


Arithmetic and Logic in 
Computer Systems 



This Page Intentionally Left Blank



Arithmetic and Logic in 
Computer Systems 

Mi Lu 
Texas A&M University 

WILEY- 
INTERSCIENCE 

A JOHN WILEY & SONS, INC., PUBLICATION 



Copyright 0 2004 by John Wiley & Sons, Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 1  1 River Street, Hoboken, NJ 
07030, (201) 748-601 I ,  fax (201) 748-6008. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book, they make no representation or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages. 

For general information on our other products and services please contact our Customer Care 
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, 
however, may not be available in electronic format. 

Library of Congress Cataloging-in-Publication Data is available. 

ISBN 0-471-46945-9 

Printed in the United States of America. 

I 0 9 8 7 6 5 4 3 2 1  



To the memory of my mother, Shu Sheng Fan. 
To my father, Chong Pu Lu, my husband, Jiming Yin, and my son, Luke Yin. 



This Page Intentionally Left Blank



Preface 

List of Figures 

List of Tables 

About the Author 

1 Computer Number Systems 

Contents 

1.1 
1.2 
1.3 

1.4 
1.5 

1.6 
1.7 

Conventional Radix Number System 
Conversion of Radix Numbers 
Representation of Signed Numbers 
1.3.1 Sign-Magnitude 
1.3.2 Diminished Radix Complement 
1.3.3 Radix Complement 
Signed-Digit Number System 
Floating-point Number Representation 
1.5.1 Normalization 
1.5.2 Bias 
Residue Number System 
Logarithmic Number System 
References 
Problems 

xiii 

xv 

xix 

xxi 

1 
2 
4 
7 
8 
8 
8 

11 
15 
15 
16 
22 
23 
24 
26 

vii 



viii CONTENTS 

2 Addition and Subtraction 
2.1 Single-Bit Adders 

2.1.1 Logical Devices 
2.1.2 Single-Bit Half-Adder and Full-Adders 

2.2 Negation 
2.2.1 Negation in One’s Complement System 
2.2.2 Negation in Two’s Complement System 

2.3 Subtraction through Addition 
2.4 Overjflow 
2.5 Ripple Carry Adders 

2.5.1 Two’s Complement Addition 
2.5.2 One’s Complement Addition 
2.5.3 Sign-Magnitude Addition 
References 
Problems 

3 High-speed Adder 
3.1 Conditional-Sum Addition 
3.2 Carry-Completion Sensing Addition 
3.3 Carry-Lookahead Addition (CLA) 

3.3.1 Carry-Lookahead Adder 
3.3.2 Block Carry Lookahead Adder 

3.4 Carry-Save Adders (CSA) 
3.5 Bit-Partitioned Multiple Addition 

References 
Problems 

4 Sequential Multiplication 
4. 1 Add-and-shifl Approach 
4.2 Indirect Multiplication Schemes 

4.2. 1 Unsigned Number Multiplication 
4.2.2 Sign-Magnitude Number Multiplication 
4.2.3 One’s Complement Number Multiplication 
4.2.4 Two’s Complement Number Multiplication 
Robertson ’s Signed Number Multiplication 

4.4. 1 
4.4.2 Overlapped Multiple Bit Scanning 

4.3 
4.4 Recoding Technique 

Non-overlapped Multiple Bit Scanning 

29 
29 
29 
32 
35 
36 
38 
40 
43 
44 
44 
46 
48 
50 
52 

53 
53 
56 
61 
61 
62 
66 
71 
73 
74 

77 
78 
81 
81 
81 
81 
85 
87 
89 
89 
90 



CONTENTS ix 

4.4.3 Booth’s Algorithm 
4.4.4 Canonical Multiplier Recoding 
References 
Problems 

5 Parallel Multiplication 
5.1 Wallace Trees 
5.2 Unsigned Array Multiplier 
5.3 Two’s Complement Array Multiplier 

5.3.1 
5.3.2 Pezaris Two’s Complement Multipliers 
Modular Structure of Large Multiplier 
5.4.1 Modular Structure 
5.4.2 Additive Multiply Modules 
5.4.3 Programmable Multiply Modules 
References 
Problems 

Baugh- Wooley Two s Complement Multiplier 

5.4 

6 Sequential Division 
6.1 Subtract-and-Shifl Approach 
6.2 Binary Restoring Division 
6.3 Binary Non-Restoring Division 
6.4 High-Radix Division 

6.4.1 High-Radix Non-Restoring Division 
6.4.2 SRT Division 
6.4.3 Modified SRT Division 
6.4.4 Robertson’s High-Radix Division 

6.5.1 Convergence Division Methodologies 
6.5.2 Divider Implementing Convergence Division 

6.5 Convergence Division 

Algorithm 
6.6 Division by Divisor Reciprocation 

References 
Problems 

7 Fast Array Dividers 
7.1 Restoring Cellular Array Divider 
7.2 Non-Restoring Cellular Array Divider 

93 
95 
99 

100 

103 
103 
105 
108 
111 
117 
120 
120 
123 
125 
130 
132 

135 
135 
138 
141 
144 
144 
146 
147 
147 
150 
152 

155 
157 
162 
164 

167 
167 
171 



X CONTENTS 

7.3 Carry-Lookahead Cellular Array Divider 
References 
Problems 

8 Floating Point Operations 
8.1 Floating Point AdditiodSubtraction 
8.2 Floating Point Multiplication 
8.3 Floating Point Division 
8.4 Rounding 
8.5 Extra Bits 

References 
Problems 

9 Residue Number Operations 
9.1 
9.2 

RNS Addition, Subtraction and Multiplication 
Number Comparison and Overflow Detection 
9.2.1 Unsigned Number Comparison 
9.2.2 Overflow Detection 
9.2.3 
9.2.4 

9.3.1 Unsigned Number Division 
9.3.2 Signed Number Division 
9.3.3 Multiplicative Division Algorithm 
References 
Problems 

Signed Numbers and Their Properties 
Multiplicative Inverse and the Parity Table 

9.3 Division Algorithm 

10 Operations through Logarithms 
10. 1 Multiplication and Addition in Logarithmic Systems 
10.2 Addition and Subtraction in Logarithmic Systems 
10.3 Realizing the Approximation 

References 
Problems 

I1 Signed-Digit Number Operations 
11.1 Characteristics of SD Numbers 
11.2 Totally Parallel AdditiodSubtraction 
11.3 Required and Allowed Values 

173 
180 
181 

183 
183 
184 
188 
189 
191 
194 
196 

199 
199 
200 
200 
202 
202 
203 
206 
206 
209 
21 2 
216 
21 8 

221 
221 
222 
225 
232 
233 

235 
235 
236 
237 



11.4 Multiplication and Division 
References 
Problems 

Index 

CONTENTS X i  

239 
243 
244 

245 



This Page Intentionally Left Blank



Preface 

This book describes the fundamental principles of computer arithmetic. Algorithms 
for performing operations like addition, subtraction, multiplication and division in 
digital computer systems are presented. The goal is to explain the concepts behind 
the algorithms rather than to address any direct applications. Alternative methods are 
examined and various possibilities considered. With the rapid growth of VLSI tech- 
nology, some currently unattractive algorithms may be implemented with remarkable 
performance in the future. 

This book can be used as a text of an introductory course for graduate students 
or senior undergraduate students in electrical engineering, and computer and mathe- 
matical sciences. It can also be used as a reference book for practicing engineers and 
computer scientists involved in the design, application and development of computer 
arithmetic units. For the number systems covered in Sections 1.4, 1.6 and 1.7, some 
exercise problems are listed in Chapters 9, 10 and 11 for in-depth study. 

I have been teaching a computer arithmetic course for fifteen years and have 
supervised Doctorate and Masters research projects in this area. As a preliminary 
version of the book, my lecture notes have received positive and constructive feedback 
over the years. An effort has been made to keep fundamental material self-contained 
and instructive rather than just referring readers to articles spread throughout the 
literature. The theories in the book have been carefully derived and the reasoning 
addressed as completely as possible. In addition to "it is so," pointed to the readers 
is "why it is so." The notation in different discussions is unified and the descriptions 
are given logically and with clarity. The whole presentation of the text is designed 
to be smooth and coherent rather than a collection of broken pieces, with leaps from 

Xi i i  



xiv PREFACE 

one subject to another. I gratefully thank my father, Chong Pu Lu, and my husband, 
Jiming Yin, for their encouragement and support during the writing of this book. I 
also wish to acknowledge the contribution made by my graduate student, C. T. Chiang, 
for his assistance in graphical typesetting. 

College Station, Texas MI Lu 



1.1 

1.2 

1.3 

1.4 

2. I 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

List of Figures 

Floating-point Representation 

Range of the Numbers 

Precision of Floating-Point Numbers 

Double Precision Floating-point Representation 

AOI Function 

Decoder and Multiplexer 

Single-Bit Half-Adder 

Design of Full-Adder 

Single-Bit Subtrator 

Negation in One’s Complement System 

Negation in Two’s Complement System 

Subtraction through Addition 

One-Bit Adder/Subtractor 

18 

19 

19 

20 

30 

31 

32 

34 

36 

37 

39 

41 

42 

2. I0 Two’s Complement AdditiodSubtraction 45 

2.11 One’s Complement AdditionlSubtraction 47 

xv 



XVi  LIST OF FIGURES 

2.12 Block Diagram of Sign-Magnitude AdditiodSubtraction 49 

2.13 Sign-Magnitude AdditiodSubtraction 50 

3.1 Conditional-Sum Addition 55 

3.2 Conditional-Sum Adder 57 

3.3 Generation and Transmission of Carries 58 

3.4 Construction of Carry-Completion Sensing Adder 59 

3.5 Carry-Lookahead Adder 63 

3.6 Block Carry-Lookahead Adder 65 

3.7 Carry-Save Adder 67 

3.8 Carry-Save Adder Tree 69 

3.9 Two Types of Parallelization in Multi-Operand Addition 70 

3.10 Bit-Partitioned Multiple Addition 72 

3.11 Carry-Completion Sensing Adder 75 

3.12 Carry-Save Adder 75 

4.1 Hardware for Sequential Multiplication 79 

3.13 Bit-Partitional Adder 76 

4.2 Register Occupation 80 

4.3 Unsigned Number Multiplication 82 

4.4 Sign -Magn itude Number Multiplication 83 

4.5 One’s Complement Number Multiplication 84 

4.6 Two’s Complement Number Multiplication 86 

4.7 Negative Multiplicand Times Positive Multiplier 87 

4.8 Negative Multiplicand Times Negative Multiplier 88 

4.9 Multiple Bit Scanning 90 

4.10 String Property 91 

4.11 Two-Bit Scan vs. Overlapped Three-Bit Scan 92 

4.12 Example of Booth’s Multiplication 94 

4.13 Scan Pattern in 32-bit Multiplication 97 



LIST OF FIGURES XVi i  

4.14 Adding the Bit-Pairs Parallelly Scanned with a CSA Tree 98 

5.1 Wallace Tree 104 

5.2 5-by-5 Multiplication 106 

5.3 5x4 Array Multiplier Perfomzing 5-by-5 Multiplication 108 

5.4 

5.5 Distribution of Negative Weight 

5.6 

5.7 

5.8 Baugh-Wooley Array with m=n=5 

5.9 

5.10 5-by-5 Pezaris Array Multiplier 

5.11 The Adjustment 

5.12 5-by-5 Bi-Section Array Multiplier 

5.13 5-by-5 Tri-section Array Multiplier 

5.14 Alignment of the Sub-products 

5.15 8-by-8 Multiplication via 4-by-4 Multipliers 

5.16 Modular Structure of Array Multipliers 

5.1 7 4-by-2 Additive Multiply Module 

5.18 8-by-8 Multiplication via 4-by-2 Multipliers 

Different Types of Full Adders 

Baugh- Wooley Array Multiplier Perfomzing 6-by-4 
Two’s Complement Multiplication 

Baugh- Wooley Multiplication for 10 x (-3) 

Distribution of the Negative Weight 

111 

114 

115 

115 

116 

117 

118 

118 

119 

120 

121 

121 

122 

123 

124 

5.19 

5.20 

5.21 

5.22 

6.1 

6.2 

6.3 

6.4 

Modular Structure Applying Additive Multiply Modules 125 

Combine Small AMMs into a Large One 127 

Summands of Preparation in Programmable AMM 128 

AMM 8 x 8 Applying AMM 4 x 4 129 

Pencil-and-Paper Division 136 

Long Division Form 137 

Example of Long Division 138 

Example of Restoring Procedure 139 



XViii LET OF FIGURES 

6.5 Hardware for Restoring Division 140 

6.6 Division Performed by Non-Restoring/Restoring 
Algorithms I43 

6.7 Flow Chart for Wilson-Ledley s Division Algorithm 148 

6.8 Numerical Example for Wilson-Ledley 's Division 
Algorithm 149 

6.9 Robertson Diagrams 151 

6. I 0  Stepwise Approximation of the Reciprocal of Divisor 160 

7.1 4-by-4 Restoring Array Divider I68 

7.2 5-by-5 Non-Restoring Array Divider 172 

7.3 Carry-Lookahead Array Divider for 4-bit Division 
(Carry-Lookahead Mechanism is Shown in the Second 
Row Only) I75 

7.4 Example of Carry-Lookahead Array Division I78 

7.5 Wires Can Take Up Signifcant Space 179 

8.1 Data Flow of Floating Point AdditionlSubtraction I85 

8.2 Data Flow of Floating Point Multiplication 187 

8.3 Data Flow of Floating Point Division I89 

8.4 Example of Rounding in Subtraction 194 

9.1 Flowchart of the Unsigned Number Division Algorithm 210 

9.2 Example of Signed Number Division 21 1 

9.3 Example of Conversion to Mixed-Radix Representation 21 4 

10.1 Linear Approximation of logs (1 + x) 224 

10.2 Mechanism for Multiplication (Division) in Binary 
Logarithms 225 

10.3 Logarithmic Curve and Four-Straight-Line 
Approximation 22 7 

10.4 Error of the Four-Straight-Line Approximation 228 

10.5 Correction Register 229 

10.6 Realization of the Correction 230 

11 .I Totally-Parallel Adder in Signed-Digit System 237 



1.1 

1.2 

1.3 

2.1 

2.2 

2.3 

2.4 

2.5 

3.1 

4.1 

5.1 

6.1 

8.1 

9.1 

List of Tables 

Numbers Represented by 4 bits in DifSerent Number 

Finding Signed Digits 14 

21 

30 

32 

33 

Systems 12 

Resewed Representation in IEEE Standard 

Delay Time and Area of Logic Gates 

Logic Function of a Half-Adder 

Logic Function of a Full-Adder 

Single-Bit Subtractor 35 

Negation in One’s Complement System 36 

Maximum Inputs of CSA Trees 71 

Recoding the Triplets 92 

Combination and Delay of k-input Wallace Tree 105 

2-Input 4-Output ROM to Store p 0 ( s ) .  158 

Round to Nearest Even I91 

201 

xix 

Parity Table for Modulus Set (3,5,7} 



xx LIST OF TABLES 

9.2 Mixed-Radix Digits 21 3 

10.1 Required $s. 229 

10.2 Mean-Square Error and CoefJicients for Logarithm 
Approximation 231 

10.3 Logarithm Equations 

11.1 Example for SD Multiplication 

11.2 Example for SD Division 

232 

241 

242 



About the Author 

Mi Lu received the M.S. and Ph.D. degrees in electrical engineering from Rice Uni- 
versity, Houston, in 1984 and 1987, respectively. She joined the Department of 
Electrical Engineering at Texas A&M University in 1987, where she is currently 
a professor. Lu’s research interests include computer arithmetic, parallel comput- 
ing, computer architectures, VLSI algorithms and computer networks, and she has 
published more than 100 technical papers in these areas. In addition, Professor Lu 
has served as associate editor of the Journal of Computing and Information and the 
Information Sciences Journal, and was conference chairman of the Fifth, Sixth and 
Seventh International Conferences on Computer Science and Informatics. She served 
on the panel of the National Science Foundation and the panel of the IEEE Workshop 
on Imprecise and Approximate Computation, as well as many conference program 
committees. Professor Lu is also the chairman of 60 research advisory committees 
for Ph.D. and Masters students, is a registered professional engineer, and is a senior 
member of the Institute of Electrical and Electronics Engineers. She is recognized 
in Who’s Who in the World (2001, 2003), Who‘s Who in America (2002-2003) and 
Who’s Who of American Women (2002-2003). 

xxi 



This Page Intentionally Left Blank



1 
Computer Number Systems 

As the arithmetic applications grow rapidly, it is important for computer engineers 
to be well informed of the essentials of computer number systems and arithmetic 
processes. 

With the remarkable progress in the very large scale integration (VLSI) circuit 
technology, many complex circuits unthinkable yesterday become components eas- 
ily realizable today. Algorithms that seemed impossible to implement now have 
attractive implementation possibilities for the future. This means that not only the 
conventional computer arithmetic methods, but also the unconventional ones are worth 
investigation in new designs. 

Numbers play an important role in computer systems. Numbers are the basis and 
object of computer operations. The main task of computers is computing, which deals 
with numbers all the time. 

Humans have been familiar with numbers for thousands of years, whereas repre- 
senting numbers in computer systems is a new issue. A computer can provide only 
finite digits for a number representation (fixed word length), though a real number 
may be composed of infinite digits. 

Because of the tradeoffs between word length and hardware size, and between 
propagation delay and accuracy, various types of number representation have been 
proposed and adopted. In this book, we introduce the Conventional Radix Number 
System and Signed-Digit Number System, both belonging to the Fixed-Point Num- 

1 



2 COMPUTER NUMBER SYSTEMS 

ber System, as well as the Floating-point Number System. Two additional number 
systems, the Residue Number System and Logarithmic Number System, will also be 
described. 

1.1 CONVENTIONAL RADIX NUMBER SYSTEM 

A conventional radix number N can be represented by a string of n digits such as 

( 4 - l d n - 2  * .  d1d0)r 

with r being the radix. di, 0 5 i 5 n - 1, is a digit and di E {0,1, . . .  , r  - l}. 
Note that the position of di matters, such as 27 is a different number from 72 .  Such 
a number system is referred to as a positional weighted system. Actually, 

N = dn-l . wn-1 + dn-2 . wn-2 + . * .  + do . W O  

i=O 

with wi being the weight of position i .  If r is fixed, as in thefixed-radix number 
system in our further discussion, wi = r'. Hence, 

(1.1) N = dn-l . rn-' + dn-2 . rn-' + . - .  + do . ro 
n-1 

= x d i . r i .  (1.2) 
i = O  

If r is not fixed, the number becomes a mixed-radix number. For example, to rep- 
resent time T we have T = [hour : minu te  : second] or T = [(h)r:!, (m),.~, (s),~] 
where r:! = 24; r1 = 60; ro = 60. 

To include the fraction into a fixed radix number N ,  let "." be a radix point with 
the integer part on the left of it and fraction part on the right of it. There are n digits 
in the integer and lc digits in the fraction, such as 

(dn-l . * .  d0.d-1 . . . d-k)r .  

Then 
n-1 

i = - k  

For example, in the decimal number system, r = 10, and di E: {0,1, 

N = (69.3)10 
= 

= 

= 69.3. 

dl . r l  +do . r o  + d - l .  r-' 
6 x 10' + 9 x 10' + 3 x 10-1 



CONVENTIONAL RADIX NUMBER SYSTEM 3 

In the octal number system, r = 8, and di E { O , l , .  . . ,7}. 

N = 47.28 
= 

= 4 ~ 8 ~ + 7 ~ 8 ’ + 2 ~ 8 - ~  

= 32 + 7+0.25 = 39.25. 

dl  r1 + do . T O  + d-1 * T-’  

In the hexadecimal number system, r=16. Capital letters A through F are used to 
represent the numbers 10 through 15. 

N = 2A.Cls 
= dl  . r1 + d o .  To + d-1 .  r-l  

= 

= 32 + 10 + 0.75 = 42.75. 

2 x 16l + 10 x 16’ + 12 x 16-’ 

In the binary number system, r=2, and di E (0,l). 

N = (10.1)~ 
= dl . r1 + do * To + d-1 . r - ’  

1 x 2 l  + o x  2O +1  x 2-1 = 

= 2 +0.5 = 2.5. 

In the string of weighted digits (dn-l . -do.d-l . . - d-k),, ,  dn-l is called the most 
significant digit (MSD), and d - k  the least significant digit (LSD). A binary digit is 
referred to as a bit, and the above two digits are MSB and LSB, respectively. In 
an electric circuit, there are two voltage levels, “high” and “low”, which can easily 
represent two digits, “1” and “0”, in the binary number system. Of course, more bits 
are required to represent a number in binary than in other radix systems. Remember, 
the number of bits required to encode a number X is [IogzXJ + 1. 

Here the downstile orfloor of x 1x1 , is the greatest integer that is not greater than 
x, where x can be an integer or real. (Likewise, the upstile or ceiling of x r.1, is the 
smallest integer that is not smaller than 3.) 

For example, to represent the decimal number 10, the number of bits required is 

Llog~lOJ + 1 = 13.3221 + 1 = 4. 



4 COMPUTER NUMBER SYSTEMS 

1.2 CONVERSION OF RADIX NUMBERS 

While computer systems recognize the binary, octal and hexadecimal numbers, hu- 
mans are most familiar with decimal number systems. Numbers can be converted 
from one radix system to another before, after or in the middle of arithmetic opera- 
tions. We present below the algorithms for such conversions. 

Given an integer, 

(dn-ldn-2 '..dldO)l.l 

with base r other than 10, such as r = 2 in binary, r = 8 in octal or T = 16 in 
hexadecimal, according to Equation (1.2), the following equation provides a method 
to convert it to the corresponding decimal number N1. 

N1 = d,-l .rn--l + d,-2 * T n - 2  + . . * + do TO. (1.4) 

That is, iV1 can be obtained by performing the multiplication of each given digit, the 
weight it carries and summing all the products. 

In the reversed way, given a decimal number we can obtain the corresponding 
digits in its binary, octal or hexadecimal representation by division, using r as the 
divisor equal to 2, 8 or 16, respectively. 

Dividing both sides of Equation (1.4) by r ,  we have on the right-hand side the 
remainder do and the quotient 

d,-l . rn-' + dn-2 . T ~ - ~  + . . . + d l ,  

since do < r and other terms on the right-hand side are integer times of r .  If we 
divide the above quotient again by T ,  we will obtain the remainder d l ,  and so forth. 
After performing the division n - 1 times, d,-l will become the quotient. If we 
divide it by r again, we will have quotient 0, since any di < r and the last remainder 
d,-l. The conversion procedure stops there. 

So, to convert a decimal integer to a radix r number one can let the decimal 
number be the initial quotient, repeatedly divide the quotient by r and record the 
remainder until the quotient is zero. Then write the digits in the radix r number 
from left to right using the sequence of remainders, last obtained first. Following is 
a numerical example to show how the decimal number 10 is converted to the binary 
number (1010)~. Here r = 2 is the number we should repeatedly divide by. We write 
the quotient below the given number 10 and the remainder on the right of the quotient. 



CONVERSION OF RADIX NUMBERS 5 

For a radix r fraction number 

with r # 10, the corresponding decimal number N2 can be obtained by 

On the other hand, a decimal fraction can be converted to a radix r number such 
as a binary, octal or hexadecimal number with r being 2, 8 or 16, respectively. 

Multiplying both sides of Equation (1 S )  by r ,  we have on the right-hand side 

where d-1 is the integer part and others add up to the fraction part. Multiply the 
fraction part by r again, we have 

where d-2 is the integer part. Repeating the multiplication process and retaining the 
digits in the integer part, we can obtain the radix r number corresponding to the given 
decimal fraction. If we stop when the fraction part becomes zero, then the conver- 
sion completes precisely. Note that the fraction part may never become zero. Then, 
depending on how many digits are allowed in the radix r number, one can decide the 
time to stop the multiplication procedure. Infinite digits may be required to represent 
the given decimal fraction precisely in the radix r number system. With a limited 
number of digits, the found radix r number is an approximation. 

So, to convert a decimal fraction to a radix r number, we can repeatedly multiply 
the fraction part by r and retain the integer digit in sequence until the fraction is zero, 
or the number of digits required are obtained. Then we write the digits following the 
radix point from left to right with the integer digits, the earliest obtained first. 

Following is an example to show how the decimal number 0.5625 is converted 
to the binary number (0.1001)2. Here, T = 2 is the number we should repeatedly 
multiply by. We put the integer digit in parentheses after each multiplication and it 
won't participate in the next multiplication except the fraction part. 

0 S625 
x 2  
(1). 1250 



6 COMPUTER NUMBER SYSTEMS 

x 2  
(0).2500 
x 2  
(0)SOOO 
x 2  
(l).OOOO . 

As to the conversion between binary numbers and octal numbers, or between bi- 
nary and hexadecimal numbers, the following has been observed. 

In octal numbers r = 8 and digit 0 5 di 5 7. In binary numbers r = 2 and 
8 = Z3. 3 bits in binary are necessary and sufficient to represent the value of one 
digit in octal. For example, (5)s = (101)2 and (7)8 = (111)2. Hence, to convert an 
octal number to a binary number, represent each digit in octal with 3 bits in binary, 
and concatenate all the bits together. For example, 

4 7 2 6 .  1s 
AAAA - 

= 100 111 010 110 . 0012. 

On the other hand, to convert a binary number to an octal, group each 3 bits to- 
gether starting from the radix point. For the integer part, group from right to left, and 
add O(s) on the left if the last group contains less than 3 bits. For the fraction part, 
group from left to right, and add O(s) on the right if the last group contains less than 
3 bits. Find the value for each group applying Equation (1.3). 

In hexadecimal numbers r = 16 and digit 0 5 di 5 15. In binary numbers T = 2 
and 16 = 24. 4 bits in binary are necessary and sufficient to represent the value of 
one digit in hexadecimal. For example, (9)16 = (1001)2, and (15)16 = (1111)2. 
Hence, to convert a hexadecimal number to a binary number, represent each digit in 
hexadecimal with 4 bits in binary and concatenate all the bits together. 

On the other hand, to convert a binary number to a hexadecimal, group each 4 bits 
together starting from the radix point. For the integer part, group from right to left 
and add O(s) on the left if the last group contains less than 4 bits. For the fraction 
part, group from left to right and add O(s) on the right if the last group contains less 
than 4 bits. Find the value for each group applying Equation (1 3). For example, 

10 101010011111 . 11002. 
vvvv * 
= 2  A 9 F ' C16 

In the decimal to octal (hexadecimal, respectively) conversion, instead of the di- 
viding by 8 (by 16) operation described earlier, one can first convert the decimal 
number to binary since dividing by 2 is easier, and then convert the binary number to 
octal (hexadecimal). 

On the other hand, in the octal (hexadecimal) to decimal conversion, instead of the 
multiplying by 8 (by 16) operation described earlier, one can first convert the octal 



REPRESENTATION OF SIGNED NUMBERS 7 

(hexadecimal) number to binary, and then convert the binary number to decimal. 

1.3 REPRESENTATION OF SIGNED NUMBERS 

All the numbers referred to so far are unsigned numbers. As negative numbers are 
often involved in scientific computing, the representation of signed numbers is dis- 
cussed below. 

Let a conventional radix number A be an n digit signed number with the MSD 
representing the sign. That is, 

A = (~ , -1~~-2 .* . a l ao ) , ,  

and the sign digit an-l is decided as follows: 

Note that for an integer number, the radix point is on the right of ao, that is, 

(an-1%-2 . - .  also.), 

and for a fraction number, the radix point is on the left of un-2, such as 

(an-1.un-2 * * .  a1ao). 

Particularly, when an-2 # 0, we say that A is a normalized fraction. 

In the discussion below, we assume that A is an integer for illustration. Let the 
magnitude of A,  

If anPl = 0, A is a positive number. Then, 

That is, number A has the same value as its true magnitude. 

n-2 n-2  

A = C airi = C miri .  
i=O i = O  



8 COMPUTER NUMBER SYSTEMS 

If a,-1 = T - 1, A is a negative number, then the representation of the number 
will depend on which format is used. 

There are three representations of a negative number: (1) sign-magnitude, (2) di- 
minished radix complement, and (3) radix complement. 

1.3.1 Sign-Magnitude 

Some examples of sign-magnitude representation are: 

T = 2, ( 1 ) l O l O  = -10102 = -1010, 

T = 10, (9)7602 = -760210. 

1.3.2 Diminished Radix Complement 

where 

- 
mi = (T - 1) - mi, 0 5 i 5 n - 2. 

The diminished radix complement representation is also known as (T - 1)'s comple- 
ment denoted as 

where n is the total number of digits including the sign digit. For example, given 
T = 2,z = 2" - 1 - IAl, and we have the 1's complement representation as follows: 

-10102 : ( 1 ) O l O l .  

Given T = 10, 2 = 10" - 1 - [ A ] ,  we have the following 9's complement 
representation. 

-760210 : (9)2397. 

1.3.3 Radix Complement 



REPRESENTATION OF SIGNED NUMBERS 9 

where 

- mi = (T - 1) - mi, 0 5 2 5 12 - 2 .  

The radix complement representation is also called T ' S  complement, denoted as 
- 
A = rn - IAl. 

For example, given T = 2 ,  
tation as follows: 

= 2 n  - IA(, and we have the 2's complement represen- 

-10102 : ( 1 ) O l l O .  

Given T = 10, 2 = lon - IAI, and we have the following 10's complement 
representation: 

-760210 : (9)2398. 

Next we discuss the representation of a fraction number. If 

B = (0.P-1P-2 . . . P - k ) r ,  

B is a positive number. It has the same value as the true magnitude of B. 

-1 

Compare with Equation (1.3) 

n--1 

n = 0 here. 

If 

B is a negative number. Then B has the following representations: 

(1) Sign-magnitude 

( r  - l).p-lp-z . . ' p - k  . 

(2) Diminished radix complement 



10 COMPUTER NUMBER SYSTEMS 

where 

p j = ( r - 1 ) - p j r  - l € < j < - l .  

B I r1 - r-‘ - IBI. 

The diminished radix complement representation of B can be found by 
- 

(3) Radix complement 

where 

p .  = ( r  - 1) - p j ,  - k  < j  5 -1. 
3 

The radix complement representation of B can be found by 
- 
B = r1 - 1BI. 

- In the previous discussion given a positive number, say IAl, the negative number 
A = - [ A ]  is represented in the complement form. 2 + IAl = rn - 1 in the ( r  - 1)’s 
complement system, or 2 + IAl = rn in the r’s complement system, thereby we 
say that 2 and IAl are the complement numbers of each other. As we know, 2 is 
the complement number of JAl. Given a positive number IAl, by performing the 
complement operation rn - 1 - IA/ or rn - JAl, we can find the complement number 
of IAl, that is, 2 = -1Al. On the other hand, IAl is the complement number of 2. 
Given a negative number x, we should be able to find the complement number of it, 
that is, (A l ,  by the similar complement operation. It can be seen that the complement 
operation is reciprocal. 

To verify this let the given negative number 2 be in the ( r  - 1)’s complement 
system. The representation of it should have already been in the complement form. 
That is, 

_ -  ( r  - 1 ) E n - 2 E n - 3 .  * a mlmo , 

where 

- 
mi = ( r  - 1) --mi, 0 5 i 5 n - 2 .  

Performing the ( r  - 1)’s complement operation, we have 
- - 

r n - -  1 - A  = ( ( ~ - 1 ) ( ~ - l ) ( ~ - l ) ~ ~ ~ ( ~ - l ) ) , - ( ( ~ - l ) ~ ~ - ~ E ~ - ~ ~ ~ ~ ~ ~ ) ~  
= (Omn-2mn-3 . . . mo), 
= [ A [ .  



SIGNED-DIGIT NUMBER SYSTEM 11 

Given n digits, the numbers that can be represented in different systems are as 
follows. In the sign-magnitude system, 00. .  . 00 represents 0. On the positive side, 
00. . .01 toO(r-1) . (r-l)(r-1)representpositivenumbers 1 tor"-l-linanas- 
cending order. On the negative side, ( r -  1 ) O .  . . O  represents -0. From ( r  - 1)O. . . 01 
to (r - l ) ( r  - 1 ) .  . . ( r  - l ) ( r  - l), negative numbers -1 to -(rn-l - 1) are rep- 
resented in a descending order. 

In the ( r  - 1)'s complement number system, 0 is represented by 00. . 0, and the 
( r  - 1)'s complement number of it is ( r  - 1)(r - 1). . . (r - 1) which means -0. 
The positive numbers represented are as same as in the sign-magnitude system. From 
( r  - 1)O. 1 . O O  to ( r  - l ) ( r  - 1 ) .  . . ( r  - l)(r - 2), negative numbers -(rn-' - 1) 
to -1 are represented in an ascending order. In both the sign-magnitude system and 
the ( r  - 1)'s complement system, the maximum number represented by n digits is 
rn-' - 1, and the smallest number represented is -(r"-l - 1). In both systems there 
are two representations for value 0, +O and -0. 

In the r's complement number system there is only one representation for 0, that 
is, 00. . - 0. The positive numbers represented are the same as in the other two sys- 
tems. The maximum positive number represented is still P-' - 1, denoted as 
O(r - l ) ( r  - 1) . . .  ( r  - 1). The r's complement number of it is ( r  - 1)0 . - .01 ,  
which does not represent the smallest number however. ( r  - 1 ) O .  . . O O  is the smallest 
number which is 1 less than ( r  - 1 ) O .  . a01. This number is not the complement of 
any positive number represented by the n digits, since the r's complement number of 
it is ( r  - 1 ) O .  . . 00 itself which is not a positive number. Hence, from (T - 1)O. . . 00 
to ( r  - l ) ( r  - 1 ) .  - .  ( r  - l ) ( r  - l), negativenumbers -(rn-') to -1 are represented 
in an ascending order. Compared with the other two number systems, one more neg- 
ative number can be represented. The maximum number represented is rn-' - 1 and 
the smallest number represented is -rfl-l. 

Given 4 digits in the binary system, Table 1.1 shows the numbers represented in 
the sign-magnitude, r's complement and ( r  - 1)'s complement systems. It can be 
observed that the column for 1's complement seems symmetric, but that for the 2's 
complement is not. 

1.4 SIGNED-DIGIT NUMBER SYSTEM 

The number systems introduced in the previous sections belong to the conventional 
radix number system, which is non-redundant, positional and weighted. Each digit 
di has only a positive value, and is less than radix r .  That is, - 



12 COMPUTER NUMBER SYSTEMS 

Binary bits Sign-magnitude 1’s complement 
0000 0 0 
000 1 1 1 

Table 1.1: Numbers Represented by 4 bits in Different Number Systems 

2’s complement 
0 
1 

If di 2 T is allowed, then a given number (. . . ai+lai . . . ) can always be rewritten 
as (. . . (ai+l + 1) (a{ - T )  . . . ), since 

1 . p + 1  = T . T i ,  

and the increased value caused by the (i + 1)th digit update is equal to the decreased 
value caused by the ith digit update. In this case, a number can be represented in two 
or more forms and the representation is redundant. Hence, defining 0 5 di 5 T - 1 
assured the non-redundant representation. 

Next, we introduce a new number system, the signed-digit number system, in 
which each digit can have either a positive or a negative value and the representation 
is redundant. 

- -  

Let a signed-digit number 

x = (xn-l . . .50.5-1 * ’ .  x - k ) r .  

Given radix T 2 2, each digit of a Signed-Digit Number, xi, has any value of 
{-a, .  . . - 1,0,1, + . .a}, that is, 

-ff 5 xi 5 a ,  

where 



SIGNED-DIGIT NUMBER SYSTEM 13 

Since the signed-digit representation of a number may not be unique, we choose 
a = 151 for the minimum redundancy. 

For example, if r = 4, a = LtJ = 2. Then digit xi E {-2, -l,O, 1,2}. 

To find the value of X ,  we have 

n-1 

x = C zi . r*,  zi E {--a) + + .  - I ,O, I, - .  .a>. 
i = - k  

For example, given r = 4, X S D  = (12.2)4, we have 

x = 
= 

(1 x 41) + (2 x 40) + (2 x 4-1) 
4 + (-2) + (0.5) 

= 2.5. 

In general, X can be either positive or negative without putting a "sign" in front of it. 

Givenr = 2, X S D  = (OOiT),, a = = 1, I C ~  E {-l,O,l}. 

x = i x 2l+ i x 2O = -3. 

Note that given X S D  = (0iOl)~ 

x = i x 2, + 1 x 2 = -3. 

Obviously, the signed-digit representation of a number of particular value may not 
be unique. For X = -3, n = 4, k = 0 and r = 2, we can have the signed-digit 
representation of -3 as 

or 

or 

x = (ooii), 

x = (oioi), 

x = (iioi), 



14 COMPUTER NUMBER SYSTEMS 

Table 1.2: Finding Signed Digits 

4 3 2 1 0  

0 3 4 2  
1 3 5 2  yi = bi + di 

or 

x = (oi i i ) ,  

or 

x = (iiii),. 

Among all the valid representations of a number, the minimul signed-digit repre- 
sentation is the one that has a minimal number of non-zero digits. 

For X = -3, ( O O i i ) ,  and ( O i O l ) ,  are the minimal signed-digit representations. 

WediscussbelowtheconversionofaconventionalradixnumberX = ( ~ ~ - 1 ,  .. . , x ~ , x o ) , .  
to the signed-digit number Y = ( ~ ~ - 1 , .  . . , yl, yo)r. Digit yi can be obtained by 

yi = di + bi, 

where the borrow digit bi+l can be decided as follows, 

and the interim difference digit di can be decided by 

di = xi - r * bi+l .  

Let X = (0648)lo. Given r = 10, n = 4 and (Y = 6, we have the digit set 
{6,.  . . , 1,0,1,  . . . ,6}. The corresponding bis, dis and resulted yis are listed in Ta- 
ble 1.2. 

- 

So, Y = (1452)1~. To check the result, we find the total weight carried by the posi- 
tive digits and subtract from it the total weight carried by the negative digits. That is, 
1050 - 0402 = 0648. It is also the method of converting a signed-digit number to a 
conventional radix number. 



FLOATING-POINT NUMBER REPRESENTATION 15 

1.5 FLOATING-POINT NUMBER REPRESENTATION 

All the number representations discussed so far have the radix point in a fixed position, 
thus they belong to the fixed-point number representation. In computer systems, the 
radix point is not actually shown, but its existence and position are mutually agreeable 
by humans and computers. 

The position of the radix point determines the number of digits in the integer 
part and that in the fraction part. Given the total number of digits fixed, the more 
digits in the integer the bigger number represented. On the other hand, the more 
digits in the fraction the better precision obtained. A new idea about floating-point 
number representation is hereby introduced in contrast to the fixed-point number 
representation. The general format of floating-point representation is 

A 
F = ( M ,  E )  = M x r E .  

Here, M represents the mantissa (or significand), and E the exponent. r is the radix 
as usual. 

Forexample, (-0.0025, +3) means-0.0025x103forr = lOandisequalto2.510. 

The mantissa M and exponent E are both signed numbers. M is usually a signed 
fraction and E a signed integer. Many ways exist to represent the sign, the fraction 
and the integer. All computers had different representations before the IEEE standard 
was published. Here we focus on the most common cases, and other representations 
are left for readers to analyze. 

1 S.1 Normalization 

Most often M is a normalized fraction in the sign-magnitude form. The true mag- 
nitude of it is [MI = (0.m-lm-2 . . . m - k ) .  that is, 1 < [MI < 2.) By normalized, 
we mean that the MSD of the mantissa equals non-zero, that is, m-1 # 0. If it is 
zero, the floating-point number is unnormalized. 

F = (-0.0025,+3) 

= (-0.25,fl)  

indicates how the normalization procedure can be conducted. Note that a normalized 
mantissa has its absolute value limited by 



16 COMPUTER NUMBER SYSTEMS 

where ; is the weight carried by the MSD in the mantissa. In other words, if ; 5 
< 1, the floating-point number is normalized. For the binary case with k bits in 

the mantissa. 

(1.6) 

The reason for normalization is to fully utilize the available bits which are limited 
in the computer system and are hence precious. Allowing too many leading 0s in 
the fraction may cause unnecessary truncation of the lower order bits in the mantissa. 
The bit positions occupied by those leading 0s are wasted, and the accuracy of the 
number representation is degraded. 

1 
2 -  
- < JM( 5 1 - 2 - k .  

The normalization can be easily done. Just perform left shift on the unnormalized 
mantissa until the leading 0s are all shifted out and the first nonzero digit reaches the 
most significant position. In the meantime, adjust the exponent accordingly. Left 
shifting the mantissa for k positions will enlarge the represented number r k  times, 
and deducting k from the exponent can reduce the number rk: times and keep the 
represented number unchanged. 

After discussing mantissa M in the floating-point number representation, let’s look 
at the exponent E .  Most commonly E is an r’s complement integer in the “biased” 
form, though some computer systems left it “unbiased”. 

Let E be a 2’s complement integer for illustration. The basic principles below are 
applicable to all the T > 2. 

1.5.2 Bias 

Suppose 

where q is the number of bits. Then, 

-2q-1 5 E 5 2q-1 - 1. 

For example, given q = 4, 

(1.7) 

-23 5 E 5 23 - 1. 

That is, 



FLOATING-POINT NUMBER REPRESENTATION 17 

and 

(1000)2 5 E 5 (0111)~. 

Choose a constant as a bias which is usually the magnitude of the lowest bound 
value of unbiased exponent, that is, 

bias = 2q-'. 

Add the bias to the unbiased exponent, we can have E b i a s e d  in the following range: 

0 5 E b i a s e d  5 2' - 1. 

Recall that Eunbiased  can be either negative or positive, while E b i a s e d  are all positive 
now. 

The relationship of Eunbiased  and E b i a s e d  can be expressed as follows: 

E u n b i a s e d  = E b i a s e d  - 24-l. 

The length of the mantissa determines the precision of the represented number. 
The range of the number that can be represented, however, is dependent on the length 
of the exponent. Given a fixed number of bits for the floating-point representation, 
there are tradeoffs in reserving the number of bits for the mantissa and the number of 
bits for the exponent. 

Consider the binary representation of a floating-point number with a total of 32 
bits in a computer system. The radix is in common, and is mutually understood 
by the human and the computer, hence it is not necessary to be represented. The 
sign takes one bit position, S ,  to represent it. If S = 0, the sign is positive. If 
S = 1, the sign is negative. The rest of the things we need to represent are the 
magnitude of the mantissa and the exponent only. Partition the 32 bits into two parts 
which are reserved for the mantissa and exponent respectively. As a good compro- 
mise of the precision and the range of the represented number, 23 bits (from bit 0 
to bit 22) are for the mantissa which is represented in the true magnitude form, and 
8 bits (from bit 23 to bit 30) are reserved for the exponent which is represented in 
the biased form. Bit 31 is reserved for sign. Figure l.l(a) shows the bit partition. 
Let number F = -0.6259765 x Y3. The floating-point representation of it is in- 
dicated in Figure l.l(b). Here, the binary sign-magnitude form for the mantissa is 
M = (-0.6259765) = (1 10100000010000000000000)2, the biased exponent is 
E b i a s e d  = -3 -k 28-1 = (11111101)2 -k (10000000)~ = (01111101)~. 

Given a number F represented in Figure l.l(a), one should realize that 

F = (-l)sIMI . rE-bias .  (1.8) 

Here, S has one of the two values, 0 or 1. If S = 0, (-1)' = +1, meaning that the 
sign of the represented number is positive. If S = 1, (-1)l = -1, meaning that the 



18 COMPUTER NUMBER SYSTEMS 

S I  E IMI 

Fig. 1.1: Floating-point Representation 

sign of the represented number is negative. E in the representation is a biased expo- 
nent (which is implied hereafter). In the original number, the true exponent should 
be E u n b i a s e d .  

The reason to utilize the biased exponent is that exponent comparison can be made 
easier this way. Remember that the comparison of two signed numbers are nontrivial, 
while the bigger negative number has a smaller magnitude compared with a negative 
number, and both are in the complement representation. 

We discuss below the range and precision of the floating-point number represen- 
tation. 

Let lMlmin be the smallest magnitude of the mantissa, and Emin the smallest 
true exponent. (IMlm,, and Emaz are the largest mentissa and true exponent, re- 
spectively). IMImin . T~~~~ is the smallest positive number that can be represented 
in the floating-point number system. (lMlma, . rEma= is the largest positive num- 
ber that can be represented). Recalling that $ 5 JMI < 1 (Equation (1.6)) and 
-2g-1 5 Eunb iased  5 2g-1 - 1 for q binary bits in the exponent (Equation (1.7)), 
we have the following range for F+, the positive number that can be represented in 
the floating-point number system. 

or 

where k is the number of bits in the mantissa. Symmetrically, if F -  denotes the 
negative number that can be represented in the floating-point number system, 

We can see that FLin and F;,, are not adjacent to 0. A special case is made to 
represent value 0 by letting ( M ,  E )  = (0,O). The sub-range of 17- and F+ are apart 



FLOATING-POINT NUMBER REPRESENTATlON 19 

- 2 3 1  o 2 3 1  - 1 

(a) Fixed-Point Numbers 

(b) Floating-point Numbers 

Fig. 1.2: Range of the Numbers 

I 
TE 

I I 
T E + 2  

Fig. 1.3: Precision of Floating-point Numbers 

from each other. The region in between, except 0, is referred to as underflow. 

Given a total of 32 binary bits partitioned as previously described, the range of the 
integer numbers in the fixed-point number representation is shown in Figure 1.2(a), 
and the range of the floating-point numbers represented is shown in Figure 1.2(b). 

With k bits in the mantissa, the weight carried by the LSB is 2 - k .  Every single 
change in the mantissa will be scaled by at least T - ~ ' - '  where the exponent is chosen 
to be Emin = - 2 4 - l .  So the least significant change in the mantissa followed by 
a minimum scaling results in the closest distance of two consecutive numbers in the 
floating-point number system, hence determines the precision of the number repre- 
sentation. Note that such precision can be only guaranteed when the exponent is kept 
as Emin. For a bigger exponent, the scale will be enlarged. For q = 8 and k = 23, 
Figure 1.3 drafts the distribution of consecutive numbers. 

Base T above is machine dependant. DECNAX and Cyber 70 use T = 2, while 
IBM/370 has T = 16. 



20 COMPUTER NUMBER SYSTEMS 

S e Iml 

Fig. 1.4: Double Precision Floating-point Representation 

The IEEE standard was formulated in 198 1 when all different representations ex- 
isted. The suggested standard unifies all the number system design issues and makes 
the transfer of data and programs between one computer and another easier. 

The IEEE single precision format is similar to the one presented in Figure 1.1 
except in the following protocols. The double precision representation is shown in 
Figure 1.4. What follows is based on the single precision model, while the same 
principles apply in the double precision case. 

Instead of f to 1, the range of the mantissa magnitude is 1 to 2 now. Equation 
(1.8) F = (-1)’IMI . T ~ - ~ ~ ~ ~  , with IMI = (0.m-lm-2 . . .  m.-k), is now 

F := ( - 1 ) S ( l . m _ l m _ 2 . . . m - k ) . ~  E-bias 

The same place used to store /MI is now storing f .  The mantissa represented is no 
longer a pure fraction equal to flMI. It has an integer part 1 now, and h1.f is the 
mantissa which can be viewed as a left shifted normalized fraction. Hence, 

F = (-1)’((1.f) . revbias. 

Only the fraction part of mantissa, f, is to be recorded, but not the integer 1. 1 is 
always there, as understood by humans and computers. s is the sign and e is the biased 
exponent as usual. Another difference here lies in the bias. Rather than bias = 24-1 
in the IEEE standard, 

bias = 2q-1 - 1 = 127 

for q = 8. 

While -128 5 eunbiased 5 127, 

Note that adding the bias to the lower bound of e u n b i a s e d  results in -1 which is 
not a legal biased number. Besides, e b i a s e d  = 0 is reserved for some special cases. 
e b i a s e d  = 255 is also used in special representations, as shown in Table 1.3. 

