Numerical Techniques
for Chemical and
Biological Engineers
Using

MATLAB®

Numerical Techniques
for Chemical and
Biological Engineers
Using

MATLAB®

A Simple

Bifurcation
Approach

Said Elnashaie
Frank Uhlig

with the assistance of
Chadia Affane

@ Springer

Professor Said Professor Frank Uhlig Chadia Affane

S.E.H. Elnashaie Department of Mathematics ~ Department of Mathematics
Pennsylvania State University ~ and Statistics and Statistics

at Harrisburg Auburn University Auburn University
Room TL 176 Capital College 312 Parker Hall Auburn, AL 36849
777 W. Harrisburg Pike Auburn, AL 36849 affanac@auburn.edu
Middletown, PA 17057-4898 uhligfd@auburn.edu
ssel0@psu.edu

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB®
software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® software.

Library of Congress Control Number: 2006930111

ISBN-10: 0-387-34433-0
ISBN-13: 978-0-387-34433-1

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science +Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any
form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

987654321

springer.com

SAID ELNASAIE

FRANK UHLIG

Born 1947, Cairo/Egypt; grew up in Egypt; married, two children,
three grandchildren.

Chemical Engineering student at Cairo University, University of
Waterloo, and University of Edinburgh.

B. S., Cairo University, 1968; M.S., U of Waterloo, Canada, 1970;

Ph.D., U Edinburgh, UK, 1973.

Postdoc, University of Toronto and McGill U, 1973 — 1974.

Professor, Cairo University, 1974 — 1992; King Saud University, Saudi
Arabia, 1986 — 1996; University of British Columbia,
Canada, 1990; University Putra Malaysia, 1996/97; King
Fahad University, Saudi Arabia, 1999; Auburn University,
1999 — 2005; Visiting Professor, U British Columbia,
Vancouver, 2004; U British Columbia, Vancouver, 2005 —

Vice President, Environmental Energy Systems and Services (EESS),
Egypt, 1996 — 1998.

Research Areas: Modeling, Simulation and Optimization of Chemical
and Biological Processes, Clean Fuels (Hydrogen, Biodiesel
and Ethanol), Fixed and Fluidized Bed Catalytic Reactors,
Nonlinear Dynamics, Bifurcation and Chaos,

Clean Technology, Utilization of Renewable Materials,
Sustainable Engineering.
300+ papers, 3+ books.

nashaie@chml.ubc.ca

Born 1945, Mégdesprung, Germany; grew up in Miilheim/Ruhr,
Germany; married, two sons.

Mathematics student at University of Cologne, California Institute
of Technology.

Ph.D. CalTech 1972; Assistant, University of Wiirzburg, RWTH
Aachen, Germany, 1972 — 1982.

Two Habilitations (Mathematics), University of Wiirzburg 1977,
RWTH Aachen 1978.

Visiting Professor, Oregon State University 1979/1980;

Professor of Mathematics, Auburn University 1982 —

Two Fulbright Grants; (Co-)organizer of eight research conferences.

Research Areas: Linear Algebra, Matrix Theory, Numerical Analysis,
Numerical Algebra, Geometry, Krein Spaces, Graph
Theory, Mechanics, Inverse Problems, Mathematical
Education, Applied Mathematics, Geometric Computing.

50+ papers, 3+ books.
uhligfd@auburn.edu www .auburn.edu/~uhligfd

CHADIA AFFANE

Born 1968, Fes/Morocco; grew up in Morocco; married,
two children.

Engineering student at Ecole Supérieure de Technologie, E.S.T.,
Fes, Morocco, 1989 — 1991.

Chemical engineering student at Texas A&M University, 1997 — 1999;
B.S. Texas A&M University, 1999.

MS in Applied Mathematics, Auburn University, 2003.

Ph. D. student, Mathematics, Auburn University, 2004 —

Research Areas: Numerical Analysis, Applied Mathematics.

affanac@auburn.edu

vi

Preface

This book has come about by chance.

The first author, Said Elnashaie, and his wife, Shadia Elshishini, moved next door to
the second author, Frank Uhlig, and his family in 2000. The two families became good
neighbors and friends. Their chats covered the usual topics and occasionally included
random teaching, departmental, and university matters.

One summer day in 2003, Said showed Frank a numerical engineering book that he had
been asked to review. Neither of them liked what they saw. Frank eventually brought
over his “Numerical Algorithms” book and Said liked it. Then Said brought over his
latest Modeling book and Frank liked it, too. And almost immediately this Numerical
Chemical and Biological Engineering book project started to take shape.

Said had always felt more mathematically inclined in his work on modeling problems and
bifurcation and chaos in chemical/biological engineering;
Frank had lately turned more numerical in his perception and efforts as a mathematician.

This book is the outcome of Said’s move to Auburn University and his chance moving
in next door to Frank. It was born by a wonderful coincidence!

Said and Frank’s long evening walks through Cary Woods contributed considerably to-
wards most of the new ideas and the educational approach in this book. We have both
learned much about numerics, chemical/biological engineering, book writing, and think-
ing in our effort to present undergraduates with state of the art chemical/biological
engineering models and state of the art numerics for modern chemical/biological engi-
neering problems.

Chadia is a chemical engineer who has turned towards applied mathematics in her gradu-
ate studies at Auburn University and has helped us bridge the gap between our individual
perspectives.

The result is an interdisciplinary, totally modern book, in contents, treatment, and spirit.
We hope that the readers and students will enjoy the book and benefit from it.

For help with our computers and computer software issues we are indebted to A. J., to
Saad, and to Darrell.

Auburn and Vancouver, 2006

vii

Contents

Introduction

1.1

1.2

2.1

2.2
2.3
2.4
2.5

3.1

3.2

3.3
3.4

How to Use this Book

Computations and MATLAB

MATLAB Software and Programming
1.1.1 The Basics of MATLAB
Numerical Methods and MATLAB Techniques
1.2.1 Solving Scalar Equations

Exercises e
1.2.2 Differential Equations; the Basic Reduction to First Order Systems
1.2.3 Solving Initial Value Problems
1.2.4 Solving Boundary Value Problems
1.2.5 MATLAB m and Other Files and Built-in MATLAB Functions

Modeling, Simulation, and Design

System Theory and its Applications
2.1.1 Systems e e
2.1.2 Steady State, Unsteady State, and Thermodynamic Equilibrium
Basic Principles for Modeling Chemical and Biological Engineering Systems . . .
Classification of Chemical and Biological Engineering Systems
Physico-Chemical Sources of Nonlinearity
Sources of Multiplicity and Bifurcation

Some Models with Scalar Equations

Continuous Stirred Tank Reactor: The Adiabatic Case
Exercises
Continuous Stirred Tank Reactor: The Nonadiabatic Case
Exercises
A Biochemical Enzyme Reactor,
Scalar Static Equations
3.4.1 Simple Examples of Reactions with No Possible Multiple Steady States
3.4.2 Solving Some Static Transcendental and Algebraic Equations from the
Chemical and Biological Engineering Fields

ix

11
12
12
19
20
33
34
37
42
43

55
55
55
57
58
59
61
65

Exercises 129

Problems for Chapter 3 130
4 Initial Value Problems 135
4.1 A Nonisothermal Distributed System 135
4.1.1 Vapor-Phase Cracking of Acetone 138
4.1.2 Prelude to the Solution of the Problem 138
4.1.3 Material Balance Design Equation in Terms of Volume 139
4.1.4 Heat Balance Design Equation in Terms of Volume 141
4.1.5 Numerical Solution of the Resulting Initial Value Problem 142
Exercises 154
4.2 Anaerobic Digester L 155
4.2.1 Process Description and Rate Equations 155
4.2.2 Mathematical Modeling for a Continuous Anaerobic Digester 156
4.2.3 Solution of the Steady-State Equations 157
4.2.4 Steady-State Volume in terms of the Feed Rate 157
4.2.5 Steady-State Conversion in Terms of the Feed Concentration 159
4.2.6 The Unsteady-State Behavior of the Digester and the Solution of the IVP 165
Exercises L 168
4.3 Heterogeneous Fluidized Bed Catalytic Reactors 169
4.3.1 Mathematical Modeling and Simulation of Fluidized Beds 169
4.3.2 Analytical Manipulation of the Joint Integrodifferential Equations 174
4.3.3 Bifurcation and Dynamic Behavior of Fluidized Bed Catalytic Reactors . 177
4.3.4 Dynamic Models and Chemisorption Mechanisms 177
4.3.5 Fluidized Bed Catalytic Reactor with Consecutive Reactions 181
4.3.6 Numerical Treatment of the Steady-State and Dynamical Cases of the
Bubbling Fluidized Bed Catalytic Reactor with Consecutive Reactions . . 184
Exercises Lo 221
4.4 A Biomedical Example: The Neurocycle Enzyme System 222
4.4.1 Fundamentals Lo Lo 223
4.4.2 The Simplified Diffusion-Reaction Two Enzymes/Two Compartments Model223
4.4.3 Dynamic Model Development 225
4.4.4 Normalized Form of the Model Equations 229
4.4.5 Identification of Parameter Values 231
4.4.6 Numerical Considerations 232
Exercises 249
Problems for Chapter 4 250
5 Boundary Value Problems 255
5.1 The Axial Dispersion Model 255
5.1.1 Formulation of the Axial Dispersion Model 257
5.1.2 Example of an Axial Dispersion Model. Linear and Non-linear Two-point
Boundary Value Problems (BVPs) 262
The Linear Case e 262
Analytic Solution of the Linear Case 265

The Nonlinear Case ittt 272

5.1.3 Numerical Solution of Nonlinear BVPs. The Non-Isothermal Case 277

Exercises e 297

5.2 The Porous Catalyst Pellet BVP 298

5.2.1 Diffusion and Reaction in a Porous Structure 298

5.2.2 Numerical Solution for the Catalytic Pellet BVP 303

The Heat Balance Model 304

The Mass and Heat Balance Model 314

Exercises 323

Problems for Chapter 5 324

6 Heterogeneous and Multistage Systems 327

6.1 Heterogeneous Systems 327

6.1.1 Material Balance and Design Equations for Heterogeneous Systems 328

Generalized Mass Balance and Design Equations 328

Overall Heat Balance and Design Equations 333

Two Phase Systems 335

The Co- and Countercurrent Cases 337

The Equilibrium Case 338

Stage Efficiency 339

Generalized Mass Balance for Two Phase Systems 339

6.1.2 Steady State Models for Isothermal Heterogeneous Lumped Systems . . . 340

6.1.3 Steady State Models for Isothermal Heterogeneous Distributed Systems . 344

Multiple Reactions in Two Phase Systems 346

6.1.4 Nonisothermal Heterogeneous Systems 348

Lumped Systems 348

Heterogeneous Lumped Systems 349

Distributed Systems 351

Exercises e 353

6.2 Nonreacting Multistage Isothermal Systems 353
6.2.1 Absorption Columns or High Dimensional Lumped, Steady State and

Equilibrium Stages Systems o 353

The Case of a Linear Equilibrium Relation 354

Multistage Absorption 361

6.2.2 Nonequilibrium Multistages with Nonlinear Equilibrium Relations 373

Exercises e 381

6.3 Isothermal Packed Bed Absorption Towers 382

6.3.1 Model Development 383

6.3.2 Manipulation of the Model Equations 384

6.3.3 Discussion and Results for both the Simulation and the Design Problem . 384

Exercises e 399

6.4 The Nonisothermal Case: a Battery of CSTRs 399

6.4.1 Model Development L 399

6.4.2 Numerical Solutions o 402

6.4.3 The Steady State Equations, . 419

xi

Exercises 421

Problems for Chapter 6 422
7 Industrial Problems 425
7.1 A Simple Illustrative Example 426
7.1.1 Mass Balance for the Reactor 427
7.1.2 Heat Balance for the Reactor 428
7.1.3 Reactor Model Summary 429
7.1.4 The Catalyst Pellet Design Equations and the Computation of the Effec-
tiveness Factor np Lo oL 430
7.1.5 Pellet Model Summary 431
7.1.6 Manipulation and Reduction of the Equations 432
Exercises 436
7.2 Industrial Fluid Catalytic Cracking FCC Units 436
7.2.1 Model Development for Industrial FCC Units 437
7.2.2 Static Bifurcation in Industrial FCC Units. 442
The Steady State Model, 443
Solution of the Steady State Equations. 445
Steady State Simulation Results for an Industrial Scale FCC Unit 446
7.2.3 Industrial Verification of the Steady State Model and Static Bifurcation
of Industrial Units 451
Simulation Procedure; Verification and Cross Verification 453
Simulation and Bifurcation Results; Discussion for two Industrial FCC Units453
7.2.4 Preliminary Dynamic Modeling and Characteristics of Industrial FCC Units459
The Dynamic Model 459
Results for the Dynamic Behavior of FCC Units and their Relation to the
Static Bifurcation Characteristics 461
7.2.5 Combined Static and Dynamic Bifurcation Behavior of Industrial FCC
Units e 469
The Dynamic Model 470
Exercises 472
7.3 The UNIPOL Process for Polyethylene and Polypropylene Production 473
7.3.1 A Dynamic Mathematical Model 475
General Assumptions 475
Hydrodynamic Relations 476
The Model Equations 478
7.3.2 Numerical Treatment 482
Exercises 483
7.4 Industrial Steam Reformers and Methanators 484
7.4.1 Rate Expressions 484
7.4.2 Model Development for Steam Reformers 488
7.4.3 Modeling of Side-Fired Furnaces 490
7.4.4 Model for a Top-Fired Furnace 491
7.4.5 Modeling of Methanators 491

7.4.6 Dusty Gas Model for Catalyst Pellets in Steam Reformers and Methanators492

xii

7.4.7 Numerical Considerations
7.4.8 Some Computed Simulation Results for Steam Reformers
7.4.9 Simulation Results for Methanators
Exercises
7.5 Production of Styrene
7.5.1 The Pseudohomogeneous Model
The Rate Equations

Model Equations
Numerical Solution of the Model Equations
Simulation of an Industrial Reactor Using the Pseudohomogeneous Model

7.5.2 Simulation of Industrial Units Using the more Rigorous Heterogeneous
Model o

The Catalyst Pellet Equations

Model Equations of the Reactor
Extracting Intrinsic Rate Constants
Exercises
7.6 Production of Bioethanol oo
7.6.1 Model Development
7.6.2 Discussion of the Model and Numerical Solution
7.6.3 Graphical Presentation
Exercises
Problems for Chapter 7

Appendix 1: Linear Algebra and Matrices
(A) Basic Notions of Linear Algebra
(B) Row Reduction and Systems of Linear Equations
(C) Subspaces, Linear (In)dependence, Matrix Inverse and Bases
(D) Basis Change and Matrix Similarity
(E) Eigenvalues and Eigenvectors, Diagonalizable Matrices
(F) Orthonormal Bases, Normal Matrices and the Schur Normal Form
(G) The Singular Value Decomposition and Least Squares Problems
(H) Linear Differential Equations
Appendix 2:
Bifurcation, Instability, and Chaos in Chemical and Biological Systems
1. Sources of Multiplicity e
1.1 Isothermal or Concentration Multiplicity
1.2 Thermal Multiplicity
1.3 Multiplicity due to Reactor Configuration
2. Simple Quantitative Explanation of the Multiplicity Phenomenon
3. Bifurcation and Stability
3.1 Steady State Analysis
3.2 Dynamic Analysis
3.3 Chaotic Behavior

508
508

Appendix 3: Contents of the CD and How to Use it 571

Resources 573
Epilogue 579
Index 581
List of Photographs 590

Xiv

The question mark

Introduction

This book is interdisciplinary, involving two relatively new fields of human endeavor. The
two fields are: Chemical/Biological! Engineering and Numerical Mathematics.

How do these two disciplines meet? They meet through mathematical modeling.

Mathematical modeling is the science or art of transforming any macro-scale or micro-
scale problem to mathematical equations. Mathematical modeling of chemical and bio-
logical systems and processes is based on chemistry, biochemistry, microbiology, mass
diffusion, heat transfer, chemical, biochemical and biomedical catalytic or biocatalytic
reactions, as well as noncatalytic reactions, material and energy balances, etc.

As soon as the chemical and biological processes are turned into equations, these
equations must be solved efficiently in order to have practical value. Equations are usually
solved numerically with the help of computers and suitable software.

Almost all problems faced by chemical and biological engineers are nonlinear. Most
if not all of the models have no known closed form solutions. Thus the model equa-
tions generally require numerical techniques to solve them. One central task of chemi-
cal/biological engineers is to identify the chemical/biological processes that take place
within the boundaries of a system and to put them intelligently into the form of equa-
tions by utilizing justifiable assumptions and physico-chemical and biological laws. The
best and most modern classification of different processes is through system theory. The
models can be formed of steady-state design equations used in the design (mainly sizing
and optimization), or unsteady-state (dynamic) equations used in start-up, shutdown,
and the design of control systems. Dynamic equations are also useful to investigate the
bifurcation and stability characteristics of the processes.

The complexity of the mathematical model depends upon the degree of accuracy
required and on the complexity of the interaction between the different processes taking
place within the boundaries of the system and on the interaction between the system
and its surrounding. It is an important art for chemical/biological engineers to reach an
optimal degree of sophistication (complexity) for the system model. By “optimal degree
of sophistication” we mean finding a model for the process, which is as simple as possible
without sacrificing the required accuracy as dictated by the specific practical application

1 Biological engineering comprises both biochemical and biomedical engineering

2 Introduction

of the model.

After the chemical/biological engineer has developed a suitable mathematical model
with an optimal degree of “sophistication” for the process, he/she is then faced with the
problem of solving its equations numerically. This is where stable and efficient numerical
methods become essential.

The classification of numerical solution techniques lends itself excellently to the system
theory classification as well.

A large number of chemical /biological processes will be presented, modeled, and effi-

cient numerical techniques will be developed and programmed using MATLAB® 2, This
is a sophisticated numerical software package. MATLAB is powerful numerically through
its built-in functions and it allows us to easily develop and evaluate complicated numer-
ical codes that fulfill very specialized tasks. Our solution techniques will be developed
and discussed from both the chemical /biological point of view and the numerical point
of view.

Hence the flow of each chapter of this book will lead from a description of specific
chemical /biological processes and systems to the identification of the main state variables
and processes occurring within the boundaries of the system, as well as the interaction
between the system and its surrounding environment. The necessary system processes and
interactions are then expressed mathematically in terms of state variables and parameters
in the form of equations. These equations may most simply be algebraic or transcendental,
or they may involve functional, differential, or matrix equations in finitely many variables.

The mathematical model specifies a set of equations that reflects the characteristics
and behavior of the underlying chemical /biological system. The parameters of the model
can be obtained from data in the literature or through well-designed experimentation.
Any model solution should be checked first against known experimental and industrial
data before relying on its numerical solution for new data. To use a model in the de-
sign and control of a system generally requires efficient solution methods for the model
equations.

Some of the models are very simple and easy to solve, even by hand, but most require
medium to high-powered numerical techniques.

From chapter to chapter, we introduce increasingly more complex chemical /biological
processes and describe methods and develop MATLAB codes for their numerical solution.
The problem of validating a solution and comparing between different algorithms can be
tackled by testing different numerical techniques on the same problem and verifying and
comparing their output against known experimental and industrial data.

In this interdisciplinary text we assume that the reader has a basic knowledge of
the laws governing the rates of different chemical, biological and physical processes, as
well as of material and energy balances. Junior and senior undergraduates majoring in
chemical /biological engineering and graduate students in these areas should be able to
follow the engineering related portions of the text, as well as its notations and scientific
deductions easily. Regarding mathematics, students should be familiar with calculus,
linear algebra and matrices, as well as differential equations, all on the first and second

2MATLAB is a registered trade mark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760;
http://www.mathworks.com .

Introduction 3

year elementary undergraduate level. Having had a one semester course in numerical
analysis is not required, but will definitely be helpful. We include an appendix on linear
algebra and matrices at the end of the book since linear lgebra is often not required in
chemical /biological engineering curricula.

In order to solve chemical/biological problems of differing levels we rely throughout
on well tested numerical procedures for which we include MATLAB codes and test files.
Moreover, a large part of this book is dedicated to explain the workings of our algorithms
on an intuitive level and thereby we give a valuable introduction to the world of scientific
computation and numerical analysis.

It is precisely the interdisciplinary bridge between chemical /biological engineering and
numerical mathematics that this book addresses. A true melding of the two disciplines
has been lacking up to now. We hope that this book is a step in the right direction.

Chemical /biological engineers need such a book in order to learn and be able to solve
their continuously expanding problems (in size, complexity, and degree of nonlinearity).
And numerical analysts can enrich their applied know-how from the civil, mechanical,
and electrical engineering problem menu to include the richness of chemical/biological
engineering problems.

An unusual aspect of this book addresses generality and special cases. What do we
mean by that? We mean this in three different and distinct senses:

* The first regards reacting and nonreacting systems, that is, chemical /biological sys-
tems in which chemical and/or biological reactions take place within the boundaries
of the system, and those with no reaction, such as encountered in nonreacting sepa-
rating processes. Many texts treat nonreacting systems first for the obvious reason
that they are simpler, followed by more complex reacting systems. Actually this is
not optimal. From a pedagogical point of view and for a more efficient transfer of
knowledge, it is advisable to do the opposite, i.e., to start with the more general
reacting cases and then treat the nonreacting cases as special cases in which the
rates of reactions are equal to zero.

The second regards the number of states of a system (we will call them attractors
for reasons explained inside the book). Almost all books by mistake treat systems
as if they essentially have only one state (usually of one specific type which is an-
other limitation), and consider systems with more than one state as if they were
special or odd cases. Thus they rarely address cases having different numbers or
types of states and attractors. In this book, and maybe for the first time in the
engineering literature, we will address our systems in a more general and funda-
mental form. We will consider systems that have more than one state or attractor
as the general case, with systems having one state being a special case thereof.
We also address problems that have more than one type of steady state. This will
necessitate a correction in terminology. We are afraid that this will be faced by
some resistance. But this is to be expected when scientific research starts to change
the way we treat our undergraduate curriculum and our terminology in a more
fundamental manner. Consequently, the usual term “steady state” will have to be
replaced by “Stationary Nonequilibrium State” (SNES) for example, to distinguish
it from “Thermodynamic Equilibrium” which is also a steady state (no change with

4 Introduction

time), but a dead one.

This SNES will also be called a “Fixed Point Attractor” (FPA) in order to dis-
tinguish it from oscillatory states which we will call “Periodic Attractors” (PA),
and from quasi periodic states which we will call “Torus Attractors” (TA), and
more complex states such as “Chaotic Attractors” (CA). Thus our more advanced
approach will necessitate the definition of all basic principles of bifurcation theory
early in the book, and it will make us introduce senior undergraduates early in our
text to the generality and practical importance of these concepts. These modern
engineering concepts will be reflected in the models’ numerical solutions, specially
with regard to initial guesses and numerical convergence criteria. Appendix 2 on bi-
furcation, multiplicity, and chaos in chemical and biological systems explains these
natural phenomena in a simple manner.

Likewise, we treat numerical analysis from a modern and fresh perspective here.

* In the currently available (less than one handful) textbooks that treat numerical
analysis and chemical /biological engineering problems, most of the numerics have
the flavor of the 1960s. These texts labor long over Gaussian elimination to solve
linear equations, over the intricacies of solving scalar equations given in standard
form f(x) = 0 versus via fixed-point iterations z;y1 = ¢(x;) and so forth, and
thus they build mostly on ancient and outdated methods and ideas. Worse, they
generally fail to mention limitations of the proposed and often highly elementary
algorithms. Many books in this area are not aware and do not make the readers
aware of the instability of un-pivoted Gauss, of solving “unsolvable” linear systems
in the least squares sense, or of the gross errors of standard zero finders in cases
with multiple or repeated solutions, for example. In a nutshell, they do not con-
vey the advances in numerical analysis over the last 40 or 50 years. This advance
preeminently consists of a better understanding of numerical analysis and of the
development of intricate verifiably stable codes for the efficient solution of standard
numerical problems, as well as having learnt how to recognize ill-conditioned input
data sets. The omission of these advances is very unfortunate and we intend to
remedy this gap in the timely transfer of knowledge from one part of science to an-
other. This book contains a plethora of new and stable algorithms that solve many
chemical /biological engineering model problems efficiently. It does so by working
with the stable codes inside MATLAB, rather than developing line by line original
programs. There is no need to reinvent pivoted Gauss, or stable adaptive and effi-
cient integration schemes, etc, over and over again.

All of our programs are available on the accompanying CD.

Our book is a four pronged approach at modernizing chemical /biological engineer-
ing education through numerical analysis.

The three prongs
(1) of addressing generalities versus what is a special case in chemical models,

(2) of treating bifurcation phenomena and multiple steady states as the norm and not
the exception, and

Introduction 5

(3) of dealing with stability and condition issues in modern numerical codes

are augmented by the fourth prong
(4) of color graphic visualization.

Throughout the book we emphasize graphic 2D and 3D representations of the solutions.
All our MATLAB programs create color graphics. In the book, however, we can only use
grayscale displays for economic reasons. Color is essential to fully understand many of
the graphs. Therefore, we urge our readers to acquire a deeper understanding by accom-
panying a reading of the book with simultaneusly recreating our figures in color on a
computer. Sample calls for drawing the figures are given at the top of every MATLAB
code on the accompanying CD.

We especially suggest to follow this advice and recreate the surface and mul-
tiple line graphs in color for Chapter 3, Chapter 4, Sections 4.1 and 4.3,
Chapter 5, Sections 5.1 and 5.2, and Chapter 6, Section 6./.

Through this colorful visual approach, students and readers will have a chance to
experience the meaning, i.e., to “understand” for the first time (in the true definition of
to stand under), what a solution means, how it behaves, looks, where it is strained, i.e.,
likely to be (nearly) unstable, where it is smooth, etc.

How to Use this Book

This book uses a modern systems approach. The problems that we study can be classified
in three ways:

1. according to the system classification as closed, isolated or open systems;
2. according to the spatial variation as lumped or distributed systems; as well as
3. according to the number of phases as homogeneous or heterogeneous systems.

While we have made this book as self-contained as possible, it is beneficial if the
student/reader has a background in chemical and biological modeling, calculus, matrix
notation and possibly MATLAB before attempting to study this book.

As with any book on science and mathematics that contains mathematical equations,
formulas and model derivations, it is important for our readers to take out paper and
pencil and try to replicate the equations and their derivations from first principles of
chemistry, physics, biology, and mathematics by him /herself.

Starting with Chapter 3, many relevant chemical/biological engineering problems are
solved explicitly in the text. Each section of Chapters 3 to 7 contains its own unsolved
exercises and each chapter contains further problems for the whole chapter at its end.
Students should first try to solve the worked examples inside each section on their own,
with models of their own making and personally developed MATLAB codes for their
solution. Then they should compare their results with those offered in the book. And
finally they should try to tackle the unsolved section and chapter problems from the
experience that they have gained.

6 Introduction

The first chapter must be studied regardless of the particular background of the stu-
dent or reader, but it need not be studied in class. Instead it can be assigned as reading
and exploratory homework in the first days of class. Chapter 1 gives the reader an intro-
duction to MATLAB and numerical analysis. It shows how to use MATLAB and explains
how MATLAB treats many important numerical problems that will be encountered later
in the book. As said before, the student/reader best studies Chapter 1 concretely on a
MATLAB desktop displayed on his/her computer screen by mimicking the elementary
examples from the book, varying them and thereby learning the fundamentals of MAT-
LAB computation.

Chapter 2 introduces the essential principles of modeling and simulation and their
relation to design from a systems point of view. It classifies systems based on system
theory in a most general and compact form. This chapter also introduces the basic prin-
ciples of nonlinearity and its associated multiplicity and bifurcation phenomena. More
on this, the main subject of the book, is contained in Appendix 2 and the subsequent
chapters.

One of the characteristics of the book is to treat the case with multiple steady states
as the general case while the case with a unique steady state is considered a special
case. When reading Chapter 2, our readers should notice the systems similarities be-
tween chemical and biological systems that make these two areas conjoint while uniquely
disjoint from the other engineering disciplines.

We suggest to start a class based on our book with Chapter 3 and to assign or study
the first two chapters as reading or reference material whenever the need arises in class.

Chapter 3 tries to give students the essential tools to solve lumped systems that are
governed by scalar equations. It starts with the simplest continuous-start reactor, a CSTR
in the adiabatic case. The first section should be studied carefully since it represents the
basis of what follows. Our students should write their own codes by studying and even-
tually rewriting the codes that are given in the book. These personal codes should be run
and tested before the codes on the CD are actually used to solve the unsolved problems
in the book. Section 3.2 treats the nonadiabatic case.

Section 3.3 is devoted to biochemical enzyme systems in which the biocatalyst enzyme
does not change during the progressing reaction. Biological systems whose biocatalysts
change with time are presented later in the book.

In Section 3.4 we study several systems that have no multiple steady states and we
introduce several transcendental and algebraic equations of chemical and biological en-
gineering import. As always, the students and readers should find their own MATLAB
codes for the various problems first before relying on those that are supplied and before
solving the included exercises.

Chapter 4 studies problems that involve change over time or location and that there-
fore are modeled by differential equations. Specifically, we study initial value problems
(IVP) here, including

1. one-dimensional distributed steady-state plug flow systems that are characterized
by the complete absence of multiplicity and bifurcation phenomena for adiabatic

Introduction 7

systems with cocurrent cooling or heating; and

2. unsteady states of lumped systems. These systems usually have multiple steady
states when at least one of the processes depends nonmonotonically on one of the
state variables. The unsteady-state trajectory that describes the dynamic behavior
will, however, be unique since IVP cannot have multiple solutions. But different
initial conditions can lead to different steady states.

The readers should study the four given examples very carefully and perform the asso-
ciated exercises. Students should solve the solved-in-detail problems of this chapter first
independently of the book and then solve the exercises of each section and of the chapter
as a whole.

Chapter 4.1 deals with an important industrial problem, the vapor-phase cracking of ace-
tone. Here the material- and energy-balance design equations are developed. We advise
the students to try and develop the design equations independently before consulting the
book’s derivations. Numerical solutions and MATLAB codes are developed and explained
for this problem and sample results are given that need to be checked against those of
the students’ codes.

The remaining sections of Chapter 4 treat an anaerobic digester, heterogeneous fluidized
catalytic-bed reactors, and a biomedical problem of the neurocylce enzyme system.

Chapter 5 introduces a more difficult differential equations problem, namely bound-
ary value problems (BVP). Such problems are very common in chemical and biological
engineering but are unfortunately often given the least bit of attention in undergraduate
training.

Two point boundary value problems of chemical/biological engineering typically arise
from some “feedback” of information. They can result from any of the following sources:

1. diffusion;

2. conduction;

3. countercurrent operation; or
4. recycle or circulation.

Two point boundary value problems are much more difficult to solve and more demanding
than initial value problems for differential equations. One of the strengths of MATLAB
is that it has very good and efficient subroutines for solving both IVPs and BVPs.
First we introduce the reader to the principles of such problems and their solution in Sec-
tions 5.1.2 and 5.1.2. As an educational tool we use the classical axial dispersion model
for finding the steady state of one-dimensional tubular reactors. The model is formulated
for the isothermal case with linear kinetics. This case lends itself to an otherwise rare
analytical solution that is given in the book. From this example our students can under-
stand many characteristics of such systems.

Students and readers should be very familiar with the nature of the isothermal case be-
fore embarking on the nonlinear case and its numerical solution in Section 5.1.3. The

8 Introduction

students should study the nonlinear BVP carefully, as well as their associated bifurca-
tion phenomena. MATLAB codes are again provided, explained and tested. Our readers
should train themselves to become fluent in solving BVPs via MATLAB’s collocation
method. The exercises are a good training ground for this.

Section 5.2 is principally similar to Section 5.1. But now we analyze the porous catalyst
pellet via boundary value problems for differential equations. Here the dimensionality of
the problem doubles and the resulting singular BVP is easily handled in MATLAB due
to its superbly capable matrices and vector implementation of code.

Chapter 6 deals with multiphase and multistage systems. Section 6.1 concentrates
on heterogeneous systems, both lumped and distributed heterogeneous systems, as well
as on isothermal and nonisothermal ones. Here the students should study the extension
of the modeling principles for homogeneous systems to those for heterogeneous systems
and become aware of the different numerical properties of the resulting model or design
equations.

While many solved examples and complete MATLAB codes are given in the book and
on the CD, the students should try to excel with his/her codes by personal initiative and
by designing his/her own codes. These should be tested by solving the exercises at the
end of the section.

Section 6.2 deals with high-dimensional lumped nonreacting systems, with special em-
phasis on multitray absorption.

Section 6.3 treats distributed nonreacting systems and specifically packed bed absorption,
while Section 6.4 studies a battery of nonisothermal CSTRs and its dynamic behavior.

Chapter 7 is the climax of the book: Here the educated student is asked to apply all
that he/she has learned thus far to deal with many common practical industrial units.
In Chapter 7 we start with a simple illustrative example in Section 7.1 and introduce five
important industrial processes, namely fluid catalytic cracking in FCC units in Section

7.2, the UNIPOL ™ process in Section 7.3, industrial steam reformers and methanators
in Section 7.4, the production of styrene in Section 7.5, and the production of bioethanol
in Section 7.6.

However, here we leave all numerical procedures and MATLAB coding as exercises to the
students and readers. For each problem, all the necessary modeling and data is included,
as well as samples of numerical results in the form of tables and graphs. Our readers
should now be able to use the models and the given parameters to develop their own
MATLAB codes along the lines of what has been practiced before. Then the students
should be try to solve the exercises given at the end of each section and finally the general
exercises at the end of the chapter.

This, we think, is the best preparation of our students for a successful career as a
chemical or biological engineer in the practical modern industrial world.

Chapter 1

Numerical Computations and
MATLAB

[This chapter should be read and studied by our readers early on, with fingers on the
keyboard of a computer, in order to gain a first working knowledge of MATLAB, and
also later throughout the book as we introduce new numerical techniques and codes.)

The history of human mathematical computations goes back for several millenia. The
need for numerical computations has increased since the age of enlightenment and the in-
dustrial revolution three centuries ago. For the last 50 years, the human race has become
more and more dependent on numerical computations and digital computers. Computa-
tional techniques have developed from early hand computations, through table look up,
mechanical adding and multiplying devices, the slide rule etc, to programmable electronic
computers, mainframes, PCs, laptops, and notebooks.

The earliest electronic computers were programmed in machine language. Later, pro-
gramming languages such as ALGOL, FORTRAN, C, etc. were developed. Over the last
decade, many of our serious mathematical computations have begun to be performed via
software rather than individual line-by-line coded programs. Software allows for a sim-
pler command structure and an easier interface, and it offers ready graphics and ready
coding error detection among its many advantages over computer language coding.

One ideally suited software for engineering and numerical computations is MATLAB™ 1.
This acronym stands for “Matrix Laboratory”. Its operating units and principle are vec-
tors and matrices. By their very nature, matrices express linear maps. And in all modern
and practical numerical computations, the methods and algorithms generally rely on
some form of linear approximation for nonlinear problems, equations, and phenomena.
Nowadays all numerical computations are therefore carried out in linear, or in matrix
and vector form. Thus MATLAB fits our task perfectly in the modern sense.

IMATLAB is a registered trade mark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760;
http://www.mathworks.com

11

12 Chapter 1: Computations and MATLAB

MATLAB contains a library of built-in state of the art functions and functionality for
many standard numerical and graphics purposes, such as solving most any equation,
whether scalar, functional, or differential, and plotting multidimensional surfaces and
objects. It is a software that allows its users to adapt the built-in functions of MATLAB
easily and intuitively to any problem specific needs with a few lines of code. Typically,
users build their own codes using problem specific MATLAB functions, intertwined with
command lines of their own design and for their own purpose. One of the most wonderful
attributes of numerical and graphics software packages such as MATLAB is the ease with
which they can display chemico-physical problems and their solutions readily by spatial
surfaces and objects. This gives new means and meaning to our “understanding” and it
is the source of great pleasure as well.

MATLAB comes as one main body of built-in functions and codes, and there are
many additional specialized MATLAB “toolboxes” for various applications. As this book
is primarily directed towards undergraduate and beginning graduate students, we have
restricted ourselves deliberately to using the main body of MATLAB only in our codes
and none of its many toolboxes.

1.1 MATLAB as a Software and a Programming Lan-
guage

All what follows in this chapter and the rest of the book assumes that the user has
easy access to MATLAB on a computer. This access may be provided by the college,
university, or department in the form of a computer with MATLAB already installed,
or through special licensing from The Mathworks, or by purchasing an individual copy
of MATLAB or its student edition for a personal computer. The program codes of this
book were begun under MATLAB version 6.5 and finished under version 7.1. Since MAT-
LAB is designed to be backward compatible, all our codes should be able to run in any
MATLAB version from 6.5 on up. We simply start our discourse assuming that there is
a MATLAB desktop and command window on the computer screen with its >> com-
mand prompt in front of the reader. MATLAB m file code lines will henceforth always
be displayed between two thick black horizontal lines.

Due to the special structure of MATLAB, readers should be familiar with the math-
ematical concepts pertaining to matrices, such as systems of linear equations, Gaussian
elimination, size and rank of a matrix, matrix eigenvalues, basis change in n-dimensional
space, matrix transpose, etc. For those who need a refresher on these topics there is a
concise Appendix on linear algebra and matrices at the end of the book.

1.1.1 The Basics of MATLAB
The basic unit of MATLAB is a matrix.

If the matrix A contains m rows and n columns of entries, we call A an m by n matrix

1.1 MATLAB Software and Programming 13

(“rows before columns”) and write Ay, x, O Ay, in short mathematical notation.
Column vectors of length k can be viewed as k by 1 matrices and row vectors as 1 by
n matrices if they contain n entries.

Real or complex scalars c¢ thus can be viewed as 1 by 1 matrices if we wish.

To represent or to generate and store the 3 by 4 matrix

1 2 3 4
A=\ 5 6 7 8
9 10 11 12

in MATLAB, we type the following line after the >> MATLAB prompt.
>> A =1[1234;567 8;9,10,11,12]

After pressing the return key, the MATLAB command window will display A as follows:
>> A =1[1234;567 8;9,10,11,12]
A=

1 2 3 4

5 6 7 8

9 10 11 12
Note that entry-wise defined matrices and vectors are delimited by square brackets [
and] in MATLAB commands.
Note further that the entries of one row of a matrix (or of a row vector) can be entered
into MATLAB’s workspace either separated by a blank space or by a comma, while a
semicolon ; indicates the start of a new row. A comma or a blank at the end of a com-
mand line will cause screen display of the object that has just been defined, while a
semicolon ; after a command will not.

Here is another sequence of commands and their screen output:

> A =1[1234;567 8;9,10,11,12];
>> B = zeros(5)
B =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

The first command generates the matrix A. A is stored in MATLAB’s workspace, but
it is not displayed on screen due to the ; following the command. With the second com-
mand, the matrix B is generated, stored, and displayed on screen because there is a
blank and no ; following the second command. Note that a comma , after a MATLAB
command has the same effect as a blank as regards not suppressing screen output. In
MATLAB, one can put as many comma or semicolon delimited commands on one line
as one wishes and will fit.

One can alter a stored matrix A = (a,;) by reassigning one element, say ass = 12, as

follows:

>> A(2,2) = 12

A =
1 2 3 4
5 12 7 8
9 10 11 12

14 Chapter 1: Computations and MATLAB

One can reassign a whole row (or similarly a whole column) of a matrix A to obtain
an updated version of A with a new third row, for example, by using the “all entries”
MATLAB symbol : appropriately.

>> A(3,:)=[101 0]

A=
1 2 3 4
5 12 7 8
1 0 1 0

Here A(3,:) denotes all entries of row 3 of A, while A(:,2) would designate column 2 of
A.

One can update a whole block of A at one time as well, for example, the block

A(2:3,2:4)= (Q22 Q23 Q24)

az2 as3 G34

as follows:
>> A(2:3,2:4)=[1 2 3;0 9 7]
A =

1 2 3 4

5 1 2 3

1 0 9 7

Here A(2: 3,2 :4) describes the submatrix of A comprised of the rows 2 and 3 and the
columns 2, 3, and 4, i.e., the lower right 2 by 3 block of A.

One can alter the shape of A by adding one or several rows or columns of compatible
size, or by deleting one or several rows or columns of A by setting some rows or columns
equal to the empty row or column [], respectively.

>> A = [A; A(3,)]

1 2 3 4
5 1 2 3
1 0 9 7
1 0 9 7
>> A(:,4) =[]
1 2 3
5 1 2
1 0 9
1 0 9
>> A(3,:)=[]
1 2 3
5 1 2
1 0 9

The first command makes A into a square 4 by 4 matrix by replicating the third row in
row four of the new A.

The second command then deletes the last column of A, and the third command takes
off the last column and creates a square 3 by 3 matrix with the same name A.

Note that any change prescribed in MATLAB for a named object such as our matrix A
saves the changed object in the original object’s place. Hence our final matrix A does

1.1 MATLAB Software and Programming 15

not resemble the original A at all.

Once stored in the workspace, MATLAB can operate on these matrices A and B. A
useful MATLAB task is to find the size of a stored matrix, i.e., the numbers of rows and
columns of the matrix.

>> size(A), size(B), length(A), length(B), result = [size(A’), length(A’)]
ans =

3 4
ans =
5 5
ans =
4
ans =
5
result =
4 3 4

Let us look at the above sequence of commands and the output. If

1 2 3 4
A= 5 6 7 8
9 10 11 12

in MATLAB’s workspace, then A has 3 rows and 4 columns. Its size vector is (3 4) in
MATLAB (remember “rows before columns”), while that of the zero matrix B defined
earlier is (5 5). length measures the maximal dimension of a matrix.

The commas after our MATLAB commands above are necessary as delimiters to be able
to place several commands onto one line of code. They create screen output, whereas semi-
colons ; would have suppressed it. The final entry result = [size(A’), length(A’)]
on the command line creates the vector (4, 3, 4), called “result” by us. It contains the
number of rows (4) of AT, followed by A”’s number of columns (3) and its “length” or
maximal dimension (4).

Here the matrix A’ denotes the transpose of A, namely

9
AT =

00 J O Ot

1
2
3
4

—

0
1
2

In AT the rows of A appear as columns, and the columns of A as rows in their natural
order.

If an item is entered in MATLAB without a designation such as x = ... and is not fol-
lowed by a ; , such an item will always be designated as ans on screen. This is short for
“answer”. Such an object will be stored as ans in the workspace. Note that the contents
of ans is freely and frequently overwritten. Please compare with the on-screen output
of the first four size and length commands above that are comma delimited. If an item
is “named” in MATLAB code, such as A, B, or result above are, it will carry that
name throughout the computations (until reassigned) and be displayed on screen only if
followed by a , or by a blank.

16 Chapter 1: Computations and MATLAB

For the above defined matrix Az 4 we can form the matrix product D3yx5 = A3yxa-Caxs,
but not F' = Cyxs - A3xq for any 4 by 5 matrix C, such as the random matrix C =
randn(4,5) that contains normally distributed random entries.

This is due to the nature of matrix multiplication:

Matrix multiplication is based on the dot product defined for any two vectors of equal
size. The product matrix P of two conformally sized matrices K and L is a matrix of
size “‘number of rows of K” by “number of columns of L”. To be compatible for multi-
plication, the rows of K and the columns of L must have the same length. If this is so
then the entries p;; of the matrix product P = K - L = (p;;) are computed as the dot
products of row ¢ of the first matrix factor K with the column j of the second matrix
factor L. We refer the reader to the annex on matrices.

>> C = randn(4,5); D = A*C, F = CxA

D =
6.2593 -1.5887 1.2617 8.7846 -1.9003
11.444 -2.2827 -1.0572 22.73 -2.6528
16.628 -2.9768 -3.376 36.676 -3.4053

??? Error using ==> x

Inner matrix dimensions must agree.

Here the MATLAB on-screen term Inner matrix dimensions refers to the underlined
“inner” size numbers of the matrix factors of D such as depicted by our underlining in
D35 = Azxs - Cyxs. These inner dimensions are both equal to 4 for the matrix product
D=A-C.

However, the inner dimension numbers do not agree when we try to form F' = Cyx5- A3x4,
one being 5, the other 3. Therefore, F' cannot be formed and does not exist. Note that
the matrix product D = A - C inherits the (not underlined) “outer dimensions” 3 by 5
from its factors A3 4 and Cy5, or D = A-C'is a 3 by 5 matrix.

Solving linear equations Az = b is done in MATLAB via the backslash A\b
command. For example, let us consider a system of 4 linear equations in 4 unknowns
Ty, To, XT3, T4 such as

r1+3x0—bxg—x14 = 2
—r1+ 1729 — 23 — 51y = 12 (1.1)
S5v1 —x3+3ley, = 0
r1+axo+x3 = —11

In order to solve such systems of linear equations on a computer, it helps to realize that
only the coefficients of the system (1.1) play a role. For efficient computer use, such
systems should be rewritten in matrix form Ax = b by extracting the coefficient matrix
A on the left hand side of (1.1) and the vector b on the right hand side of (1.1). Here

13 -5 -1 2
-1 17 -1 -5 12
A=l 5 0 1 3 | Wmb=]

1 1 1 0 —11

1.1 MATLAB Software and Programming 17

Note that we have to place zeros in the positions of A that correspond to unused variables
in any equation in (1.1). Below are the corresponding MATLAB commands that let us
find the solution vector

Z1
z=| "2
z3
Ty
for the system of linear equations
1 3 -5 -1 T 2
-1 17 -1 =5 w || 12 |
Av = 5 o 1 3 e | T o | T
1 1 1 0 Ty —11

Our two command lines below first generate the coefficient matrix A and the right hand
side vector b for (1.1), followed by the MATLAB backslash linear equations solver that
computes the solution vector x. This is followed by a simple verification of the error inher-
ent in the residual vector A-x —b for our numerical solution x. This error is nearly zero
since in MATLAB the number -1.3323e-15 describes the real number —1.3323 - 10715,

> A =1[13-5-1;-117 -1 -5;5 0 -1 31;1 1 1 0],
b = [2;12;0;-11], x=A\b, error = A*x-b,
A=
3 -5 -1
-1 17 -1 -5
0 -1 31
1 1 1 0

12
-11

-9.1947
0.44732
-2.2526
1.4104

error =
-1.3323e-15
-1.7764e-15
0
0

The MATLAB backslash command solves all linear systems of equations, with rect-
angular or square matrices alike. If we instead want to solve the linear system Az = b
for our earlier matrix

1 2 3 4 -3
A= 5 6 7 8 and b= 2 ,
9 10 11 12 0

we could effect this in MATLAB via the following commands.

18 Chapter 1: Computations and MATLAB

> A =1[1234;567 8;9,10,11,12]; b = [-3;2;0], x = A\b, error = A*x - b,

b =
-3
2
o
Warning: Rank deficient, rank = 2 tol = 1.3293e-14.
ans =
1.1111
0
0
-0.73611
error =
1.1667
-2.3333
1.1667
Here A is suppressed on screen and only the right hand side b is displayed since it was
followed by a comma , on the command line instead of the suppressing ; . Next MATLAB
issues a warning that our chosen 3 by 4 matrix A has deficient rank two instead of three,

and then it gives the least squares solution

1.1111
0
0
—0.73611

of the linear system of equations Az = b, followed by the (now sizable) error vector
Az — b. Recall that the rank of a matrix A refers to the number of linearly independent
rows or columns in A, or equivalently to the number of pivots in a row echelon form of
A; refer to Appendix 1 on Linear Algebra and Matrices for more details.

The least squares solution x of an unsolvable linear system Ax = b such as our
system is the vector x that minimizes the error || Az —b|| in the euclidean vector norm
||| defined by ||z| = /22 + ...+ 22 when the vector x has n real entries z;.

We also note that a multiplication * symbol is required in MATLAB whenever a multipli-
cation is to be performed. Our students should compare the output of the two commands
>> 2 piand >> 2+%pi to learn the difference.

The latter command will give the answer as 6.2832 in format short g, while the screen
output will be 6.283185307179586e+00 in format long e. Powers of the base 10 are
always displayed in MATLAB via the e-extension as beta in format e. Thus 400 =
4e+02 and 1/1000 = 1e-03 in MATLAB’s exponential output and screen display.
Format statements can be entered at any prompt such as >> format short, or inside
MATLAB code where desired. Commanding >> format toggles the output format back
to the previous format setting.

No matter what format is specified, MATLAB always computes in double precision,
i.e., it carries about 16 digits in all of its computations. For detailed numerical analysis
we prefer the extended digit output of format long e, while for most engineering output
format short g will give sufficient information. format short g limits the output to 9
digits and writes numbers 0.0001 < |z| < 9.99999899 - 108 in standard decimal form and

1.2 Numerical Methods and MATLAB Techniques 19

numbers outside of this range in exponential form be+a.

In this book we shall use MATLAB codes and explain more involved features of MAT-
LAB as we encounter them. MATLAB has a built-in help menu; typing help format
at the >> prompt, or help \, for example, will show the syntax and variations of these
two commands “format” and ‘backslash’. Whenever a student encounters a MATLAB
command that is not self explanatory, we suggest using this built-in help function of
MATLAB.

There are many MATLAB tutorials available on the web; please enter “MATLAB
tutorial” into your favorite internet search engine (such as google, hotbot, infoseek, ly-
cos, yahoo, ..., etc) and follow the offered links. Unfortunately, we cannot include a full
fledged MATLAB tutorial in this book due to space and time concerns.

This chapter continues with a description of a few basic numerical methods and
their underlying principles. However, a solid first course in numerical analysis cannot be
replaced by the concise intuitive explanations of numerical methods and phenomena that
follow below.

1.2 Numerical Methods and MATLAB Techniques for
Chemical and Biological Engineering Problems

In this section we give an overview of numerical analysis in general, and of the aspects of
numerical analysis that are needed for problems encountered specifically in chemical and
biological engineering?. This overview will, by necessity, be rather brief and it cannot
substitute for a full semester course on Numerical Analysis. It is meant as a refresher
only, or as a grain-of-salt type introduction to the theory and practice of mathematical
computation. Many of the key terms that we introduce will remain only rather loosely de-
fined due to space and time constraints. We hope that the unfamiliar reader will consult
a numerical analysis textbook on the side; see our Resources appendix at the end of the
book for specific recommendations. This we recommend highly to anyone, teacher or stu-
dent, who does not feel firm in the concepts of numerical analysis and in its fundamentals.

In this book we aim to place general and specific chemical/biological problems in
the context of standard numerical techniques and we try to exhibit and explain special
numerical considerations that are needed to solve these chemical/biological problems us-
ing MATLAB. These concerns are due in part to the special nonlinearities that occur
in chemical /biological engineering. They are often caused by the Arrhenius® dependence
(2.1) with its exponential nonlinearity of reacting systems, or by other subject specific
nonlinearities in both chemical and biological systems.

We hope that this interdisciplinary book will open the door for more interdisciplinary
research so that industrial chemical /biochemical/biomedical plants can be run more eco-

2Biological engineering comprises both biochemical and biomedical engineering
3Svante August Arrhenius, Swedish chemist, 1859 — 1927

20 Chapter 1: Computations and MATLAB

nomically and environmentally safer through efficient numerical simulation and the op-
timal utilization of numerical analysis and digital computers.

1.2.1 Solving Scalar Equations

Scalar equations have played a fundamental role in the history and development of Nu-
merical Analysis. But they represent only the simplest problems and have little bearing on
the advanced chemical/biological engineering problems that we want to solve numerically.
Our very first “numerics for chemical/biological engineering problems chapter”, Chapter
3, will deal with scalar equations rather quickly and easily using MATLAB. Since the cur-
rent subsection is of little importance to the rest of the book, it can be skipped at first and
it is best read later with a grain-of-salt looseness of mind, if only to study the MATLAB
codes and learn from them. Nothing much or deep depends on scalar equations nowadays
as they can be solved readily by software.

A scalar equation is an equation of the form f(z) = 0 for a function f that depends
on one variable . In mathematical notation, we express functions f that map one real
variable x to the real value f(z) symbolically by writing f : R — R, where R denotes
the set of all real numbers.

What mathematicians call “functions” is often referred to as “state variables” by
engineers. These are parallel languages. If ¢ is the independent time variable and 7'(t)
represents the temperature at time ¢, then in “engineering language”, T'(t) is a dependent
state variable in the independent variable or parameter ¢, while mathematically speaking,
T'(t) is the temperature function dependent on time t. Use of the function terminology
is more recent and allows for treating multi-variable, multi-output functions such as

F](t,.%',y)
F(t,z,y) = : ‘R - R

Fo(t,z,y)

where each component function F;(t,z,y) : R — R fori =1,2,...,nis a state variable
itself depending on the three independent variables ¢, x, and y by the same ‘function for-
malism’. F' as defined above is not a “state variable”, because it combines several states
in one subsuming function F'. The formal ease when speaking of “functions” rather than
“state variables” gives this mathematical concept a clear advantage in modeling complex
problems. Engineers should be aware of the limitations of the “state variable” concept
and try to embrace the more versatile “function” notation.

Polynomial equations such as 2% — 222 + 4 = 0, for example, have been studied
for many centuries. Over the last hundred years, there have been over 4,000 research
publications and many books written on how to solve the general polynomial equation
p(z) =0, or how to find n roots x; with p(z;) =0 for i =1, .., n, when

p(i[:) = anmn—’_an—]mnil'i_...—i—alm—’—ao

1.2 Numerical Methods and MATLAB Techniques 21

is a polynomial of degree n with real or complex coefficients ay, provided that a,, # 0.
Note that if a,, = 0 in p, then p(x) does not have degree n but a lower degree. It is clear
that a polynomial in one variable x is a special type of function p : R — R, given in
polynomial form.

Let us look at the process of finding polynomial roots as an input to output process:

INPUT polynomial p of degree n — root finder ~— OUTPUT n roots x;

Here the “root finder” can be any one of the algorithms from the vast literature. Assum-
ing that the chosen algorithm works properly, it takes the n real or complex coefficients
a; for i =0 to i =n—1 of p as input and produces n real or complex numbers x;, the
roots of p, as output. To do so, we have tacitly assumed that the leading coefficient a,
of p is normalized to equal 1 since dividing p of degree n by a constant (a, # 0) does
not alter its roots.

We start with a short history of the polynomial-root finding problem that will
explain the eminent role of matrices for numerical computations by example.

The study of polynomial roots literally lies at the origin of modern Numerical Analysis.

In 1824, Abel* proved that it is the impossible to solve a general polynomial equation of
degree five or higher by radicals, such as the quadratic formula

b+ Vb2 — dac
T2 = 2a

does for second-degree polynomials p(z) = ax? + bx + ¢ = 0, for example.

Since there is no direct mathematical way to write down general formulas for the roots of
general polynomials of degree larger than 4, the roots of such higher degree polynomials
can only be computed iteratively by numerical procedures, giving both birth and need
to Numerical Analysis.

About 20 years after Abel’s discovery, matrices were invented and their theory developed.
One of the fundamental uses of matrices lies in their ability to model processes and
phenomena of many branches of engineering and applied science. One of the most pressing
needs at the time was to understand and find the periodical and oscillatory behavior of
mechanical and other engineering systems. This quest involves the study of scalars A with
Az = Az for a given model matrix A,, , and any nonzero vector z. If, for example, there is
one such value A with |A| > 1, then the iterates A"z = A" necessarily become arbitrarily
large, i.e., they “blow up”, predicting a dangerous disaster for the plant or system. For
this purpose mathematicians study the question for which scalars A the corresponding
homogeneous matrix equation Az — Az has a nonzero solution vector x. In matrix terms,
see our Appendix 1, this question is equivalent to finding those values of A for which the
matrix A— AI is singular or noninvertible, where I denotes the n by n identity matrix

4Niels Abel, Norwegian mathematician, 1802 - 1829

22 Chapter 1: Computations and MATLAB

with ones on its main diagonal and zeros elsewhere, i.e.,

1 0

n,n

For almost another century, many mathematicians tried to solve the related determi-
nantal equation det(A — AI) = 0, in order to find these particular values A of matrices
numerically. Incidentally det(A — AI) = 0 is a polynomial of degree n in A.

This equation is called the characteristic equation of the matrix A; it is an nth degree
polynomial in A and its roots A1, ..., A, are commonly called the eigenvalues of A. The
eigenvalues \; of A describe the growth, decay, and oscillatory behavior of the states of
the underlying model in detail. Such models and, apparently, reliable polynomial-root
finders for them became a dire necessity much more recently when, for example, trying
to break the sound barrier in flight by attenuating wing oscillations sufficiently to avoid
break-up caused when the real parts of the eigenvalues of the corresponding model matrix
lay in the right half of the complex plane C = R+ iR = {a+bi | a, b € R, i = /—1}.
In chemical engineering the computation of the eigenvalues of linearized model equations
were at the basis of the discovery of periodic (oscillatory) behavior of chemical /biological
reactors and enzyme membranes. This work has been developed further during the last
three decades leading to the discovery of chaos in these systems. Such practical appli-
cations have driven polynomial-root algorithms to the fore during the first 50 years of
the last century. Unfortunately, none of the algorithms of the early half of the 1900s has
proved to be much good.

Things changed for the better when matrix means were further developed in the latter
half of the 20th century with the advent of electronic and digital computers. The break-
through for the matrix eigenvalue problem came from judicious matrix factorizations
such as the LR factorization A =: Ay = Lo - Ry. The LR matrix factorization expresses
the standard Gaussian® elimination, or equivalently the row echelon form reduction of
a matrix A as the product of a lower triangular matrix L and an upper triangular one
called R. It took a stroke of genius by Rutishauser® to re-multiply the L R matrix factors
of Ay in reverse order as A; = Ry - Lo, then to factor A; as A1 = L - Ry again and
to form Ay by reverse order multiplication, to re-factor and to reverse order multiply
Ay := Ry - Ly = Ly - Ry, and so forth. This is only meaningful since matrix products
L-R+# R-Lin general, i.e., matrix products generally do not commute. Finally Francis’”
QR algorithm extended Rutishauser’s LR algorithm by using the QR factorization
of matrices instead in which the first factor @) is orthogonal, and the second factor R is
upper triangular. The QR algorithm finds general matrix eigenvalues more quickly and
accurately than ever before.

And the original modeling problem of oscillatory engineering phenomena was not only
best modeled via matrices, but it was also best solved by matrix methods themselves.

5Johann Carl Friedrich Gau}, German mathematician, 1777 — 1855
SHeinz Rutishauser, Swiss mathematician, 1918 - 1970
7John Guy Feggis Francis, English systems engineer, Oct. 10, 1934 —

1.2 Numerical Methods and MATLAB Techniques 23

Nowadays, numerical analysts give the following global ready advice when any ap-

plied problem leads to trying to find roots of a polynomial: “to go back to before the
problem was expressed in polynomial form”. There was likely a linear model at
an earlier stage of the problem development whose eigen information could be extracted
much more reliably from the respective matrix than the roots can be from the unfortu-
nate polynomial.
More specifically in most chemical/biological engineering problems, the system is de-
scribed by nonlinear differential equations (DEs). When these are linearized in a neigh-
borhood of certain steady states they lead to linear DEs whose characteristics can be
determined by analyzing the corresponding matrix eigenvalues.

The expense and accuracy distinguishes between all known polynomial-root finding
algorithms. The most economical known polynomial-root finder pzero.m, see the folder
chap1.2m on the accompanying CD, performs O(n?) operations on the n input data a; of
p of degree n to produce its n roots. It is based on a tridiagonal matrix representation of
p and can account for moderate repeats of the roots of p. MATLAB in turn uses an O(n?)
algorithm that forms the companion matrix (see the definition below) for p and then finds
the eigenvalues of the companion matrix via the QR algorithm. The companion matrix
of a normalized polynomial p(z) = 2"+ a,_12" "' + ...+ a1x +ag is the n by n matrix
C = C(p) whose first row contains the negative coefficients —a,_1, —an_2, ..., —a1, —a,
of p in the positions (1,1), (1,2), ..., (1,n—1), (1,n), respectively, it contains ones on the
first subdiagonal and zeros everywhere else, i.e.,

—Qp—-1 —Qp—92 ... —a1 —Qo
1 0 0

C =Cp) = 0 (1.2)
0 0 1 0

n,n

MATLAB'’s polynomial-roots finder roots does not handle repeated or clustered roots
very well, but otherwise it is the best O(n?) root finder available. Note that an op-
erations count of O(n’) for an algorithm signifies that the algorithm performs K - n’
additions and multiplications (for some algorithm specific constants K and j, but de-
pending on n) to obtain its output from n input data. Most of the polynomial-root finders
of the last century unfortunately were even slower O(n*) algorithms and all in all much
too slow and inaccurate.

To illustrate we first verify the identical behavior of the MATLAB QR based polyno-
mial-root finder roots and MATLAB’s QR based matrix eigenvalue finder eig for p’s
companion matrix P = C(p): First we define p by its coefficient vector in MATLAB’s
workspace, then we invoke the MATLAB polynomial-root finder roots, followed by its
matrix eigenvalue finder eig on the companion matrix of p. Finally we display the com-
panion matrix P of p. As an example we use p(r) = 2® — 222 + 4 here and represent p
by its coefficient vector [1 -2 0 4] in the following line of MATLAB commands.
>>p =[1-20 4]; [roots(p), eig(compan(p))], P = compan(p)

24 Chapter 1: Computations and MATLAB

ans =

1.5652 + 1.0434i 1.5652 + 1.0434i
1.5652 - 1.0434i 1.5652 - 1.0434i
-1.1304 -1.1304
P =
2 0 -4
1 0 0
1 0

[We advise our students to follow our text and to always copy our MATLAB command
lines onto their MATLAB desktop as they read through this chapter. Our students and
readers should observe the execution of these commands, and we encourage them to alter
these commands slightly to learn more about MATLAB.]

Note that the output of roots(p) and eig(compan(p)) each is a complex column
vector of length three, i.e., each output lies in C?; and the two solution vectors are iden-
tical. Our trial polynomial p(x) = 2® — 222 + 4 has one pair of complex conjugate roots
1.5652 £ 1.0434 - i and one real root —1.1304. The (first row) companion matrix P of a
normalized nth degree polynomial p (normalized, so that the coefficient a,, of 2™ in
p is 1) is the sparse n by n matrix P = C(p) as described in formula (1.2). Note that our
chosen p is normalized and has zero as its coefficient a; for = z?, i.e., the (1, 2) entry
in P is zero. For readers familiar with determinants and Laplace expansion, it should be
clear that expanding det(P — xI) along row 1 establishes that our polynomial p(x) is the
characteristic polynomial of P. Hence P’s eigenvalues are precisely the roots of the given
polynomial p.

Polynomial equations are not rare in chemical/biological engineering problems, they
are typically met in most local stability problems. However, nonalgebraic or transcen-
dental equations are more common in our subject. A function in one variable x is called
transcendental, if it is not merely a polynomial in z, nor a ratio of polynomials (called
rational function), but contains nonalgebraic transcendental expressions in z, such as

2 2z
ew_mQ’ {/1'3 _ 1/1.0.5’

xe
1 —sin(z)e—2*

etc.
Historically speaking, most polynomial and transcendental one variable equations f(x) =
0, have been solved by one of two methods: by Newton® iteration or by bisec-
tion/inclusion (or by a judicious mixture of the two).
Newton iteration starts with an approximation xy of a root z* of f and goes along the
tangent line to the curve at (zo, f(z¢)) until it intersects the x axis. This intersection is
labeled x1. It is an improved iterative approximation for the actual root, and the pro-
cess continues leading from x; to xo via the tangent to f at x1, etc. until the difference
between successive iterates becomes negligible, see Figure 1.1 for our trial polynomial
equation p(z) = 2® — 22% + 4 = 0 and the start zo = —2.

