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Preface

This book has come about by chance.

The first author, Said Elnashaie, and his wife, Shadia Elshishini, moved next door to
the second author, Frank Uhlig, and his family in 2000. The two families became good
neighbors and friends. Their chats covered the usual topics and occasionally included
random teaching, departmental, and university matters.
One summer day in 2003, Said showed Frank a numerical engineering book that he had
been asked to review. Neither of them liked what they saw. Frank eventually brought
over his “Numerical Algorithms” book and Said liked it. Then Said brought over his
latest Modeling book and Frank liked it, too. And almost immediately this Numerical
Chemical and Biological Engineering book project started to take shape.

Said had always felt more mathematically inclined in his work on modeling problems and
bifurcation and chaos in chemical/biological engineering;
Frank had lately turned more numerical in his perception and efforts as a mathematician.

This book is the outcome of Said’s move to Auburn University and his chance moving
in next door to Frank. It was born by a wonderful coincidence!

Said and Frank’s long evening walks through Cary Woods contributed considerably to-
wards most of the new ideas and the educational approach in this book. We have both
learned much about numerics, chemical/biological engineering, book writing, and think-
ing in our effort to present undergraduates with state of the art chemical/biological
engineering models and state of the art numerics for modern chemical/biological engi-
neering problems.

Chadia is a chemical engineer who has turned towards applied mathematics in her gradu-
ate studies at Auburn University and has helped us bridge the gap between our individual
perspectives.

The result is an interdisciplinary, totally modern book, in contents, treatment, and spirit.
We hope that the readers and students will enjoy the book and benefit from it.

For help with our computers and computer software issues we are indebted to A. J., to
Saad, and to Darrell.

Auburn and Vancouver, 2006
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Introduction

This book is interdisciplinary, involving two relatively new fields of human endeavor. The
two fields are: Chemical/Biological1 Engineering and Numerical Mathematics.
How do these two disciplines meet? They meet through mathematical modeling.

Mathematical modeling is the science or art of transforming any macro-scale or micro-
scale problem to mathematical equations. Mathematical modeling of chemical and bio-
logical systems and processes is based on chemistry, biochemistry, microbiology, mass
diffusion, heat transfer, chemical, biochemical and biomedical catalytic or biocatalytic
reactions, as well as noncatalytic reactions, material and energy balances, etc.

As soon as the chemical and biological processes are turned into equations, these
equations must be solved efficiently in order to have practical value. Equations are usually
solved numerically with the help of computers and suitable software.

Almost all problems faced by chemical and biological engineers are nonlinear. Most
if not all of the models have no known closed form solutions. Thus the model equa-
tions generally require numerical techniques to solve them. One central task of chemi-
cal/biological engineers is to identify the chemical/biological processes that take place
within the boundaries of a system and to put them intelligently into the form of equa-
tions by utilizing justifiable assumptions and physico-chemical and biological laws. The
best and most modern classification of different processes is through system theory. The
models can be formed of steady-state design equations used in the design (mainly sizing
and optimization), or unsteady-state (dynamic) equations used in start-up, shutdown,
and the design of control systems. Dynamic equations are also useful to investigate the
bifurcation and stability characteristics of the processes.

The complexity of the mathematical model depends upon the degree of accuracy
required and on the complexity of the interaction between the different processes taking
place within the boundaries of the system and on the interaction between the system
and its surrounding. It is an important art for chemical/biological engineers to reach an
optimal degree of sophistication (complexity) for the system model. By “optimal degree
of sophistication” we mean finding a model for the process, which is as simple as possible
without sacrificing the required accuracy as dictated by the specific practical application

1Biological engineering comprises both biochemical and biomedical engineering

1
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of the model.
After the chemical/biological engineer has developed a suitable mathematical model

with an optimal degree of “sophistication” for the process, he/she is then faced with the
problem of solving its equations numerically. This is where stable and efficient numerical
methods become essential.

The classification of numerical solution techniques lends itself excellently to the system
theory classification as well.

A large number of chemical/biological processes will be presented, modeled, and effi-
cient numerical techniques will be developed and programmed using MATLAB

�R 2. This
is a sophisticated numerical software package. MATLAB is powerful numerically through
its built-in functions and it allows us to easily develop and evaluate complicated numer-
ical codes that fulfill very specialized tasks. Our solution techniques will be developed
and discussed from both the chemical/biological point of view and the numerical point
of view.

Hence the flow of each chapter of this book will lead from a description of specific
chemical/biological processes and systems to the identification of the main state variables
and processes occurring within the boundaries of the system, as well as the interaction
between the system and its surrounding environment. The necessary system processes and
interactions are then expressed mathematically in terms of state variables and parameters
in the form of equations. These equations may most simply be algebraic or transcendental,
or they may involve functional, differential, or matrix equations in finitely many variables.

The mathematical model specifies a set of equations that reflects the characteristics
and behavior of the underlying chemical/biological system. The parameters of the model
can be obtained from data in the literature or through well-designed experimentation.
Any model solution should be checked first against known experimental and industrial
data before relying on its numerical solution for new data. To use a model in the de-
sign and control of a system generally requires efficient solution methods for the model
equations.

Some of the models are very simple and easy to solve, even by hand, but most require
medium to high-powered numerical techniques.

From chapter to chapter, we introduce increasingly more complex chemical/biological
processes and describe methods and develop MATLAB codes for their numerical solution.
The problem of validating a solution and comparing between different algorithms can be
tackled by testing different numerical techniques on the same problem and verifying and
comparing their output against known experimental and industrial data.

In this interdisciplinary text we assume that the reader has a basic knowledge of
the laws governing the rates of different chemical, biological and physical processes, as
well as of material and energy balances. Junior and senior undergraduates majoring in
chemical/biological engineering and graduate students in these areas should be able to
follow the engineering related portions of the text, as well as its notations and scientific
deductions easily. Regarding mathematics, students should be familiar with calculus,
linear algebra and matrices, as well as differential equations, all on the first and second

2MATLAB is a registered trade mark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760;
http://www.mathworks.com .
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year elementary undergraduate level. Having had a one semester course in numerical
analysis is not required, but will definitely be helpful. We include an appendix on linear
algebra and matrices at the end of the book since linear lgebra is often not required in
chemical/biological engineering curricula.

In order to solve chemical/biological problems of differing levels we rely throughout
on well tested numerical procedures for which we include MATLAB codes and test files.
Moreover, a large part of this book is dedicated to explain the workings of our algorithms
on an intuitive level and thereby we give a valuable introduction to the world of scientific
computation and numerical analysis.

It is precisely the interdisciplinary bridge between chemical/biological engineering and
numerical mathematics that this book addresses. A true melding of the two disciplines
has been lacking up to now. We hope that this book is a step in the right direction.

Chemical/biological engineers need such a book in order to learn and be able to solve
their continuously expanding problems (in size, complexity, and degree of nonlinearity).
And numerical analysts can enrich their applied know-how from the civil, mechanical,
and electrical engineering problem menu to include the richness of chemical/biological
engineering problems.

An unusual aspect of this book addresses generality and special cases. What do we
mean by that? We mean this in three different and distinct senses:

* The first regards reacting and nonreacting systems, that is, chemical/biological sys-
tems in which chemical and/or biological reactions take place within the boundaries
of the system, and those with no reaction, such as encountered in nonreacting sepa-
rating processes. Many texts treat nonreacting systems first for the obvious reason
that they are simpler, followed by more complex reacting systems. Actually this is
not optimal. From a pedagogical point of view and for a more efficient transfer of
knowledge, it is advisable to do the opposite, i.e., to start with the more general
reacting cases and then treat the nonreacting cases as special cases in which the
rates of reactions are equal to zero.

* The second regards the number of states of a system (we will call them attractors
for reasons explained inside the book). Almost all books by mistake treat systems
as if they essentially have only one state (usually of one specific type which is an-
other limitation), and consider systems with more than one state as if they were
special or odd cases. Thus they rarely address cases having different numbers or
types of states and attractors. In this book, and maybe for the first time in the
engineering literature, we will address our systems in a more general and funda-
mental form. We will consider systems that have more than one state or attractor
as the general case, with systems having one state being a special case thereof.
We also address problems that have more than one type of steady state. This will
necessitate a correction in terminology. We are afraid that this will be faced by
some resistance. But this is to be expected when scientific research starts to change
the way we treat our undergraduate curriculum and our terminology in a more
fundamental manner. Consequently, the usual term “steady state” will have to be
replaced by “Stationary Nonequilibrium State”( SNES) for example, to distinguish
it from “Thermodynamic Equilibrium” which is also a steady state (no change with
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time), but a dead one.
This SNES will also be called a “Fixed Point Attractor” (FPA) in order to dis-
tinguish it from oscillatory states which we will call “Periodic Attractors” (PA),
and from quasi periodic states which we will call “Torus Attractors” (TA), and
more complex states such as “Chaotic Attractors” (CA). Thus our more advanced
approach will necessitate the definition of all basic principles of bifurcation theory
early in the book, and it will make us introduce senior undergraduates early in our
text to the generality and practical importance of these concepts. These modern
engineering concepts will be reflected in the models’ numerical solutions, specially
with regard to initial guesses and numerical convergence criteria. Appendix 2 on bi-
furcation, multiplicity, and chaos in chemical and biological systems explains these
natural phenomena in a simple manner.

Likewise, we treat numerical analysis from a modern and fresh perspective here.

* In the currently available (less than one handful) textbooks that treat numerical
analysis and chemical/biological engineering problems, most of the numerics have
the flavor of the 1960s. These texts labor long over Gaussian elimination to solve
linear equations, over the intricacies of solving scalar equations given in standard
form f(x) = 0 versus via fixed-point iterations xi+1 = φ(xi) and so forth, and
thus they build mostly on ancient and outdated methods and ideas. Worse, they
generally fail to mention limitations of the proposed and often highly elementary
algorithms. Many books in this area are not aware and do not make the readers
aware of the instability of un-pivoted Gauss, of solving “unsolvable” linear systems
in the least squares sense, or of the gross errors of standard zero finders in cases
with multiple or repeated solutions, for example. In a nutshell, they do not con-
vey the advances in numerical analysis over the last 40 or 50 years. This advance
preeminently consists of a better understanding of numerical analysis and of the
development of intricate verifiably stable codes for the efficient solution of standard
numerical problems, as well as having learnt how to recognize ill-conditioned input
data sets. The omission of these advances is very unfortunate and we intend to
remedy this gap in the timely transfer of knowledge from one part of science to an-
other. This book contains a plethora of new and stable algorithms that solve many
chemical/biological engineering model problems efficiently. It does so by working
with the stable codes inside MATLAB, rather than developing line by line original
programs. There is no need to reinvent pivoted Gauss, or stable adaptive and effi-
cient integration schemes, etc, over and over again.
All of our programs are available on the accompanying CD.

Our book is a four pronged approach at modernizing chemical/biological engineer-
ing education through numerical analysis.
The three prongs

(1) of addressing generalities versus what is a special case in chemical models,

(2) of treating bifurcation phenomena and multiple steady states as the norm and not
the exception, and
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(3) of dealing with stability and condition issues in modern numerical codes

are augmented by the fourth prong

(4) of color graphic visualization.

Throughout the book we emphasize graphic 2D and 3D representations of the solutions.
All our MATLAB programs create color graphics. In the book, however, we can only use
grayscale displays for economic reasons. Color is essential to fully understand many of
the graphs. Therefore, we urge our readers to acquire a deeper understanding by accom-
panying a reading of the book with simultaneusly recreating our figures in color on a
computer. Sample calls for drawing the figures are given at the top of every MATLAB
code on the accompanying CD.
We especially suggest to follow this advice and recreate the surface and mul-
tiple line graphs in color for Chapter 3, Chapter 4, Sections 4.1 and 4.3,
Chapter 5, Sections 5.1 and 5.2, and Chapter 6, Section 6.4.

Through this colorful visual approach, students and readers will have a chance to
experience the meaning, i.e., to “understand” for the first time (in the true definition of
to stand under), what a solution means, how it behaves, looks, where it is strained, i.e.,
likely to be (nearly) unstable, where it is smooth, etc.

How to Use this Book

This book uses a modern systems approach. The problems that we study can be classified
in three ways:

1. according to the system classification as closed, isolated or open systems;

2. according to the spatial variation as lumped or distributed systems; as well as

3. according to the number of phases as homogeneous or heterogeneous systems.

While we have made this book as self-contained as possible, it is beneficial if the
student/reader has a background in chemical and biological modeling, calculus, matrix
notation and possibly MATLAB before attempting to study this book.
As with any book on science and mathematics that contains mathematical equations,
formulas and model derivations, it is important for our readers to take out paper and
pencil and try to replicate the equations and their derivations from first principles of
chemistry, physics, biology, and mathematics by him/herself.
Starting with Chapter 3, many relevant chemical/biological engineering problems are
solved explicitly in the text. Each section of Chapters 3 to 7 contains its own unsolved
exercises and each chapter contains further problems for the whole chapter at its end.
Students should first try to solve the worked examples inside each section on their own,
with models of their own making and personally developed MATLAB codes for their
solution. Then they should compare their results with those offered in the book. And
finally they should try to tackle the unsolved section and chapter problems from the
experience that they have gained.
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The first chapter must be studied regardless of the particular background of the stu-
dent or reader, but it need not be studied in class. Instead it can be assigned as reading
and exploratory homework in the first days of class. Chapter 1 gives the reader an intro-
duction to MATLAB and numerical analysis. It shows how to use MATLAB and explains
how MATLAB treats many important numerical problems that will be encountered later
in the book. As said before, the student/reader best studies Chapter 1 concretely on a
MATLAB desktop displayed on his/her computer screen by mimicking the elementary
examples from the book, varying them and thereby learning the fundamentals of MAT-
LAB computation.

Chapter 2 introduces the essential principles of modeling and simulation and their
relation to design from a systems point of view. It classifies systems based on system
theory in a most general and compact form. This chapter also introduces the basic prin-
ciples of nonlinearity and its associated multiplicity and bifurcation phenomena. More
on this, the main subject of the book, is contained in Appendix 2 and the subsequent
chapters.

One of the characteristics of the book is to treat the case with multiple steady states
as the general case while the case with a unique steady state is considered a special
case. When reading Chapter 2, our readers should notice the systems similarities be-
tween chemical and biological systems that make these two areas conjoint while uniquely
disjoint from the other engineering disciplines.

We suggest to start a class based on our book with Chapter 3 and to assign or study
the first two chapters as reading or reference material whenever the need arises in class.

Chapter 3 tries to give students the essential tools to solve lumped systems that are
governed by scalar equations. It starts with the simplest continuous-start reactor, a CSTR
in the adiabatic case. The first section should be studied carefully since it represents the
basis of what follows. Our students should write their own codes by studying and even-
tually rewriting the codes that are given in the book. These personal codes should be run
and tested before the codes on the CD are actually used to solve the unsolved problems
in the book. Section 3.2 treats the nonadiabatic case.
Section 3.3 is devoted to biochemical enzyme systems in which the biocatalyst enzyme
does not change during the progressing reaction. Biological systems whose biocatalysts
change with time are presented later in the book.
In Section 3.4 we study several systems that have no multiple steady states and we
introduce several transcendental and algebraic equations of chemical and biological en-
gineering import. As always, the students and readers should find their own MATLAB
codes for the various problems first before relying on those that are supplied and before
solving the included exercises.

Chapter 4 studies problems that involve change over time or location and that there-
fore are modeled by differential equations. Specifically, we study initial value problems
(IVP) here, including

1. one-dimensional distributed steady-state plug flow systems that are characterized
by the complete absence of multiplicity and bifurcation phenomena for adiabatic
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systems with cocurrent cooling or heating; and

2. unsteady states of lumped systems. These systems usually have multiple steady
states when at least one of the processes depends nonmonotonically on one of the
state variables. The unsteady-state trajectory that describes the dynamic behavior
will, however, be unique since IVP cannot have multiple solutions. But different
initial conditions can lead to different steady states.

The readers should study the four given examples very carefully and perform the asso-
ciated exercises. Students should solve the solved-in-detail problems of this chapter first
independently of the book and then solve the exercises of each section and of the chapter
as a whole.
Chapter 4.1 deals with an important industrial problem, the vapor-phase cracking of ace-
tone. Here the material- and energy-balance design equations are developed. We advise
the students to try and develop the design equations independently before consulting the
book’s derivations. Numerical solutions and MATLAB codes are developed and explained
for this problem and sample results are given that need to be checked against those of
the students’ codes.
The remaining sections of Chapter 4 treat an anaerobic digester, heterogeneous fluidized
catalytic-bed reactors, and a biomedical problem of the neurocylce enzyme system.

Chapter 5 introduces a more difficult differential equations problem, namely bound-
ary value problems (BVP). Such problems are very common in chemical and biological
engineering but are unfortunately often given the least bit of attention in undergraduate
training.
Two point boundary value problems of chemical/biological engineering typically arise
from some “feedback” of information. They can result from any of the following sources:

1. diffusion;

2. conduction;

3. countercurrent operation; or

4. recycle or circulation.

Two point boundary value problems are much more difficult to solve and more demanding
than initial value problems for differential equations. One of the strengths of MATLAB
is that it has very good and efficient subroutines for solving both IVPs and BVPs.
First we introduce the reader to the principles of such problems and their solution in Sec-
tions 5.1.2 and 5.1.2. As an educational tool we use the classical axial dispersion model
for finding the steady state of one-dimensional tubular reactors. The model is formulated
for the isothermal case with linear kinetics. This case lends itself to an otherwise rare
analytical solution that is given in the book. From this example our students can under-
stand many characteristics of such systems.
Students and readers should be very familiar with the nature of the isothermal case be-
fore embarking on the nonlinear case and its numerical solution in Section 5.1.3. The



8 Introduction

students should study the nonlinear BVP carefully, as well as their associated bifurca-
tion phenomena. MATLAB codes are again provided, explained and tested. Our readers
should train themselves to become fluent in solving BVPs via MATLAB’s collocation
method. The exercises are a good training ground for this.
Section 5.2 is principally similar to Section 5.1. But now we analyze the porous catalyst
pellet via boundary value problems for differential equations. Here the dimensionality of
the problem doubles and the resulting singular BVP is easily handled in MATLAB due
to its superbly capable matrices and vector implementation of code.

Chapter 6 deals with multiphase and multistage systems. Section 6.1 concentrates
on heterogeneous systems, both lumped and distributed heterogeneous systems, as well
as on isothermal and nonisothermal ones. Here the students should study the extension
of the modeling principles for homogeneous systems to those for heterogeneous systems
and become aware of the different numerical properties of the resulting model or design
equations.
While many solved examples and complete MATLAB codes are given in the book and
on the CD, the students should try to excel with his/her codes by personal initiative and
by designing his/her own codes. These should be tested by solving the exercises at the
end of the section.
Section 6.2 deals with high-dimensional lumped nonreacting systems, with special em-
phasis on multitray absorption.
Section 6.3 treats distributed nonreacting systems and specifically packed bed absorption,
while Section 6.4 studies a battery of nonisothermal CSTRs and its dynamic behavior.

Chapter 7 is the climax of the book: Here the educated student is asked to apply all
that he/she has learned thus far to deal with many common practical industrial units.
In Chapter 7 we start with a simple illustrative example in Section 7.1 and introduce five
important industrial processes, namely fluid catalytic cracking in FCC units in Section
7.2, the UNIPOL

�R process in Section 7.3, industrial steam reformers and methanators
in Section 7.4, the production of styrene in Section 7.5, and the production of bioethanol
in Section 7.6.
However, here we leave all numerical procedures and MATLAB coding as exercises to the
students and readers. For each problem, all the necessary modeling and data is included,
as well as samples of numerical results in the form of tables and graphs. Our readers
should now be able to use the models and the given parameters to develop their own
MATLAB codes along the lines of what has been practiced before. Then the students
should be try to solve the exercises given at the end of each section and finally the general
exercises at the end of the chapter.

This, we think, is the best preparation of our students for a successful career as a
chemical or biological engineer in the practical modern industrial world.
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Chapter 1

Numerical Computations and
MATLAB

[This chapter should be read and studied by our readers early on, with fingers on the
keyboard of a computer, in order to gain a first working knowledge of MATLAB, and
also later throughout the book as we introduce new numerical techniques and codes.]

The history of human mathematical computations goes back for several millenia. The
need for numerical computations has increased since the age of enlightenment and the in-
dustrial revolution three centuries ago. For the last 50 years, the human race has become
more and more dependent on numerical computations and digital computers. Computa-
tional techniques have developed from early hand computations, through table look up,
mechanical adding and multiplying devices, the slide rule etc, to programmable electronic
computers, mainframes, PCs, laptops, and notebooks.

The earliest electronic computers were programmed in machine language. Later, pro-
gramming languages such as ALGOL, FORTRAN, C, etc. were developed. Over the last
decade, many of our serious mathematical computations have begun to be performed via
software rather than individual line-by-line coded programs. Software allows for a sim-
pler command structure and an easier interface, and it offers ready graphics and ready
coding error detection among its many advantages over computer language coding.
One ideally suited software for engineering and numerical computations is MATLAB

�R 1.
This acronym stands for “Matrix Laboratory”. Its operating units and principle are vec-
tors and matrices. By their very nature, matrices express linear maps. And in all modern
and practical numerical computations, the methods and algorithms generally rely on
some form of linear approximation for nonlinear problems, equations, and phenomena.
Nowadays all numerical computations are therefore carried out in linear, or in matrix
and vector form. Thus MATLAB fits our task perfectly in the modern sense.

1MATLAB is a registered trade mark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760;
http://www.mathworks.com

11
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MATLAB contains a library of built-in state of the art functions and functionality for
many standard numerical and graphics purposes, such as solving most any equation,
whether scalar, functional, or differential, and plotting multidimensional surfaces and
objects. It is a software that allows its users to adapt the built-in functions of MATLAB
easily and intuitively to any problem specific needs with a few lines of code. Typically,
users build their own codes using problem specific MATLAB functions, intertwined with
command lines of their own design and for their own purpose. One of the most wonderful
attributes of numerical and graphics software packages such as MATLAB is the ease with
which they can display chemico-physical problems and their solutions readily by spatial
surfaces and objects. This gives new means and meaning to our “understanding” and it
is the source of great pleasure as well.

MATLAB comes as one main body of built-in functions and codes, and there are
many additional specialized MATLAB “toolboxes” for various applications. As this book
is primarily directed towards undergraduate and beginning graduate students, we have
restricted ourselves deliberately to using the main body of MATLAB only in our codes
and none of its many toolboxes.

1.1 MATLAB as a Software and a Programming Lan-
guage

All what follows in this chapter and the rest of the book assumes that the user has
easy access to MATLAB on a computer. This access may be provided by the college,
university, or department in the form of a computer with MATLAB already installed,
or through special licensing from The Mathworks, or by purchasing an individual copy
of MATLAB or its student edition for a personal computer. The program codes of this
book were begun under MATLAB version 6.5 and finished under version 7.1. Since MAT-
LAB is designed to be backward compatible, all our codes should be able to run in any
MATLAB version from 6.5 on up. We simply start our discourse assuming that there is
a MATLAB desktop and command window on the computer screen with its >> com-
mand prompt in front of the reader. MATLAB m file code lines will henceforth always
be displayed between two thick black horizontal lines.

Due to the special structure of MATLAB, readers should be familiar with the math-
ematical concepts pertaining to matrices, such as systems of linear equations, Gaussian
elimination, size and rank of a matrix, matrix eigenvalues, basis change in n-dimensional
space, matrix transpose, etc. For those who need a refresher on these topics there is a
concise Appendix on linear algebra and matrices at the end of the book.

1.1.1 The Basics of MATLAB

The basic unit of MATLAB is a matrix.
If the matrix A contains m rows and n columns of entries, we call A an m by n matrix
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(“rows before columns”) and write Am×n or Am,n in short mathematical notation.
Column vectors of length k can be viewed as k by 1 matrices and row vectors as 1 by
n matrices if they contain n entries.
Real or complex scalars c thus can be viewed as 1 by 1 matrices if we wish.

To represent or to generate and store the 3 by 4 matrix

A =

⎛⎝ 1 2 3 4
5 6 7 8
9 10 11 12

⎞⎠
in MATLAB, we type the following line after the >> MATLAB prompt.
>> A = [1 2 3 4;5 6 7 8;9,10,11,12]

After pressing the return key, the MATLAB command window will display A as follows:
>> A = [1 2 3 4;5 6 7 8;9,10,11,12]

A =

1 2 3 4

5 6 7 8

9 10 11 12

Note that entry-wise defined matrices and vectors are delimited by square brackets [
and ] in MATLAB commands.
Note further that the entries of one row of a matrix (or of a row vector) can be entered
into MATLAB’s workspace either separated by a blank space or by a comma, while a
semicolon ; indicates the start of a new row. A comma or a blank at the end of a com-
mand line will cause screen display of the object that has just been defined, while a
semicolon ; after a command will not.
Here is another sequence of commands and their screen output:
>> A = [1 2 3 4;5 6 7 8;9,10,11,12];

>> B = zeros(5)

B =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

The first command generates the matrix A. A is stored in MATLAB’s workspace, but
it is not displayed on screen due to the ; following the command. With the second com-
mand, the matrix B is generated, stored, and displayed on screen because there is a
blank and no ; following the second command. Note that a comma , after a MATLAB
command has the same effect as a blank as regards not suppressing screen output. In
MATLAB, one can put as many comma or semicolon delimited commands on one line
as one wishes and will fit.
One can alter a stored matrix A = (aij) by reassigning one element, say a22 = 12, as
follows:
>> A(2,2) = 12

A =

1 2 3 4

5 12 7 8

9 10 11 12
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One can reassign a whole row (or similarly a whole column) of a matrix A to obtain
an updated version of A with a new third row, for example, by using the “all entries”
MATLAB symbol : appropriately.
>> A(3,:)=[1 0 1 0]

A =

1 2 3 4

5 12 7 8

1 0 1 0

Here A(3, :) denotes all entries of row 3 of A, while A(:, 2) would designate column 2 of
A.
One can update a whole block of A at one time as well, for example, the block

A(2 : 3, 2 : 4) =
(

a22 a23 a24

a32 a33 a34

)
as follows:
>> A(2:3,2:4)=[1 2 3;0 9 7]

A =

1 2 3 4

5 1 2 3

1 0 9 7

Here A(2 : 3, 2 : 4) describes the submatrix of A comprised of the rows 2 and 3 and the
columns 2, 3, and 4, i.e., the lower right 2 by 3 block of A.
One can alter the shape of A by adding one or several rows or columns of compatible
size, or by deleting one or several rows or columns of A by setting some rows or columns
equal to the empty row or column [ ], respectively.
>> A = [A; A(3,:)]

A =

1 2 3 4

5 1 2 3

1 0 9 7

1 0 9 7

>> A(:,4) = []

A =

1 2 3

5 1 2

1 0 9

1 0 9

>> A(3,:)=[]

A =

1 2 3

5 1 2

1 0 9

The first command makes A into a square 4 by 4 matrix by replicating the third row in
row four of the new A.
The second command then deletes the last column of A, and the third command takes
off the last column and creates a square 3 by 3 matrix with the same name A.
Note that any change prescribed in MATLAB for a named object such as our matrix A
saves the changed object in the original object’s place. Hence our final matrix A does
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not resemble the original A at all.

Once stored in the workspace, MATLAB can operate on these matrices A and B. A
useful MATLAB task is to find the size of a stored matrix, i.e., the numbers of rows and
columns of the matrix.
>> size(A), size(B), length(A), length(B), result = [size(A’), length(A’)]

ans =

3 4

ans =

5 5

ans =

4

ans =

5

result =

4 3 4

Let us look at the above sequence of commands and the output. If

A =

⎛⎝ 1 2 3 4
5 6 7 8
9 10 11 12

⎞⎠
in MATLAB’s workspace, then A has 3 rows and 4 columns. Its size vector is (3 4) in
MATLAB (remember “rows before columns”), while that of the zero matrix B defined
earlier is (5 5). length measures the maximal dimension of a matrix.
The commas after our MATLAB commands above are necessary as delimiters to be able
to place several commands onto one line of code. They create screen output, whereas semi-
colons ; would have suppressed it. The final entry result = [size(A’), length(A’)]
on the command line creates the vector (4, 3, 4), called “result” by us. It contains the
number of rows (4) of AT , followed by AT ’s number of columns (3) and its “length” or
maximal dimension (4).
Here the matrix A’ denotes the transpose of A, namely

AT =

⎛⎜⎜⎝
1 5 9
2 6 10
3 7 11
4 8 12

⎞⎟⎟⎠ .

In AT the rows of A appear as columns, and the columns of A as rows in their natural
order.
If an item is entered in MATLAB without a designation such as x = ... and is not fol-
lowed by a ; , such an item will always be designated as ans on screen. This is short for
“answer”. Such an object will be stored as ans in the workspace. Note that the contents
of ans is freely and frequently overwritten. Please compare with the on-screen output
of the first four size and length commands above that are comma delimited. If an item
is “named” in MATLAB code, such as A, B, or result above are, it will carry that
name throughout the computations (until reassigned) and be displayed on screen only if
followed by a , or by a blank.
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For the above defined matrix A3,4 we can form the matrix product D3×5 = A3×4·C4×5,
but not F = C4×5 · A3×4 for any 4 by 5 matrix C, such as the random matrix C =
randn(4,5) that contains normally distributed random entries.
This is due to the nature of matrix multiplication:
Matrix multiplication is based on the dot product defined for any two vectors of equal
size. The product matrix P of two conformally sized matrices K and L is a matrix of
size “number of rows of K” by “number of columns of L”. To be compatible for multi-
plication, the rows of K and the columns of L must have the same length. If this is so
then the entries pij of the matrix product P = K · L = (pij) are computed as the dot
products of row i of the first matrix factor K with the column j of the second matrix
factor L. We refer the reader to the annex on matrices.
>> C = randn(4,5); D = A*C, F = C*A

D =

6.2593 -1.5887 1.2617 8.7846 -1.9003

11.444 -2.2827 -1.0572 22.73 -2.6528

16.628 -2.9768 -3.376 36.676 -3.4053

??? Error using ==> *

Inner matrix dimensions must agree.

Here the MATLAB on-screen term Inner matrix dimensions refers to the underlined
“inner” size numbers of the matrix factors of D such as depicted by our underlining in
D3×5 = A3×4 ·C4×5. These inner dimensions are both equal to 4 for the matrix product
D = A · C.
However, the inner dimension numbers do not agree when we try to form F = C4×5·A3×4,
one being 5, the other 3. Therefore, F cannot be formed and does not exist. Note that
the matrix product D = A · C inherits the (not underlined) “outer dimensions” 3 by 5
from its factors A3,4 and C4,5, or D = A · C is a 3 by 5 matrix.

Solving linear equations Ax = b is done in MATLAB via the backslash A\b
command. For example, let us consider a system of 4 linear equations in 4 unknowns
x1, x2, x3, x4 such as

x1 + 3x2 − 5x3 − x4 = 2
−x1 + 17x2 − x3 − 5x4 = 12 (1.1)

5x1 − x3 + 31x4 = 0
x1 + x2 + x3 = −11

In order to solve such systems of linear equations on a computer, it helps to realize that
only the coefficients of the system (1.1) play a role. For efficient computer use, such
systems should be rewritten in matrix form Ax = b by extracting the coefficient matrix
A on the left hand side of (1.1) and the vector b on the right hand side of (1.1). Here

A =

⎛⎜⎜⎝
1 3 −5 −1
−1 17 −1 −5
5 0 −1 31
1 1 1 0

⎞⎟⎟⎠ and b =

⎛⎜⎜⎝
2
12
0

−11

⎞⎟⎟⎠ .
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Note that we have to place zeros in the positions of A that correspond to unused variables
in any equation in (1.1). Below are the corresponding MATLAB commands that let us
find the solution vector

x =

⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠
for the system of linear equations

Ax =

⎛⎜⎜⎝
1 3 −5 −1
−1 17 −1 −5
5 0 −1 31
1 1 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2
12
0

−11

⎞⎟⎟⎠ = b .

Our two command lines below first generate the coefficient matrix A and the right hand
side vector b for (1.1), followed by the MATLAB backslash linear equations solver that
computes the solution vector x. This is followed by a simple verification of the error inher-
ent in the residual vector A ·x−b for our numerical solution x. This error is nearly zero
since in MATLAB the number -1.3323e-15 describes the real number −1.3323 · 10−15.
>> A = [1 3 -5 -1;-1 17 -1 -5;5 0 -1 31;1 1 1 0],

b = [2;12;0;-11], x=A\b, error = A*x-b,

A =

1 3 -5 -1

-1 17 -1 -5

5 0 -1 31

1 1 1 0

b =

2

12

0

-11

x =

-9.1947

0.44732

-2.2526

1.4104

error =

-1.3323e-15

-1.7764e-15

0

0

The MATLAB backslash command solves all linear systems of equations, with rect-
angular or square matrices alike. If we instead want to solve the linear system Ax = b
for our earlier matrix

A =

⎛⎝ 1 2 3 4
5 6 7 8
9 10 11 12

⎞⎠ and b =

⎛⎝ −3
2
0

⎞⎠ ,

we could effect this in MATLAB via the following commands.
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>> A = [1 2 3 4;5 6 7 8;9,10,11,12]; b = [-3;2;0], x = A\b, error = A*x - b,

b =

-3

2

0

Warning: Rank deficient, rank = 2 tol = 1.3293e-14.

ans =

1.1111

0

0

-0.73611

error =

1.1667

-2.3333

1.1667

Here A is suppressed on screen and only the right hand side b is displayed since it was
followed by a comma , on the command line instead of the suppressing ; . Next MATLAB
issues a warning that our chosen 3 by 4 matrix A has deficient rank two instead of three,
and then it gives the least squares solution

x =

⎛⎜⎜⎝
1.1111

0
0

−0.73611

⎞⎟⎟⎠
of the linear system of equations Ax = b, followed by the (now sizable) error vector
Ax− b. Recall that the rank of a matrix A refers to the number of linearly independent
rows or columns in A, or equivalently to the number of pivots in a row echelon form of
A; refer to Appendix 1 on Linear Algebra and Matrices for more details.
The least squares solution x of an unsolvable linear system Ax = b such as our
system is the vector x that minimizes the error ‖Ax− b‖ in the euclidean vector norm
‖x‖ defined by ‖x‖ =

√
x2

1 + ... + x2
n when the vector x has n real entries xi.

We also note that a multiplication * symbol is required in MATLAB whenever a multipli-
cation is to be performed. Our students should compare the output of the two commands
>> 2 pi and >> 2*pi to learn the difference.
The latter command will give the answer as 6.2832 in format short g, while the screen
output will be 6.283185307179586e+00 in format long e. Powers of the base 10 are
always displayed in MATLAB via the e-extension as be±a in format e. Thus 400 =
4e+02 and 1/1000 = 1e-03 in MATLAB’s exponential output and screen display.
Format statements can be entered at any prompt such as >> format short, or inside
MATLAB code where desired. Commanding >> format toggles the output format back
to the previous format setting.
No matter what format is specified, MATLAB always computes in double precision,
i.e., it carries about 16 digits in all of its computations. For detailed numerical analysis
we prefer the extended digit output of format long e, while for most engineering output
format short g will give sufficient information. format short g limits the output to 9
digits and writes numbers 0.0001 ≤ |x| ≤ 9.99999899 · 108 in standard decimal form and
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numbers outside of this range in exponential form be±a.

In this book we shall use MATLAB codes and explain more involved features of MAT-
LAB as we encounter them. MATLAB has a built-in help menu; typing help format
at the >> prompt, or help \, for example, will show the syntax and variations of these
two commands “format” and ‘backslash’. Whenever a student encounters a MATLAB
command that is not self explanatory, we suggest using this built-in help function of
MATLAB.

There are many MATLAB tutorials available on the web; please enter “MATLAB
tutorial” into your favorite internet search engine (such as google, hotbot, infoseek, ly-
cos, yahoo, ... , etc) and follow the offered links. Unfortunately, we cannot include a full
fledged MATLAB tutorial in this book due to space and time concerns.

This chapter continues with a description of a few basic numerical methods and
their underlying principles. However, a solid first course in numerical analysis cannot be
replaced by the concise intuitive explanations of numerical methods and phenomena that
follow below.

1.2 Numerical Methods and MATLAB Techniques for

Chemical and Biological Engineering Problems

In this section we give an overview of numerical analysis in general, and of the aspects of
numerical analysis that are needed for problems encountered specifically in chemical and
biological engineering2. This overview will, by necessity, be rather brief and it cannot
substitute for a full semester course on Numerical Analysis. It is meant as a refresher
only, or as a grain-of-salt type introduction to the theory and practice of mathematical
computation. Many of the key terms that we introduce will remain only rather loosely de-
fined due to space and time constraints. We hope that the unfamiliar reader will consult
a numerical analysis textbook on the side; see our Resources appendix at the end of the
book for specific recommendations. This we recommend highly to anyone, teacher or stu-
dent, who does not feel firm in the concepts of numerical analysis and in its fundamentals.

In this book we aim to place general and specific chemical/biological problems in
the context of standard numerical techniques and we try to exhibit and explain special
numerical considerations that are needed to solve these chemical/biological problems us-
ing MATLAB. These concerns are due in part to the special nonlinearities that occur
in chemical/biological engineering. They are often caused by the Arrhenius3 dependence
(2.1) with its exponential nonlinearity of reacting systems, or by other subject specific
nonlinearities in both chemical and biological systems.
We hope that this interdisciplinary book will open the door for more interdisciplinary
research so that industrial chemical/biochemical/biomedical plants can be run more eco-

2Biological engineering comprises both biochemical and biomedical engineering
3Svante August Arrhenius, Swedish chemist, 1859 – 1927
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nomically and environmentally safer through efficient numerical simulation and the op-
timal utilization of numerical analysis and digital computers.

1.2.1 Solving Scalar Equations

Scalar equations have played a fundamental role in the history and development of Nu-
merical Analysis. But they represent only the simplest problems and have little bearing on
the advanced chemical/biological engineering problems that we want to solve numerically.
Our very first “numerics for chemical/biological engineering problems chapter”, Chapter
3, will deal with scalar equations rather quickly and easily using MATLAB. Since the cur-
rent subsection is of little importance to the rest of the book, it can be skipped at first and
it is best read later with a grain-of-salt looseness of mind, if only to study the MATLAB
codes and learn from them. Nothing much or deep depends on scalar equations nowadays
as they can be solved readily by software.

A scalar equation is an equation of the form f(x) = 0 for a function f that depends
on one variable x. In mathematical notation, we express functions f that map one real
variable x to the real value f(x) symbolically by writing f : R → R, where R denotes
the set of all real numbers.

What mathematicians call “functions” is often referred to as “state variables” by
engineers. These are parallel languages. If t is the independent time variable and T (t)
represents the temperature at time t, then in “engineering language”, T (t) is a dependent
state variable in the independent variable or parameter t, while mathematically speaking,
T (t) is the temperature function dependent on time t. Use of the function terminology
is more recent and allows for treating multi-variable, multi-output functions such as

F (t, x, y) =

⎛⎜⎝ F1(t, x, y)
...

Fn(t, x, y)

⎞⎟⎠ : R
3 → R

n

where each component function Fi(t, x, y) : R → R for i = 1, 2, ..., n is a state variable
itself depending on the three independent variables t, x, and y by the same ‘function for-
malism’. F as defined above is not a “state variable”, because it combines several states
in one subsuming function F . The formal ease when speaking of “functions” rather than
“state variables” gives this mathematical concept a clear advantage in modeling complex
problems. Engineers should be aware of the limitations of the “state variable” concept
and try to embrace the more versatile “function” notation.

Polynomial equations such as x3 − 2x2 + 4 = 0, for example, have been studied
for many centuries. Over the last hundred years, there have been over 4,000 research
publications and many books written on how to solve the general polynomial equation
p(x) = 0, or how to find n roots xi with p(xi) = 0 for i = 1, .., n, when

p(x) = anxn + an−1x
n−1 + ... + a1x + a0
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is a polynomial of degree n with real or complex coefficients ak, provided that an �= 0.
Note that if an = 0 in p, then p(x) does not have degree n but a lower degree. It is clear
that a polynomial in one variable x is a special type of function p : R → R, given in
polynomial form.

Let us look at the process of finding polynomial roots as an input to output process:

INPUT polynomial p of degree n −→ root finder −→ OUTPUT n roots xi

Here the “root finder” can be any one of the algorithms from the vast literature. Assum-
ing that the chosen algorithm works properly, it takes the n real or complex coefficients
ai for i = 0 to i = n − 1 of p as input and produces n real or complex numbers xi, the
roots of p, as output. To do so, we have tacitly assumed that the leading coefficient an

of p is normalized to equal 1 since dividing p of degree n by a constant (an �= 0) does
not alter its roots.

We start with a short history of the polynomial-root finding problem that will
explain the eminent role of matrices for numerical computations by example.
The study of polynomial roots literally lies at the origin of modern Numerical Analysis.
In 1824, Abel4 proved that it is the impossible to solve a general polynomial equation of
degree five or higher by radicals, such as the quadratic formula

x1,2 =
b ±√

b2 − 4ac

2a

does for second-degree polynomials p(x) = ax2 + bx + c = 0, for example.
Since there is no direct mathematical way to write down general formulas for the roots of
general polynomials of degree larger than 4, the roots of such higher degree polynomials
can only be computed iteratively by numerical procedures, giving both birth and need
to Numerical Analysis.
About 20 years after Abel’s discovery, matrices were invented and their theory developed.
One of the fundamental uses of matrices lies in their ability to model processes and
phenomena of many branches of engineering and applied science. One of the most pressing
needs at the time was to understand and find the periodical and oscillatory behavior of
mechanical and other engineering systems. This quest involves the study of scalars λ with
Ax = λx for a given model matrix An,n and any nonzero vector x. If, for example, there is
one such value λ with |λ| > 1, then the iterates Anx = λnx necessarily become arbitrarily
large, i.e., they “blow up”, predicting a dangerous disaster for the plant or system. For
this purpose mathematicians study the question for which scalars λ the corresponding
homogeneous matrix equation Ax−λx has a nonzero solution vector x. In matrix terms,
see our Appendix 1, this question is equivalent to finding those values of λ for which the
matrix A−λI is singular or noninvertible, where I denotes the n by n identity matrix

4Niels Abel, Norwegian mathematician, 1802 - 1829
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with ones on its main diagonal and zeros elsewhere, i.e.,

I =

⎛⎜⎝ 1 0
. . .

0 1

⎞⎟⎠
n,n

.

For almost another century, many mathematicians tried to solve the related determi-
nantal equation det(A − λI) = 0, in order to find these particular values λ of matrices
numerically. Incidentally det(A − λI) = 0 is a polynomial of degree n in λ.
This equation is called the characteristic equation of the matrix A; it is an nth degree
polynomial in λ and its roots λ1, ..., λn are commonly called the eigenvalues of A. The
eigenvalues λi of A describe the growth, decay, and oscillatory behavior of the states of
the underlying model in detail. Such models and, apparently, reliable polynomial-root
finders for them became a dire necessity much more recently when, for example, trying
to break the sound barrier in flight by attenuating wing oscillations sufficiently to avoid
break-up caused when the real parts of the eigenvalues of the corresponding model matrix
lay in the right half of the complex plane C = R + iR = {a + bi | a, b ∈ R, i =

√−1}.
In chemical engineering the computation of the eigenvalues of linearized model equations
were at the basis of the discovery of periodic (oscillatory) behavior of chemical/biological
reactors and enzyme membranes. This work has been developed further during the last
three decades leading to the discovery of chaos in these systems. Such practical appli-
cations have driven polynomial-root algorithms to the fore during the first 50 years of
the last century. Unfortunately, none of the algorithms of the early half of the 1900s has
proved to be much good.
Things changed for the better when matrix means were further developed in the latter
half of the 20th century with the advent of electronic and digital computers. The break-
through for the matrix eigenvalue problem came from judicious matrix factorizations
such as the LR factorization A =: A0 = L0 · R0. The LR matrix factorization expresses
the standard Gaussian5 elimination, or equivalently the row echelon form reduction of
a matrix A as the product of a lower triangular matrix L and an upper triangular one
called R. It took a stroke of genius by Rutishauser6 to re-multiply the LR matrix factors
of A0 in reverse order as A1 = R0 · L0, then to factor A1 as A1 = L1 · R1 again and
to form A2 by reverse order multiplication, to re-factor and to reverse order multiply
A2 := R1 · L1 = L2 · R2, and so forth. This is only meaningful since matrix products
L ·R �= R ·L in general, i.e., matrix products generally do not commute. Finally Francis’7

QR algorithm extended Rutishauser’s LR algorithm by using the QR factorization
of matrices instead in which the first factor Q is orthogonal, and the second factor R is
upper triangular. The QR algorithm finds general matrix eigenvalues more quickly and
accurately than ever before.
And the original modeling problem of oscillatory engineering phenomena was not only
best modeled via matrices, but it was also best solved by matrix methods themselves.

5Johann Carl Friedrich Gauß, German mathematician, 1777 – 1855
6Heinz Rutishauser, Swiss mathematician, 1918 - 1970
7John Guy Feggis Francis, English systems engineer, Oct. 10, 1934 –
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Nowadays, numerical analysts give the following global ready advice when any ap-
plied problem leads to trying to find roots of a polynomial: “to go back to before the
problem was expressed in polynomial form”. There was likely a linear model at
an earlier stage of the problem development whose eigen information could be extracted
much more reliably from the respective matrix than the roots can be from the unfortu-
nate polynomial.
More specifically in most chemical/biological engineering problems, the system is de-
scribed by nonlinear differential equations (DEs). When these are linearized in a neigh-
borhood of certain steady states they lead to linear DEs whose characteristics can be
determined by analyzing the corresponding matrix eigenvalues.

The expense and accuracy distinguishes between all known polynomial-root finding
algorithms. The most economical known polynomial-root finder pzero.m, see the folder
chap1.2m on the accompanying CD, performs O(n2) operations on the n input data ai of
p of degree n to produce its n roots. It is based on a tridiagonal matrix representation of
p and can account for moderate repeats of the roots of p. MATLAB in turn uses an O(n3)
algorithm that forms the companion matrix (see the definition below) for p and then finds
the eigenvalues of the companion matrix via the QR algorithm. The companion matrix
of a normalized polynomial p(x) = xn + an−1x

n−1 + ...+ a1x + a0 is the n by n matrix
C = C(p) whose first row contains the negative coefficients −an−1, −an−2, ..., −a1, −ao

of p in the positions (1,1), (1,2), ..., (1,n–1), (1,n), respectively, it contains ones on the
first subdiagonal and zeros everywhere else, i.e.,

C = C(p) =

⎛⎜⎜⎜⎜⎜⎜⎝

−an−1 −an−2 . . . −a1 −a0

1 0 . . . . . . 0

0
. . . . . .

...
...

. . . . . .
...

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
n,n

. (1.2)

MATLAB’s polynomial-roots finder roots does not handle repeated or clustered roots
very well, but otherwise it is the best O(n3) root finder available. Note that an op-
erations count of O(nj) for an algorithm signifies that the algorithm performs K · nj

additions and multiplications (for some algorithm specific constants K and j, but de-
pending on n) to obtain its output from n input data. Most of the polynomial-root finders
of the last century unfortunately were even slower O(n4) algorithms and all in all much
too slow and inaccurate.

To illustrate we first verify the identical behavior of the MATLAB QR based polyno-
mial-root finder roots and MATLAB’s QR based matrix eigenvalue finder eig for p’s
companion matrix P = C(p): First we define p by its coefficient vector in MATLAB’s
workspace, then we invoke the MATLAB polynomial-root finder roots, followed by its
matrix eigenvalue finder eig on the companion matrix of p. Finally we display the com-
panion matrix P of p. As an example we use p(x) = x3 − 2x2 + 4 here and represent p
by its coefficient vector [1 -2 0 4] in the following line of MATLAB commands.
>> p = [1 -2 0 4]; [roots(p), eig(compan(p))], P = compan(p)
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ans =

1.5652 + 1.0434i 1.5652 + 1.0434i

1.5652 - 1.0434i 1.5652 - 1.0434i

-1.1304 -1.1304

P =

2 0 -4

1 0 0

0 1 0

[We advise our students to follow our text and to always copy our MATLAB command
lines onto their MATLAB desktop as they read through this chapter. Our students and
readers should observe the execution of these commands, and we encourage them to alter
these commands slightly to learn more about MATLAB.]

Note that the output of roots(p) and eig(compan(p)) each is a complex column
vector of length three, i.e., each output lies in C3; and the two solution vectors are iden-
tical. Our trial polynomial p(x) = x3 − 2x2 + 4 has one pair of complex conjugate roots
1.5652± 1.0434 · i and one real root –1.1304. The (first row) companion matrix P of a
normalized nth degree polynomial p (normalized, so that the coefficient an of xn in
p is 1) is the sparse n by n matrix P = C(p) as described in formula (1.2). Note that our
chosen p is normalized and has zero as its coefficient a1 for x = x1, i.e., the (1, 2) entry
in P is zero. For readers familiar with determinants and Laplace expansion, it should be
clear that expanding det(P −xI) along row 1 establishes that our polynomial p(x) is the
characteristic polynomial of P . Hence P ’s eigenvalues are precisely the roots of the given
polynomial p.

Polynomial equations are not rare in chemical/biological engineering problems, they
are typically met in most local stability problems. However, nonalgebraic or transcen-
dental equations are more common in our subject. A function in one variable x is called
transcendental, if it is not merely a polynomial in x, nor a ratio of polynomials (called
rational function), but contains nonalgebraic transcendental expressions in x, such as

ex−x2, 5
√

x3 − 1/x0.5,
x2e2x

1 − sin(x)e−2x
, sin(x)+log(x), log(x2)−17x−3/2 +2x3−x2 +4,

etc.
Historically speaking, most polynomial and transcendental one variable equations f(x) =
0, have been solved by one of two methods: by Newton8 iteration or by bisec-
tion/inclusion (or by a judicious mixture of the two).
Newton iteration starts with an approximation x0 of a root x∗ of f and goes along the
tangent line to the curve at (x0, f(x0)) until it intersects the x axis. This intersection is
labeled x1. It is an improved iterative approximation for the actual root, and the pro-
cess continues leading from x1 to x2 via the tangent to f at x1, etc. until the difference
between successive iterates becomes negligible, see Figure 1.1 for our trial polynomial
equation p(x) = x3 − 2x2 + 4 = 0 and the start x0 = −2.

In Figure 1.1 we have marked our iteration start x0, and the first and second iterates
x1, x2 that are the respective intersections of the tangents to the curve at (x0, f(x0)) and

8Isaac Newton, British physicist and mathematician, 1643-1727
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(x1, f(x1)) with the x axis, as well the solution x∗ = −1.1304 towards which the iterates
xi converge. Clearly the solution x∗ near –1 of p(x) = 0 is the point of intersection of the
graph of p with the x axis where p = 0.
Newton’s method leads to the formal iteration rule

xi+1 = xi − f(xi)
f ′(xi)

. (1.3)
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p(x) = x3 − 2x2 + 4

Newton iteration
Figure 1.1

Equation (1.3) follows readily from the point-slope equation of a line, applied to the
tangent at (xi, f(xi)), namely to

y − f(xi) = f ′(xi) · (x − xi) . (1.4)

Solving (1.4) for x and setting xi+1 = x as well as y = 0 gives rise to the iteration (1.3).
Newton’s method is the basis of many root-finding algorithms. It can be extended to
several, i.e., n real variables

z =

⎛⎜⎝ z1

...
zn

⎞⎟⎠ and n variable functions f(z) =

⎛⎜⎝ f1(z)
...

fn(z)

⎞⎟⎠ : R
n → R

n .

The division by f ′(xi) in (1.3) is replaced in the n dimensional case by multiplication
with the matrix inverse

(
Df(z(i))

)−1
of the Jacobian9 n by n matrix Df = (∂f�/∂zj)

9Carl Jacobi, German mathematician, 1801-1851
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of f :

z(i+1) = z(i) −
(
Df

(
z(i)

))−1

· f
(
z(i)

)
. (1.5)

In order to distinguish between the n components of each iterate, marked by subscripts,
we mark the iterates z(i) in Rn themselves by superscripts. Thus fully written out the
ith Newton iterate z(i) in Rn is the vector

z(i) =

⎛⎜⎜⎝
z
(i)
1
...

z
(i)
n

⎞⎟⎟⎠
when n > 1. Moreover, ∂fi/∂zj denotes the partial derivative of the ith component func-
tion fi of f with respect to the jth component zj of z for i, j = 1, ..., n, and each iterate
z(k) ∈ Rn is a real vector. We note that if n = 1 and f ′(xi) ≈ 0 (i.e., when xi is close to a
near-multiple root of f) in the one-dimensional case, or if in the multi-dimensional case,
Df(z(k)) is nearly singular and cannot be inverted reliably as a matrix for some iterate
z(k), then Newton’s method will not be applicable. We encounter this phenomenon with
scalar equations routinely near multiple roots, see our discourse after Figure 1.2 for de-
tails, as well as in some Newton iterations in particular chemical/biological engineering
boundary value problems, see Chapter 5. Then we need to develop new and more appro-
priate methods to solve these problems successfully.

Formula (1.3) is a fixed point equation since it has the general form

xi+1 = φ(xi)

with φ(x) = x − f(x)/f ′(x) for Newton’s method. The word “fixed” derives from the
fact that if xi = x∗, i.e., if we are at the solution x∗ of f(x) = 0, then by (1.3),
xi+1 = x∗ − f(x∗)/f ′(x∗) = x∗ as well. And the iteration has come to a stand-still,
or it has become “fixed” at the solution x∗. Finally we note that any scalar function
equation of the form h(x) = k(x) can be readily transformed into the standard form
f(x) = 0 (with zero on the right hand side) by setting f(x) = h(x) − k(x).

Another method to solve scalar equations in one real variable x uses inclusion and
bisection. Assume that for a given one variable continuous function f : R → R we know
of two points x� < xup ∈ R with f(x�) · f(xup) < 0, i.e., f has opposite signs at x� and
xup. Then by the intermediate value theorem for continuous functions, there must be
at least one value x∗ included in the open interval (x�, xup) with f(x∗) = 0. The art of
inclusion/bisection root finders is to make judicious choices for the location of the root
x∗ ∈ (x�, xup) from the previously evaluated f values and thereby to bisect the interval
of inclusion [x�, xup] to find closer values v < u ∈ [x�, xup] with |v − u| < |x� − xup| and
f(v) · f(u) < 0, thereby closing in on the actual root. Inclusion and bisection methods
are very efficient if there is a clear intersection of the graph of f with the x axis, but for
slanted, near-multiple root situations, both Newton’s method and the inclusion/bisection
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method are often inadequate. In particular, for the dynamic chemical/biological transcen-
dental equations of Chapter 3 we shall develop a variant of the level curve method
that helps solve our equations where the standard Newton or bisection/inclusion meth-
ods fail. For details, see Sections 3.1 and 3.2.

MATLAB has a built-in root finder for scalar equations f(x) = 0 in one real variable
x that are in standard form. The built-in MATLAB function is fzero. The use of fzero
hinges on a user-defined function, such as the “function” f inside the following fzero
tester, called fzerotry1, that we apply to our previously studied third degree polyno-
mial.
We note that fzerotry1 is a MATLAB function m file that is stored in its folder
with the extension .m as fzerotry1.m. Our program code is annotated with comments
following the % symbol. Anything that follows after a % symbol on a line of code is not
executed in MATLAB. More on MATLAB files, their storage, creation, etc. is given in
Section 1.2.5. Specific built-in MATLAB functions and their use, such as fzero in the
code below, should always be scrutinized by our students for their input/output syntax
etc. using the built-in help MATLAB command >> help fzero for example.

function fzerotry1 % function m file

% Sample call: fzerotry1

% Input : None

% Output: Newton iterate and number of iterations used

% Computes the zero of the polynomial f(x) = x^3 - 2*x^2 + 4 near x = -2 first

% and then within the interval [-2,-1].

% Method used : MATLAB’s fzero built-in root finding function

format long g, format compact % specify long format

[Newt,fval,exitflag,output] = fzero(@f,-2); % call fzero for f from x = -2

iterations = output.iterations;

From_minus_2 = [Newt, iterations], % give screen output

[incl,fval,exitflag,output] = fzero(@f,[-2 -1]); % call fzero for f on [-2,-1]

iterations = output.iterations;

From_interval = [incl, iterations], format % give screen output

function [y] = f(x) % function m file for

y = x.^3 - 2*x.^2 + 4; % evaluating f(x)

Note that fzerotry1.m uses no input from and creates no output to the workspace.
Calling fzerotry1 creates the following screen output:

>> fzerotry1

From_minus_2 =

-1.13039543476728 24

From_interval =

-1.13039543476728 9

The first call of fzero inside fzerotry1 takes 24 iterations to arrive at the real root
x∗ = −1.1304 of our trial polynomial p(x) = x3 − 2x2 + 4 when starting at x0 = −2,
while the second call converges after 9 iterations when looking for real roots of p inside
the interval [−2,−1]. Please look up >> help fzero to learn more about this MATLAB
function and how it was used.
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We now give a simple example of an equation with a root of high multiplicity. This
illustrates the limits of even the best standard root finders.
We investigate the 9th degree polynomial

p(x) = x9−18·x8+144·x7−672·x6+2016·x5−4032·x4+5376·x3−4608·x2+2304·x−512 . (1.6)

p can be rewritten more simply as p(x) = (x − 2)9. In the plots of Figure 1.2 we plot
both p and its derivative

p′(x) = 9·(x−2)8 = 9x8−144x7+1008x6−4032x5+10080x4−16128x3+16128x2−9216x+2304

from their “naive” extended polynomial form above (plotted as small circles in Figure
1.2) and from their simple, i.e., “powers of (x − 2)” form (plotted as a curve in Figure
1.2) using MATLAB.
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(x) = 9 x8 − 144 x7 + ... +2304
p

prime
(x) = 9 (x − 2)8

High-multiplicity root
Figure 1.2

In our script m file poly9.m below, we evaluate both p and p′ from their extended
polynomial form, rather than use the more stable and slightly more accurate Horner
scheme, which would have us rewrite p as

p(x) = ((...(((x− 18)x + 144)x− 672)x + ....− 4608)x + 2304)x− 512
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for example and thus evaluate p(x) from the inside out.
A script m file in MATLAB does not start with a function ... declaration as the

function m file fzerotry1.m does. A script m file rather consists only of MATLAB com-
mands. See Section 1.2.5 for more details on these two types of m files in MATLAB.

% poly9 script m file

% Sample call: poly9

% Plots the graph of

% p(t) = (t-2)^9 = t.^9 - 18*t.^8 + 144*t.^7 - 672*t.^6 + 2016*t.^5 - ...

% 4032 *t.^4 + 5376*t.^3 - 4608*t.^2 + 2304*t - 512

% in one subplot, both in closed form (curve) and in extended form (o)

% near t = 2.

% And repeats the same for the derivative

% p’(t) = 9*(t-2)^8 = 9*t^8 + ... + 9*256

% of p in both forms, closed in a curve, and extended (o) in a second subplot.

t = linspace(1.92,2.08,200); % form a partition t of the interval

% [1.92, 2.08] of 200 points

f = t.^9-18*t.^8+ 144*t.^7 -672*t.^6 + 2016*t.^5 -4032 *t.^4 ...

+ 5376*t.^3 -4608*t.^2+ 2304*t -512; % naive formula for evaluating f = p

f1= 9*(t.^8 -16*t.^7 + 112 *t.^6 -448*t.^5 + 1120 *t.^4 -1792*t.^3 ...

+ 1792*t.^2 -1024*t + 256); % naive formula for evaluating f’ = p’

subplot(1,2,1), plot(t,f,’ok’), % plot (t,f(t)) on first subplot

axis([1.91 2.09 -1.5*10^-10 1.5*10^-10]), hold on, % plot more on same plot

plot(t,(t-2).^9,’-k’,’LineWidth’,2), % plot (t,(t-2)^9)

xlabel(’x’,’FontSize’,14),

ylabel(’p’,’Rotation’,0,’FontSize’,14) % label the axes

legend(’p(x) = x^9 - 18 x^8 + ... -512’,...

’p(x) = (x - 2)^9’ ,2) % include legend

hold off % clear left graphics window

subplot(1,2,2), plot(t,f1,’ok’), % plot (t,f’(t)) on second subplot

axis([1.91 2.09 -1.5*10^-10 1.5*10^-10]), hold on, % plot more on same plot

plot(t,9*(t-2).^8,’-k’,’LineWidth’,2), % plot the derivative (t,9*(t-2)^8)

xlabel(’x’,’FontSize’,14), ylabel(’p_{prime}’,’Rotation’,0,...

’FontSize’,14) % label the axes

legend(’p_{prime}(x) = 9 x^8 - 144 x^7 + ... +2304’,...

’p_{prime}(x) = 9 (x - 2)^8’ ,0) % include legend

hold off % clear right graphics window

We urge the interested reader to look up >> help linspace, >> help plot, >> help
subplot, >> help axis, >> help xlabel, >> help ylabel, and >> help legend
to fully understand the code of poly9.m. However, over time many students will find
these and other MATLAB commands quite obvious from their use and from the gen-
erated output. MATLAB programming is very simple and intuitive. Built-in MATLAB
functions can be knitted into personal codes that perform particular tasks and can com-
pute or plot most anything in engineering.

In Figure 1.2 we note that for x within around 3% of the multiple root x∗ = 2 of
p, the values of p(x) and p′(x) in extended polynomial form (both plotted as dots in
Figure 1.2) are small random numbers of magnitudes up to around ± 5 · 10−11. Hence
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any bisection/inclusion algorithm performed on p in extended form (1.6) will fail to get
closer to the actual root x∗ = 2 than by about 0.06, i.e., every such algorithm will have an
error of around 3% when trying to find x∗. Likewise for Newton iterations, the iteration
process turns into a nonconverging random hit and miss exercise near x∗ = 2 as we shall
see.

The following experiments validate our assessment of troubles with Newton or bisec-
tion root finders for multiple roots. First we use the bisection method based MATLAB
root finder fzero, followed by a simple Newton iteration code, both times using the cho-
sen polynomial p(x) of degree 9 in its extended form (1.6).

function fzerotry2 % function m file

% Sample call: fzerotry2

% Input : None

% Output: Newton iterate and number of iterations used

% Computes the zero of the polynomial

% f(x) = x^9 - 18*x^8 + 144*x^7 - 672*x^6 + 2016*x^5 - 4032*x^4 ...

% + 5376*x^3 - 4608*x^2 + 2304*x - 512

% near x = 1.5 first and then within the interval [1.91, 2.1].

% Method used : MATLAB’s fzero built-in root finding function

format long g, format compact

[Newt,fval,exitflag,output] = fzero(@f,1.5); % use fzero from x_0 = 1.5

iterations = output.iterations;

From_1point5 = [Newt, iterations], % screen output

[incl,fval,exitflag,output] = fzero(@f,[1.91 2.1]); % fzero on interval

iterations = output.iterations;

From_interval = [incl, iterations], format % screen output

function [y] = f(x) % long extended form of polynomial f(x) = (x-2)^9:

y = x^9-18*x^8+ 144*x^7 -672*x^6 + 2016*x^5 -4032*x^4 ...

+ 5376*x^3 -4608*x^2+ 2304*x -512; % function evaluation subfunction f

The output of fzerotry2 is as follows:
>> fzerotry2

From_1point5 =

2.0542835318567 35

From_interval =

1.96209266952178 6

Note that MATLAB’s fzero algorithm stops after 35 iterations when it is about 2.7%
away from the true root 2 with an approximate start at 1.5. From the inclusion interval
[1.91, 2.1] it also ends rather prematurely and off target as well.

The Newton method fares no better here; see the code below and its output on the
next page.

function X = newtonpoly9(xstart,k) % function m file

% Sample call : newtonpoly9(3,42);

% Input: xstart = start of newton iteration

% k = number of iterations

% Output: (on screen)

% list of Newton iterates and iteration indices in three columns

% Tries to find the roots of p(x) = (x-2)^9 given in extended form

% p(x) = x^9 - 18*x^8 + 144*x^7 - 672*x^6 + 2016*x^5 ...
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% - 4032*x^4 + 5376*x^3 - 4608*x^2 + 2304*x - 512

% via Newton’s method starting at xstart, and performing k iterations

i = 0; X = xstart; % start at xstart

while i < k+2 % do k Newton steps

x = xstart; % x := x - p(x)/p’(x)

xstart = xstart - (x^9-18*x^8+ 144*x^7 -672*x^6 + 2016*x^5 ...

-4032*x^4 + 5376*x^3 -4608*x^2+ 2304*x -512)/(9*(x^8 ...

-16*x^7 + 112 *x^6 -448*x^5 + 1120 *x^4 -1792*x^3 ...

+ 1792*x^2 -1024*x + 256));

X = [X;xstart]; i = i+1; end % Accumulate the Newton iterates

% display on screen :

disp([’iteration counter x(i) counter x(i) ’...

’ counter x(i)’]), format short g

disp([[0:13]’,X(1:14),[14:27]’,X(15:28),[28:41]’,X(29:42)]), format

The code above is a MATLAB function m file with two inputs xstart and k and one
output X. Its first code line

function X = newtonpoly9(xstart,k) % newton poly 9

contains the function name declared to be newtonpoly9. Once this m file is stored in
the current working directory of the MATLAB desktop, its name newtonpoly9 becomes
a valid MATLAB command and this command needs two inputs such as xstart,k to
generate its output X. In order to find and be able to execute the commands of the function
newtonpoly9 from the desktop, MATLAB must find an m file named “newtonpoly9.m”
in its current working directory. The name of the function newtonpoly9 is followed by
its two inputs (xstart,k). And its output, the vector X containing the starting point
xstart, followed by k-1 Newton iterates precedes it in front of the = sign on the first
line of code.
In order to call >> newtonpoly(start,n) implicitly on a command line with success,
the two implicit inputs “start” and “n” must have been declared previously and must be
available in the current workspace. Of course, one can also call newtonpoly9 explicitly
by entering >> newtonpoly(21,42), for example, on the command line if one wants to
see the list of 41 Newton iterates for the same polynomial-root problem, starting from
start = x0 = 21.
Our MATLAB programs generally carry many comments after a % sign so that the reader
can better understand what we do when and why. This will help our users to adapt our
printed programs for other purposes.

Here is the output for the Newton iterates 0 - 41 starting with the initial guess x0 = 3.

>> newtonpoly9(3,42);

iteration counter x(i) counter x(i) counter x(i)

0 3 14 2.1922 28 2.0606

1 2.8889 15 2.1709 29 2.0655

2 2.7901 16 2.1519 30 2.0524

3 2.7023 17 2.135 31 1.977

4 2.6243 18 2.12 32 4.1992

5 2.5549 19 2.1067 33 3.9548

6 2.4933 20 2.0949 34 3.7376

7 2.4385 21 2.0845 35 3.5446
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8 2.3897 22 2.0756 36 3.3729

9 2.3464 23 2.0665 37 3.2204

10 2.3079 24 2.0563 38 3.0848

11 2.2737 25 2.0482 39 2.9643

12 2.2433 26 2.0764 40 2.8571

13 2.2163 27 2.0678 41 2.7619

Note how slowly the Newton iterates decrease from our start at x0 = 3 to 2.0524 in 30
steps. Then the iterates slip below the root x∗ = 2 to 1.977 in step 31 and the 32nd
iterate jumps far away from its aim x∗ = 2 to 4.1992. At x = 1.977..., obviously the
“randomness” in evaluating p and p′ near x = 2 takes the Newton iterates completely
off target to 4.199..., from where the Newton iterates come back slowly again to within
about 3% of x∗ = 2. Then they may converge or get pushed off target once more, etc.
The students should try other starting values and observe the inherent limits of both
bisection and Newton’s method for finding multiple roots or finding nearly flat and
slanted intersections of the graph of f with the x axis.

MATLAB’s O(n3) polynomial-root finder roots, used for the same polynomial p, en-
counters different problems and computes 4 complex conjugate root pairs instead. These
lie on a small radius circle around the ninefold root 2. As input for roots, we represent
our polynomial (x − 2)9 of degree 9 in extended form by its coefficient vector [1 -18 ...
2304 -512].
>> roots([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512])

ans =

2.0609

2.0458 + 0.039668i

2.0458 - 0.039668i

2.0089 + 0.059025i

2.0089 - 0.059025i

1.9696 + 0.050203i

1.9696 - 0.050203i

1.9453 + 0.019399i

1.9453 - 0.019399i

roots is based on the MATLAB matrix eigenvalue finder eig. This matrix eigenvalue
finder tries to find all roots of p from the associated companion matrix C(p) by using
the QR algorithm. The computed roots are quite inaccurate and most are accidentally
computed as complex numbers.
Only the earlier mentioned faster O(n2) polynomial-root finder pzero discovers the nine-
fold real root 2 of p correctly; see the Resources appendix for a quote of the literature
for pzero and the folder pzero on our CD for the actual MATLAB code of pzero.

>> pzero([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512])

ans =

2

2

2

2

2

2

2

2

2
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Unfortunately, in chemical and biological engineering problems multiple roots or near
multiple roots occur often; for example, look at Figure 3.2 on p. 71 and the slanted
intersections marked by (1), (2), and (3). These force us to devise specific better numerical
methods for such problems in Sections 3.1 and 3.2.

Exercises
1. Use the m file fzerotry1.m on p. 27 as a template for finding the roots of

other functions f of your own choice. Vary the initial guesses as fits your
chosen f .
(It is best to use a plot routine for f when looking for likely root candidates;
see the next problem.)

2. Develop a plotting code for Problem 1 that is based on the plotting commands
in poly9.m on p. 27. (You will probably not need to use the subplot(...)
command.)

3. Adapt fzerotry2.m on p. 30 to various other polynomials of your choice. Use
polynomials of degrees less than 7 that have some multiple roots, as well as
no multiple roots. What happens to the complex roots of a polynomial under
fzero?

4. Repeat Problem 3 with newtonpoly9.m on p. 30.

5. Modify the MATLAB function m file newtonpoly9.m on p. 30 to print out
three columns of iterates with their iteration indices for all values of k.
[Hint: the first output column should contain the iterates indexed from 0 to[

k
3

]− 1, the second one those from
[

k
3

]
to 2 · [k

3

]− 1 and the last from 2 · [k
3

]
to k, padded by blanks if needed. To achieve this, you need to adjust/replace
the last three lines of code only.]

6. Learn to plot complex numbers on the complex plane by calling >> x =
roots([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512]), for exam-
ple, first and then plotting the real and imaginary parts of the output vector
x, as well as x∗ = 2. Use the * symbol to plot the entries of x and the + symbol
for x∗ = 2. Where do the computed roots lie in the complex plane? How can
you describe their location? Also evaluate abs(x-2); what do these numbers
mean and signify?

In closing we remark that not all scalar equations are solvable. For example, equations
such as sin(x) = 7, esin(x) = 0, ecos(x) = 20, or |x|2 + |x|4 = −2 are all unsolvable since
none of the values chosen for the right hand sides lie within the range of the respective
functions on the left. In chemical/biological and any branch of engineering, however,
correctly posed problems will result in equations that always have solutions.

However, many equations that we shall encounter in this book will have more than one
solution for a given set of the parameters, indicating that the modeled chemical/biological
process can actually be in one of several steady states, depending on its recent history or
start-up and on the internal dynamics of the system as described by differential equations.
Such behavior signifies bifurcation and this is where the fun begins.
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1.2.2 Differential Equations; the Basic Reduction to First Order
Systems

Scalar equations, as studied earlier, depend on one or several real variables x, y, t, T, ....
Differential equations instead link various derivatives of one or more functions f(...),
g(...), y(...), ..., each with any number of variables. These mathematical “functions” de-
scribe “state variables” in engineering parlance. Differential equations are equations in
one or more variables and in one or more functions of the variables and in their deriva-
tives. They involve independent variables such as space and time, and dependent, so
called “state variables” or functions and their derivatives. Many physico-chemical pro-
cesses are governed by differential equations or systems thereof, that involve unknown
functions f, g, ... in various variables and various of their derivatives f ′, g′, ...; f ′′, g′′, ...
etc.
The task of modeling is to obtain valid scalar, differential, or other type of equations
(integral, integro-differential, etc) that describe a given physical system accurately and
efficiently in mathematical terms. Numerical analysis and computations then lead us to
the solution values or to the solution function(s) themselves from the model equations.

When trying to solve differential equations, we look for functions as supplying us
with the “solution” to our problem. Differential equations problems generally include
additional information on the solution function in their formulation, such as knowledge
of some initial conditions for the solution, knowledge of some function behavior at the
boundaries of the variable range, or a mixture thereof. Hence differential equations nat-
urally fall into the categories of IVPs or of BVPs, signifying initial value problems
or boundary value problems, respectively.
A different classification scheme for DEs, short for differential equations, separates
those DEs with a single independent variable dependence, such as only time or only
1-dimensional position, from those depending on several variables, such as time and spa-
tial position. DEs involving a single independent variable are routinely called ODEs, or
ordinary differential equations. DEs involving several independent variables such
as space and time are called PDEs, or partial differential equations because they
involve partial derivatives.

As this book is mainly intended for undergraduates, we only treat those chemical/bio-
logical processes and problems that can be modeled with ODEs. PDEs are significantly
more complicated to understand and solve. However, we will often have to solve systems
of ODEs, rather than one single ODE. Such ODE systems contain several DEs in one
and the same independent variable, but they generally involve several functions or “state
variables” in their formulation. In fact, systems of ODEs (and matrix DEs) occur quite
naturally in chemical/biological engineering problems.

A single nth order ODE for one unknown function f(x) is an equation of the form

f(n)(x) + an−1(x)f(n−1)(x) + ... + a1(x)f ′(x) + f(x) = g(x) (1.7)

which involves f(x) and the derivatives f ′(x), f ′′(x), ..., f(n)(x) of f up to and including
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order n. Here we have normalized the coefficient function of f(n)(x) to be 1. In (1.7) each
of the coefficient functions ai(x) can be a constant function ai(x) = ai ∈ R for all x, or a
function ai(x) : R → R in the variable x. Analytical descriptions of the solution f in form
of a “formula” for f are desirable, but unfortunately almost always impossible to find.
On the other hand, numerical solutions can routinely be found for (1.7) by converting
the nth order DE first into a system of n first-order DEs involving n auxiliary functions
yi(x) as follows:
Set y1(x) := f(x) ,

y2(x) := f ′(x) ,
...

yn−1(x) := f(n−2)(x) , and
yn(x) := f(n−1)(x) .

And define

y := y(x) =

⎛⎜⎝ y1(x)
...

yn(x)

⎞⎟⎠ ∈ R
n

by its component functions yi : R → R. Then the function y(x) : R → Rn satisfies the
following system of DEs for its components yi:

y′(x) =

⎛⎜⎜⎜⎜⎜⎝
y′1
y′2
...

y′n−1

y′n

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
y2

y3

...
yn

g(x) − an−1(x)f(n−1)(x) ... − a1(x)f ′(x) − f(x)

⎞⎟⎟⎟⎟⎟⎠ (1.8)

since y′1 = y2 = f ′, y′2 = y3 = f ′′, ..., and y′n−1 = yn = f(n−1) by definition and

y′n(x) = f(n)(x)
= g(x) − an−1(x)f(n−1)(x) − ...− a1(x)f ′(x) − f(x)
= g(x) − an−1(x)yn(x) − ... − a1(x)y2(x) − y1(x)

according to (1.7).
We can rewrite (1.8) in matrix form:

y′(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1
.
..

..

.
. . .

. . . 0
0 . . . . . . 0 1
−1 −a1(x) . . . . . . −an−1(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
y1

y2

..

.
yn−1

yn

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
0
0
..
.
0

g(x)

⎞⎟⎟⎟⎟⎟⎠ = A(x) y(x)+

⎛⎜⎜⎜⎜⎜⎝
0
0
..
.
0

g(x)

⎞⎟⎟⎟⎟⎟⎠
(1.9)

Here the DE system matrix A(x) is a last row companion matrix whose entries in the
last row may depend on x. More specifically, most of A’s entries are zero, except for ones in
its upper co-diagonal and for the negative coefficient functions −1, −a1(x), ..., −an−1(x)
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of (1.7) in its last row. Note that the last row companion matrix A(x) is similar to a
first row companion matrix for polynomials p of the form C(p) in (1.2) that we have
encountered earlier with MATLAB’s roots function. To see this, we simply need to
reverse the order of the components yi of y. This corresponds to a basis change E−1 ·
A(x) · E that is affected by the counterdiagonal matrix

E =

⎛⎝ 0 1
. . .

1 0

⎞⎠
n,n

;

refer to the Appendix on linear algebra and matrices. E turns any vector

y =

⎛⎜⎝ y1

...
yn

⎞⎟⎠ upside down to become Ey =

⎛⎜⎝ yn

...
y1

⎞⎟⎠
as can be readily verified by multiplying matrix E times vector y.
An nth order DE is called homogeneous if g(x) in (1.7) is the zero function; and it is
called nonhomogeneous if g is not the zero function.

Example: (Transforming a third order ODE into a system of three first-order ODEs)

Assume that f = f(t) is a real valued real variable function in the independent
time variable t. Assume that f satisfies the third order ODE

f ′′′(t)+a1f
′′(t)+a2f

′(t)+a3f(t) =
d3f

dt3
+a1

d2f

dt2
+a2

df

dt
+a3f = F (t, f) , (1.10)

where the coefficients ai can be scalars or functions ai = ai(t) of t and the right
hand side is an arbitrary given function F of t and f .
If we set y1(t) = f(t), y2(t) = dy1/dt = df/dt = f ′(t), and y3(t) = dy2/dt =
d2y1/dt2 = d2f/dt2 = f ′′(t), then dy3/dt = d3f/dt3 = f ′′′(t). And equation (1.10)
can be written as

dy3

dt
+ a1y3 + a2y2 + a3y1 = F (t, y1) .

Thus the given third order ODE (1.10) is equivalent to the following system of
three first-order ODEs.

dy1

dt
= 0 · y1 + y2 + 0 · y3

dy2

dt
= 0 · y1 + 0 · y2 + y3 (1.11)

dy3

dt
= −a3y1 − a2y2 − a1y3 + F (t, y1)
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If we further combine the individual functions yi : R → R into one vector valued
function

y =

⎛⎝ y1

y2

y3

⎞⎠ : R → R
3 with y′ =

⎛⎝ y′1
y′2
y′3

⎞⎠ ,

then the system of three ODEs (1.11) becomes the following matrix ODE system

y′(t) =

⎛⎝ 0 1 0
0 0 1

−a3 −a2 −a1

⎞⎠ y(t) +

⎛⎝ 0
0

F (t, y1)

⎞⎠ ,

exemplifying formula (1.9).

Numerical ODE solvers generally work for first-order systems

y′ = F (x, y) (1.12)

and y : R → Rn for arbitrary dimensions n. Here F is allowed to be much more general
than in formula (1.9). In the next subsections we first deal with initial value problems
where initial conditions such as y(x0) = y0 ∈ Rn, y′(x0) = y′0 ∈ Rn, ... for y(x) are
given, and then with solving boundary value problems where boundary conditions such
as y(a) = ya ∈ Rn, y(b) = yb ∈ Rn, y′(a) = y′a ∈ Rn, y′(b) = y′b ∈ Rn, ... are given
instead for an interval a ≤ x ≤ b. All ODE algorithms and numerical codes can be
adapted readily by “vectorizing the codes” to work with n functions

y(x) =

⎛⎜⎝ y1(x)
...

yn(x)

⎞⎟⎠
and all higher order systems of ODEs can be transformed into first-order n-dimensional
systems (1.12) y′ = F (x, y). To solve specific ODEs numerically, the user first has to
rewrite the model DEs in first-order multi-component form (1.12) and thereafter he/she
can use any appropriate vectorized MATLAB ODE solver. We shall practice this “rewrit-
ing” repeatedly whenever it comes up in our chemical/biological models.

1.2.3 Solving Initial Value Problems

Due to the preceding remarks, we can limit our considerations to the case of one first-
order IVP (n = 1) in one function or state variable y : R → R and one independent
variable x, starting at x = a with the initial condition y(a) = ya ∈ R. We want to solve
the given IVP for the unknown function y(x) and the given right hand side F (x, y). In
other words, we seek the values of y(x) for all values of x in the interval [a, b]. Expressed
in mathematical notation, we thus seek to solve

y′(x) = F (x, y) with x ∈ [a, b] and y(a) = ya ∈ R . (1.13)
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Here F and ya are known. The function y(x) : R → R is unknown on the interval [a, b],
except for its initial value y(a) = ya, called the initial condition.

To start we consider a partition a = x0 < x1 < x2 < . . . < xN = b of the interval
[a, b]. If we integrate (1.13) from xi to xi+1, then by (1.13)

xi+1∫
xi

y′(x)dx =

xi+1∫
xi

F (x, y(x))dx .

The fundamental theorem of calculus allows us to rewrite the left hand side as y(xi+1)−
y(xi). Thus for each i we obtain

y(xi+1) = y(xi) +

xi+1∫
xi

F (x, y(x))dx

⎛⎝=

xi+1∫
xi

y′(x)dx

⎞⎠ . (1.14)

Numerical ODE solvers use this equation to find approximations yi+1 for the value
y(xi+1) of y at xi+1 from F , yi, and possibly other data. Sophisticated ODE solvers use
several previously computed approximate values yi−1, yi−2, ... of y(xi−1), y(xi−2), ... .
To do so by approximately integrating the right hand side function F of (1.13) from xi

to xi+1 in (1.14) according to (1.14). To solve IVPs means to integrate F = y′ numeri-
cally in order to find yi+1, yi+2, ... and so forth from known values of yj ≈ y(xj) for j ≤ i.

If we know xi, yi, and F , we can evaluate F (xi, yi) (≈ y′(xi)) to learn the direction
that the unknown curve y takes from the point (xi, yi). This is depicted in Figure 1.3
for Euler’s10 rule and i = 0, 1, 2, 3. In Euler’s rule the computed value of yi ≈ y(xi) is
used to compute the next value yi+1 ≈ y(xi+1) of equation (1.14) by linear extrapolation
using the point-slope formula of a line. This line is determined by the point (xi, yi) and
the slope F (xi, yi) ≈ y′(xi). Using this data, yi+1 is taken as the y-value on this line that
is reached at xi+1, or

yi+1 = yi + F (xi, yi) · (xi+1 − xi) for i = 0, . . . , N−1 .

10Leonhard Euler, Swiss mathematician, 1707-1783
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In Euler’s rule we move from an approximate point (xi, yi) along the line with the slope
F (xi, yi) ≈ y′(xi) for xi+1 − xi units to reach the approximate value yi+1 of y(xi+1) at
xi+1. Then we recompute the slope at xi+1 as F (xi+1, yi+1) ≈ y′(xi+1) and move along
a line with this slope for xi+2 − xi+1 units to reach the approximation yi+2 of y(xi+2)
etc., as depicted in Figure 1.3 in the dotted line segments. The Euler method is called a
one-step method since yi+1 is computed from only one earlier value yi and F (xi, yi).
The practical limits of this simple integrator are obvious from Figure 1.3. The true curve
y(x), drawn out continously, diverges from our computed approximations, depicted by
small circles o, and ever worse so: the farther away from the starting point (x0, y(x0))
we integrate and the larger the steps of integration are, the larger becomes the difference
between the curves and the computational error.

There are more refined one-step integrators than Euler’s method. Multi-step in-
tegration methods use more than just one previously computed yi and F value and
thereby they can better account for y’s curvature and higher derivatives. Thus they follow
the actual solution curve much closer. But in turn, they need more supporting F data
computations.

Euler’s formula has been improved manyfold over the last century or two. To better
account for the “turning”, or for the concavity of the solution curve y(x), improved
integration formulas involve several evaluations of F in the interval [xi, xi+1] and then
average. For example, the classical Runge11-Kutta12 integration formula uses four

11Carle Runge, German mathematician, 1856-1927
12Martin Kutta, German mathematician, 1867-1944
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evaluations of F :

yi+1 = yi + hi

{
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4

}
with hi := xi+1 − xi and

k1 = F (xi, yi),
k2 = F (xi + (hi/2), yi + hi(k1/2)),
k3 = F (xi + (hi/2), yi + hi(k2/2)),
k4 = F (xi + hi, yi + hik3).

With hmax := max(xi+1 − xi), the global error order of the classical Runge-Kutta
method is of order 4, or O(h4

max), provided that the solution function y of (1.13) is 5 times
continuously differentiable. The global error order of a numerical integrator measures the
maximal error committed in all approximations of the true solution y(xi) in the computed
y values yi. Thus if we use a constant step of size h = 10−3 for example and the classical
Runge-Kutta method for an IVP that has a sufficiently often differentiable solution y,
then our global error satisfies

max |yi − y(xi)| ≤ K · h4 = K · (10−3)4 = K · 10−12

for all intermediate points (xi, y(xi)), a problem specific constant K, and all i. For com-
parison, the Euler method has global error order O(hmax). If applied to the same problem
and step size, it will only compute y(xi) with global errors bounded by C · 10−3 for an-
other constant C.
The price we pay for more accurate higher order methods such as the classical Runge-
Kutta method has to be paid with the effort involved in their increased number of function
evaluations. Many different Runge-Kutta type integration formulas exist in the literature
for up to and including order 8, see the Resources appendix.

Ideally, an integrator should account for the variations in the solution y(x). In regions
of x where y(x) has constant slope, for example, one can integrate y correctly over large
intervals even with Euler’s simple line method. When the graph of y(x) twists and turns
rapidly, the integrator should be able to recognize this and use higher order methods
combined with smaller steps. This has lead to adaptive integrators with an internally
varying step size control that depends on y’s variation. Adaptive methods usually are
built upon two integrators of differing error orders, in which the high order integrator
reuses some of the function evaluations that the low-order integrator uses so that the total
computational effort is minimized. The results of the two methods at xi+1 are compared
and if they agree satisfactorily, the solution curve is deemed to be well matched, allowing
for subsequently larger steps. If they disagree enough, then the step size is reduced to
account for the relatively high variation of the solution. Such integrator pairs are called
embedding formulas.

There are several adaptive integrators available in software form inside MATLAB.
Their names are ode45 for a Runge-Kutta embedding formula of orders 4 and 5, ode23
of a Runge-Kutta embedding formula of orders 2 and 3, and ode113 of the predictor-
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corrector formula of Adams-Bashford-Moulton 13 with global error order 6. In fact,
Adams and Bashforth developed the predictor part of the predictor-corrector integration
formula in the mid 1800s and Moulton added the corrector part early in the 20th century
to make it truly adaptive.
All of the above mentioned MATLAB integrators are recommended for general use. Their
differences are subtle and too tedious to explain here; please look at MATLAB’s help.
For stiff differential equations MATLAB offers the integrators ode15s, ode23s, ode23t,
and ode23tb. Stiff ODEs are quite common in chemical/biological engineering IVPs and
BVPs, but we will defer discussing stiffness until it appears naturally in Chapters 4 and
5 with specific initial and boundary value problems.
This is but a short introduction to numerical methods.
For more help to decide which ODE solver to use, type >> more on, type ode...,
more off, rather than only help ode....

We shall subsequently use the MATLAB ODE solvers as black boxes, sometimes vary-
ing between the individual ones only for higher speed or better accuracy when warranted.
Our students should experiment freely with using either of the above seven ODE solvers
to learn which is more advantageous where. It only takes a different call of MATLAB to
find out.
To make certain that a chosen ODE solver has solved the IVP correctly, we recommend
to decrease the allowed error bounds repeatedly inside the respective MATLAB ode...
call and to verify that the computed solution does not change significantly. See p. 201 in
Chapter 4 for more details.
For those eager to see some MATLAB ODE examples, we advice to click on the MAT-
LAB desktop “Help” button and to search for “Differential equations” on the left side
“Navigator” under the “Search” option. Scrolling down, you will find six clickable items
on ODEs and the “Examples” contain more on ODEs in MATLAB.

As told earlier for scalar equations, we must be well aware that there are unsolvable
IVPs for which the solution may, for example, “blow up”, i.e., have a pole before reaching
the right endpoint of the target interval [a, b]. Likewise, an IVP may have multiple
solutions, especially if the number of initial conditions is less than the order of the DE or
the dimension of the first-degree system. But under mild mathematical assumptions of
continuity and Lipschitz14 boundedness ‖F (x, y)−F (x, ỹ)‖ ≤ L‖y−ỹ‖ of the function F
in (1.12), every ODE system y′ = F (x, y) with y = y(x) : R → Rn and with n specified
initial conditions y(x0), y′(x0), ... , y(n−1)(x0) ∈ Rn at x0 ∈ R will have a unique
solution; we refer the reader to the literature quoted in the Resources appendix at the
end of this book.

13John Couch Adams, English astronomer, 1819-1892
Francis Bashforth, English astronomer, mathematician, and ballastician, 1819-1912
Forest Ray Moulton, US astronomer, 1872-1951

14Rudolf Lipschitz, German mathematician, 1832-1903
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1.2.4 Solving Boundary Value Problems

For boundary value problems of ordinary differential equations the first step is to
reduce the problem to a first-order system of DEs of dimension n ≥ 1 as described in
Section 1.2.2. Once this is done, one needs to solve the system of DEs

y′(x) = F (x, y) (1.8)

for the unknown function y : R → Rn with n component functions

y(x) =

⎛⎜⎝ y1(x)
...

yn(x)

⎞⎟⎠
and all x ∈ [a, b]. In BVPs certain boundary conditions are imposed on the solution y
at the interval ends a and b. The initial IVP data of size n that specifies y(a) and possibly
y′(a) etc. at the initial value x = a of an IVP is distributed here among the two endpoints
of the BVP in order to tie the solution y(x) down at both ends x = a and x = b. Since
fewer than n initial conditions at a are specified in a BVP than in the corresponding IVP,
one can use this freedom at x = a to parameterize the non specified initial conditions so
that the resulting IVP with the parameterized set of initial conditions reaches the right
endpoint y(b) = yb as desired. The standard approach to solving a BVP is to vary the
parameterized and unspecified initial conditions of the corresponding IVP at the start
x = a until the desired terminal condition(s) at x = b are satisfied. This method is called
the shooting method.

It goes back to the ancients:
If your arrow strikes above or behind the target, just lower the bow, i.e., decrease the
slope or the derivative of the solution curve at the start, in order to hit the target. Vary
this initial angle (the free parameter) slightly until the arrow hits just right.

This shooting and adjusting process itself can be modeled by a nonlinear equation
that has to be solved in order to move along the trajectory y from a to b that satisfies
the ODE system (1.12) and the boundary conditions. In a numerical shooting method,
we solve an underdefined IVP first, with some unspecified free parameters, and then we
try to solve the boundary value problem by adjusting the free parameters to satisfy the
right endpoint boundary conditions. This may be possible to do, or the BVP may not be
solvable at all. A BVP may have many, even infinitely many solutions. Finding the proper
set of initial conditions involves solving a nonlinear system of equations iteratively after
each parameter specified IVP has been solved. The IVP is generally solved by one of the
methods described in the previous section, while the intermediate nonlinear equation is
generally solved by a Newton iteration.

In practice it is advantageous to subdivide the interval a = x0 < x1 < ... < xN = b
and to solve the N sub-BVPs as parametric IVPs on each subinterval from xi to xi+1

for i = 0, 1, ...,N − 1 first. This is followed by solving the resulting nonlinear system in
the parameters so that the values of adjacent sub-functions match at each node xi in
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order to obtain a global solution y(x) of the BVP from a to b. Such multi-shooting
methods rely heavily on an initial guess of the shape of the solution y. The initial guess
serves as a first approximation for each of the N sub-IVPs from xi to xi+1. The variable
parameters at each node xi are then adjusted by a Newton iteration of the form (1.5) for
the corresponding nonlinear system of equations f = 0 in the free initial value parameters
until the individual pieces of the solution y match at the nodes and the concatenated
function y satisfies the ODE and the given endpoint boundary conditions.

MATLAB uses a collocation method in its BVP solver bvp4c that improves on
the multi-shooting method in situations where the function value at the endpoint of an
integration is very sensitive to variations of the free parameters at the starting point of
the sub-IVPs and where ordinary shooting and multi-shooting methods generally fail.
The numerical integrator used by bvp4c on each subinterval is a Simpson rule15 of or-
der 4; see the quoted literature in the Resources appendix. The subinterval solutions are
represented in bvp4c as third degree polynomials Si(x). These are computed so that their
derivatives S′

i agree not only at the respective endpoints xi and xi+1 of each subinterval,
but also so that they agree at the subinterval midpoints with F as defined in (1.12), i.e.,
S′((xi + xi+1)/2) = F ((xi + xi+1)/2, S((xi + xi+1)/2)). To make this matching possible
with third degree local polynomials Si, collocation methods internally subdivide the pa-
rameter intervals further when indicated.
The bvp4c MATLAB code can deal with singular ODEs and we shall explain its use and
the necessary preparations in Chapter 5. In fact there we show how to modify the inner
workings of the built-in MATLAB BVP code bvp4c so that it does not stop when an
intermediate Newton iteration encounters a singular or near singular Jacobian matrix,
but rather continues with the least squares solution. The modifications to bvp4c will be
explained when there is need in Chapter 5.
Under the MATLAB “Help” button, when searching for “Differential Equations”, a list
of eight topics on BVPs will pop up for those who want to have a preview of MATLAB’s
BVP capabilities.
This short introduction has given only a broad overview of BVP solvers; for more infor-
mation we refer the reader to the relevant items mentioned in our Resources appendix.

1.2.5 MATLAB m and Other Files and Built-in MATLAB Func-
tions

In the previous sections we have used MATLAB commands that were typed in on the
>> desktop command line, as well as MATLAB commands that invoke special stored
MATLAB files, called m files. When starting to work with MATLAB, we advise our
users to create a special folder for their personal MATLAB m files once and to continue
to use this folder to store personal m files. To access the stored m files from the MATLAB
desktop, the user has to point the small desktop window called “Current Directory” to
the personal m file folder. Then all stored m files, as well as all built in MATLAB func-
tions can be accessed, called upon, and used from the command line. All stored personal

15Thomas Simpson, English mathematician, 1710-1761



44 Chapter 1: Computations and MATLAB

m files can be opened by clicking on the “open file” icon; they can be printed, edited,
and saved by the customary icon clicks. And new m files can be created as well.

MATLAB m files can contain any number of MATLAB commands. They are handy
for long sets of MATLAB instructions or data and afford easy repeated use and easy
modification. There are two kinds of MATLAB m files: function and script m files.
Script m files such as poly9.m on p. 28 use the data that is defined inside of them and
any undefined data is taken from the data (with the proper name) that is currently active
on the workspace; look at the top left window commonly displayed on the MATLAB
desktop for a list of defined variables and their type. Script files overwrite the workspace
data as instructed in their code.
Function m files such as fzerotry1m on p. 27 work in their own closed environment
instead: all data used must be supplied as input or generated inside the function m
file. Data is not exchanged with the workspace, except for the variables mentioned as
“output” and “input” on a function m file’s first line such as function y = f(x) %
evaluate y=f(x) for y and x, for example. By a call of >> y = f(x) the input variable
x is not altered in the workspace, but the output variable y is. Calling >> x = f(x) for
a function m file named f.m is allowed and updates the workspace variable x to become
equal to f(x). Note that a function m file starts with the word function, followed by
a blank space, and the name of the (optional) output variable(s) or vector(s) such as y or
[y,n,error] for example, if output is desired. The output designation is followed by the
equal sign = and the name of the function with its input(s) from the workspace, such as
function y = g(x,z,k) if f allows three input variables x, z, and k and computes one
output y for example. Another function called funct is defined on the following lines by
specifying its output variables y and s from its input variables x, z, and k. This example
function m file computes the kth root of x2 + z2 and produces the output

y = k
√

x2 + z2 ,

as well as an “indicator” s (for possible later use in further computations), that is set
equal to 1 if x ·z ≥ 0 and equal to s = −1 if x ·z < 0. Here is the example program funct:
function [y,s] = funct(x,z,k) % compute kth-root(x^2+z^2) and a sign indicator s

y = (x^2 + z^2)^(1/k);

s = 1; if x*z < 0, s = -1; end

If this function m file is stored as funct.m in the current desktop working directory, it can
be called and executed in MATLAB by typing >> funct(3,5,17) or >> x=3; z=5;
k=17; [yy,sign] = funct(x,z,k) for example. These calls will create the following se-
quence of outputs.
>> funct(3,5,17)

ans =

1.2305

>> x=3; z=5; k=17; [yy,sign] = funct(x,z,k)

yy =

1.2305

sign =

1
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>> [why,ka] = funct(3,5,17); pause, why, pause, ka

why =

1.2305

ka =

1

In our first call above, we have not named an output and we have omitted the “no screen
output” colon ; so that the first (unnamed) output variable y is displayed only as ans.
In the second call of funct we have preceded the call of funct by assigning names to
both outputs and have followed the command funct(x,y,k) with a blank space. This
creates the screen output of both variables, called yy and sign by us. In the last call the
command names the output why and ka and it is followed by a colon ; . Therefore, we
have no output to the screen initially. Only after the pause command is ended by hitting
the “return” key does the output called why appear on screen. After another “return”
stroke to overcome the second pause command, the second output ka is displayed. Note
that in the second command the computed values for yy and sign are both available in
the workspace whether we use a blank, a comma, or a colon following the call of funct
since the output is explicitly defined on the command line. Likewise for the third call of
funct and why and ka. If on the first command line, however, we had finished the com-
mand funct(3,5,17); with a colon ; instead, then there would have been no output at
all, not onto the screen, nor onto the workspace.
The reader should study our earlier MATLAB m files now, such as the script m file
poly9.m on p. 28 and the function m file fzerotry1.m on p. 27 and look for their differ-
ences.

Data files can be saved from one session of MATLAB to another by the save com-
mand. Below is the screen output of commands that create a 3 by 3 matrix A, then
save it (as A.mat) in the current working directory, and finally clear all variables in the
workspace with the clear all command. Commanding only clear A would have suf-
ficed to clear, i.e., delete A alone from the MATLAB workspace. We then check that
A is in fact gone from the workspace; A now resides in the file A.mat in the current
working directory of MATLAB. We can resurrect the data in A by using the load com-
mand for A and A will be again available on the MATLAB workspace. Just follow our
diary below. Note that in MATLAB the n by n identity matrix In,n with zeros ev-
erywhere except for ones on its main diagonal, can be generated by the command eye(n).
>> A = randn(3)-20*eye(3)

A =

-19.142 -1.441 0.69

1.254 -19.429 0.81562

-1.5937 -0.39989 -19.288

>> save A

>> A

A =

-19.142 -1.441 0.69

1.254 -19.429 0.81562

-1.5937 -0.39989 -19.288

>> clear all

>> A

??? Undefined function or variable ’A’.
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In our last call >> A, we have asked MATLAB to display the “variable” A that was
present on the workspace before we cleared the whole workspace with the clear all
command. Of course at that moment A is no longer available on the workspace, having
been cleared from workspace storage. To view or use our stored copy of A again we
simply need to load it with a load A command onto the current workspace and we can
continue working with A as we please. The MATLAB save and load commands are very
useful for storing and reusing data from session to session, over days or weeks. And often
it helps MATLAB’s efficiency to call clear all after long sessions in order to free up
workspace memory. Here is what happens when we reload A and display it.
>> load A

>> A

A =

-19.142 -1.441 0.69

1.254 -19.429 0.81562

-1.5937 -0.39989 -19.288

MATLAB can keep a diary of a session or parts thereof via the commands diary or
diary June12, for example, which collects all screen output in a file called “diary” or
“June12”, respectively, in the current working directory. The command diary off stops
the collection of the on-screen information. If the diary on command is given later in
the same session, the subsequent screen output will be appended to the previous diary
and saved. Please read up on diary by entering >> help diag.

Figures and plots can be generated easily via MATLAB. These can be transformed
into and stored in many formats, such as MATLAB’s generic ,,,.fig, or as Jpeg,
postscript, RAW, TIFF, etc. files as desired. Simply look at the dialogue box that pops up
from the save icon of a MATLAB figure. For a quick introduction to MATLAB graphics,
type >> demo matlab graphics and a “Help” window will open, that lets you choose
several clickable graphics demonstrations. We defer further explanations to our relevant
graphics codes in later chapters.

The last part of this section lists a few standard MATLAB operations, functions, and
commands, collected into groups, together with short descriptions. This may help our
readers to more easily find and use built-in MATLAB functions in their own MATLAB
program codes. Please note that our MATLAB function descriptions below are very few
and very short by necessity. The user should use the help ... command to find the full
length MATLAB reference guide entry for each MATLAB function when the need arises.
This will help our readers use the full power and functionality of MATLAB commands
and will enable them to browse for and find related built-in MATLAB functions.
The printed MATLAB Function Reference Guide book consists of three volumes amount-
ing to about 2,000 pages that list every one of about 1,000 built-in MATLAB functions.
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MATLAB Desktop Utilities

clear Deletes items from the workspace. clear all clears the whole workspace. Rec-
ommended after long sessions on the same MATLAB desktop.

clf This command clears the current figure window and thereby avoids superimposed
images if a hold command is still active on the window.

close Deletes the current figure, or a specified figure. close all closes all figure win-
dows.

help Calling >> help ... at the MATLAB command line displays the comment lines
on screen that explain the function ... .

quit This command exits the current MATLAB desktop. Upon calling >> quit MAT-
LAB saves the previous command history, while simply closing the desktop via the
mouse does not keep the history of commands in MATLAB’s memory.

↑, ↓ ↑ entered on the keyboard brings up the previous command on the command line,
and the command before the previous one when pressing ↑ again, etc. ↓ allows to
go forward in the command history.

Arithmetic Operations in MATLAB

+, -, ∗, /, ^ Elementary mathematical operations : plus, minus, times, divide, and power
or exponentiation.
If any of the arithmetic symbols is preceded by a dot . such as in x.*y for two row
vectors x and y of the same length, for example, the indicated operation is per-
formed element by element and results in the row vector (x1y1, ..., xnyn), while
x.^y becomes (xy1

1 , ..., xyn
n ).

Special Characters in MATLAB

@ Creates a function handle, so that functions can be passed to MATLAB function m
files as variables are.

... Three dots ... indicate a line break inside a MATLAB command. Useful to break
long lines of contiguous code, such as with title text.

% The percentage sign makes all that follows on the same line into commentary to be
skipped during execution of the file. See p. 232 for details on how to effectively
(un)comment whole blocks of MATLAB code.
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Elementary Functions in MATLAB

feval Evaluates a function for the supplied arguments. The function may be given by
its “handle” as @func for a function m file named func.m.

clock Saves the current time as a date vector.

etime Evaluates elapsed time, often used in conjunction with clock.

exp Exponential function ex for the Euler16 number e = 2.71... .

log, log10 Logarithm for base e or base 10.

Elementary Matrix Generation in MATLAB

eye Creates the identity matrix.

ones Creates a matrix of all 1s.

rand, randn Creates a matrix with random entries; uniformly distributed or normally
distributed, respectively.

zeros Creates a matrix with all entries equal to zero.

norm Computes the norm of a matrix.

diag For vector input, diag creates a matrix whose diagonal is as prescribed with zeros
elsewhere. For a matrix input diag extracts the diagonal entries of the matrix in a
vector.

Elementary Matrix Functions in MATLAB

size Computes the size vector (number of rows, number of columns) of a matrix.

length Computes the maximal size max(number of rows, number of columns) of a ma-
trix.

linspace Creates a partition vector with linearly spaced nodes.

logspace Creates a partition vector with logarithmically spaced nodes.

\ Solves a linear system of equations.

lu The call of [L,U] = lu(A) computes a lower triangular matrix L and an upper
triangular one U with A = L · U if possible, using Gaussian elimination.

16Leonhard Euler, Swiss mathematician, 1707-1783
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qr The call [Q,R] = qr(A) computes a unitary matrix Q and an upper triangular
matrix R with A = Q · R using Householder elimination.

eig Calling eig(A) computes the eigenvalues of a square matrix A.

svd Calling svd(A) computes the singular values of a matrix A.

Sorting, Finding, and Comparison Functions in MATLAB

sort Sorts a real vector by size of the entries; a complex vector by the magnitude of the
entries.

abs Computes the componentwise absolute values of the entries of a vector or a matrix.

max, min Compute the maximal (or minimal) entry of each column of a real matrix, or
of the entries of a real vector.
To find the absolute largest entry in a real matrix A, use max(max(A)).

find The call [i,j] = find(A ~= 0) for example returns the row and column indices
of all nonzero entries in the matrix A.

fliplr, flipud Reverse the order of the entries of a vector or of the columns or rows of
a matrix, either left to right or up-down.

end When used as an index inside a matrix or vector statement this denotes the “final”
index of the vector/matrix. Not to be confused with the terminating “end” com-
mand of “for”, “while” or “if” loops. Avoids finding the size of a vector or matrix
first before working on the maximal index entry.

Logical Functions in MATLAB

==, ~=; <, <=, >, >= Equal sign in logic comparisons, not-equal sign; comparison signs.

&, | Logical “and” and “or” symbols.

for ... A “do loop” uses the syntax for "list", "action"; end such as in x =
zeros(1,21); for i = 1:2:21, x(i) = -i; end which sets every second com-
ponent in x equal to its negative index, i.e., x = (−1, 0,−3, 0, ....,−19, 0,−21).

while ... A “while loop” uses the syntax while "condition", "action"; end such as
in
i = 1; while i <= 21, x(i) = -i; i = i + 1; end which sets every com-
ponent in x ∈ R21 equal to its negative index, i.e., x = (−1,−2,−3, ....,−20,−21).

if ... else ... end The command if x > 2, A = 5; else, A = 20; end, for exam-
ple, sets A to be 5 if x > 2, and equal to 20 otherwise.
The syntax of an “if” statement is as follows: if "condition", "action"; end,
.
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try ... catch ... end The commands
A = [0 1;1,2]; b = [0,10]’; try, x = A/b; catch, x = 20; end, x,
lasterr, for example, try to solve a linear system of equations Ax = b for
x. But the command x = A/b; uses the wrong direction slash due to a typo.
If this command had been typed correctly as x = A\b;, then the above line of
commands would create no error message and the program would continue with

x = A−1b =
(

10
0

)
. As the command inside the original “try” segment fails,

however, x is set to 20 inside the “catch” segment and the program continues with
that value of x.
Check the output of our command line to verify this and then alter the forward

slash typo into a backslash for the correct output of the solution x =
(

10
0

)
to

Ax = b.
The syntax of a “try ... catch” statement is : try, "action1"; catch, "action2";
end, .

Special Input and Output Functions in MATLAB

nargin, nargout Number of input or output arguments of a MATLAB function. Used
to specify certain input parameters in the preamble of a MATLAB program or at
the end.

disp Causes screen output of its arguments.

error Displays an error message and terminates the program.

num2str Creates a string for a number to be used inside text strings, mainly used in plot
or screen annotations.

Definite Integral Evaluation in MATLAB

quad, quad8, quadl Evaluate definite integrals via different integration formulas.

Ordinary Differential Equation Solvers in MATLAB

For Initial Value Problems:

ode45,ode23 etc. Initial value problem solvers for various types of stiff and nonstiff
DEs.

For Boundary Value Problems:

bvp4c Boundary value problem solver for DEs.
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Graphing and Plotting Utilities in MATLAB

figure Creates a figure graphics object. Commands such as figure(1) and figure(2) etc,
preceding plot commands refer to different figure windows on the desktop.

subplot Divides the current figure window into multiple panes. Number of pane rows,
columns and the location of the next plot need to be specified.

meshgrid Generates the x and y coordinate matrices for plotting 3D surfaces.

plot The command plot(x,y) for two equal sized vectors x and y plots the lines between
each point (xi, yi) and the subsequent point (xi+1, yi+1) ∈ R2 in a linear 2-D plot
in the plane. Line type, line width, and color etc. can be further specified.

plot3 The command plot3(x,y,z) for three equal sized vectors x, y, and z plots the
lines between each point (xi, yi, zi) and the subsequent point (xi+1, yi+1, zi+1) ∈ R3

in a linear 3-D plot that projects the curve in R3 onto a planar image. Line type,
line width, and color etc. can be further specified.

semilogx, semilogy The command semilogx(x,y) for two equal sized vectors x and y
plots the lines connecting each point (xi, yi) and the subsequent point (xi+1, yi+1) ∈
R2 in a semi-logarithmic 2-D plot in the plane. Here the scale of the (horizontal)
x axis is logarithmic, while the vertical y scale is linear. Line type, line width, and
color etc. can be further specified.
semilogy(x,y) plots linearly in the horizontal scale and logarithmically on the y
scale.

loglog The command loglog(x,y) for two equal sized vectors x and y plots the lines
between each point (xi, yi) and the subsequent point (xi+1, yi+1) ∈ R2 in a two
axes logarithmically scaled plot in the plane. Line type, line width, and color etc.
can be further specified.

interp1 A call of Y = interp1(x,y,X) creates interpolating data X and Y from given
data x and y of points (xi, yi) ∈ R2. Used to plot smooth curves that interpolate
the (sparse) data x and y to obtain (usually) much larger data X and Y . Various
methods of interpolation such as splines etc. can be specified.

interp2 Same as interp1, except for three dimensional data x, y, and z of surfaces.

contour Two dimensional contour plot of a surface. For three equal dimensioned matri-
ces X, Y , and Z, contour(X,Y,Z) draws the surface Z = z(x, y) over the rectangle
with partitioned edges in X and Y . Level lines and types can be explicitly set, as
well as colors.

contour3 Plots contour lines on a 3D surface plot.

surf, surfc For three equal dimensioned matrices X, Y , and Z, surf(X,Y,Z) creates
a three dimensional color-shaded surface plot. And surfc(X,Y,Z) draws an addi-
tional contour plot below the surface.
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surface For three equal dimensioned matrices X, Y , and Z, surface(X,Y,Z) plots the
parametric surface of the data X, Y , and Z. Color can be specified.

Figure Window Manipulations

�+
/ ,

�-
/ Figure zoom functions to magnify or reduce an area of a plot. Used via the
mouse from the Figure window toolbar.

rotation icon When activated on the Figure window toolbar, the mouse can be used to

rotate 3D plots for better visualization. Can be used in conjunction with
�+

/ ,
�-

/ .

Color and Line Types in MATLAB

Color specifications: In MATLAB ’y’ stands for “yellow”, ’r’ for red, ’g’ for green,
’b’ for blue, ’k’ for “black”, etc. Alternatively one can specify color as an RGB
triple such as [1 0 0] for red, [0 0 0] for “black”, [1 1 0] for “yellow”, etc.
For surface and line color drawings it is advisable to define a colormap such as
colormap(hsv(128)) that contains 128 colors, varying from “red” hues through
“yellow”, “green”, “cyan”, “blue”, and “magenta” hues before returning back to
“red” hues.

Line type specifications: Specifying the line type by - creates a solid line; - - creates
a dashed line, : makes a dotted line etc. Plots can be marked by symbols such as
+ for the “plus” sign, or o, i.e., the lower case letter o, for small “circles”, or s for
squares, etc.
Line width can be specified as in plot(....,’LineWidth’,2), for example, by a
width given in “points” such as 1 for thin lines or 2 for wider ones in most of the
MATLAB plotting functions.

Fontsize specifications: Plot annotating utilities such as xlabel, ylabel, text, and
title allow fontsize settings for displayed text such as xlabel(...,’FontSize’,
12). Here 12 indicates the font to be used. Fontsize 14 is rather large and fontsize
8 rather small.

Rotation specifications: Plot annotating utilities such as xlabel, ylabel, text, and
title allow rotation of the text via text(....,’Rotation’,90). Here 90 indicates
a rotation of ninety degrees from horizontal positioning. A rotation by “0” will not
turn the text at all.
Note that in MATLAB ylabel defaults to a rotation of the text by 90 degrees, i.e.,
it displays the y text information sideways, unless a rotation by 0o is specified.

Figure text special commands: Titles and axes labels can carry mixed alphabetical
and numerical text. For this the string of words and numbers must be enclosed
by a [ ... ] bracket inside the title, xlabel etc. command. Consecutive words
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are enclosed by ’ ’, followed by a comma , and num2str(bt) if we want the
numerical value of β to appear amongst the plot annotations as in this example:
xlabel([’Example for standard data with \beta = ’,num2str(bt),’ for n
= ’,num2str(n)]).
Note that MATLAB accepts LATEX style alphanumeric input such as \beta above.
It creates the greek symbol β as intended.

MATLAB is a very simple language for computations. Its lines of numerical code are
often few and short. By comparison, the visual output and the proper texting of graphs
created in MATLAB may take much more effort than the numerics.
The MATLAB codes printed in this book give our readers a varied and solid introduc-
tion into the above and many other built-in MATLAB functions, as well as into their
functionality.

Students should always try to develop their own codes first for a problem before reading
or using the codes of this book and the CD. Then we think it is best to study, mimic, and
even imitate codes if they run smoother or better. Therefore, we encourage our readers
to read and study our codes well, but only after having tried their own.
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Chapter 2

Modeling, Simulation, and
Design of Chemical and
Biological Systems

After the introduction of the basic building blocks of MATLAB and the fundamentals
of numerical analysis with an eye on solving scalar and differential equations in Chapter
1, we now introduce mathematical models in chemical and biological engineering1. Our
subsequent chapters will combine these two areas by introducing models for specific
chemical and biological processes and finding detailed numerical solutions via MATLAB.
This chapter is quite short and condensed. Any reader or student who wants to gain a
deeper insight into model formulation should consult the literature on math modeling in
the Resources appendix.

2.1 System Theory and its Applications

This section introduces some of the basic concepts of system theory in relation to mod-
eling. Our presentation is rather brief since our aim is to integrate known models for
chemical/biological processes with numerical techniques to solve these models for sim-
ulation and design purposes, rather than to give a broad introduction to either system
theory or modeling itself. For references on modeling, see the Resources appendix.
We first give an overview of system theory and modeling as it applies to our subject in
the rest of this book.

2.1.1 Systems

What is a system?

1Biological engineering comprises both biochemical and biomedical engineering

55
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• A system is a whole, composed of its parts or elements.

• The decision of what constitutes a system, a subsystem, or an element thereof is
relative and depends upon the level of our analysis. For example, we can view the
human body as a system, with the heart, the arms, the liver, etc. as its elements.
Or we can consider these elements as subsystems in themselves and can analyze
them further by their smaller constituents, such as the valves and chambers of the
heart, or the bones, tendons, muscles, etc. of the arm, and so on.

• The parts or elements of a system can be parts in the physical sense of the word or
they can be processes. In the strictly physical sense, the parts of a human body or
those of a chair constitute a physical system. In our studies of chemical/biological
equipment that performs certain chemico-physical functions, we must also consider
the various chemico-physical processes that take place inside the system as elements
thereof. These processes interact very often with each other to perform the task
of the particular chemical plant, called the system. A simple example of this is
a chemical reactor in which processes such as mixing, chemical reactions, heat
evolution, heat transfer, etc. take place in a controlled way to achieve the task of
the reactor, i.e., the change of the input reactants to the output products.

• The properties of the whole system are not the sum of the properties of its com-
ponents or elements. However, the properties of the components affect the whole
system. The system properties in chemical/biological engineering are usually the
result of highly nonlinear interactions between the system’s components (elements).
For example, one of the “system qualities” of human beings is “consciousness”. But
this is not the property of any of its components or elements, in however much de-
tail we may look at the human system. In our chemical/biological case, the mass
transfer with chemical reactions has certain properties which are not the properties
of the chemical reaction or of the mass transfer alone. An example for this is the
possibility of multiple steady states (bifurcation), a phenomenon which occurs often
in nature, as well as in industrial chemical, biochemical and biomedical equipment.
This phenomenon shall comprise a large part of our studies in this book. See Ap-
pendix 2 for an overview of this important phenomenon of chemical and biological
engineering systems.

The above list is a very elementary presentation of system theory. We will revisit this
subject repeatedly and learn more and deeper facts.

Generally, a chemical/biological system has a boundary that distinguishes it from the
environment. The interaction between the system and its environment determines the
type of the system and its main characteristics as will be detailed later.

For simplicity, we shall refer to any chemical/biological system from now on sim-
ply as a system , omitting the qualifying adjectives, since we shall only consider such
chemical/biological systems from now on.
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2.1.2 Steady State, Unsteady State, and Thermodynamic Equi-
librium

A stable system may be stationary with regards to time, or it may be changing with
time. An open system which exchanges matter with the environment is usually changing
with time until, if it is stable, it reaches a stationary state. This stable state is called the
steady state in chemical/biological engineering. A more correct name for this stationary
stable state would be: a stationary nonequilibrium state. In Chapters 4 through 7
of this book, we prefer to call the stable steady state of a system a point attractor to
distinguish it from other types of attractors, such as periodic and chaotic attractors. Un-
stable states, such as saddles and unstable nodes are not attractors, but rather repellers.
Closed and isolated systems which do not exchange matter with their surroundings also
change with time till they reach a stationary equilibrium state. This is a dead sta-
tionary state, unlike the stationary nonequilibrium state for open systems which is well
known in chemical/biological engineering as the steady state of continuous processes.

Generally, we consider three quantities associated with a system:

The state of the system:
The state of a system is rigorously defined through the state variables of the system.
The state variables of any system are chosen according to the nature of the system.
The state of a boiler, for example, can be described by temperature and pressure,
that of a heat exchanger by temperature, the state of a nonisothermal reactor by
the concentration of the different components and their temperature, and the state
of a bioreactor by the substrate concentrations and pH.
Recall from Chapter 1 that mathematically speaking each “state variable” is a
function of one or several variables, such as of time or location.

Input variables (or parameters):
These are not state variables of the system. They are external to the system and
affect the system, or in other words they “work on the system”. For example, the
feed temperature and composition of the feed stream for a distillation column or a
chemical reactor, or the feed temperature of a heat exchanger are input variables.

Initial conditions:
For systems that have not reached their stationary state (steady state or thermo-
dynamic equilibrium), the behavior with regards to time cannot be determined
without knowing the initial conditions, or the values of the state variables at the
start, i.e., at time = 0. When the initial conditions are known, the behavior of
the system is uniquely defined. Note that for chaotic systems, the system behavior
has infinite sensitivity to the initial conditions; however, it is still uniquely defined.
Moreover, the feed conditions of a distributed system can act as initial conditions
for the variations along the length.
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2.2 Basic Principles for Modeling Chemical and Bio-
logical Engineering Systems

The simplest definition for modeling is “putting the physical reality into an ap-
propriate mathematical form”.
A model of a system is a mathematical representation in the form of equations and
inequalities that relates the system behavior over time to its inputs and predicts the
outputs.

Model Development

Every elementary procedure for model building generally includes the following steps:

1. Defining the system.

2. Defining the boundaries of the system.

3. Defining the type of system, whether it is open, closed, or isolated.
Open systems exchange matter with the environment, closed and isolated systems
do not. Details to follow.

4. Defining the state variables.

5. Defining the input variables (sometimes called input parameters).

6. Defining the design variables (or parameters).

7. Defining the nature and type of interaction between the system and the surrounding
environment (if any).

8. Defining the physical and chemical processes that take place within the boundaries
of the system.

9. Defining the rate of the different processes in terms of the state variables and
physico-chemical parameters, and introducing equations that reflect the physical
and chemical relations between the states at the different phases.

10. Writing mass-, heat-, energy-, and/or momentum-balance equations to obtain the
model equations that relate the system input and output to the state variables
and the physico-chemical parameters. These mathematical equations describe the
state variables with respect to time and/or space.

Solution of the model equations

The equations of the developed model need to be solved for certain inputs, certain design
objectives, and given physico-chemical parameters in order to predict the output and, for
design purposes, the variation of the state variables within the boundaries of the system.
In order to solve the model equations we have two tasks:
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1. Determine the physico-chemical parameters of the model experimentally or obtain
them from the literature if some or all of them are available there.

2. Develop a method that finds the solution of the mathematical model equations. The
method may be analytical or numerical. Its complexity needs to be understood if
we want to monitor a system continuously. Whether a specific model can be solved
analytically or numerically and how, depends to a large degree upon the complexity
of the system and on whether the model is linear or nonlinear.

Algorithmic and computational solutions for model (or design) equations, combined with
chemical/biological modeling, are the main subjects of this book. We shall learn that the
complexities for generally nonlinear chemical/biological systems force us to use mainly
numerical techniques, rather than being able to find analytical solutions.

2.3 Classification of Chemical and Biological Engi-
neering Systems

It is very useful to classify different basic system models now in relation to their mathe-
matical description.

I. Classification according to the variation or constancy of the state vari-
ables with time:

– Steady-state models: described by transcendental equations or ODEs (Or-
dinary Differential Equations) or PDEs (Partial Differential Equations).

– Unsteady-state models: described by ODEs or PDEs.

II. Classification according to the spatial variation of the state variables:

– Lumped models (usually called “lumped parameter models”, which is wrong
terminology since the state variables are lumped, not the input variables or
parameters); described by transcendental equations for the steady state and
ODEs for the unsteady state.

– Distributed models (usually called “distributed parameter models”, which
is again wrong terminology since the state variables are distributed, not the
parameters). These are models for systems for which the state variables are
distributed along one or several spatial directions. They are described by ODEs
or PDEs for the steady-state and by PDEs for the unsteady-state case.

III. According to the functional dependence of the rate-governing laws upon
the state variables:

– Linear models: described by linear equations (these can be constant or vari-
able coefficient systems of linear equations, or linear ODEs or PDEs). These
models can often be solved analytically, except for high dimensions.
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– Nonlinear models: described by nonlinear equations (these can be tran-
scendental systems of scalar equations, ODEs, or PDEs). These models can
generally only be solved numerically.

IV. According to the type of processes taking place within the boundaries
of the system:

– Mass transfer (example: isothermal absorption).

– Heat transfer (example: heat exchangers).

– Momentum transfer (example: pumps or compressors).

– Chemical reaction (example: homogeneous reactors).

– Combination of any two or more of the above processes (example: heteroge-
neous reactors).

V. According to the number of phases in the system:

– Homogeneous models.

– Heterogeneous models (more than one phase).

VI. According to the number of stages in the system:

– Single stage.

– Multi-stage.

VII. According to the mode of operation of the system:

– Batch (closed or isolated system).

– Fed-Batch.

– Continuous (open system).

VIII. According to the system’s thermal relation with the surroundings:

– Adiabatic (neither heating nor cooling).

– Nonadiabatic cocurrent or countercurrent cooling or heating).

IX. According to the thermal characteristics of the system:

– Isothermal.

– Nonisothermal.

All of these classifications are naturally interrelated for a given chemical/biological
engineering problem, and the best approach is to choose one main classification and
then use the other problem’s classifications as subdivisions. The most fundamental clas-
sification of systems is usually based upon their thermodynamical characteristics. This
classification is the most general; it divides systems into open, closed, and isolated sys-
tems which are defined as follows:
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Isolated Systems: Isolated systems exchange neither energy nor matter with the en-
vironment. The simplest example from chemical or biological engineering is the
adiabatic batch reactor. Isolated systems naturally tend towards their thermody-
namic equilibrium with time. This state is characterized by maximal entropy, or
the highest possible degree of disorder.

Closed Systems: Closed systems exchange energy with their environment through
their boundaries, but they do not exchange matter. The simplest example is the
nonadiabatic batch reactor. These systems also tend towards a thermodynamic
equilibrium with time, again characterized by maximal entropy, or the highest pos-
sible degree of disorder.

Open Systems: Open systems exchange both energy and matter with their environ-
ment through their boundaries. The most common example from chemical/biological
engineering is the continuously stirred tank reactor (CSTR). Open systems do not
tend towards a thermodynamic equilibrium with time, but rather towards a “sta-
tionary nonequilibrium state”, characterized by minimal entropy production, i.e.,
the least degree of disorder. This state is usually called the “steady state” in chem-
ical/biological engineering.

Efficient solution techniques (whether analytical or numerical) for solving
chemical and biological engineering models will be presented throughout this
book.

Mathematical Programs
For most chemical/biological engineering problems, the mathematical models are usually
quite complex due to the generally high degree of complexity of both the physico-chemical
processes and their nonlinear interactions. Thus the solution algorithms will generally
need to use elaborate computer programs and software. The models can be solved in
whatever programming language or computational environment one wants to use. How-
ever, we have decided to train our readers throughout this book to use MATLAB, as it
is one of the most versatile computational softwares. MATLAB is extremely well suited
for numerical analysis, while quick and very intuitive to learn and use.

2.4 Physico-Chemical Sources of Nonlinearity

The main reason that chemical/biological engineers need extensive use of numerical meth-
ods is twofold:

1. Most chemical and biological engineering problems involve highly nonlinear pro-
cesses, specially in reacting systems.

2. The high dimensional models and representations that most chemical/biological
engineering problems require cannot be solved analytically even when they are
linear.
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The nonlinearity of chemical/biological processes can be strong or weak. One strong
nonlinearity is the Arrhenius dependence2 of the rate or reaction constant k upon
temperature T , i.e.,

k = k0 · e−E/(R·T ) . (2.1)

On the other hand, most weak nonlinearities can be associated with the dependence of
specific heats (Cp) upon temperature, or of diffusion coefficients upon concentrations,
etc.
Needless to say, strong nonlinearities have stronger effects and pose more numerical
problems than weak nonlinearities. Almost all nonlinear models can only be solved nu-
merically, whether the system is described by scalar equations or differential equations.
One way to solve a nonlinear problem analytically is to linearize it in a certain region
of the variables to obtain an approximate solution in this region. Linearization is widely
used in several simple process dynamics and control problems. It is well known that lin-
earization generally does not give an accurate description of the system. However it may
be useful to obtain some insight into the basic characteristics of the system. Linearization
of nonlinear problems will be discussed later, where its usefulness and limitations will be
highlighted.

