
.

Beginner’s Resource

Introduction to Matlab®

By

Dr. Sikander M. Mirza

Department of Physics and Applied Mathematics
Pakistan Institute of Engineering and Applied Sciences
Nilore, Islamabad 45650, Pakistan

.
Introduction to Matlab

 2

TTaabbllee ooff CCoonntteennttss

GENERAL FEATURES.. 4
STARTUP .. 4
SIMPLE CALCULATIONS.. 5
NUMBERS AND STORAGE.. 6
VARIABLE NAMES .. 6
CASE SENSITIVITY.. 7

FUNCTIONS .. 7
TRIGONOMETRIC FUNCTIONS ... 7
SOME ELEMENTARY FUNCTIONS.. 7

VECTORS... 9
THE ROW VECTORS.. 9
THE COLON NOTATION .. 9
SECTIONS OF A VECTOR ... 10
COLUMN VECTORS... 11
TRANSPOSE .. 11
DIARY AND SESSION... 12
ELEMENTARY PLOTS AND GRAPHS... 13
MULTIPLOTS... 15
SUBPLOTS... 16
AXES CONTROL.. 17
SCRIPTS .. 17
WORKING WITH VECTORS AND MATRICES... 20
HADAMARD PRODUCT .. 22
TABULATION OF FUNCTIONS .. 22

WORKING WITH MATRICES... 24
DEFINING MATRICES .. 24
SIZE OF MATRICES ... 25
THE IDENTITY MATRIX .. 26
TRANSPOSE .. 26
DIAGONAL MATRIX.. 27
SPY FUNCTION ... 27
SECTIONS OF MATRICES ... 28
PRODUCT OF MATRICES ... 29

MATLAB PROGRAMMING ... 29
FOR-LOOPS... 29
LOGICAL EXPRESSIONS .. 31
WHILE LOOP ... 32
CONDITIONAL PROGRAMMING ... 33
FUNCTION M-SCRIPTS... 34
RETURN STATEMENT.. 36
RECURSIVE PROGRAMMING ... 36

Introduction to Matlab

 3

FUNCTION VISUALIZATION ... 37
SEMILOG PLOT ... 37
POLAR PLOT ... 38
MESH PLOT .. 39
ELAPSED TIME.. 42

.
Introduction to Matlab

 4

GGeenneerraall FFeeaattuurreess
Matlab is an interactive working environment in which the user can carry out
quite complex computational tasks with few commands. It was originally
developed in 1970s by Cleve Muller. The initial programming was in Fortran
and over period of time, it has constantly evolved. The latest version is in C.
As far as numerical programming is concerned, it removes programming of
many routine tasks and allows one to concentrate on the task encouraging
experimentation. The results of calculations can be view both numerically as
well as in the form of 2D as well as 3D graphs easily and quickly. It
incorporates state-of-the-art numerical solution tools, so one can be confident
about the results. Also, quite complex computations can be performed with
just a few commands. This is because of the fact that the details of
programming are stored in separate script files called the ‘m’- files and they
can be invoked directly with their names. An m-file can invoke another m-file
when required. In this way, a series of m-files running behind the scene allow
execution of the required task easily. The user can write his/her own m-files.
All such scripts are text readable files which can be read, modified and printed
easily. This open-architecture of Matlab® allows programmers to write their
own area specific set of m-files. Some such sets written by various experts
world-wide have already been incorporated into the Matlab as tool boxes. So,
with standard installations, you will find latterly dozens of tool boxes. If you
wish, you can down-load even more from the internet.

Startup

When you click the Matlab icon, the MS Windows opens up the standard
Matlab-window for you which has the following form:

Introduction to Matlab

 5

The white area in the middle is the work area in which the user types-in the
commands which are interpreted directly over there and the results are
displayed on screen. The ‘>>’ is Matlab prompt indicating that user can type-
in command here. A previously entered command can be reached with the
help of up-arrow and down-arrow buttons on the keyboard.

Simple Calculations

Matlab uses standard arithmetic operators + - / * ^ to indicate addition,
subtraction, division, multiplication and raised-to-the-power respectively. For
example, in order to calculate the answer for 2+34, one would type the
following:

» 2+3^4
ans =
 83

The first line is the user entered command while the second line is default
variable used by Matlab for storing the output of the calculations and the third
line shows the result of computation. If you wish to multiply this result with 2,
proceed as below:

» ans*2
ans =
 166

As you can see, the result 83 stored in variable ans gets multiplied with 2, and
the result of this new computation is again stored in variable ‘ans.’ In this
case, its previous value gets over-written by the new variable value. If you
wish, you can define your own variables. For example:
» pay=2400
pay =
 2400

In this case, you define the variable ‘pay’ and assign the variable a value
2400. Matlab echoes the assignment in the second and third line. This
confirms the user that a value of 2400 has been assigned to the variable ‘pay’
which is quite useful at times. If you wish to remove this echo in Matlab, use a
semicolon at the end of each command. For example:
» c=3*10^8;
»

The variable ‘c’ has been assigned a value 3x108 and since there is a
semicolon at the end of the command, therefore, no echo is seen in this case.

The arithmetic operators have the following precedence-levels:

1. Brackets first. In case they are nested, then the sequence is from inner-
most to the outermost.

.
Introduction to Matlab

 6

2. Raised to power next.
3. Multiplication and division next. If there are such competing

operators, then the sequence is from left to right.
4. Addition and subtraction next. In this case also, if there are competing

such operators, then the sequence is from left to right

Numbers and Storage

Matlab performs all calculations in double precision and can work with the
following data types:

Numbers Details

Integer Numbers without any fractional part and decimal point.
For example, 786

Real Numbers with fractional part e.g., 3.14159

Complex
Numbers having real and imaginary parts e.g., 3+4i.
Matlab treats ‘i’ as well as ‘j’ to represent 1−

Inf Infinity e.g., the result of divided with zero.
NaN Not a number e.g., 0/0

For display of the results, Matlab uses Format command to control the output:

Category Details
format short 4 decimal places (3.1415)
format short e 4 decimal places with exponent (3.1415e+00)
format long e normal with exponent (3.1415926535897e+00)
format bank 2 decimal places (3.14)

By using ‘format’ without any suffix means that from now onwards, the
default format should be used. Also, ‘format compact’ suppresses any blank
lines in the output.

