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PREFACE

This book contains lectures on matrices given at Princeton University at
various times since 1920. It was my intention to include full notes on the his-
tory of the subject, but this has proved impossible owing to circumstances
beyond my control, and I have had to content myself with very brief notes (see
Appendix I). A bibliography is given in Appendix II. In compiling it, espe-
cially for the period of the last twenty-five years, there was considerable difficulty
in deciding whether to include certain papers which, if they had occurred earlier,
would probably have found a place there. In the main, I have not included
articles which do not use matrices as an algebraic calculus, or whose interest lies
in some other part of mathematics. rather than in the theory of matrices; but
consistency in this has probably not been attained.

Since these lectures have been prepared over a somewhat lengthy period of
time, they owe mugh to the criticism of many friends. In particular, Professor
A. A. Albert and Dr. J. L. Dorroh read most of the MS making many sugges-
tions, and the former gave material help in the preparation of the later sections
of Chapter X.

J. H. M. WEDDERBURN.

Princeton, N. J.,

July 20, 1934.
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CORRIGENDA

4, line 9 from top: on second ¥ read j for p

6, Theorem 1, add: and conversely, if a malrix is commutative with every
other matrix, it 1s a scalar matrix.

7, line 12 from foot; for first and third A read |A|
11, lines 10, 11 from foot: for (Q’Q) read (Q'Q)—!
13, line 9 from foot: for Sgix read Sgix
13, line 6 from foot: for g, read g,
14, line 3 from top: before ajie; read Z.
18, line 8 from foot: for j read ¥;
20, line 8 from foot: forr + 1 read r — 1
30, line 13 from top: for = read —
31, line 4 from foot: for second x; read xe;; add e; + ex = 1
42, equation (16): for 1 read —1
54, line 14 from foot; for (12) read (13)
54, line 6 from foot: for (14) read (15)
54, line 3 from foot: for (15) read (16)
54, line 2 from foot: for (13) read (14)
56, line 12 from top: correct term after = to read k; s ;z:
67, lines 4, 5, 6, 7: the exponent n on the second last C should read (7).
68, line 11 from foot: before = read (—1)*
68, line 8 from foot: before || read (—1)r
74, line 11 from foot: forr = 1 read r = 3
81, line 4 from foot: for 1/8,! read 8! with similar change in last line
84, line 13 from foot: interchange i and j
85, line 8 from foot: for §, read

86, line 7 from top: for first e; read e;



page 92, line 11 from foot: delete from ““and if”’ to end of paragraph

page 101, line 6 from foot: after hermitian insert A = A’

page 103. line 4 from foot: delete first 0; forq =t 4+ 1 readq =s + 1

page 112, equation (23): for { } read [ ]

page 116, line 7 from top: add Every power series converges when x is nilpotent,

page 119, line 9 from top: for “‘at least . . . first” read “the H.C.F. of the t's
is relatively prime to m”’

page 122, line 4 from foot: multiply bracket by e*i and delete same inside
page 122, equation (30): for g;; read pij = € *ig;;

page 123, lines 2 and 3 from top: for gi; read pj;

page 123, equations (32) and (33): for = read 2=

page 125, line 4 from top: read ai"'(A), as2(A), -+ -, ax™ ()

page 126, line 13 from top: for | | read | |

page 126, equation (45): for first a read a

page 129, equation (63): in first term the bars should be heavy

page 129, line 5 from foot: for |x| read |x|

page 134, line 6 from top: multiply right side of equation by 2

page 136, line 10 from top: for & read &,

page 137, equation (103): read p = — 9,9

page 144, equation (24): read x’axa™

page 156, line 6 from top: for second = read < and add "-< A, whence A = ZA;;"”
page 164, line 8 from top: for primitive read minimal

page 164, line 7 from foot: for invariant read semi-invariant

page 164, last line: before ‘‘complete’’ insert ‘‘suitably chosen”

page 166, line 10 from foot: for equivalent read invariant

page 166, line 5 from foot: for first B, read B,

page 167, Theorem 9: for j + kread i # t

page 171, line 5 from top: delcte 80



CHAPTER 1
MATRICES AND VECTORS'
1.01 Linear transformations and vectors. In a set of linear equations

am + Gem + -+ Gipum
o + Geame + -+ G2a7a

Nn = QuM + Gnan2 + e + Annfn

’
N

3
»
]

or

n

) =D agm (=12 - n
i=1

the quantities 71, 72, - -+, 7. may be regarded as the coordinates of a point P in
n-space and the point P’(n1, #3, ---, n.) is then said to be derived from P by
the linear homogeneous transformation (1). Or, in place of regarding the #’s as
the coordinates of a point we may look on them as the components of a vector
and consider (1) as defining an operation which transforms y into a new vector
y’. We shall be concerned here with the properties of such transformations,
sometimes considered abstractly as entities in themselves, and sometimes in
conjunction with vectors.

To prevent misconceptions as to their meaning we shall now define a few terms
which are probably already familiar to the reader. By a scalar or number we
mean an element of the field in which all coefficients of transformations and
vectors are supposed to lie; unless otherwise stated the reader may assume
that a scalar is an ordinary number real or complex.

A vector! of order n is defined as a set of n scalars (&, &, -+, &) given in a
definite order. This set, regarded as a single entity, is denoted by a single
symbol, say z, and we write

T = (Ely & -, En)

The scalars &, &, ---, & are called the coordinates or components of the vector.
Hy = (mm, -, 1.) is also a vector, we say that z = y if, and only if, cor-
responding coordinates are equal, thatis, &, =7, (: = 1, 2, ---, n). The vector

z = (fl;fzy ) g-ﬂ) = (El+"7b£2+"72y Tt £ﬂ+ﬂn)

is called the sum of z and y and is written z + y; it is easily seen that the opera-
tion of addition so defined is commutative and associative, and it has a unique
inverse if we agree to write 0 for the vector (0,0, ---, 0).

! In chapter 5 we shall find it convenient to use the name hypernumber for the term
vector which is then used in a more restricted sense, which, however, does not conflict
with the use made of it here.

1



2 MATRICES AND VECTORS [1]

If p is a scalar, we shall write

pr = zp = (pk1, pky, **+, pkn).

This is the only kind of multiplication we shall use regularly in connection with
vectors.

1.02 Linear dependence. In this section we shall express in terms of

vectors the familiar notions of linear dependence.? If z,, z;, ---, z, are vec-
tors and wy, wy, - - -, w,scalars, any vector of the form

(2 z = w1 + wzs + - + o2,

is said to be linearly dependent on z,, x5, - -+, z.; and these vectors are called

linearly independent if an equation which is reducible to the form
0=wr+ w2+ - + w2,

can only be true when each w; = 0. Geometrically the r vectors determine an
r-dimensional subspace of the original n-space and, if z;, 25, - - -, z. are taken as
the coordinate axes, wi, wy, - -+, wrin (2) are the coordinates of z.

We shall call the totality of vectors z of the form (2) the linear set or subspace
(1, 23, -+, z,) and, when x;, x;, ---, x, are linearly independent, they are
said to form a basis of the set. The number of elements in a basis of a set is
called the order of the set.

Suppose now that (zi, z2, -, ), (Y1, ¥2, **-, ¥,) are bases of the same
linear set and assume s > r. Since the z’s form a basis, each y can be expressed
in the form

3) Yi=aati + apts + -+ +aipz, (E=1,2 -+, )
and, since the y’s form a basis, we may set

zi =bayr + bt + - + by, (@=1,2, -+, 1)
and therefore from (3)

4) Yi = Zr) aiT; = 2’ i 2 bikyr = 2 CikYky
k=1 k=1

i=1 7=1

.,
where ¢;. = 2 ai;bjk, which may also be written
i=1

(5) Cik = E aibp, (G =1,2, %)

i=1
if we agree to set a;; = 0 when j > r. Since the y’s are linearly independent,
(4) can only hold true if ¢ii = 1, ce = 0 (¢ # k) so that the determinant

2 See for instance Bocher, Iniroduction to Higher Algebra, p. 34.



[1.03] LINEAR VECTOR FUNCTIONS AND MATRICES 3

| e | = 1. But from the rule for forming the product of two determinants it
follows from (5) that | ci | = | @ || b | which implies (i) that | aw | > 0 and
(ii) that r = s, since otherwise | a:x | contains the column a;, , 4 ; each element
of which is 0. The order of a set is therefore independent of the basis chosen
to represent it.

It follows readily from the theory of linear equations (or from §1.11 below)
that, if | a:; | # 0 in (3), then these equations can be solved for the z’s in terms
of the ¢’s, so that the conditions established above are sufficient as well as
necessary in order that the y’s shall form a basis.

If e; denotes the vector whose 7th coordinate is 1 and whose other coordinates
are 0, we see immediately that we may write '

z=fe+ &es+ -0 + buea

in place of x = (&, &, ---, £&). Hence ey, €, ---, e, form a basis of our
n-space. We shall call this the fundamental basis and the individual vectors e;
the fundamental unit vectors.

If 21, 2, -+, z:{r < m) is a basis of a subspace of order 7, we can always
find n—r vectors z, .1, -+, Z, Such that z;, z,, ---, z, is a basis of the
fundamental space. For, if z, . is any vector not lying in (z1, 22, -+, z,),
there cannot be any relation

@ + 0Ty + 0 A @ w1 &g =0

in which w, . ; # 0 (in fact every w must be 0) and hence the order of (z,,
Xy, **, Tr, Tr 11) isr 4+ 1. Since the order of (e, e, -+, e,) is n, a repetition
of this process leads to a basis 2y, 22, -+, z,, -+, z, of order n after a finite
number of steps; a suitably chosen e; may be taken for z, . ;. The (n—r)-space
@r 41, ***, Za) is said to be complementary to (zi, x5, -+, z,); it is of course
not unique.

1.03 Linear vector functions and matrices. The set of linear equations
given in §1.01, namely, :

n

(6) 77: = 2 Qin; (7/ = i’ 27- ) n)

i=1

define the vector ¥’ = (01, 75, **-, 7.) as a linear homogeneous function of
the coordinates of ¥y = (m, 73, - -+, 7.) and in accordance with the usual func-
tional notation it is natural to write y' = A(y); it is usual to omit the brackets
and we therefore set in place of (6)

y = Ay.

The function or operator A when regarded as a single entity is called a
matrix; it is completely determined, relatively to the fundamental basis, when



4 MATRICES AND VECTORS [T]

the. n? numbers a;; are known, in much the same way as the vector y is deter-
mined by its coordinates. We call the a;; the coordinates of A and write

an G vt G

Qa1 G2 -°* Q2n
) A= - .

Qny QAng  *°° Qnn

or, when convenient, A = || a;;||. It should be noted that in a;; the first suffix
denotes the row in which the coordinate occurs while the second gives the

column.
If B = || bi;|| is a second matrix, ¥y’ = A(By) is a vector which is a linear
vector homogeneous function of y, and from (6) we have

n n n
71:' = E Qip 2 bpmi = z dimiy
p=1 p=1 i=1

where
® dij = 2 @ibs.

p=1
The matrix D = ||d;;|| is called the product of A into B and is written AB.
The form of (8) should be carefully noted; in it each element of the sth row of A
is multiplied into the corresponding element of the jth column of B and the
terms so formed are added. Since the rows and columns are not interchange-
able, AB is in general different from BA; for instance

10 a b _ t a b ‘
2 1| e d|| |2a4+c 26+4d
a b )1 0”_ a+ 2b b“
c d 2 1|  Jlc+2d dl
The product defined by (8) is associative; for if C = [| ¢;; ||, the element in

the 7th row and jth column of (AB)C is

n

2 <2 art'pbpq>cqi = 2 aip <2 b,,ch,)
? ¢=1

¢=1 \p=1 =1

and the term on the right is the (7, j) coordinate of A(BC).
If we add the vectors Ay and By, we get a vector whose 7th coordinate is

(cf. (6))

n n ﬂj
’
n = E ain; + z bim; = 2, Ciini

i=1 i=1 i=1
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where ¢;; = ai; + bi;. Hence Ay + By may be written Cy where C = || c;; ||.
We define C to be the sum of A and B and write C = A + B; two matrices
are then added by adding corresponding coordinates just as in the case of vec-
tors. It follows immediately from the definition of sum and product that

A+B=B+4, (A+B+C=4+B+C0),
A(B+C) = AB+ AC, (B+ C)A = BA + CA,
Az + y) = Az + Ay,

A, B, C being any matrices and z, y vectors. Also, if k is a scalar and we set
v = Ay, ¥y’ = ky', then

"

Yy’ =Ry = RA(y) = A(ky)

or in terms of the coordinates
Iy
N = E Raim;.
-

Hence kA may be interpreted as the matrix derived from A by multiplying
each coordinate of 4 by k.

On the analogy of the unit vectors e; we now define the fundamental unit
malrices e;; (1, j = 1,2, ---, n). Here e;; is the matrix whose coordinates are
all 0 except the one in the sth row and jth column whose value is 1. Corre-
sponding to the form Z¢e; for a vector we then have

(9) A= 2 @;i€i5.

Also from the definition of multiplication in (8)
(10) €ij€jk = &k, et'jqu = 0’ (J # P)

a set of relations which might have been made the basis of the definition of the
product of two matrices. It should be noted that it follows from the defini
tion of e;; that

(11) €ij6; = €, €t = 0 (] # k),
(12) Aep = E aijeier = E e,
Hence the coordinates of Ae; are the coordinates of A that lie in the kth column.

1.04 Scalar matrices. If k is a scalar, the matrix K defined by Ky = ky
is called a scalar matriz; from (1) it follows that, if K = || R:; ||, then ki = k
(t=1,2 ---, n),ki =0 = j). The scalar matrix for which £ = 1 is called
the identity matrix of order =n; it is commonly denoted by I but, for reasons
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explained below, we shall here usually denote it by 1, or by 1, if it is desired
to indicate the order. When written at length we have

1 k

1 k
A convenient notation for the coordinates of the identity matrix was intro-

duced by Kronecker: if §;; is the numerical function of the integers i, j
defined by

(13) 8ii = 1, 6;; =0 (@ #J),

then 1, = || 8;;|]. We shall use this Kronecker delta function in future with-
out further comment.

THEOREM 1. Every matriz is commutative with a scalar matriz.

Let k be the scalar and K = || ki; || = || ®6:; || the corresponding matrix.
If A = || a;;|| is any matrix, then from the definition of multiplication
KA = ” E k,-pa,,,- = I E ka.‘palpf! = ”ka,;,'“
p p
AK = ‘ 2 a’ipkpi = ) z ka«ipapi = H ka“”
p P

so that AK = KA.

If k and h are two scalars and K, H the corresponding scalar matrices, then
K + H and KH are the scalar matrices corresponding to £ + & and kh. Hence
the one-to-one correspondence between scalars and scalar matrices is main-
tained under the operations of addition and multiplication, that is, the two
sets are simply isomorphic with respect to these operations. So long therefore
as we are concerned only with matrices of given order, there is no confusion
introduced if we replace each scalar by its corresponding scalar matrix, just
as in the theory of ordinary complex numbers, (a, b)) = a + bi, the set of num-
bers of the form (a, 0) is identified with the real continuum. We shall there-
fore as a rule denote || 8:; || by 1 and || k3:; || by k.

1.05 Powers of a matrix; adjoint matrices. Positive integral powers of
A = || a;;|| are readily defined by induction; thus
A2 = A4, A = A-A2. -, Am = A-Am— 1,

With this definition it is clear that A74* = A7+ for any positive integers r, s.
Negative powers, however, require more careful consideration.
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Let the determinant formed from the array of coefficients of a matrix be
denoted by
|A]| = det. A

and let @, be the cofactor of a,,in A4, so that from the properties of deter-
minants

(14) E Bipopj = | A | 85; = 2 apy;  (hj=1,2, oo, ).
p 4

The matrix || a;; || is called the adjoint of A and is denoted by adj A. In this
notation (14) may be written

(15) A(adj4) = |4 | = (adj A)A4,

so that a matrix and its adjoint are commutative.
If | A| # 0, we define A—! by

(16) A-1 = | A | adj A.

Negative integral powers are then defined by A= = (A~Y)7; evidently A~ =
(A")~t. We also set A° = 1, but it will appear later that a different inter-
pretation must be given when | A | = 0. Since AB-B7!A~1 = A-BB~ 1A' =
AA-! = 1, the reciprocal of the product AB is

(AB)~' = B-14-1,

If A and B are matrices, the rule for multiplying determinants, when stated

in our notation, becomes

|AB| = |A[|B]
‘In particular, if AB = 1, then | A || B| = 1; hence, if | 4| = 0, there is no
matrix B such that AB = 1 or BA = 1. The reader should notice that, if &
is a scalar matrix of order n, then | k| = k.

If A = 0, A is said to be singular; if A # 0, A is regular or non-singular.
When A is regular, A~! is the only solution of AX = 1 or of X4 = 1. For,
if AX = 1, then

A1'= A"1.1 = A714X = X.

If AX = 0, then either X = 0 or A is singular; for, if 47! exists,
0=A4"1'4z = X,
If A2 = A 0, then A is said to be idempotent; for example e;; and ”é :g 5

are idempotent. A matrix a power of which is 0 is called nilpotent. If the
lowest power of A which is 0 is A7, r is called the index of A; for example, if 4
= ez + ey + ey, then

A? = €13 + €24, A3 = €14, At = 0,

so that the index of A4 in this case is 4.
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1.06 The transverse of a matrix. If A = || ai||, the matrix || a/|| in
which a; = a;:is called the transverse® of A and is denoted by A’. For instance
the transverse of

an G2 dup
G21 Q22 Q23
G311 A3z @33

G G Qa3
(12 G2 QA3
a1z Q23 (33

is

The transverse, then, is obtained by the interchange of corresponding rows and
columns. It must be carefully noted that this definition is relative to a par-
ticular set of fundamental units and, if these are altered, the transverse must
also be changed.

THEOREM 2. The transverse of a sum 1is the sum of the transverses of the sepa-
rate terms, and the transverse of a product is the product of the transverses of the
separate factors in the reverse order.

The proof of the first part of the theorem is immediate and is left to the
reader. To prove the second it is sufficient to consider two factors. Let
A = ||aiill, B = ||bij|l, C = AB = ||ci;|| and, as above, set a}; = a;;,
bi; = bji, ci; = c;i; then

’ ’ ’
Cij = Cji = 2: Ajpbpi = _S_: b0y
D v4

whence
(AB) = C' = B'A’.

The proof for any number of factors follows by induction.
If A = A’, A is said to be symmetric and, if A = —A’, it is called skew-
symmetric or skew. A scalar matrix £ is symmetric and the transverse of

kA is RA’.
THEOREM 3. Every malriz can be expressed uniquely as. the sum of a sym-
metric and a skew matriz.

Forif A =B+ C,B =B, = —C,then A’ = B4+ C' = B — Cand
therefore

B = (A + A%)/2, C = (4 - A2

Conversely 24 = (A + A’) + (A — A’) and A + A’ is symmetric, 4 — A’
skew.

3 It is also called the transposed or conjugate of A. It is sometimes written 4.
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1.07 Bilinear forms. A scalar bilinear form in two variable vectors, x =
Zties, y = Zmes, is a function of the form

n

(17) Alm,y) = D, sida

t,7j=1

There is therefore a one-to-one correspondence between such forms and ma-
trices, A = || a;; || corresponding to A(z, y). The special form for which 4 =
|| 8:;]] = 1 is of very frequent occurrence and we shall denote it by S; it is
convenient to omit the brackets and write simply

(18) Szy = tm + Eme + -+ + £

and, because of the manner in which it appears in vector analysis, we shall
call it the scalar of zy. Since S is symmetric, Szy = Syz.

The function (17) can be conveniently expressed in terms of A and S; for
we may write A(z, ) in the form

n

Az, y) = Zn: Ei(E aiﬂl:’) = SzAy.
i=1

i=1
It may also be written

2 <Z aii&)n; = SA'zy = Syd'z;
i=1 \i=1

hence

(19) SzAy = Syd'z,

so that the form (17) is unaltered when x and y are interchanged if at the same
time A is changed into A’. This gives another proof of Theorem 2. For

Sz(AB)'y = SyABx = SBzxA'y = SzB’A'y,

which gives (AB)’ = B’A’ since x and v are independent variables.

1.08 Change of basis. We shall now investigate more closely the effect of
a change in the fundamental basis on the coordinates of a vector or matrix.
If fi, f2, -, fx is & basis of our n-space, we have seen (§1.02) that the f’s are
linearly independent. Let

fi=2piiei=Pei (i=1:2:"')n)
i=1

P = || psll

Since the f’s form a basis, the e’s are linearly expressible in terms of them, say

(20)

(21) € = 2 qiifis

i=1
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and, if @ = || ¢i; ||, this may be written

(22) ei= D) qi D, puee=PQu  (i=1,2 -, )
7 k

Hence PQ = 1, which is only possible if | P| # 0, Q = P~1,

Conversely, if | P| # 0, @ = P~', and f; = Pe; as in (20), then (22) holds
and therefore also (21), that is, the e’s, and therefore also any vector z, are
linearly expressible in terms of the f’s. We have therefore the following
theorem.

ToeorEM 4. Iffi = Pe; (1 = 1,2, ---, n), the vectors f; form a basis if, and
only if, | P| # 0.

If we have fewer than n vectors, say fi, f2, -, fr, we have seen in 1.02
that we can choose f, 1, --+, fn so that fi, fo, -+, f» form a basis. Hence

TueoreM 5. If fi, fo, -+, [+ are linearly independent, there exists al least
one non-stngular matriz P such that Pe; = f; (1 = 1,2, -+, 7).

We shall now determine how the form Szy, which was defined relatively to
the fundamental basis, is altered by a change of basis. As above let

@3) fi = Pe, e=PYi=Qf, |P|=0, (G=12 -, n)
be a basis and
© = Zfe = 26y Y = Zne = Inifi
variable vectors; then from (23)
z = QZf; = PZtie;, Y = QZnf; = PInie
and
Ztie, = P7lz = Qr, Znie; = Qy.

Let us set temporarily Sczy for Sry and also put S;zy = ¢4/, the correspond-
ing form with reference to the new basis; then

Sy = 8.Q2Qy = SzQ'Qy
Sexy = S;PzPy.
Consider now a matrix A = || a;;|| defined relatively to the fundamental
basis and let 4, be the matrix which has the same coordinates when expressed

in terms of the new basis as A has in the old. From the definition of 4 and
from ¢; = S.e;x we have

Az = E : a;ties = E : a.-,-e,-See,-:c

i, i,7

(24)
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and hence
Az = Zagtifi = 2a,f80w = 2a:,Qe:8.Qf Qx
= Q_IEG,’,’G.’SSG,‘Q:E = Q_IAQQI.

We have therefore, remembering that @ = P,

(25)

THEOREM 6. If f; = Pe; (1 = 1,2, -+, n) is a basis and A any matriz, the
matriz PAP~! has the same coordinates when expressed in terms of this basis as A
has in terms of the fundamental basis.

The matrix Q4@ is said to be similar to A and to be the transform of A
by @. Obviously the transform of a product (sum) is the product (sum) of
the transforms of the individual factors (terms) with the order unaltered. For
instance Q—'ABQ = Q'AQ-Q'BQ.

Theorem 6 gives the transformation of the matric units e;; defined in §1.03
which corresponds to the vector transformation (23); the result is that, if f;
is the unit in the new system corresponding to e;;, then

Jii = PeyP™!
which is readily verified by setting
A = eij=eSeei( ), A1 =[fi; =[fS4i( )

in (25). The effect of the change of basis on the form of the transverse is
found as follows. Let A* be defined by

S;xAdy = SpyA*zx;

then
SpyA*z = S;zdy = SQrQAy = S.xQ'QAy = S.Qy(Q)A'Q'Qx
= Sy(Q'QA'QQx.
Hence
(26) A* = (QQA'QQ.

1.09 Reciprocal and orthogonal bases. With the same notation as in the
previous section we have S,fif; = 0 (z # j), Sififi = 1. Hence

8i; = Sififi = 8QfQfi = S.f.Q'Qf:.

If, therefore, we set

(27) f; = Q’in (.7 =12 .- n)l
we have, on omitting the subscript e in S.,
(28) Sffi=38; (,i=12 -, n).

Since | Q'Q | = 0, the vectors f1, fz, - -, f. form a basis which we say is recip-
rocal to fi, fo, -+, fo. This definitior is of course relative to the fundamental
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basis since it depends on the function S but, apart from this the basis (f;) is
uniquely defined when the basis (f;) is given since the vectors f; determine P
and Q = P-L,
The relation between (f/) and () is a reciprocal one; for
fi = QQfi = QQPe; = Q'e;
and, if R = (Q')~%, we have f; = R'Rf].

If only the set (fi, fo, * -+, fr) is supposed given originally, and this set of
linearly independent vectors is extended by f. 1, +--, f» to form a basis of
the n-space, then f, .y, ---, f. individually depend on the choice of f, 1,
+++, fa. But (28) shows that, if Sfix = 0 (4 = 1,2, ---, r), then x belongs to
the linear set (f ,1, ---, f.); hence this linear set is uniquely determined
although the individual members of its basis are not. We may therefore with-
out ambiguity call § = (f, 41, -+-, f.) reciprocal to § = (fi, fo, =+ -, f);
%’ is then the set of all vectors z for which Szy = 0 whenever y belongs to §.

In a later chapter we shall require the following lemma.

Lemma 1. If (fi, fo, -+, fr) and (fu 41, -+, fu) are reciprocal, so also are
(B~ B~y -+, B7Y,) and (B'f; +1, Bf, 1+ -+, BY,) where B is any non-
singular matriz.

For SB'f;B~Y; = Sf;BB~'f; = Sfif; = 4.

Reciprocal bases have a close connection with reciprocal or inverse matrices

in terms of which they might have been defined. If P is non-singular and Pe;
= f; as above, then P = Zf;Se,( ) and, if @ = Ze;Sf’( ), then
PQ = ZeSfif;Sei( ) = ZéieiSes( ) = 1
8o that Q = P,
If QQ’ = 1, the bases (fi) and (f’) are identical and Sff; = &;; for all ¢ and j;
the basis is then said to be orthogonal as is also the matrix Q. The inverse of

an orthogonal matrix and the product of two or more orthogonal matrices are
orthogonal; for, if RR’ = 1,

(RQ)(RQ) = RQQ'R' = RR' = 1.
Suppose that ki, hs, - --, h, are real vectors which are linearly independent
and for which Sh;h; = &;; (¢ 5 j); since h; is real, we have Shh; £ 0. Ifr < n,

we can always find a real vector z which is not in the linear set (hi, - -, h,)
and, if we put

hes1 =2 — D7 hiShix/Shih,
1

then A, ;. # 0and Sheh, .1 = 0( = 1,2, ---, r). Hence we can extend the
original set to form a basis of the fundamental n-space. If we set f; =
hi/(Shihi)}, then Sfif; = 8i; even when ¢ = j; this modified basis is called an
orthogonal basis of the set.
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If the vectors k; are not necessarily real, it is not evident that x can be chosen
so that Sh, 41k, +1 # 0 when Shih; 2 0 (¢ = 1,2, ---, 7). This may be
shown as follows. In the first place we cannot have Syh, .1 = 0 for every v,
and hence Sh; 1k, +1 # 0 when r = n — 1. Suppose now that for every
choice of z we have Sh, 41k, 1 = 0; we can then choose a basis &, 1.1, -+, ks,
supplementary to h;, :--, h, such that Shh; = 0 (Z = r + 1, ---, n) and
Shh; = 0@ =r—~+1, -, n;5 =1, 2 ---,r). Since we cannot have
Sh, +1h; = 0 for every h; of the basis of the n-space, this scalar must be differ-
ent from 0 for some value of ¢ > r, say r + k. If we then put A, ., = h, .,
+ hr ;& in place of h, .1, we have Shih, .1 = 0 (i = 1,2, ---, r) as before
and also

Shy 4ihy 1= She 4 1he 41+ She f4he 41 + 28he 4 1he 41
= 2Shr+1hr+k ?5 0.

We can therefore extend the basis in the manner indicated for real vectors
even when the vectors are complex.

When complex coordinates are in question the following lemma is useful;
it contains the case discussed above when the vectors used are real.

LemMa 2. When a linear set of order r is given, it s always possible to choose
a basis g1, ¢z, -, g» Of the fundamental space such that g, -+, g, s a basis
of the given set and such that Sg.§; = 8:; where §; is the vector whose coordinates
are the conjugates of the coordinates of g; when expressed in terms of the funda-
mental basts.

The proof is a slight modification of the one already given for the real case.
Suppose that g1, ---, g, are chosen so that SgJ; = 6:;; (¢4, ] = 1,2, -+, s)
and such that (g, ---, ¢g,) lies in the given set when s < r and when s > r,
then g1, - -+, gr is a basis of this set. We now put

g' sy =2 — D, 0:S9:/S7:9s
1

which is not 0 provided z is not in (gy, ---, g,) and, if s < r, will lie in the
given set provided = does. We may then put

Js 41 = g: +1/(Sg: +10s + )}

and the lemma follows readily by induction.
If U is the matrix Ze;Sg;, then U = Ze;Sg; and

(29) vU’ = 1.

Such a matrix is called a unitary matrix and the basis g1, g2, -, g is called a
unitary basis. A real unitary matrix is of course orthogonal.
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1.10 The rank of a matrix. Let A = || a;;|| be a matrix and set (cf. (12)
§1.03)
he = Aes = ajie;;
then, if |
z = Ztie; = ZeiSex
is any vector, we have
Az = AZe;Seix = ZAe;Sex

or
(30) Az = D) hiSe.
. 1

L

Any expression of the form Az = 2 a;Sbix, where a:, b; are constant vec-
1
tors, is a linear homogeneous vector function of z. Here (30) shows that it
is never necessary to take m > n, but it is sometimes convenient to do so.
When we are interested mainly in the matrix and not in z, we may write 4
= Za;Sbi( ) or, omitting the brackets, merely

(31) A = Za;Sb;.
It follows readily from the definition of the transverse that
(32) A’ = =b;8a..
No matter what vector z is, Az, being equal to Za;Sb;z. is linearly dependent
on Gy, Gy **°, Gm or, if the form (30) is used, on Ay, hy, -+, h,. When | 4|

# 0, we have seen in Theorem 4 that the &’s are linearly independent but, if A
is singular, there are linear relations connecting them, and the order of the
linear set (ai, @2, - -, @m) is less than n.

Suppose in (31) that the a’s are not linearly independent, say

Qe = 101 + o8 + ¢ + ¥y —104 -1

then on substituting this value of a, in (31) we have

A = a8y + ab)) + -+ + a, —18(bs -1 + a, —1b,) + 2 a;Sb;,
s+1

an expression similar to (31) but having at least one term less. A similar
reduction can be carried out if the b’s are not linearly independent. After a
finite number of repetitions of this process we shall finally reach a form

(33) ' A= 2 c:S8d;
1



[1.10] RANK OF A MATRIX 15

in which ¢, ¢, -:-, ¢, are linearly independent and also d;, d;, ---, d,. The
integer r is called the rank of A.

It is clear that the value of r is independent of the manner in which the
reduction to the form (33) is carried out since it is the order of the linear set
(Aei, Aey, ---, Ae,). We shall, however, give a proof of thigs which inci-
dently yields some important information regarding the nature of A.

Suppose that by any method we have arrived at two forms of A

4 = 2 ¢:Sd; = j piSQz’,

1 1

where (¢, ¢;, -+, ¢,) and (di, dz, *--, d,) are spaces of order r and (pi, P2,
++y Py (@1 @n -+, gu) spaces of order 5, and let (c; +1, € 42 =", Ca), )
(ge +1, Qo +2 ***, g») be the corresponding reciprocal spaces, Then

Agi = D pSegi =pi  (G=1,2 -9
1

and also Ag; = Z ¢:Sdig;. Hence each p; lies in (ci, ¢5, -, ¢;). Similarly
each c; lies in (p1, ps, - -+, Ps) so that these two subspaces are the same and,
in particular, their orders are equal, that is, r = s. The same discussion with
A’ in place of A shows that (d;, dz, -+, d,) and (g1, g2, -+, ¢.) are the same.
We shall call the spaces & = (¢, ¢ -+, ¢/), &, = (di, dy, -+, d,) the left
and right grounds of A, and the total space & = (¢, - -+, ¢, dy, + -+, d;) will
be called the (total) ground of A.

If z is any vector in the subspace N, = (d, +1, d) 43, --+, d,) reciprocal
to ®,, then Az = 0 since Sdid; = 0 (i = j). Conversely, if

0=Az =72 c;Sd;x,

each multiplier Sd;r must be 0 since the ¢’s are linearly independent; hence every
solution of Az = O lies in N,. Similarly every solution of A’z = 0 lies in
Ne=(ch41,Craz ** Cr). We call N, and N, the right and left nullspaces
of A; their order, n — r, is called the nullity of A.

We may summarize these results as follows.

THEOREM 7. If a matrix A is expressed in the form 2 a;Sb;, where &,
1

= (ay, G **, @,) and &, = (by, by, - -+, b,) define spaces of order r, then, no
matter how the reduction to this form is carried out,the spaces ®, and ©, are always
the same. Further, if N, and N, are the spaces of order n — r reciprocal to ®,
and ®,, respectively, every solution of Az = 0 lies in N. and every solution of
Az =0inN,.

The following theorem is readily deduced from Theorem 7 and its proof is
left to the reader.
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TuEorEM 8. If A, B are matrices of rank r, s, the rank of A 4+ B is not
greater than r + s and the rank of AB is not greater than the smaller of r and s.

1.11 Linear dependence. The definition of the rank of a matrix in the
preceding section was made in terms of the linear dependence of vectors associ-
ated with the matrix. In this section we consider briefly the theory of linear
dependence introducing incidentally a notation which we shall require later.

n

Let z; = 2 tie; (0 =1,2, -++, r; 7 < n) be a set of r vectors. From the
i=1
rectangular array of their coordinates

fn b2 oo b
Ear En - Gon

Erl £r2 et frn

there can be formed n!/r!(n — r)! different determinants of order r by choosing
r columns out of (34), these columns being taken in their natural order. If
these determinants are arranged in some definite order, we may regard them
as the coordinates of a vector in space of order n!/r!(n — r)! and, when this
is done, we shall denote this vector by*

(35) ’ T 2 Ty l

and call it a pure vector of grade r. It follows from this definition that | z,z,
.-+ z,| has many of the properties of a determinant; its sign is changed if two
2’s are interchanged, it vanishes when two z’s are equal and, if A and u are
scalars,

(36) | Qx4 pxy) 22 o x| =N|TZp - 2| Fop Tz o0 2,

If we replace the z’s in (35) by r different units e, e, - -, e;, the result is
clearly not 0: we thus obtain (?) vectors which we shall call the fundamental
unit vectors of grade r; and any linear combination of these nits, say

(34)

2 Eil‘.i D l €i€i, *°° € ')
is called a vector of grade . It should be noticed that not every vector is a
pure vector except when r equals 1 or n.
If we replace z; by Z £ye; in (35), we get
| 1Ty zf‘l =2z 517‘152:1- e E’Vif | €6, *°° € l:
where the summation extends over all permutations j, 72, **+, jrof 1,2, -++, n
taken r at a time. This summation may be effected by grouping together the

4If it had been advisable to use here the indeterminate product of Grassmann, (35)
would appear as a determinant in much the ordinary sense (cf. §5.09).
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sets ji, J2, - - -, j- which are permutations of the same combination 4, 75, - -, %r,
whose members may be taken to be arranged in natural order, and then sum-
ming these partial sums over all possible combinations ¢, 7. - -+, 7,, Taking
the first step only we have
> Eli'EZiz cte Efir l €6, *** € l =2 6;: ;: Elil e Efir l €i€i, *° €4, l

where 8:!... i is the sign corresponding to the permutations (}!i2:: i) and this
equals | &, < ¢ £rip||ei -+ e |- W= have therefore

*
37 I 2 T L R 2

)
where the asterisk on X indicates that the sum is taken over all r-combinations
of 1, 2, -+, n each combination being arranged in natural order.

THEOREM 9 |xix2 +-- 2. = 0 if, and only if, z1, 25, -+, 2. are linearly
dependent.

The first part of this theorem is an immediate consequence of (36). To prove
the converse it is sufficient to show that, if |z -+ 2, 1] & 0, then there
exist scalars a1, as, - -+, a,—1such that

T, = o1 + a%e + 0+ ar — 1%, — 1.

Let z; = 2 £ije;. Since | zixy -+ 7, —1| # 0, at least one of its coordinates
is not 0, andjfor convenience we may suppose without loss of generality that
(38) | fufes =+ & -1 r—1] # 0.

Since | ixz -+ 2,| = 0, all its coordinates equal 0 and in particular
|Euke - &1 r—1fri| =0 t=1,2 ---, n).

If we expand this determinant according to the elements of its last columm,
we get a relation of the form

Bibri + Bobi + - + B4 1,i=0
where the §’s are independent of ¢ and 8; # 0 by (38). Hence we may write
(39) fi=ati+ - Far_1b_1i G=1,2 -, n)
the o’s being independent of 7. Multiplying (39) by e; and summing with
regard to 7, we have
.=t + 0+ o123

which proves the theorem.
If (&, @y, -+, an) is a linear set of order r, then some set of r a’s form a
basis, that is, are linearly independent while each of the other a’s is linearly
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dependent on them. By a change of notation, if necessary, we may take
a1, @, -+, @, as this basis and write

(40) Gpi= D Bty (=12, m =)
i=1

We shall now discuss the general form of all linear relations among the a’s in
terms of the special relations (40); and in doing so we may assume the order
of the space to be equal to or greater than m since we may consider any given
space as a subspace of one of arbitrarily higher dimensionality.

Let

(41) E Yid; = 0
1

be a relation connecting the a’s and set

m
Cc = E:'y,e,-.
1

Then (40), considered as a special case of (41), corresponds to settihg for c
(42) Ci=—2ﬁ,~j€j+€'+;, ('},:1,2, "‘,m—'T);
i=1

and there is clearly no linear relation connecting these vectors so that they
define a linear set of order m — r. Using (40) in (41) we have

2<7i+’§7r+cﬁsi>ai =0
i=1 i=1

and, since a, @, - -, @, are linearly independent, we have

m—r

j="'z>ﬂt‘ﬂ’f+i (j=1:2:"':r)
=1
whence
(43) c = 2’)‘:‘0:' = - E7r+625.’,€i+ 27r+€31+i = Z'Yr+s'ca‘;
1 i=1 =1 i=1 i=1

30 that ¢ is linearly dependent on ¢, ¢z, -+-, ¢m —,. Conversely, on retracing
these steps in the reverse order we see that, if ¢ is linearly dependent on these
vectors, so that v, +s (¢ = 1,2, v+, m — r) are known, then from (43) the

vi(3=1,2, ---, r) are defined in such a way that ¢ = E vie; and 2 va; =

0. We have therefore the following theorem.
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TaeoreM 10. If a), a3, -, am ©S G lineor set of order r, there exist m — r

m
linear relations E vi6; =0 (@ = 1,2, <+, m — r) such that (i) the vectors
c = E viie; a;e-l;nearly independent and (%) if = v;4; = 0 1s any linear relation
conmét:::g the a's, and if ¢ = Z v, then ¢ belongs to the linear set (ci, cs,
. ."I"h;; 1;;31'11; can be translated immediately in terms concerning the solution

of a system of ordinary linear equations or in terms of matrices. Ifa; = Z a;ie;,

then (41) may be written

ayn1 + anv: + o0 4 Guym =0
@) e

...............................

YL+ Gy + o0+ AmaYm =0

a system of linear homogeneous equations in the unknowns i, vz, --, ¥Ym.
Hence (44) has solutions for which some 7 # 0 if, and only if, the rank r of
the array

Gu QG *** Qm

a /7% cer Ome
(45) 12

Qn Q2n *°* Qmn

is less then m and, when this condition is satisfied, every solution is linearly
dependent on the set of m — r solutions given by (42) which are found by
the method given in the discussion of Theorem 9.

Again, if we make (45) a square array by the introduction of columns or
rows of zeros and set A = || a;; ||, ¢ = = ~ie;, then (41) becomes A’c = 0 and
Theorem 10 may therefore be interpreted as giving the properties of the null-
space of A’ which were derived in §1.10.