For chemical/biological systems it is important to point out that even when the sys-
tem is approximated by linear differential equations, such a system cannot generally be
solved analytically when the dimension of the system is high. An ODE initial value system
of 40 linear differential equations y′ = Ay, for example, although solvable analytically,
at least in theory via the Jordan normal form of the system matrix A, cannot be solved
that way in reality since it is numerically impossible to compute the Jordan normal form
of sizable matrices A correctly. Hence a proper understanding of the theory and of the
numerics of matrices is essential for developing competent and efficient numerical algo-
rithms. Such algorithms, for the most part, do not mimic mathematical or theoretical
matrix theory such as using determinants, but are rather inspired by modern numerical
analysis practices such as matrix factorizations.

Nonlinearities are always associated with the very nature of the process. Examples
include the nonlinear dependence of the rate of reaction upon temperature, the non-
monotonic dependence of the rate of reaction upon the reactants’ concentrations, the
dependence of specific heats and diffusion coefficients upon temperature and concen-
trations, etc. High dimensions, i.e., large numbers of state variables in our models, are
generally associated with the complex chemical and biological equipment being used,
such as the large number of trays in absorption or distillation columns, as well as with
the large number of components that the chemical or biological equipment under study
is handling.

In a nutshell, we state that almost all chemical/biological engineering systems are
nonlinear and that the physico-chemical sources of the nonlinearities are associated with
the chemical and biological reactions and with the nonlinear dependence of physical
parameters on state variables. The most common (and also the strongest) nonlinearity
is associated with the exponential Arrhenius dependence (2.1) of the rate of reaction

2Svante August Arrhenius, Swedish chemist, 1859 – 1927
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upon temperature. However, other nonlinearities associated with reaction rate depen-
dence upon concentrations are possible. For example:

1. Simple reaction rates r, for which the order of reaction is neither one nor zero,
such as in

r = f(CA) = k · C1.3

A

for example, where CA is the concentration of the reactant and k is the rate con-
stant. This is considered a simple weak nonlinearity and is graphed in Figure 2.1.
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Weak nonlinearity
Figure 2.1

2. Nonlinearity with saturation. This type of nonlinearity is quite common in
biochemical engineering and waste water treatment systems.
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Nonlinearity with saturation
Figure 2.2
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A typical rate equation of this type has the form

r = f(CA) = k ·CA/(1 + KA · CA) .

The degree of nonlinearity here is higher than in the previous example. The corre-
sponding curve is shown in Figure 2.2.

Nonmonotonic dependence:
All of the previously mentioned nonlinearities are actually monotonic. Nonmonotonic
functions are very common in gas-solid catalytic reactions due to competition between
two reactants for the same active sites, and also in biological systems, such as in substrate
inhibited reactions for enzyme catalyzed reactions and some reactions catalyzed by micro-
organisms. The microorganism problem is further complicated in a nonlinear manner due
to the growth of the microorganisms themselves.

For these reactions, the apparent order of the reaction is positive in a certain region
of concentrations and negative in another region of concentrations. This means that in
the region of concentrations from zero to a certain positive value corresponding to the
maximum rate of reaction (CAmax), the rate of reaction increases with an increase of the
concentration, while for concentration higher than CAmax the rate of reaction decreases
with a further increase of the concentration. The mechanisms for this phenomenon is
well established in the chemical/biological engineering literature. Figure 2.3 shows such
nonmonotonic kinetics for the rate equation

r = r(CA) = k · CA/(1 + KA · CA)2 .
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r
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Nonmonotonic kinetics
Figure 2.3

Another source of nonmonotonic kinetics is the dependence of most biological reac-
tions upon the H+ ion concentration (pH). This situation gives rise to nonmonotonic
kinetics since the dependence of the enzyme rate of reaction upon pH is nonmonotonic
(bell shaped) as shown in Figure 2.4.
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pH

r

Nonmonotonic dependence of biological reaction rate on pH
Figure 2.4

The last and most common nonmonotonic rate of reaction occurs under nonisothermal
operation where the rate of reaction, even for a first-order reaction, is highly nonlinear,
namely

r = k0 · e−E/(R·T ) · CA . (2.2)

Here CA is the concentration of the reactant A. If the reaction is exothermic, i.e., if
the process generates heat, then the rate equation (2.2) is nonmonotonic with respect
to conversion. As the reaction proceeds, the conversion increases, i.e: the concentrations
of the reactants decrease (tending to cause a decrease in the rate of reaction), while
the temperature increases (tending to cause an increase in the rate of reaction). These
opposing effects obviously give nonmonotonic dependence upon the conversion or the
concentration or the temperature. This case is investigated in more detail in Chapter
3. It is one of the natural causes of multiple steady states and bifurcation for reacting
systems.

2.5 Sources of Multiplicity and Bifurcation

The multiplicity of steady states and associated bifurcation phenomena are associated
with open systems which allow more than one stationary nonequilibrium state for the
same set of parameters. This multiplicity of a steady state may result from many causes.
The most important sources of multiplicity in chemical/biological engineering processes
are:

1. Nonmonotonic dependence of one rate process (or several) on one or more state
variables.

2. Feedback of information.
A recycle in a tubular reactor or axial dispersion which will be discussed in Section
7.2.
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Distributed system with recycle
Figure 2.5

Figure 2.5 shows a distributed system with recycle which is a source of multiplicity.

3. Countercurrent operation as shown below.
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Countercurrent process
Figure 2.6

These sources of multiplicity are very frequent in actual chemical/biological processes.
Chapter 7 highlights examples of multiplicity, bifurcation, and chaotic behavior for a
number of experimental and industrial chemical/biochemical processes. We also include
Appendix 2 on multiplicity and bifurcation at the end of the book.
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Chapter 3

Some Models with Scalar
Equations,
with and without Bifurcation

It is important to introduce the reader at an early stage to simple examples of nonlinear
models. We will first present cases with bifurcation behavior as the more general case,
followed by special cases without bifurcation. Note that this is deliberately the reverse of
the opposite and more common approach. We take this path because it sets the important
precedent of studying chemical and biological engineering systems first in light of their
much more prevalent multiple steady states rather than from the rarer occurrence of a
unique steady state.

3.1 Continuous Stirred Tank Reactor: The Adiabatic

Case

One of the simplest practical examples is the homogeneous nonisothermal and adiabatic
continuous stirred tank reactor (CSTR), whose steady state is described by nonlin-
ear transcendental equations and whose unsteady state is described by nonlinear ordinary
differential equations.

We will consider a very simple irreversible reaction

A =⇒ B

that takes place inside an adiabatic CSTR as shown in Figure 3.1. The rate of reaction
is described by a simple first-order rate equation, namely by

r = k · CA ,

69
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and the dependence of k upon the temperature T is given by the well known Arrhenius
form

k = k0 · e−E/(R·T ) .
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�
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q
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V

CA

Schematic diagram of an adiabatic CSTR
Figure 3.1

Under the simple assumptions of constant volume V and volumetric flow rate q, the
steady states of the system are described by the two equations

q · CA = q · CAf − V · k0 ·
(
e−E/(R·T )

)
· CA (material balance design equation)

and

q · ρ · Cp · (T − Tf ) = V · k0 ·
(
e−E/(R·T )

)
· CA · (−∆H) . (heat balance design equation)

Here
q = volumetric flow rate, in l/min;

CA = reactant concentration at exit and at every point in the CSTR, in mole/l;
ρ = mixture average (constant) density, in g/l;

Cp = mixture average (constant) specific heat, in cal/(g · K);
CAf = reactant feed concentration, in mol/l;

V = active reactor volume; in l;
k0 = frequency factor for the reaction, in 1/min;
E = reaction activation energy, in J/mole;
R = general gas constant, in J/(mole · K);
T = temperature at the exit and at every point in the CSTR, in K;

Tf = feed temperature, in K;
∆H = heat of reaction, in J/mole.

These two balance equations can be reduced easily to one equation and a simple
linear relation between T and CA. This is done by multiplying the material balance
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design equation by (−∆H) and by adding it to the heat balance design equation to
obtain

(−∆H) · q · CA + q · ρ · Cp · (T − Tf ) = (−∆H) · q · CAf .

Rearrangement gives

CA = CAf +
ρ ·Cp · (Tf − T )

(−∆H)
. (3.1)

Thus the two design equations can be rewritten in terms of the single variable T as

q · ρ ·Cp · (T − Tf ) = V · k0 ·
(
e−E/(R·T )

)
·
{

CAf +
ρ · Cp · (Tf − T )

(−∆H)

}
· (−∆H) (3.2)

and relation (3.1).
If we consider exothermic reactions, where (−∆H) is positive, and think of the physi-

cal meaning of the two sides of equation (3.2), we realize that the left-hand side represents
the affine heat removal function R(T ) = q · ρ · Cp · (T − Tf) due to the flow, while the
right-hand side represents the more complicated exponential heat generation function
G(T ) of the reaction. And obviously steady states, or more accurately the stationary
nonequilibrium states, occur when the heat removal equals the heat generation, i.e.,
when R(T ) = G(T ). We plot the heat removal function R(T ) and the heat generation
function G(T ) against T symbolically in Figure 3.2.
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*
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Heat generation and heat removal functions
Figure 3.2

It is clear that in a certain region of the parameter s = q · ρ · Cp, the adiabatic CSTR
has three steady states with R(T ) = G(T ), marked by (1), (2), (3) in Figure 3.2. From
a steady-state analysis point of view, the two steady states (1) and (3) are stable, while
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the steady state (2) is unstable, as explained later; also refer to Appendix 2. Here a
steady state is called a stable steady state if after a small disturbance of the system
is introduced and removed shortly afterwards, the system returns to its original state.
An unstable steady state is one that does not return to its original state once a small
disturbance has occurred and been removed.
The varying behavior of the multiple steady states in Figure 3.2 is called bifurcation.
The bifurcation points for the parameter s are determined by the tangent lines with
extreme slopes s∗ and s∗ as depicted by the dashed and dotted lines in Figure 3.2. For
any s∗ < s < s∗ there are three steady states, while for any s > s∗ or for any s < s∗ there
is only one steady-state solution of the system. And of course, for s = s∗ and s = s∗

there are precisely two steady states.

Equation (3.2) R(T ) = G(T ) can be put into dimensionless form by dividing both
sides by q · ρ · Cp · Tf to give us the equation

y − 1 = αe−γ/y(1 + β − y) . (3.3)

Similarly relation (3.1) becomes xA = (1 + β − y)/β for xA = CA/CAf , β, and y.
Here we have set

y =
T

Tf
, α =

V k0

q
, γ =

E

R Tf
, and β =

(−∆H) CAf

ρ Cp Tf
,

for the dimensionless temperature y, the dimensionless preexponential factor α, the ther-
micity factor β, and the dimensionless activation energy γ.

We will now investigate how to find the bifurcation points s∗ and s∗, which are the
boundaries of the multiplicity region, as well as the three steady states marked by (1),
(2), and (3) in Figure 3.2 for any s∗ < s < s∗. We chose α = V · k0/q as the bifurcation
parameter since α is easy to manipulate by varying the flow rate q. Note that α and q
are inversely proportional.
Our first attempt involves MATLAB’s built-in root finder fzero, which uses the bisec-
tion method and thereafter we introduce a new and more appropriate numerical method
for solving equations with multiple roots.
This example gives a good overview of the kind of problems that chemical/biological en-
gineers encounter daily with numerical computations. Besides, our numerical codes will
introduce the reader to more advanced aspects of MATLAB programming and plotting.

Numerical Solution of the Adiabatic CSTR Problem

In our first approach, we try to find the values of y in equation (3.3) that correspond
to the points labeled (1), (2), and (3) in Figure 3.2 for given values of α, β, and γ by
solving (3.3) via a generic root finder such as the bisection method of fzero in MATLAB.

function [y,fy] = solveadiabxy(al,bt,ga)

% solveadiabxy(al,bt,ga)

% Sample call : [y,fy] = solveadiabxy(50000,1,15)

% Sample output : y =
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% (on screen) 1.0202 1.2692 1.9595

% fy =

% 4.5103e-17 1.1102e-16 -1.4433e-15ans =

% input : al, -1 <= bt <= 1, ga

% program finds the y values on all branches of the bifurcation curve.

% output : y and fy (=f(y)) "error" values (fy ~ 0)

% CAUTION: always check critical applications against a run of

% [y,fy] = adiabNisographsol(al,bt.ga) and

% [a1,a2] = adiabNisoauxf1(bt,ga,100) for confirmation.

% (the solvadiabxy routine is slightly more reliable near the upper

% bifurcation points than the lower one; the graphic solver is

% reliable up to the bifurcation points and beyond.)

% local subroutines : adiab(x,al,bt,ga) and Matlab’s own "fzero" root finder.

warning off; % to satisfy the grandfather warnings re. fzero

ltol = 10^-14; % local tolerance for fzero; change if critical

options = optimset(’dis’,[],’tolx’,ltol);

x0 = fzero(@adiab,1,options,al,bt,ga); % call fzero from

% the y interval ends 1 and 1 + bt, with

% optimization parameters set

x1 = fzero(@adiab,1+bt,options,al,bt,ga);

if abs(x0 - x1) > 10^-6, % three roots (bifurcation) likely; check with graph

try

xmid = fzero(@adiab,[1.01*x0,0.99*x1],options,al,bt,ga);

% we use the target interval [1.01*x0,0.99*x1] to find xmid

catch, xmid = NaN; end % dummy setting that does not plot if error

else

xmid = NaN; % dummy value for xmid if no bifurcation

if x1 < 1+0.4*bt, x1 = NaN; end % taking care of the no bifurcation cases

if x0 > 1+0.4*bt, x0 = NaN; end

end

y = [x0 xmid x1]; fy = adiab(y,al,bt,ga); % evaluate f at y (nearly zero)

warning on

function f = adiab(x,al,bt,ga) % adiabatic function f(x) = 0 in (3.2)

% evaluates the adiabatic-non-iso function at x for given

% al, bt, ga values. (vector version)

f = x - 1 - al*exp(-ga./x) .* (1 + bt - x);

Note that the above program works for both endothermic reactions (β < 0) and exother-
mic reactions (β > 0) and that only exothermic reactions can have multiple steady states.
The built-in MATLAB root finder fzero finds the roots of a function f from a starting
guess a if we call fzero(@f,a,...), i.e., if we attach the “function handle” @ to f and
follow this with the appropriate list of parameters in MATLAB.

Rather than work with (3.3) directly, the MATLAB m function solveadiabxy.m
above evaluates the associated standard function

f(y) = y − 1 − αe−γ/y(1 + β − y) (3.4)

inside its subfunction named adiab at the end of the above code and searches for its zeros
y with f(y) = 0 from judicious initial guesses. Note that the arithmetic operations inside
adiab use the vector MATLAB operations ./ and .* so that fy can be evaluated
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in a single command line at the computed y vector of steady state locations on the last
line of the main code.
Our initial guesses for the zeros of (3.4) are the extreme temperatures y = 1 and y = 1+β
of the system, called x0 and x1 inside the program. If these two starting values for the
MATLAB zero finder fzero give rise to two different solutions, then for our parameter set
there must be a third solution, called xmid in between, i.e., x0 < xmid < x1. This middle
solution is often hard, if not impossible to find via a bisection algorithm (or Newton’s
method) near the bifurcation limits. Therefore we have to be cautious with the output
of the central line xmid = fzero(@adiab,[1.01*x0,0.99*x1],options,al,bt,ga) of
the program. If fzero fails in its attempt to find xmid, then MATLAB sends out an
error message that normally terminates the whole run. To avoid this early termination
in one run of solveadiabxy.m for multiple α values in runsolveadiabxy.m, we have put
the xmid = ... line of code inside a try ... catch ... end setting. This MATLAB
programming tool allows us to continue computing after a command inside the try and
catch bracket has failed. More specifically, if there is an error detected inside the try
... catch bracket, then the commands inside the secondary catch ... end bracket
are executed instead. And specifically for our situation we simply set xmid = NaN, where
NaN signifies “Not a Number”if fzero fails inside the try ... catch bracket. In MAT-
LAB, NaN data entries are not plotted.

Figure 3.3 shows the typical limited range of useful output from the bisection method
in the bifurcation range for this problem when β = 1 and γ = 8.5.
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Plot of a run of solveadiabxy    for 285 ≤ α ≤ 305; β = 1, γ = 8.5

α        (with   n = 100  points)

y

Limited bifurcation output from a bisection method
Figure 3.3
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Note the large gaps in Figure 3.3 between the three branches where fzero fails to give
us any useful output. Such data gaps near the bifurcation points are often sizable: too
large to allow us to use the bisection method here. For a comparison with the graphical
level-set method for this problem, see Figure 3.11.
We next discuss the MATLAB file runsolveadiabxy.m, which draws Figure 3.3 upon
the command runsolveadiabxy(285,305,1,8.5).
Note that almost all calling sequences of MATLAB function m files start with the func-
tion’s name, such as runsolveadiabxy above, followed by a list of parameters in paren-
theses ( ... ). Our particular call runsolveadiabxy(285,305,1,8.5) uses the interval
limits 285 and 305 for α as its first two parameters, followed by the values of β and γ
for a specific chemical reaction. In our m files the list of possible parameters is always
explained in the first comment lines of code. Often one or several of the parameters are
optional. If they are not specified in the calling sequence, they are internally set to default
values inside the program, such as n and anno are here.

function Result = runsolveadiabxy(al1,al2,bt,ga,n,anno)

% runsolveadiabxy(al1,al2,bt,ga,n)

% Sample call : runsolveadiabxy(285,305,1,8.5);

% Input : al1, al2 : the limits of alpha values to be used; al1 < al2 needed

% bt, ga : the system parameters beta and gamma

% n : number of linearly spaced intermediate points from al1 to al2

% anno : if anno is set to 0, graph is not annotated/labeled;

% default with annotation or anno = 1.

if nargin < 4, error(’Not enough input data’), end

if al1 >= al2, error(’alpha 2 is less than alpha 1; cancel run’), end

if nargin == 4, n = 100; anno = 1; end % default values for n and anno

if nargin == 5, anno = 1; end

% initial settings :

step = (al2-al1)/n; Result = zeros(n+1,3); AL = [al1:step:al2]’;

for i=0:n, % sweep through alpha values

[y,fy] = solveadiabxy(al1+i*step,bt,ga); % solve and store data

Result(i+1,:) = y; end

plot(AL,Result(:,1),’k’), hold on, % plot

plot(AL,Result(:,2),’r’),plot(AL,Result(:,3),’g’), hold off, % Plot labels :

if anno == 1 % comment this title command for Fig 3.11

title([’Plot of a run of solveadiabxy for ’,num2str(al1,’%10.5g’),...

’ \leq \alpha \leq ’,num2str(al2,’%10.5g’),’; \beta = ’,...

num2str(bt,’%10.5g’),’, \gamma = ’,num2str(ga,’%10.5g’)],’FontSize’,14)

xlabel([’ \alpha (with n = ’,num2str(n,’%10.5g’),...

’ points)’],’FontSize’,12),

ylabel(’y’,’Rotation’,0,’FontSize’,12), end

runsolveadiabxy.m takes the output from a sequence of runs of solveadiabxy for in-
creasing values of α and stores it in an n + 1 by 3 matrix called Result. Each row of
Result contains three entries: that of the bottom branch of the solution to f(y) = 0
in equation (3.4) in column 1, followed by the middle branch solutions in column 2 and
those of the top branch in column 3. Many of these data entries may be set equal to NaN
inside solveadiabxy.m as warranted, and then these points will not be plotted. The (up
to three) solution branches for equation (3.4) are then plotted in different colors in three
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separate plotting commands inside runsolveadiabxy.m.
The command hold on after the first plot command ensures that all plots appear in
the same graph. The command hold off at the end of our multiple plottings makes sure
that the picture of one solveadiabxy run is not preserved in the figure window and that
subsequent solveadiabxy plots for different data are not appended to the earlier plots,
but rather drawn by themselves.
If annotations are desired, then the last three commands, title, xlabel, and ylabel,
write the relevant descriptions onto the margins of the graph, as seen in Figure 3.3. Note
the ’FontSize’ specifications, as well as the way of associating variable names such as
β with their numerical value via num2str(bt,’%10.5g’) and the set of square brackets
around the mixed text/numerical annotations in the title, xlabel and ylabel lines.
Finally, note the use of LATEX language such as \gamma to generate the Greek γ.

Since ordinary zero finders fail us often in root-finding problems with multiple roots,
we now set out to develop a more reliable graphical level-set method for finding all
y values of the solutions to (3.4) for any range of α parameters.
The MATLAB function adiabNisoplot.m finds the zero crossings of the graph of f in
(3.4) graphically. Graphs are generally very helpful when trying to solve equations since
they help us visualize the points of intersection of the function f in question with the
x-axis, that is, where f = 0.

function adiabNisoplot(N,al,bt,ga,book)

% adiabNisoplot(N,al,bt,ga)

% Sample call : adiabNisoplot(100,1300,.8,10)

% Input: N : number of intermediate points

% al, bt, ga are the system parameters

% book : If "book" is set to 1, we plot for display in the textbook with

% wider lines and larger fonts. Default is book = 0.

% Plots adiabatic transcendental function from N nodes and given al, bt, ga.

% Looking for zero crossings.

if nargin == 4, book = 0; end % default setting: narrow lines, small fonts

y=1:(bt/N):1+bt; % create y nodes; then plot adiab (3.2) curve and horiz. axis

if book == 1, % for use in textbook: wider lines, larger fonts

plot(y,adiabNiso(y,al,bt,ga),’b’,’LineWidth’,2), hold on, % adiab (3.2) curve

plot([1,1+bt],[0,0],’-r’,’LineWidth’,2), % horizontal axis

xlabel([’ y ( N = ’,num2str(N,’%9.4g’),’ )’],’FontSize’, 14);

ylabel(’ adiab function ’,’FontSize’, 14);

title([’ Adiab CSTR function plot of (3.2) ; \alpha = ’,...

num2str(al,’%9.4g’),’ , \beta = ’,num2str(bt,’%9.4g’),...

’ , \gamma = ’,num2str(ga,’%9.4g’)],’FontSize’, 14); hold off

else % for ordinary screen display

plot(y,adiabNiso(y,al,bt,ga),’b’), hold on, % adiab (3.2) curve

plot([1,1+bt],[0,0],’-r’), % horizontal axis

xlabel([’ y ( N = ’,num2str(N,’%9.4g’),’ )’]);

ylabel(’ adiab function ’);

title([’ Adiab CSTR function plot of (3.2) ; \alpha = ’,...

num2str(al,’%9.4g’),’ , \beta = ’,num2str(bt,’%9.4g’),...

’ , \gamma = ’,num2str(ga,’%9.4g’)]); hold off; end
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The call adiabNisoplot(100,1300,.8,10) with N = 100 intermediate points and α =
1300, β = 0.8, and γ = 10 for example gives rise to the plot in Figure 3.4.
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Figure 3.4

Looking at the three shallow intersections of the horizontal axis with the graph of f in
Figure 3.4, we are reminded of the problems encountered in Chapter 1 on p. 30 and
31 with both the bisection and the Newton root finder for polynomials with repeated
roots. The common wisdom is that the shallower these intersections become, the worse
the roots will be computed by standard root-finding methods (see the exercises below),
and multiple roots will easily be missed.

Let us therefore proceed by a different route, using a level-set method approach
that is ultimately more promising for this problem. We proceed in two stages.
First we determine the range of α for which there are multiple steady states. We do this
semigraphically by using Figure 3.2 as our guide in the following code.

function [al1,al2] = adiabNisoauxf1(bt,ga,N,p,book)

% [al1,al2] = adiabNisoauxf1(bt,ga,N,p)

% Sample call : [al1,al2] = adiabNisoauxf1(1,15,500,1)

% Auxiliary function for adiabatic Non-isothermal CSTR equation.

% Input : beta (bt), gamma (ga), # of steps in y direction = N, N <= 1000

% typical input values: 0.1 <= bt <= 18; 5 <= ga <= 50

% [larger values of N make the bifurcation start and end points al1

% and al2 come out more precisely.]

% p = 1: plot the exponential part of the curve; p ~= 1: do not plot

% If book = 1, we plot with wide lines and big fonts for the

% textbook. Default: book = 0, or unspecified.
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% Output: limits of bifurcation for bt, ga: al1 and al2; N may be reduced.

% Here we evaluate the exponential part of the equation and find the

% min/max slopes 1 <= al1 < al2 <= 1+bt of 1/al(y-1) = exponential part of

% equation (3.1) which touch the exponential curve tangentially.

% If there are no multiple crossings of the line and the exponential part,

% then there are no bifurcations for this set of data bt, ga, and we return

% with the bifurcation boundaries al1 set to 0.5 and al2 to 3 + bt.

if nargin == 2, book = 0; N = 500; p = 0; end % default settings

if nargin == 3, book = 0; p = 0; end

if nargin == 4, book = 0; end

y = [1:(bt/N):1+bt]; b = 1; % y partition, N steps;

% b is a bifurcation marker

if bt < 0, y = y(1:N); N = N-1; end % if bt < 0, we avoid division by zero

f = exp(-ga./y).*((1+bt)-y); % exponential part of adiabatic non-iso

% equation (right side of (3.3) )

F = max(f); i = find(f == F); % limit search for bifurcation to

% 1 <= y <= max(f) location

if i == 1, disp(’no bifurcation alphas for this data’), % if no bifurcation

al1 = 50; al2 = 1000; b = 0; end % set default output

y = y - 1; % shift y by 1

foyold = f(2)/y(2); k = 3; mi = 1; ma = 1; % initialize

while (k < i & mi == 1) % search for a min (=al2) of 1/al

if f(k)/y(k) < foyold, foyold = f(k)/y(k); k=k+1; else mi = 0; end, end,

if (k >= N | k >= min(i)), disp(’no bifurcation alphas for this data’),

al1 = 50; al2 = 1000; b = 0; else, % no bifurcation: set default output

al2 = (y(k-1))/f(k-1); y0 = y(k-1)+1; f0 = f(k-1); end

while (k < i & ma == 1) % search for a max (=al1) of 1/al

if f(k)/y(k) > foyold, foyold = f(k)/y(k); k=k+1; else, ma = 0; end, end

al1 = (y(k-1))/f(k-1);

if p == 1, % if plot is desired

if book == 1,

plot(y+1,f,’-r’,’LineWidth’,2), hold on,

ylabel(’(y-1) / \alpha ’,’Rotation’,0,’Fontsize’,14),

else

plot(y+1,f,’-r’), hold on,

ylabel(’(y-1) / \alpha ’,’Rotation’,0,’Fontsize’,14), end

if b == 1, % in case of bifurcation:

plot(y0,f0,’o’), hold on, % plot bottom tangent

if book == 1,

text(1+2*bt/3,2*f0*bt/(3*(y0-1)),’ slope = 1/\alpha_2’,’Fontsize’,12)

plot([1 1+2*bt/3],[0 2*bt*f0/(3*(y0-1))],’:’,’LineWidth’,2)

plot(y(k-1)+1,f(k-1),’+’),

plot([1 1.2*y(k-1)+1],[0 1.2*f(k-1)],’--’,’LineWidth’,2),

text(.73*y(k-1)+1,f(k-1),’slope = 1/\alpha_1’,’Fontsize’,12) % top tangent

xlabel([’ y from 1 to ’,num2str(1 + bt,’%10.5g’),... % make note of

’ ; bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14), % bifurcation

title({[’ adiabNisoauxf1 : extreme \alpha :’]},{[’ \alpha_1 = ’,...

num2str(al1,’%10.5g’),’, \alpha_2 = ’,num2str(al2,’%10.5g’),...

’ ; \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’),’here’]},’Fontsize’,14),

else

text(1+2*bt/3,2*f0*bt/(3*(y0-1)),’ slope = 1/\alpha_2’)

plot([1 1+2*bt/3],[0 2*bt*f0/(3*(y0-1))],’:’)

plot(y(k-1)+1,f(k-1),’+’),
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plot([1 1.2*y(k-1)+1],[0 1.2*f(k-1)],’--’), % plot top tangent spot ->

text(.73*y(k-1)+1,f(k-1),’slope = 1/\alpha_1’)

xlabel([’ y from 1 to ’,num2str(1 + bt,’%10.5g’),... % make note of

’ ; bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14), % bifurcation

title({’ adiabNisoauxf1 : extreme \alpha :’,[’ \alpha_1 = ’,...

num2str(al1,’%10.5g’),’, \alpha_2 = ’,num2str(al2,’%10.5g’),...

’ ; \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’)]},’Fontsize’,14), end

else,

if book == 1,

xlabel([’ y from 1 to ’,num2str(1 + bt,’%10.5g’),... % or note no

’ ; No bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14) % bifurcation

title([’ adiabNisoauxf1 : no bifurcation \alpha values for ’,...

’ \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’)],’Fontsize’,14),

else

xlabel([’ y from 1 to ’,num2str(1 + bt,’%10.5g’),... % or note no

’ ; No bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14) % bifurcation

title([’ adiabNisoauxf1 : no bifurcation \alpha values for ’,...

’ \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’)],’Fontsize’,14), end

end, hold off, end

This code relies on a slight variant of equation (3.3), namely

1
α

(y − 1) = e−γ/y(1 + β − y) ( = f̃(y) ) . (3.5)

The left-hand side of (3.5) describes a line with slope 1/α in the variable y with the
point (y, f̃ ) = (1, 0) on its graph. The right-hand side is an exponential function in y
with (y, f̃) = (1, e−γ · β) on its graph for e−γ · β > 0.

The algorithm of adiabNisoauxf1.m initially limits the search for tangents from
(1, 0) ∈ R2 to the graph of the exponential curve f̃ to y values below the maximum of
the right-hand side of (3.5). It then slides backward along the curve, computing the max-
imal and minimal ratios of f̃ and y, i.e., it computes the two extreme slopes of tangent
lines to the graph of f̃ that pass through the point (1,0). The reciprocals of the extreme
slopes then give us the extreme parameters al1 and al2 as the bifurcation points. If the
input parameter p = 1 is specified as the last variable in a MATLAB call of [al1,al2]
= adiabNisoauxf1(1,15,400,1), for example, then we draw the plot as in Figure 3.5,
on which the bifurcation limits are displayed numerically on screen and in the plot’s title
line, as well as drawn out on the graph.

>> [al1,al2] = adiabNisoauxf1(1,15,500,1); extreme_alphas = [al1,al2]

extreme_alphas =

15757 93777
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If the input parameter p of adiabNisoauxf1 is equal to 1, then adiabNisoauxf1 outputs
the bifurcation limits α1 and α2 only in the workspace and does not plot a figure.

Secondly, having found the bifurcation points α1 and α2, we then plot the 3D surface

z = F (α, y) := y − 1 − αe−γ/y(1 + β − y) (3.6)

as a function of two variables α and y for 0.9 · α1 ≤ α ≤ 1.1 · α2 and 1 ≤ y ≤ 1 + β.
This includes the parameter range of α in which there is bifurcation. Equation (3.6) with
z = F (α, y) = 0 reinterprets our earlier equation f(y) = 0 in (3.4) and replaces our
1-dimensional root-finding attempts by a two-dimensional approach to root-finding in
the two variables α and y.
The bifurcation curve relating y and α is the projection of the level curve F (α, y) = 0 onto
the α-y plane, where z = 0. Our 3D plot of the surface z = F (α, y) in adiabNisosurf
contains this level curve marked in black on the surface, as well as a second, isolated plot
of it below the surface on the ground plane: see Figure 3.6.

function adiabNisosurf(a1,a2,bt,ga,N)

% adiabNisosurf(a1,a2,bt,ga,N)

% Sample call : adiabNisosurf(15000,95000,1,15,100)

% Plots the adiab equation surface and the contour = 0 curve below it.

% Input : limiting values for alpha [al1, al2] (supplied by adiabNisoauxf1),

% beta, gamma, N = # of nodes (N = 80 or 100 ok)

if nargin == 4, N = 100; end,
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[y,al] = meshgrid([1:bt/N:1+bt],[0.9*a1:(1.1*a2-0.9*a1)/N:1.1*a2]);

% make grids for y and alpha in relevant ranges for y and beta

z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value

h = surf(al,y,z); hold on;

shading interp; colormap(hsv(128)); colorbar,% plot surface

a = get(gca,’zlim’); zpos = a(1); % Always put 0 contour below the plot

[cc,hh] = contour3(al,y,z,[0 0],’-k’); % draw zero contour data on surface

[ccc,hhh] = contour3(al,y,z,[0 0],’-b’); % put 0 contour data at the bottom

for i = 1:length(hhh) % size zpos to match the data

zzz = get(hhh(i),’Zdata’);

set(hhh(i),’Zdata’,zpos*ones(size(zzz))); end

xlabel(’\alpha’,’FontSize’,14), % annotate top 3D plot

ylabel(’y’,’Rotation’,0,’FontSize’,14),

zlabel(’adiabNiso(y,\alpha,\beta,\gamma )’,’FontSize’,12),

title([’ adiabNisosurf 3D plot : \alpha_1 = ’,num2str(a1,’%10.5g’),...

’, \alpha_2 = ’,num2str(a2,’%10.5g’),’ ; \beta = ’,...

num2str(bt,’%10.5g’),’, \gamma = ’, num2str(ga,’%10.5g’)],...

’FontSize’,12), hold off

Surface and level-zero contour plot of (3.6)
Figure 3.6
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Figure 3.6 depicts the 3D surface z = F (α, y) = y − 1 − α · e−γ/y(1 + β − y) as
introduced in equation (3.6). This surface depends on the two parameters α and y. It
is colored1 by our adiabNisosurf.m file as a geographical map would be. Namely, the
actual color of any spot (α, y, z) ∈ R3 on this surface depends on the height or the level
of z = y − 1 − αe−γ/y(1 + β − y) above the α-y plane. In this particular graph, the
“height” of z = F (α, y) ranges between around –4 and +1 in the surface plot and in the
associated colorbar on the right side of Figure 3.6. Additionally we draw the intersection
of the level-zero plane (α, y, 0) of R3 with the surface z = F (α, y) in black on the surface
itself. This curve is called the level-zero contour or level-zero curve of the surface.
On the ground plane of our 3D surface plot we draw this curve separately in blue. The
level-zero curve or contour depicts all the solutions to our original adiabatic CSTR equa-
tion (3.3) and thus it solves our original adiabatic CSTR problem in the contemplated
parameter range.

Next we draw a grayscale contour map of this surface, as well as the level curve
F (α, y) = 0 drawn in black using the MATLAB function adiabNisocolorcontour.m.
On a computer screen the same coloring scheme as in Figure 3.6 is used.

Surface and level-zero contour plot for (3.6)
Figure 3.7

1References to color always refer to a computer-generated color graph of the figure in question.
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Figure 3.7 is drawn by calling adiabNisocolorcontour(15000,95000,1,15,100). The
code of the contour-plotting MATLAB m file adiabNisocolorcontour.m follows below.

function adiabNisocolorcontour(a1,a2,bt,ga,N)

% adiabNisocolorcontour(a1,a2,bt,ga,N)

% Sample call : adiabNisocolorcontour(15000,95000,1,15,100)

% Plots the adiab equation surface as a 2D contour map with the contour = 0

% curve marked in black.

% Input : limiting values for alpha [al1, al2] (supplied by adiabNisoauxf1),

% beta, gamma, N = # of nodes (N = 80 or 100 ok)

if nargin == 4, N = 100; end,

[y,al] = meshgrid([1:bt/N:1+bt],[0.9*a1:(1.1*a2-0.9*a1)/N:1.1*a2]);

% make grids for y and alpha in relevant ranges for y and beta

z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value

h = surface(al,y,z); hold on; shading interp; colormap(hsv(128)); % 2D map

colorbar

[cc,hh] = contour3(al,y,z,[0 0],’-k’); % put 0 contour curve onto map

xlabel(’\alpha’,’FontSize’,12), % annotate 2D color map

ylabel(’y’,’Rotation’,0,’FontSize’,12),

title([’ adiabNisocolorcontour 2D map : \alpha_1 = ’,num2str(a1,’%10.5g’),...

’, \alpha_2 = ’,num2str(a2,’%10.5g’),’ ; \beta = ’,...

num2str(bt,’%10.5g’),’, \gamma = ’, num2str(ga,’%10.5g’)],...

’FontSize’,12), hold off

The last two codes contain many intricate and useful plotting and contour commands
that are self-explanatory when one uses the MATLAB help ... function for the MAT-
LAB graphics commands meshgrid, surface, contour3, xlabel, ylabel, title,
colormap, etc. Students should study these graphics commands of MATLAB in order to
be learn how to display the easily computed numerical data well. Please refer to MAT-
LAB help ....
In Figures 3.6 and 3.7, note the steep slopes of the surface z = F (α, y) near y = 1+β = 2
and the relatively shallow slopes near y = 1. Such slope disparities make great numerical
obstacles and they ultimately contribute to the failure of simple root finders.

Figures 3.5, 3.6, and 3.7 are combined into a single figure with three plot windows
via the m file runadiabNiso.m in Figure 3.8.

function runadiabNiso(bt,ga,N,p)

% runadiabNiso(bt,ga,N,p)

% Sample call : runadiabNiso(1,15,500,1)

% runs all three adiabNiso plots:

% Input : -1 < bt < 2; 2 < ga < 25; N (= 60, 100, or 500); p (= 0 or 1)

% first determine the bifurcation points a1 and a2, in adiabNisoauxf1.m;

% then the surface plot, and the bifurcation curve, if any,

% in adiabNiso3dplot.m.

% For standard values of bt and ga, set N = 60, 100, 500 or 1,000 for even

% greater accuracy of the bifurcation limits a1 and a2.

% Set p = 1 for plotting.

if nargin == 2, N = 100; p = 0; end % default settings

if nargin == 3, p = 0; end

if bt <=-1,
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disp(’ALERT : bt is not larger than -1, reject the data; NO computations’),

return, end

subplot(3,1,1);

[a1, a2] = adiabNisoauxf1(bt,ga,N,p); % plot adiab graph on top

N = min(N,100); adiabNiso3dplot(a1,a2,bt,ga,N); % limit partition lengths

% plot surface and 0 level contour for a limited value of N (for speed)

A call of runadiabNiso(1,15,500,1) gives numerical and graphical output as shown in
Figure 3.8 for the associated CSTR problem.

Combined function, surface, and level-zero contour plot for (3.6)
Figure 3.8
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The m function runadiabNiso relies on adiabNiso3dplot, which combines our z =
F (α, y) surface plot and a simplified version of the level-zero contour plot.

Our next code and plot draws only the bottom curve of Figure 3.8 by itself from the
inputs α, β, and γ. It uses adiabNisoauxf1 to find the actual bifurcation points of the
curve, depicts them by the dotted vertical lines in the figure window, and then plots the
bifurcation curve itself. This plot gives the most practical output in our view.
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The plot-generating MATLAB code for Figure 3.9 is as follows:

function adiabNisocontourcurve(bt,ga)

% adiabNisocontourcurve(bt,ga)

% Sample call : adiabNisocontourcurve(1,15)

% Plots the adiab equation zero level curve as a 2D plot

% Input : beta, gamma

N = 500; [a1,a2] = adiabNisoauxf1(bt,ga,N); % find bifurcation points a1, a2

[y,al] = meshgrid([1:bt/N:1+bt],[0.8*a1:(1.2*a2-0.8*a1)/N:1.2*a2]);

%[y,al] = meshgrid([1.1:0.6/N:1.7],[285:20/N:305]); % For Figure 3.11

% make grids for y and alpha in relevant ranges for y and beta

z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value

contour(al,y,z,[0 0],’b’); hold on, % draw 0 level curve
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if a2 ~= 1000, % in case of bifurcation

xlabel([’\alpha ; bifurcation’ ],’Fontsize’,14),

title([’ adiabNisocontourcurve : bifurcation points: \alpha_1 = ’,...

num2str(a1,’%10.5g’),’, \alpha_2 = ’,num2str(a2,’%10.5g’),...

’ ; \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’)],’Fontsize’,14),

plot([a1,a1],[1+bt/3,1+0.98*bt],’:’) % at left bifurcation a1

plot([a2,a2],[1.02,1+bt/2.4],’:’) % at right bifurcation a2

else, % in case of no bifurcation

xlabel([’\alpha ; No bifurcation ’],’Fontsize’,14),

title([’ adiabNisocontourcurve : No bifurcation points ;’,...

’ \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,num2str(ga,’%10.5g’)],...

’Fontsize’,14), end

ylabel(’y ’,’Rotation’,0,’Fontsize’,14), hold off

Our final code generates the (α, y) 2D data of the zero contour for F in (3.6). This data
is then interpolated for a user-specified input at α0, and the program decides whether the
given adiabatic CSTR has one or three steady state solutions for the given parameters β
and γ at α0. Moreover, it computes the y values for all steady states and the associated
function deviations of f in (3.4) from zero, called Fy. By all appearances this method
is far more reliable near the bifurcation points and surpasses and supersedes our initial
more generic root-finding code solveadiabxy.m from page 72.
function [Y, Fy] = adiabNisographsol(a0,bt,ga)

% adiabNisographsol(a0,bt,ga)

% Sample call : adiabNisographsol(50000,1,15)

% Sample output : on screen:

% Y =

% 1.0202 1.2692 1.9595

% Fy =

% 4.3927e-07 6.5708e-06 -6.6714e-05

% Plots the adiab equation zero level curve as a 2D plot,

% then the program decides on bifurcation and computes the values of y at

% the steady states of the CSTR system for the specified a0 value of alpha.

% Input : a0 = alpha_0, beta, gamma

% Output: Plot and up to three solutions x0, xmid, x1 in Y. With error in Fy.

% (if entries in Y are identical, there is only one solution,

% i.e., only one steady state for this input.)

% Increase N on first line to 800, 1000, 2000, if higher accuracy desired

N = 500; [a1,a2] = adiabNisoauxf1(bt,ga,N); % find bifurcation points a1, a2

a11 = min(a1,a0); a22 = max(a2,a0); % extend alpha range to contain a0

three = 0; % triple steady states ?

[y,al] = meshgrid([1:bt/N:1+bt],[0.8*a11:(1.2*a22-0.8*a11)/N:1.2*a22]);

% make grids for y and alpha in relevant ranges for y and beta

z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value

C = contour(al,y,z,[0 0],’b’); hold on, % draw 0 level curve

if a1 < a2,

yy = find(C(1,1:end-1)-C(1,2:end )> 0);

if length(yy) == 0, itop = length(C); ibot = 1;

else % find left bifurcation point

itop = yy(1); [bull,ibot] = min(C(1,itop:end));

ibot=ibot+itop-1; end % add the front end length!

if a1 <= a0 & a2 >= a0 & length(yy) > 0, three = 1; % in case of multiplicity

x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’spline’); % bottom solution (1)
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xmid = interp1(C(1,itop:ibot),C(2,itop:ibot),a0,’spline’); % middle (2)

x1 = interp1(C(1,ibot:end),C(2,ibot:end),a0,’spline’); % top sol (3)

elseif a0 < a1,

x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’spline’); % only one steady state

xmid = x0; x1 = x0;

else x0 = interp1(C(1,ibot:end),C(2,ibot:end),a0,’spline’); % one steady st.

xmid = x0; x1 = x0; end,

else x0 = interp1(C(1,1:end),C(2,1:end),a0,’spline’); % no bifurcation;

xmid = x0; x1 = x0; end, % only one steady state

Y = [x0 xmid x1]; Fy = adiab(Y,a0,bt,ga); % prepare output

if a2 ~= 1000, % in case of bifurcation

plot(a0,1,’+r’) % mark requested value for alpha_0

plot([a1,a1],[1+bt/3,1+0.98*bt],’:’) % plot left bifurcation point a1

plot([a2,a2],[1.02,1+bt/2.4],’:’) % plot right bifurcation point a2

if three == 1; % mark 3 steady states

xlabel([’\alpha (three steady states for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ adiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’),’; y_2 = ’,num2str(xmid,’%10.6g’),...

’ ; y_3 = ’,num2str(x1,’%10.6g’)],’FontSize’,12),

plot(a0,x0,’+r’), plot(a0,xmid,’+r’), plot(a0,x1,’+r’),

else % mark single steady state

xlabel([’\alpha (single steady state for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ adiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’)],’FontSize’,12),

plot(a0,x0,’+r’), end % mark single steady state

else, % in case of no bifurcation

xlabel([’\alpha (single steady state for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ adiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’)],’FontSize’,12),

plot(a0,x0,’+r’), plot(a0,1,’+r’), end % mark single steady state

ylabel(’y’,’Rotation’,0,’FontSize’,12), hold off

function f = adiab(x,al,bt,ga) % adiabatic function f(x) = 0 in (3.2)

% evaluates the adiabatic-non-iso function at x for given

% al, bt, ga values. (vector version)

f = x - 1 - al*exp(-ga./x) .* (1 + bt - x);

The screen output and plot of calling >> [y,fy]=adiabNisographsol(50000,1,15) are
as follows:

>> [y, fy]=adiabNisographsol(50000,1,15)

y =

1.0202 1.2692 1.9595

fy =

4.3927e-07 6.5708e-06 -6.6714e-05
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Note that the graph itself includes the computed y values for the steady states marked
by + signs thrice and that their respective y values are written out on the title line. The
user-specified parameter values of α0, β, and γ are given below the plot in Figure 3.10.
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To finish this section, we have revisited the earlier bisection algorithm solveadiabxy.m
in Figure 3.11. To illustrate we superimpose the curve data from Figure 3.3 as a thick
curve on top of the level-set method’s graphics output depicted by a thin line in Figure
3.11. This figure is drawn by the command sequence adiabNisocontourcurve(1,8.5),
hold on, runsolveadiabxy(285,305,1,8.5); after the meshgrid line near the top of
adiabNisocontourcurve.m has been altered for Figure 3.11 as indicated inside the pro-
gram.
Figure 3.11 makes it obvious that the level-set method for equation (3.6) gives much
more meaningful numerical results and clearer graphical representations of the multiple
steady state solutions of the CSTR problem (3.3).
Figure 3.11 contains several independent validations of our graphical methods: The bi-
furcation points are determined graphically to be α1 = 287.55 and α2 = 299.56 using
adiabNisoauxf1.m and equation (3.5). These limits of bifurcation are indicated in Fig-
ure 3.11 by the two dotted vertical lines. The thin part of the graph of the temperature
function y(α) is determined in adiabNisocontourcurve.m as the level-zero curve for
the surface z = F (α, y) as defined in equation (3.6) by interpolating the α-y-F 3D
function data. A visual inspection shows a perfect match of the bifurcation points and
the extremes of the function excursions. Moreover, the graphical data and the bisection
algorithm data match perfectly on the part of the graph where bisection data is available.

In conclusion, the graphical output of the level-set method is far superior to the bi-
furcation data obtained via any of the more standard root-finding algorithms.
We shall use the same graphical approach again in the next section for the nonadiabatic
CSTR problem.

Exercises for 3.1
1. Fix β = 1 and find the range of γ values for which there is bifurcation for the

associated adiabatic CSTR problem by running runadiabNiso.m with N set
to 400 and to 40, with and without plotting.

2. Find the maximal and minimal α values experimentally, correct to 5 digits,
for which solveadiabxy(al,1,15) determines bifurcation correctly.

3. Repeat Problem 2 for adiabNisographsol and compare.

4. Test adiabNisographsol.m for β = 1, γ = 8, and many positive α0. Watch
the labels and title, as well as the red + mark(s) of the steady states.

5. Repeat Problem 4 for β = 1, γ = 18, and α0 = 80,000; 200,000; and 8,000,000.
Watch all plot annotations and make sure you understand the label and title
trees inside the program well.

6. View the surfaces defined in (3.6) via adiabNisosurf.m for β = 1 and γ = 8
or γ = 18 and various values of a1 and a2. How do the two surfaces differ for
the same values of α? How do they change with changing α values?

7. Repeat the previous problem with adiabNisocolorcontour.m instead.
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Conclusions

The kind of bifurcation that we have just encountered is called static bifurcation (SB).
This behavior is very common in many chemical/biological processes. A limited number
of industrial examples of this behavior include:

1. Fluid catalytic cracking (FCC) units for producing high-octane gasoline from gas-
oil or naphta: see Section 7.2.

2. The UNIPOL
�R process for polyethylene and polypropylene production using the

Ziegler-Natta2 catalyst: see Section 7.3.

3. Catalytic oxidation of carbon monoxide CO in car exhaust reactors.

4. Ethanol production by fermentation at high substrate concentrations: see Section
7.6.

Understanding such static bifurcation behavior is very important for the design, opti-
mization, startup, operation, and control of the system. The bifurcation points determine
the boundaries of the region where multiple steady states exist. Even if the design and
operating parameters of a system cause it to operate outside of the multiplicity region,
detailed knowledge of its multiplicity region is very important for startup and control
purposes. This is so because a system that operates in its unique steady state region but
near its multiplicity region is not like a system in which bifurcation does not exist. A
unique steady state system operating near the multiplicity region may be exposed to a
disturbance during operation (or startup) that moves its operating parameters into the
multiplicity region. This complicates the system’s behavior and imposes the features of
the multiplicity region on the system’s design, operation, and control.
On the other hand, if the chosen design and operating conditions determine that the
system is operating in the multiplicity region, then the system is completely affected
according to the following underlying principles:

1. Which steady state to choose: the high-temperature one (with y near 1 + β),
the middle one, or the low-temperature one (with y near 1)?
For a simple reaction

A ⇒ B

the high-temperature steady state is a likely choice from a process point of view
(i.e., with respect to conversion and productivity). But the associated tempera-
ture may be too high for the construction material of the reaction vessel. In this
case one might be forced to operate at the middle or the low-temperature steady
states. But the low-temperature steady state may be at too low a temperature
(quenched reaction) or gives too low a conversion to be economical. Thus one may
be forced to operate at the middle steady state, which unfortunately is unstable
and requires stabilization through control. For a more detailed analysis, we refer to
our discussions on p. 117 following Figure 3.29 in Section 3.3.

2Karl Ziegler, German chemist, 1898-1973
Giulio Natta, Italian chemist, 1903-1979
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2. More complex reactions, such as

A ⇒ B ⇒ C

where B is the desired product.

Here it is often the case that the high-temperature steady state uses a temperature
that is too high and does not produce enough of the desired intermediate product
B; in fact the system often overreacts all reactants directly to C, such as in fluid
catalytic cracking. On the other hand, the low temperature steady state generally
corresponds to too low a conversion. Thus the middle, unstable steady state is
often the only productive choice, and it yields the maximal amount of product
B. A typical case is that of fluid catalytic cracking (FCC) units for producing
high-octane gasoline.

3. Operating at the middle unstable steady state requires using some means
of control for the plant, such as a stabilizing controller or nonadiabatic operation
with carefully chosen parameters to stabilize the saddle-point type of the unstable
steady state.

4. Startup and multiplicity: When the operating parameters are chosen to be in the
unique steady state region, then almost any startup policy will lead to the desired
unique steady state. However, when the operation parameters place the reaction in
the multiplicity region, then different startup policies may lead to different steady
states. Here is an actual example: when a catalytic hydrogeneration reactor was
designed to give an 80% steady-state conversion and when the plant gave only a
7% conversion, many trials to check for catalyst deactivation and other classical
approaches did not yield any useful remedy. Through bifurcation analysis, it was
finally discovered that the reactor had three steady states under the chosen design
conditions, a stable low temperature one at 7% conversion, an unstable middle
saddle-type one at 35% conversion, and a high-temperature, high-conversion one
at 80% conversion. Preheating at startup to get the system to the high-temperature
steady state was sufficient to solve the problem and to operate the reactor at 80%
conversion as desired.

The Roles of the Parameters α , β , and γ :

β : This dimensionless parameter is the thermicity factor; it is positive for exothermic
reactions and negative for endothermic ones. Given a constant feed concentration
and feed temperature for a CSTR, larger positive values of β in the reaction mean
higher exothermicity (a higher value of the exothermic heat of reaction), while lower
negative values of β signify a higher endothermicity of the reaction, i.e., a higher
value of the endothermic heat of reaction.

γ : This dimensionless parameter describes the activation energy. For constant feed
temperatures, a higher value of γ indicates a higher activation energy. In other
words, the larger γ is, the higher the reaction’s sensitivity will be to temperature.
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α : This dimensionless parameter involves k0, the factor preceding the exponential term
of the Arrhenius reaction formula (2.1) or (2.2), called the preexponential factor or
the frequency factor; q, the volumetric flow rate; and V , the volume of the reactor,
which are related via the formula α = k0 · V /q. Here k0 is usually quite large.
If we keep k0 constant, then α is directly proportional to the volume V , and inversely
proportional to the flow rate q. The values of α can reach very large magnitudes
due to the nature of k0 and its range of values. In general, α is the most widely
varying parameter of the reaction. Therefore we usually investigate bifurcation with
α chosen as the bifurcation parameter.

3.2 Continuous Stirred Tank Reactor: The Nonadia-

batic Case

For the nonadiabatic case we consider the same simple irreversible reaction

A =⇒ B ,

but now with a cooling jacket with constant temperature Tc surrounding the tank.

� �Tc Tc

��
��

��
��

�

�
q

CAf

Tf

q

CA

T

T
V

CA

Schematic diagram for the nonadiabatic CSTR
Figure 3.12

Here the material balance design equation is the same as for the adiabatic case, namely

q · CAf = q · CA + V · k0 · e−E/(R·T ) ·CA . (3.7)

In dimensionless form and with the variable settings identical to those below equation
(3.3), equation (3.7) becomes

1 = xA + αe−γ/y · xA . (3.8)
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The heat balance equation for the nonadiabatic case is

q · ρ · Cp · (T − Tf ) = V · k0 · e−E/(R·T ) ·CA · (−∆H) − U · A · (T − Tc) ,

where U is the overall heat transfer coefficient between the jacket and the tank, measured
in J/(m2 ·min·K), A is the overall area of heat transfer between the tank and the cooling
jacket, measured in m2, and Tc is the constant temperature of the cooling jacket.
We can write this equation in dimensionless form as

y − 1 = αe−γ/y · xA · β − Kc(y − yc) , (3.9)

where the only new parameters and variables are Kc = (U · A)/(q · ρ · Cp), which mea-
sures the heat transfer between the tank and the jacket, and yc = Tc/Tf , the ratio of the
cooling and feed temperatures.

The material balance equation (3.8) and the heat balance equation (3.9) can be
reduced to a single equation by using different substitutions depending on the design
and/or simulation investigation that is desired.

First form in terms of y:
Equation (3.8) is equivalent to

xA =
1

1 + αe−γ/y
. (3.10)

By inserting (3.10) into (3.9) we obtain

y − 1 =
αe−γ/yβ

1 + αe−γ/y
− Kc(y − yc) . (3.11)

Rearrangement gives

(1 + Kc)y − (1 + Kcyc) =
αe−γ/yβ

1 + αe−γ/y
. (3.12)

This form is preferred for studying the effect of varying Kc for a constant value of α.

Second form in terms of y:
Starting with equation (3.8), namely xA − 1 = −αe−γ/y · xA, we multiply both sides by
β and add this to (3.9) to obtain the following sequence of equations:

β(xA − 1) = −αβ eγ/y · xA [β · (3.6)]
y − 1 + βxA = β − Kcy + Kcyc , or [β · (3.6) + (3.7)]

xA =
1 + β − y − Kcy + Kcyc

β
. (3.13)

Inserting (3.13) into (3.9), we finally get

(1 + Kc)y
α

− (1 + Kcyc)
α

= e−γ/y · (1 + β − (1 + Kc)y + Kcyc) . (3.14)
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This is most suitable for studying the effect of varying α while holding Kc constant.

Third form in terms of xA:
Sometimes it is desirable to express the nonadiabatic equation (3.8) in terms of the
variable xA alone, instead of in terms of y. To do so, we solve (3.13) for y to obtain

y =
1 + Kcyc + β(1 − xA)

1 + Kc
. (3.15)

Plugging this expression for y into (3.8) gives us the following equivalent nonadiabatic
nonisothermal CSTR equation, which depends solely on xA:

1 − xA = αe−γ·(1+Kc)/(1+Kcyc+β(1−xA)) · xA . (3.16)

Numerical Solution of the Nonadiabatic CSTR Prob-
lem

As in Section 3.1 for the adiabatic CSTR problem, we again start with a generic MATLAB
fzero.m based root finder to try to settle the issues of multiplicity in the nonadiabatic
CSTR case. The MATLAB m file solveNadiabxy.m below finds the values for y (up to
three values if α lies in the bifurcation region) that satisfy equation (3.12) for the given
values of α, β, γ, Kc, and yc using MATLAB’s root finder fzero.

function [y,fx,x] = solveNadiabxy(al,bt,ga,kc,yc)

% solveNadiabxy(al,bt,ga,kc,yc)

% Sample call : [y,fx,x] = solveNadiabxy(180000,1,15,1,1)

% Sample output : y =

% (on screen) 1.0515 1.197 1.4

% fx =

% -1.5543e-15 3.8858e-16 1.1102e-16

% x =

% 0.19995 0.60592 0.89707

% Input : al, bt, ga, kc, yc

% Program finds the xA and the y values on all branches of the curve.

% Output : y values at x for all steady states, error at each xA, xA

% CAUTION: always check critical applications against a run of

% [Y, Fy,x] = NadiabNisoalgraphsol(al,bt,ga,kc,yc) and

% [a11,a12,a21,a22,bif] = NadiabNisoauxfalxA(bt,ga,kc,yc,100,tol,w)

% for confirmation.

% NadiabNisoalgraph is more reliable near bifurcation limits than

% solsolveNadiabxy.

% local subroutines : Nadiab(x,al,bt,ga,kc,yc)

% [differs from NadiabNiso which does the same for the

% vector variable y]

% And Matlab’s own "fzero" root finder.

warning off; midtol = 10^-13; % to satisfy the grandfather warnings re. fzero
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ltol = 10^-14; mid = 1; % local tolerance for fzero; change if critical

options = optimset(’dis’,[],’tolx’,ltol);

x0 = fzero(@Nadiab,0,options,al,bt,ga,kc,yc);

x1 = fzero(@Nadiab,1,options,al,bt,ga,kc,yc);

if abs(x0 - x1) > 10^-10, % three roots (bifurcation) likely; check with graph

xmid = fzero(@Nadiab,[1.01*x0,0.99*x1],options,al,bt,ga,kc,yc);

else, xmid = (x0+x1)/2; end, % dummy value for xmid if no bifurcation

x = [x0 xmid x1]; fx = Nadiab(x,al,bt,ga,kc,yc);

% compute error in x coordinates

y = sort((1+kc*yc + bt*(1-x))/(1+kc)); % transform from xA to y

warning on

function f = Nadiab(x,al,bt,ga,kc,yc) % uses equation (3.14)

% evaluates the non-adiabatic-non-iso function at x = xA for given

% al, bt, ga, kc, yc values. (vector version)

f = 1 - x - al*exp(-ga*(1+kc)./(1+kc*yc + bt *(1 - x))) .* x;

Compared to solveadiabxy.m for the adiabatic CSTR case in Section 3.1, the above
MATLAB function solveNadiabxy.m depends on the two extra parameters Kc and
yc that were defined following equation (3.9). It uses MATLAB’s built-in root finder
fzero.m. As explained in Section 3.1, such root-finding algorithms are not very reliable
for finding multiple steady states near the borders of the multiplicity region. The reason
– as pointed out earlier in Section 1.2 – is geometric; the points of intersection of the
linear and exponential parts of equations such as (3.16) are very shallow, and their values
are very hard to pin down via either a Newton or a bisection method, especially near the
bifurcation points.
Instead, we shall rely again on graphical solvers and the level-set method, but with the
added twist and complication of the two additional parameters Kc and yc.

NOTE : In the sequel, we shall no longer print out every function m file as we have
done so far in this book. All our m files are stored on the accompanying CD
and they can and, if desired, should be viewed and accessed from the CD.
Check Appendix 3 with the contents list of our CD and look at the relevant
Readme files first, please.
Whenever we explain m files in extended detail from now on, we will print
them out in the book, but sometimes we just print their graphical output, or
parts thereof or nothing at all, especially if the respective file is truly auxiliary
or self-explanatory in nature. This helps to tighten our presentation and is
ultimately helpful for our students by avoiding needless chatter and clutter.

The accompanying CD contains three plotting routines for the nonadiabatic CSTR
problem under the file names NadiabNisoplotfgxy.m, NadiabNisoplotfgxA.m, and
NadiabNisoplotfgxAy.m in the folder for Chapter 3. These plot graphs of different
versions of the nonadiabatic CSTR equations. Figure 3.13 shows the result of calling
NadiabNisoplotfgxy(180000,1,15,1,1,100), for example.
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Figure 3.13

Each of the four plots in Figure 3.13 contains two graphs: that of a solid line for the linear
left-hand sides of equations (3.11) through (3.16) and that of the respective exponential
function from the respective right-hand sides, in a dotted curve. The very shallow inter-
sections in Figure 3.13 indicate the location of the multiple steady states of the given
nonadiabatic CSTR system.
Similarly, NadiabNisoplotfgxA.m plots the linear and exponential parts separately, first
of the two equations (3.16) in terms of xA, and then of (3.11) in terms of y in more
detail, while NadiabNisoplotfgxAy.m creates the following three graphs: first it repeats
the linear and exponential parts plot of (3.16), followed by plotting the equation (3.16)
converted to standard form, i.e., converted to an “f equal to zero” equation. And finally
the same is done with equation (3.14). These differing plots are useful when one is trying
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to visualize the behavior of a nonadiabatic nonisothermal CSTR system for one specific
set of inputs.

To gain further and broader insights into the bifurcation behavior of nonadiabatic,
nonisothermal CSTR systems, we again use the level-set method for nonalgebraic surfaces
such as z = f(Kc, y). This particular surface is defined via equation (3.14) as follows for
a given constant value of yc with the bifurcation parameter Kc:

z = f(Kc, y) = (1+Kc)y−(1+Kcyc)−α ·e(−γ/y) ·((1+β+Kcyc)−(1+Kc )y) . (3.17)

To obtain this equation we have multiplied (3.14) by α and converted it into an equation
in standard form z = f(...) = 0. We print out only the descriptive initial comment lines
of runNadiabNisokc.m below.

function runNadiabNisokc(al,bt,ga,yc,N,tol,kcstart,kcend)

% runNadiabNisokc(al,bt,ga,yc,N,tol,kcstart,kcend)

% Sample call : runNadiabNisokc(180000,1,15,1,100,.001,.7,1.2)

% Runs NadiabNisokc double plot: [uses equation (3.12) for variable kc]

% surface plot on top with bifurcation curve (variable kc)

% marked; and bifurcation curve on bottom.

% Input : al, -1 < bt, ga, yc, N (= number of points used),

% tolerance tol (= 0.01, ..., 0.0001; optional),

% kcstart ( >= 0 ), kcend (both optional)

% [If unspecified, we plot the whole bifurcation region.]

% First we determine which range of kc1 < kc2 ensures bifurcations,

% then we plot the surface, followed by the y versus kc multiplicity region

% plot.

% [Note: if the given kcend or kcstart lies inside the bifurcation region

% [kc1,kc2], the bifurcation ending dotted lines will take the kcstart/kcend

% values rather than the true ones; simply widen the inputs [kcstart,kcend]

% interval in this case.]

% For standard al, bt, ..., yc, set N = 80 or 100, for extreme data set

% N = 200 or 300.

% External subroutines : NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol)

% [to find bifurcation limits]

% NadiabNiso(y,al,bt,ga,Kc,yc) [to evaluate function]

We run runNadiabNisokc.m to obtain a plot of the surface z = f(Kc, y) with the zero-
level curve depicted in black on the surface itself and also below on the Kc-y plane
in blue, as well as a separate plot of the zero-level curve in a second window below.
In particular, a call of runNadiabNisokc(180000,1,15,1,100,.001,.7,1.2) exhibits
bifurcation for 0.77125 ≤ Kc ≤ 1.12452 when α = 1.8 · 108, β = 1, γ = 15, and yc = 1
as shown in Figure 3.14.
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Nonadiabatic CSTR surface and bifurcation curve for Kc

Figure 3.14
Generally speaking, there are three possible outcomes of runNadiabNisokc(...) if the
Kc viewing interval [kcstart, kcend] is specified in the call: there may be no bifur-
cation at all for the α, β, γ, and yc input data, or there may be bifurcation: either
somewhere other than near the desired viewing interval [kcstart, kcend], or the view-
ing interval [kcstart, kcend] may overlap the multiplicity region in case of bifurcation.
The plot annotations will reflect this clearly for our users. If the Kc viewing region is not
specified, defaults are set automatically and the program tries to plot the whole multi-
plicity region in case bifurcation is detected somewhere for the input data.
The runNadiabNisokc.m plotting function relies heavily on the auxiliary function
NadiabNisoauxfkcxA.m, which decides whether there is any multiplicity for the given
inputs α, β, γ, and yc. The key to these decisions lies in its auxiliary function [b,li,lj]
= lowhighkc(i,j,heat), which we shall explain following the NadiabNisoauxfkcxA.m
listing below.

function [kc11,kc22,bif] = NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol,kc11,kclim)
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% NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol,kc11,kclim)

% Sample call : [kc11,kc22,bif] = NadiabNisoauxfkcxA(180000,1,15,1,100,.001)

% Sample output : [ The kc bifurcation limits are :

% kc11 (= lower bifurcation limit)

% and kc22 (= upper bifurcation limit),

% if bif = 1, i.e., if bifurcation has been detected.]

% on screen : kc11 =

% 0.77124 (= lower limit for Kc with bifurcation)

% kc22 =

% 1.1245 (= upper bifurcation limit)

% bif = ( bifurcation indicator)

% 1

% searches for values of -1 <= kc11 <= kc <= kc22 with bifurcation,

% for a certain tolerance; tol = 10^-5 gives very stringent results;

% tol = 10^-3 is generally ok. [N = 60 or 100; tol = 0.01 or 0.001 will work.]

% Inputs kc11 ( >= 0 )and kclim are optional and demarcate the range of kc

% values in which we search for bifurcation, if they are specified.

% On output: bif = 1, if there is bifurcation, bif = 0, if there is not.

% Special subroutines used: external: NadiabfkcxA(x,al,bt,ga,kc11,yc)

% internal: lowhighkc(i,j)

if nargin == 6, kc11 = 0.00001; kclim = 20; end, kcstep = (kclim-kc11)/10;

x = 0:1/N:1; bif = 0; biff = 1; % set starting values; adjust kclim to defaults

F1 = NadiabfkcxA(x,al,bt,ga,kc11,yc);

b1 = lowhighkc(find(F1 > 0),find(F1 <= 0));

if b1 == -1,

disp([’W A R N I N G 1: no nonnegative values for kc lead to bifurcation,’,...

’ we give up’]), % return ?

kc12 = kc11; kc21 = kclim; kc22 = kclim; biff = 0; end % abandon program

if b1 == 0, kc12 = kc11; bif = 1; end

% bifurcation : set up lower bifurcation limits kc11, kc12 first

if b1 == 1, kc12 = kc11; bif = 1; % bifurcation inside prescribed kc interval

while b1 == 1 & kc12 < kclim % search for its lower limit kc11

kc11 = kc12; kc12 = kc12 + kcstep; F1 = NadiabfkcxA(x,al,bt,ga,kc12,yc);

b1 = lowhighkc(find(F1 > 0),find(F1 <= 0)); end,

if kc12 >= kclim,

disp([’W A R N I N G 2: no apparent bifurcation for any kc <= kclim = ’,...

num2str(kclim,’%9.4g’)]), % return ?

kc11 = 0; kc12 = 0; kc21 = kclim; kc22 = kclim;

if biff == 0, bif = 0; end, end, end

if bif == 1,

kc21 = kc12; F2 = NadiabfkcxA(x,al,bt,ga,kc21,yc);

b2 = lowhighkc(find(F2 > 0),find(F2 <= 0)); % set upper bifurcation limits

if b2 == -1, kc22 = kc21; kc21 = kc22 - kcstep; end

if b2 == 0,

while b2 == 0 & kc21 < kclim, % search for upper bifurcation limit

kc21 = kc21 + kcstep; F2 = NadiabfkcxA(x,al,bt,ga,kc21,yc);

[b2,li,lj] = lowhighkc(find(F2 > 0),find(F2 <= 0)); end,
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if kc21 >= kclim, % upper bif limit outside kc interval

disp([’W A R N I N G 3: bifurcations for kc >= kclim = ’,...

num2str(kclim,’%9.4g’)]), end,

kc22 = kc21; kc21 = kc22 - kcstep; end

while kc12-kc11 > tol * kc12 % refine lower bifurcation limits

k1 = (kc11+kc12)/2; Fk1 = NadiabfkcxA(x,al,bt,ga,k1,yc);

b1 = lowhighkc(find(Fk1 > 0),find(Fk1 <= 0));

if b1 == 1, kc11 = k1; else, kc12 = k1; end, end, k2 = kc21; K2 = k2;

while kc21 > 0 & kc22-kc21 > tol * abs(kc21) & k2 > 0, % refine upper bif

K2 = k2; k2 = (kc21+kc22)/2; Fk2 = NadiabfkcxA(x,al,bt,ga,k2,yc);

[b2,li,lj] = lowhighkc(find(Fk2 > 0),find(Fk2 <= 0));

if k2 > 0,

if b2 == -1, kc22 = k2; else, kc21 = k2; end,

else

if b2 == -1, kc22 = K2; else, kc21 = K2; end, end, end, end

if bif == 1,

kc11 = (kc11+kc12)/2; % half the differences

if kc21*kc22 <= 0, kc22 = K2; else, kc22 = (kc21+kc22)/2; end,

if kc11 == kc22, bif = 0; end,

else, kc22 = kclim; end

function [b,li,lj] = lowhighkc(i,j) % length comparison function for kc

% input : two strings of integers i, j

% output b : b = 0 if kc is good (bifurcation);

% b = -1 if reducing kc leads to good kc;

% b = 1 if increasing kc leads to good kc

li = length(i); lj = length(j); b = -1; % going down default

if i(li) == li & j(1) == li+1, if li < lj, b = 1; end; % going up now

else, b = 0; end % bifurcation

MATLAB code line pairs such as
F1 = NadiabfkcxA(x,al,bt,ga,kc11,yc);

b1 = lowhighkc(find(F1 > 0),find(F1 <= 0));

on lines 3 and 4 above appear six times inside the function m file NadiabNisoauxfkcxA.m.
Such a line pair first evaluates the nonadiabatic nonisothermic system equation. In par-
ticular, this equation is the standard form (f(...) = 0) of equation (3.16). This code line
pair helps the program to decide whether the current value of Kc, called kc11, the par-
tition x, and the constants α, β, γ, and yc describe a system with multiplicity, denoted
by b1 = 0, or whether reducing Kc will likely lead to the multiplicity region by setting
b1 equal to –1, or if increasing Kc will likely do so by setting b1 = 1.
Here is a plot of the three possibilities for multiplicity when solving equation (3.16) in
its standard form

F 1(x) = 1 − x − α · e−γ·(1+kc)/(1+kc·yc+β(1−x)) · x = 0 (3.18)

for varying values of Kc and the same parameter set as has been used for Figure 3.14,
namely α = 18 · 104, β = 1, γ = 15, and yc = 1.
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When viewing the graphs of Figure 3.15, please recall that multiple solutions of F 1(x) = 0
for x ∈ [0, 1] signify bifurcation for the underlying CSTR system.
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Figure 3.15

Figure 3.15 was drawn using the MATLAB m file kctriple.m on the CD that accompa-
nies the book.
In the three example plots of Figure 3.15, the graph of F 1 in (3.18) crosses the horizontal
axis where F 1 = 0, i.e., F 1 changes sign for x ∈ [0, 1] and any value of Kc at least once,
since F 1(0) = 1 and F 1(1) < 0 for all Kc. If Kc lies inside the multiplicity region, then
F 1 changes signs more than once on the interval [0,1], and it does so an odd number of
times. In order to decide which is the case for one particular Kc, we form two vectors
for the index sets i and j of all points of the x partition where F 1 > 0 in i and where
F 1 ≤ 0 in j. Here F 1 is computed by NadiabfkcxA(x,al,bt,ga,kc11,yc).
Inside the subprogram lowhighkc we look at the last index of i. If we are in the situ-
ation of the left- or rightmost graphs of Figure 3.15, then the last index of i must be
equal to i’s length, since there is only one contiguous x interval where the function F 1 is
positive. Moreover, in these two situations, the vector j of all indices of the partition x
with negative F 1 values must have its first entry precisely equal to one plus the length
of the vector i, since the index vector j starts exactly after i has ended. Observe that in
case of multiplicity, depicted in the center graph of Figure 3.15 for F 1, neither of these
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two observations can hold, since i must contain the index sets of at least two disjoint x
intervals with F 1(x) > 0, and likewise for j.
Moreover, if the length of j exceeds the length of i, i.e., if we have the situation of the
leftmost graph of Figure 3.15, then an increase in the value of Kc may lead us to the
bifurcation region and the bifurcation points, if such exist. In the opposite case, depicted
in the rightmost plot of Figure 3.15, a decrease of Kc might lead to the multiplicity
region. This defines the search direction for multiplicity.

Our CD also contains the MATLAB function m file runNadiabNisokccurve.m. A
call of runNadiabNisokccurve(180000,1,15,1,100,.001,.7,1.2), for example, plots
only the bifurcation curve with respect to Kc in Figure 3.16, i.e., it repeats the bottom
plot in Figure 3.14.
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kcbifstart = 0.7712,  kcbifend = 1.125; α = 180000 , β = 1 , γ = 15 , yc = 1

Nonadiabatic CSTR bifurcation curve for Kc as the bifurcation parameter
Figure 3.16

Equation (3.17) allows a different interpretation of the underlying system’s bifurcation
behavior by taking Kc and yc as fixed and letting α vary, for example. We now study the
bifurcation behavior of nonadiabatic and nonisothermal CSTR systems via their level-
zero curves for the associated transcendental surface z = g(α, y). The surface is defined
as before, except that here we treat Kc and yc as constants and vary α and y in the 3D
surface equation

z = g(α, y) = (1+Kc)y−(1+Kcyc)−α e(−γ/y) · ((1+β +Kcyc)−(1+Kc)y) . (3.19)
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Nonadiabatic CSTR surface and bifurcation curve for α
Figure 3.17

If we run runNadiabNisoal.m (contained on the CD), we obtain a plot of the sur-
face z = g(α, y) and a separate plot of its zero-level curve. In particular, a call of
runNadiabNisoal(1,15,1,1,100,.001,120000,250000) exhibits bifurcation for 153,064
≤ α ≤ 208,984 when β = 1, γ = 15, kc = 1, and yc = 1 as depicted in Figure 3.17.

Note the difference between the shapes of the Kc bifurcation curves in Figures 3.14
and 3.16 on the one hand and that of the α bifurcation curve in Figure 3.17 for the same
equation (3.14) on the other hand: The α bifurcation curves have the general form of
the letter S , as seen in the bottom graph of Figure 3.17, while the curve in Figure 3.16
has the mirror image S shape. For very high values of α and fixed values for Kc and yc,
there is only one steady state at a high rate of conversion and consequently at a high
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temperature, while for very small values of α and fixed values of Kc and yc, there is also
only one steady state, but at a low temperature and a low rate of conversion.
This is completely opposite to what happens in Figures 3.14 and 3.16 with regard to
bifurcation when Kc varies and α is kept constant. For very high Kc values there is only
one steady state, but this time with a low conversion rate, while for low values of Kc

there is only one steady state with a high rate of conversion and high temperature.
As mentioned above, the Kc bifurcation curves have an inverted letter-S shape. We refer
to the conclusions of Section 3.2, and to Chapter 7 for an analysis of the physical meaning
of the differing shapes of the Kc and α parameter bifurcation curves when applied to
industrial processes and reactors.
In our CSTR example the constants Kc and α have opposite physical effects. If α in-
creases, the flow rate q decreases and thus the rate of reaction increases, as does the heat
of reaction. On the other hand, if Kc increases, then the heat removal by heat transfer
to the cooling jacket increases, reducing the rate of reaction and the production of heat.
Note that the search directions in our respective lowhighkc and lowhighal sub-programs
point in opposite directions for the S-shaped α bifurcation curves and for the inverted
S-shaped Kc bifurcation curves.
For further chemical/biological explanations of these “shape” phenomena, please see the
Conclusions subsection at the end of this section.
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Nonadiabatic, nonisothermal CSTR bifurcation curve for α
Figure 3.18
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Again we plot the bifurcation curve with respect to α as was done in Figure 3.17 sepa-
rately. We use the command runNadiabNisoalcurve(1,12,1,0,400,0.0001,0,3.8*10^
8) for Figure 3.18, for example, where the m file runNadiabNisoalcurve.m has been
taken from the CD. This gives us the following plot.

Thus far we have explored the bifurcation behavior of equation (3.14) with respect to
Kc via equation (3.17) in Figures 3.14 through 3.16, and with respect to α via (3.19) in
Figures 3.17 and 3.18. Since different Kc and α values can lead to bifurcation behavior for
the same nonadiabatic, nonisothermal CSTR system, it is of interest and advantageous
to be able to plot the joint bifurcation region for the parameters Kc and α as well.
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 Plot of kc and log(α) values with bifurcations  ; β = 1, γ =18, yc = 1.13

Nonadiabatic, nonisothermal CSTR joint bifurcation region for Kc and α
Figure 3.19

The gray area in Figure 3.19 is drawn by the call NadiabNisoalkcplot(1,18,1.13,100,
.001,-0.5,2). It describes the multiplicity area in terms of both α and Kc. The terminal
gray points of any line parallel to the α axis denote the boundaries of the multiplicity
region for α and the chosen fixed value of Kc, while the nonnegative points for any line
parallel to the Kc axis denote the multiplicity interval(s) for Kc and the chosen fixed α.
Note that the axis scales in Figure 3.19 are chosen so as to give a reasonable and instruc-
tive plot of the parameter ranges. The parameters Kc with bifurcation generally lie in
the range 0 ≤ Kc ≤ 5, while α’s range of bifurcation often covers several powers of ten.
Therefore we have chosen a logarithmic scale (to base 10) for the vertical axis in Figure
3.19.
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Choosing Kc ≥ 0 and α inside the gray region of Figure 3.19 gives the associated CSTR
system multiple steady states, and conversely, choosing Kc ≥ 0 and α outside the shaded
bifurcation region ensures a unique steady state for this particular system with its given
parameters β = 1, γ = 18, and yc = 1.13.
Let us look in more detail at Figure 3.19: For any fixed value of Kc, we can read the
bifurcation limits (in terms of α) of the system from the graph. The bifurcation region
for each fixed Kc is a simple, connected interval since any vertical line in Figure 3.19
that meets the gray region meets it contiguously with only two bifurcation points.
The situation is quite different for fixed α: look, for example, at the black horizontal
line drawn additionally in Figure 3.19 for α = 106.13. It intersects the gray bifurcation
region twice. Thus there are two disjoint multiplicity regions for this data with at least
three bifurcation points. Other horizontal lines such as α = 105.8 meet the gray region
in one contiguous interval, though, leading to a contiguous bifurcation region and to two
bifurcation points only.
What is happening for α = 106.13? Looking back at Figure 3.19, there are multiple steady
states for both low values of Kc just above 0, and also for higher values of Kc around
1.5, but not in between.
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 kc        (viewed on [ 0,2] ;  with N = 100 ; tol = 0.001 )

kcbifstart = 1e−05,  kcbifend = 1.57; α = 1.34896e+06 , β = 1 , γ = 18 , yc = 1.13

Nonadiabatic, nonisothermal CSTR system with disjoint multiplicity regions for Kc

Figure 3.20
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Figure 3.20 uses runNadiabNisokccurve.m with α = 106.13 = 1.34896 · 106, β = 1, γ =
18, yc = 1.13 for 0 ≤ Kc ≤ 2 and describes the bifurcation behavior with respect to Kc

as represented by the intersection of the black horizontal line with the gray bifurcation
region of Figure 3.19 for Kc ≥ 0. We note the standard inverted S-shape of the curve
in Figure 3.20 from around Kc = 1.2 to about Kc = 1.57, as well as a little “dimple”
for 0 ≤ Kc ≤ 0.2 or thereabouts. This “dimple” corresponds to part of the black line
and gray region intersection immediately to the right of the black vertical line Kc = 0 in
Figure 3.19.
If we decrease α sufficiently for the same set of data, the two areas of multiplicity will even-
tually join into one. For α = 106.092389299, for example, a call of runNadiabNisokccurve
(10^6.092389299,1,18,1.13,800,.0001,0,2) produces the plot in Figure 3.22 with
an almost contiguous multiplicity region where two of the bifurcation points come very
close to each other.
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 kc        (viewed on [ 0,2] ;  with N = 800 ; tol = 0.001 )

kcbifstart = 1e−05,  kcbifend = 1.457; α = 1.23706e+06 , β = 1 , γ = 18 , yc = 1.13

Nonadiabatic, nonisothermal CSTR system with an almost contiguous multiplicity
region for Kc

Figure 3.21

Note the near-horizontal and slightly disconnected black line at y ≈ yc = 1.13 in Figure
3.21. For the chosen value of α = 1.23706 · 106 = 106.092389299 the bifurcation diagram
becomes an imperfect pitchfork. A perfect pitchfork bifurcation diagram occurs when
α is slightly decreased, so that the corresponding black horizontal line in Figure 3.19
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becomes precisely tangent to the upper limiting curve of the gray joint bifurcation region
of Figure 3.19. For this critical value of α, the middle steady state remains constant at
the cooling jacket temperature yc = 1.13 for all values of Kc.
When α is decreased below this critical value, the pitchfork phenomenon disappears. In
particular, for α = 106.08 we observe two unconnected branches for the three steady
states of the system in Figure 3.22.
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Nonadiabatic CSTR system with a contiguous multiplicity region for Kc

Figure 3.22

The two branches of the top bifurcation curve in Figure 3.22 will rejoin for some large-
magnitude but physically impossible negative value of Kc far to the left of our window’s
edge. Negative values for Kc are impossible, since this would physically mean that heat is
transferred from the cold part to the hot part. As depicted in Figure 3.22, the bifurcation
curves look like an incomplete isola.
We are made aware of the lively change in bifurcation behavior here: just a third digit
change in α can cause absolutely different bifurcation behavior of the associated CSTR
system, as witnessed by Figures 3.20 to 3.22.
For this reason, only highly reliable models coupled with accurate numerical
routines such as those presented here are useful for the professional chemi-
cal/biological engineer.
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What has just been done for Kc and α can be repeated for yc and α as well. Here is the
joint multiplicity region plot for yc and α, obtained by calling NadiabNisoalycplot(1,15,
1,100,.001,-.4,2) with β = 1, γ = 15, and Kc = 1 and the imposed bounds −0.4 ≤
yc ≤ 2.
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Nonadiabatic CSTR joint bifurcation region for yc and α
Figure 3.23

We note that split bifurcation regions and pitchfork bifurcation such as depicted in Fig-
ures 3.20 and 3.21 for Kc were never encountered by us for any fixed α in terms of yc.

Next we show the graphical output of two multiplot routines from our CD (in terms of
several yc values plotted with respect to Kc, or in terms of several Kc values plotted with
respect to yc). A call of NadiabNisoalkcmultiplot(1,20,[1.5:.5:4],100,.001,-.4,2)
plots six superimposed Kc and α joint multiplicity regions for yc = 1.5, 2, 2.5, 3, 3.5,
and 4 in Figure 3.24.
The topmost drawn multiplicity region in Figure 3.24 represents the one for the last entry
of the yc vector, and the one for the first entry of the vector yc is the bottom region plotted
in the stack of regions in Figure 3.24. If we desire to depict the yc multiplicity region for
yc = 1.5 on top in Figure 3.23, we should call NadiabNisoalkcmultiplot(1,20,fliplr
([1.5:.5:4]), 100,.001,-.4,2), or equivalently NadiabNisoalkcmultiplot(1,20,
[4:-.5:1.5],100,.001,-.2,2) instead.
Moreover, recall that negative values of Kc are physically meaningless here. But our
numerical techniques are robust enough to plot even for unrealistic negative Kc values.
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Figure 3.24
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Likewise, we can plot multiple joint bifurcation regions for multiple values of Kc and α.
Calling NadiabNisoalycmultiplot(1,15,[-.15,-.1,[.1:.2:1.1]],100,.001,-1,4)
with NadiabNisoalycmultiplot.m from our CD draws Figure 3.25 in color. We note
that the range of α allowed in the auxiliary function NadiabNisoauxfalxA.m has been
deliberately limited to below 1024. Therefore there is an artificial “top shelf” at α = 1024

for the top purple bifurcation region drawn for the negative values of yc when Kc = 1.1
in Figure 3.25.

Note how the multiplicity regions here become wider to the left for smaller values
of yc if Kc > 0 and how they open up to the right for larger yc if Kc < 0. Of course,
negative values for Kc have no physical meaning, since heat cannot be transferred from a
cold part to a hot part; see our comments following Figure 3.22. These negative Kc value
plots are included only to show the versatility and strength of our numerical methods
that go well beyond the physically meaningful applications of our model. These methods
may well turn out to be useful in other applications. The same comments apply to our
earlier Figures 3.19 and 3.24, which also allowed for physically impossible negative values
of Kc.

Our final MATLAB m file in this section rounds out our efforts just as Figure 3.10 did
for the adiabatic CSTR problem. It uses the plotting routine for Figure 3.18 in conjunc-
tion with a MATLAB interpolator to mark and evaluate the (multiple) steady state(s)
graphically for nonadiabatic, nonisothermal CSTR problems.
Our function m file NadiabNisoalgraphsol.m from the N adiab folder on the CD reads
like this:

function [Y, Fy,x] = NadiabNisoalgraphsol(a0,bt,ga,kc,yc)

% NadiabNisoalgraphsol(a0,bt,ga,kc,yc)

% Sample call : [Y, Fy,x] = NadiabNisoalgraphsol(300000000,1,12,1,0)

% Sample output : (on screen)

% Y =

% 0.50821 0.55562 0.99973

% Fy =

% -0.0087544 1.5137e-05 2.4585e-06

% x =

% 0.00054877 0.88877 0.98358

% Plots the (3.12) Nadiab equation zero level curve as a 2D plot,

% then the program decides on bifurcation and computes the values of y at

% the steady states of the CSTR system for the specified a0 value of alpha.

% Input : a0 = alpha_0, beta, gamma, kc, and yc

% Output: Plot of up to three steady state solutions y0, ymid, y1 in Y on the

% bifurcation curve.

% And on screen: Y values; function error in Fy, and converted xA

% values in x (via equation (3.11))

% (If entries in Y are identical, there is only one solution,

% i.e., only one steady state for this input.)

% Increase N on first line to 800, 1000, 2000, and possibly decrease tol,

% if higher accuracy desired.
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N = 500; tol = 0.001; w = 0;

[a1,a12,a2,a22,bif] = NadiabNisoauxfalxA(bt,ga,kc,yc,N,tol,w);

a11 = min(a1,a0); a22 = max(a2,a0); % extend alpha range to contain a0

three = 0; % triple steady states ?

miny = (1+kc*yc)/(1+kc); maxy = (1+bt+kc*yc)/(1+kc); % prepare plot

[y,Al]=meshgrid([miny:(maxy-miny)/N:maxy],...

[0.8*a11:(1.2*a22-0.8*a11)/N:1.2*a22]);

% make grids for y and alpha in relevant ranges for y and beta

z = NadiabNiso(y,Al,bt,ga,kc,yc); % z = adiab Non-iso function value

C = contour(Al,y,z,[0 0],’b’); hold on, % draw 0 level curve

if a1 < a2,

yy = find(C(1,1:end-1)-C(1,2:end )> 0);

if length(yy) == 0, itop = length(C); ibot = 1;

else % find left bifurcation point

itop = yy(1); [bull,ibot] = min(C(1,itop:end));

ibot=ibot+itop-1; end % add the front end length!

if a1 <= a0 & a2 >= a0 & length(yy) > 0, three = 1; % in case of multiplicity

x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’linear’); % bottom solution (1)

xmid = interp1(C(1,itop:ibot),C(2,itop:ibot),a0,’linear’); % middle (2)

x1 = interp1(C(1,ibot:end),C(2,ibot:end),a0,’linear’); % top sol (3)

elseif a0 < a1,

x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’spline’); % only one steady state

xmid = x0; x1 = x0;

else x0 = interp1(C(1,ibot:end),C(2,ibot:end),a0,’spline’); % one steady st.

xmid = x0; x1 = x0; end,

else x0 = interp1(C(1,1:end),C(2,1:end),a0,’spline’); % no bifurcation;

xmid = x0; x1 = x0; end, % only one steady state

Y = [x0 xmid x1]; x = sort((1+bt-Y-kc*(Y-yc))/bt); % prepare output

Fy = Nadiab(x,a0,bt,ga,kc,yc);

if bif == 1, % in case of bifurcation

plot(a0,miny,’+r’), % mark requested value for alpha_0

plot([a2,a2],[maxy,miny+0.08*(maxy-miny)],’:’);

plot([a1,a1],[miny,miny+.8*(maxy-miny)],’:’); % plot bifurcation limits

if three == 1; % mark 3 steady states

xlabel([’\alpha (three steady states for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ NadiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’),’; y_2 = ’,num2str(xmid,’%10.6g’),...

’ ; y_3 = ’,num2str(x1,’%10.6g’)],’FontSize’,12),

plot(a0,x0,’+r’), plot(a0,xmid,’+r’), plot(a0,x1,’+r’),

else % mark single steady state

xlabel([’\alpha (single steady state for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ adiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’)],’FontSize’,12),
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plot(a0,x0,’+r’), end % mark single steady state

else, % in case of no bifurcation

xlabel([’\alpha (single steady state for \alpha_0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...

’, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),

title([’ adiabNiso graphical solution : y_1 = ’,...

num2str(x0,’%10.6g’)],’FontSize’,12),

plot(a0,x0,’+r’), plot(a0,1,’+r’), end % mark single steady state

ylabel(’y’,’Rotation’,0,’FontSize’,12), hold off

function f = Nadiab(x,al,bt,ga,kc,yc) % uses xA parameter and equation (3.14)

% evaluates the non-adiabatic-non-iso function at x = xA for given

% al, bt, ga, kc, yc values. (vector version)

f = 1 - x - al*exp(-ga*(1+kc)./(1+kc*yc + bt *(1 - x))) .* x;

This m file produces three steady-state values for yc as marked when called by the MAT-
LAB command NadiabNisoalgraphsol(300000000,1,12,1,0), for example, in Figure
3.26.
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Bifurcation curve with multiple steady states marked by +
Figure 3.26

It is worthwhile to explore the differences between the results of NadiabNisoalgraphsol
and solveNadiabxy from the beginning of this section. For the nonadiabatic case such
an exploration will duplicate what we have already learned about the differences between
our fzero based and our graphics based steady-state finders for the adiabatic CSTR case
in Section 3.1; see the exercises below.
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Exercises for 3.2

1. Compare the results obtained from solveNadiabxy.m with those from
NadiabNisoalgraphsol.m, especially near the boundaries of the multiplicity
regions for various sets of inputs.

2. Compare the graphical output from NadiabNisoalkcplot.m and
NadiabNisoalycplot.m for the same values of Kc and yc by measuring the
endpoints of the respective α bifurcation regions with the help of a ruler. These
should be the same. Are they?

3. Use runNadiabNisokccurve.m with judiciously adjusted kcstart and kcend
values to find the lower limit of the bifurcation interval around Kc = 1.5
graphically for α = 106.13, β = 1, γ = 18, and yc = 1.13 as used in Figure
3.20. How can you likewise find the upper multiplicity limit for the bifurcation
region around Kc = 0 for the same input data and cleverly chosen values for
kcstart and kcend?

4. (a) Create a program called runsolveNadiabxy.m for the nonadiabatic CSTR
case that uses the bisection method of solveNadiabxy.m to plot y(α) in
the multiplicity region, such as runsolveadiabxy.m does in Figure 3.3 by
using the bisection method of solveadiabxy.m in the adiabatic case.

(b) For the nonadiabatic CSTR case, use NadiabNisoalgraphsol.m in con-
junction with runsolveNadiabxy.m from part (a) to create an overlay
plot similar to Figure 3.11 for the adiabatic CSTR case.
Compare the usable data range from the bisection based algorithm with
that from the graphical method.

5. Exercise your command of MATLAB by trying to replicate the three graphs in
Figure 3.15. Learn about the subplot, xlabel, ylabel, and title MATLAB
commands and how to use them.

One aim of this book is to teach and enable our readers to develop relevant
numerical codes for chemical/biological engineering models on their own. For this
purpose we include MATLAB Projects from now on in the Exercise sets.

6. Project I: Write a MATLAB m file that draws the surface z = f(Kc, y) with
f defined in equation (3.17), i.e., draw the top surface of Figure 3.14 alone.
Repeat for the top surface of Figure 3.17 as well.

7. Project II: Create a color contour MATLAB plotting routine for the nonadi-
abatic case, just as adiabNisocolorcontour.m did for α and y in the adiabatic
case in Figure 3.7. The aim is to create a color-contoured version of Figure 3.
16.
Repeat for Kc and y, i.e., add color contours to Figure 3.16.
Finally, explore the Kc and y color contour plots for the disjoint multiplicity
situations depicted in Figures 3.20 to 3.22.

8. Project III: Combine and adapt the m files NadiabNisoalgraphsol.m,
runNadiabNisoalcurve.m, and runNadiabNisokccurve.m to create a new
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multiplicity finder named NadiabNisokcgraphsol.m for y in terms of Kc, i.e.,
write a MATLAB m file that produces a plot like Figure 3.26, but with respect
to Kc rather than with respect to α.
Compare your results from NadiabNisoalgraphsol.m and
NadiabNisokcgraphsol.m analogously to Exercise 1 above.

Conclusions

The current section has covered numerical techniques and MATLAB codes for in-
vestigating the static bifurcation behavior of nonadiabatic lumped systems.
It is clear that the behavior of nonadiabatic systems is more complicated than that
of the adiabatic ones that were treated in Section 3.1.
Starting with Sections 3.1 and 3.2, we are progressing to learn how to design and
apply efficient numerical methods to investigate industrial chemical, biochemical,
and biomedical systems with and without bifurcation.
For the nonadiabatic case we have demonstrated that the variables α and Kc have
opposite effects on the system’s behavior. This is consistent with the physical mean-
ing of these two parameters. Increasing α increases the heat production, while in-
creasing Kc increases the heat dissipation. Thus for a constant α and variable Kc,
at low Kc values the heat dissipation is small, leading to a unique high-temperature
steady state of the system, while at large values of Kc, when heat dissipation is high
the system can have only one low-temperature steady state. And for intermediate
Kc values there may be three steady states when α is kept constant. The opposite
holds when Kc is kept constant and α varies. For low values of α the rates of reac-
tion and heat production are low, giving rise to a unique low-temperature steady
state for the system. And for large values of α with a high rate of heat production,
there will be a unique high-temperature steady state, while intermediate α values
may lead to three steady states.
Note that a battery of three CSTRs and its dynamic behavior are studied in Section
6.4.

3.3 A Biochemical Enzyme Reactor

Similar behavior to that of the nonisothermal CSTR system will be observed in an
isothermal bioreactor with nonmonotonic enzyme reaction, called a continuous stirred
tank enzyme reactor (Enzyme CSTR). Figure 3.27 gives a diagram.

��
��

��
��

q, Sf =⇒

=⇒ q, S

A simple enzyme CSTR
Figure 3.27
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For simplicity, we assume that the enzymes are immobilized inside the reactor, i.e.,
there is no outflow of enzymes nor any washout. At the same time we assume that there
is no mass transfer resistance. Then the governing equation is

q · Sf = q · S + V · r , (3.20)

where r is the rate of reaction per unit volume of the reactor.
Note: If r is expressed per unit mass then we multiply r by the enzyme concentration
CE , i.e., the mass of enzymes per unit volume of the reactor.

Dividing equation (3.20) by V gives us

q

V
· Sf =

q

V
· S + r . (3.21)

Here D = q/V is the dilution rate measured in (time)−1 . It is the inverse of the residence
time τ = V/q. Therefore

D · (Sf − S) = r . (3.22)

Equation (3.22) can be easily solved: the nature of the solution(s) will depend on the rate
of reaction function r. The right-hand side of equation (3.22) is called the consumption
function C(S) = r, while the left-hand side D(Sf − S) is called the supply function
S(S). One can solve this equation graphically for different types of kinetics, as shown in
Figure 3.27.

S

C(S)

S(S)

Michaelis−Menten

slope = −D

at steady state :
D(S

f
−S) = r

r

Consumption and removal
Figure 3.28
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Figure 3.28 shows the consumption functions C(S) for both nonmonotonic and Michaelis–
Menten kinetics together with the removal function R(S) = −D · S in a line. The inter-
section(s) of C(S) and S(S) are the steady states. It is clear that for Michaelis–Menten3

kinetics, i.e., for nonlinearity with saturation, see Figure 2.2, there is only one steady
state for the whole range of D. This is the simplest case of a CSTR without bifurcation.
However, for substrate-inhibited nonmonotonic kinetics as depicted by the nonmonotonic
curve in Figure 3.28, more than one steady state may occur over a certain range of D
values.

S

C(S)

S(S) Substrate supply line

Substrate consumption C

B

A

→ ←

→
←

→←

Local stability analysis of steady states
Figure 3.29

For nonmonotonic kinetics the stability details of the steady states A, B, and C are in-
dicated by arrows in Figure 3.29. The stability behavior of the different steady states is
explained below using chemico-physical reasoning. This applies to the earlier-mentioned
adiabatic and nonadiabatic nonisothermal CSTRs as well.

Our definition of the stability of a steady state is as follows:
For a stable steady state:
If a small disturbance is made, the system will return to its initial steady state once the
disturbance is removed or attenuated.
Unstable steady state:

3Leonor Michaelis, German chemist, 1875 – 1949
Maude Leonora Menten, Canadian physician and biochemist, 1879 – 1960
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If a small disturbance is made, the system will not return to its initial steady state when
the disturbance is removed.

In Figure 3.29 we have indicated the stability behavior of the three steady states A, B,
and C by horizontal arrows.
Steady-state point A
Using the simple steady-state diagram of Figure 3.29, point A is stable because slightly
to the right of it, the rate of consumption of the substrate C is greater than the rate of
supply S. This induces a decrease in the concentration. And therefore the reactor goes
back to its steady state at A under slight perturbations to the right. This is indicated by
the left-pointing arrow on the right side of point A.
For concentrations slightly to the left of the steady state A, the rate of consumption is
smaller than the rate of supply. Therefore the concentration will increase and the reactor
will go back to its steady state A in a certain small neighborhood of A, signifying stability
of the steady state at A.

Steady state point B
From the above simple steady-state diagram, point B is unstable because for any con-
centration change slightly to the right of B, the rate of substrate consumption is smaller
than the rate of substrate supply. Therefore the concentration continues to increase and
the system does not go back to the steady state B. Similarly, as the concentration is
lowered slightly to put the system to the left of its steady-state point B, the rate of
substrate supply is smaller than the rate of consumption and therefore the concentration
continues to decrease and never returns to the steady state B. This makes the steady
state B unstable.

Steady state point C
This steady state is stable for the same reasons as described for the steady-state point
A. The reader is advised to perform similar tests as described for the steady-state point
A at C and verify this assertion for C.

One may be curious to know at which stable steady state a given CSTR is operating.
This cannot be decided from the outside. The behavior of the reactor is determined by its
previous history. This is a nonphysical and nonchemical initial condition for the reactor.
The answer depends upon the dynamic behavior and the initial conditions of the system,
and this will be discussed later.

3.4 Scalar Static Equations, without Bifurcation

As mentioned earlier, the approach of this book is to treat problems with bifurcations as
the general case and problems without bifurcation as special cases.
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3.4.1 Simple Examples of Reactions with No Possible Multiple
Steady States

We should realize that certain chemical/biochemical problems can have no multiplicities
of their steady states over their entire range of parameters. Consider, for example, a
simple first-order reaction process A ⇒ B with the rate equation

r = k · CA .

The simple design equation shall be

q · CA = q ·CAf − V · k · CA ,

or in dimensionless form
CAf − CA = α · CA . (3.23)

Thus the reactant consumption function C(CA) on the right-hand side of (3.23) is a
straight line with slope α, or C(CA) = α ·CA, and the reactant supply function S(CA) on
the left-hand side of (3.23) is S(CA) = CAf −CA. We can easily solve (3.23) graphically
to find the steady-state solution CAss, since the steady state occurs when C(CAss) =
S(CAss), or at the intersection of the two lines.
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A
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S(C
A
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C(C
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S(C
A
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slope = −1

slope α

0
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A
f

C
A

ss

Simple consumption and removal
Figure 3.30

The change of CAss , defined as the solution of (3.23) with respect to α, can be expressed
by the simple function CA = CAf /(1 + α). This equation is graphed in Figure 3.31.
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Solution of (3.23)
Figure 3.31

Note that for a nonisothermal CSTR we will always obtain unique solutions (no bifur-
cation) for endothermic reactions, defined by β < 0, for both the adiabatic and the
nonadiabatic cases.
Figure 3.32 shows a typical output in the adiabatic case, obtained by calling
adiabNisocontourcurve (-.1,10) from Section 3.1 with an endothermic reaction for
β = −0.1.
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Similarly, the call of runNadiabNisoalcurve(-.1,12,1,0,200,0.001,0,3.8*10^12)
from Section 3.3 gives this graph without any bifurcation for the endothermic nona-
diabatic reaction when β = −0.1 is negative.
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Figure 3.33

Note also that for biochemical systems, uniqueness of the solutions prevails over the
whole range of systems with Michaelis–Menten kinetics.

3.4.2 Solving Some Static Transcendental and Algebraic Equa-
tions from the Chemical and Biological Engineering Fields

It is important to notice that chemical and biological engineers sometimes need to solve
transcendental equations for a completely different purpose, such as when evaluating
physical properties by solving a nonlinear (static) equation. In the following we inves-
tigate two such examples, one for determining friction factors and the other for finding
specific volumes of ideal and nonideal gases.

The Colebrook Equation

The Colebrook4 equation is used to calculate the friction of fluids in pipes, depending on

4Cyril Frank Colebrook, British civil engineer, 1910 – 1997
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the diameter D of the pipe and on the Reynolds coefficient NRe of the fluid as follows:

f =
[
−4 · log10

[
ε/D

3.7
+

1.256
NRe ·

√
f

]]−2

. (3.24)

Here ε is the roughness coefficient, D is the inside diameter of the pipe, NRe is the
Reynolds number of the fluid, and f is the friction factor for turbulent flow inside the
pipe.
This equation is transcendental in the unknown f . To solve for f with its two dimen-
sionless parameters ε/D and NRe given, we replace equation (3.24) by the equivalent
equation in standard form F (f) = 0, namely

F (f) = f −
[
−4 · log10

[
ε/D

3.7
+

1.256
NRe ·

√
f

]]−2

= 0 . (3.25)

This equation poses no problem at all for MATLAB’s root-finder fzero, since F ’s zeros
are always simple and the graph of F intersects the horizontal axis sufficiently steeply.
Here is our MATLAB code colebrookplotsolve.m, which adapts itself automatically
to the given inputs ε/D and NRe.

function [xsol,iterations] = colebrookplotsolve(eps_D, NRe)

% colebrookplotsolve(eps_D, NRe)

% Standard call : [xsol,iterations] = colebrookplotsolve(10^-4,10^5)

% Screen output : xsol = 0.00462915563470 iterations = 7

% Input : eps_D representing roughness/inside diameter;

% NRe the Reynolds number

% Adaptive algorithm that starts from start at .1 and finds an interval

% [bot top] with F(bot)*F(top) < 0.

% Then uses MATLAB’s fzero to find the solution xsol.

% Blue curve represents F. Looking for its intersection with the red

% horizontal F = 0 line.

start = .1; A = colebrook(start,eps_D,NRe); iterations = -1; % adaptive start:

if A > 0, top = start; fb = 1; bot = start; % if F(start) > 0

while fb == 1 % searching for bot with F(bot) < 0

bot = bot/2; c = colebrook(bot,eps_D,NRe); fb = sign(c);

if c > 0, top = bot; end, end

elseif A < 0, bot = start; ft = -1; top = start; % if F(start) < 0

while ft == -1 % searching for top with F(top) > 0

top = top*2; c = colebrook(top,eps_D,NRe); ft = sign(c);

if c < 0, bot = top; end, end

else, xsol = start; iterations = 0; end % if F(start) = 0 by sheer luck

if iterations < 0, % solve equation in interval [bot top]

warning off, % turn off grandfather fzero warning

[xsol,fval,exitflag,output] = fzero(@colebrook,[bot top],[],eps_D,NRe);

iterations = output.iterations; % solve and record # of iterations

warning on, end

x = linspace(xsol*10^-5,xsol*2,200); % x partition
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F = x - 1./(-4 * log10(eps_D/3.7 + 1.256./(NRe*x.^0.5))).^2; % evaluate f(x)

plot(x,F,’b’), hold on, v = axis; % plot F graph

ylabel(’F ’,’Rotation’,0,’FontSize’,14);

title([’Colebrook function plot with \epsilon/D = ’,...

num2str(eps_D,’%8.3g’),’, N_{Re} = ’,num2str(NRe,’%10.3g’)],’FontSize’,14),

plot([v(1) v(2)],[0 0],’r’), % draw horizontal F = 0 line

xlabel([’f (solution f* = ’,num2str(xsol,’%11.7g’),’)’],’FontSize’,14),

hold off

function F = colebrook(x,eps_D,NRe) % Colebrook function

F = x - 1./(-4 * log10(eps_D/3.7 + 1.256./(NRe*x.^0.5))).^2;

The following numerical output is computed by calling [xsol,iterations] =
colebrookplotsolve(10^-4,10^ 5) and displayed on screen when format long is spec-
ified.
>> [xsol,iterations] = colebrookplotsolve(10^-4,10^5)

xsol =

0.00462915563470

iterations =

7

And the graphical output is shown in Figure 3.34.
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Figure 3.34

In the first ten lines of colebrookplotsolve.m the program searches for two values called
‘top’ and ‘bot’ with F (top) ·F (bot) < 0 in order to obtain an inclusion interval for the so-
lution bot < f∗ < top. The solution is then found (usually within ten or fewer iterations)
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by MATLAB’s fzero root finder, and the zero crossing of F (f) is depicted graphically.
MATLAB’s fzero function is equipped to search for “top” and “bot” internally, but we
rather determine “top” and “bot” adaptively ourselves.

Specific Volume of a Real Gas

The volume V of a real gas is related to the pressure P and temperature T according to
the formula

P =
R · T

V
+

R · T ·B
V 2

. (3.26)

Here B is calculated from the equation

B · Pc

R · Tc
= B0 + ω ·B1

for the critical pressure Pc and the critical temperature Tc of the gas. Note that

B0 = 0.083 +
0.422
T 1.6

r

, B1 = 0.139− 0.172
T 4.2

r

, Tr =
T

Tc
,

R is the gas constant 82.06 atm · cm3/(mol ·K), and ω is an empirical parameter, called
the acentric factor.
In order to solve (3.26) for V , we multiply equation (3.26) by V 2/P to obtain the following
normalized quadratic equation in V upon reordering:

V 2 − R · T
P

V − R · T
P

B = 0 . (3.27)

Then the solution function V (P, T ), depending on both pressure P and temperature T ,
is the positive root of equation (3.27). This can be found directly as

V (P, T ) =
R · T
2P

+

√(
R · T
2P

)2

+
R · T

P
B . (3.28)

Here the coefficient relations, given after equation (3.26), make

R · T
P

=
82.06 · T

P
and B =

(B0 + ωB1) R · Tc

P c
.

On the other hand, an ideal gas must satisfy equation (3.26) with its second, the
quadratic V term, omitted on the right-hand side, i.e.,

P =
R · T

V
. (3.29)

This equation for the unknown volume V has the rather simple solution

V (P, T ) =
R · T

P
. (3.30)
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Note that the two volume formulas (3.28) and (3.30) differ only in the second term
(R · T · B)/P under the square root sign in (3.28).

For chemical and biological applications, one typically wants to compute the volume
V of a real gas over a specified range of pressures and temperatures, such as for pres-
sures and temperatures well below their critical points, but more often for pressures and
temperatures above the critical points Pc and Tc of the gas. Notice that the condition of
any “gas” above its critical point Pc and Tc is not really gaseous, nor is it a liquid. Such
a “gas” is called a supercritical fluid.
Figures 3.35 – 3.37 show some plots, first of the volume V of an ideal gas under varying
pressures 15 ≤ P ≤ 90 and temperatures 215 ≤ T ≤ 1200 using idealgas3dplot.m from
our CD and calling idealgas3dplot(15,90,215,1200);.

Volume of an ideal gas under pressure and temperature changes
Figure 3.35

As before, the “colors” of the computer-generated surface in Figure 3.35 denote the
“height” above the T -P plane, i.e., the volume V (P, T ) of the gas for particular values
of P and T . The volumes range from near 0 cm3 to well above 6000 cm3, and the height
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of a specific point on the volume surface can be read off the colorbar on the right edge
of Figure 3.35.
We include the more complicated MATLAB m file realgas3dplot.m, which plots the
volume as a surface, depending on the temperature and pressure for any real gas as shown
in Figure 3.36.

function z = realgas3dplot(om,Pc,Tc,Pstart,Pend,Tstart,Tend)

% z = realgas3dplot(om,Pc,Tc,Pstart,Pend,Tstart,Tend);

% Sample call : zr = realgas3dplot(.212,48.3,562.1,15,90,215,1200);

% Inputs: om (omega), critical pressure and temperature Pc, Tc;

% optional: Pstart, Pend for pressure limits; [Pstart > 0 needed]

% Tstart and Tend for temperature limits.

% [Tstart > 215 needed]

% Output : 3D plot of volume of the gas depending on temperature T and

% pressure P; Pc and Tc are marked on the axes.

N = 100; % defaults

if nargin < 7,

Pstart = .2*Pc; Pend = 2*Pc; Tstart = .6*Tc; Tend = 1.8*Tc; end

[P T] = meshgrid(linspace(Pstart,Pend,N),linspace(Tstart,Tend,N));

z = realgas(P,T,om,Pc,Tc); % evaluate volume function

h = surf(T,P,z); hold on; shading interp; colormap(hsv(128)); colorbar,

v = axis; plot3(Tc,Pc,v(5),’or’), plot3(Tc,v(3),v(5),’+r’),

plot3(v(1),Pc,v(5),’+r’), % plot Pc and Tc in red +

xlabel(’ ^o K ’,’FontSize’,12); ylabel(’ atm ’,’FontSize’,12);

zlabel(’Vol ’,’Rotation’,0,’FontSize’,12);

title([’ Real gas volume for \omega = ’,num2str(om,’%10.5g’),’ , P_c = ’,...

num2str(Pc,’%10.5g’),’ , T_c = ’,num2str(Tc,’%10.5g’)],’FontSize’,14);

hold off

function V = realgas(P,T,om,Pc,Tc)

% Evaluates the volume V of a real gas

rt2p = 82.06*T./(2*P); % R T / (2 P)

b = (.083 + .422./((T/Tc).^1.6) + om * (.139 - .172./((T/Tc).^4.2)) )...

* 82.06 * Tc/Pc; % B

V = rt2p + (rt2p.^2 + 2*rt2p.*b).^.5;

The surface that describes the volume of a real gas with ω = 0.212, the critical pressure
Pc = 48.3 atm and the critical temperature Tc = 562.1◦ K, for example, over the same
pressure and temperature range as in Figure 3.35 looks almost identical in its central
region to that of the ideal gas. And the difference between real gas and ideal gas volumes
as a function of pressure and temperature seem to be rather small, except for very low
temperatures, as seen by inspecting Figures 3.35 and 3.36 alone.
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Volume of a real gas under pressure and temperature changes
Figure 3.36

However, the relative differences between the two surfaces in Figures 3.35 and 3.36
are rather large, in the neighborhood of 50%, for relatively high pressures combined
with relatively low temperatures, and they are sizable, exceeding around 10% through-
out. We can display this differing behavior of real and ideal gases with the help of
idealrealgascompare.m.

function zc = idealrealgascompare(om,Pc,Tc,Pstart,Pend,Tstart,Tend)

% zc = idealrealgascompare(om,Pc,Tc,Pstart,Pend,Tstart,Tend);

% Sample call : zc = idealrealgascompare(.212,48.3,562.1,15,90,215,1200);

% Inputs: om (omega), critical pressure and temperatures Pc, Tc;

% optional: Pstart, Pend for pressure limits; [Pstart > 0 needed]

% Tstart and Tend for temperature limits.

% [Tstart > 215 needed]

% Output : 3D plot of relative volume ratio of an ideal and a real gas with

% given parameters om (omega), Pc, and Tc, depending on temperature

% T and pressure P; Pc and Tc are marked on the axes and surface.
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N = 100; Tcplot = 0; Pcplot = 0; % defaults

if nargin < 7,

Pstart = .2*Pc; Pend = 2*Pc; Tstart = .6*Tc; Tend = 1.8*Tc; end

[P T] = meshgrid(linspace(Pstart,Pend,N),linspace(Tstart,Tend,N));

zr = realgas(P,T,om,Pc,Tc); % evaluate real gas volume function

zi = idealgas(P,T); % evaluate ideal gas volume function

zc = (zr - zi)./zr; rgcrit = realgas(Pc,Tc,om,Pc,Tc);

zcrit = (rgcrit-idealgas(Pc,Tc))/rgcrit;

h = surf(T,P,zc); hold on; shading interp; colormap(hsv(128)); colorbar,

v = axis;

if Tstart < Tc & Tend > Tc, Tcplot = 1; end % check whether T and P range

if Pstart < Pc & Pend > Pc, Pcplot = 1; end % include Tc and Pc

if Tcplot*Pcplot == 1, % plot Pc and Tc in red +,o if in range

plot3(Tc,Pc,v(5),’or’), plot3(Tc,v(3),v(5),’+r’),

plot3(v(1),Pc,v(5),’+r’), plot3(Tc,Pc,zcrit,’xk’), end

xlabel(’ ^o K ’,’FontSize’,12); ylabel(’ atm ’,’FontSize’,12);

zlabel(’Rel error ’,’Rotation’,0,’FontSize’,12);

ztitle = 1.4*v(6)-.4*v(5); xtitle = v(1); ytitle = v(4); % for title location

if Tcplot*Pcplot == 1, % adjust title according to Tc, Pc in plotting range

text(xtitle,ytitle,1.04*ztitle,...

[’ Relative gas volume deviations between a real gas with ’],’FontSize’,14);

text(1.04*xtitle,.96*ytitle,.95*ztitle,[’\omega = ’,num2str(om,’%10.5g’),...

’ , P_c = ’,num2str(Pc,’%10.5g’),’ , T_c = ’,num2str(Tc,’%10.5g’),...

’ and an ideal gas’],’FontSize’,14); else

title([’ Real gas rel. vol. error (\omega = ’,num2str(om,’%10.5g’),...

’ , P_c = ’,num2str(Pc,’%10.5g’),’ , T_c = ’,num2str(Tc,’%10.5g’),...

’)’],’FontSize’,14); end

hold off

function V = realgas(P,T,om,Pc,Tc)

% Evaluates the volume V of a real gas

rt2p = 82.06*T./(2*P); % R T / (2 P)

b = (.083 + .422./((T/Tc).^1.6) + om * (.139 - .172./((T/Tc).^4.2)) )...

* 82.06 * Tc/Pc; % B

V = rt2p + (rt2p.^2 + 2*rt2p.*b).^.5;

function V = idealgas(P,T)

% Evaluates the volume V of an ideal gas

V = 82.06*T./P; % R T / P

Figure 3.37 is obtained by calling idealrealgascompare(.212,48.3,562.1,15,90,215,
1200);. Note that a real gas always exceeds an ideal gas in volume for a given pressure
and temperature.
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Relative volume differences of a real gas and an ideal gas
under pressure and temperature changes

Figure 3.37

In Figure 3.37, the relative gas volume deviations from the volume of an ideal gas are
expressed as percentages. A number such as 0.5 corresponds to a 50% increase, while 0.1
signifies a 10% increase in volume for the real gas.

Exercises for 3.4
1. Project I: Introduce a counter into our m file colebrookplotsolve.m, which

finds the number of function evaluations performed in the first 10 lines of
the code when trying to find an inclusion interval for the solution f∗ of the
Colebrook equation.
Which usually takes more effort, finding a root inclusion interval or solving
for f∗ via fzero in MATLAB?

2. Investigate the high relative deviation “hump” in Figure 3.37 for various real
gases versus an ideal gas by adjusting the plotting limits for the pressure and
temperature ranges when calling idealrealgascompare.m in order to view
the hump and its location most clearly.
For which approximate pressures and temperatures does the relative volume
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difference reach 75% for our chosen values of ω, Pc, and Tc for Figure 3.37,
for example?
Which approximate temperatures and pressures reach this 75% deviation for
other real gases?

3. Project II: Use our plotting files realgas3dplot.m,idealgas3dplot.m, and
idealrealgascompare.m and adapt them to plot the absolute differences be-
tween the volumes of a real gas that is specified by its ω, Pc, and Tc values
and an ideal gas as a function of both pressure and temperature.
Call the new m file idealrealgascompareabs.m.

4. Investigate whether and where there is a high absolute volume deviation
“hump” as in Figure 3.37 for the absolute volume deviation of a real gas from
the ideal gas behavior. That is, repeat problems 2 and 3 above for various
real gases by numerical experiment and adjusting the plotting limits for the
pressure and temperature ranges in your calls of idealrealgascompareabs.m
of problem 3.

Conclusions

In this section we have given two simple examples that use numerical techniques
to calculate useful physical properties.
Databases of physical properties and their calculations are an integral part of any
chemical/biological design problem.

Additional Problems for Chapter 3

1. Derive the steady-state mass balance equation for an isothermal CSTR in which a
consecutive homogeneous reaction

A
k1−→ B

k2−→ C

is taking place. Put the resulting equation in matrix form.
For k1 = 5.0 sec−1 and k2 = 1.5 sec−1 , find the optimum residence time τ . (Hint:
τ = V/q, where V is the volume and q is the volumetric flow rate.)

2. A perfectly mixed adiabatic nonisothermal reactor carries out a simple first-order
exothermic reaction in the liquid phase:

A −→ B .

The product from this reactor is cooled from its output temperature to a temper-
ature Tc and is then introduced into a separation unit in which the unreacted A
is separated from the product B. The feed of the separation unit is split into two
equal parts: top product and bottom product. Here the bottom product from the
separation unit contains 95% of the unreacted A in the effluent of the reactor and
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1% of B in the same stream. This bottom product (at the temperature Tc since
the separation unit is iso-thermal) is recycled and remixed with the fresh feed to
the reactor and the mixed stream is then heated to the reactor feed temperature
Tf before being actually introduced into the reactor.
Write the steady-state mass and heat balance equations for this system, assum-
ing constant physical properties and constant heat of reaction. (Note: Concentrate
your modeling effort on the adiabatic nonisothermal reactor, and for the rest of
the units, carry through a simple mass and heat balance in order to define the feed
conditions for the reactor.)
Choose a set of physically feasible parameters for the system and write a MATLAB
program to find the steady state.

3. Consider a system that initially consists of 1 mol of CO and 3 mol of H2 at 1000
K. The system pressure is 25 atm. The following reactions are to be considered:

2 CO + 2 H2 ⇔ CH4 + CO2 (A)
CO + 3 H2 ⇔ CH4 + H2O (B)
CO2 + H2 ⇔ H2O + CO (C)

When the equilibrium constants for the reactions (A) and (B) are expressed in terms
of the partial pressure of the various species (in atm), the equilibrium constants
for these reactions have the values KPA = 0.046 and KPB = 0.034. Determine the
number of independent reactions, and then determine the equilibrium composition
of the mixture, making use of a simple MATLAB program that you develop for
this purpose.

4. The reaction of ethylene and chlorine in liquid ethylene dichloride solution is taking
place in a CSTR. The stoichiometry of the reaction is C2H4 + Cl2 → C2H4Cl2.
Equimodular flow rates are used in the following experiment, which is carried out at
36◦ C. The results of the experiment are tabulated in Table 3.1. Write a MATLAB
program to carry out the following tasks:

(a) Determine the overall order of the reaction and the reaction rate constant.

(b) Determine the space time necessary for 65% conversion in a CSTR. Here
“space time” is the residence time, i.e., the ratio between the volume of the
reactor and the volumetric flow rate.

Experimental Data
Space time Effluent chlorine concentration

(s) (mol/cm3)
0 0.0116

300 0.0094
600 0.0081
900 0.0071
1200 0.0064
1500 0.0058
1800 0.00537
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5. Some of the condensation reactions that take place when formaldehyde (F ) is added
to sodium paraphenolsulfonate (M) in an alkaline-aqueous solution have been stud-
ied. It was found that the reactions could be represented by the following eight
equations:

(1) F + M → MA k1 = 0.15 l/(mol · min)
(2) F + MA → MDA k2 = 0.49 l/(mol · min)
(3) MA + MDA → DDA k3 = 0.14 l/(mol · min)
(4) M + MDA → DA k4 = 0.14 l/(mol · min)
(5) MA + MA → DA k5 = 0.04 l/(mol · min)
(6) MA + M → D k6 = 0.056 l/(mol ·min)
(7) F + D → DA k7 = 0.50 l/(mol · min)
(8) F + DA → DDA k8 = 0.50 l/(mol · min)

where M, MA, and MDA are monomers and D, DA, and DDA are dimers. The
process continues to form trimers. The rate constants were evaluated using the as-
sumption that the molecularity of each reaction is identical to its stoichiometry.
Derive a steady-state model for these reactions taking place in a single isothermal
CSTR. Carefully define your terms and list your assumptions. Then write a MAT-
LAB code to calculate the optimum residence time τ to give maximum yield of
MA.

6. A Problem on Bifurcation
Derive the material and energy balance equations for a nonadiabatic CSTR where
a single first-order reaction A → B takes place.
The reaction is exothermic. For β = 1.2 the exothermicity factor, and γ the di-
mensionless activities factor, find the range of α, the dimensionless preexponential
factor, that gives multiplicity of steady states using a suitable MATLAB program
with Kc = 0, the dimensionless heat transfer coefficient of the cooling jacket.
Choose a value of α in the multiplicity region and obtain the multiple steady-state
dimensionless temperatures and concentrations.
For yc = 0.6 find the minimum value of Kc, that makes the middle unstable saddle-
type steady state unique and stable.
Develop a MATLAB program that gives you the values of α and Kc that result in
multiple steady states.
Compute and plot the bifurcation diagram with α as the bifurcation parameter
when Kc = 0. Discuss the physical meaning of the diagram.
Compute and plot the bifurcation diagram with Kc as the bifurcation parameter
for yc = 0.6 and the same value of α that you have chosen above to give multiplicity.
Discuss the physical meaning of the diagram.

7. Another Problem on Bifurcation
Consider a consecutive reaction A → B → C in which both reactions are of
first order and B is the desired product.
Derive the model equation for this reaction taking place in a liquid phase CSTR. Put
the model equation into dimensionless form. Assume that the feed concentrations
of B and C are zero. If β1 = 0.6, β2 = 1.2, γ1 = 18, and γ2 = 27 and the ratio
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between α1 and α2 is α1/α2 = 1/1000, find the range of α1 (and α2) that gives
multiple steady states using a suitable MATLAB program.
Extend your program to find the optimum steady state that gives maximal yield
of the desired product B. Is this steady state stable or unstable?
If it is unstable, develop and use a MATLAB program for a nonadiabatic CSTR
and find the cooling jacket parameters Kc and yc that will stabilize the unstable
steady state.

8. (Project A)
Compare and try to combine the two solution methods of bisection and graphics
to solve equation (3.3) in Section 3.1 for the adiabatic case.

(a) The graphics method generally has a larger residue |f(x∗)| ≈ 0 at a solution
x∗ than the bisection method does if it successfully converges.
Experiment with increasing the number N of nodes used in the graphics
method: What additional accuracy does one obtain by doubling N , for ex-
ample, in adiabNisographsol.m? Learn to estimate the extra effort involved
in doubling N by using the timing functions clock and etime of MATLAB.
(Learn about these using >> help ... .) How effective is increasing N in
your experiments?

(b) Design a hybrid program to solve equation (3.3) that uses the graphics solu-
tions (for moderate N) from adiabNisographsol.m in Section 3.1 as seeds
for a bisection algorithm modeled after solveadiabxy.m.
How close to the bifurcation limits does your bisection program succeed when
the graphics solutions are used as starting points for fzero? What are the
sizes of the residues in the computed solutions near the bifurcation points?
Which of the proposed steady-state finders of part (a) or (b) do you prefer?
Be careful and monitor your hybrid algorithm’s effort via clock and etime.

9. (Project B)
In case the hybrid method of Project A above is successful and advisable for adia-
batic CSTRs, repeat Project A for the nonadiabatic case and solve equation (3.12)
(or any other equivalent form given in Section 3.2) using the MATLAB solvers
NadiabNisoalgraphsol.m and solveNadiabxy.m of Section 3.2 in a modified, hy-
brid form. Is this hybrid method successful and efficient as well?
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Chapter 4

Initial Value Problems

Many chemical/biological engineering problems can be described by differential equations
with known initial conditions, i.e., with known or given values of the state variables at
the start of the process.
Different problems are modeled by two-point boundary value differential equations in
which the values of the state variables are predetermined at both endpoints of the in-
dependent variable. These endpoints may involve a starting and ending time for a time-
dependent process or for a space-dependent process, the boundary conditions may apply
at the entrance and at the exit of a tubular reactor, or at the beginning and end of a
counter-current process, or they may involve parameters of a distributed process with
recycle, etc. Boundary value problems (BVPs) are treated in Chapter 5.

