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GGeenneerraall  FFeeaattuurreess  
Matlab is an interactive working environment in which the user can carry out 
quite complex computational tasks with few commands. It was originally 
developed in 1970s by Cleve Muller. The initial programming was in Fortran 
and over period of time, it has constantly evolved. The latest version is in C. 
As far as numerical programming is concerned, it removes programming of 
many routine tasks and allows one to concentrate on the task encouraging 
experimentation. The results of calculations can be view both numerically as 
well as in the form of 2D as well as 3D graphs easily and quickly. It 
incorporates state-of-the-art numerical solution tools, so one can be confident 
about the results. Also, quite complex computations can be performed with 
just a few commands. This is because of the fact that the details of 
programming are stored in separate script files called the ‘m’- files and they 
can be invoked directly with their names. An m-file can invoke another m-file 
when required. In this way, a series of m-files running behind the scene allow 
execution of the required task easily. The user can write his/her own m-files. 
All such scripts are text readable files which can be read, modified and printed 
easily. This open-architecture of Matlab® allows programmers to write their 
own area specific set of m-files. Some such sets written by various experts 
world-wide have already been incorporated into the Matlab as tool boxes. So, 
with standard installations, you will find latterly dozens of tool boxes. If you 
wish, you can down-load even more from the internet. 

Startup 

When you click the Matlab icon, the MS Windows opens up the standard 
Matlab-window for you which has the following form: 
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The white area in the middle is the work area in which the user types-in the 
commands which are interpreted directly over there and the results are 
displayed on screen.  The ‘>>’ is Matlab prompt indicating that user can type-
in command here. A previously entered command can be reached with the 
help of up-arrow and down-arrow buttons on the keyboard.  

Simple Calculations 

Matlab uses standard arithmetic operators + - / * ^ to indicate addition, 
subtraction, division, multiplication and raised-to-the-power respectively. For 
example, in order to calculate the answer for 2+34, one would type the 
following: 

» 2+3^4 
ans = 
    83 

The first line is the user entered command while the second line is default 
variable used by Matlab for storing the output of the calculations and the third 
line shows the result of computation. If you wish to multiply this result with 2, 
proceed as below: 

» ans*2 
ans = 
   166 

As you can see, the result 83 stored in variable ans gets multiplied with 2, and 
the result of this new computation is again stored in variable ‘ans.’ In this 
case, its previous value gets over-written by the new variable value. If you 
wish, you can define your own variables. For example: 
» pay=2400 
pay = 
        2400 

In this case, you define the variable ‘pay’ and assign the variable a value 
2400. Matlab echoes the assignment in the second and third line. This 
confirms the user that a value of 2400 has been assigned to the variable ‘pay’ 
which is quite useful at times. If you wish to remove this echo in Matlab, use a 
semicolon at the end of each command. For example: 
» c=3*10^8; 
» 

The variable ‘c’ has been assigned a value 3x108 and since there is a 
semicolon at the end of the command, therefore, no echo is seen in this case. 
 
The arithmetic operators have the following precedence-levels: 

1. Brackets first. In case they are nested, then the sequence is from inner-
most to the outermost. 



. . . . . . 
Introduction to Matlab 

  6 
 

 
2. Raised to power next.  
3. Multiplication and division next. If there are such competing 

operators, then the sequence is from left to right. 
4. Addition and subtraction next. In this case also, if there are competing 

such operators, then the sequence is from left to right 

Numbers and Storage 

Matlab performs all calculations in double precision and can work with the 
following data types: 

Numbers Details 

Integer Numbers without any fractional part and decimal point. 
For example, 786 

Real Numbers with fractional part e.g., 3.14159 

Complex 
Numbers having real and imaginary parts e.g., 3+4i. 
Matlab treats ‘i’ as well as ‘j’ to represent 1−  

Inf Infinity e.g., the result of divided with zero. 
NaN Not a number e.g., 0/0 

 

For display of the results, Matlab uses Format command to control the output: 

Category Details 
format short  4 decimal places (3.1415) 
format short e 4 decimal places with exponent (3.1415e+00) 
format long e normal with exponent (3.1415926535897e+00) 
format bank 2 decimal places (3.14) 

 
By using ‘format’ without any suffix means that from now onwards, the 
default format should be used. Also, ‘format compact’ suppresses any blank 
lines in the output. 

Variable Names 

Matlab allows users to define variable with names containing letters and digits 
provided that they start with a letter. Hyphen, % sign and other such 
characters are not allowed in variable names. Also, reserved names should not 
be used as variable names. For example, pi, i, j, and e are reserved. Similarly, 
the names of functions and Matlab commands should also be avoided.  
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Case Sensitivity 

Matlab command structure is quite similar to the C-language. The variables 
are case sensitive. So, ALPHA and alpha are treated as separate variables. The 
case sensitivity is also applicable to Matlab commands. As a general rule, the 
lower-case variable names as well as commands are typically used. 

FFuunnccttiioonnss  
Matlab has a potpourri of functions. Some of these are standard functions 
including trigonometric functions etc., and others are user-defined functions 
and third party functions. All of these enable user to carry out complex 
computational tasks easily.  

Trigonometric Functions 

These include sin, cos and tan functions. Their arguments should be in 
radians. In case data is in degrees, one should convert it to radians by 
multiplying it with pi/180. For example, let us calculate the value of 

( ) ( )oo 27cos27sin 22 + : 

» (sin(27*pi/180))^2+(cos(27*pi/180))^2 
ans = 
     1 

The result of these computations is no surprise. Note that in each case, the 
argument of the trigonometric function was converted to radians by 
multiplying it suitably. 
 The inverse functions are invoked by asin, acos and atan. For example, 

( )1tan 1−  is computed as: 
» atan(1) 
ans = 
    0.7854 

Of course, 7854.04/ =π .  

