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Lecture 1. SYSTEMS OF ALGEBRAIC EQUATIONS

The main objects of study in algebraic geometry are systems of algebraic equations and their
sets of solutions. Let k be a field and k[Ty,...,T,] = k[T] be the algebra of polynomials in n
variables over k. A system of algebraic equations over k is an expression

{F = O}Fes

where S is a subset of k[T]. We shall often identify it with the subset S.
Let K be a field extension of k. A solution of S in K is a vector (z1,...,z,) € K™ such that
forall F € S
F(zy,...,z,) =0.

Let Sol(S; K) denote the set of solutions of S in K. Letting K vary, we get different sets of
solutions, each a subset of K”. For example, let

S = {F(T},T5) = 0}.

be a system consisting of one equation in two variables. Then

Sol(S; Q) is a subset of Q? and its study belongs to number theory. For example one of
the most beautiful results of the theory is the Mordell Theorem (until very recently the Mordell
Conjecture) which gives conditions for finiteness of the set Sol(S; Q).

Sol(S; R) is a subset of R? studied in topology and analysis. It is a union of a finite set and
an algebraic curve, or the whole R2, or empty.

Sol(S; C) is a Riemann surface or its degeneration studied in complex analysis and topology.
All these sets are different incarnations of the same object, an affine algebraic variety over k
studied in algebraic geometry. One can generalize the notion of a solution of a system of equations
by allowing K to be any commutative k-algebra. Recall that this means that K is a commutative
unitary ring equipped with a structure of vector space over k so that the multiplication law in K is
a bilinear map K x K — K. The map k — K defined by sending a € k to a -1 is an isomorphism
from k to a subfield of K isomorphic to k so we can and we will identify k£ with a subfield of K.

The solution sets Sol(S; K) are related to each other in the following way. Let ¢ : K — L
be a homomorphism of k-algebras, i.e a homomorphism of rings which is identical on k. We can
extend it to the homomorphism of the direct products ¢®” : K™ — L™. Then we obtain for any
a=(ai,...,a,) € Sol(S; K),

¢P" (a) = ($(ar),. .., p(an)) € Sol(S; L).
This immediately follows from the definition of a homomorphism of k-algebras (check it!). Let
sol(S; ¢) : Sol(S; K) — Sol(S; L)
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be the corresponding map of the solution sets. The following properties are immediate:
(i) sol(S;idk) = idsel(s;x), where id4 denotes the identity map of a set A;
(ii) sol(S;1pop) = sol(S;1p)osol(S;p), where b : L — M is another homomorphism of k-algebras.
Remark One can rephrase the previous properties by saying that the correspondences

K — Sol(S; K), ¢ — sol(S;¢)

define a functor from the category of k-algebras Alg; to the category of sets Sets.

Definition Two systems of algebraic equations S, S’ C k[T] are called equivalent if Sol(S; K) =
Sol(S’, K) for any k-algebra K. An equivalence class is called an affine algebraic variety over k
(or an affine algebraic k-variety). If X denotes an affine algebraic k-variety containing a system of
algebraic equations S, then, for any k-algebra K, the set X (K) = Sol(S; K) is well-defined. It is
called the set of K-points of X.

Examples. 1. The system S = {0} C k[T},...,T,] defines an affine algebraic variety denoted by
A7 It is called the affine n-space over k. We have, for any k-algebra K,

Sol({0}; K) = K™.

2. The system 1 = 0 defines the empty affine algebraic variety over k and is denoted by (. We
have, for any K-algebra K,

D (K) = 0.

We shall often use the following interpretation of a solution a = (ay,...,a,) € Sol(S; K). Let
ev, : k[T] — K be the homomorphism defined by sending each variable T; to a;. Then

a € Sol(S; K) <= ev,(S) = {0}.

In particular, ev, factors through the factor ring k[T']/(S), where (S) stands for the ideal generated
by the set S, and defines a homomorphism of k-algebras

evs,q  k[T]/(S) = K.

Conversely any homomorphism k[T]/(S) — K composed with the canonical surjection k[T] —
k[T]/(S) defines a homomorphism k[T] — K. The images a; of the variables T; define a solution
(a1,...,a,) of S since for any F' € S the image F'(a) of F' must be equal to zero. Thus we have a
natural bijection

Sol(S; K) «+— Homg (k[T]/(S), K).
It follows from the previous interpretations of solutions that S and (S) define the same affine
algebraic variety.

The next result gives a simple criterion when two different systems of algebraic equations
define the same affine algebraic variety.
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Proposition 1. Two systems of algebraic equations S, S’ C k[T| define the same affine algebraic
variety if and only if the ideals (S) and (S’) coincide.

Proof. The part 7if” is obvious. Indeed, if (S) = (S’), then for every F € S we can express
F(T) as a linear combination of the polynomials G € S’ with coefficients in k[T']. This shows that
Sol(S’; K) C Sol(S; K). The opposite inclusion is proven similarly. To prove the part “only if”
we use the bjection Sol(S; K) <+— Homy (k[T]/(S), K). Take K = k[T]/(S) and a = (t1,...,t,)
where t; is the residue of T; mod (S). For each F' € S,

F(a) = F(t1,...,t,) = F(T,...,T,) mod (S) = 0.

This shows that a € Sol(S; K). Since Sol(S; K) = Sol(S’; K), for any F € (S') we have F(a) =
F(Ti,...,T,) mod(S)=0in K, i.e., F € (S). This gives the inclusion (S’) C (S). The opposite
inclusion is proven in the same way.

Example. 3. Let n =1,S =T =0,5" = T? = 0. Tt follows immediately from the Proposition 1
that S and S’ define different algebraic varieties X and Y. For every k-algebra K the set Sol(S; K)
consists of one element, the zero element 0 of K. The same is true for Sol(S’; K) if K does not
contain elements a with a? = 0 (for example, K is a field, or more general, K does not have zero
divisors). Thus the difference between X and Y becomes noticeable only if we admit solutions
with values in rings with zero divisors.

Corollary-Definition. Let X be an affine algebraic variety defined by a system of algebraic
equations S C k[T4,...,T,]. The ideal (S) depends only on X and is called the defining ideal of
X. It is denoted by I(X). For any ideal I C k[T] we denote by V(I) the affine algebraic k-variety
corresponding to the system of algebraic equations I (or, equivalently, any set of generators of I).
Clearly, the defining ideal of V(1) is I.

The next theorem is of fundamental importance. It shows that one can always restrict oneself
to finite systems of algebraic equations.

Theorem 1 (Hilbert’s Basis Theorem). Let I be an ideal in the polynomial ring k[T] =
k[Ty,...,T,]. Then I is generated by finitely many elements.

Proof. The assertion is true if k[T] is the polynomial ring in one variable. In fact, we know
that in this case k[T is a principal ideal ring, i.e., each ideal is generated by one element. Let us
use induction on the number n of variables. Every polynomial F(T') € I can be written in the form
F(T) =boT} +...4+b,, where b; are polynomials in the first n — 1 variables and by # 0. We will say
that r is the degree of F(T') with respect to T}, and by is its highest coefficient with respect to T,.
Let J, be the subset &[T}, ..., T, _1] formed by 0 and the highest coefficients with respect to T,, of all
polynomials from I of degree r in T},. It is immediately checked that .J,. is an ideal in &[Ty, ..., T, —1].
By induction, J, is generated by finitely many elements ai,,...,am ), € E[T1,...,Ty—1]. Let
Fip(T),i=1,...,m(r), be the polynomials from I which have the highest coefficient equal to a; .
Next, we consider the union J of the ideals J,.. By multiplying a polynomial F' by a power of T,, we
see that J, C J,4;. This immediately implies that the union J is an ideal in k[TY,...,T,_1]. Let
ai,...,a; be generators of this ideal (we use the induction again). We choose some polynomials
F;(T) which have the highest coefficient with respect to T;, equal to a;. Let d(i) be the degree of
F;(T) with respect to T,,. Put N = max{d(1),...,d(t)}. Let us show that the polynomials

Fpi=1,....,m(r),r <N, Fji=1,...,t,

generate I.
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Let F(T) € I be of degree r > N in T;,. We can write F'(T') in the form

F(T) = (crar +...coa) Ty + ... = > Ty “DF,(T) + F'(T),
1<i<t

where F'(T) is of lower degree in T,,. Repeating this for F'(T), if needed, we obtain

where R(T) is of degree d strictly less than N in 7T),. For such R(T) we can subtract from it a
linear combination of the polynomials F; ; and decrease its degree in T,. Repeating this, we see
that R(T') belongs to the ideal generated by the polynomials F; ., where r < N. Thus F can be
written as a linear combination of these polynomials and the polynomials Fy,..., F;. This proves
the assertion.

Finally, we define a subvariety of an affine algebraic variety.

Definition. An affine algebraic variety Y over k is said to be a subvariety of an affine algebraic
variety X over k if Y(K) C X (K) for any k-algebra K. We express this by writing Y C X.

Clearly, every affine algebraic variety over k is a subvariety of some n-dimensional affine space
A} over k. The next result follows easily from the proof of Proposition 1:

Proposition 2. An affine algebraic variety Y is a subvariety of an affine variety X if and only if
I(X) CI(Y).

Exercises.
1. For which fields k do the systems

S={0i(T1,....Ty) = 0}iz1,.m, and &' = {> T) =0}i=1,..n

j=1

define the same affine algebraic varieties? Here o0;(T},...,T,) denotes the elementary symmetric
polynomial of degree i in T4, ..., T),.
2. Prove that the systems of algebraic equations over the field Q of rational numbers

(T + Ty, =0,Ty =0} and {T5TE +T? + T3 + Ty + ThTo = 0, TTE + T5 + T) = 0}

define the same affine algebraic Q-varieties.

3. Let X C A} and X' C A} be two affine algebraic k-varieties. Let us identify the Cartesian
product K™ x K™ with K"*™. Define an affine algebraic k-variety such that its set of K-solutions
is equal to X (K) x X'(K) for any k-algebra K. We will denote it by X x Y and call it the Cartesian
product of X and Y.

4. Let X and X' be two subvarieties of A}. Define an affine algebraic variety over k such that its
set of K-solutions is equal to X (K) N X'(K) for any k-algebra K. It is called the intersection of
X and X’ and is denoted by X N X'. Can you define in a similar way the union of two algebraic
varieties?

5. Suppose that S and S’ are two systems of linear equations over a field k. Show that (S) = (S’)
if and only if Sol(S; k) = Sol(S'; k).

6. A commutative ring A is called Noetherian if every ideal in A is finitely generated. Generalize
Hilbert’s Basis Theorem by proving that the ring A[T},...,T,] of polynomials with coefficients in
a Noetherian ring A is Noetherian.
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Lecture 2. AFFINE ALGEBRAIC SETS

Let X be an affine algebraic variety over k. For different k-algebras K the sets of K-points
X (K) could be quite different. For example it could be empty although X # ;. However if we
choose K to be algebraically closed, X (K) is always non-empty unless X = ();. This follows from
the celebrated Nullstellensatz of Hilbert that we will prove in this Lecture.

Definition. Let K be an algebraically closed field containing the field k. A subset V' of K™ is

said to be an affine algebraic k-set if there exists an affine algebraic variety X over k such that
V =X(K).

The field k is called the ground field or the field of definition of V. Since every polynomial
with coefficients in k£ can be considered as a polynomial with coefficients in a field extension of k&,
we may consider an affine algebraic k-set as an affine algebraic K-set. This is often done when we
do not want to specify to which field the coefficients of the equations belong. In this case we call
V simply an affine algebraic set.

First we will see when two different systems of equations define the same affine algebraic set.
The answer is given in the next theorem. Before we state it, let us recall that for every ideal [ in
a ring A its radical rad(I) is defined by

rad(I) ={a€ A:a" € I for somen > 0}.
It is easy to verify that rad(I) is an ideal in A. Obviously it contains I.

Theorem (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and S and S’ be
two systems of algebraic equations in the same number of variables over a subfield k. Then

Sol(S; K) = Sol(S"; K) <= rad((S)) = rad((S")).

Proof. Obviously the set of zeroes of an ideal I and its radical rad(l) in K™ are the same.
Here we only use the fact that K has no zero divisors so that F"(a) = 0 <= F(a) = 0. This
proves <. Let V be an algebraic set in K™ given by a system of algebraic equations S. Let us
show that the radical of the ideal (S) can be defined in terms of V' only:

rad((S)) ={F € k[T): F(a) =0Va € V}.

This will obviously prove our assertion. Let us denote the right-hand side by I. This is an ideal
in k[T] that contains the ideal (S). We have to show that for any G € I, G" € (S) for some r > 0.
Now observe that the system Z of algebraic equations

{F(T) =0}res, 1 = T,4+1G(T) =0

5
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in variables Ty,...,T,,Tp+1 defines the empty affine algebraic set in K"*!. In fact, if a =
(@1,...,an,an41) € Sol(Z; K), then F(aq,...,an,an41) = F(a1,...,a,) = 0 for all FF € S. This
implies (ay,...,a,) € V and hence

G(ala s 7an7an+1) = G(ala s 7an) =0

and (1 = T,11G)(ay,...,an,ap41) =1 —apny1G(ay,...,an,an41) = 1 # 0. We will show that this
implies that the ideal (Z) contains 1. Suppose this is true. Then, we may write

1= PpF+Q(1 - Th11G)
FeS

for some polynomials Pr and @ in T4, ...,T,+1. Plugging in 1/G instead of T, 41 and reducing to
the common denominator, we obtain that a certain power of G belongs to the ideal generated by
the polynomials F, F € S.

So, we can concentrate on proving the following assertion:

Lemma 1. If I is a proper ideal in k[T], then the set of its solutions in an algebraically closed
field K is non-empty.

We use the following simple assertion which easily follows from the Zorn Lemma: every ideal in
a ring is contained in a maximal ideal unless it coincides with the whole ring. Let m be a maximal
ideal containing our ideal I. We have a homomorphsim of rings ¢ : k[T|/I — A = k[T]/m induced
by the factor map k[T] — k[T]/m . Since m is a maximal ideal, the ring A is a field containing k
as a subfield. Note that A is finitely generated as a k-algebra (because k[T is). Suppose we show
that A is an algebraic extension of k. Then we will be able to extend the inclusion ¥ C K to a
homomorphism A — K (since K is algebraically closed), the composition k[T]/I - A — K will
give us a solution of I in K.

Thus Lemma 1 and hence our theorem follows from the following:

Lemma 2. Let A be a finitely generated algebra over a field k. Assume A is a field. Then A is
an algebraic extension of k.

Before proving this lemma, we have to remind one more definition from commutative algebra.
Let A be a commutative ring without zero divisors (an integral domain) and B be another ring
which contains A. An element = € B is said to be integral over A if it satisfies a monic equation :
2" + a12" 1 4+ ... + a, = 0 with coefficients a; € A. If A is a field this notion coincides with the
notion of algebraicity of z over A. We will need the following property which will be proved later
(when we will deal with the concept of dimension in algebraic geometry).

Fact: The subset of elements in B which are integral over A is a subring of B.

We will prove Lemma 2 by induction on the minimal number r of generators ty,...,t. of A.
If r = 1, the map k[T1] — A defined by T} — t; is surjective. It is not injective since otherwise
A = k[Ty] is not a field. Thus A = k[Ty]/(F) for some F(T}) # 0, hence A is a finite extension of k
of degree equal to the degree of F'. Therefore A is an algebraic extension of k. Now let » > 1 and
suppose the assertion is not true for A. Then, one of the generators ¢y, ..., ¢, of A is transcendental
over k. Let it be t;. Then A contains the field F' = k(¢;), the minimal field containing ¢;. It consists
of all rational functions in t1, i.e. ratios of the form P(¢1)/Q(t1) where P,Q € k[T;]. Clearly A
is generated over F' by r — 1 generators ts,...,t.. By induction, all ¢;,7 # 1, are algebraic over

f(z) +...=0,a; # 0, where

F. We know that each t;,7 # 1, satisfies an equation of the form a;t

6
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the coefficients belong to the field . Reducing to the common denominator, we may assume that
the coefficients are polynomial in ¢y, i.e., belong to the smallest subring k[t;] of A containing ¢;.
Multiplying each equation by a?(z)_l, we see that the elements a;¢; are integral over k[t1]. At this
point we can replace the generators ¢; by a;t; to assume that each ¢; is integral over k[t1]. Now
using the Fact we obtain that every polynomial expression in o, ..., t, with coefficients in k[t;] is
integral over k[t;]. Since tq,...,t, are generators of A over k, every element in A can be obtained
as such polynomial expression. So every element from A is integral over k[t1]. This is true also for
every x € k(t1). Since t; is transcendental over k, k[z;] is isomorphic to the polynomial algebra
k[Ty]. Thus we obtain that every fraction P(T1)/Q(T1), where we may assume that P and Q) are
coprime, satisfies a monic equation X" + A; X" + ... + A, = 0 with coefficients from k[T]. But
this is obviously absurd. In fact if we plug in X = P/Q and clear the denominators we obtain

P + A,QP" 14+ ...+A4,Q" =0,
hence
Pn — _Q(Alpn—l N AnQn_l)-

This implies that @ divides P™ and since k[T7] is a principal ideal domain, we obtain that P divides
@ contradicting the assumption on P/@Q). This proves Lemma 2 and also the Nullstellensatz.

Corollary 1. Let X be an affine algebraic variety over a field k, K is an algebraically closed
extension of k. Then X(K) = () if and only if 1 € I(X).

An ideal I in a ring A is called radical if rad(I) = I. Equivalently, I is radical if the factor ring
A/I does not contain nilpotent elements (a nonzero element of a ring is nilpotent if some power of
it is equal to zero).

Corollary 2. Let K be an algebraically closed extension of k. The correspondences
Ve I(V):={F(T)€klT): F(z)=0Vz € V},

I—V({):={zeK":F(x)=0VYF eI}

define a bijective map

{affine algebraic k-sets in K"} — {radical ideals in k[T]}.

Corollary 3. Let k be an algebraically closed field. Any maximal ideal in k[T, ...,T,] is generated
by the polynomials Ty — ¢y, ..., T, — ¢, for some cq,...,c, € k.

Proof. Let m be a maximal ideal. By Nullstellensatz, V(m) # (). Take some point z =
(c1y...,¢p) € V(m). Nowm C I({z}) but since m is maximal we must have the equality. Obviously,
the ideal (71 — ¢1,...,T, — ¢,) is maximal and is contained in I({z}) = m. This implies that
(Tl —Cl,...,Tn —Cn) =m.

Next we shall show that the set of algebraic k-subsets in K™ can be used to define a unique
topology in K™ for which these sets are closed subsets. This follows from the following:
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Proposition 1.
(i) The intersection NgcgVy of any family {V,}scs of affine algebraic k-sets is an affine algebraic
k-set in K.
(ii) The union Usc sV of any finite family of affine algebraic k-sets is an affine algebraic k-set in
K™
(iii) () and K™ are affine algebraic k-sets.

Proof. (i) Let I, = I(Vs) be the ideal of polynomials vanishing on V,. Let I = > I, be the
sum of the ideals I, i.e., the minimal ideal of k[T containing the sets I;. Since I, C I, we have
V(I) C V(Is) = Vi. Thus V(I) C NgesVs. Since each f € I is equal to a finite sum ) f5, where
fs € I, we see that f vanishes at each z from the intersection. Thus z € V(I), and we have the
opposite inclusion.

(ii) Let I be the ideal generated by products [, fs, where f, € I,. If z € UV, then z € V
for some s € S. Hence all f; € I vanishes at . But then all products vanishes at z, and therefore
x € V(I). This shows that UsV; C V(I). Conversely, suppose that all products vanish at z but
x & Vs for any s. Then, for any s € S there exists some fs € I such that fs(x) # 0. But then the
product ], fs € I does not vanish at z. This contradiction proves the opposite inclusion.

(iii) This is obvious, () is defined by the system {1 = 0}, K™ is defined by the system {0 = 0}.

Using the previous Proposition we can define the topology on K" by declaring that its closed
subsets are affine algebraic k- subsets. The previous proposition verifies the axioms. This topology
on K" is called the Zariski k-topology (or Zariski topology if k = K). The corresponding topological
space K" is called the n-dimensional affine space over k and is denoted by A} (K). If k = K, we
drop the subscript k£ and call it the n-dimensional affine space.

Example. A proper subset in A(K) is closed if and only if it is finite. In fact every ideal I in
k[T] is principal, so that its set of solutions coincides with the set of solutions of one polynomial.
The latter set is finite unless the polynomial is identical zero.

Remark. As the previous example easily shows the Zarisky topology in K" is not Hausdorff
(=separated), however it satisfies a weaker property of separability. This is the property

(T1): for any two points 2 # y in A" (k), there exists an open subset U such that z € U but
y ¢ U (see Problem 5).

Any point z € V = X(K) is defined by the homomorphism of k-algebras ev, : O(X) — K.
Let p = Ker(ev,). Since K is a field p is a prime ideal. It corresponds to a closed subset which is
the closure of the set {z}. Thus a point z is closed in the Zariski topology if and only if p, is a
maximal ideal. By Lemma 2, in this case the quotient ring O(X)/p, is an algebraic extension of
k. Conversely, a finitely generated domain contained in an algebraic extension of k is a field (we
shall prove it later in Lecture 10). Thus if we assume that K is an algebraic extension of k£ then
all points of V' are closed.

Problems.

1. Let A = k[Ty,T»]/(T? — T3). Find an element in the field of fractions of A which is integral
over A but does not belong to A.

2. Let V and V' be two affine algebraic sets in K. Prove that I(VUV') = I(V)NI(V'). Give an
example where I(V)NI(V') # I(V)I(V').

3. Find the radical of the ideal in k[T}, Ty] generated by the polynomials 72T, and Ty Ts.

4. Show that the Zariski topology in A™(K),n # 0, is not Hausdorff but satisfies property (7}).
Is the same true for A7 (K) when k # K?
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5. Find the ideal I(V) of the algebraic subset of K" defined by the equations T} = 0,T5 =
0,T1T5(Ty + T3) = 0. Does Ty + T3 belong to I(V)?
6. What is the closure of the subset {(z1, 22) € C? | |21]2 + |22]? = 1} in the Zariski topology?
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Lecture 3. MORPHISMS OF AFFINE ALGEBRAIC VARIETIES

In Lecture 1 we defined two systems of algebraic equations to be equivalent if they have the
same sets of solutions. This is very familiar from the theory of linear equations. However this
notion is too strong to work with. We can succeed in solving one system of equation if we would
be able to find a bijective map of its set of solutions to the set of solutions of another system of
equations which can be solved explicitly. This idea is used for the following notion of a morphism
between affine algebraic varieties.

Definition. A morphism f : X — Y of affine algebraic varieties over a field &k is a set of maps
fx : X(K) — Y(K) where K runs over the set of k-algebras such that for every homomorphism
of k-algebras ¢ : K — K' the following diagram is commutative:

X(K) % x(k
fr L fre (1)
¥ ()

Y(K) — Y(K').
We denote by Morag,,(X,Y) the set of morphisms from X to Y.

Remark 1. The previous definition is a special case of the notion of a morphism (or, a natural
transformation) of functors.

Let X be an affine algebraic variety. We know from Lecture 1 that for every k-algebra K there
is a natural bijection

X(K) — Homy (kK[T])/1(X), K). (2)

From now on we will denote the factor algebra k[T]|/I(X) by O(X) and will call it the coor-
dinate algebra of X. We can view the elements of this algebra as functions on the set of points of
X. In fact given a K-point ¢ € X(K) and an element ¢ € O(X) we find a polynomial P € k[T
representing ¢ and put

p(a) = P(a).
Clearly this definition does not depend on the choice of the representative. Another way to see
this is to view the point @ as a homomorphism ev, : O(X) — K. Then

p(a) = eva(yp).
Note that the range of the function ¢ depends on the argument: if a is a K-point then p(a) € K.

Let b : A — B be a homomorphism of k-algebras. For every k-algebra K we have a natural
map of sets Homy (B, K) — Homy (A, K), which is obtained by composing a map B — K with 1.
Using the bijection (2) we see that any homomorphism of k-algebras

P :O0(Y) = O(X)

10
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defines a morphism f : X — Y by setting, for any ¢ : O(X) — K,
fr(a) =9oa (3)
Thus we have a natural map of sets
¢ : Homy (O(Y), O(X)) = Moragx (X, Y). (4)

Recall how this correspondence works. Take a K-point ¢ = (ay,...,a,) € X(K) in a k-
algebra K. It defines a homomorphism ev, : O(X) = k[Ty,...,T,]/I(X) — K by assigning a;
to T;,i = 1,...,n. Composing this homomorphism with a given homomorphism ¢ : O(Y) =
k[Ty,...,Tn]/I(Y) = O(X), we get a homomorphism ev, 0 ¢p: O(Y) — K. Let b = (b1,...,bn)
where b; = ev,0¢(T;),i = 1,...,m. This defines a K-point of Y. Varying K, we obtain a morphism
X — Y which corresponds to the homomorphism 1.

Proposition 1. The map £ from (3) is bijective.

Proof. Let f : X — Y be a morphism. Then fo(x) is a map from Homy(O(X), O(X))
to Homy(O(Y),O(X)). The image of the identity homomorphism idp(x) is a homomorphism
P : O(Y) = O(X). Let us show that £(¢) = f. Let a € X(K) = Homy (O(X), K). By definition
of a morphism of affine algebraic k-varieties we have the following commutative diagram:

X (K) = Homy,(O(X), K) EEN Y (K) = Homy(O(Y), K)
ao? 1 T ao?
X(O(X)) = Homy (O(X), 0(X)) 25 ¥(O(X)) = Homy (O(Y), O(X)).

Take the identity map idp(x) in the left bottom set. It goes to the element « in the left top set.
The bottom horizontal arrow sends idp(x) to 1. The right vertical arrow sends it to « o ¢. Now,
because of the commutativity of the diagram, this must coincide with the image of « under the
top arrow, which is fx («). This proves the surjectivity. The injectivity is obvious.

As soon as we know what is a morphism of affine algebraic k-varieties we know how to define an
isomorphism. This will be an invertible morphism. We leave to the reader to define the composition
of morphisms and the identity morphism to be able to say what is the inverse of a morphism. The
following proposition is clear.

Proposition 2. Two affine algebraic k-varieties X and Y are isomorphic if and only if their
coordinate k-algebras O(X) and O(Y') are isomorphic.

Let ¢ : O(Y) — O(X) be a homomorphism of the coordinate algebras of two affine algebraic
varieties given by a system S in unknowns Ti,...,T),, and a system S’ in unknowns 77,...,7) .
Since O(Y') is a homomorphic image of the polynomial algebra k[T, ¢ is defined by assigning to
each T} an element p; € O(X). The latter is a coset of a polynomial P;(T') € k[T]. Thus ¢ is defined
by a collection of m polynomials (Py(T),..., Py, (T)) in unknowns T}. Since the homomorphism
k[T] - O(X),T; — P;(T) + I(X) factors through the ideal (Y'), we have

F(P,(T),...,Py(T)) € I(X), YF(T.,...,T!) € I(Y). (5)

Note that it suffices to check the previous condition only for generators of the ideal I(Y),
for example for the polynomials defining the system of equations Y. In terms of the polynomials
(P(T),...,Py,(T)) satisfying (5), the morphism f: X — Y is given as follows:

fx(a) = (Pi(a),...,Py(a) € Y(K), Vae X(K).

11



12 Lecture 3

It follows from the definitions that a morphism ¢ given by polynomials ((Py(T),..., P, (T)) sat-
isfying (5) is an isomorphism if and only if there exist polynomials (Q1(T"),...,Q,(T")) such
that

G(Q1(T'),....Qun(T")) € I(Y), VG € I(X),

PZ(QI(T’)aaQn(T’)) =T mod I(Y),Z = 13"'am7

Q;(Py(T),...,Pn(T)) =T; mod I(X),j =1,...,n.

The main problem of (affine) algebraic geometry is to classify affine algebraic varieties up to
isomorphism. Of course, this is a hopelessly difficult problem.

Examples. 1. Let Y be given by the equation T2 — T35 = 0, and X = A} with O(X) = k[T]. A
morphism f: X — Y is given by the pair of polynomials (T3, T2). For every k-algebra K,

fre(a) = (6, a®) € Y(K),a € X(K) = K.

The affine algebraic varieties X and Y are not isomorphic since their coordinate rings are not
isomorphic. The quotient field of the algebra O(Y) = k[Ty,Ts]/(T2 — T3) contains an element
T, /T, which does not belong to the ring but whose square is an element of the ring (= T3).
Here the bar denotes the corresponding coset. As we remarked earlier in Lecture 2, the ring of
polynomials does not have such a property.

2. The "circle” X = {T2 + T? — 1 = 0} is isomorphic to the “hyperbola” Y = {T1Ty — 1 = 0}
provided that the field k£ contains a square root of —1 and char(k) # 2.

3. Let k[T,...,T\n] C k[Ty,...,T,], m < n, be the natural inclusion of the polynomial algebras.
It defines a morphism A} 0AJ". For any k-algebra K it defines the projection map K" — K™,

(a1s-- yan) = (a1, s am).

Consider the special case of morphisms f : X — Y, where Y = Al (the affine line). Then f
is defined by a homomorphism of the corresponding coordinate algebras: O(Y) = k[T1] — O(X).
Every such homomorphism is determined by its value at Tj, i.e. by an element of O(X). This
gives us one more interpretation of the elements of the coordinate algebra O(X). This time as
morphisms from X to A} and hence again can be thought as functions on X.

Let f : X — Y be a morphism of affine algebraic varieties. We know that it arises from a
homomorphism of k-algebras f*: O(Y) — O(X).

Proposition 3. For any ¢ € O(Y) = Morag/,(Y,A}),

[ (p)=pof.

Proof. This follows immediately from the above definitions.
This justifies the notation f* (the pull-back of a function).

By now you must feel comfortable with identifying the set X (K) of K-solutions of an affine al-
gebraic k-variety X with homomorphisms O(X) — K. The identification of this set with a subset of
K™ is achieved by choosing a set fo generators of the k-algebra O(X). Forgetting about generators
gives a coordinate-free definition of the set X (K). The correspondence K — Hom(O(X), K)
has the property of naturality, i.e. a homomorphism of k-algebras K — K’ defines a map
Hom; (O(X),K) — Homy(O(X), K’) such that a natural diagram, which we wrote earlier, is
commutative. This leads to a generalization of the notion of an affine k-variety.

12



Morphisms of affine algebraic varieties 13

Definition An (abstract) affine algebraic k-variety is the correspondence which assigns to each
k-algebra K a set X (K). This assignment must satisfy the following properties:

(i) for each homomorphism of k-algebras ¢ : K — X' there is a map X (¢) : X (K) — X (K');

(iil) X (1dx) = idx ()3

(ii) for any ¢; : K = K' and ¢o : K' — K" we have X (¢2 0 ¢1) = X (2) o X (¢1);

(iv) there exists a finitely generated k-algebra A such that for each K there is a bijection
X (K) — Homy (A, K) for which the maps X (¢) correspond to the composition maps Hom(A, K) —
Homy (A, K').

We leave to the reader to define a morphism of abstract affine algebraic k-varieties and prove
that they are defined by a homomorphism of the corresponding algebras defined by property (iii).
A choice of n generators fi,..., f,) of A defines a bijection from X (K) to a subset Sol(I; K) C K",
where I is the kernel of the homomorphism k[T},...,T,] — A, defined by T; — f;. This bijection
is natural in the sense of the commutativity of the natural diagrams.

Examples. 4. The correspondence K — Sol(S; K) is an abstract affine algebraic k-variety. The
corresponding algebra A is k[T]/(S).

5. The correspondence K — K* ( = invertible elements in K) is an abstract affine algebraic
k-variety. The corresponding algebra A is equal to k[T, T]/(TiT> — 1). The cosets of T} and T5
define a set of generators such that the corresponding affine algebraic k-variety is a subvariety of
A?. Tt is denoted by G, x and is called the multiplicative algebraic group over k. Note that the
maps X (K) — X (K') are homomorphisms of groups.

6. More generally we may consider the correspondence K — GL(n,K) (=invertible n x n
matrices with entries in K). It is an abstract affine k-variety defined by the quotient algebra
k[Ti1,...,Tun,Ul/(det((T;;)U — 1). It is denoted by GLj(n) and is called the general linear group
of order n over k.

Remark 2. We may make one step further and get rid of the assumption in (iii) that A is a
finitely generated k-algebra. The corresponding generalization is called an affine k-scheme. Note
that, if k is algebraically closed, the algebraic set X (k) defined by an affine algebraic k-variety X is
in a natural bjection with the set of maximal ideals in O(X). This follows from Corollary 2 of the
Hilbert’s Nullstellensatz. Thus the analog of the set X (k) for the affine scheme is the set Spm(A)
of maximal ideals in A. For example take an affine schele defined by the ring of integers Z . Each
maximal ideal is a principal ideal generated by a prime number p. Thus the set X (k) becomes
the set of prime numbers. An number m € Z becomes a function on the set X (k). It assigns to a
prime number p the image of m in Z/(p) = F,, i.e., the residue of m modulo p.

Now, we specialize the notion of a morphism of affine algebraic varieties to define the notion
of a reqular map of affine algebraic sets.

Recall that affine algebraic k-set is a subset V' of K™ of the form X (K), where X is an affine
algebraic variety over £ and K is an algebraically closed extension of k. We can always choose
V to be equal V(I),where I is a radical ideal. This ideal is determined uniquely by V and is
equal to the ideal I(V') of polynomials vanishing on V' (with coefficients in k). Each morphism
f: X = Y of algebraic varieties defines a map fx : X(K) =V — Y(K) = W of the algebraic
sets. So it is natural to take for the definition of regular maps of algebraic sets the maps arising in
this way. We know that f is given by a homomorphism of k-algebras f* : O(Y) = k[T']/I(W)) —
O(X) =k[T)/I(V). Let P(Ty,...,T,),i = 1,...,m, be the representatives in k[T of the images
of T/ mod I(W) inder f*. For any a = (a1,...,a,) € V viewed as a homomorphism O(X) — K
its image fx(a) is a homomorphism O(Y) — K given by sending 7} to P;(a),i = 1,...,m. Thus

13
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the map fg is given by the formula

fx(a) = (Pi(a1,...,an), ..., Pn(ay, ..., ay)).

Note that this map does not depend on the choice of the representatives P; of f*(7] mod I(W))
since any polynomial from I(W) vanishes at a. All of this motivates the following

Definition. A regular function on V is a map of sets f : V' — K such that there exists a polynomial
F(Ty,...,T,) € k[Ty,...,T,] with the property

F(ay,...,ay) = f(a1,...,a,),Va = (ay,...,a,) € V.

A regular map of affine algebraic sets f : V — W C K™ is a map of sets such that its composition
with each projection map pr; : K™ — K, (a1,...,a,) — a;, is a regular function. An invertible
regular map such that its inverse is also a regular map is called a biregular map of algebraic sets.

Remark 3. Let £ = F), be a prime field. The map K — K defined by x — 2? is regular and
bijective (it is surjective because K is algebraically closed and it is injective because 2P = y? implies
x = y). However, the inverse is obviously not regular.

Sometimes, a regular map is called a polynomial map. It is easy to see that it is a continuous
map of affine algebraic k-sets equipped with the induced Zariski topology. However, the converse
is false (Problem 7).

It follows from the definition that a regular function f : V' — k is given by a polynomial F(T')
which is defined uniquely modulo the ideal I(V) ( of all polynomials vanishing identically on V).
Thus the set of all regular functions on V' is isomorphic to the factor-algebra O(V) = k[T|/I(V).
It is called the algebra of regular functions on V, or the coordinate algebra of V. Clearly it is
isomorphic to the coordinate algebra of the affine algebraic variety X defined by the ideal I(V).
Any regular map f: V — W defines a homomorphism

ffrOW) = 0WV), o= ypof,

and conversely any homomorphism « : O(W) — O(V) defines a unique regular map f: V — W
such that f* = a. All of this follows from the discussion above.

Problems.

1. Let X be the subvariety of A? defined by the equation T — T? — T7 = 0 and let f: Aj — X
be the morphism defined by the formula 7y — T2 — 1, Ty — T(T? — 1). Show that f*(O(X))
is the subring of O(A}) = k[T] which consists of polynomials G(T') such that g(1) = g(—1) (if
car(k) # 2) and consists of polynomials ¢(T') with g(1)" = 0 if char(k) = 2. If char(k) = 2 show
that X is isomorphic to the variety Y from Example 1.

2. Prove that the variety defined by the equation 7175 — 1 = 0 is not isomorphic to the affine line
AL,
3. Let f: A2(K) — A} (K) be the regular map defined by the formula (z,y) — (z,zy). Find its
image. Will it be closed, open, dense in the Zariski topology?

4. Find all isomorphisms from A} to Aj.

5. Let X and Y be two affine algebraic varieties over a field k, and let X x Y be its Cartesian
product (see Problem 4 in Lecture 1). Prove that O(X xY) =2 O(X) ®; O(Y).

6. Prove that the correspondence K — O(n, K) ( = m X n-matrices with entries in K satisfying
MT = M~1) is an abstract affine algebraic k-variety.

7. Give an example of a continuous map in the Zariski topology which is not a regular map.

14



Irreducible algebraic sets 15

Lecture 4. IRREDUCIBLE ALGEBRAIC SETS AND RATIONAL FUNCTIONS

We know that two affine algebraic k-sets V and V' are isomorphic if and only if their coordinate
algebras O(V') and O(V') are isomorphic. Assume that both of these algebras are integral domains
(i.e. do not contain zero divisors). Then their fields of fractions R(V) and R(V’) are defined. We
obtain a weaker equivalence of varieties if we require that the fields R(V) and R(V"') are isomorphic.
In this lecture we will give a geometric interpretation of this equivalence relation by means of the
notion of a rational function on an affine algebraic set.

First let us explain the condition that O(V) is an integral domain. We recall that V' C K"
is a topological space with respect to the induced Zariski k-topology of K™. Its closed subsets are
affine algebraic k-subsets of V. From now on we denote by V(I) the affine algebraic k-subset of
K™ defined by the ideal I C k[T]. If I = (F) is the principal ideal generated by a polynomial
F, we write V((F')) = V(F). An algebraic subsets of this form, where (F') # {0}, (1), is called a

hypersurface.

Definition. A topological space V is said to be reducible if it is a union of two proper non-empty
closed subsets (equivalently, there are two open disjoint proper subsets of V). Otherwise V' is said
to be irreducible. By definition the empty set is irreducible. An affine algebraic k-set V' is said to be
reducible (resp. irreducible) if the corresponding topological space is reducible (resp. irreducible).

Remark 1. Note that a Hausdorff topological space is always reducible unless it consists of at
most one point. Thus the notion of irreducibility is relevant only for non-Hausdorff spaces. Also
one should compare it with the notion of a connected space. A topological spaces X is connected
if it is not equal to the union of two disjoint proper closed (equivalently open) subsets. Thus an
irreducible space is always connected but the converse is not true in general.

For every affine algebraic set V' we denote by I(V) the ideal of polynomials vanishing on V.
Recall that, by Nullstellensatz, I(V (I)) = rad(I).

Proposition 1. An affine algebraic set V' is irreducible if and only if its coordinate algebra O(V)
has no zero divisors.

Proof. Suppose V is irreducible and a,b € O(V) are such that ab = 0. Let F,G € k[T] be
their representatives in k[T']. Then ab = F'G + I(V) = 0 implies that the polynomial F'G vanishes
on V. In particular, V C V(F) U V(G) and hence V = V; U V5 is the union of two closed subsets
Vi =VNV(F)and Vo = VN V(G). By assumption, one of them, say Vi, is equal to V. This
implies that V' C V(F'), i.e., F' vanishes on V', hence F' € I(V') and a = 0. This proves that O(V)
does not have zero divisors.

Conversely, suppose that O(V') does not have zero divisors. Let V = V3 UV, where V; and V3
are closed subsets. Let F' € I(Vy) and G € I(V,). Then FG € I(V1UV,) and (F+I(V))(G+I(V)) =

15
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0 in O(V). Since O(V) has no zero divisors, one of the cosets is zero, say F' + I(V'). This implies
that F' € I(V) and I(Vy) C I(V), i.e., V. = V;. This proves the irreducibility of V.

Definition. A topological space V is called Noetherian if every strictly decreasing sequence Z; D
Zy D ... D Zi D of closed subsets is finite.

Proposition 2. An affine algebraic set is a Noetherian topological space.

Proof. Every decreasing sequence of closed subsets Z; D Zy D ... D Z; D ... is defined by
the increasing sequence of ideals I(Vy) C I(V5) C .... By Hilbert’s Basis Theorem their union
I = U;I(V;) is an ideal generated by finetely many elements F1,..., Fy,. All of them lie in some
I(Vn). Hence I = I(Vy) and I(V;) = I = I(Vy) for j > N. Returning to the closed subsets we
deduce that Z; = Zy for j > N.

Theorem 1. Let V be a Noetherian topological space. Then V is a union of finitely many
irreducible closed subsets Vi, of V.. Furthermore, if V; ¢ V; for any i # j, then the subsets V;, are
defined uniquely.

Proof. Let us prove the first part. If V is irreducible, then the assertion is obvious. Otherwise,
V = Vi1 UV,, where V; are proper closed subsets of V. If both of them are irreducible, the assertion
is true. Otherwise, one of them, say V; is reducible. Hence V7 = Vi1 U Vi5 as above. Continuing in
this way, we either stop somewhere and get the assertion or obtain an infinite strictly decreasing
sequence of closed subsets of V. The latter is impossible because V is Noetherian. To prove the
second assertion, we assume that

V=Vu..UVy=WiU...UW,,
where neither V; (resp. W;) is contained in another V;: (resp. W;/). Obviously,
Vi=WinW)u...(ViNnWy).

Since V; is irreducible, one of the subsets Vi N W; is equal to Vi, ie., Vi C W;. We may assume
that 7 = 1. Similarly, we show that W, C V; for some . Hence V; C W7 C V;. This contradicts the
assumption V; ¢ V; for ¢ # j unless V7 = W;. Now we replace V by VoU...UV, =Wa U...UW,
and repeat the argument.

An irreducible closed subset Z of a topological space X is called an irreducible component if it
is not properly contained in any irreducible closed subset. Let V' be a Noetherian topological space
and V = U;V;, where V; are irreducible closed subsets of V' with V; ¢ V; for i # j, then each V; is
an irreducible component. Otherwise V; is contained properly in some Z, and Z = U;(ZNV;) would
imply that Z C V; for some i hence V; C Vi. The same argument shows that every irreducible
component of X coincides with one of the V;’s.

Remark 2. Compare this proof with the proof of the theorem on factorization of integers into
prime factors. Irreducible components play the role of prime factors.

In view of Proposition 2, we can apply the previous terminology to affine algebraic sets V.
Thus, we can speak about irreducible affine algebraic k-sets, irreducible components of V' and a
decomposition of V into its irreducible components. Notice that our topology depends very much
on the field k. For example, an irreducible k-subset of K is the set of zeroes of an irreducible
polynomial in k[T]. So a point a € K is closed only if a € k. We say that V is geometrically
irreducible if it is irreducible considered as a K-algebraic set.

Recall that a polynomial F(T') € k[T] is said to be irreducible if F(T') = G(T)P(T) implies
that one of the factors is a constant (since k[T]* = k*, this is equivalent to saying that F/(T) is an
irreducible or prime element of the ring k[T).
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Lemma. Every polynomial F € k[T},...,T,] is a product of irreducible polynomials which are
defined uniquely up to multiplication by a constant.

Proof. This follows from the well-known fact that the ring of polynomials k[T4,...,T},] is
a UFD (a unique factorization domain). The proof can be found in any advanced text-book of
algebra.

Proposition 3. Let F' € k[T]. A subset Z C K" is an irreducible component of the affine algebraic
set V.=V (F) if and only if Z = V(G) where G is an irreducible factor of F. In particular, V is
irreducible if and only if F' is an irreducible polynomial.

Proof. Let F = F}"' ... F" be a decomposition of F into a product of irreducible polynomials.
Then
V(F)=V(F)U...UV(F,)

and it suffices to show that V (F;) is irreducible for every i = 1,...,r. More generally, we will show
that V(F) is irreducible if F' is irreducible. By Proposition 1, this follows from the fact that the
ideal (F') is prime. If (F) is not prime, then there exist P,G € k[T]\ (F') such that PG € (F'). The
latter implies that F|PG. Since F is irreducible, F'|P or F'|G (this follows easily from the above
Lemma). This contradiction proves the assertion.

Let V C K™ be an irreducible affine algebraic k-set and O(V') be its coordinate algebra. By
Proposition 1, O(V) is a domain, therefore its quotient field Q(O(V)) is defined. We will denote it
by R(V') and call it the field of rational functions on V. Its elements are called rational functions
on V.

Recall that for every integral domain A its quotient field QQ(A) is a field uniquely determined
(up to isomorphisms) by the following two conditions:

(i) there is an injective homomorphism of rings i : A — Q(A);
(ii) for every injective homomorphism of rings ¢ : A — K, where K is a field, there exists a unique
homomorphism ¢ : Q(A) — K such that ¢ o4 = ¢.

The field Q(A) is constructed as the factor-set A x (A\ {0})/R , where R is the equivalence
relation (a,b) ~ (a',V’) <= ab’ = a'b. Its elements are denoted by § and added and multiplied by
the rules .
aa

a a ab+a'b

Lo _atab o o
b b ' bbby

The homomorphism i : A — Q(A) is defined by sending a € A to §. Any homomorphism

¢: A— K to a field K extends to a homomorphism ¢ : Q(A) — K by sending 7 to % We will
identify the ring A with the subring i(A) of Q(A). Notice that, if A happens to be a k-algebra.
In particular, the field R(V) will be viewed as an extension k¥ C O(V) C R(V). We will denote
the field of fractions of the polynomial ring k[T},...,T,] by k(T4,...,T,). It is called the field of

rational functions in n variables.

Definition. A dominant rational k-map from an irreducible affine algebraic k-set V' to an irre-
ducible affine algebraic k-set W is a homomorphism of k-algebras f : k(W) — R(V). A rational
map from V to W is a dominant rational map to a closed irreducible subset of W.

Let us interpret this notion geometrically. Restricting f to O(W) and composing with the
factor map k[TYy,..., T, ] = O(W), we obtain a homomorphism k[T},..., T, ] — R(V). It is given
by rational functions Ry,..., R, € R(V), the images of the T;’s. Since every G € I(W) goes to
zero, we have G(Ry,...,R,,) = 0. Now each R; can be written as

Qi(Ty, ..., Ty) + I(V)’

R;

17
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where P; and @Q; are elements of k[T4,..., ] defined up to addition of elements from I(V'). If
a € V does not belong to the set Z = V(Ql) .UV(Qn), then

a(a) = (Ri(a), ..., Rn(a)) € K™

is uniquely defined. Since G(Ri(a),...,Rmn(a)) = 0 for any G € I(W), a(a) € W. Thus, we see
that f defines a map a: V' \ Z — W which is denoted by

a:V——W.

