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Prefa
e

Polynomials pervade mathemati
s, and mu
h that is beautiful in mathe-mati
s is related to polynomials. Virtually every bran
h of mathemati
s,from algebrai
 number theory and algebrai
 geometry to applied analy-sis, Fourier analysis, and 
omputer s
ien
e, has its 
orpus of theory arisingfrom the study of polynomials. Histori
ally, questions relating to polyno-mials, for example, the solution of polynomial equations, gave rise to someof the most important problems of the day. The subje
t is now mu
h toolarge to attempt an en
y
lopedi
 
overage.The body of material we 
hoose to explore 
on
erns primarily polyno-mials as they arise in analysis, and the te
hniques of the book are primarilyanalyti
. While the 
onne
ting thread is the polynomial, this is an analysisbook. The polynomials and rational fun
tions we are 
on
erned with arealmost ex
lusively of a single variable.We assume at most a senior undergraduate familiarity with real and
omplex analysis (indeed in most pla
es mu
h less is required). However,the material is often tersely presented, with mu
h mathemati
s exploredin the exer
ises, some of whi
h are quite hard, many of whi
h are suppliedwith 
opious hints, some with 
omplete proofs. Well over half the materialin the book is presented in the exer
ises. The reader is en
ouraged to atleast browse through these. We have been mu
h in
uen
ed by P�olya andSzeg}o's 
lassi
 \Problems and Theorems in Analysis" in our approa
h tothe exer
ises. (Though unlike P�olya and Szeg}o we 
hose to in
orporate thehints with the exer
ises.)



viii Prefa
eThe book is mostly self-
ontained. The text, without the exer
ises, pro-vides an introdu
tion to the material, but mu
h of the ri
hness is reservedfor the exer
ises. We have attempted to highlight the parts of the theoryand the te
hniques we �nd most attra
tive. So, for example, M�untz's lovely
hara
terization of when the span of a set of monomials is dense is exploredin some detail. This result epitomizes the best of the subje
t: an attra
tiveand nontrivial result with several attra
tive and nontrivial proofs.There are ex
ellent books on orthogonal polynomials, Chebyshev poly-nomials, Chebyshev systems, and the geometry of polynomials, to name buta few of the topi
s we 
over, and it is not our intent to rewrite any of these.Of ne
essity and taste, some of this material is presented, and we have at-tempted to provide some a

ess to these bodies of mathemati
s. Mu
h ofthe material in the later 
hapters is re
ent and 
annot be found in bookform elsewhere.Students who wish to study from this book are en
ouraged to samplewidely from the exer
ises. This is de�nitely \hands on" material. Thereis too mu
h material for a single semester graduate 
ourse, though su
ha 
ourse may be based on Se
tions 1.1 through 5.1, plus a sele
tion fromlater se
tions and appendi
es. Most of the material after Se
tion 5.1 maybe read independently.Not all obje
ts labeled with \E" are exer
ises. Some are examples.Sometimes no question is asked be
ause none is intended. O

asionallyexer
ises in
lude a statement like, \for a proof see : : : "; this is usually anindi
ation that the reader is not expe
ted to provide a proof.Some of the exer
ises are long be
ause they present a body of material.Examples of this in
lude E.11 of Se
tion 2.1 on the trans�nite diameter ofa set and E.11 of Se
tion 2.3 on the solvability of the moment problem.Some of the exer
ises are quite te
hni
al. Some of the te
hni
al exer
ises,like E.4 of Se
tion 2.4, are in
luded, in detail, be
ause they present resultsthat are hard to a

ess elsewhere.A
knowledgmentsWe would like to thank Di
k Askey, Weiyu Chen, Carl de Boor, KarlDil
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1Introdu
tion and Basi
 Properties

OverviewThe most basi
 and important theorem 
on
erning polynomials is the Fun-damental Theorem of Algebra. This theorem, whi
h tells us that everypolynomial fa
tors 
ompletely over the 
omplex numbers, is the startingpoint for this book. Some of the intri
ate relationships between the lo
a-tion of the zeros of a polynomial and its 
oeÆ
ients are explored in Se
tion2. The equally intri
ate relationships between the zeros of a polynomial andthe zeros of its derivative or integral are the subje
t of Se
tion 1.3. This
hapter serves as a general introdu
tion to the body of theory known as thegeometry of polynomials. Highlights of this 
hapter in
lude the Fundamen-tal Theorem of Algebra, the Enestr�om-Kakeya theorem, Lu
as' theorem,and Walsh's two-
ir
le theorem.1.1 Polynomials and Rational Fun
tionsThe fo
us for this book is the polynomial of a single variable. This is anextended notion of the polynomial, as we will see later, but the most im-portant examples are the algebrai
 and trigonometri
 polynomials, whi
hwe now de�ne. The 
omplex (n + 1)-dimensional ve
tor spa
e of algebrai
polynomials of degree at most n with 
omplex 
oeÆ
ients is denoted byP
n.



2 1. Introdu
tion and Basi
 PropertiesIf C denotes the set of 
omplex numbers, then(1:1:1) P
n := (p : p(z) = nXk=0 akzk; ak 2 C) :When we restri
t our attention to polynomials with real 
oeÆ
ients we willuse the notation(1:1:2) Pn := (p : p(z) = nXk=0 akzk; ak 2 R) ;where R is the set of real numbers. Rational fun
tions of type (m;n) with
omplex 
oeÆ
ients are then de�ned by(1:1:3) R
m;n := �pq : p 2 P
m; q 2 P
n� ;while their real 
ousins are denoted by(1:1:4) Rm;n := �pq : p 2 Pm; q 2 Pn� :The distin
tion between the real and 
omplex 
ases is parti
ularly impor-tant for rational fun
tions (see E.4).The set of trigonometri
 polynomials T 
n is de�ned by(1:1:5) T 
n := (t : t(�) := nXk=�n akeik� ; ak 2 C) :A real trigonometri
 polynomial of degree at most n is an element of T 
ntaking only real values on the real line. We denote by Tn the set of all realtrigonometri
 polynomials of degree at most n. Other 
hara
terizations ofTn are given in E.9. Note that if z := ei�, then an arbitrary element of T 
nis of the form(1:1:6) z�n 2nXk=0 bkzk; bk 2 Cand so many properties of trigonometri
 polynomials redu
e to the studyof algebrai
 polynomials of twi
e the degree on the unit 
ir
le in C :The most basi
 theorem of this book, and arguably the most basi
nonelementary theorem of mathemati
s, is the Fundamental Theorem ofAlgebra. It says that a polynomial of exa
t degree n (that is, an element



1.1 Polynomials and Rational Fun
tions 3of P
nnP
n�1) has exa
tly n 
omplex zeros 
ounted a

ording to their mul-tipli
ities.Theorem 1.1.1 (Fundamental Theorem of Algebra). Ifp(z) := nXi=0 aizi; ai 2 C ; an 6= 0 ;then there exist �1; �2; : : : ; �n 2 C su
h thatp(z) = an nYi=1 (z � �i) :Here the multipli
ity of the zero at �i is the number of times it isrepeated. So, for example, (z � 1)3(z + i)2is a polynomial of degree 5 with a zero of multipli
ity 3 at 1 and with azero of multipli
ity 2 at �i: The polynomialp(z) := nXi=0 aizi ; ai 2 C ; an 6= 0is 
alled moni
 if its leading 
oeÆ
ient an equals 1. There are many proofsof the Fundamental Theorem of Algebra based on elementary propertiesof 
omplex fun
tions (see Theorem 1.2.1 and E.4 of Se
tion 1.2). We willexplore this theorem more substantially in the next se
tion of this 
hapter.Comments, Exer
ises, and Examples.The importan
e of the solution of polynomial equations in the history ofmathemati
s is hard to overestimate. The Greeks of the 
lassi
al period un-derstood quadrati
 equations (at least when both roots were positive) but
ould not solve 
ubi
s. The expli
it solutions of the 
ubi
 and quarti
 equa-tions in the sixteenth 
entury were due to Ni

olo Tartaglia (
a 1500{1557),Ludovi
o Ferrari (1522{1565), and S
ipione del Ferro (
a 1465{1526) andwere popularized by the publi
ation in 1545 of the \Ars Magna" of Giro-lamo Cardano (1501{1576). The exa
t priorities are not entirely 
lear, butdel Ferro probably has the strongest 
laim on the solution of the 
ubi
.These dis
overies gave western mathemati
s an enormous boost in partbe
ause they represented one of the �rst really major improvements onGreek mathemati
s. The impossibility of �nding the zeros of a polynomialof degree at least 5, in general, by a formula 
ontaining additions, subtra
-tions, multipli
ations, divisions, and radi
als would await Niels Henrik Abel(1802{1829) and his 1824 publi
ation of \On the Algebrai
 Resolution ofEquations." Indeed, so mu
h algebra, in
luding Galois theory, analysis, andparti
ularly 
omplex analysis, is born out of these ideas that it is hard toimagine how the 
ow of mathemati
s might have pro
eeded without theseissues being raised. For further history, see Boyer [68℄.



4 1. Introdu
tion and Basi
 PropertiesE.1 Expli
it Solutions.a℄ Quadrati
 Equations. Verify that the quadrati
 polynomial x2+ bx+ 
has zeros at �b�pb2 � 4
2 ; �b+pb2 � 4
2 :b℄ Cubi
 Equations. Verify that the 
ubi
 polynomial x3 + bx + 
 haszeros at� + � ; ���+ �2 � + ip3��� �2 � ; ���+ �2 � � ip3��� �2 � ;where � = 3s�
2 +r
24 + b327and � = 3s�
2 �r
24 + b327 :
℄ Show that an arbitrary 
ubi
 polynomial, x3 + ax2 + bx + 
; 
an betransformed into a 
ubi
 polynomial as in part b℄ by a transformation x 7!ex+ f .d℄ Observe that if the polynomial x3+ bx+ 
 has three distin
t real zeros,then � and � are ne
essarily nonreal and hen
e 4b3 + 27
2 is negative. So,in this simplest of 
ases one is for
ed to deal with 
omplex numbers (whi
hwas a serious te
hni
al problem in the sixteenth 
entury).e℄ Quarti
 Equations. The quarti
 polynomial x4 + ax3 + bx2 + 
x + dhas zeros at �a4 + R2 � �2 ; �a4 + R2 � �2 ;where R =ra24 � b+ y ;y is any root of the resolvent 
ubi
y3 � by2 + (a
+ 4d)y � a2d+ 4bd� 
2 ;and �; � =r3a24 �R2 � 2b� 4ab� 8
� a34R ; R 6= 0 ;while �; � =r3a24 � 2b� 2py2 � 4d ; R = 0 :These unwieldy equations are quite useful in 
onjun
tion with any symboli
manipulation pa
kage.



1.1 Polynomials and Rational Fun
tions 5E.2 Newton's Identities. Write(x� �1)(x� �2) � � � (x � �n) = xn � 
1xn�1 + 
2xn�2 � � � �+ (�1)n
n :The 
oeÆ
ients 
k are, by de�nition, the elementary symmetri
 fun
tionsin the variables �1; : : : ; �n:a℄ For positive integers k, letsk := �k1 + �k2 + � � �+ �kn :Prove thatsk = (�1)k+1k
k + (�1)k k�1Xj=1 (�1)j
k�jsj ; k � nand sk = (�1)k+1 k�1Xj=k�n (�1)j
k�jsj ; k > n :Here, and in what follows, an empty sum is understood to be 0.A polynomial of n variables is a fun
tion that is a polynomial in ea
hof its variables. A symmetri
 polynomial of n variables is a polynomial ofn variables that is invariant under any permutation of the variables.b℄ Show by indu
tion that any symmetri
 polynomial in n variables (withinteger 
oeÆ
ients) may be written uniquely as a polynomial (with integer
oeÆ
ients) in the elementary symmetri
 fun
tions f1; f2; : : : ; fn.Hint: For a symmetri
 polynomial f in n variables, let�(f) := (�1; �2; : : : ; �n) ; �1 � �2 � � � � � �n � 0if f(x1; x2; : : : ; xn) = �1X�1=0 �2X�2=0 � � � �nX�n=0 
�1;�2;::: ;�nx�11 x�22 � � �x�nnand 
�1;�2;::: ;�n 6= 0. If�(f) = (�1; �2; : : : ; �n) and �(g) = (e�1; e�2; : : : ; e�n) ;then let �(f) < �(g) if �j � e�j for ea
h j with a stri
t inequality for at leastone index. This gives a (partial) well ordering of symmetri
 polynomials inn variables, that is, every set of symmetri
 polynomials in n variables hasa minimal element. Now use indu
tion on �(f). ut



6 1. Introdu
tion and Basi
 Properties
℄ Show that �1 +p52 �k ! 0 (mod 1) :(By 
onvergen
e to zero (mod 1) we mean that the quantity approa
hesintegral values.)Hint: Consider the integers sk := �k1 + �k2 ;where �1 := 12 (1 +p5) and �2 := 12 (1�p5). utd℄ Find another algebrai
 integer � with the property that�k ! 0 (mod 1) :Su
h numbers are 
alled Salem numbers (see Salem [63℄). It is an openproblem whether any nonalgebrai
 numbers � > 1 satisfy �k ! 0 (mod 1).E.3 Norms on Pn. Pn is a ve
tor spa
e of dimension n+1 over R: Hen
ePn equipped with any norm is isomorphi
 to the Eu
lidean ve
tor spa
eRn+1 , and these norms are equivalent to ea
h other. Similarly, P
n is ave
tor spa
e of dimension n+1 over C : Hen
e P
n equipped with any normis isomorphi
 to the Eu
lidean ve
tor spa
e C n+1 , so these norms are alsoequivalent to ea
h other. Letpn(x) := nXk=0 akxk; ak 2 R :Some 
ommon norms on Pn and P
n arekpkA := supx2A jp(x)j supremum norm:=kpkL1(A) L1 normkpkLp(A) :=�ZA jp(t)jp dt�1=p Lp norm; p � 1kpkl1 :=maxk fjakjg l1 normkpklp :=� nXk=0 jakjp�1=p lp norm; p � 1 :In the �rst 
ase A must 
ontain n+1 distin
t points. In the se
ond 
ase Amust have positive measure.



1.1 Polynomials and Rational Fun
tions 7a℄ Con
lude that there exist 
onstants C1, C2, and C3 depending only onn so that kp0k[�1;1℄ � C1kpk[�1;1℄ ;nXi=0 jaij � C2kpk[�1;1℄ ;kpk[�1;1℄ � C3kpkL2[�1;1℄for every p 2 P
n, and, in parti
ular, for every p 2 Pn.These inequalities will be revisited in detail in later 
hapters, wherepre
ise estimates are given in terms of n.b℄ Show that there exist extremal polynomials for ea
h of the above in-equalities. That is, for example,sup06=p2Pn kp0k[�1;1℄kpk[�1;1℄is a
hieved.E.4 On Rn;m.a℄ Rn;m is not a ve
tor spa
e be
ause it is not 
losed under addition.b℄ Partial Fra
tion De
omposition. Let rn;m 2 R
n;m be of the formp(x)Qm0k=1(x� �k)mk ; p 2 P
n ; �k distin
t ; p(�k) 6= 0 :Then there is a unique representation of the formrn;m(x) = q(x) + m0Xk=1 mkXj=1 ak;j(x � �k)j ; q 2 P
n�m ; ak;j 2 C(if m > n; then P
n�m is meant to be f0g).Hint: Consider the type and dimension of expressions of the above form. ut
℄ Show that if rn;m 2 R
n;m ;then Re(rn;m(�)) 2 Rn+m;2m :This is an important observation be
ause in some problems a rational fun
-tion in R
n;n 
an behave more like an element of R2n;2n than Rn;n.



8 1. Introdu
tion and Basi
 PropertiesE.5 Horner's Rule.a℄ We havenXi=0 aixi = (� � � ((anx+ an�1)x+ an�2)x+ � � �+ a1)x+ a0 :So every polynomial of degree n 
an be evaluated by using at most n ad-ditions and n multipli
ations. (The 
onverse is 
learly not true; 
onsiderx2n .)b℄ Show that every rational fun
tion of type (n � 1; n) 
an be put in aform so that it 
an be evaluated by using n divisions and n additions.E.6 Lagrange Interpolation. Let zi and yi be arbitrary 
omplex numbersex
ept that the zi must be distin
t (zi 6= zj ; for i 6= j). Letlk(z) := Qni=0;i6=k(z � zi)Qni=0;i6=k(zk � zi) ; k = 0; 1; : : : ; n :a℄ Show that there exists a unique p 2 P
n that takes n+1 spe
i�ed valuesat n+ 1 spe
i�ed points, that is,p(zi) = yi ; i = 0; 1; : : : ; n :This p 2 P
n is of the form p(z) = nXk=0 yklk(z)and is 
alled the Lagrange interpolation polynomial.If all the zi and yi are real, then this unique interpolation polynomialis in Pn:b℄ Let !(z) := nYi=0 (z � zi) :Show that lk is of the formlk(z) = !(z)(z � zk)!0(zk)and p(z) = nXk=0 yk!(z)(z � zk)!0(zk) :



1.1 Polynomials and Rational Fun
tions 9
℄ An Error Estimate. Assume that the points zi 2 [a; b℄; i = 0; 1; : : : ; n;are distin
t and f 2 Cn+1[a; b℄ (that is, f is an n + 1 times 
ontinuouslydi�erentiable real-valued fun
tion on [a; b℄). Let p 2 Pn be the Lagrangeinterpolation polynomial satisfyingp(zi) = f(zi) ; i = 0; 1; : : : ; n :Show that for every x 2 [a; b℄ there is a point � 2 (a; b) so thatf(x)� p(x) = 1(n+ 1)! f (n+1)(�)!(x) :Hen
e kf � pk[a;b℄ � 1(n+ 1)! kf (n+1)k[a;b℄ k!k[a;b℄ :Hint: Choose � so that ' := f � p� �w vanishes at x; that is,� := (f(x)� p(x))=!(x) :Then repeated appli
ations of Rolle's theorem yield that'(n+1) = f (n+1) � �(n+ 1)!has a zero � in (a; b): utE.7 Hermite Interpolation.a℄ Let zi 2 C ; i = 1; 2; : : : k, be distin
t. Letmi; i = 1; 2; : : : ; k, be positiveintegers with n+ 1 :=Pki=1mi, and letyi;j 2 C ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1be �xed. Show that there is a unique p 2 P
n, 
alled the Hermite interpola-tion polynomial, so thatp(j)(zi) = yi;j ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :If all the zi and yi;j are real, then this unique interpolation polynomial isin Pn�1.Hint: Use indu
tion on n. utb℄ Assume that the points zi 2 [a; b℄ are distin
t and f 2 Cn[a; b℄. Letp 2 Pn�1 be the Hermite interpolation polynomial satisfyingp(zi) = f (j)(zi) ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :Show that for every x 2 [a; b℄ there is a point � 2 (a; b) so that



10 1. Introdu
tion and Basi
 Propertiesf(x)� p(x) = 1n! f (n)(�)!(x)with !(x) := kYi=1(x� xi)mi�1 :Hen
e kf � pk[a;b℄ � 1n! kf (n)k[a;b℄ k!k[a;b℄ :Hint: Follow the hint given for E.6 
℄. utPolynomial interpolation and related topi
s are studied thoroughly inDavis [75℄; Lorentz, Jetter, and Riemens
hneider [83℄; and Szabados andV�ertesi [92℄.E.8 On the Zeros of a p 2 Pn. Show that if p 2 Pn, then the nonrealzeros of p form 
onjugate pairs (that is, if z is a zero of p; then so is z).E.9 Fa
torization of Trigonometri
 Polynomials.a℄ Show that t 2 Tn (or t 2 T 
n ) if and only if t is of the formt(z) = a0 + nXk=1(ak 
os kz + bk sin kz) ; ak; bk 2 R (or C ) :b℄ Show that if t 2 TnnTn�1; then there are numbers z1; z2; : : : ; z2n and0 6= 
 2 C su
h that t(z) = 
 2nYj=1 sin z � zj2 :Show also that the nonreal zeros zj of t form 
onjugate pairs.E.10 Newton Interpolation and Integer-Valued Polynomials. Let�kf(x)be de�ned indu
tively by�0f(x) := f(x) ; �f(x) = �1f(x) := f(x+ 1)� f(x)and �k+1f(x) := �(�kf(x)) ; k = 1; 2; : : : :Let �xk� := x(x� 1) � � � (x� k + 1)k! :a℄ Show that �xk� is a polynomial of degree k that takes integer values atall integers.



1.2 The Fundamental Theorem of Algebra 11b℄ Let f be an m times di�erentiable fun
tion on [a; a + m℄. Show thatthere is a � 2 (a; a+m) su
h that�mf(a) = f (m)(�) :
℄ Show that if p 2 P
n; thenp(x) = nXk=0�kp(0)�xk� :d℄ Suppose p 2 P
n is integer-valued at all integers. Show thatp(x) = nXk=0 ak�xk�for some integers a0; a1; : : : ; an: Note that this 
hara
terizes su
h polyno-mials.e℄ Show that if p 2 P
n takes integer values at n + 1 
onse
utive integers,then p takes integer values at every integer.f ℄ Suppose 
 2 R and n
 is an integer for every n 2 N: Use part b℄ to showthat 
 is a nonnegative integer.1.2 The Fundamental Theorem of AlgebraThe following theorem is a quantitative version of the Fundamental Theo-rem of Algebra due to Cau
hy [1829℄. We o�er a proof that does not assumethe Fundamental Theorem of Algebra, but does require some elementary
omplex analysis.Theorem 1.2.1. The polynomialp(z) := anzn + an�1zn�1 + � � �+ a0 2 P
n ; an 6= 0has exa
tly n zeros. These all lie in the open disk of radius r 
entered atthe origin, where r := 1 + max0�k�n�1 jakjjanj :Proof. We may suppose that a0 6= 0, or we may �rst divide by zk for somek. Now observe that



12 1. Introdu
tion and Basi
 Propertiesg(x) := ja0j+ ja1jx+ � � �+ jan�1jxn�1 � janjxnsatis�es g(0) > 0 and limx!1 g(x) = �1. So by the intermediate value the-orem, g has a zero in (0;1) (whi
h is, on 
onsidering (g(x)=xn)0, in fa
tunique). Let s be this zero. Then for jzj > s;(1:2:1) jp(z)� anznj � ja0j+ ja1zj+ � � �+ jan�1zn�1j < janznj :This, by Rou
h�e's theorem (see E.1), shows that p(z) and anzn have exa
tlythe same number of zeros, namely, n, in any disk of radius greater than s.It remains to observe that if x � r; then g(x) < 0 so s < r. Indeed,g(x) � janjxn �1 +� maxk=0;::: ;n�1 jakjjanj� n�1Xk=0 xk�n!< janjxn ��1 +� maxk=0;::: ;n�1 jakjjanj� 1x� 1�� 0for x � 1 + maxk=0;::: ;n�1 jakjjanj : utThe exa
t relationship between the 
oeÆ
ients of a polynomial and thelo
ation of its zeros is very 
ompli
ated. Of 
ourse, the more informationwe have about the 
oeÆ
ients, the better the results we 
an hope for. Thefollowing pretty theorem emphasizes this:Theorem 1.2.2 (Enestr�om-Kakeya). Ifp(z) := anzn + an�1zn�1 + � � �+ a0with a0 � a1 � � � � � an > 0 ;then all the zeros of p lie outside the open unit disk.Proof. Consider(1� z)p(z) = a0 + (a1 � a0)z + � � �+ (an � an�1)zn � anzn+1 :Thenj(1� z)p(z)j � a0 � [(a0 � a1)jzj+ � � �+ (an�1 � an)jzjn + anjzjn+1℄ :Sin
e ak � ak+1 � 0, the right-hand expression above de
reases as jzj in-
reases. Thus, for jzj < 1,j(1� z)p(z)j > a0 � [(a0 � a1) + � � �+ (an�1 � an) + an℄ = 0 ;and the result follows. ut



1.2 The Fundamental Theorem of Algebra 13Corollary 1.2.3. Supposep(z) := anzn + an�1zn�1 + � � �+ a0with ak > 0 for ea
h k. Then all the zeros of p lie in the annulusr1 := mink=0;::: ;n�1 akak+1 � jzj � maxk=0;::: ;n�1 akak+1 =: r2 :Proof. Apply Theorem 1.2.2 to p(r1z) and znp(r2=z). utThis is a theme with many variations, some of whi
h are explored inthe exer
ises.Theorem 1.2.4. Suppose p > 1; q > 1, and p�1 + q�1 = 1. Then the poly-nomial h 2 P
n of the formh(z) = anzn + an�1zn�1 + � � �+ a0 ; an 6= 0has all its zeros in the disk fz 2 C : jzj � rg, wherer :=8<:1 + n�1Xj=0 jaj jpjanjp!q=p9=;1=q :Proof. See E.6. utComments, Exer
ises, and Examples.The Fundamental Theorem of Algebra appears to have been given its nameby Gauss, although the result was familiar long before; it resisted rigorousproof by d'Alembert (1740), Euler (1749), and Lagrange (1772). It was more
ommonly formulated as a real theorem, namely: every real polynomial fa
-tors 
ompletely into real linear or quadrati
 fa
tors. (This is an essentialresult for the integration of rational fun
tions.) Girard has a 
laim to pri-ority of formulation. In his \Invention Nouvelle en L'Alg�ebra" of 1629 hewrote \every equation of degree n has as many solutions as the exponentof the highest term." Gauss gave the �rst satisfa
tory proof in 1799 in hisdo
toral dissertation, and he gave three more proofs during his lifetime. His�rst proof, while titled \A new proof that every rational integral fun
tion ofone variable 
an be resolved into real fa
tors of the �rst or se
ond degree,"was in fa
t the �rst more-or-less satisfa
tory proof. Gauss' �rst proof is ageometri
 argument that the real and imaginary parts of a polynomial, uand v, have the property that the 
urves u = 0 and v = 0 interse
t, and bymodern standards has some topologi
al problems. His third proof of 1816amounts to showing that



14 1. Introdu
tion and Basi
 PropertiesZjzj=r p0(z)p(z) dzmust vanish if p has no roots, whi
h leads to a 
ontradi
tion and is agenuinely analyti
 proof (see Boyer [68℄, Burton [85℄, and Gauss [1866℄).An almost purely algebrai
 proof using Galois theory, but based onideas of Legendre, may be found in Stewart [73℄.The \geometry of polynomials" is extensively studied in Marden [66℄and Walsh [50℄, where most of the results of the se
tion and mu
h moremay be a

essed. See also Barbeau [89℄ and P�olya and Szeg}o [76℄.Theorem 1.2.2 is due to Kakeya [12℄. It is a spe
ial 
ase of Corollary1.2.3, due to Enestr�om [1893℄. The Enestr�om-Kakeya theorem and relatedmatters are studied thoroughly in Anderson, Sa�, and Varga [79℄ and [81℄and in Varga and Wu Wen-da [85℄, and a number of interesting propertiesare explored. For example, it is shown in the �rst of the above papers thatthe zeros of all p satisfying the assumption of Corollary 1.2.3 are dense inthe annulus fz 2 C : r1 � jzj � r2g.E.1 Basi
 Theorems in Complex Analysis. We 
olle
t a few of the basi
theorems of 
omplex analysis that we need. (Proofs may be found in any
omplex variables text su
h as Ahlfors [53℄ or Ash [71℄.)a℄ Cau
hy's Integral Formula. Let Dr := fz 2 C : jzj < rg. Suppose fis analyti
 on Dr and 
ontinuous on the 
losure Dr of Dr: Let �Dr denotethe boundary of Dr: Then0 = Z�Dr f(t) dt ;f(z) = 12�i Z�Dr f(t)t� z dt ; z 2 Dr ;and f (n)(z) = n!2�i Z�Dr f(t)(t� z)n+1 dt ; z 2 Dr :Unless otherwise spe
i�ed, integration on a simple 
losed 
urve is takenanti
lo
kwise. (We may repla
e �Dr and Dr by any simple 
losed 
urveand its interior, respe
tively, though for most of our appli
ations 
ir
lessuÆ
e.)b℄ Rou
h�e's Theorem. Suppose f and g are analyti
 inside and on asimple 
losed path 
 (for most purposes we may use 
 a 
ir
le). Ifjf(z)� g(z)j < jf(z)jfor every z 2 
; then f and g have the same number of zeros inside 
(
ounting multipli
ities).



1.2 The Fundamental Theorem of Algebra 15A fun
tion analyti
 on C is 
alled entire.
℄ Liouville's Theorem. A bounded entire fun
tion is 
onstant.d℄ Maximum Prin
iple. An analyti
 fun
tion on an open set U � Cassumes its maximum modulus on the boundary. Moreover, if f is analyti
and takes at least two distin
t values on an open 
onne
ted set U � C ; thenjf(z)j < supz2U jf(z)j ; z 2 U :e℄ Uni
ity Theorem. Suppose f and g are analyti
 on an open 
onne
tedset U . Suppose f and g agree on S, where S is an in�nite 
ompa
t subsetof U , then f and g agree everywhere on U:E.2 Division.a℄ Suppose p is a polynomial of degree n and p(�) = 0. Then there existsa polynomial q of degree n� 1 su
h thatp(x) = (x� �)q(x) :Hint: Consider the usual division algorithm for polynomials. utb℄ A polynomial of degree n has at most n roots.This is the easier part of the Fundamental Theorem of Algebra. The remain-ing 
ontent is that every non
onstant polynomial has at least one 
omplexroot.The next exer
ise develops the basi
 
omplex analysis tools mostly forpolynomials on 
ir
les. The point of this exer
ise is to note that the proofsin this 
ase are parti
ularly straightforward.E.3 Polynomial Complex Analysis.a℄ Dedu
e Cau
hy's integral formula for polynomials on 
ir
les.Hint: Integrate zn on �Dr. utb℄ If p(z) = anQni=1(z��i); then the number of indi
es i for whi
h j�ij < ris 12�i Z�Dr p0(z)p(z) dz ;provided no �i lies on �Dr:Hint: We have p0(z)p(z) = nXi=1 1z � �iand 12�i Z�Dr dzz � �i = � 1 if j�ij < r0 if j�ij > r : ut
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tion and Basi
 Properties
℄ Dedu
e Rou
h�e's theorem from part b℄ for polynomials f and g givenby their fa
torizations, and for 
ir
les 
.Hint: Let h := 1 + (g � f)=f . So fh = g and12�i Z�Dr g0(z)g(z) dz = 12�i Z�Dr f 0(z)f(z) dz + 12�i Z�Dr h0(z)h(z) dz :Show that the last integral is zero by expanding h�1 and applying b℄. utd℄ Dedu
e E.1 
℄ and E.1 d℄ from E.1 a℄.e℄ Observe that the uni
ity theorem 
an be sharpened for polynomials asfollows. If p; q 2 P
n and p(z) = q(z) for n+1 distin
t values of z 2 C ; thenp and q are identi
al, that is, p(z) = q(z) for every z 2 C : Equivalently, apolynomial p 2 P
n is either identi
ally 0 or has at most n zeros. (This istrivial from the Fundamental Theorem of Algebra, but as in E.2, it doesnot require it.)E.4 The Fundamental Theorem of Algebra. Every non
onstant polyno-mial has at least one 
omplex zero.Prove this dire
tly from Liouville's theorem.E.5 Pellet's Theorem. Suppose ap 6= 0; jap+1j+ � � �+ janj > 0, andg(x) := ja0j+ ja1jx+ � � �+ jap�1jxp�1 � japjxp + jap+1jxp+1 + � � �+ janjxnhas exa
tly two positive zeros s1 < s2. Thenf(z) := anzn + an�1zn�1 + � � �+ a0 2 P
nhas exa
tly p zeros in the disk fz 2 C : jzj � s1g and no zeros in the annulusfz 2 C : s1 < jzj < s2g.Proof. Let s1 < t < s2: Then g(t) < 0; that is,nXj=0j 6=p jaj jtj < japjtp :Now apply Rou
h�e's theorem to the fun
tionsF (z) := apzp and G(z) := nXj=0 ajzj : ut



1.2 The Fundamental Theorem of Algebra 17E.6 Proof of Theorem 1.2.4.a℄ H�older's inequality (see E.7 of Se
tion 2.2) asserts thatnXk=1 jakbkj �  nXk=1 jakjp!1=p nXk=1 jbkjq!1=q ;where p�1 + q�1 = 1 and p � 1. So ifp(z) := anzn + an�1zn�1 + � � �+ a0 2 P
n ;then n�1Xk=1 jakjjzjk �  n�1Xk=0 jakjp!1=p n�1Xk=0 jzjkq!1=q :b℄ Thus, for jzj > 1;jp(z)j � janjjzjn � n�1Xk=0 jakjjzjk� janjjzjn8<:1� n�1Xk=0 ����akan ����p!1=p n�1Xk=0 jzjkqjzjnq!1=q9=;� janjjzjn8<:1� n�1Xk=0 ����akan ����p!1=p 1(jzjq � 1)1=q9=; :
℄ When is the last expression positive?E.7 The Number of Positive Zeros of a Polynomial. Supposep(z) := nXj=0 ajzjhas m positive real roots. Thenm2 � 2n log ja0j+ ja1j+ � � �+ janjpja0anj ! :This result is due to S
hur though the proof more or less follows Erd}os andTur�an [50℄. It requires using M�untz's theorem from Chapter 4.a℄ Suppose p(z) = an nYk=1(z � rkei�k )



18 1. Introdu
tion and Basi
 Propertiesand q(z) := nYk=1(z � ei�k) :Note that for jzj = 1; jz � rei�j2jrj � jz � ei�j :Use this to dedu
e thatjq(z)j2 � jp(z)j2ja0anj �  ja0j+ ja1j+ � � �+ janjpja0anj !2whenever jzj = 1:b℄ Sin
e p has m positive real roots q has m roots at 1: Use the 
hange ofvariables x := z + z�1 applied to znq(z�1)q(z) to show thatkqk2fjzj=1g� minfbkg k(z � 1)m(zn�m + bn�m�1zn�m�1 + � � �+ b1z + b0)k2fjzj=1g� minf
kg kxm(xn�m + 
n�m�1xn�m�1 + � � �+ 
1x+ 
0)k[0;4℄= 4nminfdkg kxm(xn�m + dn�m�1xn�m�1 + � � �+ d1x+ d0)k[0;1℄� 4np2n+ 1� 2nn+m� ;where the last inequality follows by E.2 
℄ of Se
tion 4.2.
℄ Show that log 4np2n+ 1� 2nn+m�! � m2=nand �nish the proof of the main result.1.3 Zeros of the DerivativeThe most basi
 and important theorem linking the zeros of the derivative ofa polynomial to the zeros of the polynomial is variously attributed to Gauss,Lu
as, Gra
e, and others, but is usually 
alled Lu
as' theorem [1874℄.Theorem 1.3.1 (Lu
as' Theorem). Let p 2 P
n. All the zeros of p0 are 
on-tained in the 
losed 
onvex hull of the set of zeros of p.The proof of this theorem follows immediately from the followinglemma by 
onsidering the interse
tion of the halfplanes 
ontaining the 
on-vex hull of the zeros of p.



1.3 Zeros of the Derivative 19Lemma 1.3.2. Let p 2 P
n. If p has all its zeros in a 
losed halfplane, thenp0n also has all its zeros in the same 
losed halfplane.Proof. On 
onsideration of the e�e
t of the transformation z 7! �z+�; bywhi
h any 
losed halfplane may be mapped to H l := fz : Re(z) � 0g; itsuÆ
es to prove the lemma under the assumption that p has all its zeros inH l: If p has all its zeros in Hl; thenp0(z)p(z) = nXk=1 1z � �k ; �k 2 H l :But if z 2 Hr := fz 2 C : Re(z) > 0g; then1z � �k 2 Hr for ea
h �k 2 H l ;and it follows that nXk=1 1z � �k 2 Hr :In parti
ular, nXk=1 1z � �k 6= 0 ;whi
h �nishes the proof. utThere is a sharpening of Lu
as' theorem for real polynomials formu-lated by Jensen. We need to introdu
e the notion of Jensen 
ir
les for apolynomial p 2 Pn. For p 2 Pn the nonreal roots of p 
ome in 
onjugatepairs. For ea
h su
h pair, �+ i�, �� i�, form the 
ir
le 
entered at � withradius j�j. So this 
ir
le 
entered on the x-axis at � has �+i� and ��i� onthe opposite ends of its perpendi
ular diameter. The 
olle
tion of all su
h
ir
les are 
alled the Jensen 
ir
les for p.Theorem 1.3.3 (Jensen's Theorem). Let p 2 Pn. Ea
h nonreal zero of p0lies in or on some Jensen 
ir
le for p.The proof, whi
h is similar to the proof of Lu
as' theorem, is left forthe reader as E.3.We state the following pretty generalization of Lu
as' theorem due toWalsh [21℄. The proof is left as E.4. Proofs 
an also be found in Marden[66℄ and P�olya and Szeg}o [76℄.



20 1. Introdu
tion and Basi
 PropertiesTheorem 1.3.4 (Walsh's Two-Cir
le Theorem). Suppose p 2 P
n has all itsn zeros in the disk D1 with 
enter 
1 and radius r1. Suppose q 2 P
m hasall its m zeros in the disk D2 with 
enter 
2 and radius r2. Thena℄ All the zeros of (pq)0 lie in D1 [ D2 [ D3, where D3 is the disk with
enter 
3 and radius r3 given by
3 := n
2 +m
1n+m ; r3 := nr2 +mr1n+m :b℄ Suppose (n 6= m). Then all the zeros of (p=q)0 lie in D1[D2[D3; whereD3 is the disk with 
enter 
3 and radius r3 given by
3 := n
2 �m
1n�m ; r3 := nr2 +mr1jn�mj :Comments, Exer
ises, and Examples.Lu
as proved his theorem in 1874, although it is an easy and obvious 
on-sequen
e of an earlier result of Gauss. Jensen's theorem is formulated inJensen [13℄ and proved in Walsh [20℄. Mu
h more 
on
erning the geometryof zeros of the derivative 
an be found in Marden [66℄.E.1 A Remark on Lu
as' Theorem. Show that p0 2 P
n has a zero � onthe boundary of the 
onvex hull of the zeros of p if and only if � is a multiplezero of p.E.2 Laguerre's Theorem. Suppose p 2 P
n has all its zeros in a disk D.Let � 2 C . Let w be any zero ofq(z) := np(z) + (� � z)p0(z)(q is 
alled the polar derivative of p with respe
t to �).a℄ If � =2 D; then w lies in D.Hint: Consider r(z) := p(z)(z � �)�n; where p has all its zeros in D and� 62 D. Then r0(z)r(z) = p0(z)p(z) + n� � zand if q(w) = 0 with w =2 D, then r0(w) = 0. Now observe that r is of theform r(z) = s� 1z � �� ; s 2 P
n ;where s0((w � �)�1) = 0. Note that � =2 D implies thateD := f(z � �)�1 : z 2 Dgis a disk. Then s has all its zeros in eD and so does s0 by Lu
as' theorem.However, w 62 D implies (w � �)�1 62 eD, so s0((w � �)�1) 6= 0, a 
ontradi
-tion. utb℄ If p(w) 6= 0; then any 
ir
le through w and � either passes through allthe zeros of pn or separates them.



1.3 Zeros of the Derivative 21E.3 Proof of Jensen's Theorem. Prove Theorem 1.3.3.Hint: Suppose p 2 Pn n Pn�1 and denote the zeros of p by z1; z2; : : : ; zn:Then p0(z)p(z) = nXk=1 1z � zk :If zk = �k + i�k with �k; �k 2 R; and z = x+ iy with x; y 2 R; thenIm� 1x+ iy � �k � i�k + 1x+ iy � �k + i�k�= �2y((x� �k)2 + y2 � �2k)((x� �k)2 + (y � �k)2) � ((x � �k)2 + (y + �k)2) ;and so outside all the Jensen 
ir
les and o� the x-axis,sign�Im� p0(z)pn(z)�� = �sign(y) 6= 0 : utE.4 Proof of Walsh's Theorem. Prove Theorem 1.3.4.a℄ Prove Theorem 1.3.4 a℄.Hint: Let z0 be a zero of p0q + q0p outside D1 and D2. Let�1 := z0 � np(z0)p0(z0) and �2 := z0 � mq(z0)q0(z0)(p0(z0) 6= 0 and q0(z0) 6= 0 by Lu
as' theorem). Observe that �1 2 D1 and�2 2 D2 by E.2, and z0 = n�2 +m�1n+m : utb℄ Prove Theorem 1.3.4 b℄.Hint: Pro
eed as in the hint to part a℄, starting from a zero z0 of p0q � q0poutside D1 and D2. ut
℄ If in Theorem 1.3.4 a℄ D1, D2, and D3 are disjoint, then D1 
ontainsn� 1 zeros, D2 
ontains m� 1 zeros, and D3 
ontains 1 zero of (pq)0:Hint: By a 
ontinuity argument we may redu
e the general 
ase to the 
asewhere p(z) = (z � 
1)n and q(z) = (z � 
2)m. utd℄ If in Theorem 1.3.4 b℄ n = m and D1 and D2 are disjoint, then D1[D2
ontains all the zeros of (p=q)0.



22 1. Introdu
tion and Basi
 PropertiesE.5 Real Zeros and Poles.a℄ If all the zeros of p 2 Pn are real, then all the zeros of p0n are also real.b℄ Suppose all the zeros of both p 2 Pn and q 2 Pm are real, and all thezeros of pn are smaller than any of the zeros of qn. Show that all the zerosof (p=q)0 are real.Hint: Consider the graph of (p=q)0(p=q) = p0p � q0q : utDe�ne W (p), the Wronskian of p, byW (p)(z) = p(z)p00(z)� (p0(z))2= ���� p(z) p0(z)p0(z) p00(z) ����= p2(z)�p0(z)p(z) �0 :
℄ Prove that if p 2 Pn has only distin
t real zeros, then W (p) has no realzeros.In Craven, Csordas, and Smith [87℄ it is 
onje
tured that, for p 2 Pn,the number of real zeros ofW (p)=p2 does not ex
eed the number of nonrealzeros of p (a question they attribute to Gauss).d℄ Let p 2 Pn. Show that any real zero of W (p) lies in or on a Jensen
ir
le of p.Proof. See Dil
her [91℄. ute℄ Show that Lu
as' theorem does not hold for rational fun
tions.Hint: Consider r(x) = x=(�2 � x2). utThe next exer
ise is a weak form of Des
artes' rule of signs.E.6 Positive Zeros of M�untz Polynomials. Suppose Æ0 < Æ1 < � � � < Ænand f(x) := a0xÆ0 + a1xÆ1 + � � �+ anxÆn ; ak 2 R :Show that either f = 0 or f has at most n zeros in (0;1).Hint: Pro
eed by indu
tion on n. ut



1.3 Zeros of the Derivative 23E.7 Apolar Polynomials and Szeg}o's Theorem. Two polynomialsf(x) : = nXk=0 ak�nk�xk ; an 6= 0and g(x) : = nXk=0 bk�nk�xk ; bn 6= 0are 
alled apolar if nXk=0(�1)kakbn�k�nk� = 0 :a℄ A Theorem of Gra
e [02℄. Suppose that f and g are apolar polynomials.If f has all its zeros in a (
losed or open) disk D; then g has at least onezero in D.Hint: Let �1; �2; : : : ; �n and �1; �2; : : : ; �n denote the zeros of f and g,respe
tively. Suppose that the zeros of g are all outside D. Letf1(x) := nf(x) + (�1 � x)f 0(x)and for k = 2; 3; : : : ; n, letfk(x) := (n� k + 1)fk�1(x) + (�k � x)f 0k(x) :Then, by E.2, ea
h fk has all its zeros in D: Now 
omputefn�1(�n) = n!bn ��n0�a0bn ��n1�a1bn�1 + � � �+ (�1)n�nn�anb0� = 0 ;where the vanishing follows by apolarity. This is a 
ontradi
tion. utb℄ If f and g are apolar, then the 
losed 
onvex hull of the zeros of finterse
ts the 
losed 
onvex hull of the zeros of g.
℄ A Theorem of Szeg}o [22℄. Supposef(x) := nXk=0 ak�nk�xk ; an 6= 0 ;g(x) := nXk=0 bk�nk�xk ; bn 6= 0 ;and h(x) := nXk=0 akbk�nk�xk :Suppose f has all its zeros in a 
losed disk D, and g has zeros �1; : : : ; �n:Then all the zeros of h are of the form �i
i with 
i 2 D:



24 1. Introdu
tion and Basi
 PropertiesHint: Suppose Æ is a zero of h. ThennXk=0 akbk�nk�Æk = 0 :So the polynomial r(x) := nXk=0(�1)k�nk�bkÆkxn�kis apolar to f , and thus has a zero � in D. But then � = �Æ=�i for some isin
e r(x) = xng(�Æ=x): utE.8 Zeros of the Integral. Suppose p 2 Pn n Pn�1 has all its zeros inD1 := fz 2 C : jzj � 1g:a℄ Show that the polynomial q de�ned by q(x) := R x0 p(t) dt has all itszeros in D2 := fz 2 C : jzj � 2g:Hint: Apply E.7 
℄. Takef(x) := p(x); g(x) := nXk=0�nk� xkk + 1 :Then h(x) = 1x Z x0 p(t) dt :Note that g(x) = (n+ 1)�1x�1((1 + x)n+1 � 1) has all its zeros in D2: utb℄ Show thatq(x) := Z x0 Z tm�10 Z tm�20 � � � Z t10 p(t) dt dt1 � � � dtm�2 dtm�1has all its zeros in Drm;n := fz 2 C : jzj � rm;ng, where rm;n � m + 1 isthe zero of nXk=0�m+ nm+ k�xkwith the largest modulus. Note that q is the mth integral of p normalizedso that the 
onstants of integration are all zero.Proof. See Borwein, Chen, and Dil
her [95℄. ut



1.3 Zeros of the Derivative 25E.9 Gra
e's Complex Version of Rolle's Theorem. Suppose � and � arezeros of p 2 Pn n Pn�1. Then p0 has at least one zero in the diskD(
; r) := fz 2 C : jz � 
j � rg ;where 
 := �+ �2 and r := j�� �j2 
ot �n :Hint: Assume, without loss of generality, that � = �1 and � = 1: Letp0(x) = n�1Xk=0 akxk ; that is , p(x) = 
+ n�1Xk=0 ak xk+1k + 1 :Apply E.7 a℄. Note that0 = p(1)� p(�1)2 = a0 + a23 + a45 + � � � :So f(z) := (z � 1)n � (z + 1)nand p0 are apolar. utE.10 Corollaries of Szeg}o's Theorem. Supposef(z) := �n0�a0 +�n1�a1z + � � �+�nn�anzn ;g(z) := �n0�b0 +�n1�b1z + � � �+�nn�bnzn ;and h(z) := �n0�a0b0 +�n1�a1b1z + � � �+�nn�anbnznwith anbn 6= 0.a℄ If f has all its zeros in a 
onvex set S 
ontaining 0 and g has all itszeros in [�1; 0℄; then h has all its roots in S:b℄ If f and g have all their zeros in [�1; 0℄; then so does h.E.11 Another Corollary of Szeg}o's Theorem. If nXk=0 akzk has all its zerosin D1 := fz 2 C : jzj � 1g; then so does nXk=0 akzk�nk� . In parti
ular, nXk=0 zk�nk�has all its zeros in D1:The results of the next exer
ise were �rst proved by M. Riesz (see, forexample, Mignotte [92℄) and were redis
overed by Walker [93℄.



26 1. Introdu
tion and Basi
 PropertiesE.12 Conse
utive Zeros of p0 for p 2 Pn with Real Zeros. For a polyno-mial p(x) := nYi=1 (x� �i) ; �1 < �2 < � � � < �n ; n � 2with only real zeros, let�(p) := min1�i�n�1(�i+1 � �i) :By Rolle's theoremp0(x) = n n�1Yi=1 (x � �i) ; �1 < �1 < �2 < �2 < � � � < �n�1 < �n :a℄ Suppose n � 3. Prove that �(p) < �(p0):Outline. It is required to show that �j � �j�1 > �(p) for ea
h j � 2. Let2 � j � n be �xed. Sin
e f 0(�j)f(�j) = f 0(�j�1)f(�j�1) = 0we have nXi=1 1(�j�1 � �i)(�j � �i) = 0 :Now let uj := �j��j�1; vj := �j ��j : Also for ea
h i; let di := �j ��j�i;ei := �j+i � �j : Then the above 
an be rewritten asj�1Xi=1 1(di � uj)(di + vj) + 1(�ujvj) + n�jXi=1 1(ei + uj)(ei � vj) = 0 :De�ne F (u; v) := j�1Xi=1 uv(di � u)(di + v) + n�jXi=1 uv(ei + u)(ei � v) :Note that F is in
reasing in ea
h variable (0 � u < d1; 0 � v < e1) andobserve that F (uj ; vj) = 1 :To prove the result, it suÆ
es to show that if u and v are nonnegativenumbers satisfying u+ v = �(p); then F (u; v) < 1.



1.3 Zeros of the Derivative 27Now show thatF (u; v) �uv j�1Xi=1 1(di � u)(di+1 � u) + n�jXi=1 1(ei+1 � v)(ei � v)!� uv�(p)  j�1Xi=1 � 1di � u � 1di+1 � u�+ n�jXi=1 � 1ei � v � 1ei+1 � v�!< uv�(p) � 1d1 � u + 1e1 � v� � uv�(p) �1v + 1u� � 1whenever u and v are nonnegative numbers satisfying u+ v = �(p): utb℄ Suppose n � 3 and 
 2 R. Show that �(p0 � 
p) has only real zerosand �(p0 � 
p) > �(p):
℄ What happens when p has only real zeros but they are not ne
essarilydistin
t?E.13 Fej�er's Theorem on the Zeros of M�untz Polynomials. The followingpretty results of Fej�er may also be found in P�olya and Szeg}o [76℄:Suppose that (�k)1k=0 is an in
reasing sequen
e of nonnegative integerswith �0 = 0.a℄ Let p(z) := nXk=0 akz�k ; ak 2 C ; a0a1 6= 0 :Then p has at least one zero z0 2 C so thatjz0j � � �2�3 � � ��n(�2 � �1)(�3 � �1) � � � (�n � �1)�1=�1 ����a0a1 ����1=�1 :Outline. We say that z1 2 C is not less than z2 2 C if jz2j � jz1j: Studyingq(z) := z�np(z�1); we need to show that the largest zero ofq(z) = a0x�n + nXk=1 akx�n��kis not less than� (�2 � �1)(�3 � �1) � � � (�n � �1)�2�3 � � ��n �1=�1 ����a1a0 ����1=�1 :We prove this statement by indu
tion on n: The statement is obviously truefor n = 1: Now assume that the statement is true for n� 1: It follows fromLu
as' theorem that if q is a polynomial with 
omplex 
oeÆ
ients, then thelargest zero of q0 is not greater than the largest zero of q:



28 1. Introdu
tion and Basi
 PropertiesBy the above 
orollary of Lu
as' theorem, it is suÆ
ient to prove thatthe largest zero ofz�n�1��n+1q0(z) = �na0z�n�1 + n�1Xk=1(�n � �k)akz�n�1��kis not less than� (�2 � �1)(�3 � �1) � � � (�n � �1)�2�3 � � ��n �1=�1 ����a1a0 ����1=�1 :However, this is true by the indu
tive hypothesis. utb℄ Suppose f(z) = 1Xk=0 akz�k ; ak 2 Cis an entire fun
tion so that P1k=1 1=�k < 1; that is, the entire fun
tionf satis�es the Fej�er gap 
ondition. Show that there is a z0 2 C so thatf(z0) = 0:Hint: Use part a℄. ut



This is page 29Printer: Opaque this2Some Spe
ial Polynomials

OverviewChebyshev polynomials are introdu
ed and their 
entral role in problems inthe uniform norm on [�1; 1℄ is explored. Sequen
es of orthogonal fun
tionsare then examined in some generality, although our primary interest is inorthogonal polynomials (and rational fun
tions). The third se
tion of this
hapter is 
on
erned with orthogonal polynomials; it introdu
es the most
lassi
al of these. These polynomials satisfy many extremal properties, sim-ilar to those of the Chebyshev polynomials, but with respe
t to (weighted)L2 norms. The �nal se
tion of the 
hapter deals with polynomials withpositive 
oeÆ
ients in various bases.2.1 Chebyshev PolynomialsThe ubiquitous Chebyshev polynomials lie at the heart of many analyti
problems, parti
ularly problems in C[a; b℄, the spa
e of real-valued 
on-tinuous fun
tions equipped with the uniform (supremum) norm, k � k[a;b℄.Throughout this book, for any real- or 
omplex-valued fun
tion f de�nedon [a; b℄, kfk[a;b℄ := supx2[a;b℄ jf(x)j :



30 2. Some Spe
ial PolynomialsThe Chebyshev polynomials are de�ned byTn(x) : = 
os(n ar

osx) ; x 2 [�1; 1℄ ;= 12�(x+px2 � 1)n + (x�px2 � 1)n� ; x 2 C ;(2.1.1) = n2 bn=2
Xk=0 (�1)k (n� k � 1)!k!(n� 2k)! (2x)n�2k ; x 2 C :These elementary equivalen
es are left for the reader (see E.1). The nthChebyshev polynomial has the following equios
illation property on [�1; 1℄.There exist n + 1 points �i 2 [�1; 1℄ with �1 = �n < �n�1 < � � � < �0 = 1so that(2:1:2) Tn(�j) = (�1)n�jkTnk[�1;1℄ = (�1)n�j ; j = 0; 1; : : : ; n :In other words Tn 2 Pn takes the values �kTnk[�1;1℄ with alternating signthe maximum possible number of times on [�1; 1℄: (These extreme pointsare just the points 
os(k�=n), k = 0; 1; : : : ; n.) The Chebyshev polynomialTn satis�es the following extremal property:Theorem 2.1.1. We haveminp2P
n�1 kxn � p(x)k[�1;1℄ = k21�nTnk[�1;1℄ = 21�n ;where the minimum is uniquely attained by p(x) = xn � 21�nTn(x):Proof. Observe that, while the minimum is taken over P
n�1; we need only
onsider p 2 Pn�1; sin
e taking the real part of a p 2 P
n�1 
an only improvethe estimate. From the above formulas for Tn we have21�nTn(x) = xn + s(x) ; s 2 Pn�1 :Now suppose there exists q 2 Pn�1 with(2:1:3) kxn � q(x)k[�1;1℄ < 21�n :Then 21�nTn(x) � (xn � q(x)) = s(x) + q(x) 2 Pn�1
hanges sign between any two 
onse
utive extrema of Tn; hen
e it has atleast n zeros in (�1; 1); and thus it must vanish identi
ally. This 
ontradi
ts(2.1.3), and we are done up to proving uniqueness (this is left as E.2). ut



2.1 Chebyshev Polynomials 31Comments, Exer
ises, and Examples.The Chebyshev polynomials Tn are named after the versatile Russian math-emati
ian, P. L. Chebyshev (1821{1894). The T 
omes from the spellingT
heby
hef (or some su
h variant; there are many in the literature). Awealth of information on these polynomials may be found in Rivlin [90℄.Throughout later se
tions of this book the Chebyshev polynomials willkeep re
urring. The initial exer
ises explore elementary properties of theChebyshev polynomials.Erd}os [39℄ proved that for t 2 Tn with ktkR � 1; the length of the graphof t on [0; 2�℄ is the longest if and only if t is of the form t(�) = 
os(n�+�)with some � 2 R (see E.6). He 
onje
tured that for any p 2 Pn withkpk[�1;1℄ � 1; the maximum ar
 length is attained by the nth Chebyshevpolynomial Tn. This is proved in Bojanov [82b℄. Kristiansen [79℄ also 
laimsa proof. In E.9 the redu
ibility of Tn is 
onsidered, and in E.11 the basi
properties of the trans�nite diameter are established.E.1 Basi
 Properties.a℄ Establish the equivalen
e of the three representations of Tn given inequation (2:1:1):Hint: 
osn� = 12 [(
os � + i sin �)n + ((
os � � i sin �)n℄: To get the thirdrepresentation, use E.3 b℄. utb℄ The zeros of Tn are pre
isely the pointsxk = 
os (2k�1)�2n ; k = 1; 2; : : : ; n :
℄ The extrema of Tn(x) in [�1; 1℄ are pre
isely the points�k = 
os k�n ; k = 0; 1; : : : ; n :d℄ Observe that the zeros of Tn and Tn+1 interla
e, as do the extrema.E.2 Uniqueness of the Minimum in Theorem 2.1.1. Prove the uniquenessof the minimum in Theorem 2.1.1.Hint: Assume that q 2 P
n�1 andkxn � q(x)k[�1;1℄ � 21�n :Then h(x) := 21�nTn(x) �Re(xn � q(x))de�nes a polynomial from Pn�1 on R having at least n zeros (
ounteda

ording to their multipli
ities). Thus21�nTn(x) = Re(xn � q(x)) ; x 2 R ;



32 2. Some Spe
ial Polynomialswhi
h, together with the previous inequality, implies that q(x) is real when-ever Tn(x) = �1: Now E.6 of Se
tion 1.1 (Lagrange interpolation) yieldsthat q has real 
oeÆ
ients. Hen
e21�nTn(x) = xn � q(x) ; x 2 R : utE.3 Further Properties of Tn.a℄ Composition. Show that Tnm(x) = Tn(Tm(x)):b℄ Three-Term Re
ursion. Show thatTn(x) = 2xTn�1(x) � Tn�2(x) ; n = 2; 3; : : : :
℄ Verify that T0(x) = 1T1(x) = xT2(x) = 2x2 � 1T3(x) = 4x3 � 3xT4(x) = 8x4 � 8x2 + 1T5(x) = 16x5 � 20x3 + 5x :Note that Tn is even for n even and odd for n odd.d℄ Another Formula for Tn: Show that Tn(x) = 
osh(n 
osh�1(x)) forevery x 2 R n [�1; 1℄:e℄ Di�erential Equation. Show that(1� x2)T 00n (x) � xT 0n(x) + n2Tn(x) = 0 :f ℄ An Identity. Show thatTn(x) = T 0n+1(x)2n+ 2 � T 0n�1(x)2n� 2 :g℄ Orthogonality. Show that2� Z 1�1 Tn(x)Tm(x)dxp1� x2 = Æn;m := � 0; n 6= m1; n = m > 0 :h℄ Generating Fun
tion. Show that1� yx1� 2yx+ y2 = 1Xn=0Tn(x)yn ; x 2 [�1; 1℄ ; jyj < 1 :Hint: Set x = 
os � and sum. ut



2.1 Chebyshev Polynomials 33i℄ Another Representation of Tn: Show thatTn(x) = bn=2
Xk=0 � n2k�xn�2k(x2 � 1)k :j℄ Another Identity. Show thatTn� 12 (x + x�1)� = 12 (xn + x�n) :E.4 Approximation to xk on [0; 1℄.a℄ Let T �n(x) = Tn(2x � 1) be the nth Chebyshev polynomial shifted tothe interval [0; 1℄: Suppose T �n(x) = nXk=0 bkxk :Show that for ea
h k = 0; 1; : : : ; n;min
j2R kxk � nXj=0j 6=k 
jxjk[0;1℄ = kb�1k T �nk[0;1℄ :Hint: Pro
eed as in the proof of Theorem 2.1.1 and use E.6 of Se
tion 1.3.utb℄ Why does this not hold for Tn on [�1; 1℄ ?E.5 A Composition Chara
terization. Suppose (pn)1n=1 is a sequen
e ofpolynomials of degree n and for all positive integers n and mpn Æ pm = pn�m :Then there exists a linear transformation w(x) = �x+ � so thatw Æ pn Æ w�1 = xn ; n = 1; 2; : : :or w Æ pn Æ w�1 = Tn ; n = 1; 2; : : : :This result is due to Blo
k and Thielman [51℄. The proof outlined in thisexer
ise follows Rivlin [90℄.



34 2. Some Spe
ial Polynomialsa℄ Letq(x) := a0 + a1x+ a2x2 ; a2 6= 0 ; and v(x) := xa2 � a12a2 :Then v�1(q(v(x))) = x2 + 
 with 
 := a0a2 + (a1=2)� (a21=4) :b℄ Let q(x) = a0 + a1x + a2x2; a2 6= 0: Then there is at most onepolynomial pn of degree exa
tly n so thatpn(q(x)) = q(pn(x)) :Hint: By a℄ we may assume q(x) = x2 + 
: Now suppose r, s 2 P
nnP
n�1;r(x2 + 
) = r2(x) + 
and s(x2 + 
) = s2(x) + 
 :Then u := r � s 2 P
n�1 satis�esu(x2 + 
) = u(x)(r(x) + s(x))from whi
h we dedu
e, by 
omparing degrees on both sides, that n = 0:(Note that the above 
onditions imply r and s moni
.) ut
℄ Finish the proof of the initial statement of this exer
ise.This is a spe
ial 
ase of a more general theorem of Ritt [23℄ that 
lassi�esall rational fun
tions r and s that 
ommute in the sense that r Æ s = s Æ r:d℄ Another Composition Chara
terization. Suppose p 2 Pn has the prop-erty that the 
losure of the setIp := fz 2 C : p[k℄(z) = 0 for some k = 1; 2; : : : gis the interval [�1; 1℄; where p[k℄ is the kth iterate of p; that is,p[1℄ := p and p[k℄ := p Æ p[k�1℄ for k = 2; 3; : : : :Then p(x) = �Tn(x):e℄ Let rn(x) = tan(n tan�1(x)) :Show that rn is a rational fun
tion in Rn;n; and observe thatrn Æ rm = rn�m :



2.1 Chebyshev Polynomials 35E.6 Trigonometri
 Polynomials of Longest Ar
 Length. Theorem 5.1.3(Bernstein-Szeg}o inequality) asserts thatt0(�)2 + n2t2(�) � n2ktk2Rfor every t 2 Tn and � 2 R: Use this to prove the following result of Erd}os.For t 2 Tn with ktkR � 1; the length of the graph of t on [0; 2�℄ is thelongest if and only if it is of the form t(�) = 
os(n� + �) for some � 2 R:Hint: Suppose t 2 Tn with ktkR = 1: Let s(�) := 
osn�: If�1 < t(�1) = s(�2) < 1holds, then by the Bernstein-Szeg}o inequality (see also E.5 of Se
tion 5.1)jt0(�1)j � n(1� t2(�1))1=2 = n(1� s2(�2))1=2 = js0(�2)j ;and if equality holds for one pair of �1, �2; then it holds for all pairs, andt(�) � 
os(n�+�) for some � 2 R: Suppose tn(�) 6� 
os(n�+�): Let � and� be monotone ar
s of the graphs of y = t(�) and y = s(�); respe
tively,with endpoints of ea
h having the same ordinates y1 and y2: Let j� j and j�jbe the length of � and �; respe
tively, and let j�xj and j�xj be the length ofthe proje
tion of � and �; respe
tively, on the x-axis. Show thatj� j < j�j+ (j�xj � j�xj)by approximating � and � by a polygonal line 
orresponding to a subdivi-sion of the interval with endpoints, y1 and y2 on the y-axis. utE.7 Moni
 Polynomials with Minimal Norm on an Interval.a℄ The unique moni
 polynomial p 2 P
n minimizing kpk[a;b℄ is given byp(x) = 2�b� a4 �n Tn�2x� a� bb� a � :b℄ Let 0 < a < b. Find all moni
 polynomials p 2 P
n minimizingkpk[�b;�a℄[[a;b℄ :(For two intervals of di�erent lengths this is a mu
h harder problem. Theproblem was originally due to Zolotarev and is solved in terms of ellipti
fun
tions. See Todd [88℄, Fis
her [92℄, and Peherstorfer [87℄.)



36 2. Some Spe
ial PolynomialsE.8 Lower Bound for the Norm of Polynomials on the Unit Disk. Let Dbe the open unit disk of C : Show thatka0 + a1z + � � �+ anznkD � max0�k�n jakjfor arbitrary 
omplex numbers a0; a1; : : : ; an: Thus zn plays the role of thenth Chebyshev polynomial on the unit disk.Hint: If p(z) := a0 + a1z + � � �+ anzn; thenam = 12�i Z�D p(z)zm+1 dz : utThe next exer
ise supposes some familiarity with the rudiments ofredu
ibility over Q and basi
 properties, su
h as irredu
ibility of 
y
lotomi
polynomials over Q (see Clark [71℄). Details of the following observation ofS
hur's are in Rivlin [90℄.E.9 On the Redu
ibility of Tn over Q. Let n 2 N be �xed.a℄ The zeros of Tn(x=2) are all of the formxj := e(2j�1)i�=(2n) + e�(2j�1)i�=(2n) ; j = 1; 2; : : : ; n :b℄ If n � 3 and � is a primitive nth root of unity, then �+ ��1 is of degree'(n)=2: (Here ' is the Euler ' fun
tion.)
℄ Thus if Tn is irredu
ible over Q; then n must be a power of 2:d℄ For a positive integer h; letFh(x) := nYj=1g
d(2j�1;2n)=h (x� xj) :(Here g
d(m;n) denotes the greatest 
ommon divisor of m and n:) Showthat if h is odd, then Fh is irredu
ible over Q:e℄ The Fa
torization of Tn:2Tn(x=2) = Yhjn ; h oddFh(x) :So if n is odd, Tn has '(n) fa
tors, while if n is even, then Tn has '(m)fa
tors, where m is the largest odd divisor of n:f ℄ Let n � 3 be odd. Then Tn(x)=x is irredu
ible over Q if and only if nis prime.



2.1 Chebyshev Polynomials 37E.10 Chebyshev Polynomials of the Se
ond Kind. Let the Chebyshev poly-nomials of the se
ond kind be de�ned byUn�1(x) := 1nT 0n(x) = sinn�sin � ; x = 
os � :a℄ Un(x) = 2Tn(x) + Un�2(x) .b℄ Tn(x) = Un(x)� xUn�1(x) .
℄ Un(x) = nPk=0 xkTn�k(x) .d℄ Un(x) = �x+px2 � 1�n+1 � �x�px2 � 1�n+12px2 � 1 .e℄ Orthogonality. Show that2� 1Z�1 Un(x)Um(x)p1� x2 dx = Æn;m := � 0 ; n 6= m1 ; n = m > 0 :f ℄ Three-Term Re
ursion. Show thatU0(x) = 1 ; U1(x) = 2x ;Un(x) = 2xUn�1(x)� Un�2(x) ; n = 2; 3; : : : :(Note that this is the same re
ursion as for Tn:)g℄ The CoeÆ
ients of Un. Show thatUn(x) = bn=2
Xk=0 (�1)k�n� kk �(2x)n�2k :h℄ Another Form of Un. Show thatUn(x) = bn=2
Xk=0 (�1)k� n+ 12k + 1�xn�2k(x2 � 1)k :The 
on
epts of trans�nite diameter and 
apa
ity play a 
entral rolein potential theory, harmoni
 analysis, and other areas of mathemati
s.



38 2. Some Spe
ial PolynomialsE.11 Trans�nite Diameter. Let E be a 
ompa
t subset of C : Let�n(E) := maxz1;::: ;zn2E Y1�i;j�ni6=j jzi � zj j :The points zi at whi
h the above maximum are obtained are 
alled nthFekete points for E: If the points zi are the nth Fekete points for E; thenthe polynomial qn(z) := nYi=1 (z � zi)is 
alled an nth (moni
) Fekete polynomial for E: The trans�nite diameteror logarithmi
 
apa
ity of E is de�ned by
ap(E) := limn!1(�n(E)) 1n(n�1) ;where the limit exists by part 
℄ (below).a℄ Let z1; z2; : : : ; zn be nth Fekete points for E: Then(�n(E))1=2 = abs ��������� 1 z1 : : : zn�111 z2 : : : zn�12... ... . . . ...1 zn : : : zn�1n ��������� :Hint: See E.2 b℄ (Vandermonde determinant) of Se
tion 3.2. utb℄ Let qn(z) :=Qni=1(z � zi) be an nth Fekete polynomial for E: Letmn := mini=1;::: ;n jq0n(zi)j and Mn := kqnkE :Then Mn � ��n+1(E)�n(E) �1=2 � mn+1 � (�n+1(E)) 1n+1 :Outline. We havejqn(z)j2�n(E) = nYi=1 jz � zij2 Y1�i;j�ni6=j jzi � zj j � �n+1(E)and �n+1(E) = Y1�i;j�n+1i6=k;j 6=k;i6=j jzi � zj j Y1�i�n+1i6=k jzk � zij2��n(E) Y1�i�n+1i6=k jzk � zij2 :



2.1 Chebyshev Polynomials 39From the �rst line above,M2n�n(E) � �n+1(E) :From the se
ond line above,�n+1(E) � �n(E)m2n+1 : ut
℄ Show that (�n(E)) 1n(n�1) is de
reasing, so the limit exists in the de�ni-tion of 
ap(E):d℄ The Fekete points lie on the boundary of E: So 
ap(E) = 
ap(�(E)):Hint: Use the maximum prin
iple (see E.1 d℄ of Se
tion 1.2). ute℄ If E � F; where F � C is also 
ompa
t, then 
ap(E) � 
ap(F ):f ℄ Chebyshev Constants. LetMn := (p 2 P
n : p(z) = nYj=1 (z � zj) ; zj 2 C)and fMn := (p 2 P
n : p(z) = nYj=1 (z � zj) ; zj 2 E) :Let �n(E) := inffkpkE : p 2 Mngand e�n(E) := inffkpkE : p 2 fMng :Show that the in�mum in the de�nition of �n(E) and e�n(E) is a
tuallyminimum. Show also that�n+m(E) � �n(E)�m(E)and e�n+m(E) � e�n(E)e�m(E)for any two nonnegative integers n and m: Finally show that the aboveinequalities imply that�(E) := limn!1(�n(E))1=n and e�(E) := limn!1(e�n(E))1=nexist.



40 2. Some Spe
ial PolynomialsThe numbers �(E) and e�(E) are 
alled the Chebyshev 
onstant andmodi�ed Chebyshev 
onstant, respe
tively, asso
iated with E: Obviously�(E) � e�(E):g℄ Trans�nite Diameter and Chebyshev Constants Are the Same:
ap(E) = �(E) = e�(E) :Proof. Without loss of generality we may assume that E 
ontains in�nitelymany points. Part b℄ yields e�(E) � 
ap(E): Therefore, sin
e �(E) � e�(E);it is suÆ
ient to prove that 
ap(E) � �(E): Note that if p 2 Mn andz1; z2; : : : ; zn+1 2 E are the (n+ 1)th Fekete points for E; then(�n+1(E))1=2 = abs ��������� 1 z1 : : : zn�11 p(z1)1 z2 : : : zn�12 p(z2)... ... . . . ... ...1 zn+1 : : : zn�1n+1 p(zn+1) ��������� :Expanding the above determinant with respe
t to its last 
olumn, we obtain(�n+1(E))1=2 � (�n(E))1=2 n+1Xj=1 jp(zj)j� (n+ 1)(�n(E))1=2kpkE ;so (�n+1(E))1=2 � (n+ 1)(�n(E))1=2�n(E) :For the sake of brevity let
n := �(n+ 1)2(�n(E))2�1=n and dn := (�n(E)) 2n(n�1) :Then dn+1n+1 � 
ndn�1n :Sin
e E 
ontains in�nitely many points, 
n > 0 and dn > 0 hold for ea
hn = 2; 3; : : : : Multiplying the above inequalities for n = 1; 2; : : : ; k; weobtain after simpli�
ation that(d2d3 � � � dk+1) 1k�1 (dk+1) kk�1 � (d2) 2k�1 (
2
3 � � � 
k) 1k�1 :Sin
e limk!1 dk = 
ap(E) and limk!1 
k = (�(E))2; we 
on
lude(
ap(E))2 � (�(E))2 ;whi
h �nishes the proof. ut



2.2 Orthogonal Fun
tions 41h℄ Show that 
ap([a; b℄) = 14 (b� a):i℄ Show that 
ap(D�) = �; whereD� := fz 2 C : jzj � �g :j℄ Show that 
ap(A�) = sin(�=4); where A� is an ar
 of the unit 
ir
le Cof length �, 0 � � � 2�:Hint: Without loss of generality we may assume that the ar
 A� is sym-metri
 with respe
t to the x-axis and 1 2 A�: Now use part h℄ and thetransformation x = 12 (z + z�1): ut2.2 Orthogonal Fun
tionsThe most basi
 properties of orthogonal fun
tions are explored in this se
-tion. The following se
tion spe
ializes the dis
ussion to polynomials.In this se
tion the fun
tions are 
omplex-valued and the ve
tor spa
esare over the 
omplex numbers. All the results have obvious real analogsand in many later appli
ations we will restri
t to these 
orresponding real
ases.An inner produ
t on a ve
tor spa
e V is a fun
tion h�; �i from V � Vto C that satis�es, for all f; g; h 2 V and �; � 2 C ;(2:2:1) hf; fi > 0 unless f = 0 (positivity)(2:2:2) hf; gi = hg; fi (
onjugate symmetry)(2:2:3) h�f + �g; hi = �hf; hi+ �hg; hi (linearity).A ve
tor spa
e V equipped with an inner produ
t is 
alled an innerprodu
t spa
e. It is a normed linear spa
e with the norm k � k := h�; �i1=2:The 
anoni
al example for us will be the spa
e C[a; b℄ of all 
omplex-valued 
ontinuous fun
tions on [a; b℄ with the inner produ
t(2.2.4) hf; gi := Z ba f(x)g(x)w(x) dx ;where w(x) is a nonnegative integrable fun
tion on [a; b℄ that is positiveex
ept possibly on a set of measure zero. It is a normed linear spa
e withthe norm(2.2.5) kfkL2(w) := hf; fi1=2 =  Z ba jf(x)j2w(x) dx!1=2 :



42 2. Some Spe
ial PolynomialsMore generally, if (X;�) is a measure spa
e (with � nonnegative), then(2.2.6) hf; gi := ZX f(x)g(x) d�(x)is an inner produ
t on the spa
e L2(�) of square integrable fun
tions. Morepre
isely, L2(�) denotes the spa
e of equivalen
e 
lasses of measurable fun
-tions for whi
hkfkL2(�) := hf; fi1=2 = �ZX jf(x)j2 d�(x)�1=2is �nite. The equivalen
e 
lasses are de�ned by the equivalen
e relationf � g if f = g �-almost everywhere on X:If V is a ve
tor spa
e equipped with an inner produ
t h�; �i; then ametri
 � 
an be de�ned on V by �(f; g) := hf � g; f � gi1=2: The fa
tthat this � is a metri
 on V is an immediate 
onsequen
e of (2.2.1) andTheorem 2.2.1 b℄. If this metri
 spa
e (V; �) is 
omplete (that is, if everyCau
hy sequen
e in (V; �) 
onverges to some x 2 V ), then V is 
alled aHilbert spa
e.It 
an be shown that L2(�) is a Hilbert spa
e for every measure spa
e(X;�) (see Rudin [87℄), while C[a; b℄ equipped with the inner produ
t(2.2.4), where w(x) � 1; is not a Hilbert spa
e (see E.1).When we write L2[a; b℄ we always mean L2(�) where � is the Lebesguemeasure on X = [a; b℄: The fa
t that the inner produ
t gives a norm is partof the next theorem.Theorem 2.2.1. If (V; h�; �i) is an inner produ
t spa
e equipped with the normk � k := h�; �i1=2; then for all f; g 2 V;a℄ jhf; gij � kfk kgk Cau
hy-S
hwarz inequalityb℄ kf + gk � kfk+ kgk triangle inequality
℄ kf + gk2 + kf � gk2 = 2 kfk2 + 2 kgk2 parallelogram law.Proof. Let f; g 2 V be arbitrary. To prove the Cau
hy-S
hwarz inequality,without loss of generality we may assume hg; gi = 1 and we may assumehf; gi is real (why?). Let � := hf; gi and note that by (2:2:1) and (2:2:3);0 � hf � �g; f � �gi = hf; fi � 2�hf; gi+ �2hg; gi= kfk2 � hf; gi2 ;whi
h �nishes the proof of part a℄.Using the Cau
hy-S
hwarz inequality, we obtainkf + gk2 = hf + g; f + gi = hf; fi+ 2Re(hf; gi) + hg; gi� kfk2 + 2 kfk kgk+ kgk2� (kfk+ kgk)2 ;whi
h is the triangle inequality.



2.2 Orthogonal Fun
tions 43The parallelogram law follows fromkf + gk2 + kf � gk2= hf; fi+ 2Re(hf; gi) + hg; gi+ hf; fi � 2Re(hf; gi) + hg; gi : utFor the spa
e L2(�) of all square integrable fun
tions, the Cau
hy-S
hwarz inequality be
omes�����Z ba fg d������ �  Z ba jf j2 d�(x)!1=2 Z ba jgj2 d�!1=2 :Applying this with f and g repla
ed by jf j and jgj; we obtain(2.2.7) Z ba jfgj d� �  Z ba jf j2 d�(x)!1=2 Z ba jgj2 d�!1=2 :A 
olle
tion of ve
tors ff� : � 2 Ag in an inner produ
t spa
e (V; h�; �i)is said to be orthogonal if(2.2.8) hf�; f�i = 0 ; �; � 2 A ; � 6= � :If hf�; f�i = 0; then we write f�?f�. The 
olle
tion is 
alled orthonormalif, in addition to being orthogonal,(2.2.9) hf�; f�i = 1 ; � 2 A :An orthogonal 
olle
tion ff� : � 2 Ag of nonzero ve
tors in an innerprodu
t spa
e 
an always be orthonormalized as fkf�k�1f� : � 2 Ag: Theve
tor spa
e over C generated by ff� : � 2 Ag is denoted byspanff� : � 2 Ag :So spanff� : � 2 Ag is just the set of all �nite linear 
ombinations( nXi=1 
if�i : �i 2 A ; 
i 2 C ; n 2 N) :Any linearly independent 
olle
tion of ve
tors 
an be orthonormalized, asthe next theorem shows.



44 2. Some Spe
ial PolynomialsTheorem 2.2.2 (Gram-S
hmidt). Let (V; h�; �i) be an inner produ
t spa
ewith norm k � k := h�; �i1=2: Suppose ffig1i=1 is a linearly independent 
olle
-tion of ve
tors in V: Let g1 := f1kf1kand (indu
tively) letun := fn � n�1Xk=1hfn; gkigk and gn := unkunk :Then fgng1n=1 is an orthonormal 
olle
tion, and for ea
h n;spanfg1; g2; : : : ; gng = spanff1; f2; : : : ; fng :Proof. This 
an be proved easily by indu
tion where the indu
tive step is:for m < n; hun; gmi = hfn; gmi � n�1Xk=1hfn; gkihgk; gmi= hfn; gmi � n�1Xk=1hfn; gkiÆk;m = 0 : utThe key approximation theoreti
 property orthonormal sets have isen
apsulated in the following result:Theorem 2.2.3 (Best Approximation by Linear Combinations). Let (V; h�; �i)be an inner produ
t spa
e with norm k � k := h�; �i1=2: Suppose ff1; : : : ; fngis an orthonormal 
olle
tion of ve
tors in V: Let f 2 V: Thenmin
i2C 


 nXi=1 
ifi � f


is attained if and only if
i = hf; fii ; i = 1; 2; : : : ; n :In other words, the sum Pni=1hf; fiifi is the best approximation to f fromspanff1; : : : ; fng in the norm h�; �i1=2:



2.2 Orthogonal Fun
tions 45Proof. Fix f 2 V; and let 
i be as above. Letg := nXi=1 
ifiand let h 2 spanff1; : : : ; fng: Note that(g � f)?fi ; i = 1; 2; : : : ; nsin
e by orthonormalityhg � f; fii = nXj=1 
jhfj ; fii � 
i = 0 :Thus (g � f)?(h� g)and so kh� fk2 = k(h� g) + (g � f)k2= kh� gk2 + 2Re(hh� g; g � fi) + kg � fk2= kh� gk2 + kg � fk2� kg � fk2with stri
t inequality unless h = g: This �nishes the proof. utNote that the above theorem gives the following 
orollary:Corollary 2.2.4. If ff1; : : : ; fng is an orthonormal 
olle
tion, then everyg 2 spanff1; : : : ; fng
an be written as g = nXi=1hg; fiifi :Comments, Exer
ises, and Examples.The theory of orthogonal fun
tions, and in parti
ular orthogonal polyno-mials, is old and far-rea
hing. As we will see in the next se
tion, the namesasso
iated with the 
lassi
al orthogonal polynomials in
luding Chebyshev,Laguerre, Legendre, Hermite, Ja
obi, and Stieltjes, are the \who's who"of nineteenth 
entury analysis. Various aspe
ts of this beautiful body oftheory are explored in the exer
ises of this and the next se
tion.Mu
h of this material is available in G. Szeg}o's [75℄ 
lassi
al trea-tise \Orthogonal Polynomials." Of 
ourse, orthogonal polynomials are in-timately 
onne
ted to Fourier series and parts of harmoni
 and fun
tionalanalysis generally. The standard fun
tional analysis in the following exer-
ises is available in many sour
es. See, for example, Rudin [73, 87℄.



46 2. Some Spe
ial PolynomialsE.1 C[0; 1℄ Is Not a Hilbert Spa
e. Constru
t a sequen
e of 
ontinuousfun
tions (fn)1n=1 on [0; 1℄ for whi
hkfn � fkL2[0;1℄ ! 0with somef =2 C[0; 1℄ (in the sense that f 
annot be modi�ed on a set ofmeasure zero to be in C[0; 1℄).So C[0; 1℄ equipped with the inner produ
t (2.2.4), where [a; b℄ = [0; 1℄and w(x) is identi
ally 1; is not a Hilbert spa
e. It 
an be shown that thereis no way of putting a norm on C[0; 1℄ that preserves the uniform topologyand makes C[0; 1℄ into a Hilbert spa
e, essentially be
ause C[0; 1℄ is notre
exive (see Rudin [73℄, Chapter 4). This, in fa
t, shows that C[0; 1℄ is notisomorphi
 to Lp[0; 1℄ for any p 2 (1;1): For the de�nition of Lp[0; 1℄; seeE.7.E.2 On L2(w). Considerhf; gi = Z ba f(x)g(x)w(x) dx :What 
onditions on w guarantee that hf; gi is an inner produ
t on C[a; b℄ ?E.3 Cau
hy-S
hwarz Inequality for Sequen
es. Show that����� nXi=1 �i�i�����2 �  nXi=1 j�ij2! nXi=1 j�ij2!for all �1; : : : ; �n; �1; : : : ; �n 2 C : Equality holds if and only if there existsa 
 2 C so that either �i = 
�i for ea
h i or �i = 
�i for ea
h i:Hint: C n is a Hilbert spa
e with inner produ
th(�1; �2; : : : ; �n); (�1; �2; : : : ; �n)i = nXi=1 �i�i : utE.4 Bessel's Inequality. Let (V; h�; �i) be an inner produ
t spa
e withnorm k �k := h�; �i1=2: Suppose ffig1i=1 is a 
ountable 
olle
tion of orthonor-mal ve
tors in V:a℄ Show that 1Xi=1 jhfi; fij2 � kfk2 :Hint: With h := 0 in the last expression of the proof of Theorem 2.2.3kfk2 = kgk2 + kg � fk2 : ut



2.2 Orthogonal Fun
tions 47b℄ Suppose f = 1Xi=1hfi; fifiin the sense that the partial sums of the right-hand side 
onverge to f inthe norm k � k: Show that kfk2 =Xi jhfi; fij2 :E.5 The Kernel Fun
tion. Let fpigni=0 be a 
olle
tion of orthonormalfun
tions in L2[a; b℄ with respe
t to the inner produ
t de�ned by (2.2.6),where X := [a; b℄: De�ne the kernel fun
tion byKn(x0; x) := p0(x0)p0(x) + p1(x0)p1(x) + � � �+ pn(x0)pn(x) :a℄ Reprodu
ing Property. If q 2 spanfp0; : : : ; png; thenZ ba Kn(t; x)q(t) d�(t) = q(x) :Hint: Expand q in terms of p0; : : : ; pn as in Corollary 2.2.4. utb℄ (Kn(x0; x0))�1=2Kn(x0; x) solves the following maximization problem:max(jq(x0)j : q 2 spanfp0; p1; : : : ; png and Z ba jq(x)j2 d�(x) = 1) :Outline. Write q =Pni=0 
ipi: Then, as in E.4 b℄,kqk2L2(�) = j
0j2 + j
1j2 + � � �+ j
nj2 = 1 :The Cau
hy-S
hwarz inequality of E.3 yields thatjq(x0)j2 �  nXi=0 j
ij2! nXi=0 jpi(x0)j2! = Kn(x0; x0) :However, if 
i = pi(x0)�Pnj=0 jpj(x0)j2�1=2 ;so q(x) = Kn(x0; x)(Kn(x0; x0))1=2 ;then equality holds in the above inequality. ut
℄ Show, as in a℄, that if q 2 spanfp0; : : : ; png and p0; : : : ; pn are m timesdi�erentiable at x0; thenjq(m)(x0)j �  mXk=0 jp(m)k (x0)j2!1=2 kqkL2(�) :When does equality hold?



48 2. Some Spe
ial PolynomialsE.6 Completeness. Let ff� : � 2 Ag be an orthonormal 
olle
tion in aHilbert spa
e H: The 
olle
tion ff� : � 2 Ag is 
alled a maximal orthonor-mal set in H if there is no f 6= 0 so that hf; f�i = 0 for every � 2 A:The following statements are equivalent:(1) The set of all �nite linear 
ombinations of f�; � 2 A; is dense in H:(2) kfk2 =P�2A jhf�; fij2 for all f 2 H:(3) hf; gi =P�2Ahf�; fihf�; gi for all f; g 2 H:(4) ff� : � 2 Ag is a maximal orthonormal set in H:If any of the above holds, then the orthonormal 
olle
tion is 
alled a 
om-plete orthonormal system. (See, for example, Rudin [87℄.)a℄ Dedu
e (1)) (2) from Theorem 2.2.3.b℄ Dedu
e (2)) (3) from the simple identity4hf; gi = kf + gk2 � kf � gk2 + ikf + igk2 � ikf � igk2 :The above identity is 
alled polarization.
℄ Prove (3)) (4).d℄ Prove (4)) (1) by 
ontradi
tion.Equality (3) is 
alled Parseval's identity.The remaining exer
ises assumes some familiarity with measure theory.E.7 Basi
 Theory of Lp Spa
es. Let (X;�) be a measure spa
e (� isnonnegative) and p 2 (0;1℄: The spa
e Lp(�) is de�ned as the 
olle
tion ofequivalen
e 
lasses of measurable fun
tions for whi
h kfkLp(�) <1; wherekfkLp(�) := �ZX jf jp d��1=p ; p 2 (0;1)and kfkL1(�) := supf� 2 R : �(fx 2 X : jf(x)j > �g) > 0g <1 :In any of the 
ases the equivalen
e 
lasses are de�ned by the equiv-alen
e relation f � g if f = g �-almost everywhere on X . When wewrite Lp[a; b℄ we always mean Lp(�); where � is the Lebesgue measureon X = [a; b℄: The notations Lp(a; b); Lp[a; b); and Lp(a; b℄ are also usedanalogously to Lp[a; b℄:



2.2 Orthogonal Fun
tions 49a℄ H�older's Inequality. Suppose 1 � p < q � 1 and p�1 + q�1 = 1: Showthat ����ZX fg d����� � kfkLp(�)kgkLq(�)for every f 2 Lp(�) and g 2 Lq(�):If 1 < p; q < 1; then equality holds if and only if �jf jp = �jgjq �-almost everywhere on X for some �; � 2 R with �2 + �2 > 0; and there isa 
 2 C with j
j = 1 so that 
fg is nonnegative �-almost everywhere on X:H�older's inequality was proved by Rogers [1888℄ before H�older [1889℄proved it independently.Hint: If the right-hand side is 0; then the inequality is obvious. If it isdi�erent from 0; then letF := jf jkfkLp(�) and G := jgjkgkLq(�) :If x 2 X is su
h that 0 < F (x) < 1 and 0 < G(x) < 1; then there arereal numbers s and t su
h thatF (x) = es=p and G(x) = et=q :Use the 
onvexity of the exponential fun
tion to show thates=p+ t=q � p�1es + q�1et :Apply this with the above 
hoi
es of s and t; and integrate both sides onX with respe
t to �: utb℄ Minkowski's Inequality for p 2 [1;1℄: Let p 2 [1;1℄: Show thatkf + gkLp(�) � kfkLp(�) + kgkLp(�)for every f; g 2 Lp(�):If 1 < p; q < 1; then equality holds if and only if �f = �g �-almosteverywhere on X for some �; � 2 R with �2 + �2 > 0:Hint: The 
ases p = 1 and p =1 are straightforward. Let p 2 (1;1): Thenjf + gjp � jf j jf + gjp�1 + jgj jf + gjp�1and apply H�older's inequality (part a℄) to ea
h term separately. ut



50 2. Some Spe
ial PolynomialsBy part b℄, Lp(�) is a ve
tor spa
e and k � kLp(�) is a norm on Lp(�)whenever p 2 [1;1℄: If p 2 (0; 1); then k � kLp(�) is still 
alled a norm in theliterature, however, for p 2 (0; 1) the subadditive property, in general, fails.In fa
t, if p 2 (0; 1); then k � kLp[a;b℄ is superadditive for Riemann integrablefun
tions in Lp[a; b℄; see P�olya and Szeg}o [76℄.
℄ Assume �(X) <1. Show that Lq(�) � Lp(�) for every 0 < p < q � 1:If �(X) � 1; then prove thatkfkLp(�) � kfkLq(�)for every measurable fun
tion f .d℄ Assume f 2 Lq(�) for some q > 0: Show thatlimp!1 kfkLp(�) = kfkL1(�) :e℄ Riesz-Fis
her Theorem. Show that if 1 � p � 1; then (Lp(�); �) is a
omplete metri
 spa
e, where�(f; g) := kf � gkLp(�) :Hint: Use the monotone 
onvergen
e theorem and Minkowski's inequality(part b℄); see Rudin [87℄ for details. utIf p 2 [1;1℄; then q 2 [1;1℄ de�ned by p�1 + q�1 = 1 is 
alled
onjugate to p:f ℄ Bounded Linear Fun
tionals on Lp(�). Let 1 � p <1 and g 2 Lq(�);where q is the 
onjugate exponent to p: Show that�g(f) := ZX fg d�is a bounded linear fun
tional on Lp(�):Hint: Use H�older's inequality (part a℄). utg℄ Riesz Representation Theorem. Suppose 1 � p < 1, � is (�-) �niteand � is a bounded linear fun
tional on Lp(�): Then there is a uniqueg 2 Lq(�); where q is the 
onjugate exponent to p; so that�(f) = ZX fg d� ; f 2 Lp(�) :Moreover, if � and g are related as above, thenk�k := maxf�(f) : f 2 Lp(�); kfkLp(�) = 1g = kgkLq(�) :Proof. See, for example, Rudin [87℄ or Royden [88℄. ut



2.2 Orthogonal Fun
tions 51If X is a lo
ally 
ompa
t Hausdor� spa
e, then the 
hara
terizationof bounded linear fun
tionals on the spa
e C
(X) of 
ontinuous fun
tionswith 
ompa
t support equipped with the uniform norm is also known as theRiesz representation theorem, and its proof may be found in, for example,Rudin [87℄.h℄ Orthogonality in Lp(�). Suppose 1 � p < 1; � is (�-)�nite, Y is a�nite-dimensional subspa
e of Lp(�): The fun
tion f 2 Lp(�) is said to beorthogonal to Y in Lp(�); written f ? Y; ifkfkLp(�) � kf + hkLp(�)for every h 2 Y: Show that an element f 2 Lp(�) is orthogonal to Y if andonly if ZX jf jp�1sign(f)h d� = 0for every h 2 Y; wheresign(f(x)) := 8><>: f(x)jf(x)j if f(x) 6= 00 if f(x) = 0 :Outline. Suppose that the integral vanishes for every h 2 Y: Let q be the
onjugate exponent to p. de�ned by p�1 + q�1 = 1: Observe thatg := jf jp�1 sign(f) 2 Lq(�)and ZX jgjqd� = ZX jf jp d� :Without loss of generality we may assume that kfkLp(�) = 1: Then forevery h 2 Y; H�older's inequality yields thatkfkLp(�) = 1 = ZX fg d� = ZX (f + h)g d�� kf + hkLp(�)kgkLq(�) = kf + hkLp(�) ;proving that f ? Y: (Observe that this argument is also valid for p = 1:)Suppose now f ? Y: Without loss of generality we may assume thatf 62 Y: By a standard 
orollary to the Hahn-Bana
h theorem (see, forexample, Rudin [87℄), there exists a linear fun
tional M on Lp(�) su
h thatM(f) = 1, M(h) = 0 for every h 2 Y; and kMk = kfk�1Lp(�): This M isthen representable by some element g 2 Lq(�); that is,M(f) = ZX fg d�; kgkLp(�) = kfk�1Lp(�)



52 2. Some Spe
ial Polynomials(see part g℄). ThereforeZX fg d� = kfkLp(�) kgkLq(�) ;and by the 
onditions for equality to hold in H�older's inequality,g(x)f(x) � 0 a:e: [�℄ on Xand jg(x)jq = �jf(x)jp a:e: [�℄ on Xfor a suitable 
onstant � > 0: Hen
eg(x) = �jf(x)jp�1 sign(f(x)) ;and so M(h) = 0, h 2 Y; impliesZX jf jp�1 sign(f)h d� = 0for every h 2 Y: utThe statement of part h℄ remains valid for 
losed subspa
es Y insteadof �nite-dimensional subspa
es, see, for example, Shapiro [71℄.i℄ Minkowski's Inequality for p 2 (0; 1). Show thatkf + gkLp(�) � 21=p�1 �kfkLp(�) + kgkLp(�)�for every f; g 2 Lp(�) and p 2 (0; 1):Hint: Verify thatkf + gkLp(�) � �ZX(jf j+ jgj)p d��1=p� �ZX jf jp d�+ ZX jgjp d��1=p� 21=p�1 �ZX jf jp d��1=p +�ZX jgjp d��1=p!whenever f; g 2 Lp(�) and p 2 (0; 1): utFurther properties of Lp(�) spa
es may be found in Rudin [87℄.



2.2 Orthogonal Fun
tions 53E.8 Fourier Series.a℄ Show that � ein�p2� : n 2 Z�is a maximal orthonormal 
olle
tion in L2[��; �℄:Hint: The orthonormality is obvious. In order to show the maximality, �rstnote that L2[��; �℄ is a Hilbert spa
e by the Riesz-Fis
her theorem (E.7e℄). Hen
e, by E.6, it is suÆ
ient to show that the set T 
 of all 
omplextrigonometri
 polynomials is dense in L2[��; �℄: By the Stone-Weierstrasstheorem (E.2 of Se
tion 4.1) T 
 is dense in C�[��; �℄; where C�[��; �℄is the spa
e of all 
omplex-valued 2�-periodi
 
ontinuous fun
tions on Requipped with the uniform norm on R: Finally, it is a standard measuretheoreti
 argument to show that C�[��; �℄ is dense in L2[��; �℄; see, forexample, Rudin [87℄. utThe kth Fourier 
oeÆ
ient bf(k) of a fun
tion f 2 L1[��; �℄ is de�nedby bf(k) := 12� �Z�� f(�)e�ik� d� :The (formal) Fourier series of a fun
tion f 2 L1[��; �℄ is de�ned byf � 1Xk=�1 bf(k)eik� :The fun
tions Sn(�) := nXk=�n bf(k)eik�are 
alled the nth partial sums of the Fourier series of f .b℄ Show that if f 2 L2[��; �℄; then1Xk=�1 j bf(k)j2 = kfk2L2[��;�℄ <1 :Hint: Use part a℄, E.6, and E.7 e℄. ut
℄ Show that if f 2 L2[��; �℄; thenlimn!1 kf � SnkL2[��;�℄ = 0 ;so f is the L2[��; �℄ limit of the partial sums of its formal Fourier series.Hint: Use part b℄. ut



54 2. Some Spe
ial PolynomialsCarleson, in 1966, solved Luzin's problem by showing that Sn ! falmost everywhere on [��; �℄ for every f 2 L2[��; �℄. Earlier, Kolmogorovshowed that there is a fun
tion f 2 L1[��; �℄ so that Sn diverges every-where on [��; �℄:d℄ Isometry of L2[��; �℄ and `
2. Let`
2 := (x = (xk)1k=�1 : xk 2 C ; 1Xk=�1 jxkj2 <1)and kxk`
2 :=  1Xk=�1 jxkj2!1=2 ; x = (xk)1�1 ; xk 2 C :Show that the fun
tion I : L2[��; �℄! `
2 de�ned byI(f) := bf := ( bf(k))1�1is one-to-one and onto, andkI(f)k`
2 = kfkL2[��;�℄ :Hint: Use part a℄ to show that I is one-to-one. Use the Riesz-Fis
her the-orem (E.7 e℄) to show that I is onto. The norm-preserving property is the
ontent of part b℄. utPart d℄ shows that the stru
ture of L2[��; �℄ is the same as that of`
2: Hen
e L2[��; �℄ is a separable Hilbert spa
e, that is, it has a 
ountabledense subset. So if � > 0 is �xed, then any 
olle
tion ff� : � 2 Ag fromL2[��; �℄ for whi
hkf� � f�kL2[��;�℄ � � ; �; � 2 A ; � 6= �must be 
ountable.e℄ The Riemann-Lebesgue Lemma. If f 2 L1[��; �℄; then bf(k) ! 0 ask !1:Hint: First prove it for step fun
tions, then extend the result to everyf 2 L1[��; �℄ by using the fa
t that step fun
tions form a dense set inL1[��; �℄: utf ℄ Show that1Xn=1 1n2 = �26 ; 1Xn=1 1n4 = �490 ; and 1Xn=1 1n2k = rk�2kfor every k = 3; 4; � � � ; where rk is a rational number.Hint: Let f be the 2� periodi
 fun
tion de�ned byf(�) := �� � �2 �k ; � 2 [0; 2�) :Apply part b℄. ut



2.2 Orthogonal Fun
tions 55E.9 Denseness of Polynomials in L2(�) on R.a℄ Let � be a �nite Borel measure on [a; b℄ and f 2 L1(�): Show that ifZ ba f(x)eitx d�(x) = 0 ; t = 2�kb� a ; k = 0;�1;�2; : : : ;then f(x) = 0 a.e. [�℄ on [a; b℄.Outline. Use the fa
t that the set T 
 of all 
omplex trigonometri
 poly-nomials is dense in C�[��; �℄ (see the hint given for E.8 a℄) and standardmeasure theoreti
 arguments to show that the assumption of part a℄ impliesZ ba f(x)g(x) d�(x) = 0for every bounded measurable fun
tion g de�ned on [a; b℄: Now, 
hoosingg(x) := sign(f(x)) := 8><>: f(x)jf(x)j if f(x) 6= 00 if f(x) = 0 ;we obtain Z ��� jf(x)j d�(x) = 0 ;and the result follows. utb℄ Let � be a �nite Borel measure on R and f 2 L1(�): Show that ifZR f(x)eitx d�(x) = 0 ; t 2 R ;then f(x) = 0 a.e. [�℄ on R:Hint: Use part a℄ to show that the assumption of part b℄ impliesZR f(x)g(x) d�(x) = 0for every bounded measurable fun
tion de�ned on R (�rst assume that ghas 
ompa
t support, then eliminate this assumption). Finish the proof asin part a℄. ut
℄ Let � be a Borel measure on R satisfyingZR erjxj d�(x) <1with some r > 0: Show that the set P
 of all 
omplex algebrai
 polynomialsis dense in L2(�):



56 2. Some Spe
ial PolynomialsOutline. First observe that the assumption on � implies P
 � L2(�): Thefa
t that L2(�) is a Hilbert spa
e (see E.7 e℄), Theorem 2.2.2 (Gram-S
hmidt), and E.6 imply that it is suÆ
ient to prove that if f 2 L2(�)and ZR f(x)xk d�(x) = 0 ; k = 0; 1; 2; : : : ;then f(x) = 0 a.e. [�℄ on R: Assume that f 2 L2(�) satis�es the aboveorthogonality relation. Use Theorem 2.2.1 a℄ (Cau
hy-S
hwarz inequality)to show that F (t) := ZR f(x)e�itx d�(x)is well-de�ned on R: For every t0 2 R; we havef(x)e�itx = f(x)e�it0xe�i(t�t0)x= 1Xk=0 (�i)k (t� t0)kk! f(x)e�it0xxk :Note that if jt � t0j � r=2; then the integral of the right-hand side withrespe
t to �(x) on R 
an be 
al
ulated by integrating term by term sin
e1Xk=0 ZR ����(�i)k (t� t0)kk! f(x)e�it0xxk���� d�(x)� 1Xk=0 ZR jt� t0jkk! jf(x)jjxjk d�(x)=ZR jf(x)jejt�t0jjxj d�(x)� ����ZR jf(x)j2 d�(x) ZR e2jt�t0jjxj d�(x)����1=2 <1 :Therefore, if jt� t0j � r=2; thenF (t) = 1Xk=0(�i)k (t� t0)kk! ZR f(x)e�it0xxk d�(x) :This means that F has a Taylor series expansion about every t0 2 R withradius of 
onvergen
e at least r=2: Also, with the 
hoi
e t0 = 0; by theassumed orthogonality relations, we have F (t) = 0 whenever jtj � r=2: We
an now dedu
e that F (t) = 0 for every t 2 R: Hen
e it follows from partb℄ that f(x) = 0 a.e. [�℄ on R: ut



2.3 Orthogonal Polynomials 572.3 Orthogonal PolynomialsThe 
lassi
al orthogonal polynomials arise on orthogonalizing the sequen
e(1; x; x2; : : : )with respe
t to various parti
ularly ni
e weights, w(x); on an interval,whi
h, after a linear transformation, may be taken to be one of [�1; 1℄,[0;1); or (�1;1). The main examples we 
onsider are the Ja
obi polyno-mials(2.3.1) P (�;�)n (x) ; where w(x) := (1�x)�(1+x)� on [�1; 1℄ ; �; � > �1 :When � = � = �1=2 the Ja
obi polynomials are the Chebyshev polynomialsof the �rst kind,(2.3.2) Tn(x) ; where w(x) := (1� x2)�1=2 on [�1; 1℄ :When � = � = 1=2 they are the Chebyshev polynomials of the se
ond kind,(2.3.3) Un(x) ; where w(x) := (1� x2)1=2 on [�1; 1℄ :Another spe
ial 
ase of importan
e is � = � = 0; whi
h gives the Legendrepolynomials,(2.3.4) Pn(x) ; where w(x) = 1 on [�1; 1℄ :The Laguerre polynomials are(2.3.5) Ln(x) ; where w(x) := e�x on [0;1) :The Hermite polynomials are(2.3.6) Hn(x) ; where w(x) := e�x2 on (�1;1) :The above notation is traditionally used to denote orthogonal polynomialswith a standard normalization; see the exer
ises. It is not usually the 
asethat this normalization gives orthonormality. All of these mu
h studiedpolynomials arise naturally, as do all the spe
ial fun
tions, in the study ofdi�erential equations. We 
atalog some of the spe
ial properties of these
lassi
al orthogonal polynomials in the exer
ises.In general, a nonde
reasing bounded fun
tion � (typi
ally the distribu-tion fun
tion of a �nite measure) de�ned on R is 
alled an m-distributionif it takes in�nitely many distin
t values, and its moments, that is, theimproper Stieltjes integrals



58 2. Some Spe
ial Polynomials1Z�1 xn d�(x) = lim!1!�1!2!+1 !2Z!1 xn d�(x) ;exist and are �nite for n = 0; 1; : : : :Theorem 2.3.1 (Existen
e and Uniqueness of Orthonormal Polynomials).For every m-distribution � there is a unique sequen
e of polynomials(pn)1n=0 with the following properties:(i) pn(x) = 
nxn + rn�1(x) ; 
n > 0 ; rn�1 2 Pn�1 ;(ii) ZR pn(x)pm(x) d�(x) = Æn;m = � 1 for n = m0 for n 6= m:Proof. The result follows from Theorem 2.2.2 (Gram-S
hmidt). Note thatthe de�ning property of an m-distribution � ensures thathp; qi := ZR pq d�is an inner produ
t on P
n. utThe sequen
e (pn)1n=0 de�ned by Theorem 2.3.1 is 
alled the sequen
eof orthonormal polynomials asso
iated with an m-distribution �. The se-quen
e (qn)1n=0 is 
alled a sequen
e of orthogonal polynomials asso
iatedwith an m-distribution � ifqn = 
npn ; 0 6= 
n 2 C ; n = 0; 1; : : : ;where (pn)1n=0 is the sequen
e of orthonormal polynomials asso
iated with�. The support supp(�) of an m-distribution � is de�ned as the 
losure ofthe set fx 2 R : � is in
reasing at xg :If � is absolutely 
ontinuous on R; thend�(x) = w(x) dx with some 0 � w 2 L1(1;1)in whi
h 
ase � may be identi�ed as a nonnegative weight fun
tion w 2L1(�1;1) whose integral takes in�nitely many distin
t values. If (a; b)is an interval and w 2 L1[a; b℄ has an integral that takes in�nitely manydistin
t values, then the sequen
e of orthogonal (orthonormal) polynomialsasso
iated with ew(x) = �w(x) if x 2 (a; b)0 if x 62 (a; b)is said to be orthogonal (orthonormal) with respe
t to the weight w.One thing distinguishing orthogonal polynomials from general orthog-onal systems is the existen
e of a three-term re
ursion.



