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Preface

Polynomials pervade mathematics, and much that is beautiful in mathe-
matics is related to polynomials. Virtually every branch of mathematics,
from algebraic number theory and algebraic geometry to applied analy-
sis, Fourier analysis, and computer science, has its corpus of theory arising
from the study of polynomials. Historically, questions relating to polyno-
mials, for example, the solution of polynomial equations, gave rise to some
of the most important problems of the day. The subject is now much too
large to attempt an encyclopedic coverage.

The body of material we choose to explore concerns primarily polyno-
mials as they arise in analysis, and the techniques of the book are primarily
analytic. While the connecting thread is the polynomial, this is an analysis
book. The polynomials and rational functions we are concerned with are
almost exclusively of a single variable.

We assume at most a senior undergraduate familiarity with real and
complex analysis (indeed in most places much less is required). However,
the material is often tersely presented, with much mathematics explored
in the exercises, some of which are quite hard, many of which are supplied
with copious hints, some with complete proofs. Well over half the material
in the book is presented in the exercises. The reader is encouraged to at
least browse through these. We have been much influenced by Pélya and
Szegé’s classic “Problems and Theorems in Analysis” in our approach to
the exercises. (Though unlike Pélya and Szegd we chose to incorporate the
hints with the exercises.)
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The book is mostly self-contained. The text, without the exercises, pro-
vides an introduction to the material, but much of the richness is reserved
for the exercises. We have attempted to highlight the parts of the theory
and the techniques we find most attractive. So, for example, Miintz’s lovely
characterization of when the span of a set of monomials is dense is explored
in some detail. This result epitomizes the best of the subject: an attractive
and nontrivial result with several attractive and nontrivial proofs.

There are excellent books on orthogonal polynomials, Chebyshev poly-
nomials, Chebyshev systems, and the geometry of polynomials, to name but
a few of the topics we cover, and it is not our intent to rewrite any of these.
Of necessity and taste, some of this material is presented, and we have at-
tempted to provide some access to these bodies of mathematics. Much of
the material in the later chapters is recent and cannot be found in book
form elsewhere.

Students who wish to study from this book are encouraged to sample
widely from the exercises. This is definitely “hands on” material. There
is too much material for a single semester graduate course, though such
a course may be based on Sections 1.1 through 5.1, plus a selection from
later sections and appendices. Most of the material after Section 5.1 may
be read independently.

Not all objects labeled with “E” are exercises. Some are examples.
Sometimes no question is asked because none is intended. Occasionally
exercises include a statement like, “for a proof see ... ”; this is usually an
indication that the reader is not expected to provide a proof.

Some of the exercises are long because they present a body of material.
Examples of this include E.11 of Section 2.1 on the transfinite diameter of
a set and E.11 of Section 2.3 on the solvability of the moment problem.
Some of the exercises are quite technical. Some of the technical exercises,
like E.4 of Section 2.4, are included, in detail, because they present results
that are hard to access elsewhere.
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1

Introduction and Basic Properties

Overview

The most basic and important theorem concerning polynomials is the Fun-
damental Theorem of Algebra. This theorem, which tells us that every
polynomial factors completely over the complex numbers, is the starting
point for this book. Some of the intricate relationships between the loca-
tion of the zeros of a polynomial and its coefficients are explored in Section
2. The equally intricate relationships between the zeros of a polynomial and
the zeros of its derivative or integral are the subject of Section 1.3. This
chapter serves as a general introduction to the body of theory known as the
geometry of polynomials. Highlights of this chapter include the Fundamen-
tal Theorem of Algebra, the Enestrom-Kakeya theorem, Lucas’ theorem,
and Walsh’s two-circle theorem.

1.1 Polynomials and Rational Functions

The focus for this book is the polynomial of a single variable. This is an
extended notion of the polynomial, as we will see later, but the most im-
portant examples are the algebraic and trigonometric polynomials, which
we now define. The complex (n + 1)-dimensional vector space of algebraic
polynomials of degree at most n with complex coefficients is denoted by
Pr.
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If C denotes the set of complex numbers, then

(1.1.1) P o= {p ip(z) = Zakzk, ap € (C} .
k=0

When we restrict our attention to polynomials with real coefficients we will
use the notation

(1.1.2) P = {p ip(z) = Zakzk, ay € ]R} ,
k=0

where R is the set of real numbers. Rational functions of type (m,n) with
complex coefficients are then defined by

(1.1.3) Riopn = {g :pepfn,qufi} ;
while their real cousins are denoted by

(1.1.4) R 1= {g :pE’Pm,qEPn}.

The distinction between the real and complex cases is particularly impor-
tant for rational functions (see E.4).

The set of trigonometric polynomials 7.¢ is defined by

(1.1.5) TS = {t 1 t(0) = Z are®®, ap € (C} .

k=—n

A real trigonometric polynomial of degree at most n is an element of 7.¢
taking only real values on the real line. We denote by 7, the set of all real
trigonometric polynomials of degree at most n. Other characterizations of
7T,. are given in E.9. Note that if z := e?, then an arbitrary element of 7,
is of the form

2n
(1.1.6) 2"y bz, breC
k=0

and so many properties of trigonometric polynomials reduce to the study
of algebraic polynomials of twice the degree on the unit circle in C.

The most basic theorem of this book, and arguably the most basic
nonelementary theorem of mathematics, is the Fundamental Theorem of
Algebra. It says that a polynomial of exact degree n (that is, an element
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of PE\PS_,) has exactly n complex zeros counted according to their mul-
tiplicities.

Theorem 1.1.1 (Fundamental Theorem of Algebra). If

p(z) = Zaizi, a; €C, a, #0,
i=0

then there exist oy, as,... ,a, € C such that
n
p(z) = a, [[(z— ).
i=1

Here the multiplicity of the zero at «a; is the number of times it is
repeated. So, for example,

(z —1)*(z+14)?

is a polynomial of degree 5 with a zero of multiplicity 3 at 1 and with a
zero of multiplicity 2 at —i. The polynomial

p(z) :ZZaizi, a; €C, ap #0
i=0

is called monic if its leading coefficient a, equals 1. There are many proofs
of the Fundamental Theorem of Algebra based on elementary properties
of complex functions (see Theorem 1.2.1 and E.4 of Section 1.2). We will
explore this theorem more substantially in the next section of this chapter.

Comments, Exercises, and Examples.

The importance of the solution of polynomial equations in the history of
mathematics is hard to overestimate. The Greeks of the classical period un-
derstood quadratic equations (at least when both roots were positive) but
could not solve cubics. The explicit solutions of the cubic and quartic equa-
tions in the sixteenth century were due to Niccolo Tartaglia (ca 1500-1557),
Ludovico Ferrari (1522-1565), and Scipione del Ferro (ca 1465-1526) and
were popularized by the publication in 1545 of the “Ars Magna” of Giro-
lamo Cardano (1501-1576). The exact priorities are not entirely clear, but
del Ferro probably has the strongest claim on the solution of the cubic.
These discoveries gave western mathematics an enormous boost in part
because they represented one of the first really major improvements on
Greek mathematics. The impossibility of finding the zeros of a polynomial
of degree at least 5, in general, by a formula containing additions, subtrac-
tions, multiplications, divisions, and radicals would await Niels Henrik Abel
(1802-1829) and his 1824 publication of “On the Algebraic Resolution of
Equations.” Indeed, so much algebra, including Galois theory, analysis, and
particularly complex analysis, is born out of these ideas that it is hard to
imagine how the flow of mathematics might have proceeded without these
issues being raised. For further history, see Boyer [68].
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E.1 Explicit Solutions.
a] Quadratic Equations. Verify that the quadratic polynomial 2% + bz + ¢

has zeros at
—b— Vb2 —4c —b+Vb% —4c
2 ’ 2 '

b] Cubic Equations. Verify that the cubic polynomial z* + bz + ¢ has
zeros at

con () (). (24) a(5)
where
a:\g/_?c+
e

¢] Show that an arbitrary cubic polynomial, 3 + az? + bz + ¢, can be
transformed into a cubic polynomial as in part b] by a transformation = +—
ex + f.

d] Observe that if the polynomial 23 + bx + ¢ has three distinct real zeros,
then o and 3 are necessarily nonreal and hence 4b® + 27¢? is negative. So,
in this simplest of cases one is forced to deal with complex numbers (which
was a serious technical problem in the sixteenth century).

and

e] Quartic Equations. The quartic polynomial z* + az® + bz? + cx + d
has zeros at R R B
@ a
L
+ 2 27 4 + 2 27
where

y is any root of the resolvent cubic
y® — by® + (ac + 4d)y — a*d + 4bd — ¢*

and

2 — — 3
o, = \/3L—R2—2bi74ab ﬁ; “, R#0,

while

2
a,ﬁ:\/?)%—Qb:bQ\/yQ—%i, R=0.

These unwieldy equations are quite useful in conjunction with any symbolic
manipulation package.
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E.2 Newton’s Identities. Write
(x—a))(z—az) - (z—a,) =2" —c12" ' + 2" — - 4+ (=1, .

The coefficients ¢ are, by definition, the elementary symmetric functions
in the variables ay,... , a,.

a] For positive integers k, let

k k k
Spi=a) +ay + -+ .

Prove that
k—1
sk= (=D kep + (~DF ST (<1 emysy,  k<n
j=1
and
k—1 .
Sk = (_1)k+1 (1) cr—js;, k>n.
j=k—n

Here, and in what follows, an empty sum is understood to be 0.

A polynomial of n variables is a function that is a polynomial in each
of its variables. A symmetric polynomial of n variables is a polynomial of
n variables that is invariant under any permutation of the variables.

b] Show by induction that any symmetric polynomial in n variables (with
integer coefficients) may be written uniquely as a polynomial (with integer
coefficients) in the elementary symmetric functions fi, fa,... , fn-

Hint: For a symmetric polynomial f in n variables, let
o(f) = (vi,va,... ,vn), vi2vy 22y 20
if

Vi 125) VUn
— a1 02 [
flor, s, ) = E : z E Cor,az,..,an L1 Tyt Tp"

a1=0 as=0 an,=0

and ¢y, vy, v, # 0. If
o(f) = (v,va,...,vn) and o(g) = (V1,72,... V),

then let o(f) < o(g) if v; < 7; for each j with a strict inequality for at least
one index. This gives a (partial) well ordering of symmetric polynomials in
n variables, that is, every set of symmetric polynomials in n variables has
a minimal element. Now use induction on o(f). O
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¢] Show that

<1+\/5

k
5 > —0 (mod1).

(By convergence to zero (mod 1) we mean that the quantity approaches
integral values.)

Hint: Consider the integers
S 1= a'f + 0/2“ )

where a; = %(1+\/5) and ap = %(1—\/5) |
d] Find another algebraic integer a with the property that

a® =0 (mod1).

Such numbers are called Salem numbers (see Salem [63]). It is an open
problem whether any nonalgebraic numbers a > 1 satisfy a* — 0 (mod 1).

E.3 Norms on P,. 7P, is a vector space of dimension n + 1 over R. Hence
P, equipped with any norm is isomorphic to the Euclidean vector space
R, and these norms are equivalent to each other. Similarly, PS is a
vector space of dimension n + 1 over C. Hence Pf equipped with any norm
is isomorphic to the Euclidean vector space C**!, so these norms are also

equivalent to each other. Let
n
pu(x) = arz*,  a€R.
k=0

Some common norms on P, and P;, are

lIpl|a == sup |p(x)| supremum norm
€A
=pll.(a) Lo norm
1/p
bl = ( [ wor dt) L, norm, p> 1
A
[Plle.c +=max{|ax[} I norm
k

n 1/p
lIplli, = <Z akp) l, norm, p > 1.
k=0

In the first case A must contain n + 1 distinct points. In the second case A
must have positive measure.
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a] Conclude that there exist constants C, Cy, and C3 depending only on
n so that

1P ll=1,17 < Chllpll—
n
Z a;| < Calpll(—117
=0

lpll—1,11 < CsllpllLo[—1,1]

for every p € Pf, and, in particular, for every p € P,.

These inequalities will be revisited in detail in later chapters, where
precise estimates are given in terms of n.

b] Show that there exist extremal polynomials for each of the above in-
equalities. That is, for example,

Ip'll—1.1)
sup ———
0#pePn ||p||[—171]
is achieved.
E.4 On Ry .

a] Rp,m is not a vector space because it is not closed under addition.

b] Partial Fraction Decomposition. Let 7y, , € R, be of the form

_ p(z) ., PpEPS, a distinct, play)#0.

ey (@ — ag )

Then there is a unique representation of the form

m mpe
A, j
Prm(T) = q(z E E = qEPy 1, ar; €C
k=1 j=1

(if m > n, then PS_, ., is meant to be {0}).
Hint: Consider the type and dimension of expressions of the above form. 0O
¢] Show that if

'n,m € R%,m

then
Re(rmm(-)) € Rn+m72m .

This is an important observation because in some problems a rational func-
tion in Rf, ,, can behave more like an element of Ray, 2, than Ry, .
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E.5 Horner’s Rule.
a] We have

n
Z a;xt = (- ((anz + an_1)x+an_9)x+---+a1)x+ap.
=0

So every polynomial of degree n can be evaluated by using at most n ad-
ditions and n multiplications. (The converse is clearly not true; consider
z2")

b] Show that every rational function of type (n — 1,n) can be put in a
form so that it can be evaluated by using n divisions and n additions.

E.6 Lagrange Interpolation. Let z; and y; be arbitrary complex numbers
except that the z; must be distinct (z; # z;, for i # j). Let

7.1_ , z—2z;
l(z) := Hé_o’#k( ) , E=0,1,...,n.
Hi:O,i;ék(zk - %)

a] Show that there exists a unique p € P¢ that takes n + 1 specified values
at n + 1 specified points, that is,

p(zi)=vyi, i=0,1,...,n.

This p € P}, is of the form
n
p(z) =Y yile(z)
k=0

and is called the Lagrange interpolation polynomial.

If all the z; and y; are real, then this unique interpolation polynomial
is in P,,.

b] Let .
w(z) = H (z —2;)
i=0
Show that I is of the form
W) =
and
p(z) = - yrw(2)
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¢] An Error Estimate. Assume that the points z; € [a,b], i =0,1,... ,n,
are distinct and f € C"![a,b] (that is, f is an n + 1 times continuously
differentiable real-valued function on [a,b]). Let p € P, be the Lagrange
interpolation polynomial satisfying

p(z:) = f(z), 1=0,1,...,n.

Show that for every z € [a, b] there is a point £ € (a,b) so that

@) =pla) = gy O o).
Hence 1
ILf = pllja,p < m ||f(n+1)||[a,b] ol 5] -

Hint: Choose A so that ¢ := f — p — Aw vanishes at x, that is,
A= (f(z) = ple))/w(z).
Then repeated applications of Rolle’s theorem yield that
et = f D) _ \(n 4 1)!
has a zero ¢ in (a, b). |

E.7 Hermite Interpolation.
a] Letz; €C, i=1,2,...k, bedistinct. Let m;, i = 1,2,... , k, be positive
integers with n 4+ 1 := Zlemi, and let

yi, €C, i=1,2,...,k, j=01,...,mi—1

be fixed. Show that there is a unique p € P¢, called the Hermite interpola-
tion polynomial, so that

p(])(zz):yl,]a i:1=27"'7k= j:O,l,...,mi—l.

If all the z; and y; ; are real, then this unique interpolation polynomial is
in Pn—l-
Hint: Use induction on n. a

b] Assume that the points z; € [a,b] are distinct and f € C"[a,b]. Let
p € Pp—1 be the Hermite interpolation polynomial satisfying

p(zz):f(])(zz)a i:172="'=k7 j:0,1,...,mi—1.

Show that for every z € [a, b] there is a point £ € (a,b) so that
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F(@) — pla) = - F(O) wla)
with
k
w(z) = H(a: —gy)mi~!
Hence

1 n
ILf = pllja,p < o 1£¢ )H[a,b] 0l [a,8] -

Hint: Follow the hint given for E.6 c].

a

Polynomial interpolation and related topics are studied thoroughly in
Davis [75]; Lorentz, Jetter, and Riemenschneider [83]; and Szabados and

Vértesi [92].

E.8 On the Zeros of a p € P,. Show that if p € P,, then the nonreal
zeros of p form conjugate pairs (that is, if z is a zero of p, then so is Z).

E.9 Factorization of Trigonometric Polynomials.

a] Show that t € T, (or ¢t € 7)) if and only if ¢ is of the form

t(z) = a0+ Z(ak coskz + by sinkz), ag,bp € R (or C).

k=1

b] Show that if ¢t € T,\Tn—1, then there are numbers zq, 2o, . ..

0 # ¢ € C such that

Show also that the nonreal zeros z; of ¢t form conjugate pairs.

, Zop and

E.10 Newton Interpolation and Integer-Valued Polynomials. Let A* f(z)

be defined inductively by

A%f(z) = f(z), Af(z)=A'f(z) = fz+1) - f(z)

and

AR f(2) = A(ARf(2),  k=1,2,....

(2> _a:(a:—l)--l-d(a:—k+l)

a] Show that (7) is a polynomial of degree k that takes integer values at

all integers.
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b] Let f be an m times differentiable function on [a,a + m]. Show that
there is a € € (a,a + m) such that

A" f(a) = f™(€).

¢] Show that if p € P, then

d] Suppose p € Pf is integer-valued at all integers. Show that

p(z) = 2”: a (2)

k=0

for some integers ag,aq,... ,a,. Note that this characterizes such polyno-
mials.

e] Show that if p € Pg takes integer values at n + 1 consecutive integers,
then p takes integer values at every integer.

f] Suppose ¢ € R and n¢ is an integer for every n € N. Use part b] to show
that ¢ is a nonnegative integer.

1.2 The Fundamental Theorem of Algebra

The following theorem is a quantitative version of the Fundamental Theo-
rem of Algebra due to Cauchy [1829]. We offer a proof that does not assume
the Fundamental Theorem of Algebra, but does require some elementary
complex analysis.

Theorem 1.2.1. The polynomial
p(2) = ap2" + an_12" ' 4+ +ag € PS, an £ 0

has exactly n zeros. These all lie in the open disk of radius r centered at
the origin, where
|a|

r:=14+ max —.
0<k<n-1 |ay,|

Proof. We may suppose that ag # 0, or we may first divide by z* for some
k. Now observe that
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9(x) = lao| + |aslz + -+ + Jan—1|2""! — |ag|2"
satisfies g(0) > 0 and lim g(z) = —oo. So by the intermediate value the-
T—00

orem, g has a zero in (0,00) (which is, on considering (g(z)/z™)’, in fact
unique). Let s be this zero. Then for |z| > s,

(1.2.1) Ip(2) — anz"™| < |ag| + layz| + - + |ap_12" Y < |a,2z".

This, by Rouché’s theorem (see E.1), shows that p(z) and a,,z™ have exactly
the same number of zeros, namely, n, in any disk of radius greater than s.

It remains to observe that if > r, then g(z) < 0 so s < 7. Indeed,

-1
ag] S k—
< -1 — "
g(z) < |an|$ ( + <korf.1.§§—1 @] I;x

|a|
n _1 I—rl
<lanle ( + (1@()1???2_1 lan| /) = —1

<0

for

a
z>14+ max —.
= k=0,...,n—1 |Gy, |

a

The exact relationship between the coefficients of a polynomial and the
location of its zeros is very complicated. Of course, the more information
we have about the coefficients, the better the results we can hope for. The
following pretty theorem emphasizes this:

Theorem 1.2.2 (Enestrom-Kakeya). If
p(2) = an2" + ap_12" 1+ +ag

with
ap > ay > - 2>ap, >0,
then all the zeros of p lie outside the open unit disk.
Proof. Consider
(1—2)p(z) =ag + (a1 —ag)z + -+ + (an — ap_1)2" — apz"".
Then
(1= 2)p(2)] > a0 — [(d0 — ar)|2] + -+ + (@n—1 — an)|zl" + anl2"*].

Since aj, — ag+1 > 0, the right-hand expression above decreases as |z| in-
creases. Thus, for |z| < 1,

(1= 20p()] > ao — [(an — @) + -+ + (@n1 — a2) +a] =0,

and the result follows. a
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Corollary 1.2.3. Suppose
p(2) = an2" + ap_12" '+ +ag

with ay > 0 for each k. Then all the zeros of p lie in the annulus

Qg
<zl £  max =:7y.
k=0,... n—1 Qg1

af

ri= min
k=0,...,n—=1 Qg1

Proof. Apply Theorem 1.2.2 to p(r1z) and z"p(ra/z). O

This is a theme with many variations, some of which are explored in
the exercises.

Theorem 1.2.4. Suppose p > 1,q > 1, and p~! + ¢~ = 1. Then the poly-
nomial h € PS of the form

h(2) = anz™ + ap_12"' 4+ -+ ap, an, 720

has all its zeros in the disk {z € C: |z| < r}, where

Proof. See E.6. O

Comments, Exercises, and Examples.

The Fundamental Theorem of Algebra appears to have been given its name
by Gauss, although the result was familiar long before; it resisted rigorous
proof by d’Alembert (1740), Euler (1749), and Lagrange (1772). It was more
commonly formulated as a real theorem, namely: every real polynomial fac-
tors completely into real linear or quadratic factors. (This is an essential
result for the integration of rational functions.) Girard has a claim to pri-
ority of formulation. In his “Invention Nouvelle en L’Algebra” of 1629 he
wrote “every equation of degree n has as many solutions as the exponent
of the highest term.” Gauss gave the first satisfactory proof in 1799 in his
doctoral dissertation, and he gave three more proofs during his lifetime. His
first proof, while titled “A new proof that every rational integral function of
one variable can be resolved into real factors of the first or second degree,”
was in fact the first more-or-less satisfactory proof. Gauss’ first proof is a
geometric argument that the real and imaginary parts of a polynomial, u
and v, have the property that the curves u = 0 and v = 0 intersect, and by
modern standards has some topological problems. His third proof of 1816
amounts to showing that
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/
/ p(z) .
|z|=r p(Z)
must vanish if p has no roots, which leads to a contradiction and is a
genuinely analytic proof (see Boyer [68], Burton [85], and Gauss [1866]).

An almost purely algebraic proof using Galois theory, but based on
ideas of Legendre, may be found in Stewart [73].

The “geometry of polynomials” is extensively studied in Marden [66]
and Walsh [50], where most of the results of the section and much more
may be accessed. See also Barbeau [89] and Pdlya and Szegb [76].

Theorem 1.2.2 is due to Kakeya [12]. It is a special case of Corollary
1.2.3, due to Enestrom [1893]. The Enestrom-Kakeya theorem and related
matters are studied thoroughly in Anderson, Saff, and Varga [79] and [81]
and in Varga and Wu Wen-da [85], and a number of interesting properties
are explored. For example, it is shown in the first of the above papers that
the zeros of all p satisfying the assumption of Corollary 1.2.3 are dense in
the annulus {z € C:ry < |z| < ra}.

E.1 Basic Theorems in Complex Analysis. We collect a few of the basic
theorems of complex analysis that we need. (Proofs may be found in any
complex variables text such as Ahlfors [53] or Ash [71].)

a] Cauchy’s Integral Formula. Let D, := {z € C : |z| < r}. Suppose f
is analytic on D, and continuous on the closure D, of D,. Let 8D, denote
the boundary of D,. Then

o= [ fwa,

and

F™(z) = n!/ B (O 2eD,.
5]

T 2w Jyp, (t— 2t

Unless otherwise specified, integration on a simple closed curve is taken
anticlockwise. (We may replace 0D, and D, by any simple closed curve
and its interior, respectively, though for most of our applications circles
suffice.)

b] Rouché’s Theorem. Suppose f and g are analytic inside and on a
simple closed path v (for most purposes we may use v a circle). If

17(2) —9(2)| <[f(2)]

for every z € 7y, then f and g have the same number of zeros inside ~y
(counting multiplicities).
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A function analytic on C is called entire.
¢] Liouville’s Theorem. A bounded entire function is constant.

d] Maximum Principle. An analytic function on an open set U C C
assumes its maximum modulus on the boundary. Moreover, if f is analytic
and takes at least two distinct values on an open connected set U C C, then

f(2)] <sup[f(2)], z€U.
2eU

€] Unicity Theorem. Suppose f and g are analytic on an open connected
set U. Suppose f and g agree on S, where S is an infinite compact subset
of U, then f and g agree everywhere on U.
E.2 Division.
a] Suppose p is a polynomial of degree n and p(a) = 0. Then there exists
a polynomial g of degree n — 1 such that

p(@) = (@ = )a(a)
Hint: Consider the usual division algorithm for polynomials. O
b] A polynomial of degree n has at most n roots.

This is the easier part of the Fundamental Theorem of Algebra. The remain-
ing content is that every nonconstant polynomial has at least one complex
root.

The next exercise develops the basic complex analysis tools mostly for
polynomials on circles. The point of this exercise is to note that the proofs
in this case are particularly straightforward.

E.3 Polynomial Complex Analysis.

a] Deduce Cauchy’s integral formula for polynomials on circles.

Hint: Integrate 2" on 0D,. O
b] Ifp(z) = a, [[\—, (z—a;), then the number of indices i for which |a;| < r

is
1 p'(z)
2mi Jop, P(2)
provided no «; lies on dD,.

Hint: We have

dz,

and

1 dz _{1 if || <r

omi oD, 7 — 0 if Joy|>r.
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¢] Deduce Rouché’s theorem from part b] for polynomials f and g given
by their factorizations, and for circles ~.

Hint: Let h:=1+4+ (g — f)/f. So fh =g and

(O W N O DS B A (O

271 dD, 9(2) 2 dD, f(2) 2mi oD, h(z)

!and applying b]. O

Show that the last integral is zero by expanding h~
d] Deduce E.1 c¢] and E.1 d] from E.1 a].

e] Observe that the unicity theorem can be sharpened for polynomials as
follows. If p, g € PS and p(z) = q(z) for n+ 1 distinct values of z € C, then
p and ¢ are identical, that is, p(z) = ¢q(z) for every z € C. Equivalently, a
polynomial p € P is either identically 0 or has at most n zeros. (This is
trivial from the Fundamental Theorem of Algebra, but as in E.2, it does
not require it.)

E.4 The Fundamental Theorem of Algebra. Fvery nonconstant polyno-
mial has at least one complex zero.

Prove this directly from Liouville’s theorem.

E.5 Pellet’s Theorem. Suppose a, # 0, |apt1]|+---+|an| >0, and
g(x) == |ao| + |ar|z + - + |ap_1|zP ™ — |ap|z? + |aps1|2PT + o+ |an|2"

has exactly two positive zeros s; < So. Then

1

f(2) = an2" +a, 12" 44 a0 €P;,

has ezxactly p zeros in the disk {z € C: |z| < s1} and no zeros in the annulus
{z€eC:s1 <|2| < s2}.

Proof. Let s1 <t < s2. Then g(t) < 0, that is,

n .

> lajlt < Jayt?.
J=0
J#p

Now apply Rouché’s theorem to the functions

F(z) 1= apz? and G(z) := Zajzj .



1.2 The Fundamental Theorem of Algebra

E.6 Proof of Theorem 1.2.4.
a] Holder’s inequality (see E.7 of Section 2.2) asserts that

n n 1/p n 1/q
> laxbi| < <Z|ak|p> (Zbkq> ;
k=1 k=1 k=1

where p~! +¢~! =1 and p > 1. So if

p(z) = anz" +an_12"" '+ +ag € P,

then
1/q

n—1 n—1 1/p n—1
> lawllzl* < (Z akp> (Z qu>
k=1 k=0 k=0

b] Thus, for |z| > 1,

n—1

p(2)] > lan|2]" = > lax]|2|*

k=0

n—1
> lanllz" 4 1~ (z
k=0

o\ /P /n—1 |z|k‘1 1/q
2 |ap
k=0

p\ /P 1
(a7 =D

E.7 The Number of Positive Zeros of a Polynomial. Suppose

ak
a

n

ak
a

n

n—1
> lanllz" 4 1 - (z
k=0

¢] When is the last expression positive?

p(z) = Z a;2’
j=0

has m positive real roots. Then

|ao|+|a1+---+an|>

V \aoa,|

m? < 2nlog <

17

This result is due to Schur though the proof more or less follows Erdds and

Turdn [50]. It requires using Miintz’s theorem from Chapter 4.

a] Suppose

p(2) = an H(z — rpei)
k=1
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and

Note that for |z| =1, ‘
2ot
I
Use this to deduce that

2

2

p(z ap| + |a1|+ -+ |a
|agan | V]aoan|

whenever |z| = 1.

b] Since p has m positive real roots ¢ has m roots at 1. Use the change of
variables z := z + 2! applied to 2"q(271)q(z) to show that

2
||Q||{\z\:1}
> min|(z = )™ ("7 4 by 2" bz bo)foy
k
> ?11}1 2™ ("™ + cnomo1z™ " 4+ ez + o) ljo,g)
Ck

— 4" ?duri me(xnfm + dnimilxnfmfl 4+t diz+ d0)||[071]
k

4’ﬂ
>
Z T /=7 2 3
n+1 (n+nm)
where the last inequality follows by E.2 c] of Section 4.2.
¢] Show that

lo - >m?/n
vz ) -

and finish the proof of the main result.

1.3 Zeros of the Derivative

The most basic and important theorem linking the zeros of the derivative of
a polynomial to the zeros of the polynomial is variously attributed to Gauss,
Lucas, Grace, and others, but is usually called Lucas’ theorem [1874].

Theorem 1.3.1 (Lucas’ Theorem). Let p € PS. All the zeros of p' are con-
tained in the closed convex hull of the set of zeros of p.

The proof of this theorem follows immediately from the following
lemma by considering the intersection of the halfplanes containing the con-
vex hull of the zeros of p.
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Lemma 1.3.2. Let p € P;. If p has all its zeros in a closed halfplane, then
pl, also has all its zeros in the same closed halfplane.

Proof. On consideration of the effect of the transformation z — az + 3, by
which any closed halfplane may be mapped to H; := {z : Re(z) < 0}, it
suffices to prove the lemma under the assumption that p has all its zeros in
H,. If p has all its zeros in H;, then

P() 1 e
= , a € Hy.
p(2) 1; z— ay g !

But if z € H, := {z € C: Re(z) > 0}, then

1 _
€ H. foreach a4 € Hy,
zZ — Qg
and it follows that
~ 1
€H,.
re1 Z —
In particular,
1
#0,
el Z —
which finishes the proof. O

There is a sharpening of Lucas’ theorem for real polynomials formu-
lated by Jensen. We need to introduce the notion of Jensen circles for a
polynomial p € P,,. For p € P, the nonreal roots of p come in conjugate
pairs. For each such pair, a + i3, a — i, form the circle centered at o with
radius |3|. So this circle centered on the z-axis at a has a4 and a—if on
the opposite ends of its perpendicular diameter. The collection of all such
circles are called the Jensen circles for p.

Theorem 1.3.3 (Jensen’s Theorem). Let p € Py,. Each nonreal zero of p'
lies in or on some Jensen circle for p.

The proof, which is similar to the proof of Lucas’ theorem, is left for
the reader as E.3.

We state the following pretty generalization of Lucas’ theorem due to
Walsh [21]. The proof is left as E.4. Proofs can also be found in Marden
[66] and Pdlya and Szeg6 [76].
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Theorem 1.3.4 (Walsh’s Two-Circle Theorem). Suppose p € PS has all its
n zeros in the disk Dy with center ¢1 and radius r1. Suppose q¢ € Py, has
all its m zeros in the disk D> with center ca and radius ro. Then

a] All the zeros of (pq)' lie in Dy U Dy U D3, where D3 is the disk with
center c3 and radius r3 given by
nes + meq _nra + mry

3 i = ——, rg =

n+m n+m

b] Suppose (n # m). Then all the zeros of (p/q)" lie in D1 U Dy U D3, where
Ds is the disk with center c3 and radius r3 given by
nce — mcy nro + mrq

3 i\= ———, rg =
n—m |n —m|

Comments, Exercises, and Examples.

Lucas proved his theorem in 1874, although it is an easy and obvious con-
sequence of an earlier result of Gauss. Jensen’s theorem is formulated in
Jensen [13] and proved in Walsh [20]. Much more concerning the geometry
of zeros of the derivative can be found in Marden [66].

E.1 A Remark on Lucas’ Theorem. Show that p’ € P¢ has a zero @ on
the boundary of the convex hull of the zeros of p if and only if a is a multiple
zero of p.

E.2 Laguerre’s Theorem. Suppose p € P; has all its zeros in a disk D.
Let € C. Let w be any zero of
q(2) == np(z) + (€ - 2)p'(2)
(q is called the polar derivative of p with respect to C).
a] If ( ¢ D, then w lies in D.

Hint: Consider r(z) := p(z)(z — ()~", where p has all its zeros in D and
¢ € D. Then

1) _pe) | n
rz)  plz) (-2
and if ¢(w) = 0 with w ¢ D, then r'(w) = 0. Now observe that r is of the

form .
r(z)zs(z_c>, s€P;,

where s'((w — ¢)~!) = 0. Note that { ¢ D implies that
D:={(z—¢)':2€eD}

is a disk. Then s has all its zeros in INZ and so does s’ by Lucas’ theorem.

However, w € D implies (w — ()"t € D, so s'((w — ¢)~!) # 0, a contradic-

tion. O

b] If p(w) # 0, then any circle through w and ( either passes through all
the zeros of p, or separates them.
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E.3 Proof of Jensen’s Theorem. Prove Theorem 1.3.3.

Hint: Suppose p € Py, \ Pn—1 and denote the zeros of p by z1,22,...,2,.
Then

P(2) _ z": 1

p(z) = 2=z

If z;, = ap + 1By with ag,Br € R, and z = x + iy with z,y € R, then

Im< ! + ! >
T+iy—ar —ibry T+ iy— ap +if
—2y((z — aw)® +y* - B7)
(- + (=B - (e —an) + (y+ Br)?)

and so outside all the Jensen circles and off the z-axis,

wn (1)) 0

E.4 Proof of Walsh’s Theorem. Prove Theorem 1.3.4.
a] Prove Theorem 1.3.4 a].
Hint: Let zg be a zero of p’'q + ¢'p outside D; and D-. Let

mq(2o)
q'(20)

np(zo)
P'(20)

(p'(20) # 0 and ¢'(20) # 0 by Lucas’ theorem). Observe that (; € D; and
(2 € Dy by E.2, and

Cl =20 — and CQ =20 —

_ nls +m(
T n4+m

b] Prove Theorem 1.3.4 b].

Hint: Proceed as in the hint to part a], starting from a zero zg of p'q — ¢'p
outside D; and Ds. a

¢] If in Theorem 1.3.4 a] Dy, Do, and D3 are disjoint, then D; contains
n — 1 zeros, Dy contains m — 1 zeros, and D3 contains 1 zero of (pq)’.

Hint: By a continuity argument we may reduce the general case to the case
where p(2z) = (z —¢1)"™ and ¢(z) = (z — c2)™. O

d] Ifin Theorem 1.3.4 b] n = m and D; and D5 are disjoint, then Dy U D,
contains all the zeros of (p/q)’.
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E.5 Real Zeros and Poles.
a] If all the zeros of p € P, are real, then all the zeros of p!, are also real.

b] Suppose all the zeros of both p € P, and q € P, are real, and all the
zeros of p,, are smaller than any of the zeros of ¢,,. Show that all the zeros
of (p/q)" are real.

Hint: Consider the graph of

(r/q)’
(r/q)

v
poq

Define W (p), the Wronskian of p, by

¢] Prove that if p € P, has only distinct real zeros, then W (p) has no real
Zeros.

In Craven, Csordas, and Smith [87] it is conjectured that, for p € P,
the number of real zeros of W (p)/p? does not exceed the number of nonreal
zeros of p (a question they attribute to Gauss).

d] Let p € P,. Show that any real zero of W (p) lies in or on a Jensen
circle of p.

Proof. See Dilcher [91]. O
e] Show that Lucas’ theorem does not hold for rational functions.
Hint: Consider r(z) = z/(a?® — z?). O

The next exercise is a weak form of Descartes’ rule of signs.

E.6 Positive Zeros of Miintz Polynomials. Suppose g < 01 < -+ < O
and

f(z):= aoz® + a1z + -+ apz’, aj € R.

Show that either f = 0 or f has at most n zeros in (0, c0).

Hint: Proceed by induction on n. O
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E.7 Apolar Polynomials and Szeg6’s Theorem. Two polynomials

n

f(a:)::Zak<Z>a:k, an #0

k=0

and

- n
g(a:)::Zbk<k>a:k, b, #0
are called apolar if

zn:(—l)kakbn_k (Z) - 0.

a] A Theorem of Grace [02]. Suppose that f and g are apolar polynomials.
If f has all its zeros in a (closed or open) disk D, then g has at least one
zero in D.

Hint: Let ay,as,...,a, and (1, 8s,..., B3, denote the zeros of f and g,
respectively. Suppose that the zeros of g are all outside D. Let

fi(@) :==nf(z) + (B — 2)f'(x)
and for k =2,3,... ,n, let

fr(@) == (n =k +1) fr—1(z) + (Br — 2) fi.(2) .
Then, by E.2, each f; has all its zeros in D. Now compute

fn—1(Bn) = Z—Ti ((g) aobn — (T) arbp—1 + -+ (=1)" <Z> anb0> =0,

where the vanishing follows by apolarity. This is a contradiction. O

b] If f and g are apolar, then the closed convex hull of the zeros of f
intersects the closed convex hull of the zeros of g.

c] A Theorem of Szegé [22]. Suppose

n

f@=Yall)d  wro

k=0
" n
9(z) ::Zbk<k>x’“, bn # 0,
k=0
and

h(z) = ké arby <Z> k.

Suppose f has all its zeros in a closed disk D, and g has zeros P, ..., Bn.
Then all the zeros of h are of the form B;~; with v; € D.
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Hint: Suppose 0 is a zero of h. Then
- n
Zakbk (k)ék =0.
k=0

So the polynomial

n

r(z) = (1) (Z) by 2k

k=0

is apolar to f, and thus has a zero a in D. But then a = —§/; for some i
since r(z) = z"g(-d/x). O

E.8 Zeros of the Integral. Suppose p € P, \ Pn_1 has all its zeros in
D, :={ze€C:|z| <1}.

a] Show that the polynomial ¢ defined by ¢(z) := foz p(t) dt has all its
zeros in Dy :={z € C: |z| < 2}.

Hint: Apply E.7 c]. Take

Then

Note that g(z) = (n + 1)~'271((1 + )"+ — 1) has all its zeros in Dy. O
b] Show that

T tim—1 tm—2 t1
q(z) = / / / . / p(t)dtdty - dty—o dtm—1
o Jo 0 0

= {z € C:|z| <rmn}, where rp,, < m+1is

- m—+n
Z<m+k)xk

k=0

has all its zeros in D.
the zero of

Tm,n

with the largest modulus. Note that ¢ is the mth integral of p normalized
so that the constants of integration are all zero.

Proof. See Borwein, Chen, and Dilcher [95]. O
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E.9 Grace’s Complex Version of Rolle’s Theorem. Suppose a and 3 are
zeros of p € Pp \ Pn_1. Then p' has at least one zero in the disk

D(c,r):={z€C:|z—c[<r},

where
c:= a+p and ri= L_m cot, T
= = 5 .

Hint: Assume, without loss of generality, that « = —1 and § = 1. Let

n—1 n—1
p(z) = Zakxk , thatis, p(z)=c+ Zakzk—: .

k=0 k=0

Apply E.7 a]. Note that
N (NS
So
f2)=(GE-1)"=(E+1)"

and p’ are apolar. 0

E.10 Corollaries of Szegé’s Theorem. Suppose

f(z):= <g>a0+ <Tll)alz+...+ (Z)anzn=
9(z) := (g)%;o + <71l>b12+...+ (Z)bnzn’

n n n
h(z) := <O) aobg + <1>a1b12 + -+ (n) anbpz™

with apb, # 0.

a] If f has all its zeros in a convex set S containing 0 and g has all its
zeros in [—1,0], then h has all its roots in S.

b] If f and g have all their zeros in [—1,0], then so does h.

and

n
E.11 Another Corollary of Szegé’s Theorem. If Z arz® has all its zeros

k=0
in Dy := {z € C: |z| <1}, then so does Z %. In particular, Z ZT
= () = ()

has all its zeros in D;.

The results of the next exercise were first proved by M. Riesz (see, for
example, Mignotte [92]) and were rediscovered by Walker [93].
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E.12 Consecutive Zeros of p' for p € P, with Real Zeros. For a polyno-
mial

’:]:

(z—a;), o << ---<a,, n>2
i=1

with only real zeros, let

Alp) = lsfzigg_l(ai+1 — ;).

By Rolle’s theorem
'z)an(z—Bi), a1 <P <ay<fa< < PBpo1 <ap.

a] Suppose n > 3. Prove that A(p) < A(p').

Outline. It is required to show that §; — 5;_1 > A(p) for each j > 2. Let
2 < j < n be fixed. Since

we have

3
—

= (Bj-1 — i) (B — ai)

Now let u; := aj — Bj—1, v; := B; —«;. Also for each 4, let d; := a; — o,
€; := ajy; — a;. Then the above can be rewritten as

j—1 1 n—j 1
1:21 (di — u;)( d+”])+(_“jvj)+i:21(ez+ua)( _UJ):O-
Define
Jj—1 n—j
Flu,v):= Zd—u)d-l—v + (e; +u)( el—v)'

i=1 i=1

Note that F is increasing in each variable (0 < u < di, 0 < v < e1) and
observe that
Fuj,v5) =1.

To prove the result, it suffices to show that if v and v are nonnegative
numbers satisfying u + v = A(p), then F(u,v) < 1.
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Now show that

) <uv (i + i ! )

dip1 — u) i—1 (€it1 —v)(ei —v)

j—1 n—j
1 1 1
( <d—u_ Z+1—u>+z<ei—v_ei+1—v>>
i=1 i=1

uv 1 n 1 < W 1+l <1
Alp) \d1 —u  e1—v) =~ Alp) \v u/) —

whenever u and v are nonnegative numbers satisfying u + v = A(p). O

S

AN

b] Suppose n > 3 and v € R. Show that A(p’ — yp) has only real zeros
and A(p' — yp) > A(p).

¢] What happens when p has only real zeros but they are not necessarily
distinct?

E.13 Fejér’s Theorem on the Zeros of Miintz Polynomials. The following
pretty results of Fejér may also be found in Pélya and Szegd [76]:

Suppose that (Ax)32, is an increasing sequence of nonnegative integers

a] Let
n
:Zakz)"“, ar € C, aga; #0.

Then p has at least one zero zg € C so that
l/kl
0

o << Xads - An )1/*1 ag
T\ = A) A3 = A1) (A — A1) ay

Outline. We say that z; € C is not less than 2z, € C if |2z3| < |21]. Studying
q(z) := z*p(2~1), we need to show that the largest zero of

n
q(z) = agz™ + Z apain
k=1

is not less than

<<A2—A1><A3—An---(An—Al))”*l a

XAz - A ao

l/kl

We prove this statement by induction on n. The statement is obviously true
for n = 1. Now assume that the statement is true for n — 1. It follows from
Lucas’ theorem that if ¢ is a polynomial with complex coefficients, then the
largest zero of ¢’ is not greater than the largest zero of g.
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By the above corollary of Lucas’ theorem, it is sufficient to prove that
the largest zero of

n—1
an_l—An+1ql(z) — /\naoz)\"_l + Z(/\” _ Ak)akz)\n—l—Ak
k=1

is not less than

(e = A)As = A) -~ (= M)\ [ [
/\2/\3 te /\n Qo
However, this is true by the inductive hypothesis. O

b] Suppose
f(Z):ZakZ)‘k, akeC
k=0

is an entire function so that .-, 1/Ax < oo, that is, the entire function
f satisfies the Fejér gap condition. Show that there is a zy € C so that

fz0) = 0.
Hint: Use part al. O
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Some Special Polynomials

Overview

Chebyshev polynomials are introduced and their central role in problems in
the uniform norm on [—1, 1] is explored. Sequences of orthogonal functions
are then examined in some generality, although our primary interest is in
orthogonal polynomials (and rational functions). The third section of this
chapter is concerned with orthogonal polynomials; it introduces the most
classical of these. These polynomials satisfy many extremal properties, sim-
ilar to those of the Chebyshev polynomials, but with respect to (weighted)
L norms. The final section of the chapter deals with polynomials with
positive coefficients in various bases.

2.1 Chebyshev Polynomials

The ubiquitous Chebyshev polynomials lie at the heart of many analytic
problems, particularly problems in C[a,b], the space of real-valued con-
tinuous functions equipped with the uniform (supremum) norm, | - [[(4,5-
Throughout this book, for any real- or complex-valued function f defined
on [a, b]

Y

1 fllja,p) := sup |f(@)].

z€la,b]

This is page 29
Printer: Opaque this
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The Chebyshev polynomials are defined by

Tn(z) : = cos(n arccos ) , xz€[-1,1],

(2.1.1) :%((:1:-1-\/:1:2—1)”-1—(13—\/3:2—1)”), z €C,

= g > (_1)k7(;(;]i_2]:))!! (2z)" %, zeC.

These elementary equivalences are left for the reader (see E.1). The nth
Chebyshev polynomial has the following equioscillation property on [—1, 1].
There exist n + 1 points ; € [-1,1] with —1 =, < (o1 < - < (=1
so that

(212) Tn(CJ) = (_l)n_jHTnH[—Ll] = (_l)n_j ) .7 = 07 1: ey

In other words T, € P, takes the values %||Ty[|;_; 1) with alternating sign
the maximum possible number of times on [—1,1]. (These extreme points
are just the points cos(kn/n), k = 0,1,...,n.) The Chebyshev polynomial
T, satisfies the following extremal property:

Theorem 2.1.1. We have

: n _ _ _ 217nTn _ :21771.
per%lcn |E3 p(ﬂf)H[ 1,1] I ||[ 1,1] )

n—1
where the minimum is uniquely attained by p(z) = ™ — 21T, ().

Proof. Observe that, while the minimum is taken over P;_,, we need only
consider p € P,,_1, since taking the real part of a p € P;;_, can only improve
the estimate. From the above formulas for T,, we have

21T, () = 2™ + s(2), S € Pn_1.
Now suppose there exists ¢ € P,,_1 with
(21.3) e — (@)l 10 < 2"

Then
217" () — (2" — q(2)) = 5(z) + q(2) € Pns

changes sign between any two consecutive extrema of T),, hence it has at
least n zeros in (—1, 1), and thus it must vanish identically. This contradicts
(2.1.3), and we are done up to proving uniqueness (this is left as E.2). O
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Comments, Exercises, and Examples.

The Chebyshev polynomials T}, are named after the versatile Russian math-
ematician, P. L. Chebyshev (1821-1894). The T comes from the spelling
Tchebychef (or some such variant; there are many in the literature). A
wealth of information on these polynomials may be found in Rivlin [90].
Throughout later sections of this book the Chebyshev polynomials will
keep recurring. The initial exercises explore elementary properties of the
Chebyshev polynomials.

Erdds [39] proved that for ¢ € T, with ||t||r < 1, the length of the graph
of t on [0, 27] is the longest if and only if ¢ is of the form () = cos(nf + «)
with some a € R (see E.6). He conjectured that for any p € P, with
llplli—1,17 < 1, the maximum arc length is attained by the nth Chebyshev
polynomial T;,. This is proved in Bojanov [82b]. Kristiansen [79] also claims
a proof. In E.9 the reducibility of T}, is considered, and in E.11 the basic
properties of the transfinite diameter are established.

E.1 Basic Properties.

a] Establish the equivalence of the three representations of T, given in
equation (2.1.1).

Hint: cosnf = L[(cos® + isinf)™ + ((cos — isinf)"]. To get the third
representation, use E.3 b]. O

b] The zeros of T,, are precisely the points

2%—1
zk:cos(k%)“, k=1,2...,n.

¢] The extrema of T, (z) in [—1, 1] are precisely the points

— km
Ck - COST:

k=0,1,... ,n.

d] Observe that the zeros of T}, and T, interlace, as do the extrema.

E.2 Uniqueness of the Minimum in Theorem 2.1.1. Prove the uniqueness
of the minimum in Theorem 2.1.1.

Hint: Assume that ¢ € P,_; and
2" = q(@) -1y <2077

Then
h(z) := 2'""Ty,(z) — Re(z" — q(x))

defines a polynomial from P,_; on R having at least n zeros (counted
according to their multiplicities). Thus

27T, (z) = Re(z™ — q(x)), z € R,
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which, together with the previous inequality, implies that g(z) is real when-
ever T,(z) = £1. Now E.6 of Section 1.1 (Lagrange interpolation) yields
that ¢ has real coefficients. Hence

21T, (2) = 2™ — q(x), z € R.

E.3 Further Properties of T,.
a] Composition. Show that Ty, (x) = T (Tin(2)).
b] Three-Term Recursion. Show that

Th(x) =22Th—1(x) — Thoa(x), n=23,....

¢] Verify that

To(z) =1

T (z) ==

Ty(z) = 22> — 1

Ts(z) = 42° — 3z

Ty(z) = 82* — 827 + 1
Ts(z) = 162° — 202> + 5z .

Note that T}, is even for n even and odd for n odd.

d] Another Formula for 7,,. Show that T,(z) = cosh(ncosh™ (z)) for
every ¢ € R\ [-1,1].

e] Differential Equation. Show that
(1 — 2T (z) — 2T\ (x) + n*Tp(z) = 0.

f] An Identity. Show that

T (z) T (x)
T — n+1 _n 1 ]
L e S e

g] Orthogonality. Show that
g/l Ty (z) Ty (z)dx

=0, =

™ J_1 \/1—5172 ’

h] Generating Function. Show that

1—yx >
Y NT T ()" c-1,1], <1.
P nzz% (@)Y ze[-1,1],

Hint: Set x = cosf and sum. a
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i] Another Representation of 7,,. Show that

Tp(z) = % <2’2> 2" 2 (2 — 1)k

k=0
J] Another Identity. Show that
T,(3(z+z 1)) =1@"+z ).

E.4 Approximation to z* on [0, 1].

a] Let Ty(z) = T,,(2x — 1) be the nth Chebyshev polynomial shifted to
the interval [0, 1]. Suppose

Tr(z) =) beak.
k=0

Show that for each k =0,1,... ,n,

n
min ||z — E ciz! |l = ||b1;1Tr:||[0,1] :
c; ER :
J=0
i#k

Hint: Proceed as in the proof of Theorem 2.1.1 and use E.6 of Section 1.3.
O

b] Why does this not hold for T}, on [-1,1]7

E.5 A Composition Characterization. Suppose (p,)22, is a sequence of
polynomials of degree n and for all positive integers n and m

PnO°Pm = Pnm -
Then there exists a linear transformation w(z) = ax + 3 so that
wopp,ow ! =2, n=12,...

or

wopnowflzTn, n=12,....

This result is due to Block and Thielman [51]. The proof outlined in this
exercise follows Rivlin [90].
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a] Let

r a
q(z) == ap + a1z + asz®, a» #0, and w(z):= — — —.
as 2(12

Then

v_l(q(v(a:))) =22+ ¢ with c¢:=apas + (a1/2) — (a%/4) .

b] Let q(x) = ag + a1z + asx?, as # 0. Then there is at most one
polynomial p,, of degree exactly n so that

pn(q(z)) = q(pn(z)) .

Hint: By a] we may assume g(z) = 2> + ¢. Now suppose r, s € PS\P:_,

r(x?4+c) =riz) +c
and
s(z? 4+ ¢) = s*(z) + c.
Then u :=1r — s € P;_; satisfies
u(z? + ¢) = u(z)(r(z) + s(z))
from which we deduce, by comparing degrees on both sides, that n = 0.
(Note that the above conditions imply r and s monic.) O

¢] Finish the proof of the initial statement of this exercise.

This is a special case of a more general theorem of Ritt [23] that classifies
all rational functions r and s that commute in the sense that ros = sor.

d] Another Composition Characterization. Suppose p € P,, has the prop-
erty that the closure of the set
I :={zeC:pll(z) =0 for some k=1,2,...}

is the interval [—1, 1], where pl*] is the kth iterate of p, that is,

(k]

p[l]::p and p ::pOp[k_l] for £k=2,3,....

Then p(z) = £T,(z).

e] Let
() = tan(ntan™' (z)) .

Show that 7, is a rational function in R, ,, and observe that

TnOTm = pom -
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E.6 Trigonometric Polynomials of Longest Arc Length. Theorem 5.1.3
(Bernstein-Szeg6 inequality) asserts that

t'(6)* +n*?(0) < n’|tllz

for every t € T,, and 6 € R. Use this to prove the following result of Erdés.
For ¢t € T, with ||¢|[r < 1, the length of the graph of ¢ on [0,2n] is the
longest if and only if it is of the form ¢(f) = cos(nf + a) for some a € R.

Hint: Suppose t € T,, with ||t|lg = 1. Let s() := cosnf. If
—1<t(f) =s(f2) <1
holds, then by the Bernstein-Szeg¢ inequality (see also E.5 of Section 5.1)

[#'(B0)] < n(1 = (6:))"* = n(1l - 5*(62))"/* = |s'(62)]

Y

and if equality holds for one pair of 8y, 85, then it holds for all pairs, and
t(0) = cos(nb + a) for some o € R. Suppose t,(0) Z cos(nf + «). Let 7 and
o be monotone arcs of the graphs of y = () and y = s(6), respectively,
with endpoints of each having the same ordinates y; and y». Let |7| and |o]|
be the length of 7 and o, respectively, and let |7,| and |o,| be the length of
the projection of 7 and o, respectively, on the z-axis. Show that

7| <lof + (|| = loz])

by approximating 7 and ¢ by a polygonal line corresponding to a subdivi-
sion of the interval with endpoints, y; and ys on the y-axis. O

E.7 Monic Polynomials with Minimal Norm on an Interval.

a] The unique monic polynomial p € P;; minimizing ||p|(4,5 is given by

o215 m (5525

b] Let 0 < a < b. Find all monic polynomials p € PS minimizing

IPll[=8,—a)ula,b) -

(For two intervals of different lengths this is a much harder problem. The
problem was originally due to Zolotarev and is solved in terms of elliptic
functions. See Todd [88], Fischer [92], and Peherstorfer [87].)
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E.8 Lower Bound for the Norm of Polynomials on the Unit Disk. Let D
be the open unit disk of C. Show that

n
> m
llapg + a1z + -+ anz"||p > ogl?gxn|ak|

for arbitrary complex numbers ag, a1, ... ,a,. Thus z™ plays the role of the
nth Chebyshev polynomial on the unit disk.
Hint: If p(z) := ag + a1z + - -+ + a,2", then
1 z
p(z) o

A = — )
™ o zm+l
oD

a

The next exercise supposes some familiarity with the rudiments of
reducibility over Q and basic properties, such as irreducibility of cyclotomic
polynomials over Q (see Clark [71]). Details of the following observation of
Schur’s are in Rivlin [90].

E.9 On the Reducibility of T,, over Q. Let n € N be fixed.
a] The zeros of T),(x/2) are all of the form

;= e(2j—1)z’7r/(2n) + 6—(2j—1)i77/(2n) , ,] =1,2,...,n.

b] If n > 3 and ( is a primitive nth root of unity, then ¢ + (™! is of degree
p(n)/2. (Here ¢ is the Euler ¢ function.)

¢] Thus if T, is irreducible over Q, then n must be a power of 2.

d] For a positive integer h, let

Fh(:lﬁ) = H (27—.’13]').

Jj=1
ged(25—1,2n)=h

(Here gcd(m,n) denotes the greatest common divisor of m and n.) Show
that if h is odd, then F}, is irreducible over Q.

e] The Factorization of T),.

2To(z/2) = [[ Fule).

h|n, hodd

So if n is odd, T, has p(n) factors, while if n is even, then T}, has ¢(m)
factors, where m is the largest odd divisor of n.

f] Let n > 3 be odd. Then T,(z)/x is irreducible over Q if and only if n
is prime.



2.1 Chebyshev Polynomials 37

E.10 Chebyshev Polynomials of the Second Kind. Let the Chebyshev poly-
nomials of the second kind be defined by

Uni(2) = ~T" (2) = % = cos.
a] Uy(x) =2T,(x) + Up—2(x).
b] Th(z) =Up(x) — 2Up_1(z).
d Un(@) = 3 2Ty s(z).
k=0
v )" @V
d Up(z) = Wi .

e] Orthogonality. Show that

, n=m>0.

1
0
%/Un(a:)Um(a:)\/l—a:2 dz = 6y = { 1’ n#m
1

f] Three-Term Recursion. Show that
U(](x):]_, Ul(x)ZQI,
Un(z) =22Up—1(x) — Up—2(xz), n=2,3,....

(Note that this is the same recursion as for T,,.)

g] The Coefficients of U,. Show that

Un(w) = Lnf(‘”k <n K k) (20)"% |

k=0

h] Another Form of U,,. Show that

[n/2] ntl
Un(x) = ) (—1)’<<2k+ 1>x”2k(ac2 — 1),
k=0

The concepts of transfinite diameter and capacity play a central role
in potential theory, harmonic analysis, and other areas of mathematics.
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Let E be a compact subset of C. Let

E.11 Transfinite Diameter.

A,(E):= max H |zi — 2.
oI CE L
Tij

The points z; at which the above maximum are obtained are called nth
Fekete points for E. If the points z; are the nth Fekete points for E, then

the polynomial
n
H (z — 2;)

is called an nth (monic) Fekete polynomial for E. The transfinite diameter

or logarithmic capacity of E is defined by
cap(E) := lim (A, (E))"¢-1 |

where the limit exists by part c] (below).
a] Let z1,29,...,2, be nth Fekete points for E. Then

1 2z z?_l
1 2 P

(An(B))'/? = abs ’,
1 2y zn-t

Hint: See E.2 b] (Vandermonde determinant) of Section 3.2.
b] Let gn(2) := [[;—,(z — 2;) be an nth Fekete polynomial for E. Let

My =  mi

=1,y

n ‘q;(zl)‘ and M, = ||Qn||E

Then 1/2
Api1(E T
M < <%> <Mmpyr < (D1 (E)) =T,

Outline. We have
I 12—zl < Ana(B)

|qn(z)|2An(E) = H |Z - Zi‘2
i=1 1<4,j<n

i#
and
MAapi(By= I lzi—zl I Il —al
1<i,j<n+1 1<i<n+1
i#h, )7k, i ] iZk
<ALEB) I -zl
1<i<n+1

iZk
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From the first line above,

M2AL(E) < Apir(E).

n

From the second line above,
Aps1(B) € An(Bym2,, .

a

¢] Show that (A, (E)) "o i decreasing, so the limit exists in the defini-
tion of cap(E).

d] The Fekete points lie on the boundary of E. So cap(E) = cap(9(FE)).
Hint: Use the maximum principle (see E.1 d] of Section 1.2). O
e] If E C F, where F' C C is also compact, then cap(E) < cap(F).

f] Chebyshev Constants. Let

M, = {pEPfL: p(z)zH(z—zj), sz(C}

j=1
and
M, = {pEPfL: p(z):H(z—zj), szE}.
j=1
Let
pin(E) = inf{|p[|ls : p € M}
and

fin(E) := inf{||p|ls : p € My}

Show that the infimum in the definition of p,(E) and i, (E) is actually
minimum. Show also that

:Un+m(E) < :Un(E):um (E)

and
for any two nonnegative integers n and m. Finally show that the above
inequalities imply that

u(E) = lim (4, (E)/" and Ji(E) := lim (fin(E))"/"

n—o0

exist.
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The numbers p(E) and i(E) are called the Chebyshev constant and
modified Chebyshev constant, respectively, associated with E. Obviously

u(E) < fi(E).
g] Transfinite Diameter and Chebyshev Constants Are the Same:

cap(E) = p(E) = fi(E).

Proof. Without loss of generality we may assume that E contains infinitely
many points. Part b] yields fi(E) < cap(F). Therefore, since u(E) < u(E),
it is sufficient to prove that cap(E) < u(E). Note that if p € M, and

21,29, ... ,2n+1 € E are the (n + 1)th Fekete points for E, then
1 oz o 2 p(z)
Zo o 22T p(z)

(Ans1(E))/? = abs
1 zZngt oo 2nit p(zngr)
Expanding the above determinant with respect to its last column, we obtain
n+1
(A1 (B)'? < (A(E)'? Y [p(2))]
j=1
< (n+1)(An(E) ' |lpls,

SO
(Ans1(B))'? < (0 + 1) (An(E))* ().

For the sake of brevity let
2 2 1/71, 2
Cn i= ((n + 1) (un(E)) ) and d, := (A,(E))"=-D .

Then

A <endp .
Since E contains infinitely many points, ¢, > 0 and d,, > 0 hold for each
n = 2,3,.... Multiplying the above inequalities for n = 1,2,... k, we
obtain after simplification that

k

(dady -+ di 1) T (diya) 7 < (do) T (03 c) FT

Since lim di = cap(E) and lim ¢; = (u(E))?, we conclude
k—o00 k—o00

(cap(E))* < (n(E))?,

which finishes the proof. ad
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h] Show that cap([a,b]) = $(b— a).
i Show that cap(D,) = p, where

D,:={z€C:|z| <p}.

j] Show that cap(A,) = sin(a/4), where A, is an arc of the unit circle C
of length a, 0 < a < 27.

Hint: Without loss of generality we may assume that the arc A, is sym-
metric with respect to the z-axis and 1 € A,. Now use part h] and the
transformation z = §(z + 27 1). O

2.2 Orthogonal Functions

The most basic properties of orthogonal functions are explored in this sec-
tion. The following section specializes the discussion to polynomials.

In this section the functions are complex-valued and the vector spaces
are over the complex numbers. All the results have obvious real analogs
and in many later applications we will restrict to these corresponding real
cases.

An inner product on a vector space V is a function (-,-) from V x V
to C that satisfies, for all f,g,h € V and «, 8 € C,

(2.2.1) (f,f)>0unless f =0 (positivity)
(2.2.2) (f,9) =g, f) (conjugate symmetry)
(223)  {af +Bg.h) = alf,h) + Blg, h) (tinearity).

A vector space V equipped with an inner product is called an inner
product space. It is a normed linear space with the norm || - || := (-, -)!/2.

The canonical example for us will be the space C|a, b] of all complex-
valued continuous functions on [a, b] with the inner product

b
(2.2.4) (f.9) = / f(@)g@)w(z) dr

where w(x) is a nonnegative integrable function on [a,b] that is positive
except possibly on a set of measure zero. It is a normed linear space with
the norm

1/2
(2.2.5) 1 o) = F )2 = (/ f(e ) |
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More generally, if (X, ) is a measure space (with u nonnegative), then

(2.2.6) (f.) = /X £ (2)9(@) du(z)

is an inner product on the space Lo (u) of square integrable functions. More
precisely, Lo (1) denotes the space of equivalence classes of measurable func-
tions for which

2
1fllzag) = (F. P = {/ F@)? du(a) }

is finite. The equivalence classes are defined by the equivalence relation
f~gif f =g p-almost everywhere on X.

If V is a vector space equipped with an inner product (:,-), then a
metric p can be defined on V by p(f,9) = (f — g,f — g)'/%. The fact
that this p is a metric on V' is an immediate consequence of (2.2.1) and
Theorem 2.2.1 b]. If this metric space (V, p) is complete (that is, if every
Cauchy sequence in (V,p) converges to some z € V), then V is called a
Hilbert space.

It can be shown that Lo(u) is a Hilbert space for every measure space
(X,n) (see Rudin [87]), while Cla,b] equipped with the inner product
(2.2.4), where w(z) = 1, is not a Hilbert space (see E.1).

When we write Lo[a, b] we always mean Lo(p) where p is the Lebesgue
measure on X = [a, b]. The fact that the inner product gives a norm is part
of the next theorem.

Theorem 2.2.1. If (V. (-,-)) is an inner product space equipped with the norm
|| ! || = <'= ')1/27 then fOT‘ all f,g € V:

a oo < Il gl Cauchy-Schwarz inequality
b] I1f+gll < [If11 + llgll triangle inequality
c] 1F + gl +11f = gl = 2171 + 2 lg|* parallelogram law.

Proof. Let f,g € V be arbitrary. To prove the Cauchy-Schwarz inequality,
without loss of generality we may assume (g,¢) = 1 and we may assume
(f,g) is real (why?). Let ¢ := (f, g) and note that by (2.2.1) and (2.2.3),

= ||f||2 - <fag>27

which finishes the proof of part a].
Using the Cauchy-Schwarz inequality, we obtain
If+9ll> =(f+9.f+9) = (f. [) + 2Re({f, 9)) + (9. 9)
<I£1P + 201 /1l gl + llgl?
< (£l +Nlglh?,

which is the triangle inequality.
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The parallelogram law follows from

If+gll* +11f = gll?
=(f, f) +2Re((f,9) +(9,9) + (f. f) —2Re({f.9)) + (g9, 9) -

a

For the space Lo(u) of all square integrable functions, the Cauchy-
Schwarz inequality becomes

/ab fadu| < (/ablf2du(w)>l/2 (/ |g|2dﬂ>1/2 .

Applying this with f and g replaced by |f| and |g|, we obtain

b b 1/2 b 1/2
(2.2.7) [ 1ssldu< ( / f|2du<x>> ( / g2du> .

A collection of vectors {f, : @ € A} in an inner product space (V, (-, -))
is said to be orthogonal if

(2.2.8) (far f3) =10, a,feEA, a#£pS.

If (fa, f3) = 0, then we write foLfs. The collection is called orthonormal
if, in addition to being orthogonal,

(2.2.9) (far fa) =1, a€A.

An orthogonal collection {f, : @ € A} of nonzero vectors in an inner
product space can always be orthonormalized as {||f.||~'fa : @ € A}. The
vector space over C generated by {f, : @ € A} is denoted by

span{f, :a € A}.
So span{ f, : @ € A} is just the set of all finite linear combinations
n
{Zcifai ta; €A, ¢;€C, ne N} .
i=1

Any linearly independent collection of vectors can be orthonormalized, as
the next theorem shows.
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Theorem 2.2.2 (Gram-Schmidt). Let (V,(:,-)) be an inner product space
with norm || - || := (-, -)'/2. Suppose {f;}32, is a linearly independent collec-
tion of vectors in V. Let

g 1= It
[ £l
and (inductively) let
n-1
Up = fr — Z(fnagk>gk and 9n = Hu—n .
k=1 unl|

Then {gn}52, is an orthonormal collection, and for each n,

Span{91792=' . 7gn} = Span{flaf?:' . 7fn} .

Proof. This can be proved easily by induction where the inductive step is:
for m < n,

n—1

(Uns gm) = (fns gm) — Z(fn;gk><gk;gm>

n—

= <fn;gm> - Z(fn,gk>6k,m =0.
k=1

a

The key approximation theoretic property orthonormal sets have is
encapsulated in the following result:

Theorem 2.2.3 (Best Approximation by Linear Combinations). Let (V, (-, -))

be an inner product space with norm || - || := (-,-)'/2. Suppose {f1,... , fn}
is an orthonormal collection of vectors in V. Let f € V. Then

n
min [ eisi - 1]
i=1
is attained if and only if

Ci:<f=fi>= i:1=27"'7n'

In other words, the sum Y . ([, fi) fi is the best approzimation to f from
span{fi,..., fn} in the norm (-,-)1/2.



2.2 Orthogonal Functions 45

Proof. Fix f € V, and let ¢; be as above. Let

n

g:= Zcifi

i=1
and let h € span{fi,..., f,}. Note that
(9—f)Lfi, i=1,2,...,n

since by orthonormality

n

g ffz ZC] f]afz —c; =0
j=1

Thus
(9—f)L(h—g)
and so
1= fI? = lI(h = g) + (g = NII?

= |lh = glI* + 2Re((h — g,9 — f)) +|lg — fI

= lh =gl +1lg = fII

> lg = fIP
with strict inequality unless h = g. This finishes the proof. O

Note that the above theorem gives the following corollary:

Corollary 2.2.4. If {fi,..., fu} is an orthonormal collection, then every

g € span{fi,..., fn}

can be written as
n

9=> {9, f)f:.

i=1

Comments, Exercises, and Examples.

The theory of orthogonal functions, and in particular orthogonal polyno-
mials, is old and far-reaching. As we will see in the next section, the names
associated with the classical orthogonal polynomials including Chebyshev,
Laguerre, Legendre, Hermite, Jacobi, and Stieltjes, are the “who’s who”
of nineteenth century analysis. Various aspects of this beautiful body of
theory are explored in the exercises of this and the next section.

Much of this material is available in G. Szegd’s [75] classical trea-
tise “Orthogonal Polynomials.” Of course, orthogonal polynomials are in-
timately connected to Fourier series and parts of harmonic and functional
analysis generally. The standard functional analysis in the following exer-
cises is available in many sources. See, for example, Rudin [73, 87].
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E.1 (C|0,1] Is Not a Hilbert Space. Construct a sequence of continuous
functions (f,)5, on [0,1] for which

1fn = fllLat0) = 0

with somef ¢ C10,1] (in the sense that f cannot be modified on a set of
measure zero to be in C[0, 1]).

So C[0, 1] equipped with the inner product (2.2.4), where [a, b] = [0, 1]
and w(z) is identically 1, is not a Hilbert space. It can be shown that there
is no way of putting a norm on C[0, 1] that preserves the uniform topology
and makes C[0,1] into a Hilbert space, essentially because C10,1] is not
reflexive (see Rudin [73], Chapter 4). This, in fact, shows that C[0, 1] is not
isomorphic to Ly[0, 1] for any p € (1, oc). For the definition of L,[0, 1], see
E.7.

E.2 On Ly(w). Consider

b
(f.9) 2/ f(@)g(z)w(z) dz .

What conditions on w guarantee that (f, ¢g) is an inner product on C[a, b] ?

E.3 Cauchy-Schwarz Inequality for Sequences. Show that

n 2 n n
S o < (zw) (zw)
i=1 =1 i=1

forall a1,...,an,B1,...,Bn € C. Equality holds if and only if there exists
a v € C so that either a; = vf; for each i or 8; = va&; for each i.

Hint: C" is a Hilbert space with inner product

<(a1;a23" - 7a’n)a (/815/827" - 5/871)> = Zalﬁz -
i=1

O
E.4 Bessel’s Inequality. Let (V,(:,-)) be an inner product space with
norm || -|| := (-,-)/%. Suppose {f;}32, is a countable collection of orthonor-
mal vectors in V.
a] Show that

oo

Yo Kf O <P
i=1

Hint: With h := 0 in the last expression of the proof of Theorem 2.2.3

1£117 = llgll* +llg = £11* -
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b] Suppose
F=Y ki
i=1

in the sense that the partial sums of the right-hand side converge to f in
the norm || - ||. Show that

I1£11* = ZI(fuf)V-

E.5 The Kernel Function. Let {p;}?, be a collection of orthonormal
functions in Ls[a,b] with respect to the inner product defined by (2.2.6)
where X := [a, b]. Define the kernel function by

Y

Kn(z0,2) := po(zo)po () + p1(w0)p1(z) + -+ - + pn(T0)pn() .

a] Reproducing Property. If ¢ € span{pg,...,pn}, then
b
[ Ealt.a)a) dut) = a(s).
a

Hint: Expand ¢ in terms of py, ... ,p, as in Corollary 2.2.4. ad

b] (K,(zo,20)) */?K,(z0, ) solves the following maximization problem:
b
max {|q(a:0)| : q € span{po,p1,...,Pn} and / lq(z)|* du(z) = 1} .

Outline. Write ¢ = -7 ¢;p;. Then, as in E.4 b,
191170 = leol* +[ex|* + -+ + lenl* = 1.
The Cauchy-Schwarz inequality of E.3 yields that

lq(zo)|” < <Z|Cz2> (Z |pi($0)|2> = Kn(zo0,70) -

However, if

o pi(zo)
Ci = N 12
(5o Ips(0)1?)
so K. ( )
n\Z0, T
q(z) = T (o 2 1/2
(Kn(wo,0))
then equality holds in the above inequality. O
¢] Show, as in a], that if ¢ € span{po,...,pn} and po,... ,p, are m times

differentiable at xq, then

m 1/2
4™ (z9)] < (Z ™ (wo>2> Nall L) -
k=0

When does equality hold?
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E.6 Completeness. Let {f, : @ € A} be an orthonormal collection in a
Hilbert space H. The collection {f, : @ € A} is called a mazimal orthonor-
mal set in H if there is no f # 0 so that (f, fo) = 0 for every a € A.

The following statements are equivalent:
1) The set of all finite linear combinations of f,,a € A, is dense in H.
2) IfIP = peallfa. )I? for all f € H.
3) (f.9) = Laealfa: )(farg) forall f.g € H.

4) {fa:a € A} isa maximal orthonormal set in H.

(
(
(
(

If any of the above holds, then the orthonormal collection is called a com-
plete orthonormal system. (See, for example, Rudin [87].)

a] Deduce (1) = (2) from Theorem 2.2.3.
b] Deduce (2) = (3) from the simple identity

Af, 9y = f +gl> = If = gl +ill f +igll® —dllf —igl”.

The above identity is called polarization.
c] Prove (3) = (4).

d] Prove (4) = (1) by contradiction.
Equality (3) is called Parseval’s identity.

The remaining exercises assumes some familiarity with measure theory.

E.7 Basic Theory of L, Spaces. Let (X,u) be a measure space (p is
nonnegative) and p € (0, cc]. The space Ly (p) is defined as the collection of
equivalence classes of measurable functions for which || f||z, ) < oc, where

1/p
1l = (/X prdu> . pe(0,00)

and
Nfllow () :=sup{a € R:u({z € X : |f(2)] > a}) > 0} < cc.

In any of the cases the equivalence classes are defined by the equiv-
alence relation f ~ g if f = ¢ p-almost everywhere on X. When we
write L,[a,b] we always mean L,(u), where p is the Lebesgue measure
on X = [a,b]. The notations L,(a,b), Ly[a,b), and L,(a,b] are also used
analogously to Ly[a, b].
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a] Holder’s Inequality. Suppose 1 <p<g<ooand p !+ ¢ ! =1. Show
that

/X fadp) < fllL,wllgllr,

for every f € L,(u) and g € Ly(p).

If 1 < p,g < oo, then equality holds if and only if a|f? = Blg|? p-
almost everywhere on X for some «, 3 € R with o? + 82 > 0, and there is
a ¢ € C with |¢| = 1 so that c¢fg is nonnegative u-almost everywhere on X.

Holder’s inequality was proved by Rogers [1888] before Holder [1889]
proved it independently.

Hint: If the right-hand side is 0, then the inequality is obvious. If it is
different from 0, then let

Sl gl

If € X is such that 0 < F(z) < oo and 0 < G(z) < oo, then there are
real numbers s and ¢ such that

F(z)=¢€*? and G(z)=e'/7.
Use the convexity of the exponential function to show that
es/p+t/q < p—les + q—let_

Apply this with the above choices of s and ¢, and integrate both sides on
X with respect to u. O

b] Minkowski’s Inequality for p € [1,00]. Let p € [1, 00]. Show that

Wf+alle, <Nl + 9l

for every f,g € L,(p).

If 1 < p,q < oo, then equality holds if and only if af = fg p-almost
everywhere on X for some a, 8 € R with o + 8% > 0.

Hint: The cases p = 1 and p = oo are straightforward. Let p € (1, 00). Then

F+gl <IfIIf+glP" +1gl|f +gP~!

and apply Holder’s inequality (part a]) to each term separately. O
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By part b], L,(u) is a vector space and || - ||, is a norm on L,(u)
whenever p € [1,00]. If p € (0, 1), then || ||z, is still called a norm in the
literature, however, for p € (0,1) the subadditive property, in general, fails.
In fact, if p € (0,1), then || -[|1,[4,5] is superadditive for Riemann integrable
functions in Ly[a, b]; see Pélya and Szegé [76].

¢] Assume pu(X) < 0o. Show that Ly(p) C Ly(u) for every 0 < p < g < 0.
If 4(X) <1, then prove that

WA zp) < NFlz g
for every measurable function f.

d] Assume f € L,(u) for some g > 0. Show that

Jim W F o) = N Fl 2wy -

e] Riesz-Fischer Theorem. Show that if 1 < p < oo, then (Ly(p),p) is a
complete metric space, where

p(f,9) = f —9llr, -

Hint: Use the monotone convergence theorem and Minkowski’s inequality
(part b]); see Rudin [87] for details. O

If p € [1,0¢], then ¢ € [1,0¢] defined by p! + ¢! = 1 is called
conjugate to p.

f] Bounded Linear Functionals on L,(u). Let 1 <p < oo and g € Ly(u),
where ¢ is the conjugate exponent to p. Show that

8,(f) = /X fodp

is a bounded linear functional on L, (u).
Hint: Use Holder’s inequality (part al). O

g] Riesz Representation Theorem. Suppose 1 < p < oo, p is (0-) finite
and ® is a bounded linear functional on Ly(p). Then there is a unique
g € Ly(p), where q is the conjugate exponent to p, so that

&(f) =/ fodw,  feLy(n).
X
Moreover, if ® and g are related as above, then
@] := max{@(f) : f € Lp(n), [IfllL, ) =1} = llgllL ) -

Proof. See, for example, Rudin [87] or Royden [88]. O
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If X is a locally compact Hausdorff space, then the characterization
of bounded linear functionals on the space C.(X) of continuous functions
with compact support equipped with the uniform norm is also known as the
Riesz representation theorem, and its proof may be found in, for example,
Rudin [87].

h] Orthogonality in L,(x). Suppose 1 < p < oc,p is (o-)finite, YV is a
finite-dimensional subspace of L,(u). The function f € L,(u) is said to be
orthogonal to Y in L,(u), written f 1Y, if

WAz, < IIf + AL,

for every h € Y. Show that an element f € L,(u) is orthogonal to Y if and
only if

/ P S dp = 0
X

for every h € Y, where

@
SE(f(@) =4 @] @ #D
0 if f(z)=0.

Outline. Suppose that the integral vanishes for every h € Y. Let g be the
conjugate exponent to p. defined by p~' + ¢~' = 1. Observe that

g = |fI"~ " sign(f) € Ly ()

/\g\qd;t:/ |f1P dp.
X X

Without loss of generality we may assume that ||f||z ¢, = 1. Then for
every h € Y, Holder’s inequality yields that

and

111z, =1=/ fgdu=/ (f + h)g dp
X X
<|f+ Rz, wllglle,w = I1f +Rllz, @

proving that f L Y. (Observe that this argument is also valid for p = 1.)

Suppose now f L Y. Without loss of generality we may assume that
/ € Y. By a standard corollary to the Hahn-Banach theorem (see, for
example, Rudin [87]), there exists a linear functional M on L,(u) such that
M(f) =1, M(h) = 0 for every h € Y, and ||M|| = ||f||;j(u). This M is
then representable by some element g € L,(p), that is,

M(f) = /X fodu, gl =117,
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(see part g]). Therefore

/X Fodi =111z, 00 19/l -

and by the conditions for equality to hold in Hélder’s inequality,
g(z)f(xz) >0 a.e. [u] on X

and
lg(x)|? = A f(x)|P a.e. [u] on X

for a suitable constant A > 0. Hence

g(x) = Al f(x)|"~ " sign(f(2)),
and so M(h) =0, h € Y, implies
[ AP s d = 0
X
for every h € Y. O
The statement of part h] remains valid for closed subspaces Y instead
of finite-dimensional subspaces, see, for example, Shapiro [71].

i] Minkowski’s Inequality for p € (0,1). Show that

15+ 9l 00 <277 (1 o + l9llz, )

for every f,g € L,(1) and p € (0,1).
Hint: Verify that

1/p
15+ sl < ([ 051+ a7 )

1/p
Pd Pd
S(/Xfl u+/X\g\ u>
1/p 1/p
1/p—1 ”d) ( ”d)
<2 ((/Xfl n) ([ 1o dn )

whenever f,g € L,(11) and p € (0,1). 0
Further properties of L,(p) spaces may be found in Rudin [87].



2.2 Orthogonal Functions 53

E.8 Fourier Series.

a] Show that

{ ez’nﬂ
‘n e
V2T }

is a maximal orthonormal collection in Lo[—7, 7.

Hint: The orthonormality is obvious. In order to show the maximality, first
note that Ly[—m, 7] is a Hilbert space by the Riesz-Fischer theorem (E.7
e]). Hence, by E.6, it is sufficient to show that the set 7°¢ of all complex
trigonometric polynomials is dense in Ls[—7, 7]. By the Stone-Weierstrass
theorem (E.2 of Section 4.1) 7¢ is dense in C*[—m, 7], where C*[—m, 7]
is the space of all complex-valued 27-periodic continuous functions on R
equipped with the uniform norm on R. Finally, it is a standard measure
theoretic argument to show that C*[—m, x| is dense in Lo[—m, 7]; see, for
example, Rudin [87]. O

~

The kth Fourier coefficient f(k) of a function f € Ly[—7, n] is defined
by

~ 1 T .
f(k) = — / f(8)e* dp .
2m
The (formal) Fourier series of a function f € Li[—m, 7] is defined by
e ST FR)E™
k=—o0

The functions "
Su(6) = Y fk)e
k=—n
are called the nth partial sums of the Fourier series of f.
b] Show that if f € Ly[—m, 7], then

S TP = 1l mm < 00

k=—o0

Hint: Use part a], E.6, and E.7 e]. O
¢] Show that if f € Ly[—m, 7], then

nhan;o ”f - SnHLQ[—ﬂ'JI'] =0,

so f is the Lo[—m, ] limit of the partial sums of its formal Fourier series.

Hint: Use part b]. O
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Carleson, in 1966, solved Luzin’s problem by showing that S,, — f
almost everywhere on [—7, 7] for every f € Lo[—m, 7). Earlier, Kolmogorov
showed that there is a function f € Li[—7, x| so that S, diverges every-
where on [—m, 7).

d] Isometry of Lo[—m, 7] and ¢5. Let

Zs = {X:(:L‘k)zozoo:xkec, Z |:L“k2<oo}

k=—o0

and

[

. 1/2
P ::(Z |a:k2> . ox=(2)%,, = €C.

k=—oc

Show that the function I : Ly[—m, 7] — €5 defined by

~

I(f) = f = (F(k) >

is one-to-one and onto, and
11(f)

Hint: Use part a] to show that I is one-to-one. Use the Riesz-Fischer the-
orem (E.7 e]) to show that I is onto. The norm-preserving property is the
content of part b]. O

s = ||f||L2[77\',7T] .

Part d] shows that the structure of Lyo[—m,n] is the same as that of
¢5. Hence Lo[—m, 7] is a separable Hilbert space, that is, it has a countable
dense subset. So if € > 0 is fixed, then any collection {f, : a € A} from
Ly[—m, 7] for which

||fa_fﬁ||L2[77r,7r]Z€7 Oé,BE.A, Oé;éﬁ
must be countable.

e] The Riemann-Lebesgue Lemma. If f € Li[—n, 7], then f(k) — 0 as
k — oo.

Hint: First prove it for step functions, then extend the result to every
f € Ly[—m, 7] by using the fact that step functions form a dense set in

Ly[—m, 7). O
f] Show that
o0 [ee] [ee]
1 w2 1 7t 1 2%k
LD S U I D e
n=1 n=1 n=1
for every k = 3,4, -, where r is a rational number.

Hint: Let f be the 27 periodic function defined by

£(8) = (”_9)k . Bel0,2m).

2
Apply part b]. O
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E.9 Denseness of Polynomials in Ls(i) on R.

a] Let u be a finite Borel measure on [a,b] and f € L;(p). Show that if

b
. ok
/f(a:)e’t“”du(a:)zo, t:b” . k=0,+1,+2,...,
a —a

then f(z) =0 a.e. [u] on [a,b].

Outline. Use the fact that the set 7¢ of all complex trigonometric poly-
nomials is dense in C*[—m, 7] (see the hint given for E.8 a]) and standard
measure theoretic arguments to show that the assumption of part a] implies

b
/ f(@)g () du(z) = 0

for every bounded measurable function g defined on [a, b]. Now, choosing

g(z) :=sign(f(z)) := { |f(2)] if f(z) #0
0 if f(z) =0,
we obtain ﬂ
[ 5@ duw) =0,
and the result follows. D

b] Let u be a finite Borel measure on R and f € L;(u). Show that if

[ i@ =0, ier.
R

then f(z) =0 a.e. [u] on R.
Hint: Use part a] to show that the assumption of part b] implies

/ f(@)g(x) du(z) =0
R

for every bounded measurable function defined on R (first assume that g
has compact support, then eliminate this assumption). Finish the proof as
in part aj. O

¢] Let u be a Borel measure on R satisfying

/ el dp(z) < oo
R

with some r > 0. Show that the set P¢ of all complex algebraic polynomials
is dense in Lo ().
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Outline. First observe that the assumption on p implies P¢ C Lo(u). The
fact that Lo(u) is a Hilbert space (see E.7 e€]), Theorem 2.2.2 (Gram-

Schmidt), and E.6 imply that it is sufficient to prove that if f € Lo(u)
and

/f(a:)a:kdu(a:):0, k=0,1,2,...,
R

then f(z) = 0 a.e. [u] on R. Assume that f € Lo(u) satisfies the above
orthogonality relation. Use Theorem 2.2.1 a] (Cauchy-Schwarz inequality)

to show that
= [ 1@ duta)

is well-defined on R. For every ty € R, we have

( ) —itz :f( ) 7lt01 —i(t—to)x
Z t - tO) f(w)e—itoxxk .

Note that if |t — tg] < r/2, then the integral of the right-hand side with
respect to p(z) on R can be calculated by integrating term by term since

— )k )
(—i)* %f(z)e‘””zk

— [ |t —tolt
sgé—ﬂ—ﬂmmww
= [ 17@)el -l duta)

R

<| [ 1f@P dut) | 't dp(a)
/ /

Therefore, if |t — to| < r/2, then

du(z)

1/2
< 00.

P = S [ aione i)

k=0

This means that F' has a Taylor series expansion about every t; € R with
radius of convergence at least r/2. Also, with the choice to = 0, by the
assumed orthogonality relations, we have F(t) = 0 whenever [¢t| < r/2. We
can now deduce that F(t) = 0 for every ¢t € R. Hence it follows from part
b] that f(z) =0 a.e. [u] on R. O
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2.3 Orthogonal Polynomials

The classical orthogonal polynomials arise on orthogonalizing the sequence
(1,z,22,...)

with respect to various particularly nice weights, w(z), on an interval,
which, after a linear transformation, may be taken to be one of [—1,1],
[0, 00), or (—o0, 00). The main examples we consider are the Jacobi polyno-
mials

(2.3.1) P (z), where w(z) := (1—2)*(1+2)? on [-1,1], a,8 > —1.

When a = f = —1/2 the Jacobi polynomials are the Chebyshev polynomials
of the first kind,

(2.3.2) T,(z), where w(z) := (1 —2%)~"/% on [-1,1].
When a = 8 = 1/2 they are the Chebyshev polynomials of the second kind,
(2.3.3) Un(z), where w(z) := (1 —2*)/? on [-1,1].

Another special case of importance is a = 8 = 0, which gives the Legendre
polynomials,

(2.3.4) P,(z), where w(z) =1 on [-1,1].
The Laguerre polynomials are
(2.3.5) L,(z), where w(z) :=e~" on [0,00).

The Hermite polynomials are

2

(2.3.6) H,(z), where w(z) := e~ on (—oc,0).

The above notation is traditionally used to denote orthogonal polynomials
with a standard normalization; see the exercises. It is not usually the case
that this normalization gives orthonormality. All of these much studied
polynomials arise naturally, as do all the special functions, in the study of
differential equations. We catalog some of the special properties of these
classical orthogonal polynomials in the exercises.

In general, a nondecreasing bounded function « (typically the distribu-
tion function of a finite measure) defined on R is called an m-distribution
if it takes infinitely many distinct values, and its moments, that is, the
improper Stieltjes integrals
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o W2

/ 2" da(z) = li)H_l z" da(x),

— 0 w2—400 ()

exist and are finite for n =0,1,....
Theorem 2.3.1 (Existence and Uniqueness of Orthonormal Polynomials).

For every m-distribution o there is a unique sequence of polynomials
(pn)SLy with the following properties:

(Z) pn(x) = 'ynxn + rnfl(x) ; V>0, 7Tn 1 €Pn1,
. 1 forn=m
(i) / P (&) (2) A1 () = 8y = { s

Proof. The result follows from Theorem 2.2.2 (Gram-Schmidt). Note that
the defining property of an m-distribution « ensures that

(p,q) = /quda

is an inner product on Py. O

The sequence (p)o2, defined by Theorem 2.3.1 is called the sequence
of orthonormal polynomials associated with an m-distribution a. The se-
quence (q,)5%, is called a sequence of orthogonal polynomials associated
with an m-distribution a if

Un =Caln, 0#c, €C, n=0,1,...,

where (p, )52, is the sequence of orthonormal polynomials associated with
a. The support supp(a) of an m-distribution « is defined as the closure of
the set

{z € R: «a is increasing at x}.

If o is absolutely continuous on R, then
da(z) = w(z)dx with some 0 < w € Lq(00,00)

in which case a may be identified as a nonnegative weight function w €
L;(—00,00) whose integral takes infinitely many distinct values. If (a,b)
is an interval and w € Lj[a,b] has an integral that takes infinitely many
distinct values, then the sequence of orthogonal (orthonormal) polynomials

associated with @) if (.b)
v Jw(x) ifzxze€(ab
w(z) = { 0 ifz ¢ (a,b)
is said to be orthogonal (orthonormal) with respect to the weight w.

One thing distinguishing orthogonal polynomials from general orthog-
onal systems is the existence of a three-term recursion.
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Theorem 2.3.2 (Three-Term Recursion). Suppose (p,)52, is a sequence of
orthonormal polynomials with respect to an m-distribution . Then

TPn () = anPny1(®) + bppn(z) + an_1pn—1(z), n=0,1,...,

where

Tn+1
(vn is the leading coefficient of py,).
This theorem has a converse due to Favard [35]; see E.12.
Proof. Since xpy,(x) € Ppy1, we may write
n+1
(2.3.7) opn(x) =Y dipi(x),  dy €R.
k=0
For notational convenience, let

(P q) = / p(x)q(z) daz)

for any two polynomials p and ¢. Since (p,,¢) = 0 for every q € Pp,_1, we
have

(zpn(z),q(7)) = (pn(z),29(7)) =0
for every q € P,,_». In particular,

(zpn(z), pr(z)) =0, k=0,1,...,n—2.

On the other hand, using (2.3.7) and the orthonormality of (p,)52,, we
obtain

(zpn(2), pr(7)) = di(pk, pr) = di -
Hence dy, = 0 for each k£ =0,1,... ,n — 2 and

(2.3.8) P () = dpt1Pnt1 (z) + dppn(z) + dn—1pn-1(z) .

Here the lead coefficient of the left-hand side polynomial is =, , while the
lead coefficient of the right-hand side polynomial is d;,4+1Vn+1, SO

Ap = dn+1 = 7n/7n+1 .

In order to show that a,—1 := d—1 = Yn—1/7n, note that (2.3.8) and the
orthonormality of (p,)%2, imply
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0= (Pnt1,Pn-1)

1 d, dp—
= <37pn($)apn—1(l°)) - <pn:pn71> - ! <pn71:pn71>
dnt1 dnt1 dnt1
— 1 n dn—l
- dn+1 <pn(w)77’ﬂ—1w > dn+1

1 'Ynfl _ dnfl
dn+1 ’Yn dn+1 '

Hence

a

Theorem 2.3.3 (Christoffel-Darboux Formula). With the notation of the
previous theorem,

Y (@)px (y) = 2 Pt 1(2)pn(y) = Pn(T) Py (y)
kgopk Pr(y < )

_'7n+1 =Y

for all x #y € C.