Notice the difference between the dotted and the solid arrow. A rational map is not a map in
the usual sense because it is defined only on an open subset of V. Clearly a rational map is a
generalization of a regular map of irreducible algebraic sets. Any homomorphism of k-algebras
O(W) = O(V) extends uniquely to a homomorphism of their quotient fields.

Let us see that the image of « is dense in W (this explains the word dominant). Assume
it is not. Then there exists a polynomial F' ¢ I(W) such that F(Ry(a),...,Rmn(a)) = 0 for any
a €V \Z. Write
P(Tla"'aTn)

QT,....Ty)

We have P(T,...,T,) =0on V' \ Z. Since V' \ Z is dense in the Zariski topology, P =0 on V, i.e.
, P € I(V). This shows that under the map k(W) — R(V), F goes to 0. Since the homomorphism
k(W) — R(V) is injective (any homomorphism of fields is injective) this is absurd.

In particular, taking W = A} (K), we obtain the interpretation of elements of the field R(V) as
non-constant rational functions V— — K defined on an open subset of V' (the complement of the
set of the zeroes of the denominator). From this point of view, the homomorphism k(W) — R(V)
defining a rational map f: V—— W can be interpreted as the homomorphism f* defined by the
composition ¢ — ¢ o f.

f(F)=F(Ry,...,Rp) =

Definition. A rational map f: V—— W is called birational if the corresponding field homomor-
phism f* : k(W) — R(V) is an isomorphism. Two irreducible affine algebraic sets V' and W are
said to be birationally isomorphic if there exists a birational map from V to W.

Clearly, the notion of birational isomorphism is an equivalence relation on the set of irreducible
affine algebraic sets. If f : V— — W is a birational map, then there exists a birational map
f : W—— V such that the compositions fo f’ and f'o f are defined on an open subsets U and U’
of V and W, respectively, with f o f’ = idy;, f' o f = idy.

Remark 3.0ne defines naturally the category whose objects are irreducible algebraic k-sets with
morphisms defined by rationa maps. A birational map is an isomorphism in this category.

Example. 1. Let V = A{(K) and W = V(T + T — 1) C K% We assume that char(k) # 2.
A rational map f : V— — W is given by a homomorphism f* : k(W) — R(V). Restricting it
to O(W) and composing it with k[T7,T5] — O(W), we obtain two rational functions R;(T") and
Ry(T) such that Ry (T)? + Ry(T)? = 1 (they are the images of the unknowns T} and T,. In other
words, we want to find “a rational parametrization” of the circle, that is we want to express the
coordinates (t1,t2) of a point lying on the circle as a rational function of one parameter. It is easy
to do this by passing a line through this point and the fixed point on the circle, say (1,0). The
slope of this line is the parameter associated to the point. Explicitly, we write T, = T(T} — 1),
plug into the equation T2 + T3 = 1 and find

T? -1 2T
T = R
T? +1

18
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Thus, our rational map is given by

T2 — 1 —2T
Ty =) Tyrs =
Ty P4

Next note that the obtained map is birational. The inverse map is given by

15
T —1°

T

In particular, we see that
R(V(T{ + T3 = 1)) = k(T1).

The next theorem, although sounding as a deep result, is rather useless for concrete applications.

Theorem 2. Assume k is of characteristic 0. Then any irreducible affine algebraic k-set is bira-
tionally isomorphic to an irreducible hypersurface.

Proof. Since R(V) is a finitely generated field over k, it can be obtained as an algebraic
extension of a purely transcendental extension L = k(ty,...,t,) of k. Since char(k) = 0, R(V) is
a separable extension of L, and the theorem on a primitive element applies (M. Artin, ” Algebra”,
Chapter 14, Theorem 4.1): an algebraic extension K /L of characteristic zero is generated by one
element z € K. Let k[Ty,...,T,4+1] = R(V) be defined by sending T; to t; for i = 1,...,n, and
Ty41 to z. Let I be the kernel, and ¢ : A = k[Ty,...,Tnhy1]/I — R(V) be the corresponding in-
jective homomorphism. Every P(Ty,...,T,41) € I is mapped to P(t1,...,t,,2) = 0. Considering
P(zy,...,2,,Th+1) as an element of L[T),;1] it must be divisible by the minimal polynomial of
xz. Hence I = (F(Ty,..., Ty, Tht1)), where F(ty,...,t,Th41) is a product of the minimal poly-
nomial of z and some polynomial in #;,...,%,. Since A is isomorphic to a subring of a field it
must be a domain. By definition of the quotient field ¢ can be extended to a homomorphism of
fields Q(A) — R(V). Since R(V) is generated as a field by elements in the image, ¢ must be an
isomorphism. Thus R(V) is isomorphic to Q(k[T4,...,T,+1]/(F)) and we are done.

Remark 4. The assumption char(k) = 0 can be replaced by the weaker assumption that £ is
a perfect field, for example, k is algebraically closed. In this case one can show that R(V) is a
separable extension of some purely transcendental extension of k.

Definition. An irreducible affine algebraic k-set V' is said to be k-rational if R(V') = k(Ty,...,Ty)
for some n. V is called rational if, viewed as algebraic K-set, it is K-rational.

Examples. 2. Assume char(k) # 2. The previous example shows that the circle V/(T? + T2 — 1)
is k-rational for any k. On the other hand, V(T? + T + 1) is k-rational only if k contains v/—1.
3. An affine algebraic set given by a system of linear equations is always rational (Prove it!).

4. V(TZ + T3 — 1) is not rational. Unfortunately, we do not have yet sufficient tools to show this.
5. Let V. = V(T + ... + T2 — 1) be a "cubic hypersurface . It is known that V is not rational
for n = 2 and rational for n = 3. It was an open question for many years whether V is rational
for n = 4. The negative answer to this problem was given by Herb Clemens and Phil Griffiths in
1972. Tt is known that V is rational for n > 5 however it is not known whether V(F) is rational
for any irreducible polynomial of degree 3 in n > 5 variables.

An irreducible algebraic set V' is said to be k-unirational if its field of rational functions R(V)
is isomorphic to a subfield of (T}, ..., T,) for some n. It was an old problem (the Liiroth Problem)
whether, for kK = C, there exist k-unirational sets which are not k-rational. The theory of algebraic
curves easily implies that this is impossible if C(V') is transcendence degree 1 over C. A purely
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algebraic proof of this fact is not easy (see P. Cohn, “Algebra”). The theory of algebraic surfaces
developed in the end of the last century by Italian geometers implies that this is impossible if
C(V) of transcendence degree 2 over C. No purely algebraic proofs of this fact is known. Only
in 1972-73 a first example of a unirational non-rational set was constructed. In fact, there given
independently 3 counterexamples (by Clemens-Griffiths, by Mumford-Artin and Iskovskih-Manin).
The example of Clemens-Griffiths is the cubic hypersurface V(T + T5 + T3 + T3 — 1).

Finally we note that we can extend all the previous definitions to the case of affine algebraic
varieties. For example, we say that an affine algebraic variety X is irreducible if its coordinate
algebra O(X) is an integral domain. We leave to the reader to do all these generalizations.

Problems.

1. Let k be a field of characteristic # 2. Find irreducible components of the affine algebraic k-set
defined by the equations T2 + T2 + T2 = 0,172 -T2 —T¢ +1=0.

2. Same for the set defined by the equations Ty — Ty T3 = 0, T — T5 = 0. Prove that all irreducible
components of this set are birationally isomorphic to the affine line.

3. Let f: X(K) — Y(K) be the map defined by the formula from Problem 1 of Lecture 3. Show
that f is a biratioanl map.

4. Let F(Ty,...,T,) = G(Ty,...,T,) + H(Ty,...,T,), where G is a homogeneous polynomial of
degree d — 1 and H is a homogeneous polynomial of degree d. Assuming that F' is irreducible,
prove that the algebraic set V(F') is rational.

5. Prove that the affine algebraic sets given by the systems T +T5 —1 = 0 and T2 —T5 /3+1/12 =0
are birationally isomorphic.
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Projective algebraic varieties 21

Lecture 5. PROJECTIVE ALGEBRAIC VARIETIES

Let A be a commutative ring and A"*! (n > 0) be the Cartesian product equipped with the
natural structure of a free A-module of rank n + 1. A free submodule M of A"*! of rank 1 is
said to be a line in A"*!, if M = Az for some z = (aq,...,a,) such that the ideal generated by
o, - - - ,a, contains 1. We denote the set of lines in A"T! by P"(A)". One can define P"(A)" also
as follows. Let

C(A)p = {z = (ag,...,an) € A" : (ag,...,a,) = 1}.

Then each line is generated by an element of C(A),. Two elements z,y € C(A), define the same
line if and only if x = Ay for some invertible A € A. Thus

P"(A)" = C(A)n /AT,

is the set of orbit of the group A* of invertible elements of A acting on C(A), by the formula
A (ag, ... a,) = (Aag, ..., Aay). Of course, in the case where A is a field,

C(A)y = A"\ {0}, P"(A4) = (A™F1\ {0})/A".

If M = Az, where z = (ag,...,a,) € C(A),, then (ag,...,a,) are called the homogeneous coor-
dinates of the line. In view of the above they are determined uniquely up to an invertible scalar
factor A € A*.

Examples. 1. Take A = R. Then P!(R)’ is the set of lines in R? passing through the origin.
By taking the intersection of the line with the unit circle we establish a bijective correspondence
between P! (R) and the set of points on the unit circle with the identification of the opposite points.
Or choosing a representative on the upper half circle we obtain a bijective map from P*(R)’ to
the half circle with the two ends identified. This is bijective to a circle. Similarly we can identify
P2(R)’ with the set of points in the upper unit hemi-sphere such that the opposite points on the
equator are identified. This is homeomorphic to the unit disk where the opposite points on the
boundary are identified. The obtained topological space is called the real projective plane and is
denoted by RP?.

2. Take A = C. Then P!(C)’ is the set of one-dimensional linear subspaces of C?>. We can choose a
unique basis of z € P}(C)’ of the form (1, 2) unless z = (0, 2), 2 € C\ {0}, and Cz = C(0, 1). In this
way we obtain a bijective map from P*(C)’ to C U {oo}, the extended complex plane. Using the
stereographic projection, we can identify the latter set with a 2-dimensional sphere. The complex
coordinates make it into a compact complex manifold of dimension 1, the Riemann sphere CP!.

Any homomorphism of rings ¢ : A — B extends naturally to the map ¢ = ¢ : A"+ —
Bt If 2z = (ag,...,a,) € C(A),, then one can write 1 = agbg + ... + anby for some b; € A.
Applying ¢, we obtain 1 = ¢(ag)P(bo) + ... + ¢(an)d(b,). This shows that ¢(z) € C(B),. This
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defines a map ¢ : Cy,(4) = Cp(B). Also a = A\b <= ¢(a) = $(\)$(b). Hence ¢ induces the map of
equivalence classes

"B () : P"(A) — P"(B).

For our future needs we would like to enlarge the set P"(A)" a little further to define the set
P (A). We will not be adding anything if A is a field.

Let M = Az C A", 2 = (aq,...,a,) € C,,(A), bealinein A"*!. Choose by, ...,b, € A such
that Y, b;a; = 1. Then the homomorphism ¢ : A"*! — M defined by (ao,...,a,) — (X, a;b;)z
is surjective, and its restriction to M is the identity. Since for any m € A"*! we have m — ¢(m) €
Ker(¢), and M N Ker(¢) = {0}, we see that

A = M @ Ker(¢).

So each line is a direct summand of A"*!. Not each direct summand of A”*! is necessarily free.
So we can enlarge the set P"(A)’' by adding to it not necessarily free direct summands of A"*1
which become free of rank 1 after “localizing” the ring. Let us explain the latter.

Let S be a non-empty multiplicatively closed subset of A containing 1. One defines the
localization Mg of an A-module M in the similar way as one defines the field of fractions: it is

the set of equivalence classes of pairs (m,s) € M x S with the equivalence relation: (m,s) =
(m/,s") <= 3s"” € S such that s”(s'm—sm’') = 0. The equivalence class of a pair (m, s) is denoted
by 7. The equivalence classes can be added by the natural rule

m m'  §m+sm
—+ ) /
s s ss
(one verified that this definition is independent of a choice of a representative). If M = A, one can
also multiply the fractions by the rule
a  ad

» | e

s' ss

Thus As becomes a ring such that the natural map A — Ag,a — {, is a homomorphism of rings.
The rule

a m am
s s ss'’
equips Mg with the structure of an Ag-module. Note that Mg = {0} if 0 € S. Observe also that
there is a natural isomorphism of Ag-modules
a am
M®AAS—>MS,m®;f—>T,

where Ag is equipped with the structure of an A-module by means of the canonical homomorphism
A— As.

Examples 3. Take S to be the set of elements of A which are not zero-divisors. This is obvioulsy
a multiplicatively closed subset of A. The localized ring Ag is called the total ring of fractions. If
A is a domain, S = A\ {0}, and we get the field of fractions.

4. Let p be a prime ideal in A. By definition of a prime ideal, the set A \ p is multiplicatively
closed. The localized ring A 4\, is denoted by Ay, and is called the localization of A at a prime ideal
p. For example, take A = 7Z and p = (p), where p is a prime number. The ring Z(py is isomorphic
to the subring of () which consists of fractions such that the denominator is not divisible by p.
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Projective algebraic varieties 23

As we saw earlier any line L = Az € P"(A)’ is a direct summand of the free module A"*!. In
general not every direct summand of a free module is free.

Definition. A projective module over A is a finitely generated module P over A satisfying one of
the following equivalent properties:

(i) P is isomorphic to a direct summand of a free module;

(ii) For every surjective homomorphism ¢ : M — P of A-modules there is a homomorphism
s: P — M such that ¢ o s = idp (a section).

Let us prove the equivalence.

(ii)= (i) Let A™ — P be the surjective homomorphism corresponding to a choice of generators
of P. By property(i) there is a homomorphism s : P — A" such that ¢os =idp. Let N = Ker(¢).
Consider the homomorphism (i,s) : N @& P — A™, where i is the identity map N — A™. It has the
inverse given by m — (m — ¢(m), ¢(m))

(i)= (ii) Assume P & N = A™. Without loss of generality we may assume that P, N are
submodules of A™. Let ¢ : M — P be a surjective homomorphism of A-modules. We extend it to
a surjective homomorphism (¢,idy) : M & N — A™. If we prove property (ii) for free modules,
we will be done since the restriction of the corresponding section to P is a section of ¢. So let
¢: M — A" be a surjective homomorphism. Let my,...,m, be some pre-images of the elements
of a basis (£1,...,&,) of A”. The homomorphism A™ — M defined by £ — m; is well-defined and
is a section.

We saw in the previous proof that a free finitely generated module is projective. In general,
the converse is not true. For example, let K/Q be a finite field extension, and A be the ring of
integers of K, i.e. the subring of elements of K which satisfy a monic equation with coefficients in
Z. Then any ideal in A is a projective module but not necessarily a principal ideal.

An important class of rings A such that any projective module over A is free is the class of
local rings.

A commutative ring is called local if it has a unique maximal ideal. For example, any field is
local. The ring of power series k[[T4,...,T,]] is local (the maximal ideal is the set of infinite formal
series with zero constant term).

Lemma 1. Let A be a local ring and m be its unique maximal ideal. Then A\ m = A* (the set
of invertible elements in A).

Proof. Let z € A\ m. Then the principal ideal (x) is contained in some proper maximal ideal
unless (z) = A which is equivalent to x € A*. Since A has only one maximal ideal and it does not
contain z, we see that (z) = A.

Proposition 1. A projective module over a local ring is free.

Proof. Let Mat,, (A) be the ring of n xn matrices with coefficients in a commutative ring A. For
any ideal I in A we have a natural surjective homomorphism of rings Mat,, (4) — Mat, (A/I), A —
A, which obtained by replacing each entry of a matrix with its residue modulo I. Now let A be
a local ring, I = m be its unique maximal ideal, and k = A/m (the residue field of A). Suppose
A € Mat,, (A) is such that A is an invertible matrix in Mat,, (k). I claim that A is invertible in A.
In fact, let B - A = I,, for some B € Mat, (A). The matrix BA has diagonal elements congruent
to 1 modulo m and all off-diagonal elements belonging to m. By Lemma 1, the diagonal elements
of BA are invertible in A. It is easy to see that each elementary row transformation preserve this
property. This shows that there exists a matrix S € Mat, (A) such that S(BA) = (SB)A = I,,.
Similarly we show that A has the right inverse, and hence is invertible.

23



24 Lecture 5

Let M be a A-module and I C A an ideal. Let IM denote the submodule of M generated
by all products am, where a € I. The quiotient module M = M/IM is a A/I-module via
the scalar multiplication (a + I)(m + IM) = am + IM. There is an isomorphism of A/I-modules
M/IM = MQM® 4(A/I), where A/I is considered as an A-algebra via the natural homomorphism
A — A/I. Tt is easy to check the following property.

(M@ N)/I(M@®N)=(M/IM)® (N/IN). (1)

Now let P be a projective module over a local ring A. Replacing P by an isomorphic module
we may assume that P @ N = A" for some submodule N of a free A-module A™. Let m be the
maximal ideal of A. Let (mq,...,mg) be elements in M such that (m; + I,...,ms+ I) is a basis
of the vector space M/mM over k = A/m. Similarly, choose (n1,...,n:) in N. By property (1)
the residues of my,...,ms,nq,...,ns form a basis of k™. Consider the map f : A" - M @ N
defined by sending the unit vector e; € A™ to m; if ¢ < t and to n; if ¢ > ¢t + 1. Let S be its
matrix with respect to the unit bases (eq,...,e,) in A™. Then the image of S in Mat, (k) is an
invertible matrix. Therefore S is an invertible matrix. Thus f is an isomorphism of A-modules.
The restriction of f to the free submodule Ae; + ... + Ae; is an isomorphism A = M.

Corollary. Let P be a projective module over a commutative ring A. For any maximal ideal m
in A the localization Py, is a free module over Ay,.

Proof. This follows from the following lemma which we leave to the reader to prove.

Lemma 2. Let P be a projective module over A. For any A-algebra B the tensor product P® 4 B
is a projective B-module.

Definition. A projective module over A has rank r if for each maximal ideal m the module Py, is
free of rank 7.

Remark 1. Note that, in general, a projective module has no rank. For example, let A = A; x Ay
be the direct sum of rings. The module A} x A% (with scalar multiplication (a1, ay) - (my,ms) =
(a1m1,asms)) is projective but has no rank if k # n. If A is a domain, then the homomorphism
A — A, defines an isomorphism of the fields of fractions Q(A) = Q(A,). This easily implies that
the rank of P can be defined as the dimension of the vector space P ® 4 Q(A).

We state without proof the converse of the previous Corollary (see, for example, N. Bourbaki,
“Commutative Algebra”, Chapter 2, §5).

Proposition 2. Let M be a module over A such that for each maximal ideal m the module M,
is free. Then M is a projective module.
Now we are ready to give the definition of P"(A).

Definition. Let A be any commutative ring. The projective n-space over A is the set P"(A) of
projective modules of rank 1 which are direct summands of A"*!.

We have seen that
P(A) c P"(A).

The difference is the set of non-free projective modules of rank 1 which are direct summands of
Artl,

Remark 2 A projective submodule of rank 1 of A"*! may not be a direct summand. For example, a
proper principal ideal () C A is not a direct summand in A. A free submodule M = A(ag,...,a,)
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Projective algebraic varieties 25

of A"*1 of rank 1 is a direct summand if and only if the ideal generated by aq....,a, is equal to
A ie. M eP(A).

This follows from the following charcaterization of direct summands of A1, A submodule M
of A"t! is a direct summand if and only if the corresponding homomorphism of the dual modules

AT = Homy (A", A) — M* = Homy (M, A)

is surjective. Sometimes P (A) is defined in “dual terms” as the set of projective modules of rank 1
together with a surjective homomorphism A"*! — M. When A is a field this is a familiar duality
between lines in a vector space V' and hyperplanes in the dual vector space V*.

A set {f;}icr of elements from A is called a covering family if it generates the unit ideal. Every
covering set contains a finite covering subset. In fact if 1 = Zl a; f; for some a; € A, we choose
those f; which occur in this sum with non-zero coefficient. For any f € A we set Ay = Ag, where
S consists of powers of f.

Lemma 3. Let M be a projective module of rank r over a ring A. There exists a finite covering
family {fi}ier of elements in A such that for any i € I the localization My, is a free Ay,-module
of rank r.

Proof. We know that for any maximal ideal m in A the localization My, is a free module of
rank r. Let z1,...,z, be its generators. Each z; is a “fraction” Tg—i", where a; € m. Reducing to
common denominator we may assume that a; = ... = a, = f for some f € m. Thus My is free
and is generated by z1,...,z, considered as elements of My. Let {fu}m be the set of elements
fm chosen in this way for each maximal ideal m. It is a covering set. Indeed let I be the ideal
generated by these elements. If I # A then I is contained in some maximal ideal m, hence f, € T
is contained in m which contradicts the choice of f,. It remains to select a finite covering subset
of the set fi, .

Using Lemma 3 we may view every projective submodule M of A"*! of rank 1 as a “local
line”: we can find a finite covering set {fi};e; such that My, is a line in (Af,)"™!. We call such a
family a trivializing family for M. If {g;} e is another trivializing family for M we may consider
the family {fig;}@ j)erxs- It is a covering family as one sees by multiplying the two relations
1=>4afi,1= Zj bjg;. Note that for any f,g € A there is a natural homomorphism of rings
Af — Agg,a/f" — ag™/(fg)" inducing an isomomorphism of Ay,-modules My ®4, Apy = My,.
This shows that {fig;}i jierxs is a trivializing family. Moreover, if My, = z;Ay,,z; € A’}Z_H and
My, =vy;Ay,,y;5 € AZ]_Jrl, then

z; = ag;y; for some ay; € Ay, (2)
where the prime indicates the image in Ay,.

Now let us go back to algebraic equations. Fix a field k. For any k-algebra K we have the set
P"(K). It can be viewed as a natural extension (in n + 1 different ways) of the set A} (K) = K".
In fact, for every k-algebra K we have the injective maps

a; AP (K)=K" - PY(K),(a1,...,an) = (a1,...,0;,1,a;41,...,a,), 1=0,...,n.
Assume that K is a local ring. Take, for example, 1 = 0. We see that
P*"(K)\ K" = {(ag,a1,...,ap,)A € P"(K) : ag = 0}.
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It is naturally bijectively equivalent to P"~!(K). Thus we have

P"(K) = A} (K) [[P"(K)

By now, I am sure you understand what do I mean when I say “naturally”. The bijections we
establish for different K are compatible with respect to the maps P*(K) — P"(K') and K™ — K'"
corresponding to homomorphisms K — K’ of k-algebras.

Example 5. The Riemann sphere
P'(C) = CuU {P°(0).

6. The real projective plane
P?(R) = R? UP'(R).

We want to extend the notion of an affine algebraic variety by considering solutions of algebraic
equations which are taken from P"(K). Assume first that L € P"(K) is a global line, i.e. a free

submodule of K"*1. Let (ag,...,a,) be its generator. For any F € k[Ty,...,T,] it makes sense
to say that F'(ag,...,a,) = 0. However, it does not make sense, in general, to say that F'(L) =0
because a different choice of a generator may give F'(ag,...,a,) # 0. However, we can solve this

problem by restricting ourselves only with polynomials satisfying
F(\Ty, ..., \T,) = N F(\Ty, ..., \T,), VYA€ K"
To have this property for all possible K, we require that F' be a homogeneous polynomial.
Definition. A polynomial F(Ty,...,T,) € k[Ty,...,T,] is called homogeneous of degree d if
F(Ty,....T,) = Z az‘ozo,...,z‘nonSO cTin = a; T

i0yeesin i

with |i| = d for all i. Here we use the vector notation for polynomials:
i=(ig,...,in) € NPFL T = T0 .0 fi| = g 4 ... + 1.

By definition the constant polynomial 0 is homogeneous of any degree.
Equivalently, F' is homogeneous of degree d if the following identity in the ring &[Ty, ..., T}, t]
holds:
F(tTy, ... tT,) = t1F(Ty,...,T,).

Let k[T]4 denote the set of all homogeneous polynomials of degree d. This is a vector subspace
over k in k[T] and

k[T] = @dzok[T]d-
Indeed every polynomial can be written uniquely as a linear combination of monomials T! which

are homogeneous of degree |i|. We write degF = d if F' is of degree d.
Let F be homogeneous polynomial in Ty, ..., T),. For any k-algebra K and z € K"*!

F(z)=0<= F(Ax) =0 forany A € K*.

Thus if M = Kz C K"™! is a line in K", we may say that F(M) = 0 if F(z) = 0, and
this definition is independent of the choice of a generator of M. Now if M is a local line and
My, =z;Ky, C K"+1 for some trivializing family {f;}:c1, we say that F(M) =0 if F(z;) = 0 for
alli € I. The fact ‘that this definition is independent of the choice of a trivializing family follows
from (2) above and the following.
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Lemma 4. Let {f;}ic; be a covering family in a ring A and let a € A. Assume that the image of
a in each Ay, is equal to 0. Then a = 0.

Proof. By definition of Ay, we have a/1 = 0in Ay, <= fa; = 0 for some n > 0. Obviously
we choose n to be the same for all4 € I. Since 1 = Zie] a; f; for some a; € A, after raising the both

sides in sufficient high power, we obtain 1 = )., b; f;* for some b; € A. Thena =, .; b; f{'a = 0.

Now if S C k[Ty,...,T,] consists of homogeneous polynomials and {F = 0}pcg is the cor-
responding system of algebraic equations (we call it a homogeneous system), we can set for any
k-algebra K

PSol(S; K) ={M € P*"(K): F(M) =0 for any F € S},
PSol(S; K)' = {M € P*(K)': F(M) = 0 for any F € S}.

Definition. A projective algebraic variety over a field & is a correspondence
X : K — PSol(S; K) c P"(K)

where S is a homogeneous system of algebraic equations over k. We say that X is a subvariety of
Y if X(K) is a subset of Y(K) for all K.

Now we explain the process of a homogenization of an ideal in a polynomial ring which allows
us to extend an affine algebraic variety to a projective one.

Let F(Z1,...,2Zyn) € k[Z1, ..., Zy] (this time we have to change the notation of variables). We
write Z; = T;/Tp and plug it in F. After reducing to common denominator, we get

F(T\/Ty,...,T/To) = Ty *G(To, ..., Ty),

where G € k[Ty,...,T,] is a homogeneous polynomial of degree d equal to the highest degree of
monomials entering into F'.
The polynomial
G(Ty,...,T,) = T¢F(Ty /Ty, ..., Tn/To)

is said to be the homogenizaton of F. For example, the polynomial T2Ty + T + Th' T2 + T3 is equal
to the homogenization of the polynomial Z3 + Z3 + Z; + 1.

Let I be an ideal in k[Zy,...,Z,]. We define the homogenization of I as the ideal I"*™ in
k[To,...,T,] generated by homogenizations of elements of I. It is easy to see that if I = (G) is
principal, then I"™ = (F), where F is the homogenization of G. However, in general it is not true
that I"°™ is generated by the homogenizations of generators of I (see Problem 6 below).

Recalling the injective map o : A} — P} defined in the beginning of this lecture, we see that
it sends an affine algebraic subvariety X defined by an ideal I to the projective variety defined by
the homogenization 1"°™, which is said to be the projective closure of X.

Example. 7. Let X be given by a1y + b1 +cT5 = 0, a projective subvariety of the projective plane
P2. 1t is equal to the projective closure of the line L C A? given by the equation bZ; +cZs+a = 0.
For every K the set X (K) has a unique point P not in the image of L(K). Its homogeneous
coordinates are (0, ¢, —b). Thus, X has to be viewed as L U {P}. Of course, there are many ways
to obtain a projective variety as a projective closure of an affine variety. To see this, it is sufficient
to replace the map aq in the above constructions by the maps «;,i # 0.

Let {F(T) = 0} pes be a homogeneous system. We denote by (S) the ideal in k[T] generated
by the polynomials F' € S. It is easy to see that this ideal has the following property

(S) = @axo((S) NK[TTa).
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In other words, each polynomial F' € (S) can be written uniquely as a linear combination of
homogeneous polynomials from (S5).

Definition. An ideal I C k[T] is said to be homogeneous if one of the following conditions is
satisfied:

(i) I is generated by homogeneous polynomials;

(ii) I = @dzo(Iﬁ k[T]d).

Let us show the equivalence of these two properties. If (i) holds, then every F' € I can be
written as ), Q;F;, where F; is a set of homogeneous generators. Writing each @; as a sum of
homogeneous polynomials, we see that F' is a linear combination of homogeneous polynomials from
I. This proves (ii). Assume (ii) holds. Let G1,..., G, be a system of generators of I. Writing each
G, as a sum of homogeneous polynomials G;; from I, we verify that the set {G;;} is a system of
homogeneous generators of I. This shows (i).

We know that in the affine case the ideal I(X) determines uniquely an affine algebraic variety
X. This is not true anymore in the projective case.

Proposition 3. Let {F(T) = 0}pes be a homogeneous system of algebraic equations over a field
k. Then the following properties are equivalent:
(i) PSol(S; K)' = 0;
(ii) (S) D k[T)>r := ) 45, k[T]q for some r > 0;
(iii) PSol(S; K) =0.

Proof. (i) = (ii) Let K be an algebraically closed field containing k. We can write
F(Ty,...,Ty) = T¢F(1,T1 /Ty, ..., Tu/Ty),

where d = degF. Substituting Z; = T;/T,, we see that the polynomials Gr(Z1,...,.2Z,) =
F(1,%,...,Z,) do not have common roots (otherwise, its common root (a1, ..., a,) will define
an element (1,a1,...,a,) € PSol(S; K)’). Thus, by Nullstellensatz, ({Gr}res) = (1), i.e.

1= QrGr(Z,..., %)

FeS

for some QF € k[Z4,...,Z,]. Substituting back Z; = T; /T, and reducing to common denominator,
we find that there exists m(0) > 0 such that Tom(o) € (S). Similarly, we show that for any ¢ > 1,

Tim(l) € (S) for some m(i) > 0. Let m = max{m(0),...,m(n)}. Then every monomial in T; of
degree greater or equal to r = m(n + 1) contains some T7™() as a factor. Hence it belongs to the
ideal (S). This proves that (S) D k[T]>,.

(i) = (iii) If (S) D k[T]>, for some r > 0, then all 7] belong to (S). Thus for every
M = K(ag,...,a,) € PSol(S; K)" we must have a = 0. Since (ag,...,a,) € Cn(K) we can find
bo,...,b, € K such that 1 = bgag + ... + bpa,. This easily implies that

1= (boao + ...+ bnan)T("H) = 0.
This contradiction shows that PSol(S; K)' = () for any k-algebra K. From this we can deduce that
PSol(S; K) = 0 for all K. In fact, every M € PSol(S; K) defines My € PSol(S; K¢)' for some
fe Kf.

(iii) = (i) Obvious.
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Note that k[T]>, is an ideal in k[T] which is equal to the power m/, where
my = k[T]Zl = (To, . ,Tn)

A homogeneous ideal I C k[T'] containing some power of m is said to be irrelevant. The previous
proposition explains this definition.

For every homogeneous ideal I in k[T we define the projective algebraic variety PV (I) as a
correspondence K — Sol(I, K). We define the saturation of I by

I°* = {F € k[T] : GF € I for all G € m%, for some s > 0}.
Clearly I*% is a homogeneous ideal in k[T] containing the ideal I (Check it !) .

Proposition 4. Two homogeneous systems S and S’ define the same projective variety if and
only if ()% = (§")sa¢,

Proof. Let us show first that for any k-algebra K, the ideals (S) and (S)*%* have the same set of
zeroes in PP (K). It suffices to show that they have the same set of zeroes in every P} (K)'. Clearly
every zero of (5)% is a zero of (S). Assume that a = (ag,...,a,) € PP(K)' is a zero of (S) but
not of (8)*?*. Then there exists a polynomial F' € (S)%?" which does not vanish at a. By definition,
there exists s > 0 such that T'F € (S) for all monomials T! of degree at least s. This implies that
Ti(a)F(a) = 0. By definition of homogeneous coordinates, one can write 1 = agbg + ... + bpay, for
some b;. Raising this equality into the s-th power, we obtain that T¥(a) # 0 for some i. Hence
F(a) =0.

Thus we may assume that (S) = (5)%%,(S") = (§')**. Take (to,...,t,) € Sol(S',k[T]/(S")),
where t; = T; + (S'). For every homogeneous generator F = F(Ty,...,T,) € (S'), we consider
the polynomial F! = F(1,Z1,...,Z,) € k[Z1,...,Z,], where Z; = T;/Ty. Let (S')g be the ideal
in k[Z] generated by all polynomials F’ where F' € (S’). Then (1, z21,...,2,) € Sol(S";k[Z]/(S")o0)
where z; = Z; mod (S')g. By assumption, (1,21,...,2,) € Sol(S;k[Z]/(S")o). This shows that
G(1,Z1,...,7Zy,) € (8")¢ for each homogeneous generator of (5), i.e.

G, Z1,.... Zn) = > QiFi(1,21,..., Z)

for some Q; € k[Z] and homogeneous generators F; of (S’). Plugging in Z; = T;/Ty and reducing
to the common denominator, we obtain

TiOG(Ty, ..., T,) € (8')

for some d(0). Similarly, we obtain that T*9G € (S') for some d(i),i = 1,...,n. This easily
implies that m%. G € (S') for some large enough s (cf. the proof of Proposition 1) . Hence, G € (S5')
and (S) C (S’). Similarly, we obtain the opposite inclusion.

Definition. A homogeneous ideal I C k[T] is said to be saturated if I = %%,

Corollary. The map I — PV (I) is a bijection between the set of saturated homogeneous ideals
in k[T] and the set of projective algebraic subvarieties of P}.

In future we will always assume that a projective variety X is given by a system of equations S
such that the ideal (S) is saturated. Then I = (9) is defined uniquely and is called the homogeneous
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ideal of X and is denoted by I(X). The corresponding factor-algebra k[T']/I(X) is denoted by k[X]
and is called the projective coordinate algebra of X.

The notion of a projective algebraic k-set is defined similarly to the notion of an affine algebraic
k-set. We fix an algebraically closed extension K of k and consider subsets V' C P"(K) of the form
PSol(S; K), where X is a system of homogeneous equations in n-variables with coefficients in k.
We define the Zariski k-topology in P (K) by choosing closed sets to be projective algebraic k-sets.
We leave the verification of the axioms to the reader.

Problems.

1*. Show that P (k[Ty,...,T,]) = P"(k[Ty,...,T,])’, where k is a field.

2. Let A = 7Z/(6). Show that A has two maximal ideals m with the corresponding localizations
Ay, isomorphic to Z/(2) and Z/(3). Show that a projective A-modules of rank 1 is isomorphic to
A.

3*. Let A =C[Ty,T5]/(T? — To(Ty — 1)(Ty — 2)),t; and t5 be the cosets of the unknowns T; and
T>. Show that the ideal (¢1,t2) is a projective A-module of rank 1 but not free.

4. Let I C k[T] be a homogeneous ideal such that I D m% for some s. Prove that I*%" = k[T].
Deduce from this another proof of Proposition 1.

5. Find I°*, where I = (T2, ToTy) C k[To, T4 ).

6. Find the projective closure in P} of an affine variety in A} given by the equations Z, — Z7 =
0,723 — Z3 =0.

7. Let F € k[Ty, ..., T,] be a homogeneous polynomial free of multiple factors. Show that its set of
solutions in P"(K), where K is an algebraically closed extension of k, is irreducible in the Zariski
topology if and only F' is an irreducible polynomial.
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Lecture 6. BEZOUT’S THEOREM AND A GROUP LAW ON A CUBIC CURVE

We begin with an example. Consider two ”concentric circles”:
C:73+72=1, C:7Z}+73=4.
Obviously, they have no common points in the affine plane A?(K) no matter in which algebra K

we consider our points. However, they do have common points ”at infinity”. The precise meaning
of this is the following. Let
C:TP+T;—-T=0, C':T?+T?—-4T¢=0

be the projective closures of these conics in the projective plane IP%, obtained by the homogenization
of the corresponding polynomials. Assume that v/—1 € K. Then the points (one point if K is of
characteristic 2) (1, ++/—1,0) are the common points of C(K ) and C(K)'. In fact, the homogeneous
ideal generated by the polynomials T? + Ty — T and T? + Ty — 4T3 defining the intersection is
equal to the ideal generated by the polynomials T2 + T2 — TZ and T¢Z. The same points are the
common points of the line L : Ty = 0 and the conic C, but in our case, it is natural to consider
the same points with multiplicity 2 (because of T instead of Tp). Thus the two conics have in
some sense 4 common points. Bézout’s theorem asserts that any two projective subvarieties of P2
given by an irreducible homogeneous equation of degree m and n, respectively, have mn common
points (counting with appropriate multiplicities) in PZ(K) for every algebraically closed field K
containing k. The proof of this theorem which we are giving here is based on the notion of the
resultant (or the eliminant) of two polynomials.

Theorem 1. There exists a homogeneous polynomial R,, , € Z[Ay,..., Ay, By, ..., By,] of degree
m + n satisfying the following property:
The system of algebraic equations in one unknown over a field & :
P(Z)=apZ"+...4a, =0, Q(Z)=bZ™+ ...+ b, =0

has a solution in a field extension K of k if and only if (ag,...,an,bo,...,bn) is a k—-solution of
the equation

R,.m = 0.
Proof. Define R,, , to be equal to the following determinant of order m+n:
Ay ... A4, 0
0 ... 0 A4 ... A,
By ... B, 0
0 ... 0 By ... B,
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where the first m rows are occupied with the string (Ay,...,A,) and zeroes, and the remaining n
rows are occupied with the string (By,..., B,,) and zeroes. Assume « € K is a common solution
of two polynomials P(Z) and Q(Z). Write

P(Z) = (Z —a)P1(Z), Q(Z) = (Z - a)Q:1(Z)

where P1(Z),Q1(Z) € K[Z] of degree n — 1 and m — 1, respectively. Multiplying P;(Z) by Q1(Z),
and Q(Z) by P1(Z), we obtain

P(Z2)Q1(Z) - Q(Z) 1 (Z) = 0. (1)

This shows that the coefficients of Q1(Z) and P;(Z) (altogether we have n + m of them) satisfy a
system of n + m linear equations. The coefficient matrix of this system can be easily computed,
and we find it to be equal to the transpose of the matrix

ag an 0
0 0 ag ... Gp
—bg —bm 0
0o ... 0 —by ... —bn,

A solution can be found if and only if its determinant is equal to zero. Obviously this deter-
minant is equal (up to a sign) to the value of R, ,,, at (ag,...,an,bo,...,by). Conversely, assume
that the above determinant vanishes. Then we find a polynomial P;(Z) of degree < n — 1 and a
polynomial Q1(Z) of degree < m — 1 satisfying (1). Both of them have coefficients in k. Let «
be a root of P(Z) in some extension K of k. Then « is a root of Q(Z)P;(Z). This implies that
Z — a divides Q(Z) or P1(Z). If it divides P(Z), we found a common root of P(Z) and Q(Z). If
it divides Py (Z), we replace P;(Z) with P1(Z)/(Z — «) and repeat the argument. Since P;(Z) is
of degree less than n, we finally find a common root of p(Z) and ¢(Z).

The polynomial R,, ,, is called the resultant of order (n,m). For any two polynomials P(Z) =
apZ" +...+a, and Q(Z) = bgZ™ + ...+ by, the value of R,, ,, at (ag,...,an,bg,...,by) is called
the resultant of P(Z) and Q(Z), and is denoted by R, (P, Q).

A projective algebraic subvariety X of P2 given by an equation: F(Tp,T1,T>) = 0, where
F # 0 is a homogeneous polynomial of degree d will be called a plane projective curve of degree d.
If d =1, we call it a line, if d = 2, we call it a conic (then cubic, quartic, quintic, sextic, septic,
octic curve). We say that X is irreducible if its equation is given by an irreducible polynomial.

Theorem 2 (Bézout). Let
F(To,Tl,TQ) — O,G(Tg,Tl,Tz) — 0

be two different plane irreducible projective curves of degree n and m, respectively, over a field
k. For any algebraically closed field K containing k, the system F' = 0,G = 0 has exactly mn
solutions in P?(K) counted with appropriate multiplicities.

Proof. Since we are interested in solutions in an algebraically closed field K, we may replace
k by its algebraic closure to assume that k is algebraically closed. In particular k is an infinite
set. We shall deduce later from the theory of dimension of algebraic varieties that there are only
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finitely many K-solutions of F' = G = 0. Thus we can always find a line Ty + b1} + ¢T5 = 0 with
coefficients in k£ that has no K-solutions of ' = G = 0. This is where we use the assumption that
k is infinite. Also choose a different line aTj + T + dT5 = 0 with a # b such that for any A\, p € K
the line (A + pa)To + (Ab+ u)T1 + (Ac + p)T> = 0 has at most one solution of FF = G =0 in K.
The set of triples (a, 3,7) such that the line aTy + ST +vT> = 0 contains a given point (resp. two
distinct points) is a two-dimensional (resp. one-dimensional) linear subspace of k3. Thus the set
of lines oTy + P11 + vI> = 0 containing at least two solutions of ' = G = 0 is a finite set. Thus
we can always choose a line in k3 containing (1,b,¢) and some other vector (a,1,d) such that it
does not belong to this set. Making the invertible change of variables

To — Tp + le + CTQ,Tl —aly+ T + de,Tz — Ty

we may assume that for every solution (ag, a1, a2) of F = G =0 we have ay # 0, and also that no
line of the form a1y + 617 = 0 contains more than one solution of ' = G = 0 in K. Write

F=aT+...4a,,G=0T"+... + ap,
where a;,b; € k[Ty, T1];. Obviously, a,, b, # 0, since otherwise T5 is a factor of F' or G. Let
R(Ag,...,An,Bo,...,Bp)

be the resultant of order (n,m). Plug a; in A;, and b; in B;, and let R = R(aq,...,an,bo,---,bm)
be the corresponding homogeneous polynomial in Ty, 7). It is easy to see, using the definition of
the determinant, that R is a homogeneous polynomial of degree mn. It is not zero, since otherwise,
by the previous Lemma, for every (8o, 1) the polynomials F'(Sy, 81,T>) and G(Bq, B1,T>) have a
common root in K. This shows that P?(K) contains infinitely many solutions of the equations
F = G = 0, which is impossible as we have explained earlier. Thus we may assume that R # 0.
Dehomogenizing it, we obtain:
R = TngRI(Tl/To)

Wh(ire R’ is a polynomial of degree < nm in the unknown Z = T} /Tj. Assume_ﬁrst that the degree
of R’ is exactly mn. Let Qt, ..., Qpm be its nm roots in the algebraic closure k of k (some of them
may be equal). Obviously, R(1,a) = 0, hence

R(ap(1l, ), ..., a,(1,),bo(1,),....by(1,a)) =0.

By Theorem 1, the polynomials in 75 F(1,a, Ty) and G(1,a,T) have a common root 3 in k. It
is also unique in view of our choice of the coordinate system. Thus (1, a,3) is a solution of the
homogeneous system F' = G = 0 in k. This shows that the system F' = 0, G = 0 has nm solutions,
the multiplicity of a root a of R’ = 0 has to be taken as the multiplicity of the corresponding
common solution. Conversely, every solution (8, 81,032) of F = G = 0, where 5y # 0, defines a
root a = (31 /By of R' = 0. To complete the proof, we have to consider the case where R’ is of degree
d < nm. This happens only if R(Ty,T1) = To"™ P (Ty, T1), where P € k[Ty, Ty]q does not contain

Ty as its irreducible factor. Obviously, R(0,1) = 0. Thus (0,1, ) is a solution of FF = G = 0 for
some o € K. This contradicts our assumption from the beginning of the proof.

Example 1. Fix an algebraically closed field K containing k. Assume that m =1, i.e.,
G = OéoTo + a1T1 + a2T2 =0

33



34 Lecture 6

is a line. Without loss of generality, we may assume that as = —1. Computing the resultant, we
find that, in the notation of the previous proof,

R(To,Tl) = ag(aoTo + alTl)” + ...+ ay.

Thus R is obtained by ”eliminating” the unknown T,. We see that the line L : G = 0 “intersects”
the curve X : F = 0 at n K-points corresponding to n solutions of the equation R(Ty,T;) = 0
in P1(K). A solution is multiple, if the corresponding root of the dehomogenized equation is
multiple. Thus we can speak about the multiplicity of a common K-point of L and F' = 0 in
P2(K). We say that a point z € X (K) is a nonsingular point if there exists at most one line L over
K which intersects X at z with multiplicity > 1. A curve such that all its points are nonsingular
is called nonsingular. We say that L is tangent to the curve X at a nonsingular point x € P?(K)
if x € L(K)N X (K) and its multiplicity > 2. We say that a tangent line L is an inflection line at
z if the multiplicity > 3. If such a tangent line exists at a point x, we say that x is an inflection
point (or a flex) of X.

Let P(Zy,...,%Zy,) € k[Z1,...,Zy,] be any polynomial in n variables with coefficients in a field

k. We define the partial derivatives 22~ of Z as follows. First we assume that P is a monomial

92;
Z3t -+ Z» and set

OP _ [iziv...zi7t ez iy >0,
0Z;

0 otherwise
Then we extend the definition to all polynomials by linearity over k requiring that

aP+bQ) _ P, 9Q

=aq
0Z; 0Z; 0Z;

for all a,b € k£ and any monomials P, (). It is easy to check that the partial derivatives enjoy the

same properties as the partial derivatives of functions defined by using the limits. For example, the

map P 63—;; is a derivation of the k-algebra k[Z,...,Z,], i.e. , it is a k-linear map 0 satisfying

the chain rule:

9(PQ) = PO(Q) + QI(P).

The partial derivatives of higher order are defined by composing the operators of partial derivatives.

Proposition 1. (i) X : F(T,,T1,T2) = 0 be a plane projective curve of degree d. A point
(ag,a1,a2) € X(K) is nonsingular if and only if (ag,a1,as2) is not a solution of the system of
homogeneous equations

oOF O0F OF

0T, oIy 0T,

(ii) If (ag, a1, a2) is a nonsingular point, then the tangent line at this point is given by the equation

(iii) Assume 2 is invertible in k (i.e. the characteristic of k is not equal to 2). A nonsingular point
(ag, a1, as2) is an inflection point if and only if

&’F 3*F 3*F

TR 8T, 0T, 9To0Ts

8% F 8*F 8*F _
det | arom, aT? arors | (@0,01,02) = 0.

8*F 8*F 3*F

aT 0T, 01,017  OTZ
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Proof. We check these assertions only for the case (ag, a1, a2) = (1,0,0). The general case
is reduced to this case by using the variable change. The usual formula for the variable change
in partial derivatives are easily extended to our algebraic partial derivatives. We leave the details
of this reduction to the reader. Write F' as a polynomial in T with coefficients polynomials in
T, T — 2.

F(To, Ty, Ts) = Ty Py—y(Ty, To) + qu_lPd—qH(Tl,Tz) ++ Py(Th,T), q<d.

