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Preface

Thisbook is about matrix and linear algebra, and their applications. For many students
the tools of matrix and linear algebrawill be as fundamental in their professional work
asthetools of calculus; thusit isimportant to ensure that students appreciate the utility
and beauty of these subjects, aswell as understand the mechanics. Oneway to do soisto
show how concepts of matrix and linear algebra make concrete problems workable. To
this end, applied mathematics and mathematical modeling ought to have an important
rolein an introductory treatment of linear algebra.

One of the features of this book is that we weave significant motivating examples into
the fabric of the text. Needless to say, | hope that instructors will not omit this ma-
terial; that would be a missed opportunity for linear algebral The text has a strong
orientation towards numerical computation and applied mathematics, which means that
matrix analysis plays a central role. All three of the basic components of linear algebra
—theory, computation and applications— receive their due. The proper balance of these
components will give a diverse audience of physical science, socia science, statistics,
engineering and math students the tools they need as well as the motivation to acquire
these tools. Another feature of this text is an emphasis on linear algebra as an exper-
imental science; this emphasisis to be found in certain examples, computer exercises
and projects. Contemporary mathematical software makesanideal “lab” for mathemat-
ica experimentation. At the same time, this text is independent of specific hardware
and software platforms. Applications and ideas should play center stage, not software.

This book is designed for an introductory course in matrix and linear algebra. It is
assumed that the student has had some exposureto calculus. Here are some of its main
goals:

e To provide abalanced blend of applications, theory and computation which em-
phasizes their interdependence.

e To assist those who wish to incorporate mathematical experimentation through
computer technology into the class. Each chapter has an optional section on
computational notes and projects and computer exercises sprinkled throughout.
The student should use the locally available tools to carry out the experiments
suggested in the project and use the word processing capabilities of the com-
puter system to create small reports on his/her results. In this way they gain
experience in the use of the computer as a mathematical tool. One can aso en-
vision reports on a grander scale as mathematical “term papers.” | have made
such assignments in some of my own classes with delightful results. A few
major report topics are included in the text.

I
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e To help students to think precisely and express their thoughts clearly. Requir-
ing written reports is one vehicle for teaching good expression of mathematical
ideas. The projects given in this text provide material for such reports.

e To encourage cooperative learning. Mathematics educators are becoming in-
creasingly appreciative of this powerful mode of learning. Team projects and
reports are excellent vehicles for cooperative learning.

e To promote individual learning by providing a complete and readable text. |
hope that students will find the text worthy of being a permanent part of their
reference library, particularly for the basic linear algebra needed for the applied
mathematical sciences.

An outline of the book is as follows: Chapter 1 contains a thorough development of
Gaussian elimination and an introduction to matrix notation. It would be nice to assume
that the student is familiar with complex numbers, but experience has shown that this
material is frequently long forgotten by many. Complex numbers and the basic lan-
guage of sets are reviewed early on in Chapter 1. (The advanced part of the complex
number discussion could be deferred until it is needed in Chapter 4.) In Chapter 2, basic
properties of matrix and determinant algebra are devel oped. Specia types of matrices,
such as elementary and symmetric, are also introduced. About determinants. some in-
structors prefer not to spend too much time on them, so | have divided the treatment
into two sections, one of which is marked as optional and not used in therest of the text.
Chapter 3 begins by introducing the student to the “standard” Euclidean vector spaces,
both real and complex. These are the well springs for the more sophisticated ideas of
linear algebra. At this point the student is introduced to the general ideas of abstract
vector space, subspace and basis, but primarily in the context of the standard spaces.
Chapter 4 introduces goemetrical aspects of standard vectors spaces such as norm, dot
product and angle. Chapter 5 provides an introduction to eigenvalues and eigenvectors.
Subsequently, general norm and inner product concepts are examined in Chapter 5. Two
appendices are devoted to atable of commonly used symbols and solutions to selected
exercises.

Each chapter contains afew more “optional” topics, which are independent of the non-
optional sections. | say thisrealizing full well that one instructor’s optional is another’s
mandatory. Optional sections cover tensor products, linear operators, operator norms,
the Schur triangularization theorem and the singular value decomposition. In addition,
each chapter has an optiona section of computationa notes and projects. | have em-
ployed the convention of marking sections and subsectionsthat | consider optional with
an asterisk. Finally, at the end of each chapter is a selection of review exercises.

There is more than enough material in this book for a one semester course. Tastes vary,
so there is ample material in the text to accommodate different interests. One could
increase emphasis on any one of the theoretical, applied or computational aspects of
linear algebra by the appropriate selection of syllabus topics. The text is well suited to
a course with athree hour lecture and lab component, but the computer related material
is not mandatory. Every instructor has her/his own idea about how much time to spend
on proofs, how much on examples, which sections to skip, etc.; so the amount of mate-
rial covered will vary considerably. Instructors may mix and match any of the optional
sections according to their own interests, since these sections are largely independent
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of each other. My own opinion is that the ending sections in each chapter on computa-
tional notes and projects are partly optional. While it would be very time consuming to
cover them all, every instructor ought to use some part of this material. The unstarred
sections form the core of the book; most of this material should be covered. There are
27 unstarred sections and 12 optional sections. | hope the optional sections come in
enough flavors to please any pure, applied or computational palate.

Of course, no one shoesizefitsall, so | will suggest two examples of how one might use
this text for a three hour one semester course. Such a course will typically meet three
times aweek for fifteen weeks, for atotal of 45 classes. The material of most of the the
unstarred sections can be covered at arate of about one and one half class periods per
section. Thus, the core materia could be covered in about 40 class periods. Thisleaves
time for extra sections and and in-class exams. In atwo semester course or a semester
course of more than three hours, one could expect to cover most, if not all, of the text.

If the instructor prefers a course that emphasizes the standard Euclidean spaces, and
moves at a more leisurely pace, then the core material of the first five chapters of the
text are sufficient. This approach reducesthe number of unstarred sectionsto be covered
from 27 to 23.

In addition to the usual complement of pencil and paper exercises (with selected so-
Iutions in Appendix B), this text includes a number of computer related activities and
topics. | employ ataxonomy for these activitieswhich is asfollows. At the lowest level
are computer exercises. Just as with pencil and paper exercises, thiswork isintended to
develop basic skills. The difference is that some computing equipment (ranging from
a programmable scientific calculator to a workstation) is required to complete such ex-
ercises. At the next level are computer projects. These assignments involve ideas that
extend the standard text material, possibly some experimentation and some written ex-
position in the form of brief project papers. These are analogous to lab projectsin the
physical sciences. Finaly, at the top level are reports. These require a more detailed
exposition of ideas, considerable experimentation — possibly open ended in scope, and a
carefully written report document. Reports are comparable to “scientific term papers”.
They approximate the kind of activity that many students will be involved in through
their professiona life. | have included some of my favorite examples of all three ac-
tivities in this textbook. Exercises that require computing tools contain a statement to
that effect. Perhaps projects and reports | have included will be paradigms for instruc-
tors who wish to build their own project/report materials. In my own classes | expect
projects to be prepared with text processing software to which my students have access
in a mathematics computer |ab.

Projects and reports are well suited for team efforts. Instructors should provide back-
ground materials to help the students through local system dependent issues. For exam-
ple, studentsin my own course are assigned a computer account in the mathematics lab
and required to attend an orientation that contains specific information about the avail-
able linear algebra software. When | assign a project, | usually make available aMaple
or Mathematica notebook that amounts to a brief background lecture on the subject of
the project and contains some of the key commands students will need to carry out the
project. This helps students focus more on the mathematics of the project rather than
computer issues.
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Most of the computational computer tools that would be helpful in this course fall into
three categories and are available for many operating systems:

e Graphing calculators with built-in matrix algebra capabilities such as the HP
28 and 48, or the Tl 85 and 92. These use floating point arithmetic for system
solving and matrix arithmetic. Some do eigenvalues.

e Computer algebra systems (CAS) such as Maple, Mathematica and Macsyma.
These software products are fairly rich in linear algebra capabilities. They pre-
fer symbolic calculations and exact arithmetic, but will do floating point calcu-
lations, though some coercion may be required.

e Matrix algebra systems (MAS) such as MATLAB or Octave. These software
products are specifically designed to do matrix calculations in floating point
arithmetic, though limited symbolic capabilities are available in the basic pro-
gram. They have the most complete set of matrix commands of all categories.

Inafew cases | have included in this text some software specific information for some
projects, for the purpose of illustration. Thisis not to be construed as an endorsement
or requirement of any particular software or computer. Projects may be carried out with
different software tools and computer platforms. Each system has its own strengths. In
various semesters | have obtained excellent results with all these platforms. Students
are open to all sorts of technology in mathematics. This openness, together with the
availability of inexpensive high technology tools, is changing how and what we teach
in linear algebra.

| would like to thank my colleagues whose encouragement has hel ped me complete this
project, particularly Jamie Radcliffe, Jim Lewis, Dale Mesner and John Bakula. Special
thanks also go to Jackie Kohles for her excellent work on solutions to the exercises
and to the students in my linear algebra courses for relentlessly tracking down errors.
| would also like to thank my wife, Muriel, for an outstanding job of proofreading and
editing the text.

I’m in the process of developing alinear algebra home page of material such as project
notebooks, supplementary exercises, etc, that will be useful for instructors and students
of this course. This site can be reached through my home page at

http://ww. mat h. unl . edu/ ~t shor es/

| welcome suggestions, corrections or comments on the site or book; both are ongoing
projects. These may be sent tomeat t shor es@rat h. unl . edu.



CHAPTER 1

LINEAR SYSTEMS OF EQUATIONS

There are two central problems about which much of the theory of linear algebra re-
volves: the problem of finding all solutions to a linear system and that of finding an
eigensystem for asguare matrix. Thelatter problemwill not be encountered until Chap-
ter 4; it requires some background development and even the motivation for this prob-
lem is fairly sophisticated. By contrast the former problem is easy to understand and
motivate. As amatter of fact, simple cases of this problem are a part of the high school
agebra background of most of us. This chapter is all about these systems. We will
address the problem of when alinear system has a solution and how to solve such asys-
tem for all of its solutions. Examples of linear systems appear in nearly every scientific
discipline; we touch on afew in this chapter.

1.1. Some Examples

Here are afew elementary examples of linear systems:

ExamMPLE 1.1.1. For what values of the unknowns z and y are the following equations
satisfied?

|
ot

T+ 2y
dr+y = 6

SoLuTION. Thefirst way that we were taught to solve this problem was the geometrical
approach: every equation of theform az + by + ¢ = 0 represents the graph of a straight
line, and conversely, every line in the xy-plane is so described. Thus, each equation
above represents a line. We need only graph each of the lines, then look for the point
wheretheselinesintersect, to find the unique solution to the graph (see Figure 1.1.1). Of
course, the two equations may represent the same line, in which case there areinfinitely
many solutions, or distinct parallel lines, in which case there are no solutions. These
could be viewed as exceptional or “degenerate” cases. Normally, we expect the solution
to be unique, which it isin this example.

We also learned how to solve such an equation algebraically: in the present case we
may use either equation to solve for one variable, say x, and substitute the result into
the other equation to obtain an equation which is easily solved for y. For example,
the first equation above yields x = 5 — 2y and substitution into the second yields
4(5—-2y)+y =06,i.e, -7y = —14, sothat y = 2. Now substitute 2 for y in the first
equation and obtainthat z = 5 — 2(2) = 1. O

1
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5,,
4X+y=6
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1+ x+2y=5
B
0 1 '2 3 4 5 6

FIGURE 1.1.1. Graphical solution to Example 1.1.1.

ExampLE 1.1.2. For what values of the unknowns z, y and z are the following equa-
tions satisfied?

T+y+z = 4
20 +2y+52z = 11
dr+6y+82 = 24

SOLUTION. The geometrical approach becomes somewhat impractical as a means of
obtaining an explicit solution to our problem: graphing in three dimensions on a flat
sheet of paper doesn’t lead to very accurate answers! Nonetheless, the geometrical
point of view is useful, for it gives us an idea of what to expect without actually solving
the system of equations.

With reference to our system of three equations in three unknowns, the first fact to
take note of is that each of the three equations is an instance of the general equation
azx + by + ¢z + d = 0. Now we know from analytical geometry that the graph of this
eguation is a plane in three dimensions, and conversely every such planeis the graph of
some equation of the above form. In general, two planes will intersect in aline, though
there are exceptional cases of the two planes represented being identical or distinct
and parallel. Hence we know the geometrical shape of the solution set to the first two
eguations of our system: aplane, line or point. Similarly, aline and plane will intersect
inapoint or, inthe exceptional casethat theline and planeare parallel, their intersection
will be the line itself or the empty set. Hence, we know that the above system of three
equations has a solution set that is either empty, a single point, aline or a plane.

Which outcome occurs with our system of equations? We need the algebraic point of
view to help us calculate the solution. The matter of dealing with three equations and
three unknownsis a bit trickier than the problem of two equations and unknowns. Just
as with two equations and unknowns, the key ideais till to use one equation to solve
for one unknown. Since we have used one equation up, what remains is two equations
in the remaining unknowns. In this problem, subtract 2 times the first equation from the
second and 4 times the first equation from the third to obtain the system

3z = 3
2u+4z = 8
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4X+6y+8z2=24

FIGURE 1.1.2. Graphical solutionto Example 1.1.2.

which areeasily solvedto obtain z = 1 andy = 2. Now substituteinto thefirst equation
and obtain that x = 1. We can see that the graphical method of solution becomes
impractical for systems of more than two variables, though it still tells us about the
qualitative nature of the solution. This solution can bediscerned roughly in Figure 1.1.2.

O

Some Key Notation

Hereisaformal statement of the kind of equation that we want to study in this chapter.
This formulation gives us a means of dealing with the general problem later on.

DEFINITION 1.1.3. A linear equationin the variables x|, x>, ..., 2, iS an equation of
the form

airy +asxs + ... +apTy, = b

where the coefficients aq, a», ..., a,, and right hand side constant term b are given con-
Stants.

Of course, there are many interesting and useful nonlinear equations, such as az 2 +
br+c=0,o0rz?+y? = 1, etc. But our focusis on systemsthat consist solely of linear
equations. In fact, our next definition gives afancy way of describing the general linear
system.

DEFINITION 1.1.4. A linear systermof m equationsin the n unknowns z |, s, ..., z,
isalist of m equations of the form

a1 +a12$2+"'+(11j$]’ + - Q1pTh = bl

a21%1 + Q22X + * -+ + Q2;T; + - A2p Ty = b
(2.1.2) )

an1 + ape + -+ 4T+ i, = b

A1 %1 + Q2T + -+ Q%5+ A Tn = by
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X % XX X5 X

FIGURE 1.1.3. Discrete approximation to temperaturefunction (n =
5).

Notice how the coefficients areindexed: in theith row the coefficient of the jth variable,
x, isthe number a;;, and the right hand side of the ith equation is b;. This systematic
way of describing the system will come in handy later,when we introduce the matrix
concept.

* Examples of Modeling Problems

It is easy to get the impression that linear algebrais about the simple kinds of problems
of the preceding examples. So why develop a whole subject? Next we consider two
examples whose solutions will not be so apparent as the previous two examples. The
real point of this chapter, aswell asthat of Chapters2 and 3, isto develop algebraic and
geometrical methodologies which are powerful enough to handle problems like these.

Diffusion Processes

We consider a diffusion process arising from the flow of heat through a homogeneous
material substance. A basic physical observation to begin with is that heat is directly
proportional to temperature. In a wide range of problems this hypothesisis true, and
we shall always assume that we are modeling such a problem. Thus, we can measure
the amount of heat at a point by measuring temperature since they differ by a known
constant of proportionality. To fix ideas, suppose we have a rod of material of unit
length, say, situated on the x-axis, for 0 < z < 1. Suppose further that the rod is
laterally insulated, but has a known internal heat source that doesn’t change with time.
When sufficient time passes, the temperature of the rod at each point will settle down
to “steady state” values, dependent only on position z. Say the heat sourceis described
by afunction f(z), 0 < 2 < 1,which gives the additional temperature contribution per
unit length per unit time due to the heat source at the point z. Also suppose that the left
and right ends of therod are held at fixed at temperaturesy o and ¥ .

How can we model a steady state? |magine that the continuous rod of uniform material

is divided up into afinite number of equally spaced points, called nodes, namely = ¢ =
0,z1,...,tp+1 = 1 and that all the heat is concentrated at these points. Assume the
nodes are a distance h apart. Since spacing is equal, the relation between h and n is
h =1/(n + 1). Let the temperature function be y(z) and let y; = y(z;). Approximate
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y(z) in between nodes by connecting adjacent points (x ;, y;) with aline segment. (See
Figure 1.1.3 for a graph of the resulting approximation to y(x).) We know that at the
end nodes the temperature is specified: y(zo) = yo and y(z,+1) = y1. By examining
the process at each interior node, we can obtain the following linear equation for each
interior nodeindexi = 1,2, ... ,n involving aconstant & called the conductivity of the
material. A derivation of these equations follows this example.

s s — s
k Yi 1+h2yz Yi+1 — f(x)

or
h2
(1.1.2) —Yi-1 +2Yi — Yit1 = ?f(fﬂi)

ExAaMPLE 1.1.5. Supposewe havearod of materia of conductivity ¥ = 1 and situated
on the x-axis, for 0 < x < 1. Suppose further that the rod is laterally insulated, but
has a known internal heat source and that both the left and right ends of the rod are
held at 0 degrees Fahrenheit. What are the steady state equations approximately for this
problem?

SoLuTION. Follow the notation of the discussion preceding this example. Notice that
in this case z; = ih. Remember that yo and y,,+1 ae known to be 0, so the terms y,
and y,,+ disappear. Thuswe have from Equation 1.1.2 that there are n equationsin the
unknownsy;, i =1,2,...,n.

It is reasonable to expect that the smaller h is, the more accurately y; will approximate
y(z;). Thisisindeed the case. But consider what we are confronted with when we take
n=>5,ie,h=1/(5+1) =1/6,whichishardly asmall value of h. The system of
five equations in five unknowns becomes

2y1 —y2 = f(1/6)/36
—y1 +2y2  —ys3 = f(2/6)/36
-y +2ys —ua = f(3/6)/36

-y3 +2ys -—ys = [f(4/6)/36

—ys  +2ys = [f(5/6)/36

This problem is already about as large as we would want to work by hand. The basic
ideas of solving systems like this are the same as in Example 1.1.1 and 1.1.2, though
for very small h, say h = .01, clearly we would like some help from a computer or
calculator.

*Derivation of the diffusion equationdiVe follow the notation that has aready
been developed, except that the values y; will refer to quantity of heat rather than tem-
perature (this will yield equations for temperature, since heat is a constant times tem-
perature). What should happen at an interior node? The explanation requires one more
experimentally observed law known as Fourier’s heat law.It says that the flow of heat
per unit length from one point to another is proportional to the rate of change in tem-
perature with respect to distance and moves from higher temperature to lower. The
constant of proportionality & is known as the conductivityof the material. In addition,
we interpret the heat created at node ; to be i f (x;), since f measures heat created per
unit length. Count flow towards the right as positive. Thus, at node z ; the net flow per



6 1. LINEAR SYSTEMS OF EQUATIONS

unit length from the left node and to the right node are given by

Left flow = k%

Yi — Yi+1
kE—2 T
h
Thus, in order to balance heat flowing through the ith node with heat created per unit
length at this node, we should have

Right flow =

Leftflow + Rightflow = &2 _hy"*l L _hyi“ = hf(z:)

In other words,

i Wi — s
i Yi 1+h22h Yi+1 — f(x)

or
h2
(2.1.3) —Yi-1 +2Y; — Yit1 = ?f(xz)

Input-Output models

We are going to set up a simple model of an economy consisting of three sectors that
supply each other and consumers. Suppose the three sectors are (E)nergy, (M)aterials
and (S)ervices and suppose that the demands of a sector are proportional to its output.
This is reasonable; if, for example, the materials sector doubled its output, one would
expect its needs for energy, material and servicesto likewise double. Now let z, y, z be
the total outputs of the sectors E,M and S respectively. We require that the economy
be closedin the sense that everything produced in the economy is consumed by the
economy. Thus, the total output of the sector E should equal the amounts consumed by
all the sectors and the consumers.

ExampLE 1.1.6. Giventhefollowing table of demand constants of proportionality and
consumer (D)emand (afixed quantity) for the output of each service, expressthe closed
property of the system as a system of equations.

Consumed by |
E | M S |D
E|[02]03|01]|2
Producedby |M |01 ({03 (02| 1
S|104|02|01)3

SoLUTION. Consider how we balance the total output and demands for energy. The
total output is 2 units. The demands from the three sectors E,M and S are, according to
thetable data, 0.2z, 0.3y and 0.1z, respectively. Further, consumers demand 2 units of
energy. In equation form

z=02z+03y+0.12+ 2



1.1. SOME EXAMPLES 7

Likewise we can balance the input/output of the sectors M and S to arrive at a system
of three equationsin three unknowns.

z=02z+03y+0.12 42
y=01x+03y+02z+1
z=04x+02y+0.124+3

The questions that interest economists are whether or not this system has solutions, and
if so, what they are. O

Note: In some of the text exercises you will find referencesto “your computer system.”

This may be acalculator that is required for the course or a computer system for which
you are given an account. Thistextbook does not depend on any particular system, but
certain exercises require a computational device. The abbreviation“MAS” standsfor a
matrix algebra system like MATLAB or Octave. Also, the shorthand “CAS’ stands for
acomputer algebra system like Maple, Mathematicaor MathCad. A few of the projects
are too large for most calculators and will requirea CAS or MAS.

1.1 Exercises

1. Solvethefollowing systems algebraically.

. rT—y+2z = 6 r—y = 1

@ Tt = 1 b 2w-2 = 3 © 22—y = 3
Jr—y = —4

y+2z = 0 r+y = 3

2. Determineif the following systems of equations are linear or not. If so, put themin
standard format.

r+2 = y+z zy+2 = 1 z+2 = 1
@ 3r—y = 4 () 2r -6 =y © r+3 = y?

3. Expressthe following systems of equationsin the notation of the definition of linear
systems by specifying the numbersm, n,a;; and b;.

T — 23 +x3 = 2 o — 3 1 T —To = 1
€ T =1 (b) . 2 . (© 2z1—22 = 3
—x1 + 3 =1 2 To+x1 = 3

4. Write out the linear system that results from Example 1.1.5if wetaken = 6.

5. Suppose that in the input-output model of Example 1.1.6 we ignore the Materials
sector input and output, so that there results a system of two equationsin two unknowns
x and z. Write out these equations and find a solution for them.

6. Hereisan exampleof an economic system where everything produced by the sectors
of the system is consumed by those sectors. An administrative unit has four divisions
serving the internal needs of the unit, labelled (A)ccounting, (M)aintenance, (S)upplies
and (T)raining. Each unit producesthe“commaodity” its name suggests, and chargesthe
other divisionsfor its services. The fraction of commodities consumed by each division
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is given by the following table, also called an “input-output matrix”.

Produced by
A|lM | S|T
A|02/01/04|04
Consumedby M ({0304 |02 (0.1
S[{03[04]02(03
T|02|01[02]|02

One wants to know what price should each division charge for its commodity so that
each division earns exactly as much as it spends? Such a pricing scheme is called
an equilibrium price structurgit assures that no division will earn too little to do its
job. Let x, y, z and w be the price per unit commodity charged by A, M, Sand T,
respectively. The requirement of expendituresequaling earningsfor each division result
in asystem of four equations. Find these equations.

7. A polynomid y = a + bz + cx? isrequired to interpolate a function f(z) at z =
1,2,3 where f(1) = 1, f(2) = 1 and f(3) = 2. Express these three conditions as a
linear system of three equationsin the unknownsa, b, ¢

8. Useyour calculator, CAS or MASto solve the system of Example 1.1.5 with known
conductivity ¥ = 1 and internal heat source f(z) = z. Then graph the approximate
solution by connecting the nodes (x ;, y;) asin Figure 1.1.3.

9. Supposethat in Example 1.1.6 the Services sector consumesall of its output. Modify
the equations of the exampleaccordingly and use your calculator, CAS or MASto solve
the system. Comment on your solution.

10. Useyour calculator, CAS or MAS to solve the system of Example 1.1.6.

11. The topology of a certain network is indicated by the following graph, where five
vertices (labelled v;) represent locations of hardware units that receive and transmit
data along connection edges (labelled e ;) to other units in the direction of the arrows.
Suppose the system isin a steady state and that the data flow along each edge e ; is the
non-negative quantity « ;. The single law that these flows must obey is this: net flow in
equals net flow out at each of the five vertices (like Kirchoff'slaw in electrical circuits).

Write out a system of linear equationsthat the variablesx |, x2, 3, x4, x5 Must satisfy.

Vl e.l. V2
2 §
% S ez
y
V4 \V/
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1.2. Notations and a Review of Numbers

The Language of Sets

The language of sets pervades al of mathematics. It provided a convenient shorthand
for expressing mathematical statements. Loosely speaking, a set can be defined as a
collection of objects, called the membersof the set. This definition will suffice for
us. We use some shorthand to indicate certain relationshi ps between sets and elements.
Usually, sets will be designated by upper case letters such as A, B, etc., and elements
will be designated by lower case letterssuch as a, b, etc. Asusual, aset A isasubsebf
the set B if every element of A isan element of B, and a propersubset if it is a subset
not equal to B. Two sets A and B are said to be equalif they have exactly the same
elements. Some shorthand:

() denotes the empty set, i.e., the set with no members.
a € A means*“a isamember of theset A.”
A = B means“theset A isequa totheset B.”
A C B means” A isasubset of B.”
A C B means“ A isaproper subset of B”

There are two ways in which we may prescribe a set: we may list its elements, such
as in the definition A = {0, 1,2, 3} or specify them by rule such as in the definition
A={x| zisaninteger and 0 < z < 3}. (Read thisas “ A is the set of & such that =
isaninteger and 0 < z < 3.”) With this notation we can give formal definitions of set
intersections and unions:

DEFINITION 1.2.1. Let A and B besets. Then the intersectionof A and B is defined
tobetheset ANB = {z | z € Aandz € B}. Theunionof A and B istheset AUB =
{z | x € Aorz € B}. Thedifferenceof A and Bistheset A— B={z| 2 € Aand

z € B}.
ExAmPLE 1.2.2. Let A ={0,1,3} and B = {0,1,2,4}. Then

AU = A
AND = 0
AuB = {0,1,2,3,4}
ANB = {0,1}
A-B = {3}

About Numbers

One could spend a full course fully developing the properties of number systems. We
won't do that, of course, but we will review some of the basic sets of numbers, and
assume the reader is familiar with properties of numbers we have not mentioned here.
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At the start of it al are the kind of numbers that every child knows something about —
the natural or countingnumbers. Thisisthe set

N ={1,2,3,...}

One could view most subsequent expansions of the concept of number as a matter of
rising to the challenge of solving equations. For example, we cannot solve the equation

r+m=mn, mnéeN

for the unknown z without introducing subtraction and extending the notion of natural
number that of integer. The set of integers is denoted by

Z ={0,£1,%2,...}.
Next, we cannot solve the equation
ar =b, a,b€Z

for the unknown z with introducing division and extending the notion of integer to that
of rational number The set of rationals is denoted by

Q ={a/b| a,b € Z andb # 0}.

Rational number arithmetic has some characteristics that distinguish it from integer
arithmetic. The main difference is that nonzero rational numbers have multiplicative
inverses (the multiplicative inverse of a/b is b/a). Such a number system is called a
field of numbers. In anutshell, afield of numberss a system of objects, called numbers,
together with operations of addition, subtraction, multiplication and division that satisfy
the usua arithmetic laws; in particular, it must be possible to subtract any number from
any other and divide any number by a nonzero number to obtain another such number.
The associative, commutative, identity and inverse laws must hold for each of addition
and multiplication; and the distributive law must hold for multiplication over addition.
The rationals form a field of numbers; the integers don’t since division by nonzero
integersis not always possible if we restrict our numbersto integers.

The jump from rational to real numbers cannot be entirely explained by algebra, al-
though algebra offers some insight as to why the number system still needs to be ex-
tended. An equation like

z2 =2

does not have a rational solution, since v/2 isirrational. (Story has it that thisis lethal
knowledge, in that followers of a Pythagorean cult claim that the gods threw overboard
a ship one of their followers who was unfortunate enough to discover the fact.) There
is aso the problem of numberslike 7 and Euler’s constant e which do not even satisfy
any polynomial equation. The heart of the problem s that if we only consider rationals
on a number line, there are many “holes” which are filled by numbers like 7 or /2.
Filling in these holes leads us to the set R of real numbers, which are in one-to-one
correspondence with the points on a number line. We won't give an exact definition
of the set of real numbers. Recall that every real number admits a (possibly infinite)
decimal representation, suchas1/3 = 0.333...or 7 = 3.14159. .. . This providesus
with aloose definition: real numbers are numbers that can be expressed by a decimal
representation, i.e., limits of finite decimal expansions.
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z=a+hi=re®

b

|
|
|
|
|
|
|
|
|
|
|
1

Y

FIGURE 1.2.1. Standard and polar coordinatesin the complex plane.

Thereis one more problem to overcome. How do we solve a system like
2 +1=0

over the reals? The answer iswe can't: if z isreal, thenz? > 0,022 +1 > 0. We
need to extend our number system one moretime, and thisleads to the set C of complex
numbers. We define i to be a quantity such that s2 = —1 and

C ={a+bi|abeR}.

If the complex number z = a + bi is given, then we say that the form a + bi isthe
standard formof z. In this case thereal part of z isR(z) = a and theimaginary part is
defined as §(z) = b. (Notice that the imaginary part of z isareal number: it isthe rea
coefficient of 4.) Two complex numbers are equal precisely when they have the same
real parts and the same imaginary parts. All of this could be put on a more formal basis
by initially defining complex numbers to be ordered pairs of real numbers. We will not
do so, but thefact that complex numbers behave like ordered pairs of real numbersleads
to an important geometrical insight: complex numbers can be identified with pointsin
the plane. Instead of an x and y axis, one lays out areal and imaginaryaxis (which is
still usually labeled with 2 and y) and plots complex numbersa + bi asin Figure 1.2.1.
This resultsin the so-called complex plane.

Arithmetic in C is carried out by using the usual laws of arithmetic for R and the alge-
braicidentity i2 = —1 to reducetheresult to standard form. Thuswe havethefollowing
laws of complex arithmetic.

(a+bi) + (c+ di)
(a+ bi) - (c+di)

(a+c) + (b+ d)i,
(ac — bd) + (ad + be)i

In particular, notice that complex addition is exactly like the vector addition of plane
vectors. Complex multiplication does not admit such asimple interpretation.

EXAMPLE 1.2.3. Letz; = 2 + 4i and zo = 1 — 3i. Compute z; — 3z5.
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SOLUTION. We have that
21 =329 =(2+4i) —3(1-3i) =2+4i —3+9i = —1+13i
O

There are several more useful ideas about complex numbers that we will need. The
lengthor absolute valuef a complex number z = a + bi is defined as the nonnegative
rea number |z| = va? + b2, which is exactly the length of z viewed as a plane vector.
The complex conjugatef z is defined as z = a — bi. Some easily checked and very
useful facts about absolute value and complex conjugation:

|z1ze| = |a1][2e]
|21 + 22| < a1 + |22

| 2|2 = 2Z
Z1+22 = Z1+7Z2

Z122 = Z1 722

EXAMPLE 1.2.4. Let z; = 2 + 4i and 25 = 1 — 3i. Verify for this z; and z- that
|z122| = [21] |22]-

SOLUTION. First calculatethat z1 2o = (2 + 44)(1 — 3i) = (2+ 12) + (4 — 6)i SO
that |21 20| = /142 + (=2)2 = /200, while |2;| = V22 +42 = /20 and |23| =
\/ 12 4+ (—3) = \/ﬁ It follows that |2’12’2| = \/m\/Q_ = |Zl| |2’2| O

ExampPLE 1.2.5. Verify that the product of conjugatesis the conjugate of the product.

SOLUTION. Thisisjust the last fact in the preceding list. Let 2y = x; + iy; and
zy = Xy + iyo bein standard form, sothat z; = 2y — iy and Zo = x5 — iys. We
calculate

2122 = (T122 — y1y2) +i(T1y2 + 241)
so that

Z122 = (x122 — y1y2) — i(T1y2 + 2Y1)-
Also,

Z1Z2 = (1 — iy1) (2 — iy2) = (2172 — Y1y2) + (—i(T1y2 — T201) = Z122.
([l

The complex number i solvesthe equation 22 + 1 = 0 (no surprise here: it was invented
expressly for that purpose). The big surprise is that once we have the complex numbers
in hand, we have a number system so compl ete that we can solve any polynomia equa
tionin it. We won't offer a proof of this fact — it's very nontrivial. Suffice it to say

that nineteenth century mathematicians considered this fact so fundamental that they
dubbed it the “Fundamental Theorem of Algebra,” aterminology we adopt.

THEOREM 1.2.6. Let p(z) = apz™ + an_12""* + -+ + a1z + ag be anon-constant ~ Fundamental
polynomial in the variable with complex coefficients, . . . , a,,. Then the polynomial Theorem of
equationp(z) = 0 has a solution in the fiel@ of complex numbers. Algebra
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Note that the Fundamental Theorem doesn't tell us how to find aroot of a polynomial
—only that it can be done. As a matter of fact, there are no general formulas for the
roots of a polynomial of degree greater than four, which means that we have to resort to
numerical approximationsin most cases.

In vector space theory the numbersin use are sometimes called scalars and we will use
this term. Unless otherwise stated or suggested by the presence of 4, the field of scalars
inwhich we do arithmetic is assumed to bethefield of real numbers. However, we shall
see later when we study eigensystems, that even if we are only interested in real scalars,
complex numbers have away of turning up quite naturally.

Let's do afew more examples of complex number manipulation.

ExAMPLE 1.2.7. Solvethelinear equation (1—2i)z = (2+41) for thecomplex variable
z. Also compute the complex conjugate and absol ute value of the solution.