Initial value problems, abbreviated by the acronym IVP, can be solved quite easily,
since for these problems all initial conditions are specified at only one interval endpoint
for the variable. More precisely, for IVPs the value of the dependent variable(s) are given
for one specific value of the independent variable such as the initial condition at one lo-
cation or at one time. Simple numerical integration techniques generally suffice to solve
IVPs. This is so nowadays even for stiff differential equations, since good stiff DE solvers
are widely available in software form and in MATLAB.
Furthermore, IVPs have only one solution for the given initial values if there are suf-
ficiently many initial conditions given, and therefore bifurcation plays no role once the
initial conditions are specified. For dynamic systems, different initial conditions may,
however, lead to different steady states; we refer to the fluidized bed reactor in Section
4.3, for example.

4.1 An Example of a Nonisothermal Distributed Sys-

tem

The problem of this section stems from a typical distributed system. In a distributed
system the dependent state variables such as concentration and temperature vary in

135
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terms of the independent variable such as length. This is the meaning of “distributed”.
Figure 4.1 shows a model of a tubular reactor at two incremental stages of the molar
flow rate ni(l) for component i in terms of the variable length l.

ni(l) → → ni(l + ∆l)

l l+∆l

Distributed system
Figure 4.1

For a distributed system the discrete mass balance design equation has the form

ni(l + ∆l) = ni(l) + At∆l

N∑
j=1

σijrj , (4.1)

where ni is the molar flow rate of component i, ∆l is the length or thickness of the
difference element, At is the total cross sectional area of the tube, N is the number of
reactions, σij is the stoichiometric number of component i in reaction j, and rj is the
generalized rate of reaction j.
If we form the difference quotient in (4.1) we obtain

ni(l + ∆l) − ni

∆l
= At

N∑
j=1

σijrj . (4.2)

If we take the limit of ∆l −→ 0 in (4.2), we arrive at the equivalent differential equation

dni

dl
= At

N∑
j=1

σijrj (4.3)

for i = 1, 2, ...,M , where M denotes the number of components.
For a single reaction, i.e., with N = 1, the above equation becomes

dni

dl
= Atσir . (4.4)

To obtain the heat balance design equation, an enthalpy balance over the ∆l element
gives

M∑
i=1

(niHi)(l) + Q′∆l =
M∑

i=1

(niHi)(l + ∆l) , (4.5)

where
M = total number of components involved (reactants plus products plus inerts),

including components not in the feed but created during the reaction (which
are the products)

Q′ = rate of heat removed or added per unit length of the reactor.
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A simple rearrangement of (4.5) with ∆niHi = (niHi)(l + ∆l) − (niHi)(l) gives

M∑
i=1

∆niHi

∆l
− Q′ = 0 .

Taking the limit ∆l −→ 0 gives rise to the corresponding differential equation

M∑
i=1

d(niHi)
dl

− Q′ = 0 .

The product rule of differentiation, i.e., (f · g)′ = f · g′ + g · f ′ for any two differentiable
functionsf and g, then leads to

M∑
i=1

(
ni

dHi

dl
+ Hi

dni

dl

)
− Q′ = 0 . (4.6)

For a single-reaction we insert the differential equation (4.4) into (4.6) to obtain

M∑
i=1

(
ni

dHi

dl
+ HiAtσir

)
− Q′ = 0 .

Rearrangement gives

M∑
i=1

ni

(
dHi

dl

)
+

(
Atr

M∑
i=1

Hiσi

)
− Q′ = 0 .

Since
M∑
i=1

σiHi = (∆H) ≡ heat of reaction

we get
M∑

i=1

ni
dHi

dl
+ Atr(∆H) − Q′ = 0 .

The above equation (for a single-reaction) can be written as

M∑
i=1

ni
dHi

dl
= Atr(−∆H) + Q′ . (4.7)

For multiple reactions (N > 1) the corresponding equation is

M∑
i=1

ni
dHi

dl
=

⎛⎝ N∑
j=1

Atrj(−∆Hj)

⎞⎠ + Q′ . (4.8)

To summarize, the design equations for the multiple-reactions case are (4.3) and (4.8),
while for the single-reaction case the design equations are the equations (4.4) and (4.7).
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4.1.1 Vapor-Phase Cracking of Acetone: An Example

Here we consider a nonisothermal, nonadiabatic tubular reactor as a distributed system.
Our objective is to find its steady-state concentration and temperature profiles.
Our specific example involves the vapor-phase cracking of acetone into ketone and methane,
described by the endothermic reaction

CH3COCH3 −→ CH2CO + CH4 .

This takes place in a jacketed tubular reactor. Pure acetone enters the reactor at a
temperature of T0 = 1030 K and a pressure of P

′
0 = 160 kPa. The temperature of the

external cooling medium in the heat exchanger is constant at TJ = 1200 K. The other
data is as follows:

Volumetric flow rate: q = qf = 0.003 m3/s
Volume of the reactor: VR = 1.0 m3

Overall heat transfer
coefficient between U

′
= 110 W/(m2 ◦K)

reactor and heat
exchanger:

Total heat transfer area
between reactor and A = 160 m2/(m3 of the reactor)
exchanger:

Reaction rate constant: k = 3.56 e[34200·(1/1030−1/T )] s−1

Heat of reaction: ∆HR = 80700 + 6.7 · (T − 298)
−5.7 · 10−3 · (T 2 − 2982)
−1.27 · 10−6 · (T 3 − 2983) J/mol

Heat capacity of acetone : CPA = 26.65 + 0.182T − 45.82 · 10−6T 2 J/(mol · K)
Heat capacity of ketone : CPk = 20.05 + 0.095T − 31.01 · 10−6T 2 J/(mol · K)
Heat capacity of methane : CPM = 13.59 + 0.076T − 18.82 · 10−6T 2 J/(mol · K)

Our task is to determine the temperature and concentration (or conversion) profiles of
the reacting gas along the length of the reactor. We assume constant pressure throughout
the reactor.

4.1.2 Prelude to the Solution of the Problem

First we unify the units. The only parameters that need unification are U and P
′
0.

Since U
′
is given as U

′
= 110 W/m2 it should be written as U = 110 J/(m2 ·sec·K). With

P
′
0 given as 160 kPa, its units should be transformed to P0 = Pf = 160

101.3 = 1.58 atm.
The reaction is

A −→ B + C ,

where A is acetone, B is ketone, and C is methane.
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 L

fP
= 0.003 /secq f

fT

m

TJ

T

   = 0l

3

 = 1030  K

  = 1.58

 = 1200  K

 atm

l   =       = total length

Distributed system
Figure 4.2

For this system the material balance design equation in terms of the length l is

dnA

dl
= −At · k0 · e−E/(RT ) · CA . (4.9)

Since this equation uses the length l of the reactor as the independent variable, we have
to find the diameter dt of the tube in order to calculate the cross-sectional area At and
the total required length L. This can be done as follows:

A = 160
m2

m3
=

π · dt · L
(π · d2

t/4) · L =
4
dt

.

Thus the diameter of the tube is dt = 4/A = 4/160 = 0.025 m (or 2.5 cm ≈ 1 inch).
To find the length we use

VR = 1.0 m3 =
πd2

t

4
· L =

π

4
· (0.025)2 ·L ,

or
VR = 1.0 m3 = 4.91 · 10−4 · L .

Hence L = 1/4.91 · 104 m = 2036.36 m.
This very large length of more than 2 km, or about 1 mile and a quarter, can be divided
into n connected tubes, each with a length of 2036.36/n m. In this case each tube section
has the volumetric flow rate q(per tube) = 0.003/n m3/(sec · tube) and the number n
can be 100 or 1000, for example, depending on the mechanical and locational factors.
Alternatively the total length L = 2036 m can be achieved by a coiled reactor. The
particular choice of apparatus is based on mechanical engineering factors.
It is also possible to circumvent these mechanical design decisions at the early process
design stage by rewriting the differential equations (4.9) in terms of V , the volume of the
reactor, instead of in terms of the length l. This is our chosen approach here. In it the
independent variable V will vary from V = 0 to V = VR = Vend = 1.0 m3 .

4.1.3 Material Balance Design Equation in Terms of Volume

Analogous to (4.9), the material balance equation in terms of the volume V is

dnA

dV
= k0 · e−E/(R·T ) · CA , (4.10)
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where E denotes the activation energy of the reaction. Since this is a gas phase reaction
and there is a change in the number of moles, the above equation is better expressed in
terms of conversion. Here the conversion is defined as

XA = Conversion =
nAf − nA

nAf

.

This equation can be written as

nA = nAf (1 − XA) and therefore
dnA

dV
= −nAf

dXA

dV
(4.11)

and

CA =
nA

q
=

nAf (1 − XA)
q

. (4.12)

Here q is also a function of the total number of moles because

P · q = nt · R · T (assuming z = 1.0) , (4.13)

where z is the compressibility factor. Since in an open system P = constant, we have

q = nt · R · T
P

,

where nt is the total number of moles at any conversion level, and nt is given by

nt = nA + nB + nC = nAf (1 − XA) + nAf XA + nAf XA = nAf (1 + XA) .

Therefore
q = nAf (1 + XA) · R · T

P
. (4.14)

Combining (4.12) and (4.14) we see that

CA =
nAf (1 − XA)

nAf (1 + XA)R·T
P

=
(1 − XA)P

(1 + XA) · R · T . (4.15)

Using the relations expressed in (4.11) and (4.14) in (4.10) gives us

nAf

dXA

dV
= k0 · e−E/(RT ) · nAf (1 − XA)P

nAf (1 + XA)R · T .

Thus we obtain the differential equation for the conversion rate XA in terms of V :

dXA

dV
= k0 · e−E/(RT ) · (1 − XA)P

nAf (1 + XA)R · T = F1(XA, T ) (4.16)

with the initial conditions XA = 0 and T = Tf = 1030 K at V = 0.
We may easily calculate nAf from

P · qf = nAf R · T (P = constant = Pf = 1.58 atm) .
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The volumetric flow rate qf in our setting is equal to 0.003 m3/sec at the entrance. Thus

nAf =
P · qf

R · Tf
. (4.17)

Using equation (4.17) in (4.16) gives

dXA

dV
= k0 · e−E/(RT ) · (1 − XA)P

P ·qf

R·Tf
(1 + XA)R · T

=
k0 · e−E/(RT ) · (1 − XA)

qf(1 + XA)
· Tf

T

with qf = 0.003 m3/sec.
From the given data for our problem we have

k0 = 3.56 · e( 34200
1030 ) = 9.37 · 1014 sec−1 and

E

R
= 34200.

Thus, the material balance design equation is

dXA

dV
= 9.37 · 1014 · e(−34200/T ) · (1 − XA)

qf(1 + XA)
· Tf

T
(4.18)

with the initial conditions XA = 0 and T = Tf = 1030 K at V = 0.

4.1.4 Heat Balance Design Equation in Terms of Volume

The heat balance design equation is∑
i

ni
dHi

dV
= k0e

−E/(RT ) · CA · (−∆H) + Q
′′

= R.H.S. , (4.19)

where we have abbreviated the expression k0e
−E/(RT ) · CA · (−∆H) + Q

′′
in (4.19) by

the term R.H.S., or “right-hand side”, and where Q
′′

denotes the heat transfer per unit
volume, i.e., Q

′′
= U ·A′′

(TJ − T ), A
′′

= A = 160 m2/m3, U = 110 J/sec · m2 · K,
and TJ = Tc = 1200 K. Since there is no phase change, equation (4.19) becomes

(nA · CPA + nB ·CPB + nC ·CPC ) · dT

dV
= R.H.S. (4.20)

for
CPA = a1 + b1T + c1T

2, a1 = 26.65, b1 = 0.182, c1 = −45.82 · 10−6,
CPB = a2 + b2T + c2T

2, a2 = 20.05, b2 = 0.095, c2 = −31.01 · 10−6,
CPC = a3 + b3T + c3T

2, a3 = 13.59, b3 = 0.076, c3 = −18.82 · 10−6.

We also know that nA = nAf (1 − XA), nB = nAf XA, and nC = nAf XA.
Thus equation (4.20) becomes

nAf (1 − XA)
[
a1 + b1T + c1T

2
] dT

dV
+ nAf XA

[
a2 + b2T + c2T

2
] dT

dV
+

+ nAf XA

[
a3 + b3T + c3T

2
] dT

dV
= R.H.S. ,
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or

nAf

[
(1 − XA)(a1 + b1T + c1T

2) + XA(a2 + b2T + c2T
2) +

+ XA(a3 + b3T + c3T
2)
] dT

dV
=

= k0 · e−E/(RT ) · nAf (1 − XA)P
nAf (1 + XA)RT

· (−∆H) + U ·A′′
(TJ − T ) .

Hence

g(XA, T )
dT

dV
= k0 · e−E/(RT ) · (1 − XA)P

qf ·P
RTf

(1 + XA)RT
· (−∆H) +

U ·A′′

nAf

(TJ − T ) .

And the heat balance design equation is

dT

dV
=

1
g(XA, T )

⎡⎣k0 · e−E/(RT ) · (1 − XA)
qf · (1 + XA)

· (−∆H)
Tf

T
+

U · A′′

P ·qf

R·Tf

(TJ − T )

⎤⎦
(4.21)

with the initial conditions XA = 0 and T = Tf = 1030 K at V = 0.

4.1.5 Numerical Solution of the Resulting Initial Value Problem

We now have to solve the following system of two nonlinear coupled first-order ordinary
differential equations for the given initial conditions:

dXA

dV
= 9.37 · 1014 · e(−34200

T ) · (1− XA)

qf (1 + XA)
· Tf

T
, and

dT

dV
=

1

g(XA, T )

⎡⎣[9.37 · 1014 · e(−34200
T ) · (1 − XA)

qf (1 + XA)
· Tf

T
· (−∆H)

]
+

U · A′′

P ·qf

RTf

· (TJ − T )

⎤⎦
(4.22)

with the initial conditions XA = 0 and T = Tf for V = 0, and with

g(XA, T ) =
[
(1 − XA)(a1 + 2b1T + 3c1T

2)
]
+

[
XA(a2 + b2T + c2T

2)
]
+

+
[
XA(a3 + b3T + c3T

2)
]

for
a1 = 26.65, b1 = 0.182, c1 = −45.82 · 10−6 ,
a2 = 20.05, b2 = 0.095, c2 = −31.01 · 10−6 ,
a3 = 13.59, b3 = 0.076, c3 = −18.82 · 10−6 .

Moreover,

(−∆H) = −80700− 6.7(T − 298) + 5.7 · 10−3(T 2 − (298)2) + 1.27 · 10−6(T 3 − (298)3) .

We repeat the base set of parameters here:
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qf = 0.003 m3/sec, VR = Vend = 1.0 m3 , U = 110 J/(sec · m2 · K),
A

′′
= 160 m2/m3, TJ = 1200 K, Tf = 1030 K,

R = 82.06 · 10−6 atm·m3

mol·K , P = 1.58 atm .

To solve the initial value problem (4.22) numerically is a very simple procedure in
MATLAB. MATLAB offers several integrators, all named ode.., for initial value prob-
lems of the form dy(t)/dt = h(t, y), y(t0) = y0, such as ours. The alphanumeric des-
ignations ... that follow the root-name ode in MATLAB refer to the various methods
of integration that are used. In our case, the simplest methods such as ode23 or ode45
which use explicit Runge-Kutta embedded integrator formulas (see Section 1.2) of orders
two and three or four and five, respectively, may suffice. If the run times of the program
exceed a few seconds, however, the integration problem is likely stiff, and we advise to
use the stiff ODE solver ode15s of MATLAB instead. A formal definition of stiffness for
DEs is given on p. 276 in Section 5.1; see also Section (H) of Appendix 1.
Here is our MATLAB program, specialized for acetone cracking, but easily adaptable for
other chemico-physical processes.

function ...

[V, y] = fixedbedreact(qf,Adp,Tj,Tf,Vend,method,R,versus,S,halten,minTf,maxTf)

% fixedbedreact(qf,Adp,Tj,Tf,Vend,method,R,versus,S,halten,minTf,maxTf)

% Sample call : [Note: Adapted for the specific data of acetone cracking.]

% d = clock; fixedbedreact(.003,160,1200,1030,1,15,0,1); etime(clock,d)

% Inputs: physical constants qf, Adp, Tj, Tf;

% Vend = end of volume interval, set to .1 if unspecified;

% method = MATLAB ode function number; 15, 23, 45, or 113 are

% supported. (Method 23 works fastest in general, method 15 refers to

% the stiff ODE solver 15s in MATLAB which is used as default.)

% If R = 0, we plot here; if R = 1, we are executing a run for multiple

% input data and plot inside the respective ...run.m routines.

% if versus = 1, we plot V in dependence of xA and T; else we plot

% xA and T both in dependence of V (this generally gives more

% meaningful graphics).

% S is a color vector with possibly varying RGB values.

% if halten = 1, we hold onto the subplots for multiple data graphs.

% By default we set minTF = maxTF, unless in a call of Tfrun we want to

% plot several curves for varying values of Tf whose graph are then

% shifted a little to the right for a better view near V = 0.

if nargin == 4, Vend = .1; method = 15; R = 0; versus = 1; S = ’b’;

halten = 0; end

if nargin == 5, method = 15; R = 0; versus = 1; S = ’b’; halten = 0; end

if nargin == 6, R = 0; versus = 1; S = ’b’; halten = 0; end

if nargin == 7, versus = 1; S = ’b’; halten = 0; end % setting default values

if nargin == 8, S = ’b’; halten = 0; end

if nargin == 9, halten = 0; end

if nargin <= 11, minTf = Tf; maxTf = Tf; end

Vspan = [0 Vend]; y0 = [0;Tf]; options = odeset(’Vectorized’,’on’); % initialize
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if method == 45, [V,y] = ode45(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf); % integrate

elseif method == 23, [V,y] = ode23(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf);

elseif method == 113, [V,y] = ode113(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf);

elseif method == 15, [V,y] = ode15s(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf);

else disp(’Error : Unsupported method number !’), return, end

if R == 0 % no run if R = 0, in which case we plot:

subplot(2,1,1); % plot graph of solution to dxA/dV IVP

if versus == 1, plot(y(:,1),V,’Color’,S,’Linewidth’,1); % switch graph axes

if halten == 0, axis([0 1.1 -.1*Vend Vend]), end

else plot(V,y(:,1),’Color’,S,’Linewidth’,1);

if minTf ~= maxTf, axis([-.1*Vend Vend 0 1.4]), end, end

if halten == 1, hold on, else hold off, end

if halten ~= 1,

title([’ Tubular reactor (acetone): qf = ’,num2str(qf,’%5.4g’),...

’, A" = ’, num2str(Adp,’%5.4g’),’, Tj = ’,num2str(Tj,’%5.4g’),...

’, Tf = ’,num2str(Tf,’%5.4g’)],’FontSize’,12), end

if versus == 1,

xlabel(’X_A’,’FontSize’,12), ylabel(’V ’,’Rotation’,0,’FontSize’,12),

else xlabel(’V’,’FontSize’,12), ylabel(’X_A ’,’Rotation’,0,’FontSize’,12),

end

subplot(2,1,2); % plot graph of solution to dT/dV IVP

if versus == 1, plot(y(:,2),V,’Color’,S,’Linewidth’,1); % switch graph axes

if halten == 0, axis([.98*min(Tf,Tj) 1.01*max(Tf,Tj) -.1*Vend Vend]), end

else plot(V,y(:,2),’Color’,S,’Linewidth’,1);

if halten == 0, axis([0 Vend .98*min(Tf,Tj) 1.01*max(Tf,Tj)]), end,

if minTf ~= maxTf, axis([-.1*Vend Vend minTf maxTf]), end, end

if halten == 1, hold on, else hold off, end

if versus == 1,

xlabel(’T’,’FontSize’,12), ylabel(’V ’,’Rotation’,0,’FontSize’,12),

else xlabel(’V’,’FontSize’,12), ylabel(’T ’,’Rotation’,0,’FontSize’,12),

end,

end % end if run == 0

function dydt = fbr(V,y,qf,Adp,Tj,Tf) % right hand side of ODE IVP

a1 = 26.65; a2 = 20.05; a3 = 13.59; b1 = .182; b2 = .095; b3 = .076;

c1 = -45.82*10^-6; c2 = -31.01*10^-6; c3 = -18.82*10^-6;

U = 110; largeten = 9.37*10^14; R = 82.06*10^-6; P = 1.58; fact = R*Tf/(P*qf);

dydt = [largeten*Tf*exp(-34200./y(2,:)).*(1-y(1,:))./(qf*(1+y(1,:)).*y(2,:));

1./((1-y(1,:)).*(a1 + b1*y(2,:) + c1*y(2,:).^2) + ...

y(1,:).*(a2 + a3 + (b2 + b3)*y(2,:) + (c2 + c3)*y(2,:).^2)).* ...

(largeten*Tf*exp(-34200./y(2,:)).*(1-y(1,:))./(qf*(1+y(1,:)).*y(2,:)).* ...

(-80700 - 6.7*(y(2,:)-298) + 5.7*10^-3*(y(2,:).^2 -298^2) + ...

1.27*10^-6*(y(2,:).^3 -298^3))+ U*Adp*(Tj-y(2,:))*fact)];

This MATLAB code takes up to 12 inputs, of which the first four, namely the system
parameters qf , A

′′
, TJ , and Tf , need to be user-specified. Depending on the specific

problem, the remaining eight parameters may or may not be specified. In some of our
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applications these parameters are internally set to their proper values in the multiple dou-
ble graphing codes ...run.m that will be used later on for varying values of qf , A

′′
, TJ ,

or Tf .
The lines that follow the initial % MATLAB comment lines in fixedbedreact.m set up
default values for the seven optional parameters. Then we prepare for the MATLAB
IVP solver ode... that solves our problem by using the function dydt to evaluate the
right-hand side of our IVP (4.22). Having solved (4.22) we plot two curves of the solution
to the two joint DEs.
The most demanding task of the above program involves importing and transferring
all the data constants correctly into the code and subfunction dydt and setting up the
right-hand side function dydt vectorially by replacing all multiplication, division, and
exponentiation signs in (4.22) by the corresponding dotted, i.e., by the vectorized .*, ./,
and .^ MATLAB operations for speedup wherever appropriate.

Figure 4.3 displays plots of the two-part solution to (4.22), graphed by plotting V
versus XA and versus T from the initial value V = 0 until V = Vend = 1 m3. The call of
fixedbedreactor(.003,160,1200,1030,1,15,0,1) creates Figure 4.3.
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Figure 4.3
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These graphs tell us immediately that for the given values of qf and Tf the reaction
goes to (near) full conversion XA ≈ 1 and to the maximal temperature T = TJ = 1200 K
of the jacket at a very short distance from the start of the reactor. This means that
with these conditions the reactor is extremely overdesigned. We also notice that the
reactor temperature drops near the entrance of the reactor below the feed temperature
of Tf = 1030 K to about 1022 K according to the bottom graph in Figure 4.3. This
means that in this small part at the entrance, the heat consumed by the endothermic
reaction is larger than the heat transfer from the jacket.
It is advisable to graph and inspect the reaction more closely at the entrance of the
reactor. After a few experiments with Vend = 0.1, 0.04, and 0.01, we have set the desired
final volume to Vend = 0.01 m3 in Figure 4.4, which is drawn by the MATLAB command
fixedbedreact(.003,160,1200,1030,.01,15,0,1); .
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Figure 4.4
The bottom plot of Figure 4.4 (with the V versus T graph) shows the initial drop in
temperature at the entrance of the reactor more clearly than Figure 4.3.
Next we plot reversed graphs of the conversion XA and the temperature T , both versus
the volume V by specifying “versus = 2” in our fixedbedreact.m code with Vend =
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0.006 and calling fixedbedreact(.003,160,1200,1030,.006,15,0,2); .
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Figure 4.5

Figure 4.5 again shows the temperature drop at the entrance. Since our feed volumetric
flow rate is qf = 0.003 m3/sec, which is very small, and the feed temperature Tf = 1030 K
is quite high, we see from the plots of Figure 4.5 that the reaction reaches full conversion
and maximal operating temperature when the reactor volume is approximately 0.006 m3 ,
or after the residence time t = V/qf reaches 2 seconds. In comparison, for the total vol-
ume VR = Vend = 1 m3 the residence time is about 1/0.003 sec, or about 5 minutes and
40 seconds.

Next we want to investigate the effects of the feed rate qf on the reactor. For qf1 =
0.0015, qf2 = 0.003, qf3 = 0.006, and qf4 = 0.009 we obtain the plots of Figure 4.6
using the program qfrun.m, which is printed below Figure 4.6. In the plots the solutions
for varying values of qf are color1 coded as depicted in the legend on the right of each
graph.

1References to color always refer to a computer generated color graph of the figure in question.



148 Chapter 4: Initial Value Problems

We advise our readers to replicate the graphs of Figures 4.6 through 4.11 on their
computers for a better understanding.
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Figure 4.6
Again we observe for all our chosen values of qf that it takes less than 1 second of resi-
dence time for full conversion. Regarding the maximal temperature for qf4 = 0.009, for
example, full conversion is reached after a residence time of less than one second from
the top graph in Figure 4.6, while the maximal temperature of 1200 K is reached at the
residence time of about 0.014/0.009 ≈ 1.55 sec.
The actual MATLAB code qfrun.m for multiple qf values is as follows:

function qfrun(qf,vend)

% qfrun(qf,vend)

% Sample call : qfrun([.0015,.003,.006,.009],.02);

% Input : qf in vector form (increasing in value) with at most 6 entries,

% vend = end of integration for the ODE

% Supporting m,file : fixedbedreact.m

% Output : plots two multiple line graphs of the fixed-bed-reactor xA and

% T curves wrt V.

j = length(qf); % maximally six qf values are supported
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if j > 6, ’too many qf values’, return, end,

Adp = 160; Tj = 1200; Tf = 1030; method = 15; % standard settings (stiff DE)

for i = 1:j, % create plot data for specified qf values

[VV yy] = fixedbedreact(qf(i),Adp,Tj,Tf,vend,method,1,2,[],1);

VV = VV’; yy = yy’; [k, lmax] = size(yy);

if i > 1, % make size of new plot data compatible with previous plot data

[k lm] = size(y1);

if lmax > lm, % pad old plot data in y1, y2, and V

for m = lm+1:lmax

y1(:,m) = NaN*ones(k,1); y2(:,m) = NaN*ones(k,1); end

V = [V, NaN*ones(k,lmax-lm)]; end,

if lmax < lm, % plot new plot data in yy and VV

for m = lmax+1:lm

yy(:,m) = NaN*[1;1]; end;

VV = [VV, NaN*ones(1,lm-lmax)]; end, end

y1(i,:) = yy(1,:); y2(i,:) = yy(2,:); V(i,:) = VV; end % store new plot data

subplot(2,1,1); % draw xA versus V plot

plot(V’,y1’,’Linewidth’,1); v = axis; axis([v(1) v(2) 0 1.18]),

title([’Tubular reactor (acetone): qf = ’,num2str(qf,’%7.4g’),...

’, A" = ’,num2str(Adp,’%5.4g’),’, Tj = ’,num2str(Tj,’%5.4g’),...

’, Tf = ’,num2str(Tf,’%5.4g’)],’FontSize’,12),

xlabel(’V’,’FontSize’,12), ylabel(’X_A ’,’Rotation’,0,’FontSize’,12),

if j == 1 % include color coded legend (qf_1 = first qf value)

legend([’qf = ’,num2str(qf,’%7.4g’)],0), end

if j == 2

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],...

[’qf = ’,num2str(qf(2),’%7.4g’)]},0), end

if j == 3

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)]},-1), end

if j == 4

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)]},-1), end

if j == 5

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)],...

[’qf = ’,num2str(qf(5),’%7.4g’)]},-1), end

if j == 6

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)],...

[’qf = ’,num2str(qf(5),’%7.4g’)],[’qf = ’,num2str(qf(6),’%7.4g’)]},-1), end

hold off

subplot(2,1,2); % draw T versus V plot

plot(V’,y2’,’Linewidth’,1);

xlabel(’V’,’FontSize’,12), ylabel(’T ’,’Rotation’,0,’FontSize’,12),

if j == 1 % include color coded legend (qf_1 = first qf value)

legend([’qf = ’,num2str(qf,’%7.4g’)],0), end

if j == 2

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],...

[’qf = ’,num2str(qf(2),’%7.4g’)]},0), end

if j == 3

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)]},-1), end

if j == 4

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)]},-1), end
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if j == 5

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)],...

[’qf = ’,num2str(qf(5),’%7.4g’)]},-1), end

if j == 6

legend({[’qf = ’,num2str(qf(1),’%7.4g’)],[’qf = ’,num2str(qf(2),’%7.4g’)],...

[’qf = ’,num2str(qf(3),’%7.4g’)],[’qf = ’,num2str(qf(4),’%7.4g’)],...

[’qf = ’,num2str(qf(5),’%7.4g’)],[’qf = ’,num2str(qf(6),’%7.4g’)]},-1), end

hold off

Note that for the ith value qfi of qf this program stores the XA and T graphing data
in the ith rows of y1 and y2, respectively, and the corresponding V abscissas in the ith
rows of V. To do so in the three matrices y1, y2, and V of our code, we have to fill in any
data sets with shorter support than the maximal length support. Here by “support” we
mean the set of data points. We do this by filling in short support data sets and setting
every entry of the fill-in equal to NaN. These “not a number” NaN values are overlooked
in plotting in MATLAB. Therefore we can plot the matrices Y T

1 and Y T
2 versus V T

directly without any ill effects of the variable lengths of support for the various inputs
qfi . This unified matrix MATLAB plotting in turn allows us to add a coherent legend to
the multiple plots. All other ..run.m programs in this section are designed similarly; for
their codes we refer the user to the CD.
If we evaluate the first fractions of a second of residence time for the reactions with
varying feeds qf by calling qfrun([.0015,.003,.006,.009],.0003);, for example, we
observe that in seemingly all instances of qf , the minimal temperature that the reaction
reaches is about 1022 K, as seen in Figure 4.7.
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Next we study the effect of varying the heat transfer area A
′′

by setting A
′′
1 =

300, A
′′
2 = 240, A

′′
3 = 160, and A

′′
4 = 80 in the MATLAB call of Adprun([300,240,

160,80],.008). Again the curve for the first-mentioned value of A
′′

is denoted by A′′1 ,
and so forth. Note that the solutions are increasing more slowly as A

′′
decreases, denoting

a slower reaction for smaller areas A
′′

of heat transfer.
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Figure 4.8

For A
′′

= 300 there is no apparent drop in temperature at the entrance part of the
reactor, while for A

′′
= 80 the temperature drops the most, to around 1010 K.

Next we show the effects observed by changing the jacket temperature TJ such as for
TJ1 = 800, TJ2 = 1200, TJ3 = 1400, and TJ4 = 2000 K while keeping all other param-
eters fixed as before. The calling sequence for this example is Tjrun([800,1200,1400,1600],
0.0035).
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Here the slopes of the solution curves increase with increasing values of TJ . For the lowest
jacket temperature TJ4 = 800 K we obviously do not reach full conversion at all by the
time the volume reaches V = Vend = 0.0035 m3 .

Note: We advise our readers to recreate the multiple line graphs in Figures
4.6 to 4.11 in color on a computer screen and to inspect them individ-
ually. This will lead to a better visual understanding.

The same advice holds for Sections 4.3, 5.1, 5.2, and 6.4.

Finally, we plot the effects of varying the feed temperature Tf for Tf1 = 900, Tf2 =
1000, Tf3 = 1200, Tf4 = 1400, and Tf5 = 1600 K while keeping all other
parameters fixed. The calling sequence is Tfrun([900,1000,1200,1400,1600],.006)
for Figure 4.10.
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Figure 4.10

Figure 4.11 provides a closer look at the entrance of the reactor for various feed temper-
atures Tf by calling Tfrun([900,1000,1200,1400,1600],.001).
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Note how instantaneously fast the switch from the initial condition XA = 0 to full con-
version XA = 1 is when the feed temperature is relatively high such as Tf = 1600 K or
1400 K.

The respective MATLAB codes for multiple A
′′
, TJ , and Tf value curves are all quite

similar to the one given in qfrun.m above. Therefore we do not print these out here, but
rather refer the user to the accompanying CD.

Exercises for 4.1

1. Study the code Tfrun.m on the CD and try to understand how and why we
have shifted the left vertical axis V = 0 a little bit to the right in the plots
such as in Figures 4.10 and 4.11.

2. Investigate the temperature drop at the entrance part of the reactor in Figure
4.5 more closely by running fixedbedreact.m for Vend = 0.001 m3 or less
with the other parameters unchanged.

3. Redraw Figure 4.8 for low values of A
′′

such as A
′′

= 40, 20, and 10 until full
conversion by using our MATLAB code Adprun.m from the CD.

4. Redraw Figure 4.9 for low values of Tf such as Tf = 700 and 500 until full
conversion by using our MATLAB code Tfrun.m from the CD.

5. Use fixedbedract.m from the CD to plot the profiles for qf = 0.003, A
′′

=
160, TJ = 800, Tf = 1030, and V = 0.01, 0.1, 1.0, 10, etc., thereby extending
the two lowest graphs of Figure 4.9 until full conversion is reached if possible.
What do you observe? For which volume will the reaction reach full conver-
sion? Try to settle these questions graphically.
Repeat the problem for TJ = 900 K and TJ = 850 K. What do you ob-
serve? What conclusions can be drawn from these modeling experiments for
the minimum feasible jacket temperature TJ of the reactor?

Conclusions
In this section the reader was introduced to solving initial value nonlinear differ-
ential equations that occur with chemical engineering problems. We have used the
steady state (stationary nonequilibrium state) of a homogeneous tubular reactor
with a constant temperature heating jacket as an example. The reaction used is the
endothermic gas phase cracking of acetone. It is an important process in industry.
This reaction is accompanied by a change in the total number of moles, and the
reactor is nonisothermal. Therefore the volumetric flow rate is not constant and
this volumetric flow rate change is taken into consideration by using conversion
instead of concentration as a parameter. The heat balance design equations were
developed without extra assumptions since “no change of phase” is a fact and not
an assumption for this reactor. The design equations take the form of initial value
differential equations, which we solve efficiently using the appropriate MATLAB
IVP solvers. Our algorithms are used to investigate the effect of different operating
and design parameters. It is clear that for the original operating parameters the
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reactor is overdesigned. The term “overdesigned” in this case means that the vol-
ume of the reactor is much more than necessary for the given parameters. As our
graphs in Figures 4.3 to 4.8 show, a much smaller reactor of about 0.01 m3 volume
is sufficient.

4.2 Anaerobic Digester for Treating Waste Sludge

4.2.1 Process Description and Rate Equations

A continuous anaerobic digester that is used for treating municipal waste sludge is in
principle like any other CSTR except that it involves multiphase biological reactions.
In the digester the microorganisms grow biologically with the conversion. However, we
treat such a system as a pseudohomogeneous system in this section. This means that we
neglect all mass transfer resistances.

The feed material essentially consists of organisms with the concentration CXf measured
in mol/m3 and of substrate with the concentration CSf in mol/m3 . This is fed to the
anaerobic digester at a daily volumetric feed flow rate of q m3/day. The development of
the model design equations involves the following assumptions:

1. The reactions of interest take place only in the liquid phase and the reactor’s volume
V in m3 is constant.

2. The organism concentration CX in the digester is uniform, as is the substrate
concentration CS . (The digester is perfectly mixed like a CSTR.)

We can obtain a model, i.e., the design equations for the digester process, by carrying
out organism and substrate balances and using the following relationships:

1. The growth rate of the organism X is given by

rX = µ · CX in g/(m3 · day) ,

where µ, the specific growth rate, is given by the Monod2 function

µ = µ0 ·
(

CS

KS + CS

)
.

Here µ0 is the maximum specific growth rate and KS is the saturation constant.

2. The yield, i.e., the rate of growth of organisms with respect to the rate of consump-
tion of substrate in the reactor, is given by

rX = −YXS · rS ,

where YXS is the yield factor defined as the ratio of the microorganisms produced
per consumed substrate.

2Jaques Monod, French biochemist, 1910 – 1976
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4.2.2 Mathematical Modeling for a Continuous Anaerobic Di-
gester

The process is shown schematically in Figure 4.12.
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Schematic diagram of the anaerobic digestion process
Figure 4.12

The microbial reaction is given by S
X−→ P . This is catalyzed by X, which also grows.

The rate of production growth rX of the microorganism X is given by

r
X

= µ · CX = µ0 ·
(

CS

Ks + CS

)
·CX in g/(m3 · day) .

The rate of consumption rS of substrate is given by

rS = − 1
YXS

· µ0 ·
(

CS

KS + CS

)
· CX in g/(m3 · day) ,

where the negative sign signifies that the substrate concentration decreases due to its
consumption by the microorganisms. Note that rX is positive because the microorganisms
grow during the reaction.
An appropriate unsteady-state model is obtained from the microorganism and substrate
material balances as follows:
For the substrate balance

V · dCS

dt
= q · CSf − q ·CS − 1

YXS
· µ0 ·

(
CS

KS + CS

)
· CX · V . (4.23)

And for the microorganism balance

V · dCX

dt
= q ·CXf − q · CX + µ0 ·

(
CS

KS + CS

)
· CX · V . (4.24)
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These two coupled differential equations are subject to the initial conditions CS(0) =
CS0 and CX(0) = CX0 at t = 0.

Equations (4.23) and (4.24), together with their initial conditions, formulate the dynamic
model for this microbial system. We note that the volume V of the digester is assumed
to be constant.
A steady state for this system is reached when the variations in CS and CX have ceased,
i.e., when their derivatives with respect to time t are equal to zero in equations (4.23)
and (4.24). If we set dCS/dt = dCX/dt = 0 in (4.23) and (4.24), we obtain two coupled
steady-state equations for the anaerobic digester, namely

q · CSf − q · CSss −
1

YXS
· µo

(
CSss

Ks + CSss

)
·CXss · V = 0 (4.25)

and

q ·CXf − q · CXss + µo

(
CSss

Ks + CSss

)
· CXss · V = 0 . (4.26)

Here CSss denotes the steady-state concentration of the substrate and CXss denotes the
steady-state concentration of the microorganisms.

4.2.3 Solution of the Steady-State Equations

We shall try to express the volume V and the steady-state substrate conversion XSss :=
(CSf − CSss)/CSf in terms of the feed rates with the help of equations (4.25) and (4.26)
for general and specific data.

From equation (4.26) we have

CXss ·
(

q −
(

µo · CSss

Ks + CSss

)
· V

)
= q · CXf ,

or

CXss =
q · CXf(

q −
(

µo·CSss

Ks+CSss

)
· V

) . (4.27)

4.2.4 Steady-State Volume as a Function of the Feed Rate

Substituting (4.27) into (4.25) (multiplied by YXS) gives

q · (CSf − CSss

) · YXS = µ0

(
CSss

Ks + CSss

)
· V · q · CXf

q −
(

µ0·CSss

Ks+CSss

)
· V

. (4.28)

Next we multiply (4.28) by its right-hand side denominator q−(µ0 ·CSss ·V )/(Ks + CSss).
After multiplying out the resulting expression on the left-hand side we obtain

q2 · (CSf − CSss

) ·YXS − µ0 · q · (CSf − CSss) · YXS · CSss · V
Ks + CSss

=
µ0 · q · CSss · CXf · V

Ks + CSss

.

(4.29)
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Solving (4.29) for V gives us the following function in terms of the input parameter CXf :

V = V (CXf ) =
q · (CSf − CSss

) · YXS · (Ks + CSss)
µ0 · CSss · (CXf + (CSf − CSss) · YXS)

, (4.30)

where CXf may range from 20 to 1000 g/m3 and the other six parameters are specified in
our example as given below. Note that CXf occurs only in the denominator of V (CXf ).
Thus limCXf

→∞ V (CXf ) = 0.

The physico-chemical parameters for our example are
µ0 = 0.017 hr−1, Ks = 32 g/m3, and YXS = grams of cells

grams of substrate = 0.1,
while the operating parameters are
q = 7000 m3/hr, CSf = 1400 g/m3, and CXf ranges between 20 and 1000 g/m3.
If we consider a conversion (removal of substrate) rate of 99%, then there is 1% of the sub-
strate left at the output, or CSss = 14 g/m3 since the digester receives CSf = 1400 g/m3

of substrate at its input. Notice that the variable in (4.30) is CSss and that all parameters
in (4.30) are now specified.
To reformulate the problem from a biological engineering point of view, we are given all
the input and physical parameters, as well as the required conversion of the substrate S
as XS = (1400 − 14)/1400 = 0.99, or 99 % conversion. And we want to find how the size
of the bioreactor changes with a change of the feed concentration of the microorganisms.

With our particular data we therefore study the equation

V (CXf ) =
4.46292 · 107

32.987 + 0.238 ·CXf

(in m3). (4.31)

First we plot the graph of V (CXf ) for CXf ranging from 20 g/m3 to 1000 g/m3 via our
MATLAB file VversusCxf.m. Note that in VversusCxf.m the parameters are entered in
l, i.e, “liters”, while the output V is given in terms of cubic meters m3 for convenience
by dividing the expression for V in (4.30) or (4.31) by 1000 inside the program.

function [V, Cxf] = VversusCxf(Cxfstart,Cxfend,mu0,Ks,Yxs,q,Csf,Csss)

% [V, Cx] = VversusCxf(Cxfstart,Cxfend,mu0,Ks,Yxs,q,Csf,Csss)

% Sample call :

% VversusCxf(20,1000,.017,32,.1,7000,1400,14);

% Inputs : Cxfstart, Cxfend are the limits for Cxf values;

% if they are identical, we just evaluate V(Cxf).

% mu0, Ks, Yxs, q, Csf, and Csss are systems

% parameters (in m^3)

% Output: V = V(Cxf) (in m^3) plotting data and plot.

top = q*(Csf-Csss)*Yxs*(Ks+Csss); bot1 = mu0*Csss*(Csf-Csss)*Yxs;

bot2 = mu0*Csss; % preassembling constants used in (4.29), (4.30)

% if the Cxf values are identical, we evaluate V(Cxf) only

if Cxfstart == Cxfend, Cxf = Cxfstart; V = top/(1000*(bot1+bot2*Cxf));
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else % if the Cxf values differ, we plot the V(Cxf) curve

Cxf=linspace(Cxfstart,Cxfend,100); % creating Cx nodes

V = top./(bot1+bot2.*Cxf); % and corresponding V values (in m^3)

plot(Cxf,V,’LineWidth’,1), xlabel(’C_{xf}’,’Fontsize’,12),

ylabel(’V (m^3) ’,’Fontsize’,12,’Rotation’,0),

title([’ Anaerobic digester: \mu_0 = ’,num2str(mu0,’%7.4g’),...

’, K_s = ’,num2str(Ks,’%5.4g’),’, Y_{xs} = ’,num2str(Yxs,’%5.4g’),...

’, q = ’,num2str(q,’%5.4g’),’, C_{sf} = ’,num2str(Csf,’%5.4g’),...

’, C_{sss} = ’,num2str(Csss,’%5.4g’)],’FontSize’,12), end
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Figure 4.13

Figure 4.13 shows that the volume of the bioreactor necessary for achieving 99% sub-
strate conversion decreases nonlinearly as the feed concentration of the microorganisms
increases.

4.2.5 Steady-State Conversion in Terms of the Feed Concentra-
tion of the Microorganisms

Recall the expression XSss = (CSf − CSss)/CSf for the steady-state conversion. Here we
want to express XSss as a function of the concentration of microorganisms CXf for a
constant volume V of the digester. This requires us to modify (4.30) as follows.
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We multiply equation (4.30) by the denominator of the right-hand side and divide the
resulting equation by Csf throughout to obtain

V · µ0 · CSss · (CXf + (CSf − CSss) · YXS)
CSf

=
q · (CSf − CSss

) · YXS · (Ks + CSss)
CSf

.

(4.32)
With XSss = (CSf − CSss)/CSf , equation (4.32) becomes

µ0 · V
CSss · CXf

CSf

+ µ0 · V · XSss ·CSss · YXS = q · XSss · YXS · (Ks + CSss) . (4.33)

Note that XSss occurs twice in equation (4.33). But XSss involves CSss in its definition
and CSss occurs three times in (4.33). Before we can solve for XSss , we have to eliminate
CSss in (4.33) by making use of the relation XSss = (CSf − CSss)/CSf in the equivalent
form CSss = CSf − XSss · CSf . With this substitution, equation (4.33) becomes

µ0 · V (CSf − XSss · CSf ) · CXf

CSf

+ µ0 · V · XSss · (CSf − XSss · CSf ) · YXS =

= q · XSss · YXS · (Ks + CSf − XSss ·CSf ) . (4.34)

This is a quadratic equation in XSss of the form aX2
Sss

+ bXSss + c = 0, or more
specifically[
CSf · YXS(q − µ0V )

]
X2

Sss
− (

CSf · YXS(q − µ0V ) + q · KS · YXS + µ0V · CXf

)
XSss +

+ µ0V · CXf = 0 . (4.35)

Using the quadratic formula with the plus sign as the only meaningful positive solution
for equation (4.35), we obtain an explicit formula for

XSss(CXf ) =
−b +

√
b2 − 4ac

2a
= (4.36)

=
CSf · YXS(q − µ0V ) + q · KS · YXS + µ0V · CXf

2CSf · YXS(q − µ0V )
+

+

√(
CSf · YXS(q − µ0V ) + q · KS · YXS + µ0V · CXf

)2 − 4µ0V · CXf · CSf · YXS(q − µ0V )

2CSf · YXS(q − µ0V )
.

Here the variable CXf occurs only in the numerator, hence limCXf
→∞ XSss(CXf ) = ∞.

We can apply this formula to an existing digester with a volume of V = 7500 m3 and
with q = 318 m3/hr. All other parameters in this example are the same as before,
namely µ0 = 0.017 hr−1, Ks = 32 g/m3, YXS = 0.1, and CSf = 1400 g/m3.
We want to plot the steady-state conversion XSss = (CSf − CSss)/CSf for different
values of CXf from 20 to 2000 g/m3. Here is the MATLAB code XsssversusCxf.m for
our problem.
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function [Xsss, Cxf] = XsssversusCxf(Cxfstart,Cxfend,V,mu0,Ks,Yxs,q,Csf)

% [V, Cx] = XsssversusCxf(Cxfstart,Cxfend,V,mu0,Ks,Yxs,q,Csf)

% Sample call :

% XsssversusCxf(20,2000,7500,.017,32,.1,318,1400);

% Inputs : Cxfstart, Cxfend are the limits for Cxf values;

% if they are identical, we just evaluate Xsss(Cxf).

% mu0, V, Ks, Yxs, q, and Csf are systems

% parameters (in m^3)

% Output : Xsss = Xsss(Cxf) plotting data and plot (if Cxfstart /= Cxfend).

a = Csf*Yxs*(q-mu0*V); % preassembling constant a used in (4.36)

if Cxfstart == Cxfend, % for a single Cxf value we evaluate Xsss(Cxf) only

Cxf = Cxfstart; minusb = a + q*Ks*Yxs + mu0*V*Cxf; c = mu0*V*Cxf;

Xsss = (minusb + (minusb^2- 4*a*c)^0.5)/2*a;

else % for an interval of Cxf values we plot the V(Cxf) curve

Cxf=linspace(Cxfstart,Cxfend,100); % creating Cx nodes

minusb = a + q*Ks*Yxs + mu0*V*Cxf; c = mu0*V*Cxf; % polynomial coefficients

Xsss = (minusb + (minusb.^2- 4*a*c).^0.5)/2*a; % compute Xsss values

plot(Cxf,Xsss,’LineWidth’,1), xlabel(’C_{xf}’,’Fontsize’,12),

ylabel(’X_{sss} ’,’Fontsize’,12,’Rotation’,0),

title([{’ Anaerobic digester:’},{[’V = ’,num2str(V,’%5.4g’),...

’, \mu_0 = ’,num2str(mu0,’%7.4g’),’, K_s = ’,num2str(Ks,’%5.4g’),...

’, Y_{xs} = ’,num2str(Yxs,’%5.4g’),’, q = ’,num2str(q,’%5.4g’),...

’, C_{sf} = ’,num2str(Csf,’%5.4g’)]}],’FontSize’,12), end

This code generates a plot shown in Figure 4.14, of the steady-state conversion XSss for
the above data.
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Equation (4.36) makes the steady-state conversion XSss weakly nonlinear for varying
feed rates CXf . This is so since CXf appears both in the leading linear term “−b/2a”
and under the square root sign of XSss (CXf ) in equation (4.36).

Our last task in this subsection is to plot the steady-state substrate and organism
concentrations CSss and CXss in terms of the volume V of the digester.

To do so, we take a different approach now and solve equation (4.25) for CXss first to
obtain

CXss =
q(CSf − CSss)YXS(KS + CSss)

µ0 ·CSss · V . (4.37)

Next we plug this expression for CXss into equation (4.26) and obtain

q · CXf − q2(CSf − CSss)YXS(KS + CSss)
µ0 ·CSss · V + q(CSf − CSss)YXS = 0 . (4.38)

Equation (4.38) is a quadratic polynomial in CSss that depends on the variable V and the
system parameters q, CXf , CSf , YXS , KS , and µ0. To see this, we first divide equation
(4.38) by its common factor q and multiply by the denominator µ0 · CSss · V . Then we
rewrite it in the standard form a ·C2

Sss
+ b · CSss + c = 0 of a quadratic polynomial as

YXS(q − µ0V ) · C2
Sss

+
+

[
µ0 · V (CXf + CSf · YXS) − q · YXS(CSf − KS)

] · CSss (4.39)
− q · CSf · YXS · KS = 0 .

This polynomial a ·C2
Sss

+ b ·CSss + c = 0 has two solutions (−b ±√
b2 − 4ac)/(2a) with

a = YXS(q − µ0V ) (= A · V + B),
b = µ0 · V (CXf + CSf · YXS) − q · YXS(CSf − KS) (= C · V + D),
c = − q · CSf · YXS · KS (= E) .

Here we have expressed the dependences of a, b, and c on V in parenthetical expressions
for appropriate constants A, B, C, D, and E. For example, C = µ0 · (CXf + CSf · YXS)
and E = −q · CSf · YXS · KS . These expressions will be used below to find the limit of
CSss as V → ∞.
The solutions to (4.39) are

CSss1,2 (V ) =
−b ±√

b2 − 4ac

2a
= (4.40)

=
− µ0 · V (CXf + CSf · YXS) − q · YXS(CSf − KS)

2YXS(q − µ0V )
±

±
√

(µ0 · V (CXf + CSf · YXS) + q · YXS(CSf − KS))2 + 4qY 2
XSCSf KS(q − µ0V )

2YXS(q − µ0V )
,

of which only the one with the + sign gives a meaningful positive steady-state substrate
concentration CSss .
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The value of CSss depends on the variable V and the six system parameters q, CXf , CSf ,
YXS , KS , and µ0.
To find limV →∞ CSss(V ) we write CSss = (−b ±√

b2 − 4ac)/(2a) in terms of the simpli-
fied expressions a = A · V + B, b = C · V + D, and c = E as

CSss (V ) =
−(C · V + D) +

√
(C · V + D)2 − 4E(A · V + B)
2(A · V + B)

. (4.41)

Multiplying this simplified expression for CSss(V ) by the conjugate expression

−(C · V + D) −√
(C · V + D)2 − 4E(A · V + B)

−(C · V + D) −√
(C · V + D)2 − 4E(A · V + B)

,

i.e., by 1, leads to the equivalent representation of limV →∞ CSss(V ) as

lim
V →∞

CSss(V ) = lim
V →∞

4E(A · V + B)

2(A · V + B) · (−2)(C · V + D)
= lim

V →∞
−E

C · V + D
= 0. (4.42)

We will use this expansion of CSss in terms of V subsequently when studying the limit
behavior of CXss as V → ∞.
Equation (4.37) expresses CXss as a function of V that depends on the system parameters
q, CXf , CSf , YXS , KS , and µ0, as well as the expression CSss(V ) of (4.40), namely

CXss (V ) =
q(CSf − CSss (V ))YXS(KS + CSss (V ))

µ0 ·CSss(V ) · V . (4.37)

When contemplating the asymptotic behavior of CXss(V ) as V → ∞ in formula (4.37),
we note that the numerator converges to qCSf · YXS ·KS since CSss converges to zero as
V → ∞.
What about the term CSss(V ) · V in the denominator of (4.37)?
According to (4.42), CSss(V ) behaves as −E/(C · V + D) does for large V . Thus

lim
V →∞

(CXss(V ) · V ) = lim
V →∞

−E · V
C · V + D

=
−E

C
=

qCSf · YXS · KS

µ0(CXf + CSf · YXS)
.

Hence

lim
V →∞

CXss(V ) =
(qCSf · YXS · KS) · (µ0(CXf + CSf · YXS))

µ0 · q · CSf · YXS ·KS
= CXf + CSf · YXS .

Figure 4.15 shows two plots of CSss(V ) and CXss(V ) for 1000 ≤ V ≤ 350000 m3, and
our previous data set q = 1000 m3/hr, µ0 = 0.017 hr−1, Ks = 32 g/m3, YXS =
0.1, CSf = 1400 g/m3, and CXf = 800 g/m3. Note that for this data,

lim
V →∞

CXss(V ) = CXf + CSf · YXS = 800 + 1400 · 0.1 = 940 g/m3 .
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This pair of plots was drawn by the MATLAB file steadystCsCx.m.

function limCSss = steadystCsCx(Vstart,Vend,q,m0,Cx,Cs,YXS,KS)

% steadystCsCx(Vstart,Vend,q,m0,Cx,Cs,YXS,KS)

% sample call : steadystCsCx(10,350000,1000,.0017,800,1400,.1,32)

% Input : limits Vstart and Vend for the volume;

% system parameters q, m0, Cx, Cf, YXS, and KS

% Output : two plots of CSss(V) and CXss(V)

n = 100; V = linspace(Vstart,Vend,n); % initialize

a = YXS*(q-m0*V); % quadratic polynomial coeff.

b = m0*V*(Cx+Cs*YXS)-q*YXS*(Cs-KS);

c = -q*Cs*YXS*KS;
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CS = (-b + (b.^2 - 4*a*c).^0.5)./(2*a); % CSss data

CX = ((q*(Cs-CS)*YXS).*(KS+CS))./(m0*CS.*V);

limCSss = Cx + Cs*YXS; % finding optimal CXss plot region limits :

ymaxCX = max(max(CX),limCSss); yminCX = min(min(CX), limCSss);

if ymaxCX == limCSss, yCXtop = ymaxCX + 0.05*(ymaxCX-yminCX);

else, yCXtop = ymaxCX; end

if yminCX == limCSss, yCXbot = yminCX - 0.05*(ymaxCX-yminCX);

else, yCXbot = yminCX; end

subplot(2,1,1), plot(V,CS), xlabel(’V’,’Fontsize’, 14),

ylabel(’C_{S_{ss}} ’,’Fontsize’, 14,’Rotation’,0),

title([{’Anaerobic Digester Steady State Concentrations’},{’ ’},...

{[’with q = ’, num2str(q,’%5.4g’),’, \mu_0 = ’,num2str(m0,’%5.4g’),...

’, C_{X_s} = ’,num2str(Cx,’%5.4g’),’, C_{S_s} = ’,...

num2str(Cs,’%5.4g’),’, Y_{XS} = ’,num2str(YXS,’%5.4g’),...

’, K_{S} = ’,num2str(KS,’%5.4g’)]}],’FontSize’,12)

subplot(2,1,2), plot(V,CX), v = axis; axis([v(1),v(2),yCXbot,yCXtop]);

xlabel([’V ( lim C_{Sss} = ’,...

num2str(limCSss,’%5.4g’),’ )’],’Fontsize’, 14), hold on,

plot([v(1), v(2)],[limCSss, limCSss],’:r’); % asymptotic line

text(v(2),0.97*(limCSss-v(3))+v(3),’ lim C_{Sss}’,’Fontsize’,12,’Color’,’r’),

ylabel(’C_{X_{ss}} ’,’Fontsize’, 14,’Rotation’,0), hold off

4.2.6 The Unsteady-State Behavior of the Digester and the So-
lution of the Initial Value Differential Equations

Having studied the steady-state behavior of the digester, we now turn to its unsteady
state or dynamic behavior.

If we divide the two differential equations (4.23) and (4.24) by V we obtain the
following simpler version:

dCS

dt
=

1
V

[
q ·CSf − q · CS − 1

YXS
· µ0 ·

(
CS

Ks + CS

)
· CX · V

]
and (4.43)

dCX

dt
=

1
V

[
q ·CXf − q · CX + µ0 ·

(
CS

Ks + CS

)
· CX · V

]
.

This gives rise to an IVP if we specify CS(0) = CS0 and CX(0) = CX0 at t = 0.

Here is a MATLAB code that solves (4.43) for any given initial values CS(0), CX(0)
and for any system parameters q, CSf , YXS , µ0, Ks, V , and CXf by plotting the time
graphs of CS and CX from t = 0 until t = tend.
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function anaerdigest(tend,Cs0,Cx0,q,Csf,Yxs,mu0,Ks,V,Cxf,method)

% anaerdigest(tend,Cs0,Cx0,q,Csf,Yxs,mu0,Ks,V,Cxf,method)

% Sample call : anaerdigest(240,1000,400,150,1400,0.1,0.0017,32,4000,800,45);

% Input : tend = final time (hours)

% Cs0, Cx0 = intimal values for Cs and Cx

% q, Csf, Yxs, mu0, Ks, V, Cxf = parameters for the system,

% all scaled to be in m^3.

% Output: Plot of the Cs and Cx curves from time = 0 to tend in hours.

if nargin == 10, method = 23; end % default method

% initialize :

tspan = [0 tend]; y0 = [Cs0;Cx0]; options = odeset(’Vectorized’,’on’);

% integrate :

if method == 45,

[t,y] = ode45(@ADDE,tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);

elseif method == 23,

[t,y] = ode23(@ADDE,tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);

elseif method == 113,

[t,y] = ode113(@ADDE,tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);

else disp(’Error : Unsupported method number !’), return, end

subplot(2,1,1); % plot graph of solution to dCs/dt IVP

plot(t,y(:,1),’Linewidth’,1)

xlabel([’t hours (with C_S(0) = ’,num2str(Cs0,’%5.4g’),’)’],...

’FontSize’,12), ylabel(’C_S ’,’Rotation’,0,’FontSize’,12),

title([’Anaerobic digester: q = ’,num2str(q,’%5.4g’),’, C_{S_f} = ’,...

num2str(Csf,’%5.4g’),’, Y_{xs} = ’,num2str(Yxs,’%5.4g’),...

’, \mu_0 = ’,num2str(mu0,’%5.4g’),’, K_s = ’,num2str(Ks,’%5.4g’),...

’, V = ’,num2str(V,’%5.4g’),’, C_{X_f} = ’,num2str(Cxf,’%5.4g’)],...

’FontSize’,12),

subplot(2,1,2); % plot graph of solution to dCx/dt IVP

plot(t,y(:,2),’Linewidth’,1)

xlabel([’t hours (with C_X(0) = ’,num2str(Cx0,’%5.4g’),’)’],...

’FontSize’,12), ylabel(’C_X ’,’Rotation’,0,’FontSize’,12),

function dydt = ADDE(t,y,q,Csf,Yxs,mu0,Ks,V,Cxf) % r.h.s of the DE

inter = y(1,:)./(Ks + y(1,:)) .* y(2,:);

dydt = 1/V * [q*(Csf - y(1,:)) - mu0/Yxs *V .* inter;

q*(Cxf - y(2,:)) + mu0*V .* inter];

We close with two plots drawn by anaerdigest.m. The first one uses the parame-
ters tend = 240 hours (10 days), CS(0) = 1000 g/m3, CX(0) = 400 g/m3, q =
150 m3/hr, CSf = 1400 g/m3 , YXS = 0.1, µ0 = 0.017 hr−1, Ks = 32 g/m3 , V =
4000 m3, and CXf = 800 g/m3. The call of anaerdigest(240,1000,400,150,1400,0.1,
0.0017,32,4000,800,15); produces Figure 4.16 for this data.
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Figure 4.16

Figure 4.17 shows a second plot for a much higher growth rate µ0 of the organisms
with the parameters tend = 24 hours, CS(0) = 900 g/m3, CX(0) = 1200 g/m3, q =
300 m3/hr, CSf = 1400 g/m3, YXS = 0.1, µ0 = 0.017 hr−1, Ks = 32 g/m3, V =
1000 m3 , and CXf = 800 g/m3. For this set of parameters, the digester reaches its steady
state in about 1 day, or ten times faster than in the example of Figure 4.16. Figure 4.17 is
drawn by calling anaerdigest(24,900,1200,300,1400,0.1,0.017,32,1000,800,15);.
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Exercises for 4.2

1. (a) Study our VversusCxf.m code and learn how to use it to find the numer-
ical value of the steady-state volume V for the data used for (4.31) when
CXf = 20 g/m3 and 1000 g/m3 .

(b) For the feed rate of CXf = 1000 g/m3 in part (a), a waste-treatment plant
is to be build in the form of 22 identical digesters. If the digesters are to
have cylindrical form with a radius of 10 m, how tall must each digester
be?
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2. Use VversusCxf.m for the data µ0 = 0.198 hr−1, Ks = 250 g/m3 , q =
7000 m3/hr, CSf = 1400 g/m3, YXS = 0.1, and CSss = 14 g/m3 when
CXf ranges from 20 g/m3 to 2000 g/m3.

3. Find the steady-state volume V when CXf = 20 g/m3 and 2000 g/m3 for the
previous problem.

4. For exercises 2 and 3 above, show how during startup the system approaches
its steady state.

Conclusions

In this section we have presented an important biological engineering example,
namely waste-water treatment (WWT). The enzyme digester is treated like a
CSTR, while the catalyzing microorganisms are growing with the reaction. A
steady-state analysis and computer programs using either algebraic equations or
IVPs have been introduced, discussed, and applied to standard problems.

4.3 Bubbling Fluidized Bed Catalytic Reactors (Het-
erogeneous Two-Phase System)

Gas-solid fluidized beds are very important in a number of petrochemical and petroleum
refining processes. One of the most important one in the petroleum refining industry
is the fluid catalytic cracking (FCC) process for the production of high-octane gasoline
through the cracking of gas oil. In the petrochemical industry fluidized bed reactors are
used in the UNIPOL

�R process for producing polyethelyne and polypropylene. These two
industrial processes are presented and analyzed in some detail in Chapter 7 of this book.

4.3.1 Mathematical Modeling and Simulation of Fluidized Beds

When a gas stream is passed through a bed of fine powder in a tube (as shown in Figure
4.18), we observe the following:

1. In a certain low range of the flow rate, the system will behave like a fixed bed, i.e.,
the gas stream will flow through a fixed porous medium.

2. The minimum fluidization condition refers to the situation in which ∆P , the pres-
sure drop across the bed, is equal to the bed weight.
A slight expansion occurs in this case (see Figure 4.18). The bed will behave very
similarly to a rough liquid formed by the gas and the fine powder, which together
form a pseudophase. For example, this pseudophase can be transferred between
two containers to make the levels equal in the two containers in a manner similar
to liquids.

3. A freely bubbling fluidized bed has a higher flow rate of the gas than the minimum
fluidization limit. It will reach the case of three phases: solid, gas in contact with
solid, and gas in bubbles inside the tube.
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Gas flow

(at minimum fluidization)

Fine powder

Slight expansion 

Fine powder inside a tube starting to fluidize due to gas flow rate
Figure 4.18

In this context we adhere to the two-phase theory of fluidization, which states that
“almost all the gas in excess of that necessary for minimum fluidization will appear as
gas bubbles” (Figure 4.19).

Gas flow

emulsion phase
Bubble "free of solid" Dense phase or 

Fluidized bed
Figure 4.19

There are advantages and disadvantages of fluidized beds for catalytic reactions.
Advantages of fluidized beds (freely bubbling)

1. Perfect mixing of solids occurs due to the presence of bubbles (isothermality).

2. Good heat transfer characteristics (high heat transfer coefficient).

3. The resistance of the pellets to heat and mass transfer to the surrounding is very
small, making the rate of reaction closer to the intrinsic rate.



4.3 Heterogeneous Fluidized Bed Catalytic Reactors 171

4. All the advantages of minimum fluidization conditions.

Disadvantages of fluidized beds

1. Bypassing of bubbles through the bed.

2. Bubble explosion on the surface causes high entrainment.

3. Difficult mechanical design; for example, some industrial FCC units have to handle
7000 tons of solids.

Regions where

Solid particles

Cloud

Bubble

Wakemain processes occur

Diagram of the main regions around a bubble
Figure 4.20

Furthermore, we should note the following:

1. Bypassing of bubbles is compensated partially by diffusion between dense and bub-
ble phases (i.e., by delayed addition of reactants).

2. There is a solid exchange between the wake, the cloud, and the dense phase. This
is accounted for in three-phase models.

3. Although the dense phase is perfectly mixed, the bubble phase is almost in plug
flow.

4. It is possible to break the bubbles by using baffles or redistributors. Stirrers are
not recommended because of vortex formation.

Mathematical formulation (steady state)

Using the two-phase model, a fluidized catalytic bed reactor can be divided into two
regions, one for the dense phase, i.e., the emulsion phase, and another for the bubble
phase, with associated mass and heat transfer between the two regions and phases.
For illustration purposes we consider a simple reaction

A → D .



172 Chapter 4: Initial Value Problems

We refer to Figure 4.21, where CA is constant for all heights, i.e., A is in perfectly mixed
condition independent of the height h, and CAB = f(h), since the bubble phase is in plug
flow and therefore the concentration CAB depends on the height h. Here CA denotes
the concentration of component A in the dense phase, and CAB is the concentration of
component A in the bubble phase.
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Figure 4.21

Steady-state modeling of the dense phase
This is a heterogeneous system formed of two phases. For general principles of modeling
heterogeneous systems, we refer to Chapter 6.
The molar balance on the dense phase gives us

nif+ transfer of component i from the bubble phase to the dense phase = ni+V ·σi·r .

For component A with a constant volumetric flow rate GI , we can write the above
equation as

GI ·CAf +
∫ H

0

Kga(CAB − CA)Ac dh = GICA + AIHρbkCA , (4.44)

where ρb is the bulk density of the solid at minimum fluidization conditions,
a = (external surface area of bubbles)/(volume of bubble phase), and Kg is the mass
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transfer coefficient between the bubble phase and the dense phase in mol/(cm2 · sec).
Steady-state modeling of the bubble phase

Assuming that there is a negligible rate of reaction for an element in plug flow mode in
the bubble phase, the molar balance can be expressed as

GCCAB = GC(CAB + ∆CAB) + Kga(CAB − CA)Ac∆h ,

see Figure 4.22. After a few manipulations and by taking the limit of ∆CAB/∆h as
∆h → 0, we obtain the DE

GC
dCAB

dh
= −Kga︸︷︷︸

QE

Ac(CAB − CA) (4.45)

with the initial condition CAB = CAf at h = 0.
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Thus, the molar balance gives us the following two equations:
For the dense phase: an integral equation according to (4.44),

GI · (CAf − CA) + QE · AC

∫ H

0

(CAB − CA)dh = AI · H · ρb · k · CA . (4.46)

For the bubble phase: a differential equation according to (4.45),

GC
dCAB

dh
= −QE · Ac · (CAB − CA) (4.47)
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with the initial condition CAB = CAf at h = 0. These two coupled integrodifferential
equations (IDE) can be manipulated analytically as we shall see.

4.3.2 Analytical Manipulation of the Joint Integrodifferential Equa-
tions

Analytical solution of the differential equation (4.47)
By separation of variables we obtain

dCAB

(CAB − CA︸︷︷︸
constant

)
= −

(
QE · AC

GC

)
dh .

By integration we find that

ln (CAB − CA) = −
(

QE · AC

GC

)
h + C1 .

To find the constant of integration C1, we use the initial condition at h = 0 and obtain
C1 = ln (CAf − CA).
Thus we get

ln
(CAB − CA)
(CAf − CA)

= −
(

QE · AC

GC

)
︸ ︷︷ ︸

ᾱ

h .

Exponentiation gives us (CAB − CA)/(CAf − CA) = e−ᾱh .

Thus we have found the solution of the differential equation (4.47) to be

CAB(h) − CA = (CAf − CA) · e−ᾱh (4.48)

for ᾱ = QE · AC/GC. Substitution of equation (4.48) into the integral equation (4.46)
for the dense phase subsequently gives us

GI · (CAf − CA) + QE · AC · (CAf − CA) ·
∫ H

0

e−ᾱhdh = AI · H · ρb · k · CA .

Since
∫ H

0 e−ᾱhdh = (1 − e−ᾱH)/α and ᾱ = QE · AC/GC we get

GI · (CAf − CA) + GC · (CAf − CA) ·
(

1 − e
−QEAC

GC
H

)
= AI ·H · ρb · k · CA .

In more simplified and reorganized form this becomes(
GI + GC ·

(
1 − e

−QE AC
GC

H

))
· (CAf − CA) = AI · H · ρb · k · CA . (4.49)

Note the following:
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1. The analogy between the above equations and the CSTR model can be easily
realized. From this analogy we can define “the modified flow rate” with the following
physical significance:

(a) At very high values of QE the pseudo flow rate

GI + GC ·
(

1 − e
−QEACH

GC

)
converges to G = GI + GC; thus equation (4.49) approaches that of a CSTR.

(b) If QE ≈ 0, then G ≈ GI ; thus we have complete segregation.

2. When G = GI + GC, the output concentration CAout of A at h = H is calculated
from the relation

GI · CA + GC · CAB |h=H = G · CAout .

Heat balance design equations for fluidized beds
For a reaction A → D with the reaction constant k = k0 · e− E

RT we have the situation
of Figure 4.23.
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The heat balance equation applied to the dense phase gives us

GI ·ρ ·CP ·(T −Tf ) = AIHρbkCA(−∆H)+

(∫ H

0

hBaAC(TB − T )dh

)
−UAJ(T −TJ ) .

(4.50)



176 Chapter 4: Initial Value Problems

Note that we consider that the heat supply/removal coil affects only the dense phase
balance. Here
TB = bubble phase temperature (variable),
TJ = jacket temperature,
T = dense phase temperature (constant),
U = heat transfer coefficient between the jacket and dense phase,
AJ = jacket area available for heat transfer, and
hB = heat transfer coefficient between the bubble and the dense phase per unit

volume of the bubble phase (in (K · J)/(sec · cm3)).
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The heat balance on the bubble phase in Figure 4.24 that is assumed to be in plug flow
mode and to have a negligible rate of reaction, as well as a negligible heat transfer with
the heating/cooling coil, leads to

GC · ρ · CP · TB = GC · ρ ·CP · (TB + ∆TB) − hB · a · AC · ∆h · (T − TB) .

After rearranging and taking the limit of ∆TB/∆h as ∆h → 0 we obtain the correspond-
ing DE

GC · ρ ·CP · dTB

dh
= hB · a ·AC · (T − TB) . (4.51)
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Analytical solution of (4.51)
By separating the variables in equation (4.51) we get

dTB

(T − TB)
= β · dh ,

where β = (hB · a · AC)/(GC · ρ · CP ) . Integration gives us − ln(T −TB) = β ·h+C2 .
The integration constant C2 can be calculated from the initial condition TB = Tf at
h = 0 as C2 = − ln(T − Tf ).
Substituting this value back in, we get

ln
(

T − TB

T − Tf

)
= −β · h .

And exponentiation finally gives us

T − TB

T − Tf
= e−β·h .

We use the above relation in the heat balance equation for the dense phase (4.50) in
order to calculate the integral heat transfer term:

GI · ρ · CP (T − Tf ) =

= AI · H · ρb · k0 · e− E
R·T · CA(−∆H) − hB · a · AC(T − Tf )

∫ H

0

e−β·hdh + U · AJ(T − TJ ) .

Note that ∫ H

0

e−β·hdh =
1
β

(1 − e−β·H) =
GC · ρ ·CP

hB · a · AC
(1 − e−β·H) .

Therefore we can write[
GIρCP + GCρCP (1 − e−β·H)

]
(T − Tf ) = AIHρbk0e

− E
R·T CA(−∆H) +UAJ (T − TJ) .

For a fluidized bed without chemical reaction, the heat transfer equation thus will be

ρCP

[
GI + GC

(
1 − e−β·H)]

(T − Tf ) = U · AJ(T − TJ ) . (4.52)

We shall make use of these model equations at the end of Section 4.4 for our numerical
computations.

4.3.3 Bifurcation and Dynamic Behavior of Fluidized Bed Cat-
alytic Reactors

4.3.4 Dynamic Models and Chemisorption Mechanisms

From the mass balance equation (4.49) we can obtain the unsteady-state equations for a
dynamic model by using an accumulation term as follows.(

GI + GC ·
(

1 − e
−QE AC

GC
H

))
(CAf−CA) = AI ·H ·ρb·k·CA + Accumulation . (4.53)
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The number of moles n̄A of component A inside the reactor is

n̄A = AI · H · ε ·CA + AI · H · ρb · CAS , (4.54)

where
n̄A = number of moles of component in the fluidized bed reactor,
ρb = bulk density of the catalyst = g catalyst

cm3 bed = ρS(1 − ε),

ρS = solid density of the catalyst = g catalyst
cm3 bed .

Differentiation of n̄A in equation (4.54) with respect to time t gives us

dn̄A

dt
= AI · H

(
ε · dCA

dt
+ ρb · dCAS

dt

)
= Accumulation . (4.55)

Substituting (4.55) into (4.53) yields(
GI + GC ·

(
1− e

− QEAC
GC

H
))

(CAf −CA) = AI ·H ·ρb ·k·CA+AI ·H
(

ε · dCA

dt
+ ρb · dCAS

dt

)
.

(4.56)

Thus we have obtained a differential equation in which two variables, CA and CAS , are
functions of time. To solve for these coupled functions, either we have to find a simple
relation between CA and CAS, or we need to develop an additional differential equation
for CAS .
We will follow the first path and build on the following physically justified details re-
garding the relation between CA and CAS . We consider the chemisorption step of the
gas-solid catalytic reaction A → D as follows:

A + S ↔ AS at equilibrium ,

AS → D + X .

Thus we can write
KA =

CAS

CA · C ′
S

,

where C ′
S = C̄m − CAS and C̄m is the total concentration of active sites, and we get

KA · CA(C̄m − CAS) = CAS .

Thus

CAS =
KA · C̄m · CA

1 + KA · CA
.

This is a simple Langmuir3 isotherm.
Considering low concentrations of CA, i.e., a linear relation between CA and CAS, we
obtain

CAS = (KA · C̄m)CA . (4.57)
3Irving Langmuir, US chemist and engineer, 1881-1957
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By differentiating equation (4.57) with respect to time t (and assuming constant KA and
C̄m) we get

dCAS

dt
= (KA · C̄m)

dCA

dt
. (4.58)

Therefore, the final unsteady-state mass balance equation, or the dynamic model derived
earlier in (4.56), takes the form(
GI + GC ·

(
1− e

− QEAC
GC

H
))

(CAf −CA) = AI ·H ·ρb ·k ·CA+AI ·H
(
ε + KA · C̄m · ρb

) dCA

dt
.

(4.59)

Note: It is always difficult to find usable values of KA and C̄m, except for very common
processes or reactions.

A nonlinear isotherm will complicate the capacitance term as follows:

dCAS

dt
= KA · C̄m

(
(1 + KA · CA)−1 dCA

dt
+ CA(−1)(1 + KA · CA)−2KA

dCA

dt

)
.

In this case we have

dCAS

dt
= KA · C̄m

(
1

1 + KA · CA
− KA · CA

(1 + KA · CA)2

)
dCA

dt
. (4.60)

For a nonisothermal system the unsteady-heat balance equation (dynamic model) is given
by

γ̄ · (T − Tf) = AI · H · k0e
− E

R·T ρb · CA(−∆H) − U ·AJ (T − TJ) − dQ̄

dt
, (4.61)

where Q̄ is the heat content of the fluidized bed reactor,

γ̄ = GI · ρ · CP +
(
GC · ρ ·CP (1 − e−β·H)

)
,

Q̄ = AI · H · ε · ρ · CP · Tg + AI · H · ρb · CPS · TS , (4.62)

and ρ and CP denote the gas phase density and the specific heat, respectively.
Assuming negligible heat transfer resistances between the gas and solid, we have

Tg = TS = T.

By differentiating equation (4.62) with respect to t we obtain

dQ̄

dt
= AI · H

⎛⎜⎝ε · ρ ·CP︸ ︷︷ ︸
negligible

+ρb · CPS

⎞⎟⎠ dT

dt
.

Therefore
dQ̄

dt
= AI ·H · ρb ·CPS

dT

dt
. (4.63)
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The expression for dQ̄/dt in equation (4.63) can be substituted into equation (4.61) to
obtain our final unsteady-state heat balance relation, namely

γ ·(T−Tf) = AI ·H ·k0e
− E

R·T ρb ·CA(−∆H)−U ·AJ(T−TJ )−AI ·H ·ρb·CPS
dT

dt
. (4.64)

With these expressions, the unsteady-state equations become:
For the mass balance equation:

AI · H · (ε + KAC̄mρb)
dCA

dt
= γM (CAf − CA) − AI ·H · ρb · k ·CA , (4.65)

where γM = GI + GC(1 − e−ᾱH) for ᾱ = QE · AC/GC.
And for the heat balance equation:

AI · H · ρS · CPs

ρ · CP

dT

dt
= γH(Tf−Y )+

AI ·H · ρb · k · CA(−∆H)
ρ · CP

+
U · A
ρ · CP

(TJ−T ) (4.66)

with γH = GI + GC(1 − e−βH) = γ̄/(ρ · CP ) and k = k0 · e−E/RT .

In normalized time τ = t · ρ · CP /(AI · H · ρb · CPs), equations (4.65) and (4.66) take the
form

dT

dτ
= γH(Tf − T ) +

AI · H · ρb · k0

ρ · CP
· e−E/RT · CA · (−∆H) +

U ·A
ρ · CP

(TJ − T ) (4.67)

and
1

LeA

dCA

dτ
= γM (CAf − CA) − AI ·H · ρb · k0 · e−E/RT · CA (4.68)

with the Lewis4 number

LeA =
ρb · CPS

(ε + KA · C̄m · ρb)ρ ·CP
.

The dimensionless Lewis number measures the ratio of the heat capacitance term and
the mass capacitance term.
With the normalized parameters

y =
T

Tref
, yf =

Tf

Tref
, yJ =

TJ

Tref
, β =

(−∆H) · CAref

ρ · CP · Tref
, γ =

E

R · Tref
,

xA =
CA

CAref
, xAf =

CAf

CAref
, K̄ =

U ·A
ρ · Cp

, and α = AI · H · ρb · k0,

we finally rewrite the DEs (4.67) and (4.68) as

dy

dτ
= γH(yf − y) + α · e−γ/y · xA · β + K̄(yJ − y) (4.69)

and
1

LeA

dxA

dτ
= γM (1 − xA) − α · e−γ/y · xA . (4.70)

4Warren K. Lewis, US chemical engineer, 1882-1975
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4.3.5 Fluidized Bed Catalytic Reactor with Consecutive Reac-
tions

The procedure used in the previous section to develop a mathematical model for a cat-
alytic bubbling fluidized bed reactor with a simple reaction A → B can be extended to
develop a model for the practically important consecutive reaction A

k1−→ B
k2−→ C,

where B is the desired product.

The maximum productivity of the desired product B usually occurs at the middle
unstable saddle-type steady state. In order to stabilize the unstable steady state, a sim-
ple proportional-feedback-controlled system can be used, and we shall analyze such a
controller now. A simple feedback-controlled bubbling fluidized bed is shown in Figure
4.25.

steam

E

T.M

PC
phase

(plug flow)

phase

(perfect

f      Y

mY       Yf
      Yf

Ym

        =   controlled feed temperature 

the middle saddle type
              steady state temperature.

        = temperature measurmentT.M
        =  proportional controllerPC
        =   input feed temperature

        =   set point which is usually   mixing)

fY

Q
H

Qbubble dense 

Simulation model for two-phase fluidized bed reactor with single input single output
proportional (SISOP) feedback control

Figure 4.25

Using the usual assumptions, we obtain the following dimensionless unsteady-state mate-
rial and energy balance equations for the dense (emulsion) phase of the bubbling fluidized
bed:

Φ̂i ·AI ·H · dCi

dt
= GI(Cif −Ci)+QEi ·AC

∫ H

0

(CiB −Ci)dh−ρs(1−ε)AI ·H ·
2∑

j=1

σijrj ,

(4.71)
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where
∑2

j=1 σijrj is the net rate of reaction of component i. Notice further that ρb =
ρs(1 − ε).
Likewise we obtain the unsteady-state heat balance equation

Φ̂H ·AI ·H · dT

dt
= (4.72)

= GI · ρ · CP (T̄f − T ) + ρ · CP · QH · AC

∫ H

0

(TB − T )dh + AI ·H · ρb

2∑
j=1

rj(−∆Hj),

where Φ̂i = ε + KiC̄mρb is the specific mass capacity of component i per unit volume of
the dense phase, Φ̂H = ρSCPS is the specific heat capacity per unit volume of the dense
phase, and r1 denotes the rate of reaction for A → B and r2 that for B → C.
Assuming that the bubble phase is in a pseudosteady state, the bubble phase equations
are

GC
dCiB

dn
= −QEi ·AC(CiB − Ci) (4.73)

and
GC

dTB

dn
= −QH · AC(TB − T ) (4.74)

with QH = hB · a/ρ · CP for the heat transfer coefficient hB between the bubble phase
and the dense phase (per unit volume of the bubble phase) measured in J/(sec · cm3 ·K),
and for the area a of heat transfer between the bubble phase and the dense phase per
unit volume of the bubble phase in 1/cm. The two DEs (4.73) and (4.74) form an IVP
with the initial conditions CiB = Cif and TB = T̄f at h = 0.
Solving the linear differential equations (4.73) and (4.74) analytically as before, then eval-
uating the integrals in equations (4.71) and (4.72), and putting them into dimensionless
form gives us the following three joint differential equations:

1
LeA

dxA

dτ
= B̄(xAf − xA) − α1 · e−γ1/y · xA , (4.75)

1
LeB

dxB

dτ
= B̄(xBf − xB) + α1 · e−γ1/y · xA − α2 · e−γ2/y · xB , (4.76)

dy

dτ
= B̄(ȳf − y) + α1β1 · e−γ1/y · xA + α2β2 · e−γ2/y · xB , (4.77)

where τ is the dimensionless time τ = t · ρ · CP /(AI · H · ρS · CPS) and LeA and LeB

are the Lewis numbers

LeA =
ρS ·CPS

(ε + KA · C̄m · ρb)ρ ·CP
and LeB =

ρS · CPS

(ε + KB · C̄m · ρb)ρ ·CP
.

Moreover, B̄ = GI + GC(1 − e−α′H) for α′ = QEi · AC/GC and QEi = QEA = QEB =
QH , and GC = GB [1.0 + ε/(αf − 1.0)] , GB = A(U − Umf ), GI = A · U − GC ,
AC = ε · GB/ [(αf − 1.0)Umf ] , and AI = A − AC .
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For this case we use the following parameter values:

A = 0.3 m2, U = 0.1 m/sec, Umf = 0.00875 m/sec , αf = 19.5, ε = 0.4,

QEi = QEA = QEB = QH = 0.4 sec−1, H = 1.0 m .

And for the dimensionless group we take

α1 = 108 sec−1, α2 = 1011 sec−1, β1 = 0.4, β2 = 0.6,

γ1 = 18.0, γ2 = 27.0, LeA = 1.0, LeB = 0.454545,

xAf = 1.0, xBf = 0.0, xCf = 0.0,

with the dimensionless preliminary feed temperature yf = 0.47396 and the preliminary
setpoint ym = 0.86446.
[In the next section we shall learn why and how the feed temperature and setpoint values
were found for optimal performance of the system under feedback control.]

The central PID controlled ȳf is given as

ȳf = yf + K(ym − y) + KI

∫ t

0

(ym − y)dτ + KD
dy

dτ
.

Here the acronym PID refers to proportional, integral, and derivative.
We will concentrate on proportional control, i.e., use ȳf of the form ȳf = yf +K(ym−y)
with K ≥ 0.

The steady-state equations corresponding to (4.75), (4.76), and (4.77) are

B̄(xAf − xA) = α1 · e−γ1/y · xA , (4.78)

B̄(xBf − xB) = − α1 · e−γ1/y · xA + α2 · e−γ2/y · xB , (4.79)

and
B̄(ȳf − y) + α1β1 · e−γ1/y · xA + α2β2 · e−γ2/y · xB = 0 , (4.80)

where ȳf = yf +K(ym −y) for K ≥ 0. Here the parameters α1, α2, β1, β2, γ1, γ2, xAf ,
xBf , yf , and ym are all given above, and the proportional gain K of the controller will
be used as the bifurcation parameter.
How do we calculate the only other remaining parameter B̄?
Note that

B̄ = GI + GC(1 − e−α′·H) ,

where each parameter on the right-hand side depends on our supplied data and is given
by the formulas following equation (4.77). In particular, the number B̄ is readily com-
puted for our data as B̄ = 0.019372 m3/sec .

The steady-state equations (4.78), (4.79), and (4.80) can be further reduced to one
equation in y and to two additional simple relations. These relations (4.81) for xA in
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terms of y and (4.82) for xB in terms of y help us calculate xA and xB as soon as y is
determined from the single equation (4.84) in y and K.

From (4.78) we have

B̄xAf = xA

(
B̄ + α1e

−γ1/y
)

or xA =
B̄xAf

B̄ + α1e−γ1/y
. (4.81)

Substituting xA from (4.81) into (4.79) with xBf set to zero gives us

B̄xB = α1e
−γ1/y · B̄xAf

B̄ + α1e−γ1/y
− α2e

−γ2/yxB ,

and by rearrangement we get

xB

(
B̄ + α2e

−γ2/y
)

=
α1e

−γ1/yB̄xAf

B̄ + α1e−γ1/y
.

Thus

xB =
α1e

−γ1/yB̄xAf(
B̄ + α1e−γ1/y

) · (B̄ + α2e−γ2/y
) . (4.82)

Substituting the expressions for xA and xB from equations (4.81) and (4.82) into (4.80)
gives us the following equation for the heat removal on the left and for the heat generation
on the right-hand side:

B̄(y−ȳf ) =
α1β1e

−γ1/yB̄xAf

B̄ + α1e−γ1/y
+

α1α2β2e
−γ1/ye−γ2/yB̄xAf(

B̄ + α1e−γ1/y
) · (B̄ + α2e−γ2/y

) (= G̃(y) ) . (4.83)

Using our controller of the form ȳf = yf + K(ym − y) for K ≥ 0, the left-hand-side heat
removal function in (4.83) becomes

B̄(y − (yf + K(ym − y)) = B̄((1 + K)y − (yf + Kym)) = G̃(y) , (4.84)

the heat generation function G̃(y) on the right-hand side of (4.83).
We can normalize equation (4.84) by dividing by its common factor B̄ to obtain the
simpler form

(1 + K)y − (yf + Kym) = G̃(y)/B̄ = G(y) . (4.85)

4.3.6 Numerical Treatment of the Steady-State and Dynamical
Cases of the Bubbling Fluidized Bed Catalytic Reactor
with Consecutive Reactions

First we look for the solutions of equation (4.84). To do so we divide equation (4.84) by
its common factor B̄ and bring it into standard form F (y, K) = 0 as follows:

F (y, K) = (1+K)y−(yf+Kym)−α1β1e
−γ1/yxAf

B̄ + α1e−γ1/y
− α1α2β2e

−γ1/ye−γ2/yxAf(
B̄ + α1e−γ1/y

) · (B̄ + α2e−γ2/y
) = 0 .

(4.86)
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To solve equation (4.86) for y and K ≥ 0 we use the graphical level set method that we
have introduced in Chapter 3 for the adiabatic and nonadiabatic CSTRs and draw the
surface z = F (y, K), as well as the y versus K curve of solutions to equation (4.86) in
order to exhibit and study the bifurcation behavior of the underlying system.

First we list the code of our graphing controlhetss.m function for F (y, K), which
plots the surface z = F (y, K)v and the set of solutions of (4.86) in the white zero con-
tour curve F (y, K) = 0 on the surface, as well as as another copy of contour on the
ground plane below the surface in Figure 4.26. This program is written similarly as
adiabNisosurf.m in Chapter 3.

function controlhetss(ystart,yend,Kstart,Kend,a1,a2,b1,b2,ga1,ga2,xaf,N,yf,ym)

% controlhetss(ystart,yend,Kstart,Kend,a1,a2,b1,b2,ga1,ga2,xaf,N,yf,ym)

% Sample call:

% (full parameter call with yf and ym values chosen near the automatically

% computed ones) :

% controlhetss(.3,1.5,0,6,10^8,10^11.5,0.4,0.6,18,27,1.0,100,0.488,0.84)

% (reduced (i.e., normal) short parameter list call) :

% controlhetss(0.3,1.5,0,6,10^8,10^11.5,0.4,0.6,18,27,1.0);

% [Both plots almost agree.]

% Plots the heterogeneous control equation surface and the zero contour curve

% Input : limiting values for y and K,

% seven system parameters a1, a2, b1, b2, ga1, ga2, xaf,

% as well as the (optional) size N of the y and K partitions,

% and yf anf ym (again optional).

% If the three parameters N, yf, and ym are not set, contolhetss will

% use the default N = 200 and compute the parameters yf and ym in

% hetcontbifrange.m automatically.

% Output: 3D surface plot of the control equation surface with xero contours.

% [For best view, rotate figure until the level zero bifurcation

% curves are in good view.]

hold off, % extra constants to compute Bbar

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

if nargin == 11, % default setting

N = 200;

[yf,ym] = hetcontbifrange(yend,a1,a2,b1,b2,ga1,ga2,xaf,0,0,400); end,

if nargin == 12,

[yf,ym] = hetcontbifrange(yend,a1,a2,b1,b2,ga1,ga2,xaf,0,0,400); end,

% make grids for y and K :

[y,K] = meshgrid([ystart:(yend-ystart)/N:yend],...

[Kstart:(Kend-Kstart)/N:Kend]);

Bbar = Bfun(A,U,Umf,alf,eps,QE,H); % evaluate Bbar from extra constants

z = Ffun(y,K,a1,a2,b1,b2,ga1,ga2,xaf,yf,ym,Bbar); % z = het. control function

h = surf(K,y,z); hold on;

shading interp; colormap(hsv(128)); colorbar,% plot surface

a = get(gca,’zlim’); zpos = a(1); % Always put 0 contour below the plot

[cc,hh] = contour3(K,y,z,[0 0],’-k’); % draw zero contour data on surface
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[ccc,hhh] = contour3(K,y,z,[0 0],’-b’); % put 0 contour data at the bottom

for i = 1:length(hhh) % size zpos to match the data

zzz = get(hhh(i),’Zdata’);

set(hhh(i),’Zdata’,zpos*ones(size(zzz))); end

xlabel(’K’,’FontSize’,12), % annotate top 3D plot

ylabel(’y’,’Rotation’,0,’FontSize’,12),

zlabel(’controlhetss(Y,K,a1,a2,b1,b2,ga1,ga2,xaf,yf,ym,N)’,’FontSize’,12),

title([{’Heterogeneous Solid State Control Problem’},{’ ’},...

{[’ \alpha_1 = ’,num2str(a1,’%10.5g’),’, \alpha_2 = ’,...

num2str(a2,’%10.5g’),’; \beta_1 = ’,num2str(b1,’%10.5g’),...

’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, y_f = ’,num2str(yf,’%10.5g’),...

’, y_m = ’,num2str(ym,’%10.5g’),’, and Bbar = ’,...

num2str(Bbar,’%10.5g’)]}],’FontSize’,12), hold off

function f = Ffun(y,K,a1,a2,b1,b2,ga1,ga2,xaf,yf,ym,Bbar) % heterog. c. funct

f = (1+K).*y - (yf+K*ym) - (a1*b1*exp(-ga1./y)*xaf)./(Bbar+a1*exp(-ga1./y)) ...

- (a1*a2*b2*exp((-ga1-ga2)./y)*xaf)./...

((Bbar + a1*exp(-ga1./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

Note that this section and our programs herein deal only with the case that the feed
rates for B and C are zero, i.e., xBf = xCf = 0 as specified on p. 183.

Figure 4.26 shows the (rotated) surface and contour zero plot obtained by calling
controlhetss(0.3,1.5,0,6,10^8,10^11,0.4,0.6,18,27,1,200,.47396,.86446) for
the data that was specified on p. 183. The displayed MATLAB figure at first hides parts
of the bifurcation curves. Therefore, before printing or saving a 3D MATLAB figure, it is
best to use the rotation button of the toolbar in MATLAB’s Figure window, by clicking
on it and then dragging the mouse over the figure until a good view is obtained.
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Bifurcation curve for y values in terms of the feedback controller gain K
Figure 4.26

Figure 4.26 indicates that there are three steady states for the system with associated
values of y ≈ 0.4..., 0.8..., and 1.4... when no feedback (K = 0) is applied. In the y-K
ground plane of Figure 4.26 the reader will notice a “horizontal” line at y = ym = 0.86446
for all values of K. The contour curve in Figure 4.26 reminds us of Figure 3.21 in Sec-
tion 3.2 and the pitchfork bifurcation for a nonadiabatic, nonisothermal CSTR with one
stable steady state at the set point. As in Figure 3.21 for the CSTR, here we observe
a fixed steady state of our system for all values of K. This steady state lies at the set
point y = ym = 0.86446 of the system. The reason for this and its meaning will become
apparent when we study equation (4.88) on p. 192 in Figure 4.29.
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Since we are interested in generating the maximal amount of the intermediate component
B in the consecutive reaction A → B → C, we look at the concentration of B defined by
xB(y) in equation (4.82). This we do using the MATLAB function xBversusy.m.

function xBym = xBversusy(ystart,yend,a1,a2,ga1,ga2,xaf,N,pic,ym)

% xBversusy(ystart,yend,a1,a2,ga1,ga2,xaf,N,pic,ym)

% sample call : xBversusy(0.6,1.2,10^8,10^11,18,27,1,400)

% Input : y interval, system parameters, size of partition N;

% pic = 1 for plot

% Output: plot of xB(y), marks max of xB on the plot

if nargin == 8, pic = 1; ym = pi; xBym = pi; end

if nargin == 9, ym = pi; xbym = pi; end

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Y = [ystart:(yend-ystart)/N:yend]; % preparations and evaluations

E1 = exp(-ga1./Y); E2 = exp(-ga2./Y);

Bbar = Bfun(A,U,Umf,alf,eps,QE,H);

XB = (a1*E1*Bbar*xaf)./((Bbar+a1*E1).*(Bbar+a2*E2));

if nargin == 10, E1 = exp(-ga1/ym); E2 = exp(-ga2/ym); % find xB(ym)

xBym = (a1*E1*Bbar*xaf)/((Bbar+a1*E1)*(Bbar+a2*E2)); end

if pic == 1, plot(Y,XB); hold on, % plot if desired

i = find(XB == max(XB)); i = min(i); yf = Y(i); % find maximum

plot(yf,XB(i),’+r’), v = axis; plot(yf,v(3),’+k’), plot(v(1),XB(i),’+k’)

xlabel([{’ ’},{[’y (with maximum ’,num2str(XB(i),’%10.5g’),...

’ of x_B(y) at y = ’,num2str(yf,’%10.5g’),’ )’]}],’Fontsize’,14)

ylabel(’x_B ’,’Rotation’,0,’Fontsize’,14)

title([{’Plot of x_B(y) for’ },{[’\alpha_1 = ’,num2str(a1,’%10.5g’),...

’, \alpha_2 = ’,num2str(a2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, and Bbar = ’,...

num2str(Bbar,’%10.5g’)]}],’FontSize’,14), hold off, end

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

The call of xBversusy(0.001,1.6,10^8,10^11,18,27,1,400) produces the graph of
xB in Figure 4.27 for the very same parameter data from p. 183 that was used before to
obtain Figure 4.26.
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Figure 4.27

Figure 4.27 describes the concentration xB of B in terms of y according to formula
(4.82) on p. 184. This concentration is very low (almost zero) at the two stable steady
states associated with y ≈ 0.4... and 1.4.... But it has a very desirable value of 72% when
y = 0.86.... Thus we should try to operate the system at this middle steady state with the
dimensionless temperature y at around 0.86.... Unfortunately, this middle steady state
is a saddle-type steady state and therefore it is unstable. The system will always try to
move to one of the stable steady states with, unfortunately, a negligibly low rendition of
B, when no or low feedback K ≤ 3.8 is applied. But as Figure 4.26 indicates, if we apply
a sufficient amount of feedback K > 4 in this example, then the resulting system has a
unique steady-state solution with y ≈ 0.86... and the system yields a high concentration
of B. Moreover, once the steady state is made unique by feedback K > 4, this steady
state is necessarily globally stable and the system will move toward it for all (reasonable)
starting values of xA, xB, and y. We shall depict the dynamic behavior of the associated
IVP consisting of the differential equations (4.75), (4.76), and (4.77) later on, in Figures
4.34 to 4.37.
But first we investigate how to find the “magic” values of the feed temperature yf and
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the setpoint ym on p. 183 systematically. This is again best achieved graphically.
Equation (4.86), F (y, K) = 0, can be rewritten as

g(y, K) = (1 + K)y − (yf + Kym) = (4.87)

=
α1β1e

−γ1/yxAf

B̄ + α1e−γ1/y
+

α1α2β2e
−γ1/ye−γ2/yxAf(

B̄ + α1e−γ1/y
) · (B̄ + α2e−γ2/y

) = f(y, K) .

The left-hand-side function g(y, K) in (4.87) represents a line in the y-g plane with slope
1+K and g intercept −yf −K · ym. To find values of yf and ym with associated multiple
(or a unique) steady states of the system, we need to find instances of multiple (or unique)
crossing points of this line and the exponential function f(y, K) on the right-hand side of
equation (4.87). For this purpose we use the MATLAB m function hetcontbifrange.m.

function [yf, ym] = ...

hetcontbifrange(yend,a1,a2,b1,b2,ga1,ga2,xaf,K,pict,N)

% hetcontbifrange(yend,a1,a2,b1,b2,ga1,ga2,xaf,K,pict,N)

% sample call:

% b = hetcontbifrange(1.3,10^8,10^11,0.4,0.6,18,27,1.0,.1,1,400); or

% [yf, ym] = hetcontbifrange(1.3,10^8,10^11,0.4,0.6,18,27,1.0,0,0);

% Input : end of range of y values ( yend >= yf + b1 + b2);

% system parameters a1, a2, b1, b2, ga1, ga2, xaf,

% feedback factor K; partition size N for the y interval

% pict = 1 will generate plots;

% any other value for pict will only compute ym and yf

% Output: Graph of the line and exponential functions in (4.84);

% yf = feed temperature for max rendition of B

% ym = set point for A to B reaction

if nargin == 9, pict = 0; N = 400; end % default with no plot

if nargin == 10, N = 400; end, ystart = 0.001; % additional parameters :

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Bbar = Bfun(A,U,Umf,alf,eps,QE,H); % evaluate Bbar from extra constants

Y = [ystart:(yend-ystart)/N:yend]; % create y partition

E1 = exp(-ga1./Y); E2 = exp(-ga2./Y); % evaluate exponential functions

XB = (a1*E1*Bbar*xaf)./((Bbar+a1*E1).*(Bbar+a2*E2)); % evaluate xB(y) curve

m = min(find(XB == max(XB))); ym = Y(m); % find ym from xB curve

Gym = ffun(ym,a1,a2,b1,b2,ga1,ga2,xaf,Bbar); % find yf from f(ym,K) curve

yf = ym - Gym; G = yline(Y,K,yf,ym); % and get line data

F = ffun(Y,a1,a2,b1,b2,ga1,ga2,xaf,Bbar); % get f(Y,K) data

if pict == 1, % plot only if desired

subplot(2,1,1) % plot line and exp curve on top graph

plot(Y,F), hold on, plot(Y,G,’r’), plot(ym,yline(ym,K,yf,ym),’or’);

axis([ystart,yend,-.1*min(max(F),max(G)),1.1*min(max(F),max(G))]), v = axis;

plot(ym,v(3),’ok’) % mark steady state at ym

xlabel(’y’,’FontSize’,12), % label and title with data

ylabel(’f(y,K) in blue, g(y,K) in red’,’FontSize’,12)
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title([{’Graphic zeros of equations (4.84), (4.85) for :’},{’ ’},...

{[’\alpha_1 = ’,num2str(a1,’%10.5g’),’, \alpha_2 = ’,...

num2str(a2,’%10.5g’),’; \beta_1 = ’,num2str(b1,’%10.5g’),...

’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, K = ’,num2str(K,’%10.5g’),...

’, Bbar = ’,num2str(Bbar,’%10.5g’)]}],’FontSize’,12), hold off % top plot

subplot(2,1,2) % plot xB(y) curve

plot(Y,XB,’b’); w = axis; axis([v(1),v(2),w(3),w(4)]); hold on

plot(ym,XB(m),’+r’), plot(ym,w(3),’+k’) % mark maximum

xlabel([{’ ’},{[’y ( maximum ’,num2str(XB(m),’%10.5g’),...

’ of x_B(y) at y_m = y_{opt} = ’,num2str(ym,’%10.5g’),’ )’]}],...

’FontSize’,12),

title([’Computed values : y_m = ’,num2str(ym,’%10.5g’),...

’ , y_f = ’,num2str(yf,’%10.5g’)],’FontSize’,12),

ylabel(’x_B ’,’Rotation’,0,’FontSize’,12), hold off, % bottom plot

end

function g = yline(y,K,yf,ym) % evaluate line graph

g = (1+K)*y - (yf+K*ym);

function f = ffun(y,a1,a2,b1,b2,ga1,ga2,xaf,Bbar) % evaluate exp graph

f = (a1*b1*exp(-ga1./y)*xaf)./(Bbar+a1*exp(-ga1./y)) + ...

(a1*a2*b2*exp((-ga1-ga2)./y)*xaf)./...

((Bbar + a1*exp(-ga1./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

Note that the code line m = min(find(XB == max(XB))); ym = Y(m); in the beginning
of the above code is rather crude in determining the maximum of xB . This is so since
the maximum value of xB and the position ym in our code clearly depend on the chosen
y partition, namely on its endpoints ystart and yend, as well as on the step size, i.e., the
chosen N . But this approach suffices to obtain 2 or 3 valid digits for yf and ym, which
is good enough for all practical purposes here.
We mention our lax maximum search so that users will not be worried about slightly
varying yf and ym outputs of controlhetss.m, hetcontbifrange.m, and xBversusy.m
when the inputs ystart, yend, or N are varied while the system parameters are kept fixed.
Compare with Exercise 1 at the end of this section.

A call of [yf,ym] = hetcontbifrange(1.6,10^8,10^11,0.4,.6,18,27,1.0,0,1,400)
gives us the image (in Figure 4.28) of the line and exponential curve on the two sides of
equation (4.87) for K = 0 and 0 < y ≤ 1.6. The plot indicates three steady states for
K = 0 at y ≈ 0.4..., 0.86... , and 1.4..., i.e., at the intersection points of the line and the
curve in the top plot. The bottom plot repeats the plot of xB(y) of Figure 4.27.
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The graph of xB versus y in Figure 4.28 is based on the relation (4.82). Note that the
steady states with y ≈ 0.4... and 1.4... correspond to rather low values of xB, while
the middle steady state at y ≈ 0.8... gives us the maximal rendition of around 72% of
component B when K = 0.

What happens if we change K? In equation (4.87) we were given the equation

g(y, K) = (1 + K)y − (yf + Kym) (4.88)

of the line depicted in the top graph of Figure 4.28. Let us evaluate g at ym for any K:

g(ym , K) = (1 + K)ym − (yf + Kym) = ym − yf = g(ym, 0) .

Thus for any feedback K ≥ 0, the line (4.88) passes through the point

(ym, g(ym, K)) = (ym, ym − yf ) ,
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which we have marked by a circle in the topmost plot of Figure 4.28. If we increase K,
the line (4.88) increases its slope 1 + K while still passing through the point associated
with the middle (unstable) steady state for K = 0. Therefore for large enough K, when
the line becomes steep enough, there is only one intersection with the exponential curve
f(y, K) of equation (4.87) in Figure 4.28. Therefore for K sufficiently large, the feedback
system has a unique steady state. Due to uniqueness, this steady state is stable, and
moreover, at this steady state the system yields the optimal amount of component B.
Thus the location ym of the maximal concentration xB of B on the graph of xB(y) gives
the optimal output level ym = yopt for B that can be achieved globally. This optimal
output level can be maintained stably only via an appropriate feedback control, since
the associated steady state of the uncontrolled system is unstable. Recall the “horizontal
line” at ym = yopt on the ground plane of Figure 4.26.
We illustrate the behavior of the line g(y, K) on the left-hand side of (4.87) and the
right-hand-side exponential function f(y, K) of equation (4.87) in Figure 4.29, which
includes five versions of the topmost graph in Figure 4.28 for varying feedback values
K = 0, 2, 4, 6, and 10 in varying colors.
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Figure 4.29

Notice that when K clearly exceeds 4, a visual inspection of Figure 4.29 shows that the
line intersects the exponential black curve from the right-hand side of (4.87) only once,
signifying a unique and statically stable steady state of the controlled system.
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Figure 4.29 was obtained via the MATLAB code hetcontbifmultiK.m which we have
derived from hetcontbifrange.m. It features an auxiliary plot of the exponential curve
to find the proper axes limits for the plot first. Note also the elaborate sequence of “leg-
end” commands that we use.

function hetcontbifmultiK(yend,a1,a2,b1,b2,ga1,ga2,xaf,K,N)

% hetcontbifmultiK(yend,a1,a2,b1,b2,ga1,ga2,xaf,K,N)

% sample call:

% hetcontbifmultiK(1.6,10^8,10^11,0.4,0.6,18,27,1,[0,2,4,6,10],400)

% Input : end of range of y values ( yend >= yf + b1 + b2; ystart = 0.001);

% system parameters a1, a2, b1, b2, ga1, ga2, xaf,

% feedback factor K (a vector of length M <= 6 only);

% partition size N for the y interval

% Output: Graph of multiple lines and exponential function in (4.84);

if nargin == 9, N = 400; end, ystart = 0.001; % defaults

M = length(K); if M > 6, ’too many K values’, return, end,

% additional parameters :

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Bbar = Bfun(A,U,Umf,alf,eps,QE,H); % evaluate Bbar from extra constants

Y = [ystart:(yend-ystart)/N:yend]; % create y partition

E1 = exp(-ga1./Y); E2 = exp(-ga2./Y); % evaluate exponential functions

XB = (a1*E1*Bbar*xaf)./((Bbar+a1*E1).*(Bbar+a2*E2)); % evaluate xB(y) curve

m = min(find(XB == max(XB))); ym = Y(m); % find ym from xB curve

Gym = ffun(ym,a1,a2,b1,b2,ga1,ga2,xaf,Bbar); % find yf from f(ym,K) curve

yf = ym - Gym; G = yline(Y,K(1),yf,ym); % and get line data

F = ffun(Y,a1,a2,b1,b2,ga1,ga2,xaf,Bbar); % get f(Y,K) data

figure(1), plot(Y,F,’k’), % first trial plot for axis info only

axis([ystart,yend,-.1*min(max(F),max(G)),1.1*min(max(F),max(G))]), v = axis;

for i = 1:M % other K value line plots

k = K(i); G(i,:) = yline(Y,k,yf,ym); end % get line data for each K(i)

figure(2), plot(Y,G), axis(v), hold on % plot line for all k = K(i)

xlabel([’y ( Here y_f = ’,num2str(yf,’%10.5g’),’, y_m = ’,...

num2str(ym,’%10.5g’),’ )’],’FontSize’,12),

ylabel(’f(y,K) in black, g(y,K) in multicolor’,’FontSize’,12)

title([{’Graphic zeros of equations (4.84), (4.85) for :’},{’ ’},...

{[’\alpha_1 = ’,num2str(a1,’%10.5g’),’, \alpha_2 = ’,...

num2str(a2,’%10.5g’),’; \beta_1 = ’,num2str(b1,’%10.5g’),...

’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, K = ’,num2str(K,’%3.2g’),...

’, Bbar = ’,num2str(Bbar,’%10.5g’)]}],’FontSize’,12),

if M == 1 % include color coded legend

legend([’K = ’,num2str(K,’%7.4g’)],0), end

if M == 2

legend({[’K = ’,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),’%7.4g’)]},-1), end
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if M == 3

legend({[’K = ’,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),’%7.4g’)],[’K = ’,num2str(K(3),’%7.4g’)]},-1), end

if M == 4

legend({[’K = ’,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),’%7.4g’)],[’K = ’,num2str(K(3),’%7.4g’)],...

[’K = ’,num2str(K(4),’%7.4g’)]},-1), end

if M == 5

legend({[’K = ’,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),’%7.4g’)],[’K = ’,num2str(K(3),’%7.4g’)],...

[’K = ’,num2str(K(4),’%7.4g’)],[’K = ’,...

num2str(K(5),’%7.4g’)]},-1), end

if M == 6

legend({[’K = ’,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),’%7.4g’)],[’K = ’,num2str(K(3),’%7.4g’)],...

[’K = ’,num2str(K(4),’%7.4g’)],[’K = ’,...

num2str(K(5),’%7.4g’)],[’K = ’,num2str(K(6),’%7.4g’)]},-1), end

plot(Y,F,’k’), % plot exponential curve

plot(ym,v(3),’ok’); plot(ym,yline(ym,K,yf,ym),’or’); % mark pivot for lines

hold off, close(1)

function g = yline(y,K,yf,ym) % evaluate line graph

g = (1+K)*y - (yf+K*ym);

function f = ffun(y,a1,a2,b1,b2,ga1,ga2,xaf,Bbar) % evaluate exp graph

f = (a1*b1*exp(-ga1./y)*xaf)./(Bbar+a1*exp(-ga1./y)) + ...

(a1*a2*b2*exp((-ga1-ga2)./y)*xaf)./...

((Bbar + a1*exp(-ga1./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

Let us repeat the same problem as before, but for the following altered α and γ
parameters, namely for

α1 = 1010, α2 = 107.5, γ1 = 8, and γ2 = 12 .

All other parameters are left unchanged from p. 183. For this we use a simplified call of our
surface and zero-contour plotting function controlhetss, which omits specifying the last
three inputs N, yf , and ym. Instead, the shortened call sequence uses the default setting
of N = 200 points for the partition of the y and K intervals, and controlhetss computes
the optimal values for yf and ym by calling hetcontibifrange internally. The call of
controlhetss(0.01,1.1,0,2,10^10,10^7.5,0.4,0.6,8,12,1) renders a surface and
level curve plot with fivefold bifurcation for all small controller gains 0 ≤ K ≤ 1.7, one
of which occurs at the set point y = ym = 0.41038. In Figure 4.30, we again display a
manually rotated 3D picture that give a better view of the bifurcation curves, refer to
the earlier comments on using the MATLAB rotate button on p. 186.
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A fivefold bifurcation curve for y values in terms of the controller gain K
Figure 4.30

The line and exponential curve graphs resulting from a call of hetcontbifrange(1.1,
10^10,10^7.5,0.4,.6,8,12,1,0,1,400) look as follows for the modified data of p. 195.
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Figure 4.31

Here the central steady state at y ≈ 0.4... and the two extremal steady states with
y ≈ 0.0... and 1.0... are stable, while the two remaining steady states at y ≈ 0.3... and
0.5... are of saddle type and therefore unstable. Of these, the central one gives the optimal
concentration for component B. The unstable ones that are adjacent to the middle one
give moderate concentrations for B, while the extremal steady states with y ≈ 0.0...
and 1.0... produce hardly any amount of B according to the bottom plot of xB(y) in
Figure 4.31. We shall return to this example in Figure 4.38 with further comments on
the robustness of the optimal central steady state and on the beneficial role of feedback
in chemical/biological systems.

If we also draw out the curve of xA(y) as given in equation (4.81), we can find
approximations of the coordinates xA, xB, and y for each steady state. Figure 4.32 gives
the plot of xA(y) for our original data on p. 183.
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Figure 4.32 was drawn by calling xAversusy(0.001,1.6,10^8,18,1,400) using the fol-
lowing code:

function xAym = xAversusy(ystart,yend,a1,ga1,xaf,N,ym,pic)

% xAversusy(ystart,yend,a1,ga1,xaf,N,pic)

% sample call : xAversusy(0.001,1.6,10^8,18,1,400,0.86446,1)

% Input : y interval, system parameters, size N of the partition,

% optimal ym (optional) [must be computed externally]

% pic = 1 : draw plot; otherwise compute xAym only

% Output: plot of xA(y)

% xAym = value of xA(ym) if ym has been specified,

% else yAm = pi = 3.14...

if nargin == 6, ym = pi; pic = 1; end % dummy input if ym is not specified

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Y = linspace(ystart,yend,N); E1 = exp(-ga1./Y); % set up and evaluate

Bbar = Bfun(A,U,Umf,alf,eps,QE,H);

XA = (Bbar*xaf)./(Bbar+a1*E1);

if pic == 1, plot(Y,XA); hold on, end % plot if desired

xAym = (Bbar*xaf)/(Bbar+a1*exp(-ga1/ym)); % in case ym is known, find xA(ym)

if nargin == 6, xAym = pi; end % dummy output

if pic == 1,

if xAym == pi, xlabel([{’y ’}],’Fontsize’,14),

else xlabel([’y (y_m = ’,num2str(ym,’%10.5g’),’)’],’Fontsize’,14), end
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ylabel(’x_A ’,’Rotation’,0,’Fontsize’,14)

title([{’Plot of x_A(y) for’ },{[’\alpha_1 = ’,num2str(a1,’%10.5g’),...

’; \gamma_1 = ’,num2str(ga1,’%10.5g’),’; x_{Af} = ’,...

num2str(xaf,’%10.5g’),’, and Bbar = ’,num2str(Bbar,’%10.5g’)]}],...

’FontSize’,14), hold off, end

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

The call of xAversusy(0.1,0.5,10^10,8,1,400,0.41038,1) for the modified data on
p. 195 and with the optimal value of ym = 0.41038 taken from the fivefold bifurcation of
Figure 4.31 gives us the plot of xA versus y shown in Figure 4.33.
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Figure 4.33

Now we return to the earlier case with three steady states for the parameter data
from p. 183. Looking at Figures 4.28 and 4.32 jointly allows us to approximate the three
steady-state coordinates (xA, xB, y) of this specific system in the following table, or-
dered by increasing values of the third coordinate y:

xA 1 0.17619... 0
xB 0 0.72225... 0
y 0.47... 0.86446... 1.47...

Knowing how to obtain this data from the graphs will help us in understanding the
dynamical behavior of the system given by the differential equations (4.75), (4.76), (4.77).
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After the steady-state analysis, we now use the differential equations for the system
(4.75), (4.76), (4.77) to draw 3D and 2D phase plots of the underlying dynamical system
behavior for the original parameters given on p. 183.
Our IVP solving and solution-plotting MATLAB code is as follows:

function fluidbed(tend,xao,xbo,yo,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,K)

% fluidbed(tend,xao,xbo,yo,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,K)

% sample call:

% fluidbed(10,1,1,0.1,1,45/99,10^8,10^11,.4,.6,18,27,1,0,0)

% Input: tend = end of time interval for the integration

% xao, yao, yo = initial values for xA, xB, y

% LeA, LeB, a1, a2, b1, b2, ga1, ga2, xaf, xbf system parameters

% K = feedback gain (K >= 0)

% Output: 3D plot of solution to the DEs in (4.74), (4.75), and (4.76)

% other system parameters :

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Bbar = Bfun(A,U,Umf,alf,eps,QE,H); % evaluate Bbar from extra constants

Tspan = [0 tend]; y0 = [xao;xbo;yo]; % use stringent error bounds :

options = odeset(’RelTol’,10^-6,’AbsTol’,10^-8,’Vectorized’,’on’);

[yf,ym] = hetcontbifrange(1.6,a1,a2,b1,b2,ga1,ga2,xaf,0,0,400); % find ym

xAym = xAversusy(yo,yo,a1,ga1,xaf,1,ym,0); % xA(ym)

xBym = xBversusy(yo,yo,a1,a2,ga1,ga2,xaf,1,0,ym); % xB(ym)

[V,y] = ode15s(@frhs,Tspan,y0,options,... % using stiff DE integrator ode15s

LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,yf,ym,K,Bbar);

plot3(y(:,1),y(:,2),y(:,3),’b’), hold on, grid on,

% SPECIAL settings for AXES: ADJUST !!

%axis([-.05,.6,-.05,1,.4,2.5]); v = axis; % For Figures 4.34 - 4.37

%axis([-.04,0.2,-.05,1.05,0.5,3]), v = axis; % for oscillations Fig 4.46

%axis([.08,0.2,0,1,0.5,1]), v = axis; % for periodic convergence

%axis([-.05,1,-.05,1,0,2]); v = axis; % For Fig 4.41

%axis([-.05,1,-.05,1,0,3]); v = axis; % For Fig 4.42

%axis([-.05,0.2,-.05,1.2,0.5,2.5]); v = axis; % For Fig 4.47, 4.48

%axis([-.05,0.2,-.05,1.2,0.5,2.5]); v = axis; % For Fig 4.48

%axis([-.05,1,-.05,1,0,1.2]); v = axis; % For high Lewis numbers

plot3(y(1,1),y(1,2),y(1,3),’or’), % start mark

plot3(y(end,1),y(end,2),y(end,3),’xr’) % end mark of solution

plot3(xAym,xBym,ym,’*k’) % attractor mark

xlabel(’x_A’,’Fontsize’,12), ylabel(’x_B’,’Fontsize’,12),

zlabel(’y’,’Rotation’,0,’Fontsize’,12)

title([{[’Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with ’,...

’T_{end} = ’,num2str(tend,’%10.5g’),’, \alpha_1 = ’,num2str(a1,’%10.5g’),...

’, \alpha_2 = ’,num2str(a2,’%10.5g’),’;’]},{’ ’},{[’ \beta_1 = ’,...

num2str(b1,’%10.5g’),’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, K = ’,num2str(K,’%10.5g’),...

’; Le_A = ’,num2str(LeA,’%10.5g’),’, Le_B = ’,num2str(LeB,’%10.5g’),...
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’ for optimal y_f and y_m’]}],’Fontsize’,12)

function dydt = frhs(V,y,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,yf,ym,K,Bbar)

F1 = a1*exp(-ga1./y(3,:)).*y(1,:); F2 = a2*exp(-ga2./y(3,:)).*y(2,:);

dydt = [LeA*(Bbar*(xaf-y(1,:))-F1);

LeB*(Bbar*(xbf-y(2,:))+F1-F2);

Bbar*(yf+K*(ym-y(3,:))-y(3,:)) + b1*F1 + b2*F2];

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

This code is typically called by a MATLAB command such as fluidbed(4000,.4,.9,1,1,
45/99,10^8,10^11,.4,.6,18,27,1,0,10), which uses a large time limit of 4000 dimen-
sionless time units so that the individual solution curves of the IVPs have time to run
to the global steady state at (0.17619, 0.72225, 0.86446). We do this with the original
parameter data of p. 183, a controller gain of K = 10, and several different initial values.
Since the value of K is greater than 4, the middle steady state with maximal xB yield is
both unique and (statically) stable.
Note further that inside fluidbed.m we use the stiff integrator ode15s instead of one of
our previous favorites ode23 or ode45, since the latter two integrators take an inordinate
amount of time to solve our IVPs.

Remark on Experimental IVP Stiffness and IVP Solver Validation:

MATLAB allows the user to choose the IVP integrator, such as ode23 or ode45 etc,
and to select a stiff or nonstiff integrator, each as warranted by the specific problem.
Moreover, each of the MATLAB’s ODE solvers ode... allows us to specify certain
“options”, as done in fluidbed.m in the fourth MATLAB command line
options = odeset(’RelTol’,10^-6,’AbsTol’,10^-8,’Vectorized’,’on’);

for example.
How do we choose a MATLAB IVP solver, and how do we decide whether to use a
stiff integrator such as ode15s or a standard nonstiff one?

Recall that the stiff solver ode15s was the default integrator in fixedbedreact.m
of section 4.1.5, while ode23 was sufficient for section 4.2.6. If we compare the
shape of the solutions to the DEs in section 4.1.5 and Figures 4.3 to 4.11 with
those of section 4.2.6 and Figures 4.16 and 4.17, we notice a generally sharp change
of directions in the solution curve, or a step function look in many of the plots
of section 4.1.5, while the solution curves of section 4.2.6 are all smoother and
more gentle in their variations. This in essence separates the stiff and the nonstiff
differential equations: stiff DEs are visually distinguished by very sharp variations
and they require stiff ODE solvers for finding accurate solutions quickly; nonstiff
DEs generally have smooth, flowing solutions and can be solved by nonstiff solvers
most efficiently. In MATLAB, the user can easily decide from the graph of an ODE
solution and from the time it takes to compute it, whether a given DE is stiff or
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not. Users should always experiment with a few IVP solvers of either type before
deciding on which one to use for a given class of problems.
Once the stiffness of an ODE has been decided upon by numerical experiment, the
final task involves finding a solution stably. This can be achieved by varying the
tolerances ’RelTol’ and ’AbsTol’ in the “options” line of code and observing the
solution closely: If the tolerances are chosen too large, the solution may not be
correct. This shows itself in variations of the solution graphs for varying specified
tolerances. When decreasing the tolerances for a stable ODE problem in steps of
powers of 10, the solution graphs will eventually become stationary or identical. At
that point the true solution has been found. In our specific MATLAB “options”
line mentioned earlier, the two tolerances are set to 10−6 and 10−8, respectively. It
would be a good exercise for our readers to loosen these tolerances to 10−2 or to
tighten them to 10−12 etc. in our codes fluidbed.m and fluidbedprofiles.m and to
observe all resulting plots for the rest of this subsection, as well as doing the same
experiment with neurocycle.m in subsection 4.4.6 to make sure that chaos really
occurs for the neurocycle model.

Specifically for the following examples, we run fluidbed.m for the eight corners of
the cube

C = [0.1, 0.4]× [0.5, 0.9]× [0.5, 0.9] ∈ R
3

as initial values (xA(0), xB(0), y(0)) in Figures 4.34 to 4.37. Note that the unique steady
state (0.17619, 0.72225, 0.86446) for the system of IVPs (4.75), (4.76), and (4.77) with
controller gain K = 10 lies inside our chosen cube C.
First we draw the 3D plot of the (xA(t), xB(t), y(t)) profiles, followed by the corre-
sponding xA-xB , xA-y, and xB-y 2D phase plots. Note in all our graphs in Figures 4.34
to 4.37 that the controlled system has only one steady state, marked by an asterisk in
the plots, to which all our plotted solution profiles converge.
Here the coordinates of the eight corners of the cube C serve as the initial values xA0, xB0,
and y0. These are marked by small circles in each instance. The eight trajectories proceed
from the corners of the cube C to the only steady state of the system, marked by a gray
∗. Their final positions at the end of the considered time interval are marked by eight x
symbols. After T = 600 time units the trajectories in our example have all converged to
the unique steady state of Figure 4.34.
A detailed reading of the fluidbed.m program reveals that a hold on MATLAB com-
mand is put onto the plot that is never released. This helps us draw multiple trajectories
onto one 3D plot such as in Figure 4.34. Note that Figure 4.34 depicts the actual MAT-
LAB output after a suitable rotation as explained before on p. 186. If the user wants
to have a fresh plotting start, a call of fluidbed(.... ...) (and many other plotting
routines) should be preceded by MATLAB’s hold off command to clear the current
figure window.
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Figure 4.34

We note in Figure 4.34 that, depending on the initial values, some of the IVP solutions
converge directly to the steady state of the system, such as for the four initial values with
xA(0) = 0.1, while the other four sets of initial conditions with xA(0) = 0.4 first go to
relatively high values of y with xA = xB = 0, before converging to the steady state once
y has dropped to less than 1.
Note further in Figures 4.34 - 4.37 that apparently there are exactly two trajectories in
(opposite) directions for solutions to follow when approaching the system’s steady state
∗ with the controller gain set to K = 10.
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Figure 4.35

We emphasize that in each of our phase plots, Figures 4.35 through 4.37, we look at the
cube C face on from one cardinal direction and use C’s eight corners as our starting
values. This is achieved simply by rotating the MATLAB plot of Figure 4.34 so that one
coordinate plane becomes parallel to the screen, giving us a 2D coordinate planar plot,
see p. 186 for details on rotating MATLAB figures via the mouse. In particular, each of
the four circles in a 2D phase plot depicts two different initial values.
[We note that it is mathematically impossible for two different trajectories to emerge
from one set of initial values of an IVP.]
Therefore, when looking at the xA-xB 2D phase plot of Figure 4.35 for example, we must
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be aware that the upper rightmost o mark depicts the two initial values

(xA(0), xB(0), y(0)) = (0.4, 0.9, 0.5) and (0.4, 0.9, 0.9)

for the differing initial y(0) values of 0.5 and 0.9. Looking back at the 3D plot in Figure
4.34, we observe that the trajectory starting from the initial value (0.4, 0.9, 0.5) with
y(0) = 0.5 reaches higher xB values first, making its trajectory in the xA-xB phase plot
of Figure 4.35 go up and to the left from the upper rightmost o mark, while the trajectory
that starts at (0.4, 0.9, 0.9) in Figure 4.35 with the higher initial temperature y(0) = 0.9
goes down and to the right first from the same o mark in the xA-xB phase plot.
Similar observations will help the reader interpret the phase plots that follow in Figures
4.36 and 4.37.
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Figure 4.36

Tracing the trajectories of this 2D phase plot as before, we see that the initial values of

(xA(0), xB(0), y(0)) = (0.4, 0.5, 0.9) and (0.4, 0.9, 0.9)

are depicted by the right and topmost circle o in Figure 4.36. Comparing with the 3D
trajectories emanating from these initial values in Figure 4.34, we can distinguish the
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two topmost branching curves of Figure 4.36: according to Figure 4.34, the initial value
(0.4, 0.9, 0.9) reaches the highest heat y > 2.4. Thus the topmost curve in Figure 4.36
starts at (0.4, 0.9, 0.9), and the trajectory from the initial value (0.4, 0.5, 0.9) that is
depicted by the same top right o mark in Figure 4.36 reaches a maximal heat of y ≈ 1.9,
as can be seen by tracing the lower branch trajectory emanating from (xA(0), xB(0)) =
(0.4, 0.9) until xA = xB = 0 in Figure 4.36.
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The last three phase plots were all created from the same 3D graphics MATLAB window
of Figure 4.34 by clicking on the “Rotate” MATLAB figure icon, then dragging the mouse
and thereby rotating the 3D image in the window until the base plane becomes one of
the three 2D phase planes.
Our readers should experiment with fluidbed.m and their own data.
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To complete the picture, here are the three profiles of xA(t), xB(t), and y(t) for
0 ≤ t ≤ 600 for the example depicted in Figures 4.34 to 4.37 for the three initial values

(xA(0), xB(0), y(0)) = (0.1, 0.5, 0.9), (0.1, 0.9, 0.5), and (0.4, 0.9, 0.9) .