Proof. Theorem 2.3.2 (three-term recursion) yields that

Ag = i1 (2)pk (y) — P (2)Pry1 (y)
= i(w — )k (2)px(y) + aZ—:(pk(:r)pkfl (y) = pr—1(2)pe(y)) -

So A A
k k—
ay = pi(2)pr(y) + ar—1 -
r—y r—y
and we sum the above from 0 to n to get the desired formula. O

Corollary 2.3.4. In the notation of Theorem 2.5.2

> pix) =
k=0

Tn
n

(p{n+1 (x)pn (37) - pln(a?)pn+1($)) .
Tn+1

Proof. Let y — x in Theorem 2.3.3. O

We can deduce quite easily from this that orthogonal polynomials as-
sociated with an m-distribution a have real interlacing zeros lying in the
interior of the smallest interval containing supp(«); see E.1 and E.2.
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Comments, Exercises, and Examples.

Askey, in comments following an outline of the history of orthogonal poly-
nomials by Szeg6 [82, vol. III], writes:

“The classical orthogonal polynomials are mostly attributed to someone
other than the person who introduced them. Szegd refers to Abel and
Lagrange and Tschebyscheff in [75, chapter 5] for work on the Laguerre
polynomials LY (z). Abel’s work was published posthumously in 1881. Prob-
ably the first published work on these polynomials that uses their orthonor-
mality was by Murphy (1833). Hermite polynomials were studied exten-
sively by Laplace in connection with work on probability theory. Hermite’s
real contribution to these polynomials was to introduce Hermite polynomi-
als in several variables. Lagrange came across the recurrence relation for
Legendre polynomials.”

Perhaps this is not very surprising given the many diverse ways in which
these polynomials can arise.

There are many sources for the basic properties of orthogonal polyno-
mials. In particular, Askey and Ismail [84], Chihara [78], Erdélyi et al. [53],
Freud [71], Nevai [79b], [86], Szegé [75], and, in tabular form, Abramowitz
and Stegun [65] are such sources. Exercises include a treatment of the ele-
mentary properties of the most familiar orthogonal polynomials. The con-
nections linking orthogonal polynomials, the moment problem, and Favard’s
converse theorem to the three-term recursion are also examined in the ex-
ercises.

E.1 Simple Real Zeros. Let (p,)5, be the sequence of orthonormal poly-
nomials associated with an m-distribution a. Show that each p,, has exactly
n simple real zeros lying in the interior of the smallest interval containing
supp(a).

Hint: Suppose the statement is false. Then p,, has at most n—1 sign changes
on [a, b], hence there exists 0 # ¢ € P,,_1 so that

pr(z)q(z) >0, x € [a,b].

Show that this contradicts the orthogonality relation

b
0= / pa(@)q(z) dalz) = / pa(@)a(2) doz).
O

E.2 Interlacing of Zeros. Let (p,)52, be the sequence of orthonormal
polynomials associated with an m-distribution «. Then the zeros of p,
and pp41 strictly interlace. That is, there is exactly one zero of p,, strictly
between any two consecutive zeros of ppy1.
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Hint: From Corollary 2.3.4,

pln+1 (x)pn (37) - p{n (x)pn+1 (a:)

is positive on R. Since p,4+1 has n + 1 simple real zeros (see E.1), we see
that if 4 and & are two consecutive zeros of p,y1, then

sign(pp41(7)) = —sign(pp41(9))

and hence
sign(pn (7)) = —sign(pn(4)) .
O

E.3 Orthogonality of (K, (zg,2))5%,. Let (pn)22, be the sequence of
orthonormal polynomials associated with an m-distribution a. Let

zo < minsupp(a) or x> maxsupp(a).

Let (Kn(zo,2))22, be the sequence of associated kernel functions (as in

E.5 of Section 2.2). Show that
/ K, (xo,x)K (20, )|z — 20| da(z) =0,
R

for any two nonnegative integers n # m.

E.4 Hypergeometric Functions. We introduce the following standard no-
tation: the rising factorial (or Pochammer symbol)

(@n:=ala+1)---(a+n—-1), (a):=1
fora € Cand n =1,2,...; the binomial coefficient
(a) ::a(a—l)---(a—n+l) <a> .
n n! ’ 0) "
for a € C and n = 1,2,...; and the Gaussian hypergeometric series

oFi(a,b;c;2):=F(a,b;c;z):= Zi_
n=0 ’

for a,b,c € C.
a] For Re(c) > Re(b) > 0,

F(a,b;c;2) =
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where I is, as usual, the gamma function defined by

I'(z) ::/ t*"te tdt, Re(z) > 0.
0

Proof. See, for example, Szegd [75]. O

b] Hypergeometric Differential Equation. The function y = F(a,b;c;2)
satisfies

d? d
z(l—z)d—zz-l—[c—(a-l—b-l—l)z]d—z—aby:O.
Proof. See, for example, Szegd [75]. O

In E.5, E.6, and E.7 we catalog some of the basic properties of some
of the classical orthogonal polynomials. Proofs are available in Szegd [75]
for example.

Y

E.5 Jacobi Polynomials.

a] Rodrigues’ Formula. Let

(l—x)_o‘(l-i—ar)_ﬁcij—nn [(1-2)*(1 +2)°(1-2%)"].

n27"

P (a) = (-1)" =

Then (Péa’ﬁ))zozo is a sequence of orthogonal polynomials on [—1, 1] asso-

ciated with the weight function
w(z) =1 -2)*(1+2)%, -1<a,B<ox.

That is,
1
pl*?) € P, and / Pl pled (1 —2)*(1+2)°de =0
—1

for any two nonnegative integers n # m.

In the rest of the exercise, the polynomials P,E“’B) are as in part aJ.
b] Normalization. We have

and

[ EEPEyR0 e

-1
208 Pln+a+D)I'(n+B+1)
S 2mta+B+1T(n+)(n+a+pB+1)"
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c] Explicit Form.

Pew =230 (") (M) @ -y sy

m n—m
m=0
_ zn: (a—l—n) <a+ﬁ+n+m> (m—l)m
=y \n—m m 2
1—
= <n+a>2F1 <—n,n+a+ﬁ+l;a+1; 2$) .
n

d] Differential Equation. The function y = Péa’ﬁ)(a:) satisfies

d?y

W+[5_a—(a+ﬁ+2)x]@+n(n+a+5+1)y:0-

(12 dz

e] Recurrence Relation. The sequence (Péa’ﬁ)(a:))%o:o satisfies

D, PP (x) = (A + Buz) PP (z) — Cu P (2),
where
PP =1 and  P"V(z) = i[a— B+ (a+B+2)]

and

D,=2n+1)n+a+8+1)2n+a+p)
A= (2n+a+p+1)(” -5
B
C

n=2n+a++2)2n+a+5+1)(2n+a+f)
hn=2n+a)n+B)2n+a+p+2).

f] Generating Function.

9a+8
R(1—z+R)*(1+z+ R)5’

Z P,(la’ﬁ) (x)2" =
n=0

where R = /1 — 222 + 22.

There are various special cases, some of which we have previously de-
fined. The Legendre polynomials P, are defined by
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The Chebyshev polynomials T,, defined in Section 2.1 satisfy

4n
p(=1/2-1/2)
(%)

The ultraspherical (or Gegenbauer) polynomials Cff) are defined by

T, = n=0,1,....

o .— F2a+n)l(a+ %)P(a—1/27a—1/2)

, n=0,1,....
" rea)la+n+3)""

65

In terms of Cr(la), the Chebyshev polynomials of the first and second kind

are given by

Tn:gcr(lo) and Un:Cr(zl)a n=01,....

E.6 Hermite Polynomials.

a] Rodrigues’ Formula. Let

D" L exp(—2?).

() = exp(—z?) dz

Then (Hp,)S2, is a sequence of orthogonal polynomials on (—o0, o) asso-

ciated with the weight function
w(z) = exp(—x?).

That is,
H, € P, and / H,(z)H,,(z) exp(—2*) dz = 0
R

for any two nonnegative integers n # m.
In the rest of the exercise, the polynomials H,, are as in part a].
b] Normalization. We have
o0
/ (H,(z))? exp(—2?) dz = /7 2"n!
—0

and

Hs,11(0) =0, Hy, (0) = (=1)"

c¢] Explicit Form.

H,(z) = n! Z M

m!(n — 2m)!
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d] Differential Equation. The function y = H,,(z) satisfies

d*y dy

e] Recurrence Relation. The sequence (H,(z))%%, satisfies
H,i1(x) =2zH,(x) — 2nH,_(z)

with
Hy(z)=1 and H(z) =2z.

f] Generating Function.
2" 9

E Hp(z)— = exp(2zz — 27).
n!

E.7 Laguerre Polynomials. Let a € (—1,00).

a] Rodrigues’ Formula. Let

1 ar

-z a+n
" nle—zga dm—”(e DR

Then (L;O‘))go:o is a sequence of orthogonal polynomials on [0, c0) associated
with the weight function
w(z) := z% exp(—z) .

That is,
L™ e P, and / L (2) L) (z)a® exp(—z) dz = 0
0

for any two nonnegative integers n # m.
In the rest of the exercise, the polynomials L%a) are defined as in part aj.
b] Normalization. We have
_I'(a+n+1)
n!

and

¢] Explicit Form.
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d] Differential Equation. The function y = L' (z) satisfies

d?y

dy
— 1—z)—= =0.
a:dx2+(a+ a:)dx—l-ny 0

e] Recurrence Relation. The sequence (Lgf’) (x))22, satisfies

(n+ DL (2) = [@n+ a +1) — 2]L (@) — (n + a) LI, (2)

with
L((]a) =1 and Lga) (z)=—z+a+1.

f] Generating Function.

o0
Z L™ (x)2" = exp ( Tz ) (1-z)">1,
o z—1

E.8 Christoffel Numbers and Gauss-Jacobi Quadrature. Let (p,)%2, be
the sequence of orthonormal polynomials associated with an m-distribution

a. Let z,,, v =1,2,... ,n, denote the zeros of p,. Let
1
Avn = = / Pn(2) da(z), v=12,...,n.
pn(zl’,’ﬂ) RL — Zun

The numbers A, ,, are called the Christoffel or Cotes numbers.

a] Show that, for any g € Pay—_1,
[ a@)date) = 3" Nna(on).
v=1

Hint: First show the equality for every q € P,_1 by using the Lagrange
interpolation formula (E.6 of Section 1.1). If ¢ € Pyj,—1, then ¢ = sp, + 7
with some s, € P,,_1, where s is orthogonal to p,. O

b] Show that A,, > 0 for every v =1,2,... ,n.
Hint: Use part a] to show that

o = e L (- U) dala).
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¢] Suppose [a,b] is a finite interval containing supp(a). Let f € Cla,b].
Show that

b n
/ F(@) da(x) = 3 A f (@)

< 2(a(b+) - - i - .
< 2(a(b+) — afa=)) min [1f = pllws

Hint: Use parts a] and b] together with the observation

n b
> Aon = / da(z) = a(b+) — ala—) .

d] Suppose supp(a) C [a,b], where a,b € R. Show that

n b
> N ena) =, [ F@)at)

for every Riemann-Stieltjes integrable function on [a, b] with respect to «.

Hint: First show that f is Riemann-Stieltjes integrable on [a, b] with respect
to a if and only if for every ¢ > 0 there are g1, g2 € C|a,b] so that

91(x) < f(z) < go(x), 7 €[a,b]
and

b
/ (92(2) — g1(z)) da(z) < €.

Finish the proof by part c] and the Weierstrass approximation theorem (see
E.1 of Section 4.1). O

e] Suppose supp(a) is compact. Let
Z:={zypn:v=12,...,n, n=1,2,...}.

Show that supp(a) C Z, where Z denotes the closure of Z.
Hint: Use part d]. O
f] Show by an example that supp(a) # Z is possible.
E.9 Characterization of Compact Support. Using the notation of Theo-
rem 2.3.2 and E.8, show that the following statements are equivalent:
(1) supp(a) is compact.
(2) sup{lan| + |bn|} < oc.
neN

(3) Theset Z:={z,n:v=12,...,n, n=1,2,...} is bounded.
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Outline. (1) = (2). Note that the orthogonality of {p,}52, implies

an = / TPn—1(2)pn(z) da(z) and by, = / zp2 (z) da(z) .
R R

So supp(«) C [—K, K], the Cauchy-Schwarz inequality, and the orthonor-
mality of (pp)S2, yield

K
an| < K / it (@) (o) da(a)
K 1/2 K 1/2
SK</Km4@MM@> (/Kmuwmm> <K

K
b < K/_Kpm)da(a:) ~K.

and

(2) = (3). Use Theorem 2.3.2 (three-term recursion) to show that

n—1 n—1 n—1
Ty.n ZP% (zu,n) <2 Z Ak+1Pk (zu,n)pk+1($u7n) + Z bkp% (zu,n) .
k=0 k=0 k=0
Hence
n—1 n—1
2 2
@vnl Zpk(m"’") s (20<I1?37)f—1 okl + 0<kon—1 |bk> Pi(@vn)
k=0 - = - = k=0
(3) = (1) If Z C [—K, K], then by E.8 a]
n
/ x?n—? dOé(.’E) — Z /\V7n$12/7nn_2 < KQn—Q/ da(w) ,
R =1 R
which implies supp(a) C [- K, K]. O

E.10 A Condition for supp(a) C [0,00). Let (pn)5>, be the sequence
of orthonormal polynomials associated with an m-distribution a. Suppose
supp(«) is compact and

Pn(0)pny1(0) <0, n=0,1,....

Show that supp(a) C [0, 00).
Hint: Use the interlacing property of the zeros of p, (E.2) to show that

Z:={xyp:v=12,...,n, n=12...} C[0,00).

Now use E.8 €] to obtain supp(a) C [0, ). |
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E.11 The Solvability of the Moment Problem. Let (11,,)22 , be a sequence
of real numbers. We would like to characterize those sequences (un)o2, for
which there exists an m-distribution a so that

/x"da(m):un, n=0,1,....
R

Let

n
p(p) =Y arm
k=0

for every p € P, of the form p(z) = >,_, arz*.

A polynomial p is called nonnegative if it takes nonnegative values on
the real line. The sequence (i, )%, is called positive definite if

n
u(p)::Zakuk>0, n=20,1,...
k=0

holds for every nonnegative polynomial p € P,, of the form

n
p(z) = Z apzh .
k=0

The aim of this exercise is to outline the proof of Hamburger’s characteri-
zation of the solvability of the moment problem by the positive definiteness
of the sequence of moments. See part o].

a] Show that if there exists an m-distribution a so that

/x"da(m):un, n=0,1,...,
R

then (un,)5%, is positive definite.
Hint: An m-distribution « is increasing at infinitely many points. O

b] Show that (u,)2%, is positive definite if and only if u(p?) > 0 holds for
every 0 #p € P,, n=0,1,....

Hint: Use E.3 of Section 2.4. O
¢] Show that (u,)32, is positive definite if and only if

Ho M1 Hn
141 B2 o Mgl
. . . . >0, n=0,1,....

Hn Hnt1 o - Han
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Hint: Use part b] and the law of inertia of Sylvester. See, for example, van
der Waerden [50]. O

d] Helly’s Selection Theorem. Suppose the functions fn, n = 1,2,...,
are nondecreasing on R, and

sup [| fnllz < oc.
neN

Then there exists a subsequence of (fn)52, that converges for every x € R.
That is, we can select a pointwise convergent subsequence.

Hint: See, for example, Freud [71]. O

e] Helly’s Convergence Theorem. Let [a,b] be a finite interval. Suppose
the functions a,, n =1,2,..., are nondecreasing on [a,b] and

sup || an ||[q,p) < 00
neN

Suppose also that (o, ()52, converges to a(zx) for every x € [a,b]. Then

b

b
lim [ f(z)dan(z) = / f(2) da(z)

n—oo a

for every f € Cla,b].
Hint: See, for example, Freud [71]. O

In the rest of the exercise (except for the last part) we assume that
(1n)22, is positive definite. Our goal is to prove the converse of part aJ.
Let

R R S
. I N
pu(z) =" . C
Bn gl oo Pan-1 X"
f] Show that
u(prg) =0, g€ Pnt.

g] Show that each p} has n simple real zeros.
Hint: Use part f]. O
Let z1,p, > T2, > -+ > Ty, be the zeros of py. Let

lyn(z) = Pu(®) . v=1,2,....n, n=12,...

Py (Tun) (T — Tyn)

(see E.6 of Section 1.1), and let

Avn = p(lun) .
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h] Show that
@) =D Aond(on)
v=1
for every q € Pop_1.

Hint: Use part f]. O
i] Show that

Al/gn:l“t(ll%,n)>07 V:1727"'7n7 n:1727""

Hint: Use part h]. O
For x € R, let
a,(z) = Z Avn s n=12,....
{viz, <z}

j] Show that 0 < ay,(z) < po on R for each n, and there is a subsequence of
(an)52, that converges pointwise to a nondecreasing real-valued function
aon R

Hint: Use parts h], i], and d]. O
k] Show that for every finite interval [a, b],

b b
lim 2™ day, (x) :/ ™ da(zx), m=20,1,2,...,

k—oo J, a

where a is defined in part j].
Hint: Use part e]. O

1] Let m be a fixed nonnegative integer and let r := |m/2] + 1. Show that
ifng>r+1, a<-1and b > 1, then

‘/ ™ day, (x) +/ z" day, (x)
—o0 b

1 1 1 1
< —+—>/w2rdan (z)z(——l——)ur.
<a| bl) Je - lal " Jo[)

Hint: Use part h]. O
m] Show that

/xmda(aj)zum, m=20,1,2,...
R

where a is defined in part jJ.

Hint: Use parts k] and 1]. O
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n] Show that a defined in part j] is an m-distribution.

o] There exists an m-distribution a so that

in = / 2" daz)

if and only if ()52, is positive definite, that is, if and only if

Ko M1 . Un
M1 M2 R !
) ) . ) 0, n=20,1,
fn  Hntt oo H2n
Hint: Combine parts a], |, m], and n]. O

Necessary and sufficient conditions for the uniqueness of the solution
of the moment problem are given in Freud [71], for example.

E.12 Favard’s Theorem. Given (a,)5, C (0,00) and (b,)5>, C R, the
polynomials p,, € P,, are defined by

wpn(z) = anpn—l(w) + bnpn(a:) + Apr1Pns1 (33) s
p-1=0, po =y > 0.

Then there exists an m-distribution « such that
/pn(a:)pm(a:) da(z) =0
R

for any two distinct nonnegative integers n and m. In other words, the
converse of Theorem 2.5.2 is true.

In order to prove Favard’s theorem, proceed as follows:

a] Show that the polynomials p,, are of the form

() = yz" +r(z), >0, 7€Pyr_1.

b] Let p, := v;'pn, n = 0,1,.... The sequence (j1,)3%, is defined as
follows. Let
wo:=1, p(g):=c if g=¢, ceR.

If po, b1, - - - , pp have already been defined, then let

u(q) = ch,uk whenever ¢(z) = chajk , c€R
k=0 k=0
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and let
pint1 = p(@" = Py (2))
Show that
w(Pndm) =0, m=0,1,...,n—1, n=0,1,...
and

w(p2) >0, n=0,1,....
Hint: It is sufficient to prove that
w(pn(z)z™) =0, m=0,1,...,n—-1, n=0,1,...

and
w(Pn(z)z™) >0, n=0,1,....

These can be obtained from the definition of y and from Theorem 2.3.2
(three-term recursion) by induction on n. O

¢] Show that every g € Py is of the form
n
q=>_ crp, ck €R
k=0

and if ¢ # 0, then

u(a®) =Y ciu@z) > 0.
k=0

d] Show that (un)22, is positive definite in the sense of E.11.

Hint: Use the previous part and E.11 b]. O
e] Prove Favard’s theorem.

Hint: Use part o] of E.11, parts d] and b] of this exercise, and the definition
of u. O

E.13 Christoffel Function. Let a be an m-distribution. For a fixed n € N,
the function

An(2) :inf{/Rq2(a:)da(a:) :q € Pn_1, lg(z)| = 1} , z€eC

is called the nth Christoffel function associated with a.
a] Show that

A(z) = (Z_j |pk<z>|2> ,
k=0

where (p, )52, is the sequence of orthonormal polynomials associated with
a.
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Show also that the infimum in the definition of A,(z) is actually a
minimum, and it is attained if and only if

_ S nlo pe(2)pr (@) _

W) = ST

Hint: Write

n—1
9= cpr, €C
k=0

and observe that the orthonormality of (p,)22, implies

[ @ o =Y e,
R k=0

Now use the Cauchy-Schwarz inequality (E.3 of Section 2.2) to find the
maximum of |¢(z)| for polynomials ¢ € P;_, satisfying

/ ¢(z) da(z) < 1
R

where z € C is fixed.

b] Let Ayn, ¥ =1,2,...,n, be the Christoffel numbers associated with an
m-~distribution «, that is, the coefficients in the Gauss-Jacobi quadrature
formula, as in E.8. Show that

Avn = An(Ton), v=12,...,n,

'

that is, the Christoffel numbers are the values of the Christoffel function at
the zeros of the nth orthonormal polynomial p,,.

Hint: Use parts E.8 a] and E.8 b]. O
¢] Let z € R be fixed. Show that

[ee]
> ph(x) < oo
n=0

if and only if z is a mass point of «, that is, a(z—) < a(z+), in which case
> pi@) = (ale+) —ale=) .
n=0

Hint: Use part a] and the Weierstrass approximation theorem. See E.1 of
Section 4.1. 0O
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E.14 The Markov-Stieltjes Inequality. Let o be an m-distribution with
associated orthonormal polynomials (p,)2%y. Let 1, > o > - > Tpp

denote the zeros of p,. Let g 1= oo and Zp41,, = —00. As in E.8 let
Avn, ¥ =1,2,...,n, be the Christoffel numbers associated with a . Show
that

s =

Ty—1,n
/\,,n</ da(z), v=1,2,...,n
T

v4l,m
and

Ty_1,n
/ do(z) <A+ Av_1n, v=2,3,...,n.
x

v,n

Hint: Let 1 < k < n be fixed. Use E.7 of Section 1.1 (Hermite interpola-
tion) to find polynomials P € Pa,—1 and @ € Pay_;1 with the following
properties:

(1) P(zjn)=Qzjn) =1, j=12,....k—1,
(2) Plzrn) =0,  Qzxn) =1,
(3) Plzjn) =Q(zjn) =0, Jj=k+1Lk+2,...,n,
(4) P(z) < X(_(’O,xk,n](x) <Q(z), T €R,
where
(z) {1 if —occ<z<ap,
—o0, T z) = .

X (oo 2un] 0 if zpp<z<o00.

Now apply E.8 (Gauss-Jacobi quadrature formula) to P and Q. O

E.15 Orthonormal Polynomials as Determinants. Suppose « is an m-
distribution with moments

,un:/a:”da(a:), n=0,1,....
R

Let
KMo 1 Hn
21 H2 R R
Ay = . . ) n_ , n=20,1,....
Hn Hp+1 o .- Han

a] Show that A, >0, n=0,1,2,....

b] Show that the orthonormal polynomials p,, associated with a are of the
form
I R s
_ M1 M2 ce n x
pn(z) = (AnAn—l) 1/2 . . . .

Hn  Hnt1 .. H2p—1 T
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¢] Let (an)52y C (0,00) and (by)52, C R be the coefficients in the three-
term recursion for the sequence (p,)5%, of orthonormal polynomials asso-
ciated with a as in Theorem 2.3.2. Show that the monic orthogonal poly-
nomials p,, := v, 'p, are of the form

Dn(z) = det (I, — Jp)

where J,, is the tridiagonal n by n Jacobi matriz

bo a1
ai b1 as
Jp 1= ay by as

an by
and I, is the n by n unit matrix.

E.16 The Support of a. Let (a,)5%, C (0,00) and (b,)52, C R be the
coefficient sequences in the three-term recursion for the sequence of (p,,)5%,
of orthonormal polynomials associated with an m-distribution « as in The-
orem 2.3.2.

a] Show that if supp(a) C [b — a,b + a] with some a > 0 and b € R, then

ap, <a and |b,—-b|<a, n=20,1,....

Hint: Use the orthonormality of (p, )52, to show that

b+a
an = /b (x — 0)pp—1(z)pn(z) da(x)

—a

and

b+a

b —b:/ (z — b)p2 (2) da(z)

b—a
Now apply the Cauchy-Schwarz inequality, and use the orthonormality of
(Pn)nZo again. o
b] Show that

supp(a) C [-K, K]

where
K :=2sup{a, : n € N} +sup{|b,| : n € N}
(the suprema are taken over all nonnegative integers).

Hint: Suppose K < oo; otherwise there is nothing to prove. Combine E.9,
the inequality in the hint to the direction (2) = (3) of E.9, and E.8 ¢]. O
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¢] Blumenthal’s Theorem. Assume that

lim an::g>0 and lim b, = b € R.

n—oQ n—o0

Then
supp(a) =[b—a,b+a]UF

where F C R\ [b— a,b+ a] is a countable bounded set for which
F\(b—a—e€b+a+e)

is finite for every e > 0.

Proof. See Nevai [79b] or Mété, Nevai, and Van Assche [91]. O

d] Rakhmanov’s Theorem. Suppose supp(a) C [b — a,b + a] with some

a >0 and b € R. Suppose also that o'(z) > 0 a.e. in [b—a,b+ a]. Then

lim a, = a4 and lim b, =b.
n—o0 2 n—o0
Proof. See, for example, Maté, Nevai, and Totik [85], or Nevai [91]. O

There is an analogous theory of orthogonal polynomials on the unit
circle initiated by Geronimus, Shohat, and Achiezer. An important contri-
bution, called Szegé theory, may be found in Freud [71].

E.17 A Theorem of Stieltjes [14]. Let w be a positive continuous weight
function on [—a, a]. Denote the nth moment by

a
n ::/ x"w(z) dx .
—a
Let p,, € P,, denote the nth monic orthogonal polynomial on [—a, a] asso-
ciated with the weight w. Then (p,,)32, satisfies a three-term recursion
ﬁn(x) = (:E - An)ﬁnfl(x) - Bnﬁrk?(x)
with po(z) =1 and pi(z) := x — Ay; see Theorem 2.3.2.

Suppose the sequence of polynomials (g, )3, satisfies the same recur-
sion commencing with go(z) := 0 and ¢;(x) := B;. Stieltjes’ theorem (see,
for example, Cheney [66]) states the following.

Theorem. For any z ¢ [—a,al,

@ w(t)dt
/ wydt _po
e T T T
B B
a:—Al— 2
Bs
QZ—AQ—

aj_AB_
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Furthermore, the nth convergent q, /P, satisfies

Qn(x) Bl

~n - B
Pn(z) v A — 2

z— A,

E.18 Completeness of Orthogonal Polynomials. Let (p,)22, be the se-
quence of orthonormal polynomials associated with an m-distribution «a. If
supp(a) C [a,b], where [a,b] is a finite interval, then (p,)32, is a maximal
orthogonal collection in Ls[a, b].

Hint: Use the Weierstrass approximation theorem (E.1 of Section 4.1) on
[a, b]. O

E.19 Bounds for Jacobi Polynomials. For all Jacobi weight functions
w(z) = (1 — 2)*(1+ z)? with a > —1/2 and 3 > —1/2, the inequalities

R Ve

eel-11] Y p_oPi(z) = 2n+a+f+2

and

max /TP (@) < 2e (2 + a2 + BQ)

z€[—1,1] s
hold, where (p,)S%, is the sequence of orthonormal Jacobi polynomials
associated with the weight function w.
Proof. See Erdélyi, Magnus, and Nevai [94]. O

2.4 Polynomials with Nonnegative Coefficients

A quadratic polynomial 22 + az + § with real coefficients has both roots
in the halfplane {z € C : Re(z) < 0} if and only if # > 0 and a > 0. This
easy consequence of the quadratic formula gives the following lemma:

Lemma 2.4.1. Ifp € Py, has all its zeros in {z € C: Re(z) < 0}, then either
p or —p has all nonnegative coefficients.

The converse of this is far from true. Indeed, the following result of
Meissner holds (see Pélya and Szegd [76]). We denote by P the set of
polynomials in P, that have all nonnegative coefficients.
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Theorem 2.4.2. If p € PS and p(z) > 0 for & > 0, then p = s/t, where s
and t are both polynomials with all nonnegative coefficients.

Since a polynomial p that is real-valued on the positive real axis has
real coefficients, and since p(z) > 0 for all z > 0 implies that the leading
coefficient of p is positive, Theorem 2.4.2 will follow immediately from the
next lemma.

Lemma 2.4.3. Suppose o, € R and suppose x> — az + 5 has no non-
negative root. Then x°> —ax + 3 = p(x)/q(x), where p,q € Py, both have all
nonnegative coefficients, and where

a2>1/2
m<10(4— — .
<0(s-3

Proof. The quadratic polynomial 2 — ax + 8 has no positive root if and
only if a? < 48. We set ¢ := a?/f8 and note that ¢ < 4. Consider

(2 — oz + B)(2° + az + ) = 2* + (28 - o®)2® + §°
=2+ B2 —-c)2® + 2.

If ¢ < 2 we have the desired factorization. If ¢ > 2, consider

(a* + B2 — 0)2® + ) (a* = B2 — c)a® + %)
=284+ 822 - (2- )2t + 5.

If 2— (2 — ¢)? > 0 we are finished. In general, we proceed as follows:
Let

2n+1

Pa(@):=a” " 487 2= 2- @ 2- 220 ) + 57
N

where ¢,, has n nested terms. Let

+1 1
2" /82" can" + /82" .

Qn(z) ==
Note that, since ¢, 11 =2 — 2

o(n+1)+1 o 2'n+1 gn+1

—B2nc2w2 " + 24

2n+1

Po(2)Qn(z) =z + 3

== + 62 cn+1a:2 . +5
= Pn+1(a:) .
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Consider the smallest n (if it exists) such that ¢, is nonnegative. Then
(2* — az + B)(z° + az + ) = Py (z)

and
PiQ1Q2 - Qpn1 = Pp,
where Q1Q2 - Qn_1 € P.,, , since each ¢; < 0 for k < n, and where
P, € P;;H since ¢, > 0. Thus, we have the desired representation
Pn(z)
(22 + ax + B)(Q1Q2 -+ Qn1)(2)

where n is the smallest integer such that ¢, > 0.

P —azx+f=

Now suppose ¢1,...,Cnh_1, Cn are all nonpositive. Then

k= —2— Ckt1, k=1,2,... ,n—1

and ¢; = 2 — ¢ imply
(2.4.1) c>24 (24 (24 2421222 =5,

where the above formula contains n iterations. Since, by assumption, ¢ < 4,
and since 6, — 4 as n — oo, it is clear that (2.4.1) is not satisfied for some
n, and eventually some ¢, is greater than zero.

The estimate on the degree requires analyzing the rate of convergence

of (6,)5% . Since d, = 2 + /dp_1, we have
_ 4_6n71 <4_6n71

2+ \/On_1 2
By repeated applications of the above,
4—6 1

on~ 9n—1"
Now we can improve the above estimate as follows: We have

4_6n_4_6n—1 _ 4_671—2

2401 (24 0n1)(2+ Von2)
4 — 6

24 V012 + Oa2) (24 V)

2

24+ V4 —22-7)(2 + V4 — 28-n) .. (2 + V4 — 2(nt1)—n)
2

4—0,=2—1+/6p1

4_6n§

<
 (

<
T(242-2171)(242—2271) ... (242 —277)
n+1 1 n+1
AN AN L9—J —n
<24 H1_27j§24 [Ta+2-27) <24,

j=2 j=2
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So if
m o= 27+ > 2v/2e ,
4—c
then
4—-9, <24 "<4-—c,
that is, d§,, > c. O

We note that in the above proof a little additional effort yields a slightly
better constant than 10.

Let £ € N and € € (0, 7). It follows easily from Lemma 2.3.4 that if
p € Pj, has no zeros in the cone
{z € C: |arg(z)| < €},
then there are s,t € P, with m < 2mke™" so that p = s/t; see E.1 d]. The
essential sharpness of this upper bound is shown by E.1 e]. An easier proof

of Theorem 2.4.2 that gives a weaker bound for the degree of the numerator
and denominator in the representation is given by E.1 f].

A similar sort of representation theorem due to Bernstein [15] is the
following:

Theorem 2.4.4. If p € P, and p(z) > 0 for x € (=1,1), then there is a
representation

d
pla) = a;(1—z)/ (1 + )"
j=0

with each a; > 0. (The smallest d := d(p) for which such a representation
exists is called the Lorentz degree of p.)

It suffices to prove this result for quadratic polynomials; this is left as
an exercise; see E.1 f].

The proof of the following interesting result of Barnard et al. [91] is
surprisingly complicated, and we do not reproduce it here.

Theorem 2.4.5. Suppose that p € P,, has all nonnegative coefficients. Sup-
pose that the zeros of p are z1,2z1,... ,2n, € C. For 7 >0, let

ET | (1——)

z
where arg(z) is defined so that arg(
negative coefficients.

It follows from this result that if p € P,, has all nonnegative coeflicients
and if q(x) = 22 + az + f is a quadratic polynomial with zeros forming
a pair of conjugate zeros of p that have least angular distance from the
positive z-axis, then p/q also has all nonnegative coefficients.
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Comments, Exercises, and Examples.

Polynomials with all nonnegative coefficients have a number of distinguish-
ing properties that are explored in the exercises. For example, only analytic
functions with all nonnegative coefficients can be approximated uniformly
on [0,1] by such polynomials; see E.2. So a Weierstrass-type theorem does
not hold for these polynomials. This is quite different from approximation
by polynomials of the form

(242) Zam’(aj + 1)1(1 - .’lf)j s Qi > 0.

Since every polynomial that is strictly positive on (—1,1) has such a repre-
sentation (E.1 b]), it follows from the Weierstrass approximation theorem
that all nonnegative functions from C[—1,1] are in the uniform closure.

It follows from Theorem 2.4.2 and the Weierstrass approximation the-
orem (see E.1 of Section 4.1) that fractions of polynomials with all non-
negative coefficients form a dense set in the uniform norm on [0,1] in the
set of nonnegative continuous functions on a finite closed interval [0, 1].
Hence they have a much larger uniform closure on [0, 1] than that of the
polynomials with all nonnegative coefficients.

Various inequalities for polynomials of the form (2.4.2) are considered
in Appendix 5.
E.1 Remarks on Theorem 2.4.2.

a] Suppose a,3 € R,e € (0,7), and suppose x> + ax + 3 has no zeros in
the cone
{z € C: |arg(z)| < €}.

Show that there are p,q € P;;, with m < 2me~! such that
T
2> +ar+ = p_( ) .

q(z)

Hint: This is a reformulation of Theorem 2.4.3 by introducing the angle
between the positive z-axis and the zero of the quadratic polynomial. 0O

b] Let n € N. Show that if p € P;}, then p has no zeros in the cone
{z € C: |arg(z)| < 7/(2n)} .

This is sharp, as the example p(z) := 2™ + 1 shows.
¢] Show that the result of part a] is sharp up to the constant g
Hint: Let n € N. Consider

2+ aa 5= (o - o (3)) (o - exp (1)),
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Show that if there are p,q € P;}, so that 2 + ax + 8 = p(z)/q(z), then
m>n— 1. a

d] Let e € (0,7) and k € N. Suppose p € Pj, has no zeros in the cone
{z e C: |arg(z)| < €}.
Show that there are s,t € P}, with m < 3rke™"! so that p = s/t.
e] Letee€ (0,7) and k € N. Let
ful@) = (@ = 20)(x — o))",
where arg(zg) = €. Assume that f; = s/t, where s,t € P,,. Show that
m > (log2)ke™" .
Hint: First observe that
s(y) < sy +ydm™") < es(y)
for every s € P,t, y € (0,00), and 6 € (0, 00). Therefore

Fily +yom™") < € fr(y)

for every y € (0,00) and ¢ € (0,00). Now let y > |z9| be chosen so that
ly — 20| = €. Applying the above inequality with this y and § := ma, we
obtain

fie(y +ey) <e™ fi(y)
hence 2F < e™¢, that is, klog2 < me. O

f] Prove that if r € Py, and r(z) > 0 for all > 0, then there is an integer
d > n such that

where q € ’P;’.

Hint: Let o, 8 € R and o® < 4f3. Consider
d+2
(> —az+ )1 +2)¢ = Z c;a’
j=0

and compute c; explicitly. O

g] If pe P, and p(x) > 0 for all z € (—1,1), then it is of the form
d
p@) =Y aj(l—z)/(1+2)"7,  a;>0
=0

for some d > n.

Hint: Apply a] to

T‘(u);:(l_i_u)np(l_U), L loa

1+u 14z
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E.2 Polynomials with Nonnegative Coefficients.

a] If pe P, then forz >0

0<p(@) <~ pla).

b] If (p,)S%, is a sequence of polynomials with p, € PT := Uzo:OP,j and

n=1
(pn)22; converges to f uniformly on [0, 1], then f is the restriction to [0, 1]
of a function analytic in D := {z € C: |z] < 1} of the form

(e}
f(z):Zanz", an > 0.
n=0

Hint: Since (p,(1))52, converges and each p, has nonnegative coefficients,
there is a constant C' such that

lpullp <pa(1) <C,  n=1,2,....

Now Montel’s theorem (see, for example, Ash [71]) implies that (p,)S2,
has a locally uniformly convergent subsequence on D. Deduce that this
subsequence converges to an f with nonnegative coefficients. a
E.3 Nonnegative-Valued Polynomials and Sums of Squares.

a] Suppose p € Pa, is nonnegative on R. Then there exist s, t € P, such
that

p(z) = s?(x) + t*(z) .
Hint: If p € Py and p is nonnegative, then for some real numbers a and 3,
p(z) = (z —a)” + §°.
Now use the identity
(a® + b*)(c* + d*) = (ac + bd)* + (ad — bc)? .

a

b] If p € Pa, is nonnegative for > 0, then there exist s, ¢, u, v € P,, such
that
p(z) = s%(x) + 2 (z) + zu*(z) + 2v*(z) .

¢] Suppose t € T, is nonnegative on R. Show that there exists a ¢ € Pg
such that ‘
t(6) = |q(e™)|?, 0 € R.

Show also that if, in addition, ¢ € 7, is even, then there exists a ¢ € P,
such that the above holds.
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d] If p € P, is nonnegative on [—1, 1], then there exist s, ¢t € P,, such that
p(x) = s*(z) + (1 - 2*)t*(z).
Hint: Write, by c|,
p(cosf) = |s(cosf) + it(cosf)sinf|? .

a

The above exercise follows Pdlya and Szegé [76]; see also E.1 of Section
7.2 where this result is extended.

The following two exercises discuss results proved in Erdélyi and
Szabados [88], [89b], and Erdélyi [91c].

E.4 Lorentz Degree of Polynomials. Given a polynomial p € P,, let
d = d(p) be the minimal nonnegative integer for which the polynomial p is
of the form

d

pl@) =+ aj(l—z)(@+1)"7, a; >0.
=0

If there is no such d, then let d(p) := oco. We call d := d(p) the Lorentz
degree of the polynomial p.

a] Let p€ P, \ P,_1 be of the form
p(x) :ij(l—w)j(w—l-l)"_j, b; € R.
=0

For m > n, let the numbers b; ,, j = 0,1,... ,m, be defined by

p(z) = (ij(l—gj)j(w_‘_l)n—j) (1;z +$;1> -
j=0

= Z bjm(1 — ) (z +1)™7

§=0
Show that if d(p) is finite, then it is the smallest value of m for which each
bj.m is nonnegative or each b; ,, is nonpositive.
b] Show that if p € Py \ Py has no zeros in (—1,1), then d(p) = 1.
¢] Show that if p € P2 \P; has no zeros in the open unit disk, then d(p) = 2.
d] Show that if the zeros of a polynomial p € P, \ P; lie on the ellipse

Bo:={z=z+iy: y*=€*(1-27), z€(-1,1)}

with € € (0,1], then
e 2 <d(p) <22 +1.
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e] Let € € (0,1) be such that e 2 is an integer. Let

32 -1 8et — 52 + 1

2
= 2
pi(z) =2 + 1_6233 T

Show that p; has its zeros on B, defined in d], and d(p;) = e~2.
f] Let e € (0,1) be such that 2¢~2 is an integer. Let

(2) = 2% — 2 2 — 3¢? $+—68—566+64—862+4
A ) TG py=) (e PEE

Show that ps has its zeros on B, defined in part d], and d(p2) = 2¢2.

g] Show that d(pq) < d(p) + d(q) for any two polynomials p and q.

h] Let € € (0,1]. Show that if p € P,, has no zeros in
D.i={z=z+iy:y* <e(1-2%), z€(-1,1), ye R},

then
d(p) < 2ne ?+n < 3ne 2.

87

i Let p be a polynomial. Show that d(p) < oo if and only if p = 0 or p has

no zeros in (—1,1).

j] Show that

o (v 5/ <2 - 2)

for every p € B4(—1,1), 1 <n <d, and y € [0,1) (i is the imaginary unit).

Hint: Modify the proof of Lemma A.5.4.
k] Let b € [0,1]. Show that

p'(b) < dp(b)

for every p € B4(—1,1), positive in (—1,1).
Hint: If g 4(7) := (1 — 2)(z + 1)/, then

d—j .
!
¢j,a(b) qg,d(b)<1+b 1_b)_dq3,d(b), j=01,....d

for every b € [0, 1].
1] Show that d(p) > {=ne~? whenever

p(z) = ((x — 20)(z — Z0))", 20 € B, €€ (0,1],

where B, is defined in part d].

a



88 2. Some Special Polynomials

Proof. Let zo = y +ie(1 —y*)'/?, y € (—=1,1). Without loss of generality it
may be assumed that 0 < y < 1. Distinguish two cases.

Case 1: 1—2¢2 <y < 1. By part k],

YU __ 2(i-y)
W20 T Ty v et - )
2n n

> —.
A-g+e(ity 22

Case 2: 0 <y < 1—2¢2 Applying part k] with
bi=y+e(l—y)/? €0,1]
deduce that

P 2n(b —y) - z
(2.4.3) W) 2 = =g r =y =yl

Use part j] to obtain

(1-y*)n

(2.4.4) (1—y?)e? — 10

" n 2\ 2 n® \"
<2 1- +
< <( y~)e 16d2> )

where d := d(p) and n = 1 deg(p). If

1-y*)n

1 —y2)e2 > (7
(I=y)e” 2 ——,
then there is nothing to prove. Therefore assume that

(1—y*)n

(2.4.5) (1-y?e? < <4

Now (2.4.3) to (2.4.5) yield
(1—y*)n\" 2y 2 n* \"
<2 ((1-
( 8d SP\A=y)e+ 5

1-y*)n NCIL
- =~ < — .
sa = 2\0=v)+ 65

Since, by (2.4.3), n2d=2 < (1 — y?)€?, the above inequality implies

and so

(1-y*)n 17 2y 2
Ak VLA, Yeldy §
sa S2gllve

and so d > {-ne?. O
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m] Show that p € P, \ Po_1 and d(p) = n imply that the zeros
21,29, ... ,2n Of p satisfy |z129---2z,| > L.

n] Show that d(pq) < max{d(p),d(q)} can happen.
Hint: Let

pz):=(1-2)>-2(1-2°)+4(z+1)* and ¢(z):=(z+1)+i(1-2).

Show that d(p) = 4, d(q) = 1, and d(pq) = 3. O

o] Show that if p € Py, \ Pr—1 has no zeros in (—1,1), z € C, |z| > 1, and
p(z) = ((z — 2)(z —2))"q(2) ,

then d(p) = deg(p) = k + 2m if m is sufficiently large. This shows that
polynomials p with the property d(p) = deg(p) can have arbitrary many
prescribed zeros in C\ (—1,1).

E.5 Lorentz Degree of Trigonometric Polynomials. Given w € (0,7]
and a real trigonometric polynomial ¢ € Ty, let d = d,(t) be the minimal
nonnegative integer for which ¢ is of the form

w—ﬁsin2d7]~9+w,
2 2

2d
t(ﬁ)ziZajsinj a; >0.
=0

If there is no such d, then let d, () := co. We call d = d,(t) the Lorentz
degree of t.

a] Lett¢ e T,\ Tn_1 be of the form
2n—j 9-1—0.)

mn .

2

2n
. s w—10
t(f) = ]z:;bj sin’ 5 S

For m > n let the numbers b; ,,,, j = 0,1,...,2m, be defined by

2n
Cw—B 0
t(6) = ]Z_:ObjsinJWQ sin?"™J -12—w
o 1 ,2w—9+2 L w—0 . 9+w+,29+w m=n
sin cosw sin sin sin
sin? w 2 2 2 2

2m

w0 5, 04w

:j;)bj7m51n3 5 sin?m~J 5 -

Show that if d,, (t) is finite, then it is the smallest value of m for which each
b;.m is nonnegative or each b; , is nonpositive.



90 2. Some Special Polynomials

Hint: The second factor in the representation of ¢ is identically 1. O

We introduce the notation
G={z=zxz+iy:—n<z<m yeR}
and

G, :={z=x+iy:coswcoshy > cosz, —m <z <m y€ER}.

b] Lett € 71\ To. Show that d, (t) = 1 if and only if ¢ has its zeros in G,,.
¢] Assume 0 < w < 7/2,t € Ty, and #(z) = 0 for some

z:=x+iy € G\ (Guy U (—w,w)).

Show that

4 sin(w £ z)(sinw cosh y F sin z)

d,(t) < max
«(1) cosw sinh? y

where the maximum is to be taken over both sets of signs.

d] Suppose 7/2 <w < m, and t € Ty, t(z) =0 for some z € G\ G,,. Show
that d, (t) = oo.

e] Show that d,(t1t2) < dy(t1) + dy(t2) for any two trigonometric poly-
nomials ¢; and %s.

f] Let 0 < w < m/2and 0 < € < oco. Show that if ¢ € 7, has no zeros in
Buci={z=a+iy:y* < W —2%), s €(-ww), yeR},

then

dw(t)§n< 6_2+2tanw+l> .
cosw

g] Let p be a trigonometric polynomial and 0 < w < 7/2. Show that
d,(t) < oo if and only if ¢ = 0 or ¢ has no zeros in (—w, w). (Note that part
d] shows that this conclusion fails to hold when 7/2 < w < 7.)

h] Show that there is an absolute constant ¢ > 0 (independent of n, w and
29) so that d,, (t) > cne=2 whenever

(. 00—z . 0—7 "
t(6)—<sm 5 sin— >

with zg € 0E, . \ {—w,w}, 0 < € < 00, where OE,, . denotes the boundary
of E, . defined in part f].
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Chebyshev and Descartes Systems

Overview

A Chebyshev space is a finite-dimensional subspace of C'(A) of dimension
n + 1 that has the property that any element that vanishes at n 4+ 1 points
vanishes identically. Such spaces, whose prototype is the space P,, of real
algebraic polynomials of degree at most n, share with the polynomials
many basic properties. The first section is an introduction to these Cheby-
shev spaces. A basis for a Chebyshev space is called a Chebyshev system.
Two special families of Chebyshev systems, namely, Markov systems and
Descartes systems, are examined in the second section. The third section
examines the Chebyshev “polynomials” associated with Chebyshev spaces.
These associated Chebyshev polynomials, which equioscillate like the usual
Chebyshev polynomials, are extremal for various problems in the supremum
norm. The fourth section studies particular Descartes systems

(a:)‘o,a:’\l,...), Ao <A1 < ...

on (0,00) in detail. These systems, which we call Mintz systems, can be
very explicitly orthonormalized on [0, 1], and this orthogonalization is also

examined. The final section constructs Chebyshev “polynomials” associated
with the Chebyshev spaces

1 1
span{l, }, a; € R\ [-1,1]

T —a " —ay

on [—1,1] and explores their various properties.
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3.1 Chebyshev Systems

From an approximation theoretic point of view an essential property that
polynomials of degree at most n have is that they can uniquely interpolate
at n + 1 points. This is equivalent to the fact that a polynomial of degree
at most n that vanishes at n + 1 points vanishes identically. Any (n + 1)-
dimensional vector space of continuous functions with this property is called
a Chebyshev space or sometimes a Haar space. Many basic approximation
properties extend to these spaces. The precise definition is the following.

Definition 3.1.1 (Chebyshev System). Let A be a Hausdorff space. The

sequence (fo,...,fn) is called a real (or complex) Chebyshev system or
Haar system of dimension n+ 1 on A if fy,..., f, are real- (or complex-)
valued continuous functions on A, span{fo,...,fn} over R (or C) is an

(n+ 1)-dimensional subspace of C'(A), and any element of span{ fo, ... , fn}
that has n + 1 distinct zeros in A is identically zero.

If (fo,...,fn) is a Chebyshev system on A, then span{fo,..., fn} is
called a Chebyshev space or Haar space on A.

Chebyshev systems and spaces will be assumed to be real, unless we
explicitly specify otherwise. If A C R, then the topology on A is always
meant to be the usual metric topology.

Implicit in the definition is that A contains at least n 4+ 1 points. Being
a Chebyshev system is a property of the space spanned by the elements of
the system, so every basis of a Chebyshev space is a Chebyshev system.

A point xy € (a,b) is called a double zero of an f € Cla,b] if f(zo) =0
and f(zo —e€)f(zo +¢€) > 0 for all sufficiently small € > 0 (in other words, if
f vanishes without changing sign at zg). It is easy to see that if (fo,... , fn)
is a Chebyshev system on [a,b] C R, then every 0 # f € span{fo,..., fn}
has at most n zeros even if each double zero is counted twice; see E.10.
Chebyshev spaces are defined via zero counting, and many of the theorems
in the theory of Chebyshev spaces are proved by zero counting arguments.
So it is important to make the agreement that, unless it is stated explicitly
otherwise, we count the zeros of an element f from a Chebyshev space on
[a,b] so that each double zero of f is counted twice.

The following simple equivalences hold:

Proposition 3.1.2 (Equivalences). Let fo, ..., fn be real- (or complezx-) val-
ued continuous functions on a Hausdorff space A (containing at least n + 1
points). Then the following are equivalent:

a] FEvery 0 # p € span{fo,..., fn} has at most n distinct zeros in A.
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b] If xo,...,z, are distinct elements of A and yqo,...,y, are real (or
complex) numbers, then there exists a unique p € span{fo,..., fn} such
that
p(z;) = yi, 1=1,2,...,n.
c] Ifxg,...,z, are distinct points of A, then
fo(wo) ... falzo)
D(zo,...,zpn) = £0.

Proof. These equivalences are all elementary facts in linear algebra. O
On an interval there is a sign regularity to the determinants in c].

Proposition 3.1.3. Suppose (fo,..., fn) is a (real) Chebyshev system on
[a,b] C R. Then there exists a § := —1 or § := 1 such that

fo(ﬁvo) fn(xo)
o 1 >0

foranya<xzg <z < - <xp <0

Proof. This follows immediately from part c] of the previous proposi-
tion and continuity considerations. That is, if D(zq,...,z,) < 0 while
D(yo,- .- ,yn) > 0, then for some X € (0,1)

D(Azo+ (1 = Nyo, ... , Az + (1 =N)y,) =0,
which is impossible. O

The intimate relationship between Chebyshev systems and best ap-
proximation in the uniform norm is indicated by the next result. In order
to state it we need to introduce the notion of an alternation sequence.

Definition 3.1.4 (Alternation Sequence). Let A C R and let
To < T <<y

be n + 1 points of A. Then (zq,x1,...,%,) is said to be an alternation
sequence of length n + 1 for a real valued f € C'(A) if

f@)l=flla,  i=0,1,...,n

and
Sign(f($i+1)) = _Slgn(f(a:z)) ) 1=0,1,... ,n—1.
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Definition 3.1.5 (Best Approximation). Suppose that U is a (finite-
dimensional) subspace of a normed space (V,||-||). If g € V and p € U
satisfy

—p|| = inf ||lg — h
llg = pll = inf flg = All,
then p is said to be a best approzimation to g from U.

As a result of the finite dimensionality of the subspace U, at least one
best approximation to any g € V from U exists. This is straightforward
since

T:={peU:lpl <lgll+1}

is a compact subset of U, so any sequence (pj) of approximations to g from
U satisfying
—pil| <j7' + inf |lg—h
lg = pill <57 + inf [lg — A

has a convergent subsequence with limit in U. This limit is then a best
approximation to g from U.

Theorem 3.1.6 (Alternation of Best Approximations). Suppose (fo, ..., fn)
is a Chebyshev system on [a,b] C R. Let A be a closed subset of [a,b]
containing at least n + 2 distinct points. Then p € H,, := span{fo,... , fn}

is a best approxzimation to g € C(A) from Hy in the uniform norm on A if
and only if there exists an alternation sequence of length n+ 2 for g —p on

A.

Proof. The proof of the only if part of the theorem is mostly an example
of a standard type of perturbation argument that will recur later.

The perturbation argument goes as follows. Suppose p is a best approx-
imation of required type and suppose a alternation sequence of maximal
length for g — p is

(xo < 21,< -+ < Tp)

where z; € A and where m is strictly less than n + 1. Suppose, without loss
of generality, that

g(wo) — p(wo) >0
(otherwise multiply by —1). Now let
Vi={zeA:|g(x) —pl)|=|lg—plla}.
Note that Y is compact. Since (zg < z1 < ... < z,,) is an alternation

sequence of maximal length, we can divide Y into m + 1 disjoint compact
subsets Yy, Y1, ... ,Y,, with

"1:06)/2]7 a:IEYla-'-a szYm
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so that
sign(g(z) — p(z)) = —sign(g(y) —p(y)) #0,  z€Y;, y €Yiy.
Now choose a p* € span{fo,... , fn} satisfying
sigh,ey; (p* () = (—=1)°, i=0,1,...,m.
This can be done by choosing points z; with
max Y;_1 < z; < minY;, 1=1,2,....m
and then applying E.11. We now claim that, for § > 0 sufficiently small,

(3.1.1) lg — (p+dp")l[a <llg —plla,

which contradicts the fact that p is a best approximation, and so there must
exist an alternation set of length n + 2 for g — p on A. To verify (3.1.1) we
proceed as follows:

For each ¢ = 0,1,...,m choose an open set O; C [a,b] (in the usual
metric topology relative to [a, b]) containing Y; so that for every z € O;,
(3.1.2) sign(g(z) — p(z)) = sign(p”(z))
and
(3.1.3) l9(2) = p(@)| > llg = plla-

Now pick a §; > 0 such that for every z € B := A\J;", O; and é € (0,6,),

9(z) — (p(z) +6p*(2))| < llg —plla,

which can be done since B is compact and by construction

lg —plis <llg—plla-
Note that (3.1.2) and (3.1.3) allow us to pick a d; > 0 such that for z €
U:-lo 61 and 0 € (0,62),
l9(z) — (p(z) + 0p™(2))| < |g(x) — p(x)].
This verifies (3.1.1) and finishes the direct half of the theorem.

The proof of the converse is simple. Suppose there is an alternation
sequence of length n 4+ 2 for g — p on A, and suppose there exists a p* with

llg —p*lla < llg —plla.

Then p*—p has at least n+1 zeros on [a, b], one between any two consecutive
alternation points for ¢ — p on A, and hence it vanishes identically. This
contradiction finishes the proof. O

In the setting of Theorem 3.1.6 the best approximation is unique; see
E.5.
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Comments, Exercises, and Examples.

The terminology is not entirely standard in the literature with Chebyshev
systems often referred to as Haar systems on intervals of R. There are vari-
ous proofs of Theorem 3.1.6, of which ours is by no means the most elegant
(see Cheney [66], for example). The point of this proof is that it easily mod-
ifies to deal with characterizations of extremal functions for various other
extremal problems. Many good books cover this standard material. See, for
example, Cheney [66], Lorentz [86a], or Pinkus [89]; see also Appendix 3.
An extensive treatment of Chebyshev systems is available in Karlin and
Studden [66] or Niirnberger [89], where E.3 can be found. E.4 shows that

Y

real Chebyshev systems are intrinsically one-dimensional.

E.1 Examples of Chebyshev systems.

a] Suppose 0 = Ag < A; < --- < \,,. Show that
(o, 2™, ... atn)

is a Chebyshev system on [0, 00).

b] Suppose Ag < A1 < +-+ < A,. Show that
(zPo, 2, .. 2t

is a Chebyshev system on (0, o).

¢] Suppose A\g < A1 < --- < A,. Show that

A1 An

(™, z*logx, 2™, zM logz, ..., 2™, 2™ logx)
is a Chebyshev system on (0, o).

d] Suppose A\g < A; < -+ < Ap. Show that

1 1 1
T—X =X T Tx—=A\,

is a Chebyshev system on (—oc,o0) \ {Ao, A\1,... , Ant.

e] Suppose A\g < A; < -+ < Ap,. Show that

(eMoz etz | ern?)
is a Chebyshev system on (—oc, o).
f] Show that
(1, cosd, sinf, cos 26, sin26, ..., cosnd, sinnb)

is a Chebyshev system on [0, 27).

g] Show that
(1, cosf, cos26, ..., cosnb)

is a Chebyshev system on [0, ).
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E.2 More Examples.

a] If (fo,..., fn) is a Chebyshev system on A, then it is also a Chebyshev
system on any subset B of A containing at least n + 1 points.

b] If (fo,...,fn) is a Chebyshev system on A and g € C(A) is strictly
positive on A, then (gfo,...,9fn) is also a Chebyshev system on A.

c] If (fo,...,fn) is a Chebyshev system on [0, 1], then

(1,/Ozf0(t)dt,... ,/Ozfn(t)dt>

is also a Chebyshev system on [0, 1].

See E.8 of Section 3.2, which treats the effect of differentiation on a
Chebyshev system.

E.3 Extended Complete Chebyshev Systems. Let (go,...,gn) be a se-
quence of functions in C"[a, b]. Define the Wronskian determinant

OB g (t)
! (t 't ! (t
Wianyo gt i=| 20 A D)
™) g™ () g (t)

We say that (go,... ,gn) is an extended complete Chebyshev system (ECT
system) on [a, b] if

Wi(go,...,gm)(t) >0, m=0,1,...,n, t€]la,b].

a] Let span{go,... ,gn} be an (n + 1)-dimensional subspace of C"[a,b].
Show that the following statements are equivalent:

(i) For every m = 0,1,...,n, 0 # f € span{go,...,gm} has at most
m zeros in [a,b] counting multiplicities (zo € [a,b] is a zero of f with
multiplicity k if f(zo) = f'(xo) = --- f* V(o) = 0 and f*)(z0) £ 0).

(ii) For each i = 0,1,...,n, there exists a choice of §; := 1 or §; := —1
such that

(60907 61917 e 6ngn)

is an ECT system on [a, b].

In particular, every ECT system on [a,b] is a Chebyshev system on
[a, b].

Proof. For details see Karlin and Studden [66]. O
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b] Characterization Theorem. The following statements are equivalent:
(i) (go,---.9n) is an ECT system on [a,b].

(ii) There exist w; € C""[a,b], i = 0,1,... ,n, with w; strictly positive
such that

go(t) = wo(t),

01(t) = wo(t) / wn () dts |

a

gn<tﬁ = wolt) /:m(tl)/; w2<t2>---/:"1wn<tn>dtn--- dts dt

Proof. This is proved by induction on n. See Karlin and Studden [66]. O
¢] Suppose \g < A\; < -+ < An. Show that (z*°,...,2*) is an ECT
system on [a, b] provided a > 0.

E.4 Railway Track Theorem. Real Chebyshev systems exist only on very
special subsets of R™. Indeed, real Chebyshev systems intrinsically live on
one-dimensional subsets.

a] Suppose A C R™ contains three distinct arcs that join at a point .

Then, for n > 2, there exists no real Chebyshev system (fy, ..., f,) on A.
Proof. Suppose there exists a real Chebyshev system (fo,..., fn) on such
a set A. Let

V(a:,y) = D(a:,y,a:Q,a:g,. e :xn)

(D is defined in Proposition 3.1.2) which is never zero for distinct points
Z,Y, T2, T3, ... ,T,. Choose distinct points zg, z1,... , T, on one of the three
distinct arcs so that ¢ is adjacent to z. Pick the points 21 # ¢ and 253 # xg
so that z1, z2, and x; are on different arcs. Now consider interchanging
z := 1z and y := x; by moving z from xq to z1, y from z; to 22, x from z;

to x1, and y from 25 to zg. Since z,y, z2, z3,. .. , 2, remain distinct, V(z, y)
does not vanish in this process. This contradicts the fact that V(z,y) is
continuous and V (zo,z1) = —V (21, Zo)- O

The following more general result of Mairhuber [56] also holds:

b] Mairhuber’s Theorem. If (fy,..., fn) is a real Chebyshev space on A,
then A is homeomorphic to a subset of the unit circle.

E.5 Uniqueness of Best Approximations. Prove that a best approxima-
tion from a Chebyshev space satisfying the conditions of Theorem 3.1.6 is
unique.
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Hint: Suppose f has two best approximations p; € H,, and p» € H,. Then,
by the alternation characterization, p; — p, € H, has at least n + 1 zeros
on [a,b] (we count each internal zero without sign change twice). Now E.10
implies that p; — ps = 0. O

E.6 De la Vallée Poussin Theorem. Suppose Hy is a Chebyshev space of
dimension (n+ 1) on [a,b]. If p € H,, and there exist n + 2 points

a<zp<x < < Tpy1 <b
so that
sign(f (i) — p(xi)) = —sign(f (zi41) — p(ziy1)), 1=0,1,....n,
then

Jnf |If = pllay 2 min 1f (@) = plei)]-

E.7 Haar’s Characterization of Chebyshev Spaces. The following pretty
theorem is due to Haar (for a proof, see E.3 of Appendix 3):

Theorem. Let fo,...,fn € C(A) where A is a compact Hausdorff space

containing at least n + 1 points. Then (fo, ..., fn) is a Chebyshev system
on A if and only if every g € C(A) has a unique best approzimation from
span{ fo,..., fn} in the uniform norm on A.

E.8 Best Approximation to z”. Reprove Theorem 2.1.1 by using the al-
ternation characterization of best approximations.

E.9 Best Rational Approximations. Let f € Cla,b]. Then p/q € Ry m is
a best approximation to f from R, ., in C[a,b] if and only if f — p/q has
an alternation set of length at least

2 + max{n + deg(q), m + deg(p)}

[a,b]. (Here we must assume p/q is written in a reduced form.)

The proof of this is a fairly complicated variant of the proof of Theorem
3.1.6 (see, for example, Cheney [66]).

E.10 Zeros of Functions in Chebyshev Spaces. As before, we call the
point xo € (a,b) a double zero of f € Cla,b] if f(xo) =0 and

flzo—€)f(zo+¢€) >0

for all sufficiently small € > 0 (in other words, if f vanishes without changing
sign at zg). Let (fo,..., fn) be a Chebyshev system on [a,b] C R. Show
that every 0 # f € span{fo,... , fn} has at most n zeros even if each double
zero is counted twice.

Hint: Use Proposition 3.1.2 b). O
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E.11 Functions in a Chebyshev Space with Prescribed Sign Changes. Let
(fo,--., fn) be a Chebyshev system on [a, b], and let

Y

a<21<29< <2y <b, 0<m<n.
Show that there is a function p* € span{fo,..., fn} such that
(i) p*(z) =0 if and only if z = z; for some i =1,2,... ,m,
(ii) p*(x) changes sign at each z;, i =1,2,... ,m.

Hint: If m = n, then use Proposition 3.1.3 and a continuity argument to

show that
folx)  filz) ... fal)
fo(z1)  fi(z1) .. fa(z1)

pi(z) = : : - :
satisfies the requirements.

If m < n, then use the already proved case, a limiting argument, and
E.10 to show that there are p; € span{fo,..., fn}, 7 =1,2, such that

(1) pj(z) changes sign at z if and only if = 2;, i =1,2,... ,m,

(2) pi(z) #0 for every = € [a,zm] \ {z1,22, ... ,2m },

(3) pa(z) #0 for every z € [z1,b] \ {z1,22,... ,2m}.

Now show that either p* := p; + p» or p* := p; — py satisfies the require-

ments. O

E.12 The Dimension of a Chebyshev Space on a Circle. Let (fo,..., fn)
be a Chebyshev system on a circle C'. Show that n must be even. Observe
that such Chebyshev systems exist.

Hint: Show that for every set of n distinct points z1,z2,...,z, on the
circle there is a p € span{fo,..., fn} such that p(z) = 0 if and only if
x € {x1,22,..., 25} and p(x) changes sign at each z;. O

3.2 Descartes Systems

Chebyshev systems capture some of the essential properties of polynomials.
There are two additional types of systems that capture some additional
properties.

Definition 3.2.1 (Markov System). We say that (fo,...,fn) is a Markov
system on a Hausdorff space A if each f; € C(A), and {fo,...,fm} is a
Chebyshev system for each m = 0,1,... ,n. (We allow n to tend to +o0, in
which case we call the system an infinite Markov system on A.)
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A Markov system is just a Chebyshev system with each initial segment
also a Chebyshev system. Being a Chebyshev system is a property of the
space not of the basis. However, the Markov system depends on the basis.
For example,

(:I?/\O,a?)‘l,...), A <A1 < -+

is a Markov system on any A C (0,00) containing infinitely many points,

but not every basis of span{z*°, 2zt ...} is a Markov system on A (see
E.1).

Proposition 3.2.2. (fo,..., fn) is a Markov system on an interval [a,b] if
and only if for each i = 0,1,... n, there exists a choice of §; := 1 or

0; := —1 such that with g; := 0; f;,

go(zo) - gm(zo)
.D Jo g1 9m — : . : > 0
To L1 ... Tm ) . : :
go(zm) - gm(Tm)
foreverya<zo<z1 < <zpy <bandm=0,1,... ,n.

Proof. This is an easy consequence of Proposition 3.1.3 by induction on
n. O

A stronger property that a system on an interval can have is the fol-
lowing:

Definition 3.2.3 (Descartes System). The system (fo, ..., f») is said to be

a Descartes system (or order complete Chebyshev system) on an interval I
if each f; € C(I) and

D(fio fio - fz'm>>0

o T ce. Tm

for any 0 <ipg <i3 < -+ < iy <nand zg <z < -+ < &y, from I. (Once
again we allow n to tend to cc.)

This again is a property of the basis. It implies that any finite-

dimensional subspace generated by some basis elements is a Chebyshev
space on I. The canonical example of a Descartes system on [a, b], a > 0, is

(:L‘/\O,a?)‘l,...), A <A1 < -+

(see E.2). A Descartes system on I is obviously a Descartes system on any
subinterval of I.
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The following version of Descartes’ rule of signs holds for Descartes
systems.

Theorem 3.2.4 (Descartes’ Rule of Signs). If (fo,..., fn) is a Descartes
system on [a,b], then the number of distinct zeros of any

0#f=> aifi, @eR
i=0

is mot greater than the number of sign changes in (ag,... ,an).

A sign change occurs between a; and a;yy exactly when a;a;vr < 0 and
Qi1 = Qg2 = = Q-1 = 0.

Proof. Suppose (ag, ... ,a,) has p sign changes. Then we can partition

{ag, ... ,an} into exactly p + 1 blocks so that each block is of the form
Oy 415 Oy +2y ++ 5 Oy s m=0,1,...,p

(ng := —1,np41 1= n), where all of the coefficients in each of the blocks are

of the same sign and not all the coefficients in a block vanish. Now let

Nm+1

Gm = Z |ai|fi’ m:071="'7p'
i=Nm+1
Then, fora <z <z <--- <2, <b,
D <g[) g1 gp>
g I Tp
ni Np+1
=Y % ai0|...|aipD<fm foo oo flp) 0
. . o T Tp
to=npo+1 zp:np+1

since each of the determinants in the sum is positive. Thus {go,... .gp} is
a (p + 1)-dimensional Chebyshev system on [a, b], and hence

p
f5225i9i7 6 = *1
i=0

has at most p zeros. This finishes the proof. O

A refined version of Descartes’ rule of signs for ordinary polynomials is
presented in the exercises. The following comparison theorem due to Pinkus
and, independently, Smith [78] will be of use later.
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Theorem 3.2.5. Suppose (fo,..., fn) is a Descartes system on [a,b]. Sup-
pose

k k
pP="fat Y aifr, and  q=fot+ Y bify,
i=1 i=1
where 0 < A\ <A <--- <A<, 0< 1 <Y< <Y <n,
0<v <X\ <a, 1=1,2,...,m,
and
a< X <v<n, i=m+1,m+2,...,k

with strict inequality for at least one index i =1,2,... k. If
p(xl):q(xl)zo; i:172:"'7k7
where x; € [a,b] are distinct, then

p(2)] < lq(@)]
for all x € [a,b] with strict inequality for x # x;.

The proof is left as a guided exercise (see E.4) with some interesting
consequences presented in E.5.

Comments, Exercises, and Examples.

Theorem 3.2.4 characterizes Descartes systems; see Karlin and Studden [66,
p. 25]. Some caution must be exercised since, as in the previous section, def-
initions are not entirely standard. We will explore two particular Descartes
systems in greater detail later; see E.2 and E.3. For further material, the
reader is referred to Karlin and Studden [66], Karlin [68], and Niirnberger
[89].

E.1 Distinctions.

a] Given \g < Ay < -+ and A C (0,00) with infinitely many points,
show that (2?0, 2*1,...) is a Markov system on A, but there is a basis for
span{z*°,2*1, ...}, which is not a Markov system on A.

b] Find a Markov system that is not a Descartes system.

E.2 Examples of Descartes Systems.

a] Suppose Ag < A1 < --- . Show that the Mintz system
(0, 2™,

is a Descartes system on (0, c0).
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Hint: For every 0 < ig < i1 < -+ < 14y, the determinant

w)\,'o :E/\im
\; s \; 0 . 0
xTo T e xTrtm
D ( ) =| . :
0 1 m Xig Ni,
zm® ... Tm

is nonzero for any 0 < zg < 1 < -+ < z,;, < o0 by Proposition 3.1.2 and
E.1 a] of Section 3.1. It only remains to prove that it is positive whenever
0<zg <21 <+ < Ty < 00. Observe that the exponents /\i]. can be varied
continuously (for fixed z;) without changing the sign of the determinant

provided no two ever become equal. Now perturb (X, Ai;,...,\;,,) into
(0,1,...,m) and observe that the determinant becomes a Vandermonde
determinant, as in part b], which in this case is positive. O

b] Vandermonde Determinant. Show that

1 z ... a7
1z ... 2
= H (j; — ;) .
0<i<j<m
1z ... 20
Hint: The determinant is a polynomial in zg,z,...,2Z, of degree m in
each variable that vanishes whenever z; = x;. O

¢] Suppose \g < A1 < ---. Show that the ezponential system
(eMot Mt )

is a Descartes system on (—oo, 00).
Hint: Use part al. O
d] Suppose 0 < A\g < A; < ---. Show that

(Sinh A(]t, sinh /\1t, .. )

is a Descartes system on (0, 00).

Outline. Let 0 < ig < i1 <+ < i, be fixed integers. First we show that
(sinh Ay t, sinh A ¢, ..., sinh A;, ?)
is a Chebyshev system on (0, oc). Indeed, let
0 # f € span{sinh \; t, sinh A\;,; ¢, ..., sinh \; t¢}.

Then
0 # f € span{eFhiol eFrat e FAinly

and by E.1 €] of Section 3.1, f has at most 2m zeros in (—oc, 00). Since f
is odd, it has at most m zeros in (0, 00).
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Since for every 0 < ig < i3 < -+ < ipm, (sinhA; ¢, ..., sinh \; t) is a
Chebyshev system on (0, c0), the determinant
D sinh A;yt sinh A;;¢ ... sinh\; ¢t
o I e Tm
sinh A;;zg sinhA;,zo ... sinh\;  zo
sinh \;;z1 sinhA;,;z; ... sinh\; o
sinh A\jyz,, sinh Az, ... sinh ) zn,

isnonzeroforany 0 < z¢g < z1 < +++ < &, < oo Proposition 3.1.2. So it only
remains to prove that it is positive whenever 0 < zg < 21 < -+ <z, < 0.

Now let

sinh A\; ¢t sinhA;;t ... sinhA; ¢
D(a):=D to " tm
Qazg azq ... QL
sinh \;,azg sinh A\;,azg ... sinh)\; axg
sinh \;,az; sinh A\;,azqy ... sinhA; ax;
sinh \j,azy,, sinh A, ez, ... sinh ), azy,
and
Lot 1N\t 1A ¢
setiot  setiit . seltim
D*(a):=D | 2 2 2
axo axq . AL
%6)\1'0&.%0 %ekilaxo L. %eAimamo
B %ekioazl %e’\haml L %ekimazl
%e’\ioo‘mm %e)\,-lazm o %e)‘im QAT

where 0 < 29 < 21 < - -+ < T, < oc¢ are fixed. Since

(sinh Ay t, sinh A ¢, ..., sinh A;, ?)

and
eAim t)

(eMiot erint
are Chebyshev systems on (0,00), D(«) and D*(a) are continuous non-
vanishing functions of «a on (0, 00). Now, observe that

D(a)

Jim |D(a)| = Jim \D*(a) =0 and Jim D(a) = 1.

By part c],
(e)\,'ot, eAilt ., eAimt)

Y
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is a Descartes system on (—oc, o0), hence D*(a) > 0 for every a > 0. So
the above limit relations imply that D(a) > 0 for every large enough a,
hence for every a > 0. In particular,

D(1)=D (smh/\iot sinh A, t ... s1nh/\imt> >0,

To I e Im

which finishes the proof. O
e] Suppose 0 < Ag < Ay < ---. Show that

(cosh Agt, cosh A\t ...)

is a Descartes system on (0, c0).

Hint: Proceed as in the outline for part d]. O

E.3 Rational Systems.
a] Cauchy Determinants. Show that

1 1
a1+p1 T a1+Bm H (aj - ai)(ﬁj - Bl)
. . . _ 1<i<g<m
i I1 (ai+5)
aAB c antEn 1<ii<m

Hint: Multiply both sides above by [[ (a; + ;) and observe that both
1<i,j<m

sides are polynomials of the same degree, m —1, in each variable a;, 3;. Also

both sides vanish exactly when a; = a; or 8; = ;. So up to a constant

both sides are the same. Now show that the constant is 1. a

b] Let a3 > as > -+ > b. Show that

1 1
a1 —z as—zx

is a Descartes system on [a, b].

Let a; < as < -+ < a. Show that

1 1
rT—o; T—ay

is a Descartes system on [a, b] (see also E.6 ¢]).

E.4 Proof of Theorem 3.2.5. Assume the notation of this Theorem 3.2.5.

a) Let 0<do<d <---<d,<nanda<z <2y <--- <z, <b. Show
that there exists a unique p = f5, + Zfz_ol a;fs, such that
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Show also that the above p has the following properties:
(2) p(x) changes sign at each z; ,

(3) p(a:) 7£ 0if z §§ {2?1,132,... 7xﬂ}=

4) a;ai41 <0, i=0,1,...,u—1, a,:=1,

(5) p(z) >0, z€ (z,,b].

Hint: Since (f5,,..., fs,) and (fs,,... , f5,_,) are Chebyshev systems, E.11
of Section 3.1 shows that there exists a p of the desired form satisfying (1).
Since (fs,,... , fs,_,) is a Chebyshev system, this p is unique. Now E.11 of

Section 3.1 yields that p satisfies (2) and (3). By Theorem 3.2.4, p satisfies
(4). The fact that (5) holds for p follows from expanding the determinant

D<f50 foo oo fs., f5u>

I T9 z, T

by Cramer’s rule. This determinant is just cp(z) with some ¢ > 0 since it
vanishes at each z;, and the coefficient of fs, is positive; see Definition 3.2.3.
Also, the above determinant is positive for all & € (z,,b]; see Definition
3.2.3 again. ad

b] Prove Theorem 3.2.5.

Outline. For notational simplicity assume that a = n (hence m = k); the
general case is analogous. Further, we may assume that there is an index j
such that
v <A; and ; =X\; whenever i#j
since the result follows from this by a finite number of pairwise comparisons.
So we assume
k
P=fataify+ Y aify
—
i#i
and
k
q= fn + bjf’Yj + Z bif)\i y

=5
where 0 < Ap < Ay < --- < Ay <nand 0 < Aj_; < < Aj for some
1 < j <k (of course, the inequality Aj_1 < y; holds only if A\;_; is defined,
that is, only if j > 2). Then

k
b—q= ajf/\j - bjf’Yj + Z (ai - bi)f/\i
—
i#i
has exactly k zeros on [a,b] at 1, s, ...,z because p — ¢ is in a (k + 1)-
dimensional Chebyshev subspace.
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By property (5) in part a] applied to p and g, respectively,
p(z) >0 and ¢(z) >0, z € (z1,b].

Now by property (4) in part a] applied to ¢(p— ¢q), where ¢ is chosen so that
the lead coefficient of ¢(p — ¢) is 1, and by the fact that p and p — ¢ have
the same coefficient for fy;, the lead coefficient of p — ¢ (ax — by provided
Ar > );) is negative. So property (5) in part a] implies that

p(x) —q(z) <0, @€ (0],
Hence 0 < p(z) < q(x), x € (z,b)].
Now use property (3) in part a] and the fact that all of p, ¢, and p — ¢
change sign only at x; to finish the proof. O

The following extension of part a] will be used later:

¢] Suppose
0<d<dh < <d<n, afzy <z9<-+- <1y, <D,
a < x2,24-1 < b, and z; < ®iy2, ¢ =1,2,...,u — 2. Show that there

exists a unique p = fs, + Z?:_Ol a;fs, (with a; € R) such that

(1) p(z;) =0, i=1,2,... 4,

(2) p(z) changes sign at z; if and only if z; & {a,b,z;—1,Tit1} .

Show also that

(3) plz) #0ifx ¢ {z1,22,... ,2,},

(4) aai41 <0, i=0,1,...,u—1, a,:=1,

(5) p(z) >0, z € (z4,b),

(6) (~1)p(x) >0, =€ (a,a1),

(7) (=1)"~ip(z) >0, z€ (v;,miy1), i=1,2,...,u—1.

Hint: Use part a] and a limiting argument. The uniqueness follows from
E.10 of Section 3.1. O

The next exercise provides a solution to a problem of Lorentz, which
is settled in Borosh, Chui, and Smith [77].

E.5 A Problem of Lorentz on Best Approximation to 2*. Suppose that

[a,b] C [0,00), n € N, and p € (0,00] are fixed. Let u be a finite Borel
measure on [a, b].

a] Suppose Ai,Az,..., A, are arbitrary fixed real numbers if a > 0, or
fixed real numbers greater than —1/p if a = 0. Let f € Ly(u) be fixed.
Show that

n
Ep (A, Azy ey A f) 1= Zné%Hf(x) - ;ail‘)"'

Lyp(n)

exists and is finite.
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Outline. Use a standard compactness argument. O

b] Suppose 1 < p < oo, the support of p contains at least n + 1 points,
A1, Ao, ..., Ap, A are arbitrary fixed distinct real numbers if a > 0, or fixed
real numbers greater than —1/p if a = 0. Show that if (a;)"; C R satisfies

n
Epu(A,Xoy o Ap2?) = |2t — Zﬁil“)"'
i=1

Lp(w)’
then
n
f(z) :=a* - Zfiixk"
i=1
has exactly n sign changes on (a,b).
Hint: Since (z*1,... 2’ 2) is a Chebyshev system, it is sufficient to prove

that f has at least n sign changes on (a,b). Suppose f has at most n — 1
sign changes on [a,b]. Then, since (z*!,...,2*) is a Chebyshev system,
by E.11 of Section 3.1 there exists an element

h € span{z* ... a*}

such that
|f ()P~ sign(f(z))h(z) >0

on [a,b] with strict inequality at all but n points (at every point where f
does not vanish). Using that the support of u contains at least n+ 1 distinct
points, this implies

b
/ P sign(f)hdu > 0,

which contradicts E.7 h] of Section 2.2. O

¢] Suppose p = oo, supp(p) = [a,b], A1, A2,... , An, A are arbitrary fixed
distinct real numbers if a > 0, or fixed distinct nonnegative real numbers if
a = 0. Show that if (a;)?_, C R satisfies

n
Eoo“u(/\l,/\Q,--. ,/\n;.’E)\): ka_zaixki o ),
i=1 oo (M

then
fz) =2 - Zaia:’\i
i=1

has exactly n sign changes on (a,b).
Hint: Use Theorem 3.1.6. O
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d] Best Approximation to 2* from Certain Classes of Miintz Polynomials.
Let 1 < p < oo. Suppose the support of p contains at least n + 1 distinct
points if 1 < p < oo or supp(p) = [a,b] if p=00. Let A >y, > v > -+ be

arbitrary fixed real numbers if @ > 0, or fixed nonnegative real numbers if
a = 0. Suppose we wish to minimize

Ep:ﬂ(Ala AQ; ety /\’ﬂ7 wA)
for all sets of n distinct real numbers Ay > Ay > --- > A, satisfying

{/\1,/\2,... ;/\n} C {’)/1,’}/2,...}.

Show that the minimum occurs if and only if

{)‘17)‘27"' ,)\n}: {717’727"' 7771}

Hint: Let
n
Ep,u(Al,/\Q,.-- ,/\n;w)\): HzA_Zaiain )
i=1 Ly (n)
where {A1,A2,...,A,} is a set of n distinct real numbers for which the
minimum is taken; see part a]. By parts b] and ]
n
f(z) :=a* - Zaia:’\i
i=1
has exactly n sign changes z1,zs,... ,x, on (a,b). Let
g € span{z™, 272, ... 2"}
interpolate z* at the points 1,2y, ... ,2,. Now use Theorem 3.2.5 to finish
the proof. O

E.6 Strictly Totally Positive Kernels (Karlin [68]). A (continuous) func-
tion K (s,t) is an STP kernel on [a,b] x [c, d] if

K(Sg,t(]) K(Sg,tn)
: : >0
K(Sn,t(]) K(Sn,tn)

foralla<sg < -+ <s,<b, ¢c<ty<:---<t,<d, and for all n > 0.
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a] Observe that E.3 b] implies that

a>0.

1
K(s,t) = P is STP on [a,b] x [a,b],
Observe also that E.2 b] implies that
K(s,t) = e® is STP on (—oc,oc) x (—oc, oc).

b] Suppose K is STP on [a,b] x [c,d], and (fo,..., fn) is a Chebyshev
system on [a, b]. Show that if

b
w) = [ Keofiod,  i=01...n.

then (vp,...,v,) is a Chebyshev system on [c, d].

¢] Variation Diminishing Property. Suppose K is STP on [a,b] x [c,d]
and suppose f € Cla,b]. Let

b
o(z) ::/ K(t2) f(t)dt .

Then g has no more sign changes on [e, d] than f has on [a, b].
d] The Laplace transform of a function f € C[0,00) N L]0, o0)

Mﬁ@%zéwfwf”ﬁ

has no more sign changes on [0, c0) than f does.

Proof. This follows from parts a] and c]. It may also be proved directly by
induction as follows. Suppose f has exactly n sign changes on [0, 00), one

at zg. Then g(z) := (zg — z) f(z) has exactly n — 1 sign changes on [O, 0).
Now observe that

eﬂ”%wwmmunzuwm,

so L(f) has at most one more sign change on [0, c0) than L(g) does. O

e] Use part d] and E.2 a] to reprove that

1 1
< , ,...>, —a< o <o < -
T+or T+ oo

satisfies Descartes’ rule of signs on [a, b]. O

Proof. Observe that

o0

/e_a"te_m dt = !
T+ o;

0

for every x € (—a;, oc). |
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E.7 Descartes’ Rule of Signs for Polynomials.

a] Prove by induction that Y, _, arz* € P, has no more zeros in (0, o)
(repeated zeros are counted according to their multiplicities) than the num-

ber of sign changes in (ag, ai, ... ,an).

b] Leta >0.Letp(z) =Y _, axz* and ¢(z) := (z—a)p(z) = ZZ;% brat.
Show that if the number of sign changes in {ag,a1,...,a,} is m, then the
number of sign changes in {bg, b1,... ,b,+1} is at least m + 1.

¢] Give another proof of a] based on b].

d] In part a] the number of sign changes in (ag,a1,... ,a,) exceeds the
number of positive zeros by an even integer.
Hint: See Pélya and Szeg6 [76]. O

Refinements of the above exercise are presented in E.6 of Appendix 1,
where Cauchy indices are discussed.

The first part of the following exercise is a version of a result from
Zielke [79]:

E.8 The Effect of Differentiation on Weak Markov Systems. The system
(fos---, fn) is called a weak Chebyshev system on [a,b] if f; € C[a,b] for
each i and every f € span{fo,..., fn} has at most n sign changes on [a, b]
(so the only difference between a Chebyshev system and a weak Chebyshev
system is that in the definition of the latter, zeros without sign change are
not counted).

Analogously, the system (go,...,gn) is called a weak Markov system
on [a,b] if g; € Cla,b] for each i and (go,...,9m) is a weak Chebyshev
system on [a, b] for every m = 0,1,... ,n (so the only difference between a
Markov system and a weak Markov system is that in the definition of the
latter, zeros without sign change are not counted).

a] Suppose (1, f1,...,fn) is a weak Markov system of C! functions on
[a,b]. Show that (f{,..., f,) is a weak Markov system on [a, b].

Outline. Proceed by induction on n. If n = 0, then the statement is obvious.
Suppose that the statement is true for n — 1. By the inductive hypothesis
(f1,--., fl_q1) is a weak Markov system on [a,b], hence Rolle’s theorem
implies that (1, f1,..., fn—1) is a Markov system on [a, b].

Suppose that g € span{f;,..., f,_1} is of the form

n

9= af}, a; €R

i=1

and ¢ has at least n sign changes on [a, b]. Then there exist n 4+ 2 distinct
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points

a<a:1<a:2<---<wn+2<b

and € = 1 such that
n
F.=¢ Z aifl-
i=1

satisfies
(=) (F(wiy1) — F(x;)) >0, i=1,2,...,n+1.

Since (1, f1,..., fn—1) is a Markov system on [a,b], by Proposition 3.1.2,
there exist functions

G(s € span{l,fl, . ;fn—l}
such that
Gs(z;) = F(z;) + 6(=1)7, i=23,...,n+1

for every § > 0. Then by the inductive hypothesis, G5 has at most n — 2
sign changes on [a, b]. It follows that if § > 0 is sufficiently small, then

(=1(Gs(x2) — Gs(x1)) <0

and
(=)™ (G5 (wnt2) — Gs(ns1)) <0,

otherwise G5 would have at least n sign changes on [a, b]. Now show that
for sufficiently small 6 > 0

F-G;s e Span{lsflz--- ,fn}

has at least n + 1 sign changes, which is a contradiction. O

b] Suppose that (1, f1,...,fn) is an ECT system on [a,b] and suppose
that each f; € C"[a,b] (see E.3 of Section 3.1). Show that (fy,..., f)) is
also an ECT system on [a, b] with each f; € C""'[a, b].

Hint: Use the definition given in E.3 of Section 3.1. O

¢] Suppose (1, f1,...,fn) is a weak Markov system on [a,b] with each
fi € C'a,b]. Show that (1, f1,..., fn) is a Markov system on [a, b].

Hint: Use Rolle’s theorem and part a). O
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3.3 Chebyshev Polynomials in Chebyshev Spaces

Suppose
Hn = Span{f07f17 s 7f’n}

is a Chebyshev space on [a,b], and A is a compact subset of [a, b] with at
least n + 1 points. We can define the generalized Chebyshev polynomial

Tn = Tn{f(]:fla" . 7fn1A}

for H,, on A by the following three properties:

(3.3.1) Ty € span{fo, fi,... , fn}

there exists an alternation sequence (zg < x1 < +++ < x,) for T}, on A, that
is,

(3.3.2) sign(T, (zi41)) = —sign(Ty(z:)) = £||Thl|a
fori =0,1,...,n—1, and

(3.3.3) Talla =1 with T,(maxA)>0.

Of course the existence and uniqueness of such a T}, has to be proved.
Note that if together with span{fo,..., fn}, span{fo,..., fn—1} is also a
Chebyshev space, then Theorem 3.1.6 implies that

n—1
Tn:C fn_E akfk 3
k=0
where the numbers ag, ay,...,a,_1 € R are chosen to minimize

(3.3.4) ‘

n—1
fn=> akkaA ;
k=0

satisfies properties (3.3.1) and (3.3.2), and the normalization constant ¢ € R
can be chosen so that T), satisfies property (3.3.3) as well. In E.1 we outline
the proof of the existence and uniqueness of a T, satisfying properties
(3.3.1) to (3.3.3) without assuming that span{fo,..., fn—1} is a Chebyshev
space.

Note that if (fo,..., fn) is a Descartes system on [a, b], then the nor-
malization constant (that is, the lead coefficient) ¢ in T}, is positive. This
follows from E.4 of Section 3.2.
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On intervals, with fi(z) := z¢, the definition (3.3.1) to (3.3.3) gives the
usual Chebyshev polynomials; see E.7 of Section 2.1.

The Chebyshev polynomials T}, for H,, on A encode much of the in-
formation of how the space H,, behaves with respect to the uniform norm
on A. Many extremal problems are solved by the Chebyshev polynomials.

When (fo, f1,...) is a Markov system on [a,b] we can introduce the
sequence (T,,)%2, of associated Chebyshev polynomials

Tn = Tn{f(]aflv" . 7f’ﬂ; [(L,b]}

for H, on [a,b]. Then (Ty,Ty,...) is a Markov system on [a, b] again with
the same span. (One reason for not always choosing this as a canonical basis
is that it is never a Descartes system.)

The denseness of Markov spaces in Cfa,b] is intimately tied to the
location of the zeros of the associated Chebyshev polynomials; see Section
4.1.

An example of an extremal problem solved by the Chebyshev polyno-
mials is the following:

Theorem 3.3.1. Suppose H,, := span{fo,..., fn} is a Chebyshev space on
[a,b] with associated Chebyshev polynomial

T’n = Tn{an f17 s 7f’ﬂ1 [(l,b]}
and each f; is differentiable at b. Then

max{[p'(D)| : p € Hun, [Iplljap) <1, p(b) =Tn(b)}
is attained by T,.

Proof. Suppose p € Hpy, ||plljo,5) < 1, and p(b) = T (b). We need to show
that |p'(b)| < |T,(b)]. Let a < (o < &1 < -+ < ¢p < b be the points of
alternation for T, that is,

Tn(Cl)::t(_]-)la i:O,l,...,n.

Note that T,, — p has at least n zeros in [{g, (], one in each [(;—1,(],
i=1,2,...,n (we count each internal zero without sign change twice, as
in E.10 of Section 3.1). So if b # (,, then T}, — p has n + 1 zeros on [a, b]
including the zero at b, hence p = T,,, and the proof is finished. We may
thus assume that T),(b) = 1. Assume that [p(b)| > |7} (b)|. Since T}, (b) > 0,
without loss of generality we may assume that p'(b) > T/, (b), otherwise we
study —p. Then T}, — p has two zeros on [(,, b], and hence has n+ 1 zeros in
[a,b] (again, we count each internal zero without sign change twice). Thus
by E.10 of Section 3.1 we have p = T},, which contradicts the assumption
p'(b) > T} (b). |

An extension of the above theorem to interior points is considered in
E.3.
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Theorem 3.3.2. Suppose (fo,...,fn-1,9) and (fo,..., fu—1,h) are both
Chebyshev systems on [a, b] with associated Chebyshev polynomials

Tn = Tn{f(]:fla" . :fnflzg; [a;b]}

and

Sn = Tn{fg, fl, . ;fn—l; h, [a,b]},

respectively. Suppose (fo, f1,..., fn-1,9,h) is also a Chebyshev system.
Then the zeros of Ty, and S, interlace (there is exactly one zero of Sy
between any two consecutive zeros of Tp,).

