former coordinate system is called the
naturel coordinate system while the laiter is called the physical coordinate system.
The problern domain is provided in the physical coordinate system denoted ryzr-axes
in the following discussion. On the other hand, element shape functions are defined
in terma of the nature! coordinate system denoted £n¢-axes. As a result, mapping is
needed hetween the two coordinate systems.

We consider a linear ohe-dimensional isoparametric element to discuss the basic
characteristics of isoparametric elements. Mulli-dimensional soparametric elements
will be discussed in the subsequent sections. Shape functions for the isoparametric
element are given in terms of the naturel coordinate gystem as seen in Fig, 6.1.1
The two nodes are Jocated at £, = —1.0 and &2 = 1.0. These nodal positivng are
arbitrary but the proposed selection is very useful for numerical integration because
the element in the ratumi coordinate system is normalized between -1 and 1. The
shape functions can be written as

)= %{1 -£) (8.1.1)

and

) = 51 +6) (612

The physical inear element may be located at any position in the phypaicaf coordinate
aysterm aa shown in Fig. §.1.2, The element has 1wo nodal coordinate values x; and
zg with corresponding nedal vanables «; and uz.

Apy point between §; = —1.0 and £; = 1.0 in the natural coordinate syslem can
be mapped onto a point between z, and z3 in the pAysical coordinate system nsing
the shape functions defined in Eqs {6.1.1) and (6.1.2).

z = Hy(£)2) + Hi(£)=zy (6.1.3)

157
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node node 2 ¢
- - —
!::—f i=t

Figure 9.1.1 Linear Elem=ot In the Nainral Coordinete

L i
'i' -l' F]
- - =
lj g ._|I'.

Figure 5.1.Z Linear Elernent in the Physical Coordipate

The pame shape functions are also used to interpolate the variable v within the
element.

w= Hy(&)uw + Haff)us (6.1.4)

If the same shape functions are used for the geometric mapping as well ag nodal
variahie interpolation such as Eqs (68.1.3) and (6.1.4), the element is called the

ioparameine element.
In order to compute % which is necessary in most cases to compute element
mairiced, we use the chain rule such that

du _ dH:(£) di1;{£)
dr =y u‘1+_d:: ug

Ok, K, 015

Ja

where the expression requires & which in the inverse of ﬁ% The latter can be
computed from Eq. {($.1.3).

i—t = __'_'_dH‘ilE(E]’H + d"-—-—Hdi_{E}.tg = —:;{21 — 11) {ﬁ-lﬁ:l
Substituting Eq. (6.1.6) into Eq. (6.1.5) yields
du 1
e Th Bl (6.1.7)

Ag a reault, derivatives of shape functions with reapect to the physicel coordinate
Bystemmn are

dH (£} 1 1
- e E.lqE
& T mom ok (518
dffz{) _ i _ _1_ 1
dz xa—x1 M (8.1.9)
in which A = {z2 — £;) is the element size in the piysical coordinate system.

Theae derivative values are identical to those obtainad directly from the linear shape
functiona expressed in terms of the physfes! coordinate system like Eqe (2.4.7) and
(2.4.8).
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modds 1 nods 2 nods 3 ¢
% - i
£ =1 =0 =t

Figure €.1.3 Quadratic Isoparametzic Flement

Let us compute the followiog integral waing the linear isoparametric slement.

*3 ¢ dw du
L,&Eﬁ+w0“ (6.1.10)

The integeation s in terms of the physical coordinate system while the integrand
is expressed in terms of the nafurgf coordinate system because isoparametric shape
functiona are peed for the trial and test functions u and w. Hence, we want to write
the integral in terms of the naturaf coordinate system. To this end, we obtain

L ¢ dw du
,[_1(3;5; + oy ) S dE (6.1.11)

where J = ﬁ is called the Jacobign.

Substituiion of the woparametric shape funclions for both v and w results in

LG 7] lacd G385«

Loy _L+h]yl}
B 3 [ [ ]
ik R N ¥ ' 6.1,12
[—-&-+%‘ LR { )

This expression is the same a8 thal obtained from the conveolivnal linear element.

At this point, the isoparametric element dees not seem to have un advantage over
the copventicnal element becanse Lhe isop arametric element requires more procedures
such as mapping and chain rule. The major advantage of iseparamsiric elements
comes when apalytical integration to compute elemeant matrices and eolumn vectors is
either very complicated or almost impossible. This ia the case either alement shapes
in the physical domain are not regular such as in the multi-dimensional problem
or the differential equation is guite complex. Therefore, ihe numerical integration
technique is headed, Because each isoparamettic element 8 defined in terma of the
normalized domaim such as £ = —1 and £5 = 1, it 18 much easier to apply any
numerical integration technique. The application of nurerical integration technigue
ia discussed later in this chapter.

d Example 6.1.1  Lei us consider a quadratic one-dimensional isoparametrie
clement ae geen in Fig 6.1.3. Shape functicos for this element ate

2 —
Hi(&) = {-'g—zi} (6.1.13)
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Hy(§)=1-¢€ (6.1.14)
and ,
Hy(§) = (_5_7+_£_) (6.1.15)

The variable # can be interpolated using these shape functions.

u = H;(§)us + H2(6)uz + Ha(§)uz (6.1.16)
Geometric mapping from the natural coordinate to the physical coordinate is

z = Hy(§)x1 + Ha(E)x2 + Ha(§)x3 (6.1.17)

The Jacobian becomes
Z dH; (6) = (£ —0.5)z; — 26z2 + ({ +0.5)z3 (6.1.18)

If the mid-node 2 is located between the two end-nodes ¥; and z3 (i.e.

Ty = EL';ﬂ)), the Jacobian becomes %‘ in which h; = 3 — &; is the element
length.

Derivatives of the shape functions, Eqs (6.1.13) through (6.1.15), are

e -y (6.1.19)
d!ﬂa _ %diz - _';;_f (6.1.20)
dHs({) _ 1dH; _ _1_.(2§ +1) (6.1.21)

6.2 Quadrilateral Elements

The shape functions for the bilinear isoparametric element are given below:
R DU \ PPN
H(§,7) = Z(l—é)(l“’?) (0.2.1)
1
Hy(€m) = 21+ 61 - ) (6.2.2)

Hy(6,m) = 7(1+ €)1 +7) (6.2.3)
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n
14 = 37
=7 =1 ¢
ol ?7:__120

Figure 6.2.1 Bilinear Element in the Natural Coordinate

Yy
n (xs, y_g) ©
(g D>
?“‘ (x5, %)
(xy ’ y,) x

Figure 6.2.2 Bilinear Element in the Physical Coordinate

Ha(Em = (1~ (1 +) (6.24)

for the nodes shown in Fig. 6.2.1. These shape functions are defined in terms of the
normalized natural domain (i.e. ~1<€<land -1<9p<1).

While the element shape is a square in the natural coordinate system, it can be
mapped into a general quadrilateral shape with distortion as seen in Fig. 6.2.2. When
this mapping is undertaken, the relative positions of nodal points should be consistent
between the two elements in the natural and physical domains. In other words, the
second node is next to the first node in the counter-clockwise direction and similarly
for the rest of the nodes. Then, a point (£,%) within the natural element is mapped
into a point (z,y) within the physical element using the shape functions given in Egs

(6.2.1) through (6.2.4) as shown below:

z=>_ Hi¢,n)z (6.2.5)

§=1

y=) Hi(§,nu (6.2.6)

=1
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in which z; and y; are the coordinate values of the i** node. Similarly, any physical
variable can be interpolated using the same shape functions.

u= Z Hi(€,n)w (6.2.7)

in which u; is the nodal variable at node i.
Let us apply this bilinear isoparametric element to the Laplace equation dis-

cussed in Chapter 5. Then, we need to compute ‘—9H—g(f-'-'7-l and QH—g(fhﬂ, respectively.

In order to compute these derivatives, we use the chain rule, again.

0 00z 00y
5 " B2 B¢ By 66 (6.2.8)
i) 80 00
6—17 = aa—n *a—y'% (6.2.9)
Rewriting these in the matrix form provides
] 8 4y
{%ﬁ}= o: gﬁ]{*’i} (6:2.10)
an oy 8 By

Here, the derivative shown in the left-hand-side column vector is called local deriva-
tive while that in the right-hand-side column vector is called global derivative. Fur-
thermore, the square matrix in this equation is called the Jacobian matrix for the
two-dimensional domain and denoted as

Ju %f‘ %}é
J]= 2l = 6.2.11
] [Jzz Jzz] [3—5 '3;’,‘] (6211

The Jacobian matrix can be easily extended for the three-dimensional domain.
Inverse of the Jacobian matrix is denoted by

—_ -1 _ Rll R12
Rl =11 = [Rm Ryy (6.2.12)
Then, Eq. (6.2.10) can be rewritten as
9 8
3 | _ [ Bu R12] { 5¢“}
{sa" } B [Rzz Rn) |2 (6.2.13)

As a result, the derivatives of shape functions with respect to £ and y can be obtained
from the above equation.

8H, 8H;
oz | _ [R1n Rio T3 } 6.2.14
{%%} [R'n Rzz]{%f,f-; (6.2.14)
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(a.d) (c,d)
v 7 3
1 2
(a.b) ) (e.b)
x

Figure 6.2.3 Rectangular Element

The components in the Jacobian matrix are computed as shown below:

Ji = %E = g o8, 8(66 1)1 (6.2.15)
Jiz = gg ; BHb(g 1), (6.2.16)
Iy = g—:; = E BHa(g’") zi (6.2.17)
Jag = gz - ; aHb(s 1, (6.5.13)

Substitution of bilinear shape functions, Eqs (6.2.1) through (6.2.4), into the above
expressions yields

Tu=—3(l-neits(l-nm+ (l+nea—g(+ne  (6:219)
Jo=—g(-nu+0-Du+ 0 +nw-g0+nm (6220
In = -—i(l g1~ (et J(1H O+ (182 (6:221)
T = ~3(1= O — 301+ + 31+ Ews + 701~ s (6.2.22

These components are in general a function of £ and 7. However, they may be constant

for a special case as shown in the following example. Once the Jacobian matrix is

prmmnnatbad Farn Tlaa (B9 10Y theanah (B9 99 slabhal danivotivas ~F ahona firrnadicna
computea irom o4gs (0.4.19) varougn (o. 2. .44, Bi00DA1 Q€rivarives OI Biiape munciions

are computed as

Bﬂg(i,n) _ RuBHi;g,n) + Ry, 2Hilesn) a( 1) (6.2.23)
aH.-B(j,n) -, O 6566 0 | gy, 2HiE1) 6( ) (6.2.24)
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& Example 6.2.1 Let us compute the Jacobian matrix for the physical
element shown in Fig. 6.2.3. Substituting the nodal coordinate values into Eqs
(6.2.19) through (6.2.22) yields the following matrix.

Vl= [_(—2)_0 g_g_b] (6.2.25)

As seen in this example, the Jacobian matrix becomes a diagonal matrix (i.e.
all off-diagonal components vanish) when the element in the physical domain is
a rectangular shape. In addition, the diagonal components are constant not a
function of € and 7.

The inverse of the Jacobian matrix becomes

_[#=
10

1

0
pad

—
!

~_
(>
no
no
[#>)

L

The global derivatives of shape functions become

B;Z b= (lc"_’L) (6.2.27)
3;12 = 2(16"_'2) (6.2.28)
653 = 2(1th) (6.2.29)
6;1‘* = —2(1;’_’;) (6.2.30)
BBIZ L = —2(1d__€b) (6.2.31)
36? _ 2(1d+_€b) (6.2.32)
63}23 = 2(1 dJ’_‘fb) (6.2.33)
BBI; 2 = 5 (ld‘;fb) (6.2.34)

& Example 6.2.2 Let us compute the following integral using the same
element as given in Example 6.2.1.

/ [ OH, Oy, (aH1 )2] dedy (6.2.35)



Section 6.2 Quadrilateral Elements 165

(1. %)
(—1.4)

*q x

2, (1.3

1
(—.7d

Figure 6.2.4 Element of Trapezoidal Shape

Substitution of Eqs (6.2.27) and (6.2.31) into Eq. (6.2.35) results in

fbd/:[rc—l_?)?(l -+ z(‘g_l_—b)i(l - E)”] dzdy (6.2.36)

The lower and upper limits of the integrals can be changed using
dzdy = |J|dédn (6.2.37)

where |J| is the determinant of the Jacobian matrix and is equal to @;’%@;b-z

for the present element. That is, || is a constant value for a rectangular shape
of physical element. Then, we obtain

/[[c-a)z(l m zﬁi(l—f)](cnal(d_b)dfdn (6.2.38)

2
Integration of Eq. (6.2.37) finally yields La(—c)aj)(g—_-;b)L 1

& Example 6.2.3  Fine the Jacobian matrix for the quadrilateral element
shown in Fig. 6.2.4. Equations (6.2.19) through (6.2.22) along with the nodal
coordinate valites as specified in the figure yield

1 1+
n=|y 1533 (6239
The determinant of Jacobian is |J| = 3_:;{ which is always positive for

—1 < € < 1. Inverting the matrix gives

(6.2.40)
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4
(—7.7) (7.7)
4 2
\3/ o
71 (0.—171)

Figure 6.2.5 Element of Quadrilateral Shape

The determinant of the Jacobian matrix is |J| = (3 + §).

In order to compute the integration as given in Eq. (6.2.35) for the present
element, we first compute

0Hy, _ 1-n  (1-8)(1+n)

bz 4 T 43+6) (6.2.41)
0H, §-1
By _ 3+4¢ (6.2.42)
The expression for the integral becomes
fl fl [[_1=7 (1_5)(1""’)124_ 15—112] B+8) gear (6.2.43)
d€dn (6.2.43)

JooJall 4 7 4B+e ] As+¢) ] 4

This integral can be conducted analytically. However, if the shape of the physical
element has more severe distortion, the integral becomes more complicated and
may be beyond the analytical computation. Even if analytical integration may
be possible, performing the analytical integration for every element of different
shape is not pratically possible. Therefore, the numerical integration technique
is used along with the isoparametric element. 1}

& Example 6.2.4  The physical element has a severe distortion as seen in
Fig. 6.2.5. The corresponding Jacobian matrix is

[J] = [_‘f"% i—:::-i] (6.2.44)

and its determinant is §(2 — 3§ — 3n). This determinant can be zero or negative
for —1 €< £ <1 and —1 < n < 1. Hence, this shape of element should be
avoided in discretizing the physical domain. 1
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Some other popular quadrilateral isoparametric elements are eight-node and
nine-node elements as shown in Fig. 6.2.6. Their shape functions are given below.

Fight-node element:

H= 3= &1~ n)(-1-¢-n) (6245)
Hy = 30+ —n)(-1+£ =) (6.246)
Hy = (1 +&)(1+n)(~1+E+n) (6.2.47)
Hy= 7(1- )1 +n)(-1-£+n) (6.2:48)
Hy = %(1 —£3)(1-1n) (6.2.49)
He = -;-(1 +&)(1-7°) (6.2.50)
H; = -;-(1—52)(1+n) (6.2.51)
Hy = (1 - &)1 - 1) (6.2.52)
Nine-node element:
H = i(";'2 - &)(n* —n) (6.2.53)
Ha= L€+ - ) (62.54)
Hy = (€ +6)o* +1) (6:2.59
Hy= 3 -9 +) (62.56)
Hy = 2(1- &) 1) (6.257)
He = 3(€2+8)(1 - 1?) (6.2.58)
Hy= (1= )" +1) (6.2.59)
Hy= (€ - )1 - ) (6.2.60)

Ho = (1-€%)(1~ 1Y) (6.2.61)
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Figure 6.2.6 Eight-Node Isoparametric Element
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Figure 6.2.7 Nine-Node Isoparametric Element

6.3 Triangular Elements

Like quadrilateral isoparametric elements, triagular isoparametric elements can

be defined. Shape functions of the linear triangular element are in terms of the natural
coordinate system

H=1-¢—19 (6.3.1)
Hy, =¢ (6.3.2)
Hz=1q (6.3.3)

for the nodes shown in Fig. 6.3.1. The quadratic triangular element has the following
shape functions with reference to Fig. 6.3.2.

Hy=(1—&—n)(1-2 —2n) (6.3.4)
Hy=€(2% 1) (6.3.5)
Hs = (2 - 1) (6.3.6)

Hy=46(1-£—1n) (6.3.7)
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2
o £
=1

Figure 6.3.1 Three-Node Triangular Element in the Natural Coordinate

[ 4 &
(0,0)  (0.50) (1,0)

Figure 6.3.2 Six-Node Triangular Element in the Natural Coordinate

H5 = 4:61‘,' (638)
He=4n(1—-€&-1n) (6.3.9)

& Example 6.3.1 Consider an element as shown in Fig. 6.3.3. The Jacobian
matrix for the element is

[J] = [‘”2 Th T (6.3.10)
Zz3— ¥y Ys— W%

and its determinant is |J| = (22 — 21)(y3 — 11) — (23 — z1)(y2 — 11 ) which
equals twice the triangular area in the physical domain. 1}
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(-7-'3 , yg)

! 2
(-"'-'1 , yf)

(-7-'2 , yz)

x

L
Figure 6.3.3 Three-Node Triangular Element in the Physical Coordinate

6.4 Gauss Quadrature

Integral is defined as

b n '
/ f(z)dz = lim 3 " f(z:)dz: (6.4.1)
a i=1

This is shown in Fig. 6.4.1. In the numerical integration, we take a finite nember of
calculations. Therefore, Eq. (6.4.1) is approximated as

b N
/a f(z)de = Z f(zi)Az; (6.4.2)

where N is a finite number. Rewriting this expression in a general way gives

b M
/a f(2)dz = Z f(z)W; (6.4.3)

in which M is the number of integration points, z; is the integration point (or sampling
point), and W; is called the weighting coefficient. The weighting coefficient can be interpreted
as the width of the rectangular strip whose height is f(z;) by comparing Eqs (6.4.2) and
(6.4.3). Any numerical integration may be expressed in this form. In order to derive
standard values for the integration points and weighting coefficients, the integration domain
is normalized such that —1 < z < 1. Of course, there are other ways for normalization.

& Example 6.4.1 Let us find the proper integration points and weighting
coefficients for the two point trapezoidal rule. The trapezoidal rule gives

j_ 9(€)de = (o(~1)+9(1) (6.4.4)
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Figure 6.4.1 Integration

Comparing Eq. (6.4.4) to Eq. (6.4.3) indicates that the integration points for
this case are £1 = —1 and z9 = 1 while the weighting coefficients are W, = 1

and Wo =1. §

& Example 6.4.2 Repeat Example 6.4.1 using Simpson’s % rule with three
point integration. This integration results in

1
/_1 9(&)dé = %(g (=1) +49(0) + 9(1) (6.4.5)

Therefore, we obtain z; = —1, 2o = 0, z3 = 1, W,
Ws = % 1

, and

I
(A0
5

i
oha

Gauss-Legendre quadrature is very useful for integration of polynomial func-
tions. It can integrate a polynomial function of order 2n — 1 using the n-point
quadrature exactly. Integration points and weighting coeflicients for Gauss-Legendre
quadrature are provided in Table 6.4.1. Similarly, Table 6.4.2 gives integration points
and weighting coefficients for the triangular domain shown in Fig. 6.3.1 and Fig.
6.3.2. If the integrand is not a polynomial expression, Gauss-Legendre quadrature
gives an approximate result. In this case, an optimal number of integration points
should be selected in consideration of accuracy and computational cost. The next
example shows how to determine the integration points and weighting coefficients for
the Gauss-Legendre quadrature.

& Example 6.4.3 This example shows a way how to compute the sampling
points and weighting coefficients for Gauss-Legendre quadrature. Let us integrate
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Table 6.4.1 Sampling points and weights in Gauss-Legendre numerical integration

Int.Point Weight
0. 0.00000 00000 00000 2.00000 00000 00000
+0.57735 02691 89626  1.00000 00000 00000
+0.77459 66692 41483  0.555565 55555 55556
0.00000 00000 00000  0.88888 88888 88889
4  £0.86113 63115 94053  0.34785 48451 37454
+0.33998 10435 84856  0.65214 51548 62546
5 £0.90617 98459 38664  0.23692 68850 56189
+0.53846 93101 05683  0.47862 86704 99366
0.0000 00000 00000 0.56888 88888 88889
6  £0.93246 95142 03152  0.17132 44923 79170
+0.66120 93864 66265  0.36076 15730 48139
+0.23861 91860 83197  0.46791 39345 72691

e N = 3

a cubic polynomial as shown in Fig. 6.4.2. In Gauss-Legendre quadrature, we
want to make the integration of the cubic polynomial the same as that of a linear
function. In other words, the two different hatched areas in Fig. 6.4.2 are the
same (i.e. Area(A)=Area(B) in Fig. 6.4.2). Then we can write

1 1 2
j f(z)dz = f g(z)dz = Z W, f(zs) (6.4.6)
-1 -1 poy
where
(&) = ap + a1z + azz? + azz® (6.4.7)
g(z)=co + 1z (6.4.8)

and W, and z, are the weighting coefficient and sampling point for the two
point Gauss-Legendre quadrature because the two point rule integrates a cubic
polynomial exactly.

Let us rewite the cubic polynomial in the following way.
f(z) =co+erz+(z — z1)(z — z2)(bo + b1 7) (6.4.9)

In this expression, £1 and =y are fixed constants to be determined later. However,
there are still four general constants cqg, €1, bg and b; to be determined to make
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Int.

order

£-coordinate

n-coordinate

Weight

3-points

0.16666 66666 667
0.66666 66666 667
0.16666 66666 667

0.16666 66666 667
0.16666 66666 667
0.66666 66666 667

0.33333 33333 333
0.33333 33333 333
0.33333 33333 333

7-points

0.10128 65073 235
0.79742 69853 531
0.10128 65073 235
0.47014 20641 051
0.47014 20641 051
0.05971 58717 898
0.33333 33333 333

0.10128 65073 235
0.10128 65073 235
0.79742 69853 531
0.05971 58717 898
0.47014 20641 051
0.47014 20641 051
0.33333 33333 333

0.12593 91805 448
0.12593 91805 448
0.12593 91805 448
0.13239 41527 885
0.13239 41528 885
0.13239 41528 885
0.22500 00000 000

13-points

0.06513 01029 022
0.86973 97941 956
0.06513 01029 022
0.31286 54960 049
0.63844 41885 698
0.04869 03154 253
0.63844 41885 698
0.31286 54960 049
0.04869 03154 253
0.26034 59660 790
0.47930 80678 419
0.26034 59660 790
0.33333 33333 333

0.06513 01029 022
0.06513 01029 022
0.86973 97941 956
0.04869 03154 253
0.31286 54960 049
0.63844 41885 698
0.04869 03154 253
0.63844 41885 698
0.04869 03154 253
0.26034 59660 790
0.26034 59660 790
0.47930 80678 419
0.33333 33333 333

0.05334 72356 088
0.05334 72356 088
0.05334 72356 088
0.07711 37608 903
0.07711 37608 903
0.07711 37608 903
0.07711 37608 903
0.07711 37608 903
0.07711 37608 903
0.17561 52574 332
0.17561 52574 332
0.17561 52574 332
-0.14957 00444 677

Eq. (6.4.9) the same as Eq. (6.4.7) for arbitrary constants a;. Substitution of
Eq. (6.4.9) into Eq. (6.4.6) states

A/;ll (z — z1)(z — z2)(bo + b17)dz = 0

(6.4.10)
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B
g(z)=cp+ ¢1x
%

™ \( ) 2 3

f(z)=ap+ 0,z + az2°+ 092
N\
A
X
-1 1

Figure 6.4.2 Two-Point Gauss-Legendre Quadrature

Equation (6.4.10) must be true independent of bg and by because the integration
rule holds for a general cubic polynomial. Therefore,

1
f (z —21)(z —xz2)dz =0 (6.4.11)
-1
and
1
/ z(z — z1)(x — z2)dz =0 (6.4.12)
J-1
These two equations determine T3 = —ﬁ and T, = ﬁ These are two

sampling points for the two-pont Gauss-Legendre quadrature. In order to find
the corresponding weighting coefficients, we integrate

1
I= / (co + c1z)dx = 2¢9 (6.4.13)
-1

From Eq. (6.4.6), this integration is equal to

2
I=Y W,f(z,) = Wileo+ c121) + Waco + €122)

s=1

= CO(W1 -+ Wz) - \—}—gcl(Wl - Wz) (6.4.14)

Equating Eq. (6.4.13) and Eq. (6.4.14) yields two weighting coefficients W; = 1
and Wo =1. 1§

& Example 6.4.4  Perform the following integral:

1
/ (1+ 2€ + 3¢%)d¢ (6.4.15)
-1
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Because the order of polynomial is 2, 2n — 1 = 2. From this, we get n = 1.5.

The number of integration points should be an integer. So, we use the two

point quadrature rule. From Table 6.4.1, the two integration points are ——%

and % with weighting coefficient 1 for each point, respectively. The numerical

integration becomes

1
/ (1+2€+ 3¢%)dz =
-1

({1 +2(~ \,)+3( f)2}+(1){1+z(¢1§)+3(%)2}=4 (6.4.16)

This 1s the exact solutlon If we use the three pomt qua.dra.ture to integrate Eq.

(6.4.15) (i.e. & = 52 =0,& = Wg 9, and W3 = 9)
we also obtain the sa.me exact solution. Therefore, the quadrature rule using two
or higher number of integration points will always yield the exact solution for
this problem. 1§

The quadrature rule can be extended for multi-dimensional integration. For ex-
ample, numerical integral in the normalized two-dimensional domain can be conducted

in the following way.
1,1
f / 9(€, m)d€dn
-1J-1
1 My
=/12Wsy(&,n)dn
M,
- ZW ZWg(fl)'r’J

M, M,

=22 WiW;9(&,m) (6.4.17)

i=1 j=1
in which M; and M; are the number of integration points in the £ and n axes,
respectively. In addition, (§;,7;) are the integration points and W; and W; are

weighting coefficients. Table 6.4.1 can be used for these values. Similarly, numerical
integration in three-dimension becomes

M, M; M,

1 1 1 3
/4 /_1 ,[1 9(§, . {)ddnd( = ZZZ WiW;Weg(&i,m5,Cr) (6.4.18)

i=1j=1k=1

& Example 6.4.5 Integrate the following expression:

1 1
/ ] 9¢2n*dedn (6.4.19)
-1J-1
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The integrand is the second order in terms of £ and 7, respectively. That is,
2My —1 = 2M3 —1 = 2 for both axes. Therefore, we use two point quadrature
in both £ and 7 directions. The integration points are §; = 1 = —-%

and £ = 1 = -\}—5 The weighting coefficients are Wy, = W; = 1 and

Wo = Wy = 1. Applying these values to Eq. (6.4.17) results in 4. §

& Example 6.4.6 We want to integrate

] f 15¢2n*dg dn (6.4.20)
-1J-1

The integrand is the second order in terms of £ and fourth order in terms of
n. Therefore My = 2 and My = 3. Using the two point quadrature in the
£ direction and three point quadrature in the 7 direction from Table 6.4.1, we
obtain the solution of 4. 1}

6.5 MATLAB Application to Gauss Quadrature

This section shows MATLAB examples for numerical integration of one-, two-

or three-dimensional functions using Gauss-Legendre quadrature. The domain of
integration is normalized between -1 and 1 for every axis.

& Example 6.5.1 We want to integrate
f(z) =14 2% — 323 + 42° (6.5.1)

over the domain —1 < z < 1 using Gauss-Legéndre quadrature. Because the
highest order of polynomial is 5, we need the 3-point quadrature rule for exact

integration from 2n — 1 = 5. The numerical result is g. The MATLAB program
is shown below.

N R

% Example 6.5.1

% Gauss-Legendre quadrature of a function in 1-dimension
%

% Problem description

% Integrate f(x)=14+x2-3x3+4x> between x=-1 and x=1

%

% Variable descriptions

% pointl = integration (or sampling) points

% weight1 = weighting coefficients

% ngl = number of integration points

«
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A

%
ngl=3; % (2*ngl-1)=5
%
[pointl,weight1]=feglqd1(ngl); % extract sampling points and weights
%
%

% summation for numerical integration

%
%

value=0.0;

%

for int=1:ngl

x=point1(int);

wt=weight1(int);

func=1+x2-3*x3-+4*x5; % evaluate function at sampling point
value=value+func*wt;

end

%

value % print the solution
%

%

function [point1,weightl]=feglqd1(ngl)
%
% Purpose:

% determine the integration points and weighting coeflicients

% of Gauss-Legendre quadrature for one-dimensional integration
%

% Synopsis:

% [point1,weight1]=feglqd1(ngl)

%

% Variable Description:

% ngl - number of integration points

% pointl - vector containing integration points

% weightl - vector containing weighting coefficients

%
%

% initialization

%

pointl=zeros(ngl,1);

weight1=zeros(ngl,1);

%

% find corresponding integration points and weights

%

if ngl==1 % 1-point quadrature rule
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point1(1)=0.0;

weight1(1)=2.0;

%

elseif ngl==2
point1(1)=-0.577350269189626;
point1(2)=-point1(1);
weight1(1)=1.0;
weight1(2)=weight1(1);

%

elseif ngl==3
point1(1)=-0.774596669241483;
point1(2)=0.0;
point1(3)=-point1(1);
weight1(1)=0.555555555555556;
weight1(2)=0.888888888888889;
weight1(3)=weight1(1);

%

elseif ngl==4
point1(1)=-0.861136311594053;
point1(2)=-0.339981043584856;
point1(3)=-point1(2);
point1(4)=-point1(1);
weight1(1)=0.347854845137454;
weight1(2)=0.652145154862546;
weight1(3)=weight1(2);
weight1(4)=weight1(1);

%

else
pointl(1)=-0.906179845938664;
point1(2)=-0.538469310105683;
point1(3)=:0.0;
point1(4)=-point1(2);
pointl(5)=-pointl{1);
weight1(1)=0.236926885056189;
weight1(2)=0.478628670499366;
weight1(3)=0.568888888888889;
weight1(4)=weight1(2);
weight1(5)=weight1(1);

%

end

%

Chapter 6

% 2-point quadrature rule

% 3-point quadrature rule

% 4-point quadrature rule

% 5-point quadrature rule

N
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& Example 6.5.2  Use Gauss-Legendre quadrature for integration of
f(z,y) = 1+ dzy — 32%y% + =%° (6.5.2)

over the domain —1 < ¢ < 1 and —1 < y < 1. We use 3-point quadrature
rule along the x-axis and 4-point quadrature rule along the y-axis. The result is

2.7810.
%
% Example 6.5.2
% Gauss-Legendre quadrature of a function in 2-dimension
%

% Problem description

% Integrate f(x,y)=1+4xy—3x2y2+x4y6 over -1<x<1 and -1<y<1
%

% Variable descriptions

% point2 = integration (or sampling) points

% weight2 = weighting coeflicients

% nglx = number of integration points along x-axis

% ngly = number of integration points along y-axis

%
%
nglx=3; % (2*nglx-1)=4
ngly=4; % (2*ngly-1)=6
%
[point2,weight2]=feglqd2(nglx,ngly); % sampling points and weights
%
%

% summation for numerical integration

%
%

value=0.0;

%

for intx=1:ngix

x=point2(intx,1); % sampling point in x-axis
witx=weight2(intx,1); % weight in x-axis
for inty=1:ngly

y=point2(inty,2); % sampling point in y-axis
wty=weight2(inty,2) ; % weight in y-axis
func=1-+4*x*y-3*x2*y2+x4*y6; % evaluate function
value=value+4func*wtx*wty;

end

end

%

value %

%
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function {point2,weight2]=feglqd2(nglx,ngly)
y
% Purpose:

% determine the integration points and weighting coefficients

% of Gauss-Legendre quadrature for two-dimensional integration
%

% Synopsis:

% [point2,weight2]=feglqd2(nglx,ngly)

%

% Variable Description:

% nglx - number of integration points in the x-axis

% ngly - number of integration points in the y-axis

% point2 - vector containing integration points

% weight2 - vector containing weighting coefficients

o7
/0

%

% determine the largest one between nglx and ngly
%

if nglx > ngly

ngl=nglx;

else

ngl=ngly;

end

%

% initialization

%

point2=zeros(ngl,2);

weight2=zeros(ngl,2);

%

% find corresponding integration points and weights
%

[pointx,weightx]=feglqd1(nglx); [pointy,weighty)=feglqd1(ngly); %
% quadrature for two-dimension

%

for intx=1:nglx point2(intx,1)=pointx(intx);
weight2(intx,1)=weightx(intx);

end

%

for inty=1:ngly point2(inty,2)=pointy(inty);
weight2(inty,2)=weighty(inty);

end

%

o7
/0
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Gauss-Legendre quadrature.

f(z,y,2) =1+ 4z?y? — 3222 + ¢

The following three-dimensional function is integrated

(6.6.3)

over the normalized domain —1 < 2 < 1, -1 <y < 1land —1 < 2z < 1. The
integrated value is 10.1841.

%

% Example 6.5.3

% Gauss-Legendre quadrature of a function in 3-dimension

%

% Problem description

% Integrate f(x,y,z):l+4x2y2-3xzz4+y426 over -1<(x,y,z)<1

%

% Variable descriptions

% point3 = integration (or sampling) points

% weight3 = weighting coefficients

% nglx = number of integration points along x-axis
% ngly = number of integration points along y-axis
% nglz = number of integration points along z-axis

%
%
nglx=2;
ngly=3;
nglz=4;
%

[point3,weight3]=feglad3(nglx,ngly,

______ LA = A |

%

14

rd'

% summation for numerical integration

%

%

value=0.0;

%

for intx=1:nglx
x=point3(intx,1);
wtx=weight3(intx,1);
for inty=1:ngly
y=point3(inty,2);
wty=weight3(inty,2) ;

for intz=1:nclz

r intz=1:nglz
z=point3(intz,3);
wtz=weight3(intz,3) ;
func=1+4*x2*y3-3*x2*z4+yd*26;
value=value+tfunc*wtx*wty*wtz;
end

end

% (2*nglx-1)=2
% (2*ngly-1)=4
% (2*nglz-1)=6

=St

sampling point & weight
g 4 (=}

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

% evaluate function
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% print the solution

function [point3,weight3]=feglqd3(nglx,ngly,nglz)
%

% Purpose:

P S Y

% determine the inte
% of Gauss-Legendre quadrature fo
%

% Synopsis:

% [point3,weight3]=feglgd3(nglx,ngly,nglz)

%

% Variable Description:

% nglx - number of integration points in the x-axis
% ngly - number of integration points in the y-axis

% nglz - number of integration points in the z-axis
% point3 - vector containing integration points

_____ artnr containine welohiing coafoients
% weight3 - vector con itaining weighting coefficients
oz
7Y
%

% determine the largest one between nglx and ngly
%

if nglx > ngly

if nglx > nglz

ngl=nglx;

else

ngl=nglz;

end

else

if ngly > nglz
ngl=ngly;

else

ngl=nglz;

end

end

%

% initialization

%
point3=zeros(ngl,3);
weight3=zeros(ngl,3);
%

% find corresponding integration points and weights

%
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[pointx,weightx]=feglqd1(nglx); % quadrature rule for x-axis
[pointy, weighty]=feglqd1(ngly); % quadrature rule for y-axis
[pointz,weightz]=feglqd 1(nglz); % quadrature rule for z-axis
%

% quadrature for two-dimension

%

for intx=1:nglx % quadrature in x-axis

point3(intx,1)=pointx(intx);

weight3(intx,1)=weightx(intx);

end

%

for inty=1:ngly % quadrature in y-axis
point3(inty,2 )=pointy(inty);

weight3(inty,2)=weighty (inty);

end

%

for intz=1:nglz % quadrature in z-axis
point3(intz,3)=pointz(intz);

weight3(intz,3)=weightz{intz);

end

%o

174
70

6.6 MATLAB Application to Laplace Equation

Isoparametric elements are used to solve the Laplace equation which was
discussed in Chapter 5.

& Example 6.6.1 This example shows how to compute the element matrix
for the Laplace equation. The element matrix is expressed as

. [ (0H0H;  0H,0H,
KS = fn { e }dQ (6.6.1)

The element domain is shown in Fig. 6.2.4. The MATLAB program is listed
below to evaluate the element matrix.

oz — . e et

% Example 6.6.1

% Compute element matrix for two-dimensional Laplace equation

%

% Problem description

% Determine the element matrix for Laplace equation using

% isoparametric four-node quadrilateral element and Gauss-Legendre
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% quadrature for a single element shown in Fig. 6.2.4.

%
% Variable descriptions
% k - element matrix

% point2 - integration (or sampling) points

% weight2 - weighting coefficients

% nglx - number of integration points along x-axis
% ngly - number of integration points along y-axis
% xcoord - x coordinate values of nodes

% ycoord - y coordinate values of nodes

% jacob2 - Jacobian matrix

% shape - four-node quadrilateral shape functions

% dhdr - derivatives of shape functions w.r.t. natural coord. r
% dhds - derivatives of shape functions w.r.t. natural coord. s
% dhdx - derivatives of shape functions w.r.t. physical coord. x
% dhdy - derivatives of shape functions w.r.t, physical coord. y

A\

%

nnel=4;

ndof=1;
edof=nnel*ndof;
%

nglx=2; ngly=2;
%

xcoord=[-11 1 -1J;
ycoord=[-0.75 -0.75 1.25 0.25];
%

[point2,weight2]="feglqd2{nglx,ngly);
%

o

AN

% numerical integration

o

0

k=zeros(edof,edof);

%

for intx=1:nglx
x=point2(intx,1);
wtx=weight2(intx,1);
for inty=1:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;

%
[shape,dhdr,dhds]=feisoq4(x,y};
y

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord);

detjacob=det(jacob2);
invjacob=inv(jacob2);

%

% number of nodes per element
% degrees of freedom per node
% degrees of freedom per element

% use 2x2 integration rule

% x coordinate values
% y coordinate values

% initialization to zero
% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

% compute Jacobian
% determinant of Jacobian
% inverse of Jacobian matrix

Chapter 6
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[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate

element matrix loop

S -

U

for i=1:edof

for j=1:edof

k{i,j)=k(i,j)+(dhdx(i)*dhdx(3)+dhdy(i)*dhdy(j}) *wix*wty*detjacob;

end

end

%

end

end % end of numerical integration loop
%

k % print the element matrix
%

oz
/0

function [dhdx,dhdy]=federiv2{nnel,dhdr,dhds,invjacob)

%
% Purpose:

% determine derivatives of 2-D isoparametric shape functions with
% respect to physical coordinate system

%

% Synopsis:

% [dhdx,dhdy]=federiv2{nnel
%

% Variable Description:

% dhdx - derivative of shape function w.r.t. physical coordinate x
% dhdy - derivative of shape function w.r.t. physical coordinate y
% nnel - number of nodes per element

% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% invjacob - inverse of 2-D Jacobian matrix

o7
70

%o
for i=1:nnel
dhdx(l)—mvjacob(l 1)*dhdr(1)+1nv3acob(1 2)*dhds(1)

AL 1 —invinrakh{9 1YRILAwfi) Linvinrn l-.ff) 0\*.11..1.: 3\
uliu_y\l}——lllv_] UU\& } uuu1\1}-1-xuv_,a.&, \ } uu.uo\].},

end

%

o7
A
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function [shapeq4,dhdrq4,dhdsq4]=feisoq4(rvalue,svalue)

Chapter 6

%
% Purpose:

% compute isoparametric four-node quadrilateral shape functions
% and their derivatves at the selected (integration) point

% in terms of the natural coordinate

%

% Synopsis:

% [shapeq4,dhdrq4,dhdsq4]=feisoq4(rvalue,svalue)

%

% Variable Description:

% shapeq4 - shape functions for four-node element

% dhdrq4 - derivatives of the shape functions w.r.t. r

% dhdsq4 - derivatives of the shape functions w.r.t. s

% rvalue - r coordinate value of the selected point

% svalue - s coordinate value of the selected point

%

% Notes:

% 1st node at {-1,-1), 2nd node at (1,-1)

% 3rd node at (1,1), 4th node at {-1,1)

%
%o

% shape functions

%
shapeq4(1)=0.25*(1-rvalue)*(1-svalue);
shapeq4(2)=0.25%(1+rvalue)*(1-svalue);
shapeq4(3)=0.25*(1+rvalue)*{1+svalue);
shapeq4(4)=0.25*(1-rvalue)*(1+svalue);
%

% derivatives

%

dhdrq4(1)=-0.25*%(1-svalue});
dhdrq4(2)=0.25*(1-svalue);
dhdrq4(3)=0.25*(1+svalue);
dhdrq4(4)=-0.25*(14svalue);

%

dhdsq4(1)=-0.25%(1-rvalue);
dhdsq4(2)=-0.25*(14rvalue);

Ahdea Al ADN—=0 IR* (1 Lrvalnal

ullun\l:\u —_—Ve.LiS \l T4 'mu\o}’
dhdsq4(4)=0.25%(1-rvalue);
%

%

function [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

70

% Purpose:
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% determine the Jacobian for two-dimensional mapping

%

% Synopsis:

% [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

%

% Variable Description:

% jacob2 - Jacobian for one-dimension

% nnel - number of nodes per element

% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% xcoord - x axis coordinate values of nodes

% ycoord - y axis coordinate values of nodes

%
%

jacob2=zeros(2,2);

%

for i=1:nnel
jacob2(1,1)=jacob2(1,1)4+dhdr(i)*xcoord(i);
jacob2(1,2)=jacob2(1,2)}+dhdr(i)*ycoord(i);
jacob?(2 n-umm{o 1\.Lr]l|r|c{1\*1rrnn'rr]{1

TRLAIR S S BT RRRER S A R AIASRLEND
Jacob2(2,2)-—3acob2(2,2)+dhds(1)*ycoord(l),
end
70

o7
AY

The computed element matrix is

r 0.7500 0.0000 —0.2500 -0.50007
0.0000  0.7500 —0.2500 —0.5000

—0.2500 —-0.2500 0.5000  0.0000
L—0.5000 —-0.5000 0.0000 1.0000 U

VLUV RS RS AV A A AE A VAVATAY R A AT AT AT

(K] = (6.6.2)

& Example 6.6.2 Repeat Example 5.9.2 using isoparametric elements.
Four-node quadrilateral elements are used. The finite element solution is the
same as that obtained in Example 5.9.2. As a result, the solution is not repeated
here. The MATLAB program is shown below.

o7
70

% Example 6.6.2

% to solve the two-dimensional Laplace’s equation given as
% u,xx + u,yy =0,0<x< 5, 0<y<10

% u(x,0) = 0, u(x,10) = 100sin(pi*x/10),

% u{0,y) = 0, u,x(5,y) =0

% using isoparametric four-node quadrilateral elements
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% (see Fig. 5.9.2 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

% point2 - integration (or sampling) points

% weight2 - weighting coefficients

% nglx - number of integration points along x-axis

% ngly - number of integration points along y-axis

% xcoord - x coordinate values of nodes

% ycoord - y coordinate values of nodes

% jacob2 - Jacobian matrix

% shape - four-node quadrilateral shape functions

% dhdr - derivatives of shape functions w.r.t. natural coord. r

% dhds - derivatives of shape functions w.r.t. natural coord. s

% dhdx - derivatives of shape functions w.r.t. physical coord. x

% dhdy - derivatives of shape functions w.r.t. physical coord. y

70

clear

%

% input data for control parameters

o7

nel=16; % number of elements
nnel=4; % number of nodes per element
ndof=1; % number of dofs per node
nnode=25; % total number of nodes in system
nglx=2; ngly=2; % use 2x2 integration rule
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % dofs per element
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

%o

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=1.25; gcoord(2,2)=0.0;
gcoord(3,1)=2.5; gcoord(3,2)=0.0;
gcoord(4,1)=3.75; gcoord(4,2)=0.0;
gcoord(5,1)=5.0; gcoord(5,2)=0.0;
gcoord(6,1)=0.0; gcoord(6,2)=2.5;
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gcoord(7,1)=1.25; gcoord(7,2)=2.5;
gcoord(8,1)=2.5; gcoord(8,2)=2.5;
gcoord(9,1)=3.75; gcoord(9,2)=2.5;
gcoord(10,1)=5.0; gcoord(10,2)=2.5;
gcoord(11,1)=0.0; gcoord(11,2)=5.0;
gcoord(12,1)=1.25; gcoord(12,2)=5.0;
gcoord(13,1)=2.5; gcoord(13,2)=5.0;
gcoord(14,1)=3.75; gcoord(14,2)=5.0;
gcoord(15,1)=5.0; gcoord(15,2)=5.0;
gcoord(16,1)=0.0; gcoord(16,2)=17.5;
gcoord(17,1)=1.25; gcoord(17,2)=7.5;
gcoord(18,1)=2.5; gcoord(18,2)="7.5;
gcoord(19,1)=3.75; gcoord(19,2)="7.5;
gcoord(20,1)=5.0; gcoord(20,2)=7.5;
gcoord(21,1)=0.0; gcoord(21,2)=10.;
gcoord(22,1)=1.25; gcoord(22,2)=10;
gcoord(23,1)=2.5; gcoord(23,2)=10.;
gcoord(24,1)=3.75; gcoord(24,2)=10.;
gcoord(25,1)=5.0; gcoord(25,2)=10.;
%

%
% input data for nodal connectivity for each element

% nodes(i,j) where i-> element no. and j-> connected nodes

o7,
nodes(1,1)=1; nodes(1,2)=2; nodes(1,3)=T7; nodes(1,4)=6;
nodes(2,1)=2; nodes(2,2)=3; nodes(2,3)=8; nodes(2,4)=T;
nodes(3,1)=3; nodes(3,2)=4; nodes(3,3)=9; nodes(3,4)=8,;
nodes(4,1}=4; nodes{4,2)=>5; nodes{4,3)=10; nodes(4,4)=9;
nodes(5,1)=6; nodes(5,2)=7; nodes(5,3)=12; nodes(5,4)=11;
nodes(6,1)=7; nodes(6,2)=8; nodes(6,3)=13; nodes(6,4)=12;
nodes(7,1)=8; nodes(7,2)=9; nodes(7,3)=14; nodes(7,4)=13;
nodes(8,1)=9; nodes(8,2)=10; nodes(8,3)=15; nodes(8,4)=14;
nodes(9,1)=11; nodes(9,2)=12; nodes(9,3)=17; nodes(9,4)=16;
nodes(10,1)=12; nodes(10,2)=13; nodes(10,3)=18; nodes(10,4)=17;
nodes(11,1)=13; nodes(11,2)=14; nodes(11,3)=19; nodes(11,4)=18;
nodes(12,1)=14; nodes(12,2)=15; nodes{12,3)=20; nodes(12,4)=19;
nodes(13,1)=16; nodes(13,2)=17; nodes(13,3)=22; nodes(13,4)=21;
nodes(14,1)=17; nodes(14,2)=18; nodes(14,3)=23; nodes(14,4)=22;
nodes(15,1)=18; nodes(15,2)=19; nodes(15,3)=24; nodes(15,4)=23;
nodes(16,1)=19; nodes(16,2)=20; nodes(16,3)=25; nodes(16,4)=24;
%

%

% input data for boundary conditions

%

% ‘

bedof(1)=1; % first node is constrained
beval(1)=0; % whose described value is 0

bedof(2)=2; % second node is constrained
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bcval(2)=0; % whose described value is 0
bedof(3)=3; % third node is constrained
bcval(3)=0; % whose described value is 0
bedof(4)=4; % 4th node is constrained
bcval(4)=0; % whose described value is 0
bedof(5)=5; % 5th node is constrained
bcval(5)=0; % whose described value is 0
bcdof(6)=6; % 6th node is constrained
bcval(6)=0; % whose described value is 0
bedof(7)=11; % 11th node is constrained
beval(7)=0; % whose described value is 0
bedof(8)=16; % 16th node is constrained
bcval(8)=0; % whose described value is 0
bedof(9)=21; % 21st node is constrained
beval(9)=0; % whose described value is 0
bedof(10)=22; % 22nd node is constrained
bcval(10)=38.2683; % whose described value is 38.2683
bedof(11)=23; % 23rd node is constrained
bcval(11)=70.7107; % whose described value is 70.7107
bedof(12)=24; % 24th node is constrained
bcval(12)=92.3880; % whose described value is 92.3880
bedof(13)=25; % 25th node is constrained
bcval(13)=100; % whose described value is 100
%

%

% initialization of matrices and vectors

%
fi=zeros(sdof,1);
kk=zeros(sdof,sd of);
index=zeros(nnel*ndof,1);
%

Al

% loop for computation and assembly of element matrices
07,

[point2,weight2]=feglqd2(nglx,ngly);
%

for iel=1:nel % loop for the total number of elements
%

for i=1:nnel
nd(i)=nodes(iel i);
xcoord(i)=gcoord{nd(i),1);

R
b o

initialization of svstem force vector
% initialization of system matrix
% initialization of index vector

% sampling points & weights

% extract connected node for (iel)-th element
% extract x value of the node

ycoord{i)=gcoord{nd(i},2); % extract y value of the node
end

P

k=zeros(edof,edof); % initialization of element matrix to zero
%o

Al

% numerical integration
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%
for intx=1:nglx
x=point2{intx,1); % sampling point in x-axis
wtx=weight2(intx,1); % weight in x-axis
for inty=1:ngly
y=point2(inty,2); % sampling point in y-axis
wty=weight2(inty,2) ; % weight in y-axis
%
[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% derivatives at sampling point
%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
%
detjacob=det{jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate
%

/0

% compute element matrix

o7
/0

for i=1:edof

for j=1:edof
k(i,j)=k(i,j)+(dhdx(i)*dhdx(3)+dhdy (i) *dhdy(j)) *wtx*wty*detjacob;

end

end

%

end

end % end of numerical integration loop
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
P

%

% assemble element matrices

%
kk=feasmbl1(kk, k,index);

=X

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%

U

% solve the matrix equation

oz
/0
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fsol=kk\ff;
%
% analytical solution

o
/0

for 1=1:nnode

x=gcoord(i,1); y=gcoord(i,2);
esol(i)=100*sinh(0.31415927*y)*sin(0.31415927*x) /sinh(3.1415927);
end

%

o7
70

% print both exact and fem solutions
%
num=1:1:sdof;

store=[num’ fsol esol’]

%

- 4
/0
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Problems

Compute the following integral using the quadratic isoparametric element:

Kpy = /:[(%)2 +(H1)2] dz

The shape functions are given in Egs (6.1.13) through (6.1.15) and the element
has nodes r;=2, 2,=4, and x3=6 in the physical coordinate system.

Consider one-dimensional isoparametric shape functions as given in Egs (6.1.13)
through (6.1.15). The isoparametric element is mapped into a physical domain
with nodal points located at z; = 0, 22 = @, and z3 = 4, wherea =15,a =1,
or a = 0.5. Compute the Jacobian J and its inverse for these cases.

Compute the Jacobian matrix for the following bilinear element shown in Fig.
P6.3 and evaluate

[ (8H,0H, OH, H,
K”‘/;,( 9z bz T Oy ay)‘m

Using the isoparametric element and 3 by 3 Gauss-Legendre quadrature. The
shape functions are provided in Eqs (6.2.1) through (6.2.4).

For the linear triangular isoparametric element shown in Fig. P6.4, (a) compute
the Jacobian matrix and (b) find &1 in which H, is given in Eq. (6.3.1).

Evaluate the Jacobian matrix for the four-node element shown in Fig. P6.5
using the bilinear isoparametric element.

Gauss-Legendre quadrature rule is used to evaluate the integral

1 1
f-l f_l Hi(§,n)Hs(§,n)|J |ddn

in which H; and H, are quadratic shape functions of £ and 7, respectively.
What order of integration is necessary for exact integration of the integral if the
element has no distortion (i.e. a rectangular shape of element in the physical
domain)?

Two different isoparametric elements are used together as shown in Fig. P6.7.
There is an interelement boundary between (z, y)=(1,1) and (z, y)=(2,2). Show
that variable is continuous across the interface boundary. In other words,
variable interpolation from the quadrilateral element is the same as that from
the triangular element at the interface.

Consider two elements shown in Fig. P6.7 again. For the elements, we use the
following interpolation for each element. For the triangular element, we use

u=ap+ a1z +azy
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Figure P6.3 Problem 6.3
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Figure P6.4 Problem 6.4

and for the quadrilateral element we use
u = bg + bz + bay + bazy

Is u compatible at the element interface of the two elements?

6.9 Two kinds of quadrilateral isoparametric elements are utilized together to mesh
a domain as seen in Fig. P6.9. One is a bilinear element and the other is a
biquadratic element. Is it compatible between the element interface?

6.10 Solve Prob. 5.11 using isoparametric elements and computer programs provided
in this chapter.

6.11 Solve Prob. 5.12 using isoparametric elements and MATLAB programs.
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TRUSS STRUCTURES

7.1 One-Dimensional Truss

The one-dimensional truss is also called a rod or an axial bar which was described
in Chapter 4. The governing equation to describe the motion of rod is derived below.
Let E, A and p indicate the elastic modulus, cross-sectional area and density of the
rod, respectively. Applying Newton’s second law to the free body diagram shown in
Fig. 7.1.1 gives

d%u P
pAde = 52 = (P+ —é—dz) - (7.1.1)

where u is the axial displacement along the rod direction, and z and ¢ are the spatial
and temporal axes, respectively. Hooke’s law states

% = Ee (7.1.2)
The strain-displacement relation is
__ 0Ou
=5 (7.1.3)

Substituting Eq. (7.1.3) into Eq. (7.1.2) and the result into (7.1.1) yields

u 8 Ou
pAﬁ =52 (AE-(:,;) (7.1.4)
In Eq. (7.1.4), p, A and E may vary as a function of z.
The weak formulation for Eq. (7.1.4) is
I—jL w4+ ap 20 g _ azw?]’ (7.1.5)
S e bz Oz oz, -

197



198 Truss Structures Chapter 7

P_/////_....W

i

Figure 7.1.1 Free Body Diagram for Axial Member

in which w is the test function. The first term is the inertia term and the second term

is the stiffness term. Discretization of the domain into a number of elements breaks

the global integral in Eq. (7.1.5) into element integrals over the element domains.
Use of Galerkin’s method and linear shape functions for a rod element whose

[-a
o »
]

(2

rd

(9]

[ ]
]

[

o

o

a fallawine atiffmace matriv:
Al AVSAANSFY ‘.116 MULILLIWIIOWD ALIWWUVA LN,

l dH,
[K"]:/O AE{&}{% ) g (7.1.6)
dz

for the element nodal degrees of freedom {u; uy} as shown in Fig. 7.1.2. Superscript
e denotes element. Here H; is the linear shape function which is

I —
Hy = — z (7.1.7)

Hy = i;; (7.1.8)

Substitution of these shape functions into Eq. (7.1.6) results in the element stiffness
matrix for rod.

[K°] =

E[1 -
AE 1 1] (7.1.9)

I |-1 1

This is the same as given in Chapter 4.
The element mass matrix for rod is obtained from the first term in Eq. (7.1.5)
using the linear shape functions.

[M¢] = pg” [f é] (7.1.10)

for the constant density and cross-sectional area. This is called the consistent mass
matrix for rod. The lumped mass matrix is

[M°]= B—;—I [(1) (1)] (7.1.11)

This is obtained by lumping the distributed mass within the element into the
concentrated masses at the two nodal points as seen in Fig. 7.1.3.
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Figure 7.1.2 Two-Node Axial Bar
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Figure 7.1.3 Equivalent Spring-Mass System

7.2 Plane Truss

The truss is a structure which consists of axial members connected by pin joints.
Therefore, each member of the truss structure supports the external load through its
axial force and it does not undergo the bending deformation. The stiffness matrix for
a truss member shown in Fig. 7.2.1 is given in Eq. (7.1.9). However, the matrix size
becomes 4 X 4 because the nodal degrees of freedom of the truss element are expressed
as

{dY={uw v w v} (7.2.1)

Here superscript ¢ denotes the element level. The corresponding stiffness matrix is

k 0 -k O
a 10 0 0 0
ET=1_% 0 ® o (7.2.2)
0 0 0 O
in which
k:-j—i-l-E—J- (7.2.3)

For a uniform member, A and FE are the area of the cross-section and the elastic
modulus, respectively. In addition, ! is the length of the member. The second
and fourth columns and rows of the stiffness matrix associated with the transverse
displacement v are null since the truss member has axial deformation only.

The plane truss structure consists of axial members in different orientations. For
example, Fig. 7.2.2 shows that members a, b and c lie in three different directions.
In order to assemble the stiffness matrices related to these truss members, we need
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Figure 7.2.2 Triangular Truss

to have the element degrees of freedom given in terms of the common reference axes.
In other words, the element nodal displacements are expressed in terms of the fixed
global coordinate system.

Figure 7.2.3 shows a plane truss element oriented in an arbitrary angle 8 with
respect to the horizontal axis Z. The figure shows two sets of nodal displacements.
One set has nodal displacements along and perpendicular to the element axis (i.e. u
and v) while the other set has the displacements in terms of the global reference axes
(i.e. @ and 7). Because the element stiffness matrix Eq. (7.2.2) is expressed in terms
of u and v, it should be transformed such that the stiffness matrix is expressed in
terms of @ and v.

To the end, we find the relationship between zy- and Zj-coordinate systems.
This relationship is called the coordinate transformation and the same relationship

holds for the two sets of nodal displacements (i.e. u, v and &, ¥). The relationship is

Uy c s 0 O Uy
vl _ f-s ¢ 0 O ¥
w10 0 ¢ s| Y (7.2.4)
Vg 0 0 —-s ¢ Vg

where ¢ = cosf and s = sinf. Let us rewrite Eq. (7.2.4) as

{d°} = M) (7.2.5)
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Figure 7.2.3 Generalized Two-Dimensional Truss Element

To transform the element stiffness matrix from the zy-coordinate system to
zy-coordinate system, consider the concept of strain energy. The strain energy is
expressed as

U= -;—{d"}T[K"]{d"} (7.2.6)

in terms of the zy-coordinate system. If we substitute Eq. (7.2.5) into Eq. (7.2.6),
we obtain ‘

= @V I KT (7127)

The strain energy is now expressed in terms of the Zg-coordinate system.
1 e 1T ri-els je
U= -2-{d P IK{d°} (7.2.8)

in which [K¢] is the transformed element stiffness matrix in terms of the j-coordinate
system. The strain energy in Eq. (7.2.8) should be the same as that in Eq. (7.2.7)
because strain energy is independent of the coordinate system. Equating Eq. (7.2.7)
to Eq. (7.2.8) shows that

[K°] = [T [K°]{T] (7.2.9)

Substitution of Egs (7.2.2) and (7.2.4) into Eq. (7.2.9) results in the transformed

stiffness matrix
2

c cs —c? —cs
[ffel=$ S f:s Y _622 (2.7.10)
L—ecs —s* ¢s &%
for the nodal degrees of freedom
{o 0 @ 02} (7.2.11)

This element stiffness matrix can be assembled into the global matrix as usual for the
shared nodal points.
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& Example 7.2.1 Let us compute element stiffness matrices for the truss
structure shown in Fig. 7.2.2. The structure has three elements (a, b and ¢)
and three nodes (1, 2 and 3). Let each truss member have the same material
and geometric properties. In the following derivation, the superimposed (“) is
omitted for simplicity

Member a: Let i=1 and j=2. Then #=0 so that ¢ = cos #=0 and s = sin §=0.
The element stiffness matrix is

1 0 -1 0
o _AEL 0 0 0 0

EY=—71_10 1 o (7.2.12)
0 0 0 0

Member b: Let i=2 and j=3. Then f = 231 so that ¢ = cos $=-0.5 and

s = sin ﬁ:%"i The element stiffness matrix is

0.250 —0.433 —0.250 0.433
AE | -0.433 0.750 0.433 —0.750
7 | -0250 0.433 0.250 —0.433

0.433 —0.750 —0.433 0.750

{K'} = (7.2.13)

Member c: Let i=1 and j=3. Then 8 = % so that ¢ = cos#=0.5 and

s = sin ﬂ:@ The element stiffness matrix is

0250 0.433 -0.250 —-0.433

AE | 0433 0.750 -0.433 -0.750
! |-0250 -0.433 0.250 0.433
—0.433 -0.750 0.433 0.750

(K¢} = (7.2.14)

The element mass matrix for the plane truss member can be calculated using

the same coordinate transformation. Using the kinetic energy expression, as similar
to the strain energy expression for derivation of the element stiffness matrix, we can

write

[M*] = [T [M°][T] (7.2.15)

Carrying out this matrix multiplication using the consistent mass matrix gives

22 2cs ¢ s
—e1_ PAl | 2cs 25 s 5P
[M°] = 2 s 22 2cs

6 c
cs §2 2s 252

(7.2.16)
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The lumped mass matrix can be obtained similarly and shown below:

¢ ¢cs 0 O

—er_ PAlles 82 0 0

MIT=="10 0 & cs (7.2.17)
0 0 cs &2

7.3 Space Truss

Development of the element stiffness matrix for the space truss member is similar
to that for the plane truss member. The element stiffness matrix in terms of the global
Cartesian coordinate system is obtained in the same way as given in Eq. (7.2.9).
However, the sizes of both the transformation matrix and the element stiffness matrix
in terms of the body coordinate system are 6 x 6 for the space truss member. Here, the
body coordinate system denotes the coordinate system one of whose axes lies along
the member direction. The stiffness matrix in terms of the body coordinate system is

-1 0 07
0
0
0
0
0.

O O

AE

K= (7.3.1)

DO O0OOOC
OO OO OC

OO0
SO OO O

for the nodal degrees of freedom of
{&°}={uvy v1 w1 u; v, wy} (7.3.2)

where u is the displacement along the z-axis as shown in Fig. 7.3.1.
The transformation matrix between the two coordinate systems is given below:

6 &2 & 0 0 07

m 72 .3 0 0 0

_16 & G 0 0 0
0 0 0 m m n

L0 0 0 G ¢ (s

where {&; m (1} is the direction cosines of Z-axis with respect to zyz-coordinate
system. Similarly, {£{; 12 {2} and {£3 93 (3} are the direction cosines of - and
z-axis with respect to zyz-coordinate system, respectively. Conducting the matrix
manipulation yields

B3 &€&, &ba =€ &b —&iaT
AE ?gz &3 £Z"§3 —glgz —gﬁg —Ezga
ey AL | &1&3  £2fs 3 —&ifs &b &

KI=71 1 Zat 66 & a& &b (7.3.4)
—&1&,  —€3 —&bs  &iée &3 €263

| 6183 —&a¢s  —€ &€z &abs £
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Figure 7.3.1 Generalized Three-Dimensional Truss Element

The corresponding element degrees of freedom are
{dY={m © w 6 b @}

The consistent mass matrix for the space truss element is

T 267 216 2.8 & &Lib

218y 285 2363 &€y &

(M¢] = PAL 126083 26583 26 &i& 66
6 £ &b L& 267 2.8,

£ & 6&s 266 263

L 6163 €26s € 26163 266
while the lumped mass matrix is
F €2 L& &LH& 0 0 0

£12 & & 0 0 0
[Me]:_ 6153 &263 5§ 0 0 0

2 0 0 0 €2 &H& &i&s
0 0 0 & & &
0

0 0 &i€s €263 &2

7.4 MATLAB Application to Static Analysis

&1€3 -

&2€a
&3
261€3

2,€3
a T AT

232 |

Chapter 7

(7.3.5)

(7.3.6)

(1.3.7)

The static analysis of a truss structure is to solve the following matrix equation:

[K1{d} = {F}

(7.4.1)

where the system stiffness matrix [K] and the system force vector {F'} are obtained
by assembling each element matrix and vector. This section shows some examples of
MATLAB programs and m-files for static analyses of two-dimensional ttiss structures.
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(@) 4=0.5in E=30x10" psi

(@) A=0.4in* E=30x10°psi

-~
Q!