We use feedback (K = 10). The plots are best drawn and viewed in color on a monitor by
calling fluidbedprofiles(600,[.1,.1,.4],[.5,.9,.9],[.9,.5,0.9],1,45/99,10^8,
10^11,.4,.6,18,27,1,0,10,1).
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Note that the subplots of Figure 4.38 use a logarithmic scale for the horizontal time
axis by invoking the MATLAB plot command semilogx in fluidbedprofiles.m. This
allows us to see the system development near the start very well while shortening the
long asymptotic time behavior scale optically. In a logarithmic MATLAB plot such
as ours, the “powers of ten” axis points 10−1, 100, 101, 102, etc. are written out and
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carry a large tick mark. Moreover, eight multiplicative intermediate values are marked
in a logarithmic, nonlinear order in between, such as in the sequence ..., 0.8, 0.9, 100 =
1, 2, 3, 4, 5, 6, 7, 8, 9, 101 = 10, 20, 30, ...., 80 , 90, 102 = 100, 200, 300, ... with small
tick marks on the t axes in Figure 4.38. This notation differs markedly from a linear plot
with nine linearly and equally spaced tick marks at 1, 1.1, 1.2, 1.3, 1.4, ..., 1.8, 1.9, 2,
for example between the written out numbers 1 and 2 on the axis.

If we do not use feedback, i.e., for K = 0, the output of the similar call
fluidbedprofiles(600,[.1,.1,.4],[.5,.9,.9],[.9,.5,0.9],1,45/99,10^8,10^11,
.4,.6,18,27,1,0,0,1) gives us Figure 4.39, printed in grayscale.
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In each subplot of Figures 4.38 and 4.39 we indicate the location of the middle steady
state of the system by an arrow on the right margin. As noted earlier on p. 199, this
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steady state is unstable when K = 0, and the three profiles bear this out: xA converges
to either 1 or 0, xB converges to zero, and y converges either to 0.47... or 1.47..., just as
was computed on p. 199 for the steady-state coordinates.
The code of fluidbedprofiles.m starts below:

function ...

fluidbedprofiles(tend,xao,xbo,yo,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,K,log)

% fluidbedprofiles(tend,xao,xbo,yo,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,K,log)

% sample call:

% fluidbedprofiles(500,[1,0,0.5],[1,0.8,0.2],[0.1,0.4,0.9],...

% 1,45/99,10^8,10^11,.4,.6,18,27,1,0,0,1)

% Input: tend = end of time interval for the integration

% xao, yao, yo = initial values for xA, xB, y

% (in equal sized row vector form)

% LeA, LeB, a1, a2, b1, b2, ga1, ga2, xaf, xbf = system parameters

% K = feedback gain (K >= 0)

% log : if log = 1, we plot time in a log10 scale; else linear scale

% Output: profile plots xA, xB, and y versus t of solution to the DEs in

% (4.74), (4.75), and (4.76)

% other system parameters :

A = 0.3; U = 0.1; Umf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;

Bbar = Bfun(A,U,Umf,alf,eps,QE,H); % evaluate Bbar from extra constants

ma = length(xao); mb = length(xbo); my = length(yo);

if ma ~= mb | ma ~= my, % check that vector input matches

’Length of x_Ao, x_Bo, and yo do not match! Abandon’, return, end

m = ma; TT = NaN*zeros(4000,m); XA = TT; XB = TT; Y = TT; % preparations

for i = 1:m, % cycle through the given data

Tspan = [0 tend]; y0 = [xao(i);xbo(i);yo(i)]; % use stringent error bounds :

options = odeset(’RelTol’,10^-6,’AbsTol’,10^-8,’Vectorized’,’on’);

[yf,ym] = hetcontbifrange(1.6,a1,a2,b1,b2,ga1,ga2,xaf,0,0,400); % find ym, yf

xAym = xAversusy(yo(i),yo(i),a1,ga1,xaf,1,ym,0); % xA(ym)

xBym = xBversusy(yo(i),yo(i),a1,a2,ga1,ga2,xaf,1,0,ym); % xB(ym)

[V,y] = ode15s(@frhs,Tspan,y0,options,... % using stiff DE integrator ode15s

LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,yf,ym,K,Bbar);

TT(1:length(V),i) = V; XA(1:length(y(:,1)),i) = y(:,1);

XB(1:length(y(:,2)),i) = y(:,2); Y(1:length(y(:,3)),i) = y(:,3); end

subplot(3,1,1) % xA plot, with or without log10 time scale

if log == 1, semilogx(TT,XA), else, plot(TT,XA), end, hold on, v = axis;

text(v(2),xAym,’ \leftarrow limit’), % marking optimal steady state

xlabel(’t’,’Fontsize’,12), ylabel(’x_A ’,’Fontsize’,12,’Rotation’,0),

title([{[’Profile plots of the solution to the IVP (4.74), (4.75),’...

’ and (4.76) with \alpha_1 = ’,num2str(a1,’%10.5g’),’, \alpha_2 = ’,...

num2str(a2,’%10.5g’),’ ;’]},...

{’ ’},{[’\beta_1 = ’,num2str(b1,’%10.5g’),...

’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...

num2str(ga1,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...
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’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, K = ’,num2str(K,’%10.5g’),...

’; Le_A = ’,num2str(LeA,’%10.5g’),’, LeB = ’,num2str(LeB,’%10.5g’),...

’, for optimal y_f and y_m’]}],’Fontsize’,12)

subplot(3,1,2) % xB plot, with or without log10 time scale

if log == 1, semilogx(TT,XB), else, plot(TT,XB), end, hold on, v = axis;

text(v(2),xBym,’ \leftarrow limit’), % marking optimal steady state

xlabel(’t’,’Fontsize’,12), ylabel(’x_B ’,’Fontsize’,12,’Rotation’,0),

subplot(3,1,3) % y plot, with or without log10 time scale

if log == 1, semilogx(TT,Y), else plot(TT,Y), end, hold on, v = axis;

text(v(2),ym,’ \leftarrow limit’), % marking optimal steady state

xlabel(’t’,’Fontsize’,12), ylabel(’y ’,’Fontsize’,12,’Rotation’,0),

% free the plot windows :

subplot(3,1,1), hold off, subplot(3,1,2), hold off, subplot(3,1,3), hold off,

% right hand side of IVP

function dydt = frhs(V,y,LeA,LeB,a1,a2,b1,b2,ga1,ga2,xaf,xbf,yf,ym,K,Bbar)

F1 = a1*exp(-ga1./y(3,:)).*y(1,:); F2 = a2*exp(-ga2./y(3,:)).*y(2,:);

dydt = [LeA*(Bbar*(xaf-y(1,:))-F1);

LeB*(Bbar*(xbf-y(2,:))+F1-F2);

Bbar*(yf+K*(ym-y(3,:))-y(3,:)) + b1*F1 + b2*F2];

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar

GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(1+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GC*exp(-alprime*H);

This program offers our users the option to plot the profiles in linear or in log10 time.
The log10 time plots spread out the earlier reactions more clearly, while a linear time
scale gives every second the same horizontal axis space.

For the novice, our 3D plots in Figures 4.34 to 4.37 can be quite confusing to interpret
correctly. The corresponding individual 2D profiles that were plotted in Figures 4.38 and
4.39 are useful for interpreting the 3D plots.
For relatively large Lewis numbers and with appropriate feedback, we observe that con-
vergence to the system’s unique stable steady state is quite swift and straightforward
from any initial value. To illustrate, we now plot the 3D trajectories that emanate from
the eight corners of the (xA, xB , y) unit cube

Cu = [0, 1] × [0, 1] × [0, 1] ∈ R
3

for the same system data as was used in Figures 4.34 to 4.39, but with the relatively
large Lewis numbers

LeA = LeB = 10

instead.
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The eight trajectories of Figure 4.40 are obtained from eight separate calls of fluidbed
with hold on set, namely from each of the eight corners of the unit cube as starting
points and after a customary manual figure rotation. All trajectories in Figure 4.40 con-
verge to the unique steady state of the system marked by ∗ from the eight corners o of
the unit cube Cu. Again there are exactly two final approaches to ∗ for the trajectories,
while only three trajectories with the initial high relative heat of y(0) = 1 exceed this
value for a short period.

Let us now revisit the modified example with the αi and γi parameter data as de-
scribed on p. 195. We recall that for this system there are five steady states prior to
feedback. Three of these are stable at the approximate (xA, xB , y) locations of (1, 0,
0), (0, 1, 0.41...), and (0, 0, 1). Of these three, the middle stable one yields the maximal
amount of component B and therefore it is the most desirable steady state. Figure 4.41
shows a set of 3D profile plots with initial values from a neighborhood of the middle
stable steady state (xA, xB, y) = (0, 1, 0.41038) (taken from Figure 4.31) with xA0 = 0.1
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or 0.2 near zero, xB0 = 0.8 near 1, and y0 = 0.1, ..., 0.7 near 0.41038 with controller gain
K = 0, i.e., without feedback. The 3D profiles for these initial values, the system and
initial parameters are plotted in Figure 4.41.
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Figure 4.41

The ten trajectories from our ten initial values start at the o marks and end after 600
time units at the x marks. Each of the ten trajectories converges to one of the three
steady states of the system, marked by x in Figure 4.41. From Figure 4.41 it is painfully
obvious that the region of attraction for the middle stable steady state, marked by ∗ in
the plot, is very small since in our plot only the two trajectories that start with y(0) = 0.4
converge to the middle steady state with y = 0.41038 (near the left edge of Figure 4.41).
For all initial values outside a very small attracting region for ∗, the depicted trajectories
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converge to one of the two other stable steady states at (xA, xB, y) = (1, 0, 0) or (0, 0,
1), both of which give no useful rendition of component B. Small perturbations of the
uncontrolled system will cause the system to slip away from the maximal-yield middle
steady state quickly, even if the system is operating at this stable steady state. Thus it
is very difficult for the uncontrolled system (K = 0) to produce much of the component
B reliably over a long time.

Running a system at a high yielding stable steady state is not a cure-all! It is much more
advisable to use feedback to create a controlled system with a unique high-yield steady
state. We exemplify this in a plot of the 3D solution trajectories of the IVP (4.75), (4.76),
and (4.77) for the modified data from p. 195 and initial values (xA, xB, y) from the whole
cube CC = [0.1, 0.9]× [0.1, 0.9]× [0.1, 0.9] with feedback set to K = 10.
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Figure 4.42

In Figure 4.42, every trajectory that starts at one of the eight corners of the cube CC
of (xA, xB , y) initial values ends up at the optimal stable middle steady state marked
by ∗ when sufficient feedback K = 10 is used. Most trajectories in this example go
through a relatively high temperature spike and xA = xb = 0 phase before reaching
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the unique steady state under feedback, except for the two trajectories that start at
(0.1, 0.1, 0.1) and (0.1, 0.9, 0.1). These two trajectories reach the steady state directly
without a temperature explosion. The cause of these sudden increases in temperature
on the other trajectories is the simultaneous occurrence of high temperatures and high
concentrations of the reactants. This causes a very high rate of reaction accompanied by
a very high rate of heat production. Whether such explosions occur for given high αi and
βi values is linked to (a) the initial conditions, as is evident from Figure 4.42, and (b)
the relation between the Lewis numbers. The latter link is shown in Figure 4.43, where
we have increased both Lewis numbers LeA and LeB from Figure 4.42 by a factor of
10 to become LeA = 10 and LeB = 4.54545. From the definition of Lewis numbers as
heat capacitance divided by mass capacitance, increased Lewis numbers signify a larger
heat capacitance or a lower mass capacitance, or a combination thereof. In general, an
increased heat capacitance has a stabilizing effect, while a higher mass capacitance has a
destabilizing effect on systems. And thus for increasing Lewis numbers, the temperature
runaways (explosions) are damped to below y = 1.1 in Figure 4.43.
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Figure 4.43

Temperature explosions are also more likely for high αi values, which signify high rates
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of reactions, as well as for high βi values, indicating high exothermic heat accompanying
the reactions. As explained before, the effect of the Lewis numbers on explosions is more
complex. In order to make this clear, we repeat that Lewis numbers express the ratio
of heat capacitance and mass capacitance. Therefore, small Lewis numbers correspond
to large mass capacitances or to low heat capacitances. Small Lewis numbers tend to
make instability and temperature explosions more likely because high mass capacitances
of the reactants correspond to the possible release of the chemoabsorbed mass, causing
an increase in the rate of reaction and subsequent heat production. Moreover, for small
Lewis numbers the low heat capacitance does not allow for an efficient dissipation of the
generated heat.

Therefore we conclude not only that feedback control is useful to stabilize an optimal
unstable steady state such as depicted in Figures 4.34 to 4.37 for the original set of pa-
rameter data, but feedback control can also help ensure the robustness of an otherwise
stable optimal steady state over a larger region of parameters and system perturbations.
Proper feedback control is also helpful in damping temperature explosions.

All locations of the steady states for the two-phase reaction model are determined by
the eight system parameters α1, α2, β1, β2, γ1, γ2, xAf , yf , as well as the additional
seven parameters on p. 183 that are needed to find B̄. None of the steady states depends
on or is influenced by the Lewis numbers LeA and LeB of the apparatus, since the Lewis
numbers occur only on the left-hand side of the system of DEs (4.75), (4.76), and (4.77).
If the Lewis numbers are not chosen carefully for the apparatus, then the corresponding
chemical/biological system may be subject to oscillations even when we use feedback
control to limit the number of steady states to one optimal stable steady state as we
have done since Figure 4.34.

The call of fluidbed(1200,0.1,0.1,0.5,.12,18,10^8,10^11,.4,.6,18,27,1,0,10)
produces Figure 4.34. The reader will immediately notice that we use our original 8 plus
7 parameter data of p. 183. Feedback gain is set to K = 10, so that according to Figure
4.34, the (xA, xB, y) point (0.17619, 0.7225, 0.86446) is the optimal and unique steady
state of this system. However, a careful inspection of the results in Figure 4.44 shows that
the trajectory from the initial value (xA(0), xB(0), y(0)) = (0.1, 0.1, 0.5), marked by
o in the plot, proceeds in 1200 time units to the x mark near the unique steady state of
the system that we have indicated by ∗. Figure 4.44 shows that the system converges to
the optimal B conversion steady state ∗, but it does so only in a slow oscillatory fashion,
circling the steady-state location (0.17619, 0.7225, 0.86446) eight times in ever tighter
loops during 1200 time units.

The corresponding profiles for xA, xB, and y are depicted in Figure 4.45 using
fluidprofiles.m for the data and calling fluidbedprofiles(1200,[1,0,0.5],[1,0.8,0.2],[0.1,
0.4,0.9],.12,18,10ˆ8,10ˆ11,.4,.6,18,27,1,0,10,1).
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Figure 4.44

Notice in Figure 4.45 that only the set of profiles that emanate from the initial value
(xA0, xB0, y0) = (0.0, 0.8, 0.9) reaches the steady state without an explosion. Our other
chosen initial value profiles result in explosions with temperature spikes of y around 5, 9,
and 3 near 1, 20, and 100 time units, respectively. For all three initial value profiles note
the oscillations with shrinking amplitudes around the steady-state values of xA, xB, and
y after about 200 time units until convergence in Figure 4.45. On the other hand, the
temperature profiles (except around the time of the explosions) settle down to near their
steady-state value very smoothly after about 100 time units. This corroborates our 3D
image in Figure 4.44 perfectly, in which the trajectory is depicted as oscillating around
the steady-state coordinates on a near-level temperature surface.
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time units
Figure 4.45

Figures 4.44 and 4.45, best viewed in color, show a benign complication of the problem
caused by the Lewis numbers. If, however, we reduce the Lewis number LeA further
to 0.07, the system trajectories indicate periodic explosions of the underlying system
throughout all time, and the trajectories do not converge to the steady state at all, even
with what we thought to be proper feedback. The trajectory that these curves settle at is
called a periodic attractor of the system in contradistinction to the earlier encountered
point attractor of Figures 4.43 or 4.44, for example. A point attractor, or more accu-
rately a fixed-point attractor, is a more commonly encountered steady state in chemical
and biological engineering systems. It could be called a stationary nonequilibrium state
to distinguish it from the stationary equilibrium states associated with closed or isolated
batch processes.

Figure 4.46 shows another (rotated) 3D picture of a periodic attractor, this one for a
system with LeA = 0.07 and for which all other parameters are as before.
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The 3D trajectory in Figure 4.46 starts from the circle o at the initial value (xA(0), xB(0),
y(0)) = (0.1, 0.1, 0.5) and begins similarly to the one in Figure 4.44. But it never con-
verges to the steady state marked by ∗ in the plot. It rather goes through an intricate
identical periodic counterclockwise loop many times. This loop, also called a limit cycle,
is a periodic attractor for the system. At τ = 2000 it has reached the spot marked
by x near the steady state ∗. Since the plot in Figure 4.46 gives us no information on
the number of periods within our time frame of 2,000 time units, we now plot three
profiles by themselves in a linear time scale for the initial values (xA(0), xB(0), y(0)) =
(0.1,0.1,0.5), (0.4,0.3,0.8), and (0.6,0.6,0.2) with the standard system data using the com-
mand fluidbedprofiles(2000,[.1,.4,.6],[.1,.3,.6],[.5,.8,.2],.07,18,10^8,
10^11,.4,.6,18,27,1,0,10,0).
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In Figure 4.47, best viewed in color, we observe a parallel time-shifted behavior of the
three profiles that start from our three different initial values after the first 50 time
units. This seems to indicate that for infinite time, the solutions that start at any initial
value will eventually travel with the same period along the same unique loop that is
depicted in three dimensions in Figure 4.46, but time-shifted one from the other like
trains on the same track. More specifically, the profiles plot of Figure 4.47 indicates
that in 2,000 time units, this periodic attractor loop is traversed about five and a half
times, or approximately once every 380 time units. The system reaches an explosive state
eventually (after an early possible higher-level explosion, depending on the choice of the
initial value) every 380 time units. These periodic explosions occur with temperature
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y ≈ 3, xA ≈ 0.18, and xB ≈ 1.3. Immediately after the periodic explosions, the levels
of the components A and B drop to near zero in the reactor and the temperature y to
about 0.9.
Obtaining such potentially lethal system information through modeling and numerical
analysis is a major benefit of our numerical modeling and simulation approach.

Finally, we redraw Figure 4.44 for exactly the same parameters, except that we use
LeA = 0.11. The trajectory from the same initial value o = (xA(0), xB(0), y(0)) =
(0.1, 0.1, 0.5) as in Figure 4.44 now goes through one high-temperature loop similar to
the infinitely repeated loop in Figure 4.46, but then it spirals around the unique steady
state ∗ in four and a half loops during 1,200 time units, and it will ultimately settle at
the steady state ∗.
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over 1,200 time units
Figure 4.48
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We encourage our readers to draw out their own version of Figure 4.48 with our data
in MATLAB via our program fluidbed.m while using the suggested axis settings for
this figure inside the program.
Having this figure on their computer screen, the reader can use the special “magnifying

glass” feature
�+

/ and the rotation tool of MATLAB’s graphics window to look at the
behavior of the solution curve in more and better detail. We suggest that one magnify
the regions where the single “wayward” high-temperature solution branch splits off at
first from the later convergent oval solution loops and also where it joins them. This
will exhibit several differing trajectories where Figure 4.48 appears to draw only one.
Mathematically this must be so, since each location on the solution trajectory acts as an
initial condition for continuing the solution and since IVPs always have unique solutions.
Therefore the solution must differ on each of the oval loops, if only by a tiny amount.
Finally, in order to make sure that the high temperature “wayward” curve in Figure 4.48
is not a computational figment, the reader should verify its existence even when the error
tolerances RelTol and AbsTol in fluidbed’s integrator ode15s are tightened to 10−12

or 10−14.

Exercises for 4.3
1. Refresh your calculus skills and your MATLAB graphics skills:

(a) Find the first derivative of xA(y) from equation (4.81) with respect to y
and show that xA is monotonically decreasing.

(b) Find the first derivative of xB(y) from equation (4.82) with respect to
y. Set up a numerical scheme to find ym with dxB(ym)/dy = 0 or use
the symbolic toolbox of MATLAB (if available) to solve the equation
dxB(y)/dy = 0 symbolically for the optimal setpoint ym and general
input parameters αi, βi, ...., etc.

(c) Revise the simple maximum finding line
m = min(find(XB == max(XB))); ym = Y(m); % find ym from xB curve

in hetcotbifrange.m, so that ym is always computed to an accuracy of 5
to 6 digits, rather than the 2 or 3 that we achieve in the current version
of hetcotbifrange.m.

(d) How would you compare the amount of effort (programming and compu-
tational) of parts (b) and (c) with the improved results they achieve?

2. Project:
Create a MATLAB m file that draws the zero-contour curves F (y, K) = 0 of
Figures 4.26 or 4.30 directly.
(Hint: Model your code on the contour-curve-plotting codes adiabNisocolor
contour.m and adiabNisocontourcurve.m of Section 3.1.)

3. Draw a 3D plot like Figure 4.34 or 4.42 for the original data, except with
LeA = 0.07, using fluidbed.m and verify that the 3D loop in Figure 4.46 is
attracting from all initial values (xA(0), xB(0), y(0)).

4. Redraw Figure 4.47 for a few decreasing values of LeA < 0.07 and LeB = 18
and for a few increasing values of LeB > 18 and LeA = 0.07 to see how the
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values of the Lewis numbers affect the period length of the periodic attractor,
as well as the maximal temperature levels of the periodic explosions. What
can you conclude?

5. Create the solution profiles of Figure 4.48 using fluidbedprofiles.m and
interpret the behavior of the solution for the initial value problem trajectory
of Figure 4.48.

6. (a) Verify our uniqueness assertions on p. 221 about the differing branches of
the IVP solution in Figure 4.48 for your own plot of this figure.

(b) What can one say in this respect about the points on the limit cycle
depicted in Figure 4.46? Are they the same from one pass to the next?
Why or why not?

7. Modify fluidbed.m to use several different MATLAB integrators ode... in
turn and compare the results.

Conclusions

In this section we have developed steady-state and dynamic models for a hetere-
geneous system. Specifically, we have chosen the bubbling fluidized bed catalytic
reactor, which has many industrial applications. We have built the model for a
consecutive reaction A → B → C with the component B being the desired
component.
The static bifurcation behavior and its practical implications have been investi-
gated. We have also formulated the unsteady-state dynamic model and we have
used it to study the dynamic behavior of the system by solving the associated IVP
numerically. Both the controlled and the uncontrolled cases have been investigated.
Two particular reactions have been studied, one with three steady states, and one
with five steady states.

4.4 A Biomedical Example: The Neurocycle Enzyme
System

Chemical engineering principles and models play an important role in describing and an-
alyzing biological (biochemical and/or biomedical) systems, where biological phenomena
interact with the purely chemical and physical ones of standard chemical engineering.
We have earlier encountered biological examples in the form of the enzyme reactor in
Section 3.3 and the anaerobic digester in Section 2 of this chapter, and we will study
biological fermentors in Chapter 7.
During the last few decades, many chemical engineering departments have changed their
names to departments of chemical and biological engineering. What distinguishes bio-
logical engineering from biochemical engineering is that biological engineering includes
both biochemical and biomedical engineering. In this section we develop a model and
numerical solutions of a problem of biomedical engineering.
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4.4.1 Fundamentals

The chemical synapse is a highly specialized structure that has evolved for exquisitely
controlled voltage-dependent secretions. The chemical messengers, stored in vesicles, are
released from the presynaptic cell following the arrival of an action potential that triggers
the vesicular release into the presynaptic terminal. Once released from the vesicles, the
transmitter diffuses across a narrow synaptic cleft, then binds to specific receptors in the
postsynaptic cell, and finally initiates an action potential event in the nerve-muscle cell
membrane by triggering muscle contractions.

Acetylcholine plays a recognized role in the nerve excitation scenario that we have
described above very briefly. It is found in cholinergic synapses that provide stimulatory
transmissions in the nervous system. Its complete neurocycle implies a coupled two-
enzymes/two-compartments model with two strongly coupled events as follows:
The activation event: Acetylcholine is synthesized from choline and acetyl coenzyme
A (Acetyl-CoA) by the enzyme choline acetyltransferase (ChAT ) and is immediately
stored in small vesicular compartments closely attached to the cytoplasmic side of the
presynaptic membranes.
The degradation event: Once acetylcholine has completed its activation duty, the
synaptic cleft degradation begins to remove the remaining acetylcholine. This occurs
through the destruction of acetylcholine by hydrolysis that uses the acetylcholinesterase
enzyme (AchE) to form choline and acetic acid.

Diseases such as Alzheimer’s and Parkinson’s are the result of an imbalance of the
cholinergic system considered above, with devastating consequences to human health.
The above simplified sequence of events suggests that we might obtain some insight into
such a cycle by using a simple diffusion-reaction model that simulates the nonlinear
interaction between these events. Membrane models that are targeted to physiological
problems can be a promising heuristic way for tackling complex biomedical systems such
as the one considered above.

4.4.2 The Simplified Diffusion-Reaction Two Enzymes/Two Com-
partments Model

In the following we attempt to describe the acetylcholinesterase/choline acetyltransferase
enzyme system inside the neural synaptic cleft in a simple fashion; see Figure 4.49. The
complete neurocycle of the acetylcholine as a neurotransmitter is simulated in our model
as a simple two-enzymes/two-compartments model. Each compartment is described as
a constant-flow, constant-volume, isothermal, continuous stirred tank reactor (CSTR).
The two compartments (I) and (II) are separated by a nonselective permeable membrane
as shown in Figure 4.50.



224 Chapter 4: Initial Value Problems

Postsynaptic Cell

Vesicle

Presynaptic Cell

The synaptic cleft
Figure 4.49

Assuming that all the events are homogeneous in all vesicles, and using the proper di-
mensionless state variables and parameters, we consider the behavior for a single synaptic
vesicle as described by this simple two-compartment model, where (I) and (II) denote
the two compartments.

AchE

OutputInput

    (II)

    (I)

ChAT

The two enzymes/two compartments model
Figure 4.50

A schematic presentation is given in Figure 4.51 for the simplified diffusion-reaction two-
enzymes/two-compartments model. From an enzyme kinetics point of view, we consider
the most general case, in which both enzymes have nonmonotonic dependence on the
substrate and hydrogen-ion concentrations.
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We assume that acetylcholine is synthesized in compartment (I) by ChAT due to the
activation reaction R1 in which the stimulatory neurotransmitter acetylcholine is synthe-
sized:

R1 : choline + acetyl – CoA
ChAT−→ acetylcholine + CoA . (4.89)

Acetylcholine is destroyed (hydrolyzed) in compartment (II) by AchE in the degradation
reaction R2 where the stimulatory neurotransmitter acetylcholine is degraded:

R2 : acetylcholine + water AchE−→ choline + acetate + H+ . (4.90)

Both reactions are considered to be substrate-inhibited and hydrogen-ion rate-dependent.
This leads to a nonmonotonic dependence of the reaction rates on both the substrates
and pH.

The following reaction rate expressions can be derived.
The acetylcholine synthesis reaction rate:

R1 =

⎧⎪⎪⎨⎪⎪⎩
VM1 · [S2]1

[S2]1 +
KS2

[H+]1

(
Kh2 + [H+]1 +

[H+]21
Khh2

)
+

[S2]21
Ki2

⎫⎪⎪⎬⎪⎪⎭ ·

·

⎧⎪⎪⎨⎪⎪⎩
[S3]1

[S3]1 +
KS3

[H+]1

(
Kh3 + [H+]1 +

[H+]21
Khh3

)
+

[S3]21
Ki3

⎫⎪⎪⎬⎪⎪⎭ . (4.91)

The acetylcholine hydrolysis reaction rate:

R2 =
VM2 · [S1]2

[S1]2 +
KS1

[H+]2

(
Kh1 + [H+]2 +

[H+]22
Khh1

)
+

[S1]22
Ki1

. (4.92)

4.4.3 Dynamic Model Development

The schematic diffusion-reaction structure shown in Figure 4.51 utilizes our suggested
two enzymes/two-compartments model. In this structure, both the feed and the output
are to/from compartment (I), while the input and output of compartment (II) both occur
though membrane diffusion.
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Next we formulate the dynamic model differential equations for the different components
in the two compartments:

(A) The hydrogen-ion dynamic mole balances in the two compartments are given by

Vj
d[H+]j

dt
= a1j · q ·

(
[H+]f − [H+]1

)− a2j · α′
H+

·AM

(
[H+]1 − [H+]2

)
+

+ Vj

(
a4j · R2 · AchE − Rwj

)
(4.93)

for the indices j = 1, 2, which denote the compartments (I) and (II), respectively.
Here a11 = 1, a12 = 0, a21 = 1, a22 = −1, a41 = 0, a42 = 1; [H+]f is the con-
centration of hydrogen ions in the feed, and Rwj is the rate of water formation in
compartment j. The parameter α′

H+
is the membrane permeability for hydrogen

ions and AM is the active membrane area.

(B) The dynamic mole balances for the hydroxyl ions in the two compartments are
given by

Vj
d[OH−]j

dt
= a1j · q ·

(
[OH−]f − [OH−]1

)
− a2j · α′

OH− · AM

(
[OH−]1 − [OH−]2

) − Vj · Rwj (4.94)

for j = 1, 2 as before. Here [OH−]f is the concentration of hydroxyl ions in the
feed and α′

OH− is the membrane permeability for hydroxyl ions.

(C) The acetylcholine dynamic mole balances in the two compartments are given by

Vj
d[S1]j

dt
= a1j · q · ([S1]f − [S1]1) − a2j · α′

S1
· AM ([S1]1 − [S1]2) +

+ Vj

(
a3j ·R1 ·ChAT − a4j · R2 · AchE

)
(4.95)
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for j = 1, 2 with a31 = 1, a32 = 0. Here [S1]f is the concentration of acetylcholine
in the feed and α′

S1
is the membrane permeability for acetylcholine.

(D) The choline dynamic mole balances in the two compartments are given by

Vj
d[S2]j

dt
= a1j · q · ([S2]f − [S2]1) − a2j · α′

S2
· AM ([S2]1 − [S2]2) +

+ Vj

(−a3j ·R1 ·ChAT + a4j · R2 · AchE
)

(4.96)

for j = 1, 2, where [S2]f is the concentration of choline in the feed and α′
S2

is the
membrane permeability for choline.

(E) Finally, the acetate dynamic mole balances in the two compartments are given by

Vj
d[S3]j

dt
= a1j · q · ([S3]f − [S3]1) − a2j · α′

S3
· AM ([S3]1 − [S3]2) +

+ Vj

(−a3j ·R1 ·ChAT + a4j · R2 · AchE
)

(4.97)

for j = 1, 2, where [S3]f is the concentration of acetate in the feed and α′
S3

is the
membrane permeability for acetate.

The pseudosteady-state assumption for the hydroxyl ions gives us

d[OH−]
dt

= 0 . (4.98)

Assuming that the hydrogen and hydroxyl ions are at equilibrium yields the equation

Kw = [H+] · [OH−] (4.99)

for Kw, the equilibrium constant of water reversible dissociation.
Subtracting equation (4.94) from equation (4.93) and substituting equations (4.98) and
(4.99) into equation (4.93) results in the equation

Vj
d[H+]j

dt
= a1j · q ·

{(
[H+]f − [H+]1

)− Kw

(
1

[H+]f
− 1

[H+]1

)}
− a2j · α′

H+
·AM

(
[H+]1 − [H+]2

)
+

+ a2j · AM

{
α′

OH− · Kw

(
1

[H+]1
− 1

[H+]2

)}
+

+ Vj · a4j · R2 · AchE (4.100)

for j = 1, 2. The two equations (4.100) for j = 1, 2 replace the four equations (4.93) and
(4.94) for j = 1, 2 under the above assumptions.

Before proceeding further, we list all notations used in the above equations (4.91) to
(4.100).
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Notations:
The subscripts j = 1, 2 denote the compartments (I) and (II), respectively. The subscript
f denotes the feed conditions.

AM active area of membrane between compartments; in m2

AchE acetylcholinesterase

AchE concentration of acetylcholinesterase in compartment (II);
in kg/m3

B1 = V1VM1ChAT/q parameter for the acetyltransferase enzyme activity; kmol/m3

B2 = V2VM2AchE/q parameter for the acetylcholinesterase enzyme activity;
in kmol/m3

ChAT choline acetyltransferase

ChAT concentration of choline acetyltransferase in compartment (I);
in kg/m3

CoA coenzyme A

CoA concentration of coenzyme A in compartment (I); in kg/m3

EN enzyme N

[H+] hydrogen ion concentration; in kmol/m3

KS1, Ki1, Kh1, Khh1 kinetic constants for the choline acetyltransferase catalyzed
reaction; in kmol/m3

KS2, Ki2, Kh2, Khh2 kinetic constants for the coenzyme A catalyzed reaction;
in kmol/m3

KS3, Ki3, Kh3, Khh3 kinetic constants for the acetylcholinesterase catalyzed
reaction; in kmol/m3

Kw equilibrium constant of water; in kmol2/m6

[OH−] hydroxyl ions concentration; in kmol/m3

PN reaction product N , the product of catalyzing SN by EN

q volumetric flow rate into compartment (I); in m3/sec

Rj rate of reaction in compartment j; in kmol/(m2 · sec)
Rwj rate of water formation in compartment j; kmol/(m3 · sec)
[S1] acetylcholine concentration; in kmol/m3

[S2] choline concentration; in kmol/m3

[S3] acetate concentration; in kmol/m3

SN substrate N , catalyzed by the enzyme N

t time; in sec

Vj volume of compartment j; in m3

Dimensionless parameters:

hj = [H+]j/Kh1 dimensionless hydrogen ion concentration

s1j = [S1]j/KS1 dimensionless acetylcholine concentration

s2j = [S2]j/[S2]ref dimensionless choline concentration

s3j = [S3]j/[S3]ref dimensionless acetate concentration
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VR = V1/V2 ratio of the volume of the two compartments

T = q · t/V1 dimensionless time

Dimensionless kinetic parameters for the acetylcholinesterase catalyzed reaction:

γ =
Kw

Ki1
, δ =

Kh1

Khh1
, α =

KS1

Ki1
.

Dimensionless kinetic parameters for the choline acetyltransferase catalyzed reaction:

θ1, ..., θ8.

Greek letters:

αH+ = α′
H+ · AM/q dimensionless membrane permeability for hydrogen ions

αOH = α′
OH− · AM/q dimensionless membrane permeability for hydroxyl ions

αS1 = α′
S1 · AM/q dimensionless membrane permeability for acetylcholine

αS2 = α′
S2

· AM/q dimensionless membrane permeability for choline

αS3 = α′
S3 · AM/q dimensionless membrane permeability for acetate

α′
H+ membrane permeability for hydrogen ions; in m/sec

α′
OH− membrane permeability for hydroxyl ions; in m/sec

α′
S1

membrane permeability for acetylcholine ions; in m/sec

α′
S2 membrane permeability for choline ions; in m/sec

α′
S3 membrane permeability for acetate ions; in m/sec

4.4.4 Normalized Form of the Model Equations

With the notations of Section 4.4.3, the equations (4.91), (4.92), (4.95) to (4.97), and
(4.100) can be expressed in normalized form. The differential equations (4.95) to (4.97)
and (4.100) can be written in matrix form as

dΨj

dt
= Fj(Ψ) (4.101)

for j = 1, 2 with the known initial conditions Ψ(0) at t = 0.
In the matrix representation (4.101) we use the following settings:

Ψj(t) = Ψj =

⎛⎜⎜⎝
hj

s1j

s2j

s3j

⎞⎟⎟⎠ , Ψ =
(

Ψ1

Ψ2

)
, and Fj(Ψ) =

⎛⎜⎜⎝
F1j(Ψ)
F2j(Ψ)
F3j(Ψ)
F4j(Ψ)

⎞⎟⎟⎠ , (4.102)

both for j = 1 and j = 2, and the feed condition

Ψfeed =
(

Ψ1feed

Ψ2feed

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hf

s1f

s2f

s3f

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Note that the entries of Ψfeed have already been incorporated into the equations (A) to
(E) on p. 226 to 227. The eight component functions Fkj for k = 1, ..., 4 and j = 1, 2
are the dynamic mole balance equations in normalized form. They are given in equations
(4.103) to (4.106) as follows.

Normalized equations (A’) and (B’), replacing the earlier equations (A) and (B)
The DEs (4.93) and (4.94) have earlier been combined into equation (4.100) for the
hydrogen and hydroxyl ions balances. This latter DE has the normalized right-hand
side

F1j(Ψ) = a1j

{
(hf − h1) − γ

(
1
hf

− 1
h1

)}
− bj · a2j

{
αH+ · (h1 − h2) − γ · αOH− ·

(
1
h1

− 1
h2

)}
+

+ bj · a4j ·B2 · r2/Kh1 (4.103)

for j = 1, 2. Here the Bi are defined in Section 4.4.3 on p. 228, while b1 = 1 and
b2 = VR. Here and in the following, the aij are as given on p. 226.

Normalized equation (C’), instead of (C)
The DE (4.95) for acetylcholine can be expressed with the normalized right-hand
side

F2j(Ψ) = a1j(s1f − s11) − bj · a2j · αS1(s11 − s12) +
+ bj (a3j · B1 · r1/Ks1 − a4j · B2 · r2/Ks1) (4.104)

for j = 1, 2 and bj and aij as above.

Normalized equation (D’), instead of (D)
The DE (4.96) for choline can be expressed with the normalized right-hand side

F3j(Ψ) = a1j(s2f − s21) − bj · a2j · αS2(s21 − s22) +
+ bj (−a3j ·B1 · r1/[S2]ref + a4j · B2 · r2/[S2]ref ) (4.105)

for j = 1, 2 and bj and aij as before.

Normalized equation (E’), instead of (E)
The DE (4.97) for acetate can be expressed with the normalized right-hand side

F4j(Ψ) = a1j(s3f − s31) − bj · a2j · αS3(s31 − s32) +
+ bj (−a3j ·B1 · r1/[S3]ref + a4j · B2 · r2/[S3]ref ) (4.106)

for j = 1, 2 and bj and aij as before.

Normalized reaction rates (4.89) and (4.90)

r1 =

{
s21

s21 + θ1/h1 + θ2 + θ3h1 + θ4s2
21

}
·
{

s31

s31 + θ5/h1 + θ6 + θ7h1 + θ8s2
31

}
(4.107)
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and

r2 =
s12

s12 + 1/h2 + 1 + δh2 + αs2
12

. (4.108)

The relatively simple two-enzymes/two-compartments model is thus represented in
(4.101) via the above set of eight coupled ordinary nonlinear differential equations (4.103)
to (4.106). This system of IVPs has the eight state variables hj(t), s1j(t), s2j(t), s3j(t)
for j = 1, 2 that depend on the time t. The normalized reaction rates rj(t) are given in
equations (4.107) and (4.108). The system has 26 parameters that describe the dynam-
ics for all compounds considered in the two compartments. A specific list of validated
experimental parameter values follows in Section 4.4.5.

4.4.5 Identification of Parameter Values

Because of the lack of good experimental data in human brain chemistry, our presenta-
tion is limited to the use of carefully chosen normalized experimental parameters in order
to reproduce the basic static and dynamic characteristics of this coupled enzymes system.

Most of the data is taken from earlier experimental work. The concentrations in the
feed and reference values are taken from mouse and rat brain data for the sake of illus-
tration. The membrane permeability parameters for s2 and s3 are assumed equal to the
value for s1. The normalized parameter B1 is taken equal to B2, which was found earlier
experimentally. The kinetic parameters θm for m = 1, .., 8 of reaction (1) are chosen by
using a known dissociation constant and by keeping the experimentally found proportion
for reaction (2) on substrate-inhibition and hydrogen-ion effects.
Table of 26 experimentally obtained numerical parameter values:

Vr 1.2 Kh1 1.0066 · 10−6 kmol/m3

B1 5.033 · 10−5 kmol/m3 Ks1 5.033 · 10−7 kmol/m3

B2 5.033 · 10−5 kmol/m3 [S2]ref 0.0001 kmol/m3

αH+ 2.25 [S3]ref 0.000001 kmol/m3

αOH− 0.5 θ1 32000
αS1 1 θ2 4
αS2 1 θ3 0.125
αS3 1 θ4 0.125
s1f 2.4 θ5 84500
s2f 1.15 θ6 65
s3f 3.9 θ7 76.72
α 0.5 θ8 0.00769
γ 0.01
δ 0.1
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4.4.6 Numerical Considerations

Our numerical task is to solve the IVP given by the eight DEs (4.103) to (4.106) both for
j = 1 and j = 2 with the given 26 system parameters and the two rate equations (4.107)
and (4.108) for any physically feasible set of initial values Ψ(0) and feed parameters Ψfeed

numerically.
A numerical solution of the problem may consist of a plot of all eight profiles h1(t), s11(t),
s21(t), s31(t), h2(t), s12(t), s22(t), and s33(t) for a certain time interval 0 ≤ t ≤ Tend. Or
it may involve phase plots, such as that of the acetylcholine concentration in compart-
ment (I) versus that in compartment (II). Our aim in the computations that follow is to
show the variations in the quality of the solutions for differing values of hf , the hydrogen
ion concentration of the feed to compartment (I). Another dependency of the solutions
is explored in the exercises.

Throughout this section we work with the initial values vector

Ψ(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.09594
1.27
1.155
4.405
0.7
0.2
1.16
4.8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which uses physiologically feasible starting values for the chemistry of the human brain.

Here is the MATLAB program neurocycle.m, which upon the user’s specification
and using MATLAB’s (un)commenting feature, which places the symbol % at the start
of comment lines, either plots all eight profiles, or one profile and one phase plot, or only
one phase plot for relatively high values of the time parameter t, when the system has
reached its periodic limit cycle.
The commenting or uncommenting of MATLAB code line blocks can best be achieved
from the MATLAB text editor window for an m file. Simply highlight a block of code
lines via a mouse drag in the MATLAB text editor window, then click on the “Text”
entry of the editor’s toolbar and click “Comment” or “Uncomment” as appropriate. This
action makes % commenting marks appear at or disappear from the front of each code
line of the highlighted block.

function [t, y] = neurocycle(hf,Tend,y0,S,standard)

% [t, y] = neurocycle(hf,Tend,y0,S)

% Sample call : [t,y] = neurocycle(0.004554,20);

% Input : hf = hydrogen ion concentration of input

% Tend = end of time interval for integration

% y0 = initial value column vector,

% with entries for h_1, s_11, s_21, s_31, h_2, s_12, s_22, s_32

% S = color choice for graphs, such as ’r’ for red, ’g’ for green etc
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% standard : if "standard" is set to 1, we use the standard initial

% values from the book (section 4.4);

% if "standard" is set different from 1, we use special

% initial values and annotate the graphs differently.

% Output: Three different plots are obtainable by (un)commenting :

% First plotting block active:

% Graphs of all 8 profiles for 0 <= t <= Tend in an 8 window plot

% Second plotting block active:

% Phase plot of acetylcholine concentrations in (I) versus (II),

% after limit cycle has been reached (for t >= 0.4 * Tend)

% Third plotting block active:

% s_12 profile and phase plot for 0 <= t <= Tend

% Use the MATLAB text editor ("Text" help button) to (un)comment the

% three plotting blocks so that ONLY ONE is active.

if nargin == 2, y0 = [0.09594; 1.27; 1.155; 4.405; 0.7; 0.2; 1.16; 4.8];

S = ’b’; standard = 1; end % setting defaults

if nargin == 3, S = ’b’; standard = 1; end

if nargin == 4, standard = 1; end

tspan = [0 Tend]; % De IVP solver

options = odeset(’RelTol’,10^-6,’AbsTol’,10^-7,’Vectorized’,’on’);

[t,y] = ode15s(@FjPsi,tspan,y0,options,hf); % using DE integrator ode...

% clf, subplot(4,2,1) % uncomment this block for 8 profiles

% plot(t,y(:,1),S), v = axis;

% xlabel(’t’,’FontSize’,11); ylabel(’h_1 ’,’FontSize’,12,’Rotation’,0);

% title(’Hydrogen ion concentration in (I)’,’FontSize’,12);

% if standard == 1,

% text(v(1)+0*(v(2)-v(1)),v(4)+0.26*(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

% ’ and the standard initial value \Psi(0)’],’FontSize’,14);

% else,

% text(v(1)+0*(v(2)-v(1)),v(4)+0.32*(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

% ’ and initial value’],’FontSize’,14);

% text(v(1)+0.1*(v(2)-v(1)),v(4)+0.21*(v(4)-v(3)),...

% [’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end

% subplot(4,2,3)

% plot(t,y(:,2),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{11} ’,’FontSize’,12,’Rotation’,0);

% title(’Acetylcholine concentration in (I)’,’FontSize’,12);

% subplot(4,2,5)

% plot(t,y(:,3),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{21} ’,’FontSize’,12,’Rotation’,0);

% title(’Choline concentration in (I)’,’FontSize’,12);

% subplot(4,2,7)

% plot(t,y(:,4),S)
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% xlabel(’t’,’FontSize’,11); ylabel(’s_{31} ’,’FontSize’,12,’Rotation’,0);

% title(’Acetate concentration in (I)’,’FontSize’,12);

%

% subplot(4,2,2)

% plot(t,y(:,5),S)

% xlabel(’t’,’FontSize’,11); ylabel(’h_2 ’,’FontSize’,12,’Rotation’,0);

% title(’Hydrogen ion concentration in (II)’,’FontSize’,12);

% subplot(4,2,4)

% plot(t,y(:,6),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{12} ’,’FontSize’,12,’Rotation’,0);

% title(’Acetylcholine concentration in (II)’,’FontSize’,12);

% subplot(4,2,6)

% plot(t,y(:,7),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{22} ’,’FontSize’,12,’Rotation’,0);

% title(’Choline concentration in (II)’,’FontSize’,12);

% subplot(4,2,8)

% plot(t,y(:,8),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{32} ’,’FontSize’,12,’Rotation’,0);

% title(’Acetate concentration in (II)’,’FontSize’,12);

% clf, subplot(2,1,1), % uncomment this block for s_12 profile and phase plot

% plot(t,y(:,6),S), v = axis;

% xlabel(’t’,’FontSize’,11); ylabel(’s_{12} ’,’FontSize’,12,’Rotation’,0);

% if standard == 1,

% text(v(1)+0*(v(2)-v(1)),v(4)+0.11*(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

% ’ and the standard initial value \Psi(0)’],’FontSize’,14);

% else, text(v(1)+0.05*(v(2)-v(1)),v(4)+0.135*(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

% ’ and initial value’],’Fontsize’,14)

% text(v(1)+0.1*(v(2)-v(1)),v(4)+0.082*(v(4)-v(3)),...

% [’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end

% title(’Acetylcholine concentration in (II)’,’FontSize’,12);

% subplot(2,1,2)

% plot(y(:,2),y(:,6),S)

% xlabel([{’ ’},{[’s_{11} ( for 0 \leq t \leq ’,...

% num2str(Tend,’%7.5g’),’ )’]}],’FontSize’,12)

% ylabel(’s_{12} ’,’FontSize’,12,’Rotation’,0);

% title(’Phase plot of acetylcholine concentrations in (I) versus in (II)’,...

% ’FontSize’,12)

% uncomment this block for terminal limit cycle plot

clf, k = length(t); Tstart = floor(0.4*k);

plot(y(Tstart:end,2),y(Tstart:end,6)), v = axis;

if standard == 1,

text(v(1)+0*(v(2)-v(1)),v(4)+0.046*(v(4)-v(3)),...

[’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

’ and the standard initial value \Psi(0)’],’FontSize’,14);
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else,

text(v(1)+0.08*(v(2)-v(1)),v(4)+0.056*(v(4)-v(3)),...

[’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

’ and initial value’],’Fontsize’,14)

text(v(1)+0.1*(v(2)-v(1)),v(4)+0.036*(v(4)-v(3)),...

[’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end

xlabel([{’ ’},{[’s_{11} ( for ’,num2str(t(Tstart),’%7.5g’),...

’ \leq t \leq ’,num2str(Tend,’%7.5g’),’ )’]}],’FontSize’,12);

ylabel(’s_{12} ’,’FontSize’,12,’Rotation’,0);

title(’Phase plot of acetylcholine concentrations in (I) versus in (II)’,...

’FontSize’,12);

function dydx = FjPsi(Psi,y,hf) % right hand side of DE function

thet1=32000; thet2=4; thet3=0.125; thet4=0.125; thet5=84500; thet6=65;

thet7=76.72; thet8=0.00769; al=0.5; ga=0.01; del=0.1; VR=1.2;

a11=1; a12=0; a21=1; a22=-1; a31=1; a32=0; a41=0; a42=1; b1=1; b2=VR;

alHp=2.25; alHm=0.5; alS1=1; alS2=1; alS3=1; B1=5.033*10^-5; B2=5.033*10^-5;

Kh1=1.0066*10^-6; Ks1=5.033*10^-7; S2ref=0.0001; S3ref=0.000001;

s1f=2.4; s2f=1.15; s3f=3.9; % list with parameter values

r1 = (y(3,:).*y(4,:))./((y(3,:) + thet1./y(1,:) + thet2 + thet3*y(1,:) + ...

thet4*y(3,:).^2) .* (y(4,:) + thet5./y(1,:) + thet6 + thet7*y(1,:) + ...

thet8*y(4,:).^2)); % rate equations

r2 = y(6,:)./(y(6,:) + 1./y(5,:) + 1 + del*y(5,:) + al*y(6,:).^2);

dydx = [a11*((hf - y(1,:)) - ga*(1/hf - 1./y(1,:))) - ... % 8 DEs

b1*a21*(alHp*(y(1,:)-y(5,:)) - ga*alHm*(1./y(1,:)-1./y(5,:))) + ...

b1*a41*B2*r2/Kh1;

a11*(s1f-y(2,:)) - b1*a21*alS1*(y(2,:)-y(6,:)) + b1*(a31*B1*r1/Ks1 ...

- a41*B2*r2/Ks1);

a11*(s2f-y(3,:)) - b1*a21*alS2*(y(3,:)-y(7,:)) + b1*(-a31*B1*r1/S2ref ...

+ a41*B2*r2/S2ref);

a11*(s3f-y(4,:)) - b1*a21*alS3*(y(4,:)-y(8,:)) + b1*(-a31*B1*r1/S3ref ...

+ a41*B2*r2/S3ref);

a12*((hf - y(1,:)) - ga*(1/hf - 1./y(1,:))) - ...

b2*a22*(alHp*(y(1,:)-y(5,:)) - ga*alHm*(1./y(1,:)-1./y(5,:))) + ...

b2*a42*B2*r2/Kh1;

a12*(s1f-y(2,:)) - b2*a22*alS1*(y(2,:)-y(6,:)) + b2*(a32*B1*r1/Ks1 ...

- a42*B2*r2/Ks1);

a12*(s2f-y(3,:)) - b2*a22*alS2*(y(3,:)-y(7,:)) + b2*(-a32*B1*r1/S2ref ...

+ a42*B2*r2/S2ref);

a12*(s3f-y(4,:)) - b2*a22*alS3*(y(4,:)-y(8,:)) + b2*(-a32*B1*r1/S3ref ...

+ a42*B2*r2/S3ref)];

Next we display 13 single, double, or multiple plots drawn by our MATLAB program
neurocycle.m of (a) the acetylcholine concentration profile in compartment (II) above
the phase plot of the acetylcholine concentration in compartment (I) versus that in com-
partment (II), or (b) the limit cycle plot, or (c) the plot of all 8 profiles. We include
interpretative comments on the solution’s behavior in each case.
In the plots we vary the hydrogen-ion feed concentration hf from 0.0044 to 0.0065, or by
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roughly 50%.
Note that all s11-s12 phase plots in this section start at (s11(0), s12(0)) = (1.27, 0.2)
as specified earlier in the initial condition vector Ψ(0).
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Figure 4.52

For all values hf ≤ 0.0044, the plots have the same shape as displayed in Figure 4.52.
Note that the phase plot starts out from the end of the lower left hook and proceeds
toward the upper right in the bottom image as t increases.
When we increase hf , small but increasing oscillations of the concentration profiles occur,
as the following plots for hf = 0.004544 indicate. Note how the spiral at the temporal
end of the phase plot in Figure 4.53, bottom, increases in diameter with time, as does
the oscillation amplitude of the acetylcholine concentration in compartment II in the top
graph of Figure 4.53, bottom plot. For an enlarged display of the spiral in the bottom plot

of Figure 4.53, we have used the magnifying glass tool
�+

/ of MATLAB’s figure window
toolbar before saving and printing.
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For hf = 0.004546, the solution s12(t) becomes more irregular at first until it settles into
one stable limit cycle; see Figure 4.54.



238 Chapter 4: Initial Value Problems

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

s
12

Neurocycle enzyme system with h
f
 = 0.004546 and the standard initial value Ψ(0)

Acetylcholine concentration in (II)

1.6 1.605 1.61 1.615 1.62 1.625

0.8

0.805

0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

s
11

      ( for  0 ≤ t ≤ 90 )

s
12

Phase plot of acetylcholine concentrations in (I) versus in (II)

Profile of s12(t) and phase plot of s12 versus s11;
larger-amplitude single-period limit cycle

Figure 4.54

Note that in the previous two phase plots of Figures 4.53 and 4.54 we have zoomed in

on the oscillatory part in MATLAB’s figure window using the
�+

/ tool. We shall do so
repeatedly in the future for added clarity.

Our next-higher value of hf = 0.004552 exhibits a double-loop limit cycle, or a period-
two periodic attractor in the phase plot of Figure 4.55.
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Figure 4.55

If we increase hf further to 0.0045525, we observe chaotic behavior of the s12(t) con-
centration in Figure 4.56. This also manifests itself in the phase plot, which consists of
random loops until our plotting ends at 90 time units.
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The profile and phase plots show oscillatory behavior of Figure 4.56, but no pattern or
periods can be seen therein. This is called a strange attractor in modern nonlinear
dynamics theory. A strange attractor can be chaotic or nonchaotic (high-dimensional
torus). Differentiating between chaotic and nonchaotic strange attractors is beyond the
scope of this undergraduate book.
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A slight increase to hf = 0.0045526 ends the chaotic behavior after around 20 time
units, and an orderly 9-periodic behavior (period-nine periodic attractor) sets in for the
solution from then on, as seen in Figure 4.57.
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Figure 4.57

In order to display the asymptotic limit cycle in the phase plot of Figure 4.57 more
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clearly, we separate this limit cycle by using the third plotting block inside neurocycle.m
to obtain Figure 4.58 for the same data.
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Figure 4.58

Notice that this limit cycle goes through a number of small loops, each one corresponding
to one small bump of the profile of s12(t) in the top plot of Figure 4.57, followed by a wide
swing in the profile of s12(t) and the corresponding large limit cycle loop approximately
once every 11 seconds.
Let us count the number of periods of s12(t) in Figure 4.57, once the periodic oscillatory
steady-state loop has been reached. For t > 20 the system has stabilized in its varying
behavior: there are 9 separate periods in the top graph of Figure 4.57 in each complete
limit cycle of length about 11 time units. This can be verified by counting the number
of local maxima between subsequent large amplitude drops in the top profile curve of
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Figure 4.57. Note that there are also exactly 9 corresponding maxima in the enlarged
phase plot in Figure 4.59. Figure 4.59 shows four and a half complete periodic loops for
29.404 ≤ t ≤ 80 according to the top profile graph of Figure 4.57.
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Figure 4.59

When hf = 0.0045539, the initial chaotic behavior has stopped and the system’s limit
cycle is reached on the second pass through a large-amplitude drop in the acetylcholine
concentration in compartment (II), as shown in Figure 4.60.
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Figure 4.60

In Figure 4.60 we count 10 separate periods of mostly increasing amplitudes until the
cycle repeats.
For hf = 0.004556 the number of periods drops to 8 in each cycle, while for hf = 0.004558
there are only 7 periods in the limit cycle. For hf = 0.00457 there are 4 separate periods,
for hf = 0.00458 there are only 3 in Figure 4.61. For hf = 0.0046 the number of separate
periods decreases to 2, and for hf ≥ 0.00465, there is only a single period until hf

becomes significantly larger.
These assertions can be verified by our readers using the MATLAB code neurocycle.m.
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As an illustration we now plot the graph for hf = 0.00458 that generates a 3-periodic
limit cycle (period-three periodic attractor).
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Figure 4.61

For much larger hf values such as hf = 0.006325, the limit cycle has exactly one maxi-
mum, and this is reached after the first complete cycle, as shown in Figure 4.62.
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Figure 4.62

For even larger values of hf , the system eventually reaches a unique fixed steady state
that is stationary and involves no limit cycle at all, just as we have seen to be the case
for small values of hf in Figure 4.52. For example, for hf = 0.0065, the phase plot starts
at s11 = 1.27 and s12 = 0.2 in the bottom plot of Figure 4.63 and moves in two spiral
loops toward the asymptotic steady state with s11 ≈ 1.285 and s12 ≈ 0.17, as depicted
in Figure 4.63.
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The following unified eight profile plot verifies our assertion that the system reaches a
unique fixed steady state when hf = 0.0065 and when the initial value Ψ(0) is as before.
This figure is drawn by uncommenting the first large plotting block in neurocycle.m to
make it active, while commenting out the other two plotting blocks with % signs and
thereby making them inactive.
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Figure 4.64

The previous 13 figures show several transition stages in the behavior of the solution
to the given IVP from having one fixed asymptotic steady-state solution for low values
of hf ; through small oscillation for all times, to limit cycles, irregularity, and chaos; back
to repeated oscillations with ever-decreasing numbers of periods; and then back to one
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fixed asymptotic steady-state solution again as we vary one parameter, hf , from 0.0044
to 0.0065.

Exercises for 4.4

1. Recall the remark on stiffness and IVP solver validation of p. 201 and vary the
tolerances inside neurocycle.m to verify that the acetylcholine concentration
of the neurocycle enzyme system with hf = 0.0045525 behaves chaotically as
depicted in Figure 4.56.

2. Verify the assertions about the diminishing periods of the limit cycles (pe-
riodic attractors) in the range 0.004556 ≤ hf ≤ 0.0046 on p. 244 using
neurocycle.m.

3. For hf = 0.0045539 (see Figure 4.60) investigate whether the periodic limit
cycle (periodic attractor) is attracting from various initial values Ψ(0) by
running the limit cycle phase plot of neurocycle.m from varying initial values
of Ψ(0) in varying colors S. (Hint: To achieve various colors, refer to qfrun.m
in Section 4.1 and the creation of differently colored graphs in one plot there.)

4. Investigate how the single-period solution limit cycle (period-one periodic at-
tractor) for hf = 0.006325 in Figure 4.62 transforms to an asymptotically
constant solution for hf = 0.007 similar to Figure 4.63. Does this transition
involve oscillations? Describe and explain your findings.

5. Project
Modify the program neurocycle.m to become neurocycleB2.m with the first
MATLAB code line function neurocycleB2(B2,Tend,y0,S).
In the program neurocycleB2.m, use hf = 0.0055 as a fixed parameter and
vary B2 = V2 · VM2 · AchE/q between 0 and 20 · 10−5 kmol/m3. Observe the
behavior of the solution profiles and phase plots and interpret your results.
The parameter B2 is chosen for this project in order to gain some insight into
possible consequences of varying the capability of the acetylcholinesterase to
hydrolyze the neurotransmitter. Imbalances in this capability give rise to dev-
astating diseases such as Alzheimer’s and Parkinson’s. The enzyme activity is
included in the grouped parameter B2, which includes the maximum reaction
velocity in reaction 2. The parameter B2 itself includes the enzyme activity to-
gether with three constants for the enzyme system, namely the concentration
of acetylcholinesterase in compartment (II), the volume V2 of compartment
(II), and the flow rate q.

Conclusions

We have developed, solved, and analyzed an eight-dimensional model for a cou-
pled acetylcholinesterase/choline acetyltransferase enzyme system. The complex
dynamic characteristics, both stable and unstable, and the chaotic behavior of this
IVP system have been investigated with some reference to acetylcholine neural
transmission.
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The variation of the hydrogen-ion feed concentration hf as bifurcation parameter
has a strong effect on the state variables at low concentrations, in contrast to its
weak effect at high concentrations. At low concentrations it is found that a complex
dynamic behavior with period doubling, period adding, and period subtracting
dominate the dynamics of the system. Checking for a possible correspondence to
physiological values for the pH values, we can say that compartment (II) (where
the pH level is between 6.73 and 7.97 for the studied variations of hf ) has a pH
value near to the expected value for the human brain. This represents a complex
biological example that sheds some light on the relation between enzyme activities
in the brain and Alzheimer’s and Parkinson’s diseases.

Exercises for Chapter 4

1. A vertical cylindrical tank is filled with well water at 65◦ F . The tank is insulated
at the top and bottom, but is exposed at its vertical sides to cold night air at 10◦F .
The tank’s diameter is 2 ft and its height 3 ft. The overall heat transfer coefficient
is 20 Btu/(h ◦F ft2). Neglect the metal wall of the tank and assume that the water
in the tank is perfectly mixed.

(a) Write out a differential equation that models the temperature of the water in
the tank over time.

(b) Solve the DE of part (a) analytically.

(c) Solve the DE of part (a) numerically via MATLAB, and compare the results.
(Hint: look up the Differential Equations Examples MATLAB browser to learn
about the MATLAB DE solvers ode....m. Simply type odeexamples(’ode’)
at the MATLAB prompt to start this browser.)

(d) Write a MATLAB program to determine how long it will take for the water
in the tank to freeze completely. The heat of fusion of water is 144 Btu/lbm.

2. A cylindrical tank is fed with water at a flow rate of 2.3 m3/hour and is equipped
with an output control valve at the bottom. The steady-state height in the tank is
2 m. What is the valve coefficient (and its units) under these conditions? The tank
diameter is 3 m and the total height of the tank is 5 m.
If the feed to the tank increases from 2.3 m3/hour to 3.4 m3/hour and the valve
opening remains the same, i.e., the valve coefficient remains the same, calculate and
plot the change of height with time. Find the final height using the dynamic model
and the steady-state model and make sure that they both give the same result.

3. If in the above problem it is required to keep the height at the same value of 2 m
when the flow rate changes from 2.3 to 3.4 m3/hour, we can use feedback control
to achieve this.
The feedback control loop consists in measuring the height, comparing it with the
set point, i.e., the height for the input flow rate of 2.3 m3/hour, and using the
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difference in height as a proportional drive to change the valve opening in order to
compensate for this change.
Calculate the behavior using this proportional feedback control with your choice of
several different suitable values of the proportional gain Kp. Calculate and plot the
change of height with time when this controller is used and find the final height for
each Kp. Moreover, calculate the offset for each value of Kp.
Choose the best value of Kp and compare the behavior with the behavior for the
open loop system without controls, i.e., for Kp = 0.0. Show that it is possible to
remove the offset by using a proportional plus integral (PI) controller and find the
best value of KI that can be used with the best value for Kp as obtained above. Plot
the change of height with time and compare it with the results of the open-loop
system in the case without control and also when the system has only proportional
control.

4. An industrial system consists of a nonisothermal CSTR (with a cooling jacket)
and a tubular adiabatic reactor in series. The reaction is a first-order irreversible
reaction:

A −→ B .

The plant manager requires the following:

(a) Formulate a rigorous dynamic model for the system.

(b) Suggest a solution algorithm to find the steady state(s) of the system.

(c) Suggest a solution algorithm to investigate the dynamic behavior of the sys-
tem.

(d) Discuss the main steady-state and the dynamic characteristics of the system
and their practical implications.

5. Formulate the unsteady-state equations (dynamic model) for a nonadiabatic CSTR
where an irreversible first-order exothermic reaction

A −→ B

takes place. Put the dynamic equations in dimensionless form with the feed tem-
perature as reference temperature and the feed concentration as reference concen-
tration.
For the thermicity factor β = 1.2, the dimensionless activation energy γ = 18, and
with the constant dimensionless cooling jacket temperature yc = 0.85, compute the
following:

(a) The set of values of the dimensionless preexponential factor α and of the
dimensionless heat transfer coefficients Kc that give multiple steady states.
Formulate a numerical algorithm in MATLAB that finds the dimensionless
temperature and concentrations at each of the three steady states for given α
and Kc values.
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(b) If the middle steady state obtained when Kc = 0.0 is the desirable steady
state, show how to stabilize it.

(c) Construct phase planes for a case with multiple steady states and a case with
a unique steady state.

(d) In the multiplicity region, choose one of the cases and linearize the equations
in a neighborhood of each of the three steady states. Compute the eigenval-
ues (characteristic roots) of the linearized model using the built-in MATLAB
function eig. From the eigenvalue information determine the stability charac-
teristics of each of the three steady states.

(e) For the stabilized unstable middle steady state in part (b) find the relation
between the stability characteristics and the values of Kc.

The general assumptions for this model are:

(1) The stirrer and wall heat capacities are negligible and the volumetric flow rate
is constant.

(2) There is no change of phase.

(3) The average specific heat and density of the mixture is constant.

[Hints: Start your investigation of part (a) with the adiabatic case of Kc = 0.0. You
can use dimensionless units in your dynamics and stability part of the investigation
by using the dimensionless time t′ = t/τ , where t is the real time, τ = V/q is
the residence time, V is the active volume of the reactor, and q is the constant
volumetric flow rate.]
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Chapter 5

Boundary Value Problems,
with and without Bifurcation

A distributed model is usually described by differential equations. Such a model differs
from a lumped model that is generally described by transcendental equations. In chemical
and biological engineering distributed systems often arise with tubular equipment. When
a one-dimensional model is used for a distributed system there are two types of models:

1. If mixing, diffusion, and conduction are neglected, then the system is described by
the so called plug flow model, expressed in terms of initial value ODEs, i.e., by
initial value problems, or IVPs.

2. If the model accounts for the effects of axial dispersion, then the system is described
by an axial dispersion model in terms of two-point boundary ODEs, i.e., by
boundary value problems, or BVPs.

5.1 The Axial Dispersion Model

For plug flow, only the flow and the processes other than mixing, diffusion, and conduction
are considered. These have been studied in Chapter 4. In a plug flow tubular reactor model
we consider only the convective one-dimensional flow and the chemical reaction as shown
in Figure 5.1, where ni is the convective molar flow rate for the constant volumetric flow
rate qi of component i. These two rates are connected by the equation ni = q · Ci for
the concentration Ci.

ni(l) → → ni(l + ∆l)

l l+∆l

Convective flow
Figure 5.1

255
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If axial dispersion is also considered in the model, then the diffusive flow due to differences
in concentration (in the isothermal case) is also taken into account as shown in Figure
5.2.

ni(l) →
Ni(l) →

→ ni(l + ∆l)

→ Ni(l + ∆l)

l l+∆l

Convective and diffusive flows
Figure 5.2

Here Ni is the diffusion flux. It is most simply expressed for constant diffusion coefficients
by Fick’s1 law

Ni = −Di · dCi

dl
. (5.1)

In the nonisothermal case, the plug flow model accounts only for the convective heat flow
as shown in Figure 5.3.

niHi → → niHi(l + ∆l)

l l+∆l

Convective heat flow
Figure 5.3

Here Hi is the enthalpy (energy per mole) for component i.
When the axial conductivity of heat. i.e., the heat dispersion, is also considered, the
situation becomes as depicted in Figure 5.4.

niHi →
q →

→ niHi(l + ∆l)

→ q

l l+∆l

Convective and heat dispersion flows
Figure 5.4

Here q is the heat conduction due to the temperature gradient. The simplest way to
express this is using Fourier’s2 law

q = −λ
dT

dl
, (5.2)

1Adolf Eugen Fick, German physiologist, 1829 – 1901
2Jean Baptiste Joseph Fourier, French mathematician, 1768 – 1830
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where λ is the thermal conductivity coefficient.

Needless to say, the assumption of plug flow is not always appropriate. In plug flow
we assume that the convective flow, i. e., the flow at velocity q/At = v that is caused
by a compressor or pump, is dominating any other transport mode. In practice this is
not always so and dispersion of mass and heat, driven by concentration and temperature
gradients are sometimes significant enough to need to be included in the model. We will
discuss such a model in detail, not only because of its importance, but also because the
techniques used to handle the ensuing boundary value differential equations are similar
to those used for other diffusion-reaction problems such as catalyst pellets, as well as for
counter-current processes.

5.1.1 Formulation of the Axial Dispersion Model

The simplest description of axial dispersion of mass for constant diffusivities is given by
Fick’s law (5.1)

Ni = −Di · dCi

dl
,

where Ni is the mass flux of component i, measured in moles/(cm2 · sec), Di is the
diffusion coefficient of component i in cm2/sec, Ci is the concentration of component i
in moles/cm3, and l is the length co-ordinate in cm .

The axial dispersion of heat (axial heat conduction) is described by Fourier’s law (5.2)

q = −λ
dT

dl
,

where q is the heat flux in J/cm2 sec, λ is the thermal conductivity in J/(cm · sec · K),
and T is the temperature in K.
We introduce the axial dispersion of mass and heat for a single reaction in a tubular
reactor that operates at a steady state with the generalized rate of reaction r′ per unit
volume.
In Figure 5.2 the mass balance for the convective flows ni and the diffusion flows Ni have
been depicted.

By At we denote the cross sectional area of the reactor tube. Then the steady-state mass
balance with axial dispersion gives us the equation

ni(l + ∆l) + At · Ni(l + ∆l) = ni(l) + At ·Ni(l) + σi ·At · ∆l · r′ . (5.3)

After dividing this equation by ∆l, rearranging to obtain difference quotients for ni and
Ni, and then taking lim∆l→0 , we get

dni

dl
+ At

dNi

dl
= σi · At · r′ . (5.4)

This differential equation can be put into dimensionless form by introducing one simple
assumption such as a constant volumetric flow rate q, i. e.,

dni

dl
= q

dCi

dl
.
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This assumption means that ni = q · Ci for a constant value of q. For all liquid-phase
systems the volumetric flow rate q is constant and not merely assumed so, and likewise for
gas-phase systems with a constant number of total moles running at constant temperature
and pressure. For all other systems the constancy of the volumetric flow rate q is an extra
assumption.
For a constant volumetric flow rate q we can rewrite (5.4) as

q
dCi

dl
+ At

dNi

dl
= σi · At · r′ . (5.5)

If we further assume that the diffusion coefficient Di is constant and then differentiate
Fick’s law (5.1) with respect to l we obtain

dNi

dl
= −Di

d2Ci

dl2
. (5.6)

And the mass balance design equation thus becomes

q
dCi

dl
− At ·Di

d2Ci

dl2
= σi · At · r′ .

Dividing by At gives us

v
dCi

dl
− Di

d2Ci

dl2
= σi · r′ ,

where v = q/At is the velocity of the flow. Next we define a dimensionless length, namely
ω = l/L, where L denotes the total length of the tubular reactor. This gives us

v

L

dCi

dω
− Di

L2

d2Ci

dl2
= σi · r′ .

By rearranging, we obtain

1
PeM

d2Ci

dl2
− dCi

dω
+ σi · L

v
· r′ = 0 , (5.7)

where PeM = L · v/Di is the Peclet3 number for mass.

Applying the same procedure for the heat balance with axial dispersion (axial con-
duction) of heat, we get∑

i

ni(l) ·Hi(l)+At · q(l)+Q′ ·∆l =
∑

i

ni(l +∆l) ·Hi(l +∆l))+At · q(l +∆l) , (5.8)

where q is the heat flux and Q′ is the external heat added per unit length of the tubular
reactor.

3Jean Claude Péclet, French scientist, 1793 – 1857
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By rearranging, forming difference quotients, and taking the limit of ∆l → 0 as before,
we transform (5.8) to ∑

i

d(niHi)
dl

+ At
q

dl
= Q′ .

And the product rule of differentiation, applied to d(niHi)/dl, yields∑
i

ni
dHi

dl
+

∑
i

Hi
dni

dl
+ At

dq

dl
= Q′ . (5.9)

Equation (5.4) can be rewritten as

dni

dl
= σi ·At · r′ − At

dNi

dl
.

By substituting this expression for dni/dl into the heat balance design equation (5.9) we
obtain ∑

i

ni
dHi

dl
+

∑
i

Hi

(
σi · At · r′ − At

dNi

dl

)
+ At

dq

dl
= Q′ ,

which can be rearranged to become∑
i

ni
dHi

dl
+ At · r′

∑
i

σiHi − At

∑
i

Hi
dNi

dl
− At · λd2T

dl2
= Q′ .

Here we have used Fourier’s law (5.2) q = −λ ·dT /dl for constant λ, differentiated once
more as dq/dl = −λ · d2T/dl2.

With the reasonable approximations for a one-phase system that have been used
earlier for the plug flow system, we can approximate the above differential equation by

nt · C ′
Pmix

dT

dl
+ At · r′ · (∆H) − At

∑
i

Hi
dNi

dl
− At · λd2T

dl2
= Q′ ,

where C ′
Pmix

denotes the average molar specific heat of the mixture and nt is the av-
erage total molar flow rate. Our main assumptions in this approximation are the four
assumptions that we have used before, namely: no change in phase (only sensible heat
is involved), average the concentrations Cp for each component i, then average for the
whole mixture, and finally average the total number of moles of the system.
The last equation can be rewritten in the form

Atλ
d2T

dl2
− qρCPmix

dT

dl
+ Atr

′(−∆H) + At

∑
i

Hi
dNi

dl
= Q′ , (5.10)

where CPmix is the average mass specific heat for the mixture, q is the average volumetric
flow rate, and ρ is the average density of the mixture.
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A problematic term :

In equation (5.10) there is the term

At

∑
i

Hi
dNi

dl
(5.11)

which is usually neglected in the literature, but is most problematic. This term represents
the enthalpy carried with the axial dispersion of mass. We can make several approxima-
tions for this term that help to handle it without blindly neglecting it.

1. Most simple approximation :
We may consider that the term At

∑
i(Hi · dNi/dl), that accounts for the heat

transferred with the axial dispersion of mass is accounted for through a small
empirical correction in λ by replacing λ by λe in (5.10).

2. Less simple approximation :
The term At

∑
i(Hi · dNi/dl) can be expressed as −At

∑
i(HiDi · d2Ci/dl2)

according to (5.1). The latter approximately equals

−At · Dav

∑
i

Hi
d2Ci

dl2
(5.12)

for the average value Dav of the diffusion coefficient Di.
From the mass balance equation for an assumed plug flow we have

q
dCi

dl
= σi · At · r′

which we rewrite as
dCi

dl
=

(
At

q

)
σi · r′ . (5.13)

Using equation (5.13) in equation (5.12) gives us

−At ·Dav

∑
i

Hi

(
At

q

)
σi

dr′

dl

as an approximation for the expression (5.11). This in turn reduces to

−At · Dav

(
At

q

)
dr′

dl

∑
i

σiHi .

Finally, approximating
∑

i σiHi by (∆H) makes the problematic expression (5.11)
approximately equal to

−A2
t · Dav

q

dr′

dl
(∆H)

(
≈ At

∑
i

Hi
dNi

dl

)
. (5.14)
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Using the expression (5.14) inside the heat balance equation (5.10) now gives us

At · λd2T

dl2
− q · ρ · CPmix

dT

dl
+ At · r′(−∆H) +

A2
t · Dav

q

dr′

dl
= −Q′ .

This we rearrange to become

At · λd2T

dl2
− q · ρ ·CPmix

dT

dl
+ At(−∆H)

(
r′ +

At

q
Dav

dr′

dl

)
= −Q′ . (5.15)

Dividing equation (5.15) by At and noticing that At/q = 1/v leads to

λ
d2T

dl2
− v · ρ · CPmix

dT

dl
+ (−∆H)

(
r′ +

Dav

v

dr′

dl

)
= −Q′ .

For most systems we have r′ >> (Dav/v) · (dr′/dl). If this is so, then we can rewrite
the last equation in the simplified form

λ
d2T

dl2
− v · ρ · CPmix

dT

dl
+ r′ · (−∆H) = −Q′ (5.16)

by omitting the (Dav/v) · (dr′/dl) term. Note that for cases where r′ is not much larger
than (Dav/v) · (dr′/dl), this term cannot be neglected and thus it must be included in
the equation.

Now we will use the simple approach of using an effective λe term instead.
By setting ω = l/L, equation (5.16), now in dimensionless form, becomes

λe

L2

d2T

d
(

l
L

)2 − v · ρ ·CPmix

L

dT

d
(

l
L

) + r′(−∆H) = −Q′ . (5.17)

Multiplying both sides by L/(v · ρ · CPmix) gives us

λe

L2

L

v · ρ · CPmix

d2T

dω2
− dT

dω
+ r′ · (−∆H)

L

v · ρ ·CPmix
= −Q′ L

v · ρ · CPmix
.

Since λe/(L · v · ρ · CPmix) = 1/PeH for the dimensionless Peclet number PeH for heat
transfer, we get

1
PeH

d2T

dω2
− dT

dω
+

r′ · (−∆H) · L
v · ρ · CPmix

= −Q
′
, (5.18)

where Q
′
= Q′ · L/(v · ρ · CPmix).

Let us consider that the rate of reaction r′ is that of a simple first-order irreversible reac-
tion, namely r′ = k0 ·e− E

R·T ·CA. We define dimensionless temperature and concentration
by introducing y = T/Tf for the dimensionless temperature and xA = CA/CAf for the
dimensionless concentration. With these settings, equation (5.18) becomes

1
PeH

d2y

dω2
− dy

dω
+

(−∆H) · CAf

ρ ·CPmix · Tf
Da · e−γ/y · xA = −Q

′

Tf
,
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where γ is the dimensionless activation energy γ = E/(R · Tf ) and Da is the Damköhler4

number Da = k0 · L/v. With the thermicity factor β =
[
(−∆H) · CAf

]
/(ρ · CPmix · Tf )

and Q̂ = Q
′
/Tf , the last differential equation reads as follows:

1
PeH

d2y

dω2
− dy

dω
+ β · Da · e−γ/y · xA = −Q̂ . (5.19)

Similarly for the mass Peclet number PeM , the mass balance design equation for this
case is

1
PeM

d2xA

dω2
− dxA

dω
− Da · e−γ/y · xA = 0 . (5.20)

Notice that both mass and heat balance design equations (5.19) and (5.20) are second-
order two-point boundary value differential equations. Therefore each one requires two
boundary conditions. These boundary conditions can be derived as shown in the example
that follows.
We will develop the boundary conditions for the mass balance design equation only. For
the nonisothermal case, the boundary conditions for the heat balance design equation
can be found similarly and are left as an exercise for the reader.

5.1.2 Example of an Axial Dispersion Model. Linear and Non-
linear Two-point Boundary Value Problems (BVPs)

In this example we develop the isothermal model and its boundary conditions for a case
in which the differential equation is linear and can be solved analytically. Then we work
on the nonlinear model.

The Linear Case

For a steady state, isothermal, homogeneous tubular reactor consider a simple reaction

A → B

taking place in the tubular reactor where the axial dispersion is not negligible and the
Peclet number Pe equals 15.0. We shall try to answer the following design questions.

1. If the reaction is first-order, what is the value of the Damköhler number Da in
order to achieve a conversion of 0.75 at the exit of the reactor?

2. If the reaction is second-order and the numerical value of the Damköhler number
Da is the same as in part 1, find the exit conversion using the solution of the
nonlinear two point boundary value differential equation.

To answer these design questions we first formulate the model equations for first- and
second-order reactions.

4Gerhard Damköhler, German chemist, 1908 – 1944
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Axial dispersion mass flow
Figure 5.5

For an nth order reaction, the mass balance design equation for the isothermal case with
constant volumetric flow rate q is

q ·CA + At · NA(l) = q ·CA(l + ∆l) + At · NA(l + ∆l) + At ·∆l · k · Cn
A ,

where n is the order of the reaction of our problem and n = 1 or 2. Canceling similar
terms from both sides of the equation gives us

0 = q · ∆CA + At ·∆NA + At · ∆l · k · Cn
A .

Dividing by ∆l and taking lim∆l→0 makes

0 = q
dCA

dl
+ At

dNA

dl
+ At · k · Cn

A . (5.21)

By Fick’s law for diffusion for the component A with its diffusion coefficient DA we have

NA = −DA
dCA

dl
,

and upon differentiation
dNA

dl
= −DA

d2CA

dl2
. (5.22)

Combining (5.21) and (5.22) we get

0 = q
dCA

dl
− At · DA

d2CA

dl2
+ At · k · Cn

A . (5.23)

We divide both sides by At and notice that the flow velocity v is equal to q/At. Thus we
obtain

0 = v
dCA

dl
− DA

d2CA

dl2
+ kCn

A ,

or

DA
d2CA

dl2
− v

dCA

dl
− kCn

A = 0 .

With the following dimensionless variables: ω = l/L for a dimensionless length with L
denoting the total length of the reactor and x = CA/CAf , a dimensionless concentration
with CAf denoting the feed concentration, we get

DA

L2

d2
(
CA/CAf

)
d(l/L)2

− v

l

d
(
CA/CAf

)
d(l/L)

− k · Cn−1
Af

Cn
A

Cn
Af

= 0 .
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Multiplying this by L/v we obtain

DA

L · v
d2x

dω2
− dx

dω
−

(
k · L ·Cn−1

Af

v

)
xn = 0 .

For the Peclet number Pe = L · v/DA and the Damköhler number Da = k · L · Cn−1
Af

/v
we thus have obtained the second-order DE

1
Pe

d2x

dω2
− dx

dω
− Da · xn = 0 , (5.24)

where for a first-order reaction (with n = 1) we use Da = k · L/v and for a second-order
reaction (with n = 2) we have Da = k ·L ·CAf /v .
The boundary conditions for (5.24) are as follows at the exit :

for ω = 1 :
dx

dω
= 0 , (5.25)

and at the entrance :
for ω = 0 :

1
Pe

dx

dω
= x − 1 . (5.26)

For example, the boundary condition (5.26) at the entrance can be obtained as shown in
Figure 5.6.

→ q, CAf

→ NA

q, CAf →

00− 0+
�

Mass flow at the entrance
Figure 5.6

The mass balance at the entrance gives us for l = 0

q ·CAf = q · CA + At · NA .

Dividing by At and using Fick’s law once more, we get

v ·CAf = v ·CA − DA
dCA

dl

with the diffusion coefficient DA of component A, or

1 = x− DA

l · v
dCA

dl
,

and ultimately
1
Pe

dx

dω
= x − 1 ,
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as stated in (5.26). Thus the complete model equations for the nth order reaction are

1
Pe

d2x

dω2
− dx

dω
−Da·xn = 0 (5.24)

for n = 1, 2, together with the earlier boundary conditions (5.25) and (5.26).

The present problem is a design problem, since the required conversion rate of 0.75
is given and we want to find the value of Da that achieves this. But for educational
purposes, before we present the solution of this design problem, we first present the
simulation problem where Da is given and the conversion is unknown.

Analytic Solution of the Linear Case

Here we assume that Da = 1.4 and that the reaction is first-order. The solution of the
simulation problem is as follows.

Solution of the second-order differential equation (5.24) for the first-order
reaction

For a first-order reaction (n = 1), equation (5.24) becomes

d2x

dω2
− (Pe) · dx

dω
− (Pe · Da)x = 0 . (5.27)

This is a linear second-order ordinary differential equation that can be solved explicitly
by using the characteristic equation

λ2 − Peλ − Pe · Da = 0 . (5.28)

The roots of this second-degree polynomial are

λ1,2 =
Pe ±

√
(Pe)2 + 4Pe · Da

2
. (5.29)

Thus for Pe = 15 and Da = 1.4 we have

λ1,2 =
15 ± 17.58

2
= 16.29 or − 1.29

by using a calculator, or via MATLAB’s polynomial root command for the vector
[1,-15,-15*1.4] of the polynomial coefficients for λ2, λ1 = λ, and the constant term
λ0 = 1 in (5.28).
>> roots([1 -15 -15*1.4])

ans =

16.28919791562348

-1.28919791562347

From the theory of linear differential equations, the solution of the second-order linear
differential equation (5.27) has the general form

x(ω) = C1e
λ1ω + C2e

λ2ω = C1e
16.29ω + C2e

−1.29ω . (5.30)
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The constants C1 and C2 in (5.30) can be calculated from our boundary conditions.
The derivative of x in (5.30) is

dx

dω
= C1λ1e

λ1ω + C2λ2e
λ2ω .

The boundary condition (5.25) at the end (ω = 1) yields the equation

C1 · 16.29 · e16.29 = −C2(−1.29)e−1.29 ,

or C2 = (5.4479 · 108) ·C1. From the boundary condition (5.26) at the entrance (ω = 0)
we deduce

1
Pe

dx(0)
dω

=
1
Pe

(C1λ1 + C2λ2) = (C1 + C2) − 1 = x(0) − 1 .

For our data the inner equation above reads as

1
15

(16.29 · C1 + (−1.29) · 5.448 · 108 · C1) = C1 + 5.448 · 108 · C1 − 1 ,

making C1 = 16.9 · 10−10. Since C2 = (5.448 · 108) · C1, we obtain C2 = 0.9207. Thus
the solution of the boundary value problem is

x(ω) = 16.9 · 10−10e16.29ω + 0.9207e−1.29ω .

At the exit when ω = 1 the dimensionless concentration of component A is

x(1) = 16.9 · 10−10e16.29 + 0.9207e−1.29 = 0.27351 .

For Pe = 15.0 and Da = 1.4, x = CA/CAf , and the conversion xA = (CAf − CA)/CAf =
1 − x, the actual value of the conversion at the exit is 1 − 0.27351 = 0.72649 or about
73% , i.e., we have reached close to 75% conversion at the reactor exit.

Now we study the design problem where Da is unknown, the conversion xA is to be
equal to 0.75, and therefore the dimensionless concentration at the exit is x(1) = 0.25 (=
1− xA). We follow the same procedure above until we reach the expression (5.29) for λ1

and λ2. This expression now contains an unknown Da and the variable Pe.

λ1,2 = λ1,2(Da, Pe) =
Pe ±

√
P 2

e + 4 · Pe · Da

2
.

With x(ω) = C1e
λ1ω + C2e

λ2ω and dx/dω = C1 · λ1 · eλ1ω + C2 · λ2 · eλ2ω , the boundary
condition at the exit (ω = 1) becomes dx(1)/dω = C1 · λ1 · eλ1 + C2 · λ2 · eλ2 = 0.
Therefore

C2 = −C1 · λ1 · eλ1

λ2 · eλ2
. (5.31)

The boundary condition at the start (ω = 0) is (1/Pe) · (dx(0)/dω) = x(0)− 1, and thus
for our specific case

1
Pe

(C1 · λ1 + C2 · λ2) = (C1 + C2) − 1 . (5.32)
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By combining (5.31) and (5.32) we obtain

1
Pe

(
C1 · λ1 − C1 · λ1 · eλ1

λ2 · eλ2
λ2

)
=

(
C1 − C1 · λ1 · eλ1

λ2 · eλ2

)
− 1 .

Solving for C1 we finally get

C1 =
−1(

λ1
Pe

− 1
)

+
(

λ1
λ2

eλ1−λ2

)(
1 − λ2

Pe

) . (5.33)

Note that λ1 − λ2 =
(
Pe/2 +

√
(Pe/2)2 + Pe · Da

)
−

(
Pe/2 −√

(Pe/2)2 + Pe · Da

)
=√

P 2
e + 4 · Pe · Da. Thus C1 can be expressed in dependence on the Damköhler number

Da and the Peclet number Pe as follows.

C1 = F1(Da, Pe) =
−Pe

λ1 − Pe + λ1
λ2

eλ1−λ2 · (Pe − λ2)
. (5.34)

Using (5.31), namely C2 = −C1
λ1
λ2

eλ1−λ2 , we furthermore have the functional relation

C2 = F2(Da, Pe) = −F1(Da)
Pe +

√
P 2

e + 4 · Pe ·Da

Pe −
√

P 2
e + 4 · Pe ·Da

e
√

P2
e +4·Pe·Da

that expresses C2 in terms of Da and Pe.
Next we consider the dimensionless concentration equation x(ω) = C1e

λ1ω + C2e
λ2ω in

light of the boundary conditions. At the exit ω = 1 we have

x(1) = C1e
λ1 + C2e

λ2

= F1(Da, Pe)ePe/2+
√

(Pe/2)2+Pe·Da + F2(Da, Pe)ePe/2−
√

(Pe/2)2+Pe·Da

= F1(Da, Pe) · f1(Da, Pe) + F2(Da, Pe) · f2(Da, Pe)

for f1,2(Da, Pe) = ePe/2±
√

(Pe/2)2+Pe·Da and Fi as before for i = 1, 2.

As we desire to find Da for the given Peclet number Pe = 15 and the desired
conversion xA(1) = 1 − x(1) = 0.75 at the end, we need to solve

F (Da, Pe) = F1(Da, Pe) · f1(Da, Pe) + F2(Da, Pe) · f2(Da, Pe) − x(1) = 0 (5.35)

for Da using the desired exit concentration x(1) = 1 − xA(1) = 0.25. Equation (5.35) is
a transcendental equation in Da for the given values of Pe and x(1) (or xA(1)). It can be
solved easily in MATLAB using its fzero.m root finder. Here is a program that solves
(5.35) for all values of Pe and all desired exit conversions xA(1) = 1−x(1) (or all desired
exit concentrations x(1) = 1 − xA(1)). The program starts out with 12 lines of com-
ments, followed by default settings and the call of fzero that solves (5.35) for the given
input data. The next block of lines contains the plotting preparations and commands, if
plotting is desired. The final subfunction DaPe evaluates the function F in (5.35) for use
inside the call of fzero in the main program.
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function [Da, err] = conversionDa(Pe,percent,start,plotting)

% [Da, err] = conversionDa(Pe,percent,plot)

% Sample call : [Da, err] = conversionDa(15,.75,1)

% Input: Pe : Peclet number; in the range 1 to 25;

% percent : percentage of conversion xA(1) desired at the end;

% range .01 to 0.99 (or 1 to 99 %)

% start: starting estimate of Da. Default Da = 2;

% try start = 1, 20, 100, or 1000 if NaNs appear.

% plotting: set to 1 if a plot is desired for F(Da).

% Output: Da : the desired value for the Damkoehler number;

% err: the deviation from zero of F(Da), the error.

% Plot of the F(Da) curve near the root, if desired (plotting = 1)

if nargin == 2, start = 2; plotting = 0; end

if nargin == 3, plotting = 0; end

warning off; ltol = 10^-14; % Default settings; call fzero from Da = start:

Da = fzero(@DaPe,start,optimset(’dis’,[],’tolx’,ltol),Pe,percent);

err = DaPe(Da,Pe,percent);

if plotting == 1 % if plot is desired

x = linspace(Da/3,3*Da,100); hperc = 100*percent;

plot(x,DaPe(x,Pe,percent),’LineWidth’,1.5), hold on, v = axis;

plot([v(1) v(2)],[0 0],’-r’,’LineWidth’,1.5), plot(Da,v(3),’r+’),

title([’Finding D_a with F(D_a) = 0 (for P_e = ’,num2str(Pe,’%5.3g’),...

’ and ’,num2str(hperc,’%8.6g’),’ % conversion)’],’FontSize’,12)

xlabel([’D_a (solution at D_a = ’,num2str(Da,’%9.6g’),’ )’],...

’FontSize’,12);

ylabel(’F(D_a) ’,’FontSize’,12,’Rotation’,0); hold off, end

function F = DaPe(x,Pe,percent)

Da = x; int = (Pe^2 + 4*Pe*Da).^0.5; % prepare data and constants

F1 = -Pe./((Pe+int)/2 - Pe +... % form the four ingredients

((Pe + int)./(Pe - int)).*exp(int).*(Pe+int)/2);

f1 = exp(Pe/2 + int/2);

f2 = exp(Pe/2 - int/2);

F2 = -F1.*(Pe + int)./(Pe - int).*exp(int);

F = F1.*f1 + F2.*f2 - (1 - percent); % form F

Specifically, for Pe = 15.0 and a desired exit conversion rate xA(1) of 75% we compute
the corresponding Dahmköhler number as Da = 1.506 after setting start = 1 in the
above code conversionDa.m and using percent = xA(1) = 1 − x = 0.75.
We can validate our formulas and code against the earlier computed conversion rate
of 72.64% at the end of the tubular reactor for the Damköhler number Da = 1.4 and
Pe = 15.0 by running >> conversionDa(15,0.7264) with the inputs Pe = 15 and
the conversion rate percent = 0.7264 (= xA) in MATLAB. This call computes the
Damköhler number Da = 1.4007 correctly to within 0.05%.

The MATLAB function multiconversionDa.m is designed to compute and display
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the value of the Damköhler number Da that solve the equation (5.35) for various inputs
of the desired concentration xA(1). Here is its code.

function [Da, err] = multiconversionDa(Pe,Percent,start)

% [Da, err] = multiconversionDa(Pe,percent,start)

% Sample call : [Da, err] = multiconversionDa(15,0.01:0.02:.99);

% Input: Pe : Peclet number; in the range 1 to 25;

% Percent : vector of percentage of conversion xA(1) desired at the end;

% range .01 to 0.99 ( 1% to 99% )

% start: starting estimate of Da. Default Da = 2;

% try start = 1, 20, 100, or 1000 if NaNs appear.

% Output: Da : the desired vector of values for the Damkoehler number;

% err: the deviation vector from zero of F(Da), the error.

% Plot of Da versus xA(1) curve

if nargin == 2, start = 2; end

m = length(Percent); Da = zeros(m,1); err = zeros(m,1); hperc = 100*Percent;

warning off; ltol = 10^-14; % Default settings; call fzero from Da = start:

for i = 1:m % Find Da for all given percentage rates

Da(i) = fzero(@DaPe,start,optimset(’dis’,[],’tolx’,ltol),Pe,Percent(i));

err(i) = DaPe(Da(i),Pe,Percent(i)); end

plot(Percent,Da) % plot Da versus xA

title([’Finding D_a with F(D_a) = 0 for P_e = ’,...

num2str(Pe,’%5.3g’),’ and ’,num2str(min(Percent),’%8.4g’),...

’ \leq x_A(1) \leq ’,num2str(max(Percent),’%8.4g’),’ conversion’],...

’FontSize’,12), xlabel(’x_A(1)’,’FontSize’,12);

ylabel(’D_a ’,’FontSize’,12,’Rotation’,0); hold off,

function F = DaPe(x,Pe,percent)

Da = x; int = (Pe^2 + 4*Pe*Da).^0.5; % prepare data and constants

F1 = -Pe./((Pe+int)/2 - Pe +... % form the four ingredients

((Pe + int)./(Pe - int)).*exp(int).*(Pe+int)/2);

f1 = exp(Pe/2 + int/2);

f2 = exp(Pe/2 - int/2);

F2 = -F1.*(Pe + int)./(Pe - int).*exp(int);

F = F1.*f1 + F2.*f2 - (1 - percent); % form F

Figure 5.7 shows the plot obtained by calling multiconversionDa(15,0.01:0.02:.99);
for example.
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Next we study equation (5.35) for a fixed value of Da. Here we try to solve the
equation for Pe as xA(1) varies. The call of multiconversionPe(1.5,0.5:0.002:0.9);
creates the following plot of Pe as a function of the output conversion xA(1).
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The code of multiconversionPe.m is much more involved than multiconversionDa.m
and is printed below.

function [Pe, err] = multiconversionPe(Da,Percent)

% [Pe, err] = multiconversionPe(Da,percent)

% Sample call : [Pe, err] = multiconversionPe(1.5,0.5:0.002:0.9);

% Input: Da : Damkoehler number; in the range of 0.1 to 10;

% Percent : vector of percentage of conversion xA(1) desired at the end;

% range .01 to 0.99 ( 1% to 99% )

% start: starting estimate of Pe. Default Pe = 12;

% try start = 1, 20, 100, or 1000 if NaNs appear.

% Output: Pe : the desired vector of values for the Peclet number;

% err: the deviation vector from zero of F(Pe), the error.

% Plot of Pe versus xA(1) curve

% If plot is discontinuous, refine your Percent vector to cover the

% relevant range

m = length(Percent); Pe = zeros(m,1); err = zeros(m,1); start = 1;

warning off; ltol = 10^-10; % Default settings; call fzero from Da = start:

for i = 1:m % Find Da for all given percentage rates

if Da >= 1.3 & Da <= 1.56 % set starting values for fzero

plim = 0.44*Da; PLim = plim*1.05; end

if Da > 1.56, plim = 0.37*Da; PLim = plim*1.05; end

if Da > 2, plim = Da*0.3; PLim = plim*1.05; end

if Da < 1.3 & Da > 0.8, plim = Da/2; PLim = plim*1.05; end

if Da <= 0.8, plim = Da*.6; PLim = 1.05*plim; end

if Da < 0.6, plim = Da*.7; PLim = plim*1.05; end

if Da < 0.41, plim = Da*.73; PLim = plim*1.05; end

if Percent(i) <= PLim/1.05 & Percent(i) >= plim/1.05, start = 1; end

if Percent(i) <= PLim & Percent(i) >= plim, start = 2; end

if Percent(i) <= PLim*1.05 & Percent(i) >= PLim, start = 5; end

if Percent(i) <= PLim*1.05^2 & Percent(i) >= PLim*1.05, start = 14; end

if Percent(i) <= PLim*1.05^3 & Percent(i) >= PLim*1.05^2, start = 30; end

if i > 1 & Pe(i-1) > 0, start = Pe(i-1); end % use last Pe value as start

try % circumnavigate failures

Pe(i) = fzero(@DaPe,start,optimset(’Display’,’off’,’TolX’,ltol),...

Da,Percent(i)); err(i) = DaPe(Da,Pe(i),Percent(i));

Pe(i) = max(Pe(i),-1);

if imag(err(i)) ~= 0, Pe(i) = -1; err(i) = -1; end

catch % set failure data equal to unplotted NaNs

Pe(i) = -1; err(i) = -1;

end

if imag(Pe(i)) ~= 0, Pe(i) = -1; end, end

j = find(Pe ~= -1); Peplot = Pe(j);

Percentplot = Percent(j); % select relevant data

plot(Percentplot,Peplot) % plot Da versus xA in relevant range

title([’Finding P_e with F(P_e) = 0 for Da = ’,...

num2str(Da,’%6.4g’),’ and ’,num2str(min(Percent),’%8.4g’),...
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’ \leq x_A(1) \leq ’,num2str(max(Percent),’%8.4g’),’ conversion’],...

’FontSize’,12), xlabel(’x_A(1) (relevant range plot)’,’FontSize’,12);

ylabel(’P_e ’,’FontSize’,12,’Rotation’,0); hold off,

function F = DaPe(x,Da,percent)

Pe = x; int = (Pe.^2 + 4*Pe*Da).^0.5; % prepare data and constants

F1 = -Pe./((Pe+int)/2 - Pe +... % form the four ingredients

((Pe + int)./(Pe - int)).*exp(int).*(Pe+int)/2);

f1 = exp(Pe/2 + int/2);

f2 = exp(Pe/2 - int/2);

F2 = -F1.*(Pe + int)./(Pe - int).*exp(int);

F = F1.*f1 + F2.*f2 - (1 - percent); % form F

multiconversionPe.m gives valuable output for all Da with 0.15 ≤ Da ≤ 15. Its first
16 lines of MATLAB code adjust the starting value start that is used initially in the
MATLAB built-in root finder fzero for the function DaPe, given at the end of the code.
Our function DaPe represents the equation (5.35) in standard form. When solving (5.35)
via fzero over a broad interval of xA(1) values, the algorithm usually encounters many
failures for xA(1) values that are out of range. This data is cleaned up before we can plot
Pe(xA(1)) in its relevant, i.e., data yielding range. Once fzero has successfully solved
equation (5.35), we use the previously computed value for Pe as the starting guess for
the next call of fzero. This method of “continuation” works quite well.
For another approach to solving equation (5.35) for Da or Pe, see Problem 1 of the
Exercises for this section.

The Nonlinear Case

Solution of the second-order two-point boundary value problem (5.24) for a
second-order reaction

For a second-order reaction (n = 2), equation (5.24) becomes

d2x

dω2
− (Pe) · dx

dω
− (Pe ·Da)x2 = 0 (5.36)

with Da = k ·L · CAf /v. This is a nonlinear second-order ordinary differential equa-
tion due to the appearance of x2. Nonlinear DEs can generally not be solved explicitly.
Equation (5.36) comes with the two boundary conditions

dx

dω
= 0 at ω = 1

and
1
Pe

dx

dω
= x − 1 at ω = 0 .

As explained in Section 1.2.2, the numerical solution of second- or higher-order DEs is
generally approached numerically from an equivalent but enlarged first-order system of
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DEs. Therefore our first step is to put the second-order differential equation (5.36) into
the form of two first-order ones. For this we set x1 = x and x2 = dx/dω. Then

d2x

dω2
=

d2x1

dω2
=

dx2

dω

and the original second-order differential equation (5.36) can be rewritten as a system of
two first-order differential equations, namely

dx1

dω
= x2

and (5.37)
dx2

dω
= Pe · x2 + Pe · Da · x2

1

with the boundary conditions x2(1) = 0 at ω = 1 and x2(0) = Pe · (x1(0) − 1) at ω = 0.

Let us investigate how MATLAB handles boundary value problems such as (5.24)
with the boundary conditions (5.25) and (5.26) for first- and second-order reactions. The
MATLAB program linquadbvp.m has been designed for this purpose.

function linquadbvp(Pe,Da)

% linquadbvp(Pe,Da)

% sample call : linquadbvp(15,1.4)

% Input : Pe = Peclet number; Da = Damkoehler number

% Output: Plots of the solutions (theoretical [if known] and numerical)

% to the 2 point BVP (5.24) for first and second order right

% hand sides, and their derivatives.

if Pe == 15 & Da == 1.4, % If theoretical solution is known :

om = linspace(0,1,100); % plot theoretical solution and its derivative

xtheor = 16.9*10^-10*exp(16.29*om) + 0.9207*exp(-1.29*om);

xprimetheor = 16.29*16.9*10^-10*exp(16.29*om) - 1.29*0.9207*exp(-1.29*om);

plot(om,xtheor,’+r’), hold on

plot(om,xprimetheor,’g’), end

sol = bvpinit(linspace(0,1,24),@initial); % initialize boundary value solver

options = bvpset(’NMax’,1000,’Vectorized’,’on’); % solve with first order RHS

solone = bvp4cfsinghouseqr(@frhslin,@frandbedlin,sol,options,Pe,Da);

xint = linspace(0,1); Sxintone = deval(solone,xint);

plot(xint,Sxintone(1,:),’b’), hold on % plot numerical solution

% solve with second order RHS and plot :

soltwo = bvp4cfsinghouseqr(@frhsquad,@frandbedquad,sol,options,Pe,Da);

xint = linspace(0,1); Sxinttwo = deval(soltwo,xint);

plot(xint,Sxinttwo(1,:),’k’),

if Pe ~= 15 | Da ~= 1.4, plot(xint,Sxintone(2,:),’g’), end

plot(xint,Sxinttwo(2,:),’:k’),

if Pe == 15 & Da == 1.4,

legend(’theor. first order DE sol.’,’theor. first order DE slope’,...
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’num. first order DE sol.’,’num. second order DE sol.’,...

’num. second order DE slope’,0), else

legend(’num. first order DE sol.’,’num. second order DE sol.’,...

’num. first order DE slope’, ’num. second order DE slope’,0), end

title([’Solutions to the BVP (5.24) for first and second order reactions’,...

’ (for P_e = ’,num2str(Pe,’%6.4g’),’ and D_a = ’,...

num2str(Da,’%6.4g’),’ )’],’Fontsize’,12), xlabel(’\omega’,’Fontsize’,12),

ylabel([{’ ’},{’ ’},{’ ’},{’ ’},{’x(\omega) ’},{’ ’},{’ ’},{’ ’},...

{’ ’},{’ ’},{’ ’},{’xprime(\omega) ’}],’Fontsize’,12,’Rotation’,0),

hold off

function dydx = frhslin(x,y,Pe,Da) % Right hand side of first order DE

dydx = [ y(2,:)

Pe*y(2,:)+Pe*Da*y(1,:)];

function Rand = frandbedlin(ya,yb,Pe,Da) % boundary condition, first order DE

Rand = [ yb(2)

ya(2)-Pe*ya(1)+Pe];

function dydx = frhsquad(x,y,Pe,Da) % Right hand side of second order DE

dydx = [ y(2,:)

Pe*y(2,:)+Pe*Da*y(1,:).^2];

function Rand = frandbedquad(ya,yb,Pe,Da) % boundary condition, second order DE

Rand = [ yb(2)

ya(2)-Pe*ya(1)+Pe];

function f = initial(x) % initial guess

f = [-0.6*x+0.9;1.2*x-1.2];

The plotting output of linquadbvp depends on our choice of Peclet number Pe and
Damköhler number Da. If we know the theoretical solution to the BVP, as we do for
Pe = 15 and Da = 1.4, for example, from p. 266, we start the program by plotting the the-
oretical solution using + signs. Then we initialize the BVP solver bvp4cfsinghouseqr.m
and call it to obtain the numerical solution and its derivative for the first-order reaction.
This is followed by solving the BVP for the second-order reaction and by general plotting
commands. The boundary value problem solver bvp4cfsinghouseqr uses the right-hand
side of the DE, called frhslin and frhsquad by us, respectively, as well as the bound-
ary condition functions frandbedlin or frandbedquad depending on the order of the
reaction. These two functions are problem specific and have to be altered according to
the actual BVP that needs to be solved. bvp4cfsinghouseqr.m furthermore uses our
initial guess sol of the solution, that is given by the function initial, as well as various
technical option parameters and the two relevant system parameters Pe and Da. More
details on the derivation and use of our MATLAB BVP solver bvp4cfsinghouseqr.m is
given in Section 5.1.3.
Figure 5.9 gives the graphical output of a call of linquadbvp(15,1.4).
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In Figure 5.9 we observe that the theoretical solution (+) and the numerical solution (-)
of the DE (5.24) coincide for the first-order reaction. But for the nonlinear second-order
reaction, there is no known theoretical solution, hence we cannot compare.
Note that in most applications, BVPs have no known theoretical solutions and one has
to rely on numerical analysis when solving BVPs.

First Numerical Considerations

The axial dispersion model has led to the two-point boundary value problem (5.37) for ω
from ω = ωstart = 0 to ω = ωend = 1. DEs are standardly solved by numerical integration
over subintervals of the desired interval [ωstart, ωend]. For more on the process of solving
BVPs, see Section 1.2.4 or click on the Help line under the View icon on the MATLAB
desktop, followed by a click on the Search tab in the Help window and searching for
“BVP”.
For initial value problems such as the ones we have encountered in Chapter 4, there is
only one possible direction of integration, namely from the initial value ωstart onwards.
But for two-point BVPs we have function information at both ends ωstart < ωend and
we could integrate forwards from ωstart to ωend, or backwards from ωend to ωstart.
Regardless of the direction of integration, each boundary value problem on [ωstart, ωend]
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is generally solved iteratively via small sub-interval integrations, followed by the nonlin-
ear problem of matching the parts of a solution so that they connect at the inner points
of the partition of [ωstart, ωend].

Due to these inner iterations via IVP solvers and due to the need to solve an associated
nonlinear systems of equations to match the local solutions globally, boundary value
problems are generally much harder to solve and take considerably more time than initial
value problems. Typically there are between 30 and 120 IVPs to solve numerous times
in each successful run of a numerical BVP solver.

In which direction to integrate BVPs? Or the role of stiffness in DEs.

If we naively integrate equation (5.37) forwards then two problems will arise.

1. Any chosen value for x1(0) carries a small error. Since x2(0) is determined from
x1(0) and Pe via the boundary condition x2(0) = Pe · (x1(0) − 1) at ω = 0, then
for large values of Pe(>> 5) the error in x1(0) propagates to x2(0) in an amplified
manner.

2. We may consider the linear version (5.27) of the BVP as an approximation to (5.37)
and inspect the characteristic roots or the eigenvalues of the linearized differential
equation. The characteristic equation p(λ) = 0 for the linear case is

p(λ) = λ2 − Pe · λ − Pe · Da = 0

with its roots λ1,2 = Pe ±
√

P 2
e + 4 · Da · Pe/2. One of these roots is positive and

the other is negative. In particular, if Pe = 15.0 and Da = 1.4 as studied earlier
for 72.649% conversion, then the two roots were computes as λ1 = 16.29 and
λ2 = −1.29. And the solution of the DE has the general form x(ω) = C1e

16.29·ω +
C2e

−1.29·ω.
Note that |λ1| >> |λ2| by a factor exceeding 12 here and that the C1e

16.29·ω part of
the solution will grow rapidly in the positive ω direction, while the other C2e

−1.29·ω

part of the solution will decrease slowly as ω increases. We say that e16.29·ω exhibits
instability for growing ω, while e−1.29·ω is quite stable as ω increases. DEs with two
largely disproportionate eigenvalues λ1,2 that satisfy

(a) λ1 · λ2 < 0,

(b) λ2 < 0, and

(c) |λ1| >> |λ2|
are considered to be stiff differential equations. Such stiff DEs need special care
in their numerical treatment. Stiff DEs carry inherent instabilities with them due
to a potentially devastating mixture of slow decline and rapid growth in different
parts of their solutions.
[ Refer to subsection (H) of Appendix 1 for more on linear DEs.]

3. Given the Peclet number Pe = 0.1 and the Damkoehler number Da = 1.5 instead,
the roots of λ2 − Peλ − Pe · Da = 0 are 0.44051 and −0.34051. These roots satisfy
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two of the conditions for stiffness, but not the third that |λ1| >> |λ2|. Hence for
this case the linearized DE is not stiff and its integration creates fewer problems.

Thus due to potential stiffness, integrating a BVP such as the one in equation (5.37)
in the positive ω direction from 0 to 1 may not be wise in all cases. In fact, backward
integration is much more stable for our simplified model since in backward integration,
the eigenvalues switch signs and then the problem is no longer stiff according to the
definition.
Actually a theoretical proof of whether a given DE is stiff or not is rather complicated
if not impossible for most DE problems. Therefore it is best to use numerical codes that
switch internally to backward integration if forward integration encounters troubles with
numerical convergence and vice versa, giving us the best method for either situation.

5.1.3 Numerical Solution of Nonlinear BVPs.
The Non-Isothermal Case

In the previous subsection we have studied two simplified single DEs, linear and nonlin-
ear, that were derived from our system of coupled BVPs (5.20) and (5.19). We now want
to solve the system of coupled BVPs (5.20) and (5.19) numerically with all its complex-
ities.

Following our numerical insights for the linear single simplified DE above, we first
show how to rewrite (5.20) and (5.19) and the associated boundary conditions

dy(1)
dω

=
dxA(1)

dω
= 0 , and

1
PeH

dy(0)
dω

= y(0) − 1 ,

as well as
1

PeM

dxA(0)
dω

= xA(0) − 1

for backwards integration. We can do so by introducing the backwards variable ω
′
= 1−ω.

Then the first derivative terms in (5.20) and (5.19) change signs since dω = −dω
′
, but

the second derivative terms do not. A simple calculus explanation for this is as follows:
if we reverse direction by setting ω

′
= 1 −ω in the DEs, then function increases become

function decreases as we change our direction and thus the first derivative terms change
signs in the DEs. As the first derivative measures the slope of a function, the second
derivative measures curvature and convexity. This does not change, however, when we
reverse our directional variable from ω to ω′. What was convex up stays so upon a change
of direction. Moreover, the boundary conditions for ω

′
flip from those for ω so that the

BVP with the DEs (5.20) and (5.19) expressed in terms of ω′ for the adiabatic case with
Q′ = 0 becomes

for the mass
1

PeM

d2xA

dω′ 2
+

dxA

dω′ = Dae−γ/y · xA , (5.38)

and

for the heat
1

PeH

d2y

dω′ 2
+

dy

dω′ = −β · Dae−γ/y · xA (5.39)
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with the “flipped” boundary conditions with reversed signs on the right-hand sides,
namely

at ω
′
= 0 :

dxA(0)
dω

′ =
dy(0)
dω

′ = 0

and (5.40)

at ω
′
= 1 :

1
PeM

dxA(1)
dω′ = 1 − xA(1) and

1
PeH

dy(1)
dω′ = 1 − y(1) .

Recall that w′ = 1 − w here.

Our next task is to rewrite both, the second-order two-DE systems (5.20), (5.19)
used in forward integration and the DE system (5.38), (5.39) that is used for backwards
integration, in the form of a first-order system of four DEs each. These have the form
u′ = f(u) or v′ = g(v), respectively with u, v ∈ R4. We refer to Section 1.2.2 for the
formal reduction of high-order DEs to first-order enlarged systems of DEs.

In the following we work on the second-order system of DEs (5.38) and (5.39).
To obtain an equivalent first-order system of DEs, we set u = u(ω′) = (u1(ω′), . . . , u4(ω′))T

for u1 = xA(ω′), u2 = u′
1, u3 = y(ω′), and u4 = u′

3. From the differential equations (5.38)
and (5.39) we can readily see that the following system of DEs holds for u(ω′) :

u′ =

⎛⎜⎜⎝
u′

1

u′
2

u′
3

u′
4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
u2

PeM · (Da · e−γ/u3 · u1 − u2)
u4

−PeH · (β · Da · e−γ/u3 · u1 + u4)

⎞⎟⎟⎠ = f(u) . (5.41)

Note that the differential equation u′ = f(u) in (5.41) is a set of first-order DEs since
it contains only first derivatives, and it is nonlinear since its right-hand-side function f
is highly nonlinear in the component functions of u. According to (5.40) its boundary
conditions are

at ω
′
= 0 : u2(0) = u4(0) = 0

and (5.42)

at ω
′
= 1 :

u2(1)
PeM

+ u1(1) − 1 = 0 and
u4(1)
PeH

+ u3(1) − 1 = 0 .

Similarly we obtain the following first-order system v′ = g(v) for the BVP (5.20)
and (5.19) in the variable ω with v = v(ω) = (v1, . . . , v4(ω))T where we have set
v1 = xA(ω), v2 = v′1, v3 = y(ω), and v4 = v′3.

v′ =

⎛⎜⎜⎝
v′1
v′2
v′3
v′4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
v2

PeM · (Da · e−γ/v3 · v1 + v2)
v4

PeH · (−β ·Da · e−γ/v3 · v1 + v4)

⎞⎟⎟⎠ = g(v) (5.43)
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with the boundary conditions

at ω = 0 :
v2(0)
PeM

− v1(0) + 1 = 0 and
v4(0)
PeH

− v3(0) + 1 = 0

and (5.44)
at ω = 1 : v2(1) = v4(1) = 0 .

We leave the reduction of the two coupled DEs in (5.20) and (5.19) to this first-order DE
system as an exercise.

Here are our MATLAB implementations of the four dimensional first-order DE (5.41)
in dydx, and of its boundary conditions (5.42) in Rand. These two auxiliary functions
dydx and Rand are called upon in MATLAB’s built-in BVP solver bvp4c and in our
modified BVP solver bvp4cfsinghouseqr.m.

function dydx = frhsDaPe(x,y,Da,bt,ga,PeH,PeM) % right hand side of DE

dydx = [ y(2,:) % backward integration

PeM*(Da*exp(-ga./y(3,:)).*y(1,:)-y(2,:))

y(4,:)

PeH*(-bt*Da*exp(-ga./y(3,:)).*y(1,:)-y(4,:)) ];

function Rand = frandbedDaPe(ya,yb,Da,bt,ga,PeH,PeM) % boundary condition

Rand = [ ya(2) % reversed also

ya(4)

yb(2)/PeM+yb(1)-1

yb(4)/PeH+yb(3)-1 ] ;

Note that we use ui = y(i,:) in the derivative function dydt and that the symbol ya(i)
denotes ui(ω′ = 0) in Rand while yb(i) denotes ui(ω′ = 1), all for i = 1, ..., 4.

Before delving into the numerics of solving the BVP (5.41) with (5.42) or the BVP
(5.43) with (5.44) we shall first draw a few profiles of xA and y in terms of ω for the
Peclet numbers PeH = 4 and PeM = 8 and the Dahmköhler numbers Da = 105, 106.5,
and 107, for example. We do this in MATLAB by calling the following commands in
sequence:
axialdisp4DaPerunbackw(10^5,1,20,4,8,1,1,1,1); pause,
axialdisp4DaPerunbackw(10^6.5,1,20,4,8,1,1,1,1); pause,
axialdisp4DaPerunbackw(10^7,1,20,4,8,1,1,1,1); .
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Note that the three xA plots of Figure 5.10 appear like upside-down versions of the re-
spective graphs for y. This is physically correct since for an exothermic reaction (β = 1),
the temperature y increases as the concentration xA decreases. The printed graph density
of each pair of solutions xA(ω) and y(ω) that solve the BVP for the same value of Da is
the same in the top and bottom part of Figure 5.10. We indicate the Dahmköhler number
by its logarithm to base 10 on the right side of the graphs: For Da = 107, the solutions
in Figure 5.10 appear as a solid curve, for Da = 6.5 as a wide dotted curve, and for
Da = 5 as a closely dotted curve. Generally the curve color of the computer screen plot
is assigned by selecting one integer between 1 and 128 at random and then defining the
color in each subsequent axialdisp4DaPerunbackw call randomly in the MATLAB code
line SS = colormap(hsv(128)); r = ceil(128*rand(1)); Sl = SS(r,:); below.

function ...

[sol,sp,err] = axialdisp4DaPerunbackw(Da,bt,ga,PeH,PeM,a,p,halten,setDa,sol)

% [sol,sp,err] = axialdisp4DaPerunbackw(Da,bt,ga,PeH,PeM,a,p,halten,setDa,sol)

% Sample call : (without using a nearby solution "sol" for continuation)

% axialdisp4DaPerunbackw(10^5,1,20,4,8,1,1,1,1); pause,

% axialdisp4DaPerunbackw(10^6.5,1,20,4,8,1,1,1,1); pause,

% axialdisp4DaPerunbackw(10^7,1,20,4,8,1,1,1,1);
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% (click "return" after each graph has appeared)

% THIS version uses backward integration, best in case of

% Stiffness of the DE.

% Input : Da : Damkoehler number (typically 10^6, not its log10 !)

% bt, ga : usual inputs; bt = 1, ga = 20 for example

% PeH, PeM : Peclet numbers for heat and mass;

% Use 4 and 8 OR 8 and 4 for example

% a : parameter to set up initial guess for the solution

% p : of p = 1 : we plot; else we only keep the solution "sol",

% sp, and err.

% halten: if halten = 1 : we hold previous plots.

% setDa : if setDa = 1 : we indicate log10(Da) on the right margin

% for each curve.

% sol : starting solution (if known and supplied, otherwise "a" sets

% up the initial guess.

% The color of the graph is chosen at random.

% Output : sol: solution structure;

% If sp = 0, solution was found; if sp = 1, solution is

% spurious and useless; data is discarded;

% err : err set to pi (= 3.14...), if bvp integration was

% unsuccessful.

% m-file used: bvp4cfsinghouseqr.m to solve the BVP.

warning off % because of MATLAB: divideByZero

if nargin < 5, ’Too few inputs, we stop!’, return, end

if nargin == 5, a = 1 + bt; p = 0; halten = 0; setDa = 0; end,

if nargin <= 7, halten = 0; setDa = 0; end,

if nargin == 8, setDa = 0; end

if nargin == 10, oldsol = sol; end

err = pi; sp = 0;

SS = colormap(hsv(128)); r = ceil(128*rand(1)); Sl = SS(r,:);

if PeH == 4 & PeM == 8, guess = [1;0;a;0];

sol = bvpinit(linspace(0,1,15),guess); end,

if PeH == 8 & PeM == 4, % best initial guesses below and above

if a == 1, sol = bvpinit(linspace(0,1,24),@initialt); end,

if a == .5, sol = bvpinit(linspace(0,1,24),@initialm); end,

if a == .7, sol = bvpinit(linspace(0,1,24),@initialmt); end,

if a == 0, sol = bvpinit(linspace(0,1,24),@initialb); end, end

options = bvpset(’RelTol’,10^-2,’AbsTol’,10^-4,’NMax’,1000,’Vectorized’,’on’);

try % if BVP solves all right

sol = bvp4cfsinghouseqr(@frhsDaPe,@frandbedDaPe,sol,options,Da,bt,ga,...

PeH,PeM);

catch % if BVP could not be solved

if nargin == 11, sol = oldsol; end,
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sp = 1; return

end

if p == 1, xint = linspace(0,1); Sxint = deval(sol,xint);

figure(1), subplot(2,1,1), % plot in reverse later

if halten == 0, hold off, else hold on,

if setDa == 1, text(1,1,[’ log_{10}(D_a) : ’],’FontSize’,12), end, end

plot(xint,fliplr(Sxint(1,:)),’Color’,Sl);

figure(1), subplot(2,1,2),

if halten == 0, hold off, else hold on,

if setDa == 1, % backwards integration looks at the starting point

text(1,Sxint(3,1),[’ ’, num2str(log10(Da),’%7.4g’)],’FontSize’,12),

end, end

plot(xint,fliplr(Sxint(3,:)),’Color’,Sl); end,

if p == 1,

if halten == 0,

figure(1), subplot(2,1,1),

title([’Axial dispersion BVP ; with \beta = ’,...

num2str(bt,’%5.3g’),’, \gamma = ’,num2str(ga,’%5.3g’),...

’; PeH = ’,num2str(PeH,’%5.3g’),’, PeM = ’,...

num2str(PeM,’%5.3g’)],’FontSize’,12),

else

figure(1), subplot(2,1,1),

title([’Axial dispersion BVP ; with \beta = ’,...

num2str(bt,’%5.3g’),’, \gamma = ’,num2str(ga,’%5.3g’),...

’; PeH = ’,num2str(PeH,’%5.3g’),’, PeM = ’,num2str(PeM,’%5.3g’)],...

’FontSize’,12), end

xlabel(’\omega’,’FontSize’,12),

ylabel(’xA ’,’Rotation’,0,’FontSize’,12),

subplot(2,1,2), xlabel(’\omega’,’FontSize’,12),

ylabel(’y ’,’Rotation’,0,’FontSize’,12), end

warning on, subplot(2,1,1), hold off, subplot(2,1,2), hold off,

function dydx = frhsDaPe(x,y,Da,bt,ga,PeH,PeM) % right hand side of DE

dydx = [ y(2,:) % backward integration

PeM*(Da*exp(-ga./y(3,:)).*y(1,:)-y(2,:))

y(4,:)

PeH*(-bt*Da*exp(-ga./y(3,:)).*y(1,:)-y(4,:)) ];

function Rand = frandbedDaPe(ya,yb,Da,bt,ga,PeH,PeM) % boundary condition

Rand = [ ya(2) % reversed also

ya(4)

yb(2)/PeM+yb(1)-1

yb(4)/PeH+yb(3)-1 ] ;

function f = initialt(x) % initial guesses

f = [1;0;1;0];
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function f = initialm(x) % for 8/4 for lower middle

x = 1 - x; % reverse for ...backw

if x < .7, f = [1;0;1;0]; end

if x >= .7 & x < .95, f = [-2*x+2.3;-2;2*x-.3;2]; end

if x >= 0.95, f = [.4;0;1.6;0]; end

function f = initialmt(x) % for 8/4 for top middle

x = 1 - x; % reverse for ...backw

if x < .75, f = [-.2*x+1;-.2;1;0]; end

if x > 0.75, f = [-x+1.4;-1;1.6*x-.2;1.6]; end

function f = initialb(x)

f = [0;0;2;0];

The code axialdisp4DaPerunbackw.m consists of a comments block, followed by the gen-
eral default and initialization block, as well as the BVP initialization and solver block.
The actual solution is found inside the central try ... catch ... end lines of code.
This is followed by two blocks of plotting code and the coded DE in dydx with its bound-
ary conditions in Rand, both expressed as vector valued functions. Finally four initial
guess functions for the shape of the solution are given that are used inside the BVP
solver for different parameter data.
Note that axialdisp4DaPerunbackw.m uses backwards integration and plots the reversed
function data as commanded in the lines plot(xint,fliplr(Sxint(1,:)),...) and
plot(xint,fliplr (Sxint(3,:)),...) of the above code so that we view the graphs
of xA(ω) and y(ω) in their natural orientation in Figure 5.10. We could have used
axialdisp4DaPerunfwd.m from the CD instead without plot reversal and we would have
generated the same graphs, indicating that the above data does not lead to a stiff system
of DEs.