CHAPTER II
ALGEBRAIC OPERATIONS WITH MATRICES. THE CHARACTERISTIC EQUATION

2.01 Identities. The following elementary considerations enable us to carry
over a number of results of ordinary scalar algebra into the algebra of matrices.
Suppose f(A, N, *- -y As)y, g(Ayy Ay, <+, A;) are integral algebraic functions of
the scalar variables A; with scalar coefficients, and suppose that

f()‘ly Agy, +-y A) = g(hr Agy 0y An)

is an algebraic identity; then, when f(A;, :-+, A\;) — g(A;, - -+, A,) is.reduced
to the standard form of a polynomial, the coefficients of the various powers of
the N\’s are zero. In carrying out this reduction no properties of the \’s are
used other than those which state that they obey the laws of scalar multiplica-
tion and addition: if then we replace A1, Az, -, A\; by commutative matrices
Zy, T2, * '+, Ty, the reduction to the form 0 is still valid step by step and hence

f@y, xy « o0y 27) = g(@y, T3y 0+ ¢, T4).
An elementary example of this is
A-2z2)=(01-2)1+2)
or, when zy = yz,
2=y =(z—yk+.

Here, if zy # yz, the reader should notice that the analogue of the algebraic
identity becomes

2 —yr=z@+y -+ vy
which may also be written 22 — 2 = (z — y)(z + y) + (yz — zy).
2.02 Matric polynomials in a scalar variable. By a matric polynomial in a
scalar variable M\ is meant a matrix that can be expressed in the form
(1 PQ\) = p\" + pN L 4 -+, (po # 0),

where pq, p1, . . ., p, are constant matrices. The coordinates of P(\) are scalar
polynomials in A and hence, if

2 Q) = gN + Nt + -+ 4 g, (g, # 0)

is also a matric polynomial, P(\) = Q()) if, and only if, r = s and the coefficients
of corresponding powers of \ are equal, that is, p;, = ¢; ¢ = 1,2, ..., r). If

| ¢ | = 0, the degree of the product P(\)Q(\) (or Q) P(N)) is exactly r 4+ s since
the coefficient of the highest power M\ +¢ which occurs in the product is pygo
20
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(or gyp,) which cannet be 0 if p, = 0 and | g,| = 0. If, however, both Ipo,l and
] g, | are 0, the degree of the product may well be less than r + s, as is seen from
the examples

(e + 1) (e2h + 1) = enemh® + (en + ew)h + 1 = (en + ex)\ + 1,
|| S| ‘ 1 -1

in 1 PN

Another noteworthy difference between matric and scalar polynomials is that,
when the determinant of a matric polynomial is a constant different from 0, its
inverse is also a matric polynomial: for instance

(e + 1)_'l = —epA + 1,
[(es2 + @)\ + 1171 = €13\ — (12 + e)\ + 1.

We shall call such polynomials elementary polynomials.

2.03 The division transformation. The greater part of the theory of the
“division transformation can be extended from ordinary algebra to the algebra
of matrices; the main precaution that must be taken is that it must not be
assumed that every element of the algebra has an inverse and that due allow-
ance must be made for the peculiarities introduced by the lack of commuta-
tivity in multiplication.

TueoreM 1. If P(\) and Q(\) are the polynomials defined by (1) and (2),
and if | qo| #= 0, there exist unique polynomials S(\), R(\), Si(\), Ri(n), of
which S and S if not zero, are of degree r — s and the degrees of R and R, are
s — 1 at'most, such that

PQ) = 8MQM + EM) = QSN + Ri(N).

If r < s, we may take S; = S = 0 and R, = R = P;in so far as the existence
of these polynomials is concerned the theorem is therefore true in this case.
We shall now assume as a basis for a proof by induction that the theorem is
true for polynomials of degree less than r and that r < s. Since |go| # 0,
¢! exists and, as in ordinary scalar division, we have

PQ\) — pogoe™\" ~* QM) = (p1 — Pogo'g)N ~1 4 -+ = Pi(N).

Since the degree of P, is less than 7, we have by hypothesis P,(\) = P.(A\)Q()
+ R()\), the degrees of P, and R being less, respectively, than r — s and s;
hence

PQ) = (pogo™ ~* + P:A))QM) + RN = SMQMN) + R()

as required by the theorem. The existence of the right hand quotient and
remainder follows in the same way.

It remains to prove the uniqueness of S and R. Suppose, if possible, that
P =8Q 4+ R = TQ + U where R and 8 are as above and T, U are poly-
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nomials the degree of U being less than s; then (S — T)Q = U — R. If
S — T # 0, then, since | go| # 0, the degree of the polynomial (S — T)Q is
at least as great as that of Q and is therefore greater than the degree of U — R.
It follows immediately that S — T = 0, and hence also U — R = 0; which
completes the proof of the theorem. '

If Q is a scalar polynomial, that is, if its coefficients ¢ are scalars, then § = 3,
R = R;; and, if the division is exact, then Q(A) is a factor of each of the coordi-
nates of P()\).

THuEOREM 2. If the matric polynomial (1) is divided on the right by X — a,
the remainder is
poar_*_plar—l + e +pr

and, if it vs divided on the left, the remainder is
apo+ap+ 0+ P
As in ordinary algebra the proof follows immediately from the identity
M—a=AN—aN"'+N"%4 - +a "}

in which the order of the factors is immaterial since \ is a scalar.
If P()\) is a scalar polynomial, the right and left remainders are the same and
are conveniently denoted by P(a).
2.04 Theorem 1 of the preceding section holds true as regards the existence
of S, Si, R, R;, and the degree of R, R, even when | ¢y| = 0 provided | Q1) |
t

# 0. Suppose the rank of gy is t < n; then by §1.10 it has the form 2 asSB;
1

or, say, h<2 e.-.-)k where /& and k are non-singular matrices for which he; = o,

1

Kei=B:iGi=12 1. Ifa= e then

t+1
®) Q= (a\ + Dr1Q
is a polynomial whose degree is not higher than the degree s of @ since ¢;h—qq
= 0 so that the term in A* *! is absent. Now, if 7 = | 1|, then

(@l =leA+1]|A2]|Ql=1+N""2]|Q],

so that the degree of | @ | is greater than that of | @ | by n — ¢. If the leading
coefficient of @, is singular, this process may be repeated, and so on, giving
Q1, Q2 ---, where the degree of | Q| is greater than that of |Q:_-,|. But
the degree of each Q; is less than or equal to s and the degree of the determinant
of a polynomial of the sth degree cannot exceed ns. Hence at some stage the
leading coefficient of, say, Q; is not singular and, from the law of formation (3)
of the successive Q’s, we have Q;(\) = H(\)Q(\), where H(\) is a matric
polynomial.
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By Theorem 1, Q; taking the place of Q, we can find S* and R, the latter of
degree s — 1 at most, such that

P(\) = S*WHMQM) + R = SMQM) + R(M).

The theorem is therefore true even if | go| = O except that the quotient and
remainder are not necessarily unique and the degree of S may be greater than
r — 8, as is shown by taking P = A\? >~ 1, Q = euA + 1, when we have

P = (ea\* + eud — 1)Q = (enM* + euh — 1+ en)Q — em.
2.05 The characteristic equation. If z is a matrix, the scalar polynomial
@) O =A—z| =N 4ar-14 o ta,

is called the characteristic function corresponding to . We have already seen
(§1.05 (15)) that the product of a matrix and its adjoint equals its deter-
minant; hence

AN=—2adj(A—2) =N —z]| =fQA).

It follows that the polynomial f(A) is exactly divisible by A — z so that by
the remainder theorem (§2.03, Theorem 2)

(%) f@) = 0.

As a simple example of this we may take z = ‘: ‘: “ . Here
JO) =A—a)A—98 — By =2 — (a+ )\ + ab — B,
and
_lle* + B8y a8 + B8 _ a B _ 1 0of _
f(z)_|7a+87 Bre| @I, 8"+(a8 M)'“O 1" 0-

The following theorem is an important extension of this result.

TaeorEM 3. If f(\) = lk - zl and 0()\) is the highest common factor of the
first minors of |\ — z |, and if '

® e(A) = f0)/6(N),
the leading coefficient of 6(\) being 1 (and therefore also that of ¢(\)), then
(@) ¢(z) = 0;

(ii) 4f ¢(A) i8 any scalar polynomial such that w(z) = 0, then o(\) 18 a factor
of ¥(N\), that is, o(\) is the scalar polynomial of lotvest degree and with leading
coefficient 1 such that o(z) = 0;

(iii) every root of f(\) i3 a rvot of @(N).

The coordinates cf adj(A — z) are the firat minors of | A — z | and therefore
by hypothesis [adj(A — z)]/6(\) is integral; also

adj(A — 1) _JN .
BTV \ —2) = 7= = o(\);

6(N)
hence ¢(z) = 0 by the remainder theorem.
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If (M) is any scalar polynomial for which y(z) = 0, we can find scalar poly-
nomials M(\), N(A) such that M(A\)e(A) + NQA)Y(A) = ¢(A), where ¢() is the
highest common factor of ¢ and ¢. Substituting z for A in this scalar identity
and using ¢(z) = 0 = y(z) we have {(z) = 0; if, therefore, y(r) = 0 is a scalar
equation of lowest degree satisfied by z, we must have y(\) = ¢(A), apart from
a constant factor, so that ¥()) is a factor of p(\), say

™ e() = R)YPM).

Since ¥(x) = 0, A — z is a factor of y(A), say ¢(A) = (A — z)g(\), where g is a
matric polynomial; hence

Hence

_ ) _adj(x — )
90 = INEN —2) . BVRMY)

and this cannot be integral unless A(\) is a constant in view of the fact that
6(\) is the highest common factor of the coordinates of adj(A — z); it follows
that ¢(\) differs from ¢(A) by at most a constant factor.

A repetition of the first part of this argument shows that, if y(z) = 0 is any
scalar equation satisfied by z, then o(A) is a factor of y(A).

It remains to show that every root of f() is a root of ¢(A). If A is any root
of f(A\) = | A — z|, then from ¢(A) = gAA\)(A\ — z) we have

e(A) = gA) (M — 2)

8o that the determinant, [p(\1)]?, of the scalar matrix o(\;) equals | g(\1) | M — z |,
which vanishes since | \; — z | = f(\y). This is only possible if ¢(\;) = 0, that
is, if every root of f(\) is also a root of ¢()).

The roots of f(A) are also called the rootst of z, ¢(\) is called the reduced
characteristic function of z, and o(z) = 0 the reduced equation of z.

2.06 A few simple results are conveniently given at this point although they
are for the most part merely particular cases of later theorems. If g(\) is a
scalar polynomial, then on dividing by ¢(\), whose degree we shall denote
by », we may set g(\) = ¢(A\)¢(\) + r(A), where ¢ and r are polynomials the
degree of r being less than». Replacing A by z in this identity and remembering
that ¢(z) = 0, we have? g(z) = r(z), that is, any polynomial can be replaced
by an equivalent polynomial of degree less than ».

1 They are also called the latent roots of z.

2 If g(\) is a matric polynomial whose coefficients are not all commutative with z, the
meaning of g(z) is ambiguous; for instance, z may be placed on the right of the coefficients,
or it may be put on the left. For such a polynomial we can say in general that it can be
replaced by an equal polynomial in which no power of z higher than the (» — 1)th occurs.
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If g(\) is a scalar polynomial which is a factor of ¢(A), say ¢(A) = hA(\)g(\),
then 0 = p(x) = h(z)g(z). It follows that | g(z) | = 0; for if this were not so,
we should have h(z) = [g(z)]~'¢(x) = 0, whereas z can satisfy no scalar equa-
tion of lower degree than ¢. Hence, if g(A) is a scalar polynomial which has a
factor in common with ¢(z), then g{(z) is singular.

If a scalar polynomial g(A) has no factor in common with ¢()), there exist
scalar polynomials M(\), N(A) such that M(A\)g(\) + N(A)e(A\) = 1. Hence
M(x)g(x) = 1, or [g(x)]™* = M(z). It follows immediately that any finite
rational function of z with scalar coefficients can be expressed as a scalar
polynomial in = of degree v — 1 at most. It should be noticed carefully how-
ever that, if z is a variable matrix, the coefficieats of the reduced polynomial
will in general contain the variable coordinates of x and will not be integral
in these unless the original function is integral. It follows also that g(z) is
singular only when g(M\) has a factor in common with ¢(M).

Finally we may notice here that similar matrices have the same reduced
equation; for, if g is a scalar polynomial, g(y~'zry) = y~'g(z)y. As a particular
case of this we have that zy and yz have the same reduced equation if, say, y is
non-singular; for zy = y~'-yz-y. If both x and y are singular, it can be shown?
that ry and yx have the same characteristic equation, but not necessarily the
same reduced equation as is seen from the example 2 = ep, ¥y = ex.

2.07 Matrices with distinct roots. Because of its importance and com-
parative simplicity we shall investigate the form of a matrix all of whose roots
are different before considering the general case. Let

8) f()‘)=‘>‘_xl=()‘—)\l)()‘—>‘2)"'(>‘_)\n)
where no two roots are equal and set

A=A - A=N-DA=Nyn) - A=) _ NSO

© S = M= M) o v = MDD = A o (A — A AN— N\

—
By the Lagrange interpolation formula Z/ fi(A) = 1; hence

(10) Ni@) + folm) + -+ + falx) = L

Further, f(\) is a factor of f;(A\)f;(A) (@ # j) so that

(11) fi@fi@) =0 (@ #j);

hence multiplying (10) by fi(z) and using (11) we have

(12) | [f:@]* = fi(a).

Again, A — X)f:(A) = fO\)/f'(\); hence (x — Nofi(x) = 0, that is,
(13) tfz) = Nifi(),

3 For example, by replacing y by y + §, & being a scalar, and considering the limiting
case when & approaches 0.
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whence, summing with regard to ¢ and using (10), we have

(14) £ = MA@ + M@ + o+ M),

If we form z” from (14), r being a positive integer, it is immediately seen from
(11) and (12), or from the Lagrange interpolation formula, that

(15) zm =AML+ N+ NS

where f; stands for fi(z), and it is easily verified by actual multiplication that,
if no root is 0,

2= NR AN+ e Y,

so that (15) holds for negative powers also. The matrices f; are linearly inde-
pendent. For if Zy,f; = 0, then

0 = fiZvifi = vif; = vifi
whence every v; = 0 seeing that in the case we are considering f(\) is itself
the reduced characteristic function so that f;(z) # 0.

From these results we have that, if g(\) is any scalar rational function whose
denominator has no factor in common with ¢(A), then

(16) g@) = gOf + g)fe + -+ + g\)fa

It follows from this that the roots of g(z) are g(\;) (: = 1, 2, ---, n). For
setting y = g(z), ui = g(\:), we have as above

V() = ZY@dfs

¥(A) being a scalar polynomial. Now ¢(u)fi = ¢(u:)fs; hence, if ¢(y) = 0,
then also y(u;) = 0 (¢ = 1,2, -+, n); and conversely. Hence if the notation
is so chosen that u;, wg, ---, i are the distinet values of u;, the reduced charac-

teristic function of ¥y = g(z) is H W\ — uo).
1

2.08 1f the determinant | A — z | = f(\) is expanded in powers of }, it is easily
seen‘ that the coefficient a, of A» — 7 is (—1)" times the sum of the principal
minors of z of order r; this coefficient is therefore a homogeneous polynomial of
degree r in the coordinates of z. In particular, —a, is the sum of the coordi-
nates in the main diagonal: this sum is called the trace of z and is denoted
by tr z.

If y is an arbitrary matrix, p a scalar variable, and z = z + puy, the coeffi-
cients of the characteristic equation of z, say

17 2+ bz~ o+ b =0,

4 For instance, by differentiating | A — z | n — r times with respect to A and then set-
ting A = 0.
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are polynomials in u of the form
(18) be = G + paa + -+ + 40, (G = Gy Gy = 1)

and the powers of z are also polynomials in u, say

r = xr z y 2 r z Yy S "
(19) z x+u{r_1 1}+I‘1r_2 2}+ + uy
where {: Zt/} is obtained by multiplying s z’s and ¢ y’s together in every possi-

ble way and adding the terms sc obtained, e.g.,
T YL _ o 2
{2 1} z%y + zyxr + yxi

If we substitute (18) and (19) in (17) and arrange according to powers of u,
then, since p is an independent variable, the coefficients of its several powers
must be zero. This leads to a series of relations connecting z and y of the form

z ) — =
(20) Ea‘i{n—s—z’+j s_j}—O (s=0,1,2, ---)

6

where a;; are the coefficients defined in (18) and { T . Y } is
n—s8s—1t4+j 8§—j

replaced by 0 when j > s. In particular, if s = 1,
{ni 1 z{}+al{nf2 ?{}'{' ot aytaztl+-o-+an =0
which, when zy = yz, becomes
f@y=—(auz"~'+ - + am) = g(2).

When z has no repeated roots, f/(\) has no root in common with f(\) and f’(z)
has an inverse (cf. §2.06) so that y = g(z)/f'(z) which can be expressed as a
scalar polynomial in z; and conversely every such polynomial is commutative
with z. We therefore have the following theorem:

THEOREM 4. If = has no multiple roots, the only matrices commutative with
it are scalar polynomials in z.

2.09 Matrices with multiple roots. We shall now extend the main results
of §2.07 to matrices whose roots are not necessarily simple. Suppose in the
first place that z has only one distinct root and that its reduced characteristic
function is ¢(\) = (A\ — A1)’, and set
Mm=n=(@—-N =@ —Mn- G=12 -, v—1);
then
m =0, Zna=Mn1, Zn= N+ 04 =12 +v—-2)
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and
=N+ =N +"'n+ (;>>‘f—2ﬂf

where the binomial expansion is cut short with the term 57!

Again, if g(A) is any scalar polynomial, then

g) = g+ m) = g\) + ¢ O)m+ - +

since 77 = 0.

g(v —1)(A1) v —1
G-

It follows immediately that, if g¢'(\) is the first derivative of g(\) which is not
0 when A = A\ and (k — 1)s < v < «s, then the reduced equation of g(z) is

lg(x) — g(W)]* = 0.
It should be noted that the first » — 1 powers of », are linearly independent

since ¢(\) is the reduced characteristic function of .

2.10 We shall now suppose that z has more than one root. Let the reduced
characteristic function be

(21) o = [T =rre @i=wr>1
and set ’ 1
(22) hi) = oA/ (N — A"

We can determine two scalar polynomials, M;(A\) and N;(\), of degrees not
exceeding v; — 1 and v — v; — 1, respectively, such that

MR + (A = N)NO) =1, Mi(\) # 0.
If we set

(23) ei(N) = M(\N)h:(N),

then 1 — Zp;(\) is exactly divisible by ¢(A) and, being of degree » — 1 at most,
must be identically 0; hence

r

(24) 2 e = 1.

1
Again, from (22) and (23), ¢(\) is a factor of ¢:(\)p;(A\) (¢ # j) and hence on
multiplying (24) by ¢:(\) we have

(25) e = 0:N),  0iNe;(\) =0, mod o(A) (2 # j).
Further, if g(A) is a scalar polynomial, then

g0 = D 9N
(26) ‘
y("i_ 1 )()\i)

= A =2N)"TNe\) + R

= 2 gD + g ) = N) + o+
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where R has the form ZC;(\)(A — X\:)%e:(A), C; being a polynomial, so that R
vanishes when z is substituted for A.

2.11 If we put z for A in (23) and set ¢; for ¢;(z), then (24) and (25) show that
(27) @il = 0, i =0 (1)), 2 i = 1.
1

It follows as jn §2.07 that the matrices ¢; are linearly independent and none is
.zero, since ¢;(\;) = 0 so that ¢()\) is not a factor of ¢:(\), which would be the
case were ¢;(z) = 0. We now put z for A in (26) and set

(28) =@ —-MNei (=12 -, 7).

Since the »;th power of (\ — A;)¢:(M) is the first which has ¢(\) as a factor, 'm
is a nilpotent matrix of index »; (cf. §1.05) and, remembering that ¢% = ¢,
we have

(29) nl = (= N)igi =0 (J <w), g = Mi = Qi
(30) Toi = Nigi + 15, anl = Al + 9l T,

equation (26) therefore becomes

r

GiThn)
(31) g(z) = Z [9(&')%‘ + g A + -0 + g(‘;,T(IT') Nit l:|

and in particular

(32) r = 2 (Aigo.' + m) = E:Ci.
1

The matrices ¢; and 7; are called the principal idempotent and nilpotent
elements of T corresponding to the root A;. The matrices ¢, are uniquely deter-
mined by the following conditions: if y; (¢ = 1, 2, ---, r) are any matrices
such that

(i) z¢i = Yz,
(33) (ii) (x — Ay is nilpotent,
i) D we=1, ¥i=y:i=0,

1

then y; = ¢; ¢ = 1,2, ---, r). For let 6;;. = ¢a;; from (i) 6;; also equals
Viei. From (ii) and (28)

10 = Toi — Nipi, &=y — Ay

are both nilpotent and, since 7; and ¢; are polynomials in z, they are commu-
tative with y; and therefore with &;; also

x0;; = Nbi; + (@ — Now; = N + ny;
= N9+ (& — New; = M + Eei.
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Hence (x; — Xj)0;; = Eoi — nap;. But if u is the greater of the indices of ¢;
and #;, then, since all the matrices’ concerned are commutative, each term of
((4ps — nap;)* contains £% or 7% as a factor and is therefore 0. If 6;; = 0, this
is impossible when 7 # j since 6,; is idempotent and A; — A; > 0. Hence
e#i = 0 when 7 = j and from (iii)

Vi = ¥iZei = ¥ip; = ¢i2¥i = ¢;

which proves the uniqueness of the ¢’s.

2.12 We shall now determine the reduced equation of g(z). If we set g; for
9(3)¢t‘: then

v, =1 .
(34) gi = g\ei + ¢'Qdms + -+ + 7% ng !

(n = 1)!
g\dei + &5

say, and if s; is the order of the first derivative in (34) which is not 0, then
¢ is a nilpotent matrix whose index k; is given by k; = 1 < v;/8; < R;.
If ®(7) is a scalar polynomial, and v: = g(\:),

ks — ;
(@) = ) gdes = ) [‘P(Yf)w FEI+ -+ S ke ]

so that ®(g(z)) = 0 if, and only if, g(\;) is a root of ®(\) of multiplicity &;.
Hence, if

Y() = T\ — g\

where when two or more values of ¢ give the same value of g()\;), only that one
is to be taken for which k; is greatest, then ¥(A) is the reduced characteristic
function of g(z). As a part of this result we have the following theorem.

THEoREM 5. If g(\) is a scalar polynomial and x & matriz whose distinct
roots are A1, Nz, -+, \,, the roots of the matrix g(z) are®

g\, g2, -+ g\

If the roots g(A;) are all distinct, the principal idempotent elements of g(z)
are the same as those of z; for condition (33) of §2.11 as applied to g(z) are satis-
fied by ¢; (1 = 1,2, ---, ), and these conditions were shown to characterize
the principal idempotent elements eompletely.

2.13 The square root of a matrix. Although the general question of functions
of a matrix will not be taken up till a later chapter, it is convenient to give
here one determination of the square root of a matrix z.

8 That these are roots of g(z) follows immediately from the fact that A\ — z is a factor
of g(\) — g(z); but it does not follow so readily from this that the only roots are those
given except, of course, when 7 = n and all the quantities g(\;) are distinct.
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If @ and B are scalars, @ = 0, and (a + B)} is expanded formally in a Taylor

series,
< L (BY
(a + ﬁ)‘ = ot 20/ 8r(;>
r—1

then, if S, = ot E 8.(B/a)r, it follows that
0

35) 8} =a+g+al,

where T, is a polynomial in 8/a which contains no power of 8/« lower than the
vth. If @ and b are commutative matrices and «a is the square of a known non-
singular matrix a!, then (35) being an algebraic identity in « and S8 remains
true when a and b are put in their place.

If z; = M + 7: is the matrix defined in §2.11 (32), then so long as A; # 0,
we may set & = Aipi, B = 7, since Nip; = (A 0:)?; and in this case the Taylor
series terminates since 7, = 0, that is, T',; = 0 and the square of the terminating
series for (\ip; + %:)? in powers of #; equals Ajp; + n;. It follows immediately
from (32) and (27) that, if z is a matrix no one of whose roots ig 0, the square

of the matrix
zt = Ek*.-l:¢.-+%>\7‘m—
1

(36)
. 2 — 4)! AN
s ()]
+( ’ 22"—3(!';—2)!(#,"— 1)' )\.’
is z.
If the reduced equation of z has no multiple roots, (36) becomes
(37) b = Ex*ﬁo;

and this is valid even if one of the roots is 0. If, however, 0 is a multiple root
of the reduced equation, z may have no square root as, for example, the
01
o o

Formula (36) gives 27 determinations of z} but we shall see later that an
infinity of determinations is possible in certain cases.

matrix

2.14 Reducible matrices. 1f 2 = z; + =z, is the direct sum of z; and z, and
e1, e; are the corresponding idempotent elements, that is,

ez = x; = I, ee; =0 GC#7;1,7=12),

then z7 = z] + z] (r > 2) and we may set as before 1 = z° = z{ + 23 = e; + ea.
Hence, if f(\) = A» + bA\»— 1 + ... + b, is any scalar polynomial, we have

J@) = ef(z) + ef(xs) = f(x1) + f(z2) — bm,
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and if g(\) is a second scalar polynomial

J@)g(@) = eif(x1)g(21) + eaf (x2)g(x2).

Now if fi(A) is the reduced characteristic function of z; regarded as a matrix
in the space determined by e;, then the reduced characteristic function of z;
as a matrix in the original fundamental space is clearly Af;(\) unless \ is a
factor of f;(\) in which case it is simply f:(A\). Further the reduced character-
istic function of z = 2, + z, is clearly the least common multiple of fi(\) and
f2(A); for if

¥ = i) = £200)9:(0)
then

e (x1) + exa)
efi(@)gi(x1) + efo(z2)ge(zs) = 0.

50(1'1 + )



CHAPTER III
INVARIANT FACTORS AND ELEMENTARY DIVISOMS

3.01 Elementary transformations. By an elementary transformation of a
matric polynomial a(\) = || a;; || is meant one of the following operations on
the rows or columns.

Type I. The operation of adding to a row (column) a different row (column)
multiplied by a scalar polynomial 6()).

Type II. The operation of interchanging two rows (columns).

Type III. The. operation of multiplying a row (column) by a constant
k=0

These transformations can be performed algebraically as follows.
Type I. Let

P,',' =14 0()\)&,‘ (1 #= ]),

6(\) being a scalar polynomial; then | P;; | = 1 and

Pia = E Qppq + 0 Z @qCiq
Q

P9

which is the matrix derived from a(\) by adding 6 times the jth row to the <th.
The corresponding operation on the columns is equivalent to forming the
product aP;;.

Type 11. Let Q. be the matrix

Qi =1—¢ei—ejj+ e+ ej; @ #=j)

that is, @Q;, is the matrix derived from the identity matrix by inserting 1 in
place of 0 in the coefficients of e;; and ¢;; and 0 in place of 1 in the coefficients
of e;; and ¢;;; then | Q;;] = —1 and

N
Qija = E : Ap€pg — _S_ ; Qigliq — 2 ; QidCiq + 2 ; @jeig + 2 ;aiqeiq’
q q q

p.q ]

that is, Q;;a is derived from a by interchanging the ith and jth rows. Similarly
aQ;; is obtained by interchanging the ith and jth columns.

Since any permutation can be effected by a succession of transpositions, the
corresponding transformation in the rows (columns) of a matrix can be pro-
duced by a succession! of transformations of Type II.

Type III. This transformation is effected on the rth row (column) by multi-
plying on the left (right) by R = 1 + (k — 1)e,,; it is used only when it is
convenient to make the leading coefficient in some term equal to 1.

1 The transformation corresponding to the substitution (; p2 e : ) isQ = E €ip;.
172 .« . n
i
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The inverses of the matrices used in these transformations are
Pl =1—6e; Q7 =Qij, R'=14 (k' — le,;

these inverses are elementary transformations. The transverses are also ele-
mentary since P;; = P;; and Q;; and R are symmetric.?

A matric polynomial b(\) which is derived from a(\) by a sequence of ele-
mentary transformations is said to be equivalent to a(\); every such poly-
nomial has the form p(A\)a(A)g(\) where p and ¢ are products of elementary
transformations. Since the inverse of an elementary transformation is ele-
mentary, a(\) is also equivalent to 5(A). Further, the inverses of p and ¢
are polynomials so that these are what we have already called elementary
polynomials; we shall see later that every elementary polynomial can be
derived from 1 by a sequence of elementary transformations.

In the following sections we require two lemmas whose proofs are almost
immediate..

LEMMA 1. The rank?® of a matrix is not altered by an elementary transformation.

Forif | P| # 0, AP and P4 have the same rank as 4 (§1.10).

LEMMA 2. The highest common factor of the coordinates of a matric polynomial
18 not allered by an elementary transformation.

This follows immediately from the definition of elementary transformations.

3.02 The normal form of a matrix. The theorem we shall prove in this sec-
tion is as follows. :

TueorReMm 1. If a(\) is a mairic polynomial of rank r, it can be reduced by
elementary transformations to a diagonal matriz

ay (X)
az()\)

r

O D) ale = (M) = PMa()Q),
1 0

0
3 The definition of an elementary transformation given above is the most convenient
but not the only possible one. All three transformations have the form T = 1 4 z8y
with the condition that 1 + Szy is not 0 and is independent of A.
3 By the rank of a matric polynomial is meant the order of the highest minor which does
not vanish identically. For particular values of A the rank may be smaller than r; there
are always values of \ for which it equals r and it cannot be greater.
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where the coefficient of the highest power of N in each polynomial a;(\) is 1, a; 18 a
Jactor of as 41, oy @r (T =1,2, -«-, r — 1), and P(\), Q(\) are elementary
polynomaals.

We shall first show that, if the coordinate of a(\) of minimum degree m, say
@y, i8 not a factor of every other coordinate, then a()) is equivalent to a matrix
in which the degree of the coordinate of minimum degree is less than m.

Suppose’ that a,, is not a factor of a,; for some ¢; then we may set a,; =
Ba,, + a,; where B is integral and a,; is not 0 and is of lower degree than m.
Subtracting 8 times the gth column from the 7th we have an equivalent matrix
in which the coordinate* (p, 7) is a,; whose degree is less than m. The same
reasoning applies if a,, is not a factor of every coordinate a;, in the gth column.

After a finite number of such steps we arrive at a matrix in which a coordinate
of minimum degree, say k,,, is a factor of all the coordinates which lie in the
same row or column, but is possibly not a factor of some other coordinate k;.
When this is so, let k,; = Bkyq, kig = vk, where B and v are integral. If we
now add (1 — B) times the ¢gth column to the jth, (p, j) and (3, j) beccome
respectively

kpi = kpi + (L = Bkog = koo Kij = kij + (1 — Bkig = kij + (1 — B)vkype

Here either the degree of k;; is less than that of k,,, or k,; has the minimum
degree and is not a factor of k;;, which lies in the same column, and hence the
minimum degree can be lowered as above.

The process just described can be repeated so long as the coordinate of lowest
degree is not a factor of every other coordinate and, since each step lowers the
minimum degree, we derive in a finite number of steps a matrix || b; || which
is equivalent to a(A) and in which the coordinate of minimum degree is in fact
a divisor of every other coordinate; and further we may suppose that b;, =
a1(M) is a coordinate of minimum degree and set b;; = v:by,, b}, = 8b;,. Sub-
tracting v, times the first column from the ith and then §; times the first row
from the jth (3,7 = 2,3, -+, n) all the coordinates in the first row and column
except b;, become 0, and we have an equivalent matrix in the form

a0 0 o0 0
0 by baz -+ Dby
2) 0 bz bss -+ bz
0 bnz bnz tct bnn

in which «, is a factor of every b;;. The coefficient of the highest power of A
in @; may be made 1 by a transformation of type III.
The theorem now follows readily by induction. For, assuming it is true for

4 That is, the coordinate in the pth row and ¢th column.
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matrices of order » — 1, the matrix of this order formed by the b’s in (2) can
be reduced to the diagonal matrix

az(>\)
aa()\)

a, (k)

0

where the o’s satisfy the conditions of the theorem and each has «a; as a factor
(§3.01, Lemma 2). Moreover, the elementary transformations by which this
reduction is carried out correspond to transformations affecting the last n — 1
rows and columns alone in (2) and, because of the zeros in the first row and
column, these transformations when applied to (2) do not affect its first row
and column; also, since elementary transformations do not affect the rank
(§3.01, Lemma 1), s equals  and a(\) has therefore been reduced to the form
required by the theorem.

The theorem is clearly true for matrices of order 1 and hence is true for
any order.
Corollary. A matric polynomial whose determinant is independent of \ and is
not 0, that is, an elementary polynomial, can be derived from 1 by the product
of a finite number of elementary transformations.

The polynomials «; are called the ¢nvariant factors of a(X).

3.03 Determinantal and invariant factors. The determinantal factor of the
sth order, D,, of a matric polynomial a()) is defined as the highest common
factor of all minors of order s, the coefficient of .the highest power of A being
taken as 1. An elementary transformation of type I either leaves a given
minor unaltered or changes it into the sum of that minor and a multiple of
another of the same order, and a transformation of type II simply permutes
the minors of a given order among themselves, while one of type III merely
multiplies a minor by a constant different from 0. Hence equivalent matrices
have the same determinantal factors. Bearing this in mind we see immediately
from the form of (1) that the determinantal factors of a(\) are given by

D, = aja; -+ a, ‘e=1,2 -+, 1), D,=0(s >r),
so that®
Qg = D,/D,_l.

The invariant factors are theréfore known when the determinantal factors are
given, and vice versa.

5 Since @, -, is a factor of a,, it follows that also D? is a factor of D, - 1 D, , ..
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The definitions of this and the preceding sections have all been made relative
to the fundamental basis. But we have seen in §1.08 that, if @, is the matrix
with the same array of coordinates as a but relative to another basis, then
there exists a non-singular constant matrix b such that a = b7 'a;b so that a
and a; are equivalent matrices. In terms of the new basis a; has the same
invariant factors as a does in terms of the old and a, being equivalent to a,
has therefore the same invariant factors in terms of the new basis as it has in
the old. Hence the invariant and determinantal factors of a matric poly-
nomial are independent of the (constant) basis in terms of which its coordi-
nates are expressed.

The results of this section may be summarized as follows.

TurorEM 2. Two matric polynomials are equivalent if, and only if,. they
have the same invariant factors.

3.04 Non-singular linear polynomials. In the case of linear polynomials
Theorem 2 can be made more precise as follows.

TueoreM 3. If aX + b and ¢\ + d are non-singular linear polynomials which
have the same tnvariant factors, and if | ¢ | = 0, there exist non-singular constant
matrices p and q such that

plax + b)g = cx + d.

We have seen in Theorem 2 that there exist elementary polynomials P(A),
Q(\) such that

®3) X +d = P(N)(ax + b)Q(N).

Since | ¢ | # 0, we can employ the division transformation to find matric poly-
nomials p;, ¢; and constant matrices p, ¢ such that

PN = (N+dpi+p, QN = quleh +d) + ¢
Using this in (3) we have

4) x4 d = plax + b)g + (A + d)pi(ak + b)Q + P(ak + b)gi(eN + d)
— (ex + d)pi(ax + b)gi(eh + d)

and, since from (3)
(ax +b)Q = PY(ex + d), P(ax +b) = (A + d)Q7,
we may write in place of (4)

) plax + b)g = [1 — (A + (@P 4 Q'qr — pi(ar + b)g)l(ex + d)
=[1 = (A + DRI(eN + d)

where B = pP,~! 4+ Q~'q1 — pi(ax + b)qi, which is integral in X since P and Q
are elementary. If R > 0, then, since |c| = 0, the degree of the right side
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of (5) is at least 2, whereas the degree of the left side is only 1; hence B = 0
so that (5) gives p(aX + b)g = ¢\ 4 d. Since cA + d is not singular, neither
p nor ¢ can be singular, and hence the theorem is proved.

When |¢| = 0 (and therefore also | a| = 0) the remaining conditions of
Theorem 3 are not sufficient to ensure that we can find constant matrices in
place of P and @, but these conditions are readily modified so as to apply to
this case also. If we replace A by A\/u and then multiply by u, a\ + b is replaced
by the homogeneous polynomial a\ + by; and the definition of invariant factors
applies immediately to such polynomials. In fact, if |a| 0, the invariant
factors of a\ 4 bu are simply the homogeneous polynomials which are equiva-
lent to the corresponding invariant factors of e + b. If, however, |a| = 0,
then | a\ + by | is divisible by a power of u which leads to factors of the form
u' in the invariant factors of e + bu which have no counterpart in those
of a\ + b.

If |[c| = 0 but |eA + d| = 0, there exist values, \; # 0, u;, such that
| e\ + dwi | # 0 and, if we make the transformation

(6) A= \a, u=ma+ b,

a\ + bu, cA + du become ama + biB, cia + dif where a1 = a\y + by, €1 =
¢\ + dui, and therefore | ¢; | # 0. Further, when a\ + bu and ¢\ + du have
the same invariant factors, this is also true of a;e + b8 and c;a + di8. Since
|er] # 0, the proof of Theorem 3 is applicable, so that there are constant
non-singular matrices p, ¢ for which p(ama + b8)g = cia + dif, and on revers-
ing the substitution (6) we have

p(a\ 4+ bu)g = e\ + dp.

Theorem 3 can therefore be extended as follows.

THEOREM 4. If the non-tingular polynomials a\ + by, ¢\ + du have the
same tnvariant factors, there exist non-singular constant matrices p, g such that
p(aX + bu)qg = e\ + du

An important particular case of Theorem 3 arises when the polynomials
have the form A — b, A\ — d. For if p(A\ — b)g = A — d, on equating coeffi-
cients we have pq = 1, pbg = d: hence b = p~'dp, that is, b and d are similar.
Conversely, if b and d are similar, then A\ — b and A\ — d are equivalent, and
hence we have the following theorem.

TuEOREM 5. Two constant matrices b, d are stmilar if, and only if, A —b
and X — d have the same invariant factors.

3.05 Elementary divisors. If D = |a\ + b| is not identically zero and
if Ay, Ag, ---, A, are its distincet roots, say

D= (A=M"\ =) oo (A= Q)%
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then the invariant factors of aX -+ b, being factors of D, have the form

a = ()\ — )\l)m()\ —_ )‘2)vu ()\ —_ )‘.)n.
ap =\ = M)A — A)™ -+ (A= A)™

(7) ..‘ ........... ,.....--...'..-.... ........ - .-..

......................................

= (A= MmO = M) e (= A

where 2 v;i = v; and, since a, is a factor of a; 4 1,
i=1

() i << o S (0=1,2 -4, 8).
Such of the factors (\ — A;)%i as are not constants, that is, those for which
vi; > 0, are called the elementary divisors of a\ + b. The elementary divisors
of A — b are also called the elementary divisors of b. When all the exponents
v¢; which are not 0 equal 1, b is said to have simple elementary divisors.

For some purposes the degrees of the elementary divisors are of more impor-
tance than the divisors themselves and, when this is the case, they are indi-
cated by writing

(9) [(l'nl, Vp—1,1, " Vu), (Vnz, Vn—1,2y """ Vlz); o ]

where exponents belonging to the same linear factor are in the same paren-
thesis, zero exponents being omitted; (9) is sometimes called the characteristic
of a\ + b. If a root, say \i, is zero, it is convenient to indicate this by writing

%, in place of »;.

The maximum degree of | a\ + b| isn and therefore Z vij < n where the
equality sign holds only when | a | % 0.

The modifications necessary when the homogeneous polynomxal a\ + bu
is taken in place of ax + b are obvious and are left to the reader.

3.06 Matrices with given elementary divisors. The direct investigation of
the form of a matrix with given elementary divisors is somewhat tedious.
It can be carried out in a variety of ways; but, since the form once found is
easily verified, we shall here state this form and give the verification, merely
saying in passing that it is suggested by the results of §2.07 together with a
study of a matrix whose reduced characteristic function is (A — ).

THEOREM 6. If Ay, Ay, -, A, are any constants, not necessarily all different
and vy, vy, -, v, are positive inlegers whose sum is n, and if a; is the array of v;
rows and columns given by

No1o0 0 0
0 N 1 0 0
1) - .o
0 0 0 A1
0 0 0 0 X\
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where each coordinate on the main diagonal equals \;, those on the parallel on its
right are 1, and the remaining ones are 0, and if a is the matrix of n rows and column

given by , .
a1 l

Qs
(11) .a = .

a,

composed of blocks of terms defined by (10) arranged so that the main diagonal
of each lies on the main diagonal of a, the other coordinates being 0, then A — a
has the elementary divisors

(12) ()‘ - >‘l)v's ()‘ - A2)”’) Y (A - X,)"

In addition to using a; to denote the block given in (10) we shall also use it
for the matrix having this block in the position indicated in (11) and zeros
elsewhere. In the same way, if f; is a block with »; rows and columns with
1’s in the main diagonal and zeros elsewhere, we may also use f; for the corre-
sponding matrix of order n. We can then write

A—a= E(Xf,' - a.-), f.-a =a; = af.-, Zf.' = 1.
The block of terms corresponding to Af; — a; has then the form

A=\ -1
A—N -1
(13)
(vi rows and columns)

A— XN

where only the non-zero terms are indicated. The determinant of these »;
rows and columns is (\ — ;)% and this determinant has a first minor equal
to =+1; the invariant factors of Af; — aj, regarded as a miatrix of order »;,
are therefore 1,1, ---, 1, (\ — A;)* and hence it can be reduced by elementary
transformation to the diagonal form

(X - X;) ]
1

1.