Proof. Since (fo,..., fan-1,9,h) is a Chebyshev system on [a,b], T, £ Sy,
has at most n + 1 zeros. However, between any two consecutive alternation
points of T},, of which there are n+ 1, there is a zero of T}, £ S,, (which may
be at an internal alternation point of T, only if it is a zero without sign
change, which is then counted twice). Likewise, there is a zero of T,, + S,
between any two consecutive alternation points of S,,. Thus between any
three successive alternation points of say T}, there can be at most three zeros
of T, £ S,,. However, if S,, had two zeros between two consecutive zeros of
T, , then there would be three consecutive alternation points of either T,
or S, with at least four zeros of either T}, + S,, or T, — S,, between them,
which is impossible. O

Theorem 3.3.3. Suppose (fo, f1,...) is a Markov system on [a,b] with as-
sociated Chebyshev polynomials

Ty :=To{fo, f1,-- s fnila,b]}.

Then the zeros of Ty, and Tp—1 strictly interlace (there is exactly one zero
of Tn—1 strictly between any two consecutive zeros of Ty ).

Proof. The proof is analogous to that of Theorem 3.3.2. O

Theorem 3.3.4 (Lexicographic Property). Let (fo, fi,...) be a Descartes
system on [a,b]. Suppose g < A\ < -+ < Ap and yo <y < -+ <y are
nonnegative integers satisfying

Let
Ty := Tn{onafAm--' ’f>\'n; [aab]}

and

Sy = Tn{f’yg: f’yoa v 7f‘yn; [a= b]}

denote the associated Chebyshev polynomials.
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Let
ar <ag <~ <a, and 61<B2<"'<Bn

denote the zeros of Ty, and S,, respectively. Then
aigﬁia i:172="'=n

with strict inequality if \; # ~v; for at least one index i. (In other words, the
zeros of T, lie to the left of the zeros of Sy.)

Proof. 1t is clearly sufficient to prove the theorem in the case that A\; = ~;
for each i # m, and A\, < Y < A4 for a fixed index m, and then to
proceed by a sequence of pairwise comparisons (if m = n, then A1 is
meant to be replaced by co). So suppose

n

Tn = Tn{f)\oa"' 7f/\m7"' 7f/\n;[a=b]} = Zcif)\i

i=0

and

S =TalFrgs-- s Fyms oo s Prnsla b} = dumfo + Y dify,
i=0

with A\, < Ym < Amy1. Then by Theorem 3.3.2 the zeros of S, and T,
interlace and all that remains to prove is that the largest zero of S,, is larger
than the largest zero of T),,. That is, we must show that a,, < f,. For this
we argue as follows. It follows from Theorem 3.2.5 that the lead coefficient
of T}, is less than the lead coefficient of S,, (¢, < d,, provided m < n). Since
both T}, and S,, have an alternation sequence of length n + 1 on [a, b], and
since

ITollfa) = [1Snlllasy =1, Tu(b) >0, Sa(b) >0,
it follows from E.1 b] that

Sn _Tn € Span{f)\O?f)\l 7f>\naf’Ym}

hasn+1zeros 1 < &y < -+ < Ty on [a, b]. Therefore, it follows from E.4
c] of Section 3.2 that (S, —T,)(z) > 0 on (,41,b) and (S, —T,)(z) < 0on
(Zn,Znt1). Hence the assumption §,, < a,, would imply that S, —T,, has at
least n + 2 zeros on [a, b] (counting each internal zero without sign change
twice), which is a contradiction. (Draw a picture and use the alternation
characterization of the Chebyshev polynomials 7}, and S,, to make the proof
of the above statement transparent.) So 3, > a,, indeed, and the proof is
finished. O
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Comments, Exercises, and Examples.

If H,, := span(fy, ..., fn) is a Chebyshev space on [a,b], A is a compact
subset of [a,b], and p € (0, 00), then

n—1
Tn =cC (fn - Zakfk>

k=0

with ap,a1,...,a,-1 € R minimizing

n—1
/A fn— kZ:O akfk‘p

is called an L, Chebyshev polynomial for H, on A. When A = [a,b] and
p € (1,00], the properties of the zeros of these L, Chebyshev polynomials
are explored in Pinkus and Ziegler [79], where much of the material of this

section may be found. For example, an L, analog of Theorem 3.3.2 still
holds.

E.1 Existence and Uniqueness of Chebyshev Polynomials. Let A C [a,b
be a compact set containing at least n + 1 points. Let (fo,...,fn) be a
Chebyshev system on [a, b].

a] Existence of Chebyshev Polynomials. Show that there exists a T), sat-
isfying properties (3.3.1) to (3.3.3).

Hint: If A contains exactly n + 1 points, then the existence of T}, is just
the interpolation property of a Chebyshev space formulated in Proposition
3.1.2 b]. So assume that A contains at least n + 2 points. Then there is a
d > 0 so that ANJa,c] contains at least n + 1 points for every ¢ € (b—6,b).
Show that for every ¢ € (b—4,b), there is a g. € span{fy, ..., f,} for which

Sup{f(b) S span{fo,fl, s afn}v ||f||[a,c] = 1}

is attained. Use a variational method to show that g. satisfies properties
(3.3.1) to (3.3.3) with A replaced by AN a,c|.

Now let (cx)72, be a sequence of numbers from (b—4, b) that converges
to b. Let g., € span{fo,..., fn} satisfy properties (3.3.1) to (3.3.3) with 4
replaced by AN [a,cx]. Show that there is a subsequence of (g., )52, that
converges to a g € span{fo,..., fn} uniformly on [a,b]. Show that T,, := g
satisfies properties (3.3.1) to (3.3.3). O

b] A Lemma for Part c]. Suppose f,g € C[a,b] with ||f||la = ||g|la > 0
and there are alternation sequences

(T1 <Ta <+ <Tpy1) and (y1 <ya <+ < Ynst1)

for f and g, respectively, on A.
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Suppose also that

sign(f(z1)) = sign(g(y1))-
Show that f — g has at least n + 1 zeros on [a, b].

¢] Uniqueness of Chebyshev Polynomials. Show that the Chebyshev poly-
nomials

Tn{anfl; e 7f’n7A}
satisfying properties (3.3.1) to (3.3.3) are unique.
Hint: Use part a] and E.10 of Section 3.1. O

E.2 More on Chebyshev Polynomials. Let H,, := span{fq,..., f,} bea
Chebyshev space on [a, b] with associated Chebyshev polynomial denoted
by Ty := Tn{fo,- .., fn;[a,b]}. Show the following statements.

a] If 1 € Hy, then |T,(a)| = |Tx(b)] = 1.

b] If 1 € H,, then T,, is monotone between two successive points of its
alternation sequence.

Note that the conclusions of parts a] and b] do not necessarily hold in
general.
c] T, = Z?:o aifi, a; € R, then the coefficient sequence of T, /a,,
solves

[a,b]

min | fn + zn: bif;
i=0

b; ER
i#

uniquely, provided that {fo,... fin_1, fm+1, ... fn} is also a Chebyshev sys-
tem on [a, b]. (So this applies to ordinary polynomials on [0, 1] but not on

[_la 1])

d] Suppose (fo,...,fn) is a Descartes system on [a,b] with associated
Chebyshev polynomial T,, := T{fo,... , fa;[a,b]} = Y1 gaifi, a; € R
Show that a,, > 0 and a;a;y; <0 foreachi=0,1,... ,n—1.

Hint: Use E.4 a] of Section 3.2. O

E.3 Extension of Theorem 3.3.1. Let H,, := span{ fo, ..., fn} be a Cheby-
shev space on [a,b] with associated Chebyshev polynomial

Tn = Tn{f(]:fla" . 7fn; [a7b]}

and suppose each f; is differentiable at xo € [a, b].
a] IfT)(z9) >0, then

max{p'(zo) : p € Hn, |Iplljapy <1, p(xo) = Tn(zo)}

is attained only by T),.
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b] IfT)(zo) <0, then
min{p'(zo) : p € Hp, |[plljap) <1, p(x0) = Tn(x0)}

is attained and only by T),.
Hint: Consider the number of zeros of T,, — p. O
E.4 More Lexicographic Properties of Miintz Spaces. Let [a, b] C [0, o).

Suppose
<A << and <7 < <Y

are arbitrary real numbers if a > 0, or arbitrary nonnegative numbers if
a = 0. Suppose A; < ~y; for each i with strict inequality for at least one
index i. Let

H, = span{af‘o,a})‘1 - ,zA"} and G, :=span{z™, 2", ... 2""}.
Denote the associated Chebyshev polynomials for H,, and G,, on [a, b] by
Tpy = Tpo{z?, 2™, ... 2™ [a,b]}

and
Ty i=Tp{z, 2™, ... ;27 [a,b]},
respectively.

a] Show that A, > 0 implies T, 5(b) = 1.

Hint: Ty x(b) # 1 would imply that T} , has at least n + 1 distinct zeros in
[a,0c) if Ag > 0 and at least n distinct zeros if Ay = 0. O

b] Let 29 = a or zp = b. If 9 = a = 0, then assume that A\g = 0 and
A1 = 1. Show that

max{|p'(zo)| : p € Hn, |lplljap < 1}

is attained uniquely by T, .
¢] Let zg € [0,00) \ [a,b]. If 2p = 0, then assume that Ay = 0. Show that

max{|p(zo)| : p € Hn, [Iplljay < 1}

is attained uniquely by T, .

Hint for b] and c]: First prove that an extremal p* € H,, exists. Then show,
by a variational method, that p* equioscillates n + 1 times between +1 on
[a, b]. O

d] Let A, >0, v, >0, and a > 0. Show that

T (0)] < Ty, (B)] -
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Show also that if @ > 0 and there exists an index k, 0 < k < n, such that
Ak = vk = 0, then
|To A (@) > T, (a)]-

e] Let A\, >0,v, >0, and a > 0. Show that
T (o) < |Tnq(wo)l, @0 € (b,00).
Show also that if Ag > 0,79 > 0, and a > 0, then
T (o) > [Tnq(zo)|, 20 €[0,0a)

(when zy = 0, we need the assumption A\g = 79 = 0).

Hint for d] and e]: Suppose to the contrary that one of the inequalities
of parts d] and e] fails. Assume, without loss of generality, that there is
an index m such that A\; = ; whenever i # m, and A\, < 7,,,. Note that
by a], Ap, > 0 and 7, > 0 imply T}, A(b) = T, ,(b) = 1. Also, by E.1 a],
Ar = v, = 0 implies Ty, a(a) = Ty ~(a) = (—1)". Now use Theorem 3.3.4 to
show that

Tpr—Thy € span{z?0, 2™, . .. at 2T}

has at least n + 2 zeros in (0, 00) (in the cases when A,, > 0 and v,, > 0 are
assumed) or in [0,00) (in the cases when Ay = 7, = 0 is assumed). This
contradiction finishes the proof. O

f] Let 0 < a < b. Show that if A, > 0 and ~,, > 0, then

'(b "(b
GO
pehn Tpllas ~ 286n lallims

Show also that if there exists an index k, 0 < k < n, such that A\, =y, =0,

then
p'(a)| lq'(a)]

max .
pern |IPllian) = 9€Gn llallja

Hint: Combine parts b] and d]. O
g] Let 0 <a <b. Let A\, >0 and ~, > 0. Show that

ool Jawo)

P [plljay)  a€Gn [|allfa)

xg € (b,00).

Show also that

e PO atan)]
s lplesy ~ a6 lallis

zo € [0,a)

(when z¢ = 0, we need the assumption A\g = 79 = 0).
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Hint: Combine parts c| and e]. O

h] Extend the validity, with < and > replaced by < and >, respectively, of
the inequalities of parts f] and g] to the case when the interval [a, b] C (0, c0)
is replaced by [0, b].

i] Suppose there exists an index k, 0 < k < n, such that A\, =y, = 0. Let
zo € (0,a). Show that the second inequalities of parts e] and g] hold true.

Hint: Modify the arguments given in the hints to parts d], €], ], and g].
Note that 1 € H,, N G, ensures, as in E.1 a], that

Toa(b) =T, ~(b) =1 and Toa(a) =Ty ~(a) =(-1)".

E.5 Lexicographic Properties of (sinh \ot, ... , sinh A,t). Let
O0< A <A<+ <Ay, and 0< << <Yn-
Suppose A; < «; for each i. Let
H,, := span{sinh A\gt, sinh \¢, ..., sinh A, t}

and
G, := span{sinh yot, sinhy1¢, ... , sinhy,t} .

Denote the associated Chebyshev polynomials for H,, and G,, on [0, 1] by

T x := Tp{sinh Aot, sinh A ¢, ..., sinh A,¢;[0, 1]}
and

Ty~ = Tp{sinhyot, sinhy1¢, ..., sinhv,¢;]0,1]},
respectively.
a] Let

< <...<a, and [ < By << Py

denote the zeros of T}, » and T, , respectively. Show that
aiéﬁi: i:1:27"'7n

(in other words, the zeros of T, » lie to the left of the zeros of T}, ).

Outline. By E.2 d] of Section 3.2, (sinh Agt, ..., sinh A,t) is a Descartes
system on (0, c0). Hence, by Theorem 3.3.3, the zeros of

Tpns := Tp{sinh Aot, sinh A1 ¢, ..., sinh A, ¢; [0, 1]}

on [0, 1] lie to the left of the zeros of
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Tnn,6 = Tr{sinhyot, sinhyt, ..., sinhy,t; [6, 1]}
on [0, 1] for every ¢ € (0,1). Show that

li Tooy —1T, =li Ty~ —1T, =0;
61—I>I(1]|| n,\ n,>\76|| 61—I>I(1]|| n,y n/y,é” )

hence the desired result follows by a continuity argument. O
b] Show that
max{[p'(0)| : p € Hn, |Iplljo1) <1}
is attained uniquely by £T, .
¢] Show that
Toa(1) =T, (1) =1.
Hint: Ty, A(1) # 1 would imply that
o € span{cosh Xot, cosh \it, ..., cosh At}

has at least n + 1 distinct zeros in (0, oc). This is impossible, since by E.2
e] of Section 3.2, (cosh Agt, ..., cosh A\,t) is a Descartes (hence Chebyshev)
system on (0, c0). O
d] Show that

T A (0)] > [T, ,(0)].

Hint: Suppose to the contrary that the above inequality fails to hold. As-
sume, without loss of generality, that there is an index m such that \; = ;
whenever i # m, and A, < Y. Obviously

Tor(0) = T (0) = 0.

Part c] implies that T, »(1) = Ty, 4(1) = 1. Now use part a] and the above
observation to show that

Tnx — Ty~ € span{sinh \gt, sinh A1¢, ..., sinh A\,t, sinh y,,t}

has at least n+ 2 zeros in (0, o0). This contradicts E.2 d] of Section 3.2. O

e] Show that
/ !
e POLS 12O
opeHn ||plljo,1) ~ 0#4€Gn [lalljo,1]

Hint: Combine parts b] and d]. O

The result of the following exercise has been observed independently by
Lubinsky and Ziegler [90] and Kro6 and Szabados [94]. Various coefficient
estimates for polynomials are discussed in Milovanovi¢, Mitrinovi¢, and
Rassias [94]. An estimate for the coefficients of polynomials having a given
number of terms is obtained in Baishanski and Bojanic [80]. Approximation
by such polynomials is studied in Baishanski [83].
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E.6 Coefficient Bounds for Polynomials in a Special Basis. Show that

_nf2n
el <20 (0 VIl =01,

for every polynomial p of the form

n

p) = cu(l—2)"(@+1)" ™,  cm€R.

m=0

Outline. By E.5 a] and b] of Section 2.3
To(z) = dpn(l—2)"(@+1)"™,
m=0

where

(") (el (2

Am Jin—m/) _ 9-n _
(”—1/2) <2m>

n

dmpn = (-1)m27"

If |em| > dm nllpll{—1,17 for some index m, then the polynomial

has at least n distinct zeros in (—1,1). However,

- ~ 14+z\"
o) = Y -t =10 3 a (1)
=0 =0

j#m j#m
can have at most n — 1 distinct zeros in (—1,1) since

(’LLO, Ul, o unfmfl, Un7m+1,

n7m+2, o ,un)
is a Chebyshev system on (0, 00) by E.1 a] of Section 3.1. O

E.7 On the Zeros of the Chebyshev Polynomials for Mintz Spaces. Let
0=:X <A1 << Ap, and let

H, :=span{z*0, 2, ... 2™},
Denote the associated Chebyshev polynomials for H,, on [0, 1] by

T, = Tn{wko,azkl,... ,a:A";[O,l]}.
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a] Letee€ (0 %) Suppose a < 3 are two consecutive zeros of T, lying in

Y

[e,1 — €]. Show that

V)

€

—<f-a.
n
Hint: Tt is clear that Qn(z) := z(1 — )T, (x) has two consecutive zeros
v < 0 in [a, 1] such that
d—ry> .
n
Show that if
2
6 —a<l —,
n
then
Rn(z) :=Ty(z) - T, () € Hy
has at least n + 1 zeros on [0, a/~], which is a contradiction. O

b] Denote the zeros of T, in (0,1) by 1 < 23 < -+ < @,. Show that

logzp41 — logxy <logzp —logzk_1, k=23,....,.n—1.

Hint: Use a zero counting argument, as in the hint to part al. O

3.4 Mintz-Legendre Polynomials

We examine in some detail the system
(0,2 ..

on [0, 1] which we call a Miint¢z system. In particular, we explicitly construct
orthogonal “polynomials” for this system. This allows us to derive various
extremal properties of these systems and leads to a very simple proof of the
classical Miintz-Szasz theorem in Section 4.2.

We adopt the following definition for z*:
(3.4.1) 2 =er8%  ze(0,00), AeC

with value at 0 defined to be the limit of 2} as z — 0 from (0, 00) whenever
the limit exists.

Given a sequence A := (A\;)%2, of complex numbers, an element of
span{z 0, z* ... 2’} is called a Miintz polynomial or a A-polynomial.
We denote the set of all such polynomials by M,,(A), that is,

(3.4.2) My (A) :==span{z?®, ™ ... a2’}
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where the linear span is over R or C according to context. Let
(3.4.3) M(A):= | Mn(A) = span{z?, 2™, ...},
n=0

For the L»[0, 1] theory of Miintz systems, we consider
(344) A= (/\z);)i(] , Re(/\z) > —1/2, and \; ;é /\j , 0 75 7,

where Re(A) denotes the real part of A. This ensures that the A-polynomials
p(ilf) = Zaka:)‘k ) a € C
k=0

are in L»[0,1]. We can then define the orthogonal A-polynomials with re-
spect to Lebesgue measure. We call these Miintz-Legendre polynomials. Al-
though we often assume (3.4.4), the following definition requires neither the
distinctness of the numbers A; nor the assumption Re(};) > —1/2.

Definition 3.4.1 (Miintz-Legendre Polynomials). Let A := ();)2, be a se-
quence of complex numbers. We define the nth Miintz- Legendre polynomial
on (0,00) by

(3.4.5) Ly(z) := Lp{Xo,. .., A\n}(x)

B 1/ AN+ 1 atdt
ro; t—Ay t—=A,

= n=0,1,...,
2
=0
where the positively oriented, simple closed contour I" surrounds the zeros
of the denominator in the integrand, and \; denotes the conjugate of .

The orthogonality of the above functions with respect to the Lebesgue
measure is proved in Theorem 3.4.3. However, first we give a simple explicit
representation of L, in the case that the numbers \; are distinct. This is
deduced immediately from evaluating the above integral by the residue
theorem.

Proposition 3.4.2. Let A := (X\;)32, be a sequence of distinct complex num-
bers. Then

(3.4.6) Lo{Xo, .- A} (@) =Y ez, z€(0,00)
k=0

with ) _
IS e+ 2+ 1)

Ck,n — n 3
[0,k (A — A7)
where Lp{ Ao, ..., An} () is defined by (3.4.5).
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So Lp,{Ao,...,An} is indeed a A polynomial provided the numbers A;
are distinct. Its value at z = 0 is defined if for all i either Re()A;) > 0 or
A =0.

From either Definition 3.4.1 or the above proposition it is obvious that

the order of Ag,... ,Ap—1 in L,{Ao,...,A,} does not make any difference,
as long as A, is kept last. For example,

LQ{/\O) AlaAQ} = LQ{/\I) AOaAQ}

while both, in general, are different from Lo{\g, A2, A1 }. For a fixed sequence
A, we let L, (A), or simply Ly, denote the nth Miintz-Legendre polynomial
Lp{ )Xo, ..., A\n}, whenever there is no ambiguity.

An analog of Proposition 3.4.2 can be established even if the numbers
A; are not distinct, however, in the nondistinct case, L,,(A) does not belong
to the space M,,(A); see E.7 b]. In the very special case that all the indices
are the same we recover the Laguerre polynomials; see E.1.

The orthogonality of {L,}52, is the content of the main theorem of
this section.

Theorem 3.4.3 (Orthogonality). Let A = ()\;)52, be a sequence of complex
numbers with Re(\;) > —1/2 fori=0,1,.... The functions L,, defined by

(8.4.5) satisfy

1
6nm
3.4.7 L, (x)L,, dr = —————
(3.4.7) / @ @) dr =

for all nonnegative integers n and m. (Here 0y, is the Kronecker symbol.)

Proof. We may assume that the numbers A; are distinct. Note that
Ln{/\O; /\1, ey /\n}(w)

is uniformly continuous in Ag, ..., A, for z in closed subintervals of (0, 1],
and the nondistinct A; case can be handled by a limiting argument. We may
further suppose that m < n. Since Re()\;) > —1/2, we can pick a simple
closed contour I" such that I' lies completely to the right of the vertical
line Re(t) = —1/2 and I' surrounds all zeros of the denominator of the
integrand in (3.4.5). When ¢ € I, we have Re(t + \,,) > —1, and

Lo 1
/ pitrmdy = — —
0 t+Am+1

for every m = 0,1,... . Hence Fubini’s theorem yields

! t+ A +1 dt
L, _ .
/0 (@) 2m/ H t=X (t=X)({t+ A +1)
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Notice that for m < n, the new factor, t + X, + 1, in the denominator
can be cancelled, and for m = n the new pole —(\, + 1) is outside I
since Re(—A, — 1) < —1/2. Changing the contour from I" to |t/ = R with

R > max{Ao| +1,...,|A\s| + 1}, gives
! St e+ 1 dt
/ Ly(z)2* =5 / H = _
0 i Jj=R =X (t=A)(E+ A+ 1)
_ 6m7n ﬁ _/\n +Xk
=1 =X g A — 1= X

On letting R — oo, we see that the integral on the right-hand side is actually
0, which gives

1 _
/ Ly (z)z* dx = = On.m = .
0 Mo+ An+ 1 X+ A+ 1

Therefore Proposition 3.4.2 and m < n yield

1 1 m
/ Ly (z)Ly(z) dx :/ Ly(z) Zék,maz’\’“ dx
0 0 o
! N 1)
= Em,m/ Ln(a:)a:)‘m dep = —=%
0 A+ An+17
and the proof is finished. O

An alternative proof of orthogonality is suggested in E.3. If we let
(3.4.8) L: = (14 X\ 4 A)Y2L,,

then we get an orthonormal system, that is,

1
/ L @) (@) de = Oy mn=0,1,....
0

We call these Ly the orthonormal Mintz-Legendre polynomials.

There is also a Rodrigues-type formula for the Miintz-Legendre poly-
nomials (see E.2). Let

n 33>"“

pn(CE) = kgo H?:(]’j?gk (/\k — )\j) .

Then
Ln(a:) = (D/\ODM e D/\n71)(pn)(x) )

where the differential operators D) are defined by

Da(f)(@) = AL (@ f(a)).

dx

The following is a differential recurrence formula for (L,)5:
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Theorem 3.4.4. For a fized sequence A := (\;)$2, of complex numbers, let
L, be defined by (3.4.5). The identity

(3.4.9) zL! () — 2L (z) = \pLn(x) + (1 + Xp—1) L1 (z)
holds for every x € (0,00) andn =1,2,....
Proof. From (3.4.5) we get

Hk 0 t+/\k+1)
2m Hkot_/\k)

On multiplying both sides by z*»+*»-1+1 we obtain

(27 Ly ( (t+ Xp1 + D2t~ "1 dt

An+Xn_1+1( AnT, (
t A+ 1 - N
27” i—o(t = Ax)
and again by the definition of L, _1,

gt (A L (1)) = (2 L, (2)

We finish the proof by simplifying by the product rule and dividing both
sides by 1. i

Corollary 3.4.5. For a fized sequence A := (X;)2, of complex numbers, let
L, and L} be defined by (3.4.5) and (5.4.8), respectively. Then for every
€ (0,00) and for everyn =0,1,...,

a] zL! (z) = \,Ly(z)+ i (Ak + Ak + 1) Ly(z),
k=0

n—1
b] zLY(z) = M Li(z) + \/An +An+1) \//\k + X +1L5(2),

and
¢ zL(z) =\, — 1)L, () + i: Ak + A + 1)L (2) .
k=0

Proof. The first identity follows from Theorem 3.4.4 on expressing
aLy(z) — zLy(z)
as a telescoping sum. From this and the relation
Li = (A, + X + 1)V2L,
we get part b]. Differentiating the identity of part a] gives part c]. O

The values and derivative values of the Miintz-Legendre polynomials
at 1 can now all be calculated.
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Corollary 3.4.6. For a fized sequence A := (X;)2, of complex numbers, let
L, be defined by (3.4.5). Then

a] Ln(1)=1,

b] L (1) = A,ﬁS(Ak + XM+ 1),

and o

¢] LI(1)= (A, — 1)L, (1) + ;i: Ak + A+ 1)L5(1) .

Proof. Tt suffices to show that L,(1) = 1; the rest follows from Corollary
3.4.5. Notice that

n

lift+Xk+1 dt
t—Xp t—An

L =55 |

Now, since I" surrounds all zeros of the denominator, and the degree of the
denominator is one higher than that of the numerator, we can evaluate the
integral on circles of radius R — oo to get the result. O

k=0

Comments, Exercises, and Examples.

Miintz polynomials are just exponential polynomials > aze™*** under

the change of variables z = e~! and have received considerable scrutiny
(Schwartz [59] is a monograph on this topic). The orthogonalizations of
Miintz systems exist in the Russian literature (see, for example, Badalyan
[55] and Taslakyan [84]; it has been further explored in McCarthy, Sayre,
and Shawyer [93]). Borwein, Erdélyi, and Zhang [94b] contains most of the
content of this section.

Various properties of the Miintz-Legendre polynomials are examined
in the exercises. Note that if Ag < A\; < Ay < ---, then the Miintz system
(zro, 2. ..) is a Descartes system on [a,b], a > 0, and so we can apply
Theorem 3.3.4 to the associated Chebyshev polynomials on [a, b] to deduce
how the zeros shift when the exponents are varied lexicographically. Similar
results are given for the Miintz-Legendre polynomials in E.7.

E.1 Laguerre Polynomials.
a] Let Ly{)\o,..., A\ }(z) be defined by (3.4.5). If \g = --- = A\,, = A, then

Lo{o, Mooy A} (@) = 22 Lo(—(1+ X + X log ),
where £, is the nth Laguerre polynomial orthonormal with respect to the

weight e™® on [0, 00) with £,(0) = 1 (see E.7 of Section 2.3, where L, is
denoted by L, as is standard).
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Proof. Since Ay = A, (3.4.5) yields

1 ztt+ A+ 1)
Ln{A07/\17" . 7An}(a:) = 2_7”/11 ((t— /\)’rH-l) dt’

where the contour I' can be taken to be any circle centered at . By the
residue theorem,

ar -

Lnfo e o) = o | G+ X 1] -

—n.Z( ) (logz)kn(n — 1) (k+ 1)](A + X+ 1)k

_a:’\zk'< > (T4+X+N)loghz.

See also part b]. O
b] Let
"1 (n
Ln(z) := Z 7 <k> (—z)k.
k=0 "

Then (£,)5%, is an orthonormal sequence of polynomials on [0, 00) with
respect to the inner product
/ fz e Tdx.

Deduce the orthonormality from a] and Theorem 3.4.3 by substituting
—(1+A+X)logz.

E.2 Rodrigues-Type Formula. Let A = ();)2, be a sequence of distinct
complex numbers. Let L, be defined by (3.4.5).

a] Let .
T
Pn(z) = ,; T or O — )
Show that
1 z" dt
m) =5 | =)
where I" is any contour surrounding Mg, A1, ..., A,. Use this to show that

pP(1)=0, k=0,1,...,n—1.
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b] Show that
Ln(a:) = (D/\ODM e D/\n71)(pn)(x) )

where

Da(f)(z) := z (@ f(2))'.
c] 0O=X <A <---, then

pn(0) = (" T[X}"

and (—1)"p, is strictly decreasing on [0, 1].

E.3 Another Proof of Orthogonality. Deduce the orthogonality of the
sequence (L,)S%, on [0,1] from Theorem 3.4.4 by using integration by
parts and induction.

E.4 Integral Recursion. For a given sequence A := (\;)2, of complex
numbers satisfying (3.4.4), let L,, be defined by (3.4.5). Show that

1
Lp(x) = Ly 1(x) — (A + Xy + 1)z / t=A L, i (t)dt, z e (0,1].

T

Hint: Use Theorem 3.4.4. O

E.5 On the Maximum of L, on [0,1]. If A = (\;)$°, is a sequence of
nonnegative numbers satisfying

|
—

n
(3.4.10) A >y (142)), n=12,...
0

and L, is defined by (3.4.5), then
|Ln(z)| < L,(1) =1, ze0,1), n=23,....

>
Il

Hint: Use Theorem 3.4.4. O
If Ay = p*, then (3.4.10) holds if and only if p > 2 + /3.

E.6 The Reproducing Kernel. Let A = ()\;)2, be as in (3.4.4), and let
L, and L} be defined by (3.4.5) and (3.4.8), respectively. Then for every
p € My (A), we have

p(z) = / K, (z, t)p(t) dt
where

Kn(e,t) = " Li(@)TE(0)
k=0

is the nth reproducing kernel (see also E.5 of Section 2.2).
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E.7 On the Zeros of Muntz-Legendre Polynomials. Assume that

()‘07/\17"' 7An) - (—%,OO) .

a] For a function f € C(0,1) let S™(f) and Z(f) denote the number of
sign changes and the number of zeros, respectively, of f in (0,1) (we count
each zero without sign change twice). Let ¢ and ¥ € C(0,1). Show that if

n<S (a®+p¥) < Z(ad+ P) <n+1

for every real a and 3 with a? + 32 > 0, then the zeros of & and ¥ strictly
interlace.

Proof: This result is due to Pinkus and Ziegler [79]. O
b] Assume that

AL At = {A0 A Am )

where the numbers XO,Xl, . ,Xm are distinct, and let m;, j =0,1,... ,m,
be the number of indices ¢ = 0,1,...,n for which A; = A;. Show that
Ly{Xo,...,A\n} is in the space

Hy :=span{z* (logz)' : j =0,1,...,m, i=0,1,...,m; — 1},

which is a Chebyshev space on (0, oc).
Hint: Use the definition and the residue theorem. O

¢] Show that {Li{Ao,... Ax}}}_, is a basis for the Chebyshev space H,
defined in part b].

Hint: Use Theorem 3.4.3 (orthogonality). O

d] Show that L, := Ly{Ao,...,\,} has exactly n distinct zeros in (0,1)
and L,, changes sign at each of these zeros.

Hint: Assume to the contrary that the number of sign changes of L, is less
than n. Use part c] to find a function p € span{Lk}Z;é that changes sign
exactly at those points in (0,1) where L, changes sign. Then fol L,p #0,
which contradicts Theorem 3.4.3. O

e] Suppose A, < A). Show that the zeros of
¢ .= Ln{/\O; Al, e ,Anfl,kn}

and
¥ .= Ln{/\O: )\1, e )\nfl,A:l}

Y

in (0,1) strictly interlace.
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Hint: Note that Theorem 3.4.3 (orthogonality) implies

1
/ (ad + BP)p=10
0

for every p € H,_1, where H,,_; is defined by part b] with respect to the
sequence (Mg, A1,...,An—1). Use the hint given to part d] to show that
a® + P has at least n sign changes in (0,1) whenever o and 8 are real
with @ + 3% > 0. Use part b] to obtain that a® + B¥ cannot have more
than n + 1 zeros in (0,1) whenever a and 8 are real with a? + 32 > 0.
Finish the proof by part a]. O

f] Let Ao,..., Ne—1, Akt1,..., An be fixed distinct numbers. Suppose
(Ak,i)iZ1 C (=1/2,00)

is a sequence with lim A ; = co. Show that the largest zero of
11— 00

Ln,k,z’ = Ln{/\g, P ,/\k_l, /\k,z’a /\k+1, P ,/\n}

in (0,1) tends to 1.

Outline. Assume, without loss, that Ay ; is greater than each of the numbers
/\j, j:O,l,... , 1, '];ék' Let

9i(2) = i (L gi(@) — ¢ ™)
where .
S _ =g Qi A +1)
fn H?:mj;ék()‘k,i =)

is the coefficients of #**i in L, x ;. Use (3.4.6) to show that the functions
g; converge uniformly on [J, 1], § € (0,1), to a function

— A Aeo1 oA An
0#¢g€ Hy_y:=span{z™0, ... g1 g+l g},

(8)

kn to

Use Ly k(1) =1 (see Corollary 3.4.6) and the explicit formula for ¢
show that ¢g(1) < 0 and that the functions

Ln,k,i(af) = (Ln,n,z(x) _ c;j) x/\k,i) + c;j) x/\k,z‘

7n 7n

converge to g(z), as i — oo, for every x € (0,1).

Now assume that the statement of part f] is false. Then there is an
€ € (0,1) and a subsequence (Ag,;;)52; of (A,:)72; such that the Miintz-
Legendre polynomials L, i, have no zeros in [1—¢, 1]. Deduce from this and
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L 1,i;(1) >0, Ani; > 0 (see Corollary 3.4.6 a]), that g;; is nondecreasing
on [1 — ¢, 1] whenever A, ;; > 0.

Therefore g is nondecreasing on [1 — ¢, 1], which, together with 0 #
g € Hy_q and ¢(1) < 0, implies that g(1 — €) < 0. Hence Ly (1 —€) <0
if i is large enough. Since Ly (1) = 1 (see Corollary 3.4.6), each L,
has a zero in (1 — ¢,1), provided i is large enough, which contradicts our
assumption. a

g] Let @ and ¥ be as in part e]. Let

1 <T2 <<z and ] <zh <<z

be the zeros of & and ¥, respectively, in (0,1). Show that A, < A¥ implies
that

r; <z}, j=1,2,...,n.
Hint: Combine parts e] and f]. O
h] Let \; # A,. Show that the zeros of

= Ln{AOa' B 7Ak—1;/\ka/\k+1 s 7An—1;/\n}

and
¥ .= Ln{)\[), e ,Akfl, )\n; Ak+1 e ,)\nfl, Ak}

in (0,1) strictly interlace.
Hint: Use part a] and arguments similar to those given in the hints to part
e]. Note that

d(1)=v(1)=1 and V()= (1) =Xy — A #0
(see Corollary 3.4.6 a]) imply that a® + ¥ is not identically 0 whenever «
and 3 are real with a? + 42 > 0. O
i] Let @ and ¥ be as in part h]. Let

<Ly <--<my and 2} <z)<---<z)

be the zeros of & and ¥, respectively, in (0,1). Show that Ay < A, implies
that
T; <z}, j=12...,n.

Hint: By part h] it is sufficient to prove that z,, < z¥. Let H, be the
Chebyshev space defined in part b]. Corollary 3.4.6 implies that

$(1)=P(1)=1 and P'(1)— P (1) =X, — A\ > 0.

Deduce from this and part i] that ¥ < z, would imply that 0 # ¥ —& € H,
has at least n + 1 distinct zeros in (0, 1], which is a contradiction. O
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J] Lexicographic Property. Suppose

max A; < min y;
0<i<n 0<j<n

and A; < p; for some indices ¢ and j. Let

1 <z < <z and z <zy< o<z
be the zeros of
Lo,{ o, \1,...,\n} and  Lo{po, 1, itn},
respectively, in (0,1). Show that
rj <z}, j=1,2,...,n.
Hint: Repeated applications of parts g] and i] give the desired result. O
k] Let A\gp < A,. Let
<z <- <z and zy <zy <<z
be the zeros of
Lo{ )Xo, A1, s 0} and  Lp{ ), An—1,..., X0},
respectively, in (0, 1). Show that (z;)7_; and (z})7_, strictly interlace and
T; <z}, ji=12...,n.
Hint: Use parts h] and i] and the comment given after Proposition 3.4.2. O
1] Show that the zeros of

b .= Ln—l{/\O; ce. ;/\n—l} and V¥ := Ln{AOa ce. ,An}

in (0,1) strictly interlace.
Hint: Use part a] and arguments similar to those given in the hints for part
el. O

E.8 A Global Estimate for the Zeros. Let (\;)?; C (—1/2,00). Assume
that ; < x2 < --- < z,, are the zeros of L,{\o,... ,An} in (0,1). Then

exp _An+2 <x < Tp <o < Ty < EXP —ii
142, (1+2X)(4n+2) /)’
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where A\, := min{Xg, ..., A, }, A* := max{Ag,... ,\,} and j; > 37/4 is the
smallest positive zero of the Bessel function

Proof. Let L, be the nth Laguerre polynomial with respect to the weight

e~ ® on [0,00), and let the zeros of L, be 21 < 22 < -+ < z,. Then by

[Szegb [75], pp. 127-131])
Jt

4dn + 2

<z <2< < zp<4dn+2,

where the upper estimate is asymptotically sharp, and the lower estimate
is sharp up to a multiplicative constant (not exceeding 4*/(97?)). Now use
E.1 and E.7 j]. O

E.9 The Order of the Zero at 1 of Certain Polynomials. This exercise, due
in part to Kos, gives precise estimates on the maximum order of the zero at
1 of a polynomial whose coefficients are bounded in modulus by the leading
coefficient.

a] Suppose ag,ai,...,a,—; are complex numbers with modulus at most
1, and suppose a, = 1. Then the multiplicity of the zero of

p(ai) = ap +a1$+a2x2 + o+ apa”
at 1 is at most 5+/n.

Proof. If p has a zero at 1 of multiplicity m, then for every polynomial f
of degree less than m, we have

(3.4.11) aof(0)+arf(1)+ -+ anf(n)=0.
We construct a polynomial f of degree at most 5+/n, for which

F) > [FOL+FMD]+ -+ |f(n = 1]

Equality (3.4.11) cannot hold with this f, so the multiplicity of the zero of
p at 1 is at most the degree of f.

Let T, be the vth Chebyshev polynomial defined by (2.1.1). Let k € N,
and let

g =To+T1+---+T € Py.
Note that g(1) = k + 1. Also, for 0 < y < m,
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sin(k + 1)y + sin &
g(cosy) =1+ cosy +cos2y + - -- + cosky = ( 2.)y1 2y.
2sin 5y

Hence, for —1 <z < 1,

V2
lg(x)] < iz
Let f(z) := g*(2 —1). Then f(n) = ¢*(1) = (k + 1)* and

1 1 "4 s 1 7n?
SO+ O]+ + =D <3 <n? Y 5 = T
Jj=1 (7) Jj=1

If k.= [(7%/6)'/*y/n], then

F) > [FOL+FMD]+-+|f(n = 1]
In this case the degree of f is 4k < 5/n. |

The result of part a] is essentially sharp.
b] For every n € N, there exists a polynomial
pn(aj) = aqay +aix+ -+ a2n2$2n2

such that as,2 = 1, |agl, |ail, ... ,|as,2_1| are real numbers with modulus

at most 1, and p, has a zero at 1 with multiplicity at least n.

Proof. Define

(n!)2/ xtdt
L, = - = , =0,1,...,
@) =57 /. M.tk =00

where the simple closed contour I" surrounds the zeros of the denominator
of the integrand. Then L, is a polynomial of degree n? with a zero of mul-
tiplicity at least n at 1. (This can easily be seen by repeated differentiation
and then evaluation of the above contour integral by expanding the contour
to infinity.)

Also, by the residue theorem,
n
Lp(z) =1+ Z ckmzkz
k=1

where
c (—1)"(n!)? (=1)*2(n!)?
k,n — n " = .
Hj:[),j;ék(kQ -j2)  (m—Fk)l(n+Ek)!
It follows that

leknl <2, k=1,2,...,n.
Hence,
Ln(z) + Ln(2?)
2
is a polynomial of degree 2n? with a zero of order n at 1. Also P, has
constant coefficient 1 and each of its other coefficients is a real number of
modulus less than 1. Now let p,(z) := 22’ P,(1/x). O

P,(z) :=
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¢] For every n € N, there exists a polynomial
pn(z) =ap + a1z + - -+ + apz”

such that a, = 1, ag,aq,...,a,_1 are real numbers of modulus less than
1, and p has a zero at 1 with multiplicity at least |\/n/2].

3.5 Chebyshev Polynomials in Rational Spaces

There are very few situations where Chebyshev polynomials can be explic-
itly computed. Indeed, only the classical case of Section 2.1 is well known.

However, the explicit formulas for the Chebyshev polynomials for the
trigonometric rational system

1+5siné 1+sinf 1+sinf
"cosf—a;  cosf—ay’ T cosf —ay

(3.5.1) <1 > 0 € [0, 2r)

and therefore also for the rational system

(3.5.2) (1, ror 1 ) ze[-1,1]

r—a; T —as T —an,

with distinct real poles outside [—1, 1] are implicitly contained in Achiezer
[56].

The case (3.5.1) does not perfectly fit our discussion of Section 3.3
because of the periodicity or because [0,27) is not a compact subset of
R. This leads to nonuniqueness of the Chebyshev polynomials. Note that
ordinary polynomials arise as a limiting case of the span of system (3.5.2)
on letting all the poles tend to £oo.

We are primarily interested in the linear span of (3.5.2) and its trigono-
metric counterpart obtained with the substitution z = cosf. Let

p(z) }
3.5.3 Pn s yoee 3 Qp) 1= = o - E'Pn
(359 @0 v) = { B
and
. t(9) '
(3.5.4) Talar,az, ... ap) = {Hzl cos0—ar] te 7;} ,

where (a)}_, C C\[-1,1] is a fixed sequence of poles.
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When the poles a1, as, ... ,a, are distinct and real, (3.5.3) and (3.5.4)
are simply the real spans of the systems

(3.5.5) (1, ror 1 ) on [-1,1]

r—a; T —as ,x_an
and
1+sinf 1+sinf 1+sinf
3.5.6 1 0,2
( ) <’c050—a1’cos9—a2’ ”cosﬁ—an> on [0, 27),

respectively.

We can construct Chebyshev polynomials of the first and second
kinds, which are analogous to 7T, and U, of Section 2.1, for the spaces
Pnlai,as,...,a,) and Tp(ai,as,...,a,) as follows. Given a sequence
(ar)p_; C C\[-1,1], we define the sequence (cx)j_, by

(3.5.7) ar = L(ex + ), lek| < 1,
that is,

(3.5.8) cp =ap —y/a; — 1, lex] < 1.
Note that

(o i1 (w1 =1

In what follows, \/aj — 1 is always defined by (3.5.8) (this specifies the
choice of root). Let D := {z € C: |z]| < 1}, let

n 1/2
(3.5.9) My(2) == (H (z —ex)(z — Ek)) ;

k=1

where the square root is defined so that M} (2) := 2" M, (2!) is an analytic
function in a neighborhood of the closed unit disk D, and let

(3.5.10) fn(z) = %

Note that f2 is actually a finite Blaschke product (see E.12 of Section 4.2).
Also, fn(271) = fu(2)~! whenever |z| = 1.
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The Chebyshev polynomials of the first kind for the spaces
Pnlai,as,...,a,) and T,(a1,as,...,a,)
are now defined by
(3.5.11) Tn(z) := 2(fu(2) + fu(2)71), where z:=1(z+271), [2] =1
and
(3.5.12) Tn(0) := Tn(cosh), H€eR,
respectively.

The Chebyshev polynomials of the second kind for these two spaces are
defined by

fal2) = falz) ™!

(3.5.13) Uy(z):= pop— , where z:=1(z4+271), |2|=1
and

(3.5.14) Un(0) := Up(cos)sind, 6 €R,

respectively.

As we will see, these Chebyshev polynomials preserve many of the ele-
mentary properties of the classical trigonometric and algebraic Chebyshev
polynomials. This is the content of the next three results.

Theorem 3.5.1 (Chebyshev Polynomials of the First and Second Kinds in
Trigonometric Rational Spaces). Given (ax)j_, C C\[-1,1], let T,, and

U, be defined by (3.5.12) and (3.5.14), respectively. Then the following
statements hold:

aJ T, € Tular,az,... a,) and U, € Tular,az, ...  an).
bl 1 Tulle = 1 and [Tl = 1.
¢] There exist 0 =6y < 0; < -+ < 8, =7 such that
d] There exist 0 <11 < 12 < -+- < T, < 7 Such that
ﬁn(Tj):_ﬁn(_Tj):(_l)j717 .7:1,27 ;N
e] For every 6 € R,
T2(0)+U2(6) =1.

Proof. Observe that there are polynomials p; € P, and py € P,_1 such
that

e—in0M72L (eiﬂ) + einHMg(e—iH)
2M (e M, (e—)
p1(cosf)
[Ti_; lcos® — ay|

(3.5.15) Tn(8) = Tn(cosf) =
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and

e—inHMQ(ez’H) _ einGMQ(e—z’H)
2i M, (et?) M,, (e—%)

_ p2(cosf)sinf

[T [cos —ay |

(3.5.16)  Un(8) = Un(cosf)sind =

Thus a] is proved.

Since |cx| < 1 and f2 is a finite Blaschke product, we have
(3.5.17) |fn(2)l =1 whenever |[z|=1.

Now b] follows immediately from (3.5.10) to (3.5.14).
Note that T,(6) is the real part, and U,(f) is the imaginary part of
fn(e®?), that is,
fu(€?) = To(0) +iU.(0), O€R,
which together with (3.5.17) implies e].

To prove parts ¢| and d], we note that T, (#) = +1 if and only if
fa(e?®) = £1, and U,(#) = +1 if and only if f,(e) = +i. Since |cx| < 1
for k = 1,2,...,n, f2 has exactly 2n zeros in the open unit disk D. Since
f2 is analytic in a region containing the closed unit disk D, c] and d] follow
by the argument principle (see, for example, Ash [71]). O

With the transformation 2 = cosf = %(z +271) and z = €%, Theorem
3.5.1 can be reformulated as follows:

Theorem 3.5.2 (Chebyshev Polynomials in Algebraic Rational Spaces).
Gwen (ar)jp_, C C\ [-1,1], let T, and U, be defined by (3.5.11) and
(8.5.13), respectively. Then

a] T, € Py(ay,az,...,a,) and U, € Pp(ay,as,... ,ay).
bl [|Tall—11) =1 and [|[V1 — 22 Up()[[[-1,1 = 1.

c] There exist 1 = x¢ > 21 > -+ > &y = —1 such that
Tn(zj):(_l)]a j:O,l,Q,...,TL.
d] There exist 1 > y; >ya > -+ > yp > —1 such that

e] For every x € [—1,1]

Y

(Ta(@)* + (V1 =22 Upn(2))* = 1.
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Parts c] and d] of Theorems 3.5.1 and 3.5.2 establish the equioscilla-
tion property of the Chebyshev polynomials, which also extends to certain
linear combinations of Chebyshev polynomials. In the trigonometric poly-
nomial case this is the fact that cos a cos nf+sin a:sinnf = cos(nf —«) equi-
oscillates 2n times on the unit circle [0, 27]. Our next theorem characterizes
the Chebyshev polynomials for T, (a;,as, ... ,a,) and records a monotonic-
ity property that we require later.

Theorem 3.5.3 (Chebyshev Polynomials in Trigonometric Rational Spaces).
Let (ar)}_y C C\[-1,1]. Then (i) and (i) below are equivalent:
(i) There is an o € R such that

V = (cosa) T, + (sina) Uy,

where Ty, and U, are defined by (3.5.12) and (8.5.14).

(ii) V € Tolar,as,...,a,) has uniform norm 1 on R, and it equioscillates
2n times on R (mod 27). That is, there exist

0§90<01<"'<02n_1<2ﬂ'

so that ]
V() = £(-1), j=0,1,... 2n-1.

Furthermore, if V is of the form in (i) (or characterized by (ii)), then
V' = (cosa) T, + (sina) U,

does not vanish between any two consecutive alternation points of V (that
is, between 6;_1 and 8; for j = 1,2,...,2n — 1 and between 6>,_, and
2 + 90)

Proof. (i) = (ii). By Theorem 3.5.1 e] and Cauchy’s inequality, we have
(3.5.18)  |(cos ) Ty + (sina) U, |? < (cos® a + sin® ) (T2 + U?) = 1

on the real line. From Theorem 3.5.1 ¢], d], and e], we obtain that T, /U,
oscillates between +oo and —oo exactly 2n times on R (mod 27), and
hence it takes the value cot « exactly 2n times. At each such point, (3.5.18)
becomes an equality, namely, (cos ) T, + (sin @) U, = +1 with different
signs for every two consecutive such points.

(13) = (i). Let V be as specified in part (i7) of the theorem. Let 6y be
a point where V' achieves its maximum on R, so V(6p) = 1. We want to
show that V is equal to p := T,,(80) Ty, + Un(80)U,. Since V (6y) = p(6g) = 1
and V'(6y) = p'(6p) =0, V — p has a zero at 6y with multiplicity at least
2. There are at least 2n — 1 more zeros (we count multiplicities) of V — p
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in R (mod 27), with one between any two consecutive alternation points of
p if the first zero of p to the right of 6y is greater than the first zero of V
to the right of . If the first zero of V' to the right of 8y is greater than or
equal to the first zero of p to the right of 8y, then there is one zero of p—V
between any two consecutive alternation points of V. In any case V — p has
at least 2n + 1 zeros in R (mod 27). Hence V — p is identically 0.

To prove the final part of the theorem let V € T,(a1,as,...,a,) be
such that ||[V|lg = 1 and V equioscillates 2n times on R (mod 27) between
+1. Assume there is a 6y € [0,27) such that |V (6p)] < 1 and V'(6y) = 0.
Then V(6p) # 0; otherwise the numerator of V' would have at least 2n + 1
zeros in R (mod 27), which is a contradiction. Observe that there is a
trigonometric polynomial ¢ € 73, such that

> 200 — t(9)
Vi) —V(6o) = [Ti_,(cosf —ag)(cos® —ay)

This ¢ has at least 4n + 1 zeros in R (mod 27), which is a contradiction
again. Therefore V'(0) # 0 if |V(0)| < 1, which means that V is strictly
monotone between any two of its consecutive alternation points. O

Under some assumptions on (ax)}_, it is easy to write down the explicit
partial fraction decompositions for T,, and U,.

Theorem 3.5.4. Let (ai)j_, C C\ [—1,1] be a sequence of distinct numbers
such that its nonreal elements are paired by complex conjugation. Let T,
and U, be the Chebyshev polynomials of the first and second kinds defined
by (3.5.11) and (3.5.13), respectively. Then

A n Ann
(3.5.19) Th(x) = Ao + Lm oy S
T —ay T — ap
and
(3.5.20) Up(z) = —20 4 =20 4. 4 Zom
r — ap T — as r— any
where 1y
Ao,n 5 (c7leyt - eyt +eieaocn),
cr — ¢t *n 1—cre
Akm:(k k ) H kT k‘:l,?, ,n,
2 ! Crp — Cj
j=1
J#k
and
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Proof. It follows from Theorems 3.5.1 a] and 3.5.2 a] that T}, and U,, can be
written as the partial fraction forms above. Now it is quite easy to calculate
the coefficients Ay, ,, and By, . For example,

1 < M, (2) ann(zl)>

Ao = lim T,(z) = lim -

T—00 2—0 2 ZnMn(Z_l) Mn(Z)
—1)" L _
:( 2) (Cllc21"'cn1+C1C2"'Cn)

and for k=1,2,... ,n,

Apn = lim (z — ap)Th(z)

T—rag

= lim i@ —e)(1— itz (ZnMn(z—1> ML) )

c et 2 1—ce
B e k=12 n
() M e
Jj=1
Gk
The coefficients By, can be calculated in the same fashion. a

Comments, Exercises, and Examples.

The explicit formulas of this section are tremendously useful. They al-
low, for example, derivation of sharp Bernstein-type inequalities for ra-
tional functions; see Section 7.1. Various further properties of these Cheby-
shev polynomials for rational function spaces are explored in the exercises,
which follow, Borwein, Erdélyi, and Zhang [94b]. In particular, the orthog-
onalization of such rational systems on [—1,1] with respect to the weight
w(z) = (1 —22)"/2 can be made explicit in terms of the Chebyshev poly-
nomials. Various other aspects of these orthogonalizations may be found in
Achiezer [56], Bultheel et al. [91], and Van Assche and Vanherwegen [92].

E.1 Further Properties of 7), and T},. Given (ap)p_, C C\ [-1,1], let
(ck)R—; be defined by

cpi=ap —y/a; — 1, lek| < 1,

as before. We introduce the Bernstein factors

B(z) = zn:Re (L’%”)
k=1

ap — T

and

By (0) := B, (cosf) == Zn:Re <7”a’2“_1> ;

ap — cosé
k=1
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where the choice of y/aj — 1 is determined by the restriction |¢;| < 1. Note
that for z € [—1, 1], we have

Y

Re (L—l) e (ckl —ck> (= o)1 = [eu]?

ap — T %c,jl -z |1 — 2¢cpz|?

>0.

The following result generalizes the trigonometric identities

(cosnt)' = —nsinnt, (sinnt)' = ncosnt,

and

((cosnt)")? + ((sinnt)")? = n?,
which are limiting cases (if n € N and ¢ € R are fixed, then lim By, (t) = n
as all ap — £00).

a] Show that, on the real line,

and

Hint: For example,

- ) ! (et .
716) = 5 (£u6e") - ol Y i

et f1 (i) £, (ei) — £, (i) ~ ~
_ fn{;li(ﬂ) ) fa(e”) 2{( ) — —Ba(9)Un(6).

b] If V := (cosa) T, + (sina) U, for some a € R, then
(V') + B2V? = B2

holds on the real line.
¢] The Derivative of T,, at 1. Let T, be defined by (3.5.11). Then

1) = (iRe (ii’;))Q

and
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d] Contour Integral for T,,. Show that

1/2

1 (t —cj)(t —7) t-=
no =g [ \la =i an) mamei”

for every x € [—1, 1], where ~ is a circle centered at the origin with radius
1 <r < min{|c; | 1 < j < n}, and the square root in the integrand is an
analytic functlon of ¢ in a neighborhood of ~.

Hint: Cauchy’s integral formula and the map z = (2 + 27!) give

no =5 (s i)
11 M) 1 1
_ﬁfyﬁ "M, (t~1) <t—z t—z—1> dt
1 M, (t) t—x
T 2mi /7 M, (t1) ¢ — 2tz + 1 dt,

where M, is defined by (3.5.9). O
E.2 Orthogonality. Given (a;)7>, C R\[-1,1], let (cx)}, be defined by

ap = 5(ex + ¢ ), cr =ap—+/a2 -1, cp€(-1,1)

and let (7),)22, be defined by (3.5.11).

a] Show that
! dx T
" - = —(=1ntmq 2.2 mal - Cn
/71T (QT)T (a:)m 2( ) ( +61 Cm)c +1 &

for all integers 0 < m < n. (The empty product is understood to be 1.)
b] Given a € R\ [-1,1], let ¢ € (—1,1) be defined by

a=1(c+ct), c=a-Va*-1, ce(-11).

Show that
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¢] Show that

/1T(a:) dz (=1)"mere c
() ——— = (=1)"7 e
1 \/1-%2 1

and

1
1 dx
T, (x — =0 k=1,2,...,n.
[1 ()33_(11@\/1—172

Given a sequence (ag)3>; C R\[-1,1], we define
R(] = ]., Rn = Tn+chn71

and

1 2
R(); = — s R;; = m (Tn + CnTnfl) .
The following part of this exercise indicates that these simple linear com-
binations of T, and T, give the orthogonalization of the rational system

1 1
r — ay r — as

whenever (a;)72, C R\ [—1,1] is a sequence of distinct real numbers.

d] Show that, for all nonnegative integers n and m,

! dx
Ry (2) Ry, (2) —= = dmmn
| m@r @ =,

where §,, ,, is the Kronecker symbol.

Proof. Let m < n. By part c],

! 1 dx
R, (z —— =0
/_1 n( )x—ak V1-— 22
holds for £k =1,2,... ,n — 1. Also
1 dx ! dx
Rnxiz/ To(z) + ¢, Th—1(2)) —
[1 ( )m 71( ( ) 1( ))m
= (—1)”(0162 .. 'Cn) + Cn(—l)n71(0162 . 'Cnfl) = 0
This implies that
! dx
R,(z)R,,(z)— =0, m=0,1,...,n—1.
[ Bl Rt
Finally, it follows from part a] that
1
dx
R* 2_ Y =1
R

a

e] Assume (ax)72, C R\ [-1,1]. Then T}, and R, have exactly n zeros in
[—1,1], and the zeros of T},—1 and T, strictly interlace.
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E.3 Extension of Theorems 3.5.1 and 3.5.3. Given (a;)?", C C\R, let

Tolai,as, ..., azm,) ;:{ o) .t(e) :ten}.
[Ti=y [sin((6 — ax)/2)]

Without loss of generality we may assume that

Im(ag) >0, k=1,2,...,2n.

a] Show that there is a polynomial g2, € PS5, of the form

2n
QQn(Z):’YH(Z—Ck), ‘Ck‘<l, ’YE(C
k=1
such that ,
g2 ()] = [ Isin((6 —ax)/2)|, 6 €R.
k=1

Hint: Use the fact that |z — ¢| = |1 — ¢z| whenever |zl =1and ce C. O
Associated with g2, € P§,, defined in part al, let

M, (2) = /2n(2)
and

o 1/2
mw:ﬁﬂaﬁﬂ ,
k=1

where the square roots are defined so that M is analytic in a neighbor-
hood of the closed unit disk, and M, is analytic in a neighborhood of the
complement of the open unit disk. Let

For 6 € R, we define
610 * 610
T, (0) == Re(fn(ew)) = % <%226i9; + ﬁ:éemD

and

Un(6) := Im(fa(e™)) = o

(e 3

Using the new (extended) definitions, show the following:
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b] T, € Tn(ai,as,... ,as,) and U, € Tular,az, ...  as,).
] [|Tallz=1and ||Upllz =1.
d] There are numbers 6; < 63 < -+ < fa,, in [—7, ) such that

T(0;) = £(-1)7, j=1,2,...,2n.

e] There are numbers 71 < 79 < -+ < Tay, in [—7, m) such that

U(r) =£(-1)7, j=12....20.

f] T()2+U(0)% =1 for every § € R.

g] Both T, and U,, have exactly 2n simple zeros in the period [—7

the zeros of T,, and ﬁn strictly interlace.

h] The statements of Theorem 3.5.3 remain valid.

E.4 Extension of the Bernstein Factor En Let
(ar)i2; C C\R, Im(ag) > 0.

With the notation of the previous exercise we define

- _ e“’f,’L(ew)

B,(0): (e 6 € R.

a] Show that for every 6 € R,
2n zak |2

=3 o Lol z
‘Ck _ 616‘|2 |6m‘k _ 610‘2 .

b] Show that, on the real line,

and

¢] Show that
(V') + B.V? =B

holds on the real line for every V' of the form

V = (cosa) T, + (sina) U, a € R.

), and
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E.5 Chebyshev Polynomials for P, (a;,as,... ,a,) on R, Let
(ar)p—; CC\R with Im(ax) > 0, k=1,2,...,n.
Let
n 1/2
M, (z) = (H(z - ak)>
k=1

and

n 1/2
My(z) = (H(Z —Ek)> :
k=1

where the square roots are defined so that M is analytic in a neighborhood
of the closed upper half-plane, and M, is analytic in a neighborhood of the
closed lower half-plane. Let

For z € R, we define

To(#) = Re(fal®)) = 3

and

Un(z) := Im(fn(2)) = o

Show the following:

a] T, € Pp(ai,as,...,a,) and U, € Pp(ar,az,. .. ay).
b] [|Tyllr =1 and [|Up[lr = 1.

¢] There are real numbers z; > z9 > --- > x,,_1 such that

T.(z;) = (-1)7, lim T,(z) =1, and lim T,(z) = (-1)".

T—r0Q Tr——0Q

d] There are real numbers y; > ya > -+ > y,—1 such that

Un(y;) = (=1)*" and  lim U,(z) =0.

z—+o00

e] T,(x)*+ Upn(z)? =1 for every z € R.
f] Both T, and U, have exactly n simple zeros on R, and the zeros of T},
and U, strictly interlace.
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g] The following statements are equivalent:

(i) There exists an « € R such that

V = (cosa) Ty, + (sina) Uy, .

(i) V € Pnp(a1,as2, - ,ay,) has uniform norm 1 on R, and it equioscillates
n times on the extended real line. That is, there are extended real numbers
00 > 21 > 29 > -+ > zp > —o0 such that

V(z;) = £(-1)7, j=1,2,...,n,

where
V(oo) := lim V(z).

T—r0Q

h] With the notation of part g], V is strictly monotone on each of the
intervals
(Zla OO)) (’227 Zl)) ey (Z’n; Zn—1)7 (_OO; Zn) .

E.6 Bernstein Factor on R. Let (a;)}_; C C\ R with
Im(a) >0, k=1,2,...,n.

With the notation of E.5 let

fn(2)
B,(z) := (@)’ € R.
a] Show that
21
Z m(ax) , r e R.
|z — a|?

b] Show that, on the real line,
T, =-ByU,, U}, =BTy,

and

(T3)? + (U})? = B2

¢] Show that
(V)2 + B2V? =

holds on the real line for every V' of the form

V = (cosa) T, + (sina) U, .
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E.7 Coefficient Bounds in Nondense Rational Function Spaces. Suppose
(ar)72, C R\ [-1,1] is a sequence of distinct numbers satisfying

21/1— laj| =% < 0.
i=1

Show that there are numbers K; > 0 such that

‘D]a’ﬂ S K]'Hp”[fl,l]a .]: 0517"' , 1, n e N
for every p € Pp,(ay,as,... ,a,) of the form
D D
p(x):DMJriJr... - Dj. €R.
T —ay T — an

Hint: Use E.2 c] of Section 3.3 and Theorem 3.5.4. O
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Denseness Questions

Overview

We give an extended treatment of when various Markov spaces are dense.
In particular, we show that denseness, in many situations, is equivalent to
denseness of the zeros of the associated Chebyshev polynomials. This is
the principal theorem of the first section. Various versions of Weierstrass’
classical approximation theorem are then considered. The most impor-
tant is in Section 4.2 where Miintz’s theorem concerning the denseness of
span{l,z* 2?2 ...} is analyzed in detail. The third section concerns the
equivalence of denseness of Markov spaces and the existence of unbounded
Bernstein inequalities. In the final section we consider when rational func-
tions derived from Markov systems are dense. Included is the surprising
result that rational functions from a fixed infinite Miintz system are always
dense.

4.1 Variations on the Weierstrass Theorem

Much of the utility of polynomials stems from the fact that all continuous
functions on a finite closed interval are uniform limits of them. This is the
well-known Weierstrass approximation theorem. There are numerous proofs
of this; several are presented in the exercises. Another proof follows from
the main theorem of this section.
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Associated with a Markov system M := (fo, f1,...) on [a, b] we define,
as in Section 3.3, the Chebyshev polynomials

Ty :=To{fo, f1,--- s fnila,b]}.

Denote the zeros of T}, by (a <)z1 < 22 < -+ < z,(< b). Let g :=a
and z,11 := b. The mesh of T}, is defined by

(4.1.1) M, := M, (T}, : [a,b]) := 1§r?§a73(+1 |z, —@i_q].

This is a measure of the maximal gap between two consecutive zeros of Ty,
with respect to the interval [a, b].

For a sequence (T),)32, of Chebyshev polynomials associated with a
fixed Markov system on [a, b], we have

lim M, =0 if and only if liminf M,, = 0.
n— o0 n—o0

This follows from the fact that if m < n, then T}, cannot have more than
one zero between any two consecutive zeros of Tj,.

Our main result shows the strong connection between the denseness of
the real span of an infinite Markov system M of C'! functions on [a,b] in
C'la, b] and the density of the zeros of the associated Chebyshev polynomials.

Theorem 4.1.1. Suppose M := (1, f1, f2,...) is an infinite Markov system
on [a,b] with each f; € C'la,b]. Then span M is dense in Cla,b] if and
only if

lim M, =0,

n—oQ

where M,, is the mesh of the associated Chebyshev polynomials.

Proof. The only if part of this result is the easier part and we offer the

following proof. Suppose span M is dense in CJa, b], while lim inf M,, > 0.
n— o0

Then there exists an interval [c,d] C [a,b] that contains no zero of T, for

infinitely many n, say, for n; < ny < ---. Consider the piecewise linear

function F' defined as follows. Let ¢ < y; < y2 < y3 < y4 < d, and let

0, z€{a,cdb}
F(z):=9 2, z€{yys}
_27 T e {y2=y4}

and be linear elsewhere. Since span M is dense in C[a,b], there exists a
ke Nand a p € span{l, f1,..., fn, } with

(4.1.2) ||p—F||[a’b] <1.
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Now p — T, has at least ny — 2 zeros on [a,c] U [d, b] because T),, has at
least ny, extrema on these intervals. The four extrema of F' on (¢, d) together
with (4.1.2) guarantee at least three more zeros of p — T, on (c,d). Hence
p — T}, has at least ny + 1 zeros and vanishes identically. This contradicts
(4.1.2).

The if part of the theorem follows from the next theorem and E.8 a] of
Section 3.2. This exercise shows that (f], f3,...) is a weak Markov system
on [a,b]. O

The phenomenon formulated in Theorem 4.1.1 is quite general, and we
prove a rather more general result than is needed for the preceding theorem.
The modulus of continuity wy of a function f : [a,b] — R is defined by

(4.1.3) wy(d) == sup |f(z) = f(y)|.
|z —y|<d
z,y€la,b]

Theorem 4.1.2. Suppose that

H, = Span{1=glzg2= e ,gn}

is a Chebyshev space on [a,b] with associated Chebyshev polynomial T),.
Suppose each g; € C'la,b] and (g,...,g)) is a weak Chebyshev system
on [a,b] (weak Chebyshev systems are defined in E.8 of Section 3.2). Let
H) :=span{g},...,g,}. If f € Cla,b], then there exists an h,, € Hy such

that
1n = Fllfap < Cwr(V/3n),

where
Op := My (T, : [a,b]) .

Here C is a constant depending only on a and b.

Proof. Suppose a < ¢ < d < b and S,, € H,, is the best uniform approxi-
mation from H, to F on [a,c] U [d,b], where

Y

ro={1 Lo
We claim the following:
(4.1.4) Sp is monotone on ¢, d]
and
(4.15) 150 = Fllweiuian < oo

(d—c)
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Let n := n 4+ 1 be the dimension of the Chebyshev space H,,. Since S,,
is a best approximation to F' on [a, c]U[d, b], there exist n+ 1 points in this
set where the maximum error

(4.1.6) en = ||F' = Snlla,cuid.b]

occurs with alternating sign (see Theorem 3.1.6). Suppose m + 1 of these
points yo < - - < Yy lie in [a, ¢], and n —m of these points Ymi1 < -+ < Yy
lie in [d,b]. Then S has at least m — 1 sign changes in (a,c) (one at
each alternation point in [a, ¢] except possibly at the endpoints a and c).
Likewise, S/, has at least n — m — 2 sign changes in (d,b). So S!, has at
least n — 3 sign changes in (a,c) U (d,b). Note that this count excludes y,
and Ym,41. Thus S/, has at most one more sign change in (a,b) unless S},
vanishes identically (which is not possible for n > 2). Now suppose S;, has
a sign change on (¢, d). Then, since there is at most one sign change of S},
in (¢,d), it cannot be the case that both y, = ¢ and ym41 = d and S,
changes sign at neither ¢ nor d, otherwise

sign(Sa(c) - £(c)) = sign(Su(d) — £(d))

as a consideration of the two cases shows. But if y,,, # ¢ or Y41 # d or
S! changes sign at either ¢ or d, then we have accounted for all the sign
changes of S, by accounting for the (possible) one additional sign change
(either S], vanishes with sign change at ¢ or d or one of y,, or ym41 is an
interior alternation point of S,, where S), vanishes). Thus S;, has no zeros
with sign change in (¢, d) and (4.1.4) is proved.

To prove (4.1.5) we proceed as follows. With ¢, defined by (4.1.6),
D, :=¢, T, — Sn
has at least m zeros on [a, c] and
DX =D, +1=1+eyTy — Sn
has at least n — m — 1 zeros on [d, b] (counting each internal zero without
sign change twice). Thus D;, has at least n — 3 sign changes on [a, c]U[d, b].

Suppose T, has at least four alternation points on an interval [y, d] C (¢, d)
and suppose that

Y

Sn(é) - Sn(’Y) < 26n-
Then, because of (4.1.4) and the oscillation of T}, on [y, 4],

Dn+M:€nTn_ Sn_w

2 2

has at least three zeros on [, ] and hence
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D, = (Dn+w>'

2

has at least two sign changes on [v, d]. This, however, gives that D], € H),
has a total of at least n — 1 = n sign changes, which is impossible. In
particular,

Sn(6) = Sn(y) > 2€n

on any interval [y,0] C (¢,d) where T, has at least 4 alternation points.

Thus,

(d—c)
50,

However, since Sy, is a best approximation to F' on [a, ¢] U [d, b],

Sp(d) — Sn(c) < 1+ 26,

and we can deduce (4.1.5) on comparing these last two inequalities and
noting that ¢, < %

2€,, .

Sn(d) — Sp(c) >

The proof is now a routine argument, which for simplicity, is presented
on the interval [a, b] := [0, 1]. Let

m—1
V()= F0)+ ) (F () = F (%)) Snilz),
i=0
where, fori =0,1,... ,m—1, S, ; € H, is the best uniform approximation

t .
° {0, z € [0, 1)

1, ze [t 1]

m

Fl@) = 10+ 3 (F (52) = £ (2)) Fasla)

Then repeated applications of (4.1.5) with the intervals [a, ] := [0, £] and
[d,b] := [£L,1] yield for every = € [0, 1] that

V(z) = f(@)] < |V(@) = f(@)| + | f(2) - f(2)]
< . (f (555) = f (&) (Sni(e) = Fai(@)) +wy (5;)

< (m = 1)(5am) wy (57) +2w5 (57) +wr (55) -

3

I
=)

Hence, with m := L&;lﬂj,

IV = fllos < Cwr(v/6n) -
O

An immediate corollary to Theorem 4.1.1 is the Weierstrass theorem.
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Corollary 4.1.3. The polynomials are dense in C[—1,1].

Proof. M = (1,z,22,...) is an infinite Markov system of C'' functions on
[—1,1]. The associated Chebyshev polynomials are just the usual Chebyshev
polynomials T), (see Section 2.1) and

M,<Z = n=12,...
n
is obvious from E.1 of Section 2.1. O

Also from the last part of the proof of Theorem 4.1.2 we have the
following corollary.

Corollary 4.1.4. Suppose M := (1, f1, f2,...) is an infinite Markov system
on [a, b] with each f; € C'la,b]. Then for each n € N, there exists a

Pn € Span{lﬂflana' .. 7f’n}

such that
1Pn = flljap) < C(L+m?M,) wy (L)

m

for every m € N, where C is a constant depending only on a and b.

Comments, Exercises, and Examples.

The Weierstrass approximation theorem of 1885 (see Weierstrass [15]) is one
of the very basic theorems of approximation theory. It, of course, requires
that clear distinctions be made about the nature of convergence (pointwise
versus uniform) and the region of convergence (intervals versus complex
domains). Weierstrass, the preeminent analyst of the last third of the nine-
teenth century, was principal in insisting that such distinctions be clearly
made. His famous and profoundly surprising example of a nowhere differ-
entiable continuous function dates from 1872. A number of proofs of his
approximation theorem and its many generalizations are explored in the
exercises. Theorem 4.1.1 was proved by Borwein [90]. The only if part of
this theorem can be found in Kroé and Peherstorfer [92].

Applications of the methods and results of this section can be found in
Borwein [91b], Borwein and Saff [92], and Lorentz, Golitschek, and Makovoz
[92]. The last two papers give an application to weighted incomplete poly-
nomials, where the zeros of the Chebyshev polynomials are often dense in
a subinterval (see also Mhaskar and Saff [85]).

E.1 The Weierstrass Approximation Theorem. FEvery real-valued contin-
uous function on a finite closed interval [a, b] can be uniformly approximated
by polynomials with real coefficients.

Every complex-valued continuous function on a finite closed interval
[a,b] can be uniformly approzimated by polynomials with complex coeffi-
cients.
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More precisely, in the real case, let
E, =F : [a,b]) := inf - .
n = En(f :[a,b]) = inf If =pliay)
The Weierstrass approximation theorem asserts that

lim E,(f :[a,b]) =0, feCla,b].

n—oo

The following steps outline an elementary proof basically due to
Lebesgue [1898]. Parts a] to d] deal with the real version (first statement) of
the theorem. The complex version (second statement) of the theorem can
easily be reduced to the real version; see part e].

a] Every continuous function on [a,b] can be uniformly approximated by
piecewise linear functions.

Hint: Consider the piecewise linear function that interpolates f at n equally
spaced points and use the uniform continuity of f. O

b] It suffices to prove that |z| can be uniformly approximated by polyno-
mials on [—1,1].

Hint: Use part a]. O

¢] Approximation to |z|. Show that

nh—>H;oEn(|$| :[-1,1]) =0.

Hint: The Taylor series expansion of f(z) := /1 — z yields

1 1 1-3
Vi-z=1-< — 22—
‘ 2* 31" T3 46
and the convergence is uniform for 0 < z < 1. (By Abel’s theorem, a power
series converges uniformly on every closed subinterval of the set of points

in R where it converges; see, for example, Stromberg [81]). Thus,

2| = Va2 = /1- (1 —a?)

23+

1-3

1 1
:1__1_2 _1_22_ 1_23
yIma) 4 g (-a) —ggg(l-a)+
and the convergence is uniform for —1 <z < 1. O

d] An Alternative to c]. Let

Q) =1 and  Qua(@) = (1 -2 + Q).
Show that
0< Quit(@) <Qu(@) <1, n=01,..., we[-11]

and Qn(z) — 1 — |z| uniformly on [-1,1] as n — oo.
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Hint: First show the pointwise convergence and then use Dini’s theorem
(see, for example, Royden [88]). O
e] Complex Version of the Weierstrass Approximation Theorem. Every
complez-valued continuous function on a finite closed interval [a,b] can be
uniformly approximated by polynomials with complex coefficients.

It can be shown that
c
Ba(lal : [-1,1) ~ £,

where 0.280168 < ¢ < 0.280174. Bernstein [13] established the above
asymptotic with weaker bounds on ¢, namely, 0.278 < ¢ < 0.286, and
observed that %n’lﬂ = 0.282 is roughly the average of these bounds. The
stronger bounds on ¢, due to Varga and Carpenter, show that ¢ # 1771/2,
but it is open whether or not ¢ is some familiar constant; see Varga [90].

E.2 The Stone-Weierstrass Theorem. If X is a compact Hausdorff space,
then a subalgebra A of C(X), which contains f = 1 and separates points,
is dense in C(X).

A subalgebra A of C'(X) is a vector space of functions that is closed
under multiplication (here, addition and multiplication are pointwise). Sep-
arating points means that for any two distinct z, y € X, there exists an

f € A such that f(z) # f(y).

a] Observe that the set P := U2 P, of all polynomials with real coeffi-
cients is a subalgebra of C[a, b] that separates points, and hence the Stone-
Weierstrass theorem implies the Weierstrass approximation theorem.

b] Observe that the real polynomials in 2 form a subalgebra of C[—1,1]
that does not separate points.

We outline a standard proof of the Stone-Weierstrass theorem. Let A
denote the closure of a subalgebra A C C'(X) in the uniform norm.

c] If f € A, then |f| € A.

Proof. If f € A, then p(f) € A for any polynomial p. Now choose p,, such
that p,(z) — |z| on the interval [—||f]|, || f]]- O

d] Let

(f Vg)(z) :i= max{f(z),g(x)} and (fAg)(z):=min{f(z) g(z)}.

Show that if f, g € A, then so are fV g and f A g.
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Hint:
1 1
fvg=5(f+g+lf—9gl), and fAg=(f+g-If~d).
O
e] If p,q € X are distinct and A, p € R, then there exists f € A with
fp)=X and  f(q) =p.
Hint: Let g € A be such that g(p) # ¢(q) and consider
A—p 1g(p) — Ag(q)
fi= LT H ROV T ARG
9(p) —9(q) 9(p) —9(a)
O

f] Completion of Proof. Let f € C(X). For each p,q € X, let f,, be an
element of A with f,,(p) = f(p) and fpe(q) = f(q). Fix € > 0 and define
open sets

Vpg i={z € X : fpo(x) < f(z) +€}.

Now {V,, : p € X} is an open cover of the compact Hausdorff space X, so
for each ¢ € X we can pick a finite subcover

{Vplq; VPZQ’ e ,Vp"q}

of X. We let
fq = min{fplq,fpgqa-- . vfpnq} '

Observe that f, € A by part e], and

fao(@) < f(z)+e, z€X.

g] Continued. Let

Veoi={z € X: fy(z) > f(z) — €},

where f, is defined in part f] for every ¢ € X. Then {V; : ¢ € X} is an open
cover of the compact Hausdorff space X, so we can extract a finite subcover

{VQI’VQ2)"' 7qu}

of X. Now let
g =max{fo, foor-- s fon }-

Note that g € A by part €], and
flz) =e< g(z) < f(z) + ¢, reX,

which finishes the proof. ad
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The next exercise presents pretty theorems due to Bohman [52] and
Korovkin [53] on the convergence of sequences of positive linear operators.
The exercise after that gives some applications that include different proofs
of the Weierstrass theorem via convergence of special polynomials, such as
the Bernstein polynomials.

An operator L on C(X) is called monotone if

f<g implies L(f) < L(g)
(here f < g means f(z) < g(z) for all x € X).

E.3 Monotone Operator Theorems.

Korovkin’s First Theorem. Let (L,)%2, be a sequence of monotone linear
operators on C(K) (the set of continuous, 27 periodic, real-valued functions
on R). Let

folz):=1, fi(z) :=sinz, fo(z):=cosz.

Then
lim [|L,(f) = fllk =0
n—oo

for all f € C(K) if and only if

lim [L(f) ~ fillx =0, i=0,1,2.

Korovkin’s Second Theorem. Let (L)%, be a sequence of monotone lin-
ear operators on Cla,b]. Let

folz):=1, fi(z):=z, fox):=2".

Then
Jim (|L(f) = flljap) =0

for all f € Cla,b] if and only if

nh_}rr;o | Ln(fi) = filllay) =0, 1=0,1,2.

Korovkin’s theorem in a more general setting can be found in Lorentz
[86a].

a] Proof of Korovkin’s Second Theorem. The only if part of the theorem
is trivial. For the if part, observe that the pointwise convergence of (L,)5%

can be easily proved since, for any preassigned € > 0 at any fixed ¢, one can
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find parabolas y = p;(z) := a1x? +byx+c; and y = pa(z) 1= azz? + bz +co
such that
pi(z) < f(z) < pa(z), x € [a,b]

with
\f(w0) — p1(0)| < € and \f(z0) — p2(z0)] < €.

Now use the continuity of f and the compactness of [a, b] to make the
above argument uniform on the interval [a, b]. O

b] Proof of Korovkin’s First Theorem.

Hint: Modify the proof of Korovkin’s second theorem. O

E.4 Bernstein Polynomials. The nth Bernstein polynomial for a function
f € C[0,1] is defined by

Bo(f)(z) := kz;f (%) (Z)a:k(l —a)h a=1,2,....

a] Let
folz):=1, fi(x)=z, folz):=2>.
Show that
B”(fo) = fo, Bn(fl) = fi, Bn(fQ) = anlfQ + %fl

for every n =10,1,2,....

b] Use Korovkin’s second theorem and part a] to show that
lim [1Ba(f) ~ fllony =0

for every f € C]0,1].

For more on Bernstein polynomials, see Lorentz [86b].

E.5 The Fourier and Fejér Operators. For f € C(K), let

Sdﬁwwzi-jfa+m<ﬂ1£:igdu n=0,1,...

2 2sin 1¢
and
1 7 sin Lnt\ >
F, = t 2 dt, =0,1,....
@)= g [ s+ (ST n=0,

The operator S, is called the Fourier operator, while the operator Fj, is
called the Fejér operator.
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a] Show that S,,(f) is the nth partial sum of the Fourier series of f, that
is,

3

Sn(f)(z) = a2_0 + (ay cos kx + by sin kx) |

k=1
where
1 s
ap = — f(t) cos kt dt
™ —T
and
1 K
b, = — f(t)sinkt dt .
T )%
Hint: ( 1)
sin(n+3)t 1 n
= = kt
osmit 2 ; cos
and
K 1 n
Sn(f)(z) = = ft+2z) (5 + COS kt) dt
T k=1
O
b] F,.(f) is the Cesaro mean of Sy, Sq,...S,_1, that is,
Fn(f) — SO(f) +Sl(f) +- Sn—l(f) )
n
Hint: ,
nil sin (k+3)t <sin %nt)
= sin 1 \sinit ) ~
O

¢] Fejér’s Theorem. For every f € C(K), Fy(f) = f uniformly on R.

Hint: Each F,, is obviously a monotone operator on C(K), so it suffices to
prove the uniform convergence of (F,)5>; on R only for f;, i =0,1,2, as
defined in Korovkin’s first theorem. However, this is obvious, since

Fo(fo) = fo, Fu(fi)="2f1, Fu(f2) =220

foreveryn=1,2,.... O

d] The set 7 := U, 7, of all real trigonometric polynomials is dense in
C(K), the set of all continuous, 27 periodic, real-valued functions. The set
T¢:=US2 T.° of all complex trigonometric polynomials is dense in C(K),
the set of all continuous, 27 periodic, complex-valued functions.
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Hint: This follows from Fejér’s theorem. This is also a corollary of the Stone-
Weierstrass theorem (see E.2). O

The remaining parts of the exercise follow Lorentz [86a]. Suppose that

L, : C(K) — T, is a linear operator. We say that L,, preserves the elements
of T, if L,(t) =t for every t € T,,. A canonical example for such a linear
operator L, is the Fourier operator S,,. The purpose of the remaining part
of the exercise is to show that the Fourier operator S,, is extremal among
linear operators preserving the elements of 7, in the sense that it has the
smallest norm. This leads to the result of Faber, Nikolaev, and Lozinskii
(see part g]) that for arbitrary linear operators L, preserving the elements
of Tn, m = 1,2,..., the sequence (L,(f))>2, cannot converge for every
feC(K).
e] Berman’s Generalization of a Formula of Faber and Marcinkiewicz.
Let f, denote the a-translation of a function f € C'(K), that is, f,(z) :=
f(xz + a). Suppose L, is a linear operator preserving 7,. Show that

1 T

oo | La(f)(z — 1) dt = Su(f)()

2r J_,

for every f € C(K) and z € K.
Hint: Let L
An(z) = 2_/ Lo(f)(x — 1) dt.

T™J -7
Show that A,(f) = Sp(f) for every f € T,. Prove that A, (f) = S.(f) for
every f of the form f(x) = cosmz or f(x) = sinmaz, where m is an integer
greater than n. Conclude that A, (f) = Sp(f) for every f € T := U5 Tn.
Note that 7 is dense in C(K). This means that to complete the proof,
it is sufficient to show that A, : C(K) — 7, and S, : C(K) — T, are
continuous. Observe that ||A,|| < ||Ly.|| and [|Sy,|| < clogn for some ¢ > 0;
see also part f]. O

f] The Norm of the Fourier Operator S,,. Show that

ISk B
1all = p{‘nan 'fEC(K’}‘Qw/_W

Use this to prove that there exist two constants ¢; > 0 and ¢; > 0 indepen-
dent of n such that

sin (n+ %)t

— dt.
2sin 5t

crlogn < ||Su|l € ealogn, n=23,....
Actually, it can be proved that
4
||Sn||:F10gn+O(1), n=23,....

See, for example, Lorentz [86a].
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g] The Norm of Operators that Preserve Trigonometric Polynomials. Let
L, : C(K) — T, be a linear operator preserving the elements of 7,. Show
that

ILnll 2 [[Snll = ¢1logn,

where ¢; > 0 is a constant independent of n.

Hint: Use parts e] and f]. O

E.6 Polynomials in z*. Given n € N and )\, € R, let
Pr(An) := {pn(z™) : pp € Pn}.
Suppose 0 € (0,1) and A, > 1 for all n € N. Then U2, P,(A,) is dense in

C16,1] if and only if
logn

| =

log

DN | =

lim su
o A

>

To prove the above statement, proceed as follows (see also Borwein
[91b]). Denote the Chebyshev polynomial for P, (A,) on [d, 1] by T, 5. De-
note the zeros of Tj, 5 in [d, 1] by

)

)

0 <o) << o)

(
Ty < Ty nn

Let a:((f) =6 and 20 :=1. Let

n n+1,n

a] Show that

_ 2 N
T’“‘S(m)_Tn(l_&)\"w _1_5>\">’ z €16,1],

where T, is the Chebyshev polynomial of degree n as defined by (2.1.1).
b] Let 0 := liminf argozl. Show that if
n— o0 !

lim inf < max (a:l(-on — x§2>1 n)) =0,
n—o0o 2<i<n+1 ? ’

then liminf M, (§) = 0.

n—oQ

Hint: Count the zeros of Ty, 5 — Ty 0 € Pn(Ay) in [4, 1]. O
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¢] Let ¢ :=liminf xgozl

n—o0

, as in part b]. Show that
logn

1 log E = lim sup
2 70 no A

whenever the right-hand side is finite.

Hint: Use the explicit formula for T}, o given in part al. O

d] Let ¢ be defined by

1 1 1
508 5 = limsup Ognn'

Suppose § > 0. Show that

) (0
hnrgltgf(mln z,)=0.

Hint: Use parts a] and c]. O
(0)

e] Let 6 := liminf 2",
n—o00 ’

o o < 2 (o) o)

i,n i—l,n = K , s

as in parts b] and c]. Suppose ¢ > 0. Show that

for every sufficiently large n € N and for every i =2,3,... ,n+ 1.
Hint: Count the zeros of
Tho(@) — Tpolain®) € Pa(An),

where ©
e Tzl 2
iwn — 0
TR
for every sufficiently large n € N and for every i =2,3,... ,n + 1. O
f] Let ¢ be defined by
1 1 1
3 log 5= limnsup ())\gnn .

Suppose 0 > 0. Show that U2 Py (\y) is dense in C4, 1].
Hint: By parts a] to e], liminf M, (J) = 0. Now apply Theorem 4.1.2. O
n— o0

g] Let 0 <y < 4, where J is as in part f]. Show that Uy, Pp(Ay) is not
dense in C[y, 1].
Hint: Show that there exists a constant ¢ depending only on ¢ (and not on
n or y) such that

Ip(y)| < ellpllisa
for every p € Uy {Pn(A,) and y € [0,6]. Now use E.4 c] of Section 3.3 and
part al. O
E.10 of Section 6.2 extends part g] of the above exercise. Namely, if
0 < 0 < 6, where § is the same as in part f] and A C [0,1] is a set of
Lebesgue measure at least 1 — 8, then U Pr(An) is not dense in C'(A).
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E.7 The Weierstrass Theorem in L,. Let [a,b] be a finite interval and
€ (0,00). Show that both Cla,b]N Ly[a,b] and the set P := ULy P, of all
real algebraic polynomials are dense in Ly|a, b].

Hint: The proof of the first statement is a routine measure theoretic argu-
ment; see Rudin [87]. The second statement follows from the first and the
Weierstrass approximation theorem; see E.1. O

E.8 Density of Polynomials with Integer Coefficients.

a] Suppose f € C[0,1] and f(0) and f(1) are integers. Show that for every
€ > 0 there is a polynomial p with integer coeflicients such that

1f =Pl <e.
Outline. By E.4, there is an integer n > 2/e so that

1f = Bu(Hllon < 5-

Let .
ban =1 2) () o
k=0
Show that if 2 € [0,1], then
n—1

0 < By(f)(@) = Balf)(a) < a1 —a)"

k=1

1<~ /n 1
<_ kl_ n—k:_
_nkzo(k>z< prh= 1

N|

Note that §n(f) is a polynomial with integer coefficients, and

1f = Bu(Hllioa) < I = Bu(Hlljo,1) + 1Ba(F) = B(Hlljo.1]
< g + % = €.

a

b] Suppose the interval [a, b] does not contain an integer. Show that poly-
nomials with integer coefficients form a dense set in CJa, b].

Proof 1. This is an immediate consequence of part a]. O

Proof 2. Assume, without loss of generality, that [a,b] C (0,1). By the
Weierstrass approximation theorem, it is sufficient to prove that for every
€ > 0 there is a polynomial p with integer coefficients such that
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|5 =Pl <e

since then all real numbers, and hence all p € P,, can be approximated by
polynomials with integer coefficients.

The existence of such a polynomial p follows from the identity

S -na-20-n)
2 1-(1-20-2) = 7 O
where the infinite sum converges uniformly on [a,b] C (0,1). O

E.9 Weierstrass Theorem on Arcs. Let 9D denote the unit circle of the
complex plane.

a] Show that the set P¢:= U2 Py of all polynomials with complex coef-
ficients is not dense in C'(9D).

Hint: Use the orthonormality of the system ((27)~'/2e)>2_ _ on [, 7]
to show that if k is a positive integer and p € P¢, then

ik

27|27 — p(2)llcop) > le™™ = p(e)af—n,m > 27

So none of the functions z~!,272,... is in the uniform closure of P¢ on

0D. O

b] Let A C 9D be an arc of length less than 27. Then the set P¢ of all
polynomials with complex coefficients is dense in C(A).

This is a special case of Mergelyan’s theorem (see, for example, Rudin [87]).
Proof. Without loss of generality, we may assume that A is symmetric with
respect to the real line. By E.5 d], it is sufficient to prove that f(z) := 2!
is in the uniform closure P¢ of P¢ on D (this already implies that each
2% k € Z,is in P¢). By E.11 j] of Section 2.1, cap(A) < 1. By E.11 g] of
Section 2.1, u(A) = cap(A4), where u(A) denotes the Chebyshev constant

of A. Hence
0<u(d)<ax<l

with some a. Recalling the definition of u(A), we can deduce that there are
monic polynomials p,, € Py, such that

Ipnlla < o™, n=1,2,....
Forn=1,2,..., let
gn(2) = 2" tpp(1/2) = 27+ 1 (2),
where r,,_1 € PS_,. Since A is symmetric with respect to the real line,

Iz 4 ra1(2)lla = llgnlla = lIpalla < @™ — 0.