Here N A N  means Not A Number, and is used to represent the result of X/O, 
&i, or so forth, in case such operations are encountered. The representation of 
gradual underflow is specially designed in which f # 0 records the fraction part of a 
mantissa magnitude O.f ,  and e = 0 is defined as e u n b i a s e d  = - 126. That means if 



FLOATING- POINT NUMBER REPRESEN TATION 2 1 

Table 1.3: Reserved Representation in IEEE Standard 

e < emin = 1 (see Equation (1.9)), we enlarge it to the same as emin, and shift the 
mantissa right at the same time. Hence, the mantissa has the integer part equal to 0 
(referred to as "denormal"). Further, the most significant bit(s) in the fraction equals 
O(s). When more and more nonzero bits are shifted out and zero bits are shifted in, 
the represented number is flushed to 0. So, such representation as 

(-1y (0.f) . 2-I2'j 

is of "gradual underff ow". 

To find the range of the numbers representable by IEEE single precision form, we 
have 

recalling that 1 5 f < 2 or 1 5 f 5 2 - 2 - 2 3 ,  and 1 5 ebiased 5 254 by (1.9). On 
the other hand, 

+ = l . j m a x  . 2ema.-bias 
F m a x  

- - (2 - 2-23)  2254-127 

- - 2128 - 2104 

The number representations learned so far are as follows. 

Unsigned Number 
Integer 
Fraction 

Signed Number 
Sign-Magnitude 
( r  - 1)'s comp. 
r's comp. 

* Conventional Radix 
Floating-point 

Signed Digit 

Other than these number representations, two more number systems will be intro- 
duced below. 



22 COMPUTER NUMBER SYSTEMS 

1.6 RESIDUE NUMBER SYSTEM 

In the Residue Number System (RNS), a set of moduli are given which are indepen- 
dent of each other. An integer is represented by the residue of each modulus and the 
arithmetic operations are based on the residues individually. 

Let {ml, m2,. . . , m,} be a set of positive integers all greater than 1. mi is called 
a modulus, and the n-tuple set {ml , m2, . . , m,} is called a moduli set. Consider 
an integer number X .  For each modulus in {ml, m2,. . . , m,}, we have xi = X 
mod m, (denoted as /XIm,) .  Thus a number X in RNS can be represented as 

x = ( 2 1 , 2 2 , . . .  ,z,). 

For example, let the moduli set (ml, m2, m3) = (2, 3, 5 ) .  To represent the 
number 9 in RNS, we have x1 = lXlml = 1912 = 1, 5 2  = !XIm2 = 1913 = 0, and 
z3 = lXlm3 = (915 = 4. So, the RNS representation of 9 is (1,0,4). 

Given a specific moduli set {ml , m2, . . . , m,}. In order to avoid redundancy, the 
moduli of a Residue Number System must be pairwise relatively prime. That means 
they don’t have common divisor other than 1. 

Let M = ny==, mi. It has been proved that if 0 5 X < M ,  the number X is 
one-to-one corresponding to the RNS representation. 

The above definition can be extended to represent a negative integer in RNS. In 
addition to the mis defined as positive integers, xis are limited to positive integers as 
well. 

For example, given a negative number -9 and the same moduli set as above, 
we have z1 = I - 912 = 1, x2 = I - 913 = 0, and x3 = I - 915 = 1. So the 
RNS representation of -9 is ( l ,O ,  1). Note, as defined, moduli are positive num- 
bers. Thus in (-9) + 2, instead of having quotient -4 and remainder -1, we let 
the quotient be -4 - 1 = -5, hence the remainder becomes (-9) - ( - 5 )  x 2 = 1. 
Similarly in (-9) + 5, the quotient is -1 - 1 = -2, and the remainder should be 
(-9) - (-2) x 5 = 1. 

In general, if X is a signed integer to be represented, the range of X having 
the one-to-one corresponding RNS representation is as follows. If X is even, then 
- 2 -  < X 5 $ - 1 with 0 in between the positive and negative sub-ranges. If X is 
odd, then -9 _< X 5 v. 

The arithmetic operations based on RNS can be performed on different moduli 
independently to avoid the carry in addition, subtraction and multiplication, which 
is usually time consuming. However, the comparison and division are more compli- 
cated and the fraction number computation is immatured. Due to this, RNS is not yet 
popular in general-purpose computers, though it is very promising in special-purpose 



LOGARITHMIC NUMBER SYSTEM 23 

applications. 

1.7 LOGARITHMIC NUMBER SYSTEM 

Given an unsigned number X we take the logarithm of X based on r ,  and denote it 
as L,, that is, 

L,  = log,X. 

Assume that L,  is represented in binary with n bits in integer and k bits in fraction. 
Then we have X represented in the Logarithmic Number System (LNS) form by 

If X > 1, L,  is positive. If X < 1, L, is a negative number. Here the 2's com- 
plement representation, for example, applies to express L,, and L, denotes a number 
x = rL3. 

For example, given L, = (100.1)2 and r = 4, we have 

L, = -3.5 

representing 

Note that X takes at least 8 bits to represent in the conventional radix number system, 
but needs only 4 bits here in the LNS representation. 

Alternatively, a biased number can be applied to express L,, where 

L, = ~ , - ~ ~ , _ ~ ~ ~ ~ ~ ~ . X ~ ~ X - ~ ~ ~ ~ 2 - k + b Z a s .  

The bias is 2,-l, or 2"-l - 1, and in this case L, denotes a number X = rLx-bias  
in the LNS. 

We have discussed the signed number L,  representing an unsigned number X 
greater than or smaller than 1. Now if X is a signed number, then an additional digit 
is needed to represent the sign of X .  Let S, be the sign digit. S, = 0 if X > 0, and 
S, = 1 if X < 0. Also, L,  is log,IX( now. The logarithmic number representation 
for a signed number X is S,L,, and the value it represents is X = (-l)s=rLn (or 



24 COMPUTER NUMBER SYSTEMS 

X = ( - l )S=~L=-bias  for a biased L,). 

In discussing the range of X that can be represented in the LNS, 0 is excluded 
since ~~z # 0 for any L,. With n bits in the integer part and k bits in the fraction 
part of L,, we have the range of unbiased L,  as follows: 

So, the positive sub-range of X that can be represented is 

which is 

- 2" - 1 < x+ < r 2 " - ' - 2 - k  
- - T 

The negative sub-range of X that can be represented is 

which is 

Once numbers are represented by their exponents, the multiplication and division 
of them can be completed by addition and subtraction, respectively. The power and 
root of them can be obtained by multiplication and division, respectively. However, 
the addition and subtraction of the LNS numbers are not easy to perform. Also, the 
logarithm and antilogarithm needed for number conversion are very complex. So the 
LNS is not widely adopted in general purpose computations, but is very attractive in 
application oriented arithmetic design. 

REFERENCES 

1. A. Avizienis, "A Study of Redundant Number Representations for Parallel Digital 
Computers," Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 
Digital Computer Laboratory, May 1960. 

2. A. Avizienis, "Signed-Digit Number Representations for Fast Parallel Arith- 
metic,'' IRE Trans. Elec. Comp., Vol. EC-10 (Sept. 1961), pp. 389-400. 

3. A. Avizienis, "Digital Computer Arithmetic: A Unified Algorithmic Specifica- 
tion," Proc. Symposium on Computers and Automata, Polytechnic Institute of 
Brooklyn, 1971, pp. 509-525. 



REFERENCES 25 

4. J. J. F. Cavanagh, Digital Computer Arithmetic: Design and Implementation, 
McGraw-Hill, New York, 1984. 

5. J. F. Couleur, “BIDEC-a Binary-to-Decimal or Decimal-to-Binary Converter,” 
IRE Trans. Elec. Comp., vol. EC-7, no. 4, Dec. 1958, pp. 313-316. 

6. I. Flores, The Logic of Computer Arithmetic, Prentice-Hall, Englewood Cliffs, 
NJ, 1963. 

7. H. L. Garner, “Number Systems and Arithmetic,” in Advances in Computers, 
Vol. 6, F. L. Alt and M. Rubinoff, eds. Academic Press, New York, 1965. pp. 
131-194. 

8. H. L. Garner, “A Survey of Recent Contributions to Computer Arithmetic,” ZEEE 
Trans. Comp., Vol. C-25, No. 12, Dec. 1976, pp. 1277-1282. 

9. D. Goldberg, “Computer Arithmetic,” in Computer Architecture: A Quantitative 
Approach, D. A. Patterson, and J. L. Hennessy, Morgan Kaufmann, San Mateo, 
CA, 1996. 

10. J. B. Gosling, Design ofArithmetic Units for Digital Computers, Springer-Verlag, 
New York, 1980. 

1 1. K. Hwang, Computer Arithmetic: Principles, Architecture and Design, Wiley, 
New York, 1978. 

12. K. Hwang and T. P. Chang, “A New Interleaved RationaURadix Number Sys- 
tem for High-Precision Arithmetic Computations,” Proc. Fourth Symposium on 
Computer Arithmetic, Oct. 1978. 

13. I. Koren and Y. Maliniak, “On Classes of Positive, Negative and Imaginary Radix 
Number Systems,” ZEEE Trans. Comp., C-30 (May 1981) pp. 312-317. 

14. D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algo- 
rithms, Addison-Wesley, Reading, MA, 1969, Chap. 4. 

15. U. Kulisch, “Mathematical Foundations of Computer Arithmetic,” ZEEE Trans. 
Comp., Vol. C-26, No. 7, July 1977, pp. 610-620. 

16. W. C. Lanning, “Automata for Direct Radix Conversion,” in Computers and 
Electrical Engineering, vol. 1, Pergamon Press, Elmsford, NY, 1973, p. 281. 

17. J. D. Marasa, “Accumulated Arithmetic Error in Floating-Point and Alternative 
Logarithmic Number Systems,” M.S. Thesis, Seven Institute Technology Wash- 
ington University, St. Louis, MO, June 1970. 

18. D. W. Matula, “Number Theoretic Foundations for Finite-Precision Arithmetic,” 
in Applications of Numbers Theory to Numerical Analysis, W. Zaremba ed. Aca- 
demic Press, New York, 1972, pp. 479-489. 



26 COMPUTER NUMBER SYSTEMS 

19. D. W. Matula, “Fixed-Slash and Floating-Slash Rational Arithmetic,”Proc. Third 
Symposium on Comp. Arith., IEEE Catalog No. 75 CH1017-3C, Nov. 1975, pp. 
90-9 1. 

20. D. W. Matula, “Radix Arithmetic: Digital Algorithms for Computer Architec- 
ture,” in Applied Computation Theory: Analysis, Design, Modeling, R.T. Yeh 
ed., Prentice-Hall, Englewood Cliffs, NJ, 1976, Chap. 9. 

21. J.-D. Nicoud, “Iterative Arrays for Radix Conversions,” IEEE Trans. Comp., vol. 
C-20, No. 12, Dec. 1971, pp. 1479-1489. 

22. B. Parhami, “Generalized Signed-Digit Number Systems: A Unifying Frame- 
work for Redundant Number Representations,” IEEE Trans. Comp., vol. 39, 
Jan. 1990, pp. 89-98. 

23. J. E. Robertson, “Redundant Number Systems for Digital Computer Arithmetic,” 
Notes for the Univ. of Michigan Engineering Summer Conference, in “Topics in 
the Design of Digital Computing Machines,” Ann Arbor, MI, July 6-10, 1959. 

24. N. R. Scott, Computer Number Systems and Arithmetic, Prentice-Hall, Engle- 
wood Cliffs, NJ, 1985. 

25. 0. Spaniol, Computer Arithmetic: Logic and Design, Wiley, New York, 198 1. 

26. E. E. Swartzlander, Jr., ed., ComputerArithmetic, Vol. 1, IEEE Computer Society 
Press, Los Alamitos, CA, 1990. 

27. E. E. Swartzlander, Jr., ed., ComputerArithmetic, Vol. 2, IEEE Computer Society 
Press, Los Alamitos, CA, 1990. 

28. N. S. Szabo and R. I. Tanaka, Residue Arithmeticandlts Applications to Computer 
Technology, McGraw-Hill, NY, 1967. 

29. C. Tung, “Arithmetic,” in Computer Science, A. F. Cardenas et al., ed., Wiley- 
Interscience, New York, 1972, Chap. 3. 

30. S. Waser and M. J. Flynn, “Introduction to Arithmetic for Digital System De- 
signers,” Holt, Rinehart, Winston, New York, 1982. 

PROBLEMS 

1.1 
(a) It is an octal number? 
(b) It is a hexadecimal number? 

Given X = 237.4, what decimal value does it represent if 

1.2 
a decimal number Y = 19.125, 

Let n be the number of integer digits and k the number of fraction digits. Given 



PROBLEMS 27 

(a) Represent Y in binary with (n, k) = (5,3); 
(b) Represent Y in octal with (n, I c )  = (2 , l ) .  

1.3 
(b) Convert 2A3C.1816 to an octal number. 

(a) Convert (1101111.00101)2 to a hexadecimal number. 

1.4 
(a) The sum of X and the 1’s complement of X is 0; 
(b) The sum of X and the 2’s complement of X is -0. 
From the above we can see that X + (-X) = 0 where -X can be represented in 1’s 
or 2’s complement form. 

1.5 Fill the following table if radix T = 2, the number of bits n = 6 (including the 
sign bit), and the absolute magnitude IAl = 1110. 

Let X = ( ~ ~ - 1  . . 2 1 2 0 ) 2 .  Verify 

Sign-magnitude form l------ 
complement form 

1.6 
of 
(a) -5728; 
(b) -0.4568. 

Find the diminished radix complement number and radix complement number 

1.7 
(a) Unsigned octal number system? 
(b) Unsigned hexadecimal number system? 
(c) Signed octal number system with diminished radix complement representation? 
(d) Signed octal number system with radix complement representation? 

Given a digit sequence 7052, what value does it represent if it is in: 

1.8 
(b) Convert -7258 to a signed-digit number with n = 4 and a = 5. 

1.9 
point numbers (not necessarily biased). 

(a) Convert 7258 to a signed-digit number with n = 4 and a = 5. 

Given the following bit format, represent 0.375 and - 104 as normalized floating- 

1.10 
(a) if m is a binary sign-magnitude fraction and e is an unbiased 2’s complement 

Given a floating-point number F = (m, e) = (0011, OlOl), 



28 COMPUTER NUMBER SYSTEMS 

1 1 8 bits 
S e 

I m I e l  

23 bits 
f 

exponent, F = _____________; 
(b) as in (a) but e is a biased exponent with a bias constant 2 q - I  where q is the number 
of bits of the exponent, F = 

1.11 
point number representation, that is, (a)Represent (-0.625)10 in the MIPS system. 

MIPS computer system adopts the single precision IEEE format in its floating 

(b) Given the following number in the MIPS floating point form, what does it repre- 
sent? 

1 I 8 bits I 23 bits 
0 I 10000100 I 00110000000000000000000 

1.12 (a) With the IEEE single precision floating point form, what are the decimal 
values that can be represented? 
(b) With the IEEE double precision floating point form, what are the binary values 
that can be represented? 



2 
Addition and Subtraction 

Addition and subtraction are the basic operations in computer arithmetic. Multipli- 
cation and division are based on addition and subtraction. Fast adders (subtractors) 
are desirable not only for speeding up fundamental operations like addition and sub- 
traction in arithmetic operation, but also for accelerating the multiplication and di- 
vision which involve massive addition and subtraction. We discuss in this chapter 
the variation of two-operand adders with interest in their time complexity and area 
complexity. Ripple carry adders, conditional-sum adders, carry-completion adders 
and carry-lookahead adders will be introduced. 

2.1 SINGLE-BIT ADDERS 

2.1.1 Logical Devices 

The Arithmetic Logic Unit (ALU) design aims to minimize time complexity for 
achieving high speed, as well as area complexity for cost reduction. In this book we 
limit our discussion to the logic level design. With a wide variety of logic families 
rapidly advancing, the electronic implementation is left for further study with trade 
offs in the density and cost and the speed and power dissipation. 

Denote the time complexity as AT, and the area complexity as A T .  We list in 
Table 2.1 the AT and AT for various logic gates which serve as fundamental units 
in ALU design. We limit the logic gates to n-input gates where 1 5 n 5 10. The 
measure of AT is lA, which is the propagation delay of a NAND gate or a NOR 

29 



30 ADDITION AND SUBTRACTION 

NAND 

NOR 

NOT 

AND 

OR 

XOR 

XNOR 

A01 

Table 2.1: Delay Time and Area of Logic Gates 

lAg l A g  

lA, IA, 

l A g  l A g  

2Ag 2Ag 

2Ag 2Ag 

2A, 3Ag 

2Ag 3Ag 

lA,  2Ag 

Fig. 2.1: A01 Function 

gate. The measure of AT is A, which is the area required by one NAND gate or NOR 
gate. 

An AND-OR-Invert (AOI) function can be realized by hard-wired circuit wiring the 
high-impedance outputs of two NAND gates together (see Figure 2.l(a)). Actually, 
F = A B  . CD = A B  + CD here. For a limited RC (resistance and capacitance ) 
load, the AT is 1 A,, and the AT is 2A, for two inputs. 

An 71-to-2~ Decoder has n input lines called address lines and 2" output lines. 
2" AND gates are available, each providing an output line and each having n inputs 
connected to the variables on the address lines or the complement of them. According 
to the combination of the logic values of the address lines, one and only one of the 
2" output lines should go "high." 

Figure 2.2(a) is a schematic of a 2-to-4 decoder with an enable line. The delay 
time of the Decoder is 3Ag and the area complexity is long. 

A multiplexer (MUX) is a many-to-one function unit which has many inputs and 
one output. Precisely, a 2"-to-l multiplexer has n control input lines and 2" data 
input lines. It is based on an n-to-2" decoder. Each of the 2" AND gates is given 
a data input. The address lines of the decoder are used to select the gate. Only the 
selected gate can route the data to the output. 

Figure 2.2(b) shows a 4-to- 1 MUX based on a 2-to-4 decoder to select one data 
out of four and transmit it to the output. 

_ _ -  



SINGLE-BITADDERS 31 

a, Enable 

(a) 2-to-4 decoder 

a, a, Enable 

. 

(b) 4-to- 1 Multiplexer 

Fig. 2.2: Decoder and Multiplexer 



32 ADDlTlON AND SUBTRACTlON 

0 1  
1 0  
1 1  

t- 
Ci+l 

0 1 
0 1 
1 0  

Table 2.2: Logic Function of a Half-Adder 

1 
Fig. 2.3: Single-Bit Half-Adder 

The hardware can be implemented by a wired A01 and an invertor. Hence, the 

Quad 2-to-1 MUXs, dual 4-to-1 MUXs, dual 8-to-1 MUXs and single 16-to-1 
delay time of the 4-to-1 MUX is 3 0 g ,  and the area complexity is 7 A g .  

MUX are available on IC (Integrated Circuit) chips currently. 

2.1.2 Single-Bit Half-Adder and Full-Adders 

A single-bit half-adder(HA) can perform the addition of two bits. Let the two input 
bits be ai and hi. The output consists of two bits, a sum bit si and a carry-out bit ci+l. 

The logic function of the HA to be performed is listed in Table 2.2. 
We can see that the logic expression of the sum bit is 

si = ai @ h i ,  

and that of the carry-out bit is 

ci+l = aibi. 

Figure 2.3 shows the logic symbol and schematic of a half-adder. 
Just like cz+1 which is generated in bit position i and carried to bit position i + 1, 

each bit position i will receive a carry generated in the adjacent lower order bit 
position. We refer to it as ci ,  the carry-in of bit position i. So, besides the two input 
bits ai and b,, a third input bit ci should also be considered. An adder which can add 
three bits together is called a full-adder(FA). The logic function of a single-bit FA is 
listed in Table 2.3. 



SINGLE-BIT ADDERS 33 

Table 2.3: Logic Function of a Full-Adder 

ai bi ci 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

C i + l  Si 

0 0  
0 1  
0 1  
1 0  
0 1  
1 0  
1 0  
1 1  

The logic expression of the sum bit can be presented as 

and the carry-out bit can be found by 

ci+l = aibi + bici + aici. (2.2) 

Actually, the outputs can be viewed as a two bit number which counts the number 
of 1s in the input. If only a single 1 exists, ci+lsi+l = 01. If there are two Is, 
ci+lsi+l = 10. If three 1s exist, ci+lsi+l = 11. 

Figure 2.4 shows the logic symbol and schematic of a single-bit full-adder (FA) 
with three inputs and two outputs. 

ci+l = aibi + (ai @ bi)ci 

aibi + iiibici + aibici 

aibi + bici + aici, 

- 
= 
= 

the same ciS1 as in Equation (2.2) yields after absorbing iii in the second term and bi 
in the third term. 

After expending Equation (2.1), we have 

si = ABC + ABC + ABC + ABC". 

In minterm expression si = { 1) + (7) + (2) + (4). That is, 

si = (0) + 131 + ( 5 )  + ( 6 )  
= ABc + ABC + ABC + A B c ,  

which can be implemented by the A01 function, and so does ci+l. For such imple- 
mentation the delay time is 

AT = 2A,, 



34 ADDITION AND SUBTRACTION 

1 
Si 

(a) Single-Bit Full-Adder 

Si 

(b) A01 Implemented Full-Adder 

Fig. 2.4: Design of Full-Adder 



NEGATION 35 

Table 2.4: Single-Bit Subtractor 

ai bi li 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

li+l 4 
0 0  
1 1  
1 1  
1 0  
0 1  
0 0  
0 0  
1 1  

and the area complexity is 

AT = lOA,. 

When a single-bit subtraction is performed, say ai - bi, the deference is represented 
by bit di. Besides, a borrow bit is involved. Let a borrow request made to bit position 
i be a borrow-in signal denoted as li implying a loan from position i. The borrow-out 
bit li+l is a borrow request made to bit position i + 1, or a loan from bit position 
i + 1. The truth table of the input and output is listed in Table 2.4. 

The logic expression of the difference bit in terms of the three input bits is similar 
to that of the sum bit in a full-adder. Namely, 

di = ai @ bi @ li .  

The borrow-out bit can be found by 

li+l = Cibi + bili + Cili. (2.3) 

Figure 2.5 shows a a single-bit subtractor with three inputs and two outputs. li+l 
in its sum-of-product realization is 

lj+l = ciibi + ai @ bi li (2.4) 
= ciibi + aibili + tii6ili (2.5) 

= Qbi + bili + Cili, (2.6) 

the same as in Equation (2.3), after absorbing ai in the second term and 6i in the third 
term. 

2.2 NEGATION 

Given a number A,  the negation operation finds -A,  that is the complement number 
of A.  If A is a positive number, after negation we have a negative number. Conversely, 
if A is a negative number then negation will result in a positive number. 



36 ADD/T/ON AND SUBTRACTlON 

P 
Fig. 2.5: Single-Bit Subtrator 

Table 2.5: Negation in One’s Complement System fl‘ 
1 1 0  

We introduce in this section the negation operation in 1’s and 2’s complement 
systems. 

2.2.1 

In the 1’s complement system we perform a bit-wise NOT function to obtain a negative 
number of a given number, that is, change 0 to 1 and change 1 to 0. The circuit shown 
in Figure 2.6 conducts the negation of an n-bit number in the 1’s complement system. 
In (a), n NOT gates are provided for the simplest negation operation. However, very 
often the negation function is enabled on-line. For example, when A + B is to be 
calculated, no negation is necessary. While in the A - B calculation, B is to be 
negated first and then A + ( -B)  can be performed. 

With a control line, the circuit in (b) can either send the n-bit input number to the 
output without change, or find the 1’s complement of the input number before sending 
it out. Note that when one input of the exclusive OR gate is set to 1, the other input 
will be negated before output. The circuit in Figure 2.6(a) and (b) are also referred 
to as 1’s complementer. 

The truth table for the enable signal E ,  the input ai and the output u: is given as 
follows. 

Negation in One’s Complement System 



NEGATlON 37 

(a) Realizing Negation by NOT Gates 

...... 
an-1 

...... 
a'n-t a'"-2 a', 

(b) Negation by XOR Gates 

Fig. 2.6: Negation in One's Complement System 



38 ADDITION AND SUBTRACTION 

2.2.2 Negation in Two’s Complement System 

To negate a number in the 2’s complement system for a given number 

a,-1 . . . ai + . . a0 7 

there are two methods to find the 2’s complement number of it. The first method in 
pencil-and-paper description is as follows: 

That means to negate an n-bit number in the 2’s complement system, one can first 
find the 1’s complement number of it and then increase by 1 using an n-bit half- 
adder. Note that there is no carry-in but a “1” to add on for the LSB position, while 
nothing to add on but a carry-in for the rest of the bit positions. The logic circuit is 
shown in Figure 2.7(a). 

The delay time of such an n-bit 2’s complementer can be found as 

AT = A l n v e r t e r  + ~ ( A A N D )  
= (1 +2n)Ag. 

Here the delay time of the XOR in the half-adder is overlapped with the delay of the 
AND gate. 

The area complexity of this complementer is calculated as follows: 

AT = n ( A 1 n v e r t e r  + A A N D  + A X O R )  
= n ( l + 2 + 3 ) A g  

= 6nAg.  

In the pencil-and-paper manner, the second method to negate a number in the 2’s 
complement system is as follows: Change 0 to 1 and change 1 to 0 from left to right 
until the right most 1, and then copy that 1 as well as 0s on the right of it if there are 
any. 

Suppose the given number is 101 10100, we have 

1 0 1 1 0 1 0 0  

I I I I I  
O l O O l ~ Q Q  

In the above example from left-to-right sub-string 10110 is changed to 01001, and 
the underlined bit string 100 is copied. Actually this method is consistent with the 



NEGATION 39 

E 

c,=o 

Fig. 2.7: Negation in Two's Complement System 



40 ADDlTlON AND SUBTRACTlON 

first method. The rightmost 1 (followed by consecutive 0s) becomes the “rightmost 
0“ (followed by consecutive 1s) after the 1’s complement operation. Then in the 
increment by 1 operation those consecutive 1s can propagate the carry bit by bit, and 
only that “rightmost 0” can stop the carry propagation. (01 . . 1) + 1 = 10 . . . 0, the 
same sub-string as given and that is why we copy this part without even performing 
the increment operation. 

Look at the circuit in Figure 2.7(b). When E is set to 1, the chain of OR gates will 
control which sub-string of input bits is to be altered and which remains the same. co 
is initialized as 0. If a0 is 0, the OR gate will propagate a 0 to the left and so is al. 
Wherever the rightmost 1 is hit, a “1” will be propagated to the left. On the right of 
that “1” where the chain of OR gates outputs a 0, output bit at will be the same as 
input bit ai. On the left of that “1“ where the chain of OR gates outputs a “l“, output 
bit a; will be a flipped ai due to the function of the XOR gate. The above happens 
when E is set to 1 and the negation in 2’s complement system is expected. If E is 
set to 0, then a; is always the same as ai and the input number remains unchanged. 
To compare with the 2’s complementer built by the first method, we calculate below 
the time and area complexity of the 2’s complementer built by the second method 
without the enable line. 

AT = ( n - l ) A o R + A x o R  
= 

= 2nAg.  
[(n - 1) x 2 + 2]Ag 

AT = ~ ( A o R  + AXOR) - AOR 
= [n(2 + 3) - 2]A, 

= ( 5 n -  2)A,. 

2.3 SUBTRACTION THROUGH ADDITION 

Let A = (un-l 1 .  + also) and B = (bnPl . . . blbo) be two signed numbers. S = 
A + B is also a signed number represented as (sn- l  . . s1so). A is referred to as 
augend and B addend, or both A and B are called summand. S is called the sum of 
A and B. In the 1’s or 2’s complement addition, the two input numbers, A and B,  
are in the 1’s or 2’s complement representation, and the result S is also represented 
in the complement form. 

In subtraction D = A - B,  A is referred to as minuend and B subtrahend. D is 
the difference of A and B. Subtraction A - B is performed by A + (- B )  = A + B 
where B is the complement number of B. 

We have designed a single-bit full-adder which can be applied to perform the two- 
operand addition. We are not expected to design a separate, totally new hardware 
unit to perform the subtraction since in computer arithmetic subtraction is completed 



SUBJRACJlON THROUGH ADDlJlON 41 

9 

6 

Fig. 2.8: Subtraction through Addition 

through addition. The same hardware unit designed for addition can be applied to 
perform the subtraction. 

Consider moving the pointer of a clock. Clockwise move is analogous to addition 
and counter-clockwise move is analogous to subtraction. For example, suppose a 
pointer is pointing to 12 o’clock at the beginning. Moving it counter-clockwise for 3 
hours will result in 9, that is, 12 - 3 = 9. On the other hand, moving it clockwise for 
9 hours will make it stop at the same place because (12+9) mod 12 =9. (See Figure 
2.8.) Here 3 and 9 are the complement numbers of each other, the 12’s complement 
numbers. So, 12 - 3 can be completed by 12 + (-3), while (-3) is represented in 
the complement form, that is, 9. 

The same idea applies in computer systems except that the 1’s or 2’s complement 
system is adopted rather than the 12’s complement system. Given a number B,  the 
negation function and the hardware designed for it can find ( -B)  as described in 
Section 2.2. 

By combining an adder and a complementor, a unit capable of both addition and 
subtraction can be designed. In Figure 2.9 a single-bit full-adder has its output 

which is actually the same logic shown in Equation (2.2). Where bi used to be at 
the input of the full-adder, bi @ M is utilized now. Here M is the control signal. 
When M = 0, bi is input to the adder unchanged and ai + bi is performed. When 
M = 1, input to the adder is 6i which is the 1’s complement number of bi, and 
ai + (- bi) = ai - bi is performed. Hence, Equations (2.1) and (2.7) become 

~i = ai @ (bi @ M )  @ ci 



42 ADDITION AND SUBTRACTION 

I 
Si 

Fig. 2.9: One-Bit AdderKubtractor 

and 

respectively. 
To add two n-bit numbers or subtract one from the other, n such units as in Figure 

2.9 can be connected in cascade to form an n-bit adderhbtractor. Note that M is the 
same signal to all the units. Depending on whether M equals to 0 or 1, the negation 
function is disabled or enabled and an addition or subtraction is to be performed. The 
mode control is hence 

0 Addition 
M = (  1 Subtraction. 



OVERFLOW 43 

2.4 OVERFLOW 

SupposeA = ( ~ , - ~ ~ . . a l a o ) ,  B = (b,-l. . .blbo) a n d s u m s  = ( sn-1 . . . s1s0)  
are the signed numbers and S = A + B. The most significant bits (MSB) a,-l, b,-1 

and sn-l are the sign bits. By S = A + B,  we mean 

In this section, the subscript in the notation for carry is changed as follows. c,-1 
stands for the carry-in of bit position a ,  and ci is the carry-out accordingly. 

In what follows, we discuss "overflow" based on the 2's complement system. The 
scenario holds for other systems too. Depending on the sign of augend and addend, 
there are three possible cases in the addition. 

(1) When both A and B are positive, a,-l = b,-l = 0. There should exist 
s,-1 = 0 + 0 = 0 meaning the result is a positive number. If sn-l = 1, over- 
flow occurs. Overflow causes errors in the arithmetic operation - adding two positive 
numbers cannot result in a negative number. Such error is due to the carry-in bit 
cn-2 = 1 generated by the lower order bits. Since the number of the bits left are not 
sufficient to represent the result of addition, a carry-out entered the sign bit (MSB) 
position and caused the sign of the result incorrect. That is, 

if IAl+ (231 < 2"-l, 

if IAl + JBI 2 2"-l, 

no overflow. 

overflow occurs. 

(2) When both A and B are negative, 
be a negative number with s , -~  = 1. s , -~ will be 1 only if cn-2 = 1, that is, 

= b,-l = 1. The correct result should 

(2" - IAI) + (2" - IBI) (mod 2") 2 2"-', 

2 1-41 + PI. 2n - 2"-1 

Recall that the negative numbers A and B are represented in 2's complement form. 
Hence, 

if IAl + IB( 5 2n-1, 

if IAl + IBI > 2,-', 

no overflow. 

overflow occurs. 

(3) We discuss below the case that A is positive and B negative. The case that B 
is positive and A negative can be viewed in a symmetric way. Since A = IAl and 
B = 2" - IBI, A + B = IAl+ (2" - IBI) = 2" + 1Al - ( B (  (mod 2"). We have 
the following: 



44 ADDITION AND SUBTRACTION 

The result is correct and no overflow occurs. 

after the mod function. No overflow occurs and the correct result is obtained. 
To further explore the conditions under which overflow occurs, we investigate 

the carry-in, c,-z, and carry-out, cn-l, on the MSB position. For case (1) (both A 
and B are positive) there always exists c,-~ = 0. To result in a positive sum with 
snP1 = 0, c,-~ = 0 is expected. For case (2) (both A and B negative) there always 
exists cnw1 = 1. To result in a negative sum with s,-1 = 1, C,-Z = 1 is expected. 
For case (3) ( A  and B have different signs) overflow will not occur. Notice that in 
this case c , - ~  = 0 if c , - ~  = 0, and c,-~ = 1 if c , - ~  = 1. Hence, a very easy 
way to detect overflow is to examine whether c,-~ is the same as c,-z. If yes, no 
overflow. Otherwise, overflow occurs. Hence, 

Overflow = c,-~ CB c,-~. 

2.5 RIPPLE CARRY ADDERS 

2.5.1 Two’s Complement Addition 

Composed of n negation units and n one-bit full adders (FA), a 2’s complement 
adderhbtractor is depicted in Figure 2.10. An overflow detection scheme is also 
included. Either addition or subtraction can be performed depending on the setting 
of the mode control M .  When M = 0, number A and B will be input to the full- 
adder (FA) and the addition of A and B will be performed. When M = 1, the 2’s 
complement number of B will be input to the full-adder and a subtraction will be 
performed. 

Note that the negation unit previously described can only flip the input bit and 
perform the 1’s complement function. For the 2’s complement operation, an extra 
increment is needed. One can see that in the figure, the carry-in of the LSB position 
co is connected to mode M .  When a subtraction is performed co = M = 1, and the 
“plus 1” operation will be carried out together with the addition of the two operands. 
So added to A are the 1’s complement number of B and a “ 1 ” .  That means the 2’s 
complement of B is added to A,  which is essentially an A - B operation. 

From Figure 2.10 we can see that the carry is rippled to the left across the FAs. 
The carry-in to bit position i cannot be ready unless the addition in bit position i - 1 
is completed. This kind of adder is known as a ripple carry adder. 

The time complexity of the 2’s complement adder is 



RIPPLE CARRY ADDERS 45 

Fig. 2.10: Two’s Complement AdditiodSubtraction 



46 ADDITION AND SUBTRACTION 

The area complexity of the 2’s complement adder is 

AT =  AXOR OR + AFA) + AXOR 
= 

= (13n+3)Ag .  

(n(3 + 10) + 3)A, 

2.5.2 One’s Complement Addition 

Given two 1’s complement numbers, say A and B, we discuss in this section the 
design of an adder which can add the two numbers and generate a result, say S, 
represented in the 1’s complement form. Special attention will be paid to a scheme 
called “end-around carry”. 

The end-around carry scheme routes the carry-out signal of the MSB position c, 
to the LSB position where it is used as a carry-in signal co. With the end-around 
carry, a 2’s complement adder described previously can perform a 1’s complement 
addition. We discuss below case by case, the correctness of including such a scheme 
in a 1’s complement adder. 

(i) When both A and B are positive, the 1’s complement addition can be performed 
in the same way as the 2’s complement addition. The carry-out signal c, = 0 and 
routing it to LSB will not affect the result of addition. 
(ii) When both A and B are negative c, = 1. Comparing the result generated by a 
circuit without end-around carry to the correct result expected, we will see whether 
this c, should be routed to LSB. 

Without the end-around carry the circuit performs 

2n - 1 - IAl 

+I  2, - 1 - IBI 

(after mod) 2, - 1 - (IAI + IBI) - 1. 

The expected correct result should be 2” - 1 - ([A1 + IBI). A “1” should be added 
to the result generated by the circuit without end-around carry, and c, can provide 
such a “1“. 
(iii) When A is negative and B is positive (the case of A being positive and B negative 
can be analyzed in a symmetric way) two possible situations may exist. 
a) 1-41 > IBI. 

Without the end-around carry, the circuit performs 

2, - 1 -/A1 + IBI 

= 2 , - 1  -(I4 - PI) 
< 2 , -  1. 

The expected correct result is the same as above. No end-around carry should be 
asserted. Since the result generated by the circuit is < 2, - 1 and c, = 0, routing c, 
to LSB will not affect the result of addition. 



RIPPLE CARRY ADDERS 47 

Sign Bits 
n 

atb if M=O 

a-b if M= 1 

4 a m . . . .  

4 1- I . . . . .  

Mode 
Control 

End-a-atmd 

SO 

c 
Overflow 

Fig. 2.11: One’s Complement Additiodsubtraction 

b) IAl < IBI. 
Without the end-around carry the circuit performs 

2, - 1 - ( A [  + [B(  
1 2 , -  1 - [A t )  
> 2, - 1. 

That is, c, = 1. After the mod 2, function, the result generated by the circuit is 
IB( - [A1 - 1 while the expected correct result is (BI - [ A ( .  A “1” should be added 
to obtain the correct result, and c, = 1 can provide such a “1”. 

So connecting the carry-out of MSB position to the carry-in of LSB position 
works correctly for all the cases. Whenever an add “1” operation is needed in the 
LSB position, the carry-out of MSB is equal to 1. Otherwise, it is equal to 0. 

Figure 2.11 shows the schematic circuit of a 1’s complement adderhbtractor. 
Comparing the area complexity of the 1’s complement adderhbtractor with that of 
the 2’s complement adder/subtractor, one can find that they are almost the same. As 



48 ADDITION AND SUBTRACTION 

far as the time complexity is concerned, we have the following calculation: 

AT = A X O R + n A F A  

+ n A F A  (for end-around carry) 

( 2  + 2n + 2n)Ag = 

= (4n+ 2)Ag. 

In the 1’s complement adderhbtractor, first c, cannot be stable unless the carry 
rippled through all the FAs. Then c, will be routed back to the LSB position and 
the second round of carry propagation will occur. So the delay time is doubled 
compared to the 2’s complement adderhbtractor, and that’s why the 1’s complement 
adderhbtractor is not as popular as the 2’s complement adderhbtractor. 

2.5.3 Sign-Magnitude Addition 

In the sign-magnitude addition, the two summands are given in the sign-magnitude 
form. After adding them together the sum should be in the sign-magnitude form 
as well. Figure 2.12 gives a block diagram of a sign-magnitude adderlsubtractor. 
Detailed introduction will follow with attention paid to the pre-complement and post- 
complement schemes. 

In the diagram a 1’s complement adder is used to perform the addition. To provide 
the adder with operands in proper representation, a pre-complement operation may 
be required. Let’s investigate the following cases exhaustively. 

Augend Op. Addend Pre-comp an-1 @ M EB bn-1 ___-- 
No 0 

1 

No 0 
Yes 1 

IAl + P I  

IAl + -PI Yes 1 

IAl + IBI 
-(I4 + -PI) 
--(I4 + P I  ) No 0 
- ( I 4  + P I  ) No 0 
-(I4 + -PI) Yes 1 

IAl + -PI Yes 

Suppose A is positive. Since subtracting a number can be completed by adding 
the negated number, we have only two cases in the classification. Case 1: IAl + IBI, 
adding two summands of the same sign. Case 2: IAl+ (- (BI), adding two summands 
of different signs. 

Suppose A is negative, the following two cases are considered. Case 1: -(IAI + 
IBI), the magnitudeof A and B should be added up, which is similar to Case 1 above. 
Case 2: -(IAI + (-lBl)), the magnitudeof A and B cancel each other out, which is 
similar to Case 2 above. 

When the magnitude of A and B cancel each other out we need to perform 1’s 
complement operation on B’s magnitude before the addition. This is called pre- 
complement. Let P = a,-1 @ M @ b,-1, where a,-l and b,-l are the sign bits of 



RIPPLE CARRY ADDERS 49 

Sign-Magnitude Adder/Subtractor 

... 

;cOmv. I 

... 

Pre-complement 
if necessary 4 

i ---r- 

I ... I 

Fig. 2.12: Block Diagram of Sign-Magnitude AdditiodSubtraction 

A and B,  respectively, and M is the mode in 0/1 for additiodsubtraction. From the 
above analysis we can find that pre-complement is to be performed whenever P = 1. 
Hence, P is the enable signal for pre-complement. 

Notice that when adding two numbers of different signs, if the magnitude of the 
negative number is greater, the result is negative. Also, adding two negative numbers 
results in a negative number. As the 1’s complement adder represents its output in 1’s 
complement format, we need to convert it to a sign-magnitude number. Therefore a 
post-complement is required. 

The post-complement operation is enabled by Q = PC,,-l. For case 1 examples 
listed in the above table, P = 0 and the post-complement is not needed. For case 2 
examples, P = 1;  the post-complement is needed only if IBI 2 [ A [ .  Recall that the 
(n - 1)-bit 1’s complement adder performs (A1 + (-1BI) by 1Al+ (2n-1 - 1 - IBI). 

If IBI 2 / A [ ,  subtracting a bigger number from and adding a smaller or equivalent 
number to 2n-1 - 1 will result in anumber 5 2n-1 - 1 < That is, Cn-l = 0. 
Hence, when P = 1 and C,-l = 0, Q is asserted and a post-complement operation 
will be performed. 

The sign of the result can be decided as follows. After converting the operation to 
addition if two summands have the same sign, the sign of the result can be equal to 
the sign of either of them. If the two summands have different signs, when (BI 2 IAl 
(c,,-l = 0 case according to the above analysis) the sign of the result should be equal 



50 ADDITION AND SUBTRACTION 

Sign Bits Magnitude bits 
-7 / \ 

Fig. 2.13: Sign-Magnitude AdditiodSubtraction 

to the sign of addend. That is, snP1 = M @ bn.-l. Otherwise ( c ~ - ~  = 1 case) 
s,-1 = un-l. By using Cn-l to control a 2-to-1 multiplexor which takes either 
a,-l or M 63 the sign of the result can be decided. 

The schematic of an n-bit sign-magnitude adder is shown in Figure 2.13. 

REFERENCES 

1. I. Aleksander, “Array Networks for a Parallel Adder and Its Contro1,”IEEE Trans. 
Elec. Comp., Vol. EC-16. No. 2, Apr. 1967. 

2. A. Avizienis, “Logic Nets for Carry and Borrow Propagation,”Class Notes, Dept. 
of Engineering, University of California, Los Angeles, 1968. 

3. B. E. Briley, “Some New Results on Average Worst-case Carry,” IEEE Trans. 
Comp., Vol. C-22, No. 5 ,  May 1973, pp. 459-463. 

4. A. W. Burks, H. H. Goldstine and J. von Neuman, “Preliminary Discussion of the 
Logical Design of an Electronic Computing Instrument, Institute for Advanced 



REFERENCES 51 

Study,” Princeton, NJ, 1946 (reprinted in C. G. Bell and A. Newell, Computer 
Structures: Readings and Examples, McGraw-Hill, New York, 197 1). 

5. Fairchild Semiconductor Staff, The nLApplications Handbook, Mountain View, 
CA, Aug. 1973. 

6. D. Ferrari, “Fast Carry-Propagation Iterative Networks,” IEEE Trans. Comp., 
Vol. C-17, No. 2, Feb. 1968,pp. 132-145. 

7. B. Gilchrist et al., “Fast Carry Logic for Digital Computers,” IRE Trans. EC-4, 
Dec. 1955, pp. 133-136. 

8. B. Gilchrist, J. H. Pomerene and S. Y. Wong, “Fast Carry Logic for Digital 
Computers, IRE Trans. Elec. Comp., Vol. EC-4, no 4, Dec. 1955, pp. 133-136. 

9. J. F. Kruy, “A Fast Conditional Sum Adder Using Carry Bypass Logic,” AFIPS 
Con5 Proceedings, Vol. 27, FJCC 1965, pp. 695-703. 

10. M. Lehman, and N. Burla, “Skip Techniques for High-speed Carry-Propagation 
in Binary ArithmeticUnits,”IRE Trans. EC-10, No. 4, Dec. 1961,pp. 691-698. 

11. M. Lehman, “A Comparative Study of Propagation Speed-Up Circuits in Binary 
Arithmetic Units,” Inform. Processing, 1962, Elsevier-North Holland, Amster- 
dam, 1963, pp. 671-677. 

12. H. Ling, “High-speed Binary Parallel Adder,” IEEE Trans. Comp., EC-15, No. 
5 ,  Oct. 1966, pp. 799-802. 

13. 0. L. MacSorley, “High-speed Arithmetic in Binary Computers,” Proc. IRE, 49 
(Jan. 1961), pp. 67-91. 

14. G. W. Reitwiesner, “The Determination of Carry Propagation Length for Binary 
Addition,”IRE Trans. EC-9, No. 1, Mar. 1960, pp. 35-38. 

15. G. W. Reitwiesner, “Binary Arithmetic,” in Advances in Computers, Vol. 1, F. L. 
Alt ed., Academic, New York, 1960, pp. 23 1-308. 

16. S. Singh and R. Waxman, “Multiple Operand Addition and Multiplication,” IEEE 
Trans. Comp., Vol. C-22, No. 2, Feb. 1973, pp. 113-120. 

17. J. J. Shedletsky, “Comment on the Sequential and Indeterminate Behavior of and 
End-Around-Carry Adder,” IEEE Trans. Comp., Vol. C-26, No. 3, Mar. 1977, 
pp. 271-272. 

18. J. Sklansky and M. Lehman, “Ultimate-Speed Adders,” IRE Trans. EC-12, No. 
2, Apr. 1963, pp. 142-148. 

19. P. M. Spira, “Computation Times of Arithmetic and Boolean Functions in (d,r) 
Circuits,” IEEE Trans. Comp., Vol. C-22, No. 6, June 1973, pp. 552-555. 



52 ADD/T/ON AND SUBTRACT/ON 

20. C. W. Weller, “A High-speed Carry Circuit for Binary Adders,“ IEEE Trans. 
Comp., Vol. C-18, No. 8, Aug. 1969, pp. 728-732. 

PROBLEMS 

2.1 You are asked to implement X = ( A  + B + c) . (D + I?) . FG. (a) Realize 
the logic based on the given expression strictly. (b) Improve your design applying 
the hard-wired AOI. (c) Find the delay time and area complexity for the designs in 
(a) and (b). 

2.2 Construct a 10-to- 1 multiplexer with three 4-to-1 multiplexers. The multiplex- 
ers should be interconnected and inputs labeled so that selection signals S ~ S ~ S ~ S O  = 
0000 through 1001 can be directly applied to the selection inputs without any added 
logic. 
Hint: Make two levels of multiplexers. Partition SQS2SlSQ so that some ofthem can 
make selection in level 1 and some in level 2. Note that data line 8 and 9 have only 
one bit dixerent in the coding of their indexes. 

2.3 
a 3-to-8 decoder. Find the time complexity and area complexity for your design. 

2.4 Given a 1’s complement number C ~ ~ C ~ ~ C L ~ C Z O  including the sign bit, design a 
circuit to convert it to a sign-magnitude number. Find the area complexity of your 
circuit. 

2.5 You are asked to design a 4-bit 2’s complement number comparator. The two 
numbers to be compared are X and Y .  The output signal GT (Greater Than) will 
be asserted if X > Y ,  LT (Less Than) will be asserted if X < Y and EQ (Equal) 
will be asserted if X = Y .  Show your logic expression for each output, and draw 
the schematic circuit. Note that the leading bit of each input operand is reserved for 
sign. Pay attention to the minimization of the area complexity. 

2.6 
2.10, assuming n = 16. 

2.7 
work. 

2.8 In a 1’s complement adder, pay attention to the end-around carry. In which 
situation does the end-around carry = 1 and in which situation it = O? Justify that the 
end-around carry will result in the right solution of addition. 

2.9 Perform -3 + 5 applying a 4-bit sign-magnitude adder as shown in Figure 2.12. 
(a)What is the P value given by the circuit. Justify why it is the value you expect 
from the arithmetic point of view. (b) What is the output of the pre-complement? 
(c) What is the output of the full adder? (d) Repeat question (a) for Q. (e) Repeat 
question (b) for post-complement. 

Design the logic for a 3 x 4 ROM (with 3 address lines and 4 data lines), using 

Find the area complexity and delay time for the 2’s complementer in Figure 

Find the delay time for a 32-bit 2’s complement ripple carry adder. Show your 



High-speed Adder 

3.1 CONDITIONAL-SUM ADDITION 

In the study of ripple-carry adder we can see that carry propagation delay is the major 
concern when we try to speed up the addition of any two numbers. For an n-bit 
ripple-carry adder, the delay time is linear to n. 