71000 v

Figure 7.4.1 Truss With Two Axial Members

& Example 7.4.1 Figure 7.4.1 shows a simple truss structure made of
two members. Each member has elastic modulus of £=30x 10 psi and cross-
sectional areas are A;=0.4 in? and A5=0.5 in? where subscript indicates the
element number as shown in the figure. A 1000 1b force is applied at the tip in
the downward direction. Find the displacements and stresses of members. The
MATLAB program and m-files are provided below.

L4y

% Example 7.4.1

% to solve static 2-D truss structure

%

% Problem description

% Find the deflection and stress of the truss made of two members
% as shown in Fig. 7.4.1.

%

% Variable descriptions

% k = element stifiness matrix

% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix

% disp = nodal displacement vector

% elforce = element force vector

% eldisp = element nodal displacement

0% stress — gtress vector for everv element

% stress = stress vector for every eleme
% elprop = element property matrix

% nodes = nodal connectivity matrix for each element

% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

L4
/0

205
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%

or
/0

% control input data

%
nel=2;

nnel=2;

ndof=2;
nnode=3;
sdof=nnode*ndof;

%

o7
/0

% nodal coordinates

o7,
Al
gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=10.0; gcoord(2,2)=0.0;
gcoord(3,1)=0.0; gcoord(3,2)=10.0;
%

Chapter 7

% number of elements

% number of nodes per element

% number of dofs per node

% total number of nodes in system
% total system dofs

% x, y-coordinate of node 1
% x, y-coordinate of node 2
% x, y-coordinate of node 3

o7,
/0

% material and geometric properties

v

elprop(1,1)=30000000;
elprop(1,2)=0.4;
elprop(2,2)=0.5;

%

%

% nodal connectivity

nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=2; nodes(2,2)=3;
o7,

74
/0

% applied constraints

bedof(1)=1;
beval(1)=0;
bedof(2)=2;
beval(2)=0;
bedof(3)=5;
bcval(3)=0;
bedof(4)=6;
beval(4)=0;
%

%

% initialization to zero

L4l

fi=zeros(sdof,1);
kk=zeros(sd of,sdof);

% elastic modulus of 1st element
% cross-section of 1st element
% elastic modulus of Znd element
% cross-section of 2nd element

% nodes associated with element 1
% nodes associated with element 2

% 1st dof (horizontal displ) is constrained

% whose described value is 0

% 2nd dof (vertical displ) is constrained

% whose described value is 0

% 5th dof (horizontal displ) is constrained

% whose described value is 0

% 6th dof (vertical displ) is constrained

% whose described value is 0

% system force vector
% system stiffness matrix
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index=zeros(nnel*ndof,1); % index vector
elforce=zeros(nnel*ndof,1); % element force vector
eldisp=zeros(nnel*ndof,1); % element nodal displacement vector
k=zeros(nnel*ndof nnel*ndof); % element stiffness matrix
stress=zeros(nel,1); % stress vector for every element
%

%

% applied nodal force

%

fi(4)=-1000; % 2nd node has 1000 b in downward direction
%

o7,

7V

% loop for elements

o7
for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coordinate of 2nd node
%

leng=sqrt((x2-x1)"2+(y2-y1)"2); % element length
%

if (x2-x1)==0;

beta=2*atan(1); % angle between local and global axes
else

beta=atan((y2-y1)/(x2-x1));

end

%

el=elprop(iel,1); % extract elastic modulus
area=elprop(iel,2); % extract cross-sectional area
%

index=feeldof(nd nnel,ndof); % extract system dofs for the element
%

k=fetruss2(el,leng,area,0,beta,1); % compute element matrix
%

kk=feasmbl1(kk,k,index); % assemble into system matrix
%

end

%

%

% apply constraints and solve the matrix

o7
4l
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply boundary conditions
%
disp==kk\ff; % solve matrix equation for nodal displacements

%
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o7
/0

% post computation for stress calculation

o

for tel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord{nd(2),1); y2=gcoord(nd(2),2); % coordinate of 2nd node
%

leng=sqrt((x2-x1)"2+(y2-y1)"2); % element length
%

if (x2-x1)==0;

beta=2*atan(1); % angle between local and global axes
else

beta=atan((y2-y1)/(x2-x1));

end

%o

el=elprop(iel,1); % extract elastic modulus
area=elprop(iel,2); % extract cross-sectional area
Y

index=feeld of(nd,nnel,ndof); % extract system dofs for the element
%o

k=fetruss2(el,leng,area,0,beta,1); % compute element matrix
%

for i=1:(nnel*ndof) % extract displacements associated with
eldisp(i)=disp(index(i)); % (iel)-th element
end

%

elforce=k*eldisp; % element force vector
stress(iel)=sqrt(elforce(1)2+elforce(2)2)/area; % stress
%

if ((x2-x1)*elforce(3)) < 0; % check if tension or compression
stress(iel )=-stress(iel);

end

%

end

%

o

U

% print fem solutions

LAY

num=1:1:sdof;

displ=[num’ disp] % print displacements
%o

numm=1:1:nel;

stresses={numm’ stress] % print stresses

%
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function {k,m]=fetruss2(el,leng,area,rho,beta,ipt)

o7
/0

% Purpose:

% Stiffness and mass matrices for the 2-D truss element
% nodal dof { u-1 v.1u2v2}

%

% Synopsis:

% [k,m]=fetruss2(el,leng,area,rho,beta,ipt)

%

% Variable Description:

% k - element stiffness matrix (size of 4x4)

% m - element mass matrix (size of 4x4)

% el - elastic modulus

% leng - element length

% area - area of truss cross-section

% rho - mass density (mass per unit volume)

% beta - angle between the local and global axes

% positive if local axis is in ccw direction from
% the global axis

% ipt = 1 - consistent mass matrix

% ipt = 2 - lumped mass matrix

%
%
% stiffness matrix
%
c=cos(beta); s=sin(beta);
k= (area*el/leng)*[ c*c c*s  -c*¢  -c*sp.
c*s 5*s -c*s -5¥s;...
-c*c -c*s c*c c*s;...
-c*s -s¥s c*s  s*g|;
%
% consistent mass matrix
%
if ipt==
%
=(rho*area*leng/6)*[2 0 1 0;...
0 2 0 1;...
1 0 2 O
0 1 0 2
%
% lumped mass matrix
%
else

%
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Figure 7.4.2 Truss Structure

3 ®
A q{ 400 N
2 @\ 6
4 m 1 4 m |
-
4=0.0025m7 1200 N
E=200Gpa
m=(rho*area*ieng/2)* 1 0 0 0;..
0 1 0;..
0o 0 1 o
0 0 1);

The results from the finite element analysis are given below. The minus sign in
the stress indicates compressive stress.

dlSpl =
dofs

stresses =
element
1.00000
2.00000

& Example 7.4.2

displacement

0.0000 % horizontal dispi. of node 1
0.0000 % vertical displ. of node 1
-0.0008 % horizontal displ. of node 2
-0.0027 % vertical displ. of node 2
0.0000 % horizontal displ. of node 3
0.0000 % vertical displ. of node 3
stress

-2500. % compressive stress for element 1
2828. % tensile stress for element 2

Find the stresses of the truss structure shown in Fig.

7.4.2. All members have elastic modulus of 200 GPa and cross-sectional area of

2.5 x 1073 m?.



Section 7.4 MATLAB Application to Static Analysis 211

44

% Example 7.4.2

% to solve static 2-D truss structure

%

% Problem description

% Find the deflection and stress of the truss made of two members
% as shown in Fig. 7.4.2.

%

% Variable descriptions

% k = element stiffness matrix

% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix

% disp = nodal displacement vector

% elforce = element force vector

% eldisp = element nodal displacement

% stress = stress vector for every element

% prop = material and geometric property matrix

% nodes = nodal rnnnnrhvnfv matrix for each element

7V AT AVG ad LR LATLLY siauiin QL CQlal SIS

% bedof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

/0
%
o7
/0

% control input data

Y

nel=9; % number of elements
nnel=2; % number of nodes per element
Rdefﬁz W num]’\nr of rlnfq per 1 node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%
o7
A\

% nodal coordinates

o,
/0
gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=4.0; gcoord(2,2)=0.0;
gcoord(3,1)=4.0; gcoord(3,2)=3.0;
gcoord{4,1)=8.0; gcoord(4,2)=0.0;
gcoord(5,1)=8.0; gcoord(5,2)=3.0;
gcoord(6,1)=12.; gcoord(6,2)=0.0;

% material and geometric properties

o7,
/0

prop(1)=200e9; % elastic modulus
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prop(2)=0.0025; % cross-sectional area
%

174
/0

% nodal connectivity

o7,
nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=1; nodes(2,2)=3;
nodes(3,1)=2; nodes(3,2)=3;
nodes(4,1)=2; nodes(4,2)=4;
nodes(5,1)=3; nodes(5,2)==4;
nodes(6,1)=3; nodes(6,2)=>5;
nodes(7,1)=4; nodes(7,2)=5;
nodes(8,1)=4; nodes(8,2)=6;
nodes(9,1)=5; nodes(9,2)=6;

%

%

% applied constraints

% :

bedof(1)=1; % 1st dof (horizontal displ) is constrained
beval(1)=0; % whose described value is 0
bedof(2)=2; % 2nd dof (vertical displ) is constrained
beval(2)=0; % whose described value is 0
bedof(3)=12; % 12th dof (vertical displ) is constrained
beval(3)=0; % whose described value is 0
%

o

sV

% initialization to zero

fi=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system stiffness matrix
index=zeros(nnel*ndof,1); % index vector
elforce=zeros(nnel*ndof,1); % element force vector
eldisp=zeros(nnel*ndof,1); % element nodal displacement vector
k=zeros(nnel*ndof,nnel*ndof); % element stiffness matrix
stress=zeros(nel,1); % stress vector for every element
%

%

% applied nodal force

%

fi(8)=-600; % 4th node has 600 N in downward direction
fi(9)=200; % 5th node has 200 N in r.h.s. direction
%

o,

4

% loop for elements
o

for iel=1:nel ~ % loop for the total number of elements

%
nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
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nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coordinate of 2nd node
%

leng=sqrt((x2-x1)"2+(y2-y1)"2); % element length
%

if (x2-x1)==0;

beta=2*atan(1); % angle between local and global axes
else

beta=atan((y2-y1)/(x2-x1)});

end

%

el=prop(1); % extract elastic modulus
area=prop(2); % extract cross-sectional area
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

k=fetruss2(el,leng,area,0,beta,l1); % compute element matrix
%

kk=feasmbl1(kk,k,index); % assemble into system matrix
%

end

%

%

% apply constraints and solve the matrix

o7

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply boundary conditions
%

disp=kk\ff; % solve matrix equation to find nodal displacements
o, .

%

% post computation for stress calculation

%

% ,

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coordinate of 2nd node
%

leng=sqrt((x2-x1)"2+(y2-y1)"2); % element length
%

if (x2-x1)==0;

beta=2*atan(1); % angle between local and global axes

else
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beta=atan((y2-y1)/(x2-x1));
end
%
el=prop(1); % extract elastic modulus
area=prop(2); % extract cross-sectional area
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%
k=fetruss2(el,leng,area,0,beta,1); % compute element matrix
%

for i=1:(nnel*ndof)
eldisp(i)=disp(index(i));
end

%

elforce=k*eldisp;
stress(iel)=sqrt(elforce(1)2+elforce(2)2)/area;
%o

if ((x2-x1)*elforce(3)) < 0;
stress(iel)=-stress(iel);

end

il

%

end

%
14
/6

% print fem solutions

num=1:1:sdof;
displ={num’ disp]
%

numm=]1:1:nel;

% extract displacements associated with
% (iel)-th element

% element force vector
% stress

% check if tension or compression

% print displacements

atrecgaa=—Ini1mm? atreacgl 0 rvimt atvroccna
SUIESSEs—|Numin’ Suress) /0 PriIiy Siresses
%
o7
/0

The nodal displacements and stresses of members are shown below.

displ =

dofs displacement
1.0000 0.0000e-0
2.0000 0.0000e-5
3.0000 0.3200e-5

4.0000 -1.5700e-5
5.0000 0.8650e-5
6.0000 -1.5700e-5
7.0000 0.6400e-5
8.0000 -2.2867e-5

9.0000 0.5450e-5
10.000 -2.0167e-5



Section 7.5 MATLAB Application to Eigenvalue Analysis 215

At 2 3 4 e )
/1 O [ ] ,

/s 0 0 0

Ao T o
4=10"m E=2006Pa
L=dm p=7860kg/m

Figure 7.5.1 Finite Element Discretization

11.060 1.1200e-5
12.000 0.0000e-5

stresses =
element stress
1.0000 160000

2.0000 -100000
3.0000 000000
4.0000 160000
5.0001 100000
6.0001 -160000
7.0001 180000

8.0001 240000
9.0001 -300000

FivUU A VUV

7.5 MATLAB Application to Eigenvalue Analysis

Once the system mass and stiffnes matrices are computed for the truss structure,
the matrix equation becomes

[M]{ii} + [K{u} =0 (75.1)

In order to compute natural frequencies of the structure, we assume a harmonic motion
for the displacement. The resultant equation is the eigenvalue problem given as

(K] - w?[M]){a} = 0 (15.2)
where w is the circular natural frequency and {@} is the vector for mode shape.
& Example 7.5.1 Determine the natural frequency of a free bar using the

finite element method. The bar is shown in Fig. 7.5.1 and it has elastic modulus
of 200 GPa, cross-sectional area of 0.001 m?, and density of 7860 Kg/ma.
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%
% Example 7.5.1

% to solve natural frequency of 1-D bar structure

%

% Problem description

% Find the natural frequency of a bar structure

% as shown in Fig. 7.5.1.

%

% Variable descriptions

% k = element stiffness matrix

% m = element mass matrix

% kk = system stiffness matrix

% mm = system mass vector

% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix

% prop = element property matrix

% nodes = nodal connectivity matrix for each element

% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

A
%o

Vv

% control input data

[+r4
/0

nel=4; % number of elements
nnel=2; % number of nodes per element
ndof=1; % number of dofs per node
nnode=5; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
% [
o
70

% nodal coordinates

gcoord(1,1)=0.0;
gcoord(2,1)=1.0;
gcoord(3,1)=2.0;
gcoord(4,1)=3.0;
gcoord(5,1)=4.0;

%

%

O cnntorinl nrmd canrvmatmia nranantiac

/0 iauwcl: allu /RCULNMCULIL pPrupTlucs

o7

U

prop(1)=200e9; % elastic modulus
prop(2)=0.001; % cross-sectional area
prop(3)=7860; % density
%

o7,
/0
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% nodal connectivity

oz,
/0

nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4;
nodes(4,1)=4; nodes(4,2)=5;

%

174

£

% initialization to zero

%
kk:zeros(sdof,sdof) ;

mm=zeros(sdof,sdof);
index=zeros(nnel*ndof,1);

%
%

% loop for elements

%
for iel=1:nel

%
nd(1)=nodes(iel,1);
nd(2)=nodes(iel,2);
%

x1=gcoord (nd(1),1);
x2=gcoord(nd(2),1);
%

leng=(x2-x1);

%

el=prop(1);
area=prop(2);
rho=prop(3);

%

index=feeldof(nd,nnel,ndof);

%
ipt=1;

[k,m]=fetruss1(el,leng,area,rho,ipt);

%

kk=feasmbl1(kk,k,index);
mm=feasmbl1(mm,m,index);

%

end

%

o7

% system stiffness matrix
% system mass matrix
% index vector

% loop for the total number of elements

% 1st connected node for the (iel)-th element
% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% extract elastic modulus
/0 extract elastic modulng

% extract cross-sectional area
% extract mass density

% extract system dofs for the element

% flag for consistent mass matrix
% element matrix

% assemble system stiffness matrix
% assemble system mass matrix

/0

% solve for eigenvalues

o7,

fsol=eig(kk,mm);
fsol=sqrt(fsol);
%

(174
/0

217
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% print fem solutions
num=1:1:sdof;
freqcy={num’ fsol] % print natural frequency
%
%

function [k,m]=fetrussl(el,leng,area,rho,ipt)
% Purpose:

% Stiffness and mass ma
% nodal dof { u_1u-2 }
%

% Synopsis:

% [k,m]=fetruss1(el,leng,area,rho,ipt)

%

% Variable Description:

% k - element stiffiness matrix (size of 4x4)
% m - element mass matrix (size of 4x4)

% el - elastic modulus

% leng - element length

% area - area of truss cross-section

% rho - mass density (mass per unit volume)
% ipt = 1 - consistent mass matrix

% ipt = 2 - lnmped mass matrix

%

%

% stiffness matrix

% consistent mass matrix

%

if iptm:

%

m=(rho*area*leng/6)*[ 2 1;...
1 2);

%

% lumped mass matrix

%

else

%

m=(rho*area*leng/2)*[ 1 0;...
0 1

%

end
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%o

o7,

ra's

The natural frequencies are computed from the finite element analysis and
compared to the exact solution.

s

freqcy =

mode nat. freq.

1.00 0.0000 % exact 0.0000
2.00 4060.0 % exact 3962.0
3.00 8737.0 % exact 7924.0
4.00 14198. % exact 11895.
5.00 17474. % exact 15847,

& Example 7.5.2 We want to find the natural frequency of the truss
structure shown in Fig. 7.4.2. Each member has density of 7860 Kg/m3.

%
% Example 7.5.2

% to solve natural frequency of 2-D truss structure

%

% Problem description

% Find the natural frequency of a truss structure

% as shown in Fig. 7.4.2.

%

% Variable descriptions

% k = element stiffness matrix

% m = element mass matrix

% kk = system stiffness matrix

% mm = system mass vector

% index = a vector containing system dofs associated with each element

% gcoord = global coordinate matrix

% prop = element property matrix

% nodes = nodal connectivity matrix for each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in ’bedof’

NPCIS

% control input data

nel=9; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node

219
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nnode=6;
sdof=nnode*ndof;

%

174
/0

% nodal coordinates

[} 4
/0

Chapter 7

% total number of nodes in system
% total system dofs

gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=4.0; gcoord(2,2)=0.0;
gcoord(3,1)=4.0; gcoord(3,2)=3.0;
gcoord(4,1)=8.0; gcoord(4,2)=0.0;
gcoord(5,1)=8.0; gcoord(5,2)=3.0;
gcoord(6,1)=12.; gcoord(6,2)=0.0;

o

U

% material and geometric properties

prop(1)=200e9;
prop(2)=0.0025;
prop(3)=7860;

% elastic modulus
% cross-sectional area
% density

%

L7 4
l4Y)

% nodal connectivity

nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=1; nodes(2,2)=3;
nodes(3,1)=2; nodes(3,2)=3;
nodes(4,1)=2; nodes(4,2)=4;
nodes(5,1)=3; nodes(5,2)=4;
nodes(6,1)=3; nodes(6,2)=5;
nodes(7,1)=4; nodes(7,2)=5;
nodes(8,1)=4; nodes(8,2)=6;
nodes(9,1)=>5; nodes(9,2)=6;
%

oy
/0

% applied constraints

o7

bedof(1)=1; % 1st dof (horizontal displ) is constrained
beval(1)=0; % whose described value is 0
bedof(2)=2; % 2nd dof (vertical displ) is constrained
beval(2)=0; % whose described value is 0

bedof(3)=12; % 12th dof (vertical displ) is constrained

| N, P S W 0 b non dacrrihad valuia fa 0
UdeJ‘O}—U, AU WIIUDLT ULDLILIVCU yYyalus 1d U
%
o7,
U

% initialization to zero

%o
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);

% system stiffness matrix
% system mass matrix
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index=zeros(nnel*ndof,1);

%

£V

% loop for elements

for iel=1:nel

%
nd(1)=nodes(iel,1);
nd(2)=nodes(iel,2);
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2);
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);

%
leng=sqrt((x2-x1)"2+(y2-y1)"2);
%

if (x2-x1)==0;
beta=2*atan(1);

else
beta=atan((y2-y1)/(x2-x1));
end

%

el=prop(1);

area=prop(2);

rho=prop(3);

%
index=feeldof(nd,nnel,ndof);
%

ipt=1;

[k,m]=fetruss2(el,leng,area,rho,beta,ipt);

%

kk=feasmbl1(kk,k,index);
mm=~feasmbl1(mm,m,index);
%

end

%o

o7
/0

% apply constraints and solve
Li7A

[kk,mm]=feaplycs(kk,mm,bcdof);
%

fsol=eig(kk,mm);

feol=sart(fsol):

CL==SN e U AL gy

%
o

OFf o _toa N at
70 PIine i€In soluvlons

num=1:1:sdof;
freqcy=[num’ fsol]

MATLAB Application to Eigenvalue Analysis

% index vector

% loop for the total number of elements

% 1st connected node for the (iel)-th element
% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% angle between local and global axes

% extract elastic modulus
% extract cross-sectional area
% extract mass density

% extract system dofs for the element

% flag for consistent mass matrix
% element matrix

% assemble system stiffness matrix
% assemble system mass matrix

% apply the boundary conditions

% print natural frequency

221
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function [kk,mm]=feaplycs(kk,mm,bcdof)

% Purpose:

% Apply constraints to eigenvalue matrix equation

% [kk]x=lambda[mm]x

%

% Synopsis:

% [kk,mm]=feaplycs(kk,mm,bcdof)

%

% Variable Description:

% kk - system stiffness matrix before applying constraints

% mm - system mass matrix before applying constraints

% bcdof - a vector containing constrained d.o.f

%

% Notes:

% This program does not reduce the matrix size depending on
% the number of constraints. Instead the system matrix size
% is preserved regardless of constraints. As a result, the

% matrix obtained after applying the constraints contain fictitious

e atoenvgaleas oo T < R PR S| 2w

o7 . AL TP mwr me dha e | T b
/0 ZC10 ClECIIVAIUCD ab Ildily ad bLllc LLUpcl Ol COIsbiallivy 11
% addition to actual eigenvalues. Users neglect the zero

% fictitious eigenvalues from the results.

[}, 4
/0

%
n=length(bcdof);
sdof=size(kk);
%

for i=1:n
c=bcdof(i);
for j=1:sdof
kk(c,j)=0;
kk(j,c)=0;
mm(c,j)=0;
mm(j,c)=0;
end

%
mm(c,c)=1;
end

%o

o7,
/0

The first five natural frequencies of the truss structure are provided below.
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1st frequency = 240.9 rad/s
2nd frequency = 467.9 rad/s
3rd frequency = 739.8 rad/s
4th frequency = 1243. rad/s
5th frequency = 1633. rad/s

7.6 MATLAB Application to Transient Analysis

The dynamic equation of motion for the truss structure is

223

(7 1Y%
\l.U-L}

with prescribed initial conditions which are usually initial displacements and initial
velocities. We apply the central difference technique for time integration of Eq.
(7.6.1). The details of the techniques are described in Sec. 8.11 and are omitted
here. In particular, the summed form of central difference technique is used for the

following examples.

& Example 7.6.1 A baris fixed at the left end and it is subjected to a step
function of magnitude of 200 N (see Fig. 7.5.1). The bar has elastic modulus
of 200 GPa, cross-sectional area of 0.001 m?, and density of 7860 Kg/m3. It is

initially at rest. The MATLAB program is shown below.

4

/U

% Example 7.6.1

% to solve transient response of 1-D bar structure
%

% Problem description

% Find the dynamic behavior of a bar structure,
% as shown in Fig. 7.5.1, subjected to a step

% force function at the right end.

%

% Variable descriptions

% k = element stiffness matrix

% m = element mass matrix

% kk = system stiffness matrix

O v — cvetem mage vactor
FU LLLAIL = D)y P WdLL AGS0 YW i

% ff = system force vector

% index = a vector containing system dofs associated with each element

% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element

% bcdof = a vector containing dofs associated with boundary conditions
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% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

%

%

%

% control input data

%

nel=10; % number of elements
nnel=2; % number of nodes per element
ndof=1; % number of dofs per node
nnode=11; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
dt=0.0001; % time step size
11=0; % initial time
tf=0.05; % final time
nt=fix((tf-t1)/dt); % number of time steps
%

Yo

% nodal coordinates

%o
gcoord(1,1)=0.0;
gcoord(2,1)=1.0;
gcoord(3,1)=2.0;
gcoord(4,1)=3.0;
gcoord(5,1)=4.0;
gcoord(6,1)=5.0;
gcoord(7,1)=6.0;
gcoord(8,1)=7.0;
gcoord(9,1)=8.0;
gcoord(10,1)=9.0;
gcoord(11,1)=10.0;
%

%
% material and geometric properties
%
prop(1)==200e9; % elastic modulus
prop(2)=0.001; % cross-sectional area
prop(3)=7860; % density
%

(174
/0

% nodal connectivity
(174

iy

nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=2; nodes(2,2)=3;
nodes(3,1)=3; nodes(3,2)=4;
nodes(4,1)=4; nodes(4,2)=5;
nodes(5,1)=5; nodes(5,2)=6;
nodes(6,1)=6; nodes(6,2)=7;
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nodes(7,1)=7; nodes(7,2)=8;
nodes(8,1)=8; nodes(8,2)=9;
nodes(9,1)=9; nodes(9,2)=10;
nodes(10,1)=10; nodes(10,2)=11;

%

174
/o

% applied constraints
o

nbe=1;
bedof(1)=1;
%

% number of constraints
% 1st dof is constrained

f0

% initialization to zero
o

kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
fi=zeros(sdof,1);

index=zeros(nnel*ndof,1);

acc=zeros(sdof,nt);
vel=zeros(sdof,nt);
disp=zeros(sdof,nt);
%

o7

U

% loop for elements

for 1el=1:nel

%o
nd(1)=nodes(iel,1);
nd(2)=nodes(iel,2);
%
x1=gcoord(nd(1),1);
x2=gcoord(nd(2),1);
%

leng=(x2-x1);

%

el=prop(1);
area=prop(2);
rho=prop(3);

%

index=feeldof(nd,nnel,ndof);

%

+.—1
=1

%

kk=feasmbl1(kk,k,index);
mm=feasmbl1(mm,m,index);

%

end

ip
k, ]—fetrussl(el leng,area,rho,ipt);

% system stiffness matrix
% system mass matrix

% system force vector

% index vector

% acceleration matrix

% velocity matrix

% displacement matrix

% loop for the total number of elements

the

% 1st connected node for the (iel)-th element
ode for the (iel)-

% 2nd connected n

"
(4]

% coordinate of 1st node
% coordinate of 2nd node

% element length

% extract elastic modulus
% extract cross-sectional area
% extract mass density

% extract system dofs for the element

Ao far ~m
Liag 10T LO1

R

% assemble system stiffness matrix
% assemble system mass matrix

225
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%
%
% initial condition

174
/0

vel(:,1)=zeros(sdof,1); % initial zero velocity
disp(:,1)=zeros(sdof,1); % initial zero displacement
%

f(11)=200; % step force at node 11
%

%

% central difference scheme for time integration

74
mm=inv(mm); % invert the mass matrix
%

for it=1:nt

%

acc(:,it)=mm*(ff-kk*disp(:,it)); % compute acceleration
%

for i=1:nbc

ibc=bcdoi(i); % apply constraints
acc(ibc,it)=0;

end

%

vel(:,it+1)=vel(:,it)+acc(:,it)*dt; % compute velocity
disp(:,it+1)=disp(:,it)+vel(:,it+1)*dt; % compute displacement
%

end

Y%

acc(:,nt+1)=mm*(fi-kk*disp(:,nt+1)); % acceleration at last step
%

time=0:dt:nt*dt;

plot(time,disp(11,:))

xlabel(’Time(seconds)’)

ylabel(*Tip displ. (m)’)

%

oz,
/0

The tip displacement at the right end (i.e. node 11) is plotted in Fig. 7.6.1. as a
function of time. As expected, the displacement has oscillation about the static
displacement. §

& Example 7.6.2 Find the transient response of the truss structure as
shown in Fig. 7.4.2. The structure has the same geometric and material data as
those given Example 7.5.2. However, the load is applied at node 5 in the upward
direction as a step function. The load magnitude is 200 N. The response of the
same node where the load is applied is plotted in Fig. 7.6.2.
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%

% Example 7.6.2

% to solve transient response of 2-D truss structure
%

% Problem description

% Find the dynamic behavior of a truss structure,
% as shown in Fig. 7.4.2, subjected to a step

% force function at node 5 in the upward direction.
%o

% Variable descriptions

% k = element stiffness matrix

% m = element mass matrix

% kk = system stiffness matrix

% mm = system mass vector

% ff = system force vector
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% index = a vector containing system dofs associated with each element

% gcoord = global coordinate matrix

% prop = element property matrix

% nodes = nodal connectivity matrix for each element
% bedof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bcdof

%

o,
Al
%
% control input data

o7
/0

nel=9;

nnel=2;

ndof=2;
nnode=6;
sdof—nnode*ndof;
dt=0.0005;

$i=0; tf=0.15;
nt=fix((tf-t1)/dt);
%

%
% nodal coordinates
%
gcoord(1,1)=0.0; gcoord{1,2)=0.0;
gcoord(2,1)=4.0; gcoord(2,2)=0.0;
gcoord(3,1)=4.0; gcoord(3,2)=3.0;
gcoord(4,1)=38.0; gcoord(4,2)=0.0;
gcoord(5,1)=8.0; gcoord(5,2)=3.0;
gcoord(6,1)=12.; gcoord(6,2)=0.0;
%

o7
/0

% material and geometric properties

%
prop(1)=200e9;
prop(2)=0.0025;
prop(3)=T860;
%

%
% nodal connectivity

(174
/0

nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=1; nodes(2,2)=3;
nodes(3,1)=2; nodes(3,2)=3;
nodes(4,1)=2; nodes(4,2)=4;
nodes(5,1)=3; nodes(5,2)=4;
nodes(6,1)=3; nodes(6,2)=>5;
nodes(7,1)=4; nodes(7,2)=5;
nodes(8,1)=4; nodes(8,2)=6;

% number of elements

% number of nodes per element

% number of dofs per node

% total number of nodes in system
% total system dofs

% time step size

% 1initial and final times

% number of time steps

% elastic modulus
% cross-sectional area
% density
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nodes(9,1)=5; nodes(9,2)=6;

%
%
% applied constraints
%

nbc=3;
bedof(1)=1;
beval(1)=0;
bedof(2)=2;
bcval(2)=0;
bcdof(3)=12;
bcval(3)=0;
%

o

U

% initialization to zero

%
kk=zeros(sdof,sdof);
mm=zeros(sdof,sdof);
ff=zeros(sdof,1);
index=zeros(nnel*ndof,1);
acc=zeros(sdof,nt);
vel=zeros(sdof,nt);
disp=zeros(sdof,nt);

%

%
% loop for elements

%o
for iel=1:nel

%
nd(1)=nodes(iel,1);
nd(2)=nodes(iel,2);
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2);
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2);

%

leng=sqrt((x2-x1)"2+(y2-y1)"2);

%

if (x2-x1)==20;
beta=2*atan(1);
else

% number of constraints

% 1st dof (horizontal displ) is constrained
% whose described value is 0

% 2nd dof (vertical displ) is constrained

% whose described value is 0

% 12th dof (horizontal displ) is constrained
% whose described value is 0

% system stiffness matrix
% system mass matrix

% system force vector

% dofs index vector

% acceleration matrix

% velocity matrix

% displacement matrix

% loo

nJ

% 1st connected node for the (iel)-th element

% 2nd connected node for the (iel)-th element

% coordinate of 1st node
% coordinate of 2nd node

% element length

% angle between local and global axes

beta=atan((y2-y1)/(x2-x1));

o A
Tliu

%

el=prop(1);
area=prop(2);
rho=prop(3);
%

index=feeldof{nd,nnel ndof);

% extract elastic modulus
% extract cross-sectional area
% extract mass density

% extract system dofs for the element

229
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%

ipt=1; % flag for consistent mass matrix
[k,m]=fetruss2(el,leng,area,rho,beta,ipt); % element matrix
%

kk=feasmbl1(kk,k,index); % assemble system stiffness matrix
mm=feasmbll(mm,m,index); % assemble system mass matrix
%

end

%

%o
% initial condition

fu

vel(:,1)=zeros(sdof,1); % initial zero velocity
disp(:,1)=zeros(sdof,1); % initial zero displacement
%

f(10)=200; % step force at 10th dof
%o

%o

% central difference scheme for time integration

174

mm=inv(mm); % invert the mass matrix
%

for it=1:nt

%

acc(:,it)=mm*(f-kk*disp(:,it)); % compute acceleration
%

for i=1:nbc

ibc=bcdot(1); % apply constraints
acc(ibc,it)=0;

end

%

vel(:,it+1)=vel(:,it)+acc(:,it)*dt; % compute velocity
disp(:,it+1)=disp(:,it)+vel(:,it-+1)*dt; % compute displacement
%

end

%

acc(:,nt+1)=mm*(ff-kk*disp(:,nt+1)); % acceleration at last step
%

time=0:dt:nt*dt;

plot(time,disp(10,:)) % displacement plot

xlabel("Time(seconds)’)
ylabel("Tip displ. (m)’)
%o

o7
/0
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Problems

(a) Develop the element stiffness matrix for the one-dimensional axial rod using
quadratic shape functions. (b) Apply the stiffness matrix to solve an axial
member whose one end is fixed and the other end is subjected to a force P.
The member has elastic modulus E and cross-sectional area A, respectively.
Use one quadratic element to model the axial member. (cj Compare the nodal
displacement at the center of the member to the end displacement.

A telescope shape of axial member (see Fig. P7.2) is modeled using a single
linear element. Derive the element stiffness matrix.

A taper shape of axial member (Fig. P7.3) is modeled as a single linear element.
Derive the element stiffness matrix.

Develop the element mass matrix for the one-dimensional axial member using
quadratic shape functions.

Develop the element mass matrix for Prob. 7.2.
Develop the element mass matrix for Prob. 7.3.

For the truss structure shown in Fig. P7.7, derive the finite element matrix
equation using two elements. Find the displacements and stresses in the member.

One-dimensional wave equation for an axial member is given as

0%u _0%u
67 2ga7 ="

The second order equation can be rewritten as

du ov 0%
-37—’0—0 and E—Qa—z-z‘-—wo

using two first order equations in time. These two equations are solved using
one linear finite element and the backward difference method for time derivative.
The member is initially displaced such that u(z,0)=0.001z. The left end of the
member is held fixed all the time while the right end 1s released at time 0 from
the initial displacement. Find the displacement u and velocity v at the right
end at time ¢=1 sec. using a time step size Aft=1.

Redo Prob. 7.8 using the central finite difference method for time derivative.
Find the critical time step size for stability.

Solve the truss structure shown in Fig. P7.10 using the computer programs.
Compare the finite element solution to the analytical solution obtained from
statics.

Obtain the natural frequencies of the structures in Fig. P7.10 using the computer
programs.



232 Truss Structures

E, 2A £ A
L/2 Ls2

Figure P7.2 Problem 7.2

E, A=oxt+b

" L. o]

| i

Figure P7.3 Problem 7.3

200 N

2m

| " 2m 2m | ’
E=200 GPa
A=0.004 m?2

Figure P7.7 Problem 7.7

&oo ¥

250 N

1.2m

3 T

L fm im . im

r ~T T T
E=70GPA  A=0.002m?

Figure P7.10 Problem 7.10

Chapter 7

7.12 If the structure in Fig. P7.10 is initially at rest and the forces are applied



suddenly at time 0, determine the dynamic response of the structure using the
computer programs.






BEAM AND FRAME STRUCTURES

8.1 Euler-Bernoulli Beam

The Euler-Bernoulli equation for beam bending is

%y 52 8%y
o + 503 (EI 8::2) = g(2,1) (8.1.1)

where v(z, t) is the transverse displacement of the beam, p is mass density per volume,
EI is the beam rigidity, ¢(z,1) is the externally applied pressure loading, and ¢ and =
indicate time and the spatial axis along the beam axis. We apply one of the methods
of weighted residual, Galerkin’s method, to the beam equation, Eq. (8.1.1) to develop
the finite element formulation and the corresponding matrix equations.

The averaged weighted residual of Eq. (8.1.1) is

Lr g2y 02 ( 6%) )
I= EI —q)wdz =0 8.1.2
/0 (pat2 5oz \Elg2 ) =1 |wde (8.1.2)

where L is the length of the beam and w is a test function. The weak formulation
of Eq. (8.1.2) is obtained from integrations by parts twice for the second term of the
equation. In addition, discretization of the beam into a number of finite elements
gives

n

v 8w P,
Ir_;[/m _wdm+/ Elaza 3 /eqwdm] [Vw ME’E]O =0 (8.1.3)

mTeAR a3\ RN, YOI TIFLA2. 10 _ 2\ 1y Y
wnere V = L'/.l\(} 'U/U;L' )15 uue sllcar 10['L€ 1V1 — I.'/.l\U 'U/U;L' )15 e Dcuu lg INOMICHL,

Q¢ is an element domain and n is the number of elements for the beam.

We consider shape functions for spatial interpolation of the transverse deflection,
v, in terms of nodal variables. Interpolation in terms of the time domain will be
discussed later. To this end, we consider an element which has two nodes, one at each

235
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Figure 8.1.1 Two-Noded Beam Element

end, as shown in Fig. 8.1.1. The deformation of a beam must have continuous slope
as well as continuous deflection at any two neighboring beam elements. To satisfy
this continuity requirement each node has both deflection, v; and slope, 6;, as nodal
variables. In this case, any two neighboring beam elements have common deflection
and slope at the shared nodal point. This satisfies the continuity of both deflection
and slop. The Euler-Bernoulli beam equation is based on the assumption that the
plane normal to the neutral axis before deformation remains normal to the neutral
axis after deformation (see Fig. 8.1.2). This assumption denotes # = dv/dz (i.e.
slope is the first derivative of deflection in terms of z). Because there are four nodal
variables for the beam element, we assume a cubic polynomial function for v(z)
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Evaluation of deflection and slope at both nodes yields
v(0)=co=1n
8(0) =¢; =6,
v =co+ el +elt+ealP =, (8.1.6)
9(1) = ¢y + 2¢al + 3cal® =0,

Solving Eq. (8.1.6) for ¢; in terms of the nodal variables v; and 8; and
substituting the results into Eq. (8.1.4) give

v(z) = Hi(z)vy + Ha(z)0y + Ha(x)vg + Ha(z)82 (8.1.7)
where
Hi(z)=1- %:2—2 + 2—:;
Hy(z) =2 — 2—73 —::;
Hj(z) = %%3 - ?;—3 (8.1.8)
Hy(z) = _2 + z
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Figure 8.1.3 Hermitian Beam Element

The functions Hi(z) are called Hermitian shape functions and shown in Fig. 8.1.3.
The Hermitian shape functions are of C!-type which means they make both v and
dv/Bx continuous between two neighboring elements. Further discussion on C"-type
continuity, where n is an integer equal to or larger than zero, is provided in Chapter
12.

Application of Hermitian shape functions and Galerkin’s method to the second
term of Eq. (8.1.3) results in the stiffness matrix of the beam element. That is,

i
(K] = / (B EI[B]dz (8.1.9)
0
where
(B] = {H" HJ H] H! (8.1.10)

and the corresponding element nodal degrees of freedom is {d®} = {v1 81 vs 85}7. In
Eq. (8.1.10), double prime denotes the second derivative of the function and ! in Eq.
(8.1.9) is the length of a beam element. Assuming the beam rigidity EI is constant
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within the element, the element stiffness matrix is

12 6 -12 6
EI| 6l 42 —6 21
B|-12 -6 12 -6

6l 22 —6I 4

K] = (8.1.11)

In case the beam rigidity is not constant within a beam element, the integral in Eq.
(8.1.9) must be evaluated including ET as a function of z. If the beam element is
relatively short, for example in a refined mesh, the average value of ET for the element
may be used with Eq. (8.1.11) for a simple and reasonable approximation.

The third term in Eq. (8.1.3) results in the element force vector. For a generally
distributed pressure loading, we need to compute

H,
4
{Fe} = /0 9=)\ 7, (& (8.1.12)

in which {F°} is the element force vector. If we have a uniform pressure load gg
within the element, the element force vector becomes

1 Hy 6l

ey H2 _ _g__U_ 12
{F }..qo/(; Ha de = AR (8.1.13)

Hy -2

Another common load type is a concentrated force within a beam element as shown
in Fig. 8.1.4. In this case, the element force vector is

1 51 glgwog
{F¢} = /; Pob(z — z0) gz dr = P, gzgzg; (8.1.14)
4 4(zo

where Py is the concentrated force applied at ¢ = zo and §(z — z¢) is the Dirac delta
function. Element force vectors for some other cases are summarized in Fig. 8.1.4.

The last term in Eq. (8.1.3) is the boundary conditions of shear force and
bending moment at the two boundary points, £ = 0 and ¢ = L, of the beam. If
these boundary conditions are known, the known shear force and/or bending moment
are included in the system force vector at the two boundary nodes. Otherwise,
they remain as unknowns. However, deflection and/or slope are known as geometric
boundary conditions for this case. For static bending analyses of beams, the first term
in Eq. (8.1.3) which is the inertia force term is neglected. As a result, assembling
the element stiffness matrices and vectors results in the system matrix equation given
below:

[K]{d} ={F} (8.1.15)
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Figure 8.1.4 Element Force Vectors for Various Pressure Loads

Given boundary conditions are applied to Eq. (8.1.15) and the matrix equations are
solved for the unknown nodal variables, deflections and slopes. An example is given
in Example 8.1.1.

& Example 8.1.1 Solve a cantilever beam subjected to a tip load as shown in
Fig. 8.1.5. Let us use one Hermitian beam element to solve the tip deflection. In
this case, the element stiffness matrix is the same as the system stiffness matrix.
The resultant element matrix equations

12 6L ~12 6L vy Vi

Erler 4> -6L 2L*| )6, | _ ) M

I3 |-12 —6L 12 —6L| v, ) -P (8.1.16)
6L 2L -6L 4r?] \g, 0

In this equation, V} and M are unknown reactions at the clamped support.
The minus sign indicates the tip force is applied to the opposite direction to the
deflection. The boundary conditions prescribed in terms of nodal variables are
vy = 0 and §; = 0. Applying these conditions to Eq. (8.1.16) as described in
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Figure 8.1.5 Cantilever Beam
the previous chapter and solving the resultant equation yield
3
3E]

which is the exact solution for the cantilever beam. The reason the finite element
analysis with one element results in the exact solution is the following. The
Hermaitian shape functions are based on a general cubic polynomial as seen in
Eq. (8.1.4). The exact solution for the cantilever beam with a tip force is also
a cubic function. As a result, the Hermitian shape functions can result in the
exact solution. §

For dynamic analyses of beams, the inertia force needs to be included. In this
case, the transverse deflection is a function of £ and ¢. The deflection is interpolated
within a beam element as given below:

v(z,t) = Hi(z)v)(t) + Ha(x)01(t) + Ha(z)va(t) + Ha(z)02(t) (8.1.18)

Equation (8.1.18) states that the shape functions are used to interpolate the deflection
in terms of the spatial domain and the nodal variables are functions of time. The first
term in Eq. (8.1.3) becomes

/ | p[H]T[H]dz{d*} (8.1.19)
0

where
[H] = (H1 H; Hs Hi] (8.1.20)

and superimposed dot denotes temporal derivative. From Eq. (8.1.19), the element
mass matrix becomes

i
[M?] = /D pA[HT[H]dz

156 221 54 —13l
_pAl| 21 42 13l -3
=420 | 54 131 156 —221
—131 —312 9221 4P

(8.1.21)
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The mass matrix in Eq. (8.1.21) is called the consistent mass matrix. Archer [11,12]
18 credited for the first development of the consistent mass matrix. Adding the
components in the mass matrix, which are associated with only the displacement
nodal variables (i.e. v, and va), yields pAl, total mass of the beam element. The
beam element conserves the mass in terms of its translational degrees of freedom.

In the dynamic analysis, the system mass matrix is usually required to be in-
verted. From this aspect, a diagonalized mass matrix has a computational advantage.
One such matrix is

pAl

10
o 0 0
M= 10 ¢

0 0

0 0
(1) g (8.1.22)
0 0

This matrix is called the lumped mass matrix, which was developed earlier than the

nmosadondt vanan v adel Thia matriv hoa half ,“(‘ tha alamant maca ot acsh dnanaloti~nel

CONSISICN INass MiawriX. 11iiS IidoTiX 1ias 11l UL LT CICLIICILL 1110 b Catlll bl. alidiablUlilal
nodal degree of freedom. Both mass matrices conserve the mass associated with their
translational degrees of freedom.

Another way to develop a diagonalized mass matrix from the consistent mass
matrix is summarized below([13].

1. Add the diagonal components of the consistent mass matrix associated with the
translational degrees of freedom, i.e. the first and third diagonal components
for the present beam element. The sum is called a.

2. Divide the diagonal components by a and also multiply them by the element
total mass.

3. Set all off-diagonal components to zero.

Applying this procedure to Eq. (8.1.21) results in

390 0 0

pal |0 B 0 0

10 o0 39 o0 (8.1.23)
0 0 0

This matrix is called the diagonal mass matrix and also conserves the mass for the
translational degrees of freedom. Another technique to develop a diagonalized mass
matrix is discussed in Refs [14,15] using numerical quadrature points located only at
the nodes.

The element stiffness matrix does not change for the dynamic analysis because
the shape functions are the same for both static and dynamic analyses. However, the
force term may vary as function of time. The force vector is for the dynamic analysis

|
8
——
[e.2)
—
(V]
Y-y
Sap?

Thus, Eq. (8.1.24) is in general different from Eq. (8.1.12). As a result, the matrix
equation for a dynamic beam analysis is after assembly of element matrices and vectors

[M]{d} + [K] {d} = {F(2)} (8.1.25)
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For free vibration of a beam, the eigenvalue problem is [16].
(K] -w?M){d} =0 (8.1.26)

where w is the angular natural frequency in radians per second and {d} is the mode
shape. Example problems for static, dynamic, and eigenvalue analyses of beams are
provided at later sections using the MATLAB program.

8.2 Timoshenko Beam

The Timoshenko beam theory includes the effect of transverse shear deformation.
As a result, a plane normal to the beam axis before deformation does not remain
normal to the beam axis any longer after deformation. Figure 8.2.1 shows the
deformation in contrast to that in Fig. 8.1.2. While Galerkin’s method was used
to derive the finite element matrix equation for the Euler-Bernoulli beam equation,
the energy method is used for the present formulation for the Timoshenko beam.

Let v and v be the axial and transverse displacements of a beam, respectively.
Because of the transverse shear deformation, the slope of the beam 0 is different from
dv/dz. Instead, the slope equals (dv/dz) — v where v is the transverse shear strain.
As a result, the displacement field in the Timoshenko beam can be written as

u(z,y) = —yd(z) (8.2.1)

v(z)=v (8.2.2)

where the z-axis is located along the neutral axis of the beam and the beam is not
subjected to an axial load such that the neutral axis does not have the axial strain. A
beam subjected to both axial and transverse loads is considered in a next section for
frame structures. From Eq. (8.2.1) and Eq. (8.2.2), the axial and shear strains are

df
€= —-ya-; (8.2.3)
dv
v=-0+ Iz (8.2.4)

As explained in the previous chapter on the energy method, the element stiffness
matrix can be obtained from the strain energy expression for an element. The strain
energy for an element of length { is

b { hf2 bu l hf2
U= —] ] e’ Ee dy dz + —] / vTGy dy de (8.2.5)
2Jo Jons2 2 Jo Jony2

in which the first term is the bending strain energy and the second term is the shear
strain energy. Moreover, b and h are the width and height of the beams respectively,

and p is the correction factor for shear energy whose value is normally g.
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Figure 8.2.1 Timoshenko Beam

First, substituting Eq. (8.2.3) and Eq. (8.24) into Eq. (8.2.5) and taking
integration with respect to y gives

1 [0\ __(do p [ dv\T dv

where I and A are the moment of inertia and area of the beam cross-section.

In order to derive the element stiffness matrix for the Timoshenko beam, the
variables v and @ need to be interpolated within each element. Asseen in Eq. (8.2.6), v
and ¢ are independent variables. That is, we can interpolate them independently using
proper shape functions. This results in satisfaction of inter-element compatibility, i.e.
continuity of both the transverse displacement v and slope # between two neighboring
elements. As a result, any kind of C° shape functions can be used for the present
beam element. Shape functions of order C° are much easier to construct than shape
functions of order C!. It is especially very difficult to construct shape functions of
order C! for two-dimensional and three-dimensional analyses such as the classical
plate theory.

We use the simple linear shape functions for both variables. That is,

v = [Hy Hj) { :: } (8.2.7)

6 = [Hy Ho) { g; } (8.2.8)

where H, and H, are linear shape functions. The linear element looks like that
in Fig. 8.1.1, but the shape functions used are totally different from those for the
Hermitian beam element. Using Eq. (8.2.7) and Eq. (8.2.8) along with the strain
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energy expression Eq. (8.2.6) yields the following element stiffness matrix for the
Timoshenko beam:

[K°] = [K7]+ K] (8.2.9)
where
¢ 0 0 O
W _EIl0 1 0 -1
6 -1 0 1

4 20 -4 2
o _ HGA L2l 12 21 P

20 12 -2 P

One thing to be noted here is that the bending stiffness term, Eq. (8.2.10), is obtained

using the exact integration of the bending strain energy but the shear stiffness term,
Eq. (R 9 11\ 1e ohtained using the reduced integration technigue ”7 1R1 For the

Crder iy A5 L UGuiaitil aSia s waal ABAL AssVmys ua e UL ALl (i3 84wy

present calculatlon, the one-point Gauss quadrature rule is used as shown in the
example given below. The major reason is if the beam thickness becomes so small
compared to its length, the shear energy dominates over the bending energy. As seen

in Eq. (8.2.10) and Eq. (8.2.11), the bending stiffness is proportional to h—la— while the
transverse shear stiffness is proportional to hl, where h and ! are the thickness and
length of a beam element, respectively. Hence, as % becomes smaller for a very thin
beam, the bending term becomes negligible compared to the shear term. This is not
correct in the physical sense. As the beam becomes thinner, the bending strain energy
is more significant than the shear energy. This phenomenon is called shear locking. In
order to avoid the shear locking, the shear strain energy is under-integrated. Because
of the under-integration the present beam stiffness matrix is rank deficient. That is,
it contains some fictitious rigid body modes (i.e. zero energy modes). Example 8.2.1
shows the computation of the shear stiffness term.

& Example 8.2.1 We use the linear isoparametric element to integrate the
shear energy term in Eq. (8.2.6) to produce the shear stiffness matrix Eq.
(8.2.11). Using the concept of isoparametric mapping explained in Chapter 6,
the shear stiffness term becomes

/1
[K"]—;,;GA/ 11*/;")/2 [—% __1; % —1;”] %dr (8.2.12)

—~(1+r)/2

The expression is a quadratic polynomial in terms of r so that the two-point
Gauss quadrature will evaluate the integration exactly. For under-integration
of one order less, we use the one-point Gauss quadrature rule. The integration
point is 0 and the weight is 2. Applying this to Eq. (8.2.12) results in Eq.
(8.2.11). §
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These kinds of beam elements can be derived for any order of shape functions
higher than one. That is, beam elements can have three or larger number of nodes per
element depending on the order of shape functions. For each case, the shear stiffness
matrix should be under-integrated consistently. The order of integration for the shear
stiffness matrix is one less than what is required for exact integration.

The consistent mass matrix for the Timoshenko beam is computed from

{
(Me] = /0 pA[NTT[N)dz (8.2.13)
where
[N] = ["I"' 0 % 0] (8.2.14)

for a linear beam element. This equation results in

)= 22

- (8.2.15)

O k= O N
SO OO
(== S e
OO OO

The same lumped and diagonal mass matrices as given in Eq. (8.1.22) can be used for
the present beam element.

8.3 Beam Elements with Only Displacement Degrees of Freedom

In this section, we develop a family of beam elements which have only displace-
ments as nodal degrees of freedom and no slope as nodal degrees of freedom [19]. In
this aspect, these beam elements are similar to plane stress elements as given in Chap-
ter 9. Therefore, when a beam needs to be discretized along its thickness direction
as well as along its axial direction, these beam elements can be easily applied for the
mesh. Figure 8.3.1 shows one example which uses stacked beam elements along the
beam thickness. If there are multiple embedded cracks in a beam like interlaminar
delamination in a laminated composite beam, it may require more beam elements
through its thickness. If we plan to use beam elements which have displacements
and rotations as nodal degrees of freedom for this application, we need special care
at the interface of the neighboring top and bottom beam elements. As seen in Fig.
8.3.2, complicated constraint equations should be applied to maintain the continuous
deformation across interface.

Let us derive a linear beam element with displacement degrees of freedom only,
which is the simplest element of this family. The element has six degrees of freedom
which are axial and lateral displacements. There are axial displacements at the four
corner points and lateral displacements at the two ends of the element as seen in Fig.
8.3.3.

In Fig. 8.3.3 and the subsequent formulation, u represents the axial displace-
ments at the corner points and v represents the lateral displacements at the ends.
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Figure 8.3.1 A Beam with an Imbedded Crack (L >> h)

The subscripts ‘1’ and ‘2’ refer to the left and right ends while the superscripts ‘t’
and ‘b’ indicate the top and bottom sides of the element, respectively.
The displacement field of the element is

i= { “szf‘)’) } = [N] {d°} (8.3.1)

where [N] is the matrix of shape functions and {d°} is a vector of nodal displacements.
The axial displacement is assumed to vary linearly along both axial and lateral
directions. It can be written as

2
u(z,y) = Y Ni(z) [Hi(y)w} + Ha(y)u] (8.3.2)

=1

= Ni(2)Hi(y)ud + Ni(z)Ha(y)ul + Na(z)H1(y)u) + Na(z)Ha(y)uh

The lateral displacement, which is assumed to be constant through the thickness
of the element, varies linearly along the axial direction and can be written as

2
v(z) = Z Ni(z)v;
i=1
= Nl (.’B)'vl —+ Ng(-’B)'vg (833)

Here, N; and H; are the linear shape functions in the axial and lateral directions. The
beam element may use a higher order shape function for the axial direction if there
are more nodal points in the axial direction, and the linear shape function for lateral
direction. However, in this study, the linear shape function is used for both N; and
H; for simplicity. That is,

Ny(z)=1- 2
{
Na(z) = f‘li (8.3.4)
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Figure 8.3.2 Continuity Requirements at the Interface for Conventional Beam Elements
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Figure 8.3.3 Four-Noded Beam Element with Six Degrees of Freedom

where [ and h are the length and height of the beam element, respectively, if the beam
is a rectangular shape.
For simplicity, notations, Ny, N3, Hy and H; will be used instead of Ny(z),

Na(z), Hi(y), and H(y) in the following derivation. Axial normal strain can be
written as

_ou_oM

. = Ou oM,
*7T 9z T Oz

Oz

6N2 b 3N2 P

Hlui’ -+ —a—z-H]_Uz + “a—w-quz (835)

ngi +

and the shear strain is

ou Ov
Yoy = ;9; + e (8.3.6)
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The element stiffness matrix can be obtained by minimizing the total strain en-
ergy which contains both bending and the transverse shear energy. This minimization
yields the following element stiffness matrix

(K°) = [K3] + [K;) (8.3.7)

where the subscripts ‘6’ and ‘s’ indicate bending and the transverse shear, respectively.
The bending and transverse shear stiffness matrices are given as

i h
(Ke) = / ] (By) E {Bs} dydz (8.3.8)

[K?) = f f {B.}T G {B,} dydz (8.3.9)

where E and G are the elastic and shear modulii of the beam and the vectors {B}
and {B,} are derived below.

The strain-displacement relationship for the axial strain and shear strain can be
written as from Egs (8.3.5) and (8.3.6)

ez = {By} {d°} (8.3.10)

and
2y = {B:} {d°} (8.3.11)

where

ON N aN. ON.
{Bb} { 1 H, o le 0 —é—-z‘Hl "5—2-H2 0}

(. 0H, . OH, ON, _ 8H, _ 8H, 8N,

T
(@) = {ud uf v ud v}

The bending stiffness matrix can be obtained by carrying out the integration in Eq.
(8.3.8) which will result in

r2 1 0 -2 -1 07

1 2 0 -1 -2 0

o_ERLO 0 0 0 0 0
=% -2 -1 0 2 1 o (8.3.13)

-1 =20 1 2 0

Lo 0 0 0 o0 ol

For Eq. (8.3.9) the reduced integration technique is used along the z-axis to
prevent shear locking which occurs when the ratio of beam length to beam thickness
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is large. That is, one-point Gauss quadrature is used for integration in the z-direction.
This integration yields the transverse shear stiffness matrix of the form

- G2 -GE Gk GE  —GE  —9Glh
_Gr  GP -2¢lh -G GP  2Glh
1 | 2GIn  —2GIh  4GH?  2GIh  ~2GIh —d4GH?
an| e -eP ik 6B -G —9Glh (8.3.14)
G GP -2Glh -G GE Gk
| 2GIh  2GIh  —4Gh? —2GIh  2GIh  4Gh?

(K3} =

The element stiffness matrix, which is obtained by adding the bending and
transverse stiffness matrices, can be expressed in the following form

a1 +2a3 —ay+az ag @1 —2a3 —a;—az —aq]
—ay+az ay+2a3 -—-ay —a;—az a3 —2a3 a4
(K¢ = a4 —ds 02 %4 —Ge - TH (8.3.15)
ay—2a3 —a;—agz a4 ay+2a3 —a +az —ag
—a1—a3 a1 —2a3 —as4 —ay+az a1 +2a3 as
L —a4 ag4 —as —Q4 aq ag J

where each symbol denotes

Gl Gh Eh G
al:ZE a2::—-l— 3_.ﬁ a4.—5 (8316)

The mass matrix can be derived similarly as shown in previous sections. The
lumped mass matrix for the linear element is

10000 0
01000 0

o _pab |0 0 2 00 0

MT="T10 001 0 0 (8:3.17)
000010
0 000 0 2

Here pab is the element mass, and the element is assumed to have a unit width.
Otherwise, the matrix is multiplied by the beam width.

8.4 Mixed Beam Element

an alarmantéa [ 911 Mha aAlarmandta ha +hoaa
€alll citnicnus l‘rU LLJ 1€ CICITICIILS Nave uic

transverse deﬂectlon and bending moment as primary degrees of freedom. In the finite
element method, the primary variables are more accurate than secondary variables
which are usually obtained from derivatives of the primary variables. When the
transverse deflection and slope are the primary variables, bending stress is a secondary
variable which is related to derivative of the primary variables. On the other hand,
the mired beam elements have the bending moment as a primary variable and the
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bending stress is computed directly from the bending moment without taking any
derivative. As a result, there is no loss in accuracy in computing the bending stress
in the mized beam elements. The bending stress is usually one of the most important
solutions needed in the beam analysis.

In order to derive the mized elements, we consider the governing equations shown
below:

M d%
M
702 = ¢ (8.4.2)

Galerkin’s method is applied to Eq. (8.4.1) and (8.4.2) using the same shape functions
for both v and M. Then, for an element of length !, we obtain

(o[- o], o

/ [ ] [ ]dx M] = fo '[N]Tq dr + [[N]T V; (8.4.4)

in which [N] is the vector of shape functions, and 6 and V are the slope and shear
force, respectively. The element stiffness matrix from these equations becomes

1

ot [wrmyas o + [

0

[K°] = [gzi K;)”] (84.5)
where
[Kul= / [NJT[N] d (8.4.6)

[K12) = [Kan]" / [ ][ ] (8.4.7)

For the linear mized beam element shown in Fig. 8.4.1, Eq. (8.4.5) becomes

[KWa} = {f} (8.4.8)
where

9 I  6EI —6EI

| ! 2 -6EI 6EI
(K] = g [ 6E1 —-6EI 0 0 ] (8-4.9)

l—6E1 6EI 0 0

{d°} = {My My v1 v2}" (8.4.10)
{fy=1{6 6 Vi—Q1 Va—@y}" (8.4.11)

and Q; is the equivalent pressure load applied to the nodal points.



Section 8.4 Mixed Beam Element 251

Figure 8.4.1 Linear Mixed Beam Element

Boundary conditions are applied to the element in the following way. For a
simply supported node, both displacement v and bending moment M are set to zero
while only displacement v and 6 are set to zero at a clamped node. If a node is free
without any applied moment, moment M is zero at the node. Example 8.4.1 shows
the application of these boundary conditions. Any higher order shape functions may
be introduced to Eq. (8.4.3) and Eq. (8.4.4) to obtain a stiffness matrix for a higher
order mized beam element.

& Example 8.4.1 Figure 8.4.2 shows a beam whose half is modeled using
two linear mized beam elements. The left end is either simply supported or
clamped and the right end is symmetric. Assembly of two beam elements gives
the following system matrix equation.

-9 1 0 6EI —6EI 0 71TrM1 6 -
] 4 1 -6EI 12EI —6EI| | M, 0
1| o ] 9 0 —6EI 6EI | |Ms| | o
6EI | 6E1 -6EI 0 0 0 0 vy | | Vi+05
—6EI 12EI —6EI 0 0 0 Ve 1.0
| 0 —6EI 6EI 0 0 0 Jlwd L o5 |
(8.4.12)

Since the right end is symmetric in this problem, the slope at the right end node
(i.e. the third node in Fig. 8.4.2) which corresponds to the third component in
the right-hand-side column vector in this equation is set to zero. On the other
hand, the slope at the left end (i.e. the first node) is given as #, while the
shear force at the left end support is given as V;. Depending on the boundary
condition, the slope may or may not be known.

First of all, let us consider the simply supported left end. In this case,

Ma _— n nnr] A/f.. - n anounr F). n'nr] I/a are “nlrnnwnu Ahh]‘r;na f,]'lnun
vi —_— W AL AVL ] T U ALV VL Y LLy V] GRIM ¥ ] ALY UWLLDRELUTY LD, LA LY LiiE ViLLOU

conditions to Eq. (8.4.12) gives

4 1 12EI -6EI [ M, 0
1 1 2 —6EI 6EI | [Ms|_ |0
6EI | 12EI -6EI 0 0 w | = 1.0 (8.4.13)

-6E] 6FEI 0 0 U3 0.5
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Figure 8.4.2 A Uniformly Loaded Beam Modeled Using Two Linear Mixed Beam Elements

Solving this matrix equation provides vo9 = _I}%T and vz = GIEQI for

deflections, and also gives bending moments of 1.5 and 2 at nodes 2 and 3.
Substituting these solutions back into Eq. (8.4.12) gives the shear force at the
............ 14~ 9 Thege she farce and hending momen
Buyyulb unal LULY PR R 1 § w1 L vy Ducm IULILG aliu LV L9 8

Next, we consider the clamped left end. The corresponding boundary
condition is v; = 0 and #; = 0. Applying these conditions to Eq. (8.4.12)

results in
2 1 0 -6ET 0 M, 0
1 1 4 1 12EI —-6FEI M, 0
6EI 0 1 2 -6EI 6FI Mg|=1]0 (8.4.14)
—6EI 12EI -6EI 0 0 Vg 1.0
0 -6EI 6FEI 0 0 U3 0.5
The nodal deflections from this matrix equation are vz = —gg7 and v3 = — %7
The bending moments are M; = —2, My = % and M3 = %. The shear force at
the left support is 2. In this case the shear force turns out to be exact but the

bending moment is not exact. }

The formulation provided above is based on the Euler-Bernoulli beam assump-
tion. If the transverse shear deformation is included in the formulation, the governing
equations are modified as given in Ref. [22]

M 1 d’°M d%

B aCh d? ~di =" (8.4.15)
dZ

A:I =q (8.4.2)

dz? ) /

where p is the shear correction factor, h is the beam thickness and the beam is assumed
to have unit width. Application of Galerkin’s method to these equations yields the
element matrix shown as

el I:(ll RIZ
[K]_.[K21 0] (8.4.16)
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where
. 1 o "1 [dN]T[dN
[Kn]—ﬁ/O[N] [N]dz + _/0 Ef—z_d—z—] a—] dr (8.4.17)
. ; TdN1T [dN]
— T _ alv | eV
[K12] = [Kna]” = /0 [ iz | [ iz | dz (8.4.18)

Again, the same shape functions are used for v and M in Eq. (8.4.17) and Eq. (8.4.18).
For the linear element, Eq. (8.4.18) becomes

A°+a 1*—a 6EI —6EI
e[ ]
L —6EI 6EI 0 o
where
a= %{; (8.4.20)

We call the latter the thick beam element and the former the thin beam element
because the effect of transverse shear deformation increases as the plate thickness to
length ratio increases. Table 8.4.1 compares the thin beam and thick beam solutions
for various loading and boundary conditions.