Variable Names

Matlab allows users to define variable with names containing letters and digits
provided that they start with a letter. Hyphen, % sign and other such
characters are not allowed in variable names. Also, reserved names should not
be used as variable names. For example, pi, i, j, and e are reserved. Similarly,
the names of functions and Matlab commands should also be avoided.

Introduction to Matlab

 7

Case Sensitivity

Matlab command structure is quite similar to the C-language. The variables
are case sensitive. So, ALPHA and alpha are treated as separate variables. The
case sensitivity is also applicable to Matlab commands. As a general rule, the
lower-case variable names as well as commands are typically used.

FFuunnccttiioonnss
Matlab has a potpourri of functions. Some of these are standard functions
including trigonometric functions etc., and others are user-defined functions
and third party functions. All of these enable user to carry out complex
computational tasks easily.

Trigonometric Functions

These include sin, cos and tan functions. Their arguments should be in
radians. In case data is in degrees, one should convert it to radians by
multiplying it with pi/180. For example, let us calculate the value of

() ()oo 27cos27sin 22 + :

» (sin(27*pi/180))^2+(cos(27*pi/180))^2
ans =
 1

The result of these computations is no surprise. Note that in each case, the
argument of the trigonometric function was converted to radians by
multiplying it suitably.
 The inverse functions are invoked by asin, acos and atan. For example,

()1tan 1− is computed as:
» atan(1)
ans =
 0.7854

Of course, 7854.04/ =π .

Some Elementary Functions

Typically used common functions include sqrt, exp, log and log10. Note that
log function gives the natural logarithm. So,

» x=2; sqrt(x), exp(-x), log(x), log10(x)
ans =
 1.4142
ans =

.
Introduction to Matlab

 8

 0.1353
ans =
 0.6931
ans =
 0.3010

Here, all four functions have been tested using the same command. As you
can see, the semicolon suppresses the echo while the comma separates various
computations. Summary of some functions is given below:

Function Stands for
abs Absolute value
sqrt Square root function
sign Signum function
conj Conjugate of a complex number
imag Imaginary part of a complex number
real Real part of a complex number
angle Phase angle of a complex number
cos Cosine function
sin Sine function
tan Tangent function
exp Exponential function
log Natural logarithm
log10 Logarithm base 10
cosh Hyperbolic cosine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function
acos Inverse cosine
acosh Inverse hyperbolic cosine
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tan
atan2 Two argument form of inverse tan
atanh Inverse hyperbolic tan
round Round to nearest integer
floor Round towards minus infinity
fix Round towards zero
ceil Round towards plus infinity
rem Remainder after division

Introduction to Matlab

 9

VVeeccttoorrss
 In Matlab, there are two types of vectors: the row vectors and the column
vectors.

The Row Vectors

The row vectors are entities enclosed in pair of square-brackets with numbers
separated either by spaces or by commas. For example, one may enter two
vectors U and V as:
» U=[1 2 3]; V=[4,5,6]; U+V
ans =
 5 7 9

The two row vectors were first defined and then their sum U+V was
computed. The results are given as a row vector stored as ans. The usual
operations with vectors can easily be carried out:
» 3*U+5*V
ans =
 23 31 39

The above example computed the linear combination of U and V. One can
combine vectors to form another vector:
» W=[U, 3*V]
W =
 1 2 3 12 15 18
The vector U and V both of length 3, have been combined to form a six
component vector W. The components of a vector can be sorted with the help
of sort function:
» sort([8 4 12 3])
ans =
 3 4 8 12

The vector [8 4 12 3] has been sorted.

The Colon Notation

 In order to form a vector as a sequence of numbers, one may use the colon
notation. According to which, a:b:c yields a sequence of numbers starting with
‘a’, and possibly ending with ‘c’ in steps of ‘b’. For example 1:0.5:2 yields he
following column vector:
» 1:0.5:2
ans =
 1.0000 1.5000 2.0000

.
Introduction to Matlab

 10

Note that in some cases, the upper limit may not be attainable thing. For
example, in case of 1:0.3:2, the upper limit is not reached and the resulting
vector in this case is:
» 1:0.3:2
ans =
 1.0000 1.3000 1.6000 1.9000

If only two of the ‘range’ specifications are given then a unit step size is
automatically assumed. For example 1:4 means:
» 1:4
ans =
 1 2 3 4

In case, the range is not valid, an error message is issued:
» 1:-1:5
ans =
 Empty matrix: 1-by-0
Here, the range of numbers given for the generation of row vector was from 1
to 5 in steps of -1. Clearly, one can not reach 5 from 1 using -1 step size.
Therefore, the Matlab indicates that this is an empty matrix.

Sections of a Vector

Let us define a vector using the range notation:

» W=[1:3, 7:9]
W =
 1 2 3 7 8 9

Now, we would like to extract the middle two elements of this vector. This
can be done with the range notation again. As you can see, the middle two
elements are 3:4 range. Therefore, the required part of vector can be obtained
as:

» W(3:4)
ans =
7

This really is the required part. There are many interesting things that can now
be done using the range notation. For example, range 6:-1:1 is the descending
range and when used with part-extraction of vector, it gives:
» W(6:-1:1)
ans =
 9 8 7 3 2 1

which is the vector W with all entries now in reverse order. So, a vector can
be flipped easily. The ‘size’ function yields the length of a vector. For a given
vector V, V(size(V):-1:1) will flip it. Note that flipping of sections of a vector
is also possible.