Some Elementary Functions 

Typically used common functions include sqrt, exp, log and log10. Note that 
log function gives the natural logarithm. So, 

» x=2; sqrt(x), exp(-x), log(x), log10(x) 
ans = 
    1.4142 
ans = 
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    0.1353 
ans = 
    0.6931 
ans = 
    0.3010 

Here, all four functions have been tested using the same command. As you 
can see, the semicolon suppresses the echo while the comma separates various 
computations.  Summary of some functions is given below: 

Function Stands for 
abs  Absolute value 
sqrt  Square root function 
sign  Signum function 
conj  Conjugate of a complex number 
imag  Imaginary part of a complex number 
real  Real part of a complex number 
angle  Phase angle of a complex number 
cos  Cosine function 
sin  Sine function 
tan  Tangent function 
exp  Exponential function 
log  Natural logarithm 
log10  Logarithm base 10 
cosh  Hyperbolic cosine function 
sinh  Hyperbolic sine function 
tanh  Hyperbolic tangent function 
acos  Inverse cosine 
acosh  Inverse hyperbolic cosine 
asin  Inverse sine 
asinh  Inverse hyperbolic sine 
atan  Inverse tan 
atan2  Two argument form of inverse tan 
atanh  Inverse hyperbolic tan 
round  Round to nearest integer 
floor  Round towards minus infinity 
fix  Round towards zero 
ceil  Round towards plus infinity 
rem  Remainder after division 
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VVeeccttoorrss  
 In Matlab, there are two types of vectors: the row vectors and the column 
vectors.  

The Row Vectors 

The row vectors are entities enclosed in pair of square-brackets with numbers 
separated either by spaces or by commas. For example, one may enter two 
vectors U and V as: 
» U=[1 2 3]; V=[4,5,6]; U+V 
ans = 
     5     7     9 

The two row vectors were first defined and then their sum U+V was 
computed. The results are given as a row vector stored as ans. The usual 
operations with vectors can easily be carried out: 
» 3*U+5*V 
ans = 
    23    31    39 

The above example computed the linear combination of U and V. One can 
combine vectors to form another vector: 
» W=[U, 3*V] 
W = 
     1     2     3    12    15    18 
The vector U and V both of length 3, have been combined to form a six 
component vector W. The components of a vector can be sorted with the help 
of sort function: 
» sort([8 4 12 3]) 
ans = 
     3     4     8    12 

The vector [8 4 12 3] has been sorted. 

The Colon Notation 

 In order to form a vector as a sequence of numbers, one may use the colon 
notation. According to which, a:b:c yields a sequence of numbers starting with 
‘a’, and possibly ending with ‘c’ in steps of ‘b’. For example 1:0.5:2 yields he 
following column vector: 
» 1:0.5:2 
ans = 
    1.0000    1.5000    2.0000 
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Note that in some cases, the upper limit may not be attainable thing. For 
example, in case of 1:0.3:2, the upper limit is not reached and the resulting 
vector in this case is: 
» 1:0.3:2 
ans = 
    1.0000    1.3000    1.6000    1.9000 

If only two of the ‘range’ specifications are given then a unit step size is 
automatically assumed. For example 1:4 means: 
» 1:4 
ans = 
     1     2     3     4 

In case, the range is not valid, an error message is issued: 
» 1:-1:5 
ans = 
   Empty matrix: 1-by-0 
Here, the range of numbers given for the generation of row vector was from 1 
to 5 in steps of -1. Clearly, one can not reach 5 from 1 using -1 step size. 
Therefore, the Matlab indicates that this is an empty matrix. 

Sections of a Vector 

Let us define a vector using the range notation: 

» W=[1:3, 7:9] 
W = 
     1     2     3     7     8     9 

Now, we would like to extract the middle two elements of this vector. This 
can be done with the range notation again. As you can see, the middle two 
elements are 3:4 range. Therefore, the required part of vector can be obtained 
as: 

» W(3:4) 
ans = 
7 

This really is the required part. There are many interesting things that can now 
be done using the range notation. For example, range 6:-1:1 is the descending 
range and when used with part-extraction of vector, it gives: 
» W(6:-1:1) 
ans = 
     9     8     7     3     2     1 

which is the vector W with all entries now in reverse order. So, a vector can 
be flipped easily. The ‘size’ function yields the length of a vector. For a given 
vector V, V(size(V):-1:1) will flip it. Note that flipping of sections of a vector 
is also possible.  
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Column Vectors 

The column vectors in Matlab are formed by using a set of numbers in a pair 
of square brackets and separating them with semi-colon. Therefore, one can 
define two column vectors A and B and add them as below: 

» A=[1;2;3]; B=[4;5;6]; A+B 
ans = 
     5 
     7 
     9 

The two column vectors were defined first and then their sum was obtained. In 
similar way, all other standard operations with the column vectors can be 
carried out.  

Transpose 

Of course, the convenient way of creating a row vector does not have any 
similar method for the column vector. But, one can do it by first creating a 
row vector using the range notation and then transposing the resulting row 
vector into a column vector. The transpose is obtained with a ` as shown 
below: 

» A=[1:4]; B=A' 
B = 
     1 
     2 
     3 
     4 

Here, first a row vector [1  2  3  4] is formed which is called A. This vector is 
then transposed to form the B—a column vector. 

Note: If C is a complex vector, then C’ will give its complex conjugate 
transpose vector. 

» C=[1+i, 1-i]; D=C' 
D = 
   1.0000 - 1.0000i 
   1.0000 + 1.0000i 

The vector C was a complex vector and its complex conjugate is [1-i  1+i] 
vector. Vector D is clearly its complex conjugate transpose vector. Some 
times, one does not want the complex conjugate part. In order to get a simple 
transpose, use .’ to get the transpose. For example: 

» C=[1+i, 1-i]; E=C.' 
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E = 
   1.0000 + 1.0000i 
   1.0000 - 1.0000i 

In this case, a plain transpose of C is stored in E and no complex conjugate 
part appears.  