Here the subscript indices coincides with the degree of the corresponding homogeneous polynomial
if it is not zero and we assume that Py_, # 0. We assume that F'(1,0,0) = 0. This implies that
g < d. A line through the point (1,0,0) is defined by an equation T — AT; = 0 for some X € k.
Eliminating T5 we get

F(To, Ty, \Ty) = TET Py y(1,A) + T8 T Py i (1,A) + -+ + TEPy(1, )

=T~ (TOqu_q(l, A) 4+ T TPy g1 (1,N) + - + T Py(1, A)).

It is clear that each line intersects the curve X at the point (1,0,0) with multiplicity > 1 if and
only if d — ¢ > 1. Thus (1,0,0) is nonsingular if and only if ¢ = d — 1. Let P(Ty,T>) = aTy + bT5.
Computing the partial derivatives of F(Ty,T1,T>) at (1,0,0) we easily find that

OF oF oF
—(15050) - 03 —(13030) = a, 8—711

1 =b.

Thus d — ¢ > 1 if and only if the partial vanish. This proves assertion (i). Assume that the point
is nonsingular, i.e. d — ¢ = 1. The unique tangent line satisfies the linear equation

Pi(1,)\) = a+bx=0. 2)

Obviously the lines ATy — T> = 0 and aT7 + bT> = 0 coincide. This proves assertion (ii).
Let Po(Ty,Ty) = oT? + BT Ty +yT2. Obviously, the point (1,0, 0) is an inflection point if and
only if P,(1,A) = 0. Computing the second partial derivatives we find that

8*F 8%F 8’F
oT? 0T 0T 0T 0T> 0 a b
o°F 3*F o’F _ _
det | arom; oT? 0T (1,0,0) =det | a 2a B | =2P>(a,b).
9°*F 3*F 9%F b [ 2
T 0T, 012071% oT2

It follows from (2) that Ps(a,b) = 0 if and only if P>(1,A) = 0. Since we assume that 2 is invertible
in k we obtain that (1,0,0) is an inflection point if and only if the determinant from assertion (3)
is equal to zero.

Remark 1. The determinant

8*F 8%F 8%F
TR 0To0T, 0T,0T,
det 8 F 8%F 8%F
€Y1 oreT,  oT? 9T oLy
8 F 8%F 8%F
8T 0T, 0T20T; oT2

2

is a homogeneous polynomial of degree 3(d — 2) unless it is identically zero. It is called the Hessian
polynomial of F' and is denoted by Hess(F'). If Hess(F') # 0, the plane projective curve of degree
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3(d — 2) given by the equation Hess(F) = 0 is called the Hessian curve of the curve F' = 0.
Applying Proposition 1 and Bézout’s Theorem, we obtain that a plane curve of degree d has
3d(d — 2) inflection points counting with multiplicities.

Here is an example of a polynomial F' defining a nonsingular plane curve with Hess(F') = 0:

F(Ty, Ty, Tp) = TP 4 1P+ 4 7P* =,

where £ is of characteristic p > 0. One can show that Hess(F') # 0 if k is of characteristic 0.

Let us give an application of the Bézout Theorem. Let
X : F(T(],Tl,Tg) =0

be a projective plane cubic curve. Fix a field K containing k£ (not necessary algebraically closed).
Let k be the algebraic closure of k containing K. We assume that each point of X (k) is nonsingular.
Later when we shall study local properties of algebraic varieties, we give some simple criterions
when does it happen.

Fix a point e € X(K). Let z,y be two different points from X (K). Define the sum
z®y € X(K)

as a point in X (K) determined by the following construction. Find a line L; over K with y,x €
Li(K). This can be done by solving two linear equations with three unknowns. By Bézout’s
Theorem, there is a third intersection point, denote it by yz. Since this point can be found by
solving a cubic equation over K with two roots in K (defined by the points z and y), the point
yr € X (K). Now find another K-line Ly which contains yz and e, and let y @ z denote the third
intersection point. If yz happens to be equal to e, take for Ly the tangent line to X at e. If y = z,
take for L; the tangent line at y. We claim that this construction defines the group law on X (K).

Fig.1

Clearly
yor=xr0Y,

i.e., the binary law is commutative. The point e is the zero element of the law. If z € X (K), the
opposite point —z is the point of intersection of X (K) with the line passing through x and the
the third point z; at which the tangent at e intersects the curve. The only non-trivial statement
is the property of associativity. We use the following picture to verify this property:
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X\K\v
z XV
(x @®V) z N

ZDV

Fig.2
Consider the eight points e, x,y, z, zy, xy,x & y,y ® z. They lie on three cubic curves. The
first one is the original cubic X. The second one is the union of three lines

<z,y>U<yz,y@®z>U<z,2dy > (1)

where for any two distinct points a,b € P?(K) we denote by < a,b > the unique K-line L with
a,b € L(K). Also the “union” means that we are considering the variety given by the product of
the linear polynomials defining each line. The third one is also the union of three lines

<y,z>U<zy,z@y>U<z,ydz>. (20
We will use the following:

Lemma 1. Let zy,...,z5 be eight distinct points in P?(K). Suppose that all of them belong
to X(K) where X is a plane irreducible projective cubic curve. Assume also that the points
T1,T2,x3 lie on two different lines which do not contain points x; with ¢+ > 3. There exists a
unique point xg such that any cubic curve Y containing all eight points contains also xg, and
either ©g € {z1,...,x8} or zg enters in X (K)NY (K) with multiplicity 2.

Proof. Let Y be given by an equation F = aoT§ +a,;T¢Ty +. .. = 0 the polynomial F. A point
z = (ag,ar,as) € X(K) if and only if the ten coefficients of F' satisfy a linear equation whose
coefficients are the values of the monomials of degree 3 at (ag, @1, @s). The condition that a cubic
curve passes through 8 points introduces 8 linear equations in 10 unknowns. The space of solutions
of this system is of dimension > 2. Suppose that the dimension is exactly 2. Then the equation of
any cubic containing the points x1,...,zg can be written in the form AF} + pF5, where F; and Fy
correspond to two linearly independent solutions of the system. Let zg be the ninth intersection
point of F; = 0 and F> = 0 (Bézout’s Theorem). Obviously zg is a solution of F' = (. It remains
to consider the case when the space of solutions of the system of linear equation has dimension
> 2. Let L be the line with X,z € L(K). Choose two points z,y € L(K) \ {z1,z2} which are
not in X (K). Since passing through a point imposes one linear condition, we can find a cubic
curve Y : G = 0 with z,y,21,...,2s € Y(K). But then L(K) N Y (K) contains four points. By
Bézout’s Theorem this could happen only if GG is the product of a linear polynomial defining L and

a polynomial B of degree 2. By assumption L does not contain any other point x3,...,zg. Then
the conic €' : B = 0 must contain the points z3,...,xs. Repeating the argument for the points
21,23, we find a conic C' : B’ = 0 which contains the points s, z4,...,z5. Clearly C' # C' since

otherwise C' contains 7 common points with an irreducible cubic. Since C(K) N C'(K) contains 5
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points in common, by Bézout’s Theorem we obtain that B and B’ have a common linear factor.
This easily implies that 4 points among x4, ..., zg must be on a line. But this line cannot intersect
an irreducible cubic at four points in P%(K).

Remark 2. Here is an example of the configuration of 8 points which do not satisfy the assumption
of the Lemma. Consider the cubic curve (over C) given by the equation:

TS+ TP + T3 + A\T,ThT» = 0.

It is possible to choose the parameter A such that the curve is irreducible. Let z1,...,xg9 be the
nine points on this curve with the coordinates:

(0’ ]"p)’ (1707,0)5 (1’ ]"p)

where p is one of three cube roots of —1. Each point z; lies on four lines which contain two
other points z; # z;. For example, (0,1, —1) lies on the line T; = 0 which contains the points
(0,1, p), (0,1, p?) and on the three lines pTy — Ty —T» = 0 which contains the points (1,0, p), (1, p, 0).
The set z1,...,xs is the needed configuration. One easily checks that the nine points z1,...,z9
are the inflection points of the cubic curve C' (by Remark 1 we expect exactly 9 inflection points).
The configuration of the 12 lines as above is called the Hesse configuration of lines.

Xy %,
x
6
X5
Xg
%3
X
X
x
X4 L2
Fig. 3

Nevertheless one can prove that the assertion of Lemma 1 is true without additional assumption
on the eight points.

To apply Lemma 1 we take the eight points e, z,y, z, zy, zy,z ® y,y ® z in X (K). Obviously
they satisfy the assumptions of the lemma. Observe that (z @ y)z lies in X (K) and also in the
cubic (1), and z(y & 2) lies in X (K) and in the cubic (2). By the Lemma (z ® y)z = z(y @ 2) is
the unique ninth point. This immediately implies that (z @ y) Dz =2 ® (y ® 2).

Remark 3. Our proof is in fact not quite complete since we assumed that all the points
e, %, Y, 2,2y, 2y, x Dy,y b z are distinct. We shall complete it later but the idea is simple. We
will be able to consider the product X (K) x X(K) x X (K) as a projective algebraic set with the
Zariski topology. The subset of triples (z,y, z) for which the associativity z ® (y ®z2) = (z D y) d 2z
holds is open (since all degenerations are described by algebraic equations). On the other hand it
is also closed since the group law is defined by a polynomial map. Since X (K) x X (K) x X(K) is
an irreducible space, this open space must coincide with the whole space.

Remark 4. Depending on K the structure of the group X (K) can be very different. A famous
theorem of Mordell-Weil says that this group is finitely generated if K is a finite extension of Q.
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One of the most interesting problems in number theory is to compute the rank of this group. On
the other hand, the group X (C) is isomorphic to the factor group C/Z2. Obviously it is not finitely
generated.

Problems.

1. Let P(Z) = agZ™ +a1Z" ! + ...+ a, be a polynomial with coefficients in a field k, and
P'(Z) =nagZ" ' + (n — 1)a1 Z"2 + ... + a, be its derivative. The resultant R, ,_;(P, P') of P
and P’ is called the discriminant of P. Show that the discriminant is equal to zero if and only if
P(Z) has a multiple root in the algebraic closure k of k. Compute the discriminant of quadratic
and cubic polynomials. Using computer compute the discriminant of a quartic polynomial.

2. Let P(Z) =ao(Z —1)...(Z — ay) and Q(z) = bo(Z — B1) ... (Z — Bm) be the factorizations
of the two polynomials into linear factors (over an algebraic closure of k). Show that

Ry (P, Q) = +a7'b} HH H = b5 [T P8y
i=1 j=1

3. Find explicit formulae for the group law on X (C), where X is a cubic curve defined by the
equation T¢Ty — Ts — T¢ = 0. You may take for the zero element the point (0,1,0).

4. In the notation of the previous problem, show that elements 2z € X (C) of order 3 (i.e. 3z =0
in the group law) correspond to inflection points of X. Show that there are 9 of them. Show
that the set of eight inflection points is an example of the configuration which does not satisfy the
assumption of Lemma, 1.

5. Let X be given by the equation T?T, — T5 = 0. Similarly to the case of a nonsingular cubic,
show that for any field K the set X (K)' = X(K) \ {(1,0,0)} has a group structure isomorphic to
the additive group KT of the field K.

6. Let X be given by the equation TfTy — T3 (T + Tp) = 0. Similarly to the case of a nonsingular
cubic, show that for any field K the set X (K)' = X (K)\{(1,0,0)} has a group structure isomorphic
to the multiplicative group K* of the field K.
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Lecture 7. MORPHISMS OF PROJECTIVE ALGEBRAIC VARIETIES

Following the definition of a morphism of affine algebraic varieties we can define a morphism
f:+ X =Y of two projective algebraic varieties as a set of maps fx : X(K) — Y (K) defined for
each k-algebra K such that, for any homomorphism ¢ : K — L of k-algebras, the natural diagram

x(k) 9 x)

fr N (1)

vK) "9 vy
is commutative. Recall that a morphism of affine varieties f : X — Y is uniquely determined by
the homomorphism f*: O(Y) — O(X). This is not true anymore for projective algebraic varieties.
Indeed, let ¢ : k[Y] — k[X] be a homomorphism of the projective coordinate rings. Suppose it
is given by the polynomials Fy, ..., F,,. Then the restriction of the map to the set of global lines
must be given by the formula

a=(ag,...,an) = (Fo(a),..., F,(a)).

Obviously these polynomials must be homogeneous of the same degree. Otherwise, the value will
depend on the choice of coordinates of the point @ € X (K). This is not all. Suppose all F; vanish at
a. Since (0,...,0) € C(K)y, the image of a is not defined. So not any homomorphism kY] — k[ X]
defines a morphism of projective algebraic varieties. In this lecture we give an explicit description
for morphisms of projective algebraic varieties.

Let us first learn how to define a morphism f : X — Y C P} from an affine k-variety X to a
projective algebraic k-variety Y. To define f it is enough to define f : X — P} and to check that
[r(X(K)) C Y(K) for each K. We know that X (K) = Homy_q4(O(X), K). Take K = O(X)
and the identity homomorphism idp(x) € X (K). It is sent to an element M € Py (O(X)). The
projective O(X)-module M completely determines f. In fact, let z € X(K) and ev, : O(X) - K
be the corresponding homomorphism of k-algebras. Using the commutative diagram (1) (where
K=0(X),L=K,¢ = ev,), we see that

fr(x)=M ®o(x) K, (2)

where K is considered as an O(X)-algebra by means of the homomorphism ev, (i.e. a-z = ev,(a)z
for any a € O(X),z € K). Conversely, any M € P"(O(X) defines a map f : X — P} by using the
formula (2). If M is a global line defined by projective coordinates (aq, ..., a,) € C(O(X))n, then

fK(lE) = M®O(X) K = (ao(x),...,an(x))K € PH(K),
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where as always we denote evy(a) by a(z). Since O(X) = k[Z1,...,Z,]/I for some ideal I, we can
choose polynomial representatives of a;’s to obtain that our map is defined by a collection of n + 1
polynomials (not necessary homogeneous of course since X is affine). They do not simulteneoulsly
vanish at z since ag,...,a, generate the unit ideal. However, in general M is not necessary a
free module, so we have to deal with maps defined by local but not global lines over O(X). This
explains why we had to struggle with a general notion of P"(A).

Let us describe more explicitly the maps corresponding to any local line M. Let us choose a
covering family {a;}ic; which trivializes M, i.e. M; = M,, is a global line defined by projective
coordinates (p(()z)/a;",...,pgf)/a?) € C(O(X)q;)n- Note that since a] is invertible in O(X),, we
can always assume that 7 = 0. If no confusion arises we denote the elements a/1,a € A in the
localization Ay of a ring A by a. Since 1 =3, bjpg-z)/ag’ for some by, ...,b, € O(X),,, we obtain,
after clearing the denominators, that the ideal generated by p((]l), o ,p,(f) is equal to (af) for some
d>0. So

@Y. D) € C(O(X)a)n but, in general, (p”,...,p") & C(O(X))n.

Assume a;(z) = evy(a;) # 0. Let z; be the image of x € X(K) in X (K,,(;)) under the
natural homomorphism K — K, (). Let us consider K,y as an O(X)-algebra by means of the

composition of homomorphisms O(X) %¥ K — K, (z)- Then
JKo oy (#) = M ®0(x) Kay(z) = (M ®0(x) O(X)a,) ®0(x),, Kaix) = Mi ®0(x)a, Kas(a):

where K, (5 is an O(X),,-algebra by means of the homomorphism O(X),, — K, () defined by

i i

L 92)_  Since M; = (p((]i), . ,pg))(’)(X)ai we obtain that

a;(x)"

Py @) = (057 (2), . 9 (2)) K o) € P (Koy(a))-

If K is a field, K,,;) = K (because a;(z) # 0) and we see that, for any z € X (K) such that
a;(z) # 0 we have

fr(@) = 03 (), ...,p{(x)) € P*(K). (3)

Thus we see that the morphism f : X — P} is given by not a “global” polynomial formula but by
several “local” polynomial formulas (3). We take x € X (K), find ¢ € I such that a;(xz) # 0 (we
can always do it since 1 = ), ; bja; for some b; € O(X)) and then define fx(z) by the formula

(3)-

The collection ‘ .
(@, .08 ier

of elements (p((]i)a e ,pgli)) € O(X)"*+! satisfies the following properties:
(i) (p[(]Z)a e ,psf)) = (ad") for some d; > 0;

(ii) for any 7,5 € I, (p(()i), e ,pg)) = gij(p((]j), e ,pgj)) in ((’)(X)aiaj)"Jr:l for some invertible g;; €
O(X)aja;3 ' .
(iii) for any F' from the homogeneous ideal defining Y, F(p(()z), .. ,pg)) =0,1€1.

Note that the same map can be given by any other collection:

(Q[(]J)a s 7Q£Lj))je,]
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defining the same local line M € P"(O(X)) in a trivializing covering family {b;},;c;. They agree
in the folowing sense:
p](;) = qIE;J)gZJ’ k= 05 SRS (2

where g;; € O(X)Z,-bj-

For each i € I this collection defines a projective module M; € P*"(O(X),,) generated by
(p(()z), e ,pgf)). We shall prove in the next lemma that there exists a projective module M €
P"(O(X)) such that M,, = M; for each i € I. This module is defined uniquely up to isomorphism.
Using M we can define f by sending idp(x) € X(O(X)) to M. If € X(K), where K is a field,
the image fx(z) is defined by formulae (2).

Let us now state and prove the lemma. Recall first that for any ring A a local line M € P"(A)
defines a collection {Mj, }ier of lines in A7+ for some covering family {a;}ies of elements in A.
Let us see how to reconstruct M from {M,, }ic;. We know that for any 4, j € I the images m,; of
m € M in M,, satisfy the following condition of compatibility:

pij(mi) = pji(m;)

where p;; : My, — M,y is the canonical homomorphism m/aj — mf7/(a;f;)"
For any family {M;};c; of A,,-modules let

li_rr;Mi ={(my)es € HMZ : pij(m;) = pji(m;) for any i,j € I}.
i€l i€l

This can be naturally considered as a submodule of the direct sum @;c;M; of A-modules. There
is a canonical homomorphism
o: M — lim M,
iel

defined by m — (m; = m);e;.

Lemma. The homomorphism
a: M — h_rrg M,,
icl

is an isomorphism.

Proof. We assume that the set of indices [ is finite. This is enough for our applications since
we can always choose a finite covering subfamily. The proof of injectivity is similar to the proof of
Lemma 4 from Lecture 5 and is left to the reader. Let us show the surjectivity. Let

m;

(=7 )ier € lim M,
a; iel

for some m; € M and n; > 0. Again we may assume that all n; are equal to some n. Since for any
1,7 €1

pij(a_n) = sz’(a—n)a

we have
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for some r > 0. Let p; = m;a},k =7+ n. Then

m;  Dj
k?
a;

n
a;

We can write 1 = . b;a¥. Set m =", b;p;. Then

a?m = Zbiafpi = Zbiafpj = 1p; = pj.
i i

fjkpi = afpj-

This shows that the image of m in each M,, coincides with p;/a¥ = m;/a? for each i € I. This
proves the surjectivity.

In our situation, M; is generated by (p(()i), e ,pg)) € C(O(X,,) and property (ii) from above
tells us that (M;)q; = (M;),;. Thus we can apply the lemma to define M.

Let f: X — Y be a morphism of projective algebraic varieties, X C P}*,Y C P?. For every
k-algebra K and M € X(K) we have N = fx(M) € Y(K). It follows from commutativity of
diagrams (1) that for any a € K, f(K,)(M,) = N,. Let {a;}ic; be a covering family of elements
in K. Then, applying the previous lemma, we will be able to recover N from the family {Ng, }ier-
Taking a covering family which trivializes M, we see that our morphism f : X — Y is determined
by its restriction to X' : K — P"(K)' N X(K), i.e., it suffices to describe it only on ”global” lines
M € X(K). Also observe that we can always choose a trivializing family {a;};c; of any local line

M e X(K) in such a way that M,, is given by projective coordinates (tf)(i), e 5,?) with at least
one t;-” invertible in M,,. For example we can take the covering family, where each a; is replaced

by {ait(()z), ceeyay 7(721)} (check that it is a covering family) then each t;-” is invertible in K . Note
it

that this is true even when t;z) = 0 because Ky = {0} and in the ring {0} one has 0 = 1. Thus it
is enough to define the maps X (K) — Y (K) on the subsets X (K )" of global K-lines with at least
one invertible projective coordinate.

Let X be defined by a homogeneous ideal I C k[Ty,...,T,,]. We denote by I, the ideal in
the ring k[To /Ty, . .., Ty /T;] obtained by dehomogenizations of polynomials from I. Let X, C A"
be the corresponding affine algebraic k-variety. We have O(X,) = k[To/T,,...,Ty/T:]/I,. We
have a natural map i, : X,.(K) — X (K)" obtained by the restriction of the natural inclusion map
ir : K™ — P™(K)" (putting 1 at the rth spot). It is clear that each z € X (K)"” belongs to the
image of some 4,,. Now to define the morphism X — Y it suffices to define the morphisms f, : X, —
Y,r=0,...,m. This we know how to do. Each f, is given by a collection {(p(()s), ... ,pS))}sesm,

53) is an element of the ring O(X),), and a5 € rad({p(()s), . ,pgf)}) for some

as € O(X),. We can find a representative ofpg.s) in k[Ty /Ty, ..., T, /T,] of the form PJ.(S)/TTde where

Pj(s) is a homogeneous polynomials of the same degree d;. Reducing to the common denominator,

where each coordinate p

we can assume that d; = d(s) is independent of j = 0,...,n. Also by choosing appropriate
representative F, /T for ag, we obtain that T¢FP € (PO(S), o ,P,&S)) + I. Collecting all these data
for each r = 0,...,m, we get that our morphism is given by a collection of

(P, PY)) € KlTo. ..., Tulasys € S = SO []... ][ S(m).

The map is given as follows. Take z = (zg,...,zm) € X(K)". If z, is invertible in K, send z to a
local line from Y (K) defined by the global lines

(P (2),..., PP (2)) € Y(Kp,(2), s € S(r)
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Since we can write for any s € S(r),Tf‘(T)F;B(T) =3, Lij(s) + I, plugging z in both sides, and

using that T} (2)*(") = 22" is invertible, we obtain

Fy(2)7") = 3" Li(z) P ().

This shows that (Po(s)(x), . ,P,gs)(x)) € Cn(KFp,(z)) is satisfied. Note that this definition is inde-
pendent from the choice of projective coordinates of . In fact, if we multiply x by A € K*, we get
PU(S)(AJJ) = )\k(s)Po(s)(m). Also Fy(z) will change to A?F,(z) for some d > 0, which gives the same
localization Kp, ().

Of course this representation is not defined uniquely in many ways. Also it must be some
compatibility condition, the result of our map is independent from which r we take with the
condition that z, € K*. As is easy to see this is achieved by requiring:

PP — PP €1
for any s € S(r),s’ € S(r') and any k,j = 0,...,n. Since F(p(()s), . ,pgf)) = 0 for any F' from the
homogeneous ideal J defining Y, we must have

F(P®,....P®) eI foranyseS.

The following proposition gives some conditions when a morphism X — Y can be given by
one collection of homogeneous polynomials:

Proposition 1. Let X C P and Y C P} be two projective algebraic varieties defined by homo-
geneous ideals I C k[Ty,...,Ty] and J C k[T},...,T,], respectively. Let ¢ : k[T']/J — k[T]/I be
a homomorphism given by polynomials Fy, ..., F, € k[Ty,...,T,] (whose cosets modulo I are the
images of T modulo I). Assume
(i) all F; € k[T, ..., Ty)q for some d > 0;
(ii) the ideal in k[Ty, ..., T,,] generated by the ideal I and F;’s is irrelevant (i.e., contains the ideal
k[Ty, ..., Tp]>, for some s > 0).

Then the formula:
0= (0, ) = (Fola),..., Fu(a)),a € X(K) NP™(K)’

defines a morphism f: X =Y.

Proof. We have to check that (Fy(a),...,Fy(a)) € Cp(K) NY(K) for all K-algebras K.
The “functoriality” (i.e. the commutativity of tyhe diagrams corresponding to homomorphisms
K — K') is clear. Let a* : k[T]/I — K, T; mod I — «;, be the homomorphisms defined by the
point a. The composition af o ¢ : k[T']/J — K is defined by sending T} mod J to Fj(a). Thus for
any G € J we have G(Fy(a), ..., Fy(a)) = 0. It remains to show that (Fy(a),...,F,(a)) € C(K),.
Suppose the coordinates generate a proper ideal I of K. By assumption, for some s > 0, we can
write T = >, Q;F; + I, for some Q; € k[T]. Thus af = T;’(a) € I. Writing 1 = }, b;aj, we
obtain that 1 € I. This contradiction shows that (Fy(a),...,F,(a)) € C(K),. This proves the
assertion.

Examples. 1. Let ¢ : k[Ty,...,T,] — k[To,...,T,] be an automorphism of the polynomial algebra
given by a linear homogeneous change of variables. More precisely:

n

¢(T3) :ZaijTj, i=0,...,n

J=0

44



Morphisms of projective algebraic varieties 45

where (a;;) is an invertible (n 4+ 1) x (n 4+ 1)-matrix with entries in k. It is clear that ¢ satisfies
the assumption of Proposition 1, therefore it defines an automorphism: f : P} — P7. It is called a
projective automorphism.

2. Assume char(k) # 2. Let C C A? be the circle Z7 + Z7 = 1 and let X : T2 4+ T3 = T¢ be its
projective closure in P2. Applying a projective automorphism of P%, Ty — 1o, Ty — T — T1,T> —
To +T1 we see that X is isomorphic to the curve TO2 —T1T5 = 0. Let us show that X is isomorphic
to Pt. The corresponding morphism f : Pj — X is given by

(ag,a1) — (agal,ag,af).

The polynomials ToTy, TZ, T2, obviously satisfy the assumption of the Proposition 1. The inverse
morphism f~!: X — P} is defined by the formula:

(al,ag) ifa1 € K*,
(a07a17a2) — { (a[],ag) if as € K*.

Note that ag € K* if and only if aq, a2 € K*,
(a1,a9) = az(a1,a9) = (a1a2, apaz) = (a%,aoag) = ag(ag, az) = (ag, a2)
if ay,00 € K*, and
(ag, a1, as) — (a1, ag) = (arag,a?,a?) = (a1a9,0?, a1as) =

al(ao,al,ag) = ((10,&1,(12) lf aiy S K*,
(ap, a1, a2) = (ao,a2) — (aoaz,aﬁ,aé) =
(apaz, aray,a3) = ay(ag, a1, as) = (ag,a1,az) if ag € K*.

Similarly, we check that the other composition of the functor morphisms is the identity. Recall
that the affine circle X is not isomorphic to the affine line A} .

2. A projective subvariety E of P} is said to be a projective d-subspace if it is given by a system
of linear homogeneous equations with coefficients in k&, whose set of solutions in k"*! is a linear
subspace E of k"1 of dimension d + 1. Tt follows from linear algebra that each such E can be
given by a homogeneous system of linear equations

Ly=0,...,Lpq-1=0.

Let X C P} be such that
X(k)NnE(k) = 0.

Then the map
a (Lo(a),...,Ly_q-1(a)), a€ X(K),

defines a morphism
pp: X — PPt

which is said to be a linear projection from E. Let i : Pz_d_l — P} be the map given by
(ags---yan-g—1) = (ag,-..,ap—q—1,0,...,0), then we can interpret the composition pp : X —
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Pz_d_l — P? as follows. Take a point z € X (K), find a projective subspace E’ C P} of dimension
d + 1 such that E'(K) contains F(K) and z. Then

pe(z) = B'(K) NPy~ (K)).

We leave this verification to the reader (this is a linear algebra exercise).
3. We already know that P}, is isomorphic to a subvariety of P? given by an equation of degree
2. This result can be generalized as follows. Let N = (";m) — 1. Let us denote the projective
coordinates in Pfcv by

Ti = Tig...inai[] + ...+ Zn = |i| =m.

Choose some order in the set of multi-indices i with |i| = m. Consider the morphism (the Veronese
morphism of degree m)
Vpm PR — PN

defined by the collection of monomials (..., T,...) of degree m. Since T generate an irrelevant
ideal, we can apply Proposition 1, so this is indeed a morphism. For any k-algebra K the correspond-
ing map v, m(K) : P}(K) — PYN(K) is defined by the formula (aq,...,a,) = (...,T(a),...).
The image of v, n, (K)' is contained in the set Ver] (K ), where Ver]” is the projective subvariety
of Pfcv given by the following system of homogeneous equations

{TiT; — Tk Tt = 0}itj=k+t-

It is called the m-fold Veronese variety of dimension n. We claim that vy, ., (K) = Ver'(K) for
all K, so that vy, ,, defines an isomorphism of projective algebraic varieties:

Upm Py — Ver)".

To verify this it suffices to check that v, ., (K)(P}(K)") = Ver)'(K)" (compare with the beginning
of the lecture). It is easy to see that for every (..., a;,...) € Verl"(K)" at least one coordinate
Ume,; 18 Not zero (e; is the i-th unit vector (0,...,1,...0)). After reindexing, we may assume that
Gme, 7 0. Then the inverse map is given by the formula:

(o, T1,...,2n) = (a(m,O,...,O)a Am—1,1,1,...,1)s -+ - 7a(m—1,0,...,0,1))'

Note that the Veronese map v; o : P; — P? is given by the same formulas as the map from Example
2, and its image is a conic.

Next we want to define the Cartesian product X x Y of two projective varieties X and Y in
such a way that the set of K-points of X x Y is naturally bijectively equivalent to X (K) x Y (K).
The naturality is again defined by the commutativity of diagrams corresponding to the maps
XxY(K)— X xY (L) and the product map X (K)xY (K) — X (L)xY (L). Consider first the case
where X = P? and Y = P}". For any k-algebra K and two submodules M C K"*! M' c K™*t!
we shall consider the tensor product M @ N as a submodule of K"t! @, K™+ = g+t (m+1) T4
is easy to see that this defines a map

s(n,m)g : PY(K) x P*(K) - PY(K), N=(n+1)(m+1)-1.
Its restriction to P"(K)" x P™(K)’ is defined by the formula
((ao, e ,an), (bo, e abm)) = (aobo, e ,aobm,albo, e ,albm, ey anbo, e ,anbm).
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It is checked immediately that this map is well defined. It is easy to see that it is injective on the
subsets P"(K)" x P*(K)". In fact, if a; € K*, we may assume a; = 1, and reconstruct (bo, ..., by, )
from the right-hand side. Similarly we reconstruct (ao,...,a,). It is clear that the image of the
map s(n, m)f is contained in the set Z(K), where Z is a projective subvariety of PY given by the
equations:

Tijle_TikT'lj:Oa i,le,...,n; j,k:(],...,m. (4)

in the polynomial ring k[Ty,...,Tn],To = Too,...,IN = Tpm. Let us show that the image of
s(n,m)k is equal to Z. Since we can reconstruct any M € P"(K) from its localizations, it
suffices to verify that the map s(n,m)% : P"(K)" x P™(K)" — Z(K)" is surjective. Let z =

(2005 - -+ s 2nm) € Z(K)" with some z;; € K*. After reindexing we may assume that zog € K*.
Then z;; = zg02ij = 20j2i0 for any i =0,...,n,5 =0,...,m. Thus, z = s, (K)"(z,y), where
T = (2005210, - > 2n0), Y = (2005 201, - - - > Zom)-

It remains to set
PP x P = Z C Py. (5)

At this point it is natural to generalize the notion of a projective variety similarly as we did
for an affine variety.

Definition. A projective algebraic k-variety is a correspondence F which assigns to each k-algebra
K aset F(K) together with maps F(¢) : F(K) — F(L) defined for any homomorphism ¢ : K — L
of k-algebras such that the following properties hold:
(i) F(¢p)o F(yp) = F(pop) for any ¢ : K — L and ¢ : L — N;;
(ii) there exists a projective algebraic k-variety X and a set of bijections ®x : F(K) — X (K)
such that for any ¢ : K — L the following diagram is commutative:

9

FKE) % Fu
(I)KJ, \LCDL (5)

X&) 2 x).

b

With this definition in mind we can say that the correspondence K — P"(K) x P™(K) is a
projective algebraic variety.

We leave to the reader to define the notions of a morphism and isomorphism between projective
algebraic k-varieties.

For example, one defines the projection morphisms:

p1: Py x PP = Pr,  po: Py x PPt — PR
Now for any two projective subvarieties X C P7 and Y C P' defined by the equations

{Fs(To,...,T) = 0}ses and {G4(T§,...,T),) = 0}sesr, respectively, the product X x Y is iso-
morphic to the projective subvariety of PY, N = (n + 1)(m + 1) — 1, defined by the equations:

T{T(S)FS(T) =0, j=0,...,m, s€S, r(s)=deg(Fs(T)),

TT(S/)FSI(T') =0, i=0,...,n, s €8, r(s)=deg(F.(T)),

)

Tijle_TikT'lj:Oa i,l:(),...,n; j,k:(],...,m,
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where we write (uniquely) every monomial T;T(S)Ti (resp. Tir(s’)T’i) as the product of the variables
Tij = TZTJI,l = 0, Loy (resp. le = TZITJ’j = 0, ce ,m).

Remark. Recall that for any two objects X and Y of a category C, the Cartesian product is defined
as an object X x Y satisfying the following properties. There are morphisms p; : X xY — X and
p2 : X x Y — Y such that for any object Z and morphisms f : Z — X,g: Z — Y there exists
a unique morphism « : Z — X X Y such that f = p; oa,g = py 0 g. It is easy to see that the
triple (X X Y, p1,p2) is defined uniquely, up to isomorphism, by the above properties. A category
is called a category with products if for any two objects X and Y the Cartesian product X x Y
exists. For example, if C = Sets, the Cartesian product is the usual one. If C is the category A of
contravariant functors from a category A to Sets, then it has products defined by the products of
the values:
X xY(A)=X(A) xY(A).

The Segre construction shows that the category of projective algebraic varieties over a field & has
products. As we saw earlier, the category of affine algebraic varieties also has products.

Problems.

1. Prove that any projective d-subspace in P} is isomorphic to Pz.

2. Prove that P} x P} is isomorphic to a hypersurface Q C P} given by a homogeneous equation
of degree 2 (a quadric). Conversely, assuming that & is algebraically closed of char(k) # 2, show
that every hypersurface :

F(To, Ty, T2 T3) = Y ayTi+2 ) ayTT; =0,
0<i<<3 0<i<j<3

where the symmetric matrix (a;;) is nonsingular, is isomorphic to P} xPL. Give an explicit formula
for the projection maps: p; : Q@ — Pj.

3. Show that Ver? is isomorphic to the projective closure of the affine curve given by the equations
{Z, =70 =0,...,Zy — Z? = 0} (a rational normal curve of degree n). Compare this with the
problem 6 of Lecture 5.

4. Show that the image of a linear projection of the twisted cubic curve in P? from a point not
lying on this curve is isomorphic to a plane cubic curve. Find its equation and show that this curve
is singular in the sense of the previous lecture.

5. Show that the symmetric m-power S (M) of a projective module is a projective module. Using
this prove that the Veronese map vy, , is defined by the formula M — Sym™ (M).

6. a) Show that P"(K)"” x P{*(K)" is naturally bijectively equivalent to the set of (n+1) X (n+1)
matrices of rank 1 with coefficients in K defined up to multiplication by a nonzero scalar.
b)Show Ver2(K)" is naturally bijectively equivalent to the set of symmetric rank 1 square matrices
of size n + 1 with coefficients in K defined up to multiplication by a nonzero scalar.

7. Construct a morphism from P} to the curve X equal to the projective closure of the affine curve
(Z} + Z3)? — Z5(3Z% — Z3)) C A7. Is X isomorphic to P?
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Lecture 8. QUASI-PROJECTIVE ALGEBRAIC SETS

Let k be a field and K be an algebraically closed field containing k£ as a subfield.

Definition 1. A projective algebraic set over k (or a projective algebraic k-set) is a subset V' of
P"(K) such that there exists a projective algebraic variety X over k with X (K) =V,

The variety X with X(K) = V is not defined uniquely by V. However, as follows from the
Nullstellensatz

X(K) = Y(K) < rad(I(X)) = rad(I(Y)).

Thus, if we require that X is given by a radical homogeneous ideal, the variety X is determined
uniquely by the set X(K). In the following we will always assume this. Note that a radical
homogeneous ideal I coincides with its saturation I*?*. Indeed, if m*F € I for some s and F €
k[T)q then all monomials entering into F belong to m?. In particular, F* € m% C m® and
FSF = Fst1 ¢ . Since I is radical this implies that F' € I. In fact we have shown that, for any
ideal I, we have

I C 1% C rad(I).

This, if I = rad(I), then I = I***. Since a projective algebraic k-variety is uniquely determined by
a saturated homogeneous ideal, we see that there is a bijective correspondence between projective
algebraic k-sets and projective algebraic k-varieties defined by a radical homogeneous ideal (they
are called reduced projective algebraic k-varieties).

We can consider P"(K) as a projective algebraic set over any subfield k of K. Any projective
algebraic k-subset of P"(K) is called a closed subset of P"(K). The reason for this definition is
explained by the following lemma.

Proposition 1. There exists a unique topology on the set P"(K) whose closed subsets are pro-
jective algebraic k-subsets of P} (K).
Proof. This is proven similarly to that in the affine case and we omit the proof.

The topology on P"(K) whose closed sets are projective algebraic subsets is said to be the
Zariski k-topology. We will denote the corresponding topological space by P} (K). As is in the
affine case we will drop & from the definitions and the notations if £ = K. Every subset of P} (K)
will be considered as a topological subspace with respect to the induced Zariski k-topology.
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Lemma-Definition 2. A subset V of a topological space X is said to be locally closed if one the
following equivalent properties holds:
(i) V. =U N Z, where U is open and Z is closed;
(ii) V is an open subset of a closed subset of X;
(iii) V = Zy \ Z3, where Zy and Zy are closed subsets of X.

Proof. Left to the reader.
Definition 3. A locally closed subset subset of P} (K) is called a quasi-projective algebraic k-set.

In other words, a quasi-projective k-subset of P"(K) is obtained by taking the set of K-solutions
of a homogeneous system of algebraic equations over k£ and throwing away a subset of the solutions
satisfying some additional equations.

An example of an open quasi-projective subset is the subset

P"(K); = {(ag,...,a,) € P"(K) : a; # 0}.
Its complement is the “coordinate hyperplane”:
H; = {(ao,...,an) € P"(K):a; =0}.
Every affine algebraic k-set V' C A (K') can be naturally considered as a quasi-projective algebraic
set. We view A" (K) = K" as the open subset P" (K)o, then note that V = V N P"(K)q, where
V is the closure of V defined by the homogenization of the ideal defining V. It is clear that, in

general V' is neither open nor closed subset of P*(K). Also observe that V equals the closure in
the sense of topology, i.e., the minimal closed subset of P} (K) which contains V.

Next, we want to define regular maps between quasi-projective algebraic sets.

Definition 4. A map f: V — W C P"(K) of quasi-projective algebraic ksets is called regular if
there exists a finite open cover V = U,;U; such that the restriction of f to each open subset U; is
given by a formula:

z— (F\(z),...,FD(z)),

m

where Fo(i)(T), e ,FT(,Li)(T) are homogeneous polynomials of some degree d; with coefficients in k.

Proposition 2. If V = X(K) and W = Y (K) for some projective algebraic k-varieties X and Y,
and f : X — Y is a morphism of projective algebraic varieties, then fx : V — W is a regular map.

Proof. We have shown in Lecture 7 that the restriction of fx to each open set V N (P"); is
given by several collections of homogeneous polynomials. Each collection is defined on an open set
of points where some element of a covering family does not vanish.

Example 1. Let V C PP(K), W = AY(K). A regular map f : V — A} (K) C Py(K) is given
(“locally”) by two homogeneous polynomials Fo(T), F1(T') € k[Ty,...,T,]q such that Fy(z) # 0
for all = in some open subset U; of V' (could be the whole V' but this is unlikely in general). Its
value
f(z) = (Fo(z), Fi(z)) = (1, Fy(z)/ Fo(z))

can be identified with the element F;(z)/Fy(z) of the field K = A'(K). Thus f is given in U;
by a function of the form F'/G, where F' and G are homogeneous polynomials of the same degree
with G(z) # 0 for all z € U;. Two such functions F/G and F'/G' are equal on U; if and only if
(FG'— F'G)(z) =0 for all z € U;. If V is irreducible this implies that (FG' — F'G)(z) = 0 for all
zeV.

A regular map f:V — AY(K) is called a reqular function on V. The set of regular functions
form a k- algebra with respect to multiplication and addition of functions. We shall denote it by
O(V). As we will prove later O(V) = k if V is a projective algebraic k-set. On the opposite side
we have:
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Proposition 3. Let V' C A" be an affine algebraic set considered as a closed subset in P"(K);.
Then O(V) is isomorphic to the algebra of regular function of the affine algebraic set V.

Proof. Without loss of generality we may assume that ¢ = 0. Let us, for a moment, denote the
algebra of regular functions on an affine algebraic set (in the old sense) by O(V)'. If f € O(V)', we
represent it by a polynomial F/(Zy,...,Z,) = P(Ty,...,T,)/T§ for some homogeneous polynomial
P of degree r. Then f coincides with a regular function in the new definition given by polynomials
(T, P(Ty,...,Ty)). This defines a homomorphism O(V)" — O(V). Its injectivity is obvious.
Let us show that this homomorphism is surjective. Let V be given by a system of equations
Fy(Z1,...,2Z,)=0,s € S,and f € O(V) and {U;};c; be an open cover of V such that there exist
homogeneous polynomials P;(Ty,...,T,),Q:(Ty,...,T,) of the same degree d; for which

fi(z) = Py(x)/Qi(x),Qi(xz) #0 for all z € U;.
Let Q;(Z)", P;(Z)" denote the dehomogeneized polynomials. We have
Qi(z) f(z) = Pi(z), i€l,xel.
If we multiply both sides by a polynomial vanishing on the closed subset V' \ U;, we will have the
equality valid for all z € V. We assume that this is the case. The system of equations

Qi(Z) =0,iel, FyZ)=0,s¢€S8,
has no solutions in K". By Hilbert’s Nullstellensatz

1=) AQ;+ > B.F, (1)
) s
for some polynomials A;,i € I, and By, s € S. Thus, for any z € V,

f@) = 3 A@)@@)f (@) = 3 A@)Pl(@) = (3 AQ)) @),

This shows that f is a global polynomial map, i.e. a regular function on V.

An isomorphism (or a biregular map) of quasi-projective algebraic sets is a bijective regular
map such that the inverse map is regular (see Remark 3 in Lecture 3 which shows that we have to
require that the inverse is a regular map). Two sets are isomorphic if there exists an isomorphism
from one set to another.

It is not difficult to see (see Problem 8) that a composition of regulsr maps is a regular
map. This implies that a regular map f : V — W defines the homomorphism of k-algebras
f(O(W) — O(V). However, in general, this homomorphism does not determine f uniquely (as
in the case of affine algebraic k-sets).

Definition 3. A quasi-projective algebraic set is said to be affine if it is isomorphic to an affine
algebraic set.

Example 2. Let V be a closed subset of P (K) defined by an irreducible homogeneous polynomial
F of degree m > 1. The complement set U = P"(K) \ V does not come from any closed subset
of P*"(K); since V does not contain any hyperplane T; = 0. So, U is not affine in the way
we consider any affine set as a quasi-projective algebraic set. However, U is affine. In fact, let
Upm : PP(K) — PN(m) be the Veronese map defined by monomials of degree m. Then v, m, (U)
is contained in the complement of a hyperplane H in PY (™) defined by considering F as a linear
combination of monomials. composing vy, ,, with a projective linear transformation we may assume
that H is a coordinate hyperplane. Thus v, ,,, defines an isomorphism from U to the open subset of
the Veronese projective algebraic set Ver, ,(K) = vy, (P"(K)) whose complement is the closed
subset Ver, ,»(K)N H. But this set is obviously affine, it is defined in PN (™) (K); = KN (™) by
dehomogenizations of the polynomials defining Very, ,.

ol



592 Lecture 8
Lemma 2. Let V be an affine algebraic k-set and f € O(X). Then the set

D(f) ={z e V: f(z) # 0}

is affine and

O(D(f)) = O(V);.

Proof. Replacing V' by an isomorphic algebraic k-set, we may assume that V = X(K),
where X C K" is an affine algebraic k-variety defined by an ideal I. Let F € k[Z;,...,Z,] be a
polynomial representing f. Consider the closed subset of K"T! = K™ x K defined by the equation
FZ,11—1=0 and let V' be its intersection with the closed subset V' x K. It is an affine algebraic
k-set. We have

OWV') = k[Z1,. ... Zn, Znir) (I, F Zpyr — 1) 2 K[ Z1, ..., Zy)/(D)[=] = O(V);.

Let p: K" — K™ be the projection. I claim that the restriction of p to V' defines an isomorphism
p' : V' — D(f). Tt is obviously a regular map, since it is defined by the polynomials (Z1,..., Z,).
The inverse map p~! : V — V' is defined by the map z — (z, ﬁ) Let us see that it is a regular

map. Let P(Ty,...,T,) be a homogenization of F, i.e., F = T%i for some d > 0. We view V' as a

closed subset of P**!(K)y and D(f) as a locally closed subset of P?(K)o. Obviously the map p~*
coincides with the map

= (1,21,...,2,) — (PTo(m),PTl(m),...,PTn(m),Tg"'l(x)) = (1,21, .., Tn,

@

defined by homogeneous polynomials (PTy, PTy, ..., PT,, T{T) of degree d + 1.

Theorem 1. Let V be a quasi-projective k-set and x € V. Then there exists an open subset
U C V containing x which is an affine quasi-projective set.

Proof. Let V = Z; \ Z,, where Z,, Zy are closed subsets of P} (K). Obviously z € P"(K), for
some 7. Thus z belongs to (Z1 NP"(K);)\ (Z2NP"(K);. The subsets Z; NP"(K); and ZoNP"(K);
are closed subsets of K™. Let F' be a regular function on K™ which vanishes on Z; NP"(K); but
does not vanish at . Then its restriction to V' = Z; NP"(K); defines a regular function f € O(V)
such that x € D(f) C V C ZoNP"(K);. By the previous lemma D(f) is an affine quasi-projective
k-set.

Corollary. The set of open affine quasi-projective sets form a basis in the Zariski topology of
P"(K).

Recall that a basis of a topological space X is a family F of open subsets such that for any
z € X and any open U containing x there exists V' € F such that z € V C U. We shall prove
in the next lecture that the intersection of two open affine sets is an open affine set. This implies
that the Zariski topology can be reconstructed from the set of affine open sets.

Remark. The reader who is familiar with the notion of a manifold (real or complex) will easily
notice the importance of the previous theorem. It shows that the notion of a quasi-projective
algebraic set is very similar to the notion of a manifold. A quasi-projective algebraic set is a
topological space which is locally homeomorphic to a special topological space, an affine algebraic
set.
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Proposition 4. Every quasi-projective algebraic k-set V is a quasi-compact topological space.

Proof. Recall that a topological space V (not necessarily separated) is said to be quasi-compact
if every its open covering {U, };c; contains a finite subcovering, i.e.