Introduction to Matlab

 11

Column Vectors

The column vectors in Matlab are formed by using a set of numbers in a pair
of square brackets and separating them with semi-colon. Therefore, one can
define two column vectors A and B and add them as below:

» A=[1;2;3]; B=[4;5;6]; A+B
ans =
 5
 7
 9

The two column vectors were defined first and then their sum was obtained. In
similar way, all other standard operations with the column vectors can be
carried out.

Transpose

Of course, the convenient way of creating a row vector does not have any
similar method for the column vector. But, one can do it by first creating a
row vector using the range notation and then transposing the resulting row
vector into a column vector. The transpose is obtained with a ` as shown
below:

» A=[1:4]; B=A'
B =
 1
 2
 3
 4

Here, first a row vector [1 2 3 4] is formed which is called A. This vector is
then transposed to form the B—a column vector.

Note: If C is a complex vector, then C’ will give its complex conjugate
transpose vector.

» C=[1+i, 1-i]; D=C'
D =
 1.0000 - 1.0000i
 1.0000 + 1.0000i

The vector C was a complex vector and its complex conjugate is [1-i 1+i]
vector. Vector D is clearly its complex conjugate transpose vector. Some
times, one does not want the complex conjugate part. In order to get a simple
transpose, use .’ to get the transpose. For example:

» C=[1+i, 1-i]; E=C.'

.
Introduction to Matlab

 12

E =
 1.0000 + 1.0000i
 1.0000 - 1.0000i

In this case, a plain transpose of C is stored in E and no complex conjugate
part appears.

Diary and Session

In Matlab, one can start storing all text that appears on screen into a separate
file by using ‘diary filename’ command. The filename should be any legal file
name different from ‘on’ and ‘off’. The record of diary can be turned ‘on’ and
‘off’ by using ‘diary on’ and ‘diary off’ commands.

 Also, if one wishes to abort a session now and start from the same state
next time, one can save and load session using ‘save filename’ and ‘load
filename’ commands. The save command will save all variables used in this
session into a file with name give in the ‘save filename’ command and the
corresponding load command will read them back during a later session.

 By the way, a complete list of all variables use so far in the current session
can be seen using the ‘who’ command:

» who
Your variables are:
A D V c
B E W pay
C U ans x

The values and further details are also available with the ‘whos’ command:

» whos
 Name Size Bytes Class

 A 1x4 32 double array
 B 4x1 32 double array
 C 1x2 32 double array (complex)
 D 2x1 32 double array (complex)
 E 2x1 32 double array (complex)
 U 1x3 24 double array
 V 1x3 24 double array
 W 1x6 48 double array
 ans 2x1 32 double array (complex)
 c 1x1 8 double array
 pay 1x1 8 double array
 x 1x1 8 double array
Grand total is 31 elements using 312 bytes

Introduction to Matlab

 13

Elementary Plots and Graphs

Matlab offers powerful graphics and visualization tools. Let us start with
some of the very basic graphics capabilities of Matlab. The graph of sine
function in 0 to π can be obtained in the following way:

» N=30; h=pi/N; x=0:h:pi; y=sin(x); plot(x,y)
Here, in the first step, the total number of sampling points for the function is
defined as N and it is assigned a value 30. Next, the step size ‘h’ is defined
and the x row vector of size N+1 is defined along with the corresponding y
row vector composed of the function values. The command ‘plot(x,y)’
generates the graph of this data and displays it in a separate window labeled
Figure No. 1 as shown below:

The graph displayed in this window can be zoomed-in and zoomed-out. Both
x-any y-axes can also be rescaled with the help of mouse and using
appropriate buttons and menu items.
 The graph title, x- and y-labels can be assigned using the following
commands:
>> title(‘Graph of sine function in 0 to pi range’)
>> xlabel(‘x’)
>> ylabel(‘sin(x)’)

Note that by using these commands as such, one gets the corresponding
response on the graph window immediately.

.
Introduction to Matlab

 14

 The grid lines on the graph can be switched on or off using the ‘grid’
command. By issuing this command once, grid will be turned on. Using it
again, the grid will be turned off.

Matlab allows users to change the color as well as the line style of graphs by
using a third argument in the plot command. For example, plot(x,y,’w-‘) will
plot x-y data using white (w) color and solid line style (-). Further such
options are given in the following table:

Color Symbol Color Line Symbol Line type

y Yellow . Point
m Magenta O Circle
c Cyan X x-mark
r Red + Plus mark
g Green - solid
b Blue * Star
w White : Dotted
b Black -. Dash-dot

 -- dashed

Introduction to Matlab

 15

Multiplots

Let us now try plotting more than one curves on the same graph. The
functions are sine and cosine. The range is 0 to 2π in this case. The number of
sampled points in this case will be just 15.

» N=15; h=pi/N; x=0:h:2*pi; plot(x,sin(x),'r-
',x,cos(x),'g--')
» legend('sine','cosine');
» grid
» xlabel('x');
» ylabel('functions');
» title('Test of multi-plot option in Matlab');

The result is the following plot:

Note that the plot command with the same three options repeated twice
generates a graph with two curves. This can be extended to fit your needs.
Furthermore, the legend command allows one to generate the legend for this
graph which can be positioned freely by the user by just clicking and dragging
it over the graph, and releasing the mouse button when it is positioned as
desired.

.
Introduction to Matlab

 16

 Each plot command erases the previous graphics window (the Figure No.
1) and draws on it. If you wish, you can send plot on the same window by first
using the hold command and later sending plot to it with the plot command.
The hold command can be switched off by using ‘hold off’ when desired.