Notice that when adding two numbers as follows: 

ai 

bi 

+) ci 
Ci+l S i  

ci can be either 0 or 1 in binary. Only two cases are possible: 

Here the superscript indicates the value of the carry-in assumed, and the subscript is 
for the bit index. 

53 



54 HIGH-SPEED ADDER 

Under the assumption that the carry-in is 0, s: and c R 1  can be easily found as 
follows: 

S: = aiEi + Gibi = ai CB bi 
0 ~ i + ~  = aibi . 

In a similar way, s i  and can be found under the assumption that the carry-in 
is 1. 

S: = aibi + &bi = a;  0 bi 
1 ci+l = ai + bi 

-. 
where 2 0 y is 2 @ y. 

Following the above logic, we build a conditional-sum adder. In a CS (conditional 
sum) cell, two sets of circuits can perform the additions based on two different carry- 
in values. Two sets of outputs can be prepared at the same time, and all that is left is 
to select one out of two once the actual carry-in value is known. 

Using the carry-out of the lower order bit position as the carry-in to make selections 
in the higher order bit position, two bit positions are merged into one group. The 
selected sum of the higher order bit position concatenating that of the lower order bit 
position forms the sum of the group, and the carry-out of the higher order bit position 
becomes the carry-out of the group. In the next step two groups are to be merged 
together. The carry-out of the lower order group will be used to make selections in 
the higher order group. 

In each step we merge every two adjacent groups at the same time, and the group 
size is doubled. First 1 bit is in a group, then 2, then 4 . . . . . . . In step k, 2k-1 bits 
are in a group. The carry-in to the LSB position or to the least significant group is 
always 0, which can rule out the other assumption and have the output of this group 
confirmed. As the size of the least significant group increases, more and more sum 
bits can be determined - through the selection in the higher order group to be merged 
rather than the carry propagation. The final result can be obtained in rlog2nl steps for 
n-bit long operands. In each step only two-to-one selections are needed which can 
be easily realized by multiplexers. Compared to the ripple-carry adder, which has a 
delay time linear to n, the conditional-sum adder achieves a significant improvement 
in time performance with an inexpensive hardware cost. 

Given A = (01101.10)2 and B = (1101101)2, Figure 3.1 shows the conditional- 
sum addition for illustration. A superscript 0 indicates that a carry 0 into each group 
is assumed, and a superscript 1 indicates that a carry 1 into each group is assumed. 
The groups are isolated from each other in the sense that the carry-out generated in 
a lower order group does not propagate to the higher order group. Between the pair 
of groups to be merged in the corresponding step, there are arrow(s) pointing from 
the right group to the left group. It points away from the carry-out of the right group 
which is used to make a selection in the left group. If that carry is 0 it points to the 
upper set of data in the left group. If that carry is 1 it points to the lower set of data. 
Only in the least significant group such carry-out has a known value (as in the circle), 
and the sum it picks up contributes to the final result (as in the box). Otherwise 



CONDlTlONA L-SUM A DDlTlON 55 

0 1 0 0 0 1 I ]  

Fig. 3.1: Conditional-Sum Addition 



56 HIGH-SPEED ADDER 

we see two arrows from each group on the right representing two carry-out signals 
participating in the selection operation. They all have assumed values at this moment 
and none knows what the actual carry is. The candidates they select in the left group 
may or may not constitute the final result. The route of the signals are provided in the 
circuit, however, and a unique set of data will be selected when merged into the least 
significant group in a later step. Some right most groups in the figure are incomplete 
groups in terms of their size. Only the “left over” bit positions are contained for the 
case that n is not a power of 2. 

The schematic circuit of a conditional-sum adder is given in Figure 3.2 to add the 
above 7-bit numbers. 

In (b), the data routed through the adder are shown given the particular inputs. 

3.2 CARRY-COMPLETION SENSING ADDITION 

The linear delay time of the ripple-carry adders is due to the carry propagation from 
the least significant bit position to the most significant bit position. That is the time 
we need to wait in the worst case for the FA in MSB position to produce the correct 
sum and carry-out. Notice that composed of combinatorial circuit, FA will produce 
something as long as data present on its input lines. The input signal may change later, 
and so does the output in accordance. Before the worst case delay time is reached, the 
correctness of the output cannot be guaranteed and we cannot claim the completion 
of the addition. 

In this section we introduce a carry-completion sensing adder (CCSA). It allows 
multiple carries to be propagated independently and simultaneously, and senses the 
completion of all the propagation. On “average” it takes shorter time to make the 
output stable, and such adder is considered faster than the conventional ripple-carry 
adder. 

Two types of carries, independent carry (IC) and dependent carry (DC), are defined 
as follows. Note that each type of carries can be initiated at all the bit positions 
simultaneously without waiting for the propagated carries from the preceding bit 
positions. 

ICi+l = 1 I ai = 1 
bi = 1 

DCi if i t  exists 
ICi otherwise 

:r= } DCi+l = { 
ai = 1 
b i = O  J 



CARR%COMPLETlON SENSING ADDITION 57 

(a) Circuit of Conditional-Sum 

1 0  1 1  0 1  1 0  1 1  0 1  1 0  

c,=1 

c7 ss Sf "* ,". 

(b) Data Routed through the Adder 

Fig. 3.2: Conditional-Sum Adder 



58 HIGH-SPEED ADDER 

Step2: 1 1 1 P-, 0 0 0  

Step3: 1 1  0 0 0 0 0  1 1 1  0 1 

Summands 

Independent Carries 

Dependent Carries 

Sum. 

Fig. 3.3: Generation and Transmission of Carries 

Here ICi+l can be determined based on the two summand bits ai and bi. Since all the 
ais and bis are available at the same time, all the independent carries can be generated 
in parallel. 

On the other hand, DCi+l cannot be determined unless DCi or ICi is known, 
and DCi is based on DCi-1 or ICi-1. Here, starting from the independent carries, 
multiple carry propagation can go on. Ending at the next higher bit position in which 
the independent carry exists, some carry propagation is longer while some is shorter. 
Refer to the numerical example in Figure 3.3 showing the independentldependent 
carries and the carry propagation. The blocked bit position can generate the carry, 
and others can propagate the carry triggled by either the independent or the dependent 
carry of the lower order bit position. 

In Step 1, the existence of independent carries for any particular column is deter- 
mined by detecting the equality of the pair of summand bits in the preceding column; 
these independent carries are then set to the value as defined above. In Step 2, the 
dependent carries are generated by setting all the carries between each pair of in- 
dependent carries equal to the right member of the pair. In Step 3 ,  the carry and 
the summand bits in each column are added with module-2. That is, in the bit-wise 
addition the carry-out resulted from any bit position is neglected and not taken into 
consideration in the higher order bit position. 

Define the carry propagation length as the length of the propagation since the carry 
was triggled until it stops propagating. We can see in this example the various lengths 
of carry propagation among which the longest is 4. It has been proved statistically 
that the upper bounded of the average longest carry propagation length in random 
binary numbers is [ loyzn ] .  

Figure 3.4 shows the logic circuit of a carry-completion sensing adder. A curry 
transmission (CT) cell is given in (a). If aibi = 11, the output of gate 1 will be 
asserted and the carry-out ci+l = 1. If aibi = 00, the output of gate 2 will be 
asserted and the carry-out Ei+l = 1. These two cases are exclusive, and gate 1 and 
gate 2 can have only one outputting 1. That means when ci+l = 1 there must be 
C i + l  = 0, and when t?i+l = 1 there must be ci+l = 0. The carry generated in these 
two cases is the independent carry. 

- 



CARRYCOMPLETION SENSING ADDITION 59 

I 

ci 

\i . . . a  

(a) Carry Transmission Unit 

4 t 
CARRY COMPLETION GATE 
(n .- INPUT AND GATE) 

4 
CARRY COMPLETION SIGNAL 

UNIT 

(b) Carry-Completion Sensing Adder 

Fig. 3.4: Construction of Carry-Completion Sensing Adder 



60 HIGH-SPEED ADDER 

If aibi = 01 or 10, the output of gate 3 is asserted, and that of gate 1 or gate 2 is 
not. Then, depending on the carry-in ci and Ei, either gate 4 outputs a 1 and gate 5 
outputs a 0 or vice versa. Such signals will be transmitted through gate 6 and 7 to the 
outputs c * + ~  and ~?i+.~ ,  becoming the carry-out signals - dependent carry. Note that 
this case and the previous two cases are mutually exclusive, that is, only one of them 
can occur at each bit position. 

For a bit position in which the two summand bits ai = bi, a new carry, independent 
carry 1 or 0, starts propagation at once. In this same bit position, the existing carry 
propagation from the lower order bit position stops. For the bit position in which 
ai # bi, neither gate 6 nor gate 7 can output a 1 before the arrival of ci and E i .  One of 
the outputs, ci+l or Ei+l, should be high to show the carry-transmission completed 
in bit position i. ci+l and Fi+l are ORed together in each bit position, and then sent 
to an n-input AND gate. The AND gate is a carry-completion sensing gate whose 
output is high if and only if all the inputs are 1, indicating that all the bit positions 
have the carry generation and propagation completed. 

The logic of the CT cell depicted in the figure can be expressed as follows: 

ci+l = ai + bi + (a* @ b i )  . ci 

cz+1 = 7ii. bi + (Ui @ bi) . Ei 

and 

co = 0 

co = 1, 

where co is the initial independent carry into the LSB position. Note that c,+1 in 
the above equation is composed of the generation of the independent carry, and the 
generation and propagation of the dependent carry. 

The time complexity of this adder is composed of three major components, but 
they may be overlapping each other: 

1. Time for all independent carries generation. 

2. Time for dependent carries generation 

3. Time for the final piecewise summation which gives the final answer. 

Refer to the numerical example in Figure 3.3 with n = 11, and the circuit in Figure 
3.4. In the CT of all the bit positions after the summand bits ai and bi are input, gates 
1,2 and 3 can have the outputs ready within no longer than 2A, time. Then from ci 
to ci+l, each bit position needs 4A, to propagate the carry, and [Zogzn] bit positions 
should be considered according to the average propagation length. Then the delay 
of OR gate and the delay of the n-input AND gate should be added with which the 
AFA is overlapped. Here the circuit is an asynchronous one. The FA always outputs 
something with some value present on ci, the carry-in, though it may not be a correct 
output. Until the AND gate transmits to the control circuitry a signal indicating that 

propagation. 



CARRY-LOOKAHEAD ADDITION (CLA) 67 

all the carry generation and propagation have been completed, the outputs of the FAs 
cannot be adopted for further utilization. 

Using the upper bounded value we have 

3.3 CARRY-LOOKAHEAD ADDITION (CLA) 

In the ripple-carry adder, the carries in different bit positions are generated sequen- 
tially. That is, Ci+l is dependent on Ci, and Ci cannot be determined unless Ci-1 
is known. We introduce in this section an adder which can generate all the carries in 
parallel. No carry propagation is in the cause of delay. 

3.3.1 Carry-Lookahead Adder 

Let A = (An-1 . . . A1 Ao) and B = . . . &Bo) be the augend and addend, 
respectively, and Ci the carry into bit position i. The carry into LSB is CO. Inves- 
tigating the condition that a carry can be generated in bit position i neglecting the 
carry-in Ci, we define the carry generation function 

Gi = A , .  Bi. 

The condition that position i can pass the carry-in from position i - 1 to position i + 1 
can be defined as carry propagation function 

Pi = Ai @ Bi. 

Hence Si and Ci+l can be expressed as the functions of P, and Gi 

Si = ( A e B ) e C i  
= Pa eci 

and 



62 HIGH-SPEED ADDER 

Again, our goal here is to speed up the carry propagation. 
Pi and Gi, for i = n - 1,. . . , l,O, can be generated in parallel upon Ais and Bis 

which are available at the very beginning of the addition, (see part (a) of Figure 3.5). 
By applying the above equation recursively, all the Ci+l s can be generated based on 
Gi, Pi and CO . 

Ci = Go+CoPo 
C2 = G1 +CiPi 

= G I +  GoP1 + CoPoP1 
C3 = Gz+CzPz 

= Gz+GlP2 + G o P ~ P ~ + C O P O P ~ P ~ . . . . . .  
= Ci+l Gi + Gi-1 Pi + Gi-2 Pi-1 Pi + . * * + GoP1 P2 . . . Pi 

+ COPOP1 . * .  Pi. .  . . . . 
Gn-l + Gn-2Pn-1 + ' ' . . . . 
+ Go Pi P2 * . . Pn-l + Co Po Pi . ' . Pn-l. 

Cn = 

(3.1) 

The circuit to generate Ci+ls is called carry-lookahead unit shown in part (b) of 

The final sum S can be computed once Cis, i = 1 , 2 ,  ' . . , n, are known. See part 

The delay time of the carry lookahead adder can be calculated as follows: 

Notice that Ci+l is independent of Ci now. 

Figure 3.5. 

(c) in Figure 3.5 for the circuit. 

AT = n c a r r y  gener./prop. unit + &LA +  SUM 
= 3ng + 2ng  f nxoR = 7 A g .  

One can see that in Equation (3.1), the number of terms in the OR function is as 
big as n + 1, and in the last term the number of valuables in the AND function is also 
n + 1. AS the number of bits n increases, the fan-in and fan-out could be a problem 
if carry-lookahead is adopted. On the other hand, sequential generation of each Ci+l 
is too slow. As a combination of the above two approaches, block carry lookahead 
adder (BCLA) can be adopted in which group(s) of carries are generated in parallel. 

3.3.2 Block Carry Lookahead Adder 

Same as before, in a block carry lookahead Adder (BCLA) the carry generation and 
propagation variables, Pis and Gis are prepared simultaneously for i = 0,1, . . . , n - 
1. 

Partition the n bits into 2 blocks with m bits in each block. We define the block 
carry generate function G* and block carrypropagate function P* for an m-bit block 
as follows 

p* = POP1 ' . * Pm-l 

G* = Gm-1+ Gm-ZPm-l+ Gm-3Pm-2Pm-l t 
+ G1 P2 P3 . . . Pm-l + Go Pi P2 P3 - . . Pm-l. 



CARRY-LOOKAHEAD ADDITION (CLA) 63 

...... 

(a) Carry Generatepropagate Unit 

...... 
I L  

(b) Carry-Lookahead Unit 

...... ...... 
" 

CZ 

pfi-l 

" 

(c) Summation Unit 

Fig. 3.5: Carry-Lookahead Adder 



64 HIGH-SPEED ADDER 

P* = 1 if the block can propagate a carry. It is not difficult to understand that if 
every bit position in the block can propagate a carry, then the block is capable of carry 
propagation. G* = 1 if the block can generate a carry. One can see that if some bit 
position in the block can generate a carry and every bit position of higher order than 
it can propagate the carry, then this block is capable of carry generation. 

The schematic circuit of a 4-bit BCLA unit is shown in Figure 3.6(a). We can 
see that the P* and G* of each block can be generated as long as Pis and Gis are 
available. On the other hand, the carry-out Ci+l for bit position i in the block is 
dependent not only on Pis and Gis, but also on the carry-in to the block (Co for the 
first block and C4k for block k in general). We discuss next how to provide such 
carry-in to each block. 

Here another level of carry lookahead is needed. Recall that in Equation (3.1), 
given G,s and Pis, we can find carry-out Ci+ls for bit position i in parallel. Similarly, 
given block carry propagation P*s and block carry generation G*s, we can find in 
parallel the carry-out for each block such as C4, Cg, . . . . . . , Cis, with m = 4. In 
general Cm(k+l),  k = 0 ,  1,. . . , 2 - 1, is the carry-out of block k which can be 
used as the carry-in of block (k + 1). After we feed it back to BCLA (k + 1) of the 
first level carry lookahead, C4(k+1)+1, C(4k+l)+2 and C4(k+1)+3 can be generated 
in parallel. 

Here there are two levels of carry lookahead. All the m carries out of the same 
block are generated in parallel, and all the carry-in signals to $ blocks are generated 
in parallel. The $ carries are generated first, then the m carries follow each of them. 
These two types of carries are generated one type after another in sequence. 

Figure 3.6(b) shows a block carry lookahead adder performing a 16-bit addition. 
The boxes in the two levels of carry-lookahead, BCLA and CLA Unit, can be replaced 
by the circuit in (a), where Pis and Gis are input to the upper level, and P*s and G*s 
are input to the lower level. P*s and G*s are the output of the upper level carry- 
lookahead only. The unit at the top is the same as in Figure 3.5(a). The unit at 
the bottom generates the summation bits in parallel once all the Ci+l s are available. 
Recall that 

Si = Pi a Ci 
= (Ai CE Bi) CE Ci. 

The delay time of the two-level BCLA can be found by 

AT = A c a r r y  g e n e r . / p r o p .  unit + ABCLAI + &-bit CLAU + ABCLAZ + ASUM 
3Ag + 2Ag + 2 4  + 2Ag + 2Ag = l lA,  = 

if the AND-OR function is converted to a NAND-NAND realization. Notice that two 
passes of BCLA delay have been considered. In each pass a different data route is 
taken, though the amount of time spent on the routing may remain the same. The first 
pass BCLA' is from PislGis to P*slG*s, and the second pass BCLA' is from CQk 
to C41~+3. Such an idea can be extended to involve more than two levels of BCLA 
into an adder. Each additional level of carry-lookahead will contribute a 4Ag extra 
delay time, 2Ag for BCLA' and 2Ag for BCLA2. 



CARRY-LOOKAHEAD ADDITION (CLA) 65 

(a) BCLA Circuit 

,$ 4 5  A,, 4, 4 3  0 0  

. . . . . .  
Carry Propagation I Generation Unit 

. . . . . .  l l  i l  

GV'p'131 G *I01 p'lO1 

1 1  . . . . . .  1 
CLA Unit 

Po co . . . . . .  p 5 C I S  p,,c,, 

Summation Unit 1 
1 1 . . . . . .  1 

s,, s,, so 

(b) Two-Level Carry-lookahead 

Fig. 3.6: Block Carry-Lookahead Adder 



66 HIGH-SPEED ADDER 

3.4 CARRY-SAVE ADDERS (CSA) 

The various types of adders we have discussed so far can add two numbers only. In 
array processing and in multiplication and division, multioperand addition is often 
encountered. More powerful adders are required which can add many numbers instead 
of two together. We introduce in this section the design of a high-speed multioperand 
adder called a carry-save adder (CSA). Instead of waiting for the carry propagation of 
the first addition to be complete before starting the second addition, the idea here is to 
overlap the carry propagation of the first addition with the computation in the second 
addition, and so forth, since repetitive additions will be performed by a multioperand 
adder. After the last addition, the carry propagation delay is then unavoidable and it 
should be included in the total delay time. 

Figure 3.7 is a schematic diagram of an n-bit CSA composed of n full adders. 
Registers are used to temporarily buffer the outputs of the full adders before sending 
them to the input lines of the adders. This kind of register is called the carry-save 
register . 

Let F1, F 2 ,  . . . , Fk be the k summands to be added up, and X ,  Y,  Z be the 
three inputs of the carry-save adder. First, load numbers F1, F 2  and F3 into the 
adder and add. Second, the results S and C are fed back to X and Y ,  and F4 is 
loaded into 2. F4 is added with the saved carry and the partial sum obtained from 
the previous addition. The second operation will be repeated with a new summand 
taken each time until F k  is taken. 

Let 

be the k numbers to be added. The operations for each full adder in bit position i are 
as follows. 

1. Input f:, fz and f: to the full adder and add. Store the result si in Ri and 
ci+l in Ri. 

2. Feed the register-stored si back to the full adder in the current bit position as its 
first input; send the register stored ci+l to the full adder in bit position (i + I). 
The full adder in the current bit position takes the carry-in from bit position 
i - 1 as its second input and takes f," from a new summand as its third input 
and adds. Store the result si in Ri, and Ci+l in R:. 

3 .  Repeat Step 2, but rather than f:, take fjf3 in the jth iteration as the third 

4. Repeat Step 3, but take 0 as the third input of the full adder until all the registers 

input of the full adder and add until j = I c .  

Rk-l, . . . , Rb contain 0s. 

In step 1 to Step 3, repeat ( k  - 2) additions for adding k numbers since three 
numbers can be added up in the first cycle and the rest ( k  - 3) numbers need ( k  - 3) 
cycles to add them U ~ J .  



CARRY-SAVE ADDERS (CSA) 67 

(a) n-bit Carry-Save Adder 

... 

...... 

- ... 

1 1  1 I t ti- 
C" + CPA c, 

1 I . . . . . .  I 
S"., sn.2 so 

(b) Applying CPA to Add Carry Vector and Sum Vector 

Fig. 3.7: Carry-Save Adder 



68 HIGH-SPEED ADDER 

After Step 3, the carry propagation takes place. Within no more than n - 1 cycles, 
in addition to the ( k  - 2) cycles mentioned above, the final Sum = (Sn--l . - . SO) 
can be available. 

Let the total time steps for adding k n-bit numbers be t cycles. We have 

k - 2 5 t 5 n+ k - 3 .  

The delay time of the CSA is 

A C S A  = t x f ( A F A ,  A F F ) .  

The area complexity of an n-bit CSA is 

ACSA = x ~ ( A F A , A F F ) .  

When the word length n is very long, the ripple carry propagation in the final 
stage will significantly degrade the performance of CSA. To speed up Step 4, a carry 
propagate adder (CPA) can be used. (See the block diagram in Figure 3.7(b).) Since 
in Step 4 only two vectors, the sum vector and the carry vector, are to be added, the 
CPA can be any kind of high-speed two-operand adder described in prior sections of 
this chapter. For example, a CLA can be adopted. In that case the required number 
of cycles to complete the addition of k numbers will be 

t = k - 2 + 1 = ( k  - 1) cycles. 

The previously described CSA is of single level. Recall that only one number 
can be added in Step 2. That is, N4, N 5 , .  . . , N k  are added sequentially. We can 
connect multiple levels of CSAs in a tree fashion to add k numbers simultaneously 
where k = 4, 5, 6 and 7. 

Given in Figure 3.8(a) is a 5-input CSA tree. Notice that each input or output 
line represents n single-bit lines. Each CSA block includes n full adders with no 
flip-flops. The left pointed arrows on the carry output lines indicate that the carries 
are shifted left for one bit position before being fed to the next stage and a 0 is entered 
into the LSB position. At the bottom of the tree, a CPA (not shown in the figure) 
is required to add the sum vector and carry vector together. If the number of inputs 
is a multiple of 3, an alternative tree structure can present. Figure 3.8(b) shows an 
example of a 6-input CSA tree. 

To add k numbers, ( k  - 2) CSAs are required with each additional input operand 
increasing the number of CSAs by one. Hence the area complexity of the CSA tree 
is 

A C S A  Tree = (k - ~ ) A C S A  + &PA-  

The total delay time of a CSA tree is dependent on the number of levels in the tree. 
Each level of CSAs contributes 2A, to the propagation delay which is the delay time 
of a full adder. Hence 



CARRY-SAVE ADDERS (CSA) 69 

(a) 5 input (b) 6 input 

Fig. 3.8: Carry-Save Adder Tree 

where I is the number of levels. 
Let X(I)  be the maximal number of operands which can be added by an I-level 

CSA tree. X(1) = 3. Each CSA has 3 inputs and 2 outputs, hence the number of 
outputs times will be the number of inputs, that is, the number of outputs in the 
upper level. If the number of outputs is not a multiple of 2,  then it mod 2 indicates 
the number of extra outputs in the upper level. Hence X(1) can be defined recursively 
as follows: 

X(1) = [m] 2 x 3 + X(l - 1) mod 2. 

For different values of 1, the maximal numbers of input operands that a CSA tree 
can add are listed in Table 3.1. 

There are two ways to conduct the multi-operand addition. In one method, all 
the bits of an operand are processed in parallel, and the operands are taken one after 
another. In the other method, all the bits in the same position of operands are admitted 
together. The examination goes over one bit position after another. See Figure 3.9 for 
reference. The “x ” represents an individual bit. The carry-save addition previously 
introduced belongs to the first method. What is introduced in the following section 
is an addition using the second method, bit partitioned addition. Here the carry- 
save adders perform the multioperand addition in a row-wise fashion, while the bit 
partitioned adders to be introduced in this section add k numbers in a column-wise 
approach. 



70 HIGH-SPEED ADDER 

c- . . . . . . .  x x  

. . . . . . .  x x  

. . . . . . .  x x  

@ 
. x 

6 . . . . . . .  x 3  

. . . . . . . . .  
. . . . . . . . .  
. . . . . . . . .  

6- . . . . . . .  x 

X 

. . . . . . .  

. . . . . . .  x 

. . . . . . .  x x  

. . . . . . .  x x  

. . . . . . .  x x  

. . . . . . . . .  

. . . . . . . . .  

. . . . . . . . .  

. . . . . . .  ~ 

" ' X  

(b) 

Fig. 3.9: Two Types of Parallelization in Multi-Operand Addition 



BIT-PARTITIONED MULTIPLE ADDITION 71 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Table 3.1: Maximum Inputs of CSA Trees 

3 
4 
6 
9 
13 
19 
28 
42 
63 

3.5 BIT-PARTITIONED MULTIPLE ADDITION 

In the bit partitioned multiple addition, the numbers are added column by column 
with all the adders taking care of one bit at a time. The count of “1”s in a particular 
column is represented in binary numbers that are added up, with each displaced one 
bit position from its neighbor. Depending on the number of multiple operands to be 
added, say k, the partial sum length is rlogk] . 

The design of bit-partitioned adders is illustrated with an example of adding seven 
4-bit numbers shown in Figure 3.10. The seven numbers are stored in a register and 
are shifted left one bit position at a time. In this way the seven numbers are fed into 
a 7-input column udder (CA) column by column with the leftmost column first. 

Observing that the maximal sum of a 7-bit addition is 7 which can be represented by 
3 bits, we reserve three output lines for the CA. The column adder can be implemented 
with a ROM or PLA - a device which can produce a 3-bit data given a corresponding 
7-bit pattern. (There are in total 2’ of such patterns.) 

The sums of different bit-slices will be added up sequentially. A “carry-save” like 
adder is used for this purpose. Note that different weights should be given to the CA 
results generated for different bit-slices. The partial sum obtained after the addition 
of the bit i slice should be shifted left for one bit position before the bit (i - 1) slice 
can be added on. Hence one can see that instead of feeding the old sum bit to the 
same bit position as in a typical carry save adder, it is saved now and later fed to the 
left bit position in the next cycle. Since some bit positions have only two input bits 
to add up, half-adders can be used to replace some full adders. 

The delay time of the bit-partitioned adder is proportional to the word length of 
the operands. To add numbers of n bits, n cycles are needed which is apparently 
independent of I c .  However, with a closer look we can find that the period of each 
cycle is related to k. For example, the ROM size in CA increases as k increases, so 
does the delay along the chain of HAS and FAs. 



72 HIGH-SPEED ADDER 

4-bit shift 
re ister 

s3 s2 s, so 

(a) Bit-Partitioned Adder 

32 bits ~-4 I- 

/ 36-bit CLA \ 

(b) Block Bit-Partitioned Adder 

Fig. 3.10: Bit-Partitioned Multiple Addition 



REFERENCES 73 

When n is large, the adder can be further partitioned into “groups” with each 
group containing m bit slices. In Figure 3.10(b), to perform a full length (32 bits) 
seven-number addition, eight of the 4-bit partitioned subadders (PSA) are used, each 
generating a 7-bit partial result. Since the adjacent groups have a bit position offset of 
4, every 4 bits from the corresponding positions of each group can be concatenated to 
form a full length number. We feed the lower order 4 bits generated by each group to 
register A and the higher order 3 bits from each group to register B,  and then perform a 
two-operand addition A + B. A fast two-operand adder, CLA, is adopted to complete 
the addition. Notice that since the LSB (and MSB, respectively) of number B is 4 bit 
positions higher than the LSB (MSB) of number A ,  four 0s are entered to the least 
significant bit positions of the addend and four are entered to the most significant bit 
positions of the augend for lineup. 

The delay time of the above adder can be expressed as 

AT = m cycles + ACLA = (m + 1) cycles 

in general. When m=3, AT = 4 cycles. Again, the total delay time is independent 
of the number of input operands k. 

REFERENCES 

1. D. P. Agrawal and T. R. N. Rao, “On Multiple Operand Addition of Signed Binary 
Numbers,” IEEE Trans. Comp., Vol. C-27, no. 11, Nov. 1978, pp. 1068-1070. 

2. I. Aleksander, “Array Networks for a Parallel Adder and Its Contro1,”lEEE Trans. 
Electl: Computers, Vol. EC-16, No. 2, Apr. 1967. 

3. S. F. Anderson et al., “The IBM Systed360 Model 91: Floating-point Execution 
Unit,” ZBM Journal of R & D,  Vol. 11, No. 1, Jan. 1967, pp. 34-53. 

4. J. M. Bratun et al., “Multiply/Divide Unit for a High-Performance Digital Com- 
puter,” IBM Tech. Disc. Bulletin, Vol. 14, No. 6, Nov. 1971, pp. 1813-1316. 

5.  N. D. Kouvaras, et al., “Digital System of Simultaneous Addition of Several 
Binary Numbers,” IEEE Trans. Comp., Vol. C-17, No. 10, Oct. 1968, pp. 
992-997. 

6. 0. L. MacSorley, “High-speed Arithmetic in Binary Computers,” Proc. IRE, 
Vol. 49, No. 1, Jan. 1961,pp. 67-91. 

7. G. Metze and J. E. Robertson, “Elimination of Carry Propagation in Digital 
Computers,” Proc. International ConJ on 1nJ Processing, Paris, France, June 
1959, pp. 389-396. 



74 HIGH-SPEED ADDER 

8. J. E. Robertson, “A Deterministic Procedure for the Design of Carry-Save Adders 
and Borrow-Save Subtractors,” University of Illinois, Urbana-Champaign, Dept. 
of Computer Science, Report No. 235, July 1967. 

9. F. A. Rohatsch, “A Study of Transformations Applicable to the Development of 
Limited Carry-Borrow Propagation Adders,” Ph.D. Thesis, University of Illinois, 
Urbana-Champaign, June 1967. 

10. S. Singh and R. Waxman, “Multiple Operand Addition and Multiplication, ZEEE 
Trans. Comp., Vol. C-22, no. 2, Feb. 1973, pp. 113-120. 

1 1. J. Sklansky,“An Evaluation of Several Two-Summand Binary Adders,” IRE Trans. 
Elec. Comp., Vol. 9, No. 2, June 1960, pp. 213-225. 

12. J. Sklansky, “Conditional-Sum Addition Logic,” IRE Trans. Elec. Comp., Vol. 
9, No. 2, June 1960, pp. 226-231. 

13. N. Takagi, H. Yasuura and S. Yajima, “High Speed VLSI Multiplication Algo- 
rithm with a Redundant Binary Addition Tree,” ZEEE Trans. Comp., 34 (Sept. 
1985) pp. 789-796. 

14. C. S. Wallace, “A Suggestion for a Fast Multiplier,” ZEEE Trans. Elec. Comp., 
Vol. EC- 13,Feb. 1964,pp. 14-17. 

PROBLEMS 

3.1 Design a conditional-sum adder to add 0011 with 1001. You may want to 
generate a table similar to the one in text first. 

3.2 Perform (101110)2 + (100100)2 with a 6-bit conditional-sum adder and show 
how the result is obtained over the circuit. Estimate the total number of IC packages 
required assuming that triple CS cells are available in one IC package, as well as triple 
2 -input MUXs. 

3.3 For the numerical example given below, fill the logic values in the parenthesis. 
Calculate the delay time for this example and for average. 

3.4 (a) What is the delay time in the case of 

( 10 101 10 1 10 1 10 1 10) 2 + ( 100 1000 1 1000 1 1 10) 2 

applying an asynchronous self-timing carry sensing adder? 
(b) What is the delay time in the case of 

(1 11 100001 11 100001 1) 2 + (10001 110000001 101 1)2? 

(c) What is the average delay time over all the cases? 
(d) What is the speed ratio of a 32-bit asynchronous self-timing carry sensing adder 
over the conventional ripple carry adder? 



PROBLEMS 75 

0 1  0 0  0 1  

. H = W  1 
(inhibit) 

Fig. 3.11: Carry-Completion Sensing Adder 

3.5 Suppose only 4-bit block carry lookahead (BCLA) and 4-bit carry lookahead 
(CLA) units are available. Construct a 64-bit adderhbtractor and estimate the delay 
time. 
Hint: You may need three-levels of carry lookahead. 

3.6 
results at the marked points after each clock cycle. 

Given a 4-bit carry-save adder as follows, perform 3 + 5 + 1 + 6. Fill in the 

0 1 B 
t 

sz S, 

Fig. 3.12: Carry-Save Adder 

3.7 (a) Design a carry save adder to add 12 numbers of 4-bit lengths. Find the delay 
time of it (in number of cycles). 
(b) Construct a carry save adder tree of the same capability as in (u) with the minimum 
levels. Find the delay time and area complexity of it (in number of Ag and Ag). 



76 HIGH-SPEED ADDER 

3.8 
adder which sums nine 3-bit numbers? Why? 

3.9 
(b) Based on the circuit from part(a), construct an adder to add 21 35-bit numbers. 

3.10 
the design of a 16-bit 31-number adder with additional registers and CLA adders. 

How many full-adders and half-adders do you need to construct a bit-partitional 

(a) Design a bit-partitional adder to add 21 5-bit numbers. 

Given the following 4-bit, 31-slice bit-partitional subadders (PSA), complete 

rr 

31 lines 31 lines 

I 

PSA 1 
L I 

Fig. 3.13: Bit-Partitional Adder 



4 
Sequential Multiplication 

Multiplication is an important task in computer arithmetic operations. Efficient algo- 
rithms and high-speed hardware should be developed to complete the multiplication. 
The sequential multiplication algorithms we introduce in this chapter are based on an 
add-shift approach. Detailed design of different types of multipliers will be given. 
Signed numbers multiplication will be discussed based on the indirect schemes and 
Robertson’s approach. In addition, recoding techniques and Booth’s algorithm, which 
speed up the multiplication by multiple-bit scanning, will be explained. 

First we define some notation used in this chapter. 

4- replacement operator 

(R)  content of register R 
V logic OR operation 
A logic AND operation 
+, -, x , / 

0 concatenation or cascading operator 

arithmetic operations of addition, subtraction, 
multiplication and division. 

Let the multiplicand A and the multiplier B be two n-bit unsigned numbers. The 
multiplication 

P = A x B  

will create a 2n-bit product P. For the case that A and B are signed numbers, n - 1 
bits are in each number excluding the sign bit. Hence 2(n - 1) + 1 = 2n - 1 bits will 
be in the product including the sign bit. To obtain a uniform representation, we add 
a dummy bit between the sign bit and the most significant bit, making a total of 2n 

77 



78 SEQUENTIAL MULTIPLICATION 

bits. The dummy bit can be either 0 or the replication of the sign bit in the product, 
depending on whether the signed numbers are in the sign-magnitude representation, 
or in 1’s or 2’s complement representation. 

4.1 ADD-AND-SHIFT APPROACH 

In the pencil-and-paper multiplication, the bits in the multiplier are examined one 
bit at a time. That bit multiplying the multiplicand results in a partial product, and a 
number of partial products are added up to form the product of the two given numbers. 
If the bit examined is 1, the multiplicand times 1 is performed and the multiplicand 
is the partial product. If the bit examined is 0, then zero is the partial product. For 
example, 

1 1 0 1  
x )  1 0 1 1  

1 1 0 1  
1 1 0 1  

0 0 0 0  
1 1 0 1  

1 0  0 0 1 1  1 1 .  

The partial product can be generated by AND gates, since anything ANDed with 
1 will be itself, and that ANDed with 0 will be zero. Instead of generating all the 
partial products first and adding them at the end, we add a partial product to the 
accumulated sum immediately after it is generated. Since each bit examined is one 
bit position higher than the prior one, each partial product to be added should be one 
bit position left than the prior one; or the partial product can be viewed steady while 
the accumulated sum is shifted right each time. Such a multiplication approach is 
hence called an add-and-shift approach. 

A typical indirect multiply unit is composed of several functional devices as shown 
in Figure 4.1. Three registers such as Accumulator (AC), Multiplier Register (MR) 
and Auxiliary Register (AX) are needed. Each has a length of n bits and the capability 
of parallel load. The signs of A and B are held in A, and B,, respectively. In the 
unsigned situation, zeros are loaded into these registers. An n-bit adder is incorporated 
to add the partial product to the intermediate result. A control counter (CTR) is 
required to keep track of the number of iterations carried and to notify the completion 
of the multiplication. 

A typical indirect multiply procedure is presented as follows: 

1. M R  t B;  
A X  t A ;  
AC t 0 ;  
C T R  t 0. 



ADD-AND-SHIF T AP PROACH 79 

Multiplicand A 1 1  Multiplier B 

j -AX -1 
P-n bits - 

I 
IS + 
--' 

carry out n-bit 
Adder 

Fig. 4.1: Hardware for Sequential Multiplication 



80 SEQUENTIAL MULTIPLICATION 

Fig. 4.2: Register Occupation 

2. AX A MRo. 

3. Gout . AC t AC + ( A X  A MRo) .  

4. A C . M R  t C:out .  (AC,-1 . * * A C o ) .  ( M R , - l . . . M R l ) .  

5 .  C T R  t C T R  + 1. If C T R  # n, go to 2. 

We give some marks to the above procedure. As an initiation, A is loaded into AX 
and B into M R .  AC should be cleaned to make the intermediate result originally 
zero. 

The least significant bit of M R ,  MRo,  is ANDed with the vector AX to obtain 
the partial product in Step 2. Depending on whether M& is equal to 1 or 0, a copy 
of the multiplicand A or a zero vector will be sent to the adder. 

In Step 3 ,  the partial product obtained from Step 2 will be added to AC,  in which 
the upper n-bit of the intermediate result obtained so far is stored. A carry out Gout 
may be generated during the addition. 

Step 4 indicates a right shift operation of the sum in concatenating with the content 
in M R .  The Cout is shifted into AC and M &  shifted out of M R .  

Step 5 increments the counter and check whether n iterations have been executed 
so the procedure can halt. 

This process needs to be repeated n times with n bits in the multiplier examined 
one by one. At the end of the procedure, the n-bit multiplier B will be pushed off the 
right end of M R ,  and the 2n-bit product P should appear in the cascaded register 
AC . MR. The sign of the result is in AC,-1 when a signed number multiplication is 
performed. For an example of 4-bit multiplication, the contents of AC and M R  after 
each iteration are shown in Figure 4.2. We can see how the partial product grows in 
length and the multiplier fragment shrinks. 

The delay time of the indirect multiply unit is 



INDIRECT MULTIPLICATION SCHEMES 87 

Here, 

and when n is large, the delay of add-shift becomes dominating. 

4.2 INDIRECT MULTIPLICATION SCHEMES 

We deal with the signed number multiplication in this section. Four standard schemes 
for indirect multiplication will be introduced: (1) unsigned number multiplication, (2) 
sign-magnitude number multiplication, (3) one’s complement number multiplication 
and (4) two’s complement number multiplication. 

4.2.1 Unsigned Number Multiplication 

The multiplication of two n-bit unsigned numbers is described by the flow chart in 
Figure 4.3. This operation is completed in n + 1 cycles. The setup such as loading 
data into appropriate registers requires one cycle, CO. The multiply loop needs to be 
executed n times in cycle C1, - . . . . i Cn. 

4.2.2 Sign-Magnitude Number Multiplication 

In the multiplication of two sign-magnitude numbers, only n - 1 bits are in the 
magnitude of the multiplicand or multiplier. Hence n - 1 cycles are needed for the 
multiplication loop. The sign bits of A and B,  an-l and bn-1, are loaded into the 
flip-flops A ,  and B, in Co, respectively, while the MSB of register AX and that of 
MR are initially loaded with zeros. The sign of the product can be decided at the end 
of the multiplication process by performing A, @ B,, and can be loaded into position 
ACn-l while position ACn-2 remains 0. 

The flow chart for the sign-magnitude number multiplication is given in Figure 
4.4. 

4.2.3 One’s Complement Number Multiplication 

From the above multiplication procedure, we can see that the magnitude of a prod- 
uct is obtained by multiplying the magnitudes of two input operands. If the input 
operands are represented in the complement form, those representing negative num- 
bers should be converted to sign-magnitude form before entering the multiplication 
loop. Furthermore, the resulting product should be converted back to the complement 
form if it is negative. This kind of pre-complement andpost-complement are included 
in the multiplication procedure, which is why the discussed multiplication method is 
referred to as “indirect multiplication”. 

For the 1’s complement numbers, only bitwise negating is needed in the pre- 
complement or post-complement. So one additional cycle for each is sufficient. 



82 SEQUENTIAL MULTIPL ICA JlON 

A = a  ".,. ..... a, 
B = b  ".,...... b, 
P = P2"., ...... Pa 

+ 
magnitude 

1 co Setup 

i 

No 1 

Add multiplicand 
~ A?-- with partial product 

Right shift 

c, ----> C" 

Total = n+ 7 cycles 

Fig. 4.3: Unsigned Number Multiplication 



Initiation, etc. 1 17-.A 

0 0  
0 1  
1 0  
1 1  

INDIRECT MULTIPLICATION SCHEMES 83 

P 

positive 
negative 
negative 
positive 

- __ 

MR,= 1 
? 

r -- -1 - 

> C, ---> C,, only 
n-1 bits are in 

magnitude 

Total = n cycles 

Fig. 4.4: Sign-Magnitude Number Multiplication 



84 SEQUENTIAL MULTIPLICATION 

i L-l f 
Po 

+ 
P" * 

r r  + t 
p , ,  I P2"2 p**s P" 1 

Fig. 4.5: One's Complement Number Multiplication 

C, ---z C,, only 
ml bits are in 

magnitude 

Total = n+Z cycles 

After the setup in CO and C1 is dedicated to pre-complement, the n - 1 cycles, from 
Cz to C,, are for the multiplication loop, and Cn+l is needed for post-complement. 
Figure 4.5 shows the flow chart for 1's-complement number multiplication. The total 
number of cycles required to multiply two n-bit 1's complement numbers is n + 2. 



INDIRECT MULTIPLICATION SCHEMES 85 

4.2.4 Two’s Complement Number Multiplication 

The 2’s complement operation is conducted by first performing the 1’s complement 
operation and then adding a 1 to the LSB position. Two cycles are required for 
the pre-complement or post-complement. The pre-complement is completed in C1 
and C2 after the setup cycle Co. Cnf2 and Cn+, are for the post-complement after 
executing the multiply loop in cycle C, to C,+l. 

In the post-complement operation, a 2n-bit result is held in AC o M R  (see Figure 
4.6), and the 2’s complement of this long number is to be found. Here a “Zero MR’ 
signal ZMR is generated by NORing all then bits in register MR, and (1’s complement 
+ ZMR) is to be performed in AC. Recall that if the rightmost 1 can be identified in 
obtaining the 2’s complement of a number, every bit on its left is simply to be negated. 

In the case that the rightmost 1 is in MR, ZMR = 0. By performing (1’s complement 
+ 0) in AC, every bit there is negated. In the case that the rightmost “1” is in AC, ZMR 
= 1. Then (1’s complement + l), that is, 2’s complement operation is to be performed 
in AC. 

When all the bits in M R  are Os, we have all the 1s there after the 1’s complement 
operation. To “+ l”, a carry will propagate from the LSB of M R  to the AC, through 
all the Is, since only the rightmost 0 (the rightmost 1 before the 1’s complement 
operation) can stop the carry propagation and it is in AC now. By this mechanism, 
one can predict the 1 to be added odcarried into bit position n without wating for the 
carry propagation, hence reduce the length of carry propagation from 2n to n. 

Recall that in the 2’s complement operation, a bit is just negated if there is at least 
a 1 on the right of it. ZMR = 0 makes the “if“ condition hold for every bit in AC. 

AC t (AC) 

M R  t (m) + 1 

are performed in this case where AC is the 1’s complement of AC‘s content. ZMR 
= 1 when all the bits in M R  are 0s. Computing M R  t ( M R )  + 1 will result in the 
same M R  and will generate a carry into AC in this case. So the following is to be 
performed: 

- 

M R = M R  

AC t (AC) + 1, 

where ZMR = 1 can be added to the LSB position of AC right away without waiting 
for the carry-in propagated from MR. 

The complement operation is performed in cycle Cn+2 and the increment in cycle 
Cn+3. n + 4 cycles in total are needed to perform an n-bit 2’s-complement number 
multiplication. Presented in Figure 4.6 is a flow chart showing the procedure carried 
out. 

The previously described algorithms can be combined to create a universal multi- 
plier capable of performing any of the four types of multiplication. 



86 SEQUENTIAL MULTIPLICATION 

r 
A = a  ".,...... a, 
S = b , ,  __.__ bo 
P = P2" , __... Po 

F 

t f 
P,,> ... Po 

t 
P Z f P  P2"3-.-  P" I 

Fig. 4.6: Two's Complement Number Multiplication 

c, ---> C" *, 

Total = n+4 cycles 



ROBERTSON’S SIGNED NUMBER MULTIPLICATION 87 

A = 11012 = -310 
B = 01012 = 510 

AC MR 
Initially 0 0 0 0  0 1 0 1  
MRo = 1 + ) 1 1 0 1  

Add A 1 1 0 1  0 1 0 1  
Shift 1 1 1 0  1 0 1 0  
Shift 1 1 1 1  0 1 0 1  

+ ) 1 1 0 1  

Add A 1 1 0 0  0 1 0 1  
Shift 1 1 1 0  0 0 1 0  

MRo = 0 Shift 1 1 1 1  0 0 0 1  

P = 11110001~ = -15 

Fig. 4.7: Negative Multiplicand Times Positive Multiplier 

4.3 ROBERTSON’S SIGNED NUMBER MULTIPLICATION 

The pre- and post-complement presented in subsection 4.2.3 and 4.2.4 are time con- 
suming though the idea is straightforward. A better procedure should be searched. 
Following are two cases discussed in the Robertson’s Signed Number Multiplication. 

Case 1: It has been suggested that if only the multiplicand is negative while the 
multiplier is positive, one can follow the procedure presented in Section 4.1. Even 
if the multiplicand is represented in the 2’s complement form, it can be added to 
the accumulator without the pre-complement operation. However, when shifting the 
partial product to right, if the leftmost bit is 0 we shift in a 0. If the leftmost bit is 1 we 
shift in a 1. This is called arithmetic shift, in contrast to the logic shift which shifts 
in a 0 all the time. Figure 4.7 shows a numerical example of a 4-bit signed number 
multiplication for this case. 
Case 2: If the multiplier is negative, a special correction step is needed in adopting 
the above procedure. That is, subtracting the multiplicand instead of adding it in the 
last step. 



88 S€QU€NT/A L MULTIPLICATION 

A = 11012 = -310 

B = 10112 = -510 
AC MR 

Initially 0 0 0 0  1 0 1 1  
MRo = 1 + ) 1 1 0 1  

Add A 1 1 0 1  1 0 1 1  
Shift 1 1 1 0  1 1 0 1  

MRo = 1 + ) 1 1 0 1  

Add A 1 0 1 1  1 1 0 1  
Shift 1 1 0 1  1 1 1 0  

MRo = 0 Shift 1 1 1 0  1 1 1 1  
MRo = 1 + ) 0 0 1 1  

Subtract A 0 0 0 1  1 1 1 1  
Shift 0 0 0 0  1 1 1 1  

P = 00001111~ = 15 

Fig. 4.8: Negative Multiplicand Times Negative Multiplier 



RECODING TECHNIQUE 89 

Let B = 1bn-2 . . . bo be a negative multiplicand represented in the 2's complement 
form, with the sign bit bn-l = 1. Then 

JBI = 2 n - B  
= l(OO...O)- (1bn-2'..b0) 

1 1(OO..*O) - (1O.**O) - (bn-a***bo) 
(10.. .O) - ( b n 4  ' * * bo) = 

n-2 
- - Z n - l  - bi . 2 i ,  

0 

hence 
n-2 

(4.1) 

If we perform A x B following the procedure set for Case 1, the bit scan from 
bo to bn-2 is correct since it can be viewed as the second term in Equation (4.1) 
multiplying A.  Bit bn-l is 1 in the 2's complement representation of B,  and when 
it is scanned an add A operation will be performed according to Case 1 procedure. 
Actually, A x 2n-1 is added due to the shifted bit position. Compared with the first 
term in Equation (4.1), A x Z n - l  should be subtracted rather than added. Here the 
last step in the Case 1 procedure should be corrected to subtract A ,  for the negative 
multiplier case. The example in Figure 4.8 shows the procedure designed for Case 2. 
Subtracting A is performed by adding the 2's complement of A. 