V =UietU; =V = Ui U,

where J is a finite subset of I.
Every Noetherian space is quasi-compact. Indeed, in the above notation we form a decreasing
sequence of closed subsets
V\Ui1 DV\(Uil UUQ) ...

which must stabilize with a set V! =V \ (U;, U...UU; ). If it is not empty, we can subtract one
more subset U;; to decrease V'. Therefore, V! = () and V = U;, U...UU;,. Thus, it suffices to
show that a quasi-projective set is Noetherian. But obviously it suffices to verify that its closure
is Noetherian. This is checked similarly to that as in the affine case by applying Hilbert’s Basis
Theorem.

Corollary. Every algebraic set can be written uniquely as the union of finitely many irreducible
subspaces Z;, such that Z; ¢ Z; for any i # j.

Lemma 3. Let V be a topological space and Z be its subspace. Then Z is irreducible if and only
if its closure Z is irreducible.

Proof. Obviously follows from the definition.

Proposition 5. A subspace Z of P} (K) is irreducible if and only if the radical homogeneous ideal
defining the closure of 7 is prime.

Proof. By the previous lemma, we may assume that Z is closed. Then Z is a projective
algebraic set defined by its radical homogeneous ideal. The assertion is proven similarly to the
analogous assertion for an affine algebraic set. We leave the proof to the reader.

Problems.

1. Is the set {(a,b,c) € P2(K):a # 0,b# 0} U{(1,0,0)} quasi-projective?

2. Let V be a quasi-projective algebraic set in P"(K),W be a quasi-projective algebraic set
in P"(K). Prove that s, ,(K)(V x W) is a quasi-projective algebraic subset of Seg, n(K) =
sn.m(K)(P?(K) x PT(K)) c Pr+Dm+D)-1(K),

3. Let us identify the product V x W C P"(K) xP"(K) of two quasi-projective algebraic k-sets with
a quasi-projective algebraic k-subset of the Segre set Segy, n(K). Let f: V = V'and g: W — W'
be two regular maps. Show that the map f x g: V x W — V' x W' is a regular map.

4. Is the union (resp. the intersection) of quasi-projective algebraic sets a quasi-projective algebraic
set?

5. Find the irreducible components of the projective subset of P3(K) given by the equations:
TyTy — T2 = 0,T,T5 — T2 = 0.

6. Show that every irreducible component of a projective hypersurface V(F) = {a € P"(K) :
F(a) = 0} is a hypersurface V(G), where G is an irreducible factor of the homogeneous polynomial
F(T).
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7. Describe explicitly (by equations) a closed subset of some K™ which is isomorphic to the

complement to a conic TyT; + Ty = 0 in P?(K).
8. Prove that a regular map is a continuous map and that the composition of regular maps is a

regular map.
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Lecture 9. THE IMAGE OF A PROJECTIVE ALGEBRAIC SET

Let f: V — W be a regular map of quasi-algebraic k-sets. We are interested in its image f (V).
Is it a quasi-projective algebraic set? For instance, let f : K? — K2 be given by (z,y) — (z, zy).
Then its image is the union of the set U = {(a,b) € K2 : a # 0} and the closed subset Z = {(0,0)}.
The only open subset of AZ(K) which contains the image f(K?) is K2 and the image is not
closed there. Thus f(A?(K)) is not locally closed in A? (K). Since K? is an open subset of
P2(K), f(AZ (K)) is not locally closed in P (K), i.e., it is not a quasi-projective algebraic set.

However, the situation is much better in the case where V is a projective set. We will prove
the following result:

Theorem 1. The image of a projective algebraic k-set V under a regular map f :V — W is a
closed subset of W in the Zariski k-topology.

To prove this theorem we note first that

f(V) =pry(7)

where
Tr=A(zy) eV xW:y= f(z)}

is the graph of f, and rmpr, : V. x W — W, (z,y) — y is the projection map. We will always

consider the product V x W as a quasi-projective set by embedding it into a projective space by

the Segre map. In particular, V x W is a topological space with respect to the Zariski topology.
Our theorem follows from the following two results:

Proposition 1. The graph 7 y of a regular map f : V — W is a closed subset of V. x W.

Theorem 2 (Chevalley). LetV be a projective algebraic k-set, W be a quasi-projective algebraic
k-set and Z be a closed subset of V. x W. Then pry(Z) is closed in W.

Let us first prove the proposition. The proof is based on the following simple observations:
(i) W c W' and f': V — W' is the composition of f and the inclusion map, then 7§ =
(V xW)N?. Thus, the closedness of 7 4 in V' x W' implies the closedness of 7 ¢.
(i) If f : V = W and f' : V! — W' are two regular maps, then the map f x f' : V.x W —
VIx W' (z,2") — (f(x), f'(y)) is a regular map (Problem 4 from Lecture 8).
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(iii) If Aw = {(y,y') € W x W : y =4’} (the diagonal of W), then ? ; = (f x idw )~ (Aw).

By (ii), fxidw : VxW — W x W is continuous. Thus it suffices to check that Ay C W xW is
closed. By (i) we may assume that W = Py (K). However, the diagonal Apn(x) C Py (K) x P} (K)
is given by the system of equations:

T;; _Tji =0,7,7=0,...,n, TijT’r“t _TitTT‘j =0,7,5,m,t=0,...,n.

in coordinates Tj; of the space containing the image of P} (K) x P} (K) under the Segre map
$n,n(K). This proves Proposition 1.

Remarks 1. It is known from general topology that the closedness of the diagonal of a topological
space X is equivalent to the Hausdorff separatedness of X. Since we know that algebraic sets are
usually not separated topological spaces, Proposition 1 seems to be contradictory. To resolve this
paradox we observe that the Zariski topology of the product V' x W is not the product of topologies
of the factors.

2. One should also compare the assertion of Theorem 2 with the definition of a perfect map
of topological spaces. According to this definition (see N. Bourbaki, General Topology, Chapter
1, §11), the assertion of the theorem implies that the constant map X — {point} is perfect.
Corollary 1 to Theorem 1 from loc. cit. says that this is equivalent to that X is quasi-compact.
Since we know that X is quasi-compact always (projective or not projective), this seems to be a
contradiction again. The explanation is the same as above. The Zariski topology of the product
is not the product topology. Nevertheless, we should consider the assertion of Theorem 2 as the
assertion about the “compactness” of a projective algebraic set.

Before proving Theorem 2 let us prove the following:

Lemma. Let V be a closed subset of P} (K) x P{*(K) (resp. of PR(K) x Aj*(K)). Then V
is the set of zeroes of polynomials Ps(Ty,...,T,,T},...,T)) € k[To,...,Tn,Tp,...,T)],s € S,

which are homogeneous of degree d(s) in variables Ty, ..., T, and homogeneous of degree d(s)' in
the variables T|,...,T), (resp. V is the set of zeroes of polynomials Ps(Ty,..., Ty, Z1,..., Z],) €
k[To,,...,Tn,Z1,...,2Z),],s € S, which are homogeneous of degree d(s) in variables Ty, ..., T,).

Conversely every subset of P} (K) x P'(K) (resp. of P} (K) x AJ" (K)) defined in this way is a
closed subset in the Zariski k-topology of the product.

Proof. Tt is enough to prove the first statement. The second one will follow from the first one
by taking the closure of V' in P} (K) x PJ*(K) and then applying the dehomogenization process
in the variable T;. Now we know that V is given by a system of homogeneous polynomials
in variables Tj; in the space P,(CnJrl)(mH)_l and the system of equations defining the Segre set
Segn,m(K). Using the substitution Tj; = TiT;, we see that V' can be given by a system of
equations in Tp,...,T,, T4, ..., T}, which are homogeneous in each set of variables of the same
degree. If we have a system of polynomials Ps(Ty,...,T,,T},...,T),) which are homogeneous of
degree d(s) in variables Tp,...,T,, and homogeneous of degree d(s)’ in variables T},..., T, , its
set of solutions in P} (K) x P{*(K) is also given by the system in which we replace each P, by
T/~ p i =0, m, if d(s) > d(s) and by T2 4 p, i =0, .. n, if d(s) < d(s)". Then
the enlarged system arises from a system of polynomials in T}; after substitution 7T;; = TZ-T;.

Now let us prove Theorem 2. Let V be a closed subset of P} (K). Then Z C V x W is a closed
subset of P"(K) x W and pra(Z) equals the image of Z under the projection P} (K) x W — W.
Thus we may assume that V = P} (K).

Let W = U;e1U; be a finite affine covering of W (i.e. a covering by open affine sets). Then
VXW =Uier(V xU;), Z = Ujer ZN(V x U;) and pra(Z) = UserpraZ N (V x U;). This shows
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that it suffices to check that proZ N (V x U;) is closed in U;. Thus we may assume that W = U is
affine. Then W is isomorphic to a closed subset of some A" (K),V x W is closed in V' x AJ* (K)
and pra(Z) is equal to the image of Z under the second projection V' x AJ" — AJ”. Thus we may
assume that W = AJ" (K) and V = P} (K).
Let Z be a closed subset of P} (K) x A7*(K). By the Lemma, Z can be given by a system of
equations
FiTy, ..., Toartrs o tm) =0,=1,...,N.

where F; € k[Ty,..., Ty, t1,...,ty] is a homogeneous of degree d(i) in variables Ty, ...,T,. For
every a = (ay,...,a,) € K™, we denote by X, the projective algebraic subset of P"(K) defined
by the system of homogeneous equations:

F{(Ty,...,Tp,a1,...,am) =0,i=1,...,N.

It is clear that X, = () if and only if (0,...,0) is the only solution of this system in K™*+!,
By Nullstellensatz, this happens if only if the radical of the ideal I, generated by the polyno-
mials F;(T,aq,...,a) is equal to (Tp,...,T,). This of course equivalent to the property that
(Ty, ..., Ty)* C I, for some s > 0.

Now we note that

pry(Z)={a€e K" : X, #0} ={a € K™ : (Ty,...,T,)° ¢ I, for any s > 0}

=Ns>ofa € K™ : (Tp,...,T,)° ¢ 1.}

Thus it suffices to show that each set Yy = {a € K™ : (Ty,...,T,)* ¢ I,} is closed in the Zariski
k-topology. Note that (Tp,...,T,)* C I, means that every homogeneous polynomial of degree
s can be written as ), F;(T,a)Q;(T)) for some Q;(T) € k[T]s_q¢i), where d(i) = degF;(T,a).
Consider the linear map of linear k-spaces

¢ &I k[Ts—aiy, (Q1,--..Qn) — ZFz’(Ta a)Qi(T)).

This map is surjective if and only if a € K™\Y;. Thus, a € Y if and only if rank(¢) < d = dimk[T];.
The latter condition can be expressed by the equality to zero of all minors of order d in any matrix
representing the linear map ¢. However, the coefficients of such a matrix (for example, with respect
to a basis formed by monomials) are polynomials in a1, . .., a, with coefficients from k. Thus, every
minor is also a polynomial in a. The vanishing of these polynomials define the closed subset Yy in
the Zariski k-topology. This proves Theorem 2.

Recall that a topological space X is said to be connected if X # X; U X5 where V; and V5
are proper open (equivalently, closed) subsets with empty intersection. One defines naturally the
notion of a connected component of V and shows that V is the union of finitely many connected
components. Clearly, an irreducible space is always connected, but the converse is false in general.
For every quasi-projective algebraic k-set V' we denote by mo(V) the set of its connected compo-
nents. Let 7o(V) denote the set of connected components of the corresponding K-set. Both of
these sets are finite since any irreducible component of V' is obviously connected. We say that V
is geometrically connected if #my(V) = 1. Notice the difference between connectedness and geo-
metric connectedness. For example, the number of connected components of the affine algebraic
k-subset of A} defined by a non-constant non-zero polynomial F(Z) € k[Z] equals the number
of irreducible factors of F'(Z). The number of connected components of the corresponding K-set
equals the number of distinct roots of F'(Z) in K.
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Corollary 1. Assume k is a perfect field. Let V be a projective algebraic k-set, n = #my(V).
Then there is an isomorphism of k-algebras O(V) = ki @ ... & k,, where each k; is a finite field

extension of k. Moreover
n

Z[ki L k| = #7o(V).
In particular, if V is connected as an algebraic K-set, O(V) = K.

Proof. Let Vi,...,V, be connected components of V. It is clear that O(V) = O(V;) &
... ® O(V,) so we may assume that V is connected. Let f € O(V). It defines a regular map
f:V — AY(K). Composing it with the inclusion A'(K) < Pi(K), we obtain a regular map
f'+V = Pi(K). By Theorem 1, f(V) = f/(V) is closed in P}(K). Since f(V) C A} (K), it is
a proper closed subset, hence finite. Since V is connected, f(V) must be connected (otherwise
the pre-image of a connected component of f(V') is a connected component of V). Hence f(V) =
{a1,...,a,} C K is the set of roots of an irreducible polynomial with coefficients in k. It is clear
that a; # 0 unless (V) = {0} hence f = 0. This implies that f(z) # 0 for any = € V. If f is given
by a pair of homogeneous polynomials (P, Q) then f~1! is given by the pair (Q, P) and belongs to
O(V). Therefore O(V) is a field. Assume k = K, then the previous argument shows that » = 1 and
f(z) =ay forallz € V,ie., O(V) = k. Thus if V denotes the set V considered as a K-set, we have
shown that O(V) =2 K™ where m = #7(V) = #mo(V). But obviously O(V) = O(V) ®;, K = K¢
where d = [O(V) : k|. Here we again use that O(V) is a separable extension of k. This shows that
m = [O(V) : k] and proves the assertion.

Corollary 2. Let Z be a closed connected subset of P} (K). Suppose Z is contained in an affine
subset U of P} (K). Then the ideal of O(U) of functions vanishing on Z is a maximal ideal. In
particular, Z is one point if k is algebraically closed.

Proof. Obviously Z is closed in U, hence is an affine algebraic k-set. We know that O(Z) = &’
is a finite field extension of k. The kernel of the restriction homomorphism resy,z : O(U) —
O(Z) = k' is a maximal ideal in O(U). In fact if A is a subring of k' containing k it must be a field
(every nonzero x € A satisfies an equation " +a;2" "' +... +an_17 + a, = 0 with a, # 0, hence
z(z" '+ a13" 2 + ... + ay_1)(—a,!) = 1). This shows that Z does not contain proper closed
subsets in the Zariski k-topology. If k is algebraically closed, all points are closed, hence Z must

be a singleton.

Corollary 3. Let f: V — W be a regular map of a connected projective algebraic set to an affine
algebraic set. Then f is a constant map.

Proof. We may assume that ¥ = K since we are talking about algebraic K-sets. Let W C
P" (K)o C P*(K) for some n, and f': V — P"(K) be the composition of f and the natural inclusion
W — P"(K). By Theorem 1, f(V) = f'(V) is a closed connected subset of P"(K) contained in an
affine set (the image of a connected set under a continuous map is always connected). By Corollary
2, f(V) must be a singleton.

Problems.

1. Let K[Ty,...,T,]q be the space of homogeneous polynomials of degree d with coefficients in an
algebraically closed field K. Prove that the subset of reducible polynomials is a closed subset of
K[Ty,...,T,]q where the latter is considered as affine space AN (K), N = (";d). Find its equation
when n =d = 2.

2. Prove that K™\ {a point} or P"(K) \ {point} is not an affine algebraic set if n > 1, also is not
isomorphic to a projective algebraic set.
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3. Prove that the intersection of open affine subsets of a quasi-projective algebraic set is affine
[Hint: Use that for any two subsets A and B of a set S, AN B = AgN (A x B) where the diagonal
Ag is identified with S].

4. Let X C P" be a connected projective algebraic set other than a point and Y is a projective set
defined by one homogeneous polynomial. Show that X N'Y # 0.

5. Let f: X - Z and g : Y — Z be two regular maps of quasi-projective algebraic sets. Define
X xzY as the subset of X x Y whose points are pairs (z,y) such that f(z) = ¢g(y). Show that
X Xz Y is a quasi-algebraic set. A map f: X — Z is called proper if for any map ¢ : Y — Z and
any closed subset W of X Xz Y the image of W under the second projection X XY — Y is closed.
Show that f is always proper if X is a projective algebraic set.
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Lecture 10. FINITE REGULAR MAPS

The notion of a finite regular map of algebraic sets generalizes the notion of a finite extension
of fields. Recall that an extension of fields F' — FE is called finite if ' is a finite-dimensional vector
space over F. This is easy to generalize. We say that an injective homomorphism ¢ : A — B
of commutative rings is finite if B considered as a module over A via of the homomorphism ¢ is
finitely generated. What is the geometric meaning of this definition? Recall that a finite extension
of fields is an algebraic extension. This means that any element in E satisfies an algebraic equation
with coefficients in F'. The converse is also true provided FE is finitely generated over F' as a field.
We shall prove in the next lemma that a finite extension of rings has a similar property: any
element in B satisfies an algebraic equation with coefficients in ¢(A). Also the converse is true if
we additionally require that B is a finitely generated algebra over A and every element satisfies a
monic equation (i.e. with the highest coefficient equal to 1) with coefficients in ¢(A).

Let us explain the geometric meaning of the additional assumption that the equations are
monic. Recall that an algebraic extension E/F has the following property. Let y : FF — K be a
homomorphism of F' to an algebraically closed field K. Then y extends to a homomorphism of
fields z : F — K. Moreover the number of these extensions is finite and is equal to the separable
degree [E : F]s of the extension E/F. An analog of this property for ring extensions must be
the following. For any algebraically closed field K which has a structure of a A-algebra via a
homomorphism y : A — K (this is our analog of an extension K/F) there a non-empty finite set
of homomorphisms z; : B — K such that z; o ¢ = y. Let us interpret this geometrically in the
case when ¢ is a homomorphism of finitely generated k-algebras. Let X and Y be afiine algebraic
k-varieties such that O(X) =2 B, O(Y) 2 A. The homomorphism ¢ defines a morphism f: X — Y
such that ¢ = f*. A homomorphism y: A — K is a K-point of Y. A homomorphism y; : B =+ K
such that z; o ¢ = y is a K-point of X such that fx(z;) = y. Thus the analog of the extension
property is the property that the map X (K) — Y (K) is surjective and has finite fibres. Let B is
generated over A by one element b satisfying an algebraic equation

oz +a1z" ' +... +a,=0

with coefficients in A. Assume the ideal I = (aq, ..., a,_1) is proper but a,, is invertible in A. Let m
be a maximal ideal in A containing I. Let K be an algebraically closed field containing the residue
field A/m. Consider the K-point of Y corresponding to the homomorphism y : A - A/m — K.
Since B = A[r]/(apz™ + a1z~ +... + a,), any homomorphism extending y must send a,, to zero
but this is impossible since a,, is invertible. Other bad thing may happen if a, € I. Then we
obtain infinitely many extensions of y, they are defined by sending = to any element in K. It turns
out that requiring that aq is invertible will guarantee that X (K) — Y (K) is surjective with finite
fibres.
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We start with reviewing some facts from commutative algebra.

Definition. A commutative algebra B over a commutative ring A is said to be integral over A if
every element z € B is integral over A (i.e. satisfies an equation " + a;2"~! + ... + a, = 0 with
a; € A)

Lemma 1. Assume that B is a finitely generated A-algebra. Then B is integral over A if and
only if B is a finitely generated module over A.

Proof. Assume B is integral over A. Let z1,...,x, be generators of B as an A-algebra (i.e.,
for any b € B there exists F' € A[Z1,...,Z,] such that b = F(z1,...,2y)). Since each z; is integral
over A, there exists some integer n(i) such that x?(z) can be written as a linear combination of
lower powers of z; with coefficients in A. Hence every power of z; can be expressed as a linear
combination of powers of x; of degree less than n(i). Thus there exists a number N > 0 such that
every b € B can be written as a polynomial in z1,...,z, of degree < N. This shows that a finite
set of monomials in z1,...,z, generate B as an A-module.

Conversely, assume that B is a finitely generated A-module. Then every b € B can be written
as a linear combination b = a1b; + ... + a,b., where by,...,b, is a fixed set of elements in B and
a; € A. Multiplying the both sides by b; and expressing each product b;bj as a linear combination
of b;’s we get

bb; = Zaijbi, a;j € A. (1)
J
This shows that the vector b = (by,...,b,) satisfies the linear equation (M — bl,)b = 0, where
M = (a;5). Let D = det(M —bI,). Applying the Cramer rule, we obtain that Db; = 0,7 = 1,...,n.
Using (1) we see that Dz = 0 for all z € B. In particular, D - D = D? = 0. Tt remains to use that
the equation D? = 0 is a monic equation for b with coefficients in A.

This Lemma implies the following result which we promised to prove in Lecture 2:

Corollary. Let B be an A-algebra. The set of elements in B which are integral over A is a subring
of B (it is called the integral closure of A in B).

Proof. Let b,b" € B be integral over A. Consider the A-subalgebra A[b, '] of B generated by
these elements. Since b is integral over A, it satisfies an equation b” + 16" "1 + ... 4+ a,,a; € A,
hence A[b] is a finitely generated A-module generated by 1,...,b" 1. Similarly, since b’ is integral
over A, hence over A[b], we get A[b,b'] = A[b][b'] is a finitely generated A[b]-module. But then
A[b,b'] is a finitely generated A-module. By Lemma 1, A[b, b'] is integral over A. This checks that
b+ b',b- b are integral over A.

Lemma 2. Let B be integral over its subring A. The following assertions are true:
(i) if A is a field and B is without zero divisors, then B is a field;
(ii) if I is an ideal of B such that I N A = {0} and B is without zero divisors then I = {0};
(iii) if Py C Py are two ideals of B with P; N A =Py N A and P; is prime, then Py = Psy;
(iv) if S is a multiplicatively closed subset of A, then the natural homomorphism Ag — Bg makes
Bg an integral algebra over Ag;
(v) if I is a proper ideal of A then the ideal IB of B generated by I is proper;
(vi) for every prime ideal P in A there exists a prime ideal P' of B such that P'N A =P.

Proof. (i) Every z satisfies an equation " +a;2" "' +...4a, = 0 with a; € A. Since B has no
zero divisors, we may assume that a,, # 0 if z # 0. Then z(z" '+ a;2" 2 +... 4 a,_1)(—a,; ) = 1.
Hence z is invertible.
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(ii) As in (i), we may assume that every nonzero z € I satisfies an equation z" + a;z" ! +
...+ a, =0 with a; € A and a, # 0. Then a, = —z(z" ' + a12" 2+ ... + a,_1) € I N A. Since
INn A ={0}, we obtain a,, = 0. Thus I has no nonzero elements.

(iii) Let Pp = P; N A. Then we may identify A = A/Py with a subring of B = B/P; with
respect to the natural homomorphism A/Py — B/P;. Let P be the image of P, in B. Then
PyNA = {0}. Obviously, B is integral over A and has no zero divisors. Thus we may apply (ii)
to obtain Pj = {0} hence P, = P;.

(iv) Obviously the map As — Bg is injective, so we may identify Ag with a subring of Bg.
If b/s € Bs and b satisfies a monic equation b" + a1b"~! + ... + a, = 0,a; € A, then b/s satisfies
the monic equation (b/s)™ + (a1/s)(b/s)" "1 + ... + (a,/s") = 0 with coefficients in Ag.

(v) If IB = B, then we can write 1 = a1by + ...+ apb, for some b; € B,a; € I. Let z1,...,2,
be a set of generators of B considered as A-module. Multiplying both sides of the previous equality
z; and expressing z;b; as a linear combination of the z;’s with coefficients in A we can write

n

T; = Zaijxj,i =1,...,n for some a;; € I.
Jj=1
Thus, the vector x = (z1,...,2,) € B" is a solution of a system of linear equations (M —I,)x =0

where M = (a;;). Let D = det(M — Ij). As in the proof of Lemma 1, we get D? = 0. Clearly
D=det(M —I) = (-1 + 1 (=D T+ ...+

where ¢;, being polynomials in a;;, belong to I. Squaring the previous equality, we express 1 as
a linear combination of the products c¢;c;. This shows that 1 € I. This contradiction proves the
assertion.

(vi) We know that the ideal
P'=PAp ={a/b€ Ap,a € P}

is maximal in Ap. In fact, any element from its complement is obviously invertible. Let B’ = Bg,
where S = A\ P. Then B’ is integral over A’ = Ap and, by (v), the ideal P'B’ is proper. Let
m be a maximal ideal containing it. Then m N A" = P’ because it contains the maximal ideal P’.
Now it is easy to see that the pre-image of m under the canonical homomorphism B — Bg is a
prime ideal of B cutting out the ideal P in A.

Definition. A regular map f: X — Y of affine algebraic k-sets is said to be finite if f*: O(Y) —
O(X) is injective and O(X) is integral over f*(O(Y)). A regular map f : X — Y of quasi-
projective algebraic k-sets is said to be finite if for every point y € Y there exists an affine open
neighborhood V' of y such that f~!(V) is affine and the restriction map f~1(V) — V is finite.

Note that if f: X — Y is a map of affine sets, then f* : O(Y) — O(X) is injective if and
only if f(X) is dense in Y. Indeed, if f*(¢) = 0 then f(X) C {y € Y : ¢(y) = 0} which is a closed
subset. Conversely, if f(X) is contained in a closed subset Z of Y then for every function ¢ € I(Y)
we have f*(¢) = 0.

Examples. 1. Let X = {(z,y) € K? :y = 22} C A%>(K) and Y = A'(K). Consider the projection
map f: X =Y, (z,y) = y. Then f is finite. Indeed, O(X) = k[Zy, Z5]|/(Zs — Z3),O(Y) = k[Z,]
and f* is the composition of the natural inclusion k[Z5] — k[Z7, Z5] and the natural homomorphism
k[Z1, 73] — k[Z1,Z5)/(Zy — Z?). Obviously it is injective. Let 21,22 be the images of Z; and Z,
in the factor ring k[Z1, Z5]/(Z2 — Z?). Then O(X) is generated over f*(O(Y)) by one element z;.

62



Finite regular maps 63

The latter satisfies a monic equation: 27 — f*(Z) = 0 with coefficients in f*(O(Y)). As we saw in
the proof of Lemma 1, this implies that O(X) is a finitely generated f*(O(Y))-module and hence
O(X) is integral over f*(O(Y')). Therefore f is a finite map.

2. Let 2o be a projective subspace of P} (K) of dimension 0, i.e., a point (ag,...,ay) with co-
ordinates in k. Let X be a projective algebraic k-set in P} (K) with 2o ¢ X and let f = pry, :
X - IP’Z_l(K) be the projection map. We know that Y = f(X) is a projective set. Let us see
that f : X — Y is finite. First, by a variable change, we may assume that zq is given by a
system of equations Ty = ... = T,_; = 0 where Ty, ...,T, are homogeneous coordinates. Then
f is given by (zg,...,2n) — (Zo,...,Zn—1). We may assume that y € Y lies in the open subset
V =Y NPy (K)o where 2o # 0. Tts preimage U = f~}(V) = X N PP(K),. Since f is sur-
jective f* : O(V) — O(U) is injective. Let us show that O(U) is integral over f*(O(V)). Let
Iy C k[Zy,...,Zy] be the ideal of X NP} (k)o, where Z; = T;/Ty,i = 1,...,n. Then V is given by
some ideal Jy in k[Zy,..., Z,_1], and the homomorphism f* is induced by the natural inclusion
k[Z1,...,Zn_1] Ck[Z1,...,Z,)]. Since O(U) is generated over k by the cosets z; of Z; modulo the
ideal Iy we may take z, to be a generator of O(U) over f*(O(V)). Let {Fs(T) = 0}s¢s be the
equations defining X. Since zg € X, the ideal generated by the polynomials F; and T;,i < n — 1,
must contain k[T']4 for some d > 0. Thus we can write

n—1
T¢=> AF.+ Y BT,
seS =0

for some homogeneous polynomials Ay, B; € k[Ty,...,T,]. Obviously the degree of each B; in
T, is strictly less than d. Dividing by some power of Ty, and reducing modulo Iy we obtain that
zpn, satisfies a monic equation with coefficients in f*(O(V)). This implies that O(V) is a finitely
generated f*(O(U))-module, hence is integral over f*(O(U)). By definition, X is finite over Y.
3. Let A = k[Z1] and B = A[Z1,Z5]/Z1Z> — 1. Consider ¢ : A — B defined by the natural
inclusion k[Z] C k[Zy, Z5]. This corresponds to the projection of the “hyperbola’ to the z-axis. It
is clearly not surjective. Thus property (v) is not satisfied (take I = (Z)). So, the corresponding
map of affine sets is not finite (although all fibres are finite sets).

Lemma 3. Let X be a quasi-projective algebraic k-set, ¢ € O(X) and D(¢) = {z € X : ¢(z) # 0}.
Then

Proof. We know that this is true for an affine set X (see Lecture 9). Let X be any quasi-
projective algebraic k-set. Obviously, for any open affine set U we have D(¢|U) = U N D(¢).
This shows that ¢|U N D(¢) is invertible, and by taking an affine open cover of D(¢), we conclude
that ¢|D(¢) is invertible. By the universal property of localization, this defines a homomorphism
a:O0(X)y = O(D(¢)). The restriction homomorphism O(X) — O(U) induces the homomorphism
ay : O(U)gv — O(D(¢) NU). By taking an affine open cover of X = U;U;, we obtain that all
ay, are isomorphisms. Since every element of O(X) is uniquely determined by its restrictions to
each U;, and any element of O(D(¢)) is determined by its restriction to each D(¢) NU;, we obtain
that « is an isomorphism.

Lemma 4. Let X and Y be two quasi-projective algebraic k-sets. Assume that Y is affine. Then
the natural map

Mapreg(Xa Y) — Homk—alg(O(Y)aO(X))a f — f*a
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is bijective.

Proof. We know this already if X and Y are both affine. Let U be an affine open subset of
X. By restriction of maps (resp. functions), we obtain a commutative diagram:

Mapreg (Xa Y) — Homk—alg(o(y)a O(X))

) \:
Mapreg(UaY) — Homk—alg(O(Y)aO(U))'

Here the bottom horizontal arrow is a bijection. Thus we can inverse the upper horizontal arrow as
follows. Pick up an open affine cover {U;};cr of X. Take a homomorphism ¢ : O(Y) — O(X), its
image in Homy_q14(O(Y), O(U;)) is the composition with the restriction map O(X) — O(U;). It
defines a regular map U; — Y. Since a regular map is defined on its open cover, we can reconstruct
a “global” map X — Y. It is easy to see that this is the needed inverse.

Lemma 5. Let X be a quasi-prjective algebraic k-set. Then X is affine if and only if O(X) is
a finitely generated k- algebra which contains a finite set of elements ¢; which generate the unit
ideal and such that each D(¢;) is affine.

Proof. The part “only if” is obvious. Let ¢1,...,¢, € O(X) which generate the unit ideal.
Then X = U;D(¢;). Let k[Z1,...,Z,] — O(X) be a surjective homomorphism of k-algebras and
I be its kernel. The set of zeroes of I in A" (K) is an affine algebraic set X’ with O(X') 2 O(X).
Let f: X — X' be the regular map corresponding by Lemma 4 to the previous isomorphism. Its
restriction to D(¢;) is an isomorphism for each i (here we use that D(¢;) is affine). Hence f is an
isomorphism.

Proposition 2. Let f : X — Y be a finite regular map of quasi-projective algebraic k-sets. The
following assertions are true:
(i) for every affine open subset U of Y, f~1(U) is affine and f : f~1(U) — U is finite;
(ii) if Z is a locally closed subset of Y, then f : f~Y(Z) — Z is finite;
(iii) if f : X = Y and g : Y — Z are finite regular maps, then go f : X — Z is a finite regular
map.

Proof. (i) Obviously we may assume that Y = U is affine. For any y € Y, there exists an
open affine neighborhood V' of y such that f : f~*(V) — V is a finite map of affine k-sets. Let
¢ € O(Y), then D(¢) C V is affine and f~1(D(¢)) = D(f*(¢)) C f~1(V) is affine. Moreover the
map f~1(D(¢)) — D(¢) is finite (this follows from Lemma 2(iv) and Lemma 3). Thus we may
assume that Y is covered by affine open sets of the form D(¢) such that f=1(D(¢)) is affine and
the restriction of the map f to f~1(D(¢)) is finite.

Now let

X =UU;, Ui = [~ (Vi) = D(f*(¢4)),
fi = flU; : U; = V; is a finite map of affine sets.

By Lemma 1, O(U;) is a finitely generated O(V;)-module. Let {w;;};=1,...n(s) be a set of generators
of this module. Since w;; = a/f*(¢;)" for some a € O(X) and n > 0, and f*(¢;) is invertible in
O(U;), we may assume that w;; € O(X). For every ¢ € O(X) we may write

$IU = (b;/ 1 (¢:)")wiy
i=0
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for some b;/f*(¢:)"@ € O(U;). Since M;(Y \ D($:)) = NiV(hi) = NV (¢"V) = 0, the ideal in
O(Y) generated by the ¢;’s contains 1. Thus 1 = Z h~¢7»l(2) for some h; € O(Y), hence

1_Zf n(z)

and

BU: =D _($1U[*(ha) [ (¢ Zf $)bjwi;)]

This shows that ¢ = >, ¢jjw;; for some ¢;; € O(X), that is, {w;;} is a generating set of the
f*(O(Y))-module O(X). In particular, O(X) is integral over f*(O(Y)) and O(X) is an algebra
of finite type over k. Since the elements f*(¢;)"(*) generate the unit ideal in O(X), applying by
Lemma 5, we obtain that X is an affine set .

(ii) Let Z be a locally closed subset of Y. Then Z = UNZ', where U is open and Z’ is closed in
Y. Taking an affine open cover of U and applying (i), we may assume that Y = U is affine and Z is
a closed subset of Y. Then f~1(Z) is closed in X. Since X is affine f~1(Z) is affine. The restriction
of fto f~1(Z) is a regular map f : f~1(Z) — Z of affine sets corresponding to the homomorphism
of the factor-algebras f* : O(Y)/I(Z) — O(X)/I(f~%(Z)). Since I(f~1(2)) = f*(I1(Z))O(X), f*
is injective. By Lemma 2, the corresponding extension of algebras is integral. Thus f is finite.

(iii) Applying (i), we reduce the proof to the case where X,Y and Z are affine. By Lemma 1,
O(X) is finite over f*(O(Y)) and f*(O(Y)) is finite over f*(¢*(O(Z))) = (go f)*(O(Z)). Thus
O(X) is finite over (go f)*(O(Z)), hence integral over (g o f)*(O(Z)).

Proposition 3. Let f: X — Y be a finite regular map of algebraic k-sets. Then
(i) f is surjective;
(ii) for any y € Y, the fibre f~1(y) is a finite set.

Proof. Clearly, we may assume that X and Y are affine, B = O(X) is integral over A = O(Y)
and ¢ = f* is injective. A point y € Y defines a homomorphism ev, : A = K whose kernel is a
prime ideal p. A point z € f~!(y) corresponds to a homomorphism ev, : B — K of k-algebras such
that its composition with ¢ is equal to ev,. By Lemma 2 (vi), there exists a prime ideal P in B
such that ¢=1(P) = p. Let Q(B/P) be the field of fractions of the quotient ring B/P and Q(A/p)
be the field of fractions of the ring A/p. Since B is integral over A, the homomorphism ¢ defines an
algebraic extension Q(B/P)/Q(A/p) (Lemma 2 (iv)). Since K is algebraically closed, there exists a
homomorphism Q(B/P) — K which extends the natural homomorphism Q(A/p) — K defined by
the injective homomorphism A/p — K induced by ev,. The composition of the restriction of the
homomorphism Q(B/P) — K to B/P and the factor map B — B/P defines a point z € f~1(y).
This proves the surjectivity of f.

Note that the field extension Q(B/P)/Q(A/p) is finite (since it is algebraic and Q(B/P) is
a finitely generated algebra over Q(A/p). It is known from the theory of field extensions that the
number of homomorphisms Q(B/P) — K extending the homomorphism A/p — K is equal to the
separable degree [Q(B/P) : Q(A/p)]s of the extension Q(B/P)/Q(A/frakp). It follows from the
previous arguments that the number of points in f~!(y) is equal to the sum

Y [QB/P):QA/p)s.
P:p~1(P)=p

So it suffices to show that the number of prime ideals P C B such that ¢=1(P) = p is finite.
It follows from Lemma 2 (iii) that the set of such prime ideals is equal to the set of irreducible
components of the closed subset of X defined by the proper ideal p B. We know that the number
of irreducible components of an affine k-set is finite. This proves the second assertion.

65



66 Lecture 10

Theorem. Let X be a projective (resp. affine) irreducible algebraic k-set. Then there exists a
finite regular map f : X — P} (K) (resp. A} (K)).

Proof. Assume first that X is projective. Let X be a closed subset of some P} (K) for some
r as a closed subset. If X = P} (K), we take for f the identity map. Let z € P} (K)\ X and
Py X — ]P’Z_l (K) be the linear projection from the point z. We know from the previous examples
that p, : X — p,(X) is a finite map. If p,(X) = P} ' (K), we are done. Otherwise, we take a
point outside p,(X) and project from it. Finally, we obtain a finite map (composition of finite
maps) X — P} (K) for some n.

Assume that X is affine. Then, we replace X by an isomorphic set lying as a closed subset
of P (K)o of some P7(K). Let X be the closure of X in P7(K). Projecting from a point z €
Py (K)\ (X UPL(K)p), we define a finite map X — P} ' (K). Since one of the equations defining
z can be taken to be Ty = 0, the image of P} (K )y is contained in P} ' (K),. Thus the image of X
is contained in P} "' (K)o = A} ' (K). Continuing as in the projective case, we prove the theorem.

The next corollary is called the Noether Normalization theorem. Together with the two
Hilbert’s theorems (Basis and Nullstellensatz) these three theorems were known as “the three
whales of algebraic geometry.”

Corollary. Let A be a finitely generated algebra over a field k. Then A is isomorphic to an
integral extension of the polynomial algebra k[Zy, ..., Z,].

Proof. Find an affine algebraic set X with O(X) = A and apply the previous theorem.

Problems.

1. Decide whether the following maps f: X — Y are finite:

(a) Y =V (Z2 — Z3) be the cuspidal cubic, X = Al, f is defined by the formula z — (23, 22);
(b) X =Y = A2, f is defined by the formula (z,y) — (zy,y).

2. Let f: X — Y be a finite map. Show that the image of any closed subset of X is closed in Y.
3. Let f: X =Y and g: X’ — Y’ be two finite regular maps. Prove that the Cartesian product
map f X g: X x X' Y xY'is a finite regular map.

4. Give an example of a surjective regular map with finite fibres which is not finite.

5. Let A be an integral domain, Q be its field of fractions. The integral closure A of A in Q is
called the normalization of A. A normal ring is a ring A such that A = A.

(a) Prove that A is a normal ring;

(b) Prove that the normalization of the ring k[Z1, Z5]/(Z? — Z2(Z3 + 1)) is isomorphic to k[T];
(c) Show that k[Z1, Zo, Z3]/(Z1Z2 — Z2) is a normal ring.

6. Let B = k[Z1,75|/(Z1Z3 + Z>+ 1). Find a subring A of B isomorphic to a ring of polynomials
such that B is finite over A.
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Lecture 11. DIMENSION

In this lecture we give a definition of the dimension of an algebraic (= quasi-projective alge-
braic) k-set. Recall that the dimension of a linear space L can be defined by :

dimZL = sup{r : 3 a strictly decreasing chain of linear subspaces Lo D Ly D ... D L, }.

The dimension of algebraic sets is defined in a very similar way:

Definition. Let X be a non-empty topological space. Its Krull dimension is defined to be equal
to

dimX = sup{r: 3 achain Zy D Z; D ... D Z, # ) of closed irreducible subsets of X }.

By definition the dimension of the empty set is equal to —oc.
The dimension of an algebraic k-set X is the Krull dimension of the corresponding topological
space.

Example. dimA} (K) = 1. Indeed, the only proper closed irreducible subset is a finite set defined
by an irreducible polynomial with coefficients in k. It does not contain any proper closed irreducible
subsets.

Propositon 1 (General properties of dimension). Let X be a topological space. Then
(i) dim X = 0 if X is a non-empty Hausdorff space;
(ii)) dim X = sup{dim X;,7 € I'}, where X;,i € I, are irreducible components of X ;
(iii) dim X > dim Y if Y C X, the strict inequality takes place if none of the irreducible components
of the closure of Y is an irreducible component of X ;

Proof. (i) In a non-empty Hausdorff space a point is the only closed irreducible subset.

(ii) Let Zyg D Zy D ... D Z, be a strictly decreasing chain of irreducible closed subsets of
X. Then Zy = Ujer(Zy N X;) is the union of closed subsets Zy N X;. Since Z; is irreducible,
Zy N X; = Zy for some X;, i.e., Zg C X;. Thus the above chain is a chain of irreducible closed
subsets in X; and r < dim X;.

(iii) Let Zy D Z; D ... D Z, be a strictly decreasing chain of irreducible closed subsets
of Y, then the chain of the closures Z; of Z; in X of these sets is a strictly decreasing chain
of irreducible closed subsets of X. As we saw in the proof of (ii) all Z; are contained in some
irreducible component X; of X. If this component is a not an irreducible component of the closure
of Y, then X; D Z, and we can add it to the chain to obtain that dim X > dim Y.
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Proposition 2. An algebraic k-set X is of dimension 0 if and only if it is a finite set.

Proof. By Proposition 1(ii) we may assume that X is irreducible. Suppose dim X = (0. Take
a point £ € X and consider its closure Z in the Zariski k-topology. It is an irreducible closed
subset which does not contain proper closed subsets (if it does, we find a proper closed irreducible
subset of Z). Since dim X = 0, we get Z = X. We want to show that X is finite. By taking
an affine open cover, we may assume that X is affine. Now O(X) is isomorphic to a quotient of
polynomial algebra k[Z;,...,Z,]/I. Since X does not contain proper closed subsets I must be a
maximal ideal. As we saw in the proof of the Nullstellensatz this implies that O(X) is a finite
field extension of k. Every point of X is defined by a homomorphism O(X) — K. Since K is
algebraically closed there is only a finite number of homomorphisms O(X) — K. Thus X is a
finite set (of cardinality equal to the separable degree of the extension O(X)/k).

Conversely, if X is a finite irreducible set, then X is a finite union of the closures of its points.
By irreduciblity it is equal to the closure of any of its points. Clearly it does not contain proper
closed subsets, hence dim X = 0.

Definition. For every commutative ring A its Krull dimension is defined by

dim A = sup{r : strictly increasing chain Py C ... C Py of proper prime ideals in A}

Proposition 3. Let X be an affine algebraic k-set and A = O(X) be the k-algebra of regular
functions on X. Then

dim X = dim A.

Proof. Obviously follows from the existence of the natural corresponence between closed
irreducible subsets of X and prime ideals in O(X) & A.

Recall that a finite subset {z1,...,zx} of a commutative algebra A over a field k is said to be
algebraically dependent (resp. independent) over k if there exists (resp. does not exist) a non-zero
polynomial F'(Zy,...,Zy) € k[Z1, ..., Zy] such that F(zy,...,z;) = 0. The algebraic dimension of
A over k is the maximal number of algebraically independent elements over &k in A if it is defined
and oo otherwise. We will denote it by alg.dim, (A4).

Lemma 1. Let A be a k-algebra without zero divisors and Q(A) be the field of fractions of A.
Then

(i) alg.dim; Q(A) = alg.dim (A);

(ii) alg.dim;(A) > dim A.

Proof. (i) Obviously, alg.dim;(A) < alg.dim,(Q(A)). If z1,...,z, are algebraically inde-
pendent elements in QQ(A) we can write them in the form a;/s, where a; € Aji = 1,...,r,
and b € A. Counsider the subfield Q' of Q(A) generated by ay,...,a,,s. Since Q' contains
Tiy.e., Ty, 8, alg.dim, @ > r. If ay,...,a, are algebraically dependent, then @’ is an algebraic
extension of the subfield Q" generated by s and ay,...,a, with some a;, say a,, omitted. Since
alg.dim, Q' = alg.dim; Q", we find r algebraically independent elements ay,...,a,_1,s in A. This
shows that alg.dim; Q(A) < alg.dim, A.

(ii) Let P be a prime ideal in A. Let Zi,...,Z, be algebraically independent elements over
k in the factor ring A/P and let z1,...,z, be their representatives in A. We claim that for
every nonzero x € P the set x1,...,x,,z is algebraically independent over k. This shows that
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alg.dim; A > alg.dim,A/P and clearly proves the statement. Assume that z1,...,z,,z are alge-

braically dependent. Then F'(zi,...,z,,2) = 0 for some polynomial F' € k[Zy,...,Z,41] \ {0}.
We can write F' as a polynomial in Z, 1, with coefficients in k[Z;,...,Z,]. Then

F(zy,...,2r2) = ao(z1, ...y xr) 2" + .o+ ap—1(21,. .., 20)x + ap(z1, ... 2) =0,

where a; € k[Z1,...,7Z,]. Cancelling by z, if needed, we may assume that a,, # 0 (here we use
that A does not have zero divisors). Passing to the factor ring A/P, we obtain the equality

F(zy,...,Zp,2) = ao(Z1, ..., Zp)Z"+.. . Fan_1(T1,. .., Tp)T+an(T1,...,ZTp) = an(Z1,...,%) =0,

which shows that zi,...,Z, are algebraically dependent. This contradiction proves the claim.

Proposition 4.
dim A} (K) = n.

Proof. By Proposition 3, we have to check that dim k[Zy, ..., Z,] = n. Obviously,
(0) C(Z1) C(Z1,722) C ... C(Z1,y. ., Zy)
is a strictly increasing chain of proper prime ideals of k[Z1, ..., Z,]. This shows that
dim k[Zy,...,Z,] > n.
By Lemma 1,
alg.dim k[Zy,..., Z,] = alg.dim k(Z1,...,Z,) =n > dim k[Z4,...,Z,] > n.

This proves the assertion.

Lemma 2. Let B a k-algebra which is integral over its subalgebra A. Then
dim A = dim B.

Proof. For every strictly increasing chain of proper prime ideals Py C ... C Py in B, we have
a strictly increasing chain Py N A C ... C Pr N A of proper prime ideals in A (Lemma 2 (iii) from
Lecture 10). This shows that dim B < dim A.

Now let PyNA C ... C PrNA be a strictly increasing chain of prime ideals in A. By Lemma 2
from Lecture 10, we can find a prime ideal Qg in B with Qo N A = Py. Let A = A/Py, B = B/Qy,
the canonical injective homomorphism A — B is an integral extension. Applying the Lemma again
we find a prime ideal Q; in B which cuts out in A the image of P;. Lifting Q; to a prime ideal
Q; in B we find @1 D Qp and @1 N A = P;. Continuing in this way we find a strictly increasing
chain of prime ideals Qg D Q1 D ... D Qg in B. This checks that dim B > dim A and proves the
assertion.
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Theorem 1. Let A be a finitely generated k-algebra without zero divisors. Then
dim A = alg.dim; A = alg.dim; Q(A).
In particular, if X is an irreducible affine algebraic k-set and R(X) is its field of rational functions,

then
dim X = alg.dim;O(X) = alg.dim; R(X).