The BVP is solved in axialdisp4DaPerunbackw.m by our modified boundary value
code bvp4cfsinghouseqr.m. This code is modified from MATLAB’s standard BVP solver
bvp4c. MATLAB’s bvp4c is a finite difference code that uses a collocation method built
on cubic splines. In its MATLAB version, an initial guess such as our four initial..
functions at the end of the above code serves as a starting guess. The task of bvp4c is
to match the endpoint values of the computed piecewise graphs so that they agree from
left and right up to within a small negligible tolerance. To do this, the previous free IVP
parameter data is altered and improved internally by a Newton search method to achieve
a better match at the subinterval ends, see Section 1.2.1. In bvp4c this is implemented via
Gaussian elimination to find the corrective Newton term uchange = Df−1(uold)f(uold)
in (1.5). Unfortunately in our chemical engineering problems, the Jacobian Df(uold)
occasionally turns out to be singular or nearly singular, so that Gaussian elimination
breaks down. This is rather unfortunate, for then our main task cannot be accomplished.
In the modified BVP code bvp4cfsinghouseqr.m we have repaired this restriction in
bvp4c of working only for nonsingular Jacobians by solving the least squares problem

min‖Df(uold) · uchange − f(uold)‖
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for uchange rather than solving the linear equation

Df(uold) · uchange = f(uold)

via Gaussian elimination. In bvp4cfsinghouseqr.m we solve all linear equations that
involve the Jacobian matrix Df by forcing MATLAB to find the least squares solution
uchange of min‖Df(uold) · uchange − f(uold)‖ by appending a zero row to the (otherwise
square) Jacobian matrix Df and a zero entry to the right-hand-side vector f(uold) and
then using the built-in \ MATLAB command. Type >> help \ to verify our use of \ for
this purpose. The remainder of bvp4cfsinghouseqr.m is identical to MATLAB’s bvp4c
code.
Our reasoning for this change is as follows: If n = 1 and we are looking for a Newton
correction of a 1-dimensional function f : R → R but encounter f ′(uold) = 0 ∈ R, then
the tangent to f at uold is horizontal, there is no indication of where to look for a better
root approximation, and Newton iteration correctly ends without result. If n > 1, how-
ever, as is the case with our DEs (5.41) or (5.43) for n = 4, and if Df(uold) is singular,
then the linear system Df(uold) ·uchange = f(uold) cannot be solved uniquely. But it can
be solved in the least squares sense. Taking the Newton correction vector uchange as the
least squares solution in this case and setting ui+1 = ui + uchange generally works and
improves the boundary value guesses on each subinterval to become better, more agree-
able estimates. And this often allows our algorithm to finish with an accurate solution of
the BVP on a limited number of subintervals, where the original MATLAB code bvp4c
fails by creating ever finer partitions due to its reliance on Gaussian elimination and is
not converging.

The remainder of this section uses our BVP solver code and our experience with
BVP stiffness to try and plot families of solution profiles for fixed values of the Peclet
numbers PeH and PeM and changing Damköhler numbers Da. In fact we compute two
double plots: the first set shows the solution profiles for the concentration xA and the
temperature y of the BVP in (5.38) to (5.40) or equivalently in (5.43) to (5.44) depending
on ω in Figure 5.11, while the second set in Figure 5.12 shows the corresponding values
of xA and y at the end ω = 1, i. e., the concentration rate and temperature at the end
of the reactor, this time in terms of the Damköhler number. There is a range of Da

values with multiple steady states. This is shown in the second set of plots in Figure
5.12 which show the bifurcation phenomenon most clearly. Namely, in the middle range
of Damköhler numbers around 106.5 there are three possible concentration rates xA and
three possible temperatures y at the end of the reactor, corresponding to three different
xA and y profiles along the reactor for the same set of parameters.
This bifurcation analysis is very valuable for every chemical, biochemical, and biomedical
process that involves axial dispersion in a tubular reactor.
Figure 5.11 plots our first set of profile for the Peclet numbers PeH = 4 and PeM = 8. it
is obtained using runaxialdispDa.m.
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Figure 5.11

Note that the profiles in Figure 5.11 are drawn for Damköhler numbers between 105 and
108. The solution curve densities in Figure 5.11 and the colors5 on the computer screen
are chosen at random for high and low Damköhler numbers as explained earlier with
Figure 5.10. The middle profiles, corresponding to the middle gray circles in Figure 5.12
and displayed in green on the computer screen, are printed in Figure 5.11 in uniformly
thin dotted curves that occupy the center portion of the family of solutions.

5References to color always refer to a computer generated color graph of the figure in question.
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In Figures 5.11 and 5.12 our readers will notice certain gaps (six in number) in the
profiles and end-values plots, especially on the middle branch near the bifurcation points
of Figure 5.12. This seems to be caused by our inability to compute reliable solutions for
the middle steady state near the bifurcation points as well as in the middle branch at
several intermediate Da values. This effect is due to a double stiffness of the underlying
system of DEs. This is the case if in a linearization of the DE system, there are two pairs
of stiff eigenvalues for the linearized system matrix A: one pair λ1, λ2 is stiff for increas-
ing values of the parameter ω in the sense of our conditions (a), (b), and (c) on p. 276
and this pair affects the forward integration from left to right. For example, an eigenvalue
pair such as λ1 = 1 and λ2 = −1/100 may cause stiffness when integrating forward. And
in case of double stiffness, besides such a pair there is another pair of eigenvalues λ3, λ4

for A with λ3 ·λ4 < 0 and the altered conditions (b’) λ3 > 0, and (c’) |λ4| >> |λ3|, such
as λ3 = 1/100 and λ4 = −2. The latter pair of “backwards stiff” eigenvalues of A makes
the backwards integration of the DEs stiff at this point of the data as well. This is the
reason for our gaps in the graphs.
In a sense, the numerical results, i. e., the high level of instability in computing the mid-
dle solution to our BVP near the bifurcation points and elsewhere mimics the instability
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of the reactor. The middle steady state is generally highly unstable as a saddle-type
unstable steady state. This despite the fact that it is highly desirable to operate many
industrial processes there, as shown in Chapter 7 since operating on the middle, the
unstable branch is generally associated with more manageable temperatures and higher
yields. In a plant, the middle steady state needs to be stabilized through controls.

The program to generate these roughly 200 plots takes approximately 2 seconds of
CPU time per plot on a 450 MHz SunBlade 100 with 1 Gig of RAM, or 400 seconds
overall. To run this program involves much computing time. The multiple BVP solution
plots of Sections 5.1 and 5.2 use more computing resources than any other program in
this book. Here is the MATLAB program runaxialdispDa.m that plots Figures 5.10
through 5.14 and gives the user a running on-screen output of xA(1) and y(1) for the Da

data of Figure 5.12. In order to save this screen output to a file, the user should learn
how to use the diary function of MATLAB by entering >> help diary.

function [s0,s1] = runaxialdispDa(bt,ga,PeH,PeM,d)

% runaxialdispDa(bt,ga,PeH,PeM,d)

% Sample call :

% d = clock; [s0,s1] = runaxialdispDa(1,20,4,8,1); etime(clock,d)

% Output : two plots:

% the first one shows the solution profiles for the input

% variables, while the second one shows the corresponding end

% values of xA and y in dependence of Da, the Damkoehler number.

% screen output of xA(1), y(1), error of solution for each Da.

% (if d = 1)

% s0 : number of successful runs of BVP solver

% s1 : number of unsuccessful runs of BVP solver

% Note: the algorithm works with parameter continuation from a

% known solution for a nearby Da value to the next Da value,

% up or down as specified.

% The algorithm will stop in its continuation from a

% previous successful run when 3 BVP solver failures have

% occurred in sequence. After the first and second such

% failure, parameter continuation from the last previous

% successful solution will be attempted with closer steps of Da.

% Input: bt, ga : such as bt = 1; ga = 20.

% PeH, PeM : the Peclet numbers, such as 4 and 8 or 8 and 4.

% d = 1 : display stepping data to the screen;

% d = 0 : no screen display.

%

% functions called internally : Damoveupbwd.m , Damoveupfwd.m

% Damovedownbwd.m , Damovedownfwd.m

% advantages for using "backwards" integration in case of DE stiffness;

% else use ...fwd for best results.

if nargin == 4, d = 0; end % for short list of inputs, no display

if d == 1, format short g, format compact, end

s1 = 0; s0 = 0;
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if PeH == 4 & PeM == 8, % one specifically fleshed out example

if d == 1, disp(’top xA, going up :’), end % blue for top

[s00,s11] = Damoveupbwd(5,7.2,.02,bt,ga,PeH,PeM,1,d,’ob’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’top xA, going up in small steps:’), end % blue for top

[s00,s11] = Damoveupbwd(7,7.2,.002,bt,ga,PeH,PeM,1,d,’ob’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’upper upper middle xA, going up (in 4 sections):’), end

[s00,s11] = Damoveupfwd(6.6,7,.004,bt,ga,PeH,PeM,20.2,d,’og’); % green

s0 = s0+s00; s1 = s1+s11;

[s00,s11] = Damoveupfwd(6.7,7,.004,bt,ga,PeH,PeM,20,d,’og’);

s0 = s0+s00; s1 = s1+s11;

[s00,s11] = Damoveupfwd(6.8,7.3,.002,bt,ga,PeH,PeM,20,d,’og’);

s0 = s0+s00; s1 = s1+s11;

[s00,s11] = Damoveupbwd(7.1,7.3,.002,bt,ga,PeH,PeM,19.9,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’upper upper middle xA, going down :’), end

[s00,s11] = Damovedownbwd(6.58,6.4,.004,bt,ga,PeH,PeM,20.2,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’upper middle xA, going up :’), end

[s00,s11] = Damoveupfwd(6.2,6.9,.005,bt,ga,PeH,PeM,21,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’upper middle xA, going down :’), end

[s00,s11] = Damovedownbwd(6.2,6,.005,bt,ga,PeH,PeM,21,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’lower middle xA, going up :’), end

[s00,s11] = Damoveupfwd(5.9,6.3,.005,bt,ga,PeH,PeM,22,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’lower middle xA, going down :’), end

[s00,s11] = Damovedownbwd(6,5.7,.005,bt,ga,PeH,PeM,22,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’lower middle xA, going down in small steps :’), end

[s00,s11] = Damovedownbwd(5.9,5.885,.0002,bt,ga,PeH,PeM,22,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going up :’), end % red for bottom

[s00,s11] = Damoveupbwd(5.8,7.96,.02,bt,ga,PeH,PeM,1000,d,’or’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going down :’), end

[s00,s11] = Damovedownbwd(6.1,5.6,.005,bt,ga,PeH,PeM,1000,d,’or’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going down in small steps :’), end

[s00,s11] = Damovedownbwd(5.86,5.6,.0002,bt,ga,PeH,PeM,1000,d,’or’);

s0 = s0+s00; s1 = s1+s11;

end

if PeH == 8 & PeM == 4, % another fleshed out example
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if d == 1, disp(’top xA, going up :’), end

[s00,s11] = Damoveupbwd(5,7.3,.05,bt,ga,PeH,PeM,1,d,’ob’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’top xA, going up in small steps:’), end

[s00,s11] = Damoveupbwd(7.2,7.3,.005,bt,ga,PeH,PeM,1,d,’ob’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle top xA, going up :’), end

[s00,s11] = Damoveupbwd(7,7.3,.005,bt,ga,PeH,PeM,0.7,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle top xA, going down :’), end % was 6.97

[s00,s11] = Damovedownbwd(7.1,6.975,.002,bt,ga,PeH,PeM,0.7,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle xA, going up :’), end % was 6.5

[s00,s11] = Damoveupbwd(6.7,7.3,.005,bt,ga,PeH,PeM,0.5,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle xA, going up in small steps’), end

[s00,s11] = Damoveupbwd(6.8,7,.002,bt,ga,PeH,PeM,0.5,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle xA, going down :’), end % was 6.6

[s00,s11] = Damovedownbwd(6.7,6.48,.005,bt,ga,PeH,PeM,0.5,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’middle xA, going down in small steps :’), end

[s00,s11] = Damovedownbwd(6.5,6.48,.002,bt,ga,PeH,PeM,0.5,d,’og’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going up :’), end

[s00,s11] = Damoveupbwd(6.55,8.75,.05,bt,ga,PeH,PeM,0,d,’or’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going up in small steps:’), end

[s00,s11] = Damoveupbwd(6.5,6.56,.0005,bt,ga,PeH,PeM,0,d,’or’);

s0 = s0+s00; s1 = s1+s11;

if d == 1, disp(’bottom xA, going down in small (and very small) steps :’), end

[s00,s11] = Damovedownbwd(6.50,6.47,.0005,bt,ga,PeH,PeM,0,d,’or’); %was 6.52

s0 = s0+s00; s1 = s1+s11;

end , format

Note that our program runaxialdispDa is specialized to run for just two sets of values
for PeH and PeM as 4 and 8 or as 8 and 4, respectively. We have not attempted to make
runaxialdispDa truly global by internal parameterizations for other Peclet data. It is
obvious, however, how our readers can modify the program with a bit of trial and error
to work for other sets of Peclet numbers PeH and PeM . The main task for this consists
of figuring out - by trial and error - how to set up the various integration subintervals
differently and to experiment with the direction of integration and the step size used for
different Damköhler numbers.
runaxialdispDauses four further programs Damoveupbwd,Damovedownbwd,Damoveupfwd,
and Damovedownfwd, all available on the CD. The names of these programs indicate the
direction of change (up or down) for Da, as well as the direction of integration in their
“fwd” or “bwd” endings. Here is the listing of Damovedownbwd, for example.
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function ...

[s0,s1,P,Df,Dl,solf,soll] = Damovedownbwd(Ds,De,step,bt,ga,PeH,PeM,a,d,S,sols)

% Auxiliary function for runaxialdispDa(1,20,4,8,1), which calls

% Damovedownbwd(5,7.3,.02,bt,ga,PeH,PeM,1,1,’b’); for example

% Input : Ds = start of log10(Da) values;

% De = end of log10(Da) values;

% step = step size suggested;

% bt, ga, PeH, PeM = given parameters;

% a = starting guess [a = 1, 21, 1000, 22000, ... for example]

% (not used if a starting solution sols is supplied)

% d = display indicator. If d is set to 1, we screen-print log10(Da),

% function values at 1, error, timing data etc.

% S = color and symbol entry for plots; sample S = ’oy’, or S = ’+y’.

% sols = starting solution (if known and supplied, otherwise a sets

% up an initial guess solution automatically).

% Output : P = k by 3 matrix with Da, xA(1), y(1) at the computed nodes.

% Df = first log10(Da) value for which a profile, called solf, was

% successfully computed in the log10(Da) range.

% Dl = last such log10(Da) value with the solution soll.

% m-files used: axialdisp4DaPecurvespots.m

if nargin <= 10, sp = 1; end

if nargin <= 9, d = 0; S = ’ob’; end

if nargin <= 7, disp(’a AND solstart sols unspecified’), return, end

good = 1; turn = -1; first = 0; twice = 0; % turn = -1 to integrate backwards

s0 = 0; s1 = 0; % counters of success with BVP

if De > Ds | step <= 0,

disp(’wrong order in Ds, De, or nonpositve step: NOT going down’),

return, end

if d == 1, % when screen display is activated

disp(’ log10(Da) xA(1) y(1) error of DE sp time’)

end

step = min((Ds - De)/5,step); Step = 1 - step; D = Ds/Step; % set up steps

tries = log(Ds/De)/log(Step); P = zeros(floor(tries)+10,3); k = 0;

while D >= De & good == 1, % loop up in steps as prescribed

if twice == 1, Step = 1 - step/2; end, D = D*Step; Da = 10^D; tic;

if sp == 1 | first == 0,

[sol,sp,p,err]=axialdisp4DaPecurvespots(Da,bt,ga,PeH,PeM,a,S,turn);

else,

[sol,sp,p,err]=axialdisp4DaPecurvespots(Da,bt,ga,PeH,PeM,a,S,turn,sol); end

s0 = s0+1-sp; s1 = s1+sp;

if d == 1, t = toc; disp([log10(p(1)),p(2),p(3),err,sp,t]), end

if sp == 0, k = k + 1; P(k,:) = p’;

if first == 0, Df = D; solf = sol; first = 1;

else, Dl = D; soll = sol; end, end
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if sp == 1 & first == 1 % look closer if unsuccessful after orig. success

D = D/Step;

if twice == 0, halfstep = 1 - step/2;

else, halfstep = 1 - step/4; end, D = D*halfstep; Da = 10^D; tic;

[sol,sp,p,err]=axialdisp4DaPecurvespots(Da,bt,ga,PeH,PeM,a,S,turn,sol);

s0 = s0+1-sp; s1 = s1+sp;

if d == 1, t = toc; disp([log10(p(1)),p(2),p(3),err,sp,t]), end

if sp == 0, k = k + 1; P(k,:) = p’;

if first == 0, Df = D; solf = sol; first = 1;

else Dl = D; soll = sol; end, end, twice = 1;

if sp == 1; % look closer once more

D = D/halfstep;

if twice == 0, quartstep = 1 - step/4;

else, quartstep = 1 - step/8; end, D = D*quartstep; Da = 10^D; tic;

[sol,sp,p,err]=axialdisp4DaPecurvespots(Da,bt,ga,PeH,PeM,a,S,turn,sol);

s0 = s0+1-sp; s1 = s1+sp;

if d == 1, t = toc; disp([log10(p(1)),p(2),p(3),err,sp,t]), end

if sp == 0, k = k + 1; P(k,:) = p’;

if first == 0, Df = D; solf = sol; first = 1;

else Dl = D; soll = sol; end, end

if sp == 1, good = 0; end, end, end, end

i = find(P(:,1) ~=0); P = P(i,:); % clean off zero rows in P

This program’s central part computes solutions to the BVP for decreasing values of Da

(as specified) from a previous nearby solution via parameter continuation, i.e., it takes
a nearby known solution as the initial guess for the next nearby problem. If this fails
for one step, the program halves the step size. And it gives up after a lack of success
documented by two subsequent failures in a row. On screen the user can monitor the
following data: the value of Da used, the computed values of xA(1) and y(1) if successful
for Da, as well as the error committed by the solution for the BVP, a success indicator
sp, and the CPU time taken for each individual BVP problem in case the parameter d
in the call of Damovedownbwd is set equal to 1.

We close with the plots for PeH = 8 and PeM = 4 and Da ranging from 105 to 108.
These are similar in nature to the earlier Figures 5.11 and 5.12 for PeH = 4 and PeM = 8
in Figure 5.13.
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Figure 5.13

In Figure 5.14 note that for this set of Peclet numbers the middle uniformly dotted
branch steady-state instabilities seem not to be as severe as before. There is only one
gap in the family of solutions where double stiffness is an issue. To corroborate, note
that the middle branch of the plot takes only 135 individual BVPs, each indicated by a
pair of green circles on a computer screen and a pair of gray circles in Figure 5.14. This
represents about two thirds of our earlier effort for PeH = 4 and PeM = 8 for obtaining
these graphs. Each BVP now takes about 3 seconds on average.
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In general, smaller values of PeH give wider ranges of bifurcation as the above two
sets of Figures exemplify. And very large values for the Peclet numbers PeH and PeM

transform the BVP problem in equations (5.19) and (5.20) into an IVP for plug flow.
We illustrate this behavior for the adiabatic case when Q̂ = 0 in (5.19) and when PeH =
PeM = ∞ in both (5.19) and (5.20). In this case the leading second derivative terms of
(5.19) and (5.20) become zero and we are left with the two DEs

− dy

dω
= −β · Da · e−γ/y · xA (5.45)

and
−dxA

dω
= Da · e−γ/y · xA . (5.46)

The associated boundary conditions (5.40) for this case reduce to

xA(0) − 1 = 0 and y(0) − 1 = 0 .

I.e., (5.45) and (5.46) describe an IVP which we can easily solve in MATLAB. For this
we introduce the following MATLAB code that is built exactly as our IVP solvers of
Chapter 4.
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function plugflow(Dastart,Daend,bt,ga,method,n)

% plugflow(Dastart,Daend,bt,ga)

% Sample call : plugflow(6,7.7,1,20,45,100)

% Inputs: physical constants bt and ga

% Dastart : starting value a for the Damkoehler number 10^a (exponent)

% Daend : end value b for the Damkoehler number 10^b (exponent)

% (Careful, use exponent of the power of ten only !!)

% method = MATLAB ode funcion number; 23, 45, or 113 are

% supported. (Method 45 works fastest in general)

% Output: plot of xA(1) and y(1) for the range of Damkoehler numbers

if nargin == 4, method = 45; n = 50; end, % defaults

if nargin == 5, n = 50; end

OM = [0 1]; y0 = [1;1]; options = odeset(’Vectorized’,’on’); % initialize

if ceil(Daend) ~= Daend % limit computations near Daend; they are slow

DA = [logspace(Dastart,Daend,n),10^ceil(Daend)]; N = n+1; else

DA = logspace(Dastart,Daend,n); N = n; end

XA1 = zeros(1,n); Y1 = zeros(1,n);

for i = 1:N, Da = DA(i); i % solve N IVPs and record progress i on screen

if method == 45, [A,y] = ode45(@fbr,OM,y0,options,Da,bt,ga); % integrate

elseif method == 23, [A,y] = ode23(@fbr,OM,y0,options,Da,bt,ga);

elseif method == 113, [A,y] = ode113(@fbr,OM,y0,options,Da,bt,ga);

else disp(’Error : Unsupported method number !’), return, end

XA1(i) = y(end,1); Y1(i) = y(end,2); % store end values xA(1) and y(1)

end

subplot(2,1,1); % plot solution value at 1 to dxA/dom versus Da

semilogx(DA,XA1), v = axis; axis([v(1),v(2),-0.09,1.09]); % widen vert area

title([{’Limiting plug flow end concentration and end temperature ’},...

{’ ’},{[’for \beta = ’,...

num2str(bt,’%5.4g’),’, \gamma = ’, num2str(ga,’%5.4g’),...

’ and varying values of D_a’]}],’FontSize’,13)

xlabel(’D_a’,’FontSize’,12),

ylabel(’xA(1) ’,’Rotation’,0,’FontSize’,12),

subplot(2,1,2); % plot solution value at 1 to dy/dom versus Da

semilogx(DA,Y1), v = axis; axis([v(1),v(2),0.92,2.08]); % widen vert area

xlabel(’D_a’,’FontSize’,12), ylabel(’y(1) ’,’Rotation’,0,’FontSize’,12),

function dydt = fbr(om,y,Da,bt,ga) % right hand side of ODE IVP

dydt = [-Da * exp(-ga./y(2,:)) .* y(1,:);

bt * Da * exp(-ga./y(2,:)) .* y(1,:)];

A call of plugflow(6,7.7,1,20,15,100) creates the following plot of values for xA(1)
and y(1) with the same set of parameters (β = 1, γ = 20) and Dahmköhler numbers
around 107 as was used in Figures 5.12 and 5.14.
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Figure 5.15

Note the very steep slope and the sharp turn of the curves when xA(1) reaches 0 and
y(1) reaches 2. This is called an ignition point, which is the critical value of Da where
the reactor is ignited to maximum temperature y(1) = 2 and zero reactants xA(1) = 0
reach the exit of the reactor.

We illustrate this reaction behavior further using our concentration and temperature
profile plotting code plugflowxAy.m for a Damköhler number such as 107.456 just below
ignition in Figure 5.16 and then for Da = 107.463 which indicates ignition and y(ω) = 2
near the end of the tube for ω < 1 in Figure 5.17.
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Exercises for 5.1
1. Project

The equation (5.35) can be interpreted by a function F3(Da, Pe, xA(1)) = 0
in the three variables Da, Pe, and xA(1) since xA(1) = 1 − x(1).

(a) For a fixed value Pe = P , adapt the surface plotting routines of Chapter
3 to plot the surface z = F3(Da, P, xA(1)) = f(Da, xA(1)) and its level
zero contour in order to obtain the curve Da(xA(1)) that was plotted via
fzero in Figure 5.7.

(b) Repeat Problem 1(a) for a constant value of Da = D and plot the surface
z = F3(D, Pe, xA(1)) = g(Pe, xA(1)) and its level zero contour in order to
obtain the curve Pe(xA(1)) that was plotted via fzero in Figure 5.8.

(c) How do the curves obtained via fzero and via the level set method com-
pare? Which method is simpler to implement in code? Explain, please.

2. Give details how to transform the second-order BVP (5.20) and (5.19) with the
associated boundary conditions dy(1)/dω = dxA(1)/dω = 0 and (1/PeM) ·
(dy(0)/dω) = y(0)−1 into a system of four linear DEs and find its associated
boundary conditions using forward integration in terms of ω.

3. Modify the stepping inside runaxialdispDa.m for PeH = 6 and PeM = 12 or
PeH = 12 and PeM = 6 and an appropriate range of Damköhler numbers Da

that shows bifurcation, if possible.
4. Repeat the previous problem for PeH = PeM = 12 and PeH = PeM = 4. Do

the profiles for these Peclet numbers look different from those of Problem 3
and from our two sets of profiles in this section? How would you describe their
differences and similarities?

5. Replace our BVP solver bvp4cfsinghouseqr.m in any of our plotting routines
of this section by MATLAB’s original BVP solver bvp4c and observe the
differences in output.

6. Solve the same nonisothermal axial dispersion problem when the reaction is
second-order with PeH = 4 and PeM = 8.

7. Repeat the previous problem when the reaction is consecutive

A → B → C .

Here B is the desired product and the preexponential factor for the second
reaction is assumed to be half that of the first reaction, while the activation
energies are the same and the heat of reaction of the second reaction B → C
is twice that of the first reaction A → B.
When PeM = 4, PeH = 8, γ = 10, and β = 0.8, what is the value of Da1

that maximizes the yield of the desired product B. (Notice that Da2 = 0.5 ·
Da1 , γ1 = γ2, and β2 = 2β1.)

8. Develop the boundary conditions for the heat balance design equation of axial
dispersion in the nonisothermal case as suggested on p. 262.
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9. Convert the two second-order differential equations given by (5.20) and (5.19)
to one coupled four dimensional first-order system of DEs as suggested on p.
279.

Conclusions

In this section we have presented the first example of two-point boundary value
problems that occur in chemical/biological engineering. The axial dispersion model
for tubular reactors is a generalization of the plug flow model for tubular reactors
which removes some of the limiting assumptions of plug flow. Our model includes
additional axial diffusion terms that are based on the simple physics laws of Fick
for mass and of Fourier for heat dispersion.
The most simple isothermal case was studied first by finding the analytical solution
to the BVP. Possible numerical difficulties of this case were analyzed via the eigen-
values of the corresponding constant coefficient linear system of ODEs in order to
make our readers aware of the potential harm of stiffness when trying to solve DEs.
The isothermal case with nonlinear kinetics was later solved numerically in a MAT-
LAB program.
Building on the isothermal problem and its analytical solution, we then studied the
nonisothermal adiabatic case and developed an efficient numerical algorithm based
on a modified version of the built-in MATLAB BVP solver bvp4c.m. We have learnt
that the nonisothermal adiabatic axial dispersion problem for tubular reactors may
have multiple steady-state solutions over a certain range of parameters. The asso-
ciated bifurcation diagrams were drawn for selected Peclet numbers via MATLAB.
Our numerical adaptation of stock MATLAB functions is very efficient and man-
ages to solve this type of coupled and highly nonlinear BVPs accurately in record
time. Some of the MATLAB codes were printed and explained in this section. All
programs are available on the CD. Our readers should be able to adapt the codes
for use with other parameters and other BVP problems in chemical/biological en-
gineering.

5.2 The Porous Catalyst Pellet BVP

In this section we are interested in the boundary value problem that is associated with
catalyst pellets in a reactor.

5.2.1 Diffusion and Reaction in a Porous Structure (Porous Cat-
alyst Pellet)

We consider a spherical catalyst particle and a simple reaction

A → B

with the rate of reaction equal to

r = k · CA in moles/(g · min) .
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The considered particle is spherical in shape and it is symmetrical around its center. The
concentration profile inside the catalyst pellet is shown in Figure 5.18, as well as the
molar balance over an element ∆r.

RP0
r

coordinate
radial

CAB

AN
ANAN

r

+

r + r

Elemental molar balance inside a catalyst pellet
Figure 5.18

The molar balance for component A gives us

4π · r2 · NA = 4π(r + ∆r)2(NA + ∆NA) + (4π · r2 ·∆r)ρc · k ·CA .

This can be rewritten as

r2 · NA = (r2 + 2r∆r + (∆r)2)(NA + ∆NA) + r2 · ∆rρc · k · CA .

By further simplification and by neglecting higher powers of ∆r we obtain

0 = r2∆NA + 2r · NA · ∆r + r2 · ∆rρc · k · CA .

On dividing the equation by ∆r and taking the limit of ∆NA/∆r as ∆r → 0 we get

0 = r2 dNA

dr
+ 2r · NA + r2 · ρc · k · CA . (5.47)

By Fick’s law we have

NA = −DeA
dCA

dr
. (5.48)
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For diffusion in porous structures, the diffusion coefficient DeA has the form

DeA =
DA · ε

τ
,

where ε denotes the pellet porosity and τ the tortuosity factor.
If we assume that DeA is constant we get

dNA

dr
= −DeA

d2CA

dr2
. (5.49)

Using the expressions for NA and dNA/dr from (5.48) and (5.49) in (5.47) gives us

0 = −r2 · DeA
d2CA

dr2
− 2r · DeA

dCA

dr
+ r2 · ρc · k · CA ·

Rearrangement then makes

DeA

(
d2CA

dr2
+

2
r
· dCA

dr

)
= ρc · k · CA . (5.50)

Changing the variable r in equation (5.50) to r/Rp for the pellet radius RP yields

DeA

R2
P

⎛⎝ d2CA

d
(

r2

R2
P

) +
2(
r

RP

) · dCA

d
(

r
RP

)
⎞⎠ = ρc · k · CA . (5.51)

If we introduce the dimensionless terms

ω =
r

RP
and xA =

CA

CAref
,

then equation (5.51) can be written as

DeA

R2
P

(
d2xA

dω2
+

2
ω
· dxA

dω

)
= ρc · k · xA . (5.52)

This can be expressed as
�2xA = Φ2xA , (5.53)

where

�2 =
d

dω2
+

a

ω
· d

dω
and (5.54)

Φ2 =
ρc · k · R2

P

DeA
.

Φ is called the Thiele6 modulus.
6Ernest W. Thiele, US chemical engineer, 1895-1993
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The value of a depends on the shape of the particle as follows. For a sphere we have
a = 2, while a = 1 for a cylinder, and a = 0 for a slab.

Boundary Conditions :
Due to symmetry at the center we have dxA/dω = 0 at ω = 0.

At the surface where r = RP , the mass transfer is shown in Figure 5.19.

P

CAB
N

A R P

R

Mass transfer across the boundary at the surface of the catalyst pellet
Figure 5.19

In Figure 5.19 we observe that

4πR2
P · kgA(CAB − CA|r=RP ) + 4πR2

P · NA|r=RP = 0 .

Simplification makes

kgA(CAB − CA |r=RP ) = −NA |r=RP .

Since NA = −DeA · dCA/dr by equation (5.48), we thus obtain

kgA(CAB − CA |r=RP ) =
(

DeA

RP

)
dCA

d (r/RP )
|r=RP .

Here we define xAB = CAB/Cref to get

dxA

dω
|ω=1.0 =

(
RP · kgA

DeA

)
︸ ︷︷ ︸

ShA

(xAB − xA |ω=1.0) ,

where (
RP · kgA

DeA

)
= ShA

is the Sherwood7 number for component A.
Thus the second boundary condition is dxA/dω = ShA(xAB − xA) at ω = 1.0.

7Thomas Kilgore Sherwood, US chemical engineer, 1903-1976
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The Limiting Case
When the external mass transfer resistance is negligible and kgA is large, leading to
ShA → ∞, then the boundary condition at ω = 1.0 can be written as

1
ShA

dxA

dω
= (xAB − xA) .

Besides, if ShA → ∞, then xA |ω=1.0 = xAB . This also corresponds to a negligible
external mass transfer resistance. In both cases, that of a finite Sherwood number ShA or
for ShA → ∞, we get a two-point boundary value differential equation. For the nonlinear
case this has to be solved numerically. However, as for the axial dispersion model, we
will start out with the linear case that can be solved analytically.

Analytical Solution for the Linear Case
When the right-hand side of (5.53) is linear, the DE can be solved analytically.
The second-order differential equation for the spherical catalyst pellet is

d2xA

dω2
+

2
ω

dxA

dω
= Φ2xA

for the Thiele modulus Φ. We rewrite this equation as

ω
d2xA

dω2
+ 2

dxA

dω
= Φ2xAω (5.55)

and define the new variable
y = xA · ω . (5.56)

Differentiating equation (5.56) with respect to ω gives us

dy

dω
= ω

dxA

dω
+ xA . (5.57)

And the second derivative of (5.56) yields

d2y

dω2
= ω

d2xA

dω2
+

dxA

dω
+

dxA

dω
= ω

d2xA

dω2
+ 2

dxA

dω
. (5.58)

From (5.55) and (5.58) we thus get

d2y

dω2
= Φ2y . (5.59)

This we can write as
D2y − Φ2y = 0 .

The characteristic equation for the above equation is the second-degree polynomial

λ2 − Φ2 = 0
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with the roots λ1 = Φ and λ2 = −Φ .
Therefore the solution of equation (5.59) is given analytically by

y(ω) = C1e
Φω + C2e

−Φω (5.60)

for arbitrary constants C1 and C2. These two constants are determined by the boundary
conditions and thus we have obtained the complete analytical solution in the linear case.

For the nonlinear case, the nonlinear two-point boundary value differential equation(s)
for the catalyst pellet can be solved using the same method as used for the axial dis-
persion model in Section 5.1, i.e., by the orthogonal collocation technique of MATLAB’s
bvp4c.m boundary value solver.

The Non-Isothermal Catalyst Pellet

For the nonisothermal catalyst pellet with negligible external mass and heat transfer
resistances, i.e., with Sh → ∞ and Nu → ∞ and for a first-order reaction, the dimen-
sionless concentration and temperature are governed by the following couple of boundary
value differential equations

∇2 xA = ᾱ · eγ(1−1/y) · xA (5.61)

and
∇2 y = −ᾱ · β · eγ(1−1/y) · xA , (5.62)

with ∇2 as defined in formula (5.54) and with the boundary conditions

dxA

dω
=

dy

dω
= 0 at ω = 0 (5.63)

and
xA(1) = 1 = y(1) at ω = 1 . (5.64)

Here we use

xA =
CA

CAB
, y =

T

TB
, γ =

E

R · TB
, and β =

(−∆H) ·CAB

λe · TB

for the effective thermal conductivity λe of the catalyst pellet.

5.2.2 Numerical Solution for the Catalytic Pellet BVP

Here we treat the more realistic case that the right-hand side of equation (5.53) is non-
linear. Such a nonlinearity is generally introduced by a nonconstant reaction rate that
depends upon the temperature as exemplified by the Arrhenius dependence (2.1).
First we study a model made up of one second-order BVP, followed by a more advanced
model that relies on two coupled second-order BVPs.



304 Chapter 5: Boundary Value Problems

The Heat Balance Model Equations of the Catalytic Pellet BVP

From equations (5.61) and (5.62) and the boundary conditions for Sh → ∞ and Nu → ∞,
i.e., by assuming (5.63) and (5.64), we obtain the relation xA = (1 + β − y)/y. If we
replace xA in equation (5.62) by xA = (1 + β − y)/y then we obtain the following DE in
terms of y :

d2y

dω2
+

2
ω

dy

dω
= −ᾱ · e(γ(1−1/y)) · (1 + β − y) (5.65)

with ᾱ = ρc · R2
P /DeA = Φ2 for the Thiele modulus Φ. The boundary conditions for y

are
dy

dω
= 0 at ω = 0, and y = 1 at ω = 1 .

Note that the DE is singular at ω = 0 due to the term +(2/ω) · (dy/dω) on the left-
hand side of (5.65). The term ‘singular’ refers to the indeterminate value (2/0) · 0 in
(2/ω) · (dy/dω) when ω = 0 according to the required boundary condition. MATLAB
can handle singular boundary problems easily. To do so, the user has to set up the
differential operator dydt in a specific way. First we must rewrite (5.65) as a first-order
two-dimensional system of DEs.
By setting

Y (ω) =

⎛⎝ y(ω)

dy(ω)
dω

⎞⎠ =
(

y1

y2

)
we can rewrite (5.65) as a first-order system consisting of two DEs, namely

Y ′(ω) =

⎛⎜⎝ dy1

dω
dy2

dω

⎞⎟⎠ =

⎛⎜⎝
dy

dω
dy2

d2ω

⎞⎟⎠ =

(
y2(ω)

− 2
ω y2(ω) − ᾱ · e(γ(1−1/y1(ω))) · (1 + β − y1(ω))

)
.

(5.66)
Equation (5.66) contains the singular term −2 · (y2(ω)/ω). This is singular for ω = 0
since it asks for the division of y2(0) = 0 by zero there. To account for this in MATLAB
and to avoid dividing by zero, we define the SingularTerm vector used in MATLAB’s
BVP solver as the coefficient matrix

S =
(

0 0
0 −2

)
for the singular part affecting Y =

(
y1

y2

)
.

We can verify that this choice of S is correct by evaluating

S ·
(

Y

ω

)
=

(
0 0
0 −2

)(
y1

y2

)
· 1
ω

=

(
0

− 2
ω

y2(ω)

)

which agrees with (5.66). A look at the function dydx differential operator block in-
side the MATLAB code for pelletrunfwd.m and at the line S=[0 0;0 -2]; options
= bvpset(’NMax’, 1000,’SingularTerm’,S,’Vectorized’,’on’); that precedes the
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call of bvp4cfsinghouseqr in the code that follows shows how to prepare MATLAB for
this singular BVP.
Once prepared, this singular BVP can be solved as before via our modified version
bvp4cfsinghouseqr.m of MATLAB’s bvp4c.m boundary value problem solver.

But instead of the solution curve y(ω) itself, we are interested here in finding the effec-
tiveness factor η of the catalyst pellet. This is defined by the integral

η =

1∫
0

ω2eγ(1−1/y)xA dω

1∫
0

ω2 dω

= 3

1∫
0

ω2eγ(1−1/y)xA dω =

= 3

1∫
0

ω2 · e(γ(1−1/y(ω))) · (1 + β − y(ω))
β

dω . (5.67)

The system parameters are ᾱ, β, and γ. For a fixed set of β = 1 and γ = 15, for example,
our task is to find the range of ᾱ with multiplicity. We shall plot the multiplicity regions
for η in terms of the Thiele modulus Φ =

√
ᾱ.

Here is an auxiliary program for this task. It computes the solution curve y(ω) from
an initial guess of the solution to the BVP and evaluates η using MATLAB’s definite
integral evaluator quad once the BVP has been solved successfully.

function [sol,eta,sp] = pelletrunfwd(phi,bt,ga,a,p,halten,sol)

% [sol,eta,sp] = pelletrunfwd(phi,bt,ga,a,p,halten,sol)

% Sample call : (without using a nearby solution "sol" for continuation)

% pelletrunfwd(.5,.8,15,1,1,1); pause, pelletrunfwd(.5,.8,15,1.3,1,1); pause,

% pelletrunfwd(.5,.8,15,1.8,1,1);

% For the one second order function BVP; porous catalyst pellet.

% Input : 0.001 <= phi <= 100; -1 <= bt <= 1.2 (bt ~= 0 needed);

% 4 <= ga <= 25;

% a is an estimate of the solution, a is chosen between 1 and 1+bt;

% If a = 1 or a = 1+ bt, we start with a horizontal line at a as the

% initial guess of the solution;

% If a differs from 1 and 1+bt, we use the join of a horizontal line,

% followed by a (downward) slope and a horizontal line again. (See the

% function "initial2" or "initial3" at the bottom.)

% p = 1: draw a plot; p = 0 : no plot.

% halten = 0: do not hold the graph; if halten = 1: hold on.

% if sol is specified in the call: we have a nearby solution and

% continue from it.

% If sol is not given, we start with our initial guess.

% Output : solution structure sol; value for eta if sp = 0;

% if sp = 1, the solution was spurious and therefore useless;

% data should be discarded.

if nargin <= 5, halten = 0; end, % default settings
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if nargin == 3, a = 1 + bt; p = 0; end, t = 0; sp = 0; eta = 0; ret = 0;

if nargin >= 4 & nargin ~= 7,

if a == 1+bt | a == 1 | abs(bt*ga) < 10 | bt < .5,

guess = a*[1;0]; toprint = guess; sol = bvpinit(linspace(0,1,5),guess);

else if bt >= 15, toprint = a*[1;0];

sol = bvpinit(linspace(0,1,8),@initial2, [], a); end,

if bt < 15, toprint = a*[1;0];

sol = bvpinit(linspace(0,1,8),@initial3, [], a, bt); end,

end, end

if nargin >= 5, if p ~=0, p = 1; end, else, p = 0; end

S=[0 0;0 -2]; options = bvpset(’NMax’,1000,’SingularTerm’,S,’Vectorized’,’on’);

try % solve BVP

sol = bvp4cfsinghouseqr(@frhs,@frandbed,sol,options,phi,bt,ga);

catch % if no solution found

sp = 1; return

end

eta = 3/bt * quad(@bwsol,0,1,[],[],sol,bt,ga); % find value of eta

d0f = deval(sol,0.5); % initialize annotations

if p == 1, xint = linspace(0,1); Sxint = deval(sol,xint);

if halten == 0, hold off,

else hold on,

text(1,Sxint(1,1),[’ [ ’,num2str(a,’%5.3g’),’,’,...

num2str(eta,’%5.3g’),’]’]), end,

plot(xint,Sxint(1,:)); hold on, end,

if p == 1,

if halten == 0,

title([{’Pellet BVP 1 DE model solution with’},...

{[’\phi = ’,num2str(phi,’%9.4g’),’; \beta = ’,num2str(bt,’%9.4g’),...

’, \gamma = ’,num2str(ga,’%9.4g’),’ (start a = ’,...

num2str(a,’%5.3g’),’; \eta = ’,num2str(eta,’%5.3g’),’ )’]}],...

’FontSize’,12),

else,

title([{’Pellet BVP 1 DE model solution with’},{[’\phi = ’,...

num2str(phi,’%9.4g’),’; \beta = ’,num2str(bt,’%9.4g’),...

’, \gamma = ’,num2str(ga,’%9.4g’),’ ;’,...

’ for [a, \eta] =’]}],’FontSize’,12), end

if nargin <= 5,

xlabel([’\omega ( for initial guess [ ’,...

num2str(toprint(1),’%9.4g’),’; ’,num2str(toprint(2),’%9.4g’),...

’ ] )’],’FontSize’,12),

else, xlabel(’\omega’,’FontSize’,12), end,

ylabel(’y ’,’Rotation’,0,’FontSize’,12), end,
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function dydx = frhs(x,y,phi,bt,ga) % right hand side of the DE

dydx = [ y(2,:)

-phi^2*exp(ga*(1-1./y(1,:))).*(1+bt-y(1,:)) ];

function Rand = frandbed(ya,yb,phi,bt,ga) % boundary conditions

Rand = [ ya(2)

yb(1)-1 ];

function f = bwsol(t,sol,bt,ga) % evaluation of the eta integrand

temp = deval(sol,t); temp = temp(1,:);

f = t.^2.*exp(ga*(1-1./temp)).*(1+bt-temp);

function f = initial2(x,a) % initial solution guesses

if x <= 1/8, f = [a;0]; end

if x > 1/8 & x < 1/2, f = [ (8*(1-a)*x+4*a-1)/3; 8/3*(1-a) ]; end

if x >= 1/2, f = [1;0]; end

function f = initial3(x,a,bt)

b = .1*a+.9*(1+bt);

if x <= 1/8, f = [b;0]; end

if x > 1/8 & x < 1/2, f = [ 8/3*(1-b)*(x-1/8)+b; 8/3*(1-b) ]; end

if x >= 1/2, f = [1;0]; end

The data and graphics output of calling pelletrunfwd(.5,.8,15,1,1,1); pause,
pelletrunfwd(.5,.8,15,1.3,1,1); pause, pelletrunfwd(.5,.8,15,1.8,1,1); is
shown in Figure 5.20 for the parameters Φ = 0.5(=

√
α), β = 0.8 and γ = 15. Figure

5.20 shows three separate solution curves y(ω) to the BVP that are obtained numerically
by starting from different initial guesses a = 1, a = 1.3, and a = 1.8 for the solution.
On the right margin of the graph we indicate the starting guess a, followed by the value
of the Pellet efficiency η for this particular solutions. Note that for our parameter val-
ues there are multiple solutions for the BVP, i.e, this is a problem with static bifurcation.

Our program pelletrunfwd.m relies on our modified BVP solver bvp4cfsinghouseqr.m
and the built-in MATLAB definite integral evaluator quad to evaluate η for each solution
y of (5.65).
The CD contains a multi-input version, called multipelletrunfwdxAy.mof pelletrunfwd.m
which draws the plots of the temperature y(ω) and the concentration xA(ω) profiles for
up to six values of the starting parameter a ≈ y(0).
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Figure 5.20

Figure 5.21 gives the graph of the solution profiles for y and xA produced by calling
multipelletrunfwdxAy(.5,.8,15,[1,1.3,1.8]); for the same data as was used in
Figure 5.20.
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Figure 5.21
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The auxiliary function pelletrunfwd.m is used in pelletetacurve.m to evaluate η
repeatedly for an interval of Φ values in order to draw the bifurcation curve of η with
respect to Φ =

√
ᾱ. Below is a plot of the inverted S shape bifurcation curve η(Φ) for β = 1

and γ = 10. This curve is plotted for 0.01 ≤ Φ ≤ 3 in about 72 seconds on a 2002 vintage
SunBlade 100 by solving 104 BVPs by calling pelletetacurve(.01,3,1,10,1,1);.
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Very small range of Φ with bifurcation for the pellet efficiency
Figure 5.22

If we increase β and γ to 1.2 and 25, respectively, we find a much larger interval of Φ
values with multiple pellet efficiencies. The curve shows a nascent 5-fold bifurcation kink
in the lower part of the middle branch and it requires us to solve nearly 2.7 times as
many BVPs in 285 seconds.
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Figure 5.23

The code of pelletetacurve.m is quite long and can be found on the accompanying
CD. It starts out with default settings and initializations. Then it sweeps through the
range of pre specified Φ values in small adaptive steps, trying to solve the associated
BVPs at each step from either an initial guess of the solution or from a nearby success-
fully computed solution. This use of continuation in the parameter is helpful to compute
points of the η(Φ) curve near the bifurcation limits and specifically on the middle branch
where computations are otherwise rather unstable. The computational difficulties that
one generally encounters on the middle branch with numerical instabilities mimic the
corresponding unstable saddle-type characteristics of the system in this region very well
in their behavior.
Throughout the Φ range, the curve is drawn by interpolating the discrete computed val-
ues of η. This is done in the last part of pelletetacurve.m where we select and sort
the useful computed data before plotting an interpolating curve. The two graphs of Fig-
ures 5.22 and 5.23 contain two small x and o marks, each near the bifurcation limits.
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These indicate the limit of our successful numerical BVP integrations near the bifurca-
tion points. In between the x and o marks on the middle branch, the curve is drawn using
interpolation of our successful BVP solutions data, while in between two adjacent x or
two adjacent o marks, the curve is drawn by extrapolating nearby computed function
data. This is done automatically by MATLAB’s plot commands.

Next we list the program of pelletetacurvemulti.m. It uses pelletetacurve.m to
draw multiple η(Φ) curves for a fixed interval of Φ values and a vector of either β or γ
values for one fixed value of γ or β, respectively.

function pelletetacurvemulti(phi0,phi1,vbt,vga,d)

% pelletetacurvemulti(phi0,phi1,vbt,vga,d)

% Sample calls:

% a) pelletetacurvemulti(0.05,10,[1 .8 .6 .4 .2 .1 -.1 -.3 -.6],15,1);

% b) pelletetacurvemulti(.01,100,2,2:2:12,1);

% For the one function BVP; porous catalyst pellet.

% Computes and plots multiple Pellet run curves for varying values of beta

% or gamma % between phi0 and phi1 in one figure.

% Only one of vbt or vga can be a vector of length exceeding 1, the other

% must be a scalar.

% Uses pelletetacurve.m program.

% d = 1 makes pelletetacurve display its location data on screen.

format short g, format compact

lvbt = length(vbt); lvga = length(vga); hold off,

if (lvbt == 1 & lvga == 1) | (lvbt > 1 & lvga >1), % check: improper vbt, vga

disp(’ ERROR : either vbeta or vgamma must have length 1 ’), return, end

if nargin == 4, d = 0; end % no running log, unless d = 1 has been set

if lvbt > 1, % running for several betas and one gamma

for i = 1:lvbt, runningbeta = vbt(i),

[PPP,bwp,Ptop,Pr,Pbot,Pl,Pmid] = pelletetacurve(phi0,phi1,vbt(i),vga,0,d);

hold on, [t,pt] = size(Ptop);

text(phi1,Ptop(2,pt),[’ \beta = ’,num2str(vbt(i),’%5.3g’),’ (’,...

num2str(bwp,’%5.3g’),’)’],’Fontsize’,12), end

title([{’ Pellet BVP 1 DE model’},{[’ for ’,...

num2str(phi0,’%9.4g’),’ \leq \phi \leq ’,num2str(phi1,’%9.4g’),...

’ ; with \beta = ’,num2str(vbt,’%5.3g’),’ ; \gamma = ’,...

num2str(vga,’%5.3g’)]}],’Fontsize’,12),

xlabel(’\phi’,’Fontsize’,12),

ylabel(’\eta ’,’Rotation’,0,’Fontsize’,12), end

if lvga > 1, % running for several gammas and one beta

for j = 1:lvga, runninggamma = vga(j),

[PPP,bwp,Ptop,Pr,Pbot,Pl,Pmid] = pelletetacurve(phi0,phi1,vbt,vga(j),0,d);

hold on, [t,pt] = size(Ptop);

text(phi1,Ptop(2,pt),[’ \gamma = ’,num2str(vga(j),’%5.3g’),’ (’,...
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num2str(bwp,’%5.3g’),’)’],’Fontsize’,12), end

title([{’ Pellet BVP 1 DE model’},{[’ for ’,num2str(phi0,’%9.4g’),...

’ \leq \phi \leq ’,num2str(phi1,’%9.4g’),’ ; with \beta = ’,...

num2str(vbt,’%5.3g’),’ ; \gamma = ’,num2str(vga,’%5.3g’)]}],’Fontsize’,12),

xlabel(’\phi’,’Fontsize’,12), ylabel(’\eta’,’Rotation’,0,’Fontsize’,12), end

The call of pelletetacurvemulti(.01,100,2,2:2:12,1); produces the following plot
with multiple curves η(Φ) for varying values of γ = 2, 4, ..., 10, 12 as indicated by the
vector [2:2:12] of γ values in the fourth position of the calling sequence. On the right
margin of Figure 5.24, the program automatically indicates the value of γ that was used
for the respective curve, appended by the number of BVPs (in parentheses) needed to
solve the problem adaptively for each individual curve.
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Figure 5.24

To draw Figure 5.24 on a SunBlade 100 takes about 1,000 seconds for 1709 solved BVPs.
To verify this number 1709 simply add the numbers in parentheses at the right margin
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of Figure 5.24. Note that for one fixed β, increasing the values of γ requires increasing
numerical work, and that only the top three values of γ = 8, 10, and 12 give rise to
bifurcation when β = 2.

Figure 5.25 gives another plot of 9 curves for 0.01 ≤ Φ ≤ 10, this time for one fixed γ =
15 and varying β = 1, 0.8, ...,−0.6 obtained by calling pelletetacurvemulti(.01,10,
[-.6,-.3,-.1,.1,.2,.4,.6,.8,1],15,1);.
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Bifurcation curves for various values of β
Figure 5.25

Here we note that increasing values of β for a fixed γ lead to increasing computational
costs, and that only the top values of β ≥ 0.6 lead to bifurcation when γ = 15. The above
plot of nine η(Φ) curves was drawn from the data of 898 solved BVPs that took about
600 seconds to compute.
Overall, for the two Figures 5.24 and 5.25 we have solved 2607 BVPs in around 1600
seconds, or in about 27 minutes of CPU time. The average time for one BVP solution
thus comes to about 0.6 seconds on the 450 Mhz, 1Gb RAM SunBlade 100 of 2002. The
speed achieved by the reader’s computer may vary when attempting to draw these or
similar plots.
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Non-Isothermal Mass and Heat Balance Model of the Catalytic

Pellet BVP with Finite External Mass and Heat Transfer

Resistance

In this section we consider the case where external mass and heat transfer resistances
are not negligible, i.e., when both Sh and Nu are finite. In this case we need to solve the
nonlinear material and energy balance equations simultaneously and this must be done
for a coupled BVP in four dimensions.

Here the system is modeled by two coupled second-order boundary value differential
equations, one for the heat and the other for the mass balance. As usual, we will trans-
form the two second-order DEs into one joint singular first-order four-dimensional BVP
and solve it as before via MATLAB.

The two coupled second-order DEs are

d2xA

dω2
+

2
ω

dxA

dω
= Φ2 · e(γ(1−1/y(ω))) · xA(ω) , and (5.68)

d2y

dω2
+

2
ω

dy

dω
= −β · Φ2 · e(γ(1−1/y(ω))) · xA(ω) . (5.69)

The solution functions xA(ω) and y(ω) to (5.68) and (5.69) must satisfy the four boundary
conditions

dxA

dω
= 0 and

dy

dω
= 0 at ω = 0

and
dxA

dω
= Sh(1 − xA) and

dy

dω
= Nu(1− y) at ω = 1 .

Here Sh denotes the dimensionless Sherwood number for mass transfer and Nu is the
dimensionless Nusselt8 number for heat transfer.
As before, we are interested in the effectiveness factor η of the pellet and its dependence
on Φ. For a spherical particle the effectiveness factor η is defined as

η = 3

1∫
0

ω2 · e(γ(1−1/y(ω))) · xA(ω) dω . (5.70)

The useful range of Φ is from around 0.01 to 100, that of Sh from around 50 to 500, and
Nu varies between 5 and 50.
As usual we first transform the coupled two second-order DEs in (5.68) and (5.69) into
one first-degree system with 4 first-order differential equations.

8Wilhelm Nusselt, German engineer, 1882-1957
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For

Y =

⎛⎜⎜⎜⎜⎜⎝
xA

dxA

dω
y

dy

dω

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
y1

y2

y3

y4

⎞⎟⎟⎠
the two DEs (5.68) and (5.69) combine to the 4 dimensional first-order system

Y ′(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dy1

dω
dy2

dω
dy3

dω
dy4

dω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
y2(ω)

− 2
ω

y2(ω) + Φ2 · e(γ(1−1/y3(ω))) · y1(ω)

y4(ω)

− 2
ω

y4(ω) − β · Φ2 · e(γ(1−1/y3(ω))) · y1(ω)

⎞⎟⎟⎟⎟⎟⎠ . (5.71)

Equation (5.71) contains two singularities in the second and fourth components in the
terms −(2/ω) · y2(ω) and −(2/ω) · y4(ω) since for ω = 0 these indicate a division by zero.
As explained earlier, for MATLAB we have to define the 4 by 4 SingularTerm matrix

S =

⎛⎜⎜⎝
0 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −2

⎞⎟⎟⎠ with S ·
(

Y

ω

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

0

− 2
ω

y2(ω)

0

− 2
ω

y4(ω)

⎞⎟⎟⎟⎟⎟⎟⎠ as can be readily checked.

We have implemented the 4 dimensional first-order singular BVP system (5.71) in the
MATLAB code pellet4etarunfwd.m.

function [sol,eta,sp] = pellet4runfwd(phi,bt,ga,Sh,Nu,a,p,halten,sol)

% [sol,eta,sp] = pellet4runfwd(phi,bt,ga,Sh,Nu,a,p,halten,sol)

% Sample call : (without using a nearby solution "sol" for continuation)

% pellet4runfwd(.5,.8,15,5000,1000,1,1); pause,

% pellet4runfwd(.5,.8,15,5000,1000,1.4,1);

% pause, pellet4runfwd(.5,.8,15,5000,1000,1.8,1);

% (click "return" after each graph has appeared)

% For the one function BWP; porous catalyst pellet.

% Input : 0.001 <= phi <= 100; -1 <= bt <= 1.2 (bt ~= 0 needed); 4 <= ga <= 25;

% a is an guess for the solution, a is chosen between 1 and 1+bt;

% If a = 1 or a = 1+ bt, we start with a horizontal line at a as the

% initial guess;

% If a differs from 1 and 1+bt, we use the join of a horizontal line,

% followed by a (downward) slope and a horizontal again. (See the

% function "initial2" or "initial3" at the bottom.)

% p = 1: draw a plot; p = 0 : no plot.
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% halten = 0: do not hold the graphs;

% if halten = 1: hold on for both graphs.

% if sol is specified in the call: we have a nearby solution and

% continue from it. If sol is not specified, we start with our

% initial guess.

% Output : solution structure sol; value for eta and this data if sp = 0;

% if sp = 1, solution is spurious and useless; data is discarded,

warning off %MATLAB:divideByZero

if nargin < 5, ’Too few inputs, we stop!’, return, end

if nargin == 5, a = 1 + bt; p = 0; halten = 0; end,

t = 0; sp = 0; eta = 0; ret = 0;

if nargin >= 5 & nargin < 9,

if nargin == 6, p = 0; halten = 0; end,

if nargin == 7, halten = 0; end,

if a == 1, guess = [1;0;1;0]; sol = bvpinit(linspace(0,1,5),guess); end

if a == 1+bt, sol = bvpinit(linspace(0,1,32),@initialtop,[],bt,ga,Sh,Nu); end

if a > 1 & a < 1+bt,

sol = bvpinit(linspace(0,1,8),@initialmiddle, [], bt,ga,Sh,Nu); end,

if a > 1+bt & a <= 1+3*bt,

sol = bvpinit(linspace(0,1,32),@initialmiddlemiddle, [], bt,ga,Sh,Nu); end,

if a > 1+3*bt,

sol = bvpinit(linspace(0,1,40),@initialtoptop, [], bt,ga,Sh,Nu); end, end,

if nargin >= 7, if p ~=0, p = 1; end, else, p = 0; end,

S=[0 0 0 0;0 -2 0 0;0 0 0 0;0 0 0 -2];

options = bvpset(’NMax’,1000,’SingularTerm’,S,’Vectorized’,’on’);

try

sol = bvp4cfsinghouseqr(@frhs4,@frandbed4,sol,options,phi,bt,ga,Sh,Nu);

catch

sp = 1; return

end

eta = 3*quad(@bwsol4,0,1,[],[],sol,bt,ga,Sh,Nu);

d0f = deval(sol,0.5);

if p == 1, xint = linspace(0,1); Sxint = deval(sol,xint);

subplot(2,1,1),

if halten == 0, hold off, else hold on, text(1,1,[’ [a, \eta] = ’]), end,

plot(xint,Sxint(1,:));

subplot(2,1,2),

if halten == 0, hold off, else hold on,

text(1,Sxint(3,end),...

[’ [ ’,num2str(a,’%5.3g’),’,’,num2str(eta,’%5.3g’),’]’]), end,

plot(xint,Sxint(3,:)); end,
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if p == 1,

if halten == 0,

subplot(2,1,1),

title([’ Pellet 4 BVP ; with \phi = ’,num2str(phi,’%5.3g’),...

’; \beta = ’,num2str(bt,’%5.3g’),’, \gamma = ’,num2str(ga,’%5.3g’),...

’; Sh = ’,num2str(Sh,’%5.3g’),’, Nu = ’,num2str(Nu,’%5.3g’),...

’ (start a = ’,num2str(a,’%5.3g’),’; \eta = ’,num2str(eta,’%5.3g’),’ )’]),

else

subplot(2,1,1),

title([’ Pellet 4 BVP ; with \phi = ’,num2str(phi,’%5.3g’),...

’; \beta = ’,num2str(bt,’%5.3g’),’, \gamma = ’,num2str(ga,’%5.3g’),...

’; Sh = ’,num2str(Sh,’%5.3g’),’, Nu = ’,num2str(Nu,’%5.3g’)]), end

xlabel(’\omega’), ylabel(’xA ’,’Rotation’,0),

subplot(2,1,2), xlabel(’\omega’), ylabel(’y ’,’Rotation’,0), end

warning on

function dydx = frhs4(x,y,phi,bt,ga,Sh,Nu)

dydx = [ y(2,:);

phi^2*exp(ga*(1-1./y(3,:))).*y(1,:);

y(4,:);

-bt*phi^2*exp(ga*(1-1./y(3,:))).*y(1,:) ];

function Rand = frandbed4(ya,yb,phi,bt,ga,Sh,Nu)

Rand = [ ya(2)

ya(4)

yb(2)-Sh*(1-yb(1))

yb(4)-Nu*(1-yb(3)) ] ;

function f = bwsol4(t,sol,bt,ga,Sh,Nu)

temp = deval(sol,t); temp1 = temp(1,:); temp3 = temp(3,:);

f = t.^2.*exp(ga*(1-1./temp3)).*temp1;

function f = initialtop(x,bt,ga,Sh,Nu) % various initial guesses follow below

if x <= .8, f = [0;0;1+3*bt;0]; end

if x > .8, f = [ 5*x-4; 5; -5*bt*x+6.5; -5*bt]; end,

if [bt,ga,Sh,Nu] == [1,15,200,20] ,

if x <= .3, f = [.05;0;1+1.05*bt;0]; end

if x > .3 & x <= .5, f = [ x-.25; 1; -x+2.35; -1 ]; end

if x > .5, f = [ 1.6*x-.6; 1.6; -1.6*x+2.7; -1.6]; end

elseif [bt,ga,Sh,Nu] == [1,15,400,20],

if x <= .7, f = [0;0;1+1.2*bt;0]; end

if x > .7,

f = [ 3.5*x-2.5; 3; 3.5*(1-x)+1.2; -3]; end,

elseif [bt,ga,Sh,Nu] == [1,15,100,18] ,

if x <= .5, f = [0;0;1+1.1*bt;0]; end

if x > .5,

f = [ 2*x-1; 2; -2*x+3; -2]; end,

elseif [bt,ga,Sh,Nu] == [1,15,500,5],
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if x <= 0.9, f = [0;0;1+7*bt;0]; end

if x > .9 & x <= .93, f = [.5*x-.4; .5; -.5*x+7; -.5]; end

if x > 0.93,

f = [35*x-34; 34; -35*x+43; -34]; end, end

function f = initialmiddle(x,bt,ga,Sh,Nu)

if x <= .3, f = [0.05;0;1+1.1*bt;0]; end

if x > 0.3 & x <= 0.6,

f = [ .7*x-.17; .7; -1*bt*x+2.4; -1*bt]; end,

if x > .6,

f = [ 1.8*x-.8; 1.8; -1.5*bt*x+2.7; -1.5*bt]; end,

if [bt,ga,Sh,Nu] == [1,15,200,20] | [bt,ga,Sh,Nu] == [1,15,400,20],,

f = [ (1-bt/2)*x+bt/2; 1-bt/2; -bt/2*x+1+bt/2; -bt/2 ];

elseif [bt,ga,Sh,Nu] == [1,15,100,10],

if x <= .3, f = [0.05;0;1+1.1*bt;0]; end

if x > 0.3 & x <= 0.6,

f = [ .7*x-.17; .7; -1*x+2.4; -1]; end,

if x > .6,

f = [ 1.8*x-.8; 1.8; -1.5*bt*x+2.7; -1.5*bt]; end,

elseif [bt,ga,Sh,Nu] == [1,15,500,5]

if x <= .8, f = [0;0;1+6*bt;0]; end

if x > .8, f = [ 20*x-19; 15; -20*x+24; -15]; end, end

function f = initialtoptop(x,bt,ga,Sh,Nu)

if x <= 0.99, f = [0;0;1+15*bt;0]; end

if x > 0.99,

f = [150*x-149; 150; -150*x+155; -150]; end,

if [bt,ga,Sh,Nu] == [1,15,200,20],

if x <= 0.97, f = [0;0;1+6*bt;0]; end

if x > 0.97,

f = [34*x-34.5; 30; -34*bt*x+40; -30]; end

elseif [bt,ga,Sh,Nu] == [1,15,400,20],

if x <= 0.96, f = [0;0;1+5*bt;0]; end

if x > .96 & x <=.98, f = [10*x-9.6; 10; -10*x+15.7; -10]; end

if x > 0.98, f = [30*x-29; 30; -30*x+35; -30]; end,

elseif [bt,ga,Sh,Nu] == [1,15,100,18]

if x <= 0.99, f = [0;0;1+9*bt;0]; end

if x > 0.99, f = [70*x-73; 70; -70*x+1+75; -70]; end, end

function f = initialmiddlemiddle(x,bt,ga,Sh,Nu)

if x <= 0.92, f = [0;0;1+2.5*bt;0]; end

if x > 0.92, f = [ 13*x-12; 12; -13*x+1+15.5; -12 ]; end,

if [bt,ga,Sh,Nu] == [1,15,200,20],

if x <= 0.9, f = [0;0;1+5*bt;0]; end

if x > 0.9, f = [ 10*x-11; 10; -9*x+1+11; -9]; end

elseif [bt,ga,Sh,Nu] == [1,15,400,20],

if x <= 0.92, f = [0;0;1+2.5*bt;0]; end

if x > 0.92, f = [13*x-12; 12; -13*x+1+15.5; -12]; end,
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elseif [bt,ga,Sh,Nu] == [1,15,100,18],

if x <= 0.93, f = [0;0;1+2.2*bt;0]; end

if x > 0.93, f = [12*x-11.2; 10; -12*x+14.5; -10]; end, end

Note specifically the differential operator function function dydx which is central to the
program, as well as the boundary condition settings in function Rand, the singularity
matrix S, and the various starting solution guesses at the end of the program.

The m file pellet4runfwd.m acts as an auxiliary program for pellet4etacurve.mwhich
draws an interpolation curve for the η(Φ) data that is computed in pellet4runfwd for
a multitude of input parameters. pellet4etacurve.m again uses continuation in the
parameter and is adaptive. Here the term “parameter continuation” refers to our use of a
nearby known solutions as the initial guess for solving the BVP with a new parameter Φ
and our approach is “adaptive” in the sense that if a BVP computation fails to converge
for a predetermined step size in Φ then we reduce the step size and try again. The
program consists of over 450 lines of code and is available on the CD.
A call of pellet4etacurve(0.1,0.7,1,15,100,18,1,1); draws the following plot with
fivefold bifurcation for the parameters as indicated in Figure 5.26.
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Fivefold bifurcating curve for η; runtime ≈ 290 seconds
Figure 5.26

The x and o marks in the plot are used here exactly as explained earlier in Section 5.2
on p. 310 and depict the closest computed data near the bifurcation ends.
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Figure 5.27 shows another fivefold bifurcating η(Φ) curve for different Sherwood and
Nusselt numbers.
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Another fivefold bifurcating curve for η; runtime ≈ 340 seconds
Figure 5.27

If we increase the values of the Sherwood number Sh to 5,000 and increase the Nusselt
number likewise to 5,000, then we will generally not encounter any bifurcation. This is de-
picted below for β = 1 and γ = 8, for example, by calling pellet4etacurve(0.01,10,1,
8,5000,5000,1,1,2); In this call, the very last parameter, called tt in pellet4etacurve
is set to 2 in order to plot the nonbifurcating curve η(Φ) correctly.
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Figure 5.28

Figure 5.29 draws the output of the call pellet4etacurve(0.001,3,1,15,50000,50000,
1,1,0); with tt set to zero for threefold bifurcation.
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Figure 5.29
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The curve in Figure 5.29 was obtained for β = 1, γ = 15, Sh = 50, 000, and Nu = 50, 000
numerically from the two DE model (5.68) and (5.69). Note that the graph in Figure
5.29 is nearly identical to the one for the same β and γ values from the one DE model
(5.65) as depicted by the top curve of Figure 5.25 on p. 313.
One practical drawback to using the two DE model (5.68) and (5.69) rather than the
one DE model (5.65) for huge Sherwood and Nusselt numbers is the extra time and
extra number of DEs that must be solved (288 BVPs for Figure 5.29 versus 137 BVPs
for the top curve in Figure 5.25). High values of Sh and Nu correspond to negligible
external mass and heat transfer resistances. For large Sh and Nu values, the pro-
gram pellet4etacurve.m that is based on the two DE model (5.68) and (5.69) will
always give nearly the same results as our earlier program pelletetacurve.m does for
the model (5.65) that is based on one DE. But it will be much more expensive to run
pellet4etacurve.m in the high Sh and Nu values case.
For Figures 5.26 and 5.27 and the fivefold bifurcation case, each BVP takes around 1
second to solve in MATLAB on our 450 Mhz SunBlade 100. This nearly doubles the time
of our average of 0.6 seconds per BVP solution for the earlier single second-order DE
model which apparently can only model the no or the threefold bifurcation cases.
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No bifurcation for η; single BVP model; 45 seconds run time
Figure 5.30

For Figure 5.30, 93 BVP computations were performed. Each BVP problem took less
than 0.5 seconds on average when using pelletetacurve.m. This is much less effort
than the 313 BVPs that were solved for the almost equivalent two BVP problem with
two high Sherwood and Nusselt numbers in Figure 5.28. The two resulting curves of
Figures 5.28 and 5.30 are nearly identical for this nonbifurcating η−Φ case. The single
second-order BVPs associated with Figure 5.30 can also be solved numerically faster with
fewer nodes for the partition of the ω interval [0, 1], thereby requiring fewer paramet-
ric IVP solutions and smaller sized nonlinear equations that match the solutions at the
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nodes of the partition for ω.

We have mentioned these runtimes comparisons only to indicate the complexity of
our computations and the level and amount of work that BVPs generally require.
Industrial problems with pellet effectiveness multiplicities will also be studied in Chapter
7.

Exercises for 5.2
1. Derive the porous pellet diffusion reaction equations for a consecutive reaction

network
A −→ B −→ C .

2. Calculate the isothermal effectiveness factor η for the porous catalyst pellet
in problem 1 as a function of the Thiele modulus Φ for the first reaction
A −→ B utilizing the fact that the rate constant of the second reaction
B −→ C is half the rate constant of A −→ B , the pellet is isothermal,
and the external mass transfer resistance is negligible.
Also compute the yield and selectivity η of the desired product B and the
range of Φ′ values from 0.01 to 10, where Φ′ is the isothermal Thiele modulus.

3. For problem 2 above compute the effect of 10 ≤ Sh ≤ 1, 000 on the η−Φ
diagram and on the yield of B versus Φ diagram.

4. For problem 2 assume that the particle is nonisothermal, that the nonisother-
mal Thiele moduli Φi of both reactions are equal, that the activation energy
of the second reaction is double that of the first reaction, and that its heat of
reaction is also double the heat of reaction of the first reaction.
Compute the η−Φ diagram for negligible external mass and heat transfer
resistances. Also compute the yield yB of B versus Φ1 diagram.

5. For problem 4 compute the effect of Sh and Nu on the η−Φ1 and the yB−Φ1

diagrams.

Express your results for each of the above problems in graphs, please.

Conclusions

In this section we have presented and solved the BVPs associated with the diffusion
and reaction that take place in the pores of a porous catalyst pellet. The results
were expressed graphically in terms of the effectiveness factor η versus the Thiele
modulus Φ for two cases: One with negligible external mass and heat transfer re-
sistances, i.e., when Sh and Nu → ∞, and another with finite Sh and Nu values.
This problem is very important in the design of fixed-bed catalytic reactors. The
sample results presented here have shown that for exothermal reactions multiple
steady states may occur over a range of Thiele moduli Φ. Efficient numerical tech-
niques have been presented as MATLAB programs that solve singular two-point
boundary value problems.
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Exercises for Chapter 5

1. Develop the model equations and MATLAB code for solving the problem of a
packed bed reactor which is packed with porous catalyst pellets that catalyze a
first-order exothermic reaction with Φ2 = 1.8, γ = 1.1, and β = 1.1. Use a
dimensionless feed concentration and reactor length, as well as Sh = 250.0 and
Nu = 10.0.

2. Construct the diagrams of the effectiveness factor and the desired yield versus
the Thiele modulus ΦA of the reactant A for a first-order consecutive exothermic
catalytic reaction

A −→ B −→ C

in a porous catalyst pellet for ΦB = 0.2·ΦA, γB = 1.5·γA, γA = 15, βA( exothermic
factor for A → B) = 1.1, and βB (exothermic factor for B → C) = 1.8.

3. Construct the diagrams of the effectiveness factor and the desired yield versus the
Thiele modulus ΦA of the reactant A for the first-order parallel exothermic catalytic
reactions

A

C

B

������

������

�1

�2
Here B is the desired product, while C is undesired. Use Φ2 = 0.3 · Φ1, γ2 =
2.0 · γ1, γ1 = 12.0, β1 = 1.0, and β2 = 2.0.
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Chapter 6

Heterogeneous and Multistage
Systems

Many chemical and biological systems include multistage processes rather than only
continuous contact ones. The most common multistage systems are absorption and dis-
tillation columns. Most of these systems involve more than one phase and they therefore
fall under the category of heterogeneous multistage systems. Multistage systems can be
cocurrent or countercurrent.

6.1 Heterogeneous Systems

Most real world chemical and biological systems are heterogeneous. What does heteroge-
neous mean? In our context it means that the system contains matter in more than one
phase and that there is a strong interaction between the various phases, gaseous, liquid,
or solid.

A distillation process involves a heterogeneous system formed of at least two phases,
gas and liquid. Distillation is impossible unless at least two phases are present. Packed
bed distillation columns are formed of three phases that also take the solid packing phase
into consideration. Most distillation processes are not only heterogeneous, but also multi-
stage.

Absorption is another gas-liquid process with two phases. Packed bed absorbers
have three phases when also taking the solid packing of the column into consideration.
Both continuous, i.e., packed bed, and multistage absorption are common in the chemical
and biological industry.

Adsorption involves a solid-gas (or solid-liquid) two-phase system.
Fermentation gives rise to at least a two-phase system including the fermentation

liquid mixture and the solid microorganisms that catalyze the fermentation process. Fer-
mentation can also have three phases such as for aerobic fermentation where gaseous
oxygen is bubbled through the fermentor. And immobilized packed-bed aerobic fermen-

327
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tors are formed of four phases, two of them are solid, plus one liquid and one gaseous
phase.

Gas solid catalytic systems are two-phase systems involving a solid catalyst with
reactants and products that occur in the gas phase. Most gas-solid catalytic systems are
continuous rather than multistage systems.

In the previous chapters of this book we have dealt only with one phase systems.
There the emphasis was mainly on reacting systems. Single-phase nonreacting systems
such as mixers and splitters are almost trivial and shall not be dealt with at all.
However, in the present section we deal with heterogeneous systems and here nonreacting
systems are generally as nontrivial as reacting systems.

6.1.1 Material Balance and Design Equations for Heterogeneous
Systems

Generalized Mass-Balance and Design Equations for a Single-
Phase Reactor

We first recall the generalized mass-balance equations for one-phase systems with M
components.

K

     = 1, ...,     N

......
r
jReaction (   )

   = 1, ...,l     L    = 1, ...,    Kk

.

n

n if1
n if2

n ifl
n ifL

n i1
n i2

n ik

i

j

Material balance for homogeneous systems and component i
Figure 6.1

The generalized mass-balance equations are given by

K∑
k=1

nik =
L∑

l=1

nifl
+

N∑
j=1

σij · rj (6.1)

for i = 1, ..., M , where rj = Rij/σij is the overall generalized rate of reaction for reaction
j, Rij is the rate of production for component i in reaction j, σij is the stoichiometric
number of component i in reaction j, nifl

is the input (feed) molar flow rate of component
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i, and nik is the output (product) molar flow rate of component i.
Equation (6.1) is the most general mass-balance equation for single phase systems. It
applies to all possible mass-balance cases.
If there are no reactions then equation (6.1) reduces to the form

K∑
k=1

nik =
L∑

l=1

nifl
for each i = 1, ..., M . (6.2)

If there are N reactions but only a single input and a single output, then equation (6.1)
reduces to

ni = nif +
N∑

j=1

σij · rj for i = 1, ..., M (6.3)

and any number M of components i and any number of reactions N .
If we have a single reaction and a single input single output system, then equation (6.3)
becomes

ni = nif + σir .

For no reactions, i.e., a nonreacting system and single in- and output, the equations re-
duce to the trivial form ni = nif for each component i.

For each component i the material-balance equation (6.1) is correct regardless of
whether the system is lumped or distributed. However, when turning the material-balance
equations (6.1) into design equations given in (6.4) below, the situation differs for lumped
and distributed systems. The design equations for a lumped system such as depicted in
Figure 6.1 is given by

K∑
k=1

nik =
L∑

l=1

nifl
+

N∑
j=1

σij · r′j · V (6.4)

for each component i, where r′j is the generalized rate of reaction of the jth reaction per
unit volume of the reactor. As explained before, only the relations rj = r′j · V are
needed to turn the mass-balance equations into design equations for lumped systems.

We start with the simple single-input, single-output, single-reaction mass-balance
equation as represented in Figure 6.2. This is a one-phase system.

+n if ii n r

n if n i

=

One   reaction 

Mass-balance and design equations for a single-input, single-output, one-reaction system
Figure 6.2
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We use the very simple case of a first-order irreversible liquid-phase reaction A → B
where the rate of reaction is given by r′ = k · CA in mol/(l · sec), k is the reaction rate
constant in sec−1 and CA is the concentration of component A in mol/l. Later we will
show how the same principles can be applied to distributed system and also for other
rates like rate of mass transfer for heterogeneous systems with multiple phases.

The design equation for this single input single output system for the single reaction
case becomes ni = nif + σ · r′ · VR. Applied to component A we get

nA = nAf − k ·CA · VR . (6.5)

This is a simple problem since CA and nA occur in the same equation. For liquid-phase
systems when there is no change in volume, this problem is trivial. For gas-phase systems
with a change in the number of moles accompanying the reaction, it is simple enough,
but not as trivial as will be shown later.

For liquid-phase system we have nA = q · CA and nAf = q · CAf . Hence in this case
equation (6.5) becomes

q · CA = q ·CAf − k · CA · VR . (6.6)

Thus for a specific volume associated with the flow rate q, and for the rate of reaction
constant k we can obtain the volume of the reactor that is needed to achieve a certain
conversion. Rearranging equation (6.6) gives us

VR =
q · (CAf − CA)

k · CA
.

Thus if we want 90% conversion for example, then CA = 0.1·CAf and VR can be obtained
as VR = 9 · q/k.
This is how simply a mass-balance equation can be turned into a design equation and
become a mathematical model for a lumped isothermal system.
The same very simple principles apply to the heat-balance equations for nonisothermal
system and also to distributed systems as will be shown in the following subsections. The
same principles also apply to heterogeneous systems.

Next we consider distributed systems.
To illustrate we consider a homogeneous tubular reactor. The simplest model is given
by plug flow and the design equations are obtained from the mass-balance equations by
taking the mass balance over an element of length ∆l. This is expressed in the formula

ni(l + ∆l) = ni(l) + At · ∆l ·
N∑

j=1

σij · r′j ,

where At is the cross-sectional area of the tubular reactor and ∆l is the length incre-
ment.This difference equation can be written as

(∆ni/∆l) = At ·
N∑

j=1

σij · r′j .
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Taking the limit of ∆l → 0, the difference equation changes into the differential equation

dni

dl
= At ·

N∑
j=1

σij · r′j .

More specifically we consider the consecutive reaction network

3A
k1−→ 2B

k1−→ 5C .

Rearrangement and taking the limit of ∆l → 0 gives us the following differential equation
for the change of the molar flow rate of component A along the length of the tubular
reactor as

dnA

dl
= −3At · k1 · CA . (6.7)

This equation can be written in terms of the volume increment dV = At · ∆l as

dnA

dV
= −3k1 · CA .

With the initial conditions nA = nAf at l = 0 or CA = CAf when V = 0, the-balance
equations for component B are

dnB

dl
= At · (2k1 · CA − 2k2 ·CB) (6.8)

or
dnB

dV
= 2k1 ·CA − 2k2 · CB ,

respectively. For component C we obtain the analogous equation

dnC

dl
= 5At · k2 · CB . (6.9)

From the equations (6.7) to (6.9) we deduce that

nA

3
+

nB

2
+

nC

5
=

nAf

3
+

NBf

2
+

nCf

5
. (6.10)

Therefore only the two differential equations (6.7) and (6.8) need to be solved for nA and
nb as nC can be computed from equation (6.10) once nA and nB are known. However,
these two equations contain expression for the components A and B in two different
forms; they use nA and nB as well as CA and CB. To simplify this situation we can write
the equations in terms of nA and nB alone, or in terms of CA and CB alone, or in terms
of xA, the conversion of A, and YB , the yield of B.
In terms of nA and nB we have

CA = nA/q and CB = nB/q .
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For the gas phase we use P · q = nT · R · T and q = nT · R · T/P . Therefore q = α · nT

with nT = nA + nB + nC . Equation (6.10) gives us

nC = 5

(∑
i

nif

|σi| −
nA

3
− nB

2

)
.

Thus

nT = nA + nB + 5

(∑
i

nif

|σi| −
nA

3
− nB

2

)
,

or written out

nT = 5
nAf

3
+ 5

nBf

3
+ nCf − 2

3
nA − 3

2
nB = nCf +

1
3
(5nAf − 2nA)+

1
2
(5nBf − 3nB) .

(6.11)
Equation (6.11) expresses nT as a function of nA and nB , i.e.,

nT = f1(nA, nB) .

Thus q = α · nT = α · f1(nA, nB) and

CA =
nA

αf1(nA, nB)
= gA(nA, nB) , while (6.12)

CB =
nB

αf1(nA, nB)
= gB(nA, nB) (6.13)

for two functions gA and gB of nA and nB . Substituting (6.12) and (6.12) into the
equations (6.7) and (6.8) gives us

dnA

dl
= −3At · k1 · gA(nA, nB) and (6.14)

dnB

dl
= At · [3k1 · gA(nA, nB) − 2k2 · gB(nA, nB)] . (6.15)

These are two differential equations that can be solved simultaneously using one of
the standard MATLAB IVP solvers ode... with the initial conditions nA = nAf and
nB = nBf at l = 0.
Once nA(l) and nB(l) have been computed numerically for every position l along the
length of the tubular reactor, all other variables xA, YB, CA, CB , q, etc. can also be
computed.

Next we formulate the DEs (6.7) and (6.8) in terms of CA and CB instead. Here we
write equation (6.7) as

d(qCA)
dl

= −3At · k1 ·CA .

And the product rule of differentiation gives us

q
dCA

dl
+ CA

dq

dl
= −3At · k1 · CA . (6.16)
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From our earlier formulation in terms of nA and nB we now that q = α(nA + nB + nC).
Thus

dq

dl
= α

[
dnA

dl
+

dnB

dl
+

dnC

dl

]
. (6.17)

By using the equations (6.7) to (6.9) inside equation (6.17) we obtain the DE

q
dCA

dl
+ CA · α · At · (−k1 · CA + 3k2 ·CB) = −3k1 · CA .

Rearrangement finally yields

dCA

dl
=

At

q
· (−α ·CA(−k1 · CA + 3k2 · CB) − 3k1 · CA) . (6.18)

Equation (6.8) can similarly be written in term of CB and q. The resulting differential
equation the has to be solved simultaneously with the equations (6.17) and (6.18).
It is obvious that the formulation in terms of nA and nB is more straight forward than
the formulation in terms of CA and CB .

Overall Heat-Balance and Design Equations with Single and Mul-
tiple Reactions

We start with the following diagram

Nonadiabatic Reactor� �

Q

	
		


nif , Tf , Pf , πif ni, Tf , Pf , πi

Figure 6.3

Here i is an index used for numbering all components involved in the reaction, i.e., the
reactants and products. If any product i is not included in the feed, then we put nif = 0
and if a reactant j does not exist in the output then we put nj = 0 .

The enthalpy balance is∑
i

nif · Hif(Tf , Pf , πif) + Q =
∑

i

ni · Hi(T, P, π) (6.19)

where Q is the external heat added to the system or reactor, Tf and T are the feed and
output temperatures, Pf and P are the feed and output pressures, and πif and πi are
the phases of component i in the feed and the output, each respectively.
Note that the above equation does not contain any heat of reaction terms. These are
automatically included as will become clear in next few lines.
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If we define a reference state r and we add and subtract the terms
∑

i nif ·Hir(Tr, Pr, πir)
and

∑
i ni · Hir(Tr , Pr, πir), respectively, twice to equation (6.19), then after further

rearrangement of the terms, we obtain the heat-balance equation in the form∑
i

{Hif(Tf , Pf , πif) − Hir(Tr , Pr, πir)} + Q = (6.20)

=
∑

i

{Hi(T, P, π) − Hir(Tr , Pr, πir} +
∑

i

(ni − nif) · Hir(Tr, Pr, πir) .

From the mass balance of a single reaction we have

ni = nif + σi · r (6.21)

for r = Ri/σi. Equation (6.21) is equivalent to ni − nif = σi · r and therefore the
heat-balance equation becomes∑

i

{Hif(Tf , Pf , πif) − Hir(Tr , Pr, πir)} + Q =

=
∑

i

{Hi(T, P, π) − Hir(Tr, Pr, πir} + r ·
∑

i

σi · Hir(Tr , Pr, πir) .

By definition ∑
i

σi ·Hir(Tr , Pr, πir) = (∆HR)r

for the heat of reaction (∆HR)r at the reference conditions. With this, the heat-balance
equation takes the form∑

i

{Hif(Tf , Pf , πif) − Hir(Tr , Pr, πir)} + Q =

=
∑

i

{Hi(T, P, π) − Hir(Tr , Pr, πir} + r · (∆HR)r .

Expressed verbally, we have

{Enthalpy in (exceeding the reference condition) plus Heat added} =
= {Enthalpy out (exceeding the reference condition) plus

Heat absorbed by the reaction (at reference conditions)} .
For a single reaction, the term “heat absorbed by the reaction” above equals (∆HR)r.

The most general heat-balance equation for multiple-reactions, multiple-input and
multiple-output system is obtained by summing the enthalpies of the input streams and
the output streams. If we have F input streams and we use l as the counter for the input
streams and if we have K output streams and use k as their counter with M components
and N reactions, then we obtain the most general heat-balance equation in the form

F∑
l=1

(
M∑

i=1

nifl
(Hifl

− Hir)

)
+ Q =

K∑
k=1

(
M∑
i=1

nik(Hik − Hir)

)
+

N∑
j=1

rj(∆HR)rj .

(6.22)



6.1 Heterogeneous Systems 335

This is the most general heat-balance equation for a multiple input, multiple output,
multiple reactions (and of course multi-components) system.
In order to turn this heat-balance equation into a part of the design equations we simply
replace rj by V · r′j as done before for the mass balance, namely

L∑
l=1

(
M∑
i=1

nifl
(Hifl

− Hir)

)
+ Q =

K∑
k=1

(
M∑

i=1

nik(Hik − Hir)

)
+ V ·

N∑
j=1

r′j · (∆Hj) .

(6.23)

One-phase systems have been investigated in detail in the earlier chapters of this
book. In the following sections we extend these studies to two-phase systems.

Two Phase Systems

If a system is formed of two phases, we draw the mass-balance schematic diagram as
follows.

i

Interaction between the phases

n i

nn if

n if

   Phase II

Reaction (II) 

   Phase I

Reaction (I) 

Interaction between two phases of a system
Figure 6.4

The interaction between the two phases usually includes mass transfer from phase I to
phase II or vise-versa. This transfer can be in one direction for one component and in
the opposite direction for another component. The easiest way is to view the balance in
one direction as shown in Figure 6.5. The sign of the mass-transfer term RMi of each
component i depends on the direction of the mass transfer for the specific component,
which in turn depends on the concentration driving force.
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Interaction acting in one direction between different phases
Figure 6.5

Here the mass-balance equations can be written as

ni + RMi = nif + σiI · rI (6.24)

and
n̄i − RMi = n̄if + σiII · rII , (6.25)

where σiI is the stoichiometric number of component i in reaction (I) that takes place in
phase I and σiII is the stoichiometric number of component i in reaction (II) that takes
place in phase II.
To change the above mass-balance equations into design equations we just replace r′j by
V · r′j and rj by V · r′j , where r′j and r′j are the rates of reaction per unit volume of
reaction mixture or per unit mass of catalyst for catalytic reactions, etc.
Notice that the equations (6.24) and (6.25) are coupled through the term RMi.

Let us now consider the simpler case with no reaction. Then the equations (6.24) and
(6.25) become

ni + RMi = nif

and
n̄i − RMi = n̄if .

For constant flow rates qI and qII , we can write

qI · Ci + RMi = qI · Cif

and
qII · C̄i + RMi = qII · C̄if .

Here RMi can be expressed in terms of the concentrations Ci and C̄i as

RMi = am ·Kgi · (Ci − C̄i) , (6.26)

where Ci denotes the concentration of component i in phase I, C̄i denotes the concen-
tration of component i in phase II, am is the total area for mass transfer between the
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two phases, and Kgi is the mass-transfer coefficient for component i. The expression
in formula (6.26) is based on the assumption that the equilibrium is established when
Ci = C̄i. Otherwise we need to replace formula (6.26) with the expression

RMi = am · Kgi · (Ci − Fi(C̄i)) , (6.27)

where Fi(C̄i) is the concentration in phase I at equilibrium with C̄i. Thus in the general
case the term C̄i in equation (6.26) is replaced by Fi(C̄i). Note that if the concentration
Ci in phase I is equal to the equilibrium concentration C̄i in phase I, i.e., if Ci = Fi(C̄i),
then there is no mass transfer between the phases, i.e., we observe equilibrium.
Assuming (6.26) to be true, we have

qI · Ci + am · Kgi · (Ci − C̄i) = qI ·Cif (6.28)

and
qII · C̄i − am · Kgi · (Ci − C̄i) = qII · C̄if . (6.29)

And therefore for given values of qI , qII , am, Kgi, Cif , and C̄if we can compute the
values of Ci and C̄i from equations (6.28) and (6.29).

The Co- and Countercurrent Cases

The diagram below describes cocurrent flow.

I iq , C

q  , Cq  , C

q , Cif

 if  iII

I

II
Cocurrent flow of two streams

Figure 6.6

For countercurrent-flow streams we have the situation of Figure 6.7.

 if
q q  , C

iq , C

 , C

q , CifI

II  i II

I

Countercurrent flow of two streams
Figure 6.7

The two mass-balance equations (6.28) and (6.29) remain the same for both cases. This
is so because the difference between cocurrent and countercurrent flows does not appear
in a single lumped stage. It appears in a sequence of stages, or takes the form of a
distributed system as will be shown later.
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The Equilibrium Case

For a system in which the contact between the two phases is long and/or the rate of
mass transfer is relatively high, the concentrations of different components in the two
phases generally reach a state of equilibrium, i.e., a state where no further mass transfer is
possible. More details regarding equilibrium states are usually covered in thermodynamics
courses. Equilibrium relations relate the concentrations of the phases to each other such
as in

C̄∗
i = F ′

i (Ci) , or C∗
i = Fi(C̄i) . (6.30)

For narrow regions of concentration values, we can replace (6.30) by linear relations such
as

C̄∗
i = Ki ·Ci , or C∗

i = Ki · C̄i (6.31)

where ∗ refers to the equilibrium concentration and Ki is the equilibrium constant for
component i.
In the equilibrium case we neither know, nor need to know the rates of mass transfer.
The simple and systematic approach is to add equations (6.28) and (6.29) for both the
cocurrent and the countercurrent cases and thereby use only one equation instead of two,
coupled with the mass-balance equations which are the same for both flow cases.

The Cocurrent Case
Adding equations (6.28) and (6.29) gives us

qI · Ci + qII · C̄i = qI · Cif + qII · C̄if . (6.32)

This is a single algebraic equation linking the two unknowns Ci and C̄i. The equilibrium
relation (6.30) can be used in (6.32) to obtain

qI · Ci + qII · F ′
i (Ci) = qI · Cif + qII · C̄if . (6.33)

Equation (6.33) can be solved for Ci and the value of C̄i then follows from the equilibrium
relation (6.30).

The Countercurrent Case
Adding the equations (6.28) and (6.29) again gives us equation (6.32). By replacing C̄i

according to relation (6.30) we obtain equation (6.33) as before. As evidenced, there
is no difference in the equations for the cocurrent and countercurrent cases. There will
be case differences, however, when we consider more than one stage of cocurrent and
countercurrent operations or a distributed system.

Remark: As indicated earlier, in most heterogeneous systems the mass-transfer driving
force between phase I and phase II includes the concentration in phase I minus the
concentration in phase I which is in equilibrium with the concentration in phase II
(or vice versa), i.e.,

RMi = am · Kgi · (Ci − Fi(C̄i)) or RMi = am · Kgi · (C̄i − F ′
i (Ci))
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where RMi represents the transfer of component i from phase I to phase II and
Fi(C̄i) is the concentration in phase I which is at equilibrium with the concentration
in phase II. Obviously, if Ci > Fi(C̄i) then the transfer is from phase I to phase
II. Note that the transfer is in the opposite direction if Ci < Fi(C̄i). And when
Ci = Fi(C̄i) then the system is at equilibrium with no further mass transfer between
the phases.
This situation can be expressed in the opposite sense if we write the driving force
RMi as

RMi = −am · Kgi · (C̄i − F ′
i (Ci))

as shown on the previous page. Here F ′
i (Ci) denotes the concentration in phase II

which is in equilibrium with the concentration in phase I and C̄i is the concentration
in phase II.

Stage Efficiency

In contrast to continuous packed bed columns, each stage, whether cocurrent or coun-
tercurrent, can be considered to be at equilibrium for many multi-phase mass-transfer
processes such as distillation, absorption, extraction etc. Such stages are usually called
“ideal stages”.
The deviation of the actual system from this “ideality” or “equilibrium” is compensated
for by using a “stage efficiency” coefficient, which varies between 1.0 for an “ideal stage”
and 0 for a “useless stage”. Usually the stage efficiencies range between 0.6 and 0.8. They
differ widely for different processes, for different components, and for different designs
(specially with respect to retention time) that are involved in a particular process.
However, in some cases the concept of “stage efficiency” can cause unacceptable inaccu-
racies. The rate of mass transfer between the phases should be used in both mass-balance
and the design equations.

It is clear from the above that the main concepts used in the mass balance for one-
phase systems can be extended to heterogeneous system by simply writing mass-balance
equations for each phase and taking the interaction (mass transfer) between the phases
into account. The same applies when there are reactions in both phases. Then the rate
of reaction terms must be included in the phase mass balances as shown earlier.

Generalized Mass-Balance for Two Phase Systems

For the sake of generality, we now develop most general mass-balance equations for a
two phase system in which each phase has multiple inputs and multiple outputs and in
which each phase is undergoing reactions within its boundaries.
Refer to Figure 6.8 for a representation of the generalized mass-balance expression in a
heterogeneous system.
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Figure 6.8

In Figure 6.8 the index i refers to component i in the two phases, namely to the reactants,
the products, and the inerts.
The mass-balance equations for phase I are

K∑
k=1

nik + RMi =
L∑

l=1

nifl
+

N∑
j=1

σij · rj , (6.34)

where RMi is the overall rate of mass transfer from phase I to phase II, rj is the overall
generalized rate of reaction for reaction j, and σij is the stoichiometric number of com-
ponent i in reaction j.
Likewise, for phase II:

K̄∑
k̄=1

n̄ik̄ − RMi =
L̄∑

l̄=1

n̄if l̄
+

N̄∑
j̄=1

σij̄ · r̄j̄ , (6.35)

where K̄ is the number of output streams from phase II, L̄ is the number of input streams
to phase (II) other than the mass transfer between the two phases, and N̄ is the number
of reactions in phase II.
To change the mass-balance equations (6.34) and (6.35) into design equations we replace
rj by V · r′

j and r̄j by V · r̄′
j, where r

′
j and r̄

′
j denote the rates of reaction per unit volume

of the reaction mixture, or per unit mass of catalyst for catalytic reactions for example.
More details of the design equations are given below.

6.1.2 The Design Equations (Steady-State Models) for Isother-
mal Heterogeneous Lumped Systems

Design equations are used in sizing the equipment, while mass-balance equations are
components inventory equations.
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For simplicity and clarity, let us now consider a two-phase system where each phase has
a single input and a single output with a single reaction taking place in each phase.

r

Reaction r

Reaction
n if

if n i

n i

RM i

n    Phase I

   Phase II

A two-phase heterogeneous system with single input, single output,
and a single reaction in each phase

Figure 6.9

The mass-balance equations are

ni + RMi = nif + σi · r (for phase I) (6.36)

and
n̄i − RMi = n̄i + σ̄i · r̄ (for phase II) , (6.37)

where
ni = molar flow rate of component i out of phase I (mol/min),
n̄i = molar flow rate of component i out of phase II (mol/min),

nif = molar flow rate of component i fed to phase I (mol/min),
n̄if = molar flow rate of component i fed to phase II (mol/min),

r = generalized rate of the single reaction in phase I (mol/min),
σi = stoichiometric number of component i in the reaction in phase I ,
r̄ = generalized rate of the single reaction in phase II (mol/min),

σ̄i = stoichiometric number of component i in the reaction in phase II, and
RMi = overall mass-transfer rate of component i from phase I to phase II (mol/min).

Here σi and σ̄i are both dimensionless numbers.
In order to turn these mass-balance equations into design equations, we turn all the rate
processes r, r̄, and RMi into rates per unit volume of the process for the specific phase,
namely

r
′

= rate of reaction in phase I per unit volume of the process (mol/(min · cm3),

r̄
′

= rate of reaction in phase II per unit volume of the process (mol/(min · cm3),

RM
′
i = rate of mass transfer of component from phase I to phase II

per unit volume of the process (mol/(min · cm3), and
V = volume of the process (cm3).

We note that RM ′
i can also be expressed per unit of mass-transfer area between the two

phases.
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Then the equations (6.36) and (6.37) can be rewritten as

ni + V · RM
′
i = nif + V · σi · r′

(for phase I) (6.38)

and

n̄i − V · RM
′
i = n̄i + V · σ̄i · r̄′

(for phase II) . (6.39)

For example, consider the case of first-order irreversible reactions in both phases with
constant flow rates qI in phase I and qII in phase II, and where the concentrations are
Ci in phase I and C̄i in phase II. The rates of reactions are given by

r
′

= k · CA and r̄
′

= k̄ · C̄B .

Note that i = 1, 2, 3, ..., A, ...,B, ..., i.e., the component in question may be labeled by an
integer number or referred to by a letter.
If we assume that the equilibrium between the phases is established when Ci = C̄i, then
the equations (6.38) and (6.39) become

qI · Ci + V · a′
m · Kgi(Ci − C̄i) = qI · Cif + V · σi · k · CA (6.40)

and

qII · C̄i − V · a′
m ·Kgi(Ci − C̄i) = qII · C̄if + V · σ̄i · k̄ · C̄B , (6.41)

where a
′
m is the area of mass transfer per unit volume of the process unit and Kgi is the

coefficient of mass transfer of component i between the two phases. Note that we again
assume here that the equilibrium between the two phases occurs when the concentrations
in both phases are equal.

For many two-phase systems these equations can be written as

qI ·Ci + V · a′
m ·Kgi(Ci − F (C̄i)) = qI · Cif + V · σi · k · CA (6.42)

and

qII · C̄i − V · a′
m · Kgi(Ci − F (C̄i)) = qII · C̄if + V · σ̄i · k̄ · C̄B , (6.43)

where F (C̄i) is the concentration in phase I which is in equilibrium with the concentra-
tion in phase II.

A Simple Illustrative Example

Let us consider an example whose flow rates q.. and rates of reactions r.. are shown in
Figure 6.10.
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Figure 6.10

Notice in this example that CAf is fed to the first phase, while the feed concentrations
CBf and CCf are equal to zero. For phase II, C̄Bf is fed to this second phase, while both
feed rates C̄Af and C̄Cf are equal to zero.

Design equations (for the simplified RMi driving force Ci − C̄i instead of Ci −F (C̄i)):

Phase I:
For component A:

qI · CA + V · a′
m · KgA · (CA − C̄A) = qI ·CAf − V · k · CA . (6.44)

Here the term V · k · CA carries a negative sign since A is a reactant and σA = −1.
Component A is only available in phase I, CA > C̄A, and any transfer of A will be from
phase I to phase II.
For component B:

qI · CB + V · a′
m ·KgB(CB − C̄B) = qI · CBf︸ ︷︷ ︸

equal to zero

+V · k · CB , (6.45)

since B is produced in phase I and consumed in phase II. Thus CB > C̄B and the transfer
of B is from phase I to phase II.
For component C:

qI ·CC + V · a′
m · KgC(CC − C̄C) = qI · CCf︸ ︷︷ ︸

equal to zero

. (6.46)
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Notice that C̄C > CC and that the transfer of C will be from phase II to phase I.

Phase II:
For component A:

qII · C̄A − V · a′
m · KgA(CA − C̄A) = qI · C̄Af︸ ︷︷ ︸

equal to zero

. (6.47)

For component B:

qII · C̄B − V · a′
m · KgB(CB − C̄B) = qII · C̄Bf − V · k̄ · C̄B . (6.48)

For component C:

qII · C̄C − V · a′
m · KgC(CC − C̄C) = qII · C̄Cf︸ ︷︷ ︸

equal to zero

+V · k̄ · C̄B . (6.49)

The above six equations (6.44) to (6.49) are the design equations for this two-phase sys-
tem when both phases are lumped systems.
For more accuracy in the above six equations, we could have used the driving force terms
(C... − f(C̄...)) instead in the above equations, with f(C̄...) more accurately denoting
the concentration of the component in play in phase I which is at equilibrium with the
concentration in phase II.

6.1.3 The Design Equations (Steady-State Models) for Isother-
mal Heterogeneous Distributed Systems

As explained in detail for homogeneous systems in Chapter 4, a distributed system in-
cludes variations in the space direction. Therefore for a distributed system we can not
use the overall rate of reaction, i.e., the rate of reaction per unit volume multiplied by the
total volume, nor the overall rate of mass transfer, i.e., the mass transfer per unit area
multiplied by the area of mass transfer. For lumped systems the area of mass transfer
is treated as the multiple of the area per unit volume of the process multiplied by the
volume of the process for the design equations.
In the case of a distributed system we need to establish the mass-balance for a small
element ∆V and then take lim∆V →0 to arrive at a DE, as detailed for distributed homo-
geneous systems earlier in Chapter 4 and depicted in Figure 6.11.
As an illustration, let us consider a system with the single reaction

A −→ B ,

taking place completely in phase I with no reaction taking place in phase II, but with
mass transfer between the two phases.
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The Cocurrent Case
Here the-balance equation for phase I, or the first design equation is

ni + ∆ni + ∆V ·RM
′
i = ni + ∆V · σi · r′

. (6.50)

And for phase II the second design equation is

n̄i + ∆n̄i − ∆V · RM
′
i = n̄i + 0 (6.51)

because there is no reaction in phase II.
Rearranging equation (6.50) and taking the difference quotient limit as ∆V → 0 gives us

dni

dV
+ RM

′
i = σi · r′

. (6.52)

Furthermore, rearranging equation (6.51) makes

dn̄i

dV
− RM

′
i = 0 . (6.53)

Both (6.52) and (6.53) are differential equations with the initial conditions of ni = nif

and n̄i = n̄if at V = 0.

If the flow rates q in phase I and q̄ in phase II are constant and the reaction is first-
order with r

′
= k · CA and if we assume that the equilibrium between the phases is

established when Ci = C̄i, then we can rewrite the two equations (6.52) and (6.53) in
the following form

q · dCi

dV
+ a

′
m · Kgi(Ci − C̄i) = σi · k · CA (6.54)

and

q̄ · dC̄i

dV
− a

′
m · Kgi(Ci − C̄i) = 0 , (6.55)

where Ci and C̄i are the concentrations of component i in phase I and II, respectively.
The initial conditions for the cocurrent case are Ci = Cif and C̄i = C̄if at V = 0, where
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i = A or B. Here we again assume that the two phases are at equilibrium when the
concentrations in both phases are equal.
Specifically for the two components A and B, we write:
For phase I:

q · dCA

dV
= −a

′
m ·KgA(CA − C̄A) − k · CA (6.56)

and

q · dCB

dV
= −a

′
m · KgB(CB − C̄B) + k ·CA . (6.57)

For phase II:

q̄ · dC̄A

dV
= a

′
m ·KgA(CA − C̄A) (6.58)

and

q̄ · dC̄B

dV
= a

′
m · KgB(CB − C̄B) . (6.59)

For the cocurrent case both sets of DEs are subject to the initial conditions CA =
CAf , CB = CBf , C̄A = C̄Af , and C̄B = C̄Bf at V = 0.

Generalized Form of Multiple Reactions in Both Phases I and II

We now develop general design equations for N reactions (counted by the index j) taking
place in phase I and N̄ reactions (counted in j̄) taking place in phase II as depicted in
Figure 6.12.
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Mass flow for the heterogeneous distributed system
Figure 6.12

Here the design equations for the cocurrent case are as follows:
For phase I:

ni + ∆ni + ∆V ·RM
′
i = ni + ∆V

N∑
j=1

σij · r′
j .
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This equation can be turned into a DE, namely

dni

dV
+ RM

′
i =

N∑
j=1

σij · r′
j . (6.60)

Similarly for phase II, the design equation DE becomes

dn̄i

dV
− RM

′
i =

N̄∑
j̄=1

σ̄ij̄ · r̄
′
j̄ . (6.61)

Both DEs (6.60) and (6.61) are subject to the initial conditions ni = nif and n̄i = n̄if

at V = 0 for the cocurrent case.

Notice that for a distributed system, the multiple input problem changes into an
artificial idle stage mass balance with no reaction or mass transfer at the input for each
phase as shown in Figure 6.13.
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This simplifies the problem of multiple inputs. One can proceed similarly for multiple
outputs.



348 Chapter 6: Heterogeneous and Multistage Systems

In some instances one of the phases is distributed and the other phase is lumped. In such
a case the distributed phase will contribute its mass and/or heat-transfer term to the
lumped phase through an integral as shown in the model of a bubbling fluidized bed in
Chapter 4.

The Countercurrent Case
For the countercurrent case, the differential equation of phase II is given by

−dn̄i

dV
− RM

′
i =

N̄∑
j̄=1

σ̄ij̄ · r̄
′
j̄ (6.62)

with the boundary conditions n̄i = n̄if at V = Vt, where Vt is the total volume of the
process unit.

6.1.4 Nonisothermal Heterogeneous Systems

In this section we develop the heat-balance design equations for heterogeneous systems.
Based on the previous sections it is clear how to use the heat-balance and heat-balance
design equations that were developed earlier for homogeneous systems, as well as the
principles that were used to develop the mass-balance and mass-balance design equations
for heterogeneous systems for our purpose. We will start with lumped systems.

Lumped Systems

Let us first recall the heat-balance equations and nonisothermal design equations for
homogeneous systems as developed in Chapter 3. A lumped homogeneous system is
schematically shown in Figure 6.14.

i

Q

n if

H if H i

n

Heat balance
Figure 6.14

We have developed the following heat-balance equation earlier in Chapter 3:∑
i

(nif · Hif) + Q =
∑

i

(ni · Hi) . (6.63)

Recall how to transform this enthalpy equation into an enthalpy difference equation using
enthalpy of each component at the reference condition Hir. Thus∑

i

(nif ·Hif −nif ·Hir)+
∑

i

(nif ·Hir)+Q =
∑

i

(ni ·Hi−ni ·Hir)+
∑

i

(ni ·Hir) .
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We can rearrange this equation to obtain∑
i

nif(Hif − Hir) + Q =
∑

i

ni(Hi − Hir) +
∑

i

(ni · Hir − nif ·Hir) . (6.64)

The last term in equation (6.64) can be written as∑
i

(ni − nif)Hir . (6.65)

This term can be replaced by using the mass-balance relation

ni = nif + σi · r , or ni − nif = σi · r

as ∑
i

σi · r ·
∑

i

(ni − nif )Hir = Hir = r
∑

i

σi · Hir = r · ∆Hr .

Thus the heat-balance equation (6.63) has become∑
i

nif(Hif − Hir) + Q =
∑

i

ni(Hi − Hir) + r · ∆Hr . (6.66)

In order to convert equation (6.66) into a nonisothermal heat-balance design equation,
we replace r with r′ · V , where r′ is the rate of reaction per unit volume V and V is the
volume of the reactor. Then equation (6.66) becomes∑

i

nif(Hif − Hir) + Q =
∑

i

ni(Hi − Hir) + V · r′ ·∆Hr . (6.67)

Notice that the units of r′ and V depend upon the type of the process. For example,
if we are dealing with a gas-solid catalytic system, we will usually define r

′
as per unit

mass of the catalyst and replace V with WS which is the weight of the catalyst.
And for N reactions (counted in j), equation (6.67) becomes

∑
i

nif(Hif − Hir) + Q =
∑

i

ni(Hi − Hir) + V

N∑
j=1

rj
′ · ∆Hrj . (6.68)

The most suitable reference conditions r are the standard conditions. The standard con-
ditions for any component are a temperature of 25◦ C, a pressure of 1 atm and the true
natural phase of the component under these conditions, e.g., H2O is liquid, H2 is a gas,
and C is solid under the standard conditions.

Heterogeneous Lumped Systems

For a heterogeneous system we write equation (6.67) out for each phase and account for
the heat transfer Q between the two phases. For a nonadiabatic system the heat Qexternal
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that is added from the outside is added to the phase that receives it. Which phase re-
ceives which amount of heat depends on the configuration and on our knowledge of the
physical system as we have seen for example for the nonadiabatic bubbling fluidized bed
catalytic reactor in Chapter 4.

Now we consider an adiabatic two-phase system in which each phase has one reaction
as shown schematically in Figure 6.15.

 if

 i if
n , H

n , H

Qn , H

n , H

i

iif

if

 i   Phase II

   Phase I

Heat balance for a two-phase system
Figure 6.15

In Figure 6.15, Q denotes the heat transfer between the two phases.
For phase I, the heat-balance equation is∑

i

nif (Hif − Hir) − Q =
∑

i

ni(Hi − Hir) + rI · ∆HrI , (6.69)

while for phase II it is∑
i

n̄if(H̄if − H̄ir) + Q =
∑

i

n̄i(H̄i − H̄ir) + rII · ∆HrII . (6.70)

To turn these heat-balance equations into nonisothermal heat balance design equations,
we define the rate of reaction per unit volume (or per unit mass of catalyst, depending
on the system) and the heat transfer per unit volume of the process unit (or per unit
length), whichever is more convenient.
Then the equations (6.69) and (6.70) become:
For phase I:∑

i

nif(Hif − Hir) − V · Q′
=

∑
i

ni(Hi − Hir) + V · r′ ·∆HrI . (6.71)

And for phase II:∑
i

n̄if(H̄if − H̄ir) + V · Q′
=

∑
i

n̄i(H̄i − H̄ir) + V · r̄′ ·∆HrI . (6.72)

The rate of heat transfer per unit volume of the process unit is given by

Q
′

= a
′
h · h(T − T̄ ) , (6.73)
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where
a

′
h = the area of heat transfer per unit volume of the system,
h = the heat-transfer coefficient between the two phases,
T̄ = the temperature of phase II, and
T = the temperature of phase I.

Obviously for multiple reactions in each phase, we must change the equations accordingly.
For N reactions (counted in j) in phase I and N̄ reactions (counted in j̄) in phase II, the
equation for phase I is

∑
i

nif(Hif −Hir)+V ·a′
h ·h(T̄ −T ) =

∑
i

ni(Hi−Hir)+ V

N∑
j=1

(r
′
j ·∆Hrj) , (6.74)

and that for phase II is

∑
i

n̄if(H̄if − H̄ir)−V ·a′
h ·h(T̄ −T ) =

∑
i

n̄i(H̄i− H̄ir)+ V
N̄∑

j̄=1

(r̄
′
j̄ ·∆H̄rj̄) . (6.75)

Now our picture is almost complete and we can determine the heat-balance design equa-
tion for our distributed two phase system.

Distributed Systems

 ii  H

V

Qn i  H i

n i  H i

n i  H in i  H i
+

+ n i  H in    Phase II

   Phase I

Heat balance for a heterogeneous distributed system
Figure 6.16

The Cocurrent Case
Phase I with one reaction gives rise to the equation∑

i

niHi − ∆V
∑

i

(RM
′
i · Hi) − ∆V · Q′

=
∑

i

(niHi + ∆niHi) . (6.76)

The equivalent DE for equation (6.76) is∑
i

d(niHi)
dV

= −Q
′ −

∑
i

(RM
′
i · Hi)
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which can be written as∑
i

ni
dHi

dV
+

∑
i

Hi
dni

dV
= −Q

′ −
∑

i

(RM
′
i ·Hi) . (6.77)

From the mass-balance design equation (6.60), used here for a single reaction, we obtain

dni

dV
+ RM

′
i = σi · r′

. (6.78)

Substituting dni/dV from equation (6.78) into equation (6.77) gives us∑
i

ni
dHi

dV
+

∑
i

Hi[σi · r′ − RM
′
i ] = −Q

′ −
∑

i

(RM
′
i · Hi) ,

or ∑
i

ni
dHi

dV
+ r

′ · ∆H = −Q
′
. (6.79)

For phase II and cocurrent operation, the corresponding DE is∑
i

n̄i
dH̄i

dV
+ r̄

′ · ∆H̄ = Q
′
. (6.80)

If the change is only sensible heat and if we use an average constant Cp for the mixture,
then we obtain the following more popular approximate heat-balance design equations

q · ρ · Cp
dT

dV
+ r

′
∆H = −a

′
h · h(T − T̄ ) for phase I (6.81)

and

q̄ · ρ̄ · C̄p
dT̄

dV
+ r̄

′
∆H̄ = a

′
h · h(T − T̄ ) for phase II , (6.82)

with the initial conditions T = Tf and T̄ = T̄f at V = 0 for the cocurrent case. Here
q = volumetric flow rate in phase I (m3/h),
q̄ = volumetric flow rate in phase II (m3/h),
ρ = average density of mixture in phase I (kg/m3),
ρ̄ = average density of mixture in phase II (kg/m3),

Cp = average specific heat of phase I (kJ/(kg ·K),
C̄p = average specific heat of phase II (kJ/(kg ·K).

The Countercurrent Case
In this case we have

q · ρ · Cp
dT

dV
+ r

′
∆H = −a

′
h · h(T − T̄ ) for phase I . (6.83)

Note that the equation for phase I for the countercurrent case is the same as the one for
the cocurrent case. And

−q̄ · ρ̄ · C̄p
dT̄

dV
+ r̄

′
∆H̄ = −a

′
h · h(T − T̄ ) for phase II (6.84)

with the two-point boundary conditions T = Tf at V = 0 and T̄ = T̄f at V = Vt.
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Exercises for 6.1

1. Show that the steady- state and dynamic models for a double-pipe, counter-
current heat exchanger can have the same form as the model of a packed bed
absorber. Discuss the assumptions inherent in both the heat exchanger and
the absorber models which might lead to significant differences in the kinds
of model equations used to describe each system.

2. An exothermic reaction

A −→ B with r′ = k0 · e−E/(R·T ) · CA

takes place in a plug flow tubular reactor. The reactor is cooled by a cooling
jacket. Derive the steady-state model for both countercurrent and cocurrent
flow in the cooling jacket. Structure a solution algorithm for both cases.

6.2 Nonreacting Multistage Isothermal Systems and

High Dimensional Linear and Nonlinear Systems

Many chemical and biological processes are multistage. Multistage processes include ab-
sorption towers, distillation columns, and batteries of continuous stirred tank reactors
(CSTRs). These processes may be either cocurrent or countercurrent. The steady state of
a multistage process is usually described by a set of linear equations that can be treated
via matrices. On the other hand, the unsteady-state dynamic behavior of a multistage
process is usually described by a set of ordinary differential equations that gives rise to
a matrix differential equation.

We start with isothermal processes with fixed temperatures in all stages, so that the
model simply consists of the mass-balance design equations.

6.2.1 Absorption Columns or High Dimensional Lumped, Steady
State and Equilibrium Stages Systems

Absorption is a process in which a component in a gas stream is absorbed by a liquid
stream, such as the CO2 absorption in ammonia and methanol production lines.

We study absorption columns or towers, and multistage or multitray systems in which
all stages are equilibrium stages, also called ideal stages. In an equilibrium or ideal stage,
the liquid and gas streams at the exit of each tray or stage are at equilibrium with each
other. This occurs if the mass transfer rate of the stage and the residence time in the
stage are both relatively high, so that the gas and liquid streams reach equilibrium during
their contact in each stage.

We assume that in our system the component A is absorbed from the gas phase into
the liquid phase. Figure 6.17 describes the jth stage (or tray) of a multistage system in
terms of the following variables:
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Yj , the mole fraction of component A in the gas phase leaving the jth tray;
nj, the molar flow rate of component A in the gas phase leaving the jth tray;
Xj , the mole fraction of component A in the liquid phase leaving the jth tray; and
n̄j, the molar flow rate of component A in the liquid phase leaving the jth tray.

Here nj = ntj · Yj, where ntj is the total molar flow rate of the gas phase leaving the
jth tray and n̄j = n̄tj · Xj , where n̄tj is the total molar flow rate of the liquid phase
leaving the jth tray.

The mass flow streams at tray j are shown in Figure 6.1 for a countercurrent pro-
cess of a dilute system. Here the total molar flow rate of the rising gas is constant
at V moles/min while the total molar flow rate of the sinking liquid is constant at
L moles/min. Both L and V are molar flow rates as long as Xj and Yj are molar frac-
tions. If, however, Xj and Yj describe concentrations, measured in mole/m3 , then L and
V are volumetric flow rates measured in m3/min.

V, Yj−1

L, X j j+1V, Y

j
L, X

Molar flow across jth tray
Figure 6.17

By looking at the molar flow balance for the jth tray in Figure 6.17 we find that

n̄j−1Xj−1 + nj+1Yj+1 = n̄jXj + njYj . (6.85)

For simplicity, we assume that the total molar flow rates of the liquid and gas phases
remain constant, that is n̄j = L and nj = V for all j as described above.
With this assumption equation (6.85) becomes

LXj−1 + V Yj+1 = LXj + V Yj . (6.86)

When we assume equilibrium stages, we write Yj = F (Xj) for an equilibrium function
F (Xj) that depends on the variable Xj only.

The Case of a Linear Equilibrium Relation

Specifically for a linear equilibrium function F (x) = ax + b, we have Yj = aXj + b for
two process constants a and b.
By using an equilibrium function F of this linear form in equation (6.86), we obtain

LXj−1 + V (aXj+1 + b) = LXj + V (aXj + b) .
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This simplifies to
LXj−1 + (V a)Xj+1 = (L + V a)Xj .

And further rearrangement yields

LXj−1 − (L + V a︸ ︷︷ ︸
α

)Xj + ( V a︸︷︷︸
β

)Xj+1 = 0 .

Thus we have
LXj−1 − αXj + βXj+1 = 0 . (6.87)

Figure 6.18 shows the schematic diagram of a countercurrent absorption column with
the molar flow rates shown symbolically at each of its N trays.

N

V, Y

1

L, X

L, X N

2

V, Y

  +1N

10

2
X1

X YN

Y

   −1N

Absorption column with N stages
Figure 6.18

Note that the order of the labeling of the trays or stages from 1 to N or in reverse order
from N to 1 does not affect the problem.
Next we look at equation (6.87) for each j = 1, ..., N .
For the first tray with j = 1, we have

LX0 − αX1 + βX2 = 0

which we can rewrite as

−αX1 + βX2 + 0X3 + 0X4 + . . . + 0XN = −LX0 .

For j = 2 we get

LX1 − αX2 + βX3 + 0X4 + 0X5 + . . . + 0XN = 0 .
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For j = 3 we obtain

0X1 + LX2 − αX3 + βX4 + 0X5 + . . . + 0XN = 0 .

Similarly for j = N − 1 equation (6.87) reads as

0X1 + 0X2 + 0X3 + . . . + LXN−2 − αXN−1 + βXN = 0 .

And finally for the tray with number j = N we have

0X1 + 0X2 + 0X3 + . . . + 0XN−2 + LXN−1 − αXN + βXN+1 = 0 ,

or after rearranging

0X1 + 0X2 + 0X3 + . . . + 0XN−2 + LXN−1 − αXN = −βXN+1 .

These are N equations that can be written in matrix form. For this purpose we define a
vector X whose components are the state variables Xj, namely

X =

⎛⎜⎜⎜⎜⎜⎝
X1

X2

...
XN−1

XN

⎞⎟⎟⎟⎟⎟⎠ . (6.88)

The matrix of coefficients of X for the N equations given by (6.87) for j = 1, ..., N is the
N by N matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α β 0 0 . . . . . . 0

L −α β 0
...

0 L −α β
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . L −α β 0

...
. . . L −α β

0 . . . . . . . . . 0 L −α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.89)

The matrix A is a tridiagonal Toeplitz1 matrix with constant main diagonal and co-
diagonal entries.
The right-hand sides of the N equations can be combined into the constant right-hand-
side vector

B =

⎛⎜⎜⎜⎜⎜⎝
−L X0

0
...
0

−β XN+1

⎞⎟⎟⎟⎟⎟⎠ , (6.90)

1Otto Toeplitz, German mathematician, 1881 - 1940
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since X0 and XN+1 are not state variables, but rather known input variables. Thus, the
matrix form of the mass-balance design equations for the absorption column is the linear
system of equations

A X = B . (6.91)

If A is invertible, then equation (6.91) has a unique solution, theoretically written in the
form

X = A−1 B . (6.92)

Numerically, matrix inversion is at least twice as costly as solving the corresponding lin-
ear system of equations. Therefore for numerical purposes there is no need to go beyond
equation (6.91) to the algebraically more satisfying, but numerically meaningless closed
form solution X of (6.92).
Unfortunately the first simplifying assumption of a linear equilibrium relation in the mass-
balance model is not very accurate for practical chemical/biological systems. Therefore
we will also present numerical solutions for linear high-dimensional systems with nonlin-
ear equilibrium relations. A model that accounts for mass transfer in each tray will be
presented in the next subsection.

For the moment we continue with our very simple case.

Example of a linear absorption column

1V, Y

 +1NN

o

N

1

V, YL, X

L, X

Linear absorption column
Figure 6.19

The matrix equation for the mole fractions Xj and Yj in Figure 6.19 is

A X = B
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where A is the tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎝
−α β 0
L −α β

L −α β
. . . . . . . . .

0 L −α

⎞⎟⎟⎟⎟⎟⎠ .

Here L is the liquid flow rate (in l/min), β = V ·a, where V is the gas flow rate (in l/min)
and a is the coefficient in the equilibrium relation Yj = aXj +b, α = L+V ·a (= L+β),
B = (−L X0, 0, . . . , 0, −β XN+1)T , and XN+1 = (YN+1 − b)/a .
We use the following data for our simulation:
The number of trays is N = 6, making A a 6 by 6 matrix. Moreover,
L = 750 l/min, V = 7000 l/min, a = 0.72, b = 0.01, X0 = 0.001 g/l,
YN+1 = 1.4 g/l, and XN+1 = (YN+1 − b)/a = (1.4 − 0.01)/0.72 = 1.943 g/l .
Notice that we are using volumetric flow rates and concentrations here, rather than the
total molar flow rate and mole fractions.

Our task is to find all X and Y values from the linear system A X = B. For this
it is sufficient to find all X values first and then to compute the corresponding Y values
from the equations Yj = aXj + b for j = 1, ..., N .
Here is a simple MATLAB function that performs this task by solving AX = B via
MATLAB’s \ built-in backslash linear equations solver.

function [relrem,X,Y] = linearcolumn(N,a,b,L,V,X0,YNp1)

% [relrem,X,Y] = linearcolumn(N,a,b,L,V,X0,YNp1)

% Sample call: linearcolumn(6,0.72,0.01,750,7000,0.001,1.4)

% Input : N = number of trays

% a, b = coefficients in F(X) = aX + b

% L = liquid flow rate

% V = gas flow rate

% X0, YNp1 = input variables X_0 and Y_{N+1}

% Output: X and Y, the molar fractions of component A in the liquid and gas

% phases, respectively.

% relrem is the relative removal rate (for example 0.14 means 14 %)

bt = V*a; al = L + bt; % construct intermediate terms and system matrices

A = -diag(al*ones(1,N)) + diag(bt*ones(1,N-1),1) + diag(L*ones(1,N-1),-1);

B = zeros(N,1); B(1) = -L*X0; B(N) = -bt*(YNp1 - b)/a;

X = A\B; Y = a*X + b; % solve linear system for X and compute Y from X

relrem = (YNp1 - Y(1))/YNp1; % relative removal rate

disp(’ Xj Yj j’),

disp([X,Y,[1:length(X)]’])

For our specific data the computed concentrations Xj and Yj of component A in the jth
tray appear in the first column of the on-screen output matrix for the liquid phase and in
the second column for the gaseous phase, respectively, after calling linearcolumn(6,0.72,
0.01,750,7000,0.001,1.4).
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Our output data includes the relative removal rate (YN+1 − Y1)/YN+1 , called ans below,
of the absorbable component.