In Figure 1.1 we have marked our iteration start g, and the first and second iterates
x1, T2 that are the respective intersections of the tangents to the curve at (zo, f(zo)) and

, sin(z) +log(z), log(x?) —172~3/2 +22% — 2 +4,

8Isaac Newton, British physicist and mathematician, 1643-1727

1.2 Numerical Methods and MATLAB Techniques 25

(21, f(z1)) with the x axis, as well the solution z* = —1.1304 towards which the iterates
x; converge. Clearly the solution z* near —1 of p(z) = 0 is the point of intersection of the
graph of p with the z axis where p = 0.

Newton’s method leads to the formal iteration rule

f(@i)

Titl = Ti— Fx) (1.3)

-_— p(x):x3—2x2+4

_12 I I I I I I I I I

Newton iteration
Figure 1.1

Equation (1.3) follows readily from the point-slope equation of a line, applied to the
tangent at (z;, f(x;)), namely to

y—flzi) = fl(zi) (x—ax) . (1.4)

Solving (1.4) for x and setting z;41 = x as well as y = 0 gives rise to the iteration (1.3).

Newton’s method is the basis of many root-finding algorithms. It can be extended to
several, i.e., n real variables

21 fl(z)

z= and n variable functions f(z) = : :R™ - R™ .

The division by f/(z;) in (1.3) is replaced in the n dimensional case by multiplication
with the matrix inverse (Df(z(i)))f1 of the Jacobian® n by n matrix Df = (0f./0z;)

9Carl Jacobi, German mathematician, 1801-1851

26 Chapter 1: Computations and MATLAB

of f:
LD L) _ (Df (Zm))*l.f(Z(i)) , (1.5)

In order to distinguish between the n components of each iterate, marked by subscripts,
we mark the iterates z(*) in R™ themselves by superscripts. Thus fully written out the
ith Newton iterate z(*) in R” is the vector

(@)

L) —

when n > 1. Moreover, df;/0z; denotes the partial derivative of the ith component func-
tion f; of f with respect to the jth component z; of z for ¢, j = 1,...,n, and each iterate
2(k) € R™ is a real vector. We note that if n = 1 and f’(z;) =~ 0 (i.e., when x; is close to a
near-multiple root of f) in the one-dimensional case, or if in the multi-dimensional case,
Df (z(k)) is nearly singular and cannot be inverted reliably as a matrix for some iterate
2% then Newton’s method will not be applicable. We encounter this phenomenon with
scalar equations routinely near multiple roots, see our discourse after Figure 1.2 for de-
tails, as well as in some Newton iterations in particular chemical/biological engineering
boundary value problems, see Chapter 5. Then we need to develop new and more appro-
priate methods to solve these problems successfully.

Formula (1.3) is a fixed point equation since it has the general form
Tivy1 = ¢(xi)

with ¢(z) = = — f(z)/f'(z) for Newton’s method. The word “fixed” derives from the
fact that if z; = z*, i.e., if we are at the solution z* of f(x) = 0, then by (1.3),
xip1 = x* — f(a*)/f(z*) = a* as well. And the iteration has come to a stand-still,
or it has become “fixed” at the solution z*. Finally we note that any scalar function

equation of the form h(xz) = k(z) can be readily transformed into the standard form
f(z) = 0 (with zero on the right hand side) by setting f(x) = h(x) — k(x).

Another method to solve scalar equations in one real variable x uses inclusion and
bisection. Assume that for a given one variable continuous function f : R — R we know
of two points zy < xy, € R with f(x¢) - f(xyp) <0, i.e., f has opposite signs at =, and
Zyp. Then by the intermediate value theorem for continuous functions, there must be
at least one value z* included in the open interval (x¢, zyp) with f(2*) = 0. The art of
inclusion/bisection root finders is to make judicious choices for the location of the root
x* € (xg, Typ) from the previously evaluated f values and thereby to bisect the interval
of inclusion [z, 2yp) to find closer values v < u € [Ty, Typ) With |v — u| < |z¢ — 24| and
f(v) - f(u) < 0, thereby closing in on the actual root. Inclusion and bisection methods
are very efficient if there is a clear intersection of the graph of f with the z axis, but for
slanted, near-multiple root situations, both Newton’s method and the inclusion/bisection

1.2 Numerical Methods and MATLAB Techniques 27

method are often inadequate. In particular, for the dynamic chemical/biological transcen-
dental equations of Chapter 3 we shall develop a variant of the level curve method
that helps solve our equations where the standard Newton or bisection/inclusion meth-
ods fail. For details, see Sections 3.1 and 3.2.

MATLAB has a built-in root finder for scalar equations f(z) = 0 in one real variable
x that are in standard form. The built-in MATLAB function is fzero. The use of fzero
hinges on a user-defined function, such as the “function” f inside the following fzero
tester, called fzerotryl, that we apply to our previously studied third degree polyno-
mial.
We note that fzerotryl is a MATLAB function m file that is stored in its folder
with the extension .m as fzerotryl.m. Our program code is annotated with comments
following the % symbol. Anything that follows after a % symbol on a line of code is not
executed in MATLAB. More on MATLARB files, their storage, creation, etc. is given in
Section 1.2.5. Specific built-in MATLAB functions and their use, such as fzero in the
code below, should always be scrutinized by our students for their input/output syntax
etc. using the built-in help MATLAB command >> help fzero for example.

function fzerotryl % function m file
% Sample call: fzerotryl
% Input : None
% Output: Newton iterate and number of iterations used
% Computes the zero of the polynomial f(x) = x"3 - 2*%x"2 + 4 near x = -2 first
% and then within the interval [-2,-1].
% Method used : MATLAB’s fzero built-in root finding function

format long g, format compact % specify long format
[Newt,fval,exitflag,output] = fzero(@f,-2); % call fzero for f from x = -2
iterations = output.iterationms;

From_minus_2 = [Newt, iterationmns], % give screen output
[incl,fval,exitflag,output] = fzero(@f,[-2 -1]); % call fzero for f on [-2,-1]
iterations = output.iterations;

From_interval = [incl, iterations], format Y% give screen output

function [y] = f(x) % function m file for
y = x.73 - 2%x.72 + 4; % evaluating f(x)

Note that fzerotryl.m uses no input from and creates no output to the workspace.
Calling fzerotryl creates the following screen output:

>> fzerotryl
From_minus_2 =

-1.13039543476728 24
From_interval =
-1.13039543476728 9

The first call of fzero inside fzerotryl takes 24 iterations to arrive at the real root
x* = —1.1304 of our trial polynomial p(z) = 2® — 222 + 4 when starting at x9 = —2,
while the second call converges after 9 iterations when looking for real roots of p inside
the interval [—2, —1]. Please look up >> help fzero to learn more about this MATLAB
function and how it was used.

28 Chapter 1: Computations and MATLAB

We now give a simple example of an equation with a root of high multiplicity. This
illustrates the limits of even the best standard root finders.
We investigate the 9th degree polynomial

p(z) = 2°—18-2°4+144- 2" —672-2°42016- 2° — 4032 2 + 5376 - 2> — 4608 - 2> +-2304- 2 —512 . (1.6)
p can be rewritten more simply as p(z) = (x — 2)°. In the plots of Figure 1.2 we plot
both p and its derivative
p(z) = 9-(x—2)° = 92°—1442"4+10082° —40322°+100802" —16128z> +161282> —92162+2304

from their “naive” extended polynomial form above (plotted as small circles in Figure
1.2) and from their simple, i.e., “powers of (z — 2)” form (plotted as a curve in Figure
1.2) using MATLAB.

x107"° x107"°

O px)=x’-18x%+..-512
— p=(x-2°

0.5

prime | i
o]
o
-0.5— A
. 4
° pp"me(x) =9x°—144x" + . +2304
_ 8
— Porime® =9 (x-2)
1 1 1 1 1 1
1.95 2 2.05 1.95 2 2.05
X X

High-multiplicity root
Figure 1.2

In our script m file poly9.m below, we evaluate both p and p’ from their extended
polynomial form, rather than use the more stable and slightly more accurate Horner
scheme, which would have us rewrite p as

p(x) = ((..(((z — 18)x + 144)x — 672)x + — 4608)x + 2304)x — 512

1.2 Numerical Methods and MATLAB Techniques 29

for example and thus evaluate p(z) from the inside out.

A script m file in MATLAB does not start with a function ... declaration as the
function m file fzerotryl.m does. A script m file rather consists only of MATLAB com-
mands. See Section 1.2.5 for more details on these two types of m files in MATLAB.

% poly9 script m file

% Sample call: poly9

Plots the graph of

p(t) = (£-2)79 = t.79 - 18%t."8 + 144%t."7 - 672%t."6 + 2016%t."5 - ...

4032 *t."4 + 5376%t."3 - 4608%t."2 + 2304xt - 512

in one subplot, both in closed form (curve) and in extended form (o)

near t = 2.

And repeats the same for the derivative

% p’(t) = 9%(£t-2)"8 = 9*t"8 + ... + 9%256

% of p in both forms, closed in a curve, and extended (o) in a second subplot.

t = linspace(1.92,2.08,200); % form a partition t of the interval
% [1.92, 2.08] of 200 points

t.79-18%t. "8+ 144%t."7 -672*%t."6 + 2016*t."5 -4032 *t."4 ...

+ 5376%t.~3 -4608*t."2+ 2304*t -512; % naive formula for evaluating f = p

f1= 9% (t.”8 -16*%t."7 + 112 *t."6 -448%t."5 + 1120 *t."4 -1792%t."3 ...

H
]

+ 1792%t."2 -1024*t + 256); % naive formula for evaluating f’ = p’
subplot(1,2,1), plot(t,f,’ok’), % plot (t,f(t)) on first subplot

axis([1.91 2.09 -1.5%10"-10 1.5%10°-10]), hold on, % plot more on same plot

plot(t,(t-2).°9,’-k’,’LineWidth’,2), % plot (t,(t-2)"9)

xlabel(’x’,’FontSize’,14),
ylabel(’p’, ’Rotation’,0, ’FontSize’,14) % label the axes

legend(’p(x) = x"9 - 18 x"8 + ... -512°,...
p(x) = (x - 2)79° ,2) % include legend
hold off % clear left graphics window
subplot(1,2,2), plot(t,f1,’0k’), % plot (t,f’(t)) on second subplot

axis([1.91 2.09 -1.5%10"-10 1.5%10°-10]), hold on, % plot more on same plot
plot(t,9*(t-2).78,’-k’,’LineWidth’,2), % plot the derivative (t,9*(t-2)"8)
xlabel(’x’,’FontSize’,14), ylabel(’p_{prime}’,’Rotation’,0,...

’FontSize’,14) % label the axes
legend (C’p_{prime}(x) = 9 x"8 - 144 x°7 + ... +23047,...
‘p_{prime}(x) = 9 (x - 2)°8’ ,0) % include legend
hold off % clear right graphics window

We urge the interested reader to look up >> help linspace, >> help plot, >> help
subplot, >> help axis, >> help xlabel, >> help ylabel, and >> help legend
to fully understand the code of poly9.m. However, over time many students will find
these and other MATLAB commands quite obvious from their use and from the gen-
erated output. MATLAB programming is very simple and intuitive. Built-in MATLAB
functions can be knitted into personal codes that perform particular tasks and can com-
pute or plot most anything in engineering.

In Figure 1.2 we note that for x within around 3% of the multiple root z* = 2 of
p, the values of p(z) and p/(z) in extended polynomial form (both plotted as dots in
Figure 1.2) are small random numbers of magnitudes up to around 4+ 5- 10711, Hence

30 Chapter 1: Computations and MATLAB

any bisection/inclusion algorithm performed on p in extended form (1.6) will fail to get
closer to the actual root * = 2 than by about 0.06, i.e., every such algorithm will have an
error of around 3% when trying to find x*. Likewise for Newton iterations, the iteration
process turns into a nonconverging random hit and miss exercise near x* = 2 as we shall
see.

The following experiments validate our assessment of troubles with Newton or bisec-
tion root finders for multiple roots. First we use the bisection method based MATLAB
root finder fzero, followed by a simple Newton iteration code, both times using the cho-
sen polynomial p(z) of degree 9 in its extended form (1.6).

function fzerotry2 % function m file
% Sample call: fzerotry2
% Input : None
% Output: Newton iterate and number of iterations used
% Computes the zero of the polynomial
% f(x) = x79 - 18%x78 + 144xx"7 - 672%x"6 + 2016%x"5 - 4032*%x"4 ...
% + 5376%x73 - 4608%x72 + 2304*x - 512
% near x = 1.5 first and then within the interval [1.91, 2.1].
% Method used : MATLAB’s fzero built-in root finding function

format long g, format compact

[Newt,fval,exitflag,output] = fzero(@f,1.5); % use fzero from x_0 = 1.5
iterations = output.iterations;
From_1lpoint5 = [Newt, iterations], % screen output

[incl,fval,exitflag,output] = fzero(@f,[1.91 2.1]); % fzero on interval
iterations = output.iterations;
From_interval = [incl, iterations], format % screen output

function [y] = f(x) % long extended form of polynomial f(x) = (x-2)"9:
y = x79-18%x78+ 144%x”7 -672*%x"6 + 2016*x"5 -4032*x74 ...
+ 5376%x"3 -4608*x~2+ 2304*x -512; Y function evaluation subfunction f

The output of fzerotry?2 is as follows:
>> fzerotry2
From_1pointh =
2.0542835318567 35
From_interval =
1.96209266952178 6
Note that MATLAB’s fzero algorithm stops after 35 iterations when it is about 2.7%
away from the true root 2 with an approximate start at 1.5. From the inclusion interval
[1.91, 2.1] it also ends rather prematurely and off target as well.

The Newton method fares no better here; see the code below and its output on the
next page.

function X = newtonpoly9(xstart,k) % function m file
% Sample call : newtonpoly9(3,42);
% Input: xstart = start of newton iteration

% k = number of iterations
% Output: (on screen)
% list of Newton iterates and iteration indices in three columns

% Tries to find the roots of p(x) = (x-2)"9 given in extended form
% p(x) = x79 - 18%x78 + 144*x"7 - 672%x"6 + 2016*x"5 ...

1.2 Numerical Methods and MATLAB Techniques 31

% - 4032%x74 + 5376*x"3 - 4608*x72 + 2304*x - 512
% via Newton’s method starting at xstart, and performing k iterations

i =0; X = xstart; % start at xstart
while i < k+2 % do k Newton steps
X = xstart; % x :=x - p(x)/p’)

xstart = xstart - (x79-18%x"8+ 144%x"7 -672*x"6 + 2016*x"5 ...
-4032*x"4 + 5376%x"3 -4608*x"2+ 2304*x -512)/(9%(x"8 ...
-16*%x"7 + 112 *x"6 -448%x"5 + 1120 *x"4 -1792*%x"3 ...
+ 1792*x72 -1024*x + 256));

X = [X;xstart]; i = i+1; end % Accumulate the Newton iterates
% display on screen :
disp([’iteration counter x(i) counter x(1) ...
’ counter x(i)’]), format short g

disp([[0:13]’,X(1:14),[14:27]°,X(15:28),[28:41]°,X(29:42)]), format

The code above is a MATLAB function m file with two inputs xstart and k and one
output X. Its first code line

function X = newtonpoly9(xstart,k) % newton poly 9

contains the function name declared to be newtonpoly9. Once this m file is stored in
the current working directory of the MATLAB desktop, its name newtonpoly9 becomes
a valid MATLAB command and this command needs two inputs such as xstart,k to
generate its output X. In order to find and be able to execute the commands of the function
newtonpoly9 from the desktop, MATLAB must find an m file named “newtonpoly9.m”
in its current working directory. The name of the function newtonpoly9 is followed by
its two inputs (xstart,k). And its output, the vector X containing the starting point
xstart, followed by k-1 Newton iterates precedes it in front of the = sign on the first
line of code.
In order to call >> newtonpoly(start,n) implicitly on a command line with success,
the two implicit inputs “start” and “n” must have been declared previously and must be
available in the current workspace. Of course, one can also call newtonpoly9 explicitly
by entering >> newtonpoly(21,42), for example, on the command line if one wants to
see the list of 41 Newton iterates for the same polynomial-root problem, starting from
start = xo = 21.
Our MATLAB programs generally carry many comments after a % sign so that the reader
can better understand what we do when and why. This will help our users to adapt our
printed programs for other purposes.

Here is the output for the Newton iterates 0 - 41 starting with the initial guess 2y = 3.

>> newtonpoly9(3,42);

iteration counter x(1) counter x(1) counter x(1)
0 3 14 2.1922 28 2.0606
1 2.8889 15 2.1709 29 2.0655
2 2.7901 16 2.1519 30 2.0524
3 2.7023 17 2.135 31 1.977
4 2.6243 18 2.12 32 4.1992
5 2.5549 19 2.1067 33 3.9548
6 2.4933 20 2.0949 34 3.7376
7 2.4385 21 2.0845 35 3.5446

32 Chapter 1: Computations and MATLAB

8 2.3897 22 2.0756 36 3.3729
9 2.3464 23 2.0665 37 3.2204
10 2.3079 24 2.0563 38 3.0848
11 2.2737 25 2.0482 39 2.9643
12 2.2433 26 2.0764 40 2.8571
13 2.2163 27 2.0678 41 2.7619

Note how slowly the Newton iterates decrease from our start at zg = 3 to 2.0524 in 30
steps. Then the iterates slip below the root z* = 2 to 1.977 in step 31 and the 32nd
iterate jumps far away from its aim z* = 2 to 4.1992. At « = 1.977..., obviously the
“randomness” in evaluating p and p’ near x = 2 takes the Newton iterates completely
off target to 4.199..., from where the Newton iterates come back slowly again to within
about 3% of 2* = 2. Then they may converge or get pushed off target once more, etc.

The students should try other starting values and observe the inherent limits of both
bisection and Newton’s method for finding multiple roots or finding nearly flat and
slanted intersections of the graph of f with the x axis.

MATLAB’s O(n?) polynomial-root finder roots, used for the same polynomial p, en-
counters different problems and computes 4 complex conjugate root pairs instead. These
lie on a small radius circle around the ninefold root 2. As input for roots, we represent
our polynomial (z — 2)? of degree 9 in extended form by its coefficient vector [1 -18 ...
2304 -512].

>> roots([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512])
ans =

2.0609

2.0458 + 0.039668i
2.0458 - 0.039668i
2.0089 + 0.059025i
2.0089 - 0.059025i
1.9696 + 0.050203i
1.9696 - 0.050203i
1.9453 + 0.019399i
1.9453 - 0.019399i

roots is based on the MATLAB matrix eigenvalue finder eig. This matrix eigenvalue
finder tries to find all roots of p from the associated companion matrix C(p) by using
the QR algorithm. The computed roots are quite inaccurate and most are accidentally
computed as complex numbers.

Only the earlier mentioned faster O(n?) polynomial-root finder pzero discovers the nine-
fold real root 2 of p correctly; see the Resources appendix for a quote of the literature
for pzero and the folder pzero on our CD for the actual MATLAB code of pzero.

>> pzero([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512])
ans =

NNNDNDNNDNDNDNDN

1.2 Numerical Methods and MATLAB Techniques 33

Unfortunately, in chemical and biological engineering problems multiple roots or near
multiple roots occur often; for example, look at Figure 3.2 on p. 71 and the slanted
intersections marked by (1), (2), and (3). These force us to devise specific better numerical
methods for such problems in Sections 3.1 and 3.2.

Ezxercises
1. Use the m file fzerotryl.m on p. 27 as a template for finding the roots of
other functions f of your own choice. Vary the initial guesses as fits your
chosen f.
(It is best to use a plot routine for f when looking for likely root candidates;
see the next problem.)

2. Develop a plotting code for Problem 1 that is based on the plotting commands
in poly9.m on p. 27. (You will probably not need to use the subplot(...)
command.)

3. Adapt fzerotry2.mon p. 30 to various other polynomials of your choice. Use
polynomials of degrees less than 7 that have some multiple roots, as well as
no multiple roots. What happens to the complex roots of a polynomial under
fzero?

4. Repeat Problem 3 with newtonpoly9.mon p. 30.

5. Modify the MATLAB function m file newtonpoly9.m on p. 30 to print out
three columns of iterates with their iteration indices for all values of k.
[Hint: the first output column should contain the iterates indexed from 0 to
[’;] — 1, the second one those from [’;] to 2- [’;] — 1 and the last from 2 - [’;]
to k, padded by blanks if needed. To achieve this, you need to adjust/replace

the last three lines of code only.]

6. Learn to plot complex numbers on the complex plane by calling >> x =
roots([1 -18 144 -672 2016 -4032 5376 -4608 2304 -512]), for exam-
ple, first and then plotting the real and imaginary parts of the output vector
x, as well as ¥ = 2. Use the * symbol to plot the entries of x and the + symbol
for £* = 2. Where do the computed roots lie in the complex plane? How can
you describe their location? Also evaluate abs(x-2); what do these numbers
mean and signify?

In closing we remark that not all scalar equations are solvable. For example, equations
such as sin(z) =7, ™) =0, @) =20, or |2|?+|z|* = —2 are all unsolvable since
none of the values chosen for the right hand sides lie within the range of the respective
functions on the left. In chemical/biological and any branch of engineering, however,
correctly posed problems will result in equations that always have solutions.

However, many equations that we shall encounter in this book will have more than one
solution for a given set of the parameters, indicating that the modeled chemical /biological
process can actually be in one of several steady states, depending on its recent history or
start-up and on the internal dynamics of the system as described by differential equations.

Such behavior signifies bifurcation and this is where the fun begins.

34 Chapter 1: Computations and MATLAB

1.2.2 Differential Equations; the Basic Reduction to First Order
Systems

Scalar equations, as studied earlier, depend on one or several real variables x, y, t, T,

Differential equations instead link various derivatives of one or more functions f(...),
g(.-.), y(...), ..., each with any number of variables. These mathematical “functions” de-
scribe “state variables” in engineering parlance. Differential equations are equations in
one or more variables and in one or more functions of the variables and in their deriva-
tives. They involve independent variables such as space and time, and dependent, so
called “state variables” or functions and their derivatives. Many physico-chemical pro-
cesses are governed by differential equations or systems thereof, that involve unknown
functions f, g, ... in various variables and various of their derivatives [/, ¢, ...; f”, ¢", ...
etc.

The task of modeling is to obtain valid scalar, differential, or other type of equations
(integral, integro-differential, etc) that describe a given physical system accurately and
efficiently in mathematical terms. Numerical analysis and computations then lead us to
the solution values or to the solution function(s) themselves from the model equations.

When trying to solve differential equations, we look for functions as supplying us

with the “solution” to our problem. Differential equations problems generally include
additional information on the solution function in their formulation, such as knowledge
of some initial conditions for the solution, knowledge of some function behavior at the
boundaries of the variable range, or a mixture thereof. Hence differential equations nat-
urally fall into the categories of IVPs or of BV Ps, signifying initial value problems
or boundary value problems, respectively.
A different classification scheme for DEs, short for differential equations, separates
those DEs with a single independent variable dependence, such as only time or only
1-dimensional position, from those depending on several variables, such as time and spa-
tial position. DEs involving a single independent variable are routinely called ODEs, or
ordinary differential equations. DEs involving several independent variables such
as space and time are called PDEs, or partial differential equations because they
involve partial derivatives.

As this book is mainly intended for undergraduates, we only treat those chemical /bio-
logical processes and problems that can be modeled with ODEs. PDEs are significantly
more complicated to understand and solve. However, we will often have to solve systems
of ODEs, rather than one single ODE. Such ODE systems contain several DEs in one
and the same independent variable, but they generally involve several functions or “state
variables” in their formulation. In fact, systems of ODEs (and matrix DEs) occur quite
naturally in chemical/biological engineering problems.

A single nth order ODE for one unknown function f(z) is an equation of the form

F (@) + an-1 (@) [(@) + o ar (@) f(2) + f(@) = g() (1.7)
which involves f(x) and the derivatives f’'(x), f(z), ..., f7(z) of f up to and including

1.2 Numerical Methods and MATLAB Techniques 35

order n. Here we have normalized the coefficient function of) (z) to be 1. In (1.7) each
of the coefficient functions a,(x) can be a constant function a;(x) = a; € R for all z, or a
function a;(z) : R — R in the variable z. Analytical descriptions of the solution f in form
of a “formula” for f are desirable, but unfortunately almost always impossible to find.
On the other hand, numerical solutions can routinely be found for (1.7) by converting
the nth order DE first into a system of n first-order DEs involving n auxiliary functions
yi(z) as follows:

Set y1(w) = f(@),
y2(2) = fl(z),
Yn-1(2) - f=2(z) , and
yn(x) = f(nil)(x) .
And define
y1(2)
y=ylz) = ; €R"

by its component functions y; : R — R. Then the function y(z) : R — R" satisfies the
following system of DEs for its components y;:

3/1 Y2
3/2 Y3
y(x) =| = : (1.8)
?14171 Yn
Yn 9(x) = an1(x)f" V(@) .. —ar(@)f (x) - f(2)

since vy =yo=f, vh=y3=f", ...,and v, | =y, = £V by definition and

(@) = ()
= g(@) —ana (@) "V (@) — - ar@)f (@) ~ flo)
= 9(@) —ana(@)yn(r) — .. —ar(@)y2(z) —y1(2)
according to (1.7).
We can rewrite (1.8) in matrix form:
0 1 0o ... 0

Y1 0 0
0 0 1 Y2 0 0
Y@ =| . . . : +| =Az) y@)+|
0 0 1 Yn—1 0 0
-1 —ai(z) —ap—1(x) Yn g(z) g(z)
(1.9)

Here the DE system matrix A(z) is a last row companion matrix whose entries in the
last row may depend on x. More specifically, most of A’s entries are zero, except for ones in
its upper co-diagonal and for the negative coefficient functions —1, —a;(x), ..., —a,_1(z)

36 Chapter 1: Computations and MATLAB

of (1.7) in its last row. Note that the last row companion matrix A(z) is similar to a
first row companion matrix for polynomials p of the form C(p) in (1.2) that we have
encountered earlier with MATLAB’s roots function. To see this, we simply need to
reverse the order of the components y; of y. This corresponds to a basis change E~' -
A(z) - E that is affected by the counterdiagonal matrix

0 1
E: .'. ;
1 0

n,n

refer to the Appendix on linear algebra and matrices. E turns any vector

hn Yn
y= upside down to become FEy =

Yn Y1
as can be readily verified by multiplying matrix E times vector .

An nth order DE is called homogeneous if g(z) in (1.7) is the zero function; and it is
called nonhomogeneous if g is not the zero function.

Example: (Transforming a third order ODE into a system of three first-order ODEs)

Assume that f = f(¢) is a real valued real variable function in the independent
time variable t. Assume that f satisfies the third order ODE
af d&f df

g3 T g Ta2 g tasf = F(tf), (1.10)

f///(t)+a1f”(t)+a2f’(t)+a3f(t) - dt? dt

where the coefficients a; can be scalars or functions a; = a;(t) of ¢ and the right
hand side is an arbitrary given function F' of ¢ and f.

If we set y1(t) = f(t), y2(t) = dyi/dt = df/dt = f'(t), and y3(t) = dya2/dt =
d?yy /dt? = d%f /dt? = f"(t), then dys/dt = d*f/dt® = f"”(t). And equation (1.10)
can be written as

dys
(315 +a1ys +asy2 +asyn = F(t,y) .

Thus the given third order ODE (1.10) is equivalent to the following system of
three first-order ODEs.

LA

dt Y1 T Y2 Ys

d

;/f = 0-y1 +0-y2+y3 (1.11)
dys

g — TesyL T aayx—awys F(t,y1)

1.2 Numerical Methods and MATLAB Techniques 37

If we further combine the individual functions y; : R — R into one vector valued

function
y1 1/1
y=1| o | :R=R3withy = | v, ,
Y3 yé

then the system of three ODEs (1.11) becomes the following matrix ODE system

0 1 0 0
vy = o o 1 lu+| o |,
—a3 —az —ap F(t, i)

exemplifying formula (1.9).

Numerical ODE solvers generally work for first-order systems

y = F(z,y) (1.12)

and y : R — R"™ for arbitrary dimensions n. Here F' is allowed to be much more general
than in formula (1.9) In the next subsections we first deal with initial value problems
where initial conditions such as y(xo) = yo € R", ¢/(x0) = y, € R, ... for y(x) are
given, and then with solving boundary value problems where boundary conditions such
as y(a) = yo € R, y(b) = v» € R", ¥/(a) =y, € R", ¢/ (b) =y, € R",... are given
instead for an interval ¢ < x < b. All ODE algorithms and numerical codes can be
adapted readily by “vectorizing the codes” to work with n functions

y1(z)

y(z) = :

and all higher order systems of ODEs can be transformed into first-order n-dimensional
systems (1.12) ¢/ = F(z,y). To solve specific ODEs numerically, the user first has to
rewrite the model DEs in first-order multi-component form (1.12) and thereafter he/she
can use any appropriate vectorized MATLAB ODE solver. We shall practice this “rewrit-
ing” repeatedly whenever it comes up in our chemical /biological models.

1.2.3 Solving Initial Value Problems

Due to the preceding remarks, we can limit our considerations to the case of one first-
order IVP (n = 1) in one function or state variable y : R — R and one independent
variable z, starting at £ = a with the initial condition y(a) = y, € R. We want to solve
the given IVP for the unknown function y(z) and the given right hand side F(z,y). In
other words, we seek the values of y(z) for all values of x in the interval [a, b]. Expressed
in mathematical notation, we thus seek to solve

Y (z) = F(z,y) withz € [a,b] and y(a) = y, ER . (1.13)

38 Chapter 1: Computations and MATLAB

Here F and y, are known. The function y(z) : R — R is unknown on the interval [a, b],
except for its initial value y(a) = y,, called the initial condition.

To start we consider a partition a =29 < 1 < 22 <...< xzy =b of the interval

[a, b]. If we integrate (1.13) from z; to x;+1, then by (1.13)

Ti Ti

The fundamental theorem of calculus allows us to rewrite the left hand side as y(x;4+1) —
y(x;). Thus for each i we obtain

Y1) = yla;) + / F(z,y(z))dz | = Y (x)dx (1.14)

Numerical ODE solvers use this equation to find approximations y; 1 for the value
y(xi41) of y at x; 41 from F, y;, and possibly other data. Sophisticated ODE solvers use
several previously computed approximate values y;—1, yi—2, ... of y(zi—1), y(x;—2),
To do so by approximately integrating the right hand side function F' of (1.13) from z;
to ;41 in (1.14) according to (1.14). To solve IVPs means to integrate F' = ' numeri-
cally in order to find y;11, ¥it2, ... and so forth from known values of y; ~ y(x;) for j <.

If we know z;, y;, and F, we can evaluate F(z;,y;) (= y'(z;)) to learn the direction
that the unknown curve y takes from the point (z;,y;). This is depicted in Figure 1.3
for Euler’s'® rule and i = 0, 1,2, 3. In Euler’s rule the computed value of y; ~ y(x;) is
used to compute the next value y; 41 ~ y(x;41) of equation (1.14) by linear extrapolation
using the point-slope formula of a line. This line is determined by the point (x;,y;) and
the slope F(z;,v;) = y'(x;). Using this data, y; 1 is taken as the y-value on this line that
is reached at x4, or

yi+1:yi+F(mi;yi)'(mi+l_mi) for i=0,...,N—1.

10Leonhard Euler, Swiss mathematician, 1707-1783

1.2 Numerical Methods and MATLAB Techniques 39

IVP integration
Figure 1.3

In Euler’s rule we move from an approximate point (z;,y;) along the line with the slope
F(zi,y;) = y'(x;) for x;41 — x; units to reach the approximate value y; 1 of y(x;11) at
Z;+1. Then we recompute the slope at x;11 as F(zi41,¥i+1) = ¢ (z;4+1) and move along
a line with this slope for z;yo — ;41 units to reach the approximation y;4+2 of y(z;y2)
etc., as depicted in Figure 1.3 in the dotted line segments. The Euler method is called a
one-step method since y;4+1 is computed from only one earlier value y; and F'(z;,y;).
The practical limits of this simple integrator are obvious from Figure 1.3. The true curve
y(x), drawn out continously, diverges from our computed approximations, depicted by
small circles o, and ever worse so: the farther away from the starting point (zo,y(xo))
we integrate and the larger the steps of integration are, the larger becomes the difference
between the curves and the computational error.

There are more refined one-step integrators than Euler’s method. Multi-step in-
tegration methods use more than just one previously computed y; and F' value and
thereby they can better account for y’s curvature and higher derivatives. Thus they follow
the actual solution curve much closer. But in turn, they need more supporting F' data
computations.

Euler’s formula has been improved manyfold over the last century or two. To better
account for the “turning”, or for the concavity of the solution curve y(z), improved
integration formulas involve several evaluations of F' in the interval [z;, 2;41] and then
average. For example, the classical Runge''-Kutta'? integration formula uses four

1 Carle Runge, German mathematician, 1856-1927
12Martin Kutta, German mathematician, 1867-1944

40 Chapter 1: Computations and MATLAB

evaluations of F":

1 1 1 1
Yitl = Vi +hi{ k1 + 3/€2 + 3/€3+ 6/€4} with h; :== ;41 — 2; and

6
k1 F(l‘z, yz)
ky = F(z;+ (hi/2), yi + hi(k1/2)),
ks = F(z;+ (hi/2), yi + hi(k2/2)),
ks = F(xi+ hg, yi + hiks).
With Apee := max(xz;11 — x;), the global error order of the classical Runge-Kutta

method is of order 4, or O(h,...), provided that the solution function y of (1.13) is 5 times
continuously differentiable. The global error order of a numerical integrator measures the
maximal error committed in all approximations of the true solution y(x;) in the computed
y values y;. Thus if we use a constant step of size h = 1073 for example and the classical
Runge-Kutta method for an IVP that has a sufficiently often differentiable solution v,
then our global error satisfies

max |y; —y(zi)| < K-h*=K- (1073 = K -10712

for all intermediate points (z;, y(z;)), a problem specific constant K, and all i. For com-
parison, the Euler method has global error order O(hqz). If applied to the same problem
and step size, it will only compute y(x;) with global errors bounded by C - 103 for an-
other constant C'.

The price we pay for more accurate higher order methods such as the classical Runge-
Kutta method has to be paid with the effort involved in their increased number of function
evaluations. Many different Runge-Kutta type integration formulas exist in the literature
for up to and including order 8, see the Resources appendix.

Ideally, an integrator should account for the variations in the solution y(z). In regions
of where y(x) has constant slope, for example, one can integrate y correctly over large
intervals even with Euler’s simple line method. When the graph of y(z) twists and turns
rapidly, the integrator should be able to recognize this and use higher order methods
combined with smaller steps. This has lead to adaptive integrators with an internally
varying step size control that depends on y’s variation. Adaptive methods usually are
built upon two integrators of differing error orders, in which the high order integrator
reuses some of the function evaluations that the low-order integrator uses so that the total
computational effort is minimized. The results of the two methods at x;11 are compared
and if they agree satisfactorily, the solution curve is deemed to be well matched, allowing
for subsequently larger steps. If they disagree enough, then the step size is reduced to
account for the relatively high variation of the solution. Such integrator pairs are called
embedding formulas.

There are several adaptive integrators available in software form inside MATLAB.
Their names are ode45 for a Runge-Kutta embedding formula of orders 4 and 5, ode23
of a Runge-Kutta embedding formula of orders 2 and 3, and ode113 of the predictor-

1.2 Numerical Methods and MATLAB Techniques 41

corrector formula of Adams-Bashford-Moulton '® with global error order 6. In fact,
Adams and Bashforth developed the predictor part of the predictor-corrector integration
formula in the mid 1800s and Moulton added the corrector part early in the 20th century
to make it truly adaptive.

All of the above mentioned MATLAB integrators are recommended for general use. Their
differences are subtle and too tedious to explain here; please look at MATLARB’s help.
For stiff differential equations MATLAB offers the integrators ode15s, ode23s, ode23t,
and ode23tb. Stiff ODEs are quite common in chemical/biological engineering IVPs and
BVPs, but we will defer discussing stiffness until it appears naturally in Chapters 4 and
5 with specific initial and boundary value problems.

This is but a short introduction to numerical methods.

For more help to decide which ODE solver to use, type >> more on, type ode...,
more off, rather than only help ode....

We shall subsequently use the MATLAB ODE solvers as black boxes, sometimes vary-
ing between the individual ones only for higher speed or better accuracy when warranted.
Our students should experiment freely with using either of the above seven ODE solvers
to learn which is more advantageous where. It only takes a different call of MATLAB to
find out.

To make certain that a chosen ODE solver has solved the IVP correctly, we recommend
to decrease the allowed error bounds repeatedly inside the respective MATLAB ode. . .
call and to verify that the computed solution does not change significantly. See p. 201 in
Chapter 4 for more details.

For those eager to see some MATLAB ODE examples, we advice to click on the MAT-
LAB desktop “Help” button and to search for “Differential equations” on the left side
“Navigator” under the “Search” option. Scrolling down, you will find six clickable items
on ODEs and the “Examples” contain more on ODEs in MATLAB.

As told earlier for scalar equations, we must be well aware that there are unsolvable
IVPs for which the solution may, for example, “blow up”, i.e., have a pole before reaching
the right endpoint of the target interval [a, b]. Likewise, an IVP may have multiple
solutions, especially if the number of initial conditions is less than the order of the DE or
the dimension of the first-degree system. But under mild mathematical assumptions of
continuity and Lipschitz'* boundedness || F(z,y)—F(x,9)|| < L|ly—%|| of the function F
in (1.12), every ODE system 3 = F(x,y) with y = y(z) : R — R™ and with n specified
initial conditions y(zo), ¥ (7o), ... , ¥ V(x¢) € R™ at vy € R will have a unique
solution; we refer the reader to the literature quoted in the Resources appendix at the
end of this book.

13 John Couch Adams, English astronomer, 1819-1892
Francis Bashforth, English astronomer, mathematician, and ballastician, 1819-1912
Forest Ray Moulton, US astronomer, 1872-1951

14Rudolf Lipschitz, German mathematician, 1832-1903

42 Chapter 1: Computations and MATLAB

1.2.4 Solving Boundary Value Problems

For boundary value problems of ordinary differential equations the first step is to
reduce the problem to a first-order system of DEs of dimension n > 1 as described in
Section 1.2.2. Once this is done, one needs to solve the system of DEs

y(x) = F(x,y) (1.8)
for the unknown function y : R — R"™ with n component functions

Y1 (z)
y(z) = :

and all z € [a, b]. In BVPs certain boundary conditions are imposed on the solution y
at the interval ends a and b. The initial IVP data of size n that specifies y(a) and possibly
y'(a) ete. at the initial value = a of an IVP is distributed here among the two endpoints
of the BVP in order to tie the solution y(x) down at both ends z = a and = b. Since
fewer than n initial conditions at a are specified in a BVP than in the corresponding IVP,
one can use this freedom at x = a to parameterize the non specified initial conditions so
that the resulting IVP with the parameterized set of initial conditions reaches the right
endpoint y(b) = y, as desired. The standard approach to solving a BVP is to vary the
parameterized and unspecified initial conditions of the corresponding IVP at the start
2 = a until the desired terminal condition(s) at « = b are satisfied. This method is called
the shooting method.
It goes back to the ancients:

If your arrow strikes above or behind the target, just lower the bow, i.e., decrease the
slope or the derivative of the solution curve at the start, in order to hit the target. Vary
this initial angle (the free parameter) slightly until the arrow hits just right.

This shooting and adjusting process itself can be modeled by a nonlinear equation
that has to be solved in order to move along the trajectory y from a to b that satisfies
the ODE system (1.12) and the boundary conditions. In a numerical shooting method,
we solve an underdefined IVP first, with some unspecified free parameters, and then we
try to solve the boundary value problem by adjusting the free parameters to satisfy the
right endpoint boundary conditions. This may be possible to do, or the BVP may not be
solvable at all. A BVP may have many, even infinitely many solutions. Finding the proper
set of initial conditions involves solving a nonlinear system of equations iteratively after
each parameter specified IVP has been solved. The IVP is generally solved by one of the
methods described in the previous section, while the intermediate nonlinear equation is
generally solved by a Newton iteration.

In practice it is advantageous to subdivide the interval a = xp < 21 < ... < xzny = b
and to solve the N sub-BVPs as parametric IVPs on each subinterval from z; to x;41
fori =0,1,..., N — 1 first. This is followed by solving the resulting nonlinear system in
the parameters so that the values of adjacent sub-functions match at each node x; in

1.2 Numerical Methods and MATLAB Techniques 43

order to obtain a global solution y(z) of the BVP from a to b. Such multi-shooting
methods rely heavily on an initial guess of the shape of the solution y. The initial guess
serves as a first approximation for each of the N sub-IVPs from z; to x;41. The variable
parameters at each node z; are then adjusted by a Newton iteration of the form (1.5) for
the corresponding nonlinear system of equations f = 0 in the free initial value parameters
until the individual pieces of the solution y match at the nodes and the concatenated
function y satisfies the ODE and the given endpoint boundary conditions.

MATLAB uses a collocation method in its BVP solver bvp4c that improves on
the multi-shooting method in situations where the function value at the endpoint of an
integration is very sensitive to variations of the free parameters at the starting point of
the sub-IVPs and where ordinary shooting and multi-shooting methods generally fail.
The numerical integrator used by bvp4c on each subinterval is a Simpson rule'® of or-
der 4; see the quoted literature in the Resources appendix. The subinterval solutions are
represented in bvp4c as third degree polynomials S;(z). These are computed so that their
derivatives S agree not only at the respective endpoints x; and x;11 of each subinterval,
but also so that they agree at the subinterval midpoints with F' as defined in (1.12), i.e.,
S'"((x; + ®ig1)/2) = F((x; + 2i41)/2, S((z; + 2441)/2)). To make this matching possible
with third degree local polynomials S;, collocation methods internally subdivide the pa-
rameter intervals further when indicated.

The bvp4c MATLAB code can deal with singular ODEs and we shall explain its use and
the necessary preparations in Chapter 5. In fact there we show how to modify the inner
workings of the built-in MATLAB BVP code bvp4c so that it does not stop when an
intermediate Newton iteration encounters a singular or near singular Jacobian matrix,
but rather continues with the least squares solution. The modifications to bvp4c will be
explained when there is need in Chapter 5.

Under the MATLAB “Help” button, when searching for “Differential Equations”, a list
of eight topics on BVPs will pop up for those who want to have a preview of MATLAB’s
BVP capabilities.

This short introduction has given only a broad overview of BVP solvers; for more infor-
mation we refer the reader to the relevant items mentioned in our Resources appendiz.

1.2.5 MATLAB m and Other Files and Built-in MATLAB Func-
tions

In the previous sections we have used MATLAB commands that were typed in on the
>> desktop command line, as well as MATLAB commands that invoke special stored
MATLARB files, called m files. When starting to work with MATLAB, we advise our
users to create a special folder for their personal MATLAB m files once and to continue
to use this folder to store personal m files. To access the stored m files from the MATLAB
desktop, the user has to point the small desktop window called “Current Directory” to
the personal m file folder. Then all stored m files, as well as all built in MATLAB func-
tions can be accessed, called upon, and used from the command line. All stored personal

15Thomas Simpson, English mathematician, 1710-1761

44 Chapter 1: Computations and MATLAB

m files can be opened by clicking on the “open file” icon; they can be printed, edited,
and saved by the customary icon clicks. And new m files can be created as well.

MATLAB m files can contain any number of MATLAB commands. They are handy

for long sets of MATLAB instructions or data and afford easy repeated use and easy
modification. There are two kinds of MATLAB m files: function and script m files.
Script m files such as poly9.m on p. 28 use the data that is defined inside of them and
any undefined data is taken from the data (with the proper name) that is currently active
on the workspace; look at the top left window commonly displayed on the MATLAB
desktop for a list of defined variables and their type. Script files overwrite the workspace
data as instructed in their code.
Function m files such as fzerotryim on p. 27 work in their own closed environment
instead: all data used must be supplied as input or generated inside the function m
file. Data is not exchanged with the workspace, except for the variables mentioned as
“output” and “input” on a function m file’s first line such as function y = f(x) %
evaluate y=f(x) for y and x, for example. By a call of >> y = £(x) the input variable
x is not altered in the workspace, but the output variable y is. Calling >> x = f(x) for
a function m file named f .m is allowed and updates the workspace variable x to become
equal to f(x). Note that a function m file starts with the word function, followed by
a blank space, and the name of the (optional) output variable(s) or vector(s) such as y or
[y,n,error] for example, if output is desired. The output designation is followed by the
equal sign = and the name of the function with its input(s) from the workspace, such as
function y = g(x,z,k) if f allows three input variables x, z, and k and computes one
output y for example. Another function called funct is defined on the following lines by
specifying its output variables y and s from its input variables z, z, and k. This example
function m file computes the kth root of 22 + 22 and produces the output

y= 22422,
as well as an “indicator” s (for possible later use in further computations), that is set
equal to 1if -z > 0 and equal to s = —1 if -z < 0. Here is the example program funct:

function [y,s] = funct(x,z,k) % compute kth-root(x"2+z"2) and a sign indicator s
y = (x"2 + z72)"(1/k);
s 1; if x¥z < 0, s = -1; end

If this function m file is stored as funct.min the current desktop working directory, it can
be called and executed in MATLAB by typing >> funct(3,5,17) or >> x=3; z=5;
k=17; [yy,sign] = funct(x,z,k) for example. These calls will create the following se-
quence of outputs.

>> funct(3,5,17)
ans =

1.2305
>> x=3; z=5; k=17; [yy,sign] = funct(x,z,k)
yy =

1.2305

sign =
1

1.2 Numerical Methods and MATLAB Techniques 45

>> [why,ka] = funct(3,5,17); pause, why, pause, ka
why =
1.2305

ka =

1
In our first call above, we have not named an output and we have omitted the “no screen
output” colon ; so that the first (unnamed) output variable y is displayed only as ans.
In the second call of funct we have preceded the call of funct by assigning names to
both outputs and have followed the command funct(x,y,k) with a blank space. This
creates the screen output of both variables, called yy and sign by us. In the last call the
command names the output why and ka and it is followed by a colon ; . Therefore, we
have no output to the screen initially. Only after the pause command is ended by hitting
the “return” key does the output called why appear on screen. After another “return”
stroke to overcome the second pause command, the second output ka is displayed. Note
that in the second command the computed values for yy and sign are both available in
the workspace whether we use a blank, a comma, or a colon following the call of funct
since the output is explicitly defined on the command line. Likewise for the third call of
funct and why and ka. If on the first command line, however, we had finished the com-
mand funct(3,5,17) ; with a colon ; instead, then there would have been no output at
all, not onto the screen, nor onto the workspace.
The reader should study our earlier MATLAB m files now, such as the script m file
poly9.mon p. 28 and the function m file fzerotryl.mon p. 27 and look for their differ-
ences.

Data files can be saved from one session of MATLAB to another by the save com-
mand. Below is the screen output of commands that create a 3 by 3 matrix A, then
save it (as A.mat) in the current working directory, and finally clear all variables in the
workspace with the clear all command. Commanding only clear A would have suf-
ficed to clear, i.e., delete A alone from the MATLAB workspace. We then check that
A is in fact gone from the workspace; A now resides in the file A.mat in the current
working directory of MATLAB. We can resurrect the data in A by using the load com-
mand for A and A will be again available on the MATLAB workspace. Just follow our
diary below. Note that in MATLAB the n by n identity matrix I,, , with zeros ev-
erywhere except for ones on its main diagonal, can be generated by the command eye (n).

>> A = randn(3)-20*eye(3)

A=
-19.142 -1.441 0.69
1.254 -19.429 0.81562
-1.5937 -0.39989 -19.288
>> save A
>> A
A =
-19.142 -1.441 0.69
1.254 -19.429 0.81562
-1.5937 -0.39989 -19.288
>> clear all
>> A

?7? Undefined function or variable ’A’.

46 Chapter 1: Computations and MATLAB

In our last call >> A, we have asked MATLAB to display the “variable” A that was
present on the workspace before we cleared the whole workspace with the clear all
command. Of course at that moment A is no longer available on the workspace, having
been cleared from workspace storage. To view or use our stored copy of A again we
simply need to load it with a 1load A command onto the current workspace and we can
continue working with A as we please. The MATLAB save and load commands are very
useful for storing and reusing data from session to session, over days or weeks. And often
it helps MATLAB’s efficiency to call clear all after long sessions in order to free up
workspace memory. Here is what happens when we reload A and display it.

>> load A
>> A
A=
-19.142 -1.441 0.69
1.254 -19.429 0.81562
-1.5937 -0.39989 -19.288

MATLAB can keep a diary of a session or parts thereof via the commands diary or
diary Junel2, for example, which collects all screen output in a file called “diary” or
“Junel2”, respectively, in the current working directory. The command diary off stops
the collection of the on-screen information. If the diary on command is given later in
the same session, the subsequent screen output will be appended to the previous diary
and saved. Please read up on diary by entering >> help diag.

Figures and plots can be generated easily via MATLAB. These can be transformed
into and stored in many formats, such as MATLAB’s generic ,,,.fig, or as Jpeg,
postscript, RAW, TIFF, etc. files as desired. Simply look at the dialogue box that pops up
from the save icon of a MATLAB figure. For a quick introduction to MATLAB graphics,
type >> demo matlab graphics and a “Help” window will open, that lets you choose
several clickable graphics demonstrations. We defer further explanations to our relevant
graphics codes in later chapters.

The last part of this section lists a few standard MATLAB operations, functions, and
commands, collected into groups, together with short descriptions. This may help our
readers to more easily find and use built-in MATLAB functions in their own MATLAB
program codes. Please note that our MATLAB function descriptions below are very few
and very short by necessity. The user should use the help ... command to find the full
length MATLAB reference guide entry for each MATLAB function when the need arises.
This will help our readers use the full power and functionality of MATLAB commands
and will enable them to browse for and find related built-in MATLAB functions.

The printed MATLAB Function Reference Guide book consists of three volumes amount-
ing to about 2,000 pages that list every one of about 1,000 built-in MATLAB functions.

1.2 Numerical Methods and MATLAB Techniques 47

MATLAB Desktop Utilities

clear Deletes items from the workspace. clear all clears the whole workspace. Rec-
ommended after long sessions on the same MATLAB desktop.

clf This command clears the current figure window and thereby avoids superimposed
images if a hold command is still active on the window.

close Deletes the current figure, or a specified figure. close all closes all figure win-
dows.

help Calling >> help ... at the MATLAB command line displays the comment lines
on screen that explain the function

quit This command exits the current MATLAB desktop. Upon calling >> quit MAT-
LAB saves the previous command history, while simply closing the desktop via the
mouse does not keep the history of commands in MATLAB’s memory.

T, | T entered on the keyboard brings up the previous command on the command line,
and the command before the previous one when pressing | again, etc. | allows to
go forward in the command history.

Arithmetic Operations in MATLAB

+, =, %, /, = Elementary mathematical operations : plus, minus, times, divide, and power
or exponentiation.
If any of the arithmetic symbols is preceded by a dot . such as in x.*y for two row
vectors x and y of the same length, for example, the indicated operation is per-
formed element by element and results in the row vector (z1y1, ..., Tnyn), wWhile
x."y becomes (x¥', ..., z¥").

-

Special Characters in MATLAB

@ Creates a function handle, so that functions can be passed to MATLAB function m
files as variables are.

. Three dots ... indicate a line break inside a MATLAB command. Useful to break
long lines of contiguous code, such as with title text.

% The percentage sign makes all that follows on the same line into commentary to be
skipped during execution of the file. See p. 232 for details on how to effectively
(un)comment whole blocks of MATLAB code.

48 Chapter 1: Computations and MATLAB

Elementary Functions in MATLAB

feval Evaluates a function for the supplied arguments. The function may be given by
its “handle” as @func for a function m file named func.m.

clock Saves the current time as a date vector.
etime Evaluates elapsed time, often used in conjunction with clock.
exp Exponential function e® for the Euler'® number e = 2.71... .

log, 1logl0 Logarithm for base e or base 10.

Elementary Matrix Generation in MATLAB
eye Creates the identity matrix.
ones Creates a matrix of all 1s.

rand, randn Creates a matrix with random entries; uniformly distributed or normally
distributed, respectively.

zeros Creates a matrix with all entries equal to zero.
norm Computes the norm of a matrix.

diag For vector input, diag creates a matrix whose diagonal is as prescribed with zeros
elsewhere. For a matrix input diag extracts the diagonal entries of the matrix in a
vector.

Elementary Matrixz Functions in MATLAB
size Computes the size vector (number of rows, number of columns) of a matrix.

length Computes the maximal size max(number of rows, number of columns) of a ma-
trix.

linspace Creates a partition vector with linearly spaced nodes.
logspace Creates a partition vector with logarithmically spaced nodes.
\ Solves a linear system of equations.

lu The call of [L,U] = 1u(A) computes a lower triangular matrix L and an upper
triangular one U with A = L - U if possible, using Gaussian elimination.

16T eonhard Euler, Swiss mathematician, 1707-1783

1.2 Numerical Methods and MATLAB Techniques 49

gr The call [Q,R] = qr(A) computes a unitary matrix) and an upper triangular
matrix R with A = @ - R using Householder elimination.

eig Calling eig(A) computes the eigenvalues of a square matrix A.

svd Calling svd(A) computes the singular values of a matrix A.

Sorting, Finding, and Comparison Functions in MATLAB

sort Sorts a real vector by size of the entries; a complex vector by the magnitude of the
entries.

abs Computes the componentwise absolute values of the entries of a vector or a matrix.

max, min Compute the maximal (or minimal) entry of each column of a real matrix, or
of the entries of a real vector.
To find the absolute largest entry in a real matrix A, use max (max(A)).

find The call [i,j] = find(A ~= 0) for example returns the row and column indices
of all nonzero entries in the matrix A.

fliplr, flipud Reverse the order of the entries of a vector or of the columns or rows of
a matrix, either left to right or up-down.

end When used as an index inside a matrix or vector statement this denotes the “final”
index of the vector/matrix. Not to be confused with the terminating “end” com-
mand of “for”, “while” or “if” loops. Avoids finding the size of a vector or matrix
first before working on the maximal index entry.

Logical Functions in MATLAB
==, .=; <, <=, >, >= Equal sign in logic comparisons, not-equal sign; comparison signs.
&, | Logical “and” and “or” symbols.

for ... A “do loop” uses the syntax for "list", "action"; end such as in x =
zeros(1,21); for i = 1:2:21, x(i) = -i; end which sets every second com-
ponent in x equal to its negative index, i.e., x = (—1,0, 3,0,,—19,0, —21).

while ... A “whileloop” uses the syntax while "condition", "action"; end such as
in
i =1; while i <= 21, x(i) = -i; i = i + 1; end which sets every com-
ponent in z € R?! equal to its negative index, i.e., x = (=1, -2, -3, ..., =20, —21).

if ... else ... end The command if x > 2, A = 5; else, A = 20; end, for exam-
ple, sets A to be 5 if z > 2, and equal to 20 otherwise.
The syntax of an “if” statement is as follows: if "condition", "action"; end,

50 Chapter 1: Computations and MATLAB

try ... catch ... end The commands
A=1[01;1,2]; b = [0,10]’; try, x = A/b; catch, x = 20; end, x,
lasterr, for example, try to solve a linear system of equations Az = b for

x. But the command x = A/b; uses the wrong direction slash due to a typo.
If this command had been typed correctly as x = A\b;, then the above line of
commands would create no error message and the program would continue with

x = A" = 100 . As the command inside the original “try”

however, z is set to 20 inside the “catch” segment and the program continues with
that value of z.
Check the output of our command line to verify this and then alter the forward

segment fails,

slash typo into a backslash for the correct output of the solution z = (10) to

0
Az =b.
The syntax of a “try ... catch” statement is: try, "actionl"; catch, "action2";
end, .

Special Input and Output Functions in MATLAB

nargin, nargout Number of input or output arguments of a MATLAB function. Used
to specify certain input parameters in the preamble of a MATLAB program or at
the end.

disp Causes screen output of its arguments.
error Displays an error message and terminates the program.

num2str Creates a string for a number to be used inside text strings, mainly used in plot
or screen annotations.

Definite Integral Evaluation in MATLAB

quad, quad8, quadl Evaluate definite integrals via different integration formulas.

Ordinary Differential Equation Solvers in MATLAB
For Initial Value Problems:

ode45,0de23 etc. Initial value problem solvers for various types of stiff and nonstiff
DEs.

For Boundary Value Problems:

bvp4c Boundary value problem solver for DEs.

1.2 Numerical Methods and MATLAB Techniques 51

Graphing and Plotting Utilities in MATLAB

figure Creates a figure graphics object. Commands such as figure(1) and figure(2) etc,
preceding plot commands refer to different figure windows on the desktop.

subplot Divides the current figure window into multiple panes. Number of pane rows,
columns and the location of the next plot need to be specified.

meshgrid Generates the x and y coordinate matrices for plotting 3D surfaces.

plot The command plot(x,y) for two equal sized vectors x and y plots the lines between
each point (z;,%;) and the subsequent point (z;41,¥i+1) € R? in a linear 2-D plot
in the plane. Line type, line width, and color etc. can be further specified.

plot3 The command plot3(x,y,z) for three equal sized vectors z, y, and z plots the
lines between each point (x;, y;, 2;) and the subsequent point (z;41,¥i+1, zi+1) € R3
in a linear 3-D plot that projects the curve in R3 onto a planar image. Line type,
line width, and color etc. can be further specified.

semilogx, semilogy The command semilogx(x,y) for two equal sized vectors x and y
plots the lines connecting each point (z;, y;) and the subsequent point (2,41, yi+1) €
R? in a semi-logarithmic 2-D plot in the plane. Here the scale of the (horizontal)
x axis is logarithmic, while the vertical y scale is linear. Line type, line width, and
color etc. can be further specified.
semilogy (x,y) plots linearly in the horizontal scale and logarithmically on the y
scale.

loglog The command loglog(x,y) for two equal sized vectors x and y plots the lines
between each point (x;,y;) and the subsequent point (z;41,%i+1) € R? in a two
axes logarithmically scaled plot in the plane. Line type, line width, and color etc.
can be further specified.

interpl A call of Y = interpl(x,y,X) creates interpolating data X and Y from given
data z and y of points (z;,%;) € R2. Used to plot smooth curves that interpolate
the (sparse) data and y to obtain (usually) much larger data X and Y. Various
methods of interpolation such as splines etc. can be specified.

interp2 Same as interpl, except for three dimensional data x, y, and z of surfaces.

contour Two dimensional contour plot of a surface. For three equal dimensioned matri-
ces X, Y, and Z, contour (X,Y,Z) draws the surface Z = z(x, y) over the rectangle
with partitioned edges in X and Y. Level lines and types can be explicitly set, as
well as colors.

contour3 Plots contour lines on a 3D surface plot.

surf, surfc For three equal dimensioned matrices X, Y, and Z, surf(X,Y,Z) creates
a three dimensional color-shaded surface plot. And surfc(X,Y,Z) draws an addi-
tional contour plot below the surface.

52 Chapter 1: Computations and MATLAB

surface For three equal dimensioned matrices X, Y, and Z, surface(X,Y,Z) plots the
parametric surface of the data X, Y, and Z. Color can be specified.

Figure Window Manipulations

59 , p Figure zoom functions to magnify or reduce an area of a plot. Used via the
mouse from the Figure window toolbar.

rotation icon When activated on the Figure window toolbar, the mouse can be used to

rotate 3D plots for better visualization. Can be used in conjunction with @ , @ .

Color and Line Types in MATLAB

Color specifications: In MATLAB ’y’ stands for “yellow”, >r’ for red, ’g’ for green,

’b’ for blue, *k’ for “black”, etc. Alternatively one can specify color as an RGB
triple such as [1 0 0] for red, [0 0 0] for “black”, [1 1 0] for “yellow”, etc.
For surface and line color drawings it is advisable to define a colormap such as
colormap (hsv(128)) that contains 128 colors, varying from “red” hues through
“yellow”, “green”, “cyan”, “blue”’, and “magenta” hues before returning back to
“red” hues.

Line type specifications: Specifying the line type by - creates a solid line; - - creates
a dashed line, : makes a dotted line etc. Plots can be marked by symbols such as
+ for the “plus” sign, or o, i.e., the lower case letter o, for small “circles”, or s for
squares, etc.
Line width can be specified as in plot(....,’LineWidth’,2), for example, by a
width given in “points” such as 1 for thin lines or 2 for wider ones in most of the
MATLAB plotting functions.

Fontsize specifications: Plot annotating utilities such as xlabel, ylabel, text, and
title allow fontsize settings for displayed text such as xlabel(...,’FontSize’,
12). Here 12 indicates the font to be used. Fontsize 14 is rather large and fontsize
8 rather small.

Rotation specifications: Plot annotating utilities such as xlabel, ylabel, text, and
title allow rotation of the text via text(....,’Rotation’,90). Here 90 indicates
a rotation of ninety degrees from horizontal positioning. A rotation by “0” will not
turn the text at all.
Note that in MATLAB ylabel defaults to a rotation of the text by 90 degrees, i.e.,
it displays the y text information sideways, unless a rotation by 0 is specified.

Figure text special commands: Titles and axes labels can carry mixed alphabetical
and numerical text. For this the string of words and numbers must be enclosed
by a [...] bracket inside the title, xlabel etc. command. Consecutive words

1.2 Numerical Methods and MATLAB Techniques 53

are enclosed by ’> . followed by a comma , and num2str(bt) if we want the
numerical value of 3 to appear amongst the plot annotations as in this example:
xlabel ([’Example for standard data with \beta = ’,num2str(bt),’ for n
= 7 ,num2str(n)]).

Note that MATLAB accepts WTEX style alphanumeric input such as \beta above.
It creates the greek symbol 3 as intended.

MATLARB is a very simple language for computations. Its lines of numerical code are
often few and short. By comparison, the visual output and the proper texting of graphs
created in MATLAB may take much more effort than the numerics.

The MATLAB codes printed in this book give our readers a varied and solid introduc-
tion into the above and many other built-in MATLAB functions, as well as into their
functionality.

Students should always try to develop their own codes first for a problem before reading
or using the codes of this book and the CD. Then we think it is best to study, mimic, and
even imitate codes if they run smoother or better. Therefore, we encourage our readers
to read and study our codes well, but only after having tried their own.

.

Environmental system

Chapter 2

Modeling, Simulation, and
Design of Chemical and
Biological Systems

After the introduction of the basic building blocks of MATLAB and the fundamentals
of numerical analysis with an eye on solving scalar and differential equations in Chapter
1, we now introduce mathematical models in chemical and biological engineering!. Our
subsequent chapters will combine these two areas by introducing models for specific
chemical and biological processes and finding detailed numerical solutions via MATLAB.
This chapter is quite short and condensed. Any reader or student who wants to gain a
deeper insight into model formulation should consult the literature on math modeling in
the Resources appendix.