Subplots

Let us now consider a different situation. We want to plot both sine and cosine
functions again in the 0 to 2π range but on separate graphs. If we issue two
separate plot commands, the previous graph is erased. If we use hold, then
essentially, it is multiplot which you do not want. You want to plot these
functions on two graphs placed next to each other. This is done with the help
of subplot command, which splits the graphics window in to mxn array of
sub-plot sections. Here, we create 1x2 panels (one row, two columns):

» N=15;h=2*pi/N; x=0:h:2*pi;
» subplot(122);plot(x,cos(x));xlabel('x');
 ylabel('cosine');grid
» subplot(121);plot(x,sin(x));xlabel('x');
 ylabel('sine');grid

Introduction to Matlab

 17

The first subplot command picks the first column of this panel and plots the
sine function in it. The second picks the second column and plots the cosine
function in it. In this way, the graph is constructed.

Axes Control

 The axes of the graph can be controlled by the user with the help of axis
command which accepts a row vector composed of four components. The first
two of these are the minimum and the maximum limits of the x-axis and the
last two are same for the y-axis. Matlab also allows users to set these axes
with ‘equal’, ‘auto’, ‘square’ and ‘normal’ options. For example axis(‘auto’)
will scale the graph automatically for you. Similarly, axis([0 10 0 100]) will
scale the graph with x-axis in [0, 10] range and y-axis in [0, 100] range.

Scripts

Some times, it becomes necessary to give a set of Matlab commands again. In
such cases, it becomes tedious to type-in every thing. Matlab offers a

.
Introduction to Matlab

 18

convenient way to handle this situation. The user can save the desired set of
commands in a Matlab script file. It can have any legal name and it must have
extension ‘m’ which stands for Matlab-script. It is standard ASCII text file.
Matlab has built-in m-file editor designed specifically for this purpose. This
can be accessed using File menu:

By clicking at the File—New—m file item, the m-file editor window pops up:

Introduction to Matlab

 19

Here, one can type-in desired set of commands and save it. The default
directory for these files is already in the search path of Matlab. If you wish to
save the file into a directory of your own choice, please do not forget to
include it in the Matlab search path. This can be clicking on the file—select
path menu item which will open the path browser for you:

You can use the menu item path—add to path to add the directory of your
choice to the Matlab path:

.
Introduction to Matlab

 20

By clicking on the button with … on it, the directory browser dialog can be
opened and by clicking on the desired directory, you can select the directory
to be added. After that, just press OK button to add the directory to the path.
 After saving the script file in a directory in Matlab path, the commands
inside it can be invoked by just typing the name of the file (without the .m
extension).

Working with Vectors and Matrices

Vectors can be manipulated in various ways. A scalar can be added to vector
elements in Matlab using .+ notation:

» A=[1 2];

» B=2.+A

B =

 3 4

Note the use of the ‘dot’ before the ‘+’ sign which means apply it on element
basis. In exactly same way, division, multiplication, subtraction and raised to
the power operations can be carried out. For example, let us raise each
element of a matrix to power 2 using the ‘dot’ notation:

>> B=[2 3 4; 5 4 6; 1 3 2]; B.^2
ans =
 4 9 16
 25 16 36
 1 9 4
>> B^2
ans =
 23 30 34
 36 49 56
 19 21 26

In the first case, each element of the matrix B has been raised to power 2. For
this purpose, the dot notation was used. In the second case, the same matrix

Introduction to Matlab

 21

has been raised to power 2 which is essentially B*B operation. Now, let us
carryout the dot or inner product of a row U and a column vector V:

[]















==

3
2
1

;321 VU

>> U=[1 2 3]; V=[1;2;3]; U*V
ans =
 14

Clearly, the result is 1+4+9 = 14; a scalar quantity. Now, let us change the
order of multiplication. In this case, the result is expected to be a matrix:
>> V*U
ans =
 1 2 3
 2 4 6
 3 6 9

Now, let us compute the Euclidean norm of a vector which is defined as:

 ∑
=

=
3

1

2

i
iuU

It can be obtained by the '.UU ; where U’ is its complex conjugate
transpose. Also, Matlab has a built-in function called norm, which carries out
this operation for us:
>> sqrt(U*U'), norm(U)
ans =
 3.7417
ans =
 3.7417
The first computation returns the value of sqrt(U*U’) as 3.7417 and exactly
the same result is obtained using the norm function.
 Now, let us compute angle between two vectors X and Y where:

[] []7315;957 == YX
In Matlab, we will compute the lengths of these vectors using the norm
function, and divide the inner product of X and Y with these lengths, the result
will be cosine of the angle and finally, using the acos function, we will get the
final answer. Mathematically:

 









= −

YX
YX .cos 1θ

>> X=[7 5 9]; Y=[15 3 7];
>> theta = acos(X*Y'/(norm(X)*norm(Y)))
theta =
 0.5079

.
Introduction to Matlab

 22

Here, first both vectors have been initialized. Next, we apply the formula. The
important thing to note in this case was the fact that since both vectors were
defined as row vectors, we had to convert the ‘Y’ vector into a column vector
by using transpose in order to compute the inner product.