>> linearcolumn(6,0.72,0.01,750,7000,0.001,1.4)

Xj Yj j

1.6434 1.1933 1

1.8878 1.3692 2

1.9242 1.3954 3

1.9296 1.3993 4

1.9304 1.3999 5

1.9305 1.4 6

ans =

0.14767

Note that the mole concentrations Xj of the liquid phase, collected in the first column
of the screen output is increasing from tray to tray, while the mole concentrations Yj of
the gaseous phase in the second on-screen column decrease from tray N to tray 1. For
our data there is a sharp initial jump from X0 = 0.001 to X1 = 1.6434. This is related
to the characteristics of the equilibrium relation, the number of trays, and the liquid and
gas flow rates.
If we change the number N of trays to 2, 4, 8, or 10 (see Problem 1(a) of the Chapter
Exercises), we notice that the removal rate ans changes and if N = 10 for example, then
there is no removal in trays 6 to 10, since the liquid has apparently become saturated.
The reader should verify this assertion, see Problem 1(a). Therefore we conclude that
this specific removal process with the specified flow rates and characteristics needs only
6 trays to reach full saturation of the absorbing liquid. Its relative removal rate, however,
is only about 15%.

On the other hand, several more trays may be needed if L is much higher such as L =
7500 instead of 750. Here is the output for a call of linearcolumn(20,0.72,0.01,7500,
7000,0.001,1.4)where we have increased the liquid flow rate L ten-fold from 750 l/min
in the previous case to 7,500 l/min.

Xj Yj j

0.0012233 0.010881 1

0.0015555 0.01112 2

0.0020499 0.011476 3

0.0027856 0.012006 4

0.0038804 0.012794 5

0.0055096 0.013967 6

0.007934 0.015713 7

0.011542 0.01831 8

0.01691 0.022176 9

0.024899 0.027928 10

0.036788 0.036487 11

0.054479 0.049225 12

0.080805 0.06818 13

0.11998 0.096387 14

0.17828 0.13836 15
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0.26503 0.20082 16

0.39413 0.29377 17

0.58623 0.43209 18

0.87211 0.63792 19

1.2975 0.94421 20

ans =

0.99223

The relative removal rate now exceeds 99% when we use 20 trays and X1 = 0.0012233 ≈
X0 = 0.001 here. For differing tray numbers N , see problem 1(b). The large liquid flow
rate of 7500 l/min has increased the removal rate to almost 100% and there is only a
very small increase in the liquid concentration from the input to tray 1.

In many application the least number N of trays or stages that achieves a certain
mole fraction or concentration in the liquid phase of the last tray must be found for a
chemical/biological process. We can adapt our previous program to find this number. N
depends on the desired value of XN for an unknown number N of trays, i.e., the dimen-
sion N of the matrix A in (6.91) is unknown and has to be found for the given system
parameters and for the desired value of XN . Note that XN ≤ XN+1 = (YN+1 − b)/a due
to the equilibrium limitations of the unit. We can compute the number N of trays that
are needed to achieve a certain value for XN and the given data by solving the problem
for increasing dimensions n = 1, 2, 3, ... until the computed concentration Xn exceeds
the desired value XN for the first time. This simple algorithm solves increasingly larger
linear systems of equations AX = B (6.91) with A, X, and B as specified in (6.89),
(6.88), and (6.90) in terms of the system parameters. Here is our MATLAB code for this
problem based on a linear equilibrium relation.

function [N,X,Y] = findNlinearcolumn(XN,a,b,L,V,X0,YNp1)

% [N,X,Y] = findNlinearcolumn(XN,a,b,L,V,X0,YNp1)

% Sample call: [N,X,Y] = findNlinearcolumn(1.8,0.72,0.01,750,7000,0.001,1.4)

% Input : XN = desired mole fraction in liquid phase in tray N

% a, b = coefficients in F(X) = aY + b

% L = liquid flow rate

% V = gas flow rate

% X0, YNp1 = input variables X_0 and Y_{N+1}

% Output: N = number of trays for desired value of X_N

% X and Y, the molar fractions of component A in the liquid and gas

% phases, respectively.

bt = V*a; al = L + bt; N = 1; X = zeros(2,1); % intermediate terms

while N == 1 | (X(N-1) < XN & Y(N-1) < YNp1 & N <=200) % if X(N) < XN :

A = -diag(al*ones(1,N)) + diag(bt*ones(1,N-1),1) + diag(L*ones(1,N-1),-1);

B = zeros(N,1); B(1) = -L*X0; B(N) = -bt*(YNp1 - b)/a; % construct A and RHS

X = A\B; Y = a*X + b; % solve linear system for X and compute Y from X

N = N + 1; end, N = N - 1; % reduce N to last used value

A call of [N,X,Y] = findNlinearcolumn(1.9305,0.72,0.01,750,7000,0.001,1.4)
with L = 750 gives us N = 6 and the same output of Xj and Yj values as obtained
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on p. 359 where we started with N = 6 trays. The readers should change the value of XN
slightly from our setting of 1.9305 to see how the new desired value for XN increases or
decreases the number of trays N that are necessary.
Note in your experiments that a higher value than (YN+1 − b)/a for XN cannot be reached
for the given parameters, due to the equilibrium limitations.

A call of findNlinearcolumn(1.2975,0.72,0.01,7500,7000,0.001,1.4)with L =
7, 500 gives us the answer ans = 20 for the number N of needed trays. Note that
we have used the computed value of XN = 1.2975 from p. 359 in this call. The value
of XN = 1.2975 is near the limit for feasible XN . If we increase the desired value
for XN slightly to 1.3 for example, the algorithm computes up to the code specific
maximally allowed dimension N = 200 without reaching this value for XN . If we in-
crease XN a bit less less to 1.297661 for example and use the same other data to call
findNlinearcolumn(1.297661,0.72,0.01,7500,7000, 0.001,1.4), then our algorithm
computes that N = 36 trays are needed.
Notice that for our test data (YN+1 − b)/a = (1.4 − 0.01)/0.72 = 1.9306 and the gap
between the largest feasible value (≈ 1.2975) obtained numerically for XN and XN+1 =
(YN+1 − b)/a = 1.9306 is rather large.
This low value for XN is caused by the large value of L. Notice that YN in turn drops
very sharply to 0.9442 from the feed YN+1 = 1.4 for L = 7500, while for L = 750 it drops
relatively little from the feed value YN+1 in the bottom stage.

Multistage Absorption with a Nonlinear Equilibrium Relation

Here we start over with equation (6.86) in the form

LXj−1 + V F (Xj+1) = LXj + V F (Xj) , (6.93)

where Yj = F (Xj) now is a nonlinear function of Xj .
This gives rise to a set of nonlinear equations that must be solved numerically. This
more realistic and more accurate model of the nonlinear equilibrium case is much more
interesting.
Below we explain the steps involved with finding the solution in case the equilibrium
relation F is quadratic, or

Yj = F (Xj) = a X2
j + b . (6.94)

All other nonlinear equilibrium relations Y = F (X) can be treated analogously.

By combining (6.93) and (6.94) we have to solve the equation

LXj−1 + V (a X2
j+1 + b) − LXj − V (a X2

j + b) = 0 , (6.95)

which is in standard form f(x) = 0 for x = (X1, . . . , XN )T . In order to solve this problem
for given values of a, b, L, and V and the input concentrations X0 and Yn+1, we can apply
Newton’s iterative method (1.5) to equation (6.95). Newton’s method solves nonlinear
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equations f(x) = 0 iteratively. It involves the N by N Jacobian matrix Df = (∂f�/∂Xk)
of f and uses the iteration sequence

x(i+1) = x(i) −
(
Df

(
x(i)

))−1

· f
(
x(i)

)
(6.96)

in which the upper index (i) in x(i) indicates the ith Newton iterate. See p. 26 in Section
1.2 for more details.
To be able to apply Newton’s method we must determine what f : RN → RN and its
Jacobian matrix Df(x) are in equation (6.96).
For j = 1 equation (6.95) states that

V · a X2
2 − LX1 − V · aX2

1 + LX0 = 0 ;

while for 1 < j < N we have

LXj−1 + V · aX2
j+1 − LXj − V · aX2

j = 0 ;

and for j = N

LXN−1 − LXN − V · aX2
N + V · aYN+1 − b

a
= 0

since YN+1 = aX2
N+1 + b. Note that X0 and YN+1 , as well as a, b, L, and V are given

input parameters and X1, ..., XN are unknown.
By first separating all terms that involve V ·a in the above set of formulas, then gathering
those terms that involve L, and finally those that remain, we arrive at the expanded left-
hand side f(x) of equation (6.95) in matrix/vector form

f(x) = V ·a

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

X2
2

...
X2

N

0

⎞⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎝
X2

1

...

...
X2

N

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠+L

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0
X1

...
XN−1

⎞⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎝
X1

...

...
XN

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝

LX0

0
...
0

V · a · YN+1 − b

a

⎞⎟⎟⎟⎟⎟⎟⎠ .

(6.97)

Here the function f maps a vector x = (X1, . . . , XN )T to f(x) = (f1(x), . . . , fN (x))T ∈
RN . The Jacobian of f is the matrix composed of the gradients of each component func-
tion f� of f for � = 1, ..., N . It has the matrix form Df(x) =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2V aX1 − L 2V aX2 0 . . . . . . 0

L −2V aX2 − L 2V aX3 0
...

0
.. .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 L −2V aXN−1 − L 2V aXN

0 . . . . . . 0 L −2V aXN − L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6.98)
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This form for Df(x) can be verified by finding the gradient grad f2

(
(X1, . . . , XN )T

)
for the second component function f2

(
(X1 , . . . , XN )T

)
= V ·a·(X2

3−X2
2 )+L(X1−X2)

as

grad f2 =
(

∂f2

∂X1
,

∂f2

∂X2
, ... ,

∂f2

∂XN

)
= (L, −L−2 ·V ·a ·X2, 2 ·V ·a ·X3, 0, ... , 0) .

The readers should practice computing partial derivatives and gradients on their own for
this extended example in order to verify and understand formula (6.98).

When using Newton’s method to solve (6.95) we start from a guess xstart of the vector
x of Xj values for j = 1, ..., N and iterate

xnew = xstart − Df(xstart)−1 · xstart .

The linear system Df(xstart)y = xstart that needs to be solved to find xnew = xstart − y
from xstart changes its system matrix and its right-hand side in each iteration. Our code
quadcolumn.m iterates until the relative error of the iterates falls to below 1%. This ac-
curacy limit is arbitrary and can be changed by the reader to higher or smaller values
depending on the sensitivity of the specific problem by modifying the bound of 0.01 in
the while line of the quadcolumn.m code accordingly.

function [relrem,X,Y] = quadcolumn(N,a,b,L,V,X0,YNp1)

% [relrem,X,Y] = quadcolumn(N,a,b,L,V,X0,YNp1)

% Sample call: quadcolumn(12,0.72,0.01,750,7000,0.001,1.4)

% Input : N = number of trays

% a, b = coefficients in quadratic equilibrium relation F(X) = aX^2 + b

% L = liquid flow rate

% V = gas flow rate

% X0, YNp1 = input variables X_0 and Y_{N+1}

% Output: X and Y, the molar fractions of component A in the liquid and gas

% phases, respectively, in trays 1 to N.

% relrem = (YNp1 - Y1)/YNp1 = relative removal rate

bt = V*a; Lx0 = L* X0; VaXNp1 = bt*(YNp1-b)/a; % convenience constant settings

xstart = linspace(X0,((YNp1-b)/a)^0.5,N)’; % Newton starting value

xmod = dh(xstart,bt,L)\h(xstart,bt,L,Lx0,VaXNp1); % Newton modification

xlast = xstart - xmod; i=1; % next Newton iterate

while norm(xmod)/norm(xlast) > 0.01 & i < 100, % Further Newton steps

xstart = xlast; % (at most 100)

xmod = dh(xstart,bt,L)\h(xstart,bt,L,Lx0,VaXNp1);

xlast = xstart - xmod; i=i+1; end % until < 2% error

X = xlast; Y = a*X.^2 + b; % prepare output data

relrem = (YNp1 - Y(1))/YNp1; % relative removal rate

disp(’ Xj Yj j’),

disp([X,Y,[1:length(X)]’])

function H = h(x,bt,L,Lx0,VaXNp1) % quadratic function H(x)
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H = bt*([x(2:end);0].^2 - x.^2) + L*([0;x(1:end-1)] - x);

H(1) = H(1) + Lx0; H(end) = H(end) + VaXNp1;

function DH = dh(x,bt,L) % Jacobian matrix of H(x)

lx = length(x);

DH = 2*bt*(diag(x(2:lx),1) - diag(x)) + L*(diag(ones(1,lx-1),-1) - eye(lx));

Let us compare the results for a quadratic equilibrium relation with those for linear equi-
librium relations that we have obtained earlier. Here is the output of quadcolumn(6,
0.72,0.01,750,7000,0.001,1.4).

Xj Yj j

1.313 1.2513 1

1.3853 1.3918 2

1.3892 1.3996 3

1.3894 1.4 4

1.3894 1.4 5

1.3894 1.4 6

ans =

0.10625

Apparently, with a quadratic equilibrium relation we need to use only 3 stages, but
achieve only about 10% removal.
For L ≈ V , the same quadratic equilibrium relation achieves 99% removal in 8 trays as
computed by calling quadcolumn(8,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.0010004 0.010001 1

0.0012884 0.010001 2

0.020744 0.01031 3

0.17141 0.031156 4

0.50358 0.19259 5

0.86481 0.54848 6

1.1338 0.93551 7

1.2983 1.2237 8

ans =

0.99286

For the relatively low value of L = 750 we still notice a sudden jump from X0 = 0.001
to X1 = 1.313, while for L = 7, 500 there is no such jump. In the quadratic equilibrium
relation case, the largest possible value for XN is bounded by XN+1 =

√
(YN+1 − b)/a.

For our test data we compute
√

(YN+1 − b)/a =
√

(1.4− 0.01)/0.72 = 1.3894 and the
gap between the numerically obtained value of XN = 1.2983 above and XN+1 = 1.3894
is much smaller than in the previous subsection for a linear equilibrium relation.
This difference is due to the different characteristics of linear and nonlinear equilibrium
relations.

Multistage Absorption with Nonequilibrium Stages

When the stages can be considered to be nonequilibrium stages, then the model should
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also account for the rate of mass transfer between the phases. In this case the overall
molar balance that we have previously used will not be adequate, because the equilibrium
relation between the two phases can not be used. To remedy this, we must introduce the
mass-transfer rate between the two phases as shown in Figure 6.20.

jL, X j V, Y

RMT

jV, YL, X  −1

 +1

j

Mass transfer in a nonequilibrium stage
Figure 6.20

In Figure 6.20 the term RMT denotes the Rate of M ass T ransfer of component A from
the gas phase to the liquid phase. It can be expressed in the relation

RMT = Kgj · āmj · (driving force) ,

where the “driving force” means the concentration difference, Kgj is the mass-transfer
coefficient, and āmj is the area of mass transfer for the tray.

Assuming that the tray is perfectly mixed as regards both the liquid and the gas
phases and that we have a linear equilibrium relation, we get

RMT = Kgj āmj(Yj − (aXj + b))

where aXj + b = Y ∗
j is the gas-phase mole fraction at equilibrium with Xj .

The molar balance for the gas phase is given by

V Yj+1 = V Yj + Kgj āmj(Yj − (aXj + b)) . (6.99)

By rearranging we get

(V + Kgj āmj︸ ︷︷ ︸
αj[y]

)Yj − V Yj+1 − (Kgj āmja︸ ︷︷ ︸
βj [x]

)Xj − Kgj āmjb︸ ︷︷ ︸
γj [y]

= 0 .

This gives us
αj[y]Yj − V Yj+1 − βj [x]Xj − γj [y] = 0 , (6.100)

where αj[y] = (V + Kgj āmj), βj [x] = Kgj āmja, and γj [y] = Kgj āmjb and the
symbols [x] and [y] are used to denote the associated variables and serve to distinguish
the coefficients of equation (6.100) from those of the molar balance equation (6.102) for
the liquid phase.
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Now we write out equation (6.100) for a number of indices j.
For j = 1:

α1[y]Y1 − V Y2 − β1[x]X1 − γ1[y] = 0 .

For j = 2:
0Y1 + α2[y]Y2 − V Y3 − β2[x]X2 − γ2[y] = 0 .

For j = N − 1:

0Y1 + 0Y2 + 0Y3 + . . . + αN−1[y]YN−1 − V YN − βN−1[x]XN−1 − γN−1[y] = 0 .

And for j = N :

0Y1 + 0Y2 + 0Y3 + . . . + 0YN−1 + αN [y]YN − V YN+1 − βN [x]XN − γN [y] = 0 .

The last equation can be rearranged as

0Y1 + 0Y2 + 0Y3 + . . . + 0YN−1 + αN [y]YN − βN [x]XN − γN [y] = V YN+1 .

In order to write these N equations in matrix form, we define the matrix

AY =

⎛⎜⎜⎜⎜⎜⎝
α1[y] −V 0 0 0

0 α2[y] −V 0 0
...

...
. . . . . .

...
0 0 0 αN−1[y] −V
0 0 0 0 αN [y]

⎞⎟⎟⎟⎟⎟⎠ .

This matrix is an upper bidiagonal matrix with varying diagonal entries αj[y] and con-
stant upper diagonal entries −V .
As before, we introduce the state variable vectors X and Y , comprised of the Xj and Yj

values, namely

X =

⎛⎜⎜⎜⎝
X1

X2

...
XN

⎞⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎝
Y1

Y2

...
YN

⎞⎟⎟⎟⎠ .

Moreover, we define the diagonal matrix

βX =

⎛⎜⎜⎜⎝
β1[x] 0

β2[x]
. . .

0 βN [x]

⎞⎟⎟⎟⎠ , γY =

⎛⎜⎜⎜⎝
γ1 [y]
γ2 [y]

...
γN [y]

⎞⎟⎟⎟⎠ , and BY =

⎛⎜⎜⎜⎝
0
...
0

V YN+1

⎞⎟⎟⎟⎠ .

With these settings, equation (6.100) becomes

AY Y − βXX − γY = BY . (6.101)
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[Equation (6.101) should be worked out with pencil and paper by our readers.]
Similarly we obtain the equation

LXj−1 + Kgj āmj(Yj − (aXj + b)) = LXj (6.102)

for the molar balance of the liquid phase. Putting equation (6.102) in analogous matrix
form gives us

AXX + βY Y − γX = BX . (6.103)

Here are the specific matrices and vectors as derived from equation (6.102), that occur
in equation (6.103):

AX =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−α1[x] 0 . . . . . . 0

L −α2[x]
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 L −αN [x]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, βY =

⎛⎜⎝ β1[y]
. . .

βN [y]

⎞⎟⎠ ,

γX =

⎛⎜⎝ γ1[x]
...

γN [x]

⎞⎟⎠ , and BX =

⎛⎜⎜⎜⎝
−L X0

0
...
0

⎞⎟⎟⎟⎠ .

Note that in the liquid-phase molar-balance equation (6.103), the matrix AX is lower
bi-diagonal and, more specifically, equation (6.102) makes αj[x] = Kgj āmja + L, βj [y] =
Kgj āmj, and γj[x] = Kgj āmjb.

The two matrix equations (6.101) and (6.103) can be solved simultaneously to find
the two solution vectors X and Y .
First we try to simplify the two equations by algebraic matrix manipulations.
We can formally solve equation (6.103) for X, namely

X = A−1
X [γX + BX − βY Y ] . (6.104)

By plugging X in (6.104) into equation (6.101) we obtain

AY Y − βX

{
A−1

X [γX + BX − βY Y ]
}− γY = BY .

Some simple manipulation gives us

[AY + βXA−1
X βY︸ ︷︷ ︸

C

]Y = BY + γY + βX

{
A−1

X [γX + BX ]
}︸ ︷︷ ︸

M

. (6.105)

Thus we have obtained the linear equation

C Y = M (6.106)
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for the unknown vector Y . The matrix equation (6.106) can be solved for Y (in theory)
by matrix inversion, namely

Y = C−1M . (6.107)
We thus can obtain the solution vector Y from (6.107) explicitly. Then we can use Y in
(6.104) to compute the vector X via another matrix inversion using formula (6.104).
Here

C = AY + βXA−1
X βY

and
M = BY + γY + βX

{
A−1

X [γX + BX ]
}

.

What is wrong with this approach?
In theory there is nothing wrong; but for numerical computations, the above formulas
are rather costly and inaccurate: They involve inverting the upper triangular bidiagonal
matrix AX , whose inverse will be a dense upper triangular matrix. Moreover, formula
(6.107) for Y involves the inverse of C which itself is given by a triple and complicated
matrix product correction term subtracted from AX in (6.105).

Some of the golden rules of modern matrix computations are:
Do not compute or use a matrix inverse unless absolutely needed for theoretical
purposes; do not ever destroy the sparsity of a matrix, nor increase the density
of an intermediate matrix; be mindful of the structure of each matrix and try to
take advantage of it and preserve it during numerical computations. Rely on matrix
factorizations, and view coupled matrix equations as block matrix equations before
actually trying to solve them.

Let us thus revisit our two coupled matrix equations (6.101) and (6.103) while heeding
the above matrix numerics caveats and let us see how to extract X and Y more accurately
and economically than using the equations (6.104) and (6.107).
Our first step is to represent (6.101) and (6.103) by one joint 2N by 2N system of linear
equations in block matrix form as( −βX AY

AX βY

) (
X
Y

)
=

(
BY + γY

BX + γX

)
. (6.108)

Our readers should verify - using pencil and paper - that the block matrix equation
(6.108) is identical to the two joint matrix equations (6.101) and (6.103).
The system matrix of equation (6.108) contains the two diagonal blocks βX and βY and
the two offdiagonal blocks AX and AY which are both banded tridiagonal. Rather than
inverting a tridiagonal block as naively suggested earlier, it is much less costly to multiply
the two sides of the block matrix equation (6.108) from the left by the nonsingular block
matrix ( −β−1

X O
O IN

)
as follows:{( −β−1

X O
O IN

)
·
( −βX AY

AX βY

)} (
X
Y

)
=

( −β−1
X O

O IN

)
·
(

BY + γY

BX + γX

)
.

(6.109)
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Multiplying this equation out we obtain the equivalent block matrix system(
IN −β−1

X AY

AX βY

)(
X
Y

)
=

( −β−1
X (BY + γY )
BX + γX

)
. (6.110)

Here I = IN is the N by N identity matrix and O = ON is the N by N zero matrix.
The block system (6.110) can be solved more easily now. To do so we suggest to

eliminate the (1,1) block IN of the system matrix in (6.110) by left multiplication of the
two sides of equation (6.110) with (

AX −I
O I

)
.

Then we obtain(
ON −AXβ−1

X AY − βY

AX βY

)(
X
Y

)
=

( −AXβ−1
X (BY + γY ) − (BX + γX )

BX + γX

)
.

(6.111)
This system amounts to two separate linear systems of equations. The first block row in
(6.111) involves only the unknown vector Y , namely(

AXβ−1
X AY + βY

)
Y = AXβ−1

X (BY + γY ) + (BX + γX) (6.112)

where we have switched all signs to become positive. This system of N linear equations
can be solved easily by Gaussian elimination and the backslash, i.e., the \ command in
MATLAB for Y . Care should be taken to implement the left multiplication by β−1

X as
row scalings since βX is a diagonal matrix. To find X we then use Y to solve the second
block row equation

AX X = BX + γX − βY Y . (6.113)

Let us test our two-phase model numerically. The model is captured in the two equa-
tions (6.99) and (6.102) that account for the gas and liquid molar balances. We shall
compare these results for nonequilibrium stages with those of the one-phase equilibrium
model given in equation (6.85) earlier.
The MATLAB code linearnoneqicol.m implements and solves the two linear equations
(6.112) and (6.113) under the assumption that the term Kgj · āmj = const = Ka is
constant for all stages j. It is easy for the reader to change our program below to ac-
commodate varying mass transfer coefficients Kgj or varying areas of mass transfer āmj

from tray to tray, if needed.

function [relrem,X,Y] = linearnoneqicol(N,Ka,a,b,L,V,X0,YNp1)

% [X,Y,relrem] = linearnoneqicol(N,Ka,a,b,L,V,X0,YNp1)

% Sample call: linearnonequicol(6,100,0.72,0.01,750,7000,0.001,1.4)

% Input : N = number of trays

% Ka = product of mass transfer coeff and area of transfer

% a, b = coefficients in F(X) = aX + b

% L = liquid flow rate

% V = gas flow rate
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% X0, YNp1 = input variables X_0 and Y_{N+1}

% Output: X and Y, the molar fractions of component A in the liquid and gas

% phases, respectively.

% relrem is the relative removal rate (for example 0.06 means 6 %)

Ax = -(Ka*a + L)*eye(N) + L*diag(ones(1,N-1),-1); % setting up data

Ay = (V + Ka)*eye(N) - V*diag(ones(1,N-1),1); bty = (Ka)*eye(N);

gax = Ka*b*ones(N,1); Bx = zeros(N,1); Bx(1) = -L*X0; gay = gax;

By = zeros(N,1); By(N) = V*YNp1;

A = 1/(Ka*a) * Ax * Ay + bty; % solving for Y

b = 1/(Ka*a) * Ax * (By + gay) + (Bx + gax); Y = A\b;

b = Bx + gax - Ka *Y; X = Ax\b; % solving for X

relrem = (YNp1 - Y(1))/YNp1; % relative removal rate

disp(’ Xj Yj j’),

disp([X,Y,[1:length(X)]’])

First we repeat our earlier computations with N = 6 trays and varying L. A call of
linearnonequicol(6,100,0.72,0.01,750,7000,0.001,1.4) with Ka = 100 gener-
ates the output

Xj Yj j

0.1597 1.3152 1

0.30656 1.3322 2

0.44248 1.3479 3

0.56826 1.3625 4

0.68466 1.376 5

0.79239 1.3885 6

ans =

0.060565

This indicates a 6.06% removal rate for the relatively low value of Ka = 100.
If we increase Ka to 1,000, we obtain a removal rate of 14.3% when calling
linearnonequicol(6,1000,0.72,0.01,750,7000,0.001, 1.4).

Xj Yj j

0.81018 1.2002 1

1.282 1.2869 2

1.5571 1.3375 3

1.7175 1.3669 4

1.8111 1.3841 5

1.8656 1.3942 6

ans =

0.1427

If we increase Ka to 5000, we reach almost the same results as on p. 359 when calling
linearnonequicol(6,5000,0.72,0.01,750,7000,0.001,1.4).

Xj Yj j
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1.3604 1.1934 1

1.7622 1.339 2

1.8809 1.3821 3

1.916 1.3948 4

1.9264 1.3986 5

1.9295 1.3997 6

ans =

0.14759

Further increases to Ka values such as 50,000 or 500,000 show that for 6 trays the upper
limit of X6 is around 1.9305 for the given parameters and model.

For L = 7500 the corresponding results are as follows, first for Ka = 100 by calling
linearnonequicol(6,100,0.72,0.01,7500,7000,0.001,1.4).

Xj Yj j

0.017896 1.2901 1

0.034871 1.3082 2

0.051925 1.3264 3

0.069057 1.3447 4

0.08627 1.363 5

0.10356 1.3815 6

ans =

0.078491

We note that if Ka is small, then the removal rate is small at 7.85%. For Ka = 1,000, the
removal rate grows to around 46.2% as computed below by calling linearnonequicol(6,
1000,0.72,0.01,7500,7000,0.001,1.4).

Xj Yj j

0.091353 0.75342 1

0.18557 0.85023 2

0.28381 0.95118 3

0.38626 1.0564 4

0.49308 1.1662 5

0.60447 1.2807 6

ans =

0.46184

When we increase the number of trays N from 6 to 20, we get even better removal rates
ranging from 22% to 95%, depending on the magnitude of the factor Ka in RMT .
The first computed data comes from calling linearnonequicol(20,100,0.72,0.01,7500,
7000,0.001,1.4).

Xj Yj j

0.015159 1.0828 1

0.029384 1.098 2

0.043674 1.1132 3

0.058031 1.1286 4

0.072455 1.1439 5

0.086946 1.1594 6
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0.1015 1.1749 7

0.11613 1.1905 8

0.13082 1.2062 9

0.14558 1.2219 10

0.16041 1.2377 11

0.17531 1.2536 12

0.19028 1.2696 13

0.20532 1.2856 14

0.22043 1.3017 15

0.2356 1.3179 16

0.25085 1.3342 17

0.26617 1.3505 18

0.28156 1.3669 19

0.29702 1.3834 20

ans =

0.22655

If we increase Ka to 1000 and call linearnonequicol(20,1000,0.72,0.01,7500,7000,
0.001,1.4) instead, we create the following data.

Xj Yj j

0.034842 0.2889 1

0.070131 0.32516 2

0.10693 0.36297 3

0.1453 0.4024 4

0.18531 0.44351 5

0.22703 0.48638 6

0.27054 0.53108 7

0.3159 0.57769 8

0.36321 0.6263 9

0.41254 0.67698 10

0.46397 0.72983 11

0.51761 0.78494 12

0.57354 0.84241 13

0.63185 0.90233 14

0.69267 0.96482 15

0.75608 1.03 16

0.8222 1.0979 17

0.89115 1.1688 18

0.96305 1.2426 19

1.038 1.3197 20

ans =

0.79364

And with Ka = 200,000 we reach the same value for X20 = 1.2975 and a 99.2 % removal
rate using this model when calling linearnonequicol(20,200000,0.72,0.01,7500,
7000,0.001,1.4) as we did on p. 359 for a linear equilibrium relation and nonequilib-
rium stages.

Xj Yj j
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0.0012944 0.010943 1

0.0017255 0.011259 2

0.0023565 0.01172 3

0.0032803 0.012396 4

0.0046326 0.013386 5

0.0066124 0.014835 6

0.0095106 0.016956 7

0.013753 0.020062 8

0.019965 0.024607 9

0.029057 0.031262 10

0.042368 0.041004 11

0.061855 0.055266 12

0.090382 0.076145 13

0.13214 0.10671 14

0.19328 0.15145 15

0.28278 0.21696 16

0.4138 0.31285 17

0.60561 0.45323 18

0.8864 0.65873 19

1.2975 0.95958 20

ans =

0.99218

The reciprocal 1/Ka of Ka measures how far the system is from equilibrium. The
equilibrium stages are naturally the most efficient ones and they occur for high Ka

values. For lower Ka values the system efficiency decreases. Here the tray efficiency is
defined as the ratio between the separation efficiency for specific low Ka values and that
for high Ka values. Note that high Ka values indicate that the system is very close to
equilibrium.

6.2.2 Nonequilibrium Multistages with Nonlinear Equilibrium
Relations

Next we consider the case where the equilibrium relation is not linear and the stages are
not in equilibrium. Then the rate of mass transfer between the phases RMT becomes
nonlinear, i.e.,

RMT = Kgj · amj · (Yj − F (Xj))

for a nonlinear function F (Xj) of Xj and j = 1, 2, ...,N . The transfer is from the gas
phase to the liquid phase when RMT is positive. F (Xj) is the equivalent gas-phase
concentration Ȳj that is in equilibrium with Xj.
RMT can also be expressed as

RMT = −Kgj · amj · (Xj − F ′(Yj))

where F ′(Yj) is equal to X̄j , the equivalent liquid-phase concentration in equilibrium
with Yj. The transfer is from the liquid phase to the gas phase if Xj > F ′(Yj), i.e., if
RMT is negative.
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This model leads to a set of nonlinear equations that can be solved numerically by using
the multi-dimensional Newton method of Section 1.2. It is this more realistic and more
accurate nonlinear case which we concentrate on in this book. We now present an efficient
MATLAB program to solve this nonlinear and more general case.
We start with a modified version of the gas-phase molar-balance equation (6.99) and
a modified version of the liquid-phase molar-balance equation (6.102) with a quadratic
equilibrium relation F (Xj) = Yj = aX2

J + b. This modification affects the term RMT by
a nonlinearly, namely

RMT = Ka · (Yj − (aX2
j + b)) .

Here for simplicity we assume a constant mass-transfer coefficient times area of mass
transfer Ka for all trays, i.e., Kgj āmj = const = Ka.
Thus for the gas phase we now have

V Yj+1 = V Yj + Ka(Yj − (aX2
j + b)) , (6.114)

for j = 1, 2, ..., N . And for the liquid phase

LXj−1 + Ka(Yj − (aX2
j + b)) = LXj , (6.115)

again for j = 1, 2, ...,N .

Our task is to solve these two joint nonlinear sets of equations in the unknowns

x =

⎛⎜⎝ X1

...
XN

⎞⎟⎠ and y =

⎛⎜⎝ Y1

...
YN

⎞⎟⎠ .

The two vectors x and y ∈ RN help us to view and solve the 2N nonlinear equations
defined in (6.114) and (6.115). For this purpose we rewrite the problem given in (6.114)
and (6.115) as follows in matrix and vector form.
First we want to express the problem in terms of

z =
(

x
y

)
∈ R

2N in standard form f(z) = f

(
x
y

)
= 0

for x, y ∈ RN as defined above.
By collecting the squared terms of Xj , the unshifted and shifted Yj terms, and the terms
in (6.114), the N equations that are given to us in (6.114) for j = 1, ..., N can be written
jointly in vector form as

f1

(
x
y

)
= Ka·a

⎛⎜⎝ X2
1

...
X2

N

⎞⎟⎠−(V +Ka)

⎛⎜⎝ Y1

...
YN

⎞⎟⎠+V

⎛⎜⎜⎜⎝
Y2

...
YN

YN+1

⎞⎟⎟⎟⎠+Ka·b

⎛⎜⎝ 1
...
1

⎞⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠ ∈ R
N .

(6.116)
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Likewise, the N equations given by (6.115) for j = 1, ..., N can be written jointly as

f2

(
x
y

)
= Ka·a

⎛⎜⎝ X2
1

...
X2

N

⎞⎟⎠−L

⎛⎜⎝ X0 − X1

...
XN−1 − XN

⎞⎟⎠−Ka

⎛⎜⎝ Y1

...
YN

⎞⎟⎠+Ka·b

⎛⎜⎝ 1
...
1

⎞⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠ ∈ R
N .

(6.117)

[Our readers should work this out with pencil and paper in case N = 3 in order to fully
understand the role of vectors in this context.]

Finally we define the function

f

(
x
y

)
=

⎛⎜⎜⎝ f1

(
x
y

)
f2

(
x
y

)
⎞⎟⎟⎠ ∈ R

2N

whose zeros in R2N we seek, because they solve the twice N nonlinear equations given
in (6.114) and (6.115).
Our solution method of choice is Newton’s iterative method, see Section 1.2. Newton’s
method requires us to evaluate the Jacobian matrix Df of

f =
(

f1

f2

)
: R

2N → R
2N

for the component functions fi given in the equations (6.116) and (6.117). It is best to
visualize DF as a block matrix comprised of 4 blocks , namely

Df

(
x
y

)
=

(
Df1x Df1y
Df2x Df2y

)
(6.118)

where

Df1x =

⎛⎝ ∂f1

(
x
y

)
∂Xj

⎞⎠ , Df1y =

⎛⎝ ∂f1

(
x
y

)
∂Yj

⎞⎠ ,

Df2x =

⎛⎝ ∂f2

(
x
y

)
∂Xj

⎞⎠ , and Df2y =

⎛⎝ ∂f2

(
x
y

)
∂Yj

⎞⎠
are the respective Jacobian matrices Dfi of fi with respect to x or y.
Specifically for our f , we note that Df1x is the diagonal N by N matrix with the entries
2Ka · a ·Xj in position (j, j) and zeros everywhere else since each Xj occurs only once in
equation (6.116), namely in the jth component function of f1 in squared form with the
coefficient Ka · a.
Similarly Df1y has constant diagonal entries −(V + Ka) since each Yj occurs in the
jth component function with the coefficient −(V + Ka) and in the (j − 1)st component
function with the coefficient V , giving rise to the first superdiagonal entries equal to V



376 Chapter 6: Heterogeneous and Multistage Systems

and zeros everywhere else in Df1y.
Likewise, Df2x has the diagonal entries 2Ka · a · Xj + L from equation (6.117), its first
subdiagonal entries are equal to −L, and the rest of the entries are zero. Finally Df2y is
−Ka · IN .
[These statements should be worked out for N = 3 by our readers with paper and pencil
again.]

To iterate according to Newton’s method, we have to update each approximate solu-
tion zold by the modification term

zmod = −Df(zold)−1f(zold) with zold =
(

xold

yold

)
∈ R

2N

according to formula (1.5) of Section 1.2.
One can avoid solving the 2N by 2N linear system

Df(zold ) w = f(zold) (6.119)

directly at O((2N)3) = O(8N3) cost by recognizing the structure of the system matrix
Df(zold) and simplifying it first. Note that the entries of the system matrix Df(zold)
are defined in formula (6.118) and that we have to use zold = (xold, yold)T in place of
(x, y)T here:
If we multiply both the system matrix Df(zold) and the right-hand side b = f(zold) of
(6.119) by the matrix product(

IN O
O −1

Ka
IN

)( −IN
−1
Ka

Df1y

O IN

)
from the left, we obtain the updated system matrix

D̃f (zold) =
(

IN O
O −1

Ka
IN

)
·
( −IN

−1
Ka

Df1y

O IN

)
·
(

Df1x Df1y
Df2x Df2y

)
=

=

(
−Df1x − 1

Ka
Df1y · Df2x O

−1
Ka

Df2x IN

)
(6.120)

and the updated right-hand side

b̃ =

( −1
Ka

Df1y · f2(zold) − f1(zold)
−1
Ka

f2(zold)

)
. (6.121)

[Readers: please evaluate the triple matrix product in the reduction formula (6.120) with
pencil and paper.]
The first block row of the updated system D̃f(zold)w = b̃ with w = (wx, wy(T∈ R2N can
be solved for wx = (wx1, . . . , wxN)T ∈ RN in O(N) time since all intermediate matrices
are at most bidiagonal matrices. Then the values of wxj can be used to solve the second
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block row of D̃f (zold)w = b̃ for wy = (wy1, . . . , wyN)T , also in O(N) operations; see
problem 2 at the end of this chapter. Finally znew = zold +(wx, wy)T ∈ R2N and all this
can be achieved in O(N) operations.

The following MATLAB code quadnonequicol.m performs these steps naively with-
out implementing the above labor reducing operations. We leave this modification to the
reader as a valuable exercise.

function [relrem,X,Y] = quadnonequicol(N,Ka,a,b,L,V,X0,YNp1)

% [relrem,X,Y] = quadnonequicol(N,Ka,a,b,L,V,X0,YNp1)

% Sample call: quadnonequicol(6,1000,0.72,0.01,7500,7000,0.001,1.4)

% Input : N = number of trays

% Ka = constant product of mass transfer coeff and area of transfer

% a, b = coefficients in quadratic equilibrium relation F(X) = aX^2 + b

% L = liquid flow rate

% V = gas flow rate

% X0, YNp1 = input variables X_0 and Y_{N+1}

% Output: X and Y, the molar fractions of component A in the liquid and gas

% phases, respectively, in trays 1 to N.

% relrem = (YNp1 - Y1)/YNp1 = relative removal rate

xstart = linspace(X0,(X0+YNp1)/2,N)’; % starting values for [X;Y] :

ystart = linspace((X0+YNp1)/2,YNp1,N)’; xystart = [xstart;ystart];

xymod = df(xstart,Ka,a,L,V)\f(xstart,ystart,Ka,a,b,L,V,X0,YNp1); % Newton mod

xylast = xystart - xymod; i=1; % next Newton iterate

while norm(xymod)/norm(xylast) > 0.01 & i < 100, % Further Newton steps

xystart = xylast; xstart = xystart(1:N); ystart = xystart(N+1:end);

xymod = df(xstart,Ka,a,L,V)\f(xstart,ystart,Ka,a,b,L,V,X0,YNp1);

xylast = xystart - xymod; i=i+1; end, % until < 1% error

relrem = (YNp1 - xylast(N+1))/YNp1; % relative removal rate

disp(’ Xj Yj j’),

disp([xylast(1:N),xylast(N+1:end),[1:N]’])

function F = f(x,y,Ka,a,b,L,V,X0,YNp1) % quadratic RMT function f(x,y)

lx = length(x);

F = [Ka*a*x.^2 - (V+Ka)*y + V*[y(2:lx);YNp1] + Ka*b*ones(lx,1);

Ka*a*x.^2 - L*([X0;x(1:lx-1)] - x) - Ka*y + Ka*b*ones(lx,1)];

function DF = df(x,Ka,a,L,V) % Jacobian matrix of f(x,y)

lx = length(x);

DF = [2*Ka*a*diag(x), -(V + Ka)*eye(lx) + V*diag(ones(1,lx-1),1);

2*Ka*a*diag(x) + L*eye(lx) - L*diag(ones(1,lx-1),-1), - Ka*eye(lx)];

Here is the output of various calls of quadnonequicol. Note that the final screen out-
put ans of each call gives the percentage of removal, i.e., if ans = 0.066486, as in the
first call quadnonequicol(6,100,0.72,0.01,750,7000,0.001,1.4) for Ka = 100 and
L = 750 below, then 6.65% is removed.

Xj Yj j

0.17111 1.3069 1
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0.33565 1.3251 2

0.49029 1.3428 3

0.63189 1.3593 4

0.7586 1.3745 5

0.86974 1.3881 6

ans =

0.066486

Next we change Ka to 1000 and call quadnonequicol(6,1000,0.72,0.01,750,7000,
0.001,1.4) to get the following results that show an increase in the removal rate to
10.615 %.

Xj Yj j

0.89213 1.2514 1

1.2277 1.3469 2

1.3384 1.3828 3

1.3735 1.3947 4

1.3845 1.3985 5

1.388 1.3996 6

ans =

0.10615

Next we show the results of two runs with Ka = 100 and 1000, but with L = 7500 instead
of 750 and for 6 trays:
>> quadnonequicol(6,100,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.018022 1.2869 1

0.035278 1.3051 2

0.052766 1.3236 3

0.070483 1.3423 4

0.088425 1.3613 5

0.10659 1.3805 6

ans =

0.080809

Notice that the above increase in efficiency is quite limited from 6.65% to 8.1% for the
change of L from 750 to 7500 as long as Ka is low at 100 and the number of trays remains
at 6.

If we increase Ka to 1000 as promised, then we obtain a much larger efficiency in-
crease:
>> quadnonequicol(6,1000,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.090842 0.68976 1

0.19082 0.78602 2

0.29993 0.89313 3

0.41661 1.01 4

0.53875 1.1351 5

0.66389 1.2659 6

ans =

0.50732
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Because the value of Ka = 1000 is quite large, we observe a considerable increase from
10.615% removal for L = 750 to 50.7% removal for L = 7500.

Now we change the number of trays to 20 and vary Ka as before while L = 7500 and
we have 6 trays.
>> quadnonequicol(20,100,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.015029 1.0623 1

0.029252 1.0773 2

0.043668 1.0926 3

0.058276 1.108 4

0.073074 1.1237 5

0.08806 1.1395 6

0.10323 1.1556 7

0.11859 1.1719 8

0.13413 1.1883 9

0.14984 1.205 10

0.16574 1.2218 11

0.1818 1.2388 12

0.19804 1.256 13

0.21445 1.2734 14

0.23101 1.291 15

0.24774 1.3088 16

0.26462 1.3267 17

0.28166 1.3448 18

0.29884 1.363 19

0.31617 1.3814 20

ans =

0.2412

For this data the removal rate of 24.12% is much higher than the 8.1% for the previous
corresponding case.

Next we try increasing Ka to 1000 for 20 trays.
>> quadnonequicol(20,1000,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.027771 0.21134 1

0.058116 0.24002 2

0.092303 0.27253 3

0.13055 0.30916 4

0.17303 0.35015 5

0.21982 0.39566 6

0.27088 0.44578 7

0.32607 0.50049 8

0.38511 0.55962 9

0.4476 0.62289 10

0.51298 0.68984 11

0.5806 0.75989 12

0.64972 0.83234 13

0.71954 0.9064 14
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0.78924 0.9812 15

0.85801 1.0559 16

0.92513 1.1296 17

0.98992 1.2015 18

1.0518 1.2709 19

1.1104 1.3372 20

ans =

0.84904

Here the removal rate has increased again from 50.7% with 6 trays to around 85 % when
using 20 trays.

If we increase Ka further to 200,000 and leave L unchanged, we can replicate the
removal percentage of 99.2% obtained for our earlier simpler model on p. 359 with this
more sophisticated model as seen below.
>> linearnonequicol(20,200000,0.72,0.01,7500,7000,0.001,1.4)

Xj Yj j

0.0012944 0.010943 1

0.0017255 0.011259 2

0.0023565 0.01172 3

0.0032803 0.012396 4

0.0046326 0.013386 5

0.0066124 0.014835 6

0.0095106 0.016956 7

0.013753 0.020062 8

0.019965 0.024607 9

0.029057 0.031262 10

0.042368 0.041004 11

0.061855 0.055266 12

0.090382 0.076145 13

0.13214 0.10671 14

0.19328 0.15145 15

0.28278 0.21696 16

0.4138 0.31285 17

0.60561 0.45323 18

0.8864 0.65873 19

1.2975 0.95958 20

ans =

0.99218

For this very high value of Ka we approach 100% removal (99.218%) and the result is
close to the earlier equilibrium case.

To clarify the differences in the removal efficiencies of absorption columns, we look at
the linear and quadratic equilibrium relations in more detail now.
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Figure 6.21

We first use the mass-transfer relation between the phases in terms of X and Y , namely

RMT = Kgj · amj · (Yj − F (Xj)) .

For a fixed Y value, such as Y = yt = 1 in Figure 6.21 and the linear equilibrium relation
Y = a · X + b, the mass transfer will be from the gas phase to the liquid phase when
RMT > 0. Specifically for a = 0.72 and b = 0.01, this mass transfer from the gas to the
liquid phase will occur from X = 0 until 1 = 0.72 · X + 0.01, or until X = 1.375. This
value of X can be obtained by solving the linear equation for X. For X > 1.375, the
transfer will be from the liquid phase to the gas phase since then RMT < 0.
Repeating this process for the quadratic equilibrium relation, we have to solve 1 =
0.72 · X2 + 0.01 for X instead, making X =

√
1.375 = 1.1726. These calculations

corroborate the plot in Figure 6.21. Thus for a quadratic equilibrium relation, the mass
transfer is from the gas phase to the liquid phase for 0 < X < 1.1726 with our a and b
values, and it is in the opposite direction if X > 1.1726.
Vice versa, if we use the relation

RMT = −Kgj · amj · (Xj − F ′(Yj))

and fix X = xt = 0.8 for example, then we can obtain the same mass-transfer direction
analysis by looking for the Y values for which RMT is negative.

Exercises for 6.2
1. (a) Run linearcolumn.m for our data on p. 358 and N = 2, 3.4, 8, and 10.

Compare the removal rates for various N and interpret the results. Vary
L and V as well.
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(b) Run linearcolumn.m for our data on p. 359 and N = 5, 10.15, 25, and 50
with L = 7500. Compare the removal rates for various N and interpret
the results.

(c) Repeat part (a) for the nonlinear equilibrium function Yj = aX2
j + b with

the same values of a and b as on p. 358. Use our MATLAB program
quadcolumn.m.

(d) Develop and test a MATLAB code findNquadcolumn.m that mimics our
code findNlinearcolumn.m for finding the number of required trays, but
for a quadratic equilibrium relation instead.

2. Rewrite the code quadnonequicol.m to run in O(N) time as detailed on p.
376. To achieve this fast operations count, you need to implement all matrix
times matrix or matrix times vector products in O(N) time by recognizing the
sparsity of the matrices Df1x, Df1y, Df2x, and Df2y that make up Df(zold ).

3. Complete the mass-transfer direction analysis for a two-phase system from the
relation RMT = −Kgj · amj · (Xj − F ′(Yj)) as indicated at the end of this
section.

6.3 Isothermal Packed Bed Absorption Towers

A packed bed absorption tower is a distributed system and Figure 6.22 shows the molar
flow rates across a small element of this tower.
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Schematic diagram of a packed absorption tower
Figure 6.22



6.3 Isothermal Packed Bed Absorption Towers 383

6.3.1 Model Development

We consider the absorption of component A from the gas (vapor) phase to the liquid
phase. The rate of mass transfer RMT from the vapor phase to the liquid phase is given
by

RMT = amKg(Y − (aX + b)) , (6.122)

where am is the specific area, i.e., the mass-transfer area per unit volume of the column
and (aX + b) = Y ∗ is the gas-phase mole fraction at equilibrium with X in the liquid
phase. The molar-balance equation for the gas-phase element gives us

V Y = V (Y + ∆Y ) + Ac · ∆l · am · Kg(Y − (aX + b)) . (6.123)

Here V is the total molar flow rate of the gas phase (assumed to be constant), Y is the
mole fraction of component A in the gas phase, X is the mole fraction of component A
in the liquid phase, and Ac is the cross sectional area of the tower.
By simple manipulation and rearrangement of (6.123) we obtain

V
∆Y

∆l
= −Ac · am ·Kg(Y − (aX + b)) .

After taking the limit of ∆l → 0 we get

V
dY

dl
= −Ac · am · Kg(Y − (aX + b)) . (6.124)

With the initial condition Y = Yf at l = 0, the molar balance for the liquid phase
satisfies

LX = L(X + ∆X) + Ac · ∆l · am ·Kg(Y − (aX + b)) ,

where L is the total molar flow rate of the liquid phase (also assumed constant).
By simple manipulation and rearrangement we obtain

L
∆X

∆l
= −Ac · am · Kg(Y − (aX + b)) . (6.125)

Taking the limit as ∆l → 0 in (6.125) we get

L
dX

dl
= −Ac · am · Kg(Y − (aX + b)) (6.126)

with the boundary condition X = Xf at l = Ht. Here Ht is the total height of the
absorption column.
Notice that the set of joint differential equations

V
dY

dl
= −Ac · am · Kg(Y − (aX + b)) , with the initial condition Y = Yf at l = 0,

and (6.127)

L
dX

dl
= −Ac · am · Kg(Y − (aX + b)) , for the boundary condition X = Xf at l = Ht

forms a system of two-point BVPs.
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6.3.2 Manipulation of the Model Equations

Due to the simplicity of this illustrative problem and of the linear equilibrium isotherm
Y = aX+b we can reduce the two coupled two point boundary value differential equations
(6.127) to one differential equation as follows.
Subtracting equation (6.126) from (6.124) we get

V
dY

dl
− L

dX

dl
= 0 .

Thus by the product rule of differentiation, used in reverse, we have

d(V Y − LX)
dl

= 0 or V Y − LX = C1 . (6.128)

At l = 0 we have Y = Yf and X = Xe, where Xe is the mole fraction of component
A in the liquid phase at the exit or the bottom of the column.
Using this initial condition in equation (6.128) we find the value of C1 as

V Yf − LXe = C1 .

Substituting this value of C1 into equation (6.128) we then have

V Y − LX = V Yf − LXe or V Y = L(X − Xe) + V Yf .

By rearrangement we see that

Y =
L

V
(X − Xe) + Yf . (6.129)

Substituting the value of Y in equation (6.129) into equation (6.126) we finally get

L
dX

dl
= −Ac · am · Kg

(
L

V
(X − Xe) + Yf − (aX + b)

)
(6.130)

with the boundary condition X(Ht) = Xf at l = Ht.

6.3.3 Discussion and Results for both the Simulation and the
Design Problem

The two coupled equations (6.129) and (6.130) can be used to solve two different prob-
lems:

(a) a simulation problem , and
(b) a design problem for packed bed absorption towers.

(a) The Simulation Problem :
If the system parameters L, V, Ac, and am · Kg are known, as well as the feed concen-
trations Xf and Yf of the liquid and gas, respectively, then the two equations (6.129)
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and (6.130) become an initial value problem that we need to solve in order to find the
unknown liquid output concentration Xe of the given absorption column. The gaseous
output concentration Ye can then be determined from Xe using equation (6.129).
Notice that equation (6.130) will be solved from the top to the bottom of the column,
i.e., from l = Ht where we know X(Ht) = xf down to the bottom at l = 0. We also note
that the value of Xe used in equation (6.130) is an assumed or approximate value and
as equation (6.130) is integrated from l = Ht to l = 0, at l = 0 the solution provides
us with a value of Xe that will generally be different from the assumed or approximate
value of Xe at the start of the integration process for equation (6.130). We can find the
correct value for Xe quickly by an iterative process: Take two guesses Xe1 and Xe2 for
Xe and find the two values X1(0) and X2(0) of X at height zero of the corresponding
IVP solutions. Note that when Xe1 and Xe2 are chosen correctly, then X1(0) = Xe1 and
X2(0) = Xe2. Our iterative process involves solving two initial value problems (6.130)
with Xe1 and Xe2, respectively, as parameters and evaluating X1(0) and X2(0). The
computed values will generally differ from each other. Our task is to find a value of Xe

that we can use inside the IVP (6.130) at l = Ht so that the IVP solution X(l) gives us
the equal exit X concentration XXe (0) = Xe back at height zero, i.e., at the lower exit
of the tower as depicted in Figure 6.22.

In Figure 6.23 we plot the typical scenario for this fixed-point iteration to illustrate
our algorithm.
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Figure 6.23 plots the computed IVP solution Xi(0) at height zero versus the DE param-
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eter Xei for two initial guesses Xei at the points marked by ∗. This data is interpolated
by a solid black line. We also draw the “fixed point” line in the plot as the angular
bisector of the first quadrant where X

Xe
(0) = Xe. A new approximation Xenew for the

DE parameter Xe is taken where the two lines intersect. This intersection is denoted by
a small circle in Figure 6.23.
Here is our MATLAB routine absorbtoweriterXe.m that finds the output liquid con-
centration Xe for the simulation problem (a) according to Figure 6.23.

function [Xenew, check] = absorbtoweriterXe(Ac,Ht,Ka,a,b,L,V,Xf,Yf,method)

% Xenew = absorbtoweriterXe(Ac,Ht,Ka,a,b,L,V,Xf,Yf,method)

% Sample call : absorbtoweriterXe(2.5,20,68,.72,0.01,720,7000,0.001,1.4,23)

% Input : Ac (= cross section area of tower),

% Ht (= height of tower),

% Ka (= K_g * a_m), a, b, L, V,

% Xf (= liquid feed at top input),

% Yf (= gas feed at bottom entrance); These are the system parameters

% method : 15, 23, 45, or 113;

% method of MATLAB integrator: ode15s, ode23, ode45, or ode113

% Output: Plot of solution X and Y curves from l = 0 to l = Ht.

% Xenew is the liquid output

% to solve:

% dy/dx = 1/L [-A*Ka* (L/V (y-Xe) + Yf -(a*y + b))]

% choose the initial condition: x(0) = Xe and iteratively adjust Xe to

% fit the boundary data

if nargin == 9, method = 23; end % default integrator

lspan = [Ht 0]; x0 = Xf; % IVP with X(Ht) = Xf;

options = odeset(’Vectorized’,’on’); fhandle = @tow; k = 0;

if method ~= 23 & method ~= 45 & method ~= 113 & method ~= 15

disp(’Error : Unsupported method number !’), return, end

Xe1 = 2; Xe2 = 1; % two generic starting points; any two values will work here

[l1,x1] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe1,method);

[l2,x2] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe2,method);

Xenew = (x1(end) - Xe1*(x2(end) - x1(end))/(Xe2 - Xe1))/...

(1-(x2(end) - x1(end))/(Xe2 - Xe1)); % looking for self-replicating Xenew

if abs(Xe1-Xenew) <= abs(Xe2-Xenew), Xe2 = Xenew; % if Xe1 is better than Xe2

else, Xe1 = Xe2; Xe2 = Xenew; end

% Now iterate :

while abs((Xenew - (Xe1+Xe2)/2)/Xenew) >= 0.0001 & k < 10, k = k +1;

[l1,x1] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe1,method);

[l2,x2] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe2,method);

Xenew = (x1(end) - Xe1*(x2(end) - x1(end))/(Xe2 - Xe1))/...

(1-(x2(end) - x1(end))/(Xe2 - Xe1));

if abs(Xe1-Xenew) <= abs(Xe2-Xenew), Xe2 = Xenew; % if Xe1 betters Xe2

else, Xe1 = Xe2; Xe2 = Xenew; end, end

% Find best X and Y from Xenew

[l,x] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xenew,method);

y = L/V * (x - Xenew) + Yf; rr = (max(y) - min(y))/max(y);
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check = L*Xf + V*Yf - L*x(end) - V*y(1); % mass balance check

subplot(2,1,1); % plot graph of solution h(X) to BVP

plot(l,x,’Linewidth’,1), hold on, v = axis; plot(v(1),Xenew,’+r’),

xlabel([’ h (with computed X_e = ’,num2str(Xenew,’%9.6g’),’ )’],...

’FontSize’,12), ylabel(’X ’,’Rotation’,0,’FontSize’,12),

title([{’Absorption Tower (using an IVP iteration) : ’},{’ ’},{[’ A_c = ’,...

num2str(Ac,’%5.4g’),’, H_t = ’,num2str(Ht,’%5.4g’),’, K_a = ’,...

num2str(Ka,’%5.4g’),’, a = ’,num2str(a,’%5.4g’),’, b = ’,...

num2str(b,’%5.4g’),’, L = ’,num2str(L,’%5.4g’),’, V = ’,...

num2str(V,’%5.4g’),’, X_f = ’,num2str(Xf,’%5.4g’),...

’, Y_f = ’,num2str(Yf,’%5.4g’)]}],’FontSize’,12), hold off

subplot(2,1,2); % plot graph of associated solution h(Y)

plot(l,y,’Linewidth’,1), hold on, v = axis; plot(v(1),y(1),’+g’),

xlabel([’ h (rel. removal rate = ’,num2str(rr,’%5.4g’),...

’ ; Y_e = ’,num2str(y(1),’%9.6g’),’)’],’FontSize’,12),

ylabel(’Y ’,’Rotation’,0,’FontSize’,12), hold off

function [l,x] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method)

ghandle = @tow; % module for the integration

if method == 15,

[l,x] = ode15s(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 45,

[l,x] = ode45(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 23,

[l,x] = ode23(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 113,

[l,x] = ode113(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

function dydt = tow(l,x,A,Ka,a,b,L,V,Yf,Xe) % r.h.s of the DE

dydt = 1/L * (-A*Ka*(L/V * (x-Xe)+Yf-(a*x+b))); % use all inputs

A close look at the intermediate output values of Xenew in a call of absorbtoweriterXe
reveals that convergence is almost instantaneous. This is so because the role of Xe in
the IVP (6.130) is linear, indicating that one linear interpolation will give the exact self-
replicating value of Xe for the simulation problem in case of a linear equilibrium relation.
For a quadratic equilibrium relation, refer to problem 3 in the Chapter exercise section.

Equation (6.130) is a single DE which can be solved as an IVP once X(0) = Xe is
specified. Its solution gives the value of X(l) for every value of l and we can use X to
evaluate the corresponding Y values using the simple relation (6.129).
Notice that this reduction of the two DEs into one has not destroyed the two point
boundary value nature of the problem because we have to find a solution with the known
boundary values of Yf at l = 0 and of Xf at l = Hf while Xe is unknown. We can solve
this problem iteratively by assuming a value for Xe, integrating (6.130) from l = 0 to
l = Hf , checking the value of Xf that was found against the desired value, and then
varying Xe to better approximate Xf .
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Alternately, the problem can be viewed as an initial value differential equation with
the boundary condition X(0) = Xe on the right-hand side of equation (6.130), once the
boundary value X(Ht) = Xf is specified.

We want to compare the solution for this continuous packed bed model with our earlier
computations of the values of Xj and Yj. For this purpose we first determine the value of
Ka = Kg ·am via quadnonequicol.m. A call of quadnonequicol(6,68,0.72,0.01,720,
7000,0.001,1.4) indicates that we have about 5% removal for our original system data
with 6 trays, Ka = 68, and L = 720:

Xj Yj j

0.12461 1.33 1

0.24634 1.3427 2

0.36436 1.3552 3

0.47708 1.3673 4

0.58324 1.3789 5

0.68193 1.3898 6

ans =

0.050028

Thus we settle on 68 for the value of Ka = Kg · am used in equation (6.130).
We can solve the corresponding IVP (6.130) for a set value of Xe = 0.001 or a set value of
Xf = 1.9 via our MATLAB program absorbtowerivp.m on the CD by alternately set-
ting the input parameter called zero equal to 0 and starting the integration from (0, Xe)
or by setting zero not equal to 0 and thereby starting the integration from (Ht, Xf), as
depicted in Figure 6.22.
Figures 6.24 and 6.25 show the graphical and numerical output of the X and Y profiles,
as well as Xe, Ye and the removal rate when calling absorbtoweriterXe(2.5,20,68,
.72,0.01,720,7000,0.001,1.4)and absorbtoweriterXe(2.5,20,600,.72,0.01,720,
7000,0.001,1.4), respectively.
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X and Y profiles for the simulation problem (6.129) and (6.130) with Ka = 68
Figure 6.24

The increase in the value of Ka from 68 in Figure 6.24 to 600 in Figure 6.25 shows that
the increase in the rate of mass transfer increases the efficiency per unit height of the
column. Thus a much smaller column can be used to achieve the same separation for
Ka = 600.
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Figure 6.25

We include two more graphs for increasing values of L = 7200 and 72,000 and Ka = 600.
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Figure 6.26
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Figure 6.27

For more extreme values of the system data than were used in Figures 6.24 to 6.27, we
note that the + mark on the vertical axis of the top X plot may not coincide with the
left, i.e., the bottom end of the X profile as it should. In this case we advise to use the
extended call [Xe, check] = absorbtoweriterXe(... ... ...) that displays the er-
ror called check to equation (6.129) at height zero on screen. This error can be improved
by tightening the allowed relative error bound 0.0001 of the solution X to (6.130) used
in the while abs((Xenew - (Xe1+Xe2)/2)/Xenew) >= 0.0001 & k < 10, ... code
line near the upper third of our absorbtoweriterXe.m code.
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Notice that an increase of the liquid flow rate together with a high Ka value give us an
efficient separation with a low exit-flow concentration, see Figure 6.26. As the flow rate
increases further (for the same Ka), the efficiency of the column increases also and the
liquid exit concentration becomes lower as depicted in Figure 6.27.

(b) The Design Problem :
Differing from the previous simulation problem in which the apparatus and system pa-
rameters, as well as the feed rates were given to us and we needed to find the exit liquid
concentration Xe, we now consider the task of designing an absorption tower with a spec-
ified cross-sectional area Ac, the given system parameter values L, V, and Ka = am ·Kg ,
and the known feed rates Xf and Yf for a linear equilibrium relation Y = aX + b.
In the design problem, our task is to determine Ht so that the liquid output Xe at height
zero is as desired. Note that not all Xe values are possible here due to the equilibrium
relation Y = aX + b which links Xe to Yf according to the formula

Xe =
Yf − b

a
. (6.131)

This limits the possible liquid output concentrations to Xe ≤ (Yf − b)/a.
To solve this problem we again proceed iteratively. For two initial guesses Ht1 and Ht2 of
the tower height, we solve (6.130) and record the computed output concentrations Xe1

and Xe2. We use linear interpolation between the two data points to find an H value
Htnew where the line connecting (Ht1, Xe1) and (Ht2, Xe2) reaches the value of the de-
sired Xe and repeat the process until the relative difference between the computed Xe..

value and the desired Xe is negligibly small.
If the desired Xe exceeds what can be reached according to the equilibrium relation at
height zero, our program automatically computes Ht for the maximal possible Xe =
(Yf − b)/a and annotates the graph accordingly.
Here is our MATLAB code absorbtoweriterHt.m that solves the design problem nu-
merically.

function [Htnew, check] = absorbtoweriterHt(Ac,Ka,a,b,L,V,Xf,Xe,Yf,method)

% Xenew = absorbtoweriterHt(Ac,Ka,a,b,L,V,Xf,Xe,Yf,method)

% Sample call :

% absorbtoweriterHt(2.5,68,.72,0.01,720,7000,0.001,1.8404,1.4,23)

% Input : Ac (= cross section area of tower),

% Ka (= K_g * a_m), a, b, L, V,

% Xf (= liquid feed at top input),

% Xe (= desired liquid output),

% Yf (= gas feed at bottom entrance); These are the system parameters

% method : 15, 23, 45, or 113;

% method of MATLAB integrator: ode 15s, ode23, ode45, or ode113

% Output: Plot of solution X and Y curves from l = 0 to l = Ht.

% Ht = necessary height of column

% to solve:

% dy/dx = 1/L [-A*Ka* (L/V (y-Xe) + Yf -(a*y + b))]

% choose an initial height and continue integrating until desired Xe is



394 Chapter 6: Heterogeneous and Multistage Systems

% reached

if nargin == 9, method = 23; end % default integrator and preparations

Ht1 = 200/Ka; Ht2 = 2*Ht1; Xemax = (Yf - b)/a; toolarge = 0;

% compute max possible Xe

options = odeset(’Vectorized’,’on’); fhandle = @tow; k = 0; Hmax = 1000;

if method ~= 23 & method ~= 45 & method ~= 113 & method ~= 15

disp(’Error : Unsupported method number !’), return, end

if Xe >= Xemax, % reduce Xe to Xemax iff too large

disp([’ desired Xe exceeds the physically possible; ’,...

’ X_e is set to max possible value ’,num2str(Xemax,’%10.8g’)]),

Xe = Xemax; toolarge = 1; end

lspan1 = [Ht1 0]; lspan2 = [Ht2 0]; x0 = Xf; % prepare for two integrations

[l1,x1] = integr(fhandle,lspan1,x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method);

[l2,x2] = integr(fhandle,lspan2,x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method);

Htnew = (Xe - x1(end))/(x2(end) - x1(end)) * (Ht2 - Ht1) + Ht1; % find Htnew

if abs(Xe-x1(end)) <= abs(Xe-x2(end)), Ht2 = Htnew; % if Ht1 is better than Ht2

else, Ht1 = Ht2; x1 = x2; Ht2 = Htnew; end,

if abs(Htnew) > Hmax,

disp([’ bad data: Ht exceeds ’,num2str(Hmax,’%6.5g’),’ m’]), return, end

% Now iterate :

while abs((x1(end) - Xe)/Xe) >= 10^-5 & k < 10 & abs(Htnew) <= Hmax

k = k +1; lspan2 = [Ht2 0]; % evaluate X for new Ht value only

[l2,x2] = integr(fhandle,lspan2,x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method);

Htnew = (Xe - x1(end))/(x2(end) - x1(end)) * (Ht2 - Ht1) + Ht1; %interpolate

if abs(Xe-x1(end)) <= abs(Xe-x2(end)), Ht2 = Htnew; % if Ht1 is better

else, Ht1 = Ht2; x1 = x2; Ht2 = Htnew; end, end,

% Find best X and Y for Htnew

if abs(Htnew) <= Hmax

[l,x] = integr(fhandle,[Htnew 0],x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method);

y = L/V * (x - Xe) + Yf; rr = (max(y) - min(y))/max(y);

check = L*Xf + V*Yf - L*x(end) - V*y(1); % mass balance check

else

disp([’ bad data: Ht exceeds ’,num2str(Hmax,’%6.5g’),’ m’]), return, end

subplot(2,1,1); % plot graph of solution h(X) to BVP

plot(l,x,’Linewidth’,1), hold on, %v = axis; plot(v(1),Xenew,’+r’),

xlabel([’ h (with computed H_t = ’,num2str(Htnew,’%9.5g’),’ )’],...

’FontSize’,12), ylabel(’X ’,’Rotation’,0,’FontSize’,12),

if toolarge == 0,

title([{’Absorption Tower (using an IVP iteration) : ’},{’ ’},...

{[’ Ac = ’,num2str(Ac,’%5.4g’),’, K_a = ’,num2str(Ka,’%5.4g’),...

’ a = ’,num2str(a,’%5.4g’),’, b = ’,num2str(b,’%5.4g’),’, L = ’,...

num2str(L,’%5.4g’),’, V = ’,num2str(V,’%5.4g’),’, X_f = ’,...

num2str(Xf,’%5.4g’),’, X_e = ’,num2str(Xe,’%7.6g’),...

’, Y_f = ’,num2str(Yf,’%5.4g’)]}],’FontSize’,12), hold off,
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else

title([{’Absorption Tower (using an IVP iteration) : ’},{’ ’},{[’ A_c =

’,...

num2str(Ac,’%5.4g’),’, K_a = ’,num2str(Ka,’%5.4g’),’, a = ’,...

num2str(a,’%5.4g’),’, b = ’,num2str(b,’%5.4g’),’, L = ’,...

num2str(L,’%5.4g’),’, V = ’,num2str(V,’%5.4g’),’, X_f = ’,...

num2str(Xf,’%5.4g’),’, X_e = ’,num2str(Xe,’%7.6g’),’ (= max X_e)’,...

’, Y_f = ’,num2str(Yf,’%5.4g’)]}],’FontSize’,12), hold off, end

subplot(2,1,2); % plot graph of associated solution h(Y)

plot(l,y,’Linewidth’,1), hold on, %v = axis; plot(v(1),y(1),’+g’),

xlabel([’ h (rel. removal rate = ’,num2str(rr,’%5.4g’),...

’ ; Y_e = ’,num2str(y(1),’%9.5g’),’)’],’FontSize’,12),

ylabel(’Y ’,’Rotation’,0,’FontSize’,12), hold off

function [l,x] = integr(fhandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe,method)

ghandle = @tow; % module for the integration

if method == 15,

[l,x] = ode15s(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 45,

[l,x] = ode45(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 23,

[l,x] = ode23(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

if method == 113,

[l,x] = ode113(ghandle,lspan,x0,options,Ac,Ka,a,b,L,V,Yf,Xe); end

function dydt = tow(l,x,A,Ka,a,b,L,V,Yf,Xe) % r.h.s of the DE

dydt = 1/L * (-A*Ka*(L/V * (x-Xe)+Yf-(a*x+b))); % use all inputs

A call of absorbtoweriterHt(2.5,68,.72,0.01,720,7000,0.001,1.8404,1.4) with
the same data used in Figure 6.24 and that computed Xe = 1.8404 for a given height of
20 m in the simulation problem now finds Ht = 19.999 m in the design problem when we
specify the simulated output value Xe = 1.8404 instead. This validates our algorithms.
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Calling [H,check] = absorbtoweriterHt(25,68,.72,0.01,7200,70000,0.001,3,
1.4) for much larger parameter values creates the screen following output:

desired Xe exceeds the physically possible; X_e is set to max possible value

1.9305556

H =

57.31

check =

2.5125

Particularly note that the error check is sizable for this example and not nearly zero as it
should be. We will comment on this numerically ill-conditioned problem on p. 398 after
we have displayed and discussed the graphics output of this particular call and following
the on-screen output of several other similar calls.
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Note the physical size differences for the cross-sectional area Ac and the liquid and gas
feed volumes L and V in this example when compared to the ones of Figure 6.28. Our
original quest to achieve Xe = 3 as stipulated in the above call turns out to be unrea-
sonable. The program recognizes this and gives us the height of the tower needed for
achieving the maximally possible Xe = 1.93056 instead on the title line.
For this data our computations are, however, not very accurate in absolute terms, as the
mass-balance check check = 2.5125 � 0 indicates. But for the given size of L and V ,
the IVP solver is still relatively accurate.
A cross check for the same data with absorbtoweriterXe gives us the following screen
output

>> [Xe,check] = absorbtoweriterXe(25,57.31,68,.72,0.01,7200,70000,0.001,1.4)

Xe =

1.9303
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check =

0

Thus for an absorption column that is 57.31 m high, we will achieve slightly less than
the desired maximal output Xe = 1.930556. If we increase the height to 78 m, we achieve
our objective, however:

>> [Xe,check] = absorbtoweriterXe(25,78,68,.72,0.01,7200,70000,0.001,1.4)

Xe =

1.9306

check =

0

In both cases of Ht = 57.31 and 78, the simulation problem is solved with zero error
in the screen output check, while the corresponding design problem is fraught with a
sizeable error. This is partially due to the extreme parameter data, in the sense that
the profiles for X and Y have rather steep slopes at the maximal height. Therefore even
miniscule changes of the boundary condition at height zero (i.e., very slight changes of
Xe) have huge effects on the function values at the other end at Ht.
We advise our students to use these two absorption tower programs in tandem for best
results with both design and simulation problems. Special care needs to be taken if we
compute data such as the above, where the height varies from 57 to 78 m, or by 37% as
Xe varies only in its 5th significant digit, or by approximately 0.02%.
Numerical analysts call such problems ill-conditioned. Monitoring the size of the mass-
balance error check will alert the user to ill-conditioned data here.

Finally we note that the relation (6.129) can also be obtained by a simple mass
balance.

f V, Y

V, YL, X

L, X

e f

e

V, YL, X

Mass balance
Figure 6.30
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A mass balance across the dotted boundary in Figure 6.30 gives us

L · X + V · Yf = L · Xe + V · Y .

This yields
V · Y = L(X − Xe) + V · Yf ,

and consequently

Y =
L

V
(X − Xe) + Yf .

The above equation is identical to equation (6.129) that was obtained earlier by sub-
tracting the two differential equations (6.124) and (6.126) and integrating the resulting
DE.

Exercises for 6.3
1. Rewrite the code quadnonequicol.m to run in O(N) time as detailed on p.

376. To achieve this fast operations count, you need to implement all matrix
times matrix or matrix times vector products in O(N) time by recognizing the
sparsity of the matrices Df1x, Df1y, Df2x, and Df2y that make up Df(zold).

2. Derive the design equations for multi-tray absorption towers taking into ac-
count the change of the liquid and vapor flow rates L and V due to absorption.

3. Develop a numerical algorithm for solving problem 2 above. Use one set of
parameters from this section in order to find out the effect of changing L and
V on the results.

4. Repeat problems 2 and 3 above for a packed bed absorption tower.

6.4 The Nonisothermal Case: a Battery of CSTRs

In this section we formulate a high-dimensional multi-stage problem with consecutive
exothermic reactions that take place in three consecutive adiabatic CSTRs with no re-
cycle. This is done for a variable base set of parameters α1, α2, β1 , β2, γ1, and γ2 for
the two reactions. The dynamic characteristics of this system are obtained by numerical
simulation.

6.4.1 Model Development

Specifically, we consider the consecutive reaction

A
r1−→ B

r2−→ C

with r1 = k1 · CA and r2 = k2 · CB for ki = ki,o · e−Ei/(R·T ) and i = 1, 2. Here B is
the desired product and the process takes place in three adiabatic CSTRs in series as
depicted in Figure 6.31.
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Battery of three adiabatic CSTRs
Figure 6.31

If the three CSTRs have the same constant volume V = Vi for i = 1, 2, 3, then the
reaction can be described by the following set of DEs.
For the first tank :

V
dCA1

dt
+ q · CA1 = q · CAf − V · k1,0 · e−E1/(R·T1) · CA , (6.132)

V
dCB1

dt
+ q · CB1 = 0 + V · k1,0 · e−E1/(R·T1) · CA − V · k2,0 · e−E2/(R·T1) · CB , (6.133)

and

V · ρ · Cp
dT1

dt
+ q · ρ · Cp · (T1 − Tf ) = (6.134)

= V
(
k1,0 · e−E1/(R·T1) · CA · (−∆H1) + k2,0 · e−E2/(R·T1) · CB · (−∆H2)

)
.

These three differential equations can be put into dimensionless form to become the
system of DEs (6.135), (6.136), and (6.137) below.

dxA1

dτ
= 1 − xA1 − α1 · e−γ1/y1 · xA1 , (6.135)

where xA1 = CA1/CAf , α1 = V · k1,0/q, γ1 = E1/(R · Tf), y1 = T1/Tf , and τ = t · q/V
denotes dimensionless time in the first DE (6.132) for the first tank. And for (6.133) :

dxB1

dτ
= −xB1 + α1 · e−γ1/y1 · xA1 − α2 · e−γ2/y1 · xB1 , (6.136)

where xB1 = CB1/CAf , α2 = V · k2,0/q, and γ2 = E2/(R · Tf ) according to the second
DE (6.133) for the first tank.
And finally

dy1

dτ
= 1 − y1 + α1 · β1 · e−γ1/y1 · xA1 + α2 · β2 · e−γ2/y1 · xB1 , (6.137)

where β1 = (−∆H1) · CAf/(ρ · CP · Tf ) and β2 = (−∆H2) · CAf/(ρ · CP · Tf ) for the
third DE (6.134) above.



6.4 The Nonisothermal Case: a Battery of CSTRs 401

Similarly we can derive two sets of three dimensionless DEs that govern the second
and the third tank in Figure 6.31, respectively.
For the second tank :

dxA2

dτ
= xA1 − xA2 − α1 · e−γ1/y2 · xA2 , (6.138)

where xA2 = CA2/CAf and y2 = T2/Tf .

dxB2

dτ
= xB1 − xB2 + α1 · e−γ1/y2 · xA2 − α2 · e−γ2/y2 · xB2 , (6.139)

where xB2 = CB2/CAf .
And

dy2

dτ
= y1 − y2 + α1 · β1 · e−γ1/y2 · xA2 + α2 · β2 · e−γ2/y2 · xB2 . (6.140)

And similarly for the third tank :

dxA3

dτ
= xA2 − xA3 − α1 · e−γ1/y3 · xA3 , (6.141)

where xA3 = CA3/CAf and y3 = T3/Tf .

dxB3

dτ
= xB2 − xB3 + α1 · e−γ1/y3 · xA3 − α2 · e−γ2/y3 · xB3 , (6.142)

where xB3 = CB3/CAf .
And

dy3

dτ
= y2 − y3 + α1 · β1 · e−γ1/y3 · xA3 + α2 · β2 · e−γ2/y3 · xB3 . (6.143)

The above nine DEs (6.135) to (6.143) describe our system of three CSTRs depicted
in Figure 6.31. It has six dimensionless parameters αi, βi, and γi for i = 1, 2. This system
can be visualized as a matrix DE, namely

dX

dτ
= F (X) for the state variable vector X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA1

xB1

y1

xA2

xB2

y2

xA3

xB3

y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

9 . (6.144)

In particular, we are interested in the solution for the parameters α1 = 106.426, α2 =
106.85; β1 = 0.4, β2 = 0.6; γ1 = 18, and γ2 = 27. Moreover, we want to vary the
appropriate design and operating parameters that are contained inside the dimensional
parameters in order to maximize the yield of the desired intermediate product B at the
output of the third tank.
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6.4.2 Numerical Solutions

The system of DEs (6.144) describes an initial value problem in nine dimensions, once
we have chosen the initial values for the dimensionless temperatures yi(0) and the di-
mensionless concentrations xAi(0) and xBi(0) of the components A and B, respectively,
in each of the three tanks numbered i = 1, 2, 3 at the dimensionless starting time τ = 0.
We study various sets initial conditions for the problem (6.144) that lead to different
steady-state output concentrations xB3 of the desired component B in the three CSTR
system.
The MATLAB ODE solver ode15s is most appropriate for solving the nonlinear system
(6.144) of nine DEs for the nine state variables quickly. This multistep integrator is built
on Gear’s2 method. We have experimented with using simpler ODE solvers such as ode23
or ode45, but these simple Runge-Kutta embedding formulas experience difficulties right
from the start τ = 0 and do not produce a reliable solution in any reasonable amount of
time. This, combined with the success of ode15s (and of ode23s, which is much slower)
indicates that the system of DEs (6.144) is in fact stiff with slowly increasing and, at the
same time, slowly decreasing fundamental solutions to the DE. This fact can be verified
theoretically with great effort, but stiffness of a system of DEs is much more easily veri-
fied by numerical experimentation, as we have just described: try various DE solvers and
the most successful one asserts the DEs system’s stiffness or nonstiffness numerically.
See also the earlier remark on stiffness and ODE solver validation in section 4.3.5 on p.
201.

We start with a multi-density (or multi-colored on the computer screen) plot of six
phase plots for the solution of (6.144) starting from various initial conditions. Each phase
plot begins at a small o mark and ends at a specified time τ = Tend at a small � square.
The plots in Figure 6.32 are generated by our MATLAB code threeCSTRrun.m which in
turn relies on threeCSTR.m to solve each IVP of the form (6.144).

function threeCSTRrun(a1,a2,y1,y2,y3,Tend,S,tl,colorswitch)

% threeCSTRrun(a1,a2,y1,y2,y3,Tend,S,tl)

% Sample call : threeCSTRrun(10^6.426,10^6.85,1.3,1.3,1.3,100,’b’,0,1)

% Input : a1, a2: system parameters;

% y1, y2, y3: initial temperature values in tank i = 1,2,3;

% Tend = time end of integration;

% S = color choice

% tl = 1: we plot with pluses after each time step

% tl = 0: no plot of time steps

% colorswitch = 1: we switch color for each new initial condition

% Output: 5 sets of phase plots using threeCSTR.m, overlaid in one figure

if nargin == 6, S = ’b’; tl = 0; colorswitch = 0; end % defaults

if nargin == 7, tl = 0; colorswitch = 0; end

clf, multi = 0;

2Charles William Gear, British mathematician, 1935-
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disp(’start at zero, zero’) % on screen display of progress : % blue

[t,y,multi] = ...

threeCSTR(a1,a2,Tend,[.0;.0;y1; .0;.0;y2; .0;.0;y3],S,1,multi,tl); drawnow

disp(’start at 0.95, zero’), if colorswitch == 1, S = ’k’; end, % black

[t,y,multi] = ...

threeCSTR(a1,a2,Tend,[.95;.0;y1; .95;.0;y2; .95;.0;y3],S,1,multi,tl); drawnow

disp(’start at 0.45, 0.45’), if colorswitch == 1, S = ’r’; end, % red

[t,y,multi] = ...

threeCSTR(a1,a2,Tend,[.45;.45;y1; .45;.45;y2; .45;.45;y3],S,1,multi,tl);

drawnow

disp(’start at 0, 0.95’), if colorswitch == 1, S = ’g’; end, % green

[t,y,multi] = ...

threeCSTR(a1,a2,Tend,[0;.95;y1; 0;.95;y2; 0;.95;y3],S,1,multi,tl); drawnow

disp(’start at 0.4, 0.15’), if colorswitch == 1, S = ’c’; end, % cyan

[t,y,multi] = ...

threeCSTR(a1,a2,Tend,[0.4;.15;y1; 0.4;.15;y2; 0.4;.15;y3],S,1,multi,tl);

drawnow

The specific graphs in Figure 6.32 are generated by the call of threeCSTRrun(10^6.426,
10^6.85,1.3,1.3,1.3,100,’b’,0,1). Here the system parameters αi are chosen as
α1 = 106.426 and α2 = 106.85. The next three inputs in this call of threeCSTRrun denote
the dimensionless temperatures y1 = y2 = y3 = 1.3 for each of the three tanks. These are
followed by the end Tend = 100 of the dimensionless time of integration, the plot color3

specification of blue for the computer screen, as well as two output toggles, explained
fully in the comments preamble to threeCSTRrun.m.

Note that the complete set of initial value inputs can be retrieved from the six phase
plots by reading the location of each starting point from the o marks in the plots for each
tank. On a computer screen for example, in tank 1 the green trajectory starts from the
initial values xA1 = 0, xB1 = 0.95 and y1 = 1.3 as can be seen by looking at the red o
marks that indicates the respective starting point for the top two graphs in Figure 6.32.
Note that the dynamic trajectories for the second tank are depicted in the two middle
plots of Figure 6.32, and those of the third tank in the two bottom plots. The specific
initial values for xAi and xBi and i = 1, 2, 3 can be adjusted inside threeCSTRrun.m if
desired.

3References to color always refer to a computer generated color graph of the figure in question.
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Multiple phaseplots of solutions to (6.144) from four different sets of initial values
Figure 6.32

The top two graphs depict the phase trajectories of y1 versus xA1 and of xA1 versus
xB1 for the first tank. The middle two graphs do the same for the second tank, while
the bottom two plots describe the dynamics in tank 3 for the chosen initial conditions
y3 = 1.3, and various xA3(0) and xB3(0) values .
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In the three double plots of Figure 6.32 we have chosen the following five sets of initial
values (xAi(0), xBi(0), yi(0)) as (0, 0, 1.3), (0.95, 0, 1.3), (0.45, 0.45, 1.3), (0, 0.95, 1.3),
and (0.4, 0.15, 1.3) for each tank i = 1, 2, 3, i.e., we have chosen a feasible set of initial
conditions for the concentrations and the constant initial dimensionless temperatures
of 1.3 in each tank. Note that always 1 ≤ yi = 1.3 ≤ 1 + β1 = 1 + 0.4 = 1.4 and
xAi(0) + xBi(0) ≤ 1 (= 100%) for each i.
More specifically in each horizontal pair of plots, all realistic component concentrations
xAi and xBi must satisfy the constraint xAi + xBi ≤ 1. And the concentration of the
component C in tank i is given by xCi = 1 − xAi − xBi for each i = 1, 2, 3.
We note that in the top pair of phaseplots, all our initial values lead to a unique steady
state with (xA1(Tend), xB1(Tend), y1(Tend)) ≈ (0.92, 0.05, 1.03) as depicted by the red
� marks. Note further the large phaseplot swing of the black curve that starts at the
initial value (xA1(0), xB1(0)) = (0.95, 0). This curve nearly backs to its start in each of
the topmost plots for tank 1.
The middle two plots show the dynamics of the reaction in the second tank. One steady
state of tank 2 lies at (xA1(Tend), xB1(Tend), y1(Tend)) ≈ (0.33, 0.67, 1.28) and an-
other at (xA1(Tend), xB1(Tend), y1(Tend)) ≈ (0, 0.2, 1.87). The latter gives the smaller
yield of xB and results from the initial second tank conditions (xA2(0), xB2(0), y2(0)) =
(0.95, 0, 1.3) depicted in black. These two steady states are stable. There is another un-
stable steady state for this data, but our graphical method does obviously not allow us
to find it because it is an unstable saddle-type steady state that will repel any profile
that is near to it. It can be easily obtained from the steady-state equations, though. For
a method to find all steady states of a three CSTR system, see Section 6.4.3.
The bottom two plots for tank 3 move the first steady state of the second tank to a
higher dimensionless temperature that is almost equal to 2, the maximal dimension-
less temperature, and reduce the concentrations of A and of B even further to nearly
zero. Again this steady state is only reached from a relatively high concentration of
xA3(0) = 0.95 along the black curves. The second stable steady state of tank 2 moves to
(xA1(Tend), xB1(Tend), y1(Tend)) ≈ (0.05, 0.92, 1.4) in tank 3. Thus we can increase
the production of the desired component B steadily from tank 1 to tank 3 using any of
the five tested initial conditions, except for the one with high xA initial values in tank 2
or 3. See Problem 2 of the Exercises.
Overall most of our five trial initial conditions will force the three CSTR unit to produce
a yield of around 92% of component B at the output of tank 3. This is a very good result.

To draw Figures 6.33 to 6.35 below, we use the code threeCSTR.m printed on p.
411. We alter the initial component concentrations for A and B in the three tanks while
keeping all tank temperatures at the same constant initial value yi = 1.3. We start out
with (xA1(0), xB1(0)) = (0.4, 0), (xA2(0), xB2(0)) = (0.1, 0.1), and (xA3(0), xB3(0)) =
(0.1, 0.5) to obtain Figure 6.33.
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Phase plots of the solution to (6.144) from one set of initial values
Figure 6.33

Next we increase the initial concentration xB3(0) to become 1 and reduce both xB2(0)
and xA3(0) to zero.



6.4 The Nonisothermal Case: a Battery of CSTRs 407

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x
A1

y
1

y
1
 versus x

A1
 phase plot 

                                                      Three CSTR: Initial values:
                x

A1
 = 0.4, x

B1
 = 0, y

1
 = 1.3;  x

A2
 = 0.1, x

B2
 = 0, y

2
 = 1.3;  x

A3
 = 0, x

B3
 = 1, y

3
 = 1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
B1

    ( x
B1

 (Tend) = 0.057315 )

x
A1

x
A1

 versus x
B1

 phase plot 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

x
A2

y
2

y
2
 versus x

A2
 phase plot 

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
B2

    ( x
B2

 (Tend) = 0.67428 )

x
A2

x
A2

 versus x
B2

 phase plot 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

x
A3

y
3

y
3
 versus x

A3
 phase plot 

0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x
B3

    ( x
B3

 (Tend) = 0.92859 )

x
A3

x
A3

 versus x
B3

 phase plot 

( Tend = 100 )

for α
1
 = 106.426, α

2
 = 106.85; β

1
 = 0.4, β

2
 = 0.6; γ

1
 = 18, γ

2
 = 27

Phase plots of the solution to (6.144) from a different initial condition
Figure 6.34

Note that the top 4 phaseplots in Figure 6.34 for the reactors 1 and 2 look very similar to
the ones in Figure 6.33, while the bottom two plots for the third CSTR differ. However,
the output xB3(Tend) = 0.92859 is nearly 93% in Figure 6.34 as it was in Figure 6.33.

But if we change the initial condition (xA2(0), xB2(0)) of tank 2 to become (1, 0)
and use (xA3(0), xB3(0)) = (0, 1) for tank 3 in Figure 6.35, then the output of B at
the exit of tank 3 becomes rather small at around 19% of the useful component B. In
fact we could have done better for these initial conditions by reducing the three CSTR
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tank system to a two tank system with a higher useful output xB2(Tend) = 67.428% of
component B at the output of tank 2.
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Phase plots of the solution to (6.144) with further altered initial conditions
Figure 6.35

Note that the reduction of useful output of B in tank 3 in Figure 6.35 is accompanied
by a rather high steady-state temperature of around 1.9. This indicates that the reaction
taking place in tank 3 mainly transforms the nearly 67% concentration of product B at
its input into component C.
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Figure 6.36 gives a single plot with another set of altered heat and concentration initial
values spelled out in detail in the figure’s title line. Recall that all phase trajectories start
at a small o mark and end at a small � mark when τ =Tend.
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Phase plots of the solution to (6.144) with altered initial conditions
Figure 6.36

For this specific initial data the output of the desired product B increases from tray to
tray from around 6% in tank 1, to about 15% in tank 2 and finally to 80% at the output
of tank 3.
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Before listing the ODE solver and phaseplot drawing MATLAB program threeCSTR.m
for the previous four Figures 6.33 to 6.36, we show one more plot that marks the po-
sition reached by the solution at each full 1 unit time interval by a + plus mark. This
enables us to visualize the speed of convergence towards the steady state as τ increases
to Tend = 20 dimensionless time units. Figure 6.37 is drawn by the MATLAB command
threeCSTR(10^6.426,10^6.85,20,[.1;.5;1.3;.1;.5;1.1;.1;.5;1.5],’b’,0,0,1) ;
where we have deliberately set the final input variable, called tl inside the program, equal
to 1 to generate the ticks.

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

x
A1

y
1

y
1
 versus x

A1
 phase plot 

                                                      Three CSTR: Initial values:
                x

A1
 = 0.1, x

B1
 = 0.5, y

1
 = 1.3;  x

A2
 = 0.1, x

B2
 = 0.5, y

2
 = 1.1;  x

A3
 = 0.1, x

B3
 = 0.5, y

3
 = 1.5

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
B1

    ( x
B1

 (Tend) = 0.057315 )

x
A1

x
A1

 versus x
B1

 phase plot 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1.1

1.15

1.2

1.25

1.3

1.35

x
A2

y
2

y
2
 versus x

A2
 phase plot 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
B2

    ( x
B2

 (Tend) = 0.67423 )

x
A2

x
A2

 versus x
B2

 phase plot 

0 0.02 0.04 0.06 0.08 0.1

1.3

1.35

1.4

1.45

1.5

1.55

x
A3

y
3

y
3
 versus x

A3
 phase plot 

0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

x
B3

    ( x
B3

 (Tend) = 0.92859 )

x
A3

x
A3

 versus x
B3

 phase plot 

(time step + to + = 1; Tend = 100 )

for α
1
 = 106.426, α

2
 = 106.85; β

1
 = 0.4, β

2
 = 0.6; γ

1
 = 18, γ

2
 = 27

Phase plots with time tick marks of the solution to (6.144)
Figure 6.37
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Note in Figure 6.37 that tank 1 reaches its steady state very quickly since we can only
distinguish 8 or 9 of the Tend = 20 time marks. Tank 2 shows a slower convergence in
close to Tend = 20 time steps, as does tank 3. It is fair to conclude from our graphs that
the overall convergence to steady state takes about 30 dimensionless time units for this
reactor. Our readers can verify this by extending Tend to 30 time units and counting the
distinguishable tick marks.

The MATLAB program threeCSTR.m contains a few lines of numerical calculations
at its top that generate the numerical solution for the IVP in equation (6.144), followed
by more than two pages of plotting and graph annotation code, and it finishes with the
right-hand side DE equation evaluator for the nine DEs collected in the equations (6.135)
to (6.143).

function [t,y,multi] = threeCSTR(a1,a2,Tend,y0,S,halten,multi,tl)

% [t,y,multi] = threeCSTR(a1,a2,Tend,y0,S,halten,multi,tl)

% Sample call :

% threeCSTR(10^6.426,10^6.85,20,[.1;.5;1.3; .1;.5;1.1; .1;.5;1.5],’b’,0,0,1);

% Input : a1, a2 system parameters;

% Tend = time end of integration;

% y0 = initial values for xAi, xBi, the initial concentrations of the

% components A and B in tank i, and yi, the initial

% temperature in tank i;

% S = color specification for curve plots

% halten = 1 for holding the graph for multiple runs;

% halten = 0 for starting a new graph;

% multi = 0 for a single run; multi > 0 for multiple runs

% (size of multi (> 0) governs plot annotations)

% tl = 0 for no intermediate "pluses" on the IVP solutions at

% constant time intervals; (helps to judge the setting of Tend

% for having reached a steady state)

% tl = 0 for unmarked phase curves; tl = 1 for time ticks on profiles.

% Output: six phase plots of temperature versus concentration of component

% A and of component A concentration versus component B

% concentration in each of the tanks; with annotations etc.

if nargin == 4, S = ’b’; halten = 0; multi = 0; tl = 0; end % setting defaults

if nargin == 5, halten = 0; multi = 0; tl = 0; end

if nargin == 6, multi = 0; tl = 0; end

if nargin == 7, tl = 0; end

b1 = 0.4; b2 = 0.6; g1 = 18; g2 = 27; % fixed system parameters

step = 1; tstep = linspace(0,Tend,floor(Tend/step)); % starting step pluses

if tl ~=0, tl = length(tstep); end

if S ~= ’r’, R = ’r’; else, R = ’b’; end % different colors for start and end

tspan = [0 Tend]; % De IVP solver setup and execution

options = odeset(’RelTol’,10^-6,’AbsTol’,10^-7,’Vectorized’,’on’);

[t,y] = ode15s(@dXdT,tspan,y0,options,a1,a2,b1,b2,g1,g2);

% using fast stiff DE integrator ode15s here for speed and accuracy
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yi = interp1(t,y,tstep); % Interpolating the solution at steps

if halten == 0, clf, end

subplot(3,2,1), % 6 plot routines for the phase plots

plot(y(:,1),y(:,3),S),

if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1,1,2.3]; axis(v); end

plot(y(1,1),y(1,3),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,1),yi(i,3),’Marker’,’+’,’Color’,S), end

plot(y(end,1),y(end,3),’Marker’,’s’,’Color’,R),

xlabel(’x_{A1}’,’FontSize’,11); ylabel(’y_1 ’,’FontSize’,12,’Rotation’,0);

title(’y_1 versus x_{A1} phase plot ’,’FontSize’,12);

if multi == 0 & halten == 0, ,

text(v(1)-0.3*(v(2)-v(1)),v(4)+0.22*(v(4)-v(3)),...

[{[’ Three CSTR:’,...

’ Initial values:’]}, {[’ x_{A1} = ’,num2str(y0(1),’%6.4g’),...

’, x_{B1} = ’,num2str(y0(2),’%6.4g’),’, y_{1} = ’,num2str(y0(3),’%6.4g’),...

’; x_{A2} = ’,num2str(y0(4),’%6.4g’),’, x_{B2} = ’,num2str(y0(5),’%6.4g’),...

’, y_{2} = ’,num2str(y0(6),’%6.4g’),...

’; x_{A3} = ’,num2str(y0(7),’%6.4g’),’, x_{B3} = ’,num2str(y0(8),’%6.4g’),...

’, y_{3} = ’,num2str(y0(9),’%6.4g’)]}],’FontSize’,14),

else, text(v(1)+0.5*(v(2)-v(1)),v(4)+0.2*(v(4)-v(3)),...

[’Three CSTR IVP; plots for multiple initial values’],’FontSize’,14), end

if halten == 1, multi = multi +1; end;

if halten == 0, hold off, end

subplot(3,2,2),

plot(y(:,2),y(:,1),S),

if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1.05,-0.05,1.05]; axis(v); end

plot(y(1,2),y(1,1),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,2),yi(i,1),’Marker’,’+’,’Color’,S), end

plot(y(end,2),y(end,1),’Marker’,’s’,’Color’,R),

if halten == 0,

xlabel([’x_{B1} ( x_{B1} (Tend) = ’,num2str(y(end,2),’%7.5g’),’ )’],...

’FontSize’,11);

else xlabel(’x_{B1} ’,’FontSize’,11); end

ylabel(’x_{A1} ’,’FontSize’,12,’Rotation’,0);

title(’x_{A1} versus x_{B1} phase plot ’,’FontSize’,12);

if halten == 1, hold on, end

subplot(3,2,3),

plot(y(:,4),y(:,6),S),

if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1,1,2.3]; axis(v); end
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plot(y(1,4),y(1,6),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,4),yi(i,6),’Marker’,’+’,’Color’,S), end

plot(y(end,4),y(end,6),’Marker’,’s’,’Color’,R),

xlabel(’x_{A2}’,’FontSize’,11); ylabel(’y_2 ’,’FontSize’,12,’Rotation’,0);

title(’y_2 versus x_{A2} phase plot ’,’FontSize’,12);

if halten == 1, hold on, end

subplot(3,2,4),

plot(y(:,5),y(:,4),S), if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1.05,-0.05,1.05]; axis(v); end

plot(y(1,5),y(1,4),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,5),yi(i,4),’Marker’,’+’,’Color’,S), end

plot(y(end,5),y(end,4),’Marker’,’s’,’Color’,R),

if halten == 0,

xlabel([’x_{B2} ( x_{B2} (Tend) = ’,num2str(y(end,5),’%7.5g’),’ )’],...

’FontSize’,11);

else xlabel(’x_{B2} ’,’FontSize’,11); end

ylabel(’x_{A2} ’,’FontSize’,12,’Rotation’,0);

title(’x_{A2} versus x_{B2} phase plot ’,’FontSize’,12);

if halten == 1, hold on, end

subplot(3,2,5),

plot(y(:,7),y(:,9),S),

if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1,1,2.3]; axis(v); end

plot(y(1,7),y(1,9),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,7),yi(i,9),’Marker’,’+’,’Color’,S), end

plot(y(end,7),y(end,9),’Marker’,’s’,’Color’,R),

xlabel(’x_{A3}’,’FontSize’,11); ylabel(’y_3 ’,’FontSize’,12,’Rotation’,0);

title(’y_3 versus x_{A3} phase plot ’,’FontSize’,12);

if halten == 1, hold on, end

subplot(3,2,6),

plot(y(:,8),y(:,7),S),

if halten == 0, v = axis; hold on,

axis([v(1)-0.05*(v(2)-v(1)),v(2),v(3)-0.05*(v(4)-v(3)),v(4)]);

else hold on, v = [-0.05,1.05,-0.05,1.05]; axis(v); end

plot(y(1,8),y(1,7),’Marker’,’o’,’Color’,R),

for i = 1:tl, plot(yi(i,8),yi(i,7),’Marker’,’+’,’Color’,S), end

plot(y(end,8),y(end,7),’Marker’,’s’,’Color’,R),

if halten == 0,

xlabel([’x_{B3} ( x_{B3} (Tend) = ’,num2str(y(end,8),’%7.5g’),’ )’],...

’FontSize’,11);

else xlabel(’x_{B3} ’,’FontSize’,11); end

ylabel(’x_{A3} ’,’FontSize’,12,’Rotation’,0);

title(’x_{A3} versus x_{B3} phase plot ’,’FontSize’,12);
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if (halten == 0 & multi == 0) | (halten == 1 & multi == 1),

if halten == 1, cv1 = .35; cv2 = .65; cv3 = .23; cv1m = .9; cv3m = 0.37;

else cv1 = .43; cv2 = .67; cv3 = .28; cv1m = 1.1; cv3m = .44; end

if tl ~= 0, text(v(1)-cv2*(v(2)-v(1)),v(3)-cv3*(v(4)-v(3)),...

[’(time step + to + = ’,num2str(step,’%6.4g’),’; Tend = ’,...

num2str(Tend,’%6.4g’),’ )’],’FontSize’,12);

else, text(v(1)-cv1*(v(2)-v(1)),v(3)-cv3*(v(4)-v(3)),...

[’( Tend = ’,num2str(Tend,’%6.4g’),’ )’],’FontSize’,12); end

text(v(1)-cv1m*(v(2)-v(1)),v(3)-cv3m*(v(4)-v(3)),...

[’for \alpha_1 = 10^{’,num2str(log10(a1),’%6.4g’),’}, \alpha_2 = 10^{’,...

num2str(log10(a2),’%6.4g’),’}; \beta_1 = ’,num2str(b1,’%6.4g’),...

’, \beta_2 = ’,num2str(b2,’%6.4g’),’; \gamma_1 = ’,...

num2str(g1,’%6.4g’),’, \gamma_2 = ’,num2str(g2,’%6.4g’)],...

’FontSize’,12); end

if halten == 1, hold on, end

function dydx = dXdT(x,y,a1,a2,b1,b2,g1,g2) % right hand side of DE (9 eqs)

dydx = [1 - y(1,:) - a1*exp(-g1./y(3,:)).*y(1,:);

-y(2,:) + a1*exp(-g1./y(3,:)).*y(1,:) - a2*exp(-g2./y(3,:)).*y(2,:);

1-y(3,:) + a1*b1*exp(-g1./y(3,:)).*y(1,:) + a2*b2*exp(-g2./y(3,:)).*y(2,:);

y(1,:) - y(4,:) - a1*exp(-g1./y(6,:)).*y(4,:);

y(2,:) - y(5,:) + a1*exp(-g1./y(6,:)).*y(4,:) - a2*exp(-g2./y(6,:)).*y(5,:);

y(3,:) - y(6,:) + a1*b1*exp(-g1./y(6,:)).*y(4,:) + ...

a2*b2*exp(-g2./y(6,:)).*y(5,:);

y(4,:) - y(7,:) - a1*exp(-g1./y(9,:)).*y(7,:);

y(5,:) - y(8,:) + a1*exp(-g1./y(9,:)).*y(7,:) - a2*exp(-g2./y(9,:)).*y(8,:);

y(6,:) - y(9,:) + a1*b1*exp(-g1./y(9,:)).*y(7,:) + ...

a2*b2*exp(-g2./y(9,:)).*y(8,:)];

In threeCSTR.m, please note the use of the subplot MATLAB command that draws six
separate graphs in our code, namely two for each tank.
The initial temperatures yi of the three CSTRs that have so far been used were all
relatively low compared to their possible maxima 1 ≤ y1, y2, y3 ≤ 2. If we keep y1 = 1.3
and raise y2 and y3 to 1.6 and 1.8 respectively, the simulation shows multiple steady
states in the second and the third tank reactors as depicted in Figure 6.38.
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Figure 6.38

In Figure 6.38, best viewed in color on a monitor, all our chosen initial conditions lead
to a single steady state in tank 1 with a concentration for component B of around 10%.
For tank 2 there are at least two stable steady states with a maximal yield of component
B of around 70%. And for tank 3 there are at least three stable steady states with yields
for component B ranging from near zero at a high temperature to over 90% at y3 ≈ 1.4.

For the initial tank temperatures as chosen in Figure 6.38, the system reaches a
concentration of around 93% for component B in tank 3 when starting all tanks without
any trace of component A or B, i.e., by setting xAi = 0 = xBi for all i = 1, 2, 3 as shown
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in Figure 6.39.
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in tank 3 for the initial values xAi = 0 = xBi for all i

Figure 6.39

Thus for these initial temperatures yi we need not prime any tank with the components
A or B at start-up and the system will still produce the maximal yield of B in tank 3.

If we now lower the initial temperature y1 of tank 1 to 1.0 and raise y2 to 1.7 while
keeping y3 = 1.8 fixed, our simulation shows three (stable) steady states in tank 2,
indicating a total of five steady states, including two unstable ones, and four (stable)
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steady states in tank 3, meaning a total of seven steady states, i.e., these four plus another
three saddle-type unstable steady states. All of the stable steady states are reached in
tank 3 from our standard set of five initial component concentrations xAi and xBi and
our chosen tank temperatures, see Figure 6.40.
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Figure 6.40

As before, Figure 6.40 is best created and viewed in color on a computer monitor.
Note that the yields of component B differ greatly between the various steady states
of each tank reactor for the parameters of Figure 6.40, with different steady states and
yields resulting from different initial conditions.
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In Figure 6.41 we use one specific set of initial conditions that yields the maximal output
of around 93% of component B in tank 3 for the same temperature data as used in Figure
6.40.
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for the temperatures and starting concentrations

Figure 6.41

For a problem on optimizing the start-up cost of a battery of three CSTRs, see the
exercises for Section 6.4.
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The numerical results of this section describe the dynamic behavior of a specific
system that is modeled by an initial value problem in nine dimensions. The number of
steady states of this system can be any odd number between 1 and 33 = 27, because
if tank 1 has one steady state, there may be three in the second tank and nine in the
third tank, since there may be three steady states in a subsequent tank for each steady
state in the preceding tank. Therefore, if tank 1 has three steady states, the second tank
can have nine and the third tank 27 steady states. The maximal number 27 of possible
steady states in tank 3 is achieved if there are three steady states in tank 1, with each
of these spawning three in the next tank, giving us maximally 9 steady states in tank 2.
If each of these steady states in tank 2 gives us three steady states in tank 3, then there
is a maximum of 27 steady states in tank 3.
For certain ranges of the parameters it is possible that the first tank can have five steady
states, then in the second tank there can be up to 52 = 25 steady states and consequently
in the third tank up to 53 = 125 steady states. In our dynamic simulation examples for
the three CSTRs with equal volume, the maximal number of steady states that we have
obtained is seven.
The actual number of steady states of our three CSTR system can be found by solving
the steady-state equations of Section 6.4.3.
For more details on multiplicity and bifurcation, see the Appendix with this title.

6.4.3 The Steady State Equations

The steady-state equations for (6.144) are given by the nine transcendental equations of
the system of equations F (X) = 0. For the steady state, we can reduce each set of
three equations for one tank to a single transcendental equation as explained below.
For example, for tank 1 the steady-state version of the DE (6.135) becomes

1 − xA1 − α1 · e−γ1/y1 · xA1 = 0 . (6.145)

This equation obtained as usual by setting the derivative in (6.135) equal to zero. Equa-
tion (6.145) makes

xA1 =
1

1 + α1 · e−γ1/y1
. (6.146)

Plugging this value of xA1 into the steady-state equation corresponding to the DE (6.136)
for xB1 gives us

xB1 =
α1 · e−γ1/y1

(1 + α1 · e−γ1/y1)(1 + α2 · e−γ2/y1)
(6.147)

for the feed concentration xBf = 0 of B.
Combining (6.146) and (6.147) with the steady-state version of (6.137), the heat bal-
ance finally gives us the following transcendental equation in the single variable y1 that
depends on the six parameters αi, βi, and γi for i = 1, 2, namely

y1 − 1 =
α1 · β1 · e−γ1/y1

1 + α1 · e−γ1/y1
+

α1 · α2 · β2 · e−(γ1+γ2)/y1

(1 + α1 · e−γ1/y1)(1 + α2 · e−γ2/y1)
. (6.148)
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Depending on the parameters, this equation can yield up to five steady state solutions.
For the second tank, the steady-state equations are

xA2 =
xA1

1 + α1 · e−γ1/y2
; (6.149)

xB2 =
xB1

1 + α1 · e−γ2/y2
+

α1 · e−γ1/y2 · xA1

(1 + α1 · e−γ1/y2)(1 + α2 · e−γ2/y2)
; and (6.150)

y2 − y1 =
α1 · β1 · e−γ1/y2 · xA1

1 + α1 · e−γ1/y2
+ (6.151)

+ α2 · β2e
−γ2/y2 ·

(
xB1

1 + α2 · e−γ2/y2
+

α1 · e−γ1/y2 · xA1

(1 + α1 · e−γ1/y2)(1 + α2 · e−γ2/y2)

)
.

For each steady-state value for y1 in tank 1, this can lead to five steady states in tank 2.
Thus for the maximal possible five values for y1 in the first tank, this gives us up to 25
steady states in tank 2.
And for the third tank we have the steady-state equations

xA3 =
xA2

1 + α1 · e−γ1/y3
; (6.152)

xB3 =
xB2

1 + α2 · e−γ2/y3
+

α1 · e−γ1/y3 · xA2

(1 + α1 · e−γ1/y3)(1 + α2 · e−γ2/y3)
; and (6.153)

y3 − y2 =
α1 · β1 · e−γ1/y3 · xA2

1 + α1 · e−γ1/y3
+ (6.154)

+ α2 · β2 · e−γ2/y3 ·
(

xB2

1 + α2 · e−γ2/y3
+

α1 · e−γ1/y3 · xA2

(1 + α1 · e−γ1/y3)(1 + α2 · e−γ2/y3)

)
.

Here the process repeats and for each steady state (up to 25 in number) of tank 2, there
are five possible steady states in tank 3, making the maximal number of steady states in
tank 3 equal to 53 = 125.

A suggested solution sequence for the above nine coupled equations (6.146) to (6.154)
and for given values of αi, βi, and γi for i = 1, 2 is as follows.

1. For the given α, β, and γ data, the only unknown in equation (6.148) is y1. There
may be multiple solutions for y1 (up to five).

2. Using the fixed given parameter values of αi, βi, γi and the maximally five solutions
for y1, we can obtain the values of xA1 and xB1 from (6.146) and (6.147).

3. Now the only unknown in equation (6.151) is y2, which may have multiple solutions
for each value of the (possibly multiple) y1 (and for the corresponding multiple xA1

and xB1 values) found in steps 1 and 2. Thus up to 25 steady states are possible
for tank 2.
For each of the found y1 and y2 value sets, we can compute the corresponding
values of xA2 and xB2 using the equations (6.149) and (6.150), respectively.
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4. Finally we need to solve (6.154) for y3 and all previous subsets of solutions. Then we
find the corresponding xA3 and xB3 values from the equations (6.152) and (6.153),
respectively. There are up to 125 possible steady-state solutions for tank 3.

Exercises for 6.4

1. Assume that component C is very cheap, while component A is moderately
expensive and component B is very expensive.

(a) For the initial temperatures yi chosen as in Figure 6.41, find out whether
the three CSTR system can reach the maximal output of component B
in tank 3 of about 93% without using any of component B in the tanks
at start-up.

(b) If problem (a) can be solved, how little of component A can be used to
prime the tanks at start-up and still achieve the maximal almost 93%
steady state output of component B in tank 3?
(Hint: Experiment with threeCSTR.m.)

2. Find estimates for the minimal amounts of the components A and B that are
needed to prime the three CSTR system at start-up in order to obtain near
zero output of component B in tank 3. (Most wasteful case scenario)

3. Rewrite the MATLAB codes threeCSTR.m and threeCSTRrun.m to work for
two CSTR and for four CSTR systems and test them on the plotted examples
in Section 6.4.3.

4. Project

(a) Implement the 4 steps given on p. 420 in order to solve the steady state
equations (6.146) to (6.154) for any given parameter values of αi, βi, and
γi and i = 1, 2 inside a MATLAB program that constructs the complete
set of steady states for the desired data.
Is it possible to obtain the maximal number of 125 steady states in tank
3? What is the maximal number of steady states in tank 3 that can be
obtained while keeping the volume of the three tanks equal?

(b) Try to obtain the maximal number of steady states in each tank by using
different volumes for the three reactors.

5. Find all steady states for the IVPs with initial conditions as chosen for Figures
6.38 and 6.40 by using the algorithm developed in problem 4.
How can one distinguish between the stable and the unstable steady states
found via the MATLAB code of problem 4?
[Hint: Linearize the equations and find the associated matrix eigenvalues by
using the built-in MATLAB function eig.]

6. Repeat problems 1 to 5 for the consecutive reaction case:

A B C� �k1 k2

k3 �
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Conclusions

In this chapter we have presented multistage systems with special emphasis on
absorption processes. We have studied multitray countercurrent absorption towers
with equilibrium trays for both cases when the equilibrium relation is linear and
when it is nonlinear. This study was accompanied by MATLAB codes that can
solve either of the cases numerically. We have also introduced cases where the trays
are not efficient enough to be treated as equilibrium stages. Using the rate of mass
transfer RMT in this case, we have shown how the equilibrium case is the limit of
the nonequilibrium cases when the rate of mass transfer becomes high. Both the
linear and the nonlinear equilibrium relation were used to investigate the nonequi-
librium case. We have developed MATLAB programs for the nonequilibrium cases
as well.

Additionally, countercurrent packed bed absorption column has been studied and
a MATLAB program involving IVPs for this problem has been developed and ex-
plained.

For all of the above configurations and situations, we have presented both the sim-
ulation problem, where the number of trays is given in the multitray case, or the
height is given for the packed column, and the design problem, where the number
of trays in the multitray case is not known, or the height is unknown for the packed
column.

The last section of this chapter describes a rather complex multi-stage process in-
volving several nonisothermal CSTRs in series and partially solves it numerically,
showing the wide range of dynamic possibilities associated with this unit, including
multiple steady states.

Exercises for Chapter 6

1. Choose a multistage absorption tower problem from industry. Collect all the nec-
essary data, develop the model and the MATLAB code to simulate the industrial
situation. Show how you can improve the performance of the chosen industrial unit.

2. Choose a packed bed absorption tower problem from industry. Collect all the nec-
essary data, develop the model and the MATLAB code to simulate the industrial
situation. Show how you can improve the performance of the chosen industrial unit.



Refinery



Chapter 7

Industrial Problems

In the previous chapters we have shown how to solve many types of problems that occur
in Chemical and Biological Engineering through mathematical modeling, standard nu-
merical methods, and MATLAB.

We have introduced many practical software based numerical procedures to solve
physico-chemical models for simulation and design purposes. Therefore, we hope that
our readers now feel comfortable and ready to handle more complex industrial problems
from the modeling stage through the numerical solution and model validation stages on
her/his own.
Industrial problems are usually more complicated than the earlier problems in this book.
But their solutions generally require the same steps, tools and procedures. Therefore,
an engineer needs to learn how to handle these problems in both a direct and an inte-
grated way. A typical industrial problem might involve solving one system of differential
equations and then solving an algebraic equation (or another DE) at each point of the
solution profile.

We will start by introducing a relatively simple integrated example from industry
to illustrate what this means. This example will be followed by a number of industrial
problems in separate sections. In this chapter we will explain and model each industrial
problem and we will develop strategies for a numerical solution. However, explicit solu-
tions and MATLAB codes for these problems will be left to the reader throughout this
chapter as exercises. We hope that we have given the necessary tools in the previous
chapters to enable our readers to solve these industrial problems. Some results for the
industrial problems of this chapter will be included so that the reader can check his or
her own results. However, we emphasize that actual industrial problems take much effort,
perseverance and labor for anyone who models and solves them.

425
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7.1 A Simple Illustrative Example

We consider the following gas-solid catalytic reaction

A + B −→ C

inside a tubular cocurrent cooled reactor. The intrinsic rate of reaction is

r = k0 · e−E/(R·T ) · CA ·CB in mol/(g (of catalyst) · min) .

We assume that the change of the number of moles and the temperature change do not
affect the volumetric flow rate q and that all physical properties (ρ, Cρ, etc) are constant.
Here the catalyst pellets are spherical and nonporous and the reaction is taking place in
a nonadiabatic fixed-bed reactor with cocurrent cooling. The reaction is exothermic.

Statement of the Problem:

1. Derive the material and energy-balance design equations, including the equations
of the catalyst pellets to calculate the effectiveness factor η.

2. Check whether you can reduce the number of equations. If possible, reduce them.

3. Suggest a sequence of steps for the solution of the design equations (for the reactor,
jacket, catalytic pellet, η, etc).

Here is an outline for a solution. We start with two diagrams of our apparatus.
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q
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TB

�

q

CAB + ∆CAB

TB + ∆TB

Schematic diagram of the packed-bed tubular cocurrent catalytic reactor of length Lt

Figure 7.1

Figure 7.1 is a schematic representation of the tubular reactor and its cooling jacket,
together with the differential element from l to l + ∆l.
An enlarged view of the central differential element in Figure 7.1 is drawn in Figure 7.2.
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Enlarged view of the differential element of Figure 7.1
Figure 7.2

Note that our model assumes a constant volumetric flow rate q in the reactor, as well a
constant flow rate qJ in the jacket.

7.1.1 Mass Balance of the Element of the Reactor

The rate of reaction per unit mass of the catalyst is given by

r = rB · η = k0 · e−E/(R·TB) · CAB ·CBB · η .

Here rB is the intrinsic rate of reaction, neglecting the mass and heat transfer resistances,
r is the actual rate of reaction that takes the mass- and heat-transfer resistances into
account, and η is the effectiveness factor that accounts for the effect of mass- and heat-
transfer resistances between the bulk fluid and the catalyst pellet. By using η we are able
to express the rate of reaction in terms of the bulk concentration and the temperature
while the reaction is in fact taking place inside the pellet.
For component A we have the following balance over the differential element of Figure
7.2:

q · CAB = q (CAB + ∆CAB) + A · ∆l · (1 − ε) · ρs · ko · e−E/(R·TB) · CAB · CBB · η ,

where ε is the bed voidage, A = πd2
t/4 is the cross-sectional area of the tubular reactor of

diameter dt in Figure 7.1, TB is the temperature in the bulk phase, η is the effectiveness
factor of the catalyst pellet, and CAB and CBB are the concentrations of component A
and B in the bulk phase, respectively.
Replacing the difference equation by a differential equation by taking the limit lim∆l → 0
gives us

q
dCAB

dl
= −A · (1 − ε) · ρs · ko · e−E/(R·TB) · CAB ·CBB · η .
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Next we put this DE into dimensionless form by using xAB = CAB/CAf , xBB =
CBB/CBf , yB = TB/Tf , γ = E/(R · Tf), and α = (A · (1 − ε) · ρs · k0 · CBf )/q, namely

dxAB

dl
= −α · e−γ/yB · xAB · xBB · η . (7.1)

This defines an IVP with xAB = 1 at l = 0 which we want to integrate until l = Lt, the
total length of the tubular reactor.

For component B we have the analogous mass-balance equation across the differential
element of Figure 7.1

q · CBB = q (CBB + ∆CBB) + A ·∆l · (1 − ε) · ρs · ko · e−E/(R·TB) ·CAB · CBB · η ,

where CBB denotes the concentration of component B in the bulk phase.
This leads to an analogous DE and finally to the dimensionless initial value problem

dxBB

dl
= −a · α · e−γ/yB · xAB · xBB · η (7.2)

with xBB = CBB/CBf , the reactants ratio a = CAf /CBf , and the initial condition
xBB = 1 at l = 0.

7.1.2 Heat Balance for the Element of the Reactor

Here we assume for simplicity that there is no change of phase in the reactor and more-
over we use the average density ρ and the average specific heat Cρ for the mixture in our
model formulation.

First we consider the heat balance inside the tubular reactor. Figure 7.2 gives rise to
the incremental heat-balance equation

q · ρ · Cρ · TB + A(1 − ε)∆l · ρs · ko · e−γ/yB · CAB · CBB (−∆H) · η =

= q · ρ ·Cρ · (TB + ∆TB) − Ãh · ∆l · U · (TJ − TB)

where U denotes the overall heat-transfer coefficient between the catalytic tubular bed
and the jacket and Ãh = πdt is the area of heat transfer per unit length between the
reactor and the cooling or heating jacket. We can rewrite this equation in form of the
DE

q · ρ · Cρ
dTB

dl
= A(1 − ε) · ρs · ko · e−γ/yB · CAB ·CBB (−∆H) · η + Ãh · u · (TJ − TB) .

By setting yB = TB/Tf , yJ = TJ/TJf , m = TJf /Tf , α = (A(1− ε) · ρs ·ko ·CBf )/q, β =
(−∆H · CAf · CBf )/(ρ · Cρ · Tf ), and αc = (Ãh · U)/(q · ρ · Cρ), this DE becomes

dyB

dl
= η · α · β · e−γ/yB · xAB · xBB + αc · (m · yJ − yB) (7.3)

in dimensionless form. This is an IVP with the initial condition yB = 1 when l = 0.
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Next we consider the heat balance for the cooling jacket in incremental form as de-
picted in Figure 7.2. Note first that ours is a case of cocurrent flow in the jacket and
reactor. This simplifies the mathematical problem when compared with countercurrent
cooling. Countercurrent cooling is physically more efficient, but it transforms the prob-
lem mathematically into a more demanding two point boundary value problem which we
want to avoid here; see problem 3 of the Exercises.

The heat-balance equation for the jacket is

qJ · ρJ · CρJ · TJ − Ãh · U · ∆l · (TJ − TB) = qJ · ρJ · CρJ · (TJ + ∆TJ) .

This transforms readily to the DE

qJ · ρJ · CρJ

dTJ

dl
= −Ãh · U · (TJ − TB) .

And in dimensionless form with b = (q · ρ ·Cρ)/(qJ · ρC · CρC ) the DE becomes the IVP

dyJ

dl
= −αC · b · (yJ − yB/m) (7.4)

with the initial condition yC = yCf = 1 (= TCf /TCf ) at l = 0.

7.1.3 Reactor Model Summary

In summary we have formulated four IVPs that describe our problem:

1. The mass-balance design equations for component A

dxAB

dl
= −α · η · e−γ/yB · xAB · xBB with (7.5)

α = (A ·(1−ε) ·ρs·k0 ·CBf)/q, η =
actual rate of reaction

intrinsic rate of reaction
=

e−γ/y · xA · xB

e−γ/yB · xAB · xBB

the pellet efficiency factor, and xA and xB the dimensionless concentrations in the
catalyst pellet. Finally y is the dimensionless temperature of the catalyst pellet.
Equation (7.5) is an IVP with the initial condition xAB = 1 at l = 0.

2. The mass-balance design equations for component B

dxBB

dl
= −a · α · η · e−γ/yB · xAB · xBB (7.6)

with a = CAf /CBf and the initial condition xBB = 1 at l = 0.

3. The heat-balance design equations for the tubular reactor

dyB

dl
= η · α · β · e−γ/yB · xAB · xBB + αC · (m · yJ − yB) (7.7)

with the initial condition yB = 1 at l = 0.
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4. The heat-balance design equations for the cocurrent cooling jacket

dyC

dl
= −αC · b · (yJ − yB/m) (7.8)

with yC = 1 at l = 0.

These four IVPs need to be solved simultaneously from l = 0 to l = Lt, the length of the
tubular reactor.
Since the cooling jacket has cocurrent flow, the model consists of the set of four coupled
initial value differential equations (7.5) to (7.8). Note that the first three DEs (7.5) to
(7.7) contain the variable catalyst effectiveness factor η. Thus there are other equations
to be solved at each point along the length 0 ≤ l ≤ Lt of the reactor tube, namely the
equations for the catalyst pellet’s effectiveness factor η.

7.1.4 The Catalyst Pellet Design Equations, Calculating η along
the Length of the Reactor

Here we consider a spherical catalyst pellet with negligible intraparticle mass- and negligi-
ble heat-transfer resistances. Such a pellet is nonporous with a high thermal conductivity
and with external mass and heat transfer resistances only between the surface of the pel-
let and the bulk fluid. Thus only the external heat- and mass-transfer resistances are
considered in developing the pellet equations that calculate the effectiveness factor η at
every point along the length of the reactor.

C
A

C
B

T

C
A

B
C

B
B

T
B

Catalyst pellet diagram
Figure 7.3
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Mass balance for component A:

From Figure 7.3 we deduce the following mass-balance equation

ap ·KgA · (CAB − CA) = Wp · k0 · e−E/(R·T ) ·CA · CB

where ap is the surface area of the catalyst pellet, KgA is the external mass-transfer
coefficient for the pellet, and Wp is the mass of the pellet. This equation relies on the
intrinsic rate of reaction being given per unit mass of the catalyst as shown on p. 426. In
addition, CA, CB, and T are the respective component concentrations and temperature
of the pellet as indicated in Figure 7.3. After introducing dimensionless parameters and
setting α′ = Wp · k0 · CBf /(ap · KgA), we obtain

xAB − xA = α′ · e−γ/y · xA · xB .

Mass balance for component B:

Similarly we have

ap ·KgB · (CBB − CB) = Wp · k0 · e−E/(R·T ) · CA · CB ,

or
xBB − xB = α′ · d · a · e−γ/y · xA · xB

for d = KgA/KgB and a = CAf /CBf .