Hence f(z) = 2z~ ! is in P¢, which finishes the proof. O



4.2 Mintz’s Theorem 171

4.2 Muntz’s Theorem

A very attractive variant of the Weierstrass theorem characterizes exactly
when the linear span of a system of monomials

M= (g0 M)
is dense in C10,1] or L0, 1].

Theorem 4.2.1 (Full Miintz Theorem in C[0,1]). Suppose (X\;)2, is a se-
quence of distinct positive numbers. Then

span{1,z*, 2?2, ...}

is dense in C[0,1] if and only if

Y =
L N2 41
i=1 "7
Note that when inf; A; > 0,
=\ . R |
;:1 1 = oo if and only if ;:1 X =

Miintz studied only this case, and his theorem is usually given in terms of
the second condition.

When A\; > 1 for each ¢« = 1,2,..., the above theorem follows by
a simple trick from the Ls version of Miintz’s theorem. The proof of the
general case is left as a guided exercise. The difficult case to deal with is

the one where 0 and oo are both cluster points of the sequence (A;)52; see
E.18.

Theorem 4.2.2 (Full Miintz Theorem in L[0,1]). Suppose (X\;)52, is a
sequence of distinct real numbers greater than —1/2. Then

span{z* 2™ ...}
is dense in L2[0,1] if and only if
i": 2\ +1
(2N +1)2 + 1
i=0

The proof of the following full L, version of Miintz’s theorem is pre-
sented as E.19.
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Theorem 4.2.3 (Full Miintz Theorem in L,[0,1]). Suppose (X\;)i2, is a
sequence of distinct real numbers greater than —1. Then

span{z* 2™ ...}

is dense in L1[0,1] if and only if

oo

/\+1
/\+1

i=

Now we formulate a general Miintz-type theorem in L,[0, 1], that contains
the above C[0,1], L2[0,1], and L4[0, 1] results as special cases. The proof
of this theorem is outlined in E.20.

Theorem 4.2.4 (Full Miintz Theorem in L,[0,1]). Let p € [1,00). Suppose
(X)), is a sequence of distinct real numbers greater than —1/p. Then

span{z*®, z* .. .}
is dense in L,[0,1] if and only if
> Ai + %
2
pard (/\i + %) 1

= .

The full version of Miintz’s theorem for arbitrary distinct real exponents
on an interval [a,b], 0 < a < b, is given in E.7 and E.9.

Proof of Theorem 4.2.1 assuming Theorem 4.2.2 and each A; > 1. We need
the following two inequalities:

n b n
(4.2.1) .’I,'m — Z aiafAi = / (mtml _ Z aiAitAi1> dt
i=0 0 i=0
1 n
< / mt™ — Z ai/\it)"'fl
0 i=0
1 n 9 1/2
< / mtmt — Zai/\itki_l dt
0 -
for every z € [0,1] and m = 1,2, ..., and
5 1/2
(4.2.2) mo_ Z aitki < lzm — Z aia:)"
=0 i=0 [0.1]
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for every m = 0,1,2,.... The assumption that A; > 1 for each i implies
that
= i , e o 2 -1 +1
= oo if and only if =00
;/\?+1 Y ;(Q(Ai_n“)?ﬂ
and
[ee] [ee]
Ai . . 2\ +1
=oc if and only if — = .
;)\?+1 Y ;(MH)Z’H

If 320 Xi/(A? +1) = oo, then (4.2.1), together with Theorem 4.2.2
and the Weierstrass approximation theorem (see E.1 of Section 4.1), shows
that

span{l,z™, 2?2, ...}

is dense in C]0,1].

If the above span is dense in C0,1], then (4.2.2), together with E.7
of Section 4.1, shows that it is also dense in L,[0,1]. Hence Theorem 4.2.2
implies Y oo, A\i/(A\? + 1) = oc. O

Proof of Theorem 4.2.2. We consider the approximation to ™ by elements
of span{z*, ..., z*=1} in L,[0,1], and we assume m > —1 and m # X;

for any i. In the notation of Sectior; 3.4 we define
A= (Ao, )\1, e )\n,l,m)

Y

and study L, the nth orthonormal Miintz-Legendre polynomial associated
with 4. By (3.4.8) and (3.4.6) we have (with \,, := m)

n—1
L (z) = apz™ + Z a;z™
i=0

where

m—/\i

n—1
lan| = V14 2m H
i=0

m-l—)\i-l-l‘

It follows from ||L}||z2[0,1) = 1 and orthogonality that L}, /a, is the error
term in the best L»[0, 1] approximation to ™ from span{z*°,... z*=-1}
(why?). Therefore

min
b;eC

1 1 n—1
“anl  Vitom I1

L2[0,1] i=0

n—1
" — E b
i=0
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So, for a nonnegative integer m different from any of the exponents A;,
(4.2.3) a™ € span{z, M, ...}

(where span denotes the Ly[0, 1] closure of the span) if and only if

m+/\ —l—l‘

n—>oo

That is, (4.2.3) holds if and only if

2m + 1 - 20 +1
li - l-—r— =
novos H m+)\i+1‘ H ‘ m+)\i+1‘
A >m —1/2<>\ <m
Hence (4.2.3) holds if and only if either
i o oo or i 2x+1)=
i 2Aitl i=0
)\1-_>m 71/22)\,-§m

which is the case if and only if

i 28 +1
(2 +1)2+1

and the proof can be finished by the Weierstrass approximation theorem
(see E.1 of Section 4.1). O

Comments, Exercises, and Examples.

Theorem 4.2.1 (in the case when inf{); : ¢ € N} > 0) and Theorem 4.2.2
were proved independently by Miintz [14] and Szasz [16]. Szasz [16] proved
the full version of Theorem 4.2.2. Theorem 4.2.1 is to be found in Borwein
and Erdélyi [to appear 5]. Much of Theorem 4.2.4 is stated in Schwartz
[59] without proof and may be deduced by his methods. Indeed, Schwartz’s
method appears to give Theorem 4.2.4 for p € [1,2]. Johnson (private com-
munication) and Operstein [to appear] show how to derive the full Theorem
4.2.4 from Theorem 4.2.1 as does E.20; see also E.7 of the next section.

Less complete versions of the results presented in this section are often
called the Miintz-Szdsz Theorems. A 1912 version due to Bernstein can be
found in his collected works.

A variant on our proof of Miintz’s theorem is presented in E.2. A
distinct proof based on possible zero sets of analytic functions may be
found in Feinerman and Newman [76]; see also E.10, where this method
is explored for denseness questions for {cos \;6}.
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Extensions of Miintz’s theorem abound. For example, generalizations
to complex exponents are considered in Luxemburg and Korevaar [71], to
angular regions in Anderson [72] and with an exponential weight on [0, cc)
in Fuchs [46]. It is a nontrivial problem to establish a Miintz-type theorem
on an interval [a,b], a > 0, in which case the elements of the sequence
A = (N)2, are allowed to be arbitrary distinct real numbers. This is the
content of E.7; it is due to Clarkson and Erddés [43] (in the case when
each ); is a nonnegative integer) and Schwartz [59] (in the general case).
It is shown in Section 6.2 that if A = (X\;){2, is an increasing sequence
of nonnegative real numbers, then the interval [0,1] in Miintz’s theorem
(Theorem 4.2.1) can be replaced by an arbitrary compact set A C [0, 00)
of positive Lebesgue measure.

The exercises also explore in detail the closure of Miintz spaces in
the nondense cases. This study was initiated by Clarkson and Erdds [43],
who treated the case when the exponents are nonnegative integers. The
considerably harder general case is due to Schwartz [59].

Denseness questions about quotients and products of Miintz polyno-
mials from a given Miintz space are discussed in Sections 4.4 and 6.2, re-
spectively.

Some of the literature on the multivariate versions of Miintz’s theo-
rem can be found in Ogawa and Kitahara [87], Bloom [90], and Kroé and
Szabados [94].

E.1 Another Proof of Some Cases of Miintz’s Theorem.

a] Golitsckek’s Proof of Miintz’s Theorem when ) .~ 1/X; = co. Sup-
pose that (A;)$2, is a sequence of distinct, positive real numbers satisfying
e, 1/A = oc. Golitschek [83] gives the following simple argument to
show that span{1,z*1,2*2 ...} is dense in C[0,1].

Proof. Assume that m # Mg, k = 0,1,..., and define the functions @,
inductively: Qo(z) := 2™ and

1
On(@) 1= (A — m)z™ / OnaiOE=Ndt,  n=1,2,. ...

Show, by induction on n, that each @), is of the form

n
Qn(z) =2™ — Zanﬂ:)"' , ani € R.

i=0

Show also that
m
||Q0||[0,1] =1 and ||Qn||[071] < ‘1 - /\—n‘ : ||Qn—1||[0,1] ;
SO
- m
||Qn||[071]§i]:[0 1_)\_1‘ —0 as n — o0.
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b] Another Proof of Miintz’s Theorem when A; — ¢ > 0. Suppose that
(Xi)32, is a sequence of distinct positive real numbers that converges to
¢ > 0. Show, without using the arguments given in the proof of Miintz’s
theorem, that span{1,z*,z*2,...} is dense in C[a,b], a > 0.

Hint: Let k be a nonnegative integer. Use divided differences to approxi-
mate ¢ logk z uniformly on [a, b]. Finish the proof by using the Weierstrass
approximation theorem (see E.1 of Section 4.1). O

E.2 Another Proof of Miintz’s Theorem in L0, 1].

a] Gram’s Lemma. Let (V, (")) be an inner product space, and let g € V.
Suppose {f1,..., fn} is a basis for an n-dimensional subspace P of V. Then
the distance d,, from g to P is given by

G(flaf?a"' 7fn:g)>1/2 )

. o \1/2. -
dy, == inf{(g — p,g — p) 'pEP}‘<GUhh,“Jm

where G is the Gram determinant

(fi,fr) - (fr, fm)
G(flaf?;afm) =
(Ffm: f1) oo (s fm)

Proof. As in Theorem 2.2.3, the best approximation to g from P is given
by

n

fr=>cifi,

i=1

where the ¢; are uniquely determined by the orthogonality conditions

(f*=g.fr)=0, k=1,2,...,n.

Since
di:<g_f*vg_f*>a
we are led to a system of n + 1 equations

n

Zci<fiafk>:<gafk>v k=1,2....n

i=1

and
n

Y cilfisg) +dy = (g.9).

i=1

Solving this system by using Cramer’s rule, we get the desired result. O
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b] Asin E.3 of Section 3.2,

1 1
@tBi " aitBa [I (aj—ai)B; —Bi)
. . . 1<i<j<m
y : [I (ai+5;)
an+p1 7 an+PFn 1<ij<n

for arbitrary complex numbers a; and 3; with a; + 8; # 0.

¢] Let~,Aq,..., A, be distinct real numbers greater than —1/2. Then the

L»[0,1] distance d,, from 27 to span{z?0,... 2’} is given by
1 Tl =N
d, = .
\/27+1i11) 'y+/\i+1‘

Hint: In L,[0,1],

1
(z®, %) :/ 22’ dr =
0

Now apply parts a] and b]. O
d] Complete the proof of Miintz’s theorem in L[0, 1].

1

S — be (—-1/2 .
g wbe(-1/2,%)

E.3 More on Mintz’s Theorem in the Nondense Case. We assume
throughout this exercise that (A;)$2, is a sequence of nonnegative real num-

bers satisfying
o0

— <
i

i=1
and the gap condition

1nf{)\l — X1 :1 € N} >0

holds. Some of the results of this exercise hold even if the above gap con-
dition is removed (see the later exercises).

a] Show that
Ai +Am

0 P
< N —

o0
'Zf
i#m

‘ = exp(YmAm)

where v, — 0 as m — oo.

Hint: First show that the above infinite product exists. Write the above
product as

=N+ A ad Mi+tAdml o N+ A
Z-l;lo ‘/\i—/\m 11;[0 ‘/\i—/\m g /\i—/\m‘
Ai<Am MEAm 22 m) Ai>2A

and estimate the three factors above separately. O



178 4. Denseness Questions

b] Deduce that if A\; # A, for each 4, then

||:E’\”‘ —p(a:)” > 1 ﬁ (/\i + %) B (/\m + %)
RV s § Y [ Wy prayy Wy
= exp(—Ym(Am))
for every p € span{z*°,... 2}, where 7, — 0 as m — oc.

¢] Show that for every e > 0 there is a constant ¢, depending only on €
and (X;)2, (but not on the number of terms in p) such that

la;| <e.(1+ e)’\i

p”Lz[O,l]

for every p € span{z*0, 2, ...} of the form p(z) = >, a;a™
Hint: Use part b]. O

d] Bounded Bernstein-Type Inequality. Let A = 0 and A\; > 1. Show
that for every ¢ € (0,1) there is a constant ¢, depending only on e and
(Xi)$2y (but not on the number of terms in p) such that

10" l10,1=¢] < cellpllsfo,1]

and hence
19'Ml10.1-a < cellpllfo
for every p € span{z*°, z* ... }.
Hint: Use part c]. O

The result of the next part is due to Clarkson and Erdés [43].
e] The Closure of a Nondense Miintz Space. Suppose f € C[0,1] and

there exist p, € span{z*°, 2! ...} of the form
kn
pn(a:):Zai7nz>"', ain €ER, n=12 ...
i=0

such that lim ||p, — flljp,1] = 0. Show that f is of the form
n—oQ

00
f(z) = Zam})"' , ain €R, z€ [0, 1).
i=0

Show also that f can be extended analytically throughout the region
{z € C\(—-00,0] : |2| < 1}

and

lim a;, = a;, 1=0,1,....
n—oo

If (M), is a sequence of distinct nonnegative integers, then f can be
extended analytically throughout the open unit disk.

Hint: Use part c]. O
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If (X\)52q is lacunary (that is, inf{X\;11/A; : i € N} > 1), then the
uniform closure of span{z*°, 21 ...} on [0, 1] is exactly

{fEC[O,l]:f(a:) :Zaix’\i, x € [0,1]} .

If (A;)$2, is not lacunary, then this fails, namely, there exists a function f
of the form

f(z) = iaia:’\i , z €[0,1)
i=0

in the uniform closure of span{z*°,z*1 ...} on [0,1] such that the right-
hand side does not converge at the endpoint 1; see Clarkson and Erdés
[43].

f] Bounded Chebyshev-Type Inequality. Show that for every e € (0,1)
there exists a constant ¢, depending only on € and ();)$2, (but not on the
number of terms in p) such that

1Pll0,11 < cellPlii—e.1y

for every p € span{z?o 2*i ...},
Outline. Using the scaling z — 2'/*1, without loss of generality we may

assume that A; = 1. Suppose there exists a sequence
(pm)%_, C span{zr z™ ...}, m=1,2,...

such that
0< Am = ||pm||[071] — 00

while
Pmllp—eny =1, m=12....

Let ¢y := pm/Am. Note that ||gm||j0,1) = 1 for each m, and ||gm|[j1—c,1) = 0
as m — oc. Then, by part d],

@ lljo,1—-5] < €5

for every § € (0,1). Hence (gm)2o—, is a sequence of uniformly bounded
and equicontinuous functions on closed subintervals of [0,1), and by the
Arzela-Ascoli theorem (see, for example, Rudin [87]) we may extract a
uniformly convergent subsequence on [0, 1—¢€/2]. This subsequence, by part
e], converges uniformly to a function F' analytic on (0,1 — €/2), but since
lgmll[i—e1) — 0, F must be identically zero. This is a contradiction since
lgmllo) = 1 and [lgmllo.1—q = llgmllo. for every sufficiently large m. O

gl Suppose (¢m)pe—y C span{z*,z* ...} and ||gm||ja5) < 1 for each
m, where 0 < a < b. Show that there is a subsequence of (g,,)%_; that
converges uniformly on every closed subinterval of [0, b).

Hint: Use parts f] and d] and the Arzela-Ascoli theorem. O
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E.4 Mintz’s Theorem with Real Exponents on [a,b], a > 0. Suppose

(Ai)2_ . is a set of distinct real numbers satisfying

=1
Z |/\l‘ < o0

=—00

i #£0

Y

with A; < 0 for i < 0 and A; > 0 for ¢ > 0. Suppose that the gap condition
1nf{/\z —Xi_1:1 € Z} >0

holds. Associated with

p(z) = Z a;z n=0,1,...

let )
p (z):= Z aiz™ and pt(z) = Zaiw’\i.
i=—n i=0
Let 0 < a <b.

a] Show that there exists a constant ¢ depending only on a, b, and (A;)$2_ .
(but not on the number of terms in p) such that

1P gy < cllplliaey  and  lp~ a5 < ellplifay

Ai
for every p € span{z?}2 .

Outline. 1t is sufficient to prove only the first inequality; the second inequal-
ity follows from the first by the substitution y = z=!. If the first inequality

fails to hold, then there exists a sequence (p,)3%; C span{z*}3° __ such
that
P llfapy =1, n=12..., and Jim ||pafifae) = 0-

Since p = p* + p—, the above relations imply that
Ippllay <K <oo, n=1,2,....

By E.3 g] and E.3 €], there exists a subsequence (n;)$2, such that (p;f )2,
converges uniformly on every closed subinterval of [0,b) to a function f
analytic on

Dy :={z € C\(—00,0] : |2z] < b}

of the form

fz2) =Y a2, z € Dy,
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while (p,,)i2, converges uniformly on every closed subinterval of (a, oc) to

a function g analytic on

E, ={z€C\ (-00,0]: |z] > a}

of the form
-1
9(z) = Z aiz)‘i ; z € E,, zlgr(;o g(z) =0.
i=—00 z€R

Now lim ||pn,[/{a,s) = 0 and p,,, = p|, + p;,, imply that f + g =0 on (a,b).
71— 00
Show that ()
_f fler), Rez < logb
h(z) = { —g(e?), Rez > loga

is a well-defined bounded entire function, and hence h = 0 on C by Liou-
ville’s theorem. From this, deduce that

f=0on [0,b) and 9g=0 on (a,00).

Hence, for every y € (a,b),

; + _
i {1z flia,) = 0
and
. + _ . - _
ILI{.IO ”pn,- ly,b] — 2141}120 ”pm = Pn;lly,b] = 0.
Therefore
lim (1p; [l =0,
which contradicts ||p;f]lae0 =1, n=1,2,.... 0
b] The Closure of Miintz Polynomials. Let f € C[0, 1], and suppose there
exist Miintz polynomials p,, € span{z*}3°___ of the form
kn
pn(w) = Z ai,’ﬂmkia n:172a"'
i=—kn

such that lim ||p, — fll[a,5) = 0. Show that f is of the form
n—oo

flz) = i a;z™ | x € (a,b),

i=—00

where
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oo
fH(z) = Zaix)"' , z € [0,b),
i=1

-1
fr@)= ) awh, we(ao0),  lm f(z)=0,

f can be extended analytically throughout the region
{z€C\ (—00,0]:a < |z| < b},

and
lim a;, = a;, 1€7Z.
n—oo
Hint: Use part a] and E.3 €]. O

E.5 Removing the Gap Conditions. Assume throughout this exercise that
0<X <A <---and Y ;2 1/X; < oc.

a] Bounded Chebyshev-Type Inequality. Show that for every e € (0,1)
there is a constant ¢, depending only on e and (\;)$2, (but not on the
number of terms in p) such that

Ipll0,1] < cellplli—e1

for every p € span{z*o,z* ... }. (This is the inequality of E.3 f] without
the gap condition inf{\; — A\; 1 :4 € N} > 0.)

Hint: Assume, without loss of generality, that Ag = 0. Observe that
lim X\;/i = co. Choose m € N such that \; > 2¢ whenever ¢ > m. De-
(2 o0

—
fine I' := (v;)2, by
{min{/\i,i}, i=0,1,...,m
Yi ‘=

X+, i=m+1m+2,....
Then
— 1
0:70<71<"'5 Z_<ooa ’YZS/\Za ’LZO,I,
im1 Vi
and inf{y; — v;—1 : i € N} > 0. Now use E.3 g] of Section 3.3 with [a,b] =
[1 — ¢, 1] and E.3 {] of this section. O

b] Bounded Bernstein-Type Inequality. Suppose \g = 0 and A; > 1.
Prove that for every € € (0,1) there is a constant c¢. depending only on €
and (X\;)$2, (but not on the number of terms in p) such that

19'1110.1-a < cellpllfo
for every p € span{z*®, 2 ... }. (This is the second inequality of E.3 d]
without the gap condition inf{\; — \;_; : i € N} > 0.)

Hint: Define the sequence I" as in the hint given to part a]. Now use E.3 {]
of Section 3.3 with [a,b], a € (0,1 — €], E.3 g] of this section, and part a]
of this exercise. O
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¢] Let 0 <a < b. Show that span{z*°,z*1 ...} is not dense in C[a,b].
Hint: Use part a] and Theorem 4.2.1 (full Miintz’s theorem in C[0,1]). O
d] Let

Mopo1 = k2, = k242K k=1,2,...,
asp_1 =28 amp =28, k=1,2,....
Show that the function f(z) := > o) (a2i—12*%=" + az™?) is a well-

defined continuous function on [0,1]. Show also that > :°, a;z* does not
converge for any = € (0,00) (hence the conclusions of E.3 €] are not valid
without a gap condition).

E.6 A Comparison Theorem. Let 0 <k <n be fized integers. Assume

Ao <A< oo <Ak <0< Mgt < Aega <0 < Ans
Yo <y < <Yk <O <Y1 <Yet2 < < Y

and
1vil < Al i=0,1,...,n

with strict inequality for at least one index i. Let
H, :=span{z*, 2™ ... 2™} and G, :=span{z?,z™,... 27"}
and let 0 < a < b. Then

0 111 — in 11— .
prgé;nn | p||[a7b] < prélgi I p”[a,b]

Hint: Let ¢* € H,, be the best approximation to z° = 1 on [a, b]. Let

n
r(z) = (=1)z° + Zaﬂ" € span{z?0, ... 7 20 g7+ . 27}
i=0
interpolate
A A A An
¢* — 1€ span{zt,... ot 2% a1 . 2P}
at the n+ 1 distinct zeros, x1,xa, ..., Zp+1, of ¢* —1 on [a, b] (see Theorem

3.1.6). Use Theorem 3.2.5 to show that
(@) <lg(@)], = €la,b]
with strict inequality for z # x;. Finally show that if p* := r + 1, then

in [|1=plliws <11 =0 iae < 11 = *[1apr = min ||1 = pllfas -
Join 1= pllgap) S L =P lta) < 1L = ¢7llfay = 100 {11 = pllga,y
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E.7 Full Miintz Theorem on [a,b], a > 0. Let (\;){2, be a sequence of
distinct real numbers, and let 0 < a < b. Show that span{z*°, 21 ...} is
dense in Cfa, b] if and only if

Hint: Distinguish the following cases.

Case 1: The sequence ();)$2, has a cluster point 0 # A € R. Use Theorem
4.2.1 to show that span{z*®, z* ...} is dense in C[a, b].

Case 2: The point 0 is a cluster point of (A;)$2;. Use Case 1 to show first
that span{z o+t zM+1 1 is dense in Cla,b], and recall that a > 0.

Case 3: The sequence (A;)$2, does not have any (finite) cluster points, and

either
=1 = 1
Sogee o L
A.

i=0
A >0

Use Theorem 4.2.1 to show that span{z*°,2*! ...} is dense in C[a, b].

Case 4:

> <o

=0 |AZ‘ .

Ai#£0
Without loss of generality we may assume that 0 ¢ {)\;}2, (why?). By a
change of scaling, we may also assume that [a,b] = [1 — ¢,1]. Let

{XZ}OO :{/\i}?ioa where "'<X_2<X_1<0<X0<X1<"'.

i=—00

Show that there is a sequence (7;)$2 satisfying

"'<’772<’771<0<’70<’71<"',

o0

~ . 1
[l <Al ieZ, E il < 00,
. 13

and the gap condition
inf{v; —vi—1:1€Z}>0.
Use E.4 a], E.5 a], and E.2 ] to show that
1 ¢ span{z™}Z_ .

where span{z?}°___ denotes the uniform closure of the span on [a,b].
Finally use E.6 to show that

1 ¢ span{z™ X = span{a™ )52,
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E.8 Further Results for Nonnegative Sequences with No Gap Condition.
Assume throughout this exercise that 0 < Ag < A; < -+, Zf; 1/ < o0,
and 0 < a <b.

a] Show that for every € € (0,b) there is a constant ¢, depending only on
€,a,b, and (X;)%2, (but not on the number of terms in p) such that

b
lIpllo,6—a < Ce/ |p(z)| dz

for every p € span{z?o, 2?1 ...}

Hint: Assume that b = 1; the general case can be reduced to this by scaling.
Use parts a] and b] of E.5 with

p(z) = / p(t) dt € span{zro! grHl 1,
0

b] Assume
(Pn)nis Cspan{a™,z™, ...}

converges to an f € C|a,b] uniformly on [a, b]. Show that f can be extended
analytically throughout the region

Dy :={z€C\ (00,01 :0< |z| < b}

and the convergence is uniform on every closed subset of Dj.

Hint: This part of the exercise is difficult. A proof of a more general state-
ment can be found in Schwartz [59, pp. 38-48]. O
] Suppose (p,)5; C span{z*o,z*, ...} and ||pp|lja,s < 1 for each n.
Show that there is a subsequence of (p,)S2; that converges uniformly on
every closed subinterval of [0,b). (So the conclusion of E.3 g] holds without
the gap condition inf{\; — X\;_; :4 € N} > 0.)

Hint: Use parts a] and b] of E.5 and the Arzela-Ascoli theorem. O

d] Let K be a closed subset of Dj defined in part b]. Show that there is a
constant cx depending only on K, a, b, and (\;)$2, (but not on the number
of terms in p) such that

Pl < exllplifa,

for every p € span{z?o, 2?1 ...}

Hint: Use parts c| and b]. (If the gap condition inf{\; — X\;_1 : 4 € N} >0
holds, then the simpler result of E.3 e] can be used instead of part b] of this
exercise.) O
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E.9 Full Miintz Theorem on [a,b], a > 0, in L, Norm. Schwartz [59]
gives the following results: Suppose (A;)$2_ ., is a sequence of distinct real
numbers. For a finite set I" of integers and

ple) =Y aix, a; € R,

ier
let
p (z):= Z aiz™i and pt(z) = Z a;z™ .
il il
Ai<0 Ai>0

Let 0<a<band 1 <gq < .

Theorem 4.2.5. Suppose

> e
i=—00 |/\Z‘ .
Xi #£0
Then there exists a constant ¢ depending only on a,b,q, and (X\;)52_ . (but
not on the number of terms in p) such that
1P 12,108 < €llpllL, a0 and ™ [ 2g1a.0) < cllPllLyla,b)

for every p € span{aMi}2__ .

Theorem 4.2.6. Suppose that 0 < a < b. Then span{z*°, 21 ...} is dense
in Lq[a,b] if and only if

(4.2.4) > o =

i=0
i #0

a] Prove the two above results under the gap condition
1nf{/\z —Xi_1:1E Z} >0.

Hint to Theorem 4.2.5: When ¢ = oo see E.4 a]. If 1 < ¢ < oo, then modify
the proof suggested in the hints to E.4 a], by using E.8 a]. O

Hint to Theorem 4.2.6: If (4.2.4) holds, then the fact that span{z*°, z* ...}
is dense in Ly[a, b] follows from E.7 and the obvious inequality

1Pl L, (a6 < (b= a) 1Dl o -

Now suppose (4.2.4) does not hold. Use Theorem 4.2.5 and E.8 a] to
show that for every e € (0,1 (b — a)) there exists a constant c. depending
only on a,b,q, and (A\;)2_., (but not on the number of terms in p) such
that

Pl ares—e < cellpllz,fa.n
for every p € span{z*i}2°___ . Now show that the above inequality implies
that span{z*0, 2" ...} is not dense in L,]a,b). O
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E.10 Denseness of span{cos \;f} and span{z**}. Throughout this exer-
cise the span is assumed to be over C. Let

Dr:={z2€C:|z| <R} and Cr:={2€C:|z| =R}.

a] Show that (cosmnf)52, is a complete orthogonal system in L[0,7]. So
no term, cosnf, can be removed if we wish to preserve denseness of the
span in L,[0, 7].

b] Let A := {e% : § € [0,4]}. Suppose (A1), is a sequence of distinct
complex numbers satisfying

M| <ker®, k=1,2,....

If § € [1,27], then span{z*o, 2% ...} is dense in La(A).
The proof of part b] is outlined in parts c], d], and e].

¢] Jensen’s Formula. Suppose h is a nonnegative integer and
oo
f(z)chkzk, cp #0
k=h

is analytic on a disk of radius greater than R, and suppose that the zeros
of fin D\ {0} are a1, as, ... ,a,, where each zero is listed as many times
as its multiplicity. Then

n 27
R 1 ;
log |cy| + hlog R + E 10g|a—k=%/ log | f(Re')| d6 .

k=1 0

Proof. This is a simple consequence of Poisson’s formula (see, for example,
Ahlfors [53]), which states that

1 27 .
log |F(0)| = %/0 log |F(Re®)| df

whenever the function F is analytic and zero-free in an open region con-
taining the closed disk Dgr. Now, in the above notation, if we let

F(z) = f(2) <§> hkf[l %

and apply Poisson’s formula to F, we get the required result by noting that
|F'(z)] = |f(2)| whenever |z| = R. (The case where f has zeros on the
boundary of D requires an additional limiting argument.) O



188 4. Denseness Questions

d] Let —oc < a < b < oo0. Suppose (fi)72, is a sequence in Ls(a,b)
and span{ fo, f1,...} is not dense in Ly(a,b). Then there exists a nonzero
g € La(a,b) such that

b
/fk(w)g(z)dzzo, E=0,1,....

This is an immediate consequence of the Riesz representation theorem (see
E.7 g] of Section 2.2) and the Hahn-Banach theorem. The second theorem
says that if span{ fo, f1,. .. } is not dense in a Banach space, then there exists
a nonzero continuous linear functional vanishing on { fo, f1,...}. The first
theorem gives the form of the functional; see Rudin [73].

e] Prove b] as follows: Suppose span{z*°, 221 ...} is not dense in Ly(A).
Then by d] there exists a g € L,[0, d] such that

)
£(2) ::/0 expli(z + 1)0)g(6) df

vanishes at z = A\, k =0,1,.... Also observe that f is an entire function,
and there is an absolute constant « > 0 such that

[f(2)] < a exp(dlz]) .

Use E.8 a] of Section 2.2 to show that f # 0. Let R > |Ag| be an integer.
Applying c] on Dg and exponentiating, we obtain

RR+1 R R
len| exp((6 — 1)R) <len|R" J] == < aexp(6R),
! k=0 ‘/\k‘

R

where ¢y, is the first nonvanishing coefficient of the Taylor series expansion
of f around 0. However,

RR+1
lim —— = o
R—oo R! eR ’

which is a contradiction and finishes the proof. O

f] Let A :=10,6]. Suppose (Ax)32, is a sequence of distinct complex num-
bers satisfying

M| <ke'=0, k=1,2,....
Show that if § € [1, x], then span{cos A\¢f, cos A10, ...} is dense in Ly(A).

Y

Hint: Proceed as in the proof of part b]. O
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g] Suppose (Ax)32, is a sequence of distinct real numbers satisfying
0< A<k, k=01,....
Then span{cos Agf, cos A1 6, ...} is dense in Ly[0, 7 — €] for any € > 0.
Proof. This is harder; see Boas [54, p. 235]. O

h] Suppose (Ag)72, is a sequence of distinct complex numbers satisfying
0 < |Ax| < k. Suppose f is an entire function such that ||f||p, < aeft for
all R > 0 with an absolute constant o > 0, and span{f(8z) : 8 € C} is
dense in Ly(Cy). Then span{f(Aoz), f(A12),...} is dense in Ly(Ch).

Y

E.11 On the Hardy Space H.,,. We denote by H the class of functions
that are analytic and bounded on D := {2z € C: |z| < 1}. We let

[l == [[fllp = sup | f(u)].
u€D
a] If f € Hy, then

o0
f(z)zZanz", z€D,
n=0
where
|an| < [1fll#. -

Hint: By Cauchy'’s integral formula

1 1
= —[f"(0) < —/
oal = O <5 [

holds for every R € (0,1). O
b] If f € Hoo, then

f(#)

tn+1

jdt| < B"[| f [l

1
= 2|

2
rens (12m) Mo, i<

and

. 1 n+1
@ <t (2) W, lsl<1.

¢] Heoo is a Banach algebra.
Hint: See Rudin [73]. O
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E.12 Blaschke Products. A product of the form

B(2) ;:zk}j(ﬂ> M a; € C\ {0}

1-a;z) o

with k € Z is called a Blaschke product. Let D := {z € C: |z| < 1}.

a] Let
a-—z
Yalz) = aeC.

Show that |¢,(2)| = 1 whenever |z| = 1 and

[ _ |a|2 -1
@a(z) - (1 —62)2 .

b] Show that if |a| < 1, then ¢, (2) maps the closed unit disk D one-to-one
onto itself.

¢] A Minimization Property. Let (1, fs,... , B, be fixed complex numbers
with |5;] > 1, i =1,...n. Show that

n

l_zziiﬁi

i=1

min
a; €C

n
= H 1Bi| ™
D i=1

and that the minimum is attained by the normalized finite Blaschke product

n n -1 5, —=—1
i Bi —
1_§Zfﬁi:(mi> H<1_ )

i=1 i=1 z

k3

Hint: Suppose that the statement is false. Then there are some a; € C such

that .
< (H 5i|> =
i=1

for all z € C with |z| = 1. Now Rouché’s theorem implies that

z — B

i=1

n

l_zziiﬁi

i=1

a*
I_ZZ—Z@'

i=1

)

has n zeros in the disk D, which is a contradiction. O

d] Suppose (8,)32, is a sequence in D satisfying

pr=p=-=5=0, Bn #0, n=k+1,k+2,...
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and

Then

pe= ] (ff%1>'§—2'

n=k+1

defines a bounded analytic function on D (that is, B € H ), which vanishes
at zif and only if z = 3; for some j = 1,2,... , in which case the multiplicity
of zo in B(z) is the same as the multiplicity of §; in (8,)52,

e] Suppose (B,)52 is a sequence in D satisfying

Z 1_|Bn =

Denote the multiplicity of §; in (8,)n%; by m;. Suppose f € Ho has a
zero at each §; with multiplicity m;. Then f = 0.

Hint: Suppose ||f||p > 0. Without loss of generality we may assume that
f(0) # 0. By Jensen’s formula (see E.10 c]),

oo

1 27 )
S tom gy s S0 = o [ | f(Re o < ogl 1

for every R € (0,1). Letting R tend to 1, we obtain

Zlog w < log||fllp —log|f(0)] < oo

Hence
o0
D (1= [Ba]) <0,
n=1
which contradicts the assumption. O

Note that the conclusion of part €] holds for the larger Nevanlinna
class N, which is defined as the set of those analytic functions f on D for
which

1 2m .
sup — log™ |f(Re?)|db < oo,
Re(0,1) 27 Jo

where log" 2 := max{logz,0}.
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f] Let

B(z) := zkﬁ <L__Z> o , o € C\ {0}

1—-a;z) «;

IB'(2)| :k+iﬂ. 2] =1.
=zl
Hint: Consider B'/B, where |B(z)| = 1 whenever |z| = 1. O
g] Suppose
o0
Z(l—‘ai‘)<00, aie(oal)
i=1
and -
H ‘O‘z‘
i=1 1 o Oé z @i
Show that

(1= 2)*B(2))'llp < <4+2Z 1-af ) I1Bllp -

i=1

Hint: Use f]. O

E.13 Yet Another Proof of Miintz’s Theorem when inf{}\; : i € N} > 0.
As in E.10, this proof requires a consequence of the Hahn-Banach theorem
and the Riesz representation theorem which we state in a]. For details,
the reader is referred to Feinerman and Newman [76] and Rudin [87]. We
assume throughout the exercise that Ag := 0 and that (A;)72, is a sequence
of distinct positive numbers satisfying inf{); : £ € N} > 0.

a] span{l,z* z*2 ...} is not dense if and only if there exists a nonzero

finite Borel measure p on [0, 1] with
1
/ M du(t) =0, k=0,1,2....
0

b] Show that > 7, 1/A; = oo implies that span{1,z*',z*2,...} is dense
in C[0,1].

Outline. Suppose there is a nonzero finite Borel measure u on [0, 1] such
that

1
/ M odu(t) =0, k=0,1,....
0
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Let, )
fG) = [ #dute), Re(z) >0
0
Show that .
+z
o) =1 (122) € e
and

A —1 . A —1
=0 th 1 k=12 .. ..
g(/\k-l-].) W )\k+1< ' 7

Note that Y ,-; 1/A\; = oo and inf{)\; : k € N} > 0 imply

> (-] -
Pt A+ 1

Hence E.12 €] yields that g = 0 on the open unit disk. Therefore f(z) =0
whenever Re(z) > 0, so

f(n):/olt"du(t):(), n=12....

/01 t2du(t) =0

also holds because of the choice of u. Now the Weierstrass approximation
theorem yields that

Note that

/0 £t dp(t) = 0

for every f € C[0,1], which contradicts the fact that the Borel measure u
is nonzero. So part a] implies that span{1,z*1,2*2 ...} is dense in C[0, 1].
O

¢] Show that ) ;7,1/A\; < oc implies that span{l,z**,z*2...} is not
dense in C[0,1].

Outline. Show under the above assumption that

! 1 [® .
f(z)= / t* {—/ f(—1 +is)e_’31°gtds} dt, Re(z) > -1
0 27 —0o0
if f is defined by

z oA\ — 2
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Show that . -
du(t) = {2_/ f(-1 +is)eisl°gtds} dt
™ — 00

defines a nonzero finite Borel measure, u, on [0, 1] such that

1
/ M du(t) =0, k=0,1,2,...
0

as is required by part a]. For the above, show that
1 [ f(is—1)

= -1
f(z) S is—l—zds’ Re(z) >

and use that

1 o
—_— = t* 7 dt.
14+2—1s /0
O
E.14 Another Proof of Denseness of Miintz Spaces when A; — 0. Suppose
A= (\)$°, is a sequence of distinct positive numbers with lim A; = 0.

71— 00
Show that
M(A) :=span{1,z*, 2?2 ...}

is dense in C[0,1] if and only if Y2, \; = 0c.
Hint: If 52 \; = oo, then lim A\; = 0 implies that
1— 00

ad Ai—1
> (1-[i]) -

i=1

So the outline of the proof of E.13 b] yields that M (A) is dense in C[0, 1].
Ifn:= Zf; Ai < 00, then, by Theorem 6.1.1, the inequality
llzp'(2)l0,1) < 9 [Ipllj0,1]

holds for every p € M(A). Use this inequality to show that M (A) fails to
be dense in C0,1]. 0

E.15 Denseness of Miintz Spaces with Complex Exponents. Suppose
A= (A)$2, is a sequence of complex numbers satisfying

Re(A;) >0, 1=1,2,....
Show that if

_ - o0
An +1 '
n=1
then span{1,2*:,2*2 ...} is dense in C[0,1]. (In this exercise the span is

taken over C, and C[0, 1] denotes the set of all complex-valued continuous
functions on [0, 1].)



4.2 Mintz’s Theorem 195

E.16 Christoffel Functions for Nondense Miintz Spaces. Let A = (\;)52,
be a sequence of distinct complex numbers with Re(\;) > —1 for each i. As
in Section 3.4, let L} := Lj{Xo,... , At} denote the associated orthonormal
Miintz-Legendre polynomials on [0, 1].

a] Let K, be defined by

1
:= inf / p(t)|?dt: p € span{zt, 2™ ... 2}, ply :1}.
o= mt{ [ bl { L o)

Show that

Ka(y) =Y ILi(w)*.
k=0

The function 1/K, is called the nth Christoffel function associated with A.
Hint: Proceed as in the hint to E.13 of Section 2.3. O

In the rest of the exercise we assume that (A;)%2, is a sequence of non-
negative integers. We use this assumption for treating (higher) derivatives,
although some weaker assumptions would lead to the same conclusions.

b] Suppose 3.2, 1/A; < oo. Show that for every € € (0,1) and m € N,
there exists a constant c. ,, depending only on A, €, and m such that

[p™ llo.1—e < cemllPllapo,m

for every p € span{z?o 2?1 ...}

Hint: Use E.3 ¢]. O
¢] Show that the following statements are equivalent:

(1) span{z*0 z*1 ...} is not dense in C[0,1].

(2) XE /A <oo.

(3)

(4) There exists an z € [0,1) so that Y77 (Li(z))” < oc.

Outline. The equivalence of (1) and (2) is the content of Miintz’s theorem
(Theorem 4.2.1). To see that (2) implies (3), first observe that

2% o (L%)? converges uniformly on [0,1 — ¢ for all € € (0,1).

>lE™ W)l
k=0
_ (m) 2, Ao A1 _
= sup {|p (y)‘ : pespan{z™,z™, ...}, ||pllLyjo) = 1} ,

which can be proved similarly to part a]. Hence by part b], for every e €
(0,1), there exists a constant ¢, depending only on ¢ such that
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oo

S (Li@)? <ee  and Y (Ly(@) <ec, ze0,1-4.
k=0 k=0

Since (Y7_, (L5)?)" = 237 o LiL; on [0,00), applying the Cauchy-
Schwarz inequality, we obtain that

[(Sr, (£3)?) (@) < 2¢.,  we[0,1-¢.

Therefore the functions > ;_, (L,’;)Q, n=1,2,..., are uniformly bounded
and equicontinuous on [0,1 — €], which implies the uniform convergence

of the functions K, on [0,1 — e]’ by the Arzela-Ascoli theorem. Since (3)
obviously implies (4), what remains to be proven is that (4) implies (1).
This can be easily done by part a]. O
d] Let e € (0,1) and m € N be fixed. Show that if > ° 1/A; < oo, then
S0 o ((L1)™)2 converges uniformly on [0,1 — €].

Hint: Modify the argument given in the hints to part c]. O

e] Show that if > 7° 1/X; < oo, then
. *\ (m) —
klggo I(LE) "™ Mlo,1—q =0

for every e € (0,1) and m € N.

E.17 Chebyshev-Type Inequality with Explicit Bound via the Paley-
Wiener Theorem. The method outlined in this exercise was suggested
by Haldsz. A function f is called entire if it is analytic on the complex
plane. An entire function f is called a function of exponential type § if there
exists a constant ¢ depending only on f such that

|f(2)] < cexp(dlz]), z€C.

The collection of all such entire functions of exponential type § is denoted
be E°. The Paley-Wiener theorem characterizes the functions F that can
be written as the Fourier transform of some function f € Lo[—4,d].

Theorem (Paley-Wiener). Let § € (0,00). Then F € E° N Ly(R) if and
only if there exists an F € Lo[—6, 0] such that

5
F(z)= [6 f(t)e'=dt.

For a proof see, for example, Rudin [87].

In the rest of the exercise let A = (A\;)?2, be an increasing sequence
with A\g =0 and ;2 1/Ax < 00.
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E.5 says that

[1Pll{0.1]
[1Pllj1—e.1)

Cle, A) := sup{

: pEspan{a:’\O,a:)‘l,...}} < 0

holds for every € € (0,1). In this exercise we establish an explicit bound for

C(e, A).
a] Show that

p(0)]

C(e, A) = su
(&4) pﬁmum

: pE€ span{a:xo,arxl,...}}

for every € € (0,1).
Hint: Use Ag = 0, E4 ] of Section 3.3, and the monotonicity of the
Chebyshev polynomial

Tn{xAO,xAl,” . ,a:A'n; [1 - 671]}

on [0,1—¢]. O
b] Assume that

(1) F € ESN Ly(R);

(2) F(i\t) =0, k=1,2,... (iis the imaginary unit); and

(3) F(0)=1.
Show that

\P(o0)| < F|lny@) 1Pl La—s.61
for every P € span{e ot e~Mt | ]

Outline. By the Paley-Wiener theorem

6 .

F(z) :/ f(t)e'= at

-5

for some f € Ly[—4d,0]. Now if
P(t) = ag + Z are Mt
k=1

then

[ § n §
= ag a ekt
| ropw- [gwﬁ+;;g[Jw dt

-0

=aoF(0) + > apF(i\) = ag = P(0).
k=1
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Hence by the Cauchy-Schwarz inequality and the L, inversion theorem of
Fourier transforms, we obtain that

|P(c0)| < fllzaj=s.6) IPlLoj=5.6) < I1FllLo) 1Pl Lo[—s.6 -

O
Given § € (0,1), let N € N be chosen so that
— 1 4
2 % %3
k=N+1 "k
Let 5
Let
sin(dz/3)
F(z) = ——
(2) 0z/3
N z '\ sin(orz/Ag) it sin(z/Ag) 4
X - — | ———— - —— ;
kl—[l<< z)\k> k2 [ Ak ) k:l;l[+1 ( ( sins > )
where i is the imaginary unit.
¢] Show that F € E°.
d] Observe that F(0) =1, F(iA;) =0, k=1,2,..., and
N
sin(6¢/3)
F(t)] teR.
< o)
e] Show that
3¢
< ST (24 2 ) 1Pl
k=1
for every P € span{e=?!,e= M .} with ¢ := [[t7" sint||, )
Hint: Use parts b], c], and d]. O

f] Let Ay := k®, a > 1. Show that there exists a constant ¢, depending
only on « such that

1/(1-a)

Ipll0,1] < exp (cae ) 1Pl —e,1)

for every p € span{z*°, z*' ...} and for every ¢ € (0,1/2].
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Proof. Let
(4.2.5) 0= —% log(1l —¢).

Observe that N in part e] can be chosen so that

(4.2.6) N := K@)UU_Q)J +1.

Also, oy in part d] is of the form o, = §k*(3N)~!. Let M +1 be the smallest
value of k£ € N for which

1
— <1, that is, —<1.
O arts kod —

-le]

Note that

If 0 < M < N, then

22) (119)+(5)" () "o

k=M+1

M
> Mfon?)NfM

9N\ M (1 /3Ny Ve M
) (5(?) ) .
< (3(2e)™)M3NTM < (3(2e))N,

and the theorem follows by (4.2.5), (4.2.6), and part e].
If N < M, then

) )" (2 ey
0ka ] =\ 4 € B 0

IN
TN N
ﬂ‘

s(%ﬁN(%%iﬁNs@wm—wW,

and the theorem follows by (4.2.5), (4.2.6), and part e].
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If M =0, then
1 24 L) < 1 3=3"
and the theorem follows by (4.2.5), (4.2.6), and part e]. O

The next part of the exercise shows that the result of part f] is close
to sharp.

g] Let Ay := k%, a > 1.Lete € (0,1/2]. Show that there exists a constant
¢ depending only on a > 0 so that

sup {% i pE Span{x/\O,aj/\l, . }} > exp (Cael/(lfa)) -

Proof. Let n € N be a fixed. We define v := kn®~', k = 0,1,.... Let
Tn(z) := ((z — 1)/2)™ and

Then @, € span{z™,...z"}, and by E.3 g] of Section 3.3 we obtain that

O % } Qa0 _
Sup{HPHue,u' pESAMT Ty 2 ey 2

Now let n be the smallest integer satisfying n®~' > e~ !. Since (1 —€)'/¢ is
bounded away from 0 on (0,1/2], the result follows. O

E.18 Completion of the Proof of Theorem 4.2.1. The case when A\; > 1
for each i has already been proved. The only real remaining difficulty is
part d].

a] Prove Theorem 4.2.1 in the case when inf{}; : i € N} > 0.
Hint: Use the scaling z — z'/% and the already proved case. O

b] Show that if (A;)52; C (0,00) has a cluster point A € (0,00), then
span{l,z* z*2 ...} is dense in C]0, 1].

Hint: Use part al. O

¢] Suppose ()2, C (0,0¢) and A\; — 0. Then span{1,z* 2?2 ...} is
dense in C[0,1] if and only if )"~ \; = oc.

Hint: This is the content of E.14. O
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d] Suppose
{)\i:iEN}:{ai:iEN}U{ﬂi:iEN}
with
lim a; =0 and lim 8; = 0.
71— 00 1— 00

Show that span{1,z* z*2 ...} is dense in C[0, 1] if and only if
o0 o0 1

(4.2.7) dai+y —=oc.
i=1 = Bi

Outline. If (4.2.7) holds, then the denseness of span{1,2*:,2*2,...} in
C10, 1] follows from parts a] and c]. Now assume that (4.2.7) does not hold,

o)
o0 o0 1
a; < o0 and — < 00.

For notational convenience, let

Tn,a = Tn{lzxala" . ,xa" : [071]}7
T :=To{l,2°, ... 2P :[0,1]},
Tona,p = Ton{l,z%,... I LN [0,1]}

(we use the notation introduced in Section 3.3).

It follows from Theorem 6.1.1 (Newman’s inequality) and the Mean
Value Theorem that for every e > 0 there exists a k1(¢) € N depending
only on (e;)$2, and € (and not on n) such that T}, , has at most & (¢) zeros
in [e,1) and at least n — ki (€) zeros in (0, €).

Similarly, E.5 b] and the Mean Value Theorem imply that for every
€ > 0 there exists a kz(e) € N depending only on (5;)52; and € (and not on
n) so that T, 3 has at most k2 (e) zeros in (0,1 — €] and at least n — ko (e)
zeros (1 — e, 1).

Now, on counting the zeros of T}, o — Top.a,8 and Ty g — Top,a,3, We
can deduce that for every € > 0 there exists a k(¢) € N depending only
on (A;)$2, and € (and not on n) so that Ty, o3 has at most k(e) zeros in
[e,1— €]

Let € := % and k := k (). Pick k + 4 points

T<m<m < <ims <}
and a function f € C[0,1] such that f(z) = 0 for all z € [0,1] U [3,1],

while '
fl) =2 (-1)", i=0,1,....
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Assume that there exists a p € span{1,z*1,2*2, ...} such that

1f =Dl < 1.

Then p —T5y o5 has at least 2n + 1 zeros in (0, 1). However, for sufficiently
large n,
p—Tonap €span{l,z™ ... 2’2}

so it can have at most 2n zeros in [0, 00). This contradiction shows that
span{1, 2™, 222, ...} is not dense in C[0, 1]. O

e] Prove Theorem 4.2.1 in full generality.
Outline. Combine parts a] to d]. O

E.19 Proof of Theorem 4.2.3. Prove Theorem 4.2.3.

Proof. Assume that
span{z*®, z* .. .}

is dense in L]0, 1]. Let m be a fixed nonnegative integer. Let € > 0. Choose
a
p € span{z*, 2™, ...}

such that

=™ _p(x)HLl[O,l] < €.
Now let -

q(z) == / p(t)dt € span{z?ott gr T Y.
0

Then

wm-{—l ( )

—q(z <eE.
m+1 [0.1]

So the Weierstrass approximation theorem yields that

span{l,z 0 Fl g+l 1

is dense in C[0, 1], and Theorem 2.1 implies that

oo

Ai +1 _
/\ +1)2
i=
Now assume that
= Ni+1
4.2.8 =
(4.28) YRSV B

By the Hahn-Banach theorem and the Riesz representation theorem



4.2 Miintz’'s Theorem 203
span{z*®, 2 ...}

is not dense in L]0, 1] if and only if there exists a 0 # h € L [0, 1] satisfying
1
/ch@dp:Q i=0,1,....
0
Suppose there exists a 0 # h € L[0,1] such that

1
/thmnﬁ:o, i=0,1,....
0

Let

Then

g@%=f<1f2—1>

is a bounded analytic function on the open unit disk that satisfies

i Ai .
=0 ith 1, =0,1,....
g</\i+ > wi /\i+2‘< ; { s 1y

Note that (4.2.8) implies

00 - /\Z B
5 Ai +2 -
i=1

Hence Blaschke’s theorem (E.12 ¢]) yields that g = 0 on the open unit disk.
Therefore f(z) = 0 whenever Re(z) > —1, so

f(n):/olt"h(t)dt:0, n=0,1,....

Now the Weierstrass approximation theorem yields

1
/ u(t)h(t)dt =0
0
for every u € C]0,1], which contradicts the fact that 0 # h. So
span{z* 2™ ...}

is dense in L4]0,1]. O
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E.20 Proof of Theorem 4.2.4.
a] Show that if

SR

(4.2.9) Z =00,
S(n+d) 41

then span{z*0,z*1 ...} is dense in L,[0,1].

Outline. By the Hahn-Banach theorem and the Riesz representation theo-
rem
span{z*®, 2 .. .}

is not dense in L,[0, 1] if and only if there exists a 0 # h € L4[0, 1] satisfying

1
/tanmzo, i=0,1,...,
0

where ¢ is the conjugate exponent of p defined by p~" +¢~! = 1.
Suppose there exists a 0 # h € L,[0, 1] such that

1
/tanﬁ:o, i=0,1,....
0

Let .
f(2) ::/0 t*h(t) dt Re(z) > —-.

Use Holder’s inequality to show that

9(z) :=f<1fz—%>

is a bounded analytic function on the open unit disk that satisfies

i+ -1 i+ 1 -1
D p ) =0 with Zr <1, i=0,1,....
Ai+i4+1 A+l
Note that (4.2.9) implies
1
/\i-l-E—].

(.

>:oo

Hence Blaschke’s theorem (E.12 ¢]) yields that g = 0 on the open unit disk.
Therefore f(z) =0 whenever Re(z) > —%, 80

/\i+%+1



4.2 Mintz’s Theorem 205

f(n):/olt”h(t)dtzo, n=01,...

Now the Weierstrass approximation theorem yields

/1u(t)h(t) dt =0
0

for every u € C]0,1], which contradicts the fact that 0 # h. So

span{z*®, 2 .. .}

is dense in L,[0, 1]. O
b] Show that if

s Ai + =

Z < o0,

= i+ ) +1
then span{z*o,z*1 ...} is not dense in L,[0, 1].
Outline. This follows from E.7 of Section 4.3. O

¢] Suppose ()2, is a sequence of distinct positive numbers. Let p €
[1,00). Show that span{e=*°! e=* ...} is dense in L,[0, cc) if and only if

3 =00.
—N+1
Outline. Use parts a] and b] and the substitution z = e ™. O

E.21 Miintz Theorem on [a,b] with a < 0 < b. Suppose A := (\;)2, is
a sequence of distinct nonnegative integers, and suppose a < 0 < b. Then

span{l,z*1 222 ...} is dense in C[a,b] if and only if
i 1_ o0 and 3 1. 00
i=1 AZ - i=1 /\Z - -
Ai is even Ai is odd

E.22 The Zeros of the Chebyshev Polynomials in Nondense Miintz Spaces.
Let ()32, be a sequence of distinct nonnegative real numbers with Ag := 0
and Y 2, 1/A; < oc. Let

Tn = Tn{AOa Al, e ,An; [O, 1]}
be the Chebyshev polynomials for span{z*°,... ,z*»} on [0,1]. Let
Z :={x€[0,1] : T(z) =0 for some n € N}.

Let Z' be the set of all limit points of Z and Z" be the set of all limit points
of Z'. Show that Z" = {1}.

Hint: Use the bounded Bernstein-type inequality of E.5 b] and the inter-
lacing property of the zeros of the Chebyshev polynomials T),. O
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4.3 Unbounded Bernstein Inequalities

In Section 4.1 we characterized the denseness of C'!' Markov spaces by the
behavior of the zeros of their associated Chebyshev polynomials. The princi-
pal result of this section is a characterization of denseness of Markov spaces
by whether or not they have an unbounded Bernstein inequality.

Definition 4.3.1 (Unbounded Bernstein Inequality). Let A be a subset of
C'a,b]. We say that A has an everywhere unbounded Bernstein inequality

if
!
sup{inp I 5 : 0#pe€e A} =000
l1pll1a,01
for every [, 8] C [a,b], a # S.

The subset
A:={2’p(z) :p € Py, n=0,1,...}

has an everywhere unbounded Bernstein inequality despite the fact that
f'(0) =0 for every f € A.

The next result shows that in most instances the Chebyshev polynomial
is close to extremal for Bernstein-type inequalities. This is a theme that will
be explored further in later chapters.

Theorem 4.3.2 (A Bernstein-Type Inequality for Chebyshev Spaces). Let

(1, f1,..., fn) be a Chebyshev system on [a,b] such that each f; is differen-
tiable at x¢ € [a,b]. Let

T, = Tn{]-a fla s :fn; [aa b]}
be the associated Chebyshev polynomial. Then

[P’ (0))| 2
[Pllag) = 1= |Tu(zo)]

\Trlz(zo)\

for every 0 # p € span{l, fi,..., fu}, provided |Ty(zo)| # 1.

Proof. Let a = yg < y1 < --- < Yy, = b denote the extreme points of T,
that is,
Tnlys) = (=1)" ", 1=0,1,....n

(see the definition and E.1 a] in Section 3.3). Let y; < o < yg+1 and

0+#pé€eH, :=span{l, fi,..., fu}.
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If p'(x0) = 0, then there is nothing to prove. Assume that p'(zo) # 0. Then
we may normalize p so that

Ipllasy =1 and  sign(p'(z0)) = sign(Tn(Yr+1) — Tn(yr)) -

Let ¢ := |Th(zo)|. Let € € (0,1) be fixed. Then there exists a constant n
with || <6+ (1 — 6) such that

n+5(1=06)(1 - e)p(zo) = Tn(o).

Now let

q(z) == n+3(1=0)(1 - e)p(z).
Then

llallia,e; <1, q(xo) = Tr(wo),
and

sign(q'(z0)) = sign(Tn (Yrt1) — Tnlyr)) -

If the desired inequality did not hold for p, then for a sufficiently small
e>0

' (wo)| > [T}, (o),

SO
hz) := q(z) = Tn(z)

would have at least three zeros in (yi,yr+1). But h has at least one zero in
each of (y;,yi+1). Hence h € H,, has at least n + 2 zeros in [a, b], which is
a contradiction. O

We now state the main result.

Theorem 4.3.3 (Characterization of Denseness by Unbounded Bernstein
Inequality). Suppose M := (fo, f1,...) is an infinite Markov system on
[a,b] with each f; € C*[a,b], and suppose that (fi/fo) does not vanish
on (a,b). Then span M is dense in Cla,b] if and only if span M has an
everywhere unbounded Bernstein inequality.

Proof. The only if part of this Theorem is obvious. A good uniform ap-
proximation on [a,b] to a function with uniformly large derivative on a
subinterval [a, ] C [a,b] must have large derivative at some points in
[a, B].

In the other direction we use Theorems 4.3.2 and 4.1.1 in the follow-
ing way. Without loss of generality we may assume that fo = 1 (why?). If
span M is not dense in C|a, b], then, by Theorem 4.1.1, there exists a subin-
terval [, 8] C [a,b], where all elements of a subsequence of the sequence
of associated Chebyshev polynomials,
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(Tn{]-afla" . :fn; [aab]})a

have no zeros. It remains to show that from this subsequence we can pick
another subsequence (7),,) and a subinterval [¢,d] C [a, 8] with

(4.3.1) || T, [e.d) <1—10
and
(4.3.2) T e,y < v

for some absolute constants § > 0 and v > 0. The result will now follow
from Theorem 4.3.2. A proof that the above choice of (T),,) is possible is
outlined in E.1. O

Theorem 4.3.3 has the following interesting corollary.

Corollary 4.3.4. Suppose ()72, C R\[-1,1] is a sequence of distinct real

numbers. Then
Ve e
span< 1, , s e
r — r — (g
is dense in C[—1,1] if and only if

iq/a%—lzoo.
k=1

(Here, unlike in Section 3.5, \/ai — 1 denotes the principal square root of
2
a;—1.)

Proof. A combination of Theorem 4.3.3 and Corollary 7.1.3 yields the only
if part of the corollary.

The Chebyshev polynomials T;, (of the first kind) and U,, (of the second
kind) for the Chebyshev space

U mal
span< 1, e
T —aq T —ap

on [—1, 1] were introduced in Section 3.5. The properties of

T (0) := Ty (cosh) and Un(6) := Un(cosf)sin 8,
established in Section 3.5, include

(4.3.3) ITulle =1 and |U,|lz=1,



4.3 Unbounded Bernstein Inequalities 209

(4.3.4) T2+0U2=1,
(4.3.5) (T0)? + (T,)2 = B2,
(4.3.6) T) = -B,U,,
and
(4.3.7) U = B,T,,
where n
~ vaz —1
B = Nk feRrR
n(6) ; \ay, — cosf|’ €

(v/a2 — 1 denotes the principal square root of aj — 1) and the identities
hold on the real line. Suppose

o0
Z\/ai —1=o00.
k=1

Then

(4.3.8) lim min B,(f) = oo, O<a< <.

n—oo g€la,]
Assume that there is an interval [a,b] C (=1, 1) such that
up [Tl < o0
neN
Let a := arccosb and B := arccosa. Then
up |74 10,51 < o0
n€eN
It follows from properties (4.3.6) and (4.3.8) that
Jim |[Unlla51 = 0,
and hence, by property (4.3.4),
. T2 _ —
Jim [Ty = 1fja,5 = 0.
Thus, by properties (4.3.7) and (4.3.8)

Y

lim min |U!(f)] = oo,
n—o0 f€fa,[]

that is, N N
lim |U,(B) — Up(a)] = o0,
n—oo
which contradicts property (4.3.3). Hence
177 lfa b

p = sup || T4 |fa,p) = 0
neN ITall 1] men " @]

for every [a,b] C (—1,1), which, together with Theorem 4.3.3 shows the if
part of the corollary. O
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Comments, Exercises, and Examples.

We followed Borwein and Erdélyi [95a] in this section. Corollary 4.3.4, to
be found in Achiezer [56], is proved by using entirely different methods.

E.1 The Crucial Detail in the Proof of Theorem 4.3.3. Suppose that
M = (1, f1, fa,...) is an infinite Markov system of C? functions on [a, b]
and f{ does not vanish on (a,b). Suppose that the sequence of associated
Chebyshev polynomials (T},) has a subsequence (T},;) with no zeros on some
subinterval [a, 5] of [a,b]. Show that there exists another subinterval [c, d]
and another infinite subsequence (T},,) such that for some § > 0 and y > 0,

and for each n;,

1T,

[e,d] < 1-9§ and ”Trlzl

[e,d] <7V

Outline. For both inequalities first choose a subinterval [c1,d1] C [a, 8] and
a subsequence (n;;) of (n;) such that each alternation point of each T),,
is outside [c1,d;]. Then choose a subsequence (n;2) of (n;1) so that either
each T),, , is increasing or each T},, , is decreasing on [c;,d;]. Study the first
case; the second is analogous. Let [ca,ds] be the middle third of [¢1,d].
If the first inequality fails to hold with [c2,d2] and (n;2), then there is a
subsequence (n;,3) of (n;2) such that ||Ty, ;[|jc,,4,) — 1 as 43 = oc. Hence,
there is a subsequence (n; 4) of (n;3) such that either

max Ty, ,(z) =1 or min T, ,(z) = —1.
CQSdeQ ’ CQSdeQ ’

Once again, study the first case; the second is analogous. Since each T, ,
is increasing on [y, d1],

nllirgoo ||1 - T’ﬂi,4 |[d2,d1] =0.
Now choose g := ag + a1 f1 + asfo so that g has two distinct zeros

oy and ay in [da,d1], [|gl[a;,0.] < 1, and g is positive on (a;,as). Let
f:= max g(z)andg:=g+1-73. Show that T}, , — ¢ has at least n +1
2

a;<z<a
distinct zeros in [a, b] if n; 4 is large enough, which is a contradiction.

For the second inequality, note that E.4 of Section 3.2 implies that
(f1,-..,f)) is a weak Chebyshev system on [a, b], and so is

Y

AN AN AN
Tl Tl Tll

From this deduce that each (T}, ,/T7)" has at most one sign change in
[c2,ds2]. Choose a subinterval [cs,d3] C [c2,ds] and a subsequence (n;5) of
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(niz2) so that none of (T}, ,/T7)" changes sign in [c3,d3]. Choose a sub-
sequence (n;) of (ni;) so that either each Ty /Tj is increasing or each
Ty, ./Ti is decreasing on [c3, d3]. Again, consider the first case; the second
is analogous. Let [c4,d4] be the middle third of [c3,d3]. If the second in-
equality fails to hold with [c4,ds] and (n;e), then there is a subsequence
(niz) of (n;6) such that either

Ty, . (x)

n; 7

lim max =0
ni;7—00 cs<e<ds Tj(x)
or ,
. . Tn,- 7 (a”.)
lim mi = —00.

n :
ni7—00 ca<z<ds T{(.’L‘)

Once again we just treat the first case; the second is analogous. In this case,

for every K > 0 there is an N € N such that for every n;; > N we have
T, .(r) > K, x € [dy,ds].

Hence
d3
Klds = di) < [ 1, (0)do = Ty (dn) = Ty (d) <2,
dg ’

which is a contradiction. a

E.2 On the Uniform Closure of Nondense Markov Spaces. Suppose
that M = (fo, f1,...) is an infinite Markov system on [a,b] with each
fi € C?[a,b], and suppose that (fi/fo)" does not vanish on (a,b). Suppose
that span M fails to be dense in Cla,b].

Show that there exists a subinterval [a, 8] C [a,b], a < B, such that
every g € C[a,b] in the uniform closure of span M on [a, b] is differentiable

on [a, fA].
Hint: By Theorem 4.3.3 there exists an interval [«, 8] C [a, b] and a constant
n € R so that

17" {81 < 0llPla.5)
for every h € span M. Suppose g € Cla,b] and

lim ([~ glljas = 0.

Choose n; € N such that

||g_hn1, [a,b]g27i: i=0,1,....
Then
00
g = hno + Z (hnz - h’ﬂi—l) .
i=1
Since

||(hnz' - hm’fl)lH[a,B] < 7721721 ’
it follows that ¢ is differentiable on [a, §]. O
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E.3 An Analog of Theorem 4.3.3 with Applications. Suppose that
M = (fo, f1,...) is an extended complete Chebyshev (ECT) system of
C* functions on [a, b], as in E.3 of Section 3.1. Note that E.3 a] of Section
3.1 implies that fo does not vanish on [a, b].

a] Show that the differential operator D defined by

f

f0> , f € Ca,b

D)= (

maps M to Mp, where

Mp := =101,
K ((fo fo
and M p is once again an ECT system of C'* functions on [a, b].

Hint: Use E.8 b] of Section 3.2. O

b] The differential operators D™ (f) are defined for every f € C"[a,b] as
follows. Let

Fi,O::fiz 1=0,1,2,...,

F; '
Fm:<%> i=0,1,2,..., n=12,...,
0,n—1

)

!

DO = f, DO(f) = (M) n—la.

Let
Mpa) = Mp and Mpmy = (MD(n—l))D, n=223,....

Show that if span M ) is dense in Cla, b], then so is span M.

c¢] Suppose that span M fails to be dense in C[c,d] for every subinterval
[c,d] C [a,b], ¢ < d. Show that for each n € N, there exists an interval
[anaﬂn] - [aab]a an < fn, such that

D™ (f)lla
p { WP Dllowss] g4 1 e span M Y < oo
[1£1l1a.

Hint: Use Theorem 4.3.1 and induction on n. a

d] Suppose that span M fails to be dense in C|c,d] for every subinterval
[c,d] C [a,b] ¢ < d. Show that for each n € N, there exists an interval
[an, Bn] C [a,b], an < Bn, where every g € Cla,b] in the uniform closure
of span M on [a, ] is n times continuously differentiable.
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Hint: Use part c|. The argument is similar to the one given in the hint to
E.2. O

e] Suppose that span M fails to be dense in CJe,d] for every subinterval
[e,d] C [a,b], c<d.

Show that every function in the uniform closure of span M on [a, b] is
C* on a dense subset of [a, b].

(This is the case for Miintz systems

M::(:E’\O,a?’\l,...), Ai € R, Z

i=1
i 20

L
(0]
Al

on [a,b], 0<a <b;see E.T of Section 4.2.)

E.4 Bounded Bernstein-Type Inequality for Nondense Miintz Spaces.
Suppose (A;)$2, is a sequence of distinct positive numbers satisfying

o

;—)\2_:_1 < 0.
i=

(3

Then for every € > 0, there is a constant ¢, such that
/ Ce
p'(z)] < pn lIpllf0,1] - z€(0,1—¢

for every
pE span{l,w)‘l,a:’\z,...}.

To prove this proceed as follows. Let Ag := 0, and let
Tn = Tn{AOa Al, e ,An; [0, 1]}
be the Chebyshev polynomial for span{1,z*1,... ,2*»} on [0, 1]. Let

M(A) :=span{l,z* 2?2, ...}

a] Observe that for every € > 0 there exists a k. € N depending only on
(X:)32, and e (and not on n) such that T, has at most k. zeros in [e, 1 —€].

Hint: This is proved in the outline of the proof of E.18 d] of Section 4.2. O

b] Show that every nonempty (a,b) C (0,1) contains a nonempty sub-
interval (e, ) for which there are integers 0 < n; < my < --- such that
none of the Chebyshev polynomials T,,, vanishes on (¢, ).

Hint: Use part a]. O
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¢] Show that every nonempty (a,b) C (0,1) contains a nonempty sub-
interval (a, 8) such that

!
sup {Lj ||[a,6] : 0#£pe M(A)} < 00.
lIpllf0.1)

Hint: Modify the proof of Theorem 4.3.3. O
d] Finish the proof of the initial statement of the exercise.

Hint: Use part c] and a linear scaling. O

E.5 The Closure of Nondense Miintz Spaces in C[0,1]. Suppose ()52,
is a sequence of distinct positive numbers satisfying

oo

i=1

Show that
span{l,z*, 2, ...} C C™(0,1),

that is, if f is the uniform limit of a sequence from span{1,z* z*2 ...},
then f is infinitely many times differentiable on (0,1).

Hint: Use E.4 with the substitution z = e ?. O

E.6 A Nondense Markov Space with Unbounded Bernstein Inequality on a
Subinterval. One may incorrectly suspect that nondense Markov spaces on
[a,b] can be characterized by an everywhere bounded Bernstein inequality

n (a,b), at least under the assumptions of Theorem 4.3.3. The purpose of
this exercise is to show that this is far from true, and in a sense, Theorem
4.3.3 is the best possible result.

The same construction can be used to give a nondense Markov space
on [a, b] such that the set

Z :={z €[a,b] : T,(xz) =0 for some n € N}
is neither dense nor nowhere dense in [a,b]. Here (T,,)5,, is the sequence

of associated Chebyshev polynomials on [a, b].

We construct an infinite Markov system on (—oc, oo) as follows. Sup-
pose A := (\;)52, is a sequence of even integers satisfying

1

00
0:/\0</\1</\2<"', Z/\
i

i=1

Suppose m > 0. Let ¢, € C(—00,00), k =0,1,..., be defined by
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{ x2k+m, x>0

<P2k(fl7) = c2kw>\2k ., <0

and
$2k+m+1 , 2 0

Par+1(2) = {

where (¢;)2, is a sequence of positive numbers associated with a fixed
sequence of integers 0 := ng < n; < ny < --- and a constant § > 0, and it
is chosen as follows. Let

—CopprarH 1 <0,

ij:’nj+1—TLj—1, jZO,l,....
Let n
T, (z) := cos(n arccos(2z — 1)) =: Z Qi !
i=0

be the nth Chebyshev polynomial on [0, 2]. Now choose the constants ¢; > 0
such that

oo Nj41—1

> Mg ml <1

j=0 i=n;

a] Show that (@0, p1,...) is a Markov system on (—o0, 00).
Hint: If

n
p(z) =Y aipi(z), @i €R,
i=0

then .
p(x) = Zaix)"' , r € [0,00),
i=0
while .
plx) = (-Diaz™, € (—00,0].
i=0
Now apply Theorem 3.2.4 (Descartes’ rule of signs). O
b] Show that span{yg, @1, ...} is not dense in C[—4, 2].
¢] Show that there is a sequence of integers 0 :=ng < n; < ng < --+ such
et 19l
sup{m . 0#pe span{ng,gpl,...}} =0

for every nonempty interval [a, 8] C [0, 2], while

!
sup{M . 0#pe span{ng,gpl,...}} < o0
Ipll(=s.2)

for every z € (—6,0).
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d] Suppose the sequence (p;)52, is defined associated with a fixed sequence
of integers 0 :=ng < ny <ng <--- and § := —2. Let

Tn = Tn{woa P1y-- 5, Pn; [_27 2]}
be the Chebyshev polynomial for span{yg, v1,...,¢n} on [—2,2]. Let
Z:={x€[-2,2]: Ty(xz) =0 for some n € N}

and let Z' be the set of all limit points of Z, and let Z" be the set of all limit
points of Z'. Show that the sequence of integers 0 :=ng < n; < ns < -
in the definition of (¢;)$°, can be chosen so that

Z"N(=2,00=0 and  [0,2]U{-2}C Z".

E.7 Nikolskii-Type Inequalities for Nondense Miintz Spaces. Suppose
that p € [1,00]. Suppose (A;)$2, is a sequence of distinct real numbers
greater than —1/p satisfying

>0 A+

P < 0.

2

Show that for every € > 0, there exists a constant ¢, > 0 depending only
on ¢ and p so that

la(z)| < ca™Pllqll, o0,

for every g € span{z*o,z* ...} and for every x € [0,1 — €].

In particular, for every € > 0, there exists a constant ¢, > 0 depending
only on € so that

lallie,1— < cellallz, 0,11
for every ¢ € span{z?o, z? ...},
Thus, span{z*°, 21, ...} is not dense in L,|0, 1].

Hint: Use Holder’s inequality to show, as in Operstein [to appear], that the
operator
J : L,[0,1] = Ls[0,1]

defined by

J)0) =0,  J()(x) = g/r! /0 ot dt, >0

is a bounded linear operator. That is, there is a constant ¢ > 0 such that

TPz to) < cllellr, o
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for every ¢ € L,[0,1]. Now observe that ¢ € span{z*c,z*1 ...} implies
that J(q) € span{z*o,zk1 ...}, where p; := A\; + %, and so (i), is a
sequence of positive numbers satisfying

—
ZMZQ+1<OO

i=0

Therefore, by E.4, for every € > 0, there exists a constant ¢, > 0 such that
Ce
(@) @) < 17 (@], <= —cllallz, o

for every ¢ € span{z*°, z*! ...} and for every z € (0,1 — ¢]. Note that for
€ (0,1),

@)@ =2 qw) - (1= )22 [ty ar

where

[ o =2 3@ < e Plgls, .
0

Therefore

2/7lg(@)] = (1= 1) lallz,fo.0 < cccllallz, o

A

for every ¢ € span{z*® 2 ...} and for every x € (0,1 — €. O

E.8 The Closure of Nondense Miintz Spaces in L,[0,1]. Let p € [1, o0].
Suppose (A;)$°, is a sequence of distinct real numbers greater than —1/p
satisfying

Z < Q.
= i+ ) +1
Show that if f is a function in the L,[0, 1] closure of

span{z?0 2™ ...},

then f € C*°(0,1), that is, f is infinitely many times differentiable on (0, 1).
Hint: Combine E.5 and E.7. O
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4.4 Muntz Rationals

A surprising and beautiful theorem, conjectured by Newman and proved by
Somorjai [76], states that rational functions derived from any infinite Miintz
system are always dense in Cla,b], a > 0. More specifically, we have the
following result.

Theorem 4.4.1 (Denseness of Miintz Rationals). Let (\;)32, be any sequence
of distinct real numbers. Suppose a > 0. Then

n i
{%: a;,b; € R, nEN}
i=0 0iT™

is dense in Cla,b].

The same result holds when a = 0, however, the proof in this case
requires a few more technical details; see E.1 b].

The proof of this theorem, primarily due to Somorjai, rests on the
next theorem. We introduce the following notation. A function Z defined
on (a,b) is called an e-zoomer (¢ > 0) at ¢ € (a,b) if

Z(z) >0, z € [a,b],
(4.4.1) Z(z) <e, z<(—e,
Z(x)>e ', xz>(+e.

While (approximate) d-functions are the building blocks for polynomial
approximations, the existence of e-zoomers is all that is needed for rational
approximations. More precisely, we have the following result.

Theorem 4.4.2 (Existence of Zoomers and Denseness). Let S be a linear
subspace of Cla,b]. Suppose that S contains an e-zoomer for every e > 0 at
every ¢ € (a,b). Then

R(S) := {g pq € S}
is dense in Cla,b].

Proof. Tt suffices to consider the case [a,b] =[0,1]. Let n € N and € > 1/n
be fixed. We construct a partition of unity inductively as follows. Let Zg be
any positive function in S and choose functions 7, Z, ... , Z, € S positive
on [0,1] so that

k
Zk(a:) < EZkfl(QT), r < E — €
and
1 k-1
Zp(x) > € Zp_1(x), x>T+e
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(which the existence of e-zoomers allows for). Let

Zy(z)
4.4.2 Ap(2) = =, k=0,1,... ,n.
(4.4.2) k() ST Zi()
So
Ak($)>0, .’136[0,1]
and

n

> Ap(z)=1.

k=0
Since for every = € [0, 1],
Z Zi(z) + Z Zi(z) < 262 Zi(z) .
k=0 k=0 k=0
Eoe>a ie<a

we also know that

i Ag(z) < 2e, z €[0,1].
k

=0
ﬁ—m| >e

n

Now let f € C[0,1], and consider the approximation

> F () Ax(z) € R(S).
k=0

k=0
< ‘ Yo (f@)—fE) M@+ D (f@) = f (%) Awlz)
‘%E;‘Oge 3 x‘ Se
< wy(e) +2ewp(1),
which finishes the proof. ad

We can now finish the proof of Theorem 4.4.1:

Proof of Theorem 4.4.1. We may suppose, on passing to a subsequence
if necessary, that (\;)2, is a convergent sequence (possibly converging to
infinity). We may also assume that a := 1/b with b > 1. Since C[1/b,b] is
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invariant under  — 1/x, we may assume that (\;)$2, has a nonnegative
(possibly infinite) limit.

Case 1: The sequence ();)$2, has a finite nonnegative limit. Then Miintz’s
theorem on [a, b], a > 0 (see E.7 of Section 4.2), yields that the Miintz poly-
nomials themselves associated with (A;)$2, are already dense in C[1/b,b].

Case 2: The sequence (\;)$2, tends to infinity. In this case (z/{)* is an
e-zoomer at ¢ € (a,b) for sufficiently large \;, and the result follows from
Theorem 4.4.2. O

Comments, Exercises, and Examples.

A comparison between Miintz’s theorem and the main result of this sec-
tion shows the power of a single division in approximation. In what other
contexts does allowing a division create a spectacularly different result?
Newman [78, p. 12] conjectures that if M is any infinite Markov system on
[0, 1], then the set

{g P, q € span M}

of rational functions is dense in C[0, 1].

Newman calls this a “wild conjecture in search of a counterexample.”
It does, however, hold for both

M= (g, zM, .. ), A; > 0 are distinct
(see E.1 b]) and

MZ( ! , ! ) a; € R\ [0,1] are distinct
r — (1 r — 2

(see E.2). A counterexample to the full generality of this conjecture is pre-
sented in E.6. However, the characterization of the class of Markov systems
for which it holds remains as an interesting question. In particular, it is
open if Newman’s conjecture holds for Descartes systems.

The reader is referred to Newman [78] for an extensive treatment of
these matters; see also Zhou [92a]. In [78, p. 50] Newman asks about the
denseness of the products (3 a;z' )(3 bizi ) in C[0,1] (see E.3). He specu-
lates that this “extra” multiplication of Miintz polynomials should not carry
the utility of the “extra” division. This is proved in Section 6.2, where it is
shown that products pg of Miintz polynomials from nondense Miintz spaces
never form a dense set in C0, 1].

E.1 Denseness of Miintz Rationals on [0, 1]. A function C defined on [a, b]
is called an e-crasher, € > 0, at ¢ € (a,b) if

C(z) >0, x € [a,b],

C(z) <e, x>(+e,
C(z) >e !, z<(—c¢.
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a] Let S be a linear subspace of C[a,b]. Suppose that S contains an e-
crasher for every € > 0 at every ¢ € (a,b). Show that

R(S) = {g 'p.qE S}

is dense in Cla, b].

Hint: The argument is a trivial modification of the proof of Theorem 4.4.2.
O

Let (X;)$2, be a sequence of distinct real numbers. Let R(A) be the
space of functions f € C[0, 1] of the form

S airh
Z?:O bl,a:)\l- 5

b] Show that if (A;)$2, is a sequence of distinct nonnegative real numbers
with Ag := 0, then R(A) is dense in C0,1].

Hint: As in the proof of Theorem 4.4.1, we may suppose, on passing to a
subsequence if necessary, that (A\;)52; is a convergent sequence (possibly
converging to oo). Distinguish the following two cases.

f(z) = a;,bi € R, neN, ze(0,1].

Case 1: lim \; = oc. Given € > 0 and ¢ € (0,1), show that
1—0Q

is an e-zoomer at ¢ on [0,1] if A; is large enough. Use Theorem 4.4.2 to
finish the proof.

Case 2: (\;)$°, is a sequence with finite limit. Given € > 0 and ¢ € (0,1),
show that

Of@) = 5+ (0" Taldo, Mo A G 1] (@)

is an e-crasher at ¢ on [0,1] if n is large enough. This can be proved by
using Miintz’s theorem (E.7 of Section 4.2) on [( — €, 1] with € € (0, (), E.3
c] of Section 3.3, and the monotonicity of C on [0, (]. Finish the proof by
part al. O

The result of E.1 b] is due to Bak and Newman [78]. Zhou [92b] extends
this result to sequences of arbitrary distinct real numbers.

E.2 Another Markov-System with Dense Rationals. Let (3;)52, be any
sequence of distinct numbers in R\ [0, 1]. Show that

2’117“”*5 a;,bi €R, neN
i vl
i=1 z—f3;
is dense in C]0,1].
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E.3 Products of Miintz Spaces. Associated with a sequence A := (X\;)$2,
of real numbers, let

M?(A) := {(Zaix)"'> (mej’“) D abi€R, ne N} .
=0 =0

a] Show that if (A\;)2, = (k*)2,, @ > 2, then M?(A) is not dense in
o, 1].
b] Show that with (Ax)$%, = (k?)72, the nondenseness of M?(A) does not
follow from Miintz’s theorem since ), 1/k = oo, where I" is the set of
natural numbers k of the form k = n? + m? with nonnegative integers n
and m.

It is shown in Section 6.2 that M?(A) is not dense in C[0, 1] whenever
A is a sequence of nonnegative real numbers satisfying Y~ ; 1/\, < oo, so
the “extra multiplication” is of no spectacular utility.

It is not always possible to extend Theorem 4.4.2 to the case when the
numerators and the denominators are coming from different infinite Miintz
spaces. Somorjai [76] shows that

Z?:O G/Z'.’EA’. .
Yo biw’

is not dense in C[0, 1] when, for example,

a;,b; € R, nEN}

772/\k < Ngs1 < A1, k=0,1,...
for some n > 1.

E.4 Nondense Ratios of Miintz Spaces. Suppose 0 < g < A1 < ---. Let

a > 0. Show that

n i

Mi ai,b; €ER, neN
Zi:O bia:**i

is dense in Cla, b] if and only if >3 1/\; = .

Hint: For one direction use Miintz’s theorem. For the other direction use
E.5 a] and b] and E.8 b] and c] of Section 4.2. O

E.5 On the Rate of Approximation by Miintz Rationals. Let (A;)52,
be a fixed sequence of nonnegative real numbers. We wish to estimate
the error of the best uniform approximation to f € C]0,1] on [0, 1] from
span{z*°, ... z*}. We let

Ai

R}, (f) := inf { Hf(w) N %LO a;z

Y
i—o Dit

:oa;,b; € ]R} ,
(0,1]

where the infimum is taken for all a;,b; € R, i =0,1,... ,n.
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In the case when A\,41 — A, > 1, n =0,1,..., Newman [78] claims
(without proof) that there exists a constant C' independent of n such that

Ry (f) = Cuwy (3)
and that this is the best possible. He conjectures, in Newman [78], that

this estimate holds for every sequence (\;)52, of distinct nonnegative real
numbers.

a] Observe in the last line of the proof of Theorem 4.4.2, with € = 2, we
have

f@) =3 F () Ak(@)| < 6wy ()
k=0

since wy(1) < nwy ().

b] What growth conditions on the sequence ();)$2, guarantees that
Ri(f)=0(wr (3))?

Hint: Estimate the “degree” of the zoomers Zj, defined in Theorem 4.4.2.
Use the zoomers defined in Case 1 of the hint for E.1 b]. O
¢] Let

zsin(l/z), z € R\ {0}

f(w)::{o, 2=0.

Show that
R:(f) > ent > e wy (%)

for every sequence ()\;)$2, of nonnegative real numbers, where ¢; and co
are positive constants independent of (A;)52,.

Hint: (31 aiz™) [/ (X1, biz?t) has at most n zeros on [0, 1]. O

E.6 A Markov System with Nondense Rationals. This example outlines
a construction of Markov systems on [—1, 1] whose rationals are not dense
in C[—1,1]. It follows and corrects Borwein and Shekhtman [93].

We construct an infinite Markov system on (—oc, oo) as follows. Sup-
pose that A := ()\;)%°,, where 2); + 1 = 7%%. Then A is a sequence of even
integers satisfying

o0

1
0= < A <A<+, Z/\—<OO

(3

i=1
Let ¢, € C[-1,1], k=0,1,..., be defined by

par (z) = 2>

and

241 > ()
part1(z) == oz

— 2kt , £<0.
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a] Show that (g0, p1,...) is a Markov system on (—oo, 00).
Hint: If

n
pe) =Y aipi(x), a; € R,
i=0

then
() =S ™, zel0,00),
i=0
while
p(z) = Z(_l)"aiaf‘" , z € (—o0,0].
i=0
Now apply Theorem 3.2.4 (Descartes’ rule of signs). O

b] There exists an absolute constant ¢ > 0 (independent of n) such that

Z aia:A" <c Z aia:)"'
1=0 L2[0,1] i=0 La[1/2,1]
for all choices of a; € R.
Hint: Use E.8 a] of Section 4.2 and Hdlder’s inequality. O

¢] The inequalities

2
1 1 n . 5 n
3 Y ai® < / (E aiV2X; + 117)") dx < 3 > Jaif?
i=0 0 i=0 =0

hold for all choices of a; € R.

Proof. We have

1 n 2
/ (Z ai\/2\; + 1:::&') dz
0 i=0

n n n—k
V2N +1/20 4 + 1
S 2T w2 -
= =1 =0 AN+ +1
Here
V2N + 1200 +1 7iTitk ) 72tk 5.7k
PV VP Sl T RS e

so on applying the Cauchy-Schwarz inequality n times, we get
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5 ZZ a]+k\/2)\j+1\/2/\j+k+1
k=1 j=0

Aj+ Ak +1

n n 9 N
< 4 7k ai2<— ai2,
<SS <35

and the result follows. a

d] The inequality

Z a;z™i <5 Z(—l)iaiaj’\i
i=0 L3[0,1] i=0 L>[0,1]
holds for all choices of a; € R.
Hint: Use part c]. O

e] The rational functions of the form

Z:'L:(] bip; ’

are not dense in C[—1,1].

a;,b; € R, néeN

Proof. Consider f € C[—1,1] defined by

1 if ze[-1,-1/2]
fl@):=< 0 if ze€]l0,1]
—z if ze[-1/2,0].

We show that f is not uniformly approximable on [—1,1] by the above
rational functions. Suppose that

HZ 2ipi —fH <e<l1, a;,b; € R.
bipi [~1,1]
This implies
(4.4.3) H Dizo O x; <e
—obiz [0.1]
and
1 Ai
(4.4.4) HZ— -1 <€
1)ib;z? 1/2,1]
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Without loss of generality we may assume that

(4.4.5) > bz =1.
i=0 L»[0,1]

From (4.4.3) and (4.4.5) it follows that

(4.4.6) > a <e.
i=0

L2[0,1]
Part d], together with (4.4.3) and (4.4.5), implies that
n

Z(—l)iaiz)"'

i=0

(4.4.7) <V5e.

L»[0,1]

Part d], together with (4.4.5), also implies that

Z(_l)zblwkz

i=0

(4.4.8) >

Sl

L»[0,1]
Combining part b] and (4.4.8), we obtain that

> (=1)'bia

i=0

1

> .
Lo[1/2,1] dc

(4.4.9)

Now (4.4.7) and (4.4.9) yield the right-hand side of

l—e< ”Z?:o(_l)iaix/\i||L2[1/2,1]

T e (=) b

Ls[1/2,1]

< 5ce

while (4.4.4) yields the left-hand side of it. This shows that € > 0 cannot

be arbitrarily small.

a
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Basic Inequalities

Overview

The classical inequalities for algebraic and trigonometric polynomials are
treated in the first section. These include the inequalities of Remez, Bern-
stein, Markov, and Schur. The second section deals with Markov’s and
Bernstein’s inequalities for higher derivatives. The final section is concerned
with the size of factors of polynomials.

5.1 Classical Polynomial Inequalities

We start with the classical inequalities of Remez, Bernstein, Markov, and
Schur. The most basic and general of these is probably due to Remez. How
large can ||p[[(—1,1) be if p € P, and

m({z € [~1,1]: p(a) < 1)) > 2— 5

holds? The inequality of Remez [36] answers this question. His inequality
and its trigonometric analog can be extended to generalized nonnegative
polynomials (discussed in Appendix 4) by a simple density argument. These
extensions also play a central role in the proof of various other Bernstein,
Markov, Nikolskii, and Schur type inequalities for generalized nonnegative
polynomials, where simple density arguments do not work.
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Theorem 5.1.1 (Remez Inequality). The inequality

2+s
<
Il < 72 (552)

holds for every p € P,, and s € (0,2) satisfying

m({z € [-1,1]: [p(a)| < 1}) > 2—s.

Here T, is the Chebyshev polynomial of degree n defined by (2.1.1). Equality
holds if and only if
+2
p(z) = £T), (ﬂ> .

2—s

Proof. The proof is essentially a perturbation argument that establishes
that an extremal polynomial is of the required form. Let || - || denote the
uniform norm on [—1,1], and let

(5.1.1) Pn(s) ={pePn:m{xe[-1,1]:|p(z)| <1}) >2—s}.

The set P, (s) is compact, say, in the uniform norm on [—1, 1], by E.1, and
the function p — ||p|| is continuous. Hence there is a p* € P, (s) such that

lp*[l = sup |pl|.
PEPL(8)

First assume that p*(1) = |[p*||]. We claim that all the zeros of p*
are real and lie in [-1,1). Indeed, if p* vanishes at a nonreal z, then for
sufficiently small n > 0 and € > 0,

e(z — 1) )

(x —2)(z—2)

a(a) = (14 )y (@) (1 -

is in P,(s) and contradicts the maximality of p*. If p* has a real zero z
outside [—1, 1], then, in similar fashion,

o(a) = (14 )y @) (1= e sign(e) =)

Z—T

contradicts the maximality of p*.