Diary and Session 

In Matlab, one can start storing all text that appears on screen into a separate 
file by using ‘diary filename’ command. The filename should be any legal file 
name different from ‘on’ and ‘off’. The record of diary can be turned ‘on’ and 
‘off’ by using ‘diary on’ and ‘diary off’ commands.  

 Also, if one wishes to abort a session now and start from the same state 
next time, one can save and load session using ‘save filename’ and ‘load 
filename’ commands. The save command will save all variables used in this 
session into a file with name give in the ‘save filename’ command and the 
corresponding load command will read them back during a later session. 

 By the way, a complete list of all variables use so far in the current session 
can be seen using the ‘who’ command: 

» who 
Your variables are: 
A         D         V         c          
B         E         W         pay        
C         U         ans       x 

The values and further details are also available with the ‘whos’ command: 

» whos 
  Name      Size         Bytes  Class 
 
  A         1x4          32  double array 
  B         4x1          32  double array 
  C         1x2          32  double array (complex) 
  D         2x1          32  double array (complex) 
  E         2x1          32  double array (complex) 
  U         1x3          24  double array 
  V         1x3          24  double array 
  W         1x6          48  double array 
  ans       2x1          32  double array (complex) 
  c         1x1           8  double array 
  pay       1x1           8  double array 
  x         1x1              8  double array 
Grand total is 31 elements using 312 bytes 
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Elementary Plots and Graphs 

Matlab offers  powerful graphics and visualization tools. Let us start with 
some of the very basic graphics capabilities of Matlab. The graph of sine 
function in 0 to π can be obtained in the following way: 

» N=30; h=pi/N; x=0:h:pi; y=sin(x); plot(x,y) 
Here, in the first step, the total number of sampling points for the function is 
defined as N and it is assigned a value 30. Next, the step size ‘h’ is defined 
and the x row vector of size N+1 is defined along with the corresponding y 
row vector composed of the function values. The command ‘plot(x,y)’ 
generates the graph of this data and displays it in a separate window labeled 
Figure No. 1 as shown below: 

 
The graph displayed in this window can be zoomed-in and zoomed-out. Both 
x-any y-axes can also be rescaled with the help of mouse and using 
appropriate buttons and menu items. 
 The graph title, x- and y-labels can be assigned using the following 
commands: 
>> title(‘Graph of sine function in 0 to pi range’) 
>> xlabel(‘x’) 
>> ylabel(‘sin(x)’) 

Note that by using these commands as such, one gets the corresponding 
response on the graph window immediately.  
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 The grid lines on the graph can be switched on or off using the ‘grid’ 
command. By issuing this command once, grid will be turned on. Using it 
again, the grid will be turned off. 

 
Matlab allows users to change the color as well as the line style of graphs by 
using a third argument in the plot command. For example, plot(x,y,’w-‘) will 
plot x-y data using white (w) color and solid line style (-). Further such 
options are given in the following table: 
 
Color Symbol Color Line Symbol Line type 

y Yellow . Point 
m Magenta O Circle 
c Cyan X x-mark 
r Red + Plus mark 
g Green - solid 
b Blue * Star 
w White : Dotted 
b Black -. Dash-dot 

  -- dashed 
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Multiplots 

Let us now try plotting more than one curves on the same graph. The 
functions are sine and cosine. The range is 0 to 2π in this case. The number of  
sampled points in this case will be just 15.  

» N=15; h=pi/N; x=0:h:2*pi; plot(x,sin(x),'r-
',x,cos(x),'g--') 
» legend('sine','cosine'); 
» grid 
» xlabel('x'); 
» ylabel('functions'); 
» title('Test of multi-plot option in Matlab'); 

The result is the following plot: 

 

Note that the plot command with the same three options repeated twice 
generates a graph with two curves. This can be extended to fit your needs. 
Furthermore, the legend command allows one to generate the legend for this 
graph which can be positioned freely by the user by just clicking and dragging 
it over the graph, and releasing the mouse button when it is positioned as 
desired.  
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 Each plot command erases the previous graphics window (the Figure No. 
1) and draws on it. If you wish, you can send plot on the same window by first 
using the hold command and later sending plot to it with the plot command. 
The hold command can be switched off by using ‘hold off’ when desired.  

Subplots 

Let us now consider a different situation. We want to plot both sine and cosine 
functions again in the 0 to 2π range but on separate graphs. If we issue two 
separate plot commands, the previous graph is erased. If we use hold, then 
essentially, it is multiplot which you do not want. You want to plot these 
functions on two graphs placed next to each other. This is done with the help 
of subplot command, which splits the graphics window in to mxn array of 
sub-plot sections. Here, we create 1x2 panels (one row, two columns): 

» N=15;h=2*pi/N; x=0:h:2*pi; 
» subplot(122);plot(x,cos(x));xlabel('x'); 
  ylabel('cosine');grid 
» subplot(121);plot(x,sin(x));xlabel('x'); 
  ylabel('sine');grid 
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The first subplot command picks the first column of this panel and plots the 
sine function in it. The second picks the second column and plots the cosine 
function in it. In this way, the graph is constructed. 

Axes Control 

 The axes of the graph can be controlled by the user with the help of axis 
command which accepts a row vector composed of four components. The first 
two of these are the minimum and the maximum limits of the x-axis and the 
last two are same for the y-axis. Matlab also allows users to set these axes 
with ‘equal’, ‘auto’, ‘square’ and ‘normal’ options. For example axis(‘auto’) 
will scale the graph automatically for you. Similarly, axis([0 10 0 100]) will 
scale the graph with x-axis in [0, 10] range and y-axis in [0, 100] range. 