SoLUTION. Thesolution requiresthat we put the complex number z = (2+444) /(1—21)
in standard form. Proceed as follows: multiply both numerator and denominator by
(1 —24) =1+ 2i to obtain that

Z_2+4i_(2+4i)(1+2i)_2—8+(4+4)i_—_6+§i
T 1-2i 0 (1-2i)(1+2) 1+4 5 5
Next we see that
7=2045i=-3.5
5 5 5 5
and
1
|z|:‘—(—6+8i) = —|(—6 + 8i)|
= V(=62 +8=— =2

Practical Complex Arithmetic

We conclude this section with a discussion of the more advanced aspects of complex
arithmetic. This material will not be needed until Chapter 4. Recall from basic algebra
the Roots Theorem: the linear polynomial z — a is a factor of a polynomia f(z) =
ap + a1z + - --a,x™ if and only if a isaroot of the polynomial, i.e., f(a) = 0. If we
team this fact up with the Fundamental Theorem of Algebra, we see an interesting fact
about factoring polynomials over C: every polynomial can be completely factored into
aproduct of linear polynomials of the form z — a times a constant. The numbers a that
occur are exactly therootsof f(z). Of course, these roots could be repeated roots, asin
the case of f(z) = 322 — 62 + 3 = 3(z — 1)2. But how can we use the Fundamental
Theorem of Algebrain apractical way to find the roots of a polynomia? Unfortunately,
the usua proofs of Fundamental Theorem of Algebra don’t offer a clue because they
are non-constructivg .e., they prove that solutions must exist, but do not show how to
explicitly construct such a solution. Usually, we have to resort to numerical methods
to get approximate solutions, such as the Newton’s method used in calculus. For now,
we will settle on afew ad hocmethods for solving some important special cases. First
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degree equations offer little difficulty: the solutionto ax = bisxz = b/a, asusual. The
one detail to attend to: what complex number is represented by the expressionb/a ? We
saw how to handlethis by thetrick of “rationalizing” the denominator in Example 1.2.7.

Quadratic equations are also simple enough: use the quadratic formula, which saysthat
the solutions to

az’ +bz+ec=0

aregiven by
—b+ Vb? — dac
1=
2a

Thereis onelittle catch: what does the square root of a complex number mean? What
we are really asking is this: how do we solve the equation z2 = d for z, where d isa
complex number? Let's try for alittle more: how do we solve z™ = d for al possible
solutions z, where d is a given complex number? In a few cases, such an equation is
quite easy to solve. We know, for example, that z = +¢ are solutionsto 22 = —1, S0
these are all the solutions. Similarly, one can check by handthat +1, +i areall solutions
to z* = 1. Consequently, z* — 1 = (2 — 1)(2 + 1)(z — i)(z + i). Roots of the equation
z™ = 1 are sometimes called the nth roots of unity. Thus the 4th roots of unity are £1
and %i. But what about something like 23 = 1 + i?

The key to answering this question is another form of acomplex number z = a + bi. In
reference to Figure 1.1.3 we can write z = r(cos @ + isin8) = re'?, where § isared
number,  is anon-negativereal and e is definedby the following expression:

DEFINITION 1.2.8. ¢ = cos@ + isin#.

Noticethat |e??| = cos®> + sin? § = 1, sothat |re??| = |r||e*’| = r, provided r is non-
negative. The expression re* with r = |z| and the angle # measured counterclockwise
in radians, is called the polar formof z. The number r is just the absolute value of z.
The number 6 is sometimes called an argumentof z. It is important to notice that 6 is
not unique. If the angle 8, works for the complex number z, then so doesé = 6 + 27k,
for any integer k, since sin and cos are periodic of period 2. It follows that a complex
number may have more than one polar form. For example, i = e /2 = ¢7/2 (here
r = 1). Infact, the most general polar expression for i isi = e(7/2+2k™) ‘where k is
an arbitrary integer.

ExXAMPLE 1.2.9. Find the possible polar formsof 1 + 4.

Quadratic
Formula

Polar form
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SOLUTION. Draw apicture of the number 1 + i A
as in the adjacent figure. We see that the angle 1+ 1+i
6o = m/4 works fine as a measure of the angle
from the positive z-axis to the radial line from
the origin to z.Moreover, the absolute value of \2
zisv/1+1 = /2. Hence, a polar form for z
isz = v/2e™/*. However, we can adjust the /4

angle 6y by any multiple of 27, a full rotation, :
and get a polar form for z. So the most general
polar formfor z is z = /2ei(7/4+2k7) '\where k '
is any integer.

Y

Figure1.2.2: Formof 1 + ¢

As the notation suggests, polar forms obey the laws of exponents. A simple application
of the laws for the sine and cosine of a sum of angles shows that for angles # and ¢ we
have the identity

ei0+0) _ pif ity

By using thisformulan times, we obtainthat e*? = ()™ which can also be expressed
as DeMoivre’s Formula:

(cos@ +isin®)™ = cosnb + i sinnfd

Now for solving z" = d. First, find the general polar form of d, say d = ae(fo+2k7)
where 6, is the so-called principal anglefor d, i.e., 0 < 6y < 27, and a = |d|. Next,
write z = re??, so that the equation to be solved becomes

TneinH _ aei(90+2kﬁ) .

Taking absolute values of both sides yields that »™ = a, whence we obtain the unique
vaueof r = {/a = {/|d|. What about #? The most general form for né is

n0 = 00 —+ 2k7r
Hence we obtain that
6 2k
n n

Notice that the values of e?2¥7/™ start repeating themselves as k passes amultiple of n,
since e??™ = ¥ = 1. Therefore, one gets exactly n distinct valuesfor e, namely
0 2k
_ b 2T
n n
These points are equally spaced around the unit circle in the complex plane, starting

with the point %, Thus we have obtained . distinct solutionsto the equation 2" = d,
whered = ae'’o, namely

9 k=0,---,n—1.

Z:al/nei(Go/n—&-ka/n)’ kZO,"' ,TL—I

EXAMPLE 1.2.10. Solvetheequation z2 = 1 + i for the unknown z.
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y

12 imA
1/6_i19/12 n=2"e
2 e

21/6e i /12

21/6e i 171/12

FIGURE 1.2.3. Rootsof z3 =1 + .

SOLUTION. The solution goes as follows: we have seen that 1 + 7 hasa polar form
14 =24,
Then according to the previous formula, the three solutions to our cubic are
s = (\/5)1/361'(#/4-&-%#)/3
_ 91/6gi(1+8k)m/12 k=0,1,2.
See Figure 1.2.3 for agraph of these complex roots. O

We conclude with a little practice with square roots and the quadratic formula. In re-
gards to square roots, notice that the expression w = +/d is ambiguous. With a positive
real number d this meant the positive root of the equation w? = d. But when d is com-
plex (or even negative), it no longer makes sense to talk about “ positive” and “ negative”
roots of w? = d. In this case we simply interpret v/d to be one of the roots of w? = d.

EXAMPLE 1.2.11. Compute v/—4 and v/i.

SOLUTION. Observethat —4 = 4-(—1). Itisreasonableto expect the laws of exponents
to continue to hold, so we should have (—4)'/? = 4'/2 . (—1)'/2. Now we know that
i> = —1,sowe cantakei = (—1)*/? and obtain that \/—4 = (—4)'/? = 2i. Let's
check it: (2i)? = 4i% = —4.

We have to be a bit more careful with v/i. We'll just borrow the idea of the formulafor
solving 2" = d. Firgt, put i in polar formasi = 1 - ?™/2. Now raise each side to the
1/2 power to obtain

Vi = il/? = 112 (ein/2)1/2
=1-e"™/* = cos(n/4) + i sin(n/4)

(1+1).

Sl
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A quick check confirmsthat ((1 4 14)/v/2)% = 2i/2 = i. O
EXAMPLE 1.2.12. Solvetheequationz2 +z +1 = 0.

SOLUTION. According to the quadratic formula, the answer is

—1+V/12 -4 V3
A —
2

— 142
'3

EXAMPLE 1.2.13. Solvez2 + z 4+ 1 + ¢ = 0 and factor this polynomial.

SOLUTION. Thistime we obtain from the quadratic formulathat

12141 +i0)  —1£/-(3+4)
= 2 - 2
What is interesting about this problem is that we don’t know the polar angle 8 for z =
—(3 + 44). However, we know that sinf = —4/5 and cos § = —3/5. We aso have the

standard half angle formulas from trigonometry to help us:

14cosf® 1 1—cosf 4
2 = - = — in 2 = - = —
cos“0/2 = 5 5,andsm 6/2 5 z
Since 8 isin the third quadrant of the complex plane, #/2 isin the second, so
-1 2
cosf/2 = —,andsinf/2 = —
[2= 5ot =
Now noticethat | — (3 + 44)| = 5. It followsthat asquare root of —(3 + 44) isgiven by
-1 2
s=V5(—= + —=i)=—-1+2i
(\/5 \/5)

Check that s> = —(3 + 44). It follows that the two roots to our quadratic equation are
given by

-1+ (-1+2i)
- 2
Inparticular, weseethat 22 + z + 1 +i = (2 + 1 —4)(z + ). O

z =—1+4+1, —i

1.2 Exercises

1. Giventhat A = {z]z € Randz?> < 3} and B = {z|z € Zand z > —1},
enumerate the following sets:

@ANnB (b)B-—A (c)Z-B (dNUB (eRn4A
2. Put the following complex numbersinto polar form and sketch them in the complex
plane:
@ —i O)1+i (© —1+iV3() -1 ©2-2i )2 (9«
3. Caculate the following (your answers should be in standard form):

2+ . . 1+2i T
. ©E+4)B-1) @ @il=7)

@ (4 +2i) — (3—6i) (b)



18 1. LINEAR SYSTEMS OF EQUATIONS

4. Solvethe equationsfor the unknown z. Be sure to put your answer in standard form.
@@2+4+i)z=1((b)—iz=22z+5 (€)S(z) =2R(z)+1 (d)z==2
5. Find all solutionsto the equations

@22 +2+3=00)22—1=iz (C)z>—22+i=0 (d)22+4=0

6. Find the solutions to the following equations. Express them in both polar and stan-
dard form and graph them in the complex plane.

@z22=1 z>=-8 ©(z-1°=-1 dz'+22+1=0

7. Write out the values of i* in standard form for integers & = —1,0,1,2,3,4 and
deduce aformulafor i* consistent with these values.

8. Sketch in the complex plane the set of complex numbers z such that
@z+1=2 @Mz+1=|z—-1] (¢)]z—2|<1

Hint: It'seasier to work with absolute value squared.

9. Letz; =2+ 4iandzy =1 — 3i. Verify for thisz; and z, that Z1z2 = z1 2.

10. Verify that for any two complex nhumbers, the sum of the conjugatesisthe conjugate
of the sum.

11. Usethe notation of Example 1.2.5 to show that |z1 22| = |21] |22 . Hint:  Remem-
ber that if z = & + iy then |z|> = z2 + ¢2.

12. Use the definitions of exponentials along with the sum of angles formulas for
sin(6 4 ¢) and cos(# + 1)) to verify the law of addition of exponents: ¢ {(0+?%) = ¢ifgiv’.

13. Useacomputer or calculator to find all rootsto the polynomial equation z°+2z+1 =
0. How many roots should this equation have? How many of these roots can you find
with your system?

14. Show that if w isaroot of the polynomial p(z), that is, p(w) = 0, where p(z) has
real coefficients, then w is also aroot of p(z).

15. Show that 1 + 4,1 — i and 2 are roots of the polynomialp(z) = 23 — 422 + 62 — 4
and use this to factor the polynomial.

16. Show that if w isaroot of the polynomia p(z), that is, p(w) = 0, where p(z) has
real coefficients, then w is also aroot of p(z).

1.3. Gaussian Elimination: Basic Ideas

We return now to the main theme of this chapter, which is the systematic solution of
linear systems, as defined in equation 1.1.1 of Section 1.1. The principal methodology
is the method of Gaussian eliminatio@nd its variants, which we introduce by way of
afew simple examples. The idea of this process s to reduce a system of equations by
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certain legitimate and reversible algebraic operations (called “ elementary operations”)
to aform where we can easily see what the solutions to the system, if any, are. Specif-
ically, we want to get the system in a form where only the first equation involves the
first variable, only the first and second involve the next variable to be solved for, and so
forth. Then it will be simple to solve for each variable one at atime, starting with the
last equation and variable. In anutshell, thisis Gaussian elimination.

One more matter that will have an effect on our description of solutions to a linear
system is that of the number system in use. As we noted earlier, it is customary in
linear algebra to refer to numbers as “scalars.” The two basic choices of scaar fields
are the real number system or the complex number system. Unless complex numbers
occur explicitly in alinear system, we will assume that the scalarsto be used in finding
a solution come from the field of real numbers. Such will be the case for most of the
problemsin this chapter.

An Example and Some Shorthand
ExAaMPLE 1.3.1. Solvethe simple system

2¢—y = 1

(131) de+4y = 20

SOLUTION. First, let’s switch the equationsto obtain

de+4y = 20
(1.3.2 w—y = 1
Next, multiply the first equation by 1/4 to obtain
r+y = 9
(1.3.3) dw—y = 1

Now, multiply acopy of thefirst equation by —2 and add it to the second. We can do this
easily if we take care to combine like terms as we go. In particular, the resulting x term
in the new second equation will be —2z + 22 = 0, they term will be —2y — y = —3y,
and the constant term on the right hand side will be —2 - 5 + 1 = —9. Thuswe obtain
r+y = 9

Oxr—3y = -9
This completes the first phase of Gaussian elimination, which is called “forward solv-
ing.” Note that we have put the system in aform where only the first equation involves
the first variable and only the first and second involve the second variable. The second
phase of Gaussian eliminationis called “back solving”, and it workslike it sounds. Use
the last eguation to solve for the last variable, then work backwards, solving for the
remaining variables in reverse order. In our case, the second equation is used to solve
for y simply by dividing by —3 to obtain that

-9

y=—3=3

Now that we know what y is, we can use the first equation to solve for z, and we obtain

r=5—y=5—-3=2

(1.3.4)

O



20 1. LINEAR SYSTEMS OF EQUATIONS

The preceding example may seem like too much work for such a simple system. We
could easily scratch out the solution in much less space. But what if the system is
larger, say 4 equations in 4 unknowns, or more? How do we proceed then? It pays
to have a systematic strategy and notation. We also had an ulterior motive in the way
we solved this system. All of the operations we will ever need to solve alinear system
were illustrated in the preceding example: switching equations, multiplying equations
by nonzero scalars, and adding a multiple of one equation to another.

Before proceeding to another example, let’s work on the notation a bit. Take a closer
look at the system of equations (1.3.1). As long as we write numbers down systemat-
ically, there is no need to write out all the equal signs or plus signs. Isn’t every hit of
information that we require contained in the following table of numbers?

2 -1 1
4 4 20
Of course, we have to remember that the first two columns of numbers are coefficients

of x and y, respectively, and the third column consists of right hand side terms. So we
could embellish the table with afew remindersin the top row:

{g _g{ = r.h.sl.-l

[4 4 20J

With a little practice, we will find that the reminders are usually unnecessary; so we
dispense with them for the most part. We can see that rectangular tables of numbers
are very useful in representing a system of eguations. Such atable is one of the basic
objects studied in thistext. Assuch, it warrants aformal definition.

DEFINITION 1.3.2. A matrixisarectangular array of numbers. If amatrix hasm rows
and n columns, then the sizeof the matrix is said to be m x n. If the matrix is1 x n
orm x 1, it is caled avector. Finaly, the number that occurs in the ith row and jth
columnis caled the (i, j)th entryof the matrix.

The objects we have just defined are basic “quantities’ of linear algebra and matrix
analysis, along with scalar quantities. Although every vector isitself a matrix, we want
to single vectors out when they are identified as such. Therefore, we will follow a
standard typographical convention: matrices are usually designated by capital letters,
while vectors are usually designated by boldface lower case letters. In afew cases these
conventions are not followed, but the meaning of the symbols should be clear from
context.

We shall need to refer to parts of a matrix. As indicated above, the location of each
entry of amatrix is determined by the index of the row and column it occupies.

NOTATION 1.3.3. The statement “A = [a;;]” meansthat A is amatrix whose (i, j)th
entry is denoted by a;;. Generally, the size of A will be clear from context. If we want
toindicatethat A isanm x n matrix, we write

A = [aij]m,n-

Similarly, the statement “b = [b;]” meansthat b is a column vector whose ith entry is
denoted by b;, and “c = [¢;]” meansthat c is arow vector whose jth entry is denoted

Matrices and
Vectors
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by ¢;. In case the type of the vector (row or column) is not clear from context, the
default is a column vector.

Anocther term that we will use frequently is the following.

NOTATION 1.3.4. Theleading entryof arow vector is the first nonzero element of that
vector. If al entries are zero, the vector has no leading entry.

The equations of (1.3.1) have several matrices associated with them. First is the full
matrix that describes the system, which we call the augmented matrigf the system. In
our example, thisisthe 2 x 3 matrix

2 -1 1
4 4 20

Next, thereis the submatrix consisting of coefficients of the variables. Thisis called the
coefficient matriof the system, and in our caseit isthe 2 x 2 matrix

2 -1

4 4
Finally, thereisthe single column matrix of right hand side constants, which we call the
right hand side vector. In our example, itisthe1 x 2 vector

]

How can we describe the matrices of the general linear system of Equation 1.1.17? First,
thereisthem x n coefficient matrix

a1 a2 - Ay ot Qlp
@21 22 Q25 ottt G2p
A=
a1 1 (7 B ¢ 777}
L Gm1 Am2 e amj e Amn |

Notice that the way we subscripted entries of this matrix isreally very descriptive: the
first index indicates the row position of the entry and the second, the column position
of the entry. Next, thereisthe m x 1 right hand side vector of constants

by
ba
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Finally, stack this matrix and vector along side each other (we use a vertical bar below
to separate the two symbols) to obtain them x (n + 1) augmented matrix

aii a2 Q15 Qin b1
a1 G2 -+ Q25 ot A2n by
A=[A]b]=| ~ T
i1 @2 271 427} i
L Gm1 Gm2 *°* Amj *°° Omn bm ]

The Elementary Row Operations

Thereisanother matter of notation that we will find extremely handy inthe sequel. This
is related to the operations that we performed on the preceding example. Now that we
have the matrix notation we could just as well perform these operations on each row of
the augmented matrix, since a row corresponds to an equation in the origina system.
There were three types of operations used. We shall catalogue these and give them
names, so that we can document our work in solving a system of equationsin a concise
way. Here are the three elementary operations we shall use, described in terms of their
action on rows of amatrix; an entirely equivalent description appliesto the equations of
the linear system whose augmented matrix is the matrix bel ow.

e E;; : Thisis shorthand for the elementary operation of switching theith and
jth rowsof the matrix. For instance, in Example 1.3.1 we moved from Equa-
tion 1.3.1 to equation 1.3.2 by using the elementary operation E 5.

e E;(c) : Thisis shorthand for the elementary operation of multiplying theith
row by the nonzero constant For instance, we moved from Equation 1.3.2 to
(1.3.3) by using the elementary operation E'1(1/4).

e E;i(d) : Thisis shorthand for the elementary operation of addingd times the
jth row to theith row. (Read the symbols from right to left to get the right
order.) For instance, we moved from Equation 1.3.3 to Equation 1.3.4 by using
the elementary operation Eo (—2).

Now let’s put it all together. The whole forward solving phase of Example 1.3.1 could
be described concisely with the notation we have devel oped:

2 -1 1]g2[4 420
4 4 20|72 -1 1

B (1/4 [; I f]Eﬂ(—? [é L —3}

Thisisabigimprovement over our first description of the solution. Thereistill the job
of back solving, which is the second phase of Gaussian elimination. When doing hand
calculations, we're right back to writing out a bunch of extra symbols again, which is
exactly what we set out to avoid by using matrix notation.

Notation for
Elementary
Operations
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Gauss-Jordan Elimination

Here's a better way to do the second phase by hand: stick with the augmented matrix.
Starting with thelast nonzero row, convert the leading entry (this meansthefirst nonzero
entry in therow) to a1 by an elementary operation, and then use elementary operations
to convert all entries above this 1 entry to 0’s. Now work backwards, row by row, up
to the first row. At this point we can read off the solution to the system. Let’s see how
it works with Example 1.3.1. Here are the details using our shorthand for elementary
operations:

1 1 5 —5 1 1 5 1 0 2
[0 -3 —9]E2(_1/3 [0 1 3}E12(—1 {0 1 3]
All we have to do is remember the function of each column in order to read off the

answer from this last matrix. The underlying system that is represented is

l-z+0.-y = 2

O-z+1-y = 3
Thisis, of course, the answer we found earlier: =z = 2,y = 3.
The method of combining forward and back solving into elementary operations on the
augmented matrix has aname: it is called Gauss-Jordan eliminatigrand is the method

of choice for solving many linear systems. Let's see how it works on an example from
Section 1.1.

ExamMPLE 1.3.5. Solvethe following system by Gauss-Jordan elimination.

r4+y+z = 4
2r+2y+5z = 11
4z +6y +82 = 24

SOLUTION. First form the augmented matrix of the system, the 3 x 4 matrix

111 4
2 2 5 11

4 6 8 24

Now forward solve:

111 4 111 4
2 2 5 11 | Bx(=2) |0 0 3 3
[46824] [46824]
111 4 (11 1 4
Ex(—4)| 0 0 3 3|En|l0 2 48
0 2 4 8 00 3 3

Notice, by the way, that the row switch of the third step is essential. Otherwise, we
cannot use the second equation to solve for the second variable, y. Now back solve:

111 4 1 1 1 4 111 4
0 4 8 E3(1/3§ 0 4 8 | Ex3(—4)| 0 0 4
0 3 3 0 11 0 11

2
0
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1 10 3 1 10 3 1 0 01
Ei(-1)| 0 2 0 4 |Ex(1/2){ 0 1 0 2 [Epx(-1)| 0 1 0 2

0 0 11 0 0 11 0 011
At this point we can read off the solutionto thesystem: z =1, y = 2, z = 1. O

Systems with Non-Unique Solutions

Next, we consider an example that will pose a new kind of difficulty, namely, that of
infinitely many solutions. Here is some handy terminology.

NOTATION 1.3.6. An entry of a matrix used to zero out entries above or below it by
means of elementary row operationsis called a pivot

The entries that we use in Gaussian or Gauss-Jordan elimination for pivots are always
leading entries in the row which they occupy. For the sake of emphasis, in the next few
examples, we will put a circle around the pivot entries as they occur.

ExAamMpPLE 1.3.7. Solvefor thevariables z, y and z in the system

T+ y+ z = 2
2z+ 2y+ 4z = 8
z = 2

SOLUTION. Here the augmented matrix of the systemis
{ 1 11 2 '|
2 2 4 8
[ 0 0 1 2 J

Now proceed to use Gaussian elimination on the matrix.

1 1 2 1 1 2
[CDQ 2 4 8-|E21(—2;{<DO 0 2 4]
[ 0 0 1 2 J [ 0 0 1 2 J
What do we do next? Neither the second nor the third row correspond to equations that
involve the variable y. Switching second and third equations won’t help, either. Here
is the point of view that we adopt in applying Gaussian elimination to this system: the
first equation has already been “used up” and is reserved for eventually solving for .
We now restrict our attention to the “unused” second and third equations. Perform the
following operationsto do Gauss-Jordan elimination on the system.

M1 12 1 1 2

0 0 4 | B(172) 00 (1D 2
00 1 2 00 1 2
M1 12 M1 oo
E3p(—1 00 @ 5 | Ea(—1) 00 @ 2
00 00 00 00

Pivots
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How do we interpret this result? We take the point of view that the first row represents
an equationto be usedin solving for z since theleading entry of therow isin the column
of coefficientsof . By the sametoken, the second row representsan equation to be used
in solving for z, since the leading entry of that row isin the column of coefficients of z.
What about y? Noticethat the third equation represented by thismatrix issimply 0 = 0,
which carries no information. The point is that there is not enough information in the
system to solve for the variable y, even though we started with three distinct equations.
Somehow, they contained redundant information. Therefore, we take the point of view
that y is not to be solved for; it is a free variable in the sense that it can take on any
value whatsoever and yield a legitimate solution to the system. On the other hand, the
variables z and z are boundin the sense that they will be solved for in terms of constants
and free variables. The equations represented by the last matrix above are

r+y = 0
z = 2
0 = 0

Use the first equation to solve for = and the second to solve for z to obtain the general
form of a solution to the system:

r = -y
z = 2
y is free

O

In the preceding example y can take on any scalar value. For examplexz = 0, z = 2,
y = 0 isasolution to the origina system (check this). Likewise, x = —5, z = 2,
y = 5 isasolution to the system. Clearly, we have an infinite number of solutionsto the
system, thanks to the appearance of free variables. Up to this point, the linear systems
we have considered had unique solutions, so every variable was solved for, and hence
bound. Another point to note, incidentally, is that the scalar field we choose to work on
has an effect on our answer. The default is that y is alowed to take on any real value
from R. But if, for some reason, we choose to work with the complex numbers as our
scalars, then ¢y would be allowed to take on any complexvalue from C. In this case,
another solution to the system would be givenby x = -3 —i,2 = 2,y = 3 + 4, for
example.

To summarize, then, once we have completed Gauss-Jordan elimination on an aug-
mented matrix, we can immediately spot the free and bound variables of the system:
the column of a bound variable will have a pivot in it, while the column of afree vari-
able will not. Another examplewill illustrate the point.

ExXAMPLE 1.3.8. Suppose the augmented matrix of a linear system of three equations

involving variables z, y, z, w becomes, after applying suitable elementary row opera-
tions,

1 2 0 -1 2

001 30

0 0

Describe the general solution to the system.
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SoLUTION. We solve this problem by observing that the first and third columns have
pivots in them, which the second and fourth do not. The fifth column represents the
right hand side. Put our little reminder labels in the matrix and we obtain

Ty z w rhs
M2 o -1 2
o0 (@ 3 o0
00 0 0 0

Hence, x and z arebound variables, whiley and w arefree. Thetwo nontrivial equations
that are represented by this matrix are

r+2y—w = 2
z + 3w =0
Use thefirst to solve for x and the second to solve for z to obtain the general solution
T = 2-2y+w
1 = —3w
y,w are free

O

We have seen so far that a linear system may have exactly one solution or infinitely
many. Actually, thereis only one more possibility which isillustrated by the following
example.

ExAMPLE 1.3.9. Solvethelinear system

r+y = 1
20 4+y = 2
3z4+2y = 5

We extract the augmented matrix and proceed with Gauss-Jordan elimination. This
time we'll save alittle space by writing more than one elementary operation between
matrices. It is understood that they are done in order, starting with the top one. Thisis
avery efficient way of doing hand cal cul ations and minimizing the amount of rewriting
of matrices as we go.

11 1| w——71|1 11 1 11

2 1 2 g‘ﬂgigg 0 -1 0 E32(—1§ 0 -1 0
3 25 31 0 -1 2 0 0 2

Stop everything! We aren’t done with Gauss-Jordan elimination yet since we've only
done the forward solving portion. But something strange is going on here. Notice that
the third row of the last matrix above stands for the equation 0z + 0y = 2,i.e, 0 = 2.
This is impossible. What this matrix is telling us is that the origina system has no
solution, i.e,, it is inconsistent A system can be identified as inconsistent as soon as
one encounters a leading entry in the column of constant terms. For this always means
that an equation of the form 0 =nonzero constant has been formed from the system by
legitimate algebraic operations. Thus, one needs proceed no further. The system has no
solutions. O

DEFINITION 1.3.10. A system of equationsis consistentf it has at least one solution.
Otherwiseit is called inconsistent

Consistent
Systems
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Our last exampleis one involving complex numbers explicitly.

ExampPLE 1.3.11. Solvethefollowing system of equations:

x4y = 4

(-1+dz+y = -1

27

SOLUTION. The procedureisthe same, no matter what the field of scalarsis. Of course,
the arithmetic is a bit harder. Gauss-Jordan elimination yields

11
-14+: 1

Here we used the fact that
3—4i

2—1

Thus, we see that the system has unique solution

Oga=glr 1 4
—1]E21(1_Z {0 2 3—41'}
11 4 10 2+i
01 2—i]E12(_1 [o 1 2—i}
_ B4+ _10-5 _,
T e-oe+n | 5
r = 241
y = 2—1

1.3 Exercises

1. For each of the following matrices identify the size and the (7, j)th entry for all

relevant indices and j.

1

-1 0
@ 5 9 4

1
Lo

1 2

[22 0]

20| @f -2
2 2

[ oo

1

2. Exhibit the augmented matrix of each system and give its size. Then use Gaussian
elimination and backsolving to find the general solution to the systems.

@ 2r+3y
r+2y = -2

7 (b) 3z1 + 62 — 3

—2&71 — 4.272 + I3
T3

-4 ©Quz14+z2 =
3 dxy+2z2 =
xr + 2.1’2 =

1

-2
5
-7

3. Exhibit the augmented matrix of each system and give its size. Then use Gauss-
Jordan elimination to find the general solution to the systems.

@ z1+z2+txs =
2¢1 + 220 + 23+ T4 =
2.’1:1 —+ 21’2 —+ 21‘4 =

1 () T3 + 74
1 —2x1 — 4xs + 73
2 3.Z’1+6.Z’2—.Z’3+.Z’4

0 (C)x1 + x2 + 33

0
0

2x1 + 5xo + 923
r + 21‘2 + 41‘3

[y
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4. Each of the following matrices results from applying Gauss-Jordan elimination to
the augmented matrix of alinear system. In each case, write out the general solution to
the system or indicate that it is inconsistent.

100 4 100 1 100 1
@|0o012| ®|0o102]|@]|]010 2
000 0 00 1 2 000 1

5. Use any method to find the solution to each of the following systems. Here, b1, by
are constants and z 1, z» are the unknowns.
(a) T — Ty = b (b) T — T2 = b (C) ity — Ty = by
1+ 212 = by 201 — 212 = by 201 + 222 = by
6. Use Gauss-Jordan elimination to find the general solution to these systems. Show
the elementary operations you use.

2x1 + x2 + Tx3 = -1 T1+ T2 +2T3 — T4 = 2
(a) 3z + 229 — 214 = 1 (b) 201 + Ty — 214 =1
201 + 220 + 223 — 224 = 4 21 + 220 + 223 — 224 = 4

7. Exercise 6 of Section 1.1 led to the following system. Solve it and see if there
existsanontrivial solution consisting of positivenumbers. Why is thisimportant for the
problem?

8r—y—4z—4w =0
—3x+6y—22—1w=0
-3z —-4y+82—-3w=0
—2x—1y—224+8w =0

8. Apply the operationsfound in Exercise 6 in the same order to right hand side vector

b1
b= { b J .What does thistell you about the system’s consistency?

b3
9. Suppose that we want to solve the three systems with the same left hand side
(a.) T+ =1 (b) 1 +x2 =0 (C) T1+ T2 =2
1‘2+21‘3:0 1‘2+21‘3:0 1‘2+21‘3:3
200 + a3 =0 200 +x3 =0 200 +x3 = 3

Show how to do this efficiently by using only one augmented matrix consisting of the
common coefficient matrix and the three right hand sides stacked aong side each other.

10. Show that the following nonlinear systems become linear if we view the unknowns
as1/z,1/y and 1/z rather than z,y and z. Use this to find the solution sets of the
nonlinear systems. (You must also account for the possibilities that one of x,y, z is
zero.)

20 —y+3zy = 0 yz+3zz—zy = 0
@ de+2y—zy = 0 (®) yz+2xy = 0
11. Useacomputer program or calculator with linear algebra capabilities (such as De-

rive, Maple, Mathematica, Macsyma, MATLAB, TI-85, HP48, etc.) to solvethe system
of Example1.1.5withn = 8 and f(z) = =.
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12. Write out the system derived from the input-output model of page 7 and use your
computer system or calculator to solveit. Is the solution physically meaningful ?

13. Solve the linear system that was found in Exercise 11 on page 8. Does this data
network have any steady state solutions?

14. Supposethefunction f(z) isto beinterpolated at threeinterpolatingpointsz o, 1, 2
by aquadratic polynomia p(z) = a + bz + cz?, thatis, f(x;) = p(z;),i = 0,1,2. As
in Exercise 7 of Section 1.1, thisleads to a system of three linear equationsin the three
unknownsa, b, c.

(a) Write out these equations.

(b) Apply the equations of part (a) to the specific f(z) = sin(z),0 < z < 7 withz;
equal 0,7 /2, 7, and graph the resulting quadratic against f(x).

(c) Plot theerror function f(x) —p(z) and estimate thelargest value of the error function
by trial and error.

(d) Find three points 1, z2, 3 on the interval 0 < z < 7 for which the resulting
interpolating quadratic gives an error function with a smaller largest value than that
found in part (c).

15. Solve the network system of Exercise 11 and exhibit all physically meaningful
solutions.

1.4. Gaussian Elimination: General Procedure

The preceding section introduced Gaussian elimination and Gauss-Jordan elimination
at apractical level. In this section we will see why these methods work and what they
really mean in matrix terms. Then we will find conditions of a very general nature
under which alinear system has (none, one or infinitely many) solutions. A key idea
that comes out of this section is the notion of the rank of a matrix.

Equivalent Systems

Thefirst question to be considered isthis: how isit that Gaussian elimination or Gauss-
Jordan elimination gives us everysolution of the system we begin with and only so-
Iutions to that system? To see that linear systems are special, consider the following
nonlinear system of equations.

ExAaMPLE 1.4.1. Solvefor the real roots of the system

r+y = 2
Ve =y
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SOLUTION. Let's follow the Gauss-Jordan elimination philosophy of using one equa
tion to solve for one unknown. So the first equation enables us to solve for y to get
y = 2 — z. Next substitute this into the second equation to obtain \/z = 2 — z. Then
square both sidesto obtainz = (2 — x)?2, or

0=2? -5z —4=(z—1)(z—4)

Now x = 1 leadstoy = 1, which isasolution to the system. But z = 4 givesy = —2,
which is not a solution to the system since /z cannot be negative. O

What went wrong in this exampleis that the squaring step introduced extraneous solu-
tionsto the system. Why is Gaussian or Gauss-Jordan elimination safe from this kind of
difficulty? The answer lies in examining the kinds of operations we perform with these
methods. First, we need some terminology. Up to this point we have aways described
asolutionto alinear system in terms of alist of equations. For general problemsthisis
abit of anuisance. Since we are using the matrix/vector notation, we may aswell go all
the way and use it to concisely describe solutions as well. We will use column vectors
to define solutions as follows.