2.3 Orthogonal Polynomials 59Theorem 2.3.2 (Three-Term Re
ursion). Suppose (pn)1n=0 is a sequen
e oforthonormal polynomials with respe
t to an m-distribution �. Thenxpn(x) = anpn+1(x) + bnpn(x) + an�1pn�1(x) ; n = 0; 1; : : : ;wherep�1 := 0 ; a�1 = 0 ; an = 
n
n+1 > 0 ; bn 2 R ; n = 0; 1; : : :(
n is the leading 
oeÆ
ient of pn).This theorem has a 
onverse due to Favard [35℄; see E.12.Proof. Sin
e xpn(x) 2 Pn+1; we may write(2.3.7) xpn(x) = n+1Xk=0 dkpk(x) ; dk 2 R :For notational 
onvenien
e, lethp; qi := ZR p(x)q(x) d�(x)for any two polynomials p and q. Sin
e hpn; qi = 0 for every q 2 Pn�1; wehave hxpn(x); q(x)i = hpn(x); xq(x)i = 0for every q 2 Pn�2. In parti
ular,hxpn(x); pk(x)i = 0 ; k = 0; 1; : : : ; n� 2 :On the other hand, using (2.3.7) and the orthonormality of (pn)1n=0; weobtain hxpn(x); pk(x)i = dkhpk; pki = dk :Hen
e dk = 0 for ea
h k = 0; 1; : : : ; n� 2 and(2:3:8) xpn(x) = dn+1pn+1(x) + dnpn(x) + dn�1pn�1(x) :Here the lead 
oeÆ
ient of the left-hand side polynomial is 
n; while thelead 
oeÆ
ient of the right-hand side polynomial is dn+1
n+1; soan := dn+1 = 
n=
n+1 :In order to show that an�1 := dn�1 = 
n�1=
n; note that (2.3.8) and theorthonormality of (pn)1n=0 imply



60 2. Some Spe
ial Polynomials0 = hpn+1; pn�1i= 1dn+1 hxpn(x); pn�1(x)i � dndn+1 hpn; pn�1i � dn�1dn+1 hpn�1; pn�1i= 1dn+1 hpn(x); 
n�1xni � dn�1dn+1= 1dn+1 
n�1
n � dn�1dn+1 :Hen
e an�1 := dn�1 = 
n�1
n : utTheorem 2.3.3 (Christo�el-Darboux Formula). With the notation of theprevious theorem,nXk=0 pk(x)pk(y) = 
n
n+1 �pn+1(x)pn(y)� pn(x)pn+1(y)x� y �for all x 6= y 2 C :Proof. Theorem 2.3.2 (three-term re
ursion) yields that�k : = pk+1(x)pk(y)� pk(x)pk+1(y)= 1ak (x� y)pk(x)pk(y) + ak�1ak (pk(x)pk�1(y)� pk�1(x)pk(y)) :So ak �kx� y = pk(x)pk(y) + ak�1�k�1x� y ;and we sum the above from 0 to n to get the desired formula. utCorollary 2.3.4. In the notation of Theorem 2.3.2nXk=0 p2k(x) = 
n
n+1 �p0n+1(x)pn(x)� p0n(x)pn+1(x)� :Proof. Let y ! x in Theorem 2.3.3. utWe 
an dedu
e quite easily from this that orthogonal polynomials as-so
iated with an m-distribution � have real interla
ing zeros lying in theinterior of the smallest interval 
ontaining supp(�); see E.1 and E.2.



2.3 Orthogonal Polynomials 61Comments, Exer
ises, and Examples.Askey, in 
omments following an outline of the history of orthogonal poly-nomials by Szeg}o [82, vol. III℄, writes:\The 
lassi
al orthogonal polynomials are mostly attributed to someoneother than the person who introdu
ed them. Szeg}o refers to Abel andLagrange and Ts
hebys
he� in [75, 
hapter 5℄ for work on the Laguerrepolynomials L0n(x). Abel's work was published posthumously in 1881. Prob-ably the �rst published work on these polynomials that uses their orthonor-mality was by Murphy (1833). Hermite polynomials were studied exten-sively by Lapla
e in 
onne
tion with work on probability theory. Hermite'sreal 
ontribution to these polynomials was to introdu
e Hermite polynomi-als in several variables. Lagrange 
ame a
ross the re
urren
e relation forLegendre polynomials."Perhaps this is not very surprising given the many diverse ways in whi
hthese polynomials 
an arise.There are many sour
es for the basi
 properties of orthogonal polyno-mials. In parti
ular, Askey and Ismail [84℄, Chihara [78℄, Erd�elyi et al. [53℄,Freud [71℄, Nevai [79b℄, [86℄, Szeg}o [75℄, and, in tabular form, Abramowitzand Stegun [65℄ are su
h sour
es. Exer
ises in
lude a treatment of the ele-mentary properties of the most familiar orthogonal polynomials. The 
on-ne
tions linking orthogonal polynomials, the moment problem, and Favard's
onverse theorem to the three-term re
ursion are also examined in the ex-er
ises.E.1 Simple Real Zeros. Let (pn)1n=0 be the sequen
e of orthonormal poly-nomials asso
iated with anm-distribution �. Show that ea
h pn has exa
tlyn simple real zeros lying in the interior of the smallest interval 
ontainingsupp(�):Hint: Suppose the statement is false. Then pn has at most n�1 sign 
hangeson [a; b℄; hen
e there exists 0 6= q 2 Pn�1 so thatpn(x)q(x) � 0 ; x 2 [a; b℄ :Show that this 
ontradi
ts the orthogonality relation0 = ZR pn(x)q(x) d�(x) = Z ba pn(x)q(x) d�(x) : utE.2 Interla
ing of Zeros. Let (pn)1n=0 be the sequen
e of orthonormalpolynomials asso
iated with an m-distribution �. Then the zeros of pnand pn+1 stri
tly interla
e. That is, there is exa
tly one zero of pn stri
tlybetween any two 
onse
utive zeros of pn+1.



62 2. Some Spe
ial PolynomialsHint: From Corollary 2.3.4,p0n+1(x)pn(x) � p0n(x)pn+1(x)is positive on R: Sin
e pn+1 has n + 1 simple real zeros (see E.1), we seethat if 
 and Æ are two 
onse
utive zeros of pn+1; thensign(p0n+1(
)) = �sign(p0n+1(Æ)) ;and hen
e sign(pn(
)) = �sign(pn(Æ)) : utE.3 Orthogonality of (Kn(x0; x))1n=0. Let (pn)1n=0 be the sequen
e oforthonormal polynomials asso
iated with an m-distribution �. Letx0 < min supp(�) or x0 > max supp(�) :Let (Kn(x0; x))1n=0 be the sequen
e of asso
iated kernel fun
tions (as inE.5 of Se
tion 2.2). Show thatZRKn(x0; x)Km(x0; x)jx � x0j d�(x) = 0 ;for any two nonnegative integers n 6= m:E.4 Hypergeometri
 Fun
tions. We introdu
e the following standard no-tation: the rising fa
torial (or Po
hammer symbol)(a)n := a(a+ 1) � � � (a+ n� 1) ; (a)0 := 1for a 2 C and n = 1; 2; : : : ; the binomial 
oeÆ
ient�an� := a(a� 1) � � � (a� n+ 1)n! ; �a0� := 1for a 2 C and n = 1; 2; : : : ; and the Gaussian hypergeometri
 series2F1(a; b ; 
 ; z) := F (a; b ; 
 ; z) := 1Xn=0 (a)n(b)n(
)n znn!for a; b; 
 2 C :a℄ For Re(
) > Re(b) > 0 ;F (a; b ; 
 ; z) = � (
)� (b)� (
� b) Z 10 tb�1(1� t)
�b�1(1� tz)�a dt ;



2.3 Orthogonal Polynomials 63where � is, as usual, the gamma fun
tion de�ned by� (z) := Z 10 tz�1e�t dt ; Re(z) > 0 :Proof. See, for example, Szeg}o [75℄. utb℄ Hypergeometri
 Di�erential Equation. The fun
tion y = F (a; b ; 
 ; z)satis�es z(1� z) d2ydz2 + [
� (a+ b+ 1)z℄ dydz � aby = 0 :Proof. See, for example, Szeg}o [75℄. utIn E.5, E.6, and E.7 we 
atalog some of the basi
 properties of someof the 
lassi
al orthogonal polynomials. Proofs are available in Szeg}o [75℄,for example.E.5 Ja
obi Polynomials.a℄ Rodrigues' Formula. LetP (�;�)n (x) := (�1)n 2�nn! (1�x)��(1+x)�� dndxn �(1� x)�(1 + x)�(1� x2)n� :Then (P (�;�)n )1n=0 is a sequen
e of orthogonal polynomials on [�1; 1℄ asso-
iated with the weight fun
tionw(x) := (1� x)�(1 + x)� ; �1 < �; � <1 :That is,P (�;�)n 2 Pn and Z 1�1 P (�;�)n P (�;�)m (1� x)�(1 + x)� dx = 0for any two nonnegative integers n 6= m.In the rest of the exer
ise, the polynomials P (�;�)n are as in part a℄.b℄ Normalization. We haveP (�;�)n (1) = �n+ �n � = (�+ 1)nn!and Z 1�1(P (�;�)n (x))2(1� x)�(1 + x)� dx= 2�+�+12n+ �+ � + 1 � (n+ �+ 1)� (n+ � + 1)� (n+ 1)� (n+ �+ � + 1) :
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ial Polynomials
℄ Expli
it Form.P (�;�)n (x) = 12n nXm=0�n+ �m ��n+ �n�m�(x � 1)n�m(x + 1)m= nXm=0��+ nn�m���+ � + n+mm ��x� 12 �m= �n+ �n � 2F1��n; n+ �+ � + 1 ;�+ 1 ; 1� x2 � :d℄ Di�erential Equation. The fun
tion y = P (�;�)n (x) satis�es(1� x2) d2ydx2 + [� � �� (�+ � + 2)x℄ dydx + n(n+ �+ � + 1)y = 0 :e℄ Re
urren
e Relation. The sequen
e (P (�;�)n (x))1n=0 satis�esDnP (�;�)n+1 (x) = (An +Bnx)P (�;�)n (x)� CnP (�;�)n�1 (x) ;where P (�;�)0 = 1 and P (�;�)1 (x) = 12 [�� � + (�+ � + 2)x℄and Dn = 2(n+ 1)(n+ �+ � + 1)(2n+ �+ �)An = (2n+ �+ � + 1)(�2 � �2)Bn = (2n+ �+ � + 2)(2n+ �+ � + 1)(2n+ �+ �)Cn = 2(n+ �)(n+ �)(2n+ �+ � + 2) :f ℄ Generating Fun
tion.1Xn=0P (�;�)n (x)zn = 2�+�R(1� z +R)�(1 + z +R)� ;where R = p1� 2xz + z2:There are various spe
ial 
ases, some of whi
h we have previously de-�ned. The Legendre polynomials Pn are de�ned byPn := P (0;0)n ; n = 0; 1; : : : :



2.3 Orthogonal Polynomials 65The Chebyshev polynomials Tn de�ned in Se
tion 2.1 satisfyTn = 4n�2nn �P (�1=2;�1=2)n ; n = 0; 1; : : : :The ultraspheri
al (or Gegenbauer) polynomials C(�)n are de�ned byC(�)n := � (2�+ n)� (�+ 12 )� (2�)� (�+ n+ 12 )P (��1=2 ;��1=2)n ; n = 0; 1; : : : :In terms of C(�)n ; the Chebyshev polynomials of the �rst and se
ond kindare given by Tn = n2C(0)n and Un = C(1)n ; n = 0; 1; : : : :E.6 Hermite Polynomials.a℄ Rodrigues' Formula. LetHn(x) := (�1)nexp(�x2) dndxn exp(�x2) :Then (Hn)1n=0 is a sequen
e of orthogonal polynomials on (�1;1) asso-
iated with the weight fun
tionw(x) := exp(�x2) :That is, Hn 2 Pn and ZRHn(x)Hm(x) exp(�x2) dx = 0for any two nonnegative integers n 6= m.In the rest of the exer
ise, the polynomials Hn are as in part a℄.b℄ Normalization. We haveZ 1�1(Hn(x))2 exp(�x2) dx = p� 2nn!and H2n+1(0) = 0 ; H2n(0) = (�1)n (2n)!n! :
℄ Expli
it Form. Hn(x) = n! bn=2
Xm=0 (�1)m(2x)n�2mm!(n� 2m)! :



66 2. Some Spe
ial Polynomialsd℄ Di�erential Equation. The fun
tion y = Hn(x) satis�esd2ydx2 � 2x dydx + 2ny = 0 :e℄ Re
urren
e Relation. The sequen
e (Hn(x))1n=0 satis�esHn+1(x) = 2xHn(x) � 2nHn�1(x)with H0(x) = 1 and H1(x) = 2x :f ℄ Generating Fun
tion.1Xn=0Hn(x)znn! = exp(2xz � z2) :E.7 Laguerre Polynomials. Let � 2 (�1;1).a℄ Rodrigues' Formula. LetL(�)n (x) := 1n!e�xx� dndxn (e�xx�+n) :Then (L(�)n )1n=0 is a sequen
e of orthogonal polynomials on [0;1) asso
iatedwith the weight fun
tion w(x) := x� exp(�x) :That is, L(�)n 2 Pn and Z 10 L(�)n (x)L(�)m (x)x� exp(�x) dx = 0for any two nonnegative integers n 6= m.In the rest of the exer
ise, the polynomials L(�)n are de�ned as in part a℄.b℄ Normalization. We haveZ 10 (L(�)n (x))2x�e�x dx = � (�+ n+ 1)n!and L(�)n (0) = �n+ �n � :
℄ Expli
it Form. L(�)n (x) = nXm=0 (�1)mm! � n+ �n�m�xm :



2.3 Orthogonal Polynomials 67d℄ Di�erential Equation. The fun
tion y = L(�)n (x) satis�esx d2ydx2 + (�+ 1� x) dydx + ny = 0 :e℄ Re
urren
e Relation. The sequen
e (L(�)n (x))1n=0 satis�es(n+ 1)L(�)n+1(x) = [(2n+ �+ 1)� x℄L(�)n (x) � (n+ �)L(�)n�1(x)with L(�)0 = 1 and L(�)1 (x) = �x+ �+ 1 :f ℄ Generating Fun
tion.1Xn=0L(�)n (x)zn = exp� xzz � 1� (1� z)���1 :E.8 Christo�el Numbers and Gauss-Ja
obi Quadrature. Let (pn)1n=0 bethe sequen
e of orthonormal polynomials asso
iated with anm-distribution�. Let x�;n, � = 1; 2; : : : ; n; denote the zeros of pn. Let��;n := 1p0n(x�;n) ZR pn(x)x� x�;n d�(x) ; � = 1; 2; : : : ; n :The numbers ��;n are 
alled the Christo�el or Cotes numbers.a℄ Show that, for any q 2 P2n�1;ZR q(x)d�(x) = nX�=1��;nq(x�;n) :Hint: First show the equality for every q 2 Pn�1 by using the Lagrangeinterpolation formula (E.6 of Se
tion 1.1). If q 2 P2n�1; then q = spn + rwith some s; r 2 Pn�1; where s is orthogonal to pn. utb℄ Show that ��;n > 0 for every � = 1; 2; : : : ; n:Hint: Use part a℄ to show that��;n = 1(p0n(x�;n))2 ZR� pn(x)x� x�;n�2 d�(x) : ut



68 2. Some Spe
ial Polynomials
℄ Suppose [a; b℄ is a �nite interval 
ontaining supp(�). Let f 2 C[a; b℄.Show that�����Z ba f(x) d�(x) � nX�=1��;nf(x�;n)������ 2(�(b+)� �(a�)) minp2P2n�1 kf � pk[a;b℄ :Hint: Use parts a℄ and b℄ together with the observationnX�=1 ��;n = Z ba d�(x) = �(b+)� �(a�) : utd℄ Suppose supp(�) � [a; b℄; where a; b 2 R. Show thatnX�=1��;nf(x�;n) �!n!1 Z ba f(x)d�(x)for every Riemann-Stieltjes integrable fun
tion on [a; b℄ with respe
t to �.Hint: First show that f is Riemann-Stieltjes integrable on [a; b℄ with respe
tto � if and only if for every � > 0 there are g1; g2 2 C[a; b℄ so thatg1(x) � f(x) � g2(x) ; x 2 [a; b℄and Z ba (g2(x) � g1(x)) d�(x) < � :Finish the proof by part 
℄ and the Weierstrass approximation theorem (seeE.1 of Se
tion 4.1). ute℄ Suppose supp(�) is 
ompa
t. LetZ := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g :Show that supp(�) � Z; where Z denotes the 
losure of Z.Hint: Use part d℄. utf ℄ Show by an example that supp(�) 6= Z is possible.E.9 Chara
terization of Compa
t Support. Using the notation of Theo-rem 2.3.2 and E.8, show that the following statements are equivalent:(1) supp(�) is 
ompa
t.(2) supn2Nfjanj+ jbnjg <1.(3) The set Z := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g is bounded.



2.3 Orthogonal Polynomials 69Outline. (1) ) (2). Note that the orthogonality of fpng1n=0 impliesan = ZRxpn�1(x)pn(x) d�(x) and bn = ZRxp2n(x) d�(x) :So supp(�) � [�K;K℄; the Cau
hy-S
hwarz inequality, and the orthonor-mality of (pn)1n=0 yieldjanj � K Z K�K jpn�1(x)pn(x)j d�(x)� K Z K�K p2n�1(x) d�(x)!1=2 Z K�K p2n(x) d�(x)!1=2 � Kand jbnj � K Z K�K p2n(x)d�(x) = K :(2) ) (3). Use Theorem 2.3.2 (three-term re
ursion) to show thatx�;n n�1Xk=0 p2k(x�;n) � 2 n�1Xk=0 ak+1pk(x�;n)pk+1(x�;n) + n�1Xk=0 bkp2k(x�;n) :Hen
ejx�;nj n�1Xk=0 p2k(x�;n) � �2 max0�k�n�1 jakj+ max0�k�n�1 jbkj� n�1Xk=0 p2k(x�;n) :(3) ) (1). If Z � [�K;K℄; then by E.8 a℄ZRx2n�2 d�(x) = nX�=1��;nx2n�2�;n � K2n�2 ZR d�(x) ;whi
h implies supp(�) � [�K;K℄. utE.10 A Condition for supp(�) � [0;1). Let (pn)1n=0 be the sequen
eof orthonormal polynomials asso
iated with an m-distribution �. Supposesupp(�) is 
ompa
t andpn(0)pn+1(0) < 0 ; n = 0; 1; : : : :Show that supp(�) � [0;1).Hint: Use the interla
ing property of the zeros of pn (E.2) to show thatZ := fx�;n : � = 1; 2; : : : ; n; n = 1; 2; : : :g � [0;1):Now use E.8 e℄ to obtain supp(�) � [0;1). ut



70 2. Some Spe
ial PolynomialsE.11 The Solvability of the Moment Problem. Let (�n)1n=0 be a sequen
eof real numbers. We would like to 
hara
terize those sequen
es (�n)1n=0 forwhi
h there exists an m-distribution � so thatZRxn d�(x) = �n ; n = 0; 1; : : : :Let �(p) := nXk=0 ak�kfor every p 2 Pn of the form p(x) =Pnk=0 akxk.A polynomial p is 
alled nonnegative if it takes nonnegative values onthe real line. The sequen
e (�n)1n=0 is 
alled positive de�nite if�(p) := nXk=0 ak�k > 0 ; n = 0; 1; : : :holds for every nonnegative polynomial p 2 Pn of the formp(x) = nXk=0 akxk :The aim of this exer
ise is to outline the proof of Hamburger's 
hara
teri-zation of the solvability of the moment problem by the positive de�nitenessof the sequen
e of moments. See part o℄.a℄ Show that if there exists an m-distribution � so thatZRxn d�(x) = �n ; n = 0; 1; : : : ;then (�n)1n=0 is positive de�nite.Hint: An m-distribution � is in
reasing at in�nitely many points. utb℄ Show that (�n)1n=0 is positive de�nite if and only if �(p2) > 0 holds forevery 0 6= p 2 Pn; n = 0; 1; : : : :Hint: Use E.3 of Se
tion 2.4. ut
℄ Show that (�n)1n=0 is positive de�nite if and only if�������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� > 0 ; n = 0; 1; : : : :



2.3 Orthogonal Polynomials 71Hint: Use part b℄ and the law of inertia of Sylvester. See, for example, vander Waerden [50℄. utd℄ Helly's Sele
tion Theorem. Suppose the fun
tions fn; n = 1; 2; : : : ;are nonde
reasing on R; and supn2N kfnkR <1 :Then there exists a subsequen
e of (fn)1n=1 that 
onverges for every x 2 R.That is, we 
an sele
t a pointwise 
onvergent subsequen
e.Hint: See, for example, Freud [71℄. ute℄ Helly's Convergen
e Theorem. Let [a; b℄ be a �nite interval. Supposethe fun
tions �n, n = 1; 2; : : : ; are nonde
reasing on [a; b℄ andsupn2Nk�nk[a;b℄ <1 :Suppose also that (�n(x))1n=1 
onverges to �(x) for every x 2 [a; b℄: Thenlimn!1 Z ba f(x) d�n(x) = Z ba f(x) d�(x)for every f 2 C[a; b℄:Hint: See, for example, Freud [71℄. utIn the rest of the exer
ise (ex
ept for the last part) we assume that(�n)1n=0 is positive de�nite. Our goal is to prove the 
onverse of part a℄.Let p�n(x) := �������� �0 �1 : : : �n�1 1�1 �2 : : : �n x... ... . . . ... ...�n �n+1 : : : �2n�1 xn �������� :f ℄ Show that �(p�nq) = 0 ; q 2 Pn�1 :g℄ Show that ea
h p�n has n simple real zeros.Hint: Use part f℄. utLet x1;n > x2;n > � � � > xn;n be the zeros of p�n. Letl�;n(x) := p�n(x)p�0n (x�;n)(x � x�;n) ; � = 1; 2; : : : ; n ; n = 1; 2; : : :(see E.6 of Se
tion 1.1), and let��;n := �(l�;n) :



72 2. Some Spe
ial Polynomialsh℄ Show that �(q) = nX�=1��;nq(x�;n)for every q 2 P2n�1:Hint: Use part f℄. uti℄ Show that��;n = �(l2�;n) > 0 ; � = 1; 2; : : : ; n ; n = 1; 2; : : : :Hint: Use part h℄. utFor x 2 R; let�n(x) := Xf�:x�;n�xg��;n ; n = 1; 2; : : : :j℄ Show that 0 � �n(x) � �0 on R for ea
h n; and there is a subsequen
e of(�n)1n=1 that 
onverges pointwise to a nonde
reasing real-valued fun
tion� on R.Hint: Use parts h℄, i℄, and d℄. utk℄ Show that for every �nite interval [a; b℄,limk!1 Z ba xm d�nk (x) = Z ba xm d�(x) ; m = 0; 1; 2; : : : ;where � is de�ned in part j℄.Hint: Use part e℄. utl℄ Let m be a �xed nonnegative integer and let r := bm=2
+1. Show thatif nk � r + 1; a � �1 and b � 1; then����Z a�1 xm d�nk (x) + Z 1b xm d�nk (x)����� � 1jaj + 1jbj�ZRx2r d�nk (x) = � 1jaj + 1jbj��2r :Hint: Use part h℄. utm℄ Show that ZRxm d�(x) = �m ; m = 0; 1; 2; : : :where � is de�ned in part j℄.Hint: Use parts k℄ and l℄. ut



2.3 Orthogonal Polynomials 73n℄ Show that � de�ned in part j℄ is an m-distribution.o℄ There exists an m-distribution � so that�n = ZRxn d�(x)if and only if (�n)1n=0 is positive de�nite, that is, if and only if�������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� > 0 ; n = 0; 1; : : : :Hint: Combine parts a℄, 
℄, m℄, and n℄. utNe
essary and suÆ
ient 
onditions for the uniqueness of the solutionof the moment problem are given in Freud [71℄, for example.E.12 Favard's Theorem. Given (an)1n=0 � (0;1) and (bn)1n=0 � R; thepolynomials pn 2 Pn are de�ned byxpn(x) = anpn�1(x) + bnpn(x) + an+1pn+1(x) ;p�1 = 0 ; p0 = 
0 > 0 :Then there exists an m-distribution � su
h thatZR pn(x)pm(x) d�(x) = 0for any two distin
t nonnegative integers n and m. In other words, the
onverse of Theorem 2.3.2 is true.In order to prove Favard's theorem, pro
eed as follows:a℄ Show that the polynomials pn are of the formpn(x) = 
nxn + r(x) ; 
n > 0 ; r 2 Pn�1 :b℄ Let epn := 
�1n pn; n = 0; 1; : : : . The sequen
e (�n)1n=0 is de�ned asfollows. Let �0 := 1 ; �(q) := 
 if q = 
 ; 
 2 R :If �0; �1; : : : ; �n have already been de�ned, then let�(q) := nXk=0 
k�k whenever q(x) = nXk=0 
kxk ; 
k 2 R



74 2. Some Spe
ial Polynomialsand let �n+1 := �(xn+1 � epn+1(x)) :Show that�(epnepm) = 0 ; m = 0; 1; : : : ; n� 1 ; n = 0; 1; : : :and �(ep2n) > 0 ; n = 0; 1; : : : :Hint: It is suÆ
ient to prove that�(epn(x)xm) = 0 ; m = 0; 1; : : : ; n� 1 ; n = 0; 1; : : :and �(epn(x)xn) > 0 ; n = 0; 1; : : : :These 
an be obtained from the de�nition of � and from Theorem 2.3.2(three-term re
ursion) by indu
tion on n. ut
℄ Show that every q 2 Pn is of the formq = nXk=0 
kepk ; 
k 2 Rand if q 6= 0; then �(q2) = nXk=0 
2k�(ep2k) > 0 :d℄ Show that (�n)1n=0 is positive de�nite in the sense of E.11.Hint: Use the previous part and E.11 b℄. ute℄ Prove Favard's theorem.Hint: Use part o℄ of E.11, parts d℄ and b℄ of this exer
ise, and the de�nitionof �. utE.13 Christo�el Fun
tion. Let � be an m-distribution. For a �xed n 2 N;the fun
tion�n(z) = inf �ZR q2(x) d�(x) : q 2 Pn�1 ; jq(z)j = 1� ; z 2 Cis 
alled the nth Christo�el fun
tion asso
iated with �.a℄ Show that �n(z) :=  n�1Xk=0 jpk(z)j2!�1 ;where (pn)1n=0 is the sequen
e of orthonormal polynomials asso
iated with�.



2.3 Orthogonal Polynomials 75Show also that the in�mum in the de�nition of �n(z) is a
tually aminimum, and it is attained if and only ifq(x) = Pn�1k=0 pk(z)pk(x)Pn�1k=0 jpk(z)j2 :Hint: Write q = n�1Xk=0 
kpk ; 
k 2 Cand observe that the orthonormality of (pn)1n=0 impliesZR q2(x) d�(x) = n�1Xk=0 j
kj2 :Now use the Cau
hy-S
hwarz inequality (E.3 of Se
tion 2.2) to �nd themaximum of jq(z)j for polynomials q 2 P
n�1 satisfyingZR q2(x) d�(x) � 1where z 2 C is �xed.b℄ Let ��;n; � = 1; 2; : : : ; n; be the Christo�el numbers asso
iated with anm-distribution �; that is, the 
oeÆ
ients in the Gauss-Ja
obi quadratureformula, as in E.8. Show that��;n = �n(x�;n) ; � = 1; 2; : : : ; n ;that is, the Christo�el numbers are the values of the Christo�el fun
tion atthe zeros of the nth orthonormal polynomial pn.Hint: Use parts E.8 a℄ and E.8 b℄. ut
℄ Let x 2 R be �xed. Show that1Xn=0 p2n(x) <1if and only if x is a mass point of �; that is, �(x�) < �(x+); in whi
h 
ase1Xn=0 p2n(x) = (�(x+) � �(x�))�1 :Hint: Use part a℄ and the Weierstrass approximation theorem. See E.1 ofSe
tion 4.1. ut



76 2. Some Spe
ial PolynomialsE.14 The Markov-Stieltjes Inequality. Let � be an m-distribution withasso
iated orthonormal polynomials (pn)1n=0. Let x1;n > x2;n > � � � > xn;ndenote the zeros of pn. Let x0;n := 1 and xn+1;n := �1. As in E.8 let��;n, � = 1; 2; : : : ; n; be the Christo�el numbers asso
iated with � . Showthat ��;n � Z x��1;nx�+1;n d�(x) ; � = 1; 2; : : : ; nand Z x��1;nx�;n d�(x) � ��;n + ���1;n ; � = 2; 3; : : : ; n :Hint: Let 1 � k � n be �xed. Use E.7 of Se
tion 1.1 (Hermite interpola-tion) to �nd polynomials P 2 P2n�1 and Q 2 P2n�1 with the followingproperties:(1) P (xj;n) = Q(xj;n) = 1 ; j = 1; 2; : : : ; k � 1 ;(2) P (xk;n) = 0 ; Q(xk;n) = 1 ;(3) P (xj;n) = Q(xj;n) = 0 ; j = k + 1; k + 2; : : : ; n ;(4) P (x) � �(�1; xk;n℄(x) � Q(x) ; x 2 R ;where �(�1; xk;n℄(x) := � 1 if �1 < x � xk;n0 if xk;n < x <1 :Now apply E.8 (Gauss-Ja
obi quadrature formula) to P and Q. utE.15 Orthonormal Polynomials as Determinants. Suppose � is an m-distribution with moments�n = ZRxn d�(x) ; n = 0; 1; : : : :Let �n := �������� �0 �1 : : : �n�1 �2 : : : �n+1... ... . . . ...�n �n+1 : : : �2n �������� ; n = 0; 1; : : : :a℄ Show that �n > 0; n = 0; 1; 2; : : : :b℄ Show that the orthonormal polynomials pn asso
iated with � are of theform pn(x) = (�n�n�1)�1=2 �������� �0 �1 : : : �n�1 1�1 �2 : : : �n x... ... . . . ... ...�n �n+1 : : : �2n�1 xn �������� :



2.3 Orthogonal Polynomials 77
℄ Let (an)1n=0 � (0;1) and (bn)1n=0 � R be the 
oeÆ
ients in the three-term re
ursion for the sequen
e (pn)1n=0 of orthonormal polynomials asso-
iated with � as in Theorem 2.3.2. Show that the moni
 orthogonal poly-nomials epn := 
�1n pn are of the formepn(x) = det (xIn � Jn)where Jn is the tridiagonal n by n Ja
obi matrixJn := 0BBBB� b0 a1a1 b1 a2a2 b2 a3. . . . . . . . .an bn
1CCCCAand In is the n by n unit matrix.E.16 The Support of �. Let (an)1n=0 � (0;1) and (bn)1n=0 � R be the
oeÆ
ient sequen
es in the three-term re
ursion for the sequen
e of (pn)1n=0of orthonormal polynomials asso
iated with an m-distribution � as in The-orem 2.3.2.a℄ Show that if supp(�) � [b� a; b+ a℄ with some a > 0 and b 2 R; thenan � a and jbn � bj � a ; n = 0; 1; : : : :Hint: Use the orthonormality of (pn)1n=0 to show thatan = Z b+ab�a (x� b)pn�1(x)pn(x) d�(x)and bn � b = Z b+ab�a (x� b)p2n(x) d�(x) :Now apply the Cau
hy-S
hwarz inequality, and use the orthonormality of(pn)1n=0 again. utb℄ Show that supp(�) � [�K;K℄where K := 2 supfan : n 2 Ng + supfjbnj : n 2 Ng(the suprema are taken over all nonnegative integers).Hint: Suppose K < 1; otherwise there is nothing to prove. Combine E.9,the inequality in the hint to the dire
tion (2)) (3) of E.9, and E.8 e℄. ut



78 2. Some Spe
ial Polynomials
℄ Blumenthal's Theorem. Assume thatlimn!1 an =: a2 > 0 and limn!1 bn =: b 2 R :Then supp(�) = [b� a; b+ a℄ [ Fwhere F � R n [b� a; b+ a℄ is a 
ountable bounded set for whi
hF n (b� a� �; b+ a+ �)is �nite for every � > 0.Proof. See Nevai [79b℄ or M�at�e, Nevai, and Van Ass
he [91℄. utd℄ Rakhmanov's Theorem. Suppose supp(�) � [b � a; b + a℄ with somea > 0 and b 2 R. Suppose also that �0(x) > 0 a.e. in [b� a; b+ a℄. Thenlimn!1 an = a2 and limn!1 bn = b :Proof. See, for example, M�at�e, Nevai, and Totik [85℄, or Nevai [91℄. utThere is an analogous theory of orthogonal polynomials on the unit
ir
le initiated by Geronimus, Shohat, and A
hiezer. An important 
ontri-bution, 
alled Szeg}o theory, may be found in Freud [71℄.E.17 A Theorem of Stieltjes [14℄. Let w be a positive 
ontinuous weightfun
tion on [�a; a℄. Denote the nth moment by�n := Z a�a xnw(x) dx :Let epn 2 Pn denote the nth moni
 orthogonal polynomial on [�a; a℄ asso-
iated with the weight w. Then (epn)1n=0 satis�es a three-term re
ursionepn(x) = (x�An)epn�1(x) �Bnepn�2(x)with ep0(x) = 1 and ep1(x) := x�A1; see Theorem 2.3.2.Suppose the sequen
e of polynomials (qn)1n=0 satis�es the same re
ur-sion 
ommen
ing with q0(x) := 0 and q1(x) := B1. Stieltjes' theorem (see,for example, Cheney [66℄) states the following.Theorem. For any x =2 [�a; a℄;Z a�a w(t) dtx� t = �0x + �1x2 + � � �= B1x�A1 � B2x�A2 � B3x� A3 � � � � :



2.4 Polynomials with Nonnegative CoeÆ
ients 79Furthermore, the nth 
onvergent qn=epn satis�esqn(x)epn(x) = B1x�A1 � B2. . . Bnx�An :E.18 Completeness of Orthogonal Polynomials. Let (pn)1n=0 be the se-quen
e of orthonormal polynomials asso
iated with an m-distribution �. Ifsupp(�) � [a; b℄; where [a; b℄ is a �nite interval, then (pn)1n=0 is a maximalorthogonal 
olle
tion in L2[a; b℄.Hint: Use the Weierstrass approximation theorem (E.1 of Se
tion 4.1) on[a; b℄. utE.19 Bounds for Ja
obi Polynomials. For all Ja
obi weight fun
tionsw(x) = (1� x)�(1 + x)� with � � �1=2 and � � �1=2; the inequalitiesmaxx2[�1;1℄ p2n(x)Pnk=0 p2k(x) � 4�2 +p�2 + �2�2n+ �+ � + 2and maxx2[�1;1℄p1� x2w(x)p2n(x) � 2e�2 +p�2 + �2��hold, where (pn)1n=0 is the sequen
e of orthonormal Ja
obi polynomialsasso
iated with the weight fun
tion w.Proof. See Erd�elyi, Magnus, and Nevai [94℄. ut2.4 Polynomials with Nonnegative CoeÆ
ientsA quadrati
 polynomial x2 + �x + � with real 
oeÆ
ients has both rootsin the halfplane fz 2 C : Re(z) � 0g if and only if � � 0 and � � 0. Thiseasy 
onsequen
e of the quadrati
 formula gives the following lemma:Lemma 2.4.1. If p 2 Pn has all its zeros in fz 2 C : Re(z) � 0g; then eitherp or �p has all nonnegative 
oeÆ
ients.The 
onverse of this is far from true. Indeed, the following result ofMeissner holds (see P�olya and Szeg}o [76℄). We denote by P+n the set ofpolynomials in Pn; that have all nonnegative 
oeÆ
ients.



80 2. Some Spe
ial PolynomialsTheorem 2.4.2. If p 2 P
n and p(x) > 0 for x > 0; then p = s=t; where sand t are both polynomials with all nonnegative 
oeÆ
ients.Sin
e a polynomial p that is real-valued on the positive real axis hasreal 
oeÆ
ients, and sin
e p(x) > 0 for all x > 0 implies that the leading
oeÆ
ient of p is positive, Theorem 2.4.2 will follow immediately from thenext lemma.Lemma 2.4.3. Suppose �; � 2 R and suppose x2 � �x + � has no non-negative root. Then x2��x+� = p(x)=q(x); where p; q 2 Pm both have allnonnegative 
oeÆ
ients, and wherem � 10�4� �2� ��1=2 :Proof. The quadrati
 polynomial x2 � �x + � has no positive root if andonly if �2 < 4�. We set 
 := �2=� and note that 
 < 4. Consider(x2 � �x + �)(x2 + �x+ �) = x4 + (2� � �2)x2 + �2= x4 + �(2� 
)x2 + �2 :If 
 � 2 we have the desired fa
torization. If 
 > 2; 
onsider(x4 + �(2� 
)x2 + �2)(x4 � �(2� 
)x2 + �2)= x8 + �2(2� (2� 
)2)x4 + �4 :If 2� (2� 
)2 > 0 we are �nished. In general, we pro
eed as follows:LetPn(x) : = x2n+1 + �2n�1(2� (2� (2� � � � 2� (2� 
)2)2 � � � )2)x2n + �2n= x2n+1 + �2n�1
nx2n + �2n ;where 
n has n nested terms. LetQn(x) := x2n+1 � �2n�1
nx2n + �2n :Note that, sin
e 
n+1 = 2� 
2nPn(x)Qn(x) = x2(n+1)+1 � �2n
2nx2n+1 + 2�2nx2n+1 + �2n+1= x2n+2 + �2n
n+1x2n+1 + �2n+1= Pn+1(x) :



2.4 Polynomials with Nonnegative CoeÆ
ients 81Consider the smallest n (if it exists) su
h that 
n is nonnegative. Then(x2 � �x + �)(x2 + �x+ �) = P1(x)and P1Q1Q2 � � �Qn�1 = Pn ;where Q1Q2 � � �Qn�1 2 P+2n+1�4 sin
e ea
h 
k < 0 for k < n; and wherePn 2 P+2n+1 sin
e 
n � 0. Thus, we have the desired representationx2 � �x+ � = Pn(x)(x2 + �x+ �)(Q1Q2 � � �Qn�1)(x) ;where n is the smallest integer su
h that 
n > 0:Now suppose 
1; : : : ; 
n�1, 
n are all nonpositive. Then
k = �p2� 
k+1 ; k = 1; 2; : : : ; n� 1and 
1 = 2� 
 imply(2:4:1) 
 > 2 + (2 + � � � (2 + (2 + 21=2)1=2)1=2 � � � )1=2 =: Æn ;where the above formula 
ontains n iterations. Sin
e, by assumption, 
 < 4;and sin
e Æn ! 4 as n!1; it is 
lear that (2:4:1) is not satis�ed for somen; and eventually some 
n is greater than zero.The estimate on the degree requires analyzing the rate of 
onvergen
eof (Æn)1n=0. Sin
e Æn = 2 +pÆn�1; we have4� Æn = 2�pÆn�1 = 4� Æn�12 +pÆn�1 � 4� Æn�12 :By repeated appli
ations of the above,4� Æn � 4� Æ02n = 12n�1 :Now we 
an improve the above estimate as follows: We have4� Æn = 4� Æn�12 +pÆn�1 = 4� Æn�2(2 +pÆn�1)(2 +pÆn�2)= 4� Æ0(2 +pÆn�1)(2 +pÆn�2) � � � (2 +pÆ0)� 2(2 +p4� 22�n)(2 +p4� 23�n) � � � (2 +p4� 2(n+1)�n)� 2(2 + 2� 21�n)(2 + 2� 22�n) � � � (2 + 2� 2n�n)�2 � 4�n n+1Yj=2 11� 2�j � 2 � 4�n n+1Yj=2 (1 + 2 � 2�j) � 2e4�n :



82 2. Some Spe
ial PolynomialsSo if m := 2n+1 � 2p2ep4� 
 ;then 4� Æn � 2e4�n � 4� 
 ;that is, Æn � 
: utWe note that in the above proof a little additional e�ort yields a slightlybetter 
onstant than 10.Let k 2 N and � 2 (0; �). It follows easily from Lemma 2.3.4 that ifp 2 Pk has no zeros in the 
onefz 2 C : j arg(z)j < �g ;then there are s; t 2 P+m with m � 54�k��1 so that p = s=t; see E.1 d℄. Theessential sharpness of this upper bound is shown by E.1 e℄. An easier proofof Theorem 2.4.2 that gives a weaker bound for the degree of the numeratorand denominator in the representation is given by E.1 f℄.A similar sort of representation theorem due to Bernstein [15℄ is thefollowing:Theorem 2.4.4. If p 2 Pn and p(x) > 0 for x 2 (�1; 1); then there is arepresentation p(x) = dXj=0 aj(1� x)j(1 + x)d�jwith ea
h aj � 0. (The smallest d := d(p) for whi
h su
h a representationexists is 
alled the Lorentz degree of p.)It suÆ
es to prove this result for quadrati
 polynomials; this is left asan exer
ise; see E.1 f℄.The proof of the following interesting result of Barnard et al. [91℄ issurprisingly 
ompli
ated, and we do not reprodu
e it here.Theorem 2.4.5. Suppose that p 2 Pn has all nonnegative 
oeÆ
ients. Sup-pose that the zeros of p are z1; z1; : : : ; zn 2 C : For � � 0; letp� (z) = nYj=1jarg(zj)j>��1� zzj� ;where arg(z) is de�ned so that arg(z) 2 [��; �): Then p� (z) has all non-negative 
oeÆ
ients.It follows from this result that if p 2 Pn has all nonnegative 
oeÆ
ientsand if q(x) = x2 + �x + � is a quadrati
 polynomial with zeros forminga pair of 
onjugate zeros of p that have least angular distan
e from thepositive x-axis, then p=q also has all nonnegative 
oeÆ
ients.



2.4 Polynomials with Nonnegative CoeÆ
ients 83Comments, Exer
ises, and Examples.Polynomials with all nonnegative 
oeÆ
ients have a number of distinguish-ing properties that are explored in the exer
ises. For example, only analyti
fun
tions with all nonnegative 
oeÆ
ients 
an be approximated uniformlyon [0; 1℄ by su
h polynomials; see E.2. So a Weierstrass-type theorem doesnot hold for these polynomials. This is quite di�erent from approximationby polynomials of the form(2:4:2) X ai;j(x+ 1)i(1� x)j ; ai;j � 0 :Sin
e every polynomial that is stri
tly positive on (�1; 1) has su
h a repre-sentation (E.1 b℄), it follows from the Weierstrass approximation theoremthat all nonnegative fun
tions from C[�1; 1℄ are in the uniform 
losure.It follows from Theorem 2.4.2 and the Weierstrass approximation the-orem (see E.1 of Se
tion 4.1) that fra
tions of polynomials with all non-negative 
oeÆ
ients form a dense set in the uniform norm on [0; 1℄ in theset of nonnegative 
ontinuous fun
tions on a �nite 
losed interval [0; 1℄.Hen
e they have a mu
h larger uniform 
losure on [0; 1℄ than that of thepolynomials with all nonnegative 
oeÆ
ients.Various inequalities for polynomials of the form (2:4:2) are 
onsideredin Appendix 5.E.1 Remarks on Theorem 2.4.2.a℄ Suppose �; � 2 R; � 2 (0; �); and suppose x2 + �x + � has no zeros inthe 
one fz 2 C : j arg(z)j < �g :Show that there are p; q 2 P+m with m � 52���1 su
h thatx2 + �x+ � = p(x)q(x) :Hint: This is a reformulation of Theorem 2.4.3 by introdu
ing the anglebetween the positive x-axis and the zero of the quadrati
 polynomial. utb℄ Let n 2 N: Show that if p 2 P+n ; then p has no zeros in the 
onefz 2 C : jarg(z)j < �=(2n)g :This is sharp, as the example p(x) := xn + 1 shows.
℄ Show that the result of part a℄ is sharp up to the 
onstant 52 .Hint: Let n 2 N. Considerx2 + �x + � = �x� exp � 2�i2n �� �x� exp ��2�i2n �� :



84 2. Some Spe
ial PolynomialsShow that if there are p; q 2 P+m so that x2 + �x + � = p(x)=q(x); thenm � n� 1. utd℄ Let � 2 (0; �) and k 2 N: Suppose p 2 Pk has no zeros in the 
onefz 2 C : j arg(z)j < �g :Show that there are s; t 2 P+m with m � 54�k��1 so that p = s=t :e℄ Let � 2 (0; �) and k 2 N. Letfk(x) := ((x � z0)(x� z0))k ;where arg(z0) = �: Assume that fk = s=t; where s; t 2 P+m: Show thatm � (log 2)k��1 :Hint: First observe thats(y) � s(y + yÆm�1) � eÆs(y)for every s 2 P+m; y 2 (0;1); and Æ 2 (0;1): Thereforefk(y + yÆm�1) � eÆfk(y)for every y 2 (0;1) and Æ 2 (0;1): Now let y � jz0j be 
hosen so thatjy � z0j = �: Applying the above inequality with this y and Æ := m�; weobtain fk(y + �y) � em�fk(y) ;hen
e 2k � em�; that is, k log 2 � m�. utf ℄ Prove that if r 2 Pn and r(x) > 0 for all x > 0; then there is an integerd � n su
h that r(x) = q(x)(1 + x)d�n ;where q 2 P+d :Hint: Let �; � 2 R and �2 < 4�: Consider(x2 � �x + �)(1 + x)d = d+2Xj=0 
jxjand 
ompute 
j expli
itly. utg℄ If p 2 Pn and p(x) > 0 for all x 2 (�1; 1); then it is of the formp(x) = dXj=0 aj(1� x)j(1 + x)d�j ; aj � 0for some d � n:Hint: Apply a℄ tor(u) := (1 + u)np�1� u1 + u� ; u := 1� x1 + x : ut
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ients 85E.2 Polynomials with Nonnegative CoeÆ
ients.a℄ If p 2 P+n ; then for x > 00 � p0(x) < nx p(x) :b℄ If (pn)1n=1 is a sequen
e of polynomials with pn 2 P+ := [1k=0P+k and(pn)1n=1 
onverges to f uniformly on [0; 1℄; then f is the restri
tion to [0; 1℄of a fun
tion analyti
 in D := fz 2 C : jzj < 1g of the formf(z) = 1Xn=0 anzn ; an � 0 :Hint: Sin
e (pn(1))1n=1 
onverges and ea
h pn has nonnegative 
oeÆ
ients,there is a 
onstant C su
h thatkpnkD � pn(1) � C ; n = 1; 2; : : : :Now Montel's theorem (see, for example, Ash [71℄) implies that (pn)1n=1has a lo
ally uniformly 
onvergent subsequen
e on D. Dedu
e that thissubsequen
e 
onverges to an f with nonnegative 
oeÆ
ients. utE.3 Nonnegative-Valued Polynomials and Sums of Squares.a℄ Suppose p 2 P2n is nonnegative on R. Then there exist s, t 2 Pn su
hthat p(x) = s2(x) + t2(x) :Hint: If p 2 P2 and p is nonnegative, then for some real numbers � and �,p(x) = (x� �)2 + �2 :Now use the identity(a2 + b2)(
2 + d2) = (a
+ bd)2 + (ad� b
)2 : utb℄ If p 2 P2n is nonnegative for x � 0; then there exist s, t, u, v 2 Pn su
hthat p(x) = s2(x) + t2(x) + xu2(x) + xv2(x) :
℄ Suppose t 2 Tn is nonnegative on R. Show that there exists a q 2 P
nsu
h that t(�) = jq(ei�)j2 ; � 2 R :Show also that if, in addition, t 2 Tn is even, then there exists a q 2 Pnsu
h that the above holds.



86 2. Some Spe
ial Polynomialsd℄ If p 2 Pn is nonnegative on [�1; 1℄; then there exist s, t 2 Pn su
h thatp(x) = s2(x) + (1� x2)t2(x) :Hint: Write, by 
℄, p(
os �) = js(
os �) + it(
os �) sin �j2 : utThe above exer
ise follows P�olya and Szeg}o [76℄; see also E.1 of Se
tion7.2 where this result is extended.The following two exer
ises dis
uss results proved in Erd�elyi andSzabados [88℄, [89b℄, and Erd�elyi [91
℄.E.4 Lorentz Degree of Polynomials. Given a polynomial p 2 Pn; letd = d(p) be the minimal nonnegative integer for whi
h the polynomial p isof the form p(x) = � dXj=0 aj(1� x)j(x+ 1)d�j ; aj � 0 :If there is no su
h d; then let d(p) := 1: We 
all d := d(p) the Lorentzdegree of the polynomial p:a℄ Let p 2 Pn n Pn�1 be of the formp(x) = nXj=0 bj(1� x)j(x+ 1)n�j ; bj 2 R :For m � n; let the numbers bj;m, j = 0; 1; : : : ;m; be de�ned byp(x) =  nXj=0 bj(1� x)j(x+ 1)n�j!�1� x2 + x+ 12 �m�n= mXj=0 bj;m(1� x)j(x+ 1)m�j :Show that if d(p) is �nite, then it is the smallest value of m for whi
h ea
hbj;m is nonnegative or ea
h bj;m is nonpositive.b℄ Show that if p 2 P1 n P0 has no zeros in (�1; 1); then d(p) = 1.
℄ Show that if p 2 P2nP1 has no zeros in the open unit disk, then d(p) = 2.d℄ Show that if the zeros of a polynomial p 2 P2 n P1 lie on the ellipseB� := �z = x+ iy : y2 = �2(1� x2); x 2 (�1; 1)	with � 2 (0; 1℄; then ��2 � d(p) < 2��2 + 1:



2.4 Polynomials with Nonnegative CoeÆ
ients 87e℄ Let � 2 (0; 1) be su
h that ��2 is an integer. Letp1(x) := x2 + 23�2 � 11� �2 x+ 8�4 � 5�2 + 11� �2 :Show that p1 has its zeros on B� de�ned in d℄, and d(p1) = ��2:f ℄ Let � 2 (0; 1) be su
h that 2��2 is an integer. Letp2(x) := x2 � 2 2� 3�2(1� �2)(2� �2)x+ ��8 � 5�6 + �4 � 8�2 + 4(1� �2)(2� �2)2 :Show that p2 has its zeros on B� de�ned in part d℄, and d(p2) = 2��2:g℄ Show that d(pq) � d(p) + d(q) for any two polynomials p and q:h℄ Let � 2 (0; 1℄. Show that if p 2 Pn has no zeros inD� := �z = x+ iy : y2 < �2(1� x2); x 2 (�1; 1); y 2 R	 ;then d(p) < 2n��2 + n < 3n��2 :i℄ Let p be a polynomial. Show that d(p) <1 if and only if p = 0 or p hasno zeros in (�1; 1):j℄ Show that ����p�y + i2q (1�y2)nd ����� � 2n ��p �y � n4d���for every p 2 Bd(�1; 1), 1 � n � d; and y 2 [0; 1) (i is the imaginary unit).Hint: Modify the proof of Lemma A.5.4. utk℄ Let b 2 [0; 1℄. Show that p0(b) � d p(b)for every p 2 Bd(�1; 1); positive in (�1; 1):Hint: If qj;d(x) := (1� x)j(x+ 1)d�j ; thenq0j;d(b) = qj;d(b)�d� j1 + b � j1� b� � d qj;d(b) ; j = 0; 1; : : : ; dfor every b 2 [0; 1℄: utl℄ Show that d(p) � 117n��2 wheneverp(x) = ((x� z0)(x� �z0))n ; z0 2 B� ; � 2 (0; 1℄ ;where B� is de�ned in part d℄.



88 2. Some Spe
ial PolynomialsProof. Let z0 = y+ i�(1� y2)1=2, y 2 (�1; 1): Without loss of generality itmay be assumed that 0 � y < 1: Distinguish two 
ases.Case 1: 1� 2�2 � y < 1. By part k℄,d(p) � p0(1)p(1) = 2n(1� y)(1� y)2 + �2(1� y2)= 2n(1� y) + �2(1 + y) > n2�2 :Case 2: 0 � y < 1� 2�2: Applying part k℄ withb := y + �(1� y2)1=2 2 [0; 1℄dedu
e that(2:4:3) d(p) � p0(b)p(b) = 2n(b� y)(b� y)2 + �2(1� y2) = n�(1� y2)1=2 :Use part j℄ to obtain(2:4:4) ����(1� y2)�2 � (1� y2)n4d ����n � 2n�(1� y2)�2 + n216d2�n ;where d := d(p) and n = 12 deg(p): If(1� y2)�2 � (1� y2)n8d ;then there is nothing to prove. Therefore assume that(2:4:5) (1� y2)�2 � (1� y2)n8d :Now (2.4.3) to (2.4.5) yield� (1� y2)n8d �n � 2n�(1� y2)�2 + n216d2�nand so (1� y2)n8d � 2�(1� y2)�2 + n216d2� :Sin
e, by (2.4.3), n2d�2 � (1� y2)�2; the above inequality implies(1� y2)n8d � 2 1716(1� y2)�2and so d � 117n��2: ut



2.4 Polynomials with Nonnegative CoeÆ
ients 89m℄ Show that p 2 Pn n Pn�1 and d(p) = n imply that the zerosz1; z2; : : : ; zn of p satisfy jz1z2 � � � znj � 1.n℄ Show that d(pq) < maxfd(p); d(q)g 
an happen.Hint: Letp(x) := (1� x)2 � 2(1� x2) + 4(x+1)2 and q(x) := (x+1)+ 12 (1� x) :Show that d(p) = 4, d(q) = 1; and d(pq) = 3: uto℄ Show that if p 2 Pk n Pk�1 has no zeros in (�1; 1), z 2 C ; jzj > 1; andp(x) = ((x � z)(x� z))mq(x) ;then d(p) = deg(p) = k + 2m if m is suÆ
iently large. This shows thatpolynomials p with the property d(p) = deg(p) 
an have arbitrary manypres
ribed zeros in C n (�1; 1):E.5 Lorentz Degree of Trigonometri
 Polynomials. Given ! 2 (0; �℄and a real trigonometri
 polynomial t 2 Tn; let d = d!(t) be the minimalnonnegative integer for whi
h t is of the formt(�) = � 2dXj=0 aj sinj ! � �2 sin2d�j � + !2 ; aj � 0 :If there is no su
h d; then let d!(t) := 1. We 
all d = d!(t) the Lorentzdegree of t.a℄ Let t 2 Tn n Tn�1 be of the formt(�) = 2nXj=0 bj sinj ! � �2 sin2n�j � + !2 :For m � n let the numbers bj;m, j = 0; 1; : : : ; 2m; be de�ned byt(�) = 0� 2nXj=0 bj sinj ! � �2 sin2n�j � + !2 1A�� 1sin2 ! �sin2 ! � �2 + 2 
os! sin ! � �2 sin � + !2 + sin2 � + !2 ��m�n= 2mXj=0 bj;m sinj ! � �2 sin2m�j � + !2 :Show that if d!(t) is �nite, then it is the smallest value of m for whi
h ea
hbj;m is nonnegative or ea
h bj;m is nonpositive.



90 2. Some Spe
ial PolynomialsHint: The se
ond fa
tor in the representation of t is identi
ally 1. utWe introdu
e the notationG := fz = x+ iy : �� � x < �; y 2 Rgand G! := fz = x+ iy : 
os! 
osh y � 
osx; �� � x < �; y 2 Rg :b℄ Let t 2 T1 n T0. Show that d!(t) = 1 if and only if t has its zeros in G!:
℄ Assume 0 < ! < �=2, t 2 T1; and t(z) = 0 for somez := x+ iy 2 G n (G! [ (�!; !)) :Show that d!(t) < max 4 sin(! � x)(sin! 
osh y � sinx)
os! sinh2 y � 1 ;where the maximum is to be taken over both sets of signs.d℄ Suppose �=2 � ! � �; and t 2 T1, t(z) = 0 for some z 2 G nG! . Showthat d!(t) =1:e℄ Show that d!(t1t2) � d!(t1) + d!(t2) for any two trigonometri
 poly-nomials t1 and t2:f ℄ Let 0 < ! < �=2 and 0 < � <1. Show that if t 2 Tn has no zeros inE!;� := fz = x+ iy : y2 < �2(!2 � x2) ; x 2 (�!; !) ; y 2 Rg ;then d!(t) � n� 4
os! ��2 + 2 tan! + 1� :g℄ Let p be a trigonometri
 polynomial and 0 < ! < �=2. Show thatd!(t) <1 if and only if t = 0 or t has no zeros in (�!; !): (Note that partd℄ shows that this 
on
lusion fails to hold when �=2 � ! � �:)h℄ Show that there is an absolute 
onstant 
 > 0 (independent of n, ! andz0) so that d!(t) � 
n��2 whenevert(�) = �sin � � z02 sin � � z02 �nwith z0 2 �E!;� n f�!; !g, 0 < � <1; where �E!;� denotes the boundaryof E!;� de�ned in part f℄.



This is page 91Printer: Opaque this3Chebyshev and Des
artes Systems

OverviewA Chebyshev spa
e is a �nite-dimensional subspa
e of C(A) of dimensionn+1 that has the property that any element that vanishes at n+1 pointsvanishes identi
ally. Su
h spa
es, whose prototype is the spa
e Pn of realalgebrai
 polynomials of degree at most n; share with the polynomialsmany basi
 properties. The �rst se
tion is an introdu
tion to these Cheby-shev spa
es. A basis for a Chebyshev spa
e is 
alled a Chebyshev system.Two spe
ial families of Chebyshev systems, namely, Markov systems andDes
artes systems, are examined in the se
ond se
tion. The third se
tionexamines the Chebyshev \polynomials" asso
iated with Chebyshev spa
es.These asso
iated Chebyshev polynomials, whi
h equios
illate like the usualChebyshev polynomials, are extremal for various problems in the supremumnorm. The fourth se
tion studies parti
ular Des
artes systems�x�0 ; x�1 ; : : : � ; �0 < �1 < : : :on (0;1) in detail. These systems, whi
h we 
all M�untz systems, 
an bevery expli
itly orthonormalized on [0; 1℄, and this orthogonalization is alsoexamined. The �nal se
tion 
onstru
ts Chebyshev \polynomials" asso
iatedwith the Chebyshev spa
esspan�1 ; 1x� a1 ; : : : ; 1x� an� ; ai 2 R n [�1; 1℄on [�1; 1℄ and explores their various properties.



92 3. Chebyshev and Des
artes Systems3.1 Chebyshev SystemsFrom an approximation theoreti
 point of view an essential property thatpolynomials of degree at most n have is that they 
an uniquely interpolateat n + 1 points. This is equivalent to the fa
t that a polynomial of degreeat most n that vanishes at n + 1 points vanishes identi
ally. Any (n + 1)-dimensional ve
tor spa
e of 
ontinuous fun
tions with this property is 
alleda Chebyshev spa
e or sometimes a Haar spa
e. Many basi
 approximationproperties extend to these spa
es. The pre
ise de�nition is the following.De�nition 3.1.1 (Chebyshev System). Let A be a Hausdor� spa
e. Thesequen
e (f0; : : : ; fn) is 
alled a real (or 
omplex) Chebyshev system orHaar system of dimension n+ 1 on A if f0; : : : ; fn are real- (or 
omplex-)valued 
ontinuous fun
tions on A, spanff0; : : : ; fng over R (or C ) is an(n+1)-dimensional subspa
e of C(A), and any element of spanff0; : : : ; fngthat has n+ 1 distin
t zeros in A is identi
ally zero.If (f0; : : : ; fn) is a Chebyshev system on A; then spanff0; : : : ; fng is
alled a Chebyshev spa
e or Haar spa
e on A.Chebyshev systems and spa
es will be assumed to be real, unless weexpli
itly spe
ify otherwise. If A � R; then the topology on A is alwaysmeant to be the usual metri
 topology.Impli
it in the de�nition is that A 
ontains at least n+1 points. Beinga Chebyshev system is a property of the spa
e spanned by the elements ofthe system, so every basis of a Chebyshev spa
e is a Chebyshev system.A point x0 2 (a; b) is 
alled a double zero of an f 2 C[a; b℄ if f(x0) = 0and f(x0� �)f(x0+ �) > 0 for all suÆ
iently small � > 0 (in other words, iff vanishes without 
hanging sign at x0). It is easy to see that if (f0; : : : ; fn)is a Chebyshev system on [a; b℄ � R; then every 0 6= f 2 spanff0; : : : ; fnghas at most n zeros even if ea
h double zero is 
ounted twi
e; see E.10.Chebyshev spa
es are de�ned via zero 
ounting, and many of the theoremsin the theory of Chebyshev spa
es are proved by zero 
ounting arguments.So it is important to make the agreement that, unless it is stated expli
itlyotherwise, we 
ount the zeros of an element f from a Chebyshev spa
e on[a; b℄ so that ea
h double zero of f is 
ounted twi
e.The following simple equivalen
es hold:Proposition 3.1.2 (Equivalen
es). Let f0; : : : ; fn be real- (or 
omplex-) val-ued 
ontinuous fun
tions on a Hausdor� spa
e A (
ontaining at least n+1points). Then the following are equivalent:a℄ Every 0 6= p 2 spanff0; : : : ; fng has at most n distin
t zeros in A:



3.1 Chebyshev Systems 93b℄ If x0; : : : ; xn are distin
t elements of A and y0; : : : ; yn are real (or
omplex) numbers, then there exists a unique p 2 spanff0; : : : ; fng su
hthat p(xi) = yi ; i = 1; 2; : : : ; n :
℄ If x0; : : : ; xn are distin
t points of A; thenD(x0; : : : ; xn) := ������� f0(x0) : : : fn(x0)... . . . ...f0(xn) : : : fn(xn) ������� 6= 0 :Proof. These equivalen
es are all elementary fa
ts in linear algebra. utOn an interval there is a sign regularity to the determinants in 
℄.Proposition 3.1.3. Suppose (f0; : : : ; fn) is a (real) Chebyshev system on[a; b℄ � R: Then there exists a Æ := �1 or Æ := 1 su
h thatÆ ������� f0(x0) : : : fn(x0)... . . . ...f0(xn) : : : fn(xn) ������� > 0for any a � x0 < x1 < � � � < xn � b:Proof. This follows immediately from part 
℄ of the previous proposi-tion and 
ontinuity 
onsiderations. That is, if D(x0; : : : ; xn) < 0 whileD(y0; : : : ; yn) > 0; then for some � 2 (0; 1)D(�x0 + (1� �)y0; : : : ; �xn + (1� �)yn) = 0 ;whi
h is impossible. utThe intimate relationship between Chebyshev systems and best ap-proximation in the uniform norm is indi
ated by the next result. In orderto state it we need to introdu
e the notion of an alternation sequen
e.De�nition 3.1.4 (Alternation Sequen
e). Let A � R and letx0 < x1 < � � � < xnbe n + 1 points of A: Then (x0; x1; : : : ; xn) is said to be an alternationsequen
e of length n+ 1 for a real valued f 2 C(A) ifjf(xi)j = kfkA ; i = 0; 1; : : : ; nand sign(f(xi+1)) = �sign(f(xi)) ; i = 0; 1; : : : ; n� 1 :



94 3. Chebyshev and Des
artes SystemsDe�nition 3.1.5 (Best Approximation). Suppose that U is a (�nite-dimensional) subspa
e of a normed spa
e (V; k � k). If g 2 V and p 2 Usatisfy kg � pk = infh2U kg � hk ;then p is said to be a best approximation to g from U .As a result of the �nite dimensionality of the subspa
e U; at least onebest approximation to any g 2 V from U exists. This is straightforwardsin
e T := fp 2 U : kpk � kgk+ 1gis a 
ompa
t subset of U; so any sequen
e (pj) of approximations to g fromU satisfying kg � pjk � j�1 + infh2U kg � hkhas a 
onvergent subsequen
e with limit in U: This limit is then a bestapproximation to g from U .Theorem 3.1.6 (Alternation of Best Approximations). Suppose (f0; : : : ; fn)is a Chebyshev system on [a; b℄ � R: Let A be a 
losed subset of [a; b℄
ontaining at least n+ 2 distin
t points. Then p 2 Hn := spanff0; : : : ; fngis a best approximation to g 2 C(A) from Hn in the uniform norm on A ifand only if there exists an alternation sequen
e of length n+2 for g� p onA.Proof. The proof of the only if part of the theorem is mostly an exampleof a standard type of perturbation argument that will re
ur later.The perturbation argument goes as follows. Suppose p is a best approx-imation of required type and suppose a alternation sequen
e of maximallength for g � p is (x0 < x1; < � � � < xm)where xi 2 A and where m is stri
tly less than n+1. Suppose, without lossof generality, that g(x0)� p(x0) > 0(otherwise multiply by �1). Now letY := fx 2 A : jg(x)� p(x)j = kg � pkAg :Note that Y is 
ompa
t. Sin
e (x0 < x1 < : : : < xm) is an alternationsequen
e of maximal length, we 
an divide Y into m + 1 disjoint 
ompa
tsubsets Y0; Y1; : : : ; Ym withx0 2 Y0 ; x1 2 Y1 ; : : : ; xm 2 Ym



3.1 Chebyshev Systems 95so thatsign(g(x)� p(x)) = �sign(g(y)� p(y)) 6= 0 ; x 2 Yi ; y 2 Yi+1 :Now 
hoose a p� 2 spanff0; : : : ; fng satisfyingsignx2Yi(p�(x)) = (�1)i ; i = 0; 1; : : : ;m :This 
an be done by 
hoosing points zi withmaxYi�1 < zi < minYi ; i = 1; 2; : : : ;mand then applying E.11. We now 
laim that, for Æ > 0 suÆ
iently small,(3.1.1) kg � (p+ Æp�)kA < kg � pkA ;whi
h 
ontradi
ts the fa
t that p is a best approximation, and so there mustexist an alternation set of length n+ 2 for g � p on A: To verify (3:1:1) wepro
eed as follows:For ea
h i = 0; 1; : : : ;m 
hoose an open set Oi � [a; b℄ (in the usualmetri
 topology relative to [a; b℄) 
ontaining Yi so that for every x 2 Oi;(3.1.2) sign(g(x) � p(x)) = sign(p�(x))and(3.1.3) jg(x)� p(x)j � 12kg � pkA :Now pi
k a Æ1 > 0 su
h that for every x 2 B := AnSmi=0Oi and Æ 2 (0; Æ1);jg(x)� (p(x) + Æp�(x))j < kg � pkA ;whi
h 
an be done sin
e B is 
ompa
t and by 
onstru
tionkg � pkB < kg � pkA :Note that (3:1:2) and (3.1.3) allow us to pi
k a Æ2 > 0 su
h that for x 2Smi=0 Oi and Æ 2 (0; Æ2);jg(x)� (p(x) + Æp�(x))j < jg(x)� p(x)j :This veri�es (3.1.1) and �nishes the dire
t half of the theorem.The proof of the 
onverse is simple. Suppose there is an alternationsequen
e of length n+2 for g� p on A, and suppose there exists a p� withkg � p�kA < kg � pkA:Then p��p has at least n+1 zeros on [a; b℄, one between any two 
onse
utivealternation points for g � p on A, and hen
e it vanishes identi
ally. This
ontradi
tion �nishes the proof. utIn the setting of Theorem 3.1.6 the best approximation is unique; seeE.5.



96 3. Chebyshev and Des
artes SystemsComments, Exer
ises, and Examples.The terminology is not entirely standard in the literature with Chebyshevsystems often referred to as Haar systems on intervals of R: There are vari-ous proofs of Theorem 3.1.6, of whi
h ours is by no means the most elegant(see Cheney [66℄, for example). The point of this proof is that it easily mod-i�es to deal with 
hara
terizations of extremal fun
tions for various otherextremal problems. Many good books 
over this standard material. See, forexample, Cheney [66℄, Lorentz [86a℄, or Pinkus [89℄; see also Appendix 3.An extensive treatment of Chebyshev systems is available in Karlin andStudden [66℄ or N�urnberger [89℄, where E.3 
an be found. E.4 shows thatreal Chebyshev systems are intrinsi
ally one-dimensional.E.1 Examples of Chebyshev systems.a℄ Suppose 0 = �0 < �1 < � � � < �n: Show that(x�0 ; x�1 ; : : : ; x�n)is a Chebyshev system on [0;1).b℄ Suppose �0 < �1 < � � � < �n: Show that(x�0 ; x�1 ; : : : ; x�n)is a Chebyshev system on (0;1):
℄ Suppose �0 < �1 < � � � < �n. Show that(x�0 ; x�0 logx ; x�1 ; x�1 logx ; : : : ; x�n ; x�n logx)is a Chebyshev system on (0;1).d℄ Suppose �0 < �1 < � � � < �n. Show that� 1x� �0 ; 1x� �1 ; : : : ; 1x� �n�is a Chebyshev system on (�1;1) n f�0; �1; : : : ; �ng:e℄ Suppose �0 < �1 < � � � < �n. Show that(e�0x; e�1x; : : : ; e�nx)is a Chebyshev system on (�1;1):f ℄ Show that(1; 
os �; sin �; 
os 2�; sin 2�; : : : ; 
osn�; sinn�)is a Chebyshev system on [0; 2�).g℄ Show that (1; 
os �; 
os 2�; : : : ; 
osn�)is a Chebyshev system on [0; �):



3.1 Chebyshev Systems 97E.2 More Examples.a℄ If (f0; : : : ; fn) is a Chebyshev system on A; then it is also a Chebyshevsystem on any subset B of A 
ontaining at least n+ 1 points.b℄ If (f0; : : : ; fn) is a Chebyshev system on A and g 2 C(A) is stri
tlypositive on A; then (gf0; : : : ; gfn) is also a Chebyshev system on A:
℄ If (f0; : : : ; fn) is a Chebyshev system on [0; 1℄; then�1 ; Z x0 f0(t) dt ; : : : ; Z x0 fn(t) dt�is also a Chebyshev system on [0; 1℄:See E.8 of Se
tion 3.2, whi
h treats the e�e
t of di�erentiation on aChebyshev system.E.3 Extended Complete Chebyshev Systems. Let (g0; : : : ; gn) be a se-quen
e of fun
tions in Cn[a; b℄. De�ne the Wronskian determinantW (g0; : : : ; gm)(t) := �������� g0(t) g1(t) : : : gm(t)g00(t) g01(t) : : : g0m(t)... ... . . . ...g(m)0 (t) g(m)1 (t) : : : g(m)m (t) �������� :We say that (g0; : : : ; gn) is an extended 
omplete Chebyshev system (ECTsystem) on [a; b℄ ifW (g0; : : : ; gm)(t) > 0 ; m = 0; 1; : : : ; n ; t 2 [a; b℄ :a℄ Let spanfg0; : : : ; gng be an (n + 1)-dimensional subspa
e of Cn[a; b℄:Show that the following statements are equivalent:(i) For every m = 0; 1; : : : ; n, 0 6= f 2 spanfg0; : : : ; gmg has at mostm zeros in [a; b℄ 
ounting multipli
ities (x0 2 [a; b℄ is a zero of f withmultipli
ity k if f(x0) = f 0(x0) = � � � f (k�1)(x0) = 0 and f (k)(x0) 6= 0).(ii) For ea
h i = 0; 1; : : : ; n, there exists a 
hoi
e of Æi := 1 or Æi := �1su
h that (Æ0g0; Æ1g1; : : : ; Ængn)is an ECT system on [a; b℄:In parti
ular, every ECT system on [a; b℄ is a Chebyshev system on[a; b℄.Proof. For details see Karlin and Studden [66℄. ut



98 3. Chebyshev and Des
artes Systemsb℄ Chara
terization Theorem. The following statements are equivalent:(i) (g0; : : : ; gn) is an ECT system on [a; b℄:(ii) There exist wi 2 Cn�i[a; b℄, i = 0; 1; : : : ; n, with wi stri
tly positivesu
h thatg0(t) = w0(t) ;g1(t) = w0(t) Z ta w1(t1) dt1 ;...gn(t) = w0(t) Z ta w1(t1) Z t1a w2(t2) � � � Z tn�1a wn(tn) dtn � � � dt2 dt1 :Proof. This is proved by indu
tion on n. See Karlin and Studden [66℄. ut
℄ Suppose �0 < �1 < � � � < �n: Show that (x�0 ; : : : ; x�n) is an ECTsystem on [a; b℄ provided a > 0:E.4 Railway Tra
k Theorem. Real Chebyshev systems exist only on veryspe
ial subsets of Rm . Indeed, real Chebyshev systems intrinsi
ally live onone-dimensional subsets.a℄ Suppose A � Rm 
ontains three distin
t ar
s that join at a point x0:Then, for n � 2; there exists no real Chebyshev system (f0; : : : ; fn) on A:Proof. Suppose there exists a real Chebyshev system (f0; : : : ; fn) on su
ha set A: Let V (x; y) := D(x; y; x2; x3; : : : ; xn)(D is de�ned in Proposition 3.1.2) whi
h is never zero for distin
t pointsx; y; x2; x3; : : : ; xn. Choose distin
t points x0; x1; : : : ; xn on one of the threedistin
t ar
s so that x0 is adja
ent to x1. Pi
k the points z1 6= x0 and z2 6= x0so that z1, z2, and x1 are on di�erent ar
s. Now 
onsider inter
hangingx := x0 and y := x1 by moving x from x0 to z1, y from x1 to z2, x from z1to x1, and y from z2 to x0. Sin
e x; y; x2; x3; : : : ; xn remain distin
t, V (x; y)does not vanish in this pro
ess. This 
ontradi
ts the fa
t that V (x; y) is
ontinuous and V (x0; x1) = �V (x1; x0): utThe following more general result of Mairhuber [56℄ also holds:b℄ Mairhuber's Theorem. If (f0; : : : ; fn) is a real Chebyshev spa
e on A;then A is homeomorphi
 to a subset of the unit 
ir
le.E.5 Uniqueness of Best Approximations. Prove that a best approxima-tion from a Chebyshev spa
e satisfying the 
onditions of Theorem 3.1.6 isunique.



3.1 Chebyshev Systems 99Hint: Suppose f has two best approximations p1 2 Hn and p2 2 Hn. Then,by the alternation 
hara
terization, p1 � p2 2 Hn has at least n + 1 zeroson [a; b℄ (we 
ount ea
h internal zero without sign 
hange twi
e). Now E.10implies that p1 � p2 = 0: utE.6 De la Vall�ee Poussin Theorem. Suppose Hn is a Chebyshev spa
e ofdimension (n+ 1) on [a; b℄. If p 2 Hn and there exist n+ 2 pointsa � x0 < x1 < � � � < xn+1 � bso thatsign(f(xi)� p(xi)) = �sign(f(xi+1)� p(xi+1)) ; i = 0; 1; : : : ; n ;then infp2Hn kf � pk[a;b℄ � mini=0;::: ;n+1 jf(xi)� p(xi)j :E.7 Haar's Chara
terization of Chebyshev Spa
es. The following prettytheorem is due to Haar (for a proof, see E.3 of Appendix 3):Theorem. Let f0; : : : ; fn 2 C(A) where A is a 
ompa
t Hausdor� spa
e
ontaining at least n + 1 points. Then (f0; : : : ; fn) is a Chebyshev systemon A if and only if every g 2 C(A) has a unique best approximation fromspanff0; : : : ; fng in the uniform norm on A:E.8 Best Approximation to xn. Reprove Theorem 2.1.1 by using the al-ternation 
hara
terization of best approximations.E.9 Best Rational Approximations. Let f 2 C[a; b℄. Then p=q 2 Rn;m isa best approximation to f from Rn;m in C[a; b℄ if and only if f � p=q hasan alternation set of length at least2 +maxfn+ deg(q);m+ deg(p)g[a; b℄: (Here we must assume p=q is written in a redu
ed form.)The proof of this is a fairly 
ompli
ated variant of the proof of Theorem3.1.6 (see, for example, Cheney [66℄).E.10 Zeros of Fun
tions in Chebyshev Spa
es. As before, we 
all thepoint x0 2 (a; b) a double zero of f 2 C[a; b℄ if f(x0) = 0 andf(x0 � �)f(x0 + �) > 0for all suÆ
iently small � > 0 (in other words, if f vanishes without 
hangingsign at x0). Let (f0; : : : ; fn) be a Chebyshev system on [a; b℄ � R. Showthat every 0 6= f 2 spanff0; : : : ; fng has at most n zeros even if ea
h doublezero is 
ounted twi
e.Hint: Use Proposition 3.1.2 b℄. ut



100 3. Chebyshev and Des
artes SystemsE.11 Fun
tions in a Chebyshev Spa
e with Pres
ribed Sign Changes. Let(f0; : : : ; fn) be a Chebyshev system on [a; b℄; and leta < z1 < z2 < � � � < zm < b ; 0 � m � n :Show that there is a fun
tion p� 2 spanff0; : : : ; fng su
h that(i) p�(x) = 0 if and only if x = zi for some i = 1; 2; : : : ;m;(ii) p�(x) 
hanges sign at ea
h zi; i = 1; 2; : : : ;m.Hint: If m = n; then use Proposition 3.1.3 and a 
ontinuity argument toshow that p�(x) = �������� f0(x) f1(x) : : : fn(x)f0(z1) f1(z1) : : : fn(z1)... ... . . . ...f0(zn) f1(zn) : : : fn(zn) ��������satis�es the requirements.If m < n; then use the already proved 
ase, a limiting argument, andE.10 to show that there are pj 2 spanff0; : : : ; fng; j = 1; 2, su
h that(1) pj(x) 
hanges sign at x if and only if x = zi, i = 1; 2; : : : ;m,(2) p1(x) 6= 0 for every x 2 [a; zm℄ n fz1; z2; : : : ; zmg,(3) p2(x) 6= 0 for every x 2 [z1; b℄ n fz1; z2; : : : ; zmg.Now show that either p� := p1 + p2 or p� := p1 � p2 satis�es the require-ments. utE.12 The Dimension of a Chebyshev Spa
e on a Cir
le. Let (f0; : : : ; fn)be a Chebyshev system on a 
ir
le C. Show that n must be even. Observethat su
h Chebyshev systems exist.Hint: Show that for every set of n distin
t points x1; x2; : : : ; xn on the
ir
le there is a p 2 spanff0; : : : ; fng su
h that p(x) = 0 if and only ifx 2 fx1; x2; : : : ; xng and p(x) 
hanges sign at ea
h xi. ut3.2 Des
artes SystemsChebyshev systems 
apture some of the essential properties of polynomials.There are two additional types of systems that 
apture some additionalproperties.De�nition 3.2.1 (Markov System). We say that (f0; : : : ; fn) is a Markovsystem on a Hausdor� spa
e A if ea
h fi 2 C(A), and ff0; : : : ; fmg is aChebyshev system for ea
h m = 0; 1; : : : ; n. (We allow n to tend to +1; inwhi
h 
ase we 
all the system an in�nite Markov system on A.)



3.2 Des
artes Systems 101A Markov system is just a Chebyshev system with ea
h initial segmentalso a Chebyshev system. Being a Chebyshev system is a property of thespa
e not of the basis. However, the Markov system depends on the basis.For example, (x�0 ; x�1 ; : : : ) ; �0 < �1 < � � �is a Markov system on any A � (0;1) 
ontaining in�nitely many points,but not every basis of spanfx�0 ; x�1 ; : : : g is a Markov system on A (seeE.1).Proposition 3.2.2. (f0; : : : ; fn) is a Markov system on an interval [a; b℄ ifand only if for ea
h i = 0; 1; : : : ; n, there exists a 
hoi
e of Æi := 1 orÆi := �1 su
h that with gi := Æifi;D� g0 g1 : : : gmx0 x1 : : : xm � := ������� g0(x0) : : : gm(x0)... . . . ...g0(xm) : : : gm(xm) ������� > 0for every a � x0 < x1 < � � � < xm � b and m = 0; 1; : : : ; n:Proof. This is an easy 
onsequen
e of Proposition 3.1.3 by indu
tion onn. utA stronger property that a system on an interval 
an have is the fol-lowing:De�nition 3.2.3 (Des
artes System). The system (f0; : : : ; fn) is said to bea Des
artes system (or order 
omplete Chebyshev system) on an interval Iif ea
h fi 2 C(I) and D� fi0 fi1 : : : fimx0 x1 : : : xm � > 0for any 0 � i0 < i1 < � � � < im � n and x0 < x1 < � � � < xm from I . (On
eagain we allow n to tend to 1.)This again is a property of the basis. It implies that any �nite-dimensional subspa
e generated by some basis elements is a Chebyshevspa
e on I . The 
anoni
al example of a Des
artes system on [a; b℄, a > 0; is(x�0 ; x�1 ; : : : ) ; �0 < �1 < � � �(see E.2). A Des
artes system on I is obviously a Des
artes system on anysubinterval of I .



102 3. Chebyshev and Des
artes SystemsThe following version of Des
artes' rule of signs holds for Des
artessystems.Theorem 3.2.4 (Des
artes' Rule of Signs). If (f0; : : : ; fn) is a Des
artessystem on [a; b℄; then the number of distin
t zeros of any0 6= f = nXi=0 aifi ; ai 2 Ris not greater than the number of sign 
hanges in (a0; : : : ; an):A sign 
hange o

urs between ai and ai+k exa
tly when aiai+k < 0 andai+1 = ai+2 = � � � = ai+k�1 = 0:Proof. Suppose (a0; : : : ; an) has p sign 
hanges. Then we 
an partitionfa0; : : : ; ang into exa
tly p+ 1 blo
ks so that ea
h blo
k is of the formanm+1; anm+2; : : : ; anm+1 ; m = 0; 1; : : : ; p(n0 := �1; np+1 := n), where all of the 
oeÆ
ients in ea
h of the blo
ks areof the same sign and not all the 
oeÆ
ients in a blo
k vanish. Now letgm := nm+1Xi=nm+1 jaijfi ; m = 0; 1; : : : ; p :Then, for a � x0 < x1 < � � � < xp � b,D� g0 g1 : : : gpx0 x1 : : : xp �= n1Xi0=n0+1 � � � np+1Xip=np+1 jai0 j � � � jaip jD� fi0 fi1 : : : fipx0 x1 : : : xp � > 0sin
e ea
h of the determinants in the sum is positive. Thus fg0; : : : :gpg isa (p+ 1)-dimensional Chebyshev system on [a; b℄; and hen
ef := pXi=0 Æigi ; Æi = �1has at most p zeros. This �nishes the proof. utA re�ned version of Des
artes' rule of signs for ordinary polynomials ispresented in the exer
ises. The following 
omparison theorem due to Pinkusand, independently, Smith [78℄ will be of use later.



3.2 Des
artes Systems 103Theorem 3.2.5. Suppose (f0; : : : ; fn) is a Des
artes system on [a; b℄: Sup-pose p = f� + kXi=1 aif�i ; and q = f� + kXi=1 bif
i ;where 0 � �1 < �2 < � � � < �k � n; 0 � 
1 < 
2 < � � � < 
k � n,0 � 
i � �i < � ; i = 1; 2; : : : ;m ;and � < �i � 
i � n ; i = m+ 1;m+ 2; : : : ; kwith stri
t inequality for at least one index i = 1; 2; : : : ; k. Ifp(xi) = q(xi) = 0 ; i = 1; 2; : : : ; k ;where xi 2 [a; b℄ are distin
t, thenjp(x)j � jq(x)jfor all x 2 [a; b℄ with stri
t inequality for x 6= xi:The proof is left as a guided exer
ise (see E.4) with some interesting
onsequen
es presented in E.5.Comments, Exer
ises, and Examples.Theorem 3.2.4 
hara
terizes Des
artes systems; see Karlin and Studden [66,p. 25℄. Some 
aution must be exer
ised sin
e, as in the previous se
tion, def-initions are not entirely standard. We will explore two parti
ular Des
artessystems in greater detail later; see E.2 and E.3. For further material, thereader is referred to Karlin and Studden [66℄, Karlin [68℄, and N�urnberger[89℄.E.1 Distin
tions.a℄ Given �0 < �1 < � � � and A � (0;1) with in�nitely many points,show that (x�0 ; x�1 ; : : : ) is a Markov system on A; but there is a basis forspanfx�0 ; x�1 ; : : : g; whi
h is not a Markov system on A.b℄ Find a Markov system that is not a Des
artes system.E.2 Examples of Des
artes Systems.a℄ Suppose �0 < �1 < � � � : Show that the M�untz system(x�0 ; x�1 ; : : : )is a Des
artes system on (0;1):



104 3. Chebyshev and Des
artes SystemsHint: For every 0 � i0 < i1 < � � � < im; the determinantD�x�i0 x�i1 : : : x�imx0 x1 : : : xm � = �������x�i00 : : : x�im0... . . . ...x�i0m : : : x�imm �������is nonzero for any 0 < x0 < x1 < � � � < xm < 1 by Proposition 3.1.2 andE.1 a℄ of Se
tion 3.1. It only remains to prove that it is positive whenever0 < x0 < x1 < � � � < xm <1. Observe that the exponents �ij 
an be varied
ontinuously (for �xed xi) without 
hanging the sign of the determinantprovided no two ever be
ome equal. Now perturb (�i0 ; �i1 ; : : : ; �im) into(0; 1; : : : ;m) and observe that the determinant be
omes a Vandermondedeterminant, as in part b℄, whi
h in this 
ase is positive. utb℄ Vandermonde Determinant. Show that�������� 1 x0 : : : xm01 x1 : : : xm1... ... . . . ...1 xm : : : xmm �������� = Y0�i<j�m(xj � xi) :Hint: The determinant is a polynomial in x0; x1; : : : ; xm of degree m inea
h variable that vanishes whenever xi = xj : ut
℄ Suppose �0 < �1 < � � � . Show that the exponential system(e�0t; e�1t; : : : )is a Des
artes system on (�1;1):Hint: Use part a℄. utd℄ Suppose 0 < �0 < �1 < � � � . Show that(sinh�0t; sinh�1t; : : : )is a Des
artes system on (0;1):Outline. Let 0 � i0 < i1 < � � � < im be �xed integers. First we show that(sinh �i0t; sinh�i1t; : : : ; sinh�imt)is a Chebyshev system on (0;1): Indeed, let0 6= f 2 spanfsinh�i0 t; sinh�i1 t; : : : ; sinh�im tg :Then 0 6= f 2 spanfe��i0 t; e��i1 t; : : : ; e��im tgand by E.1 e℄ of Se
tion 3.1, f has at most 2m zeros in (�1;1). Sin
e fis odd, it has at most m zeros in (0;1):
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artes Systems 105Sin
e for every 0 � i0 < i1 < � � � < im, (sinh�i0 t; : : : ; sinh�im t) is aChebyshev system on (0;1); the determinantD� sinh�i0 t sinh�i1t : : : sinh�im tx0 x1 : : : xm �
= �������� sinh�i0x0 sinh�i1x0 : : : sinh�imx0sinh�i0x1 sinh�i1x1 : : : sinh�imx1... ... . . . ...sinh�i0xm sinh�i1xm : : : sinh�imxm ��������is nonzero for any 0 < x0 < x1 < � � � < xm <1 Proposition 3.1.2. So it onlyremains to prove that it is positive whenever 0 < x0 < x1 < � � � < xm <1.Now let D(�) := D� sinh�i0 t sinh�i1t : : : sinh�im t�x0 �x1 : : : �xm �

= �������� sinh�i0�x0 sinh�i1�x0 : : : sinh�im�x0sinh�i0�x1 sinh�i1�x1 : : : sinh�im�x1... ... . . . ...sinh�i0�xm sinh�i1�xm : : : sinh�im�xm ��������and D�(�) := D� 12e�i0 t 12e�i1 t : : : 12e�im t�x0 �x1 : : : �xm �
= ��������� 12e�i0�x0 12e�i1�x0 : : : 12e�im�x012e�i0�x1 12e�i1�x1 : : : 12e�im�x1... ... . . . ...12e�i0�xm 12e�i1�xm : : : 12e�im�xm ���������where 0 < x0 < x1 < � � � < xm <1 are �xed. Sin
e(sinh �i0t; sinh�i1t; : : : ; sinh�im t)and (e�i0 t; e�i1 t; : : : ; e�im t)are Chebyshev systems on (0;1), D(�) and D�(�) are 
ontinuous non-vanishing fun
tions of � on (0;1). Now, observe thatlim�!1 jD(�)j = lim�!1 jD�(�)j =1 and lim�!1 D(�)D�(�) = 1 :By part 
℄, (e�i0 t; e�i1 t; : : : ; e�im t)
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artes Systemsis a Des
artes system on (�1;1); hen
e D�(�) > 0 for every � > 0: Sothe above limit relations imply that D(�) > 0 for every large enough �;hen
e for every � > 0. In parti
ular,D(1) = D� sinh�i0t sinh�i1 t : : : sinh�im tx0 x1 : : : xm � > 0 ;whi
h �nishes the proof. ute℄ Suppose 0 < �0 < �1 < � � � . Show that(
osh�0t; 
osh�1t; : : : )is a Des
artes system on (0;1):Hint: Pro
eed as in the outline for part d℄. utE.3 Rational Systems.a℄ Cau
hy Determinants. Show that������� 1�1+�1 : : : 1�1+�m... . . . ...1�m+�1 : : : 1�m+�m ������� = Q1�i<j�m(�j � �i)(�j � �i)Q1�i;j�m(�i + �j) :Hint: Multiply both sides above by Q1�i;j�m(�i+�j) and observe that bothsides are polynomials of the same degree,m�1; in ea
h variable �i; �i. Alsoboth sides vanish exa
tly when �i = �j or �i = �j : So up to a 
onstantboth sides are the same. Now show that the 
onstant is 1. utb℄ Let �1 > �2 > � � � > b. Show that� 1�1 � x ; 1�2 � x ; : : :�is a Des
artes system on [a; b℄:Let �1 < �2 < � � � < a: Show that� 1x� �1 ; 1x� �2 ; : : :�is a Des
artes system on [a; b℄ (see also E.6 e℄).E.4 Proof of Theorem 3.2.5. Assume the notation of this Theorem 3.2.5.a℄ Let 0 � Æ0 < Æ1 < � � � < Æ� � n and a < x1 < x2 < � � � < x� < b: Showthat there exists a unique p = fÆ� +P��1i=0 aifÆi su
h that
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artes Systems 107(1) p(xi) = 0 , i = 1; 2; : : : ; � :Show also that the above p has the following properties:(2) p(x) 
hanges sign at ea
h xi ;(3) p(x) 6= 0 if x =2 fx1; x2; : : : ; x�g ;(4) aiai+1 < 0 ; i = 0; 1; : : : ; �� 1 ; a� := 1 ;(5) p(x) > 0 ; x 2 (x�; b℄ :Hint: Sin
e (fÆ0 ; : : : ; fÆ�) and (fÆ0 ; : : : ; fÆ��1) are Chebyshev systems, E.11of Se
tion 3.1 shows that there exists a p of the desired form satisfying (1).Sin
e (fÆ0 ; : : : ; fÆ��1) is a Chebyshev system, this p is unique. Now E.11 ofSe
tion 3.1 yields that p satis�es (2) and (3). By Theorem 3.2.4, p satis�es(4). The fa
t that (5) holds for p follows from expanding the determinantD� fÆ0 fÆ1 : : : fÆ��1 fÆ�x1 x2 : : : x� x �by Cramer's rule. This determinant is just 
p(x) with some 
 > 0 sin
e itvanishes at ea
h xi; and the 
oeÆ
ient of fÆ� is positive; see De�nition 3.2.3.Also, the above determinant is positive for all x 2 (x�; b℄; see De�nition3.2.3 again. utb℄ Prove Theorem 3.2.5.Outline. For notational simpli
ity assume that � = n (hen
e m = k); thegeneral 
ase is analogous. Further, we may assume that there is an index jsu
h that 
j < �j and 
i = �i whenever i 6= jsin
e the result follows from this by a �nite number of pairwise 
omparisons.So we assume p = fn + ajf�j + kXi=1i6=j aif�iand q = fn + bjf
j + kXi=1i6=j bif�i ;where 0 � �1 < �2 < � � � < �k < n and 0 � �j�1 < 
j < �j for some1 � j � k (of 
ourse, the inequality �j�1 < 
j holds only if �j�1 is de�ned,that is, only if j � 2). Thenp� q = ajf�j � bjf
j + kXi=1i6=j (ai � bi)f�ihas exa
tly k zeros on [a; b℄ at x1; x2; : : : ; xk be
ause p� q is in a (k + 1)-dimensional Chebyshev subspa
e.



108 3. Chebyshev and Des
artes SystemsBy property (5) in part a℄ applied to p and q; respe
tively,p(x) > 0 and q(x) > 0 ; x 2 (xk; b℄ :Now by property (4) in part a℄ applied to 
(p�q), where 
 is 
hosen so thatthe lead 
oeÆ
ient of 
(p � q) is 1, and by the fa
t that p and p� q havethe same 
oeÆ
ient for f�j , the lead 
oeÆ
ient of p � q (ak � bk provided�k > �j) is negative. So property (5) in part a℄ implies thatp(x) � q(x) < 0; x 2 (xk; b℄ :Hen
e 0 < p(x) < q(x); x 2 (xk; b℄:Now use property (3) in part a℄ and the fa
t that all of p; q; and p� q
hange sign only at xi to �nish the proof. utThe following extension of part a℄ will be used later:
℄ Suppose0 � Æ0 < Æ1 < � � � < Æ� � n ; a � x1 � x2 � � � � � x� � b ;a < x2; x��1 < b, and xi < xi+2, i = 1; 2; : : : ; � � 2. Show that thereexists a unique p = fÆ� +P��1i=0 aifÆi (with ai 2 R) su
h that(1) p(xi) = 0, i = 1; 2; : : : ; � ;(2) p(x) 
hanges sign at xi if and only if xi 62 fa; b; xi�1; xi+1g :Show also that(3) p(x) 6= 0 if x =2 fx1; x2; : : : ; x�g ;(4) aiai+1 � 0 ; i = 0; 1; : : : ; �� 1 ; a� := 1 ;(5) p(x) > 0 ; x 2 (x�; b) ;(6) (�1)�p(x) > 0 ; x 2 (a; x1) ;(7) (�1)��ip(x) > 0 ; x 2 (xi; xi+1) ; i = 1; 2; : : : ; �� 1 :Hint: Use part a℄ and a limiting argument. The uniqueness follows fromE.10 of Se
tion 3.1. utThe next exer
ise provides a solution to a problem of Lorentz, whi
his settled in Borosh, Chui, and Smith [77℄.E.5 A Problem of Lorentz on Best Approximation to x�. Suppose that[a; b℄ � [0;1); n 2 N; and p 2 (0;1℄ are �xed. Let � be a �nite Borelmeasure on [a; b℄.a℄ Suppose �1; �2; : : : ; �n are arbitrary �xed real numbers if a > 0, or�xed real numbers greater than �1=p if a = 0. Let f 2 Lp(�) be �xed.Show thatEp;�(�1; �2; : : : ; �n; f) := minai2R


f(x)� nXi=1 aix�i


Lp(�)exists and is �nite.
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artes Systems 109Outline. Use a standard 
ompa
tness argument. utb℄ Suppose 1 < p < 1, the support of � 
ontains at least n + 1 points,�1; �2; : : : ; �n; � are arbitrary �xed distin
t real numbers if a > 0; or �xedreal numbers greater than �1=p if a = 0: Show that if (eai)ni=1 � R satis�esEp;�(�1; �2; : : : ; �n;x�) = 

x� � nXi=1 eaix�i

Lp(�) ;then f(x) := x� � nXi=1 eaix�ihas exa
tly n sign 
hanges on (a; b):Hint: Sin
e (x�1 ; : : : ; x�n ; x�) is a Chebyshev system, it is suÆ
ient to provethat f has at least n sign 
hanges on (a; b). Suppose f has at most n � 1sign 
hanges on [a; b℄: Then, sin
e (x�1 ; : : : ; x�n) is a Chebyshev system,by E.11 of Se
tion 3.1 there exists an elementh 2 spanfx�1 ; : : : ; x�ngsu
h that jf(x)jp�1 sign(f(x))h(x) � 0on [a; b℄ with stri
t inequality at all but n points (at every point where fdoes not vanish). Using that the support of � 
ontains at least n+1 distin
tpoints, this implies Z ba jf jp�1 sign(f)h d� > 0 ;whi
h 
ontradi
ts E.7 h℄ of Se
tion 2.2. ut
℄ Suppose p = 1, supp(�) = [a; b℄, �1; �2; : : : ; �n; � are arbitrary �xeddistin
t real numbers if a > 0; or �xed distin
t nonnegative real numbers ifa = 0: Show that if (eai)ni=1 � R satis�esE1;�(�1; �2; : : : ; �n;x�) = 


x� � nXi=1 eaix�i


L1(�) ;then f(x) := x� � nXi=1 eaix�ihas exa
tly n sign 
hanges on (a; b):Hint: Use Theorem 3.1.6. ut
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artes Systemsd℄ Best Approximation to x� from Certain Classes of M�untz Polynomials.Let 1 < p � 1: Suppose the support of � 
ontains at least n + 1 distin
tpoints if 1 < p <1 or supp(�) = [a; b℄ if p =1: Let � > 
1 > 
2 > � � � bearbitrary �xed real numbers if a > 0; or �xed nonnegative real numbers ifa = 0: Suppose we wish to minimizeEp;�(�1; �2; : : : ; �n;x�)for all sets of n distin
t real numbers �1 > �2 > � � � > �n satisfyingf�1; �2; : : : ; �ng � f
1; 
2; : : : g :Show that the minimum o

urs if and only iff�1; �2; : : : ; �ng = f
1; 
2; : : : ; 
ng :Hint: Let Ep;�(�1; �2; : : : ; �n;x�) = 


x� � nXi=1 eaix�i


Lp(�) ;where f�1; �2; : : : ; �ng is a set of n distin
t real numbers for whi
h theminimum is taken; see part a℄. By parts b℄ and 
℄f(x) := x� � nXi=1 eaix�ihas exa
tly n sign 
hanges x1; x2; : : : ; xn on (a; b): Letg 2 spanfx
1 ; x
2 ; : : : ; x
nginterpolate x� at the points x1; x2; : : : ; xn: Now use Theorem 3.2.5 to �nishthe proof. utE.6 Stri
tly Totally Positive Kernels (Karlin [68℄). A (
ontinuous) fun
-tion K(s; t) is an STP kernel on [a; b℄� [
; d℄ if�������K(s0; t0) : : : K(s0; tn)... . . . ...K(sn; t0) : : : K(sn; tn) ������� > 0for all a � s0 < � � � < sn � b, 
 � t0 < � � � < tn � d; and for all n > 0:
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artes Systems 111a℄ Observe that E.3 b℄ implies thatK(s; t) = 1s+ t is STP on [a; b℄� [a; b℄ ; a > 0 :Observe also that E.2 b℄ implies thatK(s; t) = est is STP on (�1;1)� (�1;1) :b℄ Suppose K is STP on [a; b℄ � [
; d℄; and (f0; : : : ; fn) is a Chebyshevsystem on [a; b℄: Show that ifvi(x) = Z ba K(t; x)fi(t) dt ; i = 0; 1; : : : ; n ;then (v0; : : : ; vn) is a Chebyshev system on [
; d℄:
℄ Variation Diminishing Property. Suppose K is STP on [a; b℄ � [
; d℄and suppose f 2 C[a; b℄. Letg(x) := Z ba K(t; x)f(t) dt :Then g has no more sign 
hanges on [
; d℄ than f has on [a; b℄:d℄ The Lapla
e transform of a fun
tion f 2 C[0;1) \ L1[0;1)L(f)(x) := Z 10 f(t)e�tx dthas no more sign 
hanges on [0;1) than f does.Proof. This follows from parts a℄ and 
℄. It may also be proved dire
tly byindu
tion as follows. Suppose f has exa
tly n sign 
hanges on [0;1); oneat x0. Then g(x) := (x0 � x)f(x) has exa
tly n� 1 sign 
hanges on [0;1):Now observe that e�x0x ddx (ex0xL(f)(x)) = L(g)(x) ;so L(f) has at most one more sign 
hange on [0;1) than L(g) does. ute℄ Use part d℄ and E.2 a℄ to reprove that� 1x+ �1 ; 1x+ �2 ; : : :� ; �a < �1 < �2 < � � �satis�es Des
artes' rule of signs on [a; b℄: utProof. Observe that 1Z0 e��ite�tx dt = 1x+ �ifor every x 2 (��i;1): ut
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artes SystemsE.7 Des
artes' Rule of Signs for Polynomials.a℄ Prove by indu
tion that Pnk=0 akxk 2 Pn has no more zeros in (0;1)(repeated zeros are 
ounted a

ording to their multipli
ities) than the num-ber of sign 
hanges in (a0; a1; : : : ; an):b℄ Let � > 0. Let p(x) =Pnk=0 akxk and q(x) := (x��)p(x) =Pn+1k=0 bkxk:Show that if the number of sign 
hanges in fa0; a1; : : : ; ang is m; then thenumber of sign 
hanges in fb0; b1; : : : ; bn+1g is at least m+ 1:
℄ Give another proof of a℄ based on b℄.d℄ In part a℄ the number of sign 
hanges in (a0; a1; : : : ; an) ex
eeds thenumber of positive zeros by an even integer.Hint: See P�olya and Szeg}o [76℄. utRe�nements of the above exer
ise are presented in E.6 of Appendix 1,where Cau
hy indi
es are dis
ussed.The �rst part of the following exer
ise is a version of a result fromZielke [79℄:E.8 The E�e
t of Di�erentiation on Weak Markov Systems. The system(f0; : : : ; fn) is 
alled a weak Chebyshev system on [a; b℄ if fi 2 C[a; b℄ forea
h i and every f 2 spanff0; : : : ; fng has at most n sign 
hanges on [a; b℄(so the only di�eren
e between a Chebyshev system and a weak Chebyshevsystem is that in the de�nition of the latter, zeros without sign 
hange arenot 
ounted).Analogously, the system (g0; : : : ; gn) is 
alled a weak Markov systemon [a; b℄ if gi 2 C[a; b℄ for ea
h i and (g0; : : : ; gm) is a weak Chebyshevsystem on [a; b℄ for every m = 0; 1; : : : ; n (so the only di�eren
e between aMarkov system and a weak Markov system is that in the de�nition of thelatter, zeros without sign 
hange are not 
ounted).a℄ Suppose (1; f1; : : : ; fn) is a weak Markov system of C1 fun
tions on[a; b℄. Show that (f 01; : : : ; f 0n) is a weak Markov system on [a; b℄:Outline. Pro
eed by indu
tion on n. If n = 0; then the statement is obvious.Suppose that the statement is true for n� 1. By the indu
tive hypothesis(f 01; : : : ; f 0n�1) is a weak Markov system on [a; b℄, hen
e Rolle's theoremimplies that (1; f1; : : : ; fn�1) is a Markov system on [a; b℄:Suppose that g 2 spanff 01; : : : ; f 0n�1g is of the formg := nXi=1 aif 0i ; ai 2 Rand g has at least n sign 
hanges on [a; b℄: Then there exist n+ 2 distin
t
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artes Systems 113points a < x1 < x2 < � � � < xn+2 < band � = �1 su
h that F := � nXi=1 aifisatis�es (�1)i(F (xi+1)� F (xi)) > 0 ; i = 1; 2; : : : ; n+ 1 :Sin
e (1; f1; : : : ; fn�1) is a Markov system on [a; b℄; by Proposition 3.1.2,there exist fun
tions GÆ 2 spanf1; f1; : : : ; fn�1gsu
h that GÆ(xi) = F (xi) + Æ(�1)i ; i = 2; 3; : : : ; n+ 1for every Æ > 0: Then by the indu
tive hypothesis, G0Æ has at most n � 2sign 
hanges on [a; b℄: It follows that if Æ > 0 is suÆ
iently small, then(�1)(GÆ(x2)�GÆ(x1)) < 0and (�1)n+1(GÆ(xn+2)�GÆ(xn+1)) < 0 ;otherwise G0Æ would have at least n sign 
hanges on [a; b℄: Now show thatfor suÆ
iently small Æ > 0F �GÆ 2 spanf1; f1; : : : ; fnghas at least n+ 1 sign 
hanges, whi
h is a 
ontradi
tion. utb℄ Suppose that (1; f1; : : : ; fn) is an ECT system on [a; b℄ and supposethat ea
h fi 2 Cn[a; b℄ (see E.3 of Se
tion 3.1). Show that (f 01; : : : ; f 0n) isalso an ECT system on [a; b℄ with ea
h f 0i 2 Cn�1[a; b℄:Hint: Use the de�nition given in E.3 of Se
tion 3.1. ut
℄ Suppose (1; f1; : : : ; fn) is a weak Markov system on [a; b℄ with ea
hfi 2 C1[a; b℄: Show that (1; f1; : : : ; fn) is a Markov system on [a; b℄:Hint: Use Rolle's theorem and part a℄. ut
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artes Systems3.3 Chebyshev Polynomials in Chebyshev Spa
esSuppose Hn := spanff0; f1; : : : ; fngis a Chebyshev spa
e on [a; b℄; and A is a 
ompa
t subset of [a; b℄ with atleast n+ 1 points. We 
an de�ne the generalized Chebyshev polynomialTn := Tnff0; f1; : : : ; fn;Agfor Hn on A by the following three properties:(3:3:1) Tn 2 spanff0; f1; : : : ; fngthere exists an alternation sequen
e (x0 < x1 < � � � < xn) for Tn on A; thatis,(3:3:2) sign(Tn(xi+1)) = �sign(Tn(xi)) = �kTnkAfor i = 0; 1; : : : ; n� 1; and(3:3:3) kTnkA = 1 with Tn(maxA) > 0 :Of 
ourse the existen
e and uniqueness of su
h a Tn has to be proved.Note that if together with spanff0; : : : ; fng, spanff0; : : : ; fn�1g is also aChebyshev spa
e, then Theorem 3.1.6 implies thatTn = 
 fn � n�1Xk=0 akfk! ;where the numbers a0; a1; : : : ; an�1 2 R are 
hosen to minimize(3:3:4) 


fn � n�1Xk=0 akfk


A ;satis�es properties (3.3.1) and (3.3.2), and the normalization 
onstant 
 2 R
an be 
hosen so that Tn satis�es property (3.3.3) as well. In E.1 we outlinethe proof of the existen
e and uniqueness of a Tn satisfying properties(3.3.1) to (3.3.3) without assuming that spanff0; : : : ; fn�1g is a Chebyshevspa
e.Note that if (f0; : : : ; fn) is a Des
artes system on [a; b℄; then the nor-malization 
onstant (that is, the lead 
oeÆ
ient) 
 in Tn is positive. Thisfollows from E.4 of Se
tion 3.2.



3.3 Chebyshev Polynomials in Chebyshev Spa
es 115On intervals, with fi(x) := xi; the de�nition (3.3.1) to (3.3.3) gives theusual Chebyshev polynomials; see E.7 of Se
tion 2.1.The Chebyshev polynomials Tn for Hn on A en
ode mu
h of the in-formation of how the spa
e Hn behaves with respe
t to the uniform normon A. Many extremal problems are solved by the Chebyshev polynomials.When (f0; f1; : : : ) is a Markov system on [a; b℄ we 
an introdu
e thesequen
e (Tn)1n=0 of asso
iated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄gfor Hn on [a; b℄: Then (T0; T1; : : : ) is a Markov system on [a; b℄ again withthe same span. (One reason for not always 
hoosing this as a 
anoni
al basisis that it is never a Des
artes system.)The denseness of Markov spa
es in C[a; b℄ is intimately tied to thelo
ation of the zeros of the asso
iated Chebyshev polynomials; see Se
tion4.1. An example of an extremal problem solved by the Chebyshev polyno-mials is the following:Theorem 3.3.1. Suppose Hn := spanff0; : : : ; fng is a Chebyshev spa
e on[a; b℄ with asso
iated Chebyshev polynomialTn := Tnff0; f1; : : : ; fn; [a; b℄gand ea
h fi is di�erentiable at b: Thenmaxfjp0(b)j : p 2 Hn ; kpk[a;b℄ � 1 ; p(b) = Tn(b)gis attained by Tn:Proof. Suppose p 2 Hn, kpk[a;b℄ � 1; and p(b) = Tn(b): We need to showthat jp0(b)j � jT 0n(b)j: Let a � �0 < �1 < � � � < �n � b be the points ofalternation for Tn; that is,Tn(�i) = �(�1)i ; i = 0; 1; : : : ; n :Note that Tn � p has at least n zeros in [�0; �n℄; one in ea
h [�i�1; �i℄;i = 1; 2; : : : ; n (we 
ount ea
h internal zero without sign 
hange twi
e, asin E.10 of Se
tion 3.1). So if b 6= �n; then Tn � p has n + 1 zeros on [a; b℄in
luding the zero at b, hen
e p = Tn, and the proof is �nished. We maythus assume that Tn(b) = 1. Assume that jp0(b)j > jT 0n(b)j: Sin
e T 0n(b) � 0,without loss of generality we may assume that p0(b) > T 0n(b); otherwise westudy �p: Then Tn�p has two zeros on [�n; b℄, and hen
e has n+1 zeros in[a; b℄ (again, we 
ount ea
h internal zero without sign 
hange twi
e). Thusby E.10 of Se
tion 3.1 we have p = Tn, whi
h 
ontradi
ts the assumptionp0(b) > T 0n(b): utAn extension of the above theorem to interior points is 
onsidered inE.3.