Hadamard product

Although not in common use, the Hadamard is defined in mathematics as
element by element product of two vectors of identical lengths and the result
is again a vector of same length. For example if:

[] []nn vvvVuuuU LL 2121 ; ==

then the Hadamard dot product is defined as:

[]nnvuvuvuVU L2211. =

In Matlab, the Hadamard dot product is obtained using .* operator. For
example, if U=[1 3 4 7] and V=[8 3 9 2], then their Hadamard dot product is
given by:

>> U=[1 3 4 7]; V=[8 3 9 2]; U.*V
ans =
 8 9 36 14

Tabulation of Functions

The functions used in Matlab apply on element by element basis. In order to
test it, let us prepare a table of the values of sine, and cosine for values of
angles ranging from 0 to pi in steps of pi/10. For this, first, we construct a
column vector of values of angles and call it X:

>> X=[0:pi/10:pi]'
X =
 0
 0.3142
 0.6283
 0.9425
 1.2566
 1.5708
 1.8850
 2.1991
 2.5133
 2.8274
 3.1416

Introduction to Matlab

 23

Now, we use the two trigonometric functions with x as argument:

>> [X sin(X) cos(X)]
ans =
 0 0 1.0000
 0.3142 0.3090 0.9511
 0.6283 0.5878 0.8090
 0.9425 0.8090 0.5878
 1.2566 0.9511 0.3090
 1.5708 1.0000 0.0000
 1.8850 0.9511 -0.3090
 2.1991 0.8090 -0.5878
 2.5133 0.5878 -0.8090
 2.8274 0.3090 -0.9511
 3.1416 0.0000 -1.0000

which shows clearly that the functions actually apply on each element of the
column vector. The first column in the above output is X, second is sin(X) and
third is cos(X).
 In order to test it for another case, let us try finding the limiting value of
sin(y)/y for y approaching zero. The answer should be 1.0 and in Matlab, we
first define a range of values of y:

>> y=[10 1 0.1 0.01 0.001];

then we apply the expression. Note that the sine function will apply on
element by element basis but the division must be forced to be carried out also
on element by element basis which can easily be done using the dot in front of
the division operator:

>> sin(y)./y
ans =
 -0.0544 0.8415 0.9983 1.0000 1.0000

and it is seen clearly that the limiting value is indeed 1.0 as y becomes smaller
and smaller. In order to view things graphically, we first define a range of
values of x from near 0 to 7π in steps of π/10. Then, it is plotted with grid-on
state:

>> x=[0.0001:0.1:7*pi];plot(x,sin(x)./x);
xlabel(‘x’); ylabel(‘sin(x)/x’); grid on

which is seen as:

.
Introduction to Matlab

 24

The function clearly approaches 1.0 as ‘x’ becomes smaller and smaller. In the
range of values o ‘x’, zero was avoided otherwise Matlab gives a divided by
zero error message.

WWoorrkkiinngg wwiitthh MMaattrriicceess
Defining Matrices

A matrix is essentially a two dimensional array of numbers composed of rows
and columns. A matrix can be entered in Matlab in either of the following
three ways:

(a) Using carriage return key:

>> A=[1 2 3
 4 5 6
 7 8 9];

(b) Using semicolons to indicate the next line:

>> A=[1 2 3; 4 5 6; 7 8 9];

Introduction to Matlab

 25

(c) Using the range notation with semicolon:

>> A=[1:3; 4:6; 7:9];

Some matrices can be defined simply using functions. For example, the zeros
function defines a matrix with all entries zeros, the function ones defines
matrix filled with ones and rand defines a matrix with all entries random
numbers in the [0,1] range:

>> zeros(3)
ans =
 0 0 0
 0 0 0
 0 0 0
>> ones(3)
ans =
 1 1 1
 1 1 1
 1 1 1
>> rand(3)
ans =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

The argument in each case is the size of the matrix. The same functions can
also be used for defining some non-square matrix:

>> rand(3,4)
ans =
 0.4447 0.9218 0.4057 0.4103
 0.6154 0.7382 0.9355 0.8936
 0.7919 0.1763 0.9169 0.0579

In this case, one needs to supply two arguments, first for the number of rows
and second for the number of columns.

Size of Matrices

The size function returns the size of any matrix. For example, let us define a
zero matrix A with size 135x243:

>> A=zeros(135,243); size(A)
ans =

135 243

.
Introduction to Matlab

 26

The size function returns the row and column count of this matrix.

The Identity Matrix

The identity matrix having the form:























=

1000

0100
0010
0001

L

MOMMM

L

L

L

I

can be defined in Matlab with the help of the ‘eye’ function with argument
representing the size of the matrix:

>> eye(3)
ans =
 1 0 0
 0 1 0
 0 0 1

The ‘eye’ function generates a 3x3 identity matrix when the argument is 3.

Transpose

As discussed before, the complex conjugate transpose of a matrix can be
obtained by using the apostrophe. In order to obtain the regular transpose, one
should use the dot-apostrophe. For example:

>> T=[1-j 1+j
 1+j 1-j];
>> T'
ans =
 1.0000 + 1.0000i 1.0000 - 1.0000i
 1.0000 - 1.0000i 1.0000 + 1.0000i
>> T.'
ans =
 1.0000 - 1.0000i 1.0000 + 1.0000i
 1.0000 + 1.0000i 1.0000 - 1.0000i
>>

First we have defined the complex matrix T. The T’ is its complex conjugate
transpose—the complex conjugate of each element has been used after

Introduction to Matlab

 27

transposing the matrix. The T.’ has simply transposed the matrix T and no
complex conjugate has been taken in this case.

Diagonal Matrix

The diagonal matrix is similar to the identity matrix that both have off-
diagonal elements all zeros. In order to generate the diagonal matrix, first a
row vector containing the diagonal elements is required. For a square matrix
of size nxn, the diagonal will be of size n. This row vector is used as an
argument to the ‘diag’ function:

>> d=[1 2 3 4];
>> D = diag(d)
D =
 1 0 0 0
 0 2 0 0
 0 0 3 0
 0 0 0 4

Note that the diagonal matrix has all diagonal entries picked from the vector
‘d’.

The same function returns the entries of the diagonal for any given matrix.
For example, let us take the random matrix R:

>> R = rand(4)
R =
 0.3529 0.2028 0.1988 0.9318
 0.8132 0.1987 0.0153 0.4660
 0.0099 0.6038 0.7468 0.4186
 0.1389 0.2722 0.4451 0.8462
>> diag(R)
ans =
 0.3529
 0.1987
 0.7468
 0.8462

First, the random matrix R has been defined. Then, the function ‘diag’ with
argument R returns the diagonal elements of R.