Heat balance for the pellet :

Here we have

ap · h · (T − TB) = Wp · k0 · e−E/(R·T ) · CA · CB · (−∆H) ,

or
y − yB = α′ · β′ · e−γ/y · xA · xB

for β′ = (−∆H) · KgA · CAf ·CBf /(h · Tf).

7.1.5 Pellet Model Summary

1. For component A

xAB − xA = α′ · e−γ/y · xA · xB (7.9)

with α′ = Wp · k0 · CBf /(ap · KgA).

2. For component B

xBB − xB = α′ · d · a · e−γ/y · xA · xB (7.10)

for a = CAf /CBf and d = KgA/KgB .
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3. For the heat balance

y − yB = α′ · β′ · e−γ/y · xA · xB (7.11)

for β′ = (−∆H) · KgA · CAf ·CBf /(h · Tf).

For given values of the parameters we can compute the effectiveness factor η as follows:
By integrating the bulk-phase IVPs (7.5) to (7.8) we find xAB, xBB, and yB . Then the
catalyst pellet equations (7.9) to (7.11) allow us to find y, xA and xB from which we can
find η by the formula

η =
e−γ/y · xA · xB

e−γ/yB · xAB · xBB
. (7.12)

7.1.6 Manipulation and Reduction of the Equations

We now try to reduce the seven coupled model equations, namely the IVP equations (7.5)
to (7.8) for the reactor and the transcendental equations (7.9) to (7.11) for the catalyst
pellet, if this is possible.
First we work on the four reactor equations (7.5) to (7.8). If we subtract a times equation
(7.5) from equation (7.6) we obtain

d(xBB − a · xAB)
dl

= 0 .

Thus the function xBB(l)−a ·xAB(l) is constant. At the initial value l = 0 we know that
xBB = 1 = xAB. Therefore we have

xBB = 1 + a · (xAB − 1) . (7.13)

Consequently we can drop the design equation (7.6) for component B from our list and
simplify (7.5) to become

dxAB

dl
= −a · η · e−γ/yB · xAB · (1 + a · (xAB − 1)) . (7.14)

And whenever we need to know xBB , we can simply find it via xAB obtained by inte-
grating equation (7.14) and then substituting xAB into equation (7.13).

Can we also reduce the heat-balance equations and combine them with the mass-
balance design equations in some fashion?
For the nonadiabatic case, the answer is rather complicated, even when the cooling jacket
temperature yJ is constant. But for the adiabatic case with αC = 0 we can add equation
(7.7) and β times equation (7.5) to obtain

d(yB + β · xAB)
dl

= 0 . (7.15)

And thus yB(l) + β · xAB(l) = constant = yB(0) + β · xAB(0) = 1 + β according to
the initial conditions. Thus

xAB =
1 + β − yB

β
. (7.16)
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Substituting equation (7.16) into equation (7.7) (with αC = 0, as assumed) gives us

dyB

dl
= α · η · e−γ/yB · (1 + β − yB) · xBB . (7.17)

If we combine the equations (7.16) and (7.13), we obtain the following formula for xBB :

xBB =
β + a(1 − yB)

β
. (7.18)

This transforms equation (7.17) into

dyB

dl
= α · η · e−γ/yB · (1 + β − yB) · β + a(1 − yB)

β
. (7.19)

This equation is a nonlinear DE that we can integrate in order to find yB(l). Recall
that at each point on the graph of yB we must also calculate η from the catalyst pellet
equations (7.9) to (7.11) and the effectiveness factor equation (7.12). Recall that we can
easily calculate xAB and xBB from yB using the formulas

(7.16) xAB =
1 + β − yB

β
and (7.13) xBB = 1 + a · (xAB − 1) .

Note that for the special case of equimolar feed we have a = 1 and xAB = xBB .

Next we try to simplify the catalyst pellet design equations (7.9) to (7.11) which are
used to calculate η for all points along the length of the reactor.
If we subtract d · a times equation (7.9) for component A from equation (7.10) for com-
ponent B in the pellet, we obtain

−d · a · (xAB − xA) + xBB − xB = 0 ,

i.e., xB = xBB + d · a · (xA − xAB). Recalling that xBB = 1 + a · (xAB − 1) gives us

xB = (1 − a) + a · (1 − d) · xAB + d · a · xA . (7.20)

Here we notice that for an equimolar feed of the components A and B and for KgA = KgB

we have a = 1 and d = 1 so that xA = xB, which is a very special case.
If we subtract β′ times equation (7.9) from equation (7.11) we obtain −β′ · (xAB −xA)+
y − yB = 0 or

xA =
yB + β′ · xAB − y

β′ , (7.21)

and consequently

xB = (1 − a) + a · (1 − d) · xAB + d · a · yB + β′ · xAB − y

β′ . (7.22)

Equation (7.22) allows us to express xB linearly in terms of y, xAB , and yB . Therefore,
we can drop equation (7.10) for component B at the pellet from our list. Thus we can
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substitute the equations (7.21) and (7.20) into equation (7.9) to obtain an equation in
y only and in which yB and xAB can be obtained from the solution of the reactor bulk
equations (7.19), (7.16), and (7.13).
In order to find y only one equation must be solved for the computed values of xAB and
yB that were earlier obtained from the bulk-phase reactor DEs (7.14) and (7.19). In fact,
we need only integrate equation (7.19) for yB and then for each computed value of yB

we can compute xAB from equation (7.16) and xBB from equation (7.13).
Once we have obtained y in this way, we can find xA and xB from the equations (7.21)
and (7.22). Thus we can now compute the effectiveness factor η = η(l) from its definition

η =
e−γ/y · xA · xB

e−γ/yB · xAB · xBB
. (7.23)

The transcendental equation that must be solved for the pellet after substituting (7.21)
and (7.22) into equation (7.9) is

y−yB = α′·e−γ/y·(yB+β′·xAB−y)·
{

(1 − a) + a · (1 − d) · xAB + d · a · yB + β′ · xAB − y

β′

}
.

(7.24)

Figure 7.4 gives a flow diagram for the overall solution procedure. It starts with solving
the reactor initial value differential equation (7.19) for yB , followed by substituting yB

into the equations (7.16) and (7.18) to obtain xAB and xBB , then solving equation (7.24)
to obtain y and then xA and xB from (7.21) and (7.22), and finally obtaining η from
equation (7.23).
Once the local effectiveness factor η has been found, the new value of η is used in equation
(7.19) for the next integration step to find yB and so forth.
In practical terms, we suggest to calculate a new value of η = η(n) at every length l that is
a small integer multiple of the catalyst pellet diameter dp. Thus we solve the IVP and the
associated transcendental equations n = Lt/dp times, each time for i ·dp ≤ l ≤ (i+1) ·dp

and i = 0, 1, ..., n− 1.
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Feed conditions
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Schematic sequence of computations for the adiabatic case
Figure 7.4

The initial settings x
(0)
AB = x

(0)
BB = y

(0)
B = 1 (in the top right corner of Figure 7.4) use CAf

as the reference concentration and Tf as the reference temperature and assume equimolar
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feed of A and B. Alternatively one might use the initial values x
(0)
AB = xABf , x

(0)
BB = xBBf ,

and y
(0)
B = yBf , especially if the mixture is not equimolar.

Following this short but complicated introductory example, we study several indus-
trial units and their chemical and biological processes in the sections that follow.

Exercises for 7.1

1. Choose a reaction from the literature that is similar to the reaction of this
reactor, such as catalytic hydrogenation, and perform the above computations
using MATLAB to obtain the concentrations, temperatures, and effectiveness
factor profiles along the length of the reactor.

2. Develop the model equations, simplify them as done in this section, and repeat
problem 1 for a nonadiabatic reactor with a cocurrent cooling jacket.

3. Develop the model equations for a countercurrent cooling jacket and the same
tubular reactor. This will lead to several coupled boundary value problems
with boundary conditions at l = 0 and l = Lt.

7.2 Industrial Fluid Catalytic Cracking FCC Units

For industrial fluid cracking units most of the modeling work in the literature is based
upon a highly empirical approach that helps in building units and in operating them,
but does not elucidate the main features and characteristics of the units in order to help
improve the design and control of such units, or to optimize their output.

FEED (Gas−oil)

AIR

REACTOR

REACTION MIXFLUE GAS

HOT CATALYST

REGENERATOR

COOL CATALYST

Schematic representation of an FCC unit of type IV
Figure 7.5
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A better understanding of the behavior of FCC units can be obtained through mathe-
matical models coupled with industrial verification and cross verification of these models.
The mathematical model equations need to be solved for both design and simulation pur-
poses. Most of the models are nonlinear and therefore they require numerical techniques
like the ones described in the previous chapters.

7.2.1 Model Development for Industrial FCC Units

Many models for fluid catalytic cracking have been studied. We introduce a model that
seems to have an optimal degree of sophistication and that succeeds to describe many
industrial units accurately.
The most simple version of our model considers the two-phase nature of the fluidized
beds in the reactor and in the regenerator in a simplified way. The kinetic model that we
use considers three pseudocomponents in modeling type IV FCC units. This model is a
consecutive-parallel model formed of three lumped components and coke as follows:

Gas Oil (A1)
K1−→ Gasoline (A2)

K2−→ Coke + Gases (A3)
�K3

The rates of reactions, measured in g(converted)/(g(catalyst) · s) for the consecutive-
parallel network model are as follows:
The rate of disappearance of gas oil is

R1 =
ΨR · ε

(1 − ε)ρs
(K1 + K3) ·C2

A1
; (7.25)

the net rate of appearance of gasoline is

R2 =
ΨR · ε

(1 − ε)ρs
(K1 ·C2

A1
− K2 · CA2) , and (7.26)

the rate of appearance of coke is

R3 =
ΨR · ε

(1 − ε)ρs
(K1 · C2

A1
+ K3 · CA2) , (7.27)

where the temperature dependence of the rate constants Ki (i = 1, 2, 3) is given by

Ki = Ai · e−Ei/(RG·T ) .

For the coke that burns in the regenerator, the continuous reaction model for solids of
unchanging size is used because of its simplicity.
In our simple coke burning model, the gaseous reactant (oxygen) is assumed to be present
uniformly throughout the catalyst particle at a constant concentration without diffusional
resistance. The oxygen reacts with the solid reactant B, consisting of coke deposited on
the catalyst according to the rate equation

RC = AC · e−EC /(RG·TG) · (1 − xCB) ·C0 . (7.28)
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Based on these kinetic relations and using the simple two-phase model for bubbling
fluidized beds, the FCC model equations for the steady states of the unit can be given
in dimensionless form as follows:
The reactor dense-phase equations:
Gas oil balance:

BR · (x1f − x1D) − ΨR · x2
1D · (α1 · e−γ1/YRD + α3 · e−γ3/YRD ) = 0 . (7.29)

Gasoline balance:

BR · (x2f − x2D) − ΨR · (α2 · x2D · e−γ2/YRD − α1 · x2
1D · e−γ1/YRD ) = 0 . (7.30)

Coke balance:
C

′
R · (ΨR − ΨC) + ΨR ·Rcf = 0 . (7.31)

Heat balance:

a1 ·(YGD−YRD)+BR ·(Yν−YRD)+a2 ·(YGF −Yν)−(∆Hν+∆HLR)+∆Hcr = 0 . (7.32)

The reactor bubble-phase equations:
Gas oil balance:

x1B − x1D = (x1f − x1D) · e−aR·HR . (7.33)

Gasoline balance:
x2B − x2D = (x2f − x2D) · e−aR·HR . (7.34)

Heat balance:
YRB − YRD = (Yν − YRD) · e−aR·HR . (7.35)

The regenerator dense-phase equations:
Coke balance:

C
′
G · (ΨG − ΨR) − Rc = 0 . (7.36)

Heat balance:

BG · (YAF − YGD) + a3 · (YRD − YGD) − ∆HGL + βc · Rc = 0 . (7.37)

Here oxygen is assumed to be available in excess and in constant concentration through-
out.

The regenerator bubble-phase equation:
There is no need for an oxygen mass balance in the bubble phase because oxygen is
assumed available in excess and the bubble is assumed to be free of solids.
Heat balance:

YGB − YGD = (YAF − YGD) · e−aG·HG . (7.38)

The parameters in these equations are



7.2 Industrial Fluid Catalytic Cracking FCC Units 439

a1 = FC · Cps/(ARI ·HR · Cpf · ρf ) , aR = QER ·ARB/GRI ,
a2 = FGM ·Cpl/(ARI · HR · Cpf · ρf ) , aG = QEG · AGB/GGI ,
a3 = FC · Cps/(AGI · HG ·Cpa · ρa) , γi = Ei/(RG · Trf ) ,
α1 = A1 · ε · CA1f , α2 = A2 · ε , and α3 = A3 · ε · CA1f ,

where Ai denotes the preexponential factor for reaction i and i = 1, 2, 3.
The space velocities BR and BG in the reactor and the regenerator are given by

BR =
GRI + GRB · (1 − e−aR·HR)

ARI ·HR
and (7.39)

BG =
GGI + GGB · (1 − e−aG·HG)

AGI · HG
. (7.40)

In dimensionless variables the rate of coke combustion is

RC = αc · e−γc/YG · (1 − ΨG) (7.41)

for αc = AC · C0 · (1 − ε) and γc = EC/(RG · Trf ) .
The exothermicity factor for the coke burning reaction is

βC = Cm · (−∆Hc)/(Trf · Cpa · ρa) . (7.42)

The rate of coke formation is

Rcf = (α3 · e−γ3/YRD · x2
1D + α2 · e−γ2/YRD · x2D) . (7.43)

The endothermicity factors for the three cracking reactions are given by:

βi = CA1f · (−∆Hi)/(Trf · Cpf · ρf ) for i = 1, 2, 3 . (7.44)

The overall endothermic heat of cracking is described by the equation

∆Hcr = ΨR ·(α1 ·β1 ·x2
1D ·e−γ1/YRD +α2 ·β2 ·x2D ·e−γ2/YRD +α3 ·β3 ·x2

1D ·e−γ3/YRD) . (7.45)

Finally

C
′
R = FC · Cm/(ARI · HR · CA1f) and C

′
G = FC · /(AGI ·HG) .

The design or simulation of FCC units involves numerically solving the above 21
equations and relations (7.25) to (7.45). The solution process will be discussed later. For
the simulation of industrial units and the verification of this model for industrial data,
the majority of these 21 equations are used to calculate various parameters in the 10
equations numbered (7.29) to (7.38). Specifically, equations (7.33) to (7.35) compute the
concentration and temperature profiles in the bubble phase of the reactor and equation
(7.38) computes the temperature profile in the regenerator. This leaves the main equa-
tions (7.29) to (7.32), (7.36), and (7.38) as six coupled equations in the six state variables
x1D, x2D, YRD, ΨR, ΨG, and YGD.
The model recognizes the two-phase nature of the fluidized beds in both the reactor
and the regenerator in a simple manner and it uses a reaction network that relates the
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different steps of the cracking reactions to each other and to the reactor model.
From a hydrodynamics point of view, our simplified two-phase model uses many simpli-
fying assumptions for the system. A sample of results for industrial type IV FCC units
is shown in Figure 7.6. This figure shows how the multiplicity of the steady states dom-
inates the behavior of the unit. It also shows the effect of the efficiency of the catalyst
regeneration through carbon burning in the regenerator.
With regard to the kinetics of the cracking reaction, our approach based on lumping
several components into three pseudocomponents is reasonably sound for modeling the
system, but the reaction network has a strong deficiency in lumping coke and light
hydrocarbons into one component while the two have completely different roles. A four-
component network may improve the reliability of the model. However, a much more
detailed network is needed for computing the product distribution and gasoline octane
number.

Effect of the degree of coke combustion to CO2 on the bifurcation diagrams for
the reactor temperature versus the catalyst circulation rate

Figure 7.6
Our first simple model will be developed further to account for several effects, namely:

1. The change in volumetric gas flow rates between inlet and outlet of the reactor and
regenerator.
The volumetric gas flow rate at the outlet of the reactor is

GR =

[
x1

MGO

+
x2

MGS

+
(1 − x1 − x2) · (1 − Wc)

MC

]
· FGM · RG · TR

PR
. (7.46)

The volumetric gas flow rate at the outlet of the regenerator is

GC = (0.5 · WH + 0.5 ·WCO) · Rc · RG · TG

100 · PG
+

FAF · RG · TG

29 · PG
, (7.47)
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where FGM and FAF are the feed mass flow rate of gas oil to the reactor and of air
to the regenerator, respectively (in kg/sec).

2. The partial cracking of gasoline and gas oil to lighter hydrocarbons.
The heats of cracking that are generally used are based on the complete cracking
of hydrocarbons to carbon and hydrogen and thus they are overestimated. We
modify the heats of cracking so that they are closer to the industrial values obtained
empirically.

3. The lumping of light hydrocarbon gases with coke.
This is not suitable for realistic modeling of commercial FCC units. To remedy
this, the amount of light gases is obtained from the weight ratio of coke to (coke +
gases) as given in industrial plants data.

4. The recycle stream.
The kinetic scheme does not account for the formation of HCO (heavy cycle
oil), which are the fractions produced in addition to gasoline. In refineries, the
only fraction that is recycled is HCO and in order to calculate it, the ratio of
HCO/(HCO + LCO + CSO) is obtained from plant data.

Both steady-state models for type IV FCC units require only the solution of a set of
equations. The solution of our 21 and the 23 equations models formed by the equations
(7.25) to (7.45) or (7.25) to (7.47), respectively, can be checked against the industrial
data in order to compare the accuracy and to validate the model.

Evaluation of the model:

The model output using the 23 equations model coupled with the above 4 industrial
modifications compares favorably with the data of two industrial FCC units. Both units
were found to be operating near their middle steady state, see Figure 7.7, and the mul-
tiplicity region for each system covers a very wide range of parameters.
The model can help to investigate the effect of the feed composition on the performance
of an FCC unit as will be shown in the next section.
Figure 7.7 shows the simulated Van Heerden1 heat generation-heat removal versus reac-
tor temperature YR diagram on top and the unreacted gas oil and gasoline yield profiles
below for both industrial units. It is clear that the maximum gasoline yield for both in-
dustrial units occurs in the multiplicity region and specifically near the middle unstable
saddle-type state. However, the simulation graphs show that neither unit is operating
at its optimum condition since their operating points are slightly shifted from the max-
imal possible gasoline yield. A simple change in the operating variables can shift each
unit to its maximum gasoline yield and thereby achieve a considerable improvement in
productivity.

The graphs of Figure 7.7 were obtained from the 23 equations model coupled with
our four modifications on p. 440.

1C. van Heerden, Dutch chemical engineer, 19..-
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(a) Heat functions for units 1 and 2
(b) Conversion and gasoline yield for units 1 and 2

Figure 7.7

It is clear from the graphs that both industrial FCC units have multiple steady states
and that the steady state with the most desirable production of gasoline is the middle
unstable saddle-type state.
Since FCC units are usually operated at their middle unstable steady state, extensive
efforts are needed to analyze the design and dynamic behavior of open loop and closed
loop control systems to stabilize the desirable middle steady state.

7.2.2 Static Bifurcation in Industrial FCC Units

The two-phase nature of the reactor and regenerator in Figure 7.5 should always be
recognized. The gas entering the reactor bed splits into two parts, one part rising between
the individual catalyst particles in a dense-phase gas, and another rising through the bed
in form of bubbles that forms the bubble phase. There is an exchange of mass and heat
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between the two phases.
In addition to the familiar assumptions for modeling bubbling fluidized-bed catalytic
reactors, the following specific assumptions for FCC units are used in deriving our model.

1. The change of the number of moles during the reaction is negligible.

2. The heats of reaction and physical properties of the gases and solids are constant.

The above two assumptions will be relaxed in the next section when verifying this model
for industrial FCC units.

3. The refractivity parameter W in

k

k0
=

(
CA

CA0

)W

(7.48)

varies widely between about 0.1 and 0.7, depending on the feed stock. For sim-
plicity we will sometimes set W = 1.0. k and k0 are the feed reactivities at the
concentration CA and CA0 , the fresh feed concentration, respectively.

4. Excess air is used in the regenerator, i.e. the oxygen concentration in the regenerator
is kept constant.

The Steady State Model

The mass- and heat-balance equations for the steady-state model are the equations (7.25)
to (7.47). In the following, we describe a simple procedure to compute the model param-
eters.

1. Computation of two phase parameters:
The two phase parameters are computed as follows. The bubble velocity Ub (in
cm/sec) is given by

Ub = Ubr + U2 − Umf (7.49)

where
Ubr = 22.26(DB)1/2 (7.50)

and DB is the bubble diameter in cm.
In a bed where the bubbles are fast and large, the net upward velocity of the bubble
is

Ub =
U2 − (1 − δ)Umf

δ
. (7.51)

Hence the volume fraction of bubbles is

δ =
U2 − Umf

Ub − Umf
. (7.52)

Therefore, the area occupied by the bubble and cloud phase is

AC = A · δ (7.53)
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where A is the cross-sectional area of the bed. Consequently, the area outside the
bubble phase, i.e., the dense-phase area is

AI = A − Ac = (1 − δ) · A . (7.54)

The bubble flow rate is given by

Gc = A(U2 − Umf ) (7.55)

and the dense-phase gas flow rate which flows at minimum fluidization velocity is
given by

GI = A · Umf . (7.56)

2. Kinetics of cracking and coke burning:
Our kinetic scheme uses three components:

Gas Oil (A1)
K1−→ Gasoline (A2)

K2−→ Coke + Gases (A3)

�K3

Here A1 represents gas oil, A2 gasoline, and A3 represents coke and dry gases. The
rate of disappearance of gas oil, the rate of appearance of gasoline, and the rate
of appearance of coke and light gases are given by the equations (7.25), (7.26),
and (7.27), respectively. The rate constants can be written in Arrhenius2 form as
follows:

K1 = 0.095 · 102 · e−21321.664/(RG·TR) m3/kg · s ,

K2 = 0.077 · 102 · e−70466.93/(RG·TR) l/sec ,

K3 = 473.8 · 102 · e−109313.28/(RG·TR) m3/kg · s ,

where the activation energies are in units of kJ/kmol · K.
These starting values are used as initial guesses for fitting the model to industrial
data and the preexponential factors are changed to obtain the best fit. This is
done because the kinetic parameters depend upon the specific characteristics of the
catalyst and of the gas oil feedstock. This complexity is caused by the inherent
difficulties with accurate modeling of petroleum refining processes in contradistinc-
tion to petrochemical processes. These difficulties will be discussed in more details
later. They are clearly related to our use of pseudocomponents. But this is the only
realistic approach available to-date for such complex mixtures.

Gas oil and gasoline cracking are assumed to be second order and first order pro-
cesses, respectively. It was found that W ranges between 0.1 and about 0.7.
The rate of coke burning is given in equation (7.28) and the value of the preexpo-
nential factor and activation energy are

Kc = Ac · e−Ec/(RG·T ) m3/(kmol · sec) , and

Ac = 1.6821 · 108 , Ec = 28.444 · 103 kJ/(kmol · K) .

2Svante August Arrhenius, Swedish chemist, 1859 – 1927
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3. Steady state mass- and heat-balance equations:
The reactor and regenerator mass and heat-balance equations for the dense phase
and the bubble phase are given by equations (7.29) to (7.45). The catalyst activities
in the reactor and regenerator are defined by the following two relations

ψR =
Cm − XCR

Cm

and (7.57)

ψG =
Cm − XCG

Cm

, (7.58)

where

Cm = ratio of total amount of coke deposits necessary for complete
deactivation/total amount of catalyst.

XCG = total amount of coke deposits in regenerator/total amount of catalyst
ratio in regenerator.

XCR = total amount of coke deposits in reactor/total amount of catalyst
ratio in the reactor.

Solution of the Steady State Equations

The steady-state equations can be manipulated to take the form of heat generation and
heat removal functions, i.e., a modified Van Heerden diagram. This manipulation can be
carried out in different ways, all leading to the same results and here we choose to obtain
the heat generation and removal functions of the regenerator as a function of the reactor
temperature.
The solution proceeds as follows.

1. Choose a value of YRD within the desired range.

2. Assume a value of ΨR as an initial guess.

3. Compute x1D from the following equation which can easily be derived from equation
(7.29).

x1D =
−BR +

√
B2

R + 4ΨR · BR · x1f · (α1e−γ1/YRD + α3e−γ3/YRD)
2ΨR · (α1e−γ1/YRD + α3e−γ3/YRD )

= f1(YRD) (7.59)

4. Calculate x2D from equation (7.30) in the following equivalent explicit form:

x2D =
ΨR · α1 · f2

1 (YRD)e−γ1/YRD + BR · x2f

ΨR · α2e−γ2/YRD + BR

= f2(YRD) (7.60)

5. Calculate the rate of coke formation Rcf from equation (7.43) and ΨG from equation
(7.31).
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6. Calculate ∆Hcr from equation (7.45) and YGD from equation (7.32).

7. Calculate the rate of coke burning from equation (7.41).

8. Check the correctness of the assumed value ΨR by computing its value from equa-
tion (7.36).

9. If the residual in step 8 is too large, correct the value of ΨR using interpolation.
Then repeat steps 3 to 8. Once the residual is small enough (≤ 10−6), substitute
ΨR in the heat-balance equation of the regenerator (7.37), written in the form

R(YRD) = BG · YAf + a3 · YRD = (BG + a3) ·YGD − βcRc + ∆HLG = G(YRD) .
(7.61)

This is a nonlinear equation due to RC on the right-hand side because the definition
of RC in equation (7.28) involves the exponentiation of variables.

10. Change the value of YRD and repeat steps 2 to 9 until the required range of the
reactor temperature has been covered.

Steady State Simulation Results for an Industrial Scale FCC Unit

For the results in this section, all system parameters that are not explicitly mentioned
in the figures below are as specified in the following table.

Data for one fluid catalytic cracking unit
Height and diameter of the regenerator bed 25.05, 13.50 m
Height and diameter of the reactor bed, respectively 25.50, 8.25 m
Pressure in both vessels 1.5 atm
Voidage in both vessels 0.4
Umf in regenerator and reactor, respectively 16 × 10−4, 4 × 10−4 m/sec
Density and average size of catalyst, respectively 450 kg/m3, 60 µm
Average molecular weight of gas oil and gasoline, 180, 110

respectively
Boiling point of gas oil and gasoline, respectively 539 K, 411 K
Heat of reaction of gas oil to coke ∆H3 8.126 × 103 kJ/kg
Heat of reaction of gas oil to coke ∆H1 6.036 × 102 kJ/kg
Heat of reaction of gasoline to coke ∆H2 (by difference) 7520 kJ/kg
Latent heat of vaporization of gas oil 264.7 kJ/kg
Unless otherwise stated QER = QEG = ∞
Heat of combustion of coke 30.19 × 103 kJ/kg
Reference temperature (Trf ) 500 K

Determining the steady state for given sets of parameters:
Below we present and discuss our simulation results obtained by numerically solving the
model equations (7.29) to (7.47) as described in the ten step adaptive procedure above.
The results are based on manipulating equation (7.61), so that the heat removal line
becomes independent of the feed temperature and its slope independent of the reactor
temperature and the other variables. Once this has been achieved, we can assume that
the slope of the heat removal line is constant over time.
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The gas flow rate in the reactor and the regenerator are assumed constant as well and
are calculated – according to the ideal gas law, see Section 3.4 – from their feed mass
flow rates FGM and FAF to the reactor at vaporization conditions for the gas oil and at
feed conditions for the air to the regenerator, respectively.

Effect of gas oil flow rate:
(a) Heat generation function and heat removal line vs. reactor temperature
(b) Yield and conversion vs. reactor temperature

Figure 7.8

Figure 7.8 shows the effect of the gas oil flow rate on the modified heat generation
function G(YRD) in Figure 7.8(a), as well as the conversion 1−x1D and the gasoline yield
x2D in Figure 7.8(b). We notice that the gasoline yield functions in terms of the reactor
temperature have several maxima. This is caused by differences in the activation energies
of the reactions between the reactor and the regenerator. When FGM = 200 kg/sec, three
such maxima occur in the – . – . – graph of x2D in Figure 7.8(b). The largest of these
gives the maximum gasoline yield at a reactor dimensionless temperature of around 1.2.
For FGM = 1000 and 1800 kg/sec, two maxima of x2D occur and the maximal gasoline
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yield occurs at the larger maximum, namely at the reactor dimensionless temperatures of
approximately 1.45 and 1.5, respectively. Under the given system conditions three steady
states are obtained for FGM = 200 kg/sec at YRD = 0.19, 0.62, 1.26 with x2D = 0.0,
0.18, 0.63. For FGM = 1000 kg/sec the steady states are at YRD = 0.28, 0.77, 1.5 with
x2D = 0.0, 0.02, 0.26, and for FGM = 1800 kg/sec they occur at YRD = 0.27, 0.78, 1.66
with x2D = 0.0, 0.01, 0.11.

From these simulations we conclude that the increase in the gas oil flow rate at con-
stant operating conditions causes an increase in the temperature of the system together
with a decrease in the gasoline yield. Notice that as FGM increases, the corresponding
yield YGD for the same value of YRD increases since the increase in FGM causes an in-
crease in the amount of coke that is formed, thus causing a larger amount of coke to enter
the regenerator where the coke gets burned, and thus this leads to an increased heat of
combustion.

The increase in YGD may exceed the allowable limits. If this happens, the regenerator
temperature can be lowered by increasing the rate of catalyst circulation FC as depicted
in Figure 7.9.

Regenerator temperature versus reactor temperature and the effect of the catalyst
circulation rate. (The embedded table shows the effect of FC on the steady-state

temperature, the yield and the catalyst activity.)
Figure 7.9

By changing FC the system’s steady states are changed and consequently the gasoline
yield changes, too. This shows the complexity of the interaction between the variables of
the system and a need for mathematical models to optimize the operation of FCC units.
The most useful models must be able to account for all varying parameters simultane-
ously.
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We notice in Figure 7.9 that an increase of the catalyst circulation rate increases the
yield by reducing the overheating of the system that ultimately destroys the gasoline
to coke and dry gases. Therefore, increasing the catalyst circulation rate to control the
regenerator temperature has a favorable effect on gasoline yield, too.

The plots in Figures 7.8 and 7.9 make both QER and QEG infinite and therefore the
dense phase and bubble phase conditions are identical and are equal to the output condi-
tions of the reactor and the regenerator in this example. In case of finite exchange rates
between the bubble and dense phases in reactor and regenerator, the output conditions
from the reactor and the regenerator can be obtained by mass and heat balances for the
concentration and the temperature of both phases and these expressions use the same
symbols as before, but without the subscript D (used to signify the “dense phase” before).

The effect of the exchange rate between the bubble and dense phases is discussed
further in the next section for one industrial FCC unit. There the simulation results are
verified and cross-verified against the corresponding industrial data.

Determining the air feed temperature for maximum gasoline yield:

Here equation (7.61) is used without modification and the air feed temperature YRD

is used as the manipulated variable to obtain the maximum gasoline yield. The term
a3 · YRD on the left-hand side of (7.61) can be moved so that the chosen variable YRD

appears only on the nonlinear right-hand side of equation (7.61), while the left-hand
side of the equation (7.61) still contains YAf . This manipulation allows us to solve the
equation without having to use numerical optimization techniques.
In this setting, the maximum gasoline yield x2D and the corresponding reactor temper-
ature YRDmax are determined from a plot of x2D vs. YRD. This optimal value for YRD is
then plugged into the function G(YRDmax) = G(YRDmax) − a3 · YRDmax = BG · YAfmax .
Since BG is known, this allows us to find YAfmax easily.

Optimum air feed temperature at different values
of the catalyst circulation rate with Fcs = 1060 kg/sec

Fc/Fcs TFA K Fc/Fcs TFA K

1.25 1958.5 1.875 665.0
2.5 308.6 5.0 282.6

The table above gives the optimum air feed temperature obtained graphically as de-
scribed above. It uses different values of FC for the given parameters FAF = 112.5 kg/sec,
FGM = 1400 kg/sec and QER = QEG = ∞.
It is important to notice that the optimum feed temperature TFA decreases sharply as
FC increases. This is due to the fact that increased quantities of heat are removed from
the regenerator as the catalyst circulation rate increases.

Hysteresis loops:

The hysteresis phenomenon, i.e., static bifurcation as described earlier for the nonisother-
mal CSTR that is associated with multiple steady states plays an important role in start-



450 Chapter 7: Industrial Problems

up, control and in the stability of chemical reactors. The desired optimum steady state
may be within the multiplicity region, and hence special start-up procedures must be
followed in order to attain the desired steady state.
As discussed in Chapters 3 and 4 of this book, when such conditions prevail, a large
disturbance may shift the reactor outside the region of stability of the optimum steady
state and towards the stability region of another, but undesirable steady states. When
the disturbance is removed, the reactor does not generally restore itself to its original
steady state and an irreversible drop of productivity will generally occur.

Hysteresis loops of reactor temperature versus air feed temperature
(Effect of gas oil flow rate)

Figure 7.10

Figure 7.10 shows the hysteresis loops of YRD vs. YFA for various values of FG. It is clear
that the multiplicity range is in general quite large and increases as the gas oil flow rate
FGM increases.
The various graphs in Figure 7.10 also show that the behavior of the FCC unit is gov-
erned by the multiplicity of the steady states.

Summary of the results:

A relatively simple mathematical model composed of 21 or 23 transcendental and rational
equations numbered (7.25) to (7.47) was presented to describe the steady-state behav-
ior of type IV FCC units. The model lumps the reactants and products into only three
groups. It accounts for the two-phase nature of the reactor and of the regenerator using
hydrodynamics principles. It also takes into account the complex interaction between the
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reactor and the regenerator due to catalyst circulation. The effect of some parameters
on the steady-state behavior has been presented in this section and a simple graphical
technique given for determining the optimum air feed temperature for each given value
of the catalyst circulation rate. The optimal air feed temperature may, however, exceed
allowable limits, hence the catalyst circulation rate may have to be adjusted to bring
down both the optimum air feed temperature and the regenerator temperature.

The results obtained from this model provide a sufficiently good understanding of
the complex interactions between the reactor and the regenerator and their effect on
the overall behavior of the system. This model is more realistic and reliable than earlier
empirical models. The model can be applied to optimize and control the steady state
of FCC units. One further advantage of this model is the ease with which the model
equations can be solved graphically using a modified van Heerden diagram.

This model involves some assumptions which can be relaxed in order to become more
effective and more for accurate in simulating industrial units.
Industrial verification of our steady-state model and further static-bifurcation studies of
industrial FCC units follow.

7.2.3 Industrial Verification of the Steady State Model and Static
Bifurcation of Industrial Units

We relax some of our previous FCC system assumptions now and restate our model
assumptions first. Namely:

1. There is no reaction in the bubble phase.

2. The dense phase is perfectly mixed and the bubble phase is in plug flow with respect
to mass and heat.

3. The interchange between bubble-phase gas and dense-phase gas is by bulk flow and
diffusion.

4. An average mean bubble diameter is used throughout the bed.

5. The heats of reaction and the physical properties are constant except for diffusivi-
ties, the density of vaporized gas oil, and the density of air, which are functions of
temperature.

6. Excess air is used in the regenerator.

The starting values of the kinetic rate constants and the heats of the three reactions are
as follows.

K1 = 4.468 · e−20883.3/(RG·T ) m3/(kg · sec); ∆H1 = 603.9 kJ/kg

K2 = 10773.5 · e−75240/(RG·T ) 1/sec; ∆H2 = 7520.0 kJ/kg
K3 = 17.092 · e−37620/(RG·T ) m3/(kg · sec); ∆H3 = 8126.0 kJ/kg
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The heat of combustion of coke is calculated from the relation

(−∆Hc) =

[
4100 + 10100 ·

(
CO2

CO2 + CO

)
+ 3370 ·

(
H

C

)]
· 2.326 kJ/kg (7.62)

where CO2/(CO2 + CO) refers to the relative volume of these gases in the flue gases
from the regenerator and H/C is the atomic ratio of hydrogen to carbon in the coke that
is formed.
The heat losses in the reactor are assumed to be 0.5% of the heat that enters with the
catalyst, and the heat losses in the regenerator are assumed to be 0.5% of the heat
supplied by coke burning. The rest of the data is given in the following table.

Basic data for the two industrial units and
the characteristics of their feedstock, products and catalyst

Average molecular weight of gas oil and gasoline, respectively 180, 110
Boiling point of gas oil and gasoline, respectively 539, 411 K
Latent heat of vaporization of gas oil 265.15 kJ/kg
Reference temperature Trf 500 K
Concentration of gasoline in gas oil feed CA2f 0
Voidage in both vessels 0.4
Height of expanded bed in reactor and regenerator, for the 7, 7.2 m
operating conditions of unit 1.

The two industrial fluid catalytic cracking units that we consider are of type IV with
U-bends. The two units vary in their input parameters which lead to different outputs.
The following table contains the plant data for the two commercial FCC units under
consideration.

Plant data for both units

Unit 1 Unit 2

Fresh feed flow rate, kg/sec 16.782 13.476
Recycle HCO flow rate, kg/sec 2.108 2.111
Combined feed ratio CFR 1.1256 1.1566
Air flow rate, kg/sec 10.670 10.670
Catalyst circulation rate, kg/sec 88.605 117.113
Combined feed temperature, K 527. 538.
Air feed temperature, K 436. 433.
Hydrogen in coke, wt % 4.17 6.79
HCO/(HCO + CSO + LCO) 0.286 0.419
Coke/(Coke+gases) 0.221 0.207
CO2/(CO2 + CO), m3/m3 0.75 0.613
(−∆H)c, kJ/kg 31.24×103 30.78×103

Additional plant data that is common to both units is given below.
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Plant data common to both units

Regenerator dimensions 5.334 m ID × 14.859 m TT
Reactor dimensions 3.048 m ID × 12.760 m TT
Catalyst retention in reactor 17.5 metric tons
Catalyst retention in generator 50 metric tons
API of raw oil feed 28.7
Reactor pressure 225.4938 kPa
Regenerator pressure 254.8708 kPa
Average particle size 0.00072 m
Pore volume of catalyst 0.00031 m3/kg
Apparent bulk density 800 kg/m3

Catalyst surface area 215 m2/g

The two industrial units are relatively small compared to more modern large capacity
riser-reactor units.

Simulation Procedure; Verification and Cross Verification

The model was fitted to the first FCC unit using corrections for the frequency factors.
The modified frequency factors that were used are: K

′
1o = 1.5K1o, K

′
2o = 0.5K2o, K

′
3o =

1.5K3o. We note that in practice these correction factors vary from one catalyst to the
other, depending upon the type of catalyst, its activity and age, as well as the type of
feedstock used.
To insure that the correction factors are not just empirical numbers that fit only one
specific FCC unit at one set of operating conditions, the model should be cross-verified.
For this, the same model with these correction factors is used to simulate the second FCC
unit. This unit uses a very similar catalyst with almost the same activity and age and a
very similar feedstock. Success of the second simulation acts as a cross-verification here
and ensures that the corrected model gives a reasonably good general representation of
FCC type IV units. However, in practice the catalyst activity should be regularly checked
to ensure that the preexponential factors used in the simulation model are still valid.

Simulation and Bifurcation Results; Discussion for two Industrial FCC Units

Comparison of the model results with plant data:
Figure 7.11 (a) shows the heat function vs. the reactor temperature for both units 1 and
2 and Figure 7.11 (b) shows the corresponding unreacted gas oil and gasoline yield.
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(a) Heat function for units 1 and 2
(b) Conversion and gasoline yield for units 1 and 2

Figure 7.11

The following table contains the simulated and measured output variables for both units
1 and 2.

Simulation results of the FCC units 1 and 2

Model results Plant data % error

Parameters Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2

Y 1.55 1.57 1.55 1.57 0 0
YG 1.98 1.85 1.9 1.88 +4.21 –1.6
x1 0.382 0.355 0.39 0.322 –2.05 +10.25
x2 0.39 0.39 0.415 0.41 –6.02 –4.9
Coke kg/sec 4.2 4.083 3.681 4.073 +14.1 +0.25
HCO kg/sec 2.057 2.354 2.109 2.111 –2.45 –11.6
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It is obvious that our model agrees very well with the plant output data. The simulation
could be improved by using more accurate kinetic data, and even further improved if the
kinetic scheme were extended to include separate routes for the formation of coke and
light gases. It is clear from the above table and Figure 7.11 that both units are operating
at their middle unstable steady state and that neither is operating at its maximum
gasoline yield point.

Effect of some operating parameters:
For units operating at the middle unstable steady state, the steady-state response of the
system is generally very sensitive to variations in the operating conditions. Therefore, a
detailed parametric investigation of such a system is highly advised. We now do so for
the present model to give our readers a deeper insight into the behavior of these rather
complex FCC systems.
The optimization problem for the system in a neighborhood of its unstable middle steady
state is quite different from that in a neighborhood of the stable high temperature steady
state. Clearly there are trade-offs between the gasoline yield of the system and its stability,
i.e. in some cases, higher yields correspond to an operating point closer to the critical
bifurcation point. The parametric presentation is simplified by the fact that the dense
gas oil x1D and gasoline dimensionless concentrations x2D versus Y diagrams do not
change with variations in FC, YAf , or YGf . The only changes come from the operating
temperatures of the reactor and regenerator.

For any given operating temperature the corresponding x1D and x2D values can be
obtained from the same curve in Figure 7.11(b). Our parametric investigation is confined
to the FCC unit 1 with its x1D − x2D versus Y diagram shown in Figure 7.11(b).

Effect of catalyst circulation rate:
Figure 7.12(a) shows that for the middle steady state the reactor temperature YR de-
creases from 1.75 to 1.56 and to 1.5 as the catalyst circulation rate FC increases from
44.302 to 88.605 and to 177.21 kg/sec.
The corresponding conversion 1 − x1D decreases while the corresponding gasoline yield
x2D increases from 0.314 to 0.385 and to 0.41. It is clear from the Figures 7.12(a) and (b)
that the response of the middle steady state to a change in any parameter reacts in the
opposite way to the response of the other steady states. This is important for optimizing
and controlling FCC units and it will be discussed in more detail in the sequel.
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(a) Effect of catalyst circulation rate on heat function for unit 1
(b) Effect of gas oil feed temperature on heat function for unit 1

Figure 7.12

Effect of gas oil feed temperature:
For the middle steady state, Figure 7.12(b) shows that the increase in the gas oil feed
temperature YGf from 450 K to 527 K and to 539 K causes the dimensionless reactor
temperature to decrease from 1.76 to 1.56 and to 1.07. This increase in YGf in turn causes
a decrease in conversion and an increase in gasoline yield from 0.314 to 0.3875 and to
0.3971, see Figure 7.11(b). The opposite response directions for these middle steady state
parameters is again evident.

Bifurcation diagrams:
Obviously the reactor is not operating at the optimal operating conditions. The optimal
operating conditions cannot be estimated unless the multiplicity regions are constructed
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for different parameters, because as the system approaches maximum yield it gets closer
and closer to the bifurcation point where ignition of the reactor can occur. In this region
the reactor temperatures at differing steady states can be calculated by solving the heat-
balance equation (7.61) with a bisection method such as MATLAB’s fzero.

Effect of FC on the bifurcation behavior:

(a) Effect of catalyst circulation rate on the bifurcation diagram of Y (= YRD) vs. YAf

(b) Effect of catalyst circulation rate on the bifurcation diagram of x2 vs. YAf

(c) Effect of DB on the bifurcation diagram for YRD vs. YAf

(d) Effect of DB on the bifurcation diagram for x2 vs. YAf

[ 1 = low-temperature steady state; 2 = middle steady state;
3 = high-temperature steady state ]

Figure 7.13

Figure 7.13(a) shows the bifurcation diagram for three different values of the catalyst cir-
culation rate FC = 177.21, 88.605, and 44.303 kg/sec. The multiplicity region increases
as FC decreases. As the air temperature increases, the gasoline yield corresponding to
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the middle steady state increases also, see Figure 7.13(b). However, the system is ap-
proaching the bifurcation point and at an air temperature higher than 1.7 (for the case
of FC = 44.302), ignition occurs i.e. the reactor operates at the high-temperature steady
state. This steady state yields a negligible amount of gasoline as represented by the lower
branch of the bifurcation diagram of Figure 7.13(b). At higher circulation rates, the drop
in gasoline yield occurs at Yfa = 1.65 for FC = 88.605 and at Yfa = 1.6 for FC = 177.21.
The plant operates at FC = 88.605 and Yfa = 0.875 with a gasoline yield of 0.39 or 39%.
A higher yield can be obtained either by increasing FC or increasing the air feed tem-
perature. The optimum yield occurs at YAF = 1.5 for FC = 88.605 and at YAF = 1.46
for FC = 177.21. For FC = 44.302 the highest yield is at YAF = 1.7 but this corresponds
to the bifurcation point above where ignition occurs. A gasoline yield of 0.47, i.e., a 20%
improvement over our earlier best 39% gasoline yield, is achieved by increasing both FC

and the air feed temperature YAF .

Effect of DB on the bifurcation behavior:
In our model the bubble diameter is assumed as constant throughout the bed and it is
calculated from the equation

DB =

[
(U − Umf )Hmf

(H − Hmf) · 0.711g1/2

]2

. (7.63)

For the unit, DB was found to be 0.1 m. We now study the effect of the bubble diameter
on bifurcation in order to exhibit the sensitivity of a FCC system to the bubble diameter.
It is necessary to calculate a good approximate average value for the bubble diameter or
to alter the model to allow for bubble size variations along the height of the reactor. The
figures 7.13(c) and (d) show the bifurcation diagrams for the dense phase and differing
average bubble sizes. Figure 7.13(c) shows the increase in the range of the multiplicity
region as DB increases, while Figure 7.13(d) shows the corresponding gasoline yields.
According to these graphs, the system is quite sensitive to the bubble diameter. For the
middle steady state, as DB increases from 0.1 to 0.2 m the gasoline yield in the dense
phase increases, but a further increase to DB = 0.3 m causes a decrease in the dense-
phase gasoline yield. At the high temperature steady state an increase in DB decreases
x2D. The effect of DB on the bifurcation behavior based on the exit reactor conditions,
i.e., on the dense phase plus the bubble phase, is quite complex and will be presented
in more details later when dealing with the effects that the hydrodynamic parameters
have on the performance of FCC units. We conclude that better model simulation of
industrial units can be achieved by obtaining more accurate experimental estimates for
the average bubble size. However, taking the bubble size variations along the height of
the bed into account complicates the model considerably, without affecting its prediction
quality much.

Summary of this section’s results:
Our model simulates the industrial data for two FCC units quite well. It shows that
the two reactors are operated at the middle unstable steady state. The model has been
verified and used in a parametric investigation in which the response directions at the
middle steady state of the input parameters is opposite to that of the high temperature
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steady state. The bifurcation results show a rather large multiplicity region and the
sensitive regions near the bifurcation points have been studied. We have learnt that the
two commercial FCC units are not operating at their optimum gasoline yield conditions
and the model was used to suggest changes for improving the gasoline yield without a
formal optimization study.

7.2.4 Preliminary Dynamic Modeling and Characteristics of In-
dustrial FCC Units

The Dynamic Model

In this section we develop a dynamic model from the same basis and assumptions as the
steady-state model developed earlier. The model will include the necessarily unsteady-
state dynamic terms, giving a set of initial value differential equations that describe
the dynamic behavior of the system. Both the heat and coke capacitances are taken
into consideration, while the vapor phase capacitances in both the dense and bubble
phase are assumed negligible and therefore the corresponding mass-balance equations
are assumed to be at pseudosteady state. This last assumption will be relaxed in the
next subsection where the chemisorption capacities of gas oil and gasoline on the surface
of the catalyst will be accounted for, albeit in a simple manner. In addition, the heat and
mass capacities of the bubble phases are assumed to be negligible and thus the bubble
phases of both the reactor and regenerator are assumed to be in a pseudosteady state.
Based on these assumptions, the dynamics of the system are controlled by the thermal
and coke dynamics in the dense phases of the reactor and of the regenerator.

Unsteady-state heat balance for the reactor:
After simple manipulations the unsteady-state heat-balance equations for the reactor can
be written as follows.
For the dense phase:
The unsteady thermal behavior of the dense phase is described by the nonlinear ordinary
differential equation

εHR
dYRD

dt
= BR(Yν −YRD)+a1(YGD −YRD)+a2(YGF −Yν)−(∆Hν +∆HLR)+∆Hcr

(7.64)
with the initial condition YRD = YRD(0) at time t = 0.

For the bubble phase (in pseudosteady state):
The assumption of pseudosteady state in the bubble phase and the general assumptions
allow us to describe the bubble-phase temperature profile using the algebraic equation
(7.35).

Unsteady-state heat balance for the regenerator:
Simple manipulations similar to those used for the reactor give the following heat-balance
equations for the regenerator.
For the dense phase:
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The thermal behavior of the regenerator is described by the following nonlinear ordinary
differential equation.

εHG
dYGD

dt
= BG(YAF − YGD) + βc · Rc + a3(YRD − YGD) − ∆HLG (7.65)

with the initial condition YGD = YGD(0) at t = 0.

For the bubble phase:
The assumption of pseudosteady state in the bubble phase and the general assumptions
allow us to write the bubble-phase temperature profile in the simple algebraic form given
by equation (7.38).

Unsteady-state carbon balance in the reactor:
The dynamics of the carbon inventory in the reactor, expressed in terms of the catalyst
activity ΨR, are described by the following nonlinear ordinary differential equation

εMR
dΨR

dt
= C

′
R(ΨG − ΨR) − ΨR · Rcf (7.66)

for the initial condition ΨR = ΨR(0) at t = 0. Here Rcf is given by equation (7.43).

Unsteady-state carbon balance in the regenerator:
The dynamics of the carbon inventory in the regenerator, expressed in terms of catalyst
activity ΨG, are described by the following nonlinear ordinary differential equation

εMG
dΨG

dt
= Rc − C

′
R(ΨG − ΨR) (7.67)

for the initial condition ΨG = ΨG(0) at t = 0. Here Rc is given by equation (7.41).

Pseudosteady-state gas oil and gasoline mass balances in the reactor:
Equations (7.29) and (7.33) represent the pseudosteady-state gas oil balances for the
dense and bubble phases, respectively, while equations (7.30) and (7.34) do the same for
gasoline. Equations (7.32) and (7.35) are used for the steady-state dense- and bubble-
phase temperatures of the reactor, and equations (7.37) and (7.38) for the dense and
bubble-phase temperatures in the regenerator.
The exit concentrations and temperatures from the reactor and the regenerator are the
result of the mixing of gas from the dense phase and from the bubble phase at the exit
of the two subunits.
The exit gas oil dimensionless concentration is

x1o = (GIR · x1D + GCR · x1B)/(GIR + GCR) ≡ X1 . (7.68)

The exit gasoline dimensionless concentration is

x2o = (GIR · x2D + GCR · x2B)/(GIR + GCR) ≡ X2 . (7.69)

The exit reactor dimensionless temperature is

YRo =
GIR · ρIR · CPIR · YRD + GCR · ρCR · CPCR · YRB

GIR · ρIR · CPIR + GCR · ρCR ·CPCR

≡ YR , (7.70)
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and the exit regenerator dimensionless temperature is

YGo =
GIG · ρIG ·CPIG · YGD + GCG · ρCG ·CPCG · YGB

GIG · ρIG · CPIG + GCG · ρCG · CPCG

≡ YG . (7.71)

The above dynamic model equations are defined in terms of the same state variables
as the steady-state model was. The parameters used are also the same as those of the
steady-state model except for the additional four dynamic parameters εHR, εHG, εMR,
and εMG.

Results for the Dynamic Behavior of FCC Units and their Relation to the
Static Bifurcation Characteristics

The dynamic behavior of industrial unit 1 is studied in this section. The steady-state
behavior of unit 1 has been studied previously. Both open-loop and closed-loop feedback
controlled configurations will be presented.

Figure 7.14(a) shows the gasoline yield x2D vs. the dimensionless dense phase temper-
ature YRD. The heat generation function for this case with Yfa = 0.872 and FCD = 1.0
is shown in Figure 7.19 when Kc = 0. The bifurcation diagrams are shown in Figure
7.14(b) and (c). The bifurcation diagram with FCD as the bifurcation parameter has
very different characteristics than the diagram with Yfa as the bifurcation parameter.
For the latter, at constant FCD values Yfa can be varied within the physically reasonable
range to give a unique ignited (high temperature) steady state, but it is not possible to
obtain a unique quenched (low temperature) state, see Figure 7.14(b). When FCD is
the bifurcation parameter at a constant value of Yfa, then FCD can be varied to give a
quenched unique state, but it is not possible to obtain a unique ignited state within the
physically reasonable range of the parameters (Figure 7.14(c)). There is also a narrow
region of five steady states in Figure 7.14(b).

We have chosen the steady state with Yfa = 0.872 and FCD = 1.0 giving a dense
phase reactor temperature of YRD = 1.5627 (Figure 7.14(b) and (c)) and a dense-phase
gasoline yield of x2D = 0.387 (Figure 7.14(a)). This is the steady state around which we
will concentrate most of our dynamic analysis for both the open-loop and closed-loop
control system. We first discuss the effect of numerical sensitivity on the results. Then
we address the problem of stabilizing the middle (desirable, but unstable) steady state
using a switching policy, as well as a simple proportional feedback control.
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(a) Gasoline yield vs. dimensionless reactor dense-phase temperature
(b) Bifurcation diagram of the dimensionless reactor dense-phase temperature

vs. the dimensionless air feed temperature of the regenerator
(c) Bifurcation diagram of the dimensionless reactor dense-phase temperature

vs. the dimensionless catalyst circulation rate
Figure 7.14

Numerical sensitivity:
The set of four ordinary differential equations (7.64) to (7.67) for the dynamical system
are quite sensitive numerically. Extreme care should be exercised in order to obtain
reliable results. We advise our students to experiment with the standard IVP integrators
ode... in MATLAB as we have done previously in the book. In particular, the stiff
integrator ode15s should be tried if ode45 turns out to converge too slowly and the
system is thus found to be stiff by numerical experimentation.
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In many cases a very small accuracy limit (TOL < 10−8) must be specified in order
to obtain accurate results. Using a value of TOL as small as 10−6 often does not give
accurate results here.
Actually this is a very tricky point, for with the advent of computing in chaotic situa-
tions, it is quite difficult to specify what it means to have an “accurate result”.

In this IVP example with TOL = 10−6 we see a chaotic like response of the system
in Figure 7.15.

Numerically chaotic results
(a) Dimensionless reactor dense-phase temperature YRD

(b) Dimensionless gasoline dense-phase concentration X2D

Figure 7.15

This chaotic behavior of the solution curves persists over a range of TOL values, such as
for TOL = 10−7 and TOL = 10−8. The chaotic looking trajectories may suggest chaotic
behavior of the system. However, with a more stringent control over the allowed accuracy
of the solution, such as by using TOL = 10−10 for example, this chaotic behavior of the
solution trajectories disappears.
Thus we must conclude that the results presented in Figure 7.15 are clearly due to nu-
merical inaccuracies and not to system chaos. The reader should be cautious.

This no-chaos conclusion can be validated further by trying different methods of
integration with different complexities in MATLAB. Each integrator ode.. of MATLAB
shows that a different tolerance bound is needed in order to obtain the correct unchaotic
results without numerical instability. Moreover, when each method is executed with the
appropriately tight tolerance, then all methods give the same correct and unchaotic result.

Simple control strategies to stabilize the middle unstable steady state:
In order to avoid the continuous drift of the system away from the unstable steady state
with its high gasoline yield, we discuss two simple control strategies in this section: we
can operate the system dynamically around this unstable steady state or we can use a
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suitable feedback control that stabilizes the unstable steady state.

Dynamic operation around the middle unstable steady state:
Switching the feed conditions around the values needed to operate at the desired middle
steady state has been suggested by many investigators.

Schematic for a simple switching policy around the middle unstable steady state
Figure 7.16

The underlying principle is quite simple and we illustrate it in Figure 7.16. Figure 7.16
shows the desired state x∗ that corresponds to the bifurcation parameter feed variable λ∗.
The desired state x∗ is unstable. In theory it is possible to operate the system as closely
as possible to the unstable state x∗ by alternating the feed condition parameter between
the value λH and λL in order to keep the system operating near x∗. More specifically
when the state variable x drops below x∗ to a value of x∗−δ for a given small tolerance δ
then λ is switched to the higher value λH that corresponds to a unique state xH . Thus the
system is forced to increase x. When the state variable exceeds x∗ in this dynamic process
and it reaches the value x∗ + δ which still lies on the middle branch of the bifurcation
curve, then λ is switched to λL that corresponds to a much lower state parameter xL

and the system is forced to decrease x and so on. Our feed condition switching law is:

Set λ = λH if x ≤ x∗ − δ or if dx/dt > 0 for x∗ − δ < x < x∗ + δ ;

set λ = λL if x ≥ x∗ + δ or if dx/dt < 0 for x∗ − δ < x < x∗ + δ .
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The specific dynamic behavior of the system depends upon the chosen values of λH , λL,
and δ. These can be varied to get the best desirable response. Notice that in Figure 7.16
we are taking λL < λcr1, the first static limit point and λL > λcr2, the second static
limit point. In principle λL and λH can be chosen anywhere between λcr1 and λcr2 or
even beyond. However, the actual switching may lead to oscillation and excite a chaotic
behavior of the system. Taking λH and λL both outside the region between λcr1 and λcr2

seems to be the least troublesome choice regarding the dynamic behavior of industrial
FCC units.

However, differing from the simple switching policy used in Figure 7.16, the FCC
problem has the added complication that changing one input parameter is not sufficient
to control the system because of the specific shape of the bifurcation diagrams shown in
Figures 7.14(b) and (c). When the dense-phase reactor temperature goes above the de-
sired middle steady-state temperature it can be forced down by switching the FCD value
to a lower value that corresponds to a unique (low temperature) steady state. But when
the dense phase reactor temperature goes below the middle steady state temperature
it often cannot be brought up by only switching FCD, because to do so would require
an unrealistically high value of FCD that corresponds to a unique (high temperature)
steady state. The exact opposite applies when trying to use Yfa as the switching param-
eter. Therefore, we suggest a dual switching policy that employs simultaneous FCD and
Yfa switching and uses YRD as the measured variable.
The dual switching control law is as follows:

Set Yfa = 0.872 and FCD = FCDL if YRD ≥ YRD(mss) + δ ;
Set Yfa = YfaH and FCD = 1.0 if YRD ≤ YRD(mss) − δ ,

where YRD(mss) denotes the system’s middle steady state, FCDL < FCDrc, and
YfaH > Yfarc.

Figure 7.17(a) to (d) shows the behavior of the system using a dual switching policy
with δ = 0.1, FCDL = 0.2 and YfaH = 2.0.
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Dynamic response of the system under the switching policy δ = 0.1, YfaH = 2.0 and
FCDL = 0.2 .

(a) Dimensionless reactor dense-phase temperature
(b) Dimensionless regenerator dense-phase temperature
(c) Dimensionless gas oil dense-phase concentration
(d) Dimensionless gasoline dense-phase concentration

Figure 7.17

Although the reactor dense-phase temperature is allowed to vary by the dimensionless
value of δ = ±0.1 that corresponds to temperature changes of ±500 C, the dense-phase
dimensionles temperature of the reactor in Figure 7.17(a) oscillates between 1.745 and
1.345. This represents a temperature oscillation with an amplitude of about 0.4 units or
200◦ C.
The regenerator dense-phase temperature is depicted in Figure 7.17(b). Its oscillation
amplitude is settling at a relatively low value, but the center line of these oscillations
is drifting upwards, away from the steady-state regenerator temperature to a very high
value above 2.4 or 12000 K. This shows that our dual switching policy has a pathological
effect on the regenerator temperature which drifts to high values.
The unreacted gas oil in the dense phase oscillates as shown in Figure 7.17(c). The
dense-phase gasoline yield x2D also oscillates, namely between the values 0.32 and 0.42,
see Figure 7.17(d). The steady-state gasoline yield for this case is x2D = 0.387 or about
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39%.

Dynamic response of the system under the dual switching policy with
δ = 0.03, YfaH = 1.85 and FCDL = 0.28

(a) Dimensionless reactor dense-phase temperature
(b) Dimensionless regenerator dense-phase temperature
(c) Dimensionless gas oil dense-phase concentration
(d) Dimensionless gasoline dense-phase concentration

Figure 7.18

Figure 7.18(a) to (d) shows the behavior of the system when using a dual switching policy
with another set of parameters, namely δ = 0.03, FCDL = 0.28 and YfaH = 1.85.
Although δ is much smaller here (δ = 0.03, or around 150 C) than in Figure 7.17, the
dense-phase reactor temperature still has a large amplitude. It varies between 1.65 and
1.46. This is an amplitude of 0.19 or 950 C.
For the regenerator dense-phase temperature drawn in Figure 7.18(b), the amplitude
again settles to a low value, but the center line of the oscillations also drifts away from
the steady-state dense-phase temperature of the regenerator to a very high value above
2.3 or 11500 K.
The unreacted gas oil in the dense phase oscillates as shown in Figure 7.18(c). The dense-
phase gasoline yield x2D oscillates strongly between the values 0.36 and 0.41 in Figure
7.18(d).
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Feedback control of the system:
To keep the plant at its middle unstable steady state can be achieved by stabilizing the
unstable steady state with a simple feedback control loop. For the sake of simplicity,
we use a SISO (single input single output) proportional feedback control, in which the
dense-phase temperature of the reactor is the controlled measured variable, while the
manipulated variable can be any of the input variables of the system Yfa, FCD, etc. We
use Yfa as the manipulated variable here. The set-point of the proportional controller is
the dense-phase reactor temperature at the desired middle steady state in this case. Our
simple SISO control law is

Yfa(t) = Yfass + KC(YRDss − YRD(t)) , (7.72)

where KC is the gain of the proportional controller.
The control loop affects both the static behavior and the dynamic behavior of the system.
Our main objective is to stabilize the unstable saddle-type steady state of the system.
In the SISO control law (7.72) we use the steady-state values Yfass = 0.872 and YRDss =
1.5627 as was done in Figures 7.14(a) to (c). A new bifurcation diagram corresponding
to this closed-loop case is constructed in Figure 7.20.

Effect of KC on the heat function versus YRD diagrams
Figure 7.19

The heat function is obviously altered by the control as seen in Figure 7.19. The high-
and low-temperature steady states change with the change of the proportional gain KC

of the controller. The middle steady state does not change with KC since it is the set
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point of the proportional controller. The change of the heat function in dependence of
KC is rather complex and a better explanation can be given from the bifurcation diagram
in Figure 7.20.

Pitchfork bifurcation of YRD versus KC for the closed-loop SISO system with simple
proportional controller

Figure 7.20

The bifurcation diagram represents an imperfect pitchfork diagram, where the middle
steady state persists over the entire range of KC , even for negative values of KC , i.e.,
even for positive feed back control, which would destabilize the system.
For negative values of KC of magnitude greater than about 5.6, the steady-state temper-
atures (other than at the middle steady state) tend to infinity. Further discussion will be
restricted to the more practical range of KC > 0.

7.2.5 Combined Static and Dynamic Bifurcation Behavior of In-
dustrial FCC Units

The steady-state version of the model that we use in this section is unchanged from the
previous sections.
We have studied the dynamic behavior of FCC units in Section 7.2.3. Here we explain
the dynamic bifurcation behavior of FCC type IV units. The dynamic model that we use
will be more general than the earlier one. Specifically, we will relax the assumption of
negligible mass capacity of gas oil and gasoline in the dense catalyst phase. This relaxation
is based upon considering the catalyst chemisorption capacities of the components.
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The Dynamic Model

The dynamic model can be written in the following vector differential equation form

dX

dτ̂
= F (X, Yfa, KC) . (7.73)

The initial conditions are
X = X0 at τ̂ = 0 . (7.74)

The vectors X and X0 contain the state variables and the initial conditions vector,
respectively, while Yfa and KC represent the bifurcation parameters for the open loop
(uncontrolled, KC = 0) and the closed loop (controlled, Yfa = constant) systems, respec-
tively, and τ̂ = t/εHR.
The column vectors X and X0 are

X = (YRD , YGD, X1D, X2D, ΨR, ΨG)T (7.75)

and
X0 = (YRD(0), YGD(0), X1D(0), X2D(0), ΨR(0), ΨG(0))T , (7.76)

where we use the vector transpose notation ..T to denote transposition. The vector F is
given by

F =

⎛⎜⎜⎜⎜⎜⎜⎝

BR(Yν − YRD) + a2(YGF − Yν) − ∆Hν + ∆Hcr + a1(YGD − YRD) − ∆HLR

N1[BG(Yfas + KC(Ysp − YRD) − YGD) + βC · Rc + a3(YRD − YGD) − ∆HLG]
N2

[
BR(X3f − X1D) − (

ΨR(α1 · e−γ1/YRD + α3 · e−γ3/YRD )
) · X2

1D

]
N3

[
BR(X4f − X2D) − ΨR(α2 · X2D · e−γ2/YRD − α1 · X2

1D · e−γ1/YRD )
]

N4[C
′
R(ΨG − ΨR) − ΨR ·Rcf ]

N5[Rc − C
′
G(ΨG − ΨR)]

⎞⎟⎟⎟⎟⎟⎟⎠
(7.77)

where ∆HLR = 0.005a1(YGD − YRD), ∆HLG = 0.005βC · RC , N1 = εHR/εHG,
N2 = εHR/φm3, N3 = εHR/φm4, N4 = εHR/εMR, and N5 = εHR/εMG.
Here φm3 and φm4 are the mass capacitances due to the chemisorption of gas oil and
gasoline, respectively, on the catalyst which has a high surface area. These parameters
can have very appreciable and important dynamic implications on the system. The val-
ues of N1, N2, and N5 are calculated from the operating and physical parameters of the
industrial unit 1 under study as given in the tables on p. 452 and p 453. The parameters
φm3 and φm4 are taken equal to εHR, i.e., we use N2 = N3 = 1.0. The effect of values
differing from 1 for N2 and N3 on the dynamic behavior of FCC systems has not been
investigated, i.e., the effect of the chemisorption capacities of the catalyst on the dynamic
behavior of the whole system is not well understood.

Some static and dynamic bifurcation results:
The dimensionless air feed temperature used for the FCC unit 1 is Yfas = 0.872 and the
dimensionless operating temperature of the reactor dense phase is YRD = 1.5627. These
operating conditions correspond to a steady state on the intermediate branch B of Figure
7.21(a) at the point labeled a.
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Open loop bifurcation diagram
(a) Dimensionless reactor dense-phase temperature vs.

dimensionless air feed temperature to regenerator
(b) Dimensionless reactor dense-phase gasoline concentration vs.

dimensionless air feed temperature to regenerator
(c) Dimensionless reactor dense-phase gasoline concentration vs.

dimensionless reactor dense-phase temperature
Figure 7.21

Point a lies in the middle of the multiplicity region with three steady states. Therefore,
this point is an unstable saddle-type steady state. It is clear from Figures 7.21(b) and
(c) that this operating point does not correspond to the maximum gasoline yield X2D .
How to alter the operating conditions so that the FCC unit operates at the maximum
gasoline yield has been discussed in the previous sections. As explained there, a simple
way to stabilize such unstable steady states is to use a negative feedback proportional
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control.
The static bifurcation characteristics of the resulting closed loop system have also been
discussed in the previous section and we have seen that the bifurcation diagram of the
reactor dense-phase dimensionless temperature, namely a plot of YRD versus the con-
troller gain KC is a pitchfork. Such bifurcations are generally structurally unstable when
any of the system parameters are altered, even very slightly.

Next, the industrially operating steady state, as well as the steady state giving max-
imum gasoline yield will be discussed for the open loop system.

Behavior of the open loop uncontrolled unit
Figure 7.21 shows the bifurcation diagram of YRD and X2D vs. Yfa in Figures 7.21(a) and
(b) for the open loop unit, as well as the X2D vs. YRD diagram in Figure 7.21(c), where
all the parameters other than the air feed temperature Yfa, are assigned their industrial
values given in the table of p. 452. The value of Yfa for the industrial unit is 0.872 and the
corresponding dimensionless reactor dense phase temperature YRD is 1.5627 as shown in
Figure 7.21(a). The Figures 7.21(b) and (c) show that this condition does not correspond
to the maximum gasoline yield. Actually it corresponds to the yield X2D = 0.38088 while
the maximal gasoline yield of the unit is X2D = 0.437885. According to Figure 7.21(b)
this occurs at Yfa = 1.419213 for YRD = 1.19314. Therefore, if the system were operated
at this maximum gasoline yielding point, the gasoline yield would increase by about 15%.

The following caveat is obvious from Figure 7.21: The operating conditions for max-
imum gasoline yield are very close to the critical points, specifically to the static limit
points (sometimes called the turning points) as seen in Figures 7.21(a) and (b). This opti-
mal operating point is in the region of three steady states and very close to the boundary
between the region of three steady states and the region of five steady states. It is to be
expected that controlling the unit at this steady state is not easy. Again proportional
feedback control can be used instead to control the unit so that it operates at its maximal
gasoline yield of x2D = 43.7885%.
This concludes our condensed overview of type IV industrial FCC units.

Exercises for 7.2

1. Revisit Section 4.4.6 on the numerics for the neurocycle enzyme system in
light of our comments on the numerical sensitivity and chaos of IVPs on p.
462.
Specifically, verify that the data used for Figure 4.55 on p. 238 leads to chaotic
behavior for the neurocycle enzyme system. Do so by changing the MATLAB
integrator ode... and the tolerances used by them (as explained on p. 462)
in the MATLAB program neurocycle.m of Chapter 4.
Repeat for the data leading to Figures 4.54 and 4.56 of Section 4.4.6 and note
the different numerical behavior for varying tolerances.

2. Develop an algorithm to construct the static bifurcation diagram for an in-
dustrial type IV FCC unit.
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3. Develop the mathematical model of a modern riser reactor FCC unit and
construct its static bifurcation diagram numerically.

Conclusions

In this section we have presented modeling results for industrial type IV FCC units
that produce high octane number gasoline from gas oil. Such units consist of two
connected bubbling fluidized beds with continuous circulation of the catalyst be-
tween the two vessels, the reactor and the regenerator. The steady-state design
equations are nonlinear transcendental equations which can be solved using the
techniques described in the earlier chapters of the book.
The unsteady state is described by ordinary differential equations or IVPs that can
be solved routinely via MATLAB’s ODE suit of programs.
The reader should try and reproduce the graphical results of this section by devel-
oping her or his own MATLAB algorithms and verifying her or his results versus
the results given graphically in this section.

7.3 The UNIPOL
�R process for the Production of

Polyethylene and Polypropylene

The bubbling fluidized-bed reactor technology (UNIPOL
�R ) of Union Carbide3 employs

the Ziegler-Natta4 catalyst to produce polyethylene. This process can produce HDPE
(high density polyethylene) and LDPE (low density polyethylene) in the same reactor
through a relatively simple change in the operating conditions. The reaction zone of
the reactor is a bubbling bed of polymer particles that grow around very small catalyst
particles while both are fluidized by a continuous flow of gaseous components consisting
of the make-up feed and recycled gas. See Figure 7.22. To succeed the gas flow rate must
exceed the minimum fluidization flow velocity by a factor of 3 to 6. It is essential that
the bed always contains particles to prevent local hot spots. For this purpose the unit
has to entrap and distribute the particulate catalyst throughout the reaction zone. The
main reactant is ethylene. It is used to fluidize the solid particles and also for cooling.
The reaction temperature is kept between 1000 and 1300 C and the pressure at 300 psi
while the catalyst productivity is between 2 and 20 g · PE/g of catalyst. The polymer
is formed in small granules of 0.5 – 1 mm diameter. The granular product is discharged
intermittently into a tank from which unreacted gases are removed. After blending and
stabilization, the product is ready for processing and pelletizing.

3Union Carbide, USA company, 1917-
4Karl Ziegler, German chemist, 1898-1973
Guilio Natta, Italian chemist, 1903-1979
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V

Simplified flow diagram of the Union Carbide UNIPOL
�R process (V = valve)

Figure 7.22

The molecular weight distribution in the process is controlled by the choice of catalyst.
The density (between 0.915 and 0.97 g/cm3) is controlled by the amount of comonomer
added. This versatile process avoids using hydrocarbon dilutants or solvents. In compar-
ison to conventional high pressure LDPE units, Union Carbide has reported significant
savings in plant investment and energy costs with this gas-phase technology.

The polymerization of ethylene is a highly exothermic reaction and when highly
exothermic reactions occur in fluidized-bed reactors, unusual steady state and dynamic
behavior may occur.
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7.3.1 A Dynamic Mathematical Model
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Schematic diagram for the polyethylene reactor model
Figure 7.23

Figure 7.23 shows a schematic diagram for the freely bubbling fluidized bed that produces
polyethylene. Here qc denotes the catalyst injection rate, Q0 is the product withdrawal
rate, G represents the gas input flow rate with the monomer concentration CMO. The
monomer is introduced at the bottom of the reactor through a distributor that is very
important for the smooth operation of the reactor. In the distributor the total input gas
G is split into Gb for the bubble phase and GI for the dense phase. Since the polymer
particles are hot and possibly active, they must be prevented from settling to avoid
agglomeration. It is essential that the fluidized bed always contains particles that prevent
localized hot spots. During startup the reaction zone is therefore usually charged with
a bed of polyethylene particles before the gas flow is initiated. The catalyst is stored
in a feeder tank under a nitrogen blanket and it is injected into the bed at a rate of
mass equal to its consumption rate. At the same time, makeup gas is fed to the bed at
a rate equal to the mass rate of polymer removal. The polymer product is continuously
withdrawn from the reactor at a rate such that the bed height remains constant.

General Assumptions

We make the following simplifying and reasonable assumptions in developing the model.

1. The dense emulsion phase is perfectly mixed and is at incipient fluidization condi-
tions with constant voidage.

2. The flow of gas in excess of the minimum fluidization requirement passes through
the bed in the form of bubbles.
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3. The bubbles are spherical, of uniform size, and in plug flow.

4. The bubble phase is always at quasisteady state.

5. Polymerization occurs only in the emulsion phase and no reaction occurs in the
bubble phase.

6. Mass and heat transfer between the bubble and emulsion phases occur at uniform
rates over the height of the bed.

7. An average value of the bubble size and thus average values of the heat and mass
exchange parameters are used for computations.

8. Mass- and heat-transfer resistances between the solid polymer particles and the
emulsion phase are negligible.

9. No elutriation of solids occurs.

10. Catalyst injection is continuous at a constant rate qc.

11. The product withdrawal rate Q0 is always adjusted to maintain a constant bed
height H .

12. There is no catalyst deactivation.

Hydrodynamic Relations

Based on the two-phase model of fluidization, the following basic relations hold:

GI = Umf · A = UI · AI , (7.78)

AI = A · (1 − δ∗) , (7.79)

AB = A · δ∗ , (7.80)

A = AI + AB , (7.81)

UI = Umf /(1 − δ∗) , and (7.82)

Ue = UI/εmf . (7.83)

Here δ∗ is the relative fraction of the bubble phase.
The superficial velocity at minimum fluidizing conditions is given by the correlation

1.75 ·Re2
mf

ε3mf

+
150 · (1 − εmf ) · Remf

ε3mf

− d3
p · ρg(ρs − ρg) · g

µ2
= 0 (7.84)

where Remf = Umf · dp/((1 − εmf ) · µ) is the Reynolds5 number at minimum fluidization
conditions, dp is the particle diameter, εmf is the voidage at minimum fluidization, and
µ is the viscosity.

5Osbourne Reynolds, English engineer and physicist, 1842-1912
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The bubble rising velocity UB is given by

UB = U0 − Umf + 0.711
√

g · dB . (7.85)

The relative fraction δ∗ of the bubble phase is

δ∗ = (U0 − Umf )/UB . (7.86)

The velocity Ue of the emulsion gas is

Ue = Umf/(εmf · (1 − δ∗)) . (7.87)

The bed voidage εmf at minimum fluidization conditions is

εmf = 0.586 · Φ−0.72 ·
(

µ2

ρg · g · (ρs − ρg) · d3
p

)0.029 (
ρg

ρs

)0.021

. (7.88)

The bubble diameter DB can be found from the relation

DB = DBM − (DBM − DB0) · e−0.15·H/D , (7.89)

where DBM = 0.652(A · (U0 − Umf ))0.4 and DB0 = 0.00376(U0 − Umf )2.
The heat transfer NuW with the wall is given by

NuW = 0.16 · Pr0.4 · Re0.76
p

(
ρs · Cps

ρg · Cpg

)0.4

· Fr−0.2 ·
(

ΦW
Lmf

Lf

)0.36

, (7.90)

with the Prandtl6 number

Pr =
µ · Cpg

Kg
, F r =

U2
0

g · dp
,

Lmf

Lf
=

UB

UB − U0 + Umf
,

and ΦW is assumed equal to 0.6.
The mass- and heat-transfer coefficients between the bubble and dense phases are

connected via the following relations:
For the mass transfer:

1
Kbe

=
1

Kbc
+

1
Kce

, (7.91)

where

Kbc = 4.5 · Umf

DB
+ 5.85 ·

(
g0.5 · DG

D2.5
B

)0.5

and (7.92)

Kce = 6.78 ·
(

εmf · DG · UB

D3
B

)0.5

. (7.93)

For the heat-transfer coefficient:

1
Hbe

=
1

Hbc
+

1
Hce

, (7.94)

6Ludwig Prandtl, German physicist, 1875-1953
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where

Hbc = 4.5 · Umf · ρg ·Cpg

DB
+ 5.85 ·

(
g0.5 · Kp · ρg · Cpg

D2.5
B

)0.5

and (7.95)

Hce = 6.78 · (ρg · Cpg · Kg)0.5

(
εmf · UB

D3
B

)
. (7.96)

The above relations and parameter values are all taken from the literature.

The Model Equations

Bubble-phase monomer mass-balances:
The mass balance on the inactive bubble phase for the monomer is given by

GB
dCMb

dz∗
= −Kbe ·AB · (CMb − CMe) (7.97)

with CMb = CMe0 = CM0 at z∗ = 0. This equation can be rearranged as

dCMb

dz∗
= −Kbe · AB

GB
· (CMb − CMe) . (7.98)

For the dimensionless height z = z∗/H and for KB = Kbe · H/UB and UB = GB/AB,
the integration of the linear differential equation (7.98) yields

(CMb − CMe) = (CM0 − CMe) · e−KB ·z . (7.99)

With the dimensionless parameters X1B = CMb/C0, X10 = CM0/C0, and X1 = CMe/C0,
equation (7.99) takes on the dimensionless form

X1B = X1 + (X10 − X1) · e−KB ·z . (7.100)

Dense emulsion-phase monomer mass-balances:
Here the mass-balance equation is

AI · H · εmf
dCMe

dt
= GI · (CM0 − CMe) + Kbe ·AB ·

∫ H

0

(CMb − CMe) dz∗

−KP (Te) ·CMe · AI · H · (1 − εmf ) · ρs ·Xcat − Q0 ·CMe · εmf . (7.101)

The integral in (7.101) can be evaluated by solving the DE (7.98), namely∫ H

0

(CMb − CMe) dz∗ =
(CM0 − CMe) · H

KB
· (1 − e−KB ) . (7.102)

By substituting (7.102) into equation (7.101) and using the known previous hydrody-
namic relations, equation (7.101) becomes

dCMe

dt
=

Ue

H
(CM0 − CMe) +

Kbe · δ∗
(1 − δ∗) · εmf

· (CM0 − CMe)
KB

· (1 − e−KB )

− 1
εmf

·KP (Te) · CMe · (1 − εmf) · ρs · Xcat − Q0 · CMe

A ·H · (1 − δ∗)
. (7.103)
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Put into dimensionless form, this equation becomes

dX1

dt̄
= ¯̄BR · (X10 − X1) + Ū · Γ · (X10 − X1) · (1 − e−KB )

−ζ · X1 · X2 · e−γa/YD − ζ · X2
1 · X2 · e−δ/YD

â + X1
, (7.104)

where

¯̄BR =
Ue · t0

H
; KB =

Kbe · H
UB

; t̄ = t/t0 ;

â =
ρs · (1 − εmf )

C0 · εmf
; γa =

Ea

RG · Tref
; X2 = Xcat ;

KP = KP0 · e−γa/YD ; ζ =
t0 · KP0 · ρs · (1 − εmf )

εmf
; Γ =

δ∗

1 − δ∗
;

Ū =
UB · t0
H · εmf

; and YD = Te/Tref .

Catalyst mass balance in the dense emulsion phase:
Here the mass-balance equation is

AI · H · (1 − εmf) · ρs
dXcat

dt
= qc − Q0 · Xcat · (1 − εmf ) · ρs . (7.105)

This can be reduced to

dXcat

dt
=

qc

A ·H · (1 − δ∗) · (1 − εmf ) · ρs
− Q0 ·Xcat

A · H · (1 − δ∗)
. (7.106)

Next we use the dimensionless parameter f0 = Q0 · t0/(A · H · (1 − δ∗)) and assume a
constant bed height H so that the volumetric flow rate Q0 of product removal equals the
rate of increase in bed volume due to polymerization. This gives us

Q0 ·(ρs(1−εmf )+εmf ·CMe) = A·H ·(1−δ∗)·(1−εmf)·ρs ·KP (Te)·CMe ·Xcat . (7.107)

By rearrangement of (7.107) we obtain

Q0 · t0
A · H · (1 − δ∗)

=
t0 · (1 − εmf ) · ρs · KP (Te) · CMe · Xcat

ρs · (1 − εmf ) + εmf · CMe
= f0 , (7.108)

or in dimensionless form:

f0 =
t0 · (1 − εmf ) · ρs · KP (Te) · CMe · Xcat

ρs(1 − εmf ) + εmf · CMe
=

ζ · X1 · X2 · e−γa/YD

â + X1
. (7.109)

Finally the dimensionless form of the catalyst mass-balance equation (7.105) is

dX2

dt̄
=

t0 · qc

A · H · (1 − δ∗) · (1 − εmf) · ρs
− ζ · X1 · X2

2 · e−γa/YD

â + X1
. (7.110)
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Energy balance on the bubble phase:
Here the energy-balance equation is

d

dz∗
(CMb · (Tb − Tref )) =

Hbe

UB ·Cpg
· (Te − Tb) (7.111)

with the initial condition T (0) = Tb0.
Since in the emulsion phase the bubbles rise much faster than the gas, we use the average
value C̄Mb for CMb and simplify equation (7.111) to become

dTb

dz∗
=

Hbe

UB · Cpg · C̄Mb
· (Te − Tb) . (7.112)

When put into dimensionless form, this equation becomes

dYB

dz
=

KH

X̄1B
· (YD − YB) . (7.113)

Integration of (7.113) gives us

YD − YB = (YB0 − YD) · e−KH ·z/X̄1B (7.114)

with YB = Tb/Tref , KH = Hbe · H/(UB · Cpg · C0), and YB0 = Tb0/Tref = YF .
The average ȲB of YB is

ȲB =
∫ 1

0

YB dz = YD +
YB0 − YD

KH
· X̄1B · (1 − e−KH/X̄1B ) . (7.115)

And the average value X̄1B of X1B can be derived from the bubble-phase monomer-
balance equation (7.100) as

X̄1B =
∫ 1

0

X1B dz = X1 +
X10 − X1

KB
· (1 − e−KB ) . (7.116)

Energy balance on the emulsion phase:
The energy-balance equation on the emulsion phase is

AI · H · ((1 − εmf ) · ρs · Cps + εmf · CMe · Cpg)
dTe

dt
+ AI · H · (Te − Tref ) · εmf · Cpg

dCMe

dt
=

= −GI · CMe · Cpg · (Te − Tf ) + AB · Hbe

∫ H

0

(Tb − Te)dz∗ +

+AI · H · (−∆Hr) · Kp(Te) · ρs · (1 − εmf ) · Xcat · CMe

−Q0 · (1 − εmf ) · ρs · Cps · (Te − Tf ) − Q0 · εmf · CMe · Cpg · (Te − Tf )

−π · D · H · hw · (Te − Tw) . (7.117)
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This can be rewritten as

((1 − εmf ) · ρs · Cps + εmf · C0 · X1 · Cpg)
d(YD · Tref )

dt
+ Tref · (YD − 1) · εmf · Cpg

C0 · dX1

dt
=

= −Ue · εmf · Cpg · C0 · X1

H
· (YD − YF ) · Tref +

δ∗

1 − δ∗
· Hbe · Tref

∫ 1

0

(YB − YD) dz +

+(−∆Hr) · KP0 · e−γa/YD · (1 − εmf ) · ρs · X1 · C0 · X2

−Q0 · (1− εmf ) · ρs · Cps · (YD − 1) · Tref

A · H · (1− δ∗)

− Q0

A · H · (1 − δ∗)
· εmf · X1 · C0 · Cpg · (YD − 1) · Tref

− π · D · hw

A · (1 − δ∗)
· (YD − Yw) · Tref (7.118)

with YF = TF /Tref , Yw = Tw/Tref , YD = Te/Tref , and YB = Tb/Tref .
The integral inside equation (7.118) can be evaluated with the help of the inert bubble-
phase energy-balance equation (7.114) to yield∫ 1

0

(YB − YD) dz =
∫ 1

0

(YB0 − YD) · e−KH ·z/X̄1B dz

= (YB0 − YD) · X̄1B

KH
· (1 − e−KH/X̄1B ) . (7.119)

To obtain our final dimensionless dense-phase heat-balance equation, we substitute (7.119)
into (7.118) and use the following parameters:

b′ =
(1 − εmf ) · ρs · Cps

εmf · C0 · Cpg
; KH · Ū · Γ =

δ∗

1 − δ∗
· Hbe · t0
C0 · εmf · Cpg

;

γ =
−∆Hr

Cpg · Tref
; and K̄ =

t0 · hw

D · εmf ·C0 · Cpg · (1 − δ∗)
.

Then

dYD

dt̄
+

YD − 1
b′ + X1

· dX1

dt̄
= ¯̄BR · X1 · YF − YD

b′ + X1
+

+KH · Ū · Γ · (YB0 − YD) · (X̄1B/KH) · (1 − e−KH/X̄1B )
b′ + X1

+

+
γ · ζ · X1 · X2 · e−γa/YD

b′ + X1
− ζ · X1 · X2 · (YD − 1) · e−γa/YD

â + X1

−4 · K̄ · YD − Yw

b′ + X1
. (7.120)
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In equation (7.120) the derivative dX1/dt̄ was given earlier in (7.104), and this term
should be used here to give us one DE in YD(t̄).

For specific values of the reactor height H and the reactor diameter D, the oper-
ating parameters are the feed temperature Tf , the wall temperature Tw, the catalyst
injection rate qc, and the fluidizing gas velocity U0. The following table gives a base set
of design parameters, operating variables, and chemical and physical properties for this
UNIPOL

�R reactor.
Cps 0.456 cal/(g · K) Tf 300 K dp 0.05 cm
Cpg 0.44 cal/(g · K) Tref 300 K DG 6 · 10−3 cm2/sec
ρs 0.95 g/cm3 TB0 330 K Φw 0.6
ρg 0.029 g/cm3 Te(0) 300 K C0 0.029 g/cm3

ρcat 2.37 g/cm3 Tw 340 K qc 150 g/h
Kg 7.6 · 10−5 cal/(cm · s · K) Umf 5.2 cm/sec dB 50 cm
Kp0 4.167 · 106 cm3/(g(cat) · sec) U0 26 cm/sec εmf 0.38
Ea 9000 cal/mol UB 80 cm/sec δ∗ 0.115
µ 1.16 · 10−4 g/(cm · sec) Ue 15.4 cm/sec D 250 cm
(−∆Hr) 916 cal/g t0 1.08 · 105 s H 600 cm

7.3.2 Numerical Treatment

The dynamic model consists of the three differential equations (7.104), (7.110), and
(7.120). These define an initial value problem with initial conditions at t̄ = 0. The
dynamic, unsteady state of this system is described by these highly nonlinear DEs, while
the steady states are defined by nonlinear transcendental equations, obtained by setting
all derivatives in the system of differential equations (7.104), (7.110), and (7.120) equal
to zero.

The reader can use the MATLAB ODE solvers that were presented earlier to solve
this IVP. As a guide we include two parameter continuation diagrams for this problem
in Figure 7.24.
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Two parameter continuation diagrams
Figure 7.24

The subplots of Figure 7.24 are drawn for the following base values:

Parameter subplot (a) subplot (b) subplot (c) subplot (d)

Yf = Tf/Tref variable variable 1.175 variable
qc variable 250 250 250
U0/Umf 2.8 variable 2.8 2.8
CM0 0.025 0,03 variable 0.03
Yw = Tw/Tref 1.05 1.05 variable variable

Exercises for 7.3

1. The fluidization conditions of the UNIPOL
�R process are more complicated

due to the change in particle size during the “growth” of the polymer parti-
cles.
Develop a more sophisticated model that takes this particle growth into ac-
count.

2. Using the simple model of this section, find the static bifurcation characteris-
tics for a typical industrial UNIPOL

�R unit.

3. Compute the basic dynamic characteristics for an industrial UNIPOL
�R reactor.
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Conclusions

We have developed a detailed two-phase model for the UNIPOL
�R process. This

model was used to investigate the steady and dynamic characteristics of this im-
portant industrial process that creates polymers directly from gaseous components.
The reader should develop MATLAB programs to solve for the steady state and the
unsteady-state equations of this model. This will enable him or her to investigate
the basic steady states and the dynamic behavior of industrial UNIPOL

�R units.

7.4 Industrial Steam Reformers and Methanators

Steam reformers are used industrially to produce syngas, i.e., synthetic gas formed of
CO, CO2, H2, and/or hydrogen. In this section we present models for both top-fired
and side-fired industrial steam reformers by using three different diffusion-reaction mod-
els for the catalyst pellet. The dusty gas model gives the simplest effective method to
describe the intermediate region of diffusion and reaction in the reformer, where all modes
of transport are significant. This model can predict the behavior of the catalyst pellet
in difficult circumstances. Two simplified models (A) and (B) can also be used, as well
as a kinetic model for both steam reforming and methanation. The results obtained for
these models are compared with industrial results near the thermodynamic equilibrium
as well as far from it.

Methanators are usually used in the ammonia production line to guard the catalyst
of the ammonia converters from the ill effect of carbon monoxide and carbon dioxide.
This section includes precise models for different types of methanators using the dusty
gas model with reliable kinetic expression and the results are compared with those of the
simplified models (A) and (B).

7.4.1 Rate Expressions

An intrinsic rate equation for steam reforming of methane uses an integral flow reactor
and the industrial catalyst Ni/MgAl2O4 spinel of Haldor Topsøe7. In it the Langmuir8-
Hinshelwood9 and Hougen10-Watson11 principles are used with a mechanism of thirteen
steps, three of which are rate determining steps, and ten occur at equilibrium.

The three reactions are:

CH4 + H2O ↔ 3H2 + CO I

CO + H2O ↔ H2 + CO2 II

CH4 + 2H2O ↔ 4H2 + CO2 III

7Haldor Topsøe A/S, Danish company, 1940-
8Irvine Langmuir, USA chemist and engineer, 1881-1957
9Cyril Norman Hinshelwood, British chemist, 1897-1967

10Olav Andreas Hougen,USA chemical engineer, 1893-1986
11Kenneth Merle Watson, USA chemical engineer, 1903-1989
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The corresponding rate equations are:

rI =
k1

p2.5
H2

·
(

pCH4 · pH2O − p3
H2

· pCO

K1

)
/DEN2 , (7.121)

rII =
k2

pH2

·
(

pCO · pH2O − pH2 · pCO2

K2

)
/DEN2 , (7.122)

rIII =
k3

p3.5
H2

·
(

pCH4 · p2
H2O − p4

H2
· pCO2

K1 · K2

)
/DEN2 , (7.123)

where

DEN = 1 + KCO · pCO + KH2 · pH2 + KCH4 · pCH4 + KH2O · pH2O/pH2 . (7.124)

The reactions I and III are endothermic while the water-gas shift reaction II is weakly
exothermic. The above rate equations cannot be used when the concentration of hydrogen
is zero because then the rate expressions become infinite. Hence the presence of hydrogen
is necessary for these equations to be applicable. From a technical point of view, the feed
cannot be hydrogen free in order to reduce any Ni oxide with the packed catalyst and
therefore the division by the partial pressure of hydrogen pH2 in equation (7.124) does
not cause any practical problems.

For the catalyst tubes of a fixed-bed catalytic reactor, a large amount of physico-
chemical data is needed for precise modeling and simulation. The heart of this data is
related to the catalyst pellets, namely the intrinsic kinetics and diffusional resistances.
However, other data is also needed, including physical properties of the gas mixture and
the heat-transfer coefficients. Important for modeling is the fact that the composition
and temperature of the mixture changes with the progress of the reaction. Therefore, the
physical data should be updated every so often along the length of the catalyst tubes in
order to achieve an accurate simulation of the reactor. The kinetic rate coefficients, the
adsorption equilibrium constants and other physico-chemical data for industrial steam
reformers and other catalytic reactors are given in the tables and descriptions of the next
three pages.

Kinetic coefficients and heats of reaction

Rate coefficients :

k1 = 9.490 · 1016 · e−28879/T kmol · kPa0.5/(kg · h)

k2 = 4.390 · 104 · e−8074.3/T kmol · kPa−1/(kg · h)

k3 = 2.290 · 1016 · e−29336/T kmol · kPa0.5/(kg · h)

Adsorption equilibrium constants :

KCH4 = 6.65 · 10−6 · e4604.28/T kPa−1

KH2O = 1.77 · 103 · e−10666.35/T kPa−1

KH2 = 6.12 · 10−11 · e9971.13/T kPa−1

KCO = 8.23 · 10−7 · e8497.71/T kPa−1

(continued)
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Equilibrium constants:

K1 = 10266.76 · e(−2630/T+30.11) kPa2

K2 = e(4400/T−4.063) (dimensionless)
K3 = K1 · K2 kPa2

Heats of reaction :

∆HI = 206.31 · 103 + 4.186
T∫

25

(3 · CPH2 + CPCO − CPCH4 − CPH2O ) dT kJ/kmol

∆HIII = 165.11 · 103 + 4.186
T∫

25

(4 · CPH2 − CPCO2 − CPCH4 − 2 · CPH2O ) dT kJ/kmol

∆HII = ∆HIII − ∆HI kJ/kmol

Diffusivities

The Knudsen12diffusivity is

DKi = 34.92 · 10−6 · ¯̄r ·
√

T/Mi m2/h ,

where ¯̄r is the average pore radius in m, Mi is the molecular weight of component i, and
T is the temperature measured in K.
The binary molecular diffusivities are

Dij = 0.00214− 0.000492 ·
√

Mi + Mj

Mi · Mj
· 0.36 · T 1.5

PT · σ̄2
ij ·ΩD

,

where the binary molar diffusivity Dij is measured in m2/h, Mi denotes the molecular
weight of component i, T is the temperature in K, PT is the total pressure in atm, σ̄ij

is the collision diameter in Angstrom13, given by

σ̄ij =
σ̄i + σ̄j

2
,

ΩD is the diffusion collision integral

ΩD = 0.42541 +
0.82133− 6.8314 · 10−2/ēij

ēij
+ 0.26628 · e−0.012733·ēij ,

and ēij is the characteristic energy

ēij =
T√

ēi · ēj
.

The values for σ̄i and ēi are as follows

12Martin Hans Christian Knudsen, Danish physicist, 1871-1949
13Anders Jonas Ångström, Swedish physicist, 1814-1874
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Force constants and collision diameters
Component σ̄i in Angstrom ēi

CH4 3.882 136.5
H2O 2.665 363.0
H2 3.305 33.3
CO 3.590 110.3
CO2 3.996 190.0
N2 3.681 91.5

The viscosity correlations and specific heats are readily available in the literature.

Heat-transfer parameters

The overall heat-transfer coefficient U between the catalyst tubes and their surroundings
is given by the equation

1
U

=
di

2 · λst
ln(dt,0/di) +

1
αω

+
di

8 · λer
in m2 · h · C/kJ ,

where di and dt,0 are the internal and external tube dimensions in m, respectively, λst

is the thermal conductivity of the tube metal in kJ/(m2 · h ·C), and αω and λer are the
wall heat-transfer coefficient and effective conductivity of the catalyst bed, respectively,
given by

αω =
8.694 · λo

er

d
4/3
i

+
0.512 · λg · di · ReP · Pr1/3

DP
in kJ/(m2 · h · C)

and

λer = λo
er +

0.111 · λg · ReP · Pr1/3

1 + 46 · (DP /di)2
in kJ/(m · h · C) .

Here λg denotes the process gas conductivity in kJ/(m · h · C), ReP is the Reynolds14

number based on the equivalent particle diameter. It is equal to ReP = g ·DP /µ, where
Pr is the Prandtl15 number Pr = CP · µ/λg, λer is the effective conductivity of the
catalyst bed measured in kJ/(m ·h ·C), and λo

er is the static contribution of the effective
conductivity of the catalyst bed with the value

λo
er = ε · (λg + 0.95 · hru · DP ) +

0, 95 · (1 − ε)
2/(3 · 0.2988) + 1/(10 · λg + hrs · DP )

for hru = (0.1952 · (T/100)3)/(1 + 0.125 · ε/(1 − ε)) and hrs = 0.0651 · (T/100)3.

The thermal conductivities and the boiling points of all components are readily avail-
able in the literature.

14Osbourne Reynolds, English engineer and physicist, 1842-1912
15Ludwig Prandtl, German physicist, 1875-1953
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Catalyst parameters

The characteristic length is the thickness of the equivalent slab used in the single catalyst
pellet equation and it is defined as the thickness lc of the catalyst slab that gives the
same external surface to volume ratio as the original pellet. For Raschig16 rings this is
given by

lc =
(DP,o − DP,i) · h

2 · (DP,o − DP,i) + h

where DP,o and DP,i are the outside and inside diameters of the ring shaped catalyst
pellet and h is its height.
The shape factor for Raschig rings is given by

Φs =
D2

P

0.5 · (D2
P,o − D2

P,i) + DP,o + DP,i
.

7.4.2 Model Development for Steam Reformers

Industrial steam reformers are usually fixed-bed reactors. Their performance is strongly
affected by the heat transfer from the furnace to the catalyst tubes. We will model both
top-fired and side-fired configurations.

Modeling of steam reformer tubes:
The tubes are loaded with industrial catalyst pellets which usually are nickel catalysts.
In the mass-balance equations, methane and carbon dioxide are the key components and
their conversion and yield are defined respectively as

xCH4 =
F 0

CH4
− FCH4

F 0
CH4

and (7.125)

xCO2 =
FCO2 − F 0

CO2

F 0
CH4

. (7.126)

Our model assumptions are as follows:

1. The reaction mixture behaves as an ideal gas.

2. The single reactor tube performance is representative of any other tube in the
furnace.

3. The system operates at a steady state.

4. We assume a one dimensional model for mass, heat, and momentum transfer. This
means that the composition, heat, and pressure is uniform at any cross section of
the catalyst bed in the reformer tubes.

16Friedrich August (Fritz) Raschig, German chemist, 1863-1928
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5. All hydrocarbons in the feed higher than methane are assumed to be instantly
cracked into CH4, CO2, H2, and CO. Consequently the reaction system inside a
reformer tube is described by the rate expressions of the kinetics of steam reforming
in the methane reactions I, II, and III.

6. The axial diffusion of mass and heat is negligible.

7. The system is heterogeneous, external mass and heat transfer between the pellet
and the bulk gas is negligible, but the intraparticle diffusional resistance is consid-
erable.

The mass-balance equations:
The differential mass-balance equations for methane and carbon dioxide are

dxCH4

dl
=

At · ρb · ηCH4 ·RCH4

F 0
CH4

and (7.127)

dxCO2

dl
=

At · ρb · ηCO2 ·RCO2

F 0
CH4

, (7.128)

where ηCH4 is the catalyst effectiveness factor for methane and ηCO2 is the catalyst
effectiveness factor for carbon dioxide, while RCH4 = rI + rIII and RCO2 = rII + rIII .
The mole fraction of each component at any point along the reformer can be computed
in terms of xCH4 and xCO2 and the feed mole fractions as follows.

YCH4 =
Y 0

CH4
· (1 − xCH4)

1 + 2Y 0
CH4

· xCH4

(7.129)

YCO2 =
Y 0

CH4
· (F 0

CO2
/F 0

CH4
+ xCO2)

1 + 2Y 0
CH4

· xCH4

, (7.130)

YH2O =
Y 0

CH4
· (F 0

H2O/F 0
CH4

− xCH4 − xCO2)
1 + 2Y 0

CH4
· xCH4

, (7.131)

YH2 =
Y 0

CH4
· (F 0

H2
/F 0

CH4
+ 3 · xCH4 + xCO2)

1 + 2Y 0
CH4

· xCH4

, and (7.132)

YCO =
Y 0

CH4
· (F 0

CO/F 0
CH4

+ xCH4 − xCO2)
1 + 2Y 0

CH4
· xCH4

. (7.133)

The mole fractions of the inerts are obtained by subtraction.

Energy-balance equations:
An energy balance on a differential element gives us

dT

dl
=

1
G · C̄p

⎛⎝4 ·U · (Tt,0 − T )
di

+
3∑

j=1

(−∆Hj) · ρb · ηj · rj

⎞⎠ , (7.134)
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where G is the mass flow rate of the mixture, C̄p is the average specific heat of the mix-
ture, and Tt,0 is the temperature of the furnace that surrounds the catalyst tubes.

Momentum-balance equation:
The differential equation for the pressure drop across the differential element is

dP

dl
=

−fp · G2

gc · ρg · Φs · Dp
. (7.135)

7.4.3 Modeling of Side-Fired Furnaces

The total amount of heat that is transferred to the reformer tubes is obtained from the
flames and the furnace gas. For this heat transfer, we use the following assumptions.

1. The furnace is a well stirred enclosure with a mean temperature different from its
exit temperature.

2. Radiation is the main mode of heat transfer; heat transfer by convection is negli-
gible.

3. The flames and the furnace gas are distinct sources of heat. The radiation from
these two sources do not interfere with each other.

4. 2% of the released heat is lost to the surroundings.

5. There is no net radiative exchange between the enclosing walls (fire-box), and the
radiating gas and tubes. Heat is lost from the enclosing wall to the surroundings
only.

6. The furnace gas is assumed to be grey to radiation.

Radiative transfer from the furnace gases to the reformer tubes:
The radiation heat-transfer equation from the furnace gas to the reformer tubes has the
form

QR = (Ḡ · S̄t)R · (Ēg − Ēt) , (7.136)

where
1

(Ḡ · S̄t)R
=

1
α · ACP

(
1
et

− 1
)

+
1

(Ḡ · S̄t)R,black
,

(Ḡ · S̄t)R,black = eg ·
(

α · ACP +
AR

(1 + eg/((1 − eg) · FRt)

)
,

Ēg = σ · T 4
g , Ēt = σ · T 4

t,0 , FRt =
α · ACP

AR + α · ACP
,

and 0 ≤ AR ≤ 0.5 · α · ACP .
The heat released by the furnace gas is transferred to the reformer tubes, the flue gas
and 2% is lost to the surroundings. This heat balance can be written as∫ L

0

QR dl = 0.98 · Qn − QG . (7.137)
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7.4.4 Model for a Top-Fired Furnace

The Roesler17 model gives rise to the two equations

d2Ē1

dl2
= α1(ζ · (Ē1 − σ · ξ · T 4

g ) + et · at · (Ē1 − σ · ξ · T 4
t,0) +

+ er · ar · ((1 − ξ)Ē1 − ξĒ2)) and (7.138)

d2Ē2

dl2
= α2(et · at · (Ē2 − σ · (1 − ξ) · T 4

t,0) + er · ar(ξ · Ē2 − (1 − ξ) · Ē1)) (7.139)

with the boundary conditions:
at l = 0

1
α1

· dĒ1

dl
= − 1

α2
· dĒ2

dl
=

er

2 − er
· ((1 − ξ)Ē1 − ξ · Ē2) ; (7.140)

at l = L

− 1
α1

· dĒ1

dl
=

1
α2

· dĒ2

dl
=

er

2 − er
· ((1 − ξ)Ē1 − ξ · Ē2) (7.141)

for α1 = ζ + at + ar and α2 = at − ar.
The heat balance on the differential element of the flue gas stream yields

Gg ·Cg
d(Tg − F · (T ∗ − Tg,o))

dl
= 2ζ · (Ē1 − ξ · Ēg) (7.142)

for Tg,0 =
(
Ē1,0/(σ · ξ))1/4.

The heat transfer by radiation to the reformer tubes has the form

Qg = 2et · at · (Ēr − Ēt) · V (7.143)

for Ēr = σT 4
r and Tr =

(
(Ē1 − Ē2)/σ

)1/4.

7.4.5 Modeling of Methanators

Methanators are usually adiabatic fixed-bed reactors. The kinetics of methanization are
described by the reverse r̂I , r̂II and r̂III of the reactions I, II, and III. Hence there
are two exothermic reactions I and II and one endothermic one, III. Carbon dioxide
and methane are the key components here.

Mass-balance equations:
The conversion and yield of carbon dioxide and methane are defined in the opposite sense
of the yield and conversion used in steam reformers in equations (7.125) and (7.126) and
the same differential mass balance equations (7.127) and (7.128) are used. The mole
fractions of all components are computed from similar relations as given before.

17F. C. Roesler, USA chemical engineer, 19..
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Energy-balance equation:
The energy-balance equation for a differential element is

dT

dl
=

ρb

G · C̄p
·

3∑
j=1

(−∆Hj) · ηj · r̂j . (7.144)

Momentum-balance equation:
The momentum-balance equation for the methanator is the same as for the steam re-
former, namely equation (7.135).

7.4.6 Modeling the Catalyst Pellets for Steam Reformers and
Methanators using the Dusty Gas Model

The profiles of the effectiveness factor η along the length of a steam reformer as well as
a methanator can be computed in three different ways, namely by the dusty gas model,
as well as by our simplified models (A) and (B).

Dusty gas model:
When using the dusty gas model we obtain the following gradient equation for the total
diffusive flux

−grad Ci =
Ni

De
ki

+
n∑

j �=i

Yj ·Ni − Yi ·Nj

De
ij

. (7.145)

Simplified model (A):
Equation (7.145) results from the rigorous dusty gas model, but unfortunately, it is
not easy to implement for a multi-component system. Therefore, we will use simplified
equations for the flux relations (7.145). The ordinary diffusion term in formula (7.145)
can be approximated by

Ni

De
im

=
n∑

j �=i

Yj · Ni − Yi ·Nj

De
ij

. (7.146)

Thus equation (7.145) takes the simplified form

Ni = −De
i · grad Ci , (7.147)

where 1/De
i = 1/De

ki + 1/De
im and De

im is obtained from the diffusion equation

1
Dim

=
1

1 − Yi
·

n∑
j �=i

Yi

Dij
(7.148)

for component i through the stagnant components of the mixture. Moreover, the effective
diffusion coefficients are set equal to De

im = Dim · ε/τ with ε = 0.625 and τ = 2.74.
These values were obtained experimentally.



7.4 Industrial Steam Reformers and Methanators 493

Note that equation (7.148) is only valid for dilute systems, but it can be used as an
approximation for multi-component systems.

Simplified model (B):
Here we use equation (7.146) to find De

im from the relation

1
De

im

=
n∑

j �=i

Yj − Yi · (Nj/Ni)
De

ij

(7.149)

and approximate the flux ratios by the ratio of rates of reaction to get

1
De

im

=
n∑

j �=i

Yj − Yi · (Rj/Ri)
De

ij

. (7.150)

7.4.7 Numerical Considerations

The differential equations (7.127), (7.128), (7.134), and (7.135) for the material, energy,
and momentum balances for a steam reformer and the corresponding DEs for a methana-
tor are initial value problems that can be solved in MATLAB using one of the familiar
MATLAB functions ode.... Care should be taken to select appropriate integrators, i.e.,
ode23 or ode45, in case the simple Runge-Kutta embedding formulas converge quickly,
or ode15s if they do not and the IVP system is found to be stiff. The initial conditions
are the feed conditions.
For the reformer we assume that the outer wall temperature profile of the reformer tubes
decouples the heat-transfer equations of the furnace from those for the reformer tubes
themselves. The profile is correct when the heat flux from the furnace to the reformer
tube walls equals the heat flux from the tube walls to the reacting mixture. We must
carry out sequential approximating iterations to find the outer wall temperature profile
Tt,0 that converges to the specific conditions by using the difference of fluxes to obtain a
new temperature profile Tt,0 for the outer wall and the sequence of calculations is then
repeated. In other words, a Tt,0 profile is assumed to be known and the flux Q from the
furnace is computed from the equations (7.136) and (7.137), giving rise to a new Tt,0.
This profile is compared with the old temperature profile. We iterate until the tempera-
ture profiles become stationary, i.e., until convergence.
The furnace equation (7.136) that describes the heat transfer in the side fired furnace
is a single transcendental equation used to compute and iterate Tt,0 and QR. It can be
solved using fzero of MATLAB.
The differential equations (7.138) and (7.139) for the top-fired furnace, however, describe
a boundary value problem with the boundary conditions (7.140) and (7.141) that can be
solved via MATLAB’s built-in BVP solver bvp4c that uses the collocation method, or via
our modified BVP solver bvp4cfsinghouseqr.m which can deal with singular Jacobian
search matrices; referred to in Chapter 5. On the other hand, the differential equation
(7.142) is a simple first-order IVP.
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Notice that the methanator is working under adiabatic conditions so that its design
equations, i.e., its material, energy, and momentum equations can be integrated straight-
forward as IVPs in MATLAB.
The effectiveness factors at each point along the length of the reactor are calculated for
the key components methane and carbon dioxide by using either the dusty gas model or
one of our simplified models (A) and (B). The dusty gas model gives rise to more com-
plicated two point boundary value differential equations (BVPs) for the catalyst pellets.
These are solved in MATLAB via bvp4c or bvp4cfsinghouseqr.m as done in Chapter
5.

7.4.8 Some Computed Simulation Results for Steam Reformers

In this section we collect some computed results when simulating industrial steam re-
formers. We compare the actual plant outputs with those obtained by simulation using
the three models that we have developed earlier. We investigate both the close to ther-
modynamic equilibrium case and the far from thermodynamic equilibrium case.

For the industrial steam reformer called Plant (1):
Plant (1) is a top-fired reformer and its construction and operating conditions are sum-
marized below.

Top-fired reformer (1) construction data and operating conditions

Reformer tubes Catalyst pellet

Heated length of reformer tubes 13.72 m Shape Raschig18 rings
Inside diameter of reformer tube 0.0978 m Dimensions 1.6 × 0.6 × 1.6 cm
Outside diameter of tubes 0.1154 m Porosity 0.51963
Ratio of tube pitch and diameter 3.3 Tortuosity 2.74
Number of tubes 897 Bulk density 1362 Kg/m3

Furnace dimensions21.834× 35.49× 13.72 m Mean pore radius 80Ȧ
Number of burners 204 Catalyst character-

-istic length 0.001948 cm

Process gas flow rate and composition Fuel

Flowrate 4430.7 Kg · mol/h Flowrate 4430.7 Kg · mol/h
(natural gas) + 9 to 11% excess

air at 576 K
Composition (in mol %, dry basis) Composition (in mol %, wet basis)
CH4 73.10 CH4 16.59
C2H6 19.90 C2H6 1.41
C3H8 2.00 C3H8 0.03
C4H10 0.10 CH3OH 0.16
H2 1.80 H2 71.54
CO2 0.90 H2O 0.06
N2 2.20 CO 1.68

CO2 2.80
N2 5.73

(continued)
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Inlet conditions per tube Feed composition in catalyst tubes
(in mol %)

Process gas flow 3.953 kg · mol/h CH4 20.22
(methane equivalent)

Temperature 760 K H2O 72.00
Pressure 2837.1 kPa H2 4.92
Steam to methane ratio 3.5610 CO2 2.44
Hydrogen to methane ratio 0.2432 N2 0.42
Carbon dioxide to

methane ratio 0.1209
Nitrogen to methane ratio 0.0204

The data below shows an almost identical performance of the plant and the simulated
computations for temperature, pressure, and composition of the process gas obtained by
all three models, the dusty gas model (abbreviated as DGM) and the simplified models
(A) and (B).
We note that this industrial unit (1) is operating quite close to its thermodynamic equi-
librium.

Comparison between Plant (1)’s actual output and simulated
results with the dusty gas model (DGM) and

the simplified models (A) and (B)

Actual Calculated via:
Variable Plant (1) DGM model (A) model (B)

Process gas temp. K 1130.0 1130.9 1131.1 1130.7
Process gas press. kPa 2200.0 2197.3 2197.3 2197.1
Conversion of CH4 0.8527 0.8588 0.8600 0.8600
Equilibrium con-

version of CH4 0.8616 0.8634 0.8641 0.8631
Conversion of CO2 0.2862 0.2787 0.2763 0.2792
Equilibrium con-

version of CO2 0.2891 0.2804 0.2800 0.2796

Process gas composition (in mol %)

H2O 35.71 36.35 36.37 36.35
CH4 2.24 2.12 2.10 2.10
H2 46.46 46.49 46.50 46.47
CO2 6.19 6.00 5.96 6.00
CO 9.07 8.75 8.76 8.76
N2 0.33 0.29 0.31 0.32

For the industrial steam reformer called Plant (2):
Plant (2) is a side-fired steam reformer with the following construction and operating
data.

18Friedrich August (Fritz) Raschig, German chemist, 1863-1928
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Side-fired reformer (2) construction data and operating conditions

Reformer tubes and furnace Catalyst pellet

Heated length of reformer tubes 11.95 m Shape Raschig rings
Inside diameter of reformer tube 0.0795 m Dimensions 1.6× 0.6× 1.6 cm
Outside diameter of tubes 0.102 m Porosity 0.51963
Ratio of tube pitch and diameter 2.4 Tortuosity 2.74
Number of tubes 176 Bulk density 1362 Kg/m3

Furnace width 2 m Mean pore radius 80Ȧ
Number of burners 112 Catalyst character-

-istic length 0.001948 cm

Process gas flow rate and composition Fuel

Flowrate 4085.7 Kg · mol/h Flowrate 313.6 Kg · mol/h
(natural gas) (at 319.1 K) + 15% excess air

at ambient temp.
Composition (in mol %, dry basis) Composition (in mol %, wet basis)
CH4 79.6 CH4 12.4
C2H6 13.2 H2 67.6
C3H8 2.6 CO 5.8
C4H10 0.4 C)2 13.6
H2 2.1 N2 0.6
N2 2.1

Inlet conditions per tube Feed gas composition for the catalyst tubes
(in mol %)

Process gas flow 4.03 kg · mol/h CH4 16.78
(methane equivalent)

Temperature 733 K H2O 77.17
Pressure 2452.1 kPa H2 4.19
Steam to methane ratio 4.6 CO2 1.53
Hydrogen to methane ratio 0.25 N2 0.33
Carbon dioxide to

methane ratio 0.091
Nitrogen to methane ratio 0.02

The data below shows that the measured output and the simulated data for Plant
(2) again agree very closely for each of our three models.
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Comparison between Plant (2) actual output and simulated
results with the dusty gas model (DGM) and

the simplified models (A) and (B)

Actual Calculated via:
Variable Plant (2) DGM model (A) model (B)

Process gas temp. K 981.1 985.2 985.5 985.2
Process gas press. kPa 2087.3 2076.3 2076.0 2076.1
Conversion of CH4 0.5720 0.5741 0.5735 0.5742
Equilibrium con-

version of CH4 0.5863 0.5989 0.5997 0.5990
Conversion of CO2 0.3790 0.3717 0.3710 0.3718
Equilibrium con-

version of CO2 0.3820 0.3850 0.3852 0.3850

Process gas composition (in mol %)

H2O 52.12 51.41 51.43 51.39
CH4 5.93 5.99 6.00 5.99
H2 32.35 32.96 32.94 32.98
CO2 6.51 6.50 6.50 6.51
CO 2.78 2.86 2.85 2.85
N2 0.30 0.28 0.28 0.28

Note that all three models give almost the same exit conversion and yield for methane
and carbon dioxide and that the second unit (2) is also operating relatively closely to its
thermodynamic equilibrium, though further away from it when compared to Plant (1).
The close agreement between the industrial performance data and the simulated data for
the reformers (1) and (2) that was obtained by three different diffusion-reaction models
validates the models that we have used, at least for plants operating near their thermo-
dynamic equilibria.
However, a simple comparison of the stated simulation results does not favor any par-
ticular model. To differentiate the models, we propose run comparison tests of the three
models for a steam reformer, called Plant (3), that runs far from its thermodynamic
equilibrium.

Plant (3):
A short 1 m isothermal steam reformer tube was used for this test. The reformer (3)
was run under the same operating conditions as reformer (2), but with a relatively large
catalyst pellet of characteristic length 0.007619 m. For Plant (3) the exit methane con-
version X, the CO2 yield X̄ , and the equilibrium values Xe and X̄e for methane and
carbon dioxide, respectively, are as follows.
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Exit conversions and yields of methane and carbon dioxide simulation results with
the dusty gas model (DGM) and the simplified models (A) and (B) for Plant (3)

Methane Carbon dioxide

Exit Equilibrium % diff. Exit yield X̄ Equil. % diff.
conversion X conversion Xe yield X̄e

DGM 0.2756 0.4710 –41.49 0.1925 0.3414 –43.61
Model (A) 0.2298 0.4710 –51.21 0.1689 0.3414 –50.53
Model (B) 0.2104 0.4710 –55.33 0.1575 0.3414 –53.87

For Plant (3) the exit conversions and yields of methane and carbon dioxide obtained
by all three models are much lower than the equilibrium values. Therefore, Plant (3) is
run far from its thermodynamic equilibrium. Large differences between the predictions
of the three models exist in the data: the exit conversion simulations of methane differ
by 16 to 23%; that of the carbon dioxide yield by 12 to 18%. Since the dusty gas model
is the more rigorous one, we can use its simulation output as a base for comparison in
place of experimental or industrial data which is unavailable in this case.

It is reasonable to conclude from our simulations that for steam reformers that operate
close to their thermodynamic equilibrium it is sufficient to use a relatively simple model to
compute the catalyst pellet effectiveness factor η. In particular, model (B) is the simplest
and it should be used under these conditions. However, for more efficient steam reformers
that operate far from their thermodynamic equilibrium, the more complicated and more
rigorous dusty gas model for the diffusion and reaction inside the catalyst pellets should
be used to obtain more precise results for the effectiveness factor η since both simplified
models (A) and (B) give erroneous results here. We reiterate that the closeness of the
three model results for systems operating near their thermodynamic equilibrium does
not mean that all three models can be used equally reliably in other regions of operation.
This is so because in the region of operation far from thermodynamic equilibrium the
effectiveness factors are rather small and the simplified pseudohomogeneous models (A)
and (B) will greatly overestimate the rates of reaction, thereby overestimating the amount
of heat absorbed by the reaction which in turn will alter the prediction of the wall and
furnace temperatures and therefore give erroneous predictions.

7.4.9 Simulation Results for Methanators

In this section we check our models against two industrial adiabatic fixed-bed methana-
tors. Along the length of the methanators we calculate the effectiveness factor from the
dusty gas model (DGM) and our simplified models (A) and (B).

A methanator, called Plant M-one:
Here are the design and actual operating conditions of Plant M-one:
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Methanator Plant M-one: construction, design, and operating conditions

Dimensions

Length of methanator 4.80 m
Inside diameter of methanator 2.686 m

Catalyst pellet

Shape spherical particle
Diameter 0.476 to 0.794 cm
Porosity 0.625
Tortuosity 2.74
Bulk density 1014 Kg/m3

Mean pore radius 80Ȧ
Characteristic length 0.10583 cm

Inlet conditions: Design Actual

Feed flow rate 3392.3 kmol/h 3398.3 kmol/h
Methane molar flow 16.557 kmol/h 13.523kmol/h
Temperature 586.3 K 577.8 K
Pressure 2074.75 kPa 1823.85 kPa

Feed composition (in mol %)

CO 0.428 0.160
(4280 ppm) (1600 ppm)

CO2 0.050 0.0
(500 ppm)

H2 74.052 73.410
CH4 0.448 0.410
H2O 0.483 0.120
Inerts 24.5 25.9

The design and actual output data from Plant M-one and the simulated results from the
three models are given in the following two tables.

Comparison between methanator Plant M-one design output and

simulated results with the dusty gas model (DGM)
and the simplified models (A) and (B)

Calculated via:
Variable Design DGM model (A) model (B)

Temperature K 616.3 622.1 622.0 622.0
Pressure kPa 2036.8 2071.2 2071.2 2073.5

(continued)
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Composition (in mol %)

CO 0.0 0.157 0.1267 0.1539
(1570 ppm) (1267 ppm) (1539 ppm)

CO2 0.0 0.530 15.513 17.062
(5300 ppm) (155,130 ppm) (170,620 ppm)

H2 73.27 73.27 73.27 73.28
CH4 0.975 0.975 0.973 0.970
H2O 1.02 1.02 1.02 1.02
Inerts 24.735 24.735 24.735 24.735

Comparison between methanator Plant M-one actual output and
simulated results with the dusty gas model (DGM) and

the simplified models (A) and (B)

Calculated via:
Variable Actual DGM model (A) model (B)

Temperature K 585.2 589.6 589.5
Pressure kPa 1787.1 1820.1 1820.2 1820.2

Composition (in mol %)

CO 0.0 0.609 0.067 0.068
(6090 ppm) (670 ppm) (680 ppm)

CO2 0.0 5.6 · 10−3 1.7 · 10−6 2.0 · 10−6

(56 ppm) (0.017 ppm) (0.02 ppm)
H2 73.42 73.16 73.16 73.16
CH4 0.570 0.572 0.572 0.730
H2O 0.280 0.281 0.281 0.282
Inerts 25.730 25.983 25.983 25.983

These results show good agreement between the design and actual output temperature,
pressure and composition with the calculated results for all models at the exit of methana-
tor Plant M-one. Note that the pressure drop along methanator Plant M-one is small for
the design and actual conditions and the simplified models (A) and (B) give almost the
same exit pressure.

Methanator Plant M-two:
The design conditions for methanator Plant M-two are as follows.
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Methanator Plant M-two: construction and design conditions

Dimensions Inlet conditions

Length of methanator 3.048 m Feed flow rate 77444 m3/h
Inside diameter of methanator 2.667 m Methane molar flow 1420.1 kmol/h

Catalyst pellet Temperature 613.6 K

Shape spherical particle Pressure 2199.16 kPa

Diameter 0.476 to 0.794 cm Feed composition (in mol %)

Porosity 0.625 CO 0.350
Tortuosity 2.74 (3500 ppm)
Bulk density 1040 Kg/m3 CO2 0.098

Mean pore radius 80Ȧ (980 ppm)
Char. length 0.10583 cm H2 93.550

CH4 4.399
H2O 1.60

The output data from methanator Plant M-two and the simulated results from the three
models are given in the following table.

Comparison between methanator Plant M-two design output and
simulated results with the dusty gas model (DGM) and

the simplified models (A) and (B)

Calculated via:
Variable Design DGM model (A) model (B)

Temperature K 644.10 644.18 645.63 646.0
Pressure kPa 2184.88 2115.46 2116.47 2117.01

Composition (in mol %)

CO 0.0 0.005 0.006 0.007
(50 ppm) (60 ppm) (70 ppm)

CO2 0.0 0.033 0.048 0.054
(330 ppm) (480 ppm) (540 ppm)

H2 92.94 93.07 93.10 93.11
CH4 4.892 4.822 4.811 4.817
H2O 2.16 2.07 2.04 2.02

The calculated temperature, pressure, and composition from the models are again in
good agreement with the design output data of methanator Plant M-two, indicating the
validity of our models.

Exercises for 7.4

1. Project
Create a MATLAB program to simulate steam reformers and methanators of
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sections 7.4.8 and 7.4.9 as indicated in Section 7.4.7 and test your program
against the given data of Section 7.4.8 and 7.4.9.

2. Find other sets of industrial data and compare the model results with the
industrial ones.

Conclusions

A rigorous dusty gas model and two simplified models have been used to simulate
industrial steam reformers and methanators. The basic principles for the solution
of both the nonadiabatic steam reformer and the adiabatic methanator are given.
The details of developing solution algorithms from the models are left to the reader
as a serious and extensive project.
The predictions from the three models for steam reforming are equally reliable for
industrial reactors that operate near their thermodynamic equilibrium. Significant
deviations occur when the system is operating far from thermodynamic equilibrium,
though. In this case the dusty gas model is still quite accurate while the simplified
diffusion-reaction models are no longer accurate enough.
The industrial data that is supplied in this section serves to ensure the accuracy
of the students’ programs. Once established and verified against industrial data,
these programs can be used for design, simulation, optimization, scaling-up, and
parametric investigations.

7.5 Production of Styrene for the Polystyrene Indus-

try

This section deals with industrial fixed-bed reactors for the dehydrogenation of ethyl-
benzene to styrene. Styrene is an important intermediate product in the petrochemical
industry that is mainly used to produce the polymer polystyrene. The intrinsic kinetics
for this reaction are not available in the literature and all known kinetic expressions have
been extracted from industrial data by using a pseudohomogeneous model for the reac-
tor. The models developed on this basis are only valid for the particle size and operating
conditions that were used during the acquisition of the kinetic data. Thus these models
are not reliable over a range of operating and design conditions wider than that under
which they were gathered.
As a general caveat with published data, we recommend that the reader check for print-
ing mistakes by looking up multiple sources and comparing them. Great care with using
outside data must be exercised at the beginning of any simulation work.
Here we develop a pseudohomogeneous model first and investigate how to solve this
model numerically. This is later followed by a more rigorous heterogeneous model.
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7.5.1 The Pseudohomogeneous Model

The Rate Equations

In the process, ethylbenzene is dehydrogenated to styrene in a fixed-bed catalytic reactor.
The feed stream is preheated and mixed with superheated steam before being injected
into the reactor at a temperature above 4900C. The steam serves as a dilutant and
decokes the catalyst, thereby extending its life. The steam also supplies the necessary
heat for the endothermic dehydrogenation reaction. For our model we have chosen six
reactions to represent the plant data.