Scripts 

Some times, it becomes necessary to give a set of Matlab commands again. In 
such cases, it becomes tedious to type-in every thing. Matlab offers a 
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convenient way to handle this situation. The user can save the desired set of 
commands in a Matlab script file. It can have any legal name and it must have 
extension ‘m’ which stands for Matlab-script. It is standard ASCII text file. 
Matlab has built-in m-file editor designed specifically for this purpose. This 
can be accessed using File menu: 

 

By clicking at the File—New—m file item, the m-file editor window pops up: 
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Here, one can type-in desired set of commands and save it. The default 
directory for these files is already in the search path of Matlab. If you wish to 
save the file into a directory of your own choice, please do not forget to 
include it in the Matlab search path. This can be clicking on the file—select 
path menu item which will open the path browser for you: 
 

 
 
You can use the menu item path—add to path to add the directory of your 
choice to the Matlab path: 
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By clicking on the button with … on it, the directory browser dialog can be 
opened and by clicking on the desired directory, you can select the directory 
to be added. After that, just press OK button to add the directory to the path.  
 After saving the script file in a directory in Matlab path, the commands 
inside it can be invoked by just typing the name of the file (without the .m 
extension). 

Working with Vectors and Matrices 

Vectors can be manipulated in various ways. A scalar can be added to vector 
elements in Matlab using .+ notation: 

» A=[1 2 ]; 

» B=2.+A 

B = 

     3     4 

Note the use of the ‘dot’ before the ‘+’ sign which means apply it on element 
basis. In exactly same way, division, multiplication, subtraction and raised to 
the power operations can be carried out. For example, let us raise each 
element of a matrix to power 2 using the ‘dot’ notation: 

>> B=[2 3 4; 5 4 6; 1 3 2]; B.^2 
ans = 
     4     9    16 
    25    16    36 
     1     9     4 
>> B^2 
ans = 
    23    30    34 
    36    49    56 
    19    21    26 

In the first case, each element of the matrix B has been raised to power 2. For 
this purpose, the dot notation was used. In the second case, the same matrix 
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has been raised to power 2 which is essentially B*B operation.  Now, let us 
carryout the dot or inner product of a row U and a column vector V: 

[ ]















==

3
2
1

;321 VU  

>> U=[1 2 3]; V=[1;2;3]; U*V 
ans = 
    14 

Clearly, the result is 1+4+9 = 14; a scalar quantity. Now, let us change the 
order of multiplication. In this case, the result is expected to be a matrix: 
>> V*U 
ans = 
     1     2     3 
     2     4     6 
     3     6     9 

Now, let us compute the Euclidean norm of a vector which is defined as: 

  ∑
=

=
3

1

2

i
iuU  

It can be obtained by the '.UU ; where U’ is its complex conjugate 
transpose. Also, Matlab has a built-in function called norm,  which carries out 
this operation for us: 
>> sqrt(U*U'), norm(U) 
ans = 
    3.7417 
ans = 
    3.7417 
The first computation returns the value of sqrt(U*U’) as 3.7417 and exactly 
the same result is obtained using the norm function. 
 Now, let us compute angle between two vectors X and Y where: 

[ ] [ ]7315;957 == YX  
In Matlab, we will compute the lengths of these vectors using the norm 
function, and divide the inner product of X and Y with these lengths, the result 
will be cosine of the angle and finally, using the acos function, we will get the 
final answer. Mathematically: 

   









= −

YX
YX .cos 1θ  

>> X=[7 5 9]; Y=[15 3 7]; 
>> theta = acos(X*Y'/(norm(X)*norm(Y))) 
theta = 
    0.5079 
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Here, first both vectors have been initialized. Next, we apply the formula. The 
important thing to note in this case was the fact that since both vectors were 
defined as row vectors, we had to convert the ‘Y’ vector into a column vector 
by using transpose in order to compute the inner product. 

Hadamard product 

Although not in common use, the Hadamard is defined in mathematics as 
element by element product of two vectors of identical lengths and the result 
is again a vector of same length. For example if: 

[ ] [ ]nn vvvVuuuU LL 2121 ; ==  

then the Hadamard dot product is defined as: 

[ ]nnvuvuvuVU L2211. =  

In Matlab, the Hadamard dot product is obtained using .* operator. For 
example, if U=[1 3 4 7] and V=[8 3 9 2], then their Hadamard dot product is 
given by: 

>> U=[1 3 4 7]; V=[8 3 9 2]; U.*V 
ans = 
     8     9    36    14 

Tabulation of Functions 

The functions used in Matlab apply on element by element basis. In order to 
test it, let us prepare a table of the values of sine, and cosine for values of 
angles ranging from 0 to pi in steps of pi/10. For this, first, we construct a 
column vector of values of  angles and call it X: 

>> X=[0:pi/10:pi]' 
X = 
         0 
    0.3142 
    0.6283 
    0.9425 
    1.2566 
    1.5708 
    1.8850 
    2.1991 
    2.5133 
    2.8274 
    3.1416 
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Now, we use the two trigonometric functions with x as argument: 
 
>> [X sin(X) cos(X)] 
ans = 
         0         0    1.0000 
    0.3142    0.3090    0.9511 
    0.6283    0.5878    0.8090 
    0.9425    0.8090    0.5878 
    1.2566    0.9511    0.3090 
    1.5708    1.0000    0.0000 
    1.8850    0.9511   -0.3090 
    2.1991    0.8090   -0.5878 
    2.5133    0.5878   -0.8090 
    2.8274    0.3090   -0.9511 
    3.1416    0.0000   -1.0000 

 
which shows clearly that the functions actually apply on each element of the 
column vector. The first column in the above output is X, second is sin(X) and 
third is cos(X). 
 In order to test it for another case, let us try finding the limiting value of 
sin(y)/y for y approaching zero. The answer should be 1.0 and in Matlab, we 
first define a range of values of y: 
 