116 3. Chebyshev and Des
artes SystemsTheorem 3.3.2. Suppose (f0; : : : ; fn�1; g) and (f0; : : : ; fn�1; h) are bothChebyshev systems on [a; b℄ with asso
iated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn�1; g; [a; b℄gand Sn := Tnff0; f1; : : : ; fn�1; h; [a; b℄g ;respe
tively. Suppose (f0; f1; : : : ; fn�1; g; h) is also a Chebyshev system.Then the zeros of Tn and Sn interla
e (there is exa
tly one zero of Snbetween any two 
onse
utive zeros of Tn).Proof. Sin
e (f0; : : : ; fn�1; g; h) is a Chebyshev system on [a; b℄; Tn � Snhas at most n+1 zeros. However, between any two 
onse
utive alternationpoints of Tn; of whi
h there are n+1; there is a zero of Tn�Sn (whi
h maybe at an internal alternation point of Tn only if it is a zero without sign
hange, whi
h is then 
ounted twi
e). Likewise, there is a zero of Tn � Snbetween any two 
onse
utive alternation points of Sn: Thus between anythree su

essive alternation points of say Tn there 
an be at most three zerosof Tn � Sn: However, if Sn had two zeros between two 
onse
utive zeros ofTn; then there would be three 
onse
utive alternation points of either Tnor Sn with at least four zeros of either Tn + Sn or Tn � Sn between them,whi
h is impossible. utTheorem 3.3.3. Suppose (f0; f1; : : : ) is a Markov system on [a; b℄ with as-so
iated Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄g :Then the zeros of Tn and Tn�1 stri
tly interla
e (there is exa
tly one zeroof Tn�1 stri
tly between any two 
onse
utive zeros of Tn).Proof. The proof is analogous to that of Theorem 3.3.2. utTheorem 3.3.4 (Lexi
ographi
 Property). Let (f0; f1; : : : ) be a Des
artessystem on [a; b℄. Suppose �0 < �1 < � � � < �n and 
0 < 
1 < � � � < 
n arenonnegative integers satisfying�i � 
i ; i = 0; 1; : : : ; n :Let Tn := Tnff�0 ; f�1 ; : : : ; f�n ; [a; b℄gand Sn := Tnff
0 ; f
0 ; : : : ; f
n ; [a; b℄gdenote the asso
iated Chebyshev polynomials.



3.3 Chebyshev Polynomials in Chebyshev Spa
es 117Let �1 < �2 < � � � < �n and �1 < �2 < � � � < �ndenote the zeros of Tn and Sn; respe
tively. Then�i � �i ; i = 1; 2; : : : ; nwith stri
t inequality if �i 6= 
i for at least one index i: (In other words, thezeros of Tn lie to the left of the zeros of Sn:)Proof. It is 
learly suÆ
ient to prove the theorem in the 
ase that �i = 
ifor ea
h i 6= m, and �m < 
m < �m+1 for a �xed index m; and then topro
eed by a sequen
e of pairwise 
omparisons (if m = n; then �m+1 ismeant to be repla
ed by 1). So supposeTn := Tnff�0 ; : : : ; f�m ; : : : ; f�n ; [a; b℄g = nXi=0 
if�iand Sn := Tnff�0 ; : : : ; f
m ; : : : ; f�n ; [a; b℄g = dmf
m + nXi=0i6=m dif�iwith �m < 
m < �m+1. Then by Theorem 3.3.2 the zeros of Sn and Tninterla
e and all that remains to prove is that the largest zero of Sn is largerthan the largest zero of Tn: That is, we must show that �n < �n: For thiswe argue as follows. It follows from Theorem 3.2.5 that the lead 
oeÆ
ientof Tn is less than the lead 
oeÆ
ient of Sn (
n < dn provided m < n). Sin
eboth Tn and Sn have an alternation sequen
e of length n+ 1 on [a; b℄; andsin
e kTnk[a;b℄ = kSnk[a;b℄ = 1 ; Tn(b) > 0 ; Sn(b) > 0 ;it follows from E.1 b℄ thatSn � Tn 2 spanff�0 ; f�1 : : : ; f�n ; f
mghas n+1 zeros x1 � x2 � � � � � xn+1 on [a; b℄: Therefore, it follows from E.4
℄ of Se
tion 3.2 that (Sn�Tn)(x) > 0 on (xn+1; b) and (Sn�Tn)(x) < 0 on(xn; xn+1): Hen
e the assumption �n � �n would imply that Sn�Tn has atleast n+ 2 zeros on [a; b℄ (
ounting ea
h internal zero without sign 
hangetwi
e), whi
h is a 
ontradi
tion. (Draw a pi
ture and use the alternation
hara
terization of the Chebyshev polynomials Tn and Sn to make the proofof the above statement transparent.) So �n > �n; indeed, and the proof is�nished. ut



118 3. Chebyshev and Des
artes SystemsComments, Exer
ises, and Examples.If Hn := span(f0; : : : ; fn) is a Chebyshev spa
e on [a; b℄, A is a 
ompa
tsubset of [a; b℄, and p 2 (0;1); thenTn = 
 fn � n�1Xk=0 akfk!with a0; a1; : : : ; an�1 2 R minimizingZA ���fn � n�1Xk=0 akfk���pis 
alled an Lp Chebyshev polynomial for Hn on A: When A = [a; b℄ andp 2 (1;1℄; the properties of the zeros of these Lp Chebyshev polynomialsare explored in Pinkus and Ziegler [79℄, where mu
h of the material of thisse
tion may be found. For example, an Lp analog of Theorem 3.3.2 stillholds.E.1 Existen
e and Uniqueness of Chebyshev Polynomials. Let A � [a; b℄be a 
ompa
t set 
ontaining at least n + 1 points. Let (f0; : : : ; fn) be aChebyshev system on [a; b℄:a℄ Existen
e of Chebyshev Polynomials. Show that there exists a Tn sat-isfying properties (3.3.1) to (3.3.3).Hint: If A 
ontains exa
tly n + 1 points, then the existen
e of Tn is justthe interpolation property of a Chebyshev spa
e formulated in Proposition3.1.2 b℄. So assume that A 
ontains at least n + 2 points. Then there is aÆ > 0 so that A\ [a; 
℄ 
ontains at least n+1 points for every 
 2 (b� Æ; b):Show that for every 
 2 (b�Æ; b); there is a g
 2 spanff0; : : : ; fng for whi
hsupff(b) : f 2 spanff0; f1; : : : ; fng ; kfk[a;
℄ = 1gis attained. Use a variational method to show that g
 satis�es properties(3.3.1) to (3.3.3) with A repla
ed by A \ [a; 
℄.Now let (
k)1k=1 be a sequen
e of numbers from (b�Æ; b) that 
onvergesto b. Let g
k 2 spanff0; : : : ; fng satisfy properties (3.3.1) to (3.3.3) with Arepla
ed by A \ [a; 
k℄: Show that there is a subsequen
e of (g
k)1k=1 that
onverges to a g 2 spanff0; : : : ; fng uniformly on [a; b℄: Show that Tn := gsatis�es properties (3.3.1) to (3.3.3). utb℄ A Lemma for Part 
℄. Suppose f; g 2 C[a; b℄ with kfkA = kgkA > 0and there are alternation sequen
es(x1 < x2 < � � � < xn+1) and (y1 < y2 < � � � < yn+1)for f and g, respe
tively, on A:



3.3 Chebyshev Polynomials in Chebyshev Spa
es 119Suppose also that sign(f(x1)) = sign(g(y1)):Show that f � g has at least n+ 1 zeros on [a; b℄:
℄ Uniqueness of Chebyshev Polynomials. Show that the Chebyshev poly-nomials Tnff0; f1; : : : ; fn;Agsatisfying properties (3.3.1) to (3.3.3) are unique.Hint: Use part a℄ and E.10 of Se
tion 3.1. utE.2 More on Chebyshev Polynomials. Let Hn := spanff0; : : : ; fng be aChebyshev spa
e on [a; b℄ with asso
iated Chebyshev polynomial denotedby Tn := Tnff0; : : : ; fn; [a; b℄g: Show the following statements.a℄ If 1 2 Hn; then jTn(a)j = jTn(b)j = 1:b℄ If 1 2 Hn; then Tn is monotone between two su

essive points of itsalternation sequen
e.Note that the 
on
lusions of parts a℄ and b℄ do not ne
essarily hold ingeneral.
℄ If Tn =: Pni=0 aifi; ai 2 R; then the 
oeÆ
ient sequen
e of Tn=amsolves minbi2R


fm + nXi=0i6=m bifi


[a;b℄uniquely, provided that ff0; : : : fm�1; fm+1; : : : fng is also a Chebyshev sys-tem on [a; b℄: (So this applies to ordinary polynomials on [0; 1℄ but not on[�1; 1℄:)d℄ Suppose (f0; : : : ; fn) is a Des
artes system on [a; b℄ with asso
iatedChebyshev polynomial Tn := Tnff0; : : : ; fn; [a; b℄g =: Pni=0 aifi; ai 2 R:Show that an > 0 and aiai+1 < 0 for ea
h i = 0; 1; : : : ; n� 1:Hint: Use E.4 a℄ of Se
tion 3.2. utE.3 Extension of Theorem 3.3.1. LetHn := spanff0; : : : ; fng be a Cheby-shev spa
e on [a; b℄ with asso
iated Chebyshev polynomialTn := Tnff0; f1; : : : ; fn; [a; b℄gand suppose ea
h fi is di�erentiable at x0 2 [a; b℄.a℄ If T 0n(x0) > 0; thenmaxfp0(x0) : p 2 Hn ; kpk[a;b℄ � 1 ; p(x0) = Tn(x0)gis attained only by Tn:



120 3. Chebyshev and Des
artes Systemsb℄ If T 0n(x0) < 0; thenminfp0(x0) : p 2 Hn ; kpk[a;b℄ � 1 ; p(x0) = Tn(x0)gis attained and only by Tn:Hint: Consider the number of zeros of Tn � p: utE.4 More Lexi
ographi
 Properties of M�untz Spa
es. Let [a; b℄ � [0;1):Suppose �0 < �1 < � � � < �n and 
0 < 
1 < � � � < 
nare arbitrary real numbers if a > 0; or arbitrary nonnegative numbers ifa = 0. Suppose �i � 
i for ea
h i with stri
t inequality for at least oneindex i: LetHn := spanfx�0 ; x�1 ; : : : ; x�ng and Gn := spanfx
0 ; x
1 ; : : : ; x
ng :Denote the asso
iated Chebyshev polynomials for Hn and Gn on [a; b℄ byTn;� := Tnfx�0 ; x�1 ; : : : ; x�n ; [a; b℄gand Tn;
 := Tnfx
0 ; x
1 ; : : : ; x
n ; [a; b℄g ;respe
tively.a℄ Show that �n � 0 implies Tn;�(b) = 1:Hint: Tn;�(b) 6= 1 would imply that T 0n;� has at least n+1 distin
t zeros in[a;1) if �0 > 0 and at least n distin
t zeros if �0 = 0: utb℄ Let x0 = a or x0 = b. If x0 = a = 0; then assume that �0 = 0 and�1 = 1: Show that maxfjp0(x0)j : p 2 Hn ; kpk[a;b℄ � 1gis attained uniquely by �Tn;�:
℄ Let x0 2 [0;1) n [a; b℄. If x0 = 0; then assume that �0 = 0: Show thatmaxfjp(x0)j : p 2 Hn ; kpk[a;b℄ � 1gis attained uniquely by �Tn;�:Hint for b℄ and 
℄: First prove that an extremal p� 2 Hn exists. Then show,by a variational method, that p� equios
illates n+ 1 times between �1 on[a; b℄: utd℄ Let �n � 0, 
n � 0; and a > 0: Show thatjT 0n;�(b)j < jT 0n;
(b)j :



3.3 Chebyshev Polynomials in Chebyshev Spa
es 121Show also that if a > 0 and there exists an index k, 0 � k � n; su
h that�k = 
k = 0; then jT 0n;�(a)j > jT 0n;
(a)j :e℄ Let �n � 0, 
n � 0; and a > 0: Show thatjTn;�(x0)j < jTn;
(x0)j ; x0 2 (b;1) :Show also that if �0 � 0; 
0 � 0; and a > 0; thenjTn;�(x0)j > jTn;
(x0)j ; x0 2 [0; a)(when x0 = 0; we need the assumption �0 = 
0 = 0).Hint for d℄ and e℄: Suppose to the 
ontrary that one of the inequalitiesof parts d℄ and e℄ fails. Assume, without loss of generality, that there isan index m su
h that �i = 
i whenever i 6= m; and �m < 
m: Note thatby a℄, �n � 0 and 
n � 0 imply Tn;�(b) = Tn;
(b) = 1: Also, by E.1 a℄,�k = 
k = 0 implies Tn;�(a) = Tn;
(a) = (�1)n: Now use Theorem 3.3.4 toshow that Tn;� � Tn;
 2 spanfx�0 ; x�1 ; : : : ; x�n ; x
mghas at least n+2 zeros in (0;1) (in the 
ases when �n � 0 and 
n � 0 areassumed) or in [0;1) (in the 
ases when �k = 
k = 0 is assumed). This
ontradi
tion �nishes the proof. utf ℄ Let 0 < a < b: Show that if �n � 0 and 
n � 0; thenmaxp2Hn jp0(b)jkpk[a;b℄ < maxq2Gn jq0(b)jkqk[a;b℄ :Show also that if there exists an index k, 0 � k � n, su
h that �k = 
k = 0;then maxp2Hn jp0(a)jkpk[a;b℄ > maxq2Gn jq0(a)jkqk[a;b℄ :Hint: Combine parts b℄ and d℄. utg℄ Let 0 < a < b. Let �n � 0 and 
n � 0: Show thatmaxp2Hn jp(x0)jkpk[a;b℄ < maxq2Gn jq(x0)jkqk[a;b℄ ; x0 2 (b;1) :Show also that maxp2Hn jp(x0)jkpk[a;b℄ > maxq2Gn jq(x0)jkqk[a;b℄ ; x0 2 [0; a)(when x0 = 0, we need the assumption �0 = 
0 = 0).



122 3. Chebyshev and Des
artes SystemsHint: Combine parts 
℄ and e℄. uth℄ Extend the validity, with < and > repla
ed by � and �, respe
tively, ofthe inequalities of parts f℄ and g℄ to the 
ase when the interval [a; b℄ � (0;1)is repla
ed by [0; b℄:i℄ Suppose there exists an index k, 0 � k � n, su
h that �k = 
k = 0: Letx0 2 (0; a): Show that the se
ond inequalities of parts e℄ and g℄ hold true.Hint: Modify the arguments given in the hints to parts d℄, e℄, f℄, and g℄.Note that 1 2 Hn \Gn ensures, as in E.1 a℄, thatTn;�(b) = Tn;
(b) = 1 and Tn;�(a) = Tn;
(a) = (�1)n : utE.5 Lexi
ographi
 Properties of (sinh�0t; : : : ; sinh�nt). Let0 < �0 < �1 < � � � < �n and 0 < 
0 < 
1 < � � � < 
n :Suppose �i � 
i for ea
h i: LetHn := spanfsinh�0t; sinh�1t; : : : ; sinh�ntgand Gn := spanfsinh 
0t; sinh 
1t; : : : ; sinh 
ntg :Denote the asso
iated Chebyshev polynomials for Hn and Gn on [0; 1℄ byTn;� := Tnfsinh�0t; sinh�1t; : : : ; sinh�nt; [0; 1℄gand Tn;
 := Tnfsinh 
0t; sinh 
1t; : : : ; sinh 
nt; [0; 1℄g ;respe
tively.a℄ Let �1 < �2 < : : : < �n and �1 < �2 < � � � < �ndenote the zeros of Tn;� and Tn;
 , respe
tively. Show that�i � �i; i = 1; 2; : : : ; n(in other words, the zeros of Tn;� lie to the left of the zeros of Tn;
).Outline. By E.2 d℄ of Se
tion 3.2, (sinh�0t; : : : ; sinh�nt) is a Des
artessystem on (0;1): Hen
e, by Theorem 3.3.3, the zeros ofTn;�;Æ := Tnfsinh�0t; sinh�1t; : : : ; sinh�nt; [Æ; 1℄gon [Æ; 1℄ lie to the left of the zeros of
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es 123Tn;
;Æ := Tnfsinh 
0t; sinh 
1t; : : : ; sinh 
nt; [Æ; 1℄gon [Æ; 1℄ for every Æ 2 (0; 1): Show thatlimÆ!0 kTn;� � Tn;�;Æk = limÆ!0 kTn;
 � Tn;
;Æk = 0 ;hen
e the desired result follows by a 
ontinuity argument. utb℄ Show that maxfjp0(0)j : p 2 Hn ; kpk[0;1℄ � 1gis attained uniquely by �Tn;�:
℄ Show that Tn;�(1) = Tn;
(1) = 1 :Hint: Tn;�(1) 6= 1 would imply thatT 0n;� 2 spanf
osh�0t; 
osh�1t; : : : ; 
osh�ntghas at least n+ 1 distin
t zeros in (0;1): This is impossible, sin
e by E.2e℄ of Se
tion 3.2, (
osh�0t; : : : ; 
osh�nt) is a Des
artes (hen
e Chebyshev)system on (0;1): utd℄ Show that jT 0n;�(0)j � jT 0n;
(0)j :Hint: Suppose to the 
ontrary that the above inequality fails to hold. As-sume, without loss of generality, that there is an index m su
h that �i = 
iwhenever i 6= m; and �m < 
m: ObviouslyTn;�(0) = Tn;
(0) = 0 :Part 
℄ implies that Tn;�(1) = Tn;
(1) = 1 : Now use part a℄ and the aboveobservation to show thatTn;� � Tn;
 2 spanfsinh�0t; sinh�1t; : : : ; sinh�nt; sinh 
mtghas at least n+2 zeros in (0;1): This 
ontradi
ts E.2 d℄ of Se
tion 3.2. ute℄ Show that max06=p2Hn jp0(0)jkpk[0;1℄ � max06=q2Gn jq0(0)jkqk[0;1℄ :Hint: Combine parts b℄ and d℄. utThe result of the following exer
ise has been observed independently byLubinsky and Ziegler [90℄ and Kro�o and Szabados [94℄. Various 
oeÆ
ientestimates for polynomials are dis
ussed in Milovanovi�
, Mitrinovi�
, andRassias [94℄. An estimate for the 
oeÆ
ients of polynomials having a givennumber of terms is obtained in Baishanski and Bojani
 [80℄. Approximationby su
h polynomials is studied in Baishanski [83℄.



124 3. Chebyshev and Des
artes SystemsE.6 CoeÆ
ient Bounds for Polynomials in a Spe
ial Basis. Show thatj
mj � 2�n�2n2m�kpk[�1;1℄ ; m = 0; 1; : : : ; nfor every polynomial p of the formp(x) = nXm=0 
m(1� x)m(x+ 1)n�m ; 
m 2 R :Outline. By E.5 a℄ and b℄ of Se
tion 2.3Tn(x) = nXm=0 dm;n(1� x)m(x+ 1)n�m ;where dm;n = (�1)m2�n �n�1=2m ��n�1=2n�m ��n�1=2n � = 2�n�2n2m� :If j
mj > dm;nkpk[�1;1℄ for some index m; then the polynomialq(x) = Tn(x)dm;n � p(x)
mhas at least n distin
t zeros in (�1; 1): However,q(x) = nXj=0j 6=m aj(1� x)j(x + 1)n�j = (1� x)n nXj=0j 6=m aj �1 + x1� x�n�j
an have at most n� 1 distin
t zeros in (�1; 1) sin
e(u0; u1; : : : un�m�1; un�m+1; un�m+2; : : : ; un)is a Chebyshev system on (0;1) by E.1 a℄ of Se
tion 3.1. utE.7 On the Zeros of the Chebyshev Polynomials for M�untz Spa
es. Let0 =: �0 < �1 < � � � < �n, and letHn := spanfx�0 ; x�1 ; : : : ; x�ng :Denote the asso
iated Chebyshev polynomials for Hn on [0; 1℄ byTn := Tn�x�0 ; x�1 ; : : : ; x�n ; [0; 1℄	 :



3.4 M�untz-Legendre Polynomials 125a℄ Let � 2 �0; 12�. Suppose � < � are two 
onse
utive zeros of Tn lying in[�; 1� �℄. Show that �2n � � � � :Hint: It is 
lear that Qn(x) := x(1 � x)Tn(x) has two 
onse
utive zeros
 < Æ in [�; 1℄ su
h that Æ � 
 � �n :Show that if � � � < �2n ;then Rn(x) := Tn(x) � Tn �
x� � 2 Hnhas at least n+ 1 zeros on [0; �=
℄; whi
h is a 
ontradi
tion. utb℄ Denote the zeros of Tn in (0; 1) by x1 < x2 < � � � < xn: Show thatlogxk+1 � logxk � logxk � logxk�1 ; k = 2; 3; : : : ; n� 1 :Hint: Use a zero 
ounting argument, as in the hint to part a℄. ut3.4 M�untz-Legendre PolynomialsWe examine in some detail the system(x�0 ; x�1 ; : : : )on [0; 1℄ whi
h we 
all aM�untz system. In parti
ular, we expli
itly 
onstru
torthogonal \polynomials" for this system. This allows us to derive variousextremal properties of these systems and leads to a very simple proof of the
lassi
al M�untz-Sz�asz theorem in Se
tion 4.2.We adopt the following de�nition for x�:(3:4:1) x� = e� log x ; x 2 (0;1) ; � 2 Cwith value at 0 de�ned to be the limit of x� as x! 0 from (0;1) wheneverthe limit exists.Given a sequen
e � := (�i)1i=0 of 
omplex numbers, an element ofspanfx�0 ; x�1 ; : : : ; x�ng is 
alled a M�untz polynomial or a �-polynomial.We denote the set of all su
h polynomials by Mn(�); that is,(3:4:2) Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng ;



126 3. Chebyshev and Des
artes Systemswhere the linear span is over R or C a

ording to 
ontext. Let(3:4:3) M(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :For the L2[0; 1℄ theory of M�untz systems, we 
onsider(3:4:4) � = (�i)1i=0 ; Re(�i) > �1=2 ; and �i 6= �j ; i 6= j ;where Re(�) denotes the real part of �: This ensures that the �-polynomialsp(x) = nXk=0 akx�k ; ak 2 Care in L2[0; 1℄. We 
an then de�ne the orthogonal �-polynomials with re-spe
t to Lebesgue measure. We 
all these M�untz-Legendre polynomials. Al-though we often assume (3:4:4), the following de�nition requires neither thedistin
tness of the numbers �i nor the assumption Re(�i) > �1=2:De�nition 3.4.1 (M�untz-Legendre Polynomials). Let � := (�i)1i=0 be a se-quen
e of 
omplex numbers. We de�ne the nth M�untz-Legendre polynomialon (0;1) byLn(x) := Lnf�0; : : : ; �ng(x)(3:4:5) := 12�i Z� n�1Yk=0 t+ �k + 1t� �k xt dtt� �n ; n = 0; 1; : : : ;where the positively oriented, simple 
losed 
ontour � surrounds the zerosof the denominator in the integrand, and �k denotes the 
onjugate of �k:The orthogonality of the above fun
tions with respe
t to the Lebesguemeasure is proved in Theorem 3.4.3. However, �rst we give a simple expli
itrepresentation of Ln in the 
ase that the numbers �i are distin
t. This isdedu
ed immediately from evaluating the above integral by the residuetheorem.Proposition 3.4.2. Let � := (�i)1i=0 be a sequen
e of distin
t 
omplex num-bers. Then(3:4:6) Lnf�0; : : : ; �ng(x) = nXk=0 
k;nx�k ; x 2 (0;1)with 
k;n := Qn�1j=0 (�k + �j + 1)Qnj=0;j 6=k(�k � �j) ;where Lnf�0; : : : ; �ng(x) is de�ned by (3.4.5).



3.4 M�untz-Legendre Polynomials 127So Lnf�0; : : : ; �ng is indeed a � polynomial provided the numbers �iare distin
t. Its value at x = 0 is de�ned if for all i either Re(�i) > 0 or�i = 0:From either De�nition 3.4.1 or the above proposition it is obvious thatthe order of �0; : : : ; �n�1 in Lnf�0; : : : ; �ng does not make any di�eren
e,as long as �n is kept last. For example,L2f�0; �1; �2g = L2f�1; �0; �2gwhile both, in general, are di�erent from L2f�0; �2; �1g. For a �xed sequen
e�, we let Ln(�), or simply Ln, denote the nth M�untz-Legendre polynomialLnf�0; : : : ; �ng, whenever there is no ambiguity.An analog of Proposition 3.4.2 
an be established even if the numbers�i are not distin
t, however, in the nondistin
t 
ase, Ln(�) does not belongto the spa
e Mn(�); see E.7 b℄. In the very spe
ial 
ase that all the indi
esare the same we re
over the Laguerre polynomials; see E.1.The orthogonality of fLng1n=0 is the 
ontent of the main theorem ofthis se
tion.Theorem 3.4.3 (Orthogonality). Let � = (�i)1i=0 be a sequen
e of 
omplexnumbers with Re(�i) > �1=2 for i = 0; 1; : : : . The fun
tions Ln de�ned by(3.4.5) satisfy(3:4:7) Z 10 Ln(x)Lm(x) dx = Æn;m1 + �n + �nfor all nonnegative integers n and m: (Here Æn;m is the Krone
ker symbol.)Proof. We may assume that the numbers �i are distin
t. Note thatLnf�0; �1; : : : ; �ng(x)is uniformly 
ontinuous in �0; : : : ; �n for x in 
losed subintervals of (0; 1℄;and the nondistin
t �i 
ase 
an be handled by a limiting argument. We mayfurther suppose that m � n: Sin
e Re(�i) > �1=2; we 
an pi
k a simple
losed 
ontour � su
h that � lies 
ompletely to the right of the verti
alline Re(t) = �1=2 and � surrounds all zeros of the denominator of theintegrand in (3.4.5). When t 2 �; we have Re(t+ �m) > �1; andZ 10 xt+�m dx = 1t+ �m + 1for every m = 0; 1; : : : : Hen
e Fubini's theorem yieldsZ 10 Ln(x)x�m dx = 12�i Z� n�1Yk=0 t+ �k + 1t� �k dt(t� �n)(t+ �m + 1) :



128 3. Chebyshev and Des
artes SystemsNoti
e that for m < n; the new fa
tor, t + �m + 1; in the denominator
an be 
an
elled, and for m = n the new pole �(�n + 1) is outside �sin
e Re(��n � 1) < �1=2: Changing the 
ontour from � to jtj = R withR > maxf�0j+ 1; : : : ; j�nj+ 1g; givesZ 10 Ln(x)x�m dx = 12�i Zjtj=R n�1Yk=0 t+ �k + 1t� �k dt(t� �n)(t+ �m + 1)� Æm;n��n � 1� �n n�1Yk=0 ��n + �k��n � 1� �k :On letting R!1; we see that the integral on the right-hand side is a
tually0; whi
h givesZ 10 Ln(x)x�m dx = Æn;m�n + �n + 1 n�1Yk=0 �n � �k�n + �k + 1 :Therefore Proposition 3.4.2 and m � n yieldZ 10 Ln(x)Lm(x) dx = Z 10 Ln(x) mXk=0 
k;mx�k dx= 
m;m Z 10 Ln(x)x�m dx = Æm;n�n + �n + 1 ;and the proof is �nished. utAn alternative proof of orthogonality is suggested in E.3. If we let(3:4:8) L�n := (1 + �n + �n)1=2Ln ;then we get an orthonormal system, that is,Z 10 L�n(x)L�m(x) dx = Æm;n ; m; n = 0; 1; : : : :We 
all these L�n the orthonormal M�untz-Legendre polynomials.There is also a Rodrigues-type formula for the M�untz-Legendre poly-nomials (see E.2). Letpn(x) = nXk=0 x�kQnj=0;j 6=k(�k � �j) :Then Ln(x) = (D�0D�1 � � �D�n�1)(pn)(x) ;where the di�erential operators D� are de�ned byD�(f)(x) := x�� ddx (x1+�f(x)) :The following is a di�erential re
urren
e formula for (Ln)1n=0:



3.4 M�untz-Legendre Polynomials 129Theorem 3.4.4. For a �xed sequen
e � := (�i)1i=0 of 
omplex numbers, letLn be de�ned by (3.4.5). The identity(3:4:9) xL0n(x) � xL0n�1(x) = �nLn(x) + (1 + �n�1)Ln�1(x)holds for every x 2 (0;1) and n = 1; 2; : : : :Proof. From (3:4:5) we get(x��nLn(x))0 = 12�i Z� Qn�2k=0 (t+ �k + 1)Qn�1k=0 (t� �k) (t+ �n�1 + 1)xt��n�1 dt :On multiplying both sides by x�n+�n�1+1; we obtainx�n+�n�1+1(x��nLn(x))0= 12�i Z� Qn�2k=0 (t+ �k + 1)Qn�1k=0 (t� �k) (t+ �n�1 + 1)xt+�n�1 dt ;and again by the de�nition of Ln�1;x�n+�n�1+1(x��nLn(x))0 = (x�n�1+1Ln�1(x))0 :We �nish the proof by simplifying by the produ
t rule and dividing bothsides by x�n�1 : utCorollary 3.4.5. For a �xed sequen
e � := (�i)1i=0 of 
omplex numbers, letLn and L�n be de�ned by (3.4.5) and (3.4.8), respe
tively. Then for everyx 2 (0;1) and for every n = 0; 1; : : : ,a℄ xL0n(x) = �nLn(x) + n�1Xk=0 (�k + �k + 1)Lk(x) ;b℄ xL�0n (x) = �nL�n(x) +q�n + �n + 1 n�1Xk=0q�k + �k + 1L�k(x) ;and
℄ xL00n(x) = (�n � 1)L0n(x) + n�1Xk=0 (�k + �k + 1)L0k(x) :Proof. The �rst identity follows from Theorem 3.4.4 on expressingxL0n(x) � xL00(x)as a teles
oping sum. From this and the relationL�k = (�k + �k + 1)1=2Lkwe get part b℄. Di�erentiating the identity of part a℄ gives part 
℄. utThe values and derivative values of the M�untz-Legendre polynomialsat 1 
an now all be 
al
ulated.



130 3. Chebyshev and Des
artes SystemsCorollary 3.4.6. For a �xed sequen
e � := (�i)1i=0 of 
omplex numbers, letLn be de�ned by (3.4.5). Thena℄ Ln(1) = 1 ;b℄ L0n(1) = �n + n�1Xk=0 (�k + �k + 1) ;and
℄ L00n(1) = (�n � 1)L0n(1) + n�1Xk=0 (�k + �k + 1)L0k(1) :Proof. It suÆ
es to show that Ln(1) = 1; the rest follows from Corollary3.4.5. Noti
e that Ln(1) = 12�i Z� n�1Yk=0 t+ �k + 1t� �k dtt� �n :Now, sin
e � surrounds all zeros of the denominator, and the degree of thedenominator is one higher than that of the numerator, we 
an evaluate theintegral on 
ir
les of radius R!1 to get the result. utComments, Exer
ises, and Examples.M�untz polynomials are just exponential polynomials Pake��kt underthe 
hange of variables x = e�t and have re
eived 
onsiderable s
rutiny(S
hwartz [59℄ is a monograph on this topi
). The orthogonalizations ofM�untz systems exist in the Russian literature (see, for example, Badalyan[55℄ and Taslakyan [84℄; it has been further explored in M
Carthy, Sayre,and Shawyer [93℄). Borwein, Erd�elyi, and Zhang [94b℄ 
ontains most of the
ontent of this se
tion.Various properties of the M�untz-Legendre polynomials are examinedin the exer
ises. Note that if �0 < �1 < �2 < � � � ; then the M�untz system(x�0 ; x�1 ; : : : ) is a Des
artes system on [a; b℄; a > 0; and so we 
an applyTheorem 3.3.4 to the asso
iated Chebyshev polynomials on [a; b℄ to dedu
ehow the zeros shift when the exponents are varied lexi
ographi
ally. Similarresults are given for the M�untz-Legendre polynomials in E.7.E.1 Laguerre Polynomials.a℄ Let Lnf�0; : : : ; �ng(x) be de�ned by (3.4.5). If �0 = � � � = �n = �; thenLnf�0; �1; : : : ; �ng(x) = x�Ln(�(1 + �+ �) logx) ;where Ln is the nth Laguerre polynomial orthonormal with respe
t to theweight e�x on [0;1) with Ln(0) = 1 (see E.7 of Se
tion 2.3, where Ln isdenoted by Ln as is standard).



3.4 M�untz-Legendre Polynomials 131Proof. Sin
e �k = �, (3.4.5) yieldsLnf�0; �1; : : : ; �ng(x) = 12�i Z� xt(t+ �+ 1)n(t� �)n+1 dt ;where the 
ontour � 
an be taken to be any 
ir
le 
entered at �: By theresidue theorem,Lnf�0; �1; : : : ; �ng(x) = 1n! � dndtn (xt(t+ �+ 1)n�t=�= 1n! nXk=0�nk�x�(logx)k [n(n� 1) � � � (k + 1)℄(�+ �+ 1)k= x� nXk=0 1k!�nk�(1 + �+ �)k logk x :See also part b℄. utb℄ Let Ln(x) := nXk=0 1k!�nk�(�x)k:Then (Ln)1n=0 is an orthonormal sequen
e of polynomials on [0;1) withrespe
t to the inner produ
thf; gi = Z 10 f(x)g(x)e�x dx :Dedu
e the orthonormality from a℄ and Theorem 3.4.3 by substitutingy = �(1 + �+ �) logx :E.2 Rodrigues-Type Formula. Let � = (�i)1i=0 be a sequen
e of distin
t
omplex numbers. Let Ln be de�ned by (3.4.5).a℄ Let pn(x) := nXk=0 x�kQnj=0;j 6=k(�k � �j) :Show that pn(x) = 12�i Z� xt dtQnj=0(t� �j) ;where � is any 
ontour surrounding �0; �1; : : : ; �n: Use this to show thatp(k)n (1) = 0 ; k = 0; 1; : : : ; n� 1 :



132 3. Chebyshev and Des
artes Systemsb℄ Show that Ln(x) = (D�0D�1 � � �D�n�1)(pn)(x) ;where D�(f)(x) := x��(x1+�f(x))0 :
℄ If 0 = �0 < �1 < � � � ; thenpn(0) = (�1)n nYj=1��1jand (�1)npn is stri
tly de
reasing on [0; 1℄:E.3 Another Proof of Orthogonality. Dedu
e the orthogonality of thesequen
e (Ln)1n=0 on [0; 1℄ from Theorem 3.4.4 by using integration byparts and indu
tion.E.4 Integral Re
ursion. For a given sequen
e � := (�i)1i=0 of 
omplexnumbers satisfying (3.4.4), let Ln be de�ned by (3.4.5). Show thatLn(x) = Ln�1(x)� (�n + �n�1 + 1)x�n Z 1x t��n�1Ln�1(t) dt ; x 2 (0; 1℄ :Hint: Use Theorem 3.4.4. utE.5 On the Maximum of Ln on [0; 1℄. If � = (�i)1i=0 is a sequen
e ofnonnegative numbers satisfying(3:4:10) �n � n�1Xk=0 (1 + 2�k) ; n = 1; 2; : : :and Ln is de�ned by (3.4.5), thenjLn(x)j < Ln(1) = 1 ; x 2 [0; 1) ; n = 2; 3; : : : :Hint: Use Theorem 3.4.4. utIf �k = �k; then (3:4:10) holds if and only if � � 2 +p3:E.6 The Reprodu
ing Kernel. Let � = (�i)1i=0 be as in (3.4.4), and letLn and L�n be de�ned by (3.4.5) and (3.4.8), respe
tively. Then for everyp 2Mn(�); we have p(x) = Z 10 Kn(x; t)p(t) dt ;where Kn(x; t) := nXk=0L�k(x)L�k(t)is the nth reprodu
ing kernel (see also E.5 of Se
tion 2.2).



3.4 M�untz-Legendre Polynomials 133E.7 On the Zeros of M�untz-Legendre Polynomials. Assume that(�0; �1; : : : ; �n) � �� 12 ;1� :a℄ For a fun
tion f 2 C(0; 1) let S�(f) and Z(f) denote the number ofsign 
hanges and the number of zeros, respe
tively, of f in (0; 1) (we 
ountea
h zero without sign 
hange twi
e). Let � and 	 2 C(0; 1). Show that ifn � S�(��+ �	) � Z(��+ ��) � n+ 1for every real � and � with �2 + �2 > 0; then the zeros of � and 	 stri
tlyinterla
e.Proof: This result is due to Pinkus and Ziegler [79℄. utb℄ Assume that f�0; �1; : : : ; �ng = fe�0; e�1; : : : ; e�mg ;where the numbers e�0; e�1; : : : ; e�m are distin
t, and letmj ; j = 0; 1; : : : ;m;be the number of indi
es i = 0; 1; : : : ; n for whi
h �i = e�j : Show thatLnf�0; : : : ; �ng is in the spa
eHn := spanfx�j (logx)i : j = 0; 1; : : : ;m; i = 0; 1; : : : ;mj � 1g ;whi
h is a Chebyshev spa
e on (0;1):Hint: Use the de�nition and the residue theorem. ut
℄ Show that fLkf�0; : : : ; �kggnk=0 is a basis for the Chebyshev spa
e Hnde�ned in part b℄.Hint: Use Theorem 3.4.3 (orthogonality). utd℄ Show that Ln := Lnf�0; : : : ; �ng has exa
tly n distin
t zeros in (0; 1)and Ln 
hanges sign at ea
h of these zeros.Hint: Assume to the 
ontrary that the number of sign 
hanges of Ln is lessthan n. Use part 
℄ to �nd a fun
tion p 2 spanfLkgn�1k=0 that 
hanges signexa
tly at those points in (0; 1) where Ln 
hanges sign. Then R 10 Lnp 6= 0;whi
h 
ontradi
ts Theorem 3.4.3. ute℄ Suppose �n < ��n: Show that the zeros of� := Lnf�0; �1; : : : ; �n�1; �ngand 	 := Lnf�0; �1; : : : ; �n�1; ��ngin (0; 1) stri
tly interla
e.



134 3. Chebyshev and Des
artes SystemsHint: Note that Theorem 3.4.3 (orthogonality) impliesZ 10 (�� + �	)p = 0for every p 2 Hn�1, where Hn�1 is de�ned by part b℄ with respe
t to thesequen
e (�0; �1; : : : ; �n�1): Use the hint given to part d℄ to show that�� + �	 has at least n sign 
hanges in (0; 1) whenever � and � are realwith �2 + �2 > 0: Use part b℄ to obtain that �� + �	 
annot have morethan n + 1 zeros in (0; 1) whenever � and � are real with �2 + �2 > 0:Finish the proof by part a℄. utf ℄ Let �0; : : : ; �k�1; �k+1; : : : ; �n be �xed distin
t numbers. Suppose(�k;i)1i=1 � (�1=2;1)is a sequen
e with limi!1 �k;i =1: Show that the largest zero ofLn;k;i := Lnf�0; : : : ; �k�1; �k;i; �k+1; : : : ; �ngin (0; 1) tends to 1:Outline. Assume, without loss, that �k;i is greater than ea
h of the numbers�j ; j = 0; 1; : : : ; n; j 6= k. Letgi(x) := �k;i(Ln;k;i(x) � 
(i)k;n x�k;i ) ;where 
(i)k;n = Qn�1j=0 (�k;i + �j + 1)Qnj=0;j 6=k(�k;i � �j)is the 
oeÆ
ients of x�k;i in Ln;k;i: Use (3.4.6) to show that the fun
tionsgi 
onverge uniformly on [Æ; 1℄, Æ 2 (0; 1), to a fun
tion0 6= g 2 Hn�1 := spanfx�0 ; : : : ; x�k�1 ; x�k+1 ; : : : ; x�ng :Use Ln;k;i(1) = 1 (see Corollary 3.4.6) and the expli
it formula for 
(i)k;n toshow that g(1) � 0 and that the fun
tionsLn;k;i(x) = (Ln;n;i(x)� 
(i)k;n x�k;i ) + 
(i)k;n x�k;i
onverge to g(x); as i!1; for every x 2 (0; 1):Now assume that the statement of part f℄ is false. Then there is an� 2 (0; 1) and a subsequen
e (�k;ij )1j=1 of (�k;i)1i=1 su
h that the M�untz-Legendre polynomials Ln;k;ij have no zeros in [1��; 1℄: Dedu
e from this and



3.4 M�untz-Legendre Polynomials 135L0n;k;ij (1) > 0, �n;ij > 0 (see Corollary 3.4.6 a℄), that gij is nonde
reasingon [1� �; 1℄ whenever �n;ij > 0:Therefore g is nonde
reasing on [1 � �; 1℄; whi
h, together with 0 6=g 2 Hn�1 and g(1) � 0; implies that g(1� �) < 0: Hen
e Ln;k;i(1� �) < 0if i is large enough. Sin
e Ln;k;i(1) = 1 (see Corollary 3.4.6), ea
h Ln;k;ihas a zero in (1 � �; 1); provided i is large enough, whi
h 
ontradi
ts ourassumption. utg℄ Let � and 	 be as in part e℄. Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros of � and 	; respe
tively, in (0; 1): Show that �n < ��n impliesthat xj < x�j ; j = 1; 2; : : : ; n :Hint: Combine parts e℄ and f℄. uth℄ Let �k 6= �n: Show that the zeros of� := Lnf�0; : : : ; �k�1; �k; �k+1 : : : ; �n�1; �ngand 	 := Lnf�0; : : : ; �k�1; �n; �k+1 : : : ; �n�1; �kgin (0; 1) stri
tly interla
e.Hint: Use part a℄ and arguments similar to those given in the hints to parte℄. Note that�(1) = 	(1) = 1 and 	 0(1)� �0(1) = �n � �k 6= 0(see Corollary 3.4.6 a℄) imply that ��+�	 is not identi
ally 0 whenever �and � are real with �2 + �2 > 0: uti℄ Let � and 	 be as in part h℄. Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros of � and 	; respe
tively, in (0; 1). Show that �k < �n impliesthat xj < x�j ; j = 1; 2; : : : ; n :Hint: By part h℄ it is suÆ
ient to prove that xn � x�n: Let Hn be theChebyshev spa
e de�ned in part b℄. Corollary 3.4.6 implies that�(1) = 	(1) = 1 and 	 0(1)� 	 0(1) = �n � �k > 0 :Dedu
e from this and part i℄ that x�n < xn would imply that 0 6= 	�� 2 Hnhas at least n+ 1 distin
t zeros in (0; 1℄; whi
h is a 
ontradi
tion. ut



136 3. Chebyshev and Des
artes Systemsj℄ Lexi
ographi
 Property. Supposemax0�i�n�i � min0�j�n�jand �i < �j for some indi
es i and j: Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros ofLnf�0; �1; : : : ; �ng and Lnf�0; �1; : : : ; �ng ;respe
tively, in (0; 1): Show thatxj < x�j ; j = 1; 2; : : : ; n :Hint: Repeated appli
ations of parts g℄ and i℄ give the desired result. utk℄ Let �0 < �n: Letx1 < x2 < � � � < xn and x�1 < x�2 < � � � < x�nbe the zeros ofLnf�0; �1; : : : ; �ng and Lnf�n; �n�1; : : : ; �0g ;respe
tively, in (0; 1). Show that (xj)nj=1 and (x�j )nj=1 stri
tly interla
e andxj < x�j ; j = 1; 2; : : : ; n :Hint: Use parts h℄ and i℄ and the 
omment given after Proposition 3.4.2. utl℄ Show that the zeros of� := Ln�1f�0; : : : ; �n�1g and 	 := Lnf�0; : : : ; �ngin (0; 1) stri
tly interla
e.Hint: Use part a℄ and arguments similar to those given in the hints for parte℄. utE.8 A Global Estimate for the Zeros. Let (�i)ni=1 � (�1=2;1). Assumethat x1 < x2 < � � � < xn are the zeros of Lnf�0; : : : ; �ng in (0; 1): Thenexp�� 4n+ 21 + 2��� < x1 < x2 < � � � < xn < exp� �j21(1 + 2��)(4n+ 2)� ;



3.4 M�untz-Legendre Polynomials 137where �� := minf�0; : : : ; �ng, �� := maxf�0; : : : ; �ng and j1 > 3�=4 is thesmallest positive zero of the Bessel fun
tionJ0(z) := 1Xk=0 (�z2)k(k! 2k)2 :Proof. Let Ln be the nth Laguerre polynomial with respe
t to the weighte�x on [0;1); and let the zeros of Ln be z1 < z2 < � � � < zn: Then by[Szeg}o [75℄, pp. 127{131℄)j214n+ 2 < z1 < z2 < � � � < zn < 4n+ 2 ;where the upper estimate is asymptoti
ally sharp, and the lower estimateis sharp up to a multipli
ative 
onstant (not ex
eeding 44=(9�2)). Now useE.1 and E.7 j℄. utE.9 The Order of the Zero at 1 of Certain Polynomials. This exer
ise, duein part to K�os, gives pre
ise estimates on the maximum order of the zero at1 of a polynomial whose 
oeÆ
ients are bounded in modulus by the leading
oeÆ
ient.a℄ Suppose a0; a1; : : : ; an�1 are 
omplex numbers with modulus at most1; and suppose an = 1: Then the multipli
ity of the zero ofp(x) = a0 + a1x+ a2x2 + � � �+ anxnat 1 is at most 5pn:Proof. If p has a zero at 1 of multipli
ity m, then for every polynomial fof degree less than m, we have(3.4.11) a0f(0) + a1f(1) + � � �+ anf(n) = 0 :We 
onstru
t a polynomial f of degree at most 5pn; for whi
hf(n) > jf(0)j+ jf(1)j+ � � �+ jf(n� 1)j :Equality (3.4.11) 
annot hold with this f , so the multipli
ity of the zero ofp at 1 is at most the degree of f:Let T� be the �th Chebyshev polynomial de�ned by (2.1.1). Let k 2 N;and let g := T0 + T1 + � � �+ Tk 2 Pk :Note that g(1) = k + 1: Also, for 0 < y � �;



138 3. Chebyshev and Des
artes Systemsg(
os y) = 1 + 
os y + 
os 2y + � � �+ 
os ky = sin(k + 12 )y + sin 12y2 sin 12y :Hen
e, for �1 � x < 1; jg(x)j � p2p1� x :Let f(x) := g4( 2xn � 1): Then f(n) = g4(1) = (k + 1)4 andjf(0)j+ jf(1)j+ � � �+ jf(n� 1)j � nXj=1 4� 2jn �2 < n2 1Xj=1 1j2 = �2n26 :If k := b(�2=6)1=4pn
; thenf(n) > jf(0)j+ jf(1)j+ � � �+ jf(n� 1)j :In this 
ase the degree of f is 4k � 5pn: utThe result of part a℄ is essentially sharp.b℄ For every n 2 N; there exists a polynomialpn(x) = a0 + a1x+ � � �+ a2n2x2n2su
h that a2n2 = 1; ja0j; ja1j; : : : ; ja2n2�1j are real numbers with modulusat most 1; and pn has a zero at 1 with multipli
ity at least n:Proof. De�neLn(x) := (n!)22�i Z� xt dtQnk=0 (t� k2) ; n = 0; 1; : : : ;where the simple 
losed 
ontour � surrounds the zeros of the denominatorof the integrand. Then Ln is a polynomial of degree n2 with a zero of mul-tipli
ity at least n at 1: (This 
an easily be seen by repeated di�erentiationand then evaluation of the above 
ontour integral by expanding the 
ontourto in�nity.)Also, by the residue theorem,Ln(x) = 1 + nXk=1 
k;nxk2where 
k;n = (�1)n(n!)2Qnj=0;j 6=k(k2 � j2) = (�1)k2(n!)2(n� k)!(n+ k)! :It follows that j
k;nj � 2 ; k = 1; 2; : : : ; n :Hen
e, Pn(x) := Ln(x) + Ln(x2)2is a polynomial of degree 2n2 with a zero of order n at 1: Also Pn has
onstant 
oeÆ
ient 1 and ea
h of its other 
oeÆ
ients is a real number ofmodulus less than 1: Now let pn(x) := x2n2Pn(1=x): ut
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℄ For every n 2 N; there exists a polynomialpn(x) = a0 + a1x+ � � �+ anxnsu
h that an = 1; a0; a1; : : : ; an�1 are real numbers of modulus less than1; and p has a zero at 1 with multipli
ity at least bpn=2
:3.5 Chebyshev Polynomials in Rational Spa
esThere are very few situations where Chebyshev polynomials 
an be expli
-itly 
omputed. Indeed, only the 
lassi
al 
ase of Se
tion 2.1 is well known.However, the expli
it formulas for the Chebyshev polynomials for thetrigonometri
 rational system(3:5:1) �1 ; 1� sin �
os � � a1 ; 1� sin �
os � � a2 ; : : : ; 1� sin �
os � � an� ; � 2 [0; 2�)and therefore also for the rational system(3:5:2) �1 ; 1x� a1 ; 1x� a2 ; : : : ; 1x� an� ; x 2 [�1; 1℄with distin
t real poles outside [�1; 1℄ are impli
itly 
ontained in A
hiezer[56℄.The 
ase (3:5:1) does not perfe
tly �t our dis
ussion of Se
tion 3.3be
ause of the periodi
ity or be
ause [0; 2�) is not a 
ompa
t subset ofR. This leads to nonuniqueness of the Chebyshev polynomials. Note thatordinary polynomials arise as a limiting 
ase of the span of system (3:5:2)on letting all the poles tend to �1:We are primarily interested in the linear span of (3:5:2) and its trigono-metri
 
ounterpart obtained with the substitution x = 
os �: Let(3:5:3) Pn(a1; a2; : : : ; an) := � p(x)Qnk=1 jx� akj : p 2 Pn�and(3:5:4) Tn(a1; a2; : : : ; an) := � t(�)Qnk=1 j
os � � akj : t 2 Tn� ;where (ak)nk=1 � C n[�1; 1℄ is a �xed sequen
e of poles.
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artes SystemsWhen the poles a1; a2; : : : ; an are distin
t and real, (3:5:3) and (3:5:4)are simply the real spans of the systems(3:5:5) �1 ; 1x� a1 ; 1x� a2 ; : : : ; 1x� an� on [�1; 1℄and(3:5:6) �1 ; 1� sin �
os � � a1 ; 1� sin �
os � � a2 ; : : : ; ; 1� sin �
os � � an� on [0; 2�) ;respe
tively.We 
an 
onstru
t Chebyshev polynomials of the �rst and se
ondkinds, whi
h are analogous to Tn and Un of Se
tion 2.1, for the spa
esPn(a1; a2; : : : ; an) and Tn(a1; a2; : : : ; an) as follows. Given a sequen
e(ak)nk=1 � C n[�1; 1℄; we de�ne the sequen
e (
k)nk=1 by(3:5:7) ak = 12 (
k + 
�1k ) ; j
kj < 1 ;that is,(3:5:8) 
k := ak �qa2k � 1 ; j
kj < 1 :Note that �ak +qa2k � 1��ak �qa2k � 1� = 1 :In what follows, pa2k � 1 is always de�ned by (3:5:8) (this spe
i�es the
hoi
e of root). Let D := fz 2 C : jzj < 1g; let(3:5:9) Mn(z) :=  nYk=1(z � 
k)(z � 
k)!1=2 ;where the square root is de�ned so thatM�n(z) := znMn(z�1) is an analyti
fun
tion in a neighborhood of the 
losed unit disk D; and let(3:5:10) fn(z) := Mn(z)znMn(z�1) :Note that f2n is a
tually a �nite Blas
hke produ
t (see E.12 of Se
tion 4.2).Also, fn(z�1) = fn(z)�1 whenever jzj = 1:
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es 141The Chebyshev polynomials of the �rst kind for the spa
esPn(a1; a2; : : : ; an) and Tn(a1; a2; : : : ; an)are now de�ned by(3:5:11) Tn(x) := 12 (fn(z) + fn(z)�1) ; where x := 12 (z + z�1) ; jzj = 1and(3:5:12) eTn(�) := Tn(
os �) ; � 2 R ;respe
tively.The Chebyshev polynomials of the se
ond kind for these two spa
es arede�ned by(3:5:13) Un(x) := fn(z)� fn(z)�1z � z�1 ; where x := 12 (z + z�1) ; jzj = 1and(3:5:14) eUn(�) := Un(
os �) sin � ; � 2 R ;respe
tively.As we will see, these Chebyshev polynomials preserve many of the ele-mentary properties of the 
lassi
al trigonometri
 and algebrai
 Chebyshevpolynomials. This is the 
ontent of the next three results.Theorem 3.5.1 (Chebyshev Polynomials of the First and Se
ond Kinds inTrigonometri
 Rational Spa
es). Given (ak)nk=1 � C n[�1; 1℄; let eTn andeUn be de�ned by (3.5.12) and (3.5.14), respe
tively. Then the followingstatements hold:a℄ eTn 2 Tn(a1; a2; : : : ; an) and eUn 2 Tn(a1; a2; : : : ; an) :b℄ keTnkR = 1 and keUnkR = 1 :
℄ There exist 0 = �0 < �1 < � � � < �n = � su
h thateTn(�j) = eTn(��j) = (�1)j ; j = 0; 1; : : : ; n :d℄ There exist 0 < �1 < �2 < � � � < �n < � su
h thateUn(�j) = �eUn(��j) = (�1)j�1 ; j = 1; 2; : : : ; n :e℄ For every � 2 R; eT 2n(�) + eU2n(�) = 1 :Proof. Observe that there are polynomials p1 2 Pn and p2 2 Pn�1 su
hthat eTn(�) = Tn(
os �) = e�in�M2n(ei�) + ein�M2n(e�i�)2Mn(ei�)Mn(e�i�)(3:5:15) = p1(
os �)Qnk=1 j
os � � akj
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artes Systemsand eUn(�) = Un(
os �) sin � = e�in�M2n(ei�)� ein�M2n(e�i�)2iMn(ei�)Mn(e�i�)(3:5:16) = p2(
os �) sin �Qnk=1 j
os � � akj :Thus a℄ is proved.Sin
e j
kj < 1 and f2n is a �nite Blas
hke produ
t, we have(3:5:17) jfn(z)j = 1 whenever jzj = 1 :Now b℄ follows immediately from (3:5:10) to (3:5:14).Note that eTn(�) is the real part, and eUn(�) is the imaginary part offn(ei�), that is, fn(ei�) = eTn(�) + ieUn(�) ; � 2 R ;whi
h together with (3:5:17) implies e℄.To prove parts 
℄ and d℄, we note that eTn(�) = �1 if and only iffn(ei�) = �1; and eUn(�) = �1 if and only if fn(ei�) = �i: Sin
e j
kj < 1for k = 1; 2; : : : ; n; f2n has exa
tly 2n zeros in the open unit disk D: Sin
ef2n is analyti
 in a region 
ontaining the 
losed unit disk D; 
℄ and d℄ followby the argument prin
iple (see, for example, Ash [71℄). utWith the transformation x = 
os � = 12 (z+ z�1) and z = ei�; Theorem3.5.1 
an be reformulated as follows:Theorem 3.5.2 (Chebyshev Polynomials in Algebrai
 Rational Spa
es).Given (ak)nk=1 � C n [�1; 1℄; let Tn and Un be de�ned by (3.5.11) and(3.5.13), respe
tively. Thena℄ Tn 2 Pn(a1; a2; : : : ; an) and Un 2 Pn(a1; a2; : : : ; an) :b℄ kTnk[�1;1℄ = 1 and kp1� x2 Un(x)k[�1;1℄ = 1 :
℄ There exist 1 = x0 > x1 > � � � > xn = �1 su
h thatTn(xj) = (�1)j ; j = 0; 1; 2; : : : ; n :d℄ There exist 1 > y1 > y2 > � � � > yn > �1 su
h thatq1� y2j Un(yj) = (�1)j�1 ; j = 1; 2; : : : ; n :e℄ For every x 2 [�1; 1℄;(Tn(x))2 + (p1� x2 Un(x))2 = 1 :
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es 143Parts 
℄ and d℄ of Theorems 3.5.1 and 3.5.2 establish the equios
illa-tion property of the Chebyshev polynomials, whi
h also extends to 
ertainlinear 
ombinations of Chebyshev polynomials. In the trigonometri
 poly-nomial 
ase this is the fa
t that 
os� 
osn�+sin� sinn� = 
os(n���) equi-os
illates 2n times on the unit 
ir
le [0; 2�℄: Our next theorem 
hara
terizesthe Chebyshev polynomials for Tn(a1; a2; : : : ; an) and re
ords a monotoni
-ity property that we require later.Theorem 3.5.3 (Chebyshev Polynomials in Trigonometri
 Rational Spa
es).Let (ak)nk=1 � C n [�1; 1℄: Then (i) and (ii) below are equivalent:(i) There is an � 2 R su
h thatV = (
os�) eTn + (sin�) eUn ;where eTn and eUn are de�ned by (3.5.12) and (3.5.14).(ii) V 2 Tn(a1; a2; : : : ; an) has uniform norm 1 on R; and it equios
illates2n times on R (mod 2�). That is, there exist0 � �0 < �1 < � � � < �2n�1 < 2�so that V (�j) = �(�1)j ; j = 0; 1; : : : ; 2n� 1 :Furthermore, if V is of the form in (i) (or 
hara
terized by (ii)), thenV 0 = (
os�) eT 0n + (sin�) eU 0ndoes not vanish between any two 
onse
utive alternation points of V (thatis, between �j�1 and �j for j = 1; 2; : : : ; 2n � 1 and between �2n�1 and2� + �0).Proof. (i)) (ii). By Theorem 3.5.1 e℄ and Cau
hy's inequality, we have(3:5:18) j(
os�) eTn + (sin�) eUnj2 � (
os2 �+ sin2 �)( eT 2n + eU2n) = 1on the real line. From Theorem 3.5.1 
℄, d℄, and e℄, we obtain that eTn=eUnos
illates between +1 and �1 exa
tly 2n times on R (mod 2�), andhen
e it takes the value 
ot� exa
tly 2n times. At ea
h su
h point, (3:5:18)be
omes an equality, namely, (
os�) eTn + (sin�) eUn = �1 with di�erentsigns for every two 
onse
utive su
h points.(ii)) (i). Let V be as spe
i�ed in part (ii) of the theorem. Let �0 bea point where V a
hieves its maximum on R, so V (�0) = 1: We want toshow that V is equal to p := eTn(�0) eTn+ eUn(�0)eUn: Sin
e V (�0) = p(�0) = 1and V 0(�0) = p0(�0) = 0, V � p has a zero at �0 with multipli
ity at least2: There are at least 2n � 1 more zeros (we 
ount multipli
ities) of V � p



144 3. Chebyshev and Des
artes Systemsin R (mod 2�), with one between any two 
onse
utive alternation points ofp if the �rst zero of p to the right of �0 is greater than the �rst zero of Vto the right of �0: If the �rst zero of V to the right of �0 is greater than orequal to the �rst zero of p to the right of �0; then there is one zero of p�Vbetween any two 
onse
utive alternation points of V: In any 
ase V � p hasat least 2n+ 1 zeros in R (mod 2�). Hen
e V � p is identi
ally 0:To prove the �nal part of the theorem let V 2 Tn(a1; a2; : : : ; an) besu
h that kV kR = 1 and V equios
illates 2n times on R (mod 2�) between�1: Assume there is a �0 2 [0; 2�) su
h that jV (�0)j < 1 and V 0(�0) = 0:Then V (�0) 6= 0; otherwise the numerator of V would have at least 2n+ 1zeros in R (mod 2�), whi
h is a 
ontradi
tion. Observe that there is atrigonometri
 polynomial t 2 T2n su
h thatV 2(�) � V 2(�0) = t(�)Qnk=1(
os � � ak)(
os � � ak) :This t has at least 4n + 1 zeros in R (mod 2�), whi
h is a 
ontradi
tionagain. Therefore V 0(�) 6= 0 if jV (�)j < 1; whi
h means that V is stri
tlymonotone between any two of its 
onse
utive alternation points. utUnder some assumptions on (ak)nk=1 it is easy to write down the expli
itpartial fra
tion de
ompositions for Tn and Un.Theorem 3.5.4. Let (ak)nk=1 � C n [�1; 1℄ be a sequen
e of distin
t numberssu
h that its nonreal elements are paired by 
omplex 
onjugation. Let Tnand Un be the Chebyshev polynomials of the �rst and se
ond kinds de�nedby (3.5.11) and (3.5.13), respe
tively. Then(3:5:19) Tn(x) = A0;n + A1;nx� a1 + � � �+ An;nx� anand(3:5:20) Un(x) = B1;nx� a1 + B2;nx� a2 + � � �+ Bn;nx� an ;where A0;n = (�1)n2 (
�11 
�12 � � � 
�1n + 
1
2 � � � 
n) ;Ak;n = �
k � 
�1k2 �2 nYj=1j 6=k 1� 
k
j
k � 
j ; k = 1; 2; : : : ; n ;and Bk;n = 
k � 
�1k2 nYj=1j 6=k 1� 
k
j
k � 
j ; k = 1; 2; : : : ; n :
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es 145Proof. It follows from Theorems 3.5.1 a℄ and 3.5.2 a℄ that Tn and Un 
an bewritten as the partial fra
tion forms above. Now it is quite easy to 
al
ulatethe 
oeÆ
ients Ak;n and Bk;n. For example,A0;n = limx!1Tn(x) = limz!0 12 � Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= (�1)n2 (
�11 
�12 � � � 
�1n + 
1
2 � � � 
n)and for k = 1; 2; : : : ; n ;Ak;n = limx!ak(x� ak)Tn(x)= limz!
k 14(z � 
k)(1� 
�1k z�1)� Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= �
k � 
�1k2 �2 nYj=1j 6=k 1� 
k
j
k � 
j ; k = 1; 2; : : : ; n :The 
oeÆ
ients Bk;n 
an be 
al
ulated in the same fashion. utComments, Exer
ises, and Examples.The expli
it formulas of this se
tion are tremendously useful. They al-low, for example, derivation of sharp Bernstein-type inequalities for ra-tional fun
tions; see Se
tion 7.1. Various further properties of these Cheby-shev polynomials for rational fun
tion spa
es are explored in the exer
ises,whi
h follow, Borwein, Erd�elyi, and Zhang [94b℄. In parti
ular, the orthog-onalization of su
h rational systems on [�1; 1℄ with respe
t to the weightw(x) = (1� x2)�1=2 
an be made expli
it in terms of the Chebyshev poly-nomials. Various other aspe
ts of these orthogonalizations may be found inA
hiezer [56℄, Bultheel et al. [91℄, and Van Ass
he and Vanherwegen [92℄.E.1 Further Properties of eTn and Tn. Given (ak)nk=1 � C n [�1; 1℄, let(
k)nk=1 be de�ned by
k := ak �qa2k � 1 ; j
kj < 1 ;as before. We introdu
e the Bernstein fa
torsBn(x) := nXk=1Re pa2k � 1ak � x !and eBn(�) := Bn(
os �) == nXk=1Re pa2k � 1ak � 
os �! ;
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artes Systemswhere the 
hoi
e of pa2k � 1 is determined by the restri
tion j
kj < 1: Notethat for x 2 [�1; 1℄; we haveRe pa2k � 1ak � x ! = Re 
�1k � 
k12
�1k � x! � (1� j
kj2)(1� j
kj)2j1� 2
kxj2 > 0 :The following result generalizes the trigonometri
 identities(
osnt)0 = �n sinnt ; (sinnt)0 = n 
osnt ;and ((
osnt)0)2 + ((sinnt)0)2 = n2 ;whi
h are limiting 
ases (if n 2 N and t 2 R are �xed, then lim eBn(t) = nas all ak ! �1):a℄ Show that, on the real line,eT 0n = � eBn eUn ; eU 0n = eBn eTn ;and ( eT 0n)2 + (eU 0n)2 = eB2n :Hint: For example,eT 0n(�) = 12 �f 0n(ei�)� f 0n(ei�)f2n(ei�)� iei�= �ei�f 0n(ei�)fn(ei�) fn(ei�)� fn(ei�)�12i = � eBn(�)eUn(�) : utb℄ If V := (
os�) eTn + (sin�) eUn for some � 2 R; then(V 0)2 + eB2nV 2 = eB2nholds on the real line.
℄ The Derivative of Tn at �1. Let Tn be de�ned by (3:5:11). ThenT 0n(1) =  nXk=1Re�1 + 
k1� 
k�!2and T 0n(�1) = (�1)n nXk=1Re�1� 
k1 + 
k�!2 :
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es 147d℄ Contour Integral for Tn. Show thatTn(x) = 12�i Z
0� nYj=1 (t� 
j)(t� 
j)(1� 
jt)(1� 
jt)1A1=2 t� xt2 � 2tx+ 1 dtfor every x 2 [�1; 1℄; where 
 is a 
ir
le 
entered at the origin with radius1 < r < minfj
�1j j : 1 � j � ng; and the square root in the integrand is ananalyti
 fun
tion of t in a neighborhood of 
:Hint: Cau
hy's integral formula and the map x = 12 (z + z�1) giveTn(x) = 12 � Mn(z)znMn(z�1) + znMn(z�1)Mn(z) �= 12�i Z
 12 Mn(t)tnMn(t�1) � 1t� z + 1t� z�1� dt= 12�i Z
 Mn(t)tnMn(t�1) t� xt2 � 2tx+ 1 dt ;where Mn is de�ned by (3.5.9). utE.2 Orthogonality. Given (ak)1k=1 � Rn [�1; 1℄; let (
k)1k=1 be de�ned byak = 12 (
k + 
�1k ) ; 
k = ak �pa2k � 1 ; 
k 2 (�1; 1)and let (Tn)1n=0 be de�ned by (3.5.11).a℄ Show thatZ 1�1 Tn(x)Tm(x) dxp1� x2 = �2 (�1)n+m(1 + 
21 � � � 
2m)
m+1 � � � 
nfor all integers 0 � m � n: (The empty produ
t is understood to be 1.)b℄ Given a 2 R n [�1; 1℄; let 
 2 (�1; 1) be de�ned bya = 12 (
+ 
�1) ; 
 = a�pa2 � 1 ; 
 2 (�1; 1) :Show that Z 1�1 Tn(x) 1x� a dxp1� x2 = 2�
� 
�1 nYj=1 
� 
j1� 

j :
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artes Systems
℄ Show that Z 1�1 Tn(x) dxp1� x2 = (�1)n�
1
2 � � � 
nand Z 1�1 Tn(x) 1x � ak dxp1� x2 = 0 ; k = 1; 2; : : : ; n :Given a sequen
e (ak)1k=1 � Rn[�1; 1℄; we de�neR0 := 1 ; Rn := Tn + 
nTn�1and R�0 := 1p� ; R�n :=s 2�(1� 
2n) (Tn + 
nTn�1) :The following part of this exer
ise indi
ates that these simple linear 
om-binations of Tn and Tn�1 give the orthogonalization of the rational system�1 ; 1x� a1 ; 1x� a2 ; : : :�whenever (ak)1k=1 � R n [�1; 1℄ is a sequen
e of distin
t real numbers.d℄ Show that, for all nonnegative integers n and m;Z 1�1R�n(x)R�m(x) dxp1� x2 = Æm;n ;where Æm;n is the Krone
ker symbol.Proof. Let m � n. By part 
℄,Z 1�1Rn(x) 1x � ak dxp1� x2 = 0holds for k = 1; 2; : : : ; n� 1. AlsoZ 1�1Rn(x) dxp1� x2 = Z 1�1 (Tn(x) + 
nTn�1(x)) dxp1� x2= (�1)n(
1
2 � � � 
n) + 
n(�1)n�1(
1
2 � � � 
n�1) = 0 :This implies thatZ 1�1Rn(x)Rm(x) dxp1� x2 = 0 ; m = 0; 1; : : : ; n� 1 :Finally, it follows from part a℄ thatZ 1�1R�n(x)2 dxp1� x2 = 1 : ute℄ Assume (ak)1k=1 � R n [�1; 1℄: Then Tn and Rn have exa
tly n zeros in[�1; 1℄; and the zeros of Tn�1 and Tn stri
tly interla
e.
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es 149E.3 Extension of Theorems 3.5.1 and 3.5.3. Given (ak)2nk=1 � C n R; letTn(a1; a2; : : : ; a2n) := ( t(�)Q2nk=1 jsin((� � ak)=2)j : t 2 Tn) :Without loss of generality we may assume thatIm(ak) > 0 ; k = 1; 2; : : : ; 2n :a℄ Show that there is a polynomial q2n 2 P
2n of the formq2n(z) = 
 2nYk=1 (z � 
k) ; j
kj < 1 ; 
 2 Csu
h that jq2n(ei�)j = 2nYk=1 jsin((� � ak)=2)j ; � 2 R :Hint: Use the fa
t that jz � 
j = j1� 
zj whenever jzj = 1 and 
 2 C : utAsso
iated with q2n 2 P
2n de�ned in part a℄, letMn(z) :=pq2n(z)and M�n(z) :=  
 2nYk=1(1� 
z)!1=2 ;where the square roots are de�ned so that M�n is analyti
 in a neighbor-hood of the 
losed unit disk, and Mn is analyti
 in a neighborhood of the
omplement of the open unit disk. Letfn(z) := Mn(z)M�n(z) :For � 2 R; we de�neeTn(�) := Re(fn(ei�)) = 12 �Mn(ei�)M�n(ei�) + M�n(ei�)Mn(ei�)�and eUn(�) := Im(fn(ei�)) = 12i �Mn(ei�)M�n(ei�) � M�n(ei�)Mn(ei�)� :Using the new (extended) de�nitions, show the following:



150 3. Chebyshev and Des
artes Systemsb℄ eTn 2 Tn(a1; a2; : : : ; a2n) and eUn 2 Tn(a1; a2; : : : ; a2n) :
℄ k eTnkR = 1 and keUnkR = 1 :d℄ There are numbers �1 < �2 < � � � < �2n in [��; �) su
h thateT (�j) = �(�1)j ; j = 1; 2; : : : ; 2n :e℄ There are numbers �1 < �2 < � � � < �2n in [��; �) su
h thateU(�j) = �(�1)j ; j = 1; 2; : : : ; 2n :f ℄ eT (�)2 + eU(�)2 = 1 for every � 2 R :g℄ Both eTn and eUn have exa
tly 2n simple zeros in the period [��; �), andthe zeros of eTn and eUn stri
tly interla
e.h℄ The statements of Theorem 3.5.3 remain valid.E.4 Extension of the Bernstein Fa
tor eBn. Let(ak)2nk=1 � C n R ; Im(ak) > 0 :With the notation of the previous exer
ise we de�neeBn(�) := ei�f 0n(ei�)fn(ei�) ; � 2 R :a℄ Show that for every � 2 R;eBn(�) = 2nXk=1 1� j
kj2j
k � ei�j2 = 2nXk=1 1� jeiak j2jeiak � ei�j2 :b℄ Show that, on the real line,eT 0n = � eBn eUn ; eU 0n = eBn eTn ;and ( eT 0n)2 + (eU 0n)2 = eB2n :
℄ Show that (V 0)2 + eB2nV 2 = eB2nholds on the real line for every V of the formV = (
os�) eTn + (sin�) eUn ; � 2 R :



3.5 Chebyshev Polynomials in Rational Spa
es 151E.5 Chebyshev Polynomials for Pn(a1; a2; : : : ; an) on R. Let(ak)nk=1 � C n R with Im(ak) > 0 ; k = 1; 2; : : : ; n :Let Mn(z) :=  nYk=1(z � ak)!1=2and M�n(z) :=  nYk=1(z � ak)!1=2 ;where the square roots are de�ned so thatM�n is analyti
 in a neighborhoodof the 
losed upper half-plane, and Mn is analyti
 in a neighborhood of the
losed lower half-plane. Let fn(z) := Mn(z)M�n(z) :For x 2 R; we de�neTn(x) := Re(fn(x)) = 12 �Mn(x)M�n(x) + M�n(x)Mn(x)�and Un(x) := Im(fn(x)) = 12i �Mn(x)M�n(x) � M�n(x)Mn(x)� :Show the following:a℄ Tn 2 Pn(a1; a2; : : : ; an) and Un 2 Pn(a1; a2; : : : ; an) :b℄ kTnkR = 1 and kUnkR = 1 :
℄ There are real numbers x1 > x2 > � � � > xn�1 su
h thatTn(xj) = (�1)j ; limx!1Tn(x) = 1 ; and limx!�1Tn(x) = (�1)n :d℄ There are real numbers y1 > y2 > � � � > yn�1 su
h thatUn(yj) = (�1)j+1 and limx!�1Un(x) = 0 :e℄ Tn(x)2 + Un(x)2 = 1 for every x 2 R :f ℄ Both Tn and Un have exa
tly n simple zeros on R; and the zeros of Tnand Un stri
tly interla
e.



152 3. Chebyshev and Des
artes Systemsg℄ The following statements are equivalent:(i) There exists an � 2 R su
h thatV = (
os�)Tn + (sin�)Un :(ii) V 2 Pn(a1; a2; � � � ; an) has uniform norm 1 on R; and it equios
illatesn times on the extended real line. That is, there are extended real numbers1 � z1 > z2 > � � � > zn > �1 su
h thatV (zj) = �(�1)j ; j = 1; 2; : : : ; n ;where V (1) := limx!1V (x) :h℄ With the notation of part g℄, V is stri
tly monotone on ea
h of theintervals (z1;1); (z2; z1); : : : ; (zn; zn�1); (�1; zn) :E.6 Bernstein Fa
tor on R. Let (ak)nk=1 � C n R withIm(ak) > 0 ; k = 1; 2; : : : ; n :With the notation of E.5 letBn(x) := f 0n(x)fn(x) ; x 2 R :a℄ Show that Bn(x) = nXk=1 2Im(ak)jx� akj2 ; x 2 R :b℄ Show that, on the real line,T 0n = �BnUn ; U 0n = BnTn ;and (T 0n)2 + (U 0n)2 = B2n :
℄ Show that (V 0)2 +B2nV 2 = B2nholds on the real line for every V of the formV = (
os�)Tn + (sin�)Un :



3.5 Chebyshev Polynomials in Rational Spa
es 153E.7 CoeÆ
ient Bounds in Nondense Rational Fun
tion Spa
es. Suppose(ak)1k=1 � R n [�1; 1℄ is a sequen
e of distin
t numbers satisfying1Xj=1q1� jaj j�2 <1 :Show that there are numbers Kj > 0 su
h thatjDj;nj � Kjkpk[�1;1℄ ; j = 0; 1; : : : ; n ; n 2 Nfor every p 2 Pn(a1; a2; : : : ; an) of the formp(x) = D0;n + D1;nx� a1 + � � �+ Dn;nx� an ; Dj;n 2 R :Hint: Use E.2 
℄ of Se
tion 3.3 and Theorem 3.5.4. ut



This is page 154Printer: Opaque this4Denseness Questions

OverviewWe give an extended treatment of when various Markov spa
es are dense.In parti
ular, we show that denseness, in many situations, is equivalent todenseness of the zeros of the asso
iated Chebyshev polynomials. This isthe prin
ipal theorem of the �rst se
tion. Various versions of Weierstrass'
lassi
al approximation theorem are then 
onsidered. The most impor-tant is in Se
tion 4.2 where M�untz's theorem 
on
erning the denseness ofspanf1; x�1 ; x�2 ; : : : g is analyzed in detail. The third se
tion 
on
erns theequivalen
e of denseness of Markov spa
es and the existen
e of unboundedBernstein inequalities. In the �nal se
tion we 
onsider when rational fun
-tions derived from Markov systems are dense. In
luded is the surprisingresult that rational fun
tions from a �xed in�nite M�untz system are alwaysdense.4.1 Variations on the Weierstrass TheoremMu
h of the utility of polynomials stems from the fa
t that all 
ontinuousfun
tions on a �nite 
losed interval are uniform limits of them. This is thewell-knownWeierstrass approximation theorem. There are numerous proofsof this; several are presented in the exer
ises. Another proof follows fromthe main theorem of this se
tion.



4.1 Variations on the Weierstrass Theorem 155Asso
iated with a Markov systemM := (f0; f1; : : : ) on [a; b℄ we de�ne,as in Se
tion 3.3, the Chebyshev polynomialsTn := Tnff0; f1; : : : ; fn; [a; b℄g :Denote the zeros of Tn by (a �)x1 < x2 < � � � < xn(� b). Let x0 := aand xn+1 := b. The mesh of Tn is de�ned by(4:1:1) Mn :=Mn(Tn : [a; b℄) := max1�i�n+1 jxi � xi�1j :This is a measure of the maximal gap between two 
onse
utive zeros of Tnwith respe
t to the interval [a; b℄:For a sequen
e (Tn)1n=0 of Chebyshev polynomials asso
iated with a�xed Markov system on [a; b℄; we havelimn!1Mn = 0 if and only if lim infn!1 Mn = 0 :This follows from the fa
t that if m < n; then Tm 
annot have more thanone zero between any two 
onse
utive zeros of Tn:Our main result shows the strong 
onne
tion between the denseness ofthe real span of an in�nite Markov system M of C1 fun
tions on [a; b℄ inC[a; b℄ and the density of the zeros of the asso
iated Chebyshev polynomials.Theorem 4.1.1. Suppose M := (1; f1; f2; : : : ) is an in�nite Markov systemon [a; b℄ with ea
h fi 2 C1[a; b℄: Then span M is dense in C[a; b℄ if andonly if limn!1Mn = 0 ;where Mn is the mesh of the asso
iated Chebyshev polynomials.Proof. The only if part of this result is the easier part and we o�er thefollowing proof. Suppose span M is dense in C[a; b℄; while lim infn!1 Mn > 0:Then there exists an interval [
; d℄ � [a; b℄ that 
ontains no zero of Tn forin�nitely many n, say, for n1 < n2 < � � � : Consider the pie
ewise linearfun
tion F de�ned as follows. Let 
 < y1 < y2 < y3 < y4 < d; and letF (x) := 8<: 0 ; x 2 fa; 
; d; bg2 ; x 2 fy1; y3g�2 ; x 2 fy2; y4gand be linear elsewhere. Sin
e span M is dense in C[a; b℄; there exists ak 2 N and a p 2 spanf1; f1; : : : , fnkg with(4:1:2) kp� Fk[a;b℄ < 1 :



156 4. Denseness QuestionsNow p � Tnk has at least nk � 2 zeros on [a; 
℄ [ [d; b℄ be
ause Tnk has atleast nk extrema on these intervals. The four extrema of F on (
; d) togetherwith (4.1.2) guarantee at least three more zeros of p� Tnk on (
; d): Hen
ep� Tnk has at least nk + 1 zeros and vanishes identi
ally. This 
ontradi
ts(4:1:2).The if part of the theorem follows from the next theorem and E.8 a℄ ofSe
tion 3.2. This exer
ise shows that (f 01; f 02; : : : ) is a weak Markov systemon [a; b℄: utThe phenomenon formulated in Theorem 4.1.1 is quite general, and weprove a rather more general result than is needed for the pre
eding theorem.The modulus of 
ontinuity !f of a fun
tion f : [a; b℄ 7! R is de�ned by(4:1:3) !f (Æ) := supjx�yj<Æx;y2[a;b℄ jf(x)� f(y)j :Theorem 4.1.2. Suppose thatHn := spanf1; g1; g2; : : : ; gngis a Chebyshev spa
e on [a; b℄ with asso
iated Chebyshev polynomial Tn:Suppose ea
h gi 2 C1[a; b℄ and (g01; : : : ; g0n) is a weak Chebyshev systemon [a; b℄ (weak Chebyshev systems are de�ned in E.8 of Se
tion 3.2). LetH 0n := spanfg01; : : : ; g0ng: If f 2 C[a; b℄; then there exists an hn 2 Hn su
hthat khn � fk[a;b℄ � C!f�pÆn � ;where Æn :=Mn(Tn : [a; b℄) :Here C is a 
onstant depending only on a and b:Proof. Suppose a < 
 < d < b and Sn 2 Hn is the best uniform approxi-mation from Hn to F on [a; 
℄ [ [d; b℄; whereF (x) := � 0; x 2 [a; 
℄1; x 2 [d; b℄ :We 
laim the following:(4:1:4) Sn is monotone on [
; d℄and(4:1:5) kSn � Fk[a;
℄[[d;b℄ � 5Æn(d� 
) :



4.1 Variations on the Weierstrass Theorem 157Let � := n+1 be the dimension of the Chebyshev spa
e Hn: Sin
e Snis a best approximation to F on [a; 
℄[ [d; b℄; there exist �+1 points in thisset where the maximum error(4:1:6) �n := kF � Snk[a;
℄[[d;b℄o

urs with alternating sign (see Theorem 3.1.6). Suppose m + 1 of thesepoints y0 < � � � < ym lie in [a; 
℄, and ��m of these points ym+1 < � � � < y�lie in [d; b℄: Then S0n has at least m � 1 sign 
hanges in (a; 
) (one atea
h alternation point in [a; 
℄ ex
ept possibly at the endpoints a and 
).Likewise, S0n has at least � � m � 2 sign 
hanges in (d; b): So S0n has atleast � � 3 sign 
hanges in (a; 
) [ (d; b). Note that this 
ount ex
ludes ymand ym+1. Thus S0n has at most one more sign 
hange in (a; b) unless S0nvanishes identi
ally (whi
h is not possible for � � 2). Now suppose S0n hasa sign 
hange on (
; d). Then, sin
e there is at most one sign 
hange of S0nin (
; d); it 
annot be the 
ase that both ym = 
 and ym+1 = d and S0n
hanges sign at neither 
 nor d; otherwisesign(Sn(
)� f(
)) = sign(Sn(d)� f(d))as a 
onsideration of the two 
ases shows. But if ym 6= 
 or ym+1 6= d orS0n 
hanges sign at either 
 or d; then we have a

ounted for all the sign
hanges of S0n by a

ounting for the (possible) one additional sign 
hange(either S0n vanishes with sign 
hange at 
 or d or one of ym or ym+1 is aninterior alternation point of Sn where S0n vanishes). Thus S0n has no zeroswith sign 
hange in (
; d) and (4.1.4) is proved.To prove (4.1.5) we pro
eed as follows. With �n de�ned by (4.1.6),Dn := �nTn � Snhas at least m zeros on [a; 
℄ andD�n := Dn + 1 = 1 + �nTn � Snhas at least � �m� 1 zeros on [d; b℄ (
ounting ea
h internal zero withoutsign 
hange twi
e). Thus D0n has at least �� 3 sign 
hanges on [a; 
℄[ [d; b℄:Suppose Tn has at least four alternation points on an interval [
; Æ℄ � (
; d);and suppose that Sn(Æ)� Sn(
) < 2�n :Then, be
ause of (4.1.4) and the os
illation of Tn on [
; Æ℄;Dn + Sn(
) + Sn(Æ)2 = �nTn � �Sn � Sn(
) + Sn(Æ)2 �has at least three zeros on [
; Æ℄ and hen
e



158 4. Denseness QuestionsD0n = �Dn + Sn(
) + Sn(Æ)2 �0has at least two sign 
hanges on [
; Æ℄: This, however, gives that D0n 2 H 0nhas a total of at least � � 1 = n sign 
hanges, whi
h is impossible. Inparti
ular, Sn(Æ)� Sn(
) � 2�non any interval [
; Æ℄ � (
; d) where Tn has at least 4 alternation points.Thus, Sn(d)� Sn(
) � (d� 
)5Æn 2�n :However, sin
e Sn is a best approximation to F on [a; 
℄ [ [d; b℄;Sn(d)� Sn(
) � 1 + 2�nand we 
an dedu
e (4.1.5) on 
omparing these last two inequalities andnoting that �n � 12 :The proof is now a routine argument, whi
h for simpli
ity, is presentedon the interval [a; b℄ := [0; 1℄: LetV (x) := f(0) + m�1Xi=0 �f � i+1m �� f � im��Sn;i(x) ;where, for i = 0; 1; : : : ;m�1, Sn;i 2 Hn is the best uniform approximationto Fn;i(x) := � 0 ; x 2 �0; i+1m �1 ; x 2 � i+1m ; 1�on �0; im� [ � i+1m ; 1� : Letef(x) := f(0) + m�1Xi=0 �f � i+1m �� f � im��Fn;i(x) :Then repeated appli
ations of (4.1.5) with the intervals [a; 
℄ := �0; im� and[d; b℄ := � i+1m ; 1� yield for every x 2 [0; 1℄ thatjV (x) � f(x)j � jV (x)� ef(x)j + j ef(x) � f(x)j� m�1Xi=0 �f � i+1m �� f � im�� (Sn;i(x) � Fn;i(x)) + !f � 1m�� (m� 1)(5Ænm)!f � 1m�+ 2!f � 1m�+ !f � 1m� :Hen
e, with m := bÆ�1=2n 
;kV � fk[0;1℄ � C !f�pÆn � : utAn immediate 
orollary to Theorem 4.1.1 is the Weierstrass theorem.



4.1 Variations on the Weierstrass Theorem 159Corollary 4.1.3. The polynomials are dense in C[�1; 1℄:Proof. M = (1; x; x2; : : : ) is an in�nite Markov system of C1 fun
tions on[�1; 1℄:The asso
iated Chebyshev polynomials are just the usual Chebyshevpolynomials Tn (see Se
tion 2.1) andMn � �n ; n = 1; 2; : : :is obvious from E.1 of Se
tion 2.1. utAlso from the last part of the proof of Theorem 4.1.2 we have thefollowing 
orollary.Corollary 4.1.4. Suppose M := (1; f1; f2; : : : ) is an in�nite Markov systemon [a; b℄ with ea
h fi 2 C1[a; b℄. Then for ea
h n 2 N; there exists apn 2 spanf1; f1; f2; : : : ; fngsu
h that kpn � fk[a;b℄ � C(1 +m2Mn)!f � 1m�for every m 2 N; where C is a 
onstant depending only on a and b:Comments, Exer
ises, and Examples.The Weierstrass approximation theorem of 1885 (see Weierstrass [15℄) is oneof the very basi
 theorems of approximation theory. It, of 
ourse, requiresthat 
lear distin
tions be made about the nature of 
onvergen
e (pointwiseversus uniform) and the region of 
onvergen
e (intervals versus 
omplexdomains). Weierstrass, the preeminent analyst of the last third of the nine-teenth 
entury, was prin
ipal in insisting that su
h distin
tions be 
learlymade. His famous and profoundly surprising example of a nowhere di�er-entiable 
ontinuous fun
tion dates from 1872. A number of proofs of hisapproximation theorem and its many generalizations are explored in theexer
ises. Theorem 4.1.1 was proved by Borwein [90℄. The only if part ofthis theorem 
an be found in Kro�o and Peherstorfer [92℄.Appli
ations of the methods and results of this se
tion 
an be found inBorwein [91b℄, Borwein and Sa� [92℄, and Lorentz, Golits
hek, and Makovoz[92℄. The last two papers give an appli
ation to weighted in
omplete poly-nomials, where the zeros of the Chebyshev polynomials are often dense ina subinterval (see also Mhaskar and Sa� [85℄).E.1 The Weierstrass Approximation Theorem. Every real-valued 
ontin-uous fun
tion on a �nite 
losed interval [a; b℄ 
an be uniformly approximatedby polynomials with real 
oeÆ
ients.Every 
omplex-valued 
ontinuous fun
tion on a �nite 
losed interval[a; b℄ 
an be uniformly approximated by polynomials with 
omplex 
oeÆ-
ients.



160 4. Denseness QuestionsMore pre
isely, in the real 
ase, letEn := En(f : [a; b℄) := infp2Pn kf � pk[a;b℄ :The Weierstrass approximation theorem asserts thatlimn!1En(f : [a; b℄) = 0 ; f 2 C[a; b℄ :The following steps outline an elementary proof basi
ally due toLebesgue [1898℄. Parts a℄ to d℄ deal with the real version (�rst statement) ofthe theorem. The 
omplex version (se
ond statement) of the theorem 
aneasily be redu
ed to the real version; see part e℄.a℄ Every 
ontinuous fun
tion on [a; b℄ 
an be uniformly approximated bypie
ewise linear fun
tions.Hint: Consider the pie
ewise linear fun
tion that interpolates f at n equallyspa
ed points and use the uniform 
ontinuity of f: utb℄ It suÆ
es to prove that jxj 
an be uniformly approximated by polyno-mials on [�1; 1℄:Hint: Use part a℄. ut
℄ Approximation to jxj: Show thatlimn!1En(jxj : [�1; 1℄) = 0 :Hint: The Taylor series expansion of f(z) := p1� z yieldsp1� z = 1� 12 z + 12 � 4 z2 � 1 � 32 � 4 � 6 z3 + � � �and the 
onvergen
e is uniform for 0 � z � 1: (By Abel's theorem, a powerseries 
onverges uniformly on every 
losed subinterval of the set of pointsin R where it 
onverges; see, for example, Stromberg [81℄). Thus,jxj = px2 =p1� (1� x2)= 1� 12(1� x2) + 12 � 4(1� x2)2 � 1 � 32 � 4 � 6(1� x2)3 + � � �and the 
onvergen
e is uniform for �1 � x � 1: utd℄ An Alternative to 
℄. LetQ0(x) := 1 and Qn+1(x) := 12(1� x2 +Q2n(x)) :Show that0 � Qn+1(x) � Qn(x) � 1; n = 0; 1; : : : ; x 2 [�1; 1℄and Qn(x)! 1� jxj uniformly on [�1; 1℄ as n!1.



4.1 Variations on the Weierstrass Theorem 161Hint: First show the pointwise 
onvergen
e and then use Dini's theorem(see, for example, Royden [88℄). ute℄ Complex Version of the Weierstrass Approximation Theorem. Every
omplex-valued 
ontinuous fun
tion on a �nite 
losed interval [a; b℄ 
an beuniformly approximated by polynomials with 
omplex 
oeÆ
ients.It 
an be shown that En(jxj : [�1; 1℄) � 
n ;where 0:280168 < 
 < 0:280174: Bernstein [13℄ established the aboveasymptoti
 with weaker bounds on 
; namely, 0:278 < 
 < 0:286; andobserved that 12��1=2 = 0:282 is roughly the average of these bounds. Thestronger bounds on 
, due to Varga and Carpenter, show that 
 6= 12��1=2,but it is open whether or not 
 is some familiar 
onstant; see Varga [90℄.E.2 The Stone-Weierstrass Theorem. If X is a 
ompa
t Hausdor� spa
e,then a subalgebra A of C(X); whi
h 
ontains f = 1 and separates points,is dense in C(X):A subalgebra A of C(X) is a ve
tor spa
e of fun
tions that is 
losedunder multipli
ation (here, addition and multipli
ation are pointwise). Sep-arating points means that for any two distin
t x, y 2 X; there exists anf 2 A su
h that f(x) 6= f(y):a℄ Observe that the set P := [1n=0Pn of all polynomials with real 
oeÆ-
ients is a subalgebra of C[a; b℄ that separates points, and hen
e the Stone-Weierstrass theorem implies the Weierstrass approximation theorem.b℄ Observe that the real polynomials in x2 form a subalgebra of C[�1; 1℄that does not separate points.We outline a standard proof of the Stone-Weierstrass theorem. Let Adenote the 
losure of a subalgebra A � C(X) in the uniform norm.
℄ If f 2 A; then jf j 2 A:Proof. If f 2 A; then p(f) 2 A for any polynomial p: Now 
hoose pn su
hthat pn(x)! jxj on the interval [�kfk; kfk℄: utd℄ Let(f _ g)(x) := maxff(x); g(x)g and (f ^ g)(x) := minff(x); g(x)g :Show that if f , g 2 A; then so are f _ g and f ^ g:



162 4. Denseness QuestionsHint: f _ g = 12(f + g + jf � gj) ; and f ^ g = 12(f + g � jf � gj) : ute℄ If p; q 2 X are distin
t and �; � 2 R; then there exists f 2 A withf(p) = � and f(q) = � :Hint: Let g 2 A be su
h that g(p) 6= g(q) and 
onsiderf := �� �g(p)� g(q) � g + �g(p)� �g(q)g(p)� g(q) � 1 : utf ℄ Completion of Proof. Let f 2 C(X): For ea
h p; q 2 X; let fpq be anelement of A with fpq(p) = f(p) and fpq(q) = f(q): Fix � > 0 and de�neopen sets Vpq := fx 2 X : fpq(x) < f(x) + �g :Now fVpq : p 2 Xg is an open 
over of the 
ompa
t Hausdor� spa
e X; sofor ea
h q 2 X we 
an pi
k a �nite sub
overfVp1q; Vp2q ; : : : ; Vpnqgof X: We let fq := minffp1q ; fp2q; : : : ; fpnqg :Observe that fq 2 A by part e℄, andfq(x) < f(x) + � ; x 2 X :g℄ Continued. LetVq := fx 2 X : fq(x) > f(x)� �g ;where fq is de�ned in part f℄ for every q 2 X . Then fVq : q 2 Xg is an open
over of the 
ompa
t Hausdor� spa
e X , so we 
an extra
t a �nite sub
overfVq1 ; Vq2 ; : : : ; Vqmgof X: Now let g := maxffq1 ; fq2 ; : : : ; fqmg :Note that g 2 A by part e℄, andf(x) = � < g(x) < f(x) + � ; x 2 X ;whi
h �nishes the proof. ut



4.1 Variations on the Weierstrass Theorem 163The next exer
ise presents pretty theorems due to Bohman [52℄ andKorovkin [53℄ on the 
onvergen
e of sequen
es of positive linear operators.The exer
ise after that gives some appli
ations that in
lude di�erent proofsof the Weierstrass theorem via 
onvergen
e of spe
ial polynomials, su
h asthe Bernstein polynomials.An operator L on C(X) is 
alled monotone iff � g implies L(f) � L(g)(here f � g means f(x) � g(x) for all x 2 X).E.3 Monotone Operator Theorems.Korovkin's First Theorem. Let (Ln)1n=1 be a sequen
e of monotone linearoperators on C(K) (the set of 
ontinuous, 2� periodi
, real-valued fun
tionson R). Let f0(x) := 1 ; f1(x) := sinx ; f2(x) := 
osx :Then limn!1 kLn(f)� fkK = 0for all f 2 C(K) if and only iflimn!1 kLn(fi)� fikK = 0 ; i = 0; 1; 2 :Korovkin's Se
ond Theorem. Let (Ln)1n=1 be a sequen
e of monotone lin-ear operators on C[a; b℄: Letf0(x) := 1 ; f1(x) := x ; f2(x) := x2 :Then limn!1 kLn(f)� fk[a;b℄ = 0for all f 2 C[a; b℄ if and only iflimn!1 kLn(fi)� fik[a;b℄ = 0 ; i = 0; 1; 2 :Korovkin's theorem in a more general setting 
an be found in Lorentz[86a℄.a℄ Proof of Korovkin's Se
ond Theorem. The only if part of the theoremis trivial. For the if part, observe that the pointwise 
onvergen
e of (Ln)1n=1
an be easily proved sin
e, for any preassigned � > 0 at any �xed x0; one 
an



164 4. Denseness Questions�nd parabolas y = p1(x) := a1x2+b1x+
1 and y = p2(x) := a2x2+b2x+
2su
h that p1(x) < f(x) < p2(x) ; x 2 [a; b℄with jf(x0)� p1(x0)j < � and jf(x0)� p2(x0)j < � :Now use the 
ontinuity of f and the 
ompa
tness of [a; b℄ to make theabove argument uniform on the interval [a; b℄: utb℄ Proof of Korovkin's First Theorem.Hint: Modify the proof of Korovkin's se
ond theorem. utE.4 Bernstein Polynomials. The nth Bernstein polynomial for a fun
tionf 2 C[0; 1℄ is de�ned byBn(f)(x) := nXk=0 f �kn��nk�xk(1� x)n�k ; n = 1; 2; : : : :a℄ Let f0(x) := 1 ; f1(x) := x ; f2(x) := x2 :Show thatBn(f0) = f0 ; Bn(f1) = f1 ; Bn(f2) = n�1n f2 + 1nf1for every n = 0; 1; 2; : : : :b℄ Use Korovkin's se
ond theorem and part a℄ to show thatlimn!1 kBn(f)� fk[0;1℄ = 0for every f 2 C[0; 1℄:For more on Bernstein polynomials, see Lorentz [86b℄.E.5 The Fourier and Fej�er Operators. For f 2 C(K); letSn(f)(x) := 12� Z ��� f(t+ x) sin �n+ 12� t2 sin 12 t ! dt ; n = 0; 1; : : :and Fn(f)(x) := 12�n Z ��� f(t+ x)� sin 12ntsin 12 t �2 dt ; n = 0; 1; : : : :The operator Sn is 
alled the Fourier operator, while the operator Fn is
alled the Fej�er operator.



4.1 Variations on the Weierstrass Theorem 165a℄ Show that Sn(f) is the nth partial sum of the Fourier series of f; thatis, Sn(f)(x) = a02 + nXk=1 (ak 
os kx+ bk sin kx) ;where ak = 1� Z ��� f(t) 
os kt dtand bk = 1� Z ��� f(t) sin kt dt :Hint: sin �n+ 12� t2 sin 12 t = 12 + nXk=1 
os ktand Sn(f)(x) = 1� Z ��� f(t+ x) 12 + nXk=1 
os kt! dt : utb℄ Fn(f) is the Ces�aro mean of S0; S1; : : : Sn�1, that is,Fn(f) = S0(f) + S1(f) + � � �+ Sn�1(f)n :Hint: n�1Xk=0 sin �k + 12� tsin 12 t = � sin 12ntsin 12 t �2 : ut
℄ Fej�er's Theorem. For every f 2 C(K); Fn(f)! f uniformly on R:Hint: Ea
h Fn is obviously a monotone operator on C(K); so it suÆ
es toprove the uniform 
onvergen
e of (Fn)1n=1 on R only for fi, i = 0; 1; 2, asde�ned in Korovkin's �rst theorem. However, this is obvious, sin
eFn(f0) = f0 ; Fn(f1) = n�1n f1 ; Fn(f2) = n�1n f2for every n = 1; 2; : : : : utd℄ The set T := [1n=0Tn of all real trigonometri
 polynomials is dense inC(K); the set of all 
ontinuous, 2� periodi
, real-valued fun
tions. The setT 
 := [1n=0T 
n of all 
omplex trigonometri
 polynomials is dense in C(K);the set of all 
ontinuous, 2� periodi
, 
omplex-valued fun
tions.



166 4. Denseness QuestionsHint: This follows from Fej�er's theorem. This is also a 
orollary of the Stone-Weierstrass theorem (see E.2). utThe remaining parts of the exer
ise follow Lorentz [86a℄. Suppose thatLn : C(K) 7! Tn is a linear operator. We say that Ln preserves the elementsof Tn if Ln(t) = t for every t 2 Tn: A 
anoni
al example for su
h a linearoperator Ln is the Fourier operator Sn: The purpose of the remaining partof the exer
ise is to show that the Fourier operator Sn is extremal amonglinear operators preserving the elements of Tn in the sense that it has thesmallest norm. This leads to the result of Faber, Nikolaev, and Lozinskii(see part g℄) that for arbitrary linear operators Ln preserving the elementsof Tn; n = 1; 2; : : : , the sequen
e (Ln(f))1n=1 
annot 
onverge for everyf 2 C(K):e℄ Berman's Generalization of a Formula of Faber and Mar
inkiewi
z.Let fa denote the a-translation of a fun
tion f 2 C(K); that is, fa(x) :=f(x+ a): Suppose Ln is a linear operator preserving Tn: Show that12� Z ��� Ln(ft)(x � t) dt = Sn(f)(x)for every f 2 C(K) and x 2 K:Hint: Let An(x) := 12� Z ��� Ln(ft)(x� t) dt :Show that An(f) = Sn(f) for every f 2 Tn: Prove that An(f) = Sn(f) forevery f of the form f(x) = 
osmx or f(x) = sinmx; where m is an integergreater than n. Con
lude that An(f) = Sn(f) for every f 2 T := [1n=0Tn:Note that T is dense in C(K): This means that to 
omplete the proof,it is suÆ
ient to show that An : C(K) ! Tn and Sn : C(K) ! Tn are
ontinuous. Observe that kAnk � kLnk and kSnk � 
 logn for some 
 > 0;see also part f℄. utf ℄ The Norm of the Fourier Operator Sn. Show thatkSnk := sup�kSn(f)kKkfkK : f 2 C(K)� = 12� Z ��� �����sin �n+ 12� t2 sin 12 t ����� dt :Use this to prove that there exist two 
onstants 
1 > 0 and 
2 > 0 indepen-dent of n su
h that
1 logn � kSnk � 
2 logn ; n = 2; 3; : : : :A
tually, it 
an be proved thatkSnk = 4�2 logn+O(1) ; n = 2; 3; : : : :See, for example, Lorentz [86a℄.



4.1 Variations on the Weierstrass Theorem 167g℄ The Norm of Operators that Preserve Trigonometri
 Polynomials. LetLn : C(K) ! Tn be a linear operator preserving the elements of Tn. Showthat kLnk � kSnk � 
1 logn ;where 
1 > 0 is a 
onstant independent of n:Hint: Use parts e℄ and f℄. utE.6 Polynomials in x�n . Given n 2 N and �n 2 R; letPn(�n) := fpn(x�n) : pn 2 Png:Suppose Æ 2 (0; 1) and �n � 1 for all n 2 N: Then [1n=1Pn(�n) is dense inC[Æ; 1℄ if and only if lim supn!1 logn�n � 12 log 1Æ :To prove the above statement, pro
eed as follows (see also Borwein[91b℄). Denote the Chebyshev polynomial for Pn(�n) on [Æ; 1℄ by Tn;Æ: De-note the zeros of Tn;Æ in [Æ; 1℄ byx(Æ)1;n < x(Æ)2;n < � � � < x(Æ)n;n :Let x(Æ)0;n := Æ and x(Æ)n+1;n := 1: LetMn(Æ) := max1�i�n+1�x(Æ)i;n � x(Æ)i�1;n� :a℄ Show thatTn;Æ(x) = Tn� 21� Æ�n x�n � 1 + Æ�n1� Æ�n� ; x 2 [Æ; 1℄ ;where Tn is the Chebyshev polynomial of degree n as de�ned by (2.1.1).b℄ Let Æ := lim infn!1 x(0)1;n: Show that iflim infn!1 � max2�i�n+1�x(0)i;n � x(0)i�1;n�� = 0 ;then lim infn!1 Mn(Æ) = 0:Hint: Count the zeros of Tn;Æ � Tn;0 2 Pn(�n) in [Æ; 1℄: ut



168 4. Denseness Questions
℄ Let Æ := lim infn!1 x(0)1;n; as in part b℄. Show that12 log 1Æ = lim supn!1 logn�nwhenever the right-hand side is �nite.Hint: Use the expli
it formula for Tn;0 given in part a℄. utd℄ Let Æ be de�ned by 12 log 1Æ = lim supn!1 logn�n :Suppose Æ > 0: Show thatlim infn!1 (x(0)2;n � x(0)1;n) = 0 :Hint: Use parts a℄ and 
℄. ute℄ Let Æ := lim infn!1 x(0)1;n; as in parts b℄ and 
℄. Suppose Æ > 0: Show thatx(0)i;n � x(0)i�1;n � 2Æ �x(0)2;n � x(0)1;n�for every suÆ
iently large n 2 N and for every i = 2; 3; : : : ; n+ 1:Hint: Count the zeros ofTn;0(x)� Tn;0(�i;nx) 2 Pn(�n) ;where �i;n := x(0)i�1;nx(0)1;n < 2Æfor every suÆ
iently large n 2 N and for every i = 2; 3; : : : ; n+ 1: utf ℄ Let Æ be de�ned by 12 log 1Æ = lim supn logn�n :Suppose Æ > 0: Show that [1n=1Pn(�n) is dense in C[Æ; 1℄:Hint: By parts a℄ to e℄, lim infn!1 Mn(Æ) = 0: Now apply Theorem 4.1.2. utg℄ Let 0 � y < Æ, where Æ is as in part f℄. Show that [1n=1Pn(�n) is notdense in C[y; 1℄:Hint: Show that there exists a 
onstant 
 depending only on Æ (and not onn or y) su
h that jp(y)j � 
kpk[Æ;1℄for every p 2 [1n=1Pn(�n) and y 2 [0; Æ℄: Now use E.4 
℄ of Se
tion 3.3 andpart a℄. utE.10 of Se
tion 6.2 extends part g℄ of the above exer
ise. Namely, if0 � eÆ < Æ; where Æ is the same as in part f℄ and A � [0; 1℄ is a set ofLebesgue measure at least 1� eÆ; then [1n=1Pn(�n) is not dense in C(A):



4.1 Variations on the Weierstrass Theorem 169E.7 The Weierstrass Theorem in Lp. Let [a; b℄ be a �nite interval andp 2 (0;1). Show that both C[a; b℄\Lp[a; b℄ and the set P := [1n=0Pn of allreal algebrai
 polynomials are dense in Lp[a; b℄:Hint: The proof of the �rst statement is a routine measure theoreti
 argu-ment; see Rudin [87℄. The se
ond statement follows from the �rst and theWeierstrass approximation theorem; see E.1. utE.8 Density of Polynomials with Integer CoeÆ
ients.a℄ Suppose f 2 C[0; 1℄ and f(0) and f(1) are integers. Show that for every� > 0 there is a polynomial p with integer 
oeÆ
ients su
h thatkf � pk[0;1℄ < � :Outline. By E.4, there is an integer n > 2=� so thatkf �Bn(f)k[0;1℄ < �2 :Let eBn(f) := nXk=0�f �kn��nk��xk(1� x)n�k :Show that if x 2 [0; 1℄; then0 � Bn(f)(x) � eBn(f)(x) � n�1Xk=1 xk(1� x)n�k� 1n nXk=0�nk�xk(1� x)n�k = 1n < �2 :Note that eBn(f) is a polynomial with integer 
oeÆ
ients, andkf � eBn(f)k[0;1℄ � kf �Bn(f)k[0;1℄ + kBn(f)� eB(f)k[0;1℄< �2 + �2 = � : utb℄ Suppose the interval [a; b℄ does not 
ontain an integer. Show that poly-nomials with integer 
oeÆ
ients form a dense set in C[a; b℄:Proof 1. This is an immediate 
onsequen
e of part a℄. utProof 2. Assume, without loss of generality, that [a; b℄ � (0; 1): By theWeierstrass approximation theorem, it is suÆ
ient to prove that for every� > 0 there is a polynomial p with integer 
oeÆ
ients su
h that
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 12 � p

[a;b℄ < � ;sin
e then all real numbers, and hen
e all p 2 Pn, 
an be approximated bypolynomials with integer 
oeÆ
ients.The existen
e of su
h a polynomial p follows from the identity12 = 1� x1� (1� 2(1� x)) = 1Xk=0 (1� x)(1� 2(1� x))k ;where the in�nite sum 
onverges uniformly on [a; b℄ � (0; 1): utE.9 Weierstrass Theorem on Ar
s. Let �D denote the unit 
ir
le of the
omplex plane.a℄ Show that the set P
 := [1n=0P
n of all polynomials with 
omplex 
oef-�
ients is not dense in C(�D):Hint: Use the orthonormality of the system ((2�)�1=2ein�)1n=�1 on [��; �℄to show that if k is a positive integer and p 2 P
; then2�kz�k � p(z)kC(�D) � ke�ik� � p(ei�)kL2[��;�℄ � 2� :So none of the fun
tions z�1; z�2; : : : is in the uniform 
losure of P
 on�D. utb℄ Let A � �D be an ar
 of length less than 2�: Then the set P
 of allpolynomials with 
omplex 
oeÆ
ients is dense in C(A).This is a spe
ial 
ase of Mergelyan's theorem (see, for example, Rudin [87℄).Proof. Without loss of generality, we may assume that A is symmetri
 withrespe
t to the real line. By E.5 d℄, it is suÆ
ient to prove that f(z) := z�1is in the uniform 
losure P
 of P
 on �D (this already implies that ea
hzk, k 2 Z, is in P
). By E.11 j℄ of Se
tion 2.1, 
ap(A) < 1: By E.11 g℄ ofSe
tion 2.1, �(A) = 
ap(A); where �(A) denotes the Chebyshev 
onstantof A: Hen
e 0 � �(A) < � < 1with some �. Re
alling the de�nition of �(A), we 
an dedu
e that there aremoni
 polynomials pn 2 P
n su
h thatkpnkA � �n ; n = 1; 2; : : : :For n = 1; 2; : : : , letqn(z) := zn�1pn(1=z) = z�1 + rn�1(z) ;where rn�1 2 P
n�1: Sin
e A is symmetri
 with respe
t to the real line,kz�1 + rn�1(z)kA = kqnkA = kpnkA � �n �!n!1 0 :Hen
e f(z) = z�1 is in P
; whi
h �nishes the proof. ut



4.2 M�untz's Theorem 1714.2 M�untz's TheoremA very attra
tive variant of the Weierstrass theorem 
hara
terizes exa
tlywhen the linear span of a system of monomialsM := (x�0 ; x�1 ; : : : )is dense in C[0; 1℄ or L2[0; 1℄:Theorem 4.2.1 (Full M�untz Theorem in C[0; 1℄). Suppose (�i)1i=1 is a se-quen
e of distin
t positive numbers. Thenspanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄ if and only if1Xi=1 �i�2i + 1 =1 :Note that when inf i �i > 0;1Xi=1 �i�2i + 1 =1 if and only if 1Xi=1 1�i =1 :M�untz studied only this 
ase, and his theorem is usually given in terms ofthe se
ond 
ondition.When �i � 1 for ea
h i = 1; 2; : : : ; the above theorem follows bya simple tri
k from the L2 version of M�untz's theorem. The proof of thegeneral 
ase is left as a guided exer
ise. The diÆ
ult 
ase to deal with isthe one where 0 and 1 are both 
luster points of the sequen
e (�i)1i=0; seeE.18.Theorem 4.2.2 (Full M�untz Theorem in L2[0; 1℄). Suppose (�i)1i=0 is asequen
e of distin
t real numbers greater than �1=2. Thenspanfx�0 ; x�1 ; : : : gis dense in L2[0; 1℄ if and only if1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 :The proof of the following full L1 version of M�untz's theorem is pre-sented as E.19.