4.4 RECODING TECHNIQUE 

In general, the indirect multiplication schemes have a delay time proportional to 
n cycles where n is the length of the input operands. In order to speed up the 
multiplication, the multiple bit scanning approach will be adopted which can reduce 
the delay time with additional hardware. 

4.4.1 Non-overlapped Multiple Bit Scanning 

In the previously described multiplication schemes, one bit is scanned at a time. 
Depending on whether the LSB of M R  is 1 or 0, a copy of the multiplicand A ,  and 
the intermediate result are added and then shifted, or just the intermediate result is 
shifted. 

Now, instead of examining the LSB of MR only, two bits can be scanned at a time. 
In that case 0, A ,  2A or 3 A  can be added to the intermediate result, depending on 
whether the least significant two bits in MR are 00, 01, 10 or 11. 2A is easy to obtain, 
just by shifting A left for one bit position. 3A can be obtained by A + 2A. Including 
the intermediate result, three operands are added up in this case. A multioperand 
adder is hereby requested. See Figure 4.9 for reference. 



90 SEQUENTIAL MULTIPLICATION 

A 2A A 

AX 1 
-- I I 1 MR: 

1-bit Scanning (1 at a time 

Current 
Partial 
Product 

I I /  1 1  
I 1  I I  

Ax 1 2-bit Scanning 
at a time 

Current 
Partial I 

Fig. 4.9: Multiple Bit Scanning 

Recall that when a single bit is scanned, the delay time is proportional to n cycles 
where each cycle time is related to the delay of a 2-operand adder. Now the delay time 
is proportional to 5 cycles and each cycle time is related to the delay of 3-operand 
adder. 

In general, for scanning m-bit at a time, the total delay time is proportional to 2 
cycles and each cycle time is related to the delay of (m + 1)-operand adder. 

4.4.2 Overlapped Multiple Bit Scanning 

In the non-overlapped multiple-bit scanning algorithm, for each scan of the rn-bit, 
m multiples of the multiplicand will be added to the intermediate result in the worst 
case. That is, 2OA + 2 l A  + 22A + . . . + 2”-l A .  In the overlapped multiple-bit 
scanning algorithm to be introduced, we will see that only one multiple of A will be 
added. 

We first look at the “string property” of a “conventional radix” integer number 
system. 

2i+k - 22 = 2 i + k - 1  + 2i+k-2 + . . . . . . + 2i+1 + 2 i .  

Figure 4.10 is an example to show how this property can be applied for recoding. 
Let’s call the consecutive 1s in the binary representation of a number the string 

of Is, or just string for short. Suppose we scan the bits from right to left. Refer to 
the rightmost 1 in the string as the “beginning of string”. For the leftmost 1, a 0 on 
its left is referred to as the “end of string”. A long string of 1s with a 0 on the left 



,I r "Beginning" of string- 

0'01 1 1  i 1 i :oo 

RECODING TECHNIQUE 91 

r "End" of string 

p4J 1 0 0 0 0 0 T  
1 0 0 0 0 0 0  

-1 1 -2 

0 1 1 1 1 1 1 2+~+2'+44+2'+3+2'+2+2't1+2r 

t Tt 

Fig. 4.10: String Property 

can be recoded by putting a 1 in the position of "beginning of string", putting a 1 in 
the position of "end of string" and filling other positions with 0s. Here we use the 
notation in signed-digital representation to refer to -1. That is, 

0~0111111~00000/01111~0 

= 01 ioooooiloooool ioooilo. 

In this way, when scanning the multiplier, say B,  to perform a multiplication, we can 
replace the consecutive additions of multiplicand multiples by only one subtraction 
at the beginning of the string and one addition at the end of the string. 

In the actual operation, the length of each scan is fixed. Suppose a few consecutive 
bits including their LSB in a scan are found 1s. It is unknown whether the LSB is 
in the middle of a string or at the beginning of the string. Overlapped scanning is 
hereby required. That is, let the LSB in the current scan overlap with the MSB in the 
previous scan. In other words, that bit is scanned twice. In the second scan it is used 
just as a reference bit, to tell the role of the bit on its left. In Table 4.1 each triplet is 
recoded and explained, and the corresponding operations are listed. 

Figure 4.1 1 shows a 3-bit overlapped scan in contrast to the 2-bit non-overlapped 
scan of a 16-bit number. Note that a dummy 0 is attached to the right of the LSB so 
that if LSB is 1, the beginning of string (or isolated 1) case can be recognized. Also, 
the algorithm allows the scanning to take place from right to left, as well as from 
left to right. Moreover, each triplet could be scanned concurrently, which suggests a 
parallel scanning model. 



92 SEQUENTIAL MULTIPLICATION 

z2 21 2” - 
Xi+s Xi+a Xi+l - Xi Xi-1 

d 0 O O d  
d 0 0 1 d 

- - -  - 

Table 4.1: Recoding the Triplets 

Multiples of 0,2A or 4A String position 

a 0  No string of “1” 

= d  0 1 O d  
d 0 1 O d  
d 0 1 1 d 

+ +2A End of string 
+ +2A Isolated “ 1 ”  

= d  1 O O d  
d 1 O O d  

= d  i O O d  
d 1 0 1 d 

= d  i 1 O d  
d 1 1 O d  

= d  0 i o d  
d 1 1 1 d 

= d  0 O O d  

Fig. 4.11: Two-Bit Scan vs. Overlapped Three-Bit Scan 

+ +4A End of string 

+ -4A Beginning of string 

+ -2A 

+ -2A Beginning of suing 

+ O  Middle of string 

Beginning and end of string 



RECODING TECHNIQUE 93 

0 1 
1 0 
1 1 

4.4.3 Booth’s Algorithm 

Based on the string property described above, we can recode the multiplier B to D 
by finding for two bits bibi-l a bit di in the following scheme. 

1 end of siring 
T beginningof string 
0 center of string 

bi bi-1 1 di 
o o I o no string 

0, if bi = Ll 
di = 1, i f b i  < bi-1 i I, if bi > bi-l . 

Recall that the beginning of the string is identified by a 0 on the right of the 

A dummy 0 is attached to the right of the LSB. The scan can be performed from 
consecutive 1s in the recoding table. 

right to left, from left to right or in parallel, and the result should be the same. 
Given 

A = u,-l. . . also mult ipl icand 

and 

B = b,-1 . + . blbo multiplier, 

the Booth’s Algorithm can be described as follows: 

Initialize 6-1 = 0, and i = 0. 
Add A to partial product and shift right if bi < b i - 1 ,  

Add -A  to partial product and shift right if bi > b i - 1 ,  
Shift right if b, = b i - 1 .  

Increment i, go to 2 if i < n .  

Here the Booth’s multiplication can multiply two 2’s complement numbers directly 
without special care of the signs of operands. In other words, pre-complement and 
post-complement are not needed and direct multiplication can be performed. Note 
that the shift here is an arithmetic shift. That is, if the MSB (sign bit) is 1, shift in a 
1, if it is 0, then shift in a 0. 

An example performing 5 x (-6) applying Booth’s Algorithm is presented in 
Figure 4.12. Considering that P = 5 x (-6) = -30, we can find the result of the 
above procedure correct. 



94 SEQUEN JlAL MULTlPLlCATlON 

A = 5 = 0101 
B = -6 = 1010 

- A  = 1011 
P = 5 x (-6) = -30 

pEJ p q  
0000 1010 0 

i=O w bi = bi-1 Shift right 

i= 1 - bi > bi-l Add -A and shift 
“0” -+ 0000 0101 0 0 4  

+ 101 1 

1011 0101 0 
“1”+ 1101 1010 1 O-+ 

+ 0101 
i=2 w bi < bi-l Add A and shift 

0010 1010 1 
“O”+ 0001 0101 0 l+  

+ 101 1 
i=3 - bi > bi-1 Add -A and shift 

1100 0101 0 
“1” 4 1110 0010 P=111000102 = -30 

(00011110~ = 16 + 8 + 4 + 2 = 30) 

Fig. 4.12: Example of Booth’s Multiplication 



RECODING TECHNIQUE 95 

Notice that the most significant two bits both represent the sign of the product, and 
(11100010)2 is the 2’s complement representation of -30. This method is attractive 
for such B that contains long subsequences of 1s. It is not so efficient when many 
isolated 1s are contained, since after recoding D may contain more non-zero bits than 
the original B. To overcome this drawback, higher radix string recoding has been 
investigated. 

Rather than the above table exploring the radix-2 string recoding, a radix-4 string 
recoding can be carried on in a similar way. The input is of three bits, bi,  bi-1 and 
bi-2, and the output is of 2 bits, d, and di-1. 

0 0  1 
0 1  0 
0 1  1 
1 0  0 
1 0  1 
1 1  0 
1 1  1 

0 1  
0 1  
- 1 0  
- 1 0  

0 1  
1 1  

0 0  

4.4.4 Canonical Multiplier Recoding 

This recoding technique uses signed-digit (SD) representation. Recall that a minimal 
SD vector has a minimal number of non-zero digits. 

For a special class of the minimal SD vectors, we give the definition of the canonical 
signed-digit vector below. The minimal SD vector D = d,-l . . . dido that contains 
no adjacent nonzero digits is called a canonical signed-digit vector. That is, di x 
di-l = 0 for 1 5 i 5 n - 1. 

In the representations listed above, (OOOlOT), is a canonical SD vector, whereas 
(000011)2 is not. 

It has been prove that any D = d,-ld,-z . . dido with a fixed value and a fixed 
length can be transformed into a “unique” canonical SD form if d,-l x d,-z # 1. 
By imposing an nth digit d, z 0, we can always achieve this. In effect, we will 
always assume that D = d,d,-l . . . dido has n + 1 bits and d, z 0. 

Once we obtain the canonical SD form of a number, say the multiplier B which 
we are interested in, we know that this canonical form has non-zero bits or 
digits. In the design of a multiplier then, only the addition of A or ( - A )  should be 
facilidated. Note that the 0s cause shifts rather than additions, and the delay time 

Next, let’s look at how a given (n  + 1)-bit number, (Ob,-l . - . bo),  can be trans- 
formed into an (n + 1)-bit canonical SD number, D = d,d,-l . . . do, (note that 
b, x b,-l = 0,) such that Cy=o bi x 2i = Cy=o di x 2i. The algorithm can be 
described as follows. 

n s h i f t  n a d d .  



96 SEQUENTlAL MULTlPLlCATlON 

Start with LSB, bo, of B and le t  i = O  and c o = O .  
Find ci+l = b;+l A b; V bi A c; V b i+l  A c; . 
Find di = b, + c; - 2ci+1. 
i = i + l .  I f  i = n ,  s t o p ;  e l s e ,  go t o  step 2 .  

Stop:c,d,-ld,-2 . ‘ . d o  i s  the ( n +  1 ) - b i t  canonical S D .  

Based on Step 2 and 3, a table is generated as follows. 

Conventional Assumed I Recoded Carry- 
Multiplier Bits Carry-in I Bit out 
bi+l bi Ci  I ci+l di 

0 
1 

0 0 0 I 0  

1 
0 0 1 I 0  

0 
0 1 0 I 0  

0 
0 1 1 1 1  
1 0 0 1 0  - 
1 0 1 1 1  1 
1 1 0 I 1  1 
1 1 1 I 1  0 

- 

Let’s work on a numerical example with B = (0 1 0 1 0 1 1)2. 

i = o  b l b o = i i  c 0 = o  + c l = i  d o = i  
i = l  b2b1=01 c 1 = l  + c 2 = 1  d 1 = 0  
i = 2  b 3 b 2 = 1 0  c 2 = 1  + c 3 = 1  d 2 = i  
i = 3  b4b3=01 c 3 = 1  + c 4 = 1  d3=O 
i = 4  b5b4=10 c 4 = 1  + c 5 = 1  d 4 = i  
i = 5  b6b5=01 C 5 = 1  + c 6 = 1  d g = O  
i = 6 Stop. 

SO, we have D = (1 0 i 0 i 0 I). 
An example is given in Figure 4.13(a) showing the scanning pattern in a 32-bit 

multiplication using the generalized Booth’s Algorithm. A dummy bit is attached to 
the LSB of the multiplier, and a total of 33 bits are to be scanned. Eight iterations of 
the scan are conducted sequentially, each inspecting 5 bits with one bit overlapped. 

The first iteration scans 5 bits. The other seven iterations scan 28 new bits with 4 
new bits per iteration excluding the overlapped bit. Within one iteration, 5 bits are 
taken care of by the overlapped 2-bit scanning applying the Booth’s Algorithm. 

The multiplicand multiples of A ,  - A  and 0 can be first prepared. The - A  is 
obtained by adding a “1” to the 1’s complement of A. Then for each pair of bits 
scanned, one of the multiples will be selected depending on the value of the 2 bits 
bibi-l.  Figure 4.13(b) gives the schematic of logic circuit selecting the appropriate 
multiplicand multiples. Gate 2 will be blocked by the output of Gate 4 when bi = b,-l, 
and its output will be 0 which is the multiple that should be selected. When bi > bi-1, 

A will be negated after passing Gate 1, and become the 1’s complement of A. It will 



RECODING TECHNlQUE 97 

(a) Scan Pattern 

.__ .__ . .__ . . ._ . . ._ . .~ . .~  .___ . .  v MS 

M, (j = 0.1, 2, 3) 

(b) Multiples Selection 

Fig. 4.13: Scan Pattern in 32-bit Multiplication 



98 SEQUENTIAL MULTIPLICATION 

be routed through Gate 2, and a "1" is also output from Gate 3. They will be added 
up in the future addition to form the 2's complement of A ,  - A .  The other case to 
make Gate 2 open is bi < bi-1.  A will remain unchanged after passing Gate 1 in this 
case, and the multiple to be selected is A .  

The four multiples, Mo, MI ,  M2 and M3 can be obtained from the four bit-pair 
scans in parallel with the replicated MS cells. Then they are to be added up. It should 
be noticed that within the same iteration, one multiple is off a bit position than its 
adjacent. A 6-input CSA tree is applied to trade for the operating speed with more 
expensive hardware (see Figure 4.14). The saved carry and sum are fed back to the 
input side, and the carry vector is shifted one bit left than the sum vector. 

Shift 4 bit 

each cycle 
__ . positions right 

AC .MR 
shill --* 4 bit 

each cycle 

Fig. 4.14: Adding the Bit-Pairs Parallelly Scanned with a CSA Tree 

One iteration after another, the group of four multiples are continuously generated 
one group after another. Each group is added to the accumulative partial product by 
the CSA tree, and the addition of different groups can be pipelined. Two outputs, 
sum and carry are generated by the CSA tree. To get the final result they need to 



REFERENCES 99 

be added by a two-operand fast adder. However, if new addends come in and the 
addition repeats, the carry can be saved and the two outputs can be fed back to the 
input of the CSA tree to be added with new inputs. 

To perform an n-bit multiplication applying such 5-bit per iteration scan pattern 
where 4 new bits are examined at a time excluding the overlapped bit, [TI itera- 
tions are required. With the simplest hardware, on the other hand, it takes n cycles 
to scan all the n bits. 

REFERENCES 

1. S. F. Anderson, et. al. “The IBM Systerd360 Model 91: Floating-Point Execu- 
tion Unit,” IBM Journal of Research and Development, Jan. 1967, pp. 34-53. 

2. A. Avizienis, “Recoding of the Multiplier,” Class Notes, Engr. 225A, UCLA, 
Los Angeles, CA, 197 1. 

3. A. D. Booth, “A Signed Binary Multiplication Technique,” Quart. Journ. Mech. 
and Appl. Math., Vol. 4, Part 2, 195 1, pp. 236-240. 

4. V. S. Burstev, “Accelerating Multiplication and Division Operations in High- 
Speed Digital Computers,” Tech. Report, Institute of Exact Mechanics and Com- 
puting Technique, The Academy of Sciences of the USSR, Moscow, 1958. 

5. P. M. Fenwick, “Binary Multiplication with Overlapped Addition Cycles,” IEEE 
Trans. Comput., Vol. C-18, No. 1, Jan. 1969, pp. 71-74. 

6. H. Freeman, “Calculation of Mean Shift for a Binary Muliplier Using 2, 3, or 
4-bit at a Time,” IEEE Trans., Vol. EC-16, No. 6, Dec. 1967, pp. 864-866. 

7. A. A. Kamal and M. Ghanam, “High-speed Multiplication System,” IEEE Trans. 
Comp., Vol. C-21, No. 9, Sept. 1972, pp. 1017-1021. 

8. M. Lehman, “Short-Cut Muliplication and Division in Automatic Binary Digital 
Computers,” Proc. IEEE, Vol. 10, Sept. 1958, pp. 496-504. 

9. H. Ling, “High-speed Computer Multiplication Using a Multiple-Bit Decoding 
Algorithm,” IEEE Trans. Comp., Vol. C-19, No. 8, Aug. 1970, pp. 706-709. 

10. 0. L. MacSorley, “High-speed Arithmetic in Binary Computers,” Proc. IRE, 
Vol. 49, Jan. 1961, pp. 91-103. 

1 1. G. Metze, “A Study of Parallel One’s Complement Arithmetic Units with Separate 
Carry or Borrow Storage,” Ph.D. Thesis, Univ. of Illinois, Urbana, 1958. 

12. F. J. Mowle, “Simplified Logic Design Using Digital Circuit Elements,” Vol. 3, 
Class Notes, Dept. of Elec. Eng., Purdue University, West Lafayette, IN, Sept. 
1974, Chap. 14. 



100 SEQUENTIAL MULTIPLICATION 

13. J. 0. Pennhollow, “Study of Arithmetic Recoding with Applications in Multipli- 
cation and Division,” Ph.D. Thesis, Univ. of Illinois, Urbana, Sept. 1962. 

14. G. W. Reitwiesner, “Binary Arithmetic,” in Advances in Computers, Vol. 1, 
Academic Press, New York 1960, pp. 261-265. 

15. J. E. Robertson, “Two’s Complement Multiplication in Binary Parallel Digital 
Computers,” IRE Trans., Vol. EC-4, No. 3, Sept. 1955, pp. 118-119. 

16. J. E. Robertson, “The Correspondence Between Methods of Digital Division and 
Multiplier Recoding Procedures,” IEEE Trans. Comp., Vol. C-19, No. 8, Aug. 
1970, pp. 692-701. 

17. K. S. Trivedi and M. D. Ercegovac, “On-Line Algorithms for Division and Mul- 
tiplication,” IEEE Trans. Comp., Vol. C-26, No. 9, July 1977, pp. 681-687. 

18. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Electronic 
Comp.,Vol. EC-14,No. 1,Feb. 1964,pp. 14-17. 

PROBLEMS 

4.1 Use the add-and-shift approach to perform the unsigned number multiplication 

(a) Show the typical sequential multiplication procedure, referring to the procedure 
in Section 4.1. 
(b) Build a table showing the register occupation during this procedure. 
(c) Find the delay time of this sequential multiplication. 

4.2 
cases: 
(a) They are both unsigned numbers; 
(b) They are both signed numbers. 
Draw a flow chart for each case. 

4.3 Using 2’s complement number multiplication to perform the multiplication in 
Problem 2. Show the corresponding flow chart. 

4.4 Let A = -7, B1 = 9 and BZ = -9. 
(a) What are the 2’s complement expressions of A,  B1 and B2? 
(b) Perform A x B1 and A x B2 using Robinson’s method, and compose a table 
showing the procedure of each multiplication. 

4.5 Given the hardware as in Figure 4.9(b), perform the unsigned number multi- 
plication (100100)~ x: (100111)2, where (100100)2 is the multiplicand. Show the 
performed operations and the content of AC o M R  register step by step if non- 
overlapped 2-bit scanning is applied. 

of (11001)2 x (10110)2. 

Consider the multiplication of two numbers, A=1010 and B=1101, for two 



PROBLEMS 101 

4.6 Given a 4-bit adder and two 4-bit registers AC and MR, perform P = A x B 
by Booth’s Algorithm, where A = (0101)~ and B = (1001)2 are two unsigned 
numbers. 

4.7 Given A = 13 and B = -10, show the procedure of the multiplication of A 
and B applying Booth’s Algorithm. 

4.8 Build a table for an overlapped 4-bit scan. Find for each case the multiples of 
the multiplicand and the string property your work is based on. 

4.9 Given a 9-bit signed number X = (100110111)~, if using an overlapped 3-bit 
scan to recode X, show how the multiples of multiplicand A resulted in different 
scans. How do they add to the final answer which is the X multiples of A? 

4.10 The overlapped scanning multiplication algorithm allows the scan to take place 
from right to left or left to right. For the number given in Problem 4.9, verify that the 
correct answer can be obtained by scanning X from left to right. 

4.11 Given a 32-bit number for scan, an overlapped 8-bit scan is to be applied in 
sequence. How many iterations are needed? For each iteration in the sequential 
scans, Booth’s Algorithm is to be applied in parallel to recode the scanned 8 bits. 
How many multiples of the multiplicand will be added at a time by an adder? Draw 
a chart to show your design of the scan pattern. 

4.12 Given a 16-bit binary number B = (0011101101110011)~, find the corre- 
sponding canonical signed-digit vector D which represents the same value as B. 
Show step-by-step how each digit in D is obtained. 



This Page Intentionally Left Blank



5 
Parallel Multiplication 

In the preceding chapter, a multiplication function was completed in n iterations given 
the input operand of length n. In each iteration, basically an add-and-shift operation 
was performed. In this chapter, instead of repetitively using the same single-stage 
hardware, an Array Multiplier is proposed, in which multiple stages of hardware are 
provided by replicating the single stage circuit. The different iterations of addition 
can now be performed by different stages of hardware, and each shifting is realized 
by the proper wiring between hardware stages. In this case, multiple multiplication 
operations can be overlapped. That is, the second multiplication can start before 
the first one completes, hence the time required to complete multiple multiplication 
functions can be reduced. To date, various iterative array multipliers and cellular array 
processors are available that are capable of high-speed multiplication demanded in 
scientific computation. 

5.1 WALLACE TREES 

In the multiplication operation, the addition of the partial products is the most time- 
consuming process. In the previous chapter, how to reduce the number of partial 
products is discussed. Here we present a hardware to handle the repetitive addition - 
Wallace tree. 

A Wallace tree is a bit-slice adder which adds all the bits in the same bit position. 
Figure 5.1 gives the Wallace trees for different number of inputs. In (a), a 3 bit-slice 
adder, W3, is presented which is actually a 3-input 2-output carry-save full adder. 

103 



704 PARALLEL MULTIPLICATION 

2' 2 21 2' 2' 2' 21 

2 ' + 1  2' 21'2 2"' 2' 

(a) 3-Bit Wallace Tree (b) 7-bit Wallace Tree 

2' 2' 2 2' 2 2 2' 2 2 2 2' 2' 2 2' 2' 

J 

2" 2"2 2+' 2 

(c) 15-bit Wallace Tree 

Fig. 5.1: Wallace Tree 



UNSIGNED ARRAY MULTIPLIER 105 

Table 5.1: Combination and Delay of k-input Wallace Tree 

Figure 5.l(b) shows a 7-input Wallace tree, W7, which is formed by four W3s. 
Note that the delay time along the critical path is 3 A F A .  After 2 n F A  time, the output 
in the 22 bit position can be ready. 

A 15 bit-slice Wallace tree, W15. is also given, which is composed of two W ~ S  
and three W3s. Along the critical path (marked by the dashed line), the delay time is 

In general, a k-input Wallace tree is a bit-slice summing circuit which produces the 
sum of k bits all having equal weights. Table 5.1 lists the combination and delay time 
for typical Ic-input Wallace trees. Note that a k-input Wallace tree has [logs (k + 1)1 
outputs. 

5.2 UNSIGNED ARRAY MULTIPLIER 

In this section we introduce anunsignedarray multiplier. Given A = (urn-l . u1uO)z 

and B = (bn-l . . .b lb0)2,  where A and B are unsigned integers, suppose P = 
(prn+n-lprn+n-2 - .  -plpo)2 is the product. We have 

P = A x B  

i=O j = O  

rn-1 n-1 

Note that A is of m bits and B n bits, and the product P has m + n bits. Such 
multiplication is referred to as m-by-n multiplication. If A and B are of the same 
length, each containing n bits, then P is 2n-bit long. We refer to such multiplication 



106 PARALLEL MULTIPLICATION 

Fig. 5.2: 5-by-5 Multiplication 

as n-by-n multiplication, or just n-bit multiplication. Figure 5.2 shows a 5-by-5 
multiplication. 

Eachaibj,O 5 i , j  5 n-l,iscalledasummand,andeachrowinthemiddlesection 
is called a partial product. Two kinds of operations are required here: the generation 
of summands and the addition of summands. The summands can be generated in 
parallel provided that an array of m x n AND gates is available. The summand 
summation can be completed by an array of (m - 1) x n FAs. The summands in 
a box in Figure 5.2 can be added by an full-adder (FA). If there is a box above it, 
the summand is added to the sum generated by that box. Figure 5.3 shows a 5-by-5 
unsigned number multiplication performed by a 4 x 5 array of FAs. In row j, an input 
vector ( a 4 b j + l ,  a36j+l, azbj+l, albj+l, aobj+l) is input from the right of the FAs. 
Two vectors are produced, a carry vector and a sum vector. The carry is connected 
one position to the left in the succeeding row where it is added with the input vector 
from the right and the sum vector from the above row. In the top row, only the input 
vector is added with ( a 4 b 0 ,  asbo, a2b0, albo, a&), so a row of half-adders (HAS) 
can be used if unity is not a concern. In the bottom row, the carry is rippled from 
right to left. One can see from Figure 5.2 that po = aobo and no addition is needed 
in the LSB position. That is why a 4 x 5 array is sufficient to perform the 5-by-5 
multiplication rather than a 5 x 5 array. 

The delay time of summands generation is the same as that of AND gate. Hence, 

A,, = A A N D .  

For the delay time of summands summation, not all the bits p j  in the product form 
at the same time. The input values must be maintained long enough to allow all the 
outputs to become stable. The worst case propagation delay path should be identified 
here. Starting from the right most cell of the top row, there is a delay time of ~ A F A  
before reaching the bottom row, and the propagation delay from the rightmost cell to 



UNSIGNED ARRAY MULTIPLIER 107 

the leftmost cell in the bottom row takes 4 n F A .  Thus, the time needed for summands 
summation is 

Ass = 4AFA + ~ A F A  = 8 n F A .  

In general, to perform an m-by-n unsigned number multiplication we can achieve the 
time complexity 

A U S  = A A N D  f [(m - 1 )  + (n  - l ) ] n F A  (5.1) 
=  AND + (m + n - 2 ) n F A .  (5.2) 

Also, we have area complexity 

Ar~s  = m X 12 X AAND + ( m -  1)  X 12 X AFA. 

If m = n, 

and 

Aus = n2 x AAND + n(n - ~ ) A F A .  

With LAND = 2Ag and AFA = 2Ag, we have 

n u s  = 2Ag + (2n - 2)  + 2Ag = (4n - 2)Ag. 

(5.3) 

The bottom row of FAs in Figure 5.3 can be replaced by a one-level Carry Lookahead 
Adder, so that the ripple-carry can be avoided and the delay time can be independent 
of the length of multiplicand. In this case, 

nus  =  AND + (n  - ~ ) A F A  + &LA 

= 2 n A , + n c ~ ~  
= (2n+ ")Ag. 

The efficiency can be further improved by the pipelining mechanism if we add latch 
registers between the rows of FAs. More than one multiplication operation can be 
overlapped. That is, the addition of the partial product of an earlier multiplication can 
be overlapped with that of a later multiplication. If the carry-lookahead is considered 
as one step, then the intermission of two latches should be no shorter than the delay 
time of any step. 

As to the area complexity, with AAND = 2Ag and AFA = 10Ag, when m = n, 
we have 

AUS n2AAND f (n(n - ~ ) ) A F A  
2n2Ag + (n2 - n)  . 10Ag 

(2n2 + 10n2 - 10n)Ag 

= 

= 

= (12n2 - 10n)Ag 



108 PARALL EL MULTIPLICATION 

Fig. 5.3: 5 x 4 Array Multiplier Performing 5-by-5 Multiplication 

without CLA. In the case that a CLA is used, 

Aus = n2AAivo + ( n  - 1)(n - 1 ) A p ~  + ACLA 
= 

= 
(2n2 + 10n2 - 20n + 10)Ag + ACLA 
(12n2 - 20n + 10)Ag + ACLA. 

With the LSI or VLSI technology, the above multiplier can be easily implemented on 
a single chip. 

This array is for the unsigned numbers (US) multiplication. For the multipication 
of sign-magnitude (SM), 1’s complement (OC) or 2’s complement (TC) numbers, 
pre-complementer and post-complementer are needed. 

Note that A and B are both of (n+l) bits here, and P is of (2n+l) bits, with A,, 
B, and P2, being the sign bits. Recall that a 1’s complementer has a delay time of 
AT = 2A, and a 2’s complementer has a delay time of AT = (2n + 2)A,. A better 
solution than the “indirect” array multiplier is sought. 

5.3 TWO’S COMPLEMENT ARRAY MULTIPLIER 

We introduce in this section a “direct” multiplication method which can multiply 
2’s complement numbers without pre-complement and post-complement operations. 
Significant speed up can be provided by a multiplier applying such approach. 

We first describe the mathematical principles on which the direct 2’s complement 
multiplication is based. Let N = (u , -~u,-~ . + . ao) be a 2’s complement number 



TWO'S COMPLEMENT ARRAY MULTIPLIER 109 

where is the sign bit. The value of N can be expressed as 

n-2 n-2 

i=O i=O 

with the first term equal to 0 since an-1 = 0. 
For ( N  = l a n - 2  . . . U O ) ~ ,  we have 

i=O i=O 

n-2 n-2 

= - [ ( C 2 ' ) + 1 ] + C a i 2 i  
i = O  i = O  

n-2 

= -(2n-') + ( X U i 2 i )  
i=O 

n-2 
- - -un-12n--1 + ( E U i 2 i )  

i=O 

with the first term equal to -2n-1 since un-l = 1. Notice that 

and hence 

n--2 .. ~ X 2i + 1 = 2n-1. 
i=O 

By now we have obtained a universal expression for N no matter N is a positive 
number or a negative number, 

n-2 

N = -~, ,-12~- '  + ( C a i 2 ' )  (5.4) 
i=O 



170 PARALLEL MULTIPLICATION 

Next, we would like to show that + N  and - N  have the following relationship: 

t s s s (5.5) 

Proofi Intuitively, from 

n-2 

i = O  

we have 

Recalling that 

n-2 c 2i + 1 = 2n-1 ,  

i=O 

we subtract the right-hand side of the above equation from the expression of N and 
then add the left-hand side of it back. That is, 

n-2 71-2 

It can be rewritten as 

From the above example we can find that negating a number can be realized by 
negating bits, such as changing ai to (1 - a i )  and changing 0 to 1, or vice versa. 
This motivates designers to modify a full adder so that some of the inputs and outputs 
can carry negated weights. Figure 5.4 shows the construction of different types of 
adders. A Type I adder has no negative input. A Type I1 has one negative input, and 
as its modified version, Type 11' has two negative inputs. As the modified version of 
Type I, Type I' has three negative inputs. Also given are the arithmetic relationships 
between the inputs and outputs of these adders. 

With a certain mix of different types of adders, we can construct some array which 
performs direct complement multiplication. 



TWO’S COMPLEMENT ARRAY MULTIPLIER 17 1 

X 

X 

S 
X 

X 

x . P + y . P +  z .20= C . 2 ’ +  s.20 

x.P+y.  20- Z.P= C . 2 ‘ -  s.20 

-x -P -y .20+  z.P= -C.2‘+ s.20 

-x .P-y.20*  I. 2Q= -C.2’- s.20 

S 

Fig. 5.4: Different Types of Full Adders 

5.3.1 Baugh-Wooley Two’s Complement Multiplier 

LetA = (um-lum-2 - .  ~uo)beanrn-bit2’scomplementnumber,B = (bn-lbn--2. .-b0) 
an n-bit 2’s complement number, and P = A x B = (pm+n-lpm+n-2 - 3 .PO) an 
(rn + n)-bit product. From Equation (4.1), 

m-2 

i=O 

n-2 

B = -bn-12n-1 + ( bi2a),  

and 

Since 

P = A x B ,  



112 PARALLEL MULTIPLICATION 

m-2 n-2 

f' = ( -- am-12m-1 + C ai2i) x ( - b,-12n-1 + C bi2i) 
i=O i = O  

m-2 n-2 

i=O i = O  

Here the third term and the fourth term are negative. We would like the negative 
weight to be carried by different bits. It can be proved that the third term 

m-2 m-2 

- C aibn-1 2,-1i-i - - 2n-1 ( - 2m + Zm- l  + bn-12m-1 + bn-l + C ~ i b ~ - ~ 2 ~ ) .  
i = O  i=O 

Pro08 The approach of proof is to show 

provided that bn-l can only have two values, 0 or 1 
If bn-l = 0, we have 

L H S  = 0,  

R H S  = Zn-l ( - 2" + 2m-1 + 0 .  2m-1 + 0 + c lii 0 .2 ' )  
m-1 

i=O 

- - 2n-1(-2m + 2"-1 + 2m-1) 

= 0. 

If bn-l = 1, we have 

m-2 

i=O 

m-1 

i=O 

m-2 

- - 2,-'( - 1.  2m + 1.2-1 + 1 + c Ci29  
i=O 

5 5 according to Equation (5.5) 
m-2 

5 : s  s 
= -2n--1( - 0 . 2 m + 0 . 2 m - 1 + O +  C C i i 2 i )  

i=O 



TWO'S COMPLEMENTARRAY MULTIPLIER 113 

m-2 

i=O 

m-2 

i=O 

Hence L H S  = R H S  for all the cases. 

of weight, we have 

- C aibn-12n-1+i = (-1) 12 m+n-1 + (1 + 6 4 2 m + n - 2  + tim-2bn-12m+n-3 

By rearranging the third term, the RHS of Equation (5.3.1) in the decreasing order 

m-2 

i = O  

+Bm-3 b n - 1 2m-tn-4 + . . * + ii0bn-12n-1 + bn-12"-l. 

The entries listed below show the values in different weight positions. 

2m+n-1 2m+n-2 2m-kn-3 2m+n-4 2m+n-5 . . .  2n-I 

- 
0 bn-1 tim-2bn-ltim-3bn-l~m-4bn-l. * .  Gobn-1 

(-1) 1 0 0 0 . . .  bn-l 

Likewise, the fourth term in P can be written as 

- C am-1 b.2m-l+i a - - 2m-1 ( - 2n + 2n- l+ tirn_12n-1+ a m - l +  C am-1ti2i) .  

n-2 n-2 

i=O i=O 

The entries listed below show the values in different weight positions for the fourth 
term. 

2m+n-1 2m+n-2 2m+n-3 2m+n-4 2m+n-5 . . .  2m-1 

- - - - 
0 tim-l am-l bn-2 am-lbn-3 am-1 bn-4. . * am-l bo 

am-1. . . .  (-1) 1 0 0 0 

Adding the second row entries of term 3 together with those of term 4, we have 

2m+n-1 2m+n-2 2m+n-3 2m+n-4 2m+n-5 . . .  2m-1 2"-1 

bn-1 ... (-1) 1 0 0 0 
(-1) 1 0 0 0 . . . am-l 

(-1) 1 0 0 0 0 . . .  am-l bn-l 

discard. pm+,-l 

Figure 5.5 shows the summand matrix of the four terms, two of which are negative, 
in an m-by-n multiplication with m > n, applying the above direct 2's complement 
multiplication algorithm. 



114 PARALLEL MULTlPLlCATtON 

... 

... P = A x B  

1 st term of P 

Fig. 5.5: Distribution of Negative Weight 

An array implementing such algorithm is referred to as a Baugh-Wooley's array. 
For an example of m = 6 and n = 4, a hardware structure is given in Figure 5.6. 
The structure requires the input bits made available in both complemented form and 
original form. This is not difficult to satisfy, especially when the bits are held in 
flip-flops. 

The delay time of the array can be calculated by 

 NOT + AAND + [ (n  - 1) + m1~p-A 

[2(m + n) + l]Ag. 

:= l + 2 + ( m + n - 1 ) x 2 A g  
:= 

Let A = (10)lo = (001010)2 and B = (-3)10 = (1101)2, we verify the result 
P = A x B = 10 x (--3) = -30 by the Baugh-Wooley 2's complement multiplication 
in Figure 5.7. 

For the case of m = n, a 4-by-4 Baugh-Wooley 2's complement array multiplier 
is presented in Figure 5.8. The delay time of such array can be calculated as 



TWO'S COMPLEMENT ARRAY MULTIPLIER 115 

Po p. p, p. p, p4 Po p2 p, Po 

Fig. 5.6: Baugh-Wooley Array Multiplier Performing 6-by-4 Two's Complement 
Multiplication 

bm, = b3 = 1 
am., = a5 = o 
m+n - 2 = 8 

I I 
sign extended 

sign 

2s complement 
form of product 

Fig. 5.7: Baugh-Wooley Multiplication for 10 x (-3) 



116 PARALLEL MULTIPLICATION 

For i , j  =0, 1 . 2 . 3  
and (i, I j = (4. 4) I a, b, 

p, p, Po p5 p, p, p2 PI Po 

Fig. 5.8: Baugh-Wooley Array with m=n=5 



TWO’S COMPLEMENT ARRAY MULTIPLIER 117 

Fig. 5.9: Distribution of the Negative Weight 

5.3.2 Pezaris Two’s Complement Multipliers 

In addition to the Baugh-Wooley 2’s complement array multiplier, we describe below 
another type of direct 2’s complement array multiplier, the Pezaris array multiplier 
and the modified versions of it. 

Let A = a4u3a2u1ao be the multiplicand and B = b4b3b2blb0 the multiplier. 
In the above notations and what follows, a negatively weighted bit is in bold. To 
multiply A and B,  the summands distribution is presented in Figure 5.9. 

To implement the above operation, a Pezaris array multiplier is proposed, which 
is composed of Type I, Type 1’, Type I1 and Type 11’ full adders. For a 5-by-5 Pezaris 
array, the schematic logic circuit diagram is shown in Figure 5.10. 

In Figure 5.10 the rightmost Type I1 adder in the second row from bottom is a little 
special. As an output of the whole array, the “s” signal produced by that adder is 
supposed to carry a positive weight. However, in a typical Type I1 adder, 

x + y - z = 2c - s 

is implemented, that is, s carries a negative weight. Since 2c - s = 2c + s - 2s = 
2(c - s) + s, we can let the rightmost Type I1 adder output an s carrying the positive 
weight, but subtract s at the input of the rightmost Type 11’ adder which is one bit 
position higher, hence it carries twice the weight. Among the x, y and z three inputs 
of the Type 11’ adder, z is a negative weight carried input, so z is tied to the s output 
of the Type I1 adder on its right. When that output is 0, nothing will affect the Type 
11’ adder on the left. 

n(n - 1) full adders in total are required in an n-by-n Pezaris array. In general, 
the delay time for an m-by-n Pezaris array is 

= A A N D  + ((n - 1) + (m - ~ ) ] A F A  
= 2Ag + (m + n - 2)2Ag 

[2(m + n) - 2]Ag. = 



118 PARALLEL MULTIPLICATION 

ps p5 p, pe p5 p4 p, p2 PI Po 

Fig. 5.10: 5-by-5 Pezaris Array Multiplier 

_I: 
Fig. 5.11: The Adjustment 



TWO'S COMPLEMENT ARRAY MULTIPLIER 119 

Fig. 5.12: 5-by-5 Bi-Section Array Multiplier 

An array multiplier containing fewer types of full adders is proposed in Figure 
5.12. It contains only two types of full adders, and is referred to as bi-section array 
multiplier. The Type I full adders are located in the upper section, and Type 11' full 
adders are in the lower section. A 5-by-5 multiplication can be performed by the 
given bi-section array multiplier. 

The delay time for an m-by-n bi-section array multiplier is counted as 

[n f (m - l ) ] A F A  f A A N D  

= [2(m + n - 1 )  + 2]Ag 
= 2(m+n)Ag. 

A tri-section array multiplier consists of three sections. One contains Type I full 
adders only, one contains solely Type I1 adders and the whole third section contains 
Type 11' full adders. In Figure 5.13 depicting a 5-by-5 tri-section array, the three 
sections are separated by dash lines. 

In a more general case, for an m-by-n tri-section array multiplier the delay time is 

[(n - 1 )  + (m - l ) ] n F A  f A A N D  

= (m + n - 2)2Ag + 2Ag 

[2(m + n) - 2]Ag. = 



120 PARALLEL MULTIPLICATION 

Fig. 5.13: 5-by-5 Tri-section Array Multiplier 

5.4 MODULAR STRUCTURE OF LARGE MULTIPLIER 

To multiply two numbers of large sizes, a modular structure is needed which can 
generate and sum sub-products and can have a recursive organization. 

5.4.1 Modular Structure 

Multiply Modules are array multipliers which can perform fast multiplication on short 
or moderate-length operands. Given n-by-n multiply modules, we introduce below 
how to build a large 2n-by-2n multiplier. 

Let o denote the function of concatenation. For large multiplicand A, we can 
partition it into higher order half, A H ,  and lower order half, AL, such that A = A H  o 

A L .  Similarly, multiplier B can be partitioned into BH and BL with B = BH o BL. 
If A contains 2n bits, AH and AL each contains n bits. The same case holds for 
B. Therefore the 2n-by-2n multiplication A x B can be completed by a number of 
n-by-n multiplication, and each generates a sub-product of 2n bits long. That is, 

P = A x B  (5.6) 

= AHOAL x BHOBL (5.7) 
= (AH x BH + AL x B H )  + (AH x BL + AL x B L ) .  (5.8) 



MODULAR STRUCTURE OF LARGE MULTIPLIER 721 

Fig. 5.14: Alignment of the Sub-products 

A: 27 26 25 24 . 23 22 21 20 

x, 0: 27 28 25 24 . 23 22 21 20 
~ X B ~  = P,,= 27 26 25 2 23 22 21 20 

Fig. 5.15: 8-by-8 Multiplication via 4-by-4 Multipliers 

When adding the four sub-products in Equation (5 .8) ,  special attention should be 
paid to the alignment. Note that AH is n bit position higher than A L ,  so the first sub- 
product AH x BH is n bit position higher than the second sub-product AL x B H ,  and 
the third sub-product AH x BL is n bit position higher than the fourth sub-product 
AL x BL. In the meantime, since BH is n bit position higher than BL, the second 
sub-product A L  x BH is n bit position higher than the fourth sub-product AL x BL, 
hence is in the same position as the third sub-product AH x BL. 

Figure 5.14 shows the alignment of the four sub-products. Each sub-product can 
be generated by an n-by-n multiplier module, and four such modules are needed in 
total. For example, if A and B are 8-bit numbers, the bit position span for the four 
sub-products is shown in Figure 5.15 indicated by their weights. 

To add the sub-products, 3-input Wallace trees are needed for bit position n to 
3n - 1. 



122 PARALLEL MULTIPLICATION 

Fig. 5.16: Modular Structure of Array Multipliers 

Swapping the order of the first and second sub-products, as well as the third and 
the fourth, we can have the outputs of the modules arranged in a left-right-top-bottom 
fashion, as shown in Figure 5.16, where each rectangle is a 4-by-4 module to obtain 
an 8-by-8 multiplier. Furthermore, such structure can be recursively applied. We 
can build a 16-by-16 multiplier by putting the 8-by-8 multipliers in left-right-top- 
bottom way and build a 32-by-32 multiplier in a similar way as shown in Figure 5.16. 
Different Wallace trees are required depending on the size of the multiplier. We just 
marked the types of Wallace trees needed in the right half of the multiplier. The left 
half is symmetric to the right. 

The time complexity of such multiply module (MM) can be found as follows based 
on Equation (5.1) and with an example of 8-by-8 multiplication. 

A M M 4 x 4  = A A N D  -k [ ( 4  - 1) + (4 - l ) ] n F A  

= ( 2 + 6 x 2 ) A g  
= 14Ag, 

hence, 

n M M 8 x 8  = (14 -k 2 ) n g  -k A C P A  

= 1 6 Q g + Q c p ~ .  

As to the area complexity, from Equation (5.3) we have 

A M M 4 x 4  = ~ ' A A N D  -k 4 X ~ A F A  



MODULAR STRUCTURE OF LARGE MULTIPLIER 123 

Fig. 5.17: 4-by-2 Additive Multiply Module 

= 

= 152Ag, 

16 x 2Ag + 12 x 10Ag 

therefore, 

A M M ~ ~ ~  = 

= 688A, + &PA. 

(4 x 152 + 8 x 10)Ag + ACPA 

5.4.2 Additive Multiply Modules 

The additive multiply modules (AMM) can receive additional addends and add them to 
the product of the input multiplicand and multiplier. The multiply modules mentioned 
in the prior subsection have no such function and are referred to as non-additive 
multiply modules. Figure 5.17 shows a 4-by-2 AMM which can perform the arithmetic 
operation such as P = A x B + C + D. Here A and B are a 4-bit multiplicand and 
2-bit multiplier respectively. The product P is of 6 bits since 4 + 2 = 6. C is of 4 bits, 
and D is of 2 bits. 

Let 

That is, 



124 PARALLEL MULTIPLlCATlON 

A: 27 26 25 24 . 23 22 21 20 

x, 6: 27 26. 25 24. 23 22 . 21 20 

25 24 23 22 21 20 

29 28 27 26 25 24 

27 26 25 24 23 22 

211 210 29 28 27 26 

29 28 27 26 25 24 

211 210 29 28 27 26 

+) 215 214 213 212 211 210 

Fig. 5.18: 8-by-8 Multiplication via 4-by-2 Multipliers 

=4 x 6, 

=AH X 6, 

=I+ x 6, 

=4 x 6, 

=4 x 8, 
=A+, x 6, 

=4 x 6, 

=4 x B4 

P 

For example, if A and B are 8-bit numbers, the bit position span for the four sub- 
products is shown in Figure 5.18, indicated by their weights. 

The array multiplier implemented by 4-by-2 AMMs is presented in Figure 5.19. 
As we can see from Figure 5.17, the worst case delay for an 4-by-2 AMM is 

n A M M ( 4 x 2 )  = 5 n F A  -k A A N D  

= (10+2)A, 

= 1 2 4 .  

Notice that if only PI and Po are needed, it is not necessary to wait for 12A, nothing 
rather, 6A, is sufficiently long. Hence in Figure 5.19, the pair of AMMs connected 
by the dashed lines encounter a delay time of (6 + 12 = 18)A,. There are three such 



MODULAR STRUCTURE OF LARGE MULTIPLIER 125 

0 0  0 0  0 0 0 0  0 0  

Fig. 5.19: Modular Structure Applying Additive Multiply Modules 

pairs along the delay path. Including the first and last AMMs, the total delay time of 
the modular multiplier completing 8-by-8 multiplication is 

4 ~ ~ ~ ( g ~ g )  12 + 18 + 18 + 18 + 12 = 784 , .  

The area complexity of this 8-by-8 modular array can be calculated as follows: 

AAMM(4x2) = 8AFA + 8AAND 
= (80+16)A, 

= 96A,. 

In total, 

5.4.3 Programmable Multiply Modules 

Observe the summand matrix in Figure 5.20 (a), and partition it into two halves 
horizontally and vertically. We have the sub-matrixes in four regions indicated as (0), 
(I) ,  (2) and (3). One can find that the sub-matrix in region (0) contains no negatively 
weighted summand. The sub-matrix in (1) has the summands in the bottom row 
carrying negative weight, and that in (3) has the summands on the left border carrying 
negative weight. In region (2), the sub-matrix has the features of both matrixes in (1) 
and (3). Let AMMi denote the type of Additive Multiply Module needed in region i. 