Proof. By Noether’s Normalization Theorem from Lecture 10, A is integral over its subalgebra
isomorphic to k[Zy,...,Z,]. Passing to the localization with respect to the multiplicative set
S =k[Z1,...,Z,])\ {0}, we obtain an integral extension k(Z1,...,Z,) — Ags. Since k(Z1,...,Zy)
is a field, and A is a domain, Ag must be a field equal to its field of fractions Q(A). The field
extension k(Z1,...,Z,) — Q(A) is algebraic. Applying Lemmas 1 and 2 we get
alg.dimy A > dim A = dim k[Z,,..., Z,] = alg.dimyk(Zy, ..., Z,) = alg.dim;Q(A) = alg.dim; A.
This proves the assertion.

So we see that for irreducible affine algebraic sets the following equalities hold:
dim X = dim O(X) = alg.dim, O(X) = alg.dim, R(X) =n

where n is defined by the existence of a finite map X — A7 (K).
Note that, since algebraic dimension does not change under algebraic extensions, we obtain

Corollary. Let X be an affine algebraic k-set and let X' be the same set considered as an algebraic
k'-set for some algebraic extension k' of k. Then

dim X = dim X’.

To extend the previous results to arbitrary algebraic sets X, we will show that for every dense
open affine subset U C X
dim U = dim X.
This will follow from the following:

Theorem 2 (Geometric Krull’s Hauptidealsatz). Let X be an affine irreducible algebraic
k-set of dimension n and let ¢ be a non-invertible and non-zero element of O(X). Then every
irreducible component of the set V(¢) of zeroes of ¢ is of dimension n — 1.

To prove this theorem we shall need two lemmas.

Lemma 3. Let B be a domain which is integral over A = k[Z,...,Z,], and let = and y be coprime
elements of A. Assume that z|uy for some u € B. Then z|u’ for some j.

Proof. Let uy = xz for some z € B. Since z is integral over Q(A) its minimal monic polyomial
over (Q(A) has coefficients from A. This follows from the Gauss Lemma (if F/(T') € Q(A)[T] divides
a monic polynomial G(T') € A[T] then F(T) € A[T]). Let

F(T)=T"+a,T" ' +... +a, =0,a; € A,
be a minimal monic polynomial of z. Plugging z = uy/z into the equation, we obtain that u
satisfies a monic equation:
F(T) =T" + (ayz/y)T" ' + ... + (a,2" /y™) = 0
with coefficients in the field Q(A). If u satisfies an equation of smaller degree over Q(A), after
plugging in v = zz/y, we find that z satisfies an equation of degree smaller than n. This is
impossible by the choice of F(T'). Thus F(T')’ is a minimal polynomial of u. Since u is integral

over A, the coefficients of F(T)’ belong to A. Therefore, y'|a;z’, and, since z and y are coprime,
y'|a;. This implies that u"™ + xt = 0 for some t € A, and therefore z|u".
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Lemma 4. Assume k is infinite. Let X be an irreducible affine k-set, and let ¢ be a non-zero and
not invertible element in O(X). There exist ¢1, ..., ¢, € O(X) such that the map X — AT (K)
defined by the formula © — (¢(z), ¢1(x), ..., ¢n(z)) is a regular finite map.

Proof. Replacing X by an isomorphic set, we may assume that X is a closed subset of some
PP (K)o, ¢ = F(To, ..., Ty)/T§ for some homogeneous polynomial F(T') of degree r > 0. Since ¢ is
not invertible and O(X) is a domain, (¢) is a proper ideal with rad(¢) # {0}. Thus V(¢) is a proper
closed subset of X. Let X be the closure of X in P7*(K). Obviously every irreducible component
of the closure V(F) of V(¢) in X is not contained in V(T,). By Proposition 1 this implies that
dim X NV(F)NV(Ty) < dim X NV (F) < dim X = n. Let F;(T) be a homogeneous polynomial
of degree d which does not vanish identically on any irreducible component of X NV (7T,). One
constructs Fy(T) by choosing a point in each component and a linear homogeneous form L not
vanishing at each point (here where we use the assumption that & is infinite) and then taking
Fy = L% Then

dim X NV(Ty) NV (F)NV(F) < dim X NV(F)NV(Ty,)

Continuing in this way we find n homogeneous polynomials Fy(T),. .., F,,(T) of degree d such that
XNV(To)NV(E)NV(F)N...NV(F,) = 0.

Let f: X — PPTH(K) be the regular map given by the polynomials (T¢f, F, Fy, ..., F,). We claim
that it is finite. Indeed, replacing X by its image vg(X) under the Veronese map vq : Pi*(K) —
PYN (k), we see that f is equal to the restriction of the linear projection map

pre ve(X) — Pp(K)

where E is the linear subspace defined by the linear forms in N 4+ 1 unknowns corresponding to
the homogeneneous forms T¢, F, Fy,...,F,. We know that the linear projection map is finite.
Obviously, f(X) C P! (K)y, and the restriction map f|X : X — PYTH(K)o = AP (K), defined
by the formula

F B

(z) i
F R
T T

I—>( .,T—Od

(), (2)) = (B(2); $1(2); . .., ¢n())

is finite.

Proof of Krull’s Hauptidealsatz:

Let f : X — A""Y(K) be the finite map constructed in the previous lemma. It suffices to
show that the restrictions ¢; of the functions ¢;(i = 1,...,n) to any irreducible component Y of
V (¢) are algebraically independent elements of the ring O(Y') (since dim Y = alg.dim; O(Y")). Let
F € k[Zy,...,Z,]\ {0} be such that F(¢1,...,dn) € I(Y). Choosing a function g ¢ I(Y') vanishing
on the remaining irreducible components of V' (¢), we obtain that

V(F(¢1,...¢n)g) D V().

By the Nullstellensatz, ¢|(F(f1,...,¢n)g)" for some N > 0. Now, we can apply Lemma 3.
Identifying k[Z1,...,Z,, Zy4+1] with the subring of O(X) by means of f*, we see that ¢ =
i1, F(p1, .oy bn) = F(Zi,..., Zn), and Zp o 1|F(Z1,..., Zy)NgY in O(X). From Lemma 4
we deduce that Z,,1/¢?" for some j > 0, i.e., g = 0 on V(¢) contradicting the choice of g. This
proves the assertion.
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Theorem 3. Let X be an algebraic set and U be a dense open subset of X. Then
dim X =dim U.

Proof. Obviously we may assume that X is irreducible and U is its open subset. First let us
show that all affine open subsets of X have the same dimension. For this it is enough to show that
dim U = dim V if V C U are affine open subsets. Indeed, we know that for every pair U and U’
of open affine subsets of X we can find an affine non-empty subset W C U N U’. Then the above
will prove that dim W = dim U,dim W = dim U’. Assume U is affine, we can find an open subset
D(¢) cV C U, where ¢ € O(U) \ O(U)*. Then

dim D(¢) = dim O(D(¢)) = dim O(U)[Z]/(Z¢ — 1) = (dim O(U) + 1) — 1 = dim O(U) = dim U.
Here we have used that
dim A[Z] = alg.dim, A[Z] = alg.dim,Q(A[Z]) + 1 =

alg.dim,Q(A)(Z) = alg.dim;Q(A) + 1 =dim A +1

for every finitely generated k-algebra A, and, of course the Krull Hauptidealsatz. This shows that
all open non-empty affine subsets of X have the same dimension. Let Zy D Z; D ... D Z, be a
maximal decreasing chain of closed irreducible subsets of X, i.e., n = dim X. Take z € Z,, and let
U be any open affine neighborhood of z. Then

ZoNUDZiNUD...DZ, NU#0

is a decreasing chain of closed irreducible subsets of U (note that Z; NU # Z; N U for i > j since
otherwise Z; = Z; U (Z; N (X — U)) is the union of two closed subsets). Thus dim U > dim X,
and Proposition 1 implies that dim U = dim X. This proves that for every affine open subset U
of X we have dim U = dim X. Finally, if U is any open subset, we find an affine subset V' C U
and observe that

n=dimV <dmU <dim X =n

which implies that dim U = dim X.

Corollary 1.
dim P" (k) = n.

Proof. Apply Proposition 4.
Corollary 2. Let f: X — Y be a finite map of algebraic k-sets. Then
dim X =dim Y.

Proof. Let Y; be an irreducible component of Y. By Proposition 2 of Lecture 10, the restriction
of the map f to f~1(Y;) is a finite regular map f; : f~1(Y;) — Y;. Take any open affine subset
U of Y;. Then V = f~1(U) is affine and the restriction map V — U is finite. By Lemma
2, dim U = dim V. Hence dim f~1(Y;) = dim V = dim U = dim Y;. Since any irreducible
component of X is contained in f~(V;) for some irreducible component V; of Y, the assertion
follows from Proposition 1.
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Theorem 4. Let F' be a homogeneous polynomial not vanishing identically on an irreducible
quasi- projective set X in P}(K) and Y be an irreducible component of X NV (F'), then, either Y
is empty, or

dim Y =dim X — 1.

Proof. Assume Y # (). Let y € Y and U be an open affine subset of X containing y. Then
Y NU is an open subset of Y, hence dim Y NU = dim Y. Replacing U with a smaller subset, we
may assume that U C P"(k); for some 7. Then F defines a regular function ¢ = F/T],r = deg(F),
on U, and Y NU = D(¢) C U. By Krull’s Hauptidealsatz, dim Y N U = dim U — 1. Hence

dimY =dimYNU =dim U — 1 =dim X - 1.

Corollary 1. Let X be a quasi-projective algebraic k-set in P} (K), Fy,..., F, € k[Ty,...,T,] be
homogeneous polynomials, Y = X NV ((Fy,...,F,)) = XNV (F)N...NnV(F,) be the set of its
common zeroes and Z be an irreducible component of this set. Then, either Z is empty, or

dim Z > dim X —r.

The equality takes place if and only if for every i = 1,...,r the polynomial F; does not vanish
identically on any irreducible component of X NV (Fy)N...NV(F;_y).

Corollary 2. Every r < n homogeneous equations in n + 1 unknowns have a common solution
over an algebraically closed field. Moreover, if r < n, then the number of solutions is infinite.

Proof. Apply the previous Corollary to X = P} and use that an algebraic set is finite if and
only if it is of dimension 0 (Proposition 2).

Example. Let C = v3(P!(K)) be a twisted cubic in P3(K). We know that C is given by three
equations:
Fi =TT, —T? =0,F, = TyTs - T1T» = 0, F3 = T\ T — T¢ = 0.

We have V(Fy) NV (Fy) = C UL, where L is the line Ty = T7 = 0. At this point, we see that each
irreducible component of V (F;) NV (F») has exactly dimension 1 = 3—2. However, V(F3) contains
C and cuts out L in a subset of C. Hence, every irreducible component of V (F;) NV (F2) NV (F3)
is of the same dimension 1.

Theorem 5 (On dimension of fibres). Let f : X — Y be a regular surjective map of irreducible
algebraic sets, m = dim X,n =dim Y. Then

(i) dim f~'(y) >m —n forany y € Y;

(ii) there exists a nonempty open subset V of Y such that dim f~!(y) =m —n for any y € V.

Proof. Let z € f~*(y). Replacing X with an open affine neighborhood of z, and same for y,
we assume that X and Y are affine. Let ¢ : Y — A" (K) be a finite map and f' = ¢o f. Applying
Proposition 3 from Lecture 10 we obtain that, for any z € A" (K), the fibre f'~1(2) is equal to a
finite disjoint union of the fibres f~!(y) where y € ¢~1(2). Thus we may assume that ¥ = A" (K).

(i) Each point y = (ay,...,a,) € A" (K) is given by n equations Z; —a; = 0. The fibre f=1(y)
is given by n equations f*(Z; — a;) = 0. Applying Hauptidealsatz, we obtain (i).

(ii) Since f is surjective, f* : O(Y) — O(X) is injective, hence defines an extension of fields
of rational functions f* : R(Y) — R(X). By the theory of finitely generated field extensions,
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L = R(X) is an algebraic extension of a purely transcendental extension K’ = R(Y)(z1,...,2,) of
K = R(Y). Clearly,
m = alg.dimR(X) = alg.dimR(Y) +r=n+r.

Let ¢ : X— —= Y X A" (K) be a rational map of affine sets corresponding to the extension L/K'.
We may replace again X and Y by open affine subsets to assume that ¢ is regular. Let O(X)
be generated by u1,...,uy as a k-algebra. We know that every u; satisfies an algebraic equation
apul + ...+ aqg = 0 with coefficients in K’ = R(Y x A"(K)). Replacing Y x A"(K) by an open
subset U; we may assume that all a; € O(U) and aq is invertible (throwing away the closed subset
of zeroes of ag). Taking the intersection U of all U;’s, we may assume that all u; satisfy monic
equations with coefficients in O(U). Thus O(X) is integral over O(U) hence ¢ : X — U is a
finite map. Let p : Y x A"(K) — Y be the first projection. The corresponding extension of
fields K’'/K is defined by p*. Since p is surjective, p(U) is a dense subset of Y. Let us show
that p(U) contains an open subset of Y. We may replace U by a subset of the form D(F') where
F=FY,....,.Yy,Z1,...,2,) € O(Y x A"(K)). Write F = }_, F;Z" as a sum of monomials in
Zi,...,Zy. For every y € Y such that not all F;(y) = 0, we obtain non-zero polynomial in Z,
hence we can find a point z € A" (K) such that F(y,z) # 0. This shows that p(D(F')) D UD(F;),
hence the assertion follows. Let V' be an open subset contained in p(U). Replacing U by an open
subset contained in p~!(V'), we obtain a regular map p: U — V and the commutative triangle:

pHU) —— U
N P
V

The fibres of p are open subsets of fibres of the projection Y x A" (K) — A" (K) which are affine
n-spaces. The map ¢ : ¢~1(U) — U is finite as a restriction of a finite map over an open subset.
Its restriction over the closed subset p~!(y) is a finite map too. Hence ¢ defines a finite map

f=Hy) = p~H(y) and
dim f~Yy) =dimp~!(y) =r =m —n.

The theorem is proven.
Corollary. Let X and Y be irreducible algebraic sets. Then
dim X xY =dim X + dim Y.
Proof. Consider the projection X x Y — Y and apply the Theorem.

Theorem 6. Let X and Y be irreducible quasi-projective subsets of P" (K ). For every irreducible
component Z of X NY
dim Z > dim X +dim Y — n.

Proof. Replacing X and Y by its open affine subsets, we may assume that X and Y are closed
subsets of A" (K). Let A : A"(K) — A" (K) x A" (K) be the diagonal map. Then A maps X NY
isomorphically onto (X x Y) N Aun k), where Ayn (k) is the diagonal of A" (K). However, Ayn (k)
is the set of common zeroes of n polynomials Z; — Z; where Z1,..., Z, are coordinates in the first
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factor and Z1,...,Z) are the same for the second factor. Thus we may apply Theorem 2 n times
to obtain
dim Z >dim X xY —n.

It remains to apply the previous corollary.

We define the codimension codim Y (or codim (Y, X) to be precise) of a subspace Y of a
topological space X as dim X — dim Y. The previous theorem can be stated in these terms as

codim (X NY,P"(K)) < codim (X,P"(K)) + codim (Y,P"(K)).
In this way it can be stated for the intersection of any number of subsets.

Exercises.

1. Give an example of

(a) a topological space X and its dense open subset U such that dim U < dim X;

(b) a surjective continuous map f: X — Y of topological spaces with dim X < dim Y;

(c) a Noetherian topological space of infinite dimension.

2. Prove that every closed irreducible subset of P"(K) or A" (K) of codimension 1 is the set of
zeroes of one irreducible polynomial.

3. Let us identify the space K™ with the space of matrices of size m X n with entries in K. Let
X' be the subset of matrices of rank < m — 1 where m < n. Show that the image of X'\ {0} in
the projective space P*™~1(K) is an irreducible projective set of codimension n — m + 1.

4. Show that for every irreducible closed subset Z of an irreducible algebraic set X there exists a
chain of n = dim X + 1 strictly decreasing closed irreducible subsets containg Z as its member.
Define codimension of an irreducible closed subset Z of an irreducible algebraic set X as

codim (Y, X') = max{k : 3 a chain of closed irreducible subsets Z = Zy C Z; C ... C Zy}.

Prove that dim Y 4 codim (Y, X) = dim X. In particular, our definition agrees with the one given
at the end of this lecture.

5. A subset V of a topological space X is called constructible if it is equal to a disjoint union of
finitely many locally closed subsets. Using the proof of Theorem 5 show that the image f(V) of
a constructible subset V' C X under a regular map f : X — Y of quasi-projective sets contains a
non-empty open subset of its closure in Y. Using this show that f(V') is constructible (Chevalley’s
theorem).

6*. Let X be an irreducible projective curve in P"(K), where k = K, and E =V (agTo+. ..+ a,Ty)
be a linear hyperplane. Show that F intersects X at the same number of distinct points if the
coefficients (ag,...,a,) belong to a certain Zariski open subset of the space of the coefficients.
This number is called the degree of X.

7*. Show that the degree of the Veronese curve v,.(P!(K)) C P?(K) is equal to r.

8*. Generalize Bezout’s theorem by proving that the set of solution of n homogeneous equa-
tions of degree dq,...,d, is either infinite or consists of d; - - - d,, points taken with appropriate
multiplicities.
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Lecture 12. LINES ON HYPERSURFACES

In this lecture we shall give an application of the theory of dimension. Consider the following
problem. Let X = V(F) be a projective hypersurface of degree d = degF in P"(K). Does it
contain a linear subspace of given dimension, and if it does, how many? Consider the simplest case
when d = 2 (the case d = 1 is obviously trivial). Then F is a quadratic form in n 4 1 variables. Let
us assume for simplicity that char(K) # 2. Then a linear m-dimensional subspace of dimension
in V(F) corresponds to a vector subspace L of dimension m + 1 in K™*! contained in the set of
zeroes of F in K"*1, This is an isotropic subspace of the quadratic form F. From the theory of
quadratic forms we know that each isotropic subspace is contained in a maximal isotropic subspace
of dimension n + 1 — r + [r/2], where r is the rank of F'. Thus V(F') contains linear subspaces of
dimension < n —r+[r/2] but does not contain linear subspaces of larger dimension . For example,
if n =3, and r = 4, F is isomorphic to V(G), where G is given by the equations

ToTy — ToTs = 0.
For every A, u € K, we have a line L(), u) given by the equations
ATy + Ty = 0, Ty + NT3 = 0,
or a line M (A, 1) given by the equation
M\ p): ATy + pT5 = 0, uTy + X1 = 0.

It is clear that L(A, u) NL(N, p') = 0 (resp. M (A, u) "M (N, pu') # 0) if and only if (A, u) # (N, 1)
as points in P!(K). On the hand L(\, u) N M (N, ') is one point always. Under an isomorphism
V(F) = PYK) x PY(K), the two families of lines L(\, 1) and M (), i) correspond to the fibres of
the two projections P}(K) x P}(K) — P}(K).

Another example is the Fermat hypersurface of V(F) C P3(K) of degree d, where

F=T¢{+T!+ T+ TS

Since
d

T+ T =[]+ 9°Ty)
s=1
where p is a primitive d-th root of —1, we see that V(F) contains 3d? lines. Each one is defined
by the equations of the type:
T + p°T; = 0,Ty, + p'Ty = 0,
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where {i,7,k,l1} = {0,1,2,3}. In particular, when d = 3, we obtain 27 lines. As we shall see in
this Lecture, “almost every” cubic surface contains exactly 27 lines. On the other hand if d > 4,
“almost no” surface contains a line.

To solve our problems, we first parametrize the set of linear r-dimension al subspaces of of
P"(K) by some projective algebraic set. This is based on the classic construction of the Grassmann
variety.

Let V be a vector space of dimension n + 1 over a field K and let L be its linear subspace
of dimension r + 1. Then the exterior product A" "' (L) can be identified with a one-dimensional
subspace of A" (V), i.e., with a point [L] of the projective space P(A" T (V)) = A" (V)\{0}/K*.
In coordinates, if e1,...,e,41 is a basis of V, and fy,..., fr41 is a basis of L, then /\TH(L) is
spanned by one vector

fl/\---/\fr+1: Z p[’il,...,ir+1]€i1/\...eiT_H.
1<i1 <. .<ipgp1<n+1

...€;,., we may identify A"TH(V) with K(:ﬂ), then the coordinate

vector of the point [L] in P(\""'(V)) = P(fii)_l(K) is the vector (...,p[i1,...,%r41],...). The
coordinates p[i1, ..., i,4+1] are called the Plicker coordinates of L. If we denote by M (L) the matrix
of size (r + 1) x (n 4+ 1) with the j-th row formed by the coordinates of f; with respect to the
basis (eq,...,en+1), then pliy, ... 441] is equal to the maximal size minor of M (L) composed of
the columns A; ..., A; .

The next theorem shows that the correspondence L — [L] is a bijective map from the set
of linear subspaces of dimension  + 1 in V' to the set of K-points of a certain projective subset

G(r+1,n+ 1) in PCH)"1(K).

If we order the vectors e;; A

Theorem 1. The subset G(r + 1,n + 1) of lines in A"t (V) spanned by decomposable (r + 1)-
vectors fi A ... A f.41 is a projective algebraic set in P(/\TH(V)) &~ P(fii)_l(K). The map
L — [L] = N""(L) is a bijective map from the set of linear subspaces of V of dimension r + 1 to
the set G(r +1,n+1).

Proof. We use the following fact from linear algebra. For every ¢ € A"7' (V) let L(t) = {z €
V :tAz = 0}. This is a linear subspace of V. Then dimL(t) > r+1 if and only if ¢ is decomposable
and equal to f; A ... A fr41 for some linear independent vectors fi,..., fr41 which have to form
a basis of L(t). This assertion shows that the subspace L can be reconstructed uniquely from [L)]
as the subspace L(t), where ¢ is any basis of [L]. Let us prove the assertion. The sufficiency is
easy. If t = fy A... A fr41 for some basis {fi,..., fr4+1} of a linear subspace of dimension r + 1,
then, obviously, fi A ... A frais Az =0 forany z € L = Kf; + ...+ Kfr41 so that L C L(t).
Since fi A ... A fyp1 Az = 0 implies that A"T*(Kfy + ... + K f,41 + Kz) = 0, we obtain that
dm(Kfi+...+ Kf,y1+ Kz) =7+ 1, hence z € Kf; + ...+ fr4+1. This shows that L = L().
Conversely assume dimL(t) = r + 1. Let fi,... fr+1 be a set of linear independent vectors in L(t),
and let {f1,..., fr+1, fr+1,--+, fn+1} be an extension of {fi,.... fr+1} to a basis of V. We can
write

t= Z ail._ir+lf2'1 /\"'/\fir+1'

11 <. <lpg1

It is easy to see that tAf; = 0,9 = 1,...,r+1, implies a;,..j,,, = 0for {i1,... 0,41} # {1,...,r+1}.
Hence t is proportional to f1 A... A fri1.
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To see why decomposable non-zero (r + 1)-vectors define a closed subset G(r + 1,n + 1) of
P(A"T'(V)) it suffices to observe that dim L(¢) > r + 1 if and only if rk(T;) < n — r, where
T, is the linear map V — A"T?(V) defined by the formula z — ¢ A z. The latter condition is
equivalent to vanishing of (n — r + 1)-minors of the matrix of T; with respect to some basis. By
taking a basis ey, ..., e,+1 of V), it is easy to see that the entries of the matrix of T} are the Pliicker
coordinates of the space L(t). Thus we obtain that G(r + 1,n + 1) is the set of zeroes of a set
of homogeneous polynomials of degree n — r + 1. Observe that these polynomials have integer
coefficients, so G(r + 1,n + 1) is a projective k-set for any k£ C K.

More generally, we can define a projective algebraic variety Gi(r + 1,n + 1) defined by:

Gr(r + 1,n + 1)(K) = {direct summands of K"*! of rank r + 1}.

Note that a direct summand of a free module is a projective module. The operation of exterior
power, M — /\Hl(M) defines a morphism of projective algebraic varieties

: (7ii)-1
p:Gp(r+1,n+1) = P, .

If » = 0 this morphism is an isomorphism.

Definition. The projective variety Gy (r+1,n+1) is called the Grassmann variety over the field k.
The morphism p is called the Plicker embedding of Gi(r + 1,n+ 1). For every algebraically closed

field K containing k, we shall identify the set Gy (r + 1,n + 1)(K) with the projective algebraic
n+1 _
subset G(r + 1,n + 1) of P,£T+1) g

Proposition 1. The projective algebraic set G(r + 1,n + 1) is an irreducible projective set of
dimension (n —r)(r + 1).

Proof. We shall give two different proofs of this result. Each one carries some additional
information about G(r + 1,n + 1). In the first one we use the following obvious fact: the general
linear group GL(n + 1, K) acts transitively on the set of (r + 1)-dimension al linear subspaces
of K"*t1. Moreover the stabilizer of each such subspace L is isomorphic to the subgroup P of
GL(n + 1, K) that consists of matrices of the form:

A B
(0 ¢)
where A, B, C are matrices of size (r+1)x (r+1), (r+1)x (n—r), (n—r) X (n—r), respectively. Let
us consider GL(n+ 1, K) as a closed subset of K™ +! defined by the equation Todet((T;;)) —1 = 0.
then it is clear that P is a closed subset of GL(n + 1, K) defined by the additional equations
T;; =0,i=n+2-r,...,n+1,5 = 1,...,r+1. The dimension of P is equal to (n+1)?>—(n—r)(r+1).
Next we define a surjective regular map of algebraic k-sets f: GL(n+ 1,K) = G(r + 1,n+ 1) by
the formula M — M (L), where Ly = Key + ...+ Keyyq. If M = (a;;), then

M(Lg) = span{a1161 + ...+ Apn+11€p+1y .-+, Q1r41€1 +...+ an+1r+1}
so that the Pliicker coordinates p[iy, ..., i,41] of M (L) are equal to the minor of the matrix (a;;)
formed by the first 7+ 1 columns and the rows indexed by the set {i1,...,4,+1}. This shows that f
is a regular map from the affine k-set GL(n+ 1, K) to the projective algebraic k-set G(r+1,n+1).
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Lines on cubic surfaces 79

Its fibres are isomorphic to P. By the theorem on the dimension of fibres from Lecture 11, we
obtain that

dim G(r+1,n+1) = dim GL(n+1,K)—dim P = (n+1)>—((n4+1)2=(n—r)(r+1)) = (n—r)(r+1).

Since GL(n 4 1, K) is irreducible, G(r + 1,n + 1) is irreducible.
Now let us give another proof of this result. Choose the Pliicker coordinates p[jy, ..., jr+1] and

n+1 _
consider the open subsets D(p[j1,...,jr+1]) C P,(CT“) 1(K) The intersection D(p[j1, ..., Jr+1]) N
G(r+ 1,n+ 1) is equal to the set of linear subspaces L which admit a basis

fi=aner+...+ampiln, ..., fry1 = arprie1 + .o+ Grpingien,

such that p[ji,...,jr4+1] = det(A4;,j,.. 4,.,) # 0, where

@13, a1, Q15,41
Ailiz---ir+1 =
Ar4+1j;  Qljy -+ Qr4lj,g,
After we replace fi,..., fr41 with fi,..., fl,; such that
! !
fi=bufi+ .o+ birpafrir, - frpn = by i+ bgrrg frg,

where (b;;) is the inverse of the matrix A;, ;,. j,.,, we may assume that A; ;,. ; ., is the identity
matrix I,41. Then we may take all (n — r)(r 4+ 1) other entries a;;,j # jx arbitrary, and obtain
that D(pli1,...,ir+1]) N G(r + 1,n + 1) is isomorphic to the affine space A,(Cn_r)(TJrl)(K). Thus
G(r + 1,n + 1) is covered by (?Ii) open subsets isomorphic to the affine space of dimension
(n —7)(r 4+ 1). This obviously proves the assertion.

Example 1. Let us consider the case r = 1,n = 3. Then G(2,4) C P° parametrizes lines in P3(K).
We have six Pliicker coordinates p[ij],i,7 = 1,2,3,4. An element w € /\2(V) can be identified with
a skew-symmetric bilinear form V* — V* — K. The matrix M of this bilinear form with respect to
the dual basis e, . .., e} has entries above the diagonals equal to a;;, where w = Zl§i<j§4 a;jje;N\ej.
The element w = f; A fo if and only if the matrix is of rank < 4. In fact, take ¢ € V* such that
¢(f1) = ¢(f2) = 0. For any 2 € V* we have fi A fa(z,¢) = z(f1)d(f2) — z(f2)$(f1) = 0. Thus
the bilinear form has the kernel and the matrix has zero determinant. The determinant of a skew-
symmetric matrix is equal to the square of the Pffafian. Thus we get that all decomposables vectors
w satisfy the condition Pf(M) = 0. The equation of the Pffafian of a 4 x 4 skew symmetric matrix
is

12034 — A13024 + a14023 = 0.

Since we know already that G(2,4) is an irreducible projective set of dimension 4, we obtain that
it coincides with the quadric V(Q) where

Q = p[12]p[34] — p[13]p[24] + p[14]p[23].

Evidently @ is a non-degenerate quadratic form.

Remark 1. Let us take K = C. Consider the anti-holomorphic involution of G(2,4) defined by
(p[12], p[13], p[14], p[23], p[24], p[34]) — (P[12], —p[24], p[23], p[14], —p[13], p[34]).
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Then the set of fixed points consists of points (21, 22, 23, 24, 25, 26) € P°(C) such that z1, 20 €
R, 23 = 24,25 = z5. They satisfy the equation equation

2129 + |Z3‘2 + ‘24‘2 = 0.

Changing the variables 21, 2o to 21 — z2,z1 + 22, and dividing by x5 (it is easy to see that z1,zo
cannot be equal to zero), we obtain the equation of a unit sphere in R®. Thus G(2,4) admits a real
structure (not the standard one) such that the set of real points is S*. The 4-dimensional sphere
is a natural compactification of R*, the space-time. In the twistor theory of Penrose, G(2,4) is
viewed as a complexification of the real space-time.

Remark 2. The equation for G(2,4) given in the proof of Theorem 1 differs from the equation
@ = 0 by a factor. Any Grassmannian G(r + 1,n + 1) can be given by a system of equations of
degree 2, so called the Pliicker equations. They look as follows:

r+2
Z(_l)sp[ilﬂ s ’IL.T‘ij]p[jl e ajs—lajs-l-la e 7j7‘+2] = 07
s=1
where {i1,... i, } and {ji,...,jr4+2} are any two strictly increasing sequences of the set {1,...,n+

1.

n+d

We denote by Hyp(d;n) the projective space P21 1f we use Yigoins 0 <ij,d0+...+ip, =

d to denote projective coordinates in this space then each K-point (..., a4, . i,,...) of this space
defines the projective K-subvariety F' = 0 of P’ where

= Z aioy---,inTéo ’ Trzzn = 0.

10,eresfn

n4+d
Thus we can view K-points of the projective space P o projective hypersurfaces of degree
d. This explains the notation. In the special case when d = 1, the space Hyp(1,n) is called the
dual space of P} and is denoted by P}. Its K-points are in a bijective correspondence with linear

subspaces of P} (K) of dimension n — 1 (hyperplanes) .
Now, everything is ready to solve our problem. Fix any algebraically closed field K. Let
H =Hyp(d;n)(K) and G = G(r +1,n + 1)(K). Define

I(r,d,n)(K) = {(X,E) € HEK) x G(K): E C X}.

Lemma 1. I(r,d,n) is a closed irreducible subset of H x G of dimension equal to (r+1)(n—r)+
(n+d) _ (r+d) -1
d d :

Proof. Let E’ denote the linear subspace of K"*! corresponding to E. Let fi,..., fr41 be a
basis of E’, extended to a basis (fi,..., fax1) of K"T1. Any z € E’ defines a linear form ¢, on
A" (K™*t1) given by the formula

$AWAfr+2/\---/\fn+1:¢x(w)f1/\---/\fn+1-

In particular, if £ = A\ f1 + ... + A1 fr+1, then taking the wedge product of both sides with each
f1 VAYAN fi—l A fi+1 AN fn+1, we obtain

r=¢(foN o Afrp)fi —Qe(fiNfs A A frgd)fot oo+ (1) e (fr Ao A fr) frgae
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Let (e3,...,e5,1) be the dual basis of the canonical basis of K"*!. Writing ¢, = > @i, ..4.€}, A
...Aej , we get that A; are equal to some linear combinations of the Pliicker coordinates of E'. Now
plugging in (Ag, ..., A,) into the equation of X , we see that I(r,d,n) is given by bi-homogeneous
polynomials in the coefficients of F' and in the Pliicker coordinates of E. This proves that I(r,d,n)
is a closed subset of the product H x G. Now consider the projection p : I(r,d,n) — G. For each
E € G, the fibre p~1(E) consists of all hypersurfaces V (F) containing E. Choose a coordinate
system such that E is given by the equations 7,11 = ... =T, = 0. Then E C V(F) if and only if
each monomial entering into F' with non-zero coefficient contains some positive power of T; with
1 > r+ 1. In other words F' is defined by vanishing of all coefficients at the monomials of degree

d in the variables Ty, ..., T,.. This gives (T;'fd) linear conditions on the coefficients of F', hence
dim p~}(F) = (";rd) -1- (ijd). Let us assume that I(r, d,n) is irreducible. By the Theorem on

dimension of fibres,

d T

It remains to prove the irreducibility of I(r, d, n). Considering the projectionp : I(r,d,n) — G,
the assertion follows from the following:

dim I(r,d,n) = dim p~ (E) + dim G = (n — r)(r + 1) + <"+d> 11— (”d).

Lemma 2. Let f : X — Y be a surjective regular map of projective algebraic sets. Assume
that Y is irreducible and all fibres of f are irreducible and of the same dimension n. Then X is
irreducible.

Proof. Let X = X; U...U X,, be the union of irreducible closed sets. Since f is a map
of projective sets, the images f(X;) are closed and irreducible. By assumption, Y is irreducible,
hence the set I = {i: f(X;) = Y} is not empty. For every y € Y \ (Uigsrf(X;)), we have f~1(y) =
User(X; N f~1(y)). Since f~1(y) is irreducible, there exists X;,4 € I, such that f~1(y) C X;.
Since the set I is finite, we can find an open subset U C Y such that f=!(y) C X; for all y € U.
Let f; : X; — Y be the restriction of f to X;. By the Theorem on dimension of fibres, any fibre
of f; is of dimension > n. By assumption, dim f;*(y) > n = dim f~!(y). This implies that
7 y) = f~(y) for any y € Y. This certainly implies that X; = X proving the assertion.

(n—r)(r+1) < (”d).

r

Theorem 2. Assume that

Then the subset of Hyp(d;n)(K) which consists of hypersurfaces containing a linear subspace of
dimension r is a proper closed subset.

Proof. Consider the other projection ¢ : I(r,d,n) — H = Hyp(d;n)(K). Since I(r,d,n) is a
projective set, its image is a closed subset of H. Suppose q is surjective. Then

(n—r)(?"—i—l)—i—(n:;d) - <7"jd) — dim I(r,d,n) > dim H = ("Zd> Y

This is impossible in view of the assumption of the theorem.

Remark 3. One expects that each V(F') € Hyp(d;n) contains a linear subspace of dimension r
when (n —r)(r+1) > (T:fd). This is true if d > 2 but false if d = 2. For example let d = 2,n = 4.
A nonsingular quadratic form in 5 variables does not contain isotropic subspaces of dimension 3.
Hence the corresponding quadric does not contain planes. However, (n—r)(r+1) = 6 > (ijd) = 6.

From now on we restrict ourselves with the case n = 3 and d = 3, i.e. cubic surfaces in P3(K).
We shall be looking for lines on cubic surfaces. In this case (n —7)(r +1) =6 > (Hd'd) =4, so we
expect that every cubic surface has a line. As we saw in the previous remark it needs to be proven.
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Theorem 3.
(i) Every cubic surface X contains a line.
(ii) There exists an open subset U C Hyp(3; 3)(K) such that any X € U contains exactly 27 lines.

Proof. (i) In the notation of the proof of Theorem 2, it suffices to show that the projection
map ¢ : I(1,3,3) — Hyp(3;3)(K) is surjective. Suppose the image of ¢ is a proper closed subset Y
of Hyp(3;3)(K). Then dim Y < dim Hyp(3;3)(K) = 19 and dim I(1,3,3) = 19. By the theorem
on dimension of fibres, we obtain that all fibres of ¢ are of dimension at least one. In particular,
every cubic surface containing a line contains infinitely many of them. But let us consider the
surface X given by the equation

T\ TyTs — T = 0.

Suppose a line £ lies on X. Let (ag,a1,a2,a3) € £. If ag # 0, then a; # 0,7 # 0. On the other
hand, every line hits the planes T; = 0. This shows that £ is contained in the plane Ty = 0. But
there are only three lines on X contained in this plane: T; = Ty = 0,7 = 1,2 and 3. Therefore X
contains only 3 lines. This proves the first assertion.

(ii) We already know that every cubic surface X = V(F') has at least one line. Pick up such
a line £. Without loss of generality we may assume that it is given by the equation:

As we saw in the proof of Lemma 1:
F =TyQ0(To, T1, T2, T3) + T3Q1(To, T1, T2, T3) = 0,

where (g and () are quadratic homogeneous polynomials. Each plane 7w containing the line £ is
given by the equation
>\T2 - [LTg =0

for some scalars A\, u € K. The intersection 7 NV (F') contains the line A and a curve of degree 2 in
7. More explicitly, choose coordinates ¢y, 1, t2 in the plane, related to our coordinates Ty, 17,15, T3
by the formulas:

To = to, T1 = t1, 15 = pta, T3 = .

Plugging these expression into F', we obtain:

ptaQo(to. t1, pta, Ata) + AtaQ1(to, t1, pta, Atz) = 0.

This shows that 7 N X C 7 consists of the line ¢ with the equation ¢t = 0 and the conic C(A, p)
with the equation:
1Qo(tos t1, pt2, At2) + AQ1(to, t1, pta, At2) = 0.

We may also assume that the line enters with multiplicity one (since we take “general 7 coeficients
of F'). Let

Qo = Z ai;T;Tj, Q1= Z bi; T;T}.

0<i<j<3 0<i<j<3

Then C'(A, p) is given by the equation:
(mago + Aboo)ta + (payy + Ab11)t5 + (4 (page + Abaa) + A2 (azs + Absz))ts + (paoy + Abo1)tots
+(p(paoz + Abo2) + AMpaos + Abos))tots + (p2a1z + Aubi2) + ((pAais + A*bis))tits = 0.

82



Lines on cubic surfaces 83

Now, let us start vary the parameters A and p and see how many reducible conics C'(A, 1) we
obtain. The conic C(A, p) is reducible if and only if the quadratic form defining it is degenerate.
The condition for the latter is the vanishing of the discriminant D of the quadratic form C'(X, u).
Observe that D is a homogeneous polynomial of degree 5 in A, u. Thus there exists a Zariski open
subset of Hyp(3;3) for which this determinant has 5 distinct roots (A;, ;). Each such solution
defines a plane m; which cut out on X the line £ and a reducible conic. The latter is the union of
two lines or a double line. Again, for some open subset of Hyp(3;3) we expect that the double line
case does not occur. Thus we found 11 lines on X: the line £ and 5 pairs of lines ¢;, £; lying each
lying in the plane ;. Pick up some plane, say m;. We have 3 lines £,¢', and ¢" in m;. Replacing
¢ by ¢, and then by £”, and repeating the construction, we obtain 4 planes through ¢,¢ and 4
planes through ¢”, each containing a pair of lines. Altogether we found 3 + 8 + 8 + 8 = 27 lines
on X. To see that all lines are accounted for, we observe that any line intersecting either ¢, or ¢,
or " lies in one of the planes we have considered before. So it has been accounted for. Now let L
be any line. We find a plane 7 through L that contains three lines L, L' and L"” on X. This plane
intersects the lines £, ¢/, and ¢ at some points p, p’ and p” respectively. We may assume that these
points are distinct. Otherwise we find three nocoplanar lines in X passing through one point. As
we shall see later this implies that X is singular at this point. Since neither L' nor L” can pass
through two of these points, one of these points lie on L. Hence L is coplanar with one of the lines
£,¢',¢". Therefore L has been accounted for.

Remark 4. Using more techniques one can show that every “nonsingular” (in the sense of the
next lectures) cubic surface contains exactly 27 lines. Let us define the graph whose vertices are
the lines and two vertices are joined by an edge if the lines intersect. This graph is independent on
the choice of a nonsingular cubic surface and its group of symmetries is isomorphic to the group
W (Eg) of order 51840 (the Weyl group of the root system of a simple Lie algebra of type Ej).

Exercises.

1. Show that the set m, of lines in P3(K) passing through a point z € P3(K) is a closed subset
of G(2,4) isomorphic to P?(K). Also show that the set mp of lines in P3(K) contained in a plane
P C P3(K) is a closed subset of G(2,4) isomorphic to P?(K).

2. Prove that the subset of quartic surfaces in Hyp(4;3) which contain a line is an irreducible
closed subset of Hyp(4;3) of codimension 1.

3. Prove that every hypersurface of degree d < 5 in P*(K) contains a line, and, if d < 4, then it
contains infinitely many lines.

4. Let X be a general cubic hypersurface in P*(K) (general means that X belongs to an open
subset U of Hyp(3;4)). Show that there exists an open subset V' C X such that any = € V lies on
exactly six lines contained in X.

5% Let 1 <my <my <...<my <n+1,aflagin K"t of type (my,...,m,) is a chain of linear

subspaces Ly C ... C L, with dim L; = m,.

(a) Show that the set of flags is a closed subset in the product of the Grassmannians G(my,n+1) x
... X G(mp,n+1). This projective algebraic set is called the flag variety of type (m1,...,m;)
and is denoted by Fy(my,...,mq;n+1).

(b) Find the dimension of Fy(mq,...,my;n + 1).

6. By analizing the proof of Theorem 3 show the following:
(a) The set of 27 lines on a cubic surface X contains 45 triples of lines which lie in a plane (called
a tritangent plane).
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(b) There exist 12 lines y,...,lg,l1,...,lg such that LN l; = 0,4 = 1,...,6,[; N1} # 0 if i # j.
Such a set is called a double-sizer.

(c)* Show that there are 36 different double sixers.

(d) Check all the previous assertions for the Fermat cubic.

7*. Prove that

(a) A general cubic surface V(F') contains 9 lines ¢;;,4,j = 1,2,3 such that ¢;; N £y, # 0 if and
only if i =k or j = m.

(b) Using (a) show that V(F') can be given by the equation

L, 0 M
det M2 L2 0 = 0,
0 M; I

where L;, M; are linear forms.
(c) Show that the map T : V(F) — P? which assigns to a point z € V(F) the set of solutions of
the equation (tg,t1,%2) - A = 0 is a birational map. Here A is the matrix of linear from from
(b).
(d) Find an explicit formulas for the inverse birational map T!.
8. Using Problem 5 (b),(c) show that the group W of symmetries of 27 lines consists of 51840
elements.
9*. Let C be a twisted cubic in P? (the image of P! under a Veronese map given by monomials of
degree 3). For any two distinct point 2,y € C consider the line [, , joining these points. Show that
the set of such lines is a locally closed subset of G(2,4). Find the equations defining its closure.
10*. Let k = ko(t), where kg is an algebraically closed field and F(Ty,...,T,) € k[T1,...,T,] be a
homogeneous polynomial of degree d < n. Show that V(F)(k) # 0 (Tsen’s Theorem).
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Lecture 13. TANGENT SPACE

The notion of the tangent space is familiar from analytic geometry. For example, let F'(x,y) =
0 be a curve in R? and let a = (7¢,%o) be a point lying on this surface. The tangent line of X at
the point a is defined by the equation:

B (@)@~ 20) + G- @)y - 30) = 0.

It is defined only if at least one partial derivative of F' at @ is not equal to zero. In this case the
point is called nonsingular. Otherwise it is said to be singular.

Another notion of the tangent space is familiar from the theory of differentiable manifolds.
Let X be a differentiable manifold and a be its point. By definition, a tangent vector ¢, of X at
a is a derivation (or differentiation) of the ring O(X) of differentiable functions on X, that is, a
R-linear map ¢ : O(X) — R such that

6(fg) = f(a)d(g) + g(a)(f) forany f,g € O(X).

It is defined by derivation of a function f along ¢, given by the formula

_NOf
< fitg >= ; o~ (a)t;

where (t1,...,t,) are the coordinates of ¢, and (z1,...,x,) are the local coordinates of X at the
point a.

In this lecture we introduce and study the notion of a tangent space and a nonsingular point
for arbitrary algebraic sets or varieties.

For every k-algebra K let K[e] = K[t]/(t?) be the K-algebra of dual numbers. If ¢ is taken to
be t mod(t?), then K|e] consists of linear combinations a+ be, a,b € K, which are added coordinate
wise and multiplied by the rule

(a+be)(a' +b'e) = aad' + (ab + a'b)e.

We denote by
ap: Kle] - K

the natural homomorphism a + be — a. Its kernel is the ideal (¢) = {be,b € K}.
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Definition. Let X be an affine or a projective algebraic variety over a field k£ and z € X (K) be
its K-point. A tangent vector t, of F at x is a K [e]-point ¢, € X (K|e]) such that X (a1)(tz) = .
The set of tangent vectors of X at z is denoted by T'(X), and is called the tangent space of F at
x.

Example 1. Assume X is an affine algebraic variety given by a system of equations
Fi(Zy,....Z2,)=0,...,F.(Z1,...,Z,) =0.

A point z € X(K) is a solution (as,...,a,) € K" of this system. A tangent vector ¢, is a solution
(a1 + bie, ..., an + bpe) € X(K|e]) of the same system. Write down the polynomials F;(Z) in the
form :

Fi(Z1,...,70) = Gi(Z1 —a1,..., Zn — ay) = Za() i—a)+ Y a2 - ai)(Zk—aj)+ ...
jk=1

(Taylor’s expansion). Note that the G;’s do not contain the constant term because (a1,...,a,) €
X (K). By definition, the coefﬁc1ent a( " is the partial derivative of F; with respect to Z; at the
point z = (a1,...,a,).

az§ (). Obviously it is an element of K. Now we plug the

point (a1 + b1€,...,a, + bye) into the previous equations to obtain
Fi(ay + bie,...,an + bye) = Za b5+Za bbs + (.. Za(z)ba—()
7,k=1
From this we deduce that (by,...,b,) satisfies the system of linear homogeneous equations:
OF;
5 “(@)b; =0, i=1,...,m (1)
j=1 """

Thus the set of tangent vectors T'(X), is bijective to the submodule of K™ which consists
of solutions of a homogeneous system of linear equations. In particular, we have introduced the
structure of a K-module on T'(X),.