172 4. Denseness QuestionsTheorem 4.2.3 (Full M�untz Theorem in L1[0; 1℄). Suppose (�i)1i=0 is asequen
e of distin
t real numbers greater than �1: Thenspanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄ if and only if1Xi=0 �i + 1(�i + 1)2 + 1 =1 :Now we formulate a general M�untz-type theorem in Lp[0; 1℄; that 
ontainsthe above C[0; 1℄, L2[0; 1℄, and L1[0; 1℄ results as spe
ial 
ases. The proofof this theorem is outlined in E.20.Theorem 4.2.4 (Full M�untz Theorem in Lp[0; 1℄). Let p 2 [1;1): Suppose(�i)1i=0 is a sequen
e of distin
t real numbers greater than �1=p: Thenspanfx�0 ; x�1 ; : : : gis dense in Lp[0; 1℄ if and only if1Xi=0 �i + 1p��i + 1p�2 + 1 =1 :The full version of M�untz's theorem for arbitrary distin
t real exponentson an interval [a; b℄, 0 < a < b; is given in E.7 and E.9.Proof of Theorem 4.2.1 assuming Theorem 4.2.2 and ea
h �i � 1. We needthe following two inequalities:�����xm � nXi=0 aix�i ����� = �����Z x0  mtm�1 � nXi=0 ai�it�i�1! dt�����(4:2:1) � Z 10 �����mtm�1 � nXi=0 ai�it�i�1����� dt� 0�Z 10 �����mtm�1 � nXi=0 ai�it�i�1����� 2 dt1A1=2for every x 2 [0; 1℄ and m = 1; 2; : : : , and(4:2:2) 0�Z 10 �����tm � nXi=0 ait�i ����� 2 dt1A1=2 � 




xm � nXi=0 aix�i




[0;1℄



4.2 M�untz's Theorem 173for every m = 0; 1; 2; : : : . The assumption that �i � 1 for ea
h i impliesthat 1Xi=0 �i�2i + 1 =1 if and only if 1Xi=0 2(�i � 1) + 1(2(�i � 1) + 1)2 + 1 =1and 1Xi=0 �i�2i + 1 =1 if and only if 1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 :If P1i=0 �i=(�2i + 1) = 1; then (4.2.1), together with Theorem 4.2.2and the Weierstrass approximation theorem (see E.1 of Se
tion 4.1), showsthat spanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄:If the above span is dense in C[0; 1℄; then (4.2.2), together with E.7of Se
tion 4.1, shows that it is also dense in L2[0; 1℄: Hen
e Theorem 4.2.2implies P1i=1 �i=(�2i + 1) =1: utProof of Theorem 4.2.2. We 
onsider the approximation to xm by elementsof spanfx�0 ; : : : ; x�n�1g in L2[0; 1℄; and we assume m > � 12 and m 6= �ifor any i: In the notation of Se
tion 3.4 we de�ne� := (�0; �1; : : : ; �n�1;m)and study L�n, the nth orthonormal M�untz-Legendre polynomial asso
iatedwith �: By (3.4.8) and (3.4.6) we have (with �n := m)L�n(x) = anxm + n�1Xi=0 aix�i ;where janj = p1 + 2m n�1Yi=0 ����m+ �i + 1m� �i ���� :It follows from kL�nkL2[0;1℄ = 1 and orthogonality that L�n=an is the errorterm in the best L2[0; 1℄ approximation to xm from spanfx�0 ; : : : ; x�n�1g(why?). Thereforeminbi2C 




xm � n�1Xi=0 bix�i




L2[0;1℄ = 1janj = 1p1 + 2m n�1Yi=0 ���� m� �im+ �i + 1 ���� :



174 4. Denseness QuestionsSo, for a nonnegative integer m di�erent from any of the exponents �i,(4:2:3) xm 2 spanfx�0 ; x�1 ; : : : g(where span denotes the L2[0; 1℄ 
losure of the span) if and only iflimn!1 n�1Yi=0 ���� m� �im+ �i + 1 ���� = 0 :That is, (4.2.3) holds if and only iflimn!1 n�1Yi=0�i>m ����1� 2m+ 1m+ �i + 1 ���� n�1Yi=0�1=2<�i�m ����1� 2�i + 1m+ �i + 1 ���� = 0 :Hen
e (4.2.3) holds if and only if either1Xi=0�i>m 12�i + 1 =1 or 1Xi=0�1=2<�i�m (2�i + 1) =1 ;whi
h is the 
ase if and only if1Xi=0 2�i + 1(2�i + 1)2 + 1 =1 ;and the proof 
an be �nished by the Weierstrass approximation theorem(see E.1 of Se
tion 4.1). utComments, Exer
ises, and Examples.Theorem 4.2.1 (in the 
ase when inff�i : i 2 Ng > 0) and Theorem 4.2.2were proved independently by M�untz [14℄ and Sz�asz [16℄. Sz�asz [16℄ provedthe full version of Theorem 4.2.2. Theorem 4.2.1 is to be found in Borweinand Erd�elyi [to appear 5℄. Mu
h of Theorem 4.2.4 is stated in S
hwartz[59℄ without proof and may be dedu
ed by his methods. Indeed, S
hwartz'smethod appears to give Theorem 4.2.4 for p 2 [1; 2℄. Johnson (private 
om-muni
ation) and Operstein [to appear℄ show how to derive the full Theorem4.2.4 from Theorem 4.2.1 as does E.20; see also E.7 of the next se
tion.Less 
omplete versions of the results presented in this se
tion are often
alled the M�untz-Sz�asz Theorems. A 1912 version due to Bernstein 
an befound in his 
olle
ted works.A variant on our proof of M�untz's theorem is presented in E.2. Adistin
t proof based on possible zero sets of analyti
 fun
tions may befound in Feinerman and Newman [76℄; see also E.10, where this methodis explored for denseness questions for f
os�k�g:



4.2 M�untz's Theorem 175Extensions of M�untz's theorem abound. For example, generalizationsto 
omplex exponents are 
onsidered in Luxemburg and Korevaar [71℄, toangular regions in Anderson [72℄ and with an exponential weight on [0;1)in Fu
hs [46℄. It is a nontrivial problem to establish a M�untz-type theoremon an interval [a; b℄, a > 0, in whi
h 
ase the elements of the sequen
e� = (�i)1i=0 are allowed to be arbitrary distin
t real numbers. This is the
ontent of E.7; it is due to Clarkson and Erd}os [43℄ (in the 
ase whenea
h �i is a nonnegative integer) and S
hwartz [59℄ (in the general 
ase).It is shown in Se
tion 6.2 that if � = (�i)1i=0 is an in
reasing sequen
eof nonnegative real numbers, then the interval [0; 1℄ in M�untz's theorem(Theorem 4.2.1) 
an be repla
ed by an arbitrary 
ompa
t set A � [0;1)of positive Lebesgue measure.The exer
ises also explore in detail the 
losure of M�untz spa
es inthe nondense 
ases. This study was initiated by Clarkson and Erd}os [43℄,who treated the 
ase when the exponents are nonnegative integers. The
onsiderably harder general 
ase is due to S
hwartz [59℄.Denseness questions about quotients and produ
ts of M�untz polyno-mials from a given M�untz spa
e are dis
ussed in Se
tions 4.4 and 6.2, re-spe
tively.Some of the literature on the multivariate versions of M�untz's theo-rem 
an be found in Ogawa and Kitahara [87℄, Bloom [90℄, and Kro�o andSzabados [94℄.E.1 Another Proof of Some Cases of M�untz's Theorem.a℄ Golits
kek's Proof of M�untz's Theorem when P1i=1 1=�i = 1. Sup-pose that (�i)1i=1 is a sequen
e of distin
t, positive real numbers satisfyingP1i=1 1=�i = 1. Golits
hek [83℄ gives the following simple argument toshow that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:Proof. Assume that m 6= �k ; k = 0; 1; : : : , and de�ne the fun
tions Qnindu
tively: Q0(x) := xm andQn(x) := (�n �m)x�n Z 1x Qn�1(t)t�1��n dt ; n = 1; 2; : : : :Show, by indu
tion on n, that ea
h Qn is of the formQn(x) = xm � nXi=0 an;ix�i ; an;i 2 R :Show also thatkQ0k[0;1℄ = 1 and kQnk[0;1℄ � ����1� m�n ���� � kQn�1k[0;1℄ ;so kQnk[0;1℄ � nYi=0 ����1� m�i ����! 0 as n!1 : ut



176 4. Denseness Questionsb℄ Another Proof of M�untz's Theorem when �i ! 
 > 0. Suppose that(�i)1i=1 is a sequen
e of distin
t positive real numbers that 
onverges to
 > 0. Show, without using the arguments given in the proof of M�untz'stheorem, that spanf1; x�1 ; x�2 ; : : : g is dense in C[a; b℄, a > 0.Hint: Let k be a nonnegative integer. Use divided di�eren
es to approxi-mate x
 logk x uniformly on [a; b℄. Finish the proof by using the Weierstrassapproximation theorem (see E.1 of Se
tion 4.1). utE.2 Another Proof of M�untz's Theorem in L2[0; 1℄.a℄ Gram's Lemma. Let (V; h�; �i) be an inner produ
t spa
e, and let g 2 V:Suppose ff1; : : : ; fng is a basis for an n-dimensional subspa
e P of V: Thenthe distan
e dn from g to P is given bydn := inffhg � p; g � pi1=2 : p 2 Pg = �G(f1; f2; : : : ; fn; g)G(f1; f2; : : : ; fn) �1=2 ;where G is the Gram determinantG(f1; f2; : : : ; fm) := ������� hf1; f1i : : : hf1; fmi... . . . ...hfm; f1i : : : hfm; fmi ������� :Proof. As in Theorem 2.2.3, the best approximation to g from P is givenby f� = nXi=1 
ifi ;where the 
i are uniquely determined by the orthogonality 
onditionshf� � g; fki = 0 ; k = 1; 2; : : : ; n :Sin
e d2n = hg � f�; g � f�i ;we are led to a system of n+ 1 equationsnXi=1 
ihfi; fki = hg; fki ; k = 1; 2; : : : ; nand nXi=1 
ihfi; gi+ d2n = hg; gi :Solving this system by using Cramer's rule, we get the desired result. ut



4.2 M�untz's Theorem 177b℄ As in E.3 of Se
tion 3.2,������� 1�1+�1 : : : 1�1+�n... . . . ...1�n+�1 : : : 1�n+�n ������� = Q1�i<j�m(�j � �i)(�j � �i)Q1�i;j�n(�i + �j)for arbitrary 
omplex numbers �i and �j with �i + �j 6= 0:
℄ Let 
; �0; : : : ; �n be distin
t real numbers greater than �1=2: Then theL2[0; 1℄ distan
e dn from x
 to spanfx�0 ; : : : ; x�ng is given bydn = 1p2
 + 1 nYi=0 ���� 
 � �i
 + �i + 1 ���� :Hint: In L2[0; 1℄;hxa; xbi = Z 10 xaxb dx = 1a+ b+ 1 ; a; b 2 (�1=2;1) :Now apply parts a℄ and b℄. utd℄ Complete the proof of M�untz's theorem in L2[0; 1℄:E.3 More on M�untz's Theorem in the Nondense Case. We assumethroughout this exer
ise that (�i)1i=0 is a sequen
e of nonnegative real num-bers satisfying 1Xi=1 1�i <1and the gap 
ondition inff�i � �i�1 : i 2 Ng > 0holds. Some of the results of this exer
ise hold even if the above gap 
on-dition is removed (see the later exer
ises).a℄ Show that 0 < 1Yi=0i6=m �����i + �m�i � �m ���� = exp(
m�m) ;where 
m ! 0 as m!1:Hint: First show that the above in�nite produ
t exists. Write the aboveprodu
t as1Yi=0�i<�m �����i + �m�i � �m ���� 1Yi=0�i2(�m;2�m) �����i + �m�i � �m ���� 1Yi=0�i�2�m �����i + �m�i � �m ����and estimate the three fa
tors above separately. ut



178 4. Denseness Questionsb℄ Dedu
e that if �i 6= �m for ea
h i; then

x�m � p(x)

L2[0;1℄ � 1p2�m + 1 1Yi=0 ���� (�i + 12 )� (�m + 12 )(�i + 12 ) + (�m + 12 ) ����= exp(�
m(�m))for every p 2 spanfx�0 ; : : : ; x�ng; where 
m ! 0 as m!1:
℄ Show that for every � > 0 there is a 
onstant 
� depending only on �and (�i)1i=0 (but not on the number of terms in p) su
h thatjaij � 
�(1 + �)�ikpkL2[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g of the form p(x) =Pni=0 aix�i :Hint: Use part b℄. utd℄ Bounded Bernstein-Type Inequality. Let �0 = 0 and �1 � 1. Showthat for every � 2 (0; 1) there is a 
onstant 
� depending only on � and(�i)1i=0 (but not on the number of terms in p) su
h thatkp0k[0;1��℄ � 
�kpkL2[0;1℄and hen
e kp0k[0;1��℄ � 
�kpk[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use part 
℄. utThe result of the next part is due to Clarkson and Erd}os [43℄.e℄ The Closure of a Nondense M�untz Spa
e. Suppose f 2 C[0; 1℄ andthere exist pn 2 spanfx�0 ; x�1 ; : : : g of the formpn(x) = knXi=0 ai;nx�i ; ai;n 2 R ; n = 1; 2; : : :su
h that limn!1 kpn � fk[0;1℄ = 0: Show that f is of the formf(x) = 1Xi=0 aix�i ; ai;n 2 R ; x 2 [0; 1) :Show also that f 
an be extended analyti
ally throughout the regionfz 2 C n(�1; 0℄ : jzj < 1gand limn!1 ai;n = ai ; i = 0; 1; : : : :If (�i)1i=0 is a sequen
e of distin
t nonnegative integers, then f 
an beextended analyti
ally throughout the open unit disk.Hint: Use part 
℄. ut



4.2 M�untz's Theorem 179If (�i)1i=0 is la
unary (that is, inff�i+1=�i : i 2 Ng > 1), then theuniform 
losure of spanfx�0 ; x�1 ; : : : g on [0; 1℄ is exa
tly(f 2 C[0; 1℄ : f(x) = 1Xi=0 aix�i ; x 2 [0; 1℄) :If (�i)1i=0 is not la
unary, then this fails, namely, there exists a fun
tion fof the form f(x) = 1Xi=0 aix�i ; x 2 [0; 1)in the uniform 
losure of spanfx�0 ; x�1 ; : : : g on [0; 1℄ su
h that the right-hand side does not 
onverge at the endpoint 1; see Clarkson and Erd}os[43℄.f ℄ Bounded Chebyshev-Type Inequality. Show that for every � 2 (0; 1)there exists a 
onstant 
� depending only on � and (�i)1i=0 (but not on thenumber of terms in p) su
h thatkpk[0;1℄ � 
�kpk[1��;1℄for every p 2 spanfx�0 ; x�i ; : : : g :Outline. Using the s
aling x ! x1=�1 , without loss of generality we mayassume that �1 = 1: Suppose there exists a sequen
e(pm)1m=1 � spanfx�0 ; x�1 ; : : : ; g ; m = 1; 2; : : :su
h that 0 < Am := kpmk[0;1℄ !1while kpmk[1��;1℄ = 1 ; m = 1; 2; : : : :Let qm := pm=Am: Note that kqmk[0;1℄ = 1 for ea
h m; and kqmk[1��;1℄ ! 0as m!1: Then, by part d℄,kq0mk[0;1�Æ℄ � 
Æfor every Æ 2 (0; 1): Hen
e (qm)1m=0 is a sequen
e of uniformly boundedand equi
ontinuous fun
tions on 
losed subintervals of [0; 1); and by theArzela-As
oli theorem (see, for example, Rudin [87℄) we may extra
t auniformly 
onvergent subsequen
e on [0; 1��=2℄: This subsequen
e, by parte℄, 
onverges uniformly to a fun
tion F analyti
 on (0; 1 � �=2); but sin
ekqmk[1��;1℄ ! 0; F must be identi
ally zero. This is a 
ontradi
tion sin
ekqmk[0;1℄ = 1 and kqmk[0;1��℄ = kqmk[0;1℄ for every suÆ
iently large m: utg℄ Suppose (qm)1m=1 � spanfx�0 ; x�1 ; : : : g and kqmk[a;b℄ � 1 for ea
hm; where 0 � a < b: Show that there is a subsequen
e of (qm)1m=1 that
onverges uniformly on every 
losed subinterval of [0; b):Hint: Use parts f℄ and d℄ and the Arzela-As
oli theorem. ut



180 4. Denseness QuestionsE.4 M�untz's Theorem with Real Exponents on [a; b℄; a > 0. Suppose(�i)1i=�1 is a set of distin
t real numbers satisfying1Xi=�1�i 6=0 1j�ij <1with �i < 0 for i < 0 and �i � 0 for i � 0. Suppose that the gap 
onditioninff�i � �i�1 : i 2 Zg> 0holds. Asso
iated withp(x) := nXi=�n aix�i ; n = 0; 1; : : :let p�(x) := �1Xi=�n aix�i and p+(x) := nXi=0 aix�i :Let 0 < a < b:a℄ Show that there exists a 
onstant 
 depending only on a; b; and (�i)1i=�1(but not on the number of terms in p) su
h thatkp+k[a;b℄ � 
kpk[a;b℄ and kp�k[a;b℄ � 
kpk[a;b℄for every p 2 spanfx�ig1i=�1:Outline. It is suÆ
ient to prove only the �rst inequality; the se
ond inequal-ity follows from the �rst by the substitution y = x�1: If the �rst inequalityfails to hold, then there exists a sequen
e (pn)1n=1 � spanfx�ig1i=�1 su
hthat kp+n k[a;b℄ = 1 ; n = 1; 2; : : : ; and limn!1 kpnk[a;b℄ = 0 :Sin
e p = p+ + p�; the above relations imply thatkp�n k[a;b℄ � K <1 ; n = 1; 2; : : : :By E.3 g℄ and E.3 e℄, there exists a subsequen
e (ni)1i=1 su
h that (p+ni)1i=1
onverges uniformly on every 
losed subinterval of [0; b) to a fun
tion fanalyti
 on Db := fz 2 C n(�1; 0℄ : jzj < bgof the form f(z) = 1Xi=0 aiz�i ; z 2 Db ;



4.2 M�untz's Theorem 181while (p�ni)1i=1 
onverges uniformly on every 
losed subinterval of (a;1) toa fun
tion g analyti
 onEa := fz 2 C n (�1; 0℄ : jzj > agof the formg(z) = �1Xi=�1 aiz�i ; z 2 Ea ; limx!1x2R g(x) = 0 :Now limi!1 kpnik[a;b℄ = 0 and pni = p+ni + p�ni imply that f + g = 0 on (a; b):Show that h(z) := � f(ez) ; Rez < log b�g(ez) ; Rez > log ais a well-de�ned bounded entire fun
tion, and hen
e h = 0 on C by Liou-ville's theorem. From this, dedu
e thatf = 0 on [0; b) and g = 0 on (a;1) :Hen
e, for every y 2 (a; b), limi!1 kp+nik[a;y℄ = 0and limi!1 kp+nik[y;b℄ = limi!1 kpni � p�nik[y;b℄ = 0 :Therefore limi!1 kp+nik[a;b℄ = 0 ;whi
h 
ontradi
ts kp+n k[a;b℄ = 1; n = 1; 2; : : : : utb℄ The Closure of M�untz Polynomials. Let f 2 C[0; 1℄, and suppose thereexist M�untz polynomials pn 2 spanfx�ig1i=�1 of the formpn(x) = knXi=�kn ai;nx�i ; n = 1; 2; : : :su
h that limn!1 kpn � fk[a;b℄ = 0: Show that f is of the formf(x) = 1Xi=�1 aix�i ; x 2 (a; b) ;where



182 4. Denseness Questionsf+(x) := 1Xi=1 aix�i ; x 2 [0; b) ;f�(x) := �1Xi=�1 aix�i ; x 2 (a;1) ; limx!1 f�(x) = 0 ;f 
an be extended analyti
ally throughout the regionfz 2 C n (�1; 0℄ : a < jzj < bg ;and limn!1 ai;n = ai ; i 2 Z :Hint: Use part a℄ and E.3 e℄. utE.5 Removing the Gap Conditions. Assume throughout this exer
ise that0 � �0 < �1 < � � � and P1i=1 1=�i <1:a℄ Bounded Chebyshev-Type Inequality. Show that for every � 2 (0; 1)there is a 
onstant 
� depending only on � and (�i)1i=0 (but not on thenumber of terms in p) su
h thatkpk[0;1℄ � 
�kpk[1��;1℄for every p 2 spanfx�0 ; x�1 ; : : : g: (This is the inequality of E.3 f℄ withoutthe gap 
ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: Assume, without loss of generality, that �0 = 0: Observe thatlimi!1 �i=i = 1. Choose m 2 N su
h that �i > 2i whenever i > m: De-�ne � := (
i)1i=1 by
i := �minf�i; ig ; i = 0; 1; : : : ;m12�i + i ; i = m+ 1;m+ 2; : : : :Then0 = 
0 < 
1 < � � � ; 1Xi=1 1
i <1 ; 
i � �i ; i = 0; 1; : : :and inff
i � 
i�1 : i 2 Ng > 0: Now use E.3 g℄ of Se
tion 3.3 with [a; b℄ =[1� �; 1℄ and E.3 f℄ of this se
tion. utb℄ Bounded Bernstein-Type Inequality. Suppose �0 = 0 and �1 � 1:Prove that for every � 2 (0; 1) there is a 
onstant 
� depending only on �and (�i)1i=0 (but not on the number of terms in p) su
h thatkp0k[0;1��℄ � 
�kpk[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g: (This is the se
ond inequality of E.3 d℄without the gap 
ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: De�ne the sequen
e � as in the hint given to part a℄. Now use E.3 f℄of Se
tion 3.3 with [a; b℄; a 2 (0; 1� �℄; E.3 g℄ of this se
tion, and part a℄of this exer
ise. ut



4.2 M�untz's Theorem 183
℄ Let 0 � a < b: Show that spanfx�0 ; x�1 ; : : : g is not dense in C[a; b℄:Hint: Use part a℄ and Theorem 4.2.1 (full M�untz's theorem in C[0; 1℄). utd℄ Let �2k�1 := k2 ; �2k := k2 + 2�k2 ; k = 1; 2; : : : ;a2k�1 := 2k2 ; a2k := �2k2 ; k = 1; 2; : : : :Show that the fun
tion f(x) := P1i=1�a2i�1x�2i�1 + a2ix�2i� is a well-de�ned 
ontinuous fun
tion on [0; 1℄: Show also that P1i=1 aix�i does not
onverge for any x 2 (0;1) (hen
e the 
on
lusions of E.3 e℄ are not validwithout a gap 
ondition).E.6 A Comparison Theorem. Let 0 � k � n be �xed integers. Assume�0 < �1 < � � � < �k < 0 < �k+1 < �k+2 < � � � < �n ;
0 < 
1 < � � � < 
k < 0 < 
k+1 < 
k+2 < � � � < 
n ;and j
ij � j�ij ; i = 0; 1; : : : ; nwith stri
t inequality for at least one index i: LetHn := spanfx�0 ; x�1 ; : : : ; x�ng and Gn := spanfx
0 ; x
1 ; : : : ; x
ngand let 0 < a < b: Thenminp2Gn k1� pk[a;b℄ < minp2Hn k1� pk[a;b℄ :Hint: Let q� 2 Hn be the best approximation to x0 � 1 on [a; b℄: Letr(x) = (�1)x0 + nXi=0 x
i 2 spanfx
0 ; : : : ; x
k ; x0; x
k+1 ; : : : ; x
nginterpolate q� � 1 2 spanfx�0 ; : : : ; x�k ; x0; x�k+1 ; : : : ; x�ngat the n+1 distin
t zeros, x1; x2; : : : ; xn+1, of q��1 on [a; b℄ (see Theorem3.1.6). Use Theorem 3.2.5 to show thatjr(x)j � jq(x)j ; x 2 [a; b℄with stri
t inequality for x 6= xi: Finally show that if p� := r + 1; thenminp2Gn k1� pk[a;b℄ � k1� p�k[a;b℄ < k1� q�k[a;b℄ = minp2Hn k1� pk[a;b℄ : ut



184 4. Denseness QuestionsE.7 Full M�untz Theorem on [a; b℄; a > 0. Let (�i)1i=0 be a sequen
e ofdistin
t real numbers, and let 0 < a < b. Show that spanfx�0 ; x�1 ; : : : g isdense in C[a; b℄ if and only if 1Xi=0�i 6=0 1j�ij =1 :Hint: Distinguish the following 
ases.Case 1: The sequen
e (�i)1i=0 has a 
luster point 0 6= � 2 R: Use Theorem4.2.1 to show that spanfx�0 ; x�1 ; : : : g is dense in C[a; b℄:Case 2: The point 0 is a 
luster point of (�i)1i=1: Use Case 1 to show �rstthat spanfx�0+1; x�1+1; : : : g is dense in C[a; b℄; and re
all that a > 0:Case 3: The sequen
e (�i)1i=0 does not have any (�nite) 
luster points, andeither 1Xi=0�i>0 1�i =1 or 1Xi=0�i<0 1j�ij =1 :Use Theorem 4.2.1 to show that spanfx�0 ; x�1 ; : : : g is dense in C[a; b℄:Case 4: 1Xi=0�i 6=0 1j�ij <1 :Without loss of generality we may assume that 0 =2 f�ig1i=0 (why?). By a
hange of s
aling, we may also assume that [a; b℄ = [1� �; 1℄. Letfe�ig1i=�1 = f�ig1i=0 ; where � � � < e��2 < e��1 < 0 < e�0 < e�1 < � � � :Show that there is a sequen
e (
i)1i=�1 satisfying� � � < 
�2 < 
�1 < 0 < 
0 < 
1 < � � � ;j
ij < je�ij ; i 2 Z ; 1Xi=�1 1j
ij <1 ;and the gap 
ondition inff
i � 
i�1 : i 2 Zg> 0 :Use E.4 a℄, E.5 a℄, and E.2 
℄ to show that1 =2 spanfx
ig1i=�1 ;where spanfx
ig1i=�1 denotes the uniform 
losure of the span on [a; b℄:Finally use E.6 to show that1 =2 spanfxe�ig1i=�1 = spanfx�ig1i=0 : ut



4.2 M�untz's Theorem 185E.8 Further Results for Nonnegative Sequen
es with No Gap Condition.Assume throughout this exer
ise that 0 � �0 < �1 < � � � ; P1i=1 1=�i <1,and 0 � a < b:a℄ Show that for every � 2 (0; b) there is a 
onstant 
� depending only on�; a; b; and (�i)1i=0 (but not on the number of terms in p) su
h thatkpk[0;b��℄ � 
� Z ba jp(x)j dxfor every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Assume that b = 1; the general 
ase 
an be redu
ed to this by s
aling.Use parts a℄ and b℄ of E.5 withep(x) := Z x0 p(t) dt 2 spanfx�0+1; x�1+1; : : : g : utb℄ Assume (pn)1n=1 � spanfx�0 ; x�1 ; : : : g
onverges to an f 2 C[a; b℄ uniformly on [a; b℄: Show that f 
an be extendedanalyti
ally throughout the regionDb := fz 2 C n (�1; 0℄ : 0 < jzj < bgand the 
onvergen
e is uniform on every 
losed subset of Db:Hint: This part of the exer
ise is diÆ
ult. A proof of a more general state-ment 
an be found in S
hwartz [59, pp. 38{48℄. ut
℄ Suppose (pn)1n=1 � spanfx�0 ; x�1 ; : : : g and kpnk[a;b℄ � 1 for ea
h n:Show that there is a subsequen
e of (pn)1n=1 that 
onverges uniformly onevery 
losed subinterval of [0; b): (So the 
on
lusion of E.3 g℄ holds withoutthe gap 
ondition inff�i � �i�1 : i 2 Ng > 0:)Hint: Use parts a℄ and b℄ of E.5 and the Arzela-As
oli theorem. utd℄ Let K be a 
losed subset of Db de�ned in part b℄. Show that there is a
onstant 
K depending only on K; a; b; and (�i)1i=0 (but not on the numberof terms in p) su
h that kpkK � 
Kkpk[a;b℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use parts 
℄ and b℄. (If the gap 
ondition inff�i � �i�1 : i 2 Ng > 0holds, then the simpler result of E.3 e℄ 
an be used instead of part b℄ of thisexer
ise.) ut



186 4. Denseness QuestionsE.9 Full M�untz Theorem on [a; b℄; a > 0; in Lq Norm. S
hwartz [59℄gives the following results: Suppose (�i)1i=�1 is a sequen
e of distin
t realnumbers. For a �nite set � of integers andp(x) =Xi2� aix�i ; ai 2 R ;let p�(x) := Xi2��i<0 aix�i and p+(x) := Xi2��i�0 aix�i :Let 0 < a < b and 1 � q �1:Theorem 4.2.5. Suppose 1Xi=�1�i 6=0 1j�ij <1 :Then there exists a 
onstant 
 depending only on a; b; q; and (�i)1i=�1 (butnot on the number of terms in p) su
h thatkp+kLq[a;b℄ � 
kpkLq[a;b℄ and kp�kLq[a;b℄ � 
kpkLq[a;b℄for every p 2 spanfx�ig1i=�1:Theorem 4.2.6. Suppose that 0 < a < b: Then spanfx�0 ; x�1 ; : : : g is densein Lq[a; b℄ if and only if(4:2:4) 1Xi=0�i 6=0 1j�ij =1 :a℄ Prove the two above results under the gap 
onditioninff�i � �i�1 : i 2 Zg> 0 :Hint to Theorem 4.2.5: When q =1 see E.4 a℄. If 1 � q <1; then modifythe proof suggested in the hints to E.4 a℄, by using E.8 a℄. utHint to Theorem 4.2.6: If (4.2.4) holds, then the fa
t that spanfx�0 ; x�1 ; : : : gis dense in Lq[a; b℄ follows from E.7 and the obvious inequalitykpkLq[a;b℄ � (b� a)1=qkpk[a;b℄ :Now suppose (4.2.4) does not hold. Use Theorem 4.2.5 and E.8 a℄ toshow that for every � 2 (0; 12 (b � a)) there exists a 
onstant 
� dependingonly on a; b; q; and (�i)1i=�1 (but not on the number of terms in p) su
hthat kpk[a+�;b��℄ � 
�kpkLq[a;b℄for every p 2 spanfx�ig1i=�1: Now show that the above inequality impliesthat spanfx�0 ; x�1 ; : : : g is not dense in Lq[a; b℄: ut



4.2 M�untz's Theorem 187E.10 Denseness of spanf
os�k�g and spanfz�kg. Throughout this exer-
ise the span is assumed to be over C : LetDR := fz 2 C : jzj < Rg and CR := fz 2 C : jzj = Rg :a℄ Show that (
osn�)1n=0 is a 
omplete orthogonal system in L2[0; �℄: Sono term, 
osn�; 
an be removed if we wish to preserve denseness of thespan in L2[0; �℄:b℄ Let A := fei� : � 2 [0; Æ℄g. Suppose (�k)1k=0 is a sequen
e of distin
t
omplex numbers satisfyingj�kj � ke1�Æ ; k = 1; 2; : : : :If Æ 2 [1; 2�℄; then spanfz�0 ; z�1 ; : : : g is dense in L2(A):The proof of part b℄ is outlined in parts 
℄, d℄, and e℄.
℄ Jensen's Formula. Suppose h is a nonnegative integer andf(z) = 1Xk=h 
kzk ; 
h 6= 0is analyti
 on a disk of radius greater than R; and suppose that the zerosof f in DR n f0g are a1; a2; : : : ; an; where ea
h zero is listed as many timesas its multipli
ity. Thenlog j
hj+ h logR+ nXk=1 log Rjakj = 12� Z 2�0 log jf(Rei�)j d� :Proof. This is a simple 
onsequen
e of Poisson's formula (see, for example,Ahlfors [53℄), whi
h states thatlog jF (0)j = 12� Z 2�0 log jF (Rei�)j d�whenever the fun
tion F is analyti
 and zero-free in an open region 
on-taining the 
losed disk DR. Now, in the above notation, if we letF (z) := f(z)�Rz �h nYk=1 R2 � akzR(z � ak)and apply Poisson's formula to F; we get the required result by noting thatjF (z)j = jf(z)j whenever jzj = R: (The 
ase where f has zeros on theboundary of D requires an additional limiting argument.) ut



188 4. Denseness Questionsd℄ Let �1 � a < b � 1: Suppose (fk)1k=0 is a sequen
e in L2(a; b)and spanff0; f1; : : : g is not dense in L2(a; b). Then there exists a nonzerog 2 L2(a; b) su
h thatZ ba fk(x)g(x) dx = 0 ; k = 0; 1; : : : :This is an immediate 
onsequen
e of the Riesz representation theorem (seeE.7 g℄ of Se
tion 2.2) and the Hahn-Bana
h theorem. The se
ond theoremsays that if spanff0; f1; : : : g is not dense in a Bana
h spa
e, then there existsa nonzero 
ontinuous linear fun
tional vanishing on ff0; f1; : : : g: The �rsttheorem gives the form of the fun
tional; see Rudin [73℄.e℄ Prove b℄ as follows: Suppose spanfz�0 ; z�1 ; : : : g is not dense in L2(A).Then by d℄ there exists a g 2 L2[0; Æ℄ su
h thatf(z) := Z Æ0 exp(i(z + 1)�)g(�) d�vanishes at z = �k, k = 0; 1; : : : : Also observe that f is an entire fun
tion,and there is an absolute 
onstant � > 0 su
h thatjf(z)j � � exp(Æjzj) :Use E.8 a℄ of Se
tion 2.2 to show that f 6= 0: Let R > j�0j be an integer.Applying 
℄ on DR and exponentiating, we obtainj
hj exp((Æ � 1)R)RR+1R! � j
hjRh RYk=0�k 6=0 Rj�kj � � exp(ÆR) ;where 
h is the �rst nonvanishing 
oeÆ
ient of the Taylor series expansionof f around 0. However, limR!1 RR+1R! eR =1 ;whi
h is a 
ontradi
tion and �nishes the proof. utf ℄ Let A := [0; Æ℄. Suppose (�k)1k=0 is a sequen
e of distin
t 
omplex num-bers satisfying j�kj � ke1�Æ ; k = 1; 2; : : : :Show that if Æ 2 [1; �℄; then spanf
os�0�; 
os�1�; : : : g is dense in L2(A).Hint: Pro
eed as in the proof of part b℄. ut



4.2 M�untz's Theorem 189g℄ Suppose (�k)1k=0 is a sequen
e of distin
t real numbers satisfying0 � �k � k ; k = 0; 1; : : : :Then spanf
os�0�; 
os�1�; : : : g is dense in L2[0; � � �℄ for any � > 0:Proof. This is harder; see Boas [54, p. 235℄. uth℄ Suppose (�k)1k=0 is a sequen
e of distin
t 
omplex numbers satisfying0 � j�k j � k: Suppose f is an entire fun
tion su
h that kfkDR � �eR forall R > 0 with an absolute 
onstant � > 0, and spanff(�z) : � 2 C g isdense in L2(C1): Then spanff(�0z); f(�1z); : : : g is dense in L2(C1):E.11 On the Hardy Spa
e H1. We denote by H1 the 
lass of fun
tionsthat are analyti
 and bounded on D := fz 2 C : jzj < 1g: We letkfkH1 := kfkD = supu2D jf(u)j :a℄ If f 2 H1; then f(z) = 1Xn=0 anzn ; z 2 D ;where janj � kfkH1 :Hint: By Cau
hy's integral formulajanj = 1n! jf (n)(0)j � 12� Zjtj=R ���� f(t)tn+1 ���� jdtj � R�nkfkH1holds for every R 2 (0; 1): utb℄ If f 2 H1; thenjf 0(z)j � � 11� jzj�2 kfkH1 ; jzj < 1and jf (n)(z)j � n!� 11� jzj�n+1 kfkH1 ; jzj < 1 :
℄ H1 is a Bana
h algebra.Hint: See Rudin [73℄. ut



190 4. Denseness QuestionsE.12 Blas
hke Produ
ts. A produ
t of the formB(z) := zk 1Yi=1� �i � z1� �iz� j�ij�i ; �i 2 C n f0gwith k 2 Z is 
alled a Blas
hke produ
t. Let D := fz 2 C : jzj < 1g:a℄ Let '�(z) := �� z1� �z ; � 2 C :Show that j'�(z)j = 1 whenever jzj = 1 and'0�(z) = j�j2 � 1(1� �z)2 :b℄ Show that if j�j < 1; then '�(z) maps the 
losed unit disk D one-to-oneonto itself.
℄ A Minimization Property. Let �1; �2; : : : ; �n be �xed 
omplex numberswith j�ij > 1; i = 1; : : : n: Show thatminai2C 




1� nXi=1 aiz � �i 




D = nYi=1 j�ij�1and that the minimum is attained by the normalized �nite Blas
hke produ
t1� nXi=1 a�iz � �i =  nYi=1�i!�1 nYi=1 ��1i � z1� ��1i z! :Hint: Suppose that the statement is false. Then there are some ai 2 C su
hthat �����1� nXi=1 aiz � �i ����� <  nYi=1 j�ij!�1 = �����1� nXi=1 a�iz � �i �����for all z 2 C with jzj = 1. Now Rou
h�e's theorem implies thatnXi=1 ai � a�iz � �ihas n zeros in the disk D; whi
h is a 
ontradi
tion. utd℄ Suppose (�n)1n=1 is a sequen
e in D satisfying�1 = �2 = � � � = �k = 0 ; �n 6= 0 ; n = k + 1; k + 2; : : :



4.2 M�untz's Theorem 191and 1Xn=1(1� j�nj) <1 :Then B(z) := zk 1Yn=k+1� �n � z1� �nz� j�nj�nde�nes a bounded analyti
 fun
tion onD (that is, B 2 H1), whi
h vanishesat z if and only if z = �j for some j = 1; 2; : : : ; in whi
h 
ase the multipli
ityof z0 in B(z) is the same as the multipli
ity of �j in (�n)1n=1:e℄ Suppose (�n)1n=1 is a sequen
e in D satisfying1Xn=1 (1� j�nj) =1 :Denote the multipli
ity of �j in (�n)1n=1 by mj : Suppose f 2 H1 has azero at ea
h �j with multipli
ity mj : Then f = 0:Hint: Suppose kfkD > 0: Without loss of generality we may assume thatf(0) 6= 0: By Jensen's formula (see E.10 
℄),1Xn=1j�nj<R log Rj�nj + log jf(0)j = 12� Z 2�0 log jf(Rei�j d� � log kfkDfor every R 2 (0; 1). Letting R tend to 1, we obtain1Xn=1 log 1j�nj < log kfkD � log jf(0)j <1 :Hen
e 1Xn=1(1� j�nj) <1 ;whi
h 
ontradi
ts the assumption. utNote that the 
on
lusion of part e℄ holds for the larger Nevanlinna
lass N; whi
h is de�ned as the set of those analyti
 fun
tions f on D forwhi
h supR2(0;1) 12� Z 2�0 log+ jf(Rei�)jd� <1 ;where log+ x := maxflogx; 0g:



192 4. Denseness Questionsf ℄ Let B(z) := zk nYi=1� �i � z1� �iz� j�ij�i ; �i 2 C n f0gbe a �nite Blas
hke produ
t. Show thatjB0(z)j = k + nXi=1 1� j�ij2jz � �ij2 ; jzj = 1 :Hint: Consider B0=B; where jB(z)j = 1 whenever jzj = 1: utg℄ Suppose 1Xi=1 (1� j�ij) <1 ; �i 2 (0; 1)and B(z) := 1Yi=1� �i � z1� �iz� j�ij�i :Show that k((1� z)2B(z))0kD �  4 + 2 1Xi=1(1� �2i )! kBkD :Hint: Use f℄. utE.13 Yet Another Proof of M�untz's Theorem when inff�i : i 2 Ng > 0.As in E.10, this proof requires a 
onsequen
e of the Hahn-Bana
h theoremand the Riesz representation theorem whi
h we state in a℄. For details,the reader is referred to Feinerman and Newman [76℄ and Rudin [87℄. Weassume throughout the exer
ise that �0 := 0 and that (�k)1k=1 is a sequen
eof distin
t positive numbers satisfying inff�k : k 2 Ng > 0:a℄ spanf1; x�1 ; x�2 ; : : : g is not dense if and only if there exists a nonzero�nite Borel measure � on [0; 1℄ withZ 10 t�k d�(t) = 0 ; k = 0; 1; 2 : : : :b℄ Show that P1k=1 1=�k =1 implies that spanf1; x�1 ; x�2 ; : : : g is densein C[0; 1℄:Outline. Suppose there is a nonzero �nite Borel measure � on [0; 1℄ su
hthat Z 10 t�k d�(t) = 0 ; k = 0; 1; : : : :



4.2 M�untz's Theorem 193Let f(z) = Z 10 tz d�(t) ; Re(z) > 0 :Show that g(z) := f �1 + z1� z� 2 H1and g��k � 1�k + 1� = 0 with �����k � 1�k + 1 ���� < 1 ; k = 1; 2; : : : :Note that P1k=1 1=�k =1 and inff�k : k 2 Ng > 0 imply1Xk=1�1� �����k � 1�k + 1 ����� =1 :Hen
e E.12 e℄ yields that g = 0 on the open unit disk. Therefore f(z) = 0whenever Re(z) > 0; sof(n) = Z 10 tn d�(t) = 0 ; n = 1; 2; : : : :Note that Z 10 t0 d�(t) = 0also holds be
ause of the 
hoi
e of �: Now the Weierstrass approximationtheorem yields that Z 10 f(t) d�(t) = 0for every f 2 C[0; 1℄, whi
h 
ontradi
ts the fa
t that the Borel measure �is nonzero. So part a℄ implies that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:ut
℄ Show that P1k=1 1=�k < 1 implies that spanf1; x�1 ; x�2 : : : g is notdense in C[0; 1℄.Outline. Show under the above assumption thatf(z) = Z 10 tz � 12� Z 1�1 f(�1 + is)e�is log t ds� dt ; Re(z) > �1if f is de�ned by f(z) := z(2 + z)3 1Yn=1 �n � z2 + �n + z :



194 4. Denseness QuestionsShow that d�(t) = � 12� Z 1�1 f(�1 + is)e�is log t ds� dtde�nes a nonzero �nite Borel measure, �, on [0; 1℄ su
h thatZ 10 t�k d�(t) = 0 ; k = 0; 1; 2; : : :as is required by part a℄. For the above, show thatf(z) = � 12� Z 1�1 f(is� 1)is� 1� z ds ; Re(z) > �1and use that 11 + z � is = Z 10 tz�is dt : utE.14 Another Proof of Denseness of M�untz Spa
es when �i ! 0. Suppose� := (�i)1i=1 is a sequen
e of distin
t positive numbers with limi!1 �i = 0:Show that M(�) := spanf1; x�1 ; x�2 ; : : : gis dense in C[0; 1℄ if and only if P1i=1 �i =1 :Hint: If P1i=1 �i =1; then limi!1 �i = 0 implies that1Xi=1 �1� �����i � 1�i + 1 ����� =1 :So the outline of the proof of E.13 b℄ yields that M(�) is dense in C[0; 1℄:If � :=P1i=1 �i <1; then, by Theorem 6.1.1, the inequalitykxp0(x)k[0;1℄ � 9� kpk[0;1℄holds for every p 2 M(�). Use this inequality to show that M(�) fails tobe dense in C[0; 1℄: utE.15 Denseness of M�untz Spa
es with Complex Exponents. Suppose� := (�i)1i=1 is a sequen
e of 
omplex numbers satisfyingRe(�i) > 0 ; i = 1; 2; : : : :Show that if 1Xn=1�1� �����n � 1�n + 1 ����� =1 ;then spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄. (In this exer
ise the span istaken over C , and C[0; 1℄ denotes the set of all 
omplex-valued 
ontinuousfun
tions on [0; 1℄.)



4.2 M�untz's Theorem 195E.16 Christo�el Fun
tions for Nondense M�untz Spa
es. Let � = (�i)1i=0be a sequen
e of distin
t 
omplex numbers with Re(�i) > � 12 for ea
h i: Asin Se
tion 3.4, let L�k := L�kf�0; : : : ; �kg denote the asso
iated orthonormalM�untz-Legendre polynomials on [0; 1℄:a℄ Let Kn be de�ned by1Kn(y) := inf�Z 10 jp(t)j2 dt : p 2 spanfx�0 ; x�1 ; : : : ; x�ng; p(y) = 1� :Show that Kn(y) = nXk=0 jL�k(y)j2 :The fun
tion 1=Kn is 
alled the nth Christo�el fun
tion asso
iated with �.Hint: Pro
eed as in the hint to E.13 of Se
tion 2.3. utIn the rest of the exer
ise we assume that (�i)1i=0 is a sequen
e of non-negative integers. We use this assumption for treating (higher) derivatives,although some weaker assumptions would lead to the same 
on
lusions.b℄ Suppose P1i=1 1=�i < 1: Show that for every � 2 (0; 1) and m 2 N;there exists a 
onstant 
�;m depending only on �; �, and m su
h thatkp(m)k[0;1��℄ � 
�;mkpkL2[0;1℄for every p 2 spanfx�0 ; x�1 ; : : : g:Hint: Use E.3 
℄. ut
℄ Show that the following statements are equivalent:(1) spanfx�0 ; x�1 ; : : : g is not dense in C[0; 1℄ :(2) P1i=1 1=�i <1 :(3) P1k=0 (L�k)2 
onverges uniformly on [0; 1� �℄ for all � 2 (0; 1) :(4) There exists an x 2 [0; 1) so that P1k=0 (L�k(x))2 <1 :Outline. The equivalen
e of (1) and (2) is the 
ontent of M�untz's theorem(Theorem 4.2.1). To see that (2) implies (3), �rst observe that1Xk=0��(L�k)(m) (y)��2= supn��p(m)(y)��2 : p 2 spanfx�0 ; x�1 ; : : : g; kpkL2[0;1℄ = 1o ;whi
h 
an be proved similarly to part a℄. Hen
e by part b℄, for every � 2(0; 1), there exists a 
onstant 
� depending only on � su
h that



196 4. Denseness Questions1Xk=0 (L�k(x))2 � 
� and 1Xk=0 (L�0k (x))2 � 
� ; x 2 [0; 1� �℄ :Sin
e �Pnk=0 (L�k)2�0 = 2Pnk=0 L�kL�0k on [0;1); applying the Cau
hy-S
hwarz inequality, we obtain that���Pnk=0 (L�k)2�0(x)�� � 2
� ; x 2 [0; 1� �℄ :Therefore the fun
tions Pnk=0 (L�k)2; n = 1; 2; : : : ; are uniformly boundedand equi
ontinuous on [0; 1 � �℄; whi
h implies the uniform 
onvergen
eof the fun
tions Kn on [0; 1 � �℄ by the Arzela-As
oli theorem. Sin
e (3)obviously implies (4), what remains to be proven is that (4) implies (1).This 
an be easily done by part a℄. utd℄ Let � 2 (0; 1) and m 2 N be �xed. Show that if P1i=0 1=�i < 1; thenP1k=0 ((L�k)(m))2 
onverges uniformly on [0; 1� �℄:Hint: Modify the argument given in the hints to part 
℄. ute℄ Show that if P1i=0 1=�i <1; thenlimk!1 k(L�k)(m)k[0;1��℄ = 0for every � 2 (0; 1) and m 2 N:E.17 Chebyshev-Type Inequality with Expli
it Bound via the Paley-Wiener Theorem. The method outlined in this exer
ise was suggestedby Hal�asz. A fun
tion f is 
alled entire if it is analyti
 on the 
omplexplane. An entire fun
tion f is 
alled a fun
tion of exponential type Æ if thereexists a 
onstant 
 depending only on f su
h thatjf(z)j � 
 exp(Æjzj) ; z 2 C :The 
olle
tion of all su
h entire fun
tions of exponential type Æ is denotedbe EÆ . The Paley-Wiener theorem 
hara
terizes the fun
tions F that 
anbe written as the Fourier transform of some fun
tion f 2 L2[�Æ; Æ℄.Theorem (Paley-Wiener). Let Æ 2 (0;1): Then F 2 EÆ \ L2(R) if andonly if there exists an F 2 L2[�Æ; Æ℄ su
h thatF (z) = Z Æ�Æ f(t)eitz dt :For a proof see, for example, Rudin [87℄.In the rest of the exer
ise let � = (�k)1k=0 be an in
reasing sequen
ewith �0 = 0 and P1k=1 1=�k <1:



4.2 M�untz's Theorem 197E.5 says thatC(�; �) := sup� kpk[0;1℄kpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� <1holds for every � 2 (0; 1): In this exer
ise we establish an expli
it bound forC(�; �):a℄ Show thatC(�; �) = sup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g�for every � 2 (0; 1):Hint: Use �0 = 0, E.4 
℄ of Se
tion 3.3, and the monotoni
ity of theChebyshev polynomialTnfx�0 ; x�1 ; : : : ; x�n ; [1� �; 1℄gon [0; 1� �℄: utb℄ Assume that(1) F 2 EÆ \ L2(R);(2) F (i�k) = 0; k = 1; 2; : : : (i is the imaginary unit); and(3) F (0) = 1:Show that jP (1)j � kFkL2(R)kPkL2[�Æ;Æ℄for every P 2 spanfe��0t; e��1t; : : : g:Outline. By the Paley-Wiener theoremF (z) = Z Æ�Æ f(t)eitz dtfor some f 2 L2[�Æ; Æ℄: Now ifP (t) = a0 + nXk=1 ake��kt ;then Z Æ�Æ f(t)P (t) dt = a0 Z Æ�Æ f(t) dt+ nXk=1 ak Z Æ�Æ f(t)e��kt dt= a0F (0) + nXk=1 akF (i�k) = a0 = P (1) :



198 4. Denseness QuestionsHen
e by the Cau
hy-S
hwarz inequality and the L2 inversion theorem ofFourier transforms, we obtain thatjP (1)j � kfkL2[�Æ;Æ℄ kPkL2[�Æ;Æ℄ � kFkL2(R) kPkL2[�Æ;Æ℄ : utGiven Æ 2 (0; 1), let N 2 N be 
hosen so that1Xk=N+1 1�k � Æ3 :Let �k := A�k with A := Æ3N :LetF (z) := sin(Æz=3)Æz=3� NYk=1��1� zi�k� sin(�kz=�k)�kz=�k � 1Yk=N+1 1�� sin(z=�k)sin i �4! ;where i is the imaginary unit.
℄ Show that F 2 EÆ:d℄ Observe that F (0) = 1; F (i�k) = 0; k = 1; 2; : : : ; andjF (t)j � sin(Æt=3)Æt=3 NYk=1�2 + 1�k� ; t 2 R :e℄ Show that jP (1)j � 3
Æ NYk=1�2 + 1�k� kPk[�Æ;Æ℄for every P 2 spanfe��0t; e��1t; : : : g with 
 := kt�1 sin tkL2(R):Hint: Use parts b℄, 
℄, and d℄. utf ℄ Let �k := k�; � > 1: Show that there exists a 
onstant 
� dependingonly on � su
h thatkpk[0;1℄ � exp �
��1=(1��)� kpk[1��;1℄for every p 2 spanfx�0 ; x�1 ; : : : g and for every � 2 (0; 1=2℄:



4.2 M�untz's Theorem 199Proof. Let(4.2.5) Æ := �12 log(1� �) :Observe that N in part e℄ 
an be 
hosen so that(4.2.6) N := $�Æ(�� 1)3 �1=(1��)%+ 1 :Also, �k in part d℄ is of the form �k = Æk�(3N)�1: LetM+1 be the smallestvalue of k 2 N for whi
h1�k < 1 ; that is , 3Nk�Æ � 1 :Note that M := $�3NÆ �1=�% :If 0 < M < N; thenNYk=1�2 + 1�k� = NYk=1�2 + 3NÆk���  MYk=1 9NÆk�! NYk=M+1 3! � �9NÆ �M �Me ���M 3N�M= �9e�NÆ �M M��M3N�M� �9e�NÆ �M  12 �3NÆ �1=�!��M 3N�M� (3(2e)�)M3N�M � (3(2e)�)N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄.If N �M; thenNYk=1�2 + 1�k� = NYk=1�2 + 3NÆk���  NYk=1 9NÆk�! � �9NÆ �N �Ne ���N = �9e�N (1��)Æ �N� �9e�Æ �N  �Æ(�� 1)3 �1=(1��)!(1��)N� �9e�Æ �N �Æ(�� 1)3 �N � (3e�(�� 1))N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄.



200 4. Denseness QuestionsIf M = 0; then NYk=1�2 + 1�k� � NYk=1 3 = 3N ;and the theorem follows by (4.2.5), (4.2.6), and part e℄. utThe next part of the exer
ise shows that the result of part f℄ is 
loseto sharp.g℄ Let �k := k�; � > 1: Let � 2 (0; 1=2℄: Show that there exists a 
onstant
� depending only on � > 0 so thatsup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� � exp �
��1=(1��)� :Proof. Let n 2 N be a �xed. We de�ne 
k := kn��1; k = 0; 1; : : : . LetTn(x) := ((x � 1)=2)n andQn(x) := Tn 2xn��11� (1� �)n��1 � 1 + (1� �)n��11� (1� �)n��1! :Then Qn 2 spanfx
0 ; : : : x
ng; and by E.3 g℄ of Se
tion 3.3 we obtain thatsup� jp(0)jkpk[1��;1℄ : p 2 spanfx�0 ; x�1 ; : : : g� � jQn(0)jkQnk[1��;1℄ = jQn(0)j= � 11� (1� �)n��1 �n :Now let n be the smallest integer satisfying n��1 � ��1: Sin
e (1� �)1=� isbounded away from 0 on (0; 1=2℄; the result follows. utE.18 Completion of the Proof of Theorem 4.2.1. The 
ase when �i � 1for ea
h i has already been proved. The only real remaining diÆ
ulty ispart d℄.a℄ Prove Theorem 4.2.1 in the 
ase when inff�i : i 2 Ng > 0:Hint: Use the s
aling x! x1=Æ and the already proved 
ase. utb℄ Show that if (�i)1i=1 � (0;1) has a 
luster point � 2 (0;1); thenspanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄:Hint: Use part a℄. ut
℄ Suppose (�i)1i=1 � (0;1) and �i ! 0: Then spanf1; x�1 ; x�2 ; : : : g isdense in C[0; 1℄ if and only if P1i=1 �i =1:Hint: This is the 
ontent of E.14. ut



4.2 M�untz's Theorem 201d℄ Suppose f�i : i 2 Ng = f�i : i 2 Ng [ f�i : i 2 Ngwith limi!1�i = 0 and limi!1�i =1 :Show that spanf1; x�1 ; x�2 ; : : : g is dense in C[0; 1℄ if and only if(4:2:7) 1Xi=1 �i + 1Xi=1 1�i =1 :Outline. If (4.2.7) holds, then the denseness of spanf1; x�1 ; x�2 ; : : : g inC[0; 1℄ follows from parts a℄ and 
℄. Now assume that (4.2.7) does not hold,so 1Xi=1 �i <1 and 1Xi=1 1�i <1 :For notational 
onvenien
e, letTn;� := Tnf1; x�1 ; : : : ; x�n : [0; 1℄g ;Tn;� := Tnf1; x�1 ; : : : ; x�n : [0; 1℄g ;T2n;�;� := T2nf1; x�1 ; : : : ; x�n ; x�1 ; : : : ; x�n : [0; 1℄g(we use the notation introdu
ed in Se
tion 3.3).It follows from Theorem 6.1.1 (Newman's inequality) and the MeanValue Theorem that for every � > 0 there exists a k1(�) 2 N dependingonly on (�i)1i=1 and � (and not on n) su
h that Tn;� has at most k1(�) zerosin [�; 1) and at least n� k1(�) zeros in (0; �):Similarly, E.5 b℄ and the Mean Value Theorem imply that for every� > 0 there exists a k2(�) 2 N depending only on (�i)1i=1 and � (and not onn) so that Tn;� has at most k2(�) zeros in (0; 1� �℄ and at least n � k2(�)zeros (1� �; 1):Now, on 
ounting the zeros of Tn;� � T2n;�;� and Tn;� � T2n;�;�, we
an dedu
e that for every � > 0 there exists a k(�) 2 N depending onlyon (�i)1i=1 and � (and not on n) so that T2n;�;� has at most k(�) zeros in[�; 1� �℄.Let � := 14 and k := k � 14�. Pi
k k + 4 points14 < �0 < �1 < � � � < �k+3 < 34and a fun
tion f 2 C[0; 1℄ su
h that f(x) = 0 for all x 2 �0; 14� [ � 34 ; 1� ;while f(�i) := 2 � (�1)i ; i = 0; 1; : : : :



202 4. Denseness QuestionsAssume that there exists a p 2 spanf1; x�1 ; x�2 ; : : : g su
h thatkf � pk[0;1℄ < 1 :Then p�T2n;�;� has at least 2n+1 zeros in (0; 1): However, for suÆ
ientlylarge n, p� T2n;�;� 2 spanf1; x�1 ; : : : ; x�2ngso it 
an have at most 2n zeros in [0;1): This 
ontradi
tion shows thatspanf1; x�1 ; x�2 ; : : : g is not dense in C[0; 1℄: ute℄ Prove Theorem 4.2.1 in full generality.Outline. Combine parts a℄ to d℄. utE.19 Proof of Theorem 4.2.3. Prove Theorem 4.2.3.Proof. Assume that spanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄. Let m be a �xed nonnegative integer. Let � > 0. Choosea p 2 spanfx�0 ; x�1 ; : : : gsu
h that kxm � p(x)kL1[0;1℄ < � :Now let q(x) := Z x0 p(t) dt 2 spanfx�0+1; x�1+1; : : : g :Then 



 xm+1m+ 1 � q(x)



[0;1℄ < � :So the Weierstrass approximation theorem yields thatspanf1; x�0+1; x�1+1; : : : gis dense in C[0; 1℄; and Theorem 2.1 implies that1Xi=0 �i + 1(�i + 1)2 + 1 =1 :Now assume that(4:2:8) 1Xi=0 �i + 1(�i + 1)2 + 1 =1:By the Hahn-Bana
h theorem and the Riesz representation theorem



4.2 M�untz's Theorem 203spanfx�0 ; x�1 ; : : : gis not dense in L1[0; 1℄ if and only if there exists a 0 6= h 2 L1[0; 1℄ satisfyingZ 10 t�ih(t) dt = 0; i = 0; 1; : : : :Suppose there exists a 0 6= h 2 L1[0; 1℄ su
h thatZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : :Let f(z) := Z 10 tzh(t) dt ; Re(z) > �1 :Then g(z) := f �1 + z1� z � 1�is a bounded analyti
 fun
tion on the open unit disk that satis�esg� �i�i + 2� = 0 with ���� �i�i + 2 ���� < 1 ; i = 0; 1; : : : :Note that (4.2.8) implies1Xi=1 �1� ���� �i�i + 2 ����� =1 :Hen
e Blas
hke's theorem (E.12 e℄) yields that g = 0 on the open unit disk.Therefore f(z) = 0 whenever Re(z) > �1; sof(n) = Z 10 tnh(t) dt = 0 ; n = 0; 1; : : : :Now the Weierstrass approximation theorem yieldsZ 10 u(t)h(t) dt = 0for every u 2 C[0; 1℄; whi
h 
ontradi
ts the fa
t that 0 6= h: Sospanfx�0 ; x�1 ; : : : gis dense in L1[0; 1℄: ut



204 4. Denseness QuestionsE.20 Proof of Theorem 4.2.4.a℄ Show that if(4:2:9) 1Xi=0 �i + 1p��i + 1p�2 + 1 =1 ;then spanfx�0 ; x�1 ; : : : g is dense in Lp[0; 1℄:Outline. By the Hahn-Bana
h theorem and the Riesz representation theo-rem spanfx�0 ; x�1 ; : : : gis not dense in Lp[0; 1℄ if and only if there exists a 0 6= h 2 Lq[0; 1℄ satisfyingZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : ;where q is the 
onjugate exponent of p de�ned by p�1 + q�1 = 1.Suppose there exists a 0 6= h 2 Lq[0; 1℄ su
h thatZ 10 t�ih(t) dt = 0 ; i = 0; 1; : : : :Let f(z) := Z 10 tzh(t) dt ; Re(z) > � 1p :Use H�older's inequality to show thatg(z) := f �1 + z1� z � 1p�is a bounded analyti
 fun
tion on the open unit disk that satis�esg �i + 1p � 1�i + 1p + 1! = 0 with ������i + 1p � 1�i + 1p + 1 ����� < 1 ; i = 0; 1; : : : :Note that (4.2.9) implies1Xi=1  1� ������i + 1p � 1�i + 1p + 1 �����! =1 :Hen
e Blas
hke's theorem (E.12 e℄) yields that g = 0 on the open unit disk.Therefore f(z) = 0 whenever Re(z) > � 1p ; so



4.2 M�untz's Theorem 205f(n) = Z 10 tnh(t) dt = 0 ; n = 0; 1; : : : :Now the Weierstrass approximation theorem yieldsZ 10 u(t)h(t) dt = 0for every u 2 C[0; 1℄; whi
h 
ontradi
ts the fa
t that 0 6= h: Sospanfx�0 ; x�1 ; : : : gis dense in Lp[0; 1℄: utb℄ Show that if 1Xi=0 �i + 1p��i + 1p�2 + 1 <1 ;then spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄.Outline. This follows from E.7 of Se
tion 4.3. ut
℄ Suppose (�i)1i=0 is a sequen
e of distin
t positive numbers. Let p 2[1;1). Show that spanfe��0t; e��t ; : : : g is dense in Lp[0;1) if and only if1Xi=0 �i�2i + 1 =1 :Outline. Use parts a℄ and b℄ and the substitution x = e�t: utE.21 M�untz Theorem on [a; b℄ with a < 0 < b. Suppose � := (�i)1i=1 isa sequen
e of distin
t nonnegative integers, and suppose a < 0 < b: Thenspanf1; x�1 ; x�2 ; : : : g is dense in C[a; b℄ if and only if1Xi=1�i is even 1�i =1 and 1Xi=1�i is odd 1�i =1 :E.22 The Zeros of the Chebyshev Polynomials in Nondense M�untz Spa
es.Let (�i)1i=0 be a sequen
e of distin
t nonnegative real numbers with �0 := 0and P1i=1 1=�i <1: LetTn := Tnf�0; �1; : : : ; �n; [0; 1℄gbe the Chebyshev polynomials for spanfx�0 ; : : : ; x�ng on [0; 1℄: LetZ := fx 2 [0; 1℄ : Tn(x) = 0 for some n 2 Ng :Let Z 0 be the set of all limit points of Z and Z 00 be the set of all limit pointsof Z 0. Show that Z 00 = f1g:Hint: Use the bounded Bernstein-type inequality of E.5 b℄ and the inter-la
ing property of the zeros of the Chebyshev polynomials Tn. ut



206 4. Denseness Questions4.3 Unbounded Bernstein InequalitiesIn Se
tion 4.1 we 
hara
terized the denseness of C1 Markov spa
es by thebehavior of the zeros of their asso
iated Chebyshev polynomials. The prin
i-pal result of this se
tion is a 
hara
terization of denseness of Markov spa
esby whether or not they have an unbounded Bernstein inequality.De�nition 4.3.1 (Unbounded Bernstein Inequality). Let A be a subset ofC1[a; b℄. We say that A has an everywhere unbounded Bernstein inequalityif sup�kp0k[�;�℄kpk[a;b℄ : 0 6= p 2 A� =1for every [�; �℄ � [a; b℄; � 6= �:The subset A := fx2p(x) : p 2 Pn; n = 0; 1; : : :ghas an everywhere unbounded Bernstein inequality despite the fa
t thatf 0(0) = 0 for every f 2 A:The next result shows that in most instan
es the Chebyshev polynomialis 
lose to extremal for Bernstein-type inequalities. This is a theme that willbe explored further in later 
hapters.Theorem 4.3.2 (A Bernstein-Type Inequality for Chebyshev Spa
es). Let(1; f1; : : : ; fn) be a Chebyshev system on [a; b℄ su
h that ea
h fi is di�eren-tiable at x0 2 [a; b℄: LetTn := Tnf1; f1; : : : ; fn; [a; b℄gbe the asso
iated Chebyshev polynomial. Thenjp0(x0)jkpk[a;b℄ � 21� jTn(x0)j jT 0n(x0)jfor every 0 6= p 2 spanf1; f1; : : : ; fng; provided jTn(x0)j 6= 1:Proof. Let a = y0 < y1 < � � � < yn = b denote the extreme points of Tn,that is, Tn(yi) = (�1)n�i ; i = 0; 1; : : : ; n(see the de�nition and E.1 a℄ in Se
tion 3.3). Let yk � x0 � yk+1 and0 6= p 2 Hn := spanf1; f1; : : : ; fng :



4.3 Unbounded Bernstein Inequalities 207If p0(x0) = 0; then there is nothing to prove. Assume that p0(x0) 6= 0: Thenwe may normalize p so thatkpk[a;b℄ = 1 and sign(p0(x0)) = sign(Tn(yk+1)� Tn(yk)) :Let Æ := jTn(x0)j: Let � 2 (0; 1) be �xed. Then there exists a 
onstant �with j�j � Æ + 12 (1� Æ) su
h that� + 12 (1� Æ)(1� �)p(x0) = Tn(x0) :Now let q(x) := � + 12 (1� Æ)(1� �)p(x) :Then kqk[a;b℄ < 1 ; q(x0) = Tn(x0) ;and sign(q0(x0)) = sign(Tn(yk+1)� Tn(yk)) :If the desired inequality did not hold for p; then for a suÆ
iently small� > 0 jq0(x0)j > jT 0n(x0)j ;so h(x) := q(x) � Tn(x)would have at least three zeros in (yk; yk+1): But h has at least one zero inea
h of (yi; yi+1): Hen
e h 2 Hn has at least n + 2 zeros in [a; b℄; whi
h isa 
ontradi
tion. utWe now state the main result.Theorem 4.3.3 (Chara
terization of Denseness by Unbounded BernsteinInequality). Suppose M := (f0; f1; : : : ) is an in�nite Markov system on[a; b℄ with ea
h fi 2 C2[a; b℄, and suppose that (f1=f0)0 does not vanishon (a; b): Then span M is dense in C[a; b℄ if and only if span M has aneverywhere unbounded Bernstein inequality.Proof. The only if part of this Theorem is obvious. A good uniform ap-proximation on [a; b℄ to a fun
tion with uniformly large derivative on asubinterval [�; �℄ � [a; b℄ must have large derivative at some points in[�; �℄.In the other dire
tion we use Theorems 4.3.2 and 4.1.1 in the follow-ing way. Without loss of generality we may assume that f0 = 1 (why?). Ifspan M is not dense in C[a; b℄; then, by Theorem 4.1.1, there exists a subin-terval [�; �℄ � [a; b℄; where all elements of a subsequen
e of the sequen
eof asso
iated Chebyshev polynomials,



208 4. Denseness Questions(Tnf1; f1; : : : ; fn; [a; b℄g) ;have no zeros. It remains to show that from this subsequen
e we 
an pi
kanother subsequen
e (Tni) and a subinterval [
; d℄ � [�; �℄ with(4:3:1) kTnik[
;d℄ < 1� Æand(4:3:2) kT 0nik[
;d℄ < 
for some absolute 
onstants Æ > 0 and 
 > 0: The result will now followfrom Theorem 4.3.2. A proof that the above 
hoi
e of (Tni) is possible isoutlined in E.1. utTheorem 4.3.3 has the following interesting 
orollary.Corollary 4.3.4. Suppose (�k)1k=1 � Rn [�1; 1℄ is a sequen
e of distin
t realnumbers. Then span�1 ; 1x� �1 ; 1x� �2 ; : : :�is dense in C[�1; 1℄ if and only if1Xk=1q�2k � 1 =1 :(Here, unlike in Se
tion 3.5, p�2k � 1 denotes the prin
ipal square root of�2k � 1: )Proof. A 
ombination of Theorem 4.3.3 and Corollary 7.1.3 yields the onlyif part of the 
orollary.The Chebyshev polynomials Tn (of the �rst kind) and Un (of the se
ondkind) for the Chebyshev spa
espan�1 ; 1x� �1 ; : : : ; 1x� �n�on [�1; 1℄ were introdu
ed in Se
tion 3.5. The properties ofeTn(�) := Tn(
os �) and eUn(�) := Un(
os �) sin � ;established in Se
tion 3.5, in
lude(4:3:3) keTnkR = 1 and keUnkR = 1 ;



4.3 Unbounded Bernstein Inequalities 209(4:3:4) eT 2n + eU2n = 1 ;(4:3:5) ( eT 0n)2 + (eU 0n)2 = eB2n ;(4:3:6) eT 0n = � eBn eUn ;and(4:3:7) eU 0n = eBn eTn ;where eBn(�) := nXk=1 p�2k � 1j�k � 
os �j ; � 2 R(p�2k � 1 denotes the prin
ipal square root of �2k � 1) and the identitieshold on the real line. Suppose1Xk=1q�2k � 1 =1 :Then(4:3:8) limn!1 min�2[�;�℄Bn(�) =1 ; 0 < � < � < � :Assume that there is an interval [a; b℄ � (�1; 1) su
h thatsupn2N kT 0nk[a;b℄ <1 :Let � := ar

os b and � := ar

osa: Thensupn2Nk eT 0nk[�;�℄ <1 :It follows from properties (4.3.6) and (4.3.8) thatlimn!1 keUnk[�;�℄ = 0 ;and hen
e, by property (4.3.4),limn!1 keT 2n � 1k[�;�℄ = 0 :Thus, by properties (4.3.7) and (4.3.8),limn!1 min�2[�;�℄ jeU 0n(�)j =1 ;that is, limn!1 jeUn(�)� eUn(�)j =1 ;whi
h 
ontradi
ts property (4.3.3). Hen
esupn2N kT 0nk[a;b℄kTnk[�1;1℄ = supn2NkT 0nk[a;b℄ =1for every [a; b℄ � (�1; 1), whi
h, together with Theorem 4.3.3 shows the ifpart of the 
orollary. ut



210 4. Denseness QuestionsComments, Exer
ises, and Examples.We followed Borwein and Erd�elyi [95a℄ in this se
tion. Corollary 4.3.4, tobe found in A
hiezer [56℄, is proved by using entirely di�erent methods.E.1 The Cru
ial Detail in the Proof of Theorem 4.3.3. Suppose thatM := (1; f1; f2; : : : ) is an in�nite Markov system of C2 fun
tions on [a; b℄and f 01 does not vanish on (a; b): Suppose that the sequen
e of asso
iatedChebyshev polynomials (Tn) has a subsequen
e (Tni) with no zeros on somesubinterval [�; �℄ of [a; b℄: Show that there exists another subinterval [
; d℄and another in�nite subsequen
e (Tni) su
h that for some Æ > 0 and 
 > 0,and for ea
h ni;kTnik[
;d℄ < 1� Æ and kT 0nik[
;d℄ < 
 :Outline. For both inequalities �rst 
hoose a subinterval [
1; d1℄ � [�; �℄ anda subsequen
e (ni;1) of (ni) su
h that ea
h alternation point of ea
h Tni;1is outside [
1; d1℄: Then 
hoose a subsequen
e (ni;2) of (ni;1) so that eitherea
h Tni;2 is in
reasing or ea
h Tni;2 is de
reasing on [
1; d1℄. Study the �rst
ase; the se
ond is analogous. Let [
2; d2℄ be the middle third of [
1; d1℄:If the �rst inequality fails to hold with [
2; d2℄ and (ni;2); then there is asubsequen
e (ni;3) of (ni;2) su
h that kTni;3k[
2;d2℄ ! 1 as ni;3 !1. Hen
e,there is a subsequen
e (ni;4) of (ni;3) su
h that eithermax
2�x�d2 Tni;4(x)! 1 or min
2�x�d2 Tni;4(x)! �1 :On
e again, study the �rst 
ase; the se
ond is analogous. Sin
e ea
h Tni;3is in
reasing on [
1; d1℄; limni;4!1 k1� Tni;4k[d2;d1℄ = 0 :Now 
hoose g := a0 + a1f1 + a2f2 so that g has two distin
t zeros�1 and �2 in [d2; d1℄; kgk[�1;�2℄ < 1; and g is positive on (�1; �2): Let� := max�1�x��2 g(x) and eg := g+1��: Show that Tni;4 �eg has at least n+1distin
t zeros in [a; b℄ if ni;4 is large enough, whi
h is a 
ontradi
tion.For the se
ond inequality, note that E.4 of Se
tion 3.2 implies that(f 01; : : : ; f 0n) is a weak Chebyshev system on [a; b℄; and so is �T 02T 01�0 ; �T 03T 01�0 ; : : : ; �T 0nT 01�0! ; n = 2; 3; : : : :From this dedu
e that ea
h (T 0ni;2=T 01)0 has at most one sign 
hange in[
2; d2℄: Choose a subinterval [
3; d3℄ � [
2; d2℄ and a subsequen
e (ni;5) of



4.3 Unbounded Bernstein Inequalities 211(ni;2) so that none of (T 0ni;5=T 01)0 
hanges sign in [
3; d3℄: Choose a sub-sequen
e (ni;6) of (ni;5) so that either ea
h T 0ni;6=T 01 is in
reasing or ea
hT 0ni;6=T 01 is de
reasing on [
3; d3℄: Again, 
onsider the �rst 
ase; the se
ondis analogous. Let [
4; d4℄ be the middle third of [
3; d3℄: If the se
ond in-equality fails to hold with [
4; d4℄ and (ni;6); then there is a subsequen
e(ni;7) of (ni;6) su
h that eitherlimni;7!1 max
4�x�d4 T 0ni;7(x)T 01(x) =1or limni;7!1 min
4�x�d4 T 0ni;7(x)T 01(x) = �1 :On
e again we just treat the �rst 
ase; the se
ond is analogous. In this 
ase,for every K > 0 there is an N 2 N su
h that for every ni;7 � N we haveT 0ni;7(x) > K ; x 2 [d4; d3℄ :Hen
e K(d3 � d4) � Z d3d4 T 0ni;7(x) dx = Tni;7(d3)� Tni;7(d4) � 2 ;whi
h is a 
ontradi
tion. utE.2 On the Uniform Closure of Nondense Markov Spa
es. Supposethat M = (f0; f1; : : : ) is an in�nite Markov system on [a; b℄ with ea
hfi 2 C2[a; b℄; and suppose that (f1=f0)0 does not vanish on (a; b): Supposethat span M fails to be dense in C[a; b℄:Show that there exists a subinterval [�; �℄ � [a; b℄; � < �, su
h thatevery g 2 C[a; b℄ in the uniform 
losure of span M on [a; b℄ is di�erentiableon [�; �℄:Hint: By Theorem 4.3.3 there exists an interval [�; �℄ � [a; b℄ and a 
onstant� 2 R so that kh0k[�;�℄ � �khk[a;b℄for every h 2 span M. Suppose g 2 C[a; b℄ andlimn!1 khn � gk[a;b℄ = 0:Choose ni 2 N su
h thatkg � hnik[a;b℄ � 2�i ; i = 0; 1; : : : :Then g = hn0 + 1Xi=1 (hni � hni�1) :Sin
e k(hni � hni�1)0k[�;�℄ � �21�i ;it follows that g is di�erentiable on [�; �℄. ut



212 4. Denseness QuestionsE.3 An Analog of Theorem 4.3.3 with Appli
ations. Suppose thatM = (f0; f1; : : : ) is an extended 
omplete Chebyshev (ECT) system ofC1 fun
tions on [a; b℄, as in E.3 of Se
tion 3.1. Note that E.3 a℄ of Se
tion3.1 implies that f0 does not vanish on [a; b℄:a℄ Show that the di�erential operator D de�ned byD(f) := � ff0�0 ; f 2 C1[a; b℄maps M to MD; whereMD :=  �f1f0�0 ; �f2f0�0 ; : : :!and MD is on
e again an ECT system of C1 fun
tions on [a; b℄:Hint: Use E.8 b℄ of Se
tion 3.2. utb℄ The di�erential operators D(n)(f) are de�ned for every f 2 Cn[a; b℄ asfollows. LetFi;0 := fi ; i = 0; 1; 2; : : : ;Fi;n := �Fi+1;n�1F0;n�1 �0 ; i = 0; 1; 2; : : : ; n = 1; 2; : : : ;D(0)(f) := f; D(n)(f) := �D(n�1)(f)F0;n�1 �0 ; n = 1; 2; : : : :LetMD(1) :=MD and MD(n) := �MD(n�1)�D ; n = 2; 3; : : : :Show that if span MD(n) is dense in C[a; b℄; then so is span M:
℄ Suppose that span M fails to be dense in C[
; d℄ for every subinterval[
; d℄ � [a; b℄; 
 < d: Show that for ea
h n 2 N, there exists an interval[�n; �n℄ � [a; b℄; �n < �n; su
h thatsup(kD(n)(f)k[�n;�n℄kfk[a;b℄ : 0 6= f 2 span M) <1 :Hint: Use Theorem 4.3.1 and indu
tion on n: utd℄ Suppose that span M fails to be dense in C[
; d℄ for every subinterval[
; d℄ � [a; b℄ 
 < d: Show that for ea
h n 2 N; there exists an interval[�n; �n℄ � [a; b℄; �n < �n, where every g 2 C[a; b℄ in the uniform 
losureof span M on [a; b℄ is n times 
ontinuously di�erentiable.



4.3 Unbounded Bernstein Inequalities 213Hint: Use part 
℄. The argument is similar to the one given in the hint toE.2. ute℄ Suppose that span M fails to be dense in C[
; d℄ for every subinterval[
; d℄ � [a; b℄; 
 < d:Show that every fun
tion in the uniform 
losure of span M on [a; b℄ isC1 on a dense subset of [a; b℄.(This is the 
ase for M�untz systemsM := (x�0 ; x�1 ; : : : ) ; �i 2 R ; 1Xi=1�i 6=0 1j�ij <1on [a; b℄; 0 � a < b; see E.7 of Se
tion 4.2.)E.4 Bounded Bernstein-Type Inequality for Nondense M�untz Spa
es.Suppose (�i)1i=1 is a sequen
e of distin
t positive numbers satisfying1Xi=1 �i�2i + 1 <1 :Then for every � > 0, there is a 
onstant 
� su
h thatjp0(x)j � 
�x kpk[0;1℄ ; x 2 (0; 1� �℄for every p 2 spanf1; x�1 ; x�2 ; : : : g :To prove this pro
eed as follows. Let �0 := 0; and letTn := Tnf�0; �1; : : : ; �n; [0; 1℄gbe the Chebyshev polynomial for spanf1; x�1 ; : : : ; x�ng on [0; 1℄: LetM(�) := spanf1; x�1 ; x�2 ; : : : g:a℄ Observe that for every � > 0 there exists a k� 2 N depending only on(�i)1i=1 and � (and not on n) su
h that Tn has at most k� zeros in [�; 1� �℄.Hint: This is proved in the outline of the proof of E.18 d℄ of Se
tion 4.2. utb℄ Show that every nonempty (a; b) � (0; 1) 
ontains a nonempty sub-interval (�; �) for whi
h there are integers 0 < n1 < n2 < � � � su
h thatnone of the Chebyshev polynomials Tni vanishes on (�; �).Hint: Use part a℄. ut



214 4. Denseness Questions
℄ Show that every nonempty (a; b) � (0; 1) 
ontains a nonempty sub-interval (�; �) su
h thatsup�kp0k[�;�℄kpk[0;1℄ : 0 6= p 2M(�)� <1 :Hint: Modify the proof of Theorem 4.3.3. utd℄ Finish the proof of the initial statement of the exer
ise.Hint: Use part 
℄ and a linear s
aling. utE.5 The Closure of Nondense M�untz Spa
es in C[0; 1℄. Suppose (�i)1i=1is a sequen
e of distin
t positive numbers satisfying1Xi=1 �i�2i + 1 <1 :Show that spanf1; x�1 ; x�2 ; : : : g � C1(0; 1) ;that is, if f is the uniform limit of a sequen
e from spanf1; x�1 ; x�2 ; : : : g;then f is in�nitely many times di�erentiable on (0; 1):Hint: Use E.4 with the substitution x = e�t: utE.6 A Nondense Markov Spa
e with Unbounded Bernstein Inequality on aSubinterval. One may in
orre
tly suspe
t that nondense Markov spa
es on[a; b℄ 
an be 
hara
terized by an everywhere bounded Bernstein inequalityon (a; b), at least under the assumptions of Theorem 4.3.3. The purpose ofthis exer
ise is to show that this is far from true, and in a sense, Theorem4.3.3 is the best possible result.The same 
onstru
tion 
an be used to give a nondense Markov spa
eon [a; b℄ su
h that the setZ := fx 2 [a; b℄ : Tn(x) = 0 for some n 2 Ngis neither dense nor nowhere dense in [a; b℄. Here (Tn)1n=0 is the sequen
eof asso
iated Chebyshev polynomials on [a; b℄.We 
onstru
t an in�nite Markov system on (�1;1) as follows. Sup-pose � := (�i)1i=0 is a sequen
e of even integers satisfying0 = �0 < �1 < �2 < � � � ; 1Xi=1 1�i <1 :Suppose m > 0: Let 'k 2 C(�1;1), k = 0; 1; : : : , be de�ned by



4.3 Unbounded Bernstein Inequalities 215'2k(x) := � x2k+m ; x � 0
2kx�2k ; x � 0and '2k+1(x) := � x2k+m+1 ; x � 0�
2k+1x�2k+1 ; x � 0 ;where (
i)1i=0 is a sequen
e of positive numbers asso
iated with a �xedsequen
e of integers 0 := n0 < n1 < n2 < � � � and a 
onstant Æ > 0, and itis 
hosen as follows. Letmj := nj+1 � nj � 1 ; j = 0; 1; : : : :Let Tn(x) := 
os(n ar

os(2x� 1)) =: nXi=0 �i;nxibe the nth Chebyshev polynomial on [0; 2℄: Now 
hoose the 
onstants 
i > 0su
h that 1Xj=0 nj+1�1Xi=nj 
iÆ�i j�i�nj ;mj j � 1 :a℄ Show that ('0; '1; : : : ) is a Markov system on (�1;1):Hint: If p(x) = nXi=0 ai'i(x) ; ai 2 R ;then p(x) = nXi=0 aix�i ; x 2 [0;1) ;while p(x) = nXi=0(�1)iaix�i ; x 2 (�1; 0℄ :Now apply Theorem 3.2.4 (Des
artes' rule of signs). utb℄ Show that spanf'0; '1; : : : g is not dense in C[�Æ; 2℄:
℄ Show that there is a sequen
e of integers 0 := n0 < n1 < n2 < � � � su
hthat sup� kp0k[�;�℄kpk[�Æ;2℄ : 0 6= p 2 spanf'0; '1; : : : g� =1for every nonempty interval [�; �℄ � [0; 2℄, whilesup� jp0(x)jkpk[�Æ;2℄ : 0 6= p 2 spanf'0; '1; : : : g� <1for every x 2 (�Æ; 0):



216 4. Denseness Questionsd℄ Suppose the sequen
e ('i)1i=0 is de�ned asso
iated with a �xed sequen
eof integers 0 := n0 < n1 < n2 < � � � and Æ := �2: LetTn := Tnf'0; '1; : : : ; 'n; [�2; 2℄gbe the Chebyshev polynomial for spanf'0; '1; : : : ; 'ng on [�2; 2℄: LetZ := fx 2 [�2; 2℄ : Tn(x) = 0 for some n 2 Ngand let Z 0 be the set of all limit points of Z, and let Z 00 be the set of all limitpoints of Z 0. Show that the sequen
e of integers 0 := n0 < n1 < n2 < � � �in the de�nition of ('i)1i=0 
an be 
hosen so thatZ 00 \ (�2; 0) = ; and [0; 2℄ [ f�2g � Z 00 :E.7 Nikolskii-Type Inequalities for Nondense M�untz Spa
es. Supposethat p 2 [1;1℄: Suppose (�i)1i=0 is a sequen
e of distin
t real numbersgreater than �1=p satisfying1Xi=0 �i + 1p��i + 1p�2 + 1 <1 :Show that for every � > 0, there exists a 
onstant 
� > 0 depending onlyon � and p so that jq(x)j � 
�x�1=pkqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 [0; 1� �℄:In parti
ular, for every � > 0; there exists a 
onstant 
� > 0 dependingonly on � so that kqk[�;1��℄ � 
�kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g:Thus, spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄:Hint: Use H�older's inequality to show, as in Operstein [to appear℄, that theoperator J : Lp[0; 1℄ 7! L1[0; 1℄de�ned byJ(')(0) := 0 ; J(')(x) := x1=p�1 Z x0 '(t) dt ; x > 0is a bounded linear operator. That is, there is a 
onstant 
 � 0 su
h thatkJ(')kL1[0;1℄ � 
 k'kLp[0;1℄



4.3 Unbounded Bernstein Inequalities 217for every ' 2 Lp[0; 1℄: Now observe that q 2 spanfx�0 ; x�1 ; : : : g impliesthat J(q) 2 spanfx�0 ; x�1 ; : : : g; where �i := �i + 1p , and so (�i)1i=0 is asequen
e of positive numbers satisfying1Xi=0 �i�2i + 1 <1 :Therefore, by E.4, for every � > 0, there exists a 
onstant 
� > 0 su
h thatj(J(q))0(x)j � 
�x kJ(q)k[0;1℄ � 
�x 
 kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 (0; 1� �℄. Note that forx 2 (0; 1); (J(q))0(x) = x1=p�1q(x) � �1� 1p�x1=p�2 Z x0 q(t) dt ;where ����Z x0 q(t) dt���� = x1�1=pjJ(q)(x)j � 
x1�1=pkqkLp[0;1℄ :Therefore x1=pjq(x)j � �1� 1p� kqkLp[0;1℄ � 
�
 kqkLp[0;1℄for every q 2 spanfx�0 ; x�1 ; : : : g and for every x 2 (0; 1� �℄: utE.8 The Closure of Nondense M�untz Spa
es in Lp[0; 1℄. Let p 2 [1;1℄:Suppose (�i)1i=0 is a sequen
e of distin
t real numbers greater than �1=psatisfying 1Xi=0 �i + 1p��i + 1p�2 + 1 <1 :Show that if f is a fun
tion in the Lp[0; 1℄ 
losure ofspanfx�0 ; x�1 ; : : : g ;then f 2 C1(0; 1); that is, f is in�nitely many times di�erentiable on (0; 1).Hint: Combine E.5 and E.7. ut



218 4. Denseness Questions4.4 M�untz RationalsA surprising and beautiful theorem, 
onje
tured by Newman and proved bySomorjai [76℄, states that rational fun
tions derived from any in�nite M�untzsystem are always dense in C[a; b℄; a � 0: More spe
i�
ally, we have thefollowing result.Theorem 4.4.1 (Denseness of M�untz Rationals). Let (�i)1i=0 be any sequen
eof distin
t real numbers. Suppose a > 0. Then�Pni=0 aix�iPni=0 bix�i : ai; bi 2 R ; n 2 N�is dense in C[a; b℄:The same result holds when a = 0, however, the proof in this 
aserequires a few more te
hni
al details; see E.1 b℄.The proof of this theorem, primarily due to Somorjai, rests on thenext theorem. We introdu
e the following notation. A fun
tion Z de�nedon (a; b) is 
alled an �-zoomer (� > 0) at � 2 (a; b) ifZ(x) > 0 ; x 2 [a; b℄ ;Z(x) � � ; x < � � � ;(4:4:1) Z(x) � ��1; x > � + � :While (approximate) Æ-fun
tions are the building blo
ks for polynomialapproximations, the existen
e of �-zoomers is all that is needed for rationalapproximations. More pre
isely, we have the following result.Theorem 4.4.2 (Existen
e of Zoomers and Denseness). Let S be a linearsubspa
e of C[a; b℄: Suppose that S 
ontains an �-zoomer for every � > 0 atevery � 2 (a; b): Then R(S) := �pq : p; q 2 S�is dense in C[a; b℄:Proof. It suÆ
es to 
onsider the 
ase [a; b℄ = [0; 1℄: Let n 2 N and � > 1=nbe �xed. We 
onstru
t a partition of unity indu
tively as follows. Let Z0 beany positive fun
tion in S and 
hoose fun
tions Z1; Z2; : : : ; Zn 2 S positiveon [0; 1℄ so that Zk(x) < �Zk�1(x) ; x < kn � �and Zk(x) > ��1Zk�1(x) ; x > k � 1n + �



4.4 M�untz Rationals 219(whi
h the existen
e of �-zoomers allows for). Let(4:4:2) �k(x) := Zk(x)Pni=0 Zi(x) ; k = 0; 1; : : : ; n :So �k(x) > 0 ; x 2 [0; 1℄and nXk=0�k(x) = 1 :Sin
e for every x 2 [0; 1℄;nXk=0kn��>x Zk(x) + nXk=0kn+�<x Zk(x) < 2� nXk=0Zk(x) ;we also know that nXk=0j kn�xj>� �k(x) � 2� ; x 2 [0; 1℄ :Now let f 2 C[0; 1℄; and 
onsider the approximationnXk=0 f � kn��k(x) 2 R(S) :Then�����f(x) � nXk=0 f � kn��k(x)������ ����� nXk=0j kn�xj� � �f(x)� f � kn���k(x)�����+ ����� nXk=0j kn�xj>� �f(x)� f � kn���k(x)������ !f (�) + 2� !f (1) ;whi
h �nishes the proof. utWe 
an now �nish the proof of Theorem 4.4.1:Proof of Theorem 4.4.1. We may suppose, on passing to a subsequen
eif ne
essary, that (�i)1i=0 is a 
onvergent sequen
e (possibly 
onverging toin�nity). We may also assume that a := 1=b with b > 1: Sin
e C[1=b; b℄ is



220 4. Denseness Questionsinvariant under x ! 1=x, we may assume that (�i)1i=0 has a nonnegative(possibly in�nite) limit.Case 1: The sequen
e (�i)1i=0 has a �nite nonnegative limit. Then M�untz'stheorem on [a; b℄, a > 0 (see E.7 of Se
tion 4.2), yields that the M�untz poly-nomials themselves asso
iated with (�i)1i=0 are already dense in C[1=b; b℄.Case 2: The sequen
e (�i)1i=0 tends to in�nity. In this 
ase (x=�)�i is an�-zoomer at � 2 (a; b) for suÆ
iently large �i, and the result follows fromTheorem 4.4.2. utComments, Exer
ises, and Examples.A 
omparison between M�untz's theorem and the main result of this se
-tion shows the power of a single division in approximation. In what other
ontexts does allowing a division 
reate a spe
ta
ularly di�erent result?Newman [78, p. 12℄ 
onje
tures that if M is any in�nite Markov system on[0; 1℄; then the set �pq : p; q 2 span M�of rational fun
tions is dense in C[0; 1℄:Newman 
alls this a \wild 
onje
ture in sear
h of a 
ounterexample."It does, however, hold for bothM = (x�0 ; x�1 ; : : : ) ; �i � 0 are distin
t(see E.1 b℄) andM = � 1x� �1 ; 1x� �2 ; : : :� ; �i 2 R n [0; 1℄ are distin
t(see E.2). A 
ounterexample to the full generality of this 
onje
ture is pre-sented in E.6. However, the 
hara
terization of the 
lass of Markov systemsfor whi
h it holds remains as an interesting question. In parti
ular, it isopen if Newman's 
onje
ture holds for Des
artes systems.The reader is referred to Newman [78℄ for an extensive treatment ofthese matters; see also Zhou [92a℄. In [78, p. 50℄ Newman asks about thedenseness of the produ
ts (P aixi2)(P bixi2) in C[0; 1℄ (see E.3). He spe
u-lates that this \extra" multipli
ation of M�untz polynomials should not 
arrythe utility of the \extra" division. This is proved in Se
tion 6.2, where it isshown that produ
ts pq of M�untz polynomials from nondense M�untz spa
esnever form a dense set in C[0; 1℄.E.1 Denseness of M�untz Rationals on [0; 1℄. A fun
tion C de�ned on [a; b℄is 
alled an �-
rasher, � > 0, at � 2 (a; b) ifC(x) > 0 ; x 2 [a; b℄ ;C(x) � � ; x > � + � ;C(x) � ��1 ; x � � � � :



4.4 M�untz Rationals 221a℄ Let S be a linear subspa
e of C[a; b℄: Suppose that S 
ontains an �-
rasher for every � > 0 at every � 2 (a; b): Show thatR(S) := �pq : p; q 2 S�is dense in C[a; b℄:Hint: The argument is a trivial modi�
ation of the proof of Theorem 4.4.2.utLet (�i)1i=0 be a sequen
e of distin
t real numbers. Let R(�) be thespa
e of fun
tions f 2 C[0; 1℄ of the formf(x) = Pni=0 aix�iPni=0 bix�i ; ai; bi 2 R ; n 2 N ; x 2 (0; 1℄ :b℄ Show that if (�i)1i=0 is a sequen
e of distin
t nonnegative real numberswith �0 := 0; then R(�) is dense in C[0; 1℄:Hint: As in the proof of Theorem 4.4.1, we may suppose, on passing to asubsequen
e if ne
essary, that (�i)1i=1 is a 
onvergent sequen
e (possibly
onverging to 1). Distinguish the following two 
ases.Case 1: limi!1 �i =1: Given � > 0 and � 2 (0; 1); show thatZ(x) := �2 +�x���iis an �-zoomer at � on [0; 1℄ if �i is large enough. Use Theorem 4.4.2 to�nish the proof.Case 2: (�i)1i=1 is a sequen
e with �nite limit. Given � > 0 and � 2 (0; 1);show that C(x) := �2 + (�1)n �4 Tnf�0; �1; : : : ; �n; [�; 1℄g(x)is an �-
rasher at � on [0; 1℄ if n is large enough. This 
an be proved byusing M�untz's theorem (E.7 of Se
tion 4.2) on [� � �; 1℄ with � 2 (0; �); E.3
℄ of Se
tion 3.3, and the monotoni
ity of C on [0; �℄: Finish the proof bypart a℄. utThe result of E.1 b℄ is due to Bak and Newman [78℄. Zhou [92b℄ extendsthis result to sequen
es of arbitrary distin
t real numbers.E.2 Another Markov-System with Dense Rationals. Let (�i)1i=1 be anysequen
e of distin
t numbers in R n [0; 1℄: Show that(Pni=1 aix��iPni=1 bix��i : ai; bi 2 R ; n 2 N)is dense in C[0; 1℄:



222 4. Denseness QuestionsE.3 Produ
ts of M�untz Spa
es. Asso
iated with a sequen
e � := (�i)1i=0of real numbers, letM2(�) := ( nXi=0 aix�i! nXi=0 bix�i! : ai; bi 2 R ; n 2 N) :a℄ Show that if (�k)1k=0 = (k�)1k=0, � > 2; then M2(�) is not dense inC[0; 1℄:b℄ Show that with (�k)1k=0 = (k2)1k=0 the nondenseness ofM2(�) does notfollow from M�untz's theorem sin
e Pk2� 1=k = 1; where � is the set ofnatural numbers k of the form k = n2 + m2 with nonnegative integers nand m:It is shown in Se
tion 6.2 that M2(�) is not dense in C[0; 1℄ whenever� is a sequen
e of nonnegative real numbers satisfyingP1k=1 1=�k <1; sothe \extra multipli
ation" is of no spe
ta
ular utility.It is not always possible to extend Theorem 4.4.2 to the 
ase when thenumerators and the denominators are 
oming from di�erent in�nite M�untzspa
es. Somorjai [76℄ shows that�Pni=0 aix�iPni=0 bixÆi : ai; bi 2 R ; n 2 N�is not dense in C[0; 1℄ when, for example,�2�k < �Æk+1 < �k+1 ; k = 0; 1; : : :for some � > 1:E.4 Nondense Ratios of M�untz Spa
es. Suppose 0 � �0 < �1 < � � � : Leta > 0: Show that � Pni=0 aix�iPni=0 bix��i : ai; bi 2 R; n 2 N�is dense in C[a; b℄ if and only if P1i=1 1=�i =1:Hint: For one dire
tion use M�untz's theorem. For the other dire
tion useE.5 a℄ and b℄ and E.8 b℄ and 
℄ of Se
tion 4.2. utE.5 On the Rate of Approximation by M�untz Rationals. Let (�i)1i=0be a �xed sequen
e of nonnegative real numbers. We wish to estimatethe error of the best uniform approximation to f 2 C[0; 1℄ on [0; 1℄ fromspanfx�0 ; : : : ; x�ng: We letR�n(f) := inf (



f(x)� Pni=0 aix�iPni=0 bix�i 



[0;1℄ : ai; bi 2 R) ;where the in�mum is taken for all ai; bi 2 R; i = 0; 1; : : : ; n:



4.4 M�untz Rationals 223In the 
ase when �n+1 � �n � 1; n = 0; 1; : : : , Newman [78℄ 
laims(without proof) that there exists a 
onstant C independent of n su
h thatR�n(f) = C!f � 1n�and that this is the best possible. He 
onje
tures, in Newman [78℄, thatthis estimate holds for every sequen
e (�i)1i=0 of distin
t nonnegative realnumbers.a℄ Observe in the last line of the proof of Theorem 4.4.2, with � = 2n ; wehave �����f(x)� nXk=0 f � kn��k(x)����� � 6!f � 1n�sin
e !f (1) � n!f � 1n� :b℄ What growth 
onditions on the sequen
e (�i)1i=0 guarantees thatR�n(f) = O �!f � 1n�� ?Hint: Estimate the \degree" of the zoomers Zk de�ned in Theorem 4.4.2.Use the zoomers de�ned in Case 1 of the hint for E.1 b℄. ut
℄ Let f(x) := � x sin(1=x) ; x 2 R n f0g0 ; x = 0 :Show that R�n(f) � 
1n�1 � 
2 !f � 1n�for every sequen
e (�i)1i=0 of nonnegative real numbers, where 
1 and 
2are positive 
onstants independent of (�i)1i=0:Hint: �Pni=0 aix�i� = �Pni=0 bix�i� has at most n zeros on [0; 1℄: utE.6 A Markov System with Nondense Rationals. This example outlinesa 
onstru
tion of Markov systems on [�1; 1℄ whose rationals are not densein C[�1; 1℄: It follows and 
orre
ts Borwein and Shekhtman [93℄.We 
onstru
t an in�nite Markov system on (�1;1) as follows. Sup-pose that � := (�i)1i=0, where 2�i + 1 = 72i: Then � is a sequen
e of evenintegers satisfying0 = �0 < �1 < �2 < � � � ; 1Xi=1 1�i <1 :Let 'k 2 C[�1; 1℄; k = 0; 1; : : : , be de�ned by'2k(x) := x�2kand '2k+1(x) := � x�2k+1 ; x � 0�x�2k+1 ; x � 0 :



224 4. Denseness Questionsa℄ Show that ('0; '1; : : : ) is a Markov system on (�1;1):Hint: If p(x) = nXi=0 ai'i(x) ; ai 2 R ;then p(x) = nXi=0 aix�i ; x 2 [0;1) ;while p(x) = nXi=0(�1)iaix�i ; x 2 (�1; 0℄ :Now apply Theorem 3.2.4 (Des
artes' rule of signs). utb℄ There exists an absolute 
onstant 
 > 0 (independent of n) su
h that




 nXi=0 aix�i




L2[0;1℄ � 
 




 nXi=0 aix�i




L2[1=2;1℄for all 
hoi
es of ai 2 R:Hint: Use E.8 a℄ of Se
tion 4.2 and H�older's inequality. ut
℄ The inequalities13 nXi=0 jaij2 � Z 10  nXi=0 aip2�i + 1x�i!2 dx � 53 nXi=0 jaij2hold for all 
hoi
es of ai 2 R:Proof. We haveZ 10  nXi=0 aip2�i + 1x�i!2 dx= nXi=0 jaij2 + 2 nXk=1 n�kXj=0 ajaj+kp2�j + 1p2�j+k + 1�j + �j+k + 1 :Here p2�j + 1p2�j+k + 1�j + �j+k + 1 = 2 7j7j+k72j + 72j+2k < 2 72j+k72j+2k = 2 � 7�k ;so on applying the Cau
hy-S
hwarz inequality n times, we get



4.4 M�untz Rationals 2252 ������ nXk=1 n�kXj=0 ajaj+kp2�j + 1p2�j+k + 1�j + �j+k + 1 ������� 4 nXk=1 7�k! nXi=0 jaij2 � 23 nXi=0 jaij2 ;and the result follows. utd℄ The inequality




 nXi=0 aix�i




L2[0;1℄ � p5 




 nXi=0(�1)iaix�i




L2[0;1℄holds for all 
hoi
es of ai 2 R:Hint: Use part 
℄. ute℄ The rational fun
tions of the formPni=0 ai'iPni=0 bi'i ; ai; bi 2 R ; n 2 Nare not dense in C[�1; 1℄:Proof. Consider f 2 C[�1; 1℄ de�ned byf(x) :=8><>: 1 if x 2 [�1;�1=2℄0 if x 2 [0; 1℄�2x if x 2 [�1=2; 0℄ :We show that f is not uniformly approximable on [�1; 1℄ by the aboverational fun
tions. Suppose that



Pni=0 ai'iPni=0 bi'i �f



[�1;1℄ < � < 1 ; ai; bi 2 R :This implies(4:4:3) 



Pni=0 aix�iPni=0 bix�i 



[0;1℄ < �and(4:4:4) 



Pni=0(�1)iaix�iPni=0(�1)ibix�i �1



[1=2;1℄ < � :



226 4. Denseness QuestionsWithout loss of generality we may assume that(4:4:5) 




 nXi=0 bix�i




L2[0;1℄ = 1 :From (4.4.3) and (4.4.5) it follows that(4:4:6) 




 nXi=0 aix�i




L2[0;1℄ < � :Part d℄, together with (4.4.3) and (4.4.5), implies that(4:4:7) 




 nXi=0(�1)iaix�i




L2[0;1℄ < p5 � :Part d℄, together with (4.4.5), also implies that(4:4:8) 




 nXi=0(�1)ibix�i




L2[0;1℄ � 1p5 :Combining part b℄ and (4.4.8), we obtain that(4:4:9) 




 nXi=0(�1)ibix�i




L2[1=2;1℄ � 1p5 
 :Now (4.4.7) and (4.4.9) yield the right-hand side of1� � � 

Pni=0(�1)iaix�i

L2[1=2;1℄kPni=0(�1)ibix�ikL2[1=2;1℄ � 5
�while (4.4.4) yields the left-hand side of it. This shows that � > 0 
annotbe arbitrarily small. ut



This is page 227Printer: Opaque this5Basi
 Inequalities

OverviewThe 
lassi
al inequalities for algebrai
 and trigonometri
 polynomials aretreated in the �rst se
tion. These in
lude the inequalities of Remez, Bern-stein, Markov, and S
hur. The se
ond se
tion deals with Markov's andBernstein's inequalities for higher derivatives. The �nal se
tion is 
on
ernedwith the size of fa
tors of polynomials.5.1 Classi
al Polynomial InequalitiesWe start with the 
lassi
al inequalities of Remez, Bernstein, Markov, andS
hur. The most basi
 and general of these is probably due to Remez. Howlarge 
an kpk[�1;1℄ be if p 2 Pn andm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� sholds? The inequality of Remez [36℄ answers this question. His inequalityand its trigonometri
 analog 
an be extended to generalized nonnegativepolynomials (dis
ussed in Appendix 4) by a simple density argument. Theseextensions also play a 
entral role in the proof of various other Bernstein,Markov, Nikolskii, and S
hur type inequalities for generalized nonnegativepolynomials, where simple density arguments do not work.