The lumped mass matrix for the linear mired beam element is

000 0
o_PALl0 0 0 0

[M]=T[o 0 1 0] (8.4.21)
lo 0 0 1)

8.5 Hybrid Beam Element

A hybrid beam element is introduced in this section. The hybrid element is
based on the assumed strains within the beam element [23]. This element requires

C° continuity. The formulation is based on a modified potential energy expression as
given below for a beam with unit width

{ 1 1 {
D= [ (-1 Dies — 2 Docy + § DaLa{d) + T D,Lo{d} ) dr — [ {d)7(q) de

2
(8.5.1)
where "
€ = a (852)
d
€ = —0+ = (8.5.3)
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Table 8.4.1 Thin and Thick Beam Solutions for Various Beams with Unit Width
Configuration Maximum deflections
P Thin Beam :WwW =£ELT
Z
Z -L Thick Beam: P L P 112
. Woa™ 3BT T 10GI
7 L 4 b
q qL‘
% Thin Beam :w, =
 EmEERRERE Ber
% T Thick Beam: 4 2.2
Y L 9L Lh
7 ~ Yo" 8ET T 2061
1 59L
T T T 1T 1T 11 4 Thin Beam : W, . ~3g457
k :

i i T Thick Beam 5 ]f thz
| L | Wenaw 384EI B0GT
| L

Thin B PL
| L/2 _l_ in Beam :w =—+— Yo
|
o1 Thick Beam: op? .
V77,724 L 77, 772 w = k‘ m
mas™ 4BEI 40GI
q I
P 2 - . el
Z 7
/ 3 : 4
2 I é Thick Beam w qL th
mas 384EI 80GI
P 3
P L/2 Pr
é / /é Thin Beam :w_ =jooe
/ % Thick B :
/ / ic eam: . PLIE
o L Z Wnas™ 192ET * 40GI

( E: Elastic modulus, G: Shear modulus, I: Moment of inertia of cross section)




Section 8.5 Hybrid Beam Element 2565

{d} = {0 v}" (8.5.4)

and other parameters are defined below: D, is the bending stiffness equal to EI,
D, is the shear stiffness equal to uGA, L; is the bending strain-displacement
operator and L, is the shear strain-displacement operator. Invoking a stationary
value of the equation results in the equilibrium equation and the generalized strain-
displacement relation. In order to obtain the finite element model, generalized strains
and displacements are discretized as the following:

€p = [Bb]{ab} (8.5.5)
€ = [Bs]{as} (8.5.6)
{d} = [N|{d} (8.5.7)
where generalized strains are assumed independently within each element and gener-

alized displacements are interpolated using generalized nodal displacement {d}. Thus,
[By] and [B,] are matrices (or vectors for the beam problem) consisting of the poly-
nomial terms of the generalized strain parameter vectors {a3} and {a,}, respectively.
Substituting Eq. (8.5.5) through Eq. (8.5.7) into Eq. (8.5.1) yields

= - S (Glew} — o) IG e} + {on) 7 HNd)

+ {o,}T[H,{d} - {d}T{F} (8.5.8)
where
i
(Gy] = ]0 (Bs]” Dy[Bs)dz (8.5.9)
[G,] = jl[B,]T D,[B;)dz (8.5.10)
0
i
[Hy] = /0 (B,]T Dy Ls[N]de (8.5.11)
l
[H,] = / [B,)T D,L,[N]dz (8.5.12)
0
and
!
{F} = / [NF {q}dz (8.5.13)
0

Invoking stationary values of Eq. (8.5.8) with respect to a; and o, respectively
results in

-
rn n

—[Ghl{as} + [Hp}{d} =0 (8.5.14)
—[G.){a.} + [H,]{d} =0 (8.5.15)

Eliminating {a;} and {a,} from Eq. (8.5.8), Eq (8.5.14) and Eq. (8.5.15) gives

= %{J}T([HblT[Gb]-I[HbH[H,]T[G,]-I[H.,]){&} — {@}T{F}  (85.16)
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Equation (8.5.16) finally gives the following finite element system of equations

[K1{d} = {F} (8.5.17)
in which
(K] = [H:]"[Ge] ™ [Hs] + [HL]"[G,] ' [H,] (8.5.18)
For a linear beam element, the generalized strain vectors are assumed as
[Be] =[1 =] (8.5.19)
and
[Bs] =1 (8.5.20)

These expressions represent that the bending strain varies linearly and the shear strain
is constant within the linear beam element. Example 8.5.1 shows the derivation of
the stiffness matrix for the linear beam element. The hybrid beam element can be
also generalized for general higher order shape functions.

& Example 8.5.1 Substituting the generalized strain vectors, Eq. (8.5.19)
and Eq. (8.5.20), into Eq. (8.5.9) through (8.5.12) gives

EI[6l 312
[Gb] _— ? [312 2,3] (8.5.21)
[Gs] = uGAl (8.5.22)
EITo -2 0 2]
[Hb]=7[0 1 0 IJ (8.5.23)
[H,]:“GTA-2 _1g -] (8.5.24)

Applying these expressions into Eq. (8.5.18) yields the same element stiffness
matrices as in Eqs (8.2.9) through (8.2.11). The first term in Eq. (8.5.18)
results in Eq. (8.2.10) while the second term in Eq. (8.5.18) yields that in
Eq. (8.2.11). However, no reduced integration technique is used for the present
stiffness matrix. {

8.6 Composite Beams

Laminated composite beams are made of multiple layers which have in general
different material properties. More general cases are dealt with in the chapter for
plates and shells. In this section, we consider a simple case. The laminated beam is
symmetric about the midplane axis so that there is no coupling between the inplane
deformation and bending deformation. For this simple case, the beam formulations
developed in the previous sections are directly applicable to the laminated beam. One
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Figure 8.6.1 Laminated Beam

thing to be generalized for the laminated beam is the beam rigidity. For a symmetric
laminated composite beam with unit width, the equivalent beam rigidity is computed
as

(ED)egiv = %ZE.'(y? - ¥-1) (8.6.1)

Here, n is the number of layers, and y;—; and y; are the y—coordinate values of the
bottom and top planes of the i** layer as seen in Fig. 8.6.1. In addition E; is the
elastic modulus in the z—direction of the i*? layer. This equivalent beam rigidity
1s substituted into the previous beam elements to compute the stiffness matrices for
laminated composite beams.

However, one more important fact in laminated beam applications is the effect of
transverse shear. Composite beams are not usually isotropic and their shear modulus
is in general much lower than the elastic modulus. In this case, the shear deformation
plays an important role [24,25]. For example, see Fig. 8.4.3. As the shear modulus
G becomes much smaller than the elastic modulus # in the thick beam solutions, the
thick beam solutions deviate much more from thin beam solutions. As a result, thin
beam solutions may not be accurate any more. In other words, the Euler-Bernoulli
beam equation may not be suitable any more especially for rather thick laminated
composite beams.

As a result, the beam formulations including the effect of shear deformation can
be used for analyses of laminated composite beams. In this case, the equivalent shear
modulus is computed from

{r A {ne.
48 o

' a2 )
LA N—=1)

—~
o2]
(>
™S

N

AY . —
Afegiv =

Ngk

=1

where b is the width of the beam. The bending stress in a laminated composite beam
can be determined from
ME;y

o= —
(EI)eqiu

(8.6.3)
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Figure 8.6.2 Laminated Beam Element

where o; is the bending stress in the i*? layer and y is a coordinate value in the i*? layer.
Example 8.6.1 shows an application of beam elements with displacement degrees of
freedom only developed in section 8.3 to an analysis of a laminated composite beam.

& Example 8.6.1 Two different techniques can be used to model a laminated
beam using beam elements with displacement degrees of freedom only. The
first technique discretizes respective layers in the finite element analysis. As
a result, the total number of elements is proportional to the number of layers
in a laminated beam. The condensation technique can be applied to reduce
the number of total degrees of freedom by eliminating internal layers degrees
of freedom. This modeling technique is computationally expensive but it can
describe a general shape of inplane deformation through the beam thickness. The

nnnnn d tarhniane ngeg ana hanm alamant thranoh the heam thicknace raocardlace nf
SCCONA +CCiIIGu usSts VNC UCAlll CrTiilCiiy vifOU gLl viiC woall villniilos ICRailitos UL

the number of layers. This technique is computationally efficient but it assumes
a linear deformation through the beam thickness.

technique is described in the following paragraphs.
Let uj and v represent the axial and lateral displacements of the £** layer
and let h be the beam thickness while hr and hr41 represent heights of the top

and bottom sides of the k** layer measured from the bottom of the beam (see

Fig. 8.6.2). The relationship between the layer displacements and the global
beam displacements can be written as

The development of this

uz,l = cyul + cau} (8.6.4)
”;c,l = cau} + catt} (8.6.5)

Vg,1 = 1 (8.6.6)
”2,2 = clug + coub (8.6.7)
uj o = caud + cauh (8.6.8)

Vk,2 = V2 (8.6.9)
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where constants c’s are

h—nh
1 - i (8.6.10)
h
er = (8.6.11)
h—h
e3 = —— (8.6.12)
h
a= (8.6.13)
This relationship can be expressed in the matrix form
(U ) et e 00 0 07 (udy
uj, 1 ca ¢4 0 0 0 O ul
veal _ |0 O 1 0 0 O 1
{ui,z = 0 0 0 ¢, ¢ 0] Jub (8.6.14)
’u.iz 0 0 0 C3 ¢4 0 ut2
lwa) Lo o 00 o 1] Ly,)

or in a short notation

{d*} = [T}{d} (8.6.15)

where {d*} and {d} are the displacement vectors of the k" layer and the beam,
respectively. [T] is the transformation matrix shown in Eq. (8.6.14). Now, the
stiffness and mass matrices of a laminated beam element can be expressed as

n
[Ke1=N [
L 1= £ 4L

—~—
wo
o
—
ot

e

n

M) = ST [MH] (8.6.16)

k=1

Here, [K*] and [M¥] are the stiffness and mass matrices of the k™ layer,
respectively. Using this technique, a single beam element can include all the
layers of a laminated beam.

Figure 8.6.3 illustrates a simply supported laminated beam with four
layers. The elastic modulus E} is assumed to be either 20 or 100 times greater
than E5. The finite element solutions are provided in Fig. 8.6.4. Figure 8.6.5
also shows the solutions for the same beam but with eight layers. {

8.7 Two-Dimensional Frame Element

A frame structure is made of many beam members connected together. It may
be of planar or spatial geometry. For a planar frame structure, each beam member is
generally subjected to both bending and axial loads as illustrated in Fig. 8.7.1. As a
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Figure 8.6.4 Static Deflections of the Laminated Composite Beam with 4 Layers:
E,;/E2=20, 100 for top and bottom

result, a planar (2-D) frame element must include both axial and bending deformation.
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Static Deflections of the Laminated Composite Beam with 8 Layers:
E1/E2=20, 100 for top and bottom

If the deformation is small, we may neglect the coupling between the two deformations.
As a result, the element stiffness matrix for a 2-D frame element can be constructed by
superimposing both axial and bending stiffnesses. For example, the stiffness matrix
of a linear 2-D frame element is using Hermitian beam element

- Al 0 0 =A% 0 0
0 12 611 0 —12I I
E| o 610 411> o —6Il 21
B|-A2% 0 0 A 0 0
0 —12I —6Il
) 6I1 211

X
I

12 —-6I1
—6Il 411%

0
0

o~
0
~
[ Sd
-

for the element degrees of freedom {u; vy 8; us vy 0,5} as seen in Fig. 8.7.2. Other

C? type beam elements may be used to develop a frame stiffness matrix.

In general, a beam member is inclined to the global coordinate system as
shown in Fig. 8.7.3. In this case, the element stiffness matrix requires the planar
transformation. Figure 8.7.4 shows two coordinate systems: local and global systems.
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The global system 1s denoted by a superimposed bar on both coordinate axes and

displacements. The relation between the local and global displacements is

( uq )
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(8.7.2)

where ¢ = cosf? and s = sinf. In a short notation, Eq. (8.7.2) can be written as

{d°} = [T}{d"}

Then, the stiffness matrix for a planar frame element is expressed in terms of the

global coordinate system as given below:

[K°] =

[R] = (11 (ke

Carrying out the matrix multiplication gives

as

as

as
—as
—ay

L Qs

a4
ae
az
az

as
az
a;
—as
—az
az

—a;
ay
ae

—ay

as
ar
a2
—as
—ay
a

(8.7.3)

(8.7.4)

(8.7.5)
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(8.7.6)
(8.7.7)

(8.7.8)

(8.7.9)

(8.7.10)

(8.7.11)

(8.7.12)
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8.8 Three-Dimensional Frame Element

A beam member in a spatial (3-D) frame is generally subjected to axial, bending
and torsional loads as illustrated in Fig. 8.8.1. If beam members have circular cross-
sections, the element stiffness in a local axis is as seen in Fig. 8.8.2

Ke -3
K = 11 22] 8.8.1
K= (8.1
where
|'411 0 0 0 0 07
0 b4 0 0 0 bo
e1_ 10 0 ¢ 0 —cz O
Knl= |y o e 0 0 (8.8.2)
0 0 —Ca 0 263 0
L0 b2 O 0 0 23
[—a; 0 0 0 0 0
0 _bl 0 0 0 b2
€7 e 1T _ 0 0 —C1 0 —c; 0
[K12] - [K21] - 0 0 0 —ag 0 0 (883)
0 0 C2 0 cg O
L 0 —=by O 0 0 b3l
rar 0 0 0 O 0 1
0 b, 0 0 0 —b
e1_10 0 ¢ 0 eo 0
[KZa] = 0 0 0 a 0 0 (8.8.4)
0 0 ¢ 0 235 0
L0 b, 0 0 0 2b3
LA T
a1 = ==,  ag=— (8.8.5)
l l
12E1 6ET 2E1T
b, = B z by = 7 2. b3 = 7 2 (8.8.6)
12E1, 6E1 2E1]
G = I3 y, Ca = 2 y, C3 = Ty (887)

In these equations, I, and I, are moments of inertia of the cross-section about y—
and z—axes and J is the polar moment of inertia. The corresponding element degrees
of freedom is

{d} = {uy v w, 6 By 63 up vy ws 03 05 66} (8.8.8)

in which f; and 64 are the rotational degrees of freedom associated with the twisting
moment, and 2, 3, 05 and ¢ are slopes associated with bending moments. This
stiffness matrix in terms of a local coordinate system needs to be transformed into
that in terms of the global coordinate system in the same way as shown in Eq. (8.7.4).
In this case, the transformation matrix [T is of size 12 x 12.
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Figure 8.8.2 Spatial Frame Element

8.9 MATLAB Application to Static Analysis
The static analysis of a beam or a frame is to solve the following matrix equation:
[K{d} = {F} (8.9.1)

where the system stiffness matrix [K] and the system force vector {F'} are obtained
by assembling each element matrix and vector. Several m-files are written to compute
an element stiffness matrix and a mass matrix, which is used for dynamic problems
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The names of m-files are given below:

febeam1.m : Hermitian beam element (see Sec. 8.1)

febeam2.m : Timoshenko beam element (see Sec. 8.2)

febeam3.m : beam element with displacement degrees of freedom (see Sec. 8.3)
febeam4.m : mixed beam element (see Sec. 8.4)

feframe2.m: 2-D frame element (see Sec. 8.7)

Detailed informations regarding these m-files are provided in Appendix A. The
following examples show computer programs for finite element analyses of beam and
frame structures written in MATLAB and the m-files described above.

Py Y FaY PSR * B ¢ T TP POt sy P S A Py mr b 1 4
2 T 1 e O 1 s 1. 3 1 A1 1
W9 LIAGLIIPIT O.Je L FIgUlc 0.2.4 dDIIVWD a dilllply SUpPpPULLCU DCalll WIILDC ICiRLVIL

is 20 in. The beam has also elastic modulus of 10 x 10° psi and its cross-section
is 1 in. by 1 in. The beam is subjected to a center load of 100 lb. We use 5
Hermitian beam elements for one half of the beam due to symmetry to find the
deflection of the beam. Figure 8.9.1 shows the finite element discretization. The
constraints applied to this problem are no deflection at the left boundary support
(i.e v1 = 0) and zero slope at the symmetric node (i.e. #¢ = 0). Their system
degrees of freedom are 1 and 12, respectively, in the present mesh. Furthermore,
only a half of the center load is applied at the symmetric node because of

symmetry. The finite element analysis program for the present static problem is
listed below.

% EX891.m: MATLAB program to solve a static beam deflection using
% Hermitian beam elements

%

% Variable descriptions

% k = element stiffness matrix
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% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with

% , the dofs in bedof
nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=(nnel-1}*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=10"7; % elastic modulus
xi=1/12; % moment of inertia of cross-section
tleng=10; % length of a half of the beam
leng=10/nel; % element length of equal size
area=1; % cross-sectional area of the beam
rho=1; % mass density (arbitrary value for this problem because
% it is not used for the static problem)
ipt=1; % option for mass matrix (arbitrary value and not used here)
bedof(1)=1; % first dof (deflection at left end) is constrained
beval(1)=0; % whose described value is 0
bedof(2)=12; % 12th dof (slope at the symmetric end) is constrained
beval(2)=0; % whose described value is 0
fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
f(11)=50; % because a half of the load is applied due to symmetry
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,ndof); % extract system dofs for each element
k=febeam1(el,xi,leng,area,rho,ipt); % compute element stiffress matrix
kk=feasmbl1(kk,k,index); % assembly into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\ff; % solve the matrix equation

% Analytical solution

e=10"7; 1=20; xi=1/12; P=100;
for i = 1:nnode

x=(i-1)*2;

c=P/(48%e*xi);
k=(i-1)*ndof+1;
esol(k)=c*(3*1"2-4*x"2)*x;
esol(k+1)=c*(3*1"2-12*x"2);
end

o

/0

% Print both exact and fem solutions
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%
num=1:1:sdof;
store=[num’ fsol esol’]

Chapter 8

70

function {k,mj=febeam1(el,xi,leng,area,rho,ipt)
[ir.4

n

% Purpose:

% Stiffness and mass matrices for Hermitian beam element
% nodal dof v; theta; va thetas

%

% Synopsis:

% [k,m]=febeam1(el,xi,leng,area,rho,ipt)

%

% Variable Description:

% k - element stiffness matrix (size of 4x4)

% m - element mass matrix (size of 4x4)

% el - elastic modulus

% xi - second moment of inertia of cross-section
% leng - element length

% area - area of beam cross-section

% rho - mass density (mass per unit volume)

% ipt = 1: consistent mass matrix

%  2: lumped mass matrix

%  otherwise: diagonal mass matrix

%
%
% stiffness matrix
%
c=el*xi/(leng3);
k=c*[12 6*leng -12 6*leng;...
6%leng 4*leng? -6*leng 2*leng2;...
-12 -6*leng 12 -6*leng;...
6%leng 2*leng? -6*leng 4*leng?];
%
% consistent mass matrix
%
if ipt==
%
mm=rho*area*leng/420;
m=mm*[156 22*leng 54 -13*leng;...

99¥lan g A¥lane) 12¥lane _2¥lan o).
F4y4 JCI[E X Lcllé‘l AW JCLIE (v} Lcllsﬂ,-.-

54 13*leng 156 -22*leng;...

-13*leng -3*leng?2 -22*leng 4*leng?];
%
% lumped mass matrix
%

elself ipt==
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m=zeros(4,4);
mass=rho*area*leng;

m=diag([mass/2 0 mass/2 0]);

%

% diagonal mass matrix

%

else

%

m=zeros(4,4);
mass=rho*area*leng;

m=mass*diag([1/2 leng2/78 1/2 leng2/78]);

%

end

Li7 4
/0

The finite element solution obtained from this MATLAB program as well as the
exact solution are

store =

dof #
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000

fem sol

0.0000
0.0030
0.0059
0.0029
0.0114
0.0025
0.0158

% deflection at node 1
% slope at node 1
% deflection at node 2
% slope at node 2
% deflection at node 3
% slope at node 3
% deflection at node 4
% slope at node 4
% deflection at node 5
% slope at node 5
% deflection at node 6
% slope at node 6

& Example 8.9.2 We want to solve Example 8.9.1 using Timoshenko beam
elements. The computer program is almost the same as that given in Example
8.9.1. Instead of calling febeami.m we need to call febeam2.m to compute the
element stiffness matrix. In the beginning of the program list shown in Example

£.9.1, we add

e edy (-0 R8 Y

sh=3.8*10"6;
and the following line

k=febeam1(el,xi,leng,area,rho,ipt);

is replaced by

% shear modulus of the beam

269



270

Beam and Frame Structures

k=febeam2(el,xi,leng,sh,area,rho,ipt);

The computed solution is also compared to the exact answer below.

store =

dof # fem sol exact

1.0000 0.0000 0.0000 % deflection at node 1
2.0000 0.0030 0.0030 % slope at node 1
3.0000 0.0059 0.0059 % deflection at node 2
4.0000 0.0029 0.0029 % slope at node 2
5.0000 0.0113 0.0114 % deflection at node 3
6.0000 0.0025 0.0025 % slope at node 3
7.0000 0.0158 0.0158 % deflection at node 4
8.0000 0.0019 0.0019 % slope at node 4
9.0000 0.0188 0.0189 % deflection at node 5
10.000 0.0011 0.0011 % slope at node 5
11.000 0.0200 0.0200 % deflection at node 6
12.000 0.0000 0.0000 % slope at node 6

Chapter 8

& Example 8.9.3 This example again solves the same problem in Example
8.9.1 using beam elements with displacement degrees of freedom. This beam
element is different from the beam elements used in previous examples. As a

result, the complete program is included in the following.

(174

U

% EX893.m: MATLAB program to solve a static beam deflection using
% beam elements with displacement degrees of freedom only

%

% Variable descriptions

% k = element stiffness matrix

% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

%

nel=>5; % number of elements
nnel=2; number of nodes per element
ndof=3; % number of dofs per node

nnode=(nnel-1)*nel+1;
sdof=nnode*ndof;

% total number of nodes in system

% total system dofs

el=10"7; % elastic modulus
sh=3.8*10"6 % shear modulus
tleng=10; % length of a half of the beam
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leng=10/nel; % element length of equal size
heig=1; % height of the beam
width=1; % width of the beam
rho=1; % mass density (arbitrary value for this problem because
% it is not used for the static problem)
bedof(1)=3; % deflection at left end is constrained
beval(1)=0; % whose described value is 0
bedof(2)=16; % inplane displ. at the right end is constrained
beval(2)=0; % whose described value is 0
bcdof(3)=17; % inplane displ. at the right end is constrained
bcval(3)=0; % whose described value is 0
fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sdof,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
fi(18)=50; % because a half of the load is applied due to symmetry
for iel=1:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofs for each element
k=febeam3(el,sh,leng,heig,width,rho); % compute element matrix
kk=feasmbl1(kk,k,index); % assembly into system matrix
end
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\fF; % solve the matrix equation
(174
% Analytical solution
(174

e=10"T; 1=20; xi=1/12; P=100;
for 1 = l:nnode

x=(i-1)*2;

c=P/(48*e*xi);

k=(i-1)*ndof+1;
esol(k+2)=c*(3*1"2-4*x"2)*x;
esol(k+1)=c*(3*1"2-12*x"2)*(-0.5);
esol(k)=c*(3*1"2-12*x"2)*(0.5);
end

U

% print both exact and fem solutions

%
num==1:1:sdof;
store=[num’ fsol esol’]

function [k,m]}=febeam3(el,sh leng heig , width rho)
o7
U

% Purpose:
% Stiffness and mass matrices for beam element with displacement

% degrees of freedom only

% nodal dof ul{ ul vy ug u} va

%
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% Synopsis:

% [k,m]=febeam]l(el,sh leng, heig,rho,area,ipt)
%

% Variable Description:

% k - element stiffness matrix (size of 6x6)

% m - element mass matrix (size of 6x6)

% el - elastic modulus

% sh - shear modulus

% leng - element length

% heig - element thickness

% width - width of the beam element

% tho - mass density of the beam element (mass per unit volume)
% lumped mass matrix only

Chapter 8

[i7 4
/0
%

% stiffness matrix
o7

LAY

al=(sh*leng*width)/(4*heig);
a2=(sh*heig*width)/leng;
a3=(el*heig*width)/(6*leng);
ad=sh*width/2;

k= [ al+2*a3 -al+a3 a4 al-2*a3 -al-a3 -a4;...
-al4-a3 al42*%a3 -a4 -al-a3 al-2*a3 a4;...
a4 -a4 a2 a4 -a4 -aZ;...

al-2*a3 -al-a3 a4 al+2*a3 -al+a3 -ad;...
-al-a3 al-2*a3 -a4 -al+a3 al+2*a3 a4;...
-a4 a4 -a2 -a4 ad a2j;

%

% lumped mass matrix

%

m=zeros(6,8);
mass=rho*heig*width*leng/4;
m=mass*diag([11211 2]);

o7,
/0

The solution output is

store =
dof # fem sol exact

1.0000 0.0015 0.0015 % axial displ. at bottom side of node 1
2.0000 -0.0015 -0.0015 % axial displ. at top side of node 1

3.0000 0.0000 0.0000

% transverse displ. at node 1

4.0000 0.0014 0.0014 % axial displ. at bottom side of node 2
5.0000 -0.0014 -0.0014 % axial displ. at top side of node 2

6.0000 0.0059 0.0059

% transverse displ. at node 2

7.0000 0.0013 0.0013 % axial displ. at bottom side of node 3
8.0000 -0.0013  -0.0013 % axial displ. at top side of node 3

9.0000 0.0113 0.0114

% transverse displ. at node 3

10.000 0.0010 0.0010 % axial displ. at bottom side of node 4
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11.000  -0.0010  -0.0010 % axial displ. at top side of node 4
12.000 0.0158 0.0158 % transverse displ. at node 4
13.000 0.0005 0.0005 % axial displ. at bottom side of node 5
14.000 -0.0005 -0.0005 % axial displ. at top side of node 5
15.000 0.0188 0.0189 % transverse displ. at node 5
16.000 0.0000 0.0000 % axial displ. at bottom side of node 6
17.000 0.0000 0.0000 % axial displ. at top side of node 6
18.000 0.0199 0.0200 % transverse displ. at node 6

t

é Example 8.9.4 Solve the same example again using the mixed beam

elements. The computer program list is provided below.

y
% EX894.m: MATLAB program to solve a static beam deflection

% problem using mixed beam elements

%

% Variable descriptions

% k = element stiffness matrix

% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

%

nel=5; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=(nnel-1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
bedof(1)=1; % bending moment at node 1 is constrained
bcval(1)=0; % whose described value is 0
bedof(2)=2; % deflection at node 1 is constrained
bcval(2)=0; % whose described value is 0
fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sd of,sd of); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
f£(12)=-50; % because a half of the load is applied due to symmetry
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,ndof); % extract system dofs for each element
k=febeam4(10°7,0.083333,2,0,1,1,1); % compute element stiffness matrix
kk=feasmbl1(kk,k,index); % assembly into system matrix
end ‘

[kk,ffj=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
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fsol =kk\ F; % solve the matrix equation
%
% analytical solution
o

e=10"7; 1=20; xi=1/12; P=100;
for i = l:nnode

x=(i-1)*2;

c=P/(48%e*xi);
k=(i-1)*ndof+1;
esol(k+1)=c*(3*1"2-4*x"2)*x;
esol(k)=-50*x;

end

oy
/0

% print both exact and fem solutions
%

num=1:1:sdof;

store=[num’ fsol esol’]
o

44

function [k,m]=febeam4(el,xi leng,sh, heig,rho,ipt)

%
% Purpose:

% Stiffness and mass matrices for mixed beam element

% bending moment and deflection as nodal degrees of freedom

% nodal dof M; vy M2 vy

%

% Synopsis:

% [k,m]=febeam4(el,xi,leng,sh,heig,tho,ipt)

%

% Variable Description:

% k - element stiffness matrix (size of 4x4)

% m - element mass matrix (size of 4x4)

% el - elastic modulus

% xi - second moment of inertia of cross-section

% leng - length of the beam element

% sh - shear modulus

% heig - beam thickness

% tho - mass density of the beam element (mass per unit volume)
% ipt = 1 - lumped mass matrix

% = otherwise - diagonalized mass matrix

%
%

% stiffness matrix
%

if sh ==

%

% thin beam (no shear deformation)
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k= [leng/(3*el*xi) 1/leng leng/(6*el*xi) -1/leng;...
1/leng 0 -1/leng O;...
leng/(6*el*xi) -1/leng leng/(3*el*xi) 1/leng;...
-1/leng 0 1/leng 0 J;

%
else

%

% thick beam (includes shear deformation)

%

a=6/(5*sh*leng*heig);
k= [ 1/(3*el*xi)+a 1/leng 1/(6*el*xi)-a -1/leng;...
1/leng 0 -1/leng 0;...
1/(6*el*xi)-a -1/leng 1/(3*el*xi)+a 1/leng;...
-1/leng 0 1/leng 0 J;

%
end

%

% lumped mass matrix

%

if ipt==1

%

m=zeros(4,4);
mass=rho*heig*leng/2;

m=diag([0 1 0 1));

%

% diagonal mass matrix

%
else

%

m=zeros(4,4);
mass=rho*heig*leng/2;
m=mass*diag([1 1 1 1]);

%

end

4

The solution from the computer program is given below.

store =

dof #
1.0000

9 nnnn
&4.UUyYuU

3.0000
4.0000
5.0000
6.0000
7.0000
8.0000

fem sol
0.0000

N nnnn
V. UUUuU

-100.00
0.0059
-200.00
0.0114
-300.00
0.0158

exact
0.0000

N Nnnn
U.vuUuuU

-100.00
0.0059
-200.00
0.0114
-300.00
0.0158

% bending moment at node 1
O Aaflondsinem o mala 1
/70 ucucuuiun alk nuuc 1
% bending moment at node 2
% deflection at node 2
% bending moment at node 3
% deflection at node 3
% bending moment at node 4

% deflection at node 4
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9.0000 -400.00  -400.00 % bending moment at node 5

10.000 0.0189 0.0189 % deflection at node 5

11.000 -500.00 -500.00 % bending moment at node 6

12.000 0.0200 0.0200 % deflection at node 6

& Example 8.9.5 Find the deflection of a frame of L-shape (see Fig. 8.9.2)
which is made of two beams of lengths of 60 in. and 20 in., respectively. Both
beams have cross-sections of 2 in. height by 1 in. width. The elastic modulus is
30 x 10° psi. The frame is subjecied to a conceniraied load of 60 1b at the end
of the smaller beam and one end of the long member is fixed. Use 6 elements to
find the deflection of the frame. The MATLAB program is written below using

2-D frame elements.

% EX895.m: MATLAB program to solve static deflection for a 2-D frame
%

% Variable descriptions

% x and y = global x and y coordinates of each node

% k = element stiffness matrix

% kk = system stiffness matrix

% ff = system force vector

% index = a vector containing system dofs associated with each element
% bedof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

% the dofs in bcdof

o
/0
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nel=6; % number of elements
nnel=2; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nnel-1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
x(1)=0; y(1)=0; % x, y coords. of node 1 in terms of the global axis

x(2)=0; y(2)=15; % x, y coords. of node 2 in terms of the global axis
x(3)=0; y(3)=30; % x, y coords. of node 3 in terms of the global axis
x(4)=0; y(4)=45; % x, y coords. of node 4 in terms of the global axis
x(5)=0; y(5)=60; % X, y coords. of node 5 in terms of the global axis
x(6)=10; y(6)=60; % X, y coords. of node 6 in terms of the global axis
x(7)=20; y(7)=60; % x, y coords. of node 7 in terms of the global axis

€l=30%10"6; % elastic modulus
area=2; % cross-sectional area
xi=2/3; % moment of inertia of cross-section
rho=1; % mass density per volume (dummy value for static analysis)
bedof(1)=1; % transverse deflection at node 1 is constrained
beval (1)=0; % whose described value is 0
bedof(2)=2; % axial displacement at node 1 is constrained
beval(2)=0; % whose described value is 0
bedof(3)=3; % slope at node 1 is constrained
beval(3)=0; % whose described value is 0
fi=zeros(sdof,1); % initialization of system force vector
kk=zeros(sd of,sdof); % initialization of system matrix
index=zeros(nnel*ndof,1); % initialization of index vector
ff(20)=-60; % load applied at node 7 in the negative y direction
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,ndof); % extract system dofs for each element
nodel=iel; % starting node number for element ’iel’
node2=iel+1; % ending node number for element ‘iel’
x1=x(nodel); yl=y(nodel); % x and y coordinate values of >nodel’
x2=x(node2); y2=y(node2); % x and y coordinate values of 'node2’
leng=sqrt((x2-x1)"2+(y2-y1)"2); % length of element ’iel’
if (x2-x1)==0; % compute the angle between the local and global axes
beta=pi/2;

else

beta=atan((y2-y1)/(x2-x1));

end

k=feframe2( el,xi Jeng,area,rho,beta,l); % compute element matrix
kk=feasmbl1(kk,k,index); % assembly into system matrix
end

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); % apply the boundary conditions
fsol=kk\ ff; % solve the matrix equation and print
o

/0

% Print both exact and fem sclutions

o7,
/0

num=1:1:sdof;
store=[num’ fsol]
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o7
/U

function [k,m]=feframe2(el,xi,leng,area,rho,beta,ipt)

o7,
7

% Purpose:

% Stiffness and mass matrices for the 2-D frame element
% nodal dof uj v; theta; ug vo thetas

%

% Synopsis:

% [k,m]==feframe2(el,xi,leng,area,rho,beta,ipt)

%

% Variable Description:

% k - element stiffness matrix (size of 6x6)

% m - element mass matrix (size of 6x6)

% el - elastic modulus

% xi - second moment of inertia of cross-section
% leng - element length

% area - area of beam cross-section

% rho - mass density (mass per unit volume)

% beta - angle between the local and global axes
%  is positive if the local axis is in the ccw direction from
%  the global axis

% ipt = 1 - consistent mass matrix

% = 2 - lumped mass matrix

% = 3 - diagonal mass matrix

%
%
% stiffness matrix at the local axis
%
a=el*areafleng;
c=el*xi/(leng"3);
Kl=[a 0 0 -a 0 0;...
0 12*c 6*leng*c 0 -12* ¢ 6*leng*c;...
0 6*leng*c 4*leng2*c 0 -6*leng*c 2*leng”2%c;...
-a00a00;..
0 -12%c -6%leng*c 0 12*c -6*leng*c;...
0 6*leng*c 2*leng"2%c 0 -6*leng*c 4*leng"2%c];
%
% rotation matrix
%
r=[ cos(beta) sin(beta) 0 0 0 0;...
-sin{beta) cos(beta) 0 0 0 0;...
00100 0;..
0 0 0 cos(beta) sin(beta) 0;...
0 0 0 -sin{beta) cos{beta) ;...
00000 1j;
%

% stiffness matrix at the global axis
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%

k=r"*kl*r;

% consistent mass matrix
%

if ipt==1

%

mm=rho*area*leng/420;
ma=rtho*area*leng/6;
ml=[2*ma 0 0 ma 0 0;...
0 156*mm 22*leng*mm 0 54*mm -13*leng*mm;...
0 22*leng*mm 4*leng"2*mm 0 13*leng*mm -3*leng”2*mm;...
ma 0 0 2*ma 0 0;...
0 54*mm 13*leng*mm 0 156*mm -22*leng*mm:;...
0 -13*leng*mm -3*leng”2*mm 0 -22*leng*mm 4*leng"2*mm];

%

% lumped mass matrix
%

elseif ipt==2

%

ml=zeros(6,6);
mass=rho*area*leng;
ml=mass*diag([0.5 0.5 0 0.5 0.5 0]);

%

% diagonal mass matrix

%

else

%
ml=zeros(6,6);
mass=rho*area*leng;
ml=mass*diag([0.5 0.5 leng"2/78 0.5 0.5 leng"2/78]);

%

end

%

% mass in the global system

%

m=r"*ml¥*r;

0

The finite element solution is compared to the exact solution at some selected
nodes as given below:

store =

dof #
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000

exact

0.0000
0.0000
0.0000

% horizontal displ. at node 1
% vertical displ. at node 1
% slope at node 1

% horizontal displ. at node 2
% vertical displ. at node 2
% slope at node 2

279
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7.0000 0.0270 % horizontal displ. at node 3
8.0000 0.0000 % vertical displ. at node 3
13.000 0.1080 0.1080 % horizontal displ. at node 5
14.000 -0.0001 % vertical displ. at node 5
15.000 -0.0036 -0.0036 % slope at node 5
16.000 0.1080 % horizontal displ. at node 6
17.000 -0.0386 % vertical displ. at node 6
18.000  -0.0040 % slope at node 6
19.000 0.1080 0.1080 % horizontal displ. at node 7
20.000 -0.0801 -0.0801 % vertical displ. node 7
21.000 -0.0042 -0.0042 % slope at node 7

8.10 MATLAB Application to Eigenvalue Analysis

Eigenvalue problems of a beam or a frame structure are solved using the finite
element method written in MATLAB programs. The m-files described in the previous
section compute both the element stiffness and mass matrices so that they are used
in the present programs in order to compute the natural frequencies of a beam or a

frame structure. To thigs end. we need to assemble element stiffnese and mase matrices

AACNRLIAT Dviuavviaiis. Varaid Ladlay YV RaTUAL VS GRISULILAT TATALIVAAY SUaaiiitany Tupala 1AW iiilevua allalr

into the system stiffness and mass matrices. One m-file used here is
feaplycs.m : application of constraints to both mass and stiffness matrices

This m-file modifies the eigenvalue matrix equation with given constraints. Instead
of redimensioning the matrix size because of the constraints, the original matrix size
is conserved. However, the modified eigenvalue matrix equation will contain fictitious
zero eigenvalues in the same number of the constraints. As a result, the user should
exclude these zero eigenvalues from the computer solution. Except for these, the
structure of computer programs is the same as that in examples in the last section.
The following examples show the computer programs written in MATLAB to compute
the natural frequencies.

& Example 8.10.1 Find the natural frequencies of a free beam of unit
length. It has a cross-section 1 by 1 and it has also mass density of 1. The
elastic modulus of the beam is 12. All the units are consistent. Use 4 elements
to model the whole beam so that nonsymmetric mode shapes can be included.
Use Hermitian beam elements and consistent mass matrices. The computer
program is listed below:

4

% EX8101.m: MATLAB program to find the natural frequencies of a free
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% beam using Hermitian elements

%

% Variable descriptions

% k = element stiffness matrix

% m = element mass matrix

% kk = system stiffness matrix

% mm = system mass matrix

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions
% beval = a vector containing boundary condition values associated with

% the dofs in bedof

%

nel=4; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=(nnel-1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=12; % elastic modulus
xi=1/12; % moment of inertia of cross-section
rho=1; % mass density
tleng=1; % total length of the beam
leng=tleng /nel; % uniform mesh (equal size of elements)
area=1; % cross-sectional area
ipt=1; % flag for consistent mass matrix
kk=zeros(sdof,sdof); % initialization of system stiffness matrix
mm=zeros(sdof,sdof ); % initialization of system mass matrix
index=zeros(nnel*ndof,1); % initialization of index vector
for iel=1:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofs for each element
[k,m]=febeam1(el,xi,leng,area,rho,ipt); % compute element matrices
kk=feasmbl1(kk,k,index); % assembly of system stiffness matrix
mm=feasmbl1(mm,m,index); % assembly of system mass matrix
end

fsol=eig(kk,mm); % solve the eigenvalue problem
fsol=sqrt(fsol) % print circular frequencies
%

The finite element solution is compared to the exact solution below:

mode # fem sol exact
0 0.0000 0.0000 % rigid body mode
1 0.0000 0.0000 % rigid body mode
2 22.400 22.373 % first non-zero circular frequency
3 62.060 61.673 % second non-zero circular frequency
4 121.86 120.90 % third non-zero circular frequency
5 223.29 178.27 % fourth non-zero circular frequency

As seen in the comparison, the two solutions agree well for lower frequencies.
However, the discrepancy becomes larger for higher natural frequencies. In order
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to obtain more accurate higher modes, the finite element model should have a
refined mesh to represent the corresponding mode shapes properly. As a result,
if we want to improve the fourth non-zero frequency in this example, we need to
refine the mesh. §

& Example 8.10.2 Find the natural frequencies of a cantilever beam whose
length is 1 m long. The beam has the cross-section of 0.02 m by 0.02 m and the
mass density is 1000 Kg/m>. The elastic and shear modulii are 100 GPa and 40
GPa, respectively. Use 4 elements. The MATLAB program is shown below.

oz
/0

% EX8102.m: MATLAB program to solve the natural frequencies of
% a beam using beam elements with displacement degrees of

% freedom only

%

% Variable descriptions

% k = element stiffness matrix

% kk = system stiffness matrix

% m = element mass matrix

% mm = system mass matrix
% index = a vector containing system dofs associated with each element
% bedof = a vector containing dofs associated with boundary conditions

o7

nel=4; % number of elements
nnel=2; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nnel-1)*nel41; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
el=100*10"9; % elastic modulus
sh=40*10"9; % shear modulus
tleng=1; % total beam length
leng=tleng/nel; % same size of beam elements
heig=0.02; % height (or thickness) of the beam
width=0.02; % width of the beam
rho=1000; % mass density of the beam
bedof(1)=1; % bottom inplane displ. at node 1 is constrained
bcdof(2)=2; % top inplane displ. at node 1 is constrained
bcdof(3)=3,; % transverse displ. at node 1 is constrained
kk=zeros(sdof,sdof); % initialization of system stiffness matrix
mm=zeros(sdof,sdof); % initialization of system mass matrix
index=zeros(nnel*ndof,1); % initialization of index vector
for iel=1:nel % loop for the total number of elements
index=feeldof1(iel,nnel,nd of); % extract system dofs for each element
[k,m]-=febeam3(el,sh,leng heig,width,rho); % compute element matrices
kk=feasmbl1(kk,k,index); % assembly of system stiffness matrix

mm=feasmbl1{mm,m,index); % assembly of system mass matrix
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end
[kk,mm]=feaplycs(kk,mm,bcdof);
fsol=eig(kk,mm);

fsol=sqrt(fsol)

L1/ A
/70

% apply the boundary conditions
% solve the matrix equation and print

The natural frequencies obtained from the finite element program are compared
to the exact solutions

mode # fem sol exact
1 200.00 203.00 % first circular natural frequency
2 1260.0 1272.0 % second circular natural frequency
3 4040.0 3562.0 % third circular natural frequency

& Example 8.10.3 Find the natural frequencies of a frame of L-shape which
is made of two beams of length of 1 m each as seen in Fig. 8.9.2. Both beams
have cross-sections of 0.01 m by 0.01 m. The elastic modulus is 100 GPa. The
beam has mass density of 1000 Kg/m3. Use 10 elements.

o
4y
% EX8103.m: MATLAB program to find the natural frequencies for a 2-D
% frame using frame elements

%

% Variable descriptions

% x and y = global x and y coordinates of each node

% k = element stiffness matrix

% kk = system stiffness matrix

% m = element mass matrix

% mm = system mass matrix

% index = a vector containing system dofs associated with each element
% bcdof = a vector containing dofs associated with boundary conditions

oz
/0

nel=10; % number of elements
nnel=2; % number of nodes per element
ndof=3; % number of dofs per node

nnode=(nnel-1)*nel+1;
sdof=nnode*ndof;
x(1)=0; y(1)=0;

x(2)=0; y(2)=0.2;
w{2Y=0¢ »{2)=0 A.
x(4)=0; y(4)=0.6;
x(5)=0; y(5)=0.8;
x(6)=0; y(6)=1;

x(7)=0.3; y(7)=1;
x(8)=0.4; y(8)=1;
x(9)=0.6; y(9)=1;

% total number of nodes in system
% total system dofs

of node 1 in terms of the global axis
of node 2 in terms of the global axis

af naode 2 in terme of the olaohal ayie
WA ALV U O BAL VL ALLW WA vl Bl\lum b

of node 4 in terms of the global axis
% x, y coord. of node 5 in terms of the global axis
% x, y coord. of node 6 in terms of the global axis
% x, y coord. of node 7 in terms of the global axis
of node 8 in terms of the global axis
of node 9 in terms of the global axis

% x, y coord.
% x, y coord.
v coord

07 -
U Ay ¥ LUULU.

% x, y coord.

% x, y coord.
% x, y coord,

283
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x(10)=0.8; y(10)=1; % x, y coord. of node 10 in terms of the global axis
x(11)=1; y(11)=1; % x, y coord. of node 11 in terms of the global axis

el=100%10"9; % elastic modulus
area=0.0001; % cross-sectional area
xi=8.3333*107(-10); % moment of inertia of cross-section
rho=1000; % mass density per volume
bedof(1)=1; % transverse deflection at node 1 is constrained
bcdof(2)=2; % axial displacement at node 1 is constrained
bcdof(3)=3; % slope at node 1 is constrained
kk=zeros(sdof,sdof); % initialization of system stiffness matrix
mm=zeros(sdof,sdof); % initialization of system mass matrix
index=zeros(nnel*ndof,1); % initialization of index vector
for iel=1:nel % loop for the total number of elements
index=feeldofl(iel,nnel,ndof); % extract system dofs for each element
nodel=iel; % starting node number for element ’iel’
node2=iel+1; % ending node number for element ’iel’
x1=x(nodel); yl=y(nodel); % x and y coordinate values of 'nodel’
x2=x(node2); y2=y(node2); % x and y coordinate values of node2’
leng=sqrt{(x2-x1)"2+(y2-y1)"2); % length of element ’iel’
if (x2-x1)==0; % compute the angle between the local and global axes
beta=pi/2;

else

beta=atan((y2-y1)/(x2-x1));

end

[k,m]=feframe2(el,xi,leng,area,rho,beta,1); % element matrix
kk=feasmbl1(kk,k,index); % assembly of system stiffness matrix
mm={easmbil(mm,m,index); % assembly of system mass matrix
end

[kk,mm]=feaplycs(kk,mm,bcdof); % apply the boundary conditions
fsol=eig(kk,mm); % solve the matrix equation and print
fsol=sqrt(fsol)

o7

Al

The numerical solutions are

mode # fem sol.
1 34 % first circular natural frequency
2 92 % second circular natural frequency
3 455 % third circular natural frequency
4 667 % fourth circular natural frequency

8.11 MATLAB Application to Transient Analysis

In the transient analysis of a structure, the equation of motion at time t is

[M1{d} + [CH{d}* + [K]{d} = {F}* (8.11.1)
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where [M], [C] and [K] are the system mass, damping, and stiffness matrices and they
are assumed to be independent of time. Superscript ¢ denotes time. We will present
the direct time integration scheme to solve Eq. (8.11.1). There are many integration
techniques which can be applied to the matrix equation. Readers may refer to Refs
[16-18]. In this section, the central difference scheme is explained because it is one of
the most popular techniques in the structural mechanics application.

There are two versions of the central difference scheme. The first method is
summarized below. Detailed derivation of this technique is provided in [16].

1. Compute system matrices like [M], [C], and [K].

2. Solve for the initial acceleration {d}° from

{d}° = [M]~! ({F}° - [CHd}° - [K{d}°)

where {d}° and {J}O are the initial displacement and velocity vector.
3. Compute the fictitious displacement at time At from

{d} =2 = {d}° — (A){d)° + &-{d}°

4. Compute the effective mass matrix.

[M] = 55[M] + 55(C]

5. Repeat 6 through 9 for each time step.

6. Compute the effective force vector.

{FY = {F} — ([K] - g2 [M]H{u} — (5=[M] - 555[C){d}~2
7. Find the displacement at time ¢t + At from

{d}*4¢ = [M]"H{FY

8. Find the acceleration at time .

{d}t = gz ({d}+2t — 2{d} + {d}*~2)

9. Find the velocity at time ¢.

{d} = Az ({dy+o1 — {ay-a1)
The second form of the central difference scheme, called summed form [19}, is described
below.

1. Repeat 2 through 4 for each time step.

2. Compute the acceleration.

{d} = [M]"*({F} - [C{d}* - [K}{d}")

3. Compute the velocity from the acceleration.

{d'}t+0.5At — {d}t—O.SAt + At{d"}t

4. Compute the displacement from the velocity.

{d}itot = {d}t +At{d}’+°'5m
The both central difference techniques are conditionally stable. The critical time step
size for stability is

Atcrit =

Tmin

- (8.11.2)
where T, is the smallest period of the discretized system with finite degrees of
freedom. Therefore, the time step size At must be smaller than or equal to this
critical size to maintain numerical stability.

Comparison of the two central difference techniques are discussed below.

(1) The first technique computes nodal displacements, velocities, and accelerations
at the same time steps while the second technique computes them at different time
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steps. That is, nodal displacements and accelerations are determined at the same time
steps but velocities are found at the middle of the time steps. As a result, in order
to compute both kinetic and strain energies, for example, at the same time step, an
interpolation technique is used for the second central difference scheme to have both
displacements and velocities at the same time steps.

(2) The first technique does not have to calculate nodal velocities and accelerations
to march along the time if a user does not need them. On the other hand, the second
technique needs to computes all of them to progress along the time.

(3) In terms of computer programming, the second method is much easier than the
first method.

(4) Both techniques require initial solutions at some fictitious time steps. The first
scheme needs the displacements at time —At while the second requires the velocities
at time —0.5A¢ to initiate the computations. The first technique has the consistent
way to determine the solution at the fictitious time step but the second technique does
not have that. Hence, the first technique can be used to find the velocity solution
at the fictitious time step for the second technique and the procedure for the second

scheme is used after that. In other words, we compute {d}~2! from the first central
difference technique. Then the fictitious velocity vector {d}~%-54? is obtained from

1N —-0.5A1 _ {d}o_{d}_m
{d} 0541 = A (8.11.3)

Numerical experimentation was conducted in Ref. [30]. Both central difference
schemes were applied to a crack propagation problem. The study showed that
solutions from the both schemes were almost identical. In the study, the fictitious
velocity for the second technique was assumed to be the same as the initial velocity
at time 0. The solution obtained with this assumption and the second method was
almost identical to the solution from the first method. The following example shows
the second central difference scheme applied to a beam problem.

% Example 8.11.1  Find the transient response of a cantilever beam whose
length is 1 m long. The beam has the cross-section of 0.02 m by 0.02 m and
the mass density is 1000 Kg/m3. The elastic modulus is 100 GPa. The beam
is initially at rest and subjected to a constant tip load of 100 N at time 0.
The following computer program uses the second central difference method to
determine the transient response. Four Hermiiian beam elements are used. The
critical time step size for this finite element system is 1.149 x 10~% sec. The
program uses At = 1 X 10~% sec. The program is listed below.

[, A

v

% EX8111.m: MATLAB program to find the transient response
% of a cantilever beam with a tip load

%

% Variable descriptions

% k = element stiffness matrix

% kk = system stiffness matrix
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% m = element mass matrix

% mm = system mass matrix

% index = a vector containing system dofs associated with each element

% bedof = a vector containing dofs associated with boundary conditions

% acc = acceleration of nodal variables

% vel = velocity of nodal variables

% disp = displacement of nodal variables

U

nel=4; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node

nnode=(nnel-1)*nel+1;
sdof=nnode*ndof;
¢l=100*10"9;

tleng=1;

% total number of nodes in system

% total system dofs
% elastic modulus
% total beam length

% same size of beam elements
% height (or thickness) of the beam

leng=tleng/nel;
x1=0.02"4/12;

area=0.004; % cross-sectional area of the beam
rho=1000; % mass density of the beam
ipt=1; % option flag for mass matrix (consistent mass matrix)
dt=0.0001; % time step size
ti=0; % initial time
tf=0.2; % final time
nt=fix((tf-ti)/dt); % number of time steps
nbc=2; % number of constraints
bedof(1)=1; % transverse displ. at node 1 is constrained
bedof(2)=2; % slope at node 1 is constrained
kk=zeros(sdof,sdof); % initialization of system stiffness matrix

% initialization of system mass matrix
% initialization of force vector

% initialization of index vector

% initialization of acceleration matrix
% initialization of velocity matrix

% initialization of displ. matrix

% initial zero velocity

% initial zero displacement

% tip load of 100

for iel=1:nel % loop for the total number of elements
index="feeldofl(iel,nnel,ndof); % extract system dofs for each element
[k,m]=febeam1(el,xi,leng,area,rho,ipt); % compute clement matrices
kk=feasmbl1(kk,k,index); % assembly of system stiffness matrix

11 (v mn 1 i das)e 072 accamhle ~F
31 00, 0L INGEX ), 70 i

mm=zeros(sdof,sdof);
force=zeros(sdof,1);
index=zeros(nnel*ndof,1);
acc=zeros(sdof,nt);
vel=zeros(sdof,nt);
disp=zeros(sdof,nt);
vel(:,1)=zeros(sdof,1);
disp(:,1)=zeros(sdof,1);
force(9)=100;

mminv=inv(mm)j; % invert the mass matrix
% central difference scheme for time integration
for it=1:nt
acc(:,it)=mminv*(force-kk*disp(:,it));

% application of constrained conditions

% time integration loop
% compute acceleration
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for i=1:nbc % loop for number of constraints
ibc=bcdof(i); % nodal dof where constraint is applied
acc(ibc,it)=0; % acceleration at the constrained dof set to 0
end

vel(:,it+1)=vel(:,it)+acc(:,it)*dt; % compute velocity
disp(:,it+1)=disp(:,it)+vel{:,it+1)*dt; % compute displacement
end

acc(:,nt+1)=mminv*(force-kk*disp(:,nt+1)); % accel. at last time step
o,

% plot of the tip deflection
o,
time=0:dt:nt*dt;
plot(time,disp(9,:))
xlabel(*Time(seconds)’)
ylabel(*Tip displ. (m)’)
%

The plot of the tip deflection is shown in Fig. 8.11.1. The tip deflection shows
an oscillation around the static deflection. Figure 8.11.1 also shows the same
deflection when the time step size is 1.15 x 10~%. Because the time step size is
larger than the critical step size, the deflection becomes unstable and diverges.

1
+

8.12 MATLAB Application to Modal Analysis of Undamped System

In this section, the dynamic analysis of multiple degrees of freedom systems
is presented and applied to beam structure examples. The multiple degrees of
freedom systems are quite different from single degrees of freedom systems in terms
of mathematical formulations and associated time responses. For multiple degrees of
freedom system, we define modes which represent each component of overall dynamic
responses. The modes are essential in describing the nature of motion and provide
physical understanding of the dynamic behavior of the system.

The modes are characterized by so-called eigenvalues and eigenvectors of the
system. The eigenvaules are related to usually natural frequencies and eigenvectors
to mode shapes of the given system. Unfortunately, these eigenvalues and eigenvectors
are limited mostly to linear systems. This limitation is not significant, in fact, the
majority of the dynamic systems are represented by linear systems. There are also
plenty of computer software tools available to linear system analyses.

Some key concepts are introduced in this section including a solution technique
for eigenvalue/eigenvector problems, which is sometimes called the modal analysis.
The time response of a system is obtained in a straightfoward manner once the modal
analysis results are ready. We consider an undamped system here and a damped
system is discussed in the subsequent section.
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Figure 8.11.1 Time Responses using Central Difference Method

For a given n degree of freedom linear second order system, the governing
differential equation of motion is described by the second order matrix equation as

MUY o [EYIA = [FY (
| Kot I Seadll BN Kol B Sl Bl Y | \

o

19 1)
1L.1)

We seek to find the natural motion of the system, i.e. response without any forcing
function. The form of response or solution is assumed as

{d(t)} = {¢} ™ (8.12.2)

where {¢} is the mode shape (eigenvector) and w is the natural frequency of the
motion. In other words, the motion is assumed to be purely sinusoidal due to zero
damping in the system. The general solution turns out to be a linear combination of
each mode as

{d()} = cr{$r}e™ + ca{ga}e™ + .-+ ca{gn}e™"’ (8.12.3)

where each constant(c;) is evaluated from initial conditions. Substituting Eq. (8.12.2)
into Eq. (8.12.1) with {F} = 0 yields [31,32]

(—w?[M] + [K]){}e™* = 0 (8.12.4)

The above equation has a nontrivial solution if (—w?[M] + [K]) becomes singular. In
other words, there exist n number of ws which satisfy

| - *[M]+[K]l = | - AlM] + [K]| =0 (8.12.5)
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where A = w? is the eigenvalue of the system. Equation (8.12.5) produces solutions,

wf,wi, ..., w2. Since the mass matrix is positive definite and the stiffness matrix is
at least positive semidefinite, all w;s are nonnegative. This can be easily proven from

wi[MH{¢:} = (K1{¢:} (8.12.6)

for the i*" eigenvalue and eigenvector. Let us multiply {¢;}T on both sides of the
equation

wi {8 YT [M{ i} = {6} (KN} (8.12.7)

According to the general property of mass and stiffness matrix in the form
{x} [MH{x} >0, {x}T[K]{x} >0 for {x} #0

In addition, the eigenvectors are orthogonal to each other, which can be easily shown
from

wiM{éi} = [K]{$:} (8.12.8)
wi[M]{g;} = [K)}{¢5} (8.12.9)

For proof, we premultiply {¢;}T on both sides of Eq. (8.12.8) and subtract the
transpose of Eq. (8.12.9) which is post-multiplied by {¢:}. The result becomes

(wf —w){8;} [MI{¢i} = {5} (K¢} — {5} [K]{¢s} =0 (8.12.10)
Therefore, if 1 # j

{6} (M{oi} = {¢;}7 [K]{:} =0 (8.12.11)

and the eigenvectors are orthogonal with respect to the mass and stiffness matrices.
The above orthogonality property includes systems with non-repeated rigid body
degrees of freedom. For multiple rigid body modes, for example a three dimensional
translational motion, a special form of orthogonality exists (see Ref. [16] for the
special form). Orthogonality of eigenvectors in conjunction with positive and positive
semidefiniteness of mass and stiffness matrices of a vibrational system is one of the
distinct features of linear dynamic systems.

The orthogonality of eigenvectors provides a useful normalization technique in
the form

{8:}Y [M){¢:} =1, {6; Y [K){¢:} = o} (8.12.12)
Once the eigenvectors are normalized, the following coordinate transformation is
proposed
{d} = [@] {n} (8.12.13)
where
[Q] = [¢13 ¢2a R an] (81214)

is called modal matriz whose columns consist of normalized eigenvectors, and {} =

[m,%2,-..,ma]7 is the vector of modal coordinates. Substitution of Eq. (8.12.14) into
Eq. (8.12.1) yields

[M][@]{n} + [K][®] {n} = {F} (8.12.15)
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Next, we premultipy ®7 on both sides of Eq. (8.12.15), so that

[®]7 M[®){n} + [)7 [K][®] {n} = 7 {F)} (8.12.16)

According to the orthogonality in Eq. (8.12.12), Eq. (8.12.16) can be rewritten as

{n)} + diaglw?] {n} = T {F} = {£i} (8.12.17)

In other words, the system of equations are decoupled.
i+ win = f; (8.12.18)

wherei = 1,2,...,n, and f; is the i'" row of 87 {F}. Equation (8.12.18) represents the
modal coordinate form of equations of motion, for which each independent vibrational
mode is described by a decoupled second order differential equation. The modal
coordinate equations are so useful since they provide the analytical solution for each
mode. Also, the input function into the i** modal coordinate (f;) represents how
much the mode is excited from the external input.

& Example 8.12.1  Consider a2 Euler-Bernoulli beam model with one end
fixed as in Fig. 8.12.1. For simplicity, the beam is modeled by two finite elements
using the consistent mass matrix. The numerical data for the structure are p
(linear mass density)=0.024 kg/m, EI=6.09 N-m?, and L=1.27 m. A MATLAB
m-file called femodal.m produces the following mass and stiffness matrices after
applying the boundary condition

0.0929 0 0.0161 —0.0967
0 1.4881  0.0967 —0.5580

MI=1 00161 00967 00464 —0.1637
—0.0967 —0.5580 —0.1637 0.7440
and
00052 0  —00026 0.0326
K=10tx | O 1.0880 —0.0326 0.2720

-0.0026 —0.0326 0.0026 —0.0326
0.0326 0.2720 -—0.0326 0.5440

The corresponding degrees of freedom for these matrices are {v; 81 vs 02} as
shown in Fig. 8.12.1. The natural frequency and modal matrix are computed
from the MATLAB function file femodal.m as follows

Wi 3.6692 —1.3594 -2.9157 —0.4570 1.9102
wo | _ ) 23.1786 8] = —0.0931 0.0351 0.6871 0.7852
ws [ ) 783943 [’ | —4.0039 4.0394 —4.4925 7.5441

Wy 227.5337 —0.1102 0.3890 -0.8665 2.9165
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Figure 8.12.1 Two Elements Beam Model
and the modal input force matrix
[®)T{F} = [-4.0039 4.0394 —4.4925 7.5441)T
where the original input influence matrix is given by
{F}=[001 O]T
The MATLAB source file is provided below as a reference
function [Omega,Phi,ModF]=femodal(M,K,F);
%
% Purpose
% The function subroutine femodal m calculates modal parameters
% for a given structural system. It calculates natural frequency and
% eigenvector. The eigenvectors are normalized so that the modal
% mass matrix becomes an identity matrix.
%
% Synopsis:
%  [Omega, Phi, ModF]=femodal(M,K,F)
%
% Variable Description:
%  Input parameters -
% M, K - Mass and stiffness matrices
% F - Input or forcing function
%  Output parameters -
02\ nmnnn - NQ’QI”] ""‘nﬂ“ﬂ“l“r/"nA ll;‘ﬂl"\ im ,ﬂf‘ﬁ“t“lhﬂ ﬂ"l‘ﬂ"
Fatl lel\,su AVCLvUL v &l\a\i“\oll\‘., \lwl D\o\.a’ 4AL (m\o\lllu.llls WLALW L
% Phi - Modal matrix with each column corresponding to
% the eigenvector.
% ModF - Modal input matrices.
disp(’ 9)

disp(’Please wait!! - The job is being performed.’)
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o
% Solve the eigenvalue problem and normalized the eigenvectors
%
[n,n]=size(M);{n,m]=size(F);

[V, D]=cig(K,M);
[lambda,k]}=sort(diag(D)); V=V(:,k);
Factor=diag(V*M*V);
Phi=V*inv(sqrt(diag(Factor)));
Omega=diag(sqrt(Vnorm’*K*Vnorm));

Modf=Vnorm’*F;

o7
/0

Note that each modal coordinate or finite element degree of freedom can be taken
as the output variables of femodal.m

t

In order to find out the solution to Eq. (8.12.18), the Laplace transformation
technique is used.

n(s) = s”‘ﬁ‘?f wﬁi(o) s;f flz (8.12.19)

where 1;(0) and #;(0) are related to the initial conditions as explained below. Taking
the inverse Laplace transform of Eq. (8.12.19) yields the time domain solution
. 1 1
ni(1) = 17:i(0)cosw;t + -n'(—o)sinwit + [ —sinw;(t — ) fi(T)dr (8.12.20)

g Jo wi

As one might have expected, the solution consists of two parts: 1) excitation by initial
condition and ii) response due to the external forcing input. The convolution integral
in the solution is not easy to evaluate in general, except for some special cases such
as impulse and step inputs.