Example 2. Assume X = P} is projective space over k. Let z = (ao,...,a,) € P} (K), where K is
a field. A tangent vector at z is a local line M over K|[e| such that M/eM = (ay,...,a,)K. Since
the ring Kle] is obviously local, M is a global line given by coordinates (ag + boe, . .., a, + bye).
Note that 1 = ), bja; for some b; € K, and therefore ), bi(a; + €t;) = 1+ (D, bit;) € Kle]*.
This shows that K[e](ag + €to, ..., an + €t,) is a global line for any (to,...,%,). This shows that
M € T(P}), is determined by (to,...,t,) up to the equivalence relation defined by
(tos.--stn) ~ (tg, ... t0) if (ag +eto,...,an +ety) = (ag + €ty ..., an + tl,) in PR (K[e]).
The latter means that
(ag + ety .. an, +eth) = (A + pe)(ag + to, - . ., ap + &ty)
for some A + pe € Kle]* (i.e. A € K*,u € K). This implies that
(ag,.-.yan) = Mag, .- an),  (thy---sth) = Mtoy -+ tn) + plag, ..., an).
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Let L, be the line in K"*! corresponding to x. We see that a tangent vector ¢, defines a homo-
morphism L, — K"*!/L, by assigning to (aq,...,a,) € L the coset of (tg,...,t,) modulo L.
Thus there is a natural bijection

T(P}),; — Homy(Ly, K"/ Ly).
Since the right-hand side has a natural structure of a rank n free module over K, we can transfer

this structure to T'(P}),.

Example 3. Let X = GL, ; be the affine algebraic variety with GL,, 5 (K) = GL(n, K). A point
of GL,, x(Kle]) is a matrix A 4+ ¢B, where A € GL(n, K), B € Mat, (K).

If we take z € X(K) to be the identity matrix I,,, we obtain that 7'(X);, can be identified
with Mat, (K). Now, take X = SL,, ; with X (K) = SL(n, k). Then

T(X)r, ={I,+¢eB € GL(n,K|e]) : det(I, +eB) = 1} =

{I, + €B € GL(n, Ke]) : Trace(B) = 0}.

Thus we can identify T'(SLy, x)7, with the vector space of matrices with entries in K with trace

equal to zero.
Now let us take X = O,, ; with O, = {4 € Mat,(K): A-"A=1,}. We get

T(X)1, = {I, +eB € Mat(n, K[e]) : (I, +eB)(I, +'B) = I,,} =

{I, +eB € GL(n,K|e]) : B+'B = 0}.

Thus we can identify T(O,, 1 )7, with the vector space of skew-symmetric matrices with entries
in K. Note that the choice of K depends on identification of I,, with a K-point.

The tangent space of an algebraic group at the identity point has a structure of a Lie algebra
defined by the Lie bracket.

Remark 1. For any functor F' from the category of k-algebras to the category of sets one can define
the tangent space of F' at a “point” z € F(K) as the set of elements ¢ of the set F(K|e])(t) = =.

Now, if we have a projective variety X given by a system of homogeneous equations F; =
-+« = Fp = 0, we obtain that

T(X), = {a+be € T(P}), : Fi(a+be) = - = Fy(a+be) = 0.}

By using the Taylor exapnsion, as in the previous example, we obtain that b = (by, ..., b,) satisfies
a system of homogeneous linear equations:

(a)b; =0, i=1,....k (2)

Recall that a tangent vector is determined by b = (b, ...,b,) only up to adding a vector propor-

tional to a = (ag,...,a,). Thus a must satisfy the previous system of linear equations. But this is
clear. For any homogeneous polynomial F'(Ty,...,T,) of degree d we have (easily verified) Euler’s
identity
n
oF
dF(to, ..., Tp) :;Tia—Tj. (3)
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This gives

. OF
OzdiFi(ag,...,an):jZUaia—Tj(a), izl,...,k,
where d; is the degree of Fj.

As we saw the tangent space of an affine or a projective variety has a structure of a linear
space. However, it is not clear that this structure is independent of a choice of the system of
equations defining X. To overcome this difficulty, we shall give another, more invariant, definition
of T(X)y.

Let A be a commutative k-algebra and let M be A-module. A M-derivation of A is a linear
map of the corresponding k-linear spaces d : A — M such that for all a,b € A

d(ab) = ad(b) + bd(a).
The set of M-derivations is denoted by Dery (A, M). It has a natural structure of a A-module via
(ad)(b) = ad(b) for all a,b € A.
We will be interested in a special case of this definition.

Lemma 1. If f : A — B is a homomorphism of k-algebras, and 6 : B — M is a M-derivation
of B, then the composition o f : A — B — M is a M[s-derivation of A, where My is the

A-module obtained from M by the operation of restriction of scalars (i.e., a - m = f(a)m for any
a€ AmeM).

Proof. Trivial verification of the definition.

Let us apply this to our situation. Note that the k-linear map:
az: Kle] > K,a+be —b
is a K-derivation of K[e] considered as a K-algebra. Here K is considered as a K[e]-module by
means of the homomorphism ¢; : K[e] - K,a + be — a. We identify a K-point z € X(K)
with a homomorphism of k-algebras ev, : O(X) — K, ¢ — ¢(z). A tangent vector t, € T(X),
is identified with a homomorphism ev;, : O(X) — Kle|. Its composition with the derivation

ay : Kle] = K,a+ be — b, is a K-derivation of k[X]. Here K is considered as a O(X )-module via
the homomorphism ev,. This defines a map:

T(X); = Derg(O(X),K),

where the subscript z stands to remind us about the structure of a O(X)-module on K. By
definition,

Dery (O(X), K)o = {0 € Homy(O(X), K) : 6(pg) = p(z)d(q) + q(x)d(p) for any p,q € O(X)}.
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Lemma 2. The map
T(X)z = Derp(O(X),K),
is a bijection.
Proof. Let § € Dery(k[X], K);. We define a map f5 : O(X) — K|e] by the formula:
f5(p) = p(z) + €6(p).

It is easy to verify that fs is a homomorphism, and its composition with oy : K[e] — K is equal to
evy,. Thus f5 defines a tangent vector at z and the formula § — f5 makes the inverse of our map.

Now Dery(O(X), K), has a structure of a K-module, defined by the formula (ad)(p) = ad(p)
for any a € K,p € O(X). We transfer this structure to T(X), by means of the bijection from
Lemma 2. This structure of a K-module on T'(X), is obviously independent (up to isomorphism)
on the choice of equations defining X. We leave to the reader to verify that this structure agrees
with the one defined in the beginning of the lecture.

Let us specialize our definition to the case when z € X (k) (a rational point of X'). Then the
kernel of the homomorphism z : O(X) — k is a maximal ideal m; of O(X) and O(X)/m, = k.
Let § € Dery(O(X), k) be a k-derivation of O(X). For any p,q € m,, we have

(p-q) = p(z)é(q) + q(=)d(p) = 0.
Thus the restriction of § to m?2 is identical zero.

Lemma 3. Assume z € X (k). The restriction map § — §|my, defines an isomorphism of k-linear
spaces
T(X), — Homy(m,/m2, k).

Proof. Since O(X)/m2 has a natural structure of a k-algebra there is a canonical homomor-
phism k£ — O(X)/m2 such that its composition with the factor map O(X)/m2 — O(X)/m, = k
is the identity. We shall identify k with the subring of O(X)/m2 by means of this map so that
the restriction of the factor map O(X)/m2 — O(X)/my to k is the identity. For any p € O(X)
we denote by p, the residue of p mod m2. Obviously, p, — p(z) € m,/m2, so that for every linear
function f € Homy(m,/m2, k) we can define the map & : m,/m?2 — K by setting for any p € O(X)

0(p) = f(pa — p())-
Since for any p,q € O(X), (px — p(z))(gz — q(x)) € m2, we have

3(pq) = f(p2az — p(z)q(2)) = f((pz — p(2))(gz — a(2)) + p(2)(qz — q(2)) + q(z)(pz — p(z))) =
= f(p(2)(¢z — a(7)) +a(z) (P — p(2))) = p(2) f (9 — (2)) + q(2) f (P2 = P(2))) = p(2)d(q) +q(x) ().
We leave to the reader to verify that the constructed map f +— d is the needed inverse.

Let f: X — Y be a morphism of algebraic k-varieties (affine or projective). Let z € X (K),
and y = fx(z) € Y(K). By definition of a morphism, the map fx.): X (Kle]) — Y (K[e]) induces
a natural map

(df)e : T(X)p = T(Y)y.
It is called the differential of f at the point z. If f : X — Y is a morphism of affine k-varieties
corresponding to a homomorphism f* : O(Y) — O(X) of k-algebras, z € X(K),y = fx(z) €
Y (K), then, after we use the bijection from Lemma 2, it is immediately verified that the differential
(df ) coincides with the map

Der,(O(X), K); — Der, (O(Y), K),

defined in Lemma 1, where f is the homomorphism f* : O(Y) — O(X). This is obviously a
K-linear map.
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Proposition 1 (Chain Rule). Let f: X — Y,g:Y — Z be morphisms of algebraic k-varieties,
r € X(K),y= fz)€Y(K). Then

d(go fla = (dg)y o (df)a-
Proof. Immediately follows from the definition of a morphism.

Now we can define the tangent space for any quasi-projective algebraic set V' C P"(K). Here
K, as usual, is a fixed algebraically closed field containing k. First, we assume that V is affine.
Choose the unique affine algebraic K-variety X such that I(X) is radical and X (K) = V. Then
we define the the tangent space T'(V'), of V at = by setting

TV)e =T(X),.
By Lemma 3, for every € V we have an isomorphism of K-linear spaces.
T(X), & Dery (O(X), K).

Since an isomorphism of affine varieties is defined by an isomorphism of their coordinate algebras,
we see that this definition is independent (up to isomorphism of linear spaces) of a choice of
equations defining X.

Lemma 4. Let A be a commutative K-algebra, M an A-module, and S a multiplicatively close
subset of A. There is an isomorphism of Ag-modules

Derk (A, M)S = Derk (AS, MS)

Proof. Let § : A — M be a derivation of A. We assign to it the derivation of Ag defined by
the familiar rule:

6(g) _ d(a)s —26(3)a.

S S

This definition does not depend on the choice of a representative of the fraction $. In fact, assume
s"(s'a — sa’) = 0. Then

0=35"6(s'a—sa') — (s'a—sa")d(s") = s"[6(s'a) — 6(sa’)] + (as’ —a's)d(s").
Multiplying both sides by s”, we obtain
§"%[6(s'a) — 6(sa’)] = 0. (4)
Let us show that this implies that
§"?[s%(s'0(a’) — a'6(s"))] = s""*[s'?(s6(a) — ad(s))].
This will proves our assertion. The previous identity is equivalent to the following one
§"%[s%5'8(a’) — s"?s8(a)] = s"*[s%a’6(s") — s"%ad(s)],

or

s'ss""?[s6(a") — 5'6(a)] = s5'5"*[ad(s") — a'6(s)].
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Now this follows from equality (4) after we multiply it by ss’.

So we have defined a homomorphism of A-modules Dery (A, M) — Dery(As, Ms). It induces
a map of Ag-modules Dery(A, M)gs — Derg(Ag, Mg). The inverse of this map is defined by using
Lemma, 1 applied to the homomorphism A — Ag.

Let us apply the previous lemma to our situation. Let X be an affine k-variety, z € X (K),
p = Ker(ev,). Assume that K is a field. Then the ideal p is prime since O(X)/p is isomorphic
to a subring of K. Consider K as a module over O(X) by means of the homomorphism ev,. Let
S = A\ p. Then Kg = K since the image of S under ev, does not contain 0. It is easy to see
that the linear K-spaces Der(A, K), and Der(A, K) are isomorphic (the map g — ev(s) 710 is the
isomorphism). Applying lemma 4, we obtain an isomorphism of vector K-spaces

T(X); = Dery(A, K), = Derg(4,, K). (5)

The previous isomorphism suggests a definition of the tangent space of any quasi-projective alge-
braic k-set X.

Definition. The local ring of X at x € X is the factor set

reU

where U runs through the set of all open affine neighbourhoods of z and the equivalence relation
R is defined as follows:
Let f € O(U),g € O(V), then

=9 f‘W = g‘W for some open affine neighborhood of z contained in U NV

We shall call the equivalence class of f € O(U), the germ of f at z. The structure of a ring in
Ox, is induced by the ring structure of any O(U). We take two elements of Ox ,, represent them
by regular functions on a common open affine subset, multiply or add them, and take the germ of
the result. Let mx , be the ideal of germs of functions f € O(U) which vanish at z.

It follows from the definition that, for any open affine neighborhood U of z, the natural map
OWU) = Ox,4,¢ — ¢y defines an isomorphism

OU,:(: = OX,z-

Lemma 5. (i) mx , is the unique maximal ideal of Ox ;.

(ii) If X is affine and irreducible, the canonical homomorphism O(X) — Ox , induces an isomor-
phism O(X), = Ox 5, where p, = Ker(ev,).

(iii) If X is affine, the canonical homomorphism O(X) — Ox , induces an isomorphism of fields

k(z):=Q(O(X)/pz) = Ox »/mx 4.

Proof. (i) It suffices to show that every element a € Ox , \ mx  is invertible. Let a = f,,
where f is regular on a some open affine set U containing z. Since f(x) # 0,z is contained in
the open principal affine subset V' = D(f) of U. Hence the restriction g of f to V is invertible in
O(V). The germ g, = f, is now invertible.

(ii) For any ¢ € O(X) \ pp its germ in Ox , is invertible. By the universal property of
localizations, this defines a homomorphism O(X),, — Ox . An element of the kernel of this
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homomorphism is a function whose restriction to some open neighborhood of z is identically zero.
Since X is irreducible, this implies that the function is zero. Let f, € Ox, be the germ of a
function f € O(U), where U is an open affine neighborhood of z. Replacing U by a principal
open subset D(¢$) C U, we may assume that U = D(¢) and f = F/¢", where F, ¢ € O(X). Since
¢(x) # 0, we get that ¢ does not belong to p,, and hence f € O(X),, and its germ at z equals f,.
This proves the surjectivity.

(iii) This follows easily from the definition of the localization ring A, for any ring A and a
prime ideal p. The homomorphism A — Ap,a — ¢ defines a homomorphism A/p — A, /pA,. The
target space is a field. By the universal property of fields of fractions, we get a homomorphism
of fields g : Q(A/p) — Ap/pAy. Let & +pA, € Ay/pAy. Then it is the image of the fraction

Zig € Q(A/p). This shows that g is bijective.

The previous isomorphism allows us to define the tangent space for any quasi-projective k-set
X by
T'(AX)m = DeI‘k(OX’m,K). (6)

In the case when z € X (k), choosing an open affine neighborhood of # and applying Proposition
2, we obtain
T'(AX)m = Homk (mX,x/mg(’w, ]{1) (7)

For any rational point x € X (k), the right-hand side of (7) is called the Zariski tangent space
of X at z.

Let f: X — Y be a regular map of algebraic k-sets, z € X and y = f(z). Let V be an open
affine neighborhood of y and U bean open affine neighborhood of x contained in f~=(V). The
restriction of f to U defines a regular map f : U — V. For any ¢ € O(V), the composition with
[ defines a regular function f*(¢$) on U. Let f*(¢), € Oy, be its germ at z. The homomorphism
f*: O(V) = Oy, extends to a homomorphism f* : Oy, — Oy, of the local rings. It is clear
that f*(my,) C my,. Composing this homomorphism with the isomorphisms Ox , = Oy, and
Oy,y = Oy,, we get a homomorphism of local rings

f;’y : Oy’y — OX,m- (8)
Applying Lemma 1, we get a K-linear map
TX,:E = Derk(OX’m, K) — Ty’y = Derk(Oy,y, K),

which we call the differential of f at the point z and denote by df,.

Let X C P}(K) be an quasi-projective algebraic k-set and T'(X), be the tangent space at
its point z € X(K). It is a vector space over K of finite dimension. In fact, it is a subspace of
T(P"(K)), &2 K™ and hence

dimg T(X), <n. (9)

If z is contained in an affine open subset U which is isomorphic to a closed subset of some A" (K),
then T'(X), is a subspace of T(A™(K)), = K™ and

dimgT(X), < n.

It follows from (9) that X is not isomorphic to a quasi-projective subset of P} (K) for any n <
dimp T(X)s.
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Example 4. Let X be the union of the three coordinate axes in A3(K). It is given by the system
I Zig = Z1 43 = ZaZis = 0.

The tangent space at the origin z = (0,0,0) is the whole tangent space T(A3(K)), = K3. Thus
dimg T(X), = 3. This shows that X is not isomorphic to the union of three lines in A% (K).

Let us now show that dimg T(X), > dimX for any irreducible algebraic set X and the
equality takes place for almost all points z (i.e., for all points belonging to a Zariski open subset
of X). For this, we may obviously assume that X is affine.

Let V = X(K) for some affine variety defined by a radical ideal in k[Z1,...,Z,]. The set
T(V) = X(K|[e]) is a subset of K[e]" which can be thought as the vector space K?". Tt is easy to
see that T'(X) is a closed algebraic subset of K?® and the map p = X (¢) : T(X) — X, is a regular
map (check it !). Note that the fibre p~!(z) is equal to the tangent space T(X),. Applying the
theorem about the dimension of fibres of a regular map, we obtain

Proposition 3. There exists a number d such that
dimgT(X), > d
and the equality takes place for all points x belonging to an open subset of X.
We will show that the number d from above is equal to dimX.

Lemma 6. Let K be an algebraically closed field of characteristicp. Let F € K[Z,...,Zy,]| with
all the partial derivatives OF/0Z; equal to zero. If p = 0, then F is a constant polynomial. If
p > 0, then F' = GP for some polynomial G.

Proof. Write F' =) _a,Z". Then

r

where e denotes the dot product of vectors and e; is the i-th unit vector. If this polynomial is equal
to zero, then a,(ree;) = 0 for all 7. Assume that a, # 0. If char(k) = 0 this implies that ree; = 0.
In particular, if all g_ZF,- =0, we get r =0, i.e., F' is a constant polynomial. If char(k) = p > 0, we
obtain that p divides r e ;, i.e., r = pr’ for some vector r’. Thus

F = Zarzr = Zar(zl")p = (Z ai/pzl")p = GIJ’

where G =) LA
Theorem 1. Let X be an irreducible algebraic set and d = min{T'(X),}. Then
d=dimX.
Proof. Obviously, it suffices to find an open subset U of X where dimgT(X), = dimX for
all z € U. Replacing X by an open affine set, we may assume that X is isomorphic to an open

subset of a hypersurface V(F') C A" (K) for some irreducible polynomial F' (Theorem 2 of Lecture
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4). This shows that we may assume that X = V(F'). For any z € X, the tangent space T'(X), is

given by one equation
oF )by + .. + oF
8z, 97

Clearly, its dimension is equal to n — 1 = dimX unless all the coefficients are zeroes. The set of

common zeroes of the polynomials % is a closed subset of A" (K) contained in each hypersurface
oF

V(g—gi). Obviously 57— ¢ (F) unless it is equal to zero (compare the degrees). Now the assertion
follows from Lemma 6.

(z)by, = 0.

Obviously, the assertion of the previous theorem is not true for a reducible set. To see this
it is sufficient to consider the union of two sets of different dimension. It is easy to modify the
statement to extend it to the case of reducible sets.

Definition. The dimension of X at a point x is the maximum dim,X of the dimensions of
irreducible components of X containing x.
Corollary. Let X be an algebraic set and x € X. Then

dimgT(X), > dim, X.

Proof. Let Y be an irreducible component of X containing z. Obviously T'(Y), C T(X),.
Hence
dim,Y < dimgT(Y)y < dimgT(X)s.

This proves the assertion.

Definition. A point z of an algebraic set X is said to be nonsingular (or simple, or smooth) if
dimgT(X), = dim,X. Otherwise, it is said to be singular. An algebraic set X is said to be
nonsingular (or smooth) if all its points are nonsingular. Otherwise X is said to be singular.

We already know how to recognize whether a point is nonsingular.
Theorem 2. (The Jacobian criterion of a nonsingular point). Assume that X is an affine algebraic

k-set given by a system of equations Fy (Z) = ... = F,.(Z) = 0in A" (K). Thenz € X is nonsingular
if and only if rk J(z) = n — dim, X, where

57 () 57 ()
PR "
0(z) ... 9L=(x)
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Problems.

1. Assume k = K is algebraically closed field of characteristic 0. Show that, up to a projective
automorphism of P?(K), there are only two irreducible singular plane cubic curves.

2. Prove that T'(X x Y)(z,y) 2 T(X), @ T(Y),. Using this show that if z is a nonsingular point
of X and y is a nonsingular point of Y, then (z,y) is a nonsingular point of X x Y.

3. Let X be a closed subset of A"(K),z = (ay,...,a,) € X and f : A}(K) — A"(K) given by
t— (bit+ay,...,byt+ay,). Let (Z7) be the ideal of O(A!(K)) = k[Z] generated by the functions
f*(¢),¢ € I(X). Show that (a; + bie,...,a, +bye) € K[e]" is a tangent vector of X if and only if
r > 1. Note that r can be interpreted as the intersection multiplicity of X and the line f(A!(K))
at x.

4. Suppose a hypersurface X = V(F) of degree > 1 in P"(K) contains a linear subspace F of
dimension r > n/2. Show that X has singular points contained in E.

5. Find singular points of the Steiner quartic V(TT? + T2Ty + TeTy — ToTiToT3) in P3(K).

6. Let X be a surface in P3(K). Assume that X contains three nocoplanar lines passing through
a point € X. Show that this point is singular.

7. Let Gi(r+ 1,n+ 1) be the Grassmann variety over k. For every M € Gi(r+1,n+ 1)(K) show
that the tangent space of Gy (r + 1,n + 1) at M is naturally identified with Hom g (M, K"+ /M).
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Lecture 14. LOCAL PARAMETERS

In this lecture we will give some other properties of nonsingular points. As usual we fix an
algebraically closed field K containing k& and consider quasi-projective algebraic k-sets, i.e. locally
closed subsets of projective spaces P} (K).

Recall that a point 2 € X is called nonsingular if dimg 7T (X), = dim,; X. When z € X (k) is a
rational point, we know that T'(X), & Homy(mx, ,/m% ,, K). Thus a rational point is nonsingular
if and only if ’

dimkmx,m/m;m = dim, X.

Let us see first that dim,; X = dimOx ;.
The number dimOx , is denoted often by codim, X and is called the codimension of the point
z in X. The reason is simple. If X is affine and p, = Ker(ev,), then we have

dimO(X), = sup{r : Istrictly decreasing chain p, = po O ... D p, of prime ideals in O(X)}.
This follows from the following.
Lemma 1. Let p be a prime ideal in a ring A. Then
dimA, = sup{r : 3strictly decreasing chain p =py O ... D p, of prime ideals in A}.

Proof. Let q, C ... C qo be the largest increasing chain of prime ideals in A,. We may
assume that qq is the maximal ideal m of A. Let p; be the pre-image of q; in A under the natural
homomorphism A — A,. Since pg = p, we get a chain of prime ideals p = pg D ... D p,.
Conversely, any chain of such ideals in A generates an increasing chain of prime ideals in Ap. It is
easy to see that p;Aq = p;41A4, implies p; = p; 1. This proves the assertion.

In commutative algebra the dimension of A, is called the height of the prime ideal p.

Proposition 1.
codim, X + algdim,, k(z) = dim, X.

Proof. We use induction on dim, X. Let p = Ker(ev,). If dim, X = 0, X consists of finitely
many points, p is a maximal ideal, k(z) is algebraic over k, and codim, X = 0. This checks the
assertion in this case. Assume the assertion is true for all pairs (Y,y) with dim,Y < dim,X. If
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p = {0}, then k(z) = Q(O(X)) and algdim;, k(z) = dimX. Obviously, codim; X = 0. This checks
the assertion in this case. Assume that p # {0}. Let X' be an irreducible component of X of
dimension dim, X which contains z. Take an nonzero element ¢ € p which does not vanish on X’
and consiser the closed subset V(¢) of X’ containing z. By Krull’s Theorem, the dimension of
each irreducible component of V' (¢) is equal to dimX’ — 1 = dim, X — 1. Let Y be an irreducible
component of V(¢) containing z and let g be the prime ideal in O(X) of functions vanishing on
Y. There exists a strictly decreasing chain of length codim,Y of prime ideals in O(Y) descending
from the image of p in O(Y) = O(X)/q. Lifting these ideals to prime ideals in O(X) and adding
q as the last ideal we get a chain of lenghth 14 codim,Y of prime ideals in O(X) descending from
p. By induction,
codim,Y + algdim;, k(z) = dim,Y = dim X — 1.

Under the natural homomorphism Ox , — Oy,,, the maximal ideal mx , generates the maximal
ideal my . This easily implies that the residue field of z in X and in Y are isomorphic. This gives

codim, X + algdim;, k(z) > 1+ codim,Y + algdim;, k(z) =1+ dim, X — 1 =dim,X. (1)

Recall that algdim;, k(z) = dimO(X)/p. Any increasing chain of prime ideals in O(X)/p can be
lifted to an increasing chain of prime ideals in O(X) beginning at p, and after adding a chain of
prime ideals descending from p gives an increasing chain of prime ideals in O(X). This shows that
codim, X + algdim;, k(z) < dim,X. Together with the inequality (1), we obtain the assertion.

Corollary. Assume that k(z) is an algebraic extension of k. Then

dimOx , = dim, X.

Now we see that a rational point is nonsingular if and only if

dimpmx 5/ m%, , = dimOx .

Proposition 2. Let (A,m) be a Noetherian local ring. Then
dim,m/m? > dimA.

Proof. We shall prove it only for geometric local rings, i.e., when A = B, where B is a finitely
generated k-algebra B and p is a prime ideal in B. This will be enough for our applications. Thus
we may assume that B = O(X) for some affine algebraic k-variety X and p corresponds to some
irreducible subvariety Y of X. Let K be some algebraically closed field containing the field of
fractions Q(O(X)/p). The canonical homomorphism O(X) — O(X)/p — Q(O(X)/p) - K
defines a point x of the algebraic k-set X (K) with k(z) = Q(O(X)/p). Thus we see that any
geometric local ring is isomorphic to the local ring Ox ;, of some affine algebraic k-set and its point
x.

Let X; be an irreducible component of X (K) of dimension equal to dimX which contains z.
Since alg.dim, O(X)/p = dimO(X)/p = dimY’, we see that

dimOx , = dim; X — dim}Y = dimX; — dimY.

Suppose ai,...,a, generate the maximal ideal of Ox ,. Let U be an open affine neighborhood
of z such that aq,...,a, are represented by regular functions ¢1,...,¢, on U. Clearly, Y N
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U= V(d1,...,¢n). Applying Krull’'s Hauptsatz, we obtain that dimY = dimV (¢1,...,¢,) >
dimX; — n. This implies dimOx , = dimX; — dimY < n which proves the assertion. In fact,
this proof gives more. By choosing elements from ¢1,..., ¢, such that each ¢ does not vanish on
any irreducible component of V(¢1,...,¢;—1) containing x, we obtain that V(¢q,...,¢,) = dimY,
where n = codim,X. Thus, Y is an irreducible component of V(¢1,...,¢,). Let q1,...,q, be
prime ideals corresponding to other irreducible components of V(¢y,...,¢,). Let U be an open
subset of X obtained by deleting the irreducible components of V(¢q,...,¢,) different from Y.
Then, replacing X with U, we may assume that V(¢1,...,¢,) =Y. Thus p = rad(¢1,...,¢,) and
replacing ¢;’s with their germs a; in Ox , we obtain that m = rad(ai,...,a,).

Definition A Noetherian local ring (A with maximal ideal m) and residue field kK = A/m is called
regular if dim, (m/m?) = dimA.

Thus a rational point z is nonsingular if and only if the local ring Ox , is regular.

For any point € X (not necessary rational) we define the Zariski tangent space to be
O(X)s = Homy(p) (mx,a/m% o, k(2))

considered as a vector space over the residue field k(z) = Ox »/mx ;.
We define the embedding dimension of X at x by setting

embdim, X = dimy,(,)O(X),.

Note that for a rational point we have

T(X):r = G(X)x ®r K. (2)
In particular, for a rational point z we have
dimgT(X), = embdim, X. (3)

Definition. A point € X is called regular if Ox , is a regular local ring, i.e.
embdim, X = codim,X.

Remark 1. We know that a rational point is regular if and only if it is regular. In fact, any
nonsingular point is regular (see next Remark) but the converse is not true. Here is an example.
Let & be a field of characteristic 2 and a € k which is not a square. Let X be defined in A7 (K) by
the equation Z7 + Z3 +a = 0. Taking the partial derivatives we see that (1/a,0) € K? is a singular
point. On the other hand, the ring Ox , is regular of dimension 1. In fact, the ideal p = Ker(ev,)
is a maximal ideal generated by the cosets of Z2 4+ a and Z,. But the first coset is equal to the
coset of Z3, hence p is a principal ideal generated by Z. Thus mx , is generated by one element
and Ox , is a regular ring of dimension 1.

Remark 2. If z is not a rational point, the equality (3) may not be true. For example, let
k = C, K be the algebraic closure of the field k(¢) and consider X = Ai(K). A point z = ¢
defines the prime ideal p = {0} = Ker(ev,) (because ¢ is not algebraic over k). The local ring
Ox, is isomorphic to the field of fractions of k[Z;]. Hence its maximal ideal is the zero ideal and
the Zariski tangent space is 0-dimensional. However, dimg T'(X), = 1 since X is nonsingular of
dimension 1. Thus O(X), # T(X),.

However, it is true that a nonsingular point is regular if we assume that k(x) is a separable
extension of £ (see Remark 6 later).

Let us give another characterization of a regular local ring in terms of generators of its maximal
ideal.
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Lemma 2 (of Nakayama). Let A be a local ring with maximal ideal m, and let M be a finitely
generated A-module. Assume that M = N + mM for some submodule N of M. Then M = N.

Proof. Replacing M by the factor module M /N, we may assume that N = 0. Let fq,..., f,
be a set of generators of M. Since mM = M, we may write

r
fi:Zaijfja i=1,...,m
Jj=1

for some a;; in m. Let R = (a;;) be the matrix of coefficients. Since (fi,..., f,) is a solution of
the homogeneous system of equations R -z = 0, by Cramer’s rule,

det(R)f; =0,i=1,...,r.

However, det(R) = (—1)" + a for some a € m (being the value of the characteristic polynomial of
R at 1). In particular det(R) is invertible in A. This implies that f; = 0 for all 4, i.e., M = {0}.

Corollary 1. Let A be a local Noetherian ring and m be its maximal ideal. Elements aq, ... ,a,
generate m if and only if their residues modulo m? span m/m? as a vector space over k = A/m.
In particular, the minimal number of generators of the maximal ideal m is equal to the dimension
of the vector space m/m?.

Proof. Let M = m,N = (ay,...,a,). Since A is Noetherian, M is a finitely generated A-
module and N its submodule. By the assumption, M = mM + N. By the Nakayama lemma,
M =N.

Corollary 2. The maximal ideal of a Noetherian local ring of dimension n cannot be generated
by less than n elements.
Proof. This follows from Proposition 2.

Definition A system of parameters in a local ring A is a set of n = dimA elements (a1, ...,ay)
generating an ideal whose radical is the maximal ideal, i.e.,

m® C (a,...,a,) C M
for some s > 0).

It follows from the proof of Proposition 2 that local rings Ox , always contain a system of
parameters. A local ring is regular, if and only if it admits a system of parameters generating the
maximal ideal. Such system of parameters is called a reqular system of parameters.

Let aq,...,a, be a system of parameters in Ox ,, Choose an U be an open affine neigh-
borhhod of z such that aq,...,a, are represented by some regular functions ¢1,..., ¢, on U. Then
V(¢1,...,¢,)NU is equal to the closure of z in U corresponding to the prime ideal p C O(U) such
that Ox ; =2 O(U),). In fact, the radical of (¢1,...,¢,) must be equal to p.

Examples. 1. Let X be given by the equation Y2 + X® = 0 and = = (0,0). The maximal ideal
my,, is generated by the residues of the two unknowns. It is easy to see that this ideal is not
principal. The reason is clear: z is a singular point of X and embdim;X = 2 > dim; X = 1. On
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the other hand, if we replace X by the set given by the equation Y2 + X3 4+ X = 0, then mx , is
principal. It is generated by the germ of the function Y. Indeed, Y2 = —X (X2 + 1) and the germ
of X2 + 1 at the origin is obviously invertible. Note that the maximal ideal m(X), of O(X) is not
principal.

2. Let z = (a1,...,a,) € k" C X = A} (K). The germs of the polynomials Z; — a;,i = 1,...,n,
form a system of parameters at the point . For any polynomial F'(Zy,...,Z,) we can write

F(Zy,....Z,) = F(z)+ Z oF (x)(Z; —a;) + G(Z1,...,Zy),

where G(Z1,...,2Z,) € mi. Thus the cosets dZ; of Z; —a; mod m?{,x form a basis of the linear space

mx ../ mk,, and the germ F, — F(z) = F(Zy,..., Z,) — F(z) mod m% , is a linear combination of

dZy,...,dZ, with the coefficients equal to the partial derivatives evaluated at z. Let aizi denote

the basis of T'(X), dual to the basis dZ,...,dZ,. Then the value of the tangent vector ), aiaizi

at F, — F(x) is equal to
“~ OF

This is also the value at F' of the derivation of k[Z1, ..., Z,] defined by the tangent vector ), a; aiz,-'
Let f: X =A"(K) - Y = A™(K) be a regular map given by a homomorphism

k[Tl,...,Tm] — k[Zl,...,Zn],Ti — PZ(Zl,,Zn)
Let 0, =), aiaiz,- € T(X)z, then

(df)2(02)(Ty) = 0:(f*(T2)) = 02(Pi(Z1, ..., Zn)) =

S “x~ 0P 0
= Zaja—zj(ﬂﬂ) => Z%‘ 97, (ﬂf)a—Tk(Ti)-
Jj=1 k=1j=1
From this we infer that the matrix of the differential (df), with respect to the bases %, cel Bgn

and (%1, ceey % of T(X), and T'(Y') (4, respectively, is equal to
oP aP;
0Z, ' 02y
oP, 8Py
6Z1 e 6Zn

Let f: X — Y be a regular map of algebraic sets. Recall that for every z € X with y = f(z)
we have a homomorphism of local rings

f;’y : Oy’y — OX,z-
Since f}(my,) C mx 4, we can define a homomorphism Oy, /my,, = Ox ;/mx , and passing to

the fields of quotienst we obtain an extension of fields k(x)/k(y). Also, f; , induces a linear map
my,y/m%/’y — mX,x/mg(’x, where the target space is considered as a vector space over the subfield
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k(y) of k(z), or equivalently a linear map of k(z)-spaces (my,y/m%/’y) ®k (Y)k(x) = mx o /m% ,
The transpose map defines a linear map of the Zariski tangent spaces

dfz™ 1 ©(X)z = O(Y)y Ok(y) k(). (5)
It is called the (Zariski) differential of f at the point x.

Let Y be a closed subset of X and f:Y — X be the inclusion map. Let U C X be an affine
open neighborhood of a point z € X and let ¢4,..., ¢, be equations defining Y in U. The natural
projection O(X NU) - O(Y NU) = OUNX)/(¢1,...,¢r) defines a surjective homomorphism
Ox .z — Oy,; whose kernel is generated by the germes a; of the functions ¢;. Let a; be the residue

of a; modulo m%ym. Then f; , defines a surjective map mX,x/m)Q(’x — my,x/m%/’x whose kernel is
the subspace E spanned by a1, ...,a,. The differential map is the inclusion map

OFY)e = E™ ={l € 6(X),: [(E) = {0}} = T'(X),. (6)
This shows that we can identify ©(Y'), with a linear subspace of ©(X),. Let
codim(©(Y),, 0(X),) = dimO(X), — dimO(Y),,
codim, (Y, X) = codim, X — codim, Y,
0:(Y, X) = codim, (Y, X) — codim(O(Y),, 0(X)z). (7)

Then
dim©®(Y), — codim, Y = dim©(X), — codim, X + §,(Y, X).

Thus we obtain
Proposition 3. Let Y be a closed subset of X and © € Y. Assume z is a regular point of X,
then 6,(Y, X) > 0 and =z is a regular point of Y if and only if §,(Y, X) = 0.

In particular, z is a regular point of Y if and only if the cosets of the germs of the functions
defining X in an neighborhood of x modulo m%yy span a linear subspace of codimension equal to
codim; X — codim, X. Applying Nakayama’s Lemma, we see that this is the same as saying that
X can be locally defined by codim; X — codim, X equations in an open neighborhood of z whose
germs are linearly independent modulo m% ,, .

For example, if Y is a hypersurface in X ina neighborhood of z, i.e. codim,Y = codim, X — 1,
then x is a regular point of Y if and only if Y is defined by one equation in an open neighborhood
of x whose germ does not belong to mg(’x.

Definition. Let Y, Z be closed subsets of an algebraic set X,z € Y N Z. We say that Y and Z
intersect transversally at the point z if X is nonsingular at z and

codim(®(Y N Z),,0(X),) = codim, (Y, X) + codim, (Z, X). (8)

Since for any linear subpaces F1, 5 of a linear space V' we have
(Ey + E;)” = E7 NEy,
using (6) we see that (8) is equivalent to

codim(©(Y), N O(Z)z) = codim, (Y, X) + codim,(Z, X). (9)
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Corollary. Let Y and Z be closed subsets of an algebraic set X which intersect transversally at
z € X. Then
(i) the linear subspaces O(Y),,©(Z), intersect transversally in ©(X), (ie., codim(©(Y), N
O(2)2,0(X)z) = codim(O(Y),, O(X)z) + codim(O(Y),, 0(X)z));
(ii) = is a nonsingular point of Y N Z;
(iii) Y and Z are nonsingular at x.

Proof. We have

32 (Y, X) = codim, (Y, X) — codim(0(Y),,0(X),) > 0,

02(Z,X) = codimy(Z, X) — codim(0©(Z),,0(X),) > 0.

Since Y and Z intersect transversally at =, we obtain from (9)
codim, (Y, X) + codim,(Z, X) = codim(0(Y ), N O(Z),,0(X)s) <

codim(O(Y),,0(X),) + codim(0(Z),,0(X),) < codim, (Y, X) + codim,(Z, X). (10)

This shows that all the inequalities must be equalities. This gives
codim(0(Y), N O(Z),,0(X);) = codim(O(Y),, 0(X),) + codim(O(Z),,0(X),)

proving (i), and 6,(Y,X) = §,(Z,X) = 0 proving (iii). By Theorem 6 of Lecture 11, we have
dim; (Y N Z) > dim,; X — dim,(Y') — dim,(Z). Applying Proposition 1, we get codim, (Y N Z) >
codim,Y + codim,Z. Together with inequality (10) we obtain 6, (Y N Z, X) = 0 proving assertion
(ii).

Next we will show that every function from Ox , can be expanded into a formal power series
in a set of local parameters at x.

Recall that the k-algebra of formal power series in n variables k[[Z]] = k[[Z1, ..., Z,]] consists
of all formal (infinite) expressions

P=> a2,

where r = (r1,...,7,) € N" a, € k,Z" = Z{' ... Z'. The rules of addition and multiplicaton
are defined naturally (as for polynomals). Equivalently, k[[Z]] is the set of functions P : N" —
k,r — a,, with the usual addition operation and the operation of multiplication defined by the
convolution of functions:

(PQ)(r)= ) PHQG).

i+j=r

The polynomial k-algebra k[Z;, ..., Z,] can be considered as a subalgebra of k[[Z1, ..., Z,]].
It consists of functions with finite support. Clearly every formal power series P € k[[Z]] can be
written as a formal sum P = Zj P;, where P; € k[Zi,...,Z,]; is a homogeneous polynomal of
degree j.
We set
P[r] :P0+P1+---+Pr-

This is called the r-truncation of P.
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Theorem 1 (Taylor expansion). Let = be a regular point of an algebraic set X of dimen-
sion n, and {f1,..., fn} be a regular system of parameters at x. There exists a unique injective
homomorphism ¢ : Ox 5 — k[[Z1,...,Z,]] such that for every i > 0

Proof. Take any f € Ox,, we denote by f(z) the image of f in & = Ox,/mx, then
[ — f(z) € mx,. Since the local parameters fi,..., f, generate mx ., we can find elements
gis---,9n € Ox 5 such that
f=f@)+gfi+. ... +gnfn

Replacing f by g;, we can write similar expressions for the g/s. Plugging them into the above
expresson for f, we obtain

f=F@)+Y gi@) fi+ Y hijfifs,
i i

where h;; € Ox . Continuing in this way, we will find a formal power series P = Zj P; such that

(%) f=Py(fi,. .5 fn) Gmg(T; for any r > 0.

Let us show that f +— P defines an injective homomorphism Ox , — k[[Z]] satisfying the assertion
of the theorem. First of all, we have to verify that this map is well defined, i.e. property (x)
determines P uniquely. Suppose there exists another formal power series Q(Z) = Zj Q; such that

f= Q[r](fl,-..,fn) € m?’xl for any r > 0.

Let r = min{j : Q; # P;} and F = Q; — P; € k[Z1,...,Zy), \ {0}. Taking into account (x), we
obtain that F(fi,..., fs) € m}}"’xl Making an invertible change of variables, we may assume that
F(0,...,0,1) #0, ie.,

F(fi,oo i fn) = Gofy+Gilfrs s foe) 5 4o+ Gl f1s s fre)
where G;(Z1,...,Z,_1) € k[Z1,...,Zy_1]i,Go # 0. Since fy,..., f, generate mx ,, we can write

F(fla---afn) :Hl(fla"'afn)fri+H2(f17"'afn—1)f77;_1+"'+H7‘+1(f11'--afn—1)a

where H; € k[Z1,...,Z,_1];. After subtracting the two expressions, we get

(Go— Hi(fr, -5 fa))fn € (f1s- s fnma):

Since Hi(f1,...,fn) € mx .z, Go — H1(f1,.... fn) is invertible and f;, € (fi,..., fn—1). Passing
to the germs, we find that mx , = (f1,...,fn) C rad(f1,..., fn—1), and hence (f1,...,fn) =
(f1s--., fn—1) because mx , is a maximal ideal. But this contradicts Corollary 2 of Nakayama’s
Lemma.

We leave to the reader to verify that the constructed map ¢ : Ox , — k[[Z]] is a ring homo-
morphism. Let us check now that it is injective. It follows from the definition of this map that
#(f) = 0 implies f € (mx )" for all » > 0. Let I = N, m% . # {0}. Since mx I = I Nakayama’s
lemma implies that I = 0. ’

Definition. Let ¢ : Ox , — k[[Z1,...,Z,]] be the injective homomorphism constructed in The-
orem 1. The image ¢(f) of an element f € Ox , is called the Taylor expansion of f at z with
respect to the local parameters fy,..., f,.
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Corollary 1. The local ring Ox , of a nonsingular point does not have zero divisors.

Proof. Ox , is isomorphic to a subring of the ring k[[Z]] which, as is easy to see, does not
have zero divisors .

Corollary 2. A nonsingular point of an algebraic set X is contained in a unique irreducible
component of X.

Proof. This immediately follows from Corollary 1. Indeed, assume z € Y; N'Y; where Y; and
Y5 are irreducible components of X containing the point z. Replacing X by a small open affine
neighborhood, we may find a regular function f; vanishing on Y; but not vanishing on the whole
Y>. Similarly, we can find a function f; vanishing on X \ Y; and not vanishing on the whole Y;.
The product f = fi fo vanishes on the whole X. Thus the germs of f; and f5 are the zero divisors
in Ox ;. This contradicts the previous corollary.

Remarks. 3. Note the analogy with the usual Taylor expansion which we learn in Calculus. The
local parameters are analogous to the differences Az; = z;—a;. The condition f—[P],.(f1,...,fn) €
m;}"'xl is the analog of the convergence: the difference between the function and its truncated Taylor
exp’ansion vanishes at the point z = (a1,. .., a,) with larger and larger order. The previous theorem
shows that a regular function on a nonsingular algebraic set is like an analytic function: tits Taylor

expansion converges to the function.

4. For every commutative ring A and its proper ideal I, one can define the I-adic formal completion
of A as follows. Let p, : A/I"*1 — A/I**! be the canonical homomorphism of factor rings
(n > k). Set

Ar={(...,ag,-..,ap...) € H(A/ITH) tpnk(an) =ag foralln > k}.
r>0

It is easy to see that Ay is a commutative ring with respect to the addition and multiplication
defined coordinatewise. We have a canonical homomorphism:

it A= Ar,a— (ag, a1, .-Gy .)

where a,, = residue of @ modulo I"*!. Note the analogy with the ring of p-adic numbers which is
nothing else as the formal completion of the local ring Z,) of rational numbers a/b,p /b.

The formal I-adic completion A is a completion in the sense of topology. One makes A a
topological ring (i.e. a topological space for which addition and multiplication are continuous
maps) by taking for a basis of topology the cosets a + I"™. This topology is called the I-adic
topology in A. One defines a Cauchy sequence as a sequence of elements a,, in A such that for any
N > 0 there exists nq(N) such that a, — a,, € IV for all n,m > ng(N). Two Cauchy sequences
{a,} and {b,} are called equivalent if lim,,_,(a, — b,) = 0, that is, for any N > 0 there exists
no(N) such that a, — b, € IV for all n > 0. An equivalence class of a Cauchy sequence {a,}
defines an element of A as follows. For every N > 0 let ay be the image of a, in A/IN+1 for
n > ng(N). Obvioulsy, the image of ayy; in A/IV*! is equal to ay. Thus (ag, a1,...,aN,...)
is an element from A. Conversely, any element (g, @15 vy Qpy. o) N A defines an equivalence
class of a Cauchy sequence, namely the equivalence class of {a,}. Thus we see that A is the usual
completion of A equipped with the I-adic topology.

If A is a local ring with maximal ideal m, then A denotes the formal completion of A with
respect to the m-adic topology. Note that this topology is Hausdorff. To see this we have to show
that for any a,b € A, a # b, there exists n > 0 such that ¢ + m” Nb+ m" = (). this is equivalent to
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the existence of n > 0 such that a — b ¢ m”. This will follow if we show that N,>om" = {0}. But
this follows immediately from Nakayama’s Lemma as we saw in the proof of Theorem 1. Since the
topology is Hausdorff, the canonical map from the space to its completion is injective. Thus we
get

A A
Note that the ring A is local. Its unique maximal ideal m is equal to the closure of m in A Tt
consists of elements (0, a1, ..., ay,,...). The quotient A/m is isomorphic to A/m = k. The canonical
homomorphism (4) — A/m is of course (ag,a1,...,ay,,...) = ag.

5. The local ring Ais complete with respect to its m-topology. A fundamental result in commutative
algebra is the Cohen Structure Theorem which says that any complete Noetherian local ring (A, m)
which contains a field is isomorphic to the quotient ring x[[T},...,T,]], where £ is the residue
field and n = dim,m/m?2. This of course applies to our situation when A = @X@, where z is not
necessary a rational point of X. In particular, when z is a regular point, we obtain

Ox.p & k(x)[[Ty,...,Ty]] (11)

which generalizes our Theorem 1.