Now we show that |p*({)| = [|p*|| cannot occur with { € (=1,1). To
see this, assume, without loss of generality, that p*(¢) = ||p*||. Then the
polynomials

qi(x) :=p* <C2;1 + C—;lz> and  q2(z) := p” (%Ll + %x)
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satisfy ¢;(1) = |lg;|| = lIp*||, 7 = 1,2. Since p* € Py(s) is extremal, the
Lebesgue measure m({2;) of

.Qj = {a: S [—1,1] : \q](a:)\ > 1}

is at least s, otherwise g; 4+ € with sufficiently small € > 0 contradicts the
maximality of p*. On the other hand,
1-¢

(1) + ——=m(2) =m{z € [-1,1] : p*(z) > 1}) < s.

1+¢,
2

2

Hence m(f21) = m(f2;) = s, which means that ¢; € Py,(s), j = 1,2,
are extremal polynomials attaining their uniform norm on [—1,1] at 1.
It now follows from the first part of the proof that ¢; and ¢o have all
their zeros in [—1,1], which is impossible since the number of zeros of

¢;, j=1,2,in[—-1,1]is equal to the number of zeros of p* in [-1, () and in
(¢, 1], respectively. This contradiction proves that [p*(¢)| < ||p*|| for every
¢ € (—1,1). Hence either p*(1) = £||p*|| or p*(—1) = £||p*||.

Without loss of generality we may assume that p*(1) = |[p*||, otherwise
we consider +p*(—z) € P,(s). We now have

(5.1.2) pr() =1p*l > p*(@)|, -1<=z<1,

and each zero of p* lies in [—1,1).

Next, we prove that
(5.1.3) Ip*(z)] <1, —1<z<1-s.
Assume to the contrary that for some -1 < G <G <G <1,

P@>1, zehi=(Gl]
p*(x)| <1, x€Ir:= (2, (]
lp*(z)| > 1, z€l3:=(G, ).

Let x1,xa,... ,z, be the zeros of p* in ({2, (1). Since all zeros of p* are in
[—1,1), we have m > 1, otherwise p*' would vanish at an z larger than the
largest zero of p*, which is a contradiction. The remaining n — m zeros of
p* lie in [—1,(3). We set

. p
pi(z) == H(l“_xj): p2 = —.
j=1 P1

The polynomial ¢(z) := pi(z + h)pa(z) with 0 < h < (3 — (3 has the
following properties:
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(1) If [p*(z)| <1 for some z € [—1, (3], then |g(z)| < 1.

(2) For each x € Iy we have |¢(z — h)| < |p*(z)] < 1.

(3) a(1) =pi(T+R)p2(1) > pr(L)p2(1) = p*(1) = [|p*].

These properties show that ¢ € P, (s) contradicts the maximality of p*.

By E.2, among all polynomials p € P,, with ||p|]| < 1, the Chebyshev
polynomial T}, increases fastest for z > 1. Hence, by a linear transformation,
we see that the four polynomials

p*(z) = £T,, (M)

2—s

are the only extremal polynomials. In particular,

2+s
Il =T, .
Il =7 (32)

a

The next theorem establishes a Remez-type inequality for trigonomet-
ric polynomials. Throughout this section, as before, K := R (mod 27).

Theorem 5.1.2. The inequality
[l x < exp(4ns)
holds for every t € T, and s € (0,7/2] satisfying
(5.1.4) m({f € [-m,7) : |[t(A)| <1}) > 27 —s.
The inequality

2
It < Ty <2+U> , o=1-cos(s/2), 0<s<2r,
— g

also holds for every even t € T, and s € (0,27) satisfying (5.1.4), and
equality holds if and only if

+2 cos
#(8) = £T, (%{f”) . o=1-cos(s/2).

Proof. We prove the second part first. Suppose t € 7, is even and satisfies
|t(8)] <1 on K\ 2 with m({2) < s. Then the polynomial p € P,, defined
by t(0) := p(cos ) satisfies |p(z)| < 1 on [—1,1]\ ', where

Q' ={rxe[-1,1]:x=cosh, € 2N[0,7]}.
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It is easy to see that m(£2') < 1 — cos(s/2) =: o, where equality holds if
and only if 2 :=[—s/2,s/2]. Hence, Theorem 5.1.1 implies that

240
e <7 (322)
— g

where equality holds if and only if p is of the form given in the theorem.

The first part of the theorem can be easily obtained from the second
part as follows. Let ¢ € T, satisfy (5.1.4). Without loss of generality we
may assume that ¢(0) = ||¢||x. The polynomial

t(0) := 1(t(0) + t(-0)) € Ty,

is even and

m({f € [-m,7) : |t(F)] <1}) > 2w — 2s.
Hence, the second part of the theorem yields that

240
;e < 7 (322)
where o := 1 — cos s = 2sin?(s/2) < 1 for every s € (0,7/2]. Since

Tn($)§($+vﬂ32—l) 3 37217

we have

T, <2+0> < (1-%\/%-%0/2)71S (1+\/%+%U)n

2—¢ 1-0/2
< exp (n (\/%+ %0)) <exp (n (s + {57))
< exp(4ns)

for every s € (0,7/2]. Therefore

It = £(0) = 70) < T, (§+—") < exp (n (s + 15%)) < exp(dns)

for every s € (0,7/2], and the theorem is proved. Note that we have proved
slightly more than we claimed in the statement of the theorem. That is,

[l < exp (n (s + 757))
for every t € T, satisfying (5.1.4). O

We now prove the basic inequality that bounds the derivative of a
trigonometric polynomial in terms of its maximum modulus on the period
K.
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Theorem 5.1.3 (Bernstein-Szegé Inequality). The inequality
(0 +n’t* (@) <n’[tlx, 0K

holds for every t € T,,. Equality holds if and only if |t(0)| = ||t||x ort is of
the form t(t) = fcos(nt — o) with a, § € R

Proof. Assume that there are ¢t € T, and 6 € K such that ||¢||x < 1 and
(5.1.5) t'(0)% + n*t*(0) > n?.

For the sake of brevity let T), o(7) := cos(nT — «). It is easy to see that
there exists an a € K such that

(5.1.6) Th.o(0) =t(09) and sign(T,’W(H)) = sign(t'(9)) .
Since T;, ,(0)* +n*T7 ,(0) = n?, (5.1.5) and (5.1.6) imply that
t'(0) > [T, o(6)]  and  sign(T, () = sign(t'(9)) -
Hence E.4 yields that 0 # ¢t — T}, o € 7T, has at least 2n + 2 distinct zeros in
K, which is a contradiction. To find all the extremal polynomials, see the

hint to E.5. O

As a corollary of Theorem 5.1.3 we have ||t'||x < n|t||x for every
t € T,, and by induction on m we obtain the following theorem:

Theorem 5.1.4 (Bernstein’s Inequality). The inequality
11 1 < n™1#]| 5
holds for every t € T,.

Corollary 5.1.5. The inequality of Theorem 5.1.4 remains true for all
teTy.

Proof. Choose a € R such that e!®t("™) attains the value ||t(™)|g, say,
at § = 7. Now ¢(f) := Re(ei®t(d)) € T, and ||t||x < ||t]|x. On applying

Theorem 5.1.4 to t € T,, we obtain
18| = et (7) = £ (r) < n™{[H]l e < 0™t
O

The above corollary implies the following algebraic polynomial version
of Bernstein’s inequality on the unit disk.
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Corollary 5.1.6. The inequality

1P'llp < nllpllo
holds for every p € PS, where D := {z € C: |z] < 1}.
Proof. If p € PS then t(0) := p(e') € T,¢ and by Corollary 5.1.5 we have
§(2) = | —ie @) <nltll =nlpllp, 2= e

The maximum principle (see E.1 d] of Section 1.2) finishes the proof. O

From Corollary 5.1.5, by the substitution z = cos7, we get the alge-
braic polynomial case of Bernstein’s inequality on [—1, 1].

Theorem 5.1.7 (Bernstein’s Inequality). The inequality

-1<z<1

IP'(@) < <= lIpll1.0;
V1—22
holds for every p € Pf.
The next theorem improves the previous result if z is close to +1.

Theorem 5.1.8 (Markov’s Inequality). The inequality

121127 < n* Il 1.1
holds for every p € Py,.

A proof can be given as a simple combination of Theorem 5.1.7 and the
next theorem.

Theorem 5.1.9 (Schur’s Inequality). The inequality

1Pl < 7 [[p(2) V1 = 22]| _,

holds for every p € P,_1.

Proof. Let

2%—1
xk::cos%, k=1,2,...,n,

so the numbers xj, are the zeros of the Chebyshev polynomial

T, (z) = cos(n arccosx) .
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Assume that p € P, and [|p(z)v1 — 22||_1,1) < 1. If |y| < =z, then
pWI <1 —y*)72 < (1 —af) ™
( .m )*1 < 2 7\""
= (sin — - =
2n — \m2n "

Now let |y| € (zn,1]. Without loss of generality we may assume that
y € (zn,1]. The Lagrange interpolation polynomial of a p € P,_; with

nodes x1,T2,... , T, is just p itself, hence E.6 of Section 1.1 yields
n
Tu(y)
p\y)l = V4R v ———
)| = |2 ) gy =
1| T.(y)
== x 1—a?
1 &= Toly) 1 1
<=y L LK ITHy) < =Th(1) =n,
<Y< T < T =n,

where we use the facts that

T,
L) o k=19 .n,
Y— Tk
T! is increasing on (z,,0oc), and T (1) = n>. O

Proof of Theorem 5.1.8. Let p € P,,. Then p' € P,_; and Theorems 5.1.4
and 5.1.9 yield

12l < 7 [0 @)VT= 2|,y <2l
and the theorem is proved. O

Comments, Exercises, and Examples.

Every result of this section was proved by the person it is named after; see
Remez [36], Bernstein [12], Szegé [28] or [82], A. A. Markov [1889], Schur
[19], and M. Riesz [14]. However, earlier less complete versions of these basic
polynomial inequalities also appear in the literature. Some of the proofs
were simplified later. For example, in the proof of Theorem 5.1.1 we followed
the method given in Erdélyi [89b], while in the proof of Theorem 5.1.8 a
method of Pélya and Szegé [76] is used. Theorem 5.1.3 is also obtained in
Corput and Schaake [35], however, it follows from an earlier result of Szegd
[28]. Theorem 5.1.2 was established in Erdélyi [92a] in a slightly weaker
form. Various extensions of the inequalities of this section are discussed in
Sections 5.2 to 7.2 and in the appendices. Rahman and Schmeisser [83] also
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offers a collection of Markov- and Bernstein-type inequalities. Some further
classical inequalities are in E.5 of Appendix 3.

An interesting extension of Markov’s inequality is due to Bojanov [82a].
It states that

1P| 2g1=117 < NTpllz =10 lPlli=111
for every p € P,, and q € [1, 00|, where T,, is the Chebyshev polynomial of
degree n as in (2.1.1).

The following result is due to Szeg6 [25]. The inequality
P(0)] < en?]lpll,
holds for every p € Pj;, where c is an absolute constant and
D,:={2€C:|z| <1, |arg(z)| < 7(1 —a)}, a € (0,1].

Throughout the exercises T;, denotes the Chebyshev polynomial of
degree n as defined by (2.1.1).

E.1 A Detail in the Proof of Theorem 5.1.1. Show that the sets P,(s)
defined by (5.1.1) are compact in the uniform norm on [—1,1] for every
fixed n € N and s € (0, 2).

E.2 Chebyshev’s Inequality. Prove that
lp(W)| <T@ - lIpll-1,y, y€R\[-1,1]
for every p € P,, and equality holds if and only if p = ¢T), for some ¢ € R.

Extend the above inequality to every p € Pf and find all p € PS for
which equality holds.

Hint: 1f p € Py, [Ipll[-1,1) = 1, and |p(y)| > [Tw(y)| for some y € R\ [-1,1],
then with \ := T),,(y)p(y)~' € [~1,1], the polynomial Ap — T}, € P, has at
least n + 1 zeros (counting multiplicities). O

E.3 Trigonometric Chebyshev Polynomials on Subintervals of K.
a] Forn € Nandw € (0,7), let
sin(6/2) >

@n.o(0) := Ton (sin(w/2)

Show that @, . € T, attains the values £[|@Qy u|[-wu,) = £1 with alternat-
ing sign 2n + 1 times on [—w,w].

b] Prove that
tO)] < QnowO)ltl-ww, €K\ [-ww]

for every ¢ € Ty, and for every fixed § € K \ [-w,w]. Equality holds if and
only if p = ¢@Q,,,, for some c € R

¢] Show that there exist absolute constants ¢; > 0 and ¢ > 0 such that
Lexp(ern(m — @) < [Quullk = Quu(m) < explean(r - w)).
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E.4 A Zero Counting Lemma. Let 6 € K be fixed. Suppose f and g are
continuous functions on K := R (mod 27), differentiable at a fized 0 € K,
and suppose f and g have the properties

(D fllx=1, lgllx <1,

(2) there are —m < T < X3 < -+ < Ta, < 7 S0 that f(z;) = (—1)7,

(3) f(0)) =g(0), lg'(6)| > 1f'(6)l, and sign(g'(d) = sign(f'(h)).
Then f — g has at least 2n + 2 distinct zeros on K.

E.5 Sharpness of Theorem 5.1.3. Let § € K be fixed. Suppose t € T, and
t'(6)” +n*t*(8) = n’|t]| .
Show that either |£(0)| = ||t||x or ¢ is of the form

t(r) = B cos(nt — a) a,f € R.

Y

Hint: Suppose ||t||x = 1 and |t(f)] < 1. Choose a € K such that (5.1.6)
is satisfied and show that ¢t — T, , € 7, has at least 2n + 2 zeros on K
(counting multiplicities). O

E.6 Sharpness of Theorem 5.1.4. Show that Theorem 5.1.4 is sharp and
equality holds if and only if ¢ is of the form

t(1) = B cos(nt — a) a,f € R.

Y

E.7 Sharpness of Corollary 5.1.6. Show that Corollary 5.1.5 is sharp and
equality holds if and only if p is of the form p(z) = ¢z", c€ C.

E.8 Sharpness of Theorem 5.1.7. Show that for a fixed integer n > 1,
Theorem 5.1.7 is sharp if and only if z is a zero of the Chebyshev polynomial
T,, that is,

2%—1
z = cos ¢ 5 )m k=1,2,...,n,

and p = T}, for some ¢ € R.

E.9 Sharpness of Theorem 5.1.9. Show that Theorem 5.1.9 is sharp and
equality holds if and only if p = cU, for some ¢ € R, where U, is the
Chebyshev polynomial of the second kind defined in E.10 of Section 2.1.

E.10 Sharpness of Theorem 5.1.8. Show that Theorem 5.1.8 is sharp and
equality holds if and only if p = ¢T, for some ¢ € R.

E.11 A Property of the Zeros of t € 7,. Let § € K be fixed. Show that
every t € T, has at most

M = enr|t(0)| 7 ||t]| x

zeros (counting multiplicities) in the interval [ — 7,0 + ], r > 0.



5.1 Classical Polynomial Inequalities 237

Proof. Assume that t € T,, has m > M zeros in [6 — r,0 + r]. Interpolate ¢
at these m zeros by a Hermite interpolation polynomial of degree at most
m — 1 (see E.7 of Section 1.1). This gives the identically zero polynomial.
The formula for the remainder term of the Hermite interpolation polyno-
mial and Theorem 5.1.4 (Bernstein’s inequality) yield that there exists a
¢ € (0 —r,0+r) such that

1 m
tO) = (O < () etk

enry\m mi4|l—m
<(57) Il < O™ ™ < 1O,

which is impossible. O
E.12 A Property of the Zeros of a p € P,,. Show that every p € P,, has
at most

e
V2

zeros (counting multiplicities) in [1 — r, 1]

M = —n/r p(1)] " lplli=1

r > 0.

Y

Hint: Use the substitution z = cos7, E.11, and the inequality

cosr < 1— 42, 0<r<2.

E.13 Riesz’s Lemma.

a] Suppose t € Ty and t(a) = ||t|k = 1 for some a € K. Then

t(6) > cos(n(f — ) bela—&,a+E],

Y

and equality holds for a fixed 6 € [a— oy O+ %] if and only if t is
of the form t(rt) = cos(n(r — «)). In particular, t does not vanish in
(a—Z,a+L£).

Hint: If this were false, then

q(7) :=t(r) — cos(n(r — a))
would have more than 2n zeros on K (counting multiplicities). O

b] Suppose p € Py, and p(1) = ||p||;—1,1) = 1. Then that

p(z) > Ty (z), z € [cos &, 1],
and equality holds for a fized x € [cos 30 1] if and only if p = T),, where T},
is the Chebyshev polynomial of degree n as defined by (2.1.1). In particular,

p does not vanish in (cos o 1] .

The next two exercises follows Erdélyi [88] and Erdélyi and Szabados
[89b).
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E.14 A Markov-Type Inequality for Trigonometric Polynomials on [—w, w].
Show that there exists a constant 0 < ¢ < 167 such that

) sl

15wy < (n+c

for every s € T, and w € (0, 7].

Proof. If 7 —w > (2n)~ !, then
(3tan?(w/2) +1)'/2 < 8n,,

and E.19 c] gives the result. If 7 —w < (2n) ™!, then Theorem 5.1.4 (Bern-
stein’s inequality) combined with the Mean Value Theorem yields

Isll—r,m) < lIsll—w w1 + (7 — w)n|[sll[—n,q1
and hence
[slli—w,w) = (1 = n(m = w)) [Is]l[—rn
for every s € T,. Therefore, using Theorem 5.1.4 (Bernstein’s inequality)
and 7 —w < (2n)7!, we get
18" l—w0) < N8l ,] < I8l =,

n
< ——m———— < 2(m — 2
< Ty Vel < 004 26m — sl

for every s € Tp,. O
E.15 Schur-Type Inequality for 7, on [—w,w]. Letw € (0,27]. Show that

2n + 1 || ) (3 (cos T — cosw))

15l < i

sin w/2

for every s € T,, and equality holds if and only if s is of the form

sin [(Qn + 1) arccos SIEEW//?)]

(cos T — cosw)l/2

s(r)=c , ceR.

Note that the right-hand side of the above is an element of 7y,.
Hint: Define 2n + 1 distinct points in (—w,w) by

k
T := 2arcsin <sin%sinﬁ) , k=0,£1,...,%n.

Distinguish two cases in estimating |s, ()| for 8 € [—w,w].
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Case 1: |0| < |7p]. Use the inequality

sin?(w/2)

(cosf — cosw) > @n+ 172

DN | =

to get the desired result.
Case 2: 7, < |0] <w. Let

M, (s) := ‘r]ﬂg{z{\s(mﬂ((cosm — cosw)/2)1/2}.

Let n € N, w € (0,7], and 0 € [—w, —7,,) U (7, w] be fixed. Show that there

Y

is an 5, € T, such that

2 (0)] _ [5(0)]

Mo(3,) st Mu(s)

Show by a variational method that s, is of the form

B sin |(2n + 1) arccos z:g((o:ﬁ;

(cosT — cosw)!/2

E.16 Another Proof of Schur’s Inequality.

a] Prove Theorem 5.1.9 (Schur’s inequality) by using the method given in
the hint to E.15.

b] Prove the result of E.15 by using interpolation, as in the proof of The-
orem 5.1.9.

Proof. See Erdélyi and Szabados [89b]. O
E.17 Growth of Polynomials in the Complex Plane. Let

D:={z€C:|z| <1} and D,:={z€C:|z| < 0}.

a] Show that
Ip(2)| < Iz[" llpllo

for every p € PS and z € C\ D.
Find all p € P¢ for which equality holds.
Hint: Apply the maximum principle (see E.1 d] of Section 1.2) with D and

q(z) == 2"p(z" ') € PL.
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b] Show that the transformation z = M(w) := L(w+w~!) can be written
as

z=j3(0+o0")cosh, y=g(o—o07")sind,
where z =z +iy, =,y € R and w = ge’?, 0> 0, 6 € K.

¢] For p > 0, let E, be the image of the circle 9D, under M. Show that
E, is the ellipse

2 2
z Yy _ : : 1 -1 1 -1
§+b—2—1 with semiaxes a:= 5(0+07') and b:= 3|lo—07"|.

Furthermore, F, = E,-1, and E; is the interval [—1, 1] covered twice.

d] Show that
p(2)] < 0" lIpllj-1,1]

for every pe P:, z€ E,, 0> 1.

Proof. Applying the maximum principle (see E.1 d] of Section 1.2) with
D = D; and
Qw) == w"p (3(w+w™)) € Ps,,

we obtain
Q)| <|Qllp, = [Ipll=1,1),  w € ODy-1.

This, together with part c], yields

()| < @"llplli-1,y.  z€E,.

e] Show that there exists an absolute constant ¢ such that

p(2) <ellpll-1y, pEP,
whenever

) 1 1—22 1
Z=z+1y, xaye]Ra |$|§1+_27 |y‘§g+_2
n n n
(|1 — 22|+ := max{1 — 22,0}).
Hint: Use part d]. O

f] Prove the following Markov-Bernstein inequality. There is a constant
¢(m) depending only on m such that

™ @) < etm) (omin {7, —L 1) 1

for every p € P¢ and z € [-1,1].
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Hint: Use part e¢] and Cauchy’s integral formula (see E.1 a] of Section 1.2).
O

Bernstein established Theorem 5.1.4 in order to prove inverse theorems
of approximation. Bernstein’s method is presented in the proof of the next
exercise, which is one of the simplest cases. However, several other inverse
theorems of approximation can be proved by straightforward modifications
of the proof of this exercise. That is why Bernstein- and Markov-type in-
equalities play a significant role in approximation theory. Direct and inverse
theorems of approximation and related matters may be found in many
books on approximation theory, including Cheney [66], Lorentz [86a], and
DeVore and Lorentz [93].

E.18 An Inverse Theorem of Approximation. Let Lip,, a € (0, 1], denote
the family of all real-valued functions g defined on K satisfying

sup { 9(x) — g(y)]

- :w#yEK}<oo.
|z =yl

For f € C(K), let

Bu(f) = inf{|lt — fllxc : t € Tu}.

An example for a direct theorem of approximation is stated in part a]. Part
b] deals with its inverse result.

a] Suppose f is m times differentiable on K and f") € Lip, for some
a € (0,1]. Then there is a constant C depending only on f so that

E (f)<Cn~(mF)  pn=12 ...

Proof. See, for example, Lorentz [86a]. O

b] Suppose m is a nonnegative integer, a € (0,1), and f € C(K). Suppose
there is a constant C' > 0 depending only on f such that

E,(f) < Cn~(mte), n=1,2....
Then f is m times continuously differentiable on K and f™ € Lip,.
Outline. We show only that f is m times continuously differentiable on

K. The rest can be proved similarly, but its proof requires more technical
details. See, for example, Lorentz [86a].

For each k € N, let Q51 € Tor be chosen so that

1Qar — fllx < C 27K+,
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Then
Qarst — Qoi || < 20 27 K(m+a)

Now

f(0) = Qx (0 +Z art1 — Qor)(0) bek,
k=1

and by Theorem 5.1.4 (Bernstein’s inequality)

Q51+ 3" (Qorsr — Q)9 ()
k=1

< @ik + 2(2'“+1)J||Q2k+1 — QoI
< ||Q1||K+Z(2k+l)j202_k(m+a)
k=1
< Qi + 240 S (@ < o
k=1
for every 8 € K and j = 0,1,... ,m, since a@ > 0. Now we can conclude
that f()(6) exists and
) o0
F9(0) = )+ Qo — Qor)9)(6)
k=1

for every # € K and j = 0,1,... ,m. The fact that f(™ € C(K) can be
seen by the Weierstrass M-test. O

The next exercise follows Videnskii [60].
E.19 Videnskii’s Inequalities. The main results of this exercise are the

Bernstein- (part b]) and Markov-type (part c]) inequalities for trigonometric
polynomials on an interval shorter than the period.

Let w € (0,7),

tn(0) == Qn.w(8) = cos (2" arecos (%)) ’

tn(6) = sin (an (%)) .

a] Recall that t,, € 7, by E.3 a].

and
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b] Show that

|5 ()] < 125,(60) + iuy, (B)] [ 5|,

cos? (w/2) -1/
=n <1 - W) ||5n||[w,w]

for every s, € T, and 0 € (—w,w). Equality holds if and only if s, = ct,
for some ¢ € R and s,(6) = 0.

Hint: First show that for every n € N, w € (0,7], and 6 € [-w,w], there
exists an § € T, such that

FO) L 1sh0)

18l {—ww] 50 €Tn [[8nll—ww)
Use a variational method to show that either
180l .0 = [I3nll{=m,m

or there exist a € (—m,—w] and f € [w,n) such that 5, = ¢T), for some
¢ € R, where, as in Section 3.3,

T, :=Tp{1, cost, sinT,...,cosnt, sinnt;[a, 5]}

is the Chebyshev polynomial for 7, on [, £]. In the first case use Theorem
5.1.4 (Bernstein’s inequality). In the second case observe that

(1) = to (D2

with
v:=1(a+p) and w:=1(B-a).

c¢] Show that if 2n > (3tan?(w/2) + 1)'/2, then
snlli—w.01 < tn(@)lI8nll{-w,0] = 20° cot(w/2)lIsnll—w o]
for every s, € T,, and equality holds if and only if s, = c¢t,, ¢ € R.
Outline. Let —w =, < & < -+ < &y = w be the points where
ta(&) = (=1)7, j=0,1,...,2n

and
un(§5) =0, j=12...,2n—1,
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and let 6, < 8y < --- < B2, be the zeros of ¢,, (which lie in (—w,w)). Note
that
W()=0, j=1,2,...,2n.

Step 1. Show that 2n > (3tan?(w/2) + 1)*/2 implies #/(f) > 0 for every
0 € [€an—1,w], so tl is increasing on [£a,—1,w].

Step 2. Use part b] to show that if 6 € [0, 602,], then

|, ()] < 18, () + iu, (0)] < [t,(B2n) + iy, (B2n)| = [t, (62n)] -

Step 3. Deduce from Steps 1 and 2 that

|tln(6)‘ < ‘t,n(:tw”a e (_wvw)'

Step 4. Show that there is an 5 € T, such that

||§rlz||[—w,w] . ||5l||[—w,w]

8nll-ww  s€Tn Isll-ww

For the rest of the proof let 5, be normalized by |[5]||_,..) = 1 and let
6* € [~w,w] be chosen so that

15207 = 1150 (O)l{—w-

Let (a1 < a2 < --- < ay,) be an alternation sequence of maximal length for
Sp € Cl—w,w] on [—w, w]. We would like to show that m = 2n + 1. Clearly
m < 2n + 2.

Step 5. Use a variational method to show that 2n < m.

Step 6. Use a variational method to show that 8* = +w implies m = 2n+1,
so m = 2n implies 6* € (—w,w).

Step 7. Show by a variational method that
|8y, (Fw)| < [, (W) [[5nl[- w0

for every s, € T,, and equality holds if and only if s, = c¢t,, ¢ € R In
particular, if m = 2n, then

|50 (Fw)| < [t (£w)] -

Step 8. Use part b] and Step 3 to show that

52 (0)] < £,(B2n) <t (w), O € [61,000].

Step 9. Use part b] to show that m = 2n implies
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50(0)] < [t (0)] = (1), (8;),  j=12,....2n.

Step 10. Suppose m = 2n. Use Steps 6 and 8 to show that

9* € (—w,ﬂl) U (92n,CU) .

Step 11. Suppose m = 2n. Use the defining property of 5, and Steps 1
and 10 to show that

1520 = 150 ll[—w w1 = [t (Fw)| > |8, (67)] -

Step 12. Suppose m = 2n and s, (8*) > 0. Use Steps 7 to 11 to show that
t! — 3§’ has at least 2n + 1 distinct zeros in (—w,w), a contradiction.

Step 13. Show that m = 2n + 1 and 5, = £t,. O

E.20 Inequalities for Entire Functions of Exponential Type. FEntire func-
tions of (exponential) type 7 are defined in E.17 of Section 4.2. Denote by
E- the set of all entire functions of exponential type at most 7. This exercise
collects some of the interesting inequalities known for E,. Since a trigono-
metric polynomial of degree n belongs to E,, these results can be viewed as
extensions of the corresponding inequalities for trigonometric polynomials.
More on various inequalities for entire functions of exponential type may
be found in Rahman and Schmeisser [83].

a] Bernstein’s Inequality. The inequality

1f e <7lflle, z€eR

holds for every f € E,.
Proof. See Bernstein [23] or Rahman and Schmeisser [83]. O
b] Extension of the Bernstein-Szegé Inequality. The inequality

(f'(@)? + (1f(2)* < T°lIfIR, w€R

holds for every f € E, taking real values on the real line.
Proof. See Duffin and Schaeffer [37]. O
¢] The Growth of f € E;. The inequality

fatiy) <eflz, wyeR

holds for every f € E,.
Proof. See Rahman and Schmeisser [83]. O
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d] The Growth of f € E, Taking Real Values on R. The inequality

[f(z+iy)| < (coshry)[[flle,  =yeR

holds for every f € E, taking real values on the real line.
Proof. See Schaeffer and Duffin [38]. O
e] Bernstein-Type Inequality in L,. Let p € (0,00). The inequality

I Nz, @y < 7IFllE, )

holds for every f € E,.
Proof. See Rahman and Schmeisser [90]. O

E.21 Markov-Type Inequality on Connected Subsets of the Complex
Plane. Let E be a connected compact set of the complex plane. Then

e
1ple <5 1Pl =

n
2 cap(FE)
for every p € Pg.

Proof. See Pommerenke [59c]. O

Erdds conjectured that the constant & in the above inequality can be
replaced by % This result would contain Theorem 5.1.8 (Markov’s inequal-
ity) as a special case. However, Rassias, Rassias, and Rassias [77] disproved
the conjecture. Erdds still speculates that $ in Pommerenke’s inequality
may be replaced by (1 + o(1)).

The result of the next exercise is formulated so that its proof is ele-
mentary at the expense of precision and generality.
E.22 The Interval where the Sup Norm of a Weighted Polynomial Lives.
Suppose w = exp(—Q), where
(1) @ :R — R is continuous and even,
(2)
(3) tQ'(t) is increasing in (0, o), and

: gy ; 1) —

4) t£r51+ tQ'(t) =0 and tl;n()l(j tQ'(t) = oo.

Let a,, > 0 be chosen so that

@' is continuous and positive in (0, co)

Y

anpw(a,) = max |z"w(z)].

a] Show that

n=anQ'(ay) and 0<a; <ay<az<-:--.
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b] Show that
lpwlle < llpwll-202, 2a5.]

for every p € P£.

Proof. Using Chebyshev’s inequality (see E.2 of Section 5.1) and the explicit
form (2.1.1) of the Chebyshev polynomial T,,, we can deduce that

N T 202"
P (5) -1 ”p”[—a,a]§<7) Pl [~ a,a]

for every p € PS, z € R\ [—a,a], and a > 0. Choosing a := a,,, and using
the fact that w is decreasing on [0, 00), we obtain

Ip(z)] <

22|

(w)(@)] < (—)

Qn

" w(z)

ey Il

for every p € PS and x € R\ [—ap, ay]. Now if € R\ [—2a2y, 2a2,], then
| w(z) / d
— < — log(t"
arw(an) S exp @ og(t"w(t)) | dt
lzl 0 — 0O’
= exp (/ %C)(t) dt>

n

2a2n _ 2
Sexp(/ n ndt):?”,
a2y t

where we used asy, > an, tQ'(t) > 2n for t > asyp, and tQ'(t) > n for ¢t > a,.
Combining the above inequality with the previous one, we obtain that

[(pw)(@)] < IPwll-ana0), T € R\ [~2a2n,2a2,]
for every p € Pf, from which the result follows. O
¢] Let Q(z) :=|z|* « > 0. Show that @ satisfies the assumptions of the

exercise, and
n\1/a
an=(2)"
!

The idea of infinite-finite range inequalities, of which E.22 b] is an
example, goes back to Freud (a, is the Freud number); see Nevai’s survey
paper [86]. The sharp form of these is due to Mhaskar and Saff [85]; see
also Lubinsky and Saff [88] and Saff and Totik [to appear]. They are not
that difficult to prove, but need the maximum principle for subharmonic
functions.
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E.23 A Theorem of Markov. Let T, be the Chebyshev polynomial of
degree n defined by (2.1.1). Then

Tn(z) = Z ck,na:k .
k=0

The Markov numbers My, ,, 0 <k < n, are defined by

{ |Ck.n if k=n (mod 2)
Mkn = .
’ lekn—1] if k=n—1 (mod 2).

These can be explicitly computed from (2.1.1).
a] The inequalities

lak,n] < Mip lpll[=1,1]
hold for every p € P, of the form

n
p(z) = Zak,nzk, agn € R.
k=0

Proof. See, for example, Natanson [64]. O
b] Show that

P'(0)] < (2n = D) [Ipllj-1.1
for every p € Pay,.
Hint: Use part a]. O
¢] Show that

p 2n-1

p'(7)] < 12| lpll—1,1]
for every p € Py, and x € (—1,1).
Hint: Use part b] and a linear transformation. O

Of course, part c] gives a better result than Theorem 5.1.7 (Bernstein’s
Inequality) only if z is very close to 0. This is exactly the case we need in
our application of part c] in E.4 c] of Section 6.1.

5.2 Markov’s Inequality for Higher Derivatives

From Theorem 5.1.8 (Markov’s Inequality), by induction on m it follows
that

15 1,1 < (16 = 1)+ 0 = m o+ 1)l
for every p € P,.
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However, this is not the best possible result. The main result of this
section is the following inequality of Duffin and Schaeffer [41], which gives
a sharp improvement of the above. E.2 d] extends the following result to
polynomials with complex coefficients:

Theorem 5.2.1. If p € P, satisfies

lp(cos )| <1, j=0,1,...,n,
then for every m =1,2,... . n,
P (@ +iy)| < [T (L +iy)|, 2z el-1,1], yeR,

where T, is the Chebyshev polynomial of degree n defined by (2.1.1). Equal-
ity can occur only if p = +T,,.

To prove this inequality we need three lemmas, which are of some
interest in their own right.

Lemma 5.2.2. Suppose A1, A2, ..., A\, are distinct real numbers,

q(z)::cH(z—/\j), 0#£ceR,

j=1
and p € Pf, satisfies
PO <IdM)L =12 n.
Then, for every m € N,
(5.2.1) p™ ()] < g™ ()]
whenever x is a zero of ¢!™ 1),

Proof. For m = 1, inequality (5.2.1) is simply a restatement of the assump-
tion of the lemma, so consider the case m = 2. The Lagrange interpolation
formula (see E.6 of Section 1.1) gives

PE) P 1 -
(5.22) PE R W v D v

J j=1 J

where, by the hypotheses of the lemma, |§;| < 1. There is a similar expres-
sion for ¢'(z)/q(z) in which each 0; is equal to 1. On differentiating (5.2.2)
we obtain

Y

P'Ra) - P EdE)
a(2)? STl GaE
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Thus at the points z where ¢'(z) = 0 we have

n

< I
g T e M ey

j=1 j=1

q"(x)
q(z)

3

and it follows that the lemma is true for m = 2.

The proof for m > 2 is by induction. Let [p™ (z)| < |¢™)(z)| at
the zeros of ¢(m—1) (which are real and distinct). Applying the previous
argument to p(™ and ¢("™ instead of p' and ¢', we obtain

P ()] < g (2)]

at the zeros of ¢(™). This completes the induction. O

Lemma 5.2.3. Let ¢ € P, have n distinct zeros in (—oc,b), and suppose
that in a strip of the complex plane it satisfies the inequality

(5.2.3) gz +iy) <lqb+iy)|, z€lab], yeR.
Suppose also that p' € P,,_1 satisfies

(5.2.4) P (2)] <|q'(z)|

whenever x is a zero of q. Then the derivatives of p and q satisfy

(5.2.5) P (@ +iy) < l¢™(b+iy), welab], yeR.

Y

Proof. First we show that at every point z¢ + iyg in the strip

' (20 +iyo)| < ¢’ (b +iyo)] -
Let .
g(z) ==c[J(z=2j), 0#c€eR, X€(~o00,b).
j=1

Let h(z) be another polynomial with the same leading coefficient as g and
whose zeros are obtained by reflecting about zy those zeros of ¢ that lie to
the right of 2. Thus

W) =[] == 8).

j=1

where

2xg9 — /\j if /\j > Ty
/\j if /\j S Zg -

(5.2.6) B; = {
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Then on the line z = 29 + iy, y € R, we have |z — 3;| = |z — Aj|, so
(5:2.7) |h(zo +iy)| = lg(zo +iy)|-

We now show that

(5.2.8) ' (20 + iyo)| < |A (x0 + iyo)] -
Note that

1 R
5.2.9 - ’
(5.2.9) Rz~ 2z 5

and recalling (5.2.2), we have

(5.2.10) - 2y

with 6; € [-1,1] for each j. Comparing the right-hand sides of (5.2.9) and
(5.2.10), respectively, at z = xq + iy, we obtain

eyl ) DEPL R ) SR
= Tot+igo— A | (@0 - NP +ug o (20— A)* +ug

n

xO_B] . Yo
P D D T
(o — Bj)* + 3 ]Z:; (zo — B5)* + v

|'M

1
zo — B + 1o

I
<.

AR
I

since by construction |zg — Aj| = zg — B;. Therefore

h/(al‘() + Zy(])
h(zo + iyo)

p' (2o + iyo)
q(xo + iyo)

S

and (5.2.7) yields (5.2.8).
Let « € C, |a| <1, be an arbitrary constant and let

o(z) :=q(z) — ah(z + 2o — b).

Let I' be the simple closed curve consisting of a segment of the line
z = b+iy, y € R, and the portion of a circle with center at b and ra-
dius p that lies to the right of this line. Relations (5.2.3) and (5.2.7) show
that on the line segment of I,
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l4(2)] > lah(z + 20 = b)] .

If g is sufficiently large, the same inequality is true for the circular portion
of I since ¢ and h have the same leading coefficient. Thus Rouché’s theorem
gives that ¢ and h have the same number of zeros inside I. We conclude
that ¢ has no zeros on or to the right of the line z = b+ iy, y € R. The
last statement, together with Theorem 1.3.1, implies that ¢’ has no zeros
on the line z = b+ iy, y € R. Thus for |a| < 1,

q'(b+ iyo) — ah/(xg +iyg) # 0,
which, together with (5.2.8), yields
[p'(zo + iyo)| < |1 (w0 + iyo)| < |a' (b + iyo)] -

This proves the lemma for m = 1.

We turn now to the case m > 1. Applying the lemma with m = 1 when
p = q, we have

ld'(x +iy)| <|d'(b+iy)|, z€lab], yeR.

Thus ¢’ satisfies all the requirements that are imposed on the interpolating
polynomial ¢ (with n replaced by n — 1) in the lemma, and by Lemma
5.2.2, |p"(z)| < |¢"(z)| at the n—1 zeros of ¢'. Applying the lemma to p'(z)
instead of p in the case m = 1, for which it has already been proved, we
have

Ip"(z +iy)| < |¢"(b+iy)|, x€la,b], yeR,

which proves that inequality (5.2.5) is true for m = 2. Repetition of this
argument completes the proof for larger values of m. O

Lemma 5.2.4. Suppose p € PS and |p();)| <1 for
/\j::cos%, j=0,1,... n.
Then

n for zpi=cosEENT L =0,1,...,n.

"z1)] < ———
|p(k)‘_m 2n

For every fized k, equality holds if and only if p = cT), for some c € C with
le] = 1.

Proof. Let
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Then by the differential equation for T), (see E.3 e] of Section 2.1), we have
f'(x) = =T} (x) — n*Ty(z).

Differentiating the Lagrange interpolation formula for p (see E.6 of Section
1.1) gives

S ) (= AP~ f@)
D Y 7y T WL

For the zeros of T, this reduces to

(5.2.11) p'(z) = =T (z)

since at these points
(z = X)f' (@) = f(2) = —2(z = Xj)T,(2) = (1 - 2*) T, (2)
= —(1—2)T,(2).
In the same way, we obtain for the zeros of T,

' _ ! S Tn(/\j) (1 —.22/\]')
T, (x) = —mm;ﬁ EWRCESNE

and since T,,();) and f'()\;) are of opposite sign (f'(\;) = —n?T,(};)), this
gives

n

(5.2.12) T)(x) = Th(x) >

j=0

1
()

Since |p(A;)| < 11in (5.2.11), on comparing (5.2.11) and (5.2.12), we obtain
for every zero z of T, that

P (z)| < | (2)] =

(1 — 13/\])
(z—X)*"

n

Vi—z2'

For a fixed zero of T}, the equality occurs if and only if
p(/\j):CTn(/\j), 7=0,1,....n

for some ¢ € C, |¢| =1, that is, if and only if p = T}, for some ¢ € C with
le| = 1. O

Proof of Theorem 5.2.1. Suppose p # T, satisfies the assumption of the
theorem. Then by Lemma 5.2.4 there exists a constant a > 1 such that
lap'(x)] < |T),(x)| at the zeros of T,. Applying Lemma 5.2.3 with p and ¢
replaced by ap and T, (assumption (5.2.3) is satisfied with [a,b] := [—1,1]
by E.1 b]), we obtain

P (z + iy)| < o HTM™ (1 + iy)

forevery m = 1,2,... ,n. If p =T, then we have the same inequality with
a~! replaced by 1. 0

, rz€e[-1,1], yeR
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Comments, Exercises, and Examples.

The inequality

1" =10) < TV Q) - Ipll-10), P € Pa

was first proved by V. A. Markov [16]. He was the brother of the more
famous A. A. Markov who proved the above inequality for m = 1 in [1889]
(see Theorem 5.1.8). However, their ingenious proofs are rather compli-
cated. Bernstein presented a shorter variational proof of V. A. Markov’s
inequality in 1938 (see Bernstein [58], which includes a complete list of
Bernstein’s publications). Our discussion in this section follows Duffin and
Schaeffer [41].

E.1 A Property of Chebyshev Polynomials.

a] Let (a;)?, be a sequence of 2n nonnegative numbers, and let (o) be
a rearrangement of this sequence according to magnitude,

aly >ah > >ah, >0
Show that for every y > 0,
(5.2.13) (a1ae +y)(agaq + y) -+ (@ap—1Q2p, + y)

is not greater than
(ejay +y)(azay +y) - (g, _1ah, +y).

Proof. If a; and a3 are at least as large as any of the remaining numbers
a;, then

(az +y)(azas +y) — (a1a2 + y)(azas +y) = y(ar — as)(az —az) > 0.

This shows that the numbers a; in (5.2.13) can be rearranged so that the
two largest occur in the same factor without decreasing (5.2.13). Then the
two largest of the remaining numbers «; may be brought into the same
factor without decreasing (5.2.13), and so on. O

b] Show that the Chebyshev polynomials T, defined by (2.1.1) satisfy the
inequality

Tn(z+iy)| <[Tu(l+iy)l,  wel[-L1], yeR.

Proof. We have

n
T (2 + iy)|? H ((x — cos8;)* +y?),
j=1
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where §; = 22U and ¢ = 27!, With 2 = cos§ we write

n
| T (2 + zy)\Q = H (% ‘em — e~ ‘2 ‘em — et ‘2 + yQ) .
j=1
Geometrically, e*®i, j = 1,2,...,n, represent 2n points equally dis-
tributed on the unit circle. Connect these points by chords to the point
. Then the lengths of these 2n chords are given by |e?? — e*i|. If @ is
increased or decreased by any multiple of 7, we obtain a new set of chords,
but the aggregate of their lengths is unchanged. Choose ¢ such that

B

¢=0 (mod I) -

; <p<

M)
S

n

If 2* = cosy, then
n
Toa” +ip) = [T (e = e fete - +42)),
j=1

where the numbers |e!¥ —e®#i|? are simply a rearrangement of the numbers

le?® — e*i%i |2, Use part a] to show that
Tz +iy)” < |Tn(a™ +iy)| .

Note that cosf; < x* < 1, where cos; is the right most zero of T,,. Hence
|To(a* +iy)[* < |Tu(1+iy)?,

and the proof is finished. O

E.2 Markov’s Inequality for Higher Derivatives for P¢.

a] Show that if p and ¢ satisfy the conditions of Lemma 5.2.3 with p € P,
replaced by p € PJ;, then

p™ @) < ld™ O, @ elal

for every m € N.
Hint: After differentiating (5.2.2) m — 1 times, we obtain

~ o dm ( g(2)
(m)(2) = E ‘
p (.’13) = 6.7 dxm—1 (2? _ AJ) )

where |0;] = [p'(A;)/q'(A;)| < 1.1t is evident that if 2 € (a,b) is fixed, then
ip(™)(z)| attains its maximum when §; = +1 for each j, in which case p'
has real coefficients. Now use Lemma 5.2.3. O
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b] Show that if p satisfies the assumption of Theorem 5.2.1 with p € P,

Cc

replaced by p € Pf, then
1P [li—1,1 < T (1)

for every m € N. The equality can hold only if p = ¢T}, for some ¢ € C,
le| = 1.

Hint: Modify the proof of Theorem 5.2.1 by using part a]. O
¢] Show that

_n*(n?—1)(n* —2?)---(n? — (m — 1)?)
1-3:5---(2m —1)

Hint: Differentiating the second-order differential equation for T, (see E.3
e] of Section 2.1) m — 1 times gives

(1 — 2T (2) — (2m + 1)zT ™Y (2) + (n? — m?*) T (z) = 0

from which
2m + 1) T (1) = (2 — m?) T™ (1)

n

follows. Use induction and T, (1) = 1 to finish the proof. O
d] The Main Inequality. Suppose p € P¢ satisfies

|p(cos%)| <1, j57=12,...,n.
Show that form =1,2,... ,n,

n’(n* —1)(n® = 2%)..- (n* = (m - 1))
1-3-5---(2m—1) ’

1Pl <

and the equality can occur only if p = ¢T), for some ¢ € C, |c¢| = 1.
Hint: Combine parts c] and b]. O

A slightly weaker version of Markov’s inequality for higher derivatives
is much easier to prove.

E.3 A Weaker Version of Markov’s Inequality. Show that
P ™ =11y < 270%™ ([pll—1.1)

for every p € P,.

Hint: First show by a variational method that the extremal problem

lp' (£1)]
max ——
o#pePy |plli-1,1)
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is solved by the Chebyshev polynomial T;,, hence

P (D] <n?|lpll -1 -

Then, by using a linear transformation, show that

P ()] < n|lpllya) < 20%(plli=1yy, —1<y<0

-y

and

n?[lplli—1,y < 207 pllryy, 0SSy <1

/
<
P (y)| < T+

Hence the inequality of the exercise is proved when m = 1. For larger values
of m use induction. O

E.4 Weighted Bernstein and Markov Inequalities. Let w € C[—1,1] be
strictly positive on [—1,1].

a] Show that for every ¢ > 0 there exists an ny depending on € and w such
that

[P @ w@vI=a] . <n(l+ el .y
for every p € Pn, n > ng.

Proof. By the Weierstrass approximation theorem, for every n > 0 there is
a q € Py, such that

w(e) < qa) < L+ nw(@), =€ [-11].

Let m := min{w(z) : € [-1,1]}. Applying Theorem 5.1.7 (Bernstein’s
inequality) to pq € P4k and then to g € Py, we obtain

P (2)w(z)V/1— 22| < |p'(x)q(z) V1 — 22|
|(pg)' (z)V'1 = 22| + |p(2)d () V1 — 22|

(n+ KB)llpalli—1.a7 + llplli—1kllalli-1.

IN N

IN

1
(n+ k)1 +n)llpw(lj=1,17 + E||Pw||[—171]k(1 +m)l|wllj=11]
n(1+ €)|lpwllj—1,1

IN

for every p € P,, provided n > 0 is sufficiently small and n > ng. O
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b] Show that for every € > 0 there exists an ng depending on € and w such
that

[P'wll—1,1) < n*(1 + &)llpwll|-1.
for every p € P,, n > nyg.
Hint: Use the idea given in the previous proof. O

Schaeffer and Duffin [38] prove an extension of Theorem 5.1.7 (Bern-
stein’s inequality) to higher derivatives. They show that

m

dm
dx—mp(a:)‘ < e exp(in arccosz)| , z € (—1,1)

for every p € P,. The following exercise gives a slightly weaker version of
this, which is much simpler to prove. Some of this follows Lachance [84].
E.5 Bernstein’s Inequality for Higher Derivatives.

a] Show that there exists a constant ¢(m) depending only on m such that

@) < ) (L) ol o€ (-1

for every p € PS. (That we can choose ¢(m) < 2™ is shown in parts c|, d],
and e].)
Hint: For j =1,2,... ,m, let
— (1 — (1 —
aj::z—w and bj;:;l;_pw.
m m
Use Corollary 5.1.5 to show that there are constants c¢;(m) depending only
on m such that
j—=1) ||[

aj—1,bj—1]

(4) ) LTI
Hp] ||[aj,bj] < Cj(m)mnp

for every p € P5 and j =1,2,... ,m. O
b] Show that there exists a constant ¢(m) > 0 depending only on m such
that ()
'™ ()] ( : {2 n })m
sup ———— >¢(m) ( mindn’, ——
0#£pEPy ||p||[_171] V1-— 22
for every z € [-1,1] and m = 1,2,... ,n.

Hint: First show that

m
Ty > eton) (min {2~ )

where I(z) := [z — $(1 = |z]), =+ (1 —|z|)], then use a shift and a scaling.
O
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In the rest of the exercise we show that ¢(m) = 2™ is a suitable choice
for the constant in part a.

¢] Let k be a positive integer. Then
_ n+k
llp(a)(1 = 2®)*D2)) g < 7 llp@)(1 — )2 |11

for every p € P,.

Hint: Let p € P,, be normalized so that ||p(z)(1 — 22)¥/2||_; 1 = 1. Apply
Theorem 5.1.3 (Bernstein-Szegé inequality) with

t(A) := p(cosB) sin* 6 € T .

If zg = cosfy denotes a relative extreme point for p on (—1,1), then
p'(cosby) = 0, and after simplification we obtain that

ke + k)2 n+k\>
Bo) sin® 1 69)? < (n << ) :
(p(cosbo) sin™ " 60)” < T it st tg 7 2 S\ R

d] Let k be a positive integer. Then
19" () (1 = &) FFD 2|y < 200+ B)Ip(2) (1 = 2)*2 [l 1

for every p € P,.

Proof. Let p € Py, be normalized so that ||p(z)(1 — 22)*/2||_y 1 = 1. Ap-
plying Theorem 5.1.4 (Bernstein’s inequality) with m =1 and

t(9) := p(cosB) sin* 0 € Trpr,
we obtain
p'(cos ) sin**1 @ + p(cosB)ksin®* 1 hcosh <n+k.
Now the triangle inequality and part c] yield

p'(cosB) sin* T 4| < (n+ k) + k |p(cos 6) sin* 1 9‘

k
S(n—l—k)—l—k%ﬁ?(n-{—k).
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e] Show that

™ (@) < (22 ) fpllioia
Vi—a? o

for every p € P, and z € (—1,1).
Hint: Use induction on m, Theorem 5.1.7, and part d]. O

5.3 Inequalities for Norms of Factors

A typical result of this section is the following inequality due to Kneser
[34].

Theorem 5.3.1. Suppose p = qr, where ¢ € P}, and r € P5_,,. Then
lalli=1allrll=1.1) € $CnmConmllPll=1,17 5

where

Chm :=2™ H (1 + cos (Zkgnl)") .
k=1

Furthermore, for any n and m < n the inequality is sharp in the case that
p is the Chebyshev polynomial T,, of degree n defined by (2.1.1), and the
factor q € PS, is chosen so that q vanishes at the m zeros of p closest to
—1.

Before proving the above theorem, we establish an asymptotic formula
for C,,,, and formulate a corollary.
If f € C?[a,b], then by the midpoint rule of numerical integration

’ 1 (b_a)3 "
[ f@yde=@-a)f (ba+0) + Co 0

for some ¢ € [a,b]. Let f(x) :=log(2 + 2cosnzx). Then
— 2
(1+ cosmz)?’

f(z) =
On applying the midpoint rule to the above f, we obtain
m/n 1 (2k—1)
/0 log(2 + 2 cosmz) dx = E;log (2+2cos Tﬂ)

4
+O(miin7>

24 n3 (n—m)t
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for all integers 0 < m < n. Thus

(5.3.1) Chn,m = €xp (log ﬁ (2 + 2cos (2k2—n1)7r)>

k=1
18 !
_ = (2k—1)m
= (exp (n ;log (2 + 2cos =5 )))
mn? n
= exp <O <m>> (exp(I(n,m)))"
where /
I(n,m):= / log(2 + 2 cosmzx) dz .
0
So

1/2
(5.3.2) (Cn’mm)l/n ~ exp (/ log(2 + 2 cosx) dw) =1.7916. ..
0

and
' 2/3
(5.3.3) (Cn,@n/BJ) ~ exp / log(2 +2cosmx)dx | =1.9081....
0

We use the notation a, ~ b, and a, < b, to mean lim a,/b, =1 and
n—oo

~

lim sup a,, /b, < 1, respectively.
n—oo

On estimating %Cn,an,n,m in Theorem 5.3.1 and using (5.3.2), we
obtain the following;:

Corollary 5.3.2. Let p € PS and suppose p = qr for some polynomials q
and r. Then

[n/2] )
lall-a il n <270 T (1 cos Z525) gl 1
k=1

< 302 e lplli-1

and equality holds when p is the Chebyshev polynomial T, of degree n, and
the factor q € Pg, is chosen so that m := |n/2| and q vanishes at the m

zeros of Ty, closest to —1. Here CZ/[;/% ~ 3.20991..., hence

<IIQII[—1,1]||T||[—1,1]>1/n < 3.20991
[ -
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The proof of Theorem 5.3.1 proceeds through a number of lemmas. For
the remainder of the proof we assume that 0 < m < n are fixed. Now

(5.34)  sup{llglli—i,yllrll=iy : llerllziy =1, ¢€ Py, 7€ P}

is attained for some ¢ € Pg, and r € P;_, . We proceed to show that there
are extremal polynomials ¢ € P5, and r € PS_,, such that p := ¢r is the

Chebyshev polynomial T, of degree of n, and that the factors ¢ and r are
as advertised, that is,

p(z) = (qr)(z) = Th(z) = % 112 (a: — cos (2162—n1)7r) ’
k=1

and the extremal factors, ¢ and r, are given by

q(z) == % ﬁ 2 (a: — cos (2’“;1)#)
k=1

and

1 T )
r(z) = 7 kzl;IH 2 (a: — cos %) ,

respectively. Note that for the above g and r we have

1
11 =1¢(-1)| = —=Cnm
lall-1,1 = la(=1)] 7 O

and
1

I7fli—1,0 = Ir(D)] = 75 Cninm-

First we show that there exist extremal polynomials ¢ € Pg, and
r € PS_,, such that

(5.3.5) lg(=1) =llgll-1,,;  and  |r(1)] = {|r[l=1,1-
To see this, choose «, § € [—1,1] such that
lg(@) =llglli-1y  and  r(B)] = lIrllj-1.1

where, considering ¢(—z) and r(—z) if necessary, we may assume that
a < . Note that « =  cannot happen, so a < . We have

lalliasllrllias o lallizrullrlli-a)
larllas = llarlli-1y

since the numerators are equal and

llar{lja.e < llarlli-1;-

Let ¢ € P, be defined by shifting ¢ from [a, 8] to [—1, 1] linearly so that
a — —1.Let ¥ € PS_,, be defined by shifting r from [a, (] to [-1, 1] linearly
so that # — 1. Then q € P§, and 7 € PS_,, are extremal polynomials for
which (5.3.5) holds.
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Lemma 5.3.3. Suppose ¢ € P;, and r € P,_, are extremal polynomials
for which (5.3.5) holds. Then there are extremal polynomials ¢ € PS, and
7 € PS_,. having only real zeros for which (5.3.5) holds.

Proof. Let q(z) be defined by replacing every factor z — « with nonreal «
by z— (|Ja+ 1| —1) in the factorization of q. Let 7(z) be defined by replacing
every factor z — o with nonreal a by z — (1 — |a — 1|) in the factorization
of r. Now it is elementary geometry to show that ¢ € PS, and 7 € PS_,,
are extremal polynomials for which (5.3.5) holds, and all the zeros of both
g and 7 are real. O
Lemma 5.3.4. Suppose ¢ € Pg, and r € P._, are extremal polynomials
having only real zeros for which (5.3.5) holds. Then there are extremal poly-
nomials ¢ € P5, and 7 € PS_,, having all their zeros in [—1,1] for which
(5.3.5) holds.

Proof. Let ¢(z) be defined by replacing every factor z—a by z—1if a > 1,
and by 1 if & < —1, in the factorization of ¢. Let 7(2) be defined by replacing
every factor z — a by z + 1 if @ < —1, and by 1 if & > 1. Now it is again
elementary geometry to show that ¢ € P§, and ¢ € PS_,, are extremal
polynomials having all their zeros in [—1, 1] for which (5.3.5) holds. O
So we now assume that ¢ € P5, and r € Py;_,, are extremal polyno-
mials having all their zeros in [—1, 1] for which (5.3.5) holds. We may also
assume that deg(q) = m and deg(r) = n — m, otherwise we would study

G(z) := 2" (2) € Py,

and
F(z) = 2m—deslnp(5) ¢ PC

n—m:?:

which are also extremal polynomials having all their zeros in [—1,1] for
which (5.3.5) holds.

It is now clear that if ¢ and r are extremal polynomials with the above
properties, then the smallest zero of ¢ is not less than the largest zero of r.
Indeed, if there were numbers —1 < a < 8 < 1 so that g(a) = r(8) = 0,
then the polynomials

and
z—a

z=p

would contradict the extremality of ¢ and r since

Pl _..
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all-1,01 = 1a(=DI > lg(=D)| = llall=1,11,

17 lli—1ay 2 PO > r(W] = {7l =155

and
arll-10) = llarlli-1,1 -
So now we have extremal polynomials ¢ € P¢, and r € P:_,, of the
form
q(2) =+a H(z — Br) and r(z) = Va H (z — ag)
k=1 k=1
satisfying
la(=D = llgll=11  and  |r()] = Irll—117,
where

1< <a< <apm <P <Bhr < <P <1

and the constant a > 0 is chosen so that for p := gr we have ||p[[j_1,1; = 1.
Now we are ready to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. We show three properties of p = gr:

(1) |p(=1)] =1 and |p(1)] = 1.

(2) ||P($)||[ai,a,-+1] =1, i=1,2,...,n—m—1,
lp(@)lig:8:00) =1, i=1,2,...,m—1.

3) MPllap . =1

These three facts show that p is indeed the Chebyshev polynomial +7;,
defined by (2.1.1) since £7,, are the only polynomials of degree at most n
that equioscillate n + 1 times on [—1, 1] with uniform norm 1.

To prove (1), assume to the contrary that |p(—1)| < 1. Then there is
a d < —1 such that

1Pllts,1) = lIPll-1,11 -

Since |q| is strictly decreasing on [§, —1],

lallsy = 1a(8)] > la(=1)| = llall-1.1)
and, of course,
17lla,17 2> llrll—1,17 -

Let ¢ € PS, and 7 € PS_,, be the polynomials ¢ and r shifted linearly
from [4,1] to [-1,1] so that 1 — 1. By the previous observations, these ¢
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and 7 contradict the extremality of ¢ and r, hence |p(—1)| = 1, and we are
finished. A similar argument shows that [p(1)] = 1.

To prove (2) let
5(2) == (z —a;)(z — ait1) -
Given € > 0, we can find 0 < d;,d2 < € such that
t(2) := (2 — (i — 01)) (2 — (@is1 +62))

satisfies
t(1) =s(1), It — sl <€,

and
t)] < [s@), @€ [~ — 0] Ufass +02,1).

Suppose ||p||[ai,ai+1] < 1. Let
q(z) :==q(z) € Py,

and

P(2) == r(z )(—2 €P

If € > 0 is sufficiently small, then
a7l < llgrll-1,,;  and  |(@)(=1)[ < 1.

The second inequality guarantees that there exists a § < —1 such that

@rlisay = g7 lli-1.01-

Since |q] is (strictly) decreasing on (—o0, 1],

l1alls.1) = 1g(0)] > [g(=1)| = [¢(=1)| = llgl[j-1,11-

Also
71,17 > (1Pl j=1,0p > [F(D] = [r(D)] = [Ir[[=1.1

Now let g € Pg, and 7 € PS_,,, be the polynomials p and ¢ shifted linearly
from [4, 1] to [—-1,1] so that —1 — —1. By the previous observations, these
g and 7 contradict the extremality of ¢ and r. Hence ||pl|,,, =1, and
the proof is finished. The proof of ||p|

Qiy1]
[8:,8i41] = 1 is identical.

To prove (3) assume that ||pll,_,..5,] < 1. Let

q(2) == Va(z — (b1 +¢)) HZ_BIC
k=2
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and

n—m—1

7(2) := Va(z — (an_m — ¢€)) H (z — ay) .
k=1
If € > 0 is sufficiently small, then

all-1,01 = 1a(=DI > lg(=D)| = llgll=1,11

17lli=1,0y > PO > r(W] = {7l -1,

and

g lli=1,1) < llgrlli=1,175
which contradicts the extremality of ¢ and r. Hence ||pl|(a,,_,,,5,] = 1, in-
deed. O

Theorem 5.3.5. Suppose p € Pf, is monic and q € Py, is a monic factor of
p. Then

a(- H<Bm”T1II(+wsk =) lIpl s,

for every B > 0. Equality holds if p is the Chebyshev polynomial T, 3 of
degree n on [—03, 8] (normalized to be monic), and the monic factor q € P,

is chosen so that q vanishes at the m zeros of Ty, 3 closest to 3. Note that
Ty5(x) = BTy (x/B), where T, is defined by (2.1.1).

The proof of Theorem 5.3.5 is outlined in E.1.

Corollary 5.3.6. Suppose p € P, is monic and g € Pf, is a monic factor of
p. Then

I /\

la(—

m 1
"o TL (1 con 25202 Il = 5Ol

and the inequality is sharp for all m < n. Here, for all m < n,

n </
Cplim </l gy ~ 19081,

and hence

. 1/n
(472) " srast..

1Pll—2,2
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Proof. Take = 2 in Theorem 5.3.5. Note that

) lj( -I-COSM),

m
H (1+cos

where y(n)+1:= L% +%J is the smallest k € N for which cos @ k2 Lm < —%_
So, for every m = 0,1 1,
Cnm < Chy(m)
and by (5.3.3)
CLm < Chy lanys) < 19081 ... .
O

Theorem 5.3.7. Suppose p € Pg is monic and has a monic factor of the
form qr, where q € Py, and r € Py,,. Then

|Q(_B) ‘ |7‘(B)‘ < Bm1+mzfn2n71

T (1 con 28502) TT (1 on 25 o

Equality holds if p is the Chebyshev polynomial T, 3 of degree n on [—f, 5]
normalized to be monic, and the factors q € Py, and r € Py, are chosen
so that q vanishes at the my zeros of T,, 3 closest to 3, while r vanishes at
the my zeros of Ty, g closest to —f.

The proof of Theorem 5.3.7 is analogous to the proof of Theorem 5.3.1
and is left as an exercise (see E.2).

Theorem 5.3.8. Suppose p € P: is monic and has a monic factor of the
form qiqs - - - q;, where q; € Py, and m :==my +mso +---+mj; <n. Then

i
[T laill—se <™ 2
i=1

(m/2] ) 'm /2] e
1 n 1
x H ( + cos ) kl;[l ( + cos )Ilpll

for every B > 0. Equality holds if p is the Chebyshev polynomial T, 3
of degree n on [—08,8] normalized to be monic, j = 2, and the factors
q1 € me/2j and ¢ € me/ﬂ are chosen so that q1 vanishes at the |m/2]
zeros of T 3 closest to [, while go vanishes at the [m/2] zeros of Ty 3
closest to —p3.
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Proof. For each g;, write
q = Trisi,
where r; is the monic factor of ¢; composed of the roots of ¢; with negative

real part, while s; is the monic factor of ¢; composed of the roots of ¢; with
nonnegative real part. So

Irilli—g.8y = Imi(B)]  and  |[sill|—g,8 = [si(=5)|.
Thus

J J J
[T lalls.0 < [TT7:8)] - [TTsi-5)].
i=1 i=1 =1

We now apply Theorem 5.3.7 to the two factors [[7_, r; and []/_, s; to
finish the proof. ad

As before, let D := {z € C: |z] < 1}. We now derive inequalities on the
disk from those on the interval. A continuous function on D has the same
uniform norm on both D and D and it is notationally convenient to state
the remaining theorems over D. Suppose t € P, s € PS,,, and v € P§_,,
are monic, and ¢ = sv. By the maximum principle, ¢, s, and v achieve their
maximum on D somewhere on D. Now consider

p(z) = ()=,

q(z) == s(2)s(z71), and r(z) = v(2)v(z™h)

with

ri=2z+ 271,
The effect of this transformation on linear factors is

-1

(z—a)(z7!' —a) = —az +1+a?,

sop€e P, qe P, reP; and p = gr. Also

n—m»
1Pl {—2.21 < Il -

If t(0) # 0, then the modulus of the leading coefficient of p is |¢(0)|, while
the modulus of the leading coefficient of ¢ is |s(0)], and the modulus of the
leading coefficient of r is |v(0)].

From these transformations and the interval inequalities we can deduce
the next three theorems.
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Theorem 5.3.9. Let t € P be monic and suppose t = sv, where s € Pf,
and v € P;,_,.. Then

1/2
0(0)/2||s]lp < (2Com) " Itllp |

where Cy, . s the same as in Theorem 5.3.1. This bound is attained when
m < n are even, t(z) = 2" + 1, and s € PE, vanishes at m adjacent zeros
of t on the unit circle.

Proof. We may assume, by performing an initial rotation if necessary, that

[sllp = [s(=1)[

So from Corollary 5.3.6 we deduce that
(5.3.6)  lslh = Is(=1)]* = la(-2)

< [s(0)/4(0)[2"~ 1H(1+cos<’“ ) llpll -,

< IR T (14 cos 207 e,

where s(0)/t(0) = 1/v(0). O
Theorem 5.3.10. Suppose t = sv, where s € Py, and r € Py,_p,. Then
lslollvl < (3CnmCan-m)'" Itlp,
where Cy, ,,, s the same as in Theorem 5.8.1 and
(CrmCon) /W < OV~ 17916

This bound is attained when m < n are even, t(z) = 2" + 1, and s € P,
vanishes at the m zeros of t closest to 1 and v € Pp_y, vanishes at the
n —m zeros of t closest to —1.

Proof. From Theorem 5.3.1 we can deduce that if a, b € 0D, then
|s(a)[*[0(b)1* = |s(a)s(a™")[[o(b)o(b7")]
lg(a+a™h)|lr(d+ 07"
%Cn,mcn,nfm||p||[a+a—17b+b—1]
3CnmCrnn—mllpll—2,2)
5CnmCrn—mltlh

ININCIN

where, without loss of generality, we may assume that a + a~! < b+ b1,
The result now follows on choosing a and b to be points on 0D where s and
v, respectively, achieve their uniform norm on D. O

In the multifactor case we have the following theorem:
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Theorem 5.3.11. Suppose t € P, is of the form t = vsis2---5;5, where
8; € Pm; and v € Pp_p, with m :=my +ma+--- +my; <n. Then

j
w2 T  lIsillp < 20172

i=1
Lm/2] [m/2] 12

) [ T (14 cos C50m) T (14 cos B207) ) .
k=1 k=1

Equality holds if t(z) = 2"+ 1, j = 2, m1 = ma := m/2 and n are even,
and the factors q1 € Py, /2 and g2 € Py, /2 are chosen so that q1 vanishes at
the m/2 zeros of t closest to 1 and g2 vanishes at the m/2 zeros of t closest
to —1.

Proof. This follows from Theorem 5.3.8 in exactly the same way as Theorem
5.3.10 follows from Theorem 5.3.1. O

Comments, Exercises, and Examples.

The first result of this section is due to Kneser [34] and in part to Aumann
[33]. The proof follows Borwein [94], as does most of the section. There are
many variations and generalizations. See Boyd [92], [93a], [93b], [94a], and
[94b]; Beauzamy and Enflo [85]; Beauzamy, Bombieri, Enflo, and Mont-
gomery [90]; Gel’fond [60]; Glesser [90]; Granville [90]; Mahler [60], [62],
and [64]; and Mignotte [82]. Some of these are presented in the exercises.

In particular, E.6 reproduces a very pretty proof of Boyd [92] that

lgllpllrllp < (1.7916...)"(|p[lp

where p € PS and p = ¢r with some g € PS, and r € PS_,,. (Note that we
have not assumed real coefficients unlike in Theorem 5.3.10, and we have
< instead of < .)

E.1 Proof of Theorem 5.3.5.

Outline. Let m < n and > 0 be fixed. The value

sup {H;Zﬁiﬂ : g€ Pf, and p € P, are monic and ¢ divides p}
[—8.8]

is attained for some monic ¢ € Pg, and p € P;. We can now argue, exactly
as in the proof of Lemma 5.3.3, that there are extremal polynomials p € P},
and ¢ € P¢, such that all the zeros of p are real and lie in [—f3, 00). Arguing
as in Lemma 5.3.4 gives that p has all its roots in [-f, 8]. Thus ¢ must be
composed of the m roots of p closest to 3.
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The argument of the proof of Theorem 5.3.1 now applies essentially
verbatim and proves that an extremal p € P; can be chosen to be the
Chebyshev polynomial on [—/, 8] normalized to be monic. Thus on [-1,1]

p(z) = ﬁ (a: — cos W) and ﬁ ( — cos M)

k=1

from which the result follows (on considering 8"p(z/3) and ™q(z/8) on

E.2 Proof of Theorem 5.3.7.
Hint: Proceed as in the proof of Theorem 5.3.1 (or E.1). O

E.3 A Version of Theorem 5.3.10 for Complex Polynomials. Suppose
t = sv, where s € PS5, and v € P;,_ .. Then

1/2
|5(_1)HU(1)| < (%Cn,mcn,nfm) ||t||D
and if ¢ is monic

O Isllpllvllp < 5(CnmCrn-m)* 18D -

Hint: The first inequality follows as in the proof of Theorem 5.3.10 with
a:= —1and b := 1. The second part is immediate from Theorem 5.3.9. 0O

E.4 Mabhler’s Measure. Let F: C¢ — C, and let the Mahler measure of
F' be defined by

My (F) := exp {/ / log |F(e2™ ..., e*™k)| dty - dtk}

if the integral exist.
a] Show that if

n
p(z):cH(z—ai), c,a; €C,
i=1
then

= [¢| J] max{1, e[}
i=1

Hint: Use Jensen’s formula (see E.10 c] of Section 4.2). O
b] Show that if F':= F(z1,...,2) and G := G(z1, ... ,2;), then

My (FG) = My (F)M(G) .
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¢] Show that
My (az +b) = max(Jal, b)),
Ms(1+z+y) = My (max{1,|1 + z|}),
Ms(14+ 2z +y—zy) = My(max{|1 —z|,|1 +z|}).

d] One can numerically check that
M>(1+x +y) =1.381356. ..

and
My(1 4z 4y —zy) = 1.791622 . . . .

E.5 The Norm of a Factor of a p € P/ on the Unit Disk. Suppose p € P;
is monic and has a monic factor ¢ € Pf,. Then

lallo < B™lplio,
where §:= M2(1+ 2z +y) =1.3813....

Outline. Let

n m

p(z) = H(a: - a;) and q(z) := H(a: - ), a; € C.

i=1 i=1

Suppose ||g||p = |g(u)|, where u € dD. Then

llgllp = lg(u \—HIU-%KHmaX{\u ail, 1}

= M1( (17 + U)) < Ml(max{la |$ + u| }HpHD) ’

where the last equality holds by E.4 a], and the last inequality follows
because

(5.3.7) p(2)] < max{1, |z"} - ||pllp

holds for every p € PS and z € C by E.18 a] of Section 5.1. Now using E.4
b] and
M (max{L, 2 +ul}) = M (max{L, |z + 1]}),

we obtain

lallp < My(max{1, [z + u|"}) [Ipllp
= M ((max{1, |z +u|})") [Ipllp
= M ((max{1, |z + 1[})") llpllp

= (My(max{1, |z + 1[}))" ||pllp

(
(
(
= (Ma(1 + 2 +y))"[lpllo = £"[IpllD -
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E.6 Another Inequality for the Factors of a p € P; on the Unit Disk. Let
p = gqr, where ¢ € P, and r € P;;_,.. Then

lallpllrllp < 6" [lpllp

where 6 := M>(1+z +y—axy) =1.7916. ...

Outline. Without loss of generality we may assume that ¢ and r are monic.
Let

q(z) := H(a: — ;) and r(z) = H (x — a;), a; € C.

Choose u € D and v € D such that |g(u)| = ||¢||p and |r(v)| = ||r||p.
Then, using E.4 b] and c|, we obtain

n

lallpllrllp = lg(u)llr(v)| = H ju—ail J] lv—ail

i=m+1

-
Il
-

IN

-
Il
-

maxc{[u - al,[v - o]}

vV — Qg

I

Il
-

|lu — aimax{l,

}

u — Q
2

(oo (35).

Now, by (5.3.7),

(z = 1)"p ("””j_‘f) < (max{

v n
Je =213 ello
u

hence

lgllplirllp < Mi((max{|z — 1[,|z — v/ul[})")|lpllp
= (Mi(max{[z — 1], |z — v/u[}))"|pll D
< (M (max{|1 — z[,[1+z[}))" [|Ipllp
= (Mx(1+z +y—=y))"[lpllp
= (1.7916 .. )"|Ipllp -
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E.7 Bombieri’s Norm. For Q(z) := Y_]_, arz" the Bombieri p norm is

defined by
Q) = (zzj (’;))

Note that this is a norm on P for every p € [1,00), but it varies with
varying n. The following remarkable inequality holds (see Beauzamy et al.
[90). If @ = RS with Q € P, R € Pf,, and S € PS_,,, then

1/p

m

[RLa[S]: < (")1/2[Q12

and this is sharp.

One feature of this inequality is that it extends naturally to the multi-
variate case. See Beauzamy, Enflo, and Wang [94] and Reznick [93] for
further discussion.
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Inequalities in Miintz Spaces

Overview

Versions of Markov’s inequality for Miintz spaces, both in C[a,b] and
L,[0,1], are given in the first section of this chapter. Bernstein- and
Nikolskii-type inequalities are treated in the exercises, as are various other
inequalities for Miintz polynomials and exponential sums. The second sec-
tion provides inequalities, including most significantly a Remez-type in-
equality, for nondense Miintz spaces.

6.1 Inequalities in Miintz Spaces

We first present a simplified version of Newman’s beautiful proof of an
essentially sharp Markov-type inequality for Miintz polynomials. This sim-
plification allows us to prove the L, analogs of Newman'’s inequality. Then,
using the results of Section 3.4 on orthonormal Miintz-Legendre polynomi-
als, we prove an Ly version of Newman’s inequality for Miintz polynomials
with complex exponents. Some Nikolskii-type inequalities for Miintz poly-
nomials are studied. The exercises treat a number of other inequalities for
Miintz polynomials and exponential sums. Throughout this section we use
the notation introduced in Section 3.4. Unless stated otherwise, the span
always denotes the linear span over R.
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Theorem 6.1.1 (Newman’s Inequality). Let A := (\;)32, be a sequence of
distinct nonnegative real numbers. Then

2 ¢ llzp'(2)ll10.1) -
= A< osup —— L <9Y) )
3 j;] T ogpert, () IPllo ]Zo g

for every n € N, where M, (A) := span{z?o, 2™, ... 5z},

Proof. 1t is equivalent to prove that

2 O 1P"ll10,00) -
(6.1.1) Y NS sup et <9Y A,
3= 0£Pe B, (A) 1Pll0,00) =
where E,(A) := span{e 2ol e~ Mt e~ A=l Without loss of generality

we may assume that Ag := 0. By a change of scale we may also assume that

Z?:o Aj = 1. We begin with the first inequality. We define the Blaschke

product

and the function
(6.1.2) T(t)-—i/e—ddz '={zeC:|z-1/=1}
1. =50 ). B & = : =1}.

By the residue theorem

and hence T € E,(A). We claim that

(6.1.3) B(2)| > -, zerl.

| =

Indeed, it is easy to see that 0 < A; <1 implies

1
Z—/\j _2—/\]':1—?)\3" el
24+ Aj 24 A5 1+ 52
So, for z € T,
li/\
1-1
S1-1IA 2270 11
Be>[[—2 > Ti L
Ll 14+ 52 1 v 145 3
j=1 27Y 1+§Z)‘J 2

<
Il
—
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Here the inequality

l—zl-y 1—(z+y 2zy(T +y)

( )
14z 14y 1+(m+y)+(1+m)(1+y)(1+(az+y))
1-(z+y)
2T Y mty)’ z,y >0

is used. From (6.1.2) and (6.1.3) we can deduce that

e—zt

1
< —3(127) = >0.
B0) \dz|_27r3( ) =3, t>0

1
(6.1.4) )| < 5 /

Also ) .
) = — [ ZF¢
®) =50 /P B ©

and

! _ 1 z = 1 -
(6.1.5) ') =-5 /F B T am /221 B

Now, for |z] > maxi<;j<n Aj, we have the Laurent series expansion

z 140/ n (A k
610 i == P2 <11 (125 (2))

j=1 j=1
n n 2

=2z 1+2<ij> z—1+2<ZAj> 274
j=1 j=1

=z24+2+227" + 0,

which, together with (6.1.5), yields that 7'(0) = —2. Hence, by (6.1.4),

'0) 2 _2¢
L > 2= 2%y,
Tlow ~ 3 3 E
so the lower bound of the theorem is proved.

To prove the upper bound in (6.1.1), first we show that if

U(t)12$/rﬁdz, I'={zeC:|z-1|=1},

then

(6.1.7) /OO U (1) dt < 6.



278 6. Inequalities in Miintz Spaces

Indeed, observe that if z = 1+ €, then |z|> = 2 + 2cos#, so (6.1.3) and

Fubini’s theorem yield that
2,—zt
/ e 4
(1-2)B(z)

o0 001

"(t)] dt = —

/0 o ()] / -
2T —zt

<L // \Z\IE ‘dedt

27
< —/ / (2+2c0s0)e_(1+°050)t de dt
T 0

-3 27r(2+2cost9)#dt9—6
o 1+cosf

dt

Now we show that
(6.1.8) / NI () dt = N — 3.
0

To see this we write the left-hand side as

00 A tUH *~ Ajt ZQG_Zt dz d
e~ - —————dzdt
/0 /0 27rz /p (1 -2)B(2)
z+)\ 1 22
= d dt = d
2m/ / 1-2)B ‘ 2m/ (z4+X)(1—2)B(z) ‘
1
= dz,

2mi 2j=2 2+ )\j 1— z B(z)

where in the third equality Fubini’s theorem is used again. Here, for |z| > 1,
we have the Laurent series expansions

z-fAj :1—/\jz_1+/\§z_2+---,
lizz—l—z_l—z_Q—---,
and, as in (6.1.6),
ey
B(z)

Now (6.1.8) follows from the residue theorem (see, for example, Ash [71]).
Let P € E,(A) be of the form

n
P(t) = chef)"'t, c; € R.
=0
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Then

/ P(t+a)U”(t)dt:/ > e e NI (t) dt
0 0 =0

n

00 n
che_xfa/ e~ Nt (t) dt = ch(/\j —3)e N
0 o

j=0
—P'(a) — 3P(a)

and so
(6.1.9) |P'(a)] < 3|P(a)| + /000 |P(t+a)U"(t)|dt.

Combining this with (6.1.7) gives
1P lIfo,00) < 311Plljo,00) + 6 1 Pllj0,00) = 9 I Pll{0,00) -
and the theorem is proved. O

The next theorem establishes an L, extension of Newman’s inequality.

Theorem 6.1.2 (Newman’s Inequality in L)). Letp € [1,00). If A := (A)32,
is a sequence of distinct real numbers greater than —1/p, then

1 - 1
||9UP'($)||LP[0,1] < 1_7 + 122 </\j + 5) ||P||Lp[o,1]
j=0

for every P € M, (A) :=span{z?° 2 ... 2},

If I' := (75)2, is a sequence of distinct positive real numbers, then
n
1Pl Lyj0,00) < 12 (Z’h’) 1P|l z,00,00)
j=0
for every P € E,(I') := span{e~ "0t e=71t . e~ i}

Proof. First we show that the first statement of the theorem follows from
the second. Indeed, if (\;)$2, is a sequence of distinct real numbers greater
than —1/p and 7; := A\; + % for each i, then (7;)$2; is a sequence of distinct
positive real numbers. Let Q) € M,,(A). Applying the second inequality with

P(t) := Q(e™Ye !/ € E,(I')

and using the substitution = e~¢, we obtain
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(/01 z (a;l/PQ(x)),pxl da:)l/p <12 (

Now the product rule of differentiation and Minkowski’s inequality yield

S 1
> (3 + 5)) 19l 0.

J=0

1 i 1
1eQ' (@)l 0 < 5+122(Aj+5) 190201
j=0

which is the first statement of the theorem.

We prove the second statement. Let P € E,(I') and p € [1,00) be
fixed. As in the proof of Theorem 6.1.1, by a change of scale, without loss
of generality we may assume that Z _o 7 = 1. It follows from (6.1.9) and
Holder’s inequality (see E.7 a] of Sectlon 2.2) that

P ()7 < 2771 (3”P(a)” + (/Ooo |P(t + a)|U" (1)] dt>p>
< 6”|P(a)l

+2r7 ((/Ooo P(t+a)’”U”(t)|dt)l/p </Ooo U”(t)|dt)1/q>p

for every a € [0, oc), where ¢ € (1, 00] is the conjugate exponent to p defined
by p~! + ¢! = 1. Combining the above inequality with (6.1.7), we obtain

[P'(a)|P < 67|P(a)|” + 2”_16’”/‘1/0 |P(t+a)|”[U" (t)] dt

for every a € [0,00). Integrating with respect to a, then using Fubini’s
theorem and (6.1.7), we conclude that

1P 0y < OIPI oy + 27207 [ [T PG+ a0 0] dedo
<EUPIL ) +2P*16P/q/0 /0 |\P(t + a)[?|U" (t)| dadt

< I o + 2 P o [ 107 (O]

< 6°||P|» ooy + 2p_16p/q+1||P||ip[0

= (6" + 27 )P o) < 120PIE

and the proof is finished. O

The following Nikolskii-type inequality follows from Theorem 6.1.1
quite simply:
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Theorem 6.1.3 (Nikolskii-Type Inequality). Suppose 0 < ¢ < p < oco. If
A= (Ai)2, is a sequence of distinct real numbers greater than —1/q, then

n 1 1/a=1/p
g/ PPz, 0,11 < (18 2 (Aj " E)) o

=0
for every P € M, (A) :=span{a?o 2?1 ... 2’}

If I := (:)$2, is a sequence of distinct positive real numbers, then

n 1/¢=1/p
(6.1.10) 1P|z, [0,00) < (18-2q2w> 1Pl ,f0,00)
j=0

for every P € E,(I') := span{e~ 70t e=nt . =t}

Proof. First we show that the first statement of the theorem follows from
the second. If (A;)2, is a sequence of distinct real numbers greater than
—1/q and v; := A; + 1/q for each i, then (v;)$2; is a sequence of distinct
positive real numbers. Let @ € M, (A). Applying (6.1.10) with

P(t) := Qe Ve " € E, (I

and using the substitution z = e~*

||yl/q71/pQ(y)||Lp[0,1]

n 1 1/q=1/p
<(18- 2!1)1/1171/1’ (Z (/\j + E)) ||Q||Lq[0,1] )

j=0

, we obtain

which is the first statement of the theorem.

It is sufficient to prove (6.1.10) when p = oo, and then a simple ar-
gument gives the desired result for arbitrary 0 < ¢ < p < oc. To see this,
assume that there is a constant C so that

1Pll10,00) < CM9I Pl 10,00)

for every P € E,(I') and 0 < ¢ < oo. Then

o0
1PIZ oy = / PO de < [P PN o o)

<P P o

and therefore
1Pz, 0,00) < Cl/Qil/pHPHLq[O,oo)

for every f € E,(I') and 0 < ¢ < p < oc.
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When p = oo, (6.1.10) can be proven as follows. Let P € E,(I"), and
let y € [0,00) be chosen so that |P(y)| = ||P]|j0,00)- From Theorem 6.1.1
and the Mean Value Theorem, we can deduce that |P(t)| > §||P][j0,00) for
every

n
tel:=[yy+(18y)"'], where ~:= Z'yj .
=0
Thus

1
—q q
29 PlE

1P o 2 / P dt > (1827j>
=0

and the result follows. a

Theorem 6.1.3 immediately implies the following result, which is a
special case of Theorem 4.2.4:

Theorem 6.1.4 (Miintz-Type Theorem in L,). Let p € [1,00). Let (\;)2,
be a sequence of distinct real numbers greater than —1/p satisfying

o

Z(Aj+%> <.

j=0
Then span{z*°, 2™ ...} is not dense in L,0,1].

The next theorem offers an L, analog of Theorem 6.1.1 even for com-
plex exponents. It also improves the multiplicative constant 12 in the Lo

inequality of Theorem 6.1.2 and shows that the Lo inequality of Theorem
6.1.2 is essentially sharp.

Theorem 6.1.5. If A := (\;)$2, is a sequence of distinct complex numbers
with Re(X\;) > —1/2 for each i, then

lzp' ()| 15[0,1]
0#pE M, (A) ||p||L2[0,1]

< <Z|Aj|2+2(1+2Re(Aj)) > (1+2Re()\k))>

j=0 j=0 k=j+1

for everyn € N, where M,,(A) denotes the linear span of {x*0, 2?1 ... 2’}
over C.

If A= (\)$2, is a sequence of distinct nonnegative real numbers, then
n

1 lzp" (@)l aj0.0) 1 <
— A < sup @—————222 < — ) (1+2)\))
2v30 = "7 ogperta(a)  IPllajo V2 ];) !
for everyn € N, where M, (A) denotes the linear span of {z*0 z*, ... 2’}

over R.
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Proof. Let p € M, (A) with [|p||z,0,1] = 1. Then

n

ple) =Y apLij(x)  with ) |a|* =1
k=0

k=0

and

xp'(z) = Z arzL} (z),
k=0

where L} € Mj(A) denotes the kth orthonormal Miintz-Legendre polyno-
mials on [0, 1]. Using the recurrence formula of Corollary 3.4.5 b] for the
terms L}’ (x) in the above sum, we obtain

zp'(z) = (aj/\j+\/1+Aj+Xj Z ap\/1+ Ag +Xk> Li(z).

=0 k=j+1
Hence
n — n — 2
llzp! (@113, 0. = Z‘am TN+ S a1 a+ /\k‘ .
=0 k=j+1

If we apply the Cauchy-Schwarz inequality to each term in the first sum
and recall that > ,_,|ax|* = 1, we see that

n

l2p' (@) 1751007 < D (NP +T+X+X)) D (T4 +Xe)
Jj=0 k=j+1

<3 (;(1 +2|Ajl)> :

which proves the first part and the upper bound in the second part of the
theorem.

Now we prove the lower estimate in the second part of the theorem.
With the sequence A := ();)2, of distinct nonnegative real numbers, we
associate

n k
mm=2vﬂ<2&>%m6Mwu
k=0 7=0

Since the system (L} )32, is orthonormal on [0,1], we have

n k 2 n 3
6.111) HMNMZZM<ZM>S<ZM>-
k=0 i=0 =0
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Furthermore

n k n
)= VA (S0 ) ot = 3 o).
k=0 j=0 m=0

where, by the recurrence formula of Corollary 3.4.5 b],

m n k
b = AV Am N+ VIF 2 S VAT 20) DN
i=0 =0

k=m+1
n k
>Vm DD N
k=m 7j=0
Hence

n n n k 2
¢ (@) 20100 = D b = D Am (Z Ak Z/\J‘>
m=0 m=0 j=0

k=m

S DT AdA A

0<m<n 0<j<k
m<k,k'<n 0<j <k’

n 5
> AmARAj A Ajr > % (Z AJ) :

0<m<j<j <k<k' <n =0

Y%

This, together with (6.1.11), yields the lower bound in the second part of
the theorem. O

Comments, Exercises, and Examples.

Theorem 6.1.1 is due to Newman [76]. We presented a modified version
of Newman’s original proof of Theorem 6.1.1. He worked with 7T instead
of U, and instead of (6.1.9) he established a more complicated identity
involving the second derivative of P. Therefore, he needed an application
of Kolmogorov’s inequality (see E.1) to finish his proof. It can be proven
that if the exponents ); are distinct nonnegative integers, then [|zp'(z)||j0,1]
in Theorem 6.1.1 can be replaced by [|p'[|j0,1] (see E.3). Theorems 6.1.2 to
6.1.4 were proved by Borwein and Erdélyi [to appear 6], while Theorem
6.1.5 is due to Borwein, Erdélyi, and J. Zhang [94b]. It is shown in E.8 that
Theorem 6.1.2 is essentially sharp for every A with a gap condition, and for
every p € [2,00).

The interval [0, 1] plays a special role in this section, analogs of the
results on [a,b], a > 0, cannot be obtained by a linear transformation.
E.10 deals with the nontrivial extension of Newman’s inequality to intervals
[a,b], a> 0.

A conjecture of Lorentz about the “right” Bernstein-type inequality
for exponential sums with n terms is settled in E.4.
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E.1 Kolmogorov’s Inequality. Show that

1£'11f0.00) < 4llflli0,00) 1" ll0,00)

for every f € C?[0, 00).
Hint: By Taylor’s theorem

fl@+h) = f(x) + f'@h+3f" (.  h>0
with some £ € (z,z + h). Hence

110,00 < 2871 fllj0,00) + (B/2) 1" ll10,00) -

Now minimize the right-hand side by taking

3 1/2
hi=2 (11 llo.00) 1))

a

The constant 4 in E.1 is not the best possible. Kolmogorov [62] proved
that

¥ || < K (n, k)||f||ﬁfk/n||f(n)||1§/n

for every f € C™(R) and 0 < k < n and found the best possible constants
K(n,k); see also DeVore and Lorentz [93]. This generalizes a result of Lan-
dau, who proved the above inequality for n = 2, k = 1, and showed that
K(2,1) = v/2. Various multivariate extensions of Kolmogorov’s inequality
have also been established; see, for example, Ditzian [89].

E.2 Nikolskii-Type Inequalities.

a] Suppose (V,||-]]) is an (n+1)-dimensional real or complex Hilbert space,
(Pr)j—o C V is an orthonormal system, and ¢ # 0 is a linear functional on
V. Then

n 1/2
e(p)] < (Z so(pk)2> |p]
k=0

for every p € V. Equality holds if and only if

p:cZgo(pk)pk, ceR or ceC.
=0

Hint: Write p as a linear combination of the orthonormal elements py,, use
the linearity of ¢, then apply the Cauchy-Schwarz inequality. O
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b] Suppose A := (X;)2, is a set of distinct complex numbers satisfying
Re(A;) > —1/2 for each i, and y € [0, o) is fixed. Show that

n 1/2
™ (y)| < (Z |Lz<’"><y>2> 1Pl 2o
k=0

for every p € M, (A), where M,(A) denotes the linear span of
{zro g™ M)

over C, and L} € My(A) is the kth orthonormal Miintz-Legendre polyno-
mial on [0, 1]. Show that if there exists a ¢ € M, (A) with ¢"™) (y) # 0, then
equality holds if and only if

p=c> L™ yL;, ceC.
k=0

¢] Under the assumptions of part b] show that

92)| (& v
LA (Z(l + 2Re(/\j))>

[Pll220007 — \ 1=
and
k=1 12
3/2,/ n — 2
[k A1 Z(1+2Re(,\k))‘,\k+Z(1+2Re()\j))‘
||p||L2[011] k=0 j=0

for every 0 # p € M,,(A) and y € [0,1].