As shown above the initial conditions (73(0), 7;(0)) for the modal coordinate
are needed for the complete solution. This information can be directly obtained from
the original transformation equation, Eq. (8.12.13). That is,

{d(0)} = [&] {n(0)} (8.12.21)
so that
{n(0)} = (@7 [M)[2] {d(0)} (8.12.22)
{10} = (@] [M)e) {d(0) } (812.23)

Now the solution of each modal coordinate is combined together to produce the
solution in physical coordinates.

{d()} = [®] {n(t)} (8.12.24)
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Figure 8.12.2 Impulse Responses by Modal Analysis

In other words,

d,-(t):qu,-,-q,-(t), for i=1,2,...,n (8.12.25)

& Example 8.12.2 In this example, the same model is used as in Example
8.12.1 to demonstrate the evaluation of impulse response of the beam. The
impulsive force is applied at the tip of the beam. The analytical solution,
Eq. (8.12.20), is incorporated into a MATLAB m-file feiresp.m. The initial

conditions, {d(0)} and {d(0)} are set to zero.

The time response results are presented in Fig. 8.12.2. Note that the response
time interval is so critical to show higher modes in the response. If the time
interval is too large, higher modes will not show up in the response. This issue
will be discussed later in frequency response analysis in Sec. 8.14.

The source MATLAB m-file is presented below:

function [eta,ylm]—feu:esp(M K,F,u,t,C,q0,dq0);
%
% Purpose:

%  The function subroutine feiresp.m calculates impulse response
%  for a given structural system using modal analysis. It uses modal

%  coordinate equations to evaluate modal responses anaytically, then
%  convert modal coordinates into physical responses

%
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% Synopsis:

%  [eta,yim]=feiresp(M,K,F,u,t,C,q0,dq0)
%

% Variable Description:

%  Input parameters -

% M, K - Mass and stiffness matrices
% F - Input or forcing function

% u - Index for excitation

% t - Time period of evaluation

% C - Output matrix

% q0, dq0 - Initial conditions

%  Output parameters -

% eta - modal coordinate response

% yim - physical coordinate response
%

disp(’ %)

disp(’Please wait!! - The job is being performed:’)
oz

AN

% Solve the eigenvalue problem and normalized the eigenvectors
%
[n,n}=size(M);[n,m]=size(F);
nstep=size(t’);

[V,D]=eig(K,M);
(lambda,k}=sort(diag(D)); V=V(:,k);
Factor=diag(V*M*V);
Vnorm=V*inv(sqrt(diag(Factor)));
omega=diag(sqrt(Vnorm’*K*Vnorm));
Fnorm=Vnorm’*F;

[+/4
/0

% Find out impulse response of each modal coordinate analytically

o
eta0=Vnorm’*M*q0; deta0=Vnorm’*M*dq0; eta=zeros(nstep,n);
for i=1:n phase=omega(i)*t;
eta(:,i)=etal(i)*cos(phase’)+detal(i)*sin(phase’)/omega(i)+...
sin(phase’)*Fnorm(i,u);

end

% Convert into physical coordinates

yim=C*Vnorm*eta’;

o
/0
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8.13 MATLAB Application to Modal Analysis of Damped System

For a n degree of freedom system with inherent damping, the governing equation
of motion can be written as

[M1{d} + [C}{d} + [K]{d} = {F} (8.13.1)

where [C] is a n by n damping matrix. The above system is stable due to the
introduction of the damping term as explained below. The damping can be classified
into inherent structural damping or damping by active control. The stability of the
above system can be discussed by taking the total energy(kinetic plus potential) of
the system

1. . . 1
U = S {d}T[M{d} + S {d}"[K]{d} (8.13.2)
Assuming free vibration with {#}=0, the time rate of change of U becomes

D = ()T (1) + [K)d)) (8.13.3)

furthermore, using Eq. (8.13.1)
av

— =~ 1d)7[C}{d} (8.13.4)
Therefore, as long as the damping matrix [C] satisfies
{d}[CH{d} >0, for {d} #£0 (8.13.5)
it follows
dU
- 13.
o < 0 (8.13.6)

and the system is stable with respect to the equilibrium state ({d},{d}) = (0,0).
Estimating the damping matrix for a physical system is not easy in general. There
are some methods of modeling the damping matrix. One of the special cases is to use
so-called proportional damping or Rayleigh damping in the form

[C] = a[M] + BK] (8.13.7)

where o« and (@ are constants. In other words, the damping matrix is proportional
to the mass and/or stiffness matrix. The proportional damping has an advantage of
possessing the same characteristic as the mass or stiffness matrix. The eigenvectors
obtained from the mass and stiffness matrices conserve orthogonality with respect to
the damping matrix. That is

{6:}7[C){¢;} =0, for i#j (8.13.8)

and [®]7 [C][®] becomes a diagonal matrix. Now, the original governing equation, Eq.
(8.13.1), can be rewritten in the modal coordinate form

i + 2wins +wini = fi (8.13.9)
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Application of the Laplace transform yields

#%(0) + (5 + 2Gwi)n(0) + fi(s)

ni(s) = ERTTI :I-wz) = (8.13.10)
The inverse Laplace transform of 7;(s) becomes
—(iw; ; C%' —{iwit
ni(t) =ni(0)e (it oogwat + (17:(0) — —===m:(0))e~*“**sin(wqt)
vVi-¢
t
+ 1 e Wil ginwg(t — ) f(7)dr (8.13.11)

Wa Jo

where wy = w;y/1 — (7 is the damped natural frequency and w; is the undamped
natural frequency. In most practical cases, the modal damping ratio (; is less than
unity so that the damped natural frequency is smaller than the undamped natural
frequency. The modal coordinate solution in Eq.(8.13.11) can be used to produce the

alludal LU uiitauo LluUlbLilall 11 Ly Laull L) TOUILIL.C

solution of the physical coordinates

{d()} = [@]{n(*)} (8.13.12)

where [®] is the modal matrix obtained from the damped system.

& Example 8.13.1 In this example, we test the impulse response of a damped
system. The system damping matrix is assumed as a proportional damping,
and the mass and stiffness matrices are the same as in Example 8.12.1. The
proportional constants are chosen as @=0.2, #=0.005. The same unit impulsive
force at the tip, as in Example 8.12.1, is applied. A MATLAB fediresp.m file is
written as presented below.

The simulation results are presented in Fig. 8.13.1. They show the damped
responses at the two different positions of the beam.

function [eta,yim]=fediresp(M,K,F,u,t,C,q0,dq0,a,b);
%
% Purpose:

%  The function subroutine fediresp.m calculates impulse response

%  for a damped structural system using modal analysis. It uses modal
%  coordinate equations to evaluate modal responses anaytically, then
%  convert modal coordinates into physical responses

%

% Synopsis:

%  [eta,yim]=fediresp(M,K,F,u,t,C,q0,dq0,a,b)

%

% Variable Description:

%  Input parameters : M, K - Mass and stiffness matrices

% F - Input or forcing influence matrix

% u - Index for excitation
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Figure 8.13.1 Impulse Responses for a Damped System

% t - Time of evaluation

% u - Index for the excitation

% C - Output matrix

% q0, dq0 - Initial conditions

% a, b - Parameters for proportional damping [C}=a[M]+b[K]
%  Output parameters : eta - modal coordinate response

% yim - physical coordinate response

disp(’ 3)

disp("Please wait!! - The job is being performed.’)

L4l

% Sclve the eigenvalue problem and normalized the eigenvectors

[n,n}=size(M);[n,m]=size(F);
nstep:size(t’);
[V, D]=eig(K,M);

[lambda,k]=sort(diag(D)); % Sort the eigenvaules and eigenvectors
V=V(;k);

Factor=diag(V’*M*V);

Vaorm=V*inv(sqrt{diag(Factor))); % Eigenvectors are normalized
omega=diag(sqrt(Vnorm’*K*Vnorm)); % Natural frequencies
Fnorm=Vnorm’*F;

%

% Compute modal damping matrix from the proportional damping matrix

%
Modamp=Vnorm™*(a*M+b*K)*Vnorm;
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zeta=diag((1/2)*Modamp*inv(diag(omega)))

if (max(zeta) >= 1),

disp(’Warning - Maximum damping ratio is greater than or equal to 1)
disp(’You have to reselect a and b *)

pause
disp(’If you want to continue, type return key’)

end

eta0=Vnorm’*M*q0; % Initial conditions for modal coordinates
deta0=Vnorm’*M*dq0; % - both displacement and velocity
eta=zeros(nstep,n);

for i=1l:n % Responses are obtained for n modes

omegad=omega(i)*sqrt(1-zeta(i)"2);

phase=omegad*t;

tcons=zeta(i)*omega(i)*t;

eta(:,1)=exp(-tcons)’.*(etal(i)* (cos(phase’)+zeta(i)/sqrt(1-zeta(i) 2)*...
sin(phase’))-+deta0(i)*sin(phase’) /omegad+sin(phase’)*Fnorm(i,u)...
/omegad);

end

oz,
/0

% Convert modal coordinate responses to physical coordinate responses

of
70

yim=C*Vnorm*eta’;

[+/4
/0

8.14 MATLAB Application to Frequency Response Analysis

The previous modal analysis of a system is mainly based upon the time domain
approach. The eigenvalues and eigenvectors directly produce solutions in time domain
in the form of time response functions. Modal coordinates make it possible to derive
sets of decoupled equations of motion. Each individual modal coordinate solution is
combined to result in the physical coordinate solution. The modal analysis provides
very convenient tools for understanding behavior of multiple degrees of dynamic
systems.

Sometimes, the time domain analysis is not the best choice, especially for modal
testing and other applications. One supplementary approach is the frequency domain
analysis. The frequency domain method has major advantages over the counterpart,
i.e., time domain analysis. In fact, it is being more widely adopted in signal processing,
active control system design, modal testing, etc.

Most of the vibrational systems can be characterized by their inherent frequency
components which dictate both time and frequency responses. One key advantage of
the frequency domain analysis is that one can span a whole range of frequencies
which is not possible or impractical in the time domain analysis. Conversion of time

domain signals into frequency domain signals and vice versa is relatively easy due
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to the modern computational power. In this section, discussion on the frequency
domain analysis is presented. The Fast Fourier Transform (FFT) and evaluation of
the frequency response function for multiple degrees of freedom systems are presented.
Consider a general continuous time domain signal given by z(t). The signal z(%)
can be periodic or nonperiodic. It can be represented in the following expression

(1) = o- /_ 7 X(Q)eidn (8.14.1)

where X (2) is the Fourier transform of the time signal z(t)

X(Q) = jm z(t)e M dt (8.14.2)

-0

The time signal z(t) is also called the inverse Fourier transform of X (). For the
existence of the Fourier transform the following condition should be satisfied for z(t):

f ” le())de (8.14.3)

— 00

should have a finite value. The above constraint is not strict in the sense that it covers
a wide range of signals of actual dynamic systems. On the other hand, introducing a
new variable f = /2, we have

(1) = J[ " X(f)e'P N df (8.14.4)
and -
X(f) = / z(t)e~* @™ ) dt (8.14.5)

Since the Fourier transform involves integral of general time varying complex vari-
ables, it is not easy to carry out the integration. Except for some special cases, a
numerical integration technique is needed. One efficient algorithm is to use the Dis-
crete Fourier transform. The numerical integration is conducted by a finite number
of summation at discrete points.

Assume that there are N sampled values as

zr=2(ty), te=kAt, £=0,1,2,...,N—1 (8.14.6)

Based upon the sample data points, we assume that the time domain data project
into the corresponding frequency domain data. In other words, the Fourier transform
is defined for the N discrete frequency points.

(fl: f2 s---,fN) (8147)

where the frequency points should be in the range of the so-called Nyquist critical
frequency

1
fc - E (8148)
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In other words, the sampling period (At) should be at least a half of the period of a
signal to sufficiently represent the signal.

N-1

X(fa) = / ()P I ntdt ~ Dz AL (8.14.9)
el k=0

The above equation is called the Discrete Fourier transform. The Discrete Fourier

transform (DFT) has the symmetry property with respect to the input frequency (f,).
In other words,

X(fn)zx(fN-n), fn

n N N
=NAp; "T gy (8.14.10)
and only a half of the transform is needed to represent all frequency components. The
maximum frequency rage is given by

1
0 — .14.
<f< 5As (8.14.11)

An enhanced version of the DFT is called Fast Fourter Transform (FFT) which

improves computational efficiency significantly. It turns out that ¢*(?"f=t+) term in Eq.
(8.14.9) repeats over the frequency range, and the FFT makes use of this property.
The FFT algorithm is implemented in a number of computer software packages and
being used in many different areas. The algorithm is known to be highly efficient
in terms of number of numerical operations. The number of operations for FFT is
(N/2)logaN when compared to N? for DFT. The detailed discussion on the FFT is
available in Refs. [16,33].

& Example 8.14.1 The same model used in Example 8.12.1 and the impuise
response results in Example 8.12.2 are used in this example to demonstrate
the FFT. A MATLAB fefft.m file is written and the input data include both
time response data and the sampling time interval. The sampling time interval
is transformed into the corresponding frequency scale based upon the Nyquist
critical frequency using Eq. (8.14.20). The number of data points in the FFT
should be power of 2. Otherwise, the MATLAB built-in function fft fills the
discrepancy with blank data. Figure 8.14.1 represents both the time domain
impulse response and the corresponding FFT results. Also, provided below is
the MATLAB source file for fefft.m

function {yfft,freq]=fefft(y,t)
%
% Purpose:

%  This function subroutine calculates Fast Fourier Transform (FFT)
%  using the time domain signal. The time domain data are provided
%  with corresponding time interval.
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Figure 8.14.1 Impulsive Time Response and FFT

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

[/ 4

Synopsis:
[vf, freq]=fefft(y,t)

Variable Description:
Input parameters -
y - Time domain data n by 1
t - Time interval for y of n by 1 size
Output parameters -

yf - Absolute value of FFT of the time domain data y

freq - Frequency axis values

Notes:

The number of data points for y should be power of 2, and

truncation is needed to achieve the requirement

70

%
%

Compute number of data points and sampling time interval

o7
/0

ntime=max(size(t));
dt=(t(1,ntime)-t(1,1))/ntime;

o7
/0
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% Extract data points at the power of 2. Truncate extra data points
% so that the final number of data points is in the power of two and
% also as close as possible to the given number of data points

o
N=fix{log10(ntime)/logl0(2))

% Calculate FFT of the time domain data and take absolute value
yfit=fit(yN(1:2°N,:));

yfit=abs(yfft(1:2"N/2,:))*d¢;

o

v

% Set up the frequency scale from the given sampling interval.
% Apply the Nyquist criterion to establish the maximum frequency.

%

freq0=0;

freqf= (1/dt)/2; % Maximum or final frequency value
df=freqf/(2"N /2); % Frequency interval
freq=0:df:freqf-df; % Frequency axis values

4y
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Problems

A 4 ft beam is subjected to a uniform load 10 Ib/ft and clamped at one side and

simply supported at the other side. The beam has elastic modulus of 10x10°
psi and square cross-section of 2 m. by 2 in. Determine the system stiffness
matrix and column vector using two equal size Hermitian beam elements. Find
the maximum deflection.

Redo Prob. 8.1 using the linear Timoshenko beam elements.
Redo Prob. 8.1 using the linear mixed beam elements.

Redo Prob. 8.1 using the linear beam elements with displacement degrees of
freedom only.

A beam is 6 in. long, 0.2 in thick and 0.1 in wide as seen in Fig. P8.5. It is
subjected to a concentrated moment and a linear pressure load. (a) Construct
the system stiffness matrix and system column vector using the Hermitian beam
element, (b) apply the boundary conditions, and (¢) determine the maximum
deflection and bending stress. Use E=10x10° psi.

One beam element is loaded as seen in Fig. P8.6. Determine the element load
vector using the Hermitian beam element.

A Hermitian beam element is loaded as shown in Fig. P8.7. Find the element
column vector.

Redo Prob. 8.5 using the linear Timoshenko beam element.

Redo Prob. 8.6 using the linear Timoshenko beam element.

Redo Prob. 8.7 using the linear Timoshenko beam element.

Repeat Prob. 8.1 using the provided computer programs with 10 elements.
Repeat Prob. 8.2 using the provided computer programs with 10 elements.
Repeat Prob. 8.3 using the computer programs with 10 elements.

Repeat Prob. 8.4 using the computer programs with 10 elements.

Find the natural frequencies of a beam simply supported at both ends as well as
at the center of the beam. The beam is 1m long, 2cm thick, and 1lem wide. It
has elastic modulus 10® Pa and density 400Kg/m?. Use 10 Hermitian elements
with the provided computer programs.

A simply supported beam is subjected to aload at the center with a sine function
The beam is 2m long and 4cm thick and 2cm wide. Beam has also elastic
modulus of 50GPa and density 2000Kg/m?. The applied load is 1000sin(mt)N
If the beam is initially at rest, find the motion of the center of the beam usin,
10 Hermitian beam elements and provided computer programs.
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M=10 lb-in, 4 b/in,

S

)IﬂEln.ﬂ'= 2 in _IEEin. ’I

Figure P8.5 Problem 8.5

/A/fr rBNTm‘ L] Jowrm

]
1

I‘ Im + im ’l

Figure P8.6 Problem 8.6

Figure P8.7 Problem 8.7

8.17 A frame structure is shown in Fig. P8.17 with the applied load. The frame
is made of a circular cross-sectional beam whose diameter is 0.05m. Elastic
modulus of the beam is 200GPa. Find the nodal deflection using the computer
programs when the frame is subjected to a concentrated force as seen in the

figure.
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ELASTICITY PROBLEM

9.1 Plane Stress and Plane Strain

First of all, we derive the basic equations for theory of elasticity. Considering
the free body diagram of the infinitesimal element as shown in Fig. 9.1.1, summation
of forces in the horizonta.l and vertical axes become

o
Z F, = (o',:+ )da:dy opdrdy+(Tyy+ ;y Ydzdy—r7pydedy+ fodzdy = 0 (9.1.1)

and

8
Y Fy = (ry+ (;;y)d:cdy—rzydmdy+(a'y+——)d:cdy oy dedy+f,dedy =0 (9.1.2)

where f, and f, are body forces per unit area (or per unit volume assuming unit
thickness perpendicular to the plane) in the z- and y-axes which are assumed to be
positive when acted along the positive axes. All the stress components in Fig. 9.1.1
are shown as positive. Simplifying these expressions yields equations of equilibrium
as given below:

do ar,
—r 'y —_
9z 4 By + fe=0 (9.1.3)
Brx doy
B = 4 By +f,=0 (9.1.4)

The next set of equations is the constitutive equaiion. This set of equations
states the relationship between the stresses and strains. For an isotropic material, the
constitulive equation becomes

{c} = [D}{e} (9.1.5)

where {0} = {0, 0y 75y }T denotes the stress and {¢} = {€; ¢, Yry}” is the strain.
The material property matrix [D] becomes

E 1 v 0
Dl=—|v 1 o (9.1.6)

1 v 1—v

0 0 L

307
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Figure 9.1.1 Free Body Diagram of Two-Dimensional Body

for the plane stress condition. Here, E and v are elastic modulus and Poisson’s ratio,
respectively. For the plane strain condition, matrix [D] becomes

E(1-v) L 0

D] = - s 1 0 9.1.7

D] (14 v)(1-20) 10” 0 1-2v ( )
2(1-v)

The kinematic equations, which relate strains to displacements, are

f=1_| %—E ] (9.1.8)
i')’:yj i%"ﬁ“:%j |

where u and v are displacements in the £ and y directions, respectively. Combining
Eqs (9.1.3), (9.1.4), (9.1.5) and (9.1.8) has eight unknowns (three stresses, three strains
and two displacements) for eight equations (two equilibrium, three constitutive, and
three kinematic equations).

Boundary conditions are either essential (or geometric) or natural (or traction)
types. Essential conditions are prescribed displacements and natural boundary
conditions are prescribed tractions which are expressed as

By = 0oy + Toyny = Oy (9.1.9)

&y = 7pyny +oyny = By (9.1.10)

where n; are ny are direction cosines of the outward unit normal vector at the
boundary; and @ is the given traction value.

In order to develop the finite element formulation for the elasticity problem, let
us apply Galerkin’s method. The energy method is used to derive the finite element
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formulation in a next section. Applying the weighted residual method to Egs (9.1.3)
and (9.1.4) and writing them together give

do aT.r!
/ ! dQ+] {“’lf“’}dn—/ {wl‘px}drzo (9.1.11)
n n r.

W 872y doy W?fy w2¢y
bz oy

where T'. is the boundary for essential condition and w; (i = 1,2) is the weighting
function. '

Applying integration by parts to the terms in the first integral in Eq. (9.1.11)
yields

_aﬂlo- +.6_2)J.T 6
[ [ 550t oy e dQ+/{w1f”}dQ+/ {‘”1-”}dr=0 9.1.12

where T, is the boundary for natural conditions and Equations (9.1.9) and (9.1.10)
are used to come to Eq. (9.1.12). Equation (9.1.12) can be rewritten as

Buw, 0 Suw, Cg =
3 By _ wi fr w1 Py
/n[ 0 = T‘?]{%}dﬂ—f:z{wzfy}dﬂ+/,,{w2¢y}dr (8.1.13)

]
D

Substitution of the constitutive equation into Eq. (9.1.13) results in

Buwy 0 Bwy (€ ) x
dz ] w1 fo w1 P,
D d) = dQ2 = dl’ (9.1.14
AL ]{;jy} Lok e [ {25 o 119

Q@
<

One more substitution of the kinematic equation into Eq. (9.1.14) gives

du
8wy g 8w 8z x
Bz ) oy w1 fr w19,
w0 o | 1D rm dQ:—./{ }dQ—i—[{ —}dI‘
v/(.)lo aa aaxl[]{@?@} Q w2 fy | wa Py
8y oz

(9.1.15)
Let us discretize the domain using linear triangular elements as seen in Fig. 5.2.1.

Then, both displacements u and v are interpolated using the same shape functions
such as

(]
@

«

u(z,y) = Y Hi(z,y)us (9.1.16)
i=1

v(z,y) = ZH,-(z,y)v,- (9.1.17)
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These displacements can be also expressed as

ffu‘l\
U1
u _ H1 0 H2 0 H3 0 U9 .
{v}"lO H 0 H, 0 H3]<u2>—[N]{d} (9.1.18)
us
\ U3 /

where {d} = {u; v; us vy us vs3 }T is the nodal displacement vector. Use of
this expression for strains yields

0 &L g ]
T
_ n OH, 0 OH, n 8Hs | r n
= v 8y 3y v oy | 12f
du y By 8H, @8H, 8H, @8H, 8H; 6H;
Ay 8y oz oy ox 8y 8z

_

Slegl
a—
—|

"
o

S

o~
«©
—
s
o)
-

We use symbol [B] to denote the matrix expression in the above equation. That is,

{f}={ 3—3 }=[B]{d} (9.1.20)

du v
oy t 8z

Galerkin’s method states wy = H; (i = 1,2,3) and wp = H; (i = 1,2,3).
Applying these weighting functions and Eq. (9.1.20) into Eq. (9.1.15) gives for the
finite element domain integral

/n (B [D)[BldQ{d} (9.1.21)

in which Q¢ denotes the element domain. As a result, the element stiffness matrix for
elasticity can be expressed as

[K®] = ]9 ‘ [B)T[D][Bld% (9.1.22)

Equation (9.1.22) holds for any kind of element in any dimension.
Evaluation of the linear shape function provides

1 [(yz — ¥3) 0 (ya— 1) 0 (¥1 — ¥2) 0 '|
[B]:;_E 0 (z3 — z5) 0 (21 — z3) 0 (22 — 1)
(za=22) (—s) (@1-23) (ws—m) (22—31) (31—v2)
(9.1.23)
Substitution of Eq.(9.1.23) into Eq. (9.1.22) results in

[K*] = /ﬂ [BI7[DI[BlI = [B]7(D][BlA (9.1.24)
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since both [B] and [D] are constant matrices independent of # and y. Here A is the
area of the element. This expression is true for both plane stress and plane strain
conditions. The material property matrix [D] is selected properly for plane stress (i.e.
Eq. (9.1.6)) and plane strain (i.e. Eq. (9.1.7)) conditions. We assume a unit thickness
for the plane stress condition because the solution is independent of the thickness
direction for this case. However, if we want to include the thickness, the matrix in
Eq. (9.1.24) is multiplied by the thickness. When other kinds of shape functions
are used for the plane stress/strain condition, we just need to develop matrix [B] as
shown in Eq. (9.1.20) and put it into Eq. (9.1.22). The size of row of [B] is always
three for the plane stress/strain condition while the size of column equals twice the

are +“1n Aanrnao nf Freodnarma ner nnda

A]n ant h 110 o
€ diT Lwy UCERICTO Vi irecaoms Mor uulac,

mhar of nade acalge
lLulllUCl v IIU\ACD P‘-l TITIITCIIL oLvaune

9.2 Force Vector

The two right-hand-side terms in Eq. (9.1.15) are the force vector. The first
term is due to body forces and the other is due to tractions. The body force term is a
domain integral. As a result, the same computation can be performed to this term as
the stiffness matrix. Applying Galerkin’s method to this term in an element domain

yields

= [ {oko= [0 25 = [ {f}e o2

where [NV] is defined in Eq. (9.1.18).

On the other hand, the traction vector is a boundary integral. This boundary
integral is very similar to what is described in Sec. 5.4. Let us consider a traction as
shown in Fig. 9.2.1. The traction term can be evaluated as given below:

] sSn 0y
— w1 s _ [ 0 Tf.“_;,’: @,
{®} —-/r,.{wz%}dr—/,m PR 5, ds (9.2.2)
0 :n——”m

where s,, and s, are the coordinate values along the temporary boundary axis s, and
m and n are the two nodes on the element boundary where the traction is described.
If the traction is constant, the traction vector becomes

Uyn sd§c030
vm | _ 1 ) s4®sind
tn [~ 2] sa®cosd (92.3)
U sq®Psind

in which 84 = s, — s,,, is the length of the boundary segment and ® is a constant
traction value.
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& Example 9.2.1

Chapter 9

Find the nodal displacements in Fig. 9.2.2. We use two

linear triangular elements as seen in the figure. Each element is also shown in a

separate figure indicating global node numbers and local node numbers necessary

for construction of the element stiffness matrix. Using the plane stress condition,

the element stiffness matrix for the first element is given below along with the

associated nodal displacements:

K1{d'} = 10°

r 73 33 53 -20 -20 -—1.3} (U )
33 73 -13 -20 -20 -53 v
-53 -13 53 00 00 13 Jus |
-20 -20 00 20 20 0.0 v3
-20 -20 00 20 20 0.0 Uz

| -13 -63 13 00 00 534 v,y

e E

The stiffness matrix of the second element is the same as that given in Eq. (9.2.4)

because the two elements have the same size and shape as well as the same way

of local node numbering,

Assembling the elements and computing the nodal forces from the given traction

using Eq. (9.2.3) results in

[K1{d} =
r 7.3
3.3
~2.0
~1.3
-5.3
~2.0
0.0
L 0.0

10°

33 -20 -13 =563 -20 0.0
73 =20 -53 -13 -20 0.0
-20 73 00 00 33 -53
-563 00 73 33 00 -20
-13 00 33 73 00 =20
-20 33 00 00 73 -13
00 -53 -20 -20 -13 73
00 -13 -20 -20 -53 3.3

0.0 1
0.0
~-1.3
—-2.0
-2.0
-5.3
3.3

7.3

f Ul A
(5]
Uz
L)
%]
v3
Ug

\ V4 /
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Figure 9.2.2 Square Plate With Tangential Traction
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F3,
103
. 0 J

\ (9.2.5)

where Fi;, Fiy, F3; and F3y are unknown forces while the essential boundary
conditions state u; =v; =ug=v3=0. Applying these conditions to Eq. (9.2.5) and
solving for the unknown nodal displacements give u2=6.135 X 107, vy=1.450
X 10~7, ug=6.975 x 10~7 and v4=-1.660 X 10~7. This is a very crude mesh
so that these solutions are not accurate. 1}

9.3 Energy Method

The total potential energy denoted by II consists of two parts: internal energy
U and external energy W which is equal to work done by external loads. That is,

I=U-Ww (9.3.1)
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The internal energy is the strain energy caused by deformation of the body and can
be written as

U= % ]ﬂ {c)T {e}d92 (9.3.2)

where {0} = {o; oy Tzy}T denotes the stress and {e} = {e, €y 'y,,.y}T is the
strain. Equation (9.3.2) also holds for three-dimensional state of stresses. Use of
the constitutive equation for Eq. (9.3.2) gives

U= % /n {e}T[D){e}dS (9.3.3)

since [D] = [D]T.

On the other hand, the external work can be written as

W=/n{u v}{l}:}dn+]rn{u v}{%}dr (9.3.4)

Substitution of Eqs (9.3.3) and (9.3.4) into Eq. (9.3.1) and discretization of the
domain into a number of finite element domains yields

m=) m (9.3.5)
e=1

e = %/ {c}T[D]{e}dQ—/ {u v}{;’}dﬂ—f {u v}{%—}dr (9.3.6)
e (e Y Ie y
For each finite element, applying Eqs (9.1.18) and (9.1.20) to Eq. (9.3.6) gives

1 =107 [ (BFoNBldn(a) - (@7 [ v {J= a
—{d}¥ /F ] [N]T { % } dr (9.3.7)

In order to find the equilibrium solution, we apply the principle of minimum
total potential energy. The principle states:

Of all kinematically admissible configurations, the deformation producing the mini-
mum total potential energy is the stable equlibrium condition.

Invoking the stationary value for Eqs (9.3.5) and (9.3.7) using this energy principle,
we obtain

S g = L (K Nd - () - (8) =0 (038)
e=1 e=l

where

(K¢ = ]n (B [D]Bla0 (9.3.9)
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_ fo |
{F}= m[N]T { i }dQ (9.3.10)

(@} = /F ] [N]T { 2: } dT (9.3.11)

Here, Egs (9.3.9), (9.3.10) and (9.3.11) are the element stiffness matrix, body force
vector and surface traction vector, respectively. By comparing Eq. (9.1.22) to Eq.
(9.3.9), it can be shown that Galerkin’s method results in the same matrix equation
as the energy method. In addition, the force terms are identical to those obtained
from Galerkin’s method. Especially, Eq. (9.3.11) looks different from Eq. (9.2.2) but
they are the same when actual calculation is performed.

9.4 Three-Dimensional Solid
The governing equations for three-dimensional elasticity are given below.

Equations of equilibrium:

0o + O7gy + 07y

5ot pl T e =0 (9.4.1)

Orzy Ooy Oy, _

et 5y * oy T =0 (94.2)
af=,+ar.,.z+aaz+f —0 0.4.3
Oz Sy Oz = (94.3)

where stresses are shown in Fig. 9.4.1 in the positive direction and f, fy and f, are
body forces per unit volume.

Constitutive equation for an isotropic material:

{o} = [Dl{e} (9.4.4)
where
{0’} = {(71- Oy O Try Ty:z Trz }T (945)
{6} = {61: €y € Try Yyz V=2 }T (946)
rl—v v v 0 0 0 1
v 1-v v 0 0 0
E v v 1-v 0 0 0
= _ 9.4.7
D] (1+v)(1-2v) | 0 0 0 2 0 0 (9.4.7)
0 0 0 0 2 0
L 0 0 0 0 0 1]
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0z

~
~

Figure 9.4.1 Three Dimensional State of Stress

Kinematic equation for small displacements:

ou
( €z ) ( gz"
By
$.° =19 ? ov ¢ 9.4.8
Yoy §—;‘ + 5—;’ (9-4.8)
v w
\ ;”’z ) rias ay
¥z \ 81 + /
where u, v and w are displacements in the z, y and z directions, respectively.
Traction boundary condition:
Q.": = 0N, + Tzy Ny + TN, = é:: (949)
®, = Toyhs +oyny + Ty, = @y (9.4.10)
®, = Toaltz + Tyany + 0,0, = B, (9.4.11)

where n,, n, and n, are cosine directions of the outward unit normal vector on the

traction surface and & is the known value.
We want to derive the element stiffness matrix for a tetrahedron element as seen

in Fig. 9.4.2. The element has four nodes. The shape functions for this element can

[

be denved as given below: Let us assume a linear function in terms of z, y and z.

ai
az
ag
Qq

u=[1l z y =z = [X]{4} (9.4.12)
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Yy
(z,,4,:2,)
(%5.43,%3)
(%, 9,.2,) (34,02,
x
Figure 9.4.2 Tetrahedron Element
Evaluation of u at every node yields
{u} = [X]{A} {9.4.13)
where
1 21 y1 =
v 1 22 12 =
X] = 9.4.14
XI=11 & 4 2 (9.4.14)
1 z4 ys 24
Inverse of matrix [X] in Eq. (9.4.13) and substitution of the resulting expression into
Eq. (9.4.12) gives i
u = [X][X]" {u} = [H]{u} (9.4.15)
where the shape functions are
[H] =[Hy(2z,y,2) Ha(z,y,2) His(z,9y,2z) Hs(z,y,2)] (9.4.16)

We use the same shape functions for the three displacements.

4 ul 3
v
wy
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=
=

L
!
—
oo X
o qo
-
o o
=
=)
[ &
oo
oo
c>5o
o o

._.
oo

c:So
N o o




318 Elasticity Problem Chapter 9

where {d} is the nodal displacement vector. Substituting Eq. (9.4.17) into the three
dimensional kinematic equation Eq. (9.4.8) results in

{e} = [B]{d} (9.4.18)
in which
24 0 0 & o0 o0 8 0o o0 % 0 07
8H, 8H, 8H3 8H,
° o ag 1 ° o 81?1, ° 8y aga 0 2 aO A
H
(B] = 0 0 52 0 0 s 0 0 52 0 0 Bs
= lem @8H, o 8Ha 8H, g 8Ha 8Hs g 2Hy 2#Hy¢
8y az 8y ar dy oz 8y 8z
0o &H 8HL g 8Hs O8Hs  8Hy 8Hy g 8Hy 8H,
8z 8y 8z 8y 8z dy 8z ]
8H, g 8Hi 8Ha g 2Ha 8Ha g 8Hs 3H, (g 8H,
- 8z dx oz Ed 8z dx 92 oz -
(9.4.19)
Putting matrix [D] from Eq. (9.4.7) and matrix [B] from Eq. (9.4.19) into Eq.
(9.1.22) computes the element stiffness matrix.
(k€] = [B)T[D]|[B]V (9.4.20)

where V is the volume of the tetrahedron element.

9.5 Axisymmetric Solid

When the elasticity problem degenerates from three-dimension to axisymmetry,
two shearing stress components vanish. These vanishing components due to symmetry
are 7,9 and 7,9 in the r8z coordinate system where r is the radial direction, 4 is the
circumferential direction, and z is the axial direction. Hence, the remaining stress
components are

{0} = {0',- o Oz Trz } (951)

Similarly, the remaining strains are

{€}={€r € € Yz} (9.5.2)

The material property matrix [D] for the axisymmetric problem is

1-v v v 0
E v 1-v v 0
D] = (1+v)(1-2v) v v 1-v 0 (9:5.3)
0 0 0 1—2211
The kinematic equation is
8u
€ o
Trz % + %,‘:"
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Figure 9.5.1 Free Body Diagram of Two-Dimensional Body

where u and w are the radial and axial displacements, respectively.

& Example 9.5.1 Let us determine the circumferential strain €g. If a hoop
of radial r is uniformly displaced along the radial direction by displacement u.
Then, the deformed hoop has a uniform strain along the circumferential direction
and the strain is computed as

_2n(r+u)—27r u

€g
27r r

(9.5.5)

In order to develop the element stiffness matrix, we use the linear triangular
element again. We substitute z and y in the shape functions, Eqgs (5.2.7) through
(5.2.9), with r and z for the axisymmetric problem. In addition, the axisymmetric
element is a ring element as shown in Fig. 9.5.1. Substitution of the shape functions
into the kinematic equation Eq. (9.5.4) gives

8H, 8Hy

H
ar 0 or 0 a_g'l 0
# 0 H 0 Hy 0
=10 em § om § om|=[BHd (9.5.6)
oH, oH, O8H, 06Hs oHy 08Ha
8z ar 8z ar 8z Ar

The element matrix can be expressed as

(K] = / ] f [BI”[D)[B]d8 dr dz = 2n / / (BT [D)[Bldr dz (9.5.7)

z2JrJh rJz
Because of the term Zi in matrix [B], the matrix is not a constant matrix like the
plane stress/strain case. As a result, the integration needs to be undertaken. One



320 Elasticity Problem Chapter 9

simple approximation for the integration is to evaluate [B] at the centroid of the

element. That is, we calculate Zi452) where 7 = T1tfa%ra and 7 = a1tzata Thep,

the element stiffness matrix can be written as
[K*] = 2a7A[B]T[D][B) (9.5.8)

in which [B)] is the matrix [B] evaluated at the centroid of the element cross-section
and A is its area.

9.6 Dynamic Analysis

While previous sections consider static problems, this section considers dynamic
problems. That is, we include the inertia force in equations of equilibrium. These
equations are also called equations of motion. For the two-dimensional case, these
equations are

0%u _ 0oz Oty
Pat2 ~ oz t Oy
8%v _ Orgy Ooy
Poiz = oz Oy

+ fz (9.6.1)

+ fy (9.6.2)

where ¢ indicates time and p is the mass density. It can be easily extended to the
three-dimensional case. Therefore, the finite element formulation for the dynamic
problem contains one extra term compared to that for the static problem and the
term is derived as follows using Galerkin’s method.

[{miba-s o5 S]{e s

in which superimposed dot denotes temporal derivative.
Using linear triangular elements, the accelerations can be interpolated as

’1}1‘
1
U — Hl 0 H2 0 H3 0 ,&2 _ .

{"}_[0 H 0 Hy 0 H3]< . L—[N]{d} (9.6.4)
U3
‘63J

”

T Q2 A 2rn acaiirne that tha shana Binctiane anae fiimatinne AF anatial vaniahlag
111 l_lq \U U “.I‘.) WC aooulllc uucw LV ¥ Loy aua.pc .luu(,uuun GlC iUl LuiuvILIS Ul aya.ucu Valilalloy

only and the nodal displacements are functions of time. Hence, the temporal derivative
is performed for the nodal variable. Substituting Eq. (9.6.4) into Eq. (9.6.3) for each

element results in
wp 0 u _ T .
/, p [ 0 wg] { 5 } di} = /n pINT"[N]dQ{d} (9.6.5)
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As a result, the mass matrix is defined as

(Me] = /n ANV (9.6.6)

This is the consistent mass matrix and it becomes for the linear triangular element

2 010 1 0
02010 1

2 pAl1 0201 0

MT=T510 10 2 0 1 (96.7)
101020
00101 0 2

This matrix is based on unit thickness of the element. Otherwise, it should be
multiplied by the plate thickness. On the other hand, the lumped mass matrix for the
linear triangular element is

(M) = %[I] (9.6.8)

where [I] is the identity matrix of size 6.
The consistent mass matrix for the bilinear element as shown in Fig. 5.3.1 is

4 0 2 0 1 0 2 0
0 402010 2
20 402010
o PAlO 2 0 40 201
[M]‘Z;E10204020 (96.9)
010 20 40 2
2 010 2040
[0 2 01 0 2 0 4.

This matrix is based on unit thickness of the element. Otherwise, it should be
multiplied by the plate thickness. The lumped mass matrix for this element is

] = 2801 (9.6.10)

where [I] is the identity matrix of size 8.

9.7 MATLAB Application to 2-D Stress Analysis

Two-dimensional stress analyses are performed using both conventional finite
elements and isoparametric elements in the following examples.

& Example 9.7.1 A strip shown in Fig. 9.7.1 is subjected to an axial load.
A MATLAB program is written to solve the problem using linear triangular
elements. Eight elements are used as seen in the figure.
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Figure 9.7.1 Plate Subjected to Axial Load

%
% Example 9.7.1

% plane stress analysis of a solid using linear triangular elements

% (see Fig. 9.7.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% disp = system nodal displacement vector

% eldisp = element nodal displacement vector

% stress = matrix containing stresses

% strain = matrix containing strains

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with

% the dofs in bcdof

%

%

%

% input data for control parameters

o

nel=8; % number of elements
nnel=3; % number of nodes per element
ndof=2; % number of dofs per node
nnode=10; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=100000.0; % elastic modulus

poisson=0.3; % Poisson’s ratio
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%

o
/70

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y
o

Al

gcoord=[0.0 0.0; 0.0 1.0; 1.0 0.0; 1.0 1.0; 2.0 0.0;
2.0 1.0; 3.0 0.0; 3.0 1.0; 4.0 0.0; 4.0 1.0};
%

o7
70

% input data for nodal connectivity for each ¢lement

% nodes(i,j) where i-> element no. and j-> connected nodes
o7

nodes=[134;142;356;36 4;
578;586;7910; 710 8];
%

[} 4

A\

% input data for boundary conditions

oy
70

bedof=(1 2 3J;
beval=[0 0 0];
%

o

% first three dofs are constrained
% whose described values are 0

A\

% initialization of matrices and vectors

fi=zeros(sdof,1);
kk=zeros(sdof,sdof);
disp=zeros(sdof,1);
eldisp=zeros(edof,1);
stress=zeros(nel,3);
strain=zeros(nel,3);
index=zeros(edof,1);
kinmtx=zeros(3,edof);
matmtx=zeros(3,3);
%

%
% force vector
o,

F£(17)=500;
#£(19)=500;
%

% system force vector

% system matrix

% system displacement vector

% element displacement vector

% matrix containing stress components
% matrix containing strain components
% index vector

% kinematic matrix

% constitutive matrix

% force applied at node 9 in x-axis
% force applied at node 10 in x-axis

%

% compute element matrices and vectors, and assemble

%

matmtx=~fematiso(1,emodule,poisson);

%

for iel=1:nel

%
nd(1)=nodes(iel,1);

% constitutive matrix

% loop for the total number of elements

% 1st connected node for (iel)-th element
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nd(2)=nodes(iel,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd connected node for (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element

%o

% find the derivatives of shape functions
Yo
area=0.5%(x1*y24+x2*y34x3*y1-x1*y3-x2*y1-x3*y2); % area of triangule
area2=—area*2;

dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)}; % derivatives w.r.t. x
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)}; % derivatives w.r.t, y
%

kinmtx2=fekine2d(nnel,dhdx,dhdy); % kinematic matrix
%o

k=kinmtx2*matmtx*kinmtx2*area; % element stiffnes matrix
%

kk=feasmbl1(kk,k,index); % assemble element matrices
%

end % end of loop for the total number of elements
%

%

% apply boundary conditions

[kk,ff]=feaplyc2(kk,ff,bcdof, beval);

%

% solve the matrix equation

Yo

disp=kk\ff;

%

%

% element stress computation (post computation)

%

for ielp=1:nel % loop for the total number of elements
o

nd(1)=nodes(ielp,1); % 1st connected node for (iel)-th element
nd(2)=nodes(ielp,2); % 2nd connected node for (iel)-th element
nd(3)=nodes(ielp,3); % 3rd connected node for (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
%
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index=~feeldof(nd,nnel,ndof); % extract system dofs for the element
%

%

% extract element displacement vector

oz

Al

for i=1:edof

eldisp(i)=disp(index(i));

end

%

area=0.5%(x1*y24+x2*y3+4+x3*y1-x1*y3-x2%*y1-x3*y2); % area of triangle
area2—area*2;

dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)}; % derivatives w.r.t. x
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)]; % derivatives w.r.t. y
%

kinmtx2=fekine2d(nnel,dhdx,dhdy); % kinematic matrix
%

estrain=kinmtx2*eldisp; % compute strains
estress=matmtx*estrain; % compute stresses
%

for i=1:3

strain(ielp,i)=estrain (i}; % store for each element
stress(ielp,i)=estress(i); % store for each element
end

Yo

end

%

%
% print fem solutions
Y
num=1:1:sdof;

displace=[num’ disp] % print nodal displacements
%

for i=1:nel

stresses=[i stress(i,:)] % print stresses
end

%

oz
70

function [kinmtx2]=fekine2d(nnel,dhdx,dhdy)

o7
/0

% Purpose:

% determine the kinematic equation between strains and displacements
% for two-dimensional solids

%o

% Synopsis:

% [kinmtx2]=fekine2d(nnel,dhdx,dhdy)
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Yo

% Variable Description:
% nnel - number of nodes per element

% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to y

Chapter 9

%
%

for i=1:nnel
i1=(i-1)*241;

i2=i141;

kinmtx2(1,i1 )=dhdx(i);
kinmtx2(2,i2)=dhdy(i);
kinmtx2(3,i1)=dhdy(i);
kinmtx2(3,i2)=dhdx(i);
end

%

o7
/0

function [matmtrx]=fematiso(iopt,elastic,poisson)

(174

U

% Purpose:

% determine the constitutive equation for isotropic material

%

% Synopsis:

% [matmtrx]=fematiso(iopt,elastic,poisson)
%

% Variable Description:

% elastic - elastic modulus

% poisson - Poisson’s ratio

% iopt=1 - plane stress analysis

% iopt=2 - plane strain analysis

% iopt=3 - axisymmetric analysis

% iopt=4 - three dimensional analysis
o

%

if iopt==1

matmtrx= elastic/(1-poisson*poisson)* ...
[1 poisson 0; ...

poisson 1 0; ...

NN I(_natiaeant/
U v \.l. PUIDDUII},

%

elseif iopt==2

-

21.
‘l],

matmtrx= elastic/((1+poisson)*(1-2*poisson))* ...

[(1-poisson) poisson 0;
poisson (1-poisson) 0;
0 0 (1-2*poisson)/2];

% plane stress

% plane strain
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%o

elseif iopt==3

MATLAB Application to 2-D Stress Analysis

matmirx= elastic/((1+poisson)*(1-2*poisson))* ...
[(1-poisson) poisson poisson 0;

poisson (1-poisson) poisson 0;

poisson poisson (1-poisson) 0;
0 0 0 (1-2*poisson)/2];

%

else

% axisymmetry

% three-dimension

matmtrx= elastic/((1+poisson)*(1-2*poisson))* ...
{(1-poisson) poisson poisson 0 0 0;

poisson (1-poisson) poisson 0 0 0;

poisson poisson (1-poisson) 0 0 0;

0 0 0 (1-2*poisson)/2 0 0;

00 0 0 (1-2*poisson)/2 0;

00000 (1-2*poisson)/2];

%
end

%

07,

/0

The nodal displacements are listed belo
g P, S oL _al L1 4L
SOLULIVILS. VIL vOC€ OLIICT Oalld, vlUC 5

and 0y = Ty, = 0 as expected.

displace =

d.o.f,

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000

7 annn
i.uuuy

8.0000
9.0000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000

displ.

0.0000
0.0000
0.0000
-0.0030
0.0100
0.0000

N nton
VRSV RV

-0.0030
0.0200
0.0000
0.0200
-0.0030
0.0300
0.0000
0.0300
-0.0030
0.0400
0.0000
0.0400
-0.0030

s

and they agree with the analytical

P SR EE . — 1nnn
UL €acil CICIICILY & r — 1UUV

% x-displacement of node 1
% y-displacement of node 1
% x-displacement of node 2
% y-displacement of node 2
% x-displacement of node 3
% y-displacement of node 3

7 v dianlaramant ~f nada 4
/0 X~-Qispialeimneny O1 noae 4

% y-displacement of node 4
% x-displacement of node 5
% y-displacement of node 5
% x-displacement of node 6
% y-displacement of node 6
% x-displacement of node 7
% y-displacement of node 7
% x-displacement of node 8
% y-displacement of node 8
% x-~displacement of node 9
% y-displacement of node 9
% x-displacement of node 10
% y-displacement of node 10

327
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Figure 9.7.2 Cantilever Beam Subjected to a Tip Load

& Example 9.7.2

We want to analyze a short cantilever beam using two-

dimensional isoparametric elements assuming plane stress condition. To this end,
the beam is modeled using ten four-node quadrilateral elements as seen in Fig.

9.7.2.

or
/70

% Example 9.7.2

% plane stress analysis of a cantilever beam using isoparametric

% four-node elements

% (see Fig. 9.7.2 for the finite element mesh)

matrix

-

% k = elemen
% { = element vector
% kk = system matrix
% ff = system vector

% disp = system nodal displacement vector
% eldisp = element nodal displacement vector

% stress = matrix containing stresses
% strain = matrix containing strains

% gcoord = coordinate values of each node
% nodes = nodal connectivity of each element
% index = a vector containing system dofs associated with each element

% point2 = matrix containing sampling points

% weight2 = matrix containing weighting coefficients

oF v _1_r 4 emd o2 £ LR |
/0 DCAVL = a VvEeCLoOr COllvallllIlg 4015 ass0llaved

% bcval = a vector containing boundary condition values associated with

% the dofs in bcdof

LI T R DR L B
WILI Doulldaly CUILALLOILS

U
%
o7
/70

% input data for control parameters
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o7

A\

nel=8; % number of elements
nnel=4; - % number of nodes per element
ndof=2; % number of dofs per node
nnode=18; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=1e6; % elastic modulus
poisson=0.3; % Poisson’s ratio
nglx=2; ngly=2; % 2x2 Gauss-Legendre quadrature
nglxy=nglx*ngly; % number of sampling points per element
%

%

% input data for nodal coordinate values

% gcoord(i,j) where i-> node no. and j-> xory
Yo
gcoord={0.0 0.0; 0.0 1.0; 0.5 0.0; 0.5 1.0; 1.0 0.0;
1.0 1.0; 1.5 0.0; 1.5 1.0; 2.0 0.0; 2.0 1.0;

2.5 0.0; 2.5 1.0; 3.0 0.0; 3.0 1.0; 3.5 0.0;

3.5 1.0; 4.0 0.0; 4.0 1.0];

%

o

L4\

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes
%
nodes=[1342;3564;5786;79108;
9 11 12 10; 11 13 14 12; 13 15 16 14; 15 17 18 16];

%

%

% input data for boundary conditions

%

bedof=[1 2 3 4]; % first four dofs are constrained
beval=[0 0 0 0]; % whose described values are 0
%

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix
disp=zeros(sdof,1); % system displacement vector
eldisp=zeros(edof,1); % element displacement vector
stress=zeros{ngixy,3); % matrix containing siress components
strain=zeros(nglxy,3); % matrix containing strain components
index=zeros(edof,1); % index vector
kinmtx=zeros(3,edof); % kinematic matrix
matmtx=zeros(3,3); % constitutive matrix
%

o7
/70
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% force vector

o7,
PAll
ff(34)=500; , % force applied at node 17 in y-axis
ff(36)=500; _ % force applied at node 18 in y-axis
%

o7,
A

% compute element matrices and vectors, and assemble

A

{point2,weight2]=feglqd2(nglx,ngly); % sampling points & weights
matmtx=fematiso(1,emodule,poisson); % constitutive matrix
%

for iel=1:nel % loop for the total number of elements
%

for i=1:nnel

nd(i)=nodes(iel i}; % extract nodes for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the node
ycoord(i)=gcoord(nd(i),2); % extract y value of the node
end

%

k=zeros(edof,edof); % initialization of element matrix
%

%

% numerical integration

oz
/0

for intx=1:nglx

x=point2(intx,1); % sampling point in x-axis
wix=weight2(intx,1); % weight in x-axis
for inty=1:ngly
y=point2(inty,2); % sampling point in y-axis
wty=weight2(inty,2) ; % weight in y-axis
%
[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% derivatives at sampling point
%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord}; % compute Jacobian
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate
%
kinmtx2=fekine2d(nnel,dhdx,dhdy); % compute kinematic matrix
%
o7

Al

% compute element matrix

(17 4
70

k=k+kinmtx2’*matmtx*kinmtx2*wix*wty*detjacob; % element matrix
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%

end

end % end of numerical integration loop
%

indéx:feeldof(nd,nnel,ndof); % extract system dofs for the element
%

kk=feasmbl1(kk,k,index); % assemble element matrices
%

end % end of loop for the total number of elements
%

%

% apply boundary conditions

%

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);

%

%

% solve the matrix equation

%

disp=Kkk\ff;

%

num=1:1:sdof;

displace=[num’ disp) % print nodal displacements
%

%

% element stress computation

%

for ielp=1:nel ' % loop for the total number of elements
%

for i=1:nnel

nd(i)=nodes(ielp,i); % extract nodes for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the node
ycoord(i)=gcoord(nd(i),2); % extract y value of the node
end

%

%

% numerical integration

%

intp=0;

for intx=1:nglx

x=point2(intx,1); % sampling point in x-axis
wix=weight2(intx,1); % weight in x-axis
for inty=1:ngly

y=point2(inty,2); % sampling point in y-axis
wiy=weight2(inty,2) ; % weight in y-axis
intp=intp+1;

%

[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and

% derivatives at sampling point
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%

Jjacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian

%

detjacob=det(jacob2); % determinant of Jacobian

invjacob=inv(jacob2); % inverse of Jacobian matrix

%

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.T.t.
% physical coordinate

%

kinmtx2=fekine2d(nnel,dhdx,dhdy); % kinematic matrix

%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element

%

%

% extract element displacement vector

o,

U

for i=1:edof
eldisp(i)=disp(index(i));

end

%

kinmtx2=fekine2d (nnel,dhdx,dhdy); % compute kinematic matrix
%

estrain=kinmtx2*eldisp; % compute strains
estress=matmtx¥*estrain; % compnute stresses
%

for 1=1:3

strain(intp,i)=estrain(i); % store for each sampling point
stress(intp,i)=estress(i); % store for each sampling point
end

%

location=[ielp,intx,inty] % print location for stress
stress(intp,:) % print stress values
%

end

end % end of integration loop
%

end % end of loop for total number of elements
%

o7

As expected, the displacements in the z-axis are positive at the bottom side of

1‘6 nagntive nt tha tan adda haranas Af hanAds Mha 43¢ Atarnlamsaman

strip and negative at the top side because of bending. The tip displacement

n the y-axisis 0.2238 in. while the beam bending theory gives 0.256. As a result,
the mesh needs to be refined to improve the accuracy. On the other hand, the
bending stress o is 11950 psi at the integration point nearest to the fixed edge.
The point is located 0.1057 in. away from the fixed edge in the z-axis and 0.2887
in. above from the midplane in the y-axis. The beam theory gives bending stress
of 13820.

[
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Section 9.7
displace =
d.o.f. displ.
1.0000 0.0000
2.0000 0.0000
3.0000 0.0000
4.0000 0.0000
5.0000 0.0094
6.0000 0.0060
7.0000 -0.0094
8.0000 0.0060
9.0000 0.0176
10.000 0.0208
11.000 -0.0176
12.000 0.0208
13.000 0.0245
14.000 0.0431
15.000 -0.0245
16.000 0.0431
17.000 0.0301
18.000 0.0717
19.000 -0.0301
20.000 0.0717
21.000 0.0345
22.000 0.1534
23.000 -0.0345
24.000 0.1053
25.000 0.0377
26.000 0.1427
27.000 -0.0377
28.000 0.1427
29.000 0.0395
30.000 0.1826
31.000 -0.0395
32.000 0.1826
33.000 0.0402
34.000 0.2238
35.000 -0.0402
36.000 0.2238

% x-displacement of node 1
% y-displacement of node 1
% x-displacement of node 2
% y-displacement of node 2
% x-displacement of node 3
% y-displacement of node 3
% x-displacement of node 4
% y-displacement of node 4
% x-displacement of node 5
% y-displacement of node 5
% x-displacement of node 6
% y-displacement of node 6
% x-displacement of node 7
% y-displacement of node 7
% x-displacement of node 8
% y-displacement of node 8
% x-displacement of node 9
% y-displacement of node 9
% x-displacement of node 10
% y-displacement of node 10
% x-displacement of node 11
% y-displacement of node 11
% x-displacement of node 12
% y-displacement of node 12
% x-displacement of node 13
% y-displacement of node 13
% x-displacement of node 14
% y-displacement of node 14
% x-displacement of node 15
% y-displacement of node 15
% x-displacement of node 16
% y-displacement of node 16
% x-displacement of node 17
% y-displacement of node 17
% x-displacement of node 18
% y-displacement of node 18
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Figure 9.8.1 Axisymmetric Solid With Triangular Elements

9.8 MATLAB Application to Axisymmetric Analysis

The same axisymmetric solid is analyzed using both conventional triangular
elements and isoparametric quadrilateral elements.

& Example 9.8.1 A thick walled cylinder is subjected to a uniform internal
of 15 in. It is made of steel whose elastic modulus is 28x10° psi and Poisson’s
ratio is 0.3. Figure 9.8.1 shows the finite element mesh using 10 triangular
elements. For the present analysis, the cylinder is assumed to be constrained
along the axial direction. The resultant force applied on the inside surface is
2000 x 27 x 10 = 20, 0007 assuming unit length along the axial direction. As
a result, nodes 1 and 2 at the inside boundary has a concentrated nodal force
of 10,0007 along the radial direction, respectively. The value is provided to the
force vector in the finite element analysis program.

%
% Example 9.8.1

% axisymmetric analysis of a solid subjected to an internal
% pressure using linear triangular elements

% (see Fig. 9.8.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% disp = system nodal displacement vector

% eldisp = element nodal displacement vector
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% stress = matrix containing stresses

% strain = matrix containing strains

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% bcdof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

% input data for control parameters

%

nel==10; : % number of elements
nnel=3; % number of nodes per element
ndof=2; % number of dofs per node
nnode=12; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=28e6; % elastic modulus
poisson=0.25; % Poisson’s ratio
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

o
gcoord=[10. 0.; 10, 1.; 11. 0.; 11. 1.; 12. 0.; 12. 1,3
13. 0.; 13. 1.; 14. 0.; 14. 1.; 15. 0,; 15. 1.];

%

%
% input data for nodal connectivity for each element

% nodes(1,j) where i-> element no. and j-> connected nodes

(174
70

nodes=[134;142;356;364;57 8,
586;7910;7108; 91112 9 12 10];
%

oz
/0

% input data for boundary conditions

or
/0

bedof=[2 4 6 8 10 12 14 16 18 20 22 24]; % axial motion constrained
beval=[0 0000000000 0]; % constrained values are 0
%o

o,
Al

% initialization of matrices and vectors

o7,
A
ff=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix
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disp=zeros(sdof,1); % system displacement vector
eldisp=zeros(edof,1); % element displacement vector
stress=zeros(nel,4); % matrix containing stress components
strain=zeros(nel,4); % matrix containing strain components
index=zeros(edof,1); % index vector
kinmtax=zeros(4,edof); % kinematic matrix
matmtx=zeros(4,4); % constitutive matrix
%

%

% force vector

%

pi=4.0%atan(1); % pi=3.141592
%

fi(1)=2e3*pi*2*10; % force applied at node 1 in x-axis
fi(3)=2e3*pi*2*10; % force applied at node 2 in x-axis
%

%

% compute element matrices and vectors, and assemble

%

matmtx=fematiso(3,emodule,poisson); % constitutive matrix
%

for iel=1:nel % loop for the total number of elements
%

nd(1)=nodes(iel,1); % 1st node for (iel)-th element
rd(2)=nodes(iel,2); % 2nd node for (iel)-th element
nd(3)=nodes(iel,3); % 3rd node for (iel)-th element
%

x1=gcoord(nd(1),1); yt=gcoord(nd(1),2); % coord values of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coord values of 2nd node
x3=gcoord(nd(3),1); y3=gcoord(nd(3),2); % coord values of 3rd node
o7
70
index=feeldof(nd,nnel,ndof); % extract system dofs for the element

%o

P

/o
% find the derivatives of shape functions

or
/0

area=0.5*(x1*y2+4x2*y3-+x3*y1-x1*y3-x2*y1-x3*y2); % area of triangle
area2—area*2;

xcenter=(x1+x2+x3)/3; % x-centroid of triangle
ycenter=(y1+y2+y3)/3; % y-centroid of triangle
%

shape(1)=((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter) /area2;
shape(2)=((x3*y1-x1*y3)-+(y3-y1)*xcenter+(x1-x3)*ycenter) /area2;
shape(3)=((x1*y2-x2*y1)+(yl-y2)*xcenter+(x2-x1)*ycenter) /area2;

%
dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)]; % derivatives w.r.t. x
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)]; % derivatives w.r.t. y

%
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kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter); = % kinematic matrix
%
k=2*pi*xcenter*area*kinmtax’*matmtx*kinmtax; % element matrix
%
kk=feasmbl1(kk,k,index); % assemble element matrices

%o

end % end of loop for total number of elements

%

o7

tAl

% apply boundary conditions
%
[kk,ff]=feaplyc2(kk,ff,bcdof,bcval);
%

Y%

% solve the matrix equation

%
disp=kk\f;
%

o
70
% element stress computation (post-computation)

o7,
79

for ielp=1:nel % loop for the total number of elements
%
nd(1)=nodes(ielp,1); % 1st node for (iel)-th element
nd(2)=nodes(ielp,2); % 2nd node for (iel)-th element
nd(3)=nodes(ielp,3); % 3rd node for (iel)-th element
%

x1=gcoord(nd(1),1); yl=gcoord(nd(1),2
x2=gcoord(nd(2),1); y2=gcoord(nd(2),
x3=gcoord(nd(3),1); y3=gcoord(nd(3),
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

% extract element displacement vector

) % coord values of 1st node

):
); % coord values of 2nd node
)i

[-1 )

% coord values of 3rd node

%
for i=1:edof

eldisp(i)=disp(index(i));

end

%

area=0.5*(x1*y24x2*y3+x3*y1-x1*y3-x2*y1-x3*y2); % area of triangle

R, I 3

ALCARL—RLUT H,

xcenter=(x1+x2+x3)/3; % x-centroid of triangle
ycenter=(y14+y2+y3)/3; % y-centroid of triangle
%

shape(1)=((x2*y3-x3*y2)+(y2-y3)*xcenter+(x3-x2)*ycenter)/area2;
shape(2)==((x3*yl-x1*y3)+(y3-y1)*xcenter+(x1-x3)*ycenter)/area2;
shape(3)=((x1*y2-x2*y1)+(y1-y2)*xcenter+(x2-x1)*ycenter)/area2;
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%

dhdx=(1/area2)*[(y2-y3) (¥3-y1) (y1-y2)]; % derivatives w.r.t. x
dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)}; % derivatives w.r.t. y
%

kinmtax=fekineax(nnel,dhdx,dhdy,shape,xcenter); = % kinematic matrix
%

estrain=kinmtax*eldisp; % compute strains
estress=matmtx*estrain; % compute stresses
%

for i=1:4

strain (ielp,i)=estrain(i); % store for each element
stress(ielp,i)=estress(i); % store for each element
end

%

end

%

% print fem solutions

[ 4
/0

num=1:1:sdof;

displace=[num’ disp] % print nodal displacements
%

for i=1:nel

stresses==[i stress(i,:)] % print stresses
end

X R

function [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)

%
% Purpose:

% determine kinematic equations between strains and displacements
% for axisymmetric solids

%

% Synopsis:

% [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)

%

% Variable Description:

% nnel - number of nodes per element

% shape - shape functions

% dhdx - derivatives of shape functions with respect to x

% dhdy - derivatives of shape functions with respect to y

% radist - radial distance of integration point or central point

% for hoop strain component

o7
/0

%
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for 1=1:nnel
11=(i-1)*2+1;
12=11+1;
kinmtxax(1,i1)=dhdx(i);
kinmtxax(2,i1)=shape(i)/radist;
kinmtxax(3,i2)=dhdy(i);
kinmtxax(4,i1)=dhdy(i);
kinmtxax(4,i2)=dhdx(i);

end

%

o7,
70

The results are

displace =

d.of.