228 5. Basi
 InequalitiesTheorem 5.1.1 (Remez Inequality). The inequalitykpk[�1;1℄ � Tn�2 + s2� s�holds for every p 2 Pn and s 2 (0; 2) satisfyingm (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Here Tn is the Chebyshev polynomial of degree n de�ned by (2:1:1). Equalityholds if and only if p(x) = �Tn��2x+ s2� s � :Proof. The proof is essentially a perturbation argument that establishesthat an extremal polynomial is of the required form. Let k � k denote theuniform norm on [�1; 1℄; and let(5:1:1) Pn(s) := fp 2 Pn : m (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� sg :The set Pn(s) is 
ompa
t, say, in the uniform norm on [�1; 1℄; by E.1, andthe fun
tion p! kpk is 
ontinuous. Hen
e there is a p� 2 Pn(s) su
h thatkp�k = supp2Pn(s) kpk :First assume that p�(1) = kp�k: We 
laim that all the zeros of p�are real and lie in [�1; 1): Indeed, if p� vanishes at a nonreal z; then forsuÆ
iently small � > 0 and � > 0;q(x) := (1 + �)p�(x)�1� �(x� 1)2(x � z)(x� z)�is in Pn(s) and 
ontradi
ts the maximality of p�: If p� has a real zero zoutside [�1; 1℄; then, in similar fashion,q(x) := (1 + �)p�(x)�1� � sign(z)1� xz � x�
ontradi
ts the maximality of p�:Now we show that jp�(�)j = kp�k 
annot o

ur with � 2 (�1; 1): Tosee this, assume, without loss of generality, that p�(�) = kp�k. Then thepolynomialsq1(x) := p��� � 12 + � + 12 x� and q2(x) := p��� + 12 + � � 12 x�



5.1 Classi
al Polynomial Inequalities 229satisfy qj(1) = kqjk = kp�k; j = 1; 2: Sin
e p� 2 Pn(s) is extremal, theLebesgue measure m(
j) of
j := fx 2 [�1; 1℄ : jqj(x)j > 1gis at least s; otherwise qj + � with suÆ
iently small � > 0 
ontradi
ts themaximality of p�: On the other hand,1 + �2 m(
1) + 1� �2 m(
2) = m (fx 2 [�1; 1℄ : p�(x) > 1g) � s :Hen
e m(
1) = m(
2) = s; whi
h means that qj 2 Pn(s), j = 1; 2,are extremal polynomials attaining their uniform norm on [�1; 1℄ at 1.It now follows from the �rst part of the proof that q1 and q2 have alltheir zeros in [�1; 1℄; whi
h is impossible sin
e the number of zeros ofqj ; j = 1; 2; in [�1; 1℄ is equal to the number of zeros of p� in [�1; �) and in(�; 1℄; respe
tively. This 
ontradi
tion proves that jp�(�)j < kp�k for every� 2 (�1; 1). Hen
e either p�(1) = �kp�k or p�(�1) = �kp�k:Without loss of generality we may assume that p�(1) = kp�k; otherwisewe 
onsider �p�(�x) 2 Pn(s): We now have(5:1:2) p�(1) = kp�k > jp�(x)j ; �1 < x < 1 ;and ea
h zero of p� lies in [�1; 1):Next we prove that(5:1:3) jp�(x)j � 1 ; �1 � x � 1� s :Assume to the 
ontrary that for some �1 � �3 < �2 < �1 < 1;8><>: jp�(x)j > 1 ; x 2 I1 := (�1; 1℄jp�(x)j � 1 ; x 2 I2 := [�2; �1℄jp�(x)j > 1 ; x 2 I3 := (�3; �2) :Let x1; x2; : : : ; xm be the zeros of p� in (�2; �1): Sin
e all zeros of p� are in[�1; 1); we have m � 1; otherwise p�0 would vanish at an x larger than thelargest zero of p�; whi
h is a 
ontradi
tion. The remaining n �m zeros ofp� lie in [�1; �3): We setp1(x) := mYj=1(x� xj) ; p2 := p�p1 :The polynomial q(x) := p1(x + h)p2(x) with 0 < h < �2 � �3 has thefollowing properties:



230 5. Basi
 Inequalities(1) If jp�(x)j � 1 for some x 2 [�1; �3℄; then jq(x)j � 1:(2) For ea
h x 2 I2 we have jq(x� h)j � jp�(x)j � 1:(3) q(1) = p1(1 + h)p2(1) > p1(1)p2(1) = p�(1) = kp�k:These properties show that q 2 Pn(s) 
ontradi
ts the maximality of p�:By E.2, among all polynomials p 2 Pn with kpk � 1, the Chebyshevpolynomial Tn in
reases fastest for x > 1: Hen
e, by a linear transformation,we see that the four polynomialsp�(x) = �Tn��2x+ s2� s �are the only extremal polynomials. In parti
ular,kp�k = Tn�2 + s2� s� : utThe next theorem establishes a Remez-type inequality for trigonomet-ri
 polynomials. Throughout this se
tion, as before, K := R (mod 2�).Theorem 5.1.2. The inequalityktkK � exp(4ns)holds for every t 2 Tn and s 2 (0; �=2℄ satisfying(5:1:4) m(f� 2 [��; �) : jt(�)j � 1g) � 2� � s :The inequalityktkK � Tn�2 + �2� �� ; � = 1� 
os(s=2) ; 0 < s < 2� ;also holds for every even t 2 Tn and s 2 (0; 2�) satisfying (5.1.4), andequality holds if and only ift(�) = �Tn��2 
os � + �2� � � ; � = 1� 
os(s=2) :Proof. We prove the se
ond part �rst. Suppose t 2 Tn is even and satis�esjt(�)j � 1 on K n
 with m(
) � s: Then the polynomial p 2 Pn de�nedby t(�) := p(
os �) satis�es jp(x)j � 1 on [�1; 1℄ n
0, where
0 := fx 2 [�1; 1℄ : x = 
os � ; � 2 
 \ [0; �℄g :



5.1 Classi
al Polynomial Inequalities 231It is easy to see that m(
0) � 1 � 
os(s=2) =: �; where equality holds ifand only if 
 := [�s=2; s=2℄: Hen
e, Theorem 5.1.1 implies thatktkK � Tn�2 + �2� �� ;where equality holds if and only if p is of the form given in the theorem.The �rst part of the theorem 
an be easily obtained from the se
ondpart as follows. Let t 2 Tn satisfy (5:1:4). Without loss of generality wemay assume that t(0) = ktkK : The polynomialet(�) := 12 (t(�) + t(��)) 2 Tnis even and m(f� 2 [��; �) : jet(�)j � 1g) � 2� � 2s :Hen
e, the se
ond part of the theorem yields that

et

L1(K) � Tn�2 + �2� �� ;where � := 1� 
os s = 2 sin2(s=2) � 1 for every s 2 (0; �=2℄: Sin
eTn(x) � �x+px2 � 1�n ; x � 1 ;we have Tn�2 + �2� �� �  1 +p2� + �=21� �=2 !n � �1 +p2� + 72��n� exp�n�p2� + 74��� � exp �n �s+ 74s2��� exp(4ns)for every s 2 (0; �=2℄: ThereforektkK = t(0) = et(0) � Tn�2 + �2� �� � exp �n �s+ 74s2�� � exp(4ns)for every s 2 (0; �=2℄; and the theorem is proved. Note that we have provedslightly more than we 
laimed in the statement of the theorem. That is,ktkK � exp �n �s+ 74s2��for every t 2 Tn satisfying (5:1:4): utWe now prove the basi
 inequality that bounds the derivative of atrigonometri
 polynomial in terms of its maximum modulus on the periodK:



232 5. Basi
 InequalitiesTheorem 5.1.3 (Bernstein-Szeg}o Inequality). The inequalityt0(�)2 + n2t2(�) � n2ktk2K ; � 2 Kholds for every t 2 Tn: Equality holds if and only if jt(�)j = ktkK or t is ofthe form t(�) = � 
os(n� � �) with �, � 2 R:Proof. Assume that there are t 2 Tn and � 2 K su
h that ktkK < 1 and(5:1:5) t0(�)2 + n2t2(�) > n2 :For the sake of brevity let Tn;�(�) := 
os(n� � �): It is easy to see thatthere exists an � 2 K su
h that(5:1:6) Tn;�(�) = t(�) and sign(T 0n;�(�)) = sign(t0(�)) :Sin
e T 0n;�(�)2 + n2T 2n;�(�) = n2, (5:1:5) and (5:1:6) imply thatjt0(�)j > jT 0n;�(�)j and sign(T 0n;�(�) = sign(t0(�)) :Hen
e E.4 yields that 0 6= t�Tn;� 2 Tn has at least 2n+2 distin
t zeros inK; whi
h is a 
ontradi
tion. To �nd all the extremal polynomials, see thehint to E.5. utAs a 
orollary of Theorem 5.1.3 we have kt0kK � nktkK for everyt 2 Tn; and by indu
tion on m we obtain the following theorem:Theorem 5.1.4 (Bernstein's Inequality). The inequalitykt(m)kK � nmktkKholds for every t 2 Tn:Corollary 5.1.5. The inequality of Theorem 5.1.4 remains true for allt 2 T 
n :Proof. Choose � 2 R su
h that ei�t(m) attains the value kt(m)kK ; say,at � = � . Now et(�) := Re(ei�t(�)) 2 Tn and ketkK � ktkK : On applyingTheorem 5.1.4 to et 2 Tn, we obtainkt(m)kK = ei�t(m)(�) = et (m)(�) � nmketkK � nmktkK : utThe above 
orollary implies the following algebrai
 polynomial versionof Bernstein's inequality on the unit disk.



5.1 Classi
al Polynomial Inequalities 233Corollary 5.1.6. The inequalitykp0kD � n kpkDholds for every p 2 P
n; where D := fz 2 C : jzj < 1g:Proof. If p 2 P
n then t(�) := p(ei� ) 2 T 
n and by Corollary 5.1.5 we havejp0(z)j = j � ie�i� t0(�)j � nktkK = nkpkD ; z = ei� :The maximum prin
iple (see E.1 d℄ of Se
tion 1.2) �nishes the proof. utFrom Corollary 5.1.5, by the substitution x = 
os �; we get the alge-brai
 polynomial 
ase of Bernstein's inequality on [�1; 1℄:Theorem 5.1.7 (Bernstein's Inequality). The inequalityjp0(x)j � np1� x2 kpk[�1;1℄ ; �1 < x < 1holds for every p 2 P
n:The next theorem improves the previous result if x is 
lose to �1:Theorem 5.1.8 (Markov's Inequality). The inequalitykp0k[�1;1℄ � n2 kpk[�1;1℄holds for every p 2 Pn:A proof 
an be given as a simple 
ombination of Theorem 5.1.7 and thenext theorem.Theorem 5.1.9 (S
hur's Inequality). The inequalitykpk[�1;1℄ � n 

p(x)p1� x2

[�1;1℄holds for every p 2 Pn�1:Proof. Let xk := 
os (2k�1)�2n ; k = 1; 2; : : : ; n ;so the numbers xk are the zeros of the Chebyshev polynomialTn(x) = 
os(n ar

osx) :



234 5. Basi
 InequalitiesAssume that p 2 Pn�1 and kp(x)p1� x2k[�1;1℄ � 1: If jyj � xn; thenjp(y)j � (1� y2)�1=2 � (1� x2n)�1=2= �sin �2n��1 � � 2� �2n��1 = n :Now let jyj 2 (xn; 1℄: Without loss of generality we may assume thaty 2 (xn; 1℄: The Lagrange interpolation polynomial of a p 2 Pn�1 withnodes x1; x2; : : : ; xn is just p itself, hen
e E.6 of Se
tion 1.1 yieldsjp(y)j = ����� nXk=1 p(xk) Tn(y)T 0n(xk)(y � xk) �����= 1n ����� nXk=1 p(xk)q1� x2k Tn(y)y � xk ������ 1n nXk=1 Tn(y)y � xk � 1n T 0n(y) � 1n T 0n(1) = n ;where we use the fa
ts thatTn(y)y � xk > 0 ; k = 1; 2; : : : ; n ;T 0n is in
reasing on (xn;1), and T 0n(1) = n2: utProof of Theorem 5.1.8. Let p 2 Pn. Then p0 2 Pn�1 and Theorems 5.1.4and 5.1.9 yieldkp0k[�1;1℄ � n 

p0(x)p1� x2

[�1;1℄ � n2kpk[�1;1℄ ;and the theorem is proved. utComments, Exer
ises, and Examples.Every result of this se
tion was proved by the person it is named after; seeRemez [36℄, Bernstein [12℄, Szeg}o [28℄ or [82℄, A. A. Markov [1889℄, S
hur[19℄, and M. Riesz [14℄. However, earlier less 
omplete versions of these basi
polynomial inequalities also appear in the literature. Some of the proofswere simpli�ed later. For example, in the proof of Theorem 5.1.1 we followedthe method given in Erd�elyi [89b℄, while in the proof of Theorem 5.1.8 amethod of P�olya and Szeg}o [76℄ is used. Theorem 5.1.3 is also obtained inCorput and S
haake [35℄, however, it follows from an earlier result of Szeg}o[28℄. Theorem 5.1.2 was established in Erd�elyi [92a℄ in a slightly weakerform. Various extensions of the inequalities of this se
tion are dis
ussed inSe
tions 5.2 to 7.2 and in the appendi
es. Rahman and S
hmeisser [83℄ also



5.1 Classi
al Polynomial Inequalities 235o�ers a 
olle
tion of Markov- and Bernstein-type inequalities. Some further
lassi
al inequalities are in E.5 of Appendix 3.An interesting extension of Markov's inequality is due to Bojanov [82a℄.It states that kp0kLq[�1;1℄ � kT 0nkLq[�1;1℄kpk[�1;1℄for every p 2 Pn and q 2 [1;1℄; where Tn is the Chebyshev polynomial ofdegree n as in (2.1.1).The following result is due to Szeg}o [25℄. The inequalityjp0(0)j � 
n2�kpkD�holds for every p 2 P
n; where 
 is an absolute 
onstant andD� := fz 2 C : jzj � 1; j arg(z)j � �(1� �)g ; � 2 (0; 1℄ :Throughout the exer
ises Tn denotes the Chebyshev polynomial ofdegree n as de�ned by (2.1.1).E.1 A Detail in the Proof of Theorem 5.1.1. Show that the sets Pn(s)de�ned by (5:1:1) are 
ompa
t in the uniform norm on [�1; 1℄ for every�xed n 2 N and s 2 (0; 2):E.2 Chebyshev's Inequality. Prove thatjp(y)j � jTn(y)j � kpk[�1;1℄ ; y 2 R n [�1; 1℄for every p 2 Pn; and equality holds if and only if p = 
Tn for some 
 2 R:Extend the above inequality to every p 2 P
n and �nd all p 2 P
n forwhi
h equality holds.Hint: If p 2 Pn, kpk[�1;1℄ = 1, and jp(y)j > jTn(y)j for some y 2 R n [�1; 1℄;then with � := Tn(y)p(y)�1 2 [�1; 1℄; the polynomial �p� Tn 2 Pn has atleast n+ 1 zeros (
ounting multipli
ities). utE.3 Trigonometri
 Chebyshev Polynomials on Subintervals of K.a℄ For n 2 N and ! 2 (0; �); letQn;!(�) := T2n� sin(�=2)sin(!=2)� :Show that Qn;! 2 Tn attains the values �kQn;!k[�!;!℄ = �1 with alternat-ing sign 2n+ 1 times on [�!; !℄:b℄ Prove thatjt(�)j � Qn;!(�)ktk[�!;!℄ ; � 2 K n [�!; !℄for every t 2 Tn; and for every �xed � 2 K n [�!; !℄: Equality holds if andonly if p = 
Qn;! for some 
 2 R:
℄ Show that there exist absolute 
onstants 
1 > 0 and 
2 > 0 su
h that12 exp(
1n(� � !)) � kQn;!kK = Qn;!(�) � exp(
2n(� � !)) :



236 5. Basi
 InequalitiesE.4 A Zero Counting Lemma. Let � 2 K be �xed. Suppose f and g are
ontinuous fun
tions on K := R (mod 2�); di�erentiable at a �xed � 2 K;and suppose f and g have the properties(1) kfkK = 1; kgkK < 1;(2) there are �� � x1 < x2 < � � � < x2n < � so that f(xj) = (�1)j ;(3) f(�)) = g(�); jg0(�)j > jf 0(�)j; and sign(g0(�) = sign(f 0(�)):Then f � g has at least 2n+ 2 distin
t zeros on K:E.5 Sharpness of Theorem 5.1.3. Let � 2 K be �xed. Suppose t 2 Tn andt0(�)2 + n2t2(�) = n2ktk2K :Show that either jt(�)j = ktkK or t is of the formt(�) = � 
os(n� � �) ; �; � 2 R :Hint: Suppose ktkK = 1 and jt(�)j < 1: Choose � 2 K su
h that (5.1.6)is satis�ed and show that t � Tn;� 2 Tn has at least 2n + 2 zeros on K(
ounting multipli
ities). utE.6 Sharpness of Theorem 5.1.4. Show that Theorem 5.1.4 is sharp andequality holds if and only if t is of the formt(�) = � 
os(n� � �) ; �; � 2 R :E.7 Sharpness of Corollary 5.1.6. Show that Corollary 5.1.5 is sharp andequality holds if and only if p is of the form p(z) = 
zn; 
 2 C :E.8 Sharpness of Theorem 5.1.7. Show that for a �xed integer n � 1;Theorem 5.1.7 is sharp if and only if x is a zero of the Chebyshev polynomialTn; that is, x = 
os (2k�1)�2n ; k = 1; 2; : : : ; n ;and p = 
Tn for some 
 2 R:E.9 Sharpness of Theorem 5.1.9. Show that Theorem 5.1.9 is sharp andequality holds if and only if p = 
Un for some 
 2 R; where Un is theChebyshev polynomial of the se
ond kind de�ned in E.10 of Se
tion 2.1.E.10 Sharpness of Theorem 5.1.8. Show that Theorem 5.1.8 is sharp andequality holds if and only if p = 
Tn for some 
 2 R:E.11 A Property of the Zeros of t 2 Tn. Let � 2 K be �xed. Show thatevery t 2 Tn has at most M := enrjt(�)j�1ktkKzeros (
ounting multipli
ities) in the interval [� � r; � + r℄; r > 0:



5.1 Classi
al Polynomial Inequalities 237Proof. Assume that t 2 Tn has m > M zeros in [� � r; � + r℄: Interpolate tat these m zeros by a Hermite interpolation polynomial of degree at mostm � 1 (see E.7 of Se
tion 1.1). This gives the identi
ally zero polynomial.The formula for the remainder term of the Hermite interpolation polyno-mial and Theorem 5.1.4 (Bernstein's inequality) yield that there exists a� 2 (� � r; � + r) su
h thatjt(�)j = 1m!rmjt(m)(�)j < � em�m rmnmktkK< �enrM �m ktkK � jt(�)jmktk1�mK � jt(�)j ;whi
h is impossible. utE.12 A Property of the Zeros of a p 2 Pn. Show that every p 2 Pn hasat most M := ep2 npr jp(1)j�1kpk[�1;1℄zeros (
ounting multipli
ities) in [1� r; 1℄; r > 0:Hint: Use the substitution x = 
os �; E.11, and the inequality
os r < 1� 14r2 ; 0 < r � 2 : utE.13 Riesz's Lemma.a℄ Suppose t 2 Tn and t(�) = ktkK = 1 for some � 2 K: Thent(�) � 
os(n(� � �)) ; � 2 ��� �2n ; �+ �2n� ;and equality holds for a �xed � 2 ��� �2n ; �+ �2n� if and only if t isof the form t(�) = 
os(n(� � �)). In parti
ular, t does not vanish in��� �2n ; �+ �2n� :Hint: If this were false, thenq(�) := t(�) � 
os(n(� � �))would have more than 2n zeros on K (
ounting multipli
ities). utb℄ Suppose p 2 Pn and p(1) = kpk[�1;1℄ = 1: Then thatp(x) � Tn(x) ; x 2 �
os �2n ; 1� ;and equality holds for a �xed x 2 �
os �2n ; 1� if and only if p = Tn, where Tnis the Chebyshev polynomial of degree n as de�ned by (2.1.1). In parti
ular,p does not vanish in �
os �2n ; 1� :The next two exer
ises follows Erd�elyi [88℄ and Erd�elyi and Szabados[89b℄.



238 5. Basi
 InequalitiesE.14 AMarkov-Type Inequality for Trigonometri
 Polynomials on [�!; !℄.Show that there exists a 
onstant 0 < 
 � 16� su
h thatks0k[�!;!℄ � �n+ 
 � � !! n2� ksk[�!;!℄for every s 2 Tn and ! 2 (0; �℄:Proof. If � � ! > (2n)�1; then(3 tan2(!=2) + 1)1=2 < 8n ;and E.19 
℄ gives the result. If � � ! � (2n)�1; then Theorem 5.1.4 (Bern-stein's inequality) 
ombined with the Mean Value Theorem yieldsksk[��;�℄ � ksk[�!;!℄ + (� � !)n ksk[��;�℄ ;and hen
e ksk[�!;!℄ � (1� n(� � !)) ksk[��;�℄for every s 2 Tn: Therefore, using Theorem 5.1.4 (Bernstein's inequality)and � � ! � (2n)�1; we getks0k[�!;!℄ � ks0k[��;�℄ � n ksk[��;�℄� n1� n(� � !) ksk[�!;!℄ � (n+ 2(� � !)n2)ksk[�!;!℄for every s 2 Tn: utE.15 S
hur-Type Inequality for Tn on [�!; !℄. Let ! 2 (0; 2�℄. Show thatksk[�!;!℄ � 2n+ 1sin(!=2) 

s(�) � 12 (
os � � 
os!)�1=2

[�!;!℄for every s 2 Tn, and equality holds if and only if s is of the forms(�) = 
 sin h(2n+ 1) ar

os sin(�=2)sin(!=2)i(
os � � 
os!)1=2 ; 
 2 R :Note that the right-hand side of the above is an element of Tn:Hint: De�ne 2n+ 1 distin
t points in (�!; !) by�k := 2 ar
sin�sin !2 sin k�2n+ 1� ; k = 0;�1; : : : ;�n :Distinguish two 
ases in estimating jsn(�)j for � 2 [�!; !℄:



5.1 Classi
al Polynomial Inequalities 239Case 1: j�j � j�nj. Use the inequality12(
os � � 
os!) > sin2(!=2)(2n+ 1)2to get the desired result.Case 2: �n < j�j � !: LetMn(s) := maxjkj�nfjs(�k)j((
os �k � 
os!)=2)1=2g:Let n 2 N, ! 2 (0; �℄, and � 2 [�!;��n)[ (�n; !℄ be �xed. Show that thereis an esn 2 Tn su
h that jesn(�)jMn(esn) = maxs2Tn js(�)jMn(s) :Show by a variational method that esn is of the formesn(�) = 
 sin h(2n+ 1) ar

os sin(�=2)sin(!=2)i(
os � � 
os!)1=2 ; 
 2 R : utE.16 Another Proof of S
hur's Inequality.a℄ Prove Theorem 5.1.9 (S
hur's inequality) by using the method given inthe hint to E.15.b℄ Prove the result of E.15 by using interpolation, as in the proof of The-orem 5.1.9.Proof. See Erd�elyi and Szabados [89b℄. utE.17 Growth of Polynomials in the Complex Plane. LetD := fz 2 C : jzj < 1g and D% := fz 2 C : jzj < %g:a℄ Show that jp(z)j � jzjn kpkDfor every p 2 P
n and z 2 C nD:Find all p 2 P
n for whi
h equality holds.Hint: Apply the maximum prin
iple (see E.1 d℄ of Se
tion 1.2) with D andq(z) := znp(z�1) 2 P
n : ut
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 Inequalitiesb℄ Show that the transformation z =M(w) := 12 (w+w�1) 
an be writtenas x = 12 (%+ %�1) 
os � ; y = 12 (%� %�1) sin � ;where z = x+ iy; x; y 2 R and w = %ei�; % > 0; � 2 K:
℄ For % > 0; let E% be the image of the 
ir
le �D% under M: Show thatE% is the ellipsex2a2 + y2b2 = 1 with semiaxes a := 12 (%+ %�1) and b := 12 j%� %�1j :Furthermore, E% = E%�1 ; and E1 is the interval [�1; 1℄ 
overed twi
e.d℄ Show that jp(z)j � %n kpk[�1;1℄for every p 2 P
n; z 2 E%; % > 1:Proof. Applying the maximum prin
iple (see E.1 d℄ of Se
tion 1.2) withD = D1 and Q(w) := wnp � 12 (w + w�1)� 2 P
2n ;we obtain jQ(w)j � kQkD1 = kpk[�1;1℄ ; w 2 �D%�1 :This, together with part 
℄, yieldsjp(z)j � %nkpk[�1;1℄ ; z 2 E% : ute℄ Show that there exists an absolute 
onstant 
 su
h thatjp(z)j � 
 kpk�1;1℄ ; p 2 P
nwheneverz = x+ iy ; x; y 2 R ; jxj � 1 + 1n2 ; jyj � pj1� x2j+n + 1n2(j1� x2j+ := maxf1� x2; 0g).Hint: Use part d℄. utf ℄ Prove the following Markov-Bernstein inequality. There is a 
onstant
(m) depending only on m su
h thatjp(m)(x)j � 
(m)�min�n2; np1� x2��m kpk[�1;1℄for every p 2 P
n and x 2 [�1; 1℄:



5.1 Classi
al Polynomial Inequalities 241Hint: Use part e℄ and Cau
hy's integral formula (see E.1 a℄ of Se
tion 1.2).utBernstein established Theorem 5.1.4 in order to prove inverse theoremsof approximation. Bernstein's method is presented in the proof of the nextexer
ise, whi
h is one of the simplest 
ases. However, several other inversetheorems of approximation 
an be proved by straightforward modi�
ationsof the proof of this exer
ise. That is why Bernstein- and Markov-type in-equalities play a signi�
ant role in approximation theory. Dire
t and inversetheorems of approximation and related matters may be found in manybooks on approximation theory, in
luding Cheney [66℄, Lorentz [86a℄, andDeVore and Lorentz [93℄.E.18 An Inverse Theorem of Approximation. Let Lip�, � 2 (0; 1℄, denotethe family of all real-valued fun
tions g de�ned on K satisfyingsup� jg(x)� g(y)jjx� yj� : x 6= y 2 K� <1:For f 2 C(K), let En(f) := inffkt� fkK : t 2 Tng:An example for a dire
t theorem of approximation is stated in part a℄. Partb℄ deals with its inverse result.a℄ Suppose f is m times di�erentiable on K and f (m) 2 Lip� for some� 2 (0; 1℄: Then there is a 
onstant C depending only on f so thatEn(f) � Cn�(m+�); n = 1; 2; : : : :Proof. See, for example, Lorentz [86a℄. utb℄ Suppose m is a nonnegative integer, � 2 (0; 1), and f 2 C(K). Supposethere is a 
onstant C > 0 depending only on f su
h thatEn(f) � Cn�(m+�); n = 1; 2; : : : :Then f is m times 
ontinuously di�erentiable on K and f (m) 2 Lip�:Outline. We show only that f is m times 
ontinuously di�erentiable onK: The rest 
an be proved similarly, but its proof requires more te
hni
aldetails. See, for example, Lorentz [86a℄.For ea
h k 2 N; let Q2k 2 T2k be 
hosen so thatkQ2k � fkK � C 2�k(m+�) :
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 InequalitiesThen kQ2k+1 �Q2kkK � 2C 2�k(m+�) :Now f(�) = Q20(�) + 1Xk=1(Q2k+1 �Q2k)(�) ; � 2 K ;and by Theorem 5.1.4 (Bernstein's inequality)jQ(j)20 j+ ����� 1Xk=1(Q2k+1 �Q2k )(j)(�)������ kQ1kK + 1Xk=1�2k+1�jkQ2k+1 �Q2kkK� kQ1kK + 1Xk=1�2k+1�j2C 2�k(m+�)� kQ1kK + 2j+1C 1Xk=1(2j�m��)k <1for every � 2 K and j = 0; 1; : : : ;m; sin
e � > 0: Now we 
an 
on
ludethat f (j)(�) exists andf (j)(�) = Q(j)1 (�) + 1Xk=1(Q2k+1 �Q2k)(j)(�)for every � 2 K and j = 0; 1; : : : ;m: The fa
t that f (m) 2 C(K) 
an beseen by the Weierstrass M -test. utThe next exer
ise follows Videnskii [60℄.E.19 Videnskii's Inequalities. The main results of this exer
ise are theBernstein- (part b℄) and Markov-type (part 
℄) inequalities for trigonometri
polynomials on an interval shorter than the period.Let ! 2 (0; �);tn(�) := Qn;!(�) = 
os�2n ar

os� sin(�=2)sin(!=2)�� ;and un(�) := sin�2n ar

os� sin(�=2)sin(!=2)�� :a℄ Re
all that tn 2 Tn by E.3 a℄.



5.1 Classi
al Polynomial Inequalities 243b℄ Show that js0n(�)j � jt0n(�) + iu0n(�)j ksnk[�!;!℄= n�1� 
os2(!=2)
os2(�=2)��1=2 ksnk[�!;!℄for every sn 2 Tn and � 2 (�!; !): Equality holds if and only if sn = 
tnfor some 
 2 R and sn(�) = 0:Hint: First show that for every n 2 N; ! 2 (0; �℄; and � 2 [�!; !℄; thereexists an es 2 Tn su
h thatjes 0(�)jkesk[�!;!℄ = maxsn2Tn js0n(�)jksnk[�!;!℄ :Use a variational method to show that eitherkesnk[�!;!℄ = kesnk[��;�℄or there exist � 2 (��;�!℄ and � 2 [!; �) su
h that esn = 
Tn for some
 2 R; where, as in Se
tion 3.3,Tn := Tnf1; 
os �; sin �; : : : ; 
osn�; sinn� ; [�; �℄gis the Chebyshev polynomial for Tn on [�; �℄: In the �rst 
ase use Theorem5.1.4 (Bernstein's inequality). In the se
ond 
ase observe thatTn(�) = tn� sin((� � 
)=2)sin(e!=2) �with 
 := 12 (�+ �) and e! := 12 (� � �) : ut
℄ Show that if 2n > (3 tan2(!=2) + 1)1=2; thenks0nk[�!;!℄ � t0n(!)ksnk[�!;!℄ = 2n2 
ot(!=2)ksnk[�!;!℄for every sn 2 Tn; and equality holds if and only if sn = 
tn; 
 2 R:Outline. Let �! = �0 < �1 < � � � < �2n = ! be the points wheretn(�j) = (�1)j ; j = 0; 1; : : : ; 2nand un(�j) = 0 ; j = 1; 2; : : : ; 2n� 1 ;
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 Inequalitiesand let �1 < �2 < � � � < �2n be the zeros of tn (whi
h lie in (�!; !)): Notethat u0n(�j) = 0 ; j = 1; 2; : : : ; 2n :Step 1. Show that 2n > (3 tan2(!=2) + 1)1=2 implies t00n(�) > 0 for every� 2 [�2n�1; !℄; so t0n is in
reasing on [�2n�1; !℄:Step 2. Use part b℄ to show that if � 2 [�1; �2n℄; thenjt0n(�)j � jt0n(�) + iu0n(�)j � jt0n(�2n) + iu0n(�2n)j = jt0n(�2n)j :Step 3. Dedu
e from Steps 1 and 2 thatjt0n(�)j < jt0n(�!)j ; � 2 (�!; !) :Step 4. Show that there is an es 2 Tn su
h thatkes 0nk[�!;!℄kesnk[�!;!℄ = maxs2Tn ks0k[�!;!℄ksk[�!;!℄ :For the rest of the proof let esn be normalized by kesk[�!;!℄ = 1 and let�� 2 [�!; !℄ be 
hosen so thatjes 0n(��)j = kes 0n(�)k[�!;!℄:Let (a1 < a2 < � � � < am) be an alternation sequen
e of maximal length foresn 2 C[�!; !℄ on [�!; !℄: We would like to show that m = 2n+1: Clearlym < 2n+ 2:Step 5. Use a variational method to show that 2n � m:Step 6. Use a variational method to show that �� = �! impliesm = 2n+1;so m = 2n implies �� 2 (�!; !):Step 7. Show by a variational method thatjs0n(�!)j � jt0n(�!)j ksnk[�!;!℄for every sn 2 Tn; and equality holds if and only if sn = 
tn; 
 2 R: Inparti
ular, if m = 2n; thenjes 0n(�!)j < jt0n(�!)j :Step 8. Use part b℄ and Step 3 to show thatjes 0n(�)j � t0n(�2n) < t0n(!) ; � 2 [�1; �2n℄ :Step 9. Use part b℄ to show that m = 2n implies
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al Polynomial Inequalities 245jes 0n(�j)j < jt0n(�j)j = (�1)jt0n(�j) ; j = 1; 2; : : : ; 2n :Step 10. Suppose m = 2n: Use Steps 6 and 8 to show that�� 2 (�!; �1) [ (�2n; !) :Step 11. Suppose m = 2n: Use the de�ning property of esn and Steps 1and 10 to show thatjes 0n(��)j = kes 0nk[�!;!℄ � jt0n(�!)j > jt0n(��)j :Step 12. Suppose m = 2n and s 0n(��) � 0: Use Steps 7 to 11 to show thatt0n � es 0n has at least 2n+ 1 distin
t zeros in (�!; !); a 
ontradi
tion.Step 13. Show that m = 2n+ 1 and esn = �tn. utE.20 Inequalities for Entire Fun
tions of Exponential Type. Entire fun
-tions of (exponential) type � are de�ned in E.17 of Se
tion 4.2. Denote byE� the set of all entire fun
tions of exponential type at most �: This exer
ise
olle
ts some of the interesting inequalities known for E� : Sin
e a trigono-metri
 polynomial of degree n belongs to En; these results 
an be viewed asextensions of the 
orresponding inequalities for trigonometri
 polynomials.More on various inequalities for entire fun
tions of exponential type maybe found in Rahman and S
hmeisser [83℄.a℄ Bernstein's Inequality. The inequalitykf 0kR � � kfkR ; x 2 Rholds for every f 2 E� :Proof. See Bernstein [23℄ or Rahman and S
hmeisser [83℄. utb℄ Extension of the Bernstein-Szeg}o Inequality. The inequality(f 0(x))2 + (�f(x))2 � �2kfk2R ; x 2 Rholds for every f 2 E� taking real values on the real line.Proof. See DuÆn and S
hae�er [37℄. ut
℄ The Growth of f 2 E� . The inequalityjf(x+ iy)j � e� jyjkfkR ; x; y 2 Rholds for every f 2 E� .Proof. See Rahman and S
hmeisser [83℄. ut
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 Inequalitiesd℄ The Growth of f 2 E� Taking Real Values on R. The inequalityjf(x+ iy)j � (
osh �y) kfkR ; x; y 2 Rholds for every f 2 E� taking real values on the real line.Proof. See S
hae�er and DuÆn [38℄. ute℄ Bernstein-Type Inequality in Lp. Let p 2 (0;1): The inequalitykf 0kLp(R) � � kfkLp(R)holds for every f 2 E� .Proof. See Rahman and S
hmeisser [90℄. utE.21 Markov-Type Inequality on Conne
ted Subsets of the ComplexPlane. Let E be a 
onne
ted 
ompa
t set of the 
omplex plane. Thenkp0kE � e2 n2
ap(E) kpkEfor every p 2 P
n:Proof. See Pommerenke [59
℄. utErd}os 
onje
tured that the 
onstant e2 in the above inequality 
an berepla
ed by 12 : This result would 
ontain Theorem 5.1.8 (Markov's inequal-ity) as a spe
ial 
ase. However, Rassias, Rassias, and Rassias [77℄ disprovedthe 
onje
ture. Erd}os still spe
ulates that e2 in Pommerenke's inequalitymay be repla
ed by 12 (1 + o(1)):The result of the next exer
ise is formulated so that its proof is ele-mentary at the expense of pre
ision and generality.E.22 The Interval where the Sup Norm of a Weighted Polynomial Lives.Suppose w = exp(�Q); where(1) Q : R ! R is 
ontinuous and even,(2) Q0 is 
ontinuous and positive in (0;1),(3) tQ0(t) is in
reasing in (0;1), and(4) limt!0+ tQ0(t) = 0 and limt!1 tQ0(t) =1:Let an > 0 be 
hosen so thatannw(an) = maxx2R jxnw(x)j :a℄ Show thatn = anQ0(an) and 0 < a1 < a2 < a3 < � � � :
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al Polynomial Inequalities 247b℄ Show that kpwkR � kpwk[�2a2n;2a2n℄for every p 2 P
n:Proof. Using Chebyshev's inequality (see E.2 of Se
tion 5.1) and the expli
itform (2.1.1) of the Chebyshev polynomial Tn, we 
an dedu
e thatjp(x)j � �����xa +r�xa�2 � 1�����n kpk[�a;a℄ � �2jxja �n kpk[�a;a℄for every p 2 P
n, x 2 R n [�a; a℄; and a > 0: Choosing a := an, and usingthe fa
t that w is de
reasing on [0;1), we obtainj(pw)(x)j � �2jxjan �n w(x)w(an) kpwk[�an;an℄for every p 2 P
n and x 2 R n [�an; an℄. Now if x 2 R n [�2a2n; 2a2n℄; thenjxjnw(x)annw(an) � exp Z jxjan ddt log(tnw(t))! dt= exp Z jxjan n� tQ0(t)t dt!� exp�Z 2a2na2n n� 2nt dt� = 2�n ;where we used a2n � an, tQ0(t) � 2n for t � a2n, and tQ0(t) � n for t � an:Combining the above inequality with the previous one, we obtain thatj(pw)(x)j � kpwk[�an;an℄ ; x 2 R n [�2a2n; 2a2n℄for every p 2 P
n; from whi
h the result follows. ut
℄ Let Q(x) := jxj�; � > 0. Show that Q satis�es the assumptions of theexer
ise, and an = �n��1=� :The idea of in�nite-�nite range inequalities, of whi
h E.22 b℄ is anexample, goes ba
k to Freud (an is the Freud number); see Nevai's surveypaper [86℄. The sharp form of these is due to Mhaskar and Sa� [85℄; seealso Lubinsky and Sa� [88℄ and Sa� and Totik [to appear℄. They are notthat diÆ
ult to prove, but need the maximum prin
iple for subharmoni
fun
tions.
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 InequalitiesE.23 A Theorem of Markov. Let Tn be the Chebyshev polynomial ofdegree n de�ned by (2.1.1). ThenTn(x) = nXk=0 
k;nxk :The Markov numbers Mk;n; 0 � k � n; are de�ned byMk;n := � j
k;nj if k � n (mod 2)j
k;n�1j if k � n� 1 (mod 2) :These 
an be expli
itly 
omputed from (2.1.1).a℄ The inequalities jak;nj �Mk;n kpk[�1;1℄hold for every p 2 Pn of the formp(x) = nXk=0 ak;nxk; ak;n 2 R :Proof. See, for example, Natanson [64℄. utb℄ Show that jp0(0)j � (2n� 1) kpk[�1;1℄for every p 2 P2n:Hint: Use part a℄. ut
℄ Show that jp0(x)j � 2n� 11� jxj kpk[�1;1℄for every p 2 P2n and x 2 (�1; 1):Hint: Use part b℄ and a linear transformation. utOf 
ourse, part 
℄ gives a better result than Theorem 5.1.7 (Bernstein'sInequality) only if x is very 
lose to 0: This is exa
tly the 
ase we need inour appli
ation of part 
℄ in E.4 
℄ of Se
tion 6.1.5.2 Markov's Inequality for Higher DerivativesFrom Theorem 5.1.8 (Markov's Inequality), by indu
tion on m it followsthat kp(m)k[�1;1℄ � (n(n� 1) � � � (n�m+ 1))2kpk[�1;1℄for every p 2 Pn:



5.2 Markov's Inequality for Higher Derivatives 249However, this is not the best possible result. The main result of thisse
tion is the following inequality of DuÆn and S
hae�er [41℄, whi
h givesa sharp improvement of the above. E.2 d℄ extends the following result topolynomials with 
omplex 
oeÆ
ients:Theorem 5.2.1. If p 2 Pn satis�es��p �
os j�n ��� � 1 ; j = 0; 1; : : : ; n ;then for every m = 1; 2; : : : ; n;jp(m)(x+ iy)j � jT (m)n (1 + iy)j ; x 2 [�1; 1℄ ; y 2 R ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1). Equal-ity 
an o

ur only if p = �Tn:To prove this inequality we need three lemmas, whi
h are of someinterest in their own right.Lemma 5.2.2. Suppose �1; �2; : : : ; �n are distin
t real numbers,q(z) := 
 nYj=1(z � �j) ; 0 6= 
 2 R ;and p 2 P
n satis�esjp0(�j)j � jq0(�j)j ; j = 1; 2; : : : ; n :Then, for every m 2 N,(5:2:1) jp(m)(x)j � jq(m)(x)jwhenever x is a zero of q(m�1):Proof. For m = 1, inequality (5.2.1) is simply a restatement of the assump-tion of the lemma, so 
onsider the 
ase m = 2: The Lagrange interpolationformula (see E.6 of Se
tion 1.1) gives(5:2:2) p0(z)q(z) = nXj=1 p0(�j)q0(�j) 1z � �j = nXj=1 Æjz � �j ;where, by the hypotheses of the lemma, jÆj j � 1: There is a similar expres-sion for q0(z)=q(z) in whi
h ea
h Æj is equal to 1. On di�erentiating (5.2.2),we obtain p00(z)q(z)� p0(z)q0(z)q(z)2 = � nXj=1 Æj(z � �j)2 :
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 InequalitiesThus at the points x where q0(x) = 0 we have����p00(x)q(x) ���� = ������ nXj=1 Æj(x� �j)2 ������ � nXj=1 1(x� �j)2 = ����q00(x)q(x) ���� ;and it follows that the lemma is true for m = 2.The proof for m > 2 is by indu
tion. Let jp(m)(x)j � jq(m)(x)j atthe zeros of q(m�1) (whi
h are real and distin
t). Applying the previousargument to p(m) and q(m) instead of p0 and q0; we obtainjp(m+1)(x)j � jq(m+1)(x)jat the zeros of q(m): This 
ompletes the indu
tion. utLemma 5.2.3. Let q 2 Pn have n distin
t zeros in (�1; b); and supposethat in a strip of the 
omplex plane it satis�es the inequality(5:2:3) jq(x+ iy)j � jq(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Suppose also that p0 2 Pn�1 satis�es(5:2:4) jp0(x)j � jq0(x)jwhenever x is a zero of q. Then the derivatives of p and q satisfy(5:2:5) jp(m)(x + iy)j � jq(m)(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Proof. First we show that at every point x0 + iy0 in the stripjp0(x0 + iy0)j � jq0(b+ iy0)j :Let q(z) := 
 nYj=1(z � �j) ; 0 6= 
 2 R ; �j 2 (�1; b) :Let h(z) be another polynomial with the same leading 
oeÆ
ient as q andwhose zeros are obtained by re
e
ting about x0 those zeros of q that lie tothe right of x0. Thus h(z) := 
 nYj=1 (z � �j) ;where(5:2:6) �j := � 2x0 � �j if �j > x0�j if �j � x0 :



5.2 Markov's Inequality for Higher Derivatives 251Then on the line z = x0 + iy; y 2 R; we have jz � �j j = jz � �j j; so(5:2:7) jh(x0 + iy)j = jq(x0 + iy)j :We now show that(5:2:8) jp0(x0 + iy0)j � jh0(x0 + iy0)j :Note that(5:2:9) h0(z)h(z) = nXj=1 1z � �j ;and re
alling (5.2.2), we have(5:2:10) p0(z)q(z) = nXj=1 Æjz � �jwith Æj 2 [�1; 1℄ for ea
h j. Comparing the right-hand sides of (5.2.9) and(5.2.10), respe
tively, at z = x0 + iy0, we obtain������ nXj=1 Æjx0 + iy0 � �j ������ = ������ nXj=1 Æj(x0 � �j)(x0 � �j)2 + y20 � i nXj=1 y0Æj(x0 � �j)2 + y20 ������� ������ nXj=1 x0 � �j(x0 � �j)2 + y20 � i nXj=1 y0(x0 � �j)2 + y20 ������= ������ nXj=1 1x0 � �j + iy0 ������sin
e by 
onstru
tion jx0 � �j j = x0 � �j : Therefore����p0(x0 + iy0)q(x0 + iy0) ���� � ����h0(x0 + iy0)h(x0 + iy0) ���� ;and (5.2.7) yields (5.2.8).Let � 2 C ; j�j < 1; be an arbitrary 
onstant and let'(z) := q(z)� �h(z + x0 � b) :Let � be the simple 
losed 
urve 
onsisting of a segment of the linez = b + iy; y 2 R; and the portion of a 
ir
le with 
enter at b and ra-dius % that lies to the right of this line. Relations (5.2.3) and (5.2.7) showthat on the line segment of �;
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 Inequalities jq(z)j > j�h(z + x0 � b)j :If % is suÆ
iently large, the same inequality is true for the 
ir
ular portionof � sin
e q and h have the same leading 
oeÆ
ient. Thus Rou
h�e's theoremgives that ' and h have the same number of zeros inside �: We 
on
ludethat ' has no zeros on or to the right of the line z = b + iy; y 2 R: Thelast statement, together with Theorem 1.3.1, implies that '0 has no zeroson the line z = b+ iy; y 2 R: Thus for j�j < 1;q0(b+ iy0)� �h0(x0 + iy0) 6= 0 ;whi
h, together with (5.2.8), yieldsjp0(x0 + iy0)j � jh0(x0 + iy0)j � jq0(b+ iy0)j :This proves the lemma for m = 1:We turn now to the 
asem > 1: Applying the lemma with m = 1 whenp = q; we havejq0(x+ iy)j � jq0(b+ iy)j ; x 2 [a; b℄ ; y 2 R :Thus q0 satis�es all the requirements that are imposed on the interpolatingpolynomial q (with n repla
ed by n � 1) in the lemma, and by Lemma5.2.2, jp00(x)j � jq00(x)j at the n�1 zeros of q0: Applying the lemma to p0(x)instead of p in the 
ase m = 1, for whi
h it has already been proved, wehave jp00(x+ iy)j � jq00(b+ iy)j ; x 2 [a; b℄ ; y 2 R ;whi
h proves that inequality (5.2.5) is true for m = 2: Repetition of thisargument 
ompletes the proof for larger values of m. utLemma 5.2.4. Suppose p 2 P 
n and jp(�j)j � 1 for�j := 
os j�n ; j = 0; 1; : : : ; n :Thenjp0(xk)j � np1� x2k for xk := 
os (2k�1)�2n ; k = 0; 1; : : : ; n :For every �xed k; equality holds if and only if p = 
Tn for some 
 2 C withj
j = 1.Proof. Let f(x) = (1� x2)T 0n(x) = a nYj=0 �x� 
os j�n � :



5.2 Markov's Inequality for Higher Derivatives 253Then by the di�erential equation for Tn (see E.3 e℄ of Se
tion 2.1), we havef 0(x) = �xT 0n(x) � n2Tn(x) :Di�erentiating the Lagrange interpolation formula for p (see E.6 of Se
tion1.1) gives p0(x) = nXj=0 p(�j)f 0(�j) (x� �j)f 0(x) � f(x)(x� �j)2 :For the zeros of Tn; this redu
es to(5:2:11) p0(x) = �T 0n(x) nXj=0 p(�j)f 0(�j) (1� x�j)(x� �j)2sin
e at these points(x� �j)f 0(x)� f(x) = �x(x� �j)T 0n(x) � (1� x2)T 0n(x)= �(1� x�j)T 0n(x) :In the same way, we obtain for the zeros of Tn;T 0n(x) = �T 0n(x) nXj=0 Tn(�j)f 0(�j) (1� x�j)(x� �j)2and sin
e Tn(�j) and f 0(�j) are of opposite sign (f 0(�j) = �n2Tn(�j)), thisgives(5:2:12) T 0n(x) = T 0n(x) nXj=0 ���� 1f 0(�j) ���� (1� x�j)(x � �j)2 :Sin
e jp(�j)j � 1 in (5.2.11), on 
omparing (5.2.11) and (5.2.12), we obtainfor every zero x of Tn thatjp0(x)j � jT 0n(x)j = np1� x2 :For a �xed zero of Tn; the equality o

urs if and only ifp(�j) = 
Tn(�j) ; j = 0; 1; : : : ; nfor some 
 2 C ; j
j = 1; that is, if and only if p = 
Tn for some 
 2 C withj
j = 1. utProof of Theorem 5.2.1. Suppose p 6= Tn satis�es the assumption of thetheorem. Then by Lemma 5.2.4 there exists a 
onstant � > 1 su
h thatj�p0(x)j � jT 0n(x)j at the zeros of Tn: Applying Lemma 5.2.3 with p and qrepla
ed by �p and Tn (assumption (5.2.3) is satis�ed with [a; b℄ := [�1; 1℄by E.1 b℄), we obtainjp(m)(x+ iy)j � ��1��T (m)n (1 + iy)�� ; x 2 [�1; 1℄ ; y 2 Rfor every m = 1; 2; : : : ; n: If p = Tn; then we have the same inequality with��1 repla
ed by 1: ut



254 5. Basi
 InequalitiesComments, Exer
ises, and Examples.The inequality kp(m)k[�1;1℄ � T (m)n (1) � kpk[�1;1℄ ; p 2 Pnwas �rst proved by V. A. Markov [16℄. He was the brother of the morefamous A. A. Markov who proved the above inequality for m = 1 in [1889℄(see Theorem 5.1.8). However, their ingenious proofs are rather 
ompli-
ated. Bernstein presented a shorter variational proof of V. A. Markov'sinequality in 1938 (see Bernstein [58℄, whi
h in
ludes a 
omplete list ofBernstein's publi
ations). Our dis
ussion in this se
tion follows DuÆn andS
hae�er [41℄.E.1 A Property of Chebyshev Polynomials.a℄ Let (�i)2ni=1 be a sequen
e of 2n nonnegative numbers, and let (�0i) bea rearrangement of this sequen
e a

ording to magnitude,�01 � �02 � � � � � �02n � 0 :Show that for every y � 0,(5:2:13) (�1�2 + y)(�3�4 + y) � � � (�2n�1�2n + y)is not greater than(�01�02 + y)(�03�04 + y) � � � (�02n�1�02n + y) :Proof. If �1 and �3 are at least as large as any of the remaining numbers�i; then(�1�3 + y)(�2�4 + y)� (�1�2 + y)(�3�4 + y) = y(�1 � �4)(�3 � �2) � 0 :This shows that the numbers �i in (5.2.13) 
an be rearranged so that thetwo largest o

ur in the same fa
tor without de
reasing (5.2.13). Then thetwo largest of the remaining numbers �i may be brought into the samefa
tor without de
reasing (5.2.13), and so on. utb℄ Show that the Chebyshev polynomials Tn de�ned by (2.1.1) satisfy theinequality jTn(x+ iy)j � jTn(1 + iy)j ; x 2 [�1; 1℄ ; y 2 R :Proof. We have jTn(x + iy)j2 = 
2 nYj=1 ((x� 
os �j)2 + y2) ;



5.2 Markov's Inequality for Higher Derivatives 255where �j = (2j�1)�2n and 
 = 2n�1: With x = 
os � we writejTn(x+ iy)j2 = 
2 nYj=1� 14 ��ei� � e�i�j ��2 ��ei� � ei�j ��2 + y2� :Geometri
ally, e�i�j ; j = 1; 2; : : : ; n; represent 2n points equally dis-tributed on the unit 
ir
le. Conne
t these points by 
hords to the pointei�: Then the lengths of these 2n 
hords are given by jei� � e�i�j j: If � isin
reased or de
reased by any multiple of �n ; we obtain a new set of 
hords,but the aggregate of their lengths is un
hanged. Choose ' su
h that' � � �mod �n� ; � �2n � ' � �2n :If x� = 
os'; thenTn(x� + iy) = 
2 nYj=1�14 ��ei' � e�i�j ��2 ��ei' � ei�j ��2 + y2� ;where the numbers jei'�e�i�j j2 are simply a rearrangement of the numbersjei� � e�i�j j2: Use part a℄ to show thatjTn(x+ iy)j2 � jTn(x� + iy)j2 :Note that 
os �1 � x� � 1; where 
os �1 is the right most zero of Tn: Hen
ejTn(x� + iy)j2 � jTn(1 + iy)j2 ;and the proof is �nished. utE.2 Markov's Inequality for Higher Derivatives for P
n.a℄ Show that if p and q satisfy the 
onditions of Lemma 5.2.3 with p 2 Pnrepla
ed by p 2 P
n; thenjp(m)(x)j � jq(m)(b)j ; x 2 [a; b℄for every m 2 N:Hint: After di�erentiating (5.2.2) m� 1 times, we obtainp(m)(x) = nXj=1 Æj dm�1dxm�1 � q(x)x� �j� ;where jÆj j = jp0(�j)=q0(�j)j � 1: It is evident that if x 2 (a; b) is �xed, thenjp(m)(x)j attains its maximum when Æj = �1 for ea
h j; in whi
h 
ase p0has real 
oeÆ
ients. Now use Lemma 5.2.3. ut



256 5. Basi
 Inequalitiesb℄ Show that if p satis�es the assumption of Theorem 5.2.1 with p 2 Pnrepla
ed by p 2 P
n; then kp(m)k[�1;1℄ � jT (m)n (1)jfor every m 2 N: The equality 
an hold only if p = 
Tn for some 
 2 C ;j
j = 1.Hint: Modify the proof of Theorem 5.2.1 by using part a℄. ut
℄ Show thatT (m)n (1) = n2(n2 � 1)(n2 � 22) � � � (n2 � (m� 1)2)1 � 3 � 5 � � � (2m� 1) :Hint: Di�erentiating the se
ond-order di�erential equation for Tn (see E.3e℄ of Se
tion 2.1) m� 1 times gives(1� x2)T (m+2)n (x)� (2m+ 1)xT (m+1)n (x) + (n2 �m2)T (m)n (x) = 0from whi
h (2m+ 1)T (m+1)n (1) = (n2 �m2)T (m)n (1)follows. Use indu
tion and Tn(1) = 1 to �nish the proof. utd℄ The Main Inequality. Suppose p 2 P
n satis�es��p �
os j�n ��� � 1 ; j = 1; 2; : : : ; n :Show that for m = 1; 2; : : : ; n;kp(m)k[�1;1℄ � n2(n2 � 1)(n2 � 22) � � � (n2 � (m� 1)2)1 � 3 � 5 � � � (2m� 1) ;and the equality 
an o

ur only if p = 
Tn for some 
 2 C ; j
j = 1:Hint: Combine parts 
℄ and b℄. utA slightly weaker version of Markov's inequality for higher derivativesis mu
h easier to prove.E.3 A Weaker Version of Markov's Inequality. Show thatkp(m)k[�1;1℄ � 2mn2mkpk[�1;1℄for every p 2 Pn:Hint: First show by a variational method that the extremal problemmax06=p2Pn jp0(�1)jkpk[�1;1℄



5.2 Markov's Inequality for Higher Derivatives 257is solved by the Chebyshev polynomial Tn; hen
ejp0(�1)j � n2kpk[�1;1℄ :Then, by using a linear transformation, show thatjp0(y)j � 21� yn2kpk[y;1℄ � 2n2kpk[�1;1℄ ; �1 � y � 0and jp0(y)j � 21 + yn2kpk[�1;y℄ � 2n2kpk[�1;1℄ ; 0 � y � 1 :Hen
e the inequality of the exer
ise is proved whenm = 1: For larger valuesof m use indu
tion. utE.4 Weighted Bernstein and Markov Inequalities. Let w 2 C[�1; 1℄ bestri
tly positive on [�1; 1℄:a℄ Show that for every � > 0 there exists an n0 depending on � and w su
hthat 

p0(x)w(x)p1� x2

[�1;1℄ � n(1 + �)kpwk[�1;1℄for every p 2 Pn; n � n0:Proof. By the Weierstrass approximation theorem, for every � > 0 there isa q 2 Pk su
h thatw(x) � q(x) � (1 + �)w(x) ; x 2 [�1; 1℄ :Let m := minfw(x) : x 2 [�1; 1℄g: Applying Theorem 5.1.7 (Bernstein'sinequality) to pq 2 Pn+k and then to q 2 Pk; we obtain��p0(x)w(x)p1� x2�� � ��p0(x)q(x)p1� x2��� ��(pq)0(x)p1� x2��+ ��p(x)q0(x)p1� x2��� (n+ k)kpqk[�1;1℄ + kpk[�1;1℄kkqk[�1;1℄� (n+ k)(1 + �)kpwk[�1;1℄ + 1mkpwk[�1;1℄k(1 + �)kwk[�1;1℄� n(1 + �)kpwk[�1;1℄for every p 2 Pn; provided � > 0 is suÆ
iently small and n � n0: ut



258 5. Basi
 Inequalitiesb℄ Show that for every � > 0 there exists an n0 depending on � and w su
hthat kp0wk[�1;1℄ � n2(1 + �)kpwk[�1;1℄for every p 2 Pn; n � n0:Hint: Use the idea given in the previous proof. utS
hae�er and DuÆn [38℄ prove an extension of Theorem 5.1.7 (Bern-stein's inequality) to higher derivatives. They show that���� dmdxm p(x)���� � ���� dmdxm exp(in ar

osx)���� ; x 2 (�1; 1)for every p 2 Pn: The following exer
ise gives a slightly weaker version ofthis, whi
h is mu
h simpler to prove. Some of this follows La
han
e [84℄.E.5 Bernstein's Inequality for Higher Derivatives.a℄ Show that there exists a 
onstant 
(m) depending only on m su
h thatjp(m)(x)j � 
(m)� np1� x2�m kpk[�1;1℄ ; x 2 (�1; 1)for every p 2 P
n: (That we 
an 
hoose 
(m) � 2m is shown in parts 
℄, d℄,and e℄.)Hint: For j = 1; 2; : : : ;m; letaj := x� (m� j)(1 + x)m and bj := x+ (m� j)(1� x)m :Use Corollary 5.1.5 to show that there are 
onstants 
j(m) depending onlyon m su
h thatkp(j)k[aj;bj ℄ � 
j(m) np1� x2 kp(j�1)k[aj�1;bj�1℄for every p 2 P
n and j = 1; 2; : : : ;m: utb℄ Show that there exists a 
onstant 
(m) > 0 depending only on m su
hthat sup06=p2Pn jp(m)(x)jkpk[�1;1℄ � 
(m)�min�n2; np1� x2��mfor every x 2 [�1; 1℄ and m = 1; 2; : : : ; n:Hint: First show thatkT (m)n kI(x) � 
(m)�min�n2; np1� x2��m ;where I(x) := [x� 12 (1�jxj), x+ 12 (1�jxj)℄; then use a shift and a s
aling.ut



5.2 Markov's Inequality for Higher Derivatives 259In the rest of the exer
ise we show that 
(m) = 2m is a suitable 
hoi
efor the 
onstant in part a℄.
℄ Let k be a positive integer. Thenkp(x)(1� x2)(k�1)=2k[�1;1℄ � n+ kk kp(x)(1� x2)k=2k[�1;1℄for every p 2 Pn:Hint: Let p 2 Pn be normalized so that kp(x)(1� x2)k=2k[�1;1℄ = 1: ApplyTheorem 5.1.3 (Bernstein-Szeg}o inequality) witht(�) := p(
os �) sink � 2 Tn+k :If x0 = 
os �0 denotes a relative extreme point for p on (�1; 1); thenp0(
os �0) = 0; and after simpli�
ation we obtain that(p(
os �0) sink�1 �0)2 � (n+ k)2((n+ k)2 � k2) sin2 �0 + k2 � �n+ kk �2 : utd℄ Let k be a positive integer. Thenkp0(x)(1 � x2)(k+1)=2k[�1;1℄ � 2(n+ k)kp(x)(1� x2)k=2k[�1;1℄for every p 2 Pn:Proof. Let p 2 Pn be normalized so that kp(x)(1 � x2)k=2k[�1;1℄ = 1: Ap-plying Theorem 5.1.4 (Bernstein's inequality) with m = 1 andt(�) := p(
os �) sink � 2 Tn+k ;we obtain jp0(
os �) sink+1 � + p(
os �)k sink�1 � 
os �j � n+ k :Now the triangle inequality and part 
℄ yieldjp0(
os �) sink+1 �j � (n+ k) + k ��p(
os �) sink�1 ���� (n+ k) + k n+ kk � 2(n+ k) : ut



260 5. Basi
 Inequalitiese℄ Show that jp(m)(x)j � � 2np1� x2�m kpk[�1;1℄for every p 2 Pn and x 2 (�1; 1):Hint: Use indu
tion on m; Theorem 5.1.7, and part d℄. ut5.3 Inequalities for Norms of Fa
torsA typi
al result of this se
tion is the following inequality due to Kneser[34℄.Theorem 5.3.1. Suppose p = qr; where q 2 P
m and r 2 P
n�m. Thenkqk[�1;1℄krk[�1;1℄ � 12Cn;mCn;n�mkpk[�1;1℄ ;where Cn;m := 2m mYk=1�1 + 
os (2k�1)�2n � :Furthermore, for any n and m � n the inequality is sharp in the 
ase thatp is the Chebyshev polynomial Tn of degree n de�ned by (2.1.1), and thefa
tor q 2 P
m is 
hosen so that q vanishes at the m zeros of p 
losest to�1. Before proving the above theorem, we establish an asymptoti
 formulafor Cn;m and formulate a 
orollary.If f 2 C2[a; b℄; then by the midpoint rule of numeri
al integrationZ ba f(x) dx = (b� a)f � 12 (a+ b)�+ (b� a)324 f 00(�)for some � 2 [a; b℄: Let f(x) := log(2 + 2 
os�x): Thenf 00(x) = ��2(1 + 
os�x)2 :On applying the midpoint rule to the above f; we obtainZ m=n0 log(2 + 2 
os�x) dx = 1n mXk=1 log�2 + 2 
os (2k�1)�2n �+O�m 124 1n3 n4(n�m)4�



5.3 Inequalities for Norms of Fa
tors 261for all integers 0 � m � n: ThusCn;m = exp log mYk=1�2 + 2 
os (2k�1)�2n �!(5:3:1) =  exp 1n mXk=1 log�2 + 2 
os (2k�1)�2n �!!n= exp�O� mn2(n�m)4�� (exp(I(n;m)))n ;where I(n;m) := Z m=n0 log(2 + 2 
os�x) dx :So(5:3:2) �Cn;bn=2
�1=n � exp Z 1=20 log(2 + 2 
os�x) dx! = 1:7916 : : :and(5:3:3) �Cn;b2n=3
�1=n � exp Z 2=30 log(2 + 2 
os�x) dx! = 1:9081 : : : :We use the notation an � bn and an . bn to mean limn!1 an=bn = 1 andlim supn!1 an=bn � 1; respe
tively.On estimating 12Cn;mCn;n�m in Theorem 5.3.1 and using (5.3.2), weobtain the following:Corollary 5.3.2. Let p 2 P
n and suppose p = qr for some polynomials qand r: Thenkqk[�1;1℄krk[�1;1℄ � 2n�1 bn=2
Yk=1 �1 + 
os (2k�1)�2n �2 kpk[�1;1℄� 12C2n;bn=2
kpk[�1;1℄and equality holds when p is the Chebyshev polynomial Tn of degree n, andthe fa
tor q 2 P
m is 
hosen so that m := bn=2
 and q vanishes at the mzeros of Tn 
losest to �1: Here C2=nn;bn=2
 � 3:20991 : : : ; hen
e�kqk[�1;1℄krk[�1;1℄kpk[�1;1℄ �1=n . 3:20991 : : : :



262 5. Basi
 InequalitiesThe proof of Theorem 5.3.1 pro
eeds through a number of lemmas. Forthe remainder of the proof we assume that 0 < m < n are �xed. Now(5:3:4) supfkqk[�1;1℄krk[�1;1℄ : kqrk[�1;1℄ = 1 ; q 2 P
m ; r 2 P
n�mgis attained for some q 2 P
m and r 2 P
n�m: We pro
eed to show that thereare extremal polynomials q 2 P
m and r 2 P
n�m su
h that p := qr is theChebyshev polynomial Tn of degree of n; and that the fa
tors q and r areas advertised, that is,p(x) = (qr)(x) = Tn(x) = 12 nYk=1 2�x� 
os (2k�1)�2n � ;and the extremal fa
tors, q and r, are given byq(x) := 1p2 mYk=1 2�x� 
os (2k�1)�2n �and r(x) := 1p2 nYk=m+1 2�x� 
os (2k�1)�2n � ;respe
tively. Note that for the above q and r we havekqk[�1;1℄ = jq(�1)j = 1p2 Cn;mand krk[�1;1℄ = jr(1)j = 1p2 Cn;n�m :First we show that there exist extremal polynomials q 2 P
m andr 2 P
n�m su
h that(5:3:5) jq(�1)j = kqk[�1;1℄ and jr(1)j = krk[�1;1℄ :To see this, 
hoose �, � 2 [�1; 1℄ su
h thatjq(�)j = kqk[�1;1℄ and jr(�)j = krk[�1;1℄ ;where, 
onsidering q(�z) and r(�z) if ne
essary, we may assume that� � �. Note that � = � 
annot happen, so � < �. We havekqk[�;�℄krk[�;�℄kqrk[�;�℄ � kqk[�1;1℄krk[�1;1℄kqrk[�1;1℄sin
e the numerators are equal andkqrk[�;�℄ � kqrk[�1;1℄ :Let eq 2 Pm be de�ned by shifting q from [�; �℄ to [�1; 1℄ linearly so that�! �1: Let er 2 P
n�m be de�ned by shifting r from [�; �℄ to [�1; 1℄ linearlyso that � ! 1: Then eq 2 P
m and er 2 P
n�m are extremal polynomials forwhi
h (5.3.5) holds.



5.3 Inequalities for Norms of Fa
tors 263Lemma 5.3.3. Suppose q 2 P
m and r 2 P
n�m are extremal polynomialsfor whi
h (5.3.5) holds. Then there are extremal polynomials eq 2 P
m ander 2 P
n�m having only real zeros for whi
h (5.3.5) holds.Proof. Let eq(z) be de�ned by repla
ing every fa
tor z � � with nonreal �by z�(j�+1j�1) in the fa
torization of q: Let er(z) be de�ned by repla
ingevery fa
tor z � � with nonreal � by z � (1� j� � 1j) in the fa
torizationof r: Now it is elementary geometry to show that eq 2 P
m and er 2 P
n�mare extremal polynomials for whi
h (5.3.5) holds, and all the zeros of botheq and er are real. utLemma 5.3.4. Suppose q 2 P
m and r 2 P
n�m are extremal polynomialshaving only real zeros for whi
h (5.3.5) holds. Then there are extremal poly-nomials eq 2 P
m and er 2 P
n�m having all their zeros in [�1; 1℄ for whi
h(5.3.5) holds.Proof. Let eq(z) be de�ned by repla
ing every fa
tor z�� by z�1 if � > 1,and by 1 if � < �1; in the fa
torization of q: Let er(z) be de�ned by repla
ingevery fa
tor z � � by z + 1 if � < �1; and by 1 if � > 1: Now it is againelementary geometry to show that eq 2 P
m and eq 2 P
n�m are extremalpolynomials having all their zeros in [�1; 1℄ for whi
h (5.3.5) holds. utSo we now assume that q 2 P
m and r 2 P
n�m are extremal polyno-mials having all their zeros in [�1; 1℄ for whi
h (5.3.5) holds. We may alsoassume that deg(q) = m and deg(r) = n�m; otherwise we would studyeq(z) := zm�deg(q)q(z) 2 P
mand er(z) := zn�m�deg(r)r(z) 2 P
n�m ;whi
h are also extremal polynomials having all their zeros in [�1; 1℄ forwhi
h (5.3.5) holds.It is now 
lear that if q and r are extremal polynomials with the aboveproperties, then the smallest zero of q is not less than the largest zero of r:Indeed, if there were numbers �1 � � < � � 1 so that q(�) = r(�) = 0;then the polynomials eq(z) := q(z)z � �z � � 2 P
mand er(z) := r(z)z � �z � � 2 P
n�mwould 
ontradi
t the extremality of q and r sin
e



264 5. Basi
 Inequalitieskeqk[�1;1℄ � jeq(�1)j > jq(�1)j = kqk[�1;1℄ ;kerk[�1;1℄ � jer(1)j > jr(1)j = krk[�1;1℄ ;and keqerk[�1;1℄ = kqrk[�1;1℄ :So now we have extremal polynomials q 2 P
m and r 2 P
n�m of theform q(z) = pa mYk=1(z � �k) and r(z) = pa n�mYk=1 (z � �k)satisfying jq(�1)j = kqk[�1;1℄ and jr(1)j = krk[�1;1℄ ;where �1 � �1 � �2 � � � � � �n�m � �1 � �2 � � � � � �m � 1and the 
onstant a > 0 is 
hosen so that for p := qr we have kpk[�1;1℄ = 1:Now we are ready to prove Theorem 5.3.1.Proof of Theorem 5.3.1. We show three properties of p = qr:(1) jp(�1)j = 1 and kp(1)j = 1:(2) kp(x)k[�i;�i+1℄ = 1; i = 1; 2; : : : ; n�m� 1,kp(x)k[�i;�i+1℄ = 1; i = 1; 2; : : : ;m� 1.(3) kpk[�n�m;�1℄ = 1:These three fa
ts show that p is indeed the Chebyshev polynomial �Tnde�ned by (2.1.1) sin
e �Tn are the only polynomials of degree at most nthat equios
illate n+ 1 times on [�1; 1℄ with uniform norm 1:To prove (1), assume to the 
ontrary that jp(�1)j < 1: Then there isa Æ < �1 su
h that kpk[Æ;1℄ = kpk[�1;1℄ :Sin
e jqj is stri
tly de
reasing on [Æ;�1℄;kqk[Æ;1℄ � jq(Æ)j > jq(�1)j = kqk[�1;1℄and, of 
ourse, krk[Æ;1℄ � krk[�1;1℄ :Let eq 2 P
m and er 2 P
n�m be the polynomials q and r shifted linearlyfrom [Æ; 1℄ to [�1; 1℄ so that 1 7! 1: By the previous observations, these eq



5.3 Inequalities for Norms of Fa
tors 265and er 
ontradi
t the extremality of q and r; hen
e jp(�1)j = 1; and we are�nished. A similar argument shows that jp(1)j = 1:To prove (2) let s(z) := (z � �i)(z � �i+1) :Given � > 0; we 
an �nd 0 < Æ1; Æ2 < � su
h thatt(z) := (z � (�i � Æ1))(z � (�i+1 + Æ2))satis�es t(1) = s(1) ; kt� sk[�1;1℄ < � ;and jt(x)j < js(x)j ; x 2 [�1; �i � Æ1℄ [ [�i+1 + Æ2; 1) :Suppose kpk[�i;�i+1℄ < 1: Letbq(z) := q(z) 2 P
mand br(z) := r(z) t(z)s(z) 2 P
n�m :If � > 0 is suÆ
iently small, thenkbqbrk[�1;1℄ � kqrk[�1;1℄ and j(bqbr)(�1)j < 1 :The se
ond inequality guarantees that there exists a Æ < �1 su
h thatkbqbrk[Æ;1℄ = kbqbrk[�1;1℄ :Sin
e jbqj is (stri
tly) de
reasing on (�1; 1℄;kbqkÆ;1℄ � jbq(Æ)j > jbq(�1)j = jq(�1)j = kqk[�1;1℄ :Also kbrk[Æ;1℄ � kbrk[�1;1℄ � jbr(1)j = jr(1)j = krk[�1;1℄ :Now let eq 2 P
m and er 2 P
n�m be the polynomials bp and bq shifted linearlyfrom [Æ; 1℄ to [�1; 1℄ so that �1! �1: By the previous observations, theseeq and er 
ontradi
t the extremality of q and r: Hen
e kpk[�i;�i+1℄ = 1; andthe proof is �nished. The proof of kpk[�i;�i+1℄ = 1 is identi
al.To prove (3) assume that kpk[�n�m;�1℄ < 1: Leteq(z) := pa(z � (�1 + �)) mYk=2(z � �k)
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 Inequalitiesand er(z) := pa(z � (�n�m � �)) n�m�1Yk=1 (z � �k) :If � > 0 is suÆ
iently small, thenkeqk[�1;1℄ � jeq(�1)j > jq(�1)j = kqk[�1;1℄ ;kerk[�1;1℄ � jer(1)j > jr(1)j = krk[�1;1℄ ;and keqerk[�1;1℄ � kqrk[�1;1℄ ;whi
h 
ontradi
ts the extremality of q and r: Hen
e kpk[�n�m;�1℄ = 1; in-deed. utTheorem 5.3.5. Suppose p 2 P
n is moni
 and q 2 P
m is a moni
 fa
tor ofp: Then jq(��)j � �m�n2n�1 mYk=1�1 + 
os (2k�1)�2n � kpk[��;�℄for every � > 0: Equality holds if p is the Chebyshev polynomial Tn;� ofdegree n on [��; �℄ (normalized to be moni
), and the moni
 fa
tor q 2 P
mis 
hosen so that q vanishes at the m zeros of Tn;� 
losest to �. Note thatTn;�(x) = �nTn(x=�); where Tn is de�ned by (2.1.1).The proof of Theorem 5.3.5 is outlined in E.1.Corollary 5.3.6. Suppose p 2 P
n is moni
 and q 2 P
m is a moni
 fa
tor ofp: Thenjq(�2)j � 2m�1 mYk=1�1 + 
os (2k�1)�2n � kpk[�2;2℄ = 12Cn;mkpk[�2;2℄and the inequality is sharp for all m � n: Here, for all m � n;C1=nn;m � C1=nn;b2n=3
 � 1:9081 : : : ;and hen
e � jq(�2)jkpk[�2;2℄�1=n . 1:9081 : : : :



5.3 Inequalities for Norms of Fa
tors 267Proof. Take � = 2 in Theorem 5.3.5. Note that2m mYk=1�1 + 
os (2k�1)�2n � � 2
(n) 
(n)Yk=1 �1 + 
os (2k�1)�2n � ;where 
(n)+1 := b 23n+ 32
 is the smallest k 2 N for whi
h 
os (2k�1)�2n � � 12 :So, for every m = 0; 1; : : : ; n; Cn;m � Cn;
(n)and by (5.3.3) C1=nn;m . Cn;b2n=3
 . 1:9081 : : : : utTheorem 5.3.7. Suppose p 2 P
n is moni
 and has a moni
 fa
tor of theform qr; where q 2 P
m1 and r 2 P
m2 : Thenjq(��)jjr(�)j ��m1+m2�n2n�1� m1Yk=1�1 + 
os (2k�1)�2n � m2Yk=1�1 + 
os (2k�1)�2n � kpk[��;�℄ :Equality holds if p is the Chebyshev polynomial Tn;� of degree n on [��; �℄normalized to be moni
, and the fa
tors q 2 P
m1 and r 2 P
m2 are 
hosenso that q vanishes at the m1 zeros of Tn;� 
losest to �; while r vanishes atthe m2 zeros of Tn;� 
losest to ��:The proof of Theorem 5.3.7 is analogous to the proof of Theorem 5.3.1and is left as an exer
ise (see E.2).Theorem 5.3.8. Suppose p 2 P
n is moni
 and has a moni
 fa
tor of theform q1q2 � � � qj ; where qi 2 P
mi and m := m1 +m2 + � � �+mj � n. ThenjYi=1 kqik[��;�℄ ��m�n2n�1� bm=2
Yk=1 �1 + 
os (2k�1)�2n � dm=2eYk=1 �1 + 
os (2k�1)�2n � kpk[��;�℄for every � > 0. Equality holds if p is the Chebyshev polynomial Tn;�of degree n on [��; �℄ normalized to be moni
, j = 2; and the fa
torsq1 2 P
bm=2
 and q2 2 P
dm=2e are 
hosen so that q1 vanishes at the bm=2
zeros of Tn;� 
losest to �; while q2 vanishes at the dm=2e zeros of Tn;�
losest to ��:
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 InequalitiesProof. For ea
h qi, write qi = risi ;where ri is the moni
 fa
tor of qi 
omposed of the roots of qi with negativereal part, while si is the moni
 fa
tor of qi 
omposed of the roots of qi withnonnegative real part. Sokrik[��;�℄ = jri(�)j and ksik[��;�℄ = jsi(��)j :Thus jYi=1 kqik[��;�℄ � ��� jYi=1 ri(�)��� � ��� jYi=1 si(��)��� :We now apply Theorem 5.3.7 to the two fa
tors Qji=1 ri and Qji=1 si to�nish the proof. utAs before, let D := fz 2 C : jzj < 1g:We now derive inequalities on thedisk from those on the interval. A 
ontinuous fun
tion on D has the sameuniform norm on both D and D and it is notationally 
onvenient to statethe remaining theorems over D. Suppose t 2 P
n, s 2 P
m; and v 2 P
n�mare moni
, and t = sv: By the maximum prin
iple, t, s; and v a
hieve theirmaximum on D somewhere on �D. Now 
onsiderp(x) := t(z)t(z�1) ;q(x) := s(z)s(z�1) ; and r(x) := v(z)v(z�1)with x := z + z�1 :The e�e
t of this transformation on linear fa
tors is(z � �)(z�1 � �) = ��x+ 1 + �2 ;so p 2 P
n, q 2 P
m, r 2 P
n�m; and p = qr: Alsokpk[�2;2℄ � ktk2D :If t(0) 6= 0; then the modulus of the leading 
oeÆ
ient of p is jt(0)j; whilethe modulus of the leading 
oeÆ
ient of q is js(0)j; and the modulus of theleading 
oeÆ
ient of r is jv(0)j:From these transformations and the interval inequalities we 
an dedu
ethe next three theorems.



5.3 Inequalities for Norms of Fa
tors 269Theorem 5.3.9. Let t 2 P
n be moni
 and suppose t = sv; where s 2 P
mand v 2 P
n�m: Thenjv(0)j1=2kskD � � 12Cn;m�1=2 ktkD ;where Cn;m is the same as in Theorem 5.3.1. This bound is attained whenm � n are even, t(z) = zn + 1; and s 2 P
m vanishes at m adja
ent zerosof t on the unit 
ir
le.Proof. We may assume, by performing an initial rotation if ne
essary, thatkskD = js(�1)j :So from Corollary 5.3.6 we dedu
e thatksk2D = js(�1)j2 = jq(�2)j(5:3:6) � js(0)=t(0)j2m�1 mYk=1�1 + 
os (2k�1)�2n � kpk[�2;2℄� js(0)=t(0)j2m�1 mYk=1�1 + 
os (2k�1)�2n � ktk2D ;where s(0)=t(0) = 1=v(0): utTheorem 5.3.10. Suppose t = sv, where s 2 Pm and r 2 Pn�m. ThenkskDkvkD � � 12Cn;mCn;n�m�1=2 ktkD ;where Cn;m is the same as in Theorem 5.3.1 and(Cn;mCn;n�m)1=(2n) � C1=nn;bn=2
 � 1:7916 : : : :This bound is attained when m � n are even, t(z) = zn + 1; and s 2 P
mvanishes at the m zeros of t 
losest to 1 and v 2 Pn�m vanishes at then�m zeros of t 
losest to �1:Proof. From Theorem 5.3.1 we 
an dedu
e that if a; b 2 �D; thenjs(a)j2jv(b)j2 = js(a)s(a�1)jjv(b)v(b�1)j= jq(a+ a�1)jjr(b + b�1)j� 12Cn;mCn;n�mkpk[a+a�1;b+b�1℄� 12Cn;mCn;n�mkpk[�2;2℄� 12Cn;mCn;n�mktk2D ;where, without loss of generality, we may assume that a+ a�1 � b + b�1.The result now follows on 
hoosing a and b to be points on �D where s andv, respe
tively, a
hieve their uniform norm on D: utIn the multifa
tor 
ase we have the following theorem:
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 InequalitiesTheorem 5.3.11. Suppose t 2 Pn is of the form t = vs1s2 � � � sj ; wheresi 2 Pmi and v 2 Pn�m with m := m1 +m2 + � � �+mj � n: Thenjv(0)j1=2 jYi=1 ksikD � 2(m�1)=2�0�bm=2
Yk=1 �1 + 
os (2k�1)�2n � dm=2eYk=1 �1 + 
os (2k�1)�2n �1A1=2 ktkD :Equality holds if t(z) = zn + 1, j = 2, m1 = m2 := m=2 and n are even,and the fa
tors q1 2 Pm=2 and q2 2 Pm=2 are 
hosen so that q1 vanishes atthe m=2 zeros of t 
losest to 1 and q2 vanishes at the m=2 zeros of t 
losestto �1:Proof. This follows from Theorem 5.3.8 in exa
tly the same way as Theorem5.3.10 follows from Theorem 5.3.1. utComments, Exer
ises, and Examples.The �rst result of this se
tion is due to Kneser [34℄ and in part to Aumann[33℄. The proof follows Borwein [94℄, as does most of the se
tion. There aremany variations and generalizations. See Boyd [92℄, [93a℄, [93b℄, [94a℄, and[94b℄; Beauzamy and En
o [85℄; Beauzamy, Bombieri, En
o, and Mont-gomery [90℄; Gel'fond [60℄; Glesser [90℄; Granville [90℄; Mahler [60℄, [62℄,and [64℄; and Mignotte [82℄. Some of these are presented in the exer
ises.In parti
ular, E.6 reprodu
es a very pretty proof of Boyd [92℄ thatkqkDkrkD � (1:7916 : : : )nkpkD ;where p 2 P
n and p = qr with some q 2 P
m and r 2 P
n�m: (Note that wehave not assumed real 
oeÆ
ients unlike in Theorem 5.3.10, and we have� instead of . :)E.1 Proof of Theorem 5.3.5.Outline. Let m < n and � > 0 be �xed. The valuesup� jq(��)jkpk[��;�℄ : q 2 P
m and p 2 P
n are moni
 and q divides p�is attained for some moni
 q 2 P
m and p 2 P
n. We 
an now argue, exa
tlyas in the proof of Lemma 5.3.3, that there are extremal polynomials p 2 P
nand q 2 P
m su
h that all the zeros of p are real and lie in [��;1): Arguingas in Lemma 5.3.4 gives that p has all its roots in [��; �℄: Thus q must be
omposed of the m roots of p 
losest to �:



5.3 Inequalities for Norms of Fa
tors 271The argument of the proof of Theorem 5.3.1 now applies essentiallyverbatim and proves that an extremal p 2 P
n 
an be 
hosen to be theChebyshev polynomial on [��; �℄ normalized to be moni
. Thus on [�1; 1℄p(x) = nYk=1�x� 
os (2k�1)�2n � and q(x) = mYk=1 �x� 
os (2k�1)�2n �from whi
h the result follows (on 
onsidering �np(x=�) and �mq(x=�) on[��; �℄). utE.2 Proof of Theorem 5.3.7.Hint: Pro
eed as in the proof of Theorem 5.3.1 (or E.1). utE.3 A Version of Theorem 5.3.10 for Complex Polynomials. Supposet = sv; where s 2 P
m and v 2 P
n�m: Thenjs(�1)jjv(1)j � � 12Cn;mCn;n�m�1=2 ktkDand if t is moni
jt(0)j1=2kskDkvkD � 12 (Cn;mCn;n�m)1=2 ktk2D :Hint: The �rst inequality follows as in the proof of Theorem 5.3.10 witha := �1 and b := 1: The se
ond part is immediate from Theorem 5.3.9. utE.4 Mahler's Measure. Let F : C k ! C , and let the Mahler measure ofF be de�ned byMk(F ) := exp�Z 10 � � �Z 10 log jF (e2�it1 ; : : : ; e2�itk )j dt1 � � � dtk�if the integral exist.a℄ Show that if p(z) = 
 nYi=1(z � �i) ; 
 ; �i 2 C ;then M1(p) = j
j nYi=1maxf1; j�ijg :Hint: Use Jensen's formula (see E.10 
℄ of Se
tion 4.2). utb℄ Show that if F := F (z1; : : : ; zk) and G := G(z1; : : : ; zk); thenMk(FG) =Mk(F )Mk(G) :
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℄ Show that M1(ax+ b) = max(jaj; jbj) ;M2(1 + x+ y) =M1(maxf1; j1 + xjg) ;M2(1 + x+ y � xy) =M1(maxfj1� xj; j1 + xjg) :d℄ One 
an numeri
ally 
he
k thatM2(1 + x+ y) = 1:381356 : : :and M2(1 + x+ y � xy) = 1:791622 : : : :E.5 The Norm of a Fa
tor of a p 2 P
n on the Unit Disk. Suppose p 2 P
nis moni
 and has a moni
 fa
tor q 2 P
m. ThenkqkD � �nkpkD ;where � :=M2(1 + x+ y) = 1:3813 : : : :Outline. Letp(x) := nYi=1(x� �i) and q(x) := mYi=1(x� �i) ; �i 2 C :Suppose kqkD = jq(u)j; where u 2 �D: ThenkqkD = jq(u)j = mYi=1 ju� �ij � nYi=1maxfju� �ij; 1g=M1(p(x+ u)) �M1(maxf1; jx+ ujngkpkD) ;where the last equality holds by E.4 a℄, and the last inequality followsbe
ause(5:3:7) jp(z)j � maxf1; jzjng � kpkDholds for every p 2 P
n and z 2 C by E.18 a℄ of Se
tion 5.1. Now using E.4b℄ and M1(maxf1; jx+ ujg) =M1(maxf1; jx+ 1jg) ;we obtain kqkD �M1(maxf1; jx+ ujng) kpkD=M1((maxf1; jx+ ujg)n) kpkD=M1((maxf1; jx+ 1jg)n) kpkD= (M1(maxf1; jx+ 1jg))n kpkD= (M2(1 + x+ y))nkpkD = �nkpkD : ut



5.3 Inequalities for Norms of Fa
tors 273E.6 Another Inequality for the Fa
tors of a p 2 P
n on the Unit Disk. Letp = qr; where q 2 P
m and r 2 P
n�m: ThenkqkDkrkD � ÆnkpkDwhere Æ :=M2(1 + x+ y � xy) = 1:7916 : : : .Outline. Without loss of generality we may assume that q and r are moni
.Letq(x) := mYi=1(x� �i) and r(x) := nYi=m+1(x� �i) ; �i 2 C :Choose u 2 �D and v 2 �D su
h that jq(u)j = kqkD and jr(v)j = krkD:Then, using E.4 b℄ and 
℄, we obtainkqkDkrkD = jq(u)jjr(v)j = mYi=1 ju� �ij nYi=m+1 jv � �ij� nYi=1maxfju� �ij; jv � �ijg= nYi=1 ju� �ijmax�1; ����v � �iu� �i �����=M1�(x� 1)np�ux� vx� 1 �� :Now, by (5.3.7),����(x� 1)np�xu� vx� 1 ����� � �maxnjx� 1j; ���x� vu ���o�n kpkD ;hen
e kqkDkrkD �M1((maxfjx� 1j; jx� v=ujg)n)kpkD= (M1(maxfjx� 1j; jx� v=ujg))nkpkD� (M1(maxfj1� xj; j1 + xjg))n kpkD= (M2(1 + x+ y � xy))nkpkD= (1:7916 : : : )nkpkD : ut
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 InequalitiesE.7 Bombieri's Norm. For Q(z) := Pnk=0 akzk the Bombieri p norm isde�ned by [Q℄p :=  nXk=0�nk�1�pjakjp!1=p :Note that this is a norm on P
n for every p 2 [1;1); but it varies withvarying n: The following remarkable inequality holds (see Beauzamy et al.[90℄). If Q = RS with Q 2 P
n, R 2 P
m, and S 2 P
n�m; then[R℄2[S℄2 � �nm�1=2[Q℄2and this is sharp.One feature of this inequality is that it extends naturally to the multi-variate 
ase. See Beauzamy, En
o, and Wang [94℄ and Rezni
k [93℄ forfurther dis
ussion.



This is page 275Printer: Opaque this6Inequalities in M�untz Spa
es

OverviewVersions of Markov's inequality for M�untz spa
es, both in C[a; b℄ andLp[0; 1℄, are given in the �rst se
tion of this 
hapter. Bernstein- andNikolskii-type inequalities are treated in the exer
ises, as are various otherinequalities for M�untz polynomials and exponential sums. The se
ond se
-tion provides inequalities, in
luding most signi�
antly a Remez-type in-equality, for nondense M�untz spa
es.6.1 Inequalities in M�untz Spa
esWe �rst present a simpli�ed version of Newman's beautiful proof of anessentially sharp Markov-type inequality for M�untz polynomials. This sim-pli�
ation allows us to prove the Lp analogs of Newman's inequality. Then,using the results of Se
tion 3.4 on orthonormal M�untz-Legendre polynomi-als, we prove an L2 version of Newman's inequality for M�untz polynomialswith 
omplex exponents. Some Nikolskii-type inequalities for M�untz poly-nomials are studied. The exer
ises treat a number of other inequalities forM�untz polynomials and exponential sums. Throughout this se
tion we usethe notation introdu
ed in Se
tion 3.4. Unless stated otherwise, the spanalways denotes the linear span over R:



276 6. Inequalities in M�untz Spa
esTheorem 6.1.1 (Newman's Inequality). Let � := (�i)1i=0 be a sequen
e ofdistin
t nonnegative real numbers. Then23 nXj=0 �j � sup06=p2Mn(�) kxp0(x)k[0;1℄kpk[0;1℄ � 9 nXj=0 �jfor every n 2 N; where Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Proof. It is equivalent to prove that(6:1:1) 23 nXj=0 �j � sup06=P2En(�) kP 0k[0;1)kPk[0;1) � 9 nXj=0 �j ;where En(�) := spanfe��0t; e��1t; : : : ; e��ntg: Without loss of generalitywe may assume that �0 := 0: By a 
hange of s
ale we may also assume thatPnj=0 �j = 1: We begin with the �rst inequality. We de�ne the Blas
hkeprodu
t B(z) := nYj=1 z � �jz + �jand the fun
tion(6:1:2) T (t) := 12�i Z� e�ztB(z) dz ; � := fz 2 C : jz � 1j = 1g :By the residue theoremT (t) := nXj=1(B0(�j))�1e��jt ;and hen
e T 2 En(�): We 
laim that(6:1:3) jB(z)j � 13 ; z 2 � :Indeed, it is easy to see that 0 � �j � 1 implies����z � �jz + �j ���� � 2� �j2 + �j = 1� 12�j1 + 12�j ; z 2 � :So, for z 2 �;jB(z)j � nYj=1 1� 12�j1 + 12�j � 1� 12 nPj=1 �j1 + 12 nPj=1 �j = 1� 121 + 12 = 13 :



6.1 Inequalities in M�untz Spa
es 277Here the inequality1� x1 + x 1� y1 + y = 1� (x + y)1 + (x + y) + 2xy(x+ y)(1 + x)(1 + y)(1 + (x+ y))� 1� (x + y)1 + (x + y) ; x; y � 0is used. From (6.1.2) and (6.1.3) we 
an dedu
e that(6:1:4) jT (t)j � 12� Z� ���� e�ztB(z) ���� jdzj � 12� 3(2�) = 3 ; t � 0 :Also T 0(t) = 12�i Z� �ze�ztB(z) dzand(6:1:5) T 0(0) = � 12�i Z� zB(z) dz = � 12�i Zjzj=1 zB(z) dz :Now, for jzj > max1�j�n �j ; we have the Laurent series expansionzB(z) = z nYj=1 1 + �j=z1� �j=z = z nYj=1 1 + 2 1Xk=1��jz �k!(6:1:6) = z0�1 + 2 nXj=1 �j! z�1 + 2 nXj=1 �j!2 z�2 + � � �1A= z + 2 + 2z�1 + � � � ;whi
h, together with (6.1.5), yields that T 0(0) = �2: Hen
e, by (6.1.4),jT 0(0)jkTk[0;1) � 23 = 23 nXj=1 �j ;so the lower bound of the theorem is proved.To prove the upper bound in (6.1.1), �rst we show that ifU(t) := 12�i Z� e�zt(1� z)B(z) dz ; � := fz 2 C : jz � 1j = 1g ;then(6:1:7) Z 10 jU 00(t)j dt � 6 :



278 6. Inequalities in M�untz Spa
esIndeed, observe that if z = 1 + ei�; then jzj2 = 2 + 2 
os �; so (6.1.3) andFubini's theorem yield thatZ 10 jU 00(t)j dt = Z 10 12� ����Z� z2e�zt(1� z)B(z) dz���� dt� 12� Z 10 Z 2�0 jzj2je�ztjjB(z)j d� dt� 32� Z 10 Z 2�0 (2 + 2 
os �)e�(1+
os �)t d� dt= 32� Z 2�0 (2 + 2 
os �) 11 + 
os � d� = 6 :Now we show that(6:1:8) Z 10 e��jtU 00(t) dt = �j � 3 :To see this we write the left-hand side asZ 10 e��jtU 00(t) dt = Z 10 e��jt 12�i Z� z2e�zt(1� z)B(z) dz dt= 12�i Z 10 Z� z2e�(z+�j)t(1� z)B(z) dz dt = 12�i Z� z2(z + �j)(1� z)B(z) dz= 12�i Zjzj=2 zz + �j z1� z 1B(z) dz ;where in the third equality Fubini's theorem is used again. Here, for jzj > 1;we have the Laurent series expansionszz + �j = 1� �jz�1 + �2jz�2 + � � � ;z1� z = �1� z�1 � z�2 � � � � ;and, as in (6.1.6), 1B(z) = 1 + 2z�1 + 2z�2 + � � � :Now (6.1.8) follows from the residue theorem (see, for example, Ash [71℄).Let P 2 En(�) be of the formP (t) = nXj=0 
je��jt ; 
j 2 R :



6.1 Inequalities in M�untz Spa
es 279ThenZ 10 P (t+ a)U 00(t) dt = Z 10 nXj=0 
je��jae��jtU 00(t) dt= nXj=0 
je��ja Z 10 e��jtU 00(t) dt = nXj=0 
j(�j � 3)e��ja= �P 0(a)� 3P (a)and so(6:1:9) jP 0(a)j � 3jP (a)j+ Z 10 jP (t+ a)U 00(t)j dt :Combining this with (6.1.7) giveskP 0k[0;1) � 3 kPk[0;1) + 6 kPk[0;1) = 9 kPk[0;1) ;and the theorem is proved. utThe next theorem establishes an Lp extension of Newman's inequality.Theorem 6.1.2 (Newman's Inequality in Lp). Let p 2 [1;1): If � := (�i)1i=0is a sequen
e of distin
t real numbers greater than �1=p; thenkxP 0(x)kLp[0;1℄ � 0�1p + 12 nXj=0��j + 1p�1A kPkLp[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :If � := (
i)1i=0 is a sequen
e of distin
t positive real numbers, thenkP 0kLp[0;1) � 12 nXj=0 
j! kPkLp[0;1)for every P 2 En(� ) := spanfe�
0t; e�
1t; : : : ; e�
ntg:Proof. First we show that the �rst statement of the theorem follows fromthe se
ond. Indeed, if (�i)1i=0 is a sequen
e of distin
t real numbers greaterthan �1=p and 
i := �i+ 1p for ea
h i; then (
i)1i=1 is a sequen
e of distin
tpositive real numbers. Let Q 2Mn(�): Applying the se
ond inequality withP (t) := Q(e�t)e�t=p 2 En(� )and using the substitution x = e�t, we obtain
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es�Z 10 ����x�x1=pQ(x)�0���� p x�1 dx�1=p � 12 nXj=0��j + 1p�! kQkLp[0;1℄ :Now the produ
t rule of di�erentiation and Minkowski's inequality yieldkxQ0(x)kLp[0;1℄ � 0�1p + 12 nXj=0��j + 1p�1A kQkLp[0;1℄ ;whi
h is the �rst statement of the theorem.We prove the se
ond statement. Let P 2 En(� ) and p 2 [1;1) be�xed. As in the proof of Theorem 6.1.1, by a 
hange of s
ale, without lossof generality we may assume that Pnj=0 
j = 1: It follows from (6.1.9) andH�older's inequality (see E.7 a℄ of Se
tion 2.2) thatjP 0(a)jp � 2p�1�3pjP (a)jp +�Z 10 jP (t+ a)jU 00(t)j dt�p�� 6pjP (a)jp+ 2p�1 �Z 10 jP (t+ a)jpjU 00(t)j dt�1=p�Z 10 jU 00(t)j dt�1=q!pfor every a 2 [0;1), where q 2 (1;1℄ is the 
onjugate exponent to p de�nedby p�1 + q�1 = 1: Combining the above inequality with (6.1.7), we obtainjP 0(a)jp � 6pjP (a)jp + 2p�16p=q Z 10 jP (t+ a)jpjU 00(t)j dtfor every a 2 [0;1): Integrating with respe
t to a; then using Fubini'stheorem and (6.1.7), we 
on
lude thatkP 0kpLp[0;1) � 6pkPkpLp[0;1) + 2p�16p=q Z 10 Z 10 jP (t+ a)jpjU 00(t)j dt da� 6pkPkpLp[0;1) + 2p�16p=q Z 10 Z 10 jP (t+ a)jpjU 00(t)j da dt� 6pkPkpLp[0;1) + 2p�16p=qkPkpLp[0;1) Z 10 jU 00(t)j dt� 6pkPkpLp[0;1) + 2p�16p=q+1kPkpLp[0;1)= (6p + 2p�16p)kPkpLp[0;1) � 12pkPkpLp[0;1)and the proof is �nished. utThe following Nikolskii-type inequality follows from Theorem 6.1.1quite simply:
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es 281Theorem 6.1.3 (Nikolskii-Type Inequality). Suppose 0 < q < p � 1: If� := (�i)1i=0 is a sequen
e of distin
t real numbers greater than �1=q; thenky1=q�1=pP (y)kLp[0;1℄ �  18 � 2q nXj=0��j + 1q�!1=q�1=p kPkLq[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:If � := (
i)1i=0 is a sequen
e of distin
t positive real numbers, then(6:1:10) kPkLp[0;1) �  18 � 2q nXj=0 
j!1=q�1=p kPkLq[0;1)for every P 2 En(� ) := spanfe�
0t; e�
1t; : : : ; e�
ntg:Proof. First we show that the �rst statement of the theorem follows fromthe se
ond. If (�i)1i=0 is a sequen
e of distin
t real numbers greater than�1=q and 
i := �i + 1=q for ea
h i; then (
i)1i=1 is a sequen
e of distin
tpositive real numbers. Let Q 2Mn(�): Applying (6.1.10) withP (t) := Q(e�t)e�t=q 2 En(� )and using the substitution x = e�t; we obtainky1=q�1=pQ(y)kLp[0;1℄� (18 � 2q)1=q�1=p nXj=0��j + 1q�!1=q�1=p kQkLq[0;1℄ ;whi
h is the �rst statement of the theorem.It is suÆ
ient to prove (6.1.10) when p = 1; and then a simple ar-gument gives the desired result for arbitrary 0 < q < p < 1: To see this,assume that there is a 
onstant C so thatkPk[0;1) � C1=qkPkLq[0;1)for every P 2 En(� ) and 0 < q <1: ThenkPkpLp[0;1) = Z 10 jP (t)jp�q+q dt � kPkp�q[0;1)kPkqLq[0;1)� Cp=q�1kPkp�qLq[0;1℄kPkqLq[0;1)and therefore kPkLp[0;1) � C1=q�1=pkPkLq[0;1)for every f 2 En(� ) and 0 < q < p � 1.
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esWhen p = 1, (6:1:10) 
an be proven as follows. Let P 2 En(� ); andlet y 2 [0;1) be 
hosen so that jP (y)j = kPk[0;1): From Theorem 6.1.1and the Mean Value Theorem, we 
an dedu
e that jP (t)j > 12kPk[0;1) forevery t 2 I := �y; y + (18
)�1� ; where 
 := nXj=0 
j :Thus kPkqLq[0;1℄ � ZI jP (t)jq dt �  18 nXj=0 
j!�1 2�qkPkq[0;1) ;and the result follows. utTheorem 6.1.3 immediately implies the following result, whi
h is aspe
ial 
ase of Theorem 4.2.4:Theorem 6.1.4 (M�untz-Type Theorem in Lp). Let p 2 [1;1): Let (�i)1i=0be a sequen
e of distin
t real numbers greater than �1=p satisfying1Xj=0��j + 1p� <1 :Then spanfx�0 ; x�1 ; : : : g is not dense in Lp[0; 1℄:The next theorem o�ers an L2 analog of Theorem 6.1.1 even for 
om-plex exponents. It also improves the multipli
ative 
onstant 12 in the L2inequality of Theorem 6.1.2 and shows that the L2 inequality of Theorem6.1.2 is essentially sharp.Theorem 6.1.5. If � := (�i)1i=0 is a sequen
e of distin
t 
omplex numberswith Re(�i) > �1=2 for ea
h i; thensup06=p2Mn(�)kxp0(x)kL2[0;1℄kpkL2[0;1℄�  nXj=0 j�j j2 + nXj=0(1 + 2Re(�j)) nXk=j+1(1 + 2Re(�k))!1=2for every n 2 N; whereMn(�) denotes the linear span of fx�0 ; x�1 ; : : : ; x�ngover C :If � := (�i)1i=0 is a sequen
e of distin
t nonnegative real numbers, then12p30 nXj=0 �j � sup06=p2Mn(�) kxp0(x)kL2[0;1℄kpkL2[0;1℄ � 1p2 nXj=0(1 + 2�j)for every n 2 N, whereMn(�) denotes the linear span of fx�0 ; x�1 ; : : : ; x�ngover R:
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es 283Proof. Let p 2Mn(�) with kpkL2[0;1℄ = 1: Thenp(x) = nXk=0 akL�k(x) with nXk=0 jakj2 = 1and xp0(x) = nXk=0 akxL�0k (x) ;where L�k 2 Mk(�) denotes the kth orthonormal M�untz-Legendre polyno-mials on [0; 1℄: Using the re
urren
e formula of Corollary 3.4.5 b℄ for theterms xL�0k (x) in the above sum, we obtainxp0(x) = nXj=0 aj�j +q1 + �j + �j nXk=j+1 akq1 + �k + �k!L�j (x) :Hen
ekxp0(x)k2L2[0;1℄ = nXj=0���aj�j +q1 + �j + �j nXk=j+1 akq1 + �k + �k��� 2 :If we apply the Cau
hy-S
hwarz inequality to ea
h term in the �rst sumand re
all that Pnk=0 jakj2 = 1; we see thatkxp0(x)k2L2[0;1℄ � nXj=0 �j�j j2 + (1 + �j + �j)� nXk=j+1(1 + �k + �k)� 12  nXj=0 (1 + 2j�j j)!2 ;whi
h proves the �rst part and the upper bound in the se
ond part of thetheorem.Now we prove the lower estimate in the se
ond part of the theorem.With the sequen
e � := (�i)1i=0 of distin
t nonnegative real numbers, weasso
iate q(x) := nXk=0p�k  kXj=0 �j!L�k(x) 2Mn(�) :Sin
e the system (L�k)1k=0 is orthonormal on [0,1℄, we have(6:1:11) kqk2L2[0;1℄ = nXk=0�k  kXj=0 �j!2 �  nXj=0 �j!3 :
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esFurthermorexq0(x) = nXk=0p�k  kXj=0 �j!xL�0k (x) = nXm=0 bmL�m(x) ;where, by the re
urren
e formula of Corollary 3.4.5 b℄,bm := �mp�m mXj=0 �j +p1 + 2�m nXk=m+1p�k(1 + 2�k) kXj=0 �j�p�m nXk=m�k kXj=0 �j :Hen
ekxq0(x)k2L2[0;1℄ = nXm=0 b2m � nXm=0�m nXk=m �k kXj=0 �j!2= X0�m�nm�k;k0�n X0�j�k0�j0�k0 �m�k�j�k0�j0� X0�m�j�j0�k�k0�n�m�k�j�k0�j0 � 15!  nXj=0 �j!5 :This, together with (6.1.11), yields the lower bound in the se
ond part ofthe theorem. utComments, Exer
ises, and Examples.Theorem 6.1.1 is due to Newman [76℄. We presented a modi�ed versionof Newman's original proof of Theorem 6.1.1. He worked with T insteadof U , and instead of (6.1.9) he established a more 
ompli
ated identityinvolving the se
ond derivative of P . Therefore, he needed an appli
ationof Kolmogorov's inequality (see E.1) to �nish his proof. It 
an be proventhat if the exponents �j are distin
t nonnegative integers, then kxp0(x)k[0;1℄in Theorem 6.1.1 
an be repla
ed by kp0k[0;1℄ (see E.3). Theorems 6.1.2 to6.1.4 were proved by Borwein and Erd�elyi [to appear 6℄, while Theorem6.1.5 is due to Borwein, Erd�elyi, and J. Zhang [94b℄. It is shown in E.8 thatTheorem 6.1.2 is essentially sharp for every � with a gap 
ondition, and forevery p 2 [2;1).The interval [0; 1℄ plays a spe
ial role in this se
tion, analogs of theresults on [a; b℄; a > 0; 
annot be obtained by a linear transformation.E.10 deals with the nontrivial extension of Newman's inequality to intervals[a; b℄; a > 0:A 
onje
ture of Lorentz about the \right" Bernstein-type inequalityfor exponential sums with n terms is settled in E.4.
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es 285E.1 Kolmogorov's Inequality. Show thatkf 0k2[0;1) � 4kfk[0;1)kf 00k[0;1)for every f 2 C2[0;1):Hint: By Taylor's theoremf(x+ h) = f(x) + f 0(x)h + 12f 00(�)h2 ; h > 0with some � 2 (x; x+ h): Hen
ekf 0k[0;1) � 2h�1kfk[0;1) + (h=2)kf 00k[0;1) :Now minimize the right-hand side by takingh := 2�kfk[0;1)kf 00k�1[0;1)�1=2 : utThe 
onstant 4 in E.1 is not the best possible. Kolmogorov [62℄ provedthat kf (k)kR � K(n; k)kfk1�k=nR kf (n)kk=nRfor every f 2 Cn(R) and 0 < k < n and found the best possible 
onstantsK(n; k); see also DeVore and Lorentz [93℄. This generalizes a result of Lan-dau, who proved the above inequality for n = 2, k = 1, and showed thatK(2; 1) = p2: Various multivariate extensions of Kolmogorov's inequalityhave also been established; see, for example, Ditzian [89℄.E.2 Nikolskii-Type Inequalities.a℄ Suppose (V; k�k) is an (n+1)-dimensional real or 
omplex Hilbert spa
e,(pk)nk=0 � V is an orthonormal system, and ' 6= 0 is a linear fun
tional onV . Then j'(p)j �  nXk=0 j'(pk)j2!1=2 kpkfor every p 2 V: Equality holds if and only ifp = 
 nXj=0 '(pk)pk ; 
 2 R or 
 2 C :Hint: Write p as a linear 
ombination of the orthonormal elements pk; usethe linearity of '; then apply the Cau
hy-S
hwarz inequality. ut
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esb℄ Suppose � := (�i)1i=0 is a set of distin
t 
omplex numbers satisfyingRe(�i) > �1=2 for ea
h i; and y 2 [0;1) is �xed. Show thatjp(m)(y)j �  nXk=0 jL�(m)k (y)j2!1=2 kpkL2[0;1℄for every p 2Mn(�); where Mn(�) denotes the linear span offx�0 ; x�1 ; : : : ; x�ngover C ; and L�k 2 Mk(�) is the kth orthonormal M�untz-Legendre polyno-mial on [0; 1℄: Show that if there exists a q 2Mn(�) with q(m)(y) 6= 0; thenequality holds if and only ifp = 
 nXk=0L�(m)k (y)L�k ; 
 2 C :
℄ Under the assumptions of part b℄ show thatjy1=2p(y)jkpkL2[0;1℄ �  nXj=0(1 + 2Re(�j))!1=2and jy3=2p0(y)jkpkL2[0;1℄ � 0� nXk=0(1 + 2Re(�k))����k + k�1Xj=0(1 + 2Re(�j))��� 21A1=2for every 0 66= p 2Mn(�) and y 2 [0; 1℄:Hint: When y = 1, use part b℄ and substitute the expli
it values of L�k(1)and L�0k (1) (see Corollary 3.4.6 and formula (3.4.8)). If 0 < y < 1; then thes
aling x! yx redu
es the inequality to the 
ase y = 1: utd℄ Show that if n � 1 and p 6= 0; then equality holds in the inequalities ofpart b℄ if and only if y = 1 andp = 
 nXk=0L�k(1)L�k or p = 
 nXk=0L�0k (1)L�k ;respe
tively, with some 0 6= 
 2 C :
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es 287e℄ Show that sup06=p2Pn kpk[�1;1℄kpkL2[�1;1℄ = n+ 1p2 :Hint: Show that there is an extremal polynomial ep for the above extremalproblem for whi
h kepk[�1;1℄ is a
hieved at 1: Now use parts 
℄ and d℄ toshow thatjep(1)j 2 = 12  nXk=0(1 + 2k)!Z 1�1 ep 2(t) dt = 12 (n+ 1)2 Z 1�1 ep 2(t) dtand the result follows. utE.3 An Improvement of Newman's Inequality.a℄ Suppose � := (�k)1k=0 is a sequen
e with �0 = 0 and �k+1 � �k � 1 forea
h k: Show that kp0k[0;1℄ � 18 nXj=1 �j! kpk[0;1℄for every p 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Hint: Let y 2 [0; 1℄: To estimate jp0(y)j distinguish two 
ases. If 12 � y � 1;use Theorem 6.1.1 (Newman's inequality), and if 0 � y � 12 ; use E.3 f℄ ofSe
tion 3.3 and Theorem 5.1.8 (Markov's inequality) transformed to [y; 1℄to show that jp0(y)j � 2n21� ykpk[y;1℄ � 8 nXj=1 �j! kpk[0;1℄for every p 2Mn(�): utThe next exer
ise is based on an example given by Bos.b℄ Show that for every Æ 2 (0; 1) there exists a sequen
e � := (�k)1k=0 with�0 = 0, �1 � 1; and �k+1 � �k � Æ ; i = 0; 1; 2; : : :su
h that limn!1 sup06=p2Mn(�) jp0(0)j�Pnj=0 �j� kpk[0;1℄ =1 :Outline. Let Qn be the Chebyshev polynomial Tn transformed linearly from[�1; 1℄ to [0; 1℄, that is,Qn(x) = 
os(n ar

os(2x� 1)) ; x 2 [0; 1℄ :



288 6. Inequalities in M�untz Spa
esChoose natural numbers u and v so that Æ < u=v < 1: Let � := (�k)1k=0 bede�ned by �0 := 0, �1 := 1; and�k := 1 + kuv ; k = 1; 2; : : : :Let pn(x) := x1�u�Qn(xu=v)� (�1)n�v 2Mnv�v(�) :Then jp0n(0)j = �2n2�v:For the sake of brevity letqn(x) := Qn(xu=v)� (�1)n :Use Theorem 5.1.8 (Markov's inequality) and the Mean Value Theorem toshow that kqnk[y;1℄ � 12kqnk[0;1℄with y := �2n2��v=u :Thus, if n is odd, thenkpnk[0;1℄ � kpnk[y;1℄ � y1�u(kqnk[y;1℄)v� y1�u � 12kqnk[0;1℄�v = �2n2�(u�1)v=uand jp0n(0)j�Pnv�vj=0 �j� kpnk[0;1℄ = (2n2)v�Pnv�vj=0 �1 + j uv ���2n2�(u�1)v=u� �2n2�v=u(1 + nu)nv � �2n2�v=u�1uv �!n!11 : utIn his book Nonlinear Approximation Theory, Braess [86℄ writes thefollowing: \The rational fun
tions and exponential sums belong to those
on
rete families of fun
tions whi
h are the most frequently used in non-linear approximation theory. The starting point of 
onsideration of expo-nential sums is an approximation problem often en
ountered for the analysisof de
ay pro
esses in natural s
ien
es. A given empiri
al fun
tion on a realinterval is to be approximated by sums of the formnXj=1 aje�jt ;where the parameters aj and �j are to be determined, while n is �xed."The next exer
ise treats inequalities for exponential sums of n + 1terms.