6. Let us use the isomorphism (11) to show that a nonsingular point is regular if assume that
the extension k(x)/k is separable (i.e. can be obtained as a separable finite extension of a
purely transcendental extension of k). We only sketch a proof. We have a canonical linear map
: Derk(@X,x, K) — Dery(Ox 5, K) corresponding to the inclusion map of the ring into its com-
pletion. Note that for any local ring (A, m) which contains k, the canonical homomorphism of
A-modules
pa : Derg(A, K) — Homy(m/m?, K)
is injective. In fact, if M is its kernel, then, for any 6 € M we have §(m) = 0. This implies that
for any ¢ € m and any z € A, we have 0 = d(az) = ad(z) + z0(a) = ad(z). Thus ad = 0. This
shows that mM = 0, and by Nakayama’s lemma we get M = 0. Composing a with po, , we
obviously get Poy.: Since the latter is injective, a is injective. Now we show that it is surjective.
Let 6 € Der(Ox 4, K). Since its restriction to m% , is zero, we can define §(a + m% ) for any
a € Ox . For any x = (z9,21,...) € @X,x we set 3($) = 0(x1). It is easy to see that this defines
a derivation of Ox ,/m? such that p(d) = 4.
So, we obtain an isomorphism of K-vector spaces:

Derk((ﬁx,m, K) = Derk(OX,m, K)

By Cohen’s Theorem, Ox , 2 k(z)[[T4, . .., T,]], where the pre-image of the field of constant formal
series is a subfield L of @X,m isomorphic to k(z) under the projection to the residue field. It is
clear that the pre-image of the maximal ideal (77,...,T),) is the maximal ideal of Ox ;. Let
DerL((’A)X,x, K) be the subspace of Derk((’jx,x, K) of derivation trivial on L. Using the same proof
as in Lemma 3 of Lecture 13, we show that Dery(Ox ., K) = ©(X),. Now we have an exact
sequence, obtained by restrictions of derivations to the subfield L:

0 — Derz(Ox.e, K) = Der(Ox 4, K) — Derg(L, K). (12)

It is easy to see that dimgDer (L, K) = algdim, L = algdim, k(z). In fact, Derg (k(t1,...,t,), K) &
K" (each derivation is determined by its value on each ¢;). Also each derivation can be uniquely
extended to a separable extension. Thus exact sequence (12) gives

dimgDery(Ox o, K) = dimgDer (Ox 4, K) < embdim, X + algdimyk(z).
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This implies that embdim, (X ) = dimOx , and hence Ox , is regular.

Let (X, z) be a pair that consists of an algebraic set X and its point x € X. Two such pairs are
called locally isomorphic if the local rings Ox , and Oy, are isomorphic. They are called formally
isomorphic if the completions of the local rings are isomorphic. Thus any pair (X, z) where z is a
nonsingular point of X is isomorphic to a pair (A" (K),0) where n = dim, X. Compare this with
the definion of a smooth (or complex manifold).

Theorem 2. A regular local ring is a UFD (= factorial ring).

The proof of this non-trivial result can be found in Zariski-Samuel’s Commutative Agebra,
vol. II. See the sketch of this proof in Shafarevich’s book, Chapter I1, §3. It uses an embedding of
a regular ring into the ring of formal power series.

Corollary. Let X be an algebraic set, x € X be its regular point, and Y be a closed subset
of codimension 1 which contains . Then there exists an open subset U containing z such that
Y NU = V(f) for some regular function on U.

Proof. Let V be an opne affine open neighborhood of z, ¢ € I(Y N V), and let g, be the
germ of g at = and f, be a prime factor of g, which has a representative f € O(U) vanishing on
Y NU for some smaller affine neighborhood U of z. At this point we may assume that X = U.
Since V(f) D Y and dimV (f) = dimY, Y is equal to some irreducible component of V(f), i.e.,
V(f) =Y U Z for some closed subset of U. If z € Z, then there exist regular functions h and A’
on X such that hh' =0 on V(f) but h Z 0 on Y and h' #Z 0 on Z. By Hilbert’s Nullstellensatz,
(hh")" € (f). Passing to the germs, we obtain that f;|(hyh!,)". Since Ox , is factorial, we obtain
that f,|hy or fy|hl,. Therefore for some open neighborhood U’ C U, either h|U’ or h'|U’ vanishes
identically on (Y U Z) N U’. This contradicts the choice of h and h’. This shows that ¢ Z, and
replacing U by a smaller open subset, the proof is complete.

Here is the promised application.

Recall that a rational map f : X— — Y from an irreducible algebraic set X to an algebraic
set Y is a regular map of an open subset of X. Two rational maps are said to be equal if they
coincide on an open subset of X. Replacing X and Y by open affine subsets, we find ourselves in
the affine situation of Lecture 4. We say that a rational map f : X— — Y is defined at a point
z € X if it can be represented by a regular map defined on an open subset containing the point z.
A point z where f is not defined is called a point of indeterminacy of f.

Theorem 3. Let f: X—— Y be a rational map of a nonsingular algebraic set X to a projective
set Y. Then the set of indeterminacy points of f is a closed subset of X each irreducible component
of which is of codimension > 2.

Proof. Since Y C P"(K) for some n, we may assume that ¥ = P"(K). Let U be the maximal
open subset where f is represented by a regular map f: U — P*"(K), and Z = X \ U. Assume Z
contains an irreducible component of codimension 1. By Corollary to Theorem 2, for any x € Z
there exists an open neighborhood V' of  such that Z NV = V(¢) for some regular function ¢ on
V. Restricting f to some smaller subset of D(¢) =V \ V(¢) we may assume that f|D(¢) is given
by n + 1 regular functions ¢1,..., ¢n41 on D(¢). Since Ox , is factorial, we may cancel the germs
(¢i). by their common divisor to assume that not all of them are divisible by the germ ¢, of ¢.
The resulting functions define the same map to P"(K). It is not defined at the set of common
zeroes of the functions ¢;. Its intersection with Z cannot contain any open neighborhood of z,
hence is a proper closed subset of Z. This shows that we can extend f to a larger open subset
contradicting the maximality of U.
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Corollary. Any rational map of a nonsingular curve to a projective set is a regular map. In
particular, two nonsingular projective curves are birationally isomorphic if and only if they are
isomorphic.

This corollary is of fundamental importance. Together with a theorem on resolution of sin-
gularities of a projective curve it implies that the set of isomorphism classes of field extensions of
k of transcedence degree 1 is in a bijective correspondence with the set of isomorphism classes of
nonsingular projective algebraic curves over k.

Problems.

1. Using Nakayama’s Lemma prove that a finitely generated projective module over a local ring is
free.

2. Problem 6 from Shafarevich, Chap. II, §3.

3. Let A be a ring with a decreasing sequence of ideals A = Ip D Iy D --- D I, D --- such
that I; - I; C I;4; for all i,j. Let Grp(A) = ®2,1;/I;4+1 with the obvious ring structure making
Grr(A) a graded ring. Show that a local ring (A, m) of dimension n is regular if and only Grp(A4) =
k[T1,...,Ty], where I; = m’.

4. Let X = V(F) C A?2(K) where F = Z3 — Z5(Z5 +1). Find the Taylor expansion at (0,0) of the
function Zs mod (F') with respect to the local parameter Z; mod (F).

5. Give an example of a singular point £ € X such that there exists an injective homomorphism
Ox.,» — k[[Z1]]. Give an example of a curve X and a point € X for which such homomorphism
does not exist.

6. Let X = V(Z1Z5 + Z2) C K*. Show that the line V(Z;,Z3) C X cannot be defined by one
equation in any neighborhood of the origin.

7. Show that Theorem 3 is not true for singular projective algebraic curves.

8*. Let X = V(Z1Zy + F(Z1,72)) C A*(K) where F is a homogeneous polynomial of degree
> 3. Show that Ox , = K|[[T1,T»]]/(T1T>) and hence the singulaity (X,0) and (V(Z1Z5),0) are
formally isomorphic.
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Lecture 15. PROJECTIVE EMBEDDINGS

In this Lecture we shall address the following question: Given a projective algebraic k-set X,
what is the minimal NV such that X is isomorphic to a closed subset of PX (K)? We shall prove that
N < 2dimX + 1. For simplicity we shall assume here that k¥ = K. Thus all points are rational, the
kernel of the evaluation maps is a maximal ideal, the tangent space is equal to the Zariski tangent
space, a regular point is the same as a nonsingular point.

Definition. A regular map of projective algebraic sets f : X — P"(K) is called an embedding if it
is equal to the composition of an isomorphism f’' : X — Y and the identity map 7 : Y — P"(K),
where Y is a closed subset of P"(K).

Theorem 1. A finite regular map f : X — Y of algebraic sets is an isomorphism if and only if it
is bijective and for every point x € X the differential map (df), : T(X )z — T(Y)f(s) Is injective.

Proof. To show that f is an isomorphism it suffices to find an open affine covering of Y such
that for any open affine subset V' from this covering the homomorphism of rings f* : O(V) —
O(f~1(V)) is an isomorphism. The inverse map will be defined by the maps of affine sets V —
f~Y(V) corresponding to the inverse homomorphisms (f*)=! : O(f~}(V)) — O(V). So we may
assume that X and Y are affine and also irreducible.

Let # € X and y = f(z). Since f is bijective, f~*(y) = {#}. The homomorphism f* induces
the homomorphism of local rings f; : Oy,y — Ox 5. Let us show that it makes Ox ; a finite Oy, -
module. Let m C O(Y) be the maximal ideal corresponding to the point y and let S = O(Y) \ m.
We know that Oy,, = O(Y)s, and, since finiteness is preserved under localizations, O(X)-(g) is
a finite Oy y-module. I claim that O(X)s-(s) = Ox 5. Any element in Ox, is represented by
a fraction o/ € Q(O(X)) where 5(z) # 0. Since the map f is finite and bijective it induces a
bijection from the set (V(3)) of zeroes of § to the closed subset f(V(53)) of Y. Since y € f(V(5))
we can find a function g € S vanishing on f(V(()). By Nullstellensatz, f*(g)" = B~ for some r > 0

and some v € O(X). Therefore we can rewrite the fraction a/f in the form ay/f*(g)" showing
that it comes from O(X)¢-(gy. This proves the claim.
By assumption f; : Oy, — Ox,,; induces a linear surjective map:
"df )z myy/mi, = mx a/m¥
where ”t” stands for the transpose map of the dual vector spaces. Let hy,...,h; be a set of local
parameters of Y at the point y. Their images f;(h1),..., f; (hx) in mx . span mX,x/mggym. As
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follows from Lecture 14, this implies that f;(h1),..., fy(hz) generate mx ;. Therefore,

fy(myy)Ox o = mx 4.

Since f;(Oy’y) contains constant functions, and Ox , = k + mx ,, we get
OX,:(: = f;(OY,y) + mY,yOX,z-

Having proved that Ox , is a finitely generated Oy ,-module we may apply Nakayama’s lemma to
obtain that

Ox.e = [, (Oyy).

Therefore the map fy : Oy, — Ox,, is surjective. It is obviously injective. Let ¢1,..., ¢ be
generators of the O(Y')-module O(X). The germs (¢;), belong to Ox ; = f*(Oy,) allowing us to
write (¢;)z = f*((1;)y), where 1; are regular functions on some affine open neighborhood V' of f(z).
This shows that the germs of ¢; and f*(v;) at the point x are equal. Hence, after replacing V by a
smaller set V' if needed, we can assume that ¢; = f*(1;) for some open subset U of f~1(V). Since
X is irreducible we can further assume that U = f~!(V). If we replace again V by a principal
open subset D(h) C Y, we get U = D(f*(h)),0(V) = O(Y)y,O(U) = O(X)s-(n), and the
functions ¢;|U generate O(U) as a module over O(V). This implies that f*: O(V) — O(f~1(V))
is surjective, hence an isomorphism. This proves the assertion.

Remark 1. The assumption of finiteness is essential. To see this let us take X to be the union of
two disjoint copies of affine line with the origin in the second copy deleted, and let Y = V(7 Z5)
be the union of two coordinate lines in A2(K). We map the first copy isomorphically onto the lines
Z1 = 0 and map the second component of X isomorphically onto the line Z = 0 with the origin
deleted. It is easy to see that all the assumptions of Theorem 1 are satisfied except the finiteness.
Obviously the map is not an isomorphism.

Definition. We say that a line ¢ in P"(K) is tangent to an algebraic set X at a point z € X if
T(¥), is contained in T'(X ), (both are considered as linear subspaces of T'(P"(K)),).

Let E be a linear subspace in P?(K) defined by a linear subspace E of K"t!. For any point
z = (ag,...,a,) € E defined by the line L, = K(ag,...,a,) in E, the tangent space T(FE), can be
identified with the factor space Homg (L, E/K (aq, ..., a,) (see Example 2 of Lecture 13). The in-
clusion E C K"*+! identifies it naturally with the subspace of T(P"(K)), = Homg (Ly, K"*/L,).
Now let X be a projective subset of P"(K) defined by a system of homogeneous equations
Fi(To,...,Ty) = ... = Fp(Ty,...,T,) = 0 and let z € X. Then the tangent space T'(X),
can be identified with the subspace of T'(P"(K)), defined by the equations

", OF,
T

(m)bj = 0, 1= 1, oM. (1)
7j=0

Now we see that a line F is tangent to X at the point z if and only if E is contained in the space
of solutions of (1). In particular we obtain that the union of lines tangent to X at the point z is
the linear subspace of P"(K) defined by the system of linear homogeneous equations

"\ OF;
IT;

(2)T; =0, i=1,...m. (2)
7=0

It is called the embedded tangent space and is denoted by ET(X),.
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Lemma 1. Let X be a projective algebraic set in P"(K),a € P"(K) C X, the linear projection
map p, : X — P""1(K) is an embedding if and only if every line ¢ in P"(K) passing through the
point a intersects X in at most one point and is not tangent to X at any point.

Proof. The induced map of projective sets f : X — Y = p,(X) is finite and bijective. By
Theorem 1, it suffices to show that the tangent map (df), is injective. Without loss of generality
we may assume that ¢ = (0,...,0,1) and the map p, is given by restriction to X of the projection
p:P'(K)\ {a} = P""1(K) is given by the formula:

(T(], e ,Tn) — (T(], ... 7Tn—1)-

For any point z = (zg,...,%,) # a, we can identify the tangent space T'(P" (K)), with the quotient
space K"*!'/K(z1,...,z,), the tangent space T(P"~1(K)),,(z) With K"/K(z1,...,2n_1), and
the differential (dp,), with the map K"*'/K(z1,...,z,) — K"/K(x1,...,%n_1) induced by the
projection K"+ — K™ Tt is clear that its kernel is spanned by Kz+K (0,...,0,1)/Kxz. But this is
exactly the tangent space of the line £ spanned by the points z = (z¢,...,2,) and a = (0,...,0,1).
Thus the differential of the restriction of p, to X is injective if and only if the tangent space of the
line £ is not contained in the tangent space T'(X),. This proves the assertion.

Lemma 2. Let X be a quasi-projective algebraic subset of P"(K) and x € X be its nonsingular
point. Then ET(X), is a projective subspace in P"(K) of dimension equal to d = dim, X .

Proof. We know that ET(X), is the subspace of P"(K) defined by the equations (2). So it
remains only to compute the dimension of this subspace. Since z is a nonsingular point of X, the
dimension of T'(X), is equal to d. Now the result follows from comparing the equations (1) and (2).
The first one defines the tangent space T (X ), and the second ET(X),. The (linear) dimension of
solutions of both is equal to

d+1=n+1- rank(gT )(z) = dimgT(X), + 1 =dimET(X), + 1.
J

Note that the previous lemma shows that one can check whether a point of a projective set
X is nonsingular by looking at the Jacobian matrix of homogeneous equations defining X.

Let
Z ={(z,y,2z) e P"(K) x P"(K) x P"(K) : z,y,z € £ for some line ¢}.

This is a closed subset of P" (K ) x P"(K ) x P*(K ) defined by the equations expressing the condition
that three lines x = (zo,...,2Zn),y = (Yos---,Yn), 2 = (20, ..., 2,) are linearly dependent. The tri-
homogeneous polynomials defining Z are the 3 x 3-minors of the matrix

T, ... T,
T ... T
T ... T

Let p1o : Z — P"(K) x P"(K) be the projection map to the product of the first two factors. For
any (1,y) € P"(K) x P"(K)

moi (o = { 507 a2y
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where < z,y > denotes the line spanned by the points z, y.
Let X be a closed subset of P"(K). We set

Seck = p75 (X x X \ Ax),
Secx = closure of Sec’ in Z.
The projection pi and the projection ps : Z — P"(K) to the third factor define the regular maps
p:Secx - X x X, g¢:Secx — P"(K).

For any (7,7) € X x X \ Ax the image of the fibre p~!(z,y) under the map ¢ is equal to the line
< z,y >. Any such lines is called a honest secant of X. The union of all honest secants of X is
equal to the image of Sech under the map ¢. The closure of this union is equal to g(Secx). It is
denoted by Sec(X) and is called the secant variety of X.

Lemma 3. Let X be an irreducible closed subset of P"(K). The secant variety Sec(X) is an
irreducible projective algebraic set of dimension < 2dimX + 1.

Proof. Tt is enough to show that Sec is irreducible. This would imply that Secx and Sec(X)

are irreducible, and by the theorem on dimension of fibres
dim Sec? = dim(X x X)+ 1 = 2dimX + 1.
This gives
dim Sec(X) < dim Sec(X) = dim Secy = 2dimX + 1.

To prove the irreduciblity of Sec’}( we modify a little the proof of Lemma 2 of Lecture 12. We cannot
apply it directly since Sec’}c is not projective set. However, the map p" : Sec’}c - X x X\ Ax
is the restriction of the projection sets (X x X \ Ax) x P"(K) — X x X \ Ax. By Chevalley’s
Theorem from Lecture 9, the image of a closed subset of Sec’s is closed in X x X \ Ax. Only this
additional property of the map f : X — Y was used in the proof of Lemma 2 of Lecture 12.

Lemma 4. The tangential variety Tan(X) of an irreducible projective algebraic set of P"(K) is
an irreducible projective set of dimension < 2dimX.

Proof. Let Z C X C P"(K) C P"(K) x P*"(K) be a closed subset defined by equations (1),
where z is considered as a variable point in X. Consider the projection of Z to the first factor. Its
fibres are the embedded tangent spaces. Since X is nonsingular, all fibres are of dimension dimX.
As in the case of the secant variety we conclude that Z is irreducible and its dimension is equal
to 2dimX. Now the projection of Z to P" is a closed subset of dimension < 2dimX. It is equal to
the tangential variety Tan(X).

Now everything is ready to prove the following main result of this Lecture:

Theorem 2. Every nonsingular projective d-dimensional algebraic set X can be embedded into
P2d+1 )

Proof. The idea is very simple. Let X C P"(K), we shall try to project X into a lower-
dimensional projective space. Assume n > 2d + 1. Let a € P"(K)\ X. By Lemma 1, the
projection map

pa: X =Y CcPHK)
is an isomorphism unless either x lies on a honest secant of X or in the tangential variety of X.
Since all honest secants are contained in the secant variety Sec(X) of X, and

dimSec(X) < 2dimX 4+ 1 < n, dimTan(X) < 2dimX < n,

we can always find a point a ¢ X for which the map p, is an isomorphism. Continuing in this way,
we prove the theorem.
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Corollary. Every projective algebraic curve (resp. surface) is isomorphic to a curve (resp. a
surface) in P3(K) (resp. P°(K)).

Remark 2. The result stated in the Theorem is the best possible for projective sets. For example,
the affine algebraic curve: V(T? + F,,(Ty)) = 0, where F), is a polynomial of degree n > 4 without
multiple roots, is not birationally isomorphic to any nonsingular plane projective algebraic curve.
Unfortunately, we have no sufficient tools to prove this claim. Let me give one more unproven fact.
To each nonsingular projective curve X one may attach an integer g > 0, called the genus of X.
If K = C is the field of complex numbers, the genus is equal to the genus of the Riemann surface
associated to X. Each compact Riemann surface is obtained in this way. Now for any plane curve
V(F) C P?(K) of degree n one computes the genus by the formula

(n — 1)(n—2).
2

Since some values of g cannot be realized by this formula (for example g = 2,4,5) we obtain that
not every nonsingular projective algebraic curve is isomorphic to a plane curve.

Let Sec(X) be the secant variety of X. We know that it is equal to the closure of the union
Sec(X)" of honest secant lines of X. A natural guess is that the complementary set Sec(X) \
Sec(X)" consists of the union of tangent lines to X, or in other words to the tangential variety
Tan(X) of X. This is true.

Theorem 3. Let X C P"(K) be a nonsingular irreducible closed subset of P"(K). Then
Sec(X) = Sec(X)" U Tan(X).

Proof. Since Sec(X) is equal to the closure of an irreducible variety Sec(X)" and Tan(X) is
closed, it is enough to prove that Sec(X)" U Tan(X) is a closed set.

Let Z ne the closed subset of X x P™(K) considered in the proof of Lemma 4. Tts image under
the projection to X is X, and its fibre over a point z is isomorphic to the embedded tangent space
ET(X),. Its image under the projection to P" is the variety Tan(X). We can view any point
(z,9) = (zo,-+-,Zn), Wo,---,yn)) € ET(X) as a pair z + ye € K[e]"*! satisfying the equations
F;(T) = 0. Note that for X = P" we have ET(X) = P" x P*. Consider a closed subset Z of
ET(X) x ET(X) x ETP"(K) defined by the equations

rank[z + ey, z' + ey’, 2" + ey’'] < 3, (3)

where the matrix is of size 3 x (n + 1) with entries in K[e]. The equations are of course the
3 x 3-minors of the matrix. By Chevaley’s Theorem, the projection Z’ of Z to ET(X) x ET(X) is
closed. Applying again this theorem, we obtain that the projection of Z’' to P" is closed. Let us
show that it is equal to Sec”(X) U Tan(X).

It is clear that the image (z,2',2") of 2 = (x + ey, 2" + ey, 2" + €y’) in X x X x X satisfies
rank[z, 2, 2"] < 3. This condition is equivalent to the following. For any subset I of three elements
from the set {0,...,n} let |z1 + ey, 2 + ey}, ¥ + ey}| be the corresponding minor. Then equation
(3) is equivalent to the equations

w1 + eyr, ot + eyp, o7 + eyr| = 0.

Or, equivalently,
|x1vmllﬂmll’| =0, (4)
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‘xlaylla]:’l"+|$Ia$,17yll"+|ylaxlla$’ll|:0' (5)

Suppose equations (4) and (5) are satisfied. Then (4) means that the point 2’/ € P" lies in the
line spanned by the points z,z" or rank[z,z'] = 1. In the first case we obtain that 2" € Sec (X).
Assume z = 2’ as points in P". Then (5) gives |z, 27,y — yr| = 0. Since (z,y) and (z,y’) lie in
ET(X),, we obtain that z lies on the line spanned by a point z and a point in ET(X),. Hence
z" € ET(X),. This proves the assertion.

Remark 3. If X is singular, the right analog of the embedded tangent space ET(X) is the tangent
cone CT(X),. It is defined as the the union of limits of the lines < z,y > where y € X. See details
in Shafarevich’s book, Chapter 11, §1, section 5.

Definition A closed subset X C P"(K) is called non-degenerate if it is not contained in a hyper-
plane in P"(K). A nondegenerate subset is called linearly normal if it cannot be obtained as an
isomorphic projection of some X' C P**1(K).

Theorem 4. Let X be a nonsingular irreducible non-degenerate projective curve in P3(K). Then
X cannot be isomorphically projected into P?(K) from a point outside X. In particular any plane
nonsingular projective curve of degre > 1 is linearly normal.

Proof. Applying Theorem 3 and Lemma 1, we have to show that Sec(X) = P3(K). Assume the
contrary. Then Sec(X) is an irreducible surface. For any z € X, Sec(X) contains the union of lines
joining z with some point y # z in X. Since X is not a line, the union of lines < z,y >,y € Y,y # =z,
is of dimension > 1 hence equal to Sec(X). Pick up three non-collinear points z,y,z € X. Then
Sec(X) contains the line < z,y >. Since each point of Sec(X) is on the line passing through z, we
obtain that each line < z,t >,t €< x,y > belongs to Sec(X). But the union of these lines is the
plane spanned by z,y, 2. Thus Sec(X) coincides with this plane. Since X is obviously contained
in Sec(X) this is absurd.

The next two important results of F. Zak are given without proof.

Theorem 5. Let X be a nonsingular nondegenerate closed irreducible subset of P"(K) of dimen-
sion d. Assume Sec(X) # P"(K). Then
3d

> 24+ —.
n > +2

In particular, any nonsingular nondegenerate d-dimensional closed subset of P"(K) is linearly
normal if n < 32—d.

If d = 2, this gives that any surface of degre > 1 in P3(K) is linearly normal. This bound is
sharp. To show this let us consider the Veronese surface X = vy(P?(K) in P°(K). Then we know
that it is isomorphic to the set of symmetric 3 x 3-matrices of rank 1 up to proportionality. It is
easy to see, by using linear algebra, that Sec(X) is equal to the set of symmetric matrices of rank
< 2 up to proportionality. This is a cubic hypersurface in P?(K) defined by the equation expresing
the determinant of symmetric matrix. Thus we can isomorphically project X in P4(K).

Remark 4. According to a conjecture of R. Hartshorne, any non-degenerate nonsingular closed
subset X C P"(K) of dimension d > 2n/3 is a complete intersection (i.e. can be given by n — d
homogeneous equations).

Definition. A Severi variety is a nonsingular irreducible algebraic set X in P"(K) of dimension
d = 2(n — 2)/3 which is not contained in a hyperplane and with Sec(X) # P"(K).

The following result of F. Zak classifies Severi varieties in characteristic 0:
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Theorem 6. Assume char(K) = 0. Each Severi variety is isomorphic to one of the following four
varieties:

(n = 2) the Veronese surface vy (P?(K)) C P3(K);

(n = 4) the Segre variety s (P?(K) x P?(K)) C P¥(K);

(n = 8) the Grassmann variety G(2,6) C P (K) of lines in P°(K);

(n = 16) the Eg-variety X in P?(K).

The last variety (it was initially missing in Zak’s classification and was added to the list by R.
Lazarsfeld) is defined as follows. Choose a bijection between the set of 27 lines on a nonsingular
cubic surface and variables Ty, ..., Tos. For each triple of lines which span a tri-tangent plane form
the corresponding monomial T;T;T},. Let F' be the sum of such 45 monomials. Its set of zeroes in
P26(K) is a cubic hypersurface Y = V(F). It is called the Cartan cubic. Then X is equal to the
set of singularities of Y (it is the set of zeroes of 27 partial derivatives of F') and Y equals Sec(X).
From the point of view of algebraic group theory, X = G/P, where G is a simply connected simple
algebraic linear group of exceptional type Eg, and P its maximal parabolic subgroup corresponding
to the dominant weight w defined by the extreme vertex of one of the long arms of the Dynkin
diagram of the root system of G. The space P26(K) is the projectivization of the representation
of G with highest weight w.

We only check that all the four varieties from Theorem 6 are in fact Severi varieties. Recall
that the Veronese surface can be described as the space of 3 x 3 symmetric matrices of rank 1 (up
to proportionality). Since a linear combination of two rank 1 matrices is a matrix of rank < 2,
we obtain that the secant variety is contained in the cubic hypersurface in P> defining matrices of
rank < 2. Its equation is the symmetric matrix determinant. It is easy to see that the determinant
equation defines an irreducible variety. Thus the dimension count gives that it coincides with the
determinant variety. Similarly, we see that the secant variety of the Segre variety coinicides with
the determinant hypersurface of a general 3 x 3 matrix. The third variety can be similarly described
as the variety of skew-symmetrix 6 x 6 matrices of rank 2. Its secant varity is equal to the Pffafian
cubic hypersurface defining skew-symmetric matrices of rank < 6. Finally, the secant variety of the
Eg-variety is equal to the Cartan cubic. Since each point of the Severi variety is a singular point
of the cubic, the restriction of the cubic equation to a secant line has two multiple roots. This
easily implies that the line is contained in the cubic. To show that the secant variety coincides
with the cartan cubic is more involved, One looks at the projective linear representation of the
exceptional algebraic group G of type Eg in P26 defining the group G. One analyzes its orbits and
shows that there are only three orbits: the Fg-variety X, the Cartan cubic with X deleted and
P26 with Cartan cubic deleted. Since the secant variety is obvioulsy invariant under the action of
G, it must coincide with the Cartan cubic.

Note that in all four cases the secant variety is a cubic hypersurface and its set of singular
points is equal to the Severy variety. In fact, the previous argument shows that the secant variety
of the set of singular points of any cubic hypersurface is contained in the cubic. Thus Theorem 6
gives a classification of cubic hypersurfaces in P" whose set of singular points is a smooth variety
of dimension 2(n — 2)/3.

There is a beautiful uniform description of the four Severi varieties. Recall that a composition
algebra is a finite-dimensional algebra A over a field K (not necessary commutative or associative)
such that there exists a non-degenerate quadratic form ® : A — K such that for any xz,y € A

O(z-y) = o(2)0(y).

According to a classical theorem of A. Hurwitz there are four isomorphism classes of composition
algebras over a field K of characteristic 0: K, Co, Ha and Oc of dimension 1,2, 4 and 8, respectively.
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Here
Co=K®a&K,(a,b)(a',V) = (aa’ — bb',ab’ + a'b),
Ha=Co®Co,(z.y) (a"y)=(z 2" =F -y ,z-y +y 2,
Oc=Ha® Ha,(h,g) - (h',¢)=(h-h' =g g h-g'+g-h),
where for any = = (a,b) € Co we set & = (a, —b), and for any h = (z,y) € Ha we set h = (Z, —y).
The quadratic form @ is given by
O(x) =2z -1Z,

where Z is defined as above for A = Ca and H, # = x for A = K, and # = (h,—h') for any
z = (h,h') € Oc.

For example, if K = R, then Co = C (complex numbers), Ha = H (quaternions), Oc = O
(octonians or Cayley numbers).

For every composition algebra A we can consider the set H3(A) of Hermitian 3 x 3-matrices
(a;;) with coefficients in A, where Hermitian means a;; = @;;. Its dimension as a vector space over
K equals 3 + 3r, where r = dimg A. There is a natural definition of the rank of a matrix from
H3(A). Now Theorem 6 says that the four Severi varieties are closed subsets of P2 defined by
rank 1 matrices in H3(A). The corresponding secant variety is defined by the homogeneous cubic
form representing the “determinant” of the matrix.

Let us define P"(A) for any composition algebra as A"*1\ {0}/A*. Then one view the four
Severi varieties as the “Veronese surfaces” corresponding to the projective planes over the four
composition algebra.

As though it is not enough of these mysterious coincidences of the classifications, we add one
more. Using the stereographic projection one can show that

PY(R) = S*, PYC) =S% PYH) =5* PY0O) =S5
where S* denote the unit sphere of dimension k. The canonical projection
A*\ {0} —» P'(A4) = S*
restricted to the subset {(z,y) €ER? iz -7 +y- -y =1} = S?"~! defines a map
w87l 58"

which has a structure of a smooth bundle with fibres diffeomorphic to the sphere S™~! = {z €
A* iz -z = 1}. In this way we obtain 4 examples of a Hopf bundle: a smooth map of a sphere
to a sphere which is a fibre bundle with fibres diffeomorphic to a sphere. According to a famous
result of F. Adams, each Hopf bundle is diffeomorphic to one of the four examples coming from
the composition algebras.

Is there any direct relationship between Hopf bundles and Severi varieties?

Problems.

1. Let X be a nonsingular closed subset of P"(K). Show that the set J(X) of secant or tangent
lines of X is a closed subset of the Grassmann variety G(2,n+1). Let X = v3(P*(K)) be a twisted
cubic in P3(K). Show that J(X) is isomorphic to P?(K).
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2. Find the equation of the tangential surface Tan(X) of the twisted cubic curve in P3(K).

3. Show that each Severi variety is equal to the set of singular points of its secant variety. Find
the equations of the tangential variety Tan(X).

4. Assume that the secant variety Sec(X) is not the whole space. Show that any X is contained
in the set of singular points of Sec(X).

5. Show that a line / is tangent to an algebraic set X at a point x € X if and only if the restriction
to £ of any polynomial vanishing on X has the point « as its multiple root.

6*. Let X be a nonsingular irreducible projective curve in P"(K). Show that the image of the
Gauss map g : X — G(2,n + 1) is birationally isomorphic to X unless X is a line.
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Lecture 16. BLOWING UP AND RESOLUTION OF SINGULARITIES

Let us consider the projection map p, : P*(K) \ {a} — P"~1(K). If n > 1 it is impossible
to extend it to the point a. However, we may try to find another projective set X which contains
an open subset isomorphic to P"(K) \ {a} such that the map p, extends to a regular map p, :
X — P"~1(K). The easiest way to do it is to consider the graph ? C P*(K) \ {a} x P"~}(K)
of the map p, and take for X its closure in P?(K) x P*"~1(K). The second projection map
X — P~ 1(K) will solve our problem. It is easy to find the bi-homogeneous equations defining
X. For simplicity we may assume that ¢ = (1,0,...,0) so that the map p, is given by the
formula (zg,z,...,zn) = (z1,...,2y). Let Zy,..., Z, be projective coordinates in P"(K) and let
Ty, ..., T, be projective coordinates in P*~1(K). Obviously the graph ? is contained in the closed
set X defined by the equations

(*) ZZ'Tj—ZjTZ'ZO,’L.,jzl,...,n.

The projection ¢ : X — P*"~!(K) has the fibre over a point t = (¢1,...,%,) equal to the linear
subspace of P"(K) defined by the equations

(**) Zitj—thiZO,’L.,jzl,...,’n.

Assume that ¢; = 1. Then the matrix of coefficients of the system of linear equations (xx) contains
n — 1 unit columns so that its rank is equal to n — 1. This shows that the fibre ¢=1(¢) is isomor-
phic, under the first projection X — P™(K), to the line spanned by the points (0,%1,...,t,) and
(1,0,...,0). On the other hand the first projection is an isomorphism over P"(K)\ {0}. Since X is
irreducible (all fibres of ¢ are of the same dimension), we obtain that X is equal to the closure of 7.

By plugging z; = ... 2z, in equations (xx) we see that the fibre of p over the point a = (1,0,...,0) is
isomorphic to the projective space P?~!(K). Under the map q this fibre is mapped isomorphically
to P"~1(K).

The pre-image of the subset P"(K) \ V(Z;) = A" (K) under the map p is isomorphic to the
closed subvariety B of A"(K) x P"~!(K) given by the equations () where we consider Zi, ..., Z,
as inhomogeneous coordinates in affine space. The restriction of the map p to B is a regular map
o : B — A"(K) satisfying the following properties

(i) olo Y (A™(K)\ {(0,...,0)}) = A"(K) \ {(0,...,0)} is an isomorphism;
(ii) o=1(0,...,0) 2 P"~}(K).

We express this by saying that ¢ “ blows up” the origin. Of course if we take n = 1 nothing
happens. The algebraic set B is isomorphic to A™(K). But if take n = 2, then B is equal to the
closed subset of A?(K) x P!(K) defined by the equation

ZQTO — lel = 0.
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It is equal to the union of two affine algebraic sets Vi and Vi defined by the condition Ty # 0 and
T, # 0, respectively. We have

Vo=V (Zy— XZ1) C A>(K) x PY(K)y, X =T1/Ty,

Vi =V(Z,Y — 7Z;) € AX(K)xPY(K);, Y =Ty/T).

If L : Zy —tZ; = 0 is the line in A?(K) through the origin “with slope” ¢, then the pre-image
of this line under the projection o : B — AZ2(K) consists of the union of two curves, the fibre
E = P'(K) over the origin, and the curve L isomorphic to L under 0. The curve L intersects E
at the point ((0,0),(1,t)) € V5. The pre-image of each line L with the equation tZy — Z; consists
of E and the curve intersecting F at the point ((0,0),(¢,1)) € V3. Thus the points of E can be
thought as the set of slopes of the lines through (0,0). The ”infinite slope” corresponding to the
line Z; = 0 is the point (0,1) € V3 N E.

610

NS
—

Let I be an ideal in a commutative ring A. Each power I" of I is a A-module and I™"I" C I"*"
for every n,r > 0. This shows that the multipication maps I x I" — I"*" define a ring structure
on the direct sum of A-modules

Fig.1

A(I) = ©p>ol".

Moreover, it makes this ring a graded algebra over A = A(I)q = I°. Its homogeneous elements of
degree n are elements of I™.

Assume now that I is generated by a finite set fo,..., f, of elements of A. Consider the
surjective homomorphism of graded A-algebras

¢ ATy, ..., Ta] — A(I)

defined by sending T; to f;. The kernel Ker(¢$) is a homogeneous ideal in A[Ty,...,T,]. If we
additionally assume that A is a finitely generated algebra over a field k, we can interpret Ker(¢)

118



Blowing up and resolution 119

as the ideal defining a closed subset in the product X x P} where X is an affine algebraic variety
with O(X) = A. Let Y be the subvariety of X defined by the ideal I.

Definition The subvariety of X x P} defined by the ideal Ker(¢) is denoted by By (X) and is called
the blow-up of X along Y. The morphism o : By (X) — X defined by the projection X x P} — X
is called the monoidal transformation or the o-process or the blowing up morphism along Y.

Let us fix an algebraically closed field K containing k& and describe the algebraic set By (X)(K)
as a subset of X (K) x P"(K). Let U; = X x (P"(K)); and By (X); = By(X)NU;. This is an
affine algebraic k-set with

O(By (X)i) =2 O(X)[To/T;. ..., Tn/Ti]/ Ker(¢);

where Ker(¢); is obtained from the ideal Ker(¢) by dehomogenization with respect to the variable
T;. The fact that the isomorphism class of By (X) is independent of the choice of generators
fo, ..., fn follows from the following

Lemma 1. LetY C X xP}(K) andY' C X xP} (K) be two closed subsets defined by homogeneous
ideals I ¢ O(X)[Ty,...,T,] and J C O(X)[T},...,T}], respectively. Let p: Y — X andp’ : V' —
X be the regular maps induced by the first projections X x P}(K) — X and X x P} (K) —
X. Assume that there is an isomorphism of graded O(X)-algebras ¢ : O(X)[T},....T/]/I' —
O(X)[To,...,Ty]/I. Then there exists an isomorphism f :Y — Y’ such that p =p' o f.

Proof. Let t;, =T/ mod I',t; = T; mod I, and let

i
T/)(t;) :Fz(tla,tn),ﬁ :0’_”’7a’

for some polynomial F;[Ty,...,T,]. Since f is an isomorphism of graded O(X)-algebras the poly-
nomials F;(T) are linear and its coefficients are regular functions on X. The value of F; at a point
(z,t) = (z,(to,...,ty)) in X x PP(K) is defined by plugging z into the coefficients and plugging ¢
into the unknowns 7). Define f : X — Y by the formula:

flz,t) = (z, (Fo(x,t), ..., Fy(z,1))).

Since 1) is invertible, there exist linear polynomials G;(T) € O(X)[Ty,...,T,],j = 0,...,n, such
that

t )y Gulto, ... )=t i=0,...,7

r'n

Fi(Golt), ..
Gj(FO(th---atn)a---aFn(th---atn)) :tj,j = 0,...,n.

This easily implies that f is defined everywhere and is invertible. The property p = p’ o f follows
from the definition of f.

Example 1. We take X = A2(K),O(X) = k[Z1, 25,1 = (Z1,2>),Y = V(I) = {(0,0)}. Then
¢ k[Z1, Zo)[Ty, T1) — k[Z1, Z2](I) is defined by sending Ty to Z;, and Ty to Zy. Obviously Ker(¢)
contains ZsTy — Z,T;. We will prove later in Proposition 2 that Ker(¢) = (Z3Ty — Z1T1). Thus
By (X) coincides with the example considered in the beginning of the Lecture.
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Lemma 2. Let U = D(f) C X be a principal affine open subset of an affine set X, then
BYﬂU = O'_l(U).

Proof. We have O(U) =2 O(X)#, I(Y NU) =I(Y)y. If I(Y) is generated by fy,..., f, then
I(YNU) is generated by fo/1,..., fn/1, hence Byny is defined by the kernel of the homomorphism

¢ O(X)f[To,..., Tp) = OX)I(Y)s), Ti = fi/1.
Obviously the latter is obtained by localizing the homomorphism of O(X)-algebras
¢: O(X)[Tp, ..., Tp] = O(X)(I(Y)), T; — fi.
Therefore the kernel of ¢ is isomorphic to (Ker(¢))s. The set of zeroes of this ideal is equal to

o1 (D(f))-

Proposition 1. The blow-up o : By (X) — X induces an isomorphism
ocTHX\Y)=X\Y.

Proof. Tt is enough to show that for any prinicpal open subset that U = D(f) C X \Y
the induced map o=1(U) — U is an isomorphism. Since Y C X \ U and I(Y) is radical ideal,
f must belong to I(Y). Thus I(Y); = O(X)s and, taking 1 as a generator of I(Y); we get
O(X)f((1) = O(X)y, and the map ¢ : O(X)¢[To] = O(X)f, Ty — 1 has the kernel equal to
(Ty — 1). Applying the previous Lemma, we get By(X) = D(f) = o~ 1(D(f)). This proves the
assertion.

To find explicitly the equations of the blow-up By (X), we need to make some assumptions
on X and Y.

Definition. Let A be a commutative ring. A sequence of elements ai,...,a, € A is called a
reqular sequence if the ideal generated by a;,...,a, is a proper ideal of A and, foranyi =1,...,n,
the image of a; in A/(a1,...,a;—1) is a non-zero divisor (we set ag = 0).

Lemma 3. Let M be a module overa commutative ring A. Assume that for any maximal ideal
m of A, the localization M,,, = {0}. Then M = {0}.

Proof. Let z € M. For any maximal ideal m C A, there exists a,, ¢ m such that a,,z = 0.
The ideal of A generated by the elements a,, is the unit ideal. Hence 1 = )"  bpa,, for some
b,, € A and

le-x:meammzo.
m
This proves the assertion.

Proposition 2. Let ag,...,a, be a regular sequence of elements in an integral domain A and let
I be the ideal generated by a1, ...,a,. Then the kernel J of the homomorphism

¢ : A[To,...,Tn} —)A(I),TZ — a;,

is generated by the polynomials P;; = a;T; — a;T;,1,5 = 0,...,n.

Proof. Let J' be the ideal in A[Ty,...,T,] generated by the polynomials P;;. Let Ay =
A[ao_l} ~ A,, be the subring of the quotient field Q(A) of A, Iy = (ai/ag,...,an/ag) C Ag.
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Define a homomorphism ¢q : A[Zy,...,Z,] — Ag[lo] via sending each Z; to a;/ag. We claim
that Jy = Ker(¢g) is equal to the ideal J| generated by the polynomials L; = agZ; — a;. Assume
this is so. Then for any F(Ty,...,T,) € Ker(¢), after dehomogenizing with respect to Ty, we
obtain that F(1,Zy,...,Z,) belongs to J,. This would immediately imply that T)NF € J' for
some N > 0. Replacing Ty with T;, and fo with f;, we will similarly prove that TN F € J' for
any i = 0,...,n. Now consider the A-submodule M of A[Ty,...,T,]/J" generated by F. Since
TNF = 0,i = 0,...,n, it is a finitely generated A-module. For any maximal ideal m C A
let P;; = (a; mod m)T; — (a; mod m)T;. The ideal in (A/m)[Ty,...,T,] generated by the linear
polynomials P;; is obviously prime. Thus T}V F = 0 implies M ® A/m = {0}. Applying Nakayama’s
Lemma we infer that, for any maximal ideal m C A, the localization M,, is equal to zero. By the
previous lemma this gives M = 0 so that F € J'.

It remains to show that Ker(¢g) is generated by by the polynomials L; = agZ; — a;. We use
induction on n. Assume n = 1. Let F' € Ker(¢g), i.e., ¢o(F(Z1)) = F(a1/ap) = 0. Dividing by
Ly = apZ; — a1, we obtain for some G(Z;) € A[Z1] and r > 0

aSF(Zl) = G(Zl)(aoZl — al) = aoG(Zl)Zl — alG(Zl).

Since (ag,a1) is a regular sequence, this implies that G(a) € (ag) for any a € A. From this we
deduce that all coefficients of G(Z;) are divisible by ag so that we can cancel aq in the previous
equation. Proceeding in this way we find, by induction on r, that F' is divisible by L;.

Now assume n > 1 and consider the map ¢q as the composition map

A[Zl,...,Zn] — AI[ZQ,...,Zn} — AU[I()] = AI[II],

where A’ = Alay/ao] is the subalgebra of Ay generated by a;/ag, and I' = (az/ag,...,a,/a0). Tt
is easy to see that ag,...,a, is a regular sequence in A’. By induction, Lo, ..., L, generate the
kernel of the second map A'[Zs, ..., Z,] — Ag[lo]. Thus F(Z1,...,Z,) € Ker(¢y) implies

n
Flai/ao, Za,. ... Zy) = Z Qi(ar/ao, Zo, ..., Zy) L,
i=2
for some polynomials Q;(Z1,...,2Z,) € A[Z1,...,Zy,]. Thus by the case n =1
n
F(Zy,....2Zn) =Y Qilar/ag, Zo,. .., Zn)Li € (Ly),
i=2

and we are done.
Example 2. Take A = k[Z,...,Zn],I = (ag,...,an) = (Z1,...,Zy+1) to obtain that the blow-
up By (1)(A})(K)) is a subvariety of A x P given by the equations

ToZi —Ti1Zy =0,i=1,...,n+1.

This agrees with Example 1.

Remark 1. The assertion of Proposition 2 can be generalized as follows. Let a1,....a, be a
regular sequence in A. Consider the free module A" with basis ey, ..., e, and let A" A" be its r-th
exterior power. It is a free A-module with basis formed by the wedge products e;; A...Ae;, where
1<i;<...,i <n. For each r =1,...,n. Define the map

T r—1
8y /\A” — /\ A"
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by the formula

(5r(ez~1 VAYIRAA €Z‘T) = Z(—l)jaijeil VANIRAA €i;_, VAN Cijpy - Ne;,.

)

Now the claim is that the complex of A-modules (called the Koszul complex)

n n—1 2 1
{0} > NA" = N A" = ..o NA" = \NA" = A= Af(ay, ..., an) = {0}
is exact. The previous proposition asserts only that this complex is exact at the term /\1 A",

Proposition 3. Let X be an affine irreducible algebraic k-set, I be an ideal in O(X) generated
by a regular sequence (fo,...,fn), and let Y = V(I) be the set of zeroes of this ideal. Let
0 : By (X) — X be the blow-up of X alongY. Then for any z € Y,

o™ (z) 2 P"(K).

The pre-image of every irreducible component of Y is an irreducible subset of By (X) of codimension
1.