DEFINITION 1.4.2. A solution vectorfor the general linear system given by Equa-
tion 1.1.1 isavector

S1

52

Sn
such that the resulting equations are satisfied for these choices of the variables. The

set of all such solutions is called the solution setof the linear system, and two linear
systems are said to be equivalentf they have the same solution sets.

We will want to make frequent referenceto vectorswithout having to display theminthe
text. Of course, for row vectors (1 x n) thisis no problem. To save space in referring to
column vectors, we shall adopt the convention that a column vector will also be denoted
by atuple with the same entries.

NOTATION 1.4.3. The n-tuple (z1, %>, .. ,z,) is ashorthand for the n x 1 column
vector x with entries z1, z2, ... , Tp.

For example, we can write (1, 3, 2) in place of

1
3
2

ExAMPLE 1.4.4. Describe the solution sets of all the examples worked out in the pre-
vious section.

SOLUTION. Hereisthe solution set to Example 1.3.1. It is the singleton set

o-{[3]}- e

The solution set for Example1.3.5isS = {(1,2,1)}. (Remember that we can designate
column vectors by tuplesif we wish.)



1.4. GAUSSIAN ELIMINATION: GENERAL PROCEDURE 31

For Example 1.3.7 the solution set requires some fancier set notation, since it is an
infinite set. Hereitis:

| ]
S = yilyeRy ={(-v,9,2) | yeR}

| 2]

Example 1.3.9 was an inconsistent system, so had no solutions. Hence its solution set
isS =0.

Finally, thesolution set for Example 1.3.11isthesingletonset S = {(2+i,2—4)}. O

A key question about Gaussian elimination and equivalent systems. what happensto a
system if we change it by performing one elementary row operation? After all, Gauss-
ian and Gauss-Jordan elimination amount to a sequence of elementary row operations
applied to the augmented matrix of agiven linear system. The answer: nothing happens
to the solution set!

THEOREM 1.4.5. Suppose a linear system has augmented matrtipon which an ele-
mentary row operation is applied to yield a new augmented méatroorresponding to

a new linear system. Then these two linear systems are equivalent, i.e., have the same
solution set.

Proor. If we replacethe variablesin the system corresponding to A by the values
of a solution, the resulting equations will be satisfied. Now perform the elementary
operation in question on this system of equations to obtain that the equations for the
system corresponding to the augmented matrix B are also satisfied. Thus, every solu-
tion to the old system is also a solution to the new system resulting from performing an
elementary operation. It is sufficient for us to show that the old system can be obtained
from the new one by another elementary operation. In other words, we need to show
that the effect of any elementary operation can be undone by another elementary oper-
ation. Thiswill show that every solution to the new system is aso a solution to the old
system. If E represents an elementary operation, then the operation that undoesit could
reasonably be designated as £ !, since the effect of the inverse operation is rather like
cancelling a number by multiplying by its inverse. Let us examine each elementary
operationin turn.

e E;; : The elementary operation of switching the ith and jth rows of the ma-
trix. Notice that the effect of this operation is undone by performing the same
operation, E;;, again. This switches the rows back. Symbolically we write

E ' =Ey.
° Eij(c) : The elementary operation of multiplying the ith row by the nonzero
Inverse constant c. This elementary operation is undone by performing the elementary
Elementary operation E;(1/c); in other words, by dividing the ith row by the nonzero con-
Operations stant c. We write E;(¢)~! = E;(1/c¢).

e E;;(d) : The elementary operation of adding d times the jth row to the ith row.
This operation is undone by subtracting d times the jth row to the ith row. We
write E” (d)71 = Eij (—d)

Thus, in @l cases the effects of an elementary operation can be undone by applying
another elementary operation of the same type, which iswhat we wanted to show. [
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Theinverse notation we used here doesn’t do much for usyet. In Chapter 2 this notation
will take on an entirely new and richer meaning.

The Reduced Row Echelon Form

Theorem 1.4.5 tells us that the methods of Gaussian or Gauss-Jordan elimination do
not alter the solution set we are interested in finding. Our next objectiveis to describe
the end result of these methods in a precise way. That is, we want to give a careful
definition of the form of the matrix that these methods lead us to, starting with the
augmented matrix of the original system. Recall that the leading entryof arow is the
first nonzero entry of that row. (So arow of zeros has no leading entry.)

DEFINITION 1.4.6. A matrix R issaid to bein reduced row fornif:

(1) Thenonzerorowsof R precede the zero rows.
(2) The column numbers of the leading entries of the nonzero rows, say rows
1,2, ...,r, form an increasing sequence of numbersc; < cs < -+ < ¢

Thematrix R said to bein reduced row echelon forif, in addition to the above:

(3) Eachleadingentryisal.
(4) Each leading entry has only zeros aboveit.

ExAMPLE 1.4.7. Consider the following matrices (whose leading entries are enclosed
inacircle). Which arein reduced row form? reduced row echelon form?

o [ 6 <b>®l<?3<§>l Jlox

2 0 0 0
NO) ®@ | o o (O

0 0 o (O o |
SoLuTIoN. Checking through (1)-(2), we see that (a), (b) and (d) fulfill al the con-
ditions for reduced row matrices. But (c) fails, since a zero row precedes the nonzero
ones; matrix (e) fails to be reduced row form because the column numbers of the lead-
ing entries do not form an increasing sequence. Matrices (a) and (b) don't satisfy (3),
so matrix (d) isthe only one that satisfies (3)-(4). Hence, it is the only matrix in the list
in reduced row echelon form. O

(d)

We can now describe the goal of Gaussian elimination as follows: use elementary row
operations to reduce the augmented matrix of a linear system to reduced row form;
then back solve the resulting system. On the other hand, the goal of Gauss-Jordan
elimination is to use elementary operations to reduce the augmented matrix of alinear
system to reduced row echelon form. From this form one can read off the solution(s) to
the system.

Is it always possible to reduce a matrix to a reduced row form or row echelon form?
If so, how many? These are important questions because, when we take the matrix
in question to be the augmented matrix of a linear system, what we are really asking
becomes. does Gaussian elimination alwayswork on alinear system? If so, do they lead
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us to answers that have the same form? Notice how the last question was phrased. We
know that the solution set of alinear system is unaffected by elementary row operations.
Therefore, the solution sets we obtain will always be the same with either method, as
sets But couldn’t the form change? For instance, in Example 1.3.7 we obtained aform
for the genera solution that involved one free variable, y, and two bound variables x
and z. Isit possible that by a different sequence of elementary operationswe could have
reduced to a form where there were two free variables and only one bound variable?
This would be arather different form, even though it might lead to the same solution
Set.

Certainly, matrices can be transformed by elementary row operations to different re-
duced row forms, as the following simple exampl e shows:

1 2 4 1 0 ) 10 )
A‘{o 2 -1 }Em(_l [0 2 —1]E2(1/2 {o 1 —1/2]
Every matrix of this exampleis already in reduced row form. The last matrix isalso in
reduced row echelon form. Yet al three of these matrices can be obtained from each
other by elementary row operations. It is significant that only one of the three matrices
is in reduced row echelon form. As a matter of fact, any matrix can be reduced by
elementary row operationsto one and only oneduced row echelon form, whichwe can
call thereduced row echelon form of the given matrix. The example above shows that
10 5
01 —1/2 } '
Our assertions are justified by the following fundamental theorem about matrices.

the matrix A has as its reduced row echelon form the matrix £ =

Uniqueness of THEOREM 1.4.8. Every matrix can be reduced by a sequence of elementary row oper-

Reduced Row ations to one and only one reduced row echelon form.

Echelon Form

PROOF. First we show that every m x n matrix A can be reduced to some reduced

row echelon form. Here is the algorithm we have been using: given that the first s
columnsof A arein reduced row echelon form with r nonzero rowsand that » < m and
s < n, find the smallest column number j suchthat a;; # 0andi > r, j > s. If noneis
found, A isinreduced row echelon form. Otherwise, interchangerowsi and r + 1, then
use elementary row operations to convert a4 ; to 1, and to zero out the entries above
and below this one. Now set s = j and increment » by one. Continue this procedure
until » = m or s = n. Thismust occur at some point since both » and s increase with
each step, and when it occurs, the resulting matrix is in reduced row echelon form.

Next, we prove uniqueness. Suppose that some matrix could be reduced to two distinct
reduced row echelon forms. We show thisisimpossible. If it were possible, we could
find an example m x n matrix A with the fewest possible columnsn; that is, thetheorem
istrue for every matrix with fewer columns. Thenn > 1, since a single column matrix
can be reduced to only one reduced row echelon form, namely either the 0 column or a
column with first entry 1 and the other entries 0. Now A can be reduced to two reduced
row echelon forms, say R; and R., with R; # R». Write A = [A | b] so that we can
think of A as the augmented matrix of alinear system (1.1.1). Now for i = 1,2 write
exch R; as R; = [L; | b;], whereb; isthelast column of them x n matrix R;, and L;
isthem x (n — 1) matrix formed from thefirst n — 1 columnsof R;. Each L; satisfies
the definition of reduced row echelon form, since each R ; is in reduced row echelon
form. Also, each L; results from performing elementary row operations on the matrix
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A, which hasonly n — 1 columns. By the minimum columns hypothesis, we have that
Ly = Ls. There are two possibilities to consider.

Case 1. The last column b; of either R; has a leading entry in it. Then the system
of equations represented by A is inconsistent. It follows that both columns b; have a
leading entry in them, which must be a1 in the first row whose portion in L ; consists
of zeros, and the entries above and below this leading entry must be 0. Since L = Lo,
it followsthat b; = bo, andthus R, = R», acontradiction. So this case can't occur.

Case 2: Each b; has no leading entry in it. Then the system of equations represented by
A is consistent. Both augmented matrices have the same basic and free variables since
Ly = L». Hence we obtain the same solution with either augmented matrix by setting
the free variables of the system equal to 0. When we do so, the bound variables are
uniquely determined: the first equation says that the first bound variable equals the first
entry inthe right hand side vector, the second says that the second bound variable equals
the second entry in the right hand side vector, and so forth. Whether weuse R 1 or R to
solve the system, we obtain the same result, since we can manipulate one such solution
into the other by elementary row operations. Therefore, b; = b, and thus Ry = R,
a contradiction again. Hence, there can be no counterexample to the theorem, which
compl etes the proof. O

The following consequence of the preceding theorem is a fact that we will find hel pful
in Chapter 2.

COROLLARY 1.4.9. Let the matrixB be obtained from the matrid by performing a
sequence of elementary row operations4nThenB and A have the same reduced
row echelon form.

PrRoOF. We can obtain the reduced row echelon form of B in the following man-
ner: first perform the elementary operations on B that undo the ones originally per-
formed on A to get B. The matrix A results from these operations. Now perform
whatever elementary row operations are needed to reduce A to its reduced row eche-
lon form. Since B can be reduced to one and only one reduced row echelon form, the
reduced row echelonformsof A and B coincide, which iswhat wewanted to show. [

Rank and Nullity of a Matrix

Now that we have Theorem 1.4.8 in hand, we can introduce the notion of rank of a
matrix. Since A can be reduced to one and only one reduced row echelon form by
Theorem 1.4.8, we see that the following definition is unambiguous.

DEFINITION 1.4.10. The rank of a matrix A is the number of nonzero rows of the
reduced row echelon form of A. This number iswritten asrank A.

Rank can aso be defined as the number of nonzero rows in any reduced row form of
amatrix. One hasto check that any two reduced row forms have the same number of
nonzero rows. Notice that the rank can also be defined as the number of columns of
the reduced row echelon form with leading entries in them, since each leading entry
of a reduced row echelon form occupies a unique column. We can count up the other
columns as well.
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DEFINITION 1.4.11. Thenullity of amatrix A is the number of columns of the reduced
row echelon form of A that do not contain a leading entry. This number is written as
null A.

In the case that A is the coefficient matrix of alinear system, we can interpret the rank
of A asthe number of bound variables of the system and the nullity of A asthe number
of free variables of the system.

Observe that the rank of a matrix is a non-negative number. But it could be 0! This
happens when the matrix is a zero matrix, so that it has no nonzero rows. In this case,
the nullity of the matrix is as large as possible. Here are some simple limits on the
size of rank A and null A. In one limit we shall use a notation that occurs frequently
throughout the text, so we explainit first.

NOTATION 1.4.12. For a list of real numbers ay,as, ... ,an, min{as,az,...,an}
meansthe smallest number inthelist and max{a, as, ... , a,, } meansthelargest num-
ber in thelist.

THEOREM 1.4.13. Let A be anm x n matrix. Then

1. 0 <rank A < min{m,n}.
2. rank A + null A = n.

PrROOF. By definition, rank A is the number of nonzero rows of the reduced row
echelon form of A, which isitself an m x n matrix. There can be no more leading
entries than rows, hencerank A < m. Also, each leading entry of a matrix in reduced
row echelon form is the unique nonzero entry in its column. Therefore, there can be no
more leading entries than columns n. Since rank A isless than or equal to both m and
n, it must beless than or equal to their minimum, which iswhat thefirst inequality says.
Also notice that every column of A either has a pivot in it or not. The number of pivot
columnsis just rank A and the number of non-pivot columnsis null A. Hence the sum
of these numbersisn. O

In words, part 1 of Theorem 1.4.13 says that the rank of a matrix cannot exceed the
number of rows or columns of the matrix. One situation occurs often enough enough
that it is entitled to its own name: if the rank of a matrix equals its column number we
say that the matrix has full column rank. One has to be alittle careful about thisidea
of rank. Consider the following example.

ExAMPLE 1.4.14. Find the rank and nullity of the matrix

SoLuTION. We know that the rank is at most 3 by the preceding theorem. Elementary
row operations give

11 2 11 2 11 2
2 2 5 |En(-2)|0 0 1 |En(3]00 1
3 37 3 3 2 00 —4
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— 7|1 1 0
E32 (4) 0 0 1
E12 (_2) 00 O

From the reduced row echelon form of A at the far right we see that the rank of A is
2. O

Notice that one can’t simply count the number of nonzero rows of A, whichin thiscase
is 3, to get therank of A.

Caution: Remember that the rank of A is the number of nonzero rows of its reduced
row form, and not the number of nonzero rows of A itself.

The notion of rank of amatrix gives us some more leverage on the question of how the
solution set of alinear system behaves.

THEOREM 1.4.15. The general linear system 1.1.1 with x n coefficient matrix4, Consistency in
right hand side vectob and augmented matrid = [A | b] is consistent if and only if ~ Terms of Rank
rank A = rank A, in which case either

1. rank A = n, in which case the system has a unique solution, or
2. rank A < n, in which case the system has infinitely many solutions.

PROOF. We can reduce A to reduced row echelon form by first doing the elemen-
tary operations that reduce the A part of the matrix to reduced row echelon form, then
attending to the last column. Hence, it is aways the case that rank A < rank A. The
only way to get strict inequality is to have a leading entry in the last column, which
means that some equation in the equivalent system corresponding to the reduced aug-
mented matrix is0 = 1, which implies that the system is inconsistent. On the other
hand, we have already seen (in the proof of Theorem 1.4.8, for example) that if the last
column does not contain a leading entry, then the system is consistent. This establishes
the first statement of the theorem.

Now suppose that rank A = rank A, so that the system is consistent. By Theorem
1.4.13,rank A < n, sothat either rank A < n or rank A = n. The number of variables
of the system is n. Also, the number of leading entries (equivalently, pivots) of the
reduced row form of A, which is rank 4, is equal to the number of bound variables;
the remaining n — rank A variables are the free variables of the system. Thus, to say
that rank A = n, isto say that no variables are free; that is, solving the system leads to
a unique solution. And to say that rank A < n isto say that there is at |least one free
variablein which case the system has infinitely many solutions. O

Here is an example of how this theorem can be put to work. It confirms our intuition
that if asystem does not have “enough” equations, then it can’t have a unique solution.

COROLLARY 1.4.16. If a consistent linear system of equations has more unknowns
than equations, then the system has infinitely many solutions.

PrROOF. Inthe notation of the previous theorem, the hypothesis simply means that
m < n. But weknow from Theorem 1.4.13that rank A < min{m,n}. Thusrank A <
n and the last part of Theorem 1.4.15 applies to give the desired result. O
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Of course, there is still the question of when a system is consistent. In general, there
isn't an easy way to see when thisis so. However, in special cases we can answer the
guestion easily. One such important special case is given by the following definition.

DEFINITION 1.4.17. The generd linear system 1.1.1 with m x n coefficient matrix A
and right hand side vector b is said to be homogeneous the entries of b are al zero.
Otherwise, the system is said to be non-homogeneous

The nice feature of homogeneous systems is that they are always consistent! In fact,
it is easy to exhibit a specific solution to the system, namely, take the value of all the
variables to be zero. For obvious reasons this solution is called the trivial solution to
the system. Thus, the previous corollary implies that ahomogeneouslinear system with
fewer equations than unknowns must have infinitely many solutions. Of course, if we
want to find all the solutions, we will have to do the work of Gauss-Jordan elimination.
However, we acquire a small notational convenience in dealing with homogeneous sys-
tems. Notice that the right hand side of zeros is never changed by an elementary row
operation. So why bother writing out the augmented matrix of such asystem? It suffices
to perform elementary operations on the coefficient matrix alone. In the end, the right
hand side is till acolumn of zeros.

ExAaMPLE 1.4.18. Solve and describe the solution set of the homogeneous system

T1+x24+24 = 0
1‘1+1‘2+21‘3 =0
T + To =0

SOLUTION. In this case we only perform row operations on the coefficient matrix to
obtain

11 0 1
11 2 0
1100

One hasto be alittle careful here: the leading entry in the last column does not indicate
that the system isinconsistent. Had we carried the right hand side column aong in the
calculations above, we would have obtained

[11000]
10001 0]

which is the matrix of a consistent system. We see from the reduced row echelon form
of the coefficient matrix that = is free and the other variables are bound. The general
solutionis

T1 = —X2
r3 = 0
Ty = 0

r9 IS free
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Finally, the solution set S of this system can be described as
S = {(~22,0,0,22) | z2 € R},

1.4 Exercises

1. Circle leading entries and determine which of the following matrices are in reduced
row echelon form.

{1 00 4] {1
@;0 000 (b) 1 O
0 0 1 2J [0
1 00 0 1
(d)[(l) 8 (2)] © {0 ! 0] ) [0 0]
oo ] oo
2. Show the elementary operations you use to find the reduced row echelon form of the
following matrices. Give the rank and nullity of each matrix.
0 1
0 2

(a)H _31 421] (b)[—g (1) 2 —g] (c){g
2 11

[226J [001 QJ

2 4
(d)hgs} CHHEE Y m{iféj

O =

3. Findtherank of the augmented and coefficient matrix of thefollowing linear systems
and the solution to to following systems.

@ Ty +rot+ax3—24 = 2 (D) r3+x4 = 0
201 + x5 — 224 = 1 —2r1—4x9y = 0
21 + 220 + 223 — 224 = 4 3x1 +6x2 —23+724 = O
4. Consider two systems of eguations
(A) T+ axst+ax3—x4 = 2 (B) zz3+x4 = 0
2x1 + x5 — 224 = 1 —2r1 —4xs = 0
2x1 + 225 + 223 — 224 = 4 3x1 +6x2 —x3+24 = O

(8) Find a sequence of elementary operations that transforms system (A) into (B).
(b) It follows that these two systems are equivalent. Why?
(c) Confirm part (b) by explicitly solving each of these systems.

5. Therank of the following matrices can be determined by inspection. Inspect these
matrices and give their rank. Give reasons for your answers.

3

1

1

130 00 0 00 1
@|lo 11| ®[looo| @|o1o0]| @
01 1 00 0 100
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6. Find upper and lower bounds on the rank of the 4 x 3 matrix A, given that some
system with coefficient matrix A hasinfinitely many solutions.

7. Answer True/False and explain your answers:

(a) Any homogeneouslinear system with more unknowns than equations has a nontriv-
ial solution.

(b) Any homogeneouslinear system is consistent.

(c) If alinear system is inconsistent, then the rank of the augmented matrix exceeds the
number of unknowns.

(d) Every matrix can be reduced to only one matrix in reduced row form.
(e) A system of 3 linear equationsin 4 unknowns must have infinitely many solutions.

8. Suppose that A = ¢ Z

reduced row echelon form of A.

and further that a« # 0 and ad — be = 0. Find the

9. Give arank condition for a homogeneous system that is equivalent to the system
having a unique solution. Justify your answer.

10. Prove or disprove: if two linear systems are equivalent, then they must have the
same size augmented matrix.

11. Use Theorem 1.4.8 to show that any two reduced row forms for a matrix A must
have the same number of nonzero rows.

12. Suppose that the matrix C' can be written in the augmented form C = [A| B,
where the matrix B may have more than one column. Provethat rank C' < rank A +
rank B.

1.5. *Computational Notes and Projects

Roundoff Errors

In many practical problems, calculations are not exact. Thereare several reasonsfor this
unfortunate fact. For one thing, scientific calculators are by their very nature only finite
precision machines. That is, only afixed number of significant digits of the numberswe
are calculating may be used in any given calculation. For instance, verify this simple
arithmetic fact on a calculator or computational software like MATLAB (but exclud-
ing computer algebra systems such as Derive, Maple or Mathematica — since symbolic
calculation is the default on these systems, they will give the correct answer):

2 2
- +100) —100) — z =0
(5 +100) — 100) - 2
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In many cases this calculation will not yield 0. The problem is that if, for example, a
caculator uses 6 digit accuracy, then 2/3 is calculated as 0.666667, which is really
incorrect. Even if arithmetic calculations were exact, the data which form the basis of
our calculations are often derived from scientific measurement which themselves will
amost certainly bein error. Starting with erroneous data and doing an exact calculation
can be as bad as starting with exact data and doing an inexact calculation. In fact, ina
certain sense they are equivalent to each other. Error resulting from truncating data for
storage or finite precision arithmetic calculationsis called roundoff error.

We will not give an elaborate treatment of roundoff error. A thorough analysis can be
found in the Golub and Van L oan text [5] of the bibliography, atext whichis considered
astandard referencework. Thissubjectisapart of an entirefield of applied mathematics
known as numerical analysis. We will consider this question: could roundoff error be a
significant problem in Gaussian elimination? It isn’t at all clear that thereis a problem.
After al, evenin the above example, the final error isrelatively small. Isit possible that
with al the arithmetic performed in Gaussian elimination the errors pile up and become
large? The answer is“yes.” With the advent of computers came a heightened interest in
these questions. In the early 1950’'s numerical analysts intensified efforts to determine
whether or not Gaussian elimination can reliably solve larger linear systems. In fact,
we don't really have to look at complicated examples to redlize that there is a potential
difficulty. Consider the following example.

ExAMPLE 1.5.1. Let e beanumber so small that our calculator yields1 + € = 1. This
equation appears a bit odd, but from the calculator’'s point of view it may be perfectly
correct; if, for example, our calculator performs 6 digit arithmetic, then e = 10 ~will
do nicely. Notice that with such a calculator, 1 + 1/e = (¢ + 1)/e = 1/e. Now solve
the linear system

ex1+x2 = 1
r1 — I2 = 0

SOLUTION. Let’s solvethis system by Gauss-Jordan elimination with our calculator to

obtain
R LI

e 00 1 00
Eiz(=1 [o 1 1}&(1/6 [0 1 1]
Thus we obtain the calculated solution z; = 0, s = 1. This answer is spectacularly
bad! If e = 10~ as above, then the correct answer is

T1 = Ty = L = 0.99999909999990 - - -
1+e

Our calculated answer is not even good to one digit. So we see that there can be serious
problems with Gaussian or Gauss-Jordan elimination on finite precision machines. O

It turns out that information that would be significant for ; in first equation islost in
the truncated arithmetic that saysthat 1 + 1/e = 1/e. Thereis afix for problems such
as this, namely a technique called partial pivoting. The idea is fairly smple: do not
choose the next available column entry for a pivot. Rather, search down the columnin

Pivoting
Strategies
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question for the largest entry (in absolute value). Then switch rows, if necessary, and
use thisentry as apivot. For instance, in the preceding example, we would not pivot off
the e entry of the first column. Since the entry of the second row, first column, is larger
in absolute value, we would switch rows and then do the usual Gaussian elimination
step. Hereis what we would get (remember that with our calculator 1 + € = 1):

e 1 171 =1 0] g1 —1 0 10 1
[1—1 O]Em{e 11}E21(_6{0 11}&2(_6{011]

Now we get the quite acceptable answer 1, = x5 = 1.

But partial pivoting is not a panacea for numerical problems. In fact, it can be easily
defeated. Multiply the second equation by €2 and we get a system for which partial piv-
oting still picks the wrong pivot. Here the problem is a matter of scale. It can be cured
by dividing each row by the largest entry of the row before beginning the Gaussian
elimination process. This procedureis known as row scaling The combination of row
scaling and partial pivoting overcomes many of the numerical problems of Gaussian or
Gauss-Jordan elimination (but not all!'). There is a more drastic procedure, known as
complete pivoting In this procedure one searches al the unused rows (excluding the
right hand sides) for the largest entry, then uses it as a pivot for Gaussian elimination.
The columns used in this procedure do not move in that |eft-to-right fashion we are
used to seeing in system solving. It can be shown rigorously that the error of roundoff
propagates in a predictable and controlled fashion with complete pivoting; in contrast,
we do not really have a satisfactory explanation as to why row scaling and partial piv-
oting work well. Yet in most cases they do reasonably well. Since this combination
involves much less calculation than complete pivoting, it is the method of choice for
many problems.

There are deeper reasons for numerical problemsin solving some systems than the one
the preceding example illustrates. One difficulty has to do with the “sensitivity” of the
coefficient matrix to small changes. That is, in some systems, small changes in the
coefficient matrix lead to dramatic changes in the exactanswer. The practical effect
of roundoff error can be shown to be equivalent to introducing small changes in the
coefficient matrix and obtaining an exact answer to the perturbed (changed) system.
Thereis no cure for these difficulties. A classical example of this type of problem, the
Hilbert matrix, is discussed in one of the projects below. We will attempt to quantify
this “sensitivity” in Chapter 6.

Computational Efficiency of Gaussian Elimination

How much work is it to solve a linear system and how does the amount of work grow
with the dimensions of the system? The first thing we need is a unit of work. In
computer science one of the principal units of work is a flop (floating point operation),
namely asingle +, —, x, or . For example, we say the amount of work in computing
e + 7 or e x 7 isone flop, while the work in calculating e + 3 x 7 istwo flops. The
following exampleis extremely useful.

ExamMPLE 1.5.2. How many flops does it cost to add a multiple of one row to anothe,
asin Gaussian elimination, given that the rows have n elements each?
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SOLUTION. A little experimentation with an example or two showsthat that the answer
should be 2n. Here is ajustification of that count. Say that row a is to be multiplied by
the scalar o, and added to the row b. Designate the row a = [a;] and therow b = [b;].
We have n entriesto worry about. Consider atypical one, say the ith one. Theith entry
of b, namely b;, will be replaced by the quantity

b; + aa;.

Theamount of work inthis calculationistwo flops. Sincetherearen entriesto compuite,
the total work is 2n flops. O

Our goal isto determine the expense of solving a system by Gauss-Jordan elimination.
For the sake of simplicity, let’'s assume that the system under consideration has n equa-
tions in n unknowns and the coefficient matrix has rank n. This ensures that we will
have a pivot in every row of the matrix. We won't count row exchanges either, since
they don’t involve any flops. (We should remark that this may not be realistic on a fast
computer, since memory fetches and stores may not take significantly less time than a
floating point operation.) Now consider the expense of clearing out the entries under
the first pivot. A picture of the augmented matrix looks something like this, where an

x’ isan entry which may not be 0 and an @ is anonzero pivot entry:

@ x - onE

—
X X 00X n—1 0 @ s X
. . el.ops

NV

Each elementary operation will involve adding a multiple of the first row, starting with
the secondentry, since we don't need to do arithmetic in the first column — we know
what goes there, to the n — 1 subsequent rows. By the preceding example, each of
these elementary operations will cost 2n flops. Add 1 flop for the cost of determining
the multiplier to obtain 2n + 1. So the total cost of zeroing out the first column is
(n —1)(2n + 1) flops. Now examine the lower unfinished block in the above figure.
Notice that it's as though we were starting over with the row and column dimensions
reduced by 1. Therefore, the total cost of the next phaseis (n — 2)(2(n — 1) + 1) flops.
Continuein this fashion and we obtain a count of

n

0+ (G-DERi+1) =) (-DEji+1)= ZQJ —j-1

j=2 j=1
flops. Recall the identities for sums of consecutive integers and their squares:

n

. n(n+1)
3= 2D

Jj=1
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Thus we have atotal flop count of

n

. 1)(2 1 1 2n3 2
22j2_3j+1:2n(n+ )2n+1) n(n+ )—n: n %1
j=1

n
6 2 3 2
Thisisthe cost of forward solving. Now let’s simplify our answer abit more. For large
n we have that n3 is much larger than n or n? (e.g., for n = 10 compare 1000 to 10
or 100). Hence, we ignore the lower degree terms and arrive at a simple approxima-
tion to the number of flops required to forward solve alinear system of n equationsin
n unknowns using Gauss-Jordan elimination. There remains the matter of back solv-
ing. We leave as an exercise to show that the total work of back solving is quadratic
inn. Thereforethe “leading order” approximation which we found for forward solving
remains unchanged.

THEOREM 1.5.3. The number of flops required to solve a linear system efjuations
in n unknowns using Gaussian or Gauss-Jordan elimination without row exchanges is
approximately 2n3/3.

Thus, for example, the work of forward solving a system of 21 eguations in 21 un-
knownsis approximately 2 - 213 /3 = 6174 flops. Compare this to the exact answer of
6374.

Project Topics

In this section we give a few samples of project material. These projects provide an
opportunity for students to explore a subject in a greater depth than exercises permit.
They aso provide an opportunity for students to hone their scientific computing and
writing skills. They are well suited to team effort, and writing expectations can range
from a summary of the answers to a detailed report on the project. The first sample
project iswritten with the expectation of afairly elaborate project report. Theinstructor
has to define her/his own expectations for students. Likewise, the computing platform
used for the projects will vary. We cannot discuss every platform in this text, so we
will give examples of implementation notes that an instructor might supply for a few
of them. The instructor will have to modify that portion of the project to match the
local configuration and provide additional background about the use of the computing
platform.

Notes to students about project/reporihe first thing you need to know about report
writing is the intended audience. Usually, you may assume that your report will be read
by your supervisors, who are technical people such as yourself. Therefore, you should
write a brief statement of the problem and discussion of methodology. In practice re-
ports, you assume physical laws and assumptions without further justification, but in
real life you would be expected to offer some explanation of physical principlesyou em-
ploy in constructing your model. Another good point to have in mind is atarget length
for your paper. Do not clutter your work with long lists of numbers and try to keep
the length a a minimum rather than maximum. Most kinds of discourse should have
three parts: a beginning, a middle and an end. Roughly, a beginning should consist of
introductory material. In the middle you devel op the ideas described or theses proposed
in the introduction, and in the end you summarize your work and tie up loose ends.
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Of course, rules about paper writing are not set in concrete, and authors vary on exactly
how they organize papersof agiven kind. Also, apart could be quite short; for example,
an introduction might only be a paragraph or two. Here is a sample skeleton for areport
(perhaps rather more elaborate than you need): 1. Introduction (title page, summary
and conclusions), 2. Main Sections (problem statement, assumptions, methodology,
results, conclusions), 3. Appendices (such as mathematical analysis, graphs, possible
extensions, etc.) and References.

A few additional notes: Pay attention to appearance and neatness, but don’t be overly
concerned about your writing style. A good rule to remember is “Simpler is better.”
Prefer short and straightforward sentences to convoluted ones. Use a vocabulary that
you are comfortable with. Be sure to use a spell-checker if oneis availableto you.

A given project/report assignment may be supplied with a report template by your in-
structor or carry explicit instructions about format, intended audience, etc. It isimpor-
tant to read and follow these instructions carefully. Naturally, such instructions would
take precedence over any of the preceding remarks.

The first two of these projects are based on the material of Section 1.1 in relation to
diffusion processes.

Project: Heat Flow |

Description of the problemiou are working for the firm Universal Dynamics on a
project which has a number of components. You have been assigned the analysis of a
component whichissimilar to alaterally insulated rod. The problem you are concerned
with is as follows: part of the specs for the rod dictate that no point of the rod should
stay at temperatures abow® degrees Celsius for a long period of tim&ou must
decideif any of the materialslisted below are acceptable for making the rod and write a
report on your findings. You may assume that the rod is of unit length. Suppose further
that internal heat sources come from a position dependent function f(z), 0 < z < 1
and that heat is also generated at each point in amounts proportional to the temperature
at the point. Also suppose that the left and right ends of the rod are held at 0 and 50
degrees Celsius, respectively. When sufficient time passes, the temperature of the rod at
each point will settle downto “ steady state” values, dependent only on position z. These
are the temperatures you are interested in. Refer to the discussion in 1.1 for the details
of the descriptive equations that result from discretizing the problem into finitely many
nodes. Here k is the thermal conductivityof the rod, which is a property associated
with the material used to make the rod. For your problem take the source term to be
f(x) = 200 cos(x?). Here are the conductivity constants for the materials with which
your company is considering building the rod. Which of these materials (if any) are
acceptable?

Platinum: £ = .17

Zinc: k = .30
Aluminum: k£ = .50
Gold: k£ = .75

Silver: £ = 1.00
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Procedure: For the solution of the problem, formulate a discrete approximation to the
BVPjust asin Example1.1.5. Choosean integer n and dividetheinterval [0, 1] into n+
1 equal subintervals with endpoints 0 = g, 1, ..., xn+1 = 1. Then the width of each
subinterval ish = 1/(n + 1). Next let u; be our approximation to u(z ;) and proceed
asin Example 1.1.5 . There results a linear system of n equations in the n. unknowns
U1, Uz, -.-, Un . FOr this problem divide the rod into 4 equally sized subintervals and take
n = 3. Use the largest u; as an estimate of the highest temperature at any point in
the rod. Now double the number of subintervals and see if your values for u change
appreciably at a given value of x. If they do, you may want to repeat this procedure
until you obtain numbersthat you judge to be satisfactory.