2.1 System Theory and its Applications

This section introduces some of the basic concepts of system theory in relation to mod-
eling. Our presentation is rather brief since our aim is to integrate known models for
chemical /biological processes with numerical techniques to solve these models for sim-
ulation and design purposes, rather than to give a broad introduction to either system
theory or modeling itself. For references on modeling, see the Resources appendix.

We first give an overview of system theory and modeling as it applies to our subject in
the rest of this book.

2.1.1 Systems
What is a system?

1 Biological engineering comprises both biochemical and biomedical engineering

55

56 Chapter 2: Modeling, Simulation, and Design

e A system is a whole, composed of its parts or elements.

e The decision of what constitutes a system, a subsystem, or an element thereof is
relative and depends upon the level of our analysis. For example, we can view the
human body as a system, with the heart, the arms, the liver, etc. as its elements.
Or we can consider these elements as subsystems in themselves and can analyze
them further by their smaller constituents, such as the valves and chambers of the
heart, or the bones, tendons, muscles, etc. of the arm, and so on.

e The parts or elements of a system can be parts in the physical sense of the word or
they can be processes. In the strictly physical sense, the parts of a human body or
those of a chair constitute a physical system. In our studies of chemical/biological
equipment that performs certain chemico-physical functions, we must also consider
the various chemico-physical processes that take place inside the system as elements
thereof. These processes interact very often with each other to perform the task
of the particular chemical plant, called the system. A simple example of this is
a chemical reactor in which processes such as mixing, chemical reactions, heat
evolution, heat transfer, etc. take place in a controlled way to achieve the task of
the reactor, i.e., the change of the input reactants to the output products.

e The properties of the whole system are not the sum of the properties of its com-
ponents or elements. However, the properties of the components affect the whole
system. The system properties in chemical/biological engineering are usually the
result of highly nonlinear interactions between the system’s components (elements).
For example, one of the “system qualities” of human beings is “consciousness”. But
this is not the property of any of its components or elements, in however much de-
tail we may look at the human system. In our chemical/biological case, the mass
transfer with chemical reactions has certain properties which are not the properties
of the chemical reaction or of the mass transfer alone. An example for this is the
possibility of multiple steady states (bifurcation), a phenomenon which occurs often
in nature, as well as in industrial chemical, biochemical and biomedical equipment.
This phenomenon shall comprise a large part of our studies in this book. See Ap-
pendix 2 for an overview of this important phenomenon of chemical and biological
engineering systems.

The above list is a very elementary presentation of system theory. We will revisit this
subject repeatedly and learn more and deeper facts.

Generally, a chemical /biological system has a boundary that distinguishes it from the
environment. The interaction between the system and its environment determines the
type of the system and its main characteristics as will be detailed later.

For simplicity, we shall refer to any chemical/biological system from now on sim-
ply as a system, omitting the qualifying adjectives, since we shall only consider such
chemical /biological systems from now on.

2.1 System Theory and its Applications 57

2.1.2 Steady State, Unsteady State, and Thermodynamic Equi-
librium

A stable system may be stationary with regards to time, or it may be changing with
time. An open system which exchanges matter with the environment is usually changing
with time until, if it is stable, it reaches a stationary state. This stable state is called the
steady state in chemical /biological engineering. A more correct name for this stationary
stable state would be: a stationary nonequilibrium state. In Chapters 4 through 7
of this book, we prefer to call the stable steady state of a system a point attractor to
distinguish it from other types of attractors, such as periodic and chaotic attractors. Un-
stable states, such as saddles and unstable nodes are not attractors, but rather repellers.
Closed and isolated systems which do not exchange matter with their surroundings also
change with time till they reach a stationary equilibrium state. This is a dead sta-
tionary state, unlike the stationary nonequilibrium state for open systems which is well
known in chemical /biological engineering as the steady state of continuous processes.

Generally, we consider three quantities associated with a system:

The state of the system:

The state of a system is rigorously defined through the state variables of the system.
The state variables of any system are chosen according to the nature of the system.
The state of a boiler, for example, can be described by temperature and pressure,
that of a heat exchanger by temperature, the state of a nonisothermal reactor by
the concentration of the different components and their temperature, and the state
of a bioreactor by the substrate concentrations and pH.

Recall from Chapter 1 that mathematically speaking each “state variable” is a
function of one or several variables, such as of time or location.

Input variables (or parameters):

These are not state variables of the system. They are external to the system and
affect the system, or in other words they “work on the system”. For example, the
feed temperature and composition of the feed stream for a distillation column or a
chemical reactor, or the feed temperature of a heat exchanger are input variables.

Initial conditions:

For systems that have not reached their stationary state (steady state or thermo-
dynamic equilibrium), the behavior with regards to time cannot be determined
without knowing the initial conditions, or the values of the state variables at the
start, i.e., at time = 0. When the initial conditions are known, the behavior of
the system is uniquely defined. Note that for chaotic systems, the system behavior
has infinite sensitivity to the initial conditions; however, it is still uniquely defined.
Moreover, the feed conditions of a distributed system can act as initial conditions
for the variations along the length.

58 Chapter 2: Modeling, Simulation, and Design

2.2 Basic Principles for Modeling Chemical and Bio-
logical Engineering Systems

The simplest definition for modeling is “putting the physical reality into an ap-

propriate mathematical form”.

A model of a system is a mathematical representation in the form of equations and

inequalities that relates the system behavior over time to its inputs and predicts the

outputs.

Model Development

Every elementary procedure for model building generally includes the following steps:
1. Defining the system.
2. Defining the boundaries of the system.

3. Defining the type of system, whether it is open, closed, or isolated.
Open systems exchange matter with the environment, closed and isolated systems
do not. Details to follow.

4. Defining the state variables.
5. Defining the input variables (sometimes called input parameters).
6. Defining the design variables (or parameters).

7. Defining the nature and type of interaction between the system and the surrounding
environment (if any).

8. Defining the physical and chemical processes that take place within the boundaries
of the system.

9. Defining the rate of the different processes in terms of the state variables and
physico-chemical parameters, and introducing equations that reflect the physical
and chemical relations between the states at the different phases.

10. Writing mass-, heat-, energy-, and/or momentum-balance equations to obtain the
model equations that relate the system input and output to the state variables
and the physico-chemical parameters. These mathematical equations describe the
state variables with respect to time and/or space.

Solution of the model equations

The equations of the developed model need to be solved for certain inputs, certain design
objectives, and given physico-chemical parameters in order to predict the output and, for
design purposes, the variation of the state variables within the boundaries of the system.
In order to solve the model equations we have two tasks:

2.3 Classification of Chemical and Biological Engineering Systems 59

1. Determine the physico-chemical parameters of the model experimentally or obtain
them from the literature if some or all of them are available there.

2. Develop a method that finds the solution of the mathematical model equations. The
method may be analytical or numerical. Its complexity needs to be understood if
we want to monitor a system continuously. Whether a specific model can be solved
analytically or numerically and how, depends to a large degree upon the complexity
of the system and on whether the model is linear or nonlinear.

Algorithmic and computational solutions for model (or design) equations, combined with
chemical /biological modeling, are the main subjects of this book. We shall learn that the
complexities for generally nonlinear chemical/biological systems force us to use mainly
numerical techniques, rather than being able to find analytical solutions.

2.3 Classification of Chemical and Biological Engi-
neering Systems

It is very useful to classify different basic system models now in relation to their mathe-
matical description.

I. Classification according to the variation or constancy of the state vari-
ables with time:

— Steady-state models: described by transcendental equations or ODEs (Or-
dinary Differential Equations) or PDEs (Partial Differential Equations).

— Unsteady-state models: described by ODEs or PDEs.

II. Classification according to the spatial variation of the state variables:

— Lumped models (usually called “lumped parameter models”, which is wrong
terminology since the state variables are lumped, not the input variables or
parameters); described by transcendental equations for the steady state and
ODEs for the unsteady state.

— Distributed models (usually called “distributed parameter models”, which
is again wrong terminology since the state variables are distributed, not the
parameters). These are models for systems for which the state variables are
distributed along one or several spatial directions. They are described by ODEs
or PDEs for the steady-state and by PDEs for the unsteady-state case.

III. According to the functional dependence of the rate-governing laws upon
the state variables:

— Linear models: described by linear equations (these can be constant or vari-
able coefficient systems of linear equations, or linear ODEs or PDEs). These
models can often be solved analytically, except for high dimensions.

60 Chapter 2: Modeling, Simulation, and Design

— Nonlinear models: described by nonlinear equations (these can be tran-
scendental systems of scalar equations, ODEs, or PDEs). These models can
generally only be solved numerically.

IV. According to the type of processes taking place within the boundaries
of the system:

— Mass transfer (example: isothermal absorption).

Heat transfer (example: heat exchangers).

Momentum transfer (example: pumps or compressors).

Chemical reaction (example: homogeneous reactors).

— Combination of any two or more of the above processes (example: heteroge-
neous reactors).

V. According to the number of phases in the system:

— Homogeneous models.

— Heterogeneous models (more than one phase).

VI. According to the number of stages in the system:
— Single stage.
— Multi-stage.

VII. According to the mode of operation of the system:

— Batch (closed or isolated system).
— Fed-Batch.

— Continuous (open system).
VIII. According to the system’s thermal relation with the surroundings:

— Adiabatic (neither heating nor cooling).

— Nonadiabatic cocurrent or countercurrent cooling or heating).
IX. According to the thermal characteristics of the system:

— Isothermal.

— Nonisothermal.

All of these classifications are naturally interrelated for a given chemical/biological
engineering problem, and the best approach is to choose one main classification and
then use the other problem’s classifications as subdivisions. The most fundamental clas-
sification of systems is usually based upon their thermodynamical characteristics. This
classification is the most general; it divides systems into open, closed, and isolated sys-
tems which are defined as follows:

2.4 Physico-Chemical Sources of Nonlinearity 61

Isolated Systems: Isolated systems exchange neither energy nor matter with the en-
vironment. The simplest example from chemical or biological engineering is the
adiabatic batch reactor. Isolated systems naturally tend towards their thermody-
namic equilibrium with time. This state is characterized by maximal entropy, or
the highest possible degree of disorder.

Closed Systems: Closed systems exchange energy with their environment through
their boundaries, but they do not exchange matter. The simplest example is the
nonadiabatic batch reactor. These systems also tend towards a thermodynamic
equilibrium with time, again characterized by maximal entropy, or the highest pos-
sible degree of disorder.

Open Systems: Open systems exchange both energy and matter with their environ-
ment through their boundaries. The most common example from chemical /biological
engineering is the continuously stirred tank reactor (CSTR). Open systems do not
tend towards a thermodynamic equilibrium with time, but rather towards a “sta-
tionary nonequilibrium state”, characterized by minimal entropy production, i.e.,
the least degree of disorder. This state is usually called the “steady state” in chem-
ical /biological engineering.

Efficient solution techniques (whether analytical or numerical) for solving
chemsical and biological engineering models will be presented throughout this
book.

Mathematical Programs

For most chemical /biological engineering problems, the mathematical models are usually
quite complex due to the generally high degree of complexity of both the physico-chemical
processes and their nonlinear interactions. Thus the solution algorithms will generally
need to use elaborate computer programs and software. The models can be solved in
whatever programming language or computational environment one wants to use. How-
ever, we have decided to train our readers throughout this book to use MATLAB, as it
is one of the most versatile computational softwares. MATLAB is extremely well suited
for numerical analysis, while quick and very intuitive to learn and use.

2.4 Physico-Chemical Sources of Nonlinearity

The main reason that chemical /biological engineers need extensive use of numerical meth-
ods is twofold:

1. Most chemical and biological engineering problems involve highly nonlinear pro-
cesses, specially in reacting systems.

2. The high dimensional models and representations that most chemical/biological
engineering problems require cannot be solved analytically even when they are
linear.

62 Chapter 2: Modeling, Simulation, and Design

The nonlinearity of chemical/biological processes can be strong or weak. One strong
nonlinearity is the Arrhenius dependence? of the rate or reaction constant k upon

temperature T, i.e.,
k = ko-e B/ET) (2.1)

On the other hand, most weak nonlinearities can be associated with the dependence of
specific heats (C},) upon temperature, or of diffusion coefficients upon concentrations,
etc.

Needless to say, strong nonlinearities have stronger effects and pose more numerical
problems than weak nonlinearities. Almost all nonlinear models can only be solved nu-
merically, whether the system is described by scalar equations or differential equations.
One way to solve a nonlinear problem analytically is to linearize it in a certain region
of the variables to obtain an approximate solution in this region. Linearization is widely
used in several simple process dynamics and control problems. It is well known that lin-
earization generally does not give an accurate description of the system. However it may
be useful to obtain some insight into the basic characteristics of the system. Linearization
of nonlinear problems will be discussed later, where its usefulness and limitations will be
highlighted.

For chemical /biological systems it is important to point out that even when the sys-
tem is approximated by linear differential equations, such a system cannot generally be
solved analytically when the dimension of the system is high. An ODE initial value system
of 40 linear differential equations y' = Ay, for example, although solvable analytically,
at least in theory via the Jordan normal form of the system matrix A, cannot be solved
that way in reality since it is numerically impossible to compute the Jordan normal form
of sizable matrices A correctly. Hence a proper understanding of the theory and of the
numerics of matrices is essential for developing competent and efficient numerical algo-
rithms. Such algorithms, for the most part, do mot mimic mathematical or theoretical
matrix theory such as using determinants, but are rather inspired by modern numerical
analysis practices such as matrix factorizations.

Nonlinearities are always associated with the very nature of the process. Examples
include the nonlinear dependence of the rate of reaction upon temperature, the non-
monotonic dependence of the rate of reaction upon the reactants’ concentrations, the
dependence of specific heats and diffusion coefficients upon temperature and concen-
trations, etc. High dimensions, i.e., large numbers of state variables in our models, are
generally associated with the complex chemical and biological equipment being used,
such as the large number of trays in absorption or distillation columns, as well as with
the large number of components that the chemical or biological equipment under study
is handling.

In a nutshell, we state that almost all chemical/biological engineering systems are
nonlinear and that the physico-chemical sources of the nonlinearities are associated with
the chemical and biological reactions and with the nonlinear dependence of physical
parameters on state variables. The most common (and also the strongest) nonlinearity
is associated with the exponential Arrhenius dependence (2.1) of the rate of reaction

2Svante August Arrhenius, Swedish chemist, 1859 — 1927

2.4 Physico-Chemical Sources of Nonlinearity 63

upon temperature. However, other nonlinearities associated with reaction rate depen-
dence upon concentrations are possible. For example:

1. Simple reaction rates r, for which the order of reaction is neither one nor zero,
such as in

o= f(Cx) = k-Cy

for example, where C4 is the concentration of the reactant and k is the rate con-
stant. This is considered a simple weak nonlinearity and is graphed in Figure 2.1.

Ca

Weak nonlinearity
Figure 2.1

2. Nonlinearity with saturation. This type of nonlinearity is quite common in
biochemical engineering and waste water treatment systems.

kK, —

Ca

Nonlinearity with saturation
Figure 2.2

64 Chapter 2: Modeling, Simulation, and Design

A typical rate equation of this type has the form
r = f(Ca) = k-Ca/(1+K4x-Chy).

The degree of nonlinearity here is higher than in the previous example. The corre-
sponding curve is shown in Figure 2.2.

Nonmonotonic dependence:

All of the previously mentioned nonlinearities are actually monotonic. Nonmonotonic
functions are very common in gas-solid catalytic reactions due to competition between
two reactants for the same active sites, and also in biological systems, such as in substrate
inhibited reactions for enzyme catalyzed reactions and some reactions catalyzed by micro-
organisms. The microorganism problem is further complicated in a nonlinear manner due
to the growth of the microorganisms themselves.

For these reactions, the apparent order of the reaction is positive in a certain region
of concentrations and negative in another region of concentrations. This means that in
the region of concentrations from zero to a certain positive value corresponding to the
maximum rate of reaction (Camaz), the rate of reaction increases with an increase of the
concentration, while for concentration higher than C g4, the rate of reaction decreases
with a further increase of the concentration. The mechanisms for this phenomenon is
well established in the chemical/biological engineering literature. Figure 2.3 shows such
nonmonotonic kinetics for the rate equation

ro=1(Ca) = k-Ca/(1+Ka-Ca)?.

‘ c
C A A

max

Nonmonotonic kinetics
Figure 2.3

Another source of nonmonotonic kinetics is the dependence of most biological reac-
tions upon the H™ ion concentration (pH). This situation gives rise to nonmonotonic
kinetics since the dependence of the enzyme rate of reaction upon pH is nonmonotonic
(bell shaped) as shown in Figure 2.4.

2.5 Sources of Multiplicity and Bifurcation 65

pH

Nonmonotonic dependence of biological reaction rate on pH
Figure 2.4

The last and most common nonmonotonic rate of reaction occurs under nonisothermal
operation where the rate of reaction, even for a first-order reaction, is highly nonlinear,
namely

r = ko-e B/ET) Oy (2.2)

Here C4 is the concentration of the reactant A. If the reaction is exothermic, i.e., if
the process generates heat, then the rate equation (2.2) is nonmonotonic with respect
to conversion. As the reaction proceeds, the conversion increases, i.e: the concentrations
of the reactants decrease (tending to cause a decrease in the rate of reaction), while
the temperature increases (tending to cause an increase in the rate of reaction). These
opposing effects obviously give nonmonotonic dependence upon the conversion or the
concentration or the temperature. This case is investigated in more detail in Chapter
3. It is one of the natural causes of multiple steady states and bifurcation for reacting
systems.

2.5 Sources of Multiplicity and Bifurcation

The multiplicity of steady states and associated bifurcation phenomena are associated
with open systems which allow more than one stationary nonequilibrium state for the
same set of parameters. This multiplicity of a steady state may result from many causes.
The most important sources of multiplicity in chemical/biological engineering processes
are:

1. Nonmonotonic dependence of one rate process (or several) on one or more state
variables.

2. Feedback of information.

A recycle in a tubular reactor or axial dispersion which will be discussed in Section
7.2.

66 Chapter 2: Modeling, Simulation, and Design

Distributed system with recycle
Figure 2.5

Figure 2.5 shows a distributed system with recycle which is a source of multiplicity.

3. Countercurrent operation as shown below.

G - Lin
Yout Xin
A\
A
G L
Y;n Xout

Countercurrent process
Figure 2.6

These sources of multiplicity are very frequent in actual chemical /biological processes.
Chapter 7 highlights examples of multiplicity, bifurcation, and chaotic behavior for a
number of experimental and industrial chemical/biochemical processes. We also include
Appendix 2 on multiplicity and bifurcation at the end of the book.

GEEA "\

e o = 9
Dr. Said, stirring Brunswick stew at Whatley farms

Chapter 3

Some Models with Scalar
Equations,
with and without Bifurcation

It is important to introduce the reader at an early stage to simple examples of nonlinear
models. We will first present cases with bifurcation behavior as the more general case,
followed by special cases without bifurcation. Note that this is deliberately the reverse of
the opposite and more common approach. We take this path because it sets the important
precedent of studying chemical and biological engineering systems first in light of their
much more prevalent multiple steady states rather than from the rarer occurrence of a
unique steady state.

3.1 Continuous Stirred Tank Reactor: The Adiabatic
Case

One of the simplest practical examples is the homogeneous nonisothermal and adiabatic
continuous stirred tank reactor (CSTR), whose steady state is described by nonlin-

ear transcendental equations and whose unsteady state is described by nonlinear ordinary
differential equations.

We will consider a very simple irreversible reaction
A= B

that takes place inside an adiabatic CSTR as shown in Figure 3.1. The rate of reaction
is described by a simple first-order rate equation, namely by

r = k-CA7

69

70 Chapter 3: Some Models with Scalar Equations

and the dependence of k upon the temperature 7' is given by the well known Arrhenius
form

k = ko-e B/RD
q q
CAf > CA
Tf Y T
14
T
Ca

Schematic diagram of an adiabatic CSTR
Figure 3.1

Under the simple assumptions of constant volume V and volumetric flow rate g, the
steady states of the system are described by the two equations

q-Ca = q-Cas—V -ko- (efE/(R'T)) -Ca (material balance design equation)
and

qg-p-Cp-(T—T¢) =V -ko- (efE/(R'T)) -Ca-(—AH) . (heat balance design equation)

Here
g = volumetric flow rate, in [/min;
Ca = reactant concentration at exit and at every point in the CSTR, in mole/;
p = mixture average (constant) density, in g/I;
Cp, = mixture average (constant) specific heat, in cal/(g - K);
Cay = reactant feed concentration, in mol/l;
V= active reactor volume; in [;
ko = frequency factor for the reaction, in 1/min;
E = reaction activation energy, in J/mole;
R = general gas constant, in J/(mole - K);
T = temperature at the exit and at every point in the CSTR, in K;
Ty = feed temperature, in K;
AH = heat of reaction, in J/mole.

These two balance equations can be reduced easily to one equation and a simple
linear relation between T and C4. This is done by multiplying the material balance

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 71

design equation by (—AH) and by adding it to the heat balance design equation to
obtain
(-AH)-q-Ca+q-p-Cp-(T=Tf) = (-AH)-q-Cay .

Rearrangement gives
p-Cp-(Ty=T)
(-AH)

Thus the two design equations can be rewritten in terms of the single variable T" as

Ca = Cyy+ (3.1)

p-Cp-(Ty

g p-Cp(T—Ty) = V-ko-(eE/(R'T))-{CAf+ o

| T) } (—AH) (32)
and relation (3.1).

If we consider exothermic reactions, where (—AH) is positive, and think of the physi-
cal meaning of the two sides of equation (3.2), we realize that the left-hand side represents
the affine heat removal function R(T') = ¢ - p - Cp - (T' — T¥) due to the flow, while the
right-hand side represents the more complicated exponential heat generation function
G(T) of the reaction. And obviously steady states, or more accurately the stationary
nonequilibrium states, occur when the heat removal equals the heat generation, i.e.,
when R(T) = G(T). We plot the heat removal function R(T) and the heat generation
function G(T') against T symbolically in Figure 3.2.

L,
.
’
’
,
P
slope = s
y
/
" G(T)
’
,
R(T))
’
G(T))
’ _
g ®) m
.
.
’
4
,
,
’
’
’
L slopes=qpC
’ P
l' (2)
’
,
,
’
s slope =s
e
P N
T, . T

Heat generation and heat removal functions
Figure 3.2

It is clear that in a certain region of the parameter s = ¢ - p - C}, the adiabatic CSTR
has three steady states with R(T) = G(T'), marked by (1), (2), (3) in Figure 3.2. From
a steady-state analysis point of view, the two steady states (1) and (3) are stable, while

72 Chapter 3: Some Models with Scalar Equations

the steady state (2) is unstable, as explained later; also refer to Appendix 2. Here a
steady state is called a stable steady state if after a small disturbance of the system
is introduced and removed shortly afterwards, the system returns to its original state.
An unstable steady state is one that does not return to its original state once a small
disturbance has occurred and been removed.

The varying behavior of the multiple steady states in Figure 3.2 is called bifurcation.
The bifurcation points for the parameter s are determined by the tangent lines with
extreme slopes s* and s, as depicted by the dashed and dotted lines in Figure 3.2. For
any s, < s < s* there are three steady states, while for any s > s* or for any s < s, there
is only one steady-state solution of the system. And of course, for s = s, and s = s*
there are precisely two steady states.

Equation (3.2) R(T) = G(T') can be put into dimensionless form by dividing both
sides by ¢ - p- C}, - T¥ to give us the equation

y—1 = ae V1 +8-1y). (3.3)

Similarly relation (3.1) becomes x4 = (1+ 3 —y)/5 for x4 = Ca/Cay, 3, and y.
Here we have set
T V ko E (—AH) Cay

o = , and (=

Y=) Y=)
Ty q R Ty p Cp Ty

for the dimensionless temperature y, the dimensionless preexponential factor «, the ther-
micity factor 3, and the dimensionless activation energy =y.

We will now investigate how to find the bifurcation points s, and s*, which are the
boundaries of the multiplicity region, as well as the three steady states marked by (1),
(2), and (3) in Figure 3.2 for any s. < s < s*. We chose oo = V - ko/q as the bifurcation
parameter since « is easy to manipulate by varying the flow rate q. Note that « and ¢
are inversely proportional.

Our first attempt involves MATLAB’s built-in root finder fzero, which uses the bisec-
tion method and thereafter we introduce a new and more appropriate numerical method
for solving equations with multiple roots.

This example gives a good overview of the kind of problems that chemical /biological en-
gineers encounter daily with numerical computations. Besides, our numerical codes will
introduce the reader to more advanced aspects of MATLAB programming and plotting.

Numerical Solution of the Adiabatic CSTR Problem

In our first approach, we try to find the values of y in equation (3.3) that correspond
to the points labeled (1), (2), and (3) in Figure 3.2 for given values of a, 3, and v by
solving (3.3) via a generic root finder such as the bisection method of fzero in MATLAB.
function [y,fy] = solveadiabxy(al,bt,ga)

% solveadiabxy(al,bt,ga)

% Sample call : [y,fy]l = solveadiabxy(50000,1,15)
% Sample output : y =

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 73

% (on screen) 1.0202 1.2692 1.9595
% fy =
% 4.5103e-17 1.1102e-16 -1.4433e-15ans =

% input : al, -1 <= bt <= 1, ga

% program finds the y values on all branches of the bifurcation curve.
% output : y and fy (=f(y)) "error" values (fy ~ 0)

% CAUTION: always check critical applications against a run of

% [y,fy]l = adiabNisographsol(al,bt.ga) and

% [a1,a2] = adiabNisoauxfl(bt,ga,100) for confirmation.

% (the solvadiabxy routine is slightly more reliable near the upper
% bifurcation points than the lower one; the graphic solver is

% reliable up to the bifurcation points and beyond.)

% local subroutines : adiab(x,al,bt,ga) and Matlab’s own "fzero" root finder.

warning off; % to satisfy the grandfather warnings re. fzero
1ltol = 107°-14; % local tolerance for fzero; change if critical
options = optimset(’dis’,[],’tolx’,ltol);
x0 = fzero(@adiab,1,options,al,bt,ga); % call fzero from
% the y interval ends 1 and 1 + bt, with
% optimization parameters set
x1 = fzero(@adiab, 1+bt,options,al,bt,ga);
if abs(x0 - x1) > 107-6, % three roots (bifurcation) likely; check with graph
try
xmid = fzero(®@adiab,[1.01%x0,0.99*x1],options,al,bt,ga);
% we use the target interval [1.01*x0,0.99%x1] to find xmid
catch, xmid = NaN; end % dummy setting that does not plot if error
else
xmid = NaN; % dummy value for xmid if no bifurcation
if x1 < 1+0.4xbt, x1 = NaN; end % taking care of the no bifurcation cases
if x0 > 1+0.4*bt, x0 = NaN; end
end
y = [x0 xmid x1]; fy = adiab(y,al,bt,ga); % evaluate f at y (nearly zero)
warning on

function f = adiab(x,al,bt,ga) % adiabatic function f(x) = 0 in (3.2)
% evaluates the adiabatic-non-iso function at x for given

% al, bt, ga values. (vector version)

f =x -1 - al*xexp(-ga./x) .* (1 + bt - x);

Note that the above program works for both endothermic reactions (5 < 0) and exother-
mic reactions (5 > 0) and that only exothermic reactions can have multiple steady states.
The built-in MATLAB root finder fzero finds the roots of a function f from a starting
guess a if we call fzero(@f,a,...), i.e., if we attach the “function handle” @ to f and
follow this with the appropriate list of parameters in MATLAB.

Rather than work with (3.3) directly, the MATLAB m function solveadiabxy.m
above evaluates the associated standard function

fy) = y—1—ae Y1+ 5—y) (3.4)

inside its subfunction named adiab at the end of the above code and searches for its zeros
y with f(y) = 0 from judicious initial guesses. Note that the arithmetic operations inside
adiab use the vector MATLAB operations ./ and .* so that fy can be evaluated

74 Chapter 3: Some Models with Scalar Equations

in a single command line at the computed y vector of steady state locations on the last
line of the main code.

Our initial guesses for the zeros of (3.4) are the extreme temperatures y = 1 and y = 1+
of the system, called x0 and x1 inside the program. If these two starting values for the
MATLARB zero finder fzero give rise to two different solutions, then for our parameter set
there must be a third solution, called xmid in between, i.e., x0 < xmid < x1. This middle
solution is often hard, if not impossible to find via a bisection algorithm (or Newton’s
method) near the bifurcation limits. Therefore we have to be cautious with the output
of the central line xmid = fzero(@adiab, [1.01*x0,0.99%x1] ,options,al,bt,ga) of
the program. If fzero fails in its attempt to find xmid, then MATLAB sends out an
error message that normally terminates the whole run. To avoid this early termination
in one run of solveadiabxy.m for multiple « values in runsolveadiabxy.m, we have put
the xmid = ... line of code inside a try ... catch ... end setting. This MATLAB
programming tool allows us to continue computing after a command inside the try and
catch bracket has failed. More specifically, if there is an error detected inside the try

. catch bracket, then the commands inside the secondary catch ... end bracket
are executed instead. And specifically for our situation we simply set xmid = NaN, where
NaN signifies “Not a Number”if fzero fails inside the try ... catch bracket. In MAT-

LAB, NaN data entries are not plotted.

Figure 3.3 shows the typical limited range of useful output from the bisection method
in the bifurcation range for this problem when § =1 and v = 8.5.

Plot of a run of solveadiabxy for285< o <305;=1,y=8.5

1.8 T

11 I I I
285 290 295 300 305

o (with n =100 points)

Limited bifurcation output from a bisection method
Figure 3.3

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 75

Note the large gaps in Figure 3.3 between the three branches where fzero fails to give
us any useful output. Such data gaps near the bifurcation points are often sizable: too
large to allow us to use the bisection method here. For a comparison with the graphical
level-set method for this problem, see Figure 3.11.

We next discuss the MATLAB file runsolveadiabxy.m, which draws Figure 3.3 upon
the command runsolveadiabxy(285,305,1,8.5).

Note that almost all calling sequences of MATLAB function m files start with the func-
tion’s name, such as runsolveadiabxy above, followed by a list of parameters in paren-
theses (...). Our particular call runsolveadiabxy(285,305,1,8.5) uses the interval
limits 285 and 305 for « as its first two parameters, followed by the values of 5 and ~y
for a specific chemical reaction. In our m files the list of possible parameters is always
explained in the first comment lines of code. Often one or several of the parameters are
optional. If they are not specified in the calling sequence, they are internally set to default
values inside the program, such as n and anno are here.

function Result = runsolveadiabxy(all,al2,bt,ga,n,anno)

% runsolveadiabxy(all,al2,bt,ga,n)

% Sample call : runsolveadiabxy(285,305,1,8.5);

% Input : all, al2 : the limits of alpha values to be used; all < al2 needed

% bt, ga : the system parameters beta and gamma

% n : number of linearly spaced intermediate points from all to al2
% anno : if anno is set to 0, graph is not annotated/labeled;

% default with annotation or anno = 1.

if nargin < 4, error(’Not enough input data’), end

if all >= al2, error(’alpha 2 is less than alpha 1; cancel run’), end

if nargin == 4, n = 100; anno = 1; end % default values for n and anno

if nargin == 5, anno = 1; end

% initial settings

step (al2-all)/n; Result = zeros(n+1,3); AL = [all:step:al2]’;

for i=0:n, % sweep through alpha values
[y,fy]l = solveadiabxy(all+i*step,bt,ga); % solve and store data
Result(i+l,:) = y; end

plot (AL,Result(:,1),’k’), hold on, % plot

plot (AL,Result(:,2),’r’) ,plot(AL,Result(:,3),’g’), hold off, % Plot labels :

if anno == % comment this title command for Fig 3.11

title([’Plot of a run of solveadiabxy for ’,num2str(all,’%10.5g’),...
> \leq \alpha \leq ’,num2str(al2,’%10.5g’),’; \beta = ’,...
num2str(bt,’%10.5g’),’, \gamma = ’,num2str(ga,’%10.5g’)], ’FontSize’,14)

xlabel ([’ \alpha (with n = ’,num2str(n,’%10.5g°),...
> points)’],’FontSize’,12),

ylabel(’y’,’Rotation’,0, ’FontSize’,12), end

runsolveadiabxy.m takes the output from a sequence of runs of solveadiabxy for in-
creasing values of o and stores it in an n + 1 by 3 matrix called Result. Each row of
Result contains three entries: that of the bottom branch of the solution to f(y) = 0
in equation (3.4) in column 1, followed by the middle branch solutions in column 2 and
those of the top branch in column 3. Many of these data entries may be set equal to NaN
inside solveadiabxy.m as warranted, and then these points will not be plotted. The (up
to three) solution branches for equation (3.4) are then plotted in different colors in three

76 Chapter 3: Some Models with Scalar Equations

separate plotting commands inside runsolveadiabxy.m.

The command hold on after the first plot command ensures that all plots appear in
the same graph. The command hold off at the end of our multiple plottings makes sure
that the picture of one solveadiabxy run is not preserved in the figure window and that
subsequent solveadiabxy plots for different data are not appended to the earlier plots,
but rather drawn by themselves.

If annotations are desired, then the last three commands, title, xlabel, and ylabel,
write the relevant descriptions onto the margins of the graph, as seen in Figure 3.3. Note
the *FontSize’ specifications, as well as the way of associating variable names such as
[with their numerical value via num2str (bt, ’%10.5g’) and the set of square brackets
around the mixed text/numerical annotations in the title, xlabel and ylabel lines.
Finally, note the use of BTEX language such as \gamma to generate the Greek ~.

Since ordinary zero finders fail us often in root-finding problems with multiple roots,
we now set out to develop a more reliable graphical level-set method for finding all
y values of the solutions to (3.4) for any range of « parameters.

The MATLAB function adiabNisoplot.m finds the zero crossings of the graph of f in
(3.4) graphically. Graphs are generally very helpful when trying to solve equations since
they help us visualize the points of intersection of the function f in question with the
x-axis, that is, where f = 0.

function adiabNisoplot(N,al,bt,ga,book)

% adiabNisoplot(N,al,bt,ga)

% Sample call : adiabNisoplot(100,1300,.8,10)
% Input: N : number of intermediate points

% al, bt, ga are the system parameters
% book : If "book" is set to 1, we plot for display in the textbook with
% wider lines and larger fonts. Default is book = 0.

% Plots adiabatic transcendental function from N nodes and given al, bt, ga.
% Looking for zero crossings.

if nargin == 4, book = 0; end % default setting: narrow lines, small fonts

y=1:(bt/N):1+bt; % create y nodes; then plot adiab (3.2) curve and horiz. axis
if book == 1, % for use in textbook: wider lines, larger fonts
plot(y,adiabNiso(y,al,bt,ga),’b’,’LineWidth’,2), hold on, % adiab (3.2) curve
plot([1,1+bt], [0,0],’-r’,’LineWidth’,2), % horizontal axis
xlabel([’ y (N = ’,num2str(N,’%9.4g’),’)’]1,’FontSize’, 14);
ylabel(’ adiab function ’,’FontSize’, 14);
title([’ Adiab CSTR function plot of (3.2) ; \alpha = ’,...
num2str(al,’%9.4g’),’ , \beta = ’,num2str(bt,’%9.4g’),...
>, \gamma = ’,num2str(ga,’%9.4g’)], ’FontSize’, 14); hold off
else % for ordinary screen display
plot(y,adiabNiso(y,al,bt,ga),’b’), hold on, % adiab (3.2) curve
plot([1,1+bt], [0,0],’-r?), % horizontal axis
xlabel([’ y (N = ,num2str(N,’%9.4g’),’)’1);
ylabel(’ adiab function ’);
title([’ Adiab CSTR function plot of (3.2) ; \alpha = ’,...
num2str(al,’%9.4g’),’ , \beta = ’,num2str(bt,’%9.4g’),...
>, \gamma = ’,num2str(ga,’%9.4g’)]); hold off; end

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case

T

The call adiabNisoplot(100,1300,.8,10) with N = 100 intermediate points and o =
1300, 8 = 0.8, and v = 10 for example gives rise to the plot in Figure 3.4.

Adiab CSTR function plot of (3.2) ; «=1300,3=0.8,y=10

0.8 T T T T
0.7 i

0.6 b

0.5~ b

0.3r- b

adiab function

02 B

0.1 b

Ty (;\1=100)
Zeros of fin (3.4)
Figure 3.4

Looking at the three shallow intersections of the horizontal axis with the graph of f in
Figure 3.4, we are reminded of the problems encountered in Chapter 1 on p. 30 and
31 with both the bisection and the Newton root finder for polynomials with repeated
roots. The common wisdom is that the shallower these intersections become, the worse
the roots will be computed by standard root-finding methods (see the exercises below),
and multiple roots will easily be missed.

that is ultimately more promising for this problem. We proceed in two stages.

Let us therefore proceed by a different route, using a level-set method approach

First we determine the range of « for which there are multiple steady states. We do this
semigraphically by using Figure 3.2 as our guide in the following code.

function [all,al2] = adiabNisoauxfl(bt,ga,N,p,book)

[al1l,al2] = adiabNisoauxf1(bt,ga,N,p)
Sample call : [all,al2] = adiabNisoauxf1(1,15,500,1)
Auxiliary function for adiabatic Non-isothermal CSTR equation.

%
%
%

Input :

beta (bt), gamma (ga), # of steps in y direction = N, N <= 1000

typical input values: 0.1 <= bt <= 18; 5 <= ga <= 50

[larger values of N make the bifurcation start and end points all
and al2 come out more precisely.]

p = 1: plot the exponential part of the curve; p "= 1: do not plot
If book = 1, we plot with wide lines and big fonts for the
textbook. Default: book = O, or unspecified.

78 Chapter 3: Some Models with Scalar Equations

Output: limits of bifurcation for bt, ga: all and al2; N may be reduced.
Here we evaluate the exponential part of the equation and find the
min/max slopes 1 <= all < al2 <= 1+bt of 1/al(y-1) = exponential part of
equation (3.1) which touch the exponential curve tangentially.

% If there are no multiple crossings of the line and the exponential part,
% then there are no bifurcations for this set of data bt, ga, and we return
% with the bifurcation boundaries all set to 0.5 and al2 to 3 + bt.

if nargin == 2, book = 0; N = 500; p = 0; end % default settings
if nargin == 3, book = 0; p = 0; end

if nargin == 4, book = 0; end

y = [1:(bt/N):1+bt]; b = 1; % y partition, N steps;

% b is a bifurcation marker
if bt < 0, y = y(1:N); N = N-1; end % if bt < 0, we avoid division by zero

f = exp(-ga./y) . .x((1+bt)-y); % exponential part of adiabatic non-iso
% equation (right side of (3.3))

F = max(f); i = find(f == F); % limit search for bifurcation to
% 1 <=y <= max(f) location

if i == 1, disp(’no bifurcation alphas for this data’), % if no bifurcation

all = 50; al2 = 1000; b = 0; end % set default output

y=y - 1; % shift y by 1

foyold = £(2)/y(2); k = 3; mi = 1; ma = 1; % initialize

while (k < i & mi == 1) % search for a min (=al2) of 1/al

if £(k)/y(k) < foyold, foyold = f(k)/y(k); k=k+1; else mi = 0; end, end,
if (k >= N | k >= min(i)), disp(’no bifurcation alphas for this data’),
all = 50; al2 = 1000; b = 0; else, % no bifurcation: set default output
al2 = (y(k-1))/£(k-1); yO = y(k-1)+1; £0 = £(k-1); end
while (k < i & ma == 1) % search for a max (=all) of 1/al
if £(k)/y(k) > foyold, foyold = f(k)/y(k); k=k+1; else, ma = O; end, end
all = (y(k-1))/£f(k-1);
if p == 1, % if plot is desired
if book == 1,
plot(y+1,f,’-r’,’LineWidth’,2), hold on,

ylabel(’ (y-1) / \alpha > ’Rotation’,0, ’Fontsize’,14),
else

plot(y+1,f,’-r’), hold on,

ylabel(’ (y-1) / \alpha > ’Rotation’,0, ’Fontsize’,14), end
if b == 1, % in case of bifurcation:

plot(y0,£f0,’0’), hold on, % plot bottom tangent

if book == 1,
text (1+2*bt/3,2xf0*bt/(3*x(y0-1)),’ slope = 1/\alpha_2’,’Fontsize’,12)
plot([1 1+2%bt/3], [0 2%bt*£0/(3*(y0-1))1,’:*, ’LineWidth’,2)
plot(y(k-1)+1,f(k-1),°+’),
plot([1 1.2%y(k-1)+1],[0 1.2%f(k-1)],’--’, LineWidth’,2),
text (.73*xy(k-1)+1,f(k-1),’slope = 1/\alpha_1’,’Fontsize’,12) % top tangent
xlabel([’ y from 1 to ’,num2str(l + bt,’%10.5g’),... % make note of
' bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14), % bifurcation
title({[’ adiabNisoauxfl : extreme \alpha :’]1},{[’ \alpha_1 = "’,...
num2str(all,’%10.5g’),’, \alpha_2 = ’,num2str(al2,’’%10.5g’),...
> ;3 \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...
num2str(ga,’%10.5g’), ’here’]}, ’Fontsize’,14),
else
text (1+2*%bt/3,2x£0*bt/(3*%(y0-1)),’ slope = 1/\alpha_2’)
plot ([1 1+2%bt/3], [0 2*bt*£0/(3*(y0-1))1,7:)
plot(y(k-1)+1,f(k-1),°+’),

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 79

plot([1 1.2%y(k-1)+1],[0 1.2%f(k-1)]1,°--"), % plot top tangent spot ->
text (.73*y(k-1)+1,f(k-1),’slope = 1/\alpha_1’)
xlabel([’ y from 1 to ’,num2str(l + bt,’%10.5g’),... % make note of
g bifurcation, N = ’,num2str(N,’%6.5g’)], ’Fontsize’,14), % bifurcation
title({’ adiabNisoauxfl : extreme \alpha :’,[’ \alpha_1=’,...
num2str(all,’%10.5g’),’, \alpha_2 = ’,num2str(al2,’%10.5g°),...
> ; \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...
num2str(ga,’%10.5g’)1}, ’Fontsize’,14), end
else,
if book == 1,
xlabel([’ y from 1 to ’,num2str(l + bt,’%10.5g’),... % or note no
’ No bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14) % bifurcation
title([’ adiabNisoauxfl : no bifurcation \alpha values for ’,...
> \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...
num2str(ga,’%10.5g’)], Fontsize’,14),
else
xlabel([’ y from 1 to ’,num2str(l + bt,’%10.5g’),... % or note no
o No bifurcation, N = ’,num2str(N,’%6.5g’)],’Fontsize’,14) % bifurcation
title([’ adiabNisoauxfl : no bifurcation \alpha values for ’,...
> \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,...

num2str(ga,’%10.5g’)],’Fontsize’,14), end
end, hold off, end

This code relies on a slight variant of equation (3.3), namely

Yy = sy (=). (35)

The left-hand side of (3.5) describes a line with slope 1/« in the variable y with the

point (y, f) = (1,0) on its graph. The right-hand side is an exponential function in y

with (y, f) = (1,e~7 - 3) on its graph for e~7 - 8 > 0.

The algorithm of adiabNisoauxfl.m initially limits the search for tangents from
(1,0) € R? to the graph of the exponential curve f to y values below the maximum of
the right-hand side of (3.5). It then slides backward along the curve, computing the max-
imal and minimal ratios of f and y, i.e., it computes the two extreme slopes of tangent
lines to the graph of f that pass through the point (1,0). The reciprocals of the extreme
slopes then give us the extreme parameters all and al2 as the bifurcation points. If the
input parameter p = 1 is specified as the last variable in a MATLAB call of [all,al2]
= adiabNisoauxf1(1,15,400,1), for example, then we draw the plot as in Figure 3.5,
on which the bifurcation limits are displayed numerically on screen and in the plot’s title
line, as well as drawn out on the graph.

>> [all,al2] = adiabNisoauxf1(1,15,500,1); extreme_alphas = [all,al2]
extreme_alphas =
15757 93777

80 Chapter 3: Some Models with Scalar Equations

adiabNisoauxf1 : extreme o :
} o, =15757,0,=93777; p=1,y=15
x 10

6 T T T T T T T

(y—1)/oc37 .

slope = 1/012

I I I I I I I
1 1.4 1.2 1.3 14 1.5 16 1.7 18 1.9 2
y from1to2; bifurcation, N =500

Bifurcation limits for (3.5)
Figure 3.5

If the input parameter p of adiabNisoauxf1is equal to 1, then adiabNisoauxf1 outputs
the bifurcation limits «; and as only in the workspace and does not plot a figure.

Secondly, having found the bifurcation points a7 and «aso, we then plot the 3D surface
2= Fla,y) == y—1—ae V(1 +8-y) (3.6)

as a function of two variables o and y for 0.9- a1 < a <1l -asand 1 <y <14 0.
This includes the parameter range of « in which there is bifurcation. Equation (3.6) with
z = F(a,y) = 0 reinterprets our earlier equation f(y) = 0 in (3.4) and replaces our
1-dimensional root-finding attempts by a two-dimensional approach to root-finding in
the two variables o and y.

The bifurcation curve relating y and « is the projection of the level curve F'(«, y) = 0 onto
the a-y plane, where z = 0. Our 3D plot of the surface z = F(«,y) in adiabNisosurf
contains this level curve marked in black on the surface, as well as a second, isolated plot
of it below the surface on the ground plane: see Figure 3.6.

function adiabNisosurf(al,a2,bt,ga,N)

% adiabNisosurf(al,a2,bt,ga,N)

% Sample call : adiabNisosurf (15000,95000,1,15,100)

% Plots the adiab equation surface and the contour = O curve below it.

% Input : limiting values for alpha [all, al2] (supplied by adiabNisoauxfl),
% beta, gamma, N = # of nodes (N = 80 or 100 ok)

if nargin == 4, N = 100; end,

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 81

[y,al]l = meshgrid([1:bt/N:1+bt], [0.9*al:(1.1%a2-0.9%al)/N:1.1%a2]);

% make grids for y and alpha in relevant ranges for y and beta
z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value
h = surf(al,y,z); hold on;
shading interp; colormap(hsv(128)); colorbar,’ plot surface
a = get(gca,’zlim’); zpos = a(1); % Always put O contour below the plot
[cc,hh] = contour3(al,y,z,[0 0],’-k’); % draw zero contour data on surface

[ccc,hhh] = contour3(al,y,z,[0 0],’-b’); % put O contour data at the bottom
for i = 1:length(hhh) % size zpos to match the data

zzz = get(hhh(i),’Zdata’);

set(hhh(i),’Zdata’ ,zpos*ones (size(zzz))); end

xlabel(’\alpha’, ’FontSize’,14), % annotate top 3D plot
ylabel(’y’,’Rotation’,0, ’FontSize’,14),
zlabel(’adiabNiso(y,\alpha,\beta,\gamma)’,’FontSize’,12),

title([’ adiabNisosurf 3D plot : \alpha_1 = ’,num2str(al,’%10.5g’),...
>, \alpha_2 = ’,num2str(a2,’%10.5g’),’ ; \beta = ’,...
num2str(bt,’%10.5g’),’, \gamma = ’, num2str(ga,’%10.5¢’)]1,...

’FontSize’,12), hold off

adiabNisosurf 3D plot : a, = 15000, a, = 95000; B=1,y=15

=1
-2

B

adiabNiso(y,a,p,y)

Surface and level-zero contour plot of (3.6)
Figure 3.6

82 Chapter 3: Some Models with Scalar Equations

Figure 3.6 depicts the 3D surface 2 = F(a,y) = y—1—a-e Y1+ 3 —y) as
introduced in equation (3.6). This surface depends on the two parameters « and y. It
is colored! by our adiabNisosurf.m file as a geographical map would be. Namely, the
actual color of any spot («,y, z) € R on this surface depends on the height or the level
of z=9y—-1- ae_W/y(l + B — y) above the a-y plane. In this particular graph, the
“height” of z = F'(a, y) ranges between around —4 and +1 in the surface plot and in the
associated colorbar on the right side of Figure 3.6. Additionally we draw the intersection
of the level-zero plane («,y,0) of R® with the surface 2 = F(c, y) in black on the surface
itself. This curve is called the level-zero contour or level-zero curve of the surface.
On the ground plane of our 3D surface plot we draw this curve separately in blue. The
level-zero curve or contour depicts all the solutions to our original adiabatic CSTR equa-
tion (3.3) and thus it solves our original adiabatic CSTR problem in the contemplated
parameter range.

Next we draw a grayscale contour map of this surface, as well as the level curve
F(a,y) = 0 drawn in black using the MATLAB function adiabNisocolorcontour.m.
On a computer screen the same coloring scheme as in Figure 3.6 is used.

adiabNisocolorcontour 2D map : a, = 15000, a, = 95000; B=1,y=15

1 2 2 4 5 6 7 g 9 10 11
a 1
%10

Surface and level-zero contour plot for (3.6)
Figure 3.7

1References to color always refer to a computer-generated color graph of the figure in question.

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 83

Figure 3.7 is drawn by calling adiabNisocolorcontour (15000,95000,1,15,100). The
code of the contour-plotting MATLAB m file adiabNisocolorcontour.m follows below.

function adiabNisocolorcontour(al,a2,bt,ga,N)

% adiabNisocolorcontour(al,a2,bt,ga,N)

% Sample call : adiabNisocolorcontour (15000,95000,1,15,100)

% Plots the adiab equation surface as a 2D contour map with the contour = 0
% curve marked in black.

% Input : limiting values for alpha [all, al2] (supplied by adiabNisoauxfl),
% beta, gamma, N = # of nodes (N = 80 or 100 ok)

if nargin == 4, N = 100; end,

[y,all = meshgrid([1:bt/N:1+bt], [0.9%al:(1.1*a2-0.9%al)/N:1.1%a2]);

% make grids for y and alpha in relevant ranges for y and beta
z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value
h = surface(al,y,z); hold on; shading interp; colormap(hsv(128)); % 2D map
colorbar
[cc,hh] = contour3(al,y,z,[0 0],’-k’); % put O contour curve onto map

xlabel(’\alpha’, ’FontSize’,12), % annotate 2D color map

ylabel(’y’,’Rotation’,0, ’FontSize’,12),

title([’ adiabNisocolorcontour 2D map : \alpha_1 = ’,num2str(ail,’%10.5g°),...
>, \alpha_2 = ’,num2str(a2,’%10.5g’),’ ; \beta = ’,...
num2str(bt,’%10.5g’),’, \gamma = ’, num2str(ga,’%10.5g’)],...

’FontSize’,12), hold off

The last two codes contain many intricate and useful plotting and contour commands
that are self-explanatory when one uses the MATLAB help ... function for the MAT-
LAB graphics commands meshgrid, surface, contour3, xlabel, ylabel, title,
colormap, etc. Students should study these graphics commands of MATLAB in order to
be learn how to display the easily computed numerical data well. Please refer to MAT-
LAB help
In Figures 3.6 and 3.7, note the steep slopes of the surface z = F(a,y) near y = 1+ = 2
and the relatively shallow slopes near y = 1. Such slope disparities make great numerical
obstacles and they ultimately contribute to the failure of simple root finders.

Figures 3.5, 3.6, and 3.7 are combined into a single figure with three plot windows
via the m file runadiabNiso.m in Figure 3.8.

function runadiabNiso(bt,ga,N,p)

% runadiabNiso(bt,ga,N,p)

Sample call : runadiabNiso(1,15,500,1)

runs all three adiabNiso plots:

Input : -1 < bt < 2; 2 < ga < 25; N (= 60, 100, or 500); p (= 0 or 1)
first determine the bifurcation points al and a2, in adiabNisoauxfl.m;
then the surface plot, and the bifurcation curve, if any,

in adiabNiso3dplot.m.

For standard values of bt and ga, set N = 60, 100, 500 or 1,000 for even
greater accuracy of the bifurcation limits al and a2.

% Set p = 1 for plotting.

ST ST ST e

if nargin == 2, N = 100; p = 0; end % default settings
if nargin == 3, p = 0; end
if bt <=-1,

84

disp(’ALERT :
return, end
subplot(3,1,1);
[al, a2] =
N =

adiabNisoauxfl(bt,ga,N,p);
min(N,100); adiabNiso3dplot(al,a2,bt,ga,N);
% plot surface and O level contour for a limited value of N (for

Chapter 3: Some Models with Scalar Equations

bt is not larger than -1, reject the data; NO computations’),

% plot adiab graph on top
% limit partition lengths
speed)

A call of runadiabNiso(1,15,500,1) gives numerical and graphical output as shown in

Figure 3.8 for the associated CSTR problem.

] OadiabNisoauxﬂ cextreme o ;

«, =15757,a,=93777; p=1,y=15

6 T T T
St slope = 1/« ":i:’ 1
4 /f'W AN
y=1)/«a L ‘ // PR
e 1 \\‘
ol o o Voo
e ,// Y
=T 7 \
Tr P o ... slope=1fx, iy
- R \
olkeZe . . .
1 1.2 1.4 1.6 1.8 2
osy m‘l to 2 ; bifurcation 500
adiabNiso3dplot : «, = 15757, a, _93777 T p=1,y=15

adiabNiso(y, « py)

Bifurcation curve (level =

0 curve) from 3D surface

2 N T T T T Y S — — —
: PR ——
LT
1.8F/7 4
16 —K d
Yyl
S T
120 T -
B
1 e e S - 1
2 3 4 5 6 7 8 9 10
a ; bifurcation x1 04

Combined function, surface, and level-zero contour plot for (3.6)

Figure 3.8

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case

85

The m function runadiabNiso relies on adiabNiso3dplot, which combines our z =

F(a,y) surface plot and a simplified version of the level-zero contour plot.

Our next code and plot draws only the bottom curve of Figure 3.8 by itself from the
inputs «, 3, and ~. It uses adiabNisoauxf1 to find the actual bifurcation points of the
curve, depicts them by the dotted vertical lines in the figure window, and then plots the

bifurcation curve itself. This plot gives the most practical output in our view.

adiabNisocontourcurve : bifurcation points: o, =15757, o, = 93777 ; B=1,v
2 T T T T

o ; bifurcation x 10*

Bifurcation curve
Figure 3.9

The plot-generating MATLAB code for Figure 3.9 is as follows:

function adiabNisocontourcurve (bt,ga)

% adiabNisocontourcurve(bt,ga)

% Sample call : adiabNisocontourcurve(1,15)

% Plots the adiab equation zero level curve as a 2D plot
% Input : beta, gamma

N = 500; [al,a2] = adiabNisoauxfl(bt,ga,N); % find bifurcation points al, a2

[y,all = meshgrid([1:bt/N:1+bt], [0.8%al:(1.2*a2-0.8*al)/N:1.2%a2]);
%[ly,al]l = meshgrid([1.1:0.6/N:1.7],[285:20/N:305]); 7% For Figure 3.11

% make grids for y and alpha in relevant ranges for y and beta
z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value
contour(al,y,z,[0 0],’b’); hold on, % draw 0 level curve

86 Chapter 3: Some Models with Scalar Equations

if a2 "= 1000, % in case of bifurcation
xlabel([’\alpha ; bifurcation’],’Fontsize’,14),
title([’ adiabNisocontourcurve : bifurcation points: \alpha_1 = ’,...
num2str(al,’%10.5¢’),’, \alpha_2 = ’,num2str(a2,’%10.5g’),...
7 \beta = ’,num2str(bt,’%10.5¢’),’, \gamma = ’,...
num2str(ga,’%10.5g’)], Fontsize’,14),
plot([al,al], [1+bt/3,1+0.98*bt],’:’) % at left bifurcation al

plot([a2,a2],[1.02,1+bt/2.4],°:7) % at right bifurcation a2
else, % in case of no bifurcation
xlabel([’\alpha ; No bifurcation ’],’Fontsize’,14),
title([’ adiabNisocontourcurve : No bifurcation points ;’,...
4 \beta = ’,num2str(bt,’%10.5g’),’, \gamma = ’,num2str(ga,’%10.5g’)],...
’Fontsize’,14), end
ylabel(’y ’,’Rotation’,0,’Fontsize’,14), hold off

Our final code generates the (a, y) 2D data of the zero contour for F' in (3.6). This data
is then interpolated for a user-specified input at «g, and the program decides whether the
given adiabatic CSTR has one or three steady state solutions for the given parameters g
and 7 at «p. Moreover, it computes the y values for all steady states and the associated
function deviations of f in (3.4) from zero, called Fy. By all appearances this method
is far more reliable near the bifurcation points and surpasses and supersedes our initial
more generic root-finding code solveadiabxy.m from page 72.

function [Y, Fy] = adiabNisographsol(a0,bt,ga)
% adiabNisographsol(a0,bt,ga)

% Sample call : adiabNisographsol(50000,1,15)

% Sample output : on screen:

h Y =

% 1.0202 1.2692 1.9595

% Fy =

% 4.3927e-07 6.5708e-06 -6.6714e-05

% Plots the adiab equation zero level curve as a 2D plot,

% then the program decides on bifurcation and computes the values of y at
% the steady states of the CSTR system for the specified a0 value of alpha.
% Input : a0 = alpha_0, beta, gamma

% Output: Plot and up to three solutions x0, xmid, x1 in Y. With error in Fy.
% (if entries in Y are identical, there is only one solution,

% i.e., only one steady state for this input.)

% Increase N on first line to 800, 1000, 2000, if higher accuracy desired

N = 500; [al,a2] = adiabNisoauxfl(bt,ga,N); % find bifurcation points al, a2
all = min(al,a0); a22 = max(a2,a0); % extend alpha range to contain a0
three = 0; % triple steady states ?
[y,all = meshgrid([1:bt/N:1+bt],[0.8*all:(1.2*a22-0.8*a11)/N:1.2xa22]);

% make grids for y and alpha in relevant ranges for y and beta

z = adiabNiso(y,al,bt,ga); % z = adiab Non-iso function value
C = contour(al,y,z,[0 0],’b’); hold on, % draw O level curve
if al < a2,
yy = £ind(C(1,1:end-1)-C(1,2:end)> 0);
if length(yy) == 0, itop = length(C); ibot = 1;
else % find left bifurcation point
itop = yy(1); [bull,ibot] = min(C(1,itop:end));
ibot=ibot+itop-1; end % add the front end length!

if al <= a0 & a2 >= a0 & length(yy) > 0, three = 1; % in case of multiplicity
x0 = interp1(C(1,1:itop),C(2,1:itop),a0, ’spline’); % bottom solution (1)

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 87

xmid = interpl(C(1,itop:ibot),C(2,itop:ibot),a0,’spline’); % middle (2)
x1 = interp1(C(1,ibot:end),C(2,ibot:end),a0,’spline’); % top sol (3)

elseif a0 < ail,
x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’spline’); % only one steady state
xmid = x0; x1 = x0;

else x0 = interpl1(C(1,ibot:end),C(2,ibot:end),al,’spline’); % one steady st.
xmid = x0; x1 = x0; end,

else x0 = interp1(C(1,1:end),C(2,1:end),a0,’spline’); % no bifurcation;

xmid = x0; x1 = x0; end, % only one steady state
Y = [x0 xmid x1]; Fy = adiab(Y,a0,bt,ga); % prepare output
if a2 "= 1000, % in case of bifurcation
plot(al,1,’+r?) % mark requested value for alpha_0
plot([al,al], [1+bt/3,1+0.98%bt],’:’) % plot left bifurcation point al
plot([a2,a2],[1.02,1+bt/2.4],°:’) % plot right bifurcation point a2
if three == 1; % mark 3 steady states
xlabel([’\alpha (three steady states for \alpha_ 0 = ’,...

num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),
title([’ adiabNiso graphical solution : y_1=",...
num2str(x0,’%10.6g’),”; y_2 = ’,num2str(xmid,’%10.6g’),...
' y_3 = ’,num2str(x1,’%10.6g’)], FontSize’,12),
plot(a0,x0,’+r’), plot(a0,xmid,’+r’), plot(a0,x1,’+r’),
else % mark single steady state
xlabel([’\alpha (single steady state for \alpha_ 0 = ’,...
num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g°),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),
title([’ adiabNiso graphical solution : y_1=",...
num2str(x0,’%10.6g’)], ’FontSize’,12),
plot(a0,x0,’+r’), end % mark single steady state
else, % in case of no bifurcation
xlabel([’\alpha (single steady state for \alpha_ 0 = ’,...
num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’],’FontSize’,12),
title([’ adiabNiso graphical solution : y_1=",...
num2str(x0,’%10.6g’)], FontSize’,12),
plot(a0,x0,’+r’), plot(a0,1,’+r’), end % mark single steady state
ylabel(’y’,’Rotation’,0, ’FontSize’,12), hold off

function f = adiab(x,al,bt,ga) % adiabatic function f(x) = 0 in (3.2)
% evaluates the adiabatic-non-iso function at x for given

% al, bt, ga values. (vector version)

f =x -1 - al*xexp(-ga./x) .* (1 + bt - x);

The screen output and plot of calling >> [y,fyl=adiabNisographsol(50000,1,15) are
as follows:

>> [y, fyl=adiabNisographsol(50000,1,15)
y =
1.0202 1.2692 1.9595
fy =
4.3927e-07 6.5708e-06 -6.6714e-05

88 Chapter 3: Some Models with Scalar Equations

adiabNiso graphical solution : y, = 1.02016; Y, = 1.2692; Vg = 1.95948

1

3 4 5 6 7 8 9 10
o (three steady states for oy = 50000, B=1,y=15) Y 10*

Bifurcation curve
Figure 3.10

Note that the graph itself includes the computed y values for the steady states marked
by + signs thrice and that their respective y values are written out on the title line. The
user-specified parameter values of ag, 3, and v are given below the plot in Figure 3.10.

adiabNisocontourcurve : bifurcation points: o, = 287.55, 0, = 299.56 ; B=1,y=85

4 .
285 290 295 300 305
o; bifurcation

Bifurcation curve: graphical method output as a thin line; bisection output
superimposed as a thick line
Figure 3.11

3.1 Continuous Stirred Tank Reactor: The Adiabatic Case 89

To finish this section, we have revisited the earlier bisection algorithm solveadiabxy.m
in Figure 3.11. To illustrate we superimpose the curve data from Figure 3.3 as a thick
curve on top of the level-set method’s graphics output depicted by a thin line in Figure
3.11. This figure is drawn by the command sequence adiabNisocontourcurve(1,8.5),
hold on, runsolveadiabxy(285,305,1,8.5); after the meshgrid line near the top of
adiabNisocontourcurve.m has been altered for Figure 3.11 as indicated inside the pro-
gram.

Figure 3.11 makes it obvious that the level-set method for equation (3.6) gives much
more meaningful numerical results and clearer graphical representations of the multiple
steady state solutions of the CSTR problem (3.3).

Figure 3.11 contains several independent validations of our graphical methods: The bi-
furcation points are determined graphically to be a; = 287.55 and as = 299.56 using
adiabNisoauxfl.m and equation (3.5). These limits of bifurcation are indicated in Fig-
ure 3.11 by the two dotted vertical lines. The thin part of the graph of the temperature
function y(a) is determined in adiabNisocontourcurve.m as the level-zero curve for
the surface z = F(«,y) as defined in equation (3.6) by interpolating the a-y-F 3D
function data. A visual inspection shows a perfect match of the bifurcation points and
the extremes of the function excursions. Moreover, the graphical data and the bisection
algorithm data match perfectly on the part of the graph where bisection data is available.