726 PARALLEL MULT/PL/CAT/ON 

Figure 5.20 (a) implies that a 2’s complement multiplier can be composed of four 
additive multiply modules: A M M O ,  A M M I ,  AMM2 and AMM3. Furthermore, 
with these kind of AMMs, even a bigger multiplier can be built. See Figure 5.20 (b). 

Actually, the array structure of AMMi  can be fixed for different i. Only the input 
summands to the bottom and/or to the left border need to be altered to make different 
AMMis.  Rather than inputing aibj all the time, Tiibj is needed at the bottom for 
A M M I ,  and ai6j is needed on the left border for AM&. As to AMM2,  both the 
bottom and the left border take the input summands specified as above respectively. 

In other words, if we can let the summands generation be controlled by function 
modes, different AMMis  can be formed by switching the mode. When all the 
summands are generated under mode 0, the array formed is AMMO.  When the 
summands to the bottom are generated under mode 1, but others are under mode 
0, the array formed is A M M l .  Also, when the summands to the left border are 
generated under mode 3 ,  but others are under mode 0, the array formed is AMMs.  
I f  the summands to the left are generated under mode 3 and that to the bottom under 
mode 1, and the rest are under mode 0, AMM2 is formed. In this way the additive 
multiply modules are made programmable. 

The summands input to the bottom and left border need one variable to be negated 
under some mode, otherwise they should be aibj as usual. The mode controlled 
generation of these summands is shown in Figure 5.21. Note that the FA at the 
intersection of bottom row and left border accepts both of the summands sent to the 
former and the latter. Refer to the FA on its left as the “corner” based on the Baugh- 
Wooley’s multiplication. The summands input to it under different modes are listed, 
as well as the additional summands input only during Mode 2 including Tin-l, bn-l ,  
and a “1”. 

Figure 5.22 shows how the AMM(4 x 4)s are applied to construct larger multiplica- 
tion networks, AMM(8x 8). Note that AMMo(4x4) ,  A M M l ( 4 x  4 ) ,  AMM2 ( 4 x  4)  
or M3(4 x 4) are obtained by programming the AMMi(4  x 4)s. This iterative method 
can be extended to design (16 x 16), (32 x 32), . . , (4k x 4k)  multipliers with k being 
an integer. In general, a (4k x 4k)  multiplier requires k 2  A M M ( 4  x 4)s, among which 
( / ~ - 1 ) ~  a r e A M h / l o ( 4 ~ 4 ) , ( k - 1 ) a r e A M M ~ ( 4 ~ 4 ) , ( k - l ) a r e A M ~ ~ ( 4 ~ 4 ) ,  
and one is AMM2(4 x 4). 

- 



MODULAR STRUCTURE OF LARGE MULTIPLIER 127 

(b) 

Fig. 5.20: Combine Small AMMs into a Large One 



728 PARALLEL MULTPLlCATlON 

- mode 1 and 2 b 
t 

To bottom row 

Mode 2 

Additional 
to the corner 

mode 3 and 2 

a, IT 
t 

To left border 

4 :  I M U X  Y 
4 

To the "corner" 

Fig. 5.21: Summands of Preparation in Programmable AMM 



MODULAR STRUCTURE OF LARGE MULTIPLIER 129 

B C  



130 PARALLEL MULTlPLlCATlON 

REFERENCES 

1. Advanced Micro Devices, “TTLMSI AM2505 4-bit by 2-bit 2’s Complement 
Multiplier,” 901 Thompson Place, Sunnyvale, CA. 

2. D. P. Agrawal, “Optimum Array-Like Structures for High-speed Arithmetic,” 
Proc. 3rd Symposium on CornputerArithmetic, IEEEComputer Society, #75C1017, 
NOV. 1975, pp. 208-219. 

3. S. F. Anderson, J. G. Earle, R. E. Goldschmidt and D. M. Powers, “The IBM 
Systed360 Model 9 1: Floating-point Execution Unit,” IBM J. R & D, Vol. 1 1, 
No. 1, Jan. 1967, pp. 34-53. 

4. S. Bandyopadhyay, S. Basu and A. K. Choudhory, “An Iterative Array for Mul- 
tiplication of Signed Binary Numbers,” IEEE Trans. Comp., Vol. C-21, No. 8, 
Aug. 1972, pp. 921-922. 

5.  C. R. Baugh and B. A. Wooley, “A Two’s Complement Parallel Array Multipli- 
cation Algorithm,” IEEE Trans. Comp., Vol. C-22, No. 12, Dec. 1973, pp. 
1045-1047. 

6. A. D. Booth, “A Signed Binary Multiplication Technique,” Quart. J. Mech. Appl. 
Math., Vol. 4, pt. 2, June 1951, pp. 236-240. 

7. E. L. Braun, Digital Computer Design, Academic Press, New York, 1963. 

8. T. A. Brubaker and J. C. Becker, “Multiplication Using Logarithms Implemented 
with Read-only Memory,” IEEE Trans. Comp., Vol. C-24, 1975. 

9. W. Buchholz, ed., Planning a Computer System, McGraw-Hill, New York, 1962, 
pp. 210-211. 

10. Y. Chu, Digital Computer Design Fundamentals, McGraw-Hill, New York, 1962. 

1 1. L. Dadda, “On Parallel Digital Multipliers,” Altu Frequenza 45 (1976), pp. 574- 
580. 

12. L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, Vol. 34, 
Mar. 1965, pp. 349-356. 

13. K. J. Dean, “Design of a Full Multiplier,” Proc. IEEE, Vol. 115, Nov. 1968, pp. 
1592- 1594. 

14. I. D. Deegan, “Cellular Multiplier for Signed Binary Numbers,” Electronic Let- 
ters, Vol. 7, 1971, pp. 436437. 

15. J. Deverrell, “Pipeline Iterative Arithmetic Arrays,” IEEE Trans. Comp., C-24 
(Mar. 1975), pp. 317-322. 

16. Fairchild Semiconductors, “TTIMSI 9344 Binary (4-bit by 2-bit) Full Multi- 
plier,” 3 13 Fairchild Dr., Mountain View, CA, 197 1. 



REFERENCES 13 1 

17. I. Flores, The Logic of Computer Arithmetic, Prentice-Hall, Englewood Cliffs, 
NJ, 1963. 

18. J. A. Gibson and R. W. Ginbard, “Synthesis and Comparison of Two’s Comple- 
ment Parallel Multipliers,” IEEE Trans. Comp., C-24 (1975), pp. 1020-1027. 

19. H. H. Guild, “Fully Iterative Fast Array for Binary Multiplication and Fast Ad- 
dition,” Electronic Letters, Vol. 5 ,  May 1969, pp. 263. 

20. A. Habibi and P. A. Wintz, “Fast Multipliers,” IEEE Trans. Comp., C-19 (Feb. 
1970), pp. 153-157. 

21. Y. Harata, et al. “A High Speed Multiplier Using a Redundant Binary Adder 
Tree,” IEEE J. Solid-state Circuits SC-22 (Feb. 1987), pp. 28-33. 

22. A. Hemel, “Making Small ROMs Do Math Quickly, Cheaply and Easily,” Elec- 
tronic Computer Memory Technology, W. B. Riley, ed., McGraw-Hill, New York, 
1971, pp. 133-140. 

23. Hughes Aircraft Co., “Bipolar LSI 8-bit Multiplier H1002MC,” 500 Superior 
Avenue, Newport Beach, CA, 1972. 

24. K. Hwang, “Global Versus Modular Two’s Complement Array Multipliers,”IEEE 
Trans. Comp., Vol. C-28, No. 4, Apr. 1979, pp. 300-306. 

25. 0. L. MacSorley, “High-speed Arithmetic in Binary Computers,” Proc. IRE, 
Vol. 49, No. 1, Jan. 1961, pp. 67-91. 

26. J. C. Majithia andR. Kita, “An Iterative Array for Multiplicationof SignedBinary 
Numbers,” IEEE Trans. Comp., C-20 (Feb. 1971), pp. 214-216. 

27. G. W. McIver, et al., “A Monolithic 16x 16 Digital Multiplier,” Dig. Tech. Paper 
Int. Solid State Circuits Con$, Feb. 1974, pp. 54-55. 

28. M. Mehta, V. Parmar, and E. Swartzlander, “High-speed Multiplier Design Using 
Multi-input Counter and Compressor Circuits,” Proc. 10th Symp. on Computer 
Arithmetic (1991), pp. 43-50. 

29. J. N. Mitchell, “Computer Multiplication and Division Using Binary Logarithms,” 
IRE Trans. Elec. Comp., Vol. EC-11, Aug. 1962, pp. 512-517. 

30. R. D. Mori, “Suggestion for an IC Fast Parallel Multiplier,” Electronic Letters, 
Vol. 5, Feb. 1969, pp. 50-5 1. 

3 1. F. J. Mowle, A Systematic Approach to Digital Logic Design, Addison Wesley, 
Reading, MA, 1976. 

32. T. G. Noll, et al., “APipelined 330-MHz Multiplier,” IEEE J. Solid-state Circuits, 
21 (June 1986), pp. 41 1416 .  



132 PARALL EL MULTIPL /CATION 

33. V. Peng, S .  Samudrala and M Gavrielov, “On the Implementation of Shifters, 
Multipliers and Dividers in VLSI Floating-point Units,” Proc. 8th Symp. on 
Computer Arithmetic (May 1987), pp. 95-102. 

34. S. D. Pezaris, “A 40-ns 17-bit by 17-bit Multiplier,” IEEE Trans. Comp., Vol. 
C-20, No. 4, Apr. 1971, pp. 442-447. 

35. G. W. Reitwiesner, Binary Arithmetic in Advances in Computers, EL. Alt, ed., 
Academic, New York, (1960), pp. 231-308. 

36. J. E. Robertson, “Two’s Complement Multiplication in Binary Parallel Comput- 
ers,” IRE Trans. Elec. Comp., Vol. EC-4, No. 3, Sept. 1955, pp. 118-1 19. 

37. L. P. Rubinfield, “A Proof of the Modified Booth’s Algorithm for Multiplication,” 
IEEE Trans. Comp., C-24, (Oct. 1975), pp. 1014-1015. 

38. E. A. Swartzlander, Jr., “The Quasi-Serial Multiplier,” IEEE Trans. Comp., Vol. 
C-22, No. 4, Apr. 1973,pp. 317-321. 

39. M. R. Sanitoro and M. A. Horowitz, “SPIM, A Pipelined 64x64 Iterative Mul- 
tiplier,” IEEE J. Solid-state Circuits, 24 (Apr. 1989), 487-493. 

40. TRW, “MPY-LSI Multipliers: AJ 8x8,12x 12and 16x 16,”LSI Products, TRW, 
Redondo Beach, CA, Mar. 1977. 

41. C. S .  Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Elec. Comp., 
Vol. EC-13,No. 1,Feb. 1964,pp. 14-17. 

42. D. Zuras and W. 11. McAllister, “Balanced Delay Trees and Combinatorial Divi- 
sion in VLSI,” IEEE J. Solid-state Circuits, SC-21 (Oct. 1986), 814-819. 

PROBLEMS 

5.1 (a) Build a 9 bit-slice Wallace tree using carry-save full adders. What is the 
delay time of this Wallace tree? 
(b) Build a 3 1 bit-slice Wallace tree for which 15-bit Wallace trees can be used in the 
first level. What is the delay time of this Wallace tree? 

5.2 
tiplier. 
(a) A = ( u ~ u ~ u ~ u ~ u o ) ~  and B = (b,jb5b4b3b2blb0)2. 

(b) A = (100101)2 and B = (110011)2. 

5.3 The Baugh-Wooley algorithm was applied to perform a 6-by-4 two’s comple- 
ment multiplication. After obtaining the following summand matrix, the multiplier 
was lost due to some fault. Can you (a) Retrieve the multiplier? (b) Complete the 
multiplication? 

Perform unsigned integers multiplication A x B using an unsigned array mul- 



PROBLEMS 133 

0 0 1 0 1 0  
X I  ? ? ? ?  

0 1 0 1 0  
0 1 0 1 0  

0 0 0 0 0 0 0  
1 1  0 1 0 1  

5.4 Construct a Baugh-Wooley array multiplier to perform 19 by (-7). 
(a) Present the summand matrix in the similar way shown in Figure 5.8. 
(b) Calculate the time complexity and area complexity of this array multiplier. 

5.5 What is the delay time for an m-by-n (m > n) Baugh-Wooley array multiplier? 
Justify your conclusion. Perform 10101 x 00101 by Pezaris array multiplier. Find 
the outputs of each cell that lead to the final answer. 

5.6 Construct a 32-by-32 bit array multiplier with 4-by-4 non-additive multiply 
modules. 
(a) Show the modular structure of the multiplier. 
(b) Find the time complexity and area complexity. Implement a 16-by-16 bit ar- 
ray multiplier through 8-by-4 additive multiply modules (AAMs). Show modular 
structure in between the AMMs. 

5.7 Realize a 16-by-16 AAM via 8-by-8 AMMs. 

5.8 Given 2 x 2 Non-additiveMultiply Modules, perform (1101)~ x (0101)~. Fill 
the partial products below. Draw a complete Wallace tree to add the partial products 

with each FA indicated by the input and output values, and a 5-bit CPA showing the 
connected inputs and the obtained final result. 



This Page Intentionally Left Blank



Sequential Division 

Unlike addition, subtraction and multiplication, division does not, in general, produce 
an exact answer, because the dividend is not necessarily a multiples of the divisor. A 
variety of division algorithms are to be described in the rest of this chapter. 

6.1 SUBTRACT-AND-SHIFT APPROACH 

Let's look at an example of pencil-and-paper division in Figure 6.1. 
Here 2746 is referred to as the Dividend, 32 is the Divisor, 85 the Quotient and 26 the 
Remainder. After 274 - 256 is performed in the first step, 18 is obtained as apartial 
remainder. By pulling down 6, 18 becomes 180 (+6). On digital computers, most 
of the division operations are performed in a recursive procedure represented by the 
following formula: 

- 4j+l x D, R(j+l) = x 

where j = 0,1, . . . , n - 1 is the recursion index, R(j) is the partial remainder in the 
jth iteration. The initial partial remainder R(O) equals the dividend, and R(") is the 
final remainder. The quotient is determined digit by digit in the recursive procedure, 
with q j + l  being the ( j  + 1)th quotient digit. D is the divisor, and T is the radix. In 
the above example T = 10. 

From the recursion formula, we have 

For j = 0:  
For j = 1: 

R(l) = T x R(O) - q1 x D, 
= T x R(l)  - q2 x D 
= T x (T x R(O) - ~1 x D) - 42 x D 

735 



136 SEQUENTIAL DIVISION 

85 ~- 

32 12746 2746--+ Dividend 
~~ 256 32- + Divisor 

186 85- Quotient 160 
26 26 --* Remainder 

Fig. 6.1: Pencil-and-Paper Division 

= rn x R(O) - (rn--l x q1 + . . . + r x qn-l + qn) x D .  

Let’s look at how the quotient digit q j  is determined step by step in the above 
pencil-and-paper procedure. In the first step, we made an estimation about how many 
times of 32 is close to but less than 274. We figured out that 8 is probably the right 
number, since 9 times 32 is over 280 and 274 is not big enough to subtract it. Unlike a 
human, a machine cannot make such estimation by a first look, but can only perform 
what it is programmed to do. We can let it repeatedly subtract 32 from 274 until the 
difference left is no greater than 32. The number of successful subtractions can be 
recorded, which gives the quotient digit q j .  After shifting the partial remainder, we 
can begin the trial process for the next quotient digit. Here subtract and shift are most 
of the operations required, and the division can be completed by the subtract-and-shift 
approach. In the above example, 85 is not the final result of 2746/32. Instead, 

26 
32 32 
-- -85+-.  
2746 

In general, 

R(0) R(”) 
- -  - Q + -  

D D ’  
where 

n 

Q = c r j  x q j .  

Conventionally, the dividend is 2 n  bits long, and the divisor is of n bits. The word 
length of the quotient is also n, which tells us when to stop the recursive procedure. 

In the long division form shown in Figure 6.2, which represents the conventional 
case, both the dividend R(O) and the divisor D are assumed to be fractions. That is, 

R(0) = ~ 0 . ~ 1 ~ 2  1 .  - , 

j = 1  



SUBTRACT-AND-SHIFTAPPROACH 137 

Fig. 6.2: Long Division Form 

D = do.dlda.*. , 

where the points on the right of ro and do are radix points, and T O  and do are the signs. 
Also the quotient Q is a fraction such that 

Q = q0.qlq2 . . * qn-lqn, 

with qo being the sign equal to ro @ do. It is assumed that R(O) < D and D # 0, and 
both are positive numbers for illustration. Here Q is supposedly < 1, and quotient 
overflow occurs if R(O) 2 D. 

The operations in Figure 6.3 is performed as follows: 

~ ( l )  = r x R ( O )  - q1 x D 
0.48 = 6.08 - 5.60 

Actually, in the binary number system, 0 and 1 are the only possible digits. That 

We will see later that for the selection of the quotients q j ,  j = 1,. . . , n, which 
+ . . R(n-l) ,  different arithmetic conditions will 

greatly simplifies the quotient digit selection process. 

are based on R(O)), R( l ) ,  . . , 
give different procedures. Letting R(j+l) be the partial remainder, we have 

Restoring division : 0 5 R(j+l) < D 

0 Nonrestoring division : I R(j+l) 151 D I 



138 SEQUENTIAL DIVISION 

.6R(2j = final remainder 
k 2  
BO4, 92 

= 0.86 

Fig. 6.3: Example of Long Division 

6.2 BINARY RESTORING DIVISION 

In the conventional restoring division, 0 5 R(j+l) < D. The quotient digit q j + l ,  

j = 0 , l .  1 .  n - 1, is selected by performing a sequence of subtractions and shifts. 
Each time D is subtracted form the partial remainder T x R(j ) ,  until the difference 
becomes negative. Then D is added back to that negative difference, which is so 
called restoring. The last subtraction is canceled by the addition here. Then we 
have the quotient digit, which is determined by the number of subtractions as qj+l = 
(number of subtractions -1). In general: qj+l + 1 subtractions and 1 addition are 
required to find qj+l in the worst case. Figure 6.4 shows an example. For a binary 
number system in which T = 2, the worst case scenario can be greatly improved. 

R(j+l) = T x R(d - qj+l x D 

becomes 

R(j+l) = 2R(j) - qj+l x D, 

with qj+i E (0, l}, 0 5 R(j+') < D. The quotient digit can be determined as 
follows: 



BlNARY RESTORlNG DlVlSlON 139 

... ... 
9;t!L 

.8 x x x x x  

- Rci, - .,rxRo, 
.20 - 2.0 Number of 

subtractions 
-0.8- 1st subtraction ’I 

1.2 
-0.8--4-- 2nd subtraction 0.4 

negative +*- 3rd subtraction 

0.4 

q,,, = (3-1 1 

+0.8 c- restoring 
new partial remainder N+’) ---* 

Fig. 6.4: Example of Restoring Procedure 

The partial remainder can be obtained by one left shift of R( j ) ,  and the trial process 
can be implemented by one subtraction: 

R(j+l) = 2R(j) - D. 

Then we check the “sign” of R(j+l). If it is positive, qj+l = 1, else qj+l = 0 and 
one restoring addition is to be performed. So the binary restoring division requires at 
most one subtraction and one addition to determine one quotient digit. The addition 
is needed to restore the correct partial remainder: 

@+l) = R(j+l) + D = 2R(j). 

The hardware implementation of this binary restoring division is shown in Figure 6.5. 

Three registers are included each with n bits: (1) accumulator (AC), ( 2 )  auxiliary 
register (AX) and ( 3 )  the quotient-multiplier register (QM), which was used to store 
the multiplier in multiplication as mentioned in Chapter 4, and is to hold the final 
quotient in division operations under discussion. The 2n-bit dividend is initially stored 
in registers AC concatenating QM. The n-bit divisor is stored in the AX register. 

The content of AC concatenating QM can be left shifted. The quotient digit qj+l  

can be shifted in from the right end, and the bit shifted out from the left end of AC 
can be stored in a buffer register T. 

We can see that the similar hardware performing multiplication can be applied for 
division except the differences made on the following issues. First, the direction of 
register shift was shift to right in multiplication, while in division it is shift to left. 
Second, the adder actually performs subtraction now, that is add the 2’s complement 
number of the divisor. In Figure 6.5, the input AX to the right side of the Adder is 



140 SEQUENTIAL DIVISION 

Q.,~” ~ sign of Dividend 

1 
Dividend initially sign of Divisor 

procedure 

Adder C,” = 1 

__ _-__ q,* 1 

_____ P A C - -  

Fig. 6.5: Hardware for Restoring Division 

the 1’s complement of the dividend. With the Ci, set to 1, we have AC +AX + 1 = 
AC - A X  to inspect whether 2R(j) is < D or 2 D. Cout is the carry out. Quotient 
digit qj+l  is obtained by 

Qj+l = T v Cozlt, 

which can be explained as follows. Let n = 4, for example. 
When T = 1, with “x” being an arbitrary digit, we have 

1 xxxx t- 2R(j) 
-) 1010 t- D, forexample 

. . . . . .  

Obviously, 2R(j) 2 D and we should set qj+l  = 1. 
When T = 0, we have 

Oxxxx +- 2R(j) 
-) 1010 +- D, forexample 

Cout . . 



BlNARY NON-RESTORING DIVlSlON 141 

If Gout = 1, that means 2R(j) + (2n  - D )  2 2n, which is equivalent to 2R(j) 2 D. 
Hence we should set qj+l = 1. So, qj+l = 1 if T = 1 “or” Gout = 1. 

When D < 2R(j), a restoring operation occurs. The subtraction is canceled by 
addition, and the partial remainder is kept unchanged. In this case qj+l = 0. Instead 
of subtracting D and then adding it back, a 2-to- 1 MUX is used which can select the 
unchanged partial remainder to route through when the control signal qj+l  = 0. The 
other input data of the MUX is the difference of 2R(j) - D,  which will be selected 
whenqj+l = 1. 

As the partial remainder shifts out bit by bit from the left of register AC o Q M ,  
more and more bit positions are available on the right for the quotient. The space 
for partial remainder is reduced from the original 2n bits to n bits, and that for the 
quotient grows to n bits. The final remainder R(”) will be in To AC1ACZ . . ACn-l 
standing for the value 

The compare-and-shift operation should be repeated n times, and loading the input 
operands needs one cycle. So the binary restoring division requires + 1 cycles in 
total. 

x 2-”. 

6.3 BINARY NON-RESTORING DIVISION 

An improved division method is the binary non-restoring division which does not 
need the “restoring addition” mentioned previously. The assumption that D > 0 and 
IR(j+l) I < D remain the same, while the partial remainder, R(j+l), is allowed to 
have either a positive or a negative value. The operation to be performed can be either 
subtraction or addition, depending on the partial remainder. That is, 

R(j+l) - 2R(j) - D if 2R(j) > 0 
- { 2R(j) + D if 2R(3) < 0. 

Accordingly, the quotient digit can be either +l or -1 but not 0, that is, qi+l E 
{ 1, -1). The quotient digit selection is described as follows: 

1 
-1 

if 0 < 2R(j) < D 
if -D < 2R(j) < 0. { Q(j+l) = 

When 2R(j) = 0, the process can be terminated. As a result the quotient Q is 
represented by signed-digit code that contains no zeros. - 1 is denoted as 1. 

In the restoring division, when 2R(j) - D < 0 the remainder is restored to 2R(j). 
After shifting it and subtracting D again, 4R(j) - D is obtained. In the non-restoring 
division, when 2R(j) - D < 0 we stay with the negative difference and correct it 
by adding D in the next iteration. That is 2(2R(j) - D )  + D = 4R(j) - D,  the 
same result as above can be obtained. If two consecutive quotient digits q jq j+ l  are 
selected as 01 in the restoring division, they appear as li in the non-restoring division. 
Obviously 01 = li. 



142 SEQUENTIAL DIVISION 

The binary non-restoring division (B.N.D.) of 0.001011 + 0.01 is performed in 
Figure 6.6(a) in contrast to the binary restoring division (B.R.D.) of that shown in (b). 

In the binary non-restoring division, no restoration is needed and thus the MUX in 
Figure 6.5 can be eliminated. Consequently, the division time is improved. Noticing 
that 

n ~ ( l 3 . N . D )  a n x (subtraction or addition) 

n ~ ( l 3 . R . D )  a n x (subtraction + restoration), 

we have 

n ~ ( l 3 . R . D . )  > n ~ ( l 3 . N . D . ) .  

The quotient obtained in the signed digit representation may need to be converted 
to a form compatible with other operands such as 2's complement form, which can 
be easily implemented as follows. Let the sum of weights of all the positive digits be 
Q+, and that of all the negative digits be Q - ,  we have 

Q++Q- = Q 
Q + - Q -  1 - 2 - n  

since for whichever position containing a 0 in Q+, there exists a 1 in Q - ,  hence 
Q+ - Q- = 0.11 . . .I.. Adding both sides of Equation (6.1) and Equation (6.2), we 
have 

2Q+ = Q + 1 - 2-n 

or 

Q = 2Q+ - 1 + 2-". 

2Q+ can be obtained by left shifting Q+ for one bit position, -1 means change the 
sign to its opposite after the shift, and +2-n means insert a 1 in the LSB position 
which is vacated after the shift. Q- is ignored here. 

In the middle of the division, if a partial remainder turns to be 0, it means that 
the subsequent quotient digits are all 0s. A 0 remainder detection circuitry may be 
designed so that the algorithm can halt immediately if a 0 remainder is encountered. 

Conventionally the final remainder is of the same sign as the dividend. If 7 + 4 
ends with Q = 2 and R = -1, which is correct, an adjustment should be made by 
Q = 2 - 1 = 1 and R = -1 + 4 = 3. That is, Q = Q - 2-n and R = R + D if the 
dividend and the divisor have the same sign in the binary non-restoring division. If 
the dividend and divisor have the opposite signs, then the adjustment can be done by 
Q = Q + 2-n and R = R - D. 

Both the restoring division and non-restoring division involve a large number of 
shifting which is proportional to n, as well as T .  To further speed up the division time 
high-radix division can be adopted. We will discuss the technique in this regard in 
the next section. 



BINARY NON-RESTORING DIVISION 143 

1 q2q3q4 
1L.L.l 
1 1 1 1  

+0.001011 - +.01011 > o  
-.01 - subtraction 
+.00011 > O  
+ boll 

- 301 

+ s b l  

- .01 f-- subtraction 
- .0001 c 0 

+ .01 - addition 
+ .001 > 0 

- .01 subtraction - 
0 STOP C k . 1 1 1 1  =.lo11 

(a) Binary Non-Restoring Division 

9 4 4 9  
iLZL3 

,O1)* lo101 1 

.01 - subtraction/restoring (mux) 
,0001 1 

4001 1 

boll 

)01 

.OO c-- subtractionhestoring (mux) 
,001 1 

.01 - subtractionhestoring (mux) 

,001 

01 - subtractionhestoring (mux) 

.O0 Final Remainder 

Q =.lo11 

(b) Binary Restoring Division 

Fig. 6.6: Division Performed by Non-RestoringRestoring Algorithms 



144 SEQUENTIAL DIVISION 

6.4 HIGH-RADIX DIVISION 

Previously described division methods are radix 2 divisions, in which radix r = 2 ,  
and digit set E (0, l}, which is formed by l-bit strings. In radix 4 division r = 4, 
and digit set {00,01,10, l l} ,  which is formed by 2-bit strings. In radix 8 division 
r = 8, and digit set E {000,001,010,011,100,101,110, l l l } ,  which is formed by 
3-bit strings, and so forth. For r 2 2, the case is referred to as high-radix division. 

As mentioned before, high-radix division yields faster execution time, since the 
number of iterations needed for a fixed sized dividend is reduced. However, we 
will learn in the following subsections that this enhanced speed is at the expense of 
increased hardware. 

6.4.1 High-Radix Non-Restoring Division 

Recall that the quotient digit set for binary non-restoring division is {-1, l}, but 
not 0. For the high-radix non-restoring division, the quotient digit set is {-(r - 
l), . . . , -1,1,. . . , (r - l)}, where r is the radix. 

For example, r =: 4, radix-4 non-restoring division quotient digit set 

E {-3, - 2 ,  -1,1,2,3}. 

Again, here, 

-0 < Rj < 0, 

that is, - 4 0  < 4R(j) < 4 0  as before. The multiple choices for gj+l are: 

9jt-1 = 

-3 
-3 GT - 2 
-2 or  - 1 

-1 

+1 
+1 or + 2 

+2 or  + 3 
+3 

if - 4 0  < 4R(j) < - 3 0  
if -30 < 4R(j) < - 2 0  

if - 2 0  < 4R(j) < -0 
if -0 < 4R(j) < 0 
if 0 < 4R(j) < D 
if D < 4R(j) < 2 0  
if 2 0  < 4R(j) < 3 0  
if 3 0  < 4R(j) < 4 0 .  

Note that the quotient found by the non-restoring division is a radix-r signed-digit 
code, that is, 

Q =  .9192.*'qn 

w i t h e a c h q i E { - ( r - l ) , . . .  . -  1,1,... , ( r - l )} .  

ventional radix-complement form such as 
Therefore we may need to change a radix-r signed-digit number back to a con- 

Q = q o 0 d d  * , . 9; 



HIGH-RADIX DIVISION 145 

with each q: E (0,1,. . . , (T  - 1)) and 

0 for a positive number 

1 for a negative number. 40 = { 
The following algorithm shows how to convert a signed-digit number into a radix- 

complement number. 

2. if q1 < 0, { 
q; t r + q 1 ;  
q o t r - 1 ;  

1 
3. else { 

4: t q 1 ;  

qo 0; 
1 

4. j t 1; 

6. else { 
q; + q j ;  
Q;+l + 4j+1; 

1 
7. i f j # n - l , {  

j t j + l ;  

} 
go to 5 ;  

8. elseQ’ t (qo.qiqk...qk); 
stop. 

A serial inspection of the quotient digits is required in this conversion procedure. 
A positive digit q j + l  should remain unchanged, a negative digit should increase by T 

and borrow 1 from the higher order digit. 



146 SEQUENTIAL DIVISION 

6.4.2 SRT Division 

SRT is named after its inventors Sweeney, Robertson and Tocher. Independently and 
at about the same time, D. W. Sweeney of IBM, J. E. Robertson of the University of 
Illinois and K. D. Tocher of Imperial College, London, discovered a new method of 
binary division. In their method, 

1 < ID1 < 1 

is assumed, which means that the divisor is a normalized fraction in the form 0 . 1 4  . . . d,. 
Also assumed is 

1 
- < (2R(j)I < 1, 
2 

which means that all the partial dividends are normalized fractions. Recall that the 
partial dividend is T times of the partial remainder in general. Unlike in non-restoring 
division algorithm qj.+l E {-1, 1}, 

4j+l E {-I1 01 11 
now. 

{-1, 0,1} is to be selected. That is, 
Here the divisor is shifted, or added to or subtracted from the partial dividend since 

2R(j) + D ,  
2 R(j)  , 
2R(j) - D ,  

if 2R(j) < -D, 
if -D 5 2R(j) 5 D ,  
if 2R(j) > D. 

The rule for selecting the quotient digit qj+l is as follows: 

-1 if 2R(j) < -D, i 1 if < 2R(j) > D. 

Notice that both the divisor, D, and the partial dividend, 2R(j), are normalized frac- 
tions, or f < (DI < 1 and $ < 12R(j)I < 1. By using < ID/, the comparison is 
reduced to 

i 

i - 2 '  

Ri'l = 

qj+l = 0 if -D 5 2R(j) 5 D, 

2R(j) + D, if 2R(j) 5 - f ,  
Rj+l = 2R(j), if - L. < 2R(j) < 1 

2 - 2 '  

2R(j) - D, if2R(j) > 1 
and the quotient selection rule can be accordingly simplified as 

-1, if 12R(j)) > $, and sign of 2R(j) is negative, i 31, if I2R(j)I > $, and sign of 2R(j) is positive. 

qj+l = 0 ,  if I2R(j)I 5 f ,  

The advantage of using this new set of rules to determine R(j+l) and qj+l lies in 
the fact that only comparisons of 2R(j) against the constant f or - f are required. 



HIGH- RADIX DIVISION 14 7 

6.4.3 Modified SRT Division 

Wilson and Ledley proposed a modified version of the SRT division to further reduce 
the number of addition and subtraction operations in divisions. This method assumes 
that the divisor D is positive and a normalized fraction, and the dividend N is either 
normalized or with at most a single zero after the binary point. N < D holds as 
before. The algorithm is described by the flow chart in Figure 6.7. 

The iterative procedure is entered by 

N ( s )  = N(s-1) - D. 

In one iteration, (Y quotient digits can be determined if in the partial remainder N(')  
there are a 0s to the right of the binary point. 

If N ( s )  < 0, which will be the case for the first iteration due to the above assump- 
tion, set the new quotient digit qi to 0, and attach (a  - 1) 1s to its right. The next 
iteration process will perform NS) = M S - l )  + D. 

If N(') 2 0, set qi to 1 and attach (a - 1) 0s to its right. The next iteration process 
will perform N(') = N('- l )  - D. 

The quotient digit index is updated by i = i + LY in each iteration, and when it 
reaches the desired number of bits in the quotient the process ends. 

Figure 6.8 shows a numerical example for verifying the described procedure. The 
quotient obtained by this method will be in minimal but not necessarily canonical 
form given normalized divisors. 

6.4.4 Robertson's High-Radix Division 

Let's generalize the SRT division which was originally proposed by Robertson, with 
an arbitrary radix r ,  and a quotient digit set 

qj+1 E { -m, . . .  , -1 ,0 ,1 , -* .  ,m} 

where $ ( r  - 1) I m 5 r - 1. The successive quotient digits selections should satisfy 
the recursive formula 

~ ( j + l )  = r x 

such that after the subtraction, the partial remainder always has 

- qj+l x D, 

JR(jfl)I 5 k x JDJ, (6.3) 

with k being a constant no greater than 1. Division methods exist for certain discrete 
value of k in the range 

1 
2 -  - < k < l .  (6.4) 

When k = 1, it becomes the non-restoring division introduced in section 6.2. A 
straightforward but lengthy analysis of all the cases that may arise reveals that 

4j+l I k ( r  - 1). (6.5) 



148 SEQUENTIAL DIVISION 

N o  

I <--  0 
s <-. 1 

Binary point is to the left 01 the word 

Process ends when i > number of bits 
N = D Q .  D > N , D is normalized 

in a word 

I 

i < - - I  + u 
s <-. S t l  

L 

I N 0  
Normalize N W  by shifting left. 

say. a position 

I <-- i + a 
s <--  s+1  

q, <.- 1 t 
i 

q, <--  0 b 

Fig. 6.7: Flow Chart for Wilson-Ledley's Division Algorithm 



HIGH-RA DIX DIVISION 149 

N f D  = 0.1001 1 1 1  100001100f0.1101 

Q = q,q,q, . . . q , o  

N: . l o o 1  1 1 1 1  0 0 0 0  1 1 0 0  quol ienlQ:  
-D: -.1101 

( a = 2 )  ~. __ . _____ ~ 

xoo.ll 0 0 0 0  1 1  1 1  01 0 0  
U 

+Lo O o - o : 1 i  moT- 1-1m 
+.11 01 

,1100 O? ( a = 4 )  

4 u 
- . I 1  01 
- x o o  00.1 1 O I D O  .I100 0011 I? ( a = 4 )  

q . 1 1  01 T I 
+ . o o  0 0 0 0  .I100 0011 I100 ... ( - 6 )  

=Q 

Fig. 6.8: Numerical Example for Wilson-Ledley's Division Algorithm 

The Robertson's division method includes the following three steps: 

Step 1 .  The partial remainder R(j) is left shifted for one digital position. 
Step 2. One of several permissible arithmetic procedures is selected, such that the 
maximum absolute value of rlR(j)I is reduced by the amount of l h .  Note that due 
to inequality (6.3), 

TIR(j)I 5 TklDI. 

IR(j+l)[ 5 k x [DI. 

For the same reason, the next partial remainder R(j+l) satisfies 

Step 3. A quotient digit is generated corresponding to the arithmetic procedure se- 
lected. 

The arithmetic procedure is the key to realize the reduction of mentioned in Step 
2. That is, to select a proper qj+l  in R(jfl) = T x R(j) - qj+l x D to transform 
T + into ~ ( j f l ) .  Let 

qj+l  = -rn,... ,- 2,-1,0,+1,+2, . . .  ,m 

and 

r - 1  IT] < m < (T - 1). 

Plot in Cartesian system R(j+l) versus rR( j ) .  When qj+l = 0, R(j+l) = 
which is corresponding to a line of 45 degree slope through the origin. For different 



150 SEQUENTIAL DIVISION 

discrete values of q, a family of lines with such slope, referred to as q-lines, are in 
correspondence. From inequality (6.3), Rj+’ should be bounded by kl DI, and rR(j) 
bounded by rkJDI.  Recall that f 5 k 5 1 in Equation (6.4). Hence a rectangle with 
vertices (rklDI, klDI), (rklDI, -klDl),  (-rklDl, -klDI) and (-rklDl, k / D I )  can 
be formed and the q-lines are confined within the rectangle. Figure 6.9(a) shows the 
above specified diagram which is referred to as Robertson’s diagram. 

The number of q-lines should be minimized so that fewer multiples of the divisor 
need to be prepared. On the other side, the overlap of projections of the q-lines 
should be maximized to assure the precision. The two requirements are contradictory. 
Considering that the rightmost q-line should go through the upper right vertex of the 
rectangle, we plug (rklDI,  klDI) into 

m x ID1 R(i+1) = R(i) - 

to solve for k, and find that 

Since k >_ $ (from (Equation 6.4)), we have 

r - 1  m L -  
2 .  

On the other hand, q3 3 T - 1, and as a possible value of q j ,  rn 3 r - 1. rn is thereby 
restricted to the range 

r - 1  
- - - < r n < r - l .  

2 
The binary non-restoring division is a special case of Robertson’s high-radix divi- 

sion, and the Robertson’s diagram for it is shown in Figure 6.9(b). Since k = 1, the 
boundary of the rectangle becomes D and r D .  Since m = 1, and qj+l  = 0 is not 
allowed, there are only two q-lines in the diagram. 

The Robertson’s diagram for the binary restoring division is shown in Figure 6.9(c). 
Since q j + l  E (0, I}, two q-lines exist and one of them goes to the original point. 
Since only positive remainders are allowed, the two q-lines do not extend below the 
horizontal axis. 

6.5 CONVERGENCE DIVISION 

The division algorithms described in the preceding sections are based on the succes- 
sive subtraction and shift technique. In this section a different approach is introduced. 
Iterative multiplications are to be performed to generate the desired quotient. There- 
fore, the same hardware used for multiplication can be used for division. 

In the new proposed method, the dividend and divisor are treated as the numer- 
ator and denominator of a fraction. They are multiplied by the same sequence of 
convergence factors while the value of the fraction remains unchanged. When the 
denominator approaches 1, the numerator becomes the desired quotient. 



CONVERGENCE DIVISION 151 

D 

q (.! = -1 

2 0  -D 

(a) High-Radix Division with q j + l  E {-m,. 1 * , -2, - 1 , O ,  1 , 2 , .  . . , m} 

1 I 

D 

.,=o q,*> = I  

0 D 20  2R'J 26 -D 0 D 2D *2RW 
- 

q v , = l  

- D  - D  

i I 
(b) Binary Non-Restoring Division (c) Binary Restoring Division with 
with q j + l  E {-1,l) 4j+l E {011) 

Fig. 6.9: Robertson Diagrams 



752 SEQUENJlAL DlVlSlON 

6.5.1 Convergence Division Methodologies 

Let the division operation be = Q ,  where Q is the quotient or fraction, N is the 
numerator or dividend and D is the denominator or divisor. 

The convergence division approach is to iteratively multiply D and N by a constant 
factor, R, for i = 0, I , .  . . m, such that the resulting denominator, D . (n::: Ri) 
converges to 1 in a quadratic rate (see below) and hence the resulted numerator, 
N . (n:z," Ri) converges toward the desired quotient Q in the quadratic rate. 
That is, 

N 
- = Q  
D 

N x RQ x R1 x * . .  x R, 
D X R Q X R ~ X . . . R ,  

= Q. 

For a sufficiently large m, 

Here the operations carried on is free of division. 

the same as in binary SRT division. That is, 
The assumption here is that N and D are positive and normalized binary fractions 

1 
- < N < l  
2 -  
1 
- < D < 1 .  
2 -  

The general rule to choose the successive multipliers Ri for i = 0,1,. . . , m is that 

and 

Finally, when i = m, 

Di + 1.0, 



CONVERGENCE DlVlSlON 153 

that is. 

D,  = D x Ro x . * *  x R, + 1.0. 

While there could be many ways to choose the factor Ris, we are interested in 
those of quadratic order or higher, noticing that (1 + zn)(l  - zn)  = 1 - x 2 n .  As 
assumed, $ 5 D < 1 (D is a normalized fraction), there exists D + E = 1. We can 
see that 

E > 0 since D < 1 

and 

1 1 
E 5 - since D 2 -, 

2 2 
so 

1 
O < E < - - .  

2 

Note that we have 

or 

D = ~ - E  

Now let’s choose the first multiplying factor 

Then, 

Do = D x Ro 
= D x ( I + & )  
= (1 - E )  x (1 + E )  

= 1 - & 2 ( = 1 - E  2 l  ). 

Obviously, 

D =  1 - E  < Do = 1 - E ’ .  

For i = 1, 

D1 = Do x R1 (Di = Di-1 x Ri). 

Let’s choose 

R1 = 1 + c 2 ,  



154 SEQUENTIAL DIVISION 

D1 = Do x ( 1 - t ~ ~ )  

= (1 - & 2 ) ( 1 +  &2) 

= 1 - &4(= 1 - &2*).  

Obviously, 

Do = 1 - E' < D1 = 1 - c4 

For general i 

Di = Di-1 x Ri. 

In general, choose 

Ri = 1 +&, 

Di = (1 - E " )  x (1 + E " )  

= 1 - &2('+'), 

Once again, 

( i + l )  
Di-1 = 1 - E" < Di = 1 - E~ 

1 
2 

O < & L - ,  

or 

Thus 

1 2(;+1) As we noticed, ( 2)  will be a very small number if i is "large". For example, 
if i = 5, 

1 Z 6  1 64 

(--) = 
E 5.42 x lo-"; 



CONVERGENCE DIVISION 155 

if i > 9, 

That is E ~ ( ’ + ’ )  = 1 - Di, defined as “error”, is small and negligible if i is large. 

m+1 
As a result, for large rn, Dm = 1 - e2 M 1, (note that Dm = D x Ro x R1 x 

. . -  x R,) and 

So to find Q we just need to let 

Q = N x (1 + E )  x (1 + E ~ )  x . . .  x (1 + & 2 m ) .  -- - 
Ro Ri  R ,  

To prepare convergence factors Ris, we can see that 

Ri = 1 + E ~ ’  = 1 + (1 - Di-1) 
= 2 - Di-1. 

It is actually the two’s complement of Di-1 = D x Ro x R1 x . . . Ri-1. 

That is, Ri can be obtained by taking the 2’s complement of Di-1 which is found in 
the previous iteration. 

6.5.2 Divider Implementing Convergence Division Algorithm 

The convergence division algorithm described previously has been implemented in 
several commercial computers including the IBM 360. 

In the IBM 360, D = 0.1 x x . . x is a normalized floating-point fraction with 
56 bits following the binary point. Here, 

1 
- < D < 1  
2 -  

1 
& = l - D < -  

2 

yield. 

the string property it is 
With a 56-bit precision the number 1.0 is represented as 0.11 . . .1. According to 

1.00.. . o i  = 1 - 2-56. 



156 SEQUENTIAL DIVISION 

That is, an error of 2-56 is incurred very possibly. Recall that 

Suppose the algorithm stops when D, is obtained, and we hope by then the difference 
between 1 and D,  to be 

1 - D, 5 2-56. 

That is, 

To solve for m, we have 

This implies that m == 5 is sufficient to generate Q: 

Q =  N x Ro x R1 x R2 x R3 x Rq x R5. 

The division procedure in IBM 360 is as follows. 

1 .  Get D and find the 2's complement of D (i.e., Ro = 2 - D ) ;  
DO = D x Ro = D x ( 2  - D); 
N t N x R o = N x ( 2 - D ) .  

2. R1 = 2 - DO (2's complement of Do);  
D1 = Do x R1; N +- N x R1. 

4. R3 = 2 - D2; 

0 3  = D2 x R3; N t N x R3. 

5. R 4 = 2 - D 3 ;  
D4 = 0 3  x Rq; N i- N x Rq 

6.  R5 = 2 - D4; 
(D5 = 0 4  x R5;) N t N x R5. 



DIVISION BY DIVISOR RECIPROCATION 157 

6.6 DIVISION BY DIVISOR RECIPROCATION 

In this section another method for binary division using the multiplication approach 
is presented which can be implemented in an iterative way with simple logic circuits. 

Let’s rewrite the division expression as follows: 

Q = - = N x ( - )  N 1 
D D ‘  

Here 5 is referred to as the Reciprocal o fD.  Assume that D is a positive and nor- 
malized fraction, that is, 

D > 0, 

1 
- < D < l ,  
2 -  

then 

1 
2 > - > 1 .  D 

Also, 

1 
- I N  
T 

is assumed. 
To find $, we cannot use “1 divided by D’  since this goes back to the original 

problem - division. Alternatively aconvergence approach is used to find & iteratively 
and to complete the division by divisor reciprocation. 

First, find an initial “approximation” to $ by table look up or combinational 
circuits. A ROM can be used for this purpose. 

Let p = $, and the initial approximation of p be represented by po.  We first make 
a selection for P O ,  and then make it closer and closer to p iteratively. 
Suppose that 

D = 0.1d2d3.. . d, 
for 

1 
- < D < 1 ;  
2 -  

that is. 

(0.10..*0)2 5 D < 1. 

Investigate j bits following 0.1 in D, 



158 SEQUENTIAL DIVISION 

Table 6.1: 2-Input 4-Output ROM to Store p o ( s ) .  

Input output 

0 0  p-p-kkj 
1 1  0 0 0 

The 2j numbers, 0.1.d2d3 . . + dj+l ,  will partition the range of D from (0.10.. .0)2 
to 1 into 2j sub-ranges each having a length f / 2 j  = 2-(j+l).  Let s be the indices 
of these sub-ranges. D must fall in one sub-range. For example if j = 2, [0.1@, 
0.101), [O.lOl, 0.1 lo), [O.llO, 0.1 11) and [O.lU, 1.000) are the 4 sub-ranges. Given 
D = 0.1 10 11111, by examining the j (=2) bits following 0.1 we know that D 

falls in the 3rd sub-range where s = 3. 
Given D in the sth sub-range (s = 1 , 2 , . . .  ,2j) ,  we find the midpoint in that 

subrange. The reciprocal of that midpoint value is used as the initial $ denoted as 
Po. 

The above procedure can be implemented by a ROM table. The j bits can be the 
input of the ROM. 2 3  entries can be formed in the ROM table each corresponding to 
a sub-range mentioned before. As the reciprocal of the midpoint value of a sub-range 
PO is listed as an output in the ROM to provide the initial reciprocal approximation. A 
limited number of bits, say k bits are used to represent it, then Ic outputs are included 
in the ROM table. Since j and Ic are both comparatively smaller than n (the number of 
bits in D and &), the ROM implementation is cost effective. Note, since 1 < $ 5 2 
by Equation (6.6), we always have 

w 
j bats 

Integer 1 and the radix point are not necessary to be stored in ROM. Table 6.1 shows 
a ROM with input size j = 2 and output size k = 4. 2122x324 represent only the 
fraction part of po. Given j and s, the formula shown below can find PO, which needs 
to be calculated before stored in ROM. 

gj+l 
p o ( s )  = 2 j  + - f '  

This is because of the following reasons. Based on f ,  if D falls in sub-range s, then 
adding s multiples of the sub-range length and subtracting half of the sub-range length 
result in the value of the midpoint, 



DIVISION BY DIVISOR RECIPROCATION 159 

The reciprocal of it is 

1 
1 5 + s x 2-(j+l) - 1 2 x 2-(j+l) 

1 - 
1 

- 
x 2(j+l) x 2-(j+l) + s x 2-(j+l) - 1 2 x 2-(j+l) 
2(j+) - - 

2 j + s - t '  

For example, given s = 3 the midpoint in the third sub-range has the value: 

and the reciprocal of it is 

On the other hand, given j = 2, 

23 
2 2 f S - - 1  

4 + s - f '  

PO(S) = 
2 

8 - - 

Hence we have 

See Figure 6.10 for illustration. 

sub-range. 
We can find that po is a stepwise approximation to $, since po is constant in each 

After po is found set 



160 SEQUENTIAL DIVISION 

Fig. 6.10: Stepwise Approximation of the Reciprocal of Divisor 

Then we recursively compute 

pi = pi-1 x (2  - Ui-1) 

ai = ai-1 x (2 - ai-1) 

with i = 1, 2, . . . being the recursion index. 