Implementation Notes (for users of Mathematicagt up the coefficient matrix a and
right hand side b for the system. Both the coefficient matrix and the right hand side
can be set up using the Table command of Mathematica. For b, the command 100*
h”"2*Tabl e[ Cos[ (i h)”~ 2,{i, n}]/k will generate b, except for the last coor-
dinate. Usethecommandb[ [ 14]] = b[[14]] + 50toaddu(1) totheright hand
side of the system and get the correct b. For a: the command Tabl e[ Switch[i -
j,1,-1,0,2,-1,-1, ,0],{i,n},{j, n}] will generateamatrix of thedesired
form. (Use the Mathematica on line help for al commands you want to know more
about.) For floating point numbers. we want to simulate ordinary floating point calcu-
lations on Mathematica. You will get some symbolic expressions which we don’t want,
e.g., for b. To turn b into floating point approximation, use the commandb = N[ b] .
The N[ ] function turns the symbolic values of b into numbers, with a precision of about
16 digitsif no precision is specified. For solving linear systems use the commandu =
Li near Sol ve[ a, b] , which will solvethe system with coefficient matrix a and right
hand side b, and store the result in . About vectors: Mathematica does not distinguish
between row vectors or column vectors unless you insist on it. Hardcopy: You can get
hardcopy from Mathematica. Be sure to make a presentable solution for the project.
You should describe the form of the system you solved and at least summarize your
results. This shouldn’t be atome (don’t simply print out a transcript of your session),
nor should it be alist of numbers.

Project: Heat Flow Il

Problem DescriptionYou are given alaterally insulated rod of ahomogeneous material
whose conductivity properties are unknown. The rod is laid out on the x-axis, 0 <= x
<= 1. A currentis run through the rod, which resultsin a heat source of 10 units of heat
(per unit length) at each point along the rod. Therod is held at zero temperature at each
end. After atime the temperatures in the rod settle down to a steady state. A single
measurement is taken at x=0.3 which resultsin atemperature reading of approximately
11 units. Based on this information, determine the best estimate you can for the true
value of the conductivity constant k of the material. Also try to guess aformulafor the
shape of the temperature function on the interval [0,1] that results when this value of
the conductivity is used.

Methodology:You should use the model that is presented on pages 4-6 of the text. This
will result in alinear system, which Maple can solve. One way to proceed is simply to
usetrial and error until you think you've hit on the right value of k, that is, the one that
gives avalue of approximately 11 units at x =0.3. Then plot the resulting approximate
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function doing a dot-to-dot on the node values. You should give some thought to step
sizeh.

Output: Return your results in the form of an annotated M apl e notebook, which should
have the name of the team members at the top of the file and an explanation of your
solution in text cells interspersed between input cells, that the user can happily click
his’her way through. This explanation should be intelligible to your fellow students.

CommentsThis project introduces you to avery interesting area of mathematics called
"inversetheory.” Theideais, rather than proceeding from problem (the governing equa-
tions for temperature values) to solution (temperature values), you are given the "so-
Iution", namely the measured solution value at a point, and are to determine from this
information the "problem", that is, the conductivity coefficient that is needed to define
the governing equations.

Project: The Accuracy of Gaussian Elimination

Description of the problemThis project is concerned with determining the accuracy
of Gaussian elimination as applied to two linear systems, one of which is known to be
difficult to solve numerically. Both of these systems will be square (equal number of
unknowns and equations) and have a unique solution. Also, both of these systems are
to be solved for various sizes, namely n = 4,8,12,16. In order to get a handle on the
error, our main interest, we shall start with aknown answer. The answer shall consist of
setting all variablesequal to 1. Soiit is the solution vector (1,1, ... , 1). The coefficient
matrix shall be one of two types:

(1) A Hilbert matrix, i.e., ann x n matrix given by the formula

1
=[]
1+5—1

(2) Ann x n matrix with random entries between 0 and 1.

The right hand side vector b is uniquely determined by the coefficient matrix and solu-
tion. In fact, the entries of b are easy to obtain: simply add up al the entriesin the ith
row of the coefficient matrix to obtain the ith entry of &.

The problem is to measure the error of Gaussian elimination. This is done by finding
the largest (in absolute value) difference between the computed value of each variable
and actual value, whichin all casesis 1. Discussyour results and draw conclusionsfrom
your experiments.

Implementation Notes (for users of Mapldytaple has a built-in procedure for defin-
ing a Hilbert matrix A of size n, asinthecommand A : = hil bert(n);. Before
executing this command (and most other linear algebra commands), you must load the
linear algebra package by the commandwi t h(1i nal g); . A vector of I'sof sizen
can also be constructed by the single command x : = vector(n, 1);. To multi-
ply this matrix and vector together use the command eval n{ A & x) ;. Thereisa
feature that all computer algebra systems have: they do exact arithmetic whenever pos-
sible. Since we are trying to gauge the effects of finite precision calculations, we don't
want exact answers (such as 425688/532110), but rather, finite precision floating point
answers (such as 0.8). Therefore, it would be a good idea at some point to force the
quantities in question to be finite precision numbers by encapsulating their definitions
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in an evaluate as floating point command, e.g., eval f (eval m(A & x));. This
will force the CAS to do finite precision arithmetic.

1.5 Exercises

1. Carry out the calculation ((2 + 100) — 100) — 2 on ascientific calculator. Do you
get the correct answer?

2. Enter the matrix A given below into acomputer algebra system and use the available
commands to compute (@) the rank of A and (b) the reduced row echelon form of A.
(For example, in Maple the relevant commands arer r ef (A) and r ank( A) .) Now
convert A into its floating point form and execute the same commands. Do you get the
same answers? If not, which is correct?

1 3 -2 0 2 0 O
6 18 —-15 -6 12 -9 -3
0 0 5 10 0 15 5
2 6 0 8 4 18 6

3. Show that the flop count for back solving an n x n system is quadratic in n. Hint:
At the jth stagethe total work isj +2[(n — 1)+ (n — 2) + ... + (n — j)] -

A=

Review

Chapter 1 Exercises

1. Calculate the following:
(@) |2 + 44 (b) — 7i* + 64° (€) (3+ 44)(7 —60) (d)7—6i

2. Solve the following systems for the (complex) variable z. Express your answersin
standard form where possible.

@2+i)z=4-2i Bz2*=-16 Cz+1/z=1 [d)(z+1)(z>+1)=0
3. Find the polar and standard form of the complex numbers
@ 1/(1—1) (b) —2e™/3 (c)i(i +/3) (d) =1+ () ie™/*

4. The following are augmented matrices of linear systems. In each case, reduce the
matrix to reduced row echelon form and exhibit the solution(s) to the system.

11 -1 -1 2 00 1 1
(a)22031(b)0102(c)“(1)gﬂ
11 0 -1 -1 100 1
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5. Consider the linear system:

1‘1+21‘2:2
T+ To+2T3—24 =3
2$3+2$4:2

(a) Solve this system by reducing the augmented matrix to reduced row echelon form.
Show all row operations.

(b) Find the rank of the augmented matrix and express its reduced row echelon form as
aproduct of elementary matrices and the augmented matrix.

(c) This system will have solutions for any right hand side. Justify this fact in terms of
rank.

6. Fill inthe blanks or answer True/False with justification for your answer:
(a) If Aisa3 x 7 matrix then therank of A isat most
(b) If Aisa4d x 8 matrix, then the nullity of A could be larger than 4 (T/F):

(c) Any homogeneous (right hand side vector 0) linear system is consistent (T/F):

(d) Therank of anonzero 3 x 3 matrix with all entriesequa is
() Some polynomial equationsp(z) = 0 have no solutions z (T/F):
7. What isthe locus in the plane of complex numbers z such that |z + 3| = |z — 1|7

8. For what values of ¢ are the following systems inconsistent, with unique solution or
with infinitely many solutions?

@ cri+axyt+ax3 = 2 (b) 1 +2r2—21 = ¢ (€) zy+cxs3 =
T1+crys+xr3 = 2 T+ 3T +23 = 1 T —Ccry =
T1+ T2 +crs = 2 3x1+ 720 —x3 = 4

9. Show that a system of linear equations has a unique solution if and only if every
column, except the last one, of the reduced row echelon form of the augmented matrix
hasapivot entry iniit.




CHAPTER 2

MATRIX ALGEBRA

In Chapter 1 we used matrices and vectors as simple storage devices. |In this chapter
matrices and vectors take on alife of their own. We devel op the arithmetic of matrices
and vectors. Much of what we do is motivated by a desireto extend theideas of ordinary
arithmetic to matrices. Our notational style of writing a matrix in the form A = [a ;]
hints that a matrix could be treated like a single number. What if we could manipulate
equations with matrix and vector quantities in the same way that we do scalar equa-
tions? We shall see that thisis auseful idea. Matrix arithmetic gives us new powers for
formulating and solving practical problems. In this chapter we will use it to find effec-
tive methods for solving linear and nonlinear systems, solve problems of graph theory
and analyze an important modeling tool of applied mathematics called a Markov chain.

2.1. Matrix Addition and Scalar Multiplication

To begin our discussion of arithmetic we consider the matter of equality of matrices.
Supposethat A and B represent two matrices. When do we declare them to be equal ?
The answer is, of courseg, if they represent the same matrix! Thus we expect that all the
usual laws of equalitieswill hold (e.g., equals may be substituted for equals) and in fact,
they do. There are times, however, when we need to prove that two symbolic matrices
must be equal. For this purpose, we need something a little more precise. So we have
the following definition, which includes vectors as a special case of matrices.

DEFINITION 2.1.1. Two matrices A = [a;;] and B = [b;;] are said to be equalif
these matrices have the same size, and for each index pair (i,7), a;; = b;j, that is,
corresponding entries of A and B are equal.

ExAMPLE 2.1.2. Which of the following matrices are equdl, if any?

o[3] oo o1 6[s 3] e[, 0]

SOLUTION. The answer is that only (c) and (d) have any chance of being equal, since
they are the only matricesin the list with the same size (2 x 2). Asamatter of fact, an
entry by entry check verifiesthat they redlly are equal. O

49
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Matrix Addition and Subtraction

How should we define addition or subtraction of matrices? We take a clue from ele-
mentary two and three dimensional vectors, such as the type we would encounter in
geometry or calculus. There, in order to add two vectors, one condition had to hold: the
vectors had to be the same size. If they were the same size, we simply added the vectors
coordinate by coordinate to obtain a new vector of the same size. That is precisely what
the following definition says.

DEFINITION 2.1.3. Let A = [a;;] and B = [b;;] bem x n matrices. Then the sumof
the matrices, denoted as A + B, isthe m x n matrix defined by the formula

A+ B= [aij + bij]
The negativeof the matrix A, denoted as — A, is defined by the formula
—A = [—ay]
Finally, the differenceof A and B, denoted as A — B, is defined by the formula
A= B = ai; — by
Notice that matrices must be the same size before we attempt to add them. We say that
two such matrices or vectors are conformable for addition

EXAMPLE 2.1.4. Let

310 -3
A_[—Q 0 1] and B_{ 1

O =
|

2
4
FindA+ B, A — B, and —A.

SOLUTION. Here we see that

[ 310 -3 2 1] _[ 3-3 142 0+1
A+B=1 5 0 1 +[ 140]_{—2“ 0+4 1+o]
[ 031
-1 401
Likewise,
4_pg-| 31 0] [-321]_[3--31-2 0-1
-2 0 1] 1 40] | -2-10-41-0
6 -1 -1
T T N

The negative of A isevensimpler:

-3 -1 -0 -3 -1 0
_A_[——z -0 —1}_{ 2 0—1}
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Scalar Multiplication

The next arithmetic concept we want to explore is that of scalar multiplication. Once
again, we take a clue from the elementary vectors, where the idea behind scalar mul-
tiplication is simply to “scale” a vector a certain amount by multiplying each of its
coordinates by that amount. That is what the following definition says.

DEFINITION 2.1.5. Let A = [a;;] beanm x n matrix and c ascalar. Then the scalar
productof the scalar ¢ with the matrix A, denoted by cA, is defined by the formula

cA = [caij].
Recall that the default scalars arereal numbers, but they could a so be complex numbers.
EXAMPLE 2.1.6. Let
A= { )
FindcA, 04, and —1A.

SOLUTION. Here we see that
3 1 0 3-3 3-1 3-0 9 3
CA_?)[—Q 0 1}_[3-—2 3.0 3~1]_{—6 0

while

and

Linear Combinations

Now that we have anotion of scalar multiplication and addition, we can blend these two
ideas to yield a very fundamental notion in linear algebra, that of alinear combination

DEFINITION 2.1.7. A linear combinationf thematrices A, A, ... , A, iSan expres-
sion of the form

01A1 + 02A2 +...+ ann
wherecy,cs, ... ,cp arescaarsand A, As, ..., A, arematricesal of the ssme size.

R 1
RN J

compute the linear combination —2A4; + 342 — 2A43.

ExAMPLE 2.1.8. Given that

and Agz[

| -

—_— O =



52 2. MATRIX ALGEBRA

SOLUTION. The solution is that

2 2 1
—2A41+3Ay —243=-2| 6 | +3]| 4| -2 0
4 2 -1

~2.243.2-2-1
=| -26+3.4-2.0 |=

—2-44+3-2-2-(-1)

It seems like too much work to write out objects such asthevector | 0 | that occurred
0

in the last equation; after all, we know that all the entries are all 0. So we make the

following convention for convenience.

NOTATION 2.1.9. A zero matrixis a matrix whose every entry is 0. We shall denote
such matrices by the symbol 0.

We have to be a bit careful, since this convention makes the symbol 0 ambiguous, but
the meaning of the symbol will be clear from context, and the convenience gained is
worth the potential ambiguity. For example, the equation of the preceding exampleis
stated very simply as —2A4; + 345 — 243 = 0, where we understand from context that
0 hasto mean the 3 x 1 column vector of zeros. If we use boldface for vectors, we will
a so then use boldface for the vector zero, so some distinction is regained.

EXAMPLE 2.1.10. Suppose that a linear combination of matrices satisfies the identity
—2A; + 345 — 2A3 = 0, asin the preceding example. Use this fact to express A, in
terms of A, and As.

SOLUTION. To solve this example, just forget that the quantities A1, A>, A3 are any-
thing specia and use ordinary algebra. First, add —3 A, + 2A3 to both sides to obtain

—2A; + 345 — 243 — 345 + 243 = —34, + 24,
s0 that
—2A4; = =345 + 245

and then multiplying both sides by the scalar —1/2 yields the identity

-1 -3
A1 = 7(—2141) = 7142 + Ag

O

Thelinear combinationideahasareally interesting applicationto linear systems, namely,
it gives us another way to express the solution set of alinear system that clearly identi-
fiestherole of free variables. The following exampleillustrates this point.

EXAMPLE 2.1.11. Supposethat alinear systemintheunknownsz i, z, =3, 4 hasgen-
era solution (x5 + 3x4, T2, 221 — x4, x4 ), Wherethevariables z», x4 arefree. Describe
the solution set of this linear system in terms of linear combinations with free variables
as coefficients.
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SoLUTION.The trick hereis to use only the parts of the general solution involving x »
for one vector and the parts involving x4 as the other vectorsin such a way that these
vectors add up to the genera solution. In our case we have

To + 314 To 3x4 1 3
T2 T2 0 1 0
2171 — T4 - 2.271 + —X4 [T] = T2 2 t T -1
T4 0 g 0 1

Now simply define vectors A; = (1,1,2,0), A> = (3,0,—1, 1) and we see that, since
x5 and x4 arearbitrary, the solution set is

S = {.’L’QA1 +1’4A2 | To,T4 € ]R}

In other words, the solution set to the system isthe set of all possiblelinear combinations
of the vectors A; and As. O

The idea of solution sets as linear combinationsis an important one that we will return
toin later chapters. You might notice that once we have the general form of a solution
vector it's easy to determine the constant vectors A; and As. Simply set z» = 1 and
the other free variable(s) — in this case just x4 — to get the solution vector A, and set
x4 = 1 and x5 = 0 to get the solution vector A,.

Laws of Arithmetic

The last example brings up an important point: to what extent can we rely on the ordi-
nary laws of arithmetic and algebrain our calculations with matrices and vectors? We
shall seelater in this section that for matrix multiplicationthere are some surprises. On
the other hand, the laws for addition and scalar multiplication are pretty much what we
would expect them to be. Taken as awhole, these laws are very useful; so much so that
later inthistext they will be elevated to the rank of an axiom system for what are termed
“vector spaces.” Here are the laws with their customary names. These same names can
apply to more than one operation. For instance, thereis a closure law for addition and
one for scalar multiplication as well.

Laws of Matrix Addition and Scalar Multiplication. Let A, B, C be matri-
ces of the same size m x n, 0 the m x n zero matrix, and ¢ and d scalars.
Then

(ClosureLaw) A + B isanm x n matrix.
(AssociativeLaw) (A+ B)+C =A+ (B+C)
(CommutativeLaw) A+ B=B+ A

(Identity Law) A +0 = A

(InverseLaw) A + (—A4) =0

(ClosureLaw) cA isanm x n matrix.
(Associative Law) ¢(dA) = (ed)A

(Distributive Law) (¢ + d)A = cA + dA
(Distributive Law) ¢(A + B) = cA + ¢B
(Monoidal Law) 1A= A

SovVmNU~WNE

=
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It isfairly straightforward to prove from definitions that these laws are valid. The veri-
fications al follow a similar pattern, which we illustrate by verifying the commutative
law for addition: let A = [a;;] and B = [b;;] be given m x n matrices. Then we have
that

A+ B [aij + bij]
[bij + aij]

= B+A
where the first and third equalities come from the definition of matrix addition, and the
second equality follows from the fact that for al indices: and j, a;; + bij = bi; + a;
by the commutative law for addition of scalars.

2.1 Exercises

1. Calculate
(a)[(l) : —21]_{? } H (@2H}—5[§]+3{ﬂ

(c)QH 3%3{2 H (d)a“) ”er

1 2 -1 3 1 0 1 2 4
2|0 0 2 -3 5 -2 1 x| 3| -5|2|+y|1
0 2 2 1 1 1 0 1 0
1 0 -1 2 2 1 0 —
2. LetA_[1 1 9 ],B_[l _2],0_{1 1 9 },andcomputethe

following, where possible.
@A+3BM0)24-3C (0A—-C(d)6B+C (e)2C —3(A—20C)

3. With A4, C' asin Exercise 2, solvetheequations(a) 2X +3A =C and (b) A—3X =
3C for the unknown X.

4. Show how to write each of the following vectors as alinear combination of constant
vectors with scalar coefficients x, y or z.

_ 3z + 2y x — 3y
TE | Y ] (o - ) | 42+ 2
20 — z 2z + 3y s4y+ 5z 2 — 2

@

5. Find scalarsa, b, ¢ such that
c b] _[a-b c+2
0 c| |a+b a—D

b
d

6. Show that any matrix of theform Z
ofthefourmatriceﬁ{1 0],[0 (1) ,[0 0},and{0 0].

can be expressed as alinear combination

0 0 0 10 01
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7. Verify that the associative law and both distributive laws for addition hold for ¢ = 2,
d=-3and

-1 0 -1 12 -1 -1 0 -1
A_[ 0 1 2} B_{41 3} C_[ 1 -1 0}

8. Provethat the associative law for addition of matrices (page 53) holds.
9. Provethat both distributive laws (page 53) hold.

10. Prove the following assertions for m x n matrices A and B by using the laws of
matrix addition and scalar multiplication. Clearly specify each law that you use.

(@) If cA = 0 for some scalar ¢, then either c =0 or A = 0.
(b) If B = ¢B for somescalar ¢ # —1, then B = 0.

2.2. Matrix Multiplication

Matrix multiplication is somewhat more subtle than matrix addition and scalar multi-
plication. Of course, we could define matrix multiplication to be coordinate-wise, just
as addition is. But our motivation is not merely to make definitions, but rather to make
usefuldefinitions.

Definition of Multiplication

To moativate the definition, et us consider asingle linear equation
2z — 3y +4z =5.

We will find it handy to think of the left hand side of the equation as a “product” of
T

the coefficient matrix [2, —3, 4] and the column matrix of unknowns | y ] . Thus, we
z

have that the product of thisrow and columnis

T

[2,-3,4] [ y ] = [2z — 3y + 4z].

Notice that we have made the result of the product into a matrix (in thiscase 1 x 1).
Thisintroduces us to a permanent abuse of notation that is almost always used in linear
algebra: we don't distinguish between the scalar @ and the 1 x 1 matrix [a], though
technically perhapswe should. In the same spirit, we make the following definition.
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DEFINITION 2.2.1. Theproductof thel x n row [a1, as, ..., an] Withthen x 1 column
b1

isdefined to bethe 1 x 1 matrix [a1by + azbs + ... + apby].
bn
It is this row-column product strategy that guides us to the general definition. Notice
how the column number of the first matrix had to match the row number of the second,

and that this number disappearsin the size of the resulting product. Thisis exactly what
happensin general.

DEFINITION 2.2.2. Let A = [a;;] beanm x p matrix and B = [b;;] beap x n matrix.
Then the productof the matrices A and B, denoted by A - B (or simply AB), is the
m x n matrix whose (i, j)thentry, for 1 <i < mand1 < j < n, isthe entry of the
product of theith row of A and the jth column of B; more specifically, the (i, j)th entry
of ABis

ailblj + aizsz + ...+ aipbpj

Notice that, unlike addition, two matrices may be of different sizes when we can multi-
ply them together. If Aism x pand B isp x n, we say that A and B are conformable
for multiplication. It is also worth noticing that if A and B are squareand of the same
size, then the products AB and B A are aways defined.

Some lllustrative Examples

Let’s check our understanding with afew examples.

ExAMPLE 2.2.3. Compute, if possible, the products of the following pairs of matrices
A, B.

@iz [o] o[ii] (4 2]

SOLUTION. Inproblem (a) Ais2 x 3 and B is3 x 2. First check conformability for
multiplication. Stack these dimensions along side each other and see that the 3's match;
now “cancel” the matching middle 3’s to obtain that the dimension of the product is
2x B B x2=2x2. Toobtain, for example, the (1, 2)th entry of the product matrix
multiply the first row of A and second column of B to obtain

—2
[1,2,1][ 1 ] =[1-(-2)+2-1+1-1] =]
1
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The full product calculation looks like this:

-1 g } 2-443-0+(-1)-2 2-(-2)+3-1+(-1)-1
6 1
6 -2
A size check of part (b) reveals a mismatch between the column number of the first

matrix (3) and the row number (2) of the second matrix. Thus these matrices are not
conformableor multiplication in the specified order. Hence

1 2 3 2
2 3 -1 3
is undefined.

Things work better in (c), where the size check gives2x 2 2 x 3 = 2 x 3 asthesize
of the product. As amatter of fact, thisis arather interesting calculation:

1 0][1 2 1] _[1-140-2 1-240-3 1-140-(=1)
01|23 —1|7|0-1+1-2 0-241-3 0-1+1-(=1)

12 1
12 3 -1
Notice that we end up with the second matrix in the product. This is similar to the

arithmetic fact that 1 - x = z for agiven real number z. So the matrix on the left acted
like amultiplicative identity. We will see later that thisis no accident.

In problem (d) a size check shows that the product hassize2x 4 A x2 =2 x2.The

calculation gives
0 0-1 0-2 00
{0}[1 2]:[0-1 0-2]:[0 0}

For part (€) the size check showsgives1x 2 2 x 1 =1 x 1. Hence the product exists
andis1 x 1. Thecalculation gives

[1 2 1][4 _2]_{ 1-442-041-2 1-(-2)+2-14+1-1
2 3 -

(1 2][8]:[1~o+2~o1:[0]

Matrix ~ Something very interesting comes out of this calculation. Notice that for this choice of
Multiplication A and B we have that AB and BA are not the same matrices - never mind that their
Not entriesareall 0’s- theimportant point is that these matrices are not even the same size!
Commutative or Thus a very familiar law of arithmetic, the commutativity of multiplication, has just
Cancellative falen by the wayside.

Finally, for the calculation in (f), notice that

11 1 1| |[1-14+41--1 1-1+1--1 ] [0 O

11 -1 -1 |1-1+41--1 1-14+1-=1 | |0 O
There's something very curious here, too. Notice that two nonzero matrices of the same
size multiplied together to give a zero matrix. This kind of thing never happens in

ordinary arithmetic, where the cancellation law assures that if a - b = 0 thena = 0 or
b=0. O



58 2. MATRIX ALGEBRA

The calculationin (c) inspires some more notation. Theleft-hand matrix of this product
has a very important property. It actslikea“1” for matrix multiplication. So it deserves
its own name.

NOTATION 2.2.4. A matrix of theform

10 ... 0
01 O
In=1]" = [6i;]
1 0
0 0 1

iscalled ann x n identity matrix The (7, j)th entry of I,, isdesignated by the Kronecker
symbol ¢;; whichis 1 if ¢ = j and 0 otherwise. If n is clear from context, we simply
write I inplaceof I,,.

So we see in the previous example that the left hand matrix of part (c) is
10
ERIRC

Linear Systems as a Matrix Product

Let's have another look at a system we examined in Chapter 1. We' Il change the names
of the variables from z,y, z to z1, 2, 23 in anticipation of a notation that will work
with any number of variables.

ExAMPLE 2.2.5. Expressthe following linear system as a matrix product.

r1 + x> + 3 = 4
21 4+ 222+ 53 = 11
4z1 + 62 +8x3 = 24

SoLuTION. Recall how we defined multiplication of arow vector and column vector at
the beginning of this section. We use that as our inspiration. Define

7 4 111
x=| a2 |, b=|11] and A=|2 2 5
5 24 4 6 8

Of course, A isjust the coefficient matrix of the system and b is the right hand side vec-
tor, which we have seen several times before. But now these take on anew significance.
Notice that if wetakethefirst row of A and multiply it by x we get the left hand side of
thefirst equation of our system. Likewise for the second and third rows. Therefore, we
may write in the language of matrices that

1 11 1 4
Ax=1]2 2 5 z | =11 | =b

Thusthe system is represented very succinctly as Ax = b. O

Identity Matrix
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Once we understand this example, it is easy to see that the general abstract system that
we examined in the first section of Chapter 1 can just as easily be abbreviated. Now we
have a new way of looking at a system of equations: it is just like asimple first degree
eguation in one variable. Of course, the catch is that the symbols A, x, b now represent
anm x n matrix, n x 1 and m x 1 vectors, respectively. In spite of this the matrix
multiplication ideais very appealing. For instance, it might inspire usto ask if we could
somehow solve the system Ax = b by multiplying both sides of the equation by some
kind of matrix “1/A” so asto cancel the A and get

(1/A)Ax =Ix=x=(1/A)b
We'll follow up on thisideain Section 2.5.
Here is another perspective on matrix-vector multiplication that gives a very powerful
way of thinking about such multiplications. We will use this idea frequently in Chap-
ter 3.
EXAMPLE 2.2.6. Interpret the matrix product of Example 2.2.5 asalinear combination

of column vectors.

SOLUTION. Examine the system of this example and we see that the column (1, 2,4)
appears to be multiplied by z,. Similarly, the column (1, 2,6) is multiplied by z» and
thecolumn (1, 5, 8) by x5. Hence, if we use the same right hand side column (4, 11, 24)
as before, we obtain that this column can be expressed asalinear combination of column

vectors, namely
1 1 1 4
1| 2 | 4+x2| 2 | +23| 5 | =11
4 6 8 24

We could write the equation of the previous example very succinctly as follows: let A

T
have columnsa;,as,as, sothat A = [a;,as,a3] andletx = | z» ] . Then
AX = z1a; + T2ay + 2323
Laws of Arithmetic

We have already seen that the laws of matrix arithmetic may not be quite the same asthe
ordinary arithmetic laws that we are use to. Nonetheless, aslong as we don’t assume a
cancellation law or a commutative law for multiplication, things are pretty much what
one might expect.
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Laws of Matrix Multiplication. Let A, B, C' be matrices of the appropriate
sizes so that the following multiplications make sense, I a suitably sized iden-
tity matrix, and ¢ and d scalars. Then

. (ClosureLaw) AB isanm x n matrix.

. (Associative Law) (AB)C = A(BC)

. (Identity Law) Al = AandIB = B

. (Associative Law for Scalars) ¢(AB) = (cA)B = A(cB)

. (Distributive Law) (A + B)C = AC + BC

. (Distributive Law) A(B + C) = AB + AC

OUThA WN P

One can formally verify these laws by working through the definitions. For example,
to verify the first half of the identity law, let A = [a;;] be an m x n matrix, so that
I = [§;;] hasto be I, in order for the product AI to make sense. Now we see from the
formal definition of matrix multiplication that

Al = [Z aikékj] = [ai]’ : 1] =A
k=1

The middle equality follows from the fact that §; is 0 unless & = j. Thus the sum
collapsesto asingleterm. A similar calculation verifies the other laws.

We end our discussion of matrix multiplication with afamiliar looking notation that will
proveto be extremely handy in the sequel.

NOTATION 2.2.7. Let A be asquaren x n matrix and k£ a nonnegative integer. Then
we define the kth powerof A to be

I, if k=0

Ak:{A-A-...-A if >0

————
k times

As a simple consequence of this definition we have the standard exponent laws.

Laws of Exponents. For nonnegative integers i, j and square matrix A we
have that

° Ai+j — Ai . Aj

o Al = (Al

Notice that the law (AB)? = A'B* is missing. Why do you think it won’'t work with
matrices?

2.2 Exercises

1. Expressthese systems of equationsin the notation of matrix multiplication.
@ z1—2x2+423 = 3 (b r—y—32z = 3 () z—3y+1 =
To—T3 = 2 2z +2y+42z = 10 2y =
-z +4z3 = 1 -z+2z = 3 -z + 3y =
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2 LetA= { 0 2 ] and verify the identity (I + A + A2)(I — A) = I — A5,

11
3. Express each system of Exercise 1 as an equation whose left hand side is a linear
combination of the columns of the coefficient matrix (see Example 2.2.6).

4. Carry out these calculations or indicate they are impossible, given that a = { % } ,

2 1+
0 1

(@ bCa (b)ab (c) Cb (d) (Cb)a (€) Ca (f) C(ab) (g) ba (h) C(a+ b)
5. Compute the product AB of thefollowing pairs A, B, if possible.

w[12].[2 2 2w 2 2] ]2 ]

b=1[3 4],andC’:[

2
31 2 -5 4 =2 31
(c)100,—231(d)10,{‘g§‘ﬂ
4 3 2 1 0 4 4 3 B
-5 4 =2 100
@[-2 1 -3],| -2 3 1 o 1o0]|,[-5 4 —2]
1 0 4 00
|

1
6. Find examplesof 2 x 2 matrices A and B that fulfill each of thefollowing conditions.
(8 (AB)? # A*B?
(b) AB # BA
() (A—B)?2 = A? —2AB + B?

7. Provethat if two matrices A and B of the same size havethe property that Ab = Bb
for every column vector b of the correct size for multiplication, then A = B. (Try using
vectors with asingle nonzero entry of 1.)

8. A sguare matrix A is said to be nilpotentif there is a positive integer m such that
A™ = 0. Determine which of the following matrices are nilpotent; justify your answer.

0 2 0 2 2 -4
(a){ggg} (b)“}] «W;g] (d){—}tl)_g}

9. A square matrix A is idempotentif A2 = A. Determine which of the following
matrices are idempotent.
2
-2
1

IR B AT
,1),isarank one

10. Verify that the product uv”, whereu = (1,0,2) andv = (-1,
matrix.

@

— o =)o

11. Verify that the associative law for scalars and both distributive laws hold for ¢ = 4
and these matrices

=[] o3 2] =[]
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12. Provethat the associative law for scalars (page 60) is valid.

13. Provethat both distributive laws for matrices (page 60) are valid.

1 2

14. Let A = [ ]

0 10
] and B = { 0 1 } Compute f(A) and f(B) where
5 3
2 -2 0
2 2
f(x) = 223 + 3z — 5. Hereit isunderstood that when a square matrix is substituted for
the variable x in a polynomial expression, the constant term has an implied coefficient
of 20 in it which becomes the identity matrix of appropriate size.

2.3. Applications of Matrix Arithmetic

We have aready seen an important application of matrix multiplication to linear sys-
tems. We next examine afew more applications of the matrix multiplication ideawhich
should reinforce the importance of this idea, as well as provide us with some interpre-
tations of matrix multiplication.

Matrix Multiplication as Function Compaosition

The function idea is basic to mathematics. Recall that a function f is arule of corre-
spondence that assigns to each argument z in a set called its domain, a unique value
y = f(x) from a set caled its range. Each branch of mathematics has its own spe-
cia functions; for example, in calculus differentiable functions f () are fundamental.
Linear algebra aso has its special functions. Suppose that T'(u) represents a function
whose arguments u and values v = T'(u) are vectors. We say the function T' is linear
if, forall vectorsu, v inthe domain of T, and scalars ¢, d, we have

T(cu+dv) = cT'(u) +dT(v)

ExAMPLE 2.3.1. Show that the function 7" with domain the set of 2 x 1 vectors and
definition by the formula
r([7])-
Yy

isalinear function.

Linear
Functions
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SOLUTION. Let { ; ] and [ Z } be two elements in the domain of 7" and ¢, d any

D () ()
—evarmer([=])rar ([ 2])

Thus, T' satisfies the definition of linear function. O

One can check that the function T' just defined can be expressed as a matrix multiplica-

T

tion, namely, T =[1,0] { ; . Thiskind of linear function gives yet another

reason for defining matrix multiplication in the way that we do. More generally, let A
beanm x n matrix and defineafunction T 4 that mapsn x 1 vectorsto m x 1 vectors
according to the formula

Ta(u) = Au.
First we verify that T is linear. Use the definition of T4 aong with the distributive law
of multiplication and associative law for scalars to obtain that
Ta(cu+ dv) = A(cu + dv)

= A(cu) + dA(v)

= c¢(Au) + d(Av)
cTa(u) +dT4(v)
This provesthat multiplication of vectors by afixed matrix A isalinear function.

ExXAMPLE 2.3.2. Usetheassociative law of matrix multiplication to show that the com-
position of matrix multiplication functions correspondsto the matrix product.

SoLuTION. For al vectors u and for suitably sized matrices A, B, we have by the
associativelaw that A(Bu) = (AB)u. Infunctionterms, thismeansthat 7'4 (T (u)) =
Tag(u). Sincethisistrue for al arguments u, it followsthat T4 o Tg = T4, which
is what we were to show. O

We will have more to say about linear functions in Chapters 3 and 6, where they will
go by the name of linear operators. For now we'll conclude our discussion of linear
functions with an example that gives a hint of why the“linear” in “linear function.”