In conclusion, the graphical output of the level-set method is far superior to the bi-
furcation data obtained via any of the more standard root-finding algorithms.
We shall use the same graphical approach again in the next section for the nonadiabatic
CSTR problem.

Exercises for 3.1

1. Fix f =1 and find the range of v values for which there is bifurcation for the
associated adiabatic CSTR problem by running runadiabNiso.m with N set
to 400 and to 40, with and without plotting.

2. Find the maximal and minimal o values experimentally, correct to 5 digits,
for which solveadiabxy(al,1,15) determines bifurcation correctly.

3. Repeat Problem 2 for adiabNisographsol and compare.

4. Test adiabNisographsol.m for § = 1, v = 8, and many positive ag. Watch
the labels and title, as well as the red + mark(s) of the steady states.

5. Repeat Problem 4 for 8 = 1, v = 18, and «y = 80,000; 200,000; and 8,000,000.
Watch all plot annotations and make sure you understand the label and title
trees inside the program well.

6. View the surfaces defined in (3.6) via adiabNisosurf.mfor § =1 and v =8
or v = 18 and various values of al and a2. How do the two surfaces differ for
the same values of a? How do they change with changing « values?

7. Repeat the previous problem with adiabNisocolorcontour.m instead.

90 Chapter 3: Some Models with Scalar Equations

Conclusions

The kind of bifurcation that we have just encountered is called static bifurcation (SB).
This behavior is very common in many chemical /biological processes. A limited number
of industrial examples of this behavior include:

1. Fluid catalytic cracking (FCC) units for producing high-octane gasoline from gas-
oil or naphta: see Section 7.2.

2. The UNIPOL® process for polyethylene and polypropylene production using the
Ziegler-Natta? catalyst: see Section 7.3.

3. Catalytic oxidation of carbon monoxide C'O in car exhaust reactors.

4. Ethanol production by fermentation at high substrate concentrations: see Section
7.6.

Understanding such static bifurcation behavior is very important for the design, opti-
mization, startup, operation, and control of the system. The bifurcation points determine
the boundaries of the region where multiple steady states exist. Even if the design and
operating parameters of a system cause it to operate outside of the multiplicity region,
detailed knowledge of its multiplicity region is very important for startup and control
purposes. This is so because a system that operates in its unique steady state region but
near its multiplicity region is not like a system in which bifurcation does not exist. A
unique steady state system operating near the multiplicity region may be exposed to a
disturbance during operation (or startup) that moves its operating parameters into the
multiplicity region. This complicates the system’s behavior and imposes the features of
the multiplicity region on the system’s design, operation, and control.

On the other hand, if the chosen design and operating conditions determine that the
system is operating in the multiplicity region, then the system is completely affected
according to the following underlying principles:

1. Which steady state to choose: the high-temperature one (with y near 1 + 3),
the middle one, or the low-temperature one (with y near 1)?

For a simple reaction
A= B

the high-temperature steady state is a likely choice from a process point of view
(i.e., with respect to conversion and productivity). But the associated tempera-
ture may be too high for the construction material of the reaction vessel. In this
case one might be forced to operate at the middle or the low-temperature steady
states. But the low-temperature steady state may be at too low a temperature
(quenched reaction) or gives too low a conversion to be economical. Thus one may
be forced to operate at the middle steady state, which unfortunately is unstable
and requires stabilization through control. For a more detailed analysis, we refer to
our discussions on p. 117 following Figure 3.29 in Section 3.3.

2Karl Ziegler, German chemist, 1898-1973
Giulio Natta, Italian chemist, 1903-1979

3.1

The

sy

)

Continuous Stirred Tank Reactor: The Adiabatic Case 91

. More complex reactions, such as

A= B = C

where B is the desired product.

Here it is often the case that the high-temperature steady state uses a temperature
that is too high and does not produce enough of the desired intermediate product
B; in fact the system often overreacts all reactants directly to C, such as in fluid
catalytic cracking. On the other hand, the low temperature steady state generally
corresponds to too low a conversion. Thus the middle, unstable steady state is
often the only productive choice, and it yields the maximal amount of product
B. A typical case is that of fluid catalytic cracking (FCC) units for producing
high-octane gasoline.

. Operating at the middle unstable steady state requires using some means

of control for the plant, such as a stabilizing controller or nonadiabatic operation
with carefully chosen parameters to stabilize the saddle-point type of the unstable
steady state.

. Startup and multiplicity: When the operating parameters are chosen to be in the

unique steady state region, then almost any startup policy will lead to the desired
unique steady state. However, when the operation parameters place the reaction in
the multiplicity region, then different startup policies may lead to different steady
states. Here is an actual example: when a catalytic hydrogeneration reactor was
designed to give an 80% steady-state conversion and when the plant gave only a
7% conversion, many trials to check for catalyst deactivation and other classical
approaches did not yield any useful remedy. Through bifurcation analysis, it was
finally discovered that the reactor had three steady states under the chosen design
conditions, a stable low temperature one at 7% conversion, an unstable middle
saddle-type one at 35% conversion, and a high-temperature, high-conversion one
at 80% conversion. Preheating at startup to get the system to the high-temperature
steady state was sufficient to solve the problem and to operate the reactor at 80%
conversion as desired.

Roles of the Parameters o, §, and ~ :

This dimensionless parameter is the thermicity factor; it is positive for exothermic
reactions and negative for endothermic ones. Given a constant feed concentration
and feed temperature for a CSTR, larger positive values of 3 in the reaction mean
higher exothermicity (a higher value of the exothermic heat of reaction), while lower
negative values of 3 signify a higher endothermicity of the reaction, i.e., a higher
value of the endothermic heat of reaction.

This dimensionless parameter describes the activation energy. For constant feed
temperatures, a higher value of v indicates a higher activation energy. In other
words, the larger v is, the higher the reaction’s sensitivity will be to temperature.

92 Chapter 3: Some Models with Scalar Equations

«v : This dimensionless parameter involves kg, the factor preceding the exponential term
of the Arrhenius reaction formula (2.1) or (2.2), called the preexponential factor or
the frequency factor; ¢, the volumetric flow rate; and V', the volume of the reactor,
which are related via the formula o = ko -V /q. Here kg is usually quite large.
If we keep kg constant, then « is directly proportional to the volume V', and inversely
proportional to the flow rate q. The values of a can reach very large magnitudes
due to the nature of kg and its range of values. In general, « is the most widely
varying parameter of the reaction. Therefore we usually investigate bifurcation with
« chosen as the bifurcation parameter.

3.2 Continuous Stirred Tank Reactor: The Nonadia-
batic Case

For the nonadiabatic case we consider the same simple irreversible reaction
A= B,

but now with a cooling jacket with constant temperature T, surrounding the tank.

q q
CAf > Cy
Ty ' T
T, > 174 - T
T
Ca

Schematic diagram for the nonadiabatic CSTR
Figure 3.12

Here the material balance design equation is the same as for the adiabatic case, namely
q'CAf :q-CA-I-V-ko-e*E/(R'T)-CA. (3'7)

In dimensionless form and with the variable settings identical to those below equation
(3.3), equation (3.7) becomes

1 = za+ae Y xy. (3.8)

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 93

The heat balance equation for the nonadiabatic case is
q-p-Cp-(T—=Tf) =V -kg-e B/ ED . Cy . (~AH)-U-A-(T-T.),

where U is the overall heat transfer coefficient between the jacket and the tank, measured
in J/(m? -min-K), A is the overall area of heat transfer between the tank and the cooling
jacket, measured in m?, and T, is the constant temperature of the cooling jacket.

We can write this equation in dimensionless form as

y—1 = ae " a2y B Ky —vye), (3.9)

where the only new parameters and variables are K. = (U - A)/(q - p- C,), which mea-
sures the heat transfer between the tank and the jacket, and y. = Tt /T, the ratio of the
cooling and feed temperatures.

The material balance equation (3.8) and the heat balance equation (3.9) can be
reduced to a single equation by using different substitutions depending on the design
and/or simulation investigation that is desired.

First form in terms of y:

Equation (3.8) is equivalent to
1

TA = 14 04677/?/ (3.10)
By inserting (3.10) into (3.9) we obtain
aef’Y/le
y=1 = L ey el =) (3.11)
Rearrangement gives
aef’Y/le
(A4 EKe)y— (A4 Keye) = 0L (3.12)

This form is preferred for studying the effect of varying K. for a constant value of «.

Second form in terms of y:

Starting with equation (3.8), namely x4 —1 = —ae~ Y .z 4, we multiply both sides by
0 and add this to (3.9) to obtain the following sequence of equations:
Blza—1) = —afeV .z, [B-(3.6)]
y—1+prys = B—Ky+ Ky, or [/8 (36) + (37)]
1 - - Kc Kc c
oy = O p Yyt Hele (3.13)

Inserting (3.13) into (3.9), we finally get

(1 +aKc)1/ e +i<cyc) = eV (148 -1+ Ky + Keye) - (3.14)

94 Chapter 3: Some Models with Scalar Equations

This is most suitable for studying the effect of varying « while holding K. constant.

Third form in terms of = 4:

Sometimes it is desirable to express the nonadiabatic equation (3.8) in terms of the
variable z 4 alone, instead of in terms of y. To do so, we solve (3.13) for y to obtain

1+ Kcyc + 6(1 - $A)
= . 3.1
Y LK, (3.15)

Plugging this expression for y into (3.8) gives us the following equivalent nonadiabatic
nonisothermal CSTR equation, which depends solely on x 4:

1—z4 = ae v (HK)/AF+Keyetf1-2a)) g, (3.16)

Numerical Solution of the Nonadiabatic CSTR Prob-
lem

Asin Section 3.1 for the adiabatic CSTR problem, we again start with a generic MATLAB
fzero.m based root finder to try to settle the issues of multiplicity in the nonadiabatic
CSTR case. The MATLAB m file solveNadiabxy.m below finds the values for y (up to
three values if « lies in the bifurcation region) that satisfy equation (3.12) for the given
values of «, 3, v, K., and y. using MATLAB'’s root finder fzero.

function [y,fx,x] = solveNadiabxy(al,bt,ga,kc,yc)
% solveNadiabxy(al,bt,ga,kc,yc)

% Sample call ¢ [y,fx,x] = solveNadiabxy(180000,1,15,1,1)
% Sample output : y =

% (on screen) 1.0515 1.197 1.4

% fx =

% -1.5543e-15 3.8858e-16 1.1102e-16
% X =

% 0.19995 0.60592 0.89707

% Input : al, bt, ga, kc, yc

% Program finds the xA and the y values on all branches of the curve.
% Output : y values at x for all steady states, error at each xA, xA
% CAUTION: always check critical applications against a run of

% [Y, Fy,x] = NadiabNisoalgraphsol(al,bt,ga,kc,yc) and

% [a11,a12,a21,a22,bif] = NadiabNisoauxfalxA(bt,ga,kc,yc,100,tol,w)
% for confirmation.

% NadiabNisoalgraph is more reliable near bifurcation limits than
% solsolveNadiabxy.

% local subroutines : Nadiab(x,al,bt,ga,kc,yc)

% [differs from NadiabNiso which does the same for the
% vector variable y]

% And Matlab’s own "fzero" root finder.

warning off; midtol = 107-13; % to satisfy the grandfather warnings re. fzero

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 95

1tol = 107-14; mid = 1; % local tolerance for fzero; change if critical
options = optimset(’dis’,[],’tolx’,1tol);
x0 = fzero(@Nadiab,0,options,al,bt,ga,kc,yc);
x1 = fzero(@Nadiab,1,options,al,bt,ga,kc,yc);
if abs(x0 - x1) > 107°-10, % three roots (bifurcation) likely; check with graph
xmid = fzero(@Nadiab,[1.01%x0,0.99%x1] ,options,al,bt,ga,kc,yc);
else, xmid = (x0+x1)/2; end, % dummy value for zmid if no bifurcation
x = [x0 zmid x1]; fx = Nadiab(x,al,bt,ga,kc,yc);
% compute error in x coordinates
y = sort((l+kcxyc + btx(1-x))/(1+kc)); % transform from xA to y
warning on

function f = Nadiab(x,al,bt,ga,kc,yc) % uses equation (3.14)
% evaluates the non-adiabatic-non-iso function at x = xA for given

% al, bt, ga, kc, yc values. (vector version)

f =1 - x - alxexp(-ga*(1+kc)./(1+kcxyc + bt *(1 - x))) .* x;

Compared to solveadiabxy.m for the adiabatic CSTR case in Section 3.1, the above
MATLAB function solveNadiabxy.m depends on the two extra parameters K. and
Y. that were defined following equation (3.9). It uses MATLAB’s built-in root finder
fzero.m. As explained in Section 3.1, such root-finding algorithms are not very reliable
for finding multiple steady states near the borders of the multiplicity region. The reason
— as pointed out earlier in Section 1.2 — is geometric; the points of intersection of the
linear and exponential parts of equations such as (3.16) are very shallow, and their values
are very hard to pin down via either a Newton or a bisection method, especially near the
bifurcation points.

Instead, we shall rely again on graphical solvers and the level-set method, but with the
added twist and complication of the two additional parameters K. and ..

NOTE : In the sequel, we shall no longer print out every function m file as we have
done so far in this book. All our m files are stored on the accompanying CD
and they can and, if desired, should be viewed and accessed from the CD.
Check Appendix 3 with the contents list of our CD and look at the relevant
Readme files first, please.

Whenever we explain m files in extended detail from now on, we will print
them out in the book, but sometimes we just print their graphical output, or
parts thereof or nothing at all, especially if the respective file is truly auxiliary
or self-explanatory in nature. This helps to tighten our presentation and is
ultimately helpful for our students by avoiding needless chatter and clutter.

The accompanying CD contains three plotting routines for the nonadiabatic CSTR
problem under the file names NadiabNisoplotfgxy.m, NadiabNisoplotfgxA.m, and
NadiabNisoplotfgxAy.m in the folder for Chapter 3. These plot graphs of different
versions of the nonadiabatic CSTR equations. Figure 3.13 shows the result of calling
NadiabNisoplotfgxy(180000,1,15,1,1,100), for example.

96 Chapter 3: Some Models with Scalar Equations

Non-adiabatic—non-iso plot; o= 1.8e+05, =1,y=15, kc=1,yc=1
T T T T T

— F(xA)
Lo G(xA) |

(XA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
XA [uses (3.14)]

0.8 B
~ 06
— 04 B

02k e — 0 |7
‘‘‘‘‘ AR

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 15
y [uses (3.9)]

1 1 1 .
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 15
y [uses (3.12)] (Allplots for N =100 intermediate points)

Plots for equations (3.16), (3.12), (3.11), and (3.14), respectively
Figure 3.13

Each of the four plots in Figure 3.13 contains two graphs: that of a solid line for the linear
left-hand sides of equations (3.11) through (3.16) and that of the respective exponential
function from the respective right-hand sides, in a dotted curve. The very shallow inter-
sections in Figure 3.13 indicate the location of the multiple steady states of the given
nonadiabatic CSTR system.

Similarly, NadiabNisoplotfgxA.m plots the linear and exponential parts separately, first
of the two equations (3.16) in terms of =4, and then of (3.11) in terms of y in more
detail, while NadiabNisoplotfgxAy.m creates the following three graphs: first it repeats
the linear and exponential parts plot of (3.16), followed by plotting the equation (3.16)
converted to standard form, i.e., converted to an “f equal to zero” equation. And finally
the same is done with equation (3.14). These differing plots are useful when one is trying

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 97

to visualize the behavior of a nonadiabatic nonisothermal CSTR system for one specific
set of inputs.

To gain further and broader insights into the bifurcation behavior of nonadiabatic,
nonisothermal CSTR systems, we again use the level-set method for nonalgebraic surfaces
such as z = f(K,,y). This particular surface is defined via equation (3.14) as follows for
a given constant value of y. with the bifurcation parameter K.:

z = f(KC7y) = (1+Kc)y_(1+Kcyc)_a'e(iry/y)'((1+/8+Kcyc)_(1+Kc)y)' (317)

To obtain this equation we have multiplied (3.14) by « and converted it into an equation
in standard form z = f(...) = 0. We print out only the descriptive initial comment lines
of runNadiabNisokc.m below.

function runNadiabNisokc(al,bt,ga,yc,N,tol,kcstart,kcend)

% runNadiabNisokc(al,bt,ga,yc,N,tol,kcstart,kcend)

% Sample call : runNadiabNisokc(180000,1,15,1,100,.001,.7,1.2)

% Runs NadiabNisokc double plot: [uses equation (3.12) for variable kc]
surface plot on top with bifurcation curve (variable kc)
marked; and bifurcation curve on bottom.

Input : al, -1 < bt, ga, yc, N (= number of points used),

tolerance tol (= 0.01, ..., 0.0001; optional),
kcstart (>= 0), kcend (both optional)
[If unspecified, we plot the whole bifurcation region.]

First we determine which range of kcl < kc2 ensures bifurcations,

then we plot the surface, followed by the y versus kc multiplicity region

plot.

[Note: if the given kcend or kcstart lies inside the bifurcation region

[kc1,kc2], the bifurcation ending dotted lines will take the kcstart/kcend
values rather than the true ones; simply widen the inputs [kcstart,kcend]
interval in this case.]

For standard al, bt, ..., yc, set N = 80 or 100, for extreme data set

N = 200 or 300.

External subroutines : NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol)

[to find bifurcation limits]
% NadiabNiso(y,al,bt,ga,Kc,yc) [to evaluate function]

P T T T i i T T S

We run runNadiabNisokc.m to obtain a plot of the surface z = f(K.,y) with the zero-
level curve depicted in black on the surface itself and also below on the K.-y plane
in blue, as well as a separate plot of the zero-level curve in a second window below.
In particular, a call of runNadiabNisokc(180000,1,15,1,100,.001,.7,1.2) exhibits
bifurcation for 0.77125 < K, < 1.12452 when o =1.8-10%, 3 =1, y =15, and y. = 1
as shown in Figure 3.14.

98 Chapter 3: Some Models with Scalar Equations

MNon-adiabiatic—non-isothermal CSTR equation, depending on Ko
Bif limits : Kc(start) = 0.77125, Kc(end) = 112452, a=1.8e+05,p=1,y=15 yc=1

NadiabMiso(y,o,py.Keyc)

-500-L_
TE

1 1 1 1 1 1 1 1 1 1
0.6 07 0.8 09 1 1.1 12 13 14
ke (viewed on [0.7,1.2]; with N = 100 ; tol = 0.001)

Nonadiabatic CSTR surface and bifurcation curve for K,
Figure 3.14

Generally speaking, there are three possible outcomes of runNadiabNisokc(. . .) if the
K. viewing interval [kcstart, kcend] is specified in the call: there may be no bifur-
cation at all for the «, (3, v, and y. input data, or there may be bifurcation: either
somewhere other than near the desired viewing interval [kcstart, kcend], or the view-
ing interval [kcstart, kcend] may overlap the multiplicity region in case of bifurcation.
The plot annotations will reflect this clearly for our users. If the K. viewing region is not
specified, defaults are set automatically and the program tries to plot the whole multi-
plicity region in case bifurcation is detected somewhere for the input data.

The runNadiabNisokc.m plotting function relies heavily on the auxiliary function
NadiabNisoauxfkcxA.m, which decides whether there is any multiplicity for the given
inputs «, 3, v, and y.. The key to these decisions lies in its auxiliary function [b,1i,1j]

= lowhighkc(i,j,heat), which we shall explain following the NadiabNisoauxfkcxA.m
listing below.

function [kc1l,kc22,bif] = NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol,kcll,kclim)

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 99

% NadiabNisoauxfkcxA(al,bt,ga,yc,N,tol,kcll,kclim)

% Sample call : [kc11,kc22,bif] = NadiabNisoauxfkcxA(180000,1,15,1,100,.001)
% Sample output : [The kc bifurcation limits are :
% kcll (= lower bifurcation limit)
% and kc22 (= upper bifurcation limit),
% if bif = 1, i.e., if bifurcation has been detected.]
% on screen : kcll =
0.77124 (= lower limit for Kc with bifurcation)
kc22 =
1.1245 (= upper bifurcation limit)
bif = (bifurcation indicator)

1
searches for values of -1 <= kcll <= kc <= kc22 with bifurcation,
for a certain tolerance; tol = 107-5 gives very stringent results;
tol = 10°-3 is generally ok. [N = 60 or 100; tol = 0.01 or 0.001 will work.]
Inputs kcll (>= 0)and kclim are optional and demarcate the range of kc
values in which we search for bifurcation, if they are specified.
On output: bif = 1, if there is bifurcation, bif = 0, if there is not.
Special subroutines used: external: NadiabfkcxA(x,al,bt,ga,kcll,yc)
% internal: lowhighkc(i,j)

if nargin == 6, kcll = 0.00001; kclim = 20; end, kcstep = (kclim-kc11)/10;
x = 0:1/N:1; bif = 0; biff = 1; 7 set starting values; adjust kclim to defaults

F1 = NadiabfkcxA(x,al,bt,ga,kcll,yc);
bl = lowhighkc(find(F1 > 0),find(F1 <= 0));
if b1l == -1,
disp([’'WA RN I N G 1: no nonnegative values for kc lead to bifurcation,’,...

> we give up’l), % return 7
kc12 = kcll; kc21 = kclim; kc22 = kclim; biff = 0; end % abandon program
if bl == 0, kcl12 = kcll; bif = 1; end
% bifurcation : set up lower bifurcation limits kcll, kcl2 first
if bl == 1, kcl2 = kcll; bif = 1; % bifurcation inside prescribed kc interval
while bl == 1 & kcl1l2 < kclim ¥ search for its lower limit kcill
kcll = kc12; kcl2 = kcl2 + kcstep; F1 = NadiabfkcxA(x,al,bt,ga,kcl2,yc);
bl = lowhighkc(find(F1 > 0),find(F1 <= 0)); end,
if kc12 >= kclim,
disp([’W A RN I N G 2: no apparent bifurcation for any kc <= kclim = ’,...
num2str(kclim, ’%9.4g’)1), % return 7
kcll = 0; kcl1l2 = 0; kc21 = kclim; kc22 = kclim;
if biff == 0, bif = 0; end, end, end
if bif == 1,
kc21 = kcl2; F2 = NadiabfkcxA(x,al,bt,ga,kc21,yc);
b2 = lowhighkc(find(F2 > 0),find(F2 <= 0)); % set upper bifurcation limits

if b2 == -1, kc22 = kc21; kc21 = kc22 - kcstep; end
if b2 == 0,
while b2 == 0 & kc21 < kclim, 7% search for upper bifurcation limit

kc21 = kc21 + kcstep; F2 = NadiabfkcxA(x,al,bt,ga,kc21,yc);
[b2,1i,1j] = lowhighkc(find(F2 > 0),find(F2 <= 0)); end,

100 Chapter 3: Some Models with Scalar Equations

if kc21 >= kclim, % upper bif limit outside kc interval
disp([’WA RN I N G 3: bifurcations for kc >= kclim = ’,...
num2str (kclim,’%9.4g’)]), end,
kc22 = kc21; kc21 = kc22 - kcstep; end
while kc12-kcll > tol * kcl2 % refine lower bifurcation limits
k1l = (kcl1l+kc12)/2; Fkl = NadiabfkcxA(x,al,bt,ga,kl,yc);
bl = lowhighkc(find(Fk1 > 0),find(Fkl <= 0));
if bl == 1, kcll = k1; else, kcl1l2 = k1; end, end, k2 = kc21; K2 = k2;
while kc21 > 0 & kc22-kc21 > tol * abs(kc21) & k2 > 0, J refine upper bif
K2 = k2; k2 = (kc21+kc22)/2; Fk2 = NadiabfkcxA(x,al,bt,ga,k2,yc);
[b2,1i,1j] = lowhighkc(find(Fk2 > 0),find(Fk2 <= 0));

if k2 > 0,
if b2 == -1, kc22 = k2; else, kc21 = k2; end,
else
if b2 == -1, kc22 = K2; else, kc21 = K2; end, end, end, end
if bif == 1,
kcll = (kc11+kcl12)/2; % half the differences

if kc21*kec22 <= 0, kc22 = K2; else, kc22 = (kc21+kc22)/2; end,
if kcll == kc22, bif = 0; end,
else, kc22 = kclim; end

function [b,1i,1j] = lowhighkc(i,j) % length comparison function for kc
% input : two strings of integers i, j
% output b : b = 0 if kc is good (bifurcation);

YA b = -1 if reducing kc leads to good kc;

YA b = 1 if increasing kc leads to good kc

1i = length(i); 1j = length(j); b = -1; % going down default
if i(1i) == 11 & j(1) == 1li+1, if 1i < 1j, b = 1; end; % going up now

else, b = 0; end % bifurcation

MATLAB code line pairs such as

F1 = NadiabfkcxA(x,al,bt,ga,kcll,yc);
bl = lowhighkc(find(F1 > 0),find(F1 <= 0));

on lines 3 and 4 above appear six times inside the function m file NadiabNisoauxfkcxA.m.
Such a line pair first evaluates the nonadiabatic nonisothermic system equation. In par-
ticular, this equation is the standard form (f(...) = 0) of equation (3.16). This code line
pair helps the program to decide whether the current value of K., called kc11, the par-
tition z, and the constants «, (3, -, and y. describe a system with multiplicity, denoted
by bl = 0, or whether reducing K, will likely lead to the multiplicity region by setting
bl equal to —1, or if increasing K. will likely do so by setting bl = 1.

Here is a plot of the three possibilities for multiplicity when solving equation (3.16) in
its standard form

Fl(z) = 1 -z —a-e 7 1+ke)/(tkeyetfi=z)) ;. — (3.18)

for varying values of K. and the same parameter set as has been used for Figure 3.14,
namely o = 18 -10%, 3 =1, v =15, and . = 1.

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 101

When viewing the graphs of Figure 3.15, please recall that multiple solutions of F'1(x) =0
for x € [0, 1] signify bifurcation for the underlying CSTR, system.

K =05 K =1 K =12
[c c
1 T 1.2 T 1.2 T

-0.2 L

-1.5 L -0.2

L
0.5 1 0 0.5 1 0 0.5 1
no bifurcation (Kc too small) bifurcation no bifurcation (KC too large)

With o= 180000, B=1,7=15,y_=1

Bifurcation behavior of equation (3.18), depending on K.
Figure 3.15

Figure 3.15 was drawn using the MATLAB m file kctriple.m on the CD that accompa-
nies the book.

In the three example plots of Figure 3.15, the graph of F'1 in (3.18) crosses the horizontal
axis where F'1 = 0, i.e., F'1 changes sign for x € [0, 1] and any value of K. at least once,
since F'1(0) = 1 and F1(1) < 0 for all K.. If K, lies inside the multiplicity region, then
F1 changes signs more than once on the interval [0,1], and it does so an odd number of
times. In order to decide which is the case for one particular K., we form two vectors
for the index sets ¢ and j of all points of the = partition where F'1 > 0 in ¢ and where
F1<0in j. Here F'1 is computed by NadiabfkcxA(x,al,bt,ga,kcll,yc).

Inside the subprogram lowhighkc we look at the last index of i. If we are in the situ-
ation of the left- or rightmost graphs of Figure 3.15, then the last index of ¢ must be
equal to i’s length, since there is only one contiguous x interval where the function F'1 is
positive. Moreover, in these two situations, the vector j of all indices of the partition x
with negative F'1 values must have its first entry precisely equal to one plus the length
of the vector i, since the index vector j starts exactly after ¢ has ended. Observe that in
case of multiplicity, depicted in the center graph of Figure 3.15 for F'1, neither of these

102 Chapter 3: Some Models with Scalar Equations

two observations can hold, since i must contain the index sets of at least two disjoint x
intervals with F'1(z) > 0, and likewise for j.

Moreover, if the length of j exceeds the length of 4, i.e., if we have the situation of the
leftmost graph of Figure 3.15, then an increase in the value of K. may lead us to the
bifurcation region and the bifurcation points, if such exist. In the opposite case, depicted
in the rightmost plot of Figure 3.15, a decrease of K. might lead to the multiplicity
region. This defines the search direction for multiplicity.

Our CD also contains the MATLAB function m file runNadiabNisokccurve.m. A
call of runNadiabNisokccurve (180000,1,15,1,100,.001,.7,1.2), for example, plots
only the bifurcation curve with respect to K. in Figure 3.16, i.e., it repeats the bottom
plot in Figure 3.14.

Non-adiabiatic-non-isothermal CSTR equation, depending on Kc

kebifstart = 0.7712, kcbifend = 1.125; o=180000,B=1,y=15,yc=1
T T T T T T T

0.6 0.7 0.8 0.9 1 1.1 12 13 14
ke (viewed on [0.7,1.2] ; with N =100 ; tol = 0.001)

Nonadiabatic CSTR bifurcation curve for K. as the bifurcation parameter
Figure 3.16

Equation (3.17) allows a different interpretation of the underlying system’s bifurcation
behavior by taking K. and y. as fixed and letting « vary, for example. We now study the
bifurcation behavior of nonadiabatic and nonisothermal CSTR systems via their level-
zero curves for the associated transcendental surface z = g(«, y). The surface is defined
as before, except that here we treat K. and y. as constants and vary « and y in the 3D
surface equation

2= glayy) = (L+EKe)y—(1+Keye) —a e (14 5+ Keye) = (1+ Ke)y) - (3.19)

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 103

Non-adiabiatic-non-isothermal CSTR equation, dependingona
Bifurcation limits . «(start) = 153084, afend) = 208995, f=1,y=15, ke=1,yc=1

0.5

NadiabNiso(y, o, 5.y, Kcyc)

1Ll 1 S — 1 us L L L 1

1 12 14 16 18 2 22 24 26 28 2
o, (viewed on[1.2e+05,25e+05]; with N =100 tol = 0.001) %10°
Nonadiabatic CSTR surface and bifurcation curve for «
Figure 3.17
If we run runNadiabNisoal.m (contained on the CD), we obtain a plot of the sur-
face z = g(a,y) and a separate plot of its zero-level curve. In particular, a call of

runNadiabNisoal(1,15,1,1,100,.001,120000,250000) exhibits bifurcation for 153,064
< a <208,984 when g =1, y=15, k. =1, and y. = 1 as depicted in Figure 3.17.

Note the difference between the shapes of the K. bifurcation curves in Figures 3.14
and 3.16 on the one hand and that of the a bifurcation curve in Figure 3.17 for the same
equation (3.14) on the other hand: The « bifurcation curves have the general form of
the letter S, as seen in the bottom graph of Figure 3.17, while the curve in Figure 3.16
has the mirror image S shape. For very high values of o and fixed values for K. and .,
there is only one steady state at a high rate of conversion and consequently at a high

104 Chapter 3: Some Models with Scalar Equations

temperature, while for very small values of a and fixed values of K, and y., there is also
only one steady state, but at a low temperature and a low rate of conversion.

This is completely opposite to what happens in Figures 3.14 and 3.16 with regard to
bifurcation when K, varies and « is kept constant. For very high K, values there is only
one steady state, but this time with a low conversion rate, while for low values of K,
there is only one steady state with a high rate of conversion and high temperature.

As mentioned above, the K. bifurcation curves have an inverted letter-S shape. We refer
to the conclusions of Section 3.2, and to Chapter 7 for an analysis of the physical meaning
of the differing shapes of the K. and « parameter bifurcation curves when applied to
industrial processes and reactors.

In our CSTR example the constants K. and « have opposite physical effects. If « in-
creases, the flow rate ¢ decreases and thus the rate of reaction increases, as does the heat
of reaction. On the other hand, if K. increases, then the heat removal by heat transfer
to the cooling jacket increases, reducing the rate of reaction and the production of heat.
Note that the search directions in our respective lowhighkc and lowhighal sub-programs
point in opposite directions for the S-shaped a bifurcation curves and for the inverted
S-shaped K, bifurcation curves.

For further chemical /biological explanations of these “shape” phenomena, please see the
Conclusions subsection at the end of this section.

Non-adiabiatic-non-isothermal CSTR equation, depending on o
; a(bifstart) = 2.42245e+06, o(bifend) = 4.4486e+08; P=1,y=12,kc=1,yc=0
T T T T T T

= ‘

0.9 b

.
o 0.5 1 15 2 25 3 35
o (viewed on [0,3.8e+08] ; with N =400 ; tol = 0.0001) x10°

4 45

Nonadiabatic, nonisothermal CSTR bifurcation curve for «
Figure 3.18

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 105

Again we plot the bifurcation curve with respect to « as was done in Figure 3.17 sepa-
rately. We use the command runNadiabNisoalcurve(1,12,1,0,400,0.0001,0,3.8%10"
8) for Figure 3.18, for example, where the m file runNadiabNisoalcurve.m has been
taken from the CD. This gives us the following plot.

Thus far we have explored the bifurcation behavior of equation (3.14) with respect to
K. via equation (3.17) in Figures 3.14 through 3.16, and with respect to « via (3.19) in
Figures 3.17 and 3.18. Since different K. and « values can lead to bifurcation behavior for
the same nonadiabatic, nonisothermal CSTR system, it is of interest and advantageous
to be able to plot the joint bifurcation region for the parameters K. and « as well.

Plot of ke and log(ct) values with bifurcations ; =1, y=18,yc=1.13
7 T T T

6.5 3

log (a)

4.5 -

L L L
15 2

35 0 0.5 1
ke (for N =100 points and tol = 0.001)

Nonadiabatic, nonisothermal CSTR joint bifurcation region for K. and «
Figure 3.19

The gray area in Figure 3.19 is drawn by the call NadiabNisoalkcplot(1,18,1.13,100,
.001,-0.5,2). It describes the multiplicity area in terms of both v and K. The terminal
gray points of any line parallel to the o axis denote the boundaries of the multiplicity
region for o and the chosen fixed value of K., while the nonnegative points for any line
parallel to the K. axis denote the multiplicity interval(s) for K. and the chosen fixed .
Note that the axis scales in Figure 3.19 are chosen so as to give a reasonable and instruc-
tive plot of the parameter ranges. The parameters K. with bifurcation generally lie in
the range 0 < K. < 5, while a’s range of bifurcation often covers several powers of ten.
Therefore we have chosen a logarithmic scale (to base 10) for the vertical axis in Figure
3.19.

106 Chapter 3: Some Models with Scalar Equations

Choosing K. > 0 and « inside the gray region of Figure 3.19 gives the associated CSTR
system multiple steady states, and conversely, choosing K. > 0 and « outside the shaded
bifurcation region ensures a unique steady state for this particular system with its given
parameters =1, v =18, and y. = 1.13.

Let us look in more detail at Figure 3.19: For any fixed value of K., we can read the
bifurcation limits (in terms of «) of the system from the graph. The bifurcation region
for each fixed K. is a simple, connected interval since any vertical line in Figure 3.19
that meets the gray region meets it contiguously with only two bifurcation points.

The situation is quite different for fixed a: look, for example, at the black horizontal
line drawn additionally in Figure 3.19 for o = 10%!3, It intersects the gray bifurcation
region twice. Thus there are two disjoint multiplicity regions for this data with at least
three bifurcation points. Other horizontal lines such as a = 10°-® meet the gray region
in one contiguous interval, though, leading to a contiguous bifurcation region and to two
bifurcation points only.

What is happening for a = 10%3? Looking back at Figure 3.19, there are multiple steady
states for both low values of K. just above 0, and also for higher values of K. around
1.5, but not in between.

Non-adiabiatic-non-isothermal CSTR equation, depending on Kc
0 kebifstart = 1e-05, kcbifend = 1.57;
T

o =1.34896e+06 ,f=1,y=18,yc=1.13
T T

1 1 1 1
1o 05 1 . 2
ke (viewed on [0,2] ; with N.=100 ; tol = 0.001)

Nonadiabatic, nonisothermal CSTR system with disjoint multiplicity regions for K.
Figure 3.20

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 107

Figure 3.20 uses runNadiabNisokccurve.m with o = 10613 = 1.34896- 106, s =1, v =
18, y. = 1.13 for 0 < K. < 2 and describes the bifurcation behavior with respect to K,
as represented by the intersection of the black horizontal line with the gray bifurcation
region of Figure 3.19 for K, > 0. We note the standard inverted S-shape of the curve
in Figure 3.20 from around K. = 1.2 to about K. = 1.57, as well as a little “dimple”
for 0 < K. < 0.2 or thereabouts. This “dimple” corresponds to part of the black line
and gray region intersection immediately to the right of the black vertical line K. = 0 in
Figure 3.19.

If we decrease « sufficiently for the same set of data, the two areas of multiplicity will even-
tually join into one. For o = 105:092389299 o1 example, a call of runNadiabNisokccurve
(1076.092389299,1,18,1.13,800,.0001,0,2) produces the plot in Figure 3.22 with
an almost contiguous multiplicity region where two of the bifurcation points come very
close to each other.

Non-adiabiatic—-non—-isothermal CSTR equation, depending on Kc
2 kcbifstart = 1e-05, kcbifend = 1.457; o=1.23706e+06 ,=1,y=18,yc=1.13
T T

s 05 i s 2
ke (viewed on [0,2] ; with N =800 ; tol = 0.001)
Nonadiabatic, nonisothermal CSTR system with an almost contiguous multiplicity
region for K.
Figure 3.21

Note the near-horizontal and slightly disconnected black line at y ~ y. = 1.13 in Figure
3.21. For the chosen value of o = 1.23706 - 106 = 106:092389299 the bifurcation diagram
becomes an imperfect pitchfork. A perfect pitchfork bifurcation diagram occurs when
« is slightly decreased, so that the corresponding black horizontal line in Figure 3.19

108 Chapter 3: Some Models with Scalar Equations

becomes precisely tangent to the upper limiting curve of the gray joint bifurcation region
of Figure 3.19. For this critical value of «, the middle steady state remains constant at
the cooling jacket temperature y. = 1.13 for all values of K.

When « is decreased below this critical value, the pitchfork phenomenon disappears. In
particular, for @ = 10%°% we observe two unconnected branches for the three steady
states of the system in Figure 3.22.

Non-adiabiatic-non-isothermal CSTR equation, depending on Kc
0 kebifstart = 1e-05, kcbifend = 1.422;
T

o =1.20226e+06 ,f=1,y=18,yc=1.13
T T

1 ! ! ! !
0 0.5 15 2

1
ke (viewed on [0,2] ; with N.=100 ; tol = 0.001)

Nonadiabatic CSTR system with a contiguous multiplicity region for K.
Figure 3.22

The two branches of the top bifurcation curve in Figure 3.22 will rejoin for some large-
magnitude but physically impossible negative value of K. far to the left of our window’s
edge. Negative values for K, are impossible, since this would physically mean that heat is
transferred from the cold part to the hot part. As depicted in Figure 3.22, the bifurcation
curves look like an incomplete isola.

We are made aware of the lively change in bifurcation behavior here: just a third digit
change in « can cause absolutely different bifurcation behavior of the associated CSTR,
system, as witnessed by Figures 3.20 to 3.22.

For this reason, only highly reliable models coupled with accurate numerical
routines such as those presented here are useful for the professional chemi-
cal/biological engineer.

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 109

What has just been done for K, and « can be repeated for y. and « as well. Here is the
joint multiplicity region plot for y. and «, obtained by calling NadiabNisoalycplot (1,15,
1,100,.001,-.4,2) with 8 =1, v =15, and K. = 1 and the imposed bounds —0.4 <
Yo < 2.

Plot of yc and log(a) values with bifurcations ; p=1,y=15,kc=1
20 T T T T T T T T

4 L L L L L L L L
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

yc (for N =100 points and tol = 0.001)

Nonadiabatic CSTR joint bifurcation region for y. and «
Figure 3.23

We note that split bifurcation regions and pitchfork bifurcation such as depicted in Fig-
ures 3.20 and 3.21 for K, were never encountered by us for any fixed « in terms of y,.

Next we show the graphical output of two multiplot routines from our CD (in terms of
several y. values plotted with respect to K, or in terms of several K, values plotted with
respect to y.). A call of NadiabNisoalkcmultiplot (1,20, [1.5:.5:4],100,.001,-.4,2)
plots six superimposed K. and « joint multiplicity regions for y. = 1.5, 2, 2.5, 3, 3.5,
and 4 in Figure 3.24.

The topmost drawn multiplicity region in Figure 3.24 represents the one for the last entry
of the y. vector, and the one for the first entry of the vector y, is the bottom region plotted
in the stack of regions in Figure 3.24. If we desire to depict the y. multiplicity region for
Y. = 1.5 on top in Figure 3.23, we should call NadiabNisoalkcmultiplot(1,20,fliplr
([1.5:.5:4]), 100,.001,-.4,2), or equivalently NadiabNisoalkcmultiplot(1,20,
[4:-.5:1.5],100,.001,-.2,2) instead.

Moreover, recall that negative values of K. are physically meaningless here. But our
numerical techniques are robust enough to plot even for unrealistic negative K, values.

110 Chapter 3: Some Models with Scalar Equations

Plots of kc and log(c) values with bifurcations :
with B‘:1,y:20‘; for ye = [1.5 2‘ 25 3 ‘3.5 4]‘

24

20 q

4 I | I I I I I
-0.2 o] 0.2 0.4 0.6 0.8 1 1.2 1.4

ke (for N =100, tol =0.001) [lastyc value plotis in front]

Nonadiabatic CSTR joint bifurcation region for vector valued y. and «
Figure 3.24

Plots of yc and log(c) values with bifurcations :
s With B=1,y=15, for ke= [-0.15 0.1 0.1 0.3 05 07 09 1.1]

1 1 1 1 1
5 2 25 3 35 4
) [last ke value plot is in front]

0 I I I I
-1 -0.5 0 0.5 1

1
yc (for N =100, tol =0.001

Nonadiabatic CSTR joint bifurcation region for vector valued K. and «
Figure 3.25

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 111

Likewise, we can plot multiple joint bifurcation regions for multiple values of K, and a.
Calling NadiabNisoalycmultiplot(1,15,[-.15,-.1,[.1:.2:1.1]],100,.001,-1,4)
with NadiabNisoalycmultiplot.m from our CD draws Figure 3.25 in color. We note
that the range of « allowed in the auxiliary function NadiabNisoauxfalxA.m has been
deliberately limited to below 10?4, Therefore there is an artificial “top shelf” at a = 1024
for the top purple bifurcation region drawn for the negative values of y. when K, = 1.1
in Figure 3.25.

Note how the multiplicity regions here become wider to the left for smaller values
of y. if K. > 0 and how they open up to the right for larger y. if K. < 0. Of course,
negative values for K, have no physical meaning, since heat cannot be transferred from a
cold part to a hot part; see our comments following Figure 3.22. These negative K. value
plots are included only to show the versatility and strength of our numerical methods
that go well beyond the physically meaningful applications of our model. These methods
may well turn out to be useful in other applications. The same comments apply to our
earlier Figures 3.19 and 3.24, which also allowed for physically impossible negative values
of K,.

Our final MATLAB m file in this section rounds out our efforts just as Figure 3.10 did
for the adiabatic CSTR problem. It uses the plotting routine for Figure 3.18 in conjunc-
tion with a MATLAB interpolator to mark and evaluate the (multiple) steady state(s)
graphically for nonadiabatic, nonisothermal CSTR problems.

Our function m file NadiabNisoalgraphsol.m from the N adiab folder on the CD reads
like this:

function [Y, Fy,x] = NadiabNisoalgraphsol(a0,bt,ga,kc,yc)
% NadiabNisoalgraphsol(aO,bt,ga,kc,yc)

% Sample call : [Y, Fy,x] = NadiabNisoalgraphsol(300000000,1,12,1,0)

% Sample output : (on screen)

h Y =

yA 0.50821 0.55562 0.99973

% Fy =

yA -0.0087544 1.5137e-05 2.4585e-06

h x =

yA 0.00054877 0.88877 0.98358

% Plots the (3.12) Nadiab equation zero level curve as a 2D plot,

% then the program decides on bifurcation and computes the values of y at

% the steady states of the CSTR system for the specified a0 value of alpha.
% Input : a0 = alpha_O, beta, gamma, kc, and yc

% Output: Plot of up to three steady state solutions yO, ymid, yl in Y on the
A bifurcation curve.

% And on screen: Y values; function error in Fy, and converted xA
% values in x (via equation (3.11))

% (If entries in Y are identical, there is only one solution,

A i.e., only one steady state for this input.)

% Increase N on first line to 800, 1000, 2000, and possibly decrease tol,
yA if higher accuracy desired.

112 Chapter 3: Some Models with Scalar Equations

N = 500; tol = 0.001; w = 0;
[al,a12,a2,a22,bif] = NadiabNisoauxfalxA(bt,ga,kc,yc,N,tol,w);
all = min(al,a0); a22 = max(a2,a0); % extend alpha range to contain a0
three = 0; % triple steady states 7
miny = (1+kc*yc)/(1+kc); maxy = (1+bt+kc*yc)/(1+kc); % prepare plot
[y,Al]l=meshgrid([miny: (maxy-miny) /N:maxy], ...
[0.8%al11:(1.2*xa22-0.8%al11)/N:1.2*a22]);
% make grids for y and alpha in relevant ranges for y and beta

z = NadiabNiso(y,Al,bt,ga,kc,yc); % z = adiab Non-iso function value
C = contour(Al,y,z,[0 0],’b’); hold on, % draw O level curve
if al < a2,
yy = £ind(C(1,1:end-1)-C(1,2:end)> 0);
if length(yy) == 0, itop = length(C); ibot = 1;
else % find left bifurcation point
itop = yy(1); [bull,ibot] = min(C(1,itop:end));
ibot=ibot+itop-1; end % add the front end length!

if al <= a0 & a2 >= a0 & length(yy) > O, three = 1; % in case of multiplicity
x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’linear’); % bottom solution (1)
xmid = interpl(C(1,itop:ibot),C(2,itop:ibot),al,’linear’); % middle (2)
x1 = interpl1(C(1,ibot:end),C(2,ibot:end),al,’linear’); % top sol (3)
elseif a0 < al,
x0 = interp1(C(1,1:itop),C(2,1:itop),a0,’spline’); % only one steady state
xmid = x0; x1 = x0;
else x0 = interpl1(C(1,ibot:end),C(2,ibot:end) ,a0,’spline’); % one steady st.
xmid = x0; x1 = x0; end,
else x0 = interp1(C(1,1:end),C(2,1:end),a0,’spline’); % no bifurcation;
xmid = x0; x1 = x0; end, % only one steady state
Y = [x0 xmid x1]; x = sort((1+bt-Y-kcx(Y-yc))/bt); % prepare output
Fy = Nadiab(x,a0,bt,ga,kc,yc);

if bif == 1, % in case of bifurcation
plot(al,miny,’+r’), % mark requested value for alpha_0
plot([a2,a2], [maxy,miny+0.08% (maxy-miny)],’:’);
plot([al,al], [miny,miny+.8* (maxy-miny)],’:’); % plot bifurcation limits

if three == 1; % mark 3 steady states
xlabel([’\alpha (three steady states for \alpha 0 = ’,...
num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g°),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’], ’FontSize’,12),
title([’ NadiabNiso graphical solution : y_1 = "’,...
num2str(x0,’%10.6g°),’; y_2 = ’ ,num2str(xmid,’%10.6g’),...
> y_3 = ’,num2str(x1,’%10.6g’)], ’FontSize’,12),
plot(a0,x0,’+r’), plot(al0,xmid,’+r’), plot(al,xl,’+r’),
else % mark single steady state
xlabel([’\alpha (single steady state for \alpha 0 = ’,...
num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g°),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’], ’FontSize’,12),
title([’ adiabNiso graphical solution : y_1 = 7,...

num2str(x0,’%10.6g’)], FontSize’,12),

3.2 Continuous Stirred Tank Reactor: The Nonadiabatic Case 113

plot(a0,x0,’+r’), end % mark single steady state

else, % in case of no bifurcation
xlabel([’\alpha (single steady state for \alpha 0 = ’,...
num2str(a0,’%12.9g’),’ , \beta = ’,num2str(bt,’%10.5g’),...
>, \gamma = ’,num2str(ga,’%10.5g’),’)’], ’FontSize’,12),
title([’ adiabNiso graphical solution : y_1 = 7,...

num2str(x0,’%10.6g’)], ’FontSize’,12),
plot(a0,x0,’+r’), plot(al,1,’+r’), end 7% mark single steady state
ylabel(’y’,’Rotation’,0, ’FontSize’,12), hold off

function f = Nadiab(x,al,bt,ga,kc,yc) % uses xA parameter and equation (3.14)
% evaluates the non-adiabatic-non-iso function at x = xA for given

% al, bt, ga, kc, yc values. (vector version)

f =1 - x - alxexp(-ga*(1+kc)./(1+kcxyc + bt *(1 - x))) .* x;

This m file produces three steady-state values for y. as marked when called by the MAT-
LAB command NadiabNisoalgraphsol(300000000,1,12,1,0), for example, in Figure
3.26.

NadiabNiso graphical solution : Y, = 0.508208; Y, = 0.555616 ; Y, = 0.999726

T T T T T
0.95 (/_v T

0.8

Yors

0.7

0.65

0.6

0.55

0.5

0.5 1

15 2 25 3 35 4 45 5
o (three steady states for 0y = 300000000, B=1,y=12)

x10°

Bifurcation curve with multiple steady states marked by +
Figure 3.26

It is worthwhile to explore the differences between the results of NadiabNisoalgraphsol
and solveNadiabxy from the beginning of this section. For the nonadiabatic case such
an exploration will duplicate what we have already learned about the differences between
our fzero based and our graphics based steady-state finders for the adiabatic CSTR case
in Section 3.1; see the exercises below.

114

Chapter 3: Some Models with Scalar Equations

Exercises for 3.2

1.

Compare the results obtained from solveNadiabxy.m with those from
NadiabNisoalgraphsol.m, especially near the boundaries of the multiplicity
regions for various sets of inputs.

Compare the graphical output from NadiabNisoalkcplot.m and
NadiabNisoalycplot.m for the same values of K. and y. by measuring the
endpoints of the respective a bifurcation regions with the help of a ruler. These
should be the same. Are they?

Use runNadiabNisokccurve.m with judiciously adjusted kcstart and kcend
values to find the lower limit of the bifurcation interval around K. = 1.5
graphically for a = 10%!3, 3 =1, v = 18, and y. = 1.13 as used in Figure
3.20. How can you likewise find the upper multiplicity limit for the bifurcation
region around K. = 0 for the same input data and cleverly chosen values for
kestart and kcend?

(a) Create a program called runsolveNadiabxy.m for the nonadiabatic CSTR
case that uses the bisection method of solveNadiabxy.m to plot y(a) in
the multiplicity region, such as runsolveadiabxy.m does in Figure 3.3 by
using the bisection method of solveadiabxy.m in the adiabatic case.

(b) For the nonadiabatic CSTR case, use NadiabNisoalgraphsol.m in con-
junction with runsolveNadiabxy.m from part (a) to create an overlay
plot similar to Figure 3.11 for the adiabatic CSTR case.

Compare the usable data range from the bisection based algorithm with
that from the graphical method.

Exercise your command of MATLAB by trying to replicate the three graphs in
Figure 3.15. Learn about the subplot, xlabel, ylabel, and title MATLAB
commands and how to use them.

One aim of this book is to teach and enable our readers to develop relevant
numerical codes for chemical/biological engineering models on their own. For this
purpose we include MATLAB Projects from now on in the Exercise sets.

6. Project I: Write a MATLAB m file that draws the surface z = f(K.,y) with

f defined in equation (3.17), i.e., draw the top surface of Figure 3.14 alone.
Repeat for the top surface of Figure 3.17 as well.

Project IT: Create a color contour MATLAB plotting routine for the nonadi-
abatic case, just as adiabNisocolorcontour.mdid for o and y in the adiabatic
case in Figure 3.7. The aim is to create a color-contoured version of Figure 3.
16.

Repeat for K. and y, i.e., add color contours to Figure 3.16.

Finally, explore the K. and y color contour plots for the disjoint multiplicity
situations depicted in Figures 3.20 to 3.22.

Project III: Combine and adapt the m files NadiabNisoalgraphsol.m,
runNadiabNisoalcurve.m, and runNadiabNisokccurve.m to create a new

3.3 A Biochemical Enzyme Reactor 115

multiplicity finder named NadiabNisokcgraphsol.m for y in terms of K, i.e.,
write a MATLAB m file that produces a plot like Figure 3.26, but with respect
to K. rather than with respect to «.

Compare your results from NadiabNisoalgraphsol.m and
NadiabNisokcgraphsol.m analogously to Exercise 1 above.

Conclusions

The current section has covered numerical techniques and MATLAB codes for in-
vestigating the static bifurcation behavior of nonadiabatic lumped systems.

It is clear that the behavior of nonadiabatic systems is more complicated than that
of the adiabatic ones that were treated in Section 3.1.

Starting with Sections 3.1 and 3.2, we are progressing to learn how to design and
apply efficient numerical methods to investigate industrial chemical, biochemical,
and biomedical systems with and without bifurcation.

For the nonadiabatic case we have demonstrated that the variables oo and K. have
opposite effects on the system’s behavior. This is consistent with the physical mean-
ing of these two parameters. Increasing « increases the heat production, while in-
creasing K, increases the heat dissipation. Thus for a constant « and variable K,
at low K. values the heat dissipation is small, leading to a unique high-temperature
steady state of the system, while at large values of K., when heat dissipation is high
the system can have only one low-temperature steady state. And for intermediate
K. values there may be three steady states when « is kept constant. The opposite
holds when K is kept constant and « varies. For low values of « the rates of reac-
tion and heat production are low, giving rise to a unique low-temperature steady
state for the system. And for large values of o with a high rate of heat production,
there will be a unique high-temperature steady state, while intermediate o values
may lead to three steady states.

Note that a battery of three CSTRs and its dynamic behavior are studied in Section
6.4.

3.3 A Biochemical Enzyme Reactor

Similar behavior to that of the nonisothermal CSTR system will be observed in an
isothermal bioreactor with nonmonotonic enzyme reaction, called a continuous stirred
tank enzyme reactor (Enzyme CSTR). Figure 3.27 gives a diagram.

q7Sf=>

QQ = q, S

A simple enzyme CSTR
Figure 3.27

116 Chapter 3: Some Models with Scalar Equations

For simplicity, we assume that the enzymes are immobilized inside the reactor, i.e.,
there is no outflow of enzymes nor any washout. At the same time we assume that there
is no mass transfer resistance. Then the governing equation is

q-Sy = q- S+V-r, (3.20)

where r is the rate of reaction per unit volume of the reactor.
Note: If r is expressed per unit mass then we multiply » by the enzyme concentration
Cg, i.e., the mass of enzymes per unit volume of the reactor.

Dividing equation (3.20) by V gives us

q _q
yoSr = S (3.21)

Here D = ¢/V is the dilution rate measured in (time)~!. It is the inverse of the residence
time 7 = V/q. Therefore

D-(S;—-8) = r. (3.22)

Equation (3.22) can be easily solved: the nature of the solution(s) will depend on the rate
of reaction function r. The right-hand side of equation (3.22) is called the consumption
function C(S) = r, while the left-hand side D(Sy —) is called the supply function
S(S). One can solve this equation graphically for different types of kinetics, as shown in
Figure 3.27.

Michaelis—Menten

at steady state :
D(Sf—S) =r

S

Consumption and removal
Figure 3.28

3.3 A Biochemical Enzyme Reactor 117

Figure 3.28 shows the consumption functions C(S) for both nonmonotonic and Michaelis—
Menten kinetics together with the removal function R(S) = —D - S in a line. The inter-
section(s) of C(S) and S(S) are the steady states. It is clear that for Michaelis-Menten?
kinetics, i.e., for nonlinearity with saturation, see Figure 2.2, there is only one steady
state for the whole range of D. This is the simplest case of a CSTR without bifurcation.
However, for substrate-inhibited nonmonotonic kinetics as depicted by the nonmonotonic
curve in Figure 3.28, more than one steady state may occur over a certain range of D
values.

Substrate supply line

Substrate consumption

S

Local stability analysis of steady states
Figure 3.29

For nonmonotonic kinetics the stability details of the steady states A, B, and C are in-
dicated by arrows in Figure 3.29. The stability behavior of the different steady states is
explained below using chemico-physical reasoning. This applies to the earlier-mentioned
adiabatic and nonadiabatic nonisothermal CSTRs as well.

Our definition of the stability of a steady state is as follows:

For a stable steady state:
If a small disturbance is made, the system will return to its initial steady state once the
disturbance is removed or attenuated.

Unstable steady state:

3Leonor Michaelis, German chemist, 1875 — 1949
Maude Leonora Menten, Canadian physician and biochemist, 1879 — 1960

118 Chapter 3: Some Models with Scalar Equations

If a small disturbance is made, the system will not return to its initial steady state when
the disturbance is removed.

In Figure 3.29 we have indicated the stability behavior of the three steady states A, B,
and C by horizontal arrows.

Steady-state point A

Using the simple steady-state diagram of Figure 3.29, point A is stable because slightly
to the right of it, the rate of consumption of the substrate C is greater than the rate of
supply S. This induces a decrease in the concentration. And therefore the reactor goes
back to its steady state at A under slight perturbations to the right. This is indicated by
the left-pointing arrow on the right side of point A.

For concentrations slightly to the left of the steady state A, the rate of consumption is
smaller than the rate of supply. Therefore the concentration will increase and the reactor
will go back to its steady state A in a certain small neighborhood of A, signifying stability
of the steady state at A.

Steady state point B

From the above simple steady-state diagram, point B is unstable because for any con-
centration change slightly to the right of B, the rate of substrate consumption is smaller
than the rate of substrate supply. Therefore the concentration continues to increase and
the system does not go back to the steady state B. Similarly, as the concentration is
lowered slightly to put the system to the left of its steady-state point B, the rate of
substrate supply is smaller than the rate of consumption and therefore the concentration
continues to decrease and never returns to the steady state B. This makes the steady
state B unstable.

Steady state point C

This steady state is stable for the same reasons as described for the steady-state point
A. The reader is advised to perform similar tests as described for the steady-state point
A at C and verify this assertion for C.

One may be curious to know at which stable steady state a given CSTR is operating.
This cannot be decided from the outside. The behavior of the reactor is determined by its
previous history. This is a nonphysical and nonchemical initial condition for the reactor.
The answer depends upon the dynamic behavior and the initial conditions of the system,
and this will be discussed later.

3.4 Scalar Static Equations, without Bifurcation

As mentioned earlier, the approach of this book is to treat problems with bifurcations as
the general case and problems without bifurcation as special cases.

3.4 Scalar Static Equations 119

3.4.1 Simple Examples of Reactions with No Possible Multiple
Steady States

We should realize that certain chemical /biochemical problems can have no multiplicities
of their steady states over their entire range of parameters. Consider, for example, a
simple first-order reaction process A = B with the rate equation

r==%k-Cy.
The simple design equation shall be
q-Ca = q-Cay, =V-k-Ca,
or in dimensionless form
Cay—Ca = a-Ca . (3.23)

Thus the reactant consumption function C'(C4) on the right-hand side of (3.23) is a
straight line with slope «, or C(C4) = a-Cjy, and the reactant supply function S(C4) on
the left-hand side of (3.23) is S(Ca) = Ca,; — Ca. We can easily solve (3.23) graphically
to find the steady-state solution Ca4,,, since the steady state occurs when C(Ca,,) =
S(Cla,,), or at the intersection of the two lines.

slope = -1

CAss CA C,

Simple consumption and removal
Figure 3.30

The change of C4,,, defined as the solution of (3.23) with respect to «, can be expressed
by the simple function C4 = Cy, /(1 + a). This equation is graphed in Figure 3.31.

120 Chapter 3: Some Models with Scalar Equations

o

Solution of (3.23)
Figure 3.31

Note that for a nonisothermal CSTR we will always obtain unique solutions (no bifur-
cation) for endothermic reactions, defined by 5 < 0, for both the adiabatic and the
nonadiabatic cases.

Figure 3.32 shows a typical output in the adiabatic case, obtained by calling
adiabNisocontourcurve (-.1,10) from Section 3.1 with an endothermic reaction for
6 =-0.1.

adiabNisocontourcurve : No bifurcation points; f=-0.1,y=10
1 T T T T T T

0.9 L L

2 4 10 12

6 8
o; No bifurcation x10°

Endothermic adiabatic reaction
Figure 3.32

3.4 Scalar Static Equations 121

Similarly, the call of runNadiabNisoalcurve(-.1,12,1,0,200,0.001,0,3.8%10"12)
from Section 3.3 gives this graph without any bifurcation for the endothermic nona-
diabatic reaction when 3 = —0.1 is negative.

Non-adiabiatic-non—isothermal CSTR equation, depending on o
No bifurcation; p=-01,y=12,kc=1,yc=0
T T T T T

0.5

0.495 - B

0.485

0.48

y 0.475

0.465

0.455

0.45 ! L L
0 05 1 15 2 25 45

3 35 4
o ; NO bifurcation ; (viewed on [0,3.8e+12]; tolerance = 0.001) x 10"

Endothermic nonadiabatic reaction
Figure 3.33

Note also that for biochemical systems, uniqueness of the solutions prevails over the
whole range of systems with Michaelis—Menten kinetics.

3.4.2 Solving Some Static Transcendental and Algebraic Equa-
tions from the Chemical and Biological Engineering Fields

It is important to notice that chemical and biological engineers sometimes need to solve
transcendental equations for a completely different purpose, such as when evaluating
physical properties by solving a nonlinear (static) equation. In the following we inves-
tigate two such examples, one for determining friction factors and the other for finding
specific volumes of ideal and nonideal gases.

The Colebrook Equation

The Colebrook? equation is used to calculate the friction of fluids in pipes, depending on

4Cyril Frank Colebrook, British civil engineer, 1910 — 1997

122 Chapter 3: Some Models with Scalar Equations
the diameter D of the pipe and on the Reynolds coefficient Ng. of the fluid as follows:

¢/D 1.256 H2 (3.24)

3.7 1 Npoo/f

Here € is the roughness coefficient, D is the inside diameter of the pipe, Ng. is the
Reynolds number of the fluid, and f is the friction factor for turbulent flow inside the
pipe.

This equation is transcendental in the unknown f. To solve for f with its two dimen-
sionless parameters €/D and Np. given, we replace equation (3.24) by the equivalent
equation in standard form F'(f) = 0, namely

e/D 1256 |17
3.1 +NR8-¢fH -

This equation poses no problem at all for MATLAB’s root-finder fzero, since F'’s zeros
are always simple and the graph of F' intersects the horizontal axis sufficiently steeply.
Here is our MATLAB code colebrookplotsolve.m, which adapts itself automatically
to the given inputs ¢/D and Nge.

[= [—4'10&0[

F(f) = f—- [—4 -log; [(3.25)

function [xsol,iterations] = colebrookplotsolve(eps_D, NRe)

% colebrookplotsolve(eps_D, NRe)

% Standard call : [xsol,iterations] = colebrookplotsolve(10~-4,1075)
% Screen output : xsol = 0.00462915563470 iterations = 7

% Input : eps_D representing roughness/inside diameter;

YA NRe the Reynolds number

% Adaptive algorithm that starts from start at .1 and finds an interval
% [bot top] with F(bot)*F(top) < O.