Spy Function

The sparsity pattern of a matrix is revealed with the help of the spy function
which produces a graphical visualization of given matrix. For example, let us
create a random matrix and convert it to integer values after adding 0.5 to all
of its elements. The size of this matrix is 50x50:

.
Introduction to Matlab

 28

>> B=fix(0.5+rand(50,50));spy(B)

The rand(50,50) generates a random matrix with elements in [0,1] range. By
adding 0.5 to it, we shift the entire matrix range to [0.5, 1.5]. This means that
now, about half of the entries and below 1 and the remaining half above 1.
When fix function is applied, the matrix is converted to all entries in 0, 1
values. It is expected that roughly half of the entries will be 1 and remaining
half zeros. The spy command gives the visualization of this matrix:

The value of ‘nz’ (number of zero entries) is 1282 which is roughly half of
50x50. Larger the nz value, more sparse the matrix.

Sections of Matrices

The range operation is used for extracting section of a given matrix. For
example, let us consider a diagonal matrix D with diagonal entries ranging
from 1 to 16. We are going to extract a 4x4 matrix B from it which have
diagonal entries starting from 9.

>> d=[1:16]; D=diag(d); B = D(9:13, 9:13)

B =

Introduction to Matlab

 29

 9 0 0 0 0
 0 10 0 0 0
 0 0 11 0 0
 0 0 0 12 0
 0 0 0 0 13
>>

As you can see, the required portion of the matrix has been extracted.

Product of Matrices

The * operator multiplies two matrices if they are conformable for
multiplication while the .* operator is strictly for multiplication that is on
element-by-element basis:

>> A=[1 2 3; 4 5 6]; B=[1 2; 3 4]; B*A, B.*B
ans =
 9 12 15
 19 26 33
ans =
 1 4
 9 16

In the above case, first, the two matrices are defined. Then, the B*A computes
the standard dot or the inner product of the two matrices while the .* operation
calculates the element by element product of the matrix B.

MMaattllaabb PPrrooggrraammmmiinngg
Matlab offers quite straight forward programming language of its own which
is somewhat similar to the C-language in many respects. But there are
certainly some differences between the two language as well. Here, we will
start with some elementary stuff and later one can build on it.

For-Loops

For carrying out any repeated task, loops are needed. In Matlab, this is done
using for-command which has the generic syntax:

For counter= legal list of values

- - statements to be executed repeatedly within this loop

end

As a simple example, let us define a row vector having 7 random values:

.
Introduction to Matlab

 30

>> R=rand(1,7)
R =

 0.3784 0.8600 0.8537 0.5936 0.4966 0.8998 0.8216

Next, we would like to find the sum of all entries in R. For this purpose, we
define a variable sum and initialize it to be zero. Then, we construct a loop
that executes exactly seven times with the help of a counter having range of
values 1 to 7. Inside this loop, we simply add the various elements of R in turn
to sum.
>> sum=0;
>> for i=1:7
 sum = sum + R(i);
 end

Now, we can find the average value of the elements of R by dividing the sum
with 7:
>> avg = sum/7
avg =
 0.7005
>> sum
sum =
 4.9036

The answer is 0.7005 while the value of sum was 4.9036.

 As another example of the use of loops, let us generate and find sum of the
first 100 integers.

 1 + 2 + 3 + . . . + 100

Again the method is going to be the same. We will use a variable sum to do
the summation within the loop:

>> sum = 0;
 for i=1:100
 sum=sum + i;
 end;
 sum
>>sum =
 5050

In this case, the result is 5050 which is clearly the true value of this sum.

Next, let us use Matlab to compute the Fibonnaci sequence:

1, 1, 2, 3, 5, 8, 13, 21, . . .
which starts with two elements 1, 1; and each next element is just sum of the
two previous elements. The ratio of two consecutive elements of this sequence
approaches a fixed number which is also found in many aesthetically pleasing

Introduction to Matlab

 31

structures e.g., the ratio of height to width in doors of some buildings. We do
it by using the following m-script file in Matlab:

f(1)=1; f(2)=1;
ratio(1)=1; ratio(2)=1;
for i=3: 10
 f(i)=f(i-1)+f(i-2);
 ratio(i) = f(i)/f(i-1);
end
plot(ratio); xlabel('i');
ylabel('Fibonnaci ratio');

The result is the following plot, which clearly shows that in ten iterations, the
ratio approaches the value 1.6176 which is close to the actual value 1.618

Logical Expressions

The following operators are used in logical expressions of various type:

Operator Meanings Operator Meanings
< Less than > Greater than
<= Less or equal >= Greater or equal
== Equal to ~= Not equal

.
Introduction to Matlab

 32

The resulting value is either true or false. Various logical expressions can
further be combined using:

 & meaning ‘and’ , | meaning ‘or’ , ~ meaning ‘not’

Note that true evaluates as 1 and false as 0.

In order to apply it, let us construct a rectifier with it. Let us construct a range
of values of x from 0 to 3π in steps of 0.1. Next, we compute the
corresponding values of the sine function for these values of x as angles.
Finally, we construct a vector of values of sin(x) which picks only the positive
values of sin(x). The corresponding m-script file is:

x=[0:0.1:3*pi];
y=sin(x);
Z=(y>0).*y;
plot(Z)
xlabel(‘x’);ylabel(‘sin(x)’);
title(‘rectified sine curve’);

and the corresponding output is:

While loop

This loop keeps on repeating while a certain logical condition remains true.
The loop is terminated when the logical condition becomes false. For

Introduction to Matlab

 33

example, the sum of integers from 1 to 100 can be found with the help of
following code:

Sum = 0;
I = 1
while I <= 100
 Sum = Sum + I;
 I = I+1;
end

Note that the loop counter needs to be incremented inside the loop in this case.