Hint: When y = 1, use part b] and substitute the explicit values of Lj (1)
and L;'(1) (see Corollary 3.4.6 and formula (3.4.8)). If 0 < y < 1, then the
scaling ¢ — yx reduces the inequality to the case y = 1. O

d] Show that if n > 1 and p # 0, then equality holds in the inequalities of
part b] if and only if y = 1 and

n n
p=cy L)Ly or p=cy Ly(1)L;,
k=0 k=0

respectively, with some 0 # ¢ € C.
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e] Show that

o1y  n+1
sup =

opepn Dl Laf=1,] V2

Hint: Show that there is an extremal polynomial p for the above extremal
problem for which [|p]|;_;,j is achieved at 1. Now use parts c] and d] to
show that

|ﬁ<1>2=§(2<1+2k>>/ Pd=5 017 [ o

k=0 -1 -1
and the result follows. a

E.3 An Improvement of Newman’s Inequality.

a] Suppose A := (Ay)32, is a sequence with A\g = 0 and A\g41 — Ap > 1 for
each k. Show that

1P lljo,1) < 18 (Z /\j> [1Pll{0.1]

Jj=1

for every p € M, (A) := span{z?o 21 ... 2’}
Hint: Let y € [0,1]. To estimate [p'(y)| distinguish two cases. If £ <y <1,

use Theorem 6.1.1 (Newman’s inequality), and if 0 < y < %, use E.3 {] of

Section 3.3 and Theorem 5.1.8 (Markov’s inequality) transformed to [y, 1]
to show that

2n? "
p'(y)] < mﬂpﬂ[y,u <8 (Z )‘j> lIpll0,1]
j=1

for every p € M, (A4). O
The next exercise is based on an example given by Bos.
b] Show that for every § € (0,1) there exists a sequence A := (A;)32, with
AO = 0, )\1 Z ]., and
Akt1 — Ak >0, 1=0,1,2,...

such that ,
lp'(0)]

lim sup =00

" ozertna) (L5, ) Ipllo.y

Outline. Let @,, be the Chebyshev polynomial T;, transformed linearly from
[—1,1] to [0, 1], that is,

Qn(x) = cos(narccos(2z — 1)), x €[0,1].
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Choose natural numbers u and v so that § < u/v < 1. Let A := (A\g)72, be
defined by Ag := 0, A; := 1, and

)\k::].-l-k—u, k=1,2,....
v
Let
pu(@) = 21 (Qu (@) = (=1)")" € May—u(4).
Then

P (0)] = (20°)".
For the sake of brevity let
Gn (@) = Qu(z"/") = (=1)".

Use Theorem 5.1.8 (Markov’s inequality) and the Mean Value Theorem to
show that

anlliy,11 > 5llanllo.
with
Y= (2n2)7v/u
Thus, if n is odd, then
1Pnll0.1] > IPally.ay > ¥' " (llgnlly)"
—u v (u—1)v/u
>y (3llanllpn) " = (2n7)
and
P (0)] (2n?)
_ — u —1
(S5 2 ) nllo (5" (1)) (2m2) 77

2\ v/u 9\ v/u—1
(2n ) S (2n ) e

~ (1+nu)nv ~ uv n—o0

a

In his book Nonlinear Approzimation Theory, Braess [86] writes the
following: “The rational functions and exponential sums belong to those
concrete families of functions which are the most frequently used in non-
linear approximation theory. The starting point of consideration of expo-
nential sums is an approximation problem often encountered for the analysis
of decay processes in natural sciences. A given empirical function on a real
interval is to be approximated by sums of the form

n

Ajt
E aje’’",
j=1

where the parameters a; and A; are to be determined, while n is fixed.”

The next exercise treats inequalities for exponential sums of n + 1
terms.
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E.4 Nikolskii- and Bernstein-Type Inequalities for Exponential Sums.
Let
A= (Xi)iZ,

be a sequence of distinct nonzero real numbers. Let
E,(A):= {f f(t) =ao0+ Zn:aje)‘ft, a; € ]R}
j=1
and
E,:=|JEn(4) = {f f(t) = ao + zn:aje%'t, aj,\j € ]R} ,
A j=1

that is, E,, is the collection of all (n + 1)-term exponential sums with con-
stant first term. Schmidt [70] proved that there is a constant ¢(n) depending
only on n such that

1" ltato.-51 < e(n)d 1| fllia,p

for every p € E, and § € (0,3(b— a)). Lorentz [89] improved Schmidt’s
result by showing that for every a > %, there is a constant c¢(«) depend-
ing only on « such that ¢(n) in the above inequality can be replaced by
c(a)n®!1°8" and he speculated that there may be an absolute constant c
such that Schmidt’s inequality holds with ¢(n) replaced by cn. Part d] of this
exercise shows that Schmidt’s inequality holds with ¢(n) = 2n—1. A weaker
version of this showing that Schmidt’s inequality holds with ¢(n) = 8(n+1)?
is obtained in part b] and uses a Nikolskii-type inequality for exponential
sums established in part a]. Part e] shows that the result of part d] is sharp
up to a multiplicative absolute constant.

a] Let p € (0,2]. Show that

2 (n+1 L/p
fllorso-a <27 (“50) e,

for every f € E, and § € (0,1(b—a)) .

%], that is,

(1) Ly € span{l,eMt el . et} k=0,1,....n,
and

Proof. Take the orthonormal sequence (Lj)}_, on [—%,

where §; ; is the Kronecker symbol. On writing f € E,(A) as a linear
combination of Lg, Ly,...,L,, and using the Cauchy-Schwarz inequality
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and the orthonormality of (Li)}_, on [—%, %] we obtain in a standard
fashion that

n 1/2
max & = (Z Lk(t0)2> , to € R.

0#fEEn(A) ||f||L2[—1/271/2] k=0

Since
1/2

Si—oLi(z)dr=n+1,
~1/2

there exists a ty € [—%, %] such that

n 1/2
|f(t0)| — ( L%(m)) < \/m
k

0#pEEL(A) ||f||L2[—1/271/2]

Observe that if f € E,(A), then g(t) := f(t — ty) € En(A), so

max |£(0)] <vn+1.

0#£fEER(A) m

Let
|£(0)]

= max e .
0£7€En(A) || fllL,[=2,2]

Then

()] ( 2 fm Y
<C <2l/rc e[-1,1].
o Tl = \amy) S velLy

Therefore, for every f € E,(A),

FOI VAT T lla 1
P 2—p 1/2
<V w1 (I, oy lF170)

, B 1/2

<V FT (I, 1 (27O) NI )
1-p/2

<Vn+1(2'°0) v/ I, 2.2

= 2U/r=12/p} 101_p/2||f||Lp[—2,2] .

Hence

C— max |£(0)] < A2 T 1l

" ozseBa ) [l 22

and we conclude that C < 22/P°=1/p(p 4+ 1)1/7. So
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2_
FO)] <2272 (4 1)) fll 110

for every f € E,(A). Now let f € E,(A) and ¢y € [a+ d,b— d]. If we apply
the above inequality to

g(t) == f (36t + o) € Ey(A),
we obtain

1/p
2 2
flharsa-s < 22+ 07 (3) 7 Ul o

and the result follows. a

The following Bernstein-type inequality can be obtained as a simple
corollary of part aj:

b] Show that
I tass.6—8) < 8(m+ 126 | £ll{a0)

for every f € E, and 6 € (0, 3(b— a)).

Proof. Note that f € E,(A) implies f' € E,(A). Applying part a] to f’
with p = 1, we obtain

0] <20+ DI f' 1,22 = 2(n + DVari_z5(f) < 4(n + 1)?||fll-2,2

for every f € E,(A). If f € E,(A) and ¢y € [a + ,b — ¢], then on applying
the above inequality to

g(t) == f (36t + o) € E,(4),
we obtain the desired result. O

¢] Lorentz’s Conjecture. Show that

£'(0)]

sup ————=2n-—1,
0#£feEs, ||f||[—1,1]

where

By, = {f Lf(t) =ao+ Y _(aeMt + e ajb, )\ € ]R} :

i=1
Proof. First we prove that

SO < @n =D fll-1
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for every f € Esy. So let
f € span{l, et A2t - oEAal]

with some nonzero real numbers Ay, Ao, ..., Ay, where, without loss of gen-
erality, we may assume that

D<M < << A,

Let

Observe that

g € span{sinh A\; ¢, sinh Aot ..., sinh A\, ¢}.
It is also straightforward that

g'(0)=f'(0) and gl < fll=1.7-
For a given € > 0, let

H, . = span{sinhet, sinh 2et, ..., sinhnet}

and
Ky, = sup {|h'(0)| th € Hpe, Pl = 1} .

The inequality of E.5 €] in Section 3.3 is the key to the proof. It shows that
it is sufficient to prove that

inf{K,.:e>0} <2n-1.
Observe that every h € Hj, . is of the form
h(t) = e " P(et), P e Py
Therefore, using E.23 c] of Section 5.1, we obtain for every h € H,, . that

[h'(0)] = |eP'(1) — neP (1)
e(2n —1)
1—e—c

e(2n —1) ne
< <1_7e_E + ”6) e |Ihll=117 -

IN

[Plle=<ec] + nel[Pllfe—e ec

It follows that
e(2n —1)

T +ne) e,
—e

Kn,e S <

So inf{K, . :e>0} <2n—1, and the upper bound follows.
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Now we prove that

/(0]

sup —————>2n—1.
0#£fEEan Hf”[fl,l]

Let € > 0 be fixed. We define

et 1
(b)) =TT, — ,
Qanc(t) =€ 2n 1(@‘-—1 ef—1>

where T5,_1 denotes the Chebyshev polynomial of degree 2n — 1 defined

by
Top—1(z) = cos((2n — 1) arccosz), z € [—1,1].

It is simple to check that Qap . € EQT“

||Q2n,e||[71,1] S enet

and
@b, (0)] > 2n — 1 — ne.

Now the result follows by letting e decrease to 0.

d] Show that
1 ta+5.5-5) < 20 = )07 ([ fllja.e

for every f € E, and § € (0,1(b— a)).

Proof. Observe that E, C Egn. Hence the result follows from part c| by a

linear substitution.

e] Let a < b and y € (a,b). Suppose that n € N is odd. Let T, be the

Chebyshev polynomial of degree n defined by (2.1.1). Let

Qu(t) = Q) =T, (70w (50 ) - 25

b—y

Ra(t) i= Ry y(t) := Ty, (eflexp (2:‘;) - e;) .

Show that @, R, € E, and

and

Quy) _ 1 m R,y _ 1 n
||Qn||[a7b] e—1b-y ||Rn||[a,b] e—1ly—a

for every y € (a,b).
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f] Let a < band y € (a,b). Conclude that

L et w10 21
e—1min{y —a,b—y} ~ oxfcp, [|fllay ~ min{y —a,b—y}

In the rest of the exercise let

! !
E:l = {f:f(t):Zij(t)eMt’ /\j €R, Pk]. Eij, Z(k‘j-i-l):n}.
=1 =1
g] Extend the inequalities of parts a], c], and f] to E*.
h] Let [a,b] be a finite interval. Let g € C|a, b]. Show that the value

inf{llg — flljap) : f € En}

is attained by an ]76 Er.

Hint: Use Schmidt’s inequality (or its improved form given by part c]). For
the nontrivial details, see Braess [86]. O

i] Let [a,b] be a finite interval. Let p € [1,00) and g € Ly[a, b]. Show that
the value

inf{llg — fllz (s : f € By}
is attained by an ]76 Er.

Hint: Use part a] with p = 1 and Hoélder’s inequality. Once again, for the
details, see Braess [86]. O

The following result is from Borwein and Erdélyi [95¢]:

E.5 Upper Bound for the Derivative of Exponential Sums with Nonnega-
tive Exponents. The equality

p'(a)] _ 2n°
p Ipllapny  b—a

holds for every a < b, where the supremum is taken over all exponential
sums 0 # p € E,, with nonnegative exponents. The equality

p'(a)| 2n’
sup =
v |Pllap  a(logb—loga)

also holds for every 0 < a < b, where the supremum is taken over all Miintz
polynomials 0 # p of the form

n
P($)=a0+2ajz)"', aj €ER, X; >0.
j=1
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Outline. It is sufficient to prove only the second statement, the first can
be obtained from it by the change of variable 2 = ef. For ¢ > 0, define
A= (je)52,- Let
Tn,e = Tn{l, xeax267 s ,xne; [aa b]}

be the Chebyshev polynomial for M, (A.) on [a, b]. Use E.3 b] and E.3 {] of
Section 3.3 to show that

! T! (a
Pl Tnd® ()
[Pllas) = =0+ I Tnelliayy 0+ ™
for every p of the form

n
p(ﬂ?):ag-l—Zajx)‘j, aj €R, A; >0.
=1

From the definition and uniqueness of 7T}, ¢ it follows that

2 b + af
Tpe(z) =T -
n76($) n(be_aew be_ae>

where T, (y) = cos(narccosy), y € [—1,1]. Therefore

2
; eaffl
€ __ af
2n? -1, 2n?
e (b —1) — e L(a® — l)a e—0+ a(logb — log a)

Ty (a)] = |T;,(=1)]

and the proof is finished. O
The next exercise follows Turdn [84].

E.6 Turan’s Inequalities for Exponential Sums.

a] Let
g(v) = ijz}’, bj,z; € C.
j=1
Suppose
|zj| > 1, ji=12,...,n.
Then

2
n
e A l9(v)] > <ﬁ> b1 + b2 + -+ by

for every nonnegative integer m.



296 6. Inequalities in Miintz Spaces

Proof. Let

(6.1.12) f(z) = ﬁl <1 - %) = Véayz".

Since f(z) has all its zeros outside the open unit disk, g := 1/f is of the
form

(6.1.13) 9(z)=> Buz", |2 <1.
v=0
Let
(6.1.14) gm(2) =Y B2
v=0
and
(6.1.15) h:=1-fgm€Phim-
Note that
(6.1.16) h(z) =1 f(2) <g(2) -y Buz”>
= f(Z) Z BUZU
v=m+1

so h is of the form

m+n

(6.1.17) hz)= > wa”.

v=m+1
Observe that f(z;) =0 and (6.1.13) imply h(z;) = 1, that is,

m—+n

S owel=1, j=12...,n.

v=m+1

Multiplication with b; and summation over j yield the fundamental identity

m+n n
(6.1.18) > welw) =0,
v=m+1 j=1

This immediately gives
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n
Db
j=1

It follows from (6.1.15), (6.1.17), (6.1.12), and (6.1.14) that

Y

(6.1.20) mf:n 1] < (i%l) (iﬁ) :

v=m-+1 v=0 v=0

n
11 S >
(6.1.19) o max g(v) ( > 1 ) >

v=m+1

Since each z; is of modulus at least 1, (6.1.12) yields that

n

(6.1.21) > ay| <2

v=0

Also, (6.1.13) implies that

1
By = Z i1 42

in
it di,=v 1 Ry " Zn
Again using that each z; is of modulus at least 1, we obtain

v+n-—1
‘Bu|§ Z 1:<n_1 >

i1t i =y

Hence

i m—+n m—+n "
6.1.22 U < <
(6.1.22) Sl (") < ()

By (6.1.20) to (6.1.22) we conclude that

m+n n
> i< (26m:n> :
v=m+1
which, together with (6.1.19), finishes the proof. O
b] Let
Ft) = bjedt, b\ eC.
j=1
Suppose
Re(X;) >0 i=12...,n
Show that

100 < (Z5) Wlwara

for every a > 0 and d > 0.
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Hint: First observe that the result of part a] can be formulated as

n

>
nmax gl = (

veN

where m is an arbitrary positive (not necessarily integer) number. Now
apply the above inequality with

d\;
m::%, Zj ::exp(—]) , J=12,...,n.
n

d
O
c] Let
p(2) ::ijz)‘f, b eC, X\ €eR, z=e",

j=1

Show that
der\"
max|p(z)l < { =5~ max  [p()]
a<arg(z)<a+d

forevery 0 < a < a+ 6 < 2.
Hint: Use part b]. O

The inequalities of the above exercise and their variants play a central
role in the book of Turan [83], where many applications are also presented.
The main point in these inequalities is that the exponent on the right-hand
side is only the number of terms n, and so it is independent of the numbers

Aj. An inequality, say in part c], of type

max |p(z)| < c(8)M max Ip(2)],
|z|=1 |z|=1
a<arg(z)<a+d

where 0 < \; < A2 < --+ < )\, are integers and ¢(d) depends only on 4,
could be obtained by a simple direct argument, but it is much less useful
than the inequality of E.6 c].

E.7 Nikolskii-Type Inequality for Miintz Polynomials. Suppose that
A= (A)2, is a sequence with A\g := 0 and A1 — A; > 1 for each 4.
Show that

n 1/q=1/p
1Pz, < [ 18-29> ) 1Pz, 011

i=0

for every P € M,(A) :=span{z?®, 2, ... 2™} and 0 < ¢ < p < <.
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Proof. Tt is sufficient to study the case when p = oo (see the comment in
the proof of Theorem 6.1.3). Let P € M, (A) and let 2y € [0, 1] be chosen
so that | P(2o)| = ||P]l[0,1). Combining E.3 a] and the Mean Value Theorem,
we obtain

1
|P($)\Z§||P||[0,1]a z€l,
where
I:= [a:o — (36\) 7, 2o + (36A)*1] with A=\,

So

1 1/q 1/q /1 g~ 1/q
([ @) > ([1p@ras) > (asv (5Pl )

0 I
and the result follows. a

E.8 Sharpness of Theorem 6.1.2. Suppose A := (\;)$° is a sequence with
Ao =0 and A\jy; — A; > 1 for each i. Show that there exists an absolute
constant ¢ > 0 (independent of A and p) such that

||z P’ (x ||L [0, 1] Z
_ Ak

peM,(4)  IPllr,0.1]
for every p € [2,00), where M,,(A) := span{z*o, 2™ ... 27}

Proof. Let L; € My(A) be the kth orthonormal Miintz-Legendre polyno-
mial on [0, 1]. Let p € [2, 00) and

n
P:=> Ly(1)L;.
k=0

For the sake of brevity let

3

A= A]‘ .
j=0

Using Theorem 3.4.3 (orthogonality), (3.4.8), and Corollary 3.4.6, we obtain

n

k 2
(6.1.23) P'(1) = Z 2> Z 2\ + 1) (Z Aj>
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and
n 1/2
(6.1.24)  [|Pllpyjo,) = (DL}Z’W)
k=0
. . 9\ 1/2
<[>+ (Z 2); +1>
k=0 j=0

<VB2A2,
A combination of E.7 and (6.1.24) yields

(6.1.25) 1P|z, 0.7 < (7202712 Pl 10,11
< 721/2=1/p /32 \2=1/P < 48 N2 /P

From E.3 a], E.7, and (6.1.24) we can deduce that
(6.1.26) 1P llfo,1 < 18I Plljo,q

< I8 A(T2 N2 ||P| 500,11

< 18 A(T2N)V/2/32 \%/2

< 18-48 )3
Applying E.3 a] with P, we get
(6.1.27) 1P llo,1) < 18 X[[P[[j0,1] < 187 - 48 A*.
Now (6.1.23), (6.1.27), and the Mean Value Theorem give

|P'(z)| > {g3°,  zel,

where )

I:=[1-(18*-48-16)) ,1].

So

1/p
(6.1.28) 2P (z)]|1.,0.1] 2( [2P'(z pda:)
1/p
( 18

2.48-16) ' (H2)")
18248 16) /P 32-1/2)3-1/p
128-9v/3) ' N1/P

Combining (6.1.25) and (6.1.28), we obtain the required result with a con-
stant ¢ = (128 - 9v/3)71. O
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E.9 On the Interval Where the Sup Norm of a Miintz Polynomial Lives.
Let A := (A;)3, be an increasing sequence of nonnegative real numbers.
Let 0 # p € M,(A) := span{z? 2™ ... 2’} and let ¢(z) := z"¥p(x),
where @ > 0 and k is a nonnegative integer. Let ¢ € [0, 1] be chosen so that

4] = llallo.1-

a] Suppose a =1 and each ); is an integer. Then

Eo\2
<k + n) <&
Proof. See Saff and Varga [81]. O

The above result is sharp in a certain limiting sense, which is described in
detail in Saff and Varga [78].

b] Suppose A; = aj for each j. Use part a] to show that

k 2/a
<k+n) <<

¢] Suppose A; = aj for each j. Use E.11 of Section 5.1 to show, without
using part aJ, that there exists an absolute constant ¢ > 0 such that

ck 2/«
<k+n> <€

d] Suppose A\; > aj for each j. Use part b] and E.3 g] of Section 3.3 to
show that the conclusion of part b] remains valid.

e] Suppose A; > aj for each j. Use part c] and E.3 g] of Section 3.3 to
show that the conclusion of part c] remains valid.

The following extension of Newman’s inequality is in Borwein and
Erdélyi [to appear 3].
E.10 Newman’s Inequality on [a,b] C (0, 00).

a] Let A:=(};)72, be an increasing sequence of nonnegative real numbers.
Assume that there exists an @ > 0 such that A\; > aj for each j. Suppose
that [a,b] C (0,00). Show that there exists a constant c(a, b, @) depending
only on a, b, and a such that

n
19" [0, < c(a,b, ) (Z /\j> 1Pl a5
j=0

for every p € My(A) := span{z?0, z* ...z’ }.
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Proof. We base the proof on E.9 d], however; it may also be based on E.9

e]. Let p € My(A). We want to estimate p'(y) for every y € [a,b]. First
let y € [3(a+b),b] . We define g(z) := 2™"*p(z), where m is the smallest
positive integer satisfying

2/
a<a+b< m ) -
- 2 m+1

Scaling Newman’s inequality from [0, 1] to [0, y], then using E.9 d], we obtain

9 n
d'(y)| < ” > (A +mna)llllo.y
7=0

9 n
- ; ; (Aj + mna)llql| [v(z22)" " 0]

<ci(a,b,a (Z/\ ) ||‘Z||[a,y]

with a constant ¢ (a, b, @) depending only on a, b, and a. Hence

mnao
Y

. mn
<y (a,b,a) (Z/\ ) ||Q||[a7y] + 7 Hp”[my]
< co(a,b,a) (Z)\ ) 1Pl [a.y]
< co(a, b, ) (Z)\ ) 1pll{a.b)

with a constant ¢s(a, b, @) depending only on a, b, and a.

Now let y € [a, %(a + b)] . Then, by E.3 b] and f] of Section 3.3, we
can deduce that

p(y)]

' ()| < |d' (y)y~™"| +

P (y) < |Tp{a® =%, 2%, .., 2™ [y, B} w)| 1Pl g0
Qayo‘_1

=t o n[Iplly. < es(a, b, a)n[Ipllgy,y

< eala,b,a (Z/\ > [1Pll1y.e

with constants ¢3(a, b, &) and ¢4(a, b, @) depending only on a, b, and a. This
finishes the proof. O
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b] Show that if the gap condition A; > ja in part a] is dropped, then
the conclusion of part a] fails to hold with ¢(a, b, @) replaced by a constant
¢(a,b) depending only on a and b.
Hint: Study

T) {z° z® 2, ..., 2" [5,1]}

and let « — 0 + . O

6.2 Nondense Miintz Spaces

Throughout this section we assume that A := (X;)2, is a sequence
of distinct nonnegative real numbers, M, (A) denotes the linear span of
{zro zM .. z* ) over R, and

M(A) = [j My (A) = span{z?, 2, ...},

If A C[0,1] is compact, then a combination of Tietze’s and Miintz’s theo-
rems yields that M (A) is dense in C(A) whenever Y ;- 1/); = co. (Recall
that Tietze’s theorem guarantees that if A C [0,1] is compact, then for
every f € C(A) there exists an f € C10,1] such that f(z) = f(z) for all
x € A.) If the Lebesgue measure m(A) of A is positive, then the converse
is also true. More precisely, we have the following.

Theorem 6.2.1 (Miintz Theorem on Compact Sets of Positive Measure).
Suppose Xg := 0 and Y70 1/X; < co. Let A C [0,1] be a compact set with
positive Lebesgue measure. Then M (A) is not dense in C(A). Moreover, if
the gap condition
1nf{/\l —Xi_1 1 E N} >0

holds and

r4 = sup{z € [0,00) : m(AN (z,00)) > 0},
then every function f € C(A) from the uniform closure of M(A) on A is
of the form

f(a:):Zaja:’\j, ze AN|0,ry).
§=0
If the above gap condition does not hold, then every function f € C(A)

from the uniform closure of M(A) on A can still be extended analytically
throughout the region

{z € C\ (—00,0]: |z| <ra}.

The proof of the above theorem rests on the following bounded Remez-
type inequality:
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Theorem 6.2.2 (Remez-Type Inequality for Nondense Miintz Spaces). Let
Ao :=0 and Z;}io 1/A; < 0o. Then there exists a constant ¢ depending only
on A and s (and not on o, A, or the number of terms in p) such that

1Pllf0,e < cliplla

for every p € span{z*o, 2™ ...} and for every compact set A C [p,1] of
Lebesgue measure at least s > 0.

To prove Theorem 6.2.2 we need a few lemmas. We use the notation
introduced in Section 3.3. However, for notational convenience, we let

Tn{Mos Aty Ans A} = Tn{aj’\o,m’\l,... ,a:)‘";A}

for compact sets A C [0, o).

By the unique interpolation property of Chebyshev spaces (see Propo-
sition 3.1.2), associated with

O<zp <21 << Ty,
we can define
bdzo,z1,. .., 20} € Mp(A), k=0,1,...,n
such that

1 ifj=k
Zk{xo,zl,...,a:n}(zj) = 61'71@ = {0 lf:; 75 k

Lemma 6.2.3. Let
O<zg<a1 < <y and 0<Tg<T1 <+ < Tp.
Suppose 0 < k < n and
a:jgfj iijO,l,...,k—].;
27]‘:53/]' lf]:k,
27j255j ifj=k+1,k+2,... ,n.
For notational convenience, let

Zk = Kk{ajo,a:l,... ,.’En} and Zk = ek{aj/O;%lv"' 755’ﬂ}

Then _
16k (0)] < [€(0)].
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Proof. It is sufficient to prove the lemma in the case where there is an index
m such that 1 < m <n, m # k, and

Tm < Iy ifm<k;
T > Ty Hm>k.

The general case of the lemma then follows from repeated applications of
the above special cases. Note that in the above special cases

by, — Zk S Mn(/l)
has a zero at each of the points
Zj, .7:071,,”7.77&7”;

hence it changes sign at each of these points, and it has no other zero in
[0,00) (see E.10 of Section 3.1). It is also obvious that

sign((x () = sign(lx(z)), = € (0,20),

which, together with the previous observation and the inequality z¢ < Z,
yields that

1£:(0)] < |€,(0)],

which finishes the proof. ad

By a simple scaling we can extend Lemma 6.2.3 as follows. We use the
notation introduced in Lemma 6.2.3.

Lemma 6.2.4. Let
O<zg<a1 < <y and 0<Tg<T1 <+ < Tp.
Suppose 0 < k <n, vy >0, and
CEjS%j—’}/ Zf ']::0,1,...,]{?—1;
ry=%;—v if j=k;
zj>%;—v if j=k+1,k+2,...,n.

Then B
1€x(0)] < [€x(0)] .
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Proof. If v = 0, then Lemma 6.2.3 yields the lemma. So we may assume
that v > 0. Let

Ty Ty —

6::~_: ~ )
T T

z; = B, j=0,1,... ,n,

and
0= fxh,xy, .. 2}, kE=0,1,...,n.

Obviously N

ék(ﬁx) = Z(x), T e [0,00)
and

poifj=01,... k-1,
zj=z; ifj=k,
T ifj=k+1,k+2,...,n.

Hence Lemma 6.2.3 implies that
€k (0)] < [€:(0)] = |€,(0)]
which finishes the proof. O

Lemma 6.2.5. Let A be a closed subset of [0,1] with Lebesgue measure at
least s € (0,1). Then

P(0)] < |Tn{Xo, Aty .. s Ans [1 =5, 1]}0)] - [|pl|
for every p € M(A).
Proof. If 0 € A, then the statement is trivial. So assume that 0 ¢ A. Let
To<ZT1 <. <y
denote the extreme points of
Ty = To{Xo, A1, .., Ans[1— s, 1]}

in [1 — s, 1], that is,

To(7;) = (1), i=0,1,...,n.
Let z; € A, j=0,1,...,n, be defined so that

m(lzj, 1N A) = m([T), Tn]) = Tn - T; -

Since A is a closed subset of [0, 1] with m(A) > s, such points z; € A exist.
Let p € M, (A). Then, by Lemma 6.2.4, we can deduce that
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p(0)| = | D _ p(zx){(0)
k=0
< (ZI > 1Pl
k=0
< (ZI > 1Pl
k=0
= (Z )"k (0 )> lIplla
k=0
= ( T (@) 0 ( )) lIplla
k=0
= |Tn(0)] - llplla
which proves the lemma. O

Lemma 6.2.6. Suppose \g := 0. Let A be a closed subset of [0,1] with
Lebesgue measure at least s € (0,1). Then

P()] < |TnfXos At Ani [1 =5, 1H(0)] - [|pl]a
for every p € M, (A) and y € [0,inf A].
Proof. For notational convenience, let
Tn,A = Tn{Ao,Al, - ,An; A} .

Note that A\¢g = 0 implies that |T, 4| is decreasing on [0, inf A], otherwise

TI )\1—1

A € span{z Aaml Ml

T

would have at least n + 1 zeros in (0, 1], which is impossible. Hence, it
follows from E.3 and Lemma 6.2.5 that

W) _ |Th,a(y)
< : = Tn,A y)| < Tn,A 0
lolla < Toalla ~ A < | Tna(0)]

S |Tn{/\07 /\1= e 7/\n; [1 - S, 1]}(0)‘
for every 0 # p € M, (A). This finishes the proof. O

Proof of Theorem 6.2.2. Lemma 6.2.6 and E.5 a] of Section 4.2 yield the
theorem. 0

Proof of Theorem 6.2.1. The theorem follows from E.5 of this section and
E.3 e] and E.8 b] of Section 4.2. O

Our next theorem is an interesting characterization of lacunary se-
quences.
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Theorem 6.2.7 (Characterization of Lacunary Miintz Spaces). Suppose
A= (Ni)2p with 0 < Ag < Ay < ---. There exists a constant ¢ depending
only on A such that

\ajnl < cllpllon j=0,1,...,n, neN

for every p € M(A) of the form
p(z) =Y ajnz’
=0

if and only if A is lacunary, that is, if and only if the elements \; of A
satisfy
1nf{/\z+1//\z 11 E N} >1.

To prove Theorem 6.2.7 we need the following result of Hardy and
Littlewood [26] whose proof we do not reproduce:

Theorem 6.2.8. Suppose 0 = vy < y1 < --- is a lacunary sequence, that is,
1nf{’yz+1/'yl 11 € N} > 1.

Suppose the function f is of the form
o0
f(a:):Zaia:””, a; €R, z€]0,1)
i=0

and A := lim f(z) exists and is finite. Then ;- a; = A.

z—1—

Proof of Theorem 6.2.7. Suppose A is lacunary and suppose there exists a
sequence (Py)p2,; C M(A) such that if P is of the form

ny
Py(z) = Zaj,nkx)‘j ) ajn, €R,
j=0
then
2.1 P =1 e | > K2 =1,2,....
(6 ) || k”[O,l] and Og%)’flk |a],’ﬂk| = k ; k 9 Ly

We may assume, without loss of generality, that Ay = 0. Choose a sequence
(ar)72, of positive integers such that

ap =1, Alak+1>2ak)\nk, k=1,2,....

Now let the function f be defined by
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(6.2.2) Zk2P ok gz ,  0<z<l.

Note that f € C[0, 1] by the Weierstrass M-test. For notational convenience,
let

mg =0, mk:ZZni, k=1,2,....

Further, let

Y :=0 and ag 1= Z k_Qag,nk = Z k_QPk(O)
k=1 k=1

and
’ymk71+jZ:Oék/\j, j:l,2,...,nk, k:1,2,....

Observe that ag € R is well-defined since | P, (0)| < 1 for each k& € N. Also
inf{vit1/7 11 € N} > min{2, inf{\;11/\;: i € N}} > 1.

Let I' := (7;)2o- Then f € C[0,1] defined by (6.2.2) is in the uniform
closure of M(I") on [0, 1]; hence, by the Clarkson-Erdds theorem (see E.3
e] of Section 4.2), f is of the form

Za izt €10,1).

Since f € C[0,1], Theorem 6.2.8 implies that A := Y .7 a; exists and is
finite. Recalling (6.2.2) and the choice of ay, and using E.3 €] of Section

4.2, we can deduce that each
k™ 2a;j p, i=12... np, k=12 ..

is equal to one of the coefficients aj,as.... Since |agn, | = |Pr(0)] <1
for each k£ € N, from (6.2.1) and (6.2.2) we see that |a;| > 1 holds for
infinitely many ¢ € N, which contradicts the fact that ;- a; converges.
This finishes the if part of the theorem.

Now assume that A is not lacunary. Then for every € > 0 there is an
n € N such that A\, _1/A, > 1 —e. Observe that P,(z) := z*» — 21
achieves its maximum modulus on [0, 1] at

and hence
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Aoy \ Mot/ GnAnmt) A Ao
||Pn||[071]§</\1) (1— A1>§1— L <e,

which shows that the lead coefficient ay, , of
Tn{AOa Al, e ,An; [O, 1]}

is at least 1/e, otherwise a;}nTn — P, € M,_1(A) would have at least n
zeros on (0, 1), which is a contradiction. The proof of the only if part of the
theorem is now finished. O

From the above proof it also follows that under the assumptions of
Theorem 6.2.7, the Chebyshev polynomials

Tn{A07A1= e 7An; [07 1]}

have uniformly bounded coefficients if and only if A is lacunary.

As an application of Theorem 6.2.7 we derive the following Bernstein-
type inequality.

Theorem 6.2.9 (Bernstein-Type Inequality). Suppose Ao := 0, A; > 1, and
suppose A = (X;)$2, is lacunary, that is,

1nf{/\l+1//\l 11 E N} >1.

Then there exists a constant ¢ depending only on A (and not on y or the
number of terms in p) such that

C
P (y)] < Ry lIpll0,1]

for every p € M(A) = span{z*°,z*' ...} and for every y € [0,1).

Proof. Let p € M(A) be of the form
p(z) = ao,n + Zaj,nxxj ; lpllo,; = 1.
j=1

Theorem 6.2.7 and the assumptions on A yield

n

A;—1
E ajnAjy™
=1

n (e}
- i &)
SaY Myt <a) ¢ = T
i=1 i=0 Y

p'(y)] <

n
<Y lajal Ay
j=1

where ¢; and ¢s depend only on A, and the theorem is proved. O
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Comments, Exercises, and Examples.

The results of this section have been obtained by Borwein and Erdélyi [91,
93, 95b, to appear 1]. In E.1 we present some of the several important
consequences of our central result, Theorem 6.2.2. In E.6 we offer another
proof of the first part of Theorem 6.2.1 when A is lacunary, while E.9 shows
that the Bernstein-type inequality of Theorem 6.2.9 “almost” characterizes
the lacunary Miintz spaces. Note that if A C [0, 1] contains an interval, then
the first part of Theorem 6.2.1 follows immediately from E.3 of Section 4.2.
A typical case that does not follow from that exercise is when A C [0,1] is
a “fat” Cantor-type set of positive measure.

E.1 Some Consequences of Theorem 6.2.2. Let A C [0,00) be a set
of positive Lebesgue measure, and let r4 be the essential supremum of
A as defined in Theorem 6.2.1. Suppose ¢ € (0,0c) and suppose w is a
nonnegative-valued, integrable weight function on A with [, w > 0. Let
L,(w) := Ly(p), where du = wdt, and where L,(p) is defined in E.7 of
Section 2.2. Let A := (A;){2, be a sequence of distinct nonnegative real
numbers with \; # 0 for each i =1,2,... .

a] Suppose Y o, 1/A; < co. Then M(A) is not dense in Ly(w). Moreover,
if the gap condition
1nf{/\l —XNi_1:1E N} >0

holds, then every function f € L,(w) belonging to the L,(w) closure of
M (A) can be represented as

f(a:):Zaia:’\i, a; € R, ze€AN0,ry),
i=0

where

Tw := SUp {y €10,00) : / w(x)dz > 0} .
AN(y,00)

If the above gap condition does not hold, then every function f € L,(w)
belonging to the L,(w) closure of M(A) can still be represented as an
analytic function on

{z € C\ (—00,0]: |2] < Ty}
restricted to A.

Proof. Suppose f € L,(w) and suppose there is a sequence (p;)52; C M(A)
such that

lim ||f - pillz,w) =0
1— 00
Minkowski’s inequality (see E.7 b] and E.7 i] of Section 2.2.) yields that

(pi)$2, is a Cauchy sequence in Ly(w). The assumptions on w imply that
for every ¢ € (0,r,) there exists an « > 0 such that
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B:={x e An(4,00) :w(x) > a}

is of positive Lebesgue measure. Let s := m(B) > 0. Observe that if
||p||Lq(w) < g, then

m ({ € B p()] > (i—)/}> <
m ({x € B:|p(z)| < <%)1/q}> > %

Hence, by Theorem 6.2.2, (p;)$2, is uniformly Cauchy on [0, d]. The proof
can now be finished as that of Theorem 6.2.1. O

N | »

SO

b] Miintz-Type Theorem in L,(w). M(A) is dense in Lq,(w) if and only

Proof. Suppose Y.°  1/A; = oo. Let f € Ly(w). It is standard measure
theory to show that for every € > 0 there exists a g € C[0, 1] such that
9(0) =0 and

g
If = gllz, ) < 3

Now Theorem 4.2.1 (full Miintz theorem in C[0, 1]) implies that there exists
ap € M(A) such that

1/q 1/q c
lg = pllL,w) < llg—plla (/ w> < llg = pllo,1) (/ w) <z
A A 2

Therefore M(A) is dense in Ly (w).

Suppose now that > 2, 1/X; < oo. Then part a] yields that M (A) is
not dense in Ly (w). O

c¢] Convergence in M (A). Suppose Y = 1/\; < oo, (pi)2; C M(A), and
pi(z) = f(z), z€A.
Then (p;)$2, converges uniformly on every closed subinterval of [0,74).

Proof. Let 6 € (0,74) be fixed. Egoroff’s theorem (see, for example, Royden
[88]) and the definition of r4 imply the existence of a set B C AN (4, 00)
of positive Lebesgue measure so that (p;)52; converges uniformly on B and
hence is uniformly Cauchy on B. Now Theorem 6.2.2 yields that (p;)$2, is
uniformly Cauchy on [0, 6], and the result follows. O
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d] Suppose .2, 1/X; = oco. Show that there is a sequence (p;)$2, C M(A)
that converges pointwise on [0,00) but does not converge uniformly on
AnN|0,a] for some a € (0,74).

Hint: Use Theorem 4.2.1 (Miintz’s theorem). O
e] Suppose Y .=, 1/X; < oo and
1nf{/\z —Xi_1 11 € N} >0.

Let P(A) denote the collection of all real-valued functions f defined on
[0,1) by a power series

f(a:):Zaia:’\i, a; €R, =z€][0,1).

Suppose that A C [0, 1] with r4 = 1. Show that if (f;){2; C P(A4) and
file) = f(z), xeA,
then B
filz) = f(z), z€[0,1),
where f € P(A).

Hint: Use part c] and E.3 e] of Section 4.2. O

E.2 On the Smallest Zero of Chebyshev Polynomials in Nondense Miintz
Spaces. Suppose A\ := 0 and Y ;- 1/X; < co. Show that there exists a
constant ¢ > 0 depending only on A4 := (X;){2, (and not on n) such that
the smallest positive zero of

Tn{O, )\1, )\2, e )\n; [0, 1]}

Y Y

n=12,...
is greater than c.
Hint: If Ay > 1, then use the Mean Value Theorem, E.1 a] of Section 3.3,

and E.5 b] of Section 4.2. If 0 < A; < 1, then the scaling z — 2/ reduces
the problem to the case A; = 1. O

E.3 Extremal Functions for the Remez-Type Inequality of Theorem 6.2.2.
Suppose 0 < Ag < A1 < -+ < Ay, 0 < 9, A C [p,00) is a compact set
containing at least n + 1 points, and y € (0, p) is fixed. Let

M, (A) = span{m)‘0 oM, }.

a] Show that there is a 0 # p* € M, (A) such that
" ()] a2

Ip*lla ozperta(ay llplla

Hint: Use a compactness argument. O
b] Show that p* = ¢T,,{ Ao, A1,... ,A\n; A} for some c € R.

Hint: Use a perturbation argument. O
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E.4 A Lexicographic Property of Chebyshev Polynomials in Different
Miintz Spaces. Let 0:= XA < Ay < - < Ay, 0= <71 <+ < Yo,
and

/\jS'Yj; j:O,l,...,n.

Let o > 0 and let A C [p,00) be compact containing at least n + 1 points,
and let

Tpa:=Tp{ o, A1, An; A and Tor :=Tu{v0, 715+ 5 Vs A}

a] Show that |7, r(y)| < |Th 4(y)| for every y € [0, o).

Hint: Suppose, without loss of generality, that there is an index m,
1 < m < n, such that A, < 7, and Aj = v; if j # m. We choose
an R, 4 € M,(A) that interpolates T, r at the n zeros of T, r and is
normalized so that R, 4(0) = T, r(0). Use Theorem 3.2.5 to show that
|Rna(x)| < |Tn,r(z)| for every z € [0,00), in particular for every z € A.
Now use E.3 to show that | T, r(0)| = |Rn,4(0)| < [T}, 4(0)], which gives the
desired result for y = 0. Using this, we can deduce that | Ty, r(y)| < |Th, 4 ()|
for every y € [0, g), otherwise

Toa—Thr € span{z*®, z™ ...zt g
would have at least (n + 2) zeros in (0, 00), which is a contradiction. O
b] Show that
max PWI o [p)]

peM,(I) |[plla — peMa(4) [[plla

for every y € [0, 0), where
M, (I') :=span{z"°, 2" ... 2"}

and
M, (A) :=span{z?, 2™ ... 2™},

Hint: Combine part a] and E.4. O

E.5 Theorem 6.2.1 Follows from Theorem 6.2.2. Under the assumptions
of Theorem 6.2.1 show that if (p;);2; C M(A) is uniformly Cauchy in
C(A), then it is uniformly Cauchy in C[0, y] for every y € (0,74), where r4

is defined as in Theorem 6.2.1.

Hint: Use Theorem 6.2.2. a
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E.6 Some Corollaries of Theorem 6.2.9 in the Lacunary Case. Suppose
Ao =0, A\ > 1, and A := (\;)52, is lacunary.
a] Show that the Chebyshev polynomials

Ty 5:Tn{)‘0:)‘17---:An:[oal]}a n=1,
have the following property: There is a constant ¢; € (0,1) depending only
on /A (and not on n) such that if y € [0,1) and |T},(y)| = 1, then |T},(z)| > 1
for every = € [y,y + c1(1 — y)].

2,...
1

Hint: Use the Mean Value Theorem and the Bernstein-type inequality of
Theorem 6.2.9. O

b] Show that there is a constant ¢ € (0,1) depending only on A (and not
on n) so that if a < b are two consecutive zeros of T}, then 1—b < ¢2(1—a).

¢] Let e € (0,1). Show that there is an ng € N depending only on € (and
not on n) so that every 7, has at most ng zeros in [0,1 — €.

d] Give a new proof of the first part of Theorem 6.2.1 based on parts a]
and c].

Outline. By Lebesgue’s density theorem (see Royden [88]), it may be sup-
posed, without loss of generality, that the left-hand side Lebesgue density
of A at 11is 1. Choose ¢ € (0,1) so that AN [0,1 — €) contains infinitely
many points and

m(AN|y, 1))

L—y

for every y € [1 —¢,1], where ¢; € (0,1) is the same as in part a]. For this
€, choose ng according to part c]. Now define g € C(A) so that g alternates
ng + 3 times in AN[0,1 — €) between 2 and —2 and is identically zero on
[1 — €, 1]. Assume that there exists a p € M, (A) such that |[p— g|la < 1.
Use part a] and (6.2.5) to show that p — T, € M,(A) has more than n
distinct zeros in [0, 1], which is a contradiction. O

(625) >

The following simple application of Theorem 6.2.9 was pointed out by
Wojcieszyk:

e] Suppose A C [0,1] is a measurable set and the left-hand side Lebesgue
density of A at 1is 1. Show that there is a constant ¢ > 0 depending only
on A and A so that

Ipllo,1 < cllplla
for every p € M(A) = span{z?o, 2™, .. }.

Hint: Use the Mean Value Theorem, the Bernstein-type inequality of The-
orem 6.2.9, and the Chebyshev-type inequality of E.3 ] of Section 4.2. O

f] Use part €] to give another proof of Theorem 6.2.1.

The following exercise constructs quasi-Chebyshev polynomials P, for
M, (A) if the lacunarity constant of A is large:



316 6. Inequalities in Miintz Spaces

E.7 Quasi-Chebyshev Polynomials in Very Lacunary Miintz Spaces. Let
A =0, =2,and \j11/A; > 16fori=1,2,.... Let

n
P, (x) :Zl—l—QZ(—l)jw)‘f, n=12,....
j=1

Let y; := (4)\;)~!. Prove the following statements:

a] |[Pullo,1] =1 and P,(1) = (—1)™.

b] P, has exactly n zeros, 21, < T2 < -+ < Tpn, in (0,1).
c] |P,(&)] < 2A, for every £ € [zpn, 1]

d] We have

1
Pae) < -2 if 1_y2kgzg1_?%’“ and 1<2k<n

and
1
Pn(l“)Zg if 1—yopa Sargl—y%—H and 1<2k+1<mn.
Hint: Part a] is obvious. Prove the rest together, by induction on n. O

The next exercise follows Borwein and Erdélyi [95b].

E.8 Products of Miintz Spaces. Associated with A := (};)52,, let

7=0>

k
Mk(A)::{p:Hpj:pjeM(A)}, k=1,2,....

j=1

Is M?(A) dense in C[0,1] for A := (5%)32,?

Note that M*(A), k > 2 is not the linear span of monomials, and
Miintz’s theorem does not give the answer. This exercise establishes Remez-,
Bernstein-, and Nikolskii-type inequalities for M*(A). From any of these it
follows immediately that if 3572, 1/X; < oo and A C [0,1] is a set of

positive Lebesgue measure, then M*(A) is not dense in C'(A).

Throughout parts a] to d] of the exercise we assume 0 = Ag < Ay < -+,
Y211/ < oo, and s € (0,1).

a] Remez-Type Inequality for M*(A). There exists a constant ¢ depend-
ing only on A4, s, and k (and not on g or A) such that

[1Pll0,e) < cllplla

for every p € M¥(A) and for every compact set A C [o,1] of Lebesgue
measure at least s > 0.
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Proof. Theorem 6.2.2 implies that there exists a constant a > 0 depending
only on A, s, and k such that

m({z € [y.1]: [p(@)] > o~ Ipw)}) 2 1 -y~ 5

for every p € M(A) and y € [0,1 — s]. Now let p € M¥(A), that is,
k
p:Hpj, pj € M(A).
j=1

Then, for every y € [0,1 — 5]

Y

m({z € [y,1] : [p(z)| > o *|py)[})

k
>m <ﬂ{w €y, 1] : |pj()| > a‘llpj(y)|}>

S S
>l-y—hkg=l-y-;.

Hence y € [0,inf A] and m(A) > s imply that

m({a € A:[p(@)| > a~Hp)[}) > 5 >0

and the inequality follows with ¢ = a*. O

b] Solution to Newman’s Problem. Let A C [0,1] be a set of positive
Lebesgue measure. Then M*(A) is not dense in C(A).

Proof. This follows from part a]. O

¢] Bernstein-Type Inequality for M*(A). Suppose A\; > 1. There exists a
constant ¢ depending only on A, s, and k (and not on g and A) such that

19'll10,01 < cllplla
for every p € M*(A) and for every compact set A C [o,1] of Lebesgue
measure at least s > 0.

Hint: Use the product rule of differentiation, and estimate each term sep-
arately. Proceed as in the proof of part a]. Use Theorem 6.2.2 and E.5 a]
and b] of Section 4.2. O

d] Nikolskii-Type Inequality for AM/*(A). There exists a constant ¢ de-
pending only on A, s, k, ¢, and w (and not on ¢ and A) such that

ol g < [ pta)"u(e) ds
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for every p € M*(A), for every compact set A C [g, 1] of Lebesgue measure
at least s > 0, for every function w measurable and positive a.e. on [0, 1]
and for every ¢q € (0, 00).

Hint: Use part a]. O

e] Associated with

Y

Ay =)o, J=12,...k,

let
k
M(Ay, Ay, Ay) =S p= ] pi:pj € M(4))
j=1
Formulate and prove the analogs of parts a] to d] for M (A, Aa, ..., A).

E.9 A Weak Converse of Theorem 6.2.9. Suppose A := (\;)°, is a
(strictly) increasing sequence of nonnegative real numbers with Ay := 0
and A; > 1. Suppose also that there exists a constant ¢ depending only on
A (and not on y or the number of terms in p) such that

C
/

p(y)] < —1Ipllo,
POl < 7= Pl

for every p € M(A) = span{z*,z* ...} and for every y € [0,1). Show
that there is a constant A > 1 depending only on A such that A, > A".

Outline. Let
Tn = Tn{AOa Al, . ,An; [07 1]}

and denote its zeros in (0,1) by 1, > Za, > -+ > Zp,n. Use the Mean
Value Theorem and the assumed Bernstein-type inequality to show that
there is a constant v € (0,1) depending only on A such that

1=2jn <y(1—2jt1,0), j=12....,n-1, nel;

hence 1 — 21, <™. On the other hand, use the Mean Value Theorem and
Theorem 6.1.1 (Newman’s inequality) to show that

n -1
1—21, > <1+92Aj> > 9+ 1)A,) "
j=1

Finally, combine the lower and upper bounds for 1 — z , to conclude that

—n

Y
> —.
"= 9(n+1)
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E.10 Polynomials in 2**. Given n € N and X\, € R, let
Prn(An) := {pn(z™) : p, € Pp}

(as in E.6 of Section 4.1). Suppose A\, > 1 for all n € N. Let § € R be
defined by

lim sup lo
no An

Suppose § > 0.

a] Bounded Remez-Type Inequality. Suppose 0 < 8 < 6. Show that there
exists a constant ¢ depending only on § (and not on n, y, or A) such that

()| <cllplla

for every p € U2 Pn (), for every A C [0, 1] of Lebesgue measure at least
1 — 4, and for every y € [0,inf A].

Hint: Use Lemma 6.2.6 and E.6 a] of Section 4.1. O

b] Miintz-Type Theorem. If0 < §<dand AC [0,1] is a set of Lebesgue
measure at least 1 — 3§, then Uy>; Pp(Ay) is not dense in C(A).

Hint: Use part al. O
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Inequalities for
Rational Function Spaces

Overview

Precise Markov- and Bernstein-type inequalities are given for various classes
of rational functions in the first section of this chapter. Extensions of the
inequalities of Lax, Schur, and Russak are also presented, as are inequal-
ities for self-reciprocal polynomials. The second section of the chapter is
concerned with metric inequalities for polynomials and rational functions.

7.1 Inequalities for Rational Function Spaces

Sharp extensions of most of the polynomial inequalities of Section 5.1 are
established for rational function spaces on K := R(mod 27), on the interval
[—1,1], on the unit circle of C, and on the real line. The classical inequalities
of Section 5.1 are then recovered as limiting cases. A sharp extension of
Lax’s inequality is also given. Essentially sharp Markov- and Bernstein-
type inequalities for self-reciprocal and antiself-reciprocal polynomials are
presented in the exercises.

Let D :={z€ C:|z|] <1} and 0D := {z € C : |z| = 1}, as before.
We study the rational function spaces:

5 H6) ‘te 7;1}
re | sin((0 — ax)/2)|

7;1((11:02:"' :a2n;K) = {
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and
t(6)
7;5((11,(12,...,(1271;]:{)::{ — :tE’Ef}
TT3%, sin((6 — ax)/2)
on K with ay,as,...,a2, € C\R;
P . — p(z) )
n(al,ag,... ,an,[—l,l]) = m pEPn
k=1
and
pe , ,_ p(z) , ¢
n(a1,(12,... ,an,[—l,l]) = m.pePn
k=1

on [—1,1] with a1,as,...,a, € C\ [-1,1];

Pi(ar,az,... ,an;0D) = {% :pEPfl}
k=1

on D with ay,as,...,a, € C\ dD; and

p(z) }
Polar,as,... ,amR) = =L . ep,
(al as a ) {Hkl |$_ak‘ b
and
Pplay,az,... a5 R) 5:{#11767)5}
[Ti=i(z —ax)

on R with ay,as,...,a, € C\ R

The Chebyshev polynomials fn, ﬁn, and
V := (cos )T, + (sin &)U, , acK

for the rational function space T,(a1,as,... ,as,; K) are defined in E.3 of
Section 3.5, and they play a central role in this section.
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Theorem 7.1.1 (Bernstein-Szeg6-Type Inequality on K). Given
(ar)i2, C C\R, Im(ax) >0,

let
2n

Z 1— |emk|2
|eza;c _ 6’0‘2 :
Then B N
107 +Ba0)f0) <BrO)Ifllx, 0eK
for every f € Tp(ar,as,... ,a9,; K).

Equality holds if and only if either 8 is a mazimum point of |f| (that

is, f(0) = *||f|lx) or f is a linear combination of T, and U, (with real
coefficients) as defined in E.3 of Section 3.5.

Corollary 7.1.2 (Bernstein-Type Inequality on K, Real Case). Given
(ar)iZy CC\R,  Im(ax) >0,

let the Bernstein factor En be defined as in Theorem 7.1.1. Then
11'©O) < Ba@)Ifl, 6K

for every f € Tp(a1,as, ... ,a:n K).

Equality holds if and only if f is a linear combination of T, and U,
(with real coefficients) as defined in E.3 of Section 3.5, and f(6) =

Theorem 7.1.1 and Corollary 7.1.2 can be easily obtained from the extension
of Theorem 3.5.3 given by E.3 of Section 3.5, which gives explicit formulas
for the Chebyshev polynomials for these classes T, (a1, as,. .. ,as,; K). The
arguments are outlined in E.1.

The following two results can be obtained from Theorem 7.1.1 and
Corollary 7.1.2 by the substitution z = cos#; see E.2.

Corollary 7.1.3 (Bernstein-Szegé-Type Inequality on [—1,1]). Associated
with (ar)j—, C C\ [-1,1], let the Bernstein factor B, be defined by

ZR ,
ar — &
where the choice of \/al — 1 is determined by |ay — \/a} — 1| < 1. Then
(1—2*)f'(2)* + By () f*(2) < Bh(@)[I Iy, z€[-1,1]
for every f € Pp(ay,a9,...,a,;[—1,1]).

Equality holds if and only if either x is a maximum point of |f| (that
is, f(z) = £||flli=1,17) or f = T, with ¢ € R, where T}, is defined as in
Section 3.5.
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Corollary 7.1.4 (Bernstein-Type Inequality on [—1, 1], Real Case). Given
(ar)p_y C C\[-1,1], let the Bernstein factor B, be defined as in Corollary
7.1.3. Then

Ba@ g
VI—g2

for every f € Pp(ar,aa,...,an;[—1,1]).

Equality holds if and only if f = cT),, with ¢ € R, where T}, is defined as
in Section 3.5, and f(x) = 0. (Note that B,(z) > 0 for every z € (—1,1).)

|f'(z)] < z € (-1,1)

Our next result follows from Theorem 7.1.1; see the hints to E.3.

Corollary 7.1.5 (Bernstein-Szeg6-Type Inequality on R). Given
(@)j CC\R,  Ima) >0,
let the Bernstein factor B, be defined by
zn: Im(ay)
|a: —agl?’
Then
f'(@)* + By (2) () < Bp(2)||fllz, z€R

for every f € Pp(ay,aq,...,a,;R).

Equality holds if and only if either x is a maximum point of |f| (that
is, |f(x)] = £||f|lr) or f is a linear combination of T, and U, (with real
coefficients) defined in E.5 of Section 3.5.

Corollary 7.1.6 (Bernstein-Type Inequality on R, Real Case). Associated
with (ar)}_,; C C\R, let the Bernstein factor By, be defined as in Corollary
7.1.5. Then

|f'(@)] < Bu(2)llfllr, z€R
for every f € Pp(ay,aq,...,a,;R).
Equality holds if and only if f is a linear combination of T,, and Uy,
(with real coefficients) defined in E.5 of Section 3.5, and f(z) =

To formulate our next theorem we introduce some notation. For a
polynomial

n
H (z —ay) ap € C,
k=1

we define
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¢*(2) =[] (1 —are) =1 2", (7).

kol
[

Then
(7.1.1) q(z)| =lg"(2)], z€0dD.

The function

) T _ Lo

is the Blaschke product associated with (ax)j_;.

Theorem 7.1.7 (Bernstein-Type Inequality on 0D, Complex Case). Given
(ar)p_y CC\ 0D, let the Bernstein factor By, be defined by

By (2) := max{B, (2), B, (2)}

with
n 2 n 2
+ - ‘ak‘ -1 _ L 1-— \ak\
k=1 k=1
lag|>1 lak|<1
Then

f'(2)] < Bu(2)fllop.  z2€0D
for every f € Pi(a1,as,...,an;0D).

If the first sum is not less than the second sum for a fized z € 0D, then
equality holds for f = ¢S;" with ¢ € C, where S;' is the Blaschke product
associated with those ay for which |ag| > 1. If the second sum is not less
than the first sum for a fized z € 0D, then equality holds for f = ¢S, with
c € C, where S, is the Blaschke product associated with those a, for which
\ak\ < 1.

Proof. For reasons of symmetry it is sufficient to prove the theorem only
for z = 1. Without loss of generality we may assume that

(7.1.2) Re (Z - _lak> £ g;

k=1

the remaining cases follow from this by a limiting argument. Let @ := 0D
(equipped with the usual metric topology), V := PS(a1,as,...,an;0D),
and L(f) := f'(1) for f € V. We show in this situation that n +1 < r in
Theorem A.3.3 (interpolation of linear functionals). Suppose to the contrary
that r < n. By Theorem A.3.3, there are distinct points x1,xs,... ,Z, on

0D, and there are constants ¢, ¢s, ..., ¢, € C such that
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P(Dg(1) —¢'(Wp() _ ¢ G e
(7.1.3) e _kz; Cotn) pe P,
where
(7.1.4) q(z) =[] (z - ).

k=1

We claim that z; # 1 for each k = 1,2,... ,r. Indeed, if there is index k
such that zy = 1, then Theorem A.3.3 implies that

r

p(z) = (=z+1)"" H(z —x) € Py
k=1

has a zero at 1 with multiplicity at least two, which is a contradiction.
Applying (7.1.3) with the above p, we obtain

p'(1)g(1) —¢'(1)p(1) =0

and since p(1) # 0 and ¢(1) # 0, this is equivalent to

that is, in terms of the zeros of p, and g,

n

1 n—r - 1
1. = .
a1 e

k=1

Since z € 0D and zj # 1, we have

(7.1.6) Re(1 11:):%’ E=1,2,...,r.
— Ty

It follows from (7.1.5) and (7.1.6) that

which contradicts assumption (7.1.2). So n + 1 < r, indeed.

A compactness argument shows that there is a function f € V such

that |L(f)]
Iflloo =1 and  L(f) = I} := max 1
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Theorem A.3.3 implies \f(a:k)| =1 for every k =1,2,...,r. Hence, if

f:z_), 5€Pfla Hz_ak
q k=1
then
(7.1.7) h(z) := \17(2)\2 — \q(z)\2 <0, z € 0D
and
(7.1.8) h(zy) =0, k=1,2,...,r

Note that #(d) := h(e?’) € 7, vanishes at each 6, where the numbers
6y, € [~m,7) are defined by x, = e®*, k =1,2,...,r. Because of (7.1.7),
each of these zeros is of even multiplicity. Hence, n + 1 < r implies that
t € T, has at least 2n + 2 zeros and therefore ¢ = 0. From this we can
deduce that h(z) = 0 for every z € 9D, so

(7.1.9) ()| =lq(z)|, z€0D.
We now have
2 "p(2)p*(2) = [p(2)]* = lg(2)* = 27 "q(2)q*(2), 2 €D,

so by the unicity theorem for analytic functions (see E.1 ¢] of Section 1.2)

PP =4qq".
From this, it follows that there exists a constant 0 # ¢ € C such that

i) =—Z—cHZZ‘_“;k, 2€C, q(=) #£0

(2)
k=1
with some m < n and

ap = aj, , k=1,2,... ,m, 1<ji<jpp<<jm<n.

A straightforward calculation gives that

£ Z(l—lakl_l—lak>

F(1) =1
Ja> =1
Z ‘Oék _ 1|2

which finishes the proof. O

m

)=

<max{B;(z), B, (2)},
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Corollary 7.1.8 (Bernstein-Type Inequality on K, Complex Case). Given
(ar)3™, C C\R, let the Bernstein factor B,, be defined by

B, (6) := max{B,} (), B, (9)}

with
2n iag |2 2n iag |2
B+(g) = e * — 1 Sy 1 — Jetex|
Bi®)= >, mmp o BiO)= ) o
k=1 k=1
Im(ay)<0 Im(ar)>0
Then

£ O < Bl fllx, 0€K
for every f € T(a1,as,... ,a,; K).

If the first sum is not less than the second sum for a fized 6§ € K, then
equality holds for f(0) = cSi, (e!®) with ¢ € C, where Sy, is the Blaschke
product associated with those €' for which Im(ay) < 0. If the second sum
is not less than the first sum for a fized 6 € K, then equality holds for
f(8) = ¢S, (€?) with ¢ € C, where S,,, is the Blaschke product associated
with those €' for which ITm(ay) > 0. Note that

S () € Te(ar,an, ... a0 K).
Proof. Observe that if
Hsm —aj)/2) €Ty

and t, € 7,¢, then there are p € P5, and ¢ € P35, such that

HO) _ p(e)e ™ _ ple”)
hO) ~ a0~ q(em)”

where ¢ is of the form

2n
a(z) = ¢ [ (= - ')
j=1
with some ¢ € C. So the corollary follows from Theorem 7.1.7. O

Corollary 7.1.9 (Bernstein-Type Inequality on [—1,1], Complex Case).
Given {ax}i_; C C\ [-1,1], let the Bernstein factor By(z) be defined

by
1= Jex ) |ex| 2
B (x —max{ on — 2|2 E

et - 2|2
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where ci and z are determined by

ar = g(cx + ¢, ek <1
z:=3(z+271), Im(z) > 0.
Then (@)
B, (z
1f'(z) < ==Ifll-10, @€ (=1,1)

V1-— 22

for every f € PS(ay,aa,...,a,;[—1,1]). Note that

Zlck__c';P = (Z ! ) rel-11],
k=1

where the choice of \/a3 — 1 is determined by |a1c -Va; — 1| < 1.

Proof. The corollary follows from Theorem 7.1.7 by the substitution
r=1(z+27"). |

Bernstein’s classical polynomial inequalities discussed in Section 5.1
are contained in Theorem 7.1.7 and Corollaries 7.1.8 and 7.1.9 as limiting
cases. In Theorem 7.1.7 and Corollary 7.1.9 we take

(agm),agm),... ,a;””) cC\D

so that

lim \ak \:oo, k=1,2,...,n.
m—0o0

In Corollary 7.1.8 we take

so that

(m) _ =(m)

alV =@ and  lim [Im(a{™) =00, k=1,2,...,n.

m—roQ

To formulate our next result we introduce the Blaschke product

associated with (a1,as,...,a,) C C\ R. Obviously |Q,(z)| = 1 for every
z €R
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Corollary 7.1.10 (Bernstein-Type Inequality on R, Complex Case). Given
(ar)i_y C C\ R, let the Bernstein factor B, (z) be defined by

By () := max{B; (z), B, (z)}

n

B} (z) := Z %LII_HZ’“Z and By (z) := Z _Tilffgky

Im (ax) >0 Im (ax) <0

for every x € R. Then

[f'(@)| < Bu(@)llfle, z€R

for every f € Pi(ai,aa,...,an;R).

If the first sum is not less than the second sum for a fized x € R, then
equality holds for f = cQ} with c € C, where Q} is the Blaschke product
associated with the poles ay lying in the open upper half-plane

H" :={z¢€ C:Im(z) > 0}.

If the second sum is not less than the first sum for a fired x € R, then
equality holds for f = cQ,, with ¢ € C, where @);, is the Blaschke product
associated with the poles ay lying in the open lower half-plane

H™ :={z€ C:Im(z) <0}.

Corollary 7.1.10 follows from Theorem 7.1.7; see E.4.

The next theorem improves the Bernstein-type inequality of Theorem
7.1.7 in the case when {ax}}_; C C\ D and f has all its zeros in C\ D. It
extends Lax [44].

Theorem 7.1.11 (Lax-Type Inequality). Given (ax)?_, C C\ D, let the
Bernstein factor B, be, as in Theorem 7.1.7, defined by

Z \001c|2 -1
lag, — 2|2
Then
W(2)] < §Bu(2)|hllop,  z€ 8D

for every h € Pf(ay,as,...,a,;0D) having all its zeros in C\ D.

Equality holds for h = ¢(Sy, + 1) with ¢ € C, where S, is the Blaschke
product associated with (ay)}_,
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Note that B, (z) = |S,,(2)|. Note also that
h:=¢(Sp,+1) € Pi(ay,as,...,a,;0D), c#0
has all its zeros on OD.

Proof. First assume that each zero of h is on 0D, the general case can be
reduced to this (see E.5). Thus let h := p/q, where p € P§ has all its zeros
on 9D and where

q(z) :ZH(z—ak), lag| > 1.

k=1
Let
n
0(2) = [ (1 — @)
k=1
We study
p(e2i)eind p(e2)

u(f) :=

a@D)] T @D /qr(e20)

for # € R, where the square roots are taken so that /g is analytic in a
neighborhood of the closed unit disk, and 1/¢* is analytic in a neighborhood
of the complement of the open unit disk. Since p € Pg has all its zeros on
0D, there exists a 0 # 3 € C such that

1(6) 1= Bp(e*)e "

is a real trigonometric polynomial of degree at most n (see E.5 al). Also
n
la(€)] = la" ()| = T] 11 - @™
k=1

= [T Isin((6 = cx)/2)1,
k=1

where 7 > 0,

eic’“zak_l/Q, Im(cy) >0, k=1,2,...,n
and

ick:_akfl/2’ Im(ck)>0, k=n+1,n+2,...,2n.

e
Applying Theorem 7.1.1 to

B_lu € ,Tn(Cl,CQ,--- ;CQn;K)a
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we obtain
(7.1.10) W' (0) = iBp(O)u(®)| < Bu(®)|lullx, 6O€K,
where
n _ -
(7.1.11) Bn(6) = %1; <—1—1_/2a_k ;2 +| _1—];1|/L;k|_ ;02>
Zn: 1—\ak\ -2 Z a1
Zfa - em0p 2 far— P

Observe that

(7.1.12) u(8) = p(em:e) Va(e?) p(te:G)fn(eie),

where
(7.1.13) fu(z) = Y——=.
A simple calculation (see E.4. of Section 3.5) shows that

n _ zﬂfn(e )
(7.1.14) Ba(0) =e P PEK.

Also, since |f,(e?)| = 1 for every § € K, we have

p

(7.1.15) lullxe = HE ~ Ihllan

oD

Now (7.1.10) to (7.1.15) yield

o210 ) L (et o210 ) -
i <p( i )fn(6’0)> _iewfn( i ) p( ' )fn(ew) < Bn(a)HhHBD

df \ q(e2i) fn(e®) q(e?®)
So
[20€0 R (¢37) f(¢37) + e £ (e h(e*)
—ie" fr(e)h(e*)| < Ba(®)|hllap -
Thus

2|H ()] < Bu(6)||hlon |
which, together with (7.1.11), finishes the proof.
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Comments, Exercises, and Examples.

Most of the results in this section have been proved in Borwein and Erdélyi
[to appear 4] and in Borwein, Erdélyi, and Zhang [94a]. A weaker version
of Corollary 7.1.9 has been obtained by Russak (see Petrushev and Popov
[87]). Theorem 7.1.11 contains, as a limiting case, an inequality of Lax [44]
conjectured by Erdds. Lax’s inequality establishes the sharp Bernstein-type
inequality on the unit disk for polynomials p € PS having no zeros in the
open unit disk. That is,

n
IPllp < 5 lIpllo
for such polynomials. Various extensions of this inequality are given by

Ankeny and Rivlin [55], Govil [73], Malik [69], and others. We discuss some
of these in E.16 of Appendix 5.

E.1 Proof of Theorem 7.1.1 and Corollary 7.1.2. Given (a;)?", C C\R,
let
T = Talar, a2, ..., a2n; K) .

a] Show that 7, , is a Hermite interpolation space. That is, if the points
T1,%a,...,x, € K are distinct, and mq,mso,... ,my are positive integers
with Zle m; < 2n 4+ 1, then for any choice of real numbers y; ;, there is a
function f € T, 4 such that

f(])(xl):yz,g, i:1=27"'7k= j:O,l,...,mi—l.

Hint: See the hint to E.7 of Section 1.1. O
b] Show that for every fixed 6 € K, the value

f'(6)° + B2 (6)f*(6)
AT 711%

is attained by an fE Tn.a-
Hint: Use a compactness argument. ad

¢] Show that f: cV, where ¢ € R and V is one of the Chebyshev polyno-
mials for 7, , defined in Theorem 3.5.3 and E.3 of Section 3.5.

Hint: Use a variational method with the help of part a]. O
d] Prove Theorem 7.1.1.
Hint: Use part c] and E.4 of Section 3.5. O

e] Prove Corollary 7.1.2.

E.2 Proof of Corollaries 7.1.3 and 7.1.4.
a] Prove the inequality of Corollary 7.1.3.
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Hint: Use Theorem 7.1.1 with the substitution x = cosf. Note that
f € Pulay,as,. .. an;[—1,1]) implies

g(e) = f(COSG) = 7;L(C1,C1,CQ,CQ,.-. 7cn7cn;K)7

where the numbers ¢ € C are defined by

e =ap —yJaj —1,  ap=g(e" +e ), Im(e) > 0.

Verify that if B,, is the Bernstein factor given in Theorem 7.1.1 associated
with

(017015027027"'70717071):
then
~ - Va2 —1
B,(0) =) Re| YX*t—], #HeKkK,
() Z e(%—cosﬁ)’ €K,
k=1
where the choice of \/a? — 1 is determined by |aj, — /a7 — 1| < 1. O

b] Given z € [—1,1], prove that equality holds in the inequality of Corol-
lary 7.1.3 if and only if either z is a maximum point of |f| (that is,
f(x) = £||flli=1,17) or f = T, with ¢ € R, where T, is defined in Sec-
tion 3.5.

Hint: Observe that B B

V = (cos a)T, + (sin a)U,
is even if and only if V = +T,, and use Theorem 7.1.1. O
¢] Prove Corollary 7.1.4.

E.3 Proof of Corollaries 7.1.5 and 7.1.6.

a] Prove Corollary 7.1.5.
. I e’ +1
Hint: Use Theorem 7.1.1 and the substitution z = I which maps K
el J—
onto RU {oo}. O

b] Prove Corollary 7.1.6.

E.4 Proof of Corollary 7.1.10. Prove Corollary 7.1.10.

Hint: Use Theorem 7.1.7 and the substitution z = iZ +

onto RU {oo}. O

1
T which maps 8D

E.5 Completion of the Proof of Theorem 7.1.11.

a] Show that if p € PS has all its zeros on the unit circle, then there
isa 0 # B € C such that g(f) := Be™"p(e*?) is a real trigonometric
polynomial of degree at most n.
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For f = p/q with

(z — ag) ap € C
k=1

and

m

HZ—bk b€ C, ~eC,

k=1
we define f* := p*/q, where

H 1—Zbk

k=1
Let D:={2z€ C: |z| <1}
b] Show that |f*(z)| = |f(z)| for every z € OD.

In each of the remaining parts of the exercise suppose that |ay| > 1 for

each k.
c|

zeros on the unit circle.

d] Show that if |b;| > 1 for each k, then

() <1f7(2)], z€0D.

Show that if ¢ € 9D and |b| > 1 for each k, then f + ef* has all its

Hint: First observe that it is sufficient to study the case z = 1. We have

n n

f’(1)>‘_ Ly 1
‘Re<f(1) _Re<,;1—bk> Re<;1—ak>
n 1 n n n 1
w(Lin)-3foe(Een)
n n 1 n n 1
:§_Re<;1—bk>+§_Re<;1—ak
1 1
(St ) ()

1 1
=R — | - R
(S ) (S
=R ~-R
(E) ()

)
f*(1)

(54
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and
] n n
Im <f(1)>: Im 1 —Im 1
f(1) = 1= = 1-ay
n n
1 1
=|I - -1
k=1 k=1
~ 1 1
~ (Zl i ) ‘) (ZHJ‘
k=1 k=1
f*’(1)>
= |Im .
< (1)
The result now follows from the combination of part b] and the above two
inequalities. O

e] Prove that if |by| > 1 for each k, then

21" ) < [f () +1£7(2)] < Ba(2)lIfllop,  2€0D,

where By(z) is the Bernstein factor defined in Theorem 7.1.11.

Hint: Use parts c] and d] and the already proved part of Theorem 7.1.11
(when f has all its zeros on the unit circle). O

f] Show that if |b;| > 1 for each k, then

£ < 2Bax) (max £(2)] - min |£(z >) . :eoD,

2 2€0D 2€0D

where B, (z) is the Bernstein factor defined in Theorem 7.1.7. This extends
a result of Aziz and Dawood [88].

Hint: Assume that ||f|lap = 1. Let m := min,cop |f(z)|. Let a be a con-
stant of modulus less than 1. Let g(z) := f(z) — am. Observe that the
argument of a can be chosen so that

9" ()] = |f*'(2)] = [a|mBn(2)

By Rouché’s theorem, g has no zeros in D. So parts d] and e] imply that

2[f"(2)] = 2|lalmBa(z) = 219" (2)| < 19'(2)] + 19" ()]
\f () + £ (2)] = lalmBn(2)
Bn(2) = |a[mBn(2) .

Since |a| can be chosen arbitrarily close to 1, the result follows. O



336 7. Inequalities for Rational Function Spaces

E.6 Extensions of Russak’s Inequalities.
a] Given (a;){", C C\R, show that

I ML, () < 27| fllx

for every f € Tp(a1,az,... ,as,; K) and

1 ) < 4mn | fllx

for every f € T,¢(a1,az,... ,a2,; K).
b] Given (ar)j_; C C\R, show that

I L, ) < 7l fllr

for every f € Pp(ai,as, ... ,a,;R,) and

I L, ) < 27| fllr

for every f € PS(ay,aq,...,an;R).

Hint: Use Corollaries 7.1.2, 7.1.8, 7.1.6, and 7.1.10. Write the Bernstein
factors in a form so that the integral (of each term in the maximum if the
Bernstein factor is defined by a maximum) can be evaluated by the residue
theorem (in part a]) and by finding the antiderivative (in part b]). O

¢] Are any of the inequalities of parts a] and b] sharp? If so, in which
cases?

E.7 Markov-Type Inequality. Given (ax)p_, C R\ [-1,1], show that

n

2
, n 1+ |eg]
<
II.f ||[—171] =51 <§ : 1— ck> ||f||[—171]

k=1

for every f € P:(a1,as,... ,a,;[—1,1]), where the numbers ¢, are defined

by
cp=ap —y/ai — 1, ak:%(ck-%c,;l), lex] < 1.

Proceed as follows:

a] Given (ax)j_; C R\ [-1,1], let

2 1-—
B 2TY i o<y<1
ax(y) = 1+y 1+y
KY) Qak 1+y
+ =2 if —1<y<0
11—y 1—y

and let ¢i(y) be defined by
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ar(y) = 3(cx(y) +ex@)™),  lely)l < 1.
Show that )

701 < T (Zlfgg;) ([
for every f € PS(ar,as, ... ,an; [~1,1]).

Hint: Show by a variational method that

\f( )I /

where the maximum is taken for all 0 # f € Py(ai,aq,...,an;[-1,1]),
and T, is the Chebyshev polynomial for P, (a1, as, ... ,an;[—1,1]) defined
in Section 3.5. Now the result follows from E.1 c] of Section 3.5 by a linear
shift from [—1,1] to [-1,y] if 0 <y <1,orto [y,1]if -1 <y <0. O

b] Given (ax)j_; C R\ [—1,1], show that

1f'(v) 11y, ye(=11)

| <
l\l

for every f € Pp(ay,aq,... ,an;[—1,1]).

Hint: When y = 0, this follows from Corollary 7.1.3. When y € (=1,1) is
arbitrary, use a linear shift from [—1,1] to [2y — 1,1] if 0 < y < 1, or to
1,2y + 1] if —1 < y < 0. O

¢] Prove the Markov-type inequality of the exercise.

Hint: Combine parts a] and b]. Note that
@l >l and @) <leal<1, k=12...n
holds for every y € [—1,1]. O
E.8 Schur-Type Inequality. Given {a;}}_; C R\ [—1,1], show that
£l < max{ [T (D], [Va=D1} - [ F@VI= 2] _,

for every f € Pp(a,as,... ,a,;[—1,1]), where U, is the Chebyshev poly-

nomial (of the second kind) for Py (a1, as, ... ,an;[—1,1]) defined in Section
3.5, and
Va?
W (D] = Yok
| I; ar F 1

with the choice of \/a? — 1 determined by |a; — /a7 — 1| < 1. Show that
equality holds if and only if f = cU,, c€ R
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Hint: First show that if ]76 Pnlai,as,... ,an;[—1,1]) is extremal for
|f(£1)]
max ,
I @) 1_332”[—1,1]
where the maximum is taken for all 0 # f € P,(ai,a9,...,a,;[—1,1]),

then f = cU, with some ¢ € R. Observe that U,(+1) can be evaluated by
L’Hospital’s rule since

1—T,(z)?
2 _ n .
Un@) ===
hence |U,(£1)|? = |T)(£1)| = |Bn(£1)| - |Un(£1)| with the notation of
Section 3.5. Thus |U,(£1)| = |B,(£1)].
If y € [-1,1] is arbitrary, then use a linear shift from [—1,1] to [y, y]
(some caution must be exercised about the change of poles). O

E.9 Extension of Lax’s Inequality on the Half-Plane. Associated with
(ar)i_, C H* :={z € C: Im(z) > 0}, let the Bernstein factor B, be, as
in Corollary 7.1.10, defined by

Z 21m ak
|a: —agl?’
Show that
h'(2)] < 3Bu(@)||hll, z€R
for every h € P(ai,as,. .. ,an; R) having all its zeros in H+.

Equality holds for h = ¢(S, + 1) with ¢ € C, where S, is the Blaschke
product associated with (a)7_,. Note that By (z) = |S},(z)|. Note also that

h=c(S+1)eP(ar,as,...,an;R), c#0

has all its zeros on R.
z+1
z—1"

E.10 Remarks on Theorem 7.1.7 and Corollary 7.1.10.

a] Given (ax)f_; C D and z € 0D, show that equality holds in the in-
equality of Theorem 7.1.7 if and only if f = ¢S,, with ¢ € C, where S, is
the Blaschke product associated with (ax)j_;.

Hint: Analyze the proof of Theorem 7.1.7. ad
b] Given (ax)?_, C H" = {z € C: Im(z) > 0} and =z € R, show that

equality holds in the inequality of Corollary 7.1.10 if and only if f = ¢Q,
with ¢ € C, where @), is the Blaschke product associated with (ax)}_;.

Note that the only if parts of E.10 a] and E.10 b] above are not claimed
in the general case of Theorem 7.1.7 and Corollary 7.1.10 (why?).

Hint: Use Theorem 7.1.11 with the substitution z =i
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E.11 Markov-Bernstein-Type Inequality for SR{ and ASRS. Let SR
denote the set of all self-reciprocal polynomials p € Pf satisfying

p(z) = 2"p(z7").

Let SR,, denote the set of all real self-reciprocal polynomials of degree at
most n, that is, SR, := SR¢ N P,. For a polynomial p € P of the form

(7.1.16) p(z) =) ¢z, ¢ €C,
7j=0

p € SR¢ if and only if

Cj = Cn—j, j=0,1,...,n.

Let ASR¢ denote the set of all antiself-reciprocal polynomials p € P§
satisfying
p(z) = =2"p(z7").

Let ASR,, denote the set of all real antiself-reciprocal polynomials of degree
at most n, that is, ASR,, := ASR{ N P,. Let ASR,, := ASR{ NP, For a
polynomial p € P¢ of the form (7.1.16) p € ASRS, if and only if

Cj = —Cp_j, j=0,1,...,n.

a] There exists an absolute constant ¢ such that

. e
@) < cnmin {(1-+10gn), 105 (75 ) ol

holds for every x € [—1,1] and for every p € Pf, satisfying
(7.1.17) @) < @+ [z[")pll-11, z€ER,

in particular, for every p € SRS, and for every p € ASRE.
The inequality

p'(2)] < en(1+logn) [|pll—1,1

for all p € SR,, and for all p € ASR,, was first obtained by Krod and
Szabados [94a]. They also showed that up to the constant ¢ > 0 the above
inequality is sharp for both SR, and ASR,,. Here we present a distinct
proof. The sharpness is studied in E.12 f].
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Outline. Suppose p € Pg satisfies (7.1.17). Then

p(z)
1.1 =
(7.1.18) fa) = T2
satisfies
(7.1.19) R < 20lplli—1,17-
Let,
(7.1.20) ay, = e!FE-Dm/(2n) k=1,2,...,2n

be the zeros of the equation 22" + 1 = 0. Now Corollary 7.1.10, together
with (7.1.18) to (7.1.20), yields that

- Im ak
(7.1.21) z)| <2 (Z 7 —ax 2> [Ralis
- Im(ay,
<4 (Z | — ay, 2) ||p||[—171]: x € R.

Show that if n € N and = € [—1,1], then

n
Im(ay) . e
(7122) 42 |$—ak‘2 ~ nmln{(l—l—logn), lOg (m)} s

where here the ~ symbol means that there are absolute constants ¢; > 0
and ¢z > 0 (independent of n € N and z € [—1, 1]) such that the left-hand
side is between c; times the right-hand side and cs times the right-hand
side for every n € N and z € [—1,1]. Combining (7.1.18), (7.1.21), and
(7.1.22), we conclude that there is an absolute constant ¢y such that

plz) 2zt p(z)
1+2z2r 1422 14227
< con min {(1 +logn), log <ﬁ> } lpll—1,17 z € R.

So if z € [-1,1], then

. e
Ip'(z)| < (20271 min {(1 +logn), log <m> } + 2n> Ipll—1.1

and the proof is finished. O

b] There exists an absolute constant ¢ > 0 such that

H P'(z) ‘ p(z)

1+ z2n 1+ 22

< cen(1 + logn)
R

R

for every p € Ps5,,.
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Proof. Associated with p € P§,, let

_ _p(x)
fl) =15
Let
ay = el2k=Dm/(2n) k=1,2,...,2n

be the zeros of the equation 22" + 1 = 0. Using Corollary 7.1.10, we can
deduce that there are absolute constants ¢; and ¢; such that

17 < (Zwm(ak)l) 17l < e (Z (5) ) 171
k=1

k=1
< con(1 + logn) | £z

Therefore

p'(z) 2nz?" 1 p(x) p()

— < 1+1
T+a Tt T4+gon| S e Hloem) I 7ms
for every € R, which implies
p'(z) p(z)
H1+$2n Rg(czn(1+logn)+2n) ‘1+$2n ]R,

and the result follows. a

¢] For every m € N, there exists a constant ¢(m) depending only on m so
that

1P l=117 < e(m) (n(1 + logn))™||pll—1 1
for every p € P; satisfying

(7.1.23) Ip(2)] < (1 + |2[")Iplli-1,17 -

Proof. Using part b] and induction on m, we see that there exists a constant
¢1(m) depending only on m such that

p™ (z)
14 z2n

m | plx)
<almntr-+iogn)” |22

R

for every p € P3,,. Note that if p € Pg satisfies (7.1.23), then

p(z) p(z)
1T4+a227|, = |14 z?

< 2lplli=1,1)>
R

and the result follows. a
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E.12 Quasi-Chebyshev Polynomials for SR,,, and ASR,,,. Let
ay, := ' Gk-Dm/(2n) k=1,2,...n

be the zeros of the equation 22" + 1 = 0 in the upper half-plane. Let

and
Qan () :=Im(Ms,(x)), z € R.

a] Show that if n is even, then P», € SRa, and Q2, € ASRs,,, while if n
is odd, then @2, € SR3, and P, € ASRa,.

b] Show that
|Map(z)] =14+2°", 2z€R

and

Pon(2)? + Qon(x)? = (14 2%™)?, z e R,
in particular

| Ponlli—1,1) < 2 and 1Q2nll[=1,11 < 2.
Proof. Note that

Mo, () o —ay

7.1.24 = i
( ) 14 a2n 1«1;[1 T —ay’

which implies the first equality. The rest is straightforward from the defi-
nitions. a

¢] Show that there are extended real numbers
00 =29 >21 > "> 2y =—0
such that

MQn(Zj)

1+z?n:(_1)j’ j=0,1,....2n
J

(the value of the left-hand side at +oo is defined by taking the limit when
x — £00).

Hint: Use (7.1.24) and the argument principle (see, for example, Ash [71]).
O
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d] Let n € N be even. Show that there exist

l=2g>y1>x1>y2> > Tp_1>Yp>axp=—1

such that
l_za:JQJn :(_1)J+n/2’ QQn(ij):O, ]:0,1, ,n
and

QQn(Z’/J’) i .
= (=1)FtHn/2 Ponly;) =0, j=1.2 ..
1+yj2n ( ) ’ 2n(y]) y ) ) 4y n

Formulate the analog statement when n € N is odd.

e] Show that there exists an absolute constant ¢ > 0 such that

|Py,, (2)| +|Q4,,(x)| > en min {(1 +logn), log <1 _6332) }

for every n € N and z € [-1,1].

Proof. If z € [—1,1], then

(P (@)] + @b (@)] > M (2)] = | M (2 1”

MQn x) Z 22”: Im(ag)
Moy, (x) T — ay |z — ag|?

> cnmin {(1 +logn), log (%) }
-z

with an absolute constant ¢ > 0, where the last inequality follows from
(7.1.22). O

The next part shows the sharpness of the inequality of E.11 a].

f] Let ¢ > 0 be the same absolute constant as in part e]. For the sake of
brevity let

5o (2) = (cnmin {(1 +1logn), log <ﬁ) }>_1 .

Show that for every interval

Ing =[x,z + 80,(z)] C [0,1],
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there exist y; € I, , and y» € I,,, such that

1Py ()] > 50n(2)™t and  |Q5,(y2)| 2 50n(z) .

Proof. Suppose that
|P3,(y)| < 30n(2)”"

for every y € I, . Then, from part e] we can deduce that

|Qn ()] > 50n ()"

for every y € I,, ;. Therefore
1Q2nlli—1,) > 5 [, Q4 ()] dy > 580n(2)50n ()" =2,

which contradicts the last inequality of part b]. This finishes the proof of
the first inequality. The second inequality can be proven in the same way.
O

g] Show that
p'(1) = 3np(1)
for every p € SR,

By using the quasi Chebyshev polynomials for SRa,, and ASRg,, it can
be shown that the inequality of E.11 ¢] is essentially sharp for the classes
SR,, and ASR»,, for every m. This has been pointed out to us by Szabados.
The argument requires some more technical details than the proof in the
m = 1 case discussed in the above exercise.

7.2 Inequalities for Logarithmic Derivatives

We derive a series of metric inequalities of the form

m<{a¢€]R:rl(m)2a}>§@. a>0,

r(z) a’

where r is a rational function of type (n,n) and ¢ is a constant independent
of n. Here m is the Lebesgue measure, although, since the sets in question
are usually just finite unions of intervals, this is mostly a notational con-
venience. One of the interesting features of these inequalities is their easy
extension from the polynomial case to the rational case.

The basic inequality is due to Loomis [46]. Note the invariance of the
measure of the set in this case.
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Theorem 7.2.1. If p € P, has n real roots, then

m<{xeR;Z((;’))za}>:g, a>0.

Proof. By considering o~ !p instead of p, it is sufficient to prove the theorem
for a = 1. We first consider the case where p has distinct roots, which are
denoted by a1 < as < -+- < ay. Then

(@) :z": 1

p(z) =

Let 81 < B2 < -++ < B, be the roots of p — p’, which must all be real. Note
that these are the points where p'(z)/p(z) = 1. It is now easy to see from
the graph that

p'(2) M N o Ula
{:EE]R. (@) 21}—[ 1, 1] U [z, B2] U U [an, Bn]

and

m({xéﬂ&:pl(w} 21}) :iﬁi—iai.

p(x)

However, if p(z) := 2™ + a, 12" ' + - - + ag, then

n
E Qp = —Qp—-1,
i=1

while

> Bi=—(an-1—n)
i=1

is —1 times the second coefficient of p — p'.

This gives the result for distinct roots. The case when some of the roots
of p are repeated can be handled by an easy limiting argument. O

Corollary 7.2.2. If a; € R, ¢; > 0, i = 1,2,...,n, and Y ;¢ = 1,

then
m a:E]R'En G > a —l a>0
'izlz—ai_ T a’ '

Proof. For ¢; rational this follows immediately from Theorem 7.2.1 on clear-
ing the denominators of ¢; by multiplying by an integer. The real case is
an obvious limiting argument. O

In order to extend Theorem 7.2.1 to arbitrary polynomials we need
the following generalization of E.3 of Section 2.4 due to Videnskii [51]. The
proof is indicated in the exercises.
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Lemma 7.2.3. If p € P, is positive on [a,b], then there exists q,s € Py,
nonnegative on [a,b] with all real roots (in [a,b]) so that

p(z) = q(z) + s(z).
We now prove the unrestricted case of Theorem 7.2.1.

Theorem 7.2.4. Let p € P,. Then

m({wER:Z;((j))Za}>§2—n, a>0.

Proof. Let a > 0 and let p, € P,. Choose a and b such that

{a:e]R:IZ((;J)) Za}c[a,b].

By Lemma 7.2.3 we can find polynomials ¢ € P, and s € Ps, such that

p’(z) = q(z) + s(z)
where, for z € [a, b],
0<g(@) <p’(z) and 0 <s(z) <p’(a)

and both ¢ and s have only real roots. Now

{x er: 2@ a} - {a: er. 2@, Qa} .

p(x) P? ()

Also,
(") (z) > 2ap*(x)

holds exactly when
q'(z) + 5'(z) > 2a(q(z) + s()).
By Theorem 7.2.1

m ({x €R: ZI((;) > 2a}> —m <{a: €R: SS'((;E)) > 2a}> =2

Since ¢ and s are nonnegative on [a, b], it follows that

2n

D
«Q

m({z € [a,b] : ¢'(z) + s'(z) > 2a(q(z) + s(z))}) <
and the proof is finished. O

It can be shown that this inequality is asymptotically sharp to the
extent that the constant 2 cannot be replaced by any smaller constant for
large n; see Kristiansen [82].