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000

displ.
0.0039
0.0000
0.0039
0.0000
0.0037
0.0000
0.0037
0.0000
0.0035
0.0000
0.0035
0.0000
0.0034
0.0000
0.0034
0.0000
0.0033
0.0000
0.0033
0.0000
0.0032
0.0000
0.0032
0.0000

stresses =

alam
AP A ¥ N

1.00
2.00
3.00
4.00
5.00
6.00

radianl

4 GALL QL

-3271.
-3408.
-2281.
-2221.
-1457.
-1368.

hann
peae ey

9486.
10000
8434.
8877.
7637.
7995.

avial
i s

1552,

1649.

-

1538.
1664.
1545.
1657.

% radial displacement of node 1
% radial displacement of node 2
% radial displacement of node 3
% radial displacement of node 4
% radial displacement of node 5
% radial displacement of node 6
% radial displacement of node 7
% radial displacement of node 8
% radial displacement of node 9
% radial displacement of node 10
% radial displacement of node 11

% radial displacement of node 12

339
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Figure 9.8.1 Axisymmetric Solid With Rectangular Elements

7.00 -783.0 7017. 1558.
8.00 -724.0 7295. 1643.
9.00 -213.0 6529, 1579.
10.0 -242.0 6727. 1621,

Chapter 9

12

& Example 9.8.2 Example 9.8.1. is solved using isoparametric elements.
The same number of nodes is used but the number of element is 5 as seen in Fig.

9.8.2

%
% Example 9.8.2

% axisymmetric analysis of a thick walled cylinder
% subjected to internal pressure using isoparametric
% four-node elements

% (see Fig. 9.8.2 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

7 Lk = g

A sotem matriy
70 KK S X

system matri
% ff = system vector

% disp = system nodal displacement vector
% eldisp = element nodal displacement vector
% stress = matrix containing stresses

% strain = matrix containing strains

% gcoord = coordinate values of each node
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% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element

% point2 = matrix containing sampling points

% weight2 = matrix containing weighting coefficients

% bedof = a vector containing dofs associated with boundary conditions

% bcval = a vector containing boundary condition values associated with

% the dofs in bedof

%o

%

o7,

rAl

% input data for control parameters

%

nel=5; % number of elements
nnel=4; % number of nodes per element
ndof=2; % number of dofs per node
nnode=12; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=28.0e6; % elastic modulus
poisson=0.25; % Poisson’s ratio
nglx=2; ngly=2; % 2x2 Gauss-Legendre quadrature
nglxy=nglx*ngly; % number of sampling points per element
%

o7,

LAl

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

o
70
gcoord=[10. 0.; 10. 1.; 11. 0.; 11. 1,; 12. 0.; 12. 1;
13. 0.; 13. 1.; 14. 0.; 14. 1.; 15. 0.; 15. 1.];

%

o7
70

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes

o

70

nodes=[1342;3564;5786;79108; 911 12 10);

%

%

% input data for boundary conditions

o

(4

bedof=[2 4 6 8 10 12 14 16 18 20 22 24]; % axial motion constrained
bcval={00000000900090); % constrained values are 0
%

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix

disp=zeros(sdof,1); % system displacement vector



342 Elasticity Problem Chapter 9
eldisp=zeros(edof,1);
stress=zeros(nglxy,4);
strain=zeros(nglxy,4);
index=zeros(edof,1);
kinmtx=zeros(4,edof);
matmtx=zeros(4,4);

%

o7,

4

% force vector

% element displacement vector

% matrix containing stress components
% matrix containing strain components
% index vector

% kinematic matrix

% constitutive matrix

%
pi=4.0%atan(1.0);
%
ff(1)=2e3*2*pi*10;
fi(3)=2e3*2*pi*10;
%

%

% compute element matrices and vectors, and assemble

% pi=3.141592

% force applied at node 1 in x-axis
% force applied at node 2 in x-axis

o
[point2,weight2]=feglqd2(nglx,ngly);
matmtx=fematiso(3,emodule,poisson);
%

for iel=1:nel

%

for i=1:nnel
nd(i)=nodes(iel,i);
xcoord(i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);
end

%

k=zeros(edof,edof);

%

%

% numerical integration

% sampling points & weights
% constitutive matrix

% loop for the total number of elements

% extract node for (iel)-th element
% extract x value of the node
% extract y value of the node

% initialization of element matrix

o7
70

for intx=1:nglx

x=point2(intx,1);
wtx=weight2(intx,1);
for inty=1:ngly
y=point2(inty,2);
wty=weight2(inty,2) ;

% sampling poirt in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

%

[shane dhdr.dhdsl=fetcaoad(x v): % comnute shane functions and

ishape,ahdr,chds—tersoqi X,y ) /70 compiute shape lunctions ana
% derivatives at sampling point

%

. _ 1N ) . 1Al 1 311 3. 13 I . & W or [ R S L -

acopZ=i¢cjacopZ nneianar,anas,xcoorQ,ycoora); 70 compute Jacoplan

Y y y ) ’
%

detjacob=det(jacob2);
invjacob=inv(jacob2);

% determinant of Jacobian
% inverse of Jacobian matrix
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% A

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate

%

xcenter=0;

for i=1:nnel % x-coordinate value

xcenter==xcenter+shape(i)*xcoord(i); % of the integration point

end

%

kinmtx=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix

%

o

Al

% compute element matrix

o7
A
k=k+2*pi*xcenter*kinmtx’*matmtx*kinmtx* wix*wty*detjacob;

% element matrix

%

end

end % end of numerical integration loop
%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

kk=feasmbl1(kk,k,index); % assemble element matrices

% end of loop for total number of elements

CECH T
o,

=S

apply boundary conditions

it 3

S

(kk,ff]=feaplyc2(kk,ff,bedof, beval);
%

o7,

/U

% solve the matrix equation

%

disp=kk\fF;

%

num=1:1:sdof;

displace={num’ disp] % print nodal displacements
%

% element stress computation

o7

for ielp=1:nel % loop for the total number of elements
%

for i=1:nnel

nd(i)=nodes(ielp,i); % extract node for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the node

ycoord(i)=gcoord(nd(1),2); % extract y value of the node
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end

%

%

% numerical integration

intp=0;

for intx=1:nglx

x=point2(intx,1); % sampling point in x-axis

wtx=weight2(intx,1); % weight in x-axis

for inty=1:ngly

y=point2(inty,2); % sampling point in y-axis

wty=weight2(inty,2) ; % weight in y-axis

intp=intp+1;

%

[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% derivatives at sampling point

%

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian

%

detjacob=det{jacob2); % determinant of Jacobian

mv_]acob_mv(_]acobZ), % inverse of Jacobian matrix

%

[dhdx,dhdyj=federiv2(nnel,dhdr,dhds,invjacob}; % derivatives w.r.t.

% physical coordinate

%

xcenter=90;

for i=1:nnel % x-coordinate value

xcenter=xcenter+shape(i)*xcoord(i); % of the integration point

end

%

kinmtx=fekineax(nnel,dhdx,dhdy,shape,xcenter); % kinematic matrix

%

index=feeldof(nd,nnel,ndof); % extract system dofs for the element

%

Yo

% extract element displacement vector

%

for i=1:edof

eldisp(i)=disp(index(i));

end

%

estrain=kinmtx*eldisp; % compute strains

estress=matmtx*estrain; % compute stresses

%

for i=1:4

strain(intp,i)=estrain(i); % store for each element

stress(intp,i)=estress(i); % store for each element

end
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%

end

end

%

for j=1:nglxy
stresses=[ielp stress(j,:)]
end

R NN
o,

% end of integration loop

% print stresses

% end of loop for total number of elements

The nodal displacements are the same as those obtained from Example 9.8.1.
The stresses are also very similar but a little different. Stresses for the first two

elements are listed below. They are printed for each integration point. Because
2x2 quadrature was used for numerical integration, there are four integration

points for each element.

stresses for element 1 =

Tand . )

L Y &2
ist ifitegration point

radial stress=-3146. hoop stress=10289 axial stress=1786

2nd integration point

radial stress=-3146. hoop stress=10289 axial stress=1786.

3rd integration point
radial stress=-3505. hoop stress=9211.
4th integration point
radial stress=-3506. hoop stress=9211.

stresses for element 2 =

1st integration point
radial stress=-2104. hoop stress=9066.
2nd integration point
radial stress=-2104. hoop stress=9066.
3rd integration point
radial stress=-2377. hoop stress=8245,
4th integration point
radial stress=-2377. hoop stress=8245.

axial stress=1426.

axial stress=1426.

axial stress=1741.

axial stress=1741.

axial stress—1467.

axial stress=1467.

9.9 MATLAB Application to 3-D Stress Analysis

& Example 9.9.1

A unit cube is subjected to a uniform load as shown in

Fig. 9.9.1. We use one eight-node isoparametric solid element for the problem.

o7
70

% Example 9.9.1

345
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Figure 9.9.1 A Cubic Solid

% three-dimensional analysis of a cube using isoparametric

% eight-node elements

% (see Fig. 9.9.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% f = element vector

% kk = system matrix

% ff = system vector

% disp = system nodal displacement vector

% eldisp = element nodal displacement vector

% stress = matrix containing stresses

% strain = matrix containing strains

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index — a vector containing system dofs associated with each element
% point3 = matrix containing sampling points

% weight3 = matrix containing weighting coefficients

% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with

the dofs in bedof

nel=1; % number of elements
nnel=8; % number of nodes per element
ndof=3; % number of dofs per node
nnode=8; % total number of nodes in system

sdof=nnode*ndof; % total system dofs



Section 9.9 MATLAB Application to 3-D Stress Analysis 347

edof=nnel*ndof; % degrees of freedom per element
emodule=1e5; % elastic modulus
poisson=0.3; % Poisson’s ratio
nglx=2; ngly=2; nglz=2; % 2x2x2 Gauss-Legendre quadrature
nglxyz=nglx*ngly*nglz; % number of sampling points per element
%
o7
il

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> xor y
o

7Q

gcoord=[0.0 0.0 0.0; 1.0 0.0 0.0; 1.0 1.0 0.0; 0.0 1.0 0.0;
0.0 0.0 1.0; 1.0 0.0 1.0; 1.0 1.0 1.0; 0.0 1.0 1.0];
%

o7

% input data for nodal connectivity for each element
% nodes(i,j) where i-> element no. and j-> connected nodes

o,
nodes=[123 45 6 7 8];
%

%o

% input data for boundary conditions

/U

bedof=[1235 6 912]; % constrained dofs
beval=[0 0 0 0 0 0 0]; % constrained values
%

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix
disp=zeros(sdof,1); % system displacement vector
eldisp=zeros(edof,1); % element displacement vector
stress=zeros(nglxyz,6); % matrix containing stress components
strain=zeros(nglxyz,6); % matrix containing strain components
index=zeros(edof,1); % index vector
kinmtx=zeros(6,edof); % kinematic matrix
matmtx=zeros(6,6); % constitutive matrix
%

%

% force vector

%

ff(15)=250; % force applied at node 5 in z-axis
f£(18)=250; % force applied at node 6 in z-axis
ff(21)=250; % force applied at node 7 in z-axis
ff(24)=250; % force applied at node 8 in z-axis
%

o,

% compute element matrices and vectors, and assemble
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%
[point3,weight3]=feglqd3(nglx,ngly,nglz); % sampling points & weights
matmtx=fematiso(4,emodule,poisson); % compute constitutive matrix
%
for iel=1:nel % loop for the total number of elements
%

for i=1:nnel
nd(i)=nodes(iel,i);
xcoord(i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);
zcoord(i)=gcoord(nd(i),3);
end

%

=zeros(edof,edof);

% extract node for (iel}-th element
% extract x value of the node
% extract y value of the node
% exiract z value of the node

% initialization of element matrix

for intx=1:nglx

x=point3(intx,1); % sampling point in x-axis

witx=weight3(intx,1);
for inty=1:ngly
y=point3(inty,2);
wty=weight3(inty,2) ;
for intz=1:nglz
z=point3(intz,3});
wtz=weight3(intz,3) ;

% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

%
[shape,dhdr,dhds,dhdt]=feisos8(x,y,z); % compute shape functions
% and derivatives at sampling point
%
jacob3=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord);
% compute Jacobian
%
detjacob=det(jacob3);
invjacob=inv(jacob3);
%
[dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob);
% derivatives w.r.t. physical coordinate

% determinant of Jacobian
% inverse of Jacobian matrix

%
kinmtx={ekine3d(nnel,dhdx,dhdy,dhdz);
%

% compute element matrix

s

Yo
k=k-+kinmtx’*matmtx*kinmtx*wtx*wty*wtz*detjacob;
%

end

% kinematic matrix

% element
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end
end

%

index=feeldof(nd,nnel,ndof);

%
kk=feasmbl1(kk,k,index);
%

end

%

o7
/0

% apply boundary conditions
o7

70
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% end of numerical integration loop
% extract system dofs for the element

% assemble element matrices

% end of loop for total number of elements

(kk,ff]=feaplyc2(kk,ff,bcdof,beval);

%

07
/0

% solve the matrix equation

%
diSp:kk\ff;

%

num=1:1:sdof;
displace={num’ disp)

%

[4Y

% element stress computation

for ielp=1:nel

%

for i=1:nnel
nd(i)=nodes(ielp,i);
xcoord (i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);
zcoord(i)=gcoord(nd(i),3);
end

%

07
70

% numerical integration

intp=0;

for intx=1:nglx
x=point3(intx,1);
wtx=weight3(intx,1);
for inty=1:ngly
y=point3(inty,2);
wty=weight3(inty,2) ;
for intz=1:nglz
z=point3(intz,3);
wtz=weight3(intz,3) ;
intp=intp-+1;

% print nodal displacements

% loop for the total number of elements

% extract node for (iel)-th element
% extract x value of the node
% extract y value of the node
% extract z value of the node

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% sampling point in z-axis
% weight in z-axis

349
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%

[shape,dhdr,dhds,dhdt]=feisos8(x,y,z); % compute shape functions
% and derivatives at sampling point

%

jacob3=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord);
% compute Jacobian

%
detjacob=det(jacob3); % determinant of Jacobian
invjacob=inv(jacob3); % inverse of Jacobian matrix
%

[dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob);
% derivatives w.r.t. physical coordinate

%
kinmtx—=fekine3d(nnel,dhdx,dhdy,dhdz); % compute kinematic matrix
%
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
%

S

% extract element displacement vector

%
for i=1:edof

eldisp(i)=disp(index(i));

end

%

estrain=kinmtx*eldisp; % compute strains
estress=matmtx*estrain; % compute stresses
%

for i=1:6

strain(intp,i)=estrain(i); % store for each element
stress(intp,i)=estress(i); % store for each element
end

%

location=[ielp,intx,inty,intz] % print location for stress
stress(intp,:) % print stress values
%

end

end

end % end of integration loop
o7

end % end of loop for total number of elements
%
%

function {dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)

4\

% Purpose:



Section 9.9 MATLAB Application to 3-D Stress Analysis 351

% determine derivatives of 3-D isoparametric shape functions with
% respect to physical coordinate system

%

% Synopsis:

% [dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)

%

% Variable Description:

% dhdx - derivative of shape function w.r.t. physical coordinate x
% dhdy - derivative of shape function w.r.t. physical coordinate y
% dhdz - derivative of shape function w.r.t. physical coordinate z
% nnel - number of nodes per element

% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% dhdt - derivative of shape functions w.r.t. natural coordinate t

% invjacodb - inverse of 3-D Jacobian matrix

%
%

for i=1:nnel
dhdx(i)=invjacob(1,1)*dhdr(i)+invjacob(1,2)*dhds(i) ...
+invjacob(1,3)*dhdt(i);
dhdy(i)=invjacob(2,1)*dhdr(i)+invjacob(2,2)*dhds(3) ...
+invjacob(2,3)*dhdt(i);
dhdz(i)=invjacob(3,1)*dhdr(i)+invjacob(3,2)*dhds(i) ...
+invjacob(3,3)*dhdt(i);

end

%

Al

function [shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue,tvalue)
o,
% Purpose:

% compute isoparametric eight-node solid shape functions

% and their derivatves at the selected (integration) point

% in terms of the natural coordinate

%

% Synopsis:

% [shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue,tvalue)

%
% Variable Description:
07 channaQ chana functinne far fanr.nada alamont

/0 SRHAapesSd - sfiape IUNCLIOHS ior iCul-noae aiement
% dhdrs8 - derivatives of the shape functions w.r.t. r
% dhdss8 - derivatives of the shape functions w.r.t. s
% dhdts8 - derivatives of the shape functions w.r.t. t
% rvalue - r coordinate value of the selected point
% svalue - s coordinate value of the selected point
% tvalue - t coordinate value of the selected point
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%

% Notes:

% 1st node at (-1,-1,-1), 2nd node at (1,-1,-1)
% 3rd node at (1,1,-1), 4th node at (-1,1,-1)
% 5th node at (-1,-1,1), 6th node at (1,-1,1)
% Tth node at (1,1,1), 8th node at (-1,1,1)

%
%

% shape functions

%

shapes8(1)=0.125%(1-rvalue)*(1- sva.lue)*(l tvalue);
shapes8(2)=0.125%(1+rvalue)*(1-svalue)*(1-tvalue);
shapes8(3)=0.125%(1+rvalue)*(1+svalue)*(1-tvalue);
shapes8(4)=0.125%(1-rvalue)*(1+4svalue)*(1-tvalue);
shapes8(5)=0.125%(1-rvalue)*(1-svalue)*(1+4tvalue);
shapes8(6)=0.125%(1+4rvalue)*(1-svalue)*(1+tvalue);
shapes8(7)=0.125*%(1+rvalue)*(1+svalue)*(1+tvalue);
shapes8(8)=0.125%(1-rvalue)*(1+svalue)*(1+tvalue);

dhdrs8(1)=-0.125%(1-svalue)*(1-tvalue);
dhdrs8(2)=0.125%(1-svalue)*(1-tvalue);
dhdrs8(3)=0.125%(14svalue)*(1-tvalue);
dhdrs8(4)=-0.125%(1+svalue)*(1-tvalue);
dhdrs8(5)=-0.125%(1-svalue)*(1+tvalue);
dhdrs8(6)=0.125*%(1-svalue)*(1+tvalue);
dhdrs8(7)=0.125%(1+svalue)*(1+tvalue);
dhdrs8(8)=-0.125%(1+svalue)*(1+tvalue);
%

A}lﬂaaﬂ('l\, -0, 1‘)!: (1.

GRASSTY coTii-Tvaiue) T i-tvalue
dhdss8(2)—-0 125*(1+rvalue)*(1-tvalue);
dhdss8(3)=0. 125*(1+rvalue)*(1 tvalue);
dhdss8(4)=0.125%(1-rvalue)*(i-tvalue);
dhdss8(5)=-0.125%(1-rvalue)* (1+tvalue);
dhdss8(6)=-0.125%(1+rvalue)* (1+tvalue);
dhdss8(7)=0.125*%(1+rvalue)*(1+tvalue);
dhdss8(8)=0.125%(1-rvalue)*(1+4tvalue);
%
dhdts8(1)=-0.125%(1-rvalue)*(1-svalue);
dhdts8(2)=-0.125%(1+4rvalue)*(1-svalue);
dhdts8(3)=-0.125*(1+rvalue)*(1+svalue);
dhdts8(4)=-0.125%(1-rvalue)*(1+4svalue);
dhdts8(5)=0.125*%(1-rvalue)*(1-svalue);
dhdts8(6)=0.125%(1+rvalue)*(1-svalue);
dhdts8(7)=0.125%(1+rvalue)*(1+svalue);
dhdts8(8)=0.125%(1-rvalue)*(1+svalue);
%
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function [jacob3}=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)
o,

% Purpose:

% determine the Jacobian for three-dimensional mapping

%

% Synopsis:

% [jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)
%

% Variable Description:

% jacob3 - Jacobian for one-dimension

% nnel - number of nodes per element

% dhdr - derivative of shape functions w.r.t. natural coordinate r
% dhds - derivative of shape functions w.r.t. natural coordinate s
% dhdt - derivative of shape functions w.r.t. natural coordinate t
% xcoord - x axis coordinate values of nodes

% ycoord - y axis coordinate values of nodes

% zcoord - z axis coordinate values of nodes

%
%

jacob3=zeros(3,3);

%

for i=1:nnel
jacob3(1,1)=jacob3(1,1)+dhdr(i}*xcoord(i);
jacob3(1,2)=jacob3(1,2)+dhdr(i)*ycoord(i);
jacob3(1,3)=jacob3(1,3)+dhdr(i)*zcoord(i);
jacob3(2,1)=jacob3(2,1)+dhds(i}*xcoord(i);
jacob3(2,2)=jacob3(2,2)+dhds(i)*ycoord(i);
jacob3(2,3)=jacob3(2,3)+dhds(i)*zcoord(i);
jacob3(3,1)=jacob3(3,1)+dhdt(i)*xcoord(i);
jacob3(3,2)=jacob3(3,2)+dhdt(i)*ycoord(i);
jacob3(3,3)=jacob3(3,3)+dhdt(i)*zcoord(i);
end

%

% Purpose:

% determine the kinematic equation between strains and displacements
% for three-dimensional solids

%

% Synopsis:
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% [kinmtx3]=fekine3d(nnel,dhdx,dhdy,dhdz)

%

% Variable Description:

% nnel - number of nodes per element

% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to y
% dhdz - derivatives of shape functions with respect to z

%
%

for i=1:nnel
i1=(i-1)*3+1;

i2=i1141;

13=12+1;
kinmtx3(1,i1)=dhdx(i);
kinmtx3(2,i2)=dhdy (i);
kinmtx3(3,i3)=dhdz(i);
kinmtx3(4,i1)=dhdy(i);
kinmtx3(4,i2)=dhdx(i);
kinmtx3(5,i2)=dhdz(i);
kinmtx3(5,i3)=dhdy(i);
kinmtx3(6,i1)=dhdz(i);
kinmtx3(6,i3)=dhdx(i);
end

%

0z,
it

Nodal displacements are given below and the state of stresses is ¢, = 1000 and
the rest of stresses are zero at every integration point.

displace =

d.o.f. displ.

1.0000 0.0000 % x-displacement of node 1
2.0000 0.0000 % y-displacement of node 1
3.0000 0.0000 % z-displacement of node 1
4.0000 -0.0030 % x-displacement of node 2
5.0000 0.0000 % y-displacement of node 2
6.0000 0.0000 % z-displacement of node 2
7.0000 -0.0030 % x-displacement of node 3
8.0000 -0.0030 % y-displacement of node 3
9.0000 0.0000 % z-displacement of node 3
10.000 0.0000 % x-displacement of node 4
11.000 -0.0030 % y-displacement of node 4
12.000 0.0000 % z-displacement of node 4
13.000 0.0000 % x-displacement of node 5
14.000 0.0000 % y-displacement of node 5
15.000 0.0100 % z-displacement of node 5
16.000 -0.0030 % x-displacement of node 6

17.000 0.0000 % y-displacement of node 6
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18.000
19.000
20.000
21.000
22.000
23.000
24.000
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0.0100
-0.0030
-0.0030
0.0100
0.0000
-0.0030
0.0100

% z-displacement of node 6
% x~displacement of node 7
% y-displacement of node 7
% z~displacement of node 7
% x-displacement of node 8
% y-displacement of node 8
% z-displacement of node 8

355
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Problems

An orthotropic material under the plane stress condition has the constitutive
equation

{7} = [Di{e}
where {7} and {¢€} are the stress and strain vectors in terms of the material
orthotropic directions. Further, [D] is given as

_ Qu Qiz 0
D=2 Q2 0
0 0 Qss
where
Qu = 1~ vyo0;
_ Yk
@iz = 1 —via0m
E,
Q22 = 1 —viavs
Q33 = Gh2

Subscripts 1 and 2 denote the orthotropic axes, E; and E, are elastic modulii
in the 1 and 2-axis, and G is the inplane shear modulus. v;; is Poisson’s ratio
for the normal strain ¢; resulting from the normal strain ¢;. If the material
orthotropic axes are rotated from the global coordinate axes by angle 8 (see

Fig. P9.1), show that the strain vectors between the two coordinate systems are
related as shown below:

€1 €
e2 ¢ =[T]4 €&
T2 Yoy
where
cos28 sin?d cosf sind
[T]= sin?6 cos*0 —cosfsint

—2c0s0sind  2coslsinfd cos?0 — sin%d

From Prob. 9.1, also prove that [D] = [T]T[D][T] where [D}] is the material

property matrix in terms of £ — y coordinate system and [L_)] is the material
property matrix in terms of 1 — 2 coordinate system.

A two-dimensional elastic body is discretized using six-node triangular elements
as shown In Fig. P9.3. Find the equivalent nodal forces for the three nodes
located on an element boundary.

Find the equivalent nodal forces for Fig. P9.4.
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Figure P9.1 Problem 9.1

Figure P9.3 Problem 9.3

9.5

9.6

9.7

9.8

9.9

SC)
[y
o)

Find the equivalent nodal forces for Fig. P9.5.

Find the deflection of a tapered cantilever beam as shown in Fig. P9.6 using
linear triangular elements and the computer programs. Assume unit width of
the beam.

Solve Fig. P9.7 using computer programs. Use different mesh discretization.
Some elements are distorted as shown in the figure.

Modify the computer programs so that linear triangular elements can be used
with rectangular elements. Then solve Fig. P9.8.

Using the computer programs, find the solution for a perforated plate under
tension as seen 1n Fig. P9.9.

Solve Prob. 9.6 for the transient analysis assuming the beam is initially at rest
using the computer programs,
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PLATE STRUCTURES

10.1 Classical Plate Theory

The basic assumptions for the classical Kirchhoff plate bending theory are very
similar to those for the Euler-Bernoulli beam theory. One of the most important
assumptions for both theories is that a straight line normal to the midplane of the
plate (or beam) before deformation remains normal even after deformation. In other
words, the transverse deformation is neglected. Therefore, as shown in Fig. 8.1.2,
inplane displacements u and v can be expressed as

Sw
U= —2-55 (1011)
v= 0¥ (10.1.2)
6y \iV.1.4)

where z and y are the inplane axes located at the midplane of the plate, and z is
along the plate thickness direction as seen Fig. 10.1.1. In addition, v and v are the
displacements in the z- and y-axes, respectively, while w is the transverse displacement
(or called deflection) along the z-axis.

Because we neglect the transverse shear deformation, inplane strains can be
written as in terms of the displacements

{€z € Yoyl=—-2{Ks Ky Ksy} (10.1.3)
where . , R
(s} ={K: &y ry}={5%% &% 2&%} (10.1.4)

is called curvature.
Assuming the plane stress condition for plate bending and substituting Eqs
(10.1.3) and (10.1.4) into Eq. (9.1.5) yield the constitutive equation as given below:
{c} = —2[D]}{x} (10.1.5)

361
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/ / M + Yz

Iy

l dy ol
I |

Figure 10.1.1 Free Body Diagram of the Plate Element

in which {¢} = {0z 0oy Tay }" and [D] is defined in Eq. (9.1.6). Moments are

defined as
rh/2

{M}:j 2{0’}z dz (10.1.6)

where {M} = {M, M, M, }* and h is the plate thickness. Substitution of Eq.
(10.1.5) into Eq. (10.1.6) gives the relationship between the moment and curvature.

{M} = —[D){x} (10.1.7)
where
_ h3
[D] = 35(D] (10.1.8)

Equilibrium equations are obtained from the free body diagram as shown in Fig.

10.1.1. Moment equilibriums about y- and z-axes and force equilibrium about z-axis
vield after neglecting higher order terms

wUlllsy aligjsatd Aafafes W

OM,  OM., N
5ot g~ Qe =0 (10.1.9)
OM,, = M,

G+ 5 Q=0 (10.1.10)
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0Qs L 0Qy ,  _
5c T oy tP=0 (10.1.11)

where (), and @, are the shear forces and p is the distributed pressure loading as seen

in Fig. 10.1.1. Elimination of the shear forces from Eqs (10.1.9) through (10.1.11)
gives

M, + 232 oy M,
Ox2 Ozdy Oy?

Combining Eqs (10.1.4), (10.1.7) and (10.1.12) finally produces the biharmonic
governing equation for plate bending in terms of the transverse displacement w.

+p=0 (10.1.12)

64w+2 &*w +04w_L
x4 0x20y?2 * 8y* ~ D,

(10.1.13)

where D, = m% is the plate rigidity.

& Example 10.1.1 We want to derive the equilibrium equations, Eqs
(10.1.9) through (10.1.11), from Eqs (9.4.1) through (9.4.3). Integration of Eqs
(9.4.1) and (9.4.2) over the plate thickness after multiplying them by z yields

/h"z (8%_‘_37‘@_'_37',,,) dy =
nyz \ Oz oy 8z )T

oM, OM, hj2
5t oy — Qe +(re2))y =0 (10.1.14)
hi2 O1sy | Ooy | Orys _
/_,,,2( 5z T 5y T 5z )Zdz—
OMy, OM, h/2
i + 3y —Qy + [1y22] 2 =0 (10.1.15)
in which
h/2
Qe =/ szdz (10.1.16)
~h/2
h/2
Qy =/ Ty, dz (10.1.17)
—h/2

If there is no shear stress (T;y = 7y, = 0) on the top and bottom surfaces of
the plate, Eqs (10.1.14) and (10.1.15) are equal to Eqs (10.1.9) and (10.1.10).
Integrating Eq. (9.4.3) over the plate thickness gives

h/2 7y, 37.y2 do,
/m( 9z T 9y T 8 d") =
T+ T 0, (h2) - u(~h/2) =0 (10.0.18)
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Figure 10.2.1 Three-Node Plate Bending Element

If ,(h/2) = p and 0,(—h/2) = 0, Eq. (10.1.18) equals to Eq. (10.1.11). 1}

10.2 Classical Plate Bending Element

We derive a three-node plate bending element based on the classical plate theory
[34]. The element is shown in Fig. 10.2.1. Each node of the element possesses three
degrees of freedom: displacement w in the z direction; a rotation about the z-axis, w,
(derivative of w with respect to y); and a rotation about the y-axis, w, (derivative of
w with respect to z), as shown in the figure. The displacement function w is assumed
to be

w(z,y) = a1 + a2z + azy + asx® + aszy+ aey® + arz> + as(2*y + 2y?) + agy® = [X]{a}

(10.2.1)

where
Xl=01 = y 2* 2y o 23 (2y+a2y?) #°] (10.2.2)
{a}:{a1 s d3 Q4 a5 ag ar as}T (1023)

Here constants a; are to be replaced by nodal variables w, w, and wy.
Taking derivatives of the displacement funciion with respect to z and y yields

0
a—l: = ag + 2047 + asy + 3arz? + az(2zy + ¥¥) (10.2.4)

g_:l/) = a3 + a5z + 2a¢y + ag{z? + 2zy) + 3ayy? (10.2.5)
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Evaluation of Eqs (10.2.1) through (10.2.5) at the three nodal points gives the
following matrix expression:

{d} = [X){a} (10.2.6)

where

{d}={wr (wo)1 (wyh wr (wo)2 (wy)2 ws (wo)s (wy)s} (10.2.7)
and
2

1 oz oy 22 ooy oy o2 iy 4oy v
0 i 0 2&71 0 0 32?% 22}13/1 + yf 0

0 1 0 21 2y O 23+ 2x1y1 3yi

i Z2 Y2 T3 Ty ¥ 23wty u3
[X] = 1 0 223 w0 322 2z0yp+y: 0 } (10.2.8)

0 1 0 2o 2y 0 22422y, 3yl

2 .3 7 9 g
r3 ys 2z ways Y3 3 23ys+23yi 3

1 0 223 y3 0 32 2asys+9y2 O
0 1 0 z3 2ys 0 =2i+2x3ys 3y3)

OO R OO M=o

Inverting Eq. (10.2.6) and substituting the result into Eq. (10.2.1) yields

{w} = [H]{d} (10.2.9)
where the row vector of shape functions of size 9 x 1 is computed from

[H] = [X][X]™ (10.2.10)

Inplane strains are computed from Eq. (10.2.9) as

{e} = [Bl{d} (10.2.11)
in which
{d={e & 7y} (10.2.12)
[B] = —2[L][X]! (10.2.13)
000 2 0 0 6x 2y 0
[L] = [0 00002 0 %2 6y (10.2.14)
000020 0 4z+y) 0

Substitution of the strain-nodal displacement relation, Eq. (10.2.11), into the
expression for element stiffness matrix, Eq. (9.1.24) yields

k1= [ [1BI (DB
—[1v-T 22 T > v1—1
=7 [ [ 2Dzl @@ 5]

= [R]T ]n (DYl (10.2.15)
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where
_ h3
[D] = 75 [D] (10.2.16)

Here [D] is the constitutive matrix of the plane stress condition, Q¢ is the two-
dimensional element domain in the zy-plane, and h is the thickness of the plate.
The element domain is the triangular shape as seen in Fig. 10.2.1. The element
stiffness matrix is of size 9 x 9 and the corresponding element nodal vector is given in
Eq. (10.2.7).

10.3 Shear Deformable Plate Element

The Mindlin/Reissner plate theory includes the effect of transverse shear defor-
mation like the Timoshenko beam theory. Hence, a plane normal to the midplane of
the plate before deformation does not remain normal to the midplane any longer after
deformation. The internal energy expression for the shear deformable plate should
include transverse shear energy as well as bending energy. The internal energy is
expressed as

U=3 [ o) ety + [ o eav (103.1)

where
{on}={0s a0y Ty}’ (10.3.2)
{o}={e € 72y} (10.3.3)

are the bending stress and strain components while
{6} = {7es 7 )T (10.3.4)

{e} = {7z s} (10.3.5)

are the transverse shear components. In addition, k is the shear energy correction
factor and equal to %.

Substitution of the constitutive equations for both bending and shear compo-
nents yields

1 K
U=3 [ (e DHaav + 5 [ {e)TIDHelav (10.3.6)
1%
in which
1 0
D) = T o (10.3.7)
7o 0 5]
is the constitutive equation for the plane stress condition and
G 0]
(D] = [0 GJ (10.3.8)
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Further, V' is the three-dimensional domain which is equal to dQ2 x dz. The zyz
coordinate axis is the same as shown in Fig. 10.1.1.

In order to derive the element stiffness matrix for the shear deformable plate,
we need to express the strains in terms of nodal variables. The inplane displacements
are given as

u= —z0,(z,y) (10.3.9)
v = —z0,(x,y) (10.3.10)

and the transverse displacement is
w = w(z,y) (10.3.11)

where 8, and 0, are rotations of the midplane about y and x axes, respectively. The
midplane is assumed to have no inplane deformation. For the shear deformable plate,

ow

94: - a - Yzz (10.3.12)
Sw

where 7 is the angle caused by the transverse shear deformation as seen in Fig. 8.2.1.

Because the transverse displacement w and slope & are independent, we need
shape functions to interpolate them independently. As a result, the shear deformable
plate element requires C° compatibility. Isoparametric shape functions are used
for the plate element formulation. The transverse displacement and slopes are

Sl 1.4 .
1ILErpolaved das

w = zn: Hi(€, n)w; (10.3.14)
i=1

0, = E Hi(€,n)(6:):i (10.3.15)

by = 3 Hil6,m)(8y): (10.3.16)

Here n is the number of nodes per element and the same shape functions are used
for the displacement and slope interpolations. For the following presentation, bilinear
isoparametric shape functions are used for simplicity. However, higher-order shape
functions can be used in the same manner. Both bending and shear strains are
computed from displacements.

{er} = —z[By]{d°} (10.3.17)

{es} = [Bs][{d"} (10.3.18)
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where
8L o o0 2 o o0 2 o o 8 o ¢
B)=|0 &2 0 0o & o o & 0 0o 2 o (10319
oH, @#H,  06H, @8H, ) 28H: @8Hy  8Hs 28Hs,
ay az ey dr By ér ay 8z
[B,] =
0 -H Zh o -H &2 o -H F2 o Hy &k
(10.3.20)
and
{d°} =
{01 By w1 (Bz)2 (By)2 w2 (Bz)s (By)s ws (B)a (Oy)a wa}
(10.3.21)

Substitution of Eqs (10.3.17) and (10.3.18) into the energy expression Eq.
(10.3.6) yields for each plate element

U= %{de}T /ﬂ , / {B,,]T[D,,][Bb]dzdﬂ{d"}+g{de}T /n ) f [B,)"[D,][B,]d=d{d"}
(10.3.22)

As a result, the element stiffness matrix for plate bending can be expressed as

(K¢ = flf; /n ] [B3)T[D3)[B3)dQ + xh /ﬂ , [B,]T{D,][B,]d (10.3.23)

in which h is the plate thickness. One thing to be noted here is that the shear energy
becomes dominant compared to the bending energy as the plate thickness becomes
very small compared to its side length. This is called shear locking. A heuristic
explanation for this can be given as below. The bending energy is proportional to
h® while the shear energy is propotional to h. Therefore, as b gets smaller, the shear
energy becomes dominant over the bending energy. To resolve this problem, the
selective or reduced integration technique was proposed. The key of the technique is
to underintegrate the shear energy term. In general, the bending term is integrated
using the exact integration rule. For example, when four-node bilinear isoparametric
elements are used, the 2 x 2 Gauss-Legendre quadrature is used for the bending term
while 1-point integration is used for the shear term. Similarly, the bending term
utilizes 3 x 3 integrations and the shear term uses 2 x 2 integrations for the nine-node
biquadratic isoparametric shape function.

10.4 Plate Element With Displacement Degrees of Freedom

The plate bending element developed in this section is shown in Fig. 104.1
where z, y, and z describe the global coordinate of the plate and u, v, and w are the
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Figure 10.4.1 Plate Element With Displacement Degrees of Freedom

displacements. h is the plate thickness. The zy plane is parallel to the midsurface
plane prior to deflection.
The displacement of any point in the plate can be expressed as

u = u(z,y,2) (104.1)
v=v(z,y,z) (104.2)
w = w(z,y) (10.4.3)

That is, the inplane displacements u and v vary through the plate thickness as well as
within the zy-plane while the transverse displacement w remains constant through the
plate thickness [35,36]. In order to interpolate the displacements using shape functions
and nodal displacements, two different interpolations are needed: one interpolation
within the zy-plane and the other in the z-axis. For the xy-plane interpolation, shape
functions N;(z, y) are used where subscript ¢ varies depending on the number of nodes
on the zy-plane. On the other hand, shape functions H;(z) are used for interpolation
along the z-axis, where subscript j varies depending on the number of nodes along
the plate thickness. Because two inplane displacements are functions of z, y, and z,
both shape functions are used while the transverse displacement uses shape functions
N;(z,y). Using isoparametric elements with mapping of £n-plane onto zy-plane and
(-axis to z-axis, the three displacements can be expressed as

N; N,

u= Y Ni(&n)H;(C)ui (10.4.4)

i=1 j=1
N1 N,

v=2 Y Ni(€,mH;(¢)vij (10.4.5)

i=1 j=1

N,
w=Y Ni(&,n)w (10.4.6)
i=1
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in which N; and Nj are the numbers of nodes in the zy-plane (£7-plane) and z-axis
(¢-axis), respectively. In addition, the first subscript for u and v denotes the node
numbering in terms of zy-plane (£7-plane) and the second subscript indicates the
node numbering in terms of z-axis (¢-axis). In the present study, N;=4 and N,=2.
That is, four-node quadrilateral shape functions are employed for the zy-plane (£7-
plane) interpolation and linear shape functions are employed for the z-axis (¢-axis)
interpolation. Nodal displacements u;; and v;; are displacements on the bottom
surface of the plate element and u;, and v;2 are displacements on the top surface. As
seen in Eqs (10.4.4) through (10.4.6), there is no rotational degree of freedom for the
present plate bending element.

In the present formulation, both bending strain energy and transverse shear
strain energy are included. The bending strains and transverse shear strains are
expressed in terms of displacements.

€x % 0 07 (u
{a} = { €y } = [ 0 0} { v } (10.4.7)
Yoy -(-% 0 w

£ o 2 u
{e;} = {gy" } = [% 2 FlSw (10.4.8)
vz 8z 8y w

where {¢;} is the bending strains and {¢,} is the transverse shear strains. The normal
strain along the plate thickness ¢, is omitted here.

Substitution of displacements, Eqs (10.4.4) through (10.4.6), into the kinematic
equations, Eqs (10.4.7) and (10.4.8), with N;=4 and N,=2 expresses both bending
and shear strains in the following way.

Sl

{es} = [Bo]{d°} (10.4.9)
where _
[(Bs] = [[Bs1] [Bs2] [Bes] [Bsa]] (10.4.10)
H%: 0 B 0 0
[Bu]=| 0 Hl?%f 0 Hfgf 0 (10.4.11)
Hy 5 Hi%gg Hy%)t Ha%t O
{d°} = {{d5} {ds5} f{a5} {d5}}" (10.4.12)
{df} ={uin vii w2 vi2 wi} (10.4.13)
{es} =[B.]{d°} (10.4.14)
where
[Ba]:{[le] [BJZ] [BJS] [BM” (10-4-15)
[ N o o
B, z 2 10.4.16
g 0w (10416
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The constitutive equation for the isotropic material is

{6} = [Ds){es} (10.4.17)
where
{ab} = {0’3 Oy Txy }T (10418)
E 1 v O
[Ds] = 1 s |v 1 0 (10.4.19)
oo ke
'~ tha handing ramnanante and
IV vilC Ucllullls \/Ulll}’\lll\llll}ﬂ [¢NSRVY
{0'5} = [Da]{fa} (10420)
where
{os} ={my: 7a:}" (10.4.21)
_ E 1 0
[D.] = 51+ 7) [0 1] (10.4.22)

where Eq. (10.4.19) is the material property matrix for the plane stress condition as
usually assumed for the plate bending theory.
For a unidirectional fibrous composite, the material property matrices become

Dy Dz 0]
[Ds]= { D1z D2 0 (10.4.23)
0 0 Das
in which
D 2 (10.4.24)
T — v o
Eyva
Dy = ———— 10.4.25
s 1~ wviavm ( )
E,
Dy =1— . (10.4,26)
D3z = G12 (10.4.27)
and
D,| = 10.4.28
[Ds] [ 0 Gu ( )

Here, 1 and 2 denote the longitudinal and transverse directions of the undirectional
composite, respectively. Further E is the elastic modulus, Gj; is the shear modulus
of the i — j plane and v;; is Poisson’s ratio for strain in the j-direction when stressed
in the i-direction. There are five independent material properties for Eqs (10.4.23)

through (10.4.28) because of the reciprocal relation H2 = *.
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The total potential energy can be expressed as
O=U-W (10.4.29)
where the internal strain energy U consists of two parts like
U=U+ U, (10.4.30)

The bending strain energy U} is

U, = % ]ﬂ {05} {es}d92 (10.4.31)

and the transverse shear strain energy is

U, =1 /n (07 {ea}d02 (10.4.32)

where € is the plate domain. After finite element discretization, substitution of the
previous equations into Eqs (10.4.31) and (10.4.32) gives

U= Y51 [ BT} (10.4.39

and
Ur=), %{de}T /n , [B,]T[D,][B,)d2{d} (10.4.34)

where summation is performed over the total number of finite elements and superscript
e indicates each element. Kinematic matrices [B;] and [B,] are provided in Egs
(10.4.10) and (10.4.15) while the constitutive matrices [D;] and [D,] are given in Eqs
(10.4.19) and (10.4.22) for the isotropic material, and in Eqs (10.4.23) and (10.4.28) for
the unidirectional composite. For a laminated composite plate, the material property
matrix of each layer must be transformed based on the fiber axis of each layer and
the global reference coordinate system.
The external work is written as

w = {d}T{F} (10.4.35)

in which {d} is the system nodal displacement vector and {F} is the system force
vector. Because there is no rotational degree of freedom for the present element,

tha avtarnal mamant 1@ annliad tA the fares vastar ag a sannla annlisd An tha fAn
vil€ EAuEIMdr NGIGCHU 15 appufl w0 wit 10100 VECWI oo a LUups) appuncl Ol will oOp

and bottom nodes of the plate element as shown in Fig. 10.4.1. Finally invoking the
stationary value of the total potential energy yields the finite element matrix equation.
The element stiffness matrix can be expressed as

K= [ (BTIDNB + [ (B [DB (10.4.36)
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One thing to be noted here is that the transverse shear strain energy term should be
under-integrated numerically to avoid shear locking, especially for a thin plate.

10.5 Mixed Plate Element

The basic equations for the classical plate theory are

M, = -D, (g%',’ + Va;T‘;’) (10.5.1)
M, = -D, (‘;22 +ug—?—2’3) (10.5.2)
Mgy = —Dp(1-v) ;2 (10.5.3)
a;gx + a; Lt 2335:‘;’;‘ =-p (10.5.4)

where M is the moment and D, = Tﬁ% is the flexural rigidity of plate. F is the

elastic modulus, h is the plate thickness, v is Poisson’s ratio, and p is the pressure
loading. Equations (10.5.1) through (10.5.3) are the constitutive equations and Eq.
(10.5.4) is the equilibrium equation of moments.

Applying Galerkin’s method to Eqs (10.5.1) through (10.5.4) do not produce
the symmetric matrix. To this end, Eqs (10.5.1) through (10.5.3) are inverted so that

we have
&w

S(My - vMy)+ 5= =0 (10.5.5)
32

S(M, — vMz) + Y 0 (10.5.6)
2w

25(1 4+ v)Myy + 2 g 5 =0 (10.5.7)

where S = Eh3 Now Galerkin’s method is applied to Eqs (10.5.4) through (10.5.7)

and integration by parts are performed to develop the weak formulation. The resultant
matrix equation for each element is given below [21]:

Ky 0 K; M F
[0 0 Ks KGJiMwi"iF,gi 5.
ks Ky K¢ 0 w Fy
where
K, = [N [N]dQ (10.5.9)
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Ky = —vK, (10.5.10)
aN1Tron 1%
Ks=— f 15 3] @ (105.11)
. (_6_Nq T 'B_N' T
Ky = f % 5] @ (10.5.12)
Ks = 21+ v)K, (10.5.13)
aN1TroN oN1Tron
== [ (5] 5]+ 5 L)) (10519
F=- [N]Tzfv-lxdr (10.5.15)
Jr‘e Gl‘
Fp=— [N]TQ'i’-Iydr (10.5.16)
e ay
ow Ow
_ (0w,  Ow
Fy = fe[N] (ay L+ 2o Iy)d[‘ (10.5.17)
Fi=— [ [N]TQndl + / [N pd2 (10.5.18)
e Ne
Qn = erm + ley (10.5.19)

Here, I; and I, are direction cosines of the unit normal vector, and () is the shear force.
[N] is the shape function vector. Any isoparametric element, of either quadrilateral
or triangular shape, may be used for these equations.

However, the previous formulation does not include the effect of transverse shear
deformation. The mixed plate bending formulation for thick plates is derived below.
Equilibrium equations for plate can be written as below including transverse shear
forces.

5ot gyt~ Q=0 (10.5.20)
My, = OM, B

Sl t gy Q=0 (10.5.21)
0Q; , 0Qy ,

5t gy TP=0 (10.5.22)

The major discrepancy between the thin and thick plate theories is the relations
between the rotations and the transverse deflection. In the thin plate theory the
rotations are not independent of the transverse deflection but they are independent
of the deflection for the thick plate theory. Thus, the displacements in the z, y and 2
directions are expressed as

u=—z0,(z,y) (10.5.23)
v=—z0y(z,y) (10.5.24)
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w = w(z,y) (10.5.25)

where 6, and 6y are rotations about y and z axes, respectively. Substitution of Eqgs
(10.5.23) through (10.5.25) into the kinematic equations and use of the constitutive
equations give

06,

S(Mg —vM, oz =0 (10.5.26)
aby
S(My — vMz) + Fy- =0 (10.5.27)
2S(1 + v)Myy + aAB + a—.g—y— =0 (10.5.28)
ady oz

If 0, and 0, are replaced by ® and a“’ , Eqs (10.5.26) through (10.5.28) are the same

as Eqgs (10.5.5) through (10.5. 7) Such relations, however, do not hold in the thick
plate theory.

Using the constituent and kinematic equations for transverse shear components,
the shear forces can be expressed in terms of rotations and the deflection.

0

Qs = KGh(~8; + 52 (10.5.29)

ow :

Qy = kGh(—06y + 5") (10.5.30)
where k is the shear correction factor e al to 5/6, G is the shear modulus, and A is
the plate thickness. Rewritting Eqs ( 5.29) and (10 5.30) for the rotations yields

Qb
by = <Gh + 5z (10.5.31)

__ 9
by = - nGh+6y

Putting Eqs (10.5.31) and (10.5.32) into Egs (10.5.26) through (10.5.27) to eliminate
the rotations gives

(10.5.32)

1 8Q; 2w
2
S(My —vM;) - L_99, + ow o (10.5.34)

kGh 0y = Oy?
1 [V, + aVy) 49 82w
kGh\ 8y Oz dzdy

Examining Eqs (10.5.33) through (10.5.35) reveals that the coefficients of shear forces
and moments are of order 1/h and 1/h3, respectively. Thus, as the plate thickness
approaches zero, the shear force terms can be neglected compared to the moment
terms. This is reasonable because the shear deformation is negligible when the plate
thickness is very small compared to its length.

25(1 + V) My, — =0 (10.5.35)
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In order to eliminate the shear forces, Egs (10.5.20) and (10.5.21) are substituted
into Eqs (10.5.33) through (10.5.35) as well as Eq. (10.5.22). Then, the resultant

equations are

1 8 1 0°M,,  OPw
(S - Ec‘:ﬁéﬁ)M’ —VSMy — e oty T B2z O (10.5.36)

2 2 2
! a)  — L My 0w, (10.5.37)

—vSM, + (S " kGh dy? " kGh 0z8y ' 6y?

1 (9°M, 0°M, 1 82 1 4? 8w
" kGh ( 0z0y + aa:ay) t (25(1 +v) - kGh 0z xGh 6y2) Moy + 269:33,1 =0

(10.5.38)
as well as Eq. (10.5.4). Equations (10 ou 5.38) and (10.5.4) have the
same four variables, M, My, Mzy and w, as those for the thin plate formulation.

\..J
o~
2o
-

051
=

/—\

If the terms associated with K—éj are neglected, these equations are reduced to the
thin plate equations. In fact, as the plate thickness approaches zero, these terms are
neglected. For the shear related terms are proportional to 1 while bending related
terms are proportional to #

Applying Galerkin’s method to the four equations yields the following matrix
expression.

Kn K2 Kiz Kia M F
K12 Ki Kaz Ko My, | _ ) F
Kz Kyz3 Kaz Kaa| | Mey (| F3 (10.5.39)
kia Kz Kaza Kaa w F,
where .
1 oON N
T gy 1oy
Kin=8 f NPT (N + — [ 31:] [ 3z]dﬂ (10.5.40)
Kip = —S / (N [N]dQ (10.5.41)
QE
Kis = - Gh [ ] [ ] (10.5.42)
ON] [onN
Kig=— /ﬂ [ az] LW] dQ (10.5.43)
N1 [oN
K= 8 [N]T[N]dQ+ / T] T] s (10.5.44)
g BRI Ju“" L YJd LYY
K ! ONT"TON] 1o (10.5.45)
%7 %Gh dy| | oz e

T T
Kaq = — f [@5 [a];’ ] dQ (10.5.46)
ne
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Figure 10.5.1 Square Plate Mesh Using 4 and 16 Elements

B T 1 / N7 [aN
Kss _2(1+u)sLe[N] [M)dQ + — m[az - ot
1 aN1T[oN
) [ay] [ay]m (10.5.47)
on1T[oN]  [oN]T[6N
o= (5] (5] 5] [5])e 10249
Ku=0 (10.5.49)
- 7 0w R T
Fi=— | INF' G kdl + o || NI Veledl (10.5.50)
Fp=— [N]Tawl dl' + — f [NTV, I, dT (10.5.51)
Te Gh
- (0w,  Ow )
Fo=- [ ] (a o+ 500, )dr+
1 )

=i /. o (Maylz + Myl ))dr (10.5.52)

[N]T (6 (Mzlz + Mgyly) +

Fy=~— [ [N]TQndl + ] [N]T pdS2 (10.5.53)
I'e Qe

Some finite element solutions obtained using the present mixed plate bending
elements are shown in Tables 10.5.1 through 10.5.5. Isoparametric shape functions
were used for both interpolation of moments and displacements. Tables 10.5.1 and

1NR 9 Q]'\nuv the rnan“a far mm'n]v suppnorted and r]amnaﬂ gqirare nlates subiected

LW ot PRI Y Vi LUOMLIUN LAVL Jliiipsay Leps pAASL UUNA ARARA vadeaaaps P letia v pARUUN DlaRs jus v

to uniform pressure loads. Because of symmetry, 4 or 16 four-node isoparametric
elements were used. The finite element mesh is seen in Fig. 10.5.1. The solutions
from the present mixed formulation are also compared with those from another mixed
formulation. Table 10.5.3 gives the finite element solutions obtained using 4 eight-
node isoparametric elements while Table 10.5.4 compares different isoparametric plate
bending elements. The accuracy of each isoparametric element is different even if the
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Table 10.5.1 Comparison of Central Defiections and Bending Moments for a Uniformly
Loaded Simply Supported Square Plate.

Analytic | 4 Elem.* | 16 Elem.* | 4 Elem.** | 16 Elem.**
Solution
WD/PL* | 0.00406 | 0.00424 0.00411 0.00409 0.00407
M,/PL? 0.0479 0.0525 0.0489 0.0505 0.0485
M,/PL? 0.0479 0.0525 0.0489 0.0505 0.0485

4-node quadrilateral element
(*) - Present F.E. Solution, (**) Solution from [20]

Table 10.5.2 Comparison of Central Deflections and Bending Moments for a Uniformly
Loaded Clamped Square Plate.

Analytic | 4 Elem.* | 16 Elem.* | 4 Elem.** | 16 Elem.**
Solution
WD/PL* | 0.00126 | 0.00141 | 0.00128 0.00148 0.00132
My/PL? | -0.0513 | -0.0476 -0.0499 -0.0487 -0.0508
M,/PL? | -0.0513 | -0.0476 -0.0499 -0.0487 -0.0508

4-node quadrilateral element
(*) - Present F.E. Solution, (**) Solution from [20]

total numbers of nodes are almost the same. The elements with more nodes per
element give more accurate results.

Both the thin plate theory and the thick plate theory are compared in Table
6.5.5 for an orthotropic plate. The plate is shown in Fig. 6.5.2 with the mesh and
material properties. As expected, as the ratio of the plate thickness to the side length
increases, there is an increasing difference between the two solutions. The thick plate
solutions are very close to the three-dimensional elasticity solutions for thick plates.

10.6 Hybrid Plate Element

The hybrid element is based on the assumed strains within the plate element
[23]. This element requires C® continuity. The formulation is based on a modified
potential energy expression as given below for a plate.

= [ (- 5{e) IDHe} - e )T IDe} + (o) DAL )+
(7]
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Table 10.5.3 Deflections at a Center of Square Plate

Boundary Condition Analytic Soln Present Soln
All Edges Supported 0.00406 0.00406
All Edges Clamped 0.00126 0.00125

Two Opposite Edges Simply Supported

Two Other Edges Clamped 0.00191 0.00192

8-node quadrilateral element

Table 10.5.4 Comparison of Central Deflections Obtained Using Different Isoparametric
Elements for Uniformly Loaded Simply Supported Plates

W, Error (%) Remark
Analytic Solution 0.2363 Timoshenko
3-Node Triangular 0.1814 -22.81 32 Elements
(25 Nodes)
6-Node Triangular 0.2344 -0.80 8 Elements
(25 Nodes)
4-Node Quadrilateral 0.2392 1.23 16 Elements
(25 Nodes)
8-Node Quadrilateral 0.2365 0.08 4 Elements
(21 Nodes)
(@) DALY - [ 1) (phar (10.6.1)
where
{o)= {2 % (84 27 (10.6.2)
)= {(-6:+%3) (-6, +3)}" (10.6.3)
{d}={6. 6, w)}T (10.6.4)

Further [D;)] is the material property matrix for bending strains and {D,] is the matrix
for transverse shear strains. [L;] is the matrix for the bending strain-displacement
operator and [L,] is the matrix for the shear strain-displacement operator. {p} is the
pressure loading on the plate.
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Egy = 0.23319%E;;

Ey = 0.543103*Eg
Gry = 0.262931%Ex
Cox = 0.159914%E
Gyz = 0.26681*Ex

Figure 10.5.2 Orthotropic Plate

Invoking a stationary value of the equation results in the equilibrium equation
and the generalized strain-displacement relation. In order to obtain the finite element
model, generalized strains and displacements are discretized as the following:

{a} = [Bul{es} (10.6.5)
{es} = [Bs){es} (10.6.6)
{d} = [N{d} (10.6.7)

where generalized strains are assumed independently within each element and gener-

alized displacements are interpolated using generalized nodal displacement {d}. Thus,
[B:] and [B,] are matrices consisting of the polynomial terms of the generalized strain
parameter vectors {a3} and {a,}, respectively. [N] is the matrix consisting of shape
functions. Substituting Eq. (10.6.5) through Eq. (10.6.7) into Eq. (10.6.1) yields

= - Sl G} - s{al (G} + (el (HKd)
+ {a)TIHN - (@R (10.6.8)

where

61 = [ (B DiliBuJao (10.6.9)

[G,] = /ﬂ [BTIDB.I40 (10.6.10)
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Table 10.5.5 Generalized Central Deflections (E,W/Pt) for Thin or Thick Uniformly
Loaded Simply Supported Square Plates

3-D Reissner’s | Classical | Thin Plate | Thick Plate
b/a | t/a | Theory* | Theory* | Theory* Soln** Soln**
0.05 21542 21542 21201 21268 21606
0.5 1 0.1 1408.5 1408.4 1325.1 1329.3 1413.8
0.14 | 387.23 387.27 344.93 346.03 389.11
0.05 10443 10442 10246 10285 10483
1.0 | 0.1 688.57 688.37 640.39 642.81 692.30
0.14 | 191.07 191.02 166.70 167.33 192.49
0.05 2048.2 2047.9 1988.1 1964.6 2026.8
20 | 01 139.08 138.93 124.26 122.79 138.26
0.14 39.790 39.753 32.345 31.962 39.806

4-node quadrilateral element
(*) Analytical Solution, (**) Present F.E. Solution

[H3)] = j;e[Bb]T[Db][Lb][N]dQ (10.6.11)
[H,] = /n G[B,]T[D,][L,][N]dQ (10.6.12)

and
{F}= f [N]T {p}dr (10.6.13)

Invoking stationary values of Eq. (10.6.8) with respect to {a;} and {e,}
respectively results in

—[Ge)l{es} + [Hs){d} =0 (10.6.14)

—[G.H{e,} + [H]{d} =0 (10.6.15)

Eliminating {a;} and {a,} from Eq. (10.6.8) using Eq (10.6.14) and Eq. (10.6.15)
gives

1. . - n
o= §{d}T([Hb]T[Gb]‘T[Hb]+ [H)T(GT(H){d} — {d}"{F}  (10.6.16)
Equation (10.6.16) finally gives the following finite element system of equations

[K){d} = {F} (10.6.17)
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Figure 10.6.1 Uniformly Loaded Square Plate With: (a) Simply Suppport Boundary and
(b) Clamped Boundary

in which
(K] = (] [Go] T [He) + [HA)T[Gh] 7" [H,] (10.6.18)
For a bilinear plate element, the generalized strain vectors are assumed as
1 00 2z 0 0y 0 O
[Be)]=]10 1 0 0 z 0 0 y O (10.6.19)
0 01 00 = 00 y
and
[B,]=[(1) (1)] (10.6.20)

These expressions represent that the bending strain varies linearly and the shear strain
is constant within the bilinear plate element.

Finite element results from the hybrid plate bending elements are provided in
Fig. 10.6.1 through 10.6.3. Convergence study for simply supported and clamped
square plates subjected to uniform pressure loading is shown in Fig. 10.6.1 while that
for a uniformly loaded circular plate with the clamped edge is seen in Fig. 10.6.2.
The mesh for the circular plate is shown in Fig. 10.6.3.

10.7 MATLAB Application

A static finite element analysis of plate bending is performed using the shear
deformable plate bending formulation discussed in Sec. 10.3. Some example problems
are solved using MATLAB programs below.

& Example 10.7.1 A simply supported square plate is subjected to a
concentrated load at the center. Find the deflection of the plate using the shear
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Figure 10.6.3 Meshes for a Quarter of Circular Plate

deformable displacement formulation. The size of the plate is 10 in. by 10 in.
and its thickness is 0.1 in. It is made of a steel whose elastic modulus is 30 x 10°
psi and Poisson’s ratio 0.3. The applied force is 40 Ib at the center. A quarter of
the plate is modeled dne to symmetry and it is divided into 4 four-node elements

(see Fig. 7.1.1).

The MATLAB program is written for the finite element analysis. Two point
integration is used for the bending term while one point integration is used for
the shear term for the selective integration technique. As far as the boundary
conditions are concerned, two edges are simply supported and two edges are
symmetric. As a result, nodes 1, 2 and 3 are constrained for §; and w. Nodes
1, 4 and 7 are constrained for 6y and w. Nodes 3, 6 and 9 are constrained for
8, while nodes 7, 8 and 9 are constrained for #,. The resultant constrained
degrees of freedom are 1, 2, 3, 4, 6, 7, 9, 11, 12, 16, 20, 21, 23, 25, and 26. The
external force is applied at node 9 with the third degree of freedom. Hence, the
concentrated force is applied at the 27th degree of freedom of the load vector.
Because of the quarter symmetry, a quarter of the force is applied to the load
vector. The finite element solution gives the center deflection of 0.0168 in. while
the analytical solution is 0.0169in.
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% Example 10.7.1

% A simply supported square plate is subjected to a concentrated load
% at the center. Find the deflection of the plate using 4 four-node

% isoparametric elements of the shear deformable displacement

% formulation. The size of the plate is 10 in. by 10 in. and its
% thickness is 0.1 in. It is made of steel and the applied
% force is 40 1b.