If we apply the same elementary transformations to the corresponding rows
and columns of A — a, the effect is the same as regards the block of terms
Afi — a; (corresponding to a; in (11)) since all the other coordinates in the rows
and columns which contain elements of this block are 0; moreover these trans-
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formations do not affect the remaining blocks Af; — a; (j = ¢) nor any 0 coordi-

nate. Carrying out this process for ¢ = 1, 2, ---, s and permuting rows and
columns, if necessary, we arrive at the form
()\ - X1)'
()\ - Az)"
A = A)n
1
1.

Suppose now that the notation is so arranged that
.Al = XB = L == xp = a, ,[1 2_ Vz 2 e o 0 2 Vp,
but A\; # a for ¢ > p. The nth determinantal factor D, then contains A\ — a)

P
to the power 2 v; exactly. Each minor of order » — 1 contains at least p — 1
1

of the factors

(14) ()‘ - a)": (x - a)v’) T ()‘ - a)'p

and in one the highest power (\ — «)” is lacking; hence D, _; contains (A — a)
P

to exactly the power 2 v; and hence the nth invariant factor a, contains il

2
to exactly the »th power. Similarly the minors of order n — 2 each contain
at least p — 2 of the factors (14) and one lacks the two factors of highest degree;

p
hence (\ — «) is contained in D, _, to exactly the power Z v; and in a,_;

3
to the power »,. Continuing in this way we see that (14) gives the elementary
divisors of a which are powers of (A — «) and, treating the other roots in the
same way, we see that the complete list of elementary divisors is given by (12)
as required by the theorem.

3.07 If A is a matrix with the same elementary divisors as a, it follows from
Theorem 5 that there is a matrix P such that A = PaP~! and hence, if we choose
in place of the fundamental basis (e1, €5, - - -, e,) the basis (Pe;, Pe;, -+, Pe,),
it follows from Theorem 6 of chapter 1 that (11) gives the form of A relative
to the new basis. This form is called the canonical form of 4. It follows
immediately from this that

(15) P-14*P = . ‘
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where a* is the block of terms derived by forming the kth power of a; regarded
as a matrix of order ;.

Since D, equals |\ — a|, it is the characteristic function of a (or 4) and,
since D, 1 is the highest common factor of the first minors, it follows from
Theorem 3 of chapter 2 that «, is the reduced characteristic function.

If we add the f’s together in groups each group consisting of all the f’s that
correspond to the same value of \;, we get a set of idempotent matrices, say
o1, @2, ***, ¢r, corresponding to the distinct roots of a, say ey, az -, a.
These are the principal idempotent elements of a; for (i) ap; = ¢sa, (ii) (¢ — ai)e;
is nilpotent, (iii) Z¢; = Zf; = 1 and ¢ip; = 0 (¢ = j) so that the conditions of
§2.11 are satisfied.

When the same root «; occurs in several elementary divisors, the corresponding
J’s are called partial idempotent elements of a; they are not unique as is seen
immediately by taking @ = 1.

If « is one of the roots of A, the form of A — « is sometimes important.
~ Suppose that Ay = Ay = -+ =X, = o, \; # o (? > p) and set

bi = a; — df;,

the corresponding array in the sth block of a — « (cf. (10), (11)) being
A,’ - a 1
Ni—a 1
(16) . ‘
1
) )\i - a.
In the case of the first p blocks A; — @ = 0 and the corresponding by, b5, -+, b,
are nilpotent, the index of b; being »; and, assuming »; = v, > --- = v, as
before, (A — a)* has the form
|
b3
P14 — a)tP =
.lk

or, when k = v,

(17) ‘ P-1(4 — a)P = 0

k
bp+1

.bk
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Since none of the diagonal coordinates of b, 41, -+, b, are 0, the rank
P

of (A — a)*, when k = », is exactly n — ZV.- = 2”‘ and the nullspace
1 p+1
of (A — a)* is then the same as that of (4 — «)". Hence, if there exists a

vector z such that (4 — a)* 2 = O but (4 — a)*~1z # 0, then (i) k¥ < »,
(i) z lies in the nullspace of (4 — a)".

3.08 Invariant vectors. If A is a matrix with the elementary divisors
given in the statement of Theorem 6, then A — A is equivalent to A — a and
by Theorem 5 there is a non-singular matrix P such that A = PaP-1. If we
denote the unit vectors corresponding to the rows and columns of a; in (10)
by ef, e3, +--, e, and set

t'_ Pe;:(j=1,2,--.‘y'~;1:=l’2, ;..,s)
(18) x; _{ 0 (J< 10r>V¢.Ol"’.<10r >s)

then

aei = \ief,aei = Niej +ef, -+, 0ei = el + ey
and hence
(19) Azi =Xzi+zi_\(G=12 --,v5i=1,2 -+, ).

The vectors z} are called a set of invariant vectors® of A.
The matrix A can be expressed in terms of its invariant vectors as follows.
We have from (10)

a; = 2 (hiej + e} _1)Se} = 2 eiS(\el + el ;1)
i i

and hence, if

(20) yi = (P)te} = (PP,

then

(21) A= D) (i i)yl = D) ziS0wi + vl
Y Y

where it should be noted that the y’s form a system reciprocal to the 2’s and
that each of these systems forms a basis of the vector space since | P | # 0.
If we form the transverse of A, we have from (21)

(22) A= D) Oyl + v )8z
i

¢ If homogeneous coordinates are used so that vectors represent points, an invariant
vector is usually called a pole.
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so that the invariant vectors of A’ are obtained by forming the system recip-
rocal to the z’s and inverting the order in each group of vectors corresponding
to a given elementary divisor; thus

Ayt =Nyl Ayl =My yk, e Ay = Nt 4 s

A matrix A and its transverse clearly have the same elementary divisors and
are therefore similar. The matrix which transforms A into A’ can be given
explicitly as follows. Let ¢; be the symmetric array

00 --- 01
00 --- 10
............... (v; rows and columns).

It is easily seen that g:a; = a;g: and hence, if Q is the matrix

Q1
q2

qs
we have Qa = a/Q, and a short calculation gives 4’ = R™1AR where R is the
symmetric matrix

(23) R = PQ—'P' = PQP’.

If the elementary divisors of A are simple, then @ = 1 and R = PP’.

If the roots A; of the elementary divisors (12) are all different, the nullity
of (A — ;) is 1, and hence z} is unique to a scalar multiplier. But the remain-
ing z} are not unique. In fact, if the z’s denote one choice of the invariant
vectors, we may take in place of z} :

zi = kizi +kijzi i+ - Rl (G=12 -,
where the k's are any constant scalars subject to the condition k§ = 0. Sup-
posenow that\; = Ae= -+ =A, =g, Za(@>plandy Zrn = -+ 2,
as in §3.07. We shall say that zi, 25, ---, 2 is a chain’ of invariant vectors
belonging to the exponent k if

zi=(A_a)k_izk7£0 (i=1)2;"')k)

(24) (4 — a)z = 0.

It is also convenient to set z; = 0 for ¢ < 0 or > k. We have already seen
that £ < » and that 2, lies in the nullspace of (A — «)"; and from (17) it is

7 We shall say that the chain is generated by zx.
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seen that the nullspace of (A — a)” has the basis (z};7 = 1,2, ---, v, ¢ =
1, 2, ] p)-
Since 2z belongs to the nullspace of (A — a)", we may set

(25) % = z"; i Giit}

i=1 7=1

and therefore by repeated application of (15) with A\; = «
(26) (4 — o)z = D bl —a.

i ’ i
From this it follows that, in order that (4 — a)*z, = 0, only values of j which
are less than or equal to k can actually oceur in (25) and in order that
(A — a)* — 1z £ 0 at least one {;; must be different from 0; hence

2 = 2 Gzt + Cinrxi1 4+ )

(27) Be-1 = 2 Gazi 14 Sik-1Zh -2+ )

.......................................

Finally, if we impose the restriction that z, does not belong to any chain per-
taining to an exponent greater than k, it is necessary and sufficient that k& be
one of the numbers », v, ---, v, and that no value of 7 corresponding to an
exponent greater than R occur in (27).

3.09 The actual determination of the vectors z} can be carried out by the
processes of §3.02 and §3.04 or alternatively as follows. Suppose that the
first s; of the exponents »; equal n,, the next s, equal n,, and so on, and finally
the last s, equal n,. Let N, be the nullspace of (4 — o)™ and N; the nullspace
of (A — a)"—1; then M, contains N;. If I is a space complementary to
N; in Ny, then for any vector z in P,y we have (A — a)z = 0 only when
r = n;. Also, if 21, 2, -+, Tn, is a basis of I, the vectors

(28) A—-a)z(r=01, -+, n — 1)

are linearly independent; for, if

m—1

2 Z E,‘,-(A — a)'I,' = 0,

some £;, being different from 0, then multiplying by (4 — a)™ ~—*~! we have

(A4 — m=1 D) ks = 0,
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which is only possible if every ¢;, = 0 since 2, Z2, - -+, Zm, form a basis of I,
and for no other vector of M, is (4 — a)» ~1xz = 0. The space defined by (28)
clearly lies in M;; we shall denote it by . If we set Nty = Ny + & where N,
is complementary to & in 9t;, then N, contains all vectors which are members
of sets belonging to the exponents ns, n;, :-- but not lying in sets with ‘the
exponent n;.

We now set N, = N, + N, where N, is the subspace of vectors z in N, such
that (4 — @)~ 1z = 0. As before the elements of I, generate sets with
exponent 7, but are not members of sets with higher exponents; and by a repeti-
tion of this process we can determine step by step the sets of invariant vectors
corresponding to each exponent 7.



CHAPTER IV
VECTOR POLYNOMIALS. SINGULAR MATRIC POLYNOMIALS

4.01 Vector polynomials. If a matric polynomialin X is singular, the elements
of its nullspace may depend on A. We are therefore led to consider vectors
whose coordinates are polynomials in a scalar variable \; such a vector is called
a vector polynomial. Any vector polynomial can be put in the form

zZ\) =z F+zAm "4 - 42y,

where 2o, 21, - -+, 2, are vectors whose coordinates are independent of A and,
if zo # 0, m is called the degree of z(\). In a linear set with a basis composed
of vector polynomials we are usually only concerned with those vectors that
have integral coordinates when expressed in terms of the basis and, when this
is so, we shall call the set an integral set. In a basis of an integral set the
degree of an element of maximum degree will be called the degree of the basis.

In practice an integral set is often given in terms of a sequence of vectors
which are not linearly independent and so do not form a basis. For the present
therefore we shall say that the sequence of vector polynomials

(1) 310\), Zz(A), Tty zk()‘)

defines the integral set of all vectors of the form Z¢;(\)z;(\) where {’s are scalar
polynomials, and show later that this is really an integral set by finding for it
an integral basis. The sequence (1) is said to have rank r if | zi2s, --- 2, |
vanishes identically in A for all choices of s 2’s when s > r and is not identically
0 for some choice of the z’s when s = r.

The theory of integral sets can be expressed entirely in terms of matric
polynomials, but it will make matters somewhat clearer not to do so at first.
By analogy with matrices we define an elementary transformation of a sequence
of vector polynomials as follows. An elementary transformation of the sequence

(1) is the operation of replacing it by a sequence zi, z,, ---, 2z, where:
Type I:2; =2+ 2 $o2m 2y = 24, (g # 3),
pHE i

Type 1I:z; = 2,2, = 2,2, = 2, (¢ # 1, §),

Type IIL: 2, = pz,, (p = 1,2, -+, k)

where the {’s are scalar polynomials and the p’s constants none of which is 0.
The rank of a sequence is not altered by an elementary transformation, and
two sequences connected by an elementary transformation are equivalent in
the sense that every vector polynomial belonging to the integral set defined
by the one also belongs to the integral set defined by the other.
Two sequences which can be derived the one from the other by elementary
transformations are said to be equivalent. The corresponding integral sets
47
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may also be said to be equivalent; and if only transformations with constantu
coefficients are used, the equivalence is said to be strict. Equivalence may-also
be defined as follows. If P is an elementary matrix which turns any vector. of
the integral linear set (z1, 23, - - -, zx) into a vector of the same set, then it is
easily shown_ that this set is equivalent to (Pz, Pz, ---, Pz;) and conversely;
we also say that the linear set (21, 23, * - -, 2i) is tnvariant under P although the
individual elements of the basis are not necessarily unchanged. If the restric-
tion that P leaves (z, 25, -+, 2x) invariant is not imposed, .the two sets are
said to be similar.

4.02 The degree invariants. We have seen in the previous section that
the sequence in terms of which an integral set is defined may be transformed
by elementary transformations without altering the integral set itself. We
shall now show how we may choose a normalized basis and determine certain
invariants connected with the set. Let the vectors (1), when written in full, be

2) 2iN\) = NMizgo + N" " lza + -0 A+ 2imy,

and suppese the notation so arranged that my < me < --- < my. Suppose
further that the leading coefficients 2o, 220, -+, 2, —1, 0 are linearly inde-
pendent but that

s —1

2y = 2 : Ni 240y
1

the 7’s being constants not all 0; then m, > m; ( = 1,2, ---, s — 1) and

s—1
2, =2, — 2 A" < iz
1

is either 0 or has a lower degree than z,; and it may replace z, in the sequence.

After a finite number of elementary transformations of this kind we arrive
at a sequence equivalent to (1) which consists of a number p of vector poly-
nomials z;, 23, -- -, 2, in which the leading coefficients are linearly independent

followed by k — p zero-vectors. Now if we form |z, -+ z,| using the
notation of (2) with z’s in place of 2’s, the term of highest degree is A * -+ - +n7
| Z10T20 *++ ZTpo!, which is not 0 since the leading vectors xio, 20, -, Tpoare

linearly independent. But the rank of a sequence is not changed by ele-
mentary transformations; hence p = r and we have the following theorem.

THEOREM 1. If 21, 25, -+, 2 s a sequence of vector polynomials of rank r,
the set of vectors of the form 2 £i(N)zi(\), the {’s being scalar polynomials, form

an integral set with a basis of order r which may be so chosen that the leading coeffi-
cients of its constituent vectors are linearly independent.
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When a basis of an integral set satisfies the conditions of this theorem and
its elements are arranged in order of ascending degree, we shall call it a nor-
mal basis.

Corollary. 1If zi, x,, ---, x, is a normal basis with the degrees m; < m, <
- < m,, and if &, &, -, & are scalar polynomials, then the degree of the

8

vector polynomial z = z tx; (£, # 0) is not less than m,.
1

TaHEOREM 2. If 71, 2oy -+, z, ts @ normal basis of an integral set and
m < my < --- < m, the corresponding degrees, and if yi, Y, - -, Y- 18 any
other hasis with the degrees ny < nm, < -+ < n,, then

m <y, mg < Ny, vy, My < N

Further, the exponents my, my, -« -, m, are the same for all normal bases.

Let s be the first integer for which n, < m, so that n; < n, < m,for 7 < s.
Since (x1, x5, - -+, z,) is a basis, we may set

yi= D) EMNz() (=12 -, ).

Here no value of p greater than s — 1 is admissible since the degree n; of y;
is less than m, This would mean that the rank of wi, ¥, :--, y, was less
than s, which is impossible since they form part of a basis. Hence m, < n,
for all values of s.

If both bases are normal, it follows immediately that m; < n; and also
n; < m;, whence m; = n;, that is, the set of exponents mi, my, : - -, m,is the
same for all normal bases. We shall call these exponents the degree invariants

of the integral set.

4.03 Elementary sets. If z;(A), zz(\), ---, 2,(\) is a basis of an integral
set, but not necessarily a normal basis, the r-vector |2z, --- z,|, which we
call the determinant of the basis, is not identically 0 but may vanish for cer-
tain values of A. If it vanishes for A = A;, then z;(A1), z:(A\1), - -+, 2-(A1) are
linearly dependent, that is, there is a relation ={;2;(\;) = 0; we may assume
&1 # 0 without loss of generality. It follows that Z¢:z:(\) has a factor of the
form (A — A%, @ > 1, and hence

Zfzi(\)
(h - k1)‘l
is integral; and, since {1 # 0, every element of (2:(A), z(\), - -+, z:(A)) is
integrably expressible in terms of (z;(\), z2(A), -+, z-(\)). Moreover, since

(}\__{l—)\l)—alzlzz 2r|:

zi(\) =

iz;zz RPN z'| =
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the determinant of the new basis is of lower degree than that of the old and so,
if we continue this process, we shall arrive after a finite number of steps at a
basis (z:(\), z:(A), - -+, z,(\)) whose elements are linearly independent for all
values of \. A set which has a basis of this kind will be called an elementary
integral set; and it is readily shown that every basis of an elementary integral
set has the given property, namely, that its elements are linearly independent
for every value of \. These results are summarized as follows.

TaeoreM 3. Every integral set of order r is contained in an elementary set
of the same order. .

We also have

THEOREM 4. Let x1, z2, - -+, x, be a basis of an elementary set. If r < n, there
extists a complementary elementary basis z, .1, -+, zo Suchthat | z1zp -+ x,| # 0
for any value of N and this basis can be so chosen that its degree does mot exceed
that of x1, x3, -+, Zr.

THEOREM 5. If x4y, x,, -+ -, X, 1S a basis of an elementary set, there exists an
elementary matric polynomial X such that z; = Xe; 0 = 1,2, -+, 7).

For let y be a constant vector which for some value! of A is not linearly depen-
dent on z1, 75, - -, z, so that we do not have identically y = Zn.z; for any 7's
which are scalar polynomials. If for some value of A\, say A\, we have y =
Z¢xi(\1), the ¢'s being constants, then y — Z¢;x;(\) has the factor A — )\; and,
as in the proof of Theorem 3, we can modify y step by step till we arrive at a
vector polynomial z, ., such that z,, z,, -+, z,, 2, +1 form an elementary
basis. The degree at each step of this process does not exceed that of the
original basis since only constant multipliers are used. This procedure may
be continued till a basis of order = is reached, which proves Theorem 4.

The proof of Theorem 5 is immediate; in fact, using the basis derived in the

n

proof of Theorem 4, X = E ziSe; satisties the required conditions and

1
| X| =|z®2 -+ za|, which does not vanish for any value of A.
As a converse to Theorem 5 we have that, if X 7s an elementary matrix, then
z; = Xe; (1 =1,2, ---, r) is a basis of the elementary set (1, T3, -+, x,).

4.04 If 2, 25, -+, 2 is a sequence of vector polynomials ot rank », we may
always assume k£ < n by merely increasing the order of the fundamental space,
if necessary. Setting 2; = Z{;e;, let us consider the matric polynomial

1 If the question of degree is not important, any vector polynomial satisfying this
condition may take the place of a constant vector.
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fu fu O 0
$u S 0 0 k
A T = 2 2:Se;
...................... 1
Cmp cv e O -+ 0

The elementary transformations used in §4.02 in finding a basis of the integral
set correspond when applied to Z to a combination of elementary transforma-
tions, as defined as §3.01, and because these transformations involve columns
only, they correspond to multlplymg Z on the right by an elementary poly-
nomial Q. Similarly, if

Z = Ze;Syi, yi = Ztijei,

the process of finding a basis for i1, ¥, -+, ¥a, whose rank is r, corresponds
to multiplying Z on the left by an elementary polynomial P;.
We shall now suppose that ¥ = r so that @, = 1; then P,Z has the form

w11 DY w1y 07-.. 0
wy o wy 0 -+ 0
Zl - PlZ = Wyl oo e Wry 0 Y 0
0 0 0 0
0 0o 0 --- 0

We now bring Z, to the normal form of §3.02, say

4!
&

PZQ = PPZQ = s

0
where {3, ¢2, -+ -, ¢, are the invariant factors of Z (or Z;) and in doing so only

the first » rows and columns are involved so that

3) Qe;=¢ey, G=r+1,r+2 -+, n).



52 VECTOR POLYNOMIALS [1V]

Therefore, if z; = (PP;)™e;, we have successively
PP,ZQe.- = f,‘ei, ZQe.- = ;','(P.Pl)—le.' = f,,'x.', (‘L = 1, 2, crey 7‘)
and, if @ = || ¢;; ||,
Qe€'= qliel + q2iel + b + Qn‘er, (i = ly 2) Y T)
and hence
4 $iti = ZQei = quzn + quies + -+ + @iz, 1 =1,2, ---, 7).

But from (3) and the fact that | @ | is a constant different from 0, it follows that

the determinant of the coefficients in (4) is also a constant different from 0,

and hence these equations can be solved for the z’s in terms of the z’s giving, say
2 = Ebjig-ixi (2 = 1; 2, .-, T)

where the b’s are scalar polynomials. ‘
Returning now to the case k > r, we see that, since we can pass to the case
k = r by elementary transformations, the {’s are still the invariant factors of

k
Z = 2 z;Se;. They are therefore also invariants of the integral set independ-
1

ently of the basis chosen to represent it, and so we shall call them the invariant
Sactors of the set.
We can now state the following theorem.

TuEoREM 6. If {1, {2 -+, {r are the invariant factors of an integral set of
vector polynomials, we can find a basis of the form

flzl; §2x2y ) g-rzr

where 11, 2o, - -+, . define an elementary set.

4.05 Linear elementary bases. We shall derive in this section a canonical
form for a basis of an elementary linear set. If
(5) zl; 227 tt Yy zr) 2y = xl'x + y‘!

- . . . . . .
is a basis of an elementary linear set, it is convenient, though not necessary, to
associate with it the matrix

(6) AN — B = 2 g:Sz; = 2 gsS(z\ + yi)
1 1

where g1, g5, -+, ¢- is a sequence of linearly independent constant vectors.
When this is done, it should be noted that multiplying AN — B on the right
by an elementary matrix P corresponds to replacing (5) by the similar sequence
P’zy, ---, P'z,. Multiplying on the left by P has no immediate interpretation
in terms of the sequence except when

Pgi= D5 pugi (i=1,2 1)

i=1
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in which case we can write

P(AN — B) = 2 giS 2 Di#i = 2 g:Sz’;
i=1

i=1
and the set (2,24, - -+, 2.)is equivalent to (5); when P is constant, the equiva-
lence is strict. )

Instead of restricting ourselves to the matrix (6), we shall only assume to
begin with that AN — B is a linear matric polynomial of rank » < n. The
nullspace N of AN — B is then an elementary integral set, a normalized basis
of which we shall take to be
" o) =aNs F a4 - F @i, (E=1,2 -, n—1)
From (AN — B)a; = 0 we have

Aa,'o = 0, Aau = Baio, ey 0= Ba,-,,,‘.,
or, if we set a;, = 0 fort < Oort > m;,

(8) Aay = Bai,¢ 1 (t=Or L2 - m; + 1).

We shall now show that the vectors a;; ¢ = L, 2, ---;, n — r; 5 =0, 1,
.-+, m;) are linearly independent. Assume that a;; are linearly independent
for(¢ =12 --,p—1;7=0,1, ---, my)and @ = p;5=0,1, --+, ¢ — 1)
but that

9) apg + 2 @iy + 2 i a5iQij =
i=1 j=0

Let &’ be the greatest value of j for which some a;; # 0 and let s be the greater
of s and ¢q. If we set .

(10) Ct"‘apq—a+t+Eamap:—n+‘+2201val7-—-+t;

1=1 j=

thenc_; = 0, ¢, = 0 and

g—1 p—1 m;
N\
cq—l=ap.q—l+ zfapiap.i"l'i' 2: z;aiiai.i—l’

i=1 i=1 j=1

which is not 0 by hypothesis, except perhaps when ¢ = 0 and every a;; (j # 0)
in (9) is 0, which, however, is not possible since by Theorem 1 the leading
coefficients a in (7) are linearly independent. Also from (8) it follows that
Acy = Bcy 4, and hence

(11) ) =cN—t4 N2+ -0 oy
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is a null-vector of AN — B of degree less than m,. But every such integral
null-vector is linearly dependent on a;, as, ---, a, -1 with integral coeffi-
cients, say

(12) ) = D vWa);

and this gives

p—1

coor=c(0) = 274(0)0.(0) 2 V(0 iy

which is impossible since ¢, . is obtained from (9) by lowering the second
subseript in each term and no such subscript greater than m; can occur in any
a;;. Hence the a;; are linearly independent.

In order to simplify the notation we shall now set

(13) a"i=Qe; (i.= 1,2 "'i'n_r;j=0, 1 -, ms)
where Q is a constant non-singular matrix and e} are fundamental units rear-
$—1

ranged by setting, say, e = ¢; when k = 2 (m, + 1) 4+ j + 1; as before

g=1
= 0 for j < 0 and j > m;. We shall denote the space defined by the e}
by P and the complementary space by I,; since the bases of I, and M,
can be chosen as sequences of fundamental units, they are reciprocal as well as
complementary.
We return to the particular case in which AN — B is given by (6). Corre-
sponding to (12) we define a new set of vectors w by

(14) wi=Qz (=12 :-7)

and when this is done a normal basis of the nullspace N, of (AN — B)Q =
Zg:Sw; is given by

@15) by = eiX™ deiAmi—14 ... i (=1,2 -, n—r).
We have seen in §1.10 that b1, by, -+, ba —, is the space reciprocal to

wy, Wy, *--, Wy, Now in I the E : m; vectors

(16) Ji=ei_1-— 2} (@@= 1,2, e, n—ri=1,2 -, m)

are linearly independent; and they form the set reciprocal to (14) in I, since
Sfib, = 0 for all 7, j, p and the sum of the orders of the two sets is Zm; +
(n — r) which is the order of I%;. Hence the total set (wy, ws, -, w,) recip-
rocal to (by, by, ---, b, —,) is composed of (15) together with IMM,. We shall
call this form of basis a canonical basis of the set (13). We can now state the
following theorems.
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THEOREM 7. A linear elementary set.of order r has a basis of the form
(17) g(} (G=12---,m), 9; = @i, i -1+ My G=12-5j=12"--,m)

where the constant vectors g}, ai; are linearly independent for all j and © and the
inlegers m; are those degree invoriants of the reciprocal set that are not 0.

We shall call each set g} (j = 1, 2, ---, m;) a chain of indezx m;, and define
the integers m,, m,, -, m, as the Kronecker invariants of the set. A basis
of the form (17) will be called canonical.

THEOREM 8. Two linear elementary sets are similar if, and only if, they have
the same Kronecker invariants and the same order.

It should be noted that, if r is the order of the set, then
(18) mp Dymi=rm+ D) i+ D-Sny<n—r
1 1

If »r = n, all the Kronecker invariants are 0 and there are no chains in the basis.
If z;, 2, - -, 2,is a normal basis of an elementary linear set, the first m being
constant and the rest linear in A, and g9, g} is a canonical basis, the notation
being that of Theorem 7, then clearly the set g3 (j = 1, 2, ---, m) is strictly
equivalent to (z;, 25, ---, 2») and the remaining vectors have the form

(19) g; = wi + uj + M

where u and v} belong to (21, 2y, * - *, 2) and the w} are constant linear combina-
tions of 2m 41, *+*, 2. Since,a canonical basis is also normal,

(20) gg (j=1;2) ";’m)’ w;: (i=1,2; ) V;j= 1721 ) mi)

is a normal basis strictly equivalent to (z1, 22, ---, 2,). Now (19) may be
written

(21) wi=g!—ul =M =ai;-1—u}+ My, —v}) =2} +0b]
where b} = »i _; — u} is a constant vector of the linear set (g%, g3, - - -, g») and
(22) zi=a; j_1—vi 14 Nai; — vi).

Here (22) together with the g form a canonical basis which from (21) is strictly
equivalent to (20) and therefore to (z1, 2z, - -+, z,). We therefore have the
following theorem.

THEOREM 9. Every normal basis of a linear elementary set is strictly equivalent
to some canonical basts.

4.06 Singular linear polynomials. Let AN 4+ B be a matric polynomial
of rank r < n. Its left and right grounds are linear integral sets of rank r,
and by Theorems 3 and 7 we can find canonical bases in terms of which the
vectors of the two grounds can be integrally expressed, say

(23) 2,22, -+, 2, and wy, wy, :--, W,
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respectively, where the first o 2’s and 8 w’s are constant and the rest linear in A.
When A\ + B is expressed in terms of these bases, then, remembering that no
second degree term can appear, we see that it has the form

a 8 r—a B a r—8
(24) 2 Z (hah + Kiy)2eSw; + 2 2 kat 5. 20+ sSw; + 2 Eki.ﬁ+izis'wﬂ+i-

i=]1 j=1 t=1j=1 1=l j=1

The row vectors

] . r—p8
(25) pi= D ik + kidw + D Ry wsr; (=12 a)
i=1 i=1
]
- (25") Payi= Zka-ri,fwi. ¢t=12--1r—a)
i=1

form a set of r linearly independent vectors and, since the set (25”) depends
only on 8 w’s, we must have r — o < 8. Setting'y = « + 8 — r we may
replace w, 41, ***, Wa by pa 41, *++, prin (23) without destroying the canon-
ical form of the basis. A similar change can be made independently in the

zbasisbyreplacingz.,+,-byZk.-,,+.,z,+,-(j =12 -, r—B=a—7).

1
When we assume that these changes have been made to begin with, we may
take in place of (24)

r—a r—8

a B
(26) AN+ B = E 2 (h.‘,‘k + k.-,-)z.-Sw, + 2 z.+.-S'w., +i+ 2 z.,.,.,-Swg +3-

i=1j=1 i=1 i=1

Figure 1 shows schematically the effect of this change of basis. To begin with
the coefficients in (24) may be arranged in a square array AR of side r; the

L% B r a4+ g
A B c D
v E F G H
X
J K L M
’
N P Q R
a+tp

Fia. 1
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first double sum corresponds to the rectangle AL, the second to JQ and the
third to CM, and the rectangle LR contains only zeros. After the transforma-
tion which leads to (26), the only change in the scheme is that in J@ the part
JP is now zero and the square K@ has 1 in the main diagonal and zeros else-
where, and CM also takes a similar form.

If we set

Zati=Zayi+ 2 (Bivysh + Eiysidz; (E=1,2,--,r—a)

i=1

k4
Wpys = Wp 44+ z; (hysiviN + by dw; (G=1,2,---,7 —B)
=t

)

then zy, -+, 2, 2041, -+, 2, and wy, + -+, Wp, Ws41, -+ -, W, are still elementary
bases of the right and left grounds, and in terms of them (26) becomes

v r—a r—_
2 (hix + ki)ziSw; + 2 2o+ 8wy 4 + 2 2y 4+ SWg 4 ;.
t,7=1 =1 i=1

The number of terms in these summations after summing for jis v + (r — «)
+ (r — B) = r. Hence the rank of the square array h;N + ki; (7,5 = 1, 2,
---, v) is v and by a change of variable of the form A — A; = X/, if necessary,
we can secure that the array k;, is also of rank +.

The transformation just employed disturbs the canonical form of the basis
and we have now to devise a different transformation which will avoid this.
Let us set in place of wy, we, -+, w,

]
w;'=wl—2piv¢—"vw¢ (j=1;2’ Tty ‘Y)

t=y+1

where the p’s are constants to be determined later, and for brevity set also

Y Y
ki = zhiizixki= Zkiﬂi G=1,2 -, 8);
i=1 i=1

since thé rank of k;, ¢ = 1, 2, .-+, v) is v, the vectors ki, k;, -+, k, form a
basis of (2, 22, -+, 2,). After this change of basis the part of the first double
sum (cf. (26)) which correspondstoz = 1,2, ---, ;i =y + 1, -+, Bis

B ¥
(27) > [h,-x +Et D) P i—a(h + k,)] Sw;.
i=y+1 t=1 °

Consider now a single chain of 2’s of index s which by a suitable change of
notation we may suppose to be 2, +1, 2a +2, ***, 2a +.; We shall seek to deter-
mine the p’s so that the corresponding part of (27) shall become

v+
(28) D7 @r-1oy + Mgj-2)Sw;,

i=v+1
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the ¢'s being vectors in the space (z1, 23, -+, z,). Equating corresponding
terms in (27) and (28) we have

o= ky41+ 2 Poky g1 = by + 2 pahe = kyy2 + 2 Pk
t t t

Je—1 = h1+n—l + 2 pt.n—lht = k7+o+ Z P;.k:, gs = h‘y+a + 2 ptsht-
t t t

Choosing pay (¢t = 1, 2, -+, v) arbitrarily we define g, by the first equation;
then the second defines p.; since the vector h, ., + 2 puhe — ky 42 can be
t

expressed uniquely in terms of the basis (ki, ks, - -, k,); and the remaining
p’s are similarly determined in succession, while the last equation defines g,.
If we now in our basis put in place of z, 4+

za+.'=z¢+.~+g.-_1+)\g,~ (i=l,2,"',8)

and combine the corresponding part of (27) with 2 Za 4+ iSW, 4 4, the two

1=1
s

together give E 2. + «Sw, 4 ; and the new basis is still canonical. We then
i1=1
treat all the z chains in the same way and have finally in place of (26)
v a B r—a :
’ \ ’
E (RN + kipzsSw; + 2 Z (hih + kidziSw) + 2 Zg + SWy 4+
t,7=1 d=7+1 j=1 i=1
r=4

+221+i5wﬂ+1‘-

i=1

The changes in the bases used above have replaced the coordinates hy;, ki;
by O for the range ¢ = 1,2, ---, v; 7 = v + 1, ---, B and have left them
wholly unaltered for¢ = v + 1, -+, @;j = 1,2, ---, v. We can therefore
interchange the roéles of the z’s and w’s and by modifying now the w-chains we
can make these coordinates zero for the second range of subscripts without
altering the zeros already obtained for the first range. Hence it is possible
by a suitable choice of the original canonical bases to assume that (26) is
replaced by

hd a B
AN + B = 2 (hi5>\ + k.-,-)z,-Swi + E 2 (h,;jx + ki,-)z,-Swf

ti=1 i=v+1 j=1+1

r—a r—8
+ E ; Za 4 iSWy 4 i + E;Zywswsw-
t=1

i=1

(29)
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Here the first summation can be reduced to a canonical form without affecting
the rest of the expression; we therefore neglect it in the meantime and deal
only with the remaining terms. This is equivalent to putting ¥ = 0, and in
making this change it is convenient to alter the notation so as to indicate the
chains in the bases.

As in §4.05 let the chains of the z and w bases be

f;:-1+>‘f;: (j=1y2’ Tty 8;;i=1,2,.°°', "1)
and .
o1+ NG (@=1,2 -, tp =172 -+, n)

respectively, and denote the constant vectors of the respective bases by z?%
and w; where i, J, p, q take the values indicated above since, when y = 0, we

have Zs, r—a=24, S—\tq =r — f = a. We have then to determine

a canomcal form for the matrlx

30) D) (pix+k3D)zSwi + 2 (fioa+ MHSwS + D) 2285 + M),
$,7.0.¢ P.q

and in doing so we shall show that the first summation can be eliminated by a
proper choice of the bases of the chains.

It will simplify the notation if we consider first only two chains, one of index
s in the z-basis and the other of index ¢ in the w-basis and, omitting the super-
scripts, choose the notation so that these chains are fo + A1, -+, fo =1 + A,
and go + Mgy, -+, g¢—1 + Ag:. We now modify these by adding a; —; + Aa;
to fi—1 + MNjand b; -1 4+ Ab; to g; —1 + Ag: choosing

d s
a; = Zaiizi (.7=0,1, eee, s)) bi=2§,‘i‘wi (1,=0’]_’ ceey t)
i=1

i=1
in such a way as to eliminate the corresponding terms in the first summation
of (30). To do this we must choose the o’s and §’s so that
(BL) hij = asj +Bs, kij=oaij—1+Bicr,; (E=12, oo, ;5 =12, --+,9).
Forj > 1thisgives a;, j —1 = hi,; —1 — Bs,j —1and hence if I;; = ki; — hs, ;-1
we may write
(32’) ko= lil = ai + Bi-1,1
(32") lij = Bi-1,i — Bi.i—
If we give ay (¢ = 1, 2, -+, t) arbitrary values, (32') defines Bi; for + = 0,
1, ---, t — 1 and leaves B, arbitrary; then j = 2 in (32") gives B, for ¢ =
0,1, ---, ¢t — 1 and leaves 8, arbitrary, and so on: and when the §’s are found

in this way, certain of them being arbitrary, the first equation of (31) gives the
remaining o’s.

(i= 1:2) Tty t;j=2)3) "';S)-
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Combining every z chain in this way with each w chain in turn, we finally
eliminate all the terms in the quadruplé sum in (30), and (29) may therefore,
by a proper choice of the two bases, be replaced by

(33)
AN+ B = 2 (hii + Fij)2:S0; + Z} (Fi 1+ MDSwi + D) 22805 -1 + \g2)

t,i=1 p,q
where no two of the linear sets

(34,) - (31722; Y z’i)} (fs;f;: ce )fn)i = 1; 2, -, ”1)7
(’z{: zg) Ty z‘t’p’p 2 - V2)

have any vector in common, and also no two of

(34”) (wb Wey * -y 'w‘r)) (wl‘:)w;; Tt wf;ri =12 Ty "1);
98, 9% - glup =12, -+, m)
have any vector in common.

We shall now for the moment suppose that the order n of the fundamental
space is taken so large that we can introduce vectors z§ (p = 1, 2, - - -, vy) into
the third set in (34’) without causing the three spaces to overlap, and also
wi (i = 1,2, ---, ») into the second set of (34’"). As a matter of convenience
we can then find two constant non-singular matrices P, @ such that

. R Topy . i __ = Topt P _ v 4 — /D
Pz; = e; = Qw;, Pfi = ¢} wj, Py =eptr = Qg

where the range of the affices is as in (34) and where

i—1
ej = e k=7+2(sa+1)+j+l, egt? = &,

a=1

Fert D) (s,+1>+2(t +1+g+1

1=1

and, when this is done,

(35  P(A\ + B)Q = 2 (hak + Ei)esSe; + 2 (ef -1 + Nel)Se}
=1
+ D et S(e"q‘i'{’ + A,
pq
This matrix is composed of a number of blocks of terms arranged along the
main diagonal, the remaining coordinates being 0. It must be carefully observed
however that, owing to the introduction of the vectors 2%, wi and to the fact
that a chain of index s depends on s + 1 constant vectors, the total number
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of rows and columns employed is greater than the rank r by the total number
of chains in the left and right grounds.

The first summation in (35) gives a block || 2;A + ki; || of v rows and columns.
Each chain in the second and third summation gives a block of the respec-
tive forms

010 00 0 0 0---00
0 X1 0 0 1 Xx0---00
00 x---00 01 N---0 0
(B6) e e
000 AL 0 00 A O
0 00 0 A 0 00 1 A

If we take AN + By in place of AN + B and calculate the invariant factors
these forms show that we obtain the invariant factors of E (hiN + Ksp)eSe;

together with a number of 1’s from the blocks of type (36'), the number con-
tributed by each being one less than the number of rows it contains, that is,
the index of the corresponding chain. This gives the following theorem.

TaeorzM 10. Two matric polynomials AN + Bu and C\ + Dy are strictly
equivalent if, and only if, they have the same invariant factors and their respective
right and left grounds have the same Kronecker tnvariants.

That these conditions are necessary is obvious; that they are sufficient follows
readily from the form (33) derived above. In the first place, since the Kro-
necker invariants are the same for both, the second and third summations in
(33) have the same form for both and are therefore strictly equivalent by
means of transformations which do not change the terms in the first summation.
Secondly, the first summation in both yields the same invariant factors since
the number of 1’s due to the remaining terms depends only on the number of
chains, which is the same for both; hence these summations are strictly equiva-
lent and, because of the linear independence of the constant vectors involved,
the equivalence is obtainable by transformations which do not affect the
remaining terms.