>> y=[10 1 0.1 0.01 0.001]; 

 
then we apply the expression. Note that the sine function will apply on 
element by element basis but the division must be forced to be carried out also 
on element by element basis which can easily be done using the dot in front of 
the division operator: 
 
>> sin(y)./y 
ans = 
   -0.0544    0.8415    0.9983    1.0000    1.0000 

 
and it is seen clearly that the limiting value is indeed 1.0 as y becomes smaller 
and smaller. In order to view things graphically, we first define a range of 
values of x from near 0 to 7π in steps of π/10. Then, it is plotted with grid-on 
state: 
 
>> x=[0.0001:0.1:7*pi];plot(x,sin(x)./x);  
xlabel(‘x’); ylabel(‘sin(x)/x’); grid on 
 

which is seen as: 
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The function clearly approaches 1.0 as ‘x’ becomes smaller and smaller. In the 
range of values o ‘x’, zero was avoided otherwise Matlab gives a divided by 
zero error message. 

 

WWoorrkkiinngg  wwiitthh  MMaattrriicceess  
Defining Matrices 

A matrix is essentially a two dimensional array of numbers composed of rows 
and columns. A matrix can be entered in Matlab in either of the following 
three ways:  

(a) Using carriage return key: 

>> A=[1 2 3 
      4 5 6 
      7 8 9]; 

 

(b) Using semicolons to indicate the next line: 

>> A=[1 2 3; 4 5 6; 7 8 9]; 
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(c) Using the range notation with semicolon: 
  
>> A=[1:3; 4:6; 7:9]; 

Some matrices can be defined simply using functions. For example, the zeros 
function defines a matrix with all entries zeros, the function ones defines 
matrix filled with ones and rand defines a matrix with all entries random 
numbers in the [0,1] range: 
 
>> zeros(3) 
ans = 
     0     0     0 
     0     0     0 
     0     0     0 
>> ones(3) 
ans = 
     1     1     1 
     1     1     1 
     1     1     1 
>> rand(3) 
ans = 
    0.9501    0.4860    0.4565 
    0.2311    0.8913    0.0185 
    0.6068    0.7621    0.8214 
 

The argument in each case is the size of the matrix.  The same functions can 
also be used for defining some non-square matrix: 
 
>> rand(3,4) 
ans = 
    0.4447    0.9218    0.4057    0.4103 
    0.6154    0.7382    0.9355    0.8936 
    0.7919    0.1763    0.9169    0.0579 

 
In this case, one needs to supply two arguments, first for the number of rows 
and second for the number of columns. 

Size of Matrices 

The size function returns the size of any matrix. For example, let us define a 
zero matrix A with size 135x243: 

>> A=zeros(135,243); size(A) 
ans = 

135 243 
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The size function returns the row and column count of this matrix.  

The Identity Matrix 

The identity matrix having the form: 


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
















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=

1000

0100
0010
0001

L

MOMMM

L

L

L

I  

can be defined in Matlab with the help of the ‘eye’ function with argument 
representing the size of the matrix: 
 
>> eye(3) 
ans = 
     1     0     0 
     0     1     0 
     0     0     1 
 

The ‘eye’ function generates a 3x3  identity matrix when the argument is 3.  

Transpose  

As discussed before, the complex conjugate transpose of a matrix can be 
obtained by using the apostrophe. In order to obtain the regular transpose, one 
should use the dot-apostrophe. For example: 

>> T=[1-j 1+j 
      1+j 1-j]; 
>> T' 
ans = 
   1.0000 + 1.0000i   1.0000 - 1.0000i 
   1.0000 - 1.0000i   1.0000 + 1.0000i 
>> T.' 
ans = 
   1.0000 - 1.0000i   1.0000 + 1.0000i 
   1.0000 + 1.0000i   1.0000 - 1.0000i 
>> 

 
First we have defined the complex matrix T. The T’ is its complex conjugate 
transpose—the complex conjugate of each element has been used after 
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transposing the matrix. The T.’ has simply transposed the matrix T and no 
complex conjugate has been taken in this case.  

Diagonal Matrix 

The diagonal matrix is similar to the identity matrix that both have off-
diagonal elements all zeros. In order to generate the diagonal matrix, first a 
row vector containing the diagonal elements is required. For a square matrix 
of size nxn, the diagonal will be of size n. This row vector is used as an 
argument to the ‘diag’ function: 

>> d=[1 2 3 4]; 
>> D = diag(d) 
D = 
     1     0     0     0 
     0     2     0     0 
     0     0     3     0 
     0     0     0     4 

Note that the diagonal matrix has all diagonal entries picked from the vector 
‘d’. 

The same function returns the entries of the diagonal for any given matrix. 
For example, let us take the random matrix R: 
 
>> R = rand(4) 
R = 
    0.3529    0.2028    0.1988    0.9318 
    0.8132    0.1987    0.0153    0.4660 
    0.0099    0.6038    0.7468    0.4186 
    0.1389    0.2722    0.4451    0.8462 
>> diag(R) 
ans = 
    0.3529 
    0.1987 
    0.7468 
    0.8462 

First, the random matrix R has been defined. Then, the function ‘diag’ with 
argument R returns the diagonal elements of R.  

Spy Function 

The sparsity pattern of a matrix is revealed with the help of the spy function 
which produces a graphical visualization of given matrix. For example, let us 
create a random matrix and convert it to integer values after adding 0.5 to all 
of its elements. The size of this matrix is 50x50: 
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>> B=fix(0.5+rand(50,50));spy(B) 
 

The rand(50,50) generates a random matrix with elements in [0,1] range. By 
adding 0.5 to it, we shift the entire matrix range to [0.5, 1.5]. This means that 
now, about half of  the entries and below 1 and the remaining half above 1. 
When fix function is applied, the matrix is converted to all entries in 0, 1 
values. It is expected that roughly half of the entries will be 1 and remaining 
half zeros. The spy command gives the visualization of this matrix: 

 
 

The value of  ‘nz’ (number of zero entries) is 1282 which is roughly half of 
50x50. Larger the nz value, more sparse the matrix. 