% (see Fig. 10.7.1 for the finite element mesh)

%

% Variable descriptions

% k = element matrix

% kb = element matrix for bending stiffness

% ks = element matrix for shear stiffness

% f = element vector

% kk = system madtrix

% disp = system nodal displacement vector

% gcoord = coordinate values of each node

% nodes = nodal connectivity of each element

% index = a vector containing system dofs associated with each element
% pointb = matrix containing sampling points for bending term

% weightb = matrix containing weighting coefficients for bending term
% points = matrix containing sampling points for shear term

% weights = matrix containing weighting coefficients for shear term

% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in bedof

% kinmtpb = matrix for kinematic equation for bending

% matmtpb = matrix for material property for bending

% kinmtps = matrix for kinematic equation for shear
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% matmtps = matrix for material property for shear

%

%

%

% input data for control parameters

%

nel=4; % number of elements
nnel=4; % number of nodes per element
ndof=3; % number of dofs per node
nnode=9; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
edof=nnel*ndof; % degrees of freedom per element
emodule=30e6; % elastic modulus
poisson=0.3; % Poisson’s ratio
t=0.1; % plate thickness
nglxb=2; nglyb=2; % 2x2 Gauss-Legendre quadrature for bending
nglxs=1; nglys=1; % 1x1 Gauss-Legendre quadrature for shear
%

%

% input data for nodal coordinate values
% gcoord(i,j) where i-> node no. and j-> x or y

o7
/0

gcoord=[0.0 0.0; 2.5 0.0; 5.0 0.0;
0.0 2.5; 2.5 2.5; 5.0 2.5;
0.0 5.0; 2.5 5.0; 5.0 5.0];

nput data for nodal connectivity

RN

nodes(i,j) where i-> element no. and j-> connected nodes

nodes=[1254;2365,4587;569 8];
%

% input data for boundary conditions

o7
bedof=[12346 791112 16 20 21 23 25 26]; % constrained dofs
beval=zeros(1,15); % whose described values are zeros

%

o
/0

% initialization of matrices and vectors

%

fi=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system matrix
disp=zeros(sdof,1); % system displacement vector
index=zeros(edof,1); % index vector
kinmtpb=zeros(3,edof); % kinematic matrix for bending
matmtpb=zeros(3,3); % constitutive matrix for bending

kinmtps=zeros(2,edof); % kinematic matrix for shear
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matmtps=zeros(2,2); % constitutive matrix for shear
%

%
% force vector
o

fi(27)=10; % applied concentrated force
%

oz
/0

% computation of element matrices and vectors and their assembly

oz
/70

%

% for bending stiffness

%

[pointb,weightb]=feglqd2(nglxb,nglyb);

% % sampling points & weights
matmtpb=fematiso(1,emodule,poisson)*t3/12;

% % material property matrix
%

% for shear stiffness

%

[points,weights]=feglqd2(nglxs,nglys);

% % sampling points & weights
shearm=0.5*emodule/(1.0+poisson); % shear modulus
shcof=5/6; % shear correction factor
matmtps=shearm*shcof*t*[1 0; 0 1]; % material property matrix
%

for iel=1:nel % loop for the total number of elements
%

for i=1:nnel

nd(i)=nodes(iel,i); % extract nodes for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the nodes
ycoord(i)=gcoord(nd(i),2); % extract y value of the nodes
end

%

k=zeros(edof,edof }; % initialization of element matrix
kb=zeros(edof,edof); % initialization of bending matrix
ks=zeros(edof,edof); % initialization of shear matrix
%
%
% numerical integration for bending term

%

Lnglxb

x=pointb(intx,1); % sampling point in x-axis
witx=weightb(intx,1); % weight in x-axis
for inty=1:nglyb

y=pointb(inty,2); % sampling point in y-axis
wty=weightb(inty,2) ; % weight in y-axis
%
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[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and
% % derivatives at sampling point
%
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % Jacobian matrix
%
detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
%
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% % physical coordinate
%
kinmtpb=fekinepb(nnel,dhdx,dhdy); % bending kinematic matrix
%
%

% compute bending element matrix

o7
4\l
kb=kb-+kinmtpb’*matmtpb*kinmtpb*wtx*wty*detjacob;

%

end

end % end of integration loop for bending term
%

L7 4
At
% numerical integration for bending term
o,

FAt)

for intx=1:nglxs

x=points(intx,1); % sampling point in x-axis

wtx=weights(intx,1); % weight in x-axis

for inty=1:nglys

y=points(inty,2); % sampling point in y-axis

wty=weights(inty,2) ; % weight in y-axis

%

[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and

% % derivatives at sampling point

%

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % Jacobian matrix

%

detjacob=det(jacob2); % determinant of Jacobian

invjacob=inv(jacob2); % inverse of Jacobian matrix

%

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate

%

kinmtps=fekineps(nnel,dhdx,dhdy,shape); % shear kinematic matrix

%

%

% compute shear element matrix

4l

ks=ks+kinmtps’*matmtps*kinmtps*wtx*wty*detjacob;
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Y/
end
end % end of integration loop for shear term

%

or
9

% compute element matrix

%
k=kb+ks;

%

index=feeldof(nd,nnel,ndof); % extract associated system dofs
%

kk=feasmbl1(kk k,index); % assemble element matrices
%

end

%

o7

F4Y

% apply boundary conditions
o7

44

[kk,ff1=feaplyc2(kk,ff,bcdof,bcval);
%

%
% solve the matrix equation

[/ 4
/0

disp=kk\ff;

%

num=1:1:sdof;

displace=[num’ disp] % print nodal displacements

»
<3

S

~
[

function [kinmtpb]=fekinepb(nnel,dhdx,dhdy)

o7,
/0

% Purpose:

% determine the kinematic matrix expression relating bending curvatures
% to rotations and displacements for shear deformable plate bending

%

% Synopsis:

% [kinmtpb]=fekinepb(nnel,dhdx,dhdy)

% nnel - number of nodes per element

% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to y
%
%

for i=1:nnel
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i1=(i-1)*3+1;

i2=i141;

13=i241;
kinmtpb(1,i1)=dhdx(i);
kinmtpb(2,i2)=dhdy(i);
kinmtpb(3,i1)=dhdy (i);
kinmtpb(3,i2)=dhdx(i);
kinmtpb(3,i3)=0;

end

%

o7
/70

fnnction [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)
174
% Purpose:

% determine the kinematic matrix expression relating shear strains
% to rotations and displacements for shear deformable plate bending
%

% Synopsis:

% [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

%

% Variable Description:

% nnel - number of nodes per element

% dhdx - derivatives of shape functions with respect to x
% dhdy - derivatives of shape functions with respect to y
% shape - shape function

(174

%

for i=1:nnel
i1=(i-1)*3+1;

i2=11+41;

13=12+1;
kinmtps(1,i1)=-shape(i);
kinmtps(1,i3)=dhdx(i);
kinmtps(2,i2)=-shape(i);
kinmtps(2,i3)=dhdy (i);
end

%

or
/0

& Example 10.7.2 The same square plate as that used in Example 10.7.1
is analyzed here. However, the boundary of the plate is clamped and the plate



390 Plate Structures Chapter 10

is subjected to a uniform pressure of 2 psi. Using the same number of elements
as before, determine the center deflection of the plate.

Because of different boundary conditions and loads compared to the previous
example, the following vectors substitute those in Example 10.7.1. Otherwise,
the rest of the program is the same. The finite element resuit shows the center

deflection of 0.0088 in. while the analytical solution is 0.0092 in.

bedof=[123456789101112 16 19 20 21 23 25 26];
bcval=zeros(1,19);

%

ff(3)=3.125; ff(6)=6.25; ff(9)=3.125;

f£(12)=6.25; f(15)=12.5; ff(18)=6.25;

f(21)=3.125; f(24)=6.25; ff(27)=3.125;
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Figure P10.4 Problem 10.4

10.1

10.2

10.3

10.4

10.5

10.6
10.7

10.8

Problems

Redo Example 10.7.1 for uniform pressure of 0.4 psi instead of the concentrated
load using the computer programs. Compare the present solution to that in
Example 10.7.1.

Redo Example 10.7.2 for a center load of 200 1b instead of the pressure load
using the computer programs. Compare the present solution to that in Example
10.7.2.

Redo Example 10.7.1 for a plate with two opposite edges simply supported and
the other two opposite edges clamped.

Redo Example 10.7.1 for a mesh shown in Fig. P10.4. Change the angle 8 in
the figure from 5 degrees to 30 degrees by an increment of 5 degrees. Compare
the present solutions to that in Example 10.7.1.

Solve a clamped circular plate which has elastic modulus of 200GPa, the radius
of 0.2m, and thickness of 10mm. The plate is subjected to a center load of
2.0kN. Find the deflection using the computer programs for meshes shown in
Fig. 10.6.3.

Redo Prob. 10.5 for a simply supported plate.

Find the deflection of a triangular shape of plate with simple support. The plate
dimension is given in Fig. P10.7 and its thickness 15 2mm. Its elastic modulus
is 70GPA and it is subjected to a center force of 100N. Find the deflection of
the plate using the computer programs.

Redo Prob. 10.7 for the clamped plate.



392

Plate Structures

0.15m

3

0.1m

0.lm

Figure P10.7 Problem 10.7

Chapter 10



(

e
>
o
=
=
o
=
-
&
<
=
Z

CONTROL OF FLEXIBLE STRUCTURES

11.1 Introduction

The subject of flexible structures control consists of both dynamic analysis and
control theory. Usually, these two disciplines are mingled together in such a way that
we have to understand both disciplines to an equal extent in order to achieve our goal.
The dynamic analysis of flexible structures is dominated by the finite element analysis
as discussed in other chapters of this book. The control theory, on the other hand, is
introduced in this chapter. The essence of each exemplary control theory is discussed
in this chapter. In-depth discussion on control theories is available in a number of
literature. The control theories are introduced here to help the readers of this book to
understand the key features in conjunction with the finite element analysis of flexible
structures. Prsented in Fig. 11.1.1 is a flow diagram representing the relationship
between mathematical modeling and control system design for a given structural
system. The mathematical modeling represented by finite element method has been
discussed so far. The control system design in this chapter will mainly make use of
the finite element modeling results. The control system design is demonstrated also
using MATLAB. MATLAB m-files are generated in order to solve example problems.
The example problems in this chapter do not need a specific MATLAB Toolboz.

There are two distinct approaches for control system design. One is called the
frequency domain epproach or classical control technique and the other one is the time
domain approach mainly adopted in the modern control technique. The frequency
domain approach relies upon analytical tools, and is still popular in majority of
existing control systems. For a given system, the frequency domain approach focuses
on the relationship between input and output. The input to the system is modified to
improve the output performance of a system. On the other hand, the modern control
technique is motivated by the rapid advance of computational power. The system
behavior is described by a set of variables over time domain. The control input then
tries to control each variable in order to satisfy desired system responses.

Each method has its own unique features. For the frequency domain approach,
plenty of analytical results and tools are available. On the other hand, the modern
control theory is easy to implement with the help of the abundant computational

393
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Figure 11.1.1 Flow Diagram for Structural Analysis and Control

software available. Modern control techniques impose another important issue on
estimation of all degrees of freedom with a limited number of sensors. The number
of sensors and actuators are usually less than the degrees of freedom of truncated
(approximate) systems. Estimating all the flexible modes is so critical to designing
an active control law in the time domain.

Active control of flexible structures is mainly represented by vibration control
using mechanical, electrical, and/or electromechanical devices. Inherent flexibility of
the structure raises a number of issues in the area of active vibration control. The
majority of flexible structures are distributed parameter systems. Therefore, they are
essentially infinite dimensional dynamic systems. Obviously, the infinite dimensional
systems are not practical for a control law design. Mathematical approaches like
finte element analysis can be used to derive finite dimensional systems which closely
duplicate the origiral infinite dimensional systems.

Before we work on the dynamic analysis and control system design for flexible
structures, we decide to introduce a basic stability theory. The stability theory is a

PV sobie o ranl A0 it ] Toame Jmes e ot = ErA o B

ke_‘y' Cuuccpt estauzisuiug’ the goal 01 a COomrol 1aw aesigii. B_‘y debﬂity, we mean the
dynamic characeristic of a given dynamic system representing the behavior of dynamic
motion of the system; for example, whether the motion is decaying or growing with
respect to time.

The Lyapunov stability theory has been considered as a background for under-

standing the stability of a dynamic system.

11.2 Stability Theory

The Lyapunov stability theory is one of the most frequently referred tools for
stability analysis and control system design of a dynamic system [37].

Definition of Stability

Consider a general form of nonlinear system

z = f(z,1), z(tg) = x0 (11.2.1)
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Figure 11.2.1 Time History of Stable(a) and Asymptotically Stable(b) System

where z is a vector and f(z,t) represents a general nonlinear function.
The above system is stable in the Lyapunov sense with respect to the
equilibrium state if for any given value ¢ > 0, there exists a number
6(e,to) > 0 for which the ||2(2)|| < € for all ¢ > tg and ||z(t0)|| < 6.

The above condition implies that the magnitude of z(t) remains within a finite
small value in the presence of small initial perturbation. This definition includes also
undamped pure oscillatory motions.

Asymptotic Stability

The system is asymptotically stable if it satisfies the stability condition and

The asymptotic stability implies that the state vector converges to the equi-
librium point which is assumed zero at steady state in this case. The difference in
the time response of both stable and asymptotically stable cases is displayed in Fig.
11.2.1.

Lyapunov Second Stability Theory

The second Lyapunov stability theory uses a nonnegative energy function for a
given system. If the energy function decreases, then the system is stable toward an
equilibrium point. In other words, the system energy is taken to be minimum at the
equilibrium point.

Theorem : Let V(x) be an energy function or a Lyapunov function.
The system is stable if V(z) > 0 and V(= r) < 0 for all values of z. If the

PRE S A T S g laaa
bllllc ld-l.vC Ul Lllallgc Ul Vv \-b) lb IESS Linail

system is asymptotically stable.

P ™ s b
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It is important to note that we cannot draw any conclusion about stability
when a desired Lyapunov function is not found. In this case, we should try to find
a Lyapunov function or apply Lyapunov’s instability theorem which is not discussed
here. Another drawback of Lyapunov’s approach is that there is no systematic way of
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finding an appropriate Lyapunov function candidate for stability proof. As it will be
explained later in this chapter, the Lyapunov second stability theory is also used for a
control law design; the control law tries to decrease a Lyapunov function suppressing
the motion of a system.

& Example 11.2.1  Consider a set of coupled first order systems given by

21 =292 — 171(1?% + 1‘3)
£y = —2) — x2(z2 + 22)

We want to check stability of the system. The equilibrium points of the system
can be obtained from

2'1:0, 332=0

Based upon the equilibrium point, we select a trial Lyapunov function as

V = :z:'f + :c% which is always positive. The time denvative of the Lyapunov
function in conjunction with the above set of equations turns out to be

V = ~2(} + 23)

Obviously, the Vis guaranteed to be negative, and the system is asymptotically
stable.

!

& Example 11.2.2 Consider a simple second order system whose governing
equation is given as
m{+cqg+kqg=0

where m > 0, ¢ > 0, k > 0. There are many ways to check the stability of the
above system. In order to apply the Lyapunov theory, we transform the above
equation into a set of first order equations as

1'31:3:2

m:itz = —C¥9 — lc:cl

where ;1 = ¢, 3 = ¢. Now we take a Lyapunov function as
1 2 2
V(z)= E(m:cz + kzy)

and the time derivative of the Lyapunov function becomes

V(l’) =mx2:é2 + kIlii?l

= — cal
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Therefore, V( z) < 0 as long as x2 # 0, and the system is asymptotically stable.
Note that 2 can be instantaneously zero but converges to zero only at the steady
equilibrium point.

¥

Stability of a Linear First Order System

Consider a linear first order system given as
[ —[TA1f.1 {11 9 09
‘lan' — lﬂ]‘l-bj’ \11.4.4}

where {z} is an n by 1 vector. In order to set up the stability condition of the system,
we choose the following Lyapunov function

U = {z}T[P){«} (11.2.3)
The time derivative of the Lyapunov function becomes
U = ()7 [PHz} + {=)7[PH2)
= {«}7(AT[P] + [P]A){=} (11.2.4)

For stability we require

~[Q) = [A]T[P] + [P]iA4] (11.2.5)

where [Q] is a positive definite matrix satisfying the property {z}7[Q){z} > 0 for
{} # 0 and [@] = [Q]T. Thus,

U=—{z}7[Q{z} <0 (11.2.6)
Therefore, we have the following theorem for stability of the linear system.

Theorem : The linear system {#} = [A]{=x} is stable if and only if there
exists a positive definite [P] matrix which satisfies Eq. (11.2.5) for a given
positive definite matrix [Q].

& Example 11.2.3 Let us assume a two degree of freedom system
. 0 1
@=me=0 4@

In order to check the stability of the system, first we assume a [@] matrix in Eq.

(11.2.5) as
@={5 9]
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Once we have [@Q)], then we solve Eq. (11.2.5)

o =l ml1S A0 S 7]

The resultant [P] matrix, therefore, becomes

117 1
n=3[1 3]
It is not difficult to check that [P] is positive definite, thus the system is stable.

!

Bounded Input Bounded Output(BIBO) Stability

In the above definition of stability, we were concerned only about a system itself
without including an external input. When there is a certain external input to the
system, the stability of the system obviously should take the magnitude of the input
into account. This 1s defined as, in general, the BIBO stability of the system as
described below:

When a system is under excitation by an external input with bounded
magnitude, it is called BIBO stable if the output of the system is also

bounded.

Matailad mathamotinal dacrrintian Aan RIRMN atahility anll ha menvidad Tadaw arbhan

2IJCLAIITU LLIALIITIIIAVIVGL UTDLwL l.lJDl.Ull Vil AFL1RAIJ DUGUI]J.IJJ YWIill VUG PI.UVIUUU IALTL YWIITIL
we discuss the transfer function analysis of a system

11.3 Stability of Multiple Degrees of Freedom Systems

In the previous section, we discussed the stability theory, especially stability
definition and Lyapunov function approach. Now, we want to discuss the stability
of linearized multiple degrees of freedom system which is the main outcome of finite
element analysis. Understanding the stability property of the multiple degrees of
freedom system is so important before we make any attempt to design a feedback
control law for a system.

System without Damping

Using the Lyapunov stability theory we want to analyze the stability of a
linearized multiple degrees of freedom system. Let us consider an n dimensional finite
dimensional dynamic system which is usually produced by finite element analysis.
The governing equations of motion without damping are described by

[M}{a} + [K){a} = [F]{u} (11.3.1)
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where [M] is the system mass matrix, [K] is the stiffness matrix, {q} is the generalized
coordinate vector, [F] is the input influence matrix, and {u} is the control input
vector. In case there is no forcing function, the free vibrational motion satisfies

[M{a} +[K]{q} =0 (11.3.2)

and the solution to Eq. (11.3.2) is a pure sinusoidal motion as explained in Chapter
8

n

{a®)} =D ce{gs}e’! (11.3.3)

k=1

where {¢x } and wg are system parameters. The stability of Eq. (11.3.2) can be proved
in various ways. One of them is the Lyapunov approach. Considering the fact that

the total system energy(kinetic plus potential energy) is a direct indicator of system
stability, a Lyapunov function candidate is suggested as

U = J{a)"1M){a) + 5 {a) [K{a) (113.9

Note that the Lyapunov function is always positive (U > 0) since the mass and
stiffness matrices satisfy

{x}"[M]{x} >0, {x}T[K}{x} >0 (11.3.5)

for {x} # 0, and they are symmetric ([M] = [M]7 and [K] = [K]T). Next, the time
derivative of the Lyapunov function in Eq. (11.3.4) in conjunction with Eq. (11.3.1)
yields

0 =< ={a)" (M@} +[K)a))
={a}" [F{u} (11.3.6)

Without the external forcing input, that is {u} =0, Eq. (11.3.6) becomes

U =0, or U =const (11.3.7)

In other words, the energy is conserved, therefore the motion should be a pure
sinusoidal type. It is important to note that the stability argument does not depend
upon the system property itself. That is, the mass and stiffness matrices are dropped
from the final expression of U. This will be discussed again in the later part of this
chapter when we deal with deriving a stabilizing control law for infinite dimensional
systems.

If we want to design the input {u} so that the system is stabilized, then one
possible solution will be select {u} in such a way that

U<0 (11.3.8)
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Figure 11.3.1 A Finite Element Beam Model with a Damper

In other words, the energy decreases toward an equilibrium point with the judicious
selection of the control input {u}.

System with Damping

A linearized multiple degrees of dynamic system with damping is described in
the form

[M{q} + [DHa} + [K){q} = [F]{u} (11.3.9)

where [D] is a nonnegative definite damping matrix. The above system is intuitively
stable by the damping term introduced. In order to prove stability, we take a candidate
Lyapunov function

= —({q}T[M]{q} +{a}"[K){a}) (11.3.10)

As it is shown, the Lvapunov function form is the same as that of F‘n {11 QA\

7 Ay WA Ay Qupsaaans FRFRELVL AV IS same as that

It is not surprising that both expressions are identical cons1der1ng the Lyapunov
function represents total energy (kinetic and potential energies) in both cases. The
time derivative of the Lyapunov function becomes

U = {a}T (IM{a} + [K1{a}) (11.3.12)

Using the governing equations of motion Eq. (11.3.9), we obtain

U = {a}"(~[DHa} + [Fl{u}) (11.3.12)

With the external control input ignored({u} = 0)

U = —{q}T[D){q} (11.3.13)

Therefore, the time derivative of the Lyapunov function is a quadratic form in [D]
and {q}. If the damping matrix [D] is positive definite with {q}T[D]{q} > 0, then
the system is asymptotically stable. In case the damping matrix is only semidefinite,
ie. {q}T[D]{a} > 0, then the asymptotic stability of the system is not guaranteed.
In this case, we can use another technique in order to prove the stability.
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& Example 11.3.1 Consider a finite element beam model in Fig. 11.3.1.
The material properties are given as EI = 1.112 x 104, p = 0.003, { = 20
with consistent units. A set of dampers is assumed at a nodal point in order to
add damping to the system. The mathematical modeling of this system is given

by
[M{a} + [D}{q} +[K]{q} =0
where
0.0223 0 0.0039  —0.0093
(M) = 0 0.0571  0.0093 —0.0214
=1 00039 00093 00111 —0.0157
L —0.0093 —0.0214 —0.0157 0.0286 |
0.2668 0 ~0.1334 0.6671 000 0
s 0 8.8946 —0.6671 2.2236 ~loooo
[K]1=10°x | 1334 _06671 01334 —06671|° 1= 10 0 ¢ o
0.6671 22236 —0.6671 4.4473 000 0

where c is the damping coefficient of the damper. When the Lyapunov function
is taken as the total energy of the system, the time derivative of the Lyapunov
function becomes

U =-{g}"[D){q}

. 2
= —cgs3

As long as g3 # 0, U < 0 and the system is asymptotically stable. Even if
the damping matrix has zero diagonal values, the system is still asymptotically
stable since ¢3 # 0 except for the equilibrium point.

1

11.4 Analysis of a Second Order System

A scalar second order system is frequently adopted as a reference explaining
fundamental concepts of system responses. In fact, the majority of dynamical systems
can be explained by using a scalar second order system. In this section, we want
to introduce the natural frequency and damping ratio of a scalar system and key
parameters associated with time responses. One of the most typical examples of the
scalar second order system is a spring mass and damper system in Fig. 11.4.1. The
governing equation of motion is given by

mi + ¢z + ka2 = f(t) (11.4.1)

where f(t) is the external force applied to the mass. Dividing both sides by the mass
yields

&+ (¢/m)z + (k/m)z = f(t)/m (114.2)
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Figure 11.4.1 An Example of a Second Order System

At this point, we define two parameters
wn = \Vk/m, ¢ =cfcer (11.4.3)

where w,, is the natural frequency and ¢ is the damping ratio. In addition, c., = 2v/mk
is defined as the critical damping ratio. As a consequence, Eq. (11.4.2) can be
rewritten as

£+ Awnd +wiz = Wi F(t) (11.4.4)

where we used f(t)/k = F(t). In order to derive the solution, we use the Laplace
transform techrique ignoring initial conditions temporarily. This is also motivated by
the fact that, for linear systems, the stability condition is independent of the initial
conditions.

(82 + 20w, s + w2)X(5) = W2 F(s) (11.4.5)
Therefore,
X(8)/F(s) = wk/(s? 4+ Awns + w2) (11.4.6)

where X (s) = L[z(t)] and F(s) = L[F(t)] are Laplace transforms of 2(¢) and F(t),
respectively. The equation obtained by setting the denominator of the transfer
function equal to zero is called characteristic equation. The characteristic equation of
the above transfer function, therefore, is given by

s2+ Awps +w2=0 (11.4.7)

and the solution is given by

812 = —Cw, wny/(2 -1 (11.4.8)

The above characteristic root is plotted on a complex plane in Fig. 11.4.2. The
dynamic behavior is dependent upon the magnitude of the damping ratio, ¢ and the
natural frequency wy.
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Figure 11.4.2 Characteristic Roots of the Second Order System

As a special case, we analyze a step response of the system by selecting
Fit)=1, t>0 or F(s)=1/s (11.4.9)

that is, ¢ unit step input. By substituting F(s) into the above equation, the output
can be found by the inverse Laplace transform technique 2(¢) = L~1[X(s)]. The
result turns out to be dependent upon the magnitude of the damping ratio ¢.

i). Underdamped case, 0 < ¢ < 1 In this case, s; 5 are complex conjugate, and the
motion turns out to be a damped oscillatory one.
—{wnat
x(t) =1- —\/l—_@Sin(wdt + ¢) (11410)

where ¢ = tan~'/(1-¢?)/¢ and wg = +/(1-¢{?)w, is the damped natural

frequency.

11). Critically damped case, ( = 1 In this case, 8, 5 are repeated real numbers. The
motion is monotonically increasing torward the steady state value

2(t) = 1 — e™“" (1 + wpt) (11.4.11)

i7d). QOverdamped case, { > 1 In this case sy 2 are all negative real. The motion is
also monotonically increasing toward the steady state

ol — 1 1 w,,e‘f“’"t { e_(\/ (3-1)wnt B e(\/C’_-l—)w,.t {
.u\!-}—LT2\/(2_1\(C+1/C2_1)wn (C—ch_ul)w"} {

Three different motions are presented in Fig. 11.4.3. As seen in the figure,
the usual response trends are exponentially decaying motions dictated by e—¢w»?
superimposed by damped sinuscidal motion with damped frequency, wy. In particular,
the constant 7 = 1/Cwy, is called time constant which represents how long it takes for
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time
Figure 11.4.3 Step Responses with Different Damping Ratios

the response to reach a certain level from an initial condition. The shorter the time
constant the quicker the response tends to be.

For an underdamped motion, some parameters are introduced characterizing
the transient response of the motion. Those parameters are sometimes used to
prescribe design specifications. In Fig. 11.4.4, different labels are used to denote
those specifications.

i) Rise time, t,:

The rise time is the required time for the response to start from zero value and
cross the unit steady state value. The rise time is found from

z|_, =1 (11.4.13)

1=t,

It turns out that

t, = —tan~
wq

! (- ———-Vlc"cz) (11.4.14)
it) Peak time, t,:

Peak time is the instance when the response reaches a maximum value. The
peak time can be obtained as

dx
= = 11.4.15
dt j,_, 0 ( )
which produces
ty = — T (11.4.16)
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Figure 11.4.4 Key Parameters in the Step Response

t11) Mazimum overshoot, Mp:

The maximum overshoot represents the amount of maximum deviation of the
response from the steady value. From Fig. 11.4.4, the maximum overshoot satisfies

= e~ W/V1-C)r (11.4.17)

iv) Settling time, 1,:

The step response of the underdamped system experiences a transient response
finally reaching a steady state value. The settling time represents the amount of time
it takes for the response to stay within a certain band prescribed around the steady
state value. The size of the band can be selected as, for example, 2% or 5%. For 2%
band, the settling time turns to be approximated by the multiple of the time constant,
T.

ts = 41' —_ CTH (11.4.18)

% Example 11.4.1 A second order system is given by

2
wﬂ
X(8)/F(s) = T+ Awns F o2

where w=2.0 (rad/sec) and (=0.2. The unit step response results are calculated
by calling fesecnd(¢,wn ) command.

[tp,tr, 15, Mp] = [1.603, 1.772, 10, 0.527]

function [t_p, t_r, t_s, M_p]=fesecnd(zeta, wn)
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% Purpose:
%  The function subroutine fesecnd.m calculates dynamic characteristics
%  of a typical standard second order system.

% w.n"2

% H(s)=

% §"242*%zeta*w n*s4+w.n"2
%

% Synopsis:

%  [t-p, t-r, M_p, t_s]=fsecond(zeta, w_n)
%

% Variable Description:

%  Input parameters : zeta - damping ratio

% w_n - natural frequency

%  Output parameters : t_p - peak time, t_r - rise time

% t_s - settling time, M_p - maximum overshoot,
w_d=sqrt(1-zeta"2)*w_n; % Calculate undamped natural frequency
t-p=pi/w_d; % Calculate peak time
t_r=atan2(sqrt{1-zeta"2), -zeta); % Calculate rise time
ts=4/zeta/w.n; % Calculate settling time
M_p=exp(-zeta*pi/sqrt{1-zeta"2)); % Calculate maximum overshoot
o,

PAll

The same analysis and definition can be applied to multiple degree of freedom
systems which may be generated by finite element analysis. From the original
governing equation

[M){a} + [DHa} + [K]{a} = [F]{u} (11.4.19)
and assuming Rayleigh damping with [C] = a[M]+ B[K], we obtain modal coordinate

form governing equation

i+ Wiwii +wini=fi,  i=12,...,n (11.4.20)

Now for each modal coordinate parameters(w;,(;) we can check the dynamic charac-
eristics.

11.5 State Space Form Description

In general, the equations of motion of dynamic systems are described by second
order differential equations. Finite element modeling of dynamic systems also results
in second order differential equations of motion. The second order differential
equations cover a generic class of dynamic systems. The analytical solution of second
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Figure 11.5.1 Graphical Representation of the State Space Equation

order equations of motion is essentially equivalent to solving ordinary differential
equations.

On the other hand, the first order state space form description of dynamic
systems has certain advantages over the second order form description. The second
order equations can be transformed into first order equations and the first order forms
also can be transformed into second order equations. Majority of existing computer
software tools are written for the first order systems. This is due to the inherent
nature of first order equations which are more convenient for numerical computations.
Another significant advantage of the first order form descriptions is that we can
analyze the equations in an explicit form.

Consider a linearized second order dynamic system

[MH{a} + [DHa} + [KH{a} = [F{u} (11.5.1)
In order to write the above equation in the first order form we introduce a vector
which is usually called the state vector

{z} = {g} (11.5.2)

Now we have the following relationship
SRTHIIS W S
dt | a —[M]~*[Dlq - [M]™[K]q + [M]*[F]u

. 0 I q 0

= o o) 8]+ [[M]*[F}] u(115.3

= [A]{z} + [B{u}
In other words, we rewrite the original second order differential equation in the first
order form by introducing the state vector {x}. The state vector and associated
properties constitute the so-called state space. The state space and related subjects
are well deseribed in Refs. [38-411

are well described in Refs. {38-41].

The size of the first order system, however, increases by twofold compared to
the original second order system. This may seem to be a drawback; however, the
modern computational capability resolves this concern to a considerable extent. As
mentioned earlier, the first order form has certain advantages being adopted in the
majority of engineering applications. Graphical representation of the first order state
space equation is presented in Fig. 11.5.1.
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Eigenvalue Problem and Free Response

Let us consider a case without an external input, that is {u} = 0, sometimes
called the eutonomous system. Thus, Eq. (11.5.3) reduces to

{} = [Al{=} (11.5.4)

In order to find the solution {z(t)} to the above equation, we assume

{z(t)} = ce* {4} (11.5.5)

where c is an arbitrary constant and {¢} is a vector of consistent size with {«(¢)}.
Then we substitute Eq. (11.5.5) into Eq. (11.5.4) arriving at

(A - [A])e {4} = 0 (11.5.6)

In other words,

(A - [A]){¢} =0 (11.5.7)

Since {¢} should be a nonzero vector, for the existence of a nontrivial solution, it
should follow

AT —[A]} =0 (11.5.8)

The above equation can be solved for A for the given system matrix [A]. There are n
Xs as the size of [A]. For an arbitrary i*® );, we can rewrite Eq. (11.5.7) as

Ai{gi} = [A]{¢,} (11.5.9)

Equation (11.5.9) is called the eigenvalue problem, which is a crucial concept in linear
dynamic system analysis. Even if we eliminate the control input temporarily for the
eigenvalue analysis, the eigenvalues and eigenvectors are used for stability analysis
and computing mode shapes of the system.

For a given system, there may exist repeated eigenvalues, for example, a system
with rigid body motion such as pure translational and rotational motions. This
situation is treated by somewhat different approaches. Momentarily, the analysis is
restricted to the case where the eigenvalues are all distinct. Let us write the eigenvalue
problem for each index

: (11.5.10)
’\n{‘pn} = [A]{¢n}

The above set of equations can be combined into a single matrix equation form

[[[v] = [U]4] (11.5.11)
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where [U] is a matrix whose columns consist of eigenvectors and [['] is a diagonal
matrix for which each diagonal term consists of eigenvalues.

[U]=[{é1}, {2}, .. {#a}],  [Al=diag[h], i=12,...A, (11.5.12)

Providing that the eigenvalues are all distinct, Eq. (11.5.11) turns into a relationship
[38-41]

[4] = [U]~[A][U] (11.5.13)

That is, the matrix [A] can be rewritten as a combination of a matrix which consists
of eigenvectors and a diagonal matrix of eigenvalues. As discussed in the above, when
there are repeated eigenvalues, we should use a modified form of equation. Equation
(11.5.13) is named as similarity transformation of A.

Note that the eigenvalue problem is invariant under the similarity transformation

AT — [UT AU =

AL - [A]] (11.5.14)

where we used |[U]| = 1/|[U]7].

As we might remember, the eigenvaule problem for second order systems in
Chapter 8 can be similarly applied to a first order system in this case. The solution
of the eigenvalue problem leads us to the analytical expression for {(t)}

{z(t)} = c1e™* {1} + c2e™** {2} + -+ - + e {n} (11.5.15)

The constants (e;,ca,---,c,) are obtained from the initial condition. Equation
(11.5.15) tells us that once we compute eigenvalues and eigenvectors, then we obtain
the expression for the response with respect to the initial condition.

& Example 11.5.1 Let us consider a finite element model for a beam with
only one element as shown in Fig. 11.5.2. The mass and stiffness matrices for
this system are
ph 156 —22h _ kI 12 —6h
[M] = 420 [ 22h  4h? [K] = h3 | —6h 4h?

where p = 0.002kg/m is the linear mass density, EI = 10 Nm? is the beam
rigidity, and h = 1 m the element length. The second order system is converted
into the first order system in accordance with Eq. (11.5.3). The result is

0 0 1.0000 0
(4] = 0 0 0 1.0000
= l630x10" —48x10* 0 0

5.04 x 10° -3.69 x 10° 0 0
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Now we have a MATLAB built-in function [V,D]=eig([A]) command, as
explained in Chapter 1, in order to compute the eigenvalue and eigenvector of
[A]. Consequently,

A2 = £550.35i,  Agq = £55.86i

r 2.3635 x 10~4 2.3635 x 10~4
_ ] 1.8016 x 10-3 _ ] 1.8016 x 10-3
=9 ""0130 ( 2}=9""_o1300
L 0.9915i —0.9915:
r —1.0516 x 10~2 r —1.0516 x 102
—~1.4485 x 1072 _ ) —1.4485x 102
{¢s} = —0.5874i i , {ga}= i 0.5874: }
. —0.8091; 0.8091:

The time response of the system due to the initial condition can be written as

{z(1)} = ci{1}eM! + ca{d2}e?* + ca{da}e?*’ + ca{da}e’

In order to find the constants(cy, ¢2,¢3,C4), we assume an initial condition as

( 0.05 y

=) =4 7"

nn
Al AP XLV rd

Therefore, the constants are calculated as
c1,ca = —~26.719 + 8.4788 x 10™%, c¢3,e4 = —2.9779 £ 0.1039:

Substituting the constants into {z(¢)} and using the famous Euler’s formula as
(38]
e = cos(6) + isin(0)

we obtain the final form for {z(¢)} analytically

[ —1.2630 x 102 —4.0079 x 1078
e —8.6274 x 1072 —3.0551x 1074} |
{z(t)} = 1 —9.9062 x 102 j cos(550.35t) + 1 6.9523 i sin(550.35t)+
—~1.6813 x 10~} 5.2984 x 10!
6.2673 x 10~2 2.1852 x 10~3
8.6328 x 10~2 3.0100 x 10-3 [ .
19206 x 101 cos(55.86t) + _3.5008 sin(H5.86t)
1.6813 x 10! —4.8221
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The solution to the first order equation Eq. (11.5.3) can be also found by using
the Laplace transform technique

sX(s) — {z(0)} = [A]X(s) + [B]U(s) (11.5.16)

where X(s) = L[{«(t)}] is the Laplace transform of {«(t)}, and U(s) = L[{u(¥)}] is
the Laplace transform of {u(t)}. Alternatively,

X (s) = (sI —[A)~"2(0) + (sI — [A])"'[B]U(s) (11.5.17)

In order to find the time response, we take the inverse Laplace transform of X(s).
First, the inverse Laplace transform of (sI — [A])~! should be evaluated. If a is a
scalar, we know

L7 (s—a) 1] =e* (11.5.18)

Generalization of Eq. (11.5.18) to a matrix [A], we can derive a similar relationship

as shown below.
L™ [(sI - [A])~Y] = e[k (11.5.19)

Therefore,

{z(t)} = e[A]‘{x(O)} + /’0‘ e[A](‘"T)[B]{u(r)}dT (11.5.20)

where the second term on the right-hand represents a convolution integral. The
response consists of two parts; one is due to the initial condition ({#(0)}) and the
other one is due to the control input ({u}).

It is not as straightforward to understand el4l* as the scalar case . In order

AR £rct wa intradiies tha Taly

4 o alerma —ron - FAT CAPIAG AV ARl
Lo m1cu.ybc < y HIDL WU LILVIULQULY LT 1QlyVl DULIVO CAaApAlioiUll.

[A]ztz + [A]3t3

M =1+ [l + = 3!

+ - (11.5.21)

The first fundamental question is whether the infinite series converge or not. The
answer i1s yes from a physical intuition; the factorial term in the denominator
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dominates the exponential term in the numerator. Efficient numerical algorithms
have been developed and a MATLAB built-in routine expm is also available.

Another interesting property can be derived from Eq. (11.5.13) which calculates
the exponential of a matrix

Al = [U] el U] (11.5.22)

where
At = diag[e™?], i=12,...,n

The proof follows as

Al = [1]+ [AJt + [A]%¢2/2! + [AP£3/3! + - --
= [U)' U] + ([UIANUD + ([U] AN U (U] Al [U)e? /2!
+ ([UI AU ANV (U] AN D) /8 + - -
= [U]7H (1) + [Alt + [APPe? /2! 4+ [A%]3 /8! + - )[U]
= [U]~ el U] (11.5.23)

Therefore, the eigenvalue solution can be used again to calculate el4lf,
Let’s go back to the first order equation without the control input term. Thus,

{2} = [A){«} (11.5.4)
In order to derive the solution, we assume
{z(t)} = [@(, N)){=(7)} (11.5.24)

where [®(t, 7)] is the so-called state transition mairiz which relates the state variable
at different instants, that is, {z(t)} with {z(7)} for t > 7. Obviously, [®({,7)] is a

time varying matrix. Now substitute Eq. (11.5.24) into Eq. (11.5.4).

[@(t, 7)]{2(r)} = [A)f@(t, T)H{=(r)) (11.5.25)

Therefore,
[®(t, )] = [A][®(¢, 7)] (11.5.26)
By solving Eq. (11.5.26) we can derive the analytical expression of {#(¢)}. The above
differential equation is combined with the initial condition of [®(£, 7)] by noting that

{z(7)} = &(r, 7){2(7)} (11.5.27)
In other words,
[B(r, 7)) =T (11.5.28)

and the combination of Egs. (11.5.26) and (11.5.28) constitutes a matrix differential
equation. Obviously, a numerical integration technique can be applied to the
differential equation. There are other useful properties of [®(¢, 7)] [38-41].

(i) [@@, )] =[®(t,t2)][®(t2,T)], t<ta<T
(it) [®(t, )] = [®(r,1)]7* (11.5.29)
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Figure 11.5.3 Graphical Representation of a Zero Order Hold(ZOH)

As it is the case, when [A] is a constant

[®(t, )] = lAIE-7) (11.5.30)

Equation (11.5.20) is generalized using the state transition matriz

{=()} = [@(t,f)]{-’c(f)}+/ [2(2, )I[BHu(§) }d¢ (11.5.31)

The state transition matriz is a useful tool understanding a linear first order system.
It also represents propagation of the initial condition which could be a perturbation
due to external disturbance. In celestial mechanics, orbit perturbation phenomenon
is analyzed quite often by the siafe {ransition mairiz concept.

Time Response by Numerical Technique

Frequently, the time response of a system due to the initial condition or external
control input is needed to analyze the behavior of the system. For nonlinear systems,
numerical techniques are used, and for linear systems we can use other approaches.
One of the useful techniques for linear system analysis and digital computation is to
set the control input constant, called zero order hold, during a certain interval of time.
The result becomes more accurate as the time interval, during which the control is
set to be constant, decreases.

The control input, for instance, is set to be [38§]

u(t) = u(k) = constant, kT < t < (k+1)T (11.5.32)
where T is the sampling period, u(k) is the magnitude of control input between k'”
and (k + 1)** step. Let us assume the state vector is evaluated at k'* step. We are

interested in evaluating the time response of the state vector at (k + 1)** step by
utilizing information at k** step. Using Eq. (11.5.30)

T
{2((k + 1)T)} = [®((k + DT, kT){z(FT)} + /0 (@6, 0)][BHu(k)}d  (11.5.33)
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Figure 11.5.4 A Spring Mass and Damper System for Time Response Example

The state vector {®((k + 1)T', kT))] is written as

[@((k + )T, kT)] = AT (11.5.34)
In addition
T
_/ [B(€, 0)]u(k)dE = [A]~" [l — ITu(k) (11.5.35)
0

Thus, Eq. (11.5.33) becomes
{z(k+ 1)} = AT {a(k)} + [A] 7 [T — 1)[Bluy = [@]{x(k)} + [TJu(k) (11.5.36)

where we used simple notation £ + 1 = (k + 1)T and k = ¥T. Equation (11.5.36) is
a discretized state space equation by holding the control input constant during each
sampling period(7"). The time response is easily computed by sequential substitution
for the discrete form of equation [38].

{z(1}} = [@{=(0)} + [THu(0)}
{2(2)} = [@{=(1)} + [THu(1)} = [@F{=(0)} + [B)[[}{=(0)} + [TH{u(1)}
{2(3)} = [@P{=(0)} + [®]*[T]{u(0)} + [®][T]{u(1)} + [[]{u(2)}

(11.5.37)

n-1
{z(n)} = [2]"{=(0)} + _Z[@]’ [THu(n —1-j)}

& Example 11.5.2 In this example, we apply the time response formula to
an example structural system. A spring, mass and damper system is given in
Fig. 11.5.4. The governing equation of motion for the system is given as

(M{a} + [CHa} + [KNa} = [F]{u}
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where [M], {K] are 2 by 2 matrices, and [F] is the input influence matrix given

as
[M] = [ 0 mz] [005 0(.)5]
o[22 ][4 7]
K] = [k‘_“;fz _,:22] = [168 —88]
#1=5 9]
The second order governing equation is transformed into a first order state space

{z} = [A{{=} + [B{u}
{y} = [C{=} + [D}{u}

where [A] and [B] matrices based upon Eq. (11.5.3). A MATLAB m-file
felresp.m is written for this example. The felresp.m computes time responses
by converting the original state space equation into a discrete equation by a zero
order hold approximation for the control input. The initial condition vector
is assumed as {z(0)} = [l 0.1 —2 2]¥. The external control inputs are
prescribed as

uy(t) = sin(10t), wus(t) = 3cos(10t)

Figure 11.5.5 presents the time response result by felresp.m. As we can see, the
motion 1s oscillatory affected by the harmonic external input.

function [x,y]=felresp(A,B,C,D,x0,u,t}

%

% Purpose:

%  find the time response of a linear system driven by initial condition

%  and external input. The numerical algorithm used in this program is
%  zero order hold approximation for control input for discretized system.
%

% Synopsis:

%  [x,y]=felresp(A,B,C,D,x0,u,t)

% Variable Description:
% A, B, C, D; system matrices in

% xdot = Ax + Bu,y = Cx 4+ Du

%  x0; initial condition vector for the state variables

% t;integration time at equal distance as t=0:dt:tf

%  dt- time step, tf - final time

%  u; control input vector with as many rows as the size of t
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Figure 11.5.5 Time Response Result for Example 11.5.2

%  x(y) ; state(output) vector

%

% Notes:

%  The control input vector must have as many columns as
%  the number of input

Ts=t(2)-t(1);

Phi=expm(A*Ts);

Gamma=inv( A)*(Phi-eye(n))*B;
nc=max(size(t));

x=zeros(nc,n);

tx=zeros(n,1);

xi=x0;

txX=x1;

% Calculate time responses x first
for 1=1:nc

x(i,:)=tx’;
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tx=Phi*tx+Gamma*U(i,:)’;

end

% Calculate the output response by using y=Cx+Du
y=(C*x)+D*U’)2;

LAl

11.6 Transfer Function Analysis

Transfer function analysis of linear dynamic systems is another useful too
analyzing the characteristics of the linear systems. This approach has been widel:
applied to various areas such as the control system design, modal testing of structures
and so forth. The basic idea of transfer function analysis is to convert a syster
described in the time domain into the Laplace transform domain (s domain) so tha
the relationship between input and output is written as an algebraic expression of th
Laplace transform variable.

Let us consider a state space representation of a dynamic system

{2} = [Al{z} + [B}{u} (11.6.]
{y} = [Cl{«} + [D){u} (11.6.:

Taking Laplace transform on both sides of Egs. (11.6.1) and (11.6.2) yields

e X(eY— LMY = TA1X () L [RIIT( 2\ (114
SARE) — BV = AALE) (DY) (110
Y (s) = [CIX () + [DIU(s) (116.

where X(s) = L[{=z(t)}] and U(s) = L{{u(t)}], and L is the Laplace transfor
operator. Here, we drop the initial condition vector {z(0)} since the dynan
characteristics dynamic of linear systems are independent of the initial conditic
By collecting common terms, Eq. (11.6.3) becomes

X (s) = (sI - [AD~'[BIU(s) (11.6

Substitution of Eq. (11.6.5) into Eq. (11.6.4) results in [40]
Y (s) = [[Cl(sI ~ [A]) T [B] + [D]]U(s) = [H(s)]U () (1L€
It should be noted that [H(s)] may be a matrix if the number of inputs and/or outp
are greater than one. As a special case of a single input and single output syst

[H(S)] becomes a scalar quantity representing the ratio between input and outpw

Y(s)
U(s)

H(s) = (11
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U(s)

H(s) - Y(s)

Figure 11.6.1 Representation of a Transfer Function using a Block Diagram

In other words, the transfer function relates the output(Y'(s)) to the given input (U(s))
in an algebraic expression. Figure 11.6.1 shows graphically the transfer function based
upon the input-output relationship. This is a significant advantage over the original
equation in the time domain, where the analytical expression for the input and output
is not readily available.
For the open-loop transfer function described as
_ N(s)

H(s) = ) (11.6.8)
the solutions of D(s) = 0 are called poles and that of N(s) = 0 are is called zeros of the
system [38-41]. The poles determine the stability of the system and the zeros usually
determine a time domain response shape. The zeros and poles of a given system in

state space form can be obtained by a MATLAB built-in function pely. The detailed
explanation for poly command 18 provided in Chapter 1.

& Example 11.6.1 Let us consider a finite element model of a Euler-Bernoulli
beam as shown in Fig. 11.6.2. There is an actuator located at the tip of the
beam. Applying the standard beam element using Hermite polynomials yields

[M{q} + [K{a} = [F}{u}

where [M], [K] are 4 by 4 matrices, and [F] is the input influence matrix given

as
446 000 077 -2.23
_| o000 165 2238 —617|_ .
M=\ o077 225 223 -sr7|* 10
—2.28 -6.17 -3.77 823
and
4722 0000 —2361 1417 0
_ {0000 2267 -1417 5667 _ 1o
Kl=| 2361 —1417 2361 -1417]° m‘{o]
L 1417 5667 -1417 1133 ] L1

The second order governing equation is transformed into a first order state space
form. In other words,

{2} = [A{{=} + [B){u}
{y} = [C=} + [D{u}
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Transfer Function Analysis

Table 11.6.1 Coeflicients of the Numerator Matrices

419

Output variables

Coeflicients of the numerator

(5]
61
V2
b2

0 2110 0 -6.287x10* 0 -1.292x10%® 0 1.228x10%)
0 1455 0 -7.509x10%* 0 1.656x107 0 1.841x109)
[0 0 2280 0 1.303x10% 0 8.556x10% 3.928x10°]
[0 0 121.1 0 3.825x10° 0 1.205%x10%® 0 2.455x109

70

7// ”{/\/)L "2,\ > actuator
/) e ng
wr

Figure 11.6.2 A Finite Beam Model with an Actuator Input

where [A] and [B] matrices generated from [M],[K], and [F]. A MATLAB
m-file fesioif.m is written which converts a staie space form into a transfer

function.

The transfer functions are found between the actuator input and

different outputs. The denominator polynomial D(s) is given by

D(s) =s® + 1.101 x 10%s% + 1.242 x 107s* + 1.174 x 10°s* + 2.898 x 10°

The coefficients of the numerator matrix are provided in Table 11.6.1

Purpose:
The function subroutine fsstotf.m converts a state space form of
system into a transfer function form.

For a given system
xdot = Ax+Bu y =Cx+Du
The transfer function becomes
N(s) -1

H(s) = —— = C(sI-A) B+ D
D(s)
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%

% Synopsis:

%  [Num,Den]=festotf(A,B,C,Diu)
%

% Variable Description:

%  Input parameters -

% System matrices [A,B,C,D]

% iu - Index for control input(iu-th input)

%  Output parameters -

% D(s) - Vector of coefficients of the denominator polynomial

% N(s) - Vector of coeflicients of the numerator polynomials

%  Note -

% There are same number of rows in N(s) as the number of output
%

Den = poly(A); % Determine denominator polynomial
B = B(:,iu); % Select the corresponding column
D = D(:,iu);

[m,n] = size(C);
Num = ones(m, n+1);

for 1=1:m
Num(i,:) = poly(A-B*C(i,:)} + (D(i) - 1) * Den;
end
%
i
From Eq. (11.6.5), (sI— [A])~! plays a key role determining stability and other
dynamic characteristics of the system. Accord g to a linear algebra theory, it is

rewritten as
Adj(sI - [4))
jsI — [A]]

(s1 —[A])~! = (11.6.9)

where |sI — [A]] represents the determinant of (sI —[A]), which should be an n** order
polynomial in s

|sI —[All = s" +a1s" 1 +a28" "2+ .-+ ap_15+an (11.6.10)

and Adj( ) denotes adjoint of a matrix. The equation |sI — [A]] = 0 is called
characteristic equation. Equation (11.6.10) also can be expressed as

sl —[All = (s — A Ms—Xs)--- (s —A,) 111611\
18l — (Al ={s — A1)(s 2]\ T Ay Bl

and the solutions of the characteristic equation are

s=2A1, Az, o0, An (11.6.12)

where J); is called the i*® eigenvaule or characteristic root of the system.
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The transfer function can also be written as a combination of each first order
term in s called partial fraction expansion [38-41]. That is

H(s)= —— + Foob — 11.6.13
(2) (s—A1)  (s—=2A2) (8= An) ( )
where the coefficient ¢; can be determined from
e = H(s)(s — X) (11.6.14)
s=A;

Here we consider a unit impulsive input. The impulsive input is a popular choice
in modal testing and structural system analysis. Mathematically, it is represented in
terms of the Dirac Delta function. For example, if the input is an impulse input with
unit magnitude, then

u(t) = 6(t — to) (11.6.15)
for which
5 6(t—to)dt=1, t=tg
{5(t > to) =0, Lt (11.6.16)

The Laplace transform of the unit impulse function at £, = 0 is unity, that is U(s) = 1.
Therefore, the output is equal to the transfer function itself. Thus,

Y (s) =H(s)U(s)
=H(s) (11.6.17)

Now the time domain response for Y (s) or H(s) can be obtained by taking the inverse
Laplace transform of Y (s). Based upon the expression in Eq. (11.6.13), the response
is expressed as

y(t) = LY (s)] = cre*’ + cae™®* + - + cue™’ (11.6.18)

Equation (11.6.18) is sometimes called impulse response by the nature of the applied
impulsive input. It is obvious from the expression in Eq. (11.6.18) that the response
is stable if

Re[X] < 0, for, i=1,2..n (11.6.19)

where Re[);] denotes a real part of A;. In other words, the solution of the characteristic

equation should have negative real parts for stabilify.
When the in

121 viaT iz 22 T2 23 & 230 L L E

nut annlied i1s a step function as
¥y wrr r

u(t) = Uy (11.6.20)

the system output becomes

Y(s)= H(S)Uoi- (11.6.21)
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The output y(t) created by the step input is called step response

y(t) = LY (s)]

= L‘I[H(s)Uo%] (11.6.22)

Bounded Input Bounded Output (BIBO) Stability

At this point, we want to go back to the stability discussion; BIBO stability
which was introduced in Sec. 11.2. For simplicity, we take a single-input and single-
output system. From Eq. (11.6.6), the time domain solution for the input and output
is given by the convolution integral

y(t) = fo t h(t — T)u(r)dr (11.6.23)

where h(t) = L™1[H(s)] is the impulse response of the system. In case the input to
the system is bounded
lu(r)l < M (11.6.24)

Then the output equation satisfies

vl =1 [ b - ru(r)as
< j:t Ih(t — r)u(r)|dr
< /0 " h(t = ) [u(r)dr (11.6.25)
< M/ot Ih(t — 7|dr

Thus, the output of the system is bounded if fot |h(t — 7)|dT is bounded [37]. In

particular, the stability is based upon the steady-state condition, and-the output i
bounded at steady-state when

/ |h(co — 7)|ldr < N (11.6.26
0

Since the impulse response (h(t)) of the system depends upon poles or characteristic
roots of the system transfer function, the system BIBO stability depends upon the
system poles and the magnitude of the input which must be bounded.

Basic Concept of Feedback Control

The basic feedback control concept in frequency domain is represented in term:
of a block diagram in Fig. 11.6.3. It is represented by the transfer function descriptior
using Laplace transform. The system is under three different external inputs; reference
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d(s)

U5 &K)—6(s) il H(s) — 1(s)

S(s)

Sengor

Figure 11.6.3 Feedback Control Block Diagram

command input U,.;(s), disturbance d(s), and sensor noise n(s). The three inputs
affect the system behavior in combination. The output (Y(s)) of the system is
measured by a sensor, and the output from the sensor is compared to the reference
input. The compared signal called error signal is fed to the actuator, and the actuator
applies corrective signal to the system. By the actuator signal, we hope the error signal
goes to zero asymptotically. Here we can derive a relationship between the reference
input U,.s(s) and the output Y (s). Note

E(8) = Upes(s) = Y(s) (11.6.27)
Since
Y(s) = H(8)G(s)E(s)
= H(8)G(5)([Ures(s) — Y(5)) (11.6.28)
Therefore,
H(s)G
Y(S)/Uref(s) = Tg()s'j"%“)* (11629)

Similarly, we can derive the transfer functions such as Y (s)/d(s) and Y (s)/n(s).

1

Y(9)/465) = T G0TE) (11.6.30)
Y(s)/n(s) = 1‘;%2%2) (11.6.31)

Note that as we increase the feedback gain H(s), the output due to disturbance
decreases while the output due to noise increases. This is a typical aspect of a feedback
control law with a varying feedback gain. The feedback control law produces a new
transfer function and corresponding characteristic equation [39]

1+ G(s)H(s) =0 (11.6.32)

The new transfer function is called a closed-loop transfer function and the corre-
sponding system is called a closed-loop system. As discussed earlier, the solution of
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the characteristic equation determines the stability of a system and the controller
block(G(s)) is designed so that the closed-loop system becomes stable. Obviously,
the closed-loop system stability depends on not only G(s) but also H(s). Depending
on the nature of H(s), it is sometimes easy or difficult to design a stabilizing controller
G(s).

Also, an important performance criterion in the transfer function description of
a system is the error defined as the difference between the reference input and the
actual output

E(s) = Uper(s) — Y (s) (11.6.33)
which follows as
B(s) = Ures (5) = Ty ey a5 et ()
o G(;)H(s) Urey(5) (11.6.34)

Similarly, the error due to disturbance and measurement noise is represented as

-1

(11.6.35)

E(s)/n(s) = 7 +((:;9st)(;23) (11.6.36)

The steady-state error can be obtained by the final value theorem of the Laplace
transform technique,

e(oo0) = lim sE(s) (11.6.37)

3—0
OTID “ll'l'l'lﬂ' ln“ﬂ'l‘ﬂﬁ"';“ﬂ' mm Ff‘l {11 R RA‘ ;Q fl‘!ﬂ l'!D ﬂ""ﬂ (e ) r‘{e\ n(c\ MMoranance ag + o
Py Ay v l&la J.l.lll\.}l\lﬂullla AEL u\10 \LL AV L P g -I-I ans ULI“\J ‘JJL\J WALIN, AL \J\G}JJ \UI ARAN A LMW AT LD VAL
size of the error signal decreases. This is a typical aspect of a control system using a

high feedback gain for performance 1mprovement

Proportional plus Derivative Control Law

One of the popular classical control law techniques is the Proportional plus
Derivative (PD) control law. The controller G(s) uses error signal and provides
command input to the system, and the input signal is a combination of proportional
plus derivative of the error signal. That is,

G(s) = Kp(rs+ 1) (11.6.38)

where the operator s represents a derivative operator in Laplace transform as L[é(t)] =
sE(s), and K, is a constant. The constant K, term contributes to eliminating a steady
state error md T contributes to a better tra_.n_ment response. For example, a spring

mass system is given by
mz + kx = f(t) (11.6.39)

or in transfer function form

_ 1
§2 + w2

X(s)/F(s) = H(s) = (11.6.40)
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!
Uls) — 1Bt ) {5z T 10

Figure 11.6.4 Proportional plus Derivative(PD) Control

where F(s) = f(s)/m and w, = (k/m)'/2. The open-loop characteristic equation
follows as

s2+wi=0 (11.6.41)
The solutions are s = fw,t and the system is neutrally stable or oscillatory. The
response never reaches a steady-state and it does not track input command. Now

we add a PD controller as in Fig.11.6.4, and the closed-loop characteristic equation
becomes

1
1+Kp('rs+1)32+w§ =0 (11.6.42)
Thus,
s+ Kyrs+ (K, +w2)=0 (11.6.43)

The closed-loop system poles are governed by the parameters (1, K,) of the
controller. The parameters directly control the close-loop transient response through
damping ratio and natural frequency.

Wi =K, +wi, Ao, =K,T (11.6.44)
where @, and { are the desired natural frequency and damping ratio, respectively.
Also, we consider a step-input response of the system with U,.s(s) = 1/s. Thus,

_ _G(s)H(s) 1
Y = 17 Ga)A () 5

(11.6.45)
According to the Laplace final vaiue theorem is
tl_lﬁn;} y(t) = slgrb sY(s) (11.6.46)

In this case, Eq.(11.6.29) yields

_ 1y _G(8)H(s)

y(oo) = m T O H(s)
L Kp(rs+ 1) _
- P—E}) 2+ K75+ (w2 + Kp)

1 (11.6.47)
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Now the steady state error, using Eq. (11.6.34), becomes
e(c0) = lim sE(s)
AN R

2, 2
= lim (" + wn) =0
s—0 82 + K75+ (Kp7 + wi)

(11.6.48)

In other words, by introducing a PD controller, the steady state output tracks the
input command with zero steady state error.

There are other control actions such as integral and proportional plus intrgral
control actions. The integral control action is generally known to improve steady-state
performance by eliminating steady error due to external disturbances.

Proportional plus Integral Control Law
The Proportional plus Integral (PI) control law is useful eliminating external
disturbances source. The PI control law 18 represented by the following form

G(s) = Kp(1+ 11/5) (11.6.49)

where K, and 717 are constants. That is, the control signal is developed as a
combination of proportional and integral of error signal. In order to examine the

PI control law we use the same spring mass system used for the PD control law.
Therefore,

G(s)H(s) = Kp(1+71/s)

Py (11.6.50)

We assume a situation where the system is under a constant disturbance of
magnitude W so that
d(s) = W/s (11.6.51)

Now the error signal due to the disturbance is given as

Bls) =13 G_sl)H(s) ()
—(s? 4 2
s + (wﬁ(: ;S:)i Kptr _I:_f (11.6.52)
Application of the final value theorem to E(s) yields
e(o0) = }1_{1(1] sE(s)
im s twn) (11.6.53)

s—0 83 + (w2 + Kp)s + K,mr
Therefore, the PI control law achieves zero steady-state error in spite of the external
disturbance. Note that if the control law is a PD control law, then the steady-state
error is a nonzero value. For disturbances such as linearly changing and parabolic
types, the integration order of the PI control law should change consequently.
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11.7 Control Law Design for State Space Systems

In the previous section, we discussed the state space form formulation of dynamic
systems, for example, finite element modeling of structural systems. There are certain
advantages in the state space form approach compared to its counterpart which is the
frequency domain technique. In this section, control law design issues based upon
the state space form of dynamic systems are discussed. Different control laws are
introduced accompanied by examples programmed in MATLAB. Since the majority
of modern computational tools in MATLAB Toolbozes are written for state space
form of equations, we elect to put more emphasis on the state space representation of
systems.

For a typical linear system, we start with

{z} = [A{=} + [B]{u}
The open-loop stability of the above system without external input is determined by
IAT—[A]ll=0

The solution to the above equation does not always ensure stability of the system,
and it is our goal to design the control input {u} so that the desired behavior of
the system can be achieved. Before we discuss the control law design, the important
Controllability definition of dynamic systems is discussed.

Controllability of System

Basically, the controllability represents the ability of a control input to control
or change all the state variables of a system. An example case is an actuator located
at the nodal point of a specific mode of a flexible structure. In this case, the particular
mode is not controllable by the actuator. For flexible structures, the actuator location,
therefore, is a significant factor for controllability.

It is important to design a control system under a condition where a pole is
cancelled by a zero in a transfer function. In this case we lose the cancelled pole;
same principle as losing controllability in a state space equation. The order of a
transfer function is directly related to the number of state variables in a state space
form representation and the reduced order of the transfer function also reduces the
order of the state space form equation. The precise definition of controllability is as
follows.

Definition of Controliability

The system is controllable if there exists a control input {u(t)} and time ¢
by which an arbitrary {z(¢;)} can be reached from {z(#0)} with to < ¢ < t;.

In a mathematical theorem, it is stated as:

Theorem :  The controllability condition for a given linear system

{z} = [Al{z} + [B]{u} (11.7.1)
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is prescribed by the condition;
tr

[Ge(ty,t0)) = / ANt =T [B][ BT AT (s =T gy (11.7.2)
to

should be positive definite [39].

The above matrix, [G.(ts,%0)], is called Controllability Grammian. In order to
verify the above theorem, we start with the solution

The control input {u(r)} can be rewritten as

{u(r)} = (B [2(¢s, DT [Gelty, o) He(t)} - 2(tp, o) (o)}l (117.4)
This is verified by plugging {u(r)} into Eq.(11.7.3). Hence,
{2(t)} =0(t7, 1)} {z(to)}+
[ 0y, PMBIBI (e, P (161 (et} - (G100t )} ()]

to
={z(ts)} (11.7.5)
It is easily shown that the Conirollability Grammian should be positive definite in
order to guarantee the existence of {u(r)}. In order order words, [G.]~! must exist,
and [G,] is naturally symmetric.
Without loss of generality, we take ty = 0o. In this case the Controllability is

tested throughout the steady-state. The Controllability Grammian, therefore, turns
into

[G.(6) = / Y [B][B]T elA1" ¢ d¢ (11.7.6)
0
where £ =t; — 7. We can show that [G.(£)] satisfies

[AllGe] + [GA[A]" + [BI[B]" =0 (11.7.7)

The above equation is called Lyapunov equation. In order to prove the above equation
we take

;Eeif‘lf [B][B]T elA1"¢ = [A]el4K[B][B]TelAl € 4 K[ B][BITMI €[4T (11.7.8)

Integrating both sides over [0, co] yields

oo

= [4] j ” el B[ BTl ¢ g + / " lAle [B][B]T el €4g AT
0 0 0

(11.7.9)

el [B][B]T 141" ¢
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Figure 11.7.1 Example Model for Controllability Test
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Figure 11.7.2 An Actuator Located at the Nodal Point

Assuming that [G.] has a bounded value, we arrive at the final expression

—[BIBI" = [Al[G.] + [G.]IAI (11.7.10)

In other to solve the above equation, we can use a MATLAB command lyap.m. It is
not easy to compute [G,.] even if we use the Lyapunov equation. There is an alternative
form of controllability condition. That is, the rank of a controllability matriz

[P] = [(B], [4I[B], [A)*[B],- .. [A]"~*[B]] (11.7.11)

should be the same as the order of the system [38-41]. The rank test is more attractive
than computing Controllabilily Grammian in the sense that we avoid the numerical
computational work.