ExAMPLE 2.3.3. Let L be the set of points (x,y) in the plane that satisfy the linear

equationy = z +1, 4 = | 2 1 } and let T(L) = {T((z,y)) ]| (z,y) € L}.

4 2
Describe and sketch these sets in the plane.

SoLuTION. Of course the set L isjust the straight line defined by the linear equation
y = x + 1. To seewhat elements of T4 (L) look like, we write atypical element of L in
theform (z,z + 1). Now calculate

TA(($:$+1)):{Z ;] {xil]:{giié]
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FIGURE 2.3.1. Actionof T'4 online L givenby y = =+ 1 and points
on L.

Now make the substitution ¢ = 32 + 1 and we see that atypical element of T'4 (L) has
the form (¢, 2t), where ¢ is any real number, since z is arbitrary. We recognize these
points as exactly the points on the line y = 2. Thus, the function T4 maps the line
y =z + 1 totheliney = 2z. Figure 2.3.1 illustrates this mapping as well as the fact
that T4 ((—1/3,2/3)) = (0,0) and T ((1/6,7/6)) = (3/2,3).

Markov Chains as Matrix Products

A Markov chain is a certain type of matrix model which we will illustrate with an
example.

ExXAMPLE 2.3.4. Suppose two toothpaste companies compete for customersin afixed
market in which each customer uses either Brand A or Brand B. Suppose aso that a
market analysis shows that the buying habits of the customersfit the following pattern
in the quarters that were analyzed: each quarter (three month period) 30% of A users
will switch to B while the rest stay with A. Moreover, 40% of B users will switch to A
in agiven quarter, while the remaining B users will stay with B. If we assumehat this
pattern does not vary from quarter to quarter, we have an example of what is caled a
Markov chain modelExpress the data of this model in matrix-vector language.

SOLUTION. Noticethat if ag and by are the fractions of the customers using A and B,
respectively, in a given quarter, a; and b, the fractions of customersusing A and B in
the next quarter, then our hypotheses say that

a; = 0.7(10 + 04b0

b1 = 0.3&0 + 06b0

We could figure out what happensin the quarter after this by replacing theindices 1 and
0 by 2 and 1, respectively, in the preceding formula. In general, we replace the indices
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1,0 by k, k + 1, to obtain
Ap+1 = 0.7ak + 04bk
br+1 = 0.3ay, + 0.6b

We express this system in matrix form as follows: let x(*) = [ Z’“ } and A =
k
0.7 0.4 . .
03 0.6 . Then the system may be expressed in the matrix form

LB+ — g5 (k)

O

The state vectors x(¥) of the preceding example have the following property: each
coordinate is non-negative and all the coordinates sum to 1. Such a vector is called a
probability distribution vector Also, the matrix A has the property that each of its
columns is a probability distribution vector. Such a square matrix is called a transition
matrix. Inthese termswe now give a precise definition of a Markov chain.

DEFINITION 2.3.5. A Markov chainisatransition matrix A together with aprobability
distribution vector x(?). The state vectorsf this Markov chain are the vectors given by
xFHD) = Ax(®) E=0,1,....

Let us return to Example 2.3.4. The state vectors and transition matrices

(k) _ ag _ 0.7 04
X _[bk] and A‘[o.:a 0.6

should play an important role. And indeed they do, for in light of our interpretation of
alinear system as a matrix product, we see that the two equations of Example 2.3.4 can
be written simply asx(!) = Az(® A little more cal culation shows that

<2 = AxM = 4. (Ax(o)) — A2x(®)
and in general,
xF) = Ax(F=1) = 4252 = = A4kx(0)

Now we redlly have a very good handle on the Markov chain problem. Consider the
following instance of our example.

ExAMPLE 2.3.6. In the notation of Example 2.3.4 suppose that initially Brand A has
al the customers (i.e., Brand B isjust entering the market). What are the market shares
2 quarterslater? 20 quarters? Answer the same questionsif initially Brand B has all the
customers.

SOLUTION. To say that initially Brand A has all the customersis to say that the initial
state vector isx(?) = { (1) } . Now do the arithmetic to find x(2):

az _ (2) — 42.(0) _ 0.7 04 0.7 04 1
{bz}_x = A'x _[0.3 0.6 03 0.6 || 0

=105 o8 [03]=1 %
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Thus, Brand A will have 61% of the market and Brand B will have 39% of the market
in the second quarter. We did not try to do the next calculation by hand, but rather used
a computer to get the approximate answer:

(o) _ [0.7 047711 _[ 57143

~ 103 06 0| | .42857
Thus, after 20 quarters, Brand A's share will have fallen to about 57% of the market
and Brand B’s share will have risen to about 43%. Now consider what happens if the

initial scenario is completely different, i.e, x(© = [ (1) ] . We compute by hand to find

T el ()
~ 105 os] [os] -]

Then we use a computer to find:

o0 _ [ 07 04 7071 [ .57143
~ 103 06 1| | .42857
Surprise! We get the same answer aswe did with acompletely differentinitial condition.

Is this just a coincidence? We will return to this example again in Chapter 3, where
concepts introduced therein will cast new light on this model. O

Calculating Power of Graph Vertices

ExAamMPLE 2.3.7. (Dominance Directed Graphs)Suppose you have incomplete data
about four teams who have played each other, and further that the matches only have a
winner and aloser, with no score attached. Given that the teams are identified by labels
1,2, 3, and 4 we could describe a match by apair of numbers (i, j) wherewe understand
that this means that team 7 played and defeated team j (no ties allowed). Here is the
given data:

{(1,2),(1,4),(3,1),(2,3),(4,2)}
Give areasonable graphical representation of this data.

SOLUTION. We can draw a picture of all the data that we are given by representing
each team, as a point called a “vertex” and each match by connecting two points with
an arrow, called a “directed edge”’, which points from the winner towards the loser in
the match. See Figure 2.3.2 for the picture that we obtain. O

Consider the following question relating to Example 2.3.7. Given this incomplete data
about the teams, how would we determine the ranking of each team in some reasonable
way? In order to answer this question, we are going to introduce some concepts from
graph theory which are useful modeling tools for many problems.

The data of Figure 2.3.2 is an example of a directed grapha modeling tool which can
be defined asfollows. A directed graph(digraph for short) isaset V', whose elements
are called vertices together with a set or list (to allow for repeated edges) E of ordered

Directed Graph
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Vertex 1 Edge 1 Vertex 2
Edge 3
Edge 2 Edge 4
Edge5
Vertex 4 Vertex 3

FIGURE 2.3.2. Datafrom Example2.3.7

pairswith coordinatesin V', whose elements are called (directed) edgesA nother useful
idea for us is the following: awalk in the digraph GG is a sequence of digraph edges
(vo,v1), (v1,V2), ..., (Um—1, V) Which goes from vertex v, to vertex v,,,. Thelengthof
thewalk ism.

Here is an interpretation of “power” that has proved to be useful in many situations,
including our own. The powerof avertex in adigraph is the number of walks of length
1 or 2 originating at the vertex. In our example, for instance, the power of vertex 1
is 4. Why only walks of length 1 or 2? For one thing, walks of length 3 introduce
the possibility of loops i.e., walks that “loop around” to the same point. It isn’t very
informative to find out that team 1 beat team 2 beat team 3 beat team 1. For another,
information more than two hops away isn’t very definitive. So we don’'t count it in the
definition of power.

The type of digraph we are considering has no edges from a vertex to itself (so-called
“self-loops’) and for a pair of distinct vertices at most one edge connecting the two
vertices. In other words, ateam doesn't play itself and plays another team at most once.
Such a digraph is called a dominance-directed graphAlthough the notion of power
of a point is defined for any digraph, it makes the most sense for dominance-directed

graphs.

ExAmMPLE 2.3.8. Find the power of each vertex in the graph of Example 2.3.7 and use
this information to rank the teams.

SOLUTION. In this example we could find the power of al points by inspection of
Figure 2.3.2. Let's do it: simple counting gives that the power of vertex 1 is 4, the
power of vertex 3 is 3, and the power of vertices 2 and 4 is 2. Consequently, teams 2
and 4 aretied for last place, team 3 isin second place and team 1 isfirst. |

One can imagine situations (like describing the structure of the communications net-
work pictured in Figure 2.3.3) where the edges shouldn’t really have a direction, since
connections are bidirectional. For such situations a more natural tool is the concept of
agraph which can be defined asfollows: agraphisaset V', whose elements are called
vertices together with a set or list (to alow for repeated edges) E of unorderedpairs
with coordinatesin V, called edges
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v & y
3 3
3 K 8
% e
A & ¢ & ‘3

FIGURE 2.3.3. A communication network graph.

Just as with digraphs, we define A walk in the graph G is a sequence of digraph
edges (vo,v1), (v1,V2), ..y (Vm—1,vm) Which goes from vertex v, to vertex v,,. The
lengthof the walk is m. For example, the graph of Figure 2.3.3 has vertex set V' =
{vl,v2,v3,v4,v5,v6}andedgesetE = {61,62,63,64,65,66,67,68},With€1 = (’Ul,UQ),
etc, asinthefigure. Also, the sequenceey, eq, ey isawak fromvertex v, to vy of length
2. Just as with digraphs, we can define the power of avertex in any graph as the number
of walks of length at most 2 originating at the vertex.

A very sensible question to ask about these examples: how could we write a computer
program to compute powers? More generally, how can we compute the total number of
walks of a certain length? Here is a key to the answer: al the information about our
graph (or digraph) can be stored in its adjacency matrix In general, this is defined to
be a square matrix whose rows and columns are indexed by the vertices of the graph
and whose (i, j)th entry is the number of edges going from vertex i to vertex j (it is0
if there are none). Here we understand that a directed edge of a digraph must start at
and end at j, while no such restriction applies to the edges of a graph.

Just for the record, if we designate the adjacency matrix of the digraph of Figure 2.3.2
by A and the adjacency matrix of the graph of Figure 2.3.3 by B, then

01010 1

0101 101001
0010 010010
A=17000| ™ B=17 4000 1
0100 00100 1
110110

Notice that we could reconstruct the entire digraph or graph from this matrix. Also
notice that in the adjacency matrix for a graph, an edge gets accounted for twice, since
it can be thought of as proceeding from one vertex to the other, or from the other to the
one.

For a general graph with n vertices and adjacency matrix A = [a;;], we can use this
matrix to compute powers of vertices without seeing a picture of the graph. To count
up the walks of length 1 emanating from vertex i: simply add up the elements of theith
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row of A. Now what about the paths of length 2? Observethat thereis an edgefromi to
k and then from k to j precisely when the product a ;;ar; is equal to 1. Otherwise, one
of the factorswill be 0 and therefore the product is 0. So the number of paths of length
2 from vertex i to vertex j isthe familiar sum

1015 + Q2025 + -+ -+ QinQnj

Thisisjust the (i, j)th entry of the matrix A2. A similar argument shows the following
fact:

THEOREM 2.3.9. If A is the adjacency matrix of the gragh, then the(i, j)th entry of
A" gives the number of walks of lengtlstarting at vertex and ending at vertex
Since the power of vertex i is the number of all paths of length 1 or 2 emanating from

vertex i, we have the following key fact:

THEOREM 2.3.10. If A is the adjacency matrix of the digragh, then the power of the
ith vertex is the sum of all entries in thid row of the matrix4 + A2.

ExAaMPLE 2.3.11. Use the preceding facts to calculate the powers of al the verticesin
the digraph of Example 2.3.7.

SOLUTION. Using the matrix A above we calculate that

010 1 0101770101 02 1 1

, |00 10 oo010flloo1o0] |1010
A+A =17 00 0ltl1000ll1 000|171 01
0100 0100|0100 0110

An easy way to sum each row is to multiply A + A2 on the right by a column of 1's,
but in this case we see immediately that the power of vertex 1 is 4, the power of vertex
3 is 3, and the power of vertices 2 and 4 is2, which is consistent with what we observed
earlier by inspection of the graph. O

Difference Equations

The idea of a difference equation has numerous applications in mathematics and com-
puter science. In the latter field, these equations often go by the name of “recurrence
relations.” They can be used for avariety of applications ranging from popul ation mod-
eling to analysis of complexity of algorithms. We will introduce them by way of a
simple financial model.

EXAMPLE 2.3.12. Supposethat you invest in acontractual fund that has the stipulation
that you must invest in the funds for three years before you can receive any return on
your investment (with a positive first year investment). Thereafter, you are vested in
the fund and may remove your money at any time. While you are vested in the fund,
annual returns are calculated as follows: money that was in the fund one year ago earns
nothing, while money that was in the fund two years ago earns 6% of its value and
money that was in the fund three years ago earns 12% of its value. Find an eguations
that describes your investment’s growth.
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SOLUTION. Let aj, be the amount of your investment in the kth year. The numbers
ag, a1, a2 represent your investments for the first three years (we're counting from 0.)
Consider the 3rd year amount a3. According to your contract, your total funds in the
3rd year will be

az = as + 0.06a; + 0.12ag

Now it's easy to write out a general formulafor a3 in terms of the preceding three
terms, using the same line of thought, namely

(2.3.1) Gf+3 = ap42 + 0.06ag+1 + 0.12a;,, k£ =0,1,2,...
Thisisthe desired formula. O

In general, a homogeneous linear difference equat{onrecurrence relatiohof order
m inthevariablesag, ay, ... isan equation of the form

Qktm + Cn—10ktm—1 + ...+ C1apy1 +coap =0, k=0,1,2,...

Notice that such an equation cannot determine the numbers ag, ay, ... ,ar_1. These
values haveto beinitially specified, just asin our fund example. Notice that in our fund
example, we haveto bring al terms of Equation 2.3.1 to the left hand side to obtain the
difference equation form

Ap4+3 — Ap4+2 — 0.060k+1 - 0.12ak =0
Now we seethat ¢ = —1,¢; = —0.06, and ¢cg = —0.12.

There are many ways to solve difference equations; we are not going to give acomplete
solution to this problem at this point — we postpone this issue to Chapter 5, where we
introduce eigenvalues and eigenvectors. However, we can now show how to turn a
difference eguation as given above into a matrix equation. We'll illustrate the key idea
with our fund example. The secret isto identify the right vector variables. To this end,
define an indexed vector x, by the formula

Qf+2
Xp=| ar+1 |, k=0,1,2,...
ag
We see that
Qp43
Xk+1 = Qp42
Q41
from which it is easy to check that since a3 = agy2 + 0.06ar41 + 0.12a;, we have
1 0.06 0.12
Xk+1 = 1 0 0 X = AXk
0 1 0

Thisis the matrix form we seek. Notice that it seems to have alot in common with the
Markov chains examined earlier in this section, in that we pass from one “ state vector”
to another by multiplication by afixed “transition matrix” A.
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2.3 Exercises

1. Let afunction of the vector variablex = (z1, z2) be given by the formula

T(x) = (1 + x2,2x, 420 — 1)
Show how to express this function as a matrix multiplication and deduce that it is a
linear function.

2. Provethatif A = i Z isarea 2 x 2 matrix, then the matrix multiplication

function maps a line through the origin onto a line through the origin or a point. Hint;
Recall that points on a non-vertical line through the origin have the form (x, mx).

3. Determine the effect of the matrix multiplication function T' 4 on the z-axis, y-axis,
and the points (+1, £1), where A is one of the following, and sketch your results.

10 0 -1 3 4
0—1} (b){—l 0}(‘:)%{—4 3}
oL 2] e[ 2 ] o2 4]

4. Use the definition of matrix multiplication function to show that if 74 = T, then
A = B. (See Exercise 7 of Section 2.)

@

5. Inpection of the graph in Figure 2.3.1 of the matrix multiplication function 7' 4 from
Example 2.3.3 suggests that this function has a fixed pointthat is, avector (z,y) such
that T4 ((z,y)) = (x,y). Describethis point on the graph and calculate it algebraically.

1 30 0
6. SupposeaMarkov chainhastransitionmatrix | 0 .4 1 | andinitia state | 1
9 30 0

(a) Calculate the second state vector of the system. (b) Use a computer to decide exper-
imentally whether or not the system tendsto a limiting steady state vector. If so, what
isit?

b .
d ,whereall entries
are between 0 and 1. Show how this matrix can be described using only two variables.

7. You are given that a Markov chain has transition matrix

8. You are given that the digraph G has vertex set V' = {1,2,3,4,5} and edge set
E = {(2,1),(1,5),(2,5),(5,4),(4,2),(4,3),(3,2)}. Do the following for the graph
G.

(a) Sketch apicture of the graph.

(b) Find the adjacency matrix of the graph.

(c) Find the power of each vertex of the graph. Which vertices are the strongest?

(d) Isthis graph a dominance-directed graph?
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9. A digraph has the following adjacency matrix:

10 0 1 0
00011
110 0 1
01110
11010

(a) Draw a picture of this digraph (this graph has some self-loops).

(b) Compute the power of each node and the total number of walks in the digraph of
length at most 5. Use a computer algebra system or calculator to help you with the
computations.

10. Find the adjacency matrix of the graph of Figure 2.3.3 and use it to determine the
total number of walks of length of length less than or equal to 3 starting at the node v g.

11. Convert the fourth order difference equation

Gfta — 205+3 + 342 — dagy1 + dap, =0
into vector form.
12. Suppose that in Example 2.3.12 you invest $1,000 initially (the zeroth year) and
no further amounts. Make a table of the value of your investment for years 0 to 12.
Also include a column which calculates the annual interest rate that your investment is

earning each year, based on the current and previousyears' value. What conclusionsdo
you draw? You will need a computer or calculator for this exercise.

2.4. Special Matrices and Transposes

There are certain types of matrices that are so important that they have acquired names
of their own. We are going to introduce some of these in this section, as well as one
more matrix operation which has proved to be a very practical tool in matrix analysis,
namely the operation of transposing a matrix.

Elementary Matrices and Gaussian Elimination

We are going to show a new way to execute the elementary row operations used in
Gaussian elimination. Recall the shorthand we used:

e E;; : The elementary operation of switching theith and;th rowsof the matrix.
e E;(c) : The elementary operation of multiplying theith row by the nonzero
constante.
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e E;;(d) : The elementary operation of addingd times thejth row to theith row.

From now on we will use the very same symbols to represent matrices. The size of the
matrix will depend on the context of our discussion, so the notation is ambiguous, but it
is still very useful.

NOTATION 2.4.1. An elementary matrixf size n is obtained by performing the corre-
sponding elementary row operation on the identity matrix I,,. We denote the resulting
matrix by the same symbol as the corresponding row operation.

EXAMPLE 2.4.2. Describe the following elementary matrices of sizen = 3:
(a) E13(=4), (b) E21(3), (c) Eoz, (d) Ei(1/2)

0 0
I; = 1 0
01

For part (a) we add —4 times the 3rd row of I'5 to itsfirst row to obtain

SOLUTION. We start with

OO =

(@]

(1 0 -4
Eis(-4)=]0 1 0

0 0 1

For part (b) add 3 timesthefirst row of I3 toits second row to obtain
[1 0 0 ]
|0 0 1 J

For part (c) interchange the second and third rows of I3 to obtain that

Eae |00 1]

[010J

Finaly, for part (d) we multiply the first row of I3 by 1/2 to obtain

1/2 0 0
aom=| "o 1o

What good are these matrices? One can see that the following fact is true:

THEOREM 2.4.3. LetC = BA be a product of two matrices and perform an elemen-
tary row operation onC. Then the same result is obtained if one performs the same
elementary operation on the matr and multiplies the result byl on the right.

Wewon't giveaformal proof of this statement, but it isn’t hard to see why it istrue. For
exampl e, suppose one interchanges two rows, say the ith and jth, of C' = B A to obtain
anew matrix D. How do we get the ith or jth row of C? Answer: multiply the corre-
sponding row of B by the matrix A. Therefore, we would obtain D by interchanging
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the ith and jth rows of B and multiplying the result by the matrix A, which is exactly
what the Theorem says. Similar arguments apply to the other elementary operations.

Now take B = I, and we see from the definition of elementary matrix and Theo-
rem 2.4.3 that the following is true.

COROLLARY 2.4.4. If an elementary row operation is performed on a matdx to Elementary
obtain a matrix4’, thenA' = EA, whereF is the elementary matrix correspondingto Operations as
the elementary row operation performed. Matrix

Multiplication

The meaning of this corollary is that we accomplish an elementary row operation by
multiplying by the corresponding elementary matrix on the left. Of course, we don’t
need elementary matrices to accomplish row operations; but they give us another per-
spective on row operations.

EXAMPLE 2.4.5. Express these calculations of Example 1.3.1 of Chapter 1 in matrix

product form:
2 -1 1 5 4 4 20
4 4 20|72 -1 1

ED|y 5By ]

1 1 ) 1 1 5 1 0 2
{o -3 —9]E2(_1/3 [o 1 3}&2(_1 {0 1 3]
SOoLUTION. One point to be careful about: the order of elementary operations. We

compose the elementary matrices on the left in that same order that the operations are
done. Thus we may state the above calculations in the concise form

T omcmcome [ ) ]

O

It is important to read this line carefully and understand how it follows from the long
form above. This conversion of row operationsto matrix multiplication will proveto be
very practical in the next section.

Some Matrices with Simple Structure

Certain types of matrices have aready turned up frequently in our discussions. For
example, the identity matrices are particularly easy to deal with. Another example is
the reduced row echelon form. So let us classify some simple matrices and attach names
to them. The simplest conceivable matrices are zero matrices. We have aready seen
that they are important in matrix addition arithmetic. What's next? For square matrices,
we have the following definitions, in ascending order of complexity.

DEFINITION 2.4.6. Let A = [a;;] beasquaren x n matrix. Then A is

e Scalarif a;; = 0 and a;; = a;; fordl i # j. (Equivalently: A = cI,, for some
scalar ¢, which explainsthe term “scalar.”)
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e Diagonalif a;; = 0 for al i # j. (Equivalently: the off-diagonal entries of A
are0.)

e (Upper) triangularif a;; = 0 for al ¢ > j. (Equivaently: the sub-diagonal
entriesof A are0.)

e (Lower) triangularif a;; = 0 for al i < j. (Equivalently: the super-diagonal
entriesof A are(.)

e Triangularif the matrix is upper or lower triangular.

e Strictly triangular if it istriangular and the diagonal entries are also zero.

SOLUTION. Theindex conditions that we use above have
simpleinterpretations. For example, theentry a;; withi >
j islocated further down than over, since the row number
is larger than the column number. Hence, it residesin the
“lower triangle” of thematrix. Similarly, theentry a;; with
i < j resides in the “upper triangle.” Entries a;; with
i = j reside adong the main diagonal of the matrix. See
the adjacent figure for a picture of these triangular regions - -
of the matrix. Figure 2.4.1: Matrix regions

ExAMPLE 2.4.7. Classify the following matrices (elementary matrices are understood
to be 3 x 3) inthe terminology of Definition 2.4.6.

10 0 2 0 0 11 2
@lo1 o ®M|o 20| @|0 1 4
00 —1 00 2 00 2

0 00 0 2 3
(d)[l -1 o] (e)lo 0 4] () E21(3) (9) E2(-3)
3 2 2 000

SOLUTION. Noticethat (a) is hot scalar, since diagonal entries differ from each other,
but it is a diagonal matrix, since the off-diagonal entries are all 0. On the other hand,
the matrix of (b) isreally just 273, so this matrix is a scalar matrix. Matrix (c) has all
terms below the main diagonal equal to 0, so this matrix is triangular and, specifically,
upper triangular. Similarly, matrix (d) is lower triangular. Matrix (€) is clearly upper
triangular, but it is aso strictly upper triangular since the diagonal terms themselves are
0. Finaly, we have

1 0 0 1 0 0
Exn(3)=|3 1 0| and Ex(-3)=|0 -3 0
0 0 1 0 0 1
sothat E»; (3) is (lower) triangular and E5(—3) isadiagona matrix. O

Hereis another kind of structured matrix that occurs frequently enough in applications
to warrant a name. In Example 1.1.5 of Chapter 1 we saw that an approximation to a
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certain diffusion problem led to matrices of the form

2 -1 0 0 0
1 2 -1 0 0

As=| 0 -1 2 -1 0
0 0 -1 2 -1

0 0 0 -1 2

If we want more accurate solutionsto the origina problem, we would need to solve sys-
tems with coefficient matrix A,,, wheren islarger than 5. Notice that the only nonzero
entries of such a matrix are those along the main diagonal, the entries along the first
subdiagonal and first superdiagonal. Such a matrix is called a tridiagonal matrix For-
mally speaking, these are the square matrices A = [a;;] suchthat a;; = 0ifi > j +1
orj>i+1.

Block matrices

Another type of matrix that occurs frequently enough to be discussed is a block matrix
Actually, we already used the idea of blocks when we describe the augmented matrix
of the system Ax = b asthematrix A = [A | b]. We say that A has the block or parti-
tioned form [A, b]. What we are really doing is partitioning the matrix A by inserting
avertical line between elements. There is no reason we couldn’t partition by inserting
more vertical lines or horizontal lines as well, and this partitioning leads to the blocks.
The main point to bear in mind when using the block notation is that the blocks must be
correctly sized so that the resulting matrix makes sense. The main virtue of the block
form that results from partitioning is that for purposes of matrix addition or multiplica-
tion, we can treat the blocks rather like scalars, provided the addition or multiplication
that results makes sense. We will use this idea from time to time without fanfare. One
could go through a forma description of partitioning and proofs;, we won't. Rather,
we'll show how this idea can be used by example.

ExAMPLE 2.4.8. Use block multiplication to simplify the following multiplication

SOLUTION. Hereisthe blocking that we want to use. It makes the column numbers of
the blocks on the left match the row numbers of the blocks on the right:

Hitl

We see that these submatrices are built from zero matrices and these blocks:

A:[IQyB:[IOLC:[Zl}

O W =
O =N
= o O
o OO
OO OO
o O OO
O = =N
— O

3 4 11
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Now we can work this product out by interpreting it as
A0 0 C| | A-040-0 A-C+0-1,
0 B 0 I, | | 0-0+B-0 0-C+B-L

0 0 4 3
=100 10 7
0 01 O

For another example of block arithmetic, examine Example 2.2.6 and the discussion
following it. There we view a matrix as blocked into its respective columns, and a
column vector as blocked into its rows, to obtain

O

T
Ax = [aj,ag,a3] | T2 | = ajz) + axzs + azzs
T3

Transpose of a Matrix

Sometimeswe would prefer to work with adifferent form of agiven matrix that contains
the same information. Transposes are operations that allow us to do that. The idea of
transposing is simple: interchange rows and columns. It turns out that for complex
matrices, there is an analogue which is not quite the same thing as transposing, though
it yields the same result when applied to real matrices. This analogue is called the
Hermitian transpose. Here are the appropriate definitions.

DEFINITION 2.4.9. Let A = [a;;] bean m x n matrix with (possibly) complex entries.
Then thetransposef A isthen x m matrix AT obtained by interchanging the rows and

columns of A4, so that the (i, j)th entry of AT isa;;. The conjugateof A is the matrix
A = [az;]. Finaly, the Hermitian transposef A isthe matrix A# = a

Notice that in the case of areal matrix (that is, a matrix with real entries) A thereis
no difference between transpose and Hermitian transpose, since in thiscase A = A.
Consider these examples.

ExAMPLE 2.4.10. Compute the transpose and Hermitian transpose of the following
matrices:
o[t 3] o2 i) e[ 1]
SOLUTION. For matrix (a) we have
{1 0 2]H: {1 0 Q}T: [(1) 2]
01 1 0 1 1 9 1

Notice, by the way how the dimensions of a transpose get switched from the original.
For matrix (b) we have
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and for matrix (c) we have

1 o1+ |7 10 1 140" 10
0 2i Tl 1= =2 |’ 0 2i Tl 1440 2
In this case, transpose and Hermitian transpose are not the same. O

Even when dealing with vectors alone, the transpose notation is rather handy. For ex-
ample, thereis abit of terminology that comes from tensor analysis (abranch of higher
linear algebraused in many fieldsincluding differential geometry, engineering mechan-
ics and relativity) that can be expressed very concisely with transposes:

DEFINITION 2.4.11. Letu and v be column vectors of the same size, say n x 1. Then  Inner and Outer
the inner productof u and v is the scalar quantity u”v and the outer productof u and Products
visthen x n matrix uv?.

= N

ExXAMPLE 2.4.12. Compute the inner and outer products of the vectorsu = [ —

3
andv=| 4 |.
1

SOLUTION. Here we have theinner product

3
uTv:[Q,—l,l][4] =2-3+(-1)4+1-1=3
1

[y

while the outer product is

[ 2 [ 2
uwl =1 -1 13,41=| -1.
] [ o

-|

3 2-
3 -1
3 1

Here are a few basic laws relating transposes to other matrix arithmetic that we have
learned. These laws remain correct if transpose is replaced by Hermitian transpose,
with one exception: (cA)H =cAH.

Laws of Matrix Transpose. Let A and B be matrices of the appropriate sizes
so that the following operations make sense, and ¢ ascalar. Then

1. (A+B)T = AT + BT

2. (AB)T = BT AT
3. (cA)T = cAT
4. (ATYT =4

These laws are easily verified directly from definition. For example, if A = [a;;] and
B = [b;;] arem x n matrices, then we have that (A + B)T isthe n x m matrix given
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by
(A+B)T = [agj +bi]" = [azi + by
= [aji] + [bji]
= A"+ BT
The other laws are proved similarly.

Wewill require explicit formulasfor transposes of the elementary matricesin somelater
calculations. Notice that the matrix E;; (c) is a matrix with 1's on the diagonal and 0’s
elsewhere, except that the (i, j)th entry is c. Therefore, transposing switches the entry ¢
to the (j, i)th position and leaves all other entriesunchanged. Hence E;; ()T = Eji(c).
With similar calculations we have these facts

° EZ; =E;;
e Ei(c)T = Ei(c)
o Eij(0)" = Eji(c)

These formulas have an interesting application. Up to this point we have only con-
sidered elementary row operations. However, there are situations in which elementary
columnoperations on the columnsof amatrix areuseful. If wewant to use such opera-
tions, do we have to start over, reinvent elementary column matrices, and so forth? The
answer is no and the following example gives an indication of why the transpose idea
is useful. This example shows how to do column operations in the language of matrix
arithmetic. In a nutshell, here's the basic idea: suppose we want to do an elementary
column operation on amatrix A corresponding to elementary row operation E to get a
new matrix B from A. To do this, turn the columns of A into rows, do the row operation
and then transpose the result back to get the matrix B that we want. In algebraic terms:

B = (EATYT = (AT)YTET = AET
So al we have to do to perform an elementary column operation is multiply by the
transpose of the corresponding elementary row matrix on theright. Thuswe see that the

transposes of elementary row matrices could reasonably be called elementary column
matrices.

ExAMPLE 2.4.13. Let A be agiven matrix. Suppose that we wish to express the result
B of swapping the second and third columns of A, followed by adding —2 times the
first column to the second, as a product of matrices. How can this be done? Illustrate
the procedure with the matrix.

1 2 -1
A_[l -1 2

SoLUTION. Apply the preceding remark twice to obtain that
B = AELE» (—2)" = AEy3E12(-2).
Thus we have

12 -1
B_[l -1 2}

as amatrix product. O

OO =
= o O
O = O
OO =
O =N
o O
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A very important type of specia matrix is one which isinvariant under the operation of
transposing. These matrices turn up naturally in applied mathematics. They have some
very remarkable properties that we will study in Chapters 4, 5 and 6.

DEFINITION 2.4.14. The matrix A is said to be symmetridf A7 = A and Hermitian
if AT = A. (EqUIvaIentIy, Qi = Qj; and a5 = @, for al Z.,j, I’%pectlvely)
From the laws of transposing elementary matrices above we see right away that F ;; and

E;(c) supply us with examples of symmetric matrices. Here are afew more.

EXAMPLE 2.4.15. Arethe following matrices symmetric or Hermitian?

1 14 2 1 1 1+
1—i 2]’@[1 3}’(‘:){1“ Zi]
SOLUTION. For matrix (a) we have

1 14017 1 1+ ]" 1 14
1—1 2 T 1-4 2 Tl 1-—14 2
Hence this matrix is Hermitian. However, it is not symmetric since the (1, 2)th and

(2, 1)th entries differ. Matrix (b) is easily seen to be symmetric by inspection. Matrix
(c) issymmetricsincethe (1, 2)thand (2, 1)th entries agree, but it isnot Hermitian since

114017 1 T+i 1" _ 1 14
1—i 2| " |T=i Z| ~|[1-i -2

and thislast matrix is clearly not equal to matrix (c). O

@

EXAMPLE 2.4.16. Consider the quadratic form
Q(z,y,2) = 2° +2y* + 22 + 2zy + yz + 3z2.

Express this function in terms of matrix products and transposes.

SOLUTION. Write the quadratic form as

[z 4+ 2y + 32
x(m+2y+32)+y(2y+z)+22:[x y z] 2y + z
z
1 2 3 T
:[x Y z] 0 2 1 y
|0 0 1 z

1 2 3
wherex = (x,y,z)andA= | 0 2 1 |. O
0 01
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Rank of the Matrix Transpose

An important question to ask is how the rank of a matrix transpose (or Hermitian trans-
pose) is connected to the rank of matrix. We focus on transposes. First we need the
following

THEOREM 2.4.17. Let A, B be matrices such that the produd® is defined. Then
rank AB < rank A

PROOF. Let E be aproduct of elementary matrices such that EA = R, where R
is the reduced row echelon form of A. If rank A = r, then the first » rows of A have
leading entries of 1, while the remaining rows are zero rows. Also, we saw in Chapter
1 that elementary row operations do not change the rank of a matrix since, according to
Corollary 1.4.9they do not changethe reduced row echelonform of amatrix. Therefore,

rank AB = rank E(AB) = rank(EFA)B =rank RB

Now the matrix RB has the same number of rows as R and the first r of these rows
may or may not be nonzero, but the remaining rows must be zero rows, since they result
from multiplying columns of B by the zero rows of R. If we perform elementary row
operations to reduce RB to its reduced row echelon form we will possibly introduce
more zero rowsthan R has. Consequently, rank RB < r = rank A, which completes
the proof. O

THEOREM 2.4.18. For any matrixA4,
rank A = rank AT

ProOOF. Asintheprevioustheorem, let E be aproduct of elementary matrices such
that EA = R, where R isthe reduced row echelon form of A. If rank A = r, then the
first r rows of R have leading entries of 1 whose column numbers form an increasing
sequence, while the remaining rows are zero rows. Therefore, RT = ATET isamatrix
whose columns have leading entries of 1 and whose row numbers form an increasing
sequence. Use elementary row operations to clear out the nonzero entries below each
column with aleading 1 to obtain a matrix whose rank is equal to the number of such
leading entries, i.e., equal to r. Thus, rank R7 = r.