When the first summation in (35) is in canonical form, we shall say that
AX + B is in its canonical form. This is however not altogether satisfactory
since the space necessary for this form may be of greater order than n. If
v is the greater of », and vz, (33) shows that the minimum order of the enveloping
space is ¥ + Zs; + 2t, + v. A canonical form for this number of dimensions
can be obtained as follows. Pair the blocks of the first and second types of
(36) till all of one type are used up, taking the order of the constituents in, say,
the order of (36): then in the composite block formed from such a pair discard
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the first column and also the row which contains the first row of the second

block. This gives a canonical form for such a pair, namely,

10---
A1 -
0 N ---

@37)

LR = e I e I =

o o

0
0
0

o YOO .

0
0

If the number of chains in the left and right grounds is not the same, there

will of course be blocks of one of the types (36) left unpaired.



CHAPTER IX

THE AUTOMORPHIC TRANSFORMATION OF A BILINEAR FORM

9.01 If the variables of a bilinear form whose matrix is ¢ are transformed
cogrediently by a matrix z, the matrix of the new bilinear form is z’ax; when
this new form is identical with the old, the transformation is said to be
automorphic. The problem of finding all automorphic transformations of a is
therefore equivalent to solving the equation

(1) z'ax = a.

We shall assume for the present that | a | # 0 in which case also | z | # 0.
It follows from (1) that z’a = az~'. Hence, if f(A) is a scalar polynomial

(1) [f@)])'a = f(z')a = af(z™).
In particular, if f(A) = (1 — \)/(1 + ) and y = f(z™1), then

_l—z z-1
T 14z x4+l
provided | z 4- 1| # 0. Hence from (1') y’a = —ay so that

(2) y

3) y = —aya~l

Conversely, if y satisfies (3) and |1 — y| # O, thenz = (1 + »)/(1 — y) isa
solution of (1) such that |z 4+ 1| 0. For from (3) f(¥")a = af(—y) so that

b _ 149y 1-y
xa=1_y,a—al+y

Similarly, if |z — 1| 0, we may setz = (1 — y)/(1 + y) and then y is a
solution of (3) such that |1 4 y | # 0, and conversely. The effect of the trans-
formation (2) is therefore to reduce the solution of (1), which is quadratic in z,
to that of (3), which is linear in y, except when both 1 and —1 are roots of z.
It is because (3) is linear that it is more convenient than (1); in particular if we
regard

= ar.

3" y'a+ ay =0, Yy = “ Npq ”: a = “ Qpg ”,

as a system of n? linear homogeneous equations in the 5’s, then the rank of the
system gives the number of parameters which enter into the solution when those
values of y (or of z) are excluded for which both 1 and —1 are roots.

Since the main problem is thus reduced to the solution of linear equations, it
may be regarded as solved; the solution, however, can be given a somewhat more
definite form as we shall now show.

140
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9.02 The equation ¥’ = & aya—'. We shall consider in place of (3) the more
general equation

4) y' = daya~l, 6 = £1.
Forming the transverse we get y = éa’~'y’a’ or 3y’ = da’ya’~!, whence
5) ya~la’ = a7 la'y, a'ya’ ! = aya™?
so that y is commutative with a~la’. Now from (4) we have y = da~'y’a and
hence

2y =y + da'a.
But if b is any matrix commutative with a—a’, then
6) y=1"b4 daWa
is a solution of (4); for on substituting this value of ¥ we get

Yy — daya~! = b’ 4 da’ba’! — saba! — b =0

since, as in (5), a’ba’~! = aba~!. It was noted above that y has this form and it
therefore follows that the general solution of (3) is obtained by setting

) y=b—aWa, ba—la’ = a~la’b.

It should be noted, however, that two different values of b may give rise to the
same value of y.

9.03 We are now able to give a solution of (1) under the restriction that either
|z41|#0or|z — 1] 0. Since the first condition is transformed into the
second if z is changed into —u, it is sufficient for the present to assume that
| z + 1| # 0, and in this case the value of y given by (2) is finite. In termsof y
we bave

Ly _14b—ambe_ ( oh 4 bai(a 4 ab — va)

=i —yT1-b+Faa
or, if
(8) ¢ = ab — b'q,
then
©) z=(a—c)!(a+c), |z 4+ 1] 50,

z=(—a(a+c), |z — 1] 0.

It follows as in §9.01 that, if  has this form, it is a solution of (1
In place of (8) we may define ¢ by

(10) ¢ = —=ada”lc = —ca~ld'.
For from (7) and (8) '

¢ =ba —ab= —dalc= —cald
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and, if ¢ is given by (10) and z by (9), then

2= + )@ —c)t=(d — cat'a) (@ + cala")?
A=—ca YA +ca ) '=04+caDH (1 -ca) =ala+c)(a—c)a?
= azx—la7 .

If a is symmetric, (8) or (10) gives ¢’ = —¢, and c is otherwise arbitrary except
that | @ — ¢ | # 0;in particular if @ = 1, (9) reduces to the form of an orthogonal
matrix already given in 6.03. Similarly if a is skew, (10) shows that ¢ is an
arbitrary symmetric matrix subject to the condition that | @ — ¢ | & 0.

The case in which a is symmetric can also be handled as follows. We can set
a = b? where b is symmetric and, if

y = b~ 'xbh,

equation (1) gives yy’ = 1 so that y is orthogonal. Conversely, if y is any
orthogonal matrix ¢ = byb~!is a solution of (1).

9.04 Principal idempotent and nilpotent elements. Since z is similar to
(z)71, the elementary divisors which correspond to roots other than 41 occur in
pairs with reciprocal rodts. If we arrange these roots in pairs g,, g,* and denote
the corresponding principal idempotent elements by e, and e_,, respectively, we
may set

A1) z=3[g(er + &) + 97 e—r(1 4+ )71 + 01(e2 + £1) — Oa(e—y + £-1)

where the £’s are nilpotent, e;, ¢_; are the principal idempotent elements cor-
responding to 1 and —1, if present as roots, and 6,,6; are either 0 or 1. The
form of z—1is then

(12) z7' = Z[g.(e—r + £-) + 97 (1 + E)7] + rea(1 + £1)7F — ey (1 + £-9)?
and (11) gives

e: = ge_.a”}, ei, = ae,a!
(13) k. = abo, Bl = ata
’ ’

€, = aea’l, e_, = ae_a”!
(13" r_ H o -

~£1_—amla , 5_1_—a1+£-1a .
We require also the form of x + z~'and z — z7!; if
(14) ar = & + E—r) Br = Er - E-—r
then

z + zl=2 [gr(er + e + ar) + Q:I (er + e—r) (1 + ar)—l]
+ Oil(es + &) + (1 + £E)7Y] — 6a[(e—s + £-0) + ea(l + 2071

T—ztl=2 [gr(er — €, +'Br) — G- (er b e—r) (1 + Br)_ll
+ 6:l(er + &) — ei(1 4+ £)71) — O:[(e—s + £-1) — e(1 + £-)7Y]
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or if
= B N = & ) _ 531
Yr = grar gr 1 _I_ ar; Y1 = 1 + El, V-1 = ~1—+—£_1
(15) 6r = grEr + g:l 1ETTE’ 6—1- = grs—r + g:l ].j-—_'s_,
0 = 28 — 1y 01 = 261 — v
we have

(16) z+z'=Z[(g, + 97" (e + e=) 4+ 7] + 6:(2e1 + v1) — 6:(2e_; + v_1)
(17) z—2 =2 — g e+ 8} — (g —g7) e + 6_1}] + 6161 — 625,

where the elements grouped together are principal elements.

The principal idempotent elements of x — z~! are also principal idempotent
elements of z except that roots 1 and —1 of x both give the same root 0 of
z — z71; no root of z other than +1 leads to the coalescing of roots in 2 — z~1,
If we put

(18) 2u =z + z7}, =z — 27

then u is a solution of (4) with § = 1 and v is a solution with § = —1;also

(19) 22— 202 —1=0

which has the formal solution

(20) z =04+ (¥4 1L

Here 12 4 1 = u? so that (v* + 1)! exists whenever z is a solution of (1). Con-
versely, if »; is any solution of (4) with § = —1 and if u,; is a determination of

(»! + 1)} such that
(21) Urd = cuy,
then z is a solution of (1); for
z'a = via + uja = —av, + au; = az~!

since
(w+v) (w —v) =uf —of =1

If ¥* 4 1 has no zero root, determinations of (v + 1) always exist which are
polynomials in »? and therefore satisfy (21); but even in this case this does not
give all solutions. The situation is as follows. The general form of v is given
by (17) if we replace g. — g by, say, 2k, and 6,5, — 6:;5_; by 6c. When k. is
given, then g, is determined; from (13) and (14) we have (5, + 5:,)a = a(s, +
5_,) and therefore, if k2 4+ 1 5 0, the part of (> 4 1)! corresponding to e, + e_,
exists and satisfies (21); we therefore get all valid expressions for this part of
(v* + 1)* by using the form of the square root given in §8.05 with the restriction
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that the only sets of partial units that may be used are those that satisfy (21).
However, since (v* + 1)} = u, (16) and (17) show that we need only use the
idempotent elements e, 4 ¢_,, which are determined by v, in those parts of the
square root which do not depend on the zero root of v; e, and e_;, however, are
not defined by v so that it is necessary in any particular case to consider how eg
and 8, can be broken up into parts which have the required property.

If v has a zero root with the principal idempotent and nilpotent parts e, 6o,
then ¢ = e shows that, although 6,a = —ado, we have

(219 e;a = ae,.

We therefore seek to divide e; into-two idempotent parts, e; and e_;, which are
commutative with » and therefore with 8,. In forming the square root we then
attach the value 4-1toe;and —1toe_;.

If k2 4+ 1 = 0, then g, = 7 and the corresponding part of (v® 4 1)}is 24(5, +
o_,) + 82 + 8%, and it is readily shown from (15) that this has a square root.
The details are left to the reader.

If b is a solution of b’a = —ab, thenso arealsot = tanband v = tan 2b. A
short calculation then gives z = (1 + ¢)/(1 — t) subject to the restrictions
already given; this shows the relations between the rational and irrational
solutions.

9.05 The exponential solution. Some of the difficulties of the solution in
§9.04 can be avoided by setting
(22) z = exp(2) = €, z=Logx

where a principal determination of log z is to be used. Since this determination
of log z is a polynomial in z and z’ax = a, we have

(23) 2 = Log ' = Log az~'a~! = a(Log z~%)a™!
and therefore
(24) 1 = z'ara = e’esre! = ¢ Hoza],
From (11)
(25) z = Z[(logg,) e + 1, — (10g g,) €~y + 1) + Oum1 + Ga(wie_y + n-1)
7= — 3+ - (s=r —r1, =1

and from (13)

e,’ = ge_,a7, "): = —an—,a" (s=r —1),
0 e, = ae, a7}, 1, = —ana™ (s = 1,, —1).

Hence

2 4+ aza™? = Z[(logg,) el + 17: — (loggel, +n.] + Oy + 6a(mie’, + n’il)
’ ’ ’ ’ ’ .t 7
+ E[GOg gr) e—r - Ny — (IOg g")er - '0.-] - 01771 + 02(7'-16—1 - 77—1)
= 2027!'1.6_/.1,
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and therefore, if we set

@7) F=0.,0=6=01, w=z—

we have

(28) w4 awat =0, { —afal=0,

and

(29) w = Z[(log g)e, + 7. — (log g)e—, + n_,] + 61 + Ban_s.

The general value of x can therefore be expressed in terms of the solution of the
equation discussed in §9.02.
If we now start with w as a solution of (28) and define x by 2 = €¥, then

2 = = ¢wi! = gevgl = gz—lg!
and therefore z is a solution of (1); to obtain every solution, however, we must
add the terms 7t to w.

If e, is the principal idempotent element corresponding to the root 0, then
(29) shows that the presence of the {-term depends on the division of e, into two
parts e; and e_; which satisfy the second set of equations in (26) ; and correspond-
ing to these we have nilpotent parts #; and n_; which give rise to 1 and —1,
respectively, as roots of z, or 0, 77 as roots of z.

A form which gives rational parameters is obtained from the exponential
solution as follows. Let

e — 1 z—1
(30) t = tanh (2/2) = 1= o7
then
141
(31) T =1
and
ata-! = axa™' — 1 1 — azrla! _ 1 -z —

aza'+1 1+axriar 142

so that (31) gives a solution of (1). If, however, |z + 1| = 0, then ¢ becomes
infinite so that (31) cannot give directly any « which has —1 as a root. This
difficulty arises from the fact that tanh(6/2) — « when 6 -— =1; but, since (¢ 4 1)
(t — 1) = e for all values of ¢ which do not have an infinite root, that is, one
corresponding to a root (2k 4 1)77 of 2, hence z will be a solution of (1) so long
as the coordinates of z are continuous functions of the parameters involved
and the limiting value of z is finite and determinate.

9.06 Matrices which admit a given transformation. In (1) we may regard z
as given and a as unknown; the problem then is to find all matrices a such that

(32) z'ax = a.
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If we associate with a = || a;; || the corresponding tensor of grade 2,
u = Zaiee;,

we see immediately that (23) corresponds to setting (cf. §5.10)

(33) (x)u = u.

Hence there is a solution if, and only if, z has at least one pair of reciprocal roots;
in this case II;(z) has one or more roots equal to 1 and the various invariant
elements corresponding to this root give a linearly independent set of determina-
tions of a.

When it is required that | a | # 0, another form of solution is preferable. In
this case 2’ = az~'a~!; but, since x and z’ are similar, we also have ' = pap™,
where, if p, is one determination of p, the general form is

(34) p = pib, br = zb, |b] = 0.
Hence it is necessary that £~! be similar to z, say

(35) 7! = gi'zq,

which gives immediately

(36) a = pibqr.

Conversely, if pi, b, and ¢, satisfy the given conditions, it follows immediately
that (36) gives a solution of (32).



CHAPTER V
COMPOUND MATRICES

5.01 In chapter I it was found necessary to consider the adjoint of A which is a
matrix whose coordinates are the first minors of | A |. We shall now consider
a more general class of matrices, called compound matrices, whose coordinates
are minors of | A | of the rth order; before doing so, however, it is convenient
to extend the definition of Szy to apply to vectors of higher grade.

- 5.02 The scalar product Let z; = Zfie, yi = Znigye, 0 = 1,2, --+) be
arbitrary vectors, then, by equation (37) §1.11 we have

N )k
n | zi@a - - 2. | = (2)/ | 1o Boi <o 0 Eri, || €i6i - €],
1
and hence it is natural to extend the notion of the scalar product by setting

>
2) Sl|lze -+ x|l thye -+ y. | = s | Erikonn o Eri || musmas, - o0 mi, |

We then have the following lemma which becomes the ordinary rule for multi-
plying together two determinants when r = n.

LemMma 1.
@) S|lzmze -z llyye -+ yr‘] = | Sz, |.
For S|z -+ z. || €iei, -+ €| = | Erifos, -+ &ri, |, hence

Slas - [l mies, -+ eq | = D malbs - b |
i

= |<2 ms'lEu.) b, 0 Eri | = STy bay o b |
again

Slzze -0 2 || yupes, -0 €| = anslxl e x|yl oo e,
T2 .

2 Nas, | STayr &as, -+ &, |

= | Sz1y; St2y2 Eiy o0 £ |

The lemma follows easily by a repetition of this process.
The Laplace expansion of a determinhant can clearly be expressed as a scalar
product. This is most easily done by introducing the notion of the comple-
63
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ment of a vector relative to the fundamental basis. If ¢y, 75, - - -, . is a sequence
of distinct integers in natural order each less than or equal to n and ¢, 4, - «, ia
the remaining integers up to and including =, also arranged in natural order,

the complement of | e;e;, - -+ e; | relatively to the fundamental basis is
defined as!
(4) l €65, *° €4, IG = (_1) Fatrtr+ D/ | Ciry1€irypa 0 Cig

and the complement of | z;z» -+- z.| by

*
(5) I T1Te **° Ty lc = (E) | Eh’lsﬁa s ‘E"‘r H €i€i, " € l"’
which is a vector of grade n — r.
Laplace’s expansion of a determinant in terms of minors of order r can now
be expressed .in the following form.

LeEMMA 2.
6) S|z -+ Tl Tr41Zrp2 v Tn| = |Eudte - Ean| = | Szie; ]
= Slzl e x””el e enl - (.—1)'("—')Slxlzz e xr“xr+l e xnlc-

Further as an immediate consequence of (5) we have

Lemma 3.

(7) Slxle e xr’clylyz s yr’[c = ’Slxlx2 e xf”yly2 e y"l‘
5.03 Compound matrices. If A = Zaye;;, then, as in (1),

| Azdzs -+ Az, | = D) iy ++ ko |l dey -+ Aey .
(i)
But Ade¢; = 2 a;;ei; so a second application of (1) gives

* %*
| Az Az, - - - Az, | = 2 2 YRR N | FPRRRR: Pl | PR A &
@ :

But the determinants |£j; --- £, | are the coordinates of the r-vector
| ziz2 -+ z,|; hence | Az, --- Az, | is a linear vector form in |z\2s --- z.|
in the corresponding space of (}) dimensions. We denote this vector func-
tion or matrix by C.(4) and write

(8) | AriAzy --- Az, | = C.(A) | 222 -+~ z.].
We shall call C,(A) the rth compound of A. Important particular cases are
@®" Ci(4) = 4, Cu(4) = |4],

1 The Grassmann notation cannot be conveniently used here since it conflicts with.the
notation for a determinant. It is sometimes convenient to define the complement of
lewes -+ en | a8l
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and, if % is a scalar,

(8") Cr(k) =k
THEOREM 1.
) C.(AB) = C.(A)C.(B).
For
I ABx;Asz e AB:L‘, I = Cr(A) I ijBzz e B:c, I

C.(A)C(B) | 122 ++- z,|.

Corollary. If |A| = 0, then

(10) [C.(A)]1 = C.(47Y).
THEOREM 2.
(11) [C.(4)) = C.(4").
For 8|z -+ .| C(4A) | thye -+ .| = | Sz:idy;| = | SA'ziy;|

=SlA'xl e A’xr”yl e yrl =S|y1 ..-.y'lCr(A’)lxl,... xrl.

TuroreM 3. If A = 2 a:Sb, then

1

(12 Co(d) = 23" L asos -+ ay | S| bidiy - by,
()
This theorem follows by direct substitution for A irr the left-hand side of (8)
It gives a second proof for Theorem 2.
If r = m, (12) consists of one term only, and this term is 0 unless m is the
rank of A, a property which might have been made the basis of the definition

of rank. In particular, if X = 2 eSz;, ¥ = 2 yiSe;, then C.(X) =

1
leweg <+ e, | S|zxe -+ 2|, C(Y) = |yye -+~ y,lSIelez .-+ e, | so that
C.(XY) = |ewes -+ e, |S|xxe -+ 2 ||ywye -+ y-|S|eies «-- e.|. But

XY = D elSzy;Se; so that C(XY) = | Szay: || ewca -+ ¢ | S|eres -+ e ].

143
Comparing these two forms of C.(XY) therefore gives another proof of the
first lemma of §5.02.
If we consider the complement of | Az,Ax, --- Az,| we arrive at a new
matrix C7(4) of order (}) which is called the rth supplementary compound of A.
From (7) and (12) we have

(13) | Awidas -+ Az |o = D3 Lai -+ @i o8 1by - bile o - e

= CrA) | zazs -+ 0 .

and derive immediately the following which are analogous to Theorems 1 and 2.
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THEOREM 4.

(14) C"(AB) = C"(A)C"(B).
THEOREM 5.

(15) [C(4)]) = C(4").

The following theorems give the connection between compounds and supple-
mentary compounds and also compounds of compounds.

THEOREM 6.
(16) Cr(A)Cn - +(A) = |A| = C" = "(4)C.(4").
This is the Laplace expansion of the determinant | A |. Using equation (6)
and setting |e| for |ees --+ €. | we have
|A 1S @ - 2o ld o in e znl = [A[S]z - zale]

=S| Az, --- Az.|]|e]

=8 |Az; -+ Ax.|c| Az 41 -+ Az, |
=8C7(A) |21 -+ & |Cn—r(A) | Zy 1 -+ Tnl
=8|z -+ 2, |LL7(A")Cn = (A) | 2r 41 -+ T |

and, since the z’s are arbitrary, the first part of the theorem follows. The
second part is proved in a similar fashion.
Putting » = » — 1 in (16) gives the following corollary.

Corollary. adj 4 = C*—1(4).
THEOREM 7. ,
n—1
(1) ey = 14177 = ey |,

For from (16) with A’ in place of A, and from the fact that the order of
C.(4) is (}), we have

1415 = e - ) | = | ey ][0 - (47 |

and, since | 4 | is irreducible when the coordinates of A are arbitrary variables,
it follows that | Cr(4) | is a power of | A |. Considerations of degree then show
that the theorem is true when the coordinates are variables and, since the
identity is integral, it follows that it is also true for any particular values of
these variables.

THEOREM 8.
(18) 14177 cyena)) = 14 et en - a))
(19) 141 eyeray) = 14 ¢ e, 4.
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Using (15), (16) and (17) we get

cuon=ame e -y = 1or -y | = 141
therefore
14177 €.C.4)) = CCA)CUC ~(aN)Cn = +(Cr = ()
= CL(CHAYCn = (40" (0" = 1(4)
= C.(141)Cm = Cn~ ()

= I A luC» - c(Cn - r(A)).
Similarly
Co(Ca - +(A))C:(C7(4)) = Cu(]A|) = |A ]

and therefore

14107 (€, ) = ¢ (€ _ (a))CUC — (AN)CMCT(A))
= | Ca—+(4) | Cs(C7(4))

Gy
= A" 77 C(C'(4)).
An important particular case is C,(C» ~!(4)) = | A |*~C* - *(4) whence
(20) Ci(adj 4) = C,(C*—1(4")) = |4 |*~1C*—+(4").

5.04 Roots of compound matrices. If 4 has simple elementary divisors
and its roots are A\, Ag -, A, the corresponding invariant vectors being
a. Gy, -, @, then the roots of C.(4) are the products A\;X;, - -+ A;, in which
no two subscripts are the same and the subscripts are arranged in, say, numerical
order; and the invariant vector corresponding to A\;A;, -+ A, is|aiai, -+ @i .
For there are (}) distinet vectors of this type and

C,-(A) I [ X/ 2 R l = l Aa; - Aa,-, | = Nahiy =00 Ay, | asai, - - ag, |

Similarly for C7(4A) the roots and invariants are X;\; --+ A, and
laias, -+ ai|e

It follows from considerations of continuity that the roots are ‘as given above
even when the elementary divisors are not simple.

n

5.05 Bordered determinants. Let A = || a;;|| = Z a;Se,, a, = 2 a;ie;,
i=1 3
be any matrix and associate with it two sets of vectors

X: 2z = 2 £ieiy

=1 (1;:1’2, e 1-)

n
Y: Y = 2 7ij€;.
i=1
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Consider the bordered determinant

ay @y - G Eun - En
G G a2 12 £r2
.............................. A X
21 , = =
( ) A An1  Qn2 e Ann Eln e Ern . Y/ 0
m Mo mn 0 0
A M1 Mr2 M 0 e 0

where r < n, and 0, is a square block of 0’s with r rows and columns.
If we introduce r additional fundamental units e, .1, -+, €. 4, A, can be
regarded as the determinant of a matrix A of order n + r, namely,

) n r r nt+2r
A= D aSei+ D vSensit D easiSyi= D, ciSd
1 1 1 1
If now we form |A| = S|e|Cn +.A) || as in §5.03, we have

C’l+"(2[.) = E*lc“l e Ci"+'lsldfl e d"n-rl (i = 1) 2) ] n + 27‘).
(i)

In this form any | ¢;, -+ ¢, ,, | which contains more than n out of a,, -+, a..
zy, -+, x, is necessarily 0; also, if it does not contain all the z’s, the corre-
sponding |d;, ---, d;,,,| will contain more than n out of e, ---, e,
Y1, *--, Yy, and is consequently 0. We therefore have
*
Crny-QA) = E‘ | @i0i, - Qi 12 - Tylnp1 c €nogr

)
X S|eiey ¢ €in_ Y2 - Yrlas1 " €as,| G =1,2, .-+, n)

and hence, passing back to space of n dimensions,
1A =2/*S|e||a,-, @i | Slen oo ey ooy lle]

=E*S|xl vt xf“aﬁ e ain-rlcsleﬁ Tt efn-r[‘-‘ly] e y"l
=8|z -z | C = A) |y - oyl

This relation shows why the bordered deéterminant is frequently used in
place of the corresponding compound in dealing with the theory of forms.

5.06 The reduction of bilinear forms. The Lagrange method of reducing
quadratic and bilinear forms to a normal form is, as we shall now see, closely
connected with compounds.
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If A is any matrix, not identically 0, there exist vectors z;, y; such that
Sz,Ay: # 0; then, setting A = A, for convenience, the matrix

SA 1z

Ay = A; — Ay, —— 171

2 i 1Y Sz Alyl
has its rank exactly 1 less than that of A. For, if 4,2 = 0, then
_ _ SA’.’I?l‘Z _ _ SI]A]Z _
Azz = Alz A]yl Sx1A1y1 = A]Z Alyl m =

and, conversely if 4,2 = 0, then
Az = A Said.e = kA,

W Sz, A 1Y1

say, or A;(z — ky;) = 0. The null-space of A; is therefore obtained from that
of A, by adding y: to its basis, which increases the order of this space by 1
since 4.y; # 0.

If A, 0, this process may be repeated, that is, there exist z,, y» such that
Sz:A2y: #~ 0 and the rank of
SA;Iz
Ay = 4, — Azyz m

is 1 less than that of A;. If the‘rank of A is r, we may continue this process
by setting

SA ,z, _
(22) Aa+l—Aa‘"Asyam (8—1,2’..., 7)
where Sz, Ay, = 0and 4, = A, A, ., = 0; we then have
- SAlz, N
(23) 4= 21 Ay gt = Z 9,
SA .z, . . .
where ¥, = Ay, Sed.u. is a matrix of rank 1. Generally speaking, one may

take z, = ¥, and it is of some interest to determine when this is not possible.
If SzBz = 0 for every z, we readily see that B is skew. For then Se;Be;
= Se;Be; = S(e; + ¢;)B(e; + ¢,) = 0 and therefore

0 = S(e; + ¢,)B(e; + ¢,) = Se:Be; + Se;Be; + Se;Be, + Se,Be;,
that is, Se;Be, = —Se,Be; and hence B’ = —B. Hence we may take z, = ¥,
solong as 4, # —A..

5.07 We shall now derive more explicit forms for the terms in (23) and show
how they lead to the Sylvester-Francke theorems on compound determinants.
Let z, 2%, ---, z7, ¥, ¥, ---, y" be variable vectors and set

(24) J=S8|zae? - 27| Crpr(Ad) Yy - v
= Slzala? - 27| | Ay Ayt - Ay ;
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then from (22)
J

Szt oo 2 || AgAs 4yt o Aw iy
= | Sz, 4,824, 1yt --- SzrA, L1y .

If the z’s denoté rows in this determinant, the first row is

Sx.A,Y,, ST Ay 11yt -, STds 41y

each term of which is 0 except the first, since z, lies in the null-space of 4, 41,
and Sz, 4.y, # 0. Hence

(25) J = Sz, Ay, | St'A, Lyt - Szrd, 4y
and therefore from (24)
(26) S]x,xl"'x'lc,_,_l(A’)ly‘yl...yrl

= Sz AdySiat -+ 2| C(das) [yt -y
Repeated application of this relation gives
27) S| ZZesr v Tag 122 - 2|Crp A | Yy - Yore—ayt - ¥
= 82,49 8% +14s 4 1Ws +1 * STayt—1der i1y -1S|2t - 27|
cCrlas )yt eyl
a particular case of which is
(27) Slazs -+ 21z | Co(A) lys -+ Yo -1y
= Szdwy -+ Sz, —14, —1Yy, —1Sz4.y.

To simplify these and similar formulae we shall now use a single letter to
indicate a sequence of vectors; thus we shall set X, , -1 for z,2, 41 ---
Z, + ¢+ —1and Y~ for yly? ... yr;also C,,, for C.(4,). Equations (26) and (27)
may then be written

(26a) S1z.X |Crsr,s |4,V | =Sz Ay,S| X | Cr s 41| Y7,

@72) S| Xu estmsX [ Crprial VarureoaV7| = [ [ 82481 X7(Co s Y7L

We get a more convenient form for (26a), namely
(28) SIX:,tXrICr+t—a+l,a|Yt.lyrl
= S2AYS | Xost, X | Crgtm,os1| Yorr oY |

by replacing r by r + ¢ — s and then changing z!'z? --- z"+! - * into
Zo 41 Zx' --- z7 along with a similar change in the y’s. Putting s
= 1,2, ---, t in succession and forming the product of corresponding sides of
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the equations so obtained from (28) we get after canceling the common factors,
which are not identically 0 provided that » + ¢ isnot greater than the rank of A4,

t
(29) SIX X |Crpe1| VY| = H Sz Ay S| X7 Co, e 41| Y7,

or rrom (27')
(B0) S|XX|Crse|lY. Y| =8IX|C.|Y|S|X|Cri41]Y]
which may also be written in the form

S'X:X"IC,+;'Y¢Y'[

30’ K =
(307) S|X:].C;1Yt|

= |8z 4.+ |;

in particular
S| Xwzx|C:4:1(4) | Yy
S| X.|C:(4)] Y|

This gives a definition of 4 ;. ; which may be used in place of (22); it shows that
this matrix depends on 2t vector parameters. It is more convenient for some
purposes to use the matrix A® defined by

(32) SxA‘”y =8 I Xz‘Z I Cg +](A) I ng l .

From (31) we then have Szid, ' = SziA®Wyi/S|X.|Ci|Y.| and there-
fore from (30')

@D

= SxA¢ +1Y.

|SxiA(t)yii S | X I Cr(A(g)) l Yr|
33 K = _
e [SIXJCIY. " [SIX.[C(A) | Y]]
Hence
4 (t) r
B9  S|IXX|Cridd)| VY] = S| x7| C(4®)| |

T STXCA YT
which is readily recognized as Sylvester’s theorem if the 2’s are replaced by
fundamental units and the integral form of (33) is used.

5.08 Invariant factors. We shall now apply the above results in deriving
the normal form of §3.02. We require first, however, the following lemma.

Lemma 4. If A(\) is a matric polynomial, there exists a constant vector y and a
vector polynomial z such that SxAy tis the highest common factor of the coordi-
nates of A.

Let ¥y = Zn.e; be a vector whose coordinates are variables independent of \.
Let a; be the H. C. F. of the coordinates of A = || a;,|| and set

A = ouB, By = En,b.-,e, = EB,'G.'.
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There is no value As of \ independent of the #’s for which every 8; = 0; for if
this were so, A — \; would be a factor of each b;, and o could not then be the
H. C. F. of the a;,, Hence the resultant of 81, B2, -, B» as polynomials in A
is not identically 0 as a polynomial in the »’s; there are therefore values of the
7’8 for which this resultant is not 0, and for these values the 8’s have no factor
common to all. There then exist scalar polynomials &, £, ---, &, such that
ZtB; = 1 and therefore, if x = Zfe;, we have SzBy = 1 or Szdy =
Returning now to the form of 4 given in §5.06, namely

A.y,SA ST,
4= 2 “SxAy,

we can as above choose z,, ¥, in such a manner that Sz,4A.,y. = a, is the highest
common factor of the coordinates of 4, and, when this is done, v, = A,y./a.,
u, = A.z,/a, are integral in A. We then have

N AySALz,
(35) 4= AL s,
Moreover A,ys = 0 = A.z; when ¢ < s and therefore in
S|z -+ z. || Aydays -+ Ay, | = | Szidyyi| = ISA;‘xi?/: |
all terms on one side of the main diagonal are 0 so that it reduces to Sz; 4y
--Sz,4:,y, = awos --- a,. Hence, dividing by a1 -+ a, and replacing
Ajy,/a, by v; as above, we see that |z, --- z,| and |v; --- v,| are not 0 for

any value of A, and therefore the constituent vectors in each set remain linearly
independent for all values of A. It follows in the same way that the sets
U, -+, ur and yy, -+, y, respectively, are also linearly independent for all
values of \, that is, these four sets are elementary sets. It follows from Theo-
rem 5 §4.03, that we can find elementary polynomials P and @ such that

Pyi=e;=Qu; (1=12 ---, 1),
and hence

r

(36) PAQ =P <2 a,v.Su,) Q = D aweSe,
1

1

~ which is the normal form of §3.02.

5.09 Vector products. Let z; = Zfie, (1 = 1,2, ---, r) be a set of arbi-
trary vectors and consider the set of all products of the form &b, < - &ri,
arranged in some definite order. These products may then be regarded as the
coordinates of a hypernumber? of order n" which we shall call the tensor product?

t The term ‘hypernumber’ is used in place of vector, as defined in §1.01 since we now
wish to use the term ‘vector’ in a more restricted sense.
3 This product was called by Grassmann the general or indeterminate product.
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of z1, s, -+, 2, and we shall denote it by z;22 --- z,. In particular if we
take all the products e;e;, -+« e (41, %2, -+, ¢&» = 1, 2, --+, n) each has all
its coordinates zero except one, which has the value 1, and no two are equal.
Further

1% v Tr = Zhiibes, v Erieili, v €4
If we regard the products e;e;, -« e, as the basis of the set of hypernumbers,

we are naturally led to consider sums of the type .
W = Zwii, ... i€y, v €

r

where the w’s are scalars; and we shall call such a hypernumber a fensor of
grade r. It is readily seen that the product z:z --- z, is distributive and
homogeneous with regard to each of its factors, that is,

Ty(ATe + uy2)Ts -+ T, = NLiTz o Tr + pTYeTz v T

The product of two tensors of grade r and s is then defined by assuming the
distributive law and setting

(eileiz tee ei,-)(eneh v ei,) = 6 €08yt 6,

It is easily shown that the product so defined is associative; it is however not
commutative as is seen from the example

Tixy — Toxy = ZZ(E1ikei, — Erifas)enes,
* &g &g
Eﬂl 52"2

Here the coeflicients of e;e:, — eie;, (&1 < 73) are the coordinates of | zz; |
so that this tensor might have been defined in terms of the tensor product by
setting

(eii, — ei4).

(1)

| 2172 | = T122 — T221.
In the same way, if we form the expression?

f(zh T2y * 0y xr) = ESgn(ily 7:2! Y 'ir)xixxt'z R 2

and expand it in terms of the coordinates of the z’s and the fundamental units,
it is readily shown that the result is

*

E | $1aoiy - Erip | fleiy €iy -+ -, e4).

(%)
¢ The determinant of a square array of vectors z;; (¢, 7 = 1,2, ---, r) may be defined as
i

l Tij l = Esgn(ils 7'-2; Yy i')xll:lzZt'g st Teip.
In this definition the row marks are kept in normal order and the column marks permuted;
a different expression is obtained if the roles of the row and column marks are inter-

changed but, as these determinants seem to have little intrinsic interest, it is not worth
while to develop a notation for the numerous variants of the definition given above.
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Here the scalar multipliers are the same as the coordinates of | ziz; --- z,]|
and hence the definition of §1.11 may now be replaced by
| 2122 -+ 2| = Zsgn(iy, g2, -, n)TiZs, - Ti,

which justifies the notation used. We then have

*
(37 |22y v 2, | = 2 | Erokery oo Eri || eiei o0 e ).
T
It is easily seen that the tensors |e;e;, --- e, | are linearly independent and
(37) therefore shows that they form a basis for the set of vectors of grade r.
Any expression of the form

Efi.iz LLLIS 3 l €i€i, **° €4 I

is called a vector of grade r and a vector of the form (37) is calied a pure vector
of grade r.

5.10 The direct product. If 4; = ||[a\)|| (@ = 1,2, ---, r) is a sequence
of matrices of order n, then

_ 2; D (2) (
(38) Awwidexy -+ Ajzx, = a(i,i, a(i,i, af:)jrfli.&i, AR IR ZX AR A
iq
= 2[(111'2 . .’l?,-)
where U is a linear homogeneous tensor function of z.a; - - - z,, that is, a matrix

in space of n" dimensions. This matrix is called the direct product® of
Ay, Ay, -+, A, and is denoted by A; X 4, X -+ X A,. Obviously

(39) . ABIXAB: X - = (Ai XA X ) B XB X 1),
and the form of (38) shows that
(40) (Ar X As X ) = Al XA, X ---.

From (39) we have, on putting r = 1 for convenience,
A, XAy X A3 = (A1 X1 X1)(1 XA4: X1)(1 X1XA4y).
Making A; = 1(t = 2,3, ---, r) in (38) we have
Anizy -, 2= Zal) bikes, o0 Eieies, o €

n" -1

and hence the determinant of the corresponding matrix equals | A, [* .
Treating the other factors in the same way we then see that

1) A X Az X -+ XA, | = [Aidy - A, "7\

Again if as in §5.04 we take x, as an invariant vector of A,, 2. as an invariant
vector of A,, and so on, and denote the roots of 4; by \.;, we see that the roots

® This definition may be generalized by taking z,, z,, --- as vectors in different spaces
of possibly different orders. See also §7.03.
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of A; X A; X - -+ X A, are the various products AjjAsj, <+ Ar;,. When the roots
of each matrix are distinct, this gives equation (41) and, since this is an integral
relation among the coefficients of the A’s, it follows that it is true in general.

An important particular case arises when each of the matrices in (38) equals
the same matrix 4 ; the resultant matrix is denoted by II.(4), that is

(42) I(A) =AXAX--- (r factors).

It is sometimes called the product transformation. Relations (39), (40), and
(41) then become

(43) IL(4B) = IL(A)IL(B), ,(4)' = IL(4"), | IL(4) | = |A ™"

5.11 Induced or power matrices. If z,, z,, ---, z, are arbitrary vectors,
the symmetric expression obtained by forming their products in every possible
+ +

order and adding is called a permanent. It is usually denoted by | z1z; -+ =z, |
but it will be more convenient here to denote it by {z,z; --- z,}; and similarly,
if a;; is & square array of scalars, we shall denote by {anaz -+ a,,} the func-
tion Zaysazi, -+ @, in which the summation stretches over every permuta-
tionof 1,2, ---, .

If some of the z’s are equal, the terms of {z;z; - -- z,} become equal in sets
each of which has the same number of terms. If the 2’s fall into s groups of
%, 13, - -, %, members, respectively, the members in each group being equal
to one another, then

(Z2g 2

—— - Zu=7r
1,1!1,2! e ’l..! ( ! )

has integral coefficients. For the present we shall denote this expression by
{x2s --- z,}* but sometimes it will be more convenient to use the more

explicit notation
Ty Tp *c X
PR A
in which 7, of the z’s equal z,, 7, equal z,, etc.; this notation is, in fact, that

already used in §2.08, for instance,

{z z y} = 22% + 2zyx + 2yx?
{; ‘1{} = x% + zyz + ya? = {zzy}.

The same convention applies immediately to {anas -+ ar}.
In the notation just explained we have

(44) {zixy -+ z.) = Z"&nkes, -+ i) eis, oo e}

where the summation =” extends over all combinations 7,7, --- 7, of the first
n integers repetition being allowed. This shows that the set of all permanents
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of grade r has the basis {e;e;, --- €.} of order (n + r — 1)V/rl(n — 1)L
From (44) we readily derive

(45) {Azdz, -+ Az} = le{aiuixaizi: o @B B en oo e
iIi

which is a linear tensor form in {z,z, --- z.}. We may therefore set

(46) {Azi Az, -+ Az,} = P.(A){z1x2 -+ .},

where P,(4) is a matrix of order (n + r — 1)!/r!(n — 1)! whose coordinates
are the polynomials in the coordinates of A which are given in (45); this matrix
is called the rth snduced or power matrix of A. As with C.(4) and I1,(4) it
follows that

PAAB) = PAAP,B), P4) = P.(4),
1Py | =141,

also the roots of P,(A) are the various products of the form A, "A,* --- A,
for which Za; = r.

(47)

5.12 Associated matrices. The matrices considered in the preceding sec-
tions have certain common properties; the coordinates of each are functions of
the variable matrix A and, if T'(4) stands for any one of them, then

(48) T(AB) = T(A)T(B).

Following Schur, who first treated the general problem of determining all such
matrices, we shall call any matrix with these properties an associated matrix.
If S is any constant matrix in the same space as T(4), then T,(4) = ST(4)8!
is clearly also an associated matrix; associated matrices related in this manner
are said to be equivalent.

Let the orders of A and T'(4) be n and m respectively and denote the corre-
sponding identity matrices by 1, and 1,; then from (48)

(49) TXL.) = T(L), T()T(4) = T(4) = T(4)T(1.).