Proof. By Proposition 2, Z = By (X) is a closed subset of X x P"(K) defined by the equations
Tgfi - Tsz = O,Z = 1, , T

For any point y € Y we have fo(y) = ... = fn(y) = 0. Hence for any ¢t € P"(K), the point (y, )
is a zero of the above equations. This shows that o~ !(y) is equal to the fibre of the projection
X x P"(K) — X over y which is obviously equal to P"(K). For each irreducible component
Y; of Y the restriction map o : 071(Y;) — Y; has fibres isomorphic to n-dimensional projective
spaces. By Lemma 2 of Lecture 12 (plus the remark made in the proof of Lemma 3 in Lecture 15)
we find that 0=1(Y;) is irreducible of dimension equal to n + dim Y;. By Krull’s Hauptidealsatz,
dim Y; = dim X —n — 1 (here we use again that (fo,..., f,) is a regular sequence).

Lemma 4. Let X be a nonsingular irreducible affine algebraic k-set, Y be a nonsingular closed
subset of X. For any x € Y with dim,Y = dim, X — n there exists an affine open neighborhood U
of z in X such that Y NU = V(fy,..., fn) for some regular sequence (f1,..., f,) of elements in
o).

Proof. Induction on n. The case n = 1 has been proven in Lecture 13. Let fy € I(Y)
such that its germ (fy), in mx , does not belong to mg(’x. Let Y/ = V(fo). By Lemma 2 from
lecture 14, T(Y"), is of codimension 1 in T'(X),. By Krull’s Hauptidealsatz, dim,Y”’ = dim X — 1,
hence Y’ is nonsingular at 2. Replacing X with a smaller open affine set U, we may assume that
Y’ NU is nonsingular everywhere. By induction, for some V' C Y'Y NV is given in V by an ideal
(f1,---, fn) so that Y is given locally by the ideal (fo,..., fn). Now the assertion follows from the
following statement from Commutative Algebra (see Matsumura, pg.105): A sequence (a1, ..., ay,)
of elements from the maximal ideal of a regular local ring A is a regular sequence if and only if
dimA/(as,...,a,) = dim A — n. By this result, the germs of fy,..., f, in Ox , form a regular
sequence. Then it is easy to see that their representatives in some O(U) form a regular sequence.
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Theorem 1. Let o : By (X) — X be the blow-up of a nonsingular irreducible affine algebraic
k-set X along a nonsingular closed subset Y. Then the following is true
(i) o is an isomorphism outside Y ;
(ii) By (X) is nonsingular;
(iii) for any y € Y, 0™ (y) = P"(K), where n = codim, (Y, X) — 1 = dim X — dim,Y — 1;
(iv) for any irreducible component Y; of Y, 0=1(Y;) is an irreducible subset of codimension one.

Proof. Properties (i) and (iv) have been already verified. Propertry (iii) follows from Propo-
sition 3 and lemma 4. We include them only for completeness sake. Using (i), we have to verify
the nonsingularity of By (X) only at points 2’ with o(z') = y € Y. Replacing X by an open
affine neighborhood U of y, we may assume that Y = V() where I is an ideal generated by a
regular sequence fo,..., f,. By Lemma 2, 0= 1(U) & Byny(U) so that we may assume X = U.
By Proposition 2, By (X) C X x P}(K) is given by the equations: f;T; — f;T; = 0,4,j =0,...,n.
Let p = (y,t) € By (X) where y € Y.t = (tg,...,t,) € P*(K). We want to verify that it is a
nonsingular point of By (X ). Without loss of generality we may assume that the point p lies in
the open subset W = By (X)), where t5 # 0. Since

To(fiTy — f;Ti) = Ti(foTy — f;To) — T (foTi — fiTo)
we may assume that By (X) is given by the equations
foli — fiTy = 0,0 =0,...,n
in an affine neighborhood of the point p. Let G1(T1,...,Tn) = ... = Gu(T1,...,Tn) be the
system of equations defining X in AN (K) and let F;(Ty,...,Ty) represent the function f;. Then
W is given by the following equations in AV (K) x A"(K):

Gs(Ty,....,Tn)=0,s=1,...,m,

ZiFU(Tl,...,TN) —Fi(Tl,...,TN) :O,i = 1,...,77,.

It is easy to compute the Jacobian matrix. We get

a7 (v, 2) 2 (y, 2) 0 e e 0

5y, 2) 9om (y, 2) 0 el 0
0 o ) P 9
a8y - W) . adRw) - Ew -%Rw 0 ... 0
2%y - ) ... alB@y) -y -@) 0 ... 0

We see that the submatrix J; of J formed by the first NV columns is obtained from the Jacobian
matrix of Y computed at the point y by applying elementary row transformations and when deleting
the row corresponding to the polynomial Fj. Since Y is nonsingular at y, the rank of J; is greater
or equal than N —dim,Y —1 = N —dim X +n. Sorank J > N+n—dim X = N+n—dim By (X).
This implies that By (X) is nonsingular at the point (y, z).

Remarks. 2. The pre-image E = 0~ 1(Y) of Y is called the ezceptional divisor of the blowing
up o : By(X) — X. The map o “blows down” E of By (X) to the closed subset Y of X of
codimension n + 1.
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3. Lemma 2 allows us to “globalize” the definition of the blow-up. Let X be any quasi-projective
algebraic set and Y be its closed subset. For every affine open set U C X, Y NU is a closed subset of
U and the blow-up By NU(U) is defined. It can be shown that for any open affine cover {U; };cs of
X, the blowing-ups o0; : By,ny (U;) — U; and 0 : By;ny (U;) — U; can be “glued together” along
their isomorphic open subsets o; ' (U; N U;) aj_l(Uj N U;). Using more techniques one can show
that there exists a quasi-projective algebraic set By (X) and a regular map o : By (X) — X such
that o=1(U;) = By,ny (U;) and, under this isomorphism, the restriction of o to o= (U;) coincides

The next fundamental results about blow-ups are stated without proof.

Theorem 2. Let f: X— — Y be a rational map between two quasi-projective algebraic sets.
There exists a closed subset Z of X and a regular map f': Bz(X) — Y such that [’ is equal to
the composition of the rational map o : Bz(X) — X and f.

Although it sounds nice, the theorem gives very little. The structure of the blowing-up along
an arbitrary closed subset is very complicated and hence this theorem gives little insight into
the structure of any birational map. It is conjectured that every birational map between two
nonsingular algebraic sets is the composition of blow-ups along nonsingular subsets and of their
inverses. It is known for surfaces and, under some restriction, for threefolds.

Definition. A birational regular map o : X — X of algebraic sets is said to be a resolution of
singularities of X if X is nonsingular and o is an isomorphism over any open set of X consisting
of nonsingular points.

The next fundamental result of Heisuki Hironaka brought him the Fields Medal in 1966:

Theorem 3. Let X be an irreducible algebraic set over an algebraically closed field k of charac-
teristic 0. There exists a sequence of monoidal transformations o; : X; — X;_1,1 =1,...,n, along
nonsingular closed subsets of X;_; contained in the set of singular points of X;_1, and such that
the composition X,, - Xq = X is a resolution of singularities.

A most common method for define a resolution of singularities is to embed a variety into a
nonsingular one, blow up the latter and see what happens with the proper inverse transform of the
subvariety (embedded resolution of singularities).

Definition. Let 0 : X — Y be a birational regular map of irreducible algebraic sets, Z be a closed
subset of X. Assume that o is an isomorphism over an open subset U of X. The proper inverse
transform of Z under o is the closure of 6=3(U N Z) in X.

Clearly, the restriction of o to the proper inverse transform Z’ of Z is a birational regular map
and Z' = o 1 (ZNU)U(Z'No 1 (X \U).

Example 3. Let 0 : B = B{gy(A?(K)) — A?(K) be the blowing up of the origin 0 = V(Z1, Z)
in the affine plane. Let
Y =V(Z3 - Z3(Z; +1)).

The pre-image o~ !(Y) is the union of the proper inverse transform ='(Y) of Y and the fibre
o71(0) 2 P}(K). Let us find 67!(Y). Recall that B is the union of two affine pieces:

U=V (Zy— Z1t) C X x PY(K)o,t = Ty /T,
V = V(th, - Zl) C X x Pl(K)l,tl = T(]/Tl.
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Blowing up and resolution 125
The restriction o1 of o to U is the regular map U — A? (K) given by the homomorphism of rings:
o] 1 k[Z1,Z5] = OU) = k|Zy, Zs,t]/(Zo — Z1t) = k[Zy,1].
The pre-image of Y in U is the set of zeroes of the function
01 (25 = ZH(Z1 + 1)) = Z(t* = Z1 — 1)),

Similarly, the restriction o3 of o to V is a regular map V — A2(K) given by the homomorphism
of rings:
O'; : k[Zl, ZQ] — O(U) = k[Zl, Zg,t]/(thl — Zl) = k[ZQ,tl].

The pre-image of Y in V is the set of zeroes of the function
03(Z5 — Z3(Z1 + 1)) = Z5(1 — t"(Zat’ + 1)).
Thus
o' (Y)NU =E,UC, o' (Y)NV = B, U Cy,

where

E,=V(Z),0,=V({*—Z; - 1) CcU = A*(K),
By =V (Zy),Cy = V(1 —t*(Zot' +1)) C V =2 A*(K).

It is clear that
Ey=0"10)nU =AY (K),E; =01 (0) NV = A'(K),

i.e.,071(0) = E; U By & PY(K). Thus the proper inverse transform of Y is equal to the union
C = C1 U (5. By differentiating we find that both C'y and C5 are nonsingular curves, hence C is
nonsingular. Moreover,

cin 0_1(0) = V(Zlat2 - 1) = {(Oa 1)a (Oa _1)}7

CyNo~1(0) =V (Z,,t"* — 1) = {(0,1),(0,-1)}.

Note that since t = #~! at U NV, we obtain C; No~1(0) = Cy N o~1(0). Hence c=1(0)NC
consists of two points. Moreover, it is easy to see that the curve C intersects the exceptional
divisor E = 071(0) transversally at the two points. So the picture is as follows:

Fig.2
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The restriction 0 : C — Y is a resolution of singularities of Y.
Example 4. This time we take Y = V(Z2 — Z3). We leave to the reader to repeat everything we
have done in Example 1 to verify that the proper transform 5=1(Y) is nonsingular and is tangent
to the exceptional divisor E at one point. So, the picture is like this

Fig.3
Example 5. Let Y = V(F(Z,...,Z,)) C A"(K), where F' is a homogeneous polynomial of

degree d. We say that Y is a cone over Y = V(F(Zy,..., Z,) in P"~1(K). If identify A" (K) with
P" (K)o, and Y with the closed subset V(Zo, F) C V(Zp) 2 P""1(K), we find that Y is the union

of the lines joining the point (1,0,...,0) with points in Y. Let 0 : B = B (A" (K)) — A" (K) be
the blowing up of the origin in A” (K). Then

B =U;U;,U; = BN A" (K) x P""}(K);,
and
o\ YVYNU; = V(F(Z1,... Z))NV({Z; — t; Zi}jzi) E V(ZEG(t1, ... tn—1)),

where t; = T} /T, and G is obtained from F' via dehomogenization with respect to 7;. This easily
implies that

1%

o '(V)=a"(Y)Uo ! 0), a7 (Y)no Tt 0)=Y.

<

Fig.4
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Example 6. Let X = V(27 + Z3 + Z3) C A*(K) and let Y, = Byg)(A?(K)) be the blow-up. The
full inverse transform of X in Y7 is the union of three affine open subsets each isomorphic to a
closed subset of A3 (K):

Vi:Z2(1+U3Z, +ViZ2)

= 0’
Vo: Z2(U? + Zy + ViZ2) =0,
Vs: Z2(U?+ V323 + Z2) = 0.

The equations of the proper inverse transform X; are obtained by dropping the first factors. In
each piece V; the equations Z; = 0 define the intersection of the proper inverse transform X; of X
with the exceptional divisor E; = P?(K). It is empty set in V3, the affine line U = 0 in V5 and V3.
The fibre of the map X; — X over the origin is Ry = P!(K). It is easy to see (by differentiation)
that V3 and V5 are nonsingular but V3 is singular at the point (U,V,Z3) = (0,0,0). Now let us
start again. Replace X by V3 & V(Z2 + Z3Z3 + Z2) C P*(K) and blow-up the origin. Then glue
the blow-up with V; and V5 along V3 N (V3 UV,). We obtain that the proper inverse transform X5
of X is covered by Vi, V5 as above and three more pieces

Vi:14+UVZ2+V3Z, =0

Vs : U2+ 22V + V2 =0,
Ve:U?+V3Z54+1=0.

The fibre over the origin is the union of two curves Ry, R3 each isomorphic to P} (K). The equation
of Ry U Rz in Vi is U? + V2 = 0. The equation of Ry U R3 in V3 is U? +1 = 0. Since Ry N V3
was given by the equation Z3 = 0 and we used the substitution Z3 = V75 in V5, we see that the
pre-image of Ry intersects R; and Ry at their common point (U, V, Z3) = (0,0,0) in V5. This point
is the unique singular point of X5. Let us blow-up the origin in V5. We obtain X3 which is covered
by open sets isomorphic to Vi, V5, Vy, V5 and three more pieces:

Ve 14+ VU?Z + V2% =0,

Ve :U?+V2Z3 + 1.
Vo :U>+V2Z,+ V2 =0,

The pre-image of the origin in the proper inverse transform X3 of X, consists of two curves Ry, R5
each isomorphic to P*(K). In the open set Vg they are given by the equations V = 0,U = £,/—1V.
The inverse image of the curve R; intersects Ry, Ry at their intersection point. The inverse images
of R, intersects Ry at the point (U,V, Z5) = (1,4/—1,0), the inverse image of R3 intersects Rs
at the point (1, —y/—1,0). Finally we blow up the origin at Vy and obtain that the proper-inverse
transform X4 is nonsingular. It is covered by opne affine subsets isomorphic to V1, ..., Vg and three
more open sets

Vig: 14UV +V? =0,
Vil U?+V +V2=0,
Vig : U +V +1=0.

The pre-image of the origin in X4 is a curve Rg = P!(K). It is given by the homogeneous equation
T2 + T1T> + T2 in homogeneous coordinates of the exceptional divisor of the blow-up (compare it
with Example 5). The image of the curve R; intersects Rg at one point. So we get a resoluton
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of singularities 0 : X = X, — X with 0~! equal to the union of six curves each isomorphic to
projective line. They intersect each other according to the picture:

Ry

Rg ‘

Ry

Fig.5

Let ? be the graph whose vertices correspond to irreducible components of 0= (0) and edges
to intersection points of components. In this way we obtain the graph

R, R g Rg Ry R 3
[ 4 4 @ @

Ry

Fig.6

It is the Dynkin diagram of simple Lie algebra of type Ej.

Exercises.

1. Prove that By (;)(X) is not affine unless I is (locally ) a principal ideal.

2. Resolve the singularities of the curve 2™ + y" = 0, (n,r) = 1, by a sequence of blow-ups in the
ambient space. How many blow-ups do you need to resolve the singularity?

3. Resolve the singularity of the affine surface X : Z2 + Z3 + Z2 = 0 by a sequence of blow-ups in
the ambient space. Describe the exceptional curve of the resolution f: X — X.

4. Describe A(I), where A = k[Z1,Z5,],1 = (Zy,7Z2). Find the closed subset B;(A) of A?(K) x
P! (K) defined by the kernel of the homomorphism ¢ : A[Ty, Ty] — A(I),To — Z1,T» — Z2. Is it
nonsingular?

5*. Resolve the singularities of the affine surface X : Z? + Z3 + Z5 = 0 by a sequence of blow-ups
in the ambient space. Show that one can find a resolution of singularities f : X — X such that the
graph of irreducible components of f~1(0) is the Dynkin diagram of the root system of a simple
Lie algebra of type Ejs.

6*. Resolve the singularities of the affine surface X : Z; Z3 + Z3 + Z2 = 0 by a sequence of blow-ups
in the ambient space. Show that one can find a resolution of singularities f : X — X such that the
graph of irreducible components of f~1(0) is the Dynkin diagram of the root system of a simple
Lie algebra of type E7.

7*. Resolve the singularities of the affine surface X : Z;(Z3 + Z') + Z2 = 0 by a sequence of
blow-ups in the ambient space. Show that one can find a resolution of singularities f : X — X
such that the graph of irreducible components of f~1(0) is the Dynkin diagram of the root system
of a simple Lie algebra of type D,,.
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8*. Resolve the singularities of the affine surface X : Z; Z3 + Zg“ = 0 by a sequence of blow-ups
in the ambient space. Show that one can find a resolution of singularities f : X — X such that the
graph of irreducible components of f~1(0) is the Dynkin diagram of the root system of a simple
Lie algebra of type A,,.

9% Let f : P?(K)— — P%(K) be the rational map given by the formula Ty — TyT», Ty —
TyTs, Ty — TyT:. Show that there exist two birational regular maps 01,09 : X — P?(K) with
f oo = o3 such that the restriction of each o; over P?(K);,j = 0,1, 2 is isomorphic to the blow-up
along one point.
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Lecture 17. RIEMANN-ROCH THEOREM FOR CURVES

Let k& be an arbitrary field and K be its algebraic closure. Let X be a projective variety over
k such that X (K) is a connected nonsingular curve.

A divisor on X is an element of the free abelian group Z* generated by the set X (K) (i.e. a
set of maps X (K) — Z with finite support). We can view a divisor as a formal sum

D = Z n(z)z,

z€X (K)

where z € X, n(z) € Z and n(z) = 0 for all z except finitely many. The group law is of course
defined coefficientwisely. We denote the group of divisors by Div(X).

A divisor D is called effective if all its coefficients are non-negative. Let Div(X)* be the
semi-group of effective divisors. It defines a partial order on the group Div(X):

D>D < D-D">0.
Any divisor D can be written in a unique way as the difference of effective divisors
D=D,—-D_.

We define the degree of a divisor D = ) n(x)z by

deg(D) = Y n(z)[k(z): k).

z€X (K)

Recall that k(z) is the residue field of the local ring Ox ,. If k = K, then k(x) = k.

The local ring Ox , is a regular local ring of dimension 1. Its maximal ideal is generated by
one element £. We call it a local parameter. For any nonzero a € Ox ,, let v;(a) be the the smallest
r such that a € m'y .

Lemma 1. Let a,b € Ox, \ {0}. The following properties hold:

(1) vz(ab) = vz (f) + v2(9);
(ii) vz (a + b) > min{v,(a), v,y (b)} if a + b # 0.

Proof. If v,(a) = r, then a = t"ag, where ag ¢ mx ,. Similarly we can write b = t"=bg.
Assume v, (a) < v, (b) Then

ab= "= Ogoby, a4 b= 1" (gq + 7= O O)py)
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Riemann-Roch Theorem 131
This proves (i),(ii). Note that we have the equality in (ii) when v, (a) # v, (b).

Let f € R(X) be a nonzero rational function on X. Since R(X) = Q(Ox ), we can write f
as a fraction a/b, where a,b € Ox ;. We set

V:r(f) = Vx(a) - Vx(b)

It follows from Lemma 1 (i), that this definition does not depend on the way we write f as a
fraction a/b.

Lemma 2. Let f,g € R(X)\ {0}. The following properties hold:

(i) va(fg) = va(f) + va(9);
(i) v2(f + g) 2 min{vy (f), va(9)} if f + g # 0;
(iii) v2(f) > 0 & f € Ox 4
(iv) vz (f) # 0 only for finitely many points z € X (K).

Proof. (i), (ii) follow immediately from Lemma 1. Assertion (iii) is immediate. Let U be an
open Zariski set such that f, f=1 € O(U). Then, for any z € U, v,(f) = —vz(f~1) > 0 implies
that v,(f) = 0. Since X (K) \ U is a finite set, we get (iv).

Now we can define the divisor of a rational function f by setting

div(f)= Y valf)z.

r€EX(K)

The following Proposition follows immediately from Lemma 2.

Proposition 1. For any nonzero f,g € R(X),
div(fg) = div(f) + div(g).
In particular, the map f +— div(f) defines a homomorphism of groups

div: R(X)* — Div(X).

If D = div(f), we write D = div(f)o, D— = div(f)ec. We call div(f)o the divisor of zeroes
of f and div(f)e the divisor of poles of f. We say that v, (f) is the order of pole (or zero) if

z € div(f)s (or div(f)o).
We define the divisor class group of X by
Cl(X) = Div(X)/div(R(X)").
Two divisors in the same coset are called linearly equivalent. We write this D ~ D’.
For any divisor D = ) n(z)z let
L(D) = {f € R(X) : div(f) + D > 0} = {f € R(X) : v,(f) > —n(). Vs € X(K)}.

131



132 Lecture 17

It follows from Lemma 2 that L(D) is a vector space over k. The Riemann-Roch formula is a
formula for the dimension of the vector space L(D).

Proposition 2.

(i) L(D) is a finite-dimensional vector space over k;
(ii) L(D) = L(D + div(f)) for any f € R(X);
(iii) L(0) = k.

Proof. (i) Let D = Dy — D_. then D, = D + D_ and for any f € L(D), we have
(f)+D>0=div(f)+ D+ D_ = (f)+ D4 > 0.

This shows that f € L(D,). Thus it suffices to show that L(D) is finite-dimensional for an effective
divisor D. For each 2 € X (K), v,(f) > —n(z) is non-positive. Let ¢ be a local parameter at z.
Then v, (t"*) f) > 0 and hence v, (t"®) f) € Ox_,. Consider the inclusion Ox , C K|[[T]] given by
the Taylor expansion. Then we can write

where the equality is taken in the field of fractions K ((T)) of K[[T]]. We call the right-hans side,
the Laurent series of f at . Consider the linear map

L(D) = @ex )T "W K([T]/K([T]] = @pex a0 K",

which assigns to f the collection of cosets of the Laurent series of f modulo k[[T]]. The kernel
of this homomorphism consists of functions f such that v,(f) > 0 for all z € X (K), i.e., regular
function on X. Since X (K) is a connected projective set, any regular function on X is a constant.
This shows that L(D) ®; K is a finite-dimensional vector space over K. This easily implies that
L(D) is a finite-dimensional vector space over k.

(ii) Let g € L(D + div(f)), then

div(g) + div(f) + D = div(fg) + D > 0.

This shows that the injective homomorphsim of the additive groups R(D) — R(D),g — fg.
restricting to the space L(D + div(f)) defines an an injective linear map L(D + div(f)) = L(D
The inverse map is defined by the multiplication by f~1.

(iii) Clearly L(0) = O(X) = k.

It follows from the previous Proposition that dimyL(D) depends only on the divisor class of
D. Thus the function dim : Div(X) — Z, D — dimyL(D) factors through a function on CI(X)
which we will continue to denote by dim.

Theorem (Riemann-Roch). There exists a unique divisor class Kx on X such that for any
divisor class D

where g = dimy L(Kx) (called the genus of X ),

Before we start proving this theorem, let us deduce some immediate corollaries.
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Taking D from Kx, we obtain
deg(D) =29 — 2.

Taking D = div(f), we get
deg(div(f)) = 0.

This implies that the degrees of linearly equivalent divisors are equal. In particlular, we can define
the degree of a divisor class.

Also observe that, for any divisor D of negative degree we have L(D) = {0}. In fact, if
div(f) + D > 0 for some f € R(X)*, then deg(div(f) + D) = deg(D) > 0. Thus if take a divisor
D of degree > 29 — 2, we obtain dimL(Kx — D) = 0. Thus the Riemann-Roch Theorem implies
the following

Corollary 1. Assume deg(D) > 2g — 2, then

dimL(D) = deg(D) + 1 — g.

Example 1. Assume X = P;. Let U = PY(K)y = AY(K) = K. Take D = z1 + ... + z,,
where z; € k. Then L(D) consists of rational functions f = P(Z)/Q(Z), where P(Z),Q(Z) are
polynomials with coefficients in k and Q(T') has zeroes among the points x;’s. This easily implies
that L(D) consists of functions

P(To, T1)/(T1 — aoTo) - - - (T1 — ziT),

where degP(Ty,T1) = n. The dimension of L(D) is equal to n + 1. Taking n sufficiently large, and
applying the Corollary, we find that g = 0.

The fact that deg(div(f)) = 0 is used for the proof of the Riemann-Roch formula. We begin
with proving this result which we will need for the proof. Another proof of the formula, using the
sheaf theory, does not depend on this result.

Lemma 3. (Approximation lemma). Let z1,...,z, € X, ¢1,...,¢n € R(X), and N be a positive
integer. There exists a rational function f € R(X) such that

ve(f —¢i) >N, i=1,....,n.

Proof. We may assume that X is a closed subset of P". Choose a hyperplane H which does
not contain any of the points z;. Then P" \ H is affine, and U = X N (P"\ H) is a closed subset of
P" \ H. Thus U is an affine open subset of X containing the points z;. This allows us to assume
that X is afiine. Note that we can find a function g; which vanishes at a point z; and has poles at
the other points z;,7 # 7. One get such a function as the ratio of a function vanishing at z; but
not at any z; and the function which vanishes at all z; but not at z;. Let f; = 1/(1+ ¢/*). Then
fi—1=—g¢"/(1+ g") has zeroes at the points z; and has zero at z;. By taking m large enough,
we may assume that vy, (f; — 1), (f; — 1) are sufficiently large. Now let

f=figr+-+ fudn.

It satisfies the assertion of the lemma. Indeed, we have

Voo (f = ¢i) = Vo, (frd1 + oo+ ficidicr + (fi = D) i + fix1bigr + .o+ fudbn).
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This can be made arbitrary large.

Corollary 1. Let x1,...,z, € X and my,...,m, be integers. There exists a rational function
f € R(X) such that
Vg, (f)=mi, i=1,...,n.
Proof. Let tq,...,t, belocal parameters at 1, ..., z,, respectively. This means that v, (¢;) =

1,4 =1,...,n. Take N larger than each m;. By the previous lemma, there exists f € R(X) such
that vy, (f —¢"") > m;,i=1,...,n. Thus, by Lemma 2,

Vg, (f) = min{v,, (6"), v, (f —t")} =m;, 1=1,...,n.

Let f: X — Y be a regular map of projective algebraic curves and let y € Y,z € f~!(y). Let
t be a local parameter at y. We set

It is easy to see that this definition does not depend on the choice of a local parameter. The
number e, (f) is called the ramification index of f at .

Lemma 4. For any rational function ¢ € R(Y') we have

va(¢"(9)) = exry(4).
Proof. This follows immediately from the definition of the ramification index and Lemma 2.

Corollary 2. Let f~(y) = {z1,...,2,} and e; = e,,. Then

ei < [R(X) : f*(R(Y))].

i=1

Proof. Applying Corollary 1, we can find some rational functions ¢§i), . gi), 1=1,...,r
such that

I/mi((ﬁgi))zs, V:C]((ﬁy)) >> Oa ]7&21 3:11---161'-

Let us show that }_._, e; functions obtained in this way are linearly independent over f*(R(Y)).

Assume L
) SRIEY

i=1 s=1

for some a;s € f*(R(Y)) which we will identify with functions on Y. Without loss of generality we
may assume that

vy(a1s) = min{vy (ais) : a;s # 0}.
Dividing by by ai,, we get > cisqﬁsi) = 0, where
c1s = 1, Vy(cis) >0,
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We have

€1

S0 = (3 endld).

s=1 =2 s=1
By Lemma 4,
Vxl(clsﬁbgl)) = Uy, (€15) + V:rl(ﬁbgl)) = s mod e;.

This easily implies that no subset of summands in the left-hand side L.H.S. add up to zero.
Therefore,
Vg, (L.H.S) = mgn{uml(clsqﬁgl)} <ej.

On the other hand, v, (R.H.S.) can be made arbitrary large. This contradiction proves the
assertion.

Let A be the direct product of the fraction fields R(X), of the local rings Ox ;, where z € X.
By using the Taylor expansion we can embed each R(X), in the fraction field K ((T)) of K[[T]].
Thus we may view A as the subring of the ring of functions

K((T))* = Maps(X, K((T)).

The elements of A will be denoted by (£;),. We consider the subring A x of A formed by (&)
such that £, € Ox , except for finitely many z’s. Such elements are called adeles. For each divisor
D = > n(z)z, we define the vector space over the field k:

AD) = {(&)e € A i va(&e) = —n(z)}.
Clearly,

A(D)NR(X)=L(D), A(D)C Ax.
For each ¢ € R(X), let us consider the adele

¢ = (¢x)xa

where ¢, is the element of R(X), represented by ¢. Recall that the field of fractions of Ox , is
equal to the field R(X). Such adeles are called principal adeles. We will identify the subring of
principal adeles with R(X).

Lemma 5. Assume D' > D. Then

(i) A(D) C A(D");
Eﬁ_))dim(A(D’)/A(D)) = deg(D') — deg(D);

dimg L(D') — dimy L(D) = deg(D') — deg(D) — dim (A(D’") + R(X)/(A(D) + R(X)),
where the sums are taken in the ring of adeles.

Proof. (i) Obvious
(ii) Let D = Y n(z)z, D' = > n(z)'z. If £ = (&), € L(D'), the Laurent expansion of ¢,
looks like
g:c = T—n(m) (ao =+ alT + .. )
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This shows that

A(D")/A(D) = @(T_”("”)’K[[T]]/T_"(x)K[[T]) o @ Kn(x)'—n(x)’

T€X zeX

which proves (ii).
(iii) Use the following isomorphisms of vector spaces

A(D")+ R(X)/A(D')NR(X) = A(D") ® R(X),

A(D)+ R(X)/A(D)NR(X) = A(D) ® R(X),
A(D"Y® R(X)/A(D) & R(X) =2 A(D")/A(D).

Then the canonical surjection
AD")+ R(X) = A(D")® A(D") & R(X)
induces a surjection
(A(D") + R(X))/(A(D) + R(X)) — (A(D") ® R(X))/(A(D) ® R(X))
with kernel A(D') N R(X)/A(D) N R(X) = L(D')/L(D). This implies that
deg(D') — deg(D) = dimz A(D")/A(D)
= dimybigl(A(D') + R(X))/(A(D) + R(X)) + dim L(D')/L(D).
Proposition 3. In the notation of Corollary 2,
er+...+e = [R(X): fH(R(Y)).
Proof. Let f: X =Y, g:Y — Z be two regular maps. Let z € Z and
97 @) = {yrs- ks FT ) =z

Denote by e; the ramification index of g at y; and by e;; the ramification index of f at x;;. By
Corollary 2,

e =en(Y en)+. e (Y en) <O e)RX): f1(R(Y))).
If we prove the theorem for the maps g and g o f, we get
[R(X): R(Z)] =) eieij < [R(Y) : R(Z)][R(X) : R(Y)] = [R(X) : R(Z)]

which proves the assertion.

Let ¢ € R(Y) considered as a rational (and hence regular) map g : Y — P! of nonsingular
projective curves. The composed map go f : X — P! is defined by the rational function f*(¢) €
R(X). By the previous argument, it is enough to prove the proposition in the case when f is a
regular map from X to P! defined by a rational function ¢. If t = Ty /Ty € R(P!), then ¢ = f*(#).
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Without loss of generality we may assume that y = oo = (0,1) € PL. Let f~(y) = {z1,...,2}.
It is clear that

Vo, (¢) = va, (f* (1) = —va, (f*(t71)).

Since ¢ is a local parameter at y, we have that the divisor D = div(¢)s of poles of f is equal to
the sum Y e;z;. Let (¢1,...,¢n) be a basis of R(X) over R(P!). Each ¢; satisfies an equation

ao($) X + ar(@) X+ ...+ aq(g) =0,

where a;(Z) some rational function in a variable Z. After reducing to common denominator and
multiplying the equation by the (d — 1)th power of the first coefficient, we may assume that the
equation is monic, and hence each ¢; is integral over the ring K[t], but 1 + a1(¢)¢; " + ... +
ad(¢)¢i_d = 0 shows that this is impossible. Thus we see that every pole of ¢; belongs to the set
f~1(o0) of poles of ¢. Choose an integer mg such that

div(¢;) + meD >0, i=1,...,n.

Let m be sufficiently large integer. For each integer s satisfying 0 < s < m — mg, we have
¢*¢p; € L(mD). Since the set of functions

¢*d;, 1=1,...,m, s=0,....,m—mg

is linearly independent over k, we obtain dimgL(D) > (m — mg + 1)n. Now we apply Lemma 5
(iii), taking D' = mD, D = 0. Let

N, = dimg (A(mD) + R(X)/A(0) + R(X)).
Then
mdeg(D) = m(z e;) = Ny +dimL(mD) — 1> Ny, + (m —mo+ 1)n — 1.

Dividing by m and letting m go to infinity, we obtain ) e; > n = [R(X) : R(Y)]. Together with
Corollary 2, this proves the assertion.

Corollary 1. For any rational function ¢ € R(X),

deg(div(f)) = 0.

Proof. Let f : X — P! be the regular map defined by ¢. Then, as we saw in the previous
proof, deg(div(f)so) = [R(X) : k(¢)]. Similarly, we have deg(div(¢™!)s) = [R(X) : k(4)]. Since
div(¢) = div(f)o — div(f) e, we are done.

Corollary 2. Assume deg(D) < 0. Then L(D) = {0}.

Set
r(D) = deg(D) — dimL(D).

By Corollary 1, this number depends only on the linear equivalence class of D. Note that, assuming
the Riemann-Roch Theorem, we have (D) =g — 1 — dimL(K — D) < g — 1. This shows that the
function D +— r(D) is bounded on the set of divisors. Let us prove it.
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Lemma 6. The function D — r(D) is bounded on the set Div(X).

Proof. As we have already observed, it suffices to prove the boundness of this function on
Cl(X). By Proposition 3(iii), for any two divisors D', D with D’ > D,

r(D') — r(D) = dim(A(D") + R(X))/(A(D) + R(X)) > 0.

Take a non-zero rational function ¢ € R(X). Let D = div(¢)oc,n = degD. As we saw in the proof
of Proposition 3,

mn > r(mD) —r(0) +m(m —mo—n) — 1 =r(MD)+ mn — mgn.

This implies r(mD) < mon — n, hence r(mD) is bounded as a function of n. Let D' =Y n(x;)x;
be a divisor, y; = f(z;) € P!, where f : X — P! is the regular map defined by ¢. Let P(t) be
a polynomial vanishing at the points y; which belong to the affine part (P!)y. Replacing P(t) by
some power, if needed, we have f*(P(t)) = P(¢) € R(X) and div(P(¢))+mD > D’ for sufficiently
large m. This implies that

r(D") < r(mD + div(P(¢))) = r(mD)).

This proves the assertion.

Corollary. For any divisor D
dimA/(A(D) + R(X)) < oo.
Proof. We know that
r(D') —r(D) = dim(A(D") + R(X)/A(D) + R(X))

is bounded on the set of pairs (D, D’) with D' > D. Since every adele ¢ belongs to some space
A(D), the falsity of our assertion implies that we can make the spaces (A(D’)+R(X)/A(D)+R(X))
of arbitrary dimension. This contradicts the boundness of r(D') — r(D).

Let
H(D) = A/(A(D) + R(X)).

We have r(D') — r(D) = dimg H(D) — dimgH(D') if D' > D. In particular, setting
g = dim; H(0),

we obtain
r(D)=g¢g-1-dimyH(D),

or, equvalently
dimg L(D) = deg(D) + dim H(D) — g + 1. (1)

To prove the Riemann-Roch Theorem, it suffices to show that
dimgH (D) = dim; L(K — D).
To do this we need the notion of a differential of the field X.
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A differential w of R(X) is a linear function on A which vanish on some subspace A(D)+R(X).
A differential can be viewed as an element of the dual space H(D)* for some divisor D.

Note that the set Q(X) of differentials is a vector space over the field R(X). Indeed, for any
¢ € R(X) and w € Q(X), we can define

pw (&) = w(8).
This makes Q(X) a vector space over R(X). If w € H(D)*, then ¢w € H(D — div(¢))*.
Let us prove that

Lemma 7. Let w € Q(X). There exists a maximal divisor D (with respect to the natural order
on Div(X)) such that w € H(D)*.

Proof. If w € H(D,) U H(D3), then w € H(Ds), where D3 = sup(Dj, D2). This shows that it
suffices to verify that the degrees of D such that w € H(D)* is bounded. Let D’ be any divisor,
¢ € L(D'). Since D + div(¢) > D — D', we have

A(D — D"y Cc A(D + div(g)).
Let ¢1,...,¢, be linearly independent elements from L(D’). Since w vanishes on A(D), the
functions ¢1w, ..., ¢,w vanish on A(D — D') C A(D + div(¢;)) and linearly independent over

K. Thus
dimy H(D — D') > dimy L(D").

Applying equality (1) from above, we find
dimi L(D — D') = deg(D) + deg(D') — 1 + g > dimy L(D’) >
deg(D') + 1 — g + dimgH(D').
Taking D’ with deg(D’) > deg(D) to get L(D — D') = {0}, we obtain
deg(D) < 29 — 2.

Proposition 4.

Proof. Let w,w’ be two linearly independent differentials. For any linearly independent (over
K) sets of functions {a1,...,an}, {b1,...,by} in R(X), the differentials

aGw,...,a,w,biw,. .., byw (2)

are linearly independent over K. Let D be such that w,w’ € Q(D). It is easy to see that such D
always exists. For any divisor D', we have

A(D = D') € A(D + div()), ¥ € L(D").

Thus the 2n differentials from equation (2), where (a1,...,a,) and (by,...,b,) are two bases of
L(D'), vanish on A(D — D’). Therefore,

dimy H(D — D') > 2dim L(D’).
Again, as in the proof of the previous lemma, we find
dim, L(D — D') > 2deg(D’) + 2 — 2g.
taking D’ with deg(D’) > deg(D) + 2 — 2¢g, we obtain
0 > 2deg(D’) +2—2g > 0.
This contradiction proves the assertion.

For any w € Q(X) we define the divisor of w as the largest divisor D such that w € H(D).
We denote it by div(w).
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Corollary. Let w,w’ € Q(X). Then div(w) is linearly equivalent to div(w’).

Proof. We know that w € H(D) implies ¢w € H(D + div(¢)). Thus the divisor of ¢w is equal
to div(w) + div(¢). But each w’' € Q(X) is equal to ¢w for some ¢ € R(X).

The linear equivalence class of the divisor of any differential is denoted by Kx. It is called
the canonical class of X. Any divisor from Kx is called a canonical divisor on X.

Theorem (Riemann-Roch). Let D be any divisor on X, and K any canonical divisor. Then
dim; L(D) = deg(D) 4+ dim L(K — D)+ 1 — g,

where g = dimy L(K).

Proof. Using formula (2), it suffices to show that
dimH (D) = dim,L(K — D),

or, equivalently, dimy H (K — D) = dim; L(D). We will construct a natural isomorphism of vector
spaces
c: L(D)— H(K — D)*.

Let ¢ € L(D), K = div(w). Then
div(¢w) = div(w) + div(¢) > K — D.

Thus ¢w vanishes on A(K — D), and therefore ¢pw € H(K — D)*. This defines a linear map
c¢: L(D) - H(Kp)*. Let « € H(K — D)* and K' = div(«). Since K’ is the maximal divisor
D’ such that « vanishes on A(D’), we have K’ > K — D. By Proposition 4, a = ¢w for some
¢ € R(X). Hence

K' — K = div(a) — div(w) = div(¢) > —D.

showing that ¢ € L(D). This defines a linear map
H(K — D)* = L(D), a— ¢.
Obviously this map is the inverse of the map c.

The number g = dimy L(K) is called the genus of X. It is easy to see by going through the
definitions that two isomorphic curves have the same genus.

Now we will give some nice applications of the Riemann-Roch Theorem. We have already
deduced some corollaries from the RRT. We repeat them.

Corollary.

deg(KX) = 29 - 23
dimi L(D) = deg(D) 4+ 1 — g,
if deg(D) >2g—2and D ¢ Kx.
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Theorem 1. Assume g =0 and X (k) # 0 (e.g. k = K). Then X = P!
Proof. By Riemann-Roch, for any divisor D > 0,

dimy L(D) = deg(D) + 1.

Dake D = 1z for some point z € X (k). Then deg(D) = 1 and dimL(D) = 2. Thus there exists a
nonconstant function ¢ € R(X) such that div(¢) + D > 0. Since ¢ cannot be regular everywhere,
this means that ¢ has a pole of order 1 at z and regular in X \ {z}. Consider the regular map
f: X — P! defined by ¢. The fibre f~!(oco) consists of one point z and v,(¢) = —1. Applying
Proposition 3, we find that [R(X) : R(P!)] = 1, i.e. X is birationally (and hence biregularly)
isomorphic to P!.

Theorem 2. Let X = V(F) C P? be a nonsingular plane curve of degree d. Then

g=(d—1)(d-2)/2

Proof. Let H be a general line intersecting X at d points z1, ..., 24. By changing coordinates,
we may assume that this line is the line at infinity V(7). Let D = Z;‘i:r It is clear that every
rational function ¢ from the space L(nD),n > 0, is regular on the affine part U = X N(P?\V(Ty)).
A regular function on U is a n element of the ring k[Z1, Z5]/(f(Z1, Z2)), where f(Z1, Z2) = 0 is the
affine equation of X. We may represent it by a polynomial P(Z;, Z;). Now it is easy to compute
the dimension of the space of polynomials P(X1, X5) modulo (f) which belong to the linear space
L(nD). We can write

P(Z1,25) =Y Gi(Z1, Z2),
i=1

where G;(Z1, Z5) is a homogeneous polynomial of degree 7. The dimension of the space of such P’s
is equal to (n + 2)(n + 1)/2. The dimension of P’s which belong to (f) is equal to the dimension
of the space of polynomials of degree d — n which is equal to (n —d+2)(n —d+1)/2. Thus we get

1 1 1
dimL(nD) = §(n+ 2)(n+1)/2— E(n —d+2)(n—-d+1) = §(d— 1)(d—2)+ 1+ nd.
When n > 2g — 2, the RRT gives
dimgL(nD) =nd+ 1 — g.

comparing the two answers for dimL(D) we obtain the formula for g.

Theorem 3. Assume that g =1 and X (k) # (). Then X is isomorphic to a plane curve of degree
3.

Proof. Note thyat by the previous theorem, the genus of a plane cubic is equal to 1. Assume
g =1. Then deg(Kx) =29 —2 = 0. Since L(Kx — D) = {0} for any divisor D > 0, the RRT gives

dimL(D) = deg(D).

Take D = 2 -z for some point z € X (k). Then dimL(D) = deg(D) = 2, hence there exists
a nonconstant function ¢; such that v,(¢1) > —2,¢1 € O(X \ {z}). If vz(¢1) = —1, then the

argument from Theorem 1, shows that X = P! and hence ¢ = 0. Thus v,(¢;) = —2. Now take
D = 3-xz. We have dimL(D) = 3. Obviously L(2-z) C L(3z). Hence there exists a function
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¢2 & L(D) such that v, (¢2) = =3, g2 € O(X\{z}). Next we take D = 6-2. We have dimL(D) = 6.
Obviously, we have the following functions in L(D):

1a¢1a ¢%a Qﬁ’a ¢2a ¢%a ¢1¢2'

The number of them is 7, hence they must be linearly dependent in L(6 - z). Let

ao + a1¢1 + a2t + asd® + asbs + asda + agdibo.

with not all coefficients a; € k equal to zero. I claim that as # 0. Indeed, assume that a5 = 0.
Since ¢? and ¢35 are the only functions among the seven ones which has pole of order 6 at , the
coefficient a3 must be also zero. Then ¢1¢5 is the only function with pole of order 5 at x. This
implies that ag = 0. Now ¢? is the only function with pole of order 4, so we must have as = 0. If
ayq # 0, then ¢5 is a linear combination of 1 and ¢;, and hence belongs to L(2-x). This contradicts
the choice ¢5. So, we get ag + a1¢1 = 0. This implies that ag = a; = 0.

Consider the map f : X — P! given by the function ¢;. Since ¢, satisfies an equation of
degree 2 with coefficients from the field f*(R(P')), we see that [R(X) : R(P')] = 2. Thus, adding
$o to f*(R(PY)) we get R(X). Let

: X\ {z} — A?

be the regular map defined by ®*(Z;) = ¢1, ®*(Z3) = ¢o. Its image is the affine curve defined by
the equation

ag + a1 21 + a2212 + a3Zl3 + ag oy + a5Z22 + ag 214> = 0.

Since k(X)) = k(®*(Z1), ®*(Z2)) we see that X is birationally isomorphic to the affine curve V (F).
Note that asz # 0, since otherwise, after homogenizing, we get a conic which is isomorhic to P!.
So, homogenizing F' we get a plane cubic curve with equation

F(To, Ty, Tz) = agT¢ + arTETy + asToTE + asT} + asTiTy + asToTs + agToTiTr = 0. (3)

It must be nonsingular, since a singular cubic is obviously rational (consider the pencil of lines
through the singular point to get a rational parametrization). Since a birational isomorphism of
nonsingular projective curves extends to an isomorophism we get the assertion.

Remark. Note that we can simplify the equation of the plane cubic as follows. First we may
assume that ag = ag = 1. Suppose that char(k) # 2. Replacing Zs with Z} = Zo+ %(aGZl +a4Zy),
we may assume that ay = a5 = 0. If char(k) # 2,3, then replacing Z; with Z; + %azZo, we may
assume that as = 0. Thus, the equation is reduced to the form

F(Ty, Ty, To) = ToT5 + TF + a1 T4Ty + ao Ty,

or, after dehomogenizing,
Z§+Zf’+a121+ag = 0.

It is called the Weierstrass equation. Since the curve is nonsingular, the cibic polynomial Z7 +
a1Z1 + ag does not have multiple roots. This occurs if and only if its discriminant

A = 4a3 + 27a3 # 0.
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Problems
1. Show that a regular map of nonsingular projective curves is always finite.

2. Prove that for any nonsingular projective curve X of genus ¢ there exists a regular map
f: X — P! of degree (= [R(X) : f*(R(P'))]) equal to g = 1.

3. Show that any nonsingular projective curve X of genus 0 with X (k) = ) is isomorphic to a
nonsingular conic on P% [Hint: Use that dimL(—Kx) > 0 to find a point z with deg(1 - z) = 2].

4. Let X be a nonsingular plane cubic with X (k) # . Fix a point zg € X (k). For any z,y € X
let z & y be the unique simple pole of a nonconstant function ¢ € L(xz + y — z(). show that z @y
defines a group law on X. Let zo = (0,0, 1), where we assume that X is given by equation (3).
Show that zq is the inflection point of X and the group law coincides with the group law on X
considered in Lecture 6.

5. Prove that two elliptic curves given by Weierstrass equations Z3 + Z2 + a1Z; + ag = 0 and
Z3 4+ 72 + b1 Z1 + by = 0 are isomorhic if and only if a3 /a2 = b3 /b3.

6. Let X be a nonsingular curve in P! x P! given by a bihomogeneous equation of degree (dy, ds).
Prove that its genus is equal to

g9 = (di = 1)(dz = 1).

7. Let D = Z;Zl n;z; be a positive divisor on a nonsingular projective curve X. For any z €
X\ {z1,..., 2.} denote, let I, € L(D)* be defined by evaluating ¢ € L(D) at the point z. Show
that this defines a rational map from X to P(L(D)*). Let ¢p : X — P(L(D)*) be its unique
extension to a regular map of projective varieties. Assume X = P! and deg(D) = d. Show that
¢p(P1) is isomorphic to the Veronese curve vg(P!) C P4,

8. Show the map ¢p is one-to-one on its image if deg(D) > 29 — 1.
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