Sections of Matrices 

The range operation is used for extracting section of a given matrix. For 
example, let us consider a diagonal matrix  D with diagonal entries ranging 
from 1 to 16. We are going to extract a 4x4 matrix B from it which have 
diagonal entries starting from 9. 

>> d=[1:16]; D=diag(d); B = D(9:13, 9:13) 
 
B = 
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     9     0     0     0     0 
     0    10     0     0     0 
     0     0    11     0     0 
     0     0     0    12     0 
     0     0     0     0    13 
>> 

As you can see, the required portion of the matrix has been extracted.  

Product of Matrices 

The * operator multiplies two matrices if they are conformable for 
multiplication while the .* operator is strictly for multiplication that is on 
element-by-element basis: 

>> A=[1 2 3; 4 5 6]; B=[1 2; 3 4]; B*A, B.*B 
ans = 
     9    12    15 
    19    26    33 
ans = 
     1     4 
     9    16 

In the above case, first, the two matrices are defined. Then, the B*A computes 
the standard dot or the inner product of the two matrices while the .* operation 
calculates the element by element product of the matrix B. 

MMaattllaabb  PPrrooggrraammmmiinngg  
Matlab offers quite straight forward programming language of its own which 
is somewhat similar to the C-language in many respects. But there are 
certainly some differences between the two language as well. Here, we will 
start with some elementary stuff and later one can build on it. 

For-Loops 

For carrying out any repeated task, loops are needed. In Matlab, this is done 
using for-command which has the generic syntax: 

For counter= legal list of values 

- -  statements to be executed repeatedly within this loop 

end 

As a simple example, let us define a row vector having 7 random values: 
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>> R=rand(1,7) 
R = 

        0.3784 0.8600 0.8537 0.5936 0.4966 0.8998    0.8216 
 
Next, we would like to find the sum of all entries in R. For this purpose, we 
define a variable sum and initialize it to be zero. Then, we construct a loop 
that executes exactly seven times with the help of a counter having range of 
values 1 to 7. Inside this loop, we simply add the various elements of R in turn 
to sum. 
>> sum=0; 
>> for i=1:7 
     sum = sum + R(i); 
   end 

Now, we can find the average value of the elements of R by dividing the sum 
with 7: 
>> avg = sum/7 
avg = 
    0.7005 
>> sum  
sum = 
    4.9036 

The answer is 0.7005 while the value of sum was 4.9036.  

 As another example of the use of loops, let us generate and find sum of the 
first 100 integers.  

     1 + 2 + 3 + . . . + 100 

Again the method is going to be the same. We will use a variable sum to do 
the summation within the loop:  

>> sum = 0;  
   for i=1:100  
      sum=sum + i;  
   end;   
   sum 
>>sum = 
        5050 

In this case, the result is 5050 which is clearly the true value of this sum.  
 
Next, let us use Matlab to compute the Fibonnaci sequence: 

1, 1, 2, 3, 5, 8, 13, 21, . . . 
which starts with two elements 1, 1; and each next element is just sum of the 
two previous elements. The ratio of two consecutive elements of this sequence 
approaches a fixed number which is also found in many aesthetically pleasing 
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structures e.g., the ratio of height to width in doors of some buildings. We do 
it by using the following m-script file in Matlab:  
 
f(1)=1; f(2)=1; 
ratio(1)=1; ratio(2)=1; 
for i=3: 10 
    f(i)=f(i-1)+f(i-2); 
    ratio(i) = f(i)/f(i-1); 
end 
plot(ratio); xlabel('i');  
ylabel('Fibonnaci ratio'); 
 

The result is the following plot, which clearly shows that in ten iterations, the 
ratio approaches the value 1.6176 which is close to the actual value 1.618 
 

 
 

Logical Expressions 

The following operators are used in logical expressions of various type: 

Operator Meanings Operator Meanings 
< Less than > Greater than 
<= Less or equal >= Greater or equal 
== Equal to ~= Not equal 
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The resulting value is either true or false. Various logical expressions can 
further be combined using: 

   &  meaning ‘and’  ,   | meaning ‘or’ ,    ~ meaning ‘not’ 

Note that true evaluates as 1 and false as 0. 

In order to apply it, let us construct a rectifier with it. Let us construct a range 
of values of x from 0 to 3π in steps of 0.1. Next, we compute the 
corresponding values of the sine function for these values of x as angles. 
Finally, we construct a vector of values of sin(x) which picks only the positive 
values of sin(x). The corresponding m-script file is: 

x=[0:0.1:3*pi]; 
y=sin(x); 
Z=(y>0).*y; 
plot(Z) 
xlabel(‘x’);ylabel(‘sin(x)’); 
title(‘rectified sine curve’); 
 

and the corresponding output is: 
 

 

While loop 

This loop keeps on repeating while a certain logical condition remains true. 
The loop is terminated when the logical condition becomes false. For 
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example, the sum of integers from 1 to 100 can be found with the help of 
following code: 
 
Sum = 0; 
I = 1 
while I <= 100 
  Sum = Sum + I; 
   I = I+1; 
end 

 
Note that the loop counter needs to be incremented inside the loop in this case.  