If s is the rank of T(1,), we can find a matrix S which transforms 7'(1,) into a
diagonal matrix with s 1’s in the main diagonal and zeros elsewhere; and we
may without real loss of generality assume that 7'(1,) has this form to start
with, and write

-]y 3]

The second equation of (49) then shows that T'(4) has the form

1) ‘1 T,(4) 0”
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and we shall therefore assume that s = m so that T(1,) = 1,. It follows
from this that | T(4) | # 0 so that T'(4) is not singular for every 4; we shall
then say that T is non-singular.

A non-singular associated matrix T'(4) is reducible (cf. §3.10) if it can be
expressed in the form T(4) = Ti(4) + T.(A) where, if E; = T,(1,), E. =
Tz(ln), so that E1 + E; = lm, then

T(4) = E\T(A)E,, T.(A) = E,T(A)E;
E1T(A)E2 =0 = EgT(A)El

so that

E? = E], E; = Ez

E1E2 =0 /= EzEl
and there is therefore an equivalent associated matrix {(4) which has the form
th4) 0 \
0 #(4)
When T'(4) is reducible in this manner we have

T\(AB) = E\T(AB)E, = E\T(A)T(B)E,

= E\T(4)(E, + E,)T(B)E,
= E\T(A)E\T(B)E, = T\(A)T«(B)

so that T:(4) and T.(A) are separately associated matrices. We may there-
fore assume T'(A) irreducible without loss of generality since reducible associated
matrices may be built up out of irreducible ones by reversing the process
used above.

t(A4) = ‘

5.13 We shall now show that, if A is a scalar variable, then T'(\) is a power
of \. To begin with we shall assume that the coordinates of T(\) are rational
functions in A and that T(1) is finite; we can then set T(A\) = T,(\)/f(A) where
f(\) is a scalar polynomial whose leading coefficient is 1 and the coordinates
of T:(\) are polynomials whose highest common factor has no factor in common
with f(\). If p is a second scalar variable, (48) then gives

TN Ti(w) _ Ti(w)
FNSf(w) fOw)’

hence f(Au) is a factor of f(A)f(u), from which it follows readily that f(\u)
= f(N)f(); so that f(A) is a power of X\ and also

(50) Ti(\) = Ti(N) Ti(w).
We also have f(1) = 1 and hence 7:(1,) = T(1,) = 1,.
Let T\(\) = Fo 4+ A\Fy 4+ -+ + MF(F, # 0); then from (50)
Fo+ MFy+ -« + NpFy = (Fo+ Ny + -+ )(Fo + uFy + --2)
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which gives
F!=F,FF;=0@G#j), (,j=01, 9.
Now
T\MNT) = fONTMNTA) = fNTAL) = TA)T:(N);
therefore
SFT(A)N = ZT(A)F N
and hence on comparing powers of A we have
FT(A) = T(A)F;

and, since ZF; = T,(1) = 1,, and we have assumed that 7'(4) is irreducible,
it follows that every F; = 0 except F,, which therefore equals 1,.. Hence
T\(\) = A® and, since f(A) is a power of A\, we may set

(51) T(\) = A~
Since T(AA) = T(\)T(A) = AT(A), we have the following theorem.
Tusorem 9. If T(A) is irreducible, and if T(\) is a rational function of the

scalar variable N\, then T(\) = A" and the coordinates of T(A) are homogeneous
functions of order r in the coordinates of A.

The restriction that T(A) is rational in X is not wholly necessary. For
instance, if ¢ is any whole number and e a corresponding primitive root of 1,
then T%e) = 1, and from this it follows without much difficulty that T'(e) = e
where s is an integer which may be taken to be the same for any finite number
of values of q. It follows then that, if T(\) = || t;;(\) ||, the functions t;;(\)
satisfy the equation

tii(eh) = eti;(\)
and under very wide assumptions as to the nature of the functions ¢;; it follows
from this that 7()) has the form A".  Again, if we assume that T(\) = )\“E T,

then T\)T(u) = T(A\p) gives immediately
Towrte = T(u)
so that only one value of r is admissible and for this value T, = 1 as before.

5.14 If the coordinates of T(A) are rational functions of the coordinates a;;
of 4, so that r is an integer, we can set T(4) = T.(4)/f(A) where the coordi-
nates of T,(A) are integral in the a;; and f(4) is a scalar polynomial in these
variables which has no factor common to all the coordinates of 7,(4). As
in (50) we then have

T\(AB) = Ty(A)T«(B), f(AB) = f(A)f(B).
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It follows from the theory of scalar invariants that f(4) can be taken as a
positive integral power of | 4 |; we shall therefore from this point on assume
that the coordinates of T'(4) are homogeneous polynomials in the coordinates
of A unless the contrary is stated explicitly. We shall call r the tndex of T(4).

Taeorem 10. If T(A) is an assoctated matriz of order m-and index i, and if
the roots of A are oy, a5, -+, an, then the roots of T(A) have the form o}'aj® - --
~an® where Zr; = r. The actual choice of the exponents r depends on the particular
assoctated matrix in question but, if ai' aj® --- a," s one root, all the distinct
quantities obtained from it by permuting the o’s are also roots.

If the roots of A are arbitrary variables, then A is similar to a diagonal
matrix A; = Za;e;;.  We can express T(4,) as a polynomial® in the o’s, say

(562) T(A) = Zajagr +++ amF .y,

where the F’s are constant matrices. If now B = Zfe;; is a second variable
diagonal matrix, the relation T'(4,B) = T(4,)T(B) gives as in (50)

Yoo = Fopso
Friyooo ralFas, oo sy =0 ((ry 7y - ) #= (81,8 1))

and hence T'(4,) can be expressed as a diagonal matrix with roots of the required
form; these roots may of course be multiple since the rank of F., ..., is not
necessarily 1, the elementary divisors are, however, simple.

Since the associated matrices of similar matrices are similar, it follows that
the roots of the characteristic equation of T'(4) are given by those terms in
(52) for which F.,,...,, # 0; and, since this equation has coefficients which
are polynomials in the coordinates of A4, the roots of T(4) remain in this form
even when the roots of 4 are not necessarily all different.

The rest of the theorem follows from the fact that the trace of 7(4;) equals
that of T(A) which is rational in the coordinates of 4 and is therefore sym-
metric¢ in the o's.

TuroreEM 11. The value of the determinant of T(A) is | A |™/» and rm/n is
an tnteger.

For T(A)T(adjd) = T(|A|) = | A | and therefore | T(4) | is a power of

|A|, say | A |>. But T(A) is a matrix of order m whose coordinates are poly-
nomials in the coordinates of A. Hence sn = mr and rm/n is an integer.

(33)

5.15 Transformable systems. From a scalar point of view each of the
associated matrices discussed in §§5.03-5.11 can be characterized by a set of
scalar functions fy (k¢ = 1, 2, -, m) of one or more sets of variables (¢,

¢ If we merely assume that T(4,) is a convergent series of the form (52), equation (53)
still holds. It follows that there are only a finite number-of terms in (52) since (53) shows
that there is no linear relation among those F,, ... ,, which are not zero. Let F; be the
sum of those F,, ... ,, for which =r; has a fixed value p;; then T(\) = Z\"iF;, and as before
only one value of p; is admissible when T(4) is irreducible.
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j=12 --+,m),¢ =12 .-, r, which have the following property: if the
¢’s are subjected to a linear transformation

n

s:i=2aic£il Jg=12 oo, n;2 =12 -+, 1)

g=1

and if f; is the result of replacing &:; by &7, in fi, then

m

'.;: = 2 a;,,f.

a=1

where the a’s are functions of the a;; and are independent of the &'s. For
instance, corresponding to Cy(4) we have

fi=Jog = §ip E1q P,g=1,2, -+, n;p < ¢
£2p £2q
for which
Gpr Qor
Qij = Qpg, rs = a:‘ aq .
Qs

We may, and will, always assume that there are no constant multipliers such
that ZA;f; = 0. Such systems of, functions were first considered by Sylvester;
they are now generally called transformable systems.

If we put T(A) = || asj ||, we have immediately T(A4B) = T(A)T(B), and
consequently there is an associated matrix corresponding to every transformable
system. Conversely, there is a transformable system corresponding to an
associated matrix. For if X = || £;|| is a variable matrix and ¢ an arbitrary
constant vector in the space of T'(4), then the coordinates of 7' (X)c form a
transformable system since T(4)T(X)c = T(AX)c and ¢ can be so determined
that there is no constant vector b such that SbT(X)c = 0.

The basis fi (k = 1, 2, ---, m) may of*course be replaced by any basis
which is equivalent in the sense of linear dependence, the result of such a change
being to replace T(A) by an equivalent associated matrix. If in particular
there exists a basis

g1, 925 "y Gry b1y By <oy Ry, (ks + &y = k)

such that the ¢g’s and the A’s form separate transformable systems, then T'(4)
is reducible; and conversely, if T'(4) is reducible, there always exists a basis
of this kind. :

5.16 Transformable linear sets. If we adopt the tensor point of view
rather than the scalar one, an associated matrix is found to be connected with
a linear set § of constant tensors, derived from the fundamental units e;, such
that, when e; is replaced by Ae; (¢ = 1, 2, ---, n) in the members of the basis
of §§, then the new tensors are linearly dependent on the old; in other words



[5.16] TRANSFORMABLE LINEAR SETS 81

the set § is invariant as a whole under any linear transformation A4 of the funda-
mental units. For instance, in the case of C,(4) cited above, § is the linear
set defined by

leieil @Gi=12 -, n;i<j)°

We shall call a set which has this property a transformable linear set.

Let ui, ug, -+, un be a transformable linear set of tensors of grade r and let
u; be the tensor that results when e, is replaced by Ae; (j = 1,2, ---, ) in u,.
Since the set is transformable, we have

wp= D ey = T G =1,2 -, m)
i
where the a;; are homogeneous polynomials in the coordinates of A of degree r.
If we employ a second transformation B, we then have

wi = T(A)T(Bu:, ui=TABu; (=12 -+, m

and therefore T'(A) is an associated matrix.

We have now to show that there is a transformable linear set corresponding
to every associated matrix. In doing this it is convenient to extend the notation
Suv to the case where u and » are tensors of grade r. Let E; (1 = 1,2, ---, n")
be the unit tensors of grade r and

u = Z\b;E.', v = E(p.'E,'

any tensors of grade r; we then define Suv by

(S0

where the numerical divisor is introduced solely in order not to disagree with
the definition of §5.02.

Let z; = Ztije; (1 = 1,2, -+, r) be a set of variable vectors and X; (z = 1,
-2, ---, s) the set of tensors of the form zi'ri* --- zi* (Zj;i = r); we can then
put any product £ &5 ... £# for which 28;; = r in the form kSEX;, k
being a numerical factor. This can be done in more than one way as a rule; in

fact, if 2 Bi; = B, then
i

= g St otnal
1-
and from the definition of Suvit is clear that the factors in ef" --- e can

be permuted in any way without altering the value of the scalar. It follows that

1 é CECY e
Bu | B S 1 n xﬂl
" s Bu! B! - -+ B! {311 e ﬁ'ln} 1
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and repeating this process we get

. [ DN v @
L B i T
11t Bin cor Bra

where k, is a numerical factor whose valueis immaterial for our present purposes.
If f is any homogeneous polynomial in the variables ¢;; of degree p, it can be
expressed uniquely in the form

=S G e

where the inner summation extends over the partitions of 8;into 81, Bi, * -, Bin
(¢t =1,2 ---, r) and the outer over all values of 8, B, ---, 8, for which
ZB: = p. We may therefore write

where, as above, X; = 828 ... zfrand

F=F _ [ o e ...{el e
BB . PBu .-+ Byn \ﬁll e ﬁln r ot ﬂ.rn

The expression of f in this form is unique. In the first place, F; = 0 unless
each ¢g, ... 5., is zero, since the set of tensors of the form

e - €y . ey v en o
{ mw " Blr} ' {Brl e ﬁrn} (ZBW P)

are clearly linearly independent. Further, if ZSF;X; = 0, then each SF;X;
is zero since each gives rise to terms of different type in the £;;; and ﬁnally the
form of F; shows that SF;X; = 0 only if F; = 0 since in

SFX; = kiZep, ... s, 8" -+ &

each term of the summation is of different type in the &;;.
Let (fi) be a transformable system; we can now write uniquely

(54) fo= 2 SFuX; (k=12 -\ m)
i

and we may set

F = 2 fiBi = D) ESFuX;

L¥)

where f; = 0 when 7 > m. If we transform the z’s by A = || a;; || and denote
II,(A) temporarily by II, then X; becomes I1X; and F is transformed into F*
where

(55) = D ESF X, = 2 ESTF;-X;,

i, 7
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But the f’s form a transformable system and hence by this transformation f;

becomes
fi= 2 airfe

k
so that

(56) F* = 2 aikkai = E E;S 2 Ak E Fk,'X,'.
i k i

k,d

Comparing (55) and (56) we have

(57) 78 [2 P — n'F‘,.] X, =0

i %
and therefore, as was proved above, each of the terms of the summation is zero,
that is,

(58) 'F;; = Z aitFri
P

and therefore, if j is kept fixed, the linear set
(59) (Flir F?i; ot ')

is transformable provided Fy;, Fa;, --- are linearly independent.
If there is no j for which the set (59) is linearly independent we proceed as
follows. Let f.',' = SF;','X,' so that

fx =fn +f12 + .- +fla
fz =f21 ‘|"f22 + .- +fza
(60)

...........................

If the removal of any column of this array leaves the new f; so defined linearly
independent, they form a transformable system which defines the same asso-
ciated matrix as the original system; we shall therefore suppose that the removal
of any column leads to linear relations among the rows, the coefficients of these
relations being constants. Remove now the first column; then by non-singular
constant combinations of the rows we can make certain of them, say the first
m;, equal 0, the remainder being linearly independent. On applying the same
transformation to the rows of (60), which leaves it still a transformable system,
we see that we may replace (60) by an array of the form

fi = fu
(61) fmx =fm11
fm.+1 =fm,+l,]+fm;+l.2+ +fm,+1,a
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where fo, + i — fu, +i,10 G =1, 2, -++, m — my) are linearly independent. It
follows that fi, ---,’ fm, are transformed among themselves and so form a
transformable system. For these functions are transformed in the same way
as fu, fa - -+, fma, and if the last m — m; rows of (61) were involved in the
transformation, this would mean that fi;, ---, fn3, when transformed, would
depend on f,, 41, ; ete., which is impossible owing to the linear independence
Offvnx+i _fm|+i.1 (Z =12 -, m— ms).

Corresponding to the first column of (61) we have tensors Fiy, Foy, -+, Fui
and we may suppose this basis so chosen that F;; ( = 1, 2, ---, p) are linearly
independent and F; = 0 for j > p; and this can be done without disturbing
the general form of (61). If p = m, we have a transformable system of the
type we wish to obtain and we shall therefore assume that p < m. We may
also suppose the basis so chosen that SF,F;; = 6;; (¢4, = 1,2, ---, p) as in
Lemma 2, §1.09. It follows from what we have proved above that Fi;, Fy,
«++, Fp; is a transformable set.

Let A be a real matrix, the corresponding transformation of the F’s, being,
as in (58),

(62) Fiy= D agFy=1Fy, (i =1,2-.p);
)

we then have

*

(63) ( Fi,= &Py = W(A)F,

i
so that the F,; also forms a transformable set. Since Fy, -+, Fny form a
transformable set, a;; and @&;; are 0 when 2 > m; and j < m; no matter what
matrix 4 is. Now

aij = SFF,= SF,IV(A)F;y = S(A)F,F,, = SI'(A")F;F,
which equals 0 for 7 < my, j > m; since by (63) I’(4’)F;, is derived from F;

by the transformation A’ on the z’s and for j < m, is therefore linearly depend-
enton F; (j =1,2, ---, m)). Hence the last m — m, rows in (61) also form
a transformable system, which is only possible if the system fi, fo, -+ -, fm is
reducible. If T(A) is irreducible, the corresponding transformable system is
irreducible and it follows now that there also corresponds to it an irreducible

transformable set of tensors.

5.17 We have now shown that to every associated matrix T(4) of index r and
order m there corresponds a transformable linear set of constant tensors
F\, Fy, ---, F, of grade r whose law of transformation is given by (62). Also
since II'(4) = II(4’), we have

(64) IF; = Za/,Fy, IF; = Za;Fi
where T(4') = || aﬁ,- 1.
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Since F, Fo, -+, Fn are linearly independent, we can find a supplement to
this set in the set of all tensors of grade r, say :

G, Gy -+, Gy (0 =n" —m)

such that

(65" SFG; = 0.

It is convenient also to choose bases for both sets such that
(65") SF:F; = & = 8GG;.

Since the two sets together form a basis for the space of II, we can set
I'G; = 2BkiFr + ZvxiGe

and this gives
B:; = SFII'G; = SGIF,

which is 0 from (64) and (65), hence the G’s are transformed among themselves
by II’. This means, however, that II’ is reducible, and when it is expressed
in terms of the basis (Fy, :::, Fm, G1, -+-, G,), the part corresponding to
(Fy, +--, Fy) has the form || a;; || and is therefore similar to T(4). Hence:

THEOREM 12. Every irreducible associated matriz T(A) of index r is equiva-
lent to an irreducible part of 11,(4), and conversely.

5.18 Irreducible transformable sets. If F is a member of a transformable
linear set § = (F1, Fy, ---, Fn), the total set of tensors derived from F by all
linear transformations of the fundamental units clearly form a transformable
linear set which is contained in §, say §:; and we may suppose the basis of
so chosen that § = (Fy, Fy, -+, Fi) and SF.F; = 6;; (4, j = 1,2, ---, m).
Let G be an element of (Fi +1, -+, Fm) and G’ a transform of G so that

G’ = 2 'y.-F $e
i=1
Then SF.G’' = v:. But SF,G’ = SFG, where F, is the transform of F; obtained
by the transverse of the transformation which produced G’ from G so=that F
isin § fort < k. Hencevy; = 0for7 =1,2;, ---, k, thatis, (Fx 41, ***, Fm)
is also a transformable set; and so, when the original set is irreducible, we must
have §; = §. If we say that F generates §, this result may be sta:ted as follows.

LEmMA 5. An irreducible transformable linear set is generated by any one of
its members.

We may choose F so that it is homogeneous in each e;; for if we replace, say,
e1 by Ne,, then F has the form Z\*H, and by the same argument as in §5.13,
any H; which is not 0 is homogeneous in ¢; and belongs to §. A repetition of
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this argument shows that we may choose F to be homogeneous in each of the
fundamental units which occur in it. If r is the grade of F, we may assume
that F depends'on e, e, ---, e, and, if ki, k», ---, kK, are the corresponding
degrees of homogeneity, then 2k; = r and, when convenient, we may arrange
the notation so that &, > k. > --- > k,.

If we now replace ¢; in F by e; + Ae; (¢ > s), the coefficient H of X is not 0,
since 7 > s, and H becomes k,F when e, is replaced by e;; it therefore forms a
generator of § in which the degree of e, is one less than before. It follows that,
when r» < n, we may choose a generator which is linear and homogeneous in r
units e, e;, ---, e,. It is also readily shown that such a tensor defines an
irreducible transformable linear set if, and only if, it forms an irreducible set
when the transformations of the units are restricted to permuting the first
r ¢’s among themselves. Further, since the choice of fundamental units is
arbitrary, we may replace them by variable vectors z;, s, :---, z,. For
instance, the transformable sets associated with II,, P, and C, are zz, - z,,
{xirs -+ z.} and | 22, -+ z, |, respectively, and of these the first is reducible
and the other two irreducible.

5.19 It is not difficult to calculate directly the irreducible transformable sets
for small values of r by the aid of the results of the preceding paragraph. If

we denote z;, 7,, --- by 1,2, ---, the following are generators for r = 2, 3.
generator r=2 order
21 {12} n(n +1)/2
2.2 [12] nin — 1)/2
r=3

3.1 {123} n(n + 1)(n + 2)/6

3.2 |1]23]] n(n? — 1)/3

3.3 | 1{23} | n(n? — H73"

34 | 123 | n(n — 1)(n — 2)/6.

This method of determining the generators directly is tedious and the follow-
ing method is preferable.” Any generator has the form

w, = Ew,-,;, S T TRICIC 7
. e L. 1,2 -1 )
and if ¢, ... ;, denotes the substitution i . ], we may write

11’2 .o zf

r

w = Ewil.-, w3 Qg . rZ, I,
= 91(551172 e zr)
where ¢; may be regarded (see chap. 10) as an element of the algebra S whose

units are the operators ¢ of the symmetric group on r letters. Now w, gener-
ates a transformable set and hence, if w; = qi(z; --- z,) ¢ = 1,2, --)isa

7 Fuller details of the actual determination of the generators will be found in Weyl:
*Gruppentheorie und Quantentheorie, 2 ed. chap. 5.
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basis of the set, and @ is the set of elements ¢i, gz, --- in S, then the set of
elements Qg = (qq, ¢g, ---) must be the same as the set @, that is, in the
terminology of chapter 10, @ is a semi-invariant subalgebra of S; conversely
any such semi-invariant subalgebra gives rise to a transformable set and this
set is irreducible if the semi-invariant subalgebra is minimal, that is, is con-
tained in no other such subalgebra.

It follows now from the form derived for a group algebra such as S that we
get all independent generators as follows. In the first place the operators of S
can be divided into sets® Si (k = 1, 2, ---, ¢) such that (i) the product of an
element of S; into an element of S; (k = j) is zero; (ii) in the field of complex
numbers a basis for each S; can be chosen which gives the algebra of matrices
of order n}; and in an arbitrary field S is the direct product of a matric algebra
and a division algebra; (iii) there exists a set of elements w1, Uss, ***, Uy,

in S; such that E u; is the identity of Sy and u}; = ki # 0, wesus; = 0 (¢ = j)

and such that the set of elements wx;Siux; is a division algebra, which in the
case of the complex field contains only one independent element; (iv) the
elements of S; can be divided into v sets Sy ( = 1, 2, ---) each of which
is a minimal semi-invariant subalgebra of S and therefore corresponds to an
irreducible transformable set.

s It is shown in the theory of groups that ¢ equals the number of partitions of r.



CHAPTER VI

SYMMETRIC, SKEW, AND HERMITIAN MATRICES

6.01 Hermitian matrices. If we denote by £ the matrix which is derived
from z by replacing each coordinate by its conjugate imaginary, then z is
called a hermitian matrix if

(1) z =2z

We may always set x = x; 4 ¢z, where z; and z, are real and (1) shows that,
when z is hermitian,

(2) :c{ =, I; = — Ty

so that the theory of real symmetric and real skew matrices is contained in that
of the hermitian matrix. The following are a few properties which follow
immediately from the definition; their proof is left to the reader.

If z and y are hermitian and a is arbitrary, then

z+vy, 7, ', azd’, xy + yz, i(xy — yx),

are all hermitian.

Any matrix z can be expressed uniquely in the form a + ¢b where 2a =
z + &', 2b.= —i(x — &’) are hermitian.

The product of two commutative hermitian matrices is hermitian. In
particular, any integral power of a hermitian matrix z is hermitian; and, if
g(\) is a scalar polynomial with real coeflicients, g(z) is hermitian.

Tueorem 1. Ifa,b,c, --- are hermitian matrices such that a®* 4+ b* 4 ¢* +
- = 0,thena,b,c, -+ areall 0.

If Za* = 0, its trace is 0; but Za? = Zad’ and the trace of the latter is the
sum of the squares of the absolute values of the coordinates of @, b, --- ; hence
each of these coordinates is 0.

TuEorEM 2. The roots of a hermitian matriz are real and its elementary
divisors are stmple.

Let z be a hermitian matrix and g(\) its reduced characteristic function.
Since g(x) = 0, we have 0 = §(Z) = g(z’) and, since z and z’ have the same
reduced characteristic function, it follows that g(A) = g(\), that is, the coeffi-
cients of g are real. Suppose that £ = a + 78 (8 # 0) is a root of g(X); then
£ = a — 18 # & is also a root, and we may set

3) gn) = A = E)(@(N) + i) = A — E)(@(A) — 1g2(N))
88
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where g1, g: are real polynomials of lower degree than g, neither of which is
identically 0 since ¢ is real and £ complex. Now'

[7:@F + [g2(2)] = [g:(2) + 7ga(2)]lg1(x) — iga(2)]

and this product is 0 since from (3) A — £ is a factor of ¢:(A) — ig.(\) and
N — &)(@Q) + ig:(\)) = g(\). But, since the coefficients of g; and g, are
real, the matrices ¢:(x), g»(x) are hermitian and, seeing that the sum of their
squares is 0, they both vanish by Theorem 1. This is however impossible
since g;(\) is of lower degree than the reduced characterlstlc function of z.
Hence z cannot have a complex root.

To prove that the elementary divisors are simple it is only necessary to show
that g(\) has no muitiple root. Let

g =\ = O)RM), k() = 0.

If » > 1,set gi(\) = (A — &7~ h(0); then [g:(A)]2 has g(A) as a factor so that
the square of the hermitian matrix g,(z) is 0. Hence by Theorem 1, g,(z) is
itself 0, which is impossible since the degree of g; is less than that of g. It
follows that r cannot be greater than 1, which completes the proof of the
theorem.

Since the elementary divisors are simple, the canonical form of z is a diagonal
matrix. Suppose that n — r roots are 0 and that the remaining roots are
&, &, -+ -, &; these are of course not necessarily all different. The canonical
form is then

&
&

&

0.
The following theorem is contained in the above results.
THEOREM 3. A hermitian matriz of rank r has exactly n — r zero roots.
It also follows immediately that the characteristic equation of z has the form
r—axt "'+ - + (=D7a,zr 7 =0 (ar # 0)

where a; is the elementary symmetric function of the &'s of degree <. Since a,
is the sum of the principal minors of z of order r, we have

THEOREM 4. In a hermitian matriz of rank r at least one principal minor of
order r s not 0.
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In view of the opening paragraph of this section Theorems 1-4 apply also
to real symmetric matrices; they apply also to real skew matrices except that
Theorem 2 must be modified to state that the roots are pure imaginaries.

6.02 The invariant vectors of a hermitian matrix. Let H be a hermitian
matrix, a;, a; two different roots, and a,, a; the corresponding invariant vectors
so chosen that Sa;d; = 1; then, since Ha; = aa), Hd, = ayd;, we have

CaiSaxd; = Sapfla; = SH'ad;, = 2,80,

and, since a; # as, we must have Saxd, = 0. Again, if « is a repeated root of
order s and a,, as, ---, a, a corresponding set of invariant vectors we may
choose these vectors (cf. §1.09) so that Sa;@; = ;. The invariant vectors
may therefore be so chosen that they form a unitary set and

4) H = Za,a;8a;.

If U is the matrix defined by

%5 Ues=a; 1=1,2, -+, n),
then ‘

(6) uU’ =1,

so that U is unitary, and if A is the diagonal matrix E ae.Se;, then
’ 1

) H = UAU’' = UAU.
We may therefore say:

TreOREM 5. A hermitian matriz can be transformed to its canonical form by
a unitary matriz.

If H is a real symmetric matrix, the roots and invariant vectors are real,
and hence U is a real orthogonal matrix. Hence

THEOREM 6. A real symmelric matriz can be transformed to its canonical
Jorm by a real orthogonal matriz.

If T is a real skew matrix, h = ¢T is hermitian. The non-zero roots of T
are therefore pure imaginaries and occur in pairs of opposite sign. The invari-
ant vectors corresponding to the zero roots are real and hence by the proof
just given they may be taken orthogonal to each other and to each of the
other invariant vectors. Hence, if the rank of T is r, we can find a real orthogo-
nal matrix which transforms it into a form in which the last n — r rows and
columns are zero. ,

Let i be a root of T which is not 0 and ¢ = b 4+ ¢ a corresponding invariant
vector; then Ta = iaa so that

Tb = —ac, Tc = ab.
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Hence
—aSc2 = ScTb = —8bTc = —aSh?, —aSbc = SbTH =
which gives
Sb? = S¢?, Sbec =0

We can then choose a so that Sb* = Sc2 = 1 and can therefore find a real
orthogonal matrix which transforms T into

0 [¢3]
— Q) 0
0 [+2}

® —az 0 = Zaj(es; — 1802 — exSer; _1).

We have therefore the following theorem.

TuaeorEM 7. If T is a real skew matriz, its non-zero rools are pure imaginaries
and occur in pairs of opposite sign; its rank is even; and it can be transformed
into the form (8) by a real orthogonal matrix.

6.03 Unitary and orthogonal matrices. The following properties of a unitary
matrix follow immediately from its definition by equation (6).

The product of two unitary matrices is unitary.

The transform of a hermitian matrix by a unitary matrix is hermltlan

The transform of a unitary matrix by a unitary matrix is unitary.

If H, and H, are hermitian, a short calculation shows that

1 —<H, _iH -1
1+ HY P iH + 1
are unitary (the inverses used exist since a hermitian matrix has only real

roots). Solving (9) for H, and H, on the assumption that the requisite inverses
exist we get

(9) U, =

=g T U, -1

These are hermitian when U, and U, are unitary, and therefore any unitary
matrix which has no root equal to —1 can be put in the first form while the
second can be used when U has no root equal to 1.

THEOREM 8. The absolute value of each root of a unitary matriz equals 1.
Let o + 78 be a root and a + b a corresponding invariant vector; then

U(a + 1b) = (a + i8)(a + 3b), U(a — 1b) = (a« — i8)(a — ib).
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Hence
Sa? + 8Sb? = S(a + ib)(a — ©b) = S(a +b)U'U(a — 1b) = SU(a + ib)U (a — 1b)
= (a? + B%)S(a + b)(a — b) = (a® + B2)S(a® + b?),

so that a2 4+ 82 = 1.
Corollary.

U=Ya + 1b) = (a — 18)(a + b),

(10) — ‘ ,
U'(a — ) = U~ a — ib) = (a 4+ iB)(a — b).

THEOREM 9. The elementary divisors of a unitary matriz are simple.

For, if we have .
U(a; + 'Lbl) = ((1 + 16)(01 + ib]_), U(az + $b2)= (a + 'Zﬁ)(az + 2b2) + (al + ib]),
then from (10)

(a + 13)8(0,1 - ‘lbl) (az + 1b2) = SU,(al bt 'lb1) (az + 'Lbz) = S(al - 2b1) U(a2 + ’Lbz)
= (a + 18)S(a1 — b1)(az + 7b;) + S(a; — 4b1)(a: + ¢by)

which is impossible since S(a; — b;)(a; + b)) = Sa} + Sbi = 0.
The results of this section apply immediately to real' orthogonal matrices;
it is however convenient to repeat (9).

TaeorEM 10. If U 7s a real orthogonal matrix, it can be expressed in the form
(1 + T)/(1 — T) if it has no root equal to 1 and in the form (T — 1)/(T + 1)
if it has no root equal to — 1, the matriz T being a real skew matriz in both cases;
and any real matriz of this form which is not infinite, vs a real orthogonal matriz.

6.04 Hermitian and quasi-hermitian forms. Let H be a hermitian matrix and
z = u + i a vector of which » and 7 are the real and imaginary parts;
then the bilinear form f = SZHz is called a hermitian form. Such a form is
real since

f = SzHz = SzH'% = SzHzx = f.

In particular, if z and H are real, f is a real quadratic form and, if H = ¢T'isa
pure imaginary, T is skew and f = 0.

If we express H in terms of its invariant vectors, say H = Za;a:84; and
then put * = Zta;, the form f becomes f = Zauff:. This shows that, if all
the roots of H are positive, the value of f is positive for all values of z; H and f
are then said to be positive definite. Similarly if all the roots are negative,
H and f are negative definite. If some roots are 0 so that f vanishes for some
value of z = 0, we say that H and f are semi-definite, positive or negative as
the case may be. It follows immediately that, when H is semi-definite, SiHz
can only vanish if Hz = 0.

1 The first part of the theorem applies also to complex orthogonal matrices.
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Tueorem 11. If H and K are hermitian and H is definile, the elementary
divisors of HN — K are real and simple.

Since HN — K and = (H\N — K) are equivalent, we may suppose that H is
positive definite. Its roots are then positive so that

H = ZaﬂaiSdi
has real roots and hence is also hermitian so that H—*KH—* is hermitian. But
H\N — K = H¥\ — H*KHY)H!}

so that HX — K is equivalent to A — H—*KH~* which has real and simple ele-
mentary divisors by Theorem 2.

In order to include the theory of complex symmetric matrices we shall now
define a type of matrix somewhat more general than the hermitian matrix and

closely connected with it. If A = A(\) is a matrix whose coefficients are
analytic functions of a scalar variable A, we shall call it quasi-hermitian if
(11) A'(A) = A(—N).

For convenience we shall set A”(\) for A(—\) with a similar convention for
vector functions.

If A = B 4+ A\C, B and C being functions of A% then A” = B — \C so that,
if A is quasi-hermitian, B is symmetric and C skew just as in the case of a
hermitian matrix except that now B and C are not necessarily real. If 4 is
any matrix,

8P’ = A’ + A” = 2P,  2Q' = (4’ — A")/\ = 2"

so that any matrix can be expressed in the form P + AQ where P and @ are
quasi-hermitian.

If x = u + v, where u and v are vectors which are functions of A2 and if 4
is quasi-hermitian, then

(12) S\ = Sz"Azx = f(—N\)
is called a quasi-hermitian form. Again, if |1 + MA| # 0, and we set
Q = (1 — NA)/(1 + \A), then
,_ (=) 1 ="
Q' = 1+ NA' —l_l_)\AII (o

so that v
(13) QQ" =1L
We shall call such a matrix quasi-orthogonal.

6.05 Reduction of a quasi-hermitian form to the sum of squares. We have
seen in §5.06 that any matrix A of rank r can be expressed in the form

| Q SA 'z,
(14) A=) Ay A””y

s§=1
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where

" SAz,
Sz,Ay.

An+1 = Ac - Anya Al = A, anA:yc # 0-

and thé null space of 4, . ; is obtained by adding (y1, s, -, ¥s) to the null
space of A and the null space of A, ,, by adding (z1, =5, - - -, z.) to that of A4".

Suppose now that A4 is quasi-hermitian and replace y,, z, by z,, z, and set
2, = U, + M\,, A, = B, + AC, 50 that

Sz" Az, = Su.Bus + A\2(28u,C0, — Sv,B.v,)

and, so long as 4, is not 0, we can clearly choose z, so that Sz, 4.z, # 0. Each
matrix A, is then quasi-hermitian since 4, = A, and

2 Az2,842,

15 .
(19) Sz ”A,z.

If z is an arbitrary vector and
=70\ = SzAz", o,(\) = Szd.z, = ¢,(A) + Ax.(A?)

then ¢, and x, are linear functions of the coordinates of z which are linearlj
independent and

SzAzSA Lz, 2" N\ eWer (V) N I — A0
16 J= 2 Szi Az, h SziA.z, B 2 SziA.z,

which is the required expression for f(A?) in terms of squares.

If A is hermitian, then A = 7 and ¥., x., Sz,4.2, = SzA,.z, are real and,
if Sz,4.2, = a7', (16) becomes

a17) | f= 2 0sPs-

If A = 0, then A is symmetric and
(18) f = SzAz = 2 e’
1

where the terms are all real if 4 is real. ‘
In terms of the matrices themselves these results may be expressed as follows.

THEOREM 12. If A is a hermitian matriz of rank r, there exist an infinity of
sets of vectors a, and real constants a, such that

(19) A= 2 ,2,8d,;
1
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and, if A is symmetric, there exists an infinity of sets of vectors a, and constants
a, such that

(20) A= 2 00,50,
1

a, and a, being real if A s real.

If 7 of the o’s in (19) are positive and v are negative, the difference ¢ = 7 — »'
is called the signature of A. A given hermitian matrix may be brought to the
form (19) in a great variety of ways but, as we shall now show, the signature is
the same no matter how the reduction is carried out. Let K; be the sum of
the terms in (19) for which «, is positive and — K, the sum of the terms for
which it is negative so that A = K; — K;; the matrices K; and K, are positive
semi-definite and, if %, and k, are their ranks, we have r = &, + k,. Suppose
that by a different method of reduction we get A = M, — M, where M, and
M, are positive semi-definite matrices of ranks m; and m. and m; + m; = r;
and suppose, if possible, that 2, < m.. The orders of the null spaces of K,
and M, relative to the right ground of A are r — %k, and r — m, = myand,
since r — k, + mq > r, there is at least one vector z in the ground of 4 which
is common to both these null spaces, that is,

Az = Kix = —M,x # 0,

and hence StK,x = —SiM,z. But both K, and M, are positive semi-definite;
hence we must have SZK;z = 0 which by §6.04 entails K;z = 0. We have
therefore arrived at a contradiction and so must have k, = m; which is only
possible when the signature is the same in both cases.

In the case of a skew matrix the reduction given by (16) is not convenient
and it is better to modify it as follows. Let A’ = —A and set

ayaSAaxa AcanA,y,
Aoy = A, + - ,
(21) ! Sz, Ay, Sz. 4.y,

4, = A; SxaAayn # 0.

So long as A, = 0, the condition Sz,4,y, ¥ 0 can always be satisfied by a
_ suitable choice of z, and y, and it is easily proved as in §5.06 that the null
space of A, ,, is obtained from that of 4, by adding z,, y,; also 4, is skew so
that we must necessarily have z, = y,. It follows that the rank of 4 iseven
and

r/2
22 A= 2 Ax.SAy, — Ay.SA.z,

bx. s = Ea.(aze - lsazn - az.Saz. -1 )

where each term in the summation is a skew matrix of rank 2 and

a,_l = SxaAayu Ags —1 = Alxn Ay = A'y"
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This form corresponds to the one given in Theorem 12 for symmetric matrices.
If we put

r/2

T = 2(62.-1562. — enSey, 1) = =T
1

r/2

(23) R = D7 aulen ~ 186z — eaSers 1) = —R
r/2 ' r/2

P = 2 (ts@2eS€2s + " d2e—1S€20 — 1), Q= 2 (azeSe2s + @25 — 18€25 — 1)
1

1

then (22) may be put in the form A = PTP’ = QRQ’. When r = n, the deter-
minant of T equals 1 and therefore | A| = |P|%. The following theorem
summarizes these results.

THEOREM 13. If A is a skew matriz of rank r, then (i) r vs even; (ii) A can be
expressed by rational processes in the form

r/2

@) A=) ala 1S — @S 1) = PTP' = QRQ

1
where P, Q, R and T are given by (23); (iii) #f r = n, the determinant of A is a
perfect square, namely |P|%; (iv) if = and y are any vectors and w =
Za, I Q25 — 102 I, then

(25) o SzAy = S| zy | w.

The following theorem contains several known properties of hermitian
matrices.

TueorEM 14. If T(A) is an associated matriz jor which T'(4) = T(4’),
then, when A 1is quasi-hermitian, T(A) ts also quasi-hermitian.

For A’ = A” gives T'(4) = T(A") = T(A") = T"(4A).

Particular cases of interest are: If A is hermitian, 7'(4) is hermitian. If
T(uA) = wT(A) and A is skew, then T'(A) is skew if s is odd, symmetric if
8 is even.

r

6.06 -The Kronecker method of reduction. Let A = 2 z;Sy: be a quasi-

1
hermitian matrix of rank r; then

(26) Zy.-b':c; =A'"=4" = EI?S@/’:,
from which it follows that y; is linearly dependent on z{, z7, -+, z”, say

yi = EM?, | gii| # 0, G=1,2 -, 7.

i=1
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Using this value of y; we have
A = ZqijxSz], A’ = 2q;in!8z;, A” = Zql;x!Sz;
and therefore
(27) Qi = i
Further, since | ¢;;| # 0, we can find s;; (4,7 = 1,2, -+, r) so that

<
£y QiiSit = ik
i

and then (27) gives s;j = s},
Let zy, -+, &, 2, 41, -+, ©n be a basis and 2, 2., - - -, 2, the reciprocal basis.
r

Then, if w; = E : 8;i¢7, the basis reciprocal to yy, -+, y7, z, 41, **+, Zais wy,
1
M) w;{’z;‘+1) ct Yy 2n. Hence

r
P = E:wiSz,- = Es.-iz’{Sz,-
1

is quasi-hermitian. Further, if v = Z £x;, then Su”Pu = Z¢7ts:;; and we
1

can choose u so that this form is not 0. We also have

AP = z’) z:Sy; Zr) w;Sz; = 2 z:8z;,
1 1 1

whence APu = u.
Let

_ uSuf

Su’;P aus’
where P, is formed from A, in the same way as P is from A and w, is a vector
of the left ground of A, such that Su’Pu, # 0; also, as above, 4,Pu = u
for any vector u in the left ground of A, and A, in quasi-hermitian. The
vector u; belongs to the right ground of 4, and therefore every vector of the
null space of 4, lies in the null space of 4, . ;; also

Su” Pyu,
Su', Psus

(28) A,+1=A, A1=A, P]_'—'P,

Aa +1Pauc'= AaPoua — Us

= Uy — u, = 0.