6.1 Inequalities in M�untz Spa
es 289E.4 Nikolskii- and Bernstein-Type Inequalities for Exponential Sums.Let � := (�i)1i=1be a sequen
e of distin
t nonzero real numbers. LetEn(�) := (f : f(t) = a0 + nXj=1 aje�j t ; aj 2 R)and En :=[� En(�) = (f : f(t) = a0 + nXj=1 aje�j t ; aj ; �j 2 R) ;that is, En is the 
olle
tion of all (n+ 1)-term exponential sums with 
on-stant �rst term. S
hmidt [70℄ proved that there is a 
onstant 
(n) dependingonly on n su
h that kf 0k[a+Æ;b�Æ℄ � 
(n)Æ�1kfk[a;b℄for every p 2 En and Æ 2 �0; 12 (b� a)�. Lorentz [89℄ improved S
hmidt'sresult by showing that for every � > 12 ; there is a 
onstant 
(�) depend-ing only on � su
h that 
(n) in the above inequality 
an be repla
ed by
(�)n� logn, and he spe
ulated that there may be an absolute 
onstant 
su
h that S
hmidt's inequality holds with 
(n) repla
ed by 
n. Part d℄ of thisexer
ise shows that S
hmidt's inequality holds with 
(n) = 2n�1: A weakerversion of this showing that S
hmidt's inequality holds with 
(n) = 8(n+1)2is obtained in part b℄ and uses a Nikolskii-type inequality for exponentialsums established in part a℄. Part e℄ shows that the result of part d℄ is sharpup to a multipli
ative absolute 
onstant.a℄ Let p 2 (0; 2℄: Show thatkfk[a+Æ;b�Æ℄ � 22=p2 �n+ 1Æ �1=p kfkLp[a;b℄for every f 2 En and Æ 2 �0; 12 (b� a)� :Proof. Take the orthonormal sequen
e (Lk)nk=0 on �� 12 ; 12�, that is,(1) Lk 2 spanf1; e�1t; e�2t; : : : ; e�ktg ; k = 0; 1; : : : ; n ;and(2) Z 1=2�1=2 LiLj = Æi;j ; 0 � i � j � n ;where Æi;j is the Krone
ker symbol. On writing f 2 En(�) as a linear
ombination of L0; L1; : : : ; Ln; and using the Cau
hy-S
hwarz inequality
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esand the orthonormality of (Lk)nk=0 on �� 12 ; 12�, we obtain in a standardfashion thatmax06=f2En(�) jf(t0)jkfkL2[�1=2;1=2℄ =  nXk=0Lk(t0)2!1=2 ; t0 2 R :Sin
e Z 1=2�1=2Pnk=0L2k(x) dx = n+ 1 ;there exists a t0 2 �� 12 ; 12� su
h thatmax06=p2En(�) jf(t0)jkfkL2[�1=2;1=2℄ =  nXk=0L2k(t0)!1=2 � pn+ 1 :Observe that if f 2 En(�); then g(t) := f(t� t0) 2 En(�); somax06=f2En(�) jf(0)jkfkL2[�1;1℄ � pn+ 1 :Let C := max06=f2En(�) jf(0)jkfkLp[�2;2℄ :Then max06=f2En(�) jf(y)jkfkLp[�2;2℄ � C � 22� jyj�1=p � 21=pC ; y 2 [�1; 1℄ :Therefore, for every f 2 En(�);jf(0)j � pn+ 1 kfkL2[�1;1℄� pn+ 1�kfkpLp[�1;1℄kfk2�p[�1;1℄�1=2� pn+ 1�kfkpLp[�1;1℄�21=pC�2�pkfk2�pLp[�2;2℄�1=2� pn+ 1 �21=pC�1�p=2kfkLp[�2;2℄= 21=p�1=2pn+ 1C1�p=2kfkLp[�2;2℄ :Hen
e C = max06=f2En(�) jf(0)jkfkLp[�2;2℄ � 21=p�1=2pn+ 1C1�p=2and we 
on
lude that C � 22=p2�1=p(n+ 1)1=p: So
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es 291jf(0)j � 22=p2�1=p(n+ 1)1=pkfkLp[�2;2℄for every f 2 En(�): Now let f 2 En(�) and t0 2 [a+ Æ; b� Æ℄: If we applythe above inequality tog(t) := f � 12Æt+ t0� 2 En(�) ;we obtain kfk[a+Æ;b�Æ℄ � 22=p2�1=p(n+ 1)1=p�2Æ�1=p kfkLp[a;b℄and the result follows. utThe following Bernstein-type inequality 
an be obtained as a simple
orollary of part a℄:b℄ Show that kf 0k[a+Æ;b�Æ℄ � 8(n+ 1)2Æ�1kfk[a;b℄for every f 2 En and Æ 2 (0; 12 (b� a)):Proof. Note that f 2 En(�) implies f 0 2 En(�): Applying part a℄ to f 0with p = 1; we obtainjf 0(0)j � 2(n+ 1)kf 0kL1[�2;2℄ = 2(n+ 1)Var[�2;2℄(f) � 4(n+ 1)2kfk[�2;2℄for every f 2 En(�): If f 2 En(�) and t0 2 [a+ Æ; b� Æ℄; then on applyingthe above inequality tog(t) := f � 12Æt+ t0� 2 En(�) ;we obtain the desired result. ut
℄ Lorentz's Conje
ture. Show thatsup06=f2 eE2n jf 0(0)jkfk[�1;1℄ = 2n� 1 ;whereeE2n := (f : f(t) = a0 + nXj=1�aje�jt + bje��jt� ; aj ; bj ; �j 2 R) :Proof. First we prove thatjf 0(0)j � (2n� 1) kfk[�1;1℄
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esfor every f 2 eE2n. So letf 2 spanf1; e��1t; e��2t; : : : ; e��ntgwith some nonzero real numbers �1; �2; : : : ; �n; where, without loss of gen-erality, we may assume that0 < �1 < �2 < � � � < �n :Let g(t) := 12 (f(t)� f(�t)) :Observe that g 2 spanfsinh�1t ; sinh�2t ; : : : ; sinh�ntg :It is also straightforward thatg0(0) = f 0(0) and kgk[0;1℄ � kfk[�1;1℄ :For a given � > 0; letHn;� := spanfsinh �t ; sinh 2�t ; : : : ; sinhn�tgand Kn;� := sup�jh0(0)j : h 2 Hn;� ; khk[0;1℄ = 1	 :The inequality of E.5 e℄ in Se
tion 3.3 is the key to the proof. It shows thatit is suÆ
ient to prove thatinffKn;� : � > 0g � 2n� 1 :Observe that every h 2 Hn;� is of the formh(t) = e�n�tP (e�t) ; P 2 P2n :Therefore, using E.23 
℄ of Se
tion 5.1, we obtain for every h 2 Hn;� thatjh0(0)j = j�P 0(1)� n�P (1)j� �(2n� 1)1� e�� kPk[e��;e�℄ + n� kPk[e��;e�℄� ��(2n� 1)1� e�� + n�� en� khk[�1;1℄ :It follows that Kn;� � ��(2n� 1)1� e�� + n�� en� :So inffKn;� : � > 0g � 2n� 1; and the upper bound follows.
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es 293Now we prove that sup06=f2 eE2n jf 0(0)jkfk[�1;1℄ � 2n� 1 :Let � > 0 be �xed. We de�neQ2n;�(t) := e�n�tT2n�1� e�te� � 1 � 1e� � 1� ;where T2n�1 denotes the Chebyshev polynomial of degree 2n � 1 de�nedby T2n�1(x) = 
os((2n� 1) ar

osx); x 2 [�1; 1℄ :It is simple to 
he
k that Q2n;� 2 eE2n;kQ2n;�k[�1;1℄ � en�tand jQ02n;�(0)j � 2n� 1� n� :Now the result follows by letting � de
rease to 0: utd℄ Show that kf 0k[a+Æ;b�Æ℄ � (2n� 1)Æ�1kfk[a;b℄for every f 2 En and Æ 2 �0; 12 (b� a)�.Proof. Observe that En � eE2n. Hen
e the result follows from part 
℄ by alinear substitution. ute℄ Let a < b and y 2 (a; b). Suppose that n 2 N is odd. Let Tn be theChebyshev polynomial of degree n de�ned by (2.1.1). LetQn(t) := Qn;y(t) := Tn� ee� 1 exp� t� bb� y�� 1e� 1�and Rn(t) := Rn;y(t) := Tn� ee� 1 exp� t� aa� y�� 1e� 1� :Show that Qn; Rn 2 En andjQ0n(y)jkQnk[a;b℄ = 1e� 1 nb� y and jR0n(y)jkRnk[a;b℄ = 1e� 1 ny � afor every y 2 (a; b) :
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esf ℄ Let a < b and y 2 (a; b): Con
lude that1e� 1 n� 1minfy � a; b� yg � sup06=f2En jf 0(y)jkfk[a;b℄ � 2n� 1minfy � a; b� yg :In the rest of the exer
ise letE�n := (f : f(t) = lXj=1 Pkj (t)e�j t; �j 2 R ; Pkj 2 Pkj ; lXj=1 (kj + 1) = n) :g℄ Extend the inequalities of parts a℄, 
℄, and f℄ to E�n:h℄ Let [a; b℄ be a �nite interval. Let g 2 C[a; b℄: Show that the valueinf�kg � fk[a;b℄ : f 2 E�n	is attained by an ef 2 E�n:Hint: Use S
hmidt's inequality (or its improved form given by part 
℄). Forthe nontrivial details, see Braess [86℄. uti℄ Let [a; b℄ be a �nite interval. Let p 2 [1;1) and g 2 Lp[a; b℄: Show thatthe value inf�kg � fkLp[a;b℄ : f 2 E�n	is attained by an ef 2 E�n:Hint: Use part a℄ with p = 1 and H�older's inequality. On
e again, for thedetails, see Braess [86℄. utThe following result is from Borwein and Erd�elyi [95
℄:E.5 Upper Bound for the Derivative of Exponential Sums with Nonnega-tive Exponents. The equalitysupp jp0(a)jkpk[a;b℄ = 2n2b� aholds for every a < b; where the supremum is taken over all exponentialsums 0 6= p 2 En with nonnegative exponents. The equalitysupp jp0(a)jkpk[a;b℄ = 2n2a(log b� log a)also holds for every 0 < a < b; where the supremum is taken over all M�untzpolynomials 0 6= p of the formp(x) = a0 + nXj=1 ajx�j ; aj 2 R ; �j > 0 :
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es 295Outline. It is suÆ
ient to prove only the se
ond statement, the �rst 
anbe obtained from it by the 
hange of variable x = et: For � > 0; de�ne�� := (j�)1j=0: Let Tn;� := Tnf1; x�; x2�; : : : ; xn�; [a; b℄gbe the Chebyshev polynomial for Mn(��) on [a; b℄: Use E.3 b℄ and E.3 f℄ ofSe
tion 3.3 to show thatjp0(a)jkpk[a;b℄ � lim�!0+ jT 0n;�(a)jkTn;�k[a;b℄ = lim�!0+ jT 0n;�(a)jfor every p of the formp(x) = a0 + nXj=1 ajx�j ; aj 2 R ; �j > 0 :From the de�nition and uniqueness of Tn;� it follows thatTn;�(x) = Tn� 2b� � a�x� � b� + a�b� � a��where Tn(y) = 
os(n ar

osy); y 2 [�1; 1℄: ThereforejT 0n;�(a)j = jT 0n(�1)j 2b� � a� �a��1= 2n2��1(b� � 1)� ��1(a� � 1)a��1 �!�!0+ 2n2a(log b� log a)and the proof is �nished. utThe next exer
ise follows Tur�an [84℄.E.6 Tur�an's Inequalities for Exponential Sums.a℄ Let g(�) := nXj=1 bjz�j ; bj ; zj 2 C :Suppose jzj j � 1 ; j = 1; 2; : : : ; n :Then max�=m+1;::: ;m+n jg(�)j � � n2e(m+ n)�2 jb1 + b2 + � � �+ bnjfor every nonnegative integer m:



296 6. Inequalities in M�untz Spa
esProof. Let(6:1:12) f(z) := nYj=1�1� zzj� =: nX�=0��z� :Sin
e f(z) has all its zeros outside the open unit disk, g := 1=f is of theform(6:1:13) g(z) = 1X�=0 ��z� ; jzj < 1 :Let(6:1:14) gm(z) := mX�=0��z�and(6:1:15) h := 1� fgm 2 P
n+m :Note that h(z) = 1� f(z) g(z)� 1X�=m��z�!(6:1:16) = f(z) 1X�=m+1��z�so h is of the form(6:1:17) h(z) = m+nX�=m+1 
�z� :Observe that f(zj) = 0 and (6.1.13) imply h(zj) = 1; that is,m+nX�=m+1 
�z�j = 1 ; j = 1; 2; : : : ; n :Multipli
ation with bj and summation over j yield the fundamental identity(6:1:18) m+nX�=m+1 
�g(�) = nXj=1 bj :This immediately gives



6.1 Inequalities in M�untz Spa
es 297(6:1:19) max�=m+1;::: ;m+n jg(�)j nX�=m+1 j
� j! � ����� nXj=1 bj����� :It follows from (6.1.15), (6.1.17), (6.1.12), and (6.1.14) that(6:1:20) m+nX�=m+1 j
� j �  nX�=0 j�� j! mX�=0 j�� j! :Sin
e ea
h zj is of modulus at least 1, (6.1.12) yields that(6:1:21) nX�=0 j�� j � 2n :Also, (6.1.13) implies that�� = Xi1+���+in=� 1zi11 zi22 � � � zinn :Again using that ea
h zj is of modulus at least 1; we obtainj�� j � Xi1+���+in=� 1 = �� + n� 1n� 1 � :Hen
e(6:1:22) mX�=0 j�� j � �m+ nn � � �e m+ nn �n :By (6.1.20) to (6.1.22) we 
on
lude thatm+nX�=m+1 j
� j � �2e m+ nn �n ;whi
h, together with (6.1.19), �nishes the proof. utb℄ Let f(t) := nXj=1 bje�jt ; bj ; �j 2 C :Suppose Re(�j) � 0 ; j = 1; 2; : : : ; n :Show that jf(0)j � �2e(a+ d)d �n kfk[a;a+d℄for every a > 0 and d > 0:
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esHint: First observe that the result of part a℄ 
an be formulated asmaxm���m+n�2N jg(�)j � � n2e(m+ n)�n jb1 + b2 + � � �+ bnj ;where m is an arbitrary positive (not ne
essarily integer) number. Nowapply the above inequality withm := and ; zj := exp�d�jn � ; j = 1; 2; : : : ; n : ut
℄ Let p(z) := nXj=1 bjz�j ; bj 2 C ; �j 2 R ; z = ei�:Show that maxjzj=1 jp(z)j � �4e�Æ �n maxjzj=1��arg(z)��+Æ jp(z)jfor every 0 � � < �+ Æ � 2�:Hint: Use part b℄. utThe inequalities of the above exer
ise and their variants play a 
entralrole in the book of Tur�an [83℄, where many appli
ations are also presented.The main point in these inequalities is that the exponent on the right-handside is only the number of terms n; and so it is independent of the numbers�j : An inequality, say in part 
℄, of typemaxjzj=1 jp(z)j � 
(Æ)�n maxjzj=1��arg(z)��+Æ jp(z)j ;where 0 � �1 < �2 < � � � < �n are integers and 
(Æ) depends only on Æ;
ould be obtained by a simple dire
t argument, but it is mu
h less usefulthan the inequality of E.6 
℄.E.7 Nikolskii-Type Inequality for M�untz Polynomials. Suppose that� := (�i)1i=0 is a sequen
e with �0 := 0 and �i+1 � �i � 1 for ea
h i.Show that kPkLp[0;1℄ � 0�18 � 2q nXj=0 �j1A1=q�1=p kPkLq[0;1℄for every P 2Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng and 0 < q < p � 1:



6.1 Inequalities in M�untz Spa
es 299Proof. It is suÆ
ient to study the 
ase when p = 1 (see the 
omment inthe proof of Theorem 6.1.3). Let P 2 Mn(�) and let x0 2 [0; 1℄ be 
hosenso that jP (x0)j = kPk[0;1℄. Combining E.3 a℄ and the Mean Value Theorem,we obtain jP (x)j � 12 kPk[0;1℄ ; x 2 I ;where I := hx0 � (36�)�1 ; x0 + (36�)�1i with � := nXj=0 �j :So�Z 10 jP (x)jq dx�1=q � �ZI jP (x)jq dx�1=q � �(18�)�1�12 kPk[0;1℄�q �1=qand the result follows. utE.8 Sharpness of Theorem 6.1.2. Suppose � := (�i)1i=0 is a sequen
e with�0 := 0 and �i+1 � �i � 1 for ea
h i: Show that there exists an absolute
onstant 
 > 0 (independent of � and p) su
h thatsupP2Mn(�) kxP 0(x)kLp[0;1℄kPkLp[0;1℄ � 
 nXk=0�kfor every p 2 [2;1), where Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng:Proof. Let L�k 2 Mk(�) be the kth orthonormal M�untz-Legendre polyno-mial on [0; 1℄: Let p 2 [2;1) andP := nXk=0L�0k (1)L�k :For the sake of brevity let � := nXj=0 �j :Using Theorem 3.4.3 (orthogonality), (3.4.8), and Corollary 3.4.6, we obtainP 0(1) = nXk=0(L�0k (1))2 � nXk=0(2�k + 1) kXj=0 �j!2(6:1:23) � 2� kXj=0 �j!2 � 18�3



300 6. Inequalities in M�untz Spa
esand kPkL2[0;1℄ =  nXk=0(L�0k (1))2!1=2(6:1:24) � 0� nXk=0(2�k + 1) kXj=0(2�j + 1)!21A1=2� p32�3=2 :A 
ombination of E.7 and (6.1.24) yieldskPkLp[0;1℄ � (72�)1=2�1=pkPkL2[0;1℄(6:1:25) � 721=2�1=pp32�2�1=p � 48�2�1=p :From E.3 a℄, E.7, and (6.1.24) we 
an dedu
e thatkP 0k[0;1℄ � 18� kPk[0;1℄(6:1:26) � 18�(72�)1=2kPkL2[0;1℄� 18�(72�)1=2p32�3=2� 18 � 48�3 :Applying E.3 a℄ with P 0, we get(6.1.27) kP 00k[0;1℄ � 18� kP 0k[0;1℄ � 182 � 48�4 :Now (6.1.23), (6.1.27), and the Mean Value Theorem givejP 0(x)j � 116�3 ; x 2 I ;where I := �1� �182 � 48 � 16���1; 1� :So kxP 0(x)kLp[0;1℄ � �ZI ��xP 0(x)��p dx�1=p(6:1:28) � ��182 � 48 � 16���1 � 132�3�p�1=p� �182 � 48 � 16��1=p 32�1=2�3�1=p� �128 � 9p3��1�3�1=p :Combining (6.1.25) and (6.1.28), we obtain the required result with a 
on-stant 
 = (128 � 9p3)�1: ut
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es 301E.9 On the Interval Where the Sup Norm of a M�untz Polynomial Lives.Let � := (�j)1j=0 be an in
reasing sequen
e of nonnegative real numbers.Let 0 6= p 2 Mn(�) := spanfx�0 ; x�1 ; : : : x�ng; and let q(x) := xk�p(x);where � > 0 and k is a nonnegative integer. Let � 2 [0; 1℄ be 
hosen so thatjq(�)j = kqk[0;1℄:a℄ Suppose � = 1 and ea
h �j is an integer. Then� kk + n�2 < � :Proof. See Sa� and Varga [81℄. utThe above result is sharp in a 
ertain limiting sense, whi
h is des
ribed indetail in Sa� and Varga [78℄.b℄ Suppose �j = �j for ea
h j: Use part a℄ to show that� kk + n�2=� < � :
℄ Suppose �j = �j for ea
h j: Use E.11 of Se
tion 5.1 to show, withoutusing part a℄, that there exists an absolute 
onstant 
 > 0 su
h that� 
kk + n�2=� < � :d℄ Suppose �j � �j for ea
h j: Use part b℄ and E.3 g℄ of Se
tion 3.3 toshow that the 
on
lusion of part b℄ remains valid.e℄ Suppose �j � �j for ea
h j: Use part 
℄ and E.3 g℄ of Se
tion 3.3 toshow that the 
on
lusion of part 
℄ remains valid.The following extension of Newman's inequality is in Borwein andErd�elyi [to appear 3℄.E.10 Newman's Inequality on [a; b℄ � (0;1).a℄ Let � := (�j)1j=0 be an in
reasing sequen
e of nonnegative real numbers.Assume that there exists an � > 0 su
h that �j � �j for ea
h j: Supposethat [a; b℄ � (0;1): Show that there exists a 
onstant 
(a; b; �) dependingonly on a, b, and � su
h thatkp0k[a;b℄ � 
(a; b; �) nXj=0 �j! kpk[a;b℄for every p 2Mn(�) := spanfx�0 ; x�1 ; : : : x�ng:
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esProof. We base the proof on E.9 d℄, however; it may also be based on E.9e℄. Let p 2 Mn(�): We want to estimate p0(y) for every y 2 [a; b℄: Firstlet y 2 � 12 (a+ b); b� : We de�ne q(x) := xmn�p(x); where m is the smallestpositive integer satisfyinga � a+ b2 � mm+ 1�2=� :S
aling Newman's inequality from [0; 1℄ to [0; y℄; then using E.9 d℄, we obtainjq0(y)j � 9y nXj=0 (�j +mn�)kqk[0;y℄= 9y nXj=0 (�j +mn�)kqkhy( mm+1 )2=�;yi� 
1(a; b; �) nXj=0 �j! kqk[a;y℄with a 
onstant 
1(a; b; �) depending only on a, b, and �: Hen
ejp0(y)j � ��q0(y)y�mn���+ mn�y jp(y)j� y�mn�
1(a; b; �) nXj=0 �j! kqk[a;y℄ + mny kpk[a;y℄� 
2(a; b; �) nXj=0 �j! kpk[a;y℄� 
2(a; b; �) nXj=0 �j! kpk[a;b℄with a 
onstant 
2(a; b; �) depending only on a, b; and �:Now let y 2 �a; 12 (a+ b)� : Then, by E.3 b℄ and f℄ of Se
tion 3.3, we
an dedu
e thatjp0(y)j � ��T 0nfx0; x�; x2�; : : : ; xn�; [y; b℄g(y)�� kpk[y;b℄= 2�y��1b� � y� n2kpk[y;b℄ � 
3(a; b; �)n2kpk[y;b℄� 
4(a; b; �) nXj=0 �j! kpk[y;b℄with 
onstants 
3(a; b; �) and 
4(a; b; �) depending only on a, b; and �: This�nishes the proof. ut



6.2 Nondense M�untz Spa
es 303b℄ Show that if the gap 
ondition �j � j� in part a℄ is dropped, thenthe 
on
lusion of part a℄ fails to hold with 
(a; b; �) repla
ed by a 
onstant
(a; b) depending only on a and b:Hint: Study T 0n �x0; x�; x2�; : : : ; xn�; �12 ; 1�	and let �! 0 + : ut6.2 Nondense M�untz Spa
esThroughout this se
tion we assume that � := (�i)1i=0 is a sequen
eof distin
t nonnegative real numbers, Mn(�) denotes the linear span offx�0 ; x�1 ; : : : ; x�ng over R; andM(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :If A � [0; 1℄ is 
ompa
t, then a 
ombination of Tietze's and M�untz's theo-rems yields that M(�) is dense in C(A) wheneverP1i=1 1=�i =1: (Re
allthat Tietze's theorem guarantees that if A � [0; 1℄ is 
ompa
t, then forevery f 2 C(A) there exists an ef 2 C[0; 1℄ su
h that ef(x) = f(x) for allx 2 A:) If the Lebesgue measure m(A) of A is positive, then the 
onverseis also true. More pre
isely, we have the following.Theorem 6.2.1 (M�untz Theorem on Compa
t Sets of Positive Measure).Suppose �0 := 0 and P1i=1 1=�i < 1: Let A � [0; 1℄ be a 
ompa
t set withpositive Lebesgue measure. Then M(�) is not dense in C(A): Moreover, ifthe gap 
ondition inff�i � �i�1 : i 2 Ng > 0holds and rA := supfx 2 [0;1) : m(A \ (x;1)) > 0g ;then every fun
tion f 2 C(A) from the uniform 
losure of M(�) on A isof the form f(x) = 1Xj=0 ajx�j ; x 2 A \ [0; rA):If the above gap 
ondition does not hold, then every fun
tion f 2 C(A)from the uniform 
losure of M(�) on A 
an still be extended analyti
allythroughout the region fz 2 C n (�1; 0℄ : jzj < rAg :The proof of the above theorem rests on the following bounded Remez-type inequality:
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esTheorem 6.2.2 (Remez-Type Inequality for Nondense M�untz Spa
es). Let�0 := 0 and P1i=0 1=�i <1: Then there exists a 
onstant 
 depending onlyon � and s (and not on %, A, or the number of terms in p) su
h thatkpk[0;%℄ � 
 kpkAfor every p 2 spanfx�0 ; x�1 ; : : : g and for every 
ompa
t set A � [%; 1℄ ofLebesgue measure at least s > 0:To prove Theorem 6.2.2 we need a few lemmas. We use the notationintrodu
ed in Se
tion 3.3. However, for notational 
onvenien
e, we letTnf�0; �1; : : : ; �n;Ag := Tnfx�0 ; x�1 ; : : : ; x�n ;Agfor 
ompa
t sets A � [0;1):By the unique interpolation property of Chebyshev spa
es (see Propo-sition 3.1.2), asso
iated with0 < x0 < x1 < � � � < xn ;we 
an de�ne`kfx0; x1; : : : ; xng 2Mn(�) ; k = 0; 1; : : : ; nsu
h that `kfx0; x1; : : : ; xng(xj) = Æj;k := � 1 if j = k0 if j 6= k :Lemma 6.2.3. Let0 < x0 < x1 < � � � < xn and 0 < ex0 < ex1 < � � � < exn :Suppose 0 � k � n andxj � exj if j = 0; 1; : : : ; k � 1 ;xj = exj if j = k ;xj � exj if j = k + 1; k + 2; : : : ; n :For notational 
onvenien
e, let`k := `kfx0; x1; : : : ; xng and èk := `kfex0; ex1; : : : ; exng :Then j`k(0)j � jèk(0)j :
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es 305Proof. It is suÆ
ient to prove the lemma in the 
ase where there is an indexm su
h that 1 � m � n, m 6= k, andxj = exj if j = 0; 1; : : : ; n; j 6= m ;xm < exm if m < k ;xm > exm if m > k :The general 
ase of the lemma then follows from repeated appli
ations ofthe above spe
ial 
ases. Note that in the above spe
ial 
ases`k � èk 2Mn(�)has a zero at ea
h of the pointsxj ; j = 0; 1; : : : ; n ; j 6= m ;hen
e it 
hanges sign at ea
h of these points, and it has no other zero in[0;1) (see E.10 of Se
tion 3.1). It is also obvious thatsign(`k(x)) = sign(èk(x)) ; x 2 (0; x0) ;whi
h, together with the previous observation and the inequality x0 � ex0;yields that j`k(0)j � jèk(0)j ;whi
h �nishes the proof. utBy a simple s
aling we 
an extend Lemma 6.2.3 as follows. We use thenotation introdu
ed in Lemma 6.2.3.Lemma 6.2.4. Let0 < x0 < x1 < � � � < xn and 0 < ex0 < ex1 < � � � < exn :Suppose 0 � k � n, 
 � 0; andxj � exj � 
 if j = 0; 1; : : : ; k � 1 ;xj = exj � 
 if j = k ;xj � exj � 
 if j = k + 1; k + 2; : : : ; n :Then j`k(0)j � jèk(0)j :
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esProof. If 
 = 0; then Lemma 6.2.3 yields the lemma. So we may assumethat 
 > 0: Let � := xkexk = exk � 
exk ;x�j := �exj ; j = 0; 1; : : : ; n ;and `�k := `kfx�0; x�1; : : : ; x�ng ; k = 0; 1; : : : ; n :Obviously èk(�x) = `�k(x) ; x 2 [0;1)and xj � x�j if j = 0; 1; : : : ; k � 1 ;xj = x�j if j = k ;xj � x�j if j = k + 1; k + 2; : : : ; n :Hen
e Lemma 6.2.3 implies thatj`k(0)j � j`�k(0)j = jèk(0)jwhi
h �nishes the proof. utLemma 6.2.5. Let A be a 
losed subset of [0; 1℄ with Lebesgue measure atleast s 2 (0; 1): Thenjp(0)j � jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)j � kpkAfor every p 2M(�):Proof. If 0 2 A; then the statement is trivial. So assume that 0 =2 A: Letex0 < ex1 < � � � < exndenote the extreme points ofTn := Tnf�0; �1; : : : ; �n; [1� s; 1℄gin [1� s; 1℄; that is,Tn(exj) = (�1)n�j ; j = 0; 1; : : : ; n :Let xj 2 A; j = 0; 1; : : : ; n; be de�ned so thatm([xj ; 1℄ \ A) = m([exj ; exn℄) = exn � exj :Sin
e A is a 
losed subset of [0; 1℄ with m(A) � s; su
h points xj 2 A exist.Let p 2Mn(�): Then, by Lemma 6.2.4, we 
an dedu
e that
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es 307jp(0)j = ����� nXk=0 p(xk)`k(0)������  nXk=0 j`k(0)j! kpkA�  nXk=0 jèk(0)j! kpkA=  nXk=0(�1)n�k èk(0)! kpkA=  nXk=0Tn(exk)èk(0)! kpkA= jTn(0)j � kpkAwhi
h proves the lemma. utLemma 6.2.6. Suppose �0 := 0: Let A be a 
losed subset of [0; 1℄ withLebesgue measure at least s 2 (0; 1): Thenjp(y)j � jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)j � kpkAfor every p 2Mn(�) and y 2 [0; inf A℄:Proof. For notational 
onvenien
e, letTn;A := Tnf�0; �1; : : : ; �n;Ag :Note that �0 = 0 implies that jTn;Aj is de
reasing on [0; inf A℄; otherwiseT 0n;A 2 spanfx�1�1; x�2�1; : : : ; x�n�1gwould have at least n + 1 zeros in (0; 1℄; whi
h is impossible. Hen
e, itfollows from E.3 and Lemma 6.2.5 thatjp(y)jkpkA � jTn;A(y)jkTn;AkA = jTn;A(y)j � jTn;A(0)j� jTnf�0; �1; : : : ; �n; [1� s; 1℄g(0)jfor every 0 6= p 2Mn(�): This �nishes the proof. utProof of Theorem 6.2.2. Lemma 6.2.6 and E.5 a℄ of Se
tion 4.2 yield thetheorem. utProof of Theorem 6.2.1. The theorem follows from E.5 of this se
tion andE.3 e℄ and E.8 b℄ of Se
tion 4.2. utOur next theorem is an interesting 
hara
terization of la
unary se-quen
es.



308 6. Inequalities in M�untz Spa
esTheorem 6.2.7 (Chara
terization of La
unary M�untz Spa
es). Suppose� := (�i)1i=0 with 0 � �0 < �1 < � � � . There exists a 
onstant 
 dependingonly on � su
h thatjaj;nj � 
 kpk[0;1℄ ; j = 0; 1; : : : ; n ; n 2 Nfor every p 2M(�) of the formp(x) = nXj=0 aj;nx�jif and only if � is la
unary, that is, if and only if the elements �i of �satisfy inff�i+1=�i : i 2 Ng > 1 :To prove Theorem 6.2.7 we need the following result of Hardy andLittlewood [26℄ whose proof we do not reprodu
e:Theorem 6.2.8. Suppose 0 = 
0 < 
1 < � � � is a la
unary sequen
e, that is,inff
i+1=
i : i 2 Ng > 1 :Suppose the fun
tion f is of the formf(x) = 1Xi=0 aix
i ; ai 2 R ; x 2 [0; 1)and A := limx!1�f(x) exists and is �nite. Then P1i=0 ai = A:Proof of Theorem 6.2.7. Suppose � is la
unary and suppose there exists asequen
e (Pk)1k=1 �M(�) su
h that if Pk is of the formPk(x) = nkXj=0 aj;nkx�j ; aj;nk 2 R ;then(6:2:1) kPkk[0;1℄ = 1 and max0�j�nk jaj;nk j � k2; k = 1; 2; : : : :We may assume, without loss of generality, that �0 = 0: Choose a sequen
e(�k)1k=1 of positive integers su
h that�1 = 1 ; �1�k+1 > 2�k�nk ; k = 1; 2; : : : :Now let the fun
tion f be de�ned by
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es 309(6:2:2) f(x) = 1Xk=1 k�2Pk(x�k ) � 1Xk=1 k�2 <1 ; 0 � x � 1 :Note that f 2 C[0; 1℄ by the Weierstrass M-test. For notational 
onvenien
e,let m0 := 0; mk := kXi=1 ni ; k = 1; 2; : : : :Further, let
0 := 0 and a0 := 1Xk=1 k�2a0;nk = 1Xk=1 k�2Pk(0)and 
mk�1+j := �k�j ; j = 1; 2; : : : ; nk ; k = 1; 2; : : : :Observe that a0 2 R is well-de�ned sin
e jPk(0)j � 1 for ea
h k 2 N: Alsoinff
i+1=
i : i 2 Ng � minf2; inff�i+1=�i : i 2 Ngg > 1 :Let � := (
i)1i=0. Then f 2 C[0; 1℄ de�ned by (6.2.2) is in the uniform
losure of M(� ) on [0; 1℄; hen
e, by the Clarkson-Erd}os theorem (see E.3e℄ of Se
tion 4.2), f is of the formf(x) = 1Xi=0 aix
i ; x 2 [0; 1) :Sin
e f 2 C[0; 1℄; Theorem 6.2.8 implies that A := P1i=0 ai exists and is�nite. Re
alling (6.2.2) and the 
hoi
e of �k; and using E.3 e℄ of Se
tion4.2, we 
an dedu
e that ea
hk�2aj;nk ; j = 1; 2; : : : ; nk ; k = 1; 2; : : :is equal to one of the 
oeÆ
ients a1; a2 : : : : Sin
e ja0;nk j = jPk(0)j � 1for ea
h k 2 N; from (6.2.1) and (6.2.2) we see that jaij � 1 holds forin�nitely many i 2 N; whi
h 
ontradi
ts the fa
t that P1i=0 ai 
onverges.This �nishes the if part of the theorem.Now assume that � is not la
unary. Then for every � > 0 there is ann 2 N su
h that �n�1=�n > 1 � �: Observe that Pn(x) := x�n � x�n�1a
hieves its maximum modulus on [0; 1℄ atx = ��n�1�n �1=(�n��n�1)and hen
e
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eskPnk[0;1℄ � ��n�1�n ��n�1=(�n��n�1)�1� �n�1�n � � 1� �n�1�n < � ;whi
h shows that the lead 
oeÆ
ient an;n ofTnf�0; �1; : : : ; �n; [0; 1℄gis at least 1=�; otherwise a�1n;nTn � Pn 2 Mn�1(�) would have at least nzeros on (0; 1), whi
h is a 
ontradi
tion. The proof of the only if part of thetheorem is now �nished. utFrom the above proof it also follows that under the assumptions ofTheorem 6.2.7, the Chebyshev polynomialsTnf�0; �1; : : : ; �n; [0; 1℄ghave uniformly bounded 
oeÆ
ients if and only if � is la
unary.As an appli
ation of Theorem 6.2.7 we derive the following Bernstein-type inequality.Theorem 6.2.9 (Bernstein-Type Inequality). Suppose �0 := 0, �1 � 1; andsuppose � := (�i)1i=0 is la
unary, that is,inff�i+1=�i : i 2 Ng > 1 :Then there exists a 
onstant 
 depending only on � (and not on y or thenumber of terms in p) su
h thatjp0(y)j � 
1� y kpk[0;1℄for every p 2M(�) = spanfx�0 ; x�1 ; : : : g and for every y 2 [0; 1):Proof. Let p 2M(�) be of the formp(x) = a0;n + nXj=1 aj;nx�j ; kpk[0;1℄ = 1 :Theorem 6.2.7 and the assumptions on � yieldjp0(y)j � ����� nXj=1 aj;n�jy�j�1����� � nXj=1 jaj;nj�jy�j�1� 
1 nXj=1 �jy�j�1 � 
2 1Xj=0 yj = 
21� y ;where 
1 and 
2 depend only on �; and the theorem is proved. ut
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es 311Comments, Exer
ises, and Examples.The results of this se
tion have been obtained by Borwein and Erd�elyi [91,93, 95b, to appear 1℄. In E.1 we present some of the several important
onsequen
es of our 
entral result, Theorem 6.2.2. In E.6 we o�er anotherproof of the �rst part of Theorem 6.2.1 when � is la
unary, while E.9 showsthat the Bernstein-type inequality of Theorem 6.2.9 \almost" 
hara
terizesthe la
unary M�untz spa
es. Note that if A � [0; 1℄ 
ontains an interval, thenthe �rst part of Theorem 6.2.1 follows immediately from E.3 of Se
tion 4.2.A typi
al 
ase that does not follow from that exer
ise is when A � [0; 1℄ isa \fat" Cantor-type set of positive measure.E.1 Some Consequen
es of Theorem 6.2.2. Let A � [0;1) be a setof positive Lebesgue measure, and let rA be the essential supremum ofA as de�ned in Theorem 6.2.1. Suppose q 2 (0;1) and suppose w is anonnegative-valued, integrable weight fun
tion on A with RAw > 0: LetLq(w) := Lq(�); where d� = w dt; and where Lq(�) is de�ned in E.7 ofSe
tion 2.2. Let � := (�i)1i=0 be a sequen
e of distin
t nonnegative realnumbers with �i 6= 0 for ea
h i = 1; 2; : : : :a℄ SupposeP1i=1 1=�i <1: Then M(�) is not dense in Lq(w): Moreover,if the gap 
ondition inff�i � �i�1 : i 2 Ng > 0holds, then every fun
tion f 2 Lq(w) belonging to the Lq(w) 
losure ofM(�) 
an be represented asf(x) = 1Xi=0 aix�i ; ai 2 R ; x 2 A \ [0; rw) ;where rw := sup(y 2 [0;1) : ZA\(y;1)w(x) dx > 0) :If the above gap 
ondition does not hold, then every fun
tion f 2 Lq(w)belonging to the Lq(w) 
losure of M(�) 
an still be represented as ananalyti
 fun
tion on fz 2 C n (�1; 0℄ : jzj < rwgrestri
ted to A:Proof. Suppose f 2 Lq(w) and suppose there is a sequen
e (pi)1i=1 �M(�)su
h that limi!1 kf � pikLq(w) = 0 :Minkowski's inequality (see E.7 b℄ and E.7 i℄ of Se
tion 2.2.) yields that(pi)1i=1 is a Cau
hy sequen
e in Lq(w): The assumptions on w imply thatfor every Æ 2 (0; rw) there exists an � > 0 su
h that
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esB := fx 2 A \ (Æ;1) : w(x) > �gis of positive Lebesgue measure. Let s := m(B) > 0: Observe that ifkpkLq(w) < "; thenm (x 2 B : jp(x)j � � 2"�s�1=q)! � s2 ;so m (x 2 B : jp(x)j < � 2"�s�1=q)! > s2 :Hen
e, by Theorem 6.2.2, (pi)1i=1 is uniformly Cau
hy on [0; Æ℄: The proof
an now be �nished as that of Theorem 6.2.1. utb℄ M�untz-Type Theorem in Lq(w). M(�) is dense in Lq(w) if and onlyif P1i=1 1=�i =1:Proof. Suppose P1i=1 1=�i = 1: Let f 2 Lq(w): It is standard measuretheory to show that for every " > 0 there exists a g 2 C[0; 1℄ su
h thatg(0) = 0 and kf � gkLq(w) < "2 :Now Theorem 4.2.1 (full M�untz theorem in C[0; 1℄) implies that there existsa p 2M(�) su
h thatkg � pkLq(w) � kg � pkA�ZA w�1=q � kg � pk[0;1℄�ZA w�1=q < "2 :Therefore M(�) is dense in Lq(w):Suppose now that P1i=1 1=�i < 1: Then part a℄ yields that M(�) isnot dense in Lq(w): ut
℄ Convergen
e in M(�). SupposeP1i=1 1=�i <1, (pi)1i=1 �M(�); andpi(x)! f(x) ; x 2 A :Then (pi)1i=1 
onverges uniformly on every 
losed subinterval of [0; rA):Proof. Let Æ 2 (0; rA) be �xed. Egoro�'s theorem (see, for example, Royden[88℄) and the de�nition of rA imply the existen
e of a set B � A \ (Æ;1)of positive Lebesgue measure so that (pi)1i=1 
onverges uniformly on B andhen
e is uniformly Cau
hy on B: Now Theorem 6.2.2 yields that (pi)1i=1 isuniformly Cau
hy on [0; Æ℄; and the result follows. ut
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es 313d℄ SupposeP1i=1 1=�i =1: Show that there is a sequen
e (pi)1i=1 �M(�)that 
onverges pointwise on [0;1) but does not 
onverge uniformly onA \ [0; a℄ for some a 2 (0; rA):Hint: Use Theorem 4.2.1 (M�untz's theorem). ute℄ Suppose P1i=1 1=�i <1 andinff�i � �i�1 : i 2 Ng > 0 :Let P (�) denote the 
olle
tion of all real-valued fun
tions f de�ned on[0; 1) by a power seriesf(x) = 1Xi=0 aix�i ; ai 2 R ; x 2 [0; 1) :Suppose that A � [0; 1℄ with rA = 1: Show that if (fi)1i=1 � P (�) andfi(x)! f(x) ; x 2 A ;then fi(x)! ef(x) ; x 2 [0; 1) ;where ef 2 P (�).Hint: Use part 
℄ and E.3 e℄ of Se
tion 4.2. utE.2 On the Smallest Zero of Chebyshev Polynomials in Nondense M�untzSpa
es. Suppose �0 := 0 and P1i=1 1=�i < 1: Show that there exists a
onstant 
 > 0 depending only on � := (�i)1i=0 (and not on n) su
h thatthe smallest positive zero ofTnf0; �1; �2; : : : ; �n; [0; 1℄g ; n = 1; 2; : : :is greater than 
:Hint: If �1 � 1; then use the Mean Value Theorem, E.1 a℄ of Se
tion 3.3,and E.5 b℄ of Se
tion 4.2. If 0 < �1 < 1; then the s
aling x! x1=�1 redu
esthe problem to the 
ase �1 = 1: utE.3 Extremal Fun
tions for the Remez-Type Inequality of Theorem 6.2.2.Suppose 0 � �0 < �1 < � � � < �n; 0 < %; A � [%;1) is a 
ompa
t set
ontaining at least n+ 1 points, and y 2 (0; %) is �xed. LetMn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :a℄ Show that there is a 0 6= p� 2Mn(�) su
h thatjp�(y)jkp�kA = sup06=p2Mn(�) jp(y)jkpkA :Hint: Use a 
ompa
tness argument. utb℄ Show that p� = 
Tnf�0; �1; : : : ; �n;Ag for some 
 2 R:Hint: Use a perturbation argument. ut
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esE.4 A Lexi
ographi
 Property of Chebyshev Polynomials in Di�erentM�untz Spa
es. Let 0 := �0 < �1 < � � � < �n; 0 := 
0 < 
1 < � � � < 
n;and �j � 
j ; j = 0; 1; : : : ; n :Let % > 0 and let A � [%;1) be 
ompa
t 
ontaining at least n+ 1 points,and letTn;� := Tnf�0; �1; : : : ; �n;Ag and Tn;� := Tnf
0; 
1; : : : ; 
n;Ag :a℄ Show that jTn;� (y)j � jTn;�(y)j for every y 2 [0; %):Hint: Suppose, without loss of generality, that there is an index m,1 � m � n; su
h that �m < 
m and �j = 
j if j 6= m: We 
hoosean Rn;� 2 Mn(�) that interpolates Tn;� at the n zeros of Tn;� and isnormalized so that Rn;�(0) = Tn;� (0): Use Theorem 3.2.5 to show thatjRn;�(x)j � jTn;� (x)j for every x 2 [0;1); in parti
ular for every x 2 A:Now use E.3 to show that jTn;� (0)j = jRn;�(0)j � jTn;�(0)j; whi
h gives thedesired result for y = 0: Using this, we 
an dedu
e that jTn;� (y)j � jTn;�(y)jfor every y 2 [0; %); otherwiseTn;� � Tn;� 2 spanfx�0 ; x�1 ; : : : ; x�n ; x
mgwould have at least (n+ 2) zeros in (0;1); whi
h is a 
ontradi
tion. utb℄ Show that maxp2Mn(� ) jp(y)jkpkA � maxp2Mn(�) jp(y)jkpkAfor every y 2 [0; %); whereMn(� ) := spanfx
0 ; x
1 ; : : : ; x
ngand Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :Hint: Combine part a℄ and E.4. utE.5 Theorem 6.2.1 Follows from Theorem 6.2.2. Under the assumptionsof Theorem 6.2.1 show that if (pj)1j=1 � M(�) is uniformly Cau
hy inC(A); then it is uniformly Cau
hy in C[0; y℄ for every y 2 (0; rA), where rAis de�ned as in Theorem 6.2.1.Hint: Use Theorem 6.2.2. ut
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es 315E.6 Some Corollaries of Theorem 6.2.9 in the La
unary Case. Suppose�0 := 0, �1 � 1; and � := (�i)1i=0 is la
unary.a℄ Show that the Chebyshev polynomialsTn := Tnf�0; �1; : : : ; �n : [0; 1℄g ; n = 1; 2; : : :have the following property: There is a 
onstant 
1 2 (0; 1) depending onlyon � (and not on n) su
h that if y 2 [0; 1) and jTn(y)j = 1; then jTn(x)j � 12for every x 2 [y; y + 
1(1� y)℄:Hint: Use the Mean Value Theorem and the Bernstein-type inequality ofTheorem 6.2.9. utb℄ Show that there is a 
onstant 
2 2 (0; 1) depending only on � (and noton n) so that if a < b are two 
onse
utive zeros of Tn; then 1�b < 
2(1�a):
℄ Let � 2 (0; 1): Show that there is an n0 2 N depending only on � (andnot on n) so that every Tn has at most n0 zeros in [0; 1� �℄:d℄ Give a new proof of the �rst part of Theorem 6.2.1 based on parts a℄and 
℄.Outline. By Lebesgue's density theorem (see Royden [88℄), it may be sup-posed, without loss of generality, that the left-hand side Lebesgue densityof A at 1 is 1: Choose � 2 (0; 1) so that A \ [0; 1 � �) 
ontains in�nitelymany points and(6:2:5) m(A \ [y; 1℄)1� y > 
1for every y 2 [1� �; 1℄; where 
1 2 (0; 1) is the same as in part a℄. For this�; 
hoose n0 a

ording to part 
℄. Now de�ne g 2 C(A) so that g alternatesn0 + 3 times in A \ [0; 1� �) between 2 and �2 and is identi
ally zero on[1 � �; 1℄: Assume that there exists a p 2 Mn(�) su
h that kp� gkA � 14 :Use part a℄ and (6.2.5) to show that p � Tn 2 Mn(�) has more than ndistin
t zeros in [0; 1℄; whi
h is a 
ontradi
tion. utThe following simple appli
ation of Theorem 6.2.9 was pointed out byWoj
ieszyk:e℄ Suppose A � [0; 1℄ is a measurable set and the left-hand side Lebesguedensity of A at 1 is 1: Show that there is a 
onstant 
 > 0 depending onlyon � and A so that kpk[0;1℄ � 
 kpkAfor every p 2M(�) = spanfx�0 ; x�1 ; : : : g:Hint: Use the Mean Value Theorem, the Bernstein-type inequality of The-orem 6.2.9, and the Chebyshev-type inequality of E.3 f℄ of Se
tion 4.2. utf ℄ Use part e℄ to give another proof of Theorem 6.2.1.The following exer
ise 
onstru
ts quasi-Chebyshev polynomials Pn forMn(�) if the la
unarity 
onstant of � is large:
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esE.7 Quasi-Chebyshev Polynomials in Very La
unary M�untz Spa
es. Let�0 = 0, �1 = 2; and �i+1=�i � 16 for i = 1; 2; : : : : LetPn(x) := 1 + 2 nXj=1(�1)jx�j ; n = 1; 2; : : : :Let yi := (4�i)�1. Prove the following statements:a℄ kPnk[0;1℄ = 1 and Pn(1) = (�1)n:b℄ Pn has exa
tly n zeros, x1;n < x2;n < � � � < xn;n, in (0; 1):
℄ jP 0n(�)j � 2�n for every � 2 [xn;n; 1℄.d℄ We havePn(x) � �15 if 1� y2k � x � 1� y2k2 and 1 � 2k � nandPn(x) � 15 if 1� y2k+1 � x � 1� y2k+12 and 1 � 2k + 1 � n :Hint: Part a℄ is obvious. Prove the rest together, by indu
tion on n: utThe next exer
ise follows Borwein and Erd�elyi [95b℄.E.8 Produ
ts of M�untz Spa
es. Asso
iated with � := (�j)1j=0; letMk(�) := (p = kYj=1 pj : pj 2M(�)) ; k = 1; 2; : : : :Is M2(�) dense in C[0; 1℄ for � := (j2)1j=0?Note that Mk(�); k � 2 is not the linear span of monomials, andM�untz's theorem does not give the answer. This exer
ise establishes Remez-,Bernstein-, and Nikolskii-type inequalities for Mk(�): From any of these itfollows immediately that if P1j=1 1=�j < 1 and A � [0; 1℄ is a set ofpositive Lebesgue measure, then Mk(�) is not dense in C(A):Throughout parts a℄ to d℄ of the exer
ise we assume 0 = �0 < �1 < � � � ,P1j=1 1=�j <1; and s 2 (0; 1):a℄ Remez-Type Inequality for Mk(�). There exists a 
onstant 
 depend-ing only on �; s; and k (and not on % or A) su
h thatkpk[0;%℄ � 
 kpkAfor every p 2 Mk(�) and for every 
ompa
t set A � [%; 1℄ of Lebesguemeasure at least s > 0:



6.2 Nondense M�untz Spa
es 317Proof. Theorem 6.2.2 implies that there exists a 
onstant � > 0 dependingonly on �, s; and k su
h thatm(fx 2 [y; 1℄ : jp(x)j > ��1jp(y)jg) � 1� y � s2kfor every p 2M(�) and y 2 [0; 1� s℄: Now let p 2Mk(�), that is,p = kYj=1 pj ; pj 2M(�) :Then, for every y 2 [0; 1� s℄;m(fx 2 [y; 1℄ : jp(x)j > ��k jp(y)jg)� m k\j=1fx 2 [y; 1℄ : jpj(x)j > ��1jpj(y)jg!� 1� y � k s2k = 1� y � s2 :Hen
e y 2 [0; inf A℄ and m(A) � s imply thatm(fx 2 A : jp(x)j > ��kjp(y)jg) � s2 > 0and the inequality follows with 
 = �k. utb℄ Solution to Newman's Problem. Let A � [0; 1℄ be a set of positiveLebesgue measure. Then Mk(�) is not dense in C(A):Proof. This follows from part a℄. ut
℄ Bernstein-Type Inequality for Mk(�). Suppose �1 � 1: There exists a
onstant 
 depending only on �, s; and k (and not on % and A) su
h thatkp0k[0;%℄ � 
 kpkAfor every p 2 Mk(�) and for every 
ompa
t set A � [%; 1℄ of Lebesguemeasure at least s > 0:Hint: Use the produ
t rule of di�erentiation, and estimate ea
h term sep-arately. Pro
eed as in the proof of part a℄. Use Theorem 6.2.2 and E.5 a℄and b℄ of Se
tion 4.2. utd℄ Nikolskii-Type Inequality for Mk(�). There exists a 
onstant 
 de-pending only on �, s, k, q, and w (and not on % and A) su
h thatkpkq[0;%℄ � 
 ZA jp(x)jqw(x) dx



318 6. Inequalities in M�untz Spa
esfor every p 2Mk(�); for every 
ompa
t set A � [%; 1℄ of Lebesgue measureat least s > 0; for every fun
tion w measurable and positive a.e. on [0; 1℄;and for every q 2 (0;1):Hint: Use part a℄. ute℄ Asso
iated with�j = (�i;j)1i=0 ; j = 1; 2; : : : ; k ;let M(�1; �2; : : : ; �k) :=8<:p = kYj=1 pj : pj 2M(�j)9=; :Formulate and prove the analogs of parts a℄ to d℄ for M(�1; �2; : : : ; �k):E.9 A Weak Converse of Theorem 6.2.9. Suppose � := (�i)1i=0 is a(stri
tly) in
reasing sequen
e of nonnegative real numbers with �0 := 0and �1 � 1: Suppose also that there exists a 
onstant 
 depending only on� (and not on y or the number of terms in p) su
h thatjp0(y)j � 
1� y kpk[0;1℄for every p 2 M(�) = spanfx�0 ; x�1 ; : : : g and for every y 2 [0; 1): Showthat there is a 
onstant � > 1 depending only on � su
h that �n � �n:Outline. Let Tn := Tnf�0; �1; : : : ; �n; [0; 1℄gand denote its zeros in (0; 1) by x1;n > x2;n > � � � > xn;n: Use the MeanValue Theorem and the assumed Bernstein-type inequality to show thatthere is a 
onstant 
 2 (0; 1) depending only on � su
h that1� xj;n � 
(1� xj+1;n) ; j = 1; 2; : : : ; n� 1 ; n 2 N ;hen
e 1�x1;n � 
n: On the other hand, use the Mean Value Theorem andTheorem 6.1.1 (Newman's inequality) to show that1� x1;n �  1 + 9 nXj=1 �j!�1 � (9(n+ 1)�n)�1 :Finally, 
ombine the lower and upper bounds for 1� x1;n to 
on
lude that�n � 
�n9(n+ 1) : ut



6.2 Nondense M�untz Spa
es 319E.10 Polynomials in x�n . Given n 2 N and �n 2 R; letPn(�n) := fpn(x�n) : pn 2 Png(as in E.6 of Se
tion 4.1). Suppose �n � 1 for all n 2 N: Let Æ 2 R bede�ned by lim supn logn�n = 12 log 1Æ :Suppose Æ > 0:a℄ Bounded Remez-Type Inequality. Suppose 0 < eÆ < Æ: Show that thereexists a 
onstant 
 depending only on eÆ (and not on n, y; or A) su
h thatjp(y)j � 
 kpkAfor every p 2 [1n=1Pn(�n); for every A � [0; 1℄ of Lebesgue measure at least1� eÆ; and for every y 2 [0; inf A℄:Hint: Use Lemma 6.2.6 and E.6 a℄ of Se
tion 4.1. utb℄ M�untz-Type Theorem. If 0 � eÆ < Æ and A � [0; 1℄ is a set of Lebesguemeasure at least 1� eÆ; then [1n=1Pn(�n) is not dense in C(A).Hint: Use part a℄. ut



This is page 320Printer: Opaque this7Inequalities forRational Fun
tion Spa
es

OverviewPre
ise Markov- and Bernstein-type inequalities are given for various 
lassesof rational fun
tions in the �rst se
tion of this 
hapter. Extensions of theinequalities of Lax, S
hur, and Russak are also presented, as are inequal-ities for self-re
ipro
al polynomials. The se
ond se
tion of the 
hapter is
on
erned with metri
 inequalities for polynomials and rational fun
tions.7.1 Inequalities for Rational Fun
tion Spa
esSharp extensions of most of the polynomial inequalities of Se
tion 5.1 areestablished for rational fun
tion spa
es onK := R (mod 2�), on the interval[�1; 1℄, on the unit 
ir
le of C , and on the real line. The 
lassi
al inequalitiesof Se
tion 5.1 are then re
overed as limiting 
ases. A sharp extension ofLax's inequality is also given. Essentially sharp Markov- and Bernstein-type inequalities for self-re
ipro
al and antiself-re
ipro
al polynomials arepresented in the exer
ises.Let D := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g; as before.We study the rational fun
tion spa
es:Tn(a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 j sin((� � ak)=2)j : t 2 Tn)



7.1 Inequalities for Rational Fun
tion Spa
es 321and T 
n (a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 sin((� � ak)=2) : t 2 T 
n)on K with a1; a2; : : : ; a2n 2 C n R;Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1 jx� akj : p 2 Pn�and P
n(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1(x� ak) : p 2 P
n�on [�1; 1℄ with a1; a2; : : : ; an 2 C n [�1; 1℄;P
n(a1; a2; : : : ; an; �D) := � p(z)Qnk=1(z � ak) : p 2 P
n�on �D with a1; a2; : : : ; an 2 C n �D; andPn(a1; a2; : : : ; an;R) := � p(x)Qnk=1 jx� akj : p 2 Pn�and P
n(a1; a2; : : : ; an;R) := � p(z)Qnk=1(z � ak) : p 2 P
n�on R with a1; a2; : : : ; an 2 C n R:The Chebyshev polynomials eTn, eUn, andV := (
os �) eTn + (sin �)eUn ; � 2 Kfor the rational fun
tion spa
e Tn(a1; a2; : : : ; a2n;K) are de�ned in E.3 ofSe
tion 3.5, and they play a 
entral role in this se
tion.



322 7. Inequalities for Rational Fun
tion Spa
esTheorem 7.1.1 (Bernstein-Szeg}o-Type Inequality on K). Given(ak)2nk=1 � C n R ; Im(ak) > 0 ;let eBn(�) := 12 2nXk=1 1� jeiak j2jeiak � ei�j2 :Then f 0(�)2 + eB2n(�)f2(�) � eB2n(�)kfk2K ; � 2 Kfor every f 2 Tn(a1; a2; : : : ; a2n;K):Equality holds if and only if either � is a maximum point of jf j (thatis, f(�) = �kfkK) or f is a linear 
ombination of eTn and eUn (with real
oeÆ
ients) as de�ned in E.3 of Se
tion 3.5.Corollary 7.1.2 (Bernstein-Type Inequality on K, Real Case). Given(ak)2nk=1 � C n R ; Im(ak) > 0 ;let the Bernstein fa
tor eBn be de�ned as in Theorem 7.1.1. Thenjf 0(�)j � eBn(�)kfkK ; � 2 Kfor every f 2 Tn(a1; a2; : : : ; a2n;K):Equality holds if and only if f is a linear 
ombination of eTn and eUn(with real 
oeÆ
ients) as de�ned in E.3 of Se
tion 3.5, and f(�) = 0:Theorem 7.1.1 and Corollary 7.1.2 
an be easily obtained from the extensionof Theorem 3.5.3 given by E.3 of Se
tion 3.5, whi
h gives expli
it formulasfor the Chebyshev polynomials for these 
lasses Tn(a1; a2; : : : ; a2n;K): Thearguments are outlined in E.1.The following two results 
an be obtained from Theorem 7.1.1 andCorollary 7.1.2 by the substitution x = 
os �; see E.2.Corollary 7.1.3 (Bernstein-Szeg}o-Type Inequality on [�1; 1℄). Asso
iatedwith (ak)nk=1 � C n [�1; 1℄; let the Bernstein fa
tor Bn be de�ned byBn(x) := nXk=1Re pa2k � 1ak � x ! ;where the 
hoi
e of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1: Then(1� x2)f 0(x)2 +B2n(x)f2(x) � B2n(x)kfk2[�1;1℄ ; x 2 [�1; 1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Equality holds if and only if either x is a maximum point of jf j (thatis, f(x) = �kfk[�1;1℄) or f = 
Tn with 
 2 R; where Tn is de�ned as inSe
tion 3.5.



7.1 Inequalities for Rational Fun
tion Spa
es 323Corollary 7.1.4 (Bernstein-Type Inequality on [�1; 1℄, Real Case). Given(ak)nk=1 � C n [�1; 1℄; let the Bernstein fa
tor Bn be de�ned as in Corollary7.1.3. Then jf 0(x)j � Bn(x)p1� x2 kfk[�1;1℄ ; x 2 (�1; 1)for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Equality holds if and only if f = 
Tn with 
 2 R; where Tn is de�ned asin Se
tion 3.5, and f(x) = 0: (Note that Bn(x) > 0 for every x 2 (�1; 1).)Our next result follows from Theorem 7.1.1; see the hints to E.3.Corollary 7.1.5 (Bernstein-Szeg}o-Type Inequality on R). Given(ak)nk=1 � C n R ; Im(ak) > 0 ;let the Bernstein fa
tor Bn be de�ned byBn(x) := nXk=1 Im(ak)jx� akj2 :Then f 0(x)2 +B2n(x)f2(x) � B2n(x)kfk2R ; x 2 Rfor every f 2 Pn(a1; a2; : : : ; an;R):Equality holds if and only if either x is a maximum point of jf j (thatis, jf(x)j = �kfkR) or f is a linear 
ombination of Tn and Un (with real
oeÆ
ients) de�ned in E.5 of Se
tion 3.5.Corollary 7.1.6 (Bernstein-Type Inequality on R, Real Case). Asso
iatedwith (ak)nk=1 � C nR; let the Bernstein fa
tor Bn be de�ned as in Corollary7.1.5. Then jf 0(x)j � Bn(x)kfkR ; x 2 Rfor every f 2 Pn(a1; a2; : : : ; an;R):Equality holds if and only if f is a linear 
ombination of Tn and Un(with real 
oeÆ
ients) de�ned in E.5 of Se
tion 3.5, and f(x) = 0:To formulate our next theorem we introdu
e some notation. For apolynomial q(z) := nYk=1 (z � ak) ; ak 2 C ;we de�ne



324 7. Inequalities for Rational Fun
tion Spa
esq�(z) := nYk=1 (1� akz) =: znqn(z�1) :Then(7:1:1) jq(z)j = jq�(z)j ; z 2 �D :The fun
tion Sn(z) := q�(z)q(z) = nYk=1 1� akzz � akis the Blas
hke produ
t asso
iated with (ak)nk=1:Theorem 7.1.7 (Bernstein-Type Inequality on �D, Complex Case). Given(ak)nk=1 � C n �D ; let the Bernstein fa
tor Bn be de�ned byBn(z) := maxfB+n (z); B�n (z)gwith B+n (z) := nXk=1jakj>1 jakj2 � 1jak � zj2 and B�n (z) := nXk=1jakj<1 1� jakj2jak � zj2 :Then jf 0(z)j � Bn(z)kfk�D ; z 2 �Dfor every f 2 P
n(a1; a2; : : : ; an; �D):If the �rst sum is not less than the se
ond sum for a �xed z 2 �D; thenequality holds for f = 
S+n with 
 2 C , where S+n is the Blas
hke produ
tasso
iated with those ak for whi
h jakj > 1: If the se
ond sum is not lessthan the �rst sum for a �xed z 2 �D; then equality holds for f = 
S�n with
 2 C ; where S�n is the Blas
hke produ
t asso
iated with those ak for whi
hjakj < 1:Proof. For reasons of symmetry it is suÆ
ient to prove the theorem onlyfor z = 1: Without loss of generality we may assume that(7:1:2) Re nXk=1 11� ak! 6= n2 ;the remaining 
ases follow from this by a limiting argument. Let Q := �D(equipped with the usual metri
 topology), V := P
n(a1; a2; : : : ; an; �D) ;and L(f) := f 0(1) for f 2 V: We show in this situation that n + 1 � r inTheorem A.3.3 (interpolation of linear fun
tionals). Suppose to the 
ontrarythat r � n: By Theorem A.3.3, there are distin
t points x1; x2; : : : ; xr on�D, and there are 
onstants 
1; 
2; : : : ; 
r 2 C su
h that



7.1 Inequalities for Rational Fun
tion Spa
es 325(7:1:3) p0(1)q(1)� q0(1)p(1)q(1)2 = rXk=1 
k p(xk)q(xk) ; p 2 P
n ;where(7:1:4) q(z) := nYk=1 (z � ak) :We 
laim that xk 6= 1 for ea
h k = 1; 2; : : : ; r: Indeed, if there is index ksu
h that xk = 1; then Theorem A.3.3 implies thatp(z) := (z + 1)n�r rYk=1(z � xk) 2 P
nhas a zero at 1 with multipli
ity at least two, whi
h is a 
ontradi
tion.Applying (7.1.3) with the above p; we obtainp0(1)q(1)� q0(1)p(1) = 0and sin
e p(1) 6= 0 and q(1) 6= 0, this is equivalent toq0(1)q(1) = p0(1)p(1) ;that is, in terms of the zeros of pn and qn;(7:1:5) nXk=1 11� ak = n� r2 + rXk=1 11� xk :Sin
e xk 2 �D and xk 6= 1; we have(7:1:6) Re� 11� xk� = 12 ; k = 1; 2; : : : ; r :It follows from (7.1.5) and (7.1.6) thatRe nXk=1 11� ak! = n2 ;whi
h 
ontradi
ts assumption (7.1.2). So n+ 1 � r; indeed.A 
ompa
tness argument shows that there is a fun
tion ef 2 V su
hthat k efk�D = 1 and L( ef) = kLk := max06=f2V jL(f)jkfk�D :



326 7. Inequalities for Rational Fun
tion Spa
esTheorem A.3.3 implies j ef(xk)j = 1 for every k = 1; 2; : : : ; r: Hen
e, ifef = epq ; ep 2 P
n ; q(z) = nYk=1 (z � ak) ;then(7:1:7) h(z) := jep(z)j2 � jq(z)j2 � 0 ; z 2 �Dand(7:1:8) h(xk) = 0 ; k = 1; 2; : : : ; r :Note that t(�) := h(ei�) 2 Tn vanishes at ea
h �k, where the numbers�k 2 [��; �) are de�ned by xk = ei�k ; k = 1; 2; : : : ; r: Be
ause of (7.1.7),ea
h of these zeros is of even multipli
ity. Hen
e, n + 1 � r implies thatt 2 Tn has at least 2n + 2 zeros and therefore t = 0: From this we 
andedu
e that h(z) = 0 for every z 2 �D; so(7:1:9) jep(z)j = jq(z)j ; z 2 �D :We now havez�nep(z)ep �(z) = jep(z)j2 = jq(z)j2 = z�nq(z)q�(z) ; z 2 �D ;so by the uni
ity theorem for analyti
 fun
tions (see E.1 e℄ of Se
tion 1.2)ep ep� = qq� :From this, it follows that there exists a 
onstant 0 6= 
 2 C su
h thatef(z) = ep(z)q(z) = 
 mYk=1 z � ��1kz � �k ; z 2 C ; q(z) 6= 0with some m � n and�k := ajk ; k = 1; 2; : : : ;m ; 1 � j1 < j2 < � � � < jm � n :A straightforward 
al
ulation gives thatj ef 0(1)j = ����� ef 0(1)ef(1) ����� = ����� mXk=1� 11� ��1k � 11� �k������= ����� mXk=1 j�kj2 � 1j�k � 1j2 ����� � maxfB+n (z); B�n (z)g ;whi
h �nishes the proof. ut
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tion Spa
es 327Corollary 7.1.8 (Bernstein-Type Inequality on K, Complex Case). Given(ak)2nk=1 � C n R; let the Bernstein fa
tor Bn be de�ned byeBn(�) := maxf eB+n (�); eB�n (�)gwitheB+n (�) := 2nXk=1Im(ak)<0 jeiak j2 � 1jeiak � ei�j2 and eB�n (�) := 2nXk=1Im(ak)>0 1� jeiak j2jeiak � ei�j2 :Then jf 0(�)j � Bn(�)kfkK ; � 2 Kfor every f 2 T 
n (a1; a2; : : : ; a2n;K):If the �rst sum is not less than the se
ond sum for a �xed � 2 K; thenequality holds for f(�) = 
S+2n(ei�) with 
 2 C ; where S+2n is the Blas
hkeprodu
t asso
iated with those eiak for whi
h Im(ak) < 0: If the se
ond sumis not less than the �rst sum for a �xed � 2 K; then equality holds forf(�) = 
S�2n(ei�) with 
 2 C ; where S�2n is the Blas
hke produ
t asso
iatedwith those eiak for whi
h Im(ak) > 0: Note thatS�2n(ei�) 2 T 
n (a1; a2; : : : ; a2n;K) :Proof. Observe that ifh(�) := 2nYj=1 sin((� � aj)=2) 2 T 
nand tn 2 T 
n ; then there are p 2 P
2n and q 2 P
2n su
h thatt(�)h(�) = p(ei�)e�in�q(ei�)e�in� = p(ei�)q(ei�) ;where q is of the form q(z) = 
 2nYj=1(z � eiaj )with some 
 2 C : So the 
orollary follows from Theorem 7.1.7. utCorollary 7.1.9 (Bernstein-Type Inequality on [�1; 1℄, Complex Case).Given fakgnk=1 � C n [�1; 1℄, let the Bernstein fa
tor Bn(x) be de�nedby Bn(x) = max( nXk=1 1� j
kj2j
k � zj2 ; nXk=1 j
kj�2 � 1j
�1k � zj2) ;



328 7. Inequalities for Rational Fun
tion Spa
eswhere 
k and z are determined byak := 12 (
k + 
�1k ) ; j
kj < 1 ;x := 12 (z + z�1) ; Im(z) > 0 :Then jf 0(x)j � Bn(x)p1� x2 kfk[�1;1℄ ; x 2 (�1; 1)for every f 2 P
n(a1; a2; : : : ; an; [�1; 1℄): Note thatnXk=1 1� j
kj2j
k � zj2 = Re nXk=1 pa2k � 1ak � x ! ; x 2 [�1; 1℄ ;where the 
hoi
e of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1:Proof. The 
orollary follows from Theorem 7.1.7 by the substitutionx = 12 (z + z�1): utBernstein's 
lassi
al polynomial inequalities dis
ussed in Se
tion 5.1are 
ontained in Theorem 7.1.7 and Corollaries 7.1.8 and 7.1.9 as limiting
ases. In Theorem 7.1.7 and Corollary 7.1.9 we take(a(m)1 ; a(m)2 ; : : : ; a(m)n ) � C nDso that limm!1 ja(m)k j =1 ; k = 1; 2; : : : ; n :In Corollary 7.1.8 we take(a(m)1 ; a(m)2 ; : : : ; a(m)2n ) � C n Rso thata(m)n+k = a(m)k and limm!1 jIm(a(m)k )j =1 ; k = 1; 2; : : : ; n :To formulate our next result we introdu
e the Blas
hke produ
tQn(z) := nYk=1 z � akz � akasso
iated with (a1; a2; : : : ; an) � C n R: Obviously jQn(z)j = 1 for everyz 2 R:
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tion Spa
es 329Corollary 7.1.10 (Bernstein-Type Inequality on R, Complex Case). Given(ak)nk=1 � C n R; let the Bernstein fa
tor Bn(x) be de�ned byBn(x) := maxfB+n (x); B�n (x)gwithB+n (x) := nXk=1Im(ak)>0 2 jIm(ak)jjx� akj2 and B�n (x) := nXk=1Im(ak)<0 2 jIm(ak)jjx� akj2for every x 2 R: Thenjf 0(x)j � Bn(x)kfkR ; x 2 Rfor every f 2 P
n(a1; a2; : : : ; an;R):If the �rst sum is not less than the se
ond sum for a �xed x 2 R; thenequality holds for f = 
Q+n with 
 2 C ; where Q+n is the Blas
hke produ
tasso
iated with the poles ak lying in the open upper half-planeH+ := fz 2 C : Im(z) > 0g :If the se
ond sum is not less than the �rst sum for a �xed x 2 R; thenequality holds for f = 
Q�n with 
 2 C ; where Q�n is the Blas
hke produ
tasso
iated with the poles ak lying in the open lower half-planeH� := fz 2 C : Im(z) < 0g :Corollary 7.1.10 follows from Theorem 7.1.7; see E.4.The next theorem improves the Bernstein-type inequality of Theorem7.1.7 in the 
ase when fakgnk=1 � C nD and f has all its zeros in C nD: Itextends Lax [44℄.Theorem 7.1.11 (Lax-Type Inequality). Given (ak)nk=1 � C n D, let theBernstein fa
tor Bn be, as in Theorem 7.1.7, de�ned byBn(z) := nXk=1 jakj2 � 1jak � zj2 :Then jh0(z)j � 12Bn(z)khk�D ; z 2 �Dfor every h 2 P
n(a1; a2; : : : ; an; �D) having all its zeros in C nD:Equality holds for h = 
(Sn + 1) with 
 2 C ; where Sn is the Blas
hkeprodu
t asso
iated with (ak)nk=1.



330 7. Inequalities for Rational Fun
tion Spa
esNote that Bn(z) = jS0n(z)j: Note also thath := 
(Sn + 1) 2 P
n(a1; a2; : : : ; an; �D) ; 
 6= 0has all its zeros on �D:Proof. First assume that ea
h zero of h is on �D; the general 
ase 
an beredu
ed to this (see E.5). Thus let h := p=q; where p 2 P
n has all its zeroson �D and where q(z) := nYk=1 (z � ak) ; jakj > 1 :Let q�(z) := nYk=1 (1� akz) :We study u(�) := p(e2i�)e�in�jq(e2i�)j = p(e2i�)pq(e2i�)pq�(e2i�)for � 2 R; where the square roots are taken so that pq is analyti
 in aneighborhood of the 
losed unit disk, and pq� is analyti
 in a neighborhoodof the 
omplement of the open unit disk. Sin
e p 2 P
n has all its zeros on�D; there exists a 0 6= � 2 C su
h thatt(�) := �p(e2i�)e�in�is a real trigonometri
 polynomial of degree at most n (see E.5 a℄). Alsojq(e2i�)j = jq�(e2i�)j = nYk=1 j1� ake2i�j= 
 2nYk=1 j sin((� � 
k)=2)j ;where 
 > 0; ei
k = a�1=2k ; Im(
k) > 0 ; k = 1; 2; : : : ; nand ei
k = �a�1=2k ; Im(
k) > 0 ; k = n+ 1; n+ 2; : : : ; 2n :Applying Theorem 7.1.1 to��1u 2 Tn(
1; 
2; : : : ; 
2n;K) ;
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tion Spa
es 331we obtain(7:1:10) ju0(�)� i eBn(�)u(�)j � eBn(�)kukK ; � 2 K ;where eBn(�) = 12 nXk=1 1� jakj�1ja�1=2k � ei�j2 + 1� jakj�1j � a�1=2k � ei�j2!(7:1:11) = nXk=1 1� jakj�2ja�1k � e2i�j2 = nXk=1 jakj2 � 1jak � e2i�j2 :Observe that(7:1:12) u(�) = p(e2i�)q(e2i�) pq(e2i�)pq�(e2i�) = p(e2i�)q(e2i�)fn(ei�) ;where(7:1:13) fn(z) := pq(z2)pq�(z2) :A simple 
al
ulation (see E.4. of Se
tion 3.5) shows that(7:1:14) eBn(�) = ei� f 0n(ei�)fn(ei�) ; � 2 K :Also, sin
e jfn(ei�)j = 1 for every � 2 K; we have(7:1:15) kukK = 



pq 



�D = khk�D :Now (7.1.10) to (7.1.15) yield���� dd� �p(e2i�)q(e2i�)fn(ei�)�� iei� f 0n(ei�)fn(ei�) p(e2i�)q(e2i�)fn(ei�)���� � eBn(�)khk�D :So j2ie2i�h0(e2i�)fn(e2i�) + iei�f 0n(ei�)h(e2i�)� iei�f 0n(ei�)h(e2i�)j � eBn(�)khk�D :Thus 2 jh0(e2i�)j � eBn(�)khk�D ;whi
h, together with (7.1.11), �nishes the proof. ut
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tion Spa
esComments, Exer
ises, and Examples.Most of the results in this se
tion have been proved in Borwein and Erd�elyi[to appear 4℄ and in Borwein, Erd�elyi, and Zhang [94a℄. A weaker versionof Corollary 7.1.9 has been obtained by Russak (see Petrushev and Popov[87℄). Theorem 7.1.11 
ontains, as a limiting 
ase, an inequality of Lax [44℄
onje
tured by Erd}os. Lax's inequality establishes the sharp Bernstein-typeinequality on the unit disk for polynomials p 2 P
n having no zeros in theopen unit disk. That is, kp0kD � n2 kpkDfor su
h polynomials. Various extensions of this inequality are given byAnkeny and Rivlin [55℄, Govil [73℄, Malik [69℄, and others. We dis
uss someof these in E.16 of Appendix 5.E.1 Proof of Theorem 7.1.1 and Corollary 7.1.2. Given (ak)2nk=1 � C nR;let Tn;a := Tn(a1; a2; : : : ; a2n;K) :a℄ Show that Tn;a is a Hermite interpolation spa
e. That is, if the pointsx1; x2; : : : ; xk 2 K are distin
t, and m1;m2; : : : ;mk are positive integerswith Pki=1mi � 2n+1; then for any 
hoi
e of real numbers yi;j , there is afun
tion f 2 Tn;a su
h thatf (j)(xi) = yi;j ; i = 1; 2; : : : ; k ; j = 0; 1; : : : ;mi � 1 :Hint: See the hint to E.7 of Se
tion 1.1. utb℄ Show that for every �xed � 2 K; the valuemax06=f2Tn;a f 0(�)2 +B2n(�)f2(�)kfk2Kis attained by an ef 2 Tn;a:Hint: Use a 
ompa
tness argument. ut
℄ Show that ef = 
V; where 
 2 R and V is one of the Chebyshev polyno-mials for Tn;a de�ned in Theorem 3.5.3 and E.3 of Se
tion 3.5.Hint: Use a variational method with the help of part a℄. utd℄ Prove Theorem 7.1.1.Hint: Use part 
℄ and E.4 of Se
tion 3.5. ute℄ Prove Corollary 7.1.2.E.2 Proof of Corollaries 7.1.3 and 7.1.4.a℄ Prove the inequality of Corollary 7.1.3.
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tion Spa
es 333Hint: Use Theorem 7.1.1 with the substitution x = 
os �: Note thatf 2 Pn(a1; a2; : : : ; an; [�1; 1℄) impliesg(�) := f(
os �) = Tn(
1; 
1; 
2; 
2; : : : ; 
n; 
n;K) ;where the numbers 
k 2 C are de�ned byei
k = ak �qa2k � 1 ; ak = 12 (ei
k + e�i
k); Im(
k) > 0 :Verify that if eBn is the Bernstein fa
tor given in Theorem 7.1.1 asso
iatedwith (
1; 
1; 
2; 
2; : : : ; 
n; 
n) ;then eBn(�) = nXk=1Re pa2k � 1ak � 
os �! ; � 2 K ;where the 
hoi
e of pa2k � 1 is determined by ��ak �pa2k � 1�� < 1: utb℄ Given x 2 [�1; 1℄; prove that equality holds in the inequality of Corol-lary 7.1.3 if and only if either x is a maximum point of jf j (that is,f(x) = �kfk[�1;1℄) or f = 
Tn with 
 2 R; where Tn is de�ned in Se
-tion 3.5.Hint: Observe that V = (
os �) eTn + (sin �)eUnis even if and only if V = �eTn and use Theorem 7.1.1. ut
℄ Prove Corollary 7.1.4.E.3 Proof of Corollaries 7.1.5 and 7.1.6.a℄ Prove Corollary 7.1.5.Hint: Use Theorem 7.1.1 and the substitution x = iei� + 1ei� � 1 ; whi
h maps Konto R [ f1g: utb℄ Prove Corollary 7.1.6.E.4 Proof of Corollary 7.1.10. Prove Corollary 7.1.10.Hint: Use Theorem 7.1.7 and the substitution x = iz + 1z � 1 ; whi
h maps �Donto R [ f1g : utE.5 Completion of the Proof of Theorem 7.1.11.a℄ Show that if p 2 P
n has all its zeros on the unit 
ir
le, then thereis a 0 6= � 2 C su
h that g(�) := �e�in�p(e2i�) is a real trigonometri
polynomial of degree at most n:
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tion Spa
esFor f = p=q withq(z) := nYk=1 (z � ak) ; ak 2 Cand p(z) := 
 mYk=1 (z � bk) ; bk 2 C ; 
 2 C ; m � n ;we de�ne f� := p�=q; wherep�(z) := 
 mYk=1 (1� zbk) :Let D := fz 2 C : jzj < 1g:b℄ Show that jf�(z)j = jf(z)j for every z 2 �D:In ea
h of the remaining parts of the exer
ise suppose that jakj > 1 forea
h k:
℄ Show that if � 2 �D and jbkj � 1 for ea
h k; then f + �f� has all itszeros on the unit 
ir
le.d℄ Show that if jbkj � 1 for ea
h k; thenjf 0(z)j � jf�0(z)j ; z 2 �D :Hint: First observe that it is suÆ
ient to study the 
ase z = 1: We have����Re�f 0(1)f(1) ����� = �����Re nXk=1 11� bk!�Re nXk=1 11� ak!������ �����Re nXk=1 11� bk!� n2 �����+ �����n2 �Re nXk=1 11� ak!�����= n2 �Re nXk=1 11� bk!+ n2 �Re nXk=1 11� ak!= n�Re nXk=1 11� bk!�Re nXk=1 11� ak!= Re nXk=1 11� b�1k !�Re nXk=1 11� ak!= Re nXk=1 11� b�1k !�Re nXk=1 11� ak!= ����Re�f�0(1)f�(1) �����
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tion Spa
es 335and ����Im�f 0(1)f(1) ����� = �����Im nXk=1 11� bk!� Im nXk=1 11� ak!�����= �����Im n� nXk=1 11� bk!� Im nXk=1 11� ak!�����= ������Im nXk=1 11� b�1k !+ Im nXk=1 11� ak!�����= ����Im�f�0(1)f�(1) ����� :The result now follows from the 
ombination of part b℄ and the above twoinequalities. ute℄ Prove that if jbkj � 1 for ea
h k; then2jf 0(z)j � jf 0(z)j+ jf�0(z)j � Bn(z)kfk�D ; z 2 �D ;where Bn(z) is the Bernstein fa
tor de�ned in Theorem 7.1.11.Hint: Use parts 
℄ and d℄ and the already proved part of Theorem 7.1.11(when f has all its zeros on the unit 
ir
le). utf ℄ Show that if jbkj � 1 for ea
h k; thenjf 0(z)j � 12Bn(z)�maxz2�D jf(z)j � minz2�D jf(z)j� ; z 2 �D ;where Bn(z) is the Bernstein fa
tor de�ned in Theorem 7.1.7. This extendsa result of Aziz and Dawood [88℄.Hint: Assume that kfk�D = 1: Let m := minz2�D jf(z)j: Let � be a 
on-stant of modulus less than 1: Let g(z) := f(z) � �m: Observe that theargument of � 
an be 
hosen so thatjg�0(z)j = jf�0(z)j � j�jmBn(z) :By Rou
h�e's theorem, g has no zeros in D: So parts d℄ and e℄ imply that2 jf�0(z)j � 2 j�jmBn(z) = 2 jg�0(z)j � jg0(z)j+ jg�0(z)j= jf 0(z)j+ jf�0(z)j � j�jmBn(z)� Bn(z)� j�jmBn(z) :Sin
e j�j 
an be 
hosen arbitrarily 
lose to 1, the result follows. ut



336 7. Inequalities for Rational Fun
tion Spa
esE.6 Extensions of Russak's Inequalities.a℄ Given (ak)2nk=1 � C n R, show thatkf 0kL1(K) � 2�n kfkKfor every f 2 Tn(a1; a2; : : : ; a2n;K) andkf 0kL1(K) � 4�n kfkKfor every f 2 T 
n (a1; a2; : : : ; a2n;K):b℄ Given (ak)nk=1 � C n R, show thatkf 0kL1(R) � �n kfkRfor every f 2 Pn(a1; a2; : : : ; an;R; ) andkf 0kL1(R) � 2�n kfkRfor every f 2 P
n(a1; a2; : : : ; an;R).Hint: Use Corollaries 7.1.2, 7.1.8, 7.1.6, and 7.1.10. Write the Bernsteinfa
tors in a form so that the integral (of ea
h term in the maximum if theBernstein fa
tor is de�ned by a maximum) 
an be evaluated by the residuetheorem (in part a℄) and by �nding the antiderivative (in part b℄). ut
℄ Are any of the inequalities of parts a℄ and b℄ sharp? If so, in whi
h
ases?E.7 Markov-Type Inequality. Given (ak)nk=1 � R n [�1; 1℄; show thatkf 0k[�1;1℄ � nn� 1  nXk=1 1 + j
kj1� j
kj!2 kfk[�1;1℄for every f 2 P
n(a1; a2; : : : ; an; [�1; 1℄); where the numbers 
k are de�nedby 
k := ak �qa2k � 1 ; ak = 12 (
k + 
�1k ) ; j
kj < 1 :Pro
eed as follows:a℄ Given (ak)nk=1 � R n [�1; 1℄; letak(y) :=8><>: 2ak1 + y + 1� y1 + y if 0 � y � 12ak1� y + 1 + y1� y if �1 � y � 0and let 
k(y) be de�ned by
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tion Spa
es 337ak(y) =: 12 (
k(y) + 
k(y)�1) ; j
k(y)j < 1 :Show that jf 0(y)j � 21 + jyj  nXk=1 1 + 
k(y)1� 
k(y)!2 kfk[�1;1℄for every f 2 P
n(a1; a2; : : : ; an; [�1; 1℄).Hint: Show by a variational method thatmaxf jf 0(�1)jkfk[�1;1℄ = jT 0n(�1)j ;where the maximum is taken for all 0 6= f 2 Pn(a1; a2; : : : ; an; [�1; 1℄);and Tn is the Chebyshev polynomial for Pn(a1; a2; : : : ; an; [�1; 1℄) de�nedin Se
tion 3.5. Now the result follows from E.1 
℄ of Se
tion 3.5 by a linearshift from [�1; 1℄ to [�1; y℄ if 0 � y � 1; or to [y; 1℄ if �1 � y � 0: utb℄ Given (ak)nk=1 � R n [�1; 1℄; show thatjf 0(y)j � n1� jyj kfk[�1;1℄ ; y 2 (�1; 1)for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄):Hint: When y = 0; this follows from Corollary 7.1.3. When y 2 (�1; 1) isarbitrary, use a linear shift from [�1; 1℄ to [2y � 1; 1℄ if 0 � y � 1; or to[�1; 2y + 1℄ if �1 < y � 0: ut
℄ Prove the Markov-type inequality of the exer
ise.Hint: Combine parts a℄ and b℄. Note thatjak(y)j � jakj and j
k(y)j � j
kj < 1 ; k = 1; 2; : : : ; nholds for every y 2 [�1; 1℄: utE.8 S
hur-Type Inequality. Given fakgnk=1 � R n [�1; 1℄; show thatkfk[�1;1℄ � maxfjUn(1)j; jUn(�1)jg � 

f(x)p1� x2

[�1;1℄for every f 2 Pn(a1; a2; : : : ; an; [�1; 1℄); where Un is the Chebyshev poly-nomial (of the se
ond kind) for Pn(a1; a2; : : : ; an; [�1; 1℄) de�ned in Se
tion3.5, and jUn(�1)j = ����� nXk=1 pa2k � 1ak � 1 �����with the 
hoi
e of pa2k � 1 determined by ��ak �pa2k � 1�� < 1: Show thatequality holds if and only if f = 
Un; 
 2 R:



338 7. Inequalities for Rational Fun
tion Spa
esHint: First show that if ef 2 Pn(a1; a2; : : : ; an; [�1; 1℄) is extremal formaxf jf(�1)j

f(x)p1� x2

[�1;1℄ ;where the maximum is taken for all 0 6= f 2 Pn(a1; a2; : : : ; an; [�1; 1℄);then f = 
Un with some 
 2 R: Observe that Un(�1) 
an be evaluated byL'Hospital's rule sin
e Un(x)2 = 1� Tn(x)21� x2 ;hen
e jUn(�1)j2 = jT 0n(�1)j = jBn(�1)j � jUn(�1)j with the notation ofSe
tion 3.5. Thus jUn(�1)j = jBn(�1)j :If y 2 [�1; 1℄ is arbitrary, then use a linear shift from [�1; 1℄ to [�y; y℄(some 
aution must be exer
ised about the 
hange of poles). utE.9 Extension of Lax's Inequality on the Half-Plane. Asso
iated with(ak)nk=1 � H+ := fz 2 C : Im(z) > 0g; let the Bernstein fa
tor Bn be, asin Corollary 7.1.10, de�ned byBn(x) := nXk=1 2 Im(ak)jx� akj2 :Show that jh0(x)j � 12Bn(x)khkR ; x 2 Rfor every h 2 P
n(a1; a2; : : : ; an;R) having all its zeros in H+:Equality holds for h = 
(eSn +1) with 
 2 C ; where eSn is the Blas
hkeprodu
t asso
iated with (ak)nk=1: Note that Bn(z) = jeS0n(z)j: Note also thath = 
(eS + 1) 2 P
n(a1; a2; : : : ; an;R) ; 
 6= 0has all its zeros on R:Hint: Use Theorem 7.1.11 with the substitution x = iz + 1z � 1 : utE.10 Remarks on Theorem 7.1.7 and Corollary 7.1.10.a℄ Given (ak)nk=1 � D and z 2 �D; show that equality holds in the in-equality of Theorem 7.1.7 if and only if f = 
Sn with 
 2 C ; where Sn isthe Blas
hke produ
t asso
iated with (ak)nk=1:Hint: Analyze the proof of Theorem 7.1.7. utb℄ Given (ak)nk=1 � H+ = fz 2 C : Im(z) > 0g and x 2 R; show thatequality holds in the inequality of Corollary 7.1.10 if and only if f = 
Qnwith 
 2 C ; where Qn is the Blas
hke produ
t asso
iated with (ak)nk=1:Note that the only if parts of E.10 a℄ and E.10 b℄ above are not 
laimedin the general 
ase of Theorem 7.1.7 and Corollary 7.1.10 (why?).
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tion Spa
es 339E.11 Markov-Bernstein-Type Inequality for SR
n and ASR
n. Let SR
ndenote the set of all self-re
ipro
al polynomials p 2 P
n satisfyingp(z) � znp(z�1) :Let SRn denote the set of all real self-re
ipro
al polynomials of degree atmost n; that is, SRn := SR
n \ Pn: For a polynomial p 2 P
n of the form(7:1:16) p(z) = nXj=0 
jzj ; 
j 2 C ;p 2 SR
n if and only if
j = 
n�j ; j = 0; 1; : : : ; n :Let ASR
n denote the set of all antiself-re
ipro
al polynomials p 2 P
nsatisfying p(z) � �znp(z�1) :Let ASRn denote the set of all real antiself-re
ipro
al polynomials of degreeat most n; that is, ASRn := ASR
n \ Pn: Let ASRn := ASR
n \ Pn. For apolynomial p 2 P
n of the form (7.1.16) p 2 ASR
n if and only if
j = �
n�j ; j = 0; 1; : : : ; n :a℄ There exists an absolute 
onstant 
 su
h thatjp0(x)j � 
nmin�(1 + logn); log� e1� x2�� kpk[�1;1℄holds for every x 2 [�1; 1℄ and for every p 2 P
n satisfying(7:1:17) jp(x)j � (1 + jxjn)kpk[�1;1℄ ; x 2 R ;in parti
ular, for every p 2 SR
n and for every p 2 ASR
n:The inequality jp0(x)j � 
n(1 + logn) kpk[�1;1℄for all p 2 SRn and for all p 2 ASRn was �rst obtained by Kro�o andSzabados [94a℄. They also showed that up to the 
onstant 
 > 0 the aboveinequality is sharp for both SRn and ASRn: Here we present a distin
tproof. The sharpness is studied in E.12 f℄.