Theoretically, as i -+ co, we will have 

1 
lim p .  - - 
a+m " D  

lim ai = 1. 
i-+ M 

To decide the number of iterations needed, say m, we recall that D is represented 
by 56 bits in IBM 360. An error of 2-56 will be incurred anyhow. Let E denote such 
kind of error. After m iterations, there should be p ,  x $, that is, p ,  x D x 1. 
Actually, I 1 - ( p ,  x D) I< E is sufficient since 6 will be there anyway. So, when 
i = m such that 

I 1  - ( P ,  x D) I< 6 ,  

the procedure should end where E reflects the order of magnitude of the least significant 
bit and p ,  is the final approximation of calculated reciprocal. Again, the actual 
number of iterations required is determined by the machine precision. 



DIVISION BY DIVISOR RECIPROCATION 161 

Let’s look at an example of finding h. Suppose 

D = (0.11011)2, 

that is, 

D = (0.84375)lo. 

1 
- M 1.1851852 
D 

is the expected answer. 
To find it, first find the initial approximation by 

2j+1 
PO(S) = 

23 $- s - f ’ 

Let j = 2. We have s = 3 since D = 0.1 10 + . . . Recall that 
v 
5=3 

( 0 0  -$ s = l  
01 -+ s = 2  
10 -+ s = 3 ’  

dad3 = 

(11  -+ s = 4  

Hence 

= 1.2307692. 
23 

= 22 + 3 - 1 
2 

Second, the recursive process is done as follows: 

UO = PO x D = 1.2307692 x 0.84375 

= 1.0384615 

p i  po x (2 - U O )  = 1.2307692 x (2  - 1.0384615) 

= 1.183432 

a1 = a0 x (2-ao)  
= 1.0384615 x (2 - 1.0384615) 

= 0.9985207 

p2 1 pi x (2 - U I )  = 1.183432 x (2 - 0.9985207) 

= 1.1851826 

a2 = a1 x (2 - Ul) 



162 SEQUENTIAL DIVISION 

= 0.9985207 x (2 - 0.9985207) 

= 0.9999978 

p3 = p2 x (2 - CQ) = 1.1851826 x (2 - 0.9999978) 

= 1.1851852. 

Depending on E ,  the process stops when 

I 1 - ( p ,  x D) I< E .  

In the above example 

I 1 - ( ~ : 3  x D) 1 - (1.1851852 x 1.84375) 0. 

REFERENCES 

1. F. S. Anderson, et al., “The IBM Systed360 Model 9 1: Floating-point Execution 
Unit,” IBM Journal Res. and Dev., 11 (Jan. 1967), pp. 34-53. 

2. D. E. Atkins, “Higher-Radix Division Using Estimates of the Divisor and Partial 
Remainders,” IEEE Trans. Comp., Vol. C-17, No. 10, Oct. 1968, pp. 925-934. 

3. D. E. Atkins, “The Theory and Implementation of SRT Division,” Tech. Report, 
No. 230, Dept. of Computer Science, University of Illinois, Urbana, 1967. 

4. D. E. Atkins, “Design of Arithmetic Units of ILLIACIII: Use of Redundancy and 
Higher Radix Methods,” IEEE Trans. Comp., Aug. 1970, pp. 720-733. 

5. A. Avizienis, “The Recursive Division Algorithm,” Class Notes, Engr. 225A, 
UCLA, Los Angeles, 197 1. 

6. W. Buchholz, ed., Planning a Computer System, McGraw-Hill, New York, 1962, 
pp. 214-216. 

7. A. W. Burks, H. H. Goldstine and J. von Neumann, “Preliminary Discussion of the 
Logical Design of an Electronic Computing Instrument,” Institute for Advanced 
Study, Princeton, N. J . ,  1946 (reprinted in C. G .  Bell and A. Newell, Computer 
Structures Readings and Examples, McGraw-Hill, New York, 197 1). 

8. D. Ferrari, “A Division Method Using a Parallel Multiplier,” ZEEE Trans. Comp., 
Ec-16, (Apr. 1967), pp. 224-226. 

9. M. J. Flynn, “On Division by Functional Iteration,” IEEE Trans. Comp., C-19 
(Aug. 19701,702-706. 



REFERENCES 163 

10. D. L. Fowler and J. E. Smith, “An Accurate High Speed Implementation of 
Division by Reciprocal Approximation,” Proc. 9th Symp. on Comp. Arith. 
(Sept. 1989), pp. 60-67. 

11. C. W. Freiman, “Statistical Analysis of Certain Binary Division Algorithms,” 
Proc. IRE, Vol. 49, No. 1, Jan. 1961,pp. 91-103. 

12. H. L. Garner, “Number Systems and Arithmetic,” in Advances in Computers, 
Vol. 6, F. L. Alt and M. Rubinoff, eds. Academic Press, New York, 1965. pp. 
168-177. 

13. R. E. Gilman, “A Mathematical Procedure for Machine Division,” Communica- 
tion ofAssoc. for  Comp. Mach., Vol. C, No. 4, Apr. 1959, pp. 10-12. 

14. D. Goldberg, D. A. Patterson and J. L. Hennessy, Computer Arithmetic, in Com- 
puter Architecture: A Quantiative Approach, Morgan Kaufmann, San Mateo, 
CA, 1996. 

15. R. Z. Goldschmidt, “Applications of Division by Convergence,” M.S. Thesis, 
M.I.T. Cambridge, MA, June 1964. 

16. D. R. Hartree, Calculating Instruments andMachines, University of Illinois Press, 
Urbana, 1949, p. 57. 

17. V. U. Kalaycioglu, “Analysis and Synthesis of Generalized-Radix Additive Nor- 
malization Division Techniques,” Tech. Report, Dept. of Elec. & Comp. Engr., 
University of Michigan, Ann Arbor, May 1975. 

18. E. V. Krishnamurthy, “On Range-Transformation Techniques for Division,”ZEEE 
Trans. Comp., Vol. C-19, No. 3, Mar. 1970, pp. 227-231. 

19. 0. L. MacSorley, “High-speed Arithmetic in Binary Computers,” Proc. IRE, 
Vol. 49, Jan. 1961, pp. 67-91. 

20. P. W. Markstein, “Computation of Elementary Functions on the IBM RISC Sys- 
ted6000 Processor,” ZBM Journal Res. and Dev., 34 (Jan. 1990), pp. 11 1-1 19. 

21. G. Metze, “A Class of Binary Divisions Yielding Minimally Represented Quo- 
tients,” IRE Trans. Vol. EC-11, No. 6, Dec. 1962, pp. 761-764. 

22. J. E. Robertson, “A New Class of Digital Division Methods,” IEEE Trans. Comp., 
Vol. C-7, Sept. 1958, pp. 218-222. 

23. J. E. Robertson, “The CorrespondenceBetween Methods of Digital Division and 
Multiplier Recoding Procedures,” IEEE Trans. Comp., Vol. C-19, No. 8, Aug. 
1970, pp. 692-701. 

24. R. R. Shively, “Stationary Distribution of Partial Remainders in SRT Digital 
Division,” Ph.D. Thesis, University of Illinois, Urbana, 1963. 



164 SEQUENTIAL DIVISION 

25. G. S. Taylor, “Radix 16 SRT Dividers with Overlapped Quotient Selection Stages,” 
Proc. 7th Symp. on Computer Arithmetic (June 1985), pp. 64-7 1. 

26. K. D. Tocher, “Techniques of Multiplication and Division for Automatic Binary 
Computers,” Quart. 1. Mech. Appl. Math., Vol. XI, Pt. 3, 1958, pp. 364-384. 

27. C. Tung, “A Division Algorithm for Signed-Digit Arithmetic,” IEEE Trans. 
Comp., Vol. 17, l968,pp. 887-889. 

28. C. Tung, “Arithmetic,” Chap. 3 in Computer Science, A. F. Cardenas, et al. eds., 
Wiley Interscience, New York, 1972. 

29. J. B. Wilson, et al, “An Algorithm for Rapid Binary Division,” IRE Tran. Vol. 
EC-10, No. 4, Dec. 1961, pp. 662-670. 

PROBLEMS 

6.1 Perform the following binary Nonrestoring Division. 

to.011 )- 
6.2 
(a) Binary Restoring algorithm; 
(b) Binary Non-restoring algorithm. 

6.3 
Print out the results of q; and qJ+l in each iteration. 

6.4 
applying Wilson-Ledley’s division algorithm. Indicate in the flow chart of Figure 6.7 
the actual steps taken for each iteration in this division. 

6.5 Apply Wilson-Ledley’s algorithm to find an 8-bit quotient Q = for N = 
(0.01101011)~ and D = (0.1001)2. 

6.6 Use Convergence Division methodologies to perform the same division as in 
Problem 6.4. Show the procedure of this division referencing the IBM 360 procedure. 

6.7 In the convergence procedure Di = DiPl . Ri where Do = D . Ro and 
D = 1 - 6, Ri can choose such that 

Find A = (10110101)~ divided by B = (1101)2 applying 

- - - -  
Write a program to convert Q = (7840123)10 into a 10’s complement number. 

Show thenumericalprocedureofA = (0.00100011)~ divided by B = (0.0101)2 

Do = D . Ro = (1 - 6)(1 + S + S2) = 1 - S3 
Do = D . R,, = (1 - 6)( i  + 6 + 6 2 )  = 1 - s3, 

. . .  



PROBLEMS 165 

where Ri = 1 + b3; + 62.3i and Di-l = 1 - S 3 i .  Compare such cubic convergence 
division with the quadratic convergence division presented in the text in terms of the 
convergence rate and cycle time. 

6.8 Find the reciprocal of D = (0.11101)2 by the way of stepwise approximation, 
and let j = 3 and E = 0.0001. How close is the initial reciprocal of D to the real 
reciprocal? 

6.9 
a) If in each of the 2j equal intervals between f and 1, a leftmost point (instead of 
a midpoint) is chosen f o r  the initial approximation. Find a formula to express the 
initial reciprocal of divisor in the hth interval, p o ( h ) ,  as a function of j and h. 
b) According to your formula, build a ROM table with 2 inputs and 4 outputs. 
c) Given D = 0.1000, find the initial reciprocal of it from your ROM table. 
d) Find the final reciprocal of D by the recursive process. (Show your operation in 
binary and allow error < 2-1°.) 

6.10 Given D = (0.11011)2, use the ROM table in the text to obtain the reciprocal 
of D represented by a 10-bit binary fraction. Please show your operation in binary 
and pay attention to when to stop. 

Consider the division Q = N / D  through the Divisor Reciprocation. 



This Page Intentionally Left Blank



7 
Fast Array Dividers 

In this chapter, the design and construction of various high-speed iterative cellular 
arrays for parallel divisions are discussed. In the proposed array dividers, a large 
amount of replicated units are used for the comparison of the partial remainder and 
divisor, and the shift is realized by physical wiring. Three types of array dividers 
are to be introduced: (1) the Restoring Array Dividers, (2) the Non-restoring Array 
Dividers, and (3) the Carry-Lookahead Array Dividers. In addition, their performance 
and cost-effectiveness are to be analyzed. 

7.1 RESTORING CELLULAR ARRAY DIVIDER 

The restoring cellular array divider is based on the “restoring” division algorithm. 
Recall the circuit schematic of the divider based on the restoring division method 
shown in Figure 6.5. Partial remainders are stored in a register and subtractions then 
take place in  a two-operand adder. Restorations are realized by the MUX. Hardware 
for this approach is simple but slow. With the restoring cellular array divider presented 
below, the execution can be made much faster. 

Let dividend A = .a102 .-+a2n. divisor D = .dld2 . . .  d, and quotient Q = 
.qlq2 . . . qn. Figure 7.1 shows a schematic logic diagram of an n-by-n restoring 
array divider with n = 4. 

The basic element shown in the figure is a controlled subtracter (CS) cell, in which 
a - d is performed if mode P = 0, to find the difference between the previous partial 
remainder and the divisor. The borrow signal 

167 



168 FASTARRAY DIVIDERS 

Fig. 7.1: 4-by-4 Restoring Array Divider 



RESTORING CELLULAR ARRAY DIVIDER 169 

and the difference 

s = a P  + a&?,, + adcin + iidEi,P + Cdci,P, 

that is, 

a @ d @ cin 
a 

if P = 0 (subtract), 
if P = 1 (no operation). 

s = {  

Instead of shifting the partial remainder left to form rR( j ) ,  equivalently we have 
the remainder fixed and shift the divisor right along the diagonal lines. qis are obtained 
from the left of each row. 

qi = ai + G u t ,  

where ai is the bit shifted out in the (i - 1)th iteration. When ai = 1, which means 
rR(j)  > D, the subtraction is successful. Or, if c’ is the borrow-out signal in the 
leftmost position of each row, when E’ = 1, that is, c’ = 0 meaning no borrow, the 
subtraction is successful. 

P is the control signal. 

0 if performing subtraction, 
1 no operation. 

P =  { 
Here, 

P = qi. 

P = 0,  qi = 1 are for the subtraction successful case, while P = 1, qi = 0 are for 
the no operation case. Note that in the restoring division, we need to add the divisor 
back after an unsuccessful subtraction. These two operations canceled each other, 
that is, no operation is to be performed. 

The final remainder is represented by O.OOOOrgrgr7r8 in the above example. In 
general, an n x n restoring binary cellular array divider receives a 2n-bit dividend 
and n-bit divisor, and produces an n-bit quotient and 2n-bit remainder including n 
leading 0s. 

Note that the AND-OR logic relationship can be realized by NAND-NAND gates, 
and the following logic function 

Gout = tid + ticin + k i n ,  

s = a P  + a&, + adcin + tid&P + ti&,P, 

can be completed within 30, time. For n-bit division, an array of size n x n is 
required. 

In a CS cell, the signal propagation from input a to output tout needs 30,  time 
if ci, is available. For all the CS cells in a row, such propagation can be completed 



170 FASTARRAY DIVIDERS 

in parallel. The signal propagation from input cin to output covt takes 20 , .  For all 
the cells in a row, except that in the rightmost cell such delay can be overlapped with 
the delay from a to cOvt, the delay times in the other (n  - 1) cells accumulate. That 
makes a total delay of 2(n - l )Ag.  It takes 4 0 ,  for c’ to be fed back into P on the 
left of each row. After P is ready, 30,  are required to obtain output s, which is a 
parallel delay time for all the cells in a row. Hence, for the first row, the total delay 
time is 

[3 + 2(n - 1) + 4 + 310, = (2n + 8)Ag. 

For the second row and every row below, the rightmost cell is not dependent on the 
s from the above row. The tout signal in that cell can be ready early, overlapping the 
delay time with that required by the upper row operations. For the 2nd cell from right 
and (n  - 2) cells on its left, 30, parallel delay time is required for the propagation 
from s (or a) to cou,t. After that, 2(n - 2)A, accumulated delay time is required for 
cin to tout propagation toward the left of the row. Including the 4A, for feeding back 
D, and 30,  for P to s propagation, 

[3 +2(n - 2) + 4 +  3 1 4  = 271 +6Ag 

time is required for each row other than the first. There are (n - 1) such rows, hence 
the total delay for which is 

[(2n + 6) x (n  - l)]A, = 2n2 + 4n - 6A,. 

Adding on the delay for the first row, we have the total delay time for the restoring 
cellular array divider as 

[(2n 4- 8) + (2n2 + 4n - 6)]A, = 2n2 + 6n + 2 0 , .  

The total number of controlled subtracters (CS) required is n2. In each of the 
CS cells 14 gates are counted. Taking into consideration the one OR gate and two 
NOT gates on the very left of each row, there is an extra gate count of 3n yields. All 
together the gate count of the restoring array divider is 

14n2 + 3n. 

Realizing the AND-OR function by NAND-NAND gates each requiring area 1 A,, 
we have the area complexity of the restoring array divider calculated as follows: 

14(n x n)A, + (AOR + ~ A N O T )  x n 

14n x nAc + (2 + 2)nA, = 

= (14n2 + 4n)A,. 



NON-RESTORING CELLULAR ARRAY DIVIDER I71 

7.2 NON-RESTORING CELLULAR ARRAY DIVIDER 

Recall that in the non-restoring division, restoration is not required. Rather, the only 
operation is either addition or subtraction. Successively right-shifted versions of the 
divisor are subtracted from or added to the dividend, resulting in partial remainders. 
The sign of the partial remainder determines the quotient bit and, further, determines 
whether to add or subtract the shifted divisor in the next cycle. Note that if 2’s 
complement arithmetic is utilized, the additiodsubtraction can be easily handled and 
implemented by hardware. 

Let dividend A = ao.ala2 . . . a2,, divisor D = d0.dld2 . + d ,  and quotient Q = 
~ 0 . ~ 1 ~ 2  . - . qn. The operands are assumed to be positive, normalized fractions, so 
that a0 = do = 0 and a1 = dl = 1. Since $ 5 ( A , D )  < 1, Amin/D,,, < 
Q < Amas /Dmin ,  hence f < Q < 2. To perform the n-bit parallel non-restoring 
division, an (n  + 1)-by-(n + 1) non-restoring array divider is required. Figure 7.2 
shows the schematic logic diagram of a 5-by-5 non-restoring array divider, where 
n + 1 = 5 and 4-bit (excluding bit 0) division is performed. Note that qo, a0 and do 
are involved in the operation here. In contrast, in the previously described restoring 
array divider, they are not used for calculation. Also, in the array divider described in 
this section, Q is not a signed-digit number anymore. It is a 2’s complement number. 

The non-restoring array divider consists of rows of carry-propagate adders with 
each logic cell containing a full adder and an exclusive-OR gate. Again the partial 
remainder is fixed and the divisor shifts right bit by bit. The exclusive-OR gate controls 
the divisor input to the full adder. The control signal P determines whether an addition 
or subtraction is to be performed. Subtraction is performed in 2’s complement form 
by forming the 1’s complement of the divisor and forcing a carry into the rightmost 
cell. 

The carry-out signal of the leftmost cell is actually the sign of the partial remainder. 
Quotient digit qi is dependant on it. If the partial remainder < 0, qi = 0. If the partial 
remainder > 0, qi = 1. Also, the quotient bit obtained in the previous iteration 
(upper row) is used as the control signal P for additiodsubtraction selection in the 
next iteration (lower row). If P = 0, an addition is to be performed. If P = 1, a 
subtraction is to be performed by adding a 2’s complement number. Note that since 
the partial remainder and the multiple of divisor always have opposite signs, in  the 
leftmost cell two operands of the FA add up to 1. tout = 1 only if the third operand is 
1, in which case the sum is 0 indicating that the new partial remainder has a positive 
sign. 

The sum (partial remainder) can be obtained as follows: 

~i = C L ~  @ (d i  @ P )  @ c i  
= liidiciP + ai&ciP + aidiZiP + aidiciP + ai&EiP + ZiidiSiP 

+ 8.2. . p  + li.J.-,p. 
a Z C Z  z act 

For 3-level gates, 3A, delay time is required, 

ci+l = (ai + c i ) (d i  @ P )  + aici 



172 FASTARRAY DIVIDERS 

Fig. 7.2: 5-by-5 Non-Restoring Array Divider 



CARRY-LOOKAHEAD CELLULAR ARRAY DlVlDER 173 

An ( n  + 1) x (n  + 1) non-restoring array divider requires (n  + 1)’ Controlled 

For n-bit division applying the non-restoring array divider, the required array size 
Addsubtract Cells (CASs). 

is (n + 1) x (n  + 1). The delay time for one row is 

-, 
or (n+i)n,,,,,.-,,,,,, 

= ( 2 + 2 + n . 2 ) A g  
= (2n+4)Ag. 

For the FA in the hard-wired version, C and S are assumed to be generated at the 
same time. 

There are (n+l) rows in total. Only if the qi from the above row is obtained, the 
next row can start operating. Hence the total delay time is 

(2n + 4) x (n  + 1) = (2n2 + 6n + 4)Ag. 

The gate count for the non-restoring array divider can be decided as follows. 
Assume that both the original variables and the complement of them are available. 
The sum of 8 products in the logic expression for si. 

si = ZidiciP + aidiciP + aidiEiP + aidiciP + ai&EiP + SiidiCiP 

+ Z i d i C i P  + Siid&P 

can be realized by 8 NAND gates in the first level and 1 NAND gate in the second 
level. Similarly, the sum of 5 products in the logic expression for ci+l, 

ci+l = a id ip  + ai&P + diciP + &ciP + aici 

can be realized by 5 NAND gates in the first level and 1 NAND gate in the second 
level. Hence, the total gate count of a non-restoring array divider is 

8 + 1 + 5  + 1 = 15. 

7.3 CARRY-LOOKAHEAD CELLULAR ARRAY DIVIDER 

The previous dividers we discussed always involve a carry (borrow) propagation along 
the row. The length of the row is proportional to the number of bits, and the delay 
time becomes very considerable for a long row. The carry-out in each row determines 
the sign bit of the partial remainder which selects the quotient bit and the addlsubtract 
operation in the next row. Carry-lookahead circuitry can be included for the best 



174 FASTARRAY DIVIDERS 

possible solution from the speed point of view. The array is presented in Figure 7.3 
with the inputs 

A = A0.A1A2..*An, 

complemented 

and output 

There are A cells, S cells and CLA cells in the array. The Ajs  (dividend) are input 
from the top, and the complemented Djs (divisor) are input through the diagonal 
lines. Addition or subtraction is to be performed in the A cells according to the same 
policy introduced in the non-restoring division approach (with an S cell at the very 
left of each row). Each cell is actually a controlled carry-save adderkubtractor, and 
two outputs are to be generated, a sum and a carry. Sf is the sum bit generated in 
the j th  bit position of ith row, and Cj and Cf-l are the carry-in and carry-out of that 
position, respectively. The two outputs resulting from the upper row are input to the 
row below. Representing them in vectors we have 

si = s;. s; s; ... Si-1 s: 
ci = c;. cj c,: . . .  c;-l 0. 

Each A cell implements 

Sj = Sj-l @ Cj-' @ (Dj @ KZ) 
c;-l = ( D j  @ Ki)(Sj-l + cj-1) + s;-1c;-1, 

The S cell combines the very left bits S; and CA in the two output vectors by 
implementing 

(7.1) 

where Ki is Qj-1. When Qj-1 = 0, addition is to be perfromed and DO is to be 
added. Do = 0 = Ki. When QjPl, = 1, subtraction is to be performed and D o  is 
to be added. DO = 1 = RZ. So, I?' is XORed in Equation (7.1). The last term CA 
is only the carry generated by bit position 1, an isolated carry information, as well 
as Ci, C;, + . . , Ci-l. Whether they will propagate to bit position 0 and affect the 
sign can be told by carry-lookahead. 

si - si-1 @ ($1 @ Ki) @ c;, 
0 -  0 



CAF CARRY-LOOKAHEAD CELLULAR ARRAY DIVIDER 175 

Dividend A = A,,. A,4A3A4A5A&$ 
Divisor D = D,.D,D,D,D, 
Quotient Q=Q,.Q,Q,Q,Q, 

! ........ ! 

Fig. 7.3: Carry-Lookahead Array Divider for 4-bit Division 
(Carry-Lookahead Mechanism is Shown in the Second Row Only) 



176 FASTARRAY DlVlDERS 

The CLA cells are for the carry-lookahead. Let 

The output of carry-lookahead is 

di = G f  + p;"Ga + pip.G:f + . . . 
+ PfP;. . .  P:-,Gk-,. 

K i  is a control signal propagating from left to right in the ith row without any 
delay. Since the carry is saved, we do not wait on it to propagate from the rightmost 
cell to the leftmost cell. So the operation carried here is independent of the word 
length n. Hence the delay time of the carry-lookahead array divider is 

ACLA = (n  + 1) x A r o w  + A n o t .  

We can see that the total delay time is 0(n) .  In other words, it is linear to n. Recall 
that for the restoring and non-restoring divisions the time needed is 0 (n'). 

Particularly, all the operations in A cells are done in parallel with the delay time 
starting from whenever K is ready, that is, 

AXOR + AFA = ( 2  + 2)Ag = 4Ag. 

Then, two more A, are required to obtain Gi and Pj, which can be overlapped with 
the delay of the XOR gate in S cell. After that, 2A, are required by the NAND-NAND 
function to obtain di in CLA. Within two more A,, Ka can be fed to the next row. 
so, 

A,.,, = 4 + 2 + 2 + 2 = long. 
Since there are (n  + 1) rows in total and one extra inverter in the bottom row, the total 
delay time for the array is 

& w a y  = (n  + 1) x &ow + A n o t  

= (10n + l l )Ag.  

= ( ( n  + 1) x 10 + l)A, 

The area complexity for the carry-lookahead array divider can be analyzed as 
follows. To perform an n-bit division we need n(n + 1) A cells, (n + 1) S cells, 
( n  + 1) CLA circuits, (n + 1) XOR gates and one inverter. 

In A cell, 

Sj = 5'j-l @ Cj-l @ ( D j  @ Ki). 

That is, 

sj = si-lcj-lDjKi + S j - l C j - l ~ ~ K i  + sj-lca-ljDjKi + sj-lci-lj~j~a 



CARRY-LOOKAHEAD CELLULAR ARRAY DIVIDER 777 

+ sa-1cC-1 .D .Ki + sI-lcC-1 .D . ~ i  + S+lC?-lDjKi + S"lC"lDjKi. 
3 3 3  3 3 3  3 3  3 3  

Here, 9 gates are required assuming that each variable and its complement are both 
available. 

That is, 

Here 6 gates are required. Taking into consideration the 2 gates realizing the following 
functions, 

17 gates are required for each A cell. 
In S cell, 

17n + & + ( n - l ) +  - 1 - 
A cells S cell CTA cel l  l e f t  most X O R  
- 

= 18n+9. 

There are in total (n + 1) rows, 

(18n + 9) x (n + 1) + 1 = 18n2 + 27n + 10 

gates are required including the NOT gate in the bottom row. 



778 FASTARRAY DIVIDERS 

Example: A : ( 0 . 1  0 0 0 1  OOI), 

Initialization 

D : ( O . I  1 1  I), -D= 1 . 0 0 0 1  

s' : 0 . 1 0 0 0 1 0 0 1 

Q.' = 1 I = o  - D :  1 . 0 0 0 1  
-__- 

1 
subtract D 

ROO: 1 Q,=O 

add D 

shifted so : 1 . 0 0 1 1 0 0 1 0 1 
shifted co : o ,  0 0 T 

i = l  

R;: 0 Q,= 1 

shifted S': 1 . 1 0 0 0 0 1 0 0  1 
shifted ci : o ,  1 0 subtract D 

i = 2  -D: 1 . O O L  
- ~ 1 0 1 0 1  OF-- 

C ~ : I l ~ . O O O  

R,2: 1 Q,=O 

4 shifted s2 : 0 .  1 0 1 0 1 0 0 0 

shifted c* : 0 . 0 0 0 add D 
i = 3  

R,3: 1 Q,=O 

shifted 

shifted C3 : 0 .  I 0 0 add D 
1 S3: 0 .  1 0  1 1 0 0 0 0  

i D :  0 . 1  1 1  i = 4  

c 4 :  p 4 : Y 1 0 1  1 
R04: 0 

Q, = 1 

Q = Qo . Q,Q,Q,Q, = (0.1001), 

Note that G, = C S and P, = C &IS,. The lookahead carry is 
equal to 1 only it &,=I,  or thd listed Gc vector and P vector 
present the following pattern, 

Fig. 7.4: Example of Carry-Lookahead Array Division 



CARRY-LOOKAHEAD CELLULAR ARRAY DIVIDER 179 

Q p e  of Array Divider 
Restoring 

Non-restoring 
Non-restoring with CLA 

Fig. 7.5: Wires Can Take Up Significant Space 

Gate Count Divide Time 
14n2 + 4n 
15(n + 1)' 

18n2 + 27n + 10 

(2n2 + 6n + 2)A, 
(2n2 + 6n + 4)A, 

(10n + l l )A,  

The algorithm performed by the carry-lookahead array divider is as follows. 
Initialization: 
S - ' = A ( d i v i d e n d ) ;  C-'=OO... l ,  and Q - 1 = 1  
Do for i = O  to n .  
Step] .  Generate the two-vectors, carry and partial remainder: 

if Q,-' = 1, Ca o Si t S i - l  + Ci--' - D ;  

Step2. Lookahead: fii=G'1+P,'Gb,+P,"P,"GJ+...$P;'...P~ _ , G ~ _ ,  

Srep3. 

Step 4. Shift partial remainder : 
Steps. If i > n ,  End. Otherwise, i = i + l ,  go to S t e p l .  

if Qi-1 = 0, C' o S' t Sip' + C"' + D .  

where G j  = Sic '  and P' = S' @ C! . 

Ro = Sg @ Cg @ C ' ,  and quotient bit Q; = R o .  

3 3  3 3 3  
Decide the sign for partial remainder: 

C o S = 2(C' o Sa) . 

A numerical example is given in Figure 7.4 for illustration. 
As a summary, the gate count and the delay time of the three types of array dividers 

are listed in the following table in terms of the quotient word length n, and the unit 
gate delay A,. 

It should be pointed out that gate count is not the only concern in the area com- 
plexity consideration. A modern component may contain millions of gates, each 
taking up finite space. To work together these gates need to communicate with each 
other. Wires are required for interconnect, which sometimes may take up most of the 
area. As an example, Figure 7.5 shows a routed data encryption standard circuit in 
which the area associated with wires is significant[ 191. 



180 FASTARRAY DIVIDERS 

REFERENCES 

1. D. P. Agrawal, “High-speed Arithmetic Arrays,” IEEE Trans. Comp., C-28 (Mar. 
1979), pp. 215-224. 

2. M. Cappa, “Cellular Iterative Arrays for Multiplication and Division,” M.S. The- 
sis, Dept. of Elect. Eng., Univ. of Toronto, Canada, Oct. 1971. 

3. M. Cappa and V. C. Hamacher, “An Augmented Iterative Array for High-speed 
Binary Division,” IEEE Trans. Comp., Vol. C-22, Feb. 1973, pp. 172-175. 

4. K. J. Dean, “Binary Division Using a Data Dependent Iterative Arrays,” Elec- 
tronics Letters, Vol. 4, July 1968, pp. 283-284. 

5.  J. Deverell, “The Design of Cellular Arrays for Arithmetic,” Radio and Electronic 
Engineer, Vol. 44, No. 1, Jan. 1974, pp. 21-26. 

6. D. Ferrari, “A Division Method Using a Parallel Multiplier,” IEEE Trans. Comp., 
Vol. EC-16, Apr. 1967, pp. 224-226. 

7. M. J. Flynn, “On Division by Functional Iteration,” IEEE Trans. Comp., Vol. 
C-19, Aug. 1970, pp. 702-706. 

8. A. B. Gardiner, Comments on “An Augmented Iterative Array for High-speed 
Binary Division,” IEEE Trans. Comp., Vol. C-23, No. 3, Mar. 1974, pp. 
3 26-327. 

9. A. B. Gardiner and J. Hont, “Comparison of Restoring and Nonrestoring Cellular 
Array Dividers,” Electronics Letters, Vol. 7, Apr. 1971, pp. 172-173. 

10. A. Gex, “Multiplier-Divider Cellular Array,” Electronics Letters, Vol. 7, July 
1971, pp. 442-444. 

1 1. H. H. Guild, “Some Cellular Logic Arrays for Non-restoring Binary Division,” 
Radio and Electronics Engineer, Vol. 39, June 1970, pp. 345-348. 

12. V. C. Hamacher and J. Gavilian, “High-speed MultiplierDivider Iterative Ar- 
rays,” Proc. 1973 Sagamore Computer Con$ on Parallel Processing, 1973, pp. 
9 1-1 00. 

13. J. C. Majithia, “Nonrestoring Binary Division Using a Cellular Array,” Electron- 
ics Letters, Vol. 6, May 1970, pp. 303-304. 

14. J. E. Robertson, “Theory of Computer Arithmetic Employed in the Design of 
New Computer at the University of Illinois,” Tech. Rept., No. 319, Dept. of 
Computer Science, University of Illinois, Urbana, 1960. 

15. A. Socemcantu, “Cellular Logic Array for Redundant Binary Divisions,” Proc. 
IEE (London), Vol. 119, No. 10, Oct. 1972, pp. 1452-1456. 



PROBLEMS 187 

16. R. Stefanelli, “A Suggestion for High-speed Parallel Binary Divider,” ZEEE 
Trans. Comp., Vol. C-21, Jan. 1972, pp. 42-55. 

17. A. Svoboda, “An Algorithm for Division,” Zn$ Proc. Machines, No. 9, Prague, 
Czechoslovakia, 1963, pp. 25-34. 

18. M. V. Wilkes, D. J. Wheeler and S. Gill, Preparation of Programs for a n  Elec- 
tronic Digital Computer, Addison-Wesley, Reading, MA, 195 1. 

19. A. Dehon, “Interconnect,” Web page at http://www.cs.caltech.edu/cbsss/ 
schedule/slides/dehon3interconnect.pdf, June 20,2002. 

PROBLEMS 

7.1 Given a dividend A = (.1011011010)~ and a divisor B = (.01011)2, imple- 
ment the division through a 5-by-5 Restoring array divider. Draw the structure of 
the array and find the quotient and remainder following the data flow. What is the 
division time? 

7.2 Construct a 3-by-3 restoring array divider to implement the division of C = 
(.110101)2 by D = (.101)2. Find the intermediate result after 6Ag and after 9Ag 
by showing the values of c,,t and s for each cell. 

7.3 ObtainN = (.101101)2 divided by D = ( . 111)2  througha non-restoringarray 
divider. Show the Sij and Cij + 1 for each CAS cell (2 ,  j ) ,  where 0 5 i 5 n indicates 
the row index and 0 5 j 5 n indicates the column index. 

7.4 If the XOR and full adder in each cell of non-restoring array divider is realized 
by NAND-NAND implementation, assume all the input variables are available in 
both the original and the complement form. Find the division time of the array for an 
n-bit division. 

7.5 Apply a carry-lookaheadarray divider to perform a 5-bit division with dividend 
A = (.0001101110)~ and divisor D = (.01010)2. Show the detailed procedure of 
this division with reference to Figure 7.3. 

7.6 Given a 16-by- 16 restoring divider, a 16-by- 16 non-restoring array divider and 
a 16-by-I6 non-restoring array divider with CLA, compare the cost effectiveness of 
them. 
Hint: Find the area complexity and delay time of each array divider first. 



This Page Intentionally Left Blank



8 
Floating Point Operations 

Floating point operations are widely applied in scientific computations. With limited 
number of digits, the range and precision of the numbers represented by floating 
point systems can be improved. In this chapter, we introduce floating point addition, 
subtraction, multiplication and division. 

8.1 FLOATING POINT ADDITION/SUBTRACTION 

Let X1 = ( M I ,  E l )  and X z  = (M2,  E z )  be two numbers in floating point repre- 
sentation, where Mi = SilMil and X ,  = (-l)si . (Mil . rEi-bias.  We are to find 
Xout = x1 f xz. 

Two floating point numbers cannot be addedlsubtracted unless the two exponents 
of them are equal. An alignment is needed if the exponents of the two given numbers 
are different. Usually, we let the bigger exponent remain unchanged, and adjust the 
smaller exponent to be the same as the bigger one. For a number with exponent 
enlarged, its mantissa should be reduced in order to keep the value of the number 
as same as before. That is, the mantissa should be shifted right. The exponent was 
increased by (El - E21, resulting in ~ I ~ 1 - ~ 2 l  times enlargement. The number of 
digit positions to be right shifted in mantissa should be IEl - E2 I as well resulting 
in T I ~ ~ - ~ ~ I  times reduction (indicated by a factor of r-(IE1-E21) below). 

Let Xout = X 1  f X2 = (Moutl  EOut).  We have 

183 



184 FLOATlNG POINT OPERATIONS 

and 

Ml f M2 . ~ - I ~ ~ - ~ z l ,  
Ml . T - I ~ I - ~ ~ ~  f Mz, 

if El > E2 
if El 5 E2. Mout = 

The additiodsubtraction procedure includes the following steps. 

1. Alignment. Shift the mantissa of the smaller operand to the right. The number of 
digit positions to shift over is equal to the difference between the two exponents. 
The larger exponent is the exponent of the result. 

2. Mantissa AdditiodSubtraction. One mantissa is added to or subtracted from 
the other. 

3. Postnormalization. Normalize the mantissa resulted in suddifference if nec- 
essary, and adjust the exponent accordingly. 

For example, suppose T = 2, 
X I  = ( M I ,  E l )  = (1001, lo),  and 
XZ = (M2,Ez)  = (1100,OO). 

Find XoUt = X1 - X2. 

Xovt = (1001,10) - (1100,OO) 

J.l alignment 

Xout = (1001,10) - (0011,10) 

lJ subtraction 

Xout = (01 10,lO) 

lJ postnormalization 

Xout = (1 100,Ol) 

The data flow of the floating point subtractiodaddition is shown in Figure 8.1. 
OMZ refers to order-of-magnitude zero, particularly the scenario ( M ,  E )  = (0, E )  
where E # 0. It can be resulted from the mantissa subtraction when the two mantissas 
are equal, and is in contrast to true zero, in which (M,E) = (0,O). Since it is impossible 
to perform a postnormalization over a mantissa equal to zero, OMZ should be detected 
and its existence signaled. 

8.2 FLOATING POINT MULTIPLICATION 

In a floating point multiplication, the two mantissas are to be multiplied, and the 
two exponents are to be added. That is, if X1 = M I  . r E 1 u n b i - c d  and X2 = MZ . 



FLOATING POINT MULTIPLICATION 185 

Alignment 

Addsubtract 

Postnotmalization 

Fig. 8.1: Data Flow of Floating Point AdditiodSubtraction 



186 FLOATING POINT OPERATIONS 

f E 2  u n b i  o a e d . then 

where 

and 

E P u n b i a s e d  E l u n b i a s e d  + E 2 u n b i a s e d .  

Given the normalized mantissas MI and M2, the product of them may not be 
normalized, and a postnormalization is necessary in that case. A left shift for one and 
at most one digit position will be needed for postnormalization. Consider the binary 
representation, for example. (0.1 x . . . x )  x (0.1 x . . . X )  will result in (0.01 x .  . . x). 
In general, : 5 Ml < 1 and : 5 M2 < 1 will result in 5 5 Ml x M2 < 1. 

With biased exponents, we can represent XI and X 2  by X 1  = (MI, E l )  and 
X2 = (M2,  E 2 ) ,  where 

El = El u n b i a s e d  + bias (8.1) 

and 

E 2  = E z u n b i a s e d  + bias. (8.2) 

The product is to be represented by X ,  = ( M p ,  Ep) ,  where E, is a biased exponent 
and 

EP = ' P u n b i a s e d  + bias (8.3) 
= E l u n b i a s e d  + E 2 u n b i a s e d  + bias. (8.4) 

Adding Equation (8.1) and Equation (8.2), and comparing the sum with the right- 
hand side of Equation (8.4), we can find that the latter is one bias less. So, E, can be 
found by 

Ep = El + E 2  - bias. 

The subtraction is necessary because otherwise, the bias is included twice. 

is an example for binary floating point multiplication. 

Here, bias = 2l - 1 = 1. 

The data flow of the floating point multiplication is shown in Figure 8.2. Following 

Suppose r = 2, XI = (1010,01), and X 2  = (1010,lO). Find X ,  = X1 x X 2 .  

x, = (1010 x 1010, (01 + 10 - 1)) 

= (01100110, 10) 

= (1100, 01). 



FLOATING POINT MULTIPLICATION 187 

I 

Data Flow : 

I 

X Exponent 
Addition 

Overilow 

Leading Zero 
Detection 

and Shifter 

Postnormalization 



188 FLOATING POINT OPERATIONS 

8.3 FLOATING POINT DIVISION 

In a floating point division, the mantissa of dividend is divided by that of divisor, 
and the exponent of dividend minus that of divisor will be resulted. That is, if 
x1 = Ml . r E l u n b i a s e d  and x2 = M2 . r E 2 u n b i o s e d ,  then 

x - &/x2 = M p  . rEPunbiased  
P -  

where 

and 

Epunbiased = El unbiased - E2unbiased. 

Given the normalized mantissas MI and M2, we have 5 M I  < 1 and 5 MZ < 
1. Referring 5 as Mmin and 1 as Mmax,  the range of M1/M2 is MminlMmax < 
Ml/Mz < Mmaz/blmin, that is, 

The left side of the inequality indicates that the quotient is always normalized and no 
postnormalization is needed. The right side of the inequality shows a possibility of 
quotient overflow when 1 < Ml/M2. A right shift over one digit position will solve 
the problem and reduce any quotient from < r to < 1. 

Given X1 and X2 represented with biased exponents such as X I  = ( M I ,  E l )  and 
X2 = (M2,  E2) for the same El and E2 defined in Equations (8.1) and (8.2), the 
quotient can be represented by X ,  = (M,, E,) where Ep is a biased exponent and 

Ep = EPunbiased + baas (8.5)  
= Elunbiased - E2unbiased + bias. (8 .6)  

Subtract Equation (8.2) from Equation (8. I), the two biases on the right-hand side 
cancel, and we have 

El - E2 = Elunbiased - E2unbiased* 

Comparing with Equation (8.3), we can see that E, can be found from the difference 
of El and E2 if a bias is added back. That is, 

E, = E1 - E2 + bias. 

The data flow of the floating point division is shown in Figure 8.3. Following is 
an example for binary floating point division. 

Supposer = 2, 
X1 = (1010,01), and 



ROUNDING 189 

Data Flow : 

Overflow 

Fig. 8.3: Data Flow of Floating Point Division 

XZ = (1010,OO). 
Find X ,  = X 1 / X 2 .  Notice that bias = 1. 

x, = (1010/1010, (01 - 00 + 1)) 

= (1 0000, 10) 

= (1000, 11). 

8.4 ROUNDING 

Mantissa 
Division 

and 
Exponent 

Subtraction 

Postnormalization 

Precisely representing a number with limited digits is always an issue in computer 
systems. When only part of the digits in the result of calculation can be retained, 



190 FLOATING POINT OPERATIONS 

the rounding problem arises. Rounding is important particularly in floating point 
arithmetic since usually a sequence of computations are performed for scientific work, 
while the error caused by rounding accumulates and the error bound increases more 
rapidly. 

In the example in Section 8.2, one can see that for a resulted product with 2n digits, 
we retain only n digits. With limited number of digits, it is often hard to represent 
the exact value of a result, say X,. In digit systems, however, one can always find 
X ,  and Xb that can be represented and can have X ,  tightly bounded. In other words, 
X ,  5 X, 5 Xb. where X ,  is the greatest of those representable smaller than X,, 
and Xb the smallest of those representable greater than X,. 

The rounding policies include truncate, round-up and round-to-nearest which are 
explained as follows. We first focus on positive numbers for simplicity. 

1. Truncate: The lower order digits are discarded which are less significant. 

2. Round-up: The lower order digits are discarded and, at the mean time, the least 
significant digit of the higher order digits which are retained is incremented. 

3. Round-to-nearest: If p digits are to be retained, the ( p  + 1)th digits is to be 
examined. If it is < f , discard it and every digit on its right. If it is 2 f, discard 
it as well as every digit on its right, and add 1 to thepth digit. Round-to-nearest 
is a combination of the truncate and round-up approaches mentioned above, 
executing one of them based on the case condition rather than all the time. 

In decimal number system, for example, suppose only integer digits are to be kept. 
If truncating is adopted, 2.4 will become 2, and 2.5 will become 2 as well. If round-up 
is adopted, 2.4 will become 3 and 2.5 will become 3. If round-to-nearest is adopted, 
2.4 will become 2, and 2.5 will become 3. 

Consider the rounding of 2.5000 with round-to-nearest approach. The difference 
of 2.5000 and 2 is 0.5, and the difference of 2.5000 and 3 is also 0.5. That is, 2.5000 is 
within equal distance to integer 2 and 3 (referred to as in half-way). It is rounded to 3 
as defined by round-to-nearest approach, though it is not nearer to 3 than to 2. It is not 
fair to always round it to 3, and it is not fair neither to always round it to 2. A better 
way to reduce the accumulative error is, as indicated in IEEE rounding standard, to 
“round to nearest even”. For the above example, that is, round 2.5000 to 2. Between 
the two integers serving as the lower bound and upper bound of x.5 for any integer x, 
one must be even and one odd. Round to that even number, according to the “round to 
nearest even” approach, no matter whether truncate is needed or round-up is needed. 

Notice that in the above example, all the digits following .5 should be examined to 
assure that half-way case is dealt with. If any digit on the right of .5 is more than 0, we 
don’t have a half-way case; Round-to-nearest approach in (3) can be implemented, 
since it is easy to find which integer is nearer. 

In Table 8.1, the given 6-bit numbers are to be rounded to 4-bit ones, and “round 
to nearest even” policy is to be adopted. 

Take negative numbers into consideration. If the negative numbers are represented 
in sign-magnitude form, and the above listed rounding procedure works on the mag- 
nitudes of the numbers, then, truncating a magnitude and deleting the digits on its less 



EXTRA BITS 191 

1001 

1001 

1010 

Table 8.1: Round to Nearest Even 

10 + 1010 mid-way of 1001 and 1010 

round to 1010 

11 -+ 1010 round-up 

00 -+ 1010 truncate 

I 1001 I OO+ 1001 truncate I 

1010 

I 1001 I 01 -+ 1001 truncate I 

round to 1010 

11 -b 1011 round-up 

I 1010 I 01 + 1010 truncate I 
I 1010 I 10 + 1010 mid-way of 1010 and 101 1 I 

significant end make the magnitude smaller, and lead the signed number “round-to- 
zero”. (For negative numbers represented in complete form, truncating them rounds 
away from zero instead of toward zero.) When round-up a magnitude, for a positive 
number, it is rounded toward +m, and for a negative number it is rounded toward 
-m. 

8.5 EXTRA BITS 

Let’s compare two examples, 
1. xout = (iO01,iO) - (1010,00),and 
2. Xhut = (1001,10) - (1011,OO). 

If only 4-bit subtraction is allowed, we have 

Xout = (1001,lO) - (1010,OO) 
XLUt = (1001,10) - (1011,OO) 

lJ alignment 

Xout = (1001,10) - (0010,10)= XAut 

l,l subtraction 

l,l postnormalization 



192 FLOATING POINT OPERATIONS 

XOUt = (1 1 l0,Ol) = XAUt 

The two subtractions ended up with the same result! This is because that in the align- 
ment step, some bits were shifted to right and shifted out, and part of the information 
about the subtrahends was lost. In the postnormalization, both of the differences were 
shifted left and shifted back for one bit position, but both shifted in a 0. 

If a 6-bit subtraction is allowed, after the alignment, the subtrahend in Example 1 
becomes 001010, and that in Example 2 becomes 001011.We have 

Example 1 Example 2 

100100 100100 
-) 001010 -) 001011 

011010 01 1001 

A postnormalization is needed here. After left shift the mantissa for one bit posi- 
tion, the two results become 

Xout = (1101, lo) ,  

and 

XAUt = (1100,10). 

Here, a difference of 1 can be observed in the LSB of mantissas. That bit was 
the fifth bit in the subtraction, and in both of the examples the fifth bit was retained, 
rather than shifted out. The implication we obtain here is to retain some extra bits in 
the operation for the sake of accuracy. 

How many extra bits to keep is worth investigation, then. For multiplication, we 
understand from Section 8.2 that the product of two normalized mantissas has at most 
one leading zero. In the postnormalization, left shift is required and one bit is to be 
shifted in from right. 