From Theorem 2.4.17 we have that rank AT ET < rank AT It follows that
rank A = rank RT = rank AT ET < rank AT
If we substitute the matrix A7 for the matrix A in thisinequality, we obtain that
rank AT < rank(AT)? = rank A

It follows from these two inequalitiesthat rank A = rank AT, which iswhat we wanted
to show. O

It is instructive to see how a specific example might work out in the preceding proof.
For example, R might look like this, where an “x” designates an arbitrary entry,
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so that RT would look like this

1 0 0 0
01 0 0
Rf=|z 2 0 0
0 010
z z x 0

Thusif we use elementary row operationsto zero out the entries below a column pivot,
all entriesto theright and below this pivot are unaffected by these operations. Now start
with the leftmost column and proceed to the right, zeroing out al entries under each
column pivot. The result isamatrix that looks like

OO OO
OO OO
(e]

(e]
OO OO

0 0 0

Now swap rows to move the zero rows to the bottom if necessary and we see that the
reduced row echelon form of R has exactly as many nonzero rows as did R, that is, r
NnoNZzero rows.

A first application of thisimportant fact isto giveafuller picture of the rank of aproduct
of matrices than Theorem 2.4.17:

COROLLARY 2.4.19. If the productAB is defined, then
rank AB < min{rank 4,rank B}

PROOF. We know from Theorem 2.4.17 that
rank AB < rank A and rank BT AT < rank BT
Since BT AT = (AB)T, Theorem 2.4.18 tells us that
rank BT AT = rank AB and rank BT = rank B
Put all this together and we have
rank AB = rank BT AT < rank BT =rank B

It followsthat rank AB is at most the smaller of rank A and rank B, which iswhat the
corollary asserts. O

2.4 Exercises

1. Write out explicitly what the following 4 x 4 elementary matrices are;

(@) E24(3) (b) Er4 (€ B3(2) (d) Ej;(-1) () B3,

2. Describe the effects of these multiplications as column operations on the matrix A.
(& AE1> (b) AE13(—2) (c) AE>(—1)E14(3) (d) AE1En

Rank of Matrix
Product
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3. For each of the following matrices, identify al of the simple structure descriptions
that apply to the matrix.

00 0 2 1 4 2
(a)[O 0 3](b){§ (1)](c)13(d) 83}} (e)“) _(1)]
000 000 1

4. Caculate the matrix product AB using block multiplication, where

RS (I

S T Vv
10
1 1 1 1 -1 3 1
S‘{121] T‘{2 2] U=t 2 V_{Ol]
11
. . A C
5. Let A and B be square matrices and suppose that the matrix M = 0 D in
block form. Show that
A2 D
2
M _{ 0 Dz}
for some matrix D.
6. Interpret the calculation of Example 2.2.6 as a block multiplication.
1 2 1
7. Expresstherank 1 matrix | 0 0 0 | asan outer product of two vectors.
2 4 2

8. Expressthe following in the elementary matrix notation:

1 30 100 100 100
@010 ® |01 0| ©|01o0]| @]o0o 30
00 1 2 0 1 2 0 1 00 1

9. Compute the reduced row echelon form of the following matrices and express each
form as a product of elementary matrices and the original matrix.

1 1 0 2 1
(a)[ig} o1 1 (c)“}_g](d) 0 1
0 2 2 0 2
10. Compute the transpose and Hermitian transpose of the following matrices and de-
termine which, if any, are symmetric or Hermitian symmetric.

2 1 1 1 1 3
@[1 -3 2] ®|o 3 (c){_iQ}(d) 100
1 —4 30 2

11. Verify that the elementary matrix transpose law holdsfor 3 x 3 elementary matrix
Ey5(4).
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12. Answer True/False and give reasons:

(a) For matrix A and scalar ¢, (cA)H = cAH:

(b) Every diagonal matrix is symmetric.

(c) Therank of the matrix A may differ fromtherank of A7

(d) Every diagonal matrix is Hermitian.

(e) Every tridiagonal matrix is symmetric.

13. Show that atriangular and symmetric matrix must be a diagonal matrix.

A 0
0 B

15. Prove from definitionthat (A7) = A.

16. Expressthe quadratic form Q(z,y, z) = 222 + y2 + 22 + 2xy + 4yz — 6z inthe

matrix form x” Ax asin Example 2.4.16.

-2 1—2
0 3

18. Let A beanm x n matrix. Show that both A# A and AAH are Hermitian.

19. UseCorollary 2.4.19to provethat the outer product of any two vectorsisat most a
rank 1 matrix.

14. Show that if C' hasblock form C' = { ] ,thenrank C' = rank A +rank B.

17. Let A = [ } and verify that both A" A and AA™ are Hermitian.

20. Let A beasquare real matrix. Show the following:

(8) Thematrix B = 1(A + AT) is symmetric.

(b) The matrix C' = (A — AT) is skew-symmetric (amatrix C is skew-symmetridf
ct=-C)

(c) The matrix A can be expressed as the sum of a symmetric matrix and a skew-
symmetric matrix.

(d) With B and C' asin parts (a) and (b), show that for any vector x of conformablesize,
xT Ax = xT Bx.
2 2 —6
21. Use Exercise20toexpress A = | 0 1 4 | asasum of a symmetric and
0 0 1
a skew-symmetric matrix. What does part (d) of this exercise say about the quadratic
form Q( x) = xT Ax?
22. Find all 2 x 2 idempotent upper triangular matrices A (idempotent means A2 = A).

23. Show that ann x n strictly upper triangular matrix N is nilpotent. (It might help
to see what happensina2 x 2 and 3 x 3 casefirst.)

24. Let D beadiagona matrix with distinct entries on the diagonal and B = [b;;] any
other matrix matrix of the samesize. Show that DB = BD if andonly if B isdiagonal.
Hint: Compare (i, j)th
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2.5. Matrix Inverses

Definitions

We have seen that if we could make sense of “1/A”, then we could write the solution to
the linear system Ax = b assimply x = (1/4)b. We are going to tackle this problem
now. First, we need a definition of the object that we are trying to uncover. Notice that
“inverses’ could only work on one side. For example,

-1 -1
(1 2][ 1}:[1]:[2 3][ 1]
which suggeststhatboth [ 1 2 Jand[ 2 3 | should qualify asleft inverses of the
matrix _i , Since multiplication on theleft by them resultsinal x 1 identity matrix.
Asamatter of fact right and left inverses are studied and do have applications. But they
have some unusual properties such as non-uniqueness. We are going to focus on atype
of inversethat is closer to the familiar inversesin fields of numbers, namely, two-sided

inverses. These only make sense for square matrices, so the non-square example above
isruled out.

DEFINITION 2.5.1. Let A be a sgquare matrix. Then a (two-sided) inversdor A is a
square matrix B of the same size as A such that AB = I = BA. If such a B exigts,
then the matrix A is said to beinvertible

Of course, any non-square matrix is non-invertible. Square matrices are classified as
either “ singular’, i.e., non-invertible, or “ nonsingulaf, i.e., invertible. Since we will
mostly be concerned with two-sided inverses, the unqualified term “inverse” will be un-
derstood to mean a*“two-sided inverse.” Noticethat this definition isactually symmetric
in A and B. In other words, if Bisaninversefor A, then Aisaninversefor B.

Examples of Inverses

EXAMPLE 2.5.2. Showthat B = { 1 ] isaninversefor thematrix A = { 2 -1 } }

1 2 -1 1

SoLuTION. All we haveto do is check the definition. But remember that there are two
multiplications to confirm. (We'll show later that thisisn’t necessary, but right now we
are working strictly from the definition.) We have

2 -1][1 1 2-1-1-1 2-1-1-2
AB_[—l 1“1 2]_{—1-1“-1 —1~1+1-2}

:[(1)(”:1
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and similarly
BA— 11 2 -1 [1-2+41-(-1) 1-(-1)+1-1
1 2 -1 1] | 1-242-(-1) 1-(-1)+2-1
1 0
StHE
Thereforethe definition for inverseis satisfied, sothat A and B work asinversesto each
other. O

EXAMPLE 2.5.3. Show that the matrix A = [ } } ] cannot have an inverse.

SOLUTION. How do we get our handson a*non-inverse”? We try an indirect approach.
If A hadaninverse B, thenwe could alwaysfind asolutionto thelinear system Ax = b
by multiplying each side on the left by B to obtain that BAx = Ix = x = Bb, no
matter what right hand side vectbrwe used. Yet it is easy to come up with right hand

2
the resulting system is clearly inconsistent, there cannot be an inverse matrix B, which
iswhat we wanted to show. O

side vectors for which the system has no solution. For example, try b = { 1 . Since

The moral of this last exampleisthat it is not enough for every entry of a matrix to be
nonzero for the matrix itself to be invertible. Our next example yields a gold mine of
invertible matrices, namely any elementary matrix we construct.

ExAMPLE 2.5.4. Find formulasfor inverses of al the elementary matrices.

SoLUTION. Remember from Corollary 2.4.4 that left multiplication by an elementary
matriX is the same as performing the corresponding elementary row operation. Further-
more, from the discussion following Theorem 1.4.5 we see the following

e E;; : The elementary operation of switching the ;th and jth rows is undone by
applying E;;. Hence
EijEij = E,JE”I =1

so that E;; worksasitsowninverse. (Thisisrather like —1, since(—1)-(-1) =
. ]153 (¢) : The elementary operation of multiplying the ith row by the nonzero
constant ¢, is undone by applying E;(1/c). Hence
E;i(1/c)Ei(c) = Ei(1/c)Ei(c)I = I, and
Ei(c)Ei(1/c) = Ei(c)Ei(1/c)] =1
e FE;i(d) : The elementary operation of adding d times the jth row to the ith row
is undone by applying E;;(—d). Hence
Eij(—=d)Eij(d) = Eij(—d)Ei;(d)I = I, and
Eij(d)Eij(—d) = Eij(—=d)Eg;(d)I = I

Elementary
Matrix Inverses
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Specifically, in the case of 2 x 2 matrices, this means, eg., that E,, = { (1) (1) ]
10

}, while the matrix Ey; (—3) = { by

1 has an inverse
1 0

[ ;) ) } — Bx(3).

. [ 0
has an inverse

Laws of Inverses

Here are some of the basic |laws of inverse calculations.

Laws of Matrix Inverses. Let A, B, C' be matrices of the appropriate sizes
so that the following multiplications make sense, I a suitably sized identity
matrix, and ¢ anonzero scalar. Then

1. (Unigueness) The matrix A has at most one inverse, henceforth de-
noted as A~!, provided A isinvertible.

2. (DoubleInverse) If A isinvertible, then (A=) ™" = A.

3. (2/3 Rule) If any two of thethree matrices A, B and AB areinvertible,
then so isthe third, and moreover (AB) ~! = B=1 AL,

4. If Aisinvertible then (cA) ™! = (1/c)AL.

5. (Inverse/Transpose) If A is invertible, then (AT)~! = (4A~1)7 and
(AH)~L = (AHyH,

6. (Cancellation) Suppose A isinvertible. If AB = AC or BA = CA,
then B = C.

Notes: Observe that the 2/3 Rule reverses order when taking the inverse of a product.
This should remind you of the operation of transposing a product. A common mistake
is to forget to reverse the order. Secondly, notice that the cancellation law restores
something that appeared to be lost when wefirst discussed matrices. Yes, we can cancel
a common factor from both sides of an equation, but (1) the factor must be on the same
side and (2) the factor must be an invertible matrix.

Verification of Laws: Suppose that both B and C' work as inverses to the matrix A.
We will show that these matrices must be identical. For associativity of matrices and
identity laws give that

B =BI = B(AC) = (BA)C =IC =C

Henceforth, we shall write A=1 for the unique (two-sided) inverse of the square matrix
A, provided of coursethat thereisaninverseat al (remember that existence of inverses
is not a sure thing).

The double inverse law is a matter of examining the definition of inverse:
AA T =T=4714
showsthat A isan inverse matrix for A=1. Hence, (A~1)~! = A.

Now suppose that A and B are both invertible and of the same size. Use the laws of
matrix arithmetic and we see that

AB(B'AY) = ABB DA 1= ATA ' = A4 =T
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and that
(B'AWAB=B Y (A'A) B=B'IB=B'B=1

In other words, the matrix B—! A~! works as an inverse for the matrix AB, which is
what we wanted to show. We |eave the remaining cases of the 2/3 Rule as an exercise.

Suppose that ¢ is nonzero and perform the cal culation
(cA)(1/c)A™ = (c/c)AA™ =1-T=1
A similar calculation on the other side showsthat (cA) ! = (1/¢)A~L.

Next, apply the transpose operator to the definition of inverse (Equation 2.5.1) and use
the law of transpose products to obtain that

(Afl)TAT — IT =] = AT(Afl)T

This shows that the definition of inverseis satisfied for (A~1)7 relativeto A7, that is,
that (AT)~! = (A=), whichisthe inverse/transpose law. The same argument works
with Hermitian transpose in place of transpose.

Finaly, if A isinvertibleand AB = AC, then multiply both sides of this equation on
the left by A~! to obtain that

A‘l(AB) = (A‘lA)B =B = A‘l(AC) = (A‘lA)C =C
which is the cancellation that we want.

We can now extend the power notation to negative exponents.

NOTATION 2.5.5. Let A beaninvertiblematrix and k& a positiveinteger. Then we write
A7F=A71470. 47t

where the product is taken over & terms.

The laws of exponents that we saw earlier can now be expressed for arbitrary integers,

providedthat A isinvertible. Hereis an example of how we can use the various laws of
arithmetic and inversesto carry out an inverse calculation.

EXAMPLE 2.5.6. Let

SoLUTION. First we check that

100 1 2
I-4)=|010|-|01
00 1 00
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so that

(1 - 4)°

Il
1
|
ool
ol o
—
| I
| — |
coo
|
ool
|
ol o
| I |
| —— |
oo o
|
oo
|
oo
| I

0 2 0 -2 0 0 00
0 0 0 0 -1{=(000
i 0 0 0o 0 0 0 0 O

Now we do some symbolic algebra, using the laws of matrix arithmetic:
0=(T—-AP=(T—-A)(I?-2A+A*)=T—-34+34% - A3
Subtract al termsinvolving A from both sides to obtain that
3A—3A7 + A3 =A.31 -3A2 + A3 =ABI-3A+ A% =1
Since A(31 — 3A + A?) = (31 — 3A + A?) A, we see from definition of inverse that

1 -2 2
A1 =3I-34+A%2=]0 1 -1
0 0 1

O

Notice, by the way, that in the preceding example we were careful not to leave a “3”
behind when we factored out A from 3A. The reason is that 3 + 34 + A2 makes no
sense as a sum, since oneterm is a scalar and the other two are matrices.

Rank and Inverse Calculation

Although we can calculate a few examples of inverses such as the last example, we
really need a general procedure. So let’s get right to the heart of the matter. How can
we find the inverse of a matrix, or decide that none exists? Actually, we aready have
doneall the hard work necessary to understand computing inverses. The secret isin the
notion of reduced row echelon form and the attendant idea of rank. (Remember, we use
elementary row operations to reduce a matrix to its reduced row echelon form. Once
we have done so, the rank of the matrix is simply the number of nonzero rows in the
reduced row echelon form.) Let’s recall the results of Example 2.3.12:
[ (1) (1) g ] = Er2(—1)E>(—1/3)E21(—2)E1(1/4) Er2 [ i 411 2(1) ]

Now remove the last column from each of the matrices at the right of each side and we
have this result:

[ (1) ? } = E19(—1)Ey(—1/3)E (—2)E 1 (1/4)E» { i _éll ]
2 -1
4 4
Al = Ei5(—1)E2(—1/3)E21(—2)E1(1/4)E;

To prove this, we argue in the genera case as follows: let A be an n x n matrix and
suppose that by a succession of elementary row operations E1, Es | . .. , E}, we reduce

This suggeststhat if A = { ] , then
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A toits reduced row echelon form R, which happensto be I. In the language of matrix
multiplication, what we have obtained is

[ =EyEj_y-... - B A.

Now let B = EE,_1 - ...- E1. By repeated application of the 2/3 theorem, we see
that a product of any number of invertible matricesisinvertible. Since each elementary
matrix isinvertible, it followsthat B is. Multiply both sides of the equation I = BA by
B~!'toobtainthat B~'I = B~! = B~'BA = A. Therefore, A is the inverse of the
matrix B, henceisitself invertible.

Here's a practical trick for computing this product of elementary matrices on the fly:
form what we term the super-augmented matrpd | I]. Now, if we perform the ele-
mentary operation E on the super-augmented matrix we have the same result as

E[A|I]=[EA| EI = [EA | E]

So the matrix occupied by the I part of the super-augmented matrix is just the product
of the elementary matrices that we have used so far. Now continue applying elemen-
tary row operations until the part of the matrix originally occupied by A is reduced
to the reduced row echelon form of A. We end up with this schematic picture of our
caculations:

—_——
[A | 1B B B[R | B]

where R isthereduced row echelonformof Aand B = E Ej_ -.. .- E; isthe product
of the various elementary matrices we used, composed in the correct order of usage. We
can summarize this discussion with the following

Inverses Algorithm : Givenann x n matrix A, to compute A ~*:
1. Form the super-augmented matrix A = [A4 | I,,].
2. Reduce the first n columns of A to reduced row echelon form by per-
forming elementary operations on the matrix A resulting in the matrix
(R | B].
3. fR=1I,thenset A~! = B, else Aissingular and A~! doesnot exist.

ExXAMPLE 2.5.7. Usethe Inverses Algorithm to compute the inverse of Example 2.2.5,

1 2 0
A=]10 11
0 01

SOLUTION. Notice that this matrix is aready upper triangular. Therefore, as in Gauss-
ian elimination, it is a bit more efficient to start with the bottom pivot and clear out
entries abovein reverse order. So we compute

1 20100
[A|B]=]0 1 1 0 10
001001
12010 O 1001 -2 2
Ey(-1)| 0 1. 0 0 1 -1 El,z(—23 0100 1 -1
00100 1 0010 0 1

Super-
Augmented
Matrix
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So we concludethat A isindeed invertible and

=l ol
0 1

Lo |

O

Thereisasimple formulafor theinverse of ageneral 2 x 2 matrix A = [ Z 3 } . Set
D = ad — be. Itiseasy to verify that if D # 0, then

gl

D | —c a
EXAMPLE 2.5.8. Use the two by two inverse formula to find the inverse of the ma-
trix A = } _; } , and verify that the same answer results if we use the inverses
algorithm.

SOLUTION. First we apply the inverses algorithm.

R RS R L C ] R
el g Y s 1a)

[

—1
1 -1 2 1
Thus we have found that { 1 9 } =3 { 11 ] .

To apply theinverseformula, calculate D = 1-2 — 1 (—1) = 3. Swap diagonal entries
of A, negate the off-diagonal entries and divide by D to get the same result as we have
just obtained in the preceding equation for the inverse. O

The formula of the preceding example is well worth memorizing, since we will fre-
quently need to find the inverse of a2 x 2 matrix. Notice that in order for it to make
sense, we have to have D nonzero. The number D is called the determinanof the ma-
trix A. We will have more to say about this number in the next section. In our current
exampleit isfairly easy to seewhy A must have D # 0 in order for itsinverseto exist
if we look ahead to the next theorem. Notice in the above elementary operation calcu-
lations that if D = 0 then elementary operationson A lead to a matrix with a row of
zeros. Therefore, the rank of A will be smaller than 2. Hereisasummary of our current
knowledge of the invertibility of a square matrix.

Conditions for THEOREM 2.5.9. The following are equivalent conditions on the square n matrix
Invertibility — A:

1. The matrixA4 is invertible.

There is a square matri® such thatBA = 1.

3. Thelinear systerx = b has a unique solution for every right hand side vector
b.

4. Thelinear systemx = b has a unigue solution for some right hand side vector
b.

5. The linear systemix = 0 has only the trivial solution.

N
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6. rank A = n.
7. The reduced row echelon form dfis I,,.
8. The matrixA4 is a product of elementary matrices.

PROOF. The method of proof hereis to show that each condition implies the next,
and that the last condition impliesthe first. This connectsall the conditionsin acircle,
so that any one condition will imply any other and therefore all are equivalent to each
other. Hereis our chain of reasoning:

(1) implies (2): Assume A isinvertible. Then the choice B = A~! certainly satisfies
condition (2).

(2) implies (3): Assume (2) istrue. Given asystem Ax = b, we can multiply both sides
ontheleftby B togetthat x = Ix = BAx = Bb. Sothereisonly one solution, if any.
On the other hand, if the system were inconsistent then we would haverank A < n. By
Corollary 2.4.19 rank BA < n, contradicting the fact that rank I,, = n. Hence, there
is asolution, which proves (3).

(3) implies (4): This statement is obvious.

(4) implies (5): Assume (4) istrue. Say the unique solution to Ax = b isx,. If the
system Ax = 0 had a nontrivial solution, say z, then we could add z to x to obtain a
different solution x + z of the system Ax = b (check: A(z + xo) = Az + Axy =
0 + b = b.) Thisisimpossible since (4) istrue, so (5) follows.

(5) implies (6): Assume (5) is true. We know from Theorem 1.4.15 of Chapter 1 that
the consistent system Ax = 0 has a unique solution precisely when the rank of A isn.
Hence (6) must be true.

(6) implies (7): Assume (6) is true. The reduced row echelon form of A is the same
sizeas A, that isn x n, and must have arow pivot entry 1 in every row which must be
the only nonzero entry in its column. This exactly describes the matrix I ,,, so that (7) is
true.

(7) implies (8): Assume (7) is true. We know that the matrix A is reduced to its re-
duced row echelon form by applying a sequence of elementary operations, or what
amounts to the same thing, by multiplying the matrix A on the left by elementary
matrices By, Es,... ,E, say. Then E1E, ... E; A = I. But we know from Exam-
ple 2.5.4 that each elementary matrix is invertible and that their inverses are them-
selves elementary matrices. By successive multiplications on the left we obtain that
A=E;'E; ", ... E{'I, showing that A isaproduct of elementary matrices which is
condition (8).

(8) implies (1): Assume (8) is true. Repeated application of the 2/3 Inverses Rule
shows that the product of any number of invertible matrices is itself invertible. Since
elementary matrices are invertible, condition (1) must be true. O

Thereis an interesting consegquence to Theorem 2.5.9 that has been found to be useful
in some contexts. It's an either/or statement, so it will always have something to say
about any square linear system. This type of statement is sometimes called a Fredholm
alternative Many theorems go by this name, and we'll state another onein Chapter 5.
Notice that a matrix is not invertible if and only one of the conditions of the Theorem
fail. Certainly it is true that either a square matrix is invertible or not invertible. That's

Fredholm
Alternative
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all this Fredholm alternative really says, but it uses the equivalent conditions (3) and (5)
of Theorem 2.5.9to say it in a different way:

COROLLARY 2.5.10. Given a square linear systerix = b, either the system has a
unique solution for every right hand side vectoor there is a nonzero solutian = x
to the homogeneous systeir = 0.

We conclude this section with an application of the matrix algebra developed so far to
the problem of solving nonlinear equations. Although we focus on two equations in
two unknowns, the same ideas can be extended to any number of equationsin as many
unknowns.

Recall that we could solve the one variable (usually nonlinear) equation f(z) = 0 for
a solution point z; at which f(z1) = 0 from a given “nearby” point zo by setting
dx = r1 — xo, and assuming that the changein f is

Af = fz1) = flzo) = —f (o)
~ df = f'(xo) dz = f'(z0)(z1 — o).
Now solvefor z; inthe equation —f(zo) = f'(z0)(z1 — o) and get the equation

o = 2y — (o)
f'(@o)
Replace 1 by n 4+ 1 and 0 by n to obtain the famous Newton formula:
251 nil = Tp —
(25.1) Tpt1 =T F(@n)

Theideais to start with z, use the formulato get z; and if f(z1) is not close enough
to 0, then repeat the calculation with z; in place of z(, and so forth until a satisfactory
value of z = =z, isreached. How does this relate to a two variable problem? We
illustrate the basic ideain two variables.

ExXAMPLE 2.5.11. Describe concisely an algorithm analogous to Newton's method in
Newton’s  one variable to solve the two variable problem
Method for

2,02
Systems x” +y° + sin(zy)

ze"tY —ysin(z +y) = 0
SOLUTION. Our problem can be written as a system of two (nonlinear) equations in
two unknowns, namely
f(z,y) = 2% + 3% +sin(ay) —1=0
g(z,y) = ze® Y —ysin(z +y) =0

Now we can pull the same trick with differentials as in the one variable problem by
setting dz = x; — o, dy = y1 — yo, Where f(z1, y1) = 0, approximating the changein
both f and g by differentials, and recalling the definition of these differentialsin terms
of partial derivatives. Thisleadsto asystem

fw(x07y0) dx + fy(x07y0) dy = _f((x():yo)
92 (0, y0) dx + gy(x0,Y0) dy = —g((z0,Y0)
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Next, write everything in vector style, say
F(X):|:f(x):|, X(O):|:-TO:|,X(1):|:1'1:|
9(x) Yo Y1
Now we can write the vectordifferentialsin the forms

dF = df], anddx:{dm}:{ml_mo}:x(l)—x(o)
dg dy Y1 — To

The original Newton equations now look like a matrix multiplication involving d x, F
and amatrix of derivatives of F, namely the so-called Jacobian matrix

_ Jz(T0,%0) fy(l"o,yo)
T (@0, 90) = [ 92(%0,Y0) gy(%;yo) }

Specifically, we see from the definition of matrix multiplication that the Newton equa-
tions are equivalent to the vector equations

dF = Jp(xo) dx = —F(x(?)

Thus we obtain that if the Jacobian matrix is invertible then
xM — x0 =dx = —Jp(x0) T F©)
whence by adding x¢ to both sides we see that
x(1 — x(0) _ JF(X(O))*l F(X(O))
Now replace 1 by n + 1 and 0 by n to obtain the ever famous Newton formulain vector
form:
x(t+) — () _ Jr( X(n))fl F( X(n))

Thisisabeautiful analogy to the Newton formulaof (2.5.1) which would not have been
possible without the language of vectors and matrices. O

2.5 Exercises

1. Findtheinverse of the following matrices, or show that it does not exist:

1 -2 1 111 2 —2 1
(a)[ 0 20](b)[ 011](@[0 20]

1 01 10 1 2 0 1

2 1 0 0

01 -2 1 1 2+ 1 a
@ 1o0 20 (e)[i 2}(“)[@1}

00 01

2. Given the matrix A and vector b, find the inverse of the matrix A and use this to
solvethe system Ax = b, where

L -2 1 3 0101 o

@A=| 0 2 0|,b=|0]| A= b=
o1 . 0010 1
000 1 0

Newton’s
Formula in
Vector Form
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3. Solvethe following systems by inverting the coefficient matrix of the system.

@ 2¢0+3y = 7 O3z +6z2—2z3 = -4 (CQz1+z2 = -2
T+ 2y = -2 2z +ast+a3 = 3 bry+2z = 5
I3 = 1

4. Find 2 x 2 matrices A, B and C suchthat AB = CAbut B # C.

[ 1 2 -3 ] [ 1 0 0 2 ]
5. FindA 'BifA=]0 -1 1 |andC=|0 -1 1 17.
[ 2 5 -6 J [ 2 0 -6 0 J
6. Determine the inverses for the following matrices in terms of the parameter ¢ and
conditions on ¢ for which the matrix has an inverse.

1 2 ¢ 1 0 0 1

1 2 0 -1 0 0

@ c_l}(b)lgéil R
0 0 0 ¢

7. Prove from the definition that if a square matrix A satisfies the equation A2 — 24 +
31 = 0, then the matrix A must beinvertible.

8. Express the following matrices and their inversesin the notation of elementary ma-
trices.

1 00 1 0 0 01 1 -2 0
@13 1 0] (b [ 0 2 ] ©|0 1 0] @d|]O0O 10
0 01 1 00 0 01
9. Show directly from the definition of inverse that the two by two inverse formula
givestheinverseof a2 x 2 matrix.

10. Assume that the product of invertible matrices is invertible and deduce that if A
and B are invertible matrices of the same size and both B and AB are invertible, then
sois A.

11. Let A bean invertible matrix.
(8) Show that if the product of matrices AB is defined, then rank(AB) = rank(B).
(b) Show that if BA isdefined, thenrank(BA) = rank(B).

A B
0 C
matrices. Find aformulafor M —! interms of A, B, C. Hint: Assume M ~! hasthe
same form as M and solve for the blocksin A using MM ~' = 1.

12. Suppose the matrix M = ] , Where the blocks A and C' are invertible

13. Verify that for any square matrix IV and positiveinteger k that (I+ N+ N2 +...+
N*¥-1)(I = N) =1 — N*.

14. Usethe Exercise 13 to find aformulafor the inverse of the matrix I — NV, where N
isnilpotent, i.e., N* = 0 for some positive k. Test this formula on the matrices

1 -1 2 10 1 00
@ |0 11 (b)[Ql} |0 10
0 0 1 B 1 01
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15. Useacalculator to apply the Newton formula (Equation (2.5.1)) to the one variable
problem

2% +sin’(z) = 1

starting with 2o = 1/2 and performing three iterations. Remember to first rewrite the
equation intheform f(z) = 0. What isthe value of f(z3)?

16. Solve the nonlinear system of equations of Example 2.5.11 by using four iterations
of the vector Newton formula (2.5), starting with the initial guess xo = (1/2,1/2).
How small is F'(x4)? You will need a reasonably competent calculator or a computer
agebraprogram to do this exercise.

17. Find the minimum value of thefunction F'(z,y) = (2 +y+1)>+2* +y* by using
the Newton method to find critical points of the function F'(x, y), i.e., points where the
system f(z,y) = Fi(x,y) = 0 and g(z,y) = Fy(z,y) = 0.

18. Show that if the product of matrices B A isdefined and A isinvertible, thenrank(BA) =
rank(B)

19. Showthat if D isann xn diagonal matrix with nonzerodiagonal entriesA 1, Az, ... , An,
thentheinverseof D isthen xn diagonal matrix with diagonal entries1/\1,1/Aa, ... ,1/\,.

2.6. Basic Properties of Determinants

What are they?

Many students have already had some experience with determinants and may have used

them in high school to solve square systems of equations. Why have we waited until

now to introduce them? In point of fact, they are not really the best tool for solving

systems. That distinction goes to Gaussian elimination. Were it not for the theoretical
usefulness of determinants they might be consigned to a footnote in introductory linear

algebratexts as an historical artifact of linear algebra.

To motivate determinants, consider Example 2.5.8. Something remarkable happened in
that example. Not only were we able to find aformulafor the inverse of a2 x 2 matrix
A= Ccl Z , but we were able to compute asingle number D = ad — bc that told us
whether A was invertible or not. The condition of non-invertibility, namely that D = 0,
has a very simple interpretation: this happens exactly when one row of A isamultiple
of the other, since the example showed that this is when elementary operations use the
first row to zero out the second row. Can we extend thisidea? Is there a single number

that will tell us whether or not there are dependencies among the rows of the square
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matrix A that cause its rank to be smaller than its row size? The answer is yes. This
is exactly what determinants were invented for. The concept of determinant is subtle
and not intuitive, and researchers had to accumulate a large body of experience before
they were able to formulate a “correct” definition for this number. There are aternate
definitions of determinants, but the following will suit our purposes. It is sometimes
referred to as “ expansion down the first column.”

DEFINITION 2.6.1. The determinantof a square matrix n x n matrix A = [a;;] is
the scalar quantity det A defined recursively as follows: if n = 1thendet A = aq1;
otherwise, we suppose that determinants are defined for al square matrices of size less
than n and specify that

detA = Z a1 (—1)F T My (A)
k=1

allMll(A) — a21M21 (A) + ...+ (—1)"+1an1Mn1 (A)

where M;;(A) isthe determinant of the (n — 1) x (n — 1) matrix obtained from A by
deleting the ith row and jth column of A.

Caution: The determinant of amatrix A isascaar number. It is notamatrix quantity.
EXAMPLE 2.6.2. Describe the quantities M, (A) and Mas (A) where

2 1 0
A=|1 1 -1 ].
0 1 2
SOLUTION. If we erase the second row and first column of A we obtain something like
]
[ 1 2]

Now collapse the remaining entries together to obtain the matrix
10
1 2|

Moy (A) :det{ 1o ]

Therefore

1 2
Similarly, erase the second row and column of A to obtain

. 2]

Now collapse the remaining entries together to obtain

Mas(A) = det { 2y ]

O

Now how do we cal cul ate these determinants? Part (b) of the next example answersthe
question.
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EXAMPLE 2.6.3. Use the definition to compute the determinants of the following ma-
trices:

2 1 0

b
@ [-1] (b){“ ] )11 1
¢ d 01 2

SOLUTION. (@) From thefirst part of the definition we see that

det[—4] = —4
a b ail a12 .
For (b) weset A = = and use the formulaof the definition to
c d az1 a2
obtain that

b
det |: Z d j| = CL11M11(A) — (],21]\/[21(/1)

= adet[d] — cdet[b]
=ad—cb

This calculation gives a handy formulafor the determinant of a2 x 2 matrix. For (c)
use the definition to obtain that

2 1 0
det[l 1 —1]:2det {1 _1}—1det {1 0]+0det [1 0 ]
1 2 1 2 1 -1
01 2
=2(1-2—1-(-1)—1(1-2—=1-0)+0(1-(=1)—1-0)
=2.3-1-240-(-1)
=4
A point worth observing hereis that we didn’t really have to calculate the determinant

of any matrix if it is multiplied by a zero. Hence, the more zeros our matrix has, the
easier we expect the determinant calculation to be! O

NOTATION 2.6.4. Another common symbol for det A is|A|, which is also written with
respect to the elements of A by suppressing matrix brackets:

a1 a2 - Gip

G21 Q22 - G2p
det A= |A| =

an1 Ap2 ot Anpn

This notation invites a certain oddity, if not abuse, of language: we sometimes refer
to things like the “second row” or “(2, 3)th element” or the “size” of the determinant.
Yet the determinant is only a number and doesn’t really have rows or entries or a size.