Theorem 7.2.4 extends easily to rational functions.
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Theorem 7.2.5. If r = p/q, where p,q € P, then
!
m({xE]R:T(x)Za}>§8—n, a>0.
r(x) a

Proof. We have

r_v_d¢
and for a > 0, T ’ q
{“R: Z/((f)) 20‘} © {“R:Zg)) z %}“{“R: (5((3 5‘%} |
By Theorem 7.2.4
(ren st <2
and with s(2) := ¢(—2),
o(fren dg e 1)) on(fren 225 8

It follows that

for every a > 0. O

This inequality probably does not have the exact constant. It can be
shown (see Borwein, Rakhmanov, and Saff [to appear]) that the constant 8
cannot be replaced by any constant less than or equal to 2.

Comments, Exercises, and Examples.

Many variants on the inequalities of this section are presented in E.2, E.3,
E.4, and E.5. Some of these are in Borwein [82].

E.5 explores some metric properties of the lemniscate
E(p) :={z€C:|p(z)| <1}

of a monic polynomial p € P, of the form

pz)=[[(z==), =zeC.

=1
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The reader is referred to Erdés, Herzog, and Piranian [58] for many results
and open problems concerning the lemniscate of monic polynomials. One
in particular, which is still open, conjectures that for monic polynomials
p € Pg, the length of the boundary of E(p) is maximal for p(z) := 2" — 1
and so is O(n). Pommerenke [61] has shown that this length is O(n?).
Borwein [95] improves this to O(n); see E.7. E.9 solves another problem
of Erdés, namely, the diameter of E(p) for a monic polynomial p € Pf is
always at least 2.

Erdds [76] contains several other related open problems.

E.1 Polynomials as Sums of Polynomials with Real Roots.

a] Suppose p € Py, \ Pan_1, and suppose that p > 0 on [a,b]. Then
p(z) = (z — a)(b — z)u’ (z) + v (x)

for some u € P,,_1 and v € Pp, which have all their zeros in [a, b].

b] Suppose p € Payt1 \ Parn and suppose that p > 0 on [a, b]. Then

for some u,v € P, which have all their zeros in [a, b].

Hint: Let p be a polynomial of degree 2n that is strictly positive on [a, b].
Let T}, be the Chebyshev polynomial for the Chebyshev system

1 T "
{\/p(ﬂf) V) \/p(ﬂf)} '
Then T, (z) = v(z)/+/p(x) with some v € P,. Show that, for part a], v and

u defined by
(z = a)(b — z)u*(2) = p(z) — v*(2)

are the required polynomials. Use a similar construction for part b]. a

E.2 Various Specializations. For the next exercises we use the notation
Pt to denote the polynomial of degree at most n with nonnegative coeffi-
cients, and P} to denote those elements of P, that are nondecreasing on
[0, 0).

a] If r = p/q, where p,q € P,, and both p and ¢ have only real roots, then

m({xe]R:rl(x)Za}><4—n, a>0.

r(x) T a
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b] Let r(z) := z™/(4n — z)™. Then

m <{w cR: :'((;3)) > 1}) —4n.

¢] If r =p/q, where p € P, and q € P}, then

m<{x20:il((§))2a})§%, a>0.

d] If r = p/q, where p € P and g € P/, then

m({xzo;:((j))zabgg, a>0.
e] Let r(z) :=2". Then
m({xzo;jggza}):g, a>0.

E.3 Another Metric Inequality. If p € P, has n real roots lying in the
interval (a,b), then

m({oer:

Outline. Prove that

p'(z)

p(z)

SE=ar)) e e

m ({a: ER:0< (“’_a)g’(;)ﬂf)p'(x) < a}) :%
and i ({x CRi0> (z —a);b(;)z)p’(z) N _a}> _ %

First consider the case when p has distinct zeros. Let yo < y1 < -+ < ¥y
denote the n + 1 roots of (z —a)(b—z)p'(z), and let 29 < 21 < -+ < Zp_1
denote the n roots of p(x). Then

Yo < T Sy1 < Tp_1 < Yn < Tp :=00.
Since

!
lim (z —a)(b— z)p (=) = —00,
2—ai— p(z)
we can deduce that for each interval (y;, z;) there exists a point §; € (y;, z;)
such that

(6; —a)(b—0:)p'(8:) = —ap(d;) -
Since the above equation can have at most n + 1 solutions, we have

n({remios =@, VY S,

p(x) P

Now proceed as in the proof of Theorem 7.2.1. O
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E.4 Extensions to Py.
a] If p e Pg, then

m({oer:

Hint: Write p as the sum of its real and imaginary parts. O
b] If r = p/q with p,q € Pg, then

m<{z€]R: r'(z) 2a}>§32‘/§n, a>0.

r(z) a
E.5 On the Lemniscate E(p). Let

p'(z)

p(x)

2a}>§8‘/§", a>0.

a

p(2) ::H(Z—ZZ’), z; € C
and let
E(p) :={2 € C:|p(z)| < 1}.

a] Show that
m(E(p) N R) <4271/

with equality only for the Chebyshev polynomial of degree n normalized to
have lead coefficient 1; see Pdlya [28].

Hint: Analogously to the proof of the Remez inequality of Section 5.1, show
that the Chebyshev polynomial transformed to an interval of length 4 is
extremal for this problem. ad

b] Let ma(-) denote the planar Lebesgue measure. Show that
my(E(p)) < 4.
(In fact, m2(E(p)) < m, which is exact for 2™; this is due to Pdlya [28].)

E.6 Cartan’s Lemma. Let
p(z)=J[(z=-2), ze€C
j=1

and B > 0 be fized. Then there exist at most n open disks, the sum of whose
radii is at most 23, so that if z € C is outside the union of these open disks

then :
> (2)
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Prove Cartan’s Lemma as follows:

a] Let aj,as,...,a, be fixed complex numbers. Let § > 0. Show that
there exists a positive integer u less than or equal to v for which there
exists an open disk with radius pf3/n containing a; for exactly u distinct
values of j = 1,2,...,v.

Hint: Suppose to the contrary that there is no such positive integer u.
Show that this would imply the existence of an open disk with radius v3/n

containing o for at least v + 1 distinct values of j =1,2,...,v, which is a
contradiction. O
b] Show that there exist open disks Dy, Ds,..., D) and positive integers
my, Mo, ... ,my with the following properties:

k
(1) Yjmimj=n, mi>my > >my;

2) D; has radius —mjﬂ ;
( j ;
n

(3) D; N E; contains exactly m; zeros of p, where

Ej ::C\(DlUDzU...UDjfl);

(4) for every integer m > my, no open disk of radius mTB contains exactly
m zeros of p in Ej.
Hint: Use part al. O

¢] Let Di,Ds,...,D; be the open disks specified in part b]. For
J=12,...,k, let Dj be the disk with the same center as D; and with
twice its radius. Show that for every

ze B* :=C\(DyuD;U---UDy)
there is a permutation 21, 22, ... , 2, of the zeros z1, 22, ... , 2z, such that

iB

2=z > p

ji=1,2,...,n.

Hint: Let z € E* be fixed. Show, by induction on i, that for every i =
0,1,...,n—1, there are at least ¢ + 1 zeros of p outside the open disk with

center z and radius w Distinguish the cases

(1) n—i>my;

(2) mj>n—1i>mjqq, i=12,... k—1;

(3) mp>n—i>0. O

d] Finish the proof of Cartan’s lemma.
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E.7 The Length of the Boundary of E(p). Let
n
p(z):=][(z=2), zeC
j=1

and let
E:= B(p) = {z € C: p(z)| < 1}.

Show that the boundary OF of E is of length at most 4enn. (In fact, with
E.10 a], the estimate can be improved to (5.2) 7n.)
Outline. Proceed as follows:
a] Let L be an arbitrary line in the complex plane. Show that the set
OF N L contains at most 2n distinct points.
Hint: By performing a translation and a rotation, if necessary, we may
assume that L = R. Now observe that there is a polynomial P(z,y) of
degree at most 2n, in two real variables  and y, with complex coefficients,
such that
OE={z€C:|p()*=1}

= {z€Cip(=)p(z) = 1}

={z=z+iy:z,y €R, P(z,y)=1}.
Hence

EnNnR={zeR:P(z,0) =1}

and since P(z,0) € P§,, the result follows. O
b] Fora e Candr >0, let @ be the square

Q:={2z€C:|Re(z—a)|<r, Im(z—a)| <r}.

Show that ) N JE is of length at most 8rn.

Hint: Divide @ N OF into subcurves Cy,Cy, ... ,C,, so that every vertical
and horizontal line contains at most one point of each C;. Let l;j) and l?(f)
denote the length of the interval obtained by projecting C; to the z axes
and y axes, respectively. Let
m m
Lo=Y 1Y and 1= 1)

=1 =1

Use part a] to show that I, < 4nr and [, < 4rn. Hence, if [ denotes the
length of Q N JFE,, then

[ <l +1, <8m.
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¢] Show that the boundary OF of E is of length at most 16en.
Hint: Combine Cartan’s lemma (see E.7) and part b]. O
The rest of the exercise is about improving 16en to 4mwen.

d] Let B be the open disk with center a € C and radius r > 0. Show that
BN JE is of length at most 27rn.

Outline. Let @@ be the square
Q:={z€C:|Re(2)] <r, |Im(2)| <r}.
For a € [0,27) let Q4 be the square
Qo :={a+e(z—a):2€Q}.
Let I(a) denote the length of Q,NOE. Let I,(a) and I, (a) denote the total
length of the intervals obtained by projecting @, N OF to the lines
{z =re®:re ]R} and {z =relletn/2) .y ¢ ]R} ,

respectively (counting multiplicities). The precise definition of I, (a) and
ly(c) can be formulated in the same way as in the hint to part b], which is
left to the reader. Use part a] to show that

lo(a) + ly(a) < 8rn, a € [0,2m).

Hence

4 1 27 .

—1(0) = — 1(0)(| sina| + | cos a|) da

™ 2w J,

1 27
=5 i (lz(a) +1y(a))da < 8rn,

and 1(0) < 27rn follows. |

e] Prove the initial statement of the exercise.

Hint: Combine Cartan’s lemma (see E.6) and part d]. O

E.8 On the Length of Another Lemniscate. Suppose p € PS. Show that
the length of the lemniscate
/
P(2)| _ n}
p(2)

is at most 16n(1 + logn) (actually at most 47n(1 + logn)).

F=F(p):= {ZE(C:

Hint: The arguments are very similar to those given in the outline to E.7.
First show that if L is an arbitrary line in the complex plane, then FFN L
contains at most 2n distinct points. Next prove that if D, is an open disk
of radius r in the complex plane, then D, N F is of length at most 8rn
(actually at most 27rn). Now use E.6 ¢] with 8 =1 + logn. O

The proof of the following exercise requires some familiarity with har-
monic functions.
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E.9 On the Diameter of E(p). The diameter diam(A) of a nonempty set
A C C is defined by

diam(A) := sup{|z1 — 2za| : 21,22 € A}.

Let p € P¢ be an arbitrary monic polynomial of degree n, that is,

n

p(2) Z:H(Z—Zj), zj € C.

j=1
Then the diameter of the set
E(p) = {z € C:[p(2)] < 1}

is at least 2.
Proceed as follows:
a] Let R R
C:=CU{0} and A:={z€eC:|z| >1}.

Let p € PS be monic. Let E := co(E(p)), that is, the convex hull of E(p).
Use the Riemann mapping theorem (see Ahlfors [53]) to show that there
exists a function g of the form

9(2)2b2+zbjz’j, ze€A, bbjeC

such that ¢ is analytic and one-to-one on A, and

g(A)=C\ E.

Hint: Note that C \ E is simply connected. O
b] Let b be the same as in part a]. Show that [b] > 1.

Outline. Because of the definition of E, for every € > 0 there existsa § > 0
such that
—e <loglz""p(g(2))],  |z|=1+4.

Since G(z) :=log |z "p(g(#))| is harmonic on A, we have
1 2m

i —€
G(o0) = AT s ), G((1+ 0)e') ds > AT D)

for every € > 0, so G(00) > 0. On the other hand, since p € P£ is a monic
polynomial of degree n,
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G(o0) = log b|" = nlog b
from which |b] > 1 follows. O
¢] Show that diam(E) > 2.

Outline. Assume to the contrary that diam(FE) < 2. Then there exists a
d > 0 such that

27 g(2) —g(=2))| <2,  [z]=1+34.
Since
F(z) = 27"(g(2) — g(=2)) = 2b+ 2b127% + 2b2 ™" + - -
is analytic on A, the maximum principle (E.1 d] of Section 1.2) yields

2/b| = |F(c0)| < max |F(z)] = max |27 (g(2) —g(~2))| < 2,
|z|=1+46 |z|=146

that is, |b| < 1, which contradicts part b]. O
d] Note that diam(A) = diam(co(A4)) for every nonempty A C C, in
particular, diam(E(p)) = diam(E).

The more general result that diam(A4) > 2cap(A) for every nonempty
A C C is observed in Pommerenke [75].

E.10 More on E(p). Suppose p is a monic polynomial with complex co-
efficients. As before, let

E:= B(p) = {z € C: p(2)| < 1}.

a] It follows from E.6 (Cartan’s lemma) that the set E(p) can be covered
by disks the sum of whose radii is at most 2e. It is conjectured in Erdés,
Herzog, and Piranian [58] that the correct value in this problem is 2. (The
current best constant is less than 2.6.)

b] If E(p) is connected, then it is contained in a disk with radius 2 centered
at % ZZ:1 2k, where 21,22, ..., 2, are the zeros of p.

Proof. This is conjectured in Erdds, Herzog, and Piranian [58] and proved
in Pommerenke [59b]. O

¢] If E(p) is connected, then its circumference is at least 2.

Proof. This is also conjectured in Erdés, Herzog, and Piranian [58], and

Y

proved in Pommerenke [59b]. O
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Algorithms and
Computational Concerns

Overview

Appendix 1 presents some of the basic algorithms for computing with poly-
nomials and rational functions and discusses some of the complexity issues.
Included is a discussion of root finding methods. It requires very little back-
ground and can essentially be read independently.

Algorithms and Computational Concerns

Polynomials lend themselves to computation perhaps more than any other
object of analysis. Algorithms that involve special functions, differential
equations, series, and the like usually must reduce at some point to a
finite polynomial or rational approximation or truncation. This often al-
lows analytic problems to be reduced to algebraic ones. This appendix will
present, as a series of exercises, some of the principal algorithmic concerns.
The reader is encouraged to experiment with the algorithms. With current
technology this is most comfortably done in any of the large symbolic ma-
nipulation packages available. Code, actual or schematic, is not presented.
Indeed, methods rather than algorithms are presented. Current “practical”
best methods date quickly in this rapidly evolving area. It is also the au-
thors’ belief that today’s theoretical curiosities may be vital for tomorrow’s



Algorithms and Computational Concerns 357

algorithms as larger instances are calculated on faster machines. Histori-
cally we have already seen this happen repeatedly with algorithms such as
the fast Fourier transform algorithm.

One of the most interesting lessons to be learned from the last few
decades of revitalized interest in computational mathematics is that many
of the most familiar mathematical algorithms, such as how to multiply
large numbers, were very poorly understood, and indeed, still are in-
completely analyzed. Very many of the familiar processes of mathemat-
ics, such as multiplication of large numbers or computation of determi-
nants, can be computed far more expeditiously than allowed by the usual
“school” algorithms. See, for example, Aho, Hopcroft, and Ullman [74]; Bini
and Pan [92]; Borodin and Munro [75]; Borwein and Borwein [87]; Brent
[74]; Knuth [81]; Pan [92]; Smale [85]; and Wilf [86] for the complexity side
of the following exercises.

E.1 Complexity and Recursion. We are concerned with measuring the
size of an algorithm given an input of a certain length. Unfortunately, there
are many different ways of measuring this. (One could, for example, use the
length of the tapes of some well-defined instantiation of a Turing machine.)
We will settle for less. The measure of input size will usually be chosen to be
a natural one, so for polynomials of degree n, the measure will often be n.
The complexity measure then depends a bit on the problem. For example, it
might count the number of additions of coefficients (we do not distinguish
subtraction from addition) and multiplications of coefficients required to
evaluate the polynomial at a point. (So, for example, by Horner’s rule O(n)
operations suffice.) Care is already required to count naturally. Note that
we have not specified the size of the coefficients (this may or may not be
reasonable) and so we could cheat on addition of coefficients by doing two
additions as one addition of twice the length. (Since a + b and ¢+ d can be
decoded from (10™a + ¢) + (10™b + d), where m is larger than the number
of digits in any of a, b, ¢, or d.) It is more reasonable in this context to
fix a precision (or to think of working to infinite precision or over some
polynomial ring). Our cases are fairly simple, and the measures should be
clear in context.

We adopt the following notations:

f(n) =0(g(n)) means lirrlnﬁsolip % < oo
and
f(n) = 2(g(n)) means limsup 9(n) < 00.

Parts of these exercises are reprinted from Borwein and Borwein [87], with permis-
sion from Wiley.
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So the first measure gives an upper bound, while the second gives a lower
bound.

Many algorithms are analyzed recursively. For example, addition of two
polynomials of degree at most 2n reduces to two additions of polynomials of
degree at most n, plus perhaps an “overhead” for reassembling the pieces.
In other words, for the complexity of addition, we have

A(2n) <2A(n) + ¢,

from which one can deduce that

This general recursive strategy of breaking a problem in half is often called
“divide and conquer.”

We introduce the following functions. Here n is the maximum degree
of the polynomials p and ¢. Additions, multiplications, and so on are per-
formed in the underlying field of coefficients (in our case C or R) and are
all performed to some predetermined fixed precision (possibly infinite).

A(n) := the maximum number of £+, X, =, to compute p + ¢;
M (n) := the maximum number of £, X, =+, to compute pq;
e(n) := the maximum number of +, X, =, to evaluate

p(a) for an arbitrary fixed a € C;
E(n) := the maximum number of £+, x , +, to evaluate

play), ... ,play) for arbitrary fixed aq,... ,a, € C.

These are the complexity functions for polynomial addition, polynomial
multiplication, polynomial evaluation at a single point, and polynomial
evaluation at n points, respectively. The input for the computation is the
coefficients (and the evaluation points for e(n) and E(n)). So the input
may be considered to be in C"*! (or more generally an (n + 1)-dimensional
vector space over an infinite field). In the first two cases the output is the
sequence of coefficients. In the last two cases, respectively, the output is the
evaluation and the sequence of evaluations.

a] Show that usual algorithms give

A(n) <2n+2=0(n),
M(n) = O(n*)

e(n) = O(n) (Horner’s rule) ,
E(n) = O(n?)

E.2 and E.3 of this appendix provide better upper bounds for the last three
functions above.
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b] Show that
An) >n+1
M(n)>n+1
e(n) >n+1,
E(n)>n+1

Hint: In all cases this is a uniqueness argument. At least one operation
must be performed for each coefficient, otherwise the algorithm will not
distinguish various different sequences of input. O

¢] Some Recursive Bounds. Let a,b > 0 and ¢,d > 1. Suppose that f is
monotone on (0, 00).

If f(n) <af(n/c)+ bn, then
f(n) =0(n) ifa<e,
f(n) =0(nlogn) ifa=c,
f(n) =0(n'°8*) ifa>c.

If f(n) <df(n/d)+ bn(logn)c~!, then
f(n) = O(n(logn)®).

Hint: Analyze the equality case. Then establish the general principle that
the equality solution is the maximal solution. O

E.2 The (Finite) Fast Fourier Transform (FFT). This is undoubtedly one
of the most widely used algorithms. It has, in its various forms, tremendous
practical and theoretical applications.

Let w be a primitive (n + 1)th root of unity in either C or a finite field
F,., that is, w"™! =1 and w* # 1 for k = 1,2,... ,n. In the complex case
we may take w := €27/ ("+1) Consider the following two problems.

Interpolation Problem. Given n + 1 numbers, ag, a1, ... ,ay,, find the co-
efficients of the unique polynomial

p(z):=ap+arz+ -+ a,z"
of degree n that satisfies

p(wh) = ay, k=0,1,...,n.

Evaluation Problem. Given the coefficients of a polynomial p, of degree
at most n, calculate the n + 1 values

p(wk), k=0,1,...,n.
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These are the two directions of the (finite) Fourier transform. The
classical approaches to either part of the Fourier transform problem have
complexity at least en?. This is the complexity, for example, of evaluating
pn at n + 1 points using Horner’s rule. Both directions can, however, be
solved with complexity O(nlogn).

a] If n+ 1= 2™ then both the interpolation and the evaluation problem
have complexity O(nlogn). (Here we are counting the number of additions
and multiplications in the underlying coefficient field, which for most of our
purposes is C.)

Outline. We treat the evaluation first. Suppose
p(z) :=ap+arz+ -+ apz™.

Let
1

q(z?) := ag + ax® + agz® + -+ ap_1a™”
and
zr(z?) = z(a; + azz® + - + a2z Y).

Then, with y := 22,
p(z) =zr(y) +q(y),

where 7 and g are both polynomials of degree at most 2! — 1. The
observation that makes the proof work is that for w an (n + 1)th root of
unity,

(wk)Q _ (w(n+1)/2+k)2_

Hence, evaluating p(z) at the n + 1 roots of unity reduces to evaluating r
and ¢ each at the (n + 1) points (w?)!, (w?)?, ..., (w?)™+1/2 and amal-
gamating the results. Observe that w? is a primitive (2™ 1)th root of unity,
so we can iterate this process. Let F'(2™) be the number of additions and

multiplications required to evaluate a polynomial of degree at most 2™ — 1

at the 2™ points w*, k =1,2,...,2™, where w is a primitive (2™)th root
of unity. Then
F(I)=1 and F(2™) =2F2m ") 42.2™, m=12,....

The second term comes from the single addition and multiplication required
to calculate each p(w*) from r(w?*) and g(w?*). This recursion solves as

F(2m) = 2" m,

and the bound for the evaluation problem is established.

The interpolation problem is equivalent to evaluation. This can be seen
as follows. Let w be a primitive (n + 1)th root of unity, and let
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1 1 1 1
1 w  w? w"
W o= 1 ,w2 ,w4 ,w2n
1 w" wé" w”’
Then
1 1 1 1
1 w! w2 ... w™"
-1 _ 1 1 w?2 w?t ... w2
n+1 .
1 w™" w_-Q” . w_”2

and w1 is also a primitive (n+1)th root of unity. The interpolation problem
can be formulated as follows. Find (ag, - .. ,a,) so that

Wi(ag,ai,...,an) = (ag,@1,... ,ap).
However, this can be solved by
W ag,a1,...,a,) = (ag,a1,... ,a,),
which is exactly the evaluation problem. O

See Borodin and Munro [75] and Borwein and Borwein [87]. Versions
of FFT exist in a plethora of shapes and sizes. We have just exposed the
tip of the iceberg.

As an application we construct a fast polynomial multiplication.

b] Fast Polynomial Multiplication. Suppose the polynomials p, g of degree
at most n—1 are given. Compute the coefficients of the product pq as follows:

b1l] Use an FFT to evaluate p and ¢ at the primitive (2n)th roots of unity

wl w?, ..., w™.

b2] Form
p(wMgw),  k=1,2,...,2n.

b3] Find the coefficients of the product pg by solving the interpolation
problem once again by using the FFT. Show that this algorithm requires

O(nlogn)

additions, multiplications, and divisions (of complex numbers) and there-
fore M(n) = O(nlogn).

This is the best-known upper bound on the serial complexity of poly-
nomial multiplication. The only known lower bound is the trivial one O(n).
In parallel (on a PRAM) polynomial multiplication can be done in O(logn)
time on O(N) processors; see Pan [92]. The same bounds apply for the FFT
in al.
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E.3 Other Elementary Operations.

a] Fast Polynomial Division. For polynomials p of degree n and q of degree
m < n, it is possible to find polynomials v and r with deg(r) < deg(q)
such that

p(z) = u(z)q(z) + r(z)

in O(nlogn) additions and multiplications (of complex numbers).

Outline. Simplify by observing that it suffices to calculate u since r may
then be computed by E.2 b]. If we replace z by 1/z then

p(z™") —1y, @)
= u(x +
(D) = e
and so, for some h > 1,
p(z) =u*(z) + x”_m"'hﬂ where v*(z) = 298 y(z71).

q* (x) q* a:) ’

To calculate u* (and hence to calculate u) it suffices to calculate the first
n—m (= deg(u)) Taylor coefficients of 1/¢*. This can be done by Newton’s
method (see the next exercise) as follows: Suppose degs; = 7 — 1 and

1 J
@) —si(z) = O(z7).
Establish that
1 2 * _ 1 sz " . 9 _ x?j
7 (2) - [281(33) —s;(z)q (33)] =@ [1— s;(z)q* ()] O(z%) .

Note that we may assume ¢*(0) # 0. Now the computation of
Siy1 1= 28; — s?q*

can be performed by using an FFT-based polynomial multiplication and it
needs only be performed by using the first 25 — 1 coefficients of ¢* and s;.
By starting with an appropriate first estimate of sg (say, so(z) := 1/¢*(0)),
and proceeding inductively as above (doubling the number of coefficients
used at each stage) we can show that the required number of terms of the
expansion can be calculated in O(nlogn) additions and multiplications (of
complex numbers).

b] Fast Reversion of Power Series. Let

fa) =S aat, a0 £0
k=0
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be a formal power series with given coefficients. Show that the first n coeffi-
cients of the formal Taylor expansion of 1/f can be computed in O(n logn)
additions, multiplications, and divisions (of complex numbers).

¢] Fast Polynomial Expansion. Given ai,as,...,a, show that the co-

efficients of []!, (z — a;) can all be calculated in O(n(logn)?) additions,

multiplications, and divisions (of complex numbers).

Hint: Proceed recursively by dividing the problem into two parts of roughly

half the size. Recombine the pieces using part b] of the previous exercise.
O

d] Fast Polynomial Expansion at Arbitrary Points. Given a polynomial
p of degree at most n, and n + 1 distinct points zg,z1,... ,Z,, show that
p(xo),p(x1), ... ,p(xy,) can all be evaluated in O(n(logn)?) multiplications
and additions.

Hint: Let
[n/2] -1

a@ = [[ -

i=0

and let 7y be the remainder on dividing p by ¢1. Note that 7y (z;) = p(z;)
for each i < n/2. Similarly, use

Thus two divisions reduce the problem to two problems of half the size. O
e] Extend d] to rational functions.

f] Evaluation of z". The S-and-X binary method for calculating z" is
the following algorithm. Suppose n has binary representation §gd1ds . .. oy
with §g = 1. Given symbols S and X, define

S'_{SX if 6; =1
LS if8 =0

and construct the rule

S1S2--- Sk

Now let S be the operation of squaring, and let X be the operation of
multiplying by z. Let S1.S5 - -+ Sy operate from left to right beginning with
z. For example, for n = 27,

0001020304 = 11011

nd
) 5152538, = (SX)(S)(SX)(SX).
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The sequence of calculations of 227 is then
e W L S R A

f1] Prove that the above method computes ™ and observe that it only
requires storing x,n, and one partial product.

f2] Show that the number of multiplications in the S-and-X method is less
than 2|log, n].
3] Show that the S-and-X method is optimal for computation of z°™
(considering only multiplications).
f4] Show that the S-and-X method is not optimal for computing z*°.

An extended discussion of this interesting and old problem is presented
in Knuth [81].

Much further material on the complexity of polynomial operations
and complexity generally may be found in Aho, Hopcroft, and Ulman [74];
Borodin and Munro [75]; Pan [92]; and Wilf [86].

E.4 Newton’s Method. One of the very useful algorithms, both in theory
and practice, for zero finding is Newton’s method.

a] Suppose f is analytic in a (complex) neighborhood of zp, and suppose
f(20) =0 and f'(z0) # 0. Show that the iteration

Tnt1 = Tn — f’(a: )
n

converges locally uniformly quadratically, that is, with a constant ¢ inde-
pendent of n,

|Znt1 — 20| < clzpn — ,20|2

for initial values xy in some neighborhood of zg. As before, we call this
locally quadratic convergence.

Hint: Note that
F(an) = f(20) + (@ — 20) ' (20) + O((zn — 20)),
which implies

Ens — 20 = (an — 70) {%} +O((n — 20)?).
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b] Show that the iteration

f'(zn)

converges locally quadratically to the simple poles of a meromorphic func-
tion f. Note that this is Newton’s method with the sign changed.

T+l ‘= Tn +

¢] The iteration

)
e " F'(xn)? = f(zn) f" ()

converges locally quadratically to a zero of an analytic f independent of its
multiplicity; see Henrici [74].

d] Let g:= f~!. The iteration

n)

_ 9" (xn)

Tpt1 = Tp + (n+1) 2 ()

converges locally uniformly to a zero of an analytic function f with
(n + 2)th order. Newton’s method is n := 0; Halley’s method is n := 1
(see Householder [70]).

Newton’s method and its variants work tremendously well provided
that a good starting value can be found. This is a problem. On a real
interval a bisection method can be used initially to localize the zeros. In
the plane, life is more complicated as is seen in the next exercise. Another
drawback to Newton’s method is the need to compute the derivative. Of
course, this is not a problem for polynomials, but in a general setting it is
usually replaced by an approximation such as

flzn) = f(@n1)

Tp —Tp-1

(which yields the so-called secant method).

e] Consider Newton’s method for computing /z starting with zy := 1.
This gives
1 T
Tpt1 =X+ — | .
2 Tn
Show that r,(z) := z,4; is a rational function in z with numerator of

degree 2™ and denominator of degree 2" — 1. Show that r,(x) — \/z has a
zero of order 2"*! at 1. So r,, is in fact the (27,2" — 1) Padé approximant
to y/z. (This implies, though not obviously, that r, has all real negative
roots and poles.)
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An attractive feature of Newton’s method is that it is “self-correcting.”
So, for example, to compute a root to a large precision, one can start at
a small precision and double the precision at each iteration. This is a sub-
stantial savings both practically and theoretically. The same feature applies
to Newton’s method solutions over formal power series, as in E.3 a]. This
allows for doubling the number of terms used at each stage. Much addi-

tional material on Newton’s method is available in Borwein and Borwein
[87], Henrici [74], Householder [70], and Traub [82].

E.5 Newton’s Method in Many Variables.
a] Let f:C" — C", and suppose f has Jacobian

of;
82’]'

)

J::‘

where f := (f1, f2,- -, fn) with f; : C* — C. Let
X:=(21,%9,...,2,) € C".

The function J(x) is the Jacobian evaluated at x. Then Newton’s method
becomes

Xp4+1 = Xk — Sk

where s, solves J(xy)s = f(xg). This iteration converges locally uniformly
quadratically to a zero zg of f, that is, with a constant ¢ independent of n,

|Xpn+1 — Zo| < c|x, — z0|2

for initial values xg in some neighborhood of zg, provided in a neighbor-
hood of zg, f is continuously differentiable, J~! exists and is bounded in
norm, and J satisfies a Lipschitz condition. We call this locally quadratic
convergence. For a polynomial f, we require only that J~! exists in a neigh-
borhood of the zero zg. (For examples and detail, see Dennis and Schnabel
[83].)

b] Finding All Zeros of a Polynomial. Let
p(z)=ap+aiz+ -+ apz", a, =1.

Let fi(z1,...,x,) be the ith coefficient of

n n

g(z) = H(a: — ;) — Zaiaji

i=1 =0

and let
f(X) = (flvaa"' af’n) .
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Then the iteration of part a] applied to f converges locally quadratically to
7o == (21, 22,...,2n), where 21, 22,... ,2, are the zeros of p, provided the
zeros of p are distinct.

¢] Another Approach to Finding All Zeros. Let z;(k) denote the kth
approximation to the jth root of p, where p is a polynomial of degree n
with n distinct roots. Let

plz; (k) .
IT5,, (@ (k) — 24(x))

Show that for sufficiently good choice of (z¢(1),...,z0(k)), the above iter-

ation converges locally quadratically to a sequence of the n distinct zeros
of p.

2k +1) = a;(k) -

Hint: This is really just the single variable version of Newton’s method for
each root, where the derivative is approximated by the derivative of the kth
estimate. a

d] Observe that the iteration of part c] fails to converge for p(z) := z™ —1,
n > 2, if the starting values are all taken to be real.

In practice, the iteration of part c] works rather well for reasonably
chosen starting values. One can use the techniques of the next exercise to
localize the zeros first. With care, an algorithm can be given that computes
a zero of a polynomial with an error < 27 in O(nlogblogn) time and all
zeros in O(n? logblogn) time; see Pan [92]. On a parallel machine (PRAM)
an algorithm requiring O(log®(nb)) time and O(nb)°™) processors can be
given for computing all zeros.

e] Modify the iteration of E.4 c] as given in the previous exercise to get a
method that computes all roots even in the presence of repeated roots.

For further discussion, see Aberth [73], Durand [60], Kerner [66], and
Werner [82].
E.6 Localizing Zeros.

a] Cauchy Indices. Let r be a real rational function with a real pole a.
The Cauchy index of r at « is

1 if lim,, 7r(z) =—00 and lim; oy r(z) =00

—1 if limgyye-7r(z) =0cc and lim, .4 r(z)=—-

0  otherwise.
The Cauchy index of r on an interval [a, b] is the sum of the Cauchy indices

of the poles of 7 in (a,b). (We demand that neither a nor b be poles of r.)
We denote this by I%(r).

b] The Euclidean Algorithm. Let py and p; be nonzero polynomials.
Define polynomials pg,p1, ... ,pm and g1, 2, ... ,qm (by the usual division
algorithm) so that
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po(2) = p1(2)qi(2) — pa(2) deg(p2) < deg(p1);
p1(2) = p2(2)q2(2) — p3(z) deg(ps) < deg(p2);

Pm-1(2) = pm(2)qm(2) = 0;

the algorithm stops the first time that the remainder is zero. This is called
the Fuclidean algorithm. Show that p,, is the greatest common factor of py
and P1-

¢] Let po,p1,...,pm be the polynomials generated by the Euclidean algo-
rithm in part b]. Let P; := p;/pm, @ =0,1,... ,m. Suppose po(a)po(b) # 0.
Show that if Py(y) = 0 for some k and a < v < 3, then

Pi(y)#0 if k=0
and
Peor()Pesi(7) <0 if 1<k<m—1.

d] Show that for real polynomials py and p; with po(a)pe(b) # 0,

Iy(p1/po) = v(a) —v(b), a<b,

where v(a) is the number of sign changes in the sequence

(pO(a)spl (Oé), e :pm(a))

and where the polynomials p; are generated by the Euclidean algorithm as
in part b]. (As before, by a sign change we mean that p;(a)p;+r (@) < 0 and
pi+1(a) = pita(a) =+ = pirg-1(a) = 0.)

Hint: Without loss of generality, we may assume that p,, = 1 (why?), so
Py, = py for each k. First, note that v(z) may change magnitude only if
pi(xz) = 0 for some i. By continuity of the polynomials p;, and by part c|,
v(x) is constant on any subinterval of [a, b] that does not contain a zero of
Po-

We are now reduced to considering the behavior of v(z) at the zeros of
po. Consider the various possibilities for the behavior of p; /po at the zeros
of po by considering the four possible changes of signs of py and p; at the
zeros of pg and the effect this has on the Cauchy index and the increase
and decrease of v(z). (Note that v(z) decreases by 1 if the Cauchy index is
1 while v(z) increases by 1 if the Cauchy index is —1.) O

e] Zeros on an Interval. Suppose p is a real polynomial and p(a)p(b) # 0.
Then I'(p'/p) equals the number of distinct zeros of p in [a,b]. This also
equals v(a) — v(b), where v(z) is as in d] with pg := p and py :=p'.
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Hint: Use ,

p'(2) _ Z Mg

p(z) z = Ck
and note that each distinct pole in (a,b) contributes +1 to the Cauchy
index. O

f] Show that the number of zeros of a real polynomial on the real line

equals
lim (v(—a) - v(a)),

a—» o0

where v(z) is computed as in part e]. (That is, v(z) is the number of sign
changes in the sequence (po,p1,- .. ,pm) generated by the Euclidean algo-
rithm with po := p and py :=p'.)

g] The Number of Zeros in H := {z € C: Im(z) > 0}. Suppose that the
monic polynomial p € P has (exactly) k real zeros counting multiplicities.
Write

p(z) =r(z) +is(z), 7,5 € Pp.

Then the number of zeros of p in H is

% [n — k- Ifooo(s/r)] ,

and this can be computed as in part d] by using
I% (s/r) = lim I%, (s/r).
a—r00

Hint: First consider the case where k& = 0. Consider p on a counterclockwise
semicircular contour with base [—a, a] and radius a. Consider the argument
of p as the contour is traversed. On the half-circle, for large «, the argument
increases by nm asymptotically; while on the axis the change is —7I®_(s/r),
from which the result follows. O

h] Budan-Fourier Theorem. Letp € P,. Let V(x) be the number of sign
changes in the sequence

Then the number of zeros of p in the interval [a,b], counting multiplicities,
is V(a) — V(b) — 2m for some nonnegative integer m.

We have followed Henrici [74] in this discussion.

E.7 Zeros in a Disk.

z+1 oo .
a] The transform T3, maps the unit circle to the real axis and maps
iz

the open unit disk D to the upper half-plane {z € C: Im(z) > 0}. So the
algorithms of the previous exercise apply after transformation.
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b] Zero Counting by Winding Number. Let w,, := >™/™ where m is a
positive integer. If p € PS then

1 p'(2) ¢ k '(an)
Zp 1= —— dz ~ w
P 2mi Jop p(2) ,; p(wh,)

counts the number of zeros of p in the open unit disk D (assuming no zeros
on the boundary dD). More precisely, we have

“ k Pl(wk)
— 3 m
= Hm kz_lwm pwk)

(Note that this lends itself to rapid evaluation by FFT methods.)
¢] Show that

1 1 Wk
e = m\Q&),
271 Jop 2 — @ kz:;wfn—a-i_e (a)
where
a m—1 .
em () < ‘1‘_ ol it |aj <1
and
a —m—1 .
Hint: Write
11 i 2k
z—a  « P ak
and use the fact that
m
0= / p(z)dz = wanp(wfn)
aD =
for every p € P;,_;. O

d] If p € P¢ has no zeros in the annulus ¢ < z < 1/¢ and if m in part b)
is greater than

then the error in estimating z, by the sum is less than 1. So this provides
an algorithm.
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E.8 Computing General Chebyshev Polynomials. Given a Chebyshev
system M := (fo,...,fn) of C* functions on, say, [0,1] how does one
compute the associated Chebyshev polynomial T,? That is, how does one
find the unique equioscillating form T :=Y"}' ; a;f; of Section 3.37

a] The Remez Algorithm

Step 1. Choose

x0 := (0 =: w(()o) < z§0) <-o<z®i=1)

and find Py € span M such that
Po(z\) = (-1)', i=0,1,...,n.

i

(m)

(m) _ plm) g0

Step 2. Inductively set xp, == (0 =12y~ < x; := 1), where

P (@™y=0, i=12.. n-1.
(That is, find the extrema of Pp,_1.)
Step 3. Find P, € span M with

Po(ai™) = (=1)', i=0,1,... ,n.

(3

Then, provided the initial estimate xq is sufficiently good, P, — T,
quadratically (see Veidinger [60]).

This is reasonably easy to code. It involves solving an interpolation
problem in Steps 1 and 3. The zero finding at Step 2 can be done quite

easily since one can find very good starting values for Newton’s method,

(mfl))n

namely (z; 2o

b] This algorithm modifies to solve the best approximation problem

Jeinin llwp = fllfa.p)

for w, f € C|a,b], where w is positive on [a, b]. One uses the Remez agorithm
to find an equioscillating form
n
P(2) = f(@) —w(@) 3 cifi(a)
i=0
at n + 2 points. To do this, one solves the system
n
f(mk)_W(.’Ek)zczfl(ﬂ?k)“‘(_l)kA, kZOala ,TL+1
i=0
for both the ¢; and A. (This works reasonably well, provided that at each
stage || P||[4,5) occurs at one of the z. If not, an extra point must be inserted
where the maximum norm occurs and one of the original points must be
dropped. This is effected in such a way as to maintain the alternations in
sign of the error.) For details see Cody, Fraser, and Hart [68] and Veidinger
[60].
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A2
Orthogonality and Irrationality

Overview

This appendix is an application of orthogonalization of particular Miintz
systems to the proof of the irrationality of ((3) and some other familiar
numbers. It reproduces Apéry’s remarkable proof of the irrationality of
¢(3) in the context of orthogonal systems.

Orthogonality and Irrationality

Apéry’s wonderful proof of the irrationality of ((3) amounts to showing
that
0 < |d}an((3) = bn| =0,

where b, is an integer,

and
dy, :=lem{1,2,...,n}.

3

Here lcm denotes the least common multiple; see van der Poorten [79] and
Beukers [79]. In [81] Beukers recast the proof using Padé approximations.
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Many, maybe most, irrationality proofs may be based on approxima-
tion by Padé approximants and related orthogonal polynomials; see, for
example, Borwein [91a], [92] or Chudnovsky and Chudnovsky [84]. Tt is the
intention of this appendix to try to put the proof of the irrationality of ((3)
into the framework of orthogonality. From the general orthogonalization of
the system

(0, 2™ 22 L)

n [0,1], where the numbers A; are nonnegative and distinct, specializing
to the case when

Agj=j and  Agypi=j+e, j=01,...

where € decreases to 0, is a very natural thing to do. This is how one
should interpret orthogonalizing the system (z°,z°, 2!, 2!,...). This leads
to orthogonal functions that generalize the Legendre polynomlals and are
of the form

pn(z)logz + gn(x)

with polynomials p,, g, € P, of degree n. Legendre polynomials are closely
tied to irrationality questions concerning log (see Borwein and Borwein
[87], Chapter 11), and higher-order analogs prove to be the basis of dealing
with the irrationality of the trilog (3o, 2™ /n®) for some values of z. We
think that the proof of the irrationality of ((3) flows quite naturally from
this point of view. Although in the end (Lemma A.2.3) we get back to
Beukers’ integral approach to the irrationality of ¢(3) (as indeed we must).
What follows, up to one application of the prime number theorem, is a
self-contained proof of the irrationality of ((3).

The orthogonalization in question is the content of the first theorem.
Theorem A.2.1. Let

Hk o (t+Ek+1)?
2 [Ti—o(t = k)

where I' is any simple contour containing t = 0,1,...,n. Then

(t+n+1)z"dt,

Gn(x) = pn(z)logz + gn (),

e pn(a;):§<Z>2<"Zk)2(n+k+1)xk

Furthermore, we have the orthogonality relations
1
/ Gn(z)zh dz =0, k=0,1,...,n;
0

1
/ Gn(z)(logz)z" dz =0, k=0,1,....n—1;
0
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/0 Gn(z)dz:2n+1.

Proof. As in Section 3.4, the representation of G, is just the evaluation of
the integral at the poles, t = 0,1,...,n, by the residue theorem. The proof
of the orthogonality conditions is a stralghtforward exercise on evaluating

and

/ z*(log )’ G, (z) da
0

by interchanging the order of integration as in the proof of Theorem 3.4.3.
O

We need to modify these forms marginally to give a zero at 1, as in
the next result.

Theorem A.2.2. Let G,, and I' be defined as in Theorem A.2.1. Then

Fale) = x,}ﬂ [ et

Hk 0 t+k+1) 4t
dt = A,(z)logz + B,(z),
27rz [Tiso(t — k)2
where ) )
_ “(n+k n\" 4
a0 =3 (") (2) -
k=0
and .
B,(z) := cha:k
k=0
with .
n+k\: ([ 2 2
ok ( k ) (k) {Z;k+z+1 ._Ok—z}
= iZk
Furthermore,
1 0 :
/Fn(x)Fm(x)dx:ng,, 6n,m = an;ém
0 (2n+1) 1 ifn=

1
/Fn(a:)xk(loga:)jda::0, k=0,1,....n—-1, j=0,1;
0

and
F,(1)=0, FE,(1)=1, F/(1)=2n*+2n-1.
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Proof. This follows much as in Theorem A.2.1. The fact that F},(1) =0 is
just the statement that G, is orthogonal to z". O

The fact that F},(1) = 0 is critical in what follows. It immediately gives
that B, (z) has a zero at 1, so B, (z)/(1 — x) is a polynomial, as in part c]
of the following corollary. (This is the only part of the corollary we need,
but the corollary is of some interest in its own right.)

Corollary A.2.3. Let F,, be defined as in Theorem A.2.2. Then

a] F, has 2n+ 1 zeros on (0,1].

b] A,(x) has all real negative zeros.

¢] Bn(z)/(1—2x) is a polynomial with all real negative zeros that interlace

the zeros of Ay (z).

Proof. The orthogonality conditions give 2n zeros of F, on (0, 1) in a stan-
dard fashion, and there is one zero at 1. The real negative zeros of A, ()
and B, (x) and their interlacing follow from the fact that

B
logz +

has 2n + 1 zeros on (0,1], and known results on interpolating Stieltjes

transforms by rational funcfions (see, for example, Baker and Graves Morris
[81] or Borwein [83]). O

One can, from the integral representation, deduce the next corollary,
which is also not actually needed in the proof of the irrationality of {(3).

Corollary A.2.4. Both F, and A, satisfy
2 (Y = yn—1) = 202(yy, + yn_1) + £(Wn — Yn_1) + n*(Yn — yn-1) = 0.

From Theorem A.2.2 we obtain (see E.2 b]) the following:

Corollary A.2.5. Let d, :=lcm{1,2,...,n}. Then the polynomial d,, B, (x)
has integer coefficients.

We get an approximation to ((3) by integration over the unit square.

Theorem A.2.6.

1 Lt Fn(ajy) B
_5/0 /0 Ty @y =An(1)C(3) + B,

where 2d3 R, is an integer.
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__/ / lfg—xy =¢@)

Proof. Recall that

since
1,1 _9
n - =
/0 /0 (zy)" log(zy) dz dy CFSIE
We have
(a9) _ Anlow) = An() (o A1) (o Balay)
1—2xy 1—xy -y 1—2xy

The first term of the last expression is a polynomial multiple of log(zy),
and the last term is a polynomial. Both have degree n — 1 in zy. Here we
use part c| of Corollary A.2.3 in an essential way. Integrating the above
equation with respect to x on [0, 1] and with respect to y on [0, 1], we get
the identity of the theorem. The fact that d3 R, is an integer can be seen
as follows. One d,, arises from each of the two integrations of a polynomial
of degree n — 1 with integer coefficients and one d,, comes from Corollary
A.2.5. O

Theorem A.2.7. The number ((3) is irrational.

Proof. It now suffices to show that there is an € > 0 for which

' Fulzy) 1 1
[ 3 o] =0 () = ()

since by the prime number theorem, lem{1,2,...,n} = O(e"*+9") for ev-
ery € > 0; see Borwein and Borwein [87, p. 377] (We use the notation
b, = o(ay) if b, = €,a, with lim,_, €, = 0.) This can be proven in a
number of ways, we chose to connect this proof via Padé approximants to
the integral estimate due to Beukers. This is the content of the following
results and, in particular, Lemma A.2.10. From Lemma A.2.10, the above
estimates are easy since the integrand in the right-hand side in Lemma
A.2.10 satisfies

0<

rpr(l =)= p)(1=v) _ 5

0
< 1-(1-zy)v

on the open unit cube 0 < z,y,v < 1. O

The following lemma gives standard representations for the Padé ap-
proximants to log and can be checked by expanding the integrals; see E.3.
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Lemma A.2.8 (Padé Approximants). We have
Lowr(l =) do
_1 2n+1/ v"(
ST T a e
= pu(2)log z + qu(w) = O((z — 1)*"*1),

2m/Hk ot —k)

where I' is a simple contour containing t = 0,1,...,n, and p, and q, are
polynomials of degree n. (So pn/qn is the (n,n) Padé approzimant to log x
at 1.)

Lemma A.2.9 (Rodrigues-Type Formula). With I" as in Theorem A.2.1,

dr dr z"y" (xy)t dt
dy" dz" 2m p [Thso(t — k)2
1 dr dn (acy)”v”(l —v)"(zy — 1)27+!

= (b dyn don C- a0

Fo(zy) =

Proof. This follows from differentiating the two representations derived
from Lemma A.2.8 coupled with Theorem A.2.2. O

Lemma A.2.10. We have

IR

/ / / [zyv(l —2)(1 —y)(1 —v)]" dz dy dv
(1= (1 —zy)o)* '
Proof. For k, n nonnegative integers

/ 1 / (o)™ = ) (1= )" ddy

ottt arar n n
:_(n')2/o /0 l—xydy—”dx—n(my) Hzy — 1) dady .

(Both sides equal
nl(n+k)! \?
2n+k+1)) 7

though this is not completely transparent; see E.4.) So
1 nodn
o 1—aydy"da"

== [ [ =) =) Gy = ) oy,

n

2"y (zy — 12 R da dy
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n—1

Hence, on expanding (1 — (1 — zy)v)~ in the following integrands,

1 d* dv a"y"(xy —1)2"
L ——dady
o L—aydy™dz™ (1—(1-ay)v)

1 n
[ay(1 = 2)(1 — y)]

dx dy .

// (1— (1 —ay)o)rtt Y

and with Lemma A.2.9 we are done. O

Comments, Exercises, and Examples.

The approach of this appendix follows Borwein, Dykshoorn, Erdélyi,
and Zhang [to appear|. Beukers’ [79] very elegant recasting of Apéry’s proofs
of the irrationality of ((2) and ((3) is also presented in Borwein and Borwein
[87]. E.5 recasts the irrationality of ((2) = i7? into a form similar to the
proof of the irrationality of ((3). E.6 treats the irrationality of log 2. Mahler
[31] casts transcendence results for exp and log in terms of general systems

of Padé approximants.

E.1 Proof of Corollaries A.2.4 and A.2.5.

a] Prove Corollary A.2.4 from the explicit representations of Theorem
A22,

b] Prove Corollary A.2.5 from the formula for ¢; in Theorem A.2.2.
Hint: Observe that if p is a prime and n < p* < n + k for some integer

a, then p divides ("Zk) This is fairly straightforward from Euler’s formula
for the largest power of a prime dividing a factorial. O

E.2 Formulas for ((n).

a] Show that
dwldwg---d . _OO 1
/ // 1—zmy-- arn_ _Zk '
b] Show that

1 2
1
| =T

o 1—=x 6
¢] Find a closed formula for

log T1To - zn)

dxidxs - dzy,
1—2129- 2,

in terms of {(n + 1).

E.3 Proof of Lemma A.2.8. Give a proof of Lemma A.2.8.
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E.4 The Identity in the Proof of Lemma A.2.10. Prove the identity

/ 1 / ()™ = ) (1= ) dedy

1 1 1 1 dr dn . .
<=, =

where k and n are nonnegative integers. Follow parts a] to c].

Let k£ and n be nonnegative integers.
a] Show that

L G — (1 ydady = (R
b] Let

B, :=— /1 /1 #d—nﬂx’”k(m‘ — 1)t dxd
"I Jo Jo (U= ay) dy dan g’ v

Show that

n?Bnx =[(n+k)*+ 2n+1)(2n + 2k + 1) + (2n + 1)(2n)]By_1 k42
—[2(n+ k)2 + (2n + 1)(2n + 2k + 1)]By_1 k1
+ (n + k)2Bn,1’k .

¢] Show that Ay = Bg . Show that the values

satisfy the recurrence relation established by part b] for the values B, x.

E.5 The Irrationality of 72. Consider

| n
Fn(ill‘) = n: Hk:l(t + k) Ql‘t dt,

—@mi) Jp [Tz (t = k)2

where I" is any simple contour containing the poles at 0,1,... ,n.
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a] Show that
1 p 2
n+k
2)+R,,
[ =2 ()0 @

where d2 R,, is an integer (d,, :=1lcm{1,2,...,n} as before).

Hint: Show that
F,(xz) = Ap(z)logz + By(x),

where R )
" In+k n
wo=£ (1Y)
k=0
and
x) = cha:k
k=0
with
n+k
ck'_< ><>{Zk+z k—z}
z;ék
Write

F,(z) _ Ap(z) — Ap(1) log  + Ap(1) n B, (z)

1-=z 1-=z -z 11—z
Show that F,(1) =0, hence B, (1) = 0. Recall that

1
log x
— ={(2).
/0 1—xdx <)
Now the conclusions follow, as in the proof of Theorem A.2.6.
b] Show that

x"y" l—a: ) (1 —y)"
dzdy .
[T [ [

Hint: Use Lemma A.2.8.

¢] Show that there exists a constant ¢ independent of n such that

[ ()

and deduce that ((2) = $7? irrational. Hence 7 is irrational.

0<
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E.6 The Irrationality of log2. Let

T

n! dxn
k=

o

be the nth Legendre polynomial on [0, 1].
a] Show that

1 1 _ 1 1 1
/ Pn(z) dar:/ Pn(z) — pul )d:r-l—/ P )d:r
o 1+z 0 1+z o 1+=z
=pn(—1)log2 + R, ,

where d,, R,, is an integer (d,, :=lem{1,2,... ,n} as before).

b] Show that
1 1, .n _ n
/pn(:r) dx :/ rA T (1-2) dx
o 1+ o (14 x)nt!

¢] Use parts a] and b] to show that log2 is irrational.
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An Interpolation Theorem

Overview

Appendix 3 presents an interpolation theorem for linear functions that is
used in Section 7.1. From this Haar’s characterization of Chebyshev spaces
follows, as do alternate proofs of many of the basic inequalities.

An Interpolation Theorem

The main result of this section, Theorem A.3.3, is an interpolation theorem
that plays an important role in Section 7.1. Further applications are given
in the exercises.

Throughout this appendix we use the following notation. Let @) be a
compact Hausdorff space. Let C'(Q) be the space of all real- or complex-
valued continuous functions defined on @. Let P be a (usually finite-
dimensional) linear subspace of C(Q) over R if C(Q) is real or over C
if C(Q) is complex. The function f € C(Q) is said to be orthogonal to P,
written as f L P, if

Ifllg <Ilf+pllg forallpeP.

This is an L, analog of the more usual L, notion of orthogonality, as in Sec-
tion 2.2. The following two lemmas give necessary and sufficient conditions
for the relation f L P.
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Lemma A.3.1. Let 0 # f € C(Q). The function f is orthogonal to P if and
only if there exists no p € P such that

(A.3.1) Re(f(z)p(z)) >0
holds on
(A4.3.2) E:=E(f):={zeQ:|f(x)=|flo}-

Proof. Assuming there exists p € P satisfying (A.3.1) on E defined by
(A.3.2), we show that

If —eplle <lflle

for some € > 0. Since the set E defined by (A.3.2) is compact, Re(f(z)p(z))
attains its positive minimum, say, 20 > 0, on E, and there exists an open
set G containing E such that

Re(f(z)p(z)) >6 >0, zeG.
Since G° := @ \ G is also compact, there exists an o > 0 such that

f@) <A =-alflle, =ze€G".

Thus, with a sufficiently small € > 0,

f(z) —ep(@)]? < |IFIG — 26+ Elplley < I£1I,  z€d,
while

f(z) —ep(z) < 1=l flle +ellplle <lflle. z€G".
Therefore

If = eplle <llflle

if € > 0 is small enough.

Conversely, if f is not orthogonal to P, then there exists p € P such
that [|f —pllg, < lIfI%, so

2Re(F@p(@) > bl 20,  we B,

and the proof is finished. O
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Lemma A.3.2. Let 0 # f € C(Q) and let P be an n-dimensional linear sub-
space of C(Q) over R if C(Q) is real or over C if C(Q) is complex. Then the
function f is orthogonal to P if and only if there exist points x1,x2, ... , Ty,
in E(f) defined by (A.3.2) and positive real numbers c1,ca, ... ,c., where
1<r <n+1when C(Q) is real, and 1 < r < 2n+1 when C(Q) is complex,
such that

(A.3.3) > cif(@)p(zi) =0, peP.
i=1
Proof. Suppose (A.3.3) holds with some positive real ¢, cs, ... , ¢, satisfy-
ing >.i_, ¢i = 1. As |f(z;)| = || ||, we have
||f||gg = Zcif(wi)f(l“z’) = Zcif(wi)(f(ﬂ«“z’) - p(z;))
i=1 i=1

< 1flo 3 cs max I£(25) = p(z)] < Iflallf ~plo

for every p € P, so f L P. (Note that r <n+ 1 or r < 2n + 1, respectively,
was not needed for this part of the proof, so the sufficiency of (A.3.3) is
valid with no hypothesis about r.)

Conversely, suppose f L P. Let {¢1,99,...,¢n} be a basis for P
over R (or C, respectively), and consider the map T : Q@ — R" (or C",
respectively) defined by

T(x) = f(@)(p1(x), p2(2),-- ., on(@)) -
Observe that the origin is in the convex hull of
T(E):={T(z) :z € E},

otherwise by the principle of separating hyperplanes (a corollary of the
Hahn-Banach theorem; see Rudin [73]), there would exist complex numbers
ai,as,...,a, such that

Re (Z aimg@i(m)> >0, z€E.

Hence, with p:= Y"1 | a;p; € P,

Re(f(z)p(z)) >0, z€FE

and f is not orthogonal to P by Lemma A.3.1, which contradicts our as-
sumption.
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Now it follows from Caratheodory’s lemma (see E.1) that there exist
points z1,2s,...,z, in F and positive real numbers cy,cs,... ,c., where
1<r<n+1when C(Q)isreal and 1 <r < 2n+1 when C(Q) is complex,
such that

i=1
Therefore .
i=1
and the lemma is proved. O

Theorem A.3.3 (Interpolation of Linear Functionals). Let C(Q) be the set
of real- (complex-) valued continuous functions on the compact Hausdorff
space Q). Let P be an n-dimensional linear subspace of C(Q) over R (C).
Let L # 0 be a real- (complex-) valued linear functional on P. Then
there exist points ©1,za,...,x, in @, and nonzero real (complex) num-
bers ai,as, ... ,a,, where 1 <r <mn in the real case and 1 <r <2n —1 in
the complex case, such that

(A.3.4) L(p) =) aip(x;), peP
i=1
and
(4.3.5) LI =" |ail
i=1

where
IL|| :== sup{|L(p)| : p € P, |lpllo < 1}.

Proof. Because of the finite dimensionality of P, there exists an element
p* € P (called an extremal element for L) such that |[p*||q = 1 and
L(P*) =||L||. Let Py denote the null-space of L, so

Py:={pe P:L(p)=0}.
Now p* is orthogonal to Py because if

" +polle <llp*lle =1
for some py € P, then g := p* + po satisfies ||g|lo < 1 and L(g) = ||L]|],
which is impossible. Note that the dimension of Py over R is n — 1 in the

real case and 2n — 2 in the complex case. So by Lemma A.3.2 there exist
points z1,xs,... ,2, in
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Ei={reQ: @) =1}

and positive real numbers ¢y, c¢a,... , ¢, where 1 < r < n in the real case
and 1 <7 < 2n — 1 in the complex case, such that

.
> e (@i)po(w) =0,  p€ R,
i=1

Since L(p)p* — L(p*)p € Py for all p € P, we have

r

L(p) Y cilp™(z:)]” = L(p*) Zcip*(wi)p(wi) , DEP.

i=1

Since L(p*) = ||L|| and [p*(z;)| = 1 for each i, we obtain (A.3.4) by taking

C. * 'an
ai = S2@)
Zj:l Cj

Using the fact that |p*(z;)| = 1 for each ¢ in the above formula for a;, we
get (A.3.5). O

Comments, Exercises, and Examples.

We have followed Shapiro [71], which gives a long discussion of questions
related to the best uniform approximation of a function f € C(Q) from
a (usually finite-dimensional) linear subspace P C C(Q). Some of these,

together with other applications, are discussed in the exercises.

E.1 Caratheodory’s Lemma. If A C R", then every point from the convex
hull co(A) of A can be written as a convex linear combination of at most
n + 1 points of A.

Proof. Let x € A. After a translation if necessary, we may assume that
x = 0. Suppose

-
(A.3.6) O:Zaixi, €A, a; >0, r>n+1.

i=1
Since r > n+ 1, the elements x4, z3,. .. ,z, are linearly dependent, so there
exist real numbers §;, ¢ = 2,3,...,r, not all zero, such that

r
i=2

Let 51 := 0. For all A € R, we have
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T

0= Zaia:i + /\Zﬂliﬁl = Z (ai + /\Bl)arl .
i=1 i=1

i=1
When A = 0, each term in the last sum is positive. We now define
¢ := min |e;/B;], where the minimum is taken for all indices i for which

B; # 0. If the index j is chosen so that |a;/B3;| = ¢, and if A := —a;/5;,
then at least one of the numbers a; + A\3; is zero, and all are nonnegative.
Also a1 + A\B1 = a1 > 0. We have thus obtained a representation of the
same form as (A.3.6), but with s terms, where 1 <s<r—-1.If s >n+1,
then the process can be repeated, and after a finite number of steps we
obtain the desired representation. O

E.2 Reformation in Terms of Integrals. Lemma A.3.2 can be reformu-
lated as follows. Under the assumptions of Lemma A.3.2, f € C(Q) is
orthogonal to P if and only if there exists a nonzero nonnegative Borel
measure p on ) whose support consists of r points of E(f) defined by
(A3.2), where 1 <7 < n+1 in the real case and 1 <7 < 2n + 1 in the

complex case, such that f(z)dp(z) annihilates P, that is,
(43.7) | T@p@ doa) =0, per.
Q

This reformation is not only a notational convenience, but it is essential
in generalizations where P is no longer finite-dimensional. Moreover, (A.3.7)
with any nonzero nonnegative Borel measure (not necessarily discrete) is
sufficient for f L P. This is often useful, even when P is finite-dimensional;
see Shapiro [71].

E.3 Haar’s Characterization of Chebyshev Spaces.

a] Let fo,f1,...,fn be real- or complex-valued continuous functions
defined on a (not necessarily compact) Hausdorff space (. Show that
P :=span{fo,..., fn}, where the span is taken over R (or C), is a Cheby-
shev space if and only if there exists no real (or complex) measure on @
annihilating P whose support consists of less than n + 1 points.

Hint: Use Proposition 3.1.2. a

b] Let P be an n-dimensional linear subspace of C(Q), the space of real-
(or complex-) valued continuous functions defined on a compact Hausdorff
space () containing at least n points. The space P is a Chebyshev space if
and only if for each f € C(Q), there is a unique best uniform approximation
to f from P.

Proof. First suppose P is a Chebyshev space of dimension n, and p; and
p2 are best uniform approximations to some f € C(Q) from P. Then
p3 = %(M + po) is also a best uniform approximation to f from P. As
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f—ps L P, Lemma A.3.2 yields that |f(z) — ps(z)| attains its maximum

on () at r points, z1, 2, ... , 2., that support an annihilating measure for
P, where r > n + 1 by part a]. Note that

pl(xj)_f(x]):p2(x])_f(xj); .7:172,,n+1,

and hence, since P is a Chebyshev space, p; — p2 = 0.

Conversely, if P is not a Chebyshev space, then there exist n distinct

points 21, Za, ... ,x, in Q) such that the system of homogeneous linear equa-
tions
gi(z1) .. gi(zn) ay
: - : c
gn(x1) .. gn(zy) an
where {g1,...,9n} is a basis for P, has a nontrivial solution. Then also the

homogeneous system formed with the transposed matrix has a nontrivial
solution, so there exist constants b;, not all zero, so that

Zbi!}i(ﬂfj)ZO, j=1,2,...,n.
i—1

Thus, with g :== > | b;g;, we have
g(z;) =0, j=1,2,...,n.

We may assume, without loss, that [|g]lo = 1. Some of the constants
ai,as,... ,a, may be zero; however, the set I" of indices j for which a; # 0
is not empty. By Tietze’s theorem there exists an f € C(Q) such that
Iflle =1 and

a; ,
flzj) = |a—j| jer.
Setting h(z) := f(z)(1 —|g(z)|), we have
a; .
h(z;) ﬁ, jer.

We claim that ||h — p|lg > 1 for every p € P. Indeed, if ||h — p|lg < 1 for
some p € P, then

|f(z5) = p(x;)]* = 1f(2;)[* = 2Re(p(z;) f (z7)) + Ip(z;)]* < 1
for every j € I'; hence

Re(a;p(z;)) >0, jer.
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Since a; = 0if j ¢ I', we have Re(a;p(z;)) = 0 for each j ¢ I'. Thus
n
Re Zajp(zj) >0.
j=1

However, if p := >, ¢;g;, then

Zajp(%‘) = Zaj Zcigi(xj) = Zbi Zaigi(ﬂfj) =0,
j=1 j=1 =1 =1 j=1

which contradicts the previous inequality and shows that ||k — pl|g > 1 for
every p € P.

Finally, for all A € [0, 1], Ag is a best uniform approximation to h from
P because

h(2) — Ag(@)| < |£(@)I(1 — lg(@)]) + Alg(a)
<1+ -Dlga) <1

for all x € @, so the best uniform approximation to h € C(Q) from P is
not unique. a

E.4 Unicity of the Extremal Function. Assume the notation of Theorem
A.3.3. Show that if P C C(Q) is an n-dimensional real Chebyshev space
and 7 = n, then the extremal element p* € P satisfying ||p*||¢o = 1 and
L(p*) = ||L|] is unique.

The interesting relations of Theorem A.3.3 to the Riesz representation
theorem, the Krein-Milman theorem, and the Hahn-Banach theorem are
discussed in Shapiro [71].

E.5 Applications of the Interpolation Theorem. As before, let
D:={z€eC:|z| <1} and K :=R (mod2r).

Prove the following statements. Each of them may be proven by charac-
terizing the extremal polynomial for the given inequality with the help of
Theorem A.3.3. A detailed hint is given only to part a.

a] Bernstein’s Inequality.

O <nlllx, teT., 6eR,

Hint: Let 6y € R be fixed, and study the linear functional L(t) := ¢'(6y),
t € T,. Observe that an extremal p in Lemma A.3.3 must satisfy |p(z;)| =1
for each i = 1,2,... ,r and r must equal 2n. Note that » < 2n holds by



390 A3. An Interpolation Theorem

Theorem A.3.3, while the argument for r > 2n is similar to the correspond-
ing step in the proof of Theorem 7.1.7. Finally, show that the extremal
element ¢ satisfying L(t) = ||L]| is of the form

t(6) = cos(nf — )
for some a € K. O
b] Markov’s Inequality.
YOI <npll 1. pEPa.

¢] Chebyshev’s Inequality.
p@)| < |Ta(@)[llpll-1,7, pPE€Pn, zeR\[-11],
where T), is the Chebyshev polynomial of degree n defined by (2.1.1).

d] Bernstein’s Inequality.

(=) < [z["lpllp,  peP;, z€C\D.

e] Bernstein’s Inequality.

p'(2) <nlz""Mpllp,  peP;, 2€C\D.

Hint: Use Theorem 1.3.1 (Lucas’ theorem). O
f] Riesz’ Identity. There are real numbers a; with Zf;ll |a;] = n such
that

2n

t(0)=> ait(0+6;), teT,, 0O€eR,

i=1

where

— 2i—1 .
;= =5—-m, 1=1,2,....,2n.

(This is, apart from the explicit determination of the number a;, an identity

discovered by M. Riesz [14].)
g] Show that in part f]

Y

1

P P —
“ =0 e

i=1,2,...,2n.

h] Bernstein’s Inequality in L,.
2w 27
| repa e [ wora. et px1.
0 0

Hint: Use part f] and Jensen’s inequality (see E.20 of Appendix 4). O

Arestov [81] shows that the inequality of part h] is valid for all p > 0.
Golitschek and Lorentz [89] gives a simpler proof of this.

i] Find all extremal polynomials in parts a] to €] and h].
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E.6 An Inequality of Szegé. If p € P; and 21,29, ... , 22, are any equally
spaced points on the unit circle 0D, then

/
< .
llp'lp < n max p(z)|

Proof. See Frappier, Rahman, and Ruscheweyh [85]. O
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Inequalities for Generalized
Polynomials in Ly

Overview

Many inequalities for generalized polynomials are given in this appendix. Of
particular interest are the extensions of virtually all the basic inequalities to
L, spaces. The principal tool is a generalized version of Remez’s inequality.

Inequalities for Generalized Polynomials in Lp

Generalized (nonnegative) polynomials are defined by (A.4.1) and (A.4.3).
The basic inequalities of Chapter 5 are extended to these functions by re-
placing the degree with the generalized degree. The crucial observation is
that Remez’s inequality extends naturally to this setting. This Remez in-
equality then plays a central role in the extensions of the other inequalities.
These generalizations allow for a simple general treatment of L, inequali-
ties, which is one main feature of this appendix.

The function
(A.4.1) f2) = lwl [T 12 = 21"
j=1

with 0 <r; € R, z; € C, and 0 # w € C is called a generalized nonnegative
(algebraic) polynomial of (generalized) degree
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(A.4.2) N:=>r;.
j=1

The set of all generalized nonnegative algebraic polynomials of degree at
most N is denoted by GAP .

The function
(A.4.3) f(z) = |w| H |sin((z — 2;)/2)|"

with 0 <r; € R, 2; € C, and 0 # w € C is called a generalized nonnegative
trigonometric polynomial of degree

(A.4.4) N := %er.
j=1

The set of all generalized nonnegative trigonometric polynomials of degree
at most N is denoted by GTPy. Throughout this section we will study
generalized nonnegative polynomials restricted to the real line. If the ex-
ponents r; in (A.4.1) or (A.4.3) are even integers, then f is a nonnegative
algebraic or trigonometric polynomial, respectively. Note that the classes
GAPy and GTPy are not linear spaces. Note also that if f € GAPy or
f € GTPy is of the form (A.4.1) or (A.4.3), respectively, with all r; > 1,
then the one-sided derivatives of f exist at every x € R with the same
modulus, hence |f'(z)| is well-defined for every z € R. We use the notation
|f'(z)] for f € GAPy or f € GTPy and z € R throughout this section
with this understanding. If f € GAPy is of the form (A.4.1) or f € GTPy
is of the form (A.4.3), where the zeros z; € C, j=1,2,...,m, are distinct,
then r; is called the multiplicity of z; in f. Our intention in this section
is to extend most of the classical inequalities of Section 5.1 to generalized
nonnegative polynomials. In addition, we prove Nikolskii-type inequalities
for GAPx and GTPy.

Theorem A.4.1 (Remez-Type Inequality for GAP y). The inequality
N
Al 1 < V2V
P \Ve- s
holds for every f € GAPN and s € (0,2) satisfying
m{ze[-1,1]: f(z) <1})>2—5.
E.5 shows that this inequality is sharp. Note that if 0 < s < 1, then
N
2
M < exp(5NV/5).
V2-1/s

Throughout this section, as before, K := R (mod 27).
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Theorem A.4.2 (Remez-Type Inequality for GTPy). The inequality
I fllic < exp (N (s + 152)) < exp(dNs)

holds for every f € GTPx and s € (0,7/2] satisfying

(A.4.5) m({z € [-m,7): f(z) <1}) > 27 —s.

The inequality

V24 /o
Ifllx < <m

holds for every even f € GTPN and s € (0,27) satisfying (A.4.5).

N
) , o=1-cos(s/2)

We do not discuss what happens when s € (7/2,27) in the general case
because the case when s € (0,7/2] is satisfactory for our needs.

Proof of Theorem A.4.1. First assume that f € GAP  is of the form (A.4.1)
with rational exponents r; = g;/q, where g;, ¢ € N. Let k¥ € N be an integer.
Then (restricted to R) p:= f2% € Pyy,n and

m({z € [-1,1]: [p(@)| < 1}) > 2— 5.

Hence Theorem 5.1.1 yields

. 24 s\ /(2K
s = W < (o (322))

Since by E.4,
N
(4.4.6) lim (Topoy (52 Ve (Vay s
- koo \ MY\ 27 V2-s)

the theorem is proved. The case when the exponents r; > 0 are arbitrary
real numbers can be easily reduced to the already proved rational case by
a straightforward density argument. O

Theorem A.4.2 follows from Theorem 5.1.2 in exactly the same way
that Theorem A.4.1 follows from Theorem 5.1.1; see E.6.

Theorem A.4.3 (Nikolskii-Type Inequality for GTPy). Let x be a non-
negative nondecreasing function defined on [0, 00) such that x(z)/x is non-
increasing on [0,00). Then there is an absolute constant ¢; > 0 such that

X)L, (1) < (ex (L4 aN) VPN ()] e 0

for every f € GTPy and 0 < ¢ < p < oc. If x(x) = x, then ¢; < e(4m)™L,
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Theorem A.4.4 (Nikolskii-Type Inequality for GAPy). Let x be a non-
negative nondecreasing function defined on [0, 0c0) such that x(x)/x is non-
increasing on [0,00). Then there is an absolute constant co > 0 such that

IX() |10y < (e2(2+ aN) TPl ()l Ly -1
for every f € GAPy and 0 < g < p < o0o. If x(z) = z, then ¢y < e2(2m) 1.

In the proof of the second part of Theorem A.4.4 we will need the
following Schur-type inequality, which is interesting in its own right.

Theorem A.4.5 (Schur-Type Inequality for GAP ). The inequality

1AL, < e+ a)|VI—2 @),
holds for every f € GAPxn and g > 0.

According to Theorem 5.1.9 (Schur’s inequality), if N € N, f € Py, and

Y

g € N, then the constant e in the above inequality can be replaced by 1.

It is sufficient to prove Theorems A.4.3 and A.4.4 when p = oo, and
then a simple argument gives the required results for arbitrary exponents
0 < ¢ < p < oo. To see this, say, in the trigonometric case, assume that
there is a constant C'y such that

XU < CY X, o)

for every f € GTPy and 0 < ¢ < oc. Then

IXCOWE ey = O™y x
< AR NG, ey
< R IXOI b IXCOIE, ey

and therefore et
Xz, ) < CN O PIXC) Ly

for every f € GTPy and 0 < ¢ < p < 0.

Proof of Theorem A.4.3 (when p = cco). Since x is nonnegative and nonde-
creasing and (x(z)/z)? is nonincreasing on [0, c0), we have

(x(f(6)))" = exp(—=gNs)|Ix(F)ll%

whenever
f(0) > exp(=Ns)| ]|k -

Hence, by E.7 b], we can deduce that
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m ({0 € [-m,7) : (x(£(0)))" = exp(—qNs)lIx(H)l%}) >

ING VY

for every f € GTPx and s € (0,27). Choosing s := (1 + ¢N)~!, we get

m ({0 € [=m,m) : () > e Ix(HlI%}) > (41 +gN)~".

Hence, integrating only on the subset I of K where

((FO))* > e HIx(Hl%

we conclude that

(A% < de(1+ gN) / (0 (F(0))) db

1
< de(1+aN)IIXHIT, () -

and the first part of the theorem is proved.

Now we turn to the second statement. Let
D:={2eC:|z| <1} and 0D :={z€C: |z =1}.

If h is analytic in the open unit disk D and continuous on the closed unit
disk D, then by Cauchy’s integral formula we have

1 1—rzu
1- 2 = —
(1= Ire)hir) = 5 [ nwy =

du

whenever z € D and r € [0,1). Note that u € 8D and z € 9D imply
|1 —rZu| = |u—rz| for all r € [0,1). Hence, if P € P¢ and 0 < ¢ < oo, then

2 * q i *uq u
(A=) P < 5= [P

whenever z € 9D and r € [0, 1], where P* is obtained from the factorization
of P by replacing each factor (z — a) of P with |a] < 1 by (1 —@z). Since

tA+n)z—0| <l|rz—ol, lo| >1, z€0D, rel0,1],
we have

_ 2y (1 M) 798 F) poya 1 ()19 1du
(=) Ga+0)" 7 P < o= [Pl

whenever z € D and r € [0, 1]. Maximizing the left-hand side for r € [0, 1]
and using the fact that |P*(z)| = |P(z)| for z € D, we conclude that
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2 de
Py < 2Fades(P)e /|P )7 ds, zedD.

Hence, by E.8,

14+ gn)e r
IRl < S22 [ R as

for every R € T,,. If f € GTPy is of the form (A.4.3) with rational expo-
nents r; = a;/a, where a;,« € N, then on applying the above inequality
to R := f2® € Ta,n with ¢ replaced by ¢/(2a), we conclude that

1 N
I < 25 [ sy

and the second statement of the theorem is proved. The case when the
exponents r; > 0, j = 1,2,...,m, are arbitrary real numbers can be
reduced to the already proved rational case by a straightforward density
argument. a

Proof of Theorem A.4.5. Let P € P, and
M := ||\/1 — 2 \P(m)|q||[71’1] .

By E.8 c], there exists an R € Py, such that |R(e?)| = |P(cos8)|, 6 € R.
We define R* € PS§,, from the factorization of R by replacing all the factors
(z — @) of R with |a| < 1 by (1 — @z). Note that |1 — e**?| = 2|sin§| and
|R(ei?)| = |R*(e')] for all € R. Hence the maximum principle yields that

1— 2| Rp* 1< 1— 2R q
1= (r2)7||R* (r2)|* < max [1 - 27||R" (2)]
= max 2|sinf||P(cosh)|? = 2M .
fER

By E.9 we have

2 2n
* < * , , .
|R (Z)|_<1+r> |R*(r2)], 2€dD, rel0,1]
Hence
22n4 1
|IR*"(2)]! < ————-——=52M, z€dD, rel0,1],

(I14+r)2na1—y2
where the minimum on [0, 1] of the right-hand side is taken at

qn
1+qgn’

ri=
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Estimating the right-hand side at this value of r, we get
1P, = max | B < e+ an)|[VI=22 P _, ).

If f € GAPy is of the form (A.4.1) with rational exponents r; = a;/a,
aj,a € N, then applying the above inequality to P = f?® € Payn with ¢
replaced by ¢/(2a), we get

I, < e@+aM)|VI— 22 f@)]

and the theorem is proved. The case when the exponents r; > 0 are ar-
bitrary real numbers can be easily reduced to the already proved rational
case once again by a standard approximation. O

Proof of Theorem A.4.J (when p = occ). Since x is nonnegative and nonde-
creasing and (x(z)/z)? is nonincreasing on [0, c0), we have

((F(@)" > exp(~gN V)X (HIIL,

whenever

f(z) > exp(=Nvs)lI fllj-1,1) -
So by E.7 a] we can deduce that

m ({z € =111 ((f@))" > exp(=aN V)X 1 }) > 5

for all s € (0,2). Choosing s := (1 + ¢N) ™2, we obtain

m({o € 11 (@) 2 I} 2 575w

Integrating on the subset I of [—1,1] where

((F @) = e Ix (=111,

we conclude that

Ly < 8e(t+aN)? [ (x(7(a))"do

I
< 8e(1+ qN)2||X(f)||%q[_1’1] :

Thus the first part of the theorem is proved.

To show that the given constant works in the case that x(z) = = we use
another method. Let h € GAPjs. Then by E.10, g(6) = h(cosf) € GTP .
On using the substitution & = cosf, from Theorem A.4.3 we get
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1
Bl < ez (1 ad) [ B (1= )7 do

-1

If f € GAPy, then h(z) = f(z)(1—2%)"/?9 € GAP) with M = N4¢7!,
so an application of the above inequality yields

1
(A.4.7) V1 - a:2fq(x)||[7171] <e(2m) Y2+ ¢N) [1 fiz)dx.

(Note that the weaker assumption h € GAP )y, instead of f € GAP y already
implies (A.4.7).)

Now a combination of Theorem A.4.5 and inequality (A.4.7) gives that
if x(z) = z, then the inequality of Theorem A.4.4 holds with ¢y := €?(27) L.
O

Now we prove extensions (up to multiplicative absolute constants) of
Markov’s and Bernstein’s inequalities for generalized nonnegative polyno-
mials.

Theorem A.4.6 (Bernstein-Type Inequality for GTPy). There exists an
absolute constant cz > 0 such that

1f'llx < esN|Ifllx
for every f € GTP N of the form (A.4.3) with each r; > 1.

Theorem A.4.7 (Bernstein-Type Inequality for GAPy). The inequality
CgN
@) < ——= N flira,  z€(=1,1),
@) < 2l (-1.1)
holds for every f € GAPx of the form (A.4.1) with each r; > 1, where cg
is as in Theorem A.4.6.

Theorem A.4.8 (Markov-Type Inequality for GAPy). There exists an ab-
solute constant c4 > 0 such that

1F =10y < eaN? | Fll=1
for every f € GAPx of the form (A.4.1) with each r; > 1.

To prove Theorem A.4.6 we need the following lemma.

Lemma A.4.9. Suppose g € GTPy is of the form (A.4.3) with each z; € R,
and suppose at least one of any two adjacent (in K ) zeros has multiplicity
at least 1. Then there exists an absolute constant cs > 0 such that for every
such g there is an interval I C K of length at least cs N~' for which

i >e ! )
rgnel}lg(ﬂ)_e llgll
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Proof. Take a g € GTP y satisfying the hypothesis of the lemma. Because
of the periodicity of g we may assume that

(A.4.8) g9(m) = llgllk -

Define

(A.4.9) Qn,w(0) :=Toy <%)

with

(A.4.10) n = |N]| and w:=7—(3N)" !,

where T, is the Chebyshev polynomial of degree 2n defined by (2.1.1).
By E.11 there exists an absolute constant cg > 1 such that Q. (7) > cs.
Introduce the set

A={cm—BN) " ,r+BN):g(6) > e g(n)}.

We study h := g|Qnw| € GTPa. The inequality @, .(7) > ¢ and as-
sumption (A.4.8) yield

h(6) < 9(8) < 5" Qnu(m)g(m) = 5 ' [|hllx

for all € [~w,w] = [-7+ (3N)~!, 7 — (3N)~1]. Further, the definition of
the set A, the fact that ||@Qnw||lxk = @n,w(7), and (A.4.8) imply that

h(8) < e™'g(m)Qn.w(m) = e~ ||hllk

forall § € [t — (3N)~!, 7+ (3N)"1]\ A. From the last two inequalities we
conclude that

W) < e Il forall 6 € [~m,m]\ A,
where ¢7 := min{cg, e} > 1 is an absolute constant. Therefore, by E.7 b]
m(A) > cgN~'  with cg := & loger > 0.

Since g € GTPy is of the form (A.4.3) with each z; € R, and at least
one of any two adjacent zeros of g has multiplicity at least 1, E.12 and
assumption (8.1.8) imply that g cannot have two or more distinct zeros in
[ — (BN)~!, m + (3N)~!]. Hence A is the union of at most two intervals.
Therefore there exists an interval I C A such that m(I) > cg(2N)™!, and
the lemma is proved. O
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Proof of Theorem A.J.6. Let f € GTPy be of the form (A.4.3) with each
r; > 1. Without loss of generality we may assume that |f'(7)| = ||f'l| &,
and it is sufficient to prove only that

(™) < esNIfllx -

By E.13 we may assume that each z; is real in (A.4.3). Hence, by E.2,
g = |f'] satisfies the assumption of Lemma A.4.9. Denote the endpoints
of the interval I coming from Lemma A.4.9 by a < b. We can now deduce
that

b
£l =17 < 75 [ 17 @)l

N [P N
< ec_sfa |f’(9)|d9 — ec_5|f(b) — f(a)I < CSNHfHK

with ¢3 := ecgl, and the proof is finished. O

Proof of Theorem A.4.7. The theorem follows from Theorem A.4.6 by using
the substitution z = cosé and E.10 b]. O

Proof of Theorem A.4.8. Let a:=1— (1+ N)~2. Using Theorem A.4.7 and
then E.14, we obtain

1 l1=a,a1 < aN(N + D flli=1,1]
< esN(N + 1)eol| fll—a,a) € eaN? || fllj—asa] »

and then the theorem follows by a linear transformation. O

Now we establish Remez-, Bernstein-, and Markov-type inequalities
for generalized nonnegative polynomials in L,. In the proofs we use the
inequalities proved in this appendix so far, and the methods illustrate how
one can combine the “basic” inequalities in the proofs of various other in-
equalities for generalized nonnegative polynomials. First we state the main
results.

Theorem A.4.10 (L, Remez-Type Inequality for GAPy). Let x be a non-
negative nondecreasing function defined on [0, 00) such that x(z)/x is non-
increasing on [0,00). There exists an absolute constant ¢ < 5v/2 such that

/ (@) da < (1 + exp(epNVA) /A ((f (@) da

for every f € GAPN, A C [-1,1] with m([-1,1]\ 4) < s < 1/2, and for
every p € (0, 00).
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Theorem A.4.11 (L, Remez-Type Inequality for GTPy). Let x be a non-
negative nondecreasing function defined on [0, 0c0) such that x(x)/x is non-
increasing on [0,00). There exists an absolute constant ¢ < 8 such that

[ oreny a < 1+ expieons) [ sy a9
for every f € GTPy, A C [—7,w] with m([—7,n]\ A) < s < 7/2, and for
every p € (0, 00).

Theorem A.4.12 (L, Bernstein-Type Inequality for GTPy). Let x be a
nonnegative, nondecreasing, convezx function defined on [0,0c). There exists
an absolute constant c such that

™

/ XV O)) db < / \(ef(6)7) db

-7 -7

for every f € GTPy of the form (A.4.8) with each r; > 1, and for every
q € (0,1].

Corollary A.4.13 (L, Bernstein-Type Inequality for GTPy). The inequal-
ity

™

[ irorasserne [Cise

—_T

holds for every f € GTPn of the form (A.4.3) with each r; > 1, and for
every p € (0,00), where ¢ is as in Theorem A.4.12.

Theorem A.4.14 (L, Markov-Type Inequality for GAPy). There ezists an
absolute constant c such that

1 1
[ r@ras ey [ e
-1 —1

for every f € GAPx of the form (A.4.1) with each r; > 1, and for every
p € (0,00).

Theorems A.4.1 and A.4.2 can be easily obtained from their L.,
analogs, Theorems A.4.1 and A.4.2, respectively; see E.15 and E.16, where
hints are given.

Proof of Theorem A.4.12. For n := |N| let

n
§ 61]0

j=—n

D,(9) :=

be the modulus of the nth Dirichlet kernel. Choose ¢ € (0,1], and set
m := 2¢q~" > 2. Let ¢ € GTPy be of the form (A.4.3) with each r; > 1.
On applying the Nikolskii-type inequality of Theorem A.4.3 to
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G = gD;n S GTPN+2nq—1
we obtain

(A4411)  [|gDZIlY < ex (L4 (N +2ng™")) lgD2]9 o,

<ei(143N) / (4(0)D™ (6))1 df

-7

=¢,(1+ 3N) /ﬁ 9°(6)D2(6) db .

-7

If g € GTPy is of the form (A.4.3) with each r; > 1, then m > 2 implies
that G € GTPy is of the form (A.4.3) with each r; > 1 as well. If we apply
the Bernstein-type inequality of Theorem A.4.6 to G and use (A.4.11), we
can deduce that
9'(6)D; () +mD; " (0)D;,(6)9(8)

< (e3 (N +2ng~ )) llgD ||%

<IN (1429 ) 1+ 3N) g?(0) D2 (6) do
for every § € K (we take one-sided derivatives everywhere). By putting
f = 0, and noticing that

D! (0)=0 and D,(0)" = (2n + 1)¥/7 > N?/1,

we get
(A.4.12) 19’ (0)|? < eN* [ g'(0)(2m) 1 (2n + 1) "' D2(6) db

with an absolute constant ¢. Now let f € GTP,, be of the form (A.4.3) with
each r; > 1. Let 7 € K be fixed. On applying (A.4.12) to g(0) := f(8 + 1),
we conclude that

SOl <ent [ )@ 20+ 1) D20 - ) do.

—T

Hence
(A.4.13) N7 ()7 < /7r ch(G)(er)’l(Qn + 1)’1Dfl(9 —71)df.
Since

(A.4.14) /ﬂ 2m)~'@2n+1)"'D2(0 - 1)dh =1,

-7
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Jensen’s inequality (see E.7) and (A.4.3) imply that

T

X(NTOf()]) S/ X(cf*(8))(2m) ™" (2n +1)7'D3(0 — 1) df .

-7

If we integrate both sides with respect to 7, Fubini’s theorem and (A.4.14)
(on interchanging the role of § and 7) yield the inequality of the theorem.
O

Proof of Corollary A.4.13. If 0 < p < 1, then Theorem A.4.12 yields the
corollary with ¢ = p and x(z) = z. If 1 < p < oo, then the corollary follows
from Theorem A.4.12 again with ¢ = 1 and x(z) = zP. O

Proof of Theorem A.4.14. We distinguish two cases.

Case 1: p > 1. Let f € GAPy be of the form (A.4.1) with each r; > 1.
Then by E.10 b], g(8) := f(cos@) € GTPy is of the form (A.4.3) with each
r; > 1. With the substitution z = cosé, Corollary A.4.13 and Theorem
A.4.11 imply that

1
(A.4.15) / |F'(z)[P(1 — 22)P=D/2 gy
-1

1
<dn [ e - e e
~1
)
< &N? exp(eapNN ) / P()(1 - 22)" 2 de,
-5

where ¢ := max{1—N 2 cos(r/16)} and ¢; and ¢, are appropriate absolute
constants. Since p — 1 > 0, it follows from (A.4.15) that

9
(A4.4.16) /_6\f’(:1:)|”da:
)
<=2 [ papa - ) i
6

)
< (1= )P PEN expleap)(1- 072 [ fr(a) da
-5
)
< cng—leN/ fP(z) da
-4
)
= c§N2”/6f”(a:) dzx

where c¢3 is also an absolute constant. Since (A.4.16) is valid for every
f € GAPy of the form (A.4.1) with each r; > 1, the theorem follows by a
linear shift from [—6,d] to [—1,1].
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Case 2: 0 <p <1.Let f e GAPy be of the form (A.4.1) with each r; > 1.
Using the inequality |a + b/P < |a|P + [b|? for p € (0, 1], we can deduce that

(A.4.17) / (If'(cos §)]| sing]'/2+1)" dp
A

S/‘(f(cos0)|sin6\1/p)"pd6
A
+/(f(cos&)p_1|sin0\1/p_1\cos0|)pd0
A

for every measurable subset A of [—7, 7). Applying Theorem A.4.12 (with
x(z) = ) to
9(8) := f(cos8)|sinf|'/? € GTPn11/p,

then using (A.4.17) with A :=[-4,6], § := 1 — (N + 1)72, we conclude, by
the substitution & = cosé, that
5
(A.4.18) / | (z)[P(1 — 22)P/? dx
)
1 s
<aW+1/p? [ P@d+r? [ p-o) .
—1 -

where ¢; is an absolute constant. Note that Theorem A.4.10, 0 < p < 1,
and the choice of § imply that

(4.4.19) /_ 11 () dz < o /_ Z (@) do

with an absolute constant cz. A combination of (A.4.18) and (A.4.19) yields

§
(4.4.20) /_6|f’(a:)\”da:
4
<=2 [ p@ra -t i

-0

é
< (1= 8P (crea(N + 1/p)? + pP (1 57)77/2) /_6 7(2) da
PPN+ PPN 17 12 ) [ )i
-5

5
< 03N2”/ fP(z)dx,
)

where ¢3 is an absolute constant. Since (A.4.20) is valid for every f € GAP
of the form (A.4.1) with each r; > 1, the theorem follows by a linear shift
from [—0, 4] to [—1,1]. O
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Comments, Exercises, and Examples.