340 7. Inequalities for Rational Fun
tion Spa
esOutline. Suppose p 2 P
n satis�es (7.1.17). Then(7:1:18) f(x) := p(x)1 + x2nsatis�es(7:1:19) kfkR � 2 kpk[�1;1℄ :Let(7:1:20) ak := ei(2k�1)�=(2n) ; k = 1; 2; : : : ; 2nbe the zeros of the equation z2n + 1 = 0: Now Corollary 7.1.10, togetherwith (7.1.18) to (7.1.20), yields thatjf 0(x)j � 2 nXk=1 Im(ak)jx� akj2! kfkR(7:1:21) � 4 nXk=1 Im(ak)jx� akj2! kpk[�1;1℄ ; x 2 R :Show that if n 2 N and x 2 [�1; 1℄; then(7:1:22) 4 nXk=1 Im(ak)jx� akj2 � nmin�(1 + logn); log� e1� x2�� ;where here the � symbol means that there are absolute 
onstants 
1 > 0and 
2 > 0 (independent of n 2 N and x 2 [�1; 1℄) su
h that the left-handside is between 
1 times the right-hand side and 
2 times the right-handside for every n 2 N and x 2 [�1; 1℄: Combining (7.1.18), (7.1.21), and(7.1.22), we 
on
lude that there is an absolute 
onstant 
2 su
h that���� p0(x)1 + x2n � 2nx2n�11 + x2n p(x)1 + x2n ����� 
2nmin�(1 + logn); log� e1� x2�� kpk[�1;1℄ ; x 2 R :So if x 2 [�1; 1℄; thenjp0(x)j � �2
2nmin�(1 + logn); log� e1� x2��+ 2n� kpk[�1;1℄and the proof is �nished. utb℄ There exists an absolute 
onstant 
 > 0 su
h that



 p0(x)1 + x2n 



R � 
n(1 + logn) 



 p(x)1 + x2n 



Rfor every p 2 P
2n:
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tion Spa
es 341Proof. Asso
iated with p 2 P
2n; letf(x) := p(x)1 + x2n :Let ak := ei(2k�1)�=(2n) ; k = 1; 2; : : : ; 2nbe the zeros of the equation z2n + 1 = 0: Using Corollary 7.1.10, we 
andedu
e that there are absolute 
onstants 
1 and 
2 su
h thatkf 0kR �  nXk=1 2 jIm(ak)j�1! kfkR � 
1 nXk=1�kn��1! kfkR� 
2n(1 + logn)kfkR :Therefore���� p0(x)1 + x2n � 2nx2n�11 + x2n p(x)1 + x2n ���� � 
2n(1 + logn) 



 p(x)1 + x2n 



Rfor every x 2 R; whi
h implies



 p0(x)1 + x2n 



R � (
2n(1 + logn) + 2n) 



 p(x)1 + x2n 



R ;and the result follows. ut
℄ For every m 2 N; there exists a 
onstant 
(m) depending only on m sothat kp(m)k[�1;1℄ � 
(m)(n(1 + logn))mkpk[�1;1℄for every p 2 P
n satisfying(7:1:23) jp(x)j � (1 + jxjn)kpk[�1;1℄ :Proof. Using part b℄ and indu
tion onm, we see that there exists a 
onstant
1(m) depending only on m su
h that



p(m)(x)1 + x2n 



R � 
1(m)(n(1 + logn))m 



 p(x)1 + x2n 



Rfor every p 2 P
2n: Note that if p 2 P
n satis�es (7.1.23), then



 p(x)1 + x2n 



R � 2 



 p(x)1 + jxjn 



R � 2kpk[�1;1℄ ;and the result follows. ut



342 7. Inequalities for Rational Fun
tion Spa
esE.12 Quasi-Chebyshev Polynomials for SR2n and ASR2n. Letak := ei(2k�1)�=(2n) ; k = 1; 2; : : : nbe the zeros of the equation z2n + 1 = 0 in the upper half-plane. LetM2n(z) := nYk=1 (z � ak)2 ; z 2 C ;P2n(x) :=Re(M2n(x)) ; x 2 R ;and Q2n(x) :=Im(M2n(x)) ; x 2 R :a℄ Show that if n is even, then P2n 2 SR2n and Q2n 2 ASR2n; while if nis odd, then Q2n 2 SR2n and P2n 2 ASR2n:b℄ Show that jM2n(x)j = 1 + x2n ; x 2 Rand P2n(x)2 +Q2n(x)2 = (1 + x2n)2 ; x 2 R ;in parti
ular kP2nk[�1;1℄ � 2 and kQ2nk[�1;1℄ � 2 :Proof. Note that(7:1:24) M2n(x)1 + x2n = nYk=1 x� akx� ak ;whi
h implies the �rst equality. The rest is straightforward from the de�-nitions. ut
℄ Show that there are extended real numbers1 = z0 > z1 > � � � > z2n = �1su
h that M2n(zj)1 + z2nj = (�1)j ; j = 0; 1; : : : ; 2n(the value of the left-hand side at �1 is de�ned by taking the limit whenx! �1).Hint: Use (7.1.24) and the argument prin
iple (see, for example, Ash [71℄).ut
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es 343d℄ Let n 2 N be even. Show that there exist1 = x0 > y1 > x1 > y2 > � � � > xn�1 > yn > xn = �1su
h thatP2n(xj)1 + x2nj = (�1)j+n=2 ; Q2n(xj) = 0 ; j = 0; 1; : : : ; nand Q2n(yj)1 + y2nj = (�1)j+1+n=2; P2n(yj) = 0 ; j = 1; 2; : : : n :Formulate the analog statement when n 2 N is odd.e℄ Show that there exists an absolute 
onstant 
 > 0 su
h thatjP 02n(x)j+ jQ02n(x)j � 
nmin�(1 + logn); log� e1� x2��for every n 2 N and x 2 [�1; 1℄:Proof. If x 2 [�1; 1℄; thenjP 02n(x)j+ jQ02n(x)j � jM 02n(x)j = jM 02n(x)j ����1 + x2nM2n(x) ����� ����M 02n(x)M2n(x) ���� = ����� nXk=1 2x� ak ����� � 2 nXk=1 Im(ak)jx� akj2� 
nmin�(1 + logn); log� e1� x2��with an absolute 
onstant 
 > 0; where the last inequality follows from(7.1.22). utThe next part shows the sharpness of the inequality of E.11 a℄.f ℄ Let 
 > 0 be the same absolute 
onstant as in part e℄. For the sake ofbrevity let Æn(x) := �
nmin�(1 + logn); log� e1� x2����1 :Show that for every intervalIn;x := [x; x+ 8Æn(x)℄ � [0; 1℄ ;
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tion Spa
esthere exist y1 2 In;x and y2 2 In;x su
h thatjP 02n(y1)j � 12Æn(x)�1 and jQ02n(y2)j � 12Æn(x)�1 :Proof. Suppose that jP 02n(y)j < 12Æn(x)�1for every y 2 In;x: Then, from part e℄ we 
an dedu
e thatjQ02n(y)j > 12Æn(x)�1for every y 2 In;x: ThereforekQ2nk[�1;1℄ � 12 RIn;x jQ02n(y)j dy > 128Æn(x) 12Æn(x)�1 = 2 ;whi
h 
ontradi
ts the last inequality of part b℄. This �nishes the proof ofthe �rst inequality. The se
ond inequality 
an be proven in the same way.utg℄ Show that p0(1) = 12n p(1)for every p 2 SR
n:By using the quasi Chebyshev polynomials for SR2n and ASR2n, it 
anbe shown that the inequality of E.11 
℄ is essentially sharp for the 
lassesSRn and ASR2n for every m. This has been pointed out to us by Szabados.The argument requires some more te
hni
al details than the proof in them = 1 
ase dis
ussed in the above exer
ise.7.2 Inequalities for Logarithmi
 DerivativesWe derive a series of metri
 inequalities of the formm��x 2 R : r0(x)r(x) � ��� � 
n� ; � > 0 ;where r is a rational fun
tion of type (n; n) and 
 is a 
onstant independentof n. Here m is the Lebesgue measure, although, sin
e the sets in questionare usually just �nite unions of intervals, this is mostly a notational 
on-venien
e. One of the interesting features of these inequalities is their easyextension from the polynomial 
ase to the rational 
ase.The basi
 inequality is due to Loomis [46℄. Note the invarian
e of themeasure of the set in this 
ase.
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 Derivatives 345Theorem 7.2.1. If p 2 Pn has n real roots, thenm��x 2 R : p0(x)p(x) � ��� = n� ; � > 0 :Proof. By 
onsidering ��1p instead of p; it is suÆ
ient to prove the theoremfor � = 1: We �rst 
onsider the 
ase where p has distin
t roots, whi
h aredenoted by �1 < �2 < � � � < �n: Thenp0(x)p(x) = nXk=1 1x� �i :Let �1 < �2 < � � � < �n be the roots of p� p0; whi
h must all be real. Notethat these are the points where p0(x)=p(x) = 1: It is now easy to see fromthe graph that�x 2 R : p0(x)p(x) � 1� = [�1; �1℄ [ [�2; �2℄ [ � � � [ [�n; �n℄and m��x 2 R : p0(x)p(x) � 1�� = nXi=1 �i � nXi=1 �i :However, if p(x) := xn + an�1xn�1 + � � �+ a0; thennXi=1 �i = �an�1 ;while nXi=1 �i = �(an�1 � n)is �1 times the se
ond 
oeÆ
ient of p� p0:This gives the result for distin
t roots. The 
ase when some of the rootsof p are repeated 
an be handled by an easy limiting argument. utCorollary 7.2.2. If �i 2 R; 
i > 0; i = 1; 2; : : : ; n; and Pni=1 
i = 1;then m (x 2 R : nXi=1 
ix� �i � �)! = 1� ; � > 0 :Proof. For 
i rational this follows immediately from Theorem 7.2.1 on 
lear-ing the denominators of 
i by multiplying by an integer. The real 
ase isan obvious limiting argument. utIn order to extend Theorem 7.2.1 to arbitrary polynomials we needthe following generalization of E.3 of Se
tion 2.4 due to Videnskii [51℄. Theproof is indi
ated in the exer
ises.
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tion Spa
esLemma 7.2.3. If p 2 Pn is positive on [a; b℄; then there exists q; s 2 Pnnonnegative on [a; b℄ with all real roots (in [a; b℄) so thatp(x) = q(x) + s(x) :We now prove the unrestri
ted 
ase of Theorem 7.2.1.Theorem 7.2.4. Let p 2 Pn: Thenm��x 2 R : p0(x)p(x) � ��� � 2n� ; � > 0 :Proof. Let � > 0 and let pn 2 Pn: Choose a and b su
h that�x 2 R : p0(x)p(x) � �� � [a; b℄ :By Lemma 7.2.3 we 
an �nd polynomials q 2 P2n and s 2 P2n su
h thatp2(x) = q(x) + s(x)where, for x 2 [a; b℄;0 � q(x) � p2(x) and 0 � s(x) � p2(x)and both q and s have only real roots. Now�x 2 R : p0(x)p(x) � �� = �x 2 R : (p2)0(x)p2(x) � 2�� :Also, (p2)0(x) � 2�p2(x)holds exa
tly when q0(x) + s0(x) � 2�(q(x) + s(x)) :By Theorem 7.2.1m��x 2 R : q0(x)q(x) � 2��� = m��x 2 R : s0(x)s(x) � 2��� = n� :Sin
e q and s are nonnegative on [a; b℄, it follows thatm(fx 2 [a; b℄ : q0(x) + s0(x) � 2�(q(x) + s(x))g) � 2n� ;and the proof is �nished. utIt 
an be shown that this inequality is asymptoti
ally sharp to theextent that the 
onstant 2 
annot be repla
ed by any smaller 
onstant forlarge n; see Kristiansen [82℄.Theorem 7.2.4 extends easily to rational fun
tions.
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 Derivatives 347Theorem 7.2.5. If r = p=q, where p; q 2 Pn; thenm��x 2 R : r0(x)r(x) � ��� � 8n� ; � > 0 :Proof. We have r0r = p0p � q0qand for � > 0;�x 2 R : r0(x)r(x) � �� � �x 2 R : p0(x)p(x) � �2� [ �x 2 R : q0(x)q(x) � ��2� :By Theorem 7.2.4 m��x 2 R : p0(x)p(x) � �2�� � 4n� ;and with s(x) := q(�x);m��x 2 R : q0(x)q(x) � ��2�� = m��x 2 R : s0(x)s(x) � �2�� � 4n� :It follows that m��x 2 R : r0(x)r(x) � ��� � 8n�for every � > 0: utThis inequality probably does not have the exa
t 
onstant. It 
an beshown (see Borwein, Rakhmanov, and Sa� [to appear℄) that the 
onstant 8
annot be repla
ed by any 
onstant less than or equal to 2�:Comments, Exer
ises, and Examples.Many variants on the inequalities of this se
tion are presented in E.2, E.3,E.4, and E.5. Some of these are in Borwein [82℄.E.5 explores some metri
 properties of the lemnis
ateE(p) := fz 2 C : jp(z)j � 1gof a moni
 polynomial p 2 P
n of the formp(z) = nYi=1 (z � zi) ; zi 2 C :



348 7. Inequalities for Rational Fun
tion Spa
esThe reader is referred to Erd}os, Herzog, and Piranian [58℄ for many resultsand open problems 
on
erning the lemnis
ate of moni
 polynomials. Onein parti
ular, whi
h is still open, 
onje
tures that for moni
 polynomialsp 2 P
n; the length of the boundary of E(p) is maximal for p(z) := zn � 1and so is O(n): Pommerenke [61℄ has shown that this length is O(n2):Borwein [95℄ improves this to O(n); see E.7. E.9 solves another problemof Erd}os, namely, the diameter of E(p) for a moni
 polynomial p 2 P
n isalways at least 2.Erd}os [76℄ 
ontains several other related open problems.E.1 Polynomials as Sums of Polynomials with Real Roots.a℄ Suppose p 2 P2n n P2n�1; and suppose that p > 0 on [a; b℄: Thenp(x) = (x� a)(b� x)u2(x) + v2(x)for some u 2 Pn�1 and v 2 Pn; whi
h have all their zeros in [a; b℄:b℄ Suppose p 2 P2n+1 n P2n and suppose that p > 0 on [a; b℄: Thenp(x) = (b� x)u2(x) + (x� a)v2(x)for some u; v 2 Pn; whi
h have all their zeros in [a; b℄:Hint: Let p be a polynomial of degree 2n that is stri
tly positive on [a; b℄:Let Tn be the Chebyshev polynomial for the Chebyshev system( 1pp(x) ; xpp(x) ; : : : ; xnpp(x)) :Then Tn(x) = v(x)=pp(x) with some v 2 Pn: Show that, for part a℄, v andu de�ned by (x� a)(b� x)u2(x) = p(x)� v2(x)are the required polynomials. Use a similar 
onstru
tion for part b℄. utE.2 Various Spe
ializations. For the next exer
ises we use the notationP+n to denote the polynomial of degree at most n with nonnegative 
oeÆ-
ients, and P"n to denote those elements of Pn that are nonde
reasing on[0;1):a℄ If r = p=q; where p; q 2 Pn and both p and q have only real roots, thenm��x 2 R : r0(x)r(x) � ��� � 4n� ; � > 0 :
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 Derivatives 349b℄ Let r(x) := xn=(4n� x)n: Thenm��x 2 R : r0(x)r(x) � 1�� = 4n :
℄ If r = p=q; where p 2 Pn and q 2 P"n; thenm��x � 0 : r0(x)r(x) � ��� � 2n� ; � > 0 :d℄ If r = p=q; where p 2 P+n and q 2 P"n; thenm��x � 0 : r0(x)r(x) � ��� � n� ; � > 0 :e℄ Let r(x) := xn. Thenm��x � 0 : r0(x)r(x) � ��� = n� ; � > 0 :E.3 Another Metri
 Inequality. If p 2 Pn has n real roots lying in theinterval (a; b); thenm��x 2 R : ����p0(x)p(x) ���� � �j(x� a)(b� x)j�� = 2n� ; � > 0 :Outline. Prove thatm��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ��� = �nand m��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ���� = �n :First 
onsider the 
ase when p has distin
t zeros. Let y0 < y1 < � � � < yndenote the n+1 roots of (x� a)(b� x)p0(x), and let x0 < x1 < � � � < xn�1denote the n roots of p(x): Theny0 < x0 � y1 < � � �xn�1 < yn < xn :=1 :Sin
e limx!xi�(x � a)(b� x)p0(x)p(x) = �1 ;we 
an dedu
e that for ea
h interval (yi; xi) there exists a point Æi 2 (yi; xi)su
h that (Æi � a)(b� Æi)p0(Æi) = ��p(Æi) :Sin
e the above equation 
an have at most n+ 1 solutions, we havem��x 2 R : 0 � (x� a)(b� x)p0(x)p(x) � ���� = nXi=0(Æi � yi) :Now pro
eed as in the proof of Theorem 7.2.1. ut
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tion Spa
esE.4 Extensions to P
n.a℄ If p 2 P
n ; thenm��x 2 R : ����p0(x)p(x) ���� � ��� � 8p2n� ; � > 0 :Hint: Write p as the sum of its real and imaginary parts. utb℄ If r = p=q with p; q 2 P
n; thenm��x 2 R : ����r0(x)r(x) ���� � ��� � 32p2n� ; � > 0 :E.5 On the Lemnis
ate E(p). Letp(z) := nYi=1 (z � zi) ; zi 2 Cand let E(p) := fz 2 C : jp(z)j � 1g :a℄ Show that m(E(p) \ R)) � 4 � 2�1=nwith equality only for the Chebyshev polynomial of degree n normalized tohave lead 
oeÆ
ient 1; see P�olya [28℄.Hint: Analogously to the proof of the Remez inequality of Se
tion 5.1, showthat the Chebyshev polynomial transformed to an interval of length 4 isextremal for this problem. utb℄ Let m2(�) denote the planar Lebesgue measure. Show thatm2(E(p)) � 4� :(In fa
t, m2(E(p)) � �; whi
h is exa
t for zn; this is due to P�olya [28℄.)E.6 Cartan's Lemma. Letp(z) := nYj=1 (z � zj) ; zj 2 Cand � > 0 be �xed. Then there exist at most n open disks, the sum of whoseradii is at most 2�; so that if z 2 C is outside the union of these open disksthen jp(z)j > ��e�n :
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 Derivatives 351Prove Cartan's Lemma as follows:a℄ Let �1; �2; : : : ; �� be �xed 
omplex numbers. Let � > 0: Show thatthere exists a positive integer � less than or equal to � for whi
h thereexists an open disk with radius ��=n 
ontaining �j for exa
tly � distin
tvalues of j = 1; 2; : : : ; �:Hint: Suppose to the 
ontrary that there is no su
h positive integer �.Show that this would imply the existen
e of an open disk with radius ��=n
ontaining �j for at least � +1 distin
t values of j = 1; 2; : : : ; �; whi
h is a
ontradi
tion. utb℄ Show that there exist open disks D1; D2; : : : ; Dk and positive integersm1;m2; : : : ;mk with the following properties:(1) Pkj=1mj = n ; m1 � m2 � � � � � mk ;(2) Dj has radius mj�n ;(3) Dj \ Ej 
ontains exa
tly mj zeros of p, whereEj := C n (D1 [D2 [ : : : [Dj�1) ;(4) for every integer m > mj ; no open disk of radius m�n 
ontains exa
tlym zeros of p in Ej :Hint: Use part a℄. ut
℄ Let D1; D2; : : : ; Dk be the open disks spe
i�ed in part b℄. Forj = 1; 2; : : : ; k; let D�j be the disk with the same 
enter as Dj and withtwi
e its radius. Show that for everyz 2 E� := C n (D�1 [D�2 [ � � � [D�k)there is a permutation ez1; ez2; : : : ; ezn of the zeros z1; z2; : : : ; zn su
h thatjz � ezj j � j�n ; j = 1; 2; : : : ; n :Hint: Let z 2 E� be �xed. Show, by indu
tion on i; that for every i =0; 1; : : : ; n� 1; there are at least i+1 zeros of p outside the open disk with
enter z and radius (n�i)�n : Distinguish the 
ases(1) n� i > m1 ;(2) mj � n� i > mj+1; j = 1; 2; : : : ; k � 1 ;(3) mk � n� i > 0 : utd℄ Finish the proof of Cartan's lemma.
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tion Spa
esE.7 The Length of the Boundary of E(p). Letp(z) := nYj=1 (z � zj) ; zj 2 Cand let E := E(p) := fz 2 C : jp(z)j � 1g :Show that the boundary �E of E is of length at most 4e�n: (In fa
t, withE.10 a℄, the estimate 
an be improved to (5:2)�n:)Outline. Pro
eed as follows:a℄ Let L be an arbitrary line in the 
omplex plane. Show that the set�E \ L 
ontains at most 2n distin
t points.Hint: By performing a translation and a rotation, if ne
essary, we mayassume that L = R: Now observe that there is a polynomial P (x; y) ofdegree at most 2n; in two real variables x and y; with 
omplex 
oeÆ
ients,su
h that �E = fz 2 C : jp(z)j2 = 1g= fz 2 C : p(z)p(z) = 1g= fz = x+ iy : x; y 2 R ; P (x; y) = 1g :Hen
e E \ R = fx 2 R : P (x; 0) = 1gand sin
e P (x; 0) 2 P
2n; the result follows. utb℄ For a 2 C and r > 0; let Q be the squareQ := fz 2 C : jRe(z � a)j < r ; jIm(z � a)j < rg :Show that Q \ �E is of length at most 8rn:Hint: Divide Q \ �E into sub
urves C1; C2; : : : ; Cm so that every verti
aland horizontal line 
ontains at most one point of ea
h Cj . Let l(j)x and l(j)ydenote the length of the interval obtained by proje
ting Cj to the x axesand y axes, respe
tively. Letlx := mXj=1 l(j)x and ly := mXj=1 l(j)y :Use part a℄ to show that lx � 4nr and ly � 4rn. Hen
e, if l denotes thelength of Q \ �En; then l � lx + ly � 8rn : ut
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℄ Show that the boundary �E of E is of length at most 16en:Hint: Combine Cartan's lemma (see E.7) and part b℄. utThe rest of the exer
ise is about improving 16en to 4�en:d℄ Let B be the open disk with 
enter a 2 C and radius r > 0. Show thatB \ �E is of length at most 2�rn:Outline. Let Q be the squareQ := fz 2 C : jRe(z)j < r ; jIm(z)j < rg :For � 2 [0; 2�) let Q� be the squareQ� := fa+ ei�(z � a) : z 2 Qg :Let l(�) denote the length of Q�\�E: Let lx(�) and ly(�) denote the totallength of the intervals obtained by proje
ting Q� \ �E to the lines�z = rei� : r 2 R	 and �z = rei(�+�=2) : r 2 R	 ;respe
tively (
ounting multipli
ities). The pre
ise de�nition of lx(�) andly(�) 
an be formulated in the same way as in the hint to part b℄, whi
h isleft to the reader. Use part a℄ to show thatlx(�) + ly(�) � 8rn ; � 2 [0; 2�) :Hen
e 4� l(0) = 12� Z 2�0 l(0)(j sin�j+ j 
os�j) d�= 12� Z 2�0 (lx(�) + ly(�)) d� � 8rn ;and l(0) � 2�rn follows. ute℄ Prove the initial statement of the exer
ise.Hint: Combine Cartan's lemma (see E.6) and part d℄. utE.8 On the Length of Another Lemnis
ate. Suppose p 2 P
n: Show thatthe length of the lemnis
ateF = F (p) := �z 2 C : ����p0(z)p(z) ���� = n�is at most 16n(1 + log n) (a
tually at most 4�n(1 + logn)).Hint: The arguments are very similar to those given in the outline to E.7.First show that if L is an arbitrary line in the 
omplex plane, then F \ L
ontains at most 2n distin
t points. Next prove that if Dr is an open diskof radius r in the 
omplex plane, then Dr \ F is of length at most 8rn(a
tually at most 2�rn). Now use E.6 
℄ with � = 1 + logn: utThe proof of the following exer
ise requires some familiarity with har-moni
 fun
tions.
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tion Spa
esE.9 On the Diameter of E(p). The diameter diam(A) of a nonempty setA � C is de�ned bydiam(A) := supfjz1 � z2j : z1; z2 2 Ag :Let p 2 P
n be an arbitrary moni
 polynomial of degree n; that is,p(z) := nYj=1 (z � zj) ; zj 2 C :Then the diameter of the setE(p) := fz 2 C : jp(z)j � 1gis at least 2.Pro
eed as follows:a℄ Let bC := C [ f1g and � := fz 2 bC : jzj > 1g :Let p 2 P
n be moni
. Let E := 
o(E(p)); that is, the 
onvex hull of E(p):Use the Riemann mapping theorem (see Ahlfors [53℄) to show that thereexists a fun
tion g of the formg(z) = bz + 1Xj=0 bjz�j ; z 2 � ; b; bj 2 Csu
h that g is analyti
 and one-to-one on �; andg(�) = bC nE :Hint: Note that bC nE is simply 
onne
ted. utb℄ Let b be the same as in part a℄. Show that jbj � 1:Outline. Be
ause of the de�nition of E; for every " > 0 there exists a Æ > 0su
h that �" � log jz�np(g(z))j ; jzj = 1 + Æ :Sin
e G(z) := log jz�np(g(z))j is harmoni
 on �; we haveG(1) = 12�(1 + Æ) Z 2�0 G((1 + Æ)ei�) d� � �"2�(1 + Æ)for every " > 0; so G(1) � 0: On the other hand, sin
e p 2 P
n is a moni
polynomial of degree n;
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 Derivatives 355G(1) = log jbjn = n log jbj ;from whi
h jbj � 1 follows. ut
℄ Show that diam(E) � 2 :Outline. Assume to the 
ontrary that diam(E) < 2. Then there exists aÆ > 0 su
h that jz�1(g(z)� g(�z))j < 2 ; jzj = 1 + Æ :Sin
e F (z) := z�1(g(z)� g(�z)) = 2b+ 2b1z�2 + 2b3z�4 + � � �is analyti
 on �, the maximum prin
iple (E.1 d℄ of Se
tion 1.2) yields2jbj = jF (1)j � maxjzj=1+Æ jF (z)j = maxjzj=1+Æ jz�1(g(z)� g(�z))j < 2 ;that is, jbj < 1; whi
h 
ontradi
ts part b℄. utd℄ Note that diam(A) = diam(
o(A)) for every nonempty A � C ; inparti
ular, diam(E(p)) = diam(E):The more general result that diam(A) � 2 
ap(A) for every nonemptyA � C is observed in Pommerenke [75℄.E.10 More on E(p). Suppose p is a moni
 polynomial with 
omplex 
o-eÆ
ients. As before, letE := E(p) := fz 2 C : jp(z)j � 1g :a℄ It follows from E.6 (Cartan's lemma) that the set E(p) 
an be 
overedby disks the sum of whose radii is at most 2e: It is 
onje
tured in Erd}os,Herzog, and Piranian [58℄ that the 
orre
t value in this problem is 2. (The
urrent best 
onstant is less than 2.6.)b℄ If E(p) is 
onne
ted, then it is 
ontained in a disk with radius 2 
enteredat 1nPnk=1 zk, where z1; z2; : : : ; zn are the zeros of p.Proof. This is 
onje
tured in Erd}os, Herzog, and Piranian [58℄ and provedin Pommerenke [59b℄. ut
℄ If E(p) is 
onne
ted, then its 
ir
umferen
e is at least 2�:Proof. This is also 
onje
tured in Erd}os, Herzog, and Piranian [58℄, andproved in Pommerenke [59b℄. ut



This is page 356Printer: Opaque thisA1Algorithms andComputational Con
erns

OverviewAppendix 1 presents some of the basi
 algorithms for 
omputing with poly-nomials and rational fun
tions and dis
usses some of the 
omplexity issues.In
luded is a dis
ussion of root �nding methods. It requires very little ba
k-ground and 
an essentially be read independently.Algorithms and Computational Con
ernsPolynomials lend themselves to 
omputation perhaps more than any otherobje
t of analysis. Algorithms that involve spe
ial fun
tions, di�erentialequations, series, and the like usually must redu
e at some point to a�nite polynomial or rational approximation or trun
ation. This often al-lows analyti
 problems to be redu
ed to algebrai
 ones. This appendix willpresent, as a series of exer
ises, some of the prin
ipal algorithmi
 
on
erns.The reader is en
ouraged to experiment with the algorithms. With 
urrentte
hnology this is most 
omfortably done in any of the large symboli
 ma-nipulation pa
kages available. Code, a
tual or s
hemati
, is not presented.Indeed, methods rather than algorithms are presented. Current \pra
ti
al"best methods date qui
kly in this rapidly evolving area. It is also the au-thors' belief that today's theoreti
al 
uriosities may be vital for tomorrow's
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erns 357algorithms as larger instan
es are 
al
ulated on faster ma
hines. Histori-
ally we have already seen this happen repeatedly with algorithms su
h asthe fast Fourier transform algorithm.One of the most interesting lessons to be learned from the last fewde
ades of revitalized interest in 
omputational mathemati
s is that manyof the most familiar mathemati
al algorithms, su
h as how to multiplylarge numbers, were very poorly understood, and indeed, still are in-
ompletely analyzed. Very many of the familiar pro
esses of mathemat-i
s, su
h as multipli
ation of large numbers or 
omputation of determi-nants, 
an be 
omputed far more expeditiously than allowed by the usual\s
hool" algorithms. See, for example, Aho, Hop
roft, and Ullman [74℄; Biniand Pan [92℄; Borodin and Munro [75℄; Borwein and Borwein [87℄; Brent[74℄; Knuth [81℄; Pan [92℄; Smale [85℄; and Wilf [86℄ for the 
omplexity sideof the following exer
ises.E.1 Complexity and Re
ursion. We are 
on
erned with measuring thesize of an algorithm given an input of a 
ertain length. Unfortunately, thereare many di�erent ways of measuring this. (One 
ould, for example, use thelength of the tapes of some well-de�ned instantiation of a Turing ma
hine.)We will settle for less. The measure of input size will usually be 
hosen to bea natural one, so for polynomials of degree n; the measure will often be n:The 
omplexity measure then depends a bit on the problem. For example, itmight 
ount the number of additions of 
oeÆ
ients (we do not distinguishsubtra
tion from addition) and multipli
ations of 
oeÆ
ients required toevaluate the polynomial at a point. (So, for example, by Horner's rule O(n)operations suÆ
e.) Care is already required to 
ount naturally. Note thatwe have not spe
i�ed the size of the 
oeÆ
ients (this may or may not bereasonable) and so we 
ould 
heat on addition of 
oeÆ
ients by doing twoadditions as one addition of twi
e the length. (Sin
e a+ b and 
+ d 
an bede
oded from (10ma+ 
) + (10mb+ d); where m is larger than the numberof digits in any of a, b, 
; or d.) It is more reasonable in this 
ontext to�x a pre
ision (or to think of working to in�nite pre
ision or over somepolynomial ring). Our 
ases are fairly simple, and the measures should be
lear in 
ontext.We adopt the following notations:f(n) = O(g(n)) means lim supn!1 f(n)g(n) <1and f(n) = 
(g(n)) means lim supn!1 g(n)f(n) <1 :Parts of these exer
ises are reprinted from Borwein and Borwein [87℄, with permis-sion from Wiley.



358 A1. Algorithms and Computational Con
ernsSo the �rst measure gives an upper bound, while the se
ond gives a lowerbound.Many algorithms are analyzed re
ursively. For example, addition of twopolynomials of degree at most 2n redu
es to two additions of polynomials ofdegree at most n, plus perhaps an \overhead" for reassembling the pie
es.In other words, for the 
omplexity of addition, we haveA(2n) � 2A(n) + 
 ;from whi
h one 
an dedu
e thatA(n) = O(n) :This general re
ursive strategy of breaking a problem in half is often 
alled\divide and 
onquer."We introdu
e the following fun
tions. Here n is the maximum degreeof the polynomials p and q: Additions, multipli
ations, and so on are per-formed in the underlying �eld of 
oeÆ
ients (in our 
ase C or R) and areall performed to some predetermined �xed pre
ision (possibly in�nite).A(n) := the maximum number of � ; � ; � ; to 
ompute p� q ;M(n) := the maximum number of � ; � ; � ; to 
ompute pq ;e(n) := the maximum number of � ; � ; � ; to evaluatep(�) for an arbitrary �xed � 2 C ;E(n) := the maximum number of � ; � ; � ; to evaluatep(�1); : : : ; p(�n) for arbitrary �xed �1; : : : ; �n 2 C :These are the 
omplexity fun
tions for polynomial addition, polynomialmultipli
ation, polynomial evaluation at a single point, and polynomialevaluation at n points, respe
tively. The input for the 
omputation is the
oeÆ
ients (and the evaluation points for e(n) and E(n)). So the inputmay be 
onsidered to be in C n+1 (or more generally an (n+1)-dimensionalve
tor spa
e over an in�nite �eld). In the �rst two 
ases the output is thesequen
e of 
oeÆ
ients. In the last two 
ases, respe
tively, the output is theevaluation and the sequen
e of evaluations.a℄ Show that usual algorithms giveA(n) � 2n+ 2 = O(n) ;M(n) = O(n2) ;e(n) = O(n) (Horner's rule) ;E(n) = O(n2) :E.2 and E.3 of this appendix provide better upper bounds for the last threefun
tions above.
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erns 359b℄ Show that A(n) � n+ 1 ;M(n) � n+ 1 ;e(n) � n+ 1 ;E(n) � n+ 1 :Hint: In all 
ases this is a uniqueness argument. At least one operationmust be performed for ea
h 
oeÆ
ient, otherwise the algorithm will notdistinguish various di�erent sequen
es of input. ut
℄ Some Re
ursive Bounds. Let a; b > 0 and 
; d > 1: Suppose that f ismonotone on (0;1):If f(n) � af(n=
) + bn; thenf(n) = O(n) if a < 
 ;f(n) = O(n logn) if a = 
 ;f(n) = O(nlog
 a) if a > 
 :If f(n) � df(n=d) + bn(logn)
�1; thenf(n) = O(n(logn)
) :Hint: Analyze the equality 
ase. Then establish the general prin
iple thatthe equality solution is the maximal solution. utE.2 The (Finite) Fast Fourier Transform (FFT). This is undoubtedly oneof the most widely used algorithms. It has, in its various forms, tremendouspra
ti
al and theoreti
al appli
ations.Let w be a primitive (n+1)th root of unity in either C or a �nite �eldFm ; that is, wn+1 = 1 and wk 6= 1 for k = 1; 2; : : : ; n: In the 
omplex 
asewe may take w := e2�i=(n+1): Consider the following two problems.Interpolation Problem. Given n+ 1 numbers, �0; �1; : : : ; �n; �nd the 
o-eÆ
ients of the unique polynomialp(z) := a0 + a1z + � � �+ anznof degree n that satis�esp(wk) = �k ; k = 0; 1; : : : ; n :Evaluation Problem. Given the 
oeÆ
ients of a polynomial pn of degreeat most n; 
al
ulate the n+ 1 valuesp(wk) ; k = 0; 1; : : : ; n :



360 A1. Algorithms and Computational Con
ernsThese are the two dire
tions of the (�nite) Fourier transform. The
lassi
al approa
hes to either part of the Fourier transform problem have
omplexity at least 
n2: This is the 
omplexity, for example, of evaluatingpn at n + 1 points using Horner's rule. Both dire
tions 
an, however, besolved with 
omplexity O(n logn).a℄ If n+ 1 = 2m; then both the interpolation and the evaluation problemhave 
omplexity O(n log n): (Here we are 
ounting the number of additionsand multipli
ations in the underlying 
oeÆ
ient �eld, whi
h for most of ourpurposes is C :)Outline. We treat the evaluation �rst. Supposep(x) := a0 + a1x+ � � �+ anxn :Let q(x2) := a0 + a2x2 + a4x4 + � � �+ an�1xn�1and x r(x2) := x(a1 + a3x2 + � � �+ anxn�1) :Then, with y := x2; p(x) = x r(y) + q(y) ;where r and q are both polynomials of degree at most 2m�1 � 1: Theobservation that makes the proof work is that for w an (n + 1)th root ofunity, (wk)2 = �w(n+1)=2+ k�2 :Hen
e, evaluating p(x) at the n+ 1 roots of unity redu
es to evaluating rand q ea
h at the 12 (n+ 1) points (w2)1; (w2)2; : : : ; (w2)(n+1)=2 and amal-gamating the results. Observe that w2 is a primitive (2m�1)th root of unity,so we 
an iterate this pro
ess. Let F (2m) be the number of additions andmultipli
ations required to evaluate a polynomial of degree at most 2m� 1at the 2m points wk ; k = 1; 2; : : : ; 2m; where w is a primitive (2m)th rootof unity. ThenF (1) = 1 and F (2m) = 2F (2m�1) + 2 � 2m ; m = 1; 2; : : : :The se
ond term 
omes from the single addition and multipli
ation requiredto 
al
ulate ea
h p(wk) from r(w2k) and q(w2k). This re
ursion solves asF (2m) = 2m+1m;and the bound for the evaluation problem is established.The interpolation problem is equivalent to evaluation. This 
an be seenas follows. Let w be a primitive (n+ 1)th root of unity, and let
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erns 361W := 0BBBB� 1 1 1 : : : 11 w w2 : : : wn1 w2 w4 : : : w2n... ... ... . . . ...1 wn w2n : : : wn2 1CCCCA :Then W�1 = 1n+ 1 0BBBB� 1 1 1 : : : 11 w�1 w�2 : : : w�n1 w�2 w�4 : : : w�2n... ... ... . . . ...1 w�n w�2n : : : w�n2 1CCCCAand w�1 is also a primitive (n+1)th root of unity. The interpolation problem
an be formulated as follows. Find (a0; : : : ; an) so thatW (a0; a1; : : : ; an) = (�0; �1; : : : ; �n):However, this 
an be solved byW�1(�0; �1; : : : ; �n) = (a0; a1; : : : ; an) ;whi
h is exa
tly the evaluation problem. utSee Borodin and Munro [75℄ and Borwein and Borwein [87℄. Versionsof FFT exist in a plethora of shapes and sizes. We have just exposed thetip of the i
eberg.As an appli
ation we 
onstru
t a fast polynomial multipli
ation.b℄ Fast Polynomial Multipli
ation. Suppose the polynomials p; q of degreeat most n�1 are given. Compute the 
oeÆ
ients of the produ
t pq as follows:b1℄ Use an FFT to evaluate p and q at the primitive (2n)th roots of unityw1; w2; : : : ; w2n:b2℄ Form p(wk)q(wk) ; k = 1; 2; : : : ; 2n :b3℄ Find the 
oeÆ
ients of the produ
t pq by solving the interpolationproblem on
e again by using the FFT. Show that this algorithm requiresO(n logn)additions, multipli
ations, and divisions (of 
omplex numbers) and there-fore M(n) = O(n logn):This is the best-known upper bound on the serial 
omplexity of poly-nomial multipli
ation. The only known lower bound is the trivial one O(n):In parallel (on a PRAM) polynomial multipli
ation 
an be done in O(logn)time on O(N) pro
essors; see Pan [92℄. The same bounds apply for the FFTin a℄.



362 A1. Algorithms and Computational Con
ernsE.3 Other Elementary Operations.a℄ Fast Polynomial Division. For polynomials p of degree n and q of degreem � n; it is possible to �nd polynomials u and r with deg(r) < deg(q)su
h that p(x) = u(x)q(x) + r(x)in O(n logn) additions and multipli
ations (of 
omplex numbers).Outline. Simplify by observing that it suÆ
es to 
al
ulate u sin
e r maythen be 
omputed by E.2 b℄. If we repla
e x by 1=x thenp(x�1)q(x�1) = u(x�1) + r(x�1)q(x�1)and so, for some h � 1;p�(x)q�(x) = u�(x) + xn�m+h r�(x)q�(x) ; where v�(x) := xdeg(v)v(x�1) :To 
al
ulate u� (and hen
e to 
al
ulate u) it suÆ
es to 
al
ulate the �rstn�m (= deg(u)) Taylor 
oeÆ
ients of 1=q�: This 
an be done by Newton'smethod (see the next exer
ise) as follows: Suppose deg si = j � 1 and1q�(x) � si(x) = O(xj) :Establish that1q�(x) � �2si(x) � s2i (x)q�(x)� = 1q�(x) [1� si(x)q�(x)℄2 = O(x2j ) :Note that we may assume q�(0) 6= 0: Now the 
omputation ofsi+1 := 2si � s2i q�
an be performed by using an FFT-based polynomial multipli
ation and itneeds only be performed by using the �rst 2j � 1 
oeÆ
ients of q� and si:By starting with an appropriate �rst estimate of s0 (say, s0(x) := 1=q�(0)),and pro
eeding indu
tively as above (doubling the number of 
oeÆ
ientsused at ea
h stage) we 
an show that the required number of terms of theexpansion 
an be 
al
ulated in O(n log n) additions and multipli
ations (of
omplex numbers).b℄ Fast Reversion of Power Series. Letf(x) = 1Xk=0 akxk ; a0 6= 0
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erns 363be a formal power series with given 
oeÆ
ients. Show that the �rst n 
oeÆ-
ients of the formal Taylor expansion of 1=f 
an be 
omputed in O(n logn)additions, multipli
ations, and divisions (of 
omplex numbers).
℄ Fast Polynomial Expansion. Given �1; �2; : : : ; �n show that the 
o-eÆ
ients of Qni=1(x � �i) 
an all be 
al
ulated in O(n(logn)2) additions,multipli
ations, and divisions (of 
omplex numbers).Hint: Pro
eed re
ursively by dividing the problem into two parts of roughlyhalf the size. Re
ombine the pie
es using part b℄ of the previous exer
ise.utd℄ Fast Polynomial Expansion at Arbitrary Points. Given a polynomialp of degree at most n; and n + 1 distin
t points x0; x1; : : : ; xn; show thatp(x0); p(x1); : : : ; p(xn) 
an all be evaluated in O(n(logn)2) multipli
ationsand additions.Hint: Let q1(x) := bn=2
�1Yi=0 (x� xi)and let r1 be the remainder on dividing p by q1: Note that r1(xi) = p(xi)for ea
h i < n=2: Similarly, useq2(x) := nYbn=2
 (x� xi):Thus two divisions redu
e the problem to two problems of half the size. ute℄ Extend d℄ to rational fun
tions.f ℄ Evaluation of xn. The S-and-X binary method for 
al
ulating xn isthe following algorithm. Suppose n has binary representation Æ0Æ1Æ2 : : : Ækwith Æ0 = 1: Given symbols S and X; de�neSi := � SX if Æi = 1S if Æi = 0and 
onstru
t the rule S1S2 � � �Sk :Now let S be the operation of squaring, and let X be the operation ofmultiplying by x. Let S1S2 � � �Sk operate from left to right beginning withx: For example, for n = 27, Æ0Æ1Æ2Æ3Æ4 = 11011and S1S2S3S4 = (SX)(S)(SX)(SX) :
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ernsThe sequen
e of 
al
ulations of x27 is thenx! x2 ! x3 ! x6 ! x12 ! x13 ! x26 ! x27:f1℄ Prove that the above method 
omputes xn and observe that it onlyrequires storing x; n, and one partial produ
t.f2℄ Show that the number of multipli
ations in the S-and-X method is lessthan 2blog2 n
:f3℄ Show that the S-and-X method is optimal for 
omputation of x2m(
onsidering only multipli
ations).f4℄ Show that the S-and-X method is not optimal for 
omputing x15:An extended dis
ussion of this interesting and old problem is presentedin Knuth [81℄.Mu
h further material on the 
omplexity of polynomial operationsand 
omplexity generally may be found in Aho, Hop
roft, and Ulman [74℄;Borodin and Munro [75℄; Pan [92℄; and Wilf [86℄.E.4 Newton's Method. One of the very useful algorithms, both in theoryand pra
ti
e, for zero �nding is Newton's method.a℄ Suppose f is analyti
 in a (
omplex) neighborhood of z0; and supposef(z0) = 0 and f 0(z0) 6= 0: Show that the iterationxn+1 := xn � f(xn)f 0(xn)
onverges lo
ally uniformly quadrati
ally, that is, with a 
onstant 
 inde-pendent of n; jxn+1 � z0j < 
 jxn � z0j2for initial values x0 in some neighborhood of z0: As before, we 
all thislo
ally quadrati
 
onvergen
e.Hint: Note thatf(xn) = f(z0) + (xn � z0)f 0(z0) +O((xn � z0)2) ;whi
h impliesxn+1 � z0 = (xn � z0) �f 0(xn)� f 0(z0)f 0(xn) �+O((xn � z0)2) : ut



Algorithms and Computational Con
erns 365b℄ Show that the iterationxn+1 := xn + f(xn)f 0(xn)
onverges lo
ally quadrati
ally to the simple poles of a meromorphi
 fun
-tion f: Note that this is Newton's method with the sign 
hanged.
℄ The iteration xn+1 := xn � f(xn)f 0(xn)f 0(xn)2 � f(xn)f 00(xn)
onverges lo
ally quadrati
ally to a zero of an analyti
 f independent of itsmultipli
ity; see Henri
i [74℄.d℄ Let g := f�1: The iterationxn+1 := xn + (n+ 1) g(n)(xn)g(n+1)(xn)
onverges lo
ally uniformly to a zero of an analyti
 fun
tion f with(n + 2)th order. Newton's method is n := 0; Halley's method is n := 1(see Householder [70℄).Newton's method and its variants work tremendously well providedthat a good starting value 
an be found. This is a problem. On a realinterval a bise
tion method 
an be used initially to lo
alize the zeros. Inthe plane, life is more 
ompli
ated as is seen in the next exer
ise. Anotherdrawba
k to Newton's method is the need to 
ompute the derivative. Of
ourse, this is not a problem for polynomials, but in a general setting it isusually repla
ed by an approximation su
h asf(xn)� f(xn�1)xn � xn�1(whi
h yields the so-
alled se
ant method).e℄ Consider Newton's method for 
omputing px starting with x0 := 1:This gives xn+1 := 12 �xn + xxn� :Show that rn(x) := xn+1 is a rational fun
tion in x with numerator ofdegree 2n and denominator of degree 2n � 1: Show that rn(x) �px has azero of order 2n+1 at 1: So rn is in fa
t the (2n; 2n � 1) Pad�e approximantto px. (This implies, though not obviously, that rn has all real negativeroots and poles.)



366 A1. Algorithms and Computational Con
ernsAn attra
tive feature of Newton's method is that it is \self-
orre
ting."So, for example, to 
ompute a root to a large pre
ision, one 
an start ata small pre
ision and double the pre
ision at ea
h iteration. This is a sub-stantial savings both pra
ti
ally and theoreti
ally. The same feature appliesto Newton's method solutions over formal power series, as in E.3 a℄. Thisallows for doubling the number of terms used at ea
h stage. Mu
h addi-tional material on Newton's method is available in Borwein and Borwein[87℄, Henri
i [74℄, Householder [70℄, and Traub [82℄.E.5 Newton's Method in Many Variables.a℄ Let f : C n ! C n ; and suppose f has Ja
obianJ := �����fi�zj ���� ;where f := (f1; f2; : : : ; fn) with fi : C n ! C : Letx := (x1; x2; : : : ; xn) 2 C n :The fun
tion J(x) is the Ja
obian evaluated at x. Then Newton's methodbe
omes xk+1 = xk � skwhere sk solves J(xk)sk = f(xk). This iteration 
onverges lo
ally uniformlyquadrati
ally to a zero z0 of f; that is, with a 
onstant 
 independent of n;jxn+1 � z0j < 
 jxn � z0j2for initial values x0 in some neighborhood of z0; provided in a neighbor-hood of z0; f is 
ontinuously di�erentiable, J�1 exists and is bounded innorm, and J satis�es a Lips
hitz 
ondition. We 
all this lo
ally quadrati

onvergen
e. For a polynomial f; we require only that J�1 exists in a neigh-borhood of the zero z0: (For examples and detail, see Dennis and S
hnabel[83℄.)b℄ Finding All Zeros of a Polynomial. Letp(z) := a0 + a1z + � � �+ anzn ; an := 1 :Let fi(x1; : : : ; xn) be the ith 
oeÆ
ient ofg(x) := nYi=1(x� xi)� nXi=0 aixiand let f(x) := (f1; f2; : : : ; fn) :
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erns 367Then the iteration of part a℄ applied to f 
onverges lo
ally quadrati
ally toz0 := (z1; z2; : : : ; zn); where z1; z2; : : : ; zn are the zeros of p; provided thezeros of p are distin
t.
℄ Another Approa
h to Finding All Zeros. Let xj(k) denote the kthapproximation to the jth root of p; where p is a polynomial of degree nwith n distin
t roots. Letxj(k + 1) = xj(k)� p(xj(k))Qki6=j(xj(k)� xi(x)) ; j = 1; 2; : : : ; n :Show that for suÆ
iently good 
hoi
e of (x0(1); : : : ; x0(k)); the above iter-ation 
onverges lo
ally quadrati
ally to a sequen
e of the n distin
t zerosof p:Hint: This is really just the single variable version of Newton's method forea
h root, where the derivative is approximated by the derivative of the kthestimate. utd℄ Observe that the iteration of part 
℄ fails to 
onverge for p(x) := xn�1;n > 2; if the starting values are all taken to be real.In pra
ti
e, the iteration of part 
℄ works rather well for reasonably
hosen starting values. One 
an use the te
hniques of the next exer
ise tolo
alize the zeros �rst. With 
are, an algorithm 
an be given that 
omputesa zero of a polynomial with an error < 2�b in O(n log b logn) time and allzeros in O(n2 log b logn) time; see Pan [92℄. On a parallel ma
hine (PRAM)an algorithm requiring O(log3(nb)) time and O(nb)O(1) pro
essors 
an begiven for 
omputing all zeros.e℄ Modify the iteration of E.4 
℄ as given in the previous exer
ise to get amethod that 
omputes all roots even in the presen
e of repeated roots.For further dis
ussion, see Aberth [73℄, Durand [60℄, Kerner [66℄, andWerner [82℄.E.6 Lo
alizing Zeros.a℄ Cau
hy Indi
es. Let r be a real rational fun
tion with a real pole �.The Cau
hy index of r at � is8><>: 1 if limx!�� r(x) = �1 and limx!�+ r(x) =1�1 if limx!�� r(x) =1 and limx!�+ r(x) = �10 otherwise :The Cau
hy index of r on an interval [a; b℄ is the sum of the Cau
hy indi
esof the poles of r in (a; b). (We demand that neither a nor b be poles of r.)We denote this by Iba(r):b℄ The Eu
lidean Algorithm. Let p0 and p1 be nonzero polynomials.De�ne polynomials p0; p1; : : : ; pm and q1; q2; : : : ; qm (by the usual divisionalgorithm) so that



368 A1. Algorithms and Computational Con
ernsp0(z) = p1(z)q1(z)� p2(z) ; deg(p2) < deg(p1) ;p1(z) = p2(z)q2(z)� p3(z) ; deg(p3) < deg(p2) ;...pm�1(z) = pm(z)qm(z)� 0 ;the algorithm stops the �rst time that the remainder is zero. This is 
alledthe Eu
lidean algorithm. Show that pm is the greatest 
ommon fa
tor of p0and p1.
℄ Let p0; p1; : : : ; pm be the polynomials generated by the Eu
lidean algo-rithm in part b℄. Let Pi := pi=pm; i = 0; 1; : : : ;m: Suppose p0(a)p0(b) 6= 0:Show that if Pk(
) = 0 for some k and a � 
 � �; thenP1(
) 6= 0 if k = 0and Pk�1(
)Pk+1(
) < 0 if 1 � k � m� 1 :d℄ Show that for real polynomials p0 and p1 with p0(a)p0(b) 6= 0;Iba(p1=p0) = v(a)� v(b) ; a < b ;where v(�) is the number of sign 
hanges in the sequen
e(p0(�); p1(�); : : : ; pm(�))and where the polynomials pi are generated by the Eu
lidean algorithm asin part b℄. (As before, by a sign 
hange we mean that pi(�)pi+k(�) < 0 andpi+1(�) = pi+2(�) = � � � = pi+k�1(�) = 0:)Hint: Without loss of generality, we may assume that pm = 1 (why?), soPk = pk for ea
h k: First, note that v(x) may 
hange magnitude only ifpi(x) = 0 for some i: By 
ontinuity of the polynomials pi; and by part 
℄,v(x) is 
onstant on any subinterval of [a; b℄ that does not 
ontain a zero ofp0: We are now redu
ed to 
onsidering the behavior of v(x) at the zeros ofp0: Consider the various possibilities for the behavior of p1=p0 at the zerosof p0 by 
onsidering the four possible 
hanges of signs of p0 and p1 at thezeros of p0 and the e�e
t this has on the Cau
hy index and the in
reaseand de
rease of v(x): (Note that v(x) de
reases by 1 if the Cau
hy index is1 while v(x) in
reases by 1 if the Cau
hy index is �1:) ute℄ Zeros on an Interval. Suppose p is a real polynomial and p(a)p(b) 6= 0:Then Iba(p0=p) equals the number of distin
t zeros of p in [a; b℄: This alsoequals v(a)� v(b); where v(x) is as in d℄ with p0 := p and p1 := p0:



Algorithms and Computational Con
erns 369Hint: Use p0(z)p(z) =X mkz � �kand note that ea
h distin
t pole in (a; b) 
ontributes +1 to the Cau
hyindex. utf ℄ Show that the number of zeros of a real polynomial on the real lineequals lima!1(v(�a)� v(a)) ;where v(x) is 
omputed as in part e℄. (That is, v(x) is the number of sign
hanges in the sequen
e (p0; p1; : : : ; pm) generated by the Eu
lidean algo-rithm with p0 := p and p1 := p0:)g℄ The Number of Zeros in H := fz 2 C : Im(z) > 0g. Suppose that themoni
 polynomial p 2 P
n has (exa
tly) k real zeros 
ounting multipli
ities.Write p(x) = r(x) + i s(x) ; r; s 2 Pn :Then the number of zeros of p in H is12 �n� k � I1�1(s=r)� ;and this 
an be 
omputed as in part d℄ by usingI1�1(s=r) = lim�!1 I���(s=r) :Hint: First 
onsider the 
ase where k = 0: Consider p on a 
ounter
lo
kwisesemi
ir
ular 
ontour with base [��; �℄ and radius �: Consider the argumentof p as the 
ontour is traversed. On the half-
ir
le, for large �, the argumentin
reases by n� asymptoti
ally; while on the axis the 
hange is ��I���(s=r);from whi
h the result follows. uth℄ Budan-Fourier Theorem. Let p 2 Pn. Let V (x) be the number of sign
hanges in the sequen
e �p(x); p0(x); : : : ; p(n)(x)� :Then the number of zeros of p in the interval [a; b℄, 
ounting multipli
ities,is V (a)� V (b)� 2m for some nonnegative integer m:We have followed Henri
i [74℄ in this dis
ussion.E.7 Zeros in a Disk.a℄ The transform z + i1 + iz maps the unit 
ir
le to the real axis and mapsthe open unit disk D to the upper half-plane fz 2 C : Im(z) > 0g: So thealgorithms of the previous exer
ise apply after transformation.



370 A1. Algorithms and Computational Con
ernsb℄ Zero Counting by Winding Number. Let !m := e2�i=m, where m is apositive integer. If p 2 P
n thenzp := 12�i Z�D p0(z)p(z) dz � mXk=1!km p0(!km)p(!km)
ounts the number of zeros of p in the open unit disk D (assuming no zeroson the boundary �D). More pre
isely, we havezp = limm!1 mXk=1!km p0(!km)p(!km) :(Note that this lends itself to rapid evaluation by FFT methods.)
℄ Show that 12�i Z�D 1z � � = mXk=1 !km!km � � + �m(�) ;where �m(�) � j�jm�11� j�j if j�j < 1and �m(�) � j�j�m�11� j�j�1 if j�j > 1 :Hint: Write 1z � � = � 1� 1Xk=0 zk�kand use the fa
t that 0 = Z�D p(z) dz = mXk=1!kmp(!km)for every p 2 P
m�1: utd℄ If p 2 P
n has no zeros in the annulus � � z � 1=� and if m in part b℄is greater than $ log 1��nlog � %+ 1 ;then the error in estimating zp by the sum is less than 1: So this providesan algorithm.



Algorithms and Computational Con
erns 371E.8 Computing General Chebyshev Polynomials. Given a Chebyshevsystem M := (f0; : : : ; fn) of C1 fun
tions on, say, [0; 1℄ how does one
ompute the asso
iated Chebyshev polynomial Tn? That is, how does one�nd the unique equios
illating form T :=Pni=0 aifi of Se
tion 3.3?a℄ The Remez AlgorithmStep 1. Choose x0 := (0 =: x(0)0 < x(0)1 < � � � < x(0)n := 1)and �nd P0 2 span M su
h thatP0(x(0)i ) = (�1)i ; i = 0; 1; : : : ; n :Step 2. Indu
tively set xm := (0 =: x(m)0 < x(m)1 < � � � < x(m)n := 1); whereP 0m�1(x(m)i ) = 0 ; i = 1; 2; : : : ; n� 1 :(That is, �nd the extrema of Pm�1.)Step 3. Find Pm 2 span M withPm(x(m)i ) = (�1)i ; i = 0; 1; : : : ; n :Then, provided the initial estimate x0 is suÆ
iently good, Pm ! Tnquadrati
ally (see Veidinger [60℄).This is reasonably easy to 
ode. It involves solving an interpolationproblem in Steps 1 and 3. The zero �nding at Step 2 
an be done quiteeasily sin
e one 
an �nd very good starting values for Newton's method,namely (x(m�1)i )ni=0.b℄ This algorithm modi�es to solve the best approximation problemminp2span M k!p� fk[a;b℄for !; f 2 C[a; b℄; where ! is positive on [a; b℄: One uses the Remez agorithmto �nd an equios
illating formP (x) = f(x)� !(x) nXi=0 
ifi(x)at n+ 2 points. To do this, one solves the systemf(xk)� !(xk) nXi=0 
ifi(xk) + (�1)k� ; k = 0; 1; : : : ; n+ 1for both the 
i and �: (This works reasonably well, provided that at ea
hstage kPk[a;b℄ o

urs at one of the xk: If not, an extra point must be insertedwhere the maximum norm o

urs and one of the original points must bedropped. This is e�e
ted in su
h a way as to maintain the alternations insign of the error.) For details see Cody, Fraser, and Hart [68℄ and Veidinger[60℄.



This is page 372Printer: Opaque thisA2Orthogonality and Irrationality

OverviewThis appendix is an appli
ation of orthogonalization of parti
ular M�untzsystems to the proof of the irrationality of �(3) and some other familiarnumbers. It reprodu
es Ap�ery's remarkable proof of the irrationality of�(3) in the 
ontext of orthogonal systems.Orthogonality and IrrationalityAp�ery's wonderful proof of the irrationality of �(3) amounts to showingthat 0 < jd3nan�(3)� bnj ! 0 ;where bn is an integer, an := nXk=0�n+ kk �2�nk�2 ;and dn := l
mf1; 2; : : : ; ng :Here l
m denotes the least 
ommon multiple; see van der Poorten [79℄ andBeukers [79℄. In [81℄ Beukers re
ast the proof using Pad�e approximations.



Orthogonality and Irrationality 373Many, maybe most, irrationality proofs may be based on approxima-tion by Pad�e approximants and related orthogonal polynomials; see, forexample, Borwein [91a℄, [92℄ or Chudnovsky and Chudnovsky [84℄. It is theintention of this appendix to try to put the proof of the irrationality of �(3)into the framework of orthogonality. From the general orthogonalization ofthe system (x�0 ; x�1 ; x�2 ; : : : )on [0; 1℄; where the numbers �j are nonnegative and distin
t, spe
ializingto the 
ase when�2j = j and �2j+1 = j + � ; j = 0; 1; : : :where � de
reases to 0; is a very natural thing to do. This is how oneshould interpret orthogonalizing the system (x0; x0; x1; x1; : : : ): This leadsto orthogonal fun
tions that generalize the Legendre polynomials and areof the form pn(x) log x+ qn(x)with polynomials pn; qn 2 Pn of degree n: Legendre polynomials are 
loselytied to irrationality questions 
on
erning log (see Borwein and Borwein[87℄, Chapter 11), and higher-order analogs prove to be the basis of dealingwith the irrationality of the trilog �P1n=1 xn=n3� for some values of x: Wethink that the proof of the irrationality of �(3) 
ows quite naturally fromthis point of view. Although in the end (Lemma A.2.3) we get ba
k toBeukers' integral approa
h to the irrationality of �(3) (as indeed we must).What follows, up to one appli
ation of the prime number theorem, is aself-
ontained proof of the irrationality of �(3):The orthogonalization in question is the 
ontent of the �rst theorem.Theorem A.2.1. LetGn(x) := 12�i Z� Qn�1k=0 (t+ k + 1)2Qnk=0(t� k)2 (t+ n+ 1)xt dt ;where � is any simple 
ontour 
ontaining t = 0; 1; : : : ; n: ThenGn(x) = pn(x) logx+ qn(x) ;where pn(x) = nXk=0�nk�2�n+ kk �2(n+ k + 1)xk :Furthermore, we have the orthogonality relationsZ 10 Gn(x)xk dx = 0 ; k = 0; 1; : : : ; n ;Z 10 Gn(x)(log x)xk dx = 0 ; k = 0; 1; : : : ; n� 1 ;



374 A2. Orthogonality and Irrationalityand Z 10 G2n(x) dx = 12n+ 1 :Proof. As in Se
tion 3.4, the representation of Gn is just the evaluation ofthe integral at the poles, t = 0; 1; : : : ; n; by the residue theorem. The proofof the orthogonality 
onditions is a straightforward exer
ise on evaluatingZ 10 xk(logx)jGn(x) dxby inter
hanging the order of integration as in the proof of Theorem 3.4.3.utWe need to modify these forms marginally to give a zero at 1; as inthe next result.Theorem A.2.2. Let Gn and � be de�ned as in Theorem A.2.1. ThenFn(x) := 1xn+1 Z x0 ynGn(y) dy= 12�i Z� Qn�1k=0 (t+ k + 1)2Qnk=0(t� k)2 xt dt = An(x) log x+Bn(x) ;where An(x) := nXk=0�n+ kk �2�nk�2xkand Bn(x) := nXk=0 
kxkwith 
k := �n+ kk �2�nk�2(n�1Xi=0 2k + i+ 1 � nXi=0i6=k 2k � i) :Furthermore,Z 10 Fn(x)Fm(x) dx = 2Æn;m(2n+ 1)3 ; Æn;m := � 0 if n 6= m1 if n = m ;Z 10 Fn(x)xk(log x)j dx = 0 ; k = 0; 1; : : : ; n� 1 ; j = 0; 1 ;and Fn(1) = 0 ; F 0n(1) = 1 ; F 00n (1) = 2n2 + 2n� 1 :



Orthogonality and Irrationality 375Proof. This follows mu
h as in Theorem A.2.1. The fa
t that Fn(1) = 0 isjust the statement that Gn is orthogonal to xn: utThe fa
t that Fn(1) = 0 is 
riti
al in what follows. It immediately givesthat Bn(x) has a zero at 1, so Bn(x)=(1� x) is a polynomial, as in part 
℄of the following 
orollary. (This is the only part of the 
orollary we need,but the 
orollary is of some interest in its own right.)Corollary A.2.3. Let Fn be de�ned as in Theorem A.2.2. Thena℄ Fn has 2n+ 1 zeros on (0; 1℄.b℄ An(x) has all real negative zeros.
℄ Bn(x)=(1� x) is a polynomial with all real negative zeros that interla
ethe zeros of An(x):Proof. The orthogonality 
onditions give 2n zeros of Fn on (0; 1) in a stan-dard fashion, and there is one zero at 1. The real negative zeros of An(x)and Bn(x) and their interla
ing follow from the fa
t thatlogx+ Bn(x)An(x)has 2n + 1 zeros on (0; 1℄; and known results on interpolating Stieltjestransforms by rational fun
tions (see, for example, Baker and Graves Morris[81℄ or Borwein [83℄). utOne 
an, from the integral representation, dedu
e the next 
orollary,whi
h is also not a
tually needed in the proof of the irrationality of �(3):Corollary A.2.4. Both Fn and An satisfyx2(y00n � y00n�1)� 2nx(y0n + y0n�1) + x(y0n � y0n�1) + n2(yn � yn�1) = 0 :From Theorem A.2.2 we obtain (see E.2 b℄) the following:Corollary A.2.5. Let dn := l
mf1; 2; : : : ; ng: Then the polynomial dnBn(x)has integer 
oeÆ
ients.We get an approximation to �(3) by integration over the unit square.Theorem A.2.6.�12 Z 10 Z 10 Fn(xy)1� xy dx dy = An(1)�(3) +Rn ;where 2d3nRn is an integer.



376 A2. Orthogonality and IrrationalityProof. Re
all that �12 Z 10 Z 10 log(xy)1� xy = �(3)sin
e Z 10 Z 10 (xy)n log(xy) dx dy = �2(n+ 1)3 :We haveFn(xy)1� xy = An(xy) �An(1)1� xy log(xy) + An(1)1� xy log(xy) + Bn(xy)1� xy :The �rst term of the last expression is a polynomial multiple of log(xy);and the last term is a polynomial. Both have degree n � 1 in xy: Here weuse part 
℄ of Corollary A.2.3 in an essential way. Integrating the aboveequation with respe
t to x on [0; 1℄ and with respe
t to y on [0; 1℄; we getthe identity of the theorem. The fa
t that d3nRn is an integer 
an be seenas follows. One dn arises from ea
h of the two integrations of a polynomialof degree n � 1 with integer 
oeÆ
ients and one dn 
omes from CorollaryA.2.5. utTheorem A.2.7. The number �(3) is irrational.Proof. It now suÆ
es to show that there is an � > 0 for whi
h0 < ����Z 10 Z 10 Fn(xy)1� xy dx dy���� = O� 1e(3+�)n� = o� 1d3n�sin
e by the prime number theorem, l
mf1; 2; : : : ; ng = O(e(1+�)n) for ev-ery � > 0; see Borwein and Borwein [87, p. 377℄. (We use the notationbn = o(an) if bn = �nan with limn!1 �n = 0:) This 
an be proven in anumber of ways, we 
hose to 
onne
t this proof via Pad�e approximants tothe integral estimate due to Beukers. This is the 
ontent of the followingresults and, in parti
ular, Lemma A.2.10. From Lemma A.2.10, the aboveestimates are easy sin
e the integrand in the right-hand side in LemmaA.2.10 satis�es 0 < xyv(1� x)(1� y)(1� v)1� (1� xy)v � (p2� 1)4on the open unit 
ube 0 < x; y; v < 1: utThe following lemma gives standard representations for the Pad�e ap-proximants to log and 
an be 
he
ked by expanding the integrals; see E.3.



Orthogonality and Irrationality 377Lemma A.2.8 (Pad�e Approximants). We have(n!)22�i Z� xt dtQnk=0(t� k)2 = (x� 1)2n+1 Z 10 vn(1� v)n dv(1� (1� x)v)n+1= pn(x) log x+ qn(x) = O((x� 1)2n+1) ;where � is a simple 
ontour 
ontaining t = 0; 1; : : : ; n; and pn and qn arepolynomials of degree n: (So pn=qn is the (n; n) Pad�e approximant to log xat 1:)Lemma A.2.9 (Rodrigues-Type Formula). With � as in Theorem A.2.1,Fn(xy) = dndyn dndxn xnyn2�i Z� (xy)t dtQnk=0(t� k)2= 1(n!)2 dndyn dndxn Z 10 (xy)nvn(1� v)n(xy � 1)2n+1(1� (1� xy)v)n+1 dv :Proof. This follows from di�erentiating the two representations derivedfrom Lemma A.2.8 
oupled with Theorem A.2.2. utLemma A.2.10. We haveZ 10 Z 10 Fn(xy)1� xy dx dy= � Z 10 Z 10 Z 10 [xyv(1� x)(1� y)(1� v)℄n dx dy dv(1� (1� xy)v)n+1 :Proof. For k, n nonnegative integersZ 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy= � 1(n!)2 Z 10 Z 10 11� xy dndyn dndxn (xy)n+k(xy � 1)2n+1 dx dy :(Both sides equal � n!(n+ k)!(2n+ k + 1)!�2 ;though this is not 
ompletely transparent; see E.4.) So1(n!)2 Z 10 Z 10 11� xy dndyn dndxnxnyn(xy � 1)2n+1+k dx dy= � Z 10 Z 10 [xy(1� x)(1� y)℄n (xy � 1)k dx dy :



378 A2. Orthogonality and IrrationalityHen
e, on expanding (1� (1� xy)v)�n�1 in the following integrands,1(n!)2 Z 10 Z 10 11� xy dndyn dndxn xnyn(xy � 1)2n+1(1� (1� xy)v)n+1 dx dy= � Z 10 Z 10 [xy(1� x)(1� y)℄n(1� (1� xy)v)n+1 dx dy ;and with Lemma A.2.9 we are done. utComments, Exer
ises, and Examples.The approa
h of this appendix follows Borwein, Dykshoorn, Erd�elyi,and Zhang [to appear℄. Beukers' [79℄ very elegant re
asting of Ap�ery's proofsof the irrationality of �(2) and �(3) is also presented in Borwein and Borwein[87℄. E.5 re
asts the irrationality of �(2) = 16�2 into a form similar to theproof of the irrationality of �(3): E.6 treats the irrationality of log 2:Mahler[31℄ 
asts trans
enden
e results for exp and log in terms of general systemsof Pad�e approximants.E.1 Proof of Corollaries A.2.4 and A.2.5.a℄ Prove Corollary A.2.4 from the expli
it representations of TheoremA.2.2.b℄ Prove Corollary A.2.5 from the formula for 
k in Theorem A.2.2.Hint: Observe that if p is a prime and n < p� � n + k for some integer�; then p divides �n+kk �. This is fairly straightforward from Euler's formulafor the largest power of a prime dividing a fa
torial. utE.2 Formulas for �(n).a℄ Show thatZ 10 � � � Z 10 Z 10 dx1 dx2 � � � dxn1� x1x2 � � �xn = �(n) := 1Xk=1 1kn :b℄ Show that Z 10 logx1� x dx = ��26 :
℄ Find a 
losed formula forZ 10 � � �Z 10 Z 10 log(x1x2 � � �xn)1� x1x2 � � �xn dx1 dx2 � � � dxnin terms of �(n+ 1):E.3 Proof of Lemma A.2.8. Give a proof of Lemma A.2.8.



Orthogonality and Irrationality 379E.4 The Identity in the Proof of Lemma A.2.10. Prove the identityZ 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy= � 1(n!)2 Z 10 Z 10 11� xy dndyn dndxn (xy)n+k(xy � 1)2n+1 dx dy= � n!(n+ k)!(2n+ k + 1)!�2 ;where k and n are nonnegative integers. Follow parts a℄ to 
℄.Let k and n be nonnegative integers.a℄ Show thatAn;k := Z 10 Z 10 (xy)n+k(1� x)n(1� y)n dx dy = � n!(n+ k)!(2n+ k + 1)!�2 :b℄ LetBn;k := � 1(n!)2 Z 10 Z 10 1(1� xy) dndyn dndxn xn+k(xy � 1)2n+1 dx dy :Show thatn2Bn;k =[(n+ k)2 + (2n+ 1)(2n+ 2k + 1) + (2n+ 1)(2n)℄Bn�1;k+2� [2(n+ k)2 + (2n+ 1)(2n+ 2k + 1)℄Bn�1;k+1+ (n+ k)2Bn�1;k :
℄ Show that A0;k = B0;k: Show that the valuesAn;k = � n!(n+ k)!(2n+ k + 1)!�2satisfy the re
urren
e relation established by part b℄ for the values Bn;k:E.5 The Irrationality of �2. ConsiderFn(x) := n!(2�i) Z� Qnk=1(t+ k)Qnk=0(t� k)2 xt dt ;where � is any simple 
ontour 
ontaining the poles at 0; 1; : : : ; n:



380 A2. Orthogonality and Irrationalitya℄ Show that Z 10 Fn(x)1� x dx = nXk=0�n+ kk ��nk�2�(2) +Rn ;where d2nRn is an integer (dn := l
mf1; 2; : : : ; ng as before).Hint: Show that Fn(x) = An(x) log x+Bn(x) ;where An(x) := nXk=0�n+ kk �2�nk�2xkand Bn(x) := nXk=0 
kxkwith 
k := �n+ kk ��nk�2( nXi=1 1k + i � nXi=0i6=k 2k � i) :Write Fn(x)1� x = An(x)� An(1)1� x logx+ An(1)1� x + Bn(x)1� x :Show that Fn(1) = 0; hen
e Bn(1) = 0: Re
all that� Z 10 logx1� x dx = �(2) :Now the 
on
lusions follow, as in the proof of Theorem A.2.6. utb℄ Show thatZ 10 Fn(x)1� x dx = Z 10 Z 10 xnyn(1� x)n(1� y)n(1� xy)n+1 dx dy :Hint: Use Lemma A.2.8. ut
℄ Show that there exists a 
onstant 
 independent of n su
h that0 < ����Z 10 Fn(x)1� x dx���� � 
 p5� 12 !5nand dedu
e that �(2) = 16�2 irrational. Hen
e � is irrational.



Orthogonality and Irrationality 381E.6 The Irrationality of log 2. Letpn(x) := 1n! dndxn [xn(1� x)n℄ = nXk=0�n+ kk ��nk�(�1)kxkbe the nth Legendre polynomial on [0; 1℄:a℄ Show thatZ 10 pn(x)1 + x dx = Z 10 pn(x)� pn(�1)1 + x dx+ Z 10 pn(�1)1 + x dx= pn(�1) log 2 + Rn ;where dnRn is an integer (dn := l
mf1; 2; : : : ; ng as before).b℄ Show that ����Z 10 pn(x)1 + x dx���� = Z 10 xn(1� x)n(1 + x)n+1 dx :
℄ Use parts a℄ and b℄ to show that log 2 is irrational.



This is page 382Printer: Opaque thisA3An Interpolation Theorem

OverviewAppendix 3 presents an interpolation theorem for linear fun
tions that isused in Se
tion 7.1. From this Haar's 
hara
terization of Chebyshev spa
esfollows, as do alternate proofs of many of the basi
 inequalities.An Interpolation TheoremThe main result of this se
tion, Theorem A.3.3, is an interpolation theoremthat plays an important role in Se
tion 7.1. Further appli
ations are givenin the exer
ises.Throughout this appendix we use the following notation. Let Q be a
ompa
t Hausdor� spa
e. Let C(Q) be the spa
e of all real- or 
omplex-valued 
ontinuous fun
tions de�ned on Q. Let P be a (usually �nite-dimensional) linear subspa
e of C(Q) over R if C(Q) is real or over Cif C(Q) is 
omplex. The fun
tion f 2 C(Q) is said to be orthogonal to P ,written as f ? P , ifkfkQ � kf + pkQ for all p 2 P :This is an L1 analog of the more usual L2 notion of orthogonality, as in Se
-tion 2.2. The following two lemmas give ne
essary and suÆ
ient 
onditionsfor the relation f ? P .



An Interpolation Theorem 383Lemma A.3.1. Let 0 6= f 2 C(Q). The fun
tion f is orthogonal to P if andonly if there exists no p 2 P su
h that(A:3:1) Re�f(x)p(x)� > 0holds on(A:3:2) E := E(f) := fx 2 Q : jf(x)j = kfkQg :Proof. Assuming there exists p 2 P satisfying (A.3.1) on E de�ned by(A.3.2), we show that kf � �pkQ < kfkQfor some � > 0: Sin
e the set E de�ned by (A.3.2) is 
ompa
t, Re�f(x)p(x)�attains its positive minimum, say, 2Æ > 0, on E, and there exists an openset G 
ontaining E su
h thatRe�f(x)p(x)� > Æ > 0 ; x 2 G :Sin
e G
 := Q nG is also 
ompa
t, there exists an � > 0 su
h thatjf(x)j < (1� �)kfkQ ; x 2 G
 :Thus, with a suÆ
iently small � > 0;jf(x)� �p(x)j2 � kfk2Q � 2�Æ + �2kpk2Q < kfk2Q ; x 2 G ;while jf(x) � �p(x)j � (1� �)kfkQ + �kpkQ < kfkQ ; x 2 G
 :Therefore kf � �pkQ < kfkQif � > 0 is small enough.Conversely, if f is not orthogonal to P; then there exists p 2 P su
hthat kf � pk2Q < kfk2Q; so2Re�f(x)p(x)� > kpk2Q � 0 ; x 2 E ;and the proof is �nished. ut



384 A3. An Interpolation TheoremLemma A.3.2. Let 0 6= f 2 C(Q) and let P be an n-dimensional linear sub-spa
e of C(Q) over R if C(Q) is real or over C if C(Q) is 
omplex. Then thefun
tion f is orthogonal to P if and only if there exist points x1; x2; : : : ; xrin E(f) de�ned by (A.3.2) and positive real numbers 
1; 
2; : : : ; 
r; where1 � r � n+1 when C(Q) is real, and 1 � r � 2n+1 when C(Q) is 
omplex,su
h that(A:3:3) rXi=1 
if(xi)p(xi) = 0 ; p 2 P :Proof. Suppose (A.3.3) holds with some positive real 
1; 
2; : : : ; 
r satisfy-ing Pri=1 
i = 1: As jf(xi)j = kfkQ; we havekfk2Q = rXi=1 
if(xi)f(xi) = rXi=1 
if(xi)(f(xi)� p(xi))� kfkQ rXi=1 
i max1�j�r jf(xj)� p(xj)j � kfkQkf � pkQfor every p 2 P; so f ? P: (Note that r � n+1 or r � 2n+1; respe
tively,was not needed for this part of the proof, so the suÆ
ien
y of (A.3.3) isvalid with no hypothesis about r:)Conversely, suppose f ? P: Let f'1; '2; : : : ; 'ng be a basis for Pover R (or C ; respe
tively), and 
onsider the map T : Q ! Rn (or C n ;respe
tively) de�ned byT (x) = f(x)('1(x); '2(x); : : : ; 'n(x)) :Observe that the origin is in the 
onvex hull ofT (E) := fT (x) : x 2 Eg ;otherwise by the prin
iple of separating hyperplanes (a 
orollary of theHahn-Bana
h theorem; see Rudin [73℄), there would exist 
omplex numbersa1; a2; : : : ; an su
h thatRe nXi=1 aif(x)'i(x)! > 0 ; x 2 E :Hen
e, with p :=Pni=1 ai'i 2 P;Re�f(x)p(x)� > 0 ; x 2 Eand f is not orthogonal to P by Lemma A.3.1, whi
h 
ontradi
ts our as-sumption.



An Interpolation Theorem 385Now it follows from Caratheodory's lemma (see E.1) that there existpoints x1; x2; : : : ; xr in E and positive real numbers 
1; 
2; : : : ; 
r; where1 � r � n+1 when C(Q) is real and 1 � r � 2n+1 when C(Q) is 
omplex,su
h that rXi=1 
if(xi)'k(xi) = 0; k = 1; 2; : : : ; n:Therefore rXi=1 
if(xi)p(xi) = 0; p 2 P ;and the lemma is proved. utTheorem A.3.3 (Interpolation of Linear Fun
tionals). Let C(Q) be the setof real- (
omplex-) valued 
ontinuous fun
tions on the 
ompa
t Hausdor�spa
e Q. Let P be an n-dimensional linear subspa
e of C(Q) over R (C ).Let L 6= 0 be a real- (
omplex-) valued linear fun
tional on P . Thenthere exist points x1; x2; : : : ; xr in Q, and nonzero real (
omplex) num-bers a1; a2; : : : ; ar, where 1 � r � n in the real 
ase and 1 � r � 2n� 1 inthe 
omplex 
ase, su
h that(A:3:4) L(p) = rXi=1 aip(xi) ; p 2 Pand(A:3:5) kLk = rXi=1 jaij ;where kLk := supfjL(p)j : p 2 P ; kpkQ � 1g :Proof. Be
ause of the �nite dimensionality of P; there exists an elementp� 2 P (
alled an extremal element for L) su
h that kp�kQ = 1 andL(P �) = kLk: Let P0 denote the null-spa
e of L, soP0 := fp 2 P : L(p) = 0g :Now p� is orthogonal to P0 be
ause ifkp� + p0kQ < kp�kQ = 1for some p0 2 P; then g := p� + p0 satis�es kgkQ < 1 and L(g) = kLk;whi
h is impossible. Note that the dimension of P0 over R is n � 1 in thereal 
ase and 2n � 2 in the 
omplex 
ase. So by Lemma A.3.2 there existpoints x1; x2; : : : ; xr in



386 A3. An Interpolation TheoremE := fx 2 Q : jp�(x)j = 1gand positive real numbers 
1; 
2; : : : ; 
r; where 1 � r � n in the real 
aseand 1 � r � 2n� 1 in the 
omplex 
ase, su
h thatrXi=1 
ip�(xi)p0(xi) = 0 ; p0 2 P0 :Sin
e L(p)p� � L(p�)p 2 P0 for all p 2 P; we haveL(p) rXi=1 
ijp�(xi)j2 = L(p�) rXi=1 
ip�(xi)p(xi) ; p 2 P :Sin
e L(p�) = kLk and jp�(xi)j = 1 for ea
h i; we obtain (A.3.4) by takingai = 
ip�(xi)Prj=1 
j kLk :Using the fa
t that jp�(xi)j = 1 for ea
h i in the above formula for ai; weget (A.3.5). utComments, Exer
ises, and Examples.We have followed Shapiro [71℄, whi
h gives a long dis
ussion of questionsrelated to the best uniform approximation of a fun
tion f 2 C(Q) froma (usually �nite-dimensional) linear subspa
e P � C(Q): Some of these,together with other appli
ations, are dis
ussed in the exer
ises.E.1 Caratheodory's Lemma. If A � Rn ; then every point from the 
onvexhull 
o(A) of A 
an be written as a 
onvex linear 
ombination of at mostn+ 1 points of A:Proof. Let x 2 A: After a translation if ne
essary, we may assume thatx = 0: Suppose(A:3:6) 0 = rXi=1 �ixi ; xi 2 A ; �i > 0 ; r > n+ 1 :Sin
e r > n+1; the elements x2; x3; : : : ; xr are linearly dependent, so thereexist real numbers �i; i = 2; 3; : : : ; r; not all zero, su
h thatrXi=2 �ixi = 0 :Let �1 := 0: For all � 2 R; we have



An Interpolation Theorem 3870 = rXi=1 �ixi + � rXi=1 �ixi = rXi=1 (�i + ��i)xi :When � = 0; ea
h term in the last sum is positive. We now de�ne
 := min j�i=�ij; where the minimum is taken for all indi
es i for whi
h�i 6= 0: If the index j is 
hosen so that j�j=�j j = 
; and if � := ��j=�j ;then at least one of the numbers �i + ��i is zero, and all are nonnegative.Also �1 + ��1 = �1 > 0: We have thus obtained a representation of thesame form as (A.3.6), but with s terms, where 1 � s � r � 1: If s > n+ 1;then the pro
ess 
an be repeated, and after a �nite number of steps weobtain the desired representation. utE.2 Reformation in Terms of Integrals. Lemma A.3.2 
an be reformu-lated as follows. Under the assumptions of Lemma A.3.2, f 2 C(Q) isorthogonal to P if and only if there exists a nonzero nonnegative Borelmeasure � on Q whose support 
onsists of r points of E(f) de�ned by(A.3.2), where 1 � r � n + 1 in the real 
ase and 1 � r � 2n + 1 in the
omplex 
ase, su
h that f(x) d�(x) annihilates P , that is,(A:3:7) ZQ f(x)p(x) d�(x) = 0 ; p 2 P :This reformation is not only a notational 
onvenien
e, but it is essentialin generalizations where P is no longer �nite-dimensional. Moreover, (A.3.7)with any nonzero nonnegative Borel measure (not ne
essarily dis
rete) issuÆ
ient for f ? P: This is often useful, even when P is �nite-dimensional;see Shapiro [71℄.E.3 Haar's Chara
terization of Chebyshev Spa
es.a℄ Let f0; f1; : : : ; fn be real- or 
omplex-valued 
ontinuous fun
tionsde�ned on a (not ne
essarily 
ompa
t) Hausdor� spa
e Q: Show thatP := spanff0; : : : ; fng; where the span is taken over R (or C ), is a Cheby-shev spa
e if and only if there exists no real (or 
omplex) measure on Qannihilating P whose support 
onsists of less than n+ 1 points.Hint: Use Proposition 3.1.2. utb℄ Let P be an n-dimensional linear subspa
e of C(Q), the spa
e of real-(or 
omplex-) valued 
ontinuous fun
tions de�ned on a 
ompa
t Hausdor�spa
e Q 
ontaining at least n points. The spa
e P is a Chebyshev spa
e ifand only if for ea
h f 2 C(Q); there is a unique best uniform approximationto f from P:Proof. First suppose P is a Chebyshev spa
e of dimension n, and p1 andp2 are best uniform approximations to some f 2 C(Q) from P . Thenp3 := 12 (p1 + p2) is also a best uniform approximation to f from P . As



388 A3. An Interpolation Theoremf � p3 ? P; Lemma A.3.2 yields that jf(x) � p3(x)j attains its maximumon Q at r points, x1; x2; : : : ; xr; that support an annihilating measure forP; where r � n+ 1 by part a℄. Note thatp1(xj)� f(xj) = p2(xj)� f(xj) ; j = 1; 2; : : : ; n+ 1 ;and hen
e, sin
e P is a Chebyshev spa
e, p1 � p2 = 0:Conversely, if P is not a Chebyshev spa
e, then there exist n distin
tpoints x1; x2; : : : ; xn in Q su
h that the system of homogeneous linear equa-tions 0B� g1(x1) : : : g1(xn)... . . . ...gn(x1) : : : gn(xn)1CA0� a1...an1A ;where fg1; : : : ; gng is a basis for P , has a nontrivial solution. Then also thehomogeneous system formed with the transposed matrix has a nontrivialsolution, so there exist 
onstants bi, not all zero, so thatnXi=1 bigi(xj) = 0 ; j = 1; 2; : : : ; n :Thus, with g :=Pni=1 bigi; we haveg(xj) = 0 ; j = 1; 2; : : : ; n :We may assume, without loss, that kgkQ = 1: Some of the 
onstantsa1; a2; : : : ; an may be zero; however, the set � of indi
es j for whi
h aj 6= 0is not empty. By Tietze's theorem there exists an f 2 C(Q) su
h thatkfkQ = 1 and f(xj) = ajjaj j ; j 2 � :Setting h(x) := f(x)(1� jg(x)j); we haveh(xj) = ajjaj j ; j 2 � :We 
laim that kh� pkQ � 1 for every p 2 P: Indeed, if kh� pkQ < 1 forsome p 2 P; thenjf(xj)� p(xj)j2 = jf(xj)j2 � 2Re�p(xj)f(xj)�+ jp(xj)j2 < 1for every j 2 � ; hen
e Re(ajp(xj)) > 0 ; j 2 � :



An Interpolation Theorem 389Sin
e aj = 0 if j 62 �; we have Re(ajp(xj)) = 0 for ea
h j 62 �: ThusRe0� nXj=1 ajp(xj)1A > 0 :However, if p :=Pni=1 
igi; thennXj=1 ajp(xj) = nXj=1 aj nXi=1 
igi(xj) = nXi=1 bi nXj=1 aigi(xj) = 0 ;whi
h 
ontradi
ts the previous inequality and shows that kh� pkQ � 1 forevery p 2 P .Finally, for all � 2 [0; 1℄, �g is a best uniform approximation to h fromP be
ause jh(x)� �g(x)j � jf(x)j(1� jg(x)j) + �jg(x)j� 1 + (�� 1)jg(x)j � 1for all x 2 Q; so the best uniform approximation to h 2 C(Q) from P isnot unique. utE.4 Uni
ity of the Extremal Fun
tion. Assume the notation of TheoremA.3.3. Show that if P � C(Q) is an n-dimensional real Chebyshev spa
eand r = n; then the extremal element p� 2 P satisfying kp�kQ = 1 andL(p�) = kLk is unique.The interesting relations of Theorem A.3.3 to the Riesz representationtheorem, the Krein-Milman theorem, and the Hahn-Bana
h theorem aredis
ussed in Shapiro [71℄.E.5 Appli
ations of the Interpolation Theorem. As before, letD := fz 2 C : jzj < 1g and K := R (mod2�) :Prove the following statements. Ea
h of them may be proven by 
hara
-terizing the extremal polynomial for the given inequality with the help ofTheorem A.3.3. A detailed hint is given only to part a℄.a℄ Bernstein's Inequality.jt0(�)j � nktkK ; t 2 Tn ; � 2 R :Hint: Let �0 2 R be �xed, and study the linear fun
tional L(t) := t0(�0),t 2 Tn. Observe that an extremal p in Lemma A.3.3 must satisfy jp(xi)j = 1for ea
h i = 1; 2; : : : ; r and r must equal 2n: Note that r � 2n holds by



390 A3. An Interpolation TheoremTheorem A.3.3, while the argument for r � 2n is similar to the 
orrespond-ing step in the proof of Theorem 7.1.7. Finally, show that the extremalelement t satisfying L(t) = kLk is of the formt(�) = 
os(n� � �)for some � 2 K: utb℄ Markov's Inequality.jp0(1)j � n2kpk[�1;1℄ ; p 2 Pn :
℄ Chebyshev's Inequality.jp(x)j � jTn(x)j kpk[�1;1℄ ; p 2 Pn ; x 2 R n [�1; 1℄ ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1).d℄ Bernstein's Inequality.jp(z)j � jzjnkpkD ; p 2 P
n ; z 2 C nD :e℄ Bernstein's Inequality.jp0(z)j � njzjn�1kpkD ; p 2 P
n ; z 2 C nD :Hint: Use Theorem 1.3.1 (Lu
as' theorem). utf ℄ Riesz' Identity. There are real numbers ai with P2ni=1 jaij = n su
hthat t0(�) = 2nXi=1 ait(� + �i) ; t 2 Tn ; � 2 R ;where �i := 2i�12n � ; i = 1; 2; : : : ; 2n :(This is, apart from the expli
it determination of the number ai; an identitydis
overed by M. Riesz [14℄.)g℄ Show that in part f℄,ai = (�1)i+1 14n sin2(�i=2) ; i = 1; 2; : : : ; 2n :h℄ Bernstein's Inequality in Lp.Z 2�0 jt0(�)jp d� � np Z 2�0 jt(�)jp d� ; t 2 Tn ; p � 1 :Hint: Use part f℄ and Jensen's inequality (see E.20 of Appendix 4). utArestov [81℄ shows that the inequality of part h℄ is valid for all p > 0:Golits
hek and Lorentz [89℄ gives a simpler proof of this.i℄ Find all extremal polynomials in parts a℄ to e℄ and h℄.



An Interpolation Theorem 391E.6 An Inequality of Szeg}o. If p 2 P
n and z1; z2; : : : ; z2n are any equallyspa
ed points on the unit 
ir
le �D; thenkp0kD � n max1�k�2n jp(zk)j :Proof. See Frappier, Rahman, and Rus
heweyh [85℄. ut



This is page 392Printer: Opaque thisA4Inequalities for GeneralizedPolynomials in Lp

OverviewMany inequalities for generalized polynomials are given in this appendix. Ofparti
ular interest are the extensions of virtually all the basi
 inequalities toLp spa
es. The prin
ipal tool is a generalized version of Remez's inequality.Inequalities for Generalized Polynomials inLpGeneralized (nonnegative) polynomials are de�ned by (A.4.1) and (A.4.3).The basi
 inequalities of Chapter 5 are extended to these fun
tions by re-pla
ing the degree with the generalized degree. The 
ru
ial observation isthat Remez's inequality extends naturally to this setting. This Remez in-equality then plays a 
entral role in the extensions of the other inequalities.These generalizations allow for a simple general treatment of Lp inequali-ties, whi
h is one main feature of this appendix.The fun
tion(A:4:1) f(z) = j!j mYj=1 jz � zj jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is 
alled a generalized nonnegative(algebrai
) polynomial of (generalized) degree



Inequalities for Generalized Polynomials in Lp 393(A:4:2) N := mXj=1 rj :The set of all generalized nonnegative algebrai
 polynomials of degree atmost N is denoted by GAPN .The fun
tion(A:4:3) f(z) = j!j mYj=1 j sin((z � zj)=2)jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is 
alled a generalized nonnegativetrigonometri
 polynomial of degree(A:4:4) N := 12 mXj=1 rj :The set of all generalized nonnegative trigonometri
 polynomials of degreeat most N is denoted by GTPN : Throughout this se
tion we will studygeneralized nonnegative polynomials restri
ted to the real line. If the ex-ponents rj in (A.4.1) or (A.4.3) are even integers, then f is a nonnegativealgebrai
 or trigonometri
 polynomial, respe
tively. Note that the 
lassesGAPN and GTPN are not linear spa
es. Note also that if f 2 GAPN orf 2 GTPN is of the form (A.4.1) or (A.4.3), respe
tively, with all rj � 1;then the one-sided derivatives of f exist at every x 2 R with the samemodulus, hen
e jf 0(x)j is well-de�ned for every x 2 R: We use the notationjf 0(x)j for f 2 GAPN or f 2 GTPN and x 2 R throughout this se
tionwith this understanding. If f 2 GAPN is of the form (A.4.1) or f 2 GTPNis of the form (A.4.3), where the zeros zj 2 C ; j = 1; 2; : : : ;m; are distin
t,then rj is 
alled the multipli
ity of zj in f: Our intention in this se
tionis to extend most of the 
lassi
al inequalities of Se
tion 5.1 to generalizednonnegative polynomials. In addition, we prove Nikolskii-type inequalitiesfor GAPN and GTPN :Theorem A.4.1 (Remez-Type Inequality for GAPN ). The inequalitykfk[�1;1℄ �  p2 +psp2�ps!Nholds for every f 2 GAPN and s 2 (0; 2) satisfyingm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :E.5 shows that this inequality is sharp. Note that if 0 < s � 1; then p2 +psp2�ps!N � exp(5Nps):Throughout this se
tion, as before, K := R (mod 2�).



394 A4. Inequalities for Generalized Polynomials in LpTheorem A.4.2 (Remez-Type Inequality for GTPN ). The inequalitykfkK � exp �N �s+ 74s2�� � exp(4Ns)holds for every f 2 GTPN and s 2 (0; �=2℄ satisfying(A:4:5) m(fx 2 [��; �) : f(x) � 1g) � 2� � s :The inequalitykfkK �  p2 +p�p2�p�!N ; � = 1� 
os(s=2)holds for every even f 2 GTPN and s 2 (0; 2�) satisfying (A.4.5).We do not dis
uss what happens when s 2 (�=2; 2�) in the general 
asebe
ause the 
ase when s 2 (0; �=2℄ is satisfa
tory for our needs.Proof of Theorem A.4.1. First assume that f 2 GAPN is of the form (A.4.1)with rational exponents rj = qj=q; where qj ; q 2 N: Let k 2 N be an integer.Then (restri
ted to R) p := f2kq 2 P2kqN andm (fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Hen
e Theorem 5.1.1 yieldskfk[�1;1℄ = kpk1=(2kq)[�1;1℄ � �T2kqN �2 + s2� s��1=(2kq) :Sin
e by E.4,(A:4:6) limk!1�T2kqN �2 + s2� s��1=(2kq) =  p2 +psp2�ps!N ;the theorem is proved. The 
ase when the exponents rj > 0 are arbitraryreal numbers 
an be easily redu
ed to the already proved rational 
ase bya straightforward density argument. utTheorem A.4.2 follows from Theorem 5.1.2 in exa
tly the same waythat Theorem A.4.1 follows from Theorem 5.1.1; see E.6.Theorem A.4.3 (Nikolskii-Type Inequality for GTPN ). Let � be a non-negative nonde
reasing fun
tion de�ned on [0;1) su
h that �(x)=x is non-in
reasing on [0;1): Then there is an absolute 
onstant 
1 > 0 su
h thatk�(f)kLp(K) � (
1(1 + qN))1=q�1=pk�(f)kLq(K)for every f 2 GTPN and 0 < q < p �1: If �(x) = x; then 
1 � e(4�)�1:



Inequalities for Generalized Polynomials in Lp 395Theorem A.4.4 (Nikolskii-Type Inequality for GAPN ). Let � be a non-negative nonde
reasing fun
tion de�ned on [0;1) su
h that �(x)=x is non-in
reasing on [0;1): Then there is an absolute 
onstant 
2 > 0 su
h thatk�(f)kLp[�1;1℄ � (
2(2 + qN))2=q�2=pk�(f)kLq[�1;1℄for every f 2 GAPN and 0 < q < p � 1: If �(x) = x; then 
2 � e2(2�)�1:In the proof of the se
ond part of Theorem A.4.4 we will need thefollowing S
hur-type inequality, whi
h is interesting in its own right.Theorem A.4.5 (S
hur-Type Inequality for GAPN ). The inequalitykfkq[�1;1℄ � e(1 + qN)

p1� x2fq(x)

[�1;1℄holds for every f 2 GAPN and q > 0:A

ording to Theorem 5.1.9 (S
hur's inequality), if N 2 N, f 2 PN ; andq 2 N; then the 
onstant e in the above inequality 
an be repla
ed by 1:It is suÆ
ient to prove Theorems A.4.3 and A.4.4 when p = 1, andthen a simple argument gives the required results for arbitrary exponents0 < q < p < 1: To see this, say, in the trigonometri
 
ase, assume thatthere is a 
onstant CN su
h thatk�(f)kK � C1=qN k�(f)kLq(K)for every f 2 GTPN and 0 < q <1: Thenk�(f)kpLp(K) = k(�(f))p�q+qkL1(K)� k�(f)kp�qK k�(f)kqLq(K)� Cp=q�1N k�(f)kp�qLq(K)k�(f)kqLq(K) ;and therefore k�(f)kLp(K) � C1=q�1=pN k�(f)kLq(K)for every f 2 GTPN and 0 < q < p � 1:Proof of Theorem A.4.3 (when p =1). Sin
e � is nonnegative and nonde-
reasing and (�(x)=x)q is nonin
reasing on [0;1); we have(�(f(�)))q � exp(�qNs)k�(f)kqKwhenever f(�) � exp(�Ns)kfkK :Hen
e, by E.7 b℄, we 
an dedu
e that



396 A4. Inequalities for Generalized Polynomials in Lpm (f� 2 [��; �) : (�(f(�)))q � exp(�qNs)k�(f)kqKg) � s4for every f 2 GTPN and s 2 (0; 2�): Choosing s := (1 + qN)�1; we getm ��� 2 [��; �) : (�(f(�)))q � e�1k�(f)kqK	� � (4(1 + qN))�1 :Hen
e, integrating only on the subset I of K where(�(f(�)))q � e�1k�(f)kqK ;we 
on
lude that k�(f)kqK � 4e(1 + qN) ZI(�(f(�)))q d�� 4e(1 + qN)k�(f)kqLq(K) ;and the �rst part of the theorem is proved.Now we turn to the se
ond statement. LetD := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g :If h is analyti
 in the open unit disk D and 
ontinuous on the 
losed unitdisk D; then by Cau
hy's integral formula we have(1� jrzj2)h(rz) = 12�i Z�D h(u)1� rzuu� rz duwhenever z 2 D and r 2 [0; 1): Note that u 2 �D and z 2 �D implyj1� rzuj = ju� rzj for all r 2 [0; 1): Hen
e, if P 2 P
n and 0 < q <1; then(1� r2)jP �(rz)jq � 12� Z�D jP �(u)jq jdujwhenever z 2 �D and r 2 [0; 1℄; where P � is obtained from the fa
torizationof P by repla
ing ea
h fa
tor (z � �) of P with j�j < 1 by (1� �z): Sin
e12 (1 + r)jz � �j � jrz � �j ; j�j > 1 ; z 2 �D ; r 2 [0; 1℄ ;we have (1� r2) � 12 (1 + r)�q deg(P ) jP (z)jq � 12� Z�D jP �(u)jq jdujwhenever z 2 �D and r 2 [0; 1℄: Maximizing the left-hand side for r 2 [0; 1℄and using the fa
t that jP �(z)j = jP (z)j for z 2 �D; we 
on
lude that



Inequalities for Generalized Polynomials in Lp 397jP (z)jq � (2 + q deg(P ))e8� �Z�� jP (ei�)jq d� ; z 2 �D :Hen
e, by E.8, kRkqK � (1 + qn)e4� �Z�� jR(�)jq d�for every R 2 Tn: If f 2 GTPN is of the form (A.4.3) with rational expo-nents rj = �j=�; where �j ; � 2 N; then on applying the above inequalityto R := f2� 2 T2�N with q repla
ed by q=(2�); we 
on
lude thatkfkqK � 1 + qN4� Z ��� f(�)q d�and the se
ond statement of the theorem is proved. The 
ase when theexponents rj > 0; j = 1; 2; : : : ;m; are arbitrary real numbers 
an beredu
ed to the already proved rational 
ase by a straightforward densityargument. utProof of Theorem A.4.5. Let P 2 Pn andM := 

p1� x2 jP (x)jq

[�1;1℄ :By E.8 
℄, there exists an R 2 P2n su
h that jR(ei�)j = jP (
os �)j; � 2 R:We de�ne R� 2 P
2n from the fa
torization of R by repla
ing all the fa
tors(z � �) of R with j�j < 1 by (1 � �z): Note that j1� e2i�j = 2j sin �j andjR(ei�)j = jR�(ei�)j for all � 2 R: Hen
e the maximum prin
iple yields thatj1� (rz)2jjR�(rz)jq � maxz2�D j1� z2jjR�(z)jq= max�2R 2 j sin �jjP (
os �)jq = 2M :By E.9 we havejR�(z)j � � 21 + r�2n jR�(rz)j ; z 2 �D ; r 2 [0; 1℄ :Hen
e jR�(z)jq � 22nq(1 + r)2nq 11� r2 2M ; z 2 �D ; r 2 [0; 1℄ ;where the minimum on [0; 1℄ of the right-hand side is taken atr := qn1 + qn :



398 A4. Inequalities for Generalized Polynomials in LpEstimating the right-hand side at this value of r; we getkPkq[�1;1℄ = maxz2�D jR�(z)jq � e(1 + qn)

p1� x2 jP (x)jq

[�1;1℄ :If f 2 GAPN is of the form (A.4.1) with rational exponents rj = �j=�;�j ; � 2 N; then applying the above inequality to P = f2� 2 P2�N with qrepla
ed by q=(2�); we getkfkq[�1;1℄ � e(1 + qN)

p1� x2 fq(x)

[�1;1℄ ;and the theorem is proved. The 
ase when the exponents rj > 0 are ar-bitrary real numbers 
an be easily redu
ed to the already proved rational
ase on
e again by a standard approximation. utProof of Theorem A.4.4 (when p =1). Sin
e � is nonnegative and nonde-
reasing and (�(x)=x)q is nonin
reasing on [0;1); we have(�(f(x)))q � exp(�qNps)k�(f)kq[�1;1℄whenever f(x) � exp(�Nps)kfk[�1;1℄ :So by E.7 a℄ we 
an dedu
e thatm�nx 2 [�1; 1℄ : (�(f(x)))q � exp(�qNps)k�(f)kq[�1;1℄o� � s8for all s 2 (0; 2): Choosing s := (1 + qN)�2; we obtainm ��x 2 [�1; 1℄ : (�(f(x)))q � e�1k�(f)k[�1;1℄	� � 18(1 + qN)2 :Integrating on the subset I of [�1; 1℄ where(�(f(x)))q � e�1k�(f)k[�1;1℄ ;we 
on
lude thatk�(f)kq[�1;1℄ � 8e(1 + qN)2 ZI(�(f(x)))q dx� 8e(1 + qN)2k�(f)kqLq[�1;1℄ :Thus the �rst part of the theorem is proved.To show that the given 
onstant works in the 
ase that �(x) = x we useanother method. Let h 2 GAPM : Then by E.10, g(�) = h(
os �) 2 GTPM :On using the substitution x = 
os �; from Theorem A.4.3 we get



Inequalities for Generalized Polynomials in Lp 399khk[�1;1℄ � e(2�)�1(1 + qM) Z 1�1 jh(x)jq(1� x2)�1=2 dx :If f 2 GAPN ; then h(x) = f(x)(1�x2)1=(2q) 2 GAPM with M = N + q�1;so an appli
ation of the above inequality yields(A:4:7) 

p1� x2fq(x)

[�1;1℄ � e(2�)�1(2 + qN) Z 1�1 fq(x) dx :(Note that the weaker assumption h 2 GAPM instead of f 2 GAPN alreadyimplies (A.4.7).)Now a 
ombination of Theorem A.4.5 and inequality (A.4.7) gives thatif �(x) = x; then the inequality of Theorem A.4.4 holds with 
2 := e2(2�)�1:utNow we prove extensions (up to multipli
ative absolute 
onstants) ofMarkov's and Bernstein's inequalities for generalized nonnegative polyno-mials.Theorem A.4.6 (Bernstein-Type Inequality for GTPN ). There exists anabsolute 
onstant 
3 > 0 su
h thatkf 0kK � 
3NkfkKfor every f 2 GTPN of the form (A.4.3) with ea
h rj � 1.Theorem A.4.7 (Bernstein-Type Inequality for GAPN ). The inequalityjf 0(x)j � 
3Np1� x2 kfk[�1;1℄ ; x 2 (�1; 1) ;holds for every f 2 GAPN of the form (A.4.1) with ea
h rj � 1; where 
3is as in Theorem A.4.6.Theorem A.4.8 (Markov-Type Inequality for GAPN ). There exists an ab-solute 
onstant 
4 > 0 su
h thatkf 0k[�1;1℄ � 
4N2kfk[�1;1℄for every f 2 GAPN of the form (A.4.1) with ea
h rj � 1:To prove Theorem A.4.6 we need the following lemma.Lemma A.4.9. Suppose g 2 GTPN is of the form (A.4.3) with ea
h zj 2 R;and suppose at least one of any two adja
ent (in K) zeros has multipli
ityat least 1. Then there exists an absolute 
onstant 
5 > 0 su
h that for everysu
h g there is an interval I � K of length at least 
5N�1 for whi
hmin�2I g(�) � e�1kgkK :



400 A4. Inequalities for Generalized Polynomials in LpProof. Take a g 2 GTPN satisfying the hypothesis of the lemma. Be
auseof the periodi
ity of g we may assume that(A:4:8) g(�) = kgkK :De�ne(A:4:9) Qn;!(�) := T2n� sin(�=2)sin(!=2)�with(A:4:10) n := bN
 and ! := � � (3N)�1 ;where T2n is the Chebyshev polynomial of degree 2n de�ned by (2.1.1).By E.11 there exists an absolute 
onstant 
6 > 1 su
h that Qn;!(�) � 
6:Introdu
e the setA := �� 2 [� � (3N)�1; � + (3N)�1℄ : g(�) � e�1g(�)	 :We study h := gjQn;!j 2 GTP2N : The inequality Qn;!(�) � 
6 and as-sumption (A.4.8) yieldh(�) � g(�) � 
�16 Qn;!(�)g(�) = 
�16 khkKfor all � 2 [�!; !℄ = [��+ (3N)�1; � � (3N)�1℄: Further, the de�nition ofthe set A; the fa
t that kQn;!kK = Qn;!(�); and (A.4.8) imply thath(�) � e�1g(�)Qn;!(�) = e�1khkKfor all � 2 [� � (3N)�1; � + (3N)�1℄ nA: From the last two inequalities we
on
lude that h(�) � 
�17 khk[�1;1℄ for all � 2 [��; �℄ nA ;where 
7 := minf
6; eg > 1 is an absolute 
onstant. Therefore, by E.7 b℄m(A) � 
8N�1 with 
8 := 117 log 
7 > 0 :Sin
e g 2 GTPN is of the form (A.4.3) with ea
h zj 2 R; and at leastone of any two adja
ent zeros of g has multipli
ity at least 1, E.12 andassumption (8.1.8) imply that g 
annot have two or more distin
t zeros in[� � (3N)�1; � + (3N)�1℄: Hen
e A is the union of at most two intervals.Therefore there exists an interval I � A su
h that m(I) � 
8(2N)�1; andthe lemma is proved. ut



Inequalities for Generalized Polynomials in Lp 401Proof of Theorem A.4.6. Let f 2 GTPN be of the form (A.4.3) with ea
hrj � 1: Without loss of generality we may assume that jf 0(�)j = kf 0kK ;and it is suÆ
ient to prove only thatjf 0(�)j � 
3NkfkK :By E.13 we may assume that ea
h zj is real in (A.4.3). Hen
e, by E.2,g := jf 0j satis�es the assumption of Lemma A.4.9. Denote the endpointsof the interval I 
oming from Lemma A.4.9 by a < b: We 
an now dedu
ethat kf 0kK = jf 0(�)j � eb� a Z ba jf 0(�)j d�� eN
5 Z ba jf 0(�)j d� = eN
5 jf(b)� f(a)j � 
3NkfkKwith 
3 := e
�15 , and the proof is �nished. utProof of Theorem A.4.7. The theorem follows from Theorem A.4.6 by usingthe substitution x = 
os � and E.10 b℄. utProof of Theorem A.4.8. Let � := 1� (1+N)�2. Using Theorem A.4.7 andthen E.14, we obtainkf 0k[��;�℄ � 
3N(N + 1)kfk[�1;1℄� 
3N(N + 1)
9kfk[��;�℄ � 
4N2kfk[��;�℄ ;and then the theorem follows by a linear transformation. utNow we establish Remez-, Bernstein-, and Markov-type inequalitiesfor generalized nonnegative polynomials in Lp: In the proofs we use theinequalities proved in this appendix so far, and the methods illustrate howone 
an 
ombine the \basi
" inequalities in the proofs of various other in-equalities for generalized nonnegative polynomials. First we state the mainresults.Theorem A.4.10 (Lp Remez-Type Inequality for GAPN ). Let � be a non-negative nonde
reasing fun
tion de�ned on [0;1) su
h that �(x)=x is non-in
reasing on [0;1): There exists an absolute 
onstant 
 � 5p2 su
h thatZ 1�1(�(f(x)))p dx � �1 + exp�
pNps�� ZA(�(f(x)))p dxfor every f 2 GAPN , A � [�1; 1℄ with m([�1; 1℄ n A) � s � 1=2; and forevery p 2 (0;1):



402 A4. Inequalities for Generalized Polynomials in LpTheorem A.4.11 (Lp Remez-Type Inequality for GTPN ). Let � be a non-negative nonde
reasing fun
tion de�ned on [0;1) su
h that �(x)=x is non-in
reasing on [0;1): There exists an absolute 
onstant 
 � 8 su
h thatZ ���(�(f(�)))p d� � (1 + exp(
pNs)) ZA (�(f(�)))p d�for every f 2 GTPN , A � [��; �℄ with m([��; �℄ n A) � s � �=2; and forevery p 2 (0;1):Theorem A.4.12 (Lq Bernstein-Type Inequality for GTPN ). Let � be anonnegative, nonde
reasing, 
onvex fun
tion de�ned on [0;1). There existsan absolute 
onstant 
 su
h thatZ ��� ��N�qjf 0(�)jq� d� � Z ��� �(
f(�)q) d�for every f 2 GTPN of the form (A.4.3) with ea
h rj � 1, and for everyq 2 (0; 1℄:Corollary A.4.13 (Lp Bernstein-Type Inequality for GTPN ). The inequal-ity Z ��� jf 0(�)jp d� � 
p+1Np Z ��� jf(�)jp d�holds for every f 2 GTPN of the form (A.4.3) with ea
h rj � 1; and forevery p 2 (0;1); where 
 is as in Theorem A.4.12.Theorem A.4.14 (Lp Markov-Type Inequality for GAPN ). There exists anabsolute 
onstant 
 su
h thatZ 1�1 jf 0(x)jp dx � 
p+1N2p Z 1�1 jf(x)jp dxfor every f 2 GAPN of the form (A.4.1) with ea
h rj � 1; and for everyp 2 (0;1):Theorems A.4.1 and A.4.2 
an be easily obtained from their L1analogs, Theorems A.4.1 and A.4.2, respe
tively; see E.15 and E.16, wherehints are given.Proof of Theorem A.4.12. For n := bN
 letDn(�) := ����� nXj=�n eij������be the modulus of the nth Diri
hlet kernel. Choose q 2 (0; 1℄; and setm := 2q�1 � 2: Let g 2 GTPN be of the form (A.4.3) with ea
h rj � 1:On applying the Nikolskii-type inequality of Theorem A.4.3 to



Inequalities for Generalized Polynomials in Lp 403G := gDmn 2 GTPN+2nq�1 ;we obtain kgDmn kqK � 
1 �1 + q �N + 2nq�1�� kgDmn kqLq(K)(A:4:11) � 
1(1 + 3N) Z ���(g(�)Dmn (�))q d�= 
1(1 + 3N) Z ��� gq(�)D2n(�) d� :If g 2 GTPN is of the form (A.4.3) with ea
h rj � 1; then m � 2 impliesthat G 2 GTPN is of the form (A.4.3) with ea
h rj � 1 as well. If we applythe Bernstein-type inequality of Theorem A.4.6 to G and use (A.4.11), we
an dedu
e that��g0(�)Dmn (�) +mDm�1n (�)D0n(�)g(�)��qK� �
3 �N + 2nq�1��q kgDmn kqK� 
q3Nq �1 + 2q�1�q 
1(1 + 3N) Z ��� gq(�)D2n(�) d�for every � 2 K (we take one-sided derivatives everywhere). By putting� = 0; and noti
ing thatD0n(0) = 0 and Dn(0)m = (2n+ 1)2=q � N2=q ;we get(A:4:12) jg0(0)jq � 
Nq Z ��� gq(�)(2�)�1(2n+ 1)�1D2n(�) d�with an absolute 
onstant 
: Now let f 2 GTPn be of the form (A.4.3) withea
h rj � 1: Let � 2 K be �xed. On applying (A.4.12) to g(�) := f(�+ �);we 
on
lude thatjf 0(�)jq � 
Nq Z ��� fq(�)(2�)�1(2n+ 1)�1D2n(� � �) d� :Hen
e(A:4:13) N�qjf 0(�)jq � Z ��� 
fq(�)(2�)�1(2n+ 1)�1D2n(� � �) d� :Sin
e(A:4:14) Z ��� (2�)�1(2n+ 1)�1D2n(� � �) d� = 1 ;



404 A4. Inequalities for Generalized Polynomials in LpJensen's inequality (see E.7) and (A.4.3) imply that��N�qjf 0(�)jq� � Z ��� �(
fq(�))(2�)�1(2n+ 1)�1D2n(� � �) d� :If we integrate both sides with respe
t to �; Fubini's theorem and (A.4.14)(on inter
hanging the role of � and �) yield the inequality of the theorem.utProof of Corollary A.4.13. If 0 < p � 1; then Theorem A.4.12 yields the
orollary with q = p and �(x) = x: If 1 � p <1; then the 
orollary followsfrom Theorem A.4.12 again with q = 1 and �(x) = xp. utProof of Theorem A.4.14. We distinguish two 
ases.Case 1: p � 1: Let f 2 GAPN be of the form (A.4.1) with ea
h rj � 1:Then by E.10 b℄, g(�) := f(
os �) 2 GTPN is of the form (A.4.3) with ea
hrj � 1: With the substitution x = 
os �; Corollary A.4.13 and TheoremA.4.11 imply thatZ 1�1 jf 0(x)jp(1� x2)(p�1)=2 dx(A:4:15) � 
p1Np Z 1�1 fp(x)(1� x2)�1=2 dx� 
p1Np exp(
2pNN�1) Z Æ�Æ fp(x)(1� x2)�1=2 dx ;where Æ := maxf1�N�2; 
os(�=16)g and 
1 and 
2 are appropriate absolute
onstants. Sin
e p� 1 � 0; it follows from (A.4.15) thatZ Æ�Æ jf 0(x)jp dx(A:4:16) � (1� Æ2)(1�p)=2 Z Æ�Æ jf 0(x)jp(1� x2)(p�1)=2 dx� (1� Æ2)(1�p)=2
p1Np exp(
2p)(1� Æ2)�1=2 Z Æ�Æ fp(x) dx� 
p3Np�1NpN Z Æ�Æ fp(x) dx= 
p3N2p Z Æ�Æ fp(x) dx ;where 
3 is also an absolute 
onstant. Sin
e (A.4.16) is valid for everyf 2 GAPN of the form (A.4.1) with ea
h rj � 1; the theorem follows by alinear shift from [�Æ; Æ℄ to [�1; 1℄:



Inequalities for Generalized Polynomials in Lp 405Case 2: 0 < p � 1: Let f 2 GAPN be of the form (A.4.1) with ea
h rj � 1:Using the inequality ja+ bjp � jajp + jbjp for p 2 (0; 1℄; we 
an dedu
e thatZA�jf 0(
os �)jj sin �j1=p+1�p d�(A:4:17) � ZA����f(
os �)j sin �j1=p�0���p d�+ ZA�f(
os �)p�1j sin �j1=p�1j 
os �j�p d�for every measurable subset A of [��; �): Applying Theorem A.4.12 (with�(x) = x) to g(�) := f(
os �)j sin �j1=p 2 GTPN+1=p ;then using (A.4.17) with A := [�Æ; Æ℄, Æ := 1� (N + 1)�2; we 
on
lude, bythe substitution x = 
os �, thatZ Æ�Æ jf 0(x)jp(1� x2)p=2 dx(A:4:18) � 
1(N + 1=p)p Z 1�1 fp(x) dx + p�p Z Æ�Æ fp(x)(1� x2)�p=2 dx ;where 
1 is an absolute 
onstant. Note that Theorem A.4.10, 0 < p � 1,and the 
hoi
e of Æ imply that(A:4:19) Z 1�1 fp(x) dx � 
2 Z Æ�Æ fp(x) dxwith an absolute 
onstant 
2. A 
ombination of (A.4.18) and (A.4.19) yieldsZ Æ�Æ jf 0(x)jp dx(A:4:20)� (1� Æ2)�p=2 Z Æ�Æ jf 0(x)jp(1� x2)p=2 dx� (1� Æ2)�p=2(
1
2(N + 1=p)p + p�p(1� Æ2)�p=2) Z Æ�Æ fp(x) dx� 2p=2(N + 1)p(
1
2(N + 1=p)p + p�p2p=2(N + 1)p) Z Æ�Æ fp(x) dx� 
3N2p Z Æ�Æ fp(x) dx ;where 
3 is an absolute 
onstant. Sin
e (A.4.20) is valid for every f 2 GAPNof the form (A.4.1) with ea
h rj � 1; the theorem follows by a linear shiftfrom [�Æ; Æ℄ to [�1; 1℄: ut



406 A4. Inequalities for Generalized Polynomials in LpComments, Exer
ises, and Examples.Most of the results of this se
tion 
an be found in Erd�elyi [91a℄ and [92a℄;Erd�elyi, M�at�e, and Nevai [92℄; and Erd�elyi, Li, and Sa� [94℄; however, theproofs are somewhat simpli�ed here. For polynomials f 2 Pn and for ar-bitrary q 2 (0;1); Theorem A.4.5 was also proved by Kemperman andLorentz [79℄. An early version of Markov's inequality in Lp for ordinary poly-nomials is proven in Hille, Szeg}o, and Tamarkin [37℄. Weighted Markov- andBernstein-type analogs of Theorems A.4.6 to A.4.8 are obtained in Erd�elyi[92b℄. Appli
ations of the inequalities of this se
tion are given in Erd�elyi,Magnus, and Nevai [94℄ and in Erd�elyi and Nevai [92℄, where bounds areestablished for orthonormal polynomials and related fun
tions asso
iatedwith (generalized) Ja
obi weight fun
tions. Further appli
ations in the the-ory of orthogonal polynomials may be found in Freud [71℄ and Erd�elyi [91d℄.Lp extensions of Theorem 5.1.4 (Bernstein's inequality) and Theorem5.1.8 (Markov's inequality) have been studied by a number of authors. Thesharp Lp version of Bernstein's inequality for trigonometri
 polynomialswas �rst established by Zygmund [77℄ for p � 1: Using an interpolationformula of M. Riesz, he proved that(A:4:21) Z ��� jt0(�)jp d� � np Z ��� jt(�)jp d�for every t 2 Tn (see E.5 h℄ of Appendix 4). For 0 < p < 1; �rst Klein [51℄and later Osval'd [76℄ proved (A.4.21) with a multipli
ative 
onstant 
(p):Nevai [79a℄ showed that 
(p) � 8p�1: Subsequently, M�at�e and Nevai [80℄showed the validity of (A.4.21) with a multipli
ative absolute 
onstant, andthen Arestov [81℄ proved (A.4.21) (with the best possible 
onstant 1) forevery 0 < p < 1: Golits
hek and Lorentz [89℄ gave a very elegant proof ofArestov's theorem.The Lp analog of Markov's inequality states that(A:4:22) Z 1�1 jQ0(x)jp dx � 
p+1n2p Z 1�1 jQ(x)jp dxfor every Q 2 Pn and 0 < p < 1; where 
 is an absolute 
onstant. This
an be obtained from Arestov's theorem similarly to the way that TheoremA.4.14 is proven from Corollary A.4.13. To �nd the best possible 
onstantin (A.4.22) is still an open problem even for p = 2 or p = 1:The magnitude of(A:4:23) kf 0wk[�1;1℄kfwk[�1;1℄ ;



Inequalities for Generalized Polynomials in Lp 407(A:4:24) jf 0(y)w(y)jkfwk[�1;1℄ ; �1 � y � 1 ;and their 
orresponding Lp analogs for f 2 Pn and generalized Ja
obiweight fun
tions(A:4:25) w(z) = kYj=1 jz � zj jrj ; zj 2 C ; rj 2 (�1;1)have been examined by several people. See, for example, Ditzian and Totik[88℄, Khalilova [74℄, Konjagin [78℄, Lubinsky and Nevai [87℄, Nevai [79a℄and [79b℄, and Protapov [60℄, but a multipli
ative 
onstant depending onthe weight fun
tion appears in these estimates. The magnitude of (A.4.23),(A.4.24), and their Lp analogs are examined in Erd�elyi [92b℄ and [93℄, whenboth f and w are generalized nonnegative polynomials. In these inequalitiesonly the degree of f , the degree of w, and a multipli
ative absolute 
onstantappear. The most general results are the following:Theorem A.4.15. There exists an absolute 
onstant 
 su
h thatZ ��� jf 0(�)jpw(�) d� � 
p+1(N +M)p(Mp�1 + 1)p Z ��� jf(�)jpw(�) d�and kf 0wk[��;�℄ � 
(N +M)(M + 1)kfwk[��;�℄for every f 2 GTPN of the form (A.4.3) with ea
h rj � 1; for everyw 2 GTPM ; and for every p 2 (0;1):Theorem A.4.16. There exists an absolute 
onstant 
 su
h thatZ 1�1 jf 0(x)jpw(x) dx � 
p+1(N +M)2p(Mp�1 + 1)2p Z 1�1 jf(x)jpw(x) dxand kf 0wk[�1;1℄ � 
(N +M)2kfwk[�1;1℄for every f 2 GAPN of the form (A.4.1) with ea
h rj � 1; for everyw 2 GAPM ; and for every p 2 (0;1):E.1 Another Representation of Generalized Nonnegative Polynomials.a℄ Show that if f = Qkj=1 jQj jrj with ea
h Qj 2 Pnj and rj > 0; thenf 2 GAPN with N � Pkj=1 rjnj : Similarly, if f = Qkj=1 jQj jrj with ea
hQj 2 Tnj and rj > 0; then f 2 GTPN with N �Pkj=1 rjnj :b℄ Show that if f 2 GAPN is of the form (A.4.1), then f =Qmj=1 jQj jrj=2with ea
h Qj 2 P2 and 0 � Qj on R: Similarly, if f 2 GTPN is of the form(A.4.3), then f =Qmj=1 jQj jrj=2 with ea
h Qj 2 T1 and 0 � Qj on R:



408 A4. Inequalities for Generalized Polynomials in LpE.2 The Derivative of an f 2 GTPN with Real Zeros. Show that iff 2 GTPN is of the form (A.4.3) with ea
h rj � 1 and zj 2 R; thenjf 0j 2 GTPN is of the form (A.4.3) with ea
h rj > 0 and zj 2 R; and atleast one of any two adja
ent (in K) zeros of jf 0j has multipli
ity exa
tly 1:E.3 Generalized Nonnegative Polynomials with Rational Exponents. Showthat if f 2 GAPN is of the form (A.4.1) with rational exponents rj = qj=q,where qj ; q 2 N; then f2q 2 P2qN ; while if f 2 GTPN is of the form (A.4.3)with rational exponents rj of the above form then f2q 2 T2qN :E.4 Proof of (A.4.6). Prove (A.4.6) from the expli
it formula (2.1.1) forthe Chebyshev polynomial Tn:E.5 Sharpness of the Remez-Type Inequality for GAPN . Letfn(x) := ����Tn�2x+ s2� s �����N=n 2 GAPN ; n = 1; 2; : : : :Show thatm(fx 2 [�1; 1℄ : fn(x) � 1g) = m([�1; 1� s℄) = 2� sand limn!1 fn(1) =  p2 +psp2�ps!N :The upper bound in Theorem A.4.1 is a
tually not a
hieved by anelement of GAPN ; see Erd�elyi, Li, and Sa� [94℄.E.6 Proof of Theorem A.4.2.Hint: First assume that f 2 GTPN is of the form (A.4.3) with rationalexponents rj = qj=q; where qj ; q 2 N: Then p := f2q 2 T2qN ; and thedesired inequality 
an be obtained from Theorem 5.1.2 as in the proof ofTheorem A.4.1. utE.7 Corollaries of Theorems A.4.1 and A.4.2.a℄ The inequalitym ��x 2 [�1; 1℄ : f(x) � exp(�Nps)kfk[�1;1℄	� � s8holds for every f 2 GAPN and 0 < s < 2. In parti
ular,m ��x 2 [�1; 1℄ : f(x) � e�1kfk[�1;1℄	� � (8N2 + 4)�1holds for every f 2 GAPN .