Rather, it is the underlying matrix whose determinant is being calculated that has these
properties. So be careful of this notation; we plan to use it frequently because it's
handy, but you should bear in mind that determinants and matrices are not the same
thing! Another reason that this notation can be tricky is the case of a one dimensional

matrix, say A = [a11]. Hereit is definitely notagood idea to forget the brackets, since
we dready understand |a;,| to be the absolute value of the scalar a1, a nonnegative
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number. Inthe 1 x 1 case use |[a11]| for the determinant, which is just the number a1
and may be positive or negative.

NOTATION 2.6.5. The number M ;;(A) is called the (4, j)th minor of the matrix A.
If we collect the sign term in the definition of determinant together with the minor we
obtain the (4, j)th cofactord;; = (—1)*"7 M;;(A) of the matrix A. In the terminology
of cofactors,

det A = Z aklAkl

k=1
Laws of Determinants

Our primary goa here is to show that determinants have the magical property we
promised: a matrix is singular exactly when its determinant is 0. Along the way we
will examine some useful properties of determinants. Thereis alot of clever algebra
that can be done here; we will try to keep matters straightforward (if that’s possible with
determinants). In order to focus on the main ideas, we will place most of the proofs of
key facts at the end of the next section for optional reading. Also, a concise summary of
the basic determinantal lawsis given at the end of this section. Unless otherwise stated,
we assume throughout this section that matrices are square, and that A = [a;;] iSan
n X n matrix.

For starters, let’s observe that it's very easy to calculate the determinant of upper trian-
gular matrices. Let A besuchamatrix. Thenag, =0if k> 1,0

a1 a2 G1n G22 a23 G2n
a2 -+ Q2p 0 a3 asn
det A = = a1
0 0 Ann 0 0 Ann
= =0a11 022" ... Qnn

Hence we have established our first determinantal |aw:

D1 If A isan upper triangular matrix, then the determinant of A is the product of all
the diagonal elements of A.

4 4 1 1
0o -1 2 3

EXAMPLE 2.6.6. Compute D = 0 0 2 3 and|I,,| = det L,.
0O 0 0 2

SOLUTION. By D1 wecandothisat aglance: D =4-(—1)-2-2 = —16. Since I,,
isdiagonal, it is certainly upper triangular. Moreover, the entries down the diagonal of
thismatrix are 1's, so D1 impliesthat |I,,| = 1. O

Next, suppose that we notice a common factor of the scalar ¢ in arow, say for conve-
nience, the first one. How does this affect the determinantal calculation? In the case
of a1l x 1 determinant, we could simply factor it out of the origina determinant. The
genera situation is covered by this law:



100 2. MATRIX ALGEBRA

D2: If B isobtained from A by multiplying onerow of A by the scalar ¢, thendet B =
c-det A.

Hereisasimpleillustration:

EXAMPLE 2.6.7. Compute D =

O Ot Ot
O ot O
N Ot O

SOLUTION. Put another way, D2 says that scalars may be factored out of individual
rows of adeterminant. So use D2 on the first and second rows and then use definition
of determinant to obtain

5 0 10 1 0 2 1 0 2
55 5 |=5|5 5 5|=5-5-|]1 11
0 0 2 0 0 2 0 0 2
11 0 2 0 2
_25-<1-‘0 9 —1-‘0 2‘+0- 1 1D_50
One can easily check that this is the same answer we get by working the determinant
directly from definition. O

Next, suppose we interchange two rows of a determinant. Then we have the following:
D3: If B isobtained from A by interchanging two rows of A, then det B = — det A.

ExAMPLE 2.6.8. Use D3 to show the following handy fact: if a determinant has a
repeated row, then it must be 0.

SOLUTION. Suppose that the ith and jth rows of the matrix A are identical, and B
is obtained by switching these two rows of A. Clearly B = A. Yet, according to D3,
det B = —det A. It followsthat det A = —det A4, i.e,, if we add det A to both sides,
2-det A =0, sothat det A = 0, whichiswhat we wanted to show. O

Now we ask what happensto a determinant if we add a multiple of one row to another.
The answer is asfollows.

D4. If B isobtained from A by adding a multiple of onerow of A to another row of A,
then det B = det A.
4
-1
0
0

EXAMPLE 2.6.9. Compute D =

OO ==
=N DN =
N W W

SoLuTION. What D4 redlly says is that any elementary row operation E;;(c) can be
applied to the matrix behind a determinant and the determinant will be unchanged. So
in this case, add —1 times the first row to the second and —1/2 times the third row to
the fourth, then apply D1 to obtain

1 41 1 1 41 1

1 -1 2 3 0 -5 1 2 1

0 02 3| |0 0 2 3_1(_5)'2'5__5
0 0 1 2 0 0 0 1/2
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ExXAMPLE 2.6.10. Use D3 to show that a matrix with a row of zeros has zero determi-
nant.

SOLUTION. Suppose A has arow of zeros. Add any other row of the matrix A to this
zero row to obtain amatrix B with repeated rows. O

We now have enough machinery to establish the most important property of determi-
nants. First of al, we can restate laws D2-D4 in the language of elementary matrices as
follows:

e D2: det(E;(c)A) = ¢ - det A (remember that for E;(c) to be an elementary
matrix, ¢ # 0.)

e D3: det(E”A) =—detA4

o D4: det(E;j(s)A) =det A

Apply a sequence of elementary row operations on the n. x n matrix A to reduce it to
its reduced row echelon form R, or equivaently, multiply A on the left by elementary
matrices B, E», ... , E} and obtain

R=EE,...E,A
Take determinant of both sides to obtain
det R = det(E; E-> . .. E, A) = £(nonzeroconstant) - det A

Therefore, det A = 0 precisely when det R = 0. Now the reduced row echelon form
of A iscertainly upper triangular. In fact, it is guaranteed to have zeros on the diagonal,
and therefore have zero determinant by D1, unlessrank A = n, inwhichcase R = I ,,.
According to Theorem 2.5.9 this happens precisely when A isinvertible. Thuswe have
shown:

D5: Thematrix A isinvertibleif and only if det A # 0.

ExXAMPLE 2.6.11. Determine if the following matrices are invertible or not without
actudly finding theinverse:

2 1 0 2 1 0
@){1 1 -1 b)) 1 1 -1
01 2 0 -1 2

SoLUTION. Compute determinants:

2 1 0 1 -1 1 0
1 1 -1 (=2 1 9 -1 1 2
0 1 2
=2.3-2=4
and
2 1 0 1 -1 1 0
11 -1 =2 | o |=-1| ] o
0 -1 2
=2-1-1-2=0

Hence by D5 matrix (a) isinvertible and matrix (b) is not invertible. O
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There are two more surprising properties of determinants that we now discuss. Their
proofsinvolve using determinantal properties of elementary matrices (see the next sec-
tion for details).

D6: Given matrices A, B of the same size,
det AB = det Adet B

10
11 } and B = [
How do det(A + B) and det A + det B comparein this case?

EXAMPLE 2.6.12. Verify D6 in the case that A = { 3

—_
[

SOLUTION. Wehaveeasily that det A = 1 anddet B = 2. Therefore, det A+det B =
1+ 2 = 3,whiledet A - det B =1 - 2 = 2. On the other hand

=3 8] (2 4] [3 ]
aen=[1 4]+ [5 1)1 4]

sothat det AB=2-3—4-1=2=det A-det B, asexpected. On the other hand we
havethat det(A + B) =3-2—1-1=5 # det A + det B. O

This example raises a very important point.

Caution: Ingenerd, det A + det B # det(A + B), though there are occasional excep-
tions.

In other words, determinants do not distribute over sums. (It is true, however, that the
determinant is additive in one row at a timeSee the proof of D4 for details.)

Finally, we ask how det A” compares to det A. Try asimple case like the 2 x 2 and
we discover that there seems to be no difference in determinant. This is exactly what
happensin general.

D7: For all square matrices A, det AT = det A.

4 0 00
41 00
EXAMPLE 2.6.13. Compute D = 1 2 -2 0
10 1 2

SoLUTION. By D7 and D1wecandothisataglancee D =4-1-(-2)-2=-16. O

D7isavery useful fact. Let'slook at it from this point of view: transposing amatrix in-
terchanges the rows and columns of the matrix. Therefore, everything that we have said
about rows of determinants applies equally well to the columns, including the defini-
tion of determinant itselfTherefore, we could have given the definition of determinant
in terms of expanding across the first row instead of down the first column and gotten
the same answers. Likewise, we could perform elementary column operations instead
of row operations and get the same results as D2-D4. Furthermore, the determinant
of alower triangular matrix is the product of its diagonal elements thanksto D7+D1.
By interchanging rows or columns then expanding by first row or column, we see that
the same effect is obtained by simply expanding the determinant down any column or
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across any row. We have to alternate signs starting with the sign (—1) “+7 of the first
term we use.

Now we can really put it all together and compute determinants to our heart’s content
with a good deal less effort than the origina definition specified. We can use D1-D4
in particular to make a determinant calculation no worse than Gaussian elimination in
the amount of work we have to do. We simply reduce a matrix to triangular form by
elementary operations, then take the product of the diagonal terms.

3 0

6
EXAMPLE 2.6.14. Calculate D = }
0

— N =
N OO
O O NS

SOLUTION. We are going to do this calculation two ways. We may as well use the
same elementary operation notation that we have employed in Gaussian elimination.
Theonly differenceisthat we have equality instead of arrows, provided that we modify
the value of the new determinant in accordance with the laws D1-D3. So here is the
straightforward method:

10 2 2 10 2 2
1021 00 0 -1
D=3l 9 0 0 1 E21(_1)300—4 3
120 0] gy 02 2 2

En (1)

10 2 2

02 2 2

Fo SBlo 0 -4 —3|T7H
00 0 -1

Hereisanother approach: |et's expand the determinant down the second column, sinceit
ismostly 0’s. Remember that the signin front of thefirst minor must be (—1) *+2 = —1.
Also, the coefficients of thefirst three minorsare 0, so we need only write down the last
one in the second column:

3
D=+2|1
2
Expand down the second column again:

11 3 6
D_2<—6 9 1‘+2‘2 ID

Summary of Determinantal Laws

Now that our list of the basic laws of determinants is complete, we record them in a
concise format which includestwo laws (D7 and D8) to be discussed in the next section.



104

2. MATRIX ALGEBRA

D1.

D2:
D3:
D4:
D5:
D6:
D7.
D8:
D9:

Laws of Determinants. Let A, B ben x n matrices. Then

If A isan upper triangular matrix, then det A is the product of al the
diagonal elementsof A.

det(E;i(c)A) = ¢ - det A (herec #0.)

det(EijA) = —det A.

det(E;;(s)A) = det A.

Thematrix A isinvertibleif and only if det A # 0.

det AB = det A det B.

det AT = det A.

AadjA = (adj A)A = (det A)I.

If det A # 0, then AL = 11 adj A.

2.6 Exercises

1. Compute al minorsand cofactors for these matrices:

@ [i é _” o 51 @'

2. Compute these determinants and determine which of these matrices whose are in-

vertible.
5 _q 1 -1 0 110 é _i 3
)] 1 1 ‘ ()]0 1 11 (©|1 0 1] 0 0 2
0 0 1+ 2 01 9 3 4
1 -1 4 2 1 1 0 1 1 1 0 1
0 1 0 3 1 2 11 1 2 11 cos 6
@ o 027(f)0013(g)0013(h)‘—sin9
-2 3 4 6 11 2 1 0 0 2 0
3. Verify the determinants laws D6 and D7 for the following matrices:
[ -2 1 0 [ 1 0 1
A= 1 2 1 B = 1 2 0
. 0 0 1 | -1 0 1
a b 0 0
: c d 0 0| |a b e f
4. Verify that 00 e f|™ d‘ h
0 0 g h

DN W N

sin @
cos 6

5. Usedeterminantsto find conditions on the parametersin these matrices under which
the matrices are invertible.

a

@ ab

. 11 -1 A-1 0 0
1] |1 c¢ 1| ©| 1 r-2 1
00 1 3 1 A-1
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0 1
(d) Al —
—Cp —C

6. Let

V=
1 xo x%

(Such amatrix is called aVandermondenatrix.) ) Expressdet V' asaproduct of factors
(z; — z1). Hint: Use elementary operationsto clear the first column and factor out as
many (z; — xy) as possiblein the resulting determinant.

7. Usethe determinantal law D6 to show that det A det A~ = 1if A isinvertible.
8. Show by examplethat det A # det A and provethat in general det A = det A.

9. Use the determinantal laws to show that any matrix with a row of zeros has zero
determinant.

10. If Aisab x 5 matrix, theninterms of det(A), what can we say about det(—2A)?
det(A~1)? Explain.

11. Show that if

1 zo 22
1 = x%

[ 2]

0o C

thendet M = det A - det C. Hint: Use row operationsto make the diagonal submatri-
cestriangular.

12. Provethat if Aisn x n,thendet(—A) = (—1)" det A.

13. Let A be a skew-symmetric matrix, that is, A7 = —A. Show that A must be
singular.

14. Let J, bethen x n counteridentity , that is, .J,, is asquare matrix with ones along
the counterdiagonal (the diagonal that starts in the lower left corner and ends in the
upper right corner), and zeros elsewhere.

(a) Provethat J2 = I,.
(b) Provethat JT = J,.
(c) Find aformulafor det .J,,.

15. Show that the companion matrixof thepolynomial f(z) = co+ciz+- -1z 1+
™, that is,

0 1 0 0
0 0 1 0
0 0 0 1
—Cp —Ci1 e —Cp—2 —Cp-1

isinvertibleif and only if ¢y # 0.
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2.7. *Applications and Proofs for Determinants

There are two fundamental applications of determinantsthat we develop in this section.
Thefirst is the derivation of an explicit formulafor the inverse of a matrix in terms of
its coefficients and determinant, which extendsthe 2 x 2 Example 2.5.8 to matrices of
all sizes. From this example, one might wonder if a similar calculation could be done
for any matrix. We will see that it can. The second application is something that many
have already seen in high school algebra, at least for 2 x 2 and 3 x 3 systems: Cramer’s
Rule gives away of solving square systems, provided that they have a unique solution.

An Inverse Formula

Let A = [a;;] ben x n. We have already seen that we can expand the determinant of
A down any column of A (seethe discussion following Example 2.6.13). Theselead to
cofactor formulas for each column number j:

det A = Z arjAr; = Z Apjar;

k=1 k=1

This formula resembles a matrix multiplication formula. Consider the slightly altered
sum

ZAkiakj = Apia1j + Asiazj + ... + Apian;

k=1
The key to understanding this expression is to realize that it is exactly what we would
get if we replaced the ith column of the matrix A by its jth column and then computed
the determinant of the resulting matrix by expansion down the ith column. But such a
matrix has two equal columns and therefore has a zero determinant, which we can see
by applying Example 2.6.8 to the transpose of the matrix and using D7. So this sum
must be 0 if 7 # 5. We can combine these two sums by means of the Kronecker deltain
the formula

Z Akiakj = 5ij det A
k=1

In order to exploit this formulawe make the following definitions:

DEFINITION 2.7.1. The matrix of minorsof then x n matrix A = [a;;] is the matrix
M (A) = [M;;(A)] of the same size. The matrix of cofactorof A isthematrix A.,; =
[4;;] of the same size. Finally, the adjoint matrixof A isthe matrix adj A = Agf.

ExXAMPLE 2.7.2. Compute the determinant, minors, cofactors and adjoint matrices for

1 2 0
A= 0 0 -1 | andcompute Aadj A.
0 2 1

Minor and
Cofactor
Matrices
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SOLUTION. The determinant is easily seen to be 2. Now for the matrix of minors:

1o -1 0 -1 0 0
2 1 0 1 0 2
2 0 10 1 2
M(4) = ‘2 1‘ ‘o 1‘ 0 2
2 0 1 0 1 2
|0 -1 0 -1 0 0
[ 2 00]
= 2 1 2
_—2—10J

To get the matrix of cofactors, simply overlay M (A) with thefollowing “checkerboard”
of +/-'s

+ - +
— _+_ —
+ - +
to obtain
2 0 0
Aop=1| -2 1 =2
-2 1 0
Now transpose to get
2 -2 -2
adjA=1] 0 1 1
0 -2 0
We check that
[2 —2 -2 1 2 0
(adjA)A= 1| 0 1 1 0 0 -1
| 0 =2 0 0 2 1
[2 0 0
=10 2 0
|0 0 2
:(detA)Ig

Of course, the example simply confirms the formulathat preceded it since this formula
gives the (i, j)th entry of the product (adj A) A. If we were to do determinants by row
expansions, we would get a similar formulafor the (i, j)th entry of A adj A. We sum-
marize this information in matrix notation as the determinantal property

D8: For asquare matrix A,
AadjA = (adjA)A = (det A)I

What does this have to do with inverses? We already know that A isinvertible exactly
when det A # 0, so the answer is staring at us! Just divide the termsin D8 by det A to
obtain an explicit formulafor A —!:

D9:  For asguare matrix A such that det A # 0,

- 1 .
A= detAadJA
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ExAMPLE 2.7.3. Computetheinverse of the matrix A of Example 2.7.2 by the Inverse
Formula.

SoLuTION. We aready computed the adjoint matrix of A, and the determinant of A is
just 2, so we have that

1 (2 -2 -2
A7l = adjA=-0 1 1
det A 219 2 o

EXAMPLE 2.7.4. Interpret the Inverse Formulain the case of the 2 x 2 matrix A =
a b
[ c d

SOLUTION. Inthiscase we have

[d ¢
M(4) = b a }
[ d —c
Acoy = -b a }
adja=| ¢ 70 }

so that the Inverse Formulabecomes

O

As you might expect, this is exactly the same as the formula we obtained in Exam-
ple2.5.8.

Cramer’s Rule

Thanks to the Inverse formula, we can now find an explicit formulafor solving linear
systems with a nonsingular coefficient matrix. Here's how we proceed. To solve Ax =
b we multiply both sides on the left by A~! to obtain that z = A~'b. Now use the
Inverse formulato obtain

x=A"'b =

1
j(A)b
det A adj(4)
The explicit formulafor the ith coordinate of x that comes from thisfact is

1 n
i =T Ajib;
o detA]Z:; 715

The summation term is exactly what we would obtain if we started with the determinant
of the matrix B; obtained from A by replacing the ith column of A by b and then
expanding the determinant down the ith column. Therefore, we have arrived at the
following rule:
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THEOREM 2.7.5. Let A be an invertiblen x n matrix andb ann x 1 column vector.
Denote byB; the matrix obtained fromd by replacing theth column of4 by b. Then

the linear systemix = b has unique solutior = (z1, s, ... ,z,) where
det Bt
= b =1,2,...
xl det_A ) l ) ) 7n
EXAMPLE 2.7.6. Use Cramer’'sruleto solve the system
2.1’1 — T2 = 1
4:.1’1 + 4:.1’2 = 20

SoLUTION. The coefficient matrix and right hand side vectors are

[t ]

4 4 20
so that
det A =8 — (—4) = 12
and
1 -1
B IO O T
NET ] T 12T
4 4
2 1
4 20| _36_,
2T T 12
4 4

O

The truth of the matter isthat Cramer’s Rule and adjoints are only good for small ma-
trices and theoretical arguments. For if you evaluate determinants in a straightforward
way from the definition, the work in doing so is about 2n! flops for an n x n system.
(Recall that a“flop” in numerical linear algebrais a single addition or subtraction, or
multiplication or division. For example, it is not hard to show that the operation of
adding a multiple of one row vector of length n to another requires 2n flops. This
number 2n! is vast when compared to the number 2n.3 /3 flops required for Gaussian
elimination, even with “small” n, say n = 10. In this case we have 2 - 103/3 ~ 667,
while2 - 10! = 7,527, 600.

On the other hand, there is a clever way to evaluate determinants that is much less
work than the definition: use elementary row operations together with D2, D6 and the
elementary operations that correspond to these rules to reduce the determinant to that
of atriangular matrix. This will only require about 2n3/3 flops. As a matter of fact,
it is tantamount to Gaussian elimination. But to use Cramer’s Rule, you will have to
caculate n 4+ 1 determinants. So why bother with Cramer’s Rule on larger problems
when it still will take about n times as much work as Gaussian elimination? A similar
remark applies to computing adjoints instead of using Gauss-Jordan elimination on the
super-augmented matrix of A.
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*Proofs of Some of the Laws of Determinants

D2: If B isobtained from A by multiplying onerow of A by the scalar ¢, thendet B =
c-det A.

To keep the notation simple, assume the first row is multiplied by ¢, the proof being
similar for other rows. Supposewe have established thisfor al determinantsof sizeless
than n (thisisreally another “proof by induction”, which is how most of the following
determinantal properties are established). For ann x n determinant we have

C-Qa11 C* a1 C-Qin
a21 a22 T a2,
det B =

Gpl Gp2 e Apn
Q22 A23 - A2p
az2 G33 - G3p n k1

=c-an| . ) .+ g a1 (—1)""" My (B)
: : : s

Gp2 AaAp3 '  Gpn

But the minors M, (B) all are smaller and have a common factor of ¢ in the first row.
Pull this factor out of every remaining term and we get that

c-aj; C-a12 -+ C-Qip a11 a2 - Qip

a1 @22 T a2n @21 A22 -t A2p
= C-

an1 Ap2 ot Anpn 7758 An2 o Apn

Thus we have shown that property D2 holds for al matrices.
D3: If B isobtained from A by interchanging two rows of A, thendet B = — det A.

To keep the notation simple, assume we switch the first and second rows. In the case
of a2 x 2 determinant, we get the negative of the original determinant (check this for
yourself). Suppose we have established the sameistruefor all matrices of sizelessthan
n. For an n x n determinant we have

Ga21 Q22 - A2p

a1 a1z - QGip
det B =

Gp1  Qp2 - Gnn

n
= a1 M11(B) — a12M2 (B) + Zakl(—l)kHMkl(B)
k=3

= (],21]\/[21 (A) — a12M11(A) + Zakl(_l)k+1Mk1 (B)
k=3

But all the determinantsin the summation sign come from asubmatrix of A with thefirst
and second row interchanged. Since they are smaller than n, they are just the negative
of the corresponding minor of A. Notice that the first two terms are just the first two
terms in the determinantal expansion of A, except that they are out of order and have
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an extra minus sign. Factor this minus sign out of every term and we have obtained
D3. ([l

D4: If B isobtained from A by adding amultiple of onerow of A to another row of A,
then det B = det A.

Actually, it's a little easier to answer a slightly more general question: what happens
if we replace a row of a determinant by that row plus some other row vector r (not
necessarily arow of the determinant)? Again, simply for convenience of notation, we
assume the row in question is the first. The same argument works for any other row.
Some notation: let B be the matrix which we obtain from then x n matrix A by adding
the row vector r = [ry,rs,... ,7y] to thefirst row and C the matrix obtained from A
by replacing the first row by r.The answer turns out to be that the | B| = |A| + |C|. One
way of saying thisisto say that the determinant function is*“additivein eachrow.” Let's
see what happensin the one dimensional case:

|B| = |la11 + r1]| = a11 + 71 = [[aun]| + |[r1]| = |A] +[C]

Suppose we have established the same is true for all matrices of size less than n and let
A ben x n. Then the minors My, (B), with k > 1, are smaller than n so the property
holds for them. Hence we have

a1 +r ai2+re - Qip + Ty
a1 @22 T a2n
det B =
an1 Ap2 ot Anpn

= (a11 + 1) M (4) + Zau 1)1 My (B)

= (a11 +r1)Mi1(A) + Z ap1 (—1)FH (M1 (A) + M (0))

= Zakl(—l)kJrlel(A) + rlMll(C) + Zakl(—l)kJrlel(C)
_ k=2
=det A+ detC

Now what about adding a multiple of one row to another in a determinant? For nota-
tional convenience, suppose we add s times the second row to the first. In the notation
of the previous paragraph,

a1 +S-as1 QA2+ S-a22 -+ Qip+S-ap
@21 @22 T a2n
det B =
Gnl an2 T Gnn
and
S-G21 S-Q22 -+ S-0G2p G21 Q22 - G2p
a21 a2 - a2n G21 Q22 - G2p

det C' = ) ) L =s" ) . .|=0

Gpnl Gp2 e Gnn Gpnl Ap2 ot Gnn
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where we applied D2 to pull the common factor s from the first row and the result of
Example 2.6.8 to get the determinant with repeated rowsto be 0. But |B| = |A| + |C|.
Hence we have shown D4. O

D6: Given matrices A, B of the same size,
det AB = det Adet B

The key is that we now know that determinant calculation is intimately connected with
elementary matrices, rank and the reduced row echelon form. First let’s reinterpret
D2-D4 till one more time. First of all take A = I in the discussion of the previous
paragraph and we see that

e det Ei(c) =¢
e det Eij =-1
e det Eij (S) =1

Therefore, D2-D4 can be restated (yet again) as

e D2: det(E;(c)A) = det E;(c) - det A (herec #0.)
e D3: det(Ei]-A) = det E’ij ~det A
e D4: det(Ei]- (S) = det Eij (S) -det A

In summary: For any elementary matrix £ and arbitrary matrix A of the same size,
det(FA) = det(E) det(A).

Now let's consider this question: how does det(AB) relate to det(A) and det(B)? If
A isnot invertible, rank A < n by Theorem 2.5.9 and so rank AB < n by Corol-
lary 2.4.19. Therefore, det(AB) = 0 = det A - det B in this case. Next suppose that A
isinvertible. Expressit as a product of elementary matrices, say A = E, E> ... E};, and
use our summary of D1-D3 to disassemble and reassembl e the elementary factors:

= (det £y det E .. .det Ey) det B

=det(E1E>...E;)det B

=det A -det B

Thus we have shown that D6 holds. O

D7: For all square matrices A, det AT = det A.

Recall these facts about elementary matrices:

e det EZ; = det E;;
e det B;(c)T = det E;(c)
o det E” (C)T = det Ejl (C) =1=det El] (C)

Therefore, transposing does not affect determinants of elementary matrices. Now for the
general case observethat, since A and A™ are transposes of each other, oneisinvertible
if and only if the other is by the Transpose/Inverselaw. In particular, if both are singular,

then det AT = 0 = det A. On the other hand, if both are nonsingular, then write A as
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a product of elementary matrices, say A = E, Es ... Ey, and obtain from the product
law for transposesthat AT = ETEl | ... E], soby D6
det AT = det El det EI_, ...det E}
=det B}, det Ej_ ...det B4
= det E; det B> ...det Ej,
=det A

2.7 Exercises

1. For each of the following matrices find (1) the matrix of minors, (2) the matrix of
cofactors, (3) the adjoint matrix for each matrix, and (4) the product of matrix and its
adjoint.

_210-| {10 1-| 1 3 [—lll-l
R A R R

2. For each of the following matrices, find the inversesin two ways: first by superaug-
mented matrices, then by adjoints.

1 0 0 1 9 c —s 0
@ |2 21 (b) [ 9 9 } (© s ¢ 0
|1 01 0 0 1
3. Use Cramer’s Rule to solve the following systems.

@ a3 = 2 O 2m4a = b (@ SUFH Z 02
2r4+y = 11 2z — 22 = b A _
T1+ax2+x3 = 6

4. Suppose we want to interpolate three points (z,yx), & = 0,1,2. Write out the
system of equations that results from plugging these points into the equation of a qua-
dratic y = ¢y + c1z + cox? and calculate the determinant of the coefficient matrix.
When is this determinant 07 (This coefficient matrix is an example of what is called a
Vandermondenatrix. )

1 0 2
5. Confirm that the determinant of the matrix A = [ 2 11 -I is —1. We can now
1 0 1
assert without any further calculation that the inverse matrix of A has integer coeffi-
cients, thanksto the adjoint formula. Explain.

6. Provethat if the matrix A isinvertible, then adj(AT A) > 0.

7. Let A and B beinvertible matrices of the same size. Prove the following.
(@adjA~! = (adj 4)~!

(b) adj(AB) = adj A adj B

Hint: Determinantal law D9 can be very helpful here.
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8. Suppose that the square matrix A is singular. Prove that if the system Ax = b is
consistent, then (adj A) b = 0.

2.8. *Tensor Products

How do we solve a system of equationsin which the unknowns can be organized into a
matrix X and the linear system in question is of the form

(2.8.1) AX - XB=C

where A, B, C are given matrices? We call this equation the Sylvester equatiarSuch
systems occur in a number of physical applications; for example, discretizing certain
partial differential equationsin order to solve them numerically can lead to such a sys-
tem. We are going to examine a matrix method for systematically reorganizing the data
into a single column so that the resulting system looks like an ordinary linear system.
Thebasic ideaneeded hereisthat of thetensor product of two matrices, which is defined
asfollows:

DEFINITION 2.8.1. Let A = [a;;] beanm x p matrix and B = [b;;] ann x g matrix.
Then the tensor productf A and B isthe mn x pg matrix which can be expressed in
block form as

[ allB alzB aljB alnB
a21B azzB . asz . aan
A ®B= ailB aizB s aiJ-B s amB
| @m1B ameB -+ amjB -+ ampB |
1 3

EXAMPLE 2.8.2. Let A =
B ® Aand I, ® A explicitly.

5 1| B = { _411 ] and describe the matrices A ® B,

SOLUTION. First we have from the definition that

4 12
1B 3B -1 -3
A®B_[2B 13}_ 8 4
—2 -1
and
4 12
44 ~8 -2
B®A_[—1A}_ “1 -3

-2 -1
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Similarly
130 0
14 0A 2100
MM_{OA 1A]— 0013
00 2 1

O

We can think of the tensor product as a kind of matrix multiplication. One point that
comes out of Example 2.8.2 isthat, even though A ® B and B ® A havethe same size,
A® B # B® Aingeneral.

The other ingredient that we need to solve Equation 2.8.1 is an operator that turns ma-
trices into vectorswhich is defined as follows.

DEFINITION 2.8.3. Let A beanm xn matrix. Thenthemn x 1 vector vec A is obtained
from A by stacking the n columns of A vertically, with the first column at the top and
the last column of A at the bottom.

1 3 2

EXAMPLE 2.84. Let A = [ 5 1 4

] . Compute vec A.

SOLUTION. There are three columnsto stack, yielding
1

vec A =

=N = W N

O

Here are afew simple facts about tensor products that are more or less immediate from
the definition.

THEOREM 2.8.5. Let A, B, C, D be suitably sized matrices. Then

. (A+B)®C=A®C+B&C
.A®(B+C)=A®@B+A®C
. (AeB)@C=A4A® (B® ()

. (A B)T = AT v BT

. (A® B)(C' ® D) = (AC) ® (BD)
.(A®B)'=A1twB!

OO WNPE

The next theorem lays out the connection between tensor products and the vec operator.

THEOREM 2.8.6. Let A, X, B be matrices conformable for multiplication. Then
vec AXB = (BT ® A) vec X

The proof of this statement amounts to checking corresponding entries of each side of
the equation above; we leave this to the reader. It is easy to check that the vec operator
islinear, that is, vec(A + B) = vec A + vec B. As a consequence, we have this very
useful fact, which we state for just two summands.
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FIGURE 2.8.1. Moleculesfor (1, 1)th and (3, 2)th grid points.

COROLLARY 2.8.7. Any solution matrixX to the linear system
A1XB; + A2 XBy=C
satisfies the linear system

((Bf ® A1) + (BY ® As)) vec X = vecC

The following is a very basic application of the tensor product. Suppose we wish to
model a two dimensiona heat diffusion process on a flat plate that occupies the unit
square in the zy-plane. We proceed as we did in the one dimensional process described
intheintroduction of Chapter 1. Tofix ideas, we assumethat the heat sourceis described
by afunction f(z,y),0 < z < 1,0 < y < 1, and that the temperatureis held at 0 at
the boundary of the unit square. Also, the conductivity coefficient is assumed to be the
constant k. Cover the square with a uniformly spaced set of grid points (z;,y;),0 <
i,j < n + 1, called nodes, and assume that the spacing in each direction is a width
h =1/(n+ 1). Also assume that the temperature function at the (¢, j)th nodeisu;; =
u(z;,y;) and that the sourceis f;; = f(z;,y;). Noticethat the values of v on boundary
grid pointsis set at 0. For example, ug1 = u20 = 0. By balancing the heat flow in the
horizontal and vertical directions, one arrives at a system of linear equations, one for
each node, of the form
h2
(282) —Ui—1,7 — Ui41,5 + 4’u,i]' — Ui 5—1 — Uj,j4+1 = ?fija Z,] - 1, -.-,Nn

Observe that values of boundary nodes are zero, so these are not unknowns, which is
why the indexing of the equations starts at 1 instead of 0. There are exactly as many
eguations as unknown grid point values. Each equation has a “molecule’ associated
with it which is obtained by circling the nodesthat occur in the equation and connecting
these circles. A picture of afew nodesis givenin Figure 2.8.1.

EXAMPLE 2.8.8. Set up and solve a system of equations for the two dimensional heat
diffusion problem described above.
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SoLUTION. Equation 2.8.2 gives us n? equations in the n> unknowns u;;, i,j =
1,2,...,n. Rewrite Equation 2.8.2 in the form

h2
(=tio1j + 2uij = tirr) + (“Uijo1 + 2055 = uiji1) = 5= fij

Now form the n x n matrices
2 -1 0 0

-1 2 . 0

o . . =1
0 0 2 2

U = [us;] and F' = [f;;] and we see that the general equations can be written in matrix
form as
h2
T.u+UT,=TUL, + I,LUT, = ?F.
However, we can't as yet identify a coefficient matrix, which is where Corollary 2.8.7
comes in handy. Note that both I,, and T, are symmetric and apply the Corollary to
obtain that the system has the form

2

h
([, T, +T,®I,)vecU = vec ?F.

Now we have a coefficient matrix and, what’s more, we have an automatic ordering of
the doubly indexed variables u;;, namely

Up,1,U2,15 -+ yUn1,UL,2,U22,--- ,Un2,--- ;UL.n, U2y, Unn-
This is sometimes called the “row ordering,” which refers to the rows of the nodesin
Figure 2.8.1, and not the rows of the matrix U. |

2.8 Exercises

1 0 0
1. LetA=]2 2 1 andB:[% _(1)].WritethematricesA@BandB@A
1 01
explicitly.
[2 -1
2. With A,Basabove,C= | 1 0 ;,andX = [z;;] a3 x 2 matrix of unknowns,
1 3

use tensor productsto determinethe coefficient matrix of thelinear system AX+X B =
C.