Hence the null space of 4, , is derived from that of A, by adding P,u, to it.
It then follows as in §6.06 that A can be expressed in the form

(29) A=) Ll
1

Su’s Psu,
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which is analogous to (16) and may be used in its place in proving Theo-
rem 12,

We may also note that, if @ is the matrix defined by Q'e; = z; (j = 1, 2,
-+, n), then

A= QD) queSeQ” = QB
1

where B is the quasi-hermitian matrix 2 gieiSe;. It may be shown by an
1

argument similar to that used for hermitian matrices that a basis for the 2’s
may be so chosen that @ is quasi-orthogonal provided A is real.

6.07 Cogredient transformation. If SrAy and SzBy are two bilinear forms,
the second is said to be derived from the first by a cogredient transforma-
tion if there exists a non-singular matrix P such that Sxdy = SPxzBPy, that is,

(30) A = P'BP.

When this relation holds between A and B, we shall say they are cogredient.
From (30) we derive immediately A’ = P’B’P and therefore, if

A+4 _A-4A
) 2
y_B+B B - B

= 4 = = -V’
3 = U/, 14 5 v,

R = = R/, S = -8,

then
R+ AS = P'(U + AV)P

so that R + AS and U + AV are strictly equivalent.

Suppose conversely that we are given that R 4+ AS and U + AV, whichare
quasi-hermitian, are strictly equivalent so that there exist constant non-singular
matrices p, ¢ such that

R+ AS = p(U + A\V)q
or

31 R =pUqg 8 =7pVg
then, remembering that R and U are symmetric, S and V skew, we ha
R=qUp, 8S=qVp
Equating these two values of R and S, respectively, we get
(@)7'pU = Up'q™!,  ({H)7'pV = Vp'q
or, if W stands for U or V indifferently, and
(32) J = (@) 'p,
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we have
JW = WJ',
repeated application of which gives
JW =WJ')".
From this it follows that, if f(\) is a scalar polynomial,
(33) JOW = W) = W(H(J))'.

In particular, since | J | # 0, we may choose f(A) so that f(J) is a square root
of J and, denoting this square root by K, we have KW = WK’ or

W = K-'WK', K2 =], (W=UorV).

Using this in (31) we have
R
and from (32) p = ¢'J

pK'UK'q, S = pK~'VK'q
¢K? or

pK™' = ¢K = (K'g)".
Hence, if we put P’ = ¢'K, there follows
R =PUP, S=PVP

or _
A=R+8=P(U-+ V)P =PBP.

We therefore have the following theorem, which is due to Kronecker.

TureoREM 15. A necessary and suflicient condition that A and B be cogredient
is that A + MNA' and B + AB’ shall be strictly equivalent.

If A and B are symmetric, these polynomials become A(1 + A) and B(1 + \)
which are always strictly equivalent provided the ranks of A and B are the
same. Hence quadratic forms of the same rank are always cogredient, as is
also evident from Theorem 12 which shows in addition that P may be taken
real if the signatures are the same.

The determination of P from (31) is unaltered if we suppose S symmetrical
instead of skew, or R skew instead of symmetrical. Hence

TueoreM 16. If R, S, U, V are all symmetric or all skew, and tf R + \S
and U + AV are strictly equivalent, we can find a constant non-singular matriz P
such that

R + NS = P/(U 4+ \V)P,
that s, the corresponding pairs of forms are cogredient.

In the case of a hermitian form SZAz changing z into Pz replaces A by
P'AP and we have in place of (30)

(34) A = P'BP.
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If we put B = ZB,b.Sb,, then
P'BP = 28,P'b,8b,P = 28,P'b,SP’b, = 2B.c,St;.

where ¢, = P’b,. Equation (34) can therefore hold only if the signature as well
as the rank is the same for B as for A. Conversely, if A = Za,a,Sd; and
A and B have the same signature and rank the notation may be so arranged
that a, and 8, have the same signs for all s; then any matrix for which

_ }
P,bn=<g‘€>a: (S.=1,2, ""’T)’ ]Pl¢0
where r is the common rank of A and B, clearly satisfies (33).2 Hence

TurorEM 17. Two hermitian forms are cogredient if, and only if, they have
the same rank and signature.

The reader will readily prove the following extension of Theorem 16 by the
aid of the artifice used in the proof of Theorem 11

TureoreMm 18. If A, B, C, D are hermitian matrices such that A + AB and
C + \D are (i) equivalent (ii) both definite for some value of N, there exists a con-
stant non-singular matriz P such that

A+ 2B = P’(C + AD)P.
6.08 Real representation of a hermitian matrix. Any matrix H = A 4+ iB

in which A and B are real matrices of order n can be represented as a real
matrix of order 2n. For the matrix of order 2

.o -1
=11 -0
satisfies the equation 73 = —1 and, on forming the direct producf of the original

set, of matrices of order n and a set of order 2 in which 1, lies, we get a set of
order 2n in which H is represented by

. A -—-B
s-avus=|y 74
As a verification of this we may note that
|A —B] ”C -D| _|[4C — BD -(AD+BC)’
|B A D C| ~ ||4AD + BC AC — BD

which corresponds to
(A + iB)(C + iD) = AC — BD ¥ +(AD * BC).

2 The proof preceding Theorem 15 generalizes readily up to equation (33); at that
point, however, if K = f(J), we require K’ = f(J'), which is only true when the coefficients
of f(\) are real.
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This representation has the disadvantage that a complex scalar « + i is
represented by
5 el
|' B a

which is not a scalar matrix although it is commutative with every matrix of
the form . Consequently, if H has a complex root, this root does not corre-
spond to a root of . If, however, all the roots of H are real, the relation
HK = oK is represented by $f = af when « is real so that « is a root of
both H and 9.

Ta prove the converse of this it is convenient to represent the vector z + 1y
in the original space by (z, y) in the extended space. Corresponding to

(A + iB)(x + 1y) = Ax — By + i(Bz + Ay)

we then have

A -—-B
B A

If therefore  has a real root « and (z, y) is a corresponding invariant vector
8o that

(z,y) = (Az — By, Bz + Ay).

9, y) = a(z,y) = (az, oy),
we have
Az — By = az, Bz 4 Ay = ay,
which gives
(A + iB) (z + iy) = alz + ).

It follows that invariant vectors in the two representations correspond provided

they belong to real roots. This gives ,
TuareoREM 19. To every real root of H = A + iB there corresponds a real

root of

A =B
s=]5 4l
and vice-versa.

In this representation # and H’ correspond to

” A B 4’ -pB |
—-B A B A
respectively, and hence, if H is hermitian, B’ = —B so that  is symmetric.

The theory of hermitian matrices of order n can therefore be made to depend
on that of real symmetric matrices of order 2n. For example, if we have proved
of real symmetric matrices that they have real roots and simple elementary
divisors, it follows that the same is true of hermitian matrices, thus reversing
the order of the argument made in §6.01.



CHAPTER V1T

COMMUTATIVE MATRICES

7.01 We have already seen in §2.08 how to find all matrices commutative with
a given matrix z which has no repeated roots. We shall now treat the some-
what more complicated case in which z is not so restricted. If

¢))] Ty = yz

then z7y = yzr so that, if f(A) is a scalar polynomial, then f(z)y = yf(z). In
particular, if f; is a principal idempotent element of z, then fiy = yfi. Remem-
berine that Zf; = 1 we may set

z = Zfix = Zz;, y = Zfy = Zy,

and also, by §2.11, z; = \; + 2;, where z; is nilpotent. Since yiz; = 0 = z.y;
(¢ # j), the determination of all matrices y which satisfy (1) is reduced to
finding y so that

yixs = zYs,  Yi = foy = yf

We can therefore simplify the notation by first assuming that z has only one
principal idempotent element, 1, and one root which may be taken to be 0
without loss of generality; z is then nilpotent.

Let e, €5, - - -, e, be the partial idempotent elements of z and let their ranks
be 7, ny, ---, n.; z is then composed of blocks of the form

010 0
0 01 0
000 0 (n; rows and columns)
0 00 1
0 00 0

provided the fundamental basis is suitably chosen. To simplify the notation
further we divide the array of n? units e;; into smaller arrays forthed by sepa-
rating off the first n, rows, then the next n, rows, and so on, and then making a
similar division of the columns (see figure 1). And when this is done, we shall
denote the units in the block in which the 7th set of rows meets the jth set of
columns by

e;;: ('i:j= L2 --,p=12 -, n5;¢9=12 ---, n).
102
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It is also convenient to put e;i = 0 for p > n;or ¢ > n,.

n N N3
n | 11 [ 12 | 13
ny | 21 [ 22 | 23
ng | 31 132 | 33

Fig. 1
The expression for z is now
s ni—1 [
T = z; E:e;.‘p-ﬂ = 2;‘”‘
i=1 p=1 1=1
and we may set
y= 2 miedi =2 vu
74700 i J
where
ni nj
Yii = eye; = E; 2; M528p -
=1 ¢=1

The equation zy = yz is then equivalent to
(2) TYii = Yii%i ("7.7 =12 .- s).

If we now suppress for the moment the superseripts ¢, j, which remain con-
stant in a single equation in (2), we may replace (2) by

ni—1 ny nj ng nj nj—1
E:ey.p+l E: z:ﬂlmelm= E: E:ﬂlmelm E;eq,q-'-l
=1 I1=1 m=1 =1 m=1 g=1
or
ni ni—1 ng nj—1
(6)] Mp + 1, m€pm = Nig€l.q +1-
m=1 p=1 =1 ¢g=1

Equating corresponding coefficients then gives

(4) Np+1, ¢+1 = Npg-

Since ¢ > 1 on the right of (3), it follows that 5, ,;,,, = 0(p = 1,2, ---
n; — 1) and, since p < n; — 1 on the left, 5., = 0 (¢
and hence from (4)

]
b
-
N
-
-
3
-~
|
[y
~

(5) "lp+t.t=0="7m'—t,q—t

wherep = 0,1, -, n; —t,g=t+1,84+2, ---,n; —1,t=0,1, ---

From (4) we see that in y,; all coordinates in an oblique line parallel to the
main diagonal of the original array have the same value; from the first part
of (5) those to the left of the oblique AB through the upper left hand corner
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are zero, as are also those to the left of the oblique CD through the lower right
hand corner; the coordinates in the other obliques are arbitrary except that,
as already stated, the coordinates in the same oblique are equal by (4). This
state of affairs is made clearer by figure 2 where all coordinates are 0 except
those in the shaded portion.

ni < ng

As an example of this take

a

The above rules then give for y

QG
a
dy d
do
(6
go G
go

where the dots represent 0.

1

€

ko

bo

(51

ko

by
bo
€
€
€o
ks
by
ko

10

Cl

%o

A

Jo

)
gl

to

Co

Ni
o

%
C
gl

%o

(41
Co
f
Ji
fo
14
(2
()
gl

To
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If we arrange the notation so that n, < n, < --- < n,, a simple enumera-
tion shows that the number of independent parameters in y is

(2s—Dni+ (25 = 3)na + -+ + n..
We have therefore the following theorem which is due to Frobenius.

TueoREM 1. If the elementary divisors of x are A\ — \)™i, 1 =1,2, -, 1,
J=12, -, 8, where\, N, -+, N\, are all different and ny < nip < -+ - < nay,y
then the general form of a matriz commutative with x depends on

2'3 i) (28 - 2] + l)n.-,-

t=] jm]

independent parameters.

7.02 Commutative sets of matrices. The simple condition zy = yz may
be replaced by the more stringent one that y is commutative with every matrix
which is commutative with . To begin with we shall merely assume that y
is commutative with each of a particular set of partial idempotent elements e;;
a8 in the previous section we may assume that z has only one principal idem-
potent element.

In order that e;y = ye; for every 7 it is necessary and sufficient that y;; = 0

when ¢ # j; if ui, up, ---, u, are the partial nilpotent elements of z corre-
sponding to e, e, -+, ¢, and we set m; = n; — 1, this gives for y
7 y= 2 (meces + naus + <+ + NimUT).

)

If we now put z = Z (Biei + u:), where no 8; = 0, and if g(\) is any scalar
polynomial, then (cf.i §2.11)
9(2) = Zg(Bwes + w) = Z(gBdes + g'Bus + -+ + g™ (BIuT/mil)
and when y is given, we can always find g(\) so that
10 = g®(B:)/k!

provided the 8’s are all different. Hence every y, including z itself, can be
expressed as a polynomial in 2.

We now impose the more exacting condition that y is permutable with every
matrix permutable with z. Let n;; (i # j) be the matrix of the same form as
i in §7.01 but with zero coordinates everywhere except in the principal oblique;
for example in (6) uy is obtained by putting fy = 1 and making every other
coordinate 0. We then have

€Us; = Uij€;, UiUsi = UsUj.
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Hence yu:; = u:y gives yuui; = uqiy;; and therefore from (7)
(nioei + naws + -+ + mimUTUi = wii(njoe; + npu; + -0+ nmuG)
= (mjoei + naws + -+ + nmu Ui
from which we readily derive for all ¢, j and &
Nik = MNik

with the understanding that 7. does not actually occur when £ > m;. When
t is the matrix used in deriving (6), these conditions give in place of (6)

Ay
@y
Gy a1 Qe
Ao Qi
Qo

(8)

ag a1 02 Az Qa4

Gp a1 Q2 Qa3

an Ay Qo
Gy a1
Qao.

Comparing ‘this form with (7) we see that y is now a scalar polynomial in z,
which in the particular case given above becomes g(x — o) where

g\) = ap + aN + aA? + a4 at.
The results of this section may be summarized as follows.

THEOREM 2. Any matriz which is commutative, not oniy with x, but also with
every matrix commutative with z, is a scalar polynomial in .

7.03 Rational methods. Since the solution of zy — yz = 0 for y can be
regarded as equivalent to solving a system of linear homogeneous equations,
the solution should be expressible rationally in terms of suitably chosen param-
eters; the method of §7.01, though elementary and direct, cannot therefore be
regarded as wholly satisfactory. The following discussion, which is due to
Frobenius, avoids this difficulty but is correspondingly less explicit. .

As before let zy = yr and set a = A — z; also let b = L~'aM ! be the normal
form of a. If u is an arbitrary polynomial in A and we set

P = L~Yau + y)L, Q= M(ua+ y)M™,
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then
Pb = PL7'aM~! = L~'(au + y)aM~! = L~'a(ua + y)M~! = bQ.
Conversely, if Pb = bQ and, using the division transformation, we set
9 LPL' = av + y, M-QM = va + i,
where y and y; are constants, then
0=Pb—0bQ = L Yav + y)aM ! — L~a(va + y) M1

or a(v — v)a = ay, — ya. Here the degree on the left is at least 2 and on
the right only 1 and hence by the usual argument both sides of the equation
vanish. This gives

ava = ava, ay = ya

whence »; = v and, since a = N\ — z, also ¥ = y so that zy = yz.
Hence we can find all matrices commutative with z by finding all solutions of

(10) Pb = bQ.

Let ay, az :-:, @, be the invariant factors' of a and ni, ny, ---, n, the
corresponding degrees so that b is the diagonal matrix Zaje;, and let P =
Il Piill, @ = || Qiill; then
(11) Pija; = aiQi;.

By the division transformation we may set

Pii = Rija: + piyy,  Qij = Sy + gi5
and then from (10) we have

Rij = 8y  pijej = auigij

or,if p = || piill, ¢ = |l gus I,
(12) pb = bq.
Hence P = p, Q = ¢ is a solution of (10) for which the degree of p;; is less than
that of a; and the degree of g;; is less than that of «;. It is then evident that,

when the general solution p, ¢ of (12) is found, then the general solution of
(10) has the form

P = bR + p, Q=Rb+gqg

where R is an arbitrary matric polynomial in \. We are however not con-
cerned with R; for

LPL-!' = LbRL™' 4 LpL~' = aM—'RL~' + LpL—!
so that in (9) the value of y depends on p only.

! Since we may add a scalar to z we may clearly assume that the rank of a is n.
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The general solution of (12) is given by

o

Psi = — Sij Pis = Sjii
o; ..
(13) @s 9
a;
Qii = Sij qis = — 8js
@

]

where s, , is an arbitrary polynomial whose degree is at most n, — 1 and which
therefore depends on 7, parameters. It follows that the total number of
parameters in the value of y is that already given in §7.01.

7.04 The direct product. We shall consider in this section some properties
of the direct product which was defined in §5.10.

Tueorem 3. If fi; (4, j= 1, 2, ---, m) is a set of matrices, of order n, for
which

(14) Jiifea = 8infiar Zfﬁ =1,

=1

then m is a factor of n and any matrix of order n can be expressed uniquely in the
Sform Za;;f:; where each a;; ts commutative with every f,q; and, if n = mr, the rank
of each f,, is 1.

For, if z is an arbitrary matrix and we set
(15) ai; = Efkixfik;
k=1

a short calculation shows:

(i) z = Zafi;

(i) @iifpq = foqaiifor all s, j, p, g;

(iii) the set A of all matrices of the form (15) is closed under the operations
of addition and multiplication;

(iv) if by, bz, --- are members of ¥, then Zb;;f;; is zero if, and only if, each
bi; = 0.,

If (a1, az, - -+, a) is a basis of U, it follows that

(apfii: p=12 -, ;i,j=12 -, m)-

is equivalent to the basis (e;;, 7,7 = 1, 2, ---, n) of the set of matrices of order
n. This basis contains Im? independent elements and hence n? = Im? so thai
n = mr,l = r2. Let r;; be the rank of f;;. Since fi; = fi;f;i, it follows from
Theorem 8 of chapter I that r;; < rj;; also from f;:fii = fi: we have r;; < ry;
hence r;; = r; and therefore each r;; has the same value. Finally, since
1 = Zfy, and fif;; = 0 (¢ # j) and ri; = 7j;, we have mri; = n and hence each
Ty =T.
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We shall now show that a basis g;; can be chosen for % which satisfies the
relations (14) with r in place of m. Since the rank of f;; is r, we can set

r

(16) fu= Dy ewSba (@ =1,2 -, m)

1
where the sets of vectors (au) and (Bu) ¢ = 1,2, -+, m; k =1,2, -+, 1)
each form a basis of the n-space since 2 fii = 1. If (a}y), (8:,) are the corre-

i=1

sponding reciprocal sets and

Dii EﬁSkSa:-,, (G =1,2 -, m
1

we have, since Saixa), = 8iidks,
Zpi = ZfiZpu = Z ZaaSBufiSa;; = ZauSal, = 1,

and similarly
Jupu = Zk: awSaiy,  fupii =0 (@ #j).
Hence
1) Ji = fuZpii = 2 anSay,
k

that is ﬂ.’k = a:,,.

Since fi; = fufsifii, the left ground of f;; is the same as that of f,; and its right
ground is the same as that of f;;, Let

fii = ZauwSvir.

The vectors v;x (kK = 1, 2, -+, r) then form a basis for the set a;,, k=12,
-++, r) and, since the basis chosen for this set in (16) is immaterial, we may
suppose yix = a;, (j=1,2, ---, m;k = 1,2, ---, r), that is,

2 ; ’
fli = au,Sa jke
k

Similarly we may set f; = Za;S6, and then since

E alksa;k = fu = flifil = 2 alksa;kajgsall = Ealk‘salk; '
k k,o

’
we have 6ix = a,; and therefore

!
fir = ZapSayy,
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and finally
(18) fi = fafi = 2 aiksa’lkalasa;'a = Eaiksa;'k'
k,s

If we now set aix = Peq —1r 4+ then by §1.09 P is non-singular and a;,
= (P')"'et — nr +&; hence, if

T

(19) hij = E‘eu—nwk. G=Dr+k
k=1

we have
(20) f.',' = PhijP_l.
Also if

m—1
(21) ki = 2 €ar 4§, 87 + 1)

8=0
then
(22) kiiho 41, ¢ +1 = €pr 44, qr+7 = Np +1, ¢ +1Ki;

so that the set (e;;) of all matrices of order » may be regarded as the direct
product of the sets (h;;) and (%;;). Finally, since any matrix can be expressed
in the form Zb;;h;;, where the b;; depend on the basis (k:;), it follows that an
arbitrary matrix can also be expressed in the form

PZb;hi;P~t = ZPby;PYy;;
Pb,;;P! depends on the basis (Pk;;P~) and hence, if we set
gi; = PkiPt (4,5 =1,2, -+, 1)
the ¢’s form a basis of % which satisfies (14).

7.05 Functions of commutative matrices. Let = and y be commutative
matrices whose distinet roots are A, Ay, --- and pi, w2, --- respectively and
let R; be the principal idempotent unit of z corresponding to \; and similarly
S; the principal idempotent unit of y corresponding to u;. Since R; and S;
are scalar polynomials in z and y, they are commutative. If we set

T = R:S;,
those T';; which are not 0 are linearly independent; for if 2¢;T;; = 0, then
0 = RB2;TiiSq = £pqTpy
since R,R; = 6,:R,, 8;S, = 8;,,, so that either £,, = 0 or T,, = 0.
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From the definition of T';; it follows that T;;T,, = 0 when ¢ £ p or j # gq,
and T%; = T, ZT:; = 1; hence

z= D2 N+ @—MITw, =D+ @ — )Ty,

where (z-— A\;)Ts; and (y — u;)T;; are nilpotent. If ¢(A, u) is any scalar poly-
nomial then

POW) = ¥, 1) + D WEI = N — )
where i/ are scalars, we have therefore

¥(z,y) = 2 [¢()\i, #i) Ty + E Vrile — Ny — F'i)'Tii:l

r,8

- 2 Y, u)Tsi + 2 E YriTi;
¥ LEANRAL

T = (@ —N)(y —w)Ty

and r runs from 1 to p; — 1, where p; is the smallest integer for which
(x — M)?,R: = 0, and s has a similar range with respect to y. The matrices
T} are commutative and each is nilpotent; and hence any linear combination
of them is also nilpotent.

Let

where

z =30y, p) T, w = ZZYPHTIY

then w, being the sum of commutative nilpotent matrices, is nilpotent. If we
take in z only terms for which T';; # 0, we see immediately that the roots of z
are the corresponding coefficients y¥(\;, u:); and the reduced characteristic
function of z is found as in §2.12. We have therefore the following theorem
which is due to Frobenius.

Turorem 4. IfR, S; (2 =1,2, ---;5 = 1,2, ---) are the principal idem-
potent units of the commutative matrices z, y and Ti; = R:S;; and if \;, p; are the
corresponding roots of = and y, respectively; then the roots of any scalar function
¥(z, y) of z and u are Y(\;, u;) where © and j take only those values for which T':: % 0.

This theorem extends immediately to any number of commutative matrices.

7.06 Sylvester’s identities. It was shown in §2.08 that, if the roots of z
are all distinct, the only matrices commutative with it are scalar polynomials
in z; and in doing so certain identities, due to Sylvester, were deri* :d. We
shall now consider these identities in more detail.

We have already seen that ip

OO =|x—z]=M4ar "1+ - +a, -+ an
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the coefficient a, of A\» — r is (—1)" times the sum of the principal minors of z
of order r; these coefficients are therefore homogeneous polynomials of degree r
in the coordinates of z. We shall now denote (—1)7a. by [%]. If z is replaced
by Az + uy, then [?] can be expressed as a homogeneous polynomial in A, p
of degree r, and we shall write

23) [M T y] =2

SYE Y sr—s
{s r— s})\ B
s=0
We shall further set, as in §2.08,

(24) Oz + py)r = 2 {x Y })‘.ﬂr—:

“ls r—s
where {? ¥} is obtained by multiplying s z’s and ¢ y’s together in every possible
way and adding the terms so obtained.

In this notation the characteristic equation of Az + uy is

(25) 0= 2 (_1),[xz Jrruy] Oz + )7

r=0
= z y .Z y t,n—1
'Z:‘[s r—s]{t—s n+s—r—t})‘” !

where in the second summation [ ¥] or {Z ¥} is to be replaced by O if either
p or g is negative and [§ ¥] = 1. Since A is an independent variable, the
coefficients of its various powers in (25) are identically 0, and therefore

(26) Z"}(—l)'[z y]{t” Y }=0 t=0,1, ---, n)

s r—s -8 nds—r—t
r,e=0

a series of identical relations connecting two arbitrary matrices.
These identities can be generalized immediately. If zi, 25, ---, z= are any
matrices and A, A, -, scalar variables, we may write

2)\€in = Ty T2t Tm r s .. Tm
[ r ] E [rl Tg o rm] Al )\2 A"‘
@n Cri=1)
(Ekiz.’)' = Z {xl Ty **- Im} k;l x;, e )";,,,

rl r2 e rm

and by the same reasoning as before we have
_ . X1 T2 **° Tm 2 2% oo T — .
I ] R L

(5-)
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where s;, 85, -+, s» is any partition of n, zero parts included, and as before
a bracket symbol is 0 when any exponent is negative.

Since [2)‘;3:‘] is the sum of the principal minors of Z\;z; of order r, we see

that {::1 :::z s :m:l (Zri = r) is formed as follows. Take any principal minor
S

of z; of order r and the corresponding minors of z,, 3, -- -, z.. and replace r,
of its columns by the corresponding columns of z,, then replace r; of the remain-
ing columns by the corresponding ones of x3, and so on; do this in every possible
way for each of the minors of order r of x, and add all the terms so obtained.

There is a great variety of relations connecting the scalar functions defined
above, a few of which we note here for convenience.

o [we [l-e=2500
MR

(ii) The value of [zl o r ’ :c...] is unchanged by a cyclic permutation of

the z’s.
(i) 11---1]= n!
TIT2 " Tm o) (n — Zr)?
1Ty Tm 1 _ (n — =r)! xlxz--vxm]
TITe *** Tm 8 sin —s—Zr)l|nr- - 7m
gz oz gy Cl[ Ty
Ty T2 *** Tm 8 *°° 8 H(T.'!) 27‘;‘81“’8,,
: Tl Y1Y2 - Yn| _ TYi, TYs, *** TYip Yip 0 Yin
(iv) [r][ll ---1]‘2[1 1.1 1 . 1]

where the summation extends over the n!/r!(n — r)! ways of choosing r integers
out of 1, 2, ---, n, the order being immaterial.

7.07 Similar matrices. In addition to the identities discussed in the pre-
ceding section Sylvester gave another type, a modification of which we shall
now discuss. If z, y, a are arbitrary matrices, we have

(29) zrta—aytl=z@a+z "tay+2 "%+ - +ay)
—@a+z~lay+a~lay*+ .- +ayy
or say

z'tla —ay t! = 2(z,a,9) — (2,09
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where

r

(30) (2, a,9)r = E z"~fay

+1=0
Suppose now that z and y satisfy the same equation f(A\) = 0 where
JO) =4 az—14+ - + A+ Gn

z and y being commutative with each a; and ¢ commutative with every a;. Let

(31) u = 2 i, G Ym — i -1
then
(32) 0 = f(x)a — af(y) = Za;(z™~‘a — ay™~%) = zu — uy.

If |u| # 0, it follows that y = u~'zu, that is, z and y are similar.
It can be shown that a can be chosen so that |« | # 0 provided z and y have
the same invariant factors and f(A) is the reduced characteristic function.



CHAPTER VIII

FUNCTIONS OF MATRICES

8.01 Matric polynomials. The form of a polynomial in a matrix has already
been discussed in §2.11 but we repeat the principal formulas here for con-
venience. If z is a matrix whose reduced characteristic function is

) o(\) = H O — A%, =,

and

miA) = e/ = N5, M{Mm(d) + (A — A)"NQ) = 1,
2 ei(\) = M:Mmi(A),
(6)) oi = ¢i(z),  hi= (2 = My

and if g(\) is a scalar polynomial in A, then

_S Yoi b " Ohs A+ -v 4 IS 7 PADRE
) g(z) = 2 [q(k.)so, R AUDLTE —*(‘,,-:T]

i=1

This formula can still be interpreted when the coefficients of g(A) are matrices,

but in this case the notatjon g(z) is ambiguous. Let g(A\) = ao + a:x + ---
+ @,\"™; then

a+azx+ - +a2* and ap+ zay+ -0 + z™an

are called, respectively, the dextro- and laevo-lateral polynomials corresponding
to g(A). It is clear that (4) holds for a dextro-lateral polynomial and will
give the corresponding laevo-lateral polynomial if g(\:)es, g'(A\o)hi, ete., are
replaced by ¢.g(\:), hig’(As), ete.

8.02 Infinite series. If ao, a;, --- are matrices and A\ a scalar variable the
coordinates of the matrix

(5) g\) = ag + ax + a\? + --

are scalar infinite series in \; and if each of these series converges for mod A less
than p, we say that the series (5) converges. When this condition is satisfied,
the series

() gz) = as + a1z + ax* 4+ .-
115
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converges for any matrix z for which the absolute value of the root of greatest
absolute value is less than p. For if g, is the sum of the first m terms of (6),

then by 4) gn = 2 gmi Where

gm"-' - 1)()\‘.)}1:.'— 1
(V" - 1)! ’

The matrices ¢;, h; are independent of m and, since the absolute value of each
\; is less than p, gn(A), gu(A), =+ -, gm® — P(A;) converge to g(\), g’(\), -,
g% — Y(\;) when m approaches infinity.

As an illustration of such a series we may define exp z and log (1 + z) by

gmi = gmA)ei + gmAdhi + <+ +

e z , 2?
™ expr=e=1+7+5+

(8) log(1+z)=z-f”2_z+§+...

The first of these converges for every matrix z, the second for matrices all of
whose roots are less than 1 in absolute value.

The usual rules for adding series and for multiplying series whose coefficients
are commutative with z and with each other hold for matric series. For
instance we can show by the ordinary proof that, if zy = yz, then =+ v =
e%ev but this will not usually be the case if zy = yz.

8.03 The canonical form of a function. In the case of multiform functions
(4) does not always give the most general determination of the function
which is only obtained by taking into account the partial as well as the princi-
pal elements of the variable z. Asin §3.06 suppose that z has the canonical
form

a
az
9) T =
a,

where a; is a block of terms

M1 O

0 M 1
(10) (rsrows and columns).

0 A 1
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It is convenient to let a; stand also for the matrix derived from (9) by replacing
every a; by 0 except when j = 7. We can then write

(11) z = Za;, aa; =0 (@ #j
and we may set
(12) a; = \ei + 2;

where (cf. §3.07) e% = e, 2; is a nilpotent matrix of index r;, and

2 e. =1, ez = 2; = 2i€;, ee; = 0, ez; = 0 = z;e; (7= 7).
The part of z; which is not 0 is given by the oblique line of 1’s in (10); 22 is
obtained by moving all the 1’s one place to the right except the last which dis-
appears, and in general z” — ! has a line of 1’s starting in the mth column of
(10) and running parallel to the main diagonal till it meets the boundary of
the block.

It is now easy to see the form of a scalar polynomial g(z) or of a convergent
power series with scalar coefficients; for

(13)  g() = Zg(ae; = = [g()\.-)e.- + 9Nz + -+ + gl —(:(ﬁ,):).;» - l]

and the block of terms in g(z) which corresponds to a; in (10) is, omitting the
subseripts for clearness,

oy ) g7 g )

g g’ —=r 31 ﬁ)—,'

, g’ g2\

9N g'N Ay T}

, gr—¥™)

14) a®) g - =3
g'\)
g®)

where all the terms to the left of the main diagonal are 0, the coordinates in
the first row are as indicated, and all those on a line parallel to the main diagonal
are the same as the one where this line meets the first row.

If the characteristic function is the same as the reduced function, no two
blocks of terms in (9) correspond to the same root and e;, z; are the principal
idempotent and nilpotent elements of z corresponding to A\; and (13) is the
same as (4). This is not the case when the same root occurs in more than one
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of the blocks (10) and, when this is so, the a; are not necessarily uniquely deter-
mined. For instance let

(15) z = = v 4 e.

¥y 0 0
0 v 1
0 0 ~
Here we have

a, = vyen, ar = y(en + e3) + e,

e = ey, € = exn + ex, 2 =0, 2 = én.

But if
Ju=en —es fiz = ex Sfis = e
fou = ey — ey S = ex fos = ex

Ju = ess — €13 + en — ey, Jio = e+ s, iz = e + €3,
the f’s form a set of matric units and
z = vfu + v(fr + f33) + [

so that we might have chosen fi = fi1, f; = fo + fis = ex + e + €13 a8 idem-
potent elements in place of e; and e,.

It should be carefully noted that fj, fz are not commutative with e;, e, and
in consequence different determinations of a multiform function may not be
commutative with each other. For instance, if z is the matrix given in (15)
with v # 0, and ~* is a particular determination of the square root of v, we have
already seen in §2.13 that determinations of z} are given by

ur = ylen — YHen + e:) — en/2v}

up = Y — Y(fo + fis) — fu/24
= yMen — en) — vYHen + e + 1) — ex/2v}
= u; — 2y,

and these two values of z! are not commutative.

8.04 Roots of 0 and 1. The reduced equation of a nilpotent matrix of index
m is z™ = 0 and this matrix can therefore be defined as a primitive mth root
of 0; the index m cannot be greater than n and it exceeds 1 unless x = 0. The
canonical form of z must contain at least one block of order r; = m, similar
to (10) but with A\; = 0, and a number of like blocks of orders, say, r; ( =

2,3, ---) where r; < r and 2 r; = n. This gives rise to a series of distinct
1

types in number equal to the number of partitions of » — m into parts no one
of which exceeds m, and z is a primitive mth root if; and only if, it is similar
to one of these types.
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If z is a primitive mth root of 1, its reduced characteristic function is a
factor of A'— 1 and hence z has simple elementary divisors. Let ¢ be a scalar
primitive mth root of 1, and let fi, f;, ---, fs be idempotent matrices of ranks

i—1
ry, 13, -+ for which fif; = 0 (@ # j), Zf; = 1; for instance, if p; = E i, We.
=1
may set
Pi+1
f-'=2€ii =12 -+, 80 +1 = n).
pitl

The canonical form for z is then
(16) i+ e+ -0 + €Y,

where the exponents ¢; are all different modulo 7 and at least one €%, say the
first, is primitive. Any primitive mth root of 1 is then similar to a matrix of
the form (16), and conversely.

8.05 The equation y™ = x; algebraic functions. Let A;, Ay -, A, be
the distinet roots of z and u; = A}/™ a particular determination of the mth root
of \;forz = 1, 2, .-+, s; then, if y» = z, the roots of y are all of the form
etiu;, where € is a primitive scalar mth root of 1. Suppose that the roots of y are

M1l = M1y M1z = €y c oty My = etl'lﬁ‘l!

(A7)

tar,

Hal = Mgy M2 = fm#n . ';lﬂcr. = €Uy,
and let a particular choice of the partial idempotent and nilpotent elements
corresponding to ui; be fijx and hip (B = 1, 2, +-+); also let the index of hip
be 7nijr. Then

(18) Y = Z(uiifein + hiix)

and hence

(19) y™ = Z(uiifin + i)™ = Z\iJiik + g
where g; is the nilpotent matrix

(20) giie = (wiifie + Rige)™ — w7, fiin.

Further, if A; > 0, (20) can be solved for h;; as a polynomial in g.;; for we
can write (20) in the form

21) Gise = arhip + Otzh%,'k + -

and, since @y = muj~' # 0, the ordinary process for inverting a power series
shows that we can satisfy (21) by a series of the form

(22) Rije = Bigisn + Bogin + -+ B # 0),
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there being here no question of convergence since any power series in a nilpotent
matrix terminates. It follows from (21) and (22) that the indices of g.; and
hij, are the same.

We shall now show that the matrices f;;x and g torin a set of partial idem-
potent and nilpotent elements of = provided always that z is not singular. If
this were not so, then f;;x must be the sum of two or more partial idempotent
elements; for the sake of brevity we shall assume that it is the sum of two
since the proof proceeds in exactly the same way if more components are taken.
Let fix = di + d, where d, and d, are partial idempotent elements of z and
let ¢, c; be the corresponding nilpotent elements; then

Jiit = €1 + Cq, cic; = 0 = cyen.

Hence also hijx = by + b, bibs .= 0 = bb; where b, 1s obtained by putting c,
for gi;x in (22); and this is impossible since we assumed that fi;x and &;; were
partial idempotent and nilpotent elements of y. We have therefore the fol-
lowing theorem.

TueorEM 1. If z 15 a non-singular matriz, any determination of y = z'/™
can be obtained by expressing x in terms of partial idempotent and nilpotent ele-
ments, say = Z(\:f; + ¢:) and putting

y = ZOfi + )™ = IN(fi + moINT g ot — DT A -0,

Here the binomial series terminates and A}'™ is a determination of the mth root of
N\ which may be different for different terms of the summation if this root occurs
with more than one partial element.

There is thus a two-sided multiplicity of mth roots of z; the A}/™ have m
possible determinations in each term and also there is in certain cases an infinity
of ways of cnoosing the set of partial elements. Since the canonical form is
independent of the actual choice of the set of partial elements out of the possible
sets, any choice of such a'set can be derived from any other such set by trans-
forming it by a matrix u; and since z itself is the same no matter what set of
partial elements is chosen, we have uzu~! = z, that is, u is commutative with z.
It follows from the development given in §§7.01,7.02 and 7.04 that a matrix u
which is commutative with every partial idempotent element is a polynomial in z.

8.06 * We must now consider the case in which z is singular and in doing so it
is sufficient to discuss mth roots of a nilpotent matrix; for the principal idem-
potent element of x which corresponds to a root u is the sum of those principal
idempotent elements of y which correspond to those roots whose mth power
is u, so that the principal idempotent element corresponding to the root 0 is
the same for both z and y. Let the elementary divisors of y be A™, A™, ... \™;
then

y=nty+ -+
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where y; is a nilpotent matrix of index m,, and we may suppose the fundamental
basis so chosen that the significant part of y is

01
01

(23) i ) i ) (m; rows and columns).

01
0

To simplify the notation we shall consider for the moment only one part y;
and replace it by ¥ and m; by n so that y* = 0 and

n-—1
Yy = 2 e.Se; 4 1.
1

If we now form the mth power of #. then y» = 0if m > nandif m < n

n—m

y" = 2 eiSe; 4 m.

1
If we define r and & by
(24) r—1m+k=n<m k > 0)
then r > 2 and

(25) ymei = 0, y™ei v m = €, Y™Ci+2m = €itm "5 Y it r—Dm =€it(r—Dm
(7' = 112’ ) k)

giving k chains of order r of invariant vectors, and similarly for 7 = £ + 1,
k+ 2, ---, m, we have m — k chains whose order is r — 1 since for these values
of 7 the last equation in (25) is'missing. If we set u and v for blocks of terms
like (23) only with r and » — 1 rows and columns, respectively, then we can
find a non-singular matrix P which permutes the rows and columns in y™ so that

u

(26) P-lymP = u (kw's and m — k v’s).

v

We are now in a position to consider the solution of y» = z where z is a
nilpotent matrix of index r. In the elementary divisors of x suppose p, expo-
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nents equal r, p, equal r — 1, and in general p;equalr —j + 1 (= 1,2, ---, r);
here the p’s are integers equal to or greater than 0 such that

D =i+ Dpi=n  p O
i
The maximum possible exponent for any elementary divisor of y is rm; let
¢:(t=1,2, -+, m;j =1,2, -+, r) be the number of exponents which equal
r—=j+Um—i+1=0FC—=-Hm+m—17+1).
Forming y™ and using (24) and the results of (25) we then see that
27 gt 215+ -+ (M — Dgimym + mgin + (m — 1)gn
+ ot am=p G=12 0, 1500 =0)
2[(r—j+1)m—i+1]q,-,-=n.
i,
These relations form a set of Diophantine equations for the ¢’s. When a set .
of ¢’s have been found, we can find the matrix P (cf. (26)) for each part of y=

and then set y = TR~'y;R where R has the form ZP;Q;, Q; being commutative
with P7'y7P; and so chosen that R is not singular.

8.07 The exponential and logarithmic functions. The function exp y = e¥
has already been defined in §8.02 by the series

e =1+ 2 y™/m!
1

or in §8.03 in terms of the partial units of y. Let the distinct roots of y be
pi, p2, *-, pe and let a choice of the partial idempotent and nilpotent elements
corresponding to u; be fi;, hi; (7 = 1, 2, ---, ki) so that

ki ki
(28) fi= qu, hi = 2 hiy (G=1,2 -9

i=1 i=1

are the principal idempotent and nilpotent elements of y. If we set 2 = e,
we have

. I it
z=e=2 > [f+ ho e 1),]
i i . D] .