& Example 11.7.1  In this example, we test the controllability of a given
dynamic system. A MATLAB m-file fectobt.m is written for this purpose. A
finite element model and an assumed set of sensors and actuators are shown in
Fig. 11.7.1. Using a standard beam element, both mass and stiffness matrices
are generated.

0.093 0.000 0.016 -—0.097

il — | 0000  1.488 0097 —0.558

o l- 0.016 0.097  0.046 -—0.164J
—0.097 —0.558 —0.164 0.744

0.522 0.000 -0.261 3.264

0.000 108.8 -—3.264 27.20
—-0.261 -3.264 0.261 -3.264]|’

3.264 2720 -3.264 5440

[K] = [F] =

OO O
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For simplicity, a modal truncation technique is used including only the first two
flexible modes.

71 + 0.135m = —1.35%u
N2 + 5.373n2 = —2.916u

The above set of equations are transformed into the first order form with the

result
0 0 1 0 0
0 0 0 1 0
4] = —0.134 0 01’ [B] = —1.359
0 ~5373 0 0 —2.916
The conirollability matrix is calculated as
0 ~1.359 0 0.184
0 —2.916 0 15.668

[P1= | _1.359 0 0.184 0

—-2.916 0 15.668 0

and the rank of the [P] matrix turns out to be equal to the order of the system.
Therefore, the given system is controllable. The MATLAB m-file source program
for this example is provided below. It produces yes/no type answers and the
condition number of the controllability matrix. The condition number is an
index which is equal to unity for an identity matrix and very large for a singular
or a near singular matrix.

functinn [(aohtv rranl coandl—farntnht{ A RY
IUNCWION | vODVy,IIal &, CCONG j=ICCv0 0w Ay o)
%

% Purpose:

%  The function subroutine fectobt.m calculates controllability matrix
%  and/or observability of a system described in state space form

% xdot = Ax + Bu

% Synopsis:
%  [Ctobty,rrank,ccond]=fectobt(A,B)

% 1) For controllability test, the input argument should follow as

% fctobty(A,B)

% ii) For observability test, we should provide the input argument as
% fctobty(A"T, C"T) : ( )T is transpose of ( )

% Variable Description:
%  Output parameters - Ctobty : Controllability or observability matrix
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% rrank : rank of Ctobty which determines yes or no
% ccond : Condition number of Ctobty

o7

n=max(size(A)); % Find out the size of the system matrix

70

% Build the controllability/observability matrix (Ctobty)

%

Ctobty=B;

Ao=A;

for i=1:n-1
Ctobty=[Ctobty Ao*B};
Ao=Ao*A;

end

rrank=rank{Ctobty});
ccond=cond(Ctobty);

o7
70

& Example 11.7.2 The system was controllable in the previous example
due to the location of the actuator. Therefore the actuator controls at least the
first two flexible modes. In this example, we examine an uncontrollable case
by selecting a specific actuator location. This is possible by pre-calculating the
nodal point of a flexible mode. Figure 11.7.2 presents the actuator location
which is at the nodal point of the second flexible mode. The governing equations
consequently are given as

7 + 0.1357n; = 2.816u
N2+ 6.789n2 = —0.411u

The size of the coefficient in front of the control input for the second mode is
relatively small (0.411) compared to that of the first mode (2.816). This is
because of the actuator located at the second mode nodal point. Theoretically,
this coefficient should be equal to zero. The numerical inaccuracy is due to
the number of elements which is equal to two and the finite element modeling
algorithm using Hermite polynomials.

The above set of equailons are iransformed inio the first order form with the

result
0 0 1 0 0
0 0 01 0
[A] — |1 —-0.134 0 0 0}’ [B] — | 2.816
0 —6.789 0 O —-0.411
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Reference=0 U | #= Az+ By xr

Figure 11.7.3 Feedback Control Concept for State Space Equation

The controllability matrix is calculated as

0.000 2.816 0.000 -0.377

0.000 -0.411 0.000 2.790

2816 0.000 —0.377 0.000
-0411 0.000 2.790 0.000

[P] =

Application of the rank test to the above matrix yields a full rank, and the system
is controllable. This is not surprising considering the numerical error caused by
the small number of elements. In case the size of coefficient —0.411 is small
enough by refining the modeling technique, the system will be uncontrollable.
This is also observable from the modal coordinate equation, and the second mode
is completely uncontrollable when the coefficient in front of {} is equal to zero.

t

Feedback Control Law Design in State Space

Feedback control laws have various applications in many dynamic systems. The
key idea of a feedback control law is to utilize the measurement of the current state of
a system, and use the measured signal to construct an actuator signal. The feedback
control law design concept in state space form equation is presented in Fig. 11.7.3.
The state vector of a system is directly used for the actuator signal. Depending upon
the sensor available, sometimes the combination of state variables are used not whole
state vector for the actuator command.

The feedback control law has some inherent advantages such as overcoming
unknown external disturbance and initial condition off-set error. A number of linear
control system design tools for state space form of systems are developed in MATLAB
Control Toolboz [42,43], so that we can use them efficiently to design desired control
laws.

Suppose we have a dynamic system described as

{2} = [Al{«} + [B]{u} (11.7.12)
{y} = [C{z} (11.7.13)
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where we assumed a disturbance-free condition and dropped [D]{u} term which is
normally unused for control system design. By a feedback control, we mean a control
input {u} prescribed in the form

{u} =~-[GHy}, {y} =[CH<} (11.7.14)

or

{u} = —[Gl{=} (11.7.15)

The first control law in Eq. (11.7.14) uses the direct sensor output {y}, called
oulput feedback. While the second control law in Eq.(11.7.15) is called full state
feedback since it uses all state variables {z}. In the case of the output feedback, the
closed-loop system becomes

{z} = ([A] - [B][GI[CD){=} (11.7.16)

Thus, the system is stable if

A([A] - [BlIGNC) <0, i=1,2,...,n (11.7'.17)

Since usually the number of sensors or outputs are limited compared to that of state
variables, it is not straightforward to satisfy the stability condition in the output
feedback control law. Usually, a stabilizing output feedback control law design is
technically more involved than a full state feedback control law design. There is no
unified tool for an output feedback design compared with full state feedback, and
numerical iterative techniques are frequently used for an output feedback law design.

Full State Feedback Law

On the other hand, the state feedback uses all state variables in order to stabilize
a system. In spite of the difficulty estimating the state variables, the state feedback
has elegant properties and has received significant attention. Therefore, we elect to
put more emphasis on the full state feedback rather than the output feedback. The
essence of the full state feedback law design is to find a feedback gain which makes
the closed-loop system stable. In other words,

M(A - BG) <0, i=1,2,...,n (11.7.18)

In a full state feedback control law design, there are two distinct approaches; one is
pole placement technique and the other is Linear Quadratic Regulator(LQR) method
based upon the optimal control theory.

Single input system

For simplicity and better understanding of the fundamental of feedback control
laws design, we start to form a single input system. In this case, we replace the input
distribution matrix, [B] by a column vector [ 4 ]. As a consequence, we start with

(£} = [A){z} + [ b {u) (11.7.19)
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and the input is prescribed as

u=—[g]"{z} (11.7.20)
where [ ¢ ] is a gain vector
[9]=1l1,92,.--,9n] (11.7.21)
The closed-loop system is
{g} = (Al - {1 ¢ N{=} (11.7.22)
and the characteristic equation
AI-[Al+{8][gll=(A=2AD)A=2A2)--- (A=) (11.7.23)

where A; is a closed-loop eigenvalue or pole. Suppose we want to have the closed-loop
eigenvalues placed at certain desired locations as

Adoad o\ (11.7.24)
Therefore, it should follow as
A=A)A=A) (A=A = A= X)A— M) (A=Xd)  (11.7.25)
The above equation can be rewritten as
A" fad® bt ap At an = A"+ afA el A4 ad (11.7.26)

Since the coefficients of the left-hand side polynomial equations are functions of the
feedback gains, there are n set nonlinear algebraic equations

al(g1192)"';gn) = af

‘12(91792) vy gn) = ag
(11.7.27)
an(glng’ vy gn) = ﬂﬁ

The right-hand side of the equations are given, and we can find a unique set of
feedback gains. Many algorithms are suggested in connection with the pole placement
technique.

Here, an exemplary algorithm is introduced.

Bass-Gura Formula

The Bass-Gura formula makes use of the determinant properties (40]. It starts
with the closed-loop characteristic equation

a(s) = |sT - (4] + [0 ][ ¢ ]|
= |[s7 — [T + (s — [AD"'(B][ ¢ ]| (11.7.28)
= |sI — A||T + (s — [AD'[b][ g ]
= a(s)(1+[ g [(sI — [A)~'[ b))
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where we used
[+ (I-[AD7ellgll=1+[g)sI-[A)[b] (11.7.29)
Therefore, Eq. (11.7.25) can be rewritten as
a:(s) — a(s) = a(s)] g (s ~ [A])~'[ ] (11.7.30)
At this point, a special relationship for (sI — [A])~! is introduced as {40]

(sI-[A)7 ' = ;(%[s"‘ll+s"‘2([A]+alI)+s"‘3([A]2+a1[A]+a21)+- -} (11.7.31)

Equation (11.7.30), therefore, becomes
a:(s)=a(s) = [g][s"~ " T+5"*([Al+a I)+s" (AP +ar[Al+az L)+ ][b] (11.7.32)
Comparing both sides of the polynomials, we obtain

ar—a1=[g][b], e@-a=[g]lAllb]+alg]b]

as—az = [g J[AP[b]+ai[g]lA{d]+as[g][0] (11.7.33)
or in matrix form [40] _
[&é]-[al=[g)PX-]" (11.7.34)
where
T~ 1 __ T~ ~ P | T ~1__T. _ _ 1 {11 ™ aEh
lu_]-——luluz..-unj’ luj_,_llaz...anj \11.‘.00}

Furthermore, [P] is the controllability matrix and [¥_} is a lower triangular Toeplitz
matrix given as

-1 -
a 1
v_=fe a I (11.7.36)
. . -
La, apn—1 -+ a1 1.

Assuming that the system is controllable so that the controllability matrix [P]
is full rank and invertible, the feedback gain is given by

[gl=¥_TP Y (a]-[a]) (11.7.37)

é Example 11.7.3 The Bass-Gura algorithm is applied to an example
system. The system matrices are generated from a finite element analysis for a
beam model.
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0.223 0.000 0.039 -0.139

0.000 1.286 0.139 —0.482

0.039 0.13¢ 0.111 -0.236
—0.139 —0.482 -0.236 0.643

[M] =

and

2418 0.000 -1.209 9.067

0.000 181.3 —9.067 45.33
—-1.209 -9.067 1.209 -9.067’

9.067 45.33 —9.067 90.67

(K] = [F]=

QOO e

The second order differential equation is transformed into a first order state form

{2} = [Al{=} + [B]{u}

where

[A] = [_[M]O—I[K] é] ’ 18] = [[MIEJI[F]]

Now the desired closed-loop poles are specified as
—0.5 £ 0.6¢, —1.0 £ 3.0, —2.0 4+ 2.0¢, —0.7+£0.4¢

A MATLAB m-file febasgr.m is written to implement the Bass-Gura formula.
The resultant feedback gain vector turns out to be

[g]=1{-20881x 10", —2.6291 x 10%, 2.8713 x 10", —2.4912 x 102

3 bl
91061 o 1n—2 EEQAA o gmee o, 1n—1 I ird!
4.1001 X 1u 7, 00044, —z.0i0i X 1U oiij

19
, 1.0

[a—y

function [g]=febasgr(A,B,dc)
o,
% Purpose:

%  The function subroutine febasgr.m calculates a feedback gain for a
%  single input system by Bass-Gura formula.

%

% Synopsis:

% [g]=febasgr(A,B,dc)

%

%  System equation : xdot = Ax + bu
%

07 Vaviahla Maassrtwtiane

v alliauc Ucbbllphlull.

%  Input variable : dc - A vector consisting of desired closed-loop poles
%  Output : g - A feedback gain vector.

ao= poly(A); % Calculate coefficient of the given system
alpha = poly(dc); % Calculate coefficient of the desired polynomial
[P,rank,cond]=fctobty(A,B); % Compute controllability matrix
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n=max(size{A));
%
% Baild a Toeplitz matrix

Toep=zeros(n,n);

for i=1:mn

Toep(i:n,i)=[ao(1:n-i+1)]’;

end

g=[alpha(2:n+1)-a0(2:n+1)]*{inv(Toep))’*inv(P); % Calculate the gain
g=real(g); % Take the real part of the gain

o7
/0

The pole placement technique for multi-input systems is rather different from
the single input system case. The feedback gains are not uniquely determined due to
the number of feedback gain elements which are greater than that of state variables
of the system.

(Aancider o
AN WIS AVAVI G 7y VL P}

{2} = [Al{=} + [Bl{u} (11.7.38)
where [B] is a n x m(> 2) input influence matrix. The control law is assumed to be

a full state feedback law
{u} = —[Gl{=} (11.7.39)

where [G] i1s a m x n gain matrix. The closed-loop system stability is determined by

|AT - [A] +[B][G]| =0 (11.7.40)

n—-1 ,

n 4 .\ [ ) U
T GLA T T Gn_1AT Gy

=A
Therefore, the characteristic equation is a polynomial of order n same as the order
of the system. The size of the gain matrix [G], however, exceeds n: there are exactly
n x m elements in [G]. For example, let us consider a system with the following system
matrices

ail a2 013 by bi1o
[A] = laz azz a231| , [B] = b21 bgg (11.7.41)
a31 a3z Ga33 b31 b32

Then, the full state feedback law is suggested as {u} = —[G]{z}, where the gain
matrix, in order to satisfy dimensionality, should have the form

[G]=[g11 912 913] (11.7.42)

g21 922 g23
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The feedback control design goal is to produce the closed-loop poles of a system.
There are three closed-loop poles while the number of gain elements is six. Since we
have more parameters than the number of equations to be satisfied, the extra degree
of freedom can be used for other purposes such as improving system robustness. By
system robustness, we mean the property of a system; a system is called robust when
the performance of a controlled system is invariant with respect to system uncertainty.

11.8 Linear Quadratic Regulator

Linear Quadratic Regular (LQR) theory is originated from the optimal control
theory. The key idea of this method is to take a performance function and design a
control law which minimizes the performance function.

In order to understand the LQR technique, first we should discuss the basic
principle of optimal control theory. The generic optimal control theory starts from
finding the control input {u(t)} which minimizes a performance index [44,45]

7= h({at))tn) + [ GO} {u)} e (11.8.1)

where tg and t; are starting and final times, respectively. On the other hand, the
state vector {z(t)} and control input {u(t)} satisfy the nonlinear governing equations
of motion

{z} = f({=(®)}, {u(®)},?) (11.8.2)

For notational simplicity, we temporarily drop { } sign for vector notation. Since
the control input must satisfy the governing equation while trying to minimize the
performance index, Egs. (11.8.1) and (11.8.2) are combined together by the Lagrange
multiplier () as

7 = h(o(ty), i) + /t " [6(2(t), u(t),8) + AT[F(2(t), u(t), t) — #]}dt (11.8.3)

For some reasons which are not explained here, we define the Hamiltonian of the
system as

H = ¢(z(1),u(t), t) + AT f(z(t),u(t), ) (11.8.4)
so that Eq. (11.8.3) is rewritten as

J = h(z(ty),t5) + [U [H(z(t), u(t), A(t),t) — AT &]dt (11.8.5)

One of the optimal control theories is the variational principle, for which we assume
the variation of the state vector and control input from the optimal one. The
graphical representation for the variational principle is presented in Fig. 11.8.1. We
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3

x* :optimal solution

o —
S
o —

Figure 11.8.1 Variation of Trajectory about the Optimal One

assume an optimal trajectory and allow variations about the optimal trajectory. The
performance index is also varied about the optimal value,

The variation of the state vector and control input vector results in the variation
of the performance index. In order to satisfy the optimality condition, the variation
of the performance index should be equal to zero. That is, the performance index is
an optimal one with no variation [44,45].

6J(6z, 6z(ts), 6u,6)) =0 (11.8.6)

where 6( ) represents variation of ( ) from the optimal value.
Based upon the variational principle we take the variation of the expression in

Eq. (11.8.5)

ty .
67 = 6h(z(ts), 1) + f BH(z(t), u(t), \(t), ) + 53T = ()]t (11.8.7)
to
When the flnal time (t;) is fixed
oh 1
6h($(tf),tf) = [5‘5—(5—)] 61,'(tf) (1188)
Further properties of variation are given as
oH1" oH1" oH1"
§H(z(t), u(t), A(t),t) = [E] bz + [-5;‘-] du + [-5/\— 8\ (11.8.9)

Also,

ty ty
/ SXTidt = / [6MT & + AT §z)dt

to to

ty .
= ATéz|! + f ATz — AT §z]dt (11.8.10)
to
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where we used integration by parts on ATé&. Therefore, the combination of Egs.
(11.8.8) through (11.8.10) yields

T
0J =[8:f(?f) - )t(tf)] dx(ty)

[ 8H  ..T OH .1 0H .1
+/:o [(-5;+A) bz + (5-) Su+ (57 —2) 6,\]dt (11.8.11)

where we assumed that 6z(to) = 0 since the initial condition is usually fixed allowing
no variation. Once again, for optimality, 6/ = 0 must be satisfied. Therefore, we
obtain the following conditions from optimality condition

Aty) = 5_;3(% (11.8.12)
i+ %_I: —0 (11.8.13)
%{\i ~ &= f(z,u,t)—2(t) =0 (11.8.14)
?£_ - (11.8.15)

The above set of equations are solved numerically because of the nature of the problem.
The boundary condition on A at the final time (t;) and initial condition on the state
vector {z(to)} turns into the so-called Two Point Boundary Value Problem (TPBVP).
Numerous solution techniques and applications have been developed to solve the
optimal control problem. For instance, in robotics areas, the rotational motion of
a robot arm is analyzed in terms of optimal performance such as minimum-time,
minimum-fuel, and minimum vibration during maneuver.

Due to the limited space we elect to directly jump into linear optimal control
theory. The linear optimal control theory has also wide applications. First, a
frequently used performance index is prescribed as

7= [ 4amiae) + () R uar (11.8.16)

where [Q] a positive definite or semidefinite weighting matrix such that {z}7[Q]{z} >
0 for {z} # 0, and [R] is a positive definite weighting matrix such that {«}7[R]{u} > 0,
for {u} # 0. The upper limit of the performance index is co which implies that we
are interested in the steady-state behavior of the system. In other words, the system
should be stabilized at the steady-state so that the peformance index is bounded
within a value.

Our goal is to find a control function for which the performance index is minimum
while the original system equation

{z} = [A){z} + [B]{u}, for given {z(0)} (11.8.17)
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is satisfied. In order to apply the optimal control theory in the previous part, we
define the Hamziltonian of the system as

H = 5({z)71QHe} + () [RHuD) + Y74} + (Bl{w))  (118.18)

Next we apply the optimality condition in Eqs. (11.8.12) through (11.8.15) in such a
way that

0H

{\} = ~30s) = —[QH=} - [AT{)}, {Moo)}=0 (11.8.19)
BH _ o e o
5u] = [R{u} + [B] {A} =0 (11.8.20)

Thus, the optimal control input is a function of A as

{u} = —[R]"Y[B}T{A} (11.8.21)

In other words, once we solve for {A} the control input is obtained. However, it is not
easy to compute {1} since the boundary condition of {A} is given at the steady-state
as {A(00)} = 0 while the initial condition of {z} is given at the initial time ¢ = 0.
There are different approaches solving the above set of equations. A popular method
is to start with

(A} = [SH{z) (11.8.22)

where [S] is a positive definite matrix called Ricatti matrix. Therefore, the control
input can be written as

{u} = —-[G}{z} (11.8.23)
where [G] is a feedback gain matrix

[G] = (R} [BI"[S] (11.8.24)

Substituting Eq.(11.8.22) into Eq.(11.8.19) and dropping [ ] notation temporarily
yields

${z} + S{i} = -Q{z} — AT S{z}
S{z} + S(A{z} + B{u}) = -Q{z} — AT S{z}
S{z} + S(A{z} - BR™'BT8{z}) = —Q{zx} — ATS{x} (11.8.25)

Therefore,

~[8] = [S]4] + [A]"[S] - [SIBIIR]* (BI7(S] + [Q] (11.8.26)

The above equation is a matrix differential equation, and we can integrate numerically
from [S(t;)] = O where t; is far enough. An alternative strategy of solving Eq.
(11.8.26) is to use the steady-state solution. When the system reaches a steady-state
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the Ricatti matrix satisfies [S] = 0. Therefore, we obtain the so-called Algebraic
Ricatti Equation (ARE)
[0) = [S1{4) + [A1"(S] - [S)[BILR]~*[BIIS] + Q) (11.8.27)

There are many algorithms studied to solve the ARFE [46]. They are dominated
by numerical techniques due to the nature of the problem; nonlinear algebraic matrix
equation. It turns out that the feedback gain matrix([G]) is also found from the
Hamiltonian matrix by Potter [47].

-] (11828)

W“{—w1 -]

The size of the Hamiltonian matrix is now 2n x 2n where n is the size of the original
system. Using the Hamiltonian matrix, we can solve the eigenvalue problem

[H{$:} = Ai{4i} (11.8.29)

We can prove that there are two sets of eigenvalues for [H]: one set with negative real
parts, and the other set with positive real parts. For each eigenvalue, we arrange the
corresponding eigenvector as

_ [[@u], [®12]
[@]_[[q,;i], [Q;]] (11.8.30)

Therefore, [®11], {$21] correspond to eigenvalues with positive real parts and [®12),
[®25] correspond to eigenvalues with negative real parts. The solution of ARE turns
out be a function of the eigenvectors as

[S] = [®22][@12] " (11.8.31)
Potter’s method is quite popular, and a MATLAB felgr.m is written based upon this

algorithm. The feedback gain is computed from the result of eigenvalue solution of
the Hamiltonian matrix. The optimal cost function satisfies

Jopt = {0}7 [SH{za} (11.8.32)
where {zo} is the initial condition of {z}. The proof is provided as

To= 3 [ [t2T1QMHe) + (T R}

_ % /0 - [{I}T(_[sqm] - [A]"[S] + [SI[BIIR][B" [SD{=} + {U}T[R]{“}] dt
(11.8.33)
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where we used the ARE for [Q]. Next, Eqs. (11.8.23) and (11.8.24) are utilized so
that

S =~ [ |(Aa) + (BUHTISHo) + (o) ISNMAE) + Bl
0

_1 ” £}T[SH= £} [S|{z
;[ @ sHa + IS @ (11.8:34)

i

1
~5 (=¥ S Hz}

oo
0

) | -

{zo}T [ST{z0}

[

where the steady-state value {z(oc)} is assumed to be zero for a stable closed-loop
system. The optimum cost function is a function of the initial condition and Riccati
matrix [S].

In the LQR approach, once we solve the ARE, the feedback gain [G] is
automatically obtained. This is a significant advantage over the pole placement
technique where we have to specify the desired poles. In particular, there is no
essential difference for multiple input and output systems for the LQR approach.
The weighting matrices [(}] and [R] are the only design parameters. The closed-loop
system poles are determined by [@] and [R). It is not easy to select those matrices in
general, however. The trial and error procedure is usually taken. Significant research
effort has been made in the LQR related subject. The solution of ARE is now readily
available in computational tools in MATLAB Control Toolboz.

& Example 11.8.1 The LQR technique is applied to an example system
which is to be stabilized by a full state feedback. The finite element beam model

is given by
6.240 0.000 1.080 —-3.120
| 0.000 23.04 3.120 -—8.640 —9
[M] - 1.080 3.120 3.120 —5.280 x 10
-3.120 —-8.640 -—-5.280 11.520
4.722 0.000 -—-2.361 14.17 01
0.000 226.7 —14.17 b56.67 0 0
K= 9361 —1417 2361 -1a17|' WE'=]0 o
14.17 b6.67 -—-14.17 113.3 I 0

The state space form equation is developed using the same convention in
Eq.(11.5.3). The state and control input weighting matrices are chosen as

[Q] = Isxs, [R] = 0.1 x Iyys

A MATLAB m-file felgr.m is written using Potter’s algorithm. The final
feedback gain matrix is computed as

[G] = 8.636 33.44 -5.040 63.10 0.404 -—-0.067 3.124 0.884
—17.266 30.70 -5.961 47.55 3.354 0.337 —0.337 0.807
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function [G,S]=felqr(A,B,Q,R);

% Purpose:

%  The function subroutine felqr.m calculates the feedback gain matrix
% by Linear Quadratic Regulator{LQR) technique.

%  The given system is

%

% xdot = Ax + Bu, u = -Gx

%

% and the performance index to be minimized is defined as
%

% J=(1/2)integral (x’Qx-+u’Ru)dt

% Synopsis:

% [G,S]=felqr(A,B,Q,R)

%

% Variable Description:

%  Input arguments - A, B, Q, R

%  Output parameters - G = R™1G’S : feedback gain matrix

% S : Solution of the Algebraic Ricatti Equation (ARE)
% AS+A’S-SBR™!8+Q=0

%

% Notes:

% 1). (A,B) should be controllable.
% ii). Qis at least positive semidefinite.
% R is at least positive definite.

%

H=[A -B*inv(R)*B’; % Build the Hamiltonian matrix
-Q -A%);

[V,D]=eig(H); % Solve eigenvalue problem

n=size(A); twon=max(size(H));

% Normalized each eigenvector to unity magnitude

av=abs(V);

magav=av *av;

dmagav=diag(magav);

V=V*sqrt(inv(diag(dmagav))); % Normalize the eigenvector
%
% Sort the eigenvalues with stable real parts
%
rel=real(diag(D));

nindex=[];pindex=[];

for i=1:twon

if(rel(i)<=0)

nindex=[nindex i];

else

pindex=[pindex iJ;

end

end

V=V(;, [pindex,nindex]); % Rearrange the eigenvector order
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Figure 11.8.2 A Truss Structure Example for LQR Controller Design

S=real(V(n+1:twon,n+1:twon)*inv(V(1:n,n+1:twon)));
G=real(inv(R)*B’*S);

& Example 11.8.2 Another example of LQR design is applied to a
two-dimensional truss structure. The geometric configuration including two
actuator locations is presented in Fig. 11.8.2. As it is shown, the actuators
are acting both in vertical and horizontal directions. The structural parameters
are selected as £ = 2.0 x 108 N/m?, p = 786kg/m3, A = 0.00025m?. Using
the consistent mass matrix and the finite element modeling technigue in Chapter
7 (See Example 7.5.2), we obtain

M M) _ [ Kl [K]
o= ] wa=[l ]

where

07205 0 0098 0  0.13107
0 07206 0 0098 0
[Mla= |00983 ©0 11135 0  0.1638
0 00983 0 11135 0
(01310 0 01638 0  1.0480

-0 0 0 0
01310 0 0 0
[Mli2=] 0 01310 © 0

0.1638 0 0.1310 0
L 0 0.0983 0 0.1310

445
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10480 0  0.0983 0
(Mlp=| 0 07860 0 01638
00983 0 07860 0
0 01638 0  0.589%

Furthermore,

- 2.5000 0.0000 0.0000 0.0000 —1.2500
0.0000 1.6667 0.0000 —1.6667 0

[Kl11 =10* x | 0.0000 0.0000 2.5300 0.0000 ~0.6400
0.0000 -—1.6667 0.0000 2.3867  0.4800

. —1.2500 0 ~0.6400 0.4800  3.1400
-0 0 0 0 ]
0 0 0 0
[Kli2 =10* x | 0.4800 —-1.2500 0 0
—0.3600 0 0 0
| —0.4800 0.0000 0.0000 —1.2500

[ 2.0267 0.0000 —1.6667 0
0.0000 1.8900 -—0.4800 —0.6400

—1.6667 —0.4800 2.0267  0.4800

L0 —0.6400 0.4800 1.8900

[K)2z = 10% x

The open-loop eigenvalues of the first order state space system based upon Eq.
(11.5.3) turn out to be

100 x [4+0.2409:, 40.46797, +0.7398i, +1.2434i,
+1.6334i,+2.1022i, +2.1801i, +£2.31014, +2.8022i]

In order to design the LQR control law, first we select the weighting matrices,
[@] and [R] which appear in the performance index.

[Q] = Lisx1is, [R]=0.01x Izxz

where I is an identity matrix. The resultant feedback gain matrix ([G]) is
computed using felgr.m as

[G]=[G1 G
where

[G.] =

[1.427 —b8.65 10.52 63.56 0.501 1299 -11.25 -12.42 7.278]
| -10.78 28.01 —20.19 -—-35.49 24.68 9.153 17.54 —15.53 —2.489]

[G2] =

-0.57 -047 -0.47 0.14 -039 649 -049 0.06 -0.04
-0.83 038 -143 -045 0.25 -061 6.74 -0.29 0.04
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Figure 11.8.3 Simulation Results for the Truss Structure by LQR Controller

In addition, the closed-loop system eigenvalues by the feedback control action

Time(sec)

result in

[—0.011 +2.802¢, —0.013 £+ 2.310¢, —0.008 &+ 2.180¢, —0.010 % 2.102¢
—0.006 £ 1.6334, —0.010 + 1.243i, —0.008 = 0.740i, —0.009 = 0.468:] x 102

Thus, the system is stabilized by the full state feedback action. The closed-loop
system stability is also verified by the numerical simulation. For this, we assume

Actuation Force(N)

Displacement(m)

Linear Quadratic Regulator

Vertical at Node 2

0 5 10
Time(sec)

Vertical Actuator
300

200

100

0 5 10
Time(sec)

—0.59 + 24.08:

the initial condition as

The simulation result is presented in Fig. 11.8.3. The horizontal and vertical
displacements at the nodal point #2 are displayed. Also, the resultant actuator
responses in both directions are presented. The motions are stabilized decaying

as

¥

z(0) =[0.1, 0, 0, 0.2, —0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

the time passes.
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11.9 Modal Control for Second Order Systems

The modal control approach is generally applied to linearized second order
structural systems even if it is applicable to first order systems [48,49]. The linearized
second order systems are transformed into a decoupled set of modal coordinate
equations. The decoupled equations are controlled independently. A drawback of
the modal control is the number of input which is usually less than number of modal
coordinates. In order to have independent control over all modal coordinates, from
a physical sense, we should have the same number of actuators as that of modal
coordinates.

Consider an undamped second order system

M}{a} + K{q} = [Fl{u} (11.9.1)

Using the earlier results, the above equation is transformed into modal coordinate
equations by introducing a coordinate transformation

. | 14 A D

21 . 101 t&I1Tre s 7 ay
171+ ey = (%) | juf (11.9.2)

Let us assume that the size of the control input vector {u} 1s m x 1, being prescribed
as a linear combination of the position and velocity vector.

{u} = [K,{a} + [K.){q} (11.9.3)

where [K,] and [K,] are gain matrices with appropriate dimensions. The above control
input is in physical coordinate systems which can be rewritten in modal coordinates

by using {q} = [@]7 {n}.
{u} =[K,l{q} + [K.}{a}
=[Kpl[@{7} + [K,][®Ha}
:[I_{p]{n} + [Kv]{rl‘} (11.9.4)

Equation (11.9.4), therefore, becomes

{5} + [Q){n} = [@IT [FI( K, {n} + Ku{n}) (11.9.5)

Unfortunately, the left hand side of the equation is in decoupled form for each

coordinate while the right hand side expressions are coupled. In addition, if the size

of control input is less than that of the given system, it is not feasible to control each

coordinate independently. When the number of control input vector is equal to that

of the system, it is possible to have independent control over each modal coordinate.
For further development, we go back to Eq. (11.9.2)

{ii} + [Q{n} = {F) (11.9.9)

Vs (F1 — [£ £ £ 1T _ 1&T1rMJ nresent an input force vector whose
WwWIICIC IJJ’ —_— L’l, J2, .. !Jﬂj‘ — lYJ ll jlu]’ I.CPI.CD AL all 111 lJ LULUVC YOULUL WIIIUDC
elements match with each modal coordinate. Now, for an it" modal coordinate

i +win = (11.9.6)



Section 11.9 Modal Control for Second Order Systems 449

The modal input force vector is selected as
fi = —gy ik — gy (11.9.7)
so that the closed-loop system becomes
i + gy + (wf + gp)ni = 0 (11.9.8)
As we can see, the feedback gains (g, g;) directly affect the closed-loop system of a
modal coordinate. Therefore, we can control the dynamics of each modal coordinate

independently.
The modal input force vector does not have physical meaning unless it is

transformed into the physical input. The original relationship between the modal
input force vector and the physical control input vector is
{F} = [@" [F){u} (11.9.9)
The modal matrix is obtained from
[®)7[M][®) = (1] (11.9.10)
Therefore,
[@T]~! = [M][®)] (11.9.11)
and the control input vector satisfies
[Fl{u} = [M][®}{ f} (11.9.12)
Assuming that [F] is invertible, it follows as [48,49]
{u} = [F]7'[M]{@}{f} (11.9.13)

The invertability of [F] matrix depends upon the rank, and there should be at least
the same number of actuators in order to ensure the independent modal control.

& Example 11.9.1 A finite element Euler-Bernoulli beam model is used to
demonstrate the modal control technique. The model is presented in Fig. 11.9.1.

There are four actuators located at each nodal point. Application of the finite

element method yields mass, stiffness, and input influence matrices as

0.743 0.000 0.129 —0.619
0.000 7.619 0.619 —2.857
0.129 0.619 0.371 —1.048
—0.619 —-2.857 -1.048 3.810

[M] =
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and

1.020 0000 —0510 5.100 1000
| 0.000 1360 -5.100 34.00 o100
K= o510 5100 0510 -5100]° F1=]o 9 1 0
5100 34.000 —5.100 68.000 000 1

The modal matrix which consists of normalized eigenvectors is computed as

—0.481 -1.031 -0.162 0.675
[®] = —0.041 0.016 0.304 0.347
—1.416 1.428 —1.588 2.667
—-0.049 0.172 —-0.383 1.289

The physical system is transformed into modal coordinate equations as in Eq.
(11.9.6).

iy + 0.033m = f,
M2 + 1.312n5 = f
73 + 15.00m3 = f3
s + 126.4n4 = f4

where f; is the i'* component of the modal input force vector as { f} =
[®][F)]{u}. For each modal coordinate, we can design a proportional plus
derivative type feedback control law. That is,

—0.018171 - 0.0807.]1
—0.1157, — 0.5047,
~0.387n5 — 1.70473
—1.124n4 — 4.9477,

radaleafog
nun

where each control input added a 10% increase in natural frequency and damping
ratio of 0.2, respectively. Once the modal control input is specified, the physical
control input is obtained from Eq. (11.9.12) as

{u} = [F]~'[M]e{f}

where

—~0.509 -0.689 -—0.087 0.047

-1.051 0.511 2.425 0.613

—-0.562 0.227 -0.021 -0.058
1.713 —0.248 —-0.563 0.706

[F]~' [M][2] =
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Figure 11.9.1 A Finite Element Model for Modal Control

11.10 Dynamic Observer

Observability

Another imnortant issue in modern control design 1s observability. The observ-

4 RIANSURI D A1ps S 448 FASUNATLLL LRALALI AL ALSigas 2

ability of a dynamic system represents the ability of reconstructing all state variables
using a finite number of sensor outputs. In the previous discussion of full state feed-
DaCK COHEFOI la.WS ueSIgn we aSSUIIleCl Eﬂab bIle state Vaﬂames are a‘\fa.ua.mc WIll(Jl I.S
not guaranteed in general situations. In the majority of modern control system de-
signs and analyses, the number of sensors is less than that of state variables due to
actual constraints. Also, it will be a significant advantage if we can estimate all state
variables using only a limited number of sensors or measurement devices.

The Observability is a primary requirement estimating the state variables out of
direct sensor output. Mathematical description of Observability condition is similar

to that of Controllability.

Definition of Observability
A system is observable if and only if any state {z(¢)} can be

f

determined by using a finite output {y(7)}, for t <7 < T.
The mathematical theorem is stated below.

Theorem : A system is observable if and only if the matrix

[Go(T, 8)] = ] " [@(r, )T [CIT [C[@(r, t)ldr (11.10.1)

is positive definite [40]. The above matrix is called Observability Gram-
mian.

Proving the above theorem is similar to the controllability case and omitted here
for brevity. In the similar context as the controllability case, if we take 7' = oo, then
it follows

6= " ()P [CT [Cll@(€)]de (11.10.2)

Also, [G,(€)] turns out to satisfy the Lyapunov equation.

[AIT[G,] + [G)[A] + [CTT[C] = 0 (11.10.3)
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Also, a MATLAB command lyap is available to find the solution to the Lyapuov
equation. An alternative condition for observability is provided as

The system is observable if and only if the observability mairiz

[Q) = [[CI", [4]"[CT",..... [aFF[CT™]” (11.10.4)

has rank n, the order of the system [38-41].

The observability test by rank test is similar to the Controllability test as we
examine both of them. That is, the observability test of ([A], [C]) can be replaced by

the controllability test of ([A]T,[C]T). In other words, there exists duality between
controllability and ([A], [B]) and observability test of ([A], [C]).

& Example 11.10.1  In this example, we apply the observability test to a
spring mass system in Fig. 11.10.1. A sensor measuring displacement is assumed.
The equations of motion are established as

[MH{a} + [K}{a} = {0}
where the system mass and stiffness matrices are

my 0 0 kl + ko —ko 0
[M] = 0 my O |, [K] = —ko ko + ks —ks

0 0 ms 0 - ’C3 k3

) k2a k3] =

and q = [g1,492,¢3]7, [m1, ma, ms] = (0.5, 1.0, 0.5)(kg), [k
tten in the first

[7, 3, 9l(N/ m). The above second order equation can be rewritt

order form using Eq. (11.5.3). The output equation becomes
y=¢=[10,0,0 0, 0{z} = [C){z}

where {2} = [01, ¢2, ¢3, @1, G2, d3]T. The system matrix is given by

© 0 0 0 1 0 07
0 0 0 010
0 0 0 0 0 1
[A]= -20 6 0 000
3 —-12 9 0 0 0
L 0 18 —-18 0 0 0.
Therefore, the observability matrix is
1 0 =20 O 418 0 7
0 0 6 0 192 0
0 0 O 0 54 0
Q] = 01 0 -20 0 418
00 O 6 0 —-192
0 0 O 0 0 54
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7 7 .

Figure 11.10.1 Spring Mass Model for Observability Test

A MATLAB m-file fectobt.m which has been used for controllability test, can be
used again for observability test. Thus, the rank of the [@}] matrix was estimated
as six, and the condition number of [Q} was 2.5104 x 103. These result

&A288 el RRAAICL 9 L2 L. AWVT 7 & o ia

that the system is observable. In other words, using one physical sensing device,

we can estimate all six variables.

1

Dynamic Observer Design

As discussed in the previous sections, one key aspect of modern control technique
is the so-called full state feedback. In other words, the system is described by a set
of state variables and all state variables are combined into a feedback control law as
it is named as full state feedback.

In general, it is not easy even if not impossible to measure all the state variables.
This is mainly due to the number of sensors available compared to the number of state
variables. The ideal situation is probably implementing as many sensors as state
variables. This approach, however, is neither practical nor cost-effective. Therefore,
the fundamental question is how to estimate the state variables and one feasible
solution is a dynamic observer.

The dynamic observer is a popular mathematical algorithmn in modern control
theory and analysis. Basically, the dynamic observer is a mathematical model based
upon the given physical system. The mathematical model is used to construct the
physical system based upon the sensor input.

Let us assume a dynamic system described in the form

{2} = [A{z} + [B]{u} (11.10.5)
{v} = [Cl{e}
then a dynamic observer can be prescribed by the following set of equations

{2} = [AN&} + [BH{u} + [Z)({w} - {3D) (11.10.6)
{9} = [C){#}
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System
. Yy
& o E=zfrepu X C -
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B2 fT4 Butl (Y~ () =
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Figure 11.10.2 Graphical Representation of a Dynamic Observer

where [L] is the observer gain to be determined and {y} is the sensor output which
1s to be provided into the observer dynamics. Figure 11.10.2 shows us the graphical
representation of a dynamic observer.

In order to help understanding the observer, we combine Egs. (11.10.4) and
(11.10.5) together obtaining

{2} — {2} = [AH{=} - [A{2} - [L)({v} - {5}) (11.10.7)

Let us introduce a vector defined as {e} = {z} — {£} which represents error between
the physical system and dynamic observer. Also, by using the output equation as
{7} = [C){#&}, it follows as

{€} = ({A] - [L][C]){e} (11.10.8)

Therefore, the error vector satisfies the equation and

{e(t)} = eapA-IEICDt £ (0)) (11.10.9)

As it is shown, the error vector response is explicitly represented as a function of time.
The desired behavior of the dynamic observer will be the one with zero error, which
means a perfect matching between the system and the observer.

For stability of the error vector response, or lim;_{e(f)} = {0}, it should
follow

X([4] - [Z][C]) < 0 (11.10.10)

where ); is an i'? eigenvalue of [4] — [L][C]. Since [A] and [C] are already defined, the
main strategy of a dynamic observer design is to design the observer gain matrix [L]
in such a way that the closed-loop system ([A} — [L][C]) is stable. It is interesting to
see the error vector remains trivially zero all the time when the system and observer
have the perfectly same initial condition {e(0)} = {0}, — {e(t)} =0, t> 0.

From the closed-loop system matrix [A] — [L}[C], we find a useful property
designing the observer gain. Since the eigenvalues of the transpose of a matrix are

the same as those of the original matrix

Xi([4] = [Z)[C]) = M ((4]" - [eT"[Z]") (11.10.11)
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Figure 11.10.3 Simulation Result of a Dynamic Observer(Solid line - System, Dotted line
- Observer)

the observer gain can be obtained by treating ([A]7,[C]7) as if they were ([A], [B])
in the feedback control law design. This duality [39,40] between a control law design
and an observer design thus eliminates the need for writing a separate observer gain
design algorithm.

& Example 11.10.2 A dynamic observer design is demonstrated for
the same finite element model used in the previous example. A single sensor
measuring displacement is assumed and we want to estimate four state variables.
The observer gain is designed by a pole placement technique discussed in Sec.
11.7.4. The observer gain matrix becomes, as expected, 1 by 4 matrix.

[L] =[18.31 0.620 61.64 13.43 117.7 0.984 466.3 239.3]

Also, simulation resulis using the designed gain matrix and impulsive inpui at
the tip of the structure are presented in Fig. 11.10.3. A MATLAB source code
for simulation is provided below. The initial discrepancies between the actual

system and observer are shown to diminish asymptotically.

%
%
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% This program obssim.m demonstrates a dynamic observer

% design and display the simulation result. A finite beam element is
% adopted as a system. For observer gain design, the LQR technique
% is used, and the dynamic simulation is performed using felresp.m
%

%
% Provide the system mass and stiffness matrix

M =[0.5571 0 0.0964 -0.3482

0 3.2143 0.3482 -1.2054

0.0964 0.3482 0.2786 -0.5893

-0.3482 -1.2054 -0.5893 1.6071];

K =[2.4178 0 -1.2089 9.0667

0 181.3333 -9.0667 45.3333

-1.2089 -9.0667 1.2089 -9.0667

9.0667 45.3333 -9.0667 90.6667];

F=[1;0;0;0];

% Transform into the first order state space form eguation
A=[0*eye(4),eye(4);-inv(M)*K,0*eye(4)];

B=[0*ones(4,1);inv(M)*F];

C=[1000000 0]

% Use the felgr.m function to design the observer gain
[L,S]=felqr(A’,C’,eye(8),0.01);

% Now build the total closed-loop system for both system and observer
Atot=[A, 0*eye(8);L"*C, A-L’*C};

Btot=[B;B];

Ctot=eye(16);

Dtot=eye(16,1);

% Define simulation time, control input, and initial conditions
t=0:0.01:3.0-0.01;

u=zeros(300,1);

x0=zeros(16,1);

x0(1,1)=0.1; x0(2,1)=-0.3; x0(3,1)=0.2;

% Use felresp.m to simulate the total system
[x,y]=felresp(Atot,Btot,Ctot,Dtot,x0,u,t);

(4
/70

11.11 Compensator Design

T
L

=}

design separately. The observer design is mainly needed in order t.o prov:de th
feedback control law with estimated state variables. Therefore, the control law and
observer are combined together into a complete system. The combined system is
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T9f=0 8 C u 9:'=Ax+B‘u N

83>

242+ Butl(y-(2)

Figure 11.11.1 Combined Dynamic Observer and Feedback Control Law

called compensator. The block diagram representation of a compensator is provided
m Fig. 11.11.1.
Consider a feedback control law and a dynamic observer as

{z} = [A{=} + [Bl{v} (11111
At this point we assume the control input {u} as a full state feedback form
{u} = —[G]{<} (11.11.2)

and the observer is given by

{2} = [A{8} + [B}{u} + [L]({y} - [C

As mentioned in the above, we want to use the estimated state variables from the
observer in the control law. In other words,

{u} = -[G){#} (11.11.4)
The suggested control law is substituted into Eqs. (11.11.1) and (11.11.3) producing

{z} = [Al{=} - [B][G]{} (11.11.5)
{2} = ([A] - [BI[G] - [LI[CD{&} + [L}{y}

Substituting the output equation {y} = [C]{z} and rearranging the above equations
yield
U L TR 77 RN B 3 W
Lz) LLjle] Al =IBIGI-ILiC]] | 2]
In order to check the stability of the combined system, we solve

Al —[A] [B]G =0
=[Z]IC] AT -[A]+(B]IG]+[L]iC]
Here, for simplification, we want to make use of a property in linear algebra; the

determinant of a matrix is invariant by adding a constant multiple of a row (column)
to another row (colurnn) [39,40]. Thus, it follows

(11.11.7)
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Table 11.11.1 Closed-loop Eigenvalues for the Compensator

Number Eigenvalue

1 -1024.2
2 -2.075+ 20.221
3 -8.059+ 12.8631
4 -9.9833
5 -0.497+ 7.17T1
6 -0.7754 6.74%
7 -0.810+ 1.623i
8 -1.036+ 0.901i
9 -1.010
10 -1.000
Al [A]0+ [B][G] g Ez]][f][L][C] (11.11.8)
Consequently, the characteristic equation of the combined system is simplified into
|AL —~[A] + [B][G]|IAL - [A] + [L)IC}| = 0 (11.11.9)

The characteristic equation consists of two separate parts; the feedback control law
and the dynamic observer, respectively. This implies that one can design the feedback
gain [G] first, then the observer gain or vice versa. This property is very elegant, and

sometimes called separation principle.

& Example 11.11.1 A compensator design is demonstrated with simulation
results. The same finite element model is used as in the previous section.
According to the separation principle, the compensator is designed by two
stages. The first stage is a feedback control law by

[G] =[2.273 2.769 —1.147 11.69 0.594e 1.3140.504 — 1.196] x 10°
and the second stage is to design a dynamic observer with the result
[L] = [18.31 0.621 61.64 13.43 117.7 0.984 466.3 239.3 ]

from the result of Example 11.10.2. The closed-loop system eigenvalues are
provided in Table 11.11.1 Also simulation is performed with the results provided
in Fig. 11.11.2. As it is shown, the system is stabilized by the feedback control
law which makes use of estimated state variables from the dynamic observer.



Section 11.11 Compensator Design 459

%
%

% This program compen.m demonstrates a dynamic observer

% design and display the simulation result. A finite typical element is
% adopted as a system. For observer gain design, the LQR technique
% is used, and the dynamic simulation is performed using felresp.m.
%

%
% Provide the system mass and stiffness matrix

M =[0.5571 0 0.0964 -0.3482

0 3.2143 0.3482 -1.2054

0.0964 0.3482 0.2786 -0.5893

-0.3482 -1.2054 -0.5893 1.6071];

K =[2.4178 0 -1.2089 9.0667

0 181.3333 -9.0667 45.3333

-1.2089 -9.0667 1.2089 -9.0667

9.0667 45.3333 -9,0667 90.6667];

F=[1;0;0;0];

% Transform into the first order state space form equation
A=[0*eye(4),eye(4);-inv(M)*K,0*eye(4)];

B=[0*ones(4,1);inv(M)*F];

C=[10000000];

% Use the felgr.m function to design the observer gain and the

% full state feedback gain

[G,Sc]=felqr(A, B, 1000*eye(8), 0.01);

[L,So]=felgr(A’,C’, eye(8),0.01);

% Now build the total closed-loop system for both closed-loop system
and observer

Atot=[A, -B*G;L"*C, A-L’*C-B*G};

Btot=[B;B];

Ctot=eye(16);

Dtot=eye(16,1);

% Define simulation time, control input, and initial conditions
£=0:0.01:6.0-0.01;

u=zeros(600,1);

x0=zeros(16,1);

x0(1,1)=0.1; x0(2,1)=-0.3; x0(3,1)=0.2;

% Use felresp.m to simulate the total system
[x,y]=felresp(Atot,Btot,Ctot,Dtot,u,t,x0);

%
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Figure 11.11.2 Simulation Result of a Compensator

11.12 Output Feedback Design by Using Collocated Sensor/Actuator
Discrete Multiple Degree of Freedom System

A control law design and implementation for flexible structures involves a
number of technical issues. One of them is the effect of sensor and actuator locations.
Since the vibrational motion of the structure induces phase error at different locations
of the structure, the sensor and actuator placement shouid take the phase difference
into account. The best strategy is to place the sensor and the actuator at the
same location called a collocated sensor/actuator system. The collocated sensor
and actuator pair has some inherent advantages such as stability guarantee despite
potential technical problems which may arise in the collocation process.

Consider a linearized undamped dynamic system

[M]{a} + [K}{aq} = [F]{u} (11.12.1)

and assume a sensor measurement

{v} = [C){4} (11.12.2)

The input influence matrix [F] and the output distribution matrix [C] represent
location of actuators and sensors, respectively. For a collocated sensor/actuator pair,
they are identical [50]. In other words,

[C] = [F] (11.12.3)
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Figure 11.12.1 An L-Shape Frame Structure with Three Actuators

Consider an output feedback control law defined as

{u} = —[Gl{y} (11.12.4)
= —[G][F{q}

where [G] is a galn matrix. In order to check the stability of the system, we take a
Lyapunov function

U = 5 ()7 M4} + {2} [K}a)) (11.125)

and the time derivative of the Lyapunov function follows as

Substituting the suggested control law [50]

U = —{@}"[F"[G)[F){a} (11.12.7)

and the condition for stability depends upon the feedback gain matrix [G]. The gain
matrix should be positive definite for stability guarantee U < 0 for {q} # 0. In

fact, {q} becomes zero only instantaneously, hence U remains negative except for the
perfect equilibrium point where ({q}, {q}) = (0, 0). Therefore, the control law design
is rather simple for a collocated sensor /actuator pair guaranteeing the stability of the
system.

& Example 11.12.1 In this example, the output feedback law design example
with collocated sensors and actuators is demonstrated for an L-shaped frame
structure. The L-shaped frame structure in Fig. 11.12.1 is modelled by five
finite elements. Detailed finite element analysis is provided in Example 8.10.3.
Each node has three degrees of freedom; vertical and horizontal displacements,
and rotation. The material property is selected as £ = 5 X IOBN/mz,
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p = 1000kg/m3 and A = 0.0001m2. There are three actuators located at
node number 2, 5 and 7. The direction of each actuator is also described in Fig.
11.12.1 - horizontal at node 2(u;), vertical at node 5(uy), and rotational at node
T(u3). The finite element analysis result gives us

[M){§} + [K]{q} = [F}{u}

where[M] and [K] are 18 by 18 mass and stiffness matrices, respectively. The

control input vector {u} = [u;, uz, ug]? includes the three actuators. The
input influence matrix([F]) is easily computed as

[1 00 0000CO0O0COO0OGO0COOO0O0 0]
[F] = 00 0 000O0O0O1O0O0COCODOOQOQO
00 000O0O0COGCOOOOGOCOOT1

OO

0
0
By assuming sensor measurement at the same location where the actuators are
located, the control law is designed as simply as

wy = —g14f, Us = —g2q°, uz = —gsb"

where g1 > 0, g2 > 0, g3 > 0 are feedback gains. In addition, ¢}, ¢; represent
horizontal and vertical displacements at node number 1 and 5, respectively, and

67 represents rotation at the 7** node. The control law is easily rewritten as

{u} = —[G][F){4}

where [G] and [F ] are matrices with appropriate dimension. The control law
should stabilize the system. In order to verify this, we apply the control law to
the orginal second order system, and the resultant closed-loop system has the
following form

[M){a} + [FIGIF) {a}[K{a} = 0

The above system is easily transformed into a first order system by Eq. (11.5.3)

{2} = [A|{=} + [B{u}

Note [B] = 0 in this case, since the equation is developed from the closed-loop
system. The system now is simplified as {£} = [A]{z}. The initial condition is
selected in an arbitrary manner as

Horizontal displacement at node 1 = 0.1m
Vertical displacement at node 5 = 0.1m

Angular rotation at node 18 = 0.05 rad

The MATLAB m-file felresp.m is used for the simulation for 6 seconds. The time
responses of the horizontal and vertical displacement at the node number 2 and
5, and angular displacement at node number 7 are displayed in Fig. 11.12.2
including the actuator response at node number 2. The simulation results
indicate that the system is stabilized by the feedback control law. The big
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Figure 11.12.2 Siumlation Results for the L-Shape Frame Structure by DVF Controller

advantage of the control law used in this example is the robustness of the control
law. We used only three feedback gains, which is in significant contrast with the
LQR design where we need as many feedback gains as the size of the system.

1

Infinite Dimensional Continuous System

As mentioned earlier, control law design for flexible structures is complicated.
In particular, the controller performance relies upon the accuracy of mathematical
modeling. There are many issues in mathematical modeling such as finite dimensional
truncation, model uncertainty, and estimation of state variables.

One promising method for control law design is to retain the original govern-
ing equations of motion. Dynamics of the flexible structure is usually described by
partial differential equations of motion or combination of partial and ordinary differ-
ential equations of motion. A significant advantage of using the original governing
equations is the robustness of the control law without involving finite dimensional
approximation, and there is no modeling error issue in this approach.

Let us consider a flexible beam with one end fixed to the base and the other end
free as in Fig. 11.12.3. The governing equation of motion is given as
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w(z,t)
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8

Figure 11.12.3 A Typical Continuous System

a2w 2 EI64w — Fé‘/ AN rd oy
Paa t Bl = Folz —z.) (11.12.8)
and the boundary conditions are given by
dw
w=7-=0 at z=0 (11.12.9)
duw? O’
I— = I— =
E 227 E 923 =0 at z =1

where p is the linear mass density and ET is the beam rigidity. The actuator located
at £ = z, is represented by the Dirac Delta function (6(z — z.)).

In order to design a control law, the Lyapunov approach is adopted with the
candidate Lyapunov function

U= —[ l (—) +El(azz) Jd:c (11.12.10)

The Lyapunov function represents the total kinetic plus potential energy of the
structure. Time derivative of the Lyapunov function is taken in combination with
the Eqs (11.12.8) and (11.12.9), and the final result becomes

!
U= / wlé(z — z.)dz (11.12.11)
0
Integration over the Dirac Delta function becomes
U = w(zc,t)F (11.12.12)

The natural choice of a stabilizing control input results in

F = —~gio(z,,1t) (11.12.13)

where g > 0 is the feedback gain which guarantees stability with U < 0. Therefore, the
derived control law globally stabilizes the structure, and there is no need for modeling
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I P, El I,y
b = ﬂ

' ]

the structure. This control law is usually called Direct Velocity Feedback(DVF)
control law.

Output Feedback Control Law Design for a Rotating Beam

Rotating flexible beams have been used in many engineering applications such
as robotics and space engineering. The mathematical modeling of a flexible beam
can be done using the finite element method or other methods. Once we have the
mathematical modeling, then we can develop a control law based upon the desired
control objective.

The governing equations of motion of a rotating flexible beam in Fig. -11.12.4
are derived as

e i [ 13 [
I.6 + / px(® + z0)dz + m (10 + w(l,0)) + L(§ + W' (L,t)) = u
lo

~k

gw

p(w + z6) + ET i 0 (11.12.14)
with the boundary conditions
w= %:S =0, at r=l (11.12.15)
2 . 3 .
EIi_t;) = —L;(0 + w'), EIanjg = my(10 4 w), at c=1
UL Ul

where(")Eﬂ—) and ( 1= 20)

at2 - 8z "
Finite Element Modeling

For the finite element modeling, the extended Hamilton’s principle is used for
each element as [50-52]

ta
(6L + 6W)dt = 0 (11.12.16)

ty

where L = T, -V, is the system Lagrangian which is the difference between the kinetic
(T.) and the potential (V.) energies. The element kinetic and potential energies are
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Figure 11.12.5 A Finite Element of A Rotating Flexible Beam

given by

zet+h ) zet+h 82w\ ?
Tezj p(e + z8)%dz, V. z/ EI(@> dx (11.12.17)

Now we introduce a finite dimensional discretization for the w, over the it* element
as shown in Fig. 11.12.5.

we(z,t) = ¢1(2)q1 () + d2(2)q2(2) + d3(x)ga(t) + da(x)qa(?) (11.12.18)

where ¢, (¢) is the vertical displacement and g2(2) is the rotation at the left-end of the
element, and similar definitions for ¢a(t) and g4(t) for the right-end of the element.
The shape functions are Hermite polynomials

¢1(:c)—1—3( ""\ +2(:c—a:,>
$2(z) = (z — i) —2h(x_h‘°‘)2 +h(z 215)3
#al2) = 3(2_’1“)2 _2(1 -;z,-)3 (11.12.19)

$a(z) = —h(* _hx")2+h(m—hz’.)3

Substitution of the above expressions into Eq. (11.12.17) and integration by
parts yield [50-52]

2

M4, + Kiq. = 0 (11.12.20)

ieoa are nrnannfnr‘ ;n ahle 11 1921 Tha

noaaa Y ¥
i AILOD el pivovaivons A Gurravw P - S A IR

same principle can be apphed to the elements which include the tip and the rigid
center body. Once we set up the equations for every finite element, then we combine all
equations for each element into global governing equations as a typical finite element
analysis procedure. Therefore, the resultant governing equations of motion are derived
as

[M}{a} + [K]{q} = {F}u (11.12.21)



Section 11.12 Output Feedback Design 467

Table 11.12.1 Element Matrix for the Rotating Beam

M1i1 Miiz Mfs . 0 0 0 t t
MO =g My M|, KO = |0 Ky K|, M= [y ]
My Ml Mi 0 Ki, Ki,
Mi = B{(-’Bi + 10)?4(zi + lo + h)(zi + lo) + (zi + lo + B)?})

My, = [M5,)" —Ph[20 2(-’°‘:+’0) éﬁhz h($i+l'o)]
. K 1
Mis = (M = ph[ bt (a4 1e) = b = (oo +0)
i _ ph [156 22h
227 490 | 22k 4h%
i T Ph 54 —13h
M23 - [M32] 420 [13h _3h2]
Ai.— Ph[ 156 —22h
337 490 | -22h  4A?
ii.— EI[12 6h
227 p3 | 6h  4h2
; : EI[-12 6h
R 1 1T _
K = (K] —h—a[_sh e
i Bl —6h
337 FF 6h 4h?

Mltl = Jz -+ mt(lﬂ + l)2
Mi, = [M4]" = [mi(lo + DI

my 0
My, = [ 0 It]

where
{Q}=[9,91;Q2’---;Q’N]T, {F}=[1:0’10]T

and the global mass and stiffness matrices are given by

Ic + MOB Mﬂq

[M]:[ T qu], [K]:[O 0 (11.12.29)

QT K qq

where 0 is a zero vector of size 1 x N, and

N
Moo = ZMfl + Mj,
i=1

- 4 — - =N

= LR | = =92 =32 s -4 =1 PP |
Mgq = |My3 + M, M+ M3 Mg+ Mj,.. M13 + My M3+ M,
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Farthermore,
FM313 + M3, M3y T
M3, M3; + M3, M3
M3, M3+ M3, M3
Mgq = .
MEY M MY
! My MY
and
" K+ K2 K2, T
K3, K2 + K3, K3,
K3, K3, 4+ K4 4
TTOo4 > 5 | -y 4 il % |
Kgqq =
K¥' K K
i KY K.

where M = M2~ + N and K = KX™! + K&, The second order system in Eq.
(11.12.20) can be transformed into a first order system for analysis purposes.

& Example 11.12.2 An example rotating beam model is used to verify the
modeling procedure discussed above. The material properties of the example
model are p = 0.003, ET = 1.1118 x 10*%, Iy = 3.5, L = 47.57, I, = 0.0018,
m; = 0.156 and I, = 9.06 with consistent units. A MATLAB m-file ferobem.m
is written and the output results are system mass/stiffness matrices and natural

frequencies. The first nine natural frequencies are listed in Table 11.12.2.

function [w,M,K]=ferobem(N,EI,rho,l ¢,I.t,m_t,1 0,L)
o
% Purpose:

%  The MATLAB function subroutine ferobem.m produces a finite
%  element modeling of a rotating flexible beam attached

%  to a rigid base.