% Then uses MATLAB’s fzero to find the solution xsol.

% Blue curve represents F. Looking for its intersection with the red
% horizontal F = 0 line.

start = .1; A = colebrook(start,eps_D,NRe); iterations = -1; % adaptive start:
if A > 0, top = start; fb = 1; bot = start; % if F(start) > 0
while fb == 1 % searching for bot with F(bot) < O
bot = bot/2; c = colebrook(bot,eps_D,NRe); fb = sign(c);
if ¢ > 0, top = bot; end, end
elseif A < 0, bot = start; ft = -1; top = start; % if F(start) < 0
while ft == -1 % searching for top with F(top) > O
top = top*2; c = colebrook(top,eps_D,NRe); ft = sign(c);
if ¢ < 0, bot = top; end, end
else, xsol = start; iterations = 0; end % if F(start) = O by sheer luck

if iteratiomns < O, % solve equation in interval [bot top]
warning off, % turn off grandfather fzero warning
[xsol,fval,exitflag,output] = fzero(Q@colebrook, [bot top]l, [],eps_D,NRe);
iterations = output.iterations; % solve and record # of iterations

warning on, end
x = linspace(xsol*107-5,xs01%2,200); % x partition

3.4 Scalar Static Equations 123

F=x-1./(-4 *x 1logl0(eps_D/3.7 + 1.256./(NRe*x.70.5)))."2; % evaluate f(x)

plot(x,F,’b’), hold on, v = axis; % plot F graph

ylabel (°F ’,’Rotation’,0,’FontSize’,14);

title([’Colebrook function plot with \epsilon/D = ’,...
num2str(eps_D,’%8.3g’),’, N_{Re} = ’,num2str(NRe,’%10.3g’)],’FontSize’,14),

plot([v(1) v(2)1,[0 0],’r?), % draw horizontal F = 0 line

xlabel ([’ f (solution f* = ’,num2str(xsol,’%11.7g’),’)’],’FontSize’,14),

hold off

function F = colebrook(x,eps_D,NRe) % Colebrook function

F=x-1./(-4 * logl0(eps_D/3.7 + 1.256./(NRe*x."0.5)))."2;

The following numerical output is computed by calling [xsol,iterations] =
colebrookplotsolve (10~ -4,10" 5) and displayed on screen when format long is spec-
ified.
>> [xsol,iterations] = colebrookplotsolve(10°-4,1075)
xsol =
0.00462915563470

iterations =

7

And the graphical output is shown in Figure 3.34.

Colebrook function plot with &/D = 0.0001, NRe =1e+05
0.005 T T T T T T T

-0.005

-0.01

-0.015 3

-0.02 1 B

-0.025 - B

-0.03- 4

-0.035 -

~0.04 B

-0.045

Il Il Il Il Il Il Il Il Il
0 0.001 0.002 0003 0004 0005 0006 0007 0008 0.009 0.01
f (solution f*=0.004629156)

Colebrook equation
Figure 3.34

In the first ten lines of colebrookplotsolve.mthe program searches for two values called
‘top’ and ‘bot’ with F'(top)- F(bot) < 0 in order to obtain an inclusion interval for the so-
lution bot < f* < top. The solution is then found (usually within ten or fewer iterations)

124 Chapter 3: Some Models with Scalar Equations

by MATLAB’s fzero root finder, and the zero crossing of F'(f) is depicted graphically.
MATLAB'’s fzero function is equipped to search for “top” and “bot” internally, but we
rather determine “top” and “bot” adaptively ourselves.

Specific Volume of a Real Gas

The volume V of a real gas is related to the pressure P and temperature 17" according to
the formula

P _ R-T+R-T-B'

v V2 (3.26)
Here B is calculated from the equation

B-P,
R'Tc :Bo—i_w-Bl

for the critical pressure P, and the critical temperature T, of the gas. Note that

0.422 0.172 T

By =0.083+ 16 B, =0.139 — T2 T, = T

R is the gas constant 82.06 atm - cm?/(mol - K), and w is an empirical parameter, called
the acentric factor.

In order to solve (3.26) for V, we multiply equation (3.26) by V2 /P to obtain the following
normalized quadratic equation in V' upon reordering:

R-T R-T
vZ — vV - B =0. 27

Then the solution function V(P,T'), depending on both pressure P and temperature T,
is the positive root of equation (3.27). This can be found directly as

R-T R-T\> R-T
V(PT) =, +\/(2P> +, B (3.28)

Here the coefficient relations, given after equation (3.26), make

R-T 82.06-T _ (Bo+whBy) R-Tc
p = P and B = Pe .

On the other hand, an ideal gas must satisfy equation (3.26) with its second, the
quadratic V' term, omitted on the right-hand side, i.e.,
R-T

=" (3.29)

This equation for the unknown volume V' has the rather simple solution

V(P,T) = R]'DT : (3.30)

3.4 Scalar Static Equations 125

Note that the two volume formulas (3.28) and (3.30) differ only in the second term
(R-T - B)/P under the square root sign in (3.28).

For chemical and biological applications, one typically wants to compute the volume
V of a real gas over a specified range of pressures and temperatures, such as for pres-
sures and temperatures well below their critical points, but more often for pressures and
temperatures above the critical points P, and T, of the gas. Notice that the condition of
any “gas” above its critical point P, and T is not really gaseous, nor is it a liquid. Such
a “gas” is called a supercritical fluid.

Figures 3.35 — 3.37 show some plots, first of the volume V' of an ideal gas under varying
pressures 15 < P < 90 and temperatures 215 < 7' < 1200 using idealgas3dplot.m from
our CD and calling idealgas3dplot(15,90,215,1200) ;.

Ideal gas volume

7000~
6000 .
5000
4000
Vol
3000
2000

1000 "

0., ol
100

1200

0 200
atm o K
Volume of an ideal gas under pressure and temperature changes
Figure 3.35

As before, the “colors” of the computer-generated surface in Figure 3.35 denote the
“height” above the T-P plane, i.e., the volume V (P, T) of the gas for particular values
of P and T. The volumes range from near 0 cm? to well above 6000 cm?, and the height

126 Chapter 3: Some Models with Scalar Equations

of a specific point on the volume surface can be read off the colorbar on the right edge
of Figure 3.35.
We include the more complicated MATLAB m file realgas3dplot.m, which plots the
volume as a surface, depending on the temperature and pressure for any real gas as shown
in Figure 3.36.

function z = realgas3dplot(om,Pc,Tc,Pstart,Pend,Tstart,Tend)
% z = realgas3dplot(om,Pc,Tc,Pstart,Pend,Tstart,Tend) ;

% Sample call ¢ zr = realgas3dplot(.212,48.3,562.1,15,90,215,1200);

% Inputs: om (omega), critical pressure and temperature Pc, Tc;

% optional: Pstart, Pend for pressure limits; [Pstart > O needed]
YA Tstart and Tend for temperature limits.

% [Tstart > 215 needed]

% Output : 3D plot of volume of the gas depending on temperature T and

YA pressure P; Pc and Tc are marked on the axes.

N = 100; % defaults

if nargin < 7,
Pstart = .2%Pc; Pend = 2*Pc; Tstart = .6*Tc; Tend = 1.8%Tc; end

[P T] = meshgrid(linspace(Pstart,Pend,N),linspace(Tstart,Tend,N));
z = realgas(P,T,om,Pc,Tc); % evaluate volume function

h = surf(T,P,z); hold on; shading interp; colormap(hsv(128)); colorbar,

v = axis; plot3(Tc,Pc,v(5),’or’), plot3(Tc,v(3),v(5),’+r’),

plot3(v(1),Pc,v(5),’+r’), % plot Pc and Tc in red +

xlabel(’ "o K ’,’FontSize’,12); ylabel(’ atm ’,’FontSize’,12);

zlabel (’Vol > ’Rotation’,0,’FontSize’,12);

title([’ Real gas volume for \omega = ’,num2str(om,’%10.5g’),’ , P_c = ’,...
num2str(Pc,’%10.5g’),’> , T_c = ’,num2str(Tc,’%10.5g’)], FontSize’,14);

hold off

function V = realgas(P,T,om,Pc,Tc)
% Evaluates the volume V of a real gas

Tt2p = 82.06%T./(2%P); %RT/ (2P)
b= (.083 + .422./((T/Tc)."1.6) + om * (.139 - .172./((T/Tc)."4.2)))...
* 82.06 * Tc/Pc; % B

V = rt2p + (rt2p."2 + 2*rt2p.*b).".5;

The surface that describes the volume of a real gas with w = 0.212, the critical pressure
P, = 48.3 atm and the critical temperature T, = 562.1° K, for example, over the same
pressure and temperature range as in Figure 3.35 looks almost identical in its central
region to that of the ideal gas. And the difference between real gas and ideal gas volumes
as a function of pressure and temperature seem to be rather small, except for very low
temperatures, as seen by inspecting Figures 3.35 and 3.36 alone.

3.4 Scalar Static Equations 127

Real gas volume for w = 0.212 , F’c =483, Tc = 562.1

6000

5000

4000

3000

2000

1200
1000

atm 0 200 o K
Volume of a real gas under pressure and temperature changes
Figure 3.36

However, the relative differences between the two surfaces in Figures 3.35 and 3.36
are rather large, in the neighborhood of 50%, for relatively high pressures combined
with relatively low temperatures, and they are sizable, exceeding around 10% through-
out. We can display this differing behavior of real and ideal gases with the help of
idealrealgascompare.m.

function zc = idealrealgascompare(om,Pc,Tc,Pstart,Pend,Tstart,Tend)

% zc = idealrealgascompare(om,Pc,Tc,Pstart,Pend,Tstart,Tend);

% Sample call : zc = idealrealgascompare(.212,48.3,562.1,15,90,215,1200);
% Inputs: om (omega), critical pressure and temperatures Pc, Tc;

% optional: Pstart, Pend for pressure limits; [Pstart > O needed]

% Tstart and Tend for temperature limits.

yA [Tstart > 215 needed]

% Output : 3D plot of relative volume ratio of an ideal and a real gas with
% given parameters om (omega), Pc, and Tc, depending on temperature

% T and pressure P; Pc and Tc are marked on the axes and surface.

128 Chapter 3: Some Models with Scalar Equations

N = 100; Tcplot = 0; Pcplot = 0; % defaults
if nargin < 7,
Pstart = .2%Pc; Pend = 2*Pc; Tstart = .6*Tc; Tend = 1.8%Tc; end

[P T] = meshgrid(linspace(Pstart,Pend,N),linspace(Tstart,Tend,N));

zr = realgas(P,T,om,Pc,Tc); % evaluate real gas volume function

zi = idealgas(P,T); % evaluate ideal gas volume function

zc = (zr - zi)./zr; rgcrit = realgas(Pc,Tc,om,Pc,Tc);

zcrit = (rgcrit-idealgas(Pc,Tc))/rgerit;

h = surf(T,P,zc); hold on; shading interp; colormap(hsv(128)); colorbar,

v = axis;

if Tstart < Tc & Tend > Tc, Tcplot = 1; end J check whether T and P range

if Pstart < Pc & Pend > Pc, Pcplot = 1; end 7 include Tc and Pc

if Tcplot*Pcplot == 1, % plot Pc and Tc in red +,0 if in range
plot3(Tc,Pc,v(5),’0or’), plot3(Tc,v(3),v(5),’+r’),
plot3(v(1),Pc,v(5),’+r’), plot3(Tc,Pc,zcrit,’xk’), end

xlabel(’ "o K ’,’FontSize’,12); ylabel(’ atm ’,’FontSize’,12);

zlabel (’Rel error > ’Rotation’,0,’FontSize’,12);

ztitle = 1.4xv(6)-.4*v(5); xtitle = v(1); ytitle = v(4); % for title location
if Tcplot*Pcplot == 1, ¥ adjust title according to Tc, Pc in plotting range

text(xtitle,ytitle,1.04*ztitle,...
[’ Relative gas volume deviations between a real gas with ’],’FontSize’,14);
text(1.04xxtitle,.96*ytitle,.95*ztitle, [’\omega = ’ ,num2str(om,’%10.5g°),...

>, P_c = ’,num2str(Pc,’%10.5g°),’ , T_c = ’,num2str(Tc,’%10.5g’),...
> and an ideal gas’],’FontSize’,14); else
title([’ Real gas rel. vol. error (\omega = ’,num2str(om,’%10.5g°),...
>, P_c = ’,num2str(Pc,’%10.5g’),’ , T_c = ’,num2str(Tc,’%10.5g’),...
>)?],’FontSize’,14); end

hold off

function V = realgas(P,T,om,Pc,Tc)
% Evaluates the volume V of a real gas

Tt2p = 82.06%T./(2%P); %RT/ (2P)
b= (.083 + .422./((T/Tc)."1.6) + om * (.139 - .172./((T/Tc)."4.2)))...
* 82.06 * Tc/Pc; % B

V = rt2p + (rt2p."2 + 2*rt2p.*b).".5;

function V = idealgas(P,T)
% Evaluates the volume V of an ideal gas
V = 82.06%T./P; %#RT/P

Figure 3.37 is obtained by calling idealrealgascompare(.212,48.3,562.1,15,90,215,
1200) ;. Note that a real gas always exceeds an ideal gas in volume for a given pressure
and temperature.

3.4 Scalar Static Equations 129

Relative gas volume deviations between a real gas with
w=0212, Pc =483, Tc _=__.5§2,_‘_I_ and an ideal gas

07

06

0.
Rel error
03]

0.2. .

01

0.~
100

1200

atm 0 200

o
K
Relative volume differences of a real gas and an ideal gas

under pressure and temperature changes
Figure 3.37

In Figure 3.37, the relative gas volume deviations from the volume of an ideal gas are
expressed as percentages. A number such as 0.5 corresponds to a 50% increase, while 0.1
signifies a 10% increase in volume for the real gas.

Ezxercises for 3.4

1. Project I: Introduce a counter into our m file colebrookplotsolve.m, which
finds the number of function evaluations performed in the first 10 lines of
the code when trying to find an inclusion interval for the solution f* of the
Colebrook equation.

Which usually takes more effort, finding a root inclusion interval or solving
for f* via fzero in MATLARB?

2. Investigate the high relative deviation “hump” in Figure 3.37 for various real
gases versus an ideal gas by adjusting the plotting limits for the pressure and
temperature ranges when calling idealrealgascompare.m in order to view
the hump and its location most clearly.

For which approximate pressures and temperatures does the relative volume

130

Chapter 3: Some Models with Scalar Equations

difference reach 75% for our chosen values of w, P., and T, for Figure 3.37,
for example?

Which approximate temperatures and pressures reach this 75% deviation for
other real gases?

3. Project II: Use our plotting files realgas3dplot.m, idealgas3dplot.m,and
idealrealgascompare.m and adapt them to plot the absolute differences be-
tween the volumes of a real gas that is specified by its w, P,., and T, values
and an ideal gas as a function of both pressure and temperature.

Call the new m file idealrealgascompareabs.m.

4. Investigate whether and where there is a high absolute volume deviation
“hump” as in Figure 3.37 for the absolute volume deviation of a real gas from
the ideal gas behavior. That is, repeat problems 2 and 3 above for various
real gases by numerical experiment and adjusting the plotting limits for the
pressure and temperature ranges in your calls of idealrealgascompareabs.m
of problem 3.

Conclusions

In this section we have given two simple examples that use numerical techniques
to calculate useful physical properties.

Databases of physical properties and their calculations are an integral part of any
chemical /biological design problem.

Additional Problems for Chapter 3

1. Derive the steady-state mass balance equation for an isothermal CSTR in which a

consecutive homogeneous reaction

k1

A P k2

B — C

is taking place. Put the resulting equation in matrix form.
For k1 = 5.0 sec™! and ks = 1.5 sec™ !, find the optimum residence time 7. (Hint:
7 ="V/q, where V is the volume and q is the volumetric flow rate.)

. A perfectly mixed adiabatic nonisothermal reactor carries out a simple first-order

exothermic reaction in the liquid phase:
A —B.

The product from this reactor is cooled from its output temperature to a temper-
ature T, and is then introduced into a separation unit in which the unreacted A
is separated from the product B. The feed of the separation unit is split into two
equal parts: top product and bottom product. Here the bottom product from the
separation unit contains 95% of the unreacted A in the effluent of the reactor and

3.4 Scalar Static Equations 131

1% of B in the same stream. This bottom product (at the temperature T, since
the separation unit is iso-thermal) is recycled and remixed with the fresh feed to
the reactor and the mixed stream is then heated to the reactor feed temperature
T before being actually introduced into the reactor.

Write the steady-state mass and heat balance equations for this system, assum-
ing constant physical properties and constant heat of reaction. (Note: Concentrate
your modeling effort on the adiabatic nonisothermal reactor, and for the rest of
the units, carry through a simple mass and heat balance in order to define the feed
conditions for the reactor.)

Choose a set of physically feasible parameters for the system and write a MATLAB
program to find the steady state.

3. Consider a system that initially consists of 1 mol of CO and 3 mol of Hs at 1000
K. The system pressure is 25 atm. The following reactions are to be considered:

200+2H, < CH+COs (A)
CO + 3 Hy & CHy + HO (B)
CO»+ Hy & HyO+ CO)

When the equilibrium constants for the reactions (A) and (B) are expressed in terms
of the partial pressure of the various species (in atm), the equilibrium constants
for these reactions have the values Kp, = 0.046 and Kp, = 0.034. Determine the
number of independent reactions, and then determine the equilibrium composition
of the mixture, making use of a simple MATLAB program that you develop for
this purpose.

4. The reaction of ethylene and chlorine in liquid ethylene dichloride solution is taking
place in a CSTR. The stoichiometry of the reaction is CoHy + Cly — CyH4Cls.
Equimodular flow rates are used in the following experiment, which is carried out at
36° C'. The results of the experiment are tabulated in Table 3.1. Write a MATLAB
program to carry out the following tasks:

(a) Determine the overall order of the reaction and the reaction rate constant.

(b) Determine the space time necessary for 65% conversion in a CSTR. Here
“space time” is the residence time, i.e., the ratio between the volume of the
reactor and the volumetric flow rate.

Experimental Data
Space time Effluent chlorine concentration

(s) (mol/em?)
0 0.0116
300 0.0094
600 0.0081
900 0.0071
1200 0.0064
1500 0.0058

1800 0.00537

132

Chapter 3: Some Models with Scalar Equations

5. Some of the condensation reactions that take place when formaldehyde (F') is added

to sodium paraphenolsulfonate (M) in an alkaline-aqueous solution have been stud-
ied. It was found that the reactions could be represented by the following eight
equations:

(1) F+M — MA k1 =0.15 1/(mol - min)
(2) F+MA— MDA ko =0.49 1/(mol - min)
(3) MA+ MDA — DDA k3 =0.14 1/(mol - min)
(4) M+ MDA — DA k4 =0.14 1/(mol - min)
(5) MA+ MA — DA ks =0.04 1/(mol - min)
(6) MA4+ M — D ke = 0.056 1/(mol - min)
(7) F+D — DA k7 =0.50 1/(mol - min)
(8) F+DA — DDA ks = 0.50 1/(mol - min)

where M, M A, and M DA are monomers and D, DA, and DDA are dimers. The
process continues to form trimers. The rate constants were evaluated using the as-
sumption that the molecularity of each reaction is identical to its stoichiometry.
Derive a steady-state model for these reactions taking place in a single isothermal
CSTR. Carefully define your terms and list your assumptions. Then write a MAT-
LAB code to calculate the optimum residence time 7 to give maximum yield of
MA.

A Problem on Bifurcation

Derive the material and energy balance equations for a nonadiabatic CSTR, where
a single first-order reaction A — B takes place.

The reaction is exothermic. For § = 1.2 the exothermicity factor, and ~ the di-
mensionless activities factor, find the range of «, the dimensionless preexponential
factor, that gives multiplicity of steady states using a suitable MATLAB program
with K. = 0, the dimensionless heat transfer coefficient of the cooling jacket.
Choose a value of « in the multiplicity region and obtain the multiple steady-state
dimensionless temperatures and concentrations.

For y. = 0.6 find the minimum value of K, that makes the middle unstable saddle-
type steady state unique and stable.

Develop a MATLAB program that gives you the values of o and K. that result in
multiple steady states.

Compute and plot the bifurcation diagram with « as the bifurcation parameter
when K. = 0. Discuss the physical meaning of the diagram.

Compute and plot the bifurcation diagram with K. as the bifurcation parameter
for y. = 0.6 and the same value of « that you have chosen above to give multiplicity.
Discuss the physical meaning of the diagram.

Another Problem on Bifurcation

Consider a consecutive reaction A — B — C in which both reactions are of
first order and B is the desired product.

Derive the model equation for this reaction taking place in a liquid phase CSTR. Put
the model equation into dimensionless form. Assume that the feed concentrations
of B and C are zero. If 51 = 0.6, f2 = 1.2, 773 = 18, and o = 27 and the ratio

3.4 Scalar Static Equations 133

between a; and asg is a1/ay = 1/1000, find the range of a; (and «3) that gives
multiple steady states using a suitable MATLAB program.

Extend your program to find the optimum steady state that gives maximal yield
of the desired product B. Is this steady state stable or unstable?

If it is unstable, develop and use a MATLAB program for a nonadiabatic CSTR
and find the cooling jacket parameters K. and y. that will stabilize the unstable
steady state.

8. (Project A)
Compare and try to combine the two solution methods of bisection and graphics
to solve equation (3.3) in Section 3.1 for the adiabatic case.

(a) The graphics method generally has a larger residue | f(z*)| ~ 0 at a solution
2* than the bisection method does if it successfully converges.

Experiment with increasing the number N of nodes used in the graphics
method: What additional accuracy does one obtain by doubling N, for ex-
ample, in adiabNisographsol.m? Learn to estimate the extra effort involved
in doubling N by using the timing functions clock and etime of MATLAB.
(Learn about these using >> help) How effective is increasing N in
your experiments?

(b) Design a hybrid program to solve equation (3.3) that uses the graphics solu-
tions (for moderate N) from adiabNisographsol.m in Section 3.1 as seeds
for a bisection algorithm modeled after solveadiabxy.m.

How close to the bifurcation limits does your bisection program succeed when
the graphics solutions are used as starting points for fzero? What are the
sizes of the residues in the computed solutions near the bifurcation points?
Which of the proposed steady-state finders of part (a) or (b) do you prefer?
Be careful and monitor your hybrid algorithm’s effort via clock and etime.

9. (Project B)
In case the hybrid method of Project A above is successful and advisable for adia-
batic CSTRs, repeat Project A for the nonadiabatic case and solve equation (3.12)
(or any other equivalent form given in Section 3.2) using the MATLAB solvers
NadiabNisoalgraphsol.m and solveNadiabxy.m of Section 3.2 in a modified, hy-
brid form. Is this hybrid method successful and efficient as well?

Start of the day on the Acropolis

Chapter 4

Initial Value Problems

Many chemical/biological engineering problems can be described by differential equations
with known initial conditions, i.e., with known or given values of the state variables at
the start of the process.

Different problems are modeled by two-point boundary value differential equations in
which the values of the state variables are predetermined at both endpoints of the in-
dependent variable. These endpoints may involve a starting and ending time for a time-
dependent process or for a space-dependent process, the boundary conditions may apply
at the entrance and at the exit of a tubular reactor, or at the beginning and end of a
counter-current process, or they may involve parameters of a distributed process with
recycle, etc. Boundary value problems (BVPs) are treated in Chapter 5.

Initial value problems, abbreviated by the acronym I'VP, can be solved quite easily,

since for these problems all initial conditions are specified at only one interval endpoint
for the variable. More precisely, for IVPs the value of the dependent variable(s) are given
for one specific value of the independent variable such as the initial condition at one lo-
cation or at one time. Simple numerical integration techniques generally suffice to solve
IVPs. This is so nowadays even for stiff differential equations, since good stiff DE solvers
are widely available in software form and in MATLAB.
Furthermore, IVPs have only one solution for the given initial values if there are suf-
ficiently many initial conditions given, and therefore bifurcation plays no role once the
initial conditions are specified. For dynamic systems, different initial conditions may,
however, lead to different steady states; we refer to the fluidized bed reactor in Section
4.3, for example.

4.1 An Example of a Nonisothermal Distributed Sys-
tem

The problem of this section stems from a typical distributed system. In a distributed
system the dependent state variables such as concentration and temperature vary in

135

136 Chapter 4: Initial Value Problems

terms of the independent variable such as length. This is the meaning of “distributed”.
Figure 4.1 shows a model of a tubular reactor at two incremental stages of the molar
flow rate n;(l) for component 7 in terms of the variable length .

I I+Al

Distributed system
Figure 4.1

For a distributed system the discrete mass balance design equation has the form

N
nz(l-i-Al) = nz(l) +AtAlZO'ijT‘j y (41)
j=1
where n; is the molar flow rate of component i, Al is the length or thickness of the
difference element, A; is the total cross sectional area of the tube, N is the number of
reactions, o;; is the stoichiometric number of component 4 in reaction j, and r; is the
generalized rate of reaction j.
If we form the difference quotient in (4.1) we obtain

ni(l + Al) — n; a
Al = At;mﬂj : (4.2)

If we take the limit of Al — 0 in (4.2), we arrive at the equivalent differential equation
dn; a

dll = AtzaijT‘j (43)
j=1

fori=1,2,...,M, where M denotes the number of components.

For a single reaction, i.e., with N = 1, the above equation becomes
dni
dl

To obtain the heat balance design equation, an enthalpy balance over the Al element
gives

= AtO'iT' . (44)

M M
S (iH)(D) + QAL = (niHy)(1+ Al) (4.5)
i=1 i=1
where
M = total number of components involved (reactants plus products plus inerts),

including components not in the feed but created during the reaction (which
are the products)
Q' = rate of heat removed or added per unit length of the reactor.

4.1 A Nonisothermal Distributed System 137

A simple rearrangement of (4.5) with An,H; = (n;H;)(l + Al) — (n;H;)(1) gives

Al

i=1

Taking the limit Al — 0 gives rise to the corresponding differential equation
M d(anl) ’
> g -0,
i=1 dl

The product rule of differentiation, i.e., (f-g)' = f-¢ + ¢ f’ for any two differentiable
functionsf and g, then leads to

M
dH,; dn;
;) Hi (O R VA) 4.
;<ndl+ dl)Q 0 (4.6)
For a single-reaction we insert the differential equation (4.4) into (4.6) to obtain
M
dH
>(ni)+ Hidoir) -Q = 0.
; tdl
i=1
Rearrangement gives
M
dH,; ,
Zni (di) + (AtrZHiO—i> —-Q =0.
i=1 i=1
Since

ZoiHi = (AH) = heat of reaction

we get
an " Ar(AH) -Q = 0.

The above equation (for a smgle—reactlon) can be written as

M
Znidgl = Awr(-AH)+ Q" . (4.7)

For multiple reactions (N > 1) the corresponding equation is

Moo N
domi gt = | DA (-AH) | + Q' (4.8)
— =
To summarize, the design equations for the multiple-reactions case are (4.3) and (4.8),
while for the single-reaction case the design equations are the equations (4.4) and (4.7).

138 Chapter 4: Initial Value Problems

4.1.1 Vapor-Phase Cracking of Acetone: An Example

Here we consider a nonisothermal, nonadiabatic tubular reactor as a distributed system.
Our objective is to find its steady-state concentration and temperature profiles.

Our specific example involves the vapor-phase cracking of acetone into ketone and methane,
described by the endothermic reaction

CH3COCH3 — CHCO+ CHy .

This takes place in a jacketed tubular reactor. Pure acetone enters the reactor at a
temperature of Ty = 1030 K and a pressure of P(; = 160 kPa. The temperature of the
external cooling medium in the heat exchanger is constant at Ty = 1200 K. The other
data is as follows:

Volumetric flow rate: g=gqr = 0.003 m3/s
Volume of the reactor: Ve = 10 m3
Overall heat transfer
coefficient between U = 110 W/(m? °K)
reactor and heat
exchanger:
Total heat transfer area
between reactor and A = 160 m?/(m? of the reactor)
exchanger:
Reaction rate constant: k= 3.56 l34200-(1/1030-1/T)] 4—1
Heat of reaction: AHr = 80700+6.7- (T —298)

—5.7-1073 . (T? — 298?%)
~1.27-107% - (T3 — 298%) J/mol

Heat capacity of acetone : Cp, = 26.65+0.1827 —45.82-10757% J/(mol - K)
Heat capacity of ketone : Cp, = 20.05+0.0957 —31.01-10772 J/(mol - K)
Heat capacity of methane : Cpy, = 13.59+40.0767 —18.82-107°7T2 J/(mol - K)

Our task is to determine the temperature and concentration (or conversion) profiles of
the reacting gas along the length of the reactor. We assume constant pressure throughout
the reactor.

4.1.2 Prelude to the Solution of the Problem

First we unify the units. The only parameters that need unification are U and P(;.
Since U is given as U = 110 W/m? it should be written as U = 110 J/(m?-sec- K). With

P(; given as 160 kPa, its units should be transformed to Py = Py = 1%};93 = 1.58 atm.

The reaction is

A— B+C,

where A is acetone, B is ketone, and C is methane.

4.1 A Nonisothermal Distributed System 139

| T, =1200K |
Tf =1030K
P- =1.58 atm —> —>T

=0.003m3 /sec
) ' A
1=0 I =L =total length
Distributed system
Figure 4.2

For this system the material balance design equation in terms of the length [is

dnA

i = —As ko e B/ED) Oy (4.9)

Since this equation uses the length [of the reactor as the independent variable, we have
to find the diameter d; of the tube in order to calculate the cross-sectional area A; and
the total required length L. This can be done as follows:

m? m-dy- L 4

A = 160 = = .

m3 (m-d?/4)- L dy
Thus the diameter of the tube is d, = 4/A = 4/160 = 0.025 m (or 2.5 ecm =~ 1 inch).
To find the length we use

2
mdy

Ve =1.0m> = A

L = Z-(0.025)2-L7

or
Ve = 1.0m® = 491-107* L.

Hence L = 1/4.91-10* m = 2036.36 m.

This very large length of more than 2 km, or about 1 mile and a quarter, can be divided
into n connected tubes, each with a length of 2036.36/n m. In this case each tube section
has the volumetric flow rate g(per tube) = 0.003/n m?/(sec - tube) and the number n
can be 100 or 1000, for example, depending on the mechanical and locational factors.
Alternatively the total length L = 2036 m can be achieved by a coiled reactor. The
particular choice of apparatus is based on mechanical engineering factors.

It is also possible to circumvent these mechanical design decisions at the early process
design stage by rewriting the differential equations (4.9) in terms of V, the volume of the
reactor, instead of in terms of the length [. This is our chosen approach here. In it the
independent variable V will vary from V =0to V = Vg = Vopg = 1.0 m>.

4.1.3 Material Balance Design Equation in Terms of Volume

Analogous to (4.9), the material balance equation in terms of the volume V' is

dnA

P ko - e B/ED Oy (4.10)

140 Chapter 4: Initial Value Problems

where E denotes the activation energy of the reaction. Since this is a gas phase reaction
and there is a change in the number of moles, the above equation is better expressed in
terms of conversion. Here the conversion is defined as

nag, —n
X4 = Conversion = As A .
nAf
This equation can be written as
d dX
na = na,(1 —Xa) and therefore ;‘L}q = —na, de‘ (4.11)
and L x
n _
oq = ™ = = Xa) (4.12)
q q
Here ¢ is also a function of the total number of moles because
P-qg = n-R-T (assuming z = 1.0), (4.13)
where z is the compressibility factor. Since in an open system P = constant, we have
R-T
= N+ -
q t P)

where n; is the total number of moles at any conversion level, and n; is given by

ng = Na-+np+nc = nAf(l—XA)—i-nAfXA—i-nAfXA = nAf(l—i—XA).

Therefore R.T
q = na,(1+Xa)- p (4.14)
Combining (4.12) and (4.14) we see that
1-X 1—-X4)P
op = "X o (L-XoP (4.15)

nAf(l—i—XA)R}',T (1+Xa)-R-T

Using the relations expressed in (4.11) and (4.14) in (4.10) gives us

- dXA ko-eiE/(RT)- nAf(l—XA)P '
Fav nAf(l-i-XA)R-T

Thus we obtain the differential equation for the conversion rate X4 in terms of V:

AXa _ 4 gmimny (1= Xa)P

= Fy(Xa,T 4.16
dv na,(1+Xa)R-T 1(Xa,T) (4.16)

with the initial conditions X4 = 0 and 7" = Ty = 1030 K at V = 0.
We may easily calculate n4, from

P.qf = na,R-T (P = constant = Py = 1.58 atm) .

4.1 A Nonisothermal Distributed System 141

The volumetric flow rate gy in our setting is equal to 0.003 m3 /sec at the entrance. Thus

P-q
na; = ch : (4.17)
Using equation (4.17) in (4.16) gives
AXa _ g gmmny . (=XaP ko e BIRT) (1 — X,) Ty
av R+ XA)RT qr(1+ X4) T

with g5 = 0.003 m3/sec.
From the given data for our problem we have

ko = 3.56-e(i00) = 9.37.10" sec™' and i — 34200.

Thus, the material balance design equation is

dXa 14 —34200 (1 - XA) Tf
= 9.37-10" . ¢l /7). : 4.18
dVv € Qf(l +Xa) T ()

with the initial conditions X4 = 0 and T = Ty = 1030 K at V = 0.

4.1.4 Heat Balance Design Equation in Terms of Volume

The heat balance design equation is
dHZ *E/(RT) "
> i gy = koe Ca-(-AH)+Q = R.HS., (4.19)

where we have abbreviated the expression ke #/(FT) . Oy . (~AH) + Q" in (4.19) by
the term R.H.S., or “right-hand side”, and where Q" denotes the heat transfer per unit
volume, i.e., Q" = U‘A“(TJ -1, A" = A=160 m?/m3, U = 110 J/sec-m? - K,
and Ty = T. = 1200 K. Since there is no phase change, equation (4.19) becomes

dr

(na-Cp, +np-Cpy+nc-Cp.)- av = R.H.S. (4.20)

for

Cp, = a1 +bT+c1T?, a3 = 26.65 by = 0.182, ¢; = —45.82-1079,

CPB = a2+b2T+CQT27 as = 20.05, by = 0.095, co = —31.01-10767

CPC = Cl?,"‘v‘bgT-‘r03T27 ag = 13.59, bs = 0.076, c3 = —18.82-1076.
We also know that ng = nAf(l—XA)7 np = na,Xa, and ng = na,Xa.
Thus equation (4.20) becomes

dT dT
na;(1—Xa) [a1 + b1T+c1T2] iV +na,Xa [az+ 52T+C2T2] Jv +

dr
+ na, Xa [ag + bsT + csT7] gy = RHES

142 Chapter 4: Initial Value Problems

or
nA; [(1 — Xa)(a1 + 01T + C1T2) + Xa(ag + 02T + 02T2) +
dT
+ Xalag +b3T + ¢3T7)] o
1_XA)P "
— kp. e E/(RT) na; ((—AH AT, T .
0 e nAf(1+XA)RT ()+U (J)
Hence
9(Xa,T) T = ko- e~ E/(RT) .1(;1 —Xa)P - (-AH) + U-A (T; —1T) .
v %Tf (1+Xa)RT nay

And the heat balance design equation is

ar - _ 1 ko - e~ B/(RT) . (1—Xa)

T U A"
dv 9(Xa,T) qr - (1+ Xa)

T P-qs
R-Ty

(-AH) (T, =T)

(4.21)
with the initial conditions X4 = 0 andT = Ty = 1030 K at V. = 0.

4.1.5 Numerical Solution of the Resulting Initial Value Problem

We now have to solve the following system of two nonlinear coupled first-order ordinary
differential equations for the given initial conditions:

dXa 34200) (1—-Xa) T¢

- 210 . el . .
qv 9.37-10 [e (14X T and -|
dr 1 —34200 (1—Xa) T U.oA”
= 9.37-101 . (7). . (=AH)| + AT, =T
dv 9(Xa,T) [{ ¢ qgr(1+Xa) T () ;-;; (T)J
(4.22)

with the initial conditions X4 = 0 and 1" =T for V = 0, and with

9(Xa,T) = [(1—Xa)(ar+ 20T+ 3c1T?)] + [Xa(az + boT + c2T%)] +
+ [Xa(as + bsT + c3T?)]

for
a1 = 26.65, by = 0.182, ¢; = —45.82-1076 ,
as = 20.05, b = 0.095, ¢ = —31.01-1076 ,
as = 13.59, by = 0.076, ¢c5 = —18.82-1076 .
Moreover,
(~AH) = —80700 — 6.7(T — 298) +5.7-103(T?% — (298)?) +1.27- 10~ %(T" — (298)%) .

We repeat the base set of parameters here:

4.1 A Nonisothermal Distributed System 143

qr = 0.003 m3/sec, Vi = Vena = 1.0m?, U = 110 J/(sec- m? - K),
A" = 160 m?/m?, T; = 1200 K, Ty = 1030 K,
R = 82.06-1076 @’ p = 158atm .

To solve the initial value problem (4.22) numerically is a very simple procedure in
MATLAB. MATLAB offers several integrators, all named ode. ., for initial value prob-
lems of the form dy(t)/dt = h(t,y), y(to) = yo, such as ours. The alphanumeric des-
ignations ... that follow the root-name ode in MATLAB refer to the various methods
of integration that are used. In our case, the simplest methods such as ode23 or ode45
which use explicit Runge-Kutta embedded integrator formulas (see Section 1.2) of orders
two and three or four and five, respectively, may suffice. If the run times of the program
exceed a few seconds, however, the integration problem is likely stiff, and we advise to
use the stiff ODE solver ode15s of MATLAB instead. A formal definition of stiffness for
DEs is given on p. 276 in Section 5.1; see also Section (H) of Appendix 1.

Here is our MATLAB program, specialized for acetone cracking, but easily adaptable for
other chemico-physical processes.

function ...
[V, y] = fixedbedreact(qf,Adp,Tj,Tf,Vend,method,R,versus,S,halten,minTf,maxTf)
% fixedbedreact(qf,Adp,Tj,Tf,Vend,method,R,versus,S,halten,minTf ,maxTf)

% Sample call : [Note: Adapted for the specific data of acetone cracking.]
% d = clock; fixedbedreact(.003,160,1200,1030,1,15,0,1); etime(clock,d)
% Inputs: physical constants qf, Adp, Tj, Tf;
% Vend = end of volume interval, set to .1 if unspecified;
% method = MATLAB ode function number; 15, 23, 45, or 113 are
% supported. (Method 23 works fastest in general, method 15 refers to
% the stiff ODE solver 15s in MATLAB which is used as default.)
% If R = 0, we plot here; if R = 1, we are executing a run for multiple
% input data and plot inside the respective ...run.m routines.
% if versus = 1, we plot V in dependence of xA and T; else we plot
% xA and T both in dependence of V (this generally gives more
% meaningful graphics).
A S is a color vector with possibly varying RGB values.
% if halten = 1, we hold onto the subplots for multiple data graphs.
% By default we set minTF = maxTF, unless in a call of Tfrun we want to
% plot several curves for varying values of Tf whose graph are then
% shifted a little to the right for a better view near V = 0.
if nargin == 4, Vend = .1; method = 15; R = 0; versus = 1; S = ’b’;
halten = 0; end
if nargin == 5, method = 15; R = 0; versus = 1; S = ’b’; halten = 0; end
if nargin == 6, R = 0; versus = 1; S = ’b’; halten = 0; end
if nargin == 7, versus = 1; S = ’b’; halten = 0; end % setting default values
if nargin == 8, S = ’b’; halten = 0; end
if nargin == 9, halten = 0; end
if nargin <= 11, minTf = Tf; maxTf = Tf; end

Vspan = [0 Vend]; yO = [0;Tf]; options = odeset(’Vectorized’,’on’); % initialize

144 Chapter 4: Initial Value Problems

if method == 45, [V,y] = ode45(0@fbr,Vspan,y0,options,qf,Adp,Tj,Tf); % integrate

elseif method == 23, [V,y] = ode23(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf);
elseif method == 113, [V,y] = odel113(@fbr,Vspan,y0,options,qf,Adp,Tj,Tf);
elseif method == 15, [V,y] = odelb5s(@fbr,Vspan,y0,options,qf,Adp,Tj,TE);

else disp(’Error : Unsupported method number !’), return, end

if R == % no run if R = 0, in which case we plot:
subplot(2,1,1); % plot graph of solution to dxA/dV IVP
if versus == 1, plot(y(:,1),V,’Color’,S, ’Linewidth’,1); % switch graph axes
if halten == 0, axis([0 1.1 -.1xVend Vend]), end
else plot(V,y(:,1),’Color’,S,’Linewidth’,1);
if minTf “= maxTf, axis([-.1*Vend Vend 0 1.4]), end, end
if halten == 1, hold on, else hold off, end
if halten "= 1,

title([’ Tubular reactor (acetone): qf = ’,num2str(qf,’%5.4g’),...
>, A" =, num2str(Adp,’%5.4g’),’, Tj = ’,num2str(Tj,’%5.4g’),...
>, Tf =’ ,num2str(Tf,’%5.4g’)], ’FontSize’,12), end
if versus == 1,
xlabel(’X_A’,’FontSize’,12), ylabel(’V > ’Rotation’,0,’FontSize’,12),
else xlabel(’V’,’FontSize’,12), ylabel(’X_A > ’Rotation’,0,’FontSize’,12),
end
subplot(2,1,2); % plot graph of solution to dT/dV IVP

if versus == 1, plot(y(:,2),V,’Color’,S, ’Linewidth’,1); % switch graph axes
if halten == 0, axis([.98+*min(Tf,Tj) 1.01*max(Tf,Tj) -.1*Vend Vend]), end
else plot(V,y(:,2),’Color’,S,’Linewidth’,1);
if halten == 0, axis([0 Vend .98*min(Tf,Tj) 1.01*max(Tf,Tj)]), end,

if minTf “= maxTf, axis([-.1*Vend Vend minTf maxTf]), end, end
if halten == 1, hold on, else hold off, end
if versus == 1,
xlabel(’T’, ’FontSize’,12), ylabel(’V > ’Rotation’,0,’FontSize’,12),
else xlabel(’V’,’FontSize’,12), ylabel(’T > ’Rotation’,0,’FontSize’,12),
end,
end % end if run == 0
function dydt = fbr(V,y,qf,Adp,Tj,Tf) % right hand side of ODE IVP

al = 26.65; a2 = 20.05; a3 = 13.59; bl = .182; b2 = .095; b3 = .076;
cl = -45.82%107-6; c2 = -31.01%10"-6; c3 = -18.82%107-6;
U = 110; largeten = 9.37*10714; R = 82.06%107-6; P = 1.58; fact = R*Tf/(P*qf);
dydt = [largetenxTf*exp(-34200./y(2,:)) .*(1-y(1,:))./(qf*x(1+y(1,:)) . .*y(2,:));
1./((1-y(1,:)) . *(al + bl*xy(2,:) + cl*xy(2,:).72) + ...
y(1,:).%(a2 + a3 + (b2 + b3)*y(2,:) + (c2 + c3)*y(2,:).72)).% ...
(largeten*Tf*exp(-34200./y(2,:)) .x(1-y(1,:))./(qf*x (1+y(1,:)) .xy(2,:)) .* ...
(-80700 - 6.7%(y(2,:)-298) + 5.7*x10"-3*(y(2,:).72 -29872) + ...
1.27%107-6%(y(2,:) .73 -29873))+ UxAdp*(Tj-y(2,:))*fact)];

This MATLAB code takes up to 12 inputs, of which the first four, namely the system
parameters qf, A , Ty, and T¢, need to be user-specified. Depending on the specific
problem, the remaining eight parameters may or may not be specified. In some of our

4.1 A Nonisothermal Distributed System 145

applications these parameters are internally set to their proper values in the multiple dou-
ble graphing codes . ..run.m that will be used later on for varying values of ¢y, A", Ty,
or Ty.
The lines that follow the initial % MATLAB comment lines in fixedbedreact.m set up
default values for the seven optional parameters. Then we prepare for the MATLAB
IVP solver ode. .. that solves our problem by using the function dydt to evaluate the
right-hand side of our IVP (4.22). Having solved (4.22) we plot two curves of the solution
to the two joint DEs.
The most demanding task of the above program involves importing and transferring
all the data constants correctly into the code and subfunction dydt and setting up the
right-hand side function dydt vectorially by replacing all multiplication, division, and
exponentiation signs in (4.22) by the corresponding dotted, i.e., by the vectorized .*, ./,
and .~ MATLAB operations for speedup wherever appropriate.

Figure 4.3 displays plots of the two-part solution to (4.22), graphed by plotting V'
versus X 4 and versus T from the initial value V = 0 until V = V,,,q = 1 m®. The call of
fixedbedreactor(.003,160,1200,1030,1,15,0,1) creates Figure 4.3.

Tubular reactor (acetone): gf = 0.003, A" = 160, Tj = 1200, Tf = 1030

0.8 b

0.6 4

0.4r b

0.8 b

0.6 4

04r b

| | | | | | | | | |
1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
T

Volume versus conversion and temperature; Vop,q = 1 m?
Figure 4.3

146 Chapter 4: Initial Value Problems

These graphs tell us immediately that for the given values of gy and T the reaction

goes to (near) full conversion X4 ~ 1 and to the maximal temperature 7' = T; = 1200 K
of the jacket at a very short distance from the start of the reactor. This means that
with these conditions the reactor is extremely overdesigned. We also notice that the
reactor temperature drops near the entrance of the reactor below the feed temperature
of Ty = 1030 K to about 1022 K according to the bottom graph in Figure 4.3. This
means that in this small part at the entrance, the heat consumed by the endothermic
reaction is larger than the heat transfer from the jacket.
It is advisable to graph and inspect the reaction more closely at the entrance of the
reactor. After a few experiments with V,q = 0.1, 0.04, and 0.01, we have set the desired
final volume to V.4 = 0.01 m? in Figure 4.4, which is drawn by the MATLAB command
fixedbedreact(.003,160,1200,1030,.01,15,0,1); .

« 10 Tubular reactor (acetone): gf = 0.003, A" = 160, Tj = 1200, Tf = 1030
10 T T T T

I I I I I I I I I I
1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
T

Volume versus conversion and temperature; V,,q = 0.01 m?
Figure 4.4
The bottom plot of Figure 4.4 (with the V' versus T' graph) shows the initial drop in
temperature at the entrance of the reactor more clearly than Figure 4.3.
Next we plot reversed graphs of the conversion X4 and the temperature 7', both versus
the volume V' by specifying “versus = 2”7 in our fixedbedreact.m code with V.,q =

4.1 A Nonisothermal Distributed System 147

0.006 and calling fixedbedreact(.003,160,1200,1030,.006,15,0,2); .

Tubular reactor (acetone): gf = 0.003, A" = 160, Tj = 1200, Tf = 1030
1.4 T T T

1.2+ T

0.6 ,

0.4 h

0.2F ,

<wr

x10°

1200

1150

1100

1050

1 1 1 1 1
0 1 2 3 4 5
\% x107

Conversion and temperature versus volume; V.,q = 0.006 m3
Figure 4.5

Figure 4.5 again shows the temperature drop at the entrance. Since our feed volumetric
flow rate is gy = 0.003 m3 /sec, which is very small, and the feed temperature T; = 1030 K
is quite high, we see from the plots of Figure 4.5 that the reaction reaches full conversion
and maximal operating temperature when the reactor volume is approximately 0.006 m?,
or after the residence time ¢t = V/¢; reaches 2 seconds. In comparison, for the total vol-
ume Vi = Vepg = 1 m? the residence time is about 1/0.003 sec, or about 5 minutes and
40 seconds.

Next we want to investigate the effects of the feed rate ¢y on the reactor. For g5, =
0.0015, ¢y, =0.003, ¢, = 0.006, and gy, = 0.009 we obtain the plots of Figure 4.6
using the program gfrun.m, which is printed below Figure 4.6. In the plots the solutions
for varying values of gy are color! coded as depicted in the legend on the right of each
graph.

1References to color always refer to a computer generated color graph of the figure in question.

148 Chapter 4: Initial Value Problems

We advise our readers to replicate the graphs of Figures 4.6 through 4.11 on their
computers for a better understanding.

Tubular reactor (acetone): gf = 0.0015 0.003 0.006 0.009, A" =160, Tj= 1200, Tf = 1030

T T T T T T T —— f=00015
— qf=0.003
1k — qf=0.006
— qf =0.009
0.8 4
X
A 0.6 4
0.4 b
0.2 b
0 L L L L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Vv
1220 — qf =0.0015
1200 — qgf =0.003
— qf=0.006
1180 1| — af =0.009
1160 b
1140 i
T 1120 B
1100 B
1080 4
1060 4
1040 1
1020

L L L L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Conversion and temperature versus volume graphs for multiple ¢5 and V,,,q = 0.02 m?
Figure 4.6

Again we observe for all our chosen values of g¢ that it takes less than 1 second of resi-
dence time for full conversion. Regarding the maximal temperature for ¢g¢, = 0.009, for
example, full conversion is reached after a residence time of less than one second from
the top graph in Figure 4.6, while the maximal temperature of 1200 K is reached at the
residence time of about 0.014/0.009 = 1.55 sec.

The actual MATLAB code qfrun.m for multiple g values is as follows:

function qfrun(qf,vend)

% afrun(qf,vend)

% Sample call : gfrun([.0015,.003,.006,.009],.02);

% Input : gqf in vector form (increasing in value) with at most 6 entries,
% vend = end of integration for the ODE

% Supporting m,file : fixedbedreact.m

% Output : plots two multiple line graphs of the fixed-bed-reactor xA and
% T curves wrt V.

j = length(qf); % maximally six qf values are supported

4.1 A Nonisothermal Distributed System

if j > 6, ’too many qf values’, return, end,
Adp = 160; Tj = 1200; Tf = 1030; method = 15; % standard settings (stiff DE)
for i = 1:j, % create plot data for specified qf values
[VV yy] = fixedbedreact(qf(i),Adp,Tj,Tf,vend,method,1,2,[],1);
VV =VV’; yy = yy’; [k, lmax] = size(yy);
if i > 1, % make size of new plot data compatible with previous plot data
[k 1m] = size(yl);
if lmax > 1m, % pad old plot data in y1, y2, and V
for m = 1lm+1:1lmax
y1(:,m) = NaN*ones(k,1); y2(:,m) = NaN*ones(k,1); end
V = [V, NaN*ones(k,lmax-1m)]; end,
if 1lmax < 1m, % plot new plot data in yy and VV
for m = lmax+1:1m
yy(:,m) = NaN*[1;1]; end;
VV = [VV, NaN*ones(1,lm-lmax)]; end, end
yi(i,:) = yy(1,:); y2(i,:) = yy(2,:); V(i,:) = VV; end % store new plot data
subplot(2,1,1); % draw xA versus V plot
plot(V’,y1’,’Linewidth’,1); v = axis; axis([v(1) v(2) 0 1.18]),
title([’Tubular reactor (acetone): qf = ’,num2str(qf,’%7.4g’),...
>, A" =’ ,num2str(Adp,’%5.4g’),’, Tj = ’,num2str(Tj,’%5.4g’),...
>, Tf = ’,num2str(Tf,’%5.4g’)], FontSize’,12),

xlabel(’V’,’FontSize’,12), ylabel(’X_A > ’Rotation’,0,’FontSize’,12),
if j == % include color coded legend (qf_1 = first qf value)
legend([’qf = ’,num2str(qf,’%7.4g’)]1,0), end
if § ==

legend({[’qf = ’,num2str(qf(1),’%7.4g’)1,...
[’qgf = ’,num2str(qf(2),’%7.4g’)1},0), end
if § ==

legend({[’qf = ’ ,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),’%7.4g’)]1,...

[’qf = ’,num2str(qf(3),’%7.4g’)]1},-1), end
if j ==

legend({[’qf = ’ ,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),’%7.4g’)]1,...

[’qgf = ’,num2str(qf(3),°%7.4g’)],[’qf = ’ ,num2str(qf(4),’%7.4g’)1},-1), end
if j ==

legend({[’qf = ’ ,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),’%7.4g’)]1,...

[’qf = ’,num2str(qf(3),°%7.4g’)]1,[’qf = ’ ,num2str(qf(4),’%7.4g’)1,...
[’qf = ’,num2str(qf(5),’%7.4g’)]1},-1), end
if j ==
legend({[’qf = ’,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf (2),°%7.4g’)],...
[’qf = ’,num2str(qf(3),°%7.4g’)]1,[’qf = ’ ,num2str(qf(4),’%7.4g’)]1,...
[’qgf = ’,num2str(qf(5),’%7.4g’)],[’qf = ’ ,num2str(qf(6),’%7.4g’)1},-1), end
hold off
subplot(2,1,2); % draw T versus V plot
plot(V’,y2’,’Linewidth’,1);
xlabel(’V’, ’FontSize’,12), ylabel (T >, ’Rotation’,0,’FontSize’,12),

if j == % include color coded legend (qf_1 = first qf value)
legend([’qf = ’,num2str(qf,’%7.4g’)]1,0), end
if § ==

legend({[’qf = ’,num2str(qf(1),’%7.4g’)]1,...
[’qgf = ’,num2str(qf(2),’%7.4g’)1},0), end
if § ==

legend({[’qf ,num2str(qf (1),’%7.4g’)],[’qf = ’,num2str(qf(2),°%7.4g’)]1,...

[’qf = ’,num2str(qf(3),’%7.4g’)]1},-1), end
if j ==

legend({[’qf = ’ ,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),’%7.4g’)]1,...

[’qgf = ’,num2str(qf(3),°%7.4g’)1,[’qf = ’ ,num2str(qf(4),’%7.4g’)1},-1), end

149

150 Chapter 4: Initial Value Problems

if § ==
legend({[’qgf = ’,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),°%7.4g’)]1,...
[’qf = ’,num2str(qf(3),°%7.4g’)]1,[’qf = ’,num2str(qf(4),’%7.4g’)]1,...
[’qf = ’,num2str(qf(5),’%7.4g’)1},-1), end
if § ==
legend({[’qf = ’ ,num2str(qf(1),’%7.4g’)]1,[’qf = ’,num2str(qf(2),°%7.4g’)],...
[’qf = ’,num2str(qf(3),°%7.4g’)],[’qf = ’ ,num2str(qf(4),’%7.4g’)]1,...
[’qf = ’,num2str(qf(5),’%7.4g’)],[’qf = ’,num2str(qf(6),°%7.4g’)1},-1), end
hold off

Note that for the ¢th value g, of ¢¢ this program stores the X, and 7" graphing data
in the 7th rows of y1 and y2, respectively, and the corresponding V abscissas in the ith
rows of V. To do so in the three matrices y1, y2, and V of our code, we have to fill in any
data sets with shorter support than the maximal length support. Here by “support” we
mean the set of data points. We do this by filling in short support data sets and setting
every entry of the fill-in equal to NaN. These “not a number” NaN values are overlooked
in plotting in MATLAB. Therefore we can plot the matrices Y;I and Yyl versus V7T
directly without any ill effects of the variable lengths of support for the various inputs
g, This unified matrix MATLAB plotting in turn allows us to add a coherent legend to
the multiple plots. All other ..run.m programs in this section are designed similarly; for
their codes we refer the user to the CD.

If we evaluate the first fractions of a second of residence time for the reactions with
varying feeds gy by calling gfrun([.0015,.003,.006,.009],.0003) ;, for example, we
observe that in seemingly all instances of ¢¢, the minimal temperature that the reaction
reaches is about 1022 K, as seen in Figure 4.7.

Tubular reactor (acetone): gf = 0.0015 0.003 0.006 0.009, A" = 160, Tj = 1200, Tf = 1030

— qf=0.0015
— qf=0.003
1t 1| — qf=0.006
— qf=0.009

08t
X
Aoel

0.4r

0.2

0 i L
[1 2

1034

—— qf=0.0015
— qf=0.003
1| — qt=0.006

1032
0 — qf=0.009

1030

1028

1026

1024

1022
0

) : i
05 1 15 2 25 3
v x10°

Conversion and temperature versus volume graphs for multiple ¢5 and
Vena = 0.0003 m?
Figure 4.7

4.1 A Nonisothermal Distributed System 151

Next we study the effect of varying the heat transfer area A" by setting Alll =
300, Ay = 240, A; = 160, and A; = 80 in the MATLAB call of Adprun ([300,240,
160,80],.008). Again the curve for the first-mentioned value of A" is denoted by A7,
and so forth. Note that the solutions are increasing more slowly as A" decreases, denoting
a slower reaction for smaller areas A" of heat transfer.

Tubular reactor (acetone): gf = 0.003, A" =300 240 160 80, Tj = 1200, Tf = 1030

===
N A

0.8 i

XA o6l .

0.2 R

<+dr
x
=
o

&

1250

1200

>

N

1150
T
1100

1050

1000
0

v x107°

Conversion and temperature versus volume graphs for multiple A" and Vg = 0.008 m3
Figure 4.8

For A" = 300 there is no apparent drop in temperature at the entrance part of the
reactor, while for A = 80 the temperature drops the most, to around 1010 K.

Next we show the effects observed by changing the jacket temperature T'; such as for
T; = 800, Ty, =1200, T;, = 1400,andT;, = 2000 K while keeping all other param-
eters fixed as before. The calling sequence for this example is Tjrun([800,1200,1400,1600],
0.0035).

152 Chapter 4: Initial Value Problems

Tubular reactor (acetone): gf = 0.003, A" = 160, Tj = 800 1200 1400 1600, Tf = 1030

T — T]1
1r e sz
— T,
0.8F 10— T,
XA g6l .
0.4+ -
0.2+ |
0 | | | | | |
0 0.5 1 1.5 2 25 3 35
\ x107°
1600 —)
_ T,
1400 - T'.S
T,
1200
1000 P .
800 ‘ ‘ ‘ : ‘
0 0.5 1 1.5 2 25 3 35
\% x107°

Conversion and temperature versus volume graphs for multiple Ty and
Vend = 0.0035 m3
Figure 4.9

Here the slopes of the solution curves increase with increasing values of T';. For the lowest
jacket temperature 7'y, = 800 K we obviously do not reach full conversion at all by the
time the volume reaches V = V,,,q = 0.0035 m3.

Note: We advise our readers to recreate the multiple line graphs in Figures
4.6 to 4.11 in color on a computer screen and to inspect them individ-
ually. This will lead to a better visual understanding.

The same advice holds for Sections 4.3, 5.1, 5.2, and 6.4.

Finally, we plot the effects of varying the feed temperature Ty for Ty, = 900, Ty, =
1000, Ty, = 1200, Ty, = 1400, and Ty, = 1600 K while keeping all other
parameters fixed. The calling sequence is Tfrun([900,1000,1200,1400,1600],.006)
for Figure 4.10.

4.1 A Nonisothermal Distributed System

Tubular reactor (acetone)

0.8
XA o6
04

0.2

1600
1500
1400

Tj = 1200, Tf = 900 1000 1200 1400 1600

: qf = 0.003, A" = 160,

-

— T

TH,
TH,
Tt
Tf,

[N~ el

Tt
T

TH,
Tf
T,

W

IS

T 1300

o

1200

1100
1000 i

900 I I I I I

v x107
Conversion and temperature versus volume graphs for multiple 7 and Ve,q = 0.006 m3
Figure 4.10

Figure 4.11 provides a closer look at the entrance of the reactor for various feed temper-
atures Tt by calling Tfrun([900,1000,1200,1400,1600],.001).

Tubular reactor (acetone): gf = 0.003, A" = 160, Tj = 1200, Tf = 900 1000 1200 1400 1600
T T T T T —

1k JE—

@

0.8

IS

XA

o

0.6

0.4

0.2F

0 L T L L

1600 — Tt

1500 - 4 —T
T,
Tf
T,

o

%

1400 i

IS

T 1300F

/

1200
1100

1000 7

0 2 4 6 8 10
v x 107

Conversion and temperature versus volume graphs for multiple 7 and Ve,q = 0.001 m3
Figure 4.11

154 Chapter 4: Initial Value Problems

Note how instantaneously fast the switch from the initial condition X4 = 0 to full con-
version X4 = 1 is when the feed temperature is relatively high such as 7y = 1600 K or
1400 K.

The respective MATLAB codes for multiple A", Ty, and Ty value curves are all quite
similar to the one given in gfrun.m above. Therefore we do not print these out here, but
rather refer the user to the accompanying CD.

Exercises for 4.1

1. Study the code Tfrun.m on the CD and try to understand how and why we
have shifted the left vertical axis V' = 0 a little bit to the right in the plots
such as in Figures 4.10 and 4.11.

2. Investigate the temperature drop at the entrance part of the reactor in Figure
4.5 more closely by running fixedbedreact.m for V,,q = 0.001 m? or less
with the other parameters unchanged.

3. Redraw Figure 4.8 for low values of A" such as A” =40, 20, and 10 until full
conversion by using our MATLAB code Adprun.m from the CD.

4. Redraw Figure 4.9 for low values of Ty such as Ty = 700 and 500 until full
conversion by using our MATLAB code Tfrun.m from the CD.

5. Use fixedbedract.m from the CD to plot the profiles for ¢y = 0.003, A =
160, T'; = 800, Ty = 1030, and V' = 0.01, 0.1, 1.0, 10, etc., thereby extending
the two lowest graphs of Figure 4.9 until full conversion is reached if possible.
What do you observe? For which volume will the reaction reach full conver-
sion? Try to settle these questions graphically.

Repeat the problem for T; = 900 K and T; = 850 K. What do you ob-
serve? What conclusions can be drawn from these modeling experiments for
the minimum feasible jacket temperature T'; of the reactor?

Conclusions
In this section the reader was introduced to solving initial value nonlinear differ-
ential equations that occur with chemical engineering problems. We have used the
steady state (stationary nonequilibrium state) of a homogeneous tubular reactor
with a constant temperature heating jacket as an example. The reaction used is the
endothermic gas phase cracking of acetone. It is an important process in industry.
This reaction is accompanied by a change in the total number of moles, and the
reactor is nonisothermal. Therefore the volumetric flow rate is not constant and
this volumetric flow rate change is taken into consideration by using conversion
instead of concentration as a parameter. The heat balance design equations were
developed without extra assumptions since “no change of phase” is a fact and not
an assumption for this reactor. The design equations take the form of initial value
differential equations, which we solve efficiently using the appropriate MATLAB
IVP solvers. Our algorithms are used to investigate the effect of different operating
and design parameters. It is clear that for the original operating parameters the

4.2 Anaerobic Digester 155

reactor is overdesigned. The term “overdesigned” in this case means that the vol-
ume of the reactor is much more than necessary for the given parameters. As our
graphs in Figures 4.3 to 4.8 show, a much smaller reactor of about 0.01 m3 volume
is sufficient.

4.2 Anaerobic Digester for Treating Waste Sludge

4.2.1 Process Description and Rate Equations

A continuous anaerobic digester that is used for treating municipal waste sludge is in
principle like any other CSTR except that it involves multiphase biological reactions.
In the digester the microorganisms grow biologically with the conversion. However, we
treat such a system as a pseudohomogeneous system in this section. This means that we
neglect all mass transfer resistances.