= E 2 (evfi; + gi))

where v;; is the index of &;; and

(29)

h2 1
(30) gi = hi+ o+ o F R G = DL
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The index of g;; is clearly »;;. Solving (30) for k;;, we have the formal solution
hi; = log (1 4 gs;) and on using this or inverting the power series in (30) we get

(31) hii = gii = 39 + o 4 (=DYgEY vy — 1),

As in §8.05 it follows that f;;, g;; form a set of partial elements for z and, when =
is given so that y = log z, the method there used gives the following theorem.

THEOREM 2. If z is a non-singular matriz whose distinct roots are A1, A,
cooy Ay and if log Ay, log Ny, -+, log A, are particular determinations of the
logarithms of these roots, then the general determination of log x is found as follows.
Take any set of partial elements of z, say fi;, g:; 0 = 1,2, ---, r; 5 =1,2, ---, ky)
where fij, gij correspond to \; and the index of gi; ts vsj, let hi; be the nilpotent
matriz defined by (31), and let k;; be any integers, then

(32) log z = 2 2 [(log Xi + kijm/=1)fsi + Rl

The discussion of the relation between different determinations of log z is
practically the same as for 2/ and need not be repeated.
If f; and h; are defined by (28), a particular determination of log z is given by

(33) Logr = z {dog \i 4+ kien/=1)fi + Ri.

This form of log = has the same principal elements as z provided log A\; + %:
# log A\; + R, for any 7 = j, and even when this condition is not satisfied, it is
convenient to refer to (33) as a principal determination of log 2. This deter-
mination is the one given by the series (cf. §8.02 (8))

(34) logz=(—-1)—3z—-1D*+¥z—-1>— ..

provided each k; is 0 and the principal determination of log A; is used. The
series converges only when the roots of x — 1 are all less than 1 in absolute value.

8.08 The canonical form of a matrix in a given field. If the coefficients of a
matrix are restricted to lie in a given field of rationality, the canonical form
used in the preceding sections requires some modification. The definition of
the invariant factors is rational as are also the theorems regarding similar
matrices which were derived from them in Chapter 3; and hence if X and z
are rational matrices which have the same invariant factors there exists a rational
matrix P for which P~1zP = X. The definition of elementary divisors requires
only the natural alteration of substituting powers of irreducible polynomials
for (A — \y) i,
Let

a)) =A"+adA" "4 o+ an
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be a scalar polynomial in a field F which is irreducible in F; then the matrix
of order m defined by

—a; —ag —Qm -1 —0m
1 0 0 0
35) s 01 0 0
0 0 1 0

has a(M\) as its characteristic function; since a()) is irreducible in F, it follows
immediately that z, is an irreducible matrix in F and that «(\) is also the
reduced characteristic function. It is easily seen that the invariant factors of
N\ — x are given by m — 1 units followed by a(?).

Again, if we consider

(36) r. = (r rows and columns)

Zas

which is a matrix of order rm, we see as in §8.03 (14) that, if g(\) is a scalar
polynomial in A,

g(xa) ¢'€ta) -+ g =V(2a)/(r — D!

g(xa) o g¥ T P(za)/(r — 2)!
g(xa) = e .

g,(xn) .
9(Ta).

It follows that, if g(za) = 0, we must have g ~ V(z,) = 0 and therefore a(X)
is a factor of g« — P(\) so that [a(N)]" is a factor of g(\). But if we put g(A)
= [a(\)]" the first (r — 1) derivatives of g(A\) have a()\) as a factor and so
vanish when \ is replaced by z,; hence g(r.) = 0. It follows that the reduced
characteristic function of z. is [«(\)]" and, since the degree of this polynomial
equals the order rm of z,, it is also the characteristic function so that the
invariant factors of z. are given by 1 repeated rm — 1 times followed by [a())]".
The argument used in §3.06 then gives the following theorem.

TueEOREM 3. Let a;(A), ax(N), -+, ar(\) be polynomials, not necessarily dis-
tinct, which are rational and irreducible in a field F and whose degrees are my,
my, ---, my respectively; and let vy, ro, + -+, 7 be any positive integers such that
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k
2 rim; = n;then, if za, is the matriz of order rim; formed from a;(N) in the same

1
way as xo tn (36) is formed from a(\), the matriz of order n defincd by

Ta,
Ta,

37 z =
Ta,
has a:(N), az(M), .. -, ax(N\) as its elementary divisors in F.
If X is any matrix with the same elementary divisors as z, it follows from
§3.04 Theorem 5 that we can find a rational nonsingular matrix P such that

PXP-! = z. We may therefore take (37) as a canonical form for a matrix
in the given field F.

8.09 The absolute value of amatrix. The absolute value of a matrixa = || ap, Il
is most conveniently defined as

n \ 3
(38) 'al = (2 apqdpq>

P.q=

where the heavy bars are used to distinguish between the absolute value and
the determinant | @ |. It must be carefully noted that the absolute value of a
scalar matrix X is not the same as the ordinary absolute value or modulus of A,
the relation between them being

(39) |A] = nimod A.
It follows immediately from (37) that
(40) mod (|al —|b]) <la+b] <la|+1b];
and from
D Gprtipr D buchey = D, [52 (@orBog = @pubrg) (@prbag = Gpabrg)
Y TR 4 'R pPq T, 8
+ E aprbrq 2 a-'pal;lq-ly
we have ‘
(41) lab] < lallbl.

Since the trace of ad’ is Za,.d,,, the absolute value of ¢ might also have
been defined by

42) lal? = traa’ = trd'a.
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From this we see immediately that, if a is unitary, that is, a@’ = 1, then
(43) lal =nt, |ab]| =|b|

where b is any matrix.

No matter what matrix a is, ad’ is a positive hermitian matrix, semi-definite
or definite accordjmg-es a is or is not singular; the roots g, g;, -+, gn of ad’
are therefore real and not negative. If we set

Dr=20102 s, P=pn=(mod]|al)?, s=p =]al
then

— . n—1 n
r'pe S Z(gl + Jga + o0+ gr)r < (:L_ i)s', Pr 2 (n)P('_l)/(') = (n)prlny

r

Eg;,

whence!

n rin —| n = 1 r
(44) <r>p <p.<r <r _ l)s.

If Cr(a) is the rth supplementary compound of a (cf. §5.03), and a = pt
is put for mod | a |, then p, = | C7(a) |? and we may write for (44)

n 2r/n r 2 —rn_1 2r
(D <10@ 12 <o 2 ]lal

and, since (a’)~! = C*~(a)/| a |, we have

n—2

(45) o <|a < (n—1) * |al*—Ya

provided | a | # 0. Thisinequality enables us to deal with expressions involving
negative powers of a.

Since a—! = exp (— log a), we also have
[a=| =1(1 — log a + %(log a)? — --)b]| < (1 o, al
+ 4llogal2+ --:)|b

and therefore

(46) |a=tb| < eltosal|p].
Putting b = 1 we also have
47 [a=t] < nt — 1 4 eltesel and  |a=t| < nlellosal,

It is also sometimes convenient to note as a consequence of (41) with b = a-!
that

(48) la=t] > ntlal-n

1If r = n, (44) gives Hadamard’s expression for the maximum value of mod | a .
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8.10 Infinite products. As an illustration of the use of the preceding section
we shall now investigate briefly the convergence of an infinite product. Let
(49) P,=Q10+a)l+a) - 1+ am

=0+ lah@+1aD - 1 +]al),

then, if ¢ is an arbitrary matrix,

(50) [Pp—1]<Qn—1< &l — 1,
(1) | Puc] < Ve ¢,
(52) |P _P"I<Qm—Qk<2Ia1 zlﬂll

For on expanding P,, we have

—1+2a,+2apaq+ 2 ApgGr + *+*

»<g¢ r<g<r
therefore
| Pn —1|<E|a,|+2|ap||aq|+ =Qn,— 1
rp<gq
| Pacl < <1+Elapl+2lap||aq|+ el = Qulel < E1ostc],
p<g¢

The proof of (52) follows in the same manner.
Hence P,, converges when @Q,, does, for which it is sufficient that Za; is abso-
lutely convergent in the sense that = |a;| converges.

8.11 The absolute value of a tensor. If wis a tensor of grade r, we define the
absolute value of w by?
(53) mod w = (r!Saw)l.

We shall for the most part consider only vectors of grade 1 as the extension to
tensors of higher grade is usually immediate.
If z and y are any vectors, we derive from (53)

(54) mod (z + y¥) < mod z + mod y, mod Szy < mod z mod .
If A is a matrix,
(mod Az)? = SAzAz = SzA'Ax.
By §6.02
A’A = Zg.a.8a;

2 The r! enters here only because of the numerical factor introduced in defining Suy
(cf. §5.16).
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where the ¢’s are real and not negative, and Sd.a; = 68;; so that mod a; = 1;
hence
SzA’Az = 2¢.8id:Sa;x = Zg; (mod Sa;z)?
< Zg: (mod a; mod z)? = (Z¢;)(mod z)?
= |4 (mod 2)?,

or
(55) mod 4z < | A | mod z.
From (54) we then have
(56) mod SyAdz < | A | mod z mod y.
8.12 Matric functions of a scalar variable. If the coordinates of a matrix
a(t) = || ay.(t) || are functions of a scalar variable ¢, the matrix itself is called
a matric function of £. The derivative, when it exists, is defined as
da .. a(t+h) —a(t) _ | da,

57) a e &
h being a scalar. The fundamental rules of differentiation are

d(a+b) _da | db d(ab) _ da db da’ _ (da)’

—a Catw a aT'mw @ - \a
to which we may add, when |a | = 0,

da' _  _ da _,

(58) - a ar a~t,

Other examples are

da® _ da da da® _da , da ,da
T R A T
and in general, if m is any positive integer,
da™ a da/dt
(59) a {m -1 1 }

Under the usual conditions each of the coordinates of a(t) is expansible as a
Taylor series and this is therefore also true of a(f). If f(¢) is a scalar function,
f(a) may or may not have a meaning. For instance, if f(t) can be expanded in
a power series which converges for mod ¢ < «, then the same power series® in

3If g(t) = Zunt®, u. scalar, the series intended here is Zun,a®. Other definitions are
possible, e.g., if we set

G(a) = E Un E C(ino) ac(l."l) ac(i"; c(i':)n - ,‘wﬁ”ﬁ
n i

where E c(l."o) c(i"l) cooelm) = 1) we still have G(t) = g(t).

n
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a converges when |a| < «; but if f(¢) is defined by a Fourier series which is
not differentiable, f(a) will not have a meaning when the elementary divisors
of a are not simple, as is seen immediately on referring to the form of §8.03 (14).
If f(a) and f'(a) have a meaning and if da/dt is commutative with a, we have
df(a)/dt = f'(a)da/dt. For instance, if z is a constant matrix and ¢ = ¢ — z,
then

dlog t — x) _ 1

(60) dt t— =z

as is also easily proved directly.
The integral of a(f) is defined as follows. If C is a regular contour in the
{-plane, we shall set ’

(61) /c a()dt = “ L ape(t)dt “

or if £y, --- isa series of points on C and ¢; a point on the are (¢, t; + 1), and
if the number of points is increased indefinitely in such a way that mod
(ti +1 — t:) approaches O for every interval, then

(62) / a(t)dt = lim Ea(t:)(t, +1 — ti).

The conditions for the existence of this limit are exactly the same as in the
scalar theory.

If M is the least upper bound of | a| on C and L is the length of C, it follows
in the usual manner that

(63)

/ a‘(t)dt’ < / |a(t) | mod dt < ML.

As an illustration of these definitions we shall now employ contour integration
to prove some of our earlier results. If z is an arbitrary constant matrix and
C a circle with center t = 0 and radius greater than | z |, then all the roots of z
lie inside C and on C the series

+ 7

L1
t—z t

S8

is uniformly convergent. Hence

1 dt 1 < dt
64 2 = o
(64) mﬁt—x 27rz'2 T ﬁz"ﬂ
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a result which may also be derived from the definition of log (! — z) in §8.07 and

/ —— = [log (t — z)]e.

1 tdt 1 z
%ﬁﬁn—ﬁlet—gm—

and in general, if g(f) is a scalar function of ¢ which is analytic in a region
enclosing C,

(65) gM——/“”

I~z

We then have

Suppose now that |t — x| = 6()e(t), adj (¢ — z) = 6(t)a(t) where 6(¢) is
the highest common factor of |t — z | and the coordinates of adj (¢ — z). We
then have

(66) o(z) = fmwm
~ ®

and under the given conditions this vanishes if, and only if, g(¢)/¢(f) has no
singularities inside C, that is, if ¢ is a factor of g. We have therefore the theorem
of §2.05 that ¢(¢) is the reduced characteristic function of # and that g(z) =
only when ¢(2) is a factor of g(z).

Since a(t) = ¢(t)/(t — z) is a polynomial in x with scalar coefficients and with
degree 1 less than the degree of ¢(t), say

a(t) =a1x"‘“+a2:c’""2+ e +C(m,

equation (66) shows that g(z) can be expressed as a polynomial in z, namely,

mea | 9a(t)
(67) g(z) = — 2 /; 0 dt.

We may also note that (66) leads to the interpolation formula §8.01 (4) if
the integral is expanded in terms of the residues at the zeros of (t).

All of these results can be extended to unilateral series in z with matric
coefficients if care is taken to use g(t) (t — z)~* or (¢ — z)~* g(t) according as
dextro- or laevo-lateral series are desired.

8.13 Functions of a variable vector. Before considering functions of a
variable matrix, we shall consider briefly those of a variable vector; for more
extended and systematic treatments the reader is referred to treatises on vector
and tensor analysis.

The differential of a function of a variable in any non-commutative algebra
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was defined by Hamilton as follows. Let f(z) be a function of a variable z,
dz a variable independent of z and ¢ a scalar variable; then

(68) df(z) = lim‘f(z + tdz) — f(x)'

t—0 t

We shall assume tacitly hereafter that this limit exists for all the functions we
shall consider.

An immediate consequence of (68) is that df(z) is linear and homogeneous in
dz. Hence, if x = Zte;, dz = Zdte;, then

df(x) f(z(E- + tdEo)tei) - f(z&e;) aaf dEl
0 Es
This leads to Hamilton’s differential operator
9
0
in terms of which we may write (68) in the form
(70) df(z) = (SdzV)f(z).

In using this operator it is frequently convenient to place it after its operand
and, when this is done, some artifice is necessary to indicate the connection
between them. This is done by attaching the same subscript to both;. the
method of doing this will be clear from the following examples in which a =

(69) V = Ze;

Jaie;, b = ZBie; are vectors and A = || ay; || is & matrix.
0o
Va = E E ;e QaVa = Z E eiej,
VSab = VaSaob + VaSaba = D, <2 (3"‘: B; + "_ﬂ: )) ¢,
s ]
da; 083
SV.VsSasbs = —_
PR T Bk o

i

Sa.dV, = 2 a;; g%‘.i’ Sad.v, = 2 a; aaag’
1 Y]

, i 3
AV, = E(E %) €, VelAa = 2 aE,,, eiesSex( ),
7 :

(%)

We can now consider the effect of a change of variable from z to* Z. Let
& = Zfe;, V = Ze;d/8&;; then

71 di = Z.8Vudx = Jdz

¢ Here Z denotes a new variable and not the conjugate imaginary. Instead of con-
sidering a change of variable, we may regard £ as a vector function of z.
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where

(12) J = £.8Va = || 88/0% ||

is the Jacobian matrix of the transformation. Similarly

dz = 2,8V di = Jdz.

Hence

(73) JJ = 1.

Again, since SdzV = SdiV = SdzJ'V, hence

(74) vV=JV, V=) w=JV.

From (70) and (72) we see that the differentials of J and J’ are given by
dJ = SdaVs-Ja, and dJ = dZ.SV. = J.dzSV,
dJ' = SdaxvV,-J,, dJ' = VoS dx = V,SdzJ ..

(75)

This leads to the notion of contravariant and covariant vectors. If u is a
vector function of z and % the corresponding® function after the change of
variable, u is called contravariant if

(76) , u = Ju,
and covariant when
(77 a=Jwu u=J4a
If d;, d; denote two independent variations so that di(dex) = di(dix), then
hdi = dy(Jdiz) = dpJdiz 4 Jdide
= Joudp28Vadiz + Jdidyz.

(78)

Hence second differentials are neither contra- nor co-variant.
If A is a matrix whose coordinates are functions of z, the bilinear differential
form Sd,zAd.x when transformed becomes

SdlfiA-dzﬁl-? = SdliIJ‘Iszx
so that, if this form is invariant, that is, Sd,#Ad,% = SdizAdsx, we must have
(79) A=JAJ, A =J4J, Adx = J'Adz

§ As will be seen below, this does not necessarily mean merely the result of substituting
Z for z in the coordinates of u.



[8.13] FUNCTIONS OF A VARIABLE VECTOR 133

Hence when A is defined in this manner, Adx is a covariant vector. If by
analogy with (78) we form a second differential of this vector and of A'dz, we
get, using di = Jdz,

d(Adiz) = doJ'Ad\E + J'do(Ad,E)
di(A'dyz) = diJ'A'dei + J'dy(A'd,E).
From (75) diJ’ = VaSJadsz, diJ’' = Y.SdizJ.; hence after a simple reduction
do(Adiz) + di(A'dsz) = VoSdiz(J'A' T + JLA'T)dex + J'(do(AdsE) + di(A'da%))
= VuSdiz(A, — JALDdyz + J'(d(AdiD) + di(A'ds))

which may be written
a = dy(Adiz) + di(A'dyz) ~ VuSdizA dox
(80) = J'(dy(AdiZ) + di(Ad'dsE) — VuSdiZA )
=J'a

80 that a is a covariant vector. This vector may also be written
a = dzAdlz + dlA’d‘zx - vanle;dzz + (A + A’)dldzx.
Using a notation suggested by the Christoffel symbols we now write

[4; diz, dox] = $(d:Adiz + d1A'dox — V.SdizA doz)

(81) _ (% dar; ?&:) '
“E.k ¥ ak; + 3t; 3%, di§idotier

(82) {dlx:‘idzx} = (4 + A) N dAdiz + diA'dyz — VaSdizA .doz)

= 2(4 + A")[A; diz, dsz]
provided that | A + A’| = 0. If we now set

A
b = {dlx, dgx} + dldzx

and use the relation (4 + A")~\J’ = J1(4 + A’)-!, we have from (80)
(83) b=Jb

so that b is contravariant.
Ifweset A = 3(4 + A’) + 3(4 — A’) = B + C, we get from (81) and (80)

[4; diz, dx] = [B; diz, dyz] + [C; diz, dax]
(84) [B; diz, dpx] + Bddyx = J’([Bi dif, dyx] + Bd1d253)
[C, dlx, dzI] = J'[@; dlj, dz.’l-?]



134 FUNCTIONS OF MATRICES [ VIII)

We shall require two transverses of the Christoffel matrices; these are defined

by
, A4 A’
Sb[A; a, c] = Sc[4; a, b], Sb {a, c} = Sc{ b}

a’
whence
2[4; a, b]’ = V.SaA.b + AbSaV, — A.aSbV,
(85)
Al _ 4. Ntp ]/
{a,b} - [A,(I, (A +A) lb]°

To illustrate partial differentiation we shall consider functions which depend
not only on z but also on a contravariant variable vector ¥ = Zw;e;. Since

% = Ju and J = || 8%;/9¢; || is independent of u, we have
b} dw; 9 BE,
dw; 2 3w, 6w, dE; aw,
9% 8; 8
ok 9k: ok 3k 0w

Hence, if V/ = Ze;0/0w;, V' = Ze;0/8a;, then
AN
(86) v =JV, V=JY+dJ -V

where d,J' = SuV,-J.. Here V’ is covariant but V is neither covariant nor
contravariant, which means that formulae dependent on it will not usually be
invariant in form under a change of variable. This difficulty is avoided as
follows. If we combine (83) with (78) and replace diz, dx by contravariant
vectors a, b, then

A A
(87) dpJa = d.Jb = JbSVa.a = J{a, b} - {d, B}'
Hence
, no A ’ , A‘ ’
(87 dol'b = {a, J’} -7 {d, b}

and therefore

o 41" 4 A4
V—JV+{u’V,} J {12, V'}
whence

(88) D=v-— {u,AV’}, =J <V - {a%V’}) = J'D:

D is therefore a covariant differential operator.
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Let v be any contravariant vector and set dyov = SuV,-v.; then, if f is any
function of z and wu,

(89) dof = (SvVa 4 SdwVo)fe = (SvDe + S8,V.)fx

where 8,0 is the contravariant vector defined by
A
(90) o0 = dyv + {u, v} = Vu.

The tensor corresponding to the matrix V is known as the covariant deriva-
tive of v.

8.14 Functions of a variable matrix. The general theory of analytic func-
tions of a variable matrix z = || &; || is co-extensive with that of n? scalar
variables and hence is so general as to be void of properties peculiar to matrices.
This follows immediately from the obvious relation

n

§i = E ; €piZep

p=1
which expresses the (7, j) coordinate as a linear function of z.
The differential operator® corresponding to z is
ad
0k
It is often convenient to have a special notation for the transverse A’ and when
this is so we shall set

91) A= ’

’

.

These operators may stand after their operands and the same convention as
was used for subscripts attached to V will also be used for A and 8 when

necessary.
The fundamental property of A is
(93) df = tr(dzA")f = tr (dzd)f

where f is any function of z and tr(4) stands for the trace of the matrix 4.
This result follows immediately from

tr(dza’) = D, D) dta a%k .
§ k v

¢ This operator first occurs in a paper by Taber (1890, (84)) who however did not make
any systematic use of it. Macaulay in a tract published in 1893 (110) but written in
1887 used A consistently in applying quaternions to physical problems; he used the nota-
tion d for A. Later Born (385) used the same operator to great effect in his theory of
quantum matrices. Turnbull (436) uses Q for A’.
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8.15 Differentiation formulae. We collect here the principal formulae of
differentiation; in each case the operand is z or z’ and the dummy subscript is
omitted except when the medning is ambiguous without it. To simplify the
expressions we set a and B for the traces of the matrices a and b, and &, for the
trace of z”.

Aarb = a’b = a’zb’A, Aax’b = ab = bz'aA

(94)
Alaxb = ab = bzad’, Alaz’d = a’b = a’z'b’A’
Azt =z~ l4 'z 24 ()%~ 4 -0 (@) Tt =AN)"
95) A =z "'z~ % +a 32+ - + (@)= ()
Azm = ne" 14 fzn— 24 Lrr— 3 4 oo £ = 1A
Atr (axb) = Atr(baz) = a’db’
(96)
otr(axb) = ba
97) Atr(z7) = At = r(z’)" Y, atr(z7) = razm— L,
tr (A)azb = ab = tr (d)azxd
(98)
tr(A)zm = rzm—1 = tr(d)z" -
T a z a T a
atr{r s} =(r+s) {r —1 s}=tr(a){r s}
99) T a  a
Atl‘{r s}: (7‘+8)‘{T— 1 s}.
ALt — zAlxl =tr(z7) =&
(100)

(Aaxa - x’Aa) Z; = (x’)r.

The proofs of these formulae are all very similar and we shall consider here
only the most important leaving the remainder to the reader. If a = || ai;|l,

b = || bi; ||, then
2 @pibpi

r

= a'b;

[i]
Aarb = “ a_f,;, apngrbri
hence also
a’z’b’A’ = (Abza)’ = (b'a)’ = a’b.

The remaining parts of (94) follow in the same way. It follows dlso from
(94) that

Al = AaZoZ™ 1+ Atz ~1 = 271 + Ap2xa2" — % + Anx?r] "2
— — — -3
="~ 4 2’7 72 4 Aarlraxm T3 + An2iry T,

and so on; the remaining parts of (95) follow from (94) in the same way.
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To prove (96) we notice first that tr (ab) = tr (ba) and hence in tr (q;az - - - a,) -

the factors may be permuted cyclically. Then, if ¢ = || ¢i; ||,
0
atr (cx) = E:e,--— E:c = E:c.-'e;-=c.
( ) et 73&:‘1‘ ot PQEQP a7

Formula (97) follows by repeated application of (96); thus
Atr (z7) = Aqtr (zax”— 1Y) + AL tr (2] " 2)
= (2)" '+ Aatr (zax” — 1) + Antr (zl ~ %2
= (x’)f—l + (x/)r—l + cee
= r(z/)r— L

The remaining formulae are proved in the same way.
If Za,\" is a scalar power series and f(z) = Za,z', then from (97) and (98)

atr (f(z)) = Zrayzr ~1 = f'(z) = tr (9)f(2)

so that the operators 8 tr ( ) and tr (3) have the same effect on such functions.

Similarly, if F(z) = Za, {': Z}, it follows from (99) that

(101) auwo=uww=z@+&%rflg}
8.16 As an illustration of the application of the formulae of the preceding
section we shall give some parts of the theory of quantum matrices which are
applicable to matrices of finite order.

Let ¢1, o, -, q; 1, * -+, Ds be the coordinates of a dynamical system and
O the Hamiltonian function; these coordinates satisfy the system of ordinary
partial differential equations

. 0 i} .
(102) 6= = -I2 =12 0
We may suppose that f = 7?2, a perfect square; for, if (n — 1)?2 < f < n?, we
can introduce 2(n? — f) additional coordinates g; 4.1, Ps+1, ***, qnsy P Which

do not occur in $ so that these variables equated to constants are solutions of
the extended system. When this is done, we can order the ¢’s and p’s in square
arrays || ¢i; ||, || pii || in such a way that p.; corresponds to g;; for all 7 and j.
Equation (102) then becomes

. 09 . 09

Qi = 5 = T o

op;i 0g;i

or, if the matrices || ¢i; || and || p;: || are denoted by ¢ and p and the corre-
sponding transverse differential operators by 9, and a,,

(103) ¢ =109 p=0939.
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If we transform (103) by the substitution

g=eQv,  Q=1Qull, p=e'Pe, P =] Pyl
where w is a constant matrix, we get

§=e4(Q + wQ — Que™t,  p = (P + wP — Pu)e v,
Also, if ¢ is kept constant,

tr (dgd,) = tr (e*'dQe*'9,) = tr (dQe 0 .v?)
with a similar relation for p. Hence
8y = €”'9qe7 7Y, 9, = €°'9pe v,

Using these results in (103) we get
(104) Q@+ wQ — Qu) = 89, (P + wP — Pu) = —39,
9 being expressed in terms of P and @ and, if necessary, also {. Now from (96)

Qw — wQ = dptr [W(PQ — QP)] —(Pw — wP) = aqtr [w(PQ — QP)]
and hence, if
(105) ® = 9 + trlw(PQ — QP)] = § + trlw(pg — ¢p)],
we have in place of (103)
(106) Q=200 P=-0

80 thqt the trangsformation is canonical.
If Q = 0 = Pin (104), then

wQ — Qw = 99, wP — Pw = —0¢9
or on restoring the exponential factor
(107) wg — quw = 3,9, wp — pw = —3,9.

When 9 is given, these are algebraic equations which can be solved for p and g¢;
the solution will of course generally contain arbitrary parameters.
Under the same assumptions (106) becomes

(108) 98 = 0 = 3R,

and if P, Q are independent variables, the only solution is = constant and
the only solution for $ in (107) then has the form

&* = trlw(pg — ¢p)]

apart from an additive constant. Equation (108) may then be written

(109) 35($ — §*) =0 = 3,(p — Y.
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Now, if 7y, 73, -, 7., are the parameters in the solution of (107) we have
(S — ) _ api; (9 — 9% + 9gi; 3(H — 9%
ork org 0pij org 0qi;
which vanishes in virtue of (109). Hence, if $ is expressed in terms of r,
Ty, -, T by using the solutions of (107), it will differ by an additive constant
at most from — tr [w(pg — ¢p)].



CHAPTER X

LINEAR ASSOCIATIVE ALGEBRAS

10.01 Fields and algebras. A set of elements which are subject to the laws
of ordinary rational algebra is called a field. We may make this idea more
precise as follows. Leta, b, - -- be a set of entities, F, which are subject to two
operations, addition and multiplication; this set is called a field if it satisfies the
following postulates:!

Al. a 4 bis a uniquely determined element of F.

A2. a+b=b+a.

A3. (a+b)F+c=a+4 (b +o0).

A4. There is a unique element 0 in F such that a 4 0 = a for every element a
in F.

A5. For every element a in F there exists a unique element b in F such
that a + b = 0.

M1. ab is a unique element of F.

M2. ab = ba.

M3. ab-c = a-bc.

M4. There is a unique element 1 in F such that a1 = aforevery ain F.

M5. For every element a 0 in F there exists a unique element b in F such
that ab = 1.

AM. a(b + ¢) = ab + ac, (b + ¢)a = ba 4+ ca.

R. If m is a whole number and ma denotes the element which results from
adding together m a’s, then ma > 0 for any m > 0 provided that a = 0.

If M2 is omitted the resulting set is said to be a division algebra. This does not
imply that M2 does not hold, only that it is not presupposed; if it does hold,
the algebra is said to be commutative. If M2, 4, 5 are all omitted, the cor-
responding set is called an associative algebra. If the algebra contains an identity,
that is, an element satisfying the condition laid down in M4 for 1, this element is
called the principal unit of the algebra. Postulate R is included merely as a
matter of convenience; its effect is to exclude modular fields. In consequence
of R every field which we shall consider contains? the field of rational numbers
as a subset.

As an example of a field we may take the field of rational numbers extended
by a cube root of unity,w = (—1 4+ v/—3)/2. Every number of this field can
be put in the form

a=ua+ Pfo=al 4+ fw

1 These postulates are not independent; they are formed so as to show the principal
properties of the set. In place of M5 it is often convenient to take: M5’ If a = 0, ez = 0
implies z = 0.

2 Strictly speaking, we should say that the field contains a subset simply isomorphic with

the field R of rational numbers. This subset is then used in place of R in the same way a8
scalars are replaced by scalar matrices in §1.04.

147
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where « and 8 are rational numbers; the form of a is unique since a + fw =
v + 8w gives (8 — 8) w = v — a and, since w is not rational, this is impossible
unless B — 6 = 0 =y — a. We say that 1, w is a basts of F relative to the field
R of rational numbers, and F is said to be a field of order 2 over R.

As an example of an associative algebra we may take the algebra of matrices
with rational coordinates. Here any element a of the algebra can be put
uniquely in the form a = Xa;ze;;, where the a;; are rational numbers; and
ei(i,j = 1,2, ---,n) form a basis of the algebra, which is of order n2. We
also have an algebra if the coordinates a;; are taken to be any elements of the
field F = (1, w) described above. This algebra is one of order n* over F.
Instead of regarding it as an algebra over F we may clearly look on it as an
algebra of order 2n2 over R the basis being e;;, wesi(4,7 = 1,2, -+ - , n).

10.02 Algebras which have a finite basis. Let A be a set of elements which
form an associative algebra and G a subset which is also an algebra. We shall
say that ay, as, - - - , a, form a basis of A relatively to G if (i) each a; lies in 4,
(ii) if every element of A can be put uniquely in the form

(1) a = v + y2a2 + e + Ynln

where the v’s belong to @. Though it is not altogether necessary to do so, we
shall restrict ourselves to the case in which G is a field which contains the rational
field, that is, we assume as a postulate:

BR. For every algebra A under consideration there exists a non-modular
field F and a subset of elements a;, a3, - - - , a, such that (i) every element of 4
can be put uniquely in the form

a= Z Vil (viin F)
1

and (ii) every element of this form belongs to A ; and further the elements of F
are commutative with ay, az, - - - @,.

Since the product of any two elements of A4 is also an element of A and can
therefore be expressed in the form (1), we have

2 8; = 2 Yiik G (7':.7 =1,2...,n)
k

where v;;, are elements of F. Since the law of combination of the elements of F

is supposed known, (2) defines the product of any two elements of 4 ; for

(3) (Caua:) (ZBia;) = Zaifiaia; = ZoubyyiiuG.

If the values of the 4’s are assigned arbitrarily in F, it is readily shown that the
only postulate which is possibly violated is M3 which states that ab-c = a-bc;
and in order that this condition shall be satisfied it is necessary and sufficient
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that a;-a;ar = asa;-ax for all the elements of the basis. This gives immediately
the ‘associativity’ condition

(4) 2 YikaVial = E YijaYakl ('i; j: k: l= 1; 2, .., n)°

10.03 The matric representation of an algebra. If we set

(5) A = 2 Yiap€pa ¢t=12..-,n),
p,g=1

the law of multiplication for matrices gives
Aid; = ZViapVigape
and therefore.from (4)
Aidi = DNiiaYazrloa = ZViiaAu.

Hence the set of matrices of the form Za;A; is isomorphic with the given algebra
in regard to both addition and multiplication. Further, if the algebra contains
the identity, the isomorphism is simple; for, if there exist elements a; of the field
such that Za;4; = 0, it follows that

(Ea.-a;):c =0

for every element x of the algebra, and putting z = 1 we get Za;a; = 0.
If the algebra does not have a principal unit, all that is necessary is to replace
(5) by
n+1
(6) Ai = E Yigp€pa
P,q=1
wherev;,;, ns1 = 0 (4,5 < n) and va41,5,i = 8i = ¥i,ns1,;forall fand 5.
The importance of this representation is that it enables us to carry over the
theory of the characteristic and reduced equations from the theory of matrices.
The main theorem is as follows.

THEOREM 1. The general element x = Z£;a; satisfies an equation of the form
. M AbA It oos b =0

where b, is a rational homogeneous polynomial in the £'s of degree p; and if the
vartable coordinates &, are given particular values in F, there exists a rational
polynomial

® o) = M 4 BN 4 oot 4 B,

such that (2) o(z) = 0, (%Z) if ¢(\) is any polynomial with coefficients in F such that
¥(z) = 0, then o(N) is a factor of ¢(N).
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This theorem follows immediately from the theory of the reduced equation
as given in §2.05 and from the fact that the equation which is satisfied by the
general element must clearly be homogeneous in the coordinates of that element.

As in the theory of matrices, —b; is called the trace of z and is written tr(z).
The trace is linear and homogeneous in the coordinates and hence tr(z + y) =

tr(z) + tr(y).

10.04 The calculus of complexes. If z;, 3, --- , z, are any elements of an
algebra A in a field F, the set B of all elements of the form Z¢x; (¢; in F) is
called a complez® or linear set. Any subset B of A which has the property that,
when z, y are any two of its elements, then £z -4 ny is also an element of the set
isa complex. This follows readily from the theory of linear dependence and the
existence of a finite basis for A ; it is also easily shown that any subcomplex of A
has a finite basis; the order of this basis is called the order of the complex.

We shall write B = (x1, 2, - -+ , ,); this does not imply that the z’s are
necessarily linearly independent. If C = (y1, %2, + -, ¥) is a second complex,
the sum of B and C is defined by

B+C= (23,2, Y1, ¥2y yt):

that is, B + C is the set of all elements of the form z 4 y where z lies in B and
yin C. Similarly the product is defined by

BC=(@y;:1=1,2,---,71;7=1,2,---,3).

The set of elements common to B and C forms a complex called the intersection
of B and C; it is denoted by B ~ C. If B and C"have no* common element, we
write B ~ C = 0. If every element of C lies in B but not every element of
B in C, we shall write C < B; in this case B 4- C = B. A complex of order 1 is
defined by a single element, say z;, and for most purposes it is convenient to
denote the complex (z,) simply by z;; 1 < B then means that z, is an element
of B.

If a complex B is an algebra, the product of any two of its elements lies in B
and hence B? < B; conversely, if this condition is satisfied, the definition of the
product BB = B2 shows that B is an algebra.

We add a summary of the properties of the symbols introduced in this section.

B+C=C+B, B+C+D=B+(C+D), BC-D=B-CD,
B(C + D) = BC +BD, (C + D)B = CB + DB,
B4+ (C~D)<(B+C) ~(B+D), BC~D) <BC~BD.

# The term ‘complex,’” which was introduced by Frobenius in the theory of groups, is
more convenient than ‘linear set’ and no confusion is likely to arise between this meaning
of the term and the one used in geometry.

¢ To avoid circumlocution we say the complexes have ‘no element in common’ in place
of the more correct phrase ‘no element in common except 0.’
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If B < (C,then B 4 C = C, and conversely.
If B< C, thereexists D< Csuchthat C = B4+ D,B ~ D = 0.
If B=C+4 DandC ~ D = 0, we shall say that B is congruent to ' modulo
D, or
B = C (mod D);

and if b, ¢, d are elements of B, C, D, respectively, such that b = ¢ + d, then
b = ¢ (mod D), ¢ = b (mod D).

10.05 The direct sum and product. If A = (a;, az, --- , a,) and B = (b,
by, - -+, bg) are associative algebras of orders «, 8, respectively, over the same
field F, we can define a new algebra in terms of them as follows. Let C be the
set of all pairs of elements (a, b) wherea < A and b < B and two pairs (a, b),
(a’, b’) are regarded as equal if, and only if, a = a’, b = b’. If we define addition
and multiplication by

(0, b) + (', b) = (a + a',b + b
9) (a, ) (d/, ') = (aa’, BD')
&(a, b) = (fa, &) (¢in F),

it is readily shown that the set C forms an associative algebra. This algebra
is called the direct sum of A and B and is denoted by A @ B; its order is a 4 8.

The set A of all elements of the form (a, 0) forms an algebra which is simply
isomorphic with 4, and the set 8B of elements (0, b) forms an algebra which is
simply isomorphic with B; also

C=44+98, AB=0=Y A~B=

In consequence of this it is generally convenient to say that C is the direct sum
of % and B.
If we replace (9) by
(9/) E(a; b) (Ea; b) = (a, Eb) (‘E in F)
(a, ) (a’, b') = (aa’, bY"),

we get another type of algebra of order o8 which is called the direct product
of A and B and is denoted by A ® B or by A X B when there is no chance of
confusion. If both A and B contain the identity, the set U of elements of the
form (a, 1) forms an algebra simply isomorphic with A and the set B of elements
(1, b) is an algebra simply isomorphic with B; also®

C=u8=9% A~B=(,1)=1,

and the order of C is the product of the orders of % and 8. As in the case of
the direct sum it is convenient to say that A is the direct product of % and B
and to indicate this by writing ¢ = % X ¥B.

o

8 Strictly speaking we should use different symbols here for the identity elements of the
separate algebras.
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The following theorem gives an instance of the direct product which we shall
require later.

TaEOREM 2. If on algebra A, which contains the identity, contains also the matric
algebra M (ei;;4,5 = 1,2, --- , n), the identity being the same for A and M, then A
can be expressed as the direct product of M and another algebra B.

Let B be the set of elements of A which are commutative with every element
of M ; these elements form an algebra since, if biepq = €0 (¢ = 1,2, --- ), then
also

(b + bi)epg = €50(bi + b)), bibierg = epebib;.

Further B ~ M is the field F, since scalars are the only elements of M which are
commutative with every element of M.
If zis any element of A and
Tpg = 2 €ipTEqiy
%

then

Tpgres = z ; €ipTgiCrs = €rpTCqy = €ry z ; CipTyi = €raTpq
[ 4

8o that z,, belongs to B. Also

E : Tpelpg = E: CipTCei€pq = E: €ppTqq = T.

Pe Pgi bX]

so that A = BM, which proves the theorem.

10.06 Invariant subalgebras. If B is a subalgebra of A such that
(10) AB < B, BA X<B,
then B is called an ¢nvariant subalgebra of A. If we set
A=B+4+C, BAC=0,
the product of any two elements c;, ¢; of C lies in A and hence
¢ = ¢ij + bij ¢i < C, b; < B.
If we now introduce a new operation X defined by
(11) ¢ X ¢j = Cij

then the operations + and X, when used to combine elements of C, satisfy all the
postulates for an associative algebra. To prove this we need only consider the
associativity postulate M3 since the proofs of the others are immediate. If
¢, ¢z, c3 are any elements of C, then both ¢; X (c2 X ¢3) and (¢; X ¢3) X ¢; differ
by an element of B from c¢icacs; their difference is therefore an element of both B
and C and hence is 0 _

The elements of C therefore form an associative algebra relatively to the
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operations + and X. When this algebra is considered abstractly, the operation
X may be called multiplication; the resulting algebra is called the difference
algebra of A and B and is denoted by (4 — B). , .

The difference algebra may also be defined as follows. Let by, bg, -+, bs
be.a basis of Band ¢y, ¢, - -+ , ¢y & basis of C, so that by, bz, -, bg, €1, -+ , ¢y
isa basisof A. Since 4 is an algebra, the product c;c; can be expressed in terms
of this basis and we may therefore set

(12) Cicj = Zvinte + Z8; jubr.
The argument used above then shows that
(13) dd; = Zyipde

defines an associative algebra when B is invariant.