Reaction (1):

C6H5CH2CH3 ←→ C6H5CHCH2 + H2 (7.151)
ethylbenzene ←→ styrene + hydrogen

Reaction (2):

C6H5CH2CH3 −→ C6H6 + C2H4 (7.152)
ethylbenzene −→ benzene + ethylene

Reaction (3):

C6H5CH2CH3 + H2 −→ C6H5CH3 + CH4 (7.153)
ethylbenzene + hydrogen −→ toluene + methane

Reaction (4):

2H2O + C2H4 −→ 2CO + 4H2 (7.154)
steam + ethylene −→ carbon monoxide + hydrogen

Reaction (5):

H2O + CH4 −→ CO + 3H2 (7.155)
steam + methane −→ carbon monoxide + hydrogen

Reaction (6):

H2O + CO −→ CO2 + H2 (7.156)
steam + carbon monoxide −→ carbon dioxide + hydrogen

Each of the six reactions is assumed to occur catalytically and all but reaction (1) are
irreversible.
The respective rate equations for the reactions are

r1 = k1 · (pEB − pST · pH2/KEB) , (7.157)
r2 = k2 · pEB , (7.158)
r3 = k3 · pEB · pH2 , (7.159)
r4 = k4 · pH2O · p0.5

ETH , (7.160)
r5 = k5 · pH2O · pMET , and (7.161)
r6 = k6 · (PT /T 3) · pH2O · pCO . (7.162)
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Here the rate constants ki are expressed in the form

ki = eAi−Ei/(RG·T ) . (7.163)

The Ai and Ei are the apparent frequency factors and the activation energies of reaction
i as given below for each of the six reactions i = 1, ..., 6.

Initial values of frequency factors and
activation energies of the reactions

Frequency
Reaction factors Ai Activation energy
number (dimensionless) Ei

according to (in kJ/kmol)
equation (7.163)

(1) –0.0854 90891.40
(2) 13.2392 207989.23
(3) 0.2961 91515.26
(4) –0.0724 103996.71
(5) –2.9344 65723.34
(6) 21.2402 73628.40

The rates of reactions depend on the partial pressures of the components, the equilibrium
constants of the ethylbenzene, the total pressure, and the temperature as expressed in
equations (7.157) to (7.162). Here the total pressure and temperature of the reactor is
known, the equilibrium constant of ethylbenzene is given in the table on p. 508, and the
partial pressures can be computed in terms of the conversions.
The reactions (1), (2), and (3) are expressed in terms of ethylbenzene conversion as
follows.

xEBST =
FST − F 0

ST

F 0
EB

from reaction (1) ,

where xEBST is the conversion of ethylbenzene to styrene, or the yield of styrene;

xEBBZ =
FBZ − F 0

BZ

F 0
BZ

from reaction (2) ,

where xEBBZ is the conversion of ethylbenzene to benzene, or the yield of benzene; and

xEBTOl =
FTOl − F 0

TOl

F 0
TOl

from reaction (3)

with xEBT Ol denoting the conversion of ethylbenzene to toluene, or the yield of toluene.
This gives us the total conversion of ethylbenzene xEB as the sum of these three conver-
sions, or

xEB =
F 0

EB − FEB

F 0
EB

= xEBST + xEBBZ + xEBT Ol .
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The reactions (4), (5), and (6) are expressed in terms of steam conversion as follows.

xH2OCOI =
FCOI − F 0

CO

F 0
H2O

from reaction (4) ;

xH2OCOII =
FCOII − F 0

CO

F 0
H2O

from reaction (5) ;

xH2OCO2
=

FCO2 − F 0
CO2

F 0
H2O

from reaction (6) ;

giving us the total conversion of steam as the sum of these conversions

xH2O =
F 0

H2O − F 0
H2O

F 0
H2O

= xH2OCOI + xH2OCOII + xH2OCO2
.

The number of moles of the various components in the reactor are as follows:

For ethylbenzene F1 = FEB = F 0
EB − xEB · F 0

EB ;

For styrene F2 = FST = F 0
ST + xEBST · F 0

EB ;

For benzene F3 = FBZ = F 0
BZ + xEBBZ · F 0

EB ;

For toluene F4 = FTOL = F 0
TOL + xEBT OL · F 0

EB ;

For ethylene F5 = FETH = F 0
ETH + xEBBZ · F 0

EB − 0.5 · xH2OCOI · F 0
H2O ;

For methane F6 = FMET = F 0
MET + xEBT OL · F 0

EB − 0.5 · xH2OCOI · F 0
H2O ;

For steam F7 = FH2O = F 0
H2O − xH2O · F 0

H2O ;

For hydrogen F8 = FH2 = F 0
H2

+ (xEBST − xEBT OL) · F 0
EB+

+(2 · xH2OCOI + 3 · xH2OCOII + xH2OCO2
) · F 0

H2OF
;

For carbon monoxide F9 = FCO = F 0
CO + (xH2OCOI + xH2OCOII − xH2OCO2

) · F 0
H2O ;

For carbon dioxide F10 = FCO2 = F 0
CO2 + xH2OCO2

· FH2O

The total mole flow in the reactor is given by

FT =
10∑

i=1

Fi

and the mole fraction Yi of component i is Yi = Fi/FT . Finally the partial pressures pi

are pi = Yi · PT for each of the above listed ten components, ethylbenzene to carbon
dioxide.

The rates of formation for the ten different components are
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For ethylbenzene REB = −r1 − r2 − r3 ;
For styrene RST = r1 ;
For benzene RBZ = r2 ;
For toluene RTOL = r3 ;
For ethylene RETH = r2 − 0.5 · r4 ;
For methane RMET = r3 − r5 ;
For steam RH2O = −r4 − r5 − r6 ;
For hydrogen RH2 = r1 − r3 + 2r4 + 3r6 + r6 ;
For carbon monoxide RCO = r4 + r5 − r6 ;
And for carbon dioxide RCO2 = r6 .

Model Equations

We now formulate six material-balance equations for the six reactions (1) to (6) of the
equations (7.151) to (7.156), as well as an energy balance and a pressure-drop equation.

The material-balance equations for the first three reactions (1), (2), and (3) have the
form

dxi

dl
=

ρb ·At · ri

F 0
EB

, (7.164)

where the index i = 1, 2, 3 stands for the respective reaction number (1) to (3) and xi is
the fractional conversion of ethylbenzene in each of the three reactions.
The material-balance equations for the last three reactions (4), (5), and (6) have the
form

dxi

dl
=

ρb ·At · ri

F 0
H2O

, (7.165)

where the index i = 4, 5, 6 stands for the respective reaction number (4) to (6) and xi is
the fractional conversion of steam in each of these reactions.

The Ergun19 equation can be used to compute the pressure profile along the length
of the catalyst bed

dP

dl
= 9.807 · 10−4 · (1 − ε) · G0

DP · ε3 · ρG

(
150 · (1 − ε) · µG

DP
+

1.75 · G0

gc

)
. (7.166)

The energy-balance differential equation can be derived from the equation

10∑
i=1

Fi ·Cpi · dT +
6∑

j=1

∆Hj · At · ρb · rj · dl = U ·AH · dl · (T − Te) . (7.167)

19Sabri Ergun, Turkish chemical engineer, 19..–
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Since the reactor is adiabatic and no heat is transferred to the surroundings, we have
U ·AH · dl · (T − Te) = 0, and therefore the energy-balance equation is given by

dT

dl
=

∑6
j=1(−∆Hj) · At · ρb · rj∑10

i=1 Fi ·Cpi

. (7.168)

The heats of reactions can be computed as functions of temperature from the relation

∆Hj = aj + bj · T . (7.169)

The set of values aj and bj for each of the reactions is as follows.

Values of aj and bj of the heat of reactions ∆Hj = aj + bj · T
Reaction number aj (in kJ/kmol) bj (in kJ/(kmol · K))

(1) 120759.11 4.56
(2) 108818.11 –7.96
(3) –53178.20 –13.19
(4) 82065.74 8.84
(5) 211255.19 16.58
(6) –45223.66 10.47

The molar heat capacitances Cpi and Cpj of the components are given as functions of
temperature by the following two equations:

Cpi = αi + βi · T + γi · T 2 (7.170)

for the organic components, and

Cpj = dj + ej · T + fj/T 2 . (7.171)

for the inorganic ones. The sets of constants in equation (7.170) for the molar heat
capacitances of the organic components are as follows.

Constants of the molar heat capacitances Cpi for the organic components

αi βi −γi · 105

Component (in kJ/(kmol · K)) (in kJ/(kmol · K2)) (in kJ/(kmol · K3))

Ethylbenzene –57.2835 0.5155 30.928
Styrene –11.02 0.075 5.69
Benzene –1.71 0.325 11.10
Toluene 2.41 0.392 13.10
Ethylene 11.85 0.120 3.65
Methane 14.16 0.076 1.80

And the sets of constants for the inorganic components are:
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Constants of the molar heat capacitances Cpj for the inorganic components

dj ej fj · 10−5

Component kJ/(kmol · K) kJ/(kmol · K2) kJ/(kmol · K−3)

Steam 30.57 0.0375 –
Hydrogen 27.30 3.27 · 10−3 5.02
Carbon monoxide 28.43 4.10 · 10−3 4.61
Carbon dioxide 44.26 8.79 · 10−3 86.30

Numerical Solution of the Model Equations

The differential equations (7.164), (7.165), (7.166), and (7.168) form a pseudohomogene-
ous model of the fixed-bed catalytic reactor. More accurately, in this pseudohomogeneous
model, the effectiveness factors ηi are assumed to be constantly equal to 1 and thus they
can be included within the rates of reaction ki. Such a model is not very rigorous. Because
it includes the effects of diffusion and conduction empirically in the catalyst pellet, it
cannot be used reliably for other units.
We need to solve the IVP from l = 0 to l = Lt, the total length of the bed. This can be
achieved readily by any of the MATLAB IVP solvers ode.., once the initial conditions
at l = 0 are specified.

Simulation of an Industrial Reactor Using the Pseudohomogeneous Model

The above pseudohomogeneous model was used to simulate an industrial reactor with
the following data.

Molar feed rates and industrial reactor data

Component Value and dimension Reactor data Value

Ethylbenzene (EB) 36.87 kmol/h Inlet pressure 2.4 bar
Styrene (ST) 0.67 kmol/h Inlet temperature 922.59 K
Benzene (BZ) 0.11 kmol/h Catalyst bed diameter 1.95 m
Toluene (TOL) 0.88 kmol/h Catalyst bed length Lt 1.70 m
Steam (H2O) 453.10 kmol/h Catalyst bulk density 2146.27 kg(cat)/m3

Total molar feed 491.88 kmol/h Catalyst particle
Mass flow rate 12238.67 kg/h diameter 4.7 · 10−3 m

Equilibrium relations data for reaction (1)

Data Value and dimension Constants Value

Equilibrium constant KEB = e−∆F0/(RG·T ) bar a (kJ/kmol) 122725.157
∆F0 a + b · T + c · T 2 kJ/kmol b (kJ/(kmol · K) –126.267

c (kJ/(kmol · K2) −2.194 · 10−3

Here is a comparison chart of the reactor output data and the results of our simulation
for the same plant.
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Actual and pseudohomogeneous model results
for an industrial reactor

Conversion Molar flow rate Molar fraction
kmol/h %

Component plant model plant model plant model

Ethylbenzene 47.25 47.30 19.45 19.39 - 3.78
Steam - 1.20 - 447.62 - 87.36

Yield %

Styrene 40.41 40.34 15.57 15.57 - 3.04
Benzene 3.77 3.72 1.50 1.48 - 0.29
Toluene 3.12 3.24 2.03 2.08 - 0.41
Ethylene - 3.49 - 0.33 - 0.07
Methane - 3.09 - 0.53 - 0.10
Hydrogen - 39.06 - 22.62 - 4.42
Carbon monoxide - 0.0067 - 0.03 - 0.006
Carbon dioxide - 0.60 - 2.73 - 0.53
Total molar flow rate - 512.37 - 100

actual model

Exit temperature 850 K 851.98 K
Exit pressure 2.32 bar 2.36 bar

Note that the results of our simulation via the pseudohomogeneous model tracks the
actual plant very closely. However, since the effectiveness factors ηi were included in
a lumped empirical fashion in the kinetic parameters, this model is not suitable for
other reactors. A heterogeneous model, using intrinsic kinetics and a rigorous description
of the diffusion and conduction, as well as the reactions in the catalyst pellet will be
more reliable in general and can be used to extract intrinsic kinetic parameters from the
industrial data.

7.5.2 Simulation of Industrial Units Using the more Rigorous
Heterogeneous Model

Here we develop a heterogeneous model that is based on the more rigorous dusty gas
model for diffusion and reaction in porous catalyst pellets.

The Catalyst Pellet Equations

The six reactions described in (7.151) to (7.156) with their rate equations (7.157) to
(7.162) take place in the catalyst pellet. Reactants and products are diffusing simulta-
neously through the pores of the catalyst. In our development of the diffusion-reaction
model equations we make the following assumptions.

1. The porous structure of the pellet is homogeneous.
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2. Mass transfer through the catalyst pellet occurs by diffusion and only ordinary
molecular and Knudsen20 diffusion are considered.

3. The gases diffusing through the pellet obey the ideal gas law.

4. Viscous flow is negligible and the reactor conditions are isobaric.

5. The concentration profiles are symmetric around the center of the pellet.

6. The pellets are isothermal.

7. External mass- and heat-transfer resistances are negligible.

8. The system is at steady state.

Mass Balance Equations for the Catalyst Pellet:

The catalyst packing of the reactor consists of an iron oxide Fe2O3, promoted with potas-
sium carbonate K2CO3 and chromium oxide Cr2O3. The catalyst pellets are extrudates
of a cylindrical shape. Since at steady state the problem of simultaneous diffusion and
reaction are independent of the particle shape, an equivalent slab geometry is used for
the catalyst pellet, with a characteristic length making the surface to volume ratio of the
slab equal to that of the original shape of the pellet.

The mass-balance equations for component i can be expressed as

dNi

dz
= ρS ·Ri . (7.172)

Equation (7.172) is the generalized equation for the flux of component i diffusing through
the catalyst pellet, subject to the boundary condition Ni(0) = 0 at the center z = 0.
The mass-balance equations and the dusty gas model equations provide necessary equa-
tions for predicting the diffusion through the catalyst pellet. The dusty gas model equa-
tions are

−dCi

dz
=

Ni

De
ki

+
n∑

i,j=1
i �=j

Yi · Nj − Yj · Ni

De
ij

(7.173)

with the boundary condition Ci(rp) = Ci at the surface when z = rp. Using the dusty
gas model requires us to find the fluxes by solving the material balance differential equa-
tion (7.172) simultaneously with the dusty gas differential equation (7.173). The coupled
boundary value problems (7.172) and (7.173) can be solved via MATLAB using bvp4c
or bvp4cfsinghouseqr as detailed in chapter 5.

Algebraic Manipulation of the Pellet Mass Balance Equations:

The ten flux equations and ten dusty gas model equations have to be solved simultane-
ously. By counting the number of stoichiometric equations and the number of reactants
and products, it becomes clear that the flux values of four components can be expressed

20Martin Hans Christian Knudsen, Danish physicist, 1871-1949
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by the flux values of the remaining six components. Simple algebraic manipulations give
us these relations:

NEB = −NST − NBZ − NTOL ; (7.174)
NH2O = −NCO − 2 · NCO2 ; (7.175)

NMET = 2 · NBZ + NTOL − 2 · NETH − NCO − NCO2 ; (7.176)
NH2 = 4 · NCO2 + 3 · NCO + 2 · NETH + NST − 2 · NBZ − NTOL . (7.177)

Therefore, only six flux equations and six dusty gas model equations need to be solved
simultaneously to obtain the concentration profiles. The performance of the pellet is
expressed in terms of the effectiveness factor of each reaction and of each component.
The effectiveness factor for component j is

ηj =
1

rP · RjB

∫ rp

0

Rj dz (7.178)

and for reaction i it is
ηi =

1
rP · riB

∫ rp

0

ri dz . (7.179)

These definite integrals define ηj for both reactions and components. They can be easily
evaluated in MATLAB by calling quad... once the BVPs have been solved. Use >>
help quad to learn how to evaluate definite integrals in MATLAB.

Model Equations of the Reactor

We now formulate six mass-balance DEs for the six reactions inside the reactor, as well
as the energy-balance and pressure-drop equations.
The mass-balance equations for the bulk phase of the reactor are given by

dxi

dl
=

ηi · ρb · At · ri

F 0
EB

(7.180)

where the index i = 1, 2, 3 distinguishes between the first three reactions (1), (2), and
(3), and xi is the fractional conversion of ethylbenzene in each of the three reactions.
And

dxj

dl
=

ηj · ρb · At · rj

F 0
H2O

(7.181)

where the index j = 4, 5, 6 refers to the reactions numbered (4), (5), and (6), and xj

is the fractional conversion of steam in each of the last three reactions. The molar flow
rates of all ten components can be computed in terms of these six conversions and the
feed molar flow rates using a simple mass balance equation.
The pressure-drop equation is the same as equation (7.166).
The energy-balance differential equation is

dT

dl
=

∑6
j=1 ((−∆Hj) · ηj · At · ρb · rj)∑10

i=1(Fi · Cpi)
. (7.182)
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Here the index j = 1, ..., 6 refers to the reactions (1) through (6) defined at the start of
this section and the index i = 1, ..., 10 refers to the 10 components of the system.
The solution to the reactor model differential equations (7.166) and (7.180) to (7.182)
simulates the molar flow rates and the pressure drop and energy balance of the reac-
tor. The solution of the catalyst pellet boundary value differential equations (7.172) and
(7.173) provides the effectiveness factors ηj for each reaction labeled j = 1, ..., 6 for use
inside the differential equations (7.180) to (7.182).

The main objective of the pellet model is to calculate the effectiveness factors for the
six reactions that take place inside the reactor. These factors are defined as the ratios
of the actual rates occurring inside the pellet and the rates occurring in the bulk phase,
i.e., inside the pellet when diffusional resistances are negligible.

The catalyst pellet boundary value differential equations (7.172) and (7.173) can be
solved via MATLAB using bvp4c or bvp4cfsinghouseqr as practiced in Chapter 5. The
reactor model DEs (7.166) and (7.180) to (7.182) can be solved via MATLAB’s standard
IVP solvers ode... The reactor model equations and the catalyst pellet equations used
to compute the effectiveness factors ηj are all coupled.

Extracting Intrinsic Rate Constants

The industrial rates obtained earlier from the pseudohomogeneous model actually in-
clude diffusional limits and are suitable for the specific reactor with the specific catalyst
particle size for which the data was extracted. Such pseudohomogeneous models do not
account explicitly for the catalyst packing of the reactor. On the other hand, heteroge-
neous models account for the catalyst explicitly by considering the diffusion of reactants
and of products through the pores of the catalyst pellet.

In this section we refer to the same industrial reactor as in 7.5.1, with its data given
on p. 508. Further reactor specifications and catalyst-bed properties of this plant are as
follows.

Reactor specifications and catalyst-bed properties

Reactor diameter DR 1.95 m
Catalyst bed depth LB 1.70 m
Catalyst bulk density ρC 2.146.27 kg(cat)/m3

Catalyst particle diameter DP 4.7 · 10−3 m

Catalyst mean pore radius rP 2400 Ȧ
Catalyst porosity ε 0.35 dimensionless
Catalyst tortuosity factor τ 4.0 dimensionless
Reactor inlet pressure PT 2.4 bar
Reactor inlet temperature T 922.59 K

The apparent kinetic data as discussed in the previous section is given in terms of the
dimensionless frequency factors Ai and the activation energy Ei, measured in kJ/kmol
with

ki = eAi−Ei/(RG·T ) (7.183)
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for each of the six reactions in the plant as follows.

Frequency factors and activation energies of the apparent rates of
reactions and the frequency factors of the intrinsic rates

in equation (7.183)

Reaction Ai intrinsic Ai apparent Ei, apparent and intrinsic

(1) 0.8510 –0.0854 90891.40
(2) 14.0047 13.2392 207989.23
(3) 0.5589 0.2961 91515.71
(4) 0.1183 –0.0724 103996.71
(5) –3.2100 –2.9344 65723.34
(6) 21.2423 21.2402 73628.40

The set of constants in columns 3 and 4 above are not intrinsic rate constants. They can,
however, be used as starting values or as the initial guess in an iterative scheme to obtain
kinetics that are suitable for the heterogeneous model.

The heterogeneous model of this section is used to extract the intrinsic kinetic con-
stants from the industrial data. The iteration scheme to find these constants is as follows.

1. The rate constants of the pseudohomogeneous model are used as starting values
or the initial guess in the heterogeneous model. The results obtained from the
heterogeneous model with these settings will show lower conversion (as is to be
expected) when compared with the results of the actual industrial plant and of the
pseudohomogeneous model simulation.

2. For components resulting from a single reaction, such as styrene, benzene, toluene,
and carbon dioxide, the molar flow rates from the industrial reactor are divided by
the corresponding rates obtained from the heterogeneous model and multiplying
factors are established for the respective four reactions.

3. The remaining two rate constants are multiplied by suitable factors to give the best
match between the heterogeneous model and the industrial data, or equivalently,
the data obtained from the pseudohomogeneous model.

4. The rate equations are then multiplied by the respective factors and the program
is restarted.

5. The new results are again compared with the industrial ones and new multiplying
factors are set.

6. The above five steps are repeated until the results for the heterogeneous model are
very closely agreeing with the industrial data.

The intrinsic frequency factors Ai from this iterative procedure are listed in the second
column of the previous table as ‘Ai intrinsic’. The results from the heterogeneous model
with these intrinsic rates and the industrial data is as follows where MFR denotes the
Molar Flow Rate, PE is the exit pressure in bar and TE the exit temperature in K.
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Results of the heterogeneous model with the intrinsic rate constants
(found iteratively) and the output data of the industrial reactor

Industrial reactor Heterogeneous model
MFR Conversion % MFR Conversion %

Ethylbenzene 19.45 47.25 19.29 47.45
Steam - - 447.32 1.26

MFR Yield % MFR Yield %

Styrene 15.57 40.41 15.53 40.71
Benzene 1.50 3.77 1.64 4.12
Toluene 1.03 3.12 2.07 3.17

PE 2.32 bar 2.382 bar
TE 850.0 K 851.1 K

The final table of this section shows the corresponding exit effectiveness factors, the
apparent rates of reactions of the components at the exit, and the intrinsic rates.

Values of the effectiveness factors and the apparent and intrinsic rates of
consumption of components by individual and overall reactions

Effectiveness factor Apparent rate (×104) Intrinsic rate (×104)

Reaction (1) 0.37 2.89 7.81
Reaction (2) 0.85 0.55 0.65
Reaction (3) 0.87 1.23 1.41
Reaction (4) 0.95 1.25 1.32
Reaction (5) 1.17 0.81 0.695
Reaction (6) 1.06 2.07 1.95

Ethylbenzene 0.47 4.67 9.88
Styrene 0.37 –2.89 –7.81
Benzene 0.84 –0.55 –0.65
Toluene 0.87 –1.23 –1.41
Methane 0.58 –0.42 –0.72
Ethylene 1.01 0.079 0.078
Hydrogen 0.29 –8.66 -30.08
Steam 0.197 4.13 20.964
Carbon monoxide 0.000488 0.0083 17.01
Carbon dioxide 1.06 –2.07 –1,95

The effectiveness factors for the reactions and the components are changing along the
length of the reactor. The data above shows the effectiveness factors and rates at the
exit. Here the effectiveness factor of a component is computed from the rate of its con-
sumption at the exit. For components which are formed in a single reaction and are not
involved in any other reactions, such as styrene, benzene, toluene and carbon dioxide, the
effectiveness factor is determined by the effectiveness factor of their reaction, i.e., by the
reactions (1) to (3) and (6). Note that for most of the reactions (except for reactions (5)
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and (6) with η slightly greater than 1), the intrinsic rates of reactions are higher than the
apparent rates. The results of our table show that the η values of the six main reactions
are not very far from unity. This justifies our procedure that is based on correcting the
frequency factors of diffusional limitations while keeping the activation energies unal-
tered. Thus the heterogeneous model helps to separate the effectiveness factors from the
actual rate equations, thereby allowing us to extract intrinsic kinetics. This technique is
helpful when no intrinsic kinetics data is available, but it requires sufficient industrial
data to start the numerical calculations.

Numerically the heterogeneous model involves IVPs for the reactor and BVPs for the
catalyst pellets. These problems can be solved as before via MATLAB.

Exercises for 7.5
1. Develop the heterogeneous model of this section and a MATLAB algorithm

for its numerical solution. Verify your work for the supplied industrial data.
2. Use your MATLAB code of problem 1 to investigate the effect of

(a) the feed flow rate;
(b) the feed concentration of ethylbenzene;
(c) the feed temperature; and
(d) the feed pressure, respectively,
on the styrene yield and productivity.

Conclusions

In this section we have applied the modeling and numerical techniques of this book
to simulate and extract intrinsic kinetic parameters from industrial data for an
industrial reactor that produces styrene.

7.6 Production of Bioethanol

We describe the biochemical process of fermentation used to produce ethanol.

In this fermentation process, sustained oscillations have been reported frequently
in experimental fermentors and several mathematical models have been proposed. Our
approach in this section shows the rich static and dynamic bifurcation behavior of fer-
mentation systems by solving and analyzing the corresponding nonlinear mathematical
models. The results of this section show that these oscillations can be complex leading
to chaotic behavior and that the periodic and chaotic attractors of the system can be
exploited for increasing the yield and productivity of ethanol. The readers are advised
to investigate the system further.

7.6.1 Model Development

In microbial fermentation processes, biomass acts as the catalyst for substrate conversion
and at the same time it is produced by the process itself. This is a biochemical example of
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autocatalysis. One can classify the biofermentation models according to their description
or assumptions for the biomass.

Segregated or corpuscular models regard biomass as a population of individual cells.
Consequently, the corresponding mathematical model is based on statistical equations.
Such models are valuable for describing the variations in a given populations such as the
age distribution amongst the cells. This approach is also useful for describing stochastic
events, in which case probability and statistics are applied.

If there is no need for describing the variations of the biomass population or the
stochastic events and provided that the number of cells under consideration is large,
then continuum or unsegregated models are more convenient. Continuum models regard
biomass as a chemical complex in solution or as a multiphase system without concentra-
tion gradients within the separate phases. The description of nonstochastic interactions
between the biomass and its environment by continuum models equates to describing
them by segregated models in the case of large populations with a normal variance dis-
tribution.
Continuum models can be subdivided into unstructured and structured models. Unstruc-
tured models regard the biomass as one compound which does not vary in composition
under environmental changes. Structured models regard the biomass as consisting of at
least two different compounds and they describe the interactions between the various
constituting compounds, the biomass and the environment. It is interesting to study
the occurrence of oscillations in anaerobic cultures experimentally and theoretically. Be-
sides, these oscillations give us a perfect tool for in-depth studies of the microorganism
physiology.

An unsegregated-structured two-compartment representation considers biomass as
being divided into two compartments, the K-compartment and the G-compartment.
These two compartments contain specific groupings of macromolecules, namely the K-
compartment is identified with RNA, carbohydrates and monomers of macromolecules,
while the G-compartment is identified with proteins, DNA and lipids.

The oscillatory behavior of fermentors can be investigated utilizing such a model.
Here the synthesis of a cellular component that is essential for both growth and product
formation depends nonlinearly on the ethanol concentration. Hence the inhibition by
ethanol does not directly influence the specific growth rate of the culture, but it affects
it indirectly instead.

We use a two-compartment model in this section. One of the most widely used models
for fermentation processes is the maintenance model in which the substrate S consump-
tion rS is expressed in the form

rS =
1

YSX
· rX + mS · CX . (7.184)

In (7.184) the first term on the right-hand side accounts for the growth rate and the
second term accounts for the maintenance. Here the growth term and the maintenance
factor are used in their classical definitions.
The rate of growth of the biomass is given by

rX = µ · CX . (7.185)
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The relatively simple unsegregated-structured model is based on an internal key com-
pound e of the biomass. The activity of this compound is expressed in terms of the
concentrations of the substrate CS , of the product CP and of the compound Ce of the
biomass itself. Thus the rate of formation of the key compound e is given by

re = g1(CS) · g2(CP ) · Ce (7.186)

where the substrate dependence function g1(CS) is given by a Monod21 type relation of
the form

g1(CS) =
CS

KS + CS
. (7.187)

By checking the model against experimental data, the relation between the ethanol con-
centration CP and the ethanol dependence function g2(CP ) is found to be a second order
polynomial

g2(CP ) = k1 − k2 ·CP + k3 · C2
P . (7.188)

This four dimensional model accounts for four concentrations, namely CS of the
substrate S, CP of the product ethanol P , CX of the microorganisms or the biomass X,
and Ce of the internal key compound e. We can modify the dynamic model that represents
the concentrations of the components X, S, and P together with the mass ratio of the
components e and X. To do so we define the dimensionless fraction E = Ce/CX of the
biomass that belongs to component e and the maximum possible specific growth rate
µmax that would be obtained if E = 1, i.e., if the whole biomass were active. The specific
growth rate can be written as µ = CS ·E · µmax/(KS + CS). With these settings the
dynamic model is described by the following set of four ODEs:

dE

dt
=

(
k1

µmax
− k2

µmax
· CP +

k3

µmax
· C2

P

)
· µ − µ · E , (7.189)

dCX

dt
= µ · CX + D · (CX0 − CX) , (7.190)

dCS

dt
= −

(
1

YSX
· µ + mS

)
·CX + D · (CS0 − CS) , (7.191)

dCP

dt
=

(
1

YPX
· µ + mP

)
·CX + D · (CP0 − CP ) . (7.192)

We point out that the balance equation (7.189) for the mass ratio of component e and
X expressed via E is independent of the type of reactor used. It states that the rate of
formation of E represented by the term(

k1

µmax
− k2

µmax
· CP +

k3

µmax
· C2

P

)
· µ

must be at least the same as the dilution rate of E represented by the term µ · E in
equation (7.189). In the equations (7.189) to (7.192) we set µmax = 1 hr−1 for simplicity.

21Jaques Monod, French biochemist, 1910-1976
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If needed, equation (7.189) can be replaced by a differential equation for the component
e concentration, namely

dCe

dt
= (k1 − k2 · CP + k3 ·C2

P ) · CS · Ce

KS + CS
+ D · (Ce0 − Ce) (7.193)

to get the same results. The dilution rate D is equal to q/V where q denotes the constant
flow rate into the fermentor and V its active volume. In our examples we assume that
both q and V are constant.

For steady-state solutions, the set of the four differential equations (7.189) to (7.192)
(or equivalently the DEs (7.190) to (7.193)) reduces to a set of four coupled rational
equations in the unknown variables E (or e), CX , CS , and CP . To solve the corresponding
steady-state equations, we interpret the equations (7.189) to (7.192) as a system of four
coupled scalar homogeneous equations for the right-hand sides of the DE system in the
form F (E, CX, CS , CP ) = 0. The resulting coupled system of four scalar equations is best
solved via Newton’s22 method after finding the Jacobian23 DF by partial differentiation
of the right-hand-side functions fi of the equations (7.189) to (7.192). I.e.,

DF =

⎛⎜⎝ grad(f1(E, CX , CS, CP ))
...

grad(f4(E, CX , CS, CP ))

⎞⎟⎠
for the gradients

grad(fi(E, CX , CS, CP )) =
(

dfi/dE, dfi/dCX, dfi/dCS, dfi/dCP

)
of the four component functions fi of F = (f1, . . . , f4)T on the right-hand sides of the
DEs (7.189) to (7.192).

Note that in case of multiplicity different starting values for E, CX , CS , and CP

will lead to different stable steady states. MATLAB itself does not include a built-in
Newton method solver since the main work is to find the Jacobian DF by partially
differentiating the component functions fi explicitly by hand for each separate nonlinear
system of equations.

The dynamic behavior of the model consisting of the four ODEs in (7.189) to (7.192)
can be found using a suitable MATLAB IVP solver ode... as previously outlined.
The four-dimensional model simulates the oscillatory behavior of an experimental con-
tinuous fermentor quite successfully in the high feed sugar concentration region.
We will use the model to explore the complex static/dynamic bifurcation behavior of
this system in the two-dimensional D−CS0 parameter space and show the implications
of bifurcation phenomena on substrate conversion and ethanol yield and productivity.
The system parameters for the specific fermentation unit under consideration are given
below.

22Isaac Newton, British physicist and mathematician, 1643-1727
23Carl Jacobi, German mathematician, 1801-1851
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Parameter Value Parameter Value Parameter Value

k1 hr−1 16.0 k2 m3/(kg · hr) 0.497 k3 m6/(kg2 · hr) 0.00383

mS hr−1 2.166 mP hr−1 1.1

YSX (dim.less) 0.0244498 YPX (dim.less) 0.0526315 KS kg/m3 0.5

CXO kg/m3 0 CPO kg/m3 0 CeO kg/m3 0

7.6.2 Discussion of the Model and Numerical Solution

The parameters of this model offer a physiologically adequate description of the growth
and fermentation of Zymomonas mobilis. Furthermore, this model is highly consistent
with experimental fermentor data. Specifically, it predicts the response of the steady state
RNA content of the biomass to elevated ethanol concentrations qualitatively. The effect
of an elevated ethanol concentration on the fermentation kinetics resembles the effect of
elevating the temperature of the fermentation broth.

The oscillatory behavior of product-inhibited cultures cannot simply be described by
a common inhibition term in the equation for the biomass growth. A better description
must include an indirect or delayed effect of the product ethanol on the biomass growth
rate as indicated in experiments. The decay rate µmax was introduced to account for the
accumulation of the inhibitory product pyruvic acid. Other more mechanistic, structured
models can be formed that relate to the internal key-compound e. In these, the inhibitory
action of ethanol is accounted for in the inhibition of the key-compound e formation.
Mathematically, however, these two model descriptions are equivalent, except that the
key-compound e is washed out as a part of the biomass in continuous cultures and the
rate constant µmax does not vary. Our proposed indirect inhibition model provides a
good qualitative description of the experimental results shown in Figure 7.25.

Comparison of experimental (—) and simulated (– –) results
Figure 7.25

The quantitative description, however, is not optimal, as it was necessary to adapt
some parameters values for describing the oscillations at different dilution rates. A quan-
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titatively more adequate model must probably also account for the inhibition of the total
fermentation including the growth rate independent metabolisms and the dying-off of
the biomass at long contact times and high ethanol concentrations.

7.6.3 Graphical Presentation

Our model consists of the four ordinary differential equations (7.189) to (7.192) in the
dynamics case and of the corresponding set of coupled rational equations in the static
case. These two sets of equations can be solved and studied via MATLAB in order to
find the system’s steady states, the fermentor’s dynamic behavior and to control it.
In the design problem, the dilution rate D = q/V is generally unknown and all other
input and output variables are known. In simulation, usually D is known and we want
to find the output numerically from the steady-state equations. For this we can use the
dynamic model to simulate the dynamic behavior of the system output. Specifically, in
this section we use the model for simulation purposes to find the static and dynamic
output characteristics, i.e., static and dynamic bifurcation diagrams, as well as dynamic
time traces.
As usual in this industrial problems chapter, we do not include actual MATLAB programs
for this model. The readers should, however, be well prepared to create such programs
and try to verify our included graphical results.

The bifurcation analysis, i.e., the analysis of the steady states and the dynamic solu-
tions is carried out for the dilution rate D as the bifurcation parameter. We have chosen
D as the bifurcation parameter since the flow rate q = V/D is directly related to D and
q is most easily manipulated during the operation of a fermentor.
Figure 7.26 is a two-parameter continuation diagram of D versus CS0, showing the static
limit points. The one parameter bifurcation diagram is constructed by taking a fixed value
of CS0 and constructing the D bifurcation diagram, then taking a fixed values of D and
constructing the CS0 bifurcation diagram. These constructions are carried out by using a
continuation technique. Figure 7.26(B) is an enlargement of dotted box of Figure 7.26(A).

Bifurcation diagram
Figure 7.26
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In order to evaluate the performance of the fermentor as an ethanol producer, we
calculate the conversion of substrate, the product yield of ethanol and its productivity
according to the following simple relations:

Substrate (sugar) conversion: XS =
CS0 − CS

CC0
;

Ethanol yield: YP =
CP − CP0

CS0
;

Ethanol productivity of the fermentor: PP = CP · D .

The latter measures the production rate per unit volume in kg/(m3 · hr). For oscillatory
and chaotic cases the average conversion XS , the average yield Y P , and the average
production rate PP , as well as the average ethanol concentration CP are also computed.
They are defined as

XS =
∫ τ

0

XS
dt

τ
, Y P =

∫ τ

0

YP
dt

τ
, PP =

∫ τ

0

PP
dt

τ
, and CP =

∫ τ

0

CP
dt

τ
,

respectively. Here the value of τ is chosen as the length of one period of oscillation in the
periodic case, and in the chaotic case, τ is taken large enough to reasonably represent
the “average” behavior of the chaotic attractor.

As before we use the dilution rate D as the bifurcation parameter for varying values
of CS0. The role of these two variables can easily be exchanged to achieve similar results
with CS0 as the bifurcation parameter for varying dilution rates D.

Our first case involves CS0 = 140 kg/m3:
Figure 7.25 compares the experimental results for this data, drawn in a solid curve, with
the simulated results in dashed form. Further details of the static and dynamic bifurcation
behavior of this system are shown in Figure 7.27.
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Bifurcation diagram at CS0 = 140 kg/m3 with D as the bifurcation parameter
Steady state branch: — stable; – – unstable
Periodic branch: • • • stable; � � � average of oscillations

Figure 7.27
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Figure 7.27(A) shows the bifurcation diagram for the substrate concentration CS with
vertical demarcations between three different regions. The static bifurcation diagram is
an incomplete S shape hysteresis type curve with a static limit point (SLP) at the very low
value of D = 0.0035 hr−1, see Figure 7.27(B). The dynamic bifurcation shows a Hopf24

bifurcation point (HB), i.e., the value of D at which the fermentor starts to oscillate for
DHB = 0.05 hr−1 with a periodic branch emanating from it as shown in Figures 7.27(C)
and (D). The region in the neighborhood of the static limit point is enlarged in Figure
7.27(B). The periodic branch emanating from HB terminates homoclinically with infinite
period when it touches the saddle point very close to the SLP at DHT = 0.0035 hr−1.
Figure 7.27(C) is the bifurcation diagram for the ethanol concentration . Figure 7.27(C)
shows that the average ethanol concentrations for the periodic attractors are higher than
those corresponding to the unstable steady states. Figures 7.27(D) and (E) show the
bifurcation diagrams for the ethanol yield YP and the ethanol production rate PP and
the average yield and production rate for the periodic branch are depicted by diamonds
�.

Figure 7.28 shows the period of oscillations as the periodic branch approaches the
homoclinical bifurcation point; the period tends to infinity indicating homoclinical ter-
mination of the periodic attractor at DHT = 0.0035 hr−1.

Period changes with D at CS0 = 140 kg/m3

Figure 7.28

Region 1 in Figures 7.27(A) and (B) with D < DHT contains three point attractors. It is
characterized by the fact that two of the attractors are unstable and only the steady state
with the lowest conversion is stable. The highest (almost complete) conversion occurs in
this region for the upper stable steady state, with low CS concentrations depicted in
Figure 7.27(A) and likewise with high CP concentrations in Figure 7.27(C). This steady
state also gives the highest ethanol yield at around 0.51, see Figure 7.27(D). On the other

24Eberhard Frederich Ferdinand Hopf, Austrian mathematician, 1902-1983
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hand, this region has the lowest ethanol production rate according to Figure 7.27(E). This
is due to the low values of the dilution rate D. For a given fermentor with active volume
V , this corresponds to a very low flow rate.
Region 2 of Figure 7.27 with DHT < D < DHB is characterized by a unique periodic at-
tractor surrounding the unstable steady middle state. The periodic attractor starts at the
HB point and terminates homoclinically at a point very close to SLP as shown in Figures
7.27(A) and 7.27(B). As shown in Figures 7.27(C) to (E), in this region the average of the
oscillations for the periodic attractor give us higher values for CP , Y P and P P than the
corresponding steady states do. This makes the operation of the fermentor under periodic
conditions more productive because the fermentor will give higher ethanol concentrations
by achieving a higher sugar conversion. Comparing the values of the static branch and
the average of the periodic branch in this region at D = 0.045 hr−1 for example shows
the following percentage improvements: For CP : 9.34%, for XS : 9.66%, for Y P : 8.67%,
and for PP the improvement amounts to 9.84%. Therefore, the best production policy
for ethanol concentration, yield and productivity in this case is to operate the fermen-
tor at the periodic attractor. In general, there is a trade-off between concentration and
productivity, which requires an economic optimization study to determine the optimum
value for D.

This phenomenon of increased conversion, yield and productivity through deliber-
ate unsteady-state operation of a fermentor has been known for some time. Deliberate
unsteady-state operation is associated with nonautonomous or externally forced systems.
The unsteady-state operation of the system (periodic operation) is an intrinsic character-
istic of this system in certain regions of the parameters. Moreover, this system shows not
only periodic attractors but also chaotic attractors. This static and dynamic bifurcation
and chaotic behavior is due to the nonlinear coupling of the system which causes all of
these phenomena. And this in turn gives us the ability to achieve higher conversion, yield
and productivity rates.
Physically this is associated with an unsymmetric excursion of the periodic or chaotic
dynamic trajectory above and below the unstable steady state as depicted in Figure 7.29.
Figure 7.29 shows that the excursion above the unstable steady state for both the pe-
riodic attractor in Figure 7.29(A) and for the chaotic attractor in Figure 7.29(B). The
upwards excursions are much higher than the downwards excursions that go below the
unstable steady state. More importantly, they remain for a longer time above than below
the unstable steady-state level, giving us on average a higher yield.
We notice that the conversion, yield and productivity are very sensitive to changes in the
neighborhood of a HB point. This sensitivity is not only qualitative regarding the birth
of oscillations for D < DHB , but also quantitative as seen by comparing the conversion,
yield and productivity for D > DHB and their average values for D < DHB . A further
decrease for values of D beyond DHB causes the average values of conversion, yield and
productivity to increase, but not as sharply as in the neighborhood of DHB .

Region 3 of Figure 7.27 is characterized by having a unique stable steady state with
conversion, yield and productivity characteristics very close to those of the unstable
steady state of region 2.
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Unequal excursions of the oscillations around the unsteady state
(A) Periodic attractor at CS0 = 140 kg/m3 and D = 0.02 hr−1

(B) Chaotic attractor at CS0 = 140 kg/m3 and D = 0.045842 hr−1

Figure 7.29

Next we study the system when CSO = 149 kg/m3.
Figure 7.30 shows bifurcation diagrams with D as the bifurcation parameter.
The bifurcation diagram of Figure 7.30 again is an incomplete S shaped hysteresis type
curve with the static limit point SLP shifted to the much higher value of DSLP =
0.051 hr−1 when compared with the previous case with CSO = 140 kg/m3. A unique
periodic attractor exists between the Hopf bifurcation point at DHB = 0.0515 hr−1 and
DSLP , followed by a region of bistability characterized by stable periodic and point at-
tractors between DSLP and the first period-doubling point at DPD = 0.041415hr−1. In
this region each of the two attractors has its own domain of attraction. This has impor-
tant practical implications, not only with regards to start-up, but also with respect to
feasible control policies. The amplitudes of the oscillations increase as D increases, see
Figure 7.30(A). However, differing from the previous case, prior to HT a complex period
doubling PD scenario starts.

Period doubling occurs at DPD , as shown in the Poincaré diagram in Figure 7.31(A)
and the period versus D diagram in Figure 7.31(B).
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Bifurcation diagram at CS0 = 149 kg/m3 with D as the bifurcation parameter
Steady state branch: — stable; – – unstable
Periodic branch: • • • stable; ◦ ◦ ◦ unstable; � � � average of oscillations

Figure 7.30
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(A) One dimensional Poincaré diagram at CS0 = 149 kg/m3

(B) Period change with D at CS0 = 149 kg/m3

Figure 7.31
At DPD the periodicity of the system changes form period one (P1) to period two (P2).
Figure 7.31(A) shows that as D decreases further, the periodic attractor P2 grows in size
till it touches the middle unstable saddle-type steady state and the oscillations disappear
homoclinically at DHT = 0.041105 hr−1 without completing the Feigenbaum25 period-
doubling sequence to chaos.
Region 1 of Figure 7.30 is characterized by having three steady states. Two of these are
unstable and only one steady state is stable. It has a very high conversion and is depicted
in the lowest branch of Figure 7.30(A) and in the topmost branch of Figure 7.30(B). The
conversion rate Ce shows a nonmonotonic behavior. It initially increases as D decreases
until it reaches a maximum value of 0.2 kg/m3 at D = 0.025 hr−1. For smaller values
of D it decreases monotonically towards zero. This nonmonotonic behavior of Ce with
respect to D is due to the nonlinear term g2(CP ) = k1 − k2 · CP + k3 · C2

P , for in this
region g2 is nonmonotonic in CP . This can be seen for the data k1 = 16, k2 = 0.497, and
k3 = 0.00383, given on p. 519, by differentiating g2(CP ) = 16− 0.497 ·CP +0.00383 ·C2

P

with respect to CP and finding that g′2(64.88) = 0, i.e., that g2 has its minimum in region
1 and is therefore nonmonotonic here.
Region 2 of Figure 7.30(A) with DPD < D < DHB is characterized by bistability which
calls for special considerations during start-up and in control. In this region there is a
very high conversion stable static branch together with a stable period two branch.

25Mitchell Jay Feigenbaum, USA physicist, 1944-
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Region 3 with DSLP < D < DHB is also characterized by bistability. Here there is a
very high conversion stable static branch as well as a stable periodic branch. Again it
is obvious that the average values XS , Y P and P P for the periodic branch are higher
than the corresponding unstable steady-state values. Comparing the values of the static
branch and the average of the periodic branch at D = 0.045 hr−1 in region 3 for example
shows the following percentage improvements: For CP : 13.02%, for XS : 13.33%, for Y P :
13.02%, and for PP : 13.577% according to Figures 7.30(B), (D) and (E).
The very narrow region 4 of Figure 7.30(A) with DSLP < D < DHB has a unique pe-
riodic attractor with period one which emanates from the HB point at which the stable
static branch loses its stability and becomes unstable as D decreases, see Figure 7.30(A).
Region 5 with D > DHB has a unique stable static attractor.

Our last case uses CS0 = 200 kg/m3.
In this case the feed sugar concentration is very high. Figures 7.32(A) to (D) show the
static and dynamic bifurcation diagrams with the dilution rate D as the bifurcation pa-
rameter and an enlargement of the chaotic region.

Bifurcation diagram at CS0 = 200 kg/m3 with D as the bifurcation parameter
Steady state branch: — stable; – – unstable
Periodic branch: • • • stable; ◦ ◦ ◦ unstable; � � � average of oscillations

Figure 7.32

This case is characterized by fully developed chaos in region 2. This region is the charac-
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teristic region for this case due to the presence of period doubling to the fully developed
chaos into two bands. The developmental sequence is from P1 → P2 → P4 → P8 →
• • • → fully developed chaos. This terminates homoclinically at DHT = 0.045835 hr−1

according to Figure 7.32(B). The one dimensional Poincaré26 diagram in Figure 7.33(A)
is enlarged in Figure 7.33(B), where the two bands of chaos and the period-doubling
sequence are clearly shown.

Dynamic characteristics at CS0 = 200 kg/m3 and D = 0.04584 hr−1

(A) One dimensional Poincaré diagram
(B) Enlarged chaos region from plot (A)
(C) Return point histogram

Figure 7.33

26Jules Henri Poincaré, French mathematician, 1854-1912
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Figure 7.33(C) is the return point histogram with the Poincaré surface drawn at CX =
1.55 kg/m3 for variable CS values at D = 0.04584 hr−1.

Remark

The reader will have noticed by now that we have introduced many new terms
such as Hopf bifurcation point, static limit point, Feigenbaum sequence, Poincaré
diagram and so forth in this section. These terms have never occurred before in
this book and they were left undefined in this section.
The above terms all help to classify complex bifurcation phenomena such as those
encountered in this section on fermentors for bioethanol.
This book thus far has been able to deal only with the most simple bifurcation phe-
nomena. Unfortunately there is not sufficient room in an undergraduate numerical
methods book or class for engineers to give a full account of bifurcation theory.
We have saved these complicated terms and phenomena deliberately for the very
last section of our introductory book to whet the reader’s appetite for the fascinat-
ing subject of mathematical chaos. Any of the texts and papers on multiplicity
and bifurcation in our Resources appendix can serve as a guide into these phe-
nomena, if the reader desires to learn more. In addition there is an appendix on
multiplicity and bifurcation at the end of the book that explains these phenomena
further.

Exercises for 7.6

1. Find the steady states of the fermentor given by the model (7.189) to (7.192)
using Newton’s method with a wide variety of starting values for the data
from the given plots that exhibits multiplicity.

2. Perform a bifurcation analysis using the feed concentration CS0 as the bifurca-
tion parameter for the two dilution rates D = 0.05 hr−1 and D = 0.045 hr−1.

3. By using our model, find regions of the parameters with chaotic behavior.

Conclusions

We have used a model for anaerobic fermentation in this section to simulate the
oscillatory behavior of an experimental fermentor. Both the steady state and the
dynamic behavior of the fermentor with Zymomonas mobilis were investigated. The
four ODE model simulates the fermentor quite well. Further studies have shown
that this model is suitable for scaling-up and for the design of commercial fermen-
tors. Our model has shown the rich static and dynamic bifurcation characteristics of
the system, as well as its chaotic ones. All these characteristics have been confirmed
experimentally and the oscillatory/chaotic fermentor model is highly suitable for
design, optimization and control purposes.
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Additional Problems for Chapter 7

1. Develop a model for an industrial riser reactor FCC unit. Collect the necessary
data and develop the MATLAB code needed to design the unit from your model.

2. Develop a model for an authothermic circulating fluidized-bed (CFB) reformer for
the production of hydrogen from heptane and a MATLAB code for the design of
the unit.

3. Develop a model for a packed-bed immobilized fermentor and the MATLAB code
for the design of the unit.



Appendix 1:

Linear Algebra and Matrices

Why this appendix ?

When we glance across the main subjects areas, methods, algorithms and codes of
this book, we see the following key elements:
We have encountered several scalar equations, some of which are transcendental (Chapter
3), some involve matrices (Chapter 6); but most equations and models are differential in
nature (Chapters 4, 5, 6, 7), involving time or location dependent functions for dynamic
models of various chemical and biological engineering plants and apparatus.

Why then is there no appendix on differential equations?
A first course on DEs typically studies how to solve equations of the form y′(t) =
f(t, y(t)). Such a course develops methods to find explicit solutions for specific (theo-
retically solvable) classes of differential equations and besides, it studies the behavior of
solutions of DEs for which there are or are not any known explicit solution methods.
In a nutshell, such a course looks at DEs and their solutions both quantitatively and
qualitatively.
Unfortunately, the number of classes of DEs with known explicit solutions is rather small.
Worse, these theoretically solvable DEs do not often appear, if at all, in practical models
such as are needed by the chemical and biological engineer, except for linear DEs which
we will treat later in this appendix.

How does one handle DEs that have no known explicit algebraic nor formulistic
solution such as the ones of this book? How can they even be solved?
The fundamental difficulty in solving DEs explicitly via finite formulas is tied to the fact
that antiderivatives are known for only very few functions f : R → R. One can always
differentiate (via the product. quotient, or chain rule) an explicitly given function f(x)
quite easily, but finding an antiderivative function F with F ′(x) = f(x) is impossible
for all except very few functions f . Numerical approximations of antiderivatives can,
however, be found in the form of a table of values (rather than a functional expression)
numerically by a multitude of integration methods such as collected in the ode... m
file suite inside MATLAB. Some of these numerical methods have been used for several
centuries, while the algorithms for stiff DEs are just a few decades old. These codes are

533
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very reliable and easy to use in MATLAB.
Therefore, solving a DE by obtaining a table of approximate values for the antiderivative
F of a given function f is a cinch nowadays. While theoretical studies of DEs helps us
to understand them, it does not help with actually solving DEs for applied problems.

Why do we need to understand Linear Algebra and Matrices for solving DEs.
To be successful in solving applied and mostly differential problems numerically, we must
know how to implement our physico-chemical based differential equations models inside
standard numerical ODE solvers. The numerical ODE solvers that we use in this book
are integrators that work only for first-order differential equations and first-order systems
of differential equations. [Other DE solvers, for which we have no need in this book, are
discretization methods, finite element methods, multigrid methods etc.]
We have shown in Section 1.2, p. 35ff and Section 5.2, p. 304ff and p. 314ff, for example,
how to transform and reduce high-order systems of several coupled DEs to first-order
systems of DEs so that we can apply the standard numerical integrators. The reader
should be very familiar with this reduction process to first-order systems.

Note that systems of first-order DEs have the matrix/vector form

y′(t) = A(t, y(t))

with a vector valued function y : R → Rn, such as the equations (1.8), (5.66), and (5.71)
on the above mentioned pages. For example, the right-hand-side function A(ω, y(ω)) of
the first-order differential equation that is equivalent to equation (5.71) on p. 315 is de-
rived from two coupled second-order DEs. This is implemented inside our corresponding
m-file pellet4runfwd.m by the following lines of code involving vectors in R4.

function dydx = frhs4(x,y,phi,bt,ga,Sh,Nu)

dydx = [ y(2,:);

phi^2*exp(ga*(1-1./y(3,:))).*y(1,:);

y(4,:);

-bt*phi^2*exp(ga*(1-1./y(3,:))).*y(1,:) ];

Further complications of the DE (5.71) arise due to the boundary conditions which re-
quire us to define a “singular term matrix” at ω = 0, see p. 315 for more details.

To use numerical integrators for solving ODEs thus requires us to handle vectors and
matrices throughout the implementation process.
More generally, our readers need to think vectorially and to envision matrices, linear
concepts, and matrix and vector notation throughout this book and, we believe, in any
other project that involves numerical computations.
Specifically, in Chapter 3 we create a surface for a transcendental function f(α, y) as an
elevation matrix whose zero contour, expressed numerically as a two row matrix table
of values, solves the nonlinear CSTR bifurcation problem. In Chapter 6 we investigate
multi-tray processes via matrix realizations; in Chapter 5 we benefit from the least squares
matrix solution to find search directions for the collocation method that helps us solve
BVPs and so on. Matrices and vectors are everywhere when we compute numerically.
That is, after the laws of physics and chemistry and differential equations have helped
us find valid models for the physico-chemical processes.
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Therefore, we include this short and modern appendix on matrices and linear algebra.
Modern in the sense that determinants play no role.

Our list of topics is as follows:

(A) Basic Notions of Linear Algebra

(B) Row Reduction and Systems of Linear Equations

(C) Subspaces, Linear (In)dependence, Matrix Inverse and Bases

(D) Basis Change and Matrix Similarity

(E) Eigenvalues and Eigenvectors, Diagonalizable Matrices

(F) Orthonormal Bases, Normal Matrices and the Schur Normal Form

(G) The Singular Value Decomposition and Least Squares Problems

(H) Linear Differential Equations

(A) Basic Notions of Linear Algebra

Linear algebra deals with finite dimensional real or complex spaces, called Rn or Cn for
any positive integer n. A typical n-vector x ∈ Rn or Cn has the form of a row

x =
(

x1 x2 . . . xn

)
where each xi is a real or complex number,

or the form of a column

x =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ =
(

x1 x2 . . . xn

)T where each xi is a real or complex number .

Vectors of the same shape (same dimension n), both rows or both columns, can be
added if they belong to the same space by adding the corresponding entries such as
(1, 3, −4) + (3, 0, 17) = (4, 3, 13) ∈ R3. Vectors can be stretched, i.e., multiplied by
a constant such as in −2·(1, 7, −3.1, 2−i, 1.4)T = (−2, −14, 6.2, −4+2i, −2.8)T ∈ C5.

Linear algebra studies linear functions f : Rn → Rm defined by the property that

f(αx + βy) = αf(x) + βf(y) for all vectors x and y and all scalars α and β ,

or equivalently that

f(x+y) = f(x)+f(y) and f(αx) = αf(x) for all vectors x and y and all scalars α .
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The dot product of two row or column vectors x and y ∈ Rn with components xi

and yi for i = 1, ..., n is defined as

x · y =
n∑

i=1

xiyi .

With xT denoting the transposed vector of x, i.e., the row vector for x if x is a
column vector and vice versa, the dot product can be visualized in the form of a matrix
product as a row times a column vector

x·y = xT y =
(

x1 x2 . . . xn

)
⎛⎜⎜⎜⎝

y1

y2

...
yn

⎞⎟⎟⎟⎠ = x1y1 + x2y2 + ... + xn−1yn−1 + xnyn .

This concept allows us to express every linear function f : Rn → Rm as a constant
matrix times vector product. Here a matrix A ∈ R

m,n is an m by n rectangular array of
numbers aij in R or C where m counts the number of rows in A, while n is the number
of A’s columns.

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am−1,1 am−1,2 . . . am−1,n

am1 am2 . . . amn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
...

...
...

c1 c2 . . . cn

...
...

...

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
. . . r1 . . .
. . . r2 . . .

...
. . . rm . . .

⎞⎟⎟⎟⎠ .

An m by n matrix A can be expressed three ways: in terms of its entries aij , where the
first index i denotes the row that aij appears in and the second index j denotes the
column; or a matrix A = Am,n can be denoted by its n columns c1, ..., cn ∈ Rm; or by
its m rows r1, ..., rm ∈ Rn as depicted above.

We define the standard unit vectors ei of Rn to be the n-vector of all zero en-
tries, except for position i which is one, such as e1 = (1, 0, 0, 0)T ∈ R4 or en−1 =
(0, 0, ..., 1, 0)T ∈ Rn in column notation. With this notation every linear function
f : Rn → Rm can be represented as a constant matrix times vector product f(x) = Ax
for

A =

⎛⎜⎜⎝
...

...
...

f(e1) f(e2) . . . f(en)
...

...
...

⎞⎟⎟⎠
m,n

where the matrix times vector product Ax is either evaluated one dot product at a time
as

Ax =

⎛⎜⎜⎜⎝
. . . r1 . . .
. . . r2 . . .

...
. . . rm . . .

⎞⎟⎟⎟⎠
⎛⎜⎝ x1

...
xn

⎞⎟⎠ =

⎛⎜⎝ r1 · x
...

rm · x

⎞⎟⎠
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or as a linear combination of the n columns f(e1) ∈ Rm of A

Ax =

⎛⎜⎜⎝
...

...
...

f(e1) f(e2) . . . f(en)
...

...
...

⎞⎟⎟⎠
⎛⎜⎝ x1

...
xn

⎞⎟⎠ = x1

⎛⎜⎜⎝
...

f(e1)
...

⎞⎟⎟⎠ + ... + xn

⎛⎜⎜⎝
...

f(en)
...

⎞⎟⎟⎠ ∈ R
m .

(B) Row Reduction and Systems of Linear Equations

One main benefit of matrices and vectors is the notational ease which their theory offers.
Explicitly written out systems of m linear equations in n unknowns xi have the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

for given coefficients aij , i = 1, ..., m, j = 1, ..., n and right-hand-side entries bk, k =
1, ..., m. This readily translates into a matrix times vector linear equation, namely

Ax =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

⎞⎟⎟⎟⎠
⎛⎜⎝ x1

...
xn

⎞⎟⎠ =

⎛⎜⎜⎜⎝
. . . r1 . . .
. . . r2 . . .

...
. . . rm . . .

⎞⎟⎟⎟⎠
⎛⎜⎝ x1

...
xn

⎞⎟⎠ =

⎛⎜⎝ b1
...

bm

⎞⎟⎠ .

Systems of linear equations can be simplified without affecting their solution by

(a) adding multiples of one equation to any other,

(b) multiplying any equation by an arbitrary nonzero constant, or

(c) interchanging any two equations.

These three legitimate operations relate to row operations performed on the aug-
mented matrix

(A | b) =

⎛⎜⎜⎜⎝
. . . r1 . . . b1

. . . r2 . . . b2

...
...

. . . rm . . . bm

⎞⎟⎟⎟⎠
that involve

(a) the addition of any multiple of an extended row ( ... ri ... | bi ) to any other,

(b) multiplying any extended row by a nonzero constant, and

(c) interchanging any two extended rows in the augmented matrix (A | b).
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The row operations (a) to (c) are performed on (A | b) until the front m by n matrix A
achieves row echelon form . In a row echelon form R of A each row has a first nonzero
entry, called a pivot , that is further to the right than the leading nonzero entry (pivot)
of any previous row, or it is the zero row.

The particular upper triangular shape of R makes the equation corresponding to its
last nonzero row have the least number of variables so that it can be solved most easily.
The remaining equations are then solved from the REF via backsubstitution from the
bottom row on up.

Columns with pivots in a REF are called pivot columns, those without pivots are
free columns. The number of pivots in a REF of a matrix A is called the rank of A.

A system of linear equations Ax = b is solvable if and only if rank(A) = rank(A | b)
or alternatively if and only if b is contained in the set of linear combinations of the column
vectors in A.
A system of linear equations Ax = b is uniquely solvable if it is solvable and if there are
as many pivots as A has columns. Otherwise there are infinitely many solutions if the
system is solvable.

In MATLAB the command A\b solves Ax = b if A is square (m = n) and the REF
of A has n pivots. We have used this command in several of the m files of Section 6.2.

(C) Subspaces, Linear (In)dependence, Matrix Inverse and Bases

A subset of Rn or Cn is called a subspace if it is closed under vector addition and vector
scaling. Typical subspaces are (1) the set of all linear combinations of a number of vectors
c1, ..., ck ∈ Rn. For

A =

⎛⎜⎜⎝
...

...
...

c1 c2 . . . ck

...
...

...

⎞⎟⎟⎠
this set of linear combinations of the ci is equal to the image im(A) = {y ∈ Rm | y =
Ax for x ∈ Rk}, i.e, to the space spanned linearly by the columns ci of A.
Another way to describe a subspace is as (2) the kernel or nullspace of a matrix Bmn ,
formally defined as ker(B) = {x ∈ Rn | Bx = 0 ∈ Rm}.

An important application of the theory of linear equations is to decide which vectors
among a given set of subspace generating vectors are essential for the given subspace,
and which can replicate the action of others and therefore are not needed.
Such minimal spanning sets of vectors for a given subspace are called a basis for the
subspace. The vectors of a basis for a subspace are also a maximally linearly independent
set of vectors. Here we call a set of k column vectors ck in Rn linearly independent if
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the row echelon form of the matrix

A =

⎛⎜⎜⎝
...

...
...

c1 c2 . . . ck

...
...

...

⎞⎟⎟⎠
has k pivots. If there are less than k pivots in the REF of An,k and there is no pivot in
one column j with 1 ≤ j ≤ k, then the linear system⎛⎜⎜⎝

...
...

...
c1 c2 . . . cj−1

...
...

...

⎞⎟⎟⎠x =

⎛⎜⎜⎝
...
cj

...

⎞⎟⎟⎠
is solvable according to the earlier rank solvability condition. Thus cj is a linear combina-
tion of the ci for i < j, i.e., it is not needed to generate the subspace span{c1, c2, ..., ck}.

As matrices represent linear mappings between finite dimensional vector spaces we
are interested to find out which linear mappings can be inverted, i.e., for which ma-
trices Am,n : Rn → Rm does there exist an inverse matrix A−1

n,m : Rm → Rn with
A−1(Ax) = x for all x ∈ Rn, and how can we find A−1 from A if possible.

Functions f : M → N between two sets M and N are invertible if
(i) f(M) = N and
(ii) f(a) = f(b) implies a = b.

The first property (i) is essential for f−1 to have N as its domain, i.e., for f−1 to be
defined on the complete range set N of f .
The second property (ii) is essential for f−1 to be a function in the unique assignment
sense.

Specifically for matrices Am,n and their induced linear mappings A : Rn → Rm,
property (i) requires that Ax = b is solvable for every b ∈ Rm, i.e., that every row of a
REF of A must contain a pivot, while property (ii) requires that the kernel of A is zero.,
i.e., that Ax = b is uniquely solvable for every b ∈ Rm. Both (i) and (ii) can thus only
be true for a matrix Am,n if m = n = rank(A).

A square and full rank matrix An,n can be inverted by row reduction of the multiple
augmented matrix ( A | In ) where In is the n by n identity matrix comprised of the n
standard unit vectors ei ∈ Rn as its columns. If this row reduction is carried out until
the identity matrix In appears in the left half of ( In | A−1 ), the right half gives us the
matrix inverse A−1 with A−1A = In = AA−1.

(D) Basis Change and Matrix Similarity

Every subspace U ⊂ Rn that differs from the trivial subspace {0} has many bases.
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One basis of Rn is the standard unit vector basis E = {e1, e2, ..., en}. Since

x =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ = x1e1 + x2e2 + ... + xnen

we call x = xE the standard coordinate vector of the point x ∈ Rn. If
U = {u1, u2, ..., un} is another basis of Rn, then by the unique spanning property
of a basis there is a vector

xU =

⎛⎜⎜⎜⎝
α1

α2

...
αn

⎞⎟⎟⎟⎠
with x = α1u1 + α2u2 + ... +αnun. We call the coefficient vector (α1, . . . , αn)T ∈ Rn

the U coordinate vector xU of x if

xE = x =

⎛⎜⎜⎝
...

...
u1 . . . un

...
...

⎞⎟⎟⎠
⎛⎜⎝ α1

...
αn

⎞⎟⎠ = UxU

where Un,n is the matrix with columns u1 to un.
If V = {v1, v2, ..., vn} is a third basis of R

n, then the coordinate vectors xU and xV
for the same point x ∈ Rn are related by the equation

x = xE = UxU = V xV .

Note that both U and V are invertible, or nonsingular since the ui and the vj are both
linearly independent as bases. Thus

xU = U−1V xV and xV = V −1UxU ,

i.e., the matrix product U−1V transforms V coordinate vectors xV into U coordinate
vectors xU and V −1U translates in the reverse direction.

How does a basis change in Rn alter the matrix representation of a linear map
f : Rn → Rm?
In subsection (A) we have expressed a given linear transformation f as a matrix A with
respect to the standard unit vector basis E = {e1, e2, ..., en}, namely

A =

⎛⎜⎜⎝
...

...
...

f(e1) f(e2) . . . f(en)
...

...
...

⎞⎟⎟⎠ = AE .
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If we want to represent the linear transformation f with respect to the basis U instead,
we can try to use AE , but only for transforming E-vectors to E-vectors. In order to find
AU that maps U-vectors to U-vectors as f does, we first transform the U coordinate
vector xU by multiplication from the left by the matrix U with columns ui into the E
coordinate vector x = xE = UxU . This vector is then mapped by AE to the E-vector
AEUxU . Now we translate this vector back into U coordinates via U−1 to obtain the
U-vector (Ax)U = U−1AEU xU .
Thus the matrix U−1AEU is the matrix representation AU of the linear mapping f
with respect to the basis U .

Square matrices A and B, both of size n, with A = X−1BX for a nonsingular n by n
matrix X are called similar matrices. Similar matrices thus represent the same linear
transformation, but with respect to different bases of Rn if X �= In, the n by n identity
matrix .

(E) Eigenvalues and Eigenvectors, Diagonalizable Matrices

For a given square matrix Ann our aim is to find and explore bases U of Rn or Cn in which
the matrix representation AU = U−1AEU reveals much of the properties of the underlying
linear transformation f that the generally dense standard matrix representation A = AE
of f often hides.

For example, if

X−1AX = D =

⎛⎜⎝ λ1 0
. . .

0 λn

⎞⎟⎠
is diagonal, then AX = XD. Or written out column by column for X we have Axi = λixi

for each i = 1, ..., n, i.e., the action of A on Rn is completely separated into n individual
actions on each of the basis vectors xi inside the matrix X. This gives a phenomenally
clear picture of the linear transformation y �→ Ay. The numbers λ and the corresponding
vectors x �= 0 with

A x = λ x

are called eigenvalues and eigenvectors of A, respectively.
Every square matrix A ∈ Rn,n or Cn,n has n eigenvalues in C, where we count repeated

eigenvalues repeatedly. Eigenvalues of a matrix are numbers λ ∈ C for which A − λI is
singular for the n by n identity matrix I that has ones on its main diagonal and zeros
everywhere else. Once the eigenvalues λj of An,n have been found, the corresponding
eigenvectors xj are the nonzero solutions xj of the homogeneous linear system (A −
λjI)xj = 0.

Note that when solving linear systems Ax = b with real coefficient matrices A and
real right-hand-side vectors b that are solvable, the solution vector x is real according to
the row reduction process of subsection (B).
This is not so for the matrix eigenvalue problem: the eigenvalues (and eigenvectors) of
real matrices An,n generally can only be found in the complex plane C (and in Cn). The
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matrix

A =
(

0 −1
1 0

)
for example has only complex eigenvalues, namely i =

√−1 and −i ∈ C.
Some real matrix classes, studied in subsection (F) below, however, have only real

eigenvalues and corresponding real eigenvectors. The complication with complex eigen-
values and eigenvectors is caused by the Fundamental Theorem of Algebra which states
that all the roots of both real and complex polynomials can only be found in the complex
plane C.

Some matrices are diagonalizable over C in the sense that they have a basis of
- possibly complex - eigenvectors and these matrices can therefore be diagonalized by
matrix similarity. For example, this is so for all n by n matrices with n distinct eigenvalues
since eigenvectors for different eigenvalues are linearly independent. Other matrices such
as (

2 3
0 2

)
are not diagonalizable.

(F) Orthonormal Bases, Normal Matrices and the Schur Normal Form

The standard unit vector basis E = {e1, e2, ..., en} has two particular properties,
namely its vectors ei are mutually orthogonal and have length 1. Such a basis is called
orthonormal . Every basis of a subspace can be orthonormalized by the Gram-Schmidt
process to an ONB , short for “orthonormal basis”.

An orthonormal basis U = {u1, u2, ..., uk} of a subspace of Rn or Cn gives rise to a
matrix Un,k with the columns ui that satisfies UT U = Ik in the real case and U∗U = I
in the complex case. A matrix Un,n ∈ Rn,n with UT U = In is called an orthogonal
matrix and Un,n ∈ Cn,n with U∗U = In is a unitary matrix .
Here UT denotes the transpose matrix , namely if U = (ui,j) is given by its entries,
then UT = (uj,i) with rows and columns exchanged, and U∗ = (uj,i) is the complex
conjugate matrix with complex conjugate transposed entries.
If U = UT ∈ Rn,n we call U symmetric, and if U = U∗ ∈ Cn,n, U is called hermitian .

Orthogonal (and unitary) matrices preserve lengths of vectors and angles between
vectors in the sense that ‖Ux‖ = ‖x‖ for all vectors x and the euclidean vector norm

‖x‖ =
√

xT x =
√

x2
1 + ... + x2

n, while cos(∠(Ux, Uy)) = cos(∠(x, y)) where the cosine
of an angle is defined as cos(∠(x, y)) = (xT y)/(‖x‖ ‖y‖).

Special orthogonal matrices such as Householder matrices H = Im − 2vv∗ for a
unit column vector v ∈ Cm with ‖v‖ = v∗v = 1 can be used repeatedly to zero out the
lower triangle of a matrix Amn much like the row reduction process that finds a REF of
A in subsection (B). The result of this elimination process is the QR factorization of
Am,n as A = QR for an upper triangular matrix Rm,n and a unitary matrix Qm,m that
is the product of n − 1 Householder elimination matrices Hi.

With respect to some orthonormal basis of Cn, every matrix An,n ∈ Rn,n or Cn,n can
be triangularized, and some matrices can even be diagonalized orthogonally or unitarily.
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This follows from the Schur Normal Form Theorem : for every An,n there exists a
unitary matrix U (with U∗U = In) so that U∗AU = T = (ti,j) is upper triangular
with ti,j = 0 for all indices i > j.

Specifically for normal matrices, defined by the matrix equation A∗A = AA∗,
this implies orthogonal diagonalizability for all normal matrices, such as symmetric
(with AT = A ∈ Rn,n), hermitian (A∗ = A ∈ Cn,n), orthogonal (AT A = I), unitary
(A∗A = I), and skew-symmetric (AT = −A) matrices.

(G) The Singular Value Decomposition and Least Squares Problems

From subsection (B) it is clear that some systems of linear equations Ax = b have no
solution. This may occur for systems with the same number of unknowns as there are
equations or for systems Ax = b with nonsquare system matrices A. There is a remedy
for this, namely to try to find the least squares solution xLS that minimizes the error
‖Ax− b‖.

To do so, we introduce the singular value decomposition of a real matrix Am,n ,
abbreviated by its acronym SVD .
For every real matrix Am,n there are two real orthogonal matrices V ∈ Rn,n and U ∈
Rm,m and real nonnegative numbers σ1 ≥ σ2 ≥ ... ≥ σr > 0 with r ≤ min{m, n} so that

Σm,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0
. . .

σr

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= UT Am,n V

is a diagonal matrix. Clearly rank(A) = rank(Σ) = r.
Since the length of a vector is not altered under an orthogonal transformation (see

subsection (F)), the SVD of A yields

‖Ax − b‖ 2 = ‖UT Ax − UT b‖2 = ‖UT AV (V T x) − UT b‖2 =

= ‖ΣV T x − UT b‖2 =
r∑

i=1

(σiαi − uT
i b)2 +

min{m,n}∑
i=r+1

(uT
i b)2 ,

where αi denotes the ith component of V T x ∈ Rn for i = 1, ..., n.
Note that no variation occurs in the second term

∑min{m,n}
i=r+1 (uT

i b)2 in the above for-
mula when we vary x. Its value is the unavoidable error of the least squares problem
minx ‖Ax− b‖. And the first summed term

∑r
i=1 (σiαi −uT

i b)2 above becomes zero, i.e.,
minimal, if we choose

xLS =
r∑

i=1

(
(uT

i b)/σi

)
vi ∈ R

n .
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This is the least squares solution for Ax = b because the ith component of V T xLS is
αi = (uT

i b)/σi by the orthonormality of the columns vi of V so that the first sum term
above becomes zero for xLS.

If A is not a square matrix and we command A\b in MATLAB, then the SVD is
invoked and finds the least squares solution to the minimization problem minx ‖Ax− b‖.
A slight variant that uses only the QR factorization mentioned in subsection (F) for a
singular but square system matrix A ∈ Rn,n is used inside our modified boundary value
solver bvp4cfsinghouseqr.m in Chapter 5 in order to deal successfully with singular
Jacobian matrices inside its embedded Newton iteration.

(H) Linear Differential Equations

Systems of ordinary linear differential equations have the form

y′(t) = A y(t)

for a constant matrix A ∈ Rn,n and a vector valued function y : R → Rn. Such systems
in one variable t can always be solved theoretically via matrix theory. In our subject area
linear DEs can help us decide stability issues of a system’s steady states and they allow
us to better understand stiffness problems theoretically.

A single real linear differential equation (n = 1) has the form y′(t) = a y(t) for A =
a ∈ R. Its general solution is y(t) = c · ea·t. If an initial condition such as y(t0) = y0 ∈ R

is prescribed then the solution becomes y(t) = y0 · ea·(t−t0).
If we allow a to be complex in the single linear DE y′ = ay, then we can immediately

infer that the solution function y(t) will grow without bound if the real part α of a =
α + i · β (α, β ∈ R) is positive. The solution y(t) will decay to zero as t → ∞ if α < 0,
and the solution will oscillate if β �= 0, possibly growing infinitely large or decaying to
zero depending on the sign of α. This is so since for complex a = α + i · β we have

y(t) = y(0) · ea·t = y(0) · e(α+iβ)·t = y(0) · eα·t · ei·βt = y(0) · eα·t · (cos(βt) + i · sin(βt)) .

For a system of linear DEs y′(t) = A y(t) (n > 1) we assume for simplicity that
the matrix A is diagonalizable in the sense of subsection (E), i.e., there is a nonsingular
matrix X, containing a basis of eigenvectors for A in its columns so that X−1AX = D
is a diagonal matrix with the diagonal entries λ1, ..., λn ∈ C.
Then A = XDX−1 and y′(t) = XDX−1 y(t). Multiplying on the left by X−1 we obtain
the equivalent system X−1y′(t) = DX−1y(t). Hence z(t) = X−1y(t) satisfies the de-
coupled linear system of DEs z′(t) = Dz(t). This system can be solved analogously as
a single linear DE, namely one DE at a time by z(t) = (c1e

λ1t, c2e
λ2t, . . . , cneλnt)T

using the n eigenvalues λi of A that appear on the diagonal of D. Finally the solution of
y′(t) = A y(t) is y(t) = Xz(t).

The situation is more complex if A is not diagonalizable. But in either case the
location of the eigenvalues λi ∈ C of A determines the behavior of the solution y(t) ∈ Rn

as t grows. In particular, if all eigenvalues λi have negative real parts, i.e., if they lie in
the left halfplane of C, then the solution y(t) will decay to zero over time from any initial
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condition y(t0) ∈ Cn. If at least one eigenvalue has a positive real part, the solution will
grow without bound in C

n. And the solution will oscillate or spiral in or out if A has
nonreal eigenvalues.

Appendix 2 on bifurcation describes a linearization process for nonlinear systems
of DEs at a steady state. Linearization forms a locally equivalent linear DE system
y′(t) = Ay(t) at a steady state. The eigenvalues of the linearized system matrix A de-
termine the dynamic stability or instability of the particular steady state from their lay
with respect to the imaginary axis in C.
Moreover, the eigenvalues of the matrix A in the linearization of a nonlinear system de-
termine the system’s stiffness. We have encountered stiffness with DEs in Chapters 4
and 5 for both initial value problems (IVPs) and boundary value problems (BVPs). A
formal definition of stiffness for systems of DEs is given in Section 5.1 on p. 276.

Stiff IVPs are best solved by the integrators of the MATLAB ode... suite of
functions that end in the letter s. In practical terms, one need not construct a linearization
to check for stiffness, but rather compare the run times for ordinary integrators (without
an “s” in their MATLAB name) and for stiff integrators (with an “s”). If the ordinary
ones take too long, the IVP problem is most likely stiff and a MATLAB integrator with
a name ending in s should be used to solve the problem more successfully.

For BVPs, long run times due to stiffness can often be ameliorated by reversing the
direction of integration. A reversal of the direction of integration means a switch to a
differential equation with the negative of the previous right-hand side, i.e., to one with
the role of the previous apparently stiff pair of eigenvalues reversed in sign to become
a nonstiff pair. This follows from the definition of stiffness on p. 276, namely that the
smaller magnitude eigenvalue of a stiff pair must be negative for stiffness. However, when
reversing the direction of integration, all matrix eigenvalues of the linearized model matrix
A change sign to become the eigenvalues of −A upon reversal. But another, formerly
nonstiff pair of eigenvalues may now become stiff, leading to further complications. We
have encountered such problems and dealt with them repeatedly in the MATLAB codes
of Chapter 5. Again linearization gives us only a theoretical tool to understand BVP
solvers, but it is not recommended in practice since this is a very time consuming “pencil
and paper” process.
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Bifurcation, Instability, and
Chaos in Chemical and
Biological Systems

This appendix gives an introduction to multiplicity of steady states and to bifurcation
and chaos in Chemical and Biological Engineering.
[The numbers in square brackets [ .. ] refer to the extended bibliography contained on
the accompanying CD.]

This book differs in many aspects from all other books on this subject.

One of the differences is our treatment of the multiple steady states case as the gen-
eral case and considering the unique steady-state case as a special case.
This is more logical, more general in scope and easier to comprehend. Besides, it forces
our students to become aware of an important phenomenon which has been long ne-
glected in chemical and biological engineering education despite its great importance
and ubiquitous occurrence in chemical and biological engineering systems.

The multiplicity phenomenon in chemically reactive systems was first observed in
1918 by Liljenroth [1] for ammonia oxidation and it later appeared in the Russian lit-
erature of the 1940s [2]. However, it was not until the 1950s that major investigations
of this phenomenon began. This development was inspired by the Minnesota school of
Amundson and Aris and their students [3-5]. The Prague school also had a notable con-
tribution in expanding the field [13-16].
For the last 50 years multiplicity phenomena have been studied in general in chemical and
biological engineering research and in chemical/biological reaction engineering research
in particular. The fascination with this phenomenon has widely spread into the biological
engineering literature where it is referred to as “short-term memory” [17, 18]. Part of
the applied math literature has also studied these phenomena, but in more general and
more abstract terms under the name of “bifurcation theory” [19].

A major breakthrough in understanding these phenomena in chemical reaction en-
gineering was achieved by Ray and co-workers [20, 21] in the 1970s. They uncovered a
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large variety of bifurcation behavior in nonadiabatic continuous stirred tank reactors.
In addition to the usual hysteresis type bifurcation, they uncovered different types of
bifurcation diagrams [21], the most important of which is the “isola”. This is a closed
curve that is disconnected from the rest of the continuum of steady states.

Isolas were also found by Elnashaie et al. [22-24] in the 1980s for enzyme systems
where the rate of reaction depends nonmonotonically upon two of the system’s state
variables, the substrate concentration and pH. This was later shown to be applicable to
the acetylcholinesterase enzyme system [52-54].

Later development in singularity theory, especially the pioneering work of Golubitsky
and Schaeffer [19], has provided a powerful tool for analyzing the bifurcation behavior
of chemically reactive systems. These techniques have been used extensively, elegantly
and successfully by Luss and his co-workers [6-11] to uncover a large number of possible
types of bifurcation. They were also able to apply the technique successfully to complex
reaction networks as well as to distributed parameter systems.

Many laboratory experiments have been successfully designed to confirm the exis-
tence of bifurcation behavior in chemically reactive systems [25-29], as well as in enzyme
systems [18].

Multiplicity or bifurcation behavior was found to occur in many other systems such
as distillation [30], absorption with chemical reaction [31], polymerization of olefins in
fluidized beds [32], char combustion [33, 34], the heating of wires [35] and in a number
of processes used for manufacturing and processing electronic components [36, 37].

Although the literature is rich in theoretical investigations of bifurcation and in exper-
imental laboratory work for verification, it is rather poor with regard to this phenomenon
in industrial systems. In fact, only a few papers have been published that address the
question whether the multiplicity of steady states is important industrially or whether
it is mainly of theoretical and intellectual interest. The fundamental research in this
area has certainly raised the intellectual level of industrial chemical and biological en-
gineering and it has helped us tremendously to develop a more advanced and rigorous
approach to modeling chemical and biological engineering processes. Moreover, besides
the intellectual benefits of bifurcation research for the engineering level-of-thinking and
for the simulation of difficult processes, the multiplicity phenomenon is very important
and highly relevant to certain industrial units. For example, using a heterogeneous model
an industrial TVA ammonia converter was found to be operating in the multiplicity re-
gion [38]. The source of multiplicity in this case was found to be the countercurrent flow
of the reactants in the catalyst bed with respect to the flow in the cooling tubes and heat
exchanger. The multiplicity of steady states in TVA ammonia converters had been estab-
lished much earlier from a simple pseudo homogeneous model [39, 40]. In fluid catalytic
cracking (FCC) units for the conversion of heavy gas oil to gasoline and light hydrocar-
bons complex bifurcation behavior was also found, as well as their usual operation at a
middle, unstable saddle-type state [42-44]. For these systems, the two stable high- and
low-temperature steady states give very low gasoline yields, while the optimum operating
state for maximum gasoline yield is almost always the middle, saddle-type unstable state.
Autothermic circulating fluidized-bed (CFB) reformers for the production of hydrogen
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from methane and from heptane have also been shown by Elnashaie and co-workers to
exhibit multiplicity of the steady states [45-50]. Elnashaie and co-workers have shown the
rich static/dynamic bifurcation and possibly chaotic behavior associated with a diffusion
reaction model for the brain acetylcholine neurocycle [51-54].

Despite the broad interest in bifurcation behavior of chemical and biological systems
as manifested in the chemical and biological engineering literature, the industrial interest
in this phenomenon has been extremely limited. It seems that the industrial philosophy
is to avoid the troublesome regions of operating and design parameters which are char-
acterized by instabilities, quenching, ignition etc., where design and control can be quite
difficult. This conservative philosophy was quite justifiable before the great advances of
the last decades in developing rigorous models for chemical/biological systems and the
concurrent advances in computing power and digital computer control. The present state
of affairs suggests that the industrial philosophy should change in the direction of explor-
ing the advantages of increased conversion, higher yield and selectivity in the multiplicity
region of the operating and design parameters of many systems.

In the last two decades many academic researchers have enabled us to exploit these
possible instabilities for higher conversions, selectivities and yields [56-67]. In the Russian
literature, Matros and co-workers [67-69] have demonstrated the advantage of operating
catalytic reactors deliberately under unsteady-state conditions to achieve improved per-
formance. Industrial enterprises in the west are showing great interest in benefiting from
this multiplicity phenomenon. And although a deliberate unsteady-state operation is not
directly related to the bifurcation phenomenon and its associated instabilities, it never-
theless demonstrates a definite change of the present conservative industrial attitude.

A-2.1 Sources of Multiplicity

Catalytic and biocatalytic reactors are exceptionally rich in bifurcation and instability
problems. These can come from many sources, of which we outline a few below.

A-2.1.1 Isothermal or Concentration Multiplicity

This source of multiplicity is probably the most intrinsic one in catalytic and biocat-
alytic reactors, for it occurs due to the nonmonotonic dependence of the intrinsic rate
of reaction upon the concentration of reactants and products. Although a decade ago,
nonmonotonic kinetics of catalytic reactions were considered the exceptional case, today
it is clear that nonmonotonic kinetics in catalytic reactions are much more widespread
than previously thought. The reader can learn more about various examples from the
long list of catalytic reactions exhibiting nonmonotonic kinetics [71-76].

However, nonmonotonic kinetics alone will not produce multiplicity. Such kinetics
have to be coupled with a diffusion process, either in the form of a mass-transfer resis-
tance between the catalyst pellet surface and the bulk gas, or within the pores of the
pellets. If the flow conditions and the catalyst pellets size are such that diffusional resis-
tances between the bulk gas phase and the catalytic active centers are negligible and the
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system can be described accurately by a pseudohomogeneous model and consequently
the bulk gas phase is in plug flow, then multiplicity is not possible. However, if for such
a pseudohomogeneous reactor the bulk-phase flow conditions are not in plug flow then
multiplicity of the steady states is possible [77, 78]. The range of deviations from plug
flow which gives rise to multiple steady states corresponds to shallow beds with small
gas-flow rates, a situation which is not applicable to most industrial reactors. Therefore,
multiplicity due to axial dispersion in fixed beds is not very widespread; however, multi-
plicity due to mass- and heat-transfer resistances associated with the catalyst pellet is.
Moreover, multiplicity is also widespread in CSTRs and fluidized beds.

A word of caution is necessary here. Isothermal multiplicity that is the result of non-
monotonic kinetics occurs only when the nonmonotonic kinetic dependence of the rate
of reaction upon species concentration is sharp enough. For flat nonmonotonic behavior,
multiplicity can occur only for bulk-phase concentrations which are too high to have
much practical relevance.

A-2.1.2 Thermal Multiplicity

This is the most widespread and extensively investigated type of multiplicity. It is asso-
ciated with exothermic reactions. In fact, this type of multiplicity results from nonmono-
tonic behavior associated with the change of the rate of reaction under the simultaneous
variation of the reactants concentration and the temperature accompanying the exother-
mic reactions that take place within the boundaries of the system, i.e., inside the reactor.
For an exothermic reaction, as the reaction proceeds the reactants deplete. This tends to
cause a decrease in the rate of reaction, while at the same time the heat release increases
the temperature. This causes the rate of reaction to increase according to the Arrhenius
dependence of the rate of reaction upon temperature. These two conflicting effects on the
rate of reaction lead to a nonmonotonic dependence of the rate of reaction upon the re-
actant concentration. And in turn this leads to possibly multiple steady states. However,
similar to the isothermal case, multiplicity will not occur in fixed-bed catalytic reactors
caused by this effect alone. There again has to be some diffusional mechanism coupled
with the reaction in order to give rise to multiplicity. Therefore, for a fixed-bed catalytic
reactor in which the flow conditions are such that external mass- and heat-transfer resis-
tance between the surface of the catalyst pellets and the bulk gas phase are negligible,
where moreover the catalyst pellet size, pore structure and conductivity are such that
intraparticle heat and mass transfer resistances are also negligible so that the system
can be described accurately by a pseudohomogeneous model, and where the bulk gas
phase is in plug flow while the system is adiabatic or cooled co-currently, we note that
multiplicity of the steady states is not possible. If the bulk-flow condition is not in plug
flow, however, then multiplicity is possible. However, as indicated earlier, this situation
is very unlikely in industrial fixed-bed catalytic reactors.
Therefore, the main source of multiplicity in fixed-bed catalytic reactors is through the
coupling between the exothermic reaction and the catalyst pellet mass- and heat-transfer
resistances.

Isothermal or concentration multiplicity and thermal multiplicity may co-exist in cer-
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tain systems, when the kinetics are nonmonotonic, the reaction is exothermic and the
reactor system is nonisothermal.

A-2.1.3 Multiplicity due to Reactor Configuration

Industrial fixed-bed catalytic reactors have a wide range of different configurations. The
configuration of the reactor itself may give rise to multiplicity of the steady states when
other sources alone are not sufficient to produce the phenomenon. Most well known is
the case of catalytic reactors where the gas phase is in plug flow and all diffusional re-
sistances are negligible, while the reaction is exothermic and is countercurrently cooled.
One typical example for this is the TVA type ammonia converter [38-40].

A-2.2 Simple Quantitative Explanation of the Multiplicity Phe-
nomenon

We consider three very simple lumped parameter systems, described by similar algebraic
equations, namely

1. a CSTR (continuous stirred tank reactor);

2. a nonporous catalyst pellet; and

3. a cell with a permeable membrane containing an enzyme.

A reaction is taking place in each system with a rate of reaction r = f(CA), where f(CA)
is a nonmonotonic function.

CSTR Nonporous catalyst pellet Cell containing an enzyme

Symbolic representations
Figure 1 (A-2)

In the three examples of Figure 1 (A-2), the rate of reaction equations are as follows:
For the CSTR it is

q · (CAf − CA) = V · f(CA)

where q is the volumetric flow rate, V is the reactor volume, CAf is the feed concentration,
CA is the effluent concentration of the reactant, and f(CA) is the reaction rate, based
on the unit volume of the reactant mix.
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For the nonporous catalyst pellet, the rate equation is

ap · Kg · (CAf − CA) = Wp · f(CA)

where ap is the surface area of the pellet, Wp is the mass of the pellet, Kg is the mass-
transfer coefficient, CAf is the concentration of the reactant in bulk fluid, CA is the
concentration of the reactant on the pellet surface, and f(CA) is the reaction rate based
on the unit volume of the reaction mixture.
Finally for the cell containing an enzyme we have the equation

aC · pA · (CAf − CA) = E · VC · f(CA)

where aC is the surface area of the cell, VC is the volume of the cell, pA is the perme-
ability of the cell membrane, E is the weight of enzyme per unit volume of the cell, CAf

is the concentration of the reactant in bulk fluid, CA is the concentration of the reactant
inside the cell, and f(CA) is the reaction rate based on the unit mass of enzyme.

Note that the rate of reaction equations have the same form for all three cases, namely

α · (CAf − CA) = f(CA) ,

where α = q/V for the CSTR, α = (ap · Kg)/Wp for the catalyst pellet and α =
(ac · pA)/(E · VC) for the biocell.
Therefore, the three systems behave similarly. Their typical behavior is depicted in Figure
2 (A-2).

Typical hysteresis curve for concentration multiplicity
Figure 2 (A-2)
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Figure 2 (A-2) shows that for a certain combination of parameters, the supply line
α · (CAf − CA) intersects the consumption curve f(CA) in three points giving rise to
multiple steady states.

A-2.3 Bifurcation and Stability

In the multiplicity region of the operating and design parameters, the stability charac-
teristics of a system are quite different from those in the unique steady state region of
parameters for the same system. It is important to realize that for systems with multiplic-
ity behavior for certain parameter regions, the mere existence of parameter region with
multiplicity has implications on the behavior of the system under external disturbances
that may move the system into its multiplicity region. This is so even when the system
is operating in the region of a unique steady state

A-2.3.1 Steady State Analysis

A full appreciation of the stability characteristics of any system requires dynamic model-
ing and analysis of the system. Detailed dynamic modeling and analysis are beyond the
scope of this Appendix. However, broad insights into the stability and dynamic charac-
teristics of a system can be extracted from a steady-state analysis. In subsection A-2.3.2
we give a simple and brief introduction to the dynamical side of the picture.

To illustrate, a steady-state analysis suffices to determine whether a system is oper-
ating in or near the multiplicity region. In the multiplicity case, global stability is not
possible for any of the steady states. Instead, each steady state has its own region of
asymptotic stability (RAS), or expressed in the more modern terminology of dynami-
cal systems theory, each steady state has a “basin” or “domain” of attraction. This has
important implications on the dynamic behavior, the stability and control of the sys-
tem. Moreover, the initial direction of a dynamic system trajectory can be predicted by
steady-state arguments. Of course qualitative and quantitative dynamic questions may
need to be answered separately. These questions can only be answered through dynamic
modeling and analysis of the system.

To clarify the above points we consider a simple homogeneous continuous stirred tank
reactor (CSTR), in which consecutive exothermic reactions

A
k1−→ B

k2−→ C

take place. We assume that the reactor is at steady-state conditions, see Figure 3 (A-2).
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Schematic diagram of a CSTR
Figure 3 (A-2)

The mass- and heat-balance equations for the model are given in dimensionless form as
follows.

XAf = XA + α1 · e−γ1/y ·XA (7.194)

XBf = XB + α2 · e−γ2/y · XB − α1 · e−γ1/y · XA (7.195)

y − yf = α1 · β1 · e−γ1/y ·XA + α2 · β2 · e−γ2/y · XB + Kc · (yc − y) (7.196)

Here we use the dimensionless variables XA = CA/Cref , XAf = CAf/Cref , XB =
CB/Cref , XBf = CBf/Cref , y = T/Tref , and yc = Tc/Tref , together with the dimension-
less parameters αi = (V · ki0)/q, γi = Ei/(RG · Tref ), βi = (∆Hi) ·Cref/(ρ · Cp · Tref ),
and Kc = U · AH/(q · ρ · Cp) for the two consecutive reactions numbered i = 1, 2.
In the adiabatic case we set Kc = 0 in equation (7.196). The above equations with Kc = 0
also represent the nonporous catalyst pellet with external mass- and heat-transfer resis-
tances and negligible intraparticle heat-transfer resistance but the parameters have a
different physical meaning as explained earlier on p. 552.

For a given set of parameters the equations (7.194) to (7.196) can be solved simulta-
neously to obtain the concentrations XA and XB and the temperature at the exit of the
reactor for the CSTR and at the surface of the catalyst pellet for the nonporous catalyst
pellet.
However, it is also possible to reduce the three equations (7.194) to (7.196) to a single
nonlinear equation in y, together with two explicit linear equations for computing XA

and XB, once y has been determined. This single nonlinear equation is

R(y) = (y − yf ) + Kv · (y − yc) =

=
α1 · β1 · e−γ1/y · XAf

1 + α1 · e−γ1/y
+

α2 · β2 · e−γ2/y · α1 · e−γ1/y · XAf(
1 + α1 · e−γ1/y

) · (1 + α2 · e−γ2/y
) = G(y) .(7.197)

The right-hand side of equation (7.197) is proportional to the heat generation and it will
be called the “heat generation function” G(y), while the left-hand side is proportional to
the heat removal due to the flow and the cooling jacket. Therefore,

R(y) = (y − yf) + Kv · (y − yc)
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is called the “heat removal function”.
Equation (7.197) can be solved using any of the standard methods such as bisection

or Newton’s method. However it is more instructive to solve it graphically by plotting
G(y) and R(y) versus y as shown in Figure 4 (A-2) for a parameter case with maximally
three steady states.

Diagram for the heat generation function G(y) and the heat removal function R(y)
for the case of maximally three steady states

Figure 4 (A-2)

The slope of the heat removal line is b = 1 + Kc and it intersects the horizontal axis at
a = (yf + Kc · yc)/(1 + Kc).
Specifically, for the adiabatic case with Kc = 0 we get bad = 1 and aad = yf .
For the middle line R(y) with fixed slope equal to b and horizontal axis intercept equal
to a in Figure 4 (A-2), there are maximally three steady states y1, y2 and y3. Stability
information of the three steady states and a qualitative analysis of the dynamic behavior
of the system can be obtained from the static diagram. The steady-state temperatures
y1, y2 and y3 correspond to points where the heat generation and heat removal are equal.
That is the defining property of a steady state.
If, for example, the reactor temperature is disturbed from y3, the high temperature steady
state, to y4 that is not a steady-state temperature, then the static diagram helps us to
determine the direction of temperature change towards a steady state of the system
as follows. At y4 the heat generation exceeds the heat removal since G(y4) > R(y4)
from the graph. Therefore, the temperature will increase. A quantitative analysis of the
temperature-time trajectory can of course only be determined from a dynamic model of
the system.

Regarding stability, let us examine y3, for example, using the above kind of argument.
Suppose we disturb y3 infinitesimally by δy > 0. Then the diagram of Figure 4 (A-2)
indicates that the heat removal is larger than the heat generation and therefore the system
will cool back down towards y3. If the disturbance δy < 0, then the heat generation is
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larger than the heat removal and therefore the system will heat back up towards y3. This
shows that the steady state at y3 is stable for the given parameters. However this is only a
necessary condition for stability but it is not sufficient. Other dynamic stability conditions
should be checked by, for example, computating the eigenvalues of the linearized dynamic
model, see [80, 81].

For the low-temperature steady state y1 in Figure 4 (A-2) a similar analysis shows that
this steady state is stable as well. However, for the intermediate steady-state temperature
y2 and δy > 0 the heat generation is larger than the heat removal and therefore the
system will heat up and move away from y2. On the other hand, if δy < 0 then the heat
removal exceeds the heat generation and thus the system will cool down away from y2.
We conclude that y2 is an unstable steady state. For y2, computing the eigenvalues of the
linearized dynamic model is not necessary since any violation of a necessary condition
for stability is sufficient for instability.

The shape of the bifurcation diagram can easily be predicted from the simple heat
generation-heat removal diagram in Figure 4 (A-2). For simplicity we assume the adia-
batic case with yf as a bifurcation parameter. If we plot y versus the bifurcation param-
eter yf we obtain the S-shaped hysteresis curve shown in Figure 5 (A-2).

Bifurcation diagram for the case of three steady states (with two limit points)
Figure 5 (A-2)

The points yfl∗ and y∗fl are the limit points (bifurcation points) of the multiplicity region.
Multiple steady states exist for all yf values of with yfl∗ ≤ yf ≤ y∗fl .

The curves shown in Figures 4 (A-2) and 5 (A-2) are generic for systems with max-
imally three steady states. It is possible to have maximally five, seven etc, i.e., any odd
number of steady states for different sets of parameters. Figure 6 (A-2) depicts the heat
generation and heat removal functions for a system with maximally five steady states.
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Heat generation and heat removal functions for a system with five steady states
Figure 6 (A-2)

Regarding stability, the five steady states y1, ... , y5 depicted in Figure 6 (A-2) alternate
in their stability behavior: the low temperature y1 is stable, y2 is unstable, y3 is stable,
y4 is unstable and the high temperature steady state y5 is stable. This can be deduced as
before from the graph. The bifurcation multiple S-curve diagram for this case is shown
in Figure 7 (A-2).

Schematic bifurcation diagram with five steady states and four limit points
Figure 7 (A-2)

The above diagram naturally divides into five regions with respect to yf .

1. The unique low-temperature steady-state region with yf < yfl1 .

2. The adjacent region with three steady states for yfl1 < yf < yfl2 .
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3. The region with the maximum number of five steady states for yfl2 < yf < yfl3 .

4. The region with three steady states for yfl3 < yf < yfl4 .

5. And finally the unique high-temperature steady-state region for yf > yfl4 .

Moreover, at yf = yfl1 there are two steady states, at yf = yfl3 there are four, and at
yf = yfl4 there are again two steady states for the system.

For many such systems the maximum yield of the desired product corresponds to a
middle steady state that may be unstable as shown earlier. For such systems, an efficient
adiabatic operation is not possible and nonadiabatic operation is mandatory. However,
the choice of the heat-transfer coefficient U , the area of heat transfer AH and the cooling
jacket temperature are critical for the stable operation of the system. The value of the
dimensionless heat-transfer coefficient Kc should exceed a critical value Kc,crit in order
to stabilize an unstable middle steady state. The value of Kc,crit corresponds to the line
marked by �4 in Figure 8 (A-2) below.

Schematic diagram when the maximum yield XB of component B corresponds to a
middle unstable steady state

Figure 8 (A-2)

Changing Kc increases the slope of the heat removal line because its slope is 1 + Kc.
If a bifurcation diagram is drawn for this nonadiabatic case with Kc as the bifurcation
parameter and the jacket cooling temperature is the temperature of the middle steady
state ym, we obtain a pitchfork type bifurcation diagram as shown in Figure 9 (A-2).
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Pitchfork bifurcation diagram of y versus Kc

Figure 9 (A-2)

If Kc = 0 in Figure 9 (A-2), the three steady states yH , ym and yL are those of the
adiabatic case. For Kc < Kc,crit, yH and yL change but ym remains the same because
it is the jacket temperature. However, ym is a middle, an unstable steady state when
Kc < Kc,crit. At Kc,crit the multiplicity disappears, giving rise to a unique steady state
ym. From a static point of view, this steady state is stable. However, dynamically it may
be unstable for a certain range of Kc > Kc,crit giving rise to limit cycle behavior in the
form of a periodic attractor in this region, see [80], for example.

For a CSTR system, Figure 4 (A-2) shows maximally three steady states and Figure
6 (A-2) maximally five, with the possibility of fewer steady state for other specific y
parameter values. This maximal steady-state number depends on the shape of the heat
generating curve G(y). For different heat generation functions there may possibly be
seven, nine, or any odd maximal number of steady states for certain values of y.

A-2.3.2 Dynamic Analysis

The steady states found to be unstable by static analysis are always unstable. However,
steady states that are stable from a static point of view may prove to be unstable when
a full dynamic analysis is performed. For example, the branch �2 in Figure 9 (A-2)
is always unstable, while the branches marked by �1 , �3 and �4 in Figure 9 (A-2)
may be stable or unstable depending upon the dynamic characteristics of the system.
This ultimately can only be determined through a proper dynamic stability analysis of
the system. As mentioned earlier, our stability analysis for the CSTR is mathematically
equivalent to that for a catalyst pellet when using a lumped parameter model and to a
distributed parameter model made discrete by techniques such as orthogonal collocation.
However, in the latter technique, the system’s dimensionality increases considerably, with
n dimensions for each state variable, where n is the number of internal collocation points.

As illustration for a dynamic stability analysis we consider a simple two-dimensional
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ODE system with one bifurcation parameter µ, namely

dX1

dt
= f1(X1, X2, µ) and (7.198)

dX2

dt
= f2(X1, X2, µ) . (7.199)

The steady state of this system is determined by the two simultaneous equations

f1(X1, X2, µ) = 0 and f1(X1, X2, µ) = 0 (7.200)

since at a steady state there is no change in X1 or X2, i.e., dX1/dt = 0 = dX2/dt.
We assume that the equations (7.200) have a simple hysteresis type static bifurcation as
depicted by the solid curves in Figures 10 to 12 (A-2). The intermediate static dashed
branch is always unstable (saddle points), while the upper and lower branches can be
stable or unstable depending on the position of eigenvalues in the complex plane for the
right-hand-side matrix of the linearized form of equations (7.198) and (7.199). The static
bifurcation diagrams in Figures 10 to 12 (A-2) have two static limit points which are
usually called saddle-node bifurcation points.

Bifurcation diagram for equations (7.198) and (7.199) with two Hopf bifurcation points
Figure 10 (A-2)

The stability characteristics of the steady-state points is then determined via an eigen-
value analysis of the linearized version of the two DE (7.198) and (7.199). The linearized
form of equations (7.198) and (7.199) is as follows:

dx̂1

dt
= g11 · x̂1 + g12 · x̂2 and (7.201)

dx̂2

dt
= g21 · x̂1 + g22 · x̂2 , (7.202)

where x̂1 = xi − xiss with xiss = xi at the steady state, and gij = ∂fi/∂xj|ss ∈ R for
i, j = 1, 2.
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From the linearized equations (7.201) and (7.202) we form the right-hand side matrix

A =
(

g11 g12

g21 g22

)
.

With the trace tr(A) = g11 + g22 and the determinant det(A) = g11 · g22 − g12 · g21 as
customarily defined, we find the eigenvalues of A as the roots of the quadratic equation
λ2 − tr(A) · λ + det(A) = 0. In particular, the eigenvalues of A are

λ1,2 =
tr(A) ±√

(tr(A))2 − 4 · det(A)
2

.

The most important dynamic bifurcation is Hopf bifurcation. This occurs when λ1

and λ2 cross the imaginary axis into the right half-plane of C as the bifurcation parameter
µ changes. At the crossing point both roots are purely imaginary with det(A) > 0 and
tr(A) = 0, making λ1,2 = ±i · √det(A). At this value of µ, periodic solutions (stable
limit cycles) start to exist as depicted in Figures 10 and 11 (A-2).

Bifurcation diagram for equations (7.198) and (7.199) with two Hopf bifurcation points
and one periodic limit point

Figure 11 (A-2)

This is called Hopf bifurcation. Figure 10 (A-2) shows two Hopf bifurcation points with a
branch of stable limit cycles connecting them. Figure 13 (A-2) shows a schematic diagram
of the phase plane for this case when µ = µ1 . In this case a stable limit cycle surrounds
an unstable focus and the behavior of the typical trajectories are as shown. Figure 11
(A-2) shows two Hopf bifurcation points in addition to a periodic limit point (PLP) and
a branch of unstable limit cycles in addition to the stable limit cycles branch.
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Bifurcation diagram for equations (7.198) and (7.199) with one Hopf bifurcation point,
two periodic limit points and one homoclinical orbit (infinite period bifurcation point)

Figure 12 (A-2)

In Figures 10 - 12 (A-2) the following symbols are used:
a solid curve —— for the stable branch of the bifurcation diagram, a dashed curve – –
– for the saddle points, a solidly dotted curve • • • for the stable limit cycles, a curve
made of circles ◦ ◦ ◦ for unstable limit cycles, HB for the Hopf bifurcation points, and
PLP to indicate a periodic limit point.

Phase plane for µ = µ1 and Figure 10 (A-2). —— indicates stable limit cycle
trajectories, �x the unstable saddle, • the stable steady state (node or focus), ◦ the

unstable steady state (node or focus), and – – – the separatrix
Figure 13 (A-2)

Figure 12 (A-2) shows one Hopf bifurcation point, one periodic limit point and the stable
limit cycle terminates at a homoclinical orbit (infinite period bifurcation).
For µ = µ3 we observe an unstable steady state surrounded by a stable limit cycle similar
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to the case in Figure 13 (A-2). However in this case, as µ decreases below µ3, the limit
cycle grows until we reach a limit cycle that passes through the static saddle point as
shown in Figure 14 (A-2).

Homoclinical orbit
Figure 14 (A-2)

This limit cycle represents a trajectory that starts at the static saddle point and ends
after “one period” at the same saddle point. This trajectory is called the homoclinical
orbit and will occur at some critical value µHC . It has an infinite period and therefore
this bifurcation point is called “infinite period bifurcation”. For µ < µHC the limit cycle
disappears. This is the second most important type of dynamic bifurcation after Hopf
bifurcation.

Figure 14 (A-2) shows the phase plane for this case when µ = µ2.

Phase plane for µ = µ2 and Figure 11 (A-2). —— indicates stable limit cycle
trajectories, – – – the unstable limit cycle, �x the unstable saddle, and • the stable

steady state (node or focus)
Figure 15 (A-2)
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In Figure 15 there is an unstable limit cycle surrounding a stable focus and the unstable
limit cycle is surrounded by a stable limit cycle.

A-2.3.3 Chaotic Behavior

Limit cycles (periodic solutions) emerging from the Hopf bifurcation point and terminat-
ing at another Hopf bifurcation point or at a homoclinical orbit (infinite period bifur-
cation point) represent the highest degree of complexity in almost all two- dimensional
autonomous systems.

However, for higher dimensional autonomous systems such as the three dimensional
system

dX1

dt
= f1(X1, X2, X3, µ) ,

dX2

dt
= f2(X1, X2, X3, µ) , and (7.203)

dX3

dt
= f2(X1, X2, X3, µ) ,

or a nonautonomous two dimensional system, such as the sinusoidal forced two dimen-
sional system

dX1

dt
= f1(X1, X2, µ) + A · sin(ω · t) (7.204)

dX2

dt
= f2(X1, X2, µ) , (7.205)

higher degrees of dynamic complexity are possible, including period doubling, quasi pe-
riodicity (torus) and chaos.
Phase plane plots are not the best means of investigating these complex dynamics, for
in such cases (which are at least 3-dimensional) the three (or more) dimensional phase
planes can be quite complex as shown in Figures 16 and 17 (A-2) for two of the best
known attractors, the Lorenz strange attractor [80] and the Rössler strange attractor
[82, 83]. Instead stroboscopic maps for forced systems (nonautonomous) and Poincaré
maps for autonomous systems are better suited for investigating these types of complex
dynamic behavior.

The equations for the Lorenz model are

dX

dt
= σ · (Y − X) ,

dY

dt
= r · X − Y − X · Z , and (7.206)

dZ

dt
= −b ·Z + X · Y .

Stroboscopic and Poincaré maps are different from phase plane plots in that they
plot the variables on the trajectory at specifically chosen and repeated time intervals. For
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example, for the forced two dimensional system (7.204) and (7.205) these points are taken
at every forcing period. For the Poincaré map, the interval of strobing is not as simple and
many different techniques can be applied. Different phase planes can be used for a deeper
insight into the nature of strange attractors in these cases. A periodic solution (limit
cycle) on the phase plane will appear as one point on the Stroboscopic or the Poincaré
map. When period doubling takes place, period two appears as two points on the map,
period four as four points and so on. Quasi periodicity (torus) looks very complicated on
the phase plane. It will show up as an invariant closed circle with discrete points on a
stroboscopic or Poincaré map. When chaos takes place, a complicated collection of points
appears on the stroboscopic map. Their shapes have fractal dimensions and are usually
called strange attractors.

Lorenz strange attractor projected onto the x-z plane for σ = 10, b = 8/3 and r = 28
Figure 16 (A-2)

The equations for the Rössler model are

dX

dt
= Z − Y ,

dY

dt
= X + a · Y , and (7.207)

dZ

dt
= b + Z · (X − c) .
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Final trajectories of the Rössler attractor [82, 83] for different values of a.
Left column, top to bottom: limit cycle, a = 0.3; period 2 limit cycle, a = 0.35; period

4, a = 0.375; four-band chaotic attractor, a = 0.386.
Right column, top to bottom: period 6, a = 0.3904; single-band chaos, a = 0.398; period

5, a = 0.4; period 3, a = 0.411.
[For all cases b = 2, c = 4.]

Figure 17 (A-2)

The Lorenz and Rössler models are deterministic models and their strange attractors
are therefore called “deterministic chaos” to emphasize the fact that this is not a random
or stochastic behavior.

Conclusions

The previous notes give our readers the minimal information that is necessary to appreci-
ate the possibly very complex bifurcation, instability and chaos behavior of chemical and
biological engineering systems. While the current industrial practice in petrochemical
petroleum refining and in biological systems does not heed the importance of these phe-
nomena and their implications on the design, optimization and control of catalytic and
biocatalytic reactors, it is more than obvious that these phenomena are extremely impor-
tant. Bifurcation, instability and chaos in these systems are generally due to nonlinearity
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and specifically to nonmonotonicity which is widespread in catalytic and biocatalytic
reactors. Such nonlinearity and nonmonotonicity is often the result of exothermicity or
of the nonmonotonic dependence of the rate of reaction upon the concentration of the
reactant species or the bell shaped pH curve for enzyme activities.
Through healthy scientific interaction between industry and academia we expect in the
near future that these important phenomena will form the basis of industrial plant design
and operations and that more academicians will turn their attention to investigate these
phenomena in industrial systems.

For further useful reading on bifurcation, instability and chaos we recommend:

1. The work of Uppal et al. [20, 21] and that of Ray [56] on the bifurcation behavior
of continuous stirred tank reactors.

2. The work of Teymour and Ray [84-86] on bifurcation, instability and chaos of
polymerization reactors.

3. The work of Elnashaie and co-workers on the bifurcation and instability of industrial
fluid catalytic cracking (FCC units) [42-44].

4. The book by Elnashaie and Elshishni on the chaotic behavior of gas-solid catalytic
systems [101].

5. The review paper by Razon and Schmitz [87] on bifurcation, instability and chaos
for the oxidation of carbon monoxide on platinum.

6. The papers of Wicke and Onken [88] and Razon et al. [89] which give different
views on the almost similar dynamics observed during the oxidation of carbon
monoxide on platinum. Wike and Onken [88] analyze it as statistical fluctuations
while Razon et al. [89] analyze it as chaos. Later, Wicke changes his view and
analyzes the phenomenon as chaos [90].

7. The work of the Minnesota group on the chaotic behavior of sinusoidally forced
two dimensional reacting systems is useful from the points of view of the analysis
of the system as well as the development of suitable efficient numerical techniques
for investigating these systems [91-93].

8. The book by Marek and Schreiber [94] is important for chemical/biological engi-
neers who want to enter this exciting field. The book covers a wide spectrum of
subjects including differential equations, maps and asymptotic behavior; transition
from order to chaos; numerical methods for studies of parametric dependences, bi-
furcations and chaos; chaotic dynamics in experiments; forced and coupled chemical
oscillators; chaos in distributed systems. It contains two appendices, the first deal-
ing with normal forms and their bifurcation diagrams and the second, a computer
program for constructing solution and bifurcation diagrams.

9. The software package “Auto 97” [95] is useful for computing bifurcation diagrams.
It uses an efficient continuation technique for both static and periodic branches of
bifurcation diagrams.
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10. The software package “Dynamics” [96] is useful in computing Floquette multipliers
and Lyapunov exponents.

11. Elnashaie et al. [97] presents a detailed investigation of bifurcation, instability and
chaos in fluidized-bed catalytic reactor for both the unforced (autonomous) and
forced (nonautonomous) cases.

The compilation of papers on chaos in different fields published by Cvitanovic [98] is
also useful as an introduction.

The dynamic behavior of fixed-bed reactors has not been extensively investigated
in the literature. Apparently the only reaction which has received close attention is
the oxidation over platinum catalysts. The investigations reveal interesting and complex
dynamic behavior and show the occurrence of oscillatory and chaotic behavior [88-90]. It
is easy to speculate that further studies of the dynamic behavior of catalytic/biocatalytic
reactions will reveal similar complex dynamics like those discovered for the CO oxidation
over a P t catalyst, since most of these phenomena are due to nonmonotonicity of the
rate process which is widespread in catalytic systems.

There are many other interesting and complex dynamic phenomena besides oscilla-
tion and chaos which have been observed but not followed in depth both theoretically
and experimentally. One example is the wrong directional behavior of catalytic fixed-bed
reactors, for which the dynamic response to input disturbances is opposite of that sug-
gested by the steady-state response [99, 100]. This behavior is most probably connected
to the instability problems in these catalytic reactors as shown crudely by Elnashaie and
Cresswell [99]. Recently Elnashaie and co-workers [102-105] have also shown rich bifur-
cation and chaotic behavior of an anaerobic fermentor for producing ethanol. They have
shown that the periodic and chaotic attractors may give higher ethanol yield and produc-
tivity than the optimal steady states. These results have been confirmed experimentally
[105].

It is obvious that these briefly discussed phenomena (bifurcation, instability, chaos,
and wrong directional responses) may discover unexpected shortcomings in the current
design, operation and control of industrial catalytic and biocatalytic reactors. This merits
extensive theoretical and experimental research as well as specific research of industrial
units.

Static and dynamic bifurcation and chaotic behavior are fundamental and very im-
portant phenomena which should be familiar to every chemical and biological engineering
graduate. These phenomena should form an essential part of their undergraduate train-
ing [106] since these phenomena are widespread in chemical and biological engineering
systems and have important practical, economic, and environmental implications on the
behavior and yield of these systems. Understanding and analyzing these phenomena is
essential for the rational design, optimization, operation and control of such systems. The
phenomena themselves can be both helpful and dangerous. Not knowing about them pre-
cludes an engineer from proper safety precautions and from exploiting them for economic
and environmental gains. The modern field of chaos control is very important to know, for
example. In some cases knowing the bifurcation implications for a system may be neither



Bifurcation, Instability, and Chaos in Chemical and Biological Systems 569

harmful nor beneficial. But the system behavior needs to be analyzed and understood,
especially in biological systems. The sources of these phenomena are nonlinearity and
synergetic nonlinear coupling. However, nonlinearity alone does not create bifurcating
systems. It seems that for bifurcation to occur, at least one of the processes’ dependence
on one of the state variables needs to be nonmonotonic. A coupling between reaction and
diffusion also seems to be necessary for the occurrence of bifurcation phenomena. For
example, nonmonotonic processes that take place in a homogeneous plug flow reactor do
not show any of these phenomena. However, as soon as diffusion comes into the picture,
either through axial dispersion in a homogeneous system or through solid-gas interaction
in a heterogeneous system, these phenomena start to become a part of the characteristics
of the system.

Another important point is what may be called “feedback of information”, such as
countercurrent operation, recycle or continuous circulation (e.g., the novel autothermic
circulating fluidized presented by Elnashaie and co-workers). This feedback of informa-
tion can give rise to bifurcation and chaos as well [46-50].

These simple and mostly intuitive arguments apply mainly to chemical and biological
reaction engineering systems. For other systems such as fluid flow systems, the sources
and causes of bifurcation and chaos can be quite different. It is well established that the
transition from laminar flow to turbulent flow is a transition from nonchaotic to chaotic
behavior. The synergetic interaction between hydrodynamically induced bifurcation and
chaos and that resulting from chemical and biological reaction/diffusion is not well stud-
ied and calls for an extensive multidisciplinary research effort.

Recall:
In this appendix, the numbers in square brackets [ .. ] refer to the extended bibliography
contained on the accompanying CD.
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Contents of the CD and
How to Use it

The CD included with this book contains a copyright and disclaimer notice and:

1. the folders, subfolders, and individual m files that have been developed and tested for
Chapters 1, 3, 4, 5 and 6 of this book, as well as

2. an overview README file,

3. a short explanation of the 95 supplied m files in main.txt in ASCII mode,

4. and in a clickable version in main.html. These two main files give an overview of each m
file; main.html can be used to display the text of each m file in a browser window.

5. a file resources.txt with further references beyond those contained in the Resources
section that immediately follows this appendix.

6. Moreover, we have included a zip file CBE-book.zip on the CD with the contents of the
CD itself in compressed form. This zip file is used for easy installation of our m file library
on any hard drive. Local installation of the m files will facilitate handling of our codes
under MATLAB.

We suggest to read the README file on the CD first.

When working with MATLAB we advise our readers to first create a separate folder or di-

rectory on his/her hard drive that is used exclusively for MATLAB m files, such as one called

matlabin, for example.

As the next step, copy the zip file CBE-book.zip from the CD onto this MATLAB specific

folder matlabin and then extract or “unzip” it there. A subfolder called CBE-book with several

subfolders for our m files, as well as the above mentioned text and html files will then appear

inside matlabin . The MATLAB desktop should be directed towards a specific subfolder such

as chap5.1.3m if, for example, one wants to explore or use the m files for Section 5.1.3.

The clickable main.html file is included for convenience in navigating between the various m

files and the varying chapter folders using a browser.

Each m file subfolder chap*.*.*m of the CD is self-contained in the sense that it includes all

auxiliary m files for any of the codes of that subfolder.

The file and folder structure of the CD is as follows:
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CBE-book

chap1m

chap3m

chap4m

chap5m

chap6m

chap1.2m 5 m files

chap3.1m 11 m files

chap3.2m 18 m files

chap3.4m 4 m files

chap4.1.5m 5 m files

chap4.2.4m 1 m file

chap4.2.5m 2 m files

chap4.2.6m 1 m file

chap4.3.6m 7 m files

chap4.4.6m 1 m file

chap5.1.2m 5 m files

chap5.1.3m 11 m files

chap5.2.2m 15 m files

chap6.2.1m 4 m files

chap6.2.2m 1 m file

chap6.3.3m 2 m files

chap6.4.2m 2 m files

CBE-book.zip

main.html

main.txt

README

resources.txt

2007 Copyright and Disclaimer.pdf

Lost or destroyed CDs can be replaced
for a fee with ’proof of purchase’ of this
book.



Resources

This appendix lists the most relevant literature resources for this book. First we give
general resources for our subjects, followed by concise chapter specific literature lists.
An extended list of additional papers and books is contained on the accompanying CD.

General Resources

APPLIED MATHEMATICS :

Linear Algebra and Matrices

H. Anton, C. Rorres, Elementary Linear Algebra with Applications, John Wiley, 2005

D. Lay, Linear Algebra and its Applications, 3rd updated ed., Addison-Wesley 2005

S. Leon, Linear Algebra with Applications, 7th ed, Prentice-Hall, 2005

F. Uhlig, Transform Linear Algebra, Prentice-Hall, 2002, ISBN 0-13-041535-9, 502 + xx p

Numerical Analysis

K. Atkinson, W. Han, Elementary Numerical Analysis, Wiley 2003

G. Engeln–Müllges, F. Uhlig, Numerical Algorithms with Fortran, with CD-ROM, Springer
Verlag, 1996, 602 p. (MR 97g:65013) (Zbl 857.65002)

G. Engeln–Müllges, F. Uhlig, Numerical Algorithms with C, with CD-ROM, Springer
Verlag, 1996, 596 p. (MR 97i:65001) (Zbl 857.65003)

G. F. Gerald, P. O. Wheatley, Applied Numerical Analysis, 4th ed, Addison-Wesley, 1989

S. Pizer, V. Wallace, To Compute Numerically: Concepts and Strategies, Little, Brown,
1983

A. Quarteroni, F. Saleri, Scientific Compuying with MATLAB, Springer, 2001
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A. Quarteroni, F. Sacco, F. Saleri, Numerical Mathematics, Springer, 2000

J. Stoer, R. Burlirsch, Introduction to Numerical Analysis, 3rd ed, Springer, 2002
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Epilogue

This book deals with an important ingredient of the undergraduate and graduate
education in chemical and biological engineering.

A first major part of educating future engineers is to teach how to transform physi-
cal, chemical, and biological problems into mathematical equations, called modeling. The
next step is to teach how to solve these equations or models numerically.
As a matter of fact, in chemical and biological engineering, the majority of these equa-
tions is nonlinear since the reactions are intrinsically nonlinear.
In the “old days”, one had to simplify the models and the modeling or design equations
greatly in order to make them simple enough for an analytical solution. This was done
at the expense of rigor, accuracy, and reliability of the “results”.

Thanks to the ever wider use of computers over the last 40 years, the engineering com-
munity has devoted serious energy to develop more rigorous, more accurate and more
reliable models and design equations for our field. Unfortunately, the resulting more com-
plicated and more representative equations generally do not have closed form analytical
solutions.
Since the 1960s we have gone through a long journey with regard to computer power and
efficiency, as well as with regard to available numerical codes and algorithms. The first
appearance, such as through the IMSL Library, of reliable subroutines that can solve
nonlinear equations numerically has exempted us and our students from the tedious and
lengthy task of writing programs from scratch for solving detailed problems. Nowadays
we can simply call an appropriate subroutine to solve our problem and thereby concen-
trate more on developing models and implementing the model numerically for the given
input data. Then we can quickly analyze the computed results. Resources such as the
matrix computation library LAPACK, the development of reliable software for adaptive
integrators and stiff ODEs, or the orthogonal collocation method for efficiently solving
BVPs have revolutionized our work. Software has given us more detailed and more ac-
curate model solutions than ever possible before.

MATLAB provides a uniformly excellent environment in which engineers can use a
wide variety of numerical “engines” that solve almost any equation, algebraic, transcen-
dental, differential, integral etc., without having to “program” from scratch. It also has
rich facilities for graphical result representations. MATLAB uses matrices and vectors
as its basic building blocks. Therefore it is very economical when dealing with high-
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dimensional modern engineering systems and offers easy and intuitive programming.

One main aim of this book is to teach current and future engineers how to use MAT-
LAB as a “black box” for algorithms and codes in the most efficient and smooth manner
in order to solve important chemical and biological engineering problems through realis-
tic nonlinear models.

An added gift of our modern approach is that it will enable future generations of
chemical and biological engineers to understand, model, and use the near ubiquitous
appearance of multiplicity and bifurcation in chemical and biological systems to their
advantage. This book shows how to find multiplicity and how to deal with it for econom-
ical and environmental gains.

Putting this advance in engineering at our readers’ fingertips makes our efforts
worthwhile.
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