Conditional Programming  

The ‘structured-if’ is used for this purpose. It has the following generic form: 

 if  logical-expression-1 
  statements executed when expression-1 is true 
  elseif logical-expression-2 
    statements executed when expression-2 is true 
  elseif logical-expression-3 
    statements executed when expression-3 is true 
  . . .number of elseif portions repeated as needed 
  else 
  statements executed when  
     none of logical expressions is true 
  end 

 
Note that the elseif portion and the else portion are optional and should be 
used only when they are needed. Also, the else part should be the last part in 
this structure when needed. 
                As an example, let us initialize a variable with some value and test if 
it is even or odd. For this check, we will compare the result of integer division 
of the number with 2 and later multiplied with 2, with the actual number. For 
even values, the original number is obtained: 

N=input('Please enter an integer:'); 
if fix(N/2)*2==N 
    integer_type='even'; 
else 
    integer_type='odd'; 
end 
integer_type 
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First, the m-script prompts the user with text: “Please enter an integer:” which 
appears in the work area of the Matlab environment. User types-in some 
integer and this number is assigned to the variable ‘N’. Then, the integer 
division of N with 2 is carried out. Note that if it is not even, then, there will 
be some fractional part which is dropped-off by the fix function. Next, the 
result is multiplied with 2 and it is then compared with ‘N’. The two values 
will be same if it was an even integer, in which case, the text variable is 
assigned string-value ‘even’, otherwise, it is assigned ‘odd’. Finally, the value 
of this text-variable is printed on screen. A typical execution gives: 
 
Please enter an integer:786 
integer_type = 
even 
>> 
 

Function m-Scripts 

In Matlab, all computations are normally done with the help of functions 
which are written in Matlab scripting language. The basic structure of a 
function is the following: 

Function output_values = name(input_values) 
% comments echoed when ‘help name’ used 
- - -  body of the function - - - 
end 
 

The function m-script must be written in a file with name as the name of the 
function and extension .m.  

 As an example, let us write a function script quadratic which accepts three 
values as the coefficients a, b and c of quadratic equation, computes and 
returns the values of the corresponding roots as x1 and x2: 
 
Equation:     02 =++ cbxax  
 

Roots:    
a

acbbxx
2

4,
2

21
−±−

=  

 

Contents of the file:   quadratic.m 

function [x1,x2]=quadratic(a,b,c) 
%Funtion quadratic 
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%solves the quadratic equation: 
%   a x^2 + b x + c = 0 
% using a, b, c coefficients as input 
% and returns the values of two roots 
% as x1, x2 
%-----------------by Dr. Sikander Majid 
%                    [January 2003] 
 
d = b^2-4*a*c; 
x1 = (-b+sqrt(d))/(2*a); 
x2 = (-b-sqrt(d))/(2*a); 
end 

 
when help on the function script is invoked, we get: 
 
>> help quadratic 
 
 Funtion quadratic 
 solves the quadratic equation: 
    a x^2 + b x + c = 0 
  using a, b, c coefficients as input 
  and returns the values of two roots 
  as x1, x2 
 -----------------by Dr. Sikander Majid 
                     [January 2003] 

 
and when, we test it for the following equation: 
 
    08720127342 2 =++ xx , 
we get: 
 
>> [x1,x2]=quadratic(342,127,8720); [x1, x2].' 
ans = 
  -0.1857 + 5.0460i 
  -0.1857 - 5.0460i 

 
We invoke the function with its name and supply the required arguments to it. 
The output of the function is stored in the row vector [x1, x2]. Then, this 
vector is printed as a column using the regular transpose found using the dot-
apostrophe. The roots are complex and conjugate of each other. 
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Return Statement 

Normally, the function ‘returns’ values when the ‘end’ statement in the 
function is reached. If one wishes to do it earlier, the return statement can be 
used and it will force the function to return values at that point. 

Recursive Programming 

Sometimes, it is possible to invoke the function from within it self to carry-out 
some computation. As a simple example, let us try computing the value of 
factorial of an integer. Let us write a function script for this purpose and name 
it ‘factorial’. The input to this function is going to be ‘n’ an integer and output 
will be the corresponding value of the factorial of that integer. For simplicity, 
let us assume that user supplies only positive integer as argument. Now, one 
can compute factorial in the following way: 

Recursive expression:  Factorial(n) = n*factorial(n-1) 

It is to be repeated till the argument of  function becomes 1. Its Matlab 
function script implementation is given below: 

function value=factorial(n) 
%Funtion factorial 
%computes the factorial of an integer 
%in recursive manner 
% input is an integer and  
% returns the values factorial as integer 
%-----------------by Dr. Sikander Majid 
%                    [January 2003] 
 
if n==1  
    value = 1; 
    return; 
end 
value = n*factorial(n-1); 
end 
 

When its help is invoked, we get: 
 
>> help factorial 
 
 Funtion factorial 
 computes the factorial of an integer 
 in recursive manner 
  input is an integer and  
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  returns the values factorial as integer 
 -----------------by Dr. Sikander Majid 
                     [January 2003] 

 
 
It returns the value of factorial quickly : 
 
>> factorial(3) 
ans = 
     6 

 
Matlab is mostly a collection of functions that can be invoked when needed. 
All these functions are simply m-scripts and can be modified at will. 
However, it is strongly recommended that user should copy the original 
functions to separate work files and edit/modify them. In this way, the 
working of Matlab will not be compromised in case the modified version does 
not perform the required task. 

FFuunnccttiioonn  VViissuuaalliizzaattiioonn  
Now, we will look at various ways in which one can visualize various 
functions. Let us start with function of single variable. In this case, the plot 
command has already been introduced.  

Semilog Plot 

Let us plot exponential decay of a radioisotope. This can be done using linear-
linear plot. If y-axis is chosen as semilog, the the graph is a straight line. In 
order to do this, we can use the function ‘semilogy’: 

x=[0:0.1:50];y=exp(-0.1*x); 
subplot(211),plot(x,y);  
    xlabel('x');ylabel('exp(-0.1*x)'); 
subplot(212);semilogy(x,y);     
    xlabel('x');ylabel('exp(-0.1*x)'); 

 

First, we generate uniformly filled array of numbers from 0 to 50 in steps of 
0.1. Then, we compute the corresponding vector of values of y which is just 
the corresponding value of exp(-0.1*x). Then, we show it graphically using 
linear-linear graph and then using the ‘semilogy’ function. In the first plot, the 
graph is exponentially decreasing curve while in the second case, it is a 
straight line as expected.   
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Polar plot 

This function accepts a range of values of the angle ‘theta’ and the 
corresponding values of the radius ‘rho’ and shows them in polar plot. For 
example, let us plot sin(5θ) using it.  