For additionhubtraction, if a subtrahend has been shifted to right for two or more 
bit positions in an earlier alignment step, then at most one leading 0 will be caused 
after the subtraction. This is because that given a normalized minuend, the smallest 
value of it is 

0.10 * . .o;  

and if a normalized subtrahend was shifted right for two or more bit positions for the 
alignment, the maximal value of it is 

0.001 . . ' 1. 

Hence 

0 . 1 0 0 * ~ ~ 0 0  
-) 0.001 * .  * 11 



EXTRA BITS 193 

0.010. . * 01 

is the worst case. The result is to be shifted left for postnormalization, and one bit is 
to be shifted in from right. If one extra bit is kept on the right, its true value can be 
shifted in, rather than a 0 to be shifted in all the time. Such extra bit is referred to as 
guard bit. 

Another extra bit can be added to the right of the guard bit for rounding function, 
referred to as round bit. Instead of truncating all the bits in less significant bit positions 
all the time, we conduct the truncation only if the round bit is 0. If the round bit is 1, 
we round-up. In other words, with the round bit, round-to-nearest can be realized. For 
an even fairer process “round to nearest even”, the half-way case should be identified. 

In the above case, when the round bit is 1, we round up, assuming that the amount 
represented by it and the lower order bits is more than half of the weight carried by 
LSB. However, when the round bit is 1 and all the bits on its right are O’s, a half-way 
case presents. Half-way cases are not always rounded up unless an even number can 
be resulted after rounding. Note, to be a half-way case, no bit on the right of round 
bit is allowed to be 1, including those bits shifted out in the alignment step. The 
information of those bits should not be lost, and to record it another extra bit, called 
sticky bit, is added to the right of round bit. Every bit passing sticky bit position on 
its way of shifting right will be examined. If any bit is 1, the sticky bit sticks to 1. 
Actually, the sticky bit ( S  in below) is the logic OR of all the bits passing through, 
providing a summarized information for all the bits on the right of round bit ( R  in 
below). 

x 1 o . e . 0  + 
G R  S 

Truncating R and the lower order bits, we have the lower bound of the given 
number. When LSB = 0, the lower bound is even. When LSB = 1, the lower bound 
is odd and the upper bound is to be used since it must be even. The upper bound can 
be obtained by adding 1 to the LSB bit position. Denote LSB as Bo, the following 
logic expression describes when the add 1 function should be performed. 

(8.7) 

(8.8) 

(8.9) 
(8.10) 

The second term is for the half-way case ( R  = 1 and S = 0) and when the given 
number is odd (Bo = 1) in which we round up. The first term is for the “more than 
half” case ( R  = 1 and S = 1) in which we round up no matter the given number is odd 
or even. Equation (8.7) has actually formulated the IEEE rounding policy: round to 
the nearest, and round to even for the half-way case. Figure 8.4 shows an example of 
rounding in a subtraction. 



194 FLOATING POINT OPERATIONS 

x-Y : 

align Y 

x = (10101101 ,0100) 

Y=(11000101 ,0000) 

mantissa G R s 
~11000101 lo lo lo l  

4 
~01100010 11 lolo] 

lo01 10001 lo 11 lo] 

~00011000 11 1011 I 
~00001100 l O l l l l 1  

+ 

+ 

+ -  stick to 1 

10101101 0 0 0 

Mx-M Y t---ttfl 00001100 0 1 1 

no postnormalization ~10100000 11 10111 

round-up 1-1 

x-Y = (10100001 ,0100) 

Fig. 8.4: Example of Rounding in Subtraction 

the nearest, and round to even for the half-way case. Figure 8.4 shows an example of 
rounding in a subtraction. 

REFERENCES 

1. G. M. Amdahl, “The Structure of Systed360, Part 111, Processing Unit Consid- 
erations,” IBM System Journal, Vol. 3, 1964, pp. 144-164. 

2. S. F. Anderson, et. al., “The IBM Systed360 Model 91: Floating-point Execu- 
tion Unit,” IBM Journal, Jan. 1967, pp. 34-53. 

3. R. P. Brent, “On the Precision Attainable with Various Floating-point Number 
Systems,” IEEE Trans. Comp., C-22 (June 1973), pp. 601-607. 



REFERENCES 195 

4. S. G. Campbell, Floating-Point Operation, Planning a Computer System, W. 
Buckholz ed., McGraw-Hill, New York, 1962, Chapter 8. 

5. W. J. Cody, Jr., “Analysis of Proposals for the Floating-point Standard,” Com- 
puter, (Mar. 1981), pp. 63-69. 

6. W. J. Cody, Jr., “Static and Dynamic Numerical Characteristics of Floating-point 
Arithmetic,” IEEE Trans. Comp., Vol. C-28, June 1973, pp. 596-601. 

7. Y. Chu, Computer Organization and Microprogramming, Prentice-Hall, En- 
glwood Cliffs, NJ, 1972, Chapter 5. 

8. M. J. Flynn and P. R. Low, “The IBM Systed360 Model 91: Some Remarks on 
System Development,” IBM Journal, Jan. 1967, pp. 2-7. 

9. H. L. Gary, and C. Harrison, Jr., “Normalized Floating-point Arithmetic with 
an Index of Significance,” Proc. Eastern Joint Computer Conference, 1959, pp. 
244-248. 

10. D. Goldberg, “Computer Arithmetic,” in Computer Architecture: A Quantitative 
Approach, D. A. Patterson and J. L. Hennessy, Morgan Kaufmann, San Mateo, 
CA, 1990, App. A. 

1 1. E E E  Standard for Binary Floating-point Arithmetic, ANSVIEEE 754- 1985, also 
in Computer, 14 (Mar. 1981), pp. 51-62. 

12. IEEE Task P 754, “A Proposed Standard for Binary Floating-point Arithmetic,” 
IEEE Comp., Vol. 14, No. 3, Mar. 1981, pp. 51-62. 

13. IBM Staff, “Floating-point Arithmetic,” in IBM Systed360 Principles of Oper- 
ation, IBM System Ref. Lib. From A22-6821-7, September 1968, pp. 41-50.3. 

14. W. Kahan, “What is the Best Base for Floating-point Arithmetic, Is Binary Best?’ 
Lecture Notes, Dept. of Computer Sci., University of California, Berkeley, 1970. 

15. U. Kulisch, “Mathematical Foundations of Computer Arithmetic,” IEEE Trans. 
Comp., Vol. C-26, No. 7, July 1977,pp. 610-621. 

16. D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, 
Vol. 2, Addison-Wesley, Reading, 1969, Chapter 4. 

17. D. J. Kuck, D. S. Parker, and A. H. Sameh, “Analysis of Rounding Methods in 
Floating- Point Arithmetic,” IEEE Trans. Comp., Vol. C-26, No. 7, July 1977, 
pp. 643-650. 

18. L. A. Liddiard, “Required Scientific Floating Point Arithmetic,” Proc. 4th Symp. 
on Comp. Arith., Oct. 1978, IEEE Cat. No. 78CH1412-6C, pp. 56-62. 

19. D. W. Matula, “A Formalization of Floating-point Numeric Base Conversion,” 
IEEE Trans. Comp., Vol. C- 19, August 1970, pp. 68 1-692. 



196 FLOATING POINT OPERATIONS 

20. M. M. Mano, Computer System Architecture, Prentice-Hall, Englewood Cliffs, 
NJ, 1976, Chapter 10. 

21. R. E. Moore, Interval Analyis, Prentice-Hall, Englewood Cliffs, NJ, 1966. 

22. E. K. Reuter, et al., “Some Experiments Using Interval Arithmetic,” Proc. 4th 
Symp. on Comp. Arith., Oct. 1978, IEEE Cat. No. 78CH1412-6c, pp. 75-80. 

23. P. L. Richman, “Floating-point Number Representations: Base Choice Verus 
Exponent Range,” Tech. Rep. No. CS-64, Dept. of Comp. Sci., Stanford 
University, Stanford, CA, 1967. 

24. M. R. Santoro, G. Bewick, and M. A. Horowitz, “Rounding Algorithms for IEEE 
Multipliers,” Proc. 9th Symp. on Comp. Arith., 1989, pp. 176-183. 

25. D. W. Sweeney, “An Analysis of Floating-point Addition,” IBM Systems Journal, 
Vol. 4,No. 1, 1965,pp. 31-42. 

26. P. H. Sterbenz, Floating-point Computation, Prentice-Hall, Englewood Cliffs, 
NJ, 1974. 

27. R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic 
Units,” IBM Journal, Jan. 1967, pp. 25-33. 

28. N. Tsao, “On the Distribution of Significant Digits and Roundoff Errors,” Com- 
munications of the ACM, 17 (May 1974), pp. 269-27 1. 

29. J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Engle- 
wood Cliffs, NJ, 1963. 

30. J.  M. Yohe, “Roundings in Floating-point Arithmetic,” IEEE Comp., Vol. C-22, 
No. June 1973, pp. 577-586. 

PROBLEMS 

8.1 IBM 370 system has a floating point format (short) similar to what is shown in 
Figure 1.8, except that E is of 7 bits and IMI 24 bits. The bias is 64, and the normalized 
mantissa contains fraction only. The base T is chosen to be 16. Represent 17.5 x 21° 

in such a floating point form. Write the mantissa and exponent in hexadecimal form. 

8.2 What is the decimal value of the following number represented in the IEEE 
single-precision floating point form? 

I l l  1000 000 1 I 10000000000000000000000 1 

8.3 To represent a number in floating point form, if 16 bits are used with 5 bits for the 
exponent which is unbiased, and 10 bits for the mantissa which contains normalized 



PROBLEMS 197 

fraction only, what are the range and precision (in decimal) of the number that can be 
represented if base T is chosen to be 2. Justify your answer. 

8.4 Given 32 bits to represent a number in fixed-point arithmetic or in floating point 
arithmetic with IEEE standard form, compare the range of the number that can be 
represented and the precision in number representation. 

8.5 Given each operand represented in the basic binary floating point form, perform 
the following operations. Show step by step the arithmetic procedure and the contents 
of relevant registers. 
(a) 0.625 x 25 + 0.75 x 2lO 
(b) 0.125 x 215 - 0.625 x 28 
(c) -0.875 x 212 + 0.25 x 27 
(d) -0.375 x 26 - 0.5 x 24 

8.6 Perform the following operations showing step by step the arithmetic procedure 
and the contents of relevant registers. Suppose each operand is represented in the basic 
binary floating point form. 
(a) 0.125 x 2lO x 0.25 x 28 
(b) 0.75 x 215 x 0.625 x 25 
(c) 0.375 x 26 + 0.5 x 27 
(d) 0.875 x 212 t 0.125 x 24 

8.7 How many guard bits are needed to assure the accuracy in the results of sub- 
traction? Justify your solution. 

8.8 Following are the mantissas of the results obtained by floating point compu- 
tations. Assuming that only one integer bit and four fraction bits can be retained, 
round the mantissas according to the IEEE “round to nearest even” policy after post 
normalization. 

1 . 1 0 1 0 1 0  
r s  

1 0 . 1 1 1 0 0 1  
r s  

1 0 . 0 0 1 1 0 0  
r s  

1 1 . 1 1 0 1 0 1  
r s  

1 1 . 0 0 1  1 0 1  
r s  

8.9 If someday IEEE changes the rounding policy to “round to nearest odd,” write 
a logic expression to implement such rounding policy through “add 1” operation to 
the LSB position. 



This Page Intentionally Left Blank



Residue Number 
Ope rations 

Since in Residue Number Systems (RNS) the moduli are independent of each other, 
there is no carry propagation among them. The operations based on each modulus can 
be performed in parallel, and the RNS computations can be completed more quickly 
- an attractive feature for people who need high-speed arithmetic operations. 

9.1 RNS ADDITION, SUBTRACTION AND MULTIPLICATION 

Suppose two numbers, X and Y ,  are represented as 

and 

y = (Yl,YZ,’.’ ,Yn> 

in RNS. We use 8 to represent the operator of addition, subtraction and multiplication, 
and let 

Z = X @ Y .  

If 

= ( Z l r Z 2 ,  * .  * ,&), 

zi = IZ i  @ Y i l m ; .  

the arithmetic in RNS can be expressed as follows: 

199 



200 RESIDUE NUMBER OPERATIONS 

For example, if m1 = 5, m2 = 3, m3 = 2, then 

and 

3 (3, Q, 1) 
- x 7 ===+ x(2, 1, 1) 

21 (1,Q, 1). 

From the definition of the mod operation, all moduli are positive. xi may be less 
than yi which yields xi - yi < 0. In the mod operation, if xi - yi < 0, then zi is 
defined as 

zi = mi + (xi - yi). (9.1) 

Overflow detection, sign detection, number comparison and division in RNS are 
very difficult and time consuming. These shortcomings limit most of the previous 
RNS applications to additions, subtractions and multiplications. 

9.2 NUMBER COMPARISON AND OVERFLOW DETECTION 

With the representation in residues, number comparison and overflow detection in 
RNS have never been easy tasks. In this section, efficient methods are sought for 
number comparison and overflow detection. One can see that the methods introduced 
here are practical and can be easily implemented. 

9.2.1 Unsigned Number Comparison 

Let parity indicate whether an integer number is even or odd. We say that two numbers 
are of the same parity if they are both even or both odd. Otherwise the two numbers 
are said to be of different parities. We will apply the properties of the parities of 
numbers to accomplish the number comparison. 

Let X and Y have the same parity and 2 = X - Y .  X 2 Y ,  if and only if (iff, 2 
is an even number. X < Y ,  i;fs 2 is an odd number. 

Actually, if X 2 Y ,  then X - Y 2 0 and 2 equals X - Y .  We know from the 
mathematical axioms that if the two numbers are with the same parity, the result of 
subtraction should be an even number. Therefore X 2 Y implies that 2 is an even 
number. 

On the other hand, suppose 2 is an even number and X and Y are with the same 
parity. If X < Y then X - Y < 0. From equation (1) we have 2 = X - Y + M .  
Since M is an odd number and X - Y is even, 2 must be an odd number. This 
contradicts the assumption that 2 is even. Therefore if 2 is an even number and X 
and Y are with the same parity, then X 2 Y .  



NUMBER COMPARISON AND OVERFLOW DETECTION 201 

(3 5 7) 
0 3 0  
1 4 1  
2 0 2  
0 1 3  
1 2 4  
2 3 5  
0 4 6  
1 0 0  
2 1 1  
0 2 2  
1 3 3  
2 4 4  
0 0 5  
1 1 6  
2 2 0  
0 3 1  
1 4 2  
2 0 3  
0 1 4  
1 2 5  
2 3 6  

- 
# 
0 
1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 

19 
20 

- 

- 

a 
- 

- 

ia 

- 

P 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

Table 9.1: Parity Table for Modulus Set {3,5,7} 

(3 5 7) 
0 0 0  
1 1 1  
2 2 2  
0 3 3  
1 4 4  
2 0 5  
0 1 6  

2 3 1  
0 4 2  
1 0 3  
2 1 4  
0 2 5  
1 3 6  
2 4 0  
0 0 1  
1 1 2  

0 3 4  
1 4 5  
2 0 6  

1 2 0  

2 2 3  

P # 
0 21 
1 22 
0 23 
1 24 
0 25 
1 26 
0 27 

0 29 
1 30 
0 31 
1 32 
0 33 
I 34 
0 35 
1 36 
0 37 

0 39 
1 40 
0 41 

I za 

I 38 

- 
(3 5 7) 
0 1 0  
1 2 1  
2 3 2  
0 4 3  
1 0 4  
2 1 5  
0 2 6  
1 3 0  
2 4  1 
0 0  2 
1 1 3  
2 2 4  
0 3 5  
1 4 6  
2 0 0  
0 1  1 
1 2 2  
2 3 3  
0 4 4  
1 0 5  
2 1 6  

- 

- 

- 

- 

- 
# - 
a4 
a5 

a7 
aa 
a9 

86 

- 

90 
91 
92 
93 
94 
95 
96 
97 

99 
100 
101 
102 
103 
104 

- 

98 - 

- 

(3 5 7) 
0 4 0  
1 0 1  
2 1 2  
0 2 3  
1 3 4  
2 4 5  
0 0 6  
1 1 0  
2 2 1  
0 3 2  
1 4 3  
2 0 4  
0 1 5  
1 2 6  
2 3 0  
0 4 1  
1 0 2  
2 1 3  
0 2 4  
1 3 5  
2 4 6  

- 

P 

~ 0 0 

1 

The above property shows us a method to compare two numbers if the parities of 
these two numbers are the same. Similarly if the parities of two numbers are different, 
then the following property can tell us which one is bigger. 

Let X and Y have different parities and 2 = X - Y .  X 2 Y ,  zflZ is an odd 
number. X < Y ,  iff 2 is an even number. 

To prove the above we can see that if X 2 Y ,  then X - Y 2 0 and 2 equals 
X - Y .  We know that the two numbers are with different parities, and the result of 
the subtraction should be an odd number. Therefore X 2 Y implies that 2 is an odd 
number. 

On the other hand, suppose that 2 is an odd number and X and Y are with 
different parities. If X < Y ,  then X - Y < 0. From Equation (9.1) we have 
2 = X - Y + M .  Since M is an odd number and X - Y is odd, 2 must be an 
even number. This contradicts the assumption that 2 is odd. Therefore if 2 is an odd 
number and X and Y are with different parities, then X 2 Y .  

Table 9.1 is referred to when performing parity checking for number comparisons. 
The decimal numbers under the entry "#"are corresponding to the residue numbers 
for modulus set {3,5,7}, and the parities of them are given under the entry P. 

Following is an example illustrating the above theory. 
Let the moduli be ml = 3, m2 = 5, m3 = 7 and hence M = 3 x 5 x 7 = 105. 

Consider X1 = (0 ,3 ,5)  and Y1 = (1 ,3 ,0) .  From calculation we have 21 = X1 - 
Yl = (2,0,5).  By table look-up, the parities of XI, Yl and 21 are odd, even and odd 
respectively. From the above theory we know X1 > Y1. 

In the decimal number system, X1 = 33, Yl = 28 and Z1 = 5 ,  and the result is 
obvious. 



202 RESiDUE NUMBER OPERATIONS 

9.2.2 Overflow Detection 

Let mis be all odd and pair-wise relatively prime. if two numbers are with the same 
parity, then the overflow in the addition of the two numbers can be detected as follows. 

Suppose X and Y have the same parity and 2 = X + Y .  The addition is with 
overflow, iff 2 is an odd number. 

This is due to the fact that if X and Y have the same parity, ( X  + Y )  should 
result in an even number. From the RNS operation, if ( X  + Y )  3 M then 2 = 
IX + Y ~ M  = X + Y - M .  However M is an odd number, which causes 2 to be 
odd. 

On the other hand, suppose 2 is an odd number and X and Y are with the same 
parity. if  ( X + Y )  is not overflowed, then ( X + Y )  is an even number. This contradicts 
the assumption that Z is an odd number. Therefore if 2 is an odd number, and X and 
Y are with the same parity, then ( X  + Y )  is with overflow. 

If two numbers are with different parities, then the overflow detection in the addi- 
tion of the two numbers can be detected as follows. 

Suppose that X and Y have different parities and 2 = ( X  + Y ) .  The addition is 
with overflow, iff 2 is an even number. The following example helps to describe the 
above theory. 

Let the moduli be ml = 3, m2 = 5, m3 = 7, and two numbers be X I  = (2 ,1 ,1)  
and Yl = (0, 0,4). Detect whether the addition of X1 and Y1 is with overflow. From 
calculation 2 1  = X1 + Y1 = (2,1,5).  By looking up Table 9.1, the parities of 
X I ,  Yl and 2 1  are found to be odd, even and even respectively. From the above 
theory, the result of the addition is overflowed. Actually X I  = 71, YI = 60 and 
2 1  = )131)105 = 26 in the decimal number system. 

The overflow detection described above applies to the addition of only two num- 
bers. 

9.2.3 Signed Numbers and Their Properties 

The method to represent negative numbers in RNS is similar to that in conventional 
radix number systems. Letting the dynamic range be M ,  we can define the positive 
and negative numbers as follows. 

Given rnis in the modulus set are all odd, and the dynamic range M = n:=, mi, 

then the range of a positive number X is defined as 0 5 X 5 and the range 
of a negative number Y is defined as LY] < Y < M .  For any positive number 
X # 0, the additive inverse of X is represented by ( M  - X ) .  Notice here 0 is 
considered a positive number. The complement of X is ( M  - X ) .  in a similar way, 
the representation of the complement of a number in RNS can be found as follows. 

Let the modulus set be { ml , m2, . . . , mn}, and the corresponding modulus set of 
a positive number X in RNS be {21,22, . - . , zn}.  - X  in RNS can be represented 
by the complement of X which is equal to ( Jml  - 2 1  I m l ,  1m2 - 2 2 I m z , .  . * , Im, - 
2, I m , ) .  From the definition, - X  in RNS corresponds to M - X .  Applying Equation 
(9.1), the corresponding modulus set of - X  is (Jml - 211ml, (m2 - z2Imz,. . . , 
Imn - z , lmn) .  



NUMBER COMPARISON AND OVERFLOW DETECTION 203 

The dynamic range of RNS can be divided into two halves, one for positive numbers 
and the other one for negative numbers. If the moduli are all pair-wise relatively 
primed and all odd numbers, then the maximum positive number is v. A negative 
number's magnitude must fall in the positive range. In this case, the unsigned number 
comparisons are applicable for the signed RNS numbers. When comparing two signed 
numbers, three cases should be considered. One number is positive and one negative, 
two numbers are both positive, and two numbers are both negative. 

1. If X and Y are with different signs, the positive number is greater than the 
negative number. 

2. If X and Y are both positive numbers, the unsigned number comparison in 
9.3.2 can be applied to compare X and Y .  

3. If X and Y are both negative numbers, then find the absolute values for X and 
Y and compare them. The number with a greater absolute value is smaller. 

To define the overflows in signed RNS numbers, we have the following. 
Given mis in the modulus set all odd and two numbers in RNS such as X = 

(ZI,ZZ, ..., 2,) and Y = (yl, yz,. . . , y,). Overflow exits if IX + Y I > v. 
Note that the following cases should be considered. (1) X and Y are with the 

same sign. The absolute value of the sum should be no greater than 1-1. (2) X 
and Y have different signs, no overflow will occur. 

The above overflow detection theory applies to the addition of only two numbers. 

9.2.4 Multiplicative Inverse and the Parity Table 

Consider the number lbl,. The multiplicative inverse of [ b ( ,  is defined as follows. 
If 0 5 a < m and lab[, = 1, a is called the multiplicative inverse of ( b  mod m) 

andisdenotedas lb-'Im or 
Notice that the multiplicative inverse of a number does not always exist. The 

condition of its existence is described below. 
The quantity 1b-l I r n  exists if and only if the greatest common divisor of b and m, 

gcd(b, m) ,  is equal to 1, and lbl, # 0. In this case Ib-llrn is unique. 
We used the parity checking technique to compare numbers and detect overflows 

in the addition of two numbers. For the parity checking, a redundant modulus 2 is 
required. The parity of a number, 0 if it is even or 1 if odd, can be obtained by looking 
up a table. The entries of the table contain the residue representations of the numbers, 
and all the residues of those numbers modulo 2. The size of the table is proportional 
to the dynamic range M .  If M is not big, the size of the redundant modulus 2 table is 
reasonable. Otherwise, this kind of table is not practical, and the following alternative 
method should be used. 

Given a modulus set (ml ,  mz, . . . , m,), whose dynamic range is equal to M ,  an 
RNS number X ,  (zI,z~,. . . , 5, )  is corresponding to the modulus set. By the Chi- 
nese remainder theorem, X can be converted from its residue number representation 



204 RESIDUE NUMBER OPERATIONS 

by weighted sum such as 

with m j  = $. 

be written as 
Since \AIM denotes the least positive residue of A modulo M ,  Equation (9.2) can 

(9.3) 

with r being an integer. 
All the moduli ml , m2, . ' . , mn are odd numbers, therefore f i l  , f i 2 ,  . * * , f i n  and 

M arealloddnumbersinEquation(9.4). Underthissituation l $ l r n l ,  I $ l r n , ,  ... , l$@-lm,, 
and r will decide the parity of X. Hence, to determine the parity of the number X ,  
all we need to know is the parities of 1 %  I r n i  and r .  In other words we can extract the 
least significant bit (LSB) of 1 %  Jmi s and T ,  and "Exclusive OR', @, them together, 
that is, 

Here P = 0 means that X is an even number, and P = 1 means that X is an odd 
number. 

The number 1 %  I m ,  s can be precalculated, and their LSBs can be stored in a table. 
Considering that the table storing the parities of Igt;lrn,s is much smaller than the 
table storing the parities of X, we have reduced the size of the table needed for the 
parity checking. The next problem is how to find r .  

Let I % I m ,  = Si, with i = 1 , 2 , .  . . , n, and divide Equation (9.4) by M on both 
sides. We have 

The integer number r can be found by 

-+ -+ . . .+ - - -  s1 s2 Sn X 
ml m2 m, M '  (9.5) 

As we know, a number modulo mi is less than mi. Therefore Si < mi and $ < 1. 
A number X is always less than M ,  and we can find 6 < 1. Obviously r is equal to 
the integer part of ci $i-, and Equation (9.5) can be rewritten as 



NUMBER COMPAREON AND OVERFLOW DETECTlON 205 

Note that LYJ is the integer part of Y .  
Ideally, the binary representation for the fractional part of $ has infinite length. 

However in the physical electronic system it can have only finite length. Suppose that 
t bits are used to represent the fractional part of 5. For simplicity we denote as 
ui. Let the rounded value Gi be equal to [2tui]2-t. Since Gi is a rounded number of 
ui, an error ei is involved such that 

6 .  - - ui + ei. 

Taking the summation over i from both sides of the previous equation, we have 

i 1 i 

Denote xi Gi, xi ui and xi ei as U ,  U and e ,  respectively. Equation (9.6) can be 
rewritten as 

U = U - e. 

If we substitute U into Equation (9.5), the equation 
-7 

yields. Rearranging the previous equation, we have 

X 
U = r + e +  -. 

M (9.7) 

Here we hope that e + 5 < 1. In other words, e < 1 - 6. 

of U will not be bothered if e < &, in Equation (9.7). From 
Since 6 < 1, and the smallest difference between 1 and 6 is h, the integer part 

we can choose t (the number of bits in the fractional part of Si) as 

t > 10g2(nM). 

In that case the integer r can be represented by the rounded value C i  as 

For the calculation of the parity, all we need is the LSB of r .  Therefore t + 1 bits are 
needed for Ci, with 1 bit for the integer part. The value of C, can be precalculated 
and stored in a table. Since each modulus mi in RNS is not a large number, the table 



206 RESIDUE NUMBER OPERATIONS 

for storing iii is small. The summation of all Cis  can be accomplished by using fast 
multioperand binary adders. 

We have already developed several efficient methods for number comparison and 
overflow detection in order to perform the addition of two positive numbers. In the 
following chapter, a division algorithm for signed RNS numbers will be presented 
applying the above derivation. 

9.3 DIVISION ALGORITHM 

The general division algorithms can be classified into two groups: subtractive algo- 
rithms and multiplicative algorithms. The subtractive algorithms recursively subtract 
the multiple of denominator from the numerator until the difference becomes less than 
the denominator. The multiple is then the quotient. The multiplicative algorithms 
compute the reciprocal of the divisor; the quotient is obtained by the multiplication 
of the reciprocal and the dividend. 

Based on the previously described overflow detection and number comparison 
method, we present in the following first and second subsections a subtractive RNS 
division algorithm. A multiplicative division algorithm will be presented in the third 
subsection.. 

The subtractive algorithm applies sign magnitude arithmetic and binary search. 
We will first focus on unsigned number division. 

9.3.1 Unsigned Number Division 

Given two numbers, dividend X and divisor Y ,  the division in RNS is to find the 
quotient z = ~ $ 1 .  

This algorithm is classified as a subtractive algorithm. Therefore it is necessary to 
detect the sign in the subtraction and the overflow in the addition. 

For simplicities the overflow of the addition of two numbers, X and Y, is de- 
noted as (X + Y )  :> M in the following equations and algorithms. Given modu- 
lus set (ml,  r n z , . .  . , m,) with dividend X = (zl,zZ,. . . , z,), and divisor Y = 
(y1 , y2,. . . , y,), we find the quotient 2, where 2 = The dynamic range M of 
the RNS is M = ny==, mi. 

This algorithm can be divided into three parts. Part I finds 2k, such that Y . 2 k  5 
X < Y Part I1 finds the difference between 2k and the quotient. Part I11 deals 
with the case Y . 2k 5 X < M < Y . 2k+1 and then go to Part 11 to find out the 
difference between 2k and the quotient. 

Part I 

Find the proper 2k  such that Y . 2 k  5 X < Y . Zk+' in the following way. 
Two variables, lower-bound ( L B )  and upper-bound (UB) ,  are set to record the 
range in which the value of the quotient is to be found. L B  and U B  will 
dynamically change as the algorithm is executed. In iteration i, L B  = 2' and 



DIVISION ALGORITHM 207 

U B  = 2'+l, and we repeatedly compare (2' . Y )  with X and detect whether 
(2'+' . Y )  is greater than M until we find some i, denoted as k,  such that 
(Y . 2 k )  5 X < (Y . 2"'). Then we make the record by setting LBO = 2k 
and UBo = 2"'. In each iteration the LB,+1 is updated by doubling LB,, and 
UB,+l is equal to twice of J ~ B ' + ~ .  The following are the equations for finding 
the upper-bound and the lower-bound. 

with 

2 .  LBi, if X > Y . LBi 
if X 5 Y .  LBi Yi+l = { LBi, 

and LBO = 2'. 

Supposethattheprocedurehaltsiniteration (i+l) whenX 5 (Y.LB,)  is tested. 
According to Equations (9.8) and (9.9), LB,+l = LBi and UBi+l = UBi, 
respectively. Let us define this i to be k and make the following record in LBO 
and UBo: 

(9.8) 

(9.9) 

Two cases may occur when the above procedure halts. In one case (UBk . Y )  is 
smaller than M .  Then a binary search starts in Part 11. Otherwise go to Part 111. 

Part I1 
We have found the upper-bound (UBo) and the lower-bound (LBO) from the 
previous part such that Y .LBO 5 X < Y .U&. In this part we perform abinary 
search to find the difference between LBO and the quotient, denoted as Q E .  k 
steps are needed to finish this part since 2k integers exist in the range [ 2 k 1  2"'). 
Before the binary search we set the initial value QEo to be 0. In each step of the 
binary search we have to compare X with (Y . U B J + l + L B j + l  ) (for convenience 

Y . Bj+l) < 0,  set UBj+l = Bj+l and QEj+1 = (2 . QE3). Otherwise set 
LBj+l = Bj+l and QE,+1 = ( 2 .  QEj  + 1). When this procedure is finished 
we can find the quotient 2 to be 2 = LBO + QEk. The following are the 
equations for the binary search. 

we use another variable "Bounding", B,+l, to denote u B j + l + L B i + l  .) If ( X  - 

(9.10) 



208 RESIDUE NUMBER OPERATIONS 

where 
1, if Rj+l 2 0 
0, otherwise 

U B j ,  if Rj+l 2 0 
aj+l = { Bj+l, otherwise 

8j+l = { LBj ,  
i f R j + ~  < 0 

Bj+l, otherwise 

6j+l = 

and 60 = 0, QEo = 0,  LBO = 2k, and UBo = 2k+1. The procedure halts 
when (j + 1) = k. 

If ( 2 .  Y )  5 X < M < (Y . 2k+1),  we have to update UB1 as U B o i f B a  = 

, and CB1 as 2k. QE1 is updated as QE1 = ( 2 .  QEo). Repeatedly in 
the (j+l)thiteration, updateBj+l = J andexamine whether(Y.Bj+l) 
overflows again. 
If there is an overflow, set UBj+l = Bj+l and QEj+l = ( 2  . QEj).  Continue 
tfus procedure until (Y . Bj+l)  does not overflow. 
If (Y . Bj+l) does not overflow and ( X  - Y .  Bj+1) 2 0 ,  set LBj+l = B3+1 
and QEj+1 = (2  . QEj + l), and detect overflow again. 
If (Y . B3+1) does not overflow and ( X  - Y .  B3+1) < 0, set UBj+l = B3+1 
and QEj+1 = ( 2  . QEj). and perform the similar operations as defined in the 
binary search of Part 11. 
The following equations are applied in the above operations. 

Part I11 

2 k  + Z k + 1  

U B  .+LB. 

UBj  + LB, 
2 Bj+1 = 

Rj+1 = Y .Bj+1 - M 

R;+, = X - Y . Bj+l 

QEj+i = 2.QEj+h3+1 

UBJ+l = uj+1 

LBj+l = Bj+i, 

where 
0, if (Rj+l > 0) OR [(Rj+l 5 0) AND (R$+, < O ) ]  
1, otherwise 

Hj+l, { U B j ,  otherwise 

LBj  otherwise 

if (Rj+l > 0) OR [(Rj+l I 0) AND (R>+1 < O)] 

hj+l = 

aj+l = 

if [(Rj+l I. 0) AND (R;+, < O)] 
ej+l = 

6 = 0 ,  QEo = 0 ,  LBO = 2 k ,  and UBO = 2'"+l (LBO and UBo are from 
Equation (9.10)). 



DIVISION ALGORITHM 209 

If [(Y . Bj+l - M 5 O)AND(X - Y .  Bj+l < O)], go to Part I1 and continue 
the search procedures in Part 11. If (UBj+,  - .CBj+,) = 1, the search stops. 
Quotient 2 = CBj+l. 

The flowchart of Part I to Part I11 of the algorithm is shown in Figure 9.1. 

9.3.2 Signed Number Division 

The unsigned RNS division algorithm described in the prior subsection can be further 
expanded to signed RNS. Sign-magnitude arithmetic and a binary search will be 
adopted. 

With the RNS number comparison technique, the absolute value of the dividend and 
divisor are used when performing the division calculation, and the overflow in the ad- 
dition of two numbers is detected. Moreover, the signs of the dividend and the divisor 
are to be detected, and the negative numbers are to be complemented. After finishing 
the division on two absolute values, it is necessary to transfer the quotient to the proper 
representation (positive or negative) in RNS. Given modulus set {ml, m2, . . , m,} 
with dividend X = ( ~ 1 ~ x 2 ,  . , 2,) and divisor Y = (y1,y2, . . . , yn), we find the 
quotient 2, where 2 = The dynamic range M of RNS is M = ny=l mi. 

This algorithm can be divided into five parts. Part I detects the signs of the div- 
idend and the divisor and converts them to positive numbers. Part I1 finds 2k, such 
that (Y . 2k) 5 X 5 (Y . 2k+1). Part I11 finds the difference between 2k and the 
quotient. Part IV deals with the case (Y 2k)  5 X 5 < (Y . 2k+1) and then 
go to Part I11 to find out the difference between 2k and the quotient. Part V converts 
the quotient to the proper representation in RNS (positive or negative). 

Part I 

The largest number in the positive range of the RNS is 9, and for convenience 
we set a variable M p  = 9. Take the absolute value of X and Y and record 
the signs of them. If the signs of the dividend and divisor are different, then the 
quotient is negative, and we have to set the sign variable SIGN to 1 .  SIGN will 
be used to convert the quotient to a proper form in Part V. Part I1 to Part IV are 
very similar to Part I to Part 111 in the unsigned number division except the initial 
setting of M~ = v. 

Part V 

From Part 1 the exact quotient may be negative. Therefore if SIGN=l, the absolute 
value of the found quotient should be complemented. 

Suppose the moduli are ml = 3, m2 = 5 and m3 = 7. Given X = (2 ,1 ,1)  = 
-34 and Y = (2,0,5) = 5, we are asked to find quotient 2 = [$I. 

M = ml . m2 . m3 = 105 and M, = = 52 = (1 ,2 ,3) .  The multiplicative 
inverses of 2, which are used in the calculation of corresponding to ml,  m2 
and m3 are 12-11m1 = 2, 12-lIm2 = 3, 12-lIm3 = 4, respectively. Table 9.1 is 
referred to for parity checking. The quotient can be calculated within the steps shown 
in Figure 9.2 with the required variables set in the algorithm. 



210 RESIDUE NUMBER OPERATIONS 

4 
" 

START 0 

SEARCH 

K= K t l  
B=(UB+LB)/Z 

I 
" 

Y 
v 'I v 

JMP.1 
U3.B 

QE=PQE 

UB.0 LB=B 
QE=PQE QE=ZQE+l 

v 
T 

T 

& x-YB.20 

Y I  I 

QE=ZOE QE=PQE+l 

1,1 

ZdJBtQE -9 
Fig. 9.1: Flowchart of the Unsigned Number Division Algorithm 



DIVISION ALGORITHM 27 1 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5.  

Step 6. 

Step 7. 

Step 8. 

S(-34) = 1 ,  
S(5)  = 0, 
SIGN=l, 
COMPLEMENT(-34) = 34 

34  > 5 ' 2 0 ,  
j = 0. 

34 > 5 ' 21, 

34 > 5 ' 22, 

5 . 2 3  > 34 > 5 . 2 2 ,  

UB= 23. 

j = 1.  

j = 2. 

QB=2', 
J = 0, 

LB= Z 2 .  
B= = 6, 
Q E = Z . O + l = l ,  
Set LB=B. 

5 '  Z3 > 34 > 5 . 6 ,  
J = 1, 
UB= 23, 
LB= 6, 

B= = 7, 
QE= 2 , l +  0 = 2. 

Set UB=B 

IZI =QB+QE 
= 2 2 + 2  

SIGN= 1, 
Z=COMPLEMENT(6). 
= -6. 

Fig. 9.2: Example of Signed Number Division 



212 RESIDUE NUMBER OPERATIONS 

9.3.3 Multiplicative Division Algorithm 

Multiplicative algorithms use mixed radix number conversion to find the reciprocal 
of the divisor and to compare numbers. Iteratively the approximate quotient is made 
closer to the accurate one. 

A. Mixed-radix representation 
First we describe the mixed radix representation as follows. Given the moduli 

made of positive pairwise relative prime integers, being ordered as m, > . . . > ml . 
The mixed radix representation of a nonnegative operand X ,  in the range of [0, M - 11, 
is denoted as 

such that 

n-1 n-2 

x i n  J-J mi + in -1  mi + .. . + izml + il, (9.1 1) 
i=l i=l 

with 0 5 ij < mi for all j. For example, given (mS,m2,ml) = ( 5 , 3 , 2 ) ,  the 
mixed-radix notation < 4,0 ,1  > represents a number 

X = 4(3 x 2) + O(2) + 1 = 25. 

Table 9.2 lists the mixed-radix digits representing numbers 1 to 13, given m3 = 
5 ,  m2 = 3 ,  ml = 2.  

Any positive integer in the range of [0, M - 11 has a unique mixed-radix repre- 
sentation. The mixed radix representation of a negative X is defined to be 

where 0 5 ij < mj, for all j .  In either case, ij is called the j t h  mixed radix digit of 
X .  

For a set of moduli mn, + . , m2, r n l ,  the residue representation of a number can 
be converted to the radix-digit representation of it as follows. From the right-hand 
side of Equation (9.11) one can see that every term is a multiple of ml except the 
constant PI. 

so, 
lXIm* = 51, 

indicating that 51 is just the first residue digit. 
Moving i l  from the right-hand side of Equation (9.11) to the left-hand side and 

dividing both sides by ml, we have every term on the right-hand side as a multiple 
of m2 except the constant 2 2 ,  Hence 



DIVISION ALGORITHM 213 

Number 
X 
0 
1 
2 
3 
4 
5 
6 
I 
8 
9 
10 
11 
12 
13 

'Mixed-radix digits 
< x; x i  xi > 

0 0 0  
0 0  1 
0 1  0 
0 1  1 
0 2 0  
0 2  1 
1 0 0  
1 0  1 
1 1  0 
1 1  1 
1 2 0  
1 2  1 
2 0 0  
2 0  1 

Given X, the procedure of converting its residue representation (xn,. .. , x 2 ,  x i )  

to mixed-radix representation < &, + . . , 5 2 ,  i 1  > can be completed by a recursive 
procedure. 

fi+l = Xi+lJrni+l 7 

x1 = x, 
5 1  = 21.  

where 

Figure 9.3 shows an example for the illustration of the process. 

B. Multiplicative division 
Let X and Y be the dividend and divisor, respectively, and 

x < 0,'" , 0 , 5 k , ? k - . l , ' * '  ,?I  >, 
Y t--) < o , * . .  , O , $ [ , $ [ - l , . . . , $ l  > 

where ? k  and $1 are the most significant nonzero mixed-radix digits of x and Y ,  
respectively. The approximate dividend X is then chosen to be 

- 
X = 5 k m k - l  ...m2rn1, 



214 RESIDUE NUMBER OPERATIONS 

X= 137 

Residues of X 

Subtract <= 1 

X-^x, 

m4 m3 
7 5  

4 2  

-1 - 1  

3 1  

Multiplicative inverse 

5 3  

Subtract<= 2 -2 -2 

x -\ 3 1  

Multiplicative inverse 
5 2  

Subtracc%=2 -2 -2 

x -% 6 0  

Multiplicative inverse 
ofm,, 1 3 

13 Im, 

m2 m1 
3 2  

A 

2 @ + = I  

-1 -1 

x) multiply 

@ J <=2 

-2 

0 

X = 4(5~3~2)+2(3~2)+2(2)+1 

= 120 + 12 + 4 + 1 
= 137 

Fig. 9.3: Example of Conversion to Mixed-Radix Representation 



DIVISION ALGORITHM 215 

which is the dominant part of X ,  since ?k carries the heaviest weight and is the 
coefficient of the biggest summands among those added toward X in Equation (9.1 1). 

The approximate divisor is chosen to be 

P = (91 + 1)rnl-1 * ' .  r n z r n 1 .  

The approximate quotient Zi can be found by x / P  equal to one of the following 
values depending on the relationship of k and 1. 

Zi can be found in an iterative procedure. That is, 

(9.13) 

(9.14) 

where X o  = X, the given dividend. 
This iterative procedure is continued until either Zi = 0 or Xi = 0. It can be 

proved that Zi or X i  becomes zero after a finite number of iterations. Suppose this 
occurs in the rth iteration, from Equation (9.14) we have 

x1 = X o - Y Z 1  
x, = X 1 - Y Z z  

... ... 
X,-] = Xr-z - Y Z , - ,  

x, = x,-1 -YZ , .  

Let's add the above equations up, X1 on the left of the first equation will cancel 
that on the right of the second equation, and X z  on the left of the second equation 
will cancel that on the right of the third equation, and so forth. Finally we have 

r-I 



216 RESIDUE NUMBER OPERATIONS 

On the right-hand side XO = X. Moving everything else to the left-hand side and 
dividing both sides by Y ,  we have 

r-1 x, X 
Y - = x z i + z r + -  Y 

i=l - 
i=l 

From 

Xr 2; = 2, + -, 
Y 

noticing that xi is dependant, we have 

Z, 

0, otherwise. 

if 2, # 0 and X, = 0, 
2; = { 1, if 2, = 0 and X,-1 2 Y for any? # Y, 

It is obvious that $ can be computed by summing up Zis obtained in various iterations 
with an adjustment determined at the end. l&J and [-& J are found by accessing 
a table which stores the residue representation of all the possible quotients [&I, 
for 1 5 CY 5 rn, - 1. This table is indexed by the quantities L?~C and 61 (or by ml and 

The residue codes for all the possible products rnk-1 . . . mr+lrnl, for Ic > 1 + 1 
$1 .) 

are stored in another table indexed by Ic and 1. 

REFERENCES 

1. A. Avizienis, “Arithmetic Algorithms for Error-Coded Operands,” ZEEE Trans. 
Comp., C-22 (June 1973), pp. 567-572. 

2. A. Avizienis, “Arithmetic Error Codes: Cost and Effectiveness Studies for Ap- 
plication in Digital System Design,” IEEE Trans. Comp., C-20 (Nov. 1971), pp. 
1322-1 33 1. 

3. D. K. Banerji, “A Novel Implementation for Addition and Subtraction in Residue 
Number Systems,” ZEEE Trans. Comp., Vol. C-23, No. 1, Jan. 1974, pp. 106- 
109. 

4. D. K. Banerji and J. A. Brzowjowski, “Sign Dectection in Residue Number 
Systems,” IEEE Trans. Comp., Vol. C-18, No. 4, Apr. 1969, pp. 313-320. 



REFERENCES 217 

5. D. K. Banerji, T. Y. Cheung and V. Ganesan, “A High-speed Division Method in 
Residue Arithmetic,” in 5th IEEE Symp. on Comp. Arith., 1981, pp. 158-164. 

6. W. A. Chren Jr., “A New Residue Number System Division Algorithm,” Com- 
puters Math. Applic., Vol. 19, No. 7, 1990, pp. 13-29. 

7. H. L. Garner, “The Residue Number System,” IRE Trans. Electron. Comp., Vol. 
EC-8, No. 2, June 1959, pp. 140-147. 

8. K. Hwang, Computer Arithmetic: Principles, Architecture and Design, New 
York: John Wiley & Sons, 1979, Ch. 9 and 10, pp. 285-357. 

9. W. K. Jenkins and B. J. Leon, “The Use of Residue Number Systems in the Design 
of Finite Impulse Response Digital Filters,” IEEE Trans. Circuits Systems, Vol. 
CAS-24, NO. 4, 1973, pp. 199-201, 

10. G. A. Jullien, “Implementation of Multiplication, Modulo a Prime Number, with 
Applications to Number Theoretic Transforms,” IEEE Trans. Comp., Vol. C-29, 
NO. 10, Oct. 1980, pp. 899-905. 

11. G. A. Jullien, “Residue Number Scaling and Other Operations Using ROM Ar- 
rays,” lEEE Trans. Comp., Vol. C-27, No. 4, Apr. 1978, pp. 325-336. 

12. G. A. Jullien and W. C. Miller, “Application of the Residue Number System to 
Computer Processing of Digital Signals,” Proc. 4th Symp. on Comp. Arith., Oct. 
1978, IEEE Cat. No. 78CH1412-6C, pp. 220-225. 

13. Y. A. Keir, P. W. Cheney and M. Tannenbaum, “Division and Overflow Detection 
in Residue Number Systems,” IRE Trans. Electron. Comp., Vol. EC-11, Aug. 
1962, pp. 501-507. 

14. E. Kinoshita, H.. Kosako and Y. Kojima, “Floating-point Arithmetic Algorithms 
in the Symmetric Residue Number System,” IEEE Trans. Comp., Vol. C-23, Jan. 
1974, pp. 9-20. 

15. E. Kinoshita, H. Kosako and Y. Kojima, “General Division in the Symmetric 
Residue Number System,” IEEE Trans. Comp., Vol. C-22, Feb. 1973, pp. 
134-142. 

16. M. L. Lin, E. Leiss and B. McInnis, “Division and Sign Detection Algorithm for 
Residue Number Systems,” Computers Math. Applic., Vol. 10, No. 415, 1984, 
pp. 331-342. 

17. D. D. Miller, J. N. Polky and J. R. King, “A Survey of Soviet Developments in 
Residue Number Theory Applied to Digital Filtering,” in 26th Midwest Symp. 
Circuits Systems, August 1983. (Private Collection, J. S. Chiang.) 

18. D. D. Miller and J. N. Polky, “An Implementation of the LMS Algorithm in the 
Residue Number System,” IEEE Trans. Circuits System, Vol. CAS-3 1, May 
1984, pp. 452-461. 



218 RESlDUE NUMBER OPERATlONS 

19. T. R. N. Rao, “Biresidue Error-Correcting Codes for Computer Arithmetic,”IEEE 
Trans. Comp., C-19 (May 1970), pp. 398402. 

20. T. R. N. Rao and A. K. Trehan, “Binary Logic for Residue Arithmetic Using 
Magnitude Index,” IEEE Trans. Comp., Vol. C-19, No. 8, Aug. 1970, pp. 
752-757. 

21. A. Sasaki, “Addition and Subtraction in the Residue Number System,” IEEE 
Trans. Electron. Comp., Vol. EC-16, No. 9, Apr. 1967,pp. 157-164. 

22. A. Sasaki, “The Basis for Implementation of Additive Operations in the Residue 
Number System,” IEEE Trans. Electron. Comp., Vol. EC-17, Nov. 1968, pp. 
1066-1 073. 

23. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor, Residue Number 
System Arithmetic Modern Application in Digital Signal Processing, IEEE Press, 
N. Y.. 1986. 

24. N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer 
Technology, McGraw-Hill, New York, 1967. 

25. E. J. Taylor and C. H. Huang, “An Autoscale Residue Multiplier,” IEEE Trans. 
Comp., Vol. C-31,No. 4, Apr. 1982, pp. 321-325. 

26. F. J. Taylor, “A VLSI Residue Arithmetic Multiplier,” IEEE Trans. Comp., Vol. 
C-31, June 1982, pp. 540-546. 

27. I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954. 

28. T. Van Vu, “Efficient Implementations of Chinese Remainder Theorem for Sign 
Detection and Residue Decoding,” IEEE Trans. Comp., Vol. C-34, July 1985, 
pp. 646-651. 

29. S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital System Designers, 
New York, Holt, Rinehart, Winston, 1982, Ch. 5 ,  p. 172. 

PROBLEMS 

9.1 
(a) How many numbers can be represented in the residue number system? 
(b) Find the residue number representation for X = 9053 and Y = 197. 

9.2 
perform X + Y and X - Y .  

9.3 
residue number system. What is the product of A x B? 

9.4 
(0, 0,2) and (2,0,0), respectively? 

Given a moduli set (29,31,37). 

Given the residue number system, and X and Y specified in Problem 9.1, 

Given three moduli 3, 5 and 7, represent number A = 23 and B = 4 in the 

For the same moduli set given in Problem 9.3, what number is represented by 



PROBLEMS 219 

9.5 For a moduli set (3,5,7), compare residue numbers X and Y if the following 
values are given. The parities of the given numbers can be found in Table 9.1 of the 
text. Justify the result of your comparison. 
(a) X = ( l , O , O ) ,  Y = (2 ,3 ,3)  
(b )X  = ( l , O , l ) ,  Y = (2 ,3 ,4)  
(c) X = (2,4,2),  Y = (2 ,1 ,3)  
(d) X = 135, Y = 233 

9.6 Applying Table 9.1 for and only for the parities of the addends, detect whether 
any overflow will occur in the following addition X + Y .  Assume the moduli set is 
(3,5,7) and explain how the detection is performed. 
(a) (2,4,3) + (2, 1,5) = (LO, 1) 
(b) (O,O, 6) + G O ,  1) = (2,0, 0) 
(c) (1,3,3) + (2,4,4) = (0,2 0) 
(dl (1, 1, 1) + (1, 1,5> = (2 ,Z  6) 

9.7 
subtrahends in their complement form. Perform the subtractions through additions. 

Given a moduli set (2,3,5) in the signed RNS system, represent the following 

(a) (1,173) - (1,1,2) 
(b) (1,074) - (0,274) 
(c) (0 ,2 ,1)  - (0,170) 

9.8 Given a moduli set (2, 3 , 5 ) ,  let the RNS representation of X be (21,22, $3)  

specified as follows. Applying Equations (9.1) and (9.7), find the decimal value of 
X .  Verify that its parity is the same as the calculated by Equation (9.5). 
(a) (~i~~z,zi) = (071,4) 
(b) (21 , 2 2  , $1) = (0,0,2) 
(c) (21,Q721) = (1,0,3) 

9.9 
a mixed-radix representation. 

9.10 For moduli ml = 2, m2 = 3 and m3 = 5, given X = (0,1,2) and Y = 
(1,1,2),  perform an unsigned RNS division to find 2 = LGJ following the flow 
chart given in Fig. 9.1. 

Given a moduli set (2, 3, 3, represent the unsigned residue number (1,2,1) in 



This Page Intentionally Left Blank



10 
Operations through 

Logarithms 

10.1 MULTIPLICATION AND ADDITION IN LOGARITHMIC SYSTEMS 

Given an X value, from a read only memory (ROM) one can read the value of log2X 
where X is used as the address and logzX is the data located at that address. Also, 
given logzX one can find the antilogarithm by reading from ROM the X value. Here 
logzX is used as the address line and X is the data at that address. Note that two 
separate ROMs are needed for the logarithm and antilogarithm functions, while in 
the pencil and paper case one table can be shared. 

In a logarithmic system multiplication can be completed through addition. First 
consider unsigned numbers only. Because logz(X x Y )  = logzX + logzY, to 
calculate X x Y ,  we first find logzX and log2Y. After adding them to get a sum, 
we find the antilogarithm of the sum. That is knowing logz(X x Y ) ,  we look for the 
product of X x Y .  Also, in the logarithmic system division can be carried on through 
subtraction. Because logZ(X/Y)  = logzX - ZogzY, to calculate X / Y  we first find 
logzX and logay. After subtracting log2Y from log2X we find the antilogarithm of 
the difference. 

Take into consideration the signed numbers. If P = X x Y ,  P can be represented 
by Sp210gzIpI where Sp  is the signof product P ,  and 210gzlpI  = IPI. Given logzIP(, 
2 ' O g z l p 1  denotes the antilogarithm function to find IP( from log2IPI. Note that sign 

SP = sx CDSY, 

22 1 



222 OPERATIONS THROUGH LOGARITHMS 

and 

log2lPl = log2lXI + log21YI. 

Similar to the floating point system, log21XI and log2lYl can be biased. If the biased 
logarithms are adopted in the above addition, a bias should be deducted after the 
addition. 

Also, if Q = A / B ,  Q can be represented by SQ21"g21Q1 where SQ is the sign 
of quotient Q ,  and 210g21Q1 = /&I denotes the antilogarithm function of finding \ & I .  
Same as in multiplication, 

SQ = S A  @ SB, 

and 

If the logarithms are biased, we have to add a bias after the subtraction. 

10.2 ADDITION AND SUBTRACTION IN LOGARITHMIC SYSTEMS 

Addition and subtraction are difficult in logarithmic systems. There are two ap- 
proaches to conduct the additiodsubtraction. In the first one, additiodsubtraction is 
performed on the true operands in non-logarithmic form. That is, given two inputs 
represented in logarithm, an antilogarithm operation is needed to find the two true 
operands. Then add the two true operands or subtract one from the other. Finally find 
the logarithm of the surddifference. 

The function of finding antilogarithm or logarithm can be performed by table look- 
up. The given operand can be represented by n bits, then 2n address lines are needed. 
The output will be the data located at a particular address, and can be assumed of n 
bits. Then 2n x n will be the size for one table and three tables will be needed, two 
for the antilogarithm function to be used for the two input operands simultaneously 
and one for the logarithm function for the unit result. The size of the ROM capacity 
should be 3 x 2n x n. 

In the second approach, the surddifference of any two operands are pre-calculated 
and stored in ROM. The additiodsubtraction is done by a read from the ROM table. 

A straightforward way is to use the two input operands as an address and find from 
that address the surddifference. If each input operand is represented by n bits, there 
will be 2n x 2n address lines. Suppose the suddifference is represented by n bits as 
well, the size of the table will be 22n x n. For a small n = 8 which doesn't lead to a 
satisfying precision, the capacity of the table is 524,288 bits. 

An alternative method to build the table is presented as follows. Let 

(10.1) 



ADDITION AND SUBTRACTION IN LOGARITHMIC SYSTEMS 223 

Assume that A and B are both positive for illustration, while the variables can be 
replaced by their absolute values otherwise. Let's focus on the case of A > B first, 

Y 

easy calculation 
\ , Y 

logarithm table 

(log2A - logzB) can be easily calculated since A and B are inputs in the loga- 
rithmic form. Finding 2-('ogzA-10gzB) is an antilogarithm function to be performed 
by a table look-up, and the result is 5 1. With n bits in the input and p bits in the 
output fraction, a table of size 2n x p is sufficient. I f  the result of antilogarithm is 
an easy operation, and the output should be sent to a logarithm table. 

The size of the logarithm table is an obstacle. It grows exponentially with the 
number of bits in the operand. Efforts have been made to reduce the size of ROM 
tables, and the approximation of the logarithm is considered. Let operand X be 
normalized so that only one nonzero digit is on the left of the radix point, that is, 
1 5 X < 2. The fraction on the right of the radix point is equal to z = X - 1. In 
Figure 10.1, the straight line depicts the function Y = X - 1. Comparing with the 
curve representing Y = logzX, one can see that in the range of [l,  21, the straight 
line is very close to the curve, particularly when X is close to 1 or 2. 

Let A = 28 and B = 9. To find A x B,  we first normalize A and B. 

A = 11100~ = 1.1100~ x 24 (10.2) 

and 

B = 01001 = i .ooio x 23. (10.3) 

so. 



224 OPERATIONS THROUGH LOGARITHMS 

X 

Fig. 10.1: Linear Approximation of log2 (1 + z) 

Because log2X M X - 1,2*-’ x X for X between 1 and 2, 

The exact value of 28 x 9 is 252. The error of the above result is & = 4.7%. Of 
course, this is a poor approximation. 

The mechanism to perform the above multiplication (or division) is designed as 
follows (see Figure 10.2). Let the size of registers A and 13 be, for example, 5 bits, 
and the radix point is assumed to be on the right of MSB, such as x.xxxx with “x” 
being an arbitrary bit. With its bits contained in such registers, the given number A 
in the above example is already normalized. No shift is necessary and the exponent 
in Equation (10.2) is 4. Starting with 0.1001, however, the given number B should 
be shifted left for one bit position to be normalized, and the exponent in Equation 
(10.3) is 3. The exponent is represented by three bits of a counter, ~ 3 ~ 2 x 1  for A and 
y3y2y1 for B both were initialized as 4 (1002). The counter will count down for each 
shift. It remains 4 for the case of A with no shift, and becomes 3 for the case of B,  
counting down from 4 to 3 after 1 shift. See next section for the formulated details. 

The procedure is conducted in the following steps. 



REALIZING THE APPROXIMATION 225 

e 

Fig. 10.2: Mechanism for Multiplication (Division) in Binary Logarithms 

1. Shift A and B left until their most significant nonzero bits are in the leftmost 
positions and count down counters ~ 3 x 2 ~ 1  and y 3 y 2 y 1  during shifting. 

2. Load bits 4 to 0 of A into bit positions 4 to 0 of register C, and that of Z? into 
the corresponding bit positions of register D. 

3. Perform addition (or subtract) C f D -+ E.  

4. Decode ~ 4 . ~ 3 ~ 2 ~ 1  = 2 and set bit 2 =1 in 3. Immediately on the right of that 
“I”, load all the bits from the right of z 4 z g Z 2 z 1  in E.  3 now contains the result 
o f A  x B (orA f B). 

10.3 REALIZING THE APPROXIMATION 

The above normalization procedure can be formulated as follows. Let bmbm-l  
. - . b0.b-1 . . . b-, be the binary representation of number B where b, is the most 
significant nonzero bit. By factoring out the weight carried by bm, the rest becomes 
in between of 1 and 2. That is, 

m-1 

B = 2* + C 22bi 
a=-p 



226 OPERATIONS THROUGH LOGARITHMS 

m-1 

= 2 m ( l +  2"-"bi) 
Z=-p 

= 2 y 1  + x ) ,  

where i - m < 0 and 1 5 1 + x < 2. Hence, 

l o g ~ B  = m + logz( l+ x). 

In the Taylor series of 1092 ( 1  + x), taking only the linear term and let 1092 (1 + x) M x, 
we have 

log2B = m + x. 
In binary 

log2B = a, . + . ao.bm-l . . ' b-,, 

where a,. - . a0 is the binary representation of m, and bm-l - . . b-, is the binary 
representation of fraction x, from the lower order part of B in its binary representation. 
m in the above is referred to as characteristic and is actually the number of bits 
between the most significant nonzero bit and the binary point in number B. One can 
see later that m can be easily obtained by simple shifting and counting operations. 

The error resulted from this method is 

&(X) = logz( l+ x) - 5 .  

Clearly E(X) is independent of m and depends only on x. Let 

that is, 

x = log2e - 1 = 0.44 

when the maximum error occurs. The maximum error is 0.086. When x=O or 1, the 
minimum error occurs. The minimum error is 0. ~ ( x )  is depicted in Figure 10.1. 

Instead of using single-straight-line approximation, several straight lines can be 
used such as in two, four or eight piecewise-linear approximation where the accuracy 
can be greatly improved. If four piecewise-linear is selected, for example, the interval 
[0,1] is divided into four equal subintervals and each of the four straight lines to 
approximate the curve of logarithm, as depicted in Figure 10.3, is represented by 
x + af (x) + b. The connection of the four segments have been exaggerated in Figure 
10.3, with the end point of a segment and that of the subsequent one oppositely 



REA LlZlNG THE APPROXIMATION 227 

Fig. 10.3: Logarithmic Curve and Four-Straight-Line Approximation 

shifted in vertical direction. f (x)  can be taken as follows. If for an interval the slope 
of Zog2(1 + 2) is greater than 1, then f(z) = x. If the slope is less than 1, then 
f(z) = Z where z is the bitwise negating of 2. a and b are constants and are selected 
by trial with a criteria of minimum error, constrained by easy implementation. That 
is, the coefficients are chosen to be some fraction with the numerator being an integer 
and denominator being a power of two. 

where 5 is the 1’s complement of 2.  

The error in this case, ~ ‘ (z ) ,  is given in Figure 10.4. 

error is -0.006 when z = 0.25. The error range is 
The maximal positive error is 0.008 when 2 = 0.44, and the maximal negative 

0.008 + 0.006 = 0.014. 

In the prior single-straight-line case, only positive error occurs and the error range 
equals 0.086. Hence an improvement of a factor 6 is obtained. 

Described below is how the above algorithms can be implemented. 



228 OPERATIONS THROUGH LOGARITHMS 

-0 008 

-0 01 
0 0 1  02 03 04 05 06 07 08 09 1 

X 

Fig. 10.4: Error of the Four-Straight-Line Approximation 

A. Obtaining m 
A register R is of k bits long, and a counter C is initialized as k .  
The number contained in the register is shifted left until the most significant 

k - m shifts will be required, and the counter C is decremented for each shift. At 
nonzero bit reaches the end. 

the end k - ( k  - rn) = m is contained in the counter. 

B. Corrections 
One of the following corrections will be added to register R containing x. 

5 i f O < x < '  
4 F X c '  

i f L < x < -  
4 -  3 I",+, i f - < x < z  

H -  i f ; l L x < l  3 -  
-2, 

;lx, 

(10.4) 

Seven bits of x are used, and they will be shifted right for p steps to form $x or 
$3. The coefficients in (10.4) can be composed of &. For example, 

1 1  = -+- ,  5 
16 4 16 
- 

1 1  
- + -, 5 

64 16 64 
1 1  3 

128 64 128 

- - - 

- -+-. - -  



REALIZING THE APPROXIMATION 229 

1 - 
64 
1 

128 

X 

- 

Table 10.1: Required &s. 

1 3 
4 2 4 
1. 1. - x: 0 

X 

X 

I X I  

1 
h I  I x  I 

RESET 

Fig. 10.5: Correction Register 

Table 10.1 marked the &s in conjunction with z or % needed in different intervals, 
and Figure 10.5 shows the logic for correct registers. The inputs of each AND gates 
are from the most significant two bits of z in order to compare x with a, and and 
determine which interval z lies. 

Figure 10.6 shows how the correction is realized. Stored in R is z. Since the 
smallest constant is = $, only the most significant 7 bits of x will be effected. 
These 7 bits are replicated in an auxiliary register. According to the selection made 
in Figure 10.5, the shifted z or f (a fraction of z or f) will be added to register R. 



230 OPERATIONS THROUGH LOGARITHMS 

1 

128 

64 
1 

- 
1 

E 

1 
4 
- 

L 
16 

I 
4 
- 

6 

- 
AUX REG 

Fig. 10.6: Realization of the Correction 

Another method proposes that mean-square error should be minimized. Let 
f(x) = 2. The mean-square error over (21, z2), 1 > x2 2 x 2 21 2 0, is 

To minimize E2 with respect to a and b, it is necessary that 

Let 

11 = p 0 g 2 ( l  +x)d. 



REALIZING THE APPROXIMATION 231 

Table 10.2: Mean-Square Error and Coefficients for Logarithm Approximation 

Number 
of Sub a b E? Emax 

Subintervals interval 
1 1 0.984255 0.065176 0.641074E-3 0.065176 
2 1 1.163555 0.021303 0.192903E-4 0.021303 

2 0.827788 0.181567 0.581653E-5 0.010518 
4 1 1.285610 0.006243 0.278225E-6 0.006243 

2 1.050957 0.063330 0.387113E-6 0.004141 
3 0.888761 0.143537 0.642476E-6 0.002186 
4 0.770244 0.23 1857 0.289856E-7 0.002186 

8 1 1.359165 0.001681 0.173267E-7 0.001681 
2 1.215426 0.019368 0.550871E-7 0.001371 
3 1.099427 0.048200 0.814192E-7 0.001 129 
4 1.003868 0.083914 0.297152E-7 0.000933 
5 0.923414 0.124049 0.1301 18E-6 0.000794 
6 0.854749 0.166916 0.12872OE-6 0.000695 
7 0.806959 0.202033 0.186847E-6 0.001232 
8 0.734065 0.265769 0.150003E-6 0.001 186 

Y2 1+"2 

2 4 1+"1 
= log2e{ -1nY - ")I - I1 

with 1 + x = Y ,  then 

1 7  

( 5 2  + Z1)h - x; (xi - z 3 ( x 2  + 21) 
a = ( I ~ -  2 } I (  + - 4 

I1 4 x 1  + 4 
2 2  - 21 2 .  

b 1 ~- 

For the partition of 1, 2,4 and 8 subintervals, the coefficients, mean-square error 
and maximum error are listed in Table 10.2. 

To simplify the binary implementation, the linear logarithm equations for a four 
subdivision realization are given in Table 10.3 with the minimum mean-square co- 
efficients quantitized to seven bits. Smaller number of bits results in only a slightly 
larger maximum or mean-square error. The maximum error ranges over -0.00782 < 
emax < 0.00994. The resulted maximum mean-squared error is Emax = 3.33 x 
10-6. 

Given A and hence log2 A, to find i, a 2's complement operation is needed since 
log2; = -1ogzA. To find a, a right shift function is needed since l o g 2 4  = 
ilog2A. To find A', a left shift is sufficient since logzA2 = 210g2A and to find the 
exponent of A, such as A", a multiplication is sufficient since log2A" = xlog2A. 



232 OPERATIONS THROUGH LOGARITHMS 

Table 10.3: Logarithm Equations 

Range Mantissa 
0 < x < 114 x* = x + 37x/128+ 11128 

1/4< x < i / 2  x* = x + 32/64 + 1/16 
112 < x < 314 x* = x + 7 d 6 4 +  1/32 

I -  - 
314 < x < 1 X* = x + 29iI128 ‘ 

REFERENCES 

1. T. A. Brubaker and J. C. Becker, “Multiplication Using Logarithms Implemented 
with Read-only Memory,” IEEE Trans. Comp., Vol. C-24, No. 8, Aug. 1975, 
pp. 761-765. 

2. M. H. Combet, Van Zonneveld and L. Verbeck, “Computation of the Base Two 
Logarithm of Binary Numbers,” IEEE Trans. Electron. Comp., Vol. EC-14, NO. 
6, Dec. 1965, pp. 863-867. 

3. A. D. Edgar and S. C. Lee, “Focus Microcomputer Number System,” Communi- 
cations ofthe ACM, 22 (Mar. 1979), pp. 166-177. 

4. E. L. Hall, D. D. Lynch and S. J. Dwyer 111, “Generation of Products and Quotients 
Using Approximate Binary Logarithms for Digital Filtering Applications,” IEEE 
Trans. Comp., Vol. C-19, No. 2, Feb. 1970, pp. 97-105. 

5. N. G. Kingsbury and P. J. W. Rayner, “Digital Filtering Using Logarithmic Arith- 
metic,” Electron. Lett, Vol. 7, No. 2, 1971, pp. 56-58. 

6. F. S. Lai and C. E. Wu, “A Hybrid Number System Processor with Geometric 
and Complex Arithmetic Capabilities,” IEEE Trans. Comp., 40 (Aug. 1991), pp. 
952-962. 

7. S. C. Lee and A. D. Edgar, “The Focus Number System,” IEEE Trans. Comp., 
Vol. C-26, NO. 11, NOV. 1977, pp. 1167-1170. 

8. S. C. Lee and A. D. Edgar, Addendum to “The Focus Number System,” IEEE 
Trans. Comp. Vol. C-28, No. 9, Sept. 1979, p. 693. 

9. H-Y. Lo and Y. Aoki, “Generation of a Precise Binary Logarithm with Difference 
Grouping Programmable Logic Array,” IEEE Trans. Comp., C-34 (Aug. 1985), 
pp. 681-691. 

10. J. N. Mitchell, Jr., “Computer Multiplication and Division Using Binary Log- 
arithms,” IRE Trans. Electron. Comp., Vol. EC-11, No. 4, Aug. 1962, pp. 
5 12-5 17. 



PROBLEMS 233 

11. E. E. Swartzlander, Jr. and A. G. Alexopoulos, “The SigdLogarithm Number 
System,” IEEE Trans. Comp., Vol. C-24, No. 12, Dec. 1975, pp. 1238-1242. 

12. E. E. Swartzlander, Jr., Comment on “The Focus Number System,” ZEEE Trans. 
Comp., Vol. C-28, No. 9, Sept. 1979, p. 693. 

13. F. J. Taylor et al., “A 20-Bit Logarithmic Number System Processor,” IEEE Trans. 
Comp., 37 (Feb. 1988), pp. 190-199. 

14. L. K. Yu and D. M. Lewis, “A 30-Bit Intergrated Logarithmic Number System 
Processor,” ZEEE J. ofSolid-State Circuits, 26 (Oct. 1991), pp. 1433-1440. 

PROBLEMS 

10.1 Given the base of logarithm T = 8, convert the following numbers into sign- 
LNS (Logarithmic Number System) representation. Express the LNS part in the 2’s 
complement system with n = 4 bits in integer and k = 2 bits in fraction. 
(a) +64 (b) +0.125 (c) -8 (d) -4 

10.2 Given the following sign-LNS representations with base T = 16, what number 
do they represent? Note that one bit is for sign, 4 bits for integer and 4 for fraction in 
each of the following representations. 
(a) (000000100)2 (b) (011101000)~ (c) (100101000)~ (d) (111111100)~ 

10.3 

(b) Based on the representation found in Problems (lO.l), compute X / Y .  

X = -4, Y = -8 
(c) Based on the representation found in Problem 10.1, compute X y .  
X = 8 ,  Y = 0.125 

(a) Based on the representation found in Problem 10.1, compute X x Y .  
X = f64, Y = f0.125 X = +0.125, Y = -8 

X = +64,Y = -8 

10.4 
by performing 
(a) X + Y for X = 512 and Y = 128; 
(b) X - Y for X = 1,024andY = 256. 
A logarithm ROM table is provided as follows. 

Verify the method indicated in Equation (10.1) for theLNS additiodsubtraction 



234 OPERATIONS THROUGH LOGARITHMS 

X k72x 

- 1 .oooo 
-0.4150 

+0.3219 
+0.5850 
+0.8074 

2.00 

10.5 Recalculate the addition and subtraction specified in Problem 10.4, applying 
the linear approximation of log2 (1 + x) rather than the ROM table. Give your com- 
ments on the error involved. 
Hint: Examine every term in the Taylor series for (b). 

10.6 
compute F = A x B with A and B specified as follows. 
(a) A = 35, B = 12. (b) A = 66, B = 10. 

Following the procedure similar to that given at the end of Section 10.2, 



11 
Signed-Digit Number 

Operations 

In a signed-digit (SD) number system, carry propagation can be limited to one posi- 
tion to the left during the digit-wise addition and subtraction. The addition time is 
independent of the word length since the chains of carry-propagations are eliminated. 

11.1 CHARACTERISTICS OF SD NUMBERS 

In a conventional number representation with an integer radix r > 1, each digit is 
allowed to have exactly r values: 0,1,. . - , r - 1. In an SD representation with the 
same radix r ,  each digit is allowed to have more than r values. In the method of 
addition described below, each digit is allowed to have q different values where 

r + 2  5 q 1 2 r - 1 .  (11.1) 

Obviously q is more than r .  Redundancy in the number representation allows a 
method of fast addi tiodsubtraction called totally parallel additiodsubtraction. 

In the totally parallel additiodsubtraction, the signed-digit representations are 
required to have a unique representation of zero. Thus the magnitude of allowed digit 
values may not exceed r - 1, since otherwise we could let a digit equal to T and 
represent zero by ir as well as 00. 

Some characteristics of the SD numbers are as follows. 
Let A = (un-l . u-k) be an SD number, we have 

1 .  ( U n - 1 . .  ' U - k )  = 0 e a2 = 0 vz. 
2. - A  = (&-I . . . L k ) ,  where tii = -ui. 

235 



236 SIGNED-DIGIT NUMBER OPERATIONS 

11.2 TOTALLY PARALLEL ADDITION/SUBTRACTION 

Suppose augend A = . . + a - k )  and addend B = (bn-1 . . . b-k).  Sum S = 
A + B is represented by (sn-l . . . s - k ) .  

The addition of two digits is performed in two successive steps. In the first step of 
addition, the ith bits of augend and addend ai and bi are added. A transfer digit ti+l 

and an interim sum digit wi are formed so that 

ti+l is from the ith digit position to the (i + 1)th digit position which can carry either 
a positive or negative value. 

In the second step of addition, the sum digit si is formed by adding wi and the ti 
from the right adjacent digit position. That is, 

si = wi + t i .  (11.3) 

The value of si should not exceed the range allowed for the ai value or bi value in 
(1 1.2). After the first step, there is no carry propagation at any position in the second 
step. 

The block diagram of a totally parallel adder for SD representations is shown in 
Figure 1 1.1. Depicted is a 3-bit adder implementing SD number additiodsubtraction. 
Two types of boxes are included. Type (1) computes Equation (1 1.2) as indicated in 
computation Step 1. Type (2) computes Equation (1 1.3) as indicated in computation 
Step 2 in the preceding section. The digits of A and B are inputs to the type (1) boxes, 
and the sum digits are obtained from type (2) boxes. 

The totally parallel subtraction of bi from ai should be performed by a totally 
parallel addition of the additive inverse of bi to ai,  that is, 

- 
ai - bi = ai + bi. 

Addition of digits ai  and bi is totally parallel if the following two conditions are 
satisfied. 
1. The sum digit si is a function of only ai, bi and a transfer digit ti from the (i - 1)th 
digit position on right, that is, 

si = f(a,, bi,  t i ) .  

2. The transfer digit ti+l to the (i + 1)th position on the left is a function of only ai 
and bi, that is, 



REQUIRED AND ALLOWED VALUES 237 

4.1 

+bLl 

ai 

? bi 

4+1 

5 b,,, 

Fig. 11.1: Totally-Parallel Adder in Signed-Digit System 

The computation carried on is as follows. 

(11.4) 

(11.5) 

11.3 REQUIRED AND ALLOWED VALUES 

The required and allowed values of variables are as follows. 



238 SIGNED-DIGIT NUMBER OPERATIONS 

as > 1 has no practical application for two-digit operations. 

l w i l < r - 2  (1 1.6) 

when ti is limited as above. What immediately follows is the allowed value of radix r .  
With the above specified r ,  wi is allowed to be { -w,,,, . . . , -1 ,O ,  1,. 1 . , Wmax}, 

and 

0, if lai + bit 5 w,,, 
1, if ai + bi > wmaX , (11.7) 
-1, if ai + bi < -wmaX 

t i+1 = 

r > 2. 

For r = 2, (1 1.6) becomes wi = 0 then Equation (1 1.2) cannot be satisfied if the 
left-hand side is 1. 

Choose wi E { - ( r  - 2), . . . , - 1, 0, 1, . . . , r - 2) and r 2 3 (r  = 2 gives the 
only possible value of wi as 0, two digit sets are adopted for a totally parallel SD 
additiodsubtraction system. 

F o r a n o d d r ,  r ,  2 3 , a n d { v , . . .  , - l , O ,  l , . . .  , F} ischosen. 
For an even r ,  re 2 4, and {- (7 + l), . . , -1, 0,1, .  . . , (% + 1)) is chosen. 
From Equation (1 1.2) we have 

( a i l m a z  + (bilmax = rltilmax + Iwilmaz. 

Since a i ,  bi, E { - ( r  - l), . . . , ( r  - l)}, we can replace [ailmaz by r - 1 on the 
left-hand side, as well as 1 bi l m a x .  Hence 

2(r - 1) = rltilmax + Iwilmaz. (11.8) 

From Equation (1 1.3) we have 

Is i /max = l t i lmaz + ( ~ i l m a z .  

Since si E { - (r  - l),  . . . , r - l}, we can replace the left-hand side by r - 1, and 

r - 1 = Itilmax + lwilmax (1 1.9) 

yields. 
Solving Equations (1 1.8) and (1 1.9), we have 

Itilmaz = 1, 
)wilmax = r - 2. 

There are 2 r  - 1 values for ai,  bi or si ,  from - ( r  - 1) to ( r  - 1). At least r values 
of wi are needed to recode all 2 r  - 1 values of them, where wi = CY is generated 
for each pair of values cy (when ti = 0) and - ( r  - a )  (when ti = -l), in addition 



MULTIPLICATION AND DIVISION 239 

to wi = 0. Furthermore, let the greatest allowed value of wi be wmax and the least 
allowed value be w,in. Anything more than w,,, is recorded with the help of higher 
order bit carrying a weight r times more. That is, 

hence 

w,,, - wmin = r - 1. 

The value w,,, is the least when we chose w,,, = 
w,,, = % for even radix re .  

for odd radix r,, and 

Let the set of allowed digit values in SD representation be 

{-a,-(cu- 1) ,... ,- 1 , 0 , 1 , . . .  , ( a -  l ) , a } ,  

where 

or 

r e  - +  15 5 re - 1  
2 

with r ,  being an odd integer r ,  >_ 3, and re an even integer re 2 4. Recall that 
there should be q different values with q satisfying inequality (1 1. l),  and a 5 r - 1 
according to inequality (1 1.5). One can see that for radix 3, the set of allowed digit 
values is (-2, - 1 , O ,  1,2) in which 2 r  - 1 values are contained and a = r - 1. For 
radix 4, (-3, -2, - 1 , O ,  1 ,2 ,3 )  is the allowed set satisfying both requirements. For 
all r > 4 there exists more than one set of allowed digit values. For instance for radix 
5 ,  (7 = r + 2) 5 q 5 (27- - 1 = 9) and a 5 (r  - 1 = 4), hence two sets exist, one 
with 7 values (-3 to 3) and one with 9 values (-4 to 4). Four sets exist for radix 10, 
from13values(-6to6)to19values(-9to9),as(12=r+2) ( 2 r - 1 =  19) 
a n d a  5 ( r  - 1 = 9). 

or a = % + 1 the redundancy is minimal, and when 
a = ro - 1 or a = re - 1 the redundancy is maximal. A signed-digit representation 
may be converted to a canonical form in which the values of all digits ai are in the 
chosen set of the values of wi; that is, no more transfer digits can be formed. To put 
an m-digit number into the canonical form, a maximum of m additions of the number 
to zero may be required. 

In the above, when a = 

11.4 MULTIPLICATION AND DIVISION 

Multiplication and division are executed as sequences of additions/subtractions and 
shifts. 



240 SIGNED-DIGIT NUMBER OPERATIONS 

Given multiplicand A and m + 1-bit multiplier B = bo.bl . . . b, in radix r 2 3 
signed-digit representations, the addition of two signed-digit numbers is performed 
as the totally parallel addition of all corresponding digits ai and bi according to 
Equations (1 1.2) and (1 1.3). The product is formed in the following recursive 
process: 

1 
r 

P j + 1 = - ( P j + A . b m _ j ) f o r j = 0 ,  1 , 2 ,  . . . ,  m-1 .  (11.10) 

Here Pj+l is a partial product, Po is assumed 0, and bm-j is the multiplier digit 
sensed during the j t h  step of multiplication. 

Note that if lPjl 5 lAlmaz and (A1 I (Alma,, we have 

lPj + A .  bm-j l  5 lAlmaz(l + L - j ) ,  (1 1.1 1) 

where lAlmaz is themaximumallowedmagnitudeof anumber. Since lb,-jl 5 r - 1 
always holds, after plus 1 and multiply by :, we have 

From (11.1.1), 

that is, 

Pj+l 5 IAlmaz 

due to (1 1.10). Table 11.1 shows a numerical (Radix 10) example. Multiplicand 
A = 0.326, and multiplier B = 1.215. The value of A is -0.274 and that of B is 
0.805. The product P4 = AB = 0.38143 with a value of it being -0.22057. 

Signed-digit division is performed as a sequence of additions/subtractions and left 
shifts. The representation of quotient digits in this method may be redundant, while 
the redundancy allows a flexible selection of quotient digits. In a signed-digit rep- 
resentation the sign of a partial remainder is not readily available which is required 
by Robertson's restoring or nonrestoring division. The magnitude of the partial re- 
mainder, however, may be estimated from the inspection of a few most significant 
digits. Given dividend N and divisor D, the quotient digits q j s  are generated by the 
following recursive process: 

Rj+l = r x Rj - qj+l x D, for j = 0, 1 , 2 ,  . . . , m - 1, 

Ro = N-qoD.  

Here Rj is a partial remainder, R, is the (final) reminder, and q is the quotient of 
(rn + 1) digits. 

During each step of division, the quotient digit qj+l must be chosen which has a 
value such that the next partial remainder Rj+l is within the same allowed range as 



MULTIPLICATION AND DIVISION 241 

Variable 

PO 
Ab3 

Po + Ab3 
Pl 

Table 11.1: Example for SD Multiplication 

Quantity Operation 

0.000 
1.430 add 

1.430 shift right 
0.143 

I j = l  I b 2 = 1  

Ab2 

Pi + Ab2 
P 2  

Abl 

0.326 add 

0.263 shift right 
0.0263 

0.652 add 

- 

I -  I I 

0.06743 

0.326 
I -  I I 

Pl I 0.38143 I end 



242 SIGNED-DIGIT NUMBER OPERATIONS 

Table 11.2: Example for SD Division 

Step 

j = -1 

j = O  

j = l  

j = 2  

Variable 

N 

rRo 
D 

rRo + D 
D 

rRo + 2 0  
D 

Ri 

rRi 
-D 

R2 

rR2 
-D 

R3 

-- 

Quantity 

0.2i6345 

2.i63450 
1.307 

0.571450 
1.307 

0.078450 

0.78450 
i.307 

~ 

0.08350 

0.8350 
i.305 

0.133 

Test 

0.204 < T 

2.043 > T 

1.336 > T 

0.629 > T 

0.078 < T 

0.784 > T 

0.077 < T 

0.775 > T 

0.068 < T 

Operation 

shift 

add D 

add D 

add D 

shift 

add - D 

shift 

add - D 

end 

gi+ 1 

90 = 0 

91 = 3 

q2 = 1 

73 = 1 



REFERENCES 243 

Rj. This range is a function of the magnitude of divisor D. If dividend N is not in 
this range, the choice of lqol = 1 must bring &, into the allowed range, otherwise the 
quotient overflows. Every quotient digit qj+l is assigned the value which satisfies 
the condition 

(11.12) 

where c is the range test constant whose allowed range is determined by the choice 
of the allowed values of the quotient digit. c = is the most practical choice within 
the allowed range. If the representation of the quotient digits is redundant (qj+l  is 
assumed more than T values), the comparison in (1 1.12) may be inexact; that is, it is 
sufficient to perform the comparison between truncated values of lrRj - Dqj+l I and 
I DI. To facilitate the comparison, the divisor D must be standardized before division, 
otherwise very great precision of comparison is required when [Dl is small. 

There are two considerations for the choice of the values allowed for quotient 
digits q j .  First, if qj  is assumed a least possible number, that number of additions will 
be required for one division. Second, minimal redundancy in representation of qj is 
necessary to allow an inexact selection of quotient digits. In minimal redundancy, the 
values of q j  range from -be to $re  (a total of r + 1 values) for even radices re 2 4, 

To determine q j  out of these values, it is sufficient to compare the first four digits. 
In particular, D is repetitively added tohbtracted from the shifted partial remain- 

der rRj, until the following condition is detected indicating Rj+l has been generated: 

and from - ; ( T ,  + 1) to z(r, 1 + 1) (a total of T + 2 values) for odd radices T,  2 3. 

(11.13) 

where ni(i = 0, 1,2,3) are the first four digits in the accumulator register containing 
the dividend N when the division began, and the partial remainders later. The value 
of qj+l is equal to the number of additions or subtractions required to generate Rj+l. 
If (1 1.13) is satisfied right after the left shift of R j ,  qj+l = 0 is the found value. A 
numerical (Radix 10) example is shown in Table 11.2. Dividend N = 0.216345, and 
divisor D = 1.30'1. The value of N is -0.204255 and that of D is 0.707. The test 
quantity is 

_ _  - 

with the value T = 0.3535. The results are Q = 0.311 and R3 = 0.133, representing 
a quotient value equal to -0.289 and a final remainder 0.000068, respectively. 

REFERENCES 

1. A. Avizienis, "Binary-Compatible Signed-Digit Arithmetic," Proc. AFIPS Fall 
Joint Comp. Con&, 1964, pp. 663-67 1. 



244 SIGNED-DIGIT NUMBER OPERATIONS 

2. A. Avizienis, “A Study of Redundant Number Representations for Parallel Digital 
Computers,” Ph.D. Thesis, University of Illinois, Urbana, May 1960. 

3. A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arith- 
metic,” IRE Trans. Electron. Comp., Vol. EC-10, No. 3, Sept. 1961, pp. 
389-400. 

4. B. Parhami, “Generalized Signed-Digit Number Systems: A Unifying Frame- 
work for Redundant Number Representations,” IEEE Trans. Comp., 39 (Jan. 
1990) pp. 89-98. 

5. C. Tung, “Signed-Digit Division Using Combinational Arithmetic Nets,” IEEE 
Trans. Comp., Vol. C-19, No. 8, Aug. 1970, pp. 746-748. 

PROBLEMS 

11.1 (a) Given a digit set {I, 0, l}, find all the possible signed-digit (SD) represen- 
tations of (-5)10 with n = 4 and k = 0. 
(b) Among those representations you obtained in (a), which one is the minimal SD 
representation? 

11.2 
numbers. 

Given T = 8 and a = 5, convert the following numbers into equivalent SD 

(a) (725)s and (-725)s. (b) (671)s and (-671)s. 

11.3 Applying the method indicated in Figure 11.1, perform addition A + B with 
the following radix 10 numbers. First, find wis and t i s  in parallel, then find all the 
sis simultaneously assuming w,,, = 5. 
(a) A = 03i1, B = T435. (b) A = 1221, B = 1133. 

11.4 
Similar requirements and restrictions apply. 

11.5 
r = 8 number. What are they? 

11.6 
sets of redundant signed digits you found in Problem 11.5. 

Perform subtraction A - B with the same numbers given in Problem 11.3. 

How many sets of redundant signed digits can be used to represent a radix 

Represent each of the following numbers in radix 8 SD form with the different 

(a) 2678. (b) 50110. 

11.7 Perform the SD multiplication of A x B where A = 0.362 and B = 1.215 
are radix 10 numbers. For each step, list the operations performed and the partial 
product generated. 

11.8 Perform the SD division of N / D  where A = 0.236351 and B = 1.315 are 
radix 10 numbers. For each step, list the operations, the test condition, and the partial 
remainder and quotient obtained. 



Index 

Add-and-shift approach, 78 
accumulator(AC), 78 
auxiliary register(AX), 78 
multiplier register(MR), 78 

addend, 40 
augend, 40 
minuend, 40 
ripple cany adder, 44 
subtrahend, 40 
summand, 40 

Arithmetic logic unit, 29 
Arithmetic shift, 87 
Array divider, 167 

Additiodsubtraction, 40 

cany-lookahead cellular array divider, 173 
non-restoring cellular array divider, 171 
restoring cellular array divider, 167 

Baugh-Wooley’s array, 114 
Bi-section array multiplier, 119 
Bit partitioned adder, 69 

Block carry lookahead adder (BCLA), 62 
column adder, 7 1 

block cany generate, 62 
block cany propagate, 62 

Carry-completion sensing adder (CCSA), 56 
carry propagation length, 58 

Cany-lookahead adder (CLA), 61 
carry generation, 61 
carry propagation, 61 

Carry-save adder (CSA), 66 

carry-save register, 66 
Conditional-sum adder, 54 
Conventional radix number, 2 
Convergence division, 152 
Dependent carry (DC), 56 
Diminished radix complement, 8 
Division by divisor reciprocation, 157 
Fixed-radix number system, 2 

binary, 4 
hexadecimal, 4 
octal, 4 

Floating-point number representation, 15 
bias, 16 
double precision representation, 20 
exponent, 15 
mantissa, 15 
normalization, 15 
order-of-magnitude zero, 184 
significand, 15 
underflow, 19 

Full-adder(FA), 3 2 
Half-adder(HA), 32 
Independent carry (IC), 56 
Indirect multiplication, 8 1 

post-complement, 81 
pre-complement, 81 

Least significant digit (LSD), 3 
Logarithmic number system (LNS), 23 
Mixed-radix number, 2 
Modular structure, 120 

245 



246 INDEX 

additive multiply modules, 123 
non-additive multiply modules, 123 

Most significant digit (MSD), 3 
Non-overlapped multiple-bit scanning, 90 
Normalized fraction, 7 
One’s complement addition 

end-around carry, 46 
Overflow, 43 
Overlapped multiple bit scanning 

Booth’s algorithm, 93 
canonical multiplier recoding, 95 
canonical signed-digit vector, 95 
string property, 90 

Overlapped multiple bit scanning, 90 
Pezaris array multiplier, 117 
Radix, 9 
Residue number system (RNS), 22 

moduli set, 22 
multiplicative division algorithm, 212 
multiplicative inverse, 203 
subtractive RNS division algorithm, 206 

Robertson’s signed number multiplication, 87 

Rounding, 193 
guard bit, 193 
round bit, 193 
round-to-nearest, 190 
round-up, 190 
sticky bit, 193 
truncate, 190 

post-complement, 49 
pre-complement, 48 

Sign-magnitude addition, 48 

Sign-magnitude, 8 
Signed-digit number system, 12 

minimal signed-digit representation, 14 
totally parallel additiodsubtraction, 235 

Subtract-and-shift approach, 136 
binary non-restoring division, 141 
binary restoring division, 138 
high-radix restoring division, 144 
modified SRT division, 147 
Robertson’s high-radix division, 147 
SRT division, 146 

Trisection array multiplier, 119 
Wallace tree. 103 


	Arithmetic and Logic in Computer Systems
	Contents
	Preface
	List of Figures
	List of Tables
	About the Author
	Computer Number Systems
	1.1 CONVENTIONAL RADIX NUMBER SYSTEM
	1.2 CONVERSION OF RADIX NUMBERS
	1.3 REPRESENTATIONOF SIGNED NUMBERS
	1.3.1 Sign-Magnitude
	1.3.2 DiminishedRadix Complement
	1.3.3 Radix Complement

	1.4 SIGNED-DIGIT NUMBER SYSTEM
	1.5 FLOATING-POINT NUMBER REPRESENTATION
	1.5.1 Normalization
	1.5.2 Bias

	1.6 RESIDUE NUMBER SYSTEM
	1.7 LOGARITHMIC NUMBER SYSTEM
	REFERENCES
	PROBLEMS

	Addition and Subtraction
	2.1 SINGLE-BIT ADDERS
	2.1.1 Logical Devices
	2.1.2 Single-Bit Half-Adderand Full-Adders

	2.2 NEGATION
	2.2.1 Negation in One’s Complement System
	2.2.2 Negation in Two’s Complement System

	2.3 SUBTRACTIONTHROUGH ADDITION
	2.4 OVERFLOW
	2.5 RIPPLE CARRY ADDERS
	2.5.1 Two’s Complement Addition
	2.5.2 One’s Complement Addition
	2.5.3 Sign-MagnitudeAddition

	REFERENCES
	PROBLEMS

	High-speed Adder
	3.1 CONDITIONAL-SUM ADDITION
	3.2 CARRY-COMPLETION SENSING ADDITION
	3.3 CARRY-LOOKAHEAD ADDITION (CLA)
	3.3.1 Carry-Lookahead Adder
	3.3.2 Block Carry Lookahead Adder

	3.4 CARRY-SAVE ADDERS (CSA)
	3.5 BIT-PARTITIONED MULTIPLE ADDITION
	REFERENCES
	PROBLEMS

	Sequential Multiplication
	4.1 ADD-AND-SHIFT APPROACH
	4.2 INDIRECT MULTIPLICATIONSCHEMES
	4.2.1 Unsigned Number Multiplication
	4.2.2 Sign-MagnitudeNumber Multiplication
	4.2.3 One’s Complement Number Multiplication
	4.2.4 Two’s Complement Number Multiplication

	4.3 ROBERTSON’S SIGNED NUMBER MULTIPLICATION
	4.4 RECODINGTECHNIQUE
	4.4.1 Non-overlappedMultiple Bit Scanning
	4.4.2 Overlapped MultipleBit Scanning
	4.4.3 Booth’s Algorithm
	4.4.4 Canonical Multiplier Recoding

	REFERENCES
	PROBLEMS

	Parallel Multiplication
	5.1 WALLACE TREES
	5.2 UNSIGNEDARRAY MULTIPLIER
	5.3 TWO’S COMPLEMENT ARRAY MULTIPLIER
	5.3.1 Baugh-Wooley Two’s Complement Multiplier
	5.3.2 Pezaris Two’s Complement Multipliers

	5.4 MODULAR STRUCTURE OF LARGE MULTIPLIER
	5.4.1 Modular Structure
	5.4.2 Additive Multiply Modules
	5.4.3 Programmable Multiply Modules

	REFERENCES
	PROBLEMS

	Sequential Division
	6.1 SUBTRACT-AND-SHIFT APPROACH
	6.2 BINARY RESTORINGDIVISION
	6.3 BINARY NON-RESTORING DIVISION
	6.4 HIGH-RADIX DIVISION
	6.4.1 High-Radix Non-Restoring Division
	6.4.2 SRT Division
	6.4.3 Modified SRT Division
	6.4.4 Robertson's High-Radix Division

	6.5 CONVERGENCE DIVISION
	6.5.1 Convergence Division Methodologies
	6.5.2 Divider Implementing Convergence Division Algorithm

	6.6 DIVISION BY DIVISOR RECIPROCATION
	REFERENCES
	PROBLEMS

	Fast Array Dividers
	7.1 RESTORING CELLULAR ARRAY DIVIDER
	7.2 NON-RESTORING CELLULAR ARRAY DIVIDER
	7.3 CARRY-LOOKAHEAD CELLULAR ARRAY DIVIDER
	REFERENCES
	PROBLEMS

	Floating Point Operations
	8.1 FLOATING POINT ADDITION/SUBTRACTION
	8.2 FLOATING POINT MULTIPLICATION
	8.3 FLOATING POINT DIVISION
	8.4 ROUNDING
	REFERENCES
	PROBLEMS

	Residue Number Operations
	9.1 RNS ADDITION, SUBTRACTION AND MULTIPLICATION
	9.2 NUMBER COMPARISONAND OVERFLOW DETECTION
	9.2.1 Unsigned Number Comparison
	9.2.2 Overflow Detection
	9.2.3 Signed Numbers and Their Properties
	9.2.4 Multiplicative Inverseand the Parity Table

	9.3 DIVISION ALGORITHM
	9.3.1 Unsigned Number Division
	9.3.2 Signed Number Division

	REFERENCES
	PROBLEMS

	Operations through
	Operations through Logarithms
	10.1 MULTIPLICATIONAND ADDITION IN LOGARITHMICSYSTEMS
	10.2 ADDITION AND SUBTRACTIONIN LOGARITHMICSYSTEMS
	10.3 REALIZING THE APPROXIMATION
	REFERENCES
	PROBLEMS

	Signed-Digit Number Operations
	11.1 CHARACTERISTICS
	11.2 TOTALLY PARALLELADDITION/SUBTRACTION
	11.3 REQUIRED AND ALLOWED VALUES
	11.4 MULTIPLICATIONAND DIVISION
	REFERENCES
	PROBLEMS

	Index
	End of Book