The feed material essentially consists of organisms with the concentration Cx, measured
in mol/m?® and of substrate with the concentration Cg, in mol/m?. This is fed to the
anaerobic digester at a daily volumetric feed flow rate of ¢ m3/day. The development of
the model design equations involves the following assumptions:

1. The reactions of interest take place only in the liquid phase and the reactor’s volume
V in m3 is constant.

2. The organism concentration C'x in the digester is uniform, as is the substrate
concentration Cs. (The digester is perfectly mixed like a CSTR.)

We can obtain a model, i.e., the design equations for the digester process, by carrying
out organism and substrate balances and using the following relationships:

1. The growth rate of the organism X is given by
rx = p-Cx in g/(m?-day) ,

where p, the specific growth rate, is given by the Monod? function

=0 (1)
po= o Ks+Cs

Here p¢ is the maximum specific growth rate and Kg is the saturation constant.

2. The yield, i.e., the rate of growth of organisms with respect to the rate of consump-
tion of substrate in the reactor, is given by

rx = —Yxg-7s,

where Yxg is the yield factor defined as the ratio of the microorganisms produced
per consumed substrate.

2Jaques Monod, French biochemist, 1910 — 1976

156 Chapter 4: Initial Value Problems

4.2.2 Mathematical Modeling for a Continuous Anaerobic Di-
gester

The process is shown schematically in Figure 4.12.

q
c
crt
Sf
\//\
Cx 1%
Cs
X > .
> Cy
Cs

Schematic diagram of the anaerobic digestion process
Figure 4.12

The microbial reaction is given by S X, P . This is catalyzed by X, which also grows.
The rate of production growth r, of the microorganism X is given by

Cs

" :“'CXZMO'<K+CS

) -COx in g/(m?-day) .
The rate of consumption 7, of substrate is given by

s = _YXS o (KS+CS> CX o g/(m -day)’

where the negative sign signifies that the substrate concentration decreases due to its
consumption by the microorganisms. Note that r, is positive because the microorganisms
grow during the reaction.

An appropriate unsteady-state model is obtained from the microorganism and substrate
material balances as follows:

For the substrate balance

dCs 1 CS
V. =q-Cs, —q-Cs— - o ¢ Cx - V. 4.23
dt 48— Yxsg fo (Ks + Cs> X (4.23)
And for the microorganism balance
dCX - CS
I’ g =@ Cx; —q¢-Cx + o (Ks n Cs) Cx-V. (4.24)

4.2 Anaerobic Digester 157

These two coupled differential equations are subject to the initial conditions Cg(0) =
Cs, and Cx(0) = Cx, att = 0.

Equations (4.23) and (4.24), together with their initial conditions, formulate the dynamic
model for this microbial system. We note that the volume V' of the digester is assumed
to be constant.

A steady state for this system is reached when the variations in C's and C'x have ceased,
i.e., when their derivatives with respect to time ¢ are equal to zero in equations (4.23)
and (4.24). If we set dCs/dt = dCx/dt = 0in (4.23) and (4.24), we obtain two coupled
steady-state equations for the anaerobic digester, namely

1 Cyg
-Cg, —q-Cg.. — . =8 -C -V =0 4.25
¢ Csy = Cspo =y, ot (Ks+Csss> X (4.25)
and
-Cx, —q-Cx,, + Cs.. Cx. -V =0 (4.26)
q-Cx, —q-Ux,, T Ho K, +Cs.. Xas = . .

Here Cs,, denotes the steady-state concentration of the substrate and C'y_, denotes the
steady-state concentration of the microorganisms.

4.2.3 Solution of the Steady-State Equations

We shall try to express the volume V' and the steady-state substrate conversion Xg,, :=
(Cs; = Cs,,)/Cs, in terms of the feed rates with the help of equations (4.25) and (4.26)
for general and specific data.

From equation (4.26) we have

_ luo : Csss . _ .
CXss (q (KS+CSSS> V) =4q CXf ’

or C
Ox.. = 4% . (4.27)
_ ,Ufo'CSSS . V
(¢- (k) V)
4.2.4 Steady-State Volume as a Function of the Feed Rate
Substituting (4.27) into (4.25) (multiplied by Yxg) gives
B Cs,, q-Cx,
q- (Csf — Csss) Yxs = po (Ks +Csss> -V . (o Cs.) v . (4.28)
K:+Cs,,

Next we multiply (4.28) by its right-hand side denominator g—(p9-Cs,.-V)/(Ks + Cs,.).
After multiplying out the resulting expression on the left-hand side we obtain

5 po-q-(Cs; =Cs,.) Yxs-Cs,. -V po-q-Cs,, - Cx; -V
(Co. —Co)-Yia— - .
q (Sy Sss) XS K.+ Cs.. K.+ Cs..

(4.29)

158 Chapter 4: Initial Value Problems

Solving (4.29) for V' gives us the following function in terms of the input parameter Cx,:

4+ (Cs, — Cs,.) - Yxs - (K, +Cs..)

V = V(Cx,) = :
(Cx;) po - Cs,, - (Cx; + (Cs; — Cs,,) - Yxs)

(4.30)

where Cx; may range from 20 to 1000 g/ m? and the other six parameters are specified in
our example as given below. Note that Cx, occurs only in the denominator of V(Cx,).
Thus limey | oo V(Cx,;) = 0.

The physico-chemical parameters for our example are
po = 0.017 hr=t, K, = 32 ¢g/m3, and Yyxg = _ grmsofcells =9

grams of substrate
while the operating parameters are

q = 7000 m*/hr, Cs, = 1400 g/m?, and Cx, ranges between 20 and 1000 g/m3.

If we consider a conversion (removal of substrate) rate of 99%, then there is 1% of the sub-
strate left at the output, or Cg,, = 14 g/m? since the digester receives Cs, = 1400 g/m*
of substrate at its input. Notice that the variablein (4.30) is Cg,, and that all parameters
in (4.30) are now specified.

To reformulate the problem from a biological engineering point of view, we are given all
the input and physical parameters, as well as the required conversion of the substrate S
as Xg = (1400 — 14)/1400 = 0.99, or 99 % conversion. And we want to find how the size
of the bioreactor changes with a change of the feed concentration of the microorganisms.

With our particular data we therefore study the equation

4.46292 - 107

V(Cx,) =
(©x/) = 35987+ 0.238 - Cx,

(in m?). (4.31)

First we plot the graph of V(Cx,) for Cx, ranging from 20 g/m? to 1000 g/m3 via our
MATLAB file VversusCxf .m. Note that in VversusCxf .m the parameters are entered in
I, i.e, “liters”, while the output V is given in terms of cubic meters m? for convenience
by dividing the expression for V' in (4.30) or (4.31) by 1000 inside the program.

function [V, Cxf] = VversusCxf(Cxfstart,Cxfend,mu0,Ks,Yxs,q,Csf,Csss)
% [V, Cx] = VversusCxf (Cxfstart,Cxfend,mu0,Ks,Yxs,q,Csf,Csss)
% Sample call

% VversusCxf (20,1000, .017,32,.1,7000,1400,14) ;

% Inputs : Cxfstart, Cxfend are the limits for Cxf values;

% if they are identical, we just evaluate V(Cxf).
% muO, Ks, Yxs, q, Csf, and Csss are systems

A parameters (in m"3)

% Output: V = V(Cxf) (in m~3) plotting data and plot.

top = g*(Csf-Csss)*Yxs*(Ks+Csss); botl = muO*Csss*(Csf-Csss)*Yxs;

bot2 = muO*Csss; % preassembling constants used in (4.29), (4.30)
% if the Cxf values are identical, we evaluate V(Cxf) only

if Cxfstart == Cxfend, Cxf = Cxfstart; V = top/(1000*(botl+bot2*Cxf));

4.2 Anaerobic Digester 159

else % if the Cxf values differ, we plot the V(Cxf) curve
Cxf=linspace(Cxfstart,Cxfend,100); % creating Cx nodes
V = top./(botl+bot2.*Cxf); % and corresponding V values (in m~3)
plot(Cxf,V,’LineWidth’,1), xlabel (°C_{xf}’,’Fontsize’,12),

ylabel(’V (m~3) >, ’Fontsize’,12,’Rotation’,0),

title([’ Anaerobic digester: \mu_0 = ’,num2str(mu0,’%7.4g’),...
>, K_s = ’,num2str(Ks,’%5.4g’),’, Y_{xs} = ’ ,num2str(¥xs,’%5.4g’),...
>, q = ’,num2str(q,’%5.4g’),’, C_{sf} = ’ ,num2str(Csf,’%5.4g’),...
>, C_{sss} = ’,num2str(Csss,’%5.4g’)], FontSize’,12), end

Anaerobic digester: u ;= 0.017, K =32, Y =0.1,q=7000, CSf = 1400, CSS =14

s
12 T T T T T T T T T

I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

xf

Steady-state volume V versus feed C'x s
Figure 4.13

Figure 4.13 shows that the volume of the bioreactor necessary for achieving 99% sub-
strate conversion decreases nonlinearly as the feed concentration of the microorganisms
increases.

4.2.5 Steady-State Conversion in Terms of the Feed Concentra-
tion of the Microorganisms

Recall the expression Xg,, = (Cs, — Cs,,)/Cs, for the steady-state conversion. Here we
want to express Xs , as a function of the concentration of microorganisms Cx, for a
constant volume V' of the digester. This requires us to modify (4.30) as follows.

160 Chapter 4: Initial Value Problems

We multiply equation (4.30) by the denominator of the right-hand side and divide the
resulting equation by Cs, throughout to obtain

o Cs,, - (Cx, +(Cs; = Cs,,) Yxs) _ ¢ (Cs, —Cs,.) Yxs (Ks+Cs,.)

V =
CSf Csf
(4.32)
With Xg,, = (Cs; — Cs,,)/Cs,;, equation (4.32) becomes
Cs,., - C
mo Voo M by Ve Xs, CsYxs = q- X, Vs (K, +Cs,.) . (4.33)
7

Note that Xg,, occurs twice in equation (4.33). But Xg,, involves Cg,, in its definition
and Cg,, occurs three times in (4.33). Before we can solve for Xg__, we have to eliminate
Cs,, in (4.33) by making use of the relation Xg, = (Cs, —Cs,,)/Cs, in the equivalent
form Cs,, = Cs;, — Xs,, - Cs,. With this substitution, equation (4.33) becomes

(CSf - Xsss : Csf)

-C
g oV Xs, - (Cs, — Xs,, - Cs,) Yxs =
Cs,

po -V
= q-Xs., 'YXS'(K3+CSf — Xs.. -Csf) . (4.34)

This is a quadratic equation in Xg,, of the form aX3 4+ bXg,, + ¢ = 0, or more
specifically

[Cs, - Yxs(qg—poV)] X5, — (Cs, - Yxs(g— V) +q- Ks - Yxs + oV - Cx,) Xs., +
+ V- Cx, = 0. (4.35)

Using the quadratic formula with the plus sign as the only meaningful positive solution
for equation (4.35), we obtain an explicit formula for

—b+ Vb2 — 4ac
XSSS (CXf) = \/QQ = (4.36)
Cs; - Yxs(qg—poV) +q- Ks - Yxs+puoV - Cx, N

2Cs; - Yxs(q— poV)

\/(Csf “Yxs(qg—poV)+q-Ks-Yxs+ poV - fo)2 —4poV - Cx, - Cs, - Yxs(qg— poV)
2Cs; - Yxs(q — poV') ‘

+

Here the variable C'x, occurs only in the numerator, hence limcxf oo X5,,(Cx,) = oo.

We can apply this formula to an existing digester with a volume of V' = 7500 m? and
with ¢ = 318 m3/hr. All other parameters in this example are the same as before,
namely po = 0.017 hr=%, K, = 32 g/m?®, Yxs = 0.1, and Cs, = 1400 g/m?>.
We want to plot the steady-state conversion Xs,, = (Cs, —Cs,,)/Cs, for different
values of Cx, from 20 to 2000 g/m?. Here is the MATLAB code XsssversusCxf.m for
our problem.

4.2 Anaerobic Digester 161

function [Xsss, Cxf] = XsssversusCxf(Cxfstart,Cxfend,V,mu0,Ks,Yxs,q,Csf)
% [V, Cx] = XsssversusCxf(Cxfstart,Cxfend,V,mu0,Ks,Yxs,q,Csf)
% Sample call :

% XsssversusCxf (20,2000,7500,.017,32,.1,318,1400) ;

% Inputs : Cxfstart, Cxfend are the limits for Cxf values;

% if they are identical, we just evaluate Xsss(Cxf).
% muO, V, Ks, Yxs, q, and Csf are systems

% parameters (in m~3)

% Output : Xsss = Xsss(Cxf) plotting data and plot (if Cxfstart /= Cxfend).

a = CsfxYxs*x(q-muO*V); J preassembling constant a used in (4.36)

if Cxfstart == Cxfend, 7% for a single Cxf value we evaluate Xsss(Cxf) only
Cxf = Cxfstart; minusb = a + g*Ks*Yxs + muO*xV*Cxf; c = muO*V*Cxf;
Xsss = (minusb + (minusb~2- 4*ax*c)~0.5)/2*a;

else % for an interval of Cxf values we plot the V(Cxf) curve

Cxf=linspace(Cxfstart,Cxfend,100) ; % creating Cx nodes
minusb = a + q*Ks*Yxs + muO*V*Cxf; ¢ = muO*VxCxf;), polynomial coefficients
Xsss = (minusb + (minusb."2- 4xa*c).”0.5)/2x*a; % compute Xsss values
plot(Cxf,Xsss,’LineWidth’,1), xlabel (°C_{xf}’,’Fontsize’,12),
ylabel (’X_{sss} >, ’Fontsize’,12,’Rotation’,0),
title([{’ Anaerobic digester:’},{[’V = ’,num2str(V,’%5.4g’),...

>, \mu_0 = ’,num2str(mu0,’%7.4g’),’, K_s = ’ ,num2str(Ks,’%5.4g’),...

>, Y_{xs} = ’,num2str(¥xs,’%5.4g’),’, q = ’,num2str(q,’%5.4g’),...

>, C_{sf} = ’,num2str(Csf,’%5.4g’)]1}], FontSize’,12), end

This code generates a plot shown in Figure 4.14, of the steady-state conversion Xg,, for
the above data.

Anaerobic digester:

V =7500, 1y =0.017, Ks =32, VXS =0.1,q=318, CS,: 1400

7 T T T T T T T

L L L L L L L L L
(] 200 400 600 500 120 1200 1400 1600 1800 2000
1

Steady-state conversion Xg,,
Figure 4.14

versus feed Cx,

162 Chapter 4: Initial Value Problems

Equation (4.36) makes the steady-state conversion Xg_ . weakly nonlinear for varying
feed rates C'x,. This is so since C'x, appears both in the leading linear term “—b/2a”
and under the square root sign of Xg, (Cx,) in equation (4.36).

Our last task in this subsection is to plot the steady-state substrate and organism
concentrations Cg,, and C'x,, in terms of the volume V of the digester.

To do so, we take a different approach now and solve equation (4.25) for Cx,, first to

obtain c s Wrs(Ks +Cs.)

q(Cs; — s,) Yxs(t85 + Cs,,
C = . 4.37
Xes 1o Cs. -V (4.37)

Next we plug this expression for Cx,, into equation (4.26) and obtain
2
q*(Cs; — Cs,,)Yxs(Ks + Cs,,

q-Cx; — (Cs; JYxs() +q(Cs; —Cs,,)Yxs =0. (4.38)

po - Cs,, -V

Equation (4.38) is a quadratic polynomial in Cg__ that depends on the variable V and the
system parameters ¢, Cx,, Cs,, Yxs, Ks, and . To see this, we first divide equation
(4.38) by its common factor ¢ and multiply by the denominator pg - Cg,, - V. Then we
rewrite it in the standard form a - Cgss +b-Cg,, + c=0 of a quadratic polynomial as

Yxs(qg—poV)-C3,, +
+ [0 - V(Cx, +Cs, - Yxs) —q-Yxs(Cs, — Ks)] - Cs,, (4.39)
—q-Csf Yxs-Ks = 0.

This polynomial a-Cg +b-Cs,, +c = 0 has two solutions (—b = v/b? — 4ac)/(2a) with

a = Yxs(g— V) (=A-V+B),
b = po-V(Cx, +Cs;-Yxs)—q-Yxs(Cs, — Ks) (=C-V+D),
c = _Q'CSf'YXS'KS (ZE)

Here we have expressed the dependences of a, b, and c on V in parenthetical expressions
for appropriate constants A, B, C, D, and E. For example, C = po - (Cx, +Cs, - Yx5)
and F' = —q-Cg, - Yxs - Ks. These expressions will be used below to find the limit of
Cs,, as V — oc.

The solutions to (4.39) are

—b+ Vb2 — dac
2a
_ — 1o V(COx, +Cs; - Yxs) —q- Yxs(Cs; — Ks) n
2Yxs(q — poV)
\/(Mo -V(Cx, 4+ Cs; - Yxs) +q-Yxs(Cs, — Ks))? + 4qY3 4Cs, Ks(q — poV)
2Yxs(q — poV) ’

of which only the one with the + sign gives a meaningful positive steady-state substrate
concentration Cg,_.

Cs,.12 (V)

= (4.40)

+

4.2 Anaerobic Digester 163

The value of C's,, depends on the variable V and the six system parameters g, CXf7 Csf7
Yxs, Ks, and po.

To find limy o, Cs,, (V) we write Cs,, = (—=b=+ /b2 — 4ac)/(2a) in terms of the simpli-
fied expressions a = A-V+ B, b=C -V + D, and c=FE as

—~(C-V+D)++/(C-V+D)2-4E(A-V + B)

Cs,. (V) = %AV + B) (4.41)
Multiplying this simplified expression for Cs, (V') by the conjugate expression
—(C-V+D)—/(C-V+D)2—4E(A-V + B)
—~(C-V+D)~/(C-V+D)2-4E(A-V+B)’
i.e., by 1, leads to the equivalent representation of limy_. Cs,, (V) as
Hm Csae (V)= lim -y 0y i%(f .(YQJ)F(? viep) — o 1_/E+ p — 0 (442)

We will use this expansion of Cg,, in terms of V' subsequently when studying the limit
behavior of C'x,, as V — oo.

Equation (4.37) expresses C'x,, as a function of V that depends on the system parameters
¢, Cx;, Cs,;, Yxs, Ks, and pg, as well as the expression Cs,, (V) of (4.40), namely

G () = O = O (sl G, (V).)

When contemplating the asymptotic behavior of Cx, (V) as V — oo in formula (4.37),
we note that the numerator converges to ¢Cg + Yxs - Kg since Cg,, converges to zero as
V — oo.

What about the term Cg,, (V) -V in the denominator of (4.37)?

According to (4.42), Cs,, (V) behaves as —E/(C -V + D) does for large V. Thus

-E.-V —-F qCs; - Yxs - Kgs

Cx,.(V)-V) = 1 = = .
(XSS()) VgnooC-V—‘rD C ,lLo(CXf-‘rCsf'YXS)

lim
V—oco
Hence

. (qCs; - Yxs - Ks) - (no(Cx; + Cs, - Yxs))
lim Cx (V) = ! ! ! =C Cs, - Yxs .
o x..(V) jo-q-Cs, - Yxs - Ks x; +Csp - Yxs

Figure 4.15 shows two plots of Cs__ (V) and Cx__ (V') for 1000 < V < 350000 m?, and
our previous data set ¢ = 1000 m3/hr, po = 0.017 hr=!, K, = 32 g/m3, Yxs =
0.1, Cs, = 1400 g/m?, and Cx, = 800 g/m?. Note that for this data,

lim Cx, (V) = Cx, +Cs, -Yxs = 800+ 1400-0.1 = 940 g/m® .

V—o0

164

Chapter 4: Initial Value Problems

Anaerobic Digester Steady State Concentrations
with g =1000, u, =0.0017, st =800, CSs =1400, Y, = 0.1, K =32

1400 | |

1200 —

1000 -

C. 800 -
S
ss
600 B
400 B
200 -
0 1 1 1 +

0 05 1 1.5 25 3 35
x10°

940 im

lim C Sss
920 i
900 (- B
Cx 880 -
ss
860 B
840 B
820 B
1 1 1 1 1 1

0 05 1 15 2 25 3 35

\Y (lim CSSS=940) X10°

Steady-state concentration of organisms X and of substrate S in terms of volume V'
Figure 4.15

This pair of plots was drawn by the MATLAB file steadystCsCx.m.

function 1imCSss = steadystCsCx(Vstart,Vend,q,m0,Cx,Cs,YXS,KS)

h
h
h

steadystCsCx(Vstart,Vend,q,m0,Cx,Cs,YXS,KS)
steadystCsCx(10,350000, 1000, .0017,800, 1400, .1,32)

sample call

Input : limits Vstart and Vend for the volume;
system parameters q, mO, Cx, Cf, YXS, and KS

OQutput :

= 100; V = linspace(Vstart,Vend,n);
= YXS*(q-mO*V) ;

= mO*V* (Cx+Cs*YXS) -q*YXS* (Cs-KS) ;

= -q*Cs*YXS*KS;

two plots of CSss(V) and CXss(V)

% initialize
% quadratic polynomial coeff.

4.2 Anaerobic Digester 165

CS = (-b + (b."2 - 4*ax*xc).~0.5)./(2*a); % CSss data
CX = ((g*(Cs-CS)*YXS) .*(KS+CS)) ./ (mO*CS.*V) ;
1imCSss = Cx + Cs*YXS; % finding optimal CXss plot region limits :

ymaxCX = max(max(CX),1imCSss); yminCX = min(min(CX), 1imCSss);

if ymaxCX == 1imCSss, yCXtop = ymaxCX + 0.05*(ymaxCX-yminCX) ;

else, yCXtop = ymaxCX; end

if yminCX == 1imCSss, yCXbot = yminCX - 0.05* (ymaxCX-yminCX) ;

else, yCXbot = yminCX; end

subplot(2,1,1), plot(V,CS), xlabel(’V’,’Fontsize’, 14),

ylabel (°C_{S_{ss}} >, ’Fontsize’, 14,’Rotation’,0),

title([{’Anaerobic Digester Steady State Concentrations’},{’ ’},...
{[’with q = ’, num2str(q,’%5.4g’),’, \mu_0 = ’ ,num2str(m0,’%5.4g’),...

>, C_{X_s} = ’,num2str(Cx,’%5.4g’),’, C_{S_s} = ’,...

num2str(Cs,’%5.4g’),’, Y_{XS} = ’ ,num2str(YXS,’%5.4g’),...
>, K_{S} = ’,num2str(KS,’%5.4g’)1}], FontSize’,12)

subplot(2,1,2), plot(V,CX), v = axis; axis([v(1),v(2),yCXbot,yCXtop]l);
xlabel ([’V (1im C_{Sss} = ’,...
num2str(1imCSss,’%5.4g’),’)’]1, ’Fontsize’, 14), hold on,
plot([v(1), v(2)],[1imCSss, 1imCSss],’:r’); % asymptotic line
text (v(2),0.97*(1imCSss-v(3))+v(3),’ 1lim C_{Sss}’,’Fontsize’,12,’Color’,’r’),
ylabel (°C_{X_{ss}} >, ’Fontsize’, 14,’Rotation’,0), hold off

4.2.6 The Unsteady-State Behavior of the Digester and the So-
lution of the Initial Value Differential Equations

Having studied the steady-state behavior of the digester, we now turn to its unsteady
state or dynamic behavior.

If we divide the two differential equations (4.23) and (4.24) by V we obtain the
following simpler version:

dCs 1 1 CS’
= . —q-Co— e - . v
dt 1% [q Cs; =4 Cs Yxs P (Ks +Cs> O }
and (4.43)
dCx 1

at V[q Oxy = a-Cxt o <K5+Cs> Ox V}

This gives rise to an IVP if we specify Cs(0) = Cg, and Cx(0) = Cx, at¢t=0.

Here is a MATLAB code that solves (4.43) for any given initial values Cs(0), Cx(0)
and for any system parameters ¢, Cs,, Yxs, po, Ks, V, and Cx, by plotting the time
graphs of Cg and Cx from ¢t = 0 until ¢ = tepq.

166 Chapter 4: Initial Value Problems

function anaerdigest(tend,Cs0,Cx0,q,Csf,Yxs,mu0,Ks,V,Cxf,method)

% anaerdigest (tend,Cs0,Cx0,q,Csf,Yxs,mu0,Ks,V,Cxf ,method)

% Sample call : anaerdigest(240,1000,400,150,1400,0.1,0.0017,32,4000,800,45);
% Input : tend = final time (hours)

% Cs0, Cx0 = intimal values for Cs and Cx
% q, Csf, Yxs, muO, Ks, V, Cxf = parameters for the system,
% all scaled to be in m~3.

% Output: Plot of the Cs and Cx curves from time = O to tend in hours.

if nargin == 10, method = 23; end % default method
% initialize :
tspan = [0 tend]; yO = [Cs0;Cx0]; options = odeset(’Vectorized’,’on’);
% integrate
if method == 45,
[t,y] = ode45(@ADDE, tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);
elseif method == 23,
[t,y] = o0de23(QADDE,tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);
elseif method == 113,
[t,y] = ode113(Q@ADDE,tspan,y0,options,q,Csf,Yxs,mu0,Ks,V,Cxf);
else disp(’Error : Unsupported method number !’), return, end

subplot(2,1,1); % plot graph of solution to dCs/dt IVP
plot(t,y(:,1),’Linewidth’,1)
xlabel([’t hours (with C_S(0) = ’,num2str(Cs0,’%5.4g’),’)’]1,...
’FontSize’,12), ylabel(’C_S > ’Rotation’,0,’FontSize’,12),
title([’Anaerobic digester: q = ’,num2str(q,’%5.4g’),’, C_{S_f} = 7,...
num2str(Csf,’%5.4g’),’, Y_{xs} = ’,num2str(Yxs,’%5.4g’),...
>, \mu_0 = ’,num2str(mu0,’%5.4g’),’, K_s = ’,num2str(Ks,’%5.4g’),...
>, V = ,num2str(V,’%5.4g’),’, C_{X_f} = ’,num2str(Cxf,’%5.4g’)]1,...
’FontSize’,12),
subplot(2,1,2); % plot graph of solution to dCx/dt IVP
plot(t,y(:,2),’Linewidth’,1)
xlabel([’t hours (with C_X(0) = ’,num2str(Cx0,’%5.4g’),’)’]1,...
’FontSize’,12), ylabel(’C_X > ’Rotation’,0,’FontSize’,12),

function dydt = ADDE(t,y,q,Csf,Yxs,mu0,Ks,V,Cxf) % r.h.s of the DE
inter = y(1,:)./(s + y(1,:)) .*x y(2,:);
dydt = 1/V * [g*(Csf - y(1,:)) - muO/Yxs *V .* inter;
q*(Cxf - y(2,:)) + muO*V .* inter];

We close with two plots drawn by anaerdigest.m. The first one uses the parame-

ters teng = 240 hours (10 days), Cs(0) = 1000 g/m?, Cx(0) = 400 g/m?, q
150 m?/hr, Cs, = 1400 g/m?, Yxs = 0.1, po = 0.017 hr=', Ky =32 g/m3, V
4000 m?, and Cx, = 800 g/m®. The call of anaerdigest (240,1000,400,150,1400,0.

0.0017,32,4000,800,15) ; produces Figure 4.16 for this data.

1,

4.2 Anaerobic Digester 167

Anaerobic digester:

q=250,C_=1400,Y =0.1,u =0.017,K_=32,V=1000, C =800
sf XS 0 s xf

1050 T T T
1000 B
c 950 - B
S
900 - ,
850 - b
800 1 1 1 1
0 5 10 . 15 20 25
thours (with CS(O) =1000)
900
800 - ,
c 7001 ,
X
600 - ,
500 - ,
400 1 1 1 1
0 5 10) 15 20 25
thours (with CX(O) =400)
1050
1000 ,
c 950F ,
s
900 - ,
850 - ,
800 1 1 1 1 1 1 1 1 1
400 450 500 550 600 650 700 750 800 850 900
C (using "ode15")

X

Concentration of organisms and of substrate plots over time
and phase plot of Cs, versus Cx,
Figure 4.16

Figure 4.17 shows a second plot for a much higher growth rate po of the organisms
with the parameters t.nq = 24 hours, Cs(0) =900 g/m?, Cx(0) = 1200 g/m3, q =
300 m3/hr, Cs, = 1400 g/m?, Yxs = 0.1, pp = 0.017 hr=!, K, =32 g/m3, V =
1000 m3, and Cx, = 800 g/m?. For this set of parameters, the digester reaches its steady
state in about 1 day, or ten times faster than in the example of Figure 4.16. Figure 4.17 is
drawn by calling anaerdigest (24,900, 1200,300,1400,0.1,0.017,32,1000,800,15) ;.

168

940

Chapter 4:

Anaerobic digester:

q=300,C_=1400,Y =0.1,u, =0.017,K_ =32,V =1000, C_ =800
sf Xs 0 s xf

Initial Value Problems

c 900
s

880

840
0

1200

10 15
thours (with CS(O) =900)

1150
1100
1050

* 10001

950
900}
850

800
0

10 15
thours (with G (0) = 1200)

940

920

c 900
s

880

860

840
800

Concentration of organisms and of substrate plots over time

! !
1050 1100 1150

850 900 950 1000
C (using "ode15")

and phase plot of Cg, versus Cx,
Figure 4.17

Exercises for 4.2

1200

1. (a) Study our VversusCxf.m code and learn how to use it to find the numer-
ical value of the steady-state volume V for the data used for (4.31) when

Cx

; =20 g/m® and 1000 g/m?.

(b) For the feed rate of C'x, = 1000 g/m? in part (a), a waste-treatment plant
is to be build in the form of 22 identical digesters. If the digesters are to
have cylindrical form with a radius of 10 m, how tall must each digester

be?

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 169

2. Use VversusCxf.m for the data yg = 0.198 hr—1, K, = 250 g/m?, q =
7000 m?’/hr7 Cs, = 1400 g/m?’7 Yxs = 0.1, and Cs,, = 14 g/m3 when
Cx, ranges from 20 g/m? to 2000 g/m?>.

3. Find the steady-state volume V' when Cx, = 20 g/m? and 2000 g/m? for the
previous problem.

4. For exercises 2 and 3 above, show how during startup the system approaches
its steady state.

Conclusions

In this section we have presented an important biological engineering example,
namely waste-water treatment (WWT). The enzyme digester is treated like a
CSTR, while the catalyzing microorganisms are growing with the reaction. A
steady-state analysis and computer programs using either algebraic equations or
IVPs have been introduced, discussed, and applied to standard problems.

4.3 Bubbling Fluidized Bed Catalytic Reactors (Het-
erogeneous Two-Phase System)

Gas-solid fluidized beds are very important in a number of petrochemical and petroleum
refining processes. One of the most important one in the petroleum refining industry
is the fluid catalytic cracking (FCC) process for the production of high-octane gasoline
through the cracking of gas oil. In the petrochemical industry fluidized bed reactors are

used in the UNIPOL™ process for producing polyethelyne and polypropylene. These two
industrial processes are presented and analyzed in some detail in Chapter 7 of this book.

4.3.1 Mathematical Modeling and Simulation of Fluidized Beds

When a gas stream is passed through a bed of fine powder in a tube (as shown in Figure
4.18), we observe the following:

1. In a certain low range of the flow rate, the system will behave like a fixed bed, i.e.,
the gas stream will flow through a fixed porous medium.

2. The minimum fluidization condition refers to the situation in which AP, the pres-
sure drop across the bed, is equal to the bed weight.
A slight expansion occurs in this case (see Figure 4.18). The bed will behave very
similarly to a rough liquid formed by the gas and the fine powder, which together
form a pseudophase. For example, this pseudophase can be transferred between
two containers to make the levels equal in the two containers in a manner similar
to liquids.

3. A freely bubbling fluidized bed has a higher flow rate of the gas than the minimum
fluidization limit. It will reach the case of three phases: solid, gas in contact with
solid, and gas in bubbles inside the tube.

170 Chapter 4: Initial Value Problems

Slight expansion
(at minimum fluidization)

~<—1—— Fine powder
Gas flow
Fine powder inside a tube starting to fluidize due to gas flow rate
Figure 4.18

In this context we adhere to the two-phase theory of fluidization, which states that
“almost all the gas in excess of that necessary for minimum fluidization will appear as
gas bubbles” (Figure 4.19).

Dense phase or

Bubble "free of solid" —
‘@ Gi// emulsion phase

Gas flow
Fluidized bed
Figure 4.19

There are advantages and disadvantages of fluidized beds for catalytic reactions.
Advantages of fluidized beds (freely bubbling)

1. Perfect mixing of solids occurs due to the presence of bubbles (isothermality).
2. Good heat transfer characteristics (high heat transfer coefficient).

3. The resistance of the pellets to heat and mass transfer to the surrounding is very
small, making the rate of reaction closer to the intrinsic rate.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 171

4. All the advantages of minimum fluidization conditions.
Disadvantages of fluidized beds

1. Bypassing of bubbles through the bed.

2. Bubble explosion on the surface causes high entrainment.

3. Difficult mechanical design; for example, some industrial FCC units have to handle
7000 tons of solids.

Regions where
main processes occur

Solid particles

Diagram of the main regions around a bubble
Figure 4.20

Furthermore, we should note the following;:

1. Bypassing of bubbles is compensated partially by diffusion between dense and bub-
ble phases (i.e., by delayed addition of reactants).

2. There is a solid exchange between the wake, the cloud, and the dense phase. This
is accounted for in three-phase models.

3. Although the dense phase is perfectly mixed, the bubble phase is almost in plug
flow.

4. Tt is possible to break the bubbles by using baffles or redistributors. Stirrers are
not recommended because of vortex formation.

Mathematical formulation (steady state)

Using the two-phase model, a fluidized catalytic bed reactor can be divided into two
regions, one for the dense phase, i.e., the emulsion phase, and another for the bubble
phase, with associated mass and heat transfer between the two regions and phases.

For illustration purposes we consider a simple reaction

A—D .

172 Chapter 4: Initial Value Problems

We refer to Figure 4.21, where Cy is constant for all heights, i.e., A is in perfectly mixed
condition independent of the height h, and Cap = f(h), since the bubble phase is in plug
flow and therefore the concentration C'4p depends on the height h. Here C'4 denotes
the concentration of component A in the dense phase, and C'yp is the concentration of
component A in the bubble phase.

€A h=m
Bubble Dense
Phase — Phase
Cup Cy
h+Ah
I —
l— A l— A ———
h=0
A A
GC , CAf G[CAf
G Cyy
Schematic diagram of a two phase fluidized bed
Figure 4.21

Steady-state modeling of the dense phase

This is a heterogeneous system formed of two phases. For general principles of modeling
heterogeneous systems, we refer to Chapter 6.

The molar balance on the dense phase gives us
nir+ transfer of component ¢ from the bubble phase to the dense phase = n;+V-0;-r .

For component A with a constant volumetric flow rate Gy, we can write the above
equation as

H
G1~CAf+/ Kga(CAB—CA)AC dh = G[CA+A[Hpb/€CA, (4.44)
0

where pp is the bulk density of the solid at minimum fluidization conditions,

a = (external surface area of bubbles)/(volume of bubble phase), and K is the mass

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 173

transfer coefficient between the bubble phase and the dense phase in mol/(cm? - sec).
Steady-state modeling of the bubble phase

Assuming that there is a negligible rate of reaction for an element in plug flow mode in
the bubble phase, the molar balance can be expressed as

GcCap = Gc(CAB + ACAB) + Kga(CAB — CA)ACAh ,

see Figure 4.22. After a few manipulations and by taking the limit of ACap/Ah as
Ah — 0, we obtain the DE

chi;:B = —KgaAC(CAB —CA) (4.45)
N
QE

with the initial condition Cyp = Cay at h = 0.

1

Bubble
Phase

VAN
CAB + CAB

S kgaCap — Cy)

G, Cyp
— A
R

Gc, Car
Mass flow in bubble phase
Figure 4.22

Thus, the molar balance gives us the following two equations:
For the dense phase: an integral equation according to (4.44),

H
GI-(CAf—CA)—‘rQE-Ac/ (CAB—CA)dh = A;-H -pp-k-Cy. (4.46)
0

For the bubble phase: a differential equation according to (4.45),

GCdZZB = —Qp- A (Cap —Ca) (4.47)

174 Chapter 4: Initial Value Problems

with the initial condition Cap = Cay at b = 0. These two coupled integrodifferential
equations (IDE) can be manipulated analytically as we shall see.

4.3.2 Analytical Manipulation of the Joint Integrodifferential Equa-
tions

Analytical solution of the differential equation (4.47)

By separation of variables we obtain

dCan _ (QE'AC>dh
(Cap— Ca) Ge '
-~

constant

By integration we find that

Qe - Ac

ln(CAB—CA) - —(GC

>h+C1.

To find the constant of integration C7, we use the initial condition at h = 0 and obtain
Cl = In (CAf — CA)
Thus we get
In (Cap—Ca) _ (QE-AC> .
(Cay—Ca) Go
~

Exponentiation gives us (Cap — Ca)/(Cap —Ca) = e .

Thus we have found the solution of the differential equation (4.47) to be
Cap(h) —Cy = (CAf—CA)-efah (4.48)

for & = Qg - Ac/Gc. Substitution of equation (4.48) into the integral equation (4.46)
for the dense phase subsequently gives us

H
G]-(CAf—CA)-i-QE-Ac-(CAf—CA)-/ e dh = AI-H-pb-k-CA.
0
Since fOHe*@hdh = (1-e) /aanda = Q- Ac/Gc we get
,QEACH
G]'(CAf_CA)+GC'(CAf_CA)' 1—e ¢Co = A;-H-pp-k-Cy.

In more simplified and reorganized form this becomes

QpAc

(G1+GC'(1—€ Go H))-(CAf—CA) = A;-H-pp-k-Cy. (4.49)

Note the following;:

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 175

1. The analogy between the above equations and the CSTR model can be easily
realized. From this analogy we can define “the modified flow rate” with the following
physical significance:

(a) At very high values of Qg the pseudo flow rate
_QeAcH
GI+GC-<1—6 Go)

converges to G = G + G¢; thus equation (4.49) approaches that of a CSTR.
(b) If Qg =~ 0, then G ~ G7; thus we have complete segregation.

2. When G = G + G¢, the output concentration Ca,,: of A at h = H is calculated
from the relation

Gr-Ca+Gc-CaB lh=r = G- Caout -

Heat balance design equations for fluidized beds

For a reaction A — D with the reaction constant £k = kg -e~ a7 we have the situation
of Figure 4.23.
A A
Ge» TBoul G, T
Bubble 0, Dense
Phase — Phase
0 I~ Heating/cooling
L " E / coil
A A
Ge, Tf G;, Tf
G T,
Heat transfer in the fluidized bed
Figure 4.23

The heat balance equation applied to the dense phase gives us

H
G[-p-Cp~(T—Tf) = AIHpbkCA(—AH)—‘r (/ hBaAc(TB —T)dh) _UAJ(T_TJ) .
0

(4.50)

176

Chapter 4: Initial Value Problems

Note that we consider that the heat supply/removal coil affects only the dense phase
balance. Here

Tp =
T, =
T =
U =
A =
hp =

bubble phase temperature (variable),

jacket temperature,

dense phase temperature (constant),

heat transfer coefficient between the jacket and dense phase,

jacket area available for heat transfer, and

heat transfer coefficient between the bubble and the dense phase per unit
volume of the bubble phase (in (K - .J)/(sec - cm?)).

T

Bubble
Phase

TB+A]2g

h+Ah . .

> (T =T)

G T,
l— A I
M~ C__/

T

G, TB

Heat flow in the bubble phase
Figure 4.24

The heat balance on the bubble phase in Figure 4.24 that is assumed to be in plug flow
mode and to have a negligible rate of reaction, as well as a negligible heat transfer with
the heating/cooling coil, leads to

Go-p-Cp-Tp = Go-p-Cp-Tp+ATg)—hp-a-Ac-Ah- (T —Tg) .

After rearranging and taking the limit of ATz /Ah as Ah — 0 we obtain the correspond-

ing DE

dTp

Ge-p-Cp- n

= hB-CL-Ac-(T—TB). (451)

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 177

Analytical solution of (4.51)
By separating the variables in equation (4.51) we get

dl'p

(T —Tg)
where 8 = (hp-a-Ac)/(Gec - p-Cp) . Integration givesus —In(T'—Tg) = B-h+Csy .
The integration constant C'y can be calculated from the initial condition Tp = T} at

h = 0as Cy = —In(T —Ty).
Substituting this value back in, we get

T—-Tg
| = —f-h.
! (T =1) 7
And exponentiation finally gives us
T - TB _ efﬁ.h
T Ty '

We use the above relation in the heat balance equation for the dense phase (4.50) in
order to calculate the integral heat transfer term:

Gr-p-Cp(T—-Ty) =

H
= A H-py ko e BT .Ca(~AH) — hp ~a~Ac(T—Tf)/ e Prdh+ U - Ay(T = Ty) .
0

Note that

H 1 Ge-p-C
e Phgh = 1—e BHY = © Pl e PHY.
/ H)= e)

Therefore we can write

[G1pCp + GopCp(l — e P (T~ Tf) = ArHppkoe™ 77 Ca(~AH) +UA;(T —Ty) .

For a fluidized bed without chemical reaction, the heat transfer equation thus will be
pCp [Gr+Ge (1 —e PI)(T -Ty) = U-Ay(T -Ty). (4.52)

We shall make use of these model equations at the end of Section 4.4 for our numerical
computations.

4.3.3 Bifurcation and Dynamic Behavior of Fluidized Bed Cat-
alytic Reactors
4.3.4 Dynamic Models and Chemisorption Mechanisms

From the mass balance equation (4.49) we can obtain the unsteady-state equations for a
dynamic model by using an accumulation term as follows.

RQeACc 1

<G1+Gc- (1—6 Go)) (Cay—Ca) = Ar-H-py-k-Cx + Accumulation . (4.53)

178 Chapter 4: Initial Value Problems

The number of moles 4 of component A inside the reactor is

ﬁAZAI-H-é‘-CA-i-A]-H-pb-CAs, (4.54)
where
na = number of moles of component in the fluidized bed reactor,
pp = bulk density of the catalyst = ¢, ;a;aézzt = ps(l—e),
ps = solid density of the catalyst = 7, ;f‘;ilzzt .

Differentiation of 4 in equation (4.54) with respect to time ¢ gives us
dn dC s
dt dt
Substituting (4.55) into (4.53) yields

) dCas

+ o dt

= A;-H (5) = Accumulation . (4.55)

_QgrAc dC dC
(G1+Gc~(1—6 Go H))(CAf—CA) = Ar-H-pyk-Cat+Ar-H (s~ dt“‘+pb~ d*t“s
(4.56)

Thus we have obtained a differential equation in which two variables, C'4 and Cag, are
functions of time. To solve for these coupled functions, either we have to find a simple
relation between C'4 and C4g, or we need to develop an additional differential equation
for CAS'

We will follow the first path and build on the following physically justified details re-
garding the relation between C'4 and Cyg. We consider the chemisorption step of the
gas-solid catalytic reaction A — D as follows:

A+S < AS at equilibrium |,
AS — D+ X.

Thus we can write

Cas
KA =)
where Cy = Cpn — Cag and C,, is the total concentration of active sites, and we get

Ka-Cu(Cry —Cas) = Cas .

Thus _
Ky-Ch-Ca

C p—
AS 14+ Ka-Ca

This is a simple Langmuir? isotherm.
Considering low concentrations of Cjy, i.e., a linear relation between C'4 and Cag, we
obtain

Cas = (Ka-Cp)Ca . (4.57)

3Irving Langmuir, US chemist and engineer, 1881-1957

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 179

By differentiating equation (4.57) with respect to time ¢ (and assuming constant K 4 and

Cp) we get

dCas L dCy
g = EaCm) o

Therefore, the final unsteady-state mass balance equation, or the dynamic model derived
earlier in (4.56), takes the form

(4.58)

_QpAc —~ dC'
<G1+GC'<1—€ Gc H))(CAf—CA) = A[~H~pb~k~cA+A['H(E+KA~Cm~pb) th
(4.59)

Note: It is always difficult to find usable values of K4 and C,,, except for very common
processes or reactions.

A nonlinear isotherm will complicate the capacitance term as follows:

dCys
dt

1 dCA

= KA-Cm<(1+KA-CA) gt

dC
+CA(_1)(1+KA'CA)72KA th> .

In this case we have

dCys . = 1 Ka-Cy dC4
g = Cm() dt

14 Ka-Ca (14+Kp-Cy)? (4.60)

For a nonisothermal system the unsteady-heat balance equation (dynamic model) is given
by

40
- (T— Tf) = A;-H- koeiR?pr . CA(—AH) -U- AJ(T_ TJ) - dcf R (461)
where () is the heat content of the fluidized bed reactor,

gl GI‘P‘CP“F(GC‘P‘CP(l—ei'B'H)) ,

Q = A[-.H-é"p-Cp-Tg—‘y-A['.H-pb-Cps-Ts7 (4.62)
and p and Cp denote the gas phase density and the specific heat, respectively.
Assuming negligible heat transfer resistances between the gas and solid, we have

T, = Ts = T.

By differentiating equation (4.62) with respect to ¢t we obtain

dQ dr

— A -Hle »n- .)
dt ! gr Cotr-Crs |y
negligible
Therefore _
d dr
@ Ar-H-py-Cps (4.63)

dt dt -

180 Chapter 4: Initial Value Problems

The expression for d@Q/dt in equation (4.63) can be substituted into equation (4.61) to
obtain our final unsteady-state heat balance relation, namely

dr
y(T=Ty) = Ap-H-koe” 27 py-Ca(=AH)—U-Ay(T—Ty)—A;-H-py-Cpg - (464)
With these expressions, the unsteady-state equations become:

For the mass balance equation:

dCy
dt

where vy = G1+Ge(l —e) for a = Qp - Ac/Ge.
And for the heat balance equation:

Ar-H-ps-Cps dT Ar-H-py-k-Ca(—AH) U-A
= Ty=Y)+ +

p-Cp dt Ty =Y) p-Cp p-Cp
with vy = Gr+ Ge(l —e PH) =5/(p- Cp) and k = ko - e E/ET,

In normalized time 7 =t - p- Cp/(Ar - H - py - Cps), equations (4.65) and (4.66) take the
form

AI-H-(G-i-KAC'mpb) = ’yM(CAf—CA)—AJ-H-pb-k-CA, (4.65)

(T)—T) (4.66)

‘Z = (T —T) + 1 pr}f R0 ~B/RT G (CAH) 4 5_ C‘i (Ty —T) (4.67)
and
bodCa Y (Cay—Ca) —Ap-H-py-ko-e BT .Cy (4.68)
Ley dr
with the Lewis* number
Les = Py - Cps

(e+Ka-Cp-pp)p-Cp

The dimensionless Lewis number measures the ratio of the heat capacitance term and
the mass capacitance term.

With the normalized parameters

T Ty Ty (—AH) - Caref E
Yy = T) yr = T) Yy = T) =) Y=)
ref ref ref p'CP'Tref R'Tref
Ca CAf - .
= s = N K = 5 d = A . H . . k 5
oA CAref Red CAref P Cp anc o ! po o
we finally rewrite the DEs (4.67) and (4.68) as
dy /Yy 0
g = s —y) o aa f4 K(ys —y) (4.69)
and L
xA = — — . 7’7/:‘/ .
Lea dr Yl —2a) —a-e zA . (4.70)

4Warren K. Lewis, US chemical engineer, 1882-1975

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 181

4.3.5 Fluidized Bed Catalytic Reactor with Consecutive Reac-
tions

The procedure used in the previous section to develop a mathematical model for a cat-
alytic bubbling fluidized bed reactor with a simple reaction A — B can be extended to
develop a model for the practically important consecutive reaction A LI LR C,
where B is the desired product.

The maximum productivity of the desired product B usually occurs at the middle
unstable saddle-type steady state. In order to stabilize the unstable steady state, a sim-
ple proportional-feedback-controlled system can be used, and we shall analyze such a
controller now. A simple feedback-controlled bubbling fluidized bed is shown in Figure

4.25.

I'M = temperature measurment

bubble 0, dense PC = proportional controller
phase —| phase E@<_Ym ¥ = input feed temperature
(plug flow) 0 (perfect ¥ = controlled feed temperature
] mixing) Y, = set point which is usually
the middle saddle type
; ; steady state temperature.
Y, i% steam
i

Simulation model for two-phase fluidized bed reactor with single input single output
proportional (SISOP) feedback control
Figure 4.25

Using the usual assumptions, we obtain the following dimensionless unsteady-state mate-
rial and energy balance equations for the dense (emulsion) phase of the bubbling fluidized
bed:

(I)i-A[-H- = GI(Cif_Ci)“FQEi'AC/ (CiB—Ci)dh—ps(l—G)AI-H-ZUZ‘J‘TJ‘,
0 j=1
(4.71)

182 Chapter 4: Initial Value Problems

where 25:1 o7, is the net rate of reaction of component 7. Notice further that p, =

ps(1—e).
Likewise we obtain the unsteady-state heat balance equation

by -Ar-H- ‘Z = (4.72)

H 2
= Gy -p-CP(Tf —T)-i—p'CP-QH-Ac/ (T —T)dh + Ay -H-prT‘j(—AHj),
0 =

where ®; = ¢ + K;Cynpp is the specific mass capacity of component i per unit volume of
the dense phase, by = psCps is the specific heat capacity per unit volume of the dense
phase, and r; denotes the rate of reaction for A — B and rs that for B — C.
Assuming that the bubble phase is in a pseudosteady state, the bubble phase equations
are

Gc dn = —QEpi-Ac(Cip — Cy) (4.73)

and T
Ge d;’ = —Qu-Ac(Tg —T) (4.74)

with Qg = hp -a/p- Cp for the heat transfer coefficient hp between the bubble phase
and the dense phase (per unit volume of the bubble phase) measured in .J/(sec-cm? - K),
and for the area a of heat transfer between the bubble phase and the dense phase per
unit volume of the bubble phase in 1/e¢m. The two DEs (4.73) and (4.74) form an IVP
with the initial conditions C;jp = Cjy and Tp = Tf at h = 0.

Solving the linear differential equations (4.73) and (4.74) analytically as before, then eval-
uating the integrals in equations (4.71) and (4.72), and putting them into dimensionless
form gives us the following three joint differential equations:

1 d _
Lea ;CTA = Blzag—wa)—ar-e "V xy, (4.75)
Ldeg _ 5 -7/y —72/y
Lep dr B(zps —awp)+a1-e TA—Qg-e€ *B , (4.76)
ay B(5 —n/ —/
i B(yr —y) +a1fr-e "V zqg+agfy-e” Y g, (4.77)

where 7 is the dimensionless time 7 = ¢-p-Cp/(A;- H - ps - Cps) and Ley and Lep
are the Lewis numbers

Leq — pS;CPS and Lep — ps - Cps

(e+Ka-Cp-pp)p-Cp (e+Kp-Cp-pp)p-Cp

Moreover, B = G + G¢(1 — e*a,H) for o/ = Qpgi-Ac/Ge and Qp; = Qra = Qpp =
Qu, and Gog = GB[l.O-i-e/(af—l.O)],GB = AU —Uny), Gr = A-U-Gg,
AC = G-GB/[(af—l.O)Umf], and A[ZA—Ac.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 183

For this case we use the following parameter values:
A = 03m? U = 01m/sec, Upns = 0.00875 m/sec, ay = 19.5, ¢ = 0.4,
Qri = Qra = Qpp = Qu = 04sec™!, H = 1.0m.

And for the dimensionless group we take
ar = 108 sec™, ay = 10 sec™t, B = 0.4, By = 0.6,
v1 = 18.0, 7o = 27.0, Ley = 1.0, Lep = 0.454545,

zar = 1.0, zpy = 0.0, z¢y = 0.0,
with the dimensionless preliminary feed temperature y; = 0.47396 and the preliminary
setpoint vy, = 0.86446.
[In the next section we shall learn why and how the feed temperature and setpoint values

were found for optimal performance of the system under feedback control.]
The central PID controlled i is given as

t

_ dy

Ur = yr + K(ym —v) +K1/ (Ym —y)dT+KDdT :
0

Here the acronym PID refers to proportional, integral, and derivative.

We will concentrate on proportional control, i.e., use g5 of the form gy = vy +K(ym —y)
with K > 0.

The steady-state equations corresponding to (4.75), (4.76), and (4.77) are

Blzag—wa) = ar-e Voxy, (4.78)

B(zpf—zp) = —m e MY At ag-e Y xp (4.79)
and B

B(gs—y)+anfri-e MV watasfy-e Y ap = 0, (4.80)

where g = yr + K (ym —y) for K > 0. Here the parameters o1, as, B1, 2, 71, Y2, TAf,
By, Yr, and yp, are all given above, and the proportional gain K of the controller will
be used as the bifurcation parameter.
How do we calculate the only other remaining parameter B?
Note that)

B = G+ Go(l —e @y,

where each parameter on the right-hand side depends on our supplied data and is given
by the formulas following equation (4.77). In particular, the number B is readily com-
puted for our data as B = 0.019372 m3/sec .

The steady-state equations (4.78), (4.79), and (4.80) can be further reduced to one
equation in y and to two additional simple relations. These relations (4.81) for z4 in

184 Chapter 4: Initial Value Problems

terms of y and (4.82) for zp in terms of y help us calculate x4 and xzp as soon as y is
determined from the single equation (4.84) in y and K.

From (4.78) we have

— — _ BCCAf
Bras — (B i m/y) = _ : 4.81
TAf = Ta e O A= B ey (4.81)
Substituting x4 from (4.81) into (4.79) with x g set to zero gives us
_ Bz
_ -n/y . Af _ —y2/y
Bzp are Bt aye—nlv e T,
and by rearrangement we get
_ -~ alef'Yl/yBCCAf
B+ 72/?/) = :
vB (“2e B+ ajen/y
Thus &
—M/YB
P are rar (4.82)

(B+ aren/¥) - (B+aze=r/v)

Substituting the expressions for x4 and xp from equations (4.81) and (4.82) into (4.80)
gives us the following equation for the heat removal on the left and for the heat generation
on the right-hand side:

_ 0[1516771/113fo alazﬂze*’Yl/ye*’Yz/yBfo

B(y—yys) = B+ aje-n/v (B + are=n/v) - (B + ane—2/v) (= G(y)). (4.83)

Using our controller of the form §¢ = y5 + K(ym —y) for K > 0, the left-hand-side heat
removal function in (4.83) becomes

By — (ys + K(ym —v)) = B((1+ K)y— (ys + Kym)) = G(y) , (4.84)

the heat generation function G(y) on the right-hand side of (4.83).

We can normalize equation (4.84) by dividing by its common factor B to obtain the
simpler form . B
1+ K)y = (yr + Kym) = G(y)/B = G(y) - (4.85)

4.3.6 Numerical Treatment of the Steady-State and Dynamical
Cases of the Bubbling Fluidized Bed Catalytic Reactor
with Consecutive Reactions

First we look for the solutions of equation (4.84). To do so we divide equation (4.84) by
its common factor B and bring it into standard form F(y, K) = 0 as follows:

B Oél,@l@i’h/yIAf 061062/6267’Y1/y67’Y2/yIAf B
Fly, K) = (14 K)y—(ys+Kym) B+ are—/y (B{—ale*’h/y) . (B+a26772/y) =0

(4.86)

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 185

To solve equation (4.86) for y and K > 0 we use the graphical level set method that we
have introduced in Chapter 3 for the adiabatic and nonadiabatic CSTRs and draw the
surface z = F'(y, K), as well as the y versus K curve of solutions to equation (4.86) in
order to exhibit and study the bifurcation behavior of the underlying system.

First we list the code of our graphing controlhetss.m function for F(y, K), which
plots the surface z = F(y, K)v and the set of solutions of (4.86) in the white zero con-
tour curve F(y, K) = 0 on the surface, as well as as another copy of contour on the
ground plane below the surface in Figure 4.26. This program is written similarly as
adiabNisosurf.min Chapter 3.

function controlhetss(ystart,yend,Kstart,Kend,al,a2,bl,b2,gal,ga2,xaf ,N,yf,ym)
% controlhetss(ystart,yend,Kstart,Kend,al,a2,bl,b2,gal,ga2,xaf ,N,yf,ym)
% Sample call:

% (full parameter call with yf and ym values chosen near the automatically
A computed ones)

% controlhetss(.3,1.5,0,6,10°8,10°11.5,0.4,0.6,18,27,1.0,100,0.488,0.84)

% (reduced (i.e., normal) short parameter list call)

% controlhetss(0.3,1.5,0,6,10°8,10°11.5,0.4,0.6,18,27,1.0);

% [Both plots almost agree.]

% Plots the heterogeneous control equation surface and the zero contour curve
% Input : limiting values for y and K,

% seven system parameters al, a2, bl, b2, gal, ga2, xaf,
% as well as the (optional) size N of the y and K partitionms,
% and yf anf ym (again optional).
% If the three parameters N, yf, and ym are not set, contolhetss will
A use the default N = 200 and compute the parameters yf and ym in
% hetcontbifrange.m automatically.
% Output: 3D surface plot of the control equation surface with xero contours.
% [For best view, rotate figure until the level zero bifurcation
A curves are in good view.]
hold off, % extra constants to compute Bbar
A=0.3; U= 0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H=1.0;
if nargin == 11, % default setting
N = 200;

[yf,ym] = hetcontbifrange(yend,al,a2,bl,b2,gal,ga2,xaf,0,0,400); end,
if nargin == 12,
[yf,ym] = hetcontbifrange(yend,al,a2,bl,b2,gal,ga2,xaf,0,0,400); end,

% make grids for y and K :

[y,K] = meshgrid([ystart: (yend-ystart)/N:yend],...

[Kstart: (Kend-Kstart) /N:Kend]) ;
Bbar = Bfun(A,U,Unf,alf,eps,QE,H); % evaluate Bbar from extra constants
z = Ffun(y,K,al,a2,bl,b2,gal,ga2,xaf,yf,ym,Bbar); 9’ z = het. control function
h = surf(K,y,z); hold on;
shading interp; colormap(hsv(128)); colorbar,’ plot surface
a = get(gca,’zlim’); zpos = a(l); % Always put O contour below the plot
[cc,hh] = contour3(K,y,z,[0 0],’-k’); % draw zero contour data on surface

186 Chapter 4: Initial Value Problems

[ccc,hhh] = contour3(X,y,z,[0 0],’-b’); % put O contour data at the bottom
for i = 1:length(hhh) % size zpos to match the data

zzz = get(hhh(i),’Zdata’);

set (hhh(i),’Zdata’,zpos*ones(size(zzz))); end

xlabel (’K’,’FontSize’,12), % annotate top 3D plot

ylabel(’y’, ’Rotation’,0, ’FontSize’,12),
zlabel(’controlhetss(Y,K,al,a2,bl,b2,gal,ga2,xaf,yf,ym,N)’, FontSize’,12),
title([{’Heterogeneous Solid State Control Problem’},{’ ’},...

{0’ \alpha_1 = ’ ,num2str(al,’%10.5g’),’, \alpha_ 2 = ’,...
num2str(a2,’%10.5g’),’; \beta_1l = ’,num2str(bl,’%10.5g°),...
>, \beta_2 = ’,num2str(b2,’%10.5g¢’),’; \gamma_1 = ’,...
num2str(gal,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...
’; x_{Af} = ’ ,num2str(xaf,’’10.5g’),’, y_f = ’ ,num2str(yf,’%10.5g°),...
>, y_m = ’,num2str(ym,’%10.5g’),’, and Bbar = ’,

num2str(Bbar, ’%10.5g’)]1}], ’FontSize’,12), hold off

function f = Ffun(y,K,al,a2,bl,b2,gal,ga2,xaf,yf,ym,Bbar) % heterog. c. funct
f = (14K) .*xy - (yf+K*xym) - (alxblxexp(-gal./y)*xaf)./(Bbar+tal*exp(-gal./y)) ...
- (alxa2xb2xexp((-gal-ga2)./y)*xaf)./...
((Bbar + alxexp(-gal./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar
GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));
alprime = QE*AC/GC; g = A*U - GCxexp(-alprimexH);

Note that this section and our programs herein deal only with the case that the feed
rates for B and C are zero, i.e., xpy = vcy = 0 as specified on p. 183.

Figure 4.26 shows the (rotated) surface and contour zero plot obtained by calling
controlhetss(0.3,1.5,0,6,10°8,10°11,0.4,0.6,18,27,1,200, .47396, .86446) for
the data that was specified on p. 183. The displayed MATLAB figure at first hides parts
of the bifurcation curves. Therefore, before printing or saving a 3D MATLAB figure, it is
best to use the rotation button of the toolbar in MATLAB’s Figure window, by clicking
on it and then dragging the mouse over the figure until a good view is obtained.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 187

Heterogeneous Solid State Control Problem

a, = 16408, a, = 1e+11;B, = 0.4,B, = 06y, = 18,y, = 27, = 1.y, = 0.47396,y = 0.86446, and Bbar = 0.019372

controlhetss(Y K,a1,a2,b1,b2,ga1,ga2 xaf yf,ym,N)

Bifurcation curve for y values in terms of the feedback controller gain K
Figure 4.26

Figure 4.26 indicates that there are three steady states for the system with associated
values of y ~ 0.4..., 0.8..., and 1.4... when no feedback (K = 0) is applied. In the y-K
ground plane of Figure 4.26 the reader will notice a “horizontal” line at y = y,,, = 0.86446
for all values of K. The contour curve in Figure 4.26 reminds us of Figure 3.21 in Sec-
tion 3.2 and the pitchfork bifurcation for a nonadiabatic, nonisothermal CSTR with one
stable steady state at the set point. As in Figure 3.21 for the CSTR, here we observe
a fixed steady state of our system for all values of K. This steady state lies at the set
point y = y,, = 0.86446 of the system. The reason for this and its meaning will become
apparent when we study equation (4.88) on p. 192 in Figure 4.29.