>> theta=[0:0.01:pi]; rho=sin(5*theta); 
   polar(theta,rho) 
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Mesh Plot 

In this case, we visualize a function of two variables and as previously, we 
need the vector of values of the two independent variables, for which the 
corresponding values of the function are to be computed. Let us visualize the 
function: ( )22 2)3( −−−= yxZ  in the range [ ] [ ]3,1,4,2 ∈∈ yx . The 
corresponding Matlab commands are: 

[x,y]=meshgrid(2:0.05:4,1:0.05:3); 
z=(x-3).^2-(y-2).^2; 
mesh(x,y,z); 
xlabel('x'); ylabel('y'); 
zlabel('(x-3)^2-(y-2)^2'); 
title('Saddle Visualization using mesh'); 

 

and the corresponding output is: 

 

Next, we show the visualization of the function: 

  ( )( )222exp yxyxz +−−=  

For this purpose, we will use surface as well as contour plots of various types. 
The corresponding m-script is: 
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[x,y]=meshgrid(-2:0.05:2,-2:0.05:2); 
z=-x.*y.*exp(-2*(x.^2+y.^2)); 
mesh(x,y,z); 
xlabel('x'); ylabel('y'); 
zlabel('-x*y*exp(-2*(x^2+y^2))'); 
title('Ripple Visualization using mesh'); 

and the corresponding output is: 

 

Now, we will draw contours for this function using: 
Contour(x,y,z,30); 

Where, 30 is the number of contours in the plot: The corresponding output is: 
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the following command gives a different visualization: 
 
contourf(x,y,z,100);  shading flat; 
 

The result is: 

 
With the command: 
subplot(121);surf(z); 
subplot(122);surf(z);shading flat,colormap('jet'); 

 
the visualization is following pair of surfaces. The left surface has grid-lines 
visible while on the right surface, they are removed. Also, we  have used ‘jet’ 
color map for the visualization.  
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Elapsed Time 

In Matlab, various procedure may require different amount of computational 
time. This time can be obtained by using the ‘tic’, ‘toc’ pair of functions. The 
first function sets the starting time as zero and the second function returns the 
time elapsed since last call to ‘tic’ function. As an example, we wish to 
compute the time required for adding 2000 integers starting with 1. the 
corresponding Matlab code is saved as the m-script file called tictoc.m: 

tic; 
sum = 0; 
for i=1:2000 
    sum = sum+i; 
end 
sum 
toc 
 

When executed, it yields: 
 
>> tictoc 
sum = 
     2001000 
elapsed_time = 
    0.0150  

This value is in seconds. If you wish to compute the cpu-time used, then the 
function is cputime and the commands are: 
 

t=cputime; your_operation; cputime-t 
 

Please be cautioned that for longer operations, the timing calculations may 
wrap-around the time-storage and the results may become unreliable! 
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Managing commands and functions 
Command Meanings 
help On_line documentation_ 
doc Load hypertext documentation 
lookfor Keyword search through the help entries 
which Locate functions  
demo Run demos_ 
 

Managing variables and the workspace 
Command Meanings 
who List current variables 
whos  List current variables long form 
load  Retrieve variables from disk 
save  Save workspace variables to disk 
clear  Clear variables and functions 
from  memory 
size  Size of matrix 
length  Length of vector 
disp  Display matrix or text 
 

Working with files and the operating system 
cd  Change current working directory 
dir  Directory listing 
delete  Delete  file 
! Execute operating system command 
unix  Execute operating system command & return result 
diary  Save text of MATLAB session_ 
 

Controlling the command window 
Command Details 
cedit  Set command line edit/recall facility parameters 
clc  Clear command window 
home  Send cursor home 
format  Set output format 
echo  Echo commands inside script files 
more  Control paged output in command window 
quit  Terminate MATLAB 
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Matrix analysis 
Command Details 
cond  Matrix condition number 
norm  Matrix or vector norm 
rcond  LINPACK reciprocal condition estimator 
rank  Number of linearly independent rows or columns 
det  Determinant 
trace  Sum of diagonal elements 
null  Null space 
orth  Orthogonalization_ 
rref  Reduced row echelon form 
 

Linear equations 
Command Details 
\ and /  Linear equation solution; use “help slash” 
chol  Cholesky factorization 
lu  Factors from Gaussian elimination 
inv  Matrix inverse 
qr  Orthogonal_ triangular decomposition_ 
qrdelete  Delete a column from the QR factorization 
qrinsert  Insert a column in the QR factorization 
nnls  Non_negative least_ squares 
pinv  Pseudoinverse 
lscov  Least squares in the presence of known covariance_ 
 

Eigenvalues and singular values 
Command Details 
eig  Eigenvalues and eigenvectors 
poly  Characteristic polynomial 
polyeig  Polynomial eigenvalue problem 
hess  Hessenberg form 
qz  Generalized eigenvalues 
rsf_csf  Real block diagonal form to complex diagonal form 
cdf_rdf  Complex diagonal form to real block diagonal form 
schur  Schur decomposition 
balance  Diagonal scaling to improve eigenvalue accuracy 
svd  Singular value decomposition 
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Matrix functions 

Comand Details 
expm  Matrix exponential 
expm1 M_file implementation of expm 
expm2 Matrix exponential via Taylor series 
expm3  Matrix exponential via eigen-values and eigenvectors 
logm  Matrix logarithm 
sqrtm  Matrix square root 
funm  Evaluate general matrix function 

 