Conditional Programming

The ‘structured-if’ is used for this purpose. It has the following generic form:

 if logical-expression-1
 statements executed when expression-1 is true
 elseif logical-expression-2
 statements executed when expression-2 is true
 elseif logical-expression-3
 statements executed when expression-3 is true
 . . .number of elseif portions repeated as needed
 else
 statements executed when
 none of logical expressions is true
 end

Note that the elseif portion and the else portion are optional and should be
used only when they are needed. Also, the else part should be the last part in
this structure when needed.
 As an example, let us initialize a variable with some value and test if
it is even or odd. For this check, we will compare the result of integer division
of the number with 2 and later multiplied with 2, with the actual number. For
even values, the original number is obtained:

N=input('Please enter an integer:');
if fix(N/2)*2==N
 integer_type='even';
else
 integer_type='odd';
end
integer_type

.
Introduction to Matlab

 34

First, the m-script prompts the user with text: “Please enter an integer:” which
appears in the work area of the Matlab environment. User types-in some
integer and this number is assigned to the variable ‘N’. Then, the integer
division of N with 2 is carried out. Note that if it is not even, then, there will
be some fractional part which is dropped-off by the fix function. Next, the
result is multiplied with 2 and it is then compared with ‘N’. The two values
will be same if it was an even integer, in which case, the text variable is
assigned string-value ‘even’, otherwise, it is assigned ‘odd’. Finally, the value
of this text-variable is printed on screen. A typical execution gives:

Please enter an integer:786
integer_type =
even
>>

Function m-Scripts

In Matlab, all computations are normally done with the help of functions
which are written in Matlab scripting language. The basic structure of a
function is the following:

Function output_values = name(input_values)
% comments echoed when ‘help name’ used
- - - body of the function - - -
end

The function m-script must be written in a file with name as the name of the
function and extension .m.

 As an example, let us write a function script quadratic which accepts three
values as the coefficients a, b and c of quadratic equation, computes and
returns the values of the corresponding roots as x1 and x2:

Equation: 02 =++ cbxax

Roots:
a

acbbxx
2

4,
2

21
−±−

=

Contents of the file: quadratic.m

function [x1,x2]=quadratic(a,b,c)
%Funtion quadratic

Introduction to Matlab

 35

%solves the quadratic equation:
% a x^2 + b x + c = 0
% using a, b, c coefficients as input
% and returns the values of two roots
% as x1, x2
%-----------------by Dr. Sikander Majid
% [January 2003]

d = b^2-4*a*c;
x1 = (-b+sqrt(d))/(2*a);
x2 = (-b-sqrt(d))/(2*a);
end

when help on the function script is invoked, we get:

>> help quadratic

 Funtion quadratic
 solves the quadratic equation:
 a x^2 + b x + c = 0
 using a, b, c coefficients as input
 and returns the values of two roots
 as x1, x2
 -----------------by Dr. Sikander Majid
 [January 2003]

and when, we test it for the following equation:

 08720127342 2 =++ xx ,
we get:

>> [x1,x2]=quadratic(342,127,8720); [x1, x2].'
ans =
 -0.1857 + 5.0460i
 -0.1857 - 5.0460i

We invoke the function with its name and supply the required arguments to it.
The output of the function is stored in the row vector [x1, x2]. Then, this
vector is printed as a column using the regular transpose found using the dot-
apostrophe. The roots are complex and conjugate of each other.

.
Introduction to Matlab

 36

Return Statement

Normally, the function ‘returns’ values when the ‘end’ statement in the
function is reached. If one wishes to do it earlier, the return statement can be
used and it will force the function to return values at that point.

Recursive Programming

Sometimes, it is possible to invoke the function from within it self to carry-out
some computation. As a simple example, let us try computing the value of
factorial of an integer. Let us write a function script for this purpose and name
it ‘factorial’. The input to this function is going to be ‘n’ an integer and output
will be the corresponding value of the factorial of that integer. For simplicity,
let us assume that user supplies only positive integer as argument. Now, one
can compute factorial in the following way:

Recursive expression: Factorial(n) = n*factorial(n-1)

It is to be repeated till the argument of function becomes 1. Its Matlab
function script implementation is given below:

function value=factorial(n)
%Funtion factorial
%computes the factorial of an integer
%in recursive manner
% input is an integer and
% returns the values factorial as integer
%-----------------by Dr. Sikander Majid
% [January 2003]

if n==1
 value = 1;
 return;
end
value = n*factorial(n-1);
end

When its help is invoked, we get:

>> help factorial

 Funtion factorial
 computes the factorial of an integer
 in recursive manner
 input is an integer and

Introduction to Matlab

 37

 returns the values factorial as integer
 -----------------by Dr. Sikander Majid
 [January 2003]

It returns the value of factorial quickly :

>> factorial(3)
ans =
 6

Matlab is mostly a collection of functions that can be invoked when needed.
All these functions are simply m-scripts and can be modified at will.
However, it is strongly recommended that user should copy the original
functions to separate work files and edit/modify them. In this way, the
working of Matlab will not be compromised in case the modified version does
not perform the required task.

FFuunnccttiioonn VViissuuaalliizzaattiioonn
Now, we will look at various ways in which one can visualize various
functions. Let us start with function of single variable. In this case, the plot
command has already been introduced.