It is readily seen that the form of the difference algebra is independent of the
particular complex C which is used to supplement Bin A. Forif A = B 4+ P,
B ~ P = 0, it follows that to an element p of P there corresponds an element ¢
of C such that p — ¢ < B; and we may therefore choose a basis for P for which

Di=ci+ g (i< B;ji=1,2--,7).
Equation (12) then gives
- PiPi = ZviDk + bij :
where bii = qiqi + qici + ciqi + by — Zyipbi < B,

and the algebra derived from this in the same way as (13) is from (12) is ab-
stractly the same as before.

If the algebra A does not contain the identity, it may happen that 42 < 4,
A% < A?, and s0 on. Since the basis of A4 is finite, we must however have at
some stage

Am< Am—l’ Am+l — Am’

the integer m is then called the index of A. The most interesting case is when
A™ = 0; the algebra is then said to be nilpotent.

When N, and N. are nilpotent subalgebras of A which are also invariant,
then N, 4+ N: is a nilpotent invariant subalgebra of A. This is shown as
follows. Let m,, m. be the indices of N; and N respectively; N3 = N; ~ N2
is nilpotent and, since N3: < NT* = 0, its index ms is not greater than m;. Now

(N1+N2)2=Nf 4+ Ni 4+ NiN: + N.N,
SN} 4+ N +Ns<N:+ N,

since it follows from the invariance of N, and N: that NN, and N,N, are con-
tained in both N, and N and therefore in N;. Similarly

N1+ N) SN+ N;+N;
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so that, if m is the greater of m, and m,,
N1+ N)"SNT+ N7+ Ny =N,
and hence N, + N is a nilpotent subalgebra. Further

AN, 4+ N:) = AN1 4+ AN: < N1 + N,
(N1 + N2)A =NiA +NALSN:+ N2

so that N; 4 N is invariant. It follows that the totality of all nilpotent
invariant subalgebras is itself a nilpotent invariant subalgebra; this algebra is
called the maximal nilpotent invariant subalgebra or radical of A.

An algebra A which is not nilpotent and which has no radical is said to be
semi-stmple; if in addition it has no invariant subalgebra, it is said to be simple.8
We have then the following theorem whose proof we leave to the reader.

TaeoreM 3. If N is the radical of a non-nilpotent algebra A, then (A — N) is
semi-stmple. ~

10.07 Idempotent elements. In the preceding section we defined a nilpotent
algebra of index m as one for which A™ = 0, A™! ¢ 0. An immediate con-
sequence of this definition is that every element of a nilpotent algebra is nil-
potent; we shall now prove the converse by showing that, if A is not nilpotent,
it contains an idempotent element.

TueoreM 4. Every algebra which is not nilpotent contains an idempotent element.

Let A = (ai, a2, -+, a.) be an algebra of order . If a4 = A for some
element @ in A, then axz = 0 only when z = 0; for ad = A implies that aa,
aas, - -+ , A4, is a basis, which means that there is no relation of the form

0= E&aa; = aEf;a.-

except when every & = 0. Also, if ad = A, there must be an element ¢ in 4
such that ae = a; this gives ae? = aeor a(e? — ¢) = 0 and hence e? = e.

The theorem is true of algebras of order 1; assume it true for algebras of order
less than «. If a;A = A for some a;, the theorem has just been shown to hold.
If a;A < A for every a; in the basis of A, then, since (a/A)? = a;da:d < aid,
either a;A contains an idempotent element or, being of order less than a, it is
nilpotent. Now (Aa;4)" < A(a;A)" and therefore Aa;A is also nilpotent; but

A-Aa;A < AaiA, Aa;A-A < AaiA

so that Aa;A is invariant and being nilpotent is contained in the radical N of A.
Hence

A= DT Aad <N

¢ Simple algebras are usually excluded from the class of semi-simple algebras; it seems
more convenient however to include them.

The statement that A is not nilpotent is made in order to exclude the algebra of order 1
defined by a single element whose square is 0.
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so that A3, and therefore also A4, is nilpotent, contrary to the hypothesis of the
theorem. It follows that some a;A is not nilpotent and being of lower order
than A contains an idempotent element by assumption. The theorem is there-
fore proved.

The following lemma is an immediate consequence of Theorem 4.

LemMma 1. A non-nilpotent algebra cannot have a basis every element of which is
nilpotent, nor a basis for which the trace of every element is 0.

For, if every element of the basis is nilpotent, the trace of every element of the
algebra is 0 whereas the trace of an idempotent elemient is not 0 since the only
roots of its characteristic equation are 0 and 1.

If ¢ is the only idempotent element in eAe, it is said to be primifive. An
algebra which is not nupotent contains at least one primitive idempotent
element. For, if ede contains an idempotent element e, 5 ¢, then e;(e — ;) = 0
so that e;ed ee; does not contain e — e, and is therefore of lower order than ede;
since the order of eAe 1s finite, a succession of such steps must lead to a primitive
idempotent element. ‘

THEOREM 4.5. A simple algebra has a principal unit.

If A is not nilpotent, it contains an idempotent element e. If ais any element
of A, we may set a = a; 4+ a2 where "

a = ea + ae — eae < eA + Ae, as =0 — @, eax =0 = ase.
We can therefore find a complex A4, such that
A =¢ed 4+ Ade + A,, eA + Ade ~ A, =0, ed1 = 0 = Age.

If A; 18 not nilpotent, it contains an idempotent element ¢’ and e 4 ¢’ is also
idempotent since ee’ = 0 = e’e. We can therefore take ¢ 4 ¢’ in place of ¢ so re-
ducing the order of A,, and after a finite number of such steps we arrive at a
stage at which 4, contains no idempotent element and is therefore nilpotent;
we shall now assume that ¢ was chosen at the start so that A; is nilpotent; we
shall also assume that e is not an identity for A and there is no real loss of
generality in assuming in addition that it is not a left-hand identity.

Let r be the index of A;. If r > 1 and z 5 0 is any element of 4]~ then
2A; = 0 = Az, ex = 0; if r = 1, then A, = 0 and since e is not a left-hand
identity, e < eA < A so that thereis an z # 0 such that ez = 0; we have there-
fore in both cases

zA; = 0 = Az, er = 0.

We now have Az = edx, AzA = eAzA; hence Az < A, AzA < A and AzA is
therefore an invariant subalgebra of 4; if AzA = 0, then Az is invariant and
not equal to A;if Az = 0, then z4 is a proper invariant subalgebra unless it is 0
in which case X = {z} is a non-zero invariant subalgebra of A. In the case of a
simple algebra it follows that e is an identity.
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Corollary. An algebra without a principal unit is not semi-simple. For
(Az)? = AzAx = Axedzxr = 0if A, # 0.

10.08 Matric subalgebras. Let A be an algebra which contains the identity
and let ¢, be a primitive idempotent element; then e, = 1 — e, is also idempotent
and, if e;Ae; is denoted by 4.;, then

A = (&1 + ex)A(er + o) = Au + Ar1a + A1 + Aua

Suppose in the first place that A .,A4:. is not nilpotent; there is then some a,2 <
Ai. such that A ,1a;2, which is an algebra, is not nilpotent since otherwise 4 .14 14
would have a basis of nilpotent elements, which is imppssible by Lemma 1; hence

some such A ,a12 contains an idempotent element, say es = aaas. . If e is not
primitive in A, say e; = ¢ + 2", ¢’¢” = 0 = "¢/, where ¢’ is primitive in 4,
then a2’ # 0 since otherwise

e = e’ = anape’ = 0;

also e/ < A.q since 0 = ees = e’ + ee” so that eje” = —ee’ and therefore
e = —ee’e =0

and similarly e’e; = 0; we may therefore take a, = ajs¢” and a;, = €’az in place
of a;2 and as;, which gives ¢’ in place of e2.  We can therefore assume a;2 so chosen
that e, is primitive in 4 ; also, since e;asa,2¢2 = €5 = e,, then, replacing ax by
€201, if necessary, we may assume e:s; = @ and similarly aizes = asa.

The element a,2a2; is not 0 since

2
21012021012 = A21012° Q21012 = €3 = €3,
and it is idempotent since
(amazl)2 = (12°A21012° Q21 = (1262021 = A1202).

But a1200 < 414 < A1 and, since e is primitive, it follows that @102 = e
For the sake of symmetry we now put a;; = e;, a2 = ¢z, and we then have a
matric subalgebra of A, namely ay1, a12, @21, @22.

Since Aal(AlaA al)rAla = (AalAla)H'l, it fOllOWS that AlaA al and AalAla are
either both nilpotent or both not nilpotent. Suppose that both are nilpotent;
then, since their product in either order is 0, their sum is nilpotent and, because
(A1a + Aa)? = A1ad a1 + A A 1., it follows that

Ni=A4a+Ada + 4141 + Awdia
is nilpotent. Now
AN: = (Au + Ara + At + Aae) (Aia + Aar + A1edar + Aardia)
= AllAla 'I" AllAlaAal + AlaAal + AlaAalAla + AalAla
+ Adadicda + Aaeda + AcaAadie
<M
since AijA,, = 0 (p # j), Aijdjq < Aig. Similarly NiA < Ni. Hence N, lies
in the radical of 4.
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Suppose that we have found a matric subalgebra a;; (5,5 = 1,2, --- ,r — 1)

such that e; = a; (¢ = 1,2, --- , r — 1) are primitive idempotent elements of 4 ;
r—1
lete, =1 — 2 e; and set A;; = e;Ae; as before. Suppose further that A ,;4;a
- .

is not nilpotent for some ¢; we may then take ¢ = 1 without loss of generality.
By the argument used above there then exists a primitive idempotent element
er = @y < And,,and elements a,; < A1, a1 < 41, such that

anlyy = Qrr, aQ1;@r1 = Gy
Ar,Qr1 = Ay, ay,a,y = Qayr.
If we set
iy = @AiQyr, Qri = Any; =12 ---,r=1),

then a;, # 0 since a1;ai;r = a1, and a;; (1, = 1,2, - - -, r) form a matric algebra
of higher order than before.

Again, if every A .:A i, is nilpotent, it follows as above that each A ;.4 . is also
nilpotent and hence

r—1
Nr-l. = Z (Afu + Aat’ + AiaAai + Aat‘Aia))

$,7=1

having a nilpotent basis, is itself nilpotent; and it is readily seen as before that
it is invariant and therefore belongs to the radical of 4.

We can now treat A .. in the same way as 4, and by doing so we derive a set of
matric algebras M (a%;;7,j = 1,2, - -+, rp) with the identity elements

; .
ap = af;
i1=1,
such that Za, = 1; also
N' = 2 (apda, + a,daAday)
p#*q

is contained in the radical N of A. We have therefore the following Lemma.

LemMa 2. If A is an algebra with an identity, there exists a set of matric sub-
algebras M, = (a%;;4,5 = 1,2, - -+ , rp) with the principal units
D
ap=2(.l‘:,~ (p=1:2)"',k)

i=1

such that a,a, = 0 (p # ¢) ard Za, = 1, and such that

N = D) (a,da, + apda.day)

p*q

lies in the radical N of A. Further each a%; is a primitive idempotent element of A.
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Corollary. By = arAar + N’ is an invariant subalgebra of A. For
ABy = ZaA(mdar + D, a,da, + a,da.day)

p#Eq

= arAda + N’ = B,.

10.09 We shall now consider the properties of the algebras a,Aa, where a,
(p=1,2, ---, k) are the idempotent elements defined in Lemma, 2.

Lemma 3. ayAa, is the direct product of M, and an algebra B, in which the
principal unit is the only idempotent element.

The first part of this lemma is merely a particular case of Theorem 2. That
B, contains only one idempotent element is seen as follows. If e is a primitive
idempotent element of B,, then af,e and a%,(a, — e) are distinet and, if not zero,
are idempotent and lie in a?,4a?%,; but this algebra contains only one idempotent
element since af, is primitive; hence a?,(a, — ¢) = 0, and therefore e = a, is
the only idempotent element in B,.

Lemma 4. If B is an algebra whose principal unit 1 is its only idempotent element,
any element of B which is singular” is nilpotent; and the totality of such elements
forms the radical of B.

The proof of the first statement is immediate; for, if a is singular, the algebra
{a} generated by a does not contain the principal unit and, since B contains no
other idempotent element, a is nilpotent by Theorem 4. To prove the second
part, let z and y be nilpotent but z = z 4 y non-singular; then 1 = 27z +
27 =z, 4+ y;. Here 2, and ¥, are singular and therefore nilpotent. If m is the
index of z;, then

QA=-2) Q4+ +22 4+  +27H =1

and this is impossible since ¥, = 1 — z; is nilpotent. Hence 2 is also nilpotent
and the totality of nilpotent elements forms an algebra; and this algebra is
invariant since the product of any element of B into a nilpotent element is
singular and therefore nilpotent. It follows that B is a division algebra whenever
it has no radical, that is, when it is semi-simple.

10.10 The classification of algebras. We shall now prove the main theorem
regarding the classification of algebras in a given field F.

TueorEM 5. (i) Any algebra which contains an identity can.be expressed in the
Jorm

(14) A=S+N

7 An element of B is singular in B if it does not have an inverse relatively to the principal
idempotent element of B.
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where N 1is the radical of A and S is a semi-simple subalgebra ;=S is not necessarily
unique but any two determinations of it are stmply isomorphic.

(ii) A semi-simple algebra can be expressed uniquely as the direct sum of stmple
algebras.

(iii) A simple algebra ca:v be expressed as the direct product of a division algebra
D and a simple matric algebra M; these are not necessarily unique but, if Dy, M,
Dy, M, are any two determinations of D and M, then Dy~ Dy, My~ M,.

We have seen in Lemma 2 that A = Za,4a, + N’, where N’ < N, and also in
Lemmas 3, 4 that a,da, = M, X B,, where M, is asimple matric algebra. The
first part of the theorem therefore follows for A when it is proved for any algebra
like B, and when it is shown that the direct product of M, by a division algebra
is simple; for, if B, = D, 4+ N, then D, is a division algebra and

apda, = My X Dp + M, X Ny, M,N, <N.

If the field F is one in which every equation has a root, the field itself is
clearly the only division algebra and hence M,D, = M,; in this case part (i) is
already proved. Further, the theorem is trivial for algebras of order 1; we may,
therefore, as a basis for a proof by induction assume it is true for algebras of
order less than the order a of 4.

If the field F is extended to F(¢) by the adjunction of an algebraic irrationality
£ of degree p + 1, we get in place of A an algebra A’ = A(£) which has the same
basis as A but which contains elements whose coordinates lie in F(¢) but not
necessarily in F; all elements of A are also elements of A’. Regarding A’ we
have the following important lemma.

LeMMA 5. If N isthe radical of A, the radical of A’ = A(£) is N' = N(&).

Let A = C 4+ N,C ~ N = 0, and let the radical of 4’ be N”; then clearly
N” > N’. If N” > N’, there is an element of N” of the form

" =cot+ at+ - + ¢, (s < C,co #0).
Since ¢” is nilpotent,
0 = tr(c") = tr(co) + &tr(c) + «--

and since tr(co), tr(ci), - - - are rational in F, each is separately 0. But, if a,, a2
are arbitrary elements in 4,

ac"ay = aico@2 4+ aic102f + -

lies in N” and, since each a;c;a; is rational in F, the trace of each is 0 as above.
Hence the trace of every element in Aced is 0 from which it follows by Lemma 1
that Acod is nilpotent and being invariant and also rational it must lie in N (cf.
§10.06). But Aco4 contains ¢, since A contains 1 whereas C ~ N = 0; hence no
elements of N” such as ¢” exist and the lemma is therefore true.

We may also note that, if B, C are complexes for which B ~ C = 0, and B, C’
the corresponding complexes in A’, then also B’ ~ C’' = 0.
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Suppose now that the identity is the only idempotent element of A and that
the first part of the theorem is true for algebras of order less than . Leta 1
be an element of A corresponding to an element @ of (4 — N) and let f(A) be
the reduced characteristic function of @; f(A) is irreducible in F since (4 — N)
is a division algebra. Since f(@) = 0, it follows that f(a) < N and hence, if »
is the index of f(a), the reduced characteristic function of a is [f(A)]". If we
adjoin to F a root ¢ of f(\), this polynomial becomes reducible so that in A’ =
A(§) the difference algebra (4’ — N’) is no longer a division algebra though by
Lemma, 5 it is still semi-simple. If we now carry out in F(£) the reduction given
in Lemma 2, say

A’ = Ze,A’e, + N*,

either the algebras e,4 e, are all of lower order than «, or, if A’ = ¢,4’e,, then it
contains a matric algebra M’ of order n2 (n > 1) and, if we set A’ = M'B/, as
previously, B’ is of lower order than a. In all cases, therefore, part (i) of the
theorem follows for algebras in F(£) of order a when it is true for algebras of
order less than «, and its truth in that case is assumed under the hypothesis of
the induction.

We may now assume

A =C + N, C~N =0,
A'=8+4+N, S8 ~N =0,

where S’ is an algebra simply isomorphic with (4’ — N’); N’ has a rational
basis, namely that of N (cf. Lemma 5).
If ¢y, c2, - - - is a basis of C then, since A is contained in A’ we have

c,-=s:+m$, 3;<‘S" m:<N'y (i=1:2y"’)

and, since C ~ N = 0 implies C’ ~ N’ = 0, it follows that s;, s;, - - - form a
basis of §’, that is, we may choose a basis for §’ in which the elements have the
form

Ci + nio + N+ - (c¢<C,n;,-<N)

where ¢;, njo, - - - are rational in F. Moreover, since C is only determined
modulo N, we may suppose it modified so that ny is absorbed in c;; we then
have a basis for S’

(15) $; = Ci+ naf + -+ + npb = o+ ni.
When the basis is so chosen, the law of multiplication in S’, say
(16) 8:8; = EG,-J-,,S,:

has constants o which are rational in F; for s; = ¢; mod N’ and ¢; is rational.
If we now replace s, in (16) by its value from (15) and expand, we have

4 7 A !
cici + cng + ne6; + nin; = Zopte + Togny,
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but n:n: < (N’)? and therefore
cc; + c,-n; + n:cj = Zo0 + Ec,.,-,,n,: mod (N')?,

a relation which is only possible if the coefficients of corresponding powers of §
are also equivalent modulo (N’)? and in particular

CiCj, = Eagjkck mod (N')z.

Consequently the algebra A; generated by ¢; ( = 1, 2, --- , o) contains no
element of N which is not also in N2 and hence, except in the trivial case in which
N = 0, the order of 4, is less than . By hypothesis we can therefore choose C
rationally in such a way that c.c; = Zo; e, that is, such that C is an algebra;
part (i) of the theorem therefore follows by induction.

10.11 For the proof of part (ii) we require the following lemmas.

LemMa 6. If A contains the identity 1 and if B is an invariant subalgebra which
has a principal unit e, then

A=B® (1 - Al —e).

Since e is the principal unit of B, which is invariant, eAe = B; also eA(1 — e)
and (1 — ¢)Ae are both 0 since Ae and eA lie in B and, if b is any element of B,
then (1 —e)b=b—-b=0,b(1 —e) = b —b = 0; hence

(17) A =ede+ (1 —e) A(1 — ¢), ede ~ (1 —e) A(1 —¢) = 0.

Further ede-(1 —e) A(1 —¢) =0 = (1 — ¢) A(1 — e)-eAe, so that the sum in
(17) is a direct sum.

LemMMA 7. Every invariant subalgebra B of a semi-simple algebra A is semi-
simple and therefore contains a principal unit.

Suppose that B has a radical N ; then
AN < B, (AN)? = ANA-N < BN XN
so that AN is nilpotent. But, since A2 = A, we have (ANA)" = (AN)'4;
hence ANA is a nilpotent invariant subalgebra of A which, since A contains an
identity, is not 0 unless Nis0. But A has no radical; hence N = 0 and B also
has no radical.
In consequence of these lemmas a simple algebra is irreducible and a semi-

simple ‘algebra which is not also simple can be expressed as the direct sum of
simple algebras. Let

A=B®B:® - @B, =C1DC:®D --- & Cy

be two expressions of A as the direct sum of simple algebras and let the principal
units of B; and C; be b; and c; respectively; then 1 = Zb; = Z¢c;. We then
have C; < Zb;Cxb; < C and therefore

Ci = ZbiCib; = ZhiCibs
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since when 7 # j then b;Cxb; < B; ~ B; = 0and b,Cibi-b,Cib; = 0. If b;Cib; #
0, it is an invariant subalgebra of Ci and, since the latter is simple, we -have
b.Cib; = C for this value of 7 and all other b;Cib; equal 0, and therefore C; =
biAb; = B;. The second part of the theorem is therefore proved.

10.12 We shall now prove part (iii) of Theorem 5 in two stages.

LemMma 8. If D is a division algebra and M the matric algebra (e;; 1,j = 1, 2,

-, m),andif D X M = DM, then DM is simple.

Let B be a proper invariant subalgebra of A = DM. If z is an element of B,
then there exists an element y of A such that xy = 0, since otherwise we should
have B > zA = A, in other words, every element of B is singular in A and
hence B~ D = 0. But

T = Edijeij, d,‘,‘ <D
and d;; = E eyire;, and is therefore contained in B as well as in D. Since
P
B ~ D = 0,every d;; = 0, that is, x = 0so that B = 0. It follows immediately

from Lemma 2 that a simple algebra always has the form D X M, and also that
D~ e,-iAe.-,-.

LeMMA 9. In a simple algebra all premitive idempotent elements are similar.

Let e and a be primitive idempotent elements of a simple algebra A. We can
then find a matric algebra M = (e;;) for which e;; = eand such that 4 = D X M,
where D is a division algebra. If ea = 0 = ae, we can at the same time choose
€22 = a; and ey, = ueyu! where

u=1—ey — ex+ ey + en=u’,

so that the lemma is true in this case, and we may therefore assume that, say,
ea #= 0.

Suppose now that eae > 0. Since A = D X M, we can express a in the form
Zayjeq; (ai; < D), where a;; # 0 since eae = ape;;. We have then

(éa)2 = (ena)? = (anen + anerz 4+ --- )* = anena
and hence b = a7}ea is idempotent. We then have
eb = b, be

e, ba = b;

also ab = aba = abab and, since a is primitive, either aba = a or aba = 0; but
eabe = eae # 0,

hence ab = a. We then have

b = ueul, u=1—->4e, u~l
b = v7lay, v =1—~>b+a, vl

14+b—ce
140 —a,

]
Ii

I

and hence a and e are similar in this case also.
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If eae = 0 but aea # 0, interchanging the réles of e and a leads to results
similar to those just obtained; w= can therefore assume eae = 0 = aea. If

u=1+4+e—ea+ae=22—¢e+ ea — ae)™,
‘then uau—! = a — ae; we can therefore assume ae = 0. If
v=(1+4¢— 2ea) =22 — e 4+ 2ea)”},

then vav—! = a — ea; we can therefore also assume ea = 0, which brings us back
to the first case which we considered. The lemma is therefore proved.

Part (iii) of the theorem follows immediately. For, if ¢ and a are primitive
idempotent elements of M; and M, respectively, we can now find w such that
a = wew™!; but D;~ ede and D2~ aAa = weAew=1, which is similar to eAe and
therefore to D,.

10.13 Semi-invariant subalgebras. If B is a subalgebra of A which is such that
AB < B (BA < B), it is called a right (left) semi-invariant subalgebra. We
shall treat only the case in which A4 is semi-simple; it has then an identity and if
we restrict ourselves, as we shall, to the case of right semi-invariant subalgebras,
we may assume AB = B.

It is clear that, if A = A, @ A., then also B = B, & B., where A:B; =
B, A;B; = 0(¢ = j). Itissufficient then at first to consider only simple algebras,
and in this case we have the added condition that ABA = A; that is, we have
simultaneously

(18) AB =B, ABA = A.

If we call B minimal when it contains no other semi-invariant subalgebra, we
have

LeMMma 10. A minimal right semi-invariant subalgebra of a simple algebra A has
the form Awu, where u is a primitive idempotent element of A. Conversely, if u* = u
is primitive, Au is a minimal right semi-invariant subalgebra.

Let AC = C;if ¢ # 0 is any element of C, and C; = A¢; < C, then AC, =
C:. Suppose C; < C; then in the same way if c; is any element of C,, we have
Cs = Ac; < Ci. If C; < C), we may continue this process and after a finite
number of steps we shall arrive at an algebra B # 0 such that Ab = B for every
element b of B which isnot 0. Since 4 is simple, Ab4 = A and B? = B, so that
B contains a primitive idempotent element v and Aw = B:. If u is not also
primitive in 4, let v = uy + ug, wsu; = 0 (¢ # 7), u% = u; 0. Thenwu =
so that u; is in B; hence » must be primitive in A4, if it is so in B.

Since B = Awu, every z in B'has the form au and hence zu = z. Butalso B =
Az and, from the manner in which B was chosen, either Bx = 0 or Bx = B.
If Bz = 0, then uz = 0 and therefore

72 = zu-2zu = 0.



164 LINEAR ASSOCIATIVE ALGEBRAS [X]

Also, if z is nilpotent, then 22 = 0 = ux; for uAu = uBu is simple since, by the
proof of Lemma 4, it is a division algebra, and uxr = uzu < uBu. If Bz = B,
then there is a unique b such that bz = z and, since b is then idempotent, we
have ux = z, that is, z liesin uAu. If B = Au,then AB = A% < Bso that B
is a right semi-invariant subalgebra of A. If C is minimal, then B = C as.
desired. ‘

Conversely, let B = Au, u primitive; then the only idempotent quantity of B
has been shown above to be » and, if B were not primitive, we should have
B > C = Av, v primitive, which is impossible.

Suppose now that B is not minimal and let ¢;, €3, - - < , e, be a complete set of
primitive supplementary idempotent elements in B. Then B, = Ae; + Aes +
.-+ 4 Ae, is semi-invariant in A. Let b be an element of B which is not in
B,; since b ¥ Zbe;, we may replace b by b — Zbe; and so assume every be; = 0 in
which case clearly Ab ~ B, = 0. But, if b # 0, then Ab contains an idempotent
element esuchthatee =0(: = 1,2, ---, r) and e¢,4; = ¢ — Ze;eis an idempotent
element supplementary to the given complete set, which is impossible. We
therefore have the following theorem.

TrareoreM 6. If A is simple and AB = B is-a semi-invariant subalgebra, then

B = Ae; + Aes + --- + Ae,

where ey, e, -+ - , €,18 a complete supplementary set of primitive idempotent elements
of B; and these idempotent elements are also primitive in A.

We shall assume that A is semi-simple, say
(19) A=85---&8,
when each S; is simple and
(20) S:i =D; X M..

As previously (cf. Lemma 2) we may set M; = (e},), p, ¢ = 1,2, - -+ , n;, where
e, , form a set of supplementary primitive idempotent elements and E e, = L.
P
If B is any invariant subalgebra, then B = Z Be;, and Be; , is a right semi-
t, P

invariant subalgebra; if B is minimal, we have already seen that it has the form
Bu where u is a primitive idempotent element, and therefore we have B =
Be}, = S}, forsomeiand p. If set B;, = Sie;,, then

i N i P _
B,-,,epq = S,-eppem = M,-Diepq = S,-e" = B"q.

We have therefore the following theorem.

THEOREM 7. If A is semi-simple and is given by (19), and if e}, form a complete
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set of supplementary primitive idempotent elements such that z es, = u; 1 the
p=1
identity of S, then every minimal right semi-invariant subalgebra has the form

@1) B, = Sel,.
Moreover, there is a number e} in S; such that

(22) B.ei, = B,,.

10.14 The representation of a semi-simple algebra. Let A be a linear as-
sociative algebra over F with the identity 1, and designate elements of 4 by a.
A representation of A is a set, U(a), of matrices of order n such that ¢ — U(a)
is a correspondence between the elements of A and the matrices of the set in
which the following conditions are satisfied "

(23) UQ) =1, U(@@+b) =U(a) + U®), Ulab) = U(a) U),
U(aa) = aU(a) :

for every a and b of A and every scalar ain F.,

We can now, as in chapter I, associate with the matrices U(a) a vector space R
with a given fundamental basis, and a change of basis corresponds to replacing
U(a) by PU(a)P, an equivalent representation (cf. 1.08). A subspace R, of B
is invariant under A (cf. 5.16) if every matrix U(a) carries each vector of R,
into a vector of R,. If R, > 0, we may set R = Ry, 4+ R (B, ~ R: = 0); and
since we are omly interested in the equivalence of representations, we may
suppose the basis R so chosen that

Uia) Us(a)

0 Usa)
The representation is said to be reducible in this case, and it is evident that both
Ui(a) and Uz(a) give representations of 4.

If R has no proper invariant subspace, then U(4) and R are said to be irre-
ducible. It is now clear that we may write ,

R=R +Ry+ -+ +R,

where R, = R; + --- 4 R, is the invariant subspace of least order which con-
tains R;_;, (Ro = 0), and in this case

Unta) Ugla) --+ Uula)
0  Ux(a) --- Usla)

(24) Ua) =

(25) Ua) =
" 0 0 A Uu(a)
and the representations Uj(a), + -+, U.(a) are irreducible. If in addition R.,

.+, R, are themselves invariant for some ¢, then U;;(a) = 0 (4 # j;¢,5 = 1, 2,
..., t), and we say that U(a) is decomposable.
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A particular case of fundamental importance arises when we take R to be 4
itself, that is, if z is a variable element of 4, then z’ = az corresponds to a linear
transformation in the basis of R (or 4), say

2’ = ar = U(a)(z),

and U(a) has the property given in (23) and so is a representation of 4. It is
obviously the representation of (6) and is one-to-one; it is called the regular
representation.

The invariant subspaces of A are evidently its right semi-invariant sub-

algebras B. If e, ez, - -+ , €;is a basis of B and
(26) ae; = Eai.-e,-,
then the matrices U(a) = || @;; || give a representation of A on the subspace B.

Suppose now that V(a) is a given representation, R the corresponding subspace,
and B a right semi-invariant subalgebra of A. If y is any vector of R, then the
set, of vectors of the form V(b)(y) is an invariant subspace of R, since

27 V(@)V() = V(ab) = V(ba), ba< B.

From (27) it is seen immediately that the set B’ of elements b’ in B for which.
V(@®)y = 0 forms a right semi-invariant subalgebra of B and hence, if B is
minimal, either B = 0 or B’ ='B. If B’ = 0, then V(e))y, ---, V(e )y is a
basis of the set (V(b)y) and

V(@V(edy = V(aey = Za;iV(ey.

But then the vectors of the form V(b)y give a representation of A equivalent to
that determined by B in (26).
We shall now prove the following theorem.

THEOREM 8. If the regular representation of an algebra is decomposable, then
every representalion 18 decomposable and its irreducible components are contained
in the regular representation.

Suppose that the regular representation of A is decomposable; then 4 =
B, + B; 4 --- 4 B,, where the B; are irreducible equivalent subspaces of 4,
that is, minimal semi-invariant subalgebras such that B; ~ B; = 0for j = k.
Let y1, y2, - - - , Yn be a basis of the space R of a representation of A. Since 4
has an identity, we have

R=AR =BR + B,R + --- + B.R
=B+ Bz + -+ + Bap + -+ + By

As we have seen above, if Biy; # 0, it is a subspace of R which gives a representa-
tion equivalent to that given by By; it follows that either Biyy; = 0 or it is an
invariant subspace of R.

The intersection of the invariant subspaces is also invariant so that either

(28)
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Bwy; ~ Bpy, = 0 or Byy; = B,y,; hence we may select from the spaces Byy, in
(28) a set of independent irreducible invariant subspaces determining R. This
proves Theorem 8.

Consider now a semi-simple algebra

A = Sl @ et @ Sr
where S; is a simple algebra. We may write

1=Eu‘i (i=1,---,7‘;j=1,---,n.-)
where the u;; form a complete set of supplementary primitive idempotent ele-
ments of A. Then

A= EAu;j = EB,',,‘

where B;; = Au;;is a minimal right invariant subalgebra of A. We have then
decomposed A into irreducible invariant subspaces and have proved the first
part of the following theorem.

THEOREM 9. The regular representation of a semi-simple algebra is decomposable,
and 1ts reducible components are those obtained by the use of the B;; as representation
spaces. The representations given by any pair B;j, B are equivalent while By,
By give tnequivalent representations for j # k.

For by Theorem 7 we have B;;e}, = B so that the proof of Theorem 7 with
y = e}, shows that the representation by B;; is equivalent to that by B;,. In
the representation by B;; we have

n
6; = E:u,',-—> ln",

i=1

where 1,; is an identity matrix corresponding to the identity transformation on
B;; since e; is the principal unit of B;;, But in the representation by By, we
have ¢; — 0. Evidently these representations cannot be similar.

10.15 Group algebras. If & = (g = 1, g2, -+, gw) is a finite group, the
group relation g.g; = g.; is a particular case of the associative product defined in
(2) and, when it is used in conjunction with addition, we get an associative
algebra G of which (gy, g, - - - , gm) is a basis and g, the identity.

The representation of @ as a regular permutation group

h-= (gl ga ...gm>
’ Gir @iz ** * Gim

corresponds to the representation of G as a set of matrices, the matrix k; being

hi = 2 €ipp (9:9> = 9i)-
p=1
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Since 7, = p, that is, g.g, = g, only when g; is the identity, the matrix k; has no
coordinate in the main diagonal except for ¢ = 1 in which case h; is the identity
matrix; hence

(29) tr(h) = m,  tr(h) = 0 (i # 1).

It follows from this that G is semi-simple. For if v = Zn;h; is the matrix cor-
responding to some element of the radical N, then tr(u) = 0 since u is nilpotent.
If u # 0, some coordinate, say 75, is not 0 and in A,'u, which also corresponds to
some element of N, the coefficient of &, is not 0; we may therefore assume 7, # 0
provided N = 0. But using (18) we get

0 = tr(u) = Znitr(h;) = mn;
hence the assumption that u 0 leads to a contradiction and therefore N = 0,

that is, G is semi-simple. This gives the following theorem.

TueorEM 10. A group atgeora is semi-simple. It is therefore the direct sum of
stmple algebras and, if the field of the coefficients is sufficiently extended, it is the
direct sum of simple matric algebras.

The whole of the representation theory developed in the previous section can
now be applied to groups.
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NOTES!

CHAPTER 1

The calculus of matrices was first used in 1853 by Hamilton (1, p. 559ff, 480ff) under the
name of ‘‘Linear and vector functions.” Cayley used the term matriz in 1854, but merely
for a scheme of coefficients, and not in connection with a calculus. In 1858 (2) he developed
the basic notions of the algebra of matrices without recognizing the relation of his work to
that of Hamilton; in some cases (e.g., the theory of the characteristic equation) Cayley
gave merely a verification, whereas Hamilton had already used methods in three and four
dimensions which extend immediately to any number of dimensions. The algebra of
matrices was rediscovered by Laguerre (9) in 1867, and by Frobenius (18) in 1878.

1.03 Matric units seem to have been first used by B. Peirce (17); see also Grassmann (5,
§381).

1.10 For the history of the notion of rank and nullity see Muir, Theory of . Determinants,
London 1906-1930; the most important paper is by Frobenius (290).

CuarTER 11

2.01-03 The principle of substitution given in §2.01 was understood by most of the early
writers, but was first clearly stated by Frobenius, who was also the first to use the division
transformation freely (20, p. 203).

2.04 The remainder theorem is implicit in Hamilton’s proof of the characteristic equation;
see also Frobenius (280).

2.05-12 The characteristic equation was proved by general methods for n = 3, 4 by Hamil-
ton (1, p. 567; 8, p. 484ff; cf. also 4, 6). The first general statement was given by Cayley
(2); the first general proof by Frobenius (18). See also the work of Frobenius cited below
and 9, 10, 39, 41, 56, 59. :

Hamilton, Cayley and other writers were aware that a matrix might satisfy an equation
of lower degree than n, but the theory of the reduced equation seems to be due entirely to
Frobenius (18, 140).

The theory of invariant vectors was foreshadowed by Hamilton, but the gereral case was
first handled by Grassmann (5).

© 2.10 See Sylvester (42, 44) and Taber (96) ; see also 252.

2.13 The square root of a matrix was considered by Cayley (3, 12), Frobenius (139) and
many others.

CuartEr IIT

3.01 The idea of an elementary transformation seems to be due in the main to Grassmann

(5).

! In these Notes, numbers refer to the Bibliography unless otherwise indicated.
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3.02-07 The theory of pairs of bilinear forms, which is equivalent to that of linear poly-
nomials, was first given in satisfactory form by Weierstrass (see Muth, 175) although the
importance of some of the invariants had been previously recognized by Sylvester. The
theory in its matrix form is principally due to Frobenius (18, 20).

The theory of matrices with integral elements was first investigated by Smith (see Muth,
175) but was first given in satisfactory form by Frobenius (20). The form given in the text
is essentially that of Kronecker (92).

3.04 The proof of Theorem 3 is a slight modification of that of Frobenius (20).

3.08 Invariant vectors were discussed by Hamilton (1, 8) and other writers on quaternions
and vector analysis. The earliest satisfactory account seems to be that of Grassmann (5),

CuarTER IV

The developments of this chapter are, in the main, a translation of Kronecker’s work
(see Muth, 175, p. 93ff). See also de Séguier (259).

CHAPTER V

5.03 From the point of view of matrix theory, the principal references are Schur (198),
Rados (105, 106), Stephanos (185), and Hurwitz (117). See Loewy (284, p. 138) for addi-
tional references; also Muir, Theory of Determinants, London 1906-1930.

5.09 Non-commutative determinants were first considered by Cayley (Phil. Mag. 26
(1845), 141-145); see also Joly (195) and Sylvester (43).

5.10-11 See Loewy (284, p. 149); also 176, 178, 185, 198.

5.12 The principal references are Schur (198) and Weyl (440, chap. 5).

CuaprTER VI

For general references see Loewy (284, pp. 118-137), also Muth (175), Hilton (314, chap.
6, 8) and Muir, Theory of Determinants, London 1906-1930.

6.01 The method of proving that the roots are real is essentially that of Tait (10, chap. 5);
see also 36, 60, 228, 399.

6.03 See Loewy (284, pp. 130-137), Baker (215) and Frobenius (292). See also 7, 18, 99,
113, 114, 115, 124, 135, 139, 210, 221, 273, 302, 307, 320, 371, 400, 414, 466, 476.

6.04 See Dickson (392).
6.05 See Loewy (284, pp. 128-135).

6.07 For references see Muth (175, p. 125) and Frobenius (139).

CuarTER VII

7.10-02 See Cayley (2), Frobenius (18), Bucheim (59), Taber (98, 112), and Hilton (314,
chap. 5); also 83, 86, 98, 137, 184, 197, 209, 223, 242, 250, 264, 301, 382.

7.03 See Frobenius (280).
7.05 See Frobenius (140); also 350.

7.06-07 See Sylvester (42, 44) and Taber (96); see also 252.
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CuaprTeEr VIII
8.01-03 See Sylvester (36), Bucheim (59, 69); also 134, 371.

8.02,07 See Hamilton (1, p. 545ff; 8, §316), Grassmann (5, §454), Laguerre (9). Many
writers define the exponential and trigonometric functions and consider the question of con-
vergence, e.g., 79, 80, 103, 389, 449; also in connection with differential equations, 13, 133, -
258.

8.04-05 Roots of 0 and 1 have been considered by a large number of writers; see partic-
ularly the suite of papers by Sylvester in 1882-84; also 18, 67, 76, 107, 242, 255, 264, 277, 279,
381, 411, 430, 474, 539.

8.08 See 20, 94, 246, 256, 257, 274, 303, 338, 399.

8.09-11 The absolute value of a matrix was first considered by Peano (75) in a somewhat
different form from that given here; see also 273, 348, 389, 472, 473, 494. For infinite prod-
ucts see 133, 324, 326, 389, 494.

8.12 In addition to the references already given above, see 10, 16, 18, 187, 418, 419, and also
many writers on differential equations.

CuarTER IX

The problem of thé automorphic transformation in matrices was first considered by Cay-
ley (3, 7) who, following a method used by Hermite, gave the solution for symmetric and
skew matrices; his solution was put in simpler form by Frobenius (18). Cayley failed to
impose necessary conditions in the general case which was first solved by Voss (85, 108, 162,
163). The properties of the principal elements were given by Taber (125, 134; see also 127,
149, 156, 158, 231).  Other references will be found in Loewy (284, pp. 130-137); see also 9, 19,
153, 154, 161, 167, 168, 169, 187, 229, 371.
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