%

% Synopsis:

%  [w,M,K]=ferobem(N,EIrho,lc,It,m._t10,L)

%

% Vartable Description:

%  Input parameters :

% N - number of elements

% EI - beam rigidity

% rho - linear mass density

% I c(I-t) - moment of inertia of the center body (tip mass)
% m_t - tip mass

% 1.0 - radius of the center body
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% L - beam length

%  Output : M, K - system mass, stiffness matrices

% w - natural frequency

%

% Calculate pure rigid body portion

%

h=L/N; % Element length

M11t=It+m_t*(L-4+0)"2;M12t=[m_t*(1.0+L) It};
M22t=[m-t 0; 0 I.t;;M21t=M12¢’;

x1=0;

for i=1:N
M11r{1,i)=rho*h*((xi+1-0)" 24 (xi+1_0+h }* (xi-+H_0)4+(xi+1_0+h)"2)/3;
xi=xi+h;

end

Mthth=M11t4sum(M1lr)+IL c;

%

% Calculate element mass and stiffness matrices

M33=rho*h*[156,-22*h;-22*h,4*h"2]/420;

M22=rho*h*[156, 22*h; 22*h,4*h"2]/420;
M23=rho*h*[54,-13*h;13*h,-3*h"2]/420;M32=M23";

K22=EI*[ 12, 6*h; 6*h,4*h"2]/h"3;

K23=EI*[-12, 6*h;-6*h,2*h"2]/h"3:K32=K23";

K33=FEI*[ 12,-6*h;-6*h,4*h"2]/h"3;

% _ .
% Calculate global mass and stiffness matrices

%
Mqq(1:2,1:2)=M33+M22;Mqq(1:2,3:4)=M23;

for i=1:N-2

NI=2*i+1;
Mqq(NI:NI+41,NI-2:NI-1)=M32;Mqq(NI:NI+1,NI:NI41)=M33+M22;
Mqq(NI:NI+41,NI+2:NI+3)=M23;

end

Mqq(2*N-1:2*N,2*N-3:2*N-2)=M32;
Mqq(2*N-1:2*N,2*N-1:2*N)=M33+-M22t;
Kqq(1:2,1:2)=K33+K22;Kqq(1:2,3:4)=K23;

for i=1:N-2

NI=2*i+1;
Kqq(NI:NI+41,NI-2:NI-1)=K32;Kqq(NI:NI+1,N:NI+1)=K33+K22;
Kqq(NI:NI+41,NI+2:NI4+3)=K23;

and

Kqq(2*N-1:2*N,2*N-3:2*N-2)=K32; Kqq(2*N-1:2*N,2*N-1:2*N)=K33;
%

% Compute rigid and flexible coupling terms
o

Al

xi=0;
for i=1:N-1,
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Table 11.12.2 Natural frequencies of the rotating beam

Mode Natural frequencies(Hz)
0.000
1.030
3.030
7.360
14.82
27.38
44.36
70.27
100.8

[

0 =~ & G R W N =

M13=rho*h*[7*h/204(xi+1.0)/2 -h"2/20-h*(xi+1-0)/12];
xi=xi+h;

M12=rho*h*[3*h/20+(xi+1.0)/2 h"2/30+h*(xi+1.0)/12];
Mthq(1,2%i-1:2%)=M 13+ M12;

end

M13=rho*h*[7*h/20+(xi-+1.0)/2 -h"2/20-h*(xi+1-0)/12];
Mthq(1,2*N-1:2*N)=M13+M12¢;

% Combine rigid, flexible, and coupling terms

o
M=[Mthth,Mthq;Mthq’,Mqg]; % Global mass and stiffness matrices
K=[0,zeros(1,2*N);zeros(2*N,1),Kqq];

wo=sqrt{eig(K,M)); % Compute natural frequencies
w=sort(wo);

%

Control Law Design by Lyapunov Approach

As a special case, we assume a collocated sensor/actuator pair for the rotating
beam. The actuator is located at the center body producing torque about the
vertical axis and the sensor is also located at the center body measuring the angular
displacement and/or angular velocity of the center body. With the collocated
sensor factuator set, the control law design is relatively simple. In the previous section,
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we used an original partial differential equation deriving a stabilizing control law, and
the same principle can be applied to the rotating beam case.
First, we select a candidate Lyapunov function as [53-55]

8%y

2U =a,1,6° + a2 [ [p(z6 + @) + EI( 5oz

) | dz + mq (16 4 w(l, t))?
+ L(6 + u')'(l,t))z] + as(6 — 6 )? (11.12.23)

The Lyapunov function is shown as the combination of each sub-structure’s energy;
center body, beam and tip mass. Furthermore, a,,a, and a3 are positive weighting
constants determining the relative importance of sub-structure’s energy, and 6y is a
constant final desired angle. The Lyapunov function is positive definite with respect

to the steady equilibrium point

(0, é: Y, y)f = (ef’ 0, 0, 0) (111224)

In other words, the Lyapunov function initially being positive approaches zero
at the steady equilibrium point. The control torque at the center body should be
designed in such a way that the Lyapunov function decreases asymptotically toward
the equilibrium point. For this purpose, we take the time derivative of the given
Lyapunov function, and make use of the governing equation and boundary condition
finally arriving at [53-55)

U=a [u +91(0 — 05) + 93(1pSo — MO)]é (11.12.25)

where g, = as/a; > 0, g3 = (a2 — @1)/a1 > —1 are design parameters or feedback
gains of the contro] law. Furthermore, My and Sy are the internal bending moment
and shear force, respectively at the root of the beam.

62
M, = EIa——

 Sy=EI2Y

523 (11.12.26)

z=lg r=io

Since our goal is to design a stabilizing control torque input, the most natural
choice is to make the time derivative of the Lyapunov function negative in such a way
that

u+91(6 —65) + ga(loSo — Mo) = —g26, g2 >0 (11.12.27)
Therefore,
u= —g1(6 - 9‘ ) - gge _,3( o0 — Mv) (111228)
so that ) _
U= —ayg:6* <0 (11.12.29)

As we can see, U < 0 as long as 6 # 0. At 6 =0, the Lyapunov function is equal to
zero which does not mean that the system is at equilibrium condition due to other
nonzero motions like angular position error and flexible motion. In order to reach the
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steady equilibrium state, the Lyapunov function continues to decrease as dictated by
Eq. (11.12.24).

The derived control law in Eq. (11.13.28) globally stabilizes the flexible structure
with respect to the desu'ed equilibrium point. Since we do not use any finite
approximation, the control law is free of usual issues such as robustness, truncation
error, and modeling uncertainty. The boundary force and moment term are modelled

using the Hermite polynomials as [56]

3 2
loSo — Mg = IOEIa—— EIQ—y
oz s Oz
12 6 6 9
=1l (—Fv; 7102 ) (FU% - Ea;) (11.12.30)

where v} and 6] represent displacement and rotation at the right-hand side nodal
point of the first element.

Simulation results with the control law employed is provided in Figs 11.12.6
and 11.12.7 together with a MATLAB m-file. One significant difference in the two
simulation results is the effect of boundary force feedback gain. The boundary
force is shown to be a sensitive parameter which improves the closed-loop response
performance.

é Example 11.12.3 In this example, the feedback control law in Eq.
(11.12.18) is demonstrated for the same model used in Example 11.12.2. The
flexible beam was modelled with three finite elements. The feedback gains are
chosen as g; = 100, g2 = 200, g3 = 0, —0.5. The desired final angle is 1 radian.
The feedback gain (g3) on the boundary force feedback is tested to investigate
its effect on the closed-loop performance.

As we can see, the center body angle converges to the final angle within 40
seconds of simulation time. Also, the feedback on boundary force with g3 = —0.5
enhances the closed-loop performance.

function [y]=ferbsim(M,K,F g1,52,g3 ELh 10,thftf)
%
% Purpose:

%  This MATLAB m-file ferbsim.m is a simulation program for

% arotating flexible beam attached to a base. The mathematical model
%  is created from frobfem.m as system mass and stiffness matrices

%

% Synopsis:

% [y] = ferbsim(M,K,F,g1,g2,g3,ELh,10,th{ tf)

%

% Variable Description:

%  Input parameters - M, K, F - System matrices

% gl, g2, g3 - Feedback gains

% EI h, 10 - Parameters for boundary force calculation
% thf, tf - Final angle and final simulation time
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%  Output parameter - y

%

[n,n]=size(M};

I=eye(n);

% Build closed-loop system matrices
K(1,1)=gl;

K1I=EI*(10*[-12/h" 3,6/h" 2]-[6/h" 2,-2/h]);
K(1,2:3)=K(1,2:3)+g3*K1I;

Damp=0*[;

Damp(1,1)=g2;

% Generate state space form for simulaiion purpose
A=[0*LL;-inv(M)*K,-inv(M)*Damp];
B=[zeros(n,1);inv(M)*F];

C=eye(2*n);

D=zeros(2*n,1);

% Perform simulation using felresp.m MATLAB function
nstep=1000;

dt=tf/nstep;

=0:dt:tf-dt;

u= gl*thf*ones(1000,1);
x0=zeros(2*n,1);
y=felresp(A,B,C,D,x0,u,t);
o7

Y




474

Control of Flexible Structures

Chapter 11

15 0.3
2
g ] o 0.2
= £
g ;‘;;’ 0.1
%o.s =z o
o
0 -0.1
0 10 20 30 40 0 10 20 30 40
Time(sec) Time(sec)
4 SL\
g ="
82 =4
2 -10
-4
-6 -15
0 10 20 30 40 0 10 20 30 40
Time(sec) Time(sec)

Figure 11.12.6 Simulation Results of a Rotating Beam with g, = 100, g2 = 200, g3 =0

20 30 40
Time(sec)

15 0.4
2 0.3
g | ™\ _ o] A
(v} 1 S ©
> = 0.2
3 5
8 301
‘% 0.5 b
o 0
0 -0.1
0 10 20 30 40 0 10
Time(sec)
5 10
‘GE; N/
E 0 20
3 3
5 ©
[} >
0 a
T . - -
S 5 - -10
l—
- -20 -
100 10 20 30 40 0 10
Time(sec)

20 30 40
Time(sec)

Figure 11.12,7 Simulation Results of a Rotating Beam with ¢y = 100, g2 = 200, g3 =

—0.5



Problems Problems 475

Problems

11.1 For a given system
.’i)l =9
2o = —29 — 2 — (21}2 + .’131)2:132

i) Find out the equilibrium point by setting &y = 0,2, = 0.

ii) Using a Lyapunov function V(x)=z? + 23, find out the stability of the
system.

11.2 Calculate the state transition matrix for a system

‘ [—1

(1) 1
Lé2f =1

11.3 A second order system is given as

1(z) Tol ..
Jlaaf ¥ [-2) Y

[ow]

o

o

8

# + 22 + 102 = 10£(t)

with an unit step input f(t) = 1, (¢ > 0) applied, find out parameters such as
i) Rise time(?,),

ii) Peak time(tp),

iil) Maximum overshoot(M,), and

iv) Settling time(t,)

11.4 A system is described as

@1l _ 10 1]« 0
Gl =5 sl
i) Derive the analytical expression for the impulse response due to u(t) = é(t)
and [z1,z2](0) = [0, 0].

ii) Use the same data in part i) to derive the analytical expression of the
response with respect to the unit step input.

11.5 Assume a transfer function is given by

1
(s+1)(s+3)

H(s) =
i) Find out unit impulse response.

ii) Do the same thing as in i) for unit step input.

11.6  Using the state transition matrix property, show that

BT — _at,r)4(r)
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11.7 A typical linearized second order system is given as

v e [ e -l

0 maf | g —ky ko ¢2 0

i} Find out the analytical expression of the transfer function between
g1(t), ¢2(t) and u(t). In other words, find 1{s)/U(s) and Q2(s)/U(s).

ii) For the given values [m,, mo] = [0.5, 0.5](kg), and [k1, k2] = [2, 4], plot
the poles and zeros of @1(s)/U{s) and @2(s)/U(s) on the complex plane.

Also, compare the zeros of the two transfer function.
iii) We want to design a feedback control law as

u(t) = —g1q1() — 9241 (t)

where g1 and g» are positive position and velocity feedback gains, respec-
tively. Show that the control law stabilizes the closed-loop system.

11.8 A set of spring mass, and damper system is given in Fig. P11.8.

Y 9 %
ks ks ks

- my w (U7 W Mg

-
] C2 % Lé3

\\;\\\\\
==

[M]{a} + [DH{a} + [K){a} = [F]u
where
™my 0 0 C1 +C2 —C2 0
[M] = [ 0 me 0 :l , (D] = [ —~Cy Ca+ €3 —c;{l
0 0 wms 0 —C3 C3

and

ki + ko —ky 0 0
(Kl=1 —ka kotks -ks|, F=10], ¥y = q(t)
0 —k3 ks 1

The parameter values are given by [ml, mg, mg] = [1 , 1, 1)(kg), [c!, ca, c,3] =
[0.1,0.5,0.3)(N — sec/m), and [ky, k2, k3] = [6,8 ,9)(N/m).

i) Is this system controllable?

i1) Is this system observable?

11.9 A first order system is given by

{z} = [A{z} + Plu, v=-[k}{z}
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11.10

11.11

11.12

11.13

where [b] is a column vector and u is a scalar control input. If a system ([A],[b]) is
controllable, show that the system with feedback ([A] — [b][k], [8]) is also controllable.
(Hint: Check the rank of the controllability matrix of the both systems.)

A dynamic system is modelled by finite element analysis, and the results are given as

0.5 0 0 3 -2 0
[M]=]0 05 0/, [K]=}-2 5 -3
0 0 05 0 -3 3
and
[F]=1[1,0,0]%

where the notations are identical to those in the main text. The system is transformed
into the first order form of equation as

{2} = [Al{z} + [Bl{u}

i) Find out the open-loop eigenvalues of the system using the matrix [A]. The desired
eigenvalues are prescribed as

—-1.5+2.0z, ~2.0 + 4.0z, —-1.0+ 3.0¢

ii) Use the Bass-Gura formula to compute the feedback gains which achieve the desired
closed-loop eigenvalues.

A finite element model of the longitudinal vibration of a beam is developed as a lumped-
mass model. The first order description of the system is given by

sl A1 o TR1C. we — M1
{e} = [Al{e} +B{u}, y=[CHz}
where

-0 0 0 10 01 -0
0 0 0 010 0
6 0 0 00 1 0
[A=1]_3 36 0o 00 o0f Bl={g
18 —36 18 0 0 0 0
0 36 —36 0 0 0. 0

Use the MATLAB m-file felgr.m in order to design an optimal feedback gain matrix.
Use

[Q] = Lsxs, [R]=0.1
Using the same data in problem 11, and
[C]=[1 0000 0

design a dynamic observer. Use same [(}] and [R].

For a given scalar system
z=ar+u
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and a performance index

(o ¢]
J = [ (qz? + ru?)dt

JO

[ =R

where ¢ > 0, > 0 are constant weighting factors. i) Find out the optimal feedback

gain by solving the Ricatti equation in Eq. (11.8.5). ii) Prove that the closed-loop
system is stable using the result of part i).

11.14 A flexible structure is under longitudinal vibration as in Fig. P11.14.

wlnt)

— —

NN\
&

A T
E AP

e - Thet -2 - A A ™ 1 T *a h T Irry at

rlgure I"11.14 A Dar under Loungrnudinal vipration

The governing equation of motion is derived as

w(z,t) _ EA ?w(z,?)

P = 8z’
If we want to place an actuator at £ = z. of the beam, show that control law u(f) =
—9292-(;;—":2, g2 > 0 stabilizes the system. Hint : Use the Lyapunov function approach.

11.15 A feedback control law for a rotating beam is derived in Eq. (11.12.28) as

u=—g1(0 —0;) — g20 — g3(l0So — Mo)
Verify the above expression taking the Lyapunov function in Eq. (11.12.20). You may

Vé
have to use the governing equations and boundary conditions in order to prove the
control law expression.
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Appendix A MATLAB Function Files

function [kk,mm]=feaplycs(kk,mmm,bedof)

Purpose:
Apply constraints to eigenvalue matrix equation.

[kk]{x}=lamda[mm]{x}

Synopsis:
[kk,mm]="feaplycs(kk,mm,bcdof)

Variable Description:
kk - system stiffness matrix before applying constraints
mm - system mass matrix before applying constraints
bedof - a vector containing constrained d.o.f

function [kk,ff]=feaplyc2(kk,ff,bcdof,bcval)

Purpose:
Apply constraints to matrix equation [kk]{x}={ff}.

Synopsis:
[kk,ff]=feaplybc(kk, ff,bcdof,beval)

Variable Description:
kk - system matrix before applying constraints
ff - system vector before applying constraints

hedof - a vector containineg constrained d.o.f
AW VANS R W T U uULsa Vvll\l\‘lllj‘.&lb RS LA VA ANATAN/AL VLeVT e L

beval - a vector containing contained value

Note:
For example, there are constraints at d.o.f=2 and 10
and their constrained values are 0.0 and 2.5,
respectively. Then, bcdof(1)=2 and bcdof(2)=10; and
beval(1)=1.0 and beval(2)=2.5.

function [kk]=feasmbl1(kk,k,index)

TIMEn e

Dy
L uipunc.

Assembly of element matrices into the system matrix.

Synopsis:
[kk]=feasmbll(kkk,index)

Variable Description:
kk - system matrix

485
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k - element matrix
index - d.o.f. vector associated with an element

function [kk,ff]=feasmbl2(kk,ff,k,f,index)

Purpose:
Assembly of element matrices into the system matrix and
assembly of element vectors into the system vector.

Synopsis:
[kk,ff]=feasmbl2(kk ff k,f,index)

Variable Description:
kk - system matrix
ff - system vector
k - elemnent matrix
f - element vector
index - d.o.f. vector associated with an element

.

function [g]=febasgr(A,B,dc)

Purpose:
Calculate a feedback gain for a single input system by
Bass-Gura formula.
System equation : xdot = Ax + bu

Synopsis:

[g}=tbasgur(A,B,dc)

Variable Description:
dc¢ - a vector consisting of desired closed-loop poles
g - a feedback gain vector.

function [k,m]=febeam1(el,xi,leng,area,rho,ipt)

Purpose:
Stiffness and mass matrices for Hermitian beam element.
nodal dof {v_1 theta.l v_2 theta 2}

Synopsis:
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[k,m]=febeam1(el,xi,leng,area,rho,ipt)

Variable Description:
k - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - element length
area - area of beam cross-section
rho - mass density (mass per unit volume)
ipt = 1: consistent mass matrix
2: lumped mass matrix
otherwise: diagonal mass matrix

function [k,m]=febeam2(el,xi,leng,sh,area,rho,ipt)

Purpose:
Stiffness and mass matrices for the Timoshenko beam element.
nodal dof {v_1 theta_1 v_2 theta 2}

Synopsis:
[k,m]=febeam2(el,xi,leng,sh,area,rho,ipt)

Variable Description:
k - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
xi - second moment of inertia of cross-section
leng - length of the beam element
rho - mass density of the beam element (mass per unit volume)
sh - shear modulus
area - area of cross-section
ipt = 1: consistent mass matrix
2: lumped mass matrix
otherwise: diagonal mass matrix

s me L s

Stiffness and mass matrices for beam element with displacement
degrees of freedom only.
nodal dof {u_1"b u-1"t v.1 u-2"b u-2"t v_2}
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Synopsis:

[k,m]=febeam]l (el,sh,leng,heig,rho,area,ipt)
Variable Description:

k - element stiffness matrix (size of 6x6)

m - element mass matrix (size of 6x6)

el - elastic modulus

sh - shear modulus

leng - element length

heig - element thickness

width - width of the beam element

rtho - mass density of the beam element (mass per unit volume)

lumped mass matrix only

function [k,m]=febeam4(el,xi,leng,sh,heig,rho,ipt)

Purpose:
Stiffness and mass matrices for mixed beam element.
Bending moment and deflection as nodal degrees of freedom.
nodal dof {M_1 v_.1 M_2 v 2}

Synopsis:
[k,m]=febeam4(el,xi,leng,sh,heig,rtho,ipt)

Variable Description:
k - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
x1 - second moment of inertia of cross-section
leng - length of the beam element
sh - shear modulus
heig - beam thickness
rho - mass density of the beam element (mass per unit volume)
ipt = 1 - lumped mass matrix
= otherwise - diagonalized mass matrix

function [Ctobty,rrank,ccond]=fectobt(A,B)

Purpose:
Calculate controllability matrix and /or observability of
a system described in state space form

xdot = Ax + Bu
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Synopsis:
[Ctobty,rrank,ccond]=fectobt(A,B)

Variable Description:
Ctobty - controllability or observability matrix
rrank - rank of Ctobty which determine yes/no type answer
ccond - condition number of Ctobty

Note:
For controllability test, the input argument should follow as
fctobty(A,B).
For observability test, we should provide the input argument as
fetobty(A"T, C™T). ( )"T is transpose of ( )} .

function [dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

Purpose:
Determine derivatives of 2-D isoparametric shape functions with
respect to physical coordinate system.

Synopsis:
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

Variable Description:
dhdx - derivative of shape function w.r.t. physical coordinate x
dhdy - derivative of shape function w.r.t. physical coordinate y
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
invjacob - inverse of 2-D Jacobian matrix

function [dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)

Purpose:
Determine derivatives of 3-D isoparametric shape functions with
respect to physical coordinate system.

Synopsis:
[dhdx,dhdy,dhdz]=federiv3(nnel,dhdr,dhds,dhdt,invjacob)

Variable Description:
dhdx - derivative of shape function w.r.t. physical coordinate x
dhdy - derivative of shape function w.r.t. physical coordinate y
dhdz - derivative of shape function w.r.t. physical coordinate z



490

MATLAB Function Files

nnel - number of nodes per element

dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
dhdt - derivative of shape functions w.r.t. natural coordinate t
invjacob - inverse of 3-D Jacobian matrix

Appendix A

function [eta,yim]=fediresp(M,K,F,u,t,C,q0,dq0,a,b)

Purpose:

Calculate impulse response for a damped structural system

naing mndal ahn]voia Td- uses mandal canrdinate sanatinng
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to evaluate modal responses anaytically, then convert
modal coordinates into physical responses.

Synopsis:

[eta,yim]=fediresp(M K ,F,u,t,C,q0,dq0,a,b)

Variable Description:

M, K - mass and stiffness matrices
F - input or forcing influence matrix
u - index for excitation

t - time of evaluation

11 - index for the excitation
C n

ARUIC S afrl waal Ta

C - output matrix

q0, dq0 - initial conditions

a, b - parameters for proportional damping [C]=a[{M]+b|
eta - modal coordinate response

yim - physical coordinate response

function [index]=feeldof(nd,nnel,ndof)

Purpose:

Compute system dofs associated with each element.

Synopsis:

[index]=feeldof(nd,nnel,ndof)

Variable Description:

index - system dof vector associated with element “iel”

iel - element number whose system dofs are to be determined
nnel - number of nodes per element

ndof - number of dofs per node
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function [index]=feeldofl(iel,nnel,ndof)

Purpose:
Compute system dofs associated with each element in one-
dimensional problem.

Synopsis:
[index]=feeldofl(iel,nnel,ndof)

Variable Description:
index - system dof vector associated with element “iel”
iel - element number whose system dofs are to be determined
nnel - number of nodes per element
ndof - number of dofs per node

function [yfft,freq]=fefft(y,t)

Purpose:
Calculate Fast Fourier Transform (FFT) using the time domain
signal. The time domain data are provided with corresponding
time interval.

Synopsis:
[vf, freq)=fefft(y,t)

Variable Description:
y - time domain data n by 1
t -~ time interval for y of n by 1 size
yf - absolute value of FFT of y
freq - frequency axis values

Notes:
The number of data points for y should be power of 2, and
truncation is needed to achieve the requirement.

function [k]=feflx]12(eleng)

Purpose:
Element matrix for Cauchy-type boundary such as du/dn=a(u-b)
using linear element where a and b are known constants.

Synopsis:
[k]=fefix]2(eleng)
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Variable Description:
k - element vector (size of 2x2)
eleng - length of element side with given flux

Appendix A

function [k,m]=feframe2(el,xi,leng,area,rho,beta,ipt)

Purpose:
Stiffness and mass matrices for the 2-d frame element.
nodal dof u_1 v_1 theta_-1 u-2 v_2 theta_2

Synopsis:
[k,m]=feframe2(el,xi,leng,area,rho,beta,ipt)

Variable Description:

k - element stiffness matrix (size of 6x6)

m - element, mass matrix (size of 6x6)

el - elastic modulus

xi - second moment of inertia of cross-section

leng - element length

area - area of beam cross-section

rtho - mass density (mass per unit volume)

beta - angle between the local and global axes
is positive if the local axis is in the ccw direction from
the global axis

ipt = 1 - consistent mass matrix
= 2 - lumped mass matrix
= 3 - diagonal mass matrix

function [f]=fefxl(xl,xr)

Purpose:
Element vector for f(x)=x using linear element.

Synopsis:
[f]=fefxl(x1,xr)
Variable Description:
f - element vector (size of 2x1)

x] - coordinate value of the left node
xr - coordinate value of the right node
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function [f]=fefx21(xl,xr)

Purpose:
Element vector for f(x)=x"2 using linear element.

Synopsis:
[f]=fefx21(xl,xr)

Variable Description:
f - element vector (size of 2x1)
xl - coordinate value of the left node
xr - coordinate value of the right node

function [f]=fefll(xl,xr)

Purpose:
Element vector for f(x)=1 using linear element.

Synopsis:
[f]=fef11(x],xr)

Variable Description:
f - element vector (size of 2x1)
x| - coordinate value of the left node
xr - coordinate value of the right node

function [point1,weightl]=feglqd1(ngl)

Purpose:

Determine the integration points and weighting coeflicients
of Gauss-Legendre quadrature for one-dimensional integration.

Synopsis:
[pointl,weight1]=feglqd1(ngl)

Variable Description:

ngl - number of mmtegration noints
g! - number of mtegration points

pointl - vector containing integration points
weightl - vector containing weighting coefficients
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function [point2,weight2]=feglqd2(nglx,ngly)

Appendix A

Purpose:
Determine the integration points and weighting coefficients
of Gauss-Legendre quadrature for two-dimensional integration.

Synopsis:
[point2,weight2]=feglqd2(nglx,ngly)

Variable Description:
nglx - number of integration points in the x-axis
ngly - number of integration points in the y-axis
point2 - vector containing integration points
weight2 - vector containing weighting coefficients

function [point3,weight3]=feglqd3(ngix,ngly,nglz)

Purpose:
Determine the integration points and weighting coefficients

of Gauss-Legendre quadrature for three-dimensional integration.

Synopsis:
[point3,weight3]=feglqd3(nglx,ngly,nglz)

Variable Description:
nglx - number of integration points in the x-axis
ngly - number of integration points in the y-axis
nglz - number of integration points in the z-axis
point3 - vector containing integration points
weight3 - vector containing weighting coefficients

function [eta,yim]=feiresp(M,K,F,u,t,C,q0,dq0)

Purpose:
Calculate impulse response for a given structural system
using modal analysis. It uses modal coordinate equations
to evaluate modal responses analytically, then convert modal
coordinates into physical responses.

Synopsis:
[eta,yim]=impresp(M,K F,u,t,C,q0,dq0)

Variable Description:
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M, K - mass and stiffness matrices
F - input or forcing function

u - index for excitation

t - vector of time duration

C - output matrix

q0, dq0 - initial conditions

eta - modal coordinate response
yim - physical coordinate response

function [shapeq4,dhdrq4,dhdsq4]=feisoq4(rvalue,svalue)

Purpose:
Compute isoparametric four-node quadilateral shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

hapeq4 - shape functions for four-node element
dhdrq4 - derivatives of the shape functions w.r.t. r
dhdsq4 - derivatives of the shape functions w.r.t. s
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point

Notes:
1st node at (-1,-1), 2nd node at (1,-1)
3rd node at (1,1), 4th node at (-1,1)

function [shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue,tvalue)

Purpose:
Compute isoparametric eight-node solid shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

Synopsis:
[shapes8,dhdrs8,dhdss8,dhdts8]=feisos8(rvalue,svalue, tvalue)

Variable Description:
shapes8 - shape functions for four-node element
dhdrs8 - derivatives of the shape functions w.r.t. r
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dhdss8 - derivatives of the shape functions w.r.t. s
dhdts8 - derivatives of the shape functions wr.t. t
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point
tvalue - t coordinate value of the selected point

Notes:
1st node at (-1,-1,-1), 2nd node at (1,-1,-1)
3rd node at (1,1,-1), 4th node at (-1,1,-1)
5th node at (-1,-1,1), 6th node at (1,-1,1)
7th node at (1,1,1), 8th node at (-1,1,1)

Appendix A

function [shapet3,dhdrt3,dhdst3]=feisot3(rvalue,svalue)

Purpose:
Compute isoparametric three-node triangular shape functions
and their derivatves at the selected (integration) point
in terms of the natural coordinate.

Synopsis:
[shapet3,dhdrt3,dhdst3]=feisot3(rvalue,svalue)

Variable Description:
shapet3 - shape functions for three-node element
dhdrt3 - derivatives of the shape functions w.r.t, r
dhdst3 - derivatives of the shape functions w.r.t. s
rvalue - r coordinate value of the selected point
svalue - s coordinate value of the selected point

Notes:
1st node at (0,0), 2nd node at (1,0), 3rd node at (0,1)

function [jacobl]=fejacobl (nnel,dhdr,xcoord)

Purpose:
Determine the Jacobian for one-dimensional mapping.

Synopsis:
[jacobl]=fejacobl(nnel,dhdr,xcoord)

Variable Description:
jacobl - Jacobian for one-dimension
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate
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xcoord - x axis coordinate values of nodes

function [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

Purpose:
Determine the Jacobian for two-dimensional mapping.

Synopsis:
[jacob2)=fejacob2(nnel,dhdr,dhds xcoord,ycoord)

Variable Description:
jacob2 - Jacobian for one-dimension
nnel - number of nodes per element
dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
xcoord - X axis coordinate values of nodes
ycoord - y axis coordinate values of nodes

function [jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)

Purpose:
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Synopsis:
[jacob3]=fejacob3(nnel,dhdr,dhds,dhdt,xcoord,ycoord,zcoord)

Variable Description:

jacob3 - Jacobian for one-dimension

nnel - number of nodes per element

dhdr - derivative of shape functions w.r.t. natural coordinate r
dhds - derivative of shape functions w.r.t. natural coordinate s
dhdt - derivative of shape functions w.r.t. natural coordinate t
xcoord - x axis coordinate values of nodes

ycoord - y axis coordinate values of nodes

zcoord - z axis coordinate values of nodes

function [kinmtxax]=fekineax(nnel,dhdx,dhdy,shape,radist)

Purpose:
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Determine kinematic equations between strains and displacements
for axisymmetric solids.

Synopsis:
[kinmtxax]=fekineax(nnel,dhdx,dhdy,shape radist)
Variable Description:
nnel - number of nodes per element
shape - shape functions
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to y
radist - radial distance of integration point or central point
for hoop strain component

function [kinmtpb]=fekinepb(nnel,dhdx,dhdy)

Purpose:
Determine the kinematic matrix expression relating bending curvatures
to rotations and displacements for shear deformable plate bending.

Synopsis:
[kinmtpb]=fekinepb(nnel,dhdx,dhdy)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to y

function [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

Purpose:
Determine the kinematic matrix expression relating shear strains
to rotations and displacements for shear deformable plate bending.

Synopsis:
[kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

Variable Description:

nnel - number of nodes per element
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dhdy - derivatives of shape functions with respect to y
shape - shape function
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function [kinmtx2]=fekine2d(nnel,dhdx,dhdy)

Purpose:
Determine the kinematic equation between strains and displacements
for two-dimensional solids.

Synopsis:
[kinmtx2])=fekine2d(nnel,dhdx,dhdy)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to y

function [kinmtx3]=fekine3d(nnel,dhdx,dhdy,dhdz)

Purpose:
Determine the kinematic equation between strains and displacements
for three-dimensional solids.

Synopsis:
[kinmtx3]=fekine3d(nnel,dhdx,dhdy,dhdz)

Variable Description:
nnel - number of nodes per element
dhdx - derivatives of shape functions with respect to x
dhdy - derivatives of shape functions with respect to y
dhdz - derivatives of shape functions with respect to z

function [k]=felpaxt3(rl,z1,r2,z2,r3,z3)

Purpose:
Element matrix for axisymmetric Laplace equation
using three-node linear triangular element.

Synopsis:
[k]=felpaxt3(rl,z1,r2,22,r3,23)

Variable Description:
k - element stiffness matrix (size of 3x3)
rl, z1 - r and z coordinate values of the first node of element
r2, z2 - r and z coordinate values of the second node of element
r3, z3 - r and z coordinate values of the third node of element
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function [m]=felpt2r4(xleng,yleng)

Purpose:
Element matrix of transient term for two-dimensional Laplace’s
equation using four-node bilinear rectangular element.

Synopsis:
[m]=felpt2r4(xleng,yleng)

Variable Description:
m - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [m]=felpt2t3(x1,y1,x2,y2,x3,y3)

Purpose:
Element matrix for transient term of two-dimensional
Laplace’s equation using linear triangular element.

Synopsis:
[m]=felpt2t3(x1,y1,x2,y2,x3,y3)

Variable Description:
m - element stiffness matrix (size of 3x3)
x1, yl - x and y coordinate values of the first node of element
x2, y2 - x and y coordinate values of the second node of element
x3, y3 - x and y coordinate values of the third node of element

function [m]=felpt3t4(x,y,z)

Purpose:
Element matrix of transient term for three-dimensional Laplace’s
equation using four-node tetrahedral element.

Synopsis:
[m]=felpt3t4(x,y,z)

Variable Description:
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m - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [k]=felp2dr4(xleng,yleng)

Purpose:
Element matrix for two-dimensional Laplace’s equation
using four-node bilinear rectangular element.

Synopsis:
[k]=felp2dr4(xleng,yleng)

Variable Description:
k - element stiffness matrix (size of 4x4)
xleng - element size in the x-axis
yleng - element size in the y-axis

function [k]=felp2dt3(x1,y1,x2,y2,x3,y3)

Purpose:
Element matrix for two-dimensional Laplace’s equation
using three-node linear triangular element.

Synopsis:
[k]=felp2dt3(x1,y1,x2,y2,x3,y3)

Variable Description:
k - element stiffness matrix (size of 3x3)
x1, y1 - x and y coordinate values of the first node of element
x2, y2 - x and y coordinate values of the second node of element
x3, y3 - x and y coordinate values of the third node of element

function {k]=felp3dt4(x,y,z)

Purpose:
Element matrix for three-dimensional Laplace’s equation
using four-node tetrahedral element.

Synopsis:
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[k]=felp3dt4(x,y,z)

Variable Description:
k - element matrix (size of 4x4)
X - X coordinate values of the four nodes
y - ¥ coordinate values of the four nodes
z - z coordinate values of the four nodes

function [G,S]=felqr(A,B,Q,R)

Purpose:
Calculate the feedback gain matrix by Linear Quadratic
Regulator(LQR) technique. The given system is
xdot = Ax + Bu, u=-Gx

and the cost function to be minimized is defined as
J=(1/2)integral(x’Qx+u’Ru)dt

Synopsis:
[G,S]=felqr(A,B,Q,R)

Variable Description:
A, B, Q, R - input arguments
G = R™1G’S - feedback gain matrix
S - solution of the Algebraic Ricatti Equation (ARE)
AS+A’S-SBR™!1S+Q=0

Notes:
(A,B) should be controllable.
Q is at least positive semi-definite,
R is at least positive definite.

function [x,y]=felresp(A,B,C,D,x0,u,t)

Purpose:
Find the time response of a linear system driven by an initial condition
and an external input. The numerical algorithm used in this program is
a zero order hold approximation for control input for discretized
system.

Synopsis:
[x,y]=felresp(A,B,C,D,x0,u,t)

Variable Description:
A, B, C, D - system matrices in, xdot = Ax + Bu,y = Cx 4+ Du
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x0 - initial condition vector for the state variables
t - integration time at equal distance as t=0:dt:tf
dt - time step, tf - final time
u - control input vector with as many rows as the size of t
x(y) - state(output) vector
Notes:
The control input vector must have as many columns as the number of input.

function [matmtrx]=fematiso(iopt,elastic,poisson)

Purpose:
determine the constitutive equation for isotropic material.

Synopsis:
[matmtrx]=fematiso(iopt,elastic,poisson)

Variable Description:
elastic - elastic modulus
poisson - Poisson’s ratio
iopt=1 - plane stress analysis
iopt=2 - plane strain analysis
iopt=3 - axisymmetric analysis
iopt=4 - three dimensional analysis

function [Omega,Phi,ModF]=femodal(M,K,F)

Purpose:
Calculate modal parameters for a given structural system.
It calculates natural frequency and eigenvector.
The eigenvectors are normahzed so that the modal mass matrix
becomes an identity matrix.
Synopsis:
[Omega, Phi, ModF]=femodal(M,K,F)

Variable Description:
M, K - mass and stiffness matrices
F - input or forcing function
Omega - natural frequency (rad/sec)
Phi - odal matrix with each column corresponding to
the eigenvector
ModF - modal input matrices.




504 MATLAB Function Files Appendix A

function [k]=feodex2l(xl,xr)

Purpose:
Element matrix for (x"2 u” - 2x u’ - 4 u) using linear element.

Synopsis:
[k]=feodex2](xl,xr)

Variable Description:
k - element matrix (size of 2x2)
xl - coordinate value of the left node of the linear element

XT - coordinate value of the richt nade of the inear element
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function [k]|=feode2l(acoef,beoef,ccoef,eleng)

Purpose:
Element matrix for (a u” + b v’ + ¢ u) using linear element.

Synopsis:

Variable Description:
k - element matrix (size of 2x2)
acoef - coefficient of the second order derivative term
beoef - coefficient of the first order derivative term
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eleng - element length

function [y]=ferbsim(M,K,F,gl,g2,23,ELh,I0,thf,tf)

Purpose:
Simulate a rotating flexible beam attached to a base.
The mathematical model is created from frobfem.m
as system mass and stiffness matrices.

Synopsis:
[y] = ferbsim(M,K,F,gl,g2,g3,ELh,10,thf tf)

Variable Description:
M, K, F - system matrices
gl, g2, g3 - feedback gains
El, h, 10 - parameters for boundary force calculation
thf, tf - final angle and final simulation time
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y - output parameter

function [w,M,K]=ferobem(N,EI,rho,Ic,I t,m_t,I 0,L)

Purpose:
Produce a finite element modeling of a rotating beam
attached to a rigid base.

Synopsis:
[w,M,K]=ferobem(N,El ,rho,I ¢ I_t,m_t,1.0,L)

Variable Description:
N - number of elements
EI - elastic rigidity
rho - linear mass density
I_c(I-t) - moment of inertia of center body(tip mass)
m_t - tip mass
1.0 - radius of the center body
L - beam length
M, K - system mass, stiffness matrices
w - natural frequency

function [t_p, t.r, t_s, M_p]=fesecnd(zeta, w.n)

Purpose:
Calculate dynamic characteristics of a typical standard
second order system. Transfer function is
w-n"2

H(s)=

8" 2+2%zeta*w_n*s+w.n"2

Synopsis:
[t-p, t_r, M_p, t_s]=fsecond(zeta, w_n)

Variable Description:
zeta - damping ratio
w_n - natural frequency (rad/sec)
t-p - peak time
t_r - rise time
t_s - settling time
M_p - maximum overshoot,
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function [num, den] = festotf(A,B,C,D,iu)

Purpose:
Convert a state space form of system into a transfer function form
for the given system

xdot = Ax+Bu
y =Cx+Du
The transfer function becomes
N(s) -1
H(s) = =C(sFA) B+ D
D(s)
Synopsis:

[num,den]=festotf(A,B,C,D,iu)

Variable Description:
A, B, G, D - system matrix
iu - index for control input (iu-th input)
D(s) - vector of coefficients of the denominator
N(s) - vector of coefficients of the numerator polynomials
Note:
There are same number of rows in N(s) as the number of output.

function [k,m]=fetrussl(el,leng,area,rho,ipt)

Purpose:
Stiffness and mass matrices for the 1-d truss element.

nodal dof u-1 u-2

Synopsis:
[k,m]=fetrussl(el,leng,area,rho,ipt)

Variable Description:
k - element stiffness matrix (size of 4x4)
m - element mass matrix (size of 4x4)
el - elastic modulus
leng - element length
area - area of truss cross-section
rho - mass density (mass per unit volume)
ipt = 1 - consistent mass matrix

= 2 - lumped mass matrix
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function [k,m]=fetruss2(el,leng,area,rho,beta,ipt)

Purpose:
Stiffness and mass matrices for the 2-d truss element.
nodal dofu_1 v_.1 u2 v_2

Synopsis:
[k,m]=fetruss2(el,leng,area,rho,beta,ipt)

Variable Description:

k - element stiffness matrix (size of 4x4)

m - element mass matrix (size of 4x4)

el - elastic modulus

leng - element length

area - area of truss cross-section

rho - mass density (mass per unit volume)

beta - angle between the local and global axes ipt = 1: consistent mass matrix
positive if the local axis is in the ccw direction from
the global axis

ipt = 1 - consistent mass matrix
= 2 - lumped mass matrix
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Acceleration, 285, 286

Active control, 296, 394

Actuator, 394, 423, 445, 447, 461, 462,
464

Adjoint, 420

Admissible solution, 43

Algebraic Ricatti Equation (ARE),
442, 443

Angle of twist, 77

Anguiar displacement, 470
velocity, 470

Approximate solution, 35

Asymptotically stable, 395, 396, 397,
400, 401

Automatic mesh generation, 52

Autonomous system, 408

Averaged weighted residual, 36, 235

Axial axis, 101

Axial bar (member), 74, 75, 197, 199,
see Truss

Axial displacement (deformation),
197, 242, 246, 260

Axial force (load), 71, 74, 199, 259, 264

Axial member, 74, 75, 199

Axial (normal) strain, 242, 247

Axial stiffness, 261

Axisymmetric, 101-103, 119, 318, 319,
334

B

Backward difference, 98, 99, 124, 134,
139
Bar structure, see Truss
Bass-Gura formula, 434, 436, 477
Beam, see Chapter 8
element, 237, 238, 245, 247, 251, 258,
429

linear element, 245, 256
model, 443
rigidity, 235, 237, 409, 468
Bending curvature, 388
Bending deformation, 199, 256, 260
Bending energy, 368
Bending strain, 244, 256, 367, 372,
379, 382
Bending load, 264
Bending moment, 238, 249-252, 274
Bending stiffness, 244, 255, 261
matrix, 248
Bending strain, 366
Bending stress, 250, 257, 258, 332, 366
BIBO stability, 398, 422
Biharmonic governing equation, 363
Bilinear elements, 91, 114, 161
Bilinear isoparametric element, 160,
162, 368
Bilinear isoparametric shape function,
367
Biquadratic isoparametric shape
function, 368
Bilinear plate element, 382
Bilinear rectangular element, 90, 91,
97, 107, 114, 115, 118, 119, 129,
133, 139
Bilinear shape functions, 91, 163
Body coordinate system, 203
Body force, 311, 315
Boundary, 309
condition, 31, 41, 53, 54, 56, 57, 65,
66, 67, 75, 76, 83, 84, 100, 101,
108, 110, 111, 115, 1186, 117, 119,
120, 125-127, 129, 130, 131, 132,
135, 138, 141, 143, 146, 189, 191,
207, 221, 228, 238, 239, 251, 267,
270, 271, 281-284, 308, 322-324,
328, 329, 331, 335, 341, 343, 347,
349, 383-385, 388, 464, 465, 478
force, 472
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integral, 84, 85, 92, 102, 311
integration, 84, 94

ancrant

211
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traction, 312

C

Cantilever beam, 239, 286, 328

Cauchy-type boundary, 143

Central difference, 99, 223, 226, 285,
286

Centroid, 320, 336, 337

Characteristic equation, 402, 420, 421,

423-425, 434, 437, 458
r']-lnranhaan-nn rnnf 409 49()

Circumferential axis, 101
Circumferential direction, 318
Circumferential strain, 319
Circular frequency, 281, 283
Clamped, 251, 252
Closed boundary, 85
Closed-loop, 425
eigenvalue, 434, 447, 458
poles, 438
system, 423, 424, 425, 433, 434,
437, 443, 447, 449, 454, 456, 462,
473

PR e e m

transter fL‘un,uU.u, 423
Collocation method, 32, 33
Collocated sensor and actuator, 460,
461, 470
Command input, 423
Compatibility, 72
Compensator, 456, 458
Concentrated force, 238
Condensation technique, 258
Condition number, 430
Conditionally stable, 128, 285
C! type, 237
C° compatibility (or continuity), 253,
367, 378
CP type beam elements, 261

Consistent mass matrix, 198, 202, 204,

Index

209, 218, 225, 241, 245, 268 278,
279, 281, 291, 321
C nstu}utlvu D\luﬂtlull’ 30?, 30 ’ 314,

315, 326, 361, 366, 373, 375
Constitutive matrix, 323, 329, 336,
342, 347, 366, 372, 386
Constraint, 54, 55, 58, 72, 73, 206, 212,
213, 222, 225, 229, 280
equation, 245
Continuous slope, 236
Continuous deflection, 236
Continuity, 236, 247
Control input, 399, 412, 413, 415, 4186,
427, 438, 439, 449, 462
Control system design, 393, 394, 417

g PPy S | | A7 A91 AR1
UU[Ib[Ulld..Ullll.ly, 2L i-tQly TJ1L

Grammian, 428, 429

matrix, 429, 430, 435, 436

test, 452, 453
Convection coefficient, 138
Convolution integral, 293, 411, 422
Coordinate transformation, 200, 263
Correction factor for shear energy, 242
Crank-Nicolson, 99, 100, 124
Critical time step, 285
Critically damped case, 403
Cubic polynomial, 172, 174
Current flow, 78
Cylindrical coordinate, 101

D

Damper, 401
Damped natural frequency, 297
Damped response, 297

Damping coefficient, 401

Damping matrix, 285, 296, 400
Damping ratio, 402, 403, 425, 450
Deflection, 205, 236, 239, 240, 274,
288, 375

Diagonalized mass matrix, 241, 245,
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Differential operator 42
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Du:ect Veloclty Feedback (DVF), 465

Direction cosine, 203, 308, 374
Dirichlet boundary condition, 41, 43
Discrete Fourier transform (DFT),
300, 301
Discretization, 43, 87, 93, 102, 198,
215, 266, 314, 372
Discretized domain, 43
Displacement degree of freedom, 266
Displacement field, 246
Displacement function, 364
Displacement nodal variable, 241
Distributed parameuer system, 394
Distributed pressure loading, 363
Disturbance, 423, 424, 426, 432
Domain integral, 84, 89, 92, 102, 311
Duality, 452, 455
Dynamic analysis, 241, 320
Dynamic characteristics, 420

E

Effective force vector, 285
Effective mass matrix, 285
Eigenvalue, 215, 217, 222, 242 280

J_uécu.vcuuc, ‘IJ.U L ‘l‘l‘r ‘I_I‘l, U’

281, 288, 295, 299, 408-410, 420,
442, 444, 454

Eigenvector, 288, 289, 292, 293, 295,
209, 408-410, 442, 444

Eight-node element, 167, 168

Elastic modulus, 74, 197, 199, 205,
207, 209, 213, 215-218, 223, 225,
228, 229, 248, 257, 266-268, 270,
272, 274, 276-278, 281, 283, 286,
322, 326, 329, 335, 341, 371, 373,
385

Elasticity, see Chapter 9

Electric circuit, 77

Element boundary, 93-96, 106, 311
boundary integral, 96
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Element domain, 88, 89, 310, 366

Element force vector, 72
F!nmnnf mass matr 108 29NQ 21

111(1!:1.14\, .I.UU, HUU,
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218, 219, 223, 240, 268, 272, 274,
278, 280-283, 287, 466, 469
Element number, 53
Element (stiffness) matrix, 51, 54, 63,
67, 71, 89, 93, 106, 118, 123,
127, 128, 137, 147, 149, 183, 191,
200-203, 205, 207, 209, 211, 216,
218, 219, 223, 227, 238, 241-243,
248-250, 252, 256, 261,
266-268, 270, 272-274, 277, 278,
280, 281-283, 287, 310, 312, 315,
316, 318, 319, 324, 328, 334 336,

GAN A0 FGA9 QA2 2A0 9
91V, V1L, 0I0, VIVU-VI0, QU

372, 384, 386, 388, 466, 469
Element topology, 53
Elongation, 74
Embedded crack, 245
Energy function, 395
Energy principle, 42
Energy method, 242, 308, 313
Equation of equilibrium, 307
Equation of motion, 223, 414, 452,
463, 465, 476
Equilibrium, 71, 296, 471
point 395-397, 400, 401, 461, 471,
472, 475
Equilibrium equation, 362, 363, 380
of moments, 373
Equivalent beam rigidity, 257
Equivalent spring system, 78
Error signal, 423
Error vector, 454
Essential boundary condition, 43, 61,
83, 149, 308, 313
Estimated state variable, 456-458
Estimation of state variable, 463
Euler-Bernoulli beam, 235, 236, 242,
291, 361
Euler’s formula, 410
Exact integration rule, 368
Exponential of a matrix, 412

200
5-368,
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Extended Hamilton’s principle, 465
External input, 293, 398, 408, 415
External load, 313

External work, 314

F

Factorial term, 411
Fast Fourier Transform (FFT),
300-302
Feedback control, 422, 432, 433, 447,
453, 456-458, 462, 472, 476
Feedback gain, 423, 433, 435-437,
442-444 446, 458, 461-464
Fiber axis, 372
Fibrous composite, 371
Fictitious displacement, 285
Fictitious time step, 286
Fictitious velocity, 286
Final value theorem, 424-426
Finite difference method, 98
Finite dimensional approximation, 463
Finite element, 37, 43, 51, 52, 61, 64,
98, 119, 128, 134, 152, 215, 219,
240, 256, 269, 280, 282, 321, 372,
377, 383, 393, 398, 406, 461, 465,
466, 477
domain, 314
formulation, 71, 75, 76, 235, 308,
320
mesh, 39, 52, 87, 119, 124, 129, 138,
322, 334, 340, 377
model, 380, 406, 409, 418, 427, 445,
458, 465, 468
First order equation, 407
First order system, 407, 409, 413
Flexual rigidity of plate, 373
Flow rate, 78, 79
Fluid flow, 77, 78
Fluid viscosity, 78
Flux, 93, 103, 106, 107, 140
boundary condition, 83, 106, 142
Force equilibrium, 362

Index

Forward difference, 98, 99, 124, 125,
134
Fourier transform, 300
Frame, see Chapter 8
element, 259, 261, 266, 283
Free body diagram, 197, 307, 362
Frequency domain, 300, 393, 422
Full state feedback, 433, 437, 443, 447
451, 453, 457
Functional, 42-44

G

Galerkin’s method, 32-34, 36, 40, 43,
65, 198, 235, 237, 242, 250, 252,
308, 310, 315, 320, 373, 376

Gauss-Legendre quadrature, 171, 172
174, 176, 177, 179-183, 329, 341,
347, 368, 385

Generalized coordinate vector, 399

Generalized strain, 255, 256, 380, 38%

Geometric compatibity, 76

Global axes, 213, 229, 277

Global beam displacement, 258

Global derivative, 162-164

Global displacement, 262

Global coordinate matrix, 216, 219

Global coordinate system, 200, 261,
368

Global matrix, 201, 469

Global node number, 93, 94, 312

Global truncation error, 98, 99

Green’s theorem, 85

H

Hamiltonian, 438, 441, 442, 444

Harmonic motion, 215

Heat conduction, 77, 83, 86, 93, 96
coefficient, 138

Heat flux, 77, 78

Heat sink, 86

Heat source, 86



Heat transfer, 95

Hermitian shape function, 237, 240

Hermitian beam element, 239, 243,
261, 266, 286

Hooke’s law, 197

Hybrid beam element, 253, 256

Hybrid plate element, 378, 382

I

Impulse response, 294, 295, 301, 421,
422
Implusive input, 455
Inertia, 198
force, 238, 320
Infinite dimensional system, 394, 399
Infinitesimal element, 307
Initial condition, 101, 135, 223, 226,
293, 294, 298, 402, 404, 409-413,
415, 432, 440, 443, 456, 459
Initial solution, 286
Inplane axis, 361
Inplane deformation
(or displacement), 256, 367, 369
Inplane strain, 365
Input influence matrix, 292, 399, 418,
460, 462
Insulated, 93
Integral operator, 42
Integration,
by parts, 34, 42, 84, 102, 235
muti-dimensional, 175
one point, 383
three-dimension, 175
two-dimensional, 175
two point, 383
Integration pomnt, 170, 171, 173,
175-177, 179-182, 184, 188,
343-345, 3b4
Inter-element compatibility, 243
Interlaminar delamination, 245
Internal bending moment, 471
Internal energy, 313, 366

Index
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Internal forces, 78
Internal layers, 258
Internal pressure, 334, 340
Internal shear force, 471
Internal strain energy, 372
Interpolation, 367, 369, 370, 377
function, 90, 104
Inverse Fourier transform, 300
Inverse Laplace transform technique,
293, 297, 403, 411, 421
Isoparametric elements, see Chapter 6,
244, 321, 328, 340, 369, 374, 377,
379, 384
Isoparametric quadrilateral elements,
334
Isoparametric shape function, 185,
367, 368, 377
eight-node solid, 351
Isoparametric solid element, 345
Isotropic material, 257, 307, 315, 371,
372

J

Jacobian, 159, 160, 162-166, 169, 184,
185, 187, 188, 342, 344, 348, 350,
351, 353

K

Kinematic equation, 308, 309, 316,
318, 319, 325, 338, 370, 375, 384

Kinematic matrix, 323-325, 329, 332,
336, 338, 342, 344, 347, 348, 350,
372, 385, 387, 389

Kinetic energy, 286, 465

Kirchhoff plate bending theory, 361

Kronecker delta, 87

L

Lagrange multiplier, 438
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Lagrange shape functions, 91
Lagrangian, 465
Laminar flow, 78
Laminated (composite) beam, 245,
256-260
Laplace equation, see Chapter 5
Laplace transform, 297, 402, 411, 417,
421, 422, 424
Lateral displacement, 246
Layer displacement, 2568
Least square method, 32, 33
Line integral, 86
Linear elements, 52, 56, 60, 61, 65,
67, 157
Linear frame element, 262
Linear Quadratic Regulator (LQR),
433, 438, 443, 446, 456, 459, 463
Linear shape functions, 51, 90, 96, 198,
243
Linear springs, 72, 74, 75
equivalency, 79
Linear triangluar element,
see triangular element
Local axis, 213, 221, 229, 264, 277
Local coordinate system, 264
Local derivative, 162
Local node number, 312
Local truncation error, 98
Longitudinal vibration, 477, 478
Lower triangular Toeplitz matrix, 435
L-shape frame, 276
Lumped mass matrix, 198, 203, 204,
209, 218, 241, 245, 249, 253, 268,
275, 278, 279, 321
Lyapunov
equation, 428, 429, 451
function, 395-401, 461, 464, 471,
475, 478
instability theorem, 395
stability theory, 394

M

Mass matrix, 217, 221, 222, 225, 230,

Index

259, 281-285, 287, 290-292, 296,
297, 399, 409, 429, 449, 462, 469
Mathematical modeling, 393, 463, 465
Matrix differential equation, 412, 441

Maximum overshoot, 405, 475
Measurement noise, 424
Mechanical force, 78
Midplane axis, 256
Mindlin/Reissner plate theory, 366
Mixed beam element, 249-251, 253,

266, 274
Mixed formulation, 377
Mixed plate bending formulation, 374
Modal

analysis, 288, 294, 296

control, 448-451

coordinate, 291, 293, 294, 297, 299,

406, 448-450

input force vector, 449

matrix, 291, 297, 449

testing, 421

truncation, 430
Modes, 288
Mode shape, 215, 282, 289
Moment, 362, 377

equilibrium, 362

of inertia, 243, 264, 468
Multi-input system, 437
Multiple degrees of freedom system,

288, 398, 406

N

Natural boundary condition, 42, 56,
61, 62, 83, 308, 309

Natural coordinate, 157-160, 169, 185,
351, 3563

Natural frquency, 215, 221, 242,
280-284, 289, 292, 297, 401, 402,
425, 450, 468-470

Natural motion, 289

Neuman boundary condition 41, 42

Neutral axis, 236, 242
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Neutrally stable, 425

Newton’s second law, 197

Newton’s third law, 78

Nine-node element, 167, 168

Nodal connectivity, 53, 57, 66, 108,
109, 115, 116, 120, 121, 125, 126,
130, 131, 135, 136, 139, 140, 145,
146, 149, 150, 188, 189, 205, 206,
211, 212, 216, 217, 219, 220, 223,
224, 228, 322, 323, 328, 329, 335,

Nodal coordinate, 164, 165, 188, 206,
211, 216, 228, 329, 335, 341, 347,
385

Nodal degrees of freedom, 53, 201

Nodal displacement, 200, 205, 207,
211, 214, 246, 310, 312, 320, 322,
327, 328, 340, 343, 345, 346, 349,
369, 372, 384, 388

Nodal flux, 94, 95, 120, 122

Nodal force, 212

Nodal point, 86, 104, 198, 201, 250,
365, 431, 447

Nodal sequence, 87

Nodal variable, 38, 41, 45, 86, 96, 97,
148, 162, 235, 236, 239, 240, 287,
320, 364, 367

Nodal vector, 45

Node numbering, 370

Nonlinear function, 395

Nontrivial solution, 408

Normal strain, 370

Normalization, 290

Normalized eigenvector, 290

Numerical integration, 90, 159, 170,
175-177, 181, 330, 331, 342, 343,
345, 348, 412

Nyquist, 301, 303

(0]

Observability, 430, 431, 451
Grammina, 451
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matrix, 452
test, 452, 453
Observer, 451, 453-455, 457, 458
gain, 454, 455, 458, 459
One-dimensional truss, 197
One-point Gaussian quadrature, 244
Open-loop, 418
eigenvalues, 446, 477
QOptimal control, 438, 440, 441
Optimal trajectory, 439
Optimality condition, 440, 441
Ordinary differential equation, 56, 65,
99, 406
Orthogonal, 290
Oscillation, 226, 288
Qutput distribution matrix, 460
Qutput feedback, 433, 461
Qverdamped case, 403

P

Parabolic differential equation, 98
Parabolic type disturbance, 426
Partial fraction expansion, 421
Peak time, 404, 475
Performance index, 438-440, 444, 478
Perturbation, 395, 413
Physical coordinate, 157-160, 185, 299,

330, 343, 344, 348, 351, 387
Physical element, 165, 166
Piecewise continuous function, 37, 43
Piecewise linear boundary, 87
Piecewise linear functions, 35
Pin joints, 199
Planar geometry, 259
Planar frame structure, 262
Planar transformation, 261
Plane

strain, 307, 311, 326

stress, 245, 307, 308, 311, 312, 322,

326, 328, 366

truss, 200, 202, 203

Plate bending, see Chapter 10
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three-node element, 364

Plate rigidity, 363

Plate thickness, 362, 368, 375, 376

Poisson’s equation, see Chapter 5

Poisson’s ratio, 308, 322, 329, 334, 335,
341, 371, 373, 383, 385

Polar moment of inertia, 77, 264

Pole, 418

Pole placement technique, 434, 437,
443

Polynomial function, 171

Positive definite, 290, 398, 400, 428,
440, 444, 461
matrix, 397, 440

Positive semidefinite, 290, 440, 444

Potential energy, 42, 263, 372, 378, 465

Potential flow, 83

Potter’s algorithm, 443

Pre-processor, 52

Pressure difference, 78

Pressure loading, 373, 377, 382

Primary variable, 249

Principle of minimum potential
energy, 314

Proportional damping, 296-298

Proportional plus Derivative (PD)
control, 424-426

Proportional plus Integral (PI)
control, 426

Q

Quadratic form, 400
Quadratic isoparametric element, 159
Quadratic polynomial, 244
Quadratic triangular element, 168
Quadrature point, 241
Quadrature rule, 175, 177-179, 183
Quadrilateral

isoparametric element, 167

shape, 161, 184, 188, 374

element, 165, 187, 328, 381

Index

R

Radial axis, 101

Radial direction, 318

Radial displacement, 319

Rank deficient, 244

Rank test, 452

Rayleigh damping, 296, 406

Rayleigh-Ritz method, 42, 43

Reaction forces, 75

Reciprocal relation, 371

Rectangular element, 163

Reduced integration, 244, 248, 256,
368

Residual, 31

Resistance, 78

Ricatti matrix, 441-443

Rigid body motions, 54, 408

Rise time, 404, 475

Robustness, 438, 463

Rotating beam, 465, 466, 468, 470,
474, AT8

Rotational degree of freedom, 264

Rotational motion, 408

S

Sampling period, 301, 414
Sampling point, 172, 174, 177, 179,
184, 190, 329-331, 342, 344,

347-349, 384, 386, 387
Second order system, 289, 396, 401,
402, 409, 448
Secondary variable, 51, 249
Selective integration, 368, 383
Self-adjoint operator, 34
Sensor, 394, 423, 451, 461
noise, 423
output, 451, 454
Separation principle, 458
Settling time, 405
Shape function, 38, 39, 44, 87, 88, 90,
97, 105, 157-163, 235, 243, 245,
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246, 251, 253, 309, 310, 316, 317,
319, 320, 324, 330, 331, 336, 338,
342, 344, 348, 350, 351, 353, 365,
367, 369, 370, 380, 387
Shear correction factor, 252, 375, 386
Shear deformable, 366, 367, 382, 384,
388
Shear deformation, 257, 375
Shear energy, 244, 248, 368
Shear force, 251, 2562, 363, 374-376
Shear locking, 244, 248, 368, 373
Shear modulus, 77, 257, 371, 37H
Shear stiffness, 244, 255
Shear strain, 242, 247, 367, 370
Shear stress, 318
Similarity transformation, 409
Simply supported, 251, 266
plates, 379, 381, 382
Simpson’s rule, 171
Single input system, 437
Singular, 54
Sinusoidal motion, 399, 403
Slope, 236, 239, 243
Space truss, 203
Spatial coordinate system, 33, 34
Spatial frame, 264
Spatial variables, 320
Specific heat, 97
Spring constant, 71, 74, 75, 77, 78
Spring force, 78
Stability, see Chapter 11
State space form, 407, 419, 427, 432
State transition matrix, 412, 413
State variables, 432, 433, 453
State vector, 407, 413, 432, 438, 449
Static analysis, 204, 241, 265
Static equilibrium, 75
Statically determinate, 72
Statically indeterminate, 72
system, 75, 76
torsional members, 77
Stationary value, 255, 314, 372, 380,
381
Steady state, 97, 100, 107, 403-405,
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422 425, 440, 441
error, 424, 426
solution, 144
Step function, 226
Step input, 422, 425
Step response, 403, 405
Stiffness matrix, 199, 205, 211, 215,
217, 219, 221-223, 225, 229, 237,
239, 259, 262, 267, 270, 281, 283,
284, 286, 290-292, 295-298, 399,
409, 429, 449, 469
Strain analysis, see Chapter 9
Strain-displacement relation, 197, 248,
255, 380
Strain energy, 201, 202, 242, 248, 314
bending strain energy, 242
shear strain energy, 242
Stress analysis, see Chapter 9
Strong formulation, 34, 35
Structural damping, 296
Subdomains, 37
Sub-structure’s energy, 471
Surface traction, 315

T

Taylor series, 411
Temperature difference, 78
Temporal axis, 197
Temporal derivative, 240, 320
Test function, 31, 32, 37, 40, 96, 159,
198, 235

Tetrahedral element, 104-107, 148, 149
Thick beam, 2563, 254, 257
Thick plate theory, 374, 375, 378
Thin beam, 2563, 254, 257
Thin plate theroy, 374, 378
Three-dimensional

analysis, 326

elasticity, 315

function, 181

mapping, 353

integration, 182
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solid, 353
truss element, 204
Three point integration, 171

Three point quadrature, 175, 176, 178

Time

constant, 403, 404

domain approach, 299, 393

domain data, 302

step size, 288
Timoshenko beam, 242, 243, 266, 366
Torque, 77
Torsion of noncircular members, 83
Torsional load, 264
Torsional members, 77
Total potential energy, 313
Total system energy, 399
Traction, 308, 311, 312

boundary condition, 316

surface, 316
Transfer function, 402, 418, 419, 421,

423, 424, 475
Transformation matrix, 2569
Transformed stiffness matrix, 201
Transient

analysis, 284

heat conduction, 96

problem, 97

response, 226, 286, 404, 405, 425
Translational degree of freedom, 241
Translational motion, 408
Transverse

direction, 371

shear deformation, 242, 252, 253,

361, 366, 367, 374

shear energy, 366

shear force, 374

shear stiffness matrix, 249

shear strain, 242

strain energy, 370, 372, 373
Trapezoidal rule, 170
Trapezoidal shape, 165
Trial function, 31-37, 96, 159
Triangular domain, 89, 173

Triangluar elements, 97, 103, 133, 170,

309, 334
linear, 86-89, 102, 107, 108, 113,
119, 120, 125, 128, 144, 312, 319,
321, 322
six-node, 169
Triangular isoparametric element, 168
Truss, see Chapter 7
1-D truss element, 218
2-D truss element, 209
Twisting moment, 77, 264
Two dimensional solid, 325
Two Point Boundary Value Problem,
440
Two point quadrature rule, 175, 176,
178

U

Unconditionally stable, 99, 134
Underdamped case, 403
Under-integrated, 244, 245, 373
Unidirectional composite, 371, 372
Unit impulsive input, 421

Unit step input, 403, 475

VvV
Variable interpolation, 104
Variational
method, 42

operator, 42
principle, 438, 439
Vibration control, 394

w

Weighted average, 31

Weighted residual, 31, 32, 39, 84, 97,
102, 235

Weighting coefficient, 170-172,
174-177, 179-181, 341, 346, 384

Weighting function, 309, 310
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Weighting matrix, 440, 443, 446
Weak formulation, 34, 35, 51, 65, 84,
102, 197, 235, 373

Z

Zero order hold, 413
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