Semilog Plot

Let us plot exponential decay of a radioisotope. This can be done using linear-
linear plot. If y-axis is chosen as semilog, the the graph is a straight line. In
order to do this, we can use the function ‘semilogy’:

x=[0:0.1:50];y=exp(-0.1*x);
subplot(211),plot(x,y);
 xlabel('x');ylabel('exp(-0.1*x)');
subplot(212);semilogy(x,y);
 xlabel('x');ylabel('exp(-0.1*x)');

First, we generate uniformly filled array of numbers from 0 to 50 in steps of
0.1. Then, we compute the corresponding vector of values of y which is just
the corresponding value of exp(-0.1*x). Then, we show it graphically using
linear-linear graph and then using the ‘semilogy’ function. In the first plot, the
graph is exponentially decreasing curve while in the second case, it is a
straight line as expected.

.
Introduction to Matlab

 38

Polar plot

This function accepts a range of values of the angle ‘theta’ and the
corresponding values of the radius ‘rho’ and shows them in polar plot. For
example, let us plot sin(5θ) using it.

>> theta=[0:0.01:pi]; rho=sin(5*theta);
 polar(theta,rho)

Introduction to Matlab

 39

Mesh Plot

In this case, we visualize a function of two variables and as previously, we
need the vector of values of the two independent variables, for which the
corresponding values of the function are to be computed. Let us visualize the
function: ()22 2)3(−−−= yxZ in the range [] []3,1,4,2 ∈∈ yx . The
corresponding Matlab commands are:

[x,y]=meshgrid(2:0.05:4,1:0.05:3);
z=(x-3).^2-(y-2).^2;
mesh(x,y,z);
xlabel('x'); ylabel('y');
zlabel('(x-3)^2-(y-2)^2');
title('Saddle Visualization using mesh');

and the corresponding output is:

Next, we show the visualization of the function:

 ()()222exp yxyxz +−−=

For this purpose, we will use surface as well as contour plots of various types.
The corresponding m-script is:

.
Introduction to Matlab

 40

[x,y]=meshgrid(-2:0.05:2,-2:0.05:2);
z=-x.*y.*exp(-2*(x.^2+y.^2));
mesh(x,y,z);
xlabel('x'); ylabel('y');
zlabel('-x*y*exp(-2*(x^2+y^2))');
title('Ripple Visualization using mesh');

and the corresponding output is:

Now, we will draw contours for this function using:
Contour(x,y,z,30);

Where, 30 is the number of contours in the plot: The corresponding output is:

Introduction to Matlab

 41

the following command gives a different visualization:

contourf(x,y,z,100); shading flat;

The result is:

With the command:
subplot(121);surf(z);
subplot(122);surf(z);shading flat,colormap('jet');

the visualization is following pair of surfaces. The left surface has grid-lines
visible while on the right surface, they are removed. Also, we have used ‘jet’
color map for the visualization.

.
Introduction to Matlab

 42

Elapsed Time

In Matlab, various procedure may require different amount of computational
time. This time can be obtained by using the ‘tic’, ‘toc’ pair of functions. The
first function sets the starting time as zero and the second function returns the
time elapsed since last call to ‘tic’ function. As an example, we wish to
compute the time required for adding 2000 integers starting with 1. the
corresponding Matlab code is saved as the m-script file called tictoc.m:

tic;
sum = 0;
for i=1:2000
 sum = sum+i;
end
sum
toc

When executed, it yields:

>> tictoc
sum =
 2001000
elapsed_time =
 0.0150

This value is in seconds. If you wish to compute the cpu-time used, then the
function is cputime and the commands are:

t=cputime; your_operation; cputime-t

Please be cautioned that for longer operations, the timing calculations may
wrap-around the time-storage and the results may become unreliable!

Introduction to Matlab

 43

Managing commands and functions
Command Meanings
help On_line documentation_
doc Load hypertext documentation
lookfor Keyword search through the help entries
which Locate functions
demo Run demos_

Managing variables and the workspace
Command Meanings
who List current variables
whos List current variables long form
load Retrieve variables from disk
save Save workspace variables to disk
clear Clear variables and functions
from memory
size Size of matrix
length Length of vector
disp Display matrix or text

Working with files and the operating system
cd Change current working directory
dir Directory listing
delete Delete file
! Execute operating system command
unix Execute operating system command & return result
diary Save text of MATLAB session_

Controlling the command window
Command Details
cedit Set command line edit/recall facility parameters
clc Clear command window
home Send cursor home
format Set output format
echo Echo commands inside script files
more Control paged output in command window
quit Terminate MATLAB

.
Introduction to Matlab

 44

Matrix analysis
Command Details
cond Matrix condition number
norm Matrix or vector norm
rcond LINPACK reciprocal condition estimator
rank Number of linearly independent rows or columns
det Determinant
trace Sum of diagonal elements
null Null space
orth Orthogonalization_
rref Reduced row echelon form

Linear equations
Command Details
\ and / Linear equation solution; use “help slash”
chol Cholesky factorization
lu Factors from Gaussian elimination
inv Matrix inverse
qr Orthogonal_ triangular decomposition_
qrdelete Delete a column from the QR factorization
qrinsert Insert a column in the QR factorization
nnls Non_negative least_ squares
pinv Pseudoinverse
lscov Least squares in the presence of known covariance_

Eigenvalues and singular values
Command Details
eig Eigenvalues and eigenvectors
poly Characteristic polynomial
polyeig Polynomial eigenvalue problem
hess Hessenberg form
qz Generalized eigenvalues
rsf_csf Real block diagonal form to complex diagonal form
cdf_rdf Complex diagonal form to real block diagonal form
schur Schur decomposition
balance Diagonal scaling to improve eigenvalue accuracy
svd Singular value decomposition

Introduction to Matlab

 45

Matrix functions

Comand Details
expm Matrix exponential
expm1 M_file implementation of expm
expm2 Matrix exponential via Taylor series
expm3 Matrix exponential via eigen-values and eigenvectors
logm Matrix logarithm
sqrtm Matrix square root
funm Evaluate general matrix function