188 Chapter 4: Initial Value Problems

Since we are interested in generating the maximal amount of the intermediate component
B in the consecutive reaction A — B — C, we look at the concentration of B defined by
xp(y) in equation (4.82). This we do using the MATLAB function xBversusy.m.

function xBym = xBversusy(ystart,yend,al,a2,gal,ga2,xaf,N,pic,ym)
% xBversusy(ystart,yend,al,a2,gal,ga2,xaf,N,pic,ym)

% sample call : xBversusy(0.6,1.2,1078,10711,18,27,1,400)

% Input : y interval, system parameters, size of partition N;

% pic = 1 for plot

% Output: plot of xB(y), marks max of xB on the plot

if nargin == 8, pic = 1; ym = pi; xBym = pi; end
if nargin == 9, ym = pi; xbym = pi; end

A=0.3; U=0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;
Y = [ystart:(yend-ystart)/N:yend]; % preparations and evaluations
El = exp(-gal./Y); E2 = exp(-ga2./Y);
Bbar = Bfun(A,U,Unf,alf,eps,QE,H);

= (al*El1xBbar*xaf)./((Bbar+al*E1l) .*(Bbar+a2*E2));
if nargin == 10, E1 = exp(-gal/ym); E2 = exp(-ga2/ym); % find xB(ym)

xBym = (al*El1xBbar*xaf)/((Bbar+al*E1l)*(Bbar+a2+E2)); end

if pic == 1, plot(Y,XB); hold on, % plot if desired

= find(XB == max(XB)); i = min(i); yf = Y(i); 7 find maximum
plot(yf,XB(i),’+r’), v = axis; plot(yf,v(3),’+k’), plot(v(1),XB(i),’+k’)

xlabel([{’ ’},{[’y (with maximum °’,num2str(XB(i),’%10.5g’),
> of x_B(y) at y = ’,num2str(yf,’%10.5g’),’)’1}],’Fontsize’,14)
ylabel(’x_B > ’Rotation’,0,’Fontsize’,14)
title([{’Plot of x_B(y) for’ },{[’\alpha_l = ’,num25tr(a1 %10.5g°),
, \alpha_2 = ,num25tr(a2 ’%10.5g’),’; \gamma_1 = ’,...
num2str(gal,’%10.5g’),’, \gamma_ 2 ,num2str(ga2 *%10. 5g),
75 x_{Af} = ’ ,num2str(xaf, ’%10 5g’),’, and Bbar = ’,...

num2str(Bbar, ’%10.5g’)]13}], ’FontSize’,14), hold off, end

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar
GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));
alprime = QE*AC/GC; g = A*U - GCxexp(-alprimexH);

The call of xBversusy(0.001,1.6,10°8,10711,18,27,1,400) produces the graph of
xp in Figure 4.27 for the very same parameter data from p. 183 that was used before to
obtain Figure 4.26.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 189

Plot of xB(y) for
o, = 1e+08, a, = 1e+11;~y1 =18, Y, = 27; Xpe = 1, and Bbar = 0.019372
0.8 T T T T T T T

0.5~

0.3

0.2

0.1

0 I I ; I I I
0.5 0.6 0.7 0.8 0.9 1 11 1.2 1.3

y (with maximum 0.72224 of xB(y) at y=0.864)
Plot of z5(y)
Figure 4.27

Figure 4.27 describes the concentration xzp of B in terms of y according to formula
(4.82) on p. 184. This concentration is very low (almost zero) at the two stable steady
states associated with y &~ 0.4... and 1.4.... But it has a very desirable value of 72% when
y = 0.86.... Thus we should try to operate the system at this middle steady state with the
dimensionless temperature y at around 0.86.... Unfortunately, this middle steady state
is a saddle-type steady state and therefore it is unstable. The system will always try to
move to one of the stable steady states with, unfortunately, a negligibly low rendition of
B, when no or low feedback K < 3.8 is applied. But as Figure 4.26 indicates, if we apply
a sufficient amount of feedback K > 4 in this example, then the resulting system has a
unique steady-state solution with y ~ 0.86... and the system yields a high concentration
of B. Moreover, once the steady state is made unique by feedback K > 4, this steady
state is necessarily globally stable and the system will move toward it for all (reasonable)
starting values of x 4, x5, and y. We shall depict the dynamic behavior of the associated
IVP consisting of the differential equations (4.75), (4.76), and (4.77) later on, in Figures
4.34 to 4.37.

But first we investigate how to find the “magic” values of the feed temperature y; and

190 Chapter 4: Initial Value Problems

the setpoint y,, on p. 183 systematically. This is again best achieved graphically.
Equation (4.86), F'(y, K) = 0, can be rewritten as

9, K) = (1+K)y—(yr + Kym) = (4.87)
arfre " Vg aragfae Ve g 5
A By 5 _ 5 - = fly,K) .
B+ ajen/y (B4 aie=n/v) . (B+ aze=12/Y)

The left-hand-side function g(y, K) in (4.87) represents a line in the y-¢g plane with slope
1+ K and g intercept —y¢ — K - yp,. To find values of y¢ and y,, with associated multiple
(or a unique) steady states of the system, we need to find instances of multiple (or unique)
crossing points of this line and the exponential function f(y, K) on the right-hand side of
equation (4.87). For this purpose we use the MATLAB m function hetcontbifrange.m.

function [yf, ym] = ...
hetcontbifrange(yend,al,a2,bl,b2,gal,ga2,xaf,K,pict,N)

% hetcontbifrange(yend,al,a2,bl,b2,gal,ga2,xaf,K,pict,N)

% sample call:

% b = hetcontbifrange(1.3,10°8,10°11,0.4,0.6,18,27,1.0,.1,1,400); or

% [yf, ym] = hetcontbifrange(1.3,10°8,10711,0.4,0.6,18,27,1.0,0,0);

% Input : end of range of y values (yend >= yf + bl + b2);

% system parameters al, a2, bl, b2, gal, ga2, xaf,
A feedback factor K; partition size N for the y interval
% pict = 1 will generate plots;
% any other value for pict will only compute ym and yf
% Output: Graph of the line and exponential functions in (4.84);
A yf = feed temperature for max rendition of B
A ym = set point for A to B reaction
if nargin == 9, pict = 0; N = 400; end % default with no plot
if nargin == 10, N = 400; end, ystart = 0.001; % additional parameters
A=0.3; U=0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;
Bbar = Bfun(A,U,Unf,alf,eps,QE,H); % evaluate Bbar from extra constants
Y = [ystart:(yend-ystart)/N:yend]; % create y partition
El = exp(-gal./Y); E2 = exp(-ga2./Y); % evaluate exponential functions
XB = (al*ElxBbarx*xaf)./((Bbar+al*El) .*(Bbar+a2*E2)); % evaluate xB(y) curve
m = min(find(XB == max(XB))); ym = Y(m); % find ym from xB curve
Gym = ffun(ym,al,a2,bl,b2,gal,ga2,xaf ,Bbar); % find yf from f(ym,K) curve
yf = ym - Gym; G = yline(Y,K,yf,ym); % and get line data
F = ffun(Y,al,a2,bl,b2,gal,ga2,xaf ,Bbar); % get £(Y,K) data
if pict == 1, % plot only if desired

subplot(2,1,1) % plot line and exp curve on top graph

plot(Y,F), hold on, plot(Y,G,’r’), plot(ym,yline(ym,K,yf,ym),’or’);
axis([ystart,yend,-.1*min(max (F) ,max(G)),1.1*min(max(F) ,max(G))]), v = axis;
plot(ym,v(3),’0k’) % mark steady state at ym

xlabel(’y’, ’FontSize’,12), % label and title with data

ylabel(’f(y,K) in blue, g(y,K) in red’,’FontSize’,12)

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 191

title([{’Graphic zeros of equations (4.84), (4.85) for :’},{’ ’},...
{[’\alpha_1 = ’ ,num2str(al,’%10.5g’),’, \alpha 2 = ’,...
num2str(a2,’%10.5g’),’; \beta_1l = ’ ,num2str(bl,’%10.5g’),...
>, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...
num2str(gal,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...
’; x_{Af} = ’,num2str(xaf,’%10.5g’),’, K = ’ ,num2str(K,’’%10.5g’),...
>, Bbar = ’,num2str(Bbar,’%10.5g’)]}], ’FontSize’,12), hold off % top plot

subplot(2,1,2) % plot xB(y) curve
plot(Y,XB,’b’); w = axis; axis([v(1),v(2),w(3),w(4)]); hold on
plot(ym,XB(m),’+r’), plot(ym,w(3),’+k’) % mark maximum
xlabel([{’ *},{[’y (maximum ’,num2str(XB(m),’%10.5g’),...
> of x_ B(y) at y_m = y_{opt} = ’,num2str(ym,’%10.5g’),”)’1}],...
’FontSize’,12),

title([’Computed values : y_m = ’,num2str(ym,’%10.5g’),...
>, y_f = ’,num2str(yf,’%10.5g’)], FontSize’,12),
ylabel(’x_B ’>,’Rotation’,0,’FontSize’,12), hold off, J bottom plot
end
function g = yline(y,K,yf,ym) % evaluate line graph

g = (1+K)xy - (yf+K*ym);

function f = ffun(y,al,a2,bl,b2,gal,ga2,xaf,Bbar) % evaluate exp graph
f = (alxblxexp(-gal./y)*xaf)./(Bbar+al*exp(-gal./y)) + ...
(alxa2*b2xexp((-gal-ga2)./y)*xaf)./...
((Bbar + al*xexp(-gal./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Unf,alf,eps,QE,H) % evaluate Bbar
GB = Ax(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));

Note that the code linem = min(find(XB == max(XB))); ym = Y(m); in the beginning
of the above code is rather crude in determining the maximum of zg. This is so since
the maximum value of 3 and the position y,, in our code clearly depend on the chosen
y partition, namely on its endpoints yYstqr+ and Yend, as well as on the step size, i.e., the
chosen N. But this approach suffices to obtain 2 or 3 valid digits for y¢ and ¥,,, which
is good enough for all practical purposes here.

We mention our lax maximum search so that users will not be worried about slightly
varying ys and y,, outputs of controlhetss.m, hetcontbifrange.m, and xBversusy.m
when the inputs Ystart, Yend, Or N are varied while the system parameters are kept fixed.
Compare with Exercise 1 at the end of this section.

A call of [yf,ym] = hetcontbifrange(1.6,10°8,10°11,0.4,.6,18,27,1.0,0,1,400)
gives us the image (in Figure 4.28) of the line and exponential curve on the two sides of
equation (4.87) for K = 0 and 0 < y < 1.6. The plot indicates three steady states for
K=0at y~04..., 0.86..., and 1.4..., i.e., at the intersection points of the line and the
curve in the top plot. The bottom plot repeats the plot of x5 (y) of Figure 4.27.

192 Chapter 4: Initial Value Problems

Graphic zeros of equations (4.84), (4.85) for :
o, = 1e+08, a, = 1e+11; [51 =04, Bz =0.6; Y, = 18, Y, = 27; Xy = 1, K=0, Bbar = 0.019372
T

T T T -

1+

< 4
w » o N » ©
T T T T T T T

f(y,K) solid line, g(y,K) dashed
N
T

© ©o o o o o o o

o o

Computed values : Y, = 0.86446 , ¥i= 0.47396
0.8 T T T T T

0.6~ B

0.5 B

04 4

0.3 -

0.2~ B

0.1 B

0 L L I T I L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

y (maximum 0.72218 of xB(y) aty = Yopt = 0.86446)

Triple steady states for the given data on p. 183 and K =0
Figure 4.28

The graph of zp versus y in Figure 4.28 is based on the relation (4.82). Note that the
steady states with y =~ 0.4... and 1.4... correspond to rather low values of xp, while
the middle steady state at y ~ 0.8... gives us the maximal rendition of around 72% of
component B when K = 0.

What happens if we change K? In equation (4.87) we were given the equation

9(y, K) = (1+ K)y = (yr + Kym) (4.88)
of the line depicted in the top graph of Figure 4.28. Let us evaluate g at y,, for any K:
9ym, K) = (L+ K)ym = (yr + Kym) = ym =5 = 9(ym0) .
Thus for any feedback K > 0, the line (4.88) passes through the point

(Ym> 9 Y, K)) = (YmsYm — Yf)

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 193

which we have marked by a circle in the topmost plot of Figure 4.28. If we increase K,
the line (4.88) increases its slope 1 + K while still passing through the point associated
with the middle (unstable) steady state for K = 0. Therefore for large enough K, when
the line becomes steep enough, there is only one intersection with the exponential curve
f(y, K) of equation (4.87) in Figure 4.28. Therefore for K sufficiently large, the feedback
system has a unique steady state. Due to uniqueness, this steady state is stable, and
moreover, at this steady state the system yields the optimal amount of component B.
Thus the location y,, of the maximal concentration 2z of B on the graph of z5(y) gives
the optimal output level y,, = yop+ for B that can be achieved globally. This optimal
output level can be maintained stably only via an appropriate feedback control, since
the associated steady state of the uncontrolled system is unstable. Recall the “horizontal
line” at y,, = Yopt on the ground plane of Figure 4.26.

We illustrate the behavior of the line g(y, K) on the left-hand side of (4.87) and the
right-hand-side exponential function f(y, K) of equation (4.87) in Figure 4.29, which
includes five versions of the topmost graph in Figure 4.28 for varying feedback values
K =0,2,4,6, and 10 in varying colors.

Graphic zeros of equations (4.84), (4.85) for :

o, =1e+08, o, = 1e+11; B, = 0.4, B, = 0.6;v, = 18,v,=27; x, =1, K=0 2 4 6 10, Bbar = 0.019372
T T T T TTT T T —K-o0
[/ — K=2
— K=4
— K=6
1 —— K=10

09—

08—

o
N
T

o
)
T

f(y,K) in black, g(y,K) in multicolor
° °
N [
T T

o
w
T

0.2

L L L / /“ “\:w“ L L L

’ Ty (Hoé(?e yfzo.g%ge, ym;o.asma)1‘2)

Multiple line plots for varying K
Figure 4.29

Notice that when K clearly exceeds 4, a visual inspection of Figure 4.29 shows that the
line intersects the exponential black curve from the right-hand side of (4.87) only once,
signifying a unique and statically stable steady state of the controlled system.

194 Chapter 4: Initial Value Problems

Figure 4.29 was obtained via the MATLAB code hetcontbifmultiK.m which we have
derived from hetcontbifrange.m. It features an auxiliary plot of the exponential curve
to find the proper axes limits for the plot first. Note also the elaborate sequence of “leg-
end” commands that we use.

function hetcontbifmultiK(yend,al,a2,bl,b2,gal,ga2,xaf ,K,N)

% hetcontbifmultiK(yend,al,a2,bl,b2,gal,ga2,xaf,K,N)

% sample call:

% hetcontbifmultik(1.6,10°8,10°11,0.4,0.6,18,27,1,[0,2,4,6,10],400)

% Input : end of range of y values (yend >= yf + bl + b2; ystart = 0.001);

% system parameters al, a2, bl, b2, gal, ga2, xaf,
% feedback factor K (a vector of length M <= 6 only);
A partition size N for the y interval

% Output: Graph of multiple lines and exponential function in (4.84);

if nargin == 9, N = 400; end, ystart = 0.001; % defaults
M = length(K); if M > 6, ’too many K values’, return, end,

% additional parameters
A=0.3; U=0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H=1.0;

Bbar = Bfun(A,U,Unf,alf,eps,QE,H); % evaluate Bbar from extra constants
Y = [ystart:(yend-ystart)/N:yend]; % create y partition

El = exp(-gal./Y); E2 = exp(-ga2./Y); % evaluate exponential functions

XB = (al*Elx*Bbarx*xaf)./((Bbar+al*El) .*(Bbar+a2*E2)); % evaluate xB(y) curve

m = min(find(XB == max(XB))); ym = Y(m); % find ym from xB curve

Gym = ffun(ym,al,a2,bl,b2,gal,ga2,xaf ,Bbar); % find yf from f(ym,K) curve

yf = ym - Gym; G = yline(Y,K(1),yf,ym); % and get line data

F = ffun(Y,al,a2,bl,b2,gal,ga2,xaf ,Bbar); % get £(Y,K) data

figure(1), plot(Y,F,’k’), % first trial plot for axis info only

axis([ystart,yend,-.1*min(max (F),max(G)),1.1*min(max(F) ,max(G))]), v = axis;

for i = 1:M % other K value line plots

k = K(1); G(i,:) = yline(Y,k,yf,ym); end % get line data for each K(i)
figure(2), plot(Y,G), axis(v), hold on % plot line for all k = K(i)
xlabel([’y (Here y_f = ’,num2str(yf,’%10.5g’),’, y_.m = ’,...

num2str(ym,’%10.5g’),’)’],’FontSize’,12),
ylabel(’£(y,K) in black, g(y,K) in multicolor’,’FontSize’,12)
title([{’Graphic zeros of equations (4.84), (4.85) for :’},{’ ’},...

{[’\alpha_1 = ’,num2str(al,’’10.5g’),’, \alpha_2 = ’,...
num2str(a2,’%10.5g’),’; \beta_1l = ’,num2str(bl,’%10.5g°),...
>, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...
num2str(gal,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...
75 x_{Af} = ’ ,num2str(xaf,’’10.5g’),’, K = ’,num2str(K,’%3.2g°),...
>, Bbar = ’,num2str(Bbar,’%10.5g’)]1}], ’FontSize’,12),
if M == % include color coded legend
legend([’K = ’ ,num2str(X,’%7.4g’)]1,0), end
if M ==
legend({[’K = ’ ,num2str(K(1),’%7.4g’)],[’K = ’,...

num2str(K(2),°%7.4g’)1},-1), end

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 195

if M ==
legend({[’K = ’,num2str(K(1),°%7.4g’)1,[’K= >, ...
num2str (K(2),°%7.4g’)], [’K = ’ ,num2str(K(3),’%7.4g’)1},-1), end
if M ==
legend({[’K = ’,num2str(K(1),°%7.4g’)1,[’K= >, ...
num2str (K(2),°%7.4g’)], [’K = ’ ,num2str(K(3),’%7.4g’)1, ...
[’K = ’ ,num2str(K(4),’%7.4g’)]1},-1), end
if M ==
legend({[’K = ’,num2str(K(1),°%7.4g’)1,[’K= >, ...
num2str (K(2),°%7.4g’)], [’K = ’ ,num2str(K(3),’%7.4g’)1, ...
[’K = ’ ,num2str(K(4),’%7.4g)]1,[’K =", ...
num2str(K(5),’%7.4g’)1},-1), end
if M ==
legend({[’K = ’,num2str(K(1),°%7.4g’)1,[’K= >, ...
num2str (K(2),°%7.4g’)], [’K = ’ ,num2str(K(3),’%7.4g’)1, ...
[’K = ’ ,num2str(K(4),’%7.4g>)]1,[’K = ", ...
num2str (K(5),°%7.4g’)], [’K = ’ ,num2str(K(6),°%7.4g’)1},-1), end
plot(Y,F,’k’), % plot exponential curve

plot(ym,v(3),’0k’); plot(ym,yline(ym,K,yf,ym),’or’); % mark pivot for lines
hold off, close(1)

function g = yline(y,K,yf,ym) % evaluate line graph
g = (1+K)xy - (yf+K*ym);

function f = ffun(y,al,a2,bl,b2,gal,ga2,xaf,Bbar) % evaluate exp graph
f = (alxblxexp(-gal./y)*xaf)./(Bbar+al*exp(-gal./y)) + ...
(alxa2+b2xexp((-gal-ga2)./y)*xaf)./...
((Bbar + al*xexp(-gal./y)).*(Bbar + a2*exp(-ga2./y)));

function g = Bfun(A,U,Unf,alf,eps,QE,H) % evaluate Bbar
GB = Ax(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));
alprime = QE*AC/GC; g = A*U - GCxexp(-alprimexH) ;

Let us repeat the same problem as before, but for the following altered o and ~y
parameters, namely for

a; =100 ay =107, ~ =8, and o =12.

All other parameters are left unchanged from p. 183. For this we use a simplified call of our
surface and zero-contour plotting function controlhetss, which omits specifying the last
three inputs N, y¢, and y,,. Instead, the shortened call sequence uses the default setting
of N = 200 points for the partition of the y and K intervals, and controlhetss computes
the optimal values for y¢ and y,, by calling hetcontibifrange internally. The call of
controlhetss(0.01,1.1,0,2,10°10,10°7.5,0.4,0.6,8,12,1) renders a surface and
level curve plot with fivefold bifurcation for all small controller gains 0 < K < 1.7, one
of which occurs at the set point y = y,, = 0.41038. In Figure 4.30, we again display a
manually rotated 3D picture that give a better view of the bifurcation curves, refer to
the earlier comments on using the MATLAB rotate button on p. 186.

196 Chapter 4: Initial Value Problems

Heterogeneous Solid State Control Problem

=1,y,=0.010409, y =0.41038, and Bbar = 0.019372
f m

' fo

15— -

2 1o
£
>
= 05
©
Ead
of
S .1
- 05—
©
o
(o]
=
)
(o]
©
= 0
m]
!: 0
ol
w
o0
@
=
g
z .
g 05—
= —-0.5
-1 -7-'
1.4

A fivefold bifurcation curve for y values in terms of the controller gain K
Figure 4.30

The line and exponential curve graphs resulting from a call of hetcontbifrange(1.1,
10°10,10°7.5,0.4,.6,8,12,1,0,1,400) look as follows for the modified data of p. 195.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 197

Graphic zeros of equations (4.84), (4.85) for :

a, =1e+10, a, = 3.1623e+07; [51 =04, 52 =06;v,=8,v,=12,x,,=1,K=0, Bbar = 0.019372
T T

1

e 2 o o o o o
w o N » ©

f(y,K) solid line, g(y,K) dashed
N

o o

o o

Computed values : Y, = 0.41038, Y= 0.010409
1 T Tt T T T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

021

0 L L I 1 I I L I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

y (maximum 0.99911 of xB(y) aty = Yopt = 0.41038)

Five steady states for the modified data and K =0
Figure 4.31

Here the central steady state at y ~ 0.4... and the two extremal steady states with
y ~ 0.0... and 1.0... are stable, while the two remaining steady states at y ~ 0.3... and
0.5... are of saddle type and therefore unstable. Of these, the central one gives the optimal
concentration for component B. The unstable ones that are adjacent to the middle one
give moderate concentrations for B, while the extremal steady states with y = 0.0...
and 1.0... produce hardly any amount of B according to the bottom plot of zp(y) in
Figure 4.31. We shall return to this example in Figure 4.38 with further comments on
the robustness of the optimal central steady state and on the beneficial role of feedback
in chemical/biological systems.

If we also draw out the curve of z4(y) as given in equation (4.81), we can find
approximations of the coordinates x 4, xp, and y for each steady state. Figure 4.32 gives
the plot of x 4(y) for our original data on p. 183.

198 Chapter 4: Initial Value Problems

Plot of xA(y) for
o, =1e+08;y, = 18;x,, =1, and Bbar = 0.019372

1 T T T T T

o5 -

02 -

za(y) for the original parameters on p. 183
Figure 4.32

Figure 4.32 was drawn by calling xAversusy(0.001,1.6,1078,18,1,400) using the fol-
lowing code:

function xAym = xAversusy(ystart,yend,al,gal,xaf,N,ym,pic)

% xAversusy(ystart,yend,al,gal,xaf,N,pic)

% sample call : xAversusy(0.001,1.6,10°8,18,1,400,0.86446,1)

% Input : y interval, system parameters, size N of the partition,

YA optimal ym (optional) [must be computed externally]

% pic = 1 : draw plot; otherwise compute xAym only

% Output: plot of xA(y)

A xAym = value of xA(ym) if ym has been specified,

% else yAm = pi = 3.14...

if nargin == 6, ym = pi; pic = 1; end % dummy input if ym is not specified

A=0.3; U=0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;
Y = linspace(ystart,yend,N); E1 = exp(-gal./Y); 7 set up and evaluate
Bbar = Bfun(A,U,Unf,alf,eps,QE,H);

XA = (Bbarx*xaf)./(Bbar+al*El);

if pic == 1, plot(Y,XA); hold on, end % plot if desired
xAym = (Bbarx*xaf)/(Bbar+al*exp(-gal/ym)); % in case ym is known, find xA(ym)
if nargin == 6, xAym = pi; end % dummy output
if pic == 1,
if xAym == pi, xlabel([{’y ’}],’Fontsize’,14),

else xlabel([’y (y_m = ’,num2str(ym,’%10.5g’),’)’], ’Fontsize’,14), end

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 199

ylabel(’x_A >, ’Rotation’,0,’Fontsize’,14)
title([{’Plot of x_A(y) for’ },{[’\alpha_1l = ’,num2str(al,’%10.5g’),...

’; \gamma_1 = ’,num2str(gal,’%10.5g’),’; x_{Af} = °,...
num2str(xaf,’%10.5g’),’, and Bbar = ’,num2str(Bbar,’%10.5g’)]1}],...
’FontSize’,14), hold off, end

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar
GB = Ax(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));
alprime = QE*AC/GC; g = AxU - GCxexp(-alprimexH) ;

The call of xAversusy(0.1,0.5,10710,8,1,400,0.41038,1) for the modified data on
p- 195 and with the optimal value of y,,, = 0.41038 taken from the fivefold bifurcation of
Figure 4.31 gives us the plot of 4 versus y shown in Figure 4.33.

Plot of xA(y) for
@, =1e+10;y, = 8; x, = 1, and Bbar = 0.019372
1 T T T T

05| B

03l B

o1l B

. . . . N
LX) 015 0z 3 03 035
V (v, =041038)

L L
04 045 05

xA(y) for the modified parameters on p. 195
Figure 4.33
Now we return to the earlier case with three steady states for the parameter data
from p. 183. Looking at Figures 4.28 and 4.32 jointly allows us to approximate the three
steady-state coordinates (x4, xp, y) of this specific system in the following table, or-
dered by increasing values of the third coordinate y:

TA 1 0.17619... 0
TB 0 0.72225... 0
y 0.47... 0.86446... 1.47...

Knowing how to obtain this data from the graphs will help us in understanding the
dynamical behavior of the system given by the differential equations (4.75), (4.76), (4.77).

200 Chapter 4: Initial Value Problems

After the steady-state analysis, we now use the differential equations for the system
(4.75), (4.76), (4.77) to draw 3D and 2D phase plots of the underlying dynamical system
behavior for the original parameters given on p. 183.

Our IVP solving and solution-plotting MATLAB code is as follows:

function fluidbed(tend,xao,xbo,yo,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,K)

% fluidbed(tend,xao,xbo,yo,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,K)

% sample call:

% fluidbed(10,1,1,0.1,1,45/99,10°8,10"11, .4,.6,18,27,1,0,0)

% Input: tend = end of time interval for the integration

% xao, yao, yo = initial values for xA, xB, y

% LeA, LeB, al, a2, bl, b2, gal, ga2, xaf, xbf system parameters
A K = feedback gain (K >= 0)

% Output: 3D plot of solution to the DEs in (4.74), (4.75), and (4.76)

% other system parameters
A=0.3; U=0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H = 1.0;
Bbar = Bfun(A,U,Unf,alf,eps,QE,H); % evaluate Bbar from extra constants
Tspan = [0 tend]; yO = [xao;xbo;yol; % use stringent error bounds :
options = odeset(’RelTol’,10"-6,’AbsTol’,107-8, ’Vectorized’,’on’);
[yf,ym] = hetcontbifrange(1.6,al,a2,bl,b2,gal,ga2,xaf,0,0,400); % find ym

xAym = xAversusy(yo,yo,al,gal,xaf,1,ym,0); % xA(ym)
xBym = xBversusy(yo,yo,al,a2,gal,ga2,xaf,1,0,ym); % xB(ym)
[V,y] = odel5s(@frhs,Tspan,y0,options,... % using stiff DE integrator odelbs

LeA,LeB,al,a2,bl,b2,gal,ga2,xaf ,xbf,yf,ym,K,Bbar) ;

plot3(y(:,1),y(:,2),y(:,3),’b’), hold on, grid on,

% SPECIAL settings for AXES: ADJUST !!
Y%axis([-.05,.6,-.05,1,.4,2.5]); v = axis; % For Figures 4.34 - 4.37
%axis([-.04,0.2,-.05,1.05,0.5,3]), v = axis; % for oscillations Fig 4.46
%axis([.08,0.2,0,1,0.5,1]), v = axis; % for periodic convergence
%axis([-.05,1,-.05,1,0,2]); v = axis; % For Fig 4.41
%axis([-.05,1,-.05,1,0,3]); v = axis; % For Fig 4.42
%axis([-.05,0.2,-.05,1.2,0.5,2.5]); v = axis; % For Fig 4.47, 4.48
%axis([-.05,0.2,-.05,1.2,0.5,2.5]); v = axis; % For Fig 4.48
%axis([-.05,1,-.05,1,0,1.2]); v = axis; % For high Lewis numbers

plot3(y(1,1),y(1,2),y(1,3),’0r’), % start mark
plot3(y(end,1),y(end,2),y(end,3),’xr’) % end mark of solution
plot3(xAym,xBym,ym,’*k’) % attractor mark

xlabel(’x_A’,’Fontsize’,12), ylabel(’x_B’,’Fontsize’,12),
zlabel(’y’, ’Rotation’,0, ’Fontsize’,12)
title([{[’Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with ’,...

’T_{end} = ’,num2str(tend,’%10.5g’),’, \alpha_1 = ’,num2str(al,’%10.5g’),...
>, \alpha_2 = ’,num2str(a2,’%10.5g’),’;’1},{’ *},{[’ \beta_1 = ’,...
num2str(bl,’%10.5g’),’, \beta_2 = ’,num2str(b2,’%10.5g’),’; \gamma_1 = ’,...
num2str(gal,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...
>; x_{Af} = ’ ,num2str(xaf,’’10.5g’),’, K = ’,num2str(K,’%10.5g°),...

>; Le_A = ’ ,num2str(LeA,’%10.5g’),’, Le_B = ’,num2str(LeB,’%10.5g’),...

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 201

bl

for optimal y_f and y_m’]}],’Fontsize’,12)

function dydt = frhs(V,y,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,yf,ym,K,Bbar)

F1 = alxexp(-gal./y(3,:)).xy(1,:); F2 = a2xexp(-ga2./y(3,:)).*xy(2,:);
dydt = [LeA*(Bbar*(xaf-y(1,:))-F1);

LeB* (Bbar* (xbf-y(2,:))+F1-F2);

Bbar* (yf+K*(ym-y(3,:))-y(3,:)) + blxF1 + b2xF2];
function g = Bfun(A,U,Unf,alf,eps,QE,H) % evaluate Bbar
GB = A*(U-Umf); AC = eps*GB/((alf-1)#Umf); GC = GB*(l+eps/(alf-1));

alprime = QE*AC/GC; g = A*U - GCxexp(-alprimexH) ;

This code is typically called by a MATLAB command such as fluidbed (4000, .4,.9,1,1,
45/99,10°8,10°11, .4,.6,18,27,1,0,10), which uses a large time limit of 4000 dimen-

sionless time units so that the individual solution curves of the IVPs have time to run

to the global steady state at (0.17619, 0.72225, 0.86446). We do this with the original

parameter data of p. 183, a controller gain of K = 10, and several different initial values.

Since the value of K is greater than 4, the middle steady state with maximal z yield is

both unique and (statically) stable.

Note further that inside fluidbed.m we use the stiff integrator ode15s instead of one of
our previous favorites ode23 or ode45, since the latter two integrators take an inordinate

amount of time to solve our IVPs.

Remark on Experimental IVP Stiffness and IVP Solver Validation:

MATLARB allows the user to choose the IVP integrator, such as ode23 or ode45 etc,
and to select a stiff or nonstiff integrator, each as warranted by the specific problem.
Moreover, each of the MATLAB’s ODE solvers ode. .. allows us to specify certain
“options”, as done in fluidbed.m in the fourth MATLAB command line

options = odeset(’RelTol’,107-6,’AbsTol’,107-8, ’Vectorized’,’on’);
for example.
How do we choose a MATLAB IVP solver, and how do we decide whether to use a
stiff integrator such as odelbs or a standard nonstiff one?

Recall that the stiff solver ode15s was the default integrator in fixedbedreact.m
of section 4.1.5, while ode23 was sufficient for section 4.2.6. If we compare the
shape of the solutions to the DEs in section 4.1.5 and Figures 4.3 to 4.11 with
those of section 4.2.6 and Figures 4.16 and 4.17, we notice a generally sharp change
of directions in the solution curve, or a step function look in many of the plots
of section 4.1.5, while the solution curves of section 4.2.6 are all smoother and
more gentle in their variations. This in essence separates the stiff and the nonstiff
differential equations: stiff DEs are visually distinguished by very sharp variations
and they require stiff ODE solvers for finding accurate solutions quickly; nonstiff
DEs generally have smooth, flowing solutions and can be solved by nonstiff solvers
most efficiently. In MATLAB, the user can easily decide from the graph of an ODE
solution and from the time it takes to compute it, whether a given DE is stiff or

202 Chapter 4: Initial Value Problems

not. Users should always experiment with a few IVP solvers of either type before
deciding on which one to use for a given class of problems.

Once the stiffness of an ODE has been decided upon by numerical experiment, the
final task involves finding a solution stably. This can be achieved by varying the
tolerances *RelTol’ and ’AbsTol’ in the “options” line of code and observing the
solution closely: If the tolerances are chosen too large, the solution may not be
correct. This shows itself in variations of the solution graphs for varying specified
tolerances. When decreasing the tolerances for a stable ODE problem in steps of
powers of 10, the solution graphs will eventually become stationary or identical. At
that point the true solution has been found. In our specific MATLAB “options”
line mentioned earlier, the two tolerances are set to 1076 and 10~%, respectively. It
would be a good exercise for our readers to loosen these tolerances to 1072 or to
tighten them to 1072 etc. in our codes fluidbed.m and fluidbedprofiles.m and to
observe all resulting plots for the rest of this subsection, as well as doing the same
experiment with neurocycle.m in subsection 4.4.6 to make sure that chaos really
occurs for the neurocycle model.

Specifically for the following examples, we run fluidbed.m for the eight corners of
the cube

C =1[0.1,0.4] x [0.5,0.9] x [0.5,0.9] € R3

as initial values (z4(0), x5(0),y(0)) in Figures 4.34 to 4.37. Note that the unique steady
state (0.17619, 0.72225, 0.86446) for the system of IVPs (4.75), (4.76), and (4.77) with
controller gain K = 10 lies inside our chosen cube C.

First we draw the 3D plot of the (xa(t), xp(t), y(t)) profiles, followed by the corre-
sponding z-xp, Ta-y, and xp-y 2D phase plots. Note in all our graphs in Figures 4.34
to 4.37 that the controlled system has only one steady state, marked by an asterisk in
the plots, to which all our plotted solution profiles converge.

Here the coordinates of the eight corners of the cube C' serve as the initial values = 49, = po,
and yo. These are marked by small circles in each instance. The eight trajectories proceed
from the corners of the cube C' to the only steady state of the system, marked by a gray
x. Their final positions at the end of the considered time interval are marked by eight x
symbols. After T" = 600 time units the trajectories in our example have all converged to
the unique steady state of Figure 4.34.

A detailed reading of the fluidbed.m program reveals that a hold on MATLAB com-
mand is put onto the plot that is never released. This helps us draw multiple trajectories
onto one 3D plot such as in Figure 4.34. Note that Figure 4.34 depicts the actual MAT-
LAB output after a suitable rotation as explained before on p. 186. If the user wants
to have a fresh plotting start, a call of fluidbed(.... ...) (and many other plotting
routines) should be preceded by MATLAB’s hold off command to clear the current
figure window.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 203

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =600, o, = 1e+08, o, = 1e+11;

d

B1 =04, [iz =06y, =18,7,=27;x,. =1, K=10; LeA =1, LeB = 0.45455 for optimal Y and Yin

2.4

2.2

0.8

0.6

0.4

XA

Set of trajectories that are the solutions of (4.75), (4.76), and (4.77) for the original
data on p. 183, y; and y,, from Figure 4.28, and K = 10 (after a manual rotation)
Figure 4.34

We note in Figure 4.34 that, depending on the initial values, some of the IVP solutions
converge directly to the steady state of the system, such as for the four initial values with
z4(0) = 0.1, while the other four sets of initial conditions with x4(0) = 0.4 first go to
relatively high values of y with x4 = xp = 0, before converging to the steady state once
y has dropped to less than 1.

Note further in Figures 4.34 - 4.37 that apparently there are exactly two trajectories in
(opposite) directions for solutions to follow when approaching the system’s steady state
* with the controller gain set to K = 10.

204 Chapter 4: Initial Value Problems

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =600, a, = 1e+08, o, = 1e+11;

d

|31 =04, [32 =0.6; Y, = 18, Y, = 27, Xy = 1, K=10; LeA =1, LeB =0.45455 for optimal Y, and Yin
1~

09—

08—

06—

0.4

0.2

0.1

L L L L L L
0 0.1 0.2 0.3 0.4 0.5

x 4-xp phase plane of trajectories that are the solutions of (4.75), (4.76), and (4.77) for
the original data, ys and y,, from Figure 4.28, and K =10
Figure 4.35

We emphasize that in each of our phase plots, Figures 4.35 through 4.37, we look at the
cube C face on from one cardinal direction and use C’s eight corners as our starting
values. This is achieved simply by rotating the MATLAB plot of Figure 4.34 so that one
coordinate plane becomes parallel to the screen, giving us a 2D coordinate planar plot,
see p. 186 for details on rotating MATLAB figures via the mouse. In particular, each of
the four circles in a 2D phase plot depicts two different initial values.

[We note that it is mathematically impossible for two different trajectories to emerge
from one set of initial values of an IVP.]

Therefore, when looking at the x 4-zp 2D phase plot of Figure 4.35 for example, we must

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 205

be aware that the upper rightmost o mark depicts the two initial values
(x4(0), z5(0), y(0)) = (0.4, 0.9, 0.5) and (0.4, 0.9, 0.9)

for the differing initial y(0) values of 0.5 and 0.9. Looking back at the 3D plot in Figure
4.34, we observe that the trajectory starting from the initial value (0.4, 0.9, 0.5) with
y(0) = 0.5 reaches higher 25 values first, making its trajectory in the x4-zp phase plot
of Figure 4.35 go up and to the left from the upper rightmost o mark, while the trajectory
that starts at (0.4, 0.9, 0.9) in Figure 4.35 with the higher initial temperature y(0) = 0.9
goes down and to the right first from the same o mark in the z 4-zp phase plot.
Similar observations will help the reader interpret the phase plots that follow in Figures
4.36 and 4.37.

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =600, o, = 1e+08, o, = 1e+11;

d

ﬁ‘ =04, Bz =0.6; 1= 18, Y, = 27; Xy = 1,K=10; LeA= 1, LeB =0.45455 for optimal Y and Y

221~

06—

0.4 I I I I I I

x4~y phase plane of trajectories that are the solutions of (4.75), (4.76), and (4.77) for
the original data, yy and y,, from Figure 4.28, and K = 10
Figure 4.36

Tracing the trajectories of this 2D phase plot as before, we see that the initial values of
(z4(0), z5(0), y(0)) = (0.4, 0.5, 0.9) and (0.4, 0.9, 0.9)

are depicted by the right and topmost circle o in Figure 4.36. Comparing with the 3D
trajectories emanating from these initial values in Figure 4.34, we can distinguish the

206 Chapter 4: Initial Value Problems

two topmost branching curves of Figure 4.36: according to Figure 4.34, the initial value
(0.4, 0.9, 0.9) reaches the highest heat y > 2.4. Thus the topmost curve in Figure 4.36
starts at (0.4, 0.9, 0.9), and the trajectory from the initial value (0.4, 0.5, 0.9) that is
depicted by the same top right o mark in Figure 4.36 reaches a maximal heat of y ~ 1.9,
as can be seen by tracing the lower branch trajectory emanating from (z4(0), z5(0)) =
(0.4, 0.9) until x4 = zp = 0 in Figure 4.36.

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =600, o= 1e+08, o, = 1e+11;

d

p,=04,p,=06;y,=18,v,=27,x,, =1,K=10; Le, =1, Le, = 0.45455 for optimaly, andy

24

22

0.8

0.4 L L L L L L L L L L 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Xg

x -y phase plane of trajectories that are the solutions of (4.75), (4.76), and (4.77) for
the original data, ys and y,, from Figure 4.28, and K = 10
Figure 4.37

The last three phase plots were all created from the same 3D graphics MATLAB window
of Figure 4.34 by clicking on the “Rotate” MATLAB figure icon, then dragging the mouse
and thereby rotating the 3D image in the window until the base plane becomes one of
the three 2D phase planes.

Our readers should experiment with fluidbed.m and their own data.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 207

To complete the picture, here are the three profiles of x4(t), zp(t), and y(t) for
0 <t <600 for the example depicted in Figures 4.34 to 4.37 for the three initial values

(24(0), z5(0),4(0)) = (0.1,0.5,0.9), (0.1,0.9,0.5), and (0.4,0.9,0.9) .

We use feedback (K = 10). The plots are best drawn and viewed in color on a monitor by
calling fluidbedprofiles(600,[.1,.1,.4]1,[.5,.9,.91,[.9,.5,0.9],1,45/99,1078,
10-11, .4, .6,18,27,1,0,10,1).

Profile plots of the solution to the IVP (4.74), (4.75), and (4.76) with o, = 1e+08, o, = 1e+11;

[31 =0.4, B2 = 0.6;}'1 =18, Y, = 27, Xy = 1, K=10; LeA =1, LeB = 0.45455, for optimal Y and Yin

0.4 T T T T T
—
035 i
03F i
0251 ' i
X
\
A ool \ \ . 10
\ — « limit
0151 B v 4
o1t — | -
i [
0.051 / B
0 L L L B — L
10° 10? 107 10° 10" 10° 10°
t
1 T
—
08 j[T i
- « limit
06 4
XB
04 4
02 4
L L L L L
10° 10? 107 10° 10" 10° 10°
t
25
oL i
Yoisf 4
1 _ B
— « limit
,///
05 I L e I L
10° 10 107" 10° 10" 10 10°

x4, xp, and y profiles of the trajectories that solve (4.75), (4.76), and (4.77) for the
original data, y¢ and y,, from Figure 4.28, and K = 10
Figure 4.38

Note that the subplots of Figure 4.38 use a logarithmic scale for the horizontal time
axis by invoking the MATLAB plot command semilogx in fluidbedprofiles.m. This
allows us to see the system development near the start very well while shortening the
long asymptotic time behavior scale optically. In a logarithmic MATLAB plot such
as ours, the “powers of ten” axis points 107!, 10°, 10", 102, etc. are written out and

208 Chapter 4: Initial Value Problems

carry a large tick mark. Moreover, eight multiplicative intermediate values are marked
in a logarithmic, nonlinear order in between, such as in the sequence ..., 0.8, 0.9, 10° =
1,2, 3, 4,5, 6,7,8,9, 10" = 10, 20, 30,, 80,90, 102 = 100, 200, 300, ... with small
tick marks on the t axes in Figure 4.38. This notation differs markedly from a linear plot
with nine linearly and equally spaced tick marks at 1, 1.1, 1.2, 1.3, 1.4, ..., 1.8, 1.9, 2,
for example between the written out numbers 1 and 2 on the axis.

If we do not use feedback, i.e., for K = 0, the output of the similar call
fluidbedprofiles(600,[.1,.1,.4],[.5,.9,.9],[.9,.5,0.9],1,45/99,107°8,10"711,
.4,.6,18,27,1,0,0,1) gives us Figure 4.39, printed in grayscale.

Profile plots of the solution to the IVP (4.74), (4.75), and (4.76) with o, =1e+08, a, = Te+11;

B1 =04, B2 =0.6; Y, = 18, Y, = 27; X = 1,K=0; LeA =1, LeB = 0.45455, for optimal Y and Yim
1 T

T T T T
0.8r- B

06l 1
XA

04r B

021 \ 7« limit

0
10° 107 107 10° 10 10° 10°
t
1
0.8) E
« limit
0.6 4
Xg
04l R
0.2F E
L L L ‘\ L L
10° 107 107 10° 10" 10* 10°
t
25 e .

« limit

x4, g, and y profiles of the trajectories that solve (4.75), (4.76), and (4.77) for the
original data, y¢ and y,, from Figure 4.28, and K =0
Figure 4.39

In each subplot of Figures 4.38 and 4.39 we indicate the location of the middle steady
state of the system by an arrow on the right margin. As noted earlier on p. 199, this

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 209

steady state is unstable when K = 0, and the three profiles bear this out: x4 converges
to either 1 or 0, xp converges to zero, and y converges either to 0.47... or 1.47..., just as
was computed on p. 199 for the steady-state coordinates.

The code of fluidbedprofiles.m starts below:

function
fluidbedprofiles(tend,xao,xbo,yo,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,K,log)

% fluidbedprofiles(tend,xao,xbo,yo,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,K,log)
% sample call:

YA fluidbedprofiles(500,[1,0,0.5],[1,0.8,0.2],[0.1,0.4,0.9],...

yA 1,45/99,10°8,10"11, .4,.6,18,27,1,0,0,1)

% Input: tend = end of time interval for the integration

% xao, yao, yo = initial values for xA, xB, y

% (in equal sized row vector form)

% LeA, LeB, al, a2, bl, b2, gal, ga2, xaf, xbf = system parameters
% K = feedback gain (K >= 0)

% log : if log = 1, we plot time in a loglO scale; else linear scale

% Output: profile plots xA, xB, and y versus t of solution to the DEs in
% (4.74), (4.75), and (4.76)

% other system parameters
A=0.3; U= 0.1; Unf = 0.00875; alf = 19.5; eps = 0.4; QE = 0.4; H=1.0;

Bbar = Bfun(A,U,Unf,alf,eps,QE,H); % evaluate Bbar from extra constants
ma = length(xao); mb = length(xbo); my = length(yo);
if ma "= mb | ma "= my, % check that vector input matches

’Length of x_Ao, x_Bo, and yo do not match! Abandon’, return, end
m = ma; TT = NaN*zeros(4000,m); XA = TT; XB = TT; Y = TT; ¥ preparations

for i = 1:m, % cycle through the given data
Tspan = [0 tend]; yO = [xao(i);xbo(i);yo(i)]; % use stringent error bounds :
options = odeset(’RelTol’,10"-6,’AbsTol’,107-8, Vectorized’,’on’);

[yf,ym] = hetcontbifrange(1.6,al,a2,bl,b2,gal,ga2,xaf,0,0,400); % find ym, yf

xAym = xAversusy(yo(i),yo(i),al,gal,xaf,1,ym,0); % xA(ym)
xBym = xBversusy(yo(i),yo(i),al,a2,gal,ga2,xaf,1,0,ym); % xB(ym)
[V,y] = odel5s(@frhs,Tspan,y0,options,... % using stiff DE integrator odelbs

LeA,LeB,al,a2,b1,b2,gal,ga2,xaf,xbf,yf,ym,K,Bbar) ;
TT(1:length(V),i) = V; XA(1l:length(y(:,1)),i) = y(:,1);
XB(1:length(y(:,2)),i) = y(:,2); Y(1:length(y(:,3)),i) = y(:,3); end

subplot(3,1,1) % xA plot, with or without loglO time scale
if log == 1, semilogx(TT,XA), else, plot(TT,XA), end, hold on, v = axis;
text(v(2) ,xAym,’ \leftarrow limit’), % marking optimal steady state
xlabel(’t’,’Fontsize’,12), ylabel(’x_A >, ’Fontsize’,12,’Rotation’,0),
title([{[’Profile plots of the solution to the IVP (4.74), (4.75),°...

> and (4.76) with \alpha_1 = ’,num2str(al,’10.5g’),’, \alpha_2 = ’,...

num2str(a2,’%10.5g’),’ ;°1},...

{> ’},{[’\beta_1 = ’ ,num2str(bl,’%10.5g’),...

>, \beta_2 = ’,num2str(b2,°%10.5g’),’; \gamma_1 = ’,...

num2str(gal,’%10.5g’),’, \gamma_2 = ’,num2str(ga2,’%10.5g’),...

210 Chapter 4: Initial Value Problems

>; x_{Af} = ’ ,num2str(xaf,’’10.5g’),’, K = ’,num2str(K,’%10.5g’),...
>; Le_A = ’,num2str(LeA,’%10.5g’),’, LeB = ’,num2str(LeB,’%10.5g’),...
>, for optimal y_f and y_m’]}],’Fontsize’,12)

subplot(3,1,2) % xB plot, with or without loglO time scale
if log == 1, semilogx(TT,XB), else, plot(TT,XB), end, hold on, v = axis;
text(v(2),xBym,’ \leftarrow limit’), % marking optimal steady state
xlabel(’t’,’Fontsize’,12), ylabel(’x_B > ’Fontsize’,12,’Rotation’,0),
subplot(3,1,3) % y plot, with or without loglO time scale
if log == 1, semilogx(TT,Y), else plot(TT,Y), end, hold on, v = axis;
text(v(2),ym,’ \leftarrow limit’), % marking optimal steady state
xlabel(’t’,’Fontsize’,12), ylabel(’y > ’Fontsize’,12,’Rotation’,0),

% free the plot windows :
subplot(3,1,1), hold off, subplot(3,1,2), hold off, subplot(3,1,3), hold off,
% right hand side of IVP
function dydt = frhs(V,y,LeA,LeB,al,a2,bl,b2,gal,ga2,xaf,xbf,yf,ym,K,Bbar)
F1 = alxexp(-gal./y(3,:)).xy(1,:); F2 = a2xexp(-ga2./y(3,:)) .xy(2,:);
dydt = [LeA*(Bbar*(xaf-y(1,:))-F1);
LeB* (Bbar* (xbf-y(2,:))+F1-F2);
Bbar* (yf+K*(ym-y(3,:))-y(3,:)) + b1*F1 + b2*F2];

function g = Bfun(A,U,Umf,alf,eps,QE,H) % evaluate Bbar
GB = A*(U-Umf); AC = eps*GB/((alf-1)*Umf); GC = GB*(l+eps/(alf-1));
alprime = QE*AC/GC; g = A*U - GCxexp(-alprimexH);

This program offers our users the option to plot the profiles in linear or in log;, time.
The log,, time plots spread out the earlier reactions more clearly, while a linear time
scale gives every second the same horizontal axis space.

For the novice, our 3D plots in Figures 4.34 to 4.37 can be quite confusing to interpret

correctly. The corresponding individual 2D profiles that were plotted in Figures 4.38 and
4.39 are useful for interpreting the 3D plots.
For relatively large Lewis numbers and with appropriate feedback, we observe that con-
vergence to the system’s unique stable steady state is quite swift and straightforward
from any initial value. To illustrate, we now plot the 3D trajectories that emanate from
the eight corners of the (x4, zp, y) unit cube

C, = [0,1] x [0,1] x [0,1] € R?

for the same system data as was used in Figures 4.34 to 4.39, but with the relatively
large Lewis numbers

Ley = Leg = 10

instead.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 211

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Tend =1000, o, = 1+08, 0, = Te+11;

ﬁ‘ =04, [52:0.6;1(1 =18, y2:27; Xy = 1,K=10; LeA: 10, LeE: 10 for optimal Y andym

XA

Set of trajectories that solve (4.75), (4.76), and (4.77) for the original data, y and y,,
from Figure 4.28, high Lewis numbers, and K =0
Figure 4.40

The eight trajectories of Figure 4.40 are obtained from eight separate calls of fluidbed
with hold on set, namely from each of the eight corners of the unit cube as starting
points and after a customary manual figure rotation. All trajectories in Figure 4.40 con-
verge to the unique steady state of the system marked by * from the eight corners o of
the unit cube C,. Again there are exactly two final approaches to * for the trajectories,
while only three trajectories with the initial high relative heat of y(0) = 1 exceed this
value for a short period.

Let us now revisit the modified example with the «; and ~; parameter data as de-
scribed on p. 195. We recall that for this system there are five steady states prior to
feedback. Three of these are stable at the approximate (z4, xp, y) locations of (1, 0,
0), (0, 1, 0.41...), and (0, 0, 1). Of these three, the middle stable one yields the maximal
amount of component B and therefore it is the most desirable steady state. Figure 4.41
shows a set of 3D profile plots with initial values from a neighborhood of the middle
stable steady state (z4,zp,y) = (0,1,0.41038) (taken from Figure 4.31) with 249 = 0.1

212 Chapter 4: Initial Value Problems

or 0.2 near zero, xpo = 0.8 near 1, and yo = 0.1, ...,0.7 near 0.41038 with controller gain
K = 0, i.e., without feedback. The 3D profiles for these initial values, the system and
initial parameters are plotted in Figure 4.41.

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =600, o, = 1e+10, o, = 3.1623e+07;

d

[51 =04, [32 =06;v,=8,v,=12,x, =1,K=0; Le, =1, Le, = 0.45455 for optimal y; andy

0.8

0.6

XB X

A

Set of trajectories that solve (4.75), (4.76), and (4.77) for the modified data on p. 195,
yr and yy, from Figure 4.31, and K =0
Figure 4.41

The ten trajectories from our ten initial values start at the o marks and end after 600
time units at the x marks. Each of the ten trajectories converges to one of the three
steady states of the system, marked by x in Figure 4.41. From Figure 4.41 it is painfully
obvious that the region of attraction for the middle stable steady state, marked by * in
the plot, is very small since in our plot only the two trajectories that start with y(0) = 0.4
converge to the middle steady state with y = 0.41038 (near the left edge of Figure 4.41).
For all initial values outside a very small attracting region for %, the depicted trajectories

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 213

converge to one of the two other stable steady states at (x4, zp5,y) = (1,0,0) or (0, 0,
1), both of which give no useful rendition of component B. Small perturbations of the
uncontrolled system will cause the system to slip away from the maximal-yield middle
steady state quickly, even if the system is operating at this stable steady state. Thus it
is very difficult for the uncontrolled system (K = 0) to produce much of the component
B reliably over a long time.

Running a system at a high yielding stable steady state is not a cure-all! It is much more
advisable to use feedback to create a controlled system with a unique high-yield steady
state. We exemplify this in a plot of the 3D solution trajectories of the IVP (4.75), (4.76),
and (4.77) for the modified data from p. 195 and initial values (x4, g, y) from the whole
cube CC' = [0.1,0.9] x [0.1,0.9] x [0.1,0.9] with feedback set to K = 10.

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Tsn =600, o = 1e+10, a,= 3.1623e+07;

d

[3‘ =0.4, B2 =0.6; Y, = 8, Y, = 12; Xy = 1,K=10; LeA =1, LeB: 0.45455 for optimal Y, and Yo

yi5

Set of trajectories that solve (4.75), (4.76), and (4.77) for the modified data on p. 195,
yy and y,, from Figure 4.31, and K =10
Figure 4.42

In Figure 4.42, every trajectory that starts at one of the eight corners of the cube C'C
of (x4, zp, y) initial values ends up at the optimal stable middle steady state marked
by * when sufficient feedback K = 10 is used. Most trajectories in this example go
through a relatively high temperature spike and x4 = z, = 0 phase before reaching

214 Chapter 4: Initial Value Problems

the unique steady state under feedback, except for the two trajectories that start at
(0.1,0.1,0.1) and (0.1,0.9,0.1). These two trajectories reach the steady state directly
without a temperature explosion. The cause of these sudden increases in temperature
on the other trajectories is the simultaneous occurrence of high temperatures and high
concentrations of the reactants. This causes a very high rate of reaction accompanied by
a very high rate of heat production. Whether such explosions occur for given high a; and
B; values is linked to (a) the initial conditions, as is evident from Figure 4.42, and (b)
the relation between the Lewis numbers. The latter link is shown in Figure 4.43, where
we have increased both Lewis numbers Les and Lep from Figure 4.42 by a factor of
10 to become Ley = 10 and Lep = 4.54545. From the definition of Lewis numbers as
heat capacitance divided by mass capacitance, increased Lewis numbers signify a larger
heat capacitance or a lower mass capacitance, or a combination thereof. In general, an
increased heat capacitance has a stabilizing effect, while a higher mass capacitance has a
destabilizing effect on systems. And thus for increasing Lewis numbers, the temperature
runaways (explosions) are damped to below y = 1.1 in Figure 4.43.

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Tong = 600, 0., = 1e+10, o, = 3.1623e+07;

d

[3‘ =04, B2 =06;v,=8,v,=12x,,=1,K=10; Le, = 10, Le, = 4.5455 for optimaly, andy,

Set of trajectories that solve (4.75), (4.76), and (4.77) for the modified data on p. 195,
yy and y,, from Figure 4.31, and K = 10
Figure 4.43

Temperature explosions are also more likely for high «; values, which signify high rates

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 215

of reactions, as well as for high §; values, indicating high exothermic heat accompanying
the reactions. As explained before, the effect of the Lewis numbers on explosions is more
complex. In order to make this clear, we repeat that Lewis numbers express the ratio
of heat capacitance and mass capacitance. Therefore, small Lewis numbers correspond
to large mass capacitances or to low heat capacitances. Small Lewis numbers tend to
make instability and temperature explosions more likely because high mass capacitances
of the reactants correspond to the possible release of the chemoabsorbed mass, causing
an increase in the rate of reaction and subsequent heat production. Moreover, for small
Lewis numbers the low heat capacitance does not allow for an efficient dissipation of the
generated heat.

Therefore we conclude not only that feedback control is useful to stabilize an optimal
unstable steady state such as depicted in Figures 4.34 to 4.37 for the original set of pa-
rameter data, but feedback control can also help ensure the robustness of an otherwise
stable optimal steady state over a larger region of parameters and system perturbations.
Proper feedback control is also helpful in damping temperature explosions.

All locations of the steady states for the two-phase reaction model are determined by
the eight system parameters oy, ao, 51, B2, Y1, V2, Taf, Yy, as well as the additional
seven parameters on p. 183 that are needed to find B. None of the steady states depends
on or is influenced by the Lewis numbers Les and Lep of the apparatus, since the Lewis
numbers occur only on the left-hand side of the system of DEs (4.75), (4.76), and (4.77).
If the Lewis numbers are not chosen carefully for the apparatus, then the corresponding
chemical/biological system may be subject to oscillations even when we use feedback
control to limit the number of steady states to one optimal stable steady state as we
have done since Figure 4.34.

The call of fluidbed(1200,0.1,0.1,0.5,.12,18,10°8,10"11, .4,.6,18,27,1,0,10)
produces Figure 4.34. The reader will immediately notice that we use our original 8 plus
7 parameter data of p. 183. Feedback gain is set to K = 10, so that according to Figure
4.34, the (x4, xp, y) point (0.17619, 0.7225, 0.86446) is the optimal and unique steady
state of this system. However, a careful inspection of the results in Figure 4.44 shows that
the trajectory from the initial value (x4(0), x(0), y(0)) = (0.1, 0.1, 0.5), marked by
o in the plot, proceeds in 1200 time units to the x mark near the unique steady state of
the system that we have indicated by *. Figure 4.44 shows that the system converges to
the optimal B conversion steady state =, but it does so only in a slow oscillatory fashion,
circling the steady-state location (0.17619, 0.7225, 0.86446) eight times in ever tighter
loops during 1200 time units.

The corresponding profiles for x4, zp, and y are depicted in Figure 4.45 using
fluidprofiles.m for the data and calling fluidbedprofiles(1200,[1,0,0.5],[1,0.8,0.2],[0.1,
0.4,0.9],.12,18,10°8,10"11,.4,.6,18,27,1,0,10,1).

216 Chapter 4: Initial Value Problems

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Tong = 1200, 0, = 1e+08, o, = 1e+11;

d

[51 =04, B2=0.6; ¥, =18,7,=27;x,,=1,K=10;Le, =0.12, Le, = 18 for optimaly, andy

XB X

Trajectory for the IVP (4.75), (4.76), and (4.77) for the original data on p. 183 with
Ley =0.12, Leg = 18, K = 10, and the initial value (x40, 2o, vo) = (0.1, 0.1, 0.5)
over 1,200 time units
Figure 4.44

Notice in Figure 4.45 that only the set of profiles that emanate from the initial value
(x40, B0, Yo) = (0.0, 0.8, 0.9) reaches the steady state without an explosion. Our other
chosen initial value profiles result in explosions with temperature spikes of y around 5, 9,
and 3 near 1, 20, and 100 time units, respectively. For all three initial value profiles note
the oscillations with shrinking amplitudes around the steady-state values of x4, x5, and
y after about 200 time units until convergence in Figure 4.45. On the other hand, the
temperature profiles (except around the time of the explosions) settle down to near their
steady-state value very smoothly after about 100 time units. This corroborates our 3D
image in Figure 4.44 perfectly, in which the trajectory is depicted as oscillating around
the steady-state coordinates on a near-level temperature surface.

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 217

Profile plots of the solution to the IVP (4.74), (4.75), and (4.76) with o, = 1e+08, a,= 1e+11;

[i‘ =04, B2= 0.6;7‘ =18, 72=27; Xy = 1,K=10; LeA=0.12, LeB = 18, for optimal Y and Y
12 T T T T T T

T« limit

e timit

I <« limit
I I I
3 2 =l o 1 2 3 @

10 10 10 10

Solution profiles for the IVP (4.75), (4.76), and (4.77) for the original data on p. 183
with Lesq = 0.12, Leg = 18, K = 10, and three initial values while running for 1,200
time units
Figure 4.45

Figures 4.44 and 4.45, best viewed in color, show a benign complication of the problem
caused by the Lewis numbers. If, however, we reduce the Lewis number Le, further
to 0.07, the system trajectories indicate periodic explosions of the underlying system
throughout all time, and the trajectories do not converge to the steady state at all, even
with what we thought to be proper feedback. The trajectory that these curves settle at is
called a periodic attractor of the system in contradistinction to the earlier encountered
point attractor of Figures 4.43 or 4.44, for example. A point attractor, or more accu-
rately a fixed-point attractor, is a more commonly encountered steady state in chemical
and biological engineering systems. It could be called a stationary nonequilibrium state
to distinguish it from the stationary equilibrium states associated with closed or isolated
batch processes.

Figure 4.46 shows another (rotated) 3D picture of a periodic attractor, this one for a
system with Le4 = 0.07 and for which all other parameters are as before.

218 Chapter 4: Initial Value Problems

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Tend =2000, o, = 1e+08, o, = 1e+11;

ﬁ1 =0.4, [32 = 0.6;y1 =18, Y= 27; Xy = 1, K=10; LeA =0.07, LeEl =18 for optimal Y and Yin

3.5

B
XA

Trajectory for the IVP (4.75), (4.76), and (4.77) for the original data on p. 183 with
Les =0.07, Leg = 18, K = 10, and the initial value (z 49, Zpo, yo) = (0.1, 0.1, 0.5)
over 2,000 time units
Figure 4.46
The 3D trajectory in Figure 4.46 starts from the circle o at the initial value (2 4(0), z5(0),
y(0)) = (0.1,0.1,0.5) and begins similarly to the one in Figure 4.44. But it never con-
verges to the steady state marked by * in the plot. It rather goes through an intricate
identical periodic counterclockwise loop many times. This loop, also called a limit cycle,
is a periodic attractor for the system. At 7 = 2000 it has reached the spot marked
by x near the steady state *. Since the plot in Figure 4.46 gives us no information on
the number of periods within our time frame of 2,000 time units, we now plot three
profiles by themselves in a linear time scale for the initial values (z4(0),25(0),y(0)) =
(0.1,0.1,0.5), (0.4,0.3,0.8), and (0.6,0.6,0.2) with the standard system data using the com-
mand fluidbedprofiles(2000,[.1,.4,.6],[.1,.3,.6],[.5,.8,.2],.07,18,1078,

10°11, .4,.6,18,27,1,0,10,0).

4.3 Heterogeneous Fluidized Bed Catalytic Reactors

ok

0

0

Profile plots of the solution to the IVP (4.74), (4.75), and (4.76) with o, =1e+08, o, = Te+11;

51 =04, [32 =0.6;y,=18,7,=27;x,.=1, K=10; LeA =0.07, LeB = 18, for optimal Y and Yin

800

1
1000
t

1
1200

1
1400

1600

1800

400

800

1
1000

1
1200

1
1400

1600

1800

219

« limit

« limit

2000

LU

o

!