Most of the results of this section can be found in Erdélyi [91a] and [92a];
Erdélyi, Maté, and Nevai [92]; and Erdélyi, Li, and Saff [94]; however, the
proofs are somewhat simplified here. For polynomials f € P, and for ar-
bitrary ¢ € (0,0c), Theorem A.4.5 was also proved by Kemperman and
Lorentz [79]. An early version of Markov’s inequality in L, for ordinary poly-
nomials is proven in Hille, Szeg6, and Tamarkin [37]. Weighted Markov- and
Bernstein-type analogs of Theorems A.4.6 to A.4.8 are obtained in Erdélyi
[92b]. Applications of the inequalities of this section are given in Erdélyi,
Magnus, and Nevai [94] and in Erdélyi and Nevai [92], where bounds are
established for orthonormal polynomials and related functions associated
with (generalized) Jacobi weight functions. Further applications in the the-
ory of orthogonal polynomials may be found in Freud [71] and Erdélyi [91d].

L, extensions of Theorem 5.1.4 (Bernstein’s inequality) and Theorem
5.1.8 (Markov’s inequality) have been studied by a number of authors. The
sharp L, version of Bernstein’s inequality for trigonometric polynomials
was first established by Zygmund [77] for p > 1. Using an interpolation
formula of M. Riesz, he proved that

(A4.21) / [t' ()| db < np/ [t(0)|P db

for every t € T, (see E.5 h] of Appendix 4). For 0 < p < 1, first Klein [51]
and later Osval’d [76] proved (A.4.21) with a multiplicative constant ¢(p).
Nevai [79a] showed that c(p) < 8p~!. Subsequently, Maté and Nevai [80]
showed the validity of (A.4.21) with a multiplicative absolute constant, and
then Arestov [81] proved (A.4.21) (with the best possible constant 1) for
every 0 < p < 1. Golitschek and Lorentz [89] gave a very elegant proof of
Arestov’s theorem.

The L, analog of Markov’s inequality states that

1 1
(A4.4.22) / Q' (2)[P dz < P in2P / 10(2)|" da

—1 -1

for every ) € P, and 0 < p < oo, where ¢ is an absolute constant. This
can be obtained from Arestov’s theorem similarly to the way that Theorem
A.4.14 is proven from Corollary A.4.13. To find the best possible constant
in (A.4.22) is still an open problem even for p =2 or p = 1.

The magnitude of

I wllry

(4.4.23) ,
| fwlli=1,1]
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(4.4.24) Sl -y o<,

||fw||[—1,1] ’
and their corresponding L, analogs for f € P, and generalized Jacobi
weight functions

k
(A.4.25) w(z) = H |z — z;|™, z; €C, r; € (-1,00)
j=1

have been examined by several people. See, for example, Ditzian and Totik
[88], Khalilova [74], Konjagin [78], Lubinsky and Nevai [87], Nevai [79a]

and [79b], and Protapov [60], but a multiplicative constant depending on
the weight function appears in these estimates. The magnitude of (A.4.23),
(A.4.24), and their L, analogs are examined in Erdélyi [92b] and [93], when
both f and w are generalized nonnegative polynomials. In these inequalities
only the degree of f, the degree of w, and a multiplicative absolute constant

appear. The most general results are the following:

Theorem A.4.15. There exists an absolute constant ¢ such that

™

/ﬁ |f(8)[Pw(8) df < PTH(N + M)P(Mp~" + 1)”/ £ (6)[Pw(6) db

—_T -7

and
| f'wlli—nz < (N +M)(M + D fwll—zx

for every f € GTPx of the form (A.4.3) with each r; > 1, for every
w € GTPyy, and for every p € (0, 00).

Theorem A.4.16. There exists an absolute constant ¢ such that

/ (@) Pw(z) de < PN + M)P(Mp~ + 1) / @) Pw(z) de

-1 -1
and
I f'wlli—1,1 < e(N + M)?[| fwllj-1,1

for every f € GAPx of the form (A.4.1) with each r; > 1, for every
w € GAP s, and for every p € (0, 00).

E.1 Another Representation of Generalized Nonnegative Polynomials.

a] Show that if f = []5_, |Q;|" with each Q; € Py, and r; > 0, then
f € GAPy with N < Y°F_, rjn;. Similarly, if f = [];_, |Q,|" with each
Qj € Tn; and 75 > 0, then f € GTPy with NV < 25:1 Tin;.

b] Show that if f € GAPy is of the form (A.4.1), then f =[], |Q;|"i/2

with each @); € P> and 0 < @; on R. Similarly, if f € GTPy is of the form
(A.4.3), then f =[]/, |Q;]"/* with each Q; € Ty and 0 < Q; on R,
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E.2 The Derivative of an f € GTPy with Real Zeros. Show that if
f € GTPy is of the form (A.4.3) with each r; > 1 and z; € R, then
|f'| € GTPy is of the form (A.4.3) with each r; > 0 and z; € R, and at
least one of any two adjacent (in K) zeros of | f'| has multiplicity exactly 1.

E.3 Generalized Nonnegative Polynomials with Rational Exponents. Show
that if f € GAPy is of the form (A.4.1) with rational exponents r; = ¢;/q,
where ¢;,¢ € N, then f2? € Py,n, while if f € GTPy is of the form (A.4.3)
with rational exponents r; of the above form then f%¢ € Tan.

E.4 Proof of (A.4.6). Prove (A.4.6) from the explicit formula (2.1.1) for
the Chebyshev polynomial T,.

E.5 Sharpness of the Remez-Type Inequality for GAPy. Let

fu(z) =

N/n

2

T, (;—H>‘ € GAPy, n=12,. ...
— S

Show that
m({z € [-1,1]: fule) < 1}) =m(~1,1 - s]) =2 — s

and

lim fu(1) =

n—oo

\/§+\/EN
V2—1s5)

The upper bound in Theorem A.4.1 is actually not achieved by an
element of GAP n; see Erdélyi, Li, and Saff [94].

E.6 Proof of Theorem A.4.2.
Hint: First assume that f € GTPy is of the form (A.4.3) with rational

exponents r; = ¢;/q, where g;,q € N. Then p := f2? € Ta,n, and the
desired inequality can be obtained from Theorem 5.1.2 as in the proof of
Theorem A.4.1. O
E.7 Corollaries of Theorems A.4.1 and A.4.2.
a] The inequality
s

m ({z € [-1,1]: f(z) > exp(=NV5)fll-101}) = 5
holds for every f € GAPy and 0 < s < 2. In particular,

m ({a: e[-1,1]: f(z) > e*1||f||[_171}}) > (8]\72 +4)*1

holds for every f € GAPy.
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b] The inequality
m ({8 € [-7,m) : F6) 2 exp(-Ns)l|fllx}) 2
holds for every f € GTPy and 0 < s < 2x. In particular,
m ({8 € [-m7): f(8) > e | fllk}) > 4N +1)7"
holds for every f € GTPy.

E.8 Nonnegative Trigonometric Polynomials. Part a] restates E.3 c] of
Section 2.4. Parts b] and c] discuss simple related observations.

a] Let ¢t € T,, be nonnegative on R. Show that there is a p € P}, such that
() = |p(e'?)|? for every 6 € R.

b] Let p € P¢ and t(6) := |p(e?®)|? for every § € R. Then t € 7,, and ¢ is
nonnegative on R.

¢] Show that if t € 7,¢, then there is a p € PS,, such that [t(6)| = |p(e?)]
for every 6 € R.

E.9 A Crucial Inequality in the Proof of Theorem A.4.5. Show that

2

m) |P(rz)|, z€ 0D, re|0,1]

PO (
for every P € P¢ having all its zeros outside the open unit disk D.

Hint: Let P(z) = cl—[;n:1 (2 —zj), where c € C, z; € C\ D, and m < n.
Show that

|Z—Zj‘ <

_1+T\rz—zj\, j=12,...,m, rel0,1].

E.10 f € GAPy Implies f(cosf) € GTPy.
a] Show that if f € GAPy, then g(f) = f(cosf) € GTPy.

b] Show that if f € GAPy is of the form (8.1.1) with each r; > 1, then
g(8) = f(cosf) € GTPy is of the form (A.4.3) with each r; > 1.

E.11 A Property of Q. Let Q. be defined by (A.4.9) and (A.4.10).
Show that there is an absolute constant ¢g > 1 such that Q, . (7) > cs.

Hint: Use the explicit formula (2.1.1) for the Chebyshev polynomial T,,. O
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E.12 A Property of the Zeros of a ¢ € GTPy. Assume that g € GTPy
is of the form (A.4.3) and let

m
M := Z .
j=1
zj€lm—p,m+p]
Show that M < 3Np||g||[__11 i

Hint: First assume that each r; is rational with common denominator g € N,
and apply E.12 of Section 5.1 to p := g°? € Toyn- O

E.13 Extremal Functions for the Bernstein-Type Inequality.

a] Letr; > 1, j =1,2,...,m, be fixed real numbers. Show that there
exists an f € GTPy of the form

(A.4.26) floy=T]Isin((z=G)/2)7,  GeC

j=1

such that ~
' ()] ()]

= = sup ,
Iflx  r Ifllx

where the supremum in the right-hand side is taken for all f € GTPy of
the form

(44.27)  f(2) = [w| [ Isin((z = z)/2)", 2z €C, 0#weC.

j=1

Hint: Write each f of the form (A.4.27) for which the supremum is taken
as

f(z) = |wol H lw; sin((z — 2;)/2) sin((z — %;)/2)|73/2

where the numbers w; > 0 are defined by
o sin((z - 2;)/2)sin((z — 7))/l =1, j=1,2.....m,
and then use a compactness argument for each factor separately. O

b] Let fbe as in part a]. Show that each zero of fis real, that is, EJ eR
for each j in (A.4.26).

Hint: Assume that there is an index 1 < j < m such that {; € C\R. Then

AR S esin®((z — 7)/2) N
e f“<1 sin((z—<j>/2>sin<<z—@-)/2)) €ty

with sufficiently small € > 0 contradicts the maximality of f O
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E.14 A Corollary of the Remez-Type Inequality for GAPy. Suppose that
a:=1—(1+ N)~2. Show that there is an absolute constant cg > 0 such
that

Ifll=1,17 < coll flli=a,a]
for every f € GAPy.
Hint: This is a corollary of Theorem A.4.1. O

E.15 Proof of Theorem A.4.10.

Outline. For f € GAPy, let
I(f) = {z € [-1,1] : (x(f (2)))? > exp(=5pNV2s)|[x (NI, 1} -

From Theorem 5.1.1, 0 < s < 1/2, and the assumptions prescribed for x
it follows that m(I(f)) > 2s. Let I := AN I(f). Since m([—1,1]\ 4) < s,
m(I) > s. Therefore

L, au@yas [ e
< exp(3pNVE) [ (U(f(@) do

I

< exp(3pNVE) [ (x(F(e)) da.

A

E.16 Proof of Theorem A.4.11.
Hint: For f € GTPy, let

I(f) = {0 € [-m,7] : (x(f(6)))" > exp(=8pNs)|Ix(f)Il} -

From Theorem 5.2.2, 0 < s < w/4, and the assumptions for Y, it follows
that m(I(f)) > 2s. Now finish the proof as in the hint for E.1. O

E.17 Sharpness of Theorem A.4.10.

a] Show that there exists a sequence of polynomials @, € P, and an
absolute constant ¢ > 0 such that

1—s

/_ 1Qu(a)” o > 51+ exp(epn) / Qul@)|P dz

-1

for every n € N, s € (0,1], and p € (0, 00).

Hint: Study the Chebyshev polynomials 7}, transformed linearly from
[-1,1] to [-1,1 - g]. O
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b] Show that there exist a sequence of trigonometric polynomials ¢, € Ty,
and an absolute constant ¢ > 0 such that

T T—s/2
[ @) do 2 s+ espiems) [ o) ds
—r —m+s/2
for every p € N, s € (0,7], and p € (0, 00).
Hint: Study @, defined by (A.4.9) with w := 7 — s/2. O

E.18 Sharpness of Corollary A.4.13 and Theorem A.4.14.

a] Find a sequence of trigonometric polynomials ¢, € 7, that shows the
sharpness of Corollary A.4.13 up to the constant ¢ > 0 for every p € (0, 00)
simultaneously.

Hint: Take t,(0) := cosnf. O

b] For every p € (0,00), find a sequence of polynomials @, , € P, which
shows the sharpness of Theorem A.4.14 up to the constant ¢ > 0.

Outline. Let Ly € Pp be the kth orthonormal Legendre polynomial on
[—1,1] (see E.5 of Section 2.3), and let

Gm(z) = c Y _ Li(1)Li(x),
k=0
where ¢ is chosen so that
1
(A.4.28) / G? (z)dr =1.
-1

Show that there exist absolute constants ¢; > 0 and ¢» > 0 (independent
of m) such that

(A.4.29) |G (1)] > e1m and |GL(1)] > cam?®.

For a fixed n € N, let w := [2/p] + 1 and m := |n/u]. If m > 1, then let
Qnp = G € Py, otherwise let Q, p(z) := z € P,. If m = 0, then the
calculation is trivial, so let m > 1. Using (A.4.29) and the Nikolskii-type
inequality of Theorem A.4.4, show that there exists an absolute constant
c3 > 0 such that

1
(A.4.30) / Q! (2)|Pde > & m (U H2P(1 4 pn) T2,

n,p
—1

Use the inequality

1 1 1
| Qs ds = [ (Gu@I ds <1GuIS [ Ghte)de.

-1
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the Nikolskii-type inequality of Theorem A.4.4, and (A.4.28) to show that
there is an absolute constant ¢4 > 0 such that

1
(A.4.31) /1 |Qnp()|P dz < AT mur=2,

Finally, combine (A.4.30) and (A.4.31). Note that if p > 2, then m = |n],
while if p < 2, then ip(n —1) < m < 2pn. Note also that pP is between two
positive bounds for p € (0, 2]. 0

E.19 Sharpness of Theorems A.4.3 and A.4.4.

a] Let g € (0,0¢) be fixed. Show that there exists a sequence of polynomials
Qn,q € Pr and an absolute constant ¢ > 0 such that

||Qn,q||[—171] > Cl+1/q(1 + qn)2/q||Qn,q||Lq[—1,l]

for every n € N.
Hint: Study @, p with p = ¢ in the hint to the previous exercise. O

b] Let Qn,q € Py be the same as in part a]. Show that there exist absolute
constants ¢; > 0 and ¢y > 0 such that

1@ngllL,(-11] > C}—H/qcé/p(l +qn)*/"(1 +pn)72/p||Qn7q||Lp[71,1]

for every n € Nand 0 < g < p < oc.

Hint: Combine part a] and the Nikolskii-type inequality of Theorem A.4.4.
O

¢] Let g € (0,00) be fixed. Show that there exists a sequence of trigono-
metric polynomials ¢, , € 7, and an absolute constant ¢ > 0 such that

lltn,qllx > Cl+1/q(1 + ‘Z”)l/thquLq(K)

for every n € N.

Hint: Let t,,4(6) := Qn ¢(cosf), where @, 4 are the same as in part a]. Use
part a] and the Schur-type inequality of Theorem A.4.5. O

d] Let ¢, € T, be the same as in part c]. Show that there exist absolute
constants ¢; > 0 and ¢ > 0 such that

ltngllz, 0y > et/ 96 P (14 qn) /4 (1 + pn) /2| [t 4|, 10

for every n € Nand 0 < g < p < oc.

Hint: Combine part a] and the Nikolskii-type inequality of Theorem A.4.3.
O
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E.20 Jensen’s Inequality. Let y be a real-valued convex function defined
on [0,00), and let f and w be nonnegative Riemann integrable functions

Y

on the interval [a, b], where fab w = 1. Show that

b b
x(/ f@)w(z) da:) s/ Y(f(@)w(z) dz .

Hint: First assume that w is a step function. Use the fact that the convexity
of x implies its continuity, and hence the functions x(f)w and fw are
Riemann integrable. O

E.21 A Pointwise Remez-Type Inequality for GAP .

a] Show that there exists an absolute constant ¢ > 0 such that

S

Ip(y)] < exp (cnmin {72, \/§}> , y € [-1,1]
-y

for every p € P, and s € (0, 1] satisfying
m({z e [-1,1]: |p(z)| < 1}) >2—3s,

that is, with the notation of Theorem 5.1.1, for every p € Pp(s) with
s € (0,1].

Proof. Assume, without loss of generality, that y € [0, 1]. Let
a::y-l—%(l—y), Q= arccosa,

— — 1
B := 2arccosy — arccosa, w:i=m—35(8-a),

@n.(0) := Ton (sin(w/2)

where Ty, is the Chebyshev polynomial of degree 2n defined by (2.1.1), and
let

Qn,a.8(0) = Quo (500 — 27 — (@ + §)))) .

Associated with p € P, (s), we introduce

9(8) := p(cos0)Qn.0,5(0) € Tan .

Obviously
‘Qn,a,ﬁ(a)‘ < ]-7 NS [0,2’/T) \ (aaﬂ)

and

||Qn7a,6||[0,27r] = Qn,aﬁ (%(a + 6)) = Qn,w (71') .
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The definition of w implies that there exist absolute constants ¢; > 0 and
¢y > 0 such that

aVvV1—-yP<rm—-—w<eVv1—y2.

This, together with E.3 c], yields that there are absolute constants c3 > 0
and ¢4 > 0 such that

Qnas(7) > explesn/T—47) > exp(5n/5)
whenever y € [0,1 — ¢45]. Tt follows now from Theorem 5.1.1 that
19(6)] < exp(5nV/s) < Qnuw(m)
for every 6 € [0,27) \ (o, 8) and y € [0,1 — ¢48]. Furthermore
19(0)] < @n.w(m)
for every 6 € (a, 8) for which [p(cosf)| < 1. Note that
lcosf| <1—35(1-y), O€(af)

and hence p € Pp(s) with s € (0,1] implies that there exists an absolute
constant ¢ > 0 such that

m({6 € (e, B) : [p(cosB)| > 1}) < ——22— .
1—1y2
Therefore
f = (Qn,w (71'))_19 € ,TQn

satisfies

m({8 € [0,27) : [fO) < 1}) > 27 — 5
with e s

Fi= — Yy €10,1—cys].

i

Applying Theorem 5.1.2 with f and s, we conclude that

Ip (cos (3(a+8)))| = (Qnw(m) g (3(a+5))

=f (%(a +5)) < exp(4n3s) < exp (%)
-y

p(y)]

whenever 5 € (0,7/2] and y € [0,1 — ¢4s]. If s € (0,1], but § > 7/2 or
y € [1 — ¢48,1], then Theorem 5.1.1 yields the required inequality. O
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b] Show that the inequality of part a] is sharp up to the absolute constant
c>0.

Hint: Assume, without loss, that y € [0, 1]. Show that there exists an abso-
lute constant ¢; > 0 such that the polynomials

2x S

Wn’y’s(iﬁ) = Tn (m + 9 _ S) S Pn(S),

where T}, is the Chebyshev polynomial of degree n defined by (2.1.1), satisfy

|Wn,y,8(y)‘ > exp(cln\/g)
for every n € N, y € [1 — s/2,1], and s € (0,1].

If y € [0,1 — 5/2], then let

a:=y+ -, Q= arccosa,

[ING VY

B = 2arccosy — arccosa, w:i=m—

=

Qma,ﬁ(a) =
Rpa,5(0) = 5(Qn.a,68) + Qnas(—1)),

and we define Wy, , s for every n € N, y € [0,1 - 5/2), and s € (0, 1] by

] (sin((& +7—(a+ 5)/2)/2)>
" sin(w/2) ’

Rp,a,5(0) = Wy ys(cosf), Why.s € Pn.

Show that W, , s € Pn(s) and that there exists an absolute constant ¢ > 0
such that

V1—19y?2
for every n € N, y € [0,1 — s/2), and s € (0,1]. 0

¢] Extend the validity of part a] to the class GAP y; that is, prove that
there exists an absolute constant ¢ > 0 such that

|f(y)] < exp (cNmin{%,ﬁ}), y € [-1,1]
I—y

for every f € GAPy and s € (0, 1] satisfying

|Wn,y,s(y)‘ > exp (cn #)

m{ze[-1,1]: f(z) <1})>2—5.
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A5

Inequalities for Polynomials
with Constraints

Overview

This appendix deals with inequalities for constrained polynomials. Typi-
cally the constraints are on the location of the zeros, though various coef-
ficient constraints are also considered.

Inequalities for Polynomials with Constraints

For integers 0 < k < n, let
Pr.k := {p € Py, : p has at most k zeros in D}

where, as before, D := {z € C: |z| < 1}. For a < b, let
B, (a,b) := {p € Py :plz) = :I:Zaj(b —2)(x—a)" 7, a; > O} .
=0

For integers 0 < k < n, let
lﬁn,k(a:b) = {p =hq:he€ ank(aab) ; 4 € Pk}
Two useful relations, given in E.1, are

Pno CBn(—1,1)  and  Pnj C Pas(-1,1).

This is page 417
Printer: Opaque this
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Theorem A.5.1 (Markov-Type Inequality for ﬁnk) The inequality
1P 1,1y < (18n(k + 2m + 1)) ||pl| 1.1

holds for every p € ’ﬁn,k(—l,l). (When m = 1, the constant 18 can be
replaced by 9.)

Proof. First we study the case m = 1. Applying Theorem 6.1.1 (Newman’s
inequality) with

Mo, A, ) =(n—k,n—Fk+1,... n)
and using a linear shift from [0, 1] to [—1, 1], we obtain that
(4.5.1) P’ (D] < g0k + Dllplli-1,1
for every p € P x(—1,1) of the form
(A.5.2) p(z) = (z+1)" *q(2), q€Py.

Now let p € ﬁn,k(—l, 1) be of the form p = hq with ¢ € P and

n—k
h(x) = Z a;(1 —z)i (x + 1)"=k= with each a; > 0.
=0

Without loss of generality, we may assume that n — k > 1, otherwise The-
orem 5.1.8 (Markov’s inequality) gives the theorem. Using (A.5.1) and the
fact that each a; > 0, we get

(4.5.3) |p'(1)]

—k
> (a1 =2 (@ + 1" (@) (1)
j=0

n
J

(a;(1 = 2)’ (z + 1)" " q(x))' (1)

™ -

j=0
n(k+2) [ (@ + 1" ool +1) + er (1 - 2))q(@) |,

<3
n—k
<In(k+2) D (1l —2) (x+ 1)""F=ig(a)
j=0 [~ 1.1]

< 2n(k +2)lIpll=1,1 -

Now let y € [-1,1] be arbitrary. To estimate |p'(y)| we distinguish two
cases.
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If y € [0,1], then by a linear shift from [—1,1] to [—1,y], we obtain
from (A.5.3) that

9
(4.5.4) P'(y)| < o n(k +2)[|pll-1,y) < 9In(k + 2)lpllj-1,1)

for every p € Pn i(—1,y). It follows from E.1 d] that
,ﬁn,k(_la 1) - ﬁn,k(_lz y) .
So (A.5.4) holds for every p € ﬁn,k(_l, 1).

If y € [-1,0], then by a linear shift from [—1,1] to [y, 1], we obtain
from (A.5.3) that

9
(45.5) PO < 7k + 2ol < 9k + 2 pl-1

for every p € ﬁn,k(y, 1). By E.1 d] again,
ﬁmk(_la 1) C ,ﬁn,k(ya 1) .

So (A.5.5) holds for every p € 75%1@(—1, 1), which finishes the case when
m=1.

Now we turn to the case when m > 2. Note that an induction on m
does not work directly for an arbitrary p € Py (-1, 1). However, it follows
by induction on m that

(4.5.6) 1™ =10y < On(k +m+ 1) lplli—1.

for every p € Ppi(—1,1) of the form (A.5.2). Now let p € P, x(—1,1) be
of the form p = hq, where q € P, and

n—~k
h(z) = Z a;(1—2)i(z+1)"7 with each a; > 0.
7=0

For notational convenience let s := min{n — k,m}. Using (A.5.6) and the
fact that each a; > 0, we get

(4.5.7) [p"™ (1))

n—k

=Y (a1 =2y (1 +2)" " q(z)™ (1)
j=0

=Y (a1 =) (L+2)" ()™ (1)
j=0

S ay(1—2) (2 + )" g(a)
j=0

Y a1 —a) @+ )" g)
— On(k +2m + 1) pll; 1.1

<OOnk+s+m+1)™

[71!1]

< (9n(k+2m+1))™

[_171]
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From (A.5.7), in a similar fashion to the case when m = 1, we conclude
that
"™ i1,y < (18n(k + 2m + 1)) ™ [Ipllj -1

for every p € ﬁn,k(—l, 1), which finishes the proof. O
Theorem A.5.1 is essentially sharp as is shown in E.2 and E.4 {]. How-

ever, a better upper bound can be given for [p™)(y)| when y € (—1,1) is
away from the endpoints —1 and 1.

Theorem A.5.2 (Markov-Bernstein Type Inequality for P,, ). There ezists
a constant c(m) depending only on m such that

. n(k +1 "
P )] < elm) (mm {n(k ), %—_y’}) Ioll 1
for every p € Py i and y € [—1,1].
Theorem A.5.2 has been proved in Borwein and Erdélyi [94]. Its proof
is long, and we do not reproduce it here. However, the proof of a less sharp

version, where /1 — 92 is replaced by 1 — y?2, is outlined in E.4 and E.5.

The factor y/n(k + 1) in Theorem A.5.2 is essentially sharp in the case that
m = 1; see E.7.

Theorem A.5.3 (Markov-Bernstein Type Inequality for B,,(—1,1)). There
exists a constant c¢(m) depending only on m such that

(m) ¢(m) | min n,L ) —1,1
) < o >( { MD Pl

for every p € By(—1,1) (hence for every p € Ppo) and y € [—1,1].

Note that the uniform (Markov-type) upper bound of the above the-
orem is a special case (k = 0) of Theorem A.5.1. Our proof of Theorem
A.5.3 offers another way to prove the case of Theorem A.5.1 when k = 0.
First we need a lemma.

Lemma A.5.4. Forn € N and y € R, let

1 (JT=T 1
A"’yw(T*; |

where xt := max{z,0}. Then
(Y +i7Any)| < V2e p (y £ 5;)]

for every p € B(-1,1), y € [-1— #,1-{— #] , and vy € [0,1], where i is
the imaginary unit. The + sign is taken if y € [—1 — #,0) , and the —
sign is taken if y € [0, 1+ #] .
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Proof. It is sufficient to prove the lemma for the polynomials
pnj(@):=1-2)(@+1)"7, neN, j=0,1,...,n.

The general case when
n
p= Zajpn,j with each a; > 0 or each a; <0
j=0

can then be obtained by taking linear combinations. Without loss of gen-
erality, we may assume that y € [0,1+4 5-] . Then

PO (N
from which it follows that
Pnj (Y + 17 An )| <P (y +idn,)]
= (=92 + 22,7 (1492 + 22,)"
<(A-p+25) A+ +5)"

(- (y-&) 1+ - (ﬁy;

2

1+y— 5
2n +1\"
< — ) pnj (U —2) < V2epni (v —35)
2n — 1
and the lemma is proved. O

Proof of Theorem A.5.8. For n € N and y € [-1,1], let B, , denote the
circle of the complex plane with center y and radius iAmy- Using E 4,
Lemma A.5.4, and the maximum principle, we obtain

p(2)] < V2e|pll-11]

for every p € By(-1,1), 2 € By, n € N, and y € [—1,1]. Hence, by
Cauchy’s integral formula,

|
WWM=%L @%%ﬂ4

m! p()
<3/ dg

(€ —y)mtt
m

|
H —(m+1)
S % 2m iAn,y (%An,y) \/§€||p||[—171]

< ¢(m) (min {n, %}) 1Pll—1.1]

for every p € B,,(—1,1) and y € [—1, 1], which proves the theorem. O
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For r € (0,1], let
Df ={ze€C:|lzx(1-7r) <r}.

Forn € N, k = 0,1,...,n, and r € (0,1], let Pik’r be the set of all
p € P, that have at most k zeros (counting multiplicities) in D, and let
Pk i= P, NP, .. The following result is proved in Erdélyi [89a]. The
proof in a sp7e7cial case is outlined in E.9.

Theorem A.5.5 (Markov-Type Inequality for P, ;. ). There exists a con-
stant c(m) depending only on m such that

m n(k +1)2\"
11 < ctm) (25 ol

for every p € Pppr, m €N, and r € (0,1].

We state, without proof, the L, analogs of Theorem A.5.2 for m =1,
established in Borwein and Erdélyi [to appear 2].

Theorem A.5.6 (L, Markov-Type Inequality for P, ;). There exists an ab-
solute constant ¢ such that
1

/ P (@)1 dz < ¢ (n(k +1))° / p(a)|? da

—1 —1

for every p € Py and g € (0, 00).

Theorem A.5.7 (L, Bernstein-Type Inequality for P, ). There exists an

absolute constant ¢ such that
™

/ |p' (cost) sint|? dt < c?+! (n(k 4 1))9/2 / |p(cost)|? dt

-7 -7

for every p € Py 1, and g € (0, 00).

Both of the above inequalities are sharp up to the absolute constant ¢ > 0.

A Markov-type inequality for polynomials having at most k zeros in
the disk
D,:={2e€C: |z|<r}

is given by the following theorem; see Erdélyi [90a].

Theorem A.5.8 (Markov-Type Inequality for Polynomials with At Most &k
Zerosin D,). Let k € N and r € (0,1]. Then there exist constants c¢1(k) > 0
and co(k) > 0 depending only on k so that

/
(B (n+ (1 —ryn?) < sup PN oyt =)
" ol Crn

where the supremum is taken for all p € P, that have at most k zeros in
D,.
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Comments, Exercises, and Examples.
Erdés [40] proved that

, n n \"' e
' [l[=1,11 < s\n=1 Iplli—1,1y < 5"”10”[—1,1]

for every p € Pp0 n > 2, having only real zeros. In this result, the assump-
tion that p has only real zeros can be dropped. In E.11 we outline the proof
of the above inequality for every p € Py, n > 2. The polynomials

pal@)i= @+ 1" '(1-2), n=12...,

show that Erdés’s result is the best possible for P, o. Erdés [40] also showed
that there exists an absolute constant ¢ such that

Cy\/ N
PO < s bl

for every p € P, having only real zeros. Markov- and Bernstein-type
inequalities for B,,(—1, 1) were first established by Lorentz [63], who proved
Theorem A.5.3. Lorentz’s approach is outlined for m = 1 in E.8. The proof
presented in the text follows Erdélyi [91c]. Up to the constant c¢(m) >
0 Theorem A.5.3 is sharp; see E.12. Scheick [72] found the best possible
asymptotic constant in Lorentz’s Markov-type inequality for m = 1 and
m = 2. He proved the inequalities

e e
110y < gnllplli—ry and {10 < gl = Dllpll-1y

for every p € By(—1,1) (and hence for every p € Py ). Note that with
pn(z) = (z + 1) (1 — z),

! "
1Pll1=1,1] 5% and 1Plli=1,1] N
nlpalli—1ay 2 n(n = Dlpll-ry 2

as n — o0.

A slightly weaker version of Theorem A.5.1 was conjectured by Szabados
[81], who gave polynomials p, ., € Pp, . with only real zeros so that

P (D] > gnk + Dllpngll-11

for all integers 0 < k < n. After some results of Szabados and Varma
[80] and M4té [81], Szabados’s conjecture has been settled in Borwein [85]
where it is shown that

Y

1P'll-1,1) < 9n(k + Dlpllj-1,1)
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for every p € P, 1, having n — k zeros in R\ (—1,1). The crucial part of this
proof is outlined in E.4 d] and e]. The above inequality is extended to all
pE 75n,k (and hence to all p € P, 1) and to higher derivatives in Erdélyi
[91b], whose approach is followed in our proof of Theorem A.5.1.

After partial results of Erdélyi and Szabados [88, 89b] and Erdélyi
[91b], the “right” Markov-Bernstein-type analogs of Theorem A.5.2 for
the classes P, has been proved in Borwein and Erdélyi [94]. Note that
Pnn = Pn, and hence, up to the constant ¢(m), Theorem A.5.2 contains
the classical inequalities of Markov and Bernstein, and of course the case
k = 0 gives back Lorentz’s inequalities for the classes Ppo C Bp(—1,1).
The “right” Markov- and Bernstein-type inequalities of Theorems A.5.8
and A.5.9 for all classes P, in L,, 0 < ¢ < oo, are established in Borwein

and Erdélyi [to appear 2].

The Markov-type inequality for the classes Py i, given by Theorem
A.5.5 is proved in Erdélyi [89a]. A weaker version, when k£ = 0 and the
factor r—'/2 is replaced by a constant ¢(r) depending on r, is established in
Rahman and Labelle [68]. When k = 0, Theorem A.5.5 is sharp up to the
constant ¢(m) depending only on m; see E.10.

E.1 Relation Between Classes of Constrained Polynomials.

a] Show that P, (—1,1) C B(—1,1). (This is an observation of G. G.
Lorentz.)

Hint: Use the identities
(z—a)(z—a) = [1+al(1-2)* + 5| = 1)(1 = 2%) + 1 - a*(1 + 2)*

and
s—a=11-a)(z+1)-L(a+1)(1-=).

O
b] Show that P, C Ppi(—1,1).
¢] Show that By(a,b) C By(c,d) whenever [¢,d] C [a,b].
Hint: First show that
r—a=ai(z—c)+ax(d—=zx) and b—z=a3(z—c)+ as(d—z)
with some nonnegative coefficients. a

d] Show that P, x(a,b) C Ppx(c,d) whenever [¢,d] C [a,b)].

E.2 Sharpness of Theorem A.5.1. Show that there exist polynomials
Dn,k € Pn,i of the form
Puk(@) = (@ +1)" Fun(z),  Gux € P
such that
Pl k(D] > g0k + Dllpnrlli=11
foreveryn e N, k=0,1,... ,n.
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Hint: Use the lower bound in Theorem 6.1.1 (Newman’s inequality) with
(/\(],/\1,... ;/\k) = (n—k,n—k—l—l,... ,n}.
O

E.3 A Technical Detail in the Proof of Lemma A.5.4. For n € N and
€ [-1,1], let

F, .= {z:a-{—ib: a€ [—I—L,l-l— 1], bE(—Ama,An,a)},

8n 8n
and
Bny:={z€C:|lz—y|=14,,}.
Show that By, C F, for every y € [-1,1].

E.4 Bernstein-Type Inequality for P, ;. Prove that there exists an ab-
solute constant ¢ such that

cey/n(k+1)

()l < =7 " lIpll=1.1;

for every p € Pp i, and y € (—1,1). Proceed as follows:

a] Show that for everyn € Nand k = 0,1,... ,n, there exists a polynomial
Q € Py i such that

QO _ 0

1@Qll-1.1) B pePa s |Pll=1.1) .

Hint: Use a compactness argument. Use Rouché’s theorem to show that the
uniform limit of a sequence of polynomials from P, on [—1,1] is also in
Pn,k- O

b] Show that @ has only real zeros, and at most k + 1 of them (counting
multiplicities) are different from =+1.

Hint: Use a variational method. For example, if zo € C\ R is a zero of @,
then the polynomial

Q) = Q) (1- o)
‘e (x — 20) (T — Zg)
with sufficiently small € > 0 is in P, ; and contradicts the maximality of

Q. O
¢] Let é:= (36n(k+ 3))~'. Show that

IPll—s,11 < 2[Pllfo,1)

for every polynomial P, having all its zeros in [0, 00) with at most k of
them (counting multiplicities) in (0, 1).
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Hint: Use the Mean Value Theorem and the result of Theorem A.5.1 trans-
formed linearly from [—1,1] to [0, 1]. O

d] Let 2o := iy(36n(k+3))~1/2, where i is the imaginary unit and v € [0, 1].
Show that

p(20)] < V21Ipllj-1,11

for every polynomial p € P, having only real zeros with at most k& of them
(counting multiplicities) in (—1,1).

Outline. Let p(z) = Hj‘:1($ — u;) with some s < n. Applying part c] to

we obtain

lg(=(36n(k +3)) ") < 2llqllo,1 = 2llg(2*)lljo,1) = 2llp(2)p(=2)[I;-1,1)
< 2”1’”[2—1,1]-
Observe that

Ip(20)” < |p(i(36n(k + 3))*/?)[> = [ (u] + (36n(k +3)) ")

j=1

= |a(=(36n(k +3))7")],

which, together with the previous inequality, yields the desired result. 0O

e] Let @ € P,k be the extremal polynomial of part a], and let
Fopi= {z =a+ib: la] <1, [b] < (36n(k+3))"Y2(1 - |a\)} .
Show that

1Q(2)] < V2(|Ql| =11

for every z € F, .

Hint: Use parts b] and d] and a linear shift from the interval [—1,1] to
[2Re(z) — 1,1] if Re(z) > 0, or to [—1,2Re(z) + 1] if Re(z) < 0. O



Inequalities for Polynomials with Constraints 427

f] Show that there exists an absolute constant ¢ > 0 such that

P'(0)] < ev/nlk + 1) lIpll—1,1

for every p € Py 1.

Hint: By part a] it is sufficient to prove the inequality when p = @, in which
case use part e] and Cauchy’s integral formula. O

g] Prove the main result stated in the beginning of the exercise.
Hint: In order to estimate |p'(y)| when, for example, y € [0, 1] use a linear

shift from [—1,1] to [2y — 1, 1] and apply part f]. O

E.5 Bernstein-Type Inequality for P, ; for Higher Derivatives. Prove
that there exists a constant ¢(m) depending only on m so that

P )| < elm) (’f{*;”) el

for every p € Py, and y € (—1,1).

Hint: First show that for every n,m € N, k = 0,1,... ,n, and § € (0,1]
there exists a polynomial )5 € Py such that

Y

Q5™ (0)] p™ (0)]

—0 - = sup —0—— .
1Qsll—1a\=s.61  pePos IPI=1,1\[=5.5]

Show that ()5 has at most k+m zeros different from +1. Show that thereis a
polynomial ) € P, ; having at most k-+m zeros (by counting multiplicities)
different from +1 such that

QU (0)] P (0)]

T = Ssup .
1QN-1,11  pepns IPl-1,1

If y = 0, then use E.5 and induction on m to prove the inequality of the
exercise for all p € P, ;, having at most k£ 4+ m zeros different from +1. For
an arbitrary y € (—1,1) use a linear shift as is suggested in the hint to E.5

gl. O

E.6 Sharpness of Theorem A.5.2. Show that there exist polynomials
Dn,k € P, and an absolute constant ¢ > 0 such that

P,k (0)] > ev/n(k + D)l|pnkll-1,1)

foreveryn € Nand £k =0,1,... ,n.
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Hint: If k = 0, then let m := |3(n —1)| and
Poi(@) i= (@ = 1)™(x + VAL

If 1 <k < in,thenlet m:=|in|, s:=[3(k—1)], and

Pnk(z) = (932 = 1)" Tospq <\/ga:) .

If %n < k < n, then let m := L%nJ and Py .k 1= Pr,m- O

E.7 Some Inequalities of Lorentz. (See Lorentz [63].)
a] Show that

o)< (725) alplex )| <nlplexd)

for every p € B, (—1,1) (hence for every p € Ppo), n > 2, and z € [-1,1],
where in z £ L the + sign is taken if z € [-1,0), while the — sign is taken
if z € [0, 1].

Hint: Observe that it is sufficient to prove the inequality only for

pnj(T) = (1 —z)(x+1)"7, neN, j=0,1,...,n

b] Let
1— 22

On(z) := — neN, ze[-1,1].

Show that there exists an absolute constant ¢ > 0 such that
P/ ()] < (0n(2)) ™" max{|p(z)|, |p(z + $0.(z))|}

for every p € B,(—1,1) (hence for every p € Pnpo) andz € [-1+ £,1— £].
Hint: Note that it is sufficient to prove the inequality only for

pnj(@):=(1-2)(z+1)"7, neN, j=0,1,...,n.

¢] Show that

1 1
/ \p'(m)|qdz§2-4qnq/ ip(2)| dz
-1 —1

for every p € Bp(—1,1) (hence for every p € Py o) and ¢ € (0, o).
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Hint: Use part al. O
d] Show that there is an absolute constant ¢ > 0 such that

1 1
/ p'(z)V1 - 332‘(1 dz < 5¢ind/? / |p(z)|? dz
-1 -1

for every p € Bp(—1,1) (hence for every p € Py ) and ¢ € (0, o).
Hint: Use parts b] and c]. O

Analogs of parts a] and b] for higher derivatives are established by
Lorentz [63]. From these, analogs of parts c] and d] for higher derivatives
can be proven.

E.8 Theorem A.5.5 in a Special Case. Show that there is an absolute
constant ¢; such that
cin
(D] < —=pll-1,0
\/— [—1,1]

for every p € P, having all its zeros in (—oo0,1 —2r], r € (0,1].

Proof. First assume that

(4.5.8) lp(1)] = llpllj=1,1-
Without loss of generality, we may assume that p € P,, \ P,,—1. Denote the
zeros of p by (—oo <)zy <y <+ < 2, (<1 —2r). Let

I:=(1-2v+1D%1-2v], v=1,2,....
Using E.12 of Section 5.1, we obtain

PO~ 1 1
\p(m—Zl_%—ZZ I~

j=1 v=1g;€el,
< i . (v+1)r !
T = \/§ 2vir
<€ i (v + 1)? no_an
-2 v=1 \/F

with an absolute constant ¢;.

Now we can drop assumption (A.5.8) as follows: Since p has all its
zeros in (—oo,1 — 2r], |p| and |p'| are increasing on [1 — 2r,00). Pick the
unique y € [1,0c) satisfying |p(y)| = ||pll(—1,17 = lpll(=1,4]- Using a linear
transformation, from the already proved case we easily obtain

2n (2r+y—1 -1/
(1 ! < -
PO < P <o +1< ) Ml

IN

cin

i 1Pl
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E.9 Sharpness of Theorem A.5.5. For n € N and r € (0,00), let S, , be
the family of all p € P, that have no zeros in the strip

{z € C:|Im(z)| <r}.

a] Show that there exist polynomials pj, n,, » € Sp,r and a constant c¢(m) > 0
depending only on m such that

m . n "
P (1)] > e(m) (mm {W | n}) ol 11

for everyn € N, r € (0,1], and m = 1,2,... ,n.

Outline. If 0 < r < 77—, then with

zj = (1 - 4mr) cos (227) , i=1,2,...,n

and
zj 1= xj +ir, 17=12,...,n

let .
Pnym,r(T) 1= H(z —zj)(x —Zj) € Spr-
j=1
By E.1 of Section 5.2, |pp,m,r(1)| = ||pn,m,r|l|-1,1). Prove that
[P (D _ [P

_ 1)
||pn,m7r||[71,1] |pn,m7r(l)‘

T\ 1 g (1)]
2114+ — - 7
( ) V2 Gn.m.(1)]

>

where ¢y r(z) = H;L:1 (z —x;) and c¢(m) > 0 depends only on m. If
ﬁ <r <1, then let Pnm,r ‘= Pn,m,7; where 7 := # O
b] Conclude from Theorem A.5.5 and part a] that there exist two constants

c1(m) > 0 and cz(m) > 0 depending only on m such that

S A 1P M= 1,1y
ci(m) |ming —, n < sup —/————
) (min{ 7)) Wl

com o))

where the supremum is taken either for all p € S, , or for all p € P, g .
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E.10 An Inequality of Erdés. (See Erdés [40].) Prove that

n—1
n n
Wl <5 (7255) llosn

n—1

for every p € Ppo, n > 2. This extends a result of Erdds [40] where the
above inequality is proven under the additional assumption that p has only
real zeros.

a] Suppose p € Pp, all the zeros of p are real, p(1) = p(—1) = 0, and
lIpll—1,1) = 1. Show that

1+ xg

n R
n—1

p(a) < (

for every z € [—1, 1], where z¢ is the only point in (—1,1) with p'(z¢) = 0.

Y

Proof. Without loss of generality, we may assume that deg(p) = n and
—1<x <z Let d:=x9—x. Let 1 := —1,zs,...,z, denote the zeros of

p. Then
plx) _ 1+z < d )
= = 1 - .
p(a:) p(mo) 1+ 29 ]:HQ To — Tj

Since the geometric mean of n — 1 nonnegative numbers is not greater than
their arithmetic mean, we have

n—1
i3 zo—z;)  \n—-1 — Ty — T,
1

b] Under the assumptions of part a] show that

n—1

n—1
n n
'l < 5 (—) 1pllj=1,11 -

Proof. Note that

1 1 . k n—=k n
Z = Smln 3 S_a
s Tj— To i< To — T 1—29 20+1 2

where k denotes the number of zeros of p in [1, 00). Hence, by part a],
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n "14z 14z Z 1
n—1/ 14+ 1+a:z‘ < To — T

n—1
n n
< Z
-2 <n—1>

for every x € [—1,1]. Similarly

V) > - (n’il)nl

for every z € [-1,1]. O

¢] Suppose p € Ppo has only real zeros, p’ does not vanish in [—1,1]
p(—1) =0, and p(1) = 1. Show that

Y

n
1P'11-10) < 5 plli=1,07-

Hint: Use the relation Py o C Bp(—1,1) to show that

p<x>s(”“°‘2”)n, rel-1,1].

Denote the zeros of p by ©; = —1, 29, 23,... ,2,. Then
~ 1 z+1\" n n n
0<p(2) = < <—== _
<y p(m)jzlx_xj_( =) < h =Bl
for every z € [-1,1]. O

d] Prove Erdés’s inequality for every p € P, o having only real zeros.

Hint: Reduce the general case to either part b] or part c| by a linear trans-
formation. O

e] Prove Erdés’s inequality for every p € Py 0.

Hint: Show that for every n € N and y € [—1, 1], there exists a polynomial
Q € Pp,o such that

Q' (W) Ip'(v)]

1QM=1,1)  pePao lIpll—10

Show by a variational method that if y € (—1,1), then @ has only real
zeros. Now part d] finishes the proof. O
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f] Show that

n—1
n n
Wl =5 (725) Iolloss

holds for a p € Py o having only real zeros if and only if either
plz) =clz+1)"(1-z) o  p(x)=cl-2)" " (z+1)
with some 0 # ¢ € R.

E.11 Sharpness of Theorem A.5.3. Foreveryn € N, m=1,2,... ,n, and
y € [-1,1], there are polynomials p, m,, € Bn(—1,1) having zeros only in
R\ (—1,1) such that

m . n
P, )] > o(m) (mm {n %}) Pl

with a constant ¢(m) > 0 depending only on m.

Outline. If
Yy € [_171]\[_]‘+2Tm= 1_2Tm] )

then let
Pr,m,y(2) == (. +1)".

In what follows, assume that

ye[-1+22 1-2m]

Let ¢, j(z) == (1—2)(z+1)" 7, neN, j=0,1,...,n. Show that

o (@) Quyml(@)

tnj(z) (22 =1)m’

where @y, j,m is a polynomial of degree m with only real zeros and with
leading coefficient 0 L Let

_n
n—m)!

1 /1—9y2
Amy::max{— 721}, neN, yel[-1,1].

m<j<n—m,

n’ Vn
Use the Mean Value Theorem and Theorem A.5.3 to show that there exists
an absolute constant ¢ € (0,1) such that
(@) > gllanili-11,  m<j<n-m
for every

2j
poall

rely:= [y_CAn,yzy‘i'CAn,y]m[_lal]a y=1-
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Letmgjgn—mandyzl—% be fixed. Choose a point ¢ € I,
such that

cApy )
— | > —— =1,2,...
|€ al|_ 2(m+1)a ? 9 4y ,m,

where the numbers «; are the zeros of @y, j,m. Now show that there exists
a constant ¢;(m) > 0 depending only on m such that

(459 1" (©)] 2 ei(m) (min {n %}) sl -

Next show that if
ye[-1+22 1 2m]

then there exists a point

cely—s(1—1ly), y+ 51— y))]

and a value of j, m < j < n — m, such that (A.5.9) holds. Polynomials
Dn,m,y With the desired properties can now be easily defined by using linear
transformations. O

E.12 An Inequality of Turdn. (See Turédn [39].) Show that

/
_ 1
||p||[ 1,1] > —\/ﬁ

Ipll=117 = 6

for every p € Py, \ Pn—1 having all its zeros in [—1,1].

Outline. Assume that p € P, has all its zeros in [—1,1], and [|p[|[—1,1) = 1.
Choose an a € [—1,1] such that |p(a)] = 1. Without loss of generality,
assume that p(a) = 1.
a] Show that if a = %1, then [p'(1)| > in > L/n.

If a € (—1,1), then p'(a) = 0. Without loss of generality, assume that
a € [-1,0]. Let

I:= [a,a + 2n_1/2] c [-1,1].

If n < 3, then the result follows by the Mean Value Theorem; let n > 4.
b] Use the Mean Value Theorem to show that if |p'(z)] < £4/n on I, then
p(z) > 2 on I.
¢] Show that if |p”(z)| > n on I, then |p'(a + 2n~Y/2)| > 1 /n.

d] The proof of Turdn’s inequality can now be finished as follows. Suppose
p(z) > 2 on I, and there exists a & € I such that p”(¢) < {5n. Note that

n

(@) = plap () = p@)* Y !

= T — 17]@)2 ’
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where z1, 29, ... ,z, denote the zeros of p. Since each z;, lies in [—1, 1], the
inequality Y ,_, (z — z) 2 > in holds for every z € I. Since p(z) > 2 on
I, this implies that
n
P@)y —p@p'(@) > 5, zel
and hence n n n
ey2 > 2 1" S
FE > 5 - OO > § - 1 = 5
O

An extension of Turdn’s inequality to L, norms is given by Zhou [92b].

E.13 An Inequality of Erdos and Turan. Let p € P,, be of the form

pa)=+][(z-2;), -1<z<z<---<2,<1.
i=1

Suppose p is convex on [zj_1, x| for some index k. Then

<16
_\/ﬁ'

Proceed as follows: Let a be the only point in [z4_;,x] for which
! —
p'(a) = 0.
a] Show that there exist &, & € R such that

T — Tk—1

a—2n?<g <a<é& <a+2n Y2,
' (&)l > svnlp(a)l,  and  [p/(&)] > v/ lp(a)].

Hint: Modify the outline of the proof of E.12. O
b] Show that

6 6
— T < — and T — & < —.
§1 — w1 < Tn k=& < Tn
Outline. To prove, say, the first inequality, we may assume that z;_ 1 < &,
otherwise the inequality is trivial. Using the convexity of p on [zj_1, zk],

we get
P@) 2 P&, € o, &l

&1 &1
[ v = [ W)
> (& — z—1)|p'(E)] > (& — 1) 5/ |p(a)]

and the result follows. a

Hence

ip(a)] > p(&1)| = Ip(&1) — p(zr-1)| =
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¢] Conclude that
2 8
a—wk—1S(a—fl)+(§1—$k—1)ﬁﬁ+ Rk

=F

and similarly

8
R

%l“
Elks

T —a < (S —a)+ (v — &) <

d] Eréd [39] establishes the sharp inequalities

2 e
if n is even,

Ty — Tpg < ————
TS V-3
/n2 _
2 n” - 2n if n > 3 is odd.

T — T <
k k=1 S =3 n_l

E.14 Schur-Type Inequality for B,,(—1, 1).

Let a be an arbitrary positive

real number. Show that
sup lIpll=1,1] _ (n + 2a)"+2
ozpeB, (-1,0) IP(@)(1 = 22)2|[—11  (4a)®(n + a)nte

< (i(n + 2a))a

The supremum is attained if and only if p(z) = c¢(1 £ )", 0#c€ R
I |y| < 24, then

_n__

Hint: Let z1 := P

p(y)| 1 1
Ip(z)(1 = 22)*[[10) — (1—y?)> = (1-ai)°
(n +2a)?® (n + 2a)"t2e
(4a)*(n + a)nte’

(4a)*(n + a)

If 1 < Jy| <1,say ¢ <y <1, then
2% (=g

-y y+1)" 7 <A -2 (@ +1)"[|_1y -

3 (n = 5)" 7 (n + 2a)" ; _j

= : = (1 —2) 1)n—i
ain(n + o) (el

(s Y (e 20) 4 41

a(n —j) n+a

n+2a\" . .
< 1— ;) 1)
_<n+a>( z1)’(z1+1)

an

whenever 0 < j < 25—
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On the other hand, since the function (1 — x)J(z + 1)"~7 is monotone
decreasing in [1 — 2L, 1], the inequality

(IT-y)y+1)"7 <A —a1) (& +1)"

an
n+2a

follows whenever < j < n. Finally, use the representation

p(x) =Y a;(1—a) (z + )"
j=0

with each a; > 0 or each a; < 0 to show that

(n + 2a)nt2
a)®(n + a)nte

Ip(y)| < a p(z1)(1 - 27)°]

for every p € B,(—1,1). O
E.15 Schur-Type Inequality for 7,(—w,w). For n € N and w € (0, 7], let

Tn(—w,w):={t € T, : d,(t) < n},

where the Lorentz degree d,,(t) is defined in E.5 of Section 2.4. Let a be an
arbitrary positive real number. Show that

||t||[7w,w]
S
ot T ) [60) (5(cosf — cosw)) " L

N{(n(w—Qw)+\/M)“, 0<w<m/2

Qu—m+n?)">, g/2<w<m,

and the supremum is attained if and only if

+
t(ﬁ):csiHQ"MTg, 0#ceR.

Here the ~ symbol means that the ratio of the two sides is between two
positive constants depending only on a (and independent of n € N and
w € (0,7]).

E.16 Extensions and Variations of Lax’s Inequality. Theorem 7.1.11 con-
tains, as a limiting case, an inequality of Lax [44] conjectured by Erdés; see
part a]. Various extensions of this inequality are given by Ankeny and Rivlin
[55], Govil [73], Malik [69], and others. Parts b] to e] discuss some of these.
As before, let

D:={zeC:|z|] <1} and 0D :={z€C:|z|=1}.
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a] Lax’s Inequality. The inequality
n
IPllp < 5 llpllo

holds for all p € P that have no zeros in the open unit disk.
Proof. This follows from Theorem 7.1.11 as a limiting case. O
b] Malik’s Extension. Associated with

pz)=c[[(z-2), 2 €C, 0#ceC,

Jj=1

let

Then

for every 0 # p € Py.
Proof. See Malik [69]. O

¢] An Observation of Kroé. Suppose p € P¢ satisfies that if p(z) = 0
for some z € D, then p(1/Z) = 0 (there is no restriction for the zeros of p
outside D). Then

n
1Pl < 5 lIpllo -

Hint: Show that if p € P satisfies the assumption of the lemma, then
Ip'(2)] < |p*'(2)| for every z € OD. Use part b] to finish the proof. O

d] An Inequality of Ankeny and Rivlin. Let r > 1. The inequality

n

r
max [p(2)] < T2L max p(2)|
|z|=r 2 |z|=1

holds for all p € P}, that have no zeros in the open unit disk.
Proof. See Ankeny and Rivlin [55]. O
e] An Inequality of Govil. Let r > 1. The inequality

’ n
< —
Ip'[[lp < s llpllp

holds for all p € P¢ that have no zeros in the disk {z € C: |z| < r}.
Proof. See Govil [73]. O
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f] Let
n
H (z — z) 0#ceC.
k=1
Show that

ol = (3 ——) plo.
- k:11+‘zk|

Proof. If z € D, then

and the result follows. a

g] Let r € (0,1]. The inequality

1p'llp > Pl

- 1 +7r
holds for all p € P;, that have all their zeros in the disk {z € C: |z| < r}.

Proof. Use part f]. O
h] Another Inequality of Govil. Let r > 1. The inequality

7'l > Ipllp

215 m
holds for all p € P¢ which have no zeros in the disk {z € C: |z| < r}.
Proof. See Govil [73]. O

E.17 Markov-Type Inequality for Nonnegative Polynomials. Show that

2
n
1P 110 < 5 Pl

for every p € P, positive on [—1,1].

Proof. Suppose p € P, is positive on [-1,1] and |[|p[[j_1,1] = 2. Apply
Theorem 5.1.8 (Markov’s inequality) to ¢ :=p — 1.

E.18 Markov’s Inequality for Monotone Polynomials. It has been ob-
served by Bernstein that Markov’s inequality for monotone polynomials is
not essentially better than for arbitrary polynomials. He proved that if n

is odd, then
1211111 _ (n + 1)2
sup = )
o#p 1Pll[=1,1] 2

where the supremum is taken for all p € P,, that are monotone on [—1,1].
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For even n, the inequality

' B 1 2
sup P l=1.1] < <n+ )
op IPll[=1,1] 2

still holds. Parts a] and b] of this exercise outline a proof.

a] Show that for every odd n, there is a p € P,, monotone on R for which

') <n+1>2
Dl 2 )

Proof. Let m := 1(n — 1). Use E.2 €] of Section 6.1 to show that there is a
q € Py, for which

(1) = (Z(1+2k)>/0 q2(t)dt:(m+1)2/0 () dt

k=0

Now let

pla) = /qu%t)dt—%/; (1) dt

Obviously p € P,,, p is monotone on R, and

PO _ @) o gz (] ?
Wl Lpoema oty =25

Now the proof can be finished by a linear transformation mapping [—1, 1]
to [0, 1].

b] Let n be odd. Show that

! B 1 2
sup 1211111 < (n-l- ) ’
ozp IPll[=1,1] 2

where the supremum is taken for all p € P,, that are monotone on [—1,1].

Hint: It is sufficient to prove that if n := 2m is even, then

1 (n+2\? [
< —
i<y (*52) [ w0

for every p € P, nonnegative on [—1,1]. Show that there is an extremal
polynomial p for the above inequality for which ||p]|;_1 1) is achieved at 1.
Show, by a variational method, that this p must have at least 2m zeros
(counting multiplicities) in [—1, 1). Since p is nonnegative, it is of the form
p = q* with a q € Pp,. Now use E.2 €] of Section 6.1 to show that
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(1) < §<m+1>2/1 q2<t>dt=§(”;2)2/1 (1) dt,

-1

and the result follows. a

c] Let r = p/q, where p,q € P, and ¢ is positive and monotone non-
decreasing on an interval [a, b]. Show that

4n?
s < 2 Il

for every € € (0,6 — a).

Proof. The proof follows Borwein [80]. Let ¢ € [a + €,b] be a point where
r'(c)| = [|r'|[ja+e,p)- Let d € [a, c] be a point |p(d)| = [|pll[4,)- Then

Theorem 5.1.8 (Markov’s inequality) and the monotonicity of ¢ imply that

/ 902 2 2 2
PO 2l 2] 2 )]
lg(c)l = (c=a)lg(o)]  (c—a)lg(c)] = c—alq(d)] = €
and
lg'(c)] 2n°(|qllfa,q] 2n?
Ir(@)] < ———<—Ir(c)] < —Ir(o)].
la(c)] lq(c)| €
Thus
! ! n2
I laest = I @1 < = .
O
d] Sharpness of Part c]. Let n be odd. By part a], there exists a p € Py,
such that p is monotone increasing on R, p(a) = —1, p(a+¢) =1, and
1 (n+1)°
/ e
pa+al=5 (") .

Let ¢ := p+ 2 and r := 1/q. Show that

I7llaoc) =1 and  [r'(a+e)| =

1 (n+l 2
2€ 2 ’

O =
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Weighted polynomial inequalities and their applications are beyond
the scope of this book. A thorough discussion requires serious potential
theoretic background, and proofs are usually quite long. Some of the main
results in this area include von Golitschek, Lorentz, and Makovoz [92]; He
[91]; Ivanov and Totik [90]; Levin and Lubinsky [87a] and [87b]; Lubinsky
[89], Lubinsky and Saff [88a], [88b], and [89]; Mhaskar and Saff [85]; Nevai
and Totik [86] and [87]; Saff and Totik [to appear|; and Totik [94]. The
following exercise treats a weighted Markov-type inequality with respect
to the Laguerre weight on [0, 00). The method presented below works in
more general cases; however, the technical details coming from the “right”
polynomial approximation of the weight function is typically far more com-
plicated.

E.19 A Weighted Markov-Type Inequality of Szeg6. Part a] presents a
simple weighted polynomial inequality of Szegé [64].

a] Show that
1P (@)e™"[lj0,00) < (8n + 2)[Ip(x)e ™ I|[0,00)
for every p € P,,.
Proof. Let p € P,. First prove the inequality
P'(0)] < (8n + 2)[Ip(z)e " Iljo,00)

as follows. Apply Theorem 5.1.8 (Markov’s inequality) on [0,n/2] (by a
linear transformation) to

a(e) =) (1-2)"
and note that

(l—f)nge_z and (1—£)71<2, z €1[0,n/2].

n n -

The general case can be easily reduced to the case discussed above. If
y € [0, 00) is fixed, then let ¢(z) := p(z — y) € Pp. On applying the already
proved inequality with g, we obtain

p'(y)e™"| = |q'(0)e™|
<e Y(8n+2) max |g(z)e ”|

z€[0,00)

< (8n+2) max |p(a+ y)e= ()|

< (8n+2) max |p(z)e”"|,
z€[0,00)

which finishes the proof. ad
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b] There is an absolute constant ¢ > 0 such that

19" (@)e™"[l10,00) < ev/nllp(@)e™ llj0,00)

holds for every p € P,, having no zeros in the disk with diameter [0, 2].

Proof. See Erdélyi [89c], where this result is extended to various other gen-
eral classes of weight functions and constrained polynomials. O

E.20 Inequalities for Generalized Polynomials with Constraints. For
s € (0,2), let

Pok(s) = {p € Pop:m{ze[-1,1]: |p(z)] < 1}) > 2 — s} .
The polynomials T}, » € P are defined by
Toi(z) :=Tpf{n—kn—k+1,...,n;[0,1]} (3(z + 1)),

where 0 < k < n are integers. (Note that the notation introduced in Sec-
tion 3.3 defines Ty, x only on [—1,1], and, to be precise, T}, ;, denotes the
polynomial defined above on [-1,1].)

a] Remez-Type Inequality for ’ﬁnk The inequality

2+ s
Iplli11] < T ( )

2—s

holds for every p € ﬁnk(s) and s € (0,2). Equality holds if and only if

+2z S
p(x) = £Th ( + > .

2—s 2-—3s

Proof. The proof is quite similar to that of Theorem 5.1.1 (Remez Inequal-
ity); see Borwein and Erdélyi [92]. O

b] A Numerical Version of Part a]. Show that

T <2ﬂ> < exp (5 (\/%+ ns))

2—s

for every s € (0, 1].
Proof. See Borwein and Erdélyi [92]. O
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Let GAPy i, 0 < K < N, be the set of all f € GAPx of the form

(A.4.1) for which
Z T S K.
j=1

%<1
Note that if 0 < K < N are integers and p € Py i, then |p| € GAPy k.

For 0 < K < N and 0 < s < 2, let GAPpx k(s) denote the collection
of all f € GAPy i for which

m({ze[-1,1]: f(z) <1}) >2—35s.
The next part of the exercise extends a numerical version of part a] to the
classes GAPn k (s).
¢] Remez-Type Inequality for GAPy x. There exists a constant ¢; < 5

such that
| fllj=1,1) < exp (01 (V NKs+ Ns))

for every f € GAPn k(s) and s € (0, 1].

Hint: Let ¢ € N be the common denominator of the numbers ;. Apply part
a] with p := 2 € Py;n 24k (s), and then use part b]. O

d] Nikolskii-Type Inequality for GAPy . Let x be a nonnegative non-
decreasing function defined on [0, co0) such that x(z)/z is nonincreasing on
[0, 0¢). Then there exists an absolute constant ¢y < 25¢? such that

Ix(llz,=1,1) £ (ca max{l, ¢*NK, qN})l/qfl/pHX(f)||Lq[—1,1}
for every f € GAPny x and 0 < ¢ < p < o0.

The case K = N (when there is no restriction on the zeros) of part d]
is the content of Theorem A.4.4. If ¢K > 1, then the Nikolskii factor in the
unrestricted case (K = N) is like (/2 ¢N)?/97%/P while in our restricted

cases it improves to (/c2 q\/NK)2/qf2/p_

Proof. 1t is sufficient to prove the inequality when p = oo, and then a
similar argument, as in the proof of Theorems A.4.3 and A.4.4, gives the
result for arbitrary 0 < ¢ < p < co. Thus, in the sequel, let 0 < ¢ < p = c©.

Using the inequality of part c] with
s:=min{l, (2¢*NK)™"', (c1gN)™"}
and recalling the conditions prescribed for x, we conclude that
m({o € [~1,1]: ((F@)' > e (DI, 1 )
>m({z € [-1,1]: f(2) > e /| fll1,11})
>m({z €[-1,1]: f(z) > exp(—c1 (VNEs + N3s)) || fll=1.1})

S

AV
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for every f € GAPy k. Now integrating only on the subset E of [—1,1]
where

@) > eI,y

we obtain

2

X1 < /E (x(f ()7 da
< exmax{l, NK , gNHx(HI%,

for every f € GAPy i, where ¢» := cje? (assuming ¢; > 1). Since ¢; < 5,

we have ¢y < 25€2. 0

e] Remez-Type Inequality for 5,,(—1,1). Show that

2 n
<
ol < (52)

for every p € B, (—1,1) satisfying

m({z € [-1,1]: p(a)| < 1}) > 2 5.

Equality holds if and only if p is of the form
1+2\"
=+ .
p(z) <2 — )

Proof. See Erdélyi [90b]. O

f] Markov-Type Inequality for GAPx k. There exists an absolute con-
stant ¢ > 0 such that

1 1l=10) S eNE + DI fll-1,1

for every f € GAPy g of the form (A.4.1) with each r; > 1.

Recall that |f'(z)| is well-defined for every f € GAPy i and z € R,
as the modulus of the one-sided derivative of f at x. The condition that
rj > 1 for each j in (A.4.1) is needed to ensure that |f'(z;)| < oo if z; € R.
The above result generalizes the corresponding polynomial inequality for
the classes Py, k.

Proof. See Borwein and Erdélyi [92]. O
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E.21 The Ilyeff-Sendov Conjecture. The following problem is known as
the Ilyeff-Sendov conjecture. As before, let D := {2z € C: |z| < 1}.

Suppose P € P, has all its zeros in the closed unit disk D. Then each
closed disk centered at a zero of P contains a zero of of P'.

Although the problem in this generality is still unanswered, several
special cases have been settled. The case outlined in part a] was first proved
in Rubinstein [68]. V4jaitu and Zaharescu [93] contains stronger results; see
also Miller [90]. Milovanovi¢, Mitrinovi¢, and Rassias [94] has a discussion
about the recent status of the conjecture.

a] Suppose
Pi)=][(z=2), lal<1, |zl =1.

Show that P’ has at least one zero in the closed disk centered at 2;.

Proof. Without loss of generality, we may assume that z; := 1. Then P is
of the form P(z) = (z — 1)Q(z), where

Q(2) ::H(z—zk), |2k < 1.

Suppose the statement is false. Then R(z) := P'(z + 1) has no zero in the
closed unit disk D. Hence

‘R’(O)

20|,y

Observe that

Hence
‘Q’(l)‘_l‘R’(O)‘ n—1
Q(1) R(0) 2
However,
Q'(1) G| n—1
= > .
Re(@(l) Rel2 7= )23

This contradiction finishes the proof. O

b] The polynomial P(z) := 2™ — 1 shows the sharpness of part a].
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It follows from Theorem A.5.3 that there exists an absolute constant

¢ > 0 such that
1P'lli-1.1) < enllpll-1.)

for every p € P, with no zeros in the open unit disk. The polynomials
Pn(z) := (z+1)" show that up to the absolute constant ¢ > 0 this inequality
is the best possible. The next exercise shows that the “right” Markov factor
on [—1, 1] for polynomials of degree at most n with complez coefficients and
with no zeros in the open unit disk is ¢n(1 + logn) rather than cn. This is
an observation of Haldsz.

E.22 Markov Inequality for P;; with No Zeros in the Unit Disk. Show
that there exists an absolute constant ¢; > 0 so that
1P'lli-1.1) < ern(1 +logn)||pll-1,1)

for every p € PS with no zeros in the open unit disk.

Show also that there exist polynomials p, € PS with no zeros in the
open unit disk such that

[l 1.0 = con(1 +logn)llpalli_10, n=1,2,...

with an absolute constant ¢; > 0.

Proceed as follows:

a] Show that if z € C is outside the open unit disk, then

|z — 2|
g <z

|27t = 2|

for every z € R\ [-1,1].
b] Suppose p € PS has no zeros in the open unit disk. Let z € R\ [-1,1].
Show that
p(@)] < |2"|p(z~")].

¢] Prove the upper bound of the exercise.
Hint: Use part b] and E.11 a]. O
d] Let

zp 1= 2T/ 2ntl) k=1,2,...,n

be the (2n + 1)th roots of unity in the open upper half-plane. Let

Pan+1(2) := pant2(2) == (2 + 1) H(Z — ).
k=1
Show that |pany1(x)| = [#2"F! — 1| for every # € R. Note that this implies

P2n1 ()] = [Ip2nt1lli-1,) = 2.
Show also that
Py (—1)
P2n+1(—1)
with an absolute constant ¢ > 0.

‘ > en(1 4+ logn)
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+

Notation

Definitions of the more commonly used spaces are given. The equation
numbers here are the same as the equation numbers in the text.

Throughout the book, unless otherwise stated, spans should be as-
sumed to be real. Likewise, in function spaces, unless otherwise stated, the
functions should be assumed to be real valued.

The Basic Spaces.

(1.1.1) PL = {p ip(z) = Zakzk, ay € (C} .
k=0

(1.1.2) Py = {p ip(z) = Zakzk, ay € ]R} )
k=0

(1.1.3) RE :{gzpepfn,quﬁ} :

(1.1.4) R :{gzpepm,qem} .
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468 Notation

(1.15)  7°:= {t:t(a) =Y ape®, aye c}

{t (t(z) = a0+ Z(ak coskz + bysinkz), ap, by € C} .

Tyt = {t 1t(2) = ag +§(ak coskz + bysinkz), ap, by € ]R} .
k=1
Miintz Spaces.
(3.4.2) M,(A) = span{a:)‘0 oML g 1.
0
(3.4.3) M(A):= | Mn(A) = span{z?,a™, ...},
n=0

Associated with a sequence ();)52, with Re();) > —1/2 for each i, the nth
Miintz-Legendre polynomial is:

(3.4.5) Lo(z) = La{Aos ... s An} (@)
1 "ﬁlt+Xk+1 ot dt
o Jp i

For distinct A;,
(3.4.6) Lo{ o, ... s A Hz) = chmx’\’“, z € (0, 00)
k=0

with
12 (A + X + 1)
Ckn ‘= .
! H?:o,j;ﬁk (A — /\j)

Also,
(3.4.8) LE = (14 M + M) '/%L,

is the nth orthonormal Miintz-Legendre polynomial.



Rational Spaces.

K :=R (mod 27),

D:={z€eC:|z| <1},

Notation 469

0D :={2€C:|z|=1}.

(353) Pn(al,a2,... ,an) = {r[np(i;)—ak 'pE Pn} .
k=1
t(0
(3.5.4) Talar,az, ... ap) = {Hn c(os)ﬂ—ak| 't e 7;} .
k=1
Also
Tulay,az, ... asn; K) := Tp(ay, az A2n)
t(0
T2 [sin((6 — ax)/2)]
and
Te(ar an .. arm: K) :={ —) 6725}
[T52, sin((6 — ax)/2)
on K with aq,as,...,as, € C\R;
Pn(alaa27"' :ana {Hk 1|~T—ak‘ pepn}
and
Prcz(alaa2a"-=an; {H x—ak peprcz}
=1
on [—1,1] with a1,as,...,a, € C\ [-1,1];
Pe(ar,az,. .. ,an;0D) == {ﬁ :pepg}
k=1
on 0D with ay,as,...,a, € C\ 0D; and
Pn(al,a2,... ,an;]R) = {l_lnpfii)—ak :pE’Pn}
k=1
and
pe e p(z) , ¢
n(al,GQ,...,an,R) = mpepn
k=1

on R with ay,as, ...

,an € C\ R



470 Notation

Generalized Polynomials.

The function
m

(A.4.1) f2) =lwl [ 12 = 21"
j=1

with 0 <7; € R, z; € C, and 0 # w € C is called a generalized nonnegative
(algebraic) polynomial of (generalized) degree

(A.4.2) N:=>"r;.

The set of all generalized nonnegative algebraic polynomials of degree at
most N is denoted by GAPy.

The function

(A.4.3) f(z) = |w| H |sin((z — 2z;)/2)|"

Jj=1

with 0 <r; € R, 2; € C, and 0 # w € C is called a generalized nonnegative
trigonometric polynomial of degree

(A.4.4) N := %er.
j=1

The set of all generalized nonnegative trigonometric polynomials of degree
at most N is denoted by GTP y.

Constrained Polynomials.

The following classes of polynomials with constraints appear in Appendix
5:

Pnk :={p € Py : p has at most k zeros in D} , 0<Ek<n,

Bn(a,b) := {p € Py :plx) = :l:Zaj(b—z)j(a;—a)”fj, o > 0}, a<b,
=0

75n7k(a,b)::{pth:hEBn_k(a,b), q € Pr}, 0<k<n.
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Function Spaces.

The uniform or supremum norm of a complex-valued function f defined on
a set A is defined by

1f1[4 == sup |f(z)].
z€A

The space of all real-valued continuous functions on a topological space
A equipped with the uniform norm is denoted by C(A4). If A := [a,b] is
equipped with the usual metric topology, then the notation Cla,b] := C(A)
is used.

Let (X, u) be a measure space (u nonnegative) and p € (0,00]. The
space Lp(p) is defined as the collection of equivalence classes of real-valued
measurable functions for which || f||z,.) < oo, where

1/p
T (/X |fpdu) . pe(,)
and

Wl :=sup{fa € R: p({z € X : |f(z)]| > a}) >0} <oco.

The equivalence classes are defined by the equivalence relation f ~ g if
f =g p-almost everywhere on X. When we write L,[a, b] we always mean
L,(u), where p is the Lebesgue measure on X = [a,b]. The notations
L,(a,b), Lyla,b), and Ly(a,b] are also used analogously to Ly[a,b]. Again,
it is always our understanding that the space L,(u) is equipped with the
L,(u) norm.

Sometimes C(A) denotes the space of all complez-valued continuous
functions defined on A equipped with the uniform norm. Similarly, L,(u)
may denote the space all complez-valued continuous functions for which
lfllz,(u) < oo. This should always be clear from the context; many times,
but not always, the reader is reminded if C[a, b] or Lp(p) is complex.
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Index

Abel, Niels Henrik, 3, 61
Algorithms, 356-371
evaluation of =", 363
fast Fourier transform, 359
fast polynomial division, 362
fast polynomial expansion, 363
fast polynomial multiplication,
361
for Chebyshev polynomials, 371
for counting zeros, 364-370
for polynomial evaluations, 363
for reversion of power series, 362
interpolation, 360
Newton’s method, 362, 364-367
Remez, 371
zero finding for polynomials,
366370
Alternation set, 93
Alternation theorem, 94
Apolar polynomials, 23, 24, 25
Arc length of algebraic polynomials,
31
Arc length of trigonometric
polynomials, 35

Berman’s formula, 166
Bernstein factor, 145, 150, 152,

+

322-328

Bernstein polynomials, 163-164
Bernstein-Szegd inequality, 231, 245,

259, 321-323

for entire functions of exponential
type, 245

for rational functions on [—1,1],
322

for rational functions on K, 322
for rational functions on R, 323
for trigonometric polynomials, 232

Bernstein-type inequality

bounded, 178, 182, 213-214

for Chebyshev spaces, 206

for constrained polynomials,
420-447

for entire functions of exponential
type, 245

for exponential sums, 289

for generalized polynomials,
392-416

for generalized polynomials in L,
401-417

for higher derivatives, 258

for nondense Miintz spaces, 213,
310

for polynomials, 232-233, 390
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for polynomials in L,, 235, 390,
401-417
for products of Miintz spaces, 317
for rational functions on [—1,1],
323, 327
for rational functions on D, 324
for rational functions on K, 322,
327
for rational functions on R, 323,
329
for self-reciprocal polynomials,
339
for trigonometric polynomials, 232
unbounded, 154, 206-217
weighted, 257
Bessel’s inequality, 46
Best approximation, 94
by rationals, 99
to z*, a problem of Lorentz, 108
to z™, 99
uniqueness, 98
Binomial coefficient, 62
Blaschke product, 190, 324
Blumenthal’s theorem, 78
Bombieri’s norm, 274
Bounded Bernstein-type inequality;
see Bernstein-type inequality
Bounded Chebyshev-type inequality;
see Chebyshev-type
inequality
Bounded linear functionals, 50
Budan-Fourier theorem, 369

Cardano, Girolamo, 3
Cartan’s lemma, 350
Cauchy determinant, 106
Cauchy indices, 367
Cauchy'’s integral formula, 14
Cauchy-Schwarz inequality, 42
for sequences, 46
Cesaro means, 165
Chebyshev constants, 39
Chebyshev, P.L., 31
Chebyshev polynomials
algorithms for, 371
best approximation to z™, 30
composition
characterization, 33
explicit formulas, 30, 32

in Chebyshev spaces, 114-125
in rational spaces; see Chebyshev
rationals
orthogonality, 32
reducibility, 36
second kind, 37
three-term recursion, 32
trigonometric on subintervals, 235
uniqueness, 118
Chebyshev rationals, 139-153
and orthogonality, 147
derivative formulas, 146
in algebraic rational spaces, 142
in trigonometric rational spaces,
143
of the first and second kind, 141
on the real line, 151
partial fraction representation,
144
Chebyshev space, 92
dimension on the circle, 100
functions with prescribed sign
changes, 100
Chebyshev system, 91-100
extended complete, 97
Chebyshev’s inequality, 235, 390
Chebyshev-type inequality
bounded, 179, 182
explicit bounds via Paley-Weiner
theorem, 196
for entire functions of exponential
type, 245
Christoffel function, 74
for Miintz spaces, 195
Christoffel numbers, 67
Christoffel-Darboux formula, 60
Coefficient bounds
for polynomials in special bases,
124
in nondense rational spaces, 153
of Markov, 248
Comparison theorem, 103, 120, 122,
183
Completeness, 48, 79
Complexity concerns, 356-371
Consecutive zeros of p', 26
Constrained polynomials, 417-447
Bernstein-type inequality, 420,
425, 427



L, inequalities, 422
Markov-type inequality, 417-447
Nikolskii-type, 444
Remez-type, 443-445
Schur-type, 436-437

Cotes numbers, 67

Cubic equations, 4

d’Alembert, Jean le Rond, 13
de la Vallée Poussin theorem, 99
Denseness, 154-226
of Markov spaces, 206-217
of Miintz polynomials, 171-205
of Miintz rationals, 218-226
of polynomials, 154-170
Derivatives of Markov systems, 112
Descartes’ rule of signs, 22, 102
Descartes system, 100-113
examples, 103
lexicographic properties, 103
Divide and conquer, 358
Division of polynomials, 15, 362

Elementary symmetric function, 5
Enestrom-Kakeya theorem, 12
Erdés inequality, 431
Erdés-Turdn inequality, 435
Euler, Leonhard, 13
Evaluation of z", 363
Exponential sums; see Miintz
polynomials
a problem of Lorentz, 291
Bernstein-type inequality, 291
Markov-type inequality, 294
Nikolskii-type inequality, 289
Turan’s inequality, 295
with nonnegative exponents, 294
Exponential type, 196, 245
Extended complete Chebyshev system,
97

Factor inequalities, 260-274
via Mahler’s measure, 271-273

Factorization, 10, 36

Fast Fourier transform, 359
Favards theorem, 73

Fejér gap, 27-28

Fejér operators, 164

Fejér’s theorem, 165
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Fekete point, 38

Fekete polynomial, 38

Ferrari, Ludovico, 3

Ferro, Scipione del, 3

Fourier coefficient, 53

Fourier series, 53

Fundamental theorem of algebra, 3

Gamma function, 63
Gauss, Carl Friedrich, 13
Gaussian hypergeometric series, 62
Gauss-Jacobi quadrature, 67, 75
Gauss-Lucas theorem, 18
Gegenbauer polynomials, 65
Generalized polynomials
Bernstein-type inequality, 399,
407
L, inequalities, 401-407
Markov-type inequality, 399, 407
Nikolskii-type inequality, 394-395
Remez-type inequality, 393-394,
414
Schur-type inequality, 395
weighted inequalites, 407
Girard, Albert, 13
Grace’s complex version of Rolle’s
theorem, 25
Grace’s theorem, 18
Gram’s lemma, 176
Gram-Schmidt, 44

Haar space, 92

Haar system, 92

Halley’s method, 365

Hardy space, 189

Helly’s convergence theorem, 71

Helly’s selection theorem, 71

Hermite interpolation, 9

Hermite polynomials, 57
explicit formulas, 65

Hilbert space, 42

Holder’s inequality, 17, 49

Horner’s rule, 8

Hypergeometric differential equation,

63
Hypergeometric functions, 62

Identity theorem, 15
Inequalities
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Bernstein-Szegd inequality; see
Bernstein-Szeg6 inequality
Bernstein-type; see Bernstein-type
inequality
Bessel’s; see Bessel’s inequality
bounded Bernstein-type; see
bounded Bernstein-type
inequality
bounded Chebyshev-type; see
bounded Chebyshev-type
inequality
Cauchy-Schwarz; see Cauchy-
Schwarz inequality
Chebyshev-type; see Chebyshev-
type inequality
for factors; see factor inequalities
for Miintz polynomials; see Miintz
polynomials
Holder’s; see Holder’s inequality
Lax-type; see Lax
Markov-type; see Markov-type
inequality
metric; see metric inequalities
Minkowski’s; see Minkowski’s
inequality
Nikolskii-type; see Nikolskii-type
inequality
Remez-type; see Remez-type
inequality
Russak’s; see Russak
Schur-type; see Schur-type
inequality
Triangle; see Triangle inequality
unbounded Bernstein-type; see
unbounded Bernstein-type
inequality
Inner product, 41
Inner product space, 41
Integer-valued polynomials, 10
Interpolation
Hermite; see Hermite interpolation
Lagrange; see Lagrange
interpolation
Newton; see Newton interpolation

Jacobi polynomials, 57, 63
explicit formulas, 63

Jensen circles, 19

Jensen’s formula, 187

Jensen’s inequality, 414
Jensen’s theorem, 19

Kernel function, 47, 132
Kolmogorov’s inequality, 285
Korovkin’s theorems, 163

Lacunary spaces, 308
quasi-Chebyshev polynomials, 316
Lagrange interpolation, 8
Laguerre polynomials, 57, 66, 130
explicit formulas, 66
Laguerre’s theorem, 20
Lax-type inequality, 438
for rationals, 329
Malik’s extension, 438
on a half-plane, 338
Legendre polynomials, 57
Lemniscates of constant modulus,
352-353
Lexicographic properties, 116
for Miintz polynomials, 120, 314
for Miintz-Legendre polynomials,
136
for sinh systems, 122
Liouville’s theorem, 15
Logarithmic capacity, 38
Lorentz degree, 82
for polynomials, 86
for trigonometric polynomials, 89
Lorentz’s problem, 108, 291
L, norm, 6, 48, 471
I, norm, 6, 471
Lucas’ theorem, 18

Mabhler’s measure, 271
Mairhuber theorem, 98
Markov system, 100
closure of nondense, 211
derivative of, 112
Markov-Stieltjes inequality, 76
Markov-type inequality
for P, 233
for Py, 255
for constrained polynomials,
417-447
for constrained polynomials in L,,
422, 428-429



for exponential sums, 276-280,
294-295
for generalized polynomials,
399-407, 445
for generalized polynomials in Ly,
401-407
for higher derivatives, 248-260
for monotone polynomials, 439—
441
for Miintz polynomials, 276-279,
287-288
for Miintz polynomials in L,
279-280
for nonnegative polynomials, 420,
439
for rational functions, 336
for self-reciprocal polynomials,
339
for trigonometric polynomials on
subintervals, 242-245
in the complex plane, 235
weighted, 442-443
Maximum principal, 15
m-distribution, 57
Mergelyan’s theorem, 170
Mesh of zeros, 155
Metric inequalities, 344-355
for polynomials, 345-346
for rational functions, 347-349
Minkowski’s inequality
in L,,p>1,49
in L,, p <1, 52
Moment, 57
Moment problem, 70
Monotone operator theorem, 163
Multiplication of polynomials, 361
Miintz polynomials
bounded Bernstein-type
inequality, 178, 182, 213,
310, 317
bound for smallest zero, 313
lexicographic properties of zeros,
116, 120
Newman’s inequality, 276, 301
Newman’s inequality in L, 279
Newman’s problem, 317
Nikolskii-type inequality, 281, 298,
317
positive zeros, 22
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Remez-type inequality, 304, 307,
316
where the sup norm lives, 301
Miintz rationals, 218-226
denseness, 218
Miintz space, 125-126
lexicographic properties of zeros,
120
products of, 222, 316
quotients of, 218-226
Miintz system, 125-136
closure, 171-205
nondense, 303-319
Miintz-Legendre polynomials, 125-138
definition, 126
differential recursion, 129
global estimate of zeros, 136
integral recursion, 132
lexicographic properties of zeros,
133-136
orthogonality, 127, 132
orthonormality, 128
Rodrigues-type formula, 128, 131
zeros of, 133
Miintz’s theorem, 171-205
another proof, 176, 192
closure of span in, 178, 181, 185
in C[0,1], 171
in Cla,b], 180, 184

in L,[0,1], 171
in L,[0, 1], 172
in Lya,b], 186

in Ly(w), 311
on sets of positive measure, 303

Newman'’s conjecture
on denseness of products, 316
on denseness of quotients, 220,
223
Newman’s inequality, 275-279
an improvement, 287
for Miintz polynomials, 276
for Miintz polynomials in L,, 279
on positive intervals, 301
Newton’s identities, 5
Newton Interpolation, 10
Newton’s method, 362, 364-367
for z'/ 2 365
in many variables, 366
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Nikolskii-type inequality
for constrained polynomials, 444
for exponential sums, 289
for generalized polynomials, 394,
395
for Miintz polynomials, 281, 298,
317
for products of Miintz spaces, 317
Nondense Miintz spaces, 303-319
Nonnegative polynomials, 70, 85, 417,
420
Nonnegative trigonometric
polynomials, 85, 409
Norms, 471
Ly; see L, norm
lp; see l, norm
supremum; see supremum norm

Orthogonal collection, 43
Orthogonal functions, 41-56
Orthogonal polynomials, 57-79
as continued fractions, 79
as determinants, 76
characterization of compact
support, 77
Gegenbauer; see Gegenbauer
polynomials
Hermite; see Hermite polynomials
interlacing of zeros, 61
Jacobi; see Jacobi polynomials
Laguerre; see Laguerre
polynomials
Legendre; see Legendre
polynomials
Miintz-Legendre; see Miintz-
Legendre polynomials
simple real zeros, 61
ultraspherical; see Ultraspherical
polynomials
Orthogonal rational functions, 147
Orthonormal set, 43

Paley-Weiner theorem, 196
Parallelogram law, 42

Parseval’s identity, 48

Partial fraction decomposition, 7, 144
Pellet’s theorem, 16

Polar derivative, 20

Polynomials

as sums of squares, 85, 348

Bernstein; see Bernstein
polynomials

Chebyshev; see Chebyshev
polynomials

Gegenbauer; see Gegenbauer
polynomials

generalized; see generalized
polynomials

growth in the complex plane, 239

Hermite; see Hermite polynomials

in g, 167

integer valued; see Integer valued
polynomials

Jacobi; see Jacobi polynomials

Laguerre; see Laguerre
polynomials

Legendre; see Legendre
polynomials

Miintz; see Miintz polynomial

Miintz-Legendre; see Miintz-
Legendre polynomials

number of real roots, 17, 137

symmetric, 5

trigonometric; see Trigonometric
polynomial

Ultraspherical; see Ultraspherical
polynomials

with integer coefficients, 169

with nonnegative coefficients,
79-90, 417

with real roots, 345, 347-348

Products of Miintz spaces, 222, 316

Quadratic equations, 4

Quartic equations, 4

Quasi-Chebyshev polynomials, 316,
342

Railway track theorem, 98
Rakhmanov’s theorem, 78
Rational functions
algebraic, 139
Chebyshev polynomials of, 139-
153
coefficient bounds, 153
inequalities; see inequalities
trigonometric, 139
Rational spaces



of algebraic rational functions,
139-153, 320-321
of trigonometric rational
functions, 139-153, 320-
321
Recursive bounds, 359
Remez’s algorithm, 371
Remez-type inequality
for algebraic polynomials, 228
for constrained polynomials, 443,
445
for generalized polynomials, 393,
394
for generalized polynomials in Ly,
401-402
for Miintz spaces, 307
for nondense Miintz spaces, 304
for products of Miintz spaces, 316
pointwise, 414
for trigonometric polynomials, 230
Reproducing kernel, 47, 132
Reversion of power series, 362
Riemann-Lebesgue lemma, 54
Riesz representation theorem, 50
Riesz’s identity, 390
Riesz’s lemma, 237
Riesz-Fischer theorem, 50
Rising factorial, 62
Rolle’s theorem, 25
Rouché’s theorem, 14, 16
Russak’s inequalities, 336

Salem numbers, 6
Schur’s theorem, 17
Schur-type inequality
for algebraic polynomials, 233
for constrained polynomials,
436-437
for generalized polynomials, 395
for rational functions, 337
for trigonometric polynomials, 238
Self-reciprocal polynomials, 339
quasi-Chebyshev polynomials, 342
Somorjai’s theorem, 218
Space
Chebyshev; see Chebyshev space
Descartes; see Descartes space
Haar; see Haar space
Miintz; see Miintz space
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rational; see rational space
Stieltjes’ theorem, 78
Stone-Weierstrass theorem, 161
Sums of squares of polynomials, 85,

348

Supremum norm, 6, 29, 471
Symmetric function, 5
Symmetric polynomial, 5
Szegd’s inequality, 391
Szegd’s theorem, 23, 235

Tartaglia, Niccolo, 3

Tchebychev; see Chebyshev

Three-term recursion, 59

Totally positive kernels, 110

Transfinite diameter, 38

Triangle inequality, 42

Trigonometric polynomial, 2

Trigonometric polynomials of longest
arc length, 35

Turan’s inequality, 434

Turén’s inequality for exponential
sums, 295

Ultraspherical polynomials, 65
Unbounded Bernstein-type inequality,
206-217
characterization of denseness, 207
Unicity theorem, 15

Variation diminishing property, 111
Vandermonde determinant, 38, 103
Videnskii’s inequalities, 242-245

Walsh’s two circle theorem, 20
Weierstrass’ theorem, 154-170

for Markov systems, 155

for polynomials, 159

for polynomials in z*, 167

for polynomials with integer

coefficients, 169

for trigonometric polynomials, 165

in Ly, 169

on arcs, 170

Stone-Weierstrass theorem, 161
Wronskian, 22

Zeros, 11-18
algorithms for finding, 364-367
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complexity of, 367

counting by winding number, 370
in a disk, 369

in an interval, 368

in Chebyshev spaces, 99
localizing, 367

maximum number at one, 137

of derivatives of polynomials,
18-28

of integrals of polynomials, 24

of Miintz polynomials, 120

of Miintz-Legendre polynomials,
133-136

of orthogonal polynomials, 61

Zolotarev, 35
Zoomers, 218

maximum number of positive, 17
of Chebyshev polynomials, 34,
116, 120, 122