Inequalities for Generalized Polynomials in Lp 409b℄ The inequalitym (f� 2 [��; �) : f(�) � exp(�Ns)kfkKg) � s4holds for every f 2 GTPN and 0 < s < 2�. In parti
ular,m ��� 2 [��; �) : f(�) � e�1kfkK	� � (4(N + 1))�1holds for every f 2 GTPN :E.8 Nonnegative Trigonometri
 Polynomials. Part a℄ restates E.3 
℄ ofSe
tion 2.4. Parts b℄ and 
℄ dis
uss simple related observations.a℄ Let t 2 Tn be nonnegative on R: Show that there is a p 2 P
n su
h thatt(�) = jp(ei�)j2 for every � 2 R:b℄ Let p 2 P
n and t(�) := jp(ei�)j2 for every � 2 R: Then t 2 Tn and t isnonnegative on R:
℄ Show that if t 2 T 
n ; then there is a p 2 P
2n su
h that jt(�)j = jp(ei�)jfor every � 2 R:E.9 A Cru
ial Inequality in the Proof of Theorem A.4.5. Show thatjP (z)j � � 21 + r�n jP (rz)j ; z 2 �D ; r 2 [0; 1℄for every P 2 P
n having all its zeros outside the open unit disk D:Hint: Let P (z) = 
Qmj=1 (z � zj); where 
 2 C ; zj 2 C n D; and m � n:Show thatjz � zj j � 21 + r jrz � zj j ; j = 1; 2; : : : ;m ; r 2 [0; 1℄ : utE.10 f 2 GAPN Implies f(
os �) 2 GTPN .a℄ Show that if f 2 GAPN ; then g(�) = f(
os �) 2 GTPN :b℄ Show that if f 2 GAPN is of the form (8.1.1) with ea
h rj � 1; theng(�) = f(
os �) 2 GTPN is of the form (A.4.3) with ea
h rj � 1:E.11 A Property of Qn;!. Let Qn;! be de�ned by (A.4.9) and (A.4.10).Show that there is an absolute 
onstant 
6 > 1 su
h that Qn;!(�) � 
6:Hint: Use the expli
it formula (2.1.1) for the Chebyshev polynomial Tn. ut



410 A4. Inequalities for Generalized Polynomials in LpE.12 A Property of the Zeros of a g 2 GTPN . Assume that g 2 GTPNis of the form (A.4.3) and letM := mXj=1zj2[���;�+�℄ rj :Show that M � 3N�kgk�1[�1;1℄ :Hint: First assume that ea
h rj is rational with 
ommon denominator q 2 N;and apply E.12 of Se
tion 5.1 to p := g2q 2 T2qN : utE.13 Extremal Fun
tions for the Bernstein-Type Inequality.a℄ Let rj � 1; j = 1; 2; : : : ;m; be �xed real numbers. Show that thereexists an ef 2 GTPN of the form(A:4:26) ef(z) = mYj=1 j sin((z � e�j)=2)jrj ; e�j 2 Csu
h that j ef 0(�)jk efkK = supf jf 0(�)jkfkK ;where the supremum in the right-hand side is taken for all f 2 GTPN ofthe form(A:4:27) f(z) = j!j mYj=1 j sin((z � zj)=2)jrj ; zj 2 C ; 0 6= ! 2 C :Hint: Write ea
h f of the form (A.4.27) for whi
h the supremum is takenas f(z) = j!0j mYj=1 j!j sin((z � zj)=2) sin((z � zj)=2)jrj=2 ;where the numbers !j > 0 are de�ned byk!j sin((z � zj)=2) sin((z � zj)=2)kK = 1 ; j = 1; 2; : : : ;m ;and then use a 
ompa
tness argument for ea
h fa
tor separately. utb℄ Let ef be as in part a℄. Show that ea
h zero of ef is real, that is, e�j 2 Rfor ea
h j in (A.4.26).Hint: Assume that there is an index 1 � j � m su
h that �j 2 C nR: Thenef�(z) := ef(z) 1� � sin2((z � �)=2)sin((z � �j)=2) sin((z � �j)=2)!rj 2 GTPNwith suÆ
iently small � > 0 
ontradi
ts the maximality of ef: ut



Inequalities for Generalized Polynomials in Lp 411E.14 A Corollary of the Remez-Type Inequality for GAPN . Suppose that� := 1 � (1 + N)�2: Show that there is an absolute 
onstant 
9 > 0 su
hthat kfk[�1;1℄ � 
9kfk[��;�℄for every f 2 GAPN :Hint: This is a 
orollary of Theorem A.4.1. utE.15 Proof of Theorem A.4.10.Outline. For f 2 GAPN , letI(f) := �x 2 [�1; 1℄ : (�(f(x)))p � exp(�5pNp2s)k�(f)kp[�1;1℄	 :From Theorem 5.1.1, 0 < s � 1=2; and the assumptions pres
ribed for �it follows that m(I(f)) � 2s: Let I := A \ I(f): Sin
e m([�1; 1℄ n A) � s;m(I) � s: ThereforeZ[�1;1℄nA(�(f(x)))pdx � Z[�1;1℄nA k�(f)kp[�1;1℄ dx� exp�5pNp2s� ZI(�(f(x)))p dx� exp�5pNp2s� ZA (�(f(x)))p dx : utE.16 Proof of Theorem A.4.11.Hint: For f 2 GTPN ; letI(f) := �� 2 [��; �℄ : (�(f(�)))p � exp(�8pNs)k�(f)kpK	 :From Theorem 5.2.2, 0 < s � �=4; and the assumptions for �; it followsthat m(I(f)) � 2s: Now �nish the proof as in the hint for E.1. utE.17 Sharpness of Theorem A.4.10.a℄ Show that there exists a sequen
e of polynomials Qn 2 Pn and anabsolute 
onstant 
 > 0 su
h thatZ 1�1 jQn(x)jp dx � s�1 + exp�
pnps�� Z 1�s�1 jQn(x)jp dxfor every n 2 N; s 2 (0; 1℄; and p 2 (0;1):Hint: Study the Chebyshev polynomials Tn transformed linearly from[�1; 1℄ to [�1; 1� s℄: ut



412 A4. Inequalities for Generalized Polynomials in Lpb℄ Show that there exist a sequen
e of trigonometri
 polynomials tn 2 Tnand an absolute 
onstant 
 > 0 su
h thatZ ��� jtn(�)jp d� � s(1 + exp(
pns)) Z ��s=2��+s=2 jtn(�)jp d�for every p 2 N; s 2 (0; �℄; and p 2 (0;1):Hint: Study Qn;! de�ned by (A.4.9) with ! := � � s=2: utE.18 Sharpness of Corollary A.4.13 and Theorem A.4.14.a℄ Find a sequen
e of trigonometri
 polynomials tn 2 Tn that shows thesharpness of Corollary A.4.13 up to the 
onstant 
 > 0 for every p 2 (0;1)simultaneously.Hint: Take tn(�) := 
osn�: utb℄ For every p 2 (0;1); �nd a sequen
e of polynomials Qn;p 2 Pn whi
hshows the sharpness of Theorem A.4.14 up to the 
onstant 
 > 0:Outline. Let Lk 2 Pk be the kth orthonormal Legendre polynomial on[�1; 1℄ (see E.5 of Se
tion 2.3), and letGm(x) := 
 mXk=0L0k(1)Lk(x) ;where 
 is 
hosen so that(A:4:28) Z 1�1G2m(x) dx = 1 :Show that there exist absolute 
onstants 
1 > 0 and 
2 > 0 (independentof m) su
h that(A:4:29) jGm(1)j � 
1m and jG0m(1)j � 
2m3 :For a �xed n 2 N; let u := b2=p
+ 1 and m := bn=u
: If m � 1; then letQn;p := Gum 2 Pn; otherwise let Qn;p(x) := x 2 Pn: If m = 0; then the
al
ulation is trivial, so let m � 1: Using (A.4.29) and the Nikolskii-typeinequality of Theorem A.4.4, show that there exists an absolute 
onstant
3 > 0 su
h that(A:4:30) Z 1�1 jQ0n;p(x)jp dx � 
p+13 m(u+2)p(1 + pn)�2 :Use the inequalityZ 1�1 jQn;p(x)jp dx = Z 1�1 jGm(x)jup dx � kGmkup�2[�1;1℄ Z 1�1G2m(x) dx ;



Inequalities for Generalized Polynomials in Lp 413the Nikolskii-type inequality of Theorem A.4.4, and (A.4.28) to show thatthere is an absolute 
onstant 
4 > 0 su
h that(A:4:31) Z 1�1 jQn;p(x)jp dx � 
p+14 mup�2 :Finally, 
ombine (A.4.30) and (A.4.31). Note that if p > 2; then m = bn
;while if p � 2; then 14p(n�1) � m � 2pn: Note also that pp is between twopositive bounds for p 2 (0; 2℄: utE.19 Sharpness of Theorems A.4.3 and A.4.4.a℄ Let q 2 (0;1) be �xed. Show that there exists a sequen
e of polynomialsQn;q 2 Pn and an absolute 
onstant 
 > 0 su
h thatkQn;qk[�1;1℄ � 
1+1=q(1 + qn)2=qkQn;qkLq[�1;1℄for every n 2 N:Hint: Study Qn;p with p = q in the hint to the previous exer
ise. utb℄ Let Qn;q 2 Pn be the same as in part a℄. Show that there exist absolute
onstants 
1 > 0 and 
2 > 0 su
h thatkQn;qkLp[�1;1℄ � 
1+1=q1 
1=p2 (1 + qn)2=q(1 + pn)�2=pkQn;qkLp[�1;1℄for every n 2 N and 0 < q < p �1:Hint: Combine part a℄ and the Nikolskii-type inequality of Theorem A.4.4.ut
℄ Let q 2 (0;1) be �xed. Show that there exists a sequen
e of trigono-metri
 polynomials tn;q 2 Tn and an absolute 
onstant 
 > 0 su
h thatktn;qkK � 
1+1=q(1 + qn)1=qktn;qkLq(K)for every n 2 N:Hint: Let tn;q(�) := Qn;q(
os �); where Qn;q are the same as in part a℄. Usepart a℄ and the S
hur-type inequality of Theorem A.4.5. utd℄ Let tn;q 2 Tn be the same as in part 
℄. Show that there exist absolute
onstants 
1 > 0 and 
2 > 0 su
h thatktn;qkLp(K) � 
1+1=q1 
1=p2 (1 + qn)1=q(1 + pn)1=pktn;qkLq(K)for every n 2 N and 0 < q < p �1:Hint: Combine part a℄ and the Nikolskii-type inequality of Theorem A.4.3.ut



414 A4. Inequalities for Generalized Polynomials in LpE.20 Jensen's Inequality. Let � be a real-valued 
onvex fun
tion de�nedon [0;1); and let f and w be nonnegative Riemann integrable fun
tionson the interval [a; b℄; where R ba w = 1: Show that� Z ba f(x)w(x) dx! � Z ba �(f(x))w(x) dx :Hint: First assume that w is a step fun
tion. Use the fa
t that the 
onvexityof � implies its 
ontinuity, and hen
e the fun
tions �(f)w and fw areRiemann integrable. utE.21 A Pointwise Remez-Type Inequality for GAPN .a℄ Show that there exists an absolute 
onstant 
 > 0 su
h thatjp(y)j � exp 
nmin( sp1� y2 ; ps)! ; y 2 [�1; 1℄for every p 2 Pn and s 2 (0; 1℄ satisfyingm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s ;that is, with the notation of Theorem 5.1.1, for every p 2 Pn(s) withs 2 (0; 1℄:Proof. Assume, without loss of generality, that y 2 [0; 1℄: Leta := y + 12 (1� y ); � := ar

osa ;� := 2 ar

osy � ar

osa ; ! := � � 12 (� � �) ;Qn;!(�) := T2n� sin(�=2)sin(!=2)� ;where T2n is the Chebyshev polynomial of degree 2n de�ned by (2.1.1), andlet Qn;�;�(�) := Qn;! � 12 (� � (2� � (�+ �)))� :Asso
iated with p 2 Pn(s); we introdu
eg(�) := p(
os �)Qn;�;�(�) 2 T2n :Obviously jQn;�;�(�)j � 1 ; � 2 [0; 2�) n (�; �)and kQn;�;�k[0;2�℄ = Qn;�;� � 12 (�+ �)� = Qn;!(�) :



Inequalities for Generalized Polynomials in Lp 415The de�nition of ! implies that there exist absolute 
onstants 
1 > 0 and
2 > 0 su
h that 
1p1� y2 � � � ! � 
2p1� y2 :This, together with E.3 
℄, yields that there are absolute 
onstants 
3 > 0and 
4 > 0 su
h thatQn;!(�) � exp�
3np1� y2� � exp�5nps�whenever y 2 [0; 1� 
4s℄. It follows now from Theorem 5.1.1 thatjg(�)j � exp�5nps� � Qn;!(�)for every � 2 [0; 2�) n (�; �) and y 2 [0; 1� 
4s℄: Furthermorejg(�)j � Qn;!(�)for every � 2 (�; �) for whi
h jp(
os �)j � 1: Note thatj 
os �j � 1� 12 (1� y) ; � 2 (�; �)and hen
e p 2 Pn(s) with s 2 (0; 1℄ implies that there exists an absolute
onstant 
5 > 0 su
h thatm(f� 2 (�; �) : jp(
os �)j � 1g) � 
5sp1� y2 :Therefore f := (Qn;!(�))�1g 2 T2nsatis�es m(f� 2 [0; 2�) : jf(�)j � 1g) � 2� � eswith es := 
5sp1� y2 ; y 2 [0; 1� 
4s℄ :Applying Theorem 5.1.2 with f and es; we 
on
lude thatjp(y)j = ��p �
os � 12 (�+ �)���� = (Qn;!(�))�1g � 12 (�+ �)�=f � 12 (� + �)� � exp(4nes) � exp 
5sp1� y2!whenever es 2 (0; �=2℄ and y 2 [0; 1 � 
4s℄: If s 2 (0; 1℄; but es > �=2 ory 2 [1� 
4s; 1℄; then Theorem 5.1.1 yields the required inequality. ut



416 A4. Inequalities for Generalized Polynomials in Lpb℄ Show that the inequality of part a℄ is sharp up to the absolute 
onstant
 > 0:Hint: Assume, without loss, that y 2 [0; 1℄: Show that there exists an abso-lute 
onstant 
1 > 0 su
h that the polynomialsWn;y;s(x) := Tn� 2x2� x + s2� s� 2 Pn(s) ;where Tn is the Chebyshev polynomial of degree n de�ned by (2.1.1), satisfyjWn;y;s(y)j � exp(
1nps)for every n 2 N; y 2 [1� s=2; 1℄; and s 2 (0; 1℄:If y 2 [0; 1� s=2℄; then leta := y + s4 ; � := ar

osa ;� := 2 ar

osy � ar

osa ; ! := � � � � �2 ;Qn;�;�(�) := T2n� sin((� + � � (�+ �)=2)=2)sin(!=2) � ;Rn;�;�(�) := 12 (Qn;�;�(�) +Qn;�;�(��)) ;and we de�ne Wn;y;s for every n 2 N; y 2 [0; 1� s=2); and s 2 (0; 1℄ byRn;�;�(�) =Wn;y;s(
os �) ; Wn;y;s 2 Pn :Show that Wn;y;s 2 Pn(s) and that there exists an absolute 
onstant 
 > 0su
h that jWn;y;s(y)j � exp 
n sp1� y2!for every n 2 N; y 2 [0; 1� s=2); and s 2 (0; 1℄: ut
℄ Extend the validity of part a℄ to the 
lass GAPN ; that is, prove thatthere exists an absolute 
onstant 
 > 0 su
h thatjf(y)j � exp 
N min( sp1� y2 ; ps)! ; y 2 [�1; 1℄for every f 2 GAPN and s 2 (0; 1℄ satisfyingm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :



This is page 417Printer: Opaque thisA5Inequalities for Polynomialswith Constraints

OverviewThis appendix deals with inequalities for 
onstrained polynomials. Typi-
ally the 
onstraints are on the lo
ation of the zeros, though various 
oef-�
ient 
onstraints are also 
onsidered.Inequalities for Polynomials with ConstraintsFor integers 0 � k � n; letPn;k := fp 2 Pn : p has at most k zeros in Dgwhere, as before, D := fz 2 C : jzj < 1g: For a < b; letBn(a; b) := np 2 Pn : p(x) = � nXj=0 �j(b� x)j(x� a)n�j ; �j � 0o :For integers 0 � k � n; letePn;k(a; b) := fp = hq : h 2 Bn�k(a; b) ; q 2 Pkg :Two useful relations, given in E.1, arePn;0 � Bn(�1; 1) and Pn;k � ePn;k(�1; 1) :



418 A5. Inequalities for Polynomials with ConstraintsTheorem A.5.1 (Markov-Type Inequality for ePn;k). The inequalitykp(m)k[�1;1℄ � (18n(k + 2m+ 1))mkpk[�1;1℄holds for every p 2 ePn;k(�1; 1): (When m = 1; the 
onstant 18 
an berepla
ed by 9:)Proof. First we study the 
ase m = 1. Applying Theorem 6.1.1 (Newman'sinequality) with(�0; �1; : : : ; �k) = (n� k; n� k + 1; : : : ; n)and using a linear shift from [0; 1℄ to [�1; 1℄; we obtain that(A:5:1) jp0(1)j � 92n(k + 1)kpk[�1;1℄for every p 2 ePn;k(�1; 1) of the form(A:5:2) p(x) = (x+ 1)n�kq(x) ; q 2 Pk :Now let p 2 ePn;k(�1; 1) be of the form p = hq with q 2 Pk andh(x) = n�kXj=0 �j(1� x)j(x+ 1)n�k�j with ea
h �j � 0 :Without loss of generality, we may assume that n� k � 1; otherwise The-orem 5.1.8 (Markov's inequality) gives the theorem. Using (A.5.1) and thefa
t that ea
h �j � 0; we getjp0(1)j(A:5:3) = �����n�kXj=0 ��j(1� x)j(x + 1)n�k�jq(x)�0 (1)�����= ����� 1Xj=0(�j(1� x)j(x+ 1)n�k�jq(x))0(1)������ 92n(k + 2) 

(x + 1)n�k�1(�0(x+ 1) + �1(1� x))q(x)

[�1;1℄� 92n(k + 2) 




n�kXj=0 �j(1� x)j(x+ 1)n�k�jq(x)




[�1;1℄� 92n(k + 2)kpk[�1;1℄ :Now let y 2 [�1; 1℄ be arbitrary. To estimate jp0(y)j we distinguish two
ases.



Inequalities for Polynomials with Constraints 419If y 2 [0; 1℄; then by a linear shift from [�1; 1℄ to [�1; y℄; we obtainfrom (A.5.3) that(A:5:4) jp0(y)j � 9y + 1 n(k + 2)kpk[�1;y℄ � 9n(k + 2)kpk[�1;1℄for every p 2 ePn;k(�1; y): It follows from E.1 d℄ thatePn;k(�1; 1) � ePn;k(�1; y) :So (A.5.4) holds for every p 2 ePn;k(�1; 1):If y 2 [�1; 0℄; then by a linear shift from [�1; 1℄ to [y; 1℄; we obtainfrom (A.5.3) that(A:5:5) jp0(y)j � 91� y n(k + 2)kpk[y;1℄ � 9n(k + 2)kpk[�1;1℄for every p 2 ePn;k(y; 1): By E.1 d℄ again,ePn;k(�1; 1) � ePn;k(y; 1) :So (A.5.5) holds for every p 2 ePn;k(�1; 1); whi
h �nishes the 
ase whenm = 1:Now we turn to the 
ase when m � 2: Note that an indu
tion on mdoes not work dire
tly for an arbitrary p 2 ePn;k(�1; 1): However, it followsby indu
tion on m that(A:5:6) kp(m)k[�1;1℄ � (9n(k +m+ 1))mkpk[�1;1℄for every p 2 ePn;k(�1; 1) of the form (A.5.2). Now let p 2 ePn;k(�1; 1) beof the form p = hq, where q 2 Pk andh(x) = n�kXj=0 �j(1� x)j(x + 1)n�j with ea
h �j � 0:For notational 
onvenien
e let s := minfn � k;mg. Using (A.5.6) and thefa
t that ea
h �j � 0, we getjp(m)(1)j(A:5:7) = �����n�kXj=0(�j(1� x)j(1 + x)n�k�jq(x))(m)(1)�����= ����� sXj=0(�j(1� x)j(1 + x)n�k�jq(x))(m)(1)������ (9n(k + s+m+ 1))m 




 sXj=0 �j(1� x)j(x+ 1)n�k�jq(x)




[�1;1℄� (9n(k + 2m+ 1))m 




n�kXj=0 �j(1� x)j(x+ 1)n�k�jq(x)




[�1;1℄= (9n(k + 2m+ 1))mkpk[�1;1℄ :



420 A5. Inequalities for Polynomials with ConstraintsFrom (A.5.7), in a similar fashion to the 
ase when m = 1; we 
on
ludethat kp(m)k[�1;1℄ � (18n(k + 2m+ 1))mkpk[�1;1℄for every p 2 ePn;k(�1; 1); whi
h �nishes the proof. utTheorem A.5.1 is essentially sharp as is shown in E.2 and E.4 f℄. How-ever, a better upper bound 
an be given for jp(m)(y)j when y 2 (�1; 1) isaway from the endpoints �1 and 1:Theorem A.5.2 (Markov-Bernstein Type Inequality for Pn;k). There existsa 
onstant 
(m) depending only on m su
h thatjp(m)(y)j � 
(m) min(n(k + 1) ; pn(k + 1)p1� y2 )!m kpk[�1;1℄for every p 2 Pn;k and y 2 [�1; 1℄:Theorem A.5.2 has been proved in Borwein and Erd�elyi [94℄. Its proofis long, and we do not reprodu
e it here. However, the proof of a less sharpversion, where p1� y2 is repla
ed by 1 � y2; is outlined in E.4 and E.5.The fa
torpn(k + 1) in Theorem A.5.2 is essentially sharp in the 
ase thatm = 1; see E.7.Theorem A.5.3 (Markov-Bernstein Type Inequality for Bn(�1; 1)). Thereexists a 
onstant 
(m) depending only on m su
h thatjp(m)(y)j � 
(m) min(n ; pnp1� y2)!m kpk[�1;1℄for every p 2 Bn(�1; 1) (hen
e for every p 2 Pn;0) and y 2 [�1; 1℄:Note that the uniform (Markov-type) upper bound of the above the-orem is a spe
ial 
ase (k = 0) of Theorem A.5.1. Our proof of TheoremA.5.3 o�ers another way to prove the 
ase of Theorem A.5.1 when k = 0:First we need a lemma.Lemma A.5.4. For n 2 N and y 2 R; let�n;y := 14  p(1� y2)+pn + 1n! ;where x+ := maxfx; 0g: Thenjp(y + i
�n;y)j � p2e ��p �y � 12n���for every p 2 Bn(�1; 1); y 2 ��1� 18n ; 1 + 18n� ; and 
 2 [0; 1℄; where i isthe imaginary unit. The + sign is taken if y 2 ��1� 18n ; 0� ; and the �sign is taken if y 2 �0; 1 + 18n� :



Inequalities for Polynomials with Constraints 421Proof. It is suÆ
ient to prove the lemma for the polynomialspn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n :The general 
ase whenp = nXj=0 �jpn;j with ea
h �j � 0 or ea
h �j � 0
an then be obtained by taking linear 
ombinations. Without loss of gen-erality, we may assume that y 2 �0; 1 + 18n� : Then�2n;y � 18 � (1� y2)+n + 1n2� � (1� y)+4n + 18n2from whi
h it follows thatjpn;j(y + i
�n;y)j � jpn;j(y + i�n;y)j= �(1� y)2 +�2n;y�j=2 �(1 + y)2 +�2n;y�(n�j)=2� �(1� y) + 12n�j �(1 + y) + 12n�n�j= �1� �y � 12n��j �1 + �y � 12n��n�j �1 + y + 12n1 + y � 12n �n�j� �2n+ 12n� 1�n pn;j �y � 12n� � p2epn;j �y � 12n� ;and the lemma is proved. utProof of Theorem A.5.3. For n 2 N and y 2 [�1; 1℄; let Bn;y denote the
ir
le of the 
omplex plane with 
enter y and radius 14�n;y. Using E.4,Lemma A.5.4, and the maximum prin
iple, we obtainjp(z)j � p2e kpk[�1;1℄for every p 2 Bn(�1; 1); z 2 Bn;y; n 2 N; and y 2 [�1; 1℄: Hen
e, byCau
hy's integral formula,jp(m)(y)j = ����� m!2�i ZBn;y p(�)(� � y)m+1 d������� m!2� ZBn;y ���� p(�)(� � y)m+1 ���� j d�j� m!2� 2� 14�n;y � 14�n;y��(m+1)p2ekpk[�1;1℄� 
(m) min(n ; pnp1� y2)!m kpk[�1;1℄for every p 2 Bn(�1; 1) and y 2 [�1; 1℄; whi
h proves the theorem. ut



422 A5. Inequalities for Polynomials with ConstraintsFor r 2 (0; 1℄; letD�r := fz 2 C : jz � (1� r)j < rg :For n 2 N; k = 0; 1; : : : ; n; and r 2 (0; 1℄; let P�n;k;r be the set of allp 2 Pn that have at most k zeros (
ounting multipli
ities) in D�r , and letPn;k;r := P+n;k;r\P�n;k;r: The following result is proved in Erd�elyi [89a℄. Theproof in a spe
ial 
ase is outlined in E.9.Theorem A.5.5 (Markov-Type Inequality for Pn;k;r). There exists a 
on-stant 
(m) depending only on m su
h thatkp(m)k[�1;1℄ � 
(m)�n(k + 1)2pr �m kpk[�1;1℄for every p 2 Pn;k;r; m 2 N; and r 2 (0; 1℄:We state, without proof, the Lq analogs of Theorem A.5.2 for m = 1,established in Borwein and Erd�elyi [to appear 2℄.Theorem A.5.6 (Lq Markov-Type Inequality for Pn;k). There exists an ab-solute 
onstant 
 su
h thatZ 1�1 jp0(x)jq dx � 
q+1(n(k + 1))q Z 1�1 jp(x)jq dxfor every p 2 Pn;k and q 2 (0;1):Theorem A.5.7 (Lq Bernstein-Type Inequality for Pn;k). There exists anabsolute 
onstant 
 su
h thatZ ��� jp0(
os t) sin tjq dt � 
q+1(n(k + 1))q=2 Z ��� jp(
os t)jq dtfor every p 2 Pn;k and q 2 (0;1):Both of the above inequalities are sharp up to the absolute 
onstant 
 > 0:A Markov-type inequality for polynomials having at most k zeros inthe disk Dr := fz 2 C : jzj < rgis given by the following theorem; see Erd�elyi [90a℄.Theorem A.5.8 (Markov-Type Inequality for Polynomials with At Most kZeros in Dr). Let k 2 N and r 2 (0; 1℄: Then there exist 
onstants 
1(k) > 0and 
2(k) > 0 depending only on k so that
1(k)�n+ (1� r)n2� � supp kp0k[�1;1℄kpk[�1;1℄ � 
2(k)�n+ (1� r)n2� ;where the supremum is taken for all p 2 Pn that have at most k zeros inDr:



Inequalities for Polynomials with Constraints 423Comments, Exer
ises, and Examples.Erd}os [40℄ proved thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄ < e2n kpk[�1;1℄for every p 2 Pn;0 n � 2; having only real zeros. In this result, the assump-tion that p has only real zeros 
an be dropped. In E.11 we outline the proofof the above inequality for every p 2 Pn;0; n � 2: The polynomialspn(x) := (x + 1)n�1(1� x) ; n = 1; 2; : : : ;show that Erd}os's result is the best possible for Pn;0: Erd}os [40℄ also showedthat there exists an absolute 
onstant 
 su
h thatjp0(y)j � 
pn(1� y2)2 kpk[�1;1℄for every p 2 Pn;0 having only real zeros. Markov- and Bernstein-typeinequalities for Bn(�1; 1) were �rst established by Lorentz [63℄, who provedTheorem A.5.3. Lorentz's approa
h is outlined for m = 1 in E.8. The proofpresented in the text follows Erd�elyi [91
℄. Up to the 
onstant 
(m) >0 Theorem A.5.3 is sharp; see E.12. S
hei
k [72℄ found the best possibleasymptoti
 
onstant in Lorentz's Markov-type inequality for m = 1 andm = 2: He proved the inequalitieskp0k[�1;1℄ � e2n kpk[�1;1℄ and kp00k[�1;1℄ � e2n(n� 1)kpk[�1;1℄for every p 2 Bn(�1; 1) (and hen
e for every p 2 Pn;0). Note that withpn(x) := (x+ 1)n�1(1� x);kp0nk[�1;1℄nkpnk[�1;1℄ ! e2 and kp00nk[�1;1℄n(n� 1)kpk[�1;1℄ ! e2 as n!1 :A slightly weaker version of Theorem A.5.1 was 
onje
tured by Szabados[81℄, who gave polynomials pn:k 2 Pn;k with only real zeros so thatjp0n;k(1)j � 13n(k + 1)kpn;kk[�1;1℄for all integers 0 � k � n: After some results of Szabados and Varma[80℄ and M�at�e [81℄, Szabados's 
onje
ture has been settled in Borwein [85℄,where it is shown thatkp0k[�1;1℄ � 9n(k + 1)kpk[�1;1℄



424 A5. Inequalities for Polynomials with Constraintsfor every p 2 Pn;k having n�k zeros in R n (�1; 1). The 
ru
ial part of thisproof is outlined in E.4 d℄ and e℄. The above inequality is extended to allp 2 ePn;k (and hen
e to all p 2 Pn;k) and to higher derivatives in Erd�elyi[91b℄, whose approa
h is followed in our proof of Theorem A.5.1.After partial results of Erd�elyi and Szabados [88, 89b℄ and Erd�elyi[91b℄, the \right" Markov-Bernstein-type analogs of Theorem A.5.2 forthe 
lasses Pn;k has been proved in Borwein and Erd�elyi [94℄. Note thatPn;n = Pn; and hen
e, up to the 
onstant 
(m); Theorem A.5.2 
ontainsthe 
lassi
al inequalities of Markov and Bernstein, and of 
ourse the 
asek = 0 gives ba
k Lorentz's inequalities for the 
lasses Pn;0 � Bn(�1; 1):The \right" Markov- and Bernstein-type inequalities of Theorems A.5.8and A.5.9 for all 
lasses Pn;k in Lq, 0 < q <1, are established in Borweinand Erd�elyi [to appear 2℄.The Markov-type inequality for the 
lasses Pn;k;r given by TheoremA.5.5 is proved in Erd�elyi [89a℄. A weaker version, when k = 0 and thefa
tor r�1=2 is repla
ed by a 
onstant 
(r) depending on r, is established inRahman and Labelle [68℄. When k = 0; Theorem A.5.5 is sharp up to the
onstant 
(m) depending only on m; see E.10.E.1 Relation Between Classes of Constrained Polynomials.a℄ Show that Pn;0(�1; 1) � B(�1; 1): (This is an observation of G. G.Lorentz.)Hint: Use the identities(x��)(x��) = 14 j1+�j2(1�x)2+ 12 (j�j2 � 1)(1�x2) + 14 j1��j2(1+x)2and x� � = 12 (1� �)(x + 1)� 12 (�+ 1)(1� x) : utb℄ Show that Pn;k � ePn;k(�1; 1):
℄ Show that Bn(a; b) � Bn(
; d) whenever [
; d℄ � [a; b℄:Hint: First show thatx� a = �1(x� 
) + �2(d� x) and b� x = �3(x� 
) + �4(d� x)with some nonnegative 
oeÆ
ients. utd℄ Show that ePn;k(a; b) � ePn;k(
; d) whenever [
; d℄ � [a; b℄:E.2 Sharpness of Theorem A.5.1. Show that there exist polynomialspn;k 2 Pn;k of the formpn;k(x) = (x+ 1)n�kqn;k(x) ; qn;k 2 Pksu
h that jp0n;k(1)j � 16n(k + 1)kpn;kk[�1;1℄for every n 2 N; k = 0; 1; : : : ; n:



Inequalities for Polynomials with Constraints 425Hint: Use the lower bound in Theorem 6.1.1 (Newman's inequality) with(�0; �1; : : : ; �k) = (n� k; n� k + 1; : : : ; ng : utE.3 A Te
hni
al Detail in the Proof of Lemma A.5.4. For n 2 N andy 2 [�1; 1℄; letFn := �z = a+ ib : a 2 ��1� 18n ; 1 + 18n� ; b 2 (��n;a; �n;a)	 ;and Bn;y := �z 2 C : jz � yj = 14�n;y	 :Show that Bn;y � Fn for every y 2 [�1; 1℄:E.4 Bernstein-Type Inequality for Pn;k. Prove that there exists an ab-solute 
onstant 
 su
h thatjp0(y)j � 
pn(k + 1)1� y2 kpk[�1;1℄for every p 2 Pn;k; and y 2 (�1; 1): Pro
eed as follows:a℄ Show that for every n 2 N and k = 0; 1; : : : ; n; there exists a polynomialQ 2 Pn;k su
h that jQ0(0)jkQk[�1;1℄ = supp2Pn;k jp0(0)jkpk[�1;1℄ :Hint: Use a 
ompa
tness argument. Use Rou
h�e's theorem to show that theuniform limit of a sequen
e of polynomials from Pn;k on [�1; 1℄ is also inPn;k: utb℄ Show that Q has only real zeros, and at most k + 1 of them (
ountingmultipli
ities) are di�erent from �1:Hint: Use a variational method. For example, if z0 2 C n R is a zero of Q;then the polynomialQ�(x) := Q(x)�1� �x2(x� z0)(x� z0)�with suÆ
iently small � > 0 is in Pn;k and 
ontradi
ts the maximality ofQ: ut
℄ Let Æ := (36n(k + 3))�1: Show thatkpk[�Æ;1℄ � 2 kpk[0;1℄for every polynomial Pn;k having all its zeros in [0;1) with at most k ofthem (
ounting multipli
ities) in (0; 1):



426 A5. Inequalities for Polynomials with ConstraintsHint: Use the Mean Value Theorem and the result of Theorem A.5.1 trans-formed linearly from [�1; 1℄ to [0; 1℄: utd℄ Let z0 := i
(36n(k+3))�1=2; where i is the imaginary unit and 
 2 [0; 1℄:Show that jp(z0)j � p2 kpk[�1;1℄for every polynomial p 2 Pn having only real zeros with at most k of them(
ounting multipli
ities) in (�1; 1):Outline. Let p(x) =Qsj=1(x� uj) with some s � n: Applying part 
℄ toq(x) := sYj=1 (x� u2j ) ;we obtainjq(�(36n(k + 3))�1)j � 2kqk[0;1℄ = 2kq(x2)k[0;1℄ = 2kp(x)p(�x)k[�1;1℄� 2kpk2[�1;1℄ :Observe thatjp(z0)j2 � jp(i(36n(k + 3))�1=2)j2 = sYj=1(u2j + (36n(k + 3))�1)= jq(�(36n(k + 3))�1)j ;whi
h, together with the previous inequality, yields the desired result. ute℄ Let Q 2 Pn;k be the extremal polynomial of part a℄, and letFn;k := nz = a+ ib : jaj � 1 ; jbj � (36n(k + 3))�1=2(1� jaj)o :Show that jQ(z)j � p2 kQk[�1;1℄for every z 2 Fn;k:Hint: Use parts b℄ and d℄ and a linear shift from the interval [�1; 1℄ to[2Re(z)� 1; 1℄ if Re(z) � 0; or to [�1; 2Re(z) + 1℄ if Re(z) < 0: ut



Inequalities for Polynomials with Constraints 427f ℄ Show that there exists an absolute 
onstant 
 > 0 su
h thatjp0(0)j � 
pn(k + 1) kpk[�1;1℄for every p 2 Pn;k:Hint: By part a℄ it is suÆ
ient to prove the inequality when p = Q; in whi
h
ase use part e℄ and Cau
hy's integral formula. utg℄ Prove the main result stated in the beginning of the exer
ise.Hint: In order to estimate jp0(y)j when, for example, y 2 [0; 1℄ use a linearshift from [�1; 1℄ to [2y � 1; 1℄ and apply part f℄. utE.5 Bernstein-Type Inequality for Pn;k for Higher Derivatives. Provethat there exists a 
onstant 
(m) depending only on m so thatjp(m)(y)j � 
(m) pn(k + 1)1� y2 !m kpk[�1;1℄for every p 2 Pn;k and y 2 (�1; 1):Hint: First show that for every n;m 2 N, k = 0; 1; : : : ; n, and Æ 2 (0; 1℄;there exists a polynomial QÆ 2 Pn;k su
h thatjQ(m)Æ (0)jkQÆk[�1;1℄n[�Æ;Æ℄ = supp2Pn;k jp(m)(0)jkpk[�1;1℄n[�Æ;Æ℄ :Show that QÆ has at most k+m zeros di�erent from �1: Show that there is apolynomialQ 2 Pn;k having at most k+m zeros (by 
ounting multipli
ities)di�erent from �1 su
h thatjQ(m)(0)jkQk[�1;1℄ = supp2Pn;k jp(m)(0)jkpk[�1;1℄ :If y = 0; then use E.5 and indu
tion on m to prove the inequality of theexer
ise for all p 2 Pn;k having at most k +m zeros di�erent from �1: Foran arbitrary y 2 (�1; 1) use a linear shift as is suggested in the hint to E.5g℄. utE.6 Sharpness of Theorem A.5.2. Show that there exist polynomialspn;k 2 Pn;k and an absolute 
onstant 
 > 0 su
h thatjp0n;k(0)j � 
pn(k + 1)kpn;kk[�1;1℄for every n 2 N and k = 0; 1; : : : ; n:



428 A5. Inequalities for Polynomials with ConstraintsHint: If k = 0; then let m := � 13 (n� 1)� andpn;k(x) := (x � 1)m(x + 1)m+1+bpm
 :If 1 � k � 13n; then let m := � 13n� ; s := � 13 (k � 1)� ; andpn;k(x) := (x2 � 1)m T2s+1�r m2s+ 1 x� :If 13n < k � n; then let m := � 13n� and pn;k := pn;m: utE.7 Some Inequalities of Lorentz. (See Lorentz [63℄.)a℄ Show thatjp0(x)j � � nn� 1�n n ��p �x� 1n��� � 4n ��p �x� 1n���for every p 2 Bn(�1; 1) (hen
e for every p 2 Pn;0); n � 2; and x 2 [�1; 1℄;where in x� 1n the + sign is taken if x 2 [�1; 0); while the � sign is takenif x 2 [0; 1℄:Hint: Observe that it is suÆ
ient to prove the inequality only forpn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n : utb℄ Let Æn(x) :=r1� x2n ; n 2 N ; x 2 [�1; 1℄ :Show that there exists an absolute 
onstant 
 > 0 su
h thatjp0(x)j � (Æn(x))�1max�jp(x)j; ��p�x� 12Æn(x)���	for every p 2 Bn(�1; 1) (hen
e for every p 2 Pn;0) and x 2 ��1 + 
n ; 1� 
n� :Hint: Note that it is suÆ
ient to prove the inequality only forpn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N ; j = 0; 1; : : : ; n : ut
℄ Show that Z 1�1 jp0(x)jq dx � 2 � 4qnq Z 1�1 jp(x)jq dxfor every p 2 Bn(�1; 1) (hen
e for every p 2 Pn;0) and q 2 (0;1):



Inequalities for Polynomials with Constraints 429Hint: Use part a℄. utd℄ Show that there is an absolute 
onstant 
 > 0 su
h thatZ 1�1 ��p0(x)p1� x2��q dx � 5
qnq=2 Z 1�1 jp(x)jq dxfor every p 2 Bn(�1; 1) (hen
e for every p 2 Pn;0) and q 2 (0;1):Hint: Use parts b℄ and 
℄. utAnalogs of parts a℄ and b℄ for higher derivatives are established byLorentz [63℄. From these, analogs of parts 
℄ and d℄ for higher derivatives
an be proven.E.8 Theorem A.5.5 in a Spe
ial Case. Show that there is an absolute
onstant 
1 su
h that jp0(1)j � 
1npr kpk[�1;1℄for every p 2 Pn having all its zeros in (�1; 1� 2r℄; r 2 (0; 1℄:Proof. First assume that(A:5:8) jp(1)j = kpk[�1;1℄ :Without loss of generality, we may assume that p 2 Pn n Pn�1: Denote thezeros of p by (�1 <)x1 � x2 � � � � � xn(� 1� 2r): LetI� := (1� 2(� + 1)4r; 1� 2�4r℄ ; � = 1; 2; : : : :Using E.12 of Se
tion 5.1, we obtainjp0(1)jjp(1)j = nXj=1 11� xj = 1X�=1 Xxj2I� 11� xj� 1Xv=1 ep2np2(� + 1)4r 12�4r� e2 1Xv=1 (� + 1)2�4 npr � 
1nprwith an absolute 
onstant 
1:Now we 
an drop assumption (A.5.8) as follows: Sin
e p has all itszeros in (�1; 1 � 2r℄; jpj and jp0j are in
reasing on [1 � 2r;1): Pi
k theunique y 2 [1;1) satisfying jp(y)j = kpk[�1;1℄ = kpk[�1;y℄: Using a lineartransformation, from the already proved 
ase we easily obtainjp0(1)j � jp0(y)j � 
1 2ny + 1 �2r + y � 1y + 1 ��1=2 kpk[�1;y℄� 
1npr kpk[�1;1℄ : ut



430 A5. Inequalities for Polynomials with ConstraintsE.9 Sharpness of Theorem A.5.5. For n 2 N and r 2 (0;1); let Sn;r bethe family of all p 2 Pn that have no zeros in the stripfz 2 C : jIm(z)j < rg :a℄ Show that there exist polynomials pn;m;r 2 Sn;r and a 
onstant 
(m) > 0depending only on m su
h thatjp(m)n;m;r(1)j � 
(m)�min� npr ; n2��m kpn;m;rk[�1;1℄for every n 2 N; r 2 (0; 1℄; and m = 1; 2; : : : ; n:Outline. If 0 < r � �4m ; then withxj := �1� 4�mr� 
os � 2j�12n �� ; j = 1; 2; : : : ; nand zj := xj + ir ; j = 1; 2; : : : ; nlet pn;m;r(x) := nYj=1(x� zj)(x� zj) 2 Sn;r :By E.1 of Se
tion 5.2, jpn;m;r(1)j = kpn;m;rk[�1;1℄: Prove thatjp(m)n;m;r(1)jkpn;m;rk[�1;1℄ = jp(m)n;m;r(1)jjpn;m;r(1)j� 2�1 + �4m��m 1p2 jq(m)n;m;r(1)jjqn;m;r(1)j� p2e  nXj=m 11� xj!m� 
(m)�min� npr ; n2��m ;where qn;m;r(x) := Qnj=1 (x� xj) and 
(m) > 0 depends only on m: If�4m < r � 1; then let pn;m;r := pn;m;er; where er := �4m : utb℄ Con
lude from Theorem A.5.5 and part a℄ that there exist two 
onstants
1(m) > 0 and 
2(m) > 0 depending only on m su
h that
1(m)�min� npr ; n2��m � sup kp(m)k[�1;1℄kpk[�1;1℄� 
2(m)�min� npr ; n2��m ;where the supremum is taken either for all p 2 Sn;r or for all p 2 Pn;0;r:



Inequalities for Polynomials with Constraints 431E.10 An Inequality of Erd}os. (See Erd}os [40℄.) Prove thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄for every p 2 Pn;0; n � 2: This extends a result of Erd}os [40℄ where theabove inequality is proven under the additional assumption that p has onlyreal zeros.a℄ Suppose p 2 Pn;0; all the zeros of p are real, p(1) = p(�1) = 0; andkpk[�1;1℄ = 1: Show thatp(x) � � nn� 1�n�1 1 + x1 + x0for every x 2 [�1; 1℄; where x0 is the only point in (�1; 1) with p0(x0) = 0:Proof. Without loss of generality, we may assume that deg(p) = n and�1 < x < x0: Let d := x0 �x: Let x1 := �1; x2; : : : ; xn denote the zeros ofp: Then p(x) = p(x)p(x0) = 1 + x1 + x0 nYj=2�1� dx0 � xj � :Sin
e the geometri
 mean of n�1 nonnegative numbers is not greater thantheir arithmeti
 mean, we havenYj=2�1� dx0 � xj� �  1n� 1  n� 1� nXj=2 dx0 � xj!!n�1� � 1n� 1 �n� 1 + dx0 + 1��n�1 � � nn� 1�n�1 :utb℄ Under the assumptions of part a℄ show thatkp0k[�1;1℄ � n2 � nn� 1�n�1 kpk[�1;1℄ :Proof. Note thatXxj�1 1xj � x0 = Xxj��1 1x0 � xj � min� k1� x0 ; n� kx0 + 1� � n2 ;where k denotes the number of zeros of p in [1;1): Hen
e, by part a℄,



432 A5. Inequalities for Polynomials with Constraintsp0(x) = p(x) nXj=1 1x� xj� � nn� 1�n�1 1 + x1 + x0 Xxj��1 1x� xj� � nn� 1�n 1 + x1 + x0 1 + x01 + x Xxj��1 1x0 � xj� n2 � nn� 1�n�1for every x 2 [�1; 1℄: Similarlyp0(x) � �n2 � nn� 1�n�1for every x 2 [�1; 1℄: ut
℄ Suppose p 2 Pn;0 has only real zeros, p0 does not vanish in [�1; 1℄;p(�1) = 0; and p(1) = 1: Show thatkp0k[�1;1℄ � n2 kpk[�1;1℄ :Hint: Use the relation Pn;0 � Bn(�1; 1) to show thatp(x) � �x+ 12 �n ; x 2 [�1; 1℄ :Denote the zeros of p by x1 = �1, x2; x3; : : : ; xn: Then0 � p0(x) = p(x) nXj=1 1x� xj � �x+ 12 �n nx+ 1 � n2 = n2 kpk[�1;1℄for every x 2 [�1; 1℄: utd℄ Prove Erd}os's inequality for every p 2 Pn;0 having only real zeros.Hint: Redu
e the general 
ase to either part b℄ or part 
℄ by a linear trans-formation. ute℄ Prove Erd}os's inequality for every p 2 Pn;0:Hint: Show that for every n 2 N and y 2 [�1; 1℄; there exists a polynomialQ 2 Pn;0 su
h that jQ0(y)jkQk[�1;1℄ = supp2Pn;0 jp0(y)jkpk[�1;1℄ :Show by a variational method that if y 2 (�1; 1); then Q has only realzeros. Now part d℄ �nishes the proof. ut



Inequalities for Polynomials with Constraints 433f ℄ Show that kp0k[�1;1℄ = n2 � nn� 1�n�1 kpk[�1;1℄holds for a p 2 Pn;0 having only real zeros if and only if eitherp(x) = 
(x+ 1)n�1(1� x) or p(x) = 
(1� x)n�1(x+ 1)with some 0 6= 
 2 R:E.11 Sharpness of Theorem A.5.3. For every n 2 N; m = 1; 2; : : : ; n; andy 2 [�1; 1℄; there are polynomials pn;m;y 2 Bn(�1; 1) having zeros only inR n (�1; 1) su
h thatjp(m)n;m;y(y)j � 
(m) min(n ; pnp1� y2)!m kpn;m;yk[�1;1℄with a 
onstant 
(m) > 0 depending only on m:Outline. If y 2 [�1; 1℄ n ��1 + 2mn ; 1� 2mn � ;then let pn;m;y(x) := (x+ 1)n :In what follows, assume thaty 2 [�1 + 2mn ; 1� 2mn ℄ :Let qn;j(x) := (1� x)j(x+ 1)n�j ; n 2 N; j = 0; 1; : : : ; n: Show thatq(m)n;j (x)qn;j(x) = Qn;j;m(x)(x2 � 1)m ; m � j � n�m;where Qn;j;m is a polynomial of degree m with only real zeros and withleading 
oeÆ
ient n!(n�m)! : Let�n;y := max( 1n ; p1� y2pn ) ; n 2 N ; y 2 [�1; 1℄ :Use the Mean Value Theorem and Theorem A.5.3 to show that there existsan absolute 
onstant 
 2 (0; 1) su
h thatqn;j(x) � 12kqn;jk[�1;1℄ ; m � j � n�mfor everyx 2 Iy := [y � 
�n;y; y + 
�n;y℄ \ [�1; 1℄ ; y = 1� 2jn :



434 A5. Inequalities for Polynomials with ConstraintsLet m � j � n �m and y = 1 � 2jn be �xed. Choose a point � 2 Iysu
h that j� � �ij � 
�n;y2(m+ 1) ; i = 1; 2; : : : ;m ;where the numbers �i are the zeros of Qn;j;m: Now show that there existsa 
onstant 
1(m) > 0 depending only on m su
h that(A:5:9) jq(m)n;j (�)j � 
1(m) min(n; pnp1� y2)!m kqn;jk[�1;1℄ :Next show that if y 2 ��1 + 2mn ; 1� 2mn � ;then there exists a point� 2 �y � 12 (1� jyj) ; y + 12 (1� jyj)�and a value of j, m � j � n � m, su
h that (A.5.9) holds. Polynomialspn;m;y with the desired properties 
an now be easily de�ned by using lineartransformations. utE.12 An Inequality of Tur�an. (See Tur�an [39℄.) Show thatkp0k[�1;1℄kpk[�1;1℄ > 16pnfor every p 2 Pn n Pn�1 having all its zeros in [�1; 1℄:Outline. Assume that p 2 Pn has all its zeros in [�1; 1℄; and kpk[�1;1℄ = 1:Choose an a 2 [�1; 1℄ su
h that jp(a)j = 1. Without loss of generality,assume that p(a) = 1:a℄ Show that if a = �1; then jp0(1)j � 12n > 16pn:If a 2 (�1; 1); then p0(a) = 0. Without loss of generality, assume thata 2 [�1; 0℄: Let I := �a; a+ 2n�1=2� � [�1; 1℄ :If n � 3; then the result follows by the Mean Value Theorem; let n � 4:b℄ Use the Mean Value Theorem to show that if jp0(x)j � 16pn on I; thenp(x) � 23 on I:
℄ Show that if jp00(x)j > 112n on I; then jp0(a+ 2n�1=2)j > 16pn:d℄ The proof of Tur�an's inequality 
an now be �nished as follows. Supposep(x) > 23 on I , and there exists a � 2 I su
h that p00(�) � 112n: Note thatp0(x)2 � p(x)p00(x) = p(x)2 nXk=1 1(x� xk)2 ;



Inequalities for Polynomials with Constraints 435where x1; x2; : : : ; xn denote the zeros of p: Sin
e ea
h xk lies in [�1; 1℄, theinequality Pnk=1(x � xk)�2 � 14n holds for every x 2 I: Sin
e p(x) � 23 onI; this implies that p0(x)2 � p(x)p00(x) � n9 ; x 2 Iand hen
e p0(�)2 � n9 � jp(�)jjp00(�)j > n9 � n12 = n36 : utAn extension of Tur�an's inequality to Lp norms is given by Zhou [92b℄.E.13 An Inequality of Erd}os and Tur�an. Let p 2 Pn be of the formp(x) = � nYj=1(x� xj) ; �1 � x1 � x2 � � � � � xn � 1 :Suppose p is 
onvex on [xk�1; xk ℄ for some index k: Thenxk � xk�1 � 16pn :Pro
eed as follows: Let a be the only point in [xk�1; xk℄ for whi
hp0(a) = 0:a℄ Show that there exist �1; �2 2 R su
h thata� 2n�1=2 � �1 < a < �2 � a+ 2n�1=2 ;jp0(�1)j � 16pn jp(a)j ; and jp0(�2)j � 16pn jp(a)j :Hint: Modify the outline of the proof of E.12. utb℄ Show that �1 � xk�1 � 6pn and xk � �2 � 6pn :Outline. To prove, say, the �rst inequality, we may assume that xk�1 < �1;otherwise the inequality is trivial. Using the 
onvexity of p on [xk�1; xk℄;we get jp0(x)j � jp0(�1)j ; x 2 [xk�1; �1℄ :Hen
ejp(a)j � jp(�1)j = jp(�1)� p(xk�1)j = �����Z �1xk�1 p0(x) dx����� = Z �1xk�1 jp0(x)j dx� (�1 � xk�1)jp0(�1)j � (�1 � xk�1) 16pn jp(a)j ;and the result follows. ut



436 A5. Inequalities for Polynomials with Constraints
℄ Con
lude thata� xk�1 � (a� �1) + (�1 � xk�1) � 2pn + 6pn = 8pn ;and similarlyxk � a � (�2 � a) + (xk � �2) � 2pn + 6pn = 8pn : utd℄ Er}od [39℄ establishes the sharp inequalitiesxk � xk�1 � 2p2n� 3 if n is even,xk � xk�1 � 2p2n� 3pn2 � 2nn� 1 if n � 3 is odd.E.14 S
hur-Type Inequality for Bn(�1; 1). Let � be an arbitrary positivereal number. Show thatsup06=p2Bn(�1;1) kpk[�1;1℄kp(x)(1� x2)�k[�1;1℄ = (n+ 2�)n+2�(4�)�(n+ �)n+�< � e4� (n+ 2�)�� :The supremum is attained if and only if p(x) = 
(1� x)n; 0 6= 
 2 R:Hint: Let x1 := nn+2� : If jyj � x1; thenjp(y)jkp(x)(1� x2)�k[�1;1℄ � 1(1� y2)� � 1(1� x21)�= (n+ 2�)2�(4�)�(n+ �)� < (n+ 2�)n+2�(4�)�(n+ �)n+� :If x1 < jyj � 1; say x1 < y � 1; then(1� y)j(y + 1)n�j � k(1� x)j(x+ 1)n�jk[�1;1℄ = 2njj(n� j)n�jnn= jj(n� j)n�j(n+ 2�)n�jnn(n+ �)n�j (1� x1)j(x1 + 1)n�j� �j(n+ �)�(n� j)�j �n+ 2�n+ � �n (1� x1)j(x1 + 1)n�j� �n+ 2�n+ � �n (1� x1)j(x1 + 1)n�jwhenever 0 � j � �nn+2� :



Inequalities for Polynomials with Constraints 437On the other hand, sin
e the fun
tion (1� x)j(x+ 1)n�j is monotonede
reasing in �1� 2jn ; 1� ; the inequality(1� y)j(y + 1)n�j < (1� x1)j(x1 + 1)n�jfollows whenever �nn+2� < j � n: Finally, use the representationp(x) = nXj=0 aj(1� x)j(x+ 1)n�jwith ea
h aj � 0 or ea
h aj � 0 to show thatjp(y)j � (n+ 2�)n+2�(4�)�(n+ �)n+� ��p(x1)(1� x21)���for every p 2 Bn(�1; 1): utE.15 S
hur-Type Inequality for Tn(�!; !). For n 2 N and ! 2 (0; �℄, letTn(�!; !) := ft 2 Tn : d!(t) � ng ;where the Lorentz degree d!(t) is de�ned in E.5 of Se
tion 2.4. Let � be anarbitrary positive real number. Show thatsup06=t2Tn(�!;!) ktk[�!;!℄

t(�) � 12 (
os � � 
os!)��

[�!;!℄� � (n(� � 2!) +p!n)� ; 0 < ! � �=2(2! � � + n�1=2)�� ; �=2 � ! � � ;and the supremum is attained if and only ift(�) = 
 sin2n ! � �2 ; 0 6= 
 2 R :Here the � symbol means that the ratio of the two sides is between twopositive 
onstants depending only on � (and independent of n 2 N and! 2 (0; �℄).E.16 Extensions and Variations of Lax's Inequality. Theorem 7.1.11 
on-tains, as a limiting 
ase, an inequality of Lax [44℄ 
onje
tured by Erd}os; seepart a℄. Various extensions of this inequality are given by Ankeny and Rivlin[55℄, Govil [73℄, Malik [69℄, and others. Parts b℄ to e℄ dis
uss some of these.As before, letD := fz 2 C : jzj < 1g and �D := fz 2 C : jzj = 1g :



438 A5. Inequalities for Polynomials with Constraintsa℄ Lax's Inequality. The inequalitykp0kD � n2 kpkDholds for all p 2 P
n that have no zeros in the open unit disk.Proof. This follows from Theorem 7.1.11 as a limiting 
ase. utb℄ Malik's Extension. Asso
iated withp(z) = 
 nYj=1(z � zj) ; zj 2 C ; 0 6= 
 2 C ;let p�(z) := 
 nYj=1(1� zzj) = znp(1=z) :Then maxz2�D �jp0(z)j+ jp�0(z)j� = nfor every 0 6= p 2 P
n:Proof. See Malik [69℄. ut
℄ An Observation of Kro�o. Suppose p 2 P
n satis�es that if p(z) = 0for some z 2 D; then p(1=z) = 0 (there is no restri
tion for the zeros of poutside D). Then kp0kD � n2 kpkD :Hint: Show that if p 2 P
n satis�es the assumption of the lemma, thenjp0(z)j � jp�0(z)j for every z 2 �D. Use part b℄ to �nish the proof. utd℄ An Inequality of Ankeny and Rivlin. Let r � 1. The inequalitymaxjzj=r jp(z)j � rn + 12 maxjzj=1 jp(z)jholds for all p 2 P
n that have no zeros in the open unit disk.Proof. See Ankeny and Rivlin [55℄. ute℄ An Inequality of Govil. Let r � 1. The inequalitykp0kD � n1 + r kpkDholds for all p 2 P
n that have no zeros in the disk fz 2 C : jzj < rg:Proof. See Govil [73℄. ut



Inequalities for Polynomials with Constraints 439f ℄ Let p(z) := 
 nYk=1 (z � zk) ; 0 6= 
 2 C :Show that kp0kDk �  nXk=1 11 + jzkj! kpkD :Proof. If z 2 �D; thenRe�zp0(z)p(z) � = nXk=1Re� zz � zk� � nXk=1 11 + jzkj ;and the result follows. utg℄ Let r 2 (0; 1℄: The inequalitykp0kD � n1 + r kpkDholds for all p 2 P
n that have all their zeros in the disk fz 2 C : jzj � rg:Proof. Use part f℄. uth℄ Another Inequality of Govil. Let r > 1. The inequalitykp0kD � n1 + rn kpkDholds for all p 2 P
n whi
h have no zeros in the disk fz 2 C : jzj < rg:Proof. See Govil [73℄. utE.17 Markov-Type Inequality for Nonnegative Polynomials. Show thatkp0k[�1;1℄ � n22 kpk[�1;1℄for every p 2 Pn positive on [�1; 1℄:Proof. Suppose p 2 Pn is positive on [�1; 1℄ and kpk[�1;1℄ = 2: ApplyTheorem 5.1.8 (Markov's inequality) to q := p� 1: utE.18 Markov's Inequality for Monotone Polynomials. It has been ob-served by Bernstein that Markov's inequality for monotone polynomials isnot essentially better than for arbitrary polynomials. He proved that if nis odd, then sup06=p kp0k[�1;1℄kpk[�1;1℄ = �n+ 12 �2 ;where the supremum is taken for all p 2 Pn that are monotone on [�1; 1℄:



440 A5. Inequalities for Polynomials with ConstraintsFor even n, the inequalitysup06=p kp0k[�1;1℄kpk[�1;1℄ � �n+ 12 �2still holds. Parts a℄ and b℄ of this exer
ise outline a proof.a℄ Show that for every odd n; there is a p 2 Pn monotone on R for whi
hjp0(1)jkpk[�1;1℄ = �n+ 12 �2 :Proof. Let m := 12 (n� 1): Use E.2 e℄ of Se
tion 6.1 to show that there is aq 2 Pm for whi
hq2(1) =  mXk=0(1 + 2k)!Z 10 q2(t) dt = (m+ 1)2 Z 10 q2(t) dt :Now let p(x) := Z x0 q2(t) dt� 12 Z 10 q2(t) dt :Obviously p 2 Pn; p is monotone on R; andjp0(1)jkpk[�1;1℄ = q2(1)12 R 10 q2(t) dt = 2(m+ 1)2 = 2�n+ 12 �2 :Now the proof 
an be �nished by a linear transformation mapping [�1; 1℄to [0; 1℄: utb℄ Let n be odd. Show thatsup06=p kp0k[�1;1℄kpk[�1;1℄ � �n+ 12 �2 ;where the supremum is taken for all p 2 Pn that are monotone on [�1; 1℄:Hint: It is suÆ
ient to prove that if n := 2m is even, thenkpk � 12 �n+ 22 �2 Z 1�1 p(t) dtfor every p 2 Pn nonnegative on [�1; 1℄: Show that there is an extremalpolynomial ep for the above inequality for whi
h kepk[�1;1℄ is a
hieved at 1:Show, by a variational method, that this ep must have at least 2m zeros(
ounting multipli
ities) in [�1; 1): Sin
e ep is nonnegative, it is of the formep = q2 with a q 2 Pm: Now use E.2 e℄ of Se
tion 6.1 to show that



Inequalities for Polynomials with Constraints 441q2(1) � 12 (m+ 1)2 Z 1�1 q2(t) dt = 12 �n+ 22 �2 Z 1�1 q2(t) dt ;and the result follows. ut
℄ Let r = p=q; where p; q 2 Pn and q is positive and monotone non-de
reasing on an interval [a; b℄: Show thatkr0k[a+�;b℄ � 4n2� krk[a;b℄for every � 2 (0; b� a):Proof. The proof follows Borwein [80℄. Let 
 2 [a + �; b℄ be a point wherejr0(
)j = kr0k[a+�;b℄: Let d 2 [a; 
℄ be a point jp(d)j = kpk[a;
℄. Thenr0(
) = p0(
)q(
) � q0(
)q(
) r(
) :Theorem 5.1.8 (Markov's inequality) and the monotoni
ity of q imply thatjp0(
)jjq(
)j � 2n2kpk[a;
℄(
� a)jq(
)j = 2n2jp(d)j(
� a)jq(
)j � 2n2
� a jp(d)jjq(d)j � 2n2� jr(
)jand jq0(
)jjq(
)j jr(
)j � 2n2kqk[a;
℄jq(
)j jr(
)j � 2n2� jr(
)j :Thus kr0k[a+�;b℄ = jr0(
)j � 4n2� krk[a;b℄ : utd℄ Sharpness of Part 
℄. Let n be odd. By part a℄, there exists a p 2 Pnsu
h that p is monotone in
reasing on R; p(a) = �1; p(a+ �) = 1, andjp0(a+ �)j = 12� �n+ 12 �2 :Let q := p+ 2 and r := 1=q: Show thatkrk[a;1℄ = 1 and jr0(a+ �)j = 19 � 12� �n+ 12 �2 :



442 A5. Inequalities for Polynomials with ConstraintsWeighted polynomial inequalities and their appli
ations are beyondthe s
ope of this book. A thorough dis
ussion requires serious potentialtheoreti
 ba
kground, and proofs are usually quite long. Some of the mainresults in this area in
lude von Golits
hek, Lorentz, and Makovoz [92℄; He[91℄; Ivanov and Totik [90℄; Levin and Lubinsky [87a℄ and [87b℄; Lubinsky[89℄, Lubinsky and Sa� [88a℄, [88b℄, and [89℄; Mhaskar and Sa� [85℄; Nevaiand Totik [86℄ and [87℄; Sa� and Totik [to appear℄; and Totik [94℄. Thefollowing exer
ise treats a weighted Markov-type inequality with respe
tto the Laguerre weight on [0;1): The method presented below works inmore general 
ases; however, the te
hni
al details 
oming from the \right"polynomial approximation of the weight fun
tion is typi
ally far more 
om-pli
ated.E.19 A Weighted Markov-Type Inequality of Szeg}o. Part a℄ presents asimple weighted polynomial inequality of Szeg}o [64℄.a℄ Show that kp0(x)e�xk[0;1) � (8n+ 2)kp(x)e�xk[0;1)for every p 2 Pn:Proof. Let p 2 Pn. First prove the inequalityjp0(0)j � (8n+ 2)kp(x)e�xk[0;1)as follows. Apply Theorem 5.1.8 (Markov's inequality) on [0; n=2℄ (by alinear transformation) to q(x) := p(x)�1� xn�nand note that�1� xn�n � e�x and �1� xn��1 � 2 ; x 2 [0; n=2℄ :The general 
ase 
an be easily redu
ed to the 
ase dis
ussed above. Ify 2 [0;1) is �xed, then let q(x) := p(x� y) 2 Pn: On applying the alreadyproved inequality with q; we obtainjp0(y)e�yj = jq0(0)e�yj� e�y(8n+ 2) maxx2[0;1) jq(x)e�xj� (8n+ 2) maxx2[0;1) jp(x+ y)e�(x+y)j� (8n+ 2) maxx2[0;1) jp(x)e�xj ;whi
h �nishes the proof. ut



Inequalities for Polynomials with Constraints 443b℄ There is an absolute 
onstant 
 > 0 su
h thatkp0(x)e�xk[0;1) � 
pn kp(x)e�xk[0;1)holds for every p 2 Pn having no zeros in the disk with diameter [0; 2℄:Proof. See Erd�elyi [89
℄, where this result is extended to various other gen-eral 
lasses of weight fun
tions and 
onstrained polynomials. utE.20 Inequalities for Generalized Polynomials with Constraints. Fors 2 (0; 2); letePn;k(s) := np 2 ePn;k : m(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� so :The polynomials Tn;k 2 Pn;k are de�ned byTn;k(x) := Tnfn� k; n� k + 1; : : : ; n; [0; 1℄g �12 (x+ 1)� ;where 0 � k � n are integers. (Note that the notation introdu
ed in Se
-tion 3.3 de�nes Tn;k only on [�1; 1℄; and, to be pre
ise, Tn;k denotes thepolynomial de�ned above on [�1; 1℄:)a℄ Remez-Type Inequality for ePn;k. The inequalitykpk[�1;1℄ � Tn;k�2 + s2� s�holds for every p 2 ePn;k(s) and s 2 (0; 2): Equality holds if and only ifp(x) � �Tn;k� �2x2� s + s2� s� :Proof. The proof is quite similar to that of Theorem 5.1.1 (Remez Inequal-ity); see Borwein and Erd�elyi [92℄. utb℄ A Numeri
al Version of Part a℄. Show thatTn;k �2 + s2� s� � exp�5�pnks+ ns��for every s 2 (0; 1℄:Proof. See Borwein and Erd�elyi [92℄. ut



444 A5. Inequalities for Polynomials with ConstraintsLet GAPN;K , 0 � K � N , be the set of all f 2 GAPN of the form(A.4.1) for whi
h nXj=1jzj j�1 rj � K :Note that if 0 � K � N are integers and p 2 PN;K ; then jpj 2 GAPN;K :For 0 � K � N and 0 < s < 2, let GAPN;K(s) denote the 
olle
tionof all f 2 GAPN;K for whi
hm(fx 2 [�1; 1℄ : f(x) � 1g) � 2� s :The next part of the exer
ise extends a numeri
al version of part a℄ to the
lasses GAPN;K(s):
℄ Remez-Type Inequality for GAPN;K . There exists a 
onstant 
1 � 5su
h that kfk[�1;1℄ � exp�
1 �pNKs+Ns��for every f 2 GAPN;K(s) and s 2 (0; 1℄:Hint: Let q 2 N be the 
ommon denominator of the numbers rj . Apply parta℄ with p := f2q 2 eP2qN;2qK(s), and then use part b℄. utd℄ Nikolskii-Type Inequality for GAPN;K . Let � be a nonnegative non-de
reasing fun
tion de�ned on [0;1) su
h that �(x)=x is nonin
reasing on[0;1): Then there exists an absolute 
onstant 
2 � 25e2 su
h thatk�(f)kLp[�1;1℄ � (
2maxf1 ; q2NK ; qNg)1=q�1=pk�(f)kLq[�1;1℄for every f 2 GAPN;K and 0 < q < p � 1:The 
ase K = N (when there is no restri
tion on the zeros) of part d℄is the 
ontent of Theorem A.4.4. If qK � 1; then the Nikolskii fa
tor in theunrestri
ted 
ase (K = N) is like (p
2 qN)2=q�2=p; while in our restri
ted
ases it improves to (p
2 qpNK)2=q�2=p:Proof. It is suÆ
ient to prove the inequality when p = 1, and then asimilar argument, as in the proof of Theorems A.4.3 and A.4.4, gives theresult for arbitrary 0 < q < p � 1: Thus, in the sequel, let 0 < q < p =1:Using the inequality of part 
℄ withs := minf1 ; (
21q2NK)�1 ; (
1qN)�1gand re
alling the 
onditions pres
ribed for �; we 
on
lude thatm��x 2 [�1; 1℄ : (�(f(x)))q � e�2k�(f)kq[�1;1℄	�� m��x 2 [�1; 1℄ : f(x) � e�2=qkfk[�1;1℄	�� m��x 2 [�1; 1℄ : f(x) � exp��
1�pNKs+Ns��kfk[�1;1℄	�� s



Inequalities for Polynomials with Constraints 445for every f 2 GAPN;K : Now integrating only on the subset E of [�1; 1℄where (�(f(x)))q � e�2k�(f)kq[�1;1℄ ;we obtain k�(f)kq[�1;1℄ � e2m(E) ZE(�(f(x)))q dx� 
2maxf1 ; q2NK ; qNgk�(f)kqLq[�1;1℄for every f 2 GAPN;K , where 
2 := 
21e2 (assuming 
1 � 1). Sin
e 
1 � 5;we have 
2 � 25e2. ute℄ Remez-Type Inequality for Bn(�1; 1). Show thatkpk[�1;1℄ � � 22� s�nfor every p 2 Bn(�1; 1) satisfyingm(fx 2 [�1; 1℄ : jp(x)j � 1g) � 2� s :Equality holds if and only if p is of the formp(x) = ��1� x2� s�n :Proof. See Erd�elyi [90b℄. utf ℄ Markov-Type Inequality for GAPN;K . There exists an absolute 
on-stant 
 > 0 su
h thatkf 0k[�1;1℄ � 
N(K + 1)kfk[�1;1℄for every f 2 GAPN;K of the form (A.4.1) with ea
h rj � 1:Re
all that jf 0(x)j is well-de�ned for every f 2 GAPN;K and x 2 R,as the modulus of the one-sided derivative of f at x. The 
ondition thatrj � 1 for ea
h j in (A.4.1) is needed to ensure that jf 0(zj)j <1 if zj 2 R.The above result generalizes the 
orresponding polynomial inequality forthe 
lasses Pn;k.Proof. See Borwein and Erd�elyi [92℄. ut



446 A5. Inequalities for Polynomials with ConstraintsE.21 The Ilye�-Sendov Conje
ture. The following problem is known asthe Ilye�-Sendov 
onje
ture. As before, let D := fz 2 C : jzj < 1g:Suppose P 2 Pn has all its zeros in the 
losed unit disk D. Then ea
h
losed disk 
entered at a zero of P 
ontains a zero of of P 0.Although the problem in this generality is still unanswered, severalspe
ial 
ases have been settled. The 
ase outlined in part a℄ was �rst provedin Rubinstein [68℄. Vâjâitu and Zahares
u [93℄ 
ontains stronger results; seealso Miller [90℄. Milovanovi�
, Mitrinovi�
, and Rassias [94℄ has a dis
ussionabout the re
ent status of the 
onje
ture.a℄ Suppose P (z) = nYk=1 (z � zk) ; jzkj � 1 ; jz1j = 1 :Show that P 0 has at least one zero in the 
losed disk 
entered at z1:Proof. Without loss of generality, we may assume that z1 := 1: Then P isof the form P (z) = (z � 1)Q(z); whereQ(z) := nYk=2 (z � zk) ; jzkj � 1 :Suppose the statement is false. Then R(z) := P 0(z + 1) has no zero in the
losed unit disk D: Hen
e ����R0(0)R(0) ���� < n� 1 :Observe that R(0) = Q(1) and R0(0) = 2Q0(1) :Hen
e ����Q0(1)Q(1) ���� = 12 ����R0(0)R(0) ���� < n� 12 :However, Re�Q0(1)Q(1) � = Re nXk=2 11� zk! � n� 12 :This 
ontradi
tion �nishes the proof. utb℄ The polynomial P (z) := zn � 1 shows the sharpness of part a℄.



Inequalities for Polynomials with Constraints 447It follows from Theorem A.5.3 that there exists an absolute 
onstant
 > 0 su
h that kp0k[�1;1℄ � 
n kpk[�1;1℄for every p 2 Pn with no zeros in the open unit disk. The polynomialspn(x) := (x+1)n show that up to the absolute 
onstant 
 > 0 this inequalityis the best possible. The next exer
ise shows that the \right" Markov fa
toron [�1; 1℄ for polynomials of degree at most n with 
omplex 
oeÆ
ients andwith no zeros in the open unit disk is 
n(1 + logn) rather than 
n. This isan observation of Hal�asz.E.22 Markov Inequality for P
n with No Zeros in the Unit Disk. Showthat there exists an absolute 
onstant 
1 > 0 so thatkp0k[�1;1℄ � 
1n(1 + logn)kpk[�1;1℄for every p 2 P
n with no zeros in the open unit disk.Show also that there exist polynomials pn 2 P
n with no zeros in theopen unit disk su
h thatkp0nk[�1;1℄ � 
2n(1 + log n)kpnk[�1;1℄ ; n = 1; 2; : : :with an absolute 
onstant 
2 > 0:Pro
eed as follows:a℄ Show that if z 2 C is outside the open unit disk, thenjx� zjjx�1 � zj � jxjfor every x 2 R n [�1; 1℄:b℄ Suppose p 2 P
n has no zeros in the open unit disk. Let x 2 R n [�1; 1℄.Show that jp(x)j � jxjnjp(x�1)j :
℄ Prove the upper bound of the exer
ise.Hint: Use part b℄ and E.11 a℄. utd℄ Let zk := e2ik�=(2n+1) ; k = 1; 2; : : : ; nbe the (2n+ 1)th roots of unity in the open upper half-plane. Letp2n+1(z) := p2n+2(z) := (z + 1) nYk=1(z � zk)2 :Show that jp2n+1(x)j = jx2n+1 � 1j for every x 2 R: Note that this impliesjp2n+1(�1)j = kp2n+1k[�1;1℄ = 2 :Show also that ����p02n+1(�1)p2n+1(�1) ���� � 
n(1 + logn)with an absolute 
onstant 
 > 0:
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Notation

De�nitions of the more 
ommonly used spa
es are given. The equationnumbers here are the same as the equation numbers in the text.Throughout the book, unless otherwise stated, spans should be as-sumed to be real. Likewise, in fun
tion spa
es, unless otherwise stated, thefun
tions should be assumed to be real valued.The Basi
 Spa
es.(1:1:1) P
n := (p : p(z) = nXk=0 akzk; ak 2 C) :(1:1:2) Pn := (p : p(z) = nXk=0 akzk; ak 2 R) :(1:1:3) R
m;n := �pq : p 2 P
m; q 2 P
n� :(1:1:4) Rm;n := �pq : p 2 Pm; q 2 Pn� :



468 NotationT 
n : = (t : t(�) := nXk=�n akeik�; ak 2 C)(1:1:5) = nt : t(z) = a0 + nXk=1(ak 
os kz + bk sin kz) ; ak; bk 2 Co :Tn : = nt : t(z) = a0 + nXk=1(ak 
os kz + bk sin kz) ; ak; bk 2 Ro :M�untz Spa
es.(3:4:2) Mn(�) := spanfx�0 ; x�1 ; : : : ; x�ng :(3:4:3) M(�) := 1[n=0Mn(�) = spanfx�0 ; x�1 ; : : : g :Asso
iated with a sequen
e (�i)1i=0 with Re(�i) > �1=2 for ea
h i; the nthM�untz-Legendre polynomial is:Ln(x) := Lnf�0; : : : ; �ng(x)(3:4:5) := 12�i Z� n�1Yk=0 t+ �k + 1t� �k xt dtt� �n :For distin
t �i;(3:4:6) Lnf�0; : : : ; �ng(x) = nXk=0 
k;nx�k ; x 2 (0;1)with 
k;n := Qn�1j=0 (�k + �j + 1)Qnj=0;j 6=k(�k � �j) :Also,(3:4:8) L�n := (1 + �n + �n)1=2Lnis the nth orthonormal M�untz-Legendre polynomial.



Notation 469Rational Spa
es.K := R (mod 2�) ; D := fz 2 C : jzj < 1g ; �D := fz 2 C : jzj = 1g :Pn(a1; a2; : : : ; an) := � p(x)Qnk=1 jx� akj : p 2 Pn� :(3.5.3) Tn(a1; a2; : : : ; an) := � t(�)Qnk=1 j
os � � akj : t 2 Tn� :(3.5.4)Also Tn(a1; a2; : : : ; a2n;K) := Tn(a1; a2; : : : ; a2n):= ( t(�)Q2nk=1 j sin((� � ak)=2)j : t 2 Tn)and T 
n (a1; a2; : : : ; a2n;K) := ( t(�)Q2nk=1 sin((� � ak)=2) : t 2 T 
n)on K with a1; a2; : : : ; a2n 2 C n R;Pn(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1 jx� akj : p 2 Pn�and P
n(a1; a2; : : : ; an; [�1; 1℄) := � p(x)Qnk=1(x � ak) : p 2 P
n�on [�1; 1℄ with a1; a2; : : : ; an 2 C n [�1; 1℄;P
n(a1; a2; : : : ; an; �D) := � p(z)Qnk=1(z � ak) : p 2 P
n�on �D with a1; a2; : : : ; an 2 C n �D; andPn(a1; a2; : : : ; an;R) := � p(x)Qnk=1 jx� akj : p 2 Pn�and P
n(a1; a2; : : : ; an;R) := � p(z)Qnk=1(z � ak) : p 2 P
n�on R with a1; a2; : : : ; an 2 C n R:



470 NotationGeneralized Polynomials.The fun
tion(A:4:1) f(z) = j!j mYj=1 jz � zj jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is 
alled a generalized nonnegative(algebrai
) polynomial of (generalized) degree(A:4:2) N := mXj=1 rj :The set of all generalized nonnegative algebrai
 polynomials of degree atmost N is denoted by GAPN :The fun
tion(A:4:3) f(z) = j!j mYj=1 j sin((z � zj)=2)jrjwith 0 < rj 2 R; zj 2 C ; and 0 6= ! 2 C is 
alled a generalized nonnegativetrigonometri
 polynomial of degree(A:4:4) N := 12 mXj=1 rj :The set of all generalized nonnegative trigonometri
 polynomials of degreeat most N is denoted by GTPN :Constrained Polynomials.The following 
lasses of polynomials with 
onstraints appear in Appendix5: Pn;k := fp 2 Pn : p has at most k zeros in Dg ; 0 � k � n ;Bn(a; b) := np 2 Pn : p(x) = � nXj=0 �j(b�x)j(x�a)n�j ; �j � 0o ; a < b ;ePn;k(a; b) := fp = hq : h 2 Bn�k(a; b) ; q 2 Pkg ; 0 � k � n :



Notation 471Fun
tion Spa
es.The uniform or supremum norm of a 
omplex-valued fun
tion f de�ned ona set A is de�ned by kfkA := supx2A jf(x)j :The spa
e of all real-valued 
ontinuous fun
tions on a topologi
al spa
eA equipped with the uniform norm is denoted by C(A): If A := [a; b℄ isequipped with the usual metri
 topology, then the notation C[a; b℄ := C(A)is used.Let (X;�) be a measure spa
e (� nonnegative) and p 2 (0;1℄: Thespa
e Lp(�) is de�ned as the 
olle
tion of equivalen
e 
lasses of real-valuedmeasurable fun
tions for whi
h kfkLp(�) <1; wherekfkLp(�) := �ZX jf jp d��1=p ; p 2 (0;1)and kfkL1(�) := supf� 2 R : �(fx 2 X : jf(x)j > �g) > 0g <1 :The equivalen
e 
lasses are de�ned by the equivalen
e relation f � g iff = g �-almost everywhere on X: When we write Lp[a; b℄ we always meanLp(�); where � is the Lebesgue measure on X = [a; b℄: The notationsLp(a; b); Lp[a; b); and Lp(a; b℄ are also used analogously to Lp[a; b℄: Again,it is always our understanding that the spa
e Lp(�) is equipped with theLp(�) norm.Sometimes C(A) denotes the spa
e of all 
omplex-valued 
ontinuousfun
tions de�ned on A equipped with the uniform norm. Similarly, Lp(�)may denote the spa
e all 
omplex-valued 
ontinuous fun
tions for whi
hkfkLp(�) < 1: This should always be 
lear from the 
ontext; many times,but not always, the reader is reminded if C[a; b℄ or Lp(�) is 
omplex.
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Index

Abel, Niels Henrik, 3, 61Algorithms, 356{371evaluation of xn, 363fast Fourier transform, 359fast polynomial division, 362fast polynomial expansion, 363fast polynomial multipli
ation,361for Chebyshev polynomials, 371for 
ounting zeros, 364{370for polynomial evaluations, 363for reversion of power series, 362interpolation, 360Newton's method, 362, 364{367Remez, 371zero �nding for polynomials,366{370Alternation set, 93Alternation theorem, 94Apolar polynomials, 23, 24, 25Ar
 length of algebrai
 polynomials,31Ar
 length of trigonometri
polynomials, 35Berman's formula, 166Bernstein fa
tor, 145, 150, 152,

322{328Bernstein polynomials, 163{164Bernstein-Szeg}o inequality, 231, 245,259, 321{323for entire fun
tions of exponentialtype, 245for rational fun
tions on [�1; 1℄,322for rational fun
tions on K, 322for rational fun
tions on R, 323for trigonometri
 polynomials, 232Bernstein-type inequalitybounded, 178, 182, 213{214for Chebyshev spa
es, 206for 
onstrained polynomials,420{447for entire fun
tions of exponentialtype, 245for exponential sums, 289for generalized polynomials,392{416for generalized polynomials in Lp,401{417for higher derivatives, 258for nondense M�untz spa
es, 213,310for polynomials, 232{233, 390



474 Indexfor polynomials in Lp, 235, 390,401{417for produ
ts of M�untz spa
es, 317for rational fun
tions on [�1; 1℄,323, 327for rational fun
tions on D, 324for rational fun
tions on K, 322,327for rational fun
tions on R, 323,329for self-re
ipro
al polynomials,339for trigonometri
 polynomials, 232unbounded, 154, 206{217weighted, 257Bessel's inequality, 46Best approximation, 94by rationals, 99to x�, a problem of Lorentz, 108to xn, 99uniqueness, 98Binomial 
oeÆ
ient, 62Blas
hke produ
t, 190, 324Blumenthal's theorem, 78Bombieri's norm, 274Bounded Bernstein-type inequality;see Bernstein-type inequalityBounded Chebyshev-type inequality;see Chebyshev-typeinequalityBounded linear fun
tionals, 50Budan-Fourier theorem, 369Cardano, Girolamo, 3Cartan's lemma, 350Cau
hy determinant, 106Cau
hy indi
es, 367Cau
hy's integral formula, 14Cau
hy-S
hwarz inequality, 42for sequen
es, 46Ces�aro means, 165Chebyshev 
onstants, 39Chebyshev, P.L., 31Chebyshev polynomialsalgorithms for, 371best approximation to xn, 30
omposition
hara
terization, 33expli
it formulas, 30, 32

in Chebyshev spa
es, 114{125in rational spa
es; see Chebyshevrationalsorthogonality, 32redu
ibility, 36se
ond kind, 37three-term re
ursion, 32trigonometri
 on subintervals, 235uniqueness, 118Chebyshev rationals, 139{153and orthogonality, 147derivative formulas, 146in algebrai
 rational spa
es, 142in trigonometri
 rational spa
es,143of the �rst and se
ond kind, 141on the real line, 151partial fra
tion representation,144Chebyshev spa
e, 92dimension on the 
ir
le, 100fun
tions with pres
ribed sign
hanges, 100Chebyshev system, 91{100extended 
omplete, 97Chebyshev's inequality, 235, 390Chebyshev-type inequalitybounded, 179, 182expli
it bounds via Paley-Weinertheorem, 196for entire fun
tions of exponentialtype, 245Christo�el fun
tion, 74for M�untz spa
es, 195Christo�el numbers, 67Christo�el-Darboux formula, 60CoeÆ
ient boundsfor polynomials in spe
ial bases,124in nondense rational spa
es, 153of Markov, 248Comparison theorem, 103, 120, 122,183Completeness, 48, 79Complexity 
on
erns, 356{371Conse
utive zeros of p0, 26Constrained polynomials, 417{447Bernstein-type inequality, 420,425, 427



Index 475Lp inequalities, 422Markov-type inequality, 417{447Nikolskii-type, 444Remez-type, 443{445S
hur-type, 436{437Cotes numbers, 67Cubi
 equations, 4d'Alembert, Jean le Rond, 13de la Vall�ee Poussin theorem, 99Denseness, 154{226of Markov spa
es, 206{217of M�untz polynomials, 171{205of M�untz rationals, 218{226of polynomials, 154{170Derivatives of Markov systems, 112Des
artes' rule of signs, 22, 102Des
artes system, 100{113examples, 103lexi
ographi
 properties, 103Divide and 
onquer, 358Division of polynomials, 15, 362Elementary symmetri
 fun
tion, 5Enestr�om-Kakeya theorem, 12Erd}os inequality, 431Erd}os-Tur�an inequality, 435Euler, Leonhard, 13Evaluation of xn, 363Exponential sums; see M�untzpolynomialsa problem of Lorentz, 291Bernstein-type inequality, 291Markov-type inequality, 294Nikolskii-type inequality, 289Tur�an's inequality, 295with nonnegative exponents, 294Exponential type, 196, 245Extended 
omplete Chebyshev system,97Fa
tor inequalities, 260{274via Mahler's measure, 271{273Fa
torization, 10, 36Fast Fourier transform, 359Favards theorem, 73Fej�er gap, 27{28Fej�er operators, 164Fej�er's theorem, 165

Fekete point, 38Fekete polynomial, 38Ferrari, Ludovi
o, 3Ferro, S
ipione del, 3Fourier 
oeÆ
ient, 53Fourier series, 53Fundamental theorem of algebra, 3Gamma fun
tion, 63Gauss, Carl Friedri
h, 13Gaussian hypergeometri
 series, 62Gauss-Ja
obi quadrature, 67, 75Gauss-Lu
as theorem, 18Gegenbauer polynomials, 65Generalized polynomialsBernstein-type inequality, 399,407Lp inequalities, 401{407Markov-type inequality, 399, 407Nikolskii-type inequality, 394{395Remez-type inequality, 393{394,414S
hur-type inequality, 395weighted inequalites, 407Girard, Albert, 13Gra
e's 
omplex version of Rolle'stheorem, 25Gra
e's theorem, 18Gram's lemma, 176Gram-S
hmidt, 44Haar spa
e, 92Haar system, 92Halley's method, 365Hardy spa
e, 189Helly's 
onvergen
e theorem, 71Helly's sele
tion theorem, 71Hermite interpolation, 9Hermite polynomials, 57expli
it formulas, 65Hilbert spa
e, 42H�older's inequality, 17, 49Horner's rule, 8Hypergeometri
 di�erential equation,63Hypergeometri
 fun
tions, 62Identity theorem, 15Inequalities



476 IndexBernstein-Szeg}o inequality; seeBernstein-Szeg}o inequalityBernstein-type; see Bernstein-typeinequalityBessel's; see Bessel's inequalitybounded Bernstein-type; seebounded Bernstein-typeinequalitybounded Chebyshev-type; seebounded Chebyshev-typeinequalityCau
hy-S
hwarz; see Cau
hy-S
hwarz inequalityChebyshev-type; see Chebyshev-type inequalityfor fa
tors; see fa
tor inequalitiesfor M�untz polynomials; see M�untzpolynomialsH�older's; see H�older's inequalityLax-type; see LaxMarkov-type; see Markov-typeinequalitymetri
; see metri
 inequalitiesMinkowski's; see Minkowski'sinequalityNikolskii-type; see Nikolskii-typeinequalityRemez-type; see Remez-typeinequalityRussak's; see RussakS
hur-type; see S
hur-typeinequalityTriangle; see Triangle inequalityunbounded Bernstein-type; seeunbounded Bernstein-typeinequalityInner produ
t, 41Inner produ
t spa
e, 41Integer-valued polynomials, 10InterpolationHermite; see Hermite interpolationLagrange; see LagrangeinterpolationNewton; see Newton interpolationJa
obi polynomials, 57, 63expli
it formulas, 63Jensen 
ir
les, 19Jensen's formula, 187

Jensen's inequality, 414Jensen's theorem, 19Kernel fun
tion, 47, 132Kolmogorov's inequality, 285Korovkin's theorems, 163La
unary spa
es, 308quasi-Chebyshev polynomials, 316Lagrange interpolation, 8Laguerre polynomials, 57, 66, 130expli
it formulas, 66Laguerre's theorem, 20Lax-type inequality, 438for rationals, 329Malik's extension, 438on a half-plane, 338Legendre polynomials, 57Lemnis
ates of 
onstant modulus,352{353Lexi
ographi
 properties, 116for M�untz polynomials, 120, 314for M�untz-Legendre polynomials,136for sinh systems, 122Liouville's theorem, 15Logarithmi
 
apa
ity, 38Lorentz degree, 82for polynomials, 86for trigonometri
 polynomials, 89Lorentz's problem, 108, 291Lp norm, 6, 48, 471lp norm, 6, 471Lu
as' theorem, 18Mahler's measure, 271Mairhuber theorem, 98Markov system, 100
losure of nondense, 211derivative of, 112Markov-Stieltjes inequality, 76Markov-type inequalityfor Pn, 233for P
n, 255for 
onstrained polynomials,417{447for 
onstrained polynomials in Lp,422, 428{429



Index 477for exponential sums, 276{280,294{295for generalized polynomials,399{407, 445for generalized polynomials in Lp,401{407for higher derivatives, 248{260for monotone polynomials, 439{441for M�untz polynomials, 276{279,287{288for M�untz polynomials in Lp,279{280for nonnegative polynomials, 420,439for rational fun
tions, 336for self-re
ipro
al polynomials,339for trigonometri
 polynomials onsubintervals, 242{245in the 
omplex plane, 235weighted, 442{443Maximum prin
ipal, 15m-distribution, 57Mergelyan's theorem, 170Mesh of zeros, 155Metri
 inequalities, 344{355for polynomials, 345{346for rational fun
tions, 347{349Minkowski's inequalityin Lp; p � 1, 49in Lp; p � 1, 52Moment, 57Moment problem, 70Monotone operator theorem, 163Multipli
ation of polynomials, 361M�untz polynomialsbounded Bernstein-typeinequality, 178, 182, 213,310, 317bound for smallest zero, 313lexi
ographi
 properties of zeros,116, 120Newman's inequality, 276, 301Newman's inequality in Lp, 279Newman's problem, 317Nikolskii-type inequality, 281, 298,317positive zeros, 22

Remez-type inequality, 304, 307,316where the sup norm lives, 301M�untz rationals, 218{226denseness, 218M�untz spa
e, 125{126lexi
ographi
 properties of zeros,120produ
ts of, 222, 316quotients of, 218{226M�untz system, 125{136
losure, 171{205nondense, 303{319M�untz-Legendre polynomials, 125{138de�nition, 126di�erential re
ursion, 129global estimate of zeros, 136integral re
ursion, 132lexi
ographi
 properties of zeros,133{136orthogonality, 127, 132orthonormality, 128Rodrigues-type formula, 128, 131zeros of, 133M�untz's theorem, 171{205another proof, 176, 192
losure of span in, 178, 181, 185in C[0; 1℄, 171in C[a; b℄, 180, 184in L2[0; 1℄, 171in Lp[0; 1℄, 172in Lp[a; b℄, 186in Lp(w), 311on sets of positive measure, 303Newman's 
onje
tureon denseness of produ
ts, 316on denseness of quotients, 220,223Newman's inequality, 275{279an improvement, 287for M�untz polynomials, 276for M�untz polynomials in Lp, 279on positive intervals, 301Newton's identities, 5Newton Interpolation, 10Newton's method, 362, 364{367for x1=2, 365in many variables, 366



478 IndexNikolskii-type inequalityfor 
onstrained polynomials, 444for exponential sums, 289for generalized polynomials, 394,395for M�untz polynomials, 281, 298,317for produ
ts of M�untz spa
es, 317Nondense M�untz spa
es, 303{319Nonnegative polynomials, 70, 85, 417,420Nonnegative trigonometri
polynomials, 85, 409Norms, 471Lp; see Lp normlp; see lp normsupremum; see supremum normOrthogonal 
olle
tion, 43Orthogonal fun
tions, 41{56Orthogonal polynomials, 57{79as 
ontinued fra
tions, 79as determinants, 76
hara
terization of 
ompa
tsupport, 77Gegenbauer; see GegenbauerpolynomialsHermite; see Hermite polynomialsinterla
ing of zeros, 61Ja
obi; see Ja
obi polynomialsLaguerre; see LaguerrepolynomialsLegendre; see LegendrepolynomialsM�untz-Legendre; see M�untz-Legendre polynomialssimple real zeros, 61ultraspheri
al; see Ultraspheri
alpolynomialsOrthogonal rational fun
tions, 147Orthonormal set, 43Paley-Weiner theorem, 196Parallelogram law, 42Parseval's identity, 48Partial fra
tion de
omposition, 7, 144Pellet's theorem, 16Polar derivative, 20Polynomials

as sums of squares, 85, 348Bernstein; see BernsteinpolynomialsChebyshev; see ChebyshevpolynomialsGegenbauer; see Gegenbauerpolynomialsgeneralized; see generalizedpolynomialsgrowth in the 
omplex plane, 239Hermite; see Hermite polynomialsin x�n , 167integer valued; see Integer valuedpolynomialsJa
obi; see Ja
obi polynomialsLaguerre; see LaguerrepolynomialsLegendre; see LegendrepolynomialsM�untz; see M�untz polynomialM�untz-Legendre; see M�untz-Legendre polynomialsnumber of real roots, 17, 137symmetri
, 5trigonometri
; see Trigonometri
polynomialUltraspheri
al; see Ultraspheri
alpolynomialswith integer 
oeÆ
ients, 169with nonnegative 
oeÆ
ients,79{90, 417with real roots, 345, 347{348Produ
ts of M�untz spa
es, 222, 316Quadrati
 equations, 4Quarti
 equations, 4Quasi-Chebyshev polynomials, 316,342Railway tra
k theorem, 98Rakhmanov's theorem, 78Rational fun
tionsalgebrai
, 139Chebyshev polynomials of, 139{153
oeÆ
ient bounds, 153inequalities; see inequalitiestrigonometri
, 139Rational spa
es



Index 479of algebrai
 rational fun
tions,139{153, 320{321of trigonometri
 rationalfun
tions, 139{153, 320{321Re
ursive bounds, 359Remez's algorithm, 371Remez-type inequalityfor algebrai
 polynomials, 228for 
onstrained polynomials, 443,445for generalized polynomials, 393,394for generalized polynomials in Lp,401{402for M�untz spa
es, 307for nondense M�untz spa
es, 304for produ
ts of M�untz spa
es, 316pointwise, 414for trigonometri
 polynomials, 230Reprodu
ing kernel, 47, 132Reversion of power series, 362Riemann-Lebesgue lemma, 54Riesz representation theorem, 50Riesz's identity, 390Riesz's lemma, 237Riesz-Fis
her theorem, 50Rising fa
torial, 62Rolle's theorem, 25Rou
h�e's theorem, 14, 16Russak's inequalities, 336Salem numbers, 6S
hur's theorem, 17S
hur-type inequalityfor algebrai
 polynomials, 233for 
onstrained polynomials,436{437for generalized polynomials, 395for rational fun
tions, 337for trigonometri
 polynomials, 238Self-re
ipro
al polynomials, 339quasi-Chebyshev polynomials, 342Somorjai's theorem, 218Spa
eChebyshev; see Chebyshev spa
eDes
artes; see Des
artes spa
eHaar; see Haar spa
eM�untz; see M�untz spa
e

rational; see rational spa
eStieltjes' theorem, 78Stone-Weierstrass theorem, 161Sums of squares of polynomials, 85,348Supremum norm, 6, 29, 471Symmetri
 fun
tion, 5Symmetri
 polynomial, 5Szeg}o's inequality, 391Szeg}o's theorem, 23, 235Tartaglia, Ni

olo, 3T
heby
hev; see ChebyshevThree-term re
ursion, 59Totally positive kernels, 110Trans�nite diameter, 38Triangle inequality, 42Trigonometri
 polynomial, 2Trigonometri
 polynomials of longestar
 length, 35Tur�an's inequality, 434Tur�an's inequality for exponentialsums, 295Ultraspheri
al polynomials, 65Unbounded Bernstein-type inequality,206{217
hara
terization of denseness, 207Uni
ity theorem, 15Variation diminishing property, 111Vandermonde determinant, 38, 103Videnskii's inequalities, 242{245Walsh's two 
ir
le theorem, 20Weierstrass' theorem, 154{170for Markov systems, 155for polynomials, 159for polynomials in x�, 167for polynomials with integer
oeÆ
ients, 169for trigonometri
 polynomials, 165in Lp, 169on ar
s, 170Stone-Weierstrass theorem, 161Wronskian, 22Zeros, 11{18algorithms for �nding, 364{367



480 Index
omplexity of, 367
ounting by winding number, 370in a disk, 369in an interval, 368in Chebyshev spa
es, 99lo
alizing, 367maximum number at one, 137maximum number of positive, 17of Chebyshev polynomials, 34,116, 120, 122
of derivatives of polynomials,18{28of integrals of polynomials, 24of M�untz polynomials, 120of M�untz-Legendre polynomials,133{136of orthogonal polynomials, 61Zolotarev, 35Zoomers, 218