!
200

!
400

!
600

!
800

!
1000
t

!
1200

!
1400

!
1600

1800

<« limit

2000

Solution profiles for the IVP (4.75), (4.76), and (4.77) for the original data on p. 183
with Les = 0.07, Leg = 18, K = 10, and three initial values while running for 2,000
time units
Figure 4.47

In Figure 4.47, best viewed in color, we observe a parallel time-shifted behavior of the
three profiles that start from our three different initial values after the first 50 time
units. This seems to indicate that for infinite time, the solutions that start at any initial
value will eventually travel with the same period along the same unique loop that is
depicted in three dimensions in Figure 4.46, but time-shifted one from the other like
trains on the same track. More specifically, the profiles plot of Figure 4.47 indicates
that in 2,000 time units, this periodic attractor loop is traversed about five and a half
times, or approximately once every 380 time units. The system reaches an explosive state
eventually (after an early possible higher-level explosion, depending on the choice of the
initial value) every 380 time units. These periodic explosions occur with temperature

220 Chapter 4: Initial Value Problems

y =3, xa~ 0.18, and xp =~ 1.3. Immediately after the periodic explosions, the levels
of the components A and B drop to near zero in the reactor and the temperature y to
about 0.9.

Obtaining such potentially lethal system information through modeling and numerical
analysis is a major benefit of our numerical modeling and simulation approach.

Finally, we redraw Figure 4.44 for exactly the same parameters, except that we use
Lesy = 0.11. The trajectory from the same initial value o = (x4(0), zg(0), y(0)) =
(0.1, 0.1, 0.5) as in Figure 4.44 now goes through one high-temperature loop similar to
the infinitely repeated loop in Figure 4.46, but then it spirals around the unique steady
state * in four and a half loops during 1,200 time units, and it will ultimately settle at
the steady state .

Dynamic solutions to the IVP (4.74), (4.75), and (4.76) with Ten =1200, o, = 1e+08, a, = 1e+11;

d

B1 =0.4, B2=0.G;y1 =18,7,=27;x,, =1, K=10; LeA=0.11, LeB= 18 for optimal Y, and Yin

24

22

0.8

0.6

Xa

Trajectory for the IVP (4.75), (4.76), and (4.77) for the original data on p. 183 with
Les =0.11, Leg = 18, K = 10, and the initial value (x40, 2o, vo) = (0.1, 0.1, 0.5)
over 1,200 time units
Figure 4.48

4.3 Heterogeneous Fluidized Bed Catalytic Reactors 221

We encourage our readers to draw out their own version of Figure 4.48 with our data
in MATLAB via our program fluidbed.m while using the suggested axis settings for
this figure inside the program.

Having this figure on their computer screen, the reader can use the special “magnifying

glass” feature @ and the rotation tool of MATLAB’s graphics window to look at the
behavior of the solution curve in more and better detail. We suggest that one magnify
the regions where the single “wayward” high-temperature solution branch splits off at
first from the later convergent oval solution loops and also where it joins them. This
will exhibit several differing trajectories where Figure 4.48 appears to draw only one.
Mathematically this must be so, since each location on the solution trajectory acts as an
initial condition for continuing the solution and since IVPs always have unique solutions.
Therefore the solution must differ on each of the oval loops, if only by a tiny amount.

Finally, in order to make sure that the high temperature “wayward” curve in Figure 4.48
is not a computational figment, the reader should verify its existence even when the error
tolerances Re1Tol and AbsTol in fluidbed’s integrator ode15s are tightened to 10~'2
or 10714,

Exercises for 4.3
1. Refresh your calculus skills and your MATLAB graphics skills:

(a) Find the first derivative of x4 (y) from equation (4.81) with respect to y
and show that x4 is monotonically decreasing.

(b) Find the first derivative of xp(y) from equation (4.82) with respect to
y. Set up a numerical scheme to find y,, with dzB(y,,)/dy = 0 or use
the symbolic toolbox of MATLAB (if available) to solve the equation
dxB(y)/dy = 0 symbolically for the optimal setpoint y,, and general
input parameters «;, 0,, etc.

(c) Revise the simple maximum finding line
m = min(£find(XB == max(XB))); ym = Y(m); % find ym from xB curve
in hetcotbifrange.m, so that ym is always computed to an accuracy of 5
to 6 digits, rather than the 2 or 3 that we achieve in the current version
of hetcotbifrange.m.

(d) How would you compare the amount of effort (programming and compu-
tational) of parts (b) and (c) with the improved results they achieve?

2. Project:
Create a MATLAB m file that draws the zero-contour curves F(y, K) = 0 of
Figures 4.26 or 4.30 directly.
(Hint: Model your code on the contour-curve-plotting codes adiabNisocolor
contour.m and adiabNisocontourcurve.mof Section 3.1.)

3. Draw a 3D plot like Figure 4.34 or 4.42 for the original data, except with
Les = 0.07, using fluidbed.m and verify that the 3D loop in Figure 4.46 is
attracting from all initial values (x4(0), 2 5(0), y(0)).

4. Redraw Figure 4.47 for a few decreasing values of Ley < 0.07 and Lep = 18
and for a few increasing values of Leg > 18 and Ley = 0.07 to see how the

222 Chapter 4: Initial Value Problems

values of the Lewis numbers affect the period length of the periodic attractor,
as well as the maximal temperature levels of the periodic explosions. What
can you conclude?

5. Create the solution profiles of Figure 4.48 using fluidbedprofiles.m and
interpret the behavior of the solution for the initial value problem trajectory
of Figure 4.48.

6. (a) Verify our uniqueness assertions on p. 221 about the differing branches of
the IVP solution in Figure 4.48 for your own plot of this figure.

(b) What can one say in this respect about the points on the limit cycle
depicted in Figure 4.467 Are they the same from one pass to the next?
Why or why not?

7. Modify fluidbed.m to use several different MATLAB integrators ode. .. in
turn and compare the results.

Conclusions

In this section we have developed steady-state and dynamic models for a hetere-
geneous system. Specifically, we have chosen the bubbling fluidized bed catalytic
reactor, which has many industrial applications. We have built the model for a
consecutive reaction A — B — (' with the component B being the desired
component.

The static bifurcation behavior and its practical implications have been investi-
gated. We have also formulated the unsteady-state dynamic model and we have
used it to study the dynamic behavior of the system by solving the associated IVP
numerically. Both the controlled and the uncontrolled cases have been investigated.
Two particular reactions have been studied, one with three steady states, and one
with five steady states.

4.4 A Biomedical Example: The Neurocycle Enzyme
System

Chemical engineering principles and models play an important role in describing and an-
alyzing biological (biochemical and/or biomedical) systems, where biological phenomena
interact with the purely chemical and physical ones of standard chemical engineering.
We have earlier encountered biological examples in the form of the enzyme reactor in
Section 3.3 and the anaerobic digester in Section 2 of this chapter, and we will study
biological fermentors in Chapter 7.

During the last few decades, many chemical engineering departments have changed their
names to departments of chemical and biological engineering. What distinguishes bio-
logical engineering from biochemical engineering is that biological engineering includes
both biochemical and biomedical engineering. In this section we develop a model and
numerical solutions of a problem of biomedical engineering.

4.4 A Biomedical Example: The Neurocycle Enzyme System 223

4.4.1 Fundamentals

The chemical synapse is a highly specialized structure that has evolved for exquisitely
controlled voltage-dependent secretions. The chemical messengers, stored in vesicles, are
released from the presynaptic cell following the arrival of an action potential that triggers
the vesicular release into the presynaptic terminal. Once released from the vesicles, the
transmitter diffuses across a narrow synaptic cleft, then binds to specific receptors in the
postsynaptic cell, and finally initiates an action potential event in the nerve-muscle cell
membrane by triggering muscle contractions.

Acetylcholine plays a recognized role in the nerve excitation scenario that we have
described above very briefly. It is found in cholinergic synapses that provide stimulatory
transmissions in the nervous system. Its complete neurocycle implies a coupled two-
enzymes/two-compartments model with two strongly coupled events as follows:

The activation event: Acetylcholine is synthesized from choline and acetyl coenzyme
A (Acetyl-CoA) by the enzyme choline acetyltransferase (ChAT) and is immediately
stored in small vesicular compartments closely attached to the cytoplasmic side of the
presynaptic membranes.

The degradation event: Once acetylcholine has completed its activation duty, the
synaptic cleft degradation begins to remove the remaining acetylcholine. This occurs
through the destruction of acetylcholine by hydrolysis that uses the acetylcholinesterase
enzyme (AchE) to form choline and acetic acid.

Diseases such as Alzheimer’s and Parkinson’s are the result of an imbalance of the
cholinergic system considered above, with devastating consequences to human health.
The above simplified sequence of events suggests that we might obtain some insight into
such a cycle by using a simple diffusion-reaction model that simulates the nonlinear
interaction between these events. Membrane models that are targeted to physiological
problems can be a promising heuristic way for tackling complex biomedical systems such
as the one considered above.

4.4.2 The Simplified Diffusion-Reaction Two Enzymes/Two Com-
partments Model

In the following we attempt to describe the acetylcholinesterase/choline acetyltransferase
enzyme system inside the neural synaptic cleft in a simple fashion; see Figure 4.49. The
complete neurocycle of the acetylcholine as a neurotransmitter is simulated in our model
as a simple two-enzymes/two-compartments model. Each compartment is described as
a constant-flow, constant-volume, isothermal, continuous stirred tank reactor (CSTR).
The two compartments (I) and (IT) are separated by a nonselective permeable membrane
as shown in Figure 4.50.

224 Chapter 4: Initial Value Problems

Presynaptic Cell

Postsynaptic Cell

The synaptic cleft
Figure 4.49

Assuming that all the events are homogeneous in all vesicles, and using the proper di-
mensionless state variables and parameters, we consider the behavior for a single synaptic
vesicle as described by this simple two-compartment model, where (I) and (II) denote
the two compartments.

>
Input ¢ Output

The two enzymes/two compartments model
Figure 4.50

A schematic presentation is given in Figure 4.51 for the simplified diffusion-reaction two-
enzymes/two-compartments model. From an enzyme kinetics point of view, we consider
the most general case, in which both enzymes have nonmonotonic dependence on the
substrate and hydrogen-ion concentrations.

4.4 A Biomedical Example: The Neurocycle Enzyme System 225

We assume that acetylcholine is synthesized in compartment (I) by ChAT due to the
activation reaction R; in which the stimulatory neurotransmitter acetylcholine is synthe-
sized:

Ry choline + acetyl — CoA crAT acetylcholine + C'oA . (4.89)

Acetylcholine is destroyed (hydrolyzed) in compartment (II) by AchE in the degradation
reaction Ry where the stimulatory neurotransmitter acetylcholine is degraded:

Ry acetylcholine + water AL choline + acetate + H . (4.90)

Both reactions are considered to be substrate-inhibited and hydrogen-ion rate-dependent.
This leads to a nonmonotonic dependence of the reaction rates on both the substrates
and pH.

The following reaction rate expressions can be derived.

The acetylcholine synthesis reaction rate:

R = Vart - [S2]1
Kso n [H*] [S:]3
[S2]1 + [H+, (KhQ +[HT + Khhy =+ Kis
[S3]1
(4.91)
Kss n [H*]3 [Ss]%
[S5]1 + Lo (Kh3+[H 1+ Khhy) T K
The acetylcholine hydrolysis reaction rate:
B Vira - [Si]2
"o (Sus+ 50 (Khy 4+ (B + A5 | 151 .
Y2), ! > Khhy Kiy

4.4.3 Dynamic Model Development

The schematic diffusion-reaction structure shown in Figure 4.51 utilizes our suggested
two enzymes/two-compartments model. In this structure, both the feed and the output
are to/from compartment (1), while the input and output of compartment (IT) both occur
though membrane diffusion.

226 Chapter 4: Initial Value Problems

q
h g
Sif v
Sof
Sir Compartment (I)
q
—
Ry h
h1,811,S21,83; g“
,, 21
C S 31
ompartment (II)
R,
h5,812.52, 83

Simplified diffusion-reaction two enzymes/two compartments model
Figure 4.51

Next we formulate the dynamic model differential equations for the different components
in the two compartments:

(A) The hydrogen-ion dynamic mole balances in the two compartments are given by

v, AT

i g = e ((Hp = [H') —ag-af

H+

A ([Hy = [HT]2) +
+ V; (as; - Ra - AchE — Ruw;) (4.93)
for the indices j = 1,2, which denote the compartments (I) and (II), respectively.
Here a11 =1, a12 =0, as1 = 1, ags = —1, as; = 0,a420 = 1; [HT]y is the con-
centration of hydrogen ions in the feed, and Rwy; is the rate of water formation in

compartment j. The parameter o/H . is the membrane permeability for hydrogen
ions and A is the active membrane area.

(B) The dynamic mole balances for the hydroxyl ions in the two compartments are
given by

Vi d[()gf]j = ay-q ([OH]y —[OH]1)
—ag;-a! Ay ([OHT]1 = [OHT]2) = Vj - Rw; (4.94)

for j = 1,2 as before. Here [OH | is the concentration of hydroxyl ions in the
feed and o/o - is the membrane permeability for hydroxyl ions.

(C) The acetylcholine dynamic mole balances in the two compartments are given by

d[S1];

Viig aij-q- ([Si]y = [Sih) — ag; - a’s, - Anr ([Si]1 — [Si]2) +

+ V] (a3j . Rl -ChAT — Qy4j - Rg . AchE) (495)

4.4 A Biomedical Example: The Neurocycle Enzyme System 227

for j = 1,2 with as; = 1, ags = 0. Here [S1]; is the concentration of acetylcholine
in the feed and 0/51 is the membrane permeability for acetylcholine.

(D) The choline dynamic mole balances in the two compartments are given by

- d[Sa];

Vi a - Wi ([S2l = [S2]1) — az; - o, - Anr ([Sals — [S2]2) +

+ Vj (—asj - R - ChAT + ayj - Ry - AchE) (4.96)

for j = 1,2, where [Sy] is the concentration of choline in the feed and o’ is the
membrane permeability for choline.

(E) Finally, the acetate dynamic mole balances in the two compartments are given by

d[Ss];
Vi [d;]j = a1 -q-([Ss]y — [Ss]1) — az; - %, - A ([S3] — [S3]2) +
+ Vj (—as; - Ry - ChAT + ay; - Ry - AchE) (4.97)

for j = 1,2, where [S3]; is the concentration of acetate in the feed and o, is the
membrane permeability for acetate.

The pseudosteady-state assumption for the hydroxyl ions gives us

d[OH]

o =0 (4.98)

Assuming that the hydrogen and hydroxyl ions are at equilibrium yields the equation
K, = [H"]-[OH] (4.99)

for K, the equilibrium constant of water reversible dissociation.
Subtracting equation (4.94) from equation (4.93) and substituting equations (4.98) and
(4.99) into equation (4.93) results in the equation

d[g:]j — ay g {([Hﬂf —[H"h) - Ky ({Hi]f B [H1+]1>}

—agj-of Ay ([HT] = [H]2) +

Foa A {a;,, e ([Hlﬂl) [H1+12>}+

+ V} s A4yt R2 - AchE (4100)

Vi

for j = 1,2. The two equations (4.100) for j = 1, 2 replace the four equations (4.93) and
(4.94) for j = 1,2 under the above assumptions.

Before proceeding further, we list all notations used in the above equations (4.91) to
(4.100).

228

Notations:

Chapter 4: Initial Value Problems

The subscripts j = 1,2 denote the compartments (I) and (II), respectively. The subscript
f denotes the feed conditions.

Am
AchE
AchE

Bi = ViVanChAT /q
B2 = ‘/QVMQAChE/q

ChAT
ChAT

CoA
CoA
En
[H*]
Ks,, Kii, Khi, Khh,

Ks,, Kis, Kha, Khhs
Ks,, Kis, Khs, Khhs
Ky

[OH"]
Py

active area of membrane between compartments; in m?

acetylcholinesterase

concentration of acetylcholinesterase in compartment (II);

in kg/m?

parameter for the acetyltransferase enzyme activity; kmol/ m?
parameter for the acetylcholinesterase enzyme activity;

in kmol/m?

choline acetyltransferase

concentration of choline acetyltransferase in compartment (I);
in kg/m?

coenzyme A

concentration of coenzyme A in compartment (I); in kg/m®
enzyme N

hydrogen ion concentration; in kmol/m3>
kinetic constants for the choline acetyltransferase catalyzed
reaction; in kmol/m?

kinetic constants for the coenzyme A catalyzed reaction;
in kmol /m®

kinetic constants for the acetylcholinesterase catalyzed
reaction; in kmol/m?

equilibrium constant of water; in kmol? / m?®

hydroxyl ions concentration; in kmol/ m?

reaction product NN, the product of catalyzing Sy by En
volumetric flow rate into compartment (I); in m?®/sec
rate of reaction in compartment 5; in kmol/(m? - sec)
rate of water formation in compartment j; kmol/(m> - sec)
acetylcholine concentration; in kmol/ m?

choline concentration; in kmol/m?

acetate concentration; in kmol/m?

substrate IV, catalyzed by the enzyme N

time; in sec

volume of compartment j; in m?

Dimensionless parameters:

hj = [H'];/Kh
s1; = [S1];/Ks,
s2; = [S2];/[S2]res
s3; = [93];/[Ss]res

dimensionless hydrogen ion concentration
dimensionless acetylcholine concentration
dimensionless choline concentration

dimensionless acetate concentration

4.4 A Biomedical Example: The Neurocycle Enzyme System 229

Vr =Vi/V2 ratio of the volume of the two compartments

T =gq-t/Vi dimensionless time

Dimensionless kinetic parameters for the acetylcholinesterase catalyzed reaction:
Ky _ Km o Ks,
Kiy’ Khhy’ Kiy
Dimensionless kinetic parameters for the choline acetyltransferase catalyzed reaction:
01, ..., Os.

5

Greek letters:
ag+ = oyt - Am/q dimensionless membrane permeability for hydrogen ions

Qo = o/o - -Awm/q dimensionless membrane permeability for hydroxyl ions

as, = 0/51 -An/q dimensionless membrane permeability for acetylcholine
as, = 0/52 -An/q dimensionless membrane permeability for choline

as, = 0/53 -An/q dimensionless membrane permeability for acetate

o/HJr membrane permeability for hydrogen ions; in m/sec
Qo membrane permeability for hydroxyl ions; in m/sec
o/S1 membrane permeability for acetylcholine ions; in m/sec
0/52 membrane permeability for choline ions; in m/sec

0/53 membrane permeability for acetate ions; in m/sec

4.4.4 Normalized Form of the Model Equations

With the notations of Section 4.4.3, the equations (4.91), (4.92), (4.95) to (4.97), and
(4.100) can be expressed in normalized form. The differential equations (4.95) to (4.97)
and (4.100) can be written in matrix form as

v,
dt

for j = 1,2 with the known initial conditions ¥(0) at ¢t = 0.
In the matrix representation (4.101) we use the following settings:

— F;(D) (4.101)

h; F15(V)
) = v - | SU _ (W (o) — | F2(Y)
U,(t) = ¥; = iy , U = (Uy) , and F;(¥) = iy () , (4.102)
53 45(9)
both for j = 1 and j = 2, and the feed condition

hy

S1f

S2f

\111 S3f

\I} ce — feed —

Jeed (\1;2feed) 0

0

0

0

230 Chapter 4: Initial Value Problems

Note that the entries of ¥ ..q have already been incorporated into the equations (A) to
(E) on p. 226 to 227. The eight component functions Fy; for k = 1,...,4 and j = 1,2
are the dynamic mole balance equations in normalized form. They are given in equations
(4.103) to (4.106) as follows.

Normalized equations (A’) and (B’), replacing the earlier equations (A) and (B)

The DEs (4.93) and (4.94) have earlier been combined into equation (4.100) for the
hydrogen and hydroxyl ions balances. This latter DE has the normalized right-hand
side

F(%) = ay {(hf —h) = (hlf - h11>}

1 1
—bj-agj OZH+'(h1—h2)—’y-OzOH—' - +
h1 he
+ bj-asj- By -ra/Khy (4.103)
for 7 = 1,2. Here the B; are defined in Section 4.4.3 on p. 228, while by = 1 and

by = Vg. Here and in the following, the a;; are as given on p. 226.

Normalized equation (C’), instead of (C)

The DE (4.95) for acetylcholine can be expressed with the normalized right-hand
side

Foy (W) = aij(sip —s11) — by -azj - as, (811 — s12) +

+bj (agj - By -r1/Ks1 — agj - By - 12/ Ksy) (4.104)

for j = 1,2 and b; and a;; as above.

Normalized equation (D’), instead of (D)
The DE (4.96) for choline can be expressed with the normalized right-hand side

Fy;(V) = aij(say — s21) — bj - azj - ag, (521 — s22) +
+ bj (—a3j - By - Tl/[SQ]ref + ayq;j - Bs - T‘g/[Sg]Tef) (4.105)

for j = 1,2 and b; and a;; as before.

Normalized equation (E’), instead of (E)
The DE (4.97) for acetate can be expressed with the normalized right-hand side

Fij(V) = aij(ssy —s31) — bj - agj - gy (831 — s32) +
+ bj (—a3j - By - T‘1/[S3]Tef + ayq;j - Bs - T‘g/[S;;]Tef) (4.106)

for j = 1,2 and b; and a;; as before.

Normalized reaction rates (4.89) and (4.90)

. = { S21 }) { 531 } (4.107)
s21 + 01/h1 + 02 + O3hy + 0452, s31 + 05/h1 + 0 + O7h1 + 0552, ’

4.4 A Biomedical Example: The Neurocycle Enzyme System 231

and

512
ro = . 4.108
2 812+1/h2+1+(5h2+048%2 ()

The relatively simple two-enzymes/two-compartments model is thus represented in
(4.101) via the above set of eight coupled ordinary nonlinear differential equations (4.103)
to (4.106). This system of IVPs has the eight state variables h;(t), s1;(t), s2;(t), s3;(t)
for j = 1,2 that depend on the time ¢. The normalized reaction rates r;(t) are given in
equations (4.107) and (4.108). The system has 26 parameters that describe the dynam-
ics for all compounds considered in the two compartments. A specific list of validated
experimental parameter values follows in Section 4.4.5.

4.4.5 Identification of Parameter Values

Because of the lack of good experimental data in human brain chemistry, our presenta-
tion is limited to the use of carefully chosen normalized experimental parameters in order
to reproduce the basic static and dynamic characteristics of this coupled enzymes system.

Most of the data is taken from earlier experimental work. The concentrations in the
feed and reference values are taken from mouse and rat brain data for the sake of illus-
tration. The membrane permeability parameters for so and s3 are assumed equal to the
value for s;. The normalized parameter B; is taken equal to By, which was found earlier
experimentally. The kinetic parameters 6,,, for m = 1, .., 8 of reaction (1) are chosen by
using a known dissociation constant and by keeping the experimentally found proportion
for reaction (2) on substrate-inhibition and hydrogen-ion effects.

Table of 26 experimentally obtained numerical parameter values:

v, 1.2 Khi 1.0066- 1075 kmol/m?
B 5.033- 107 kmol/m? Ksy 5.033- 1077 kmol/m?
By 5.033- 107 kmol/m? [Solres 0.0001 kmol/m?

ag+ 225 [S3lres 0.000001 kmol /m3
aog- 0.5 01 32000

s, 1 92 4

as, 1 0 0.125

as, 1 04 0.125

S1f 2.4 95 84500

S2f 1.15 96 65

S3f 3.9 97 76.72

o 0.5 Os 0.00769

ol 0.01

0 0.1

232 Chapter 4: Initial Value Problems

4.4.6 Numerical Considerations

Our numerical task is to solve the IVP given by the eight DEs (4.103) to (4.106) both for
j =1and j =2 with the given 26 system parameters and the two rate equations (4.107)
and (4.108) for any physically feasible set of initial values ¥(0) and feed parameters ¥ ¢eeq
numerically.

A numerical solution of the problem may consist of a plot of all eight profiles hq(t), s11(t),
s21(t), s31(t), ha(t), s12(t), s22(t), and s33(t) for a certain time interval 0 < ¢ < Tipq. Or
it may involve phase plots, such as that of the acetylcholine concentration in compart-
ment (I) versus that in compartment (II). Our aim in the computations that follow is to
show the variations in the quality of the solutions for differing values of h¢, the hydrogen
ion concentration of the feed to compartment (I). Another dependency of the solutions
is explored in the exercises.

Throughout this section we work with the initial values vector

0.09594
1.27
1.155
4.405
0.7
0.2
1.16
4.8

which uses physiologically feasible starting values for the chemistry of the human brain.

Here is the MATLAB program neurocycle.m, which upon the user’s specification

and using MATLAB’s (un)commenting feature, which places the symbol % at the start
of comment lines, either plots all eight profiles, or one profile and one phase plot, or only
one phase plot for relatively high values of the time parameter ¢, when the system has
reached its periodic limit cycle.
The commenting or uncommenting of MATLAB code line blocks can best be achieved
from the MATLAB text editor window for an m file. Simply highlight a block of code
lines via a mouse drag in the MATLAB text editor window, then click on the “Text”
entry of the editor’s toolbar and click “Comment” or “Uncomment” as appropriate. This
action makes % commenting marks appear at or disappear from the front of each code
line of the highlighted block.

function [t, y] = neurocycle(hf,Tend,y0,S,standard)
% [t, y] = neurocycle(hf,Tend,y0,S)

% Sample call : [t,y] = neurocycle(0.004554,20);

% Input : hf = hydrogen ion concentration of input

% Tend = end of time interval for integration
% yO = initial value column vector,
% with entries for h_1, s_11, s_21, s_31, h_2, s_12, s_22, s_32

A S = color choice for graphs, such as ’r’ for red, ’g’ for green etc

4.4 A Biomedical Example: The Neurocycle Enzyme System 233

% standard : if "standard" is set to 1, we use the standard initial
% values from the book (section 4.4);

% if "standard" is set different from 1, we use special
% initial values and annotate the graphs differently.

% Output: Three different plots are obtainable by (un)commenting :

A First plotting block active:

% Graphs of all 8 profiles for 0 <= t <= Tend in an 8 window plot
% Second plotting block active:

% Phase plot of acetylcholine concentrations in (I) versus (II),
% after limit cycle has been reached (for t >= 0.4 * Tend)

% Third plotting block active:

% s_12 profile and phase plot for 0 <= t <= Tend

% Use the MATLAB text editor ("Text" help button) to (un)comment the
% three plotting blocks so that ONLY ONE is active.

if nargin == 2, yO = [0.09594; 1.27; 1.155; 4.405; 0.7; 0.2; 1.16; 4.8];

S = ’b’; standard = 1; end % setting defaults
if nargin == 3, S = ’b’; standard = 1; end
if nargin == 4, standard = 1; end
tspan = [0 Tend]; % De IVP solver

options = odeset(’RelTol’,107-6,’AbsTol’,10"-7,’Vectorized’,’on’);
[t,y] = odelbs(Q@FjPsi,tspan,y0,options,hf); % using DE integrator ode...

% clf, subplot(4,2,1) % uncomment this block for 8 profiles
plot(t,y(:,1),S), v = axis;
xlabel(’t’,’FontSize’,11); ylabel(’h_1 >, ’FontSize’,12,’Rotation’,0);

title(’Hydrogen ion concentration in (I)’,’FontSize’,12);
if standard == 1,
text (v(1)+0*x(v(2)-v(1)),v(4)+0.26%x(v(4)-v(3)),...
[’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...
> and the standard initial value \Psi(0)’],’FontSize’,14);
else,
text (v(1)+0*x(v(2)-v(1)),v(4)+0.32x(v(4)-v(3)), ...
[’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...
>’ and initial value’],’FontSize’,14);
text (v(1)+0.1*x(v(2)-v(1)),v(4)+0.21x(v(4)-v(3)),...
[’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end
subplot (4,2,3)
plot(t,y(:,2),S)
xlabel(’t’,’FontSize’,11); ylabel(’s_{11} >, ’FontSize’,12,’Rotation’,0);
title(’Acetylcholine concentration in (I)’,’FontSize’,12);
subplot (4,2,5)
plot(t,y(:,3),S)
xlabel(’t’,’FontSize’,11); ylabel(’s_{21} >, ’FontSize’,12,’Rotation’,0);
title(’Choline concentration in (I)’,’FontSize’,12);
subplot (4,2,7)
plot(t,y(:,4),S)

ST ST ST ST ST ST ST ST ST 5T 5L 5L 5T 5L 5T ST T ST T T T

234 Chapter 4: Initial Value Problems

% xlabel(’t’,’FontSize’,11); ylabel(’s_{31} > ’FontSize’,12,’Rotation’,0);
% title(’Acetate concentration in (I)’,’FontSize’,12);

%

% subplot(4,2,2)

% plot(t,y(:,5),S)

% xlabel(’t’,’FontSize’,11); ylabel(’h_2 > ’FontSize’,12,’Rotation’,0);

% title(’Hydrogen ion concentration in (II)’,’FontSize’,12);

% subplot(4,2,4)

% plot(t,y(:,6),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{12} > ’FontSize’,12,’Rotation’,0);
% title(’Acetylcholine concentration in (II)’,’FontSize’,12);

% subplot(4,2,6)

% plot(t,y(:,7),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{22} > ’FontSize’,12,’Rotation’,0);
% title(’Choline concentration in (II)’,’FontSize’,12);

% subplot(4,2,8)

% plot(t,y(:,8),S)

% xlabel(’t’,’FontSize’,11); ylabel(’s_{32} > ’FontSize’,12,’Rotation’,0);
% title(’Acetate concentration in (II)’,’FontSize’,12);

% clf, subplot(2,1,1), 7% uncomment this block for s_12 profile and phase plot
% plot(t,y(:,6),8), v = axis;

% xlabel(’t’,’FontSize’,11); ylabel(’s_{12} > ’FontSize’,12,’Rotation’,0);

% if standard == 1,

% text (v(1)+0*(v(2)-v(1)),v(4)+0.11x(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’’10.7g’),...

% > and the standard initial value \Psi(0)’],’FontSize’,14);

% else, text(v(1)+0.05%x(v(2)-v(1)),v(4)+0.135%(v(4)-v(3)),...

% [’Neurocycle enzyme system with h_f = ’,num2str(hf,’%10.7g’),...

% > and initial value’],’Fontsize’,14)

% text(v(1)+0.1x(v(2)-v(1)),v(4)+0.082*(v(4)-v(3)),...

% [’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end

% title(’Acetylcholine concentration in (II)’,’FontSize’,12);

% subplot(2,1,2)

% plot(y(:,2),y(:,6),8)

% xlabel([{’ ’},{[’s_{11} (for 0 \leq t \leq ’,...

% num2str(Tend,’%7.5g’),’)’]1}], ’FontSize’,12)

% ylabel(’s_{12} > ’FontSize’,12,’Rotation’,0);

% title(’Phase plot of acetylcholine concentrations in (I) versus in (II)’,...

% ’FontSize’,12)

% uncomment this block for terminal limit cycle plot
clf, k = length(t); Tstart = floor(0.4%*k);
plot(y(Tstart:end,2),y(Tstart:end,6)), v = axis;
if standard == 1,

text (v(1)+0*(v(2)-v(1)),v(4)+0.046*x(v(4)-v(3)),...
[’Neurocycle enzyme system with h_f = ’,num2str(hf,’’10.7g’),...
> and the standard initial value \Psi(0)’],’FontSize’,14);

4.4 A Biomedical Example: The Neurocycle Enzyme System 235

else,
text (v(1)+0.08*(v(2)-v(1)),v(4)+0.056*(v(4)-v(3)),...
[’Neurocycle enzyme system with h_f = ’,num2str(hf,’’10.7g’),...
> and initial value’],’Fontsize’,14)
text (v(1)+0.1*x(v(2)-v(1)),v(4)+0.036*(v(4)-v(3)),...
[’\Psi(0) = ’,num2str(y0’,’%7.5g’)],’FontSize’,14); end
xlabel ([{’ ’},{[’s_{11} (for ’,num2str(t(Tstart),’%7.5g°),...
> \leq t \leq ’,num2str(Tend,’%7.5g’),’)’]1}],’FontSize’,12);
ylabel(’s_{12} >, ’FontSize’,12,’Rotation’,0);
title(’Phase plot of acetylcholine concentrations in (I) versus in (II)’,...
’FontSize’,12);

function dydx = FjPsi(Psi,y,hf) % right hand side of DE function
thet1=32000; thet2=4; thet3=0.125; thet4=0.125; thet5=84500; thet6=65;
thet7=76.72; thet8=0.00769; al=0.5; ga=0.01; del=0.1; VR=1.2;
all=1; al12=0; a21=1; a22=-1; a31l=1; a32=0; a41=0; ad2=1; bil=1; b2=VR;

alHp=2.25; alHm=0.5; alS1=1; alS2=1; alS3=1; B1=5.033*10"-5; B2=5.033*10"-5;

Kh1=1.0066%10"-6; Ks1=5.033*10"-7; S2ref=0.0001; S3ref=0.000001;

s1f=2.4; s2f=1.15; s3£f=3.9; % list with parameter values

rl = (y(3,:).%xy(4,:))./((y(3,:) + thetl./y(1,:) + thet2 + thet3xy(1,:) + ...
thetdx*y(3,:).72) .* (y(4,:) + thet5./y(1,:) + thet6 + thet7*xy(1l,:) + ...

thet8x*y(4,:).72)); % rate equations
r2 = y(6,:)./(y(6,:) + 1./y(5,:) + 1 + delxy(5,:) + alxy(6,:).72);
dydx = [al1x((hf - y(1,:)) - gax(1/hf - 1./y(1,:))) - ... % 8 DEs
blxa21*(alHp*(y(1,:)-y(5,:)) - gaxalHm*x(1./y(1,:)-1./y(5,:))) + ...
bl*ad1xB2*r2/Khi;
all*(s1f-y(2,:)) - bl*a21%alS1*(y(2,:)-y(6,:)) + bl*x(a31*Blxr1/Ksl ...
- ad41xB2*r2/Ksl);

all*(s2f-y(3,:)) - bl*a21%alS2*(y(3,:)-y(7,:)) + bl*(-a31*Bl*rl/S2ref ...
+ ad1xB2*r2/S2ref);
all*(s3f-y(4,:)) - bl*a21%alS3*(y(4,:)-y(8,:)) + bl*(-a31*Bl*rl/S3ref ...
+ ad41xB2*r2/S3ref);
a12+%((hf - y(1,:)) - gax(1/hf - 1./y(1,:))) - ...
b2xa22* (alHp* (y(1,:)-y(5,:)) - gaxalHm*x(1./y(1,:)-1./y(5,:))) + ...
b2*a42xB2*r2/Khi;
al2*(s1f-y(2,:)) - b2*a22%alS1*(y(2,:)-y(6,:)) + b2*(a32+«Blxr1/Ksl ...
- ad2xB2*r2/Ksl);
al2*(s2f-y(3,:)) - b2xa22xalS2*(y(3,:)-y(7,:)) + b2*(-a32*Bl*rl/S2ref ...
+ ad2xB2*r2/S2ref) ;
al2*(s3f-y(4,:)) - b2xa22xalS3*(y(4,:)-y(8,:)) + b2*(-a32*Bl*r1/S3ref ...
+ ad2%B2*r2/S3ref)];

Next we display 13 single, double, or multiple plots drawn by our MATLAB program
neurocycle.m of (a) the acetylcholine concentration profile in compartment (II) above
the phase plot of the acetylcholine concentration in compartment (I) versus that in com-
partment (II), or (b) the limit cycle plot, or (c) the plot of all 8 profiles. We include
interpretative comments on the solution’s behavior in each case.

In the plots we vary the hydrogen-ion feed concentration hs from 0.0044 to 0.0065, or by

236

roughly 50%.

Chapter 4:

Initial Value Problems

Note that all s11-s12 phase plots in this section start at (s11(0), s12(0)) = (1.27, 0.2)

as specified earlier in the initial condition vector ¥(0).

Neurocycle enzyme system with hf = 0.0044 and the standard initial value ¥(0)

Acetylcholine concentration in (Il)

25

Phase plot of acetylcholine concentrations in (l) versus in (Il)

0.9 T T T T T

30

081

0.7

0.6

041

0.3

02

01

0
1.2 1.25 1.3 1.35 1.4 1.45 1.5

Sy, (for 0<t<30)

1.55

1.6 1.65

Profile of s12(t) and phase plot of s12 versus si1;
Convergence to a fixed steady state, no periodicity

Figure 4.52

For all values hy < 0.0044, the plots have the same shape as displayed in Figure 4.52.
Note that the phase plot starts out from the end of the lower left hook and proceeds
toward the upper right in the bottom image as t increases.

When we increase h¢, small but increasing oscillations of the concentration profiles occur,
as the following plots for hy = 0.004544 indicate. Note how the spiral at the temporal
end of the phase plot in Figure 4.53, bottom, increases in diameter with time, as does
the oscillation amplitude of the acetylcholine concentration in compartment II in the top
graph of Figure 4.53, bottom plot. For an enlarged display of the spiral in the bottom plot

of MATLAB’s figure window

of Figure 4.53, we have used the magnifying glass tool
toolbar before saving and printing.

4.4 A Biomedical Example: The Neurocycle Enzyme System 237

Neurocycle enzyme system with hf = 0.004544 and the standard initial value ¥(0)

Acetylcholine concentration in (I1)
0.9 T T T

Phase plot of acetylcholine concentrations in (I) versus in (Il)

1.6 1.605 1.61 1.615 1.62 1.625

s, (for 0<t<30)

Profile of s12(t) and phase plot of s12 versus $i1;
Increasing oscillatory behavior with a single period
Figure 4.53

For hy = 0.004546, the solution s12(t) becomes more irregular at first until it settles into
one stable limit cycle; see Figure 4.54.

238 Chapter 4: Initial Value Problems

Neurocycle enzyme system with hf = 0.004546 and the standard initial value ¥(0)

Acetylcholine concentration in (Il)
0.9 T T T T

Phase plot of acetylcholine concentrations in (I) versus in (Il)

085} 4
0.845]- — |
S
084l =N 4
ll"?/;%%‘\
i 1
0.835 @2

¢

N\

0.83
120.825 r
0.82
0.815-
0.81
0.805 -

0.8 b

16 1.605 1.61 1.615 1.62 1.625
5 (for 0<t<90)
Profile of s12(t) and phase plot of s12 versus si1;

larger-amplitude single-period limit cycle
Figure 4.54

Note that in the previous two phase plots of Figures 4.53 and 4.54 we have zoomed in

on the oscillatory part in MATLAB’s figure window using the @ tool. We shall do so
repeatedly in the future for added clarity.

Our next-higher value of hy = 0.004552 exhibits a double-loop limit cycle, or a period-
two periodic attractor in the phase plot of Figure 4.55.

4.4 A Biomedical Example: The Neurocycle Enzyme System 239

Neurocycle enzyme system with hf = 0.004552 and the standard initial value ¥(0)
Acetylcholine concentration in (I1)

20 30 40 50 60 70 80 90

Phase plot of acetylcholine concentrations in (I) versus in (Il)

Iy
I+

1.595 1.6 1.605 1.61 1.615 1.62

s, (for 0<t<90)

Profile of s12(t) and phase plot of s12 versus si1;
Larger-amplitude single period with a one double-loop limit cycle
Figure 4.55

If we increase hy further to 0.0045525, we observe chaotic behavior of the si2(t) con-
centration in Figure 4.56. This also manifests itself in the phase plot, which consists of
random loops until our plotting ends at 90 time units.

240 Chapter 4: Initial Value Problems

Neurocycle enzyme system with hf = 0.0045525 and the standard initial value ¥(0)

Acetylcholine concentration in (Il)
0.9 T T T T

Phase plot of acetylcholine concentrations in (I) versus in (l1)

0.84 - 2 j\\\\:\\\\\‘\ |

0.835 // \\A\\\\N\\\‘\'/"\\
0.83 A\ |\ 5,}@2) |
0.825}- / || 11 |
s,, 082 4 ‘JJ j/ }’/ |
0.815} iy J
0811 / |
0.805 - J
08} |
0.795 J
079t “‘ ‘ ‘ o

1.595 16 1.615 162

s (for 0<t<90)

Profile of s12(t) and phase plot of s12 versus si1;
chaotic behavior
Figure 4.56

The profile and phase plots show oscillatory behavior of Figure 4.56, but no pattern or
periods can be seen therein. This is called a strange attractor in modern nonlinear
dynamics theory. A strange attractor can be chaotic or nonchaotic (high-dimensional
torus). Differentiating between chaotic and nonchaotic strange attractors is beyond the
scope of this undergraduate book.

4.4 A Biomedical Example: The Neurocycle Enzyme System 241

A slight increase to hy = 0.0045526 ends the chaotic behavior after around 20 time
units, and an orderly 9-periodic behavior (period-nine periodic attractor) sets in for the
solution from then on, as seen in Figure 4.57.

Neurocycle enzyme system with hf = 0.0045526 and the standard initial value ¥(0)

Acetylcholine concentration in (Il)
T T T

30 40 50 60 70 80

Phase plot of acetylcholine concentrations in (I) versus in (l1)
0.9 T T T T T T

0.8 N

0.7 N

0.4 N

0.3 N

O | | | | | | | |
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

S, (for 0<t<80)

Profile of s12(t) and phase plot of s12 versus si1;
after a short period of chaos, periodic behavior begins
Figure 4.57

In order to display the asymptotic limit cycle in the phase plot of Figure 4.57 more

242 Chapter 4: Initial Value Problems

clearly, we separate this limit cycle by using the third plotting block inside neurocycle.m
to obtain Figure 4.58 for the same data.

Neurocycle enzyme system with hf = 0.0045526 and the standard initial value ‘¥(0)

Phase plot of acetylcholine concentrations in (1) versus in (11)
0.9 T T T T T T T

0.8 -

0.7~ -

0.6 -

0.5~ 3

0.3 -

0.2~ -

0.1 -

0 1 1 1
1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

s, (for 29.404<t<80)

Phase plot of s12 versus s11;
limit cycle detail for large ¢ of Figure 4.57
Figure 4.58

Notice that this limit cycle goes through a number of small loops, each one corresponding
to one small bump of the profile of s12(t) in the top plot of Figure 4.57, followed by a wide
swing in the profile of s15(¢) and the corresponding large limit cycle loop approximately
once every 11 seconds.

Let us count the number of periods of s12(t) in Figure 4.57, once the periodic oscillatory
steady-state loop has been reached. For ¢ > 20 the system has stabilized in its varying
behavior: there are 9 separate periods in the top graph of Figure 4.57 in each complete
limit cycle of length about 11 time units. This can be verified by counting the number
of local maxima between subsequent large amplitude drops in the top profile curve of

4.4 A Biomedical Example: The Neurocycle Enzyme System 243

Figure 4.57. Note that there are also exactly 9 corresponding maxima in the enlarged
phase plot in Figure 4.59. Figure 4.59 shows four and a half complete periodic loops for
29.404 < t < 80 according to the top profile graph of Figure 4.57.

Phase plot of acetylcholine concentrations in (l) versus in (Il)
T T T T

0.845 - N

0.84

0.835

0.83

0.825

12 0.82

0.815

0.81

0.805

0.8

0.795

| | | |
1.6 1.605 1.61 1.615 1.62

S, (for 29.404<t<80)

Phase plot of s15 versus si7;
enlarged detail of Figure 4.58
Figure 4.59

When h; = 0.0045539, the initial chaotic behavior has stopped and the system’s limit
cycle is reached on the second pass through a large-amplitude drop in the acetylcholine
concentration in compartment (II), as shown in Figure 4.60.

244 Chapter 4: Initial Value Problems

Neurocycle enzyme system with hf =0.0045539 and the standard initial value ¥(0)

Acetylcholine concentration in (11)
T T T

20 30 40 50 60

Phase plot of acetylcholine concentrations in (l) versus in (Il)
0.9 T T T T T T

0.8 i

0.7 i

0.6 i

0.3 i

0 I I I I I I I I
12 1.25 1.3 1.35 1.4 1.45 15 1.55 1.6 1.65

S, (for 0<t<60)

Profile of s12(t) and phase plot of s12 versus si1;
10-periodic limit cycle
Figure 4.60

In Figure 4.60 we count 10 separate periods of mostly increasing amplitudes until the
cycle repeats.

For hy = 0.004556 the number of periods drops to 8 in each cycle, while for Ay = 0.004558
there are only 7 periods in the limit cycle. For hy = 0.00457 there are 4 separate periods,
for hy = 0.00458 there are only 3 in Figure 4.61. For hy = 0.0046 the number of separate
periods decreases to 2, and for hy > 0.00465, there is only a single period until hy
becomes significantly larger.

These assertions can be verified by our readers using the MATLAB code neurocycle.m.

4.4 A Biomedical Example: The Neurocycle Enzyme System 245

As an illustration we now plot the graph for hy = 0.00458 that generates a 3-periodic
limit cycle (period-three periodic attractor).

Neurocycle enzyme system with hf = 0.00458 and the standard initial value ¥(0)

Acetylcholine concentration in (I1)
0.9 T T T

Phase plot of acetylcholine concentrations in (I) versus in (l1)
0.9 T T T T T T

0.8

0.7

0.6

0
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

S, (for 0<t<60)

Profile of s12(t) and phase plot of s12 versus $i1;
3-period limit cycle
Figure 4.61

For much larger hy values such as hy = 0.006325, the limit cycle has exactly one maxi-
mum, and this is reached after the first complete cycle, as shown in Figure 4.62.

246 Chapter 4: Initial Value Problems

Neurocycle enzyme system with hf =0.006325 and the standard initial value ¥(0)

Acetylcholine concentration in (11)
T T T

0 10 20 30 40 50 60

Phase plot of acetylcholine concentrations in (I) versus in (Il)
0.5 T T T T T

0 I I I I I I I I
1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 14

S, (for 0<t<60)

Profile of s12(t) and phase plot of s12 versus si1;
a single-period limit cycle
Figure 4.62

For even larger values of hy, the system eventually reaches a unique fixed steady state
that is stationary and involves no limit cycle at all, just as we have seen to be the case
for small values of hs in Figure 4.52. For example, for hy = 0.0065, the phase plot starts
at s11 = 1.27 and s12 = 0.2 in the bottom plot of Figure 4.63 and moves in two spiral
loops toward the asymptotic steady state with s11 ~ 1.285 and s15 &~ 0.17, as depicted
in Figure 4.63.

4.4 A Biomedical Example: The Neurocycle Enzyme System 247

Neurocycle enzyme system with hf = 0.0065 and the standard initial value ¥(0)

Acetylcholine concentration in (I1)
0.25 T T T

0.2

0.1

0.05

Phase plot of acetylcholine concentrations in (I) versus in (l1)
0.25 T ‘ T \

T
0.15 i
0.1 i

0.05 b

0
1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.3 1.31

S, (for 0<t<60)

Profile of s12(t) and phase plot of s12 versus si1;
a unique steady state for large hy values
Figure 4.63

The following unified eight profile plot verifies our assertion that the system reaches a
unique fixed steady state when hy = 0.0065 and when the initial value ¥(0) is as before.
This figure is drawn by uncommenting the first large plotting block in neurocycle.m to
make it active, while commenting out the other two plotting blocks with % signs and
thereby making them inactive.

248 Chapter 4: Initial Value Problems

Neurocycle enzyme system with hf = 0.0065 and the standard initial value ¥(0)

Hydrogen ion concentration in (I) Hydrogen ion concentration in (I1)

0.1 0.8
0.08 0.6
h, 0.06 1 h
! 2 04}
0.04
0.02 0.2f
0 : : : 0 : : :
0 5 10 15 20 0 5 10 15 20
. t L . t .
Acetylcholine concentration in (1) Acetylcholine concentration in (1l)
1.32 : : : 0.25 : : ‘
1.3 0.2
1.281 1 0.15
11 Sz
1.26 1 0.1
1.241 1 0.05
1.22 : : : 0 : : :
0 5 10 15 20 0 5 10 15 20
. t . . t I
Choline concentration in (1) Choline concentration in (ll)
1.1558 1.162
1.1556 1 1.1615}
s s
21 11554} 1 22 1.151W//ﬁ
1.1552] 1 1.1605 1
1.155 - - . 1.16 . . .
0 5 10 15 20 0 5 10 15 20
t I t I
Acetate concentration in (1) Acetate concentration in (11)
45 : : : 5.05 : : ‘
4.48} 1 5t
4.46} 4.95F
Sy S32
4.44} 4.9
4.42} 4.85
4.4 : : : 4.8 : : :
0 5 10 15 20 0 5 10 15 20
t t

Complete set of profiles
Figure 4.64

The previous 13 figures show several transition stages in the behavior of the solution
to the given IVP from having one fixed asymptotic steady-state solution for low values
of hy; through small oscillation for all times, to limit cycles, irregularity, and chaos; back
to repeated oscillations with ever-decreasing numbers of periods; and then back to one

4.4 A Biomedical Example: The Neurocycle Enzyme System 249

fixed asymptotic steady-state solution again as we vary one parameter, Ay, from 0.0044
to 0.0065.

Exercises for 4.4

1. Recall the remark on stiffness and IVP solver validation of p. 201 and vary the
tolerances inside neurocycle.m to verify that the acetylcholine concentration
of the neurocycle enzyme system with hy = 0.0045525 behaves chaotically as
depicted in Figure 4.56.

2. Verify the assertions about the diminishing periods of the limit cycles (pe-
riodic attractors) in the range 0.004556 < h; < 0.0046 on p. 244 using
neurocycle.m.

3. For hy = 0.0045539 (see Figure 4.60) investigate whether the periodic limit
cycle (periodic attractor) is attracting from various initial values W(0) by
running the limit cycle phase plot of neurocycle.m from varying initial values
of ¥(0) in varying colors S. (Hint: To achieve various colors, refer to gfrun.m
in Section 4.1 and the creation of differently colored graphs in one plot there.)

4. Investigate how the single-period solution limit cycle (period-one periodic at-
tractor) for hy = 0.006325 in Figure 4.62 transforms to an asymptotically
constant solution for Ay = 0.007 similar to Figure 4.63. Does this transition
involve oscillations? Describe and explain your findings.

5. Project

Modify the program neurocycle.mto become neurocycleB2.m with the first
MATLAB code line function neurocycleB2(B2,Tend,y0,S).

In the program neurocycleB2.m, use hy = 0.0055 as a fixed parameter and
vary By = Vo - Vara - AchE/q between 0 and 20 - 10~ kmol/m?>. Observe the
behavior of the solution profiles and phase plots and interpret your results.

The parameter Bs is chosen for this project in order to gain some insight into
possible consequences of varying the capability of the acetylcholinesterase to
hydrolyze the neurotransmitter. Imbalances in this capability give rise to dev-
astating diseases such as Alzheimer’s and Parkinson’s. The enzyme activity is
included in the grouped parameter By, which includes the maximum reaction
velocity in reaction 2. The parameter By itself includes the enzyme activity to-
gether with three constants for the enzyme system, namely the concentration
of acetylcholinesterase in compartment (II), the volume Va2 of compartment
(IT), and the flow rate q.

Conclusions

We have developed, solved, and analyzed an eight-dimensional model for a cou-
pled acetylcholinesterase/choline acetyltransferase enzyme system. The complex
dynamic characteristics, both stable and unstable, and the chaotic behavior of this
IVP system have been investigated with some reference to acetylcholine neural
transmission.

250

Chapter 4: Initial Value Problems

The variation of the hydrogen-ion feed concentration hy as bifurcation parameter
has a strong effect on the state variables at low concentrations, in contrast to its
weak effect at high concentrations. At low concentrations it is found that a complex
dynamic behavior with period doubling, period adding, and period subtracting
dominate the dynamics of the system. Checking for a possible correspondence to
physiological values for the pH values, we can say that compartment (II) (where
the pH level is between 6.73 and 7.97 for the studied variations of hy) has a pH
value near to the expected value for the human brain. This represents a complex
biological example that sheds some light on the relation between enzyme activities
in the brain and Alzheimer’s and Parkinson’s diseases.

Exercises for Chapter 4

1. A vertical cylindrical tank is filled with well water at 65° F'. The tank is insulated

at the top and bottom, but is exposed at its vertical sides to cold night air at 10°F".
The tank’s diameter is 2 ft and its height 3 ft. The overall heat transfer coefficient
is 20 Btu/(h °F ft?). Neglect the metal wall of the tank and assume that the water
in the tank is perfectly mixed.

(a) Write out a differential equation that models the temperature of the water in
the tank over time.

(b) Solve the DE of part (a) analytically.

(¢) Solve the DE of part (a) numerically via MATLAB, and compare the results.
(Hint: look up the Differential Equations Examples MATLAB browser to learn
about the MATLAB DE solvers ode. . . .m. Simply type odeexamples(’ode’)
at the MATLAB prompt to start this browser.)

(d) Write a MATLAB program to determine how long it will take for the water
in the tank to freeze completely. The heat of fusion of water is 144 Btu/lb,,.

. A cylindrical tank is fed with water at a flow rate of 2.3 m?/hour and is equipped

with an output control valve at the bottom. The steady-state height in the tank is
2 m. What is the valve coefficient (and its units) under these conditions? The tank
diameter is 3 m and the total height of the tank is 5 m.

If the feed to the tank increases from 2.3 m?/hour to 3.4 m3/hour and the valve
opening remains the same, i.e., the valve coefficient remains the same, calculate and
plot the change of height with time. Find the final height using the dynamic model
and the steady-state model and make sure that they both give the same result.

. If in the above problem it is required to keep the height at the same value of 2 m

when the flow rate changes from 2.3 to 3.4 m?/hour, we can use feedback control
to achieve this.

The feedback control loop consists in measuring the height, comparing it with the
set point, i.e., the height for the input flow rate of 2.3 m3/hour, and using the

4.4 A Biomedical Example: The Neurocycle Enzyme System 251

difference in height as a proportional drive to change the valve opening in order to
compensate for this change.

Calculate the behavior using this proportional feedback control with your choice of
several different suitable values of the proportional gain K. Calculate and plot the
change of height with time when this controller is used and find the final height for
each K. Moreover, calculate the offset for each value of K.

Choose the best value of K}, and compare the behavior with the behavior for the
open loop system without controls, i.e., for K}, = 0.0. Show that it is possible to
remove the offset by using a proportional plus integral (PI) controller and find the
best value of K that can be used with the best value for K, as obtained above. Plot
the change of height with time and compare it with the results of the open-loop
system in the case without control and also when the system has only proportional
control.

4. An industrial system consists of a nonisothermal CSTR (with a cooling jacket)
and a tubular adiabatic reactor in series. The reaction is a first-order irreversible
reaction:

A — B.

The plant manager requires the following:

(a) Formulate a rigorous dynamic model for the system.
(b) Suggest a solution algorithm to find the steady state(s) of the system.

(¢) Suggest a solution algorithm to investigate the dynamic behavior of the sys-
tem.

(d) Discuss the main steady-state and the dynamic characteristics of the system
and their practical implications.

5. Formulate the unsteady-state equations (dynamic model) for a nonadiabatic CSTR
where an irreversible first-order exothermic reaction

A — B

takes place. Put the dynamic equations in dimensionless form with the feed tem-
perature as reference temperature and the feed concentration as reference concen-
tration.

For the thermicity factor g = 1.2, the dimensionless activation energy v = 18, and
with the constant dimensionless cooling jacket temperature y. = 0.85, compute the
following;:

(a) The set of values of the dimensionless preexponential factor o and of the
dimensionless heat transfer coefficients K. that give multiple steady states.
Formulate a numerical algorithm in MATLAB that finds the dimensionless
temperature and concentrations at each of the three steady states for given «
and K. values.

252 Chapter 4: Initial Value Problems

(b) If the middle steady state obtained when K. = 0.0 is the desirable steady
state, show how to stabilize it.

(c) Construct phase planes for a case with multiple steady states and a case with
a unique steady state.

(d) In the multiplicity region, choose one of the cases and linearize the equations
in a neighborhood of each of the three steady states. Compute the eigenval-
ues (characteristic roots) of the linearized model using the built-in MATLAB
function eig. From the eigenvalue information determine the stability charac-
teristics of each of the three steady states.

(e) For the stabilized unstable middle steady state in part (b) find the relation
between the stability characteristics and the values of K.
The general assumptions for this model are:
(1) The stirrer and wall heat capacities are negligible and the volumetric flow rate
is constant.
(2) There is no change of phase.
(3) The average specific heat and density of the mixture is constant.
[Hints: Start your investigation of part (a) with the adiabatic case of K, = 0.0. You
can use dimensionless units in your dynamics and stability part of the investigation
by using the dimensionless time ¢’ = t/7, where t is the real time, 7 = V/q is

the residence time, V is the active volume of the reactor, and ¢ is the constant
volumetric flow rate.]

w
8]
=
S,
&
bl
g
>
g
3
=
I
S
S
)
7
=~
NS
-~
W,

Chapter 5

Boundary Value Problems,
with and without Bifurcation

A distributed model is usually described by differential equations. Such a model differs
from a lumped model that is generally described by transcendental equations. In chemical
and biological engineering distributed systems often arise with tubular equipment. When
a one-dimensional model is used for a distributed system there are two types of models:

1. If mixing, diffusion, and conduction are neglected, then the system is described by
the so called plug flow model, expressed in terms of initial value ODEs, i.e., by
initial value problems, or IVPs.

2. If the model accounts for the effects of axial dispersion, then the system is described
by an axial dispersion model in terms of two-point boundary ODEs, i.e., by
boundary value problems, or BVPs.

5.1 The Axial Dispersion Model

For plug flow, only the flow and the processes other than mixing, diffusion, and conduction
are considered. These have been studied in Chapter 4. In a plug flow tubular reactor model
we consider only the convective one-dimensional flow and the chemical reaction as shown
in Figure 5.1, where n; is the convective molar flow rate for the constant volumetric flow
rate ¢; of component i. These two rates are connected by the equation n; = ¢ - C; for
the concentration Cj.

I I+Al

Convective flow
Figure 5.1

255

256 Chapter 5: Boundary Value Problems

If axial dispersion is also considered in the model, then the diffusive flow due to differences

in concentration (in the isothermal case) is also taken into account as shown in Figure
5.2.

N;(l) — — N;(I+ Al)
[I+Al

Convective and diffusive flows
Figure 5.2

Here N; is the diffusion flux. It is most simply expressed for constant diffusion coefficients
by Fick’s! law

Ni = —D;- (5.1)

dl

In the nonisothermal case, the plug flow model accounts only for the convective heat flow
as shown in Figure 5.3.

nH; — — n;H;(l + Al)

I I+Al

Convective heat flow
Figure 5.3

Here H; is the enthalpy (energy per mole) for component i.
When the axial conductivity of heat. i.e., the heat dispersion, is also considered, the
situation becomes as depicted in Figure 5.4.

nH; — — n;H;(l + Al)
q — - q
I I+Al

Convective and heat dispersion flows
Figure 5.4

Here ¢ is the heat conduction due to the temperature gradient. The simplest way to
express this is using Fourier’s? law
qg= -\, , (5.2)

L Adolf Eugen Fick, German physiologist, 1829 — 1901
2Jean Baptiste Joseph Fourier, French mathematician, 1768 — 1830

5.1 The Axial Dispersion Model 257

where X is the thermal conductivity coefficient.

Needless to say, the assumption of plug flow is not always appropriate. In plug flow
we assume that the convective flow, i. e., the flow at velocity ¢/A; = v that is caused
by a compressor or pump, is dominating any other transport mode. In practice this is
not always so and dispersion of mass and heat, driven by concentration and temperature
gradients are sometimes significant enough to need to be included in the model. We will
discuss such a model in detail, not only because of its importance, but also because the
techniques used to handle the ensuing boundary value differential equations are similar
to those used for other diffusion-reaction problems such as catalyst pellets, as well as for
counter-current processes.

5.1.1 Formulation of the Axial Dispersion Model

The simplest description of axial dispersion of mass for constant diffusivities is given by
Fick’s law (5.1)

Nz — Dz : dl)
where N; is the mass flux of component i, measured in moles/(cm? - sec), D; is the
diffusion coefficient of component i in em?/sec, C; is the concentration of component i
in moles/cm?, and [is the length co-ordinate in cm .

The axial dispersion of heat (axial heat conduction) is described by Fourier’s law (5.2)

dr
= =
q dl

where ¢ is the heat flux in J/em? sec, A is the thermal conductivity in J/(cm - sec - K),
and T is the temperature in K.

We introduce the axial dispersion of mass and heat for a single reaction in a tubular
reactor that operates at a steady state with the generalized rate of reaction r’ per unit
volume.

In Figure 5.2 the mass balance for the convective flows n; and the diffusion flows V; have
been depicted.

By A; we denote the cross sectional area of the reactor tube. Then the steady-state mass
balance with axial dispersion gives us the equation

n,(l + Al) + At . Nl(l + Al) == nl(l) + At Nl(l) + 0; -At - Al - 7"/ . (53)

After dividing this equation by Al, rearranging to obtain difference quotients for n; and
N;, and then taking lima; .o, we get

dni d
di + A d
This differential equation can be put into dimensionless form by introducing one simple
assumption such as a constant volumetric flow rate g, i. e.,
dni o dCi
a — 1

]\z[i = o0 A1 (5.4)

258 Chapter 5: Boundary Value Problems

This assumption means that n; = ¢ - C; for a constant value of ¢. For all liquid-phase
systems the volumetric flow rate ¢ is constant and not merely assumed so, and likewise for
gas-phase systems with a constant number of total moles running at constant temperature
and pressure. For all other systems the constancy of the volumetric flow rate ¢ is an extra
assumption.

For a constant volumetric flow rate ¢ we can rewrite (5.4) as

N,

dC; dN;
C+At I = O'i-At-T'I. (55)

0 d

If we further assume that the diffusion coefficient D; is constant and then differentiate
Fick’s law (5.1) with respect to [we obtain

dN; d2C;
- _p, 4%

dl dl? (5:6)

And the mass balance design equation thus becomes

dc; d*C;
qdl — A+ D; a2z = i Ager!
Dividing by A; gives us
dcC; d*C; ,
Va " Pige T

where v = g/ A; is the velocity of the flow. Next we define a dimensionless length, namely
w =1/L, where L denotes the total length of the tubular reactor. This gives us

v dCZ . Di d2Ci - . T‘I
Ldw L12d2 ~ 77
By rearranging, we obtain
1 d*C; dC; L
- i =0, 5.7
Pey 2 dw 7w (5.7)

where Pey; = L-v/D; is the Peclet® number for mass.

Applying the same procedure for the heat balance with axial dispersion (axial con-
duction) of heat, we get

> ni()- Hill) + A q()+ Q- AL = Y ni(1+Al)- Hi(l+Al)) + A - q(I+ Al) , (5.8)

where ¢ is the heat flux and @’ is the external heat added per unit length of the tubular
reactor.

3Jean Claude Péclet, French scientist, 1793 — 1857

5.1 The Axial Dispersion Model 259

By rearranging, forming difference quotients, and taking the limit of Al — 0 as before,
we transform (5.8) to
d(n;H;) q /
A = .
zi: a g =@

And the product rule of differentiation, applied to d(n;H;)/dl, yields
dH; dn; dq
i ! H; ! A = . 5.
zi:" di +zi: a g =9 (5.9)

Equation (5.4) can be rewritten as

dni

dN,
dl :O'i'At"I"/—At

i
i/
By substituting this expression for dn;/dl into the heat balance design equation (5.9) we

obtain . AN J
i / i qa
Zi:ni dl +zi:H,» (Ui