3. Verify parts 1 and 4 of Theorem 2.8.5.
4. Verify parts5 and 6 of Theorem 2.8.5.

5. If heat istransported with ahorizontal velocity v aswell asdiffusedin Example2.8.8
anew equation results at each nodein the form

vh h?
~Uimj = Uity AU~ Uigo1 = Ui = o (Uikng = Uie1g) = - fig
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fori,j =1,...,n. Vectorize the system and use tensor products to identify the coeffi-
cient matrix of thislinear system.

2.9. *Computational Notes and Projects

LU Factorization

Hereisaproblem: supposewe want to solveanonsingular linear system Ax = b repeat-
edly, with different choices of b. A perfect example of this kind of situation is the heat
flow problem Example 1.1.5 where the right hand side is determined by the heat source
term f(z). Suppose that we need to experiment with different source terms. What hap-
pens if we do straight Gaussian elimination or Gauss-Jordan elimination? Each time
we carry out a complete calculation on the augmented matrix A = [A | b] we have to
resolve the whole system. Yet, the main part of our work isthe same: putting the part of
A corresponding to the coefficient matrix A into reduced row echelon form. Changing
theright hand side has no effect on thiswork. What we want here is away to somehow
record our work on A, so that solving anew system involves very little additional work.
Thisis exactly what the LU factorizationis al about.

DEFINITION 29.1. Let A beann x n matrix. An LU factorization of A is apair of
n X n matrices L, U such that

1. Lislower triangular.
2. U isupper triangular.
3. A=LU.

Even if we could find such beasts, what is so wonderful about them? The answer is that
triangular systems Az = b are easy to solve. For example, if A is upper triangular,
we learned that the smart thing to do was to use the last equation to solve for the last
variable, then the next to the last equation for the next to the last variable, etc. Thisisthe
secret of Gaussian elimination! But lower triangular systems are just as simple: usethe
first equation to solvefor the first variable, the second equation for the second variable,
and so forth. Now suppose we want to solve Az = b and we know that A = LU. The
original system becomes LUz = b. Introduce an intermediate variabley = Uz. Now
perform these steps:

1. (Forward solve) Solve lower triangular system Ly = b for the variable y.
2. (Back solve) Solve upper triangular system Uz = y for the variable z.

Thisdoesit! Oncewe havethe matrices L, U, we don't have to worry about right hand
sides, except for the small amount of work involved in solving two triangular systems.
Notice, by the way, that since A is assumed nonsingular, we have that if A = LU, then
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det A = det Ldet U # 0. Therefore, neither triangular matrix L or U can have zeros
on its diagonal. Thus, the forward and back solve steps can always be carried out to

give a unique solution.
0 2 1 0
0 0 1 -1
1 0 0 -1
T

,0,1)7 and (b) b = [-1,2,1]7.

EXAMPLE 2.9.2. You are given that

2 1 0
A= -2 0 -1 | =] -
2 3 -3

Usethisfact to solve Az = b, where (8) b = |

—

0
1
2

—

SOLUTION. Set z = [z1, 22, x3]T andy = [y1,y»,y3]. For (a) forward solve

100 n 1
-1 10 y | =0
1 21 s 1

togety; = 1,theny, =0+ 1y; = 1,thenys = 1 — 1y; — 2y, = —2. Then back solve

2 1 0 T 1
0 1 -1 T2 = 1
0 0 -1 z3 -2

togetxs = —2/(—1) =2,thenzs =1+ z3 = 3,thenz; = (1—1172)/2:—1.

For (b) forward solve
100 Y1 -1
-1 10 Yo | = 2
1 21 Y3 1

togety; = —1,theny2 =0+ 1y; = —1,theny3 =1—-1y; — 2y» = 4. Then back

solve
2 1 0 T -1
01 -1 o | =] —1
0 0 -1 T3 4
toget z3 = 4/(—1) = —4,thenxzy, =1+ x3 = —3,thenz; = (]. — 1.1’2)/2 =2. O

Notice how simple the previous example was, given the LU factorization. Now how do
we find such afactorization? In general, anonsingular matrix may not have such afac-

torization. A good exampleis the matrix . However, if Gaussian elimination

0 1
10
can be performed on the matrix A without row exchangeshen such afactorization is
really a by-product of GE. In this case let [a EJ'-“)] be the matrix obtained from A after

using the kth pivot to clear out entries below it (thus A = [a E?)]). Remember that in GE
we only need two types of elementary operations, namely row exchanges and adding
a multiple of one row to another. Furthermore, the only elementary operations of the
latter type that we use are of this form: Eij(—ag.l;)/agf)), where [aEJ’.“)] is the matrix
obtained from A from the various elementary operations up to this point. The numbers

msj = —a§§)/a§f), wherei > j, are sometimes called multipliers In the way of nota-

tion, let us call atriangular matrix a unit triangular matrix if its diagonal entries are al
1's.
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THEOREM 2.9.3. If Gaussian elimination is used without row exchanges on the non-
singular matrixA, resulting in the upper triangular matri&/, and if L is the unit lower
triangular matrix whose entries below the diagonal are the negatives of the multipliers
mij, thend = LU.

ProOF. The proof of this theorem amounts to noticing that the product of al the
elementary operations that reduces A to U is a unit lower triangular matrix L with the
multipliers m;; in the appropriate positions. Thus LA = U. To undo these operations,
multiply by amatrix L with the negatives of the multipliersin the appropriate positions.
Thisresultsin

LLA=A=LU
asdesired. O

Thefollowing example shows how one can write an efficient program to implement LU
factorization. Theideais this. as we do Gaussian elimination the U part of the factor-
ization gradually appearsin the upper parts of the transformed matrices A (*). Below the
diagonal we replace nonzero entries with zeros, column by column. Instead of wasting
this space, use it to store the negative of the multipliersin place of the element it zeros
out. Of course, this storage part of the matrix should not be changed by subsequent
elementary row operations. When we are finished with elimination, the diagona and
upper part of the resulting matrix isjust U and the strictly lower triangular part on the
unit lower triangular matrix L is stored in the lower part of the matrix.

ExAMPLE 2.9.4. Usethe shorthand of the preceding discussion to computean LU fac-
torization for

2 1 0
A= -2 0 -1
2 3 -3

SOLUTION. Proceed as in Gaussian elimination, but store negative multipliers:

O T Ema [ Ve 208
=0 -1 | gy | ! D 1| En(-2 11 -1
2 3 -3 1 2 -3 -1 2 -1
Now we read off the results from the last matrix:
1 00 2 1 0
L= 1 1 0 aad U=|0 1 -1 ([l
-1 2 1 0 0 -1

What can be said if pivotingis required (for example, we might want to use apartial piv-
oting strategy)? Take the point of view that we could see our way to the end of Gaussian
elimination and store the product P of al row exchanging elementary operations that
we use along the way. A product of such matricesis called a permutation matrixsuch
amatrix isinvertible, since it is a product of invertible matrices. Thus if we apply the
correct permutation matrix P to A we obtain a matrix for which Gaussian elimination
will succeed without further row exchanges. Consequently, we have a theorem that
applies to al nonsingular matrices. Notice that it does not limit the usefulness of LU
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factorization since the linear system Ax = b is equivalent to the system PAx = Pb.
The following theorem could be called the “PLU factorization theorem.”

THEOREM 2.9.5. If A is a nonsingular matrix, then there exists a permutation matrix
P, upper triangular matrix/, and unit lower triangular matrix. such thatPA = LU.

There are many other useful factorizations of matrices that numerical analysts have
studied, e.g., LDU and Cholesky. We will stop at LU, but there is one last point we
want to make. The amount of work in finding the LU factorization is the same as
Gaussian elimination itself, which we saw in Section 1.5 of Chapter 1 is approximately
2n3 /3 flops. The addition work of back and forward solving is about 2n 2 flops. So the
dominant amount of work is done by computing the factorization rather than the back
and forward solving stages.

Project Topics

Project: LU Factorization

Write a program modul e that implements Theorem 2.9.5 using partial pivoting and im-
plicit row exchanges. This means that space is allocated for the n x n matrix A =
[a[i, j]] and an array of row indices, say indz[i]. Initidly, indz should consist of the
integers 1,2, ... ,n. Whenever two rows need to be exchanged, say e.g., the first and
third, thentheindices indz[1] and indz[3] are exchanged. Referencesto array elements
throughout the Gaussian elimination process should be indirect: refer to the (1, 4)th en-
try of A asthe element a[indz[1], 4]. This method of reference has the same effect as
physically exchanging rows, but without the work. It aso has the appealing feature that
we can design the algorithm as though no row exchanges have taken place provided
we replace the direct reference afi, j] by the indirect reference a[indz]i], j]. The mod-
ule should return the lower/upper matrix in the format of Example 2.9.4 as well as the
permuted array indx[i]. Effectively, thisindex array tells the user what the permutation
matrix P is.

Next writean LU system solver modul e that usesthe LU factorization to solve ageneral
linear system.

Finally, write a module that finds the inverse of an n x n matrix A by first using the
LU factorization module, then making repeated use of the LU system solver to solve
Ax(" = e;, where e; isthe ith column of the identity. Then we will have

At = [x(l),x(z), ... ,x(")]

Be sure to document and test your code. Report on the results of its application.
Project: Markov Chains

Refer to Example 2.3.4 and Section 2.3 for background. Three automobile insurance
firms compete for a fixed market of customers. Annual premiums are sold to these
customers. We will label the companies A, B and C. You work for Company A, and
your team of market analysts has done a survey which draws the following conclusions:
in each of the past three years, the number of A customers switching to B is 20%, and
to C is 30%. The number of B customers switching to A is 20%, and to C is 20%.
The number of C customers switching to A is 30%, and to B is 10%. Those who do not
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switch continueto use their current company’sinsurance for the next year. Thefirst part
of your problemisto model this market asaMarkov chain. Display the transition matrix
for the model. To illustrate the workings of the model, show what it would predict as
the market shares three years from now if currently A, B and C owned equal shares of
the market.

The next part of your problemis as follows: your team has tested two advertising cam-
paigns in some smaller test markets and are confident that the first campaign will con-
vince 20% of the B customers who would otherwise stay with B in a given year to
switch to A. The second advertising campaign would convince 20% of the C customers
who would otherwise stay with C in a given year to switch to A. Both campaigns have
about equal costs and would not change other customers habits. You have to make a
recommendation, based on your experiments with various possible initial state vectors
for the market. Will these campaigns actually improve your company’s market share?
If so, which one are you going to recommend to your superiors? Write up your recom-
mendation in the form of a report, with supporting evidence. It's a good idea to hedge
on your bets a little by pointing out limitations to your model and claims, so devote a
few sentences to those points.

It would be a plus to carry the analysis further (your manager might appreciate that).
For instance, you could turn the additional market share from, say B customers, into a
variable and plot the long term gain for your company against this variable. A manager
could use this data to decide if it were worthwhile to attempt gaining more customers
from B. Thisis abit open ended and optional.

Project: Modeling with Directed Graphs |

Refer to Example 2.3.7 and Section 2.3 for background. As a socia scientist you have
studied the influence factors that relate seven coalition groups which, for smplicity, we
will simply label 1,2,3,4,5,6,7. Based on empirical studies, you conclude that the
influence factors can be well modeled by a dominance-directed graph with each group
as a vertex. The meaning of the presence of an edge (i, j) in the graph is that coalition
group 7 can dominate, i.e., swing coalition group j its way on a given political issue.
The data you have gathered suggests that the appropriate edge set is the following:

E = {(1,2),(1,3),(1,4),(1,7),(2,4),(2,6),(3,2), (3,5),(3,6),
(4,5),(4,7),(5,1),(5,6),(5,7),(6,1),(6,4),(7,2),(7,6)}

Do an analysis of this power structure. This should include a graph. (It might be agood
ideato arrangethe verticesin acircle and go from there.) 1t should also include a power
rating of each coalition group. Now suppose you were an advisor to one of these coali-
tion groupsand, by currying certain favors, this group could gain influence over another
coalition group (thereby adding an edge to the graph or reversing an existing edge of
the graph). In each case, if you could pick the best group for your client to influence,
which would that be? Explain your resultsin the context of matrix multiplication if you
can.
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2.9 Exercises

2 -1 1
1. Find the LU factorization of A = [ 2 3 -2 ] and use it to solve the system
4 2 =2

Ax = b whereb is
(a) [67 _87 _4]T (b) (2a _la 2) (C) (L 27 4)

2. Show that if A is anonsingular matrix with a zero (1, 1)th entry, then A does not
have an LU factorization.

0 -1 1
3. Find aPLU factorizationof A = [ 2 3 -2 ] , and use it to solve the system
4 2 =2

Ax = bwhereb is

(a) (37 174) (b) (2, _1,3) (C) (172a0)

Review

Chapter 2 Exercises

2 -1 1
1 Let A= { 2 3 =2 -| andx = [z,y, z]. Then the equation (xA) T + Ax” =

[4 2 —QJ

[1,4,2]T represents alinear system in the variables z, y, z. Find the coefficient matrix
of this system.

2. Determine for what values of k£ the matrix 4 = { i ;’ } isinvertible and find the

inversein that case.

2 1 0 3

. . 0 2 -1 0

3. Find the determinant of 4 = 0 —1 5 0
-1 0 -1 2

4. Show by example that the sum of invertible matrices need not be invertible.

5. Show that if A is any square matrix, then A + A” is symmetric. Use this to show
that every quadratic form Q(x) = x* Ax can be defined by a symmetric matrix B =
(A + AT)/2 aswell. Apply this result to the matrix of Example 2.4.16.
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6. A square matrix A is called normal if ATA = AAH . Determine which of the
following matrices are normal:

2 g 1 0 0 1 1
@1 efo e,
1 2 [ 0 -1 1 J 1 2414
7. Expressthe matrix D = ?1’ _:;, as a linear combination of the matrices A =

11 0 1 0 2
o] e= 8 2 ]wee-[0 1]
8. Find al possible products of two matrices from among the following:

i=[1 2] atn e e[ o-[ £ 19]

9. Prove that if D = ABC, where A,C' and D are invertible matrices, then B is
invertible.

3 1 -1
10. Use ablock multiplication to find the square of { 2 0 0 } .
10 O

11. Giventhat C = 61 g in block form with A and B square, show that C is

invertibleif and only if A and B are, in which case
At 0
-1 _
o =[4]
12. Show by examplethat asum or product of nilpotent matrices need not be nilpotent.

13. Suppose that A = B + C, where B is a symmetric matrix and C' is a skew-
symmetric matrix. Show that B = (A + AT)and B = £(4 — AT).

14. Let T be an upper triangular matrix.

(8) Show that T' = D + M, where D isdiagonal and M is strictly upper triangular.

(b) If D isinvertible, show that 7' = D(I — N), where N is strictly upper triangular.

(o) If D isinvertible, use (b) and Exercise 14 to obtain aformulafor 7' ! involving D
and N.




CHAPTER 3

VECTOR SPACES

It is hard to overstate the importance of the idea of a vector space, a concept which has
found application in the areas of mathematics, engineering, physics, chemistry, biology,
the social sciences and others. What we encounter is an abstraction of theidea of vector
space that we studied in calculus. In this Chapter, abstraction will come in two waves.
The first wave, which could properly be called generalization, consists of generalizing
the familiar ideas of geometrical vectorsof calculusto vectors of size greater than three.
These vector spaces could still be regarded as “ concrete.” The second wave consists of
abstracting the vector idea to entirely different kinds of objects. Abstraction can some-
times be difficult. For some, the study of abstract ideasisits own reward. For others, the
natural reaction isto expect some payoff for the extra effort required to master abstrac-
tion. In the case of vector spaceswe are happy to report that both kinds of studentswill
be satisfied: vector space theory realy is athing of beauty in itself and there isindeed
a payoff for its study. It is a practical tool that enables us to understand phenomena
that would otherwise escape our comprehension. For example, in this chapter we will
use the theory in network analysis and in finding the “best” solution to an inconsistent
system (least squares), as well as new perspectives on our old friend Ax = b.

3.1. Definitions and Basic Concepts

Generalization

We begin with the most concrete form of vector spaces, one that is closely in tune
with what we learned in calculus, when we were first introduced to two and three di-
mensional vectors. Bear in mind that in calculus we were only concerned with real
numbers as scalars. However, we have seen that the complex numbers are a perfectly
legitimate (and sometimes more useful than the reals) field of numbers to work with.
Therefore, our concept of a vector space must include the selection of afield of scalars.
The requirements for such a field are that it have binary operations of addition and
multiplication which satisfy the usual arithmetic laws: both operations are closed, com-
mutative, associative, have identities, satisfy distributive laws, and that there exist addi-
tive inverses and multiplicative inverses for nonzero elements. Although other fieldsare
possible, for our purposes the only fields of scalarsare F = R or F = C. As has been
the case previoudly in this text, unless there is some indication to the contrary, the field
of scalars will be assumed to be the default, the real numbers R.
125
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A formal definition of vector space will come later. For now we describe a “vector
space” over afield of scalarsF asanonempty set V' of vectors of the same size, together
with the binary operations of scalar multiplication and vector addition, subject to the
following laws: for all vectorsu,v € V and scalarsa € F, (a) (Closure of vector
addition) u + v € V. (b) (Closure of scalar multiplication) av € V.

Very simple examples are R? and R* which we discuss below. Another is any line
through the originin R?, which takesthe form V' = {¢(zo, yo) | ¢ € R}.

NoTATION 3.1.1. For vectorsu, v, wedefine—u = (—1)uandu—v =u+ (—v).

Geometrical vector spaces. We have already seen the vector idea in geometry or cal-
culus. Inthose contexts, a vector was supposed to represent a direction and a magnitude
in two or three dimensional space. At first, one had to deal with these intuitive defini-
tions until they could be turned into something more explicitly computational, namely
the following two vector spaces over the field of real numbers:

R* = {(z,y) |z,y € R}
R* = {(z,y,2)|z,y,2 € R}

The distinction between vector spaces and ordinary geometrical spaces becomesalittle
hazy here. Once we have set up a coordinate system we can identify each point in two or

three dimensional space with its coordinates, which we writein the form of atuple, i.e.,

avector. The arithmetic of these two vector spaces are just the usua coordinate-wise
vector addition and scalar multiplication. One can visualize the direction represented

by avector (z,y) by drawing an arrow, i.e., directed line segment, from the origin (the
point with coordinates (0, 0) in the plane) to the point with coordinates (z,y). The
magnitude of this vector isthe length of the arrow, whichisjust \/x2 + y2. The arrows
that we draw only representhe vector we are thinking of. More than one arrow could

represent the same vector as in Figure 3.3.1. The definitions of vector arithmetic could

be represented geometrically too. For example, to get the sum of vectorsu and v, one
places a representative of vector u in the plane, then places a representative of v whose
tail is at the head of v, and the vector u + v is then represented by the third leg of this
triangle, with base at the base of u. To get a scalar multiple of a vector w one scales w

in accordance with the coefficient. See Figure 3.1.1.Though instructive, this version of

vector additionis not practical for calculations.

As a practical matter, it is also convenient to draw directed line segments connecting
points; such a vector is called a displacement vector. For example, see Figure 3.1.1 for
representatives of a displacement vector w = @ from the point P with coordinates
(1,2) to the point @ with coordinates (3, 3). One of the first nice outcomes of vector
arithmetic is that this displacement vector can be deduced from a simple calculation

w=(33)-(1,2)=(3-1,3-2)=(2,1)

Asamatter of fact, this examplehas familiar objectsinit. We aready agreed in Chapter
2 to use the tuple notation as a shorthand for column vectors. The arithmetic of R?2
and R? is the same as the usual arithmetic for column vectors. Now even though we
can't draw real geometrical pictures of vectors with four or more coordinates, we have
seen that larger vectors are useful in our search for solutions of linear systems. So the
question presents itself: why stop at three? The answer is that we won't! We will

Concrete Vector
Spaces

Displacement
Vector
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3 /
Y
2 2w v

FIGURE 3.1.1. Displacement vectors and graphical vector operations.

use the familiar pictures of R? and R? to guide our intuition about vectors in higher
dimensional spaces, which we now present.

DEerINITION 3.1.2. Given a positive integer n, we define the standard vector space of
Standard Vector dimensiom over the realgo be the set of vectors
Spaces n
p ]R :{(171,.7,'2,...,xn)|$1,$2,...,$n€R}
together with the usual vector addition and scalar multiplication. (Remember that
(z1,7a,. .. ,,) isshorthand for the column vector [z 1, z2, ... ,z,]7.)

We see immediately from definition that the required closure properties of vector addi-
tion and scalar multiplication hold, so thesereally are vector spacesin the sense defined
above. The standard real vector spaces are often called the real Euclidean vector spaces
once the notion of a norm (anotion of length covered in the next section) is attached to
them. Asin Chapter 2, we don’t have to stop at the reals. For those situations in which
we want to use complex numbers, we have the following vector spaces:

DerINITION 3.1.3. Given apositive integer n, we define the standard vector space of
dimensiom over the complex numbets be the set of vectors

C" ={(z1,22,... ,2,) |21, 22,... ,2, € C}

together with the usual vector addition and scalar multiplication.

The standard complex vector spaces are also sometimes called Euclidean spaces. It's
rather difficult to draw honest spatial pictures of complex vectors. The space C! isn't
too bad: complex numbers can beidentified by pointsin the complex plane. What about
C?? Where can we put (1 + 2i,3 — 4)? It seems like we need four real coordinates,
namely the real and imaginary parts of two independent complex numbers, to keep
track of. Thisistoo big to fit in real three dimensional space, where we have only three
independent coordinates. We don’t |et this technicality deter us. We can still draw fake
vector pictures of elements of C2 to help our intuition, but do the algebra of vectors
exactly from definition.

ExAMPLE 3.1.4. Find the displacement vector from the point P with coordinates (1 +
24,1 — 24) to the point @ with coordinates (3 + 7, 27).
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SOLUTION. We compute

PO = (3+i,2i) — (1+2i,1—2)
= (3+i—(1+2i),2 — (1 - 2i))
—(2—i,—1+4)

Abstraction

Now we examine the abstraction of our concept of vector space. First we have to iden-
tify the essential vector spaces properties, enough to make the resulting structure rich,
but not so much that it is tied down to an overly specific form. We saw in Chapter 2 that
many laws hold for the standard vector spaces. The essential laws were summarized in
Section 2.1 of Chapter 2. These laws become the basis for our definition of an abstract
vector space.

DEFINITION 3.1.5. An (abstract) vector spade anonempty set V' of elements called
vectors, together with operations of vector addition ( + ) and scalar multiplication ( - ),
such that the following laws hold: for al vectorsu, v,w € V andscalarsa, b € F,

(Closure of vector addition)u + v € V.

(Commutativity of addition)u + v = v + u.

(Associativity of addition)u + (v +w) = (u+v) +w.

(Additiveidentity) Thereexistsanelement0 € V suchthatu+0 =u =0+u.
(Additiveinverse) There existsan dlement —u € V suchthatu + (—u) = 0 =
(—u) + u.

(Closure of scalar multiplication) au € V.

(Digtributive law) a(u + v) = au + av.

(Distributive law) (a + b)u = au + bu.

(Associative law) (ab)u = a(bu).

10. (Monoidal law) 1u = u.

ISR SR o

© 0N

Examples of these abstract vector spaces are the standard spaces just introduced, and
these will be our main focus in this section. Yet, if we sguint a bit, we can see vector
spaces everywhere. There are other, entirely non-standard examples, which make the
abstraction worthwhile. Here are just a few such of examples. Our first example is
closely related to the standard spaces, though strictly speaking it is not one of them. It
blurs the distinction between matrices and vectorsin Chapter 2, since it makes matrices
into “vectors’ in the abstract sense of the preceding definition.

ExAMPLE 3.1.6. Let R™™ denotethe set of all m x n matriceswith real entries. Show
this set, with the usual matrix addition and scalar multiplication, forms a vector space.

SoLuTION. We know that any two matrices of the same size can be added to yield a
matrix of that size. Likewise, a scalar times a matrix yields a matrix of the same size.
Thus the operations of matrix addition and scalar multiplication are closed. Indeed,
these laws and all the other vector space laws are summarized in the laws of matrix
addition and scalar multiplication of page 53. O

Abstract Vector
Space
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The next exampleisimportant in many areas of higher mathematics and is quite differ-
ent from the standard vector spaces, yet all the same a perfectly legitimate vector space.
All the same, at first it feels odd to think of functions as “vectors’ even though thisis
meant in the abstract sense.

ExAMPLE 3.1.7. Let C[0, 1] denotethe set of all real valued functionsthat are continu-
ousontheinterval [0, 1] and use the standard function addition and scalar multiplication
for these functions. That is, for f(x), g(x) € C[0,1] and real number ¢, we define the
functions f + g and cf by
(f +9)(x) = f(z) + 9(z)
(cf)(x) = c(f(x))-
Show that C'[0, 1] with the given operationsis a vector space.

SoLUTION. Weset V' = ([0, 1] and check the vector space axioms for this V. For the
rest of this example, we let f, g, h be arbitrary elements of V. We know from calculus
that the sum of any two continuous functionsis continuous and that any constant times
a continuous function is also continuous. Therefore the closure of addition and scalar
multiplication hold. Now for al z suchthat 0 < z < 1, we have from definition and
the commutative law of real number addition that

(f +9)(x) = f(z) + g(x) = g(x) + f(z) = (9+ f)(2)
Since this holds for all z, we concludethat f + g = g + f, which is the commutative
law of vector addition. Similarly,

((f +9) + W)(x) = (f + 9)() + h(x) = (f() + g(z)) + h(x)
= f(2) + (9(z) + h(x)) = (f + (9 + h))(2)

Since this holds for al z, we concludethat (f + g) + h = f + (g + h), whichisthe
associative law for add|t|on of vectors.

Next, if 0 denotes the constant function with value 0, then for any f € V' we have that
foral 0 <z <1,
(f+0)(z) = f(z) + 0= f(z)
Sincethisistruefor al = we havethat f +0 = f, which establishesthe additive identity
law. Also, we define (—f)(z) = —(f(z)) sothatforal 0 <z <1,
(f + (=) = flz) - f(z) =0
from which we see that f + (—f) = 0. The additive inverse law follows. For the
distributive laws note that for real numbers a, b and continuous functions f,g € V', we
havethat foral 0 <z <1,
a(f +9)(x) = a(f(z) + 9(z)) = af (z) + ag(z) = (af + ag)(2)
which proves the first distributive law. For the second distributive law, note that for all
0<z<1,
((a+Db)g)(x) = (a+b)g(z) = ag(z) + byg(x) = (ag + bg)(z)
and the second distributive law follows. For the scalar associative law, observe that for
dlo<z <1,

((ab)f)(x) = (ab) f(z) = a(bf(z)) = (a(bf))(2)
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sothat (ab)f = a(bf), asrequired. Finally, we see that

(1f)(z) = 1f(z) = f(2)
from which we have the monoidal law 1f = f. Thus, C[0, 1] with the prescribed oper-
ationsis a vector space. O

The preceding example could have just as well been C|a, b], the set of al continuous
functions on the interval a < z < b. Indeed, most of what we say about C[0,1] is
equally applicable to the more general space C[a, b]. We stick totheinterval 0 < = < 1
for simplicity. The next exampleis also based on the “functions as vectors’ idea.

ExAMPLE 3.1.8. LetV = {f(z) € C[0,1]] f(1/2) = 0} andW = {f(x) € C[0,1]]| f(1/2) =
1}, where each set has the operations of function addition and scalar multiplication as

in Example 3.1.7. One of these sets forms a vector space over the reals, while the other

does not. Determine which.

SoLuTION. Noticethat we don't have to check the commutativity of addition, associa-
tivity of addition, distributive laws, associative law or monoidal law. The reason is that
we aready know from the previous example that these laws hold when the operations
of the space C0, 1] are applied to any elements of C[0, 1], whether they belongto V' or
W or not. So the only laws to be checked are the closure laws and the identity laws.

First let f(z),g(z) € V andlet ¢ be ascalar. By definition of the set V' we have that
f(1/2) = 0and g(1/2) = 0. Add these equations together and we obtain

(f+9)(1/2) = f(1/2) +9(1/2) =0+0=0
It follows that V' is closed under addition with these operations. Furthermore, if we
multiply theidentity f(1/2) = 0 by the real number ¢ we obtain that

(cf)(1/2)=c-f(1/2)=c-0=0
It followsthat V' is closed under scalar multiplication. Now certainly the zero function
belongsto V, since thisfunction has value 0 at any argument. Therefore, I containsan

additive identity element. Finally, we observe that the negative of afunction f(z) € V
isaso an element of V, since

(=N1/2)=-1-f(1/2)=-1-0=0
Therefore, the set V' with the given operations satisfies all the vector space lavsand is
an (abstract) vector space in its own right.

When we examinethe set W in asimilar fashion, we run into aroadblock at the closure
of addition law. If f(z),g(z) € W, then by definition of the set W we have that
f(1/2) = 1and g(1/2) = 1. Add these equations together and we obtain

(f+9)(1/2) = f(1/2) +g(1/2) =1+1=2
Thismeansthat f+ g isnotin ¥, so the closure of addition fails. We need go no further.

If only one of the vector space axiomsfails, then we do not have avector space. Hence,
W with the given operationsis not a vector space. O

Notice that there is a certain economy in this situation. A number of laws did not need
to be checked by virtue of the fact that the sets in question were subsets of existing
vector spaces with the same vector operations. We shall have more to say about this
situation in the next section. Here is another example that is useful and instructive.
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ExAMPLE 3.1.9. Show that the set S,, of all n x n real symmetric matrices with the
usual matrix addition and scalar multiplication form a vector space.

SOLUTION. Just asinthe preceding example, we don’'t have to check the commutativity
of addition, associativity of addition, distributive laws, associative law or monoidal law
since we know that these laws hold for any matrices, symmetric or not. Now let A, B €
S,.. Thismeans by definitionthat A = A” and B = B”. Let c be any scalar. Then we
have both

(A+B)" =AT+BT=A+B
and
(cA)T =cAT = cA

It follows that the set S,, is closed under the operations of matrix addition and scalar
multiplication. Furthermore, the zero n x n matrix is clearly symmetric, sothe set S,
has an additive identity element. Finally, (—A4)” = —AT = — A, so each element of
S, has an additive inverse as well. Therefore, all of the laws for a vector space are
satisfied, so S,, together with these operationsis an (abstract) vector space. O

One of the virtues of abstraction isthat it allows us to cover many cases with one state-
ment. For example, there are many simple factsthat are deducible from the vector space
laws alone. With the standard vector spaces, these facts seem transparently clear. For
abstract spaces, the situation is not quite so obvious. Here are afew examples of what
can be deduced from definition.

ExamMpPLE 3.1.10. Let v € V, avector space and 0 the vector zero. Deduce from the
vector space properties alottieat Ov = 0.
SOLUTION. Certainly we havethe scalar identity 0 + 0 = 0. Multiply both sides on the
right by the vector v to obtain that

(0+0)v=0v
Now use the distributive law to obtain

Ov+0v=0v

Next add —(0v) to both sides (remember, we don’t know it's 0 yet), use the associative
law of addition to regroup and obtain that

0v + (0v + (—0v)) = Ov + (—0v)
Now use the additive inverse law to obtain that
Ov+0=0
Finally, use the identity law to obtain
Ov=0
which is what we wanted to show. O

ExampLE 3.1.11. Show that the vector space 1 has only one zero element.
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SOLUTION. Suppose that both 0 and 0, act as zero elements in the vector space. Use
the additive identity property of 0 to obtain that 0. + 0 = 0., while the additive identity
property of 0.. impliesthat 0 + 0. = 0. By the commutative law of addition, 0, + 0 =
0 + 0. It followsthat 0, = 0, whence there can be only one zero element. O

There are several other such arithmetic facts that we want to identify, along with the one
of thisexample. In the case of standard vectors, these facts are obvious, but for abstract
vector spaces, they require a proof similar to the one we havejust given. Weleave these
as exercises.

Laws of Vector Arithmetic. Let v be avector in some vector space V' and let
¢ be any scalar. Then

Oov=0

c0=0

(—e)v =c(—v) = —(cv)

If cv =0,thenv =0o0rc=0.

A vector space has only one zero element.

. Every vector has only one additive inverse.

o0 pwhpE

A reminder about notation: just asin matrix arithmetic, for vectorsu, v € V, we under-
sandthat u — v = u + (—v).

Linear Operators

We were introduced in Section 2.3 of Chapter 2 to the idea of alinear function in the
context of standard vectors. Now that we have a notion of an abstract vector space, we
can examine linearity in this larger setting. We have seen that some of our “vectors’
can themselves be functions, as in the case of the vector space C0, 1] of continuous
functions on the interval [0, 1]. In order to avoid confusion in cases like this, we prefer
to designate linear functions by the term linear operator.Other common terms for this
object are linear mappingor linear transformation.

Before giving the definition of linear operator, let us recall some notation that is associ-
ated with functionsin general. We identify afunction f with the notation f : D — T,
where D and T' are the domainand targetof the function, respectively. This means that
for each z in the domain D, the value f(z) is a uniquely determined element in the
target T'. We want to emphasize at the outset, that there is a difference here between the
targetof a function and itsrange The rangeof the function f is defined as the subset
of the target

range(f) = {y|y = f(z) for some z € D}

whichisjust the set of al possiblevaluesof f(z). For example, we can defineafunction
f : R — R by the formula f(z) = 2. It follows from our specification of f that the
target of f is understood to be R, while the range of f is the set of nonnegative real
numbers.

A function that maps elements of one vector space into another, say f : V. — W is
sometimes called an operatoror transformation For example, the operator f : R —
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R* might be given by the formula

2
syl 8]

()=
L+ ]
Noticein this examplethat thetarget of f isR3, whichis not the same astherangeof f,
since elementsin the range have nonnegativefirst and third coordinates. From the point
of view of linear algebra, this function lacks the essential feature that makes it realy

interesting, namely linearity.

DErFINITION 3.1.12. A functionT : V' — W from the vector space V' into the space
W over the same field of scalarsis called a linear operator (mapping, transformation)
if, for all vectorsu, v € V and scalars ¢, d, we have

T(cu+dv) = cT'(u) +dT(v)

By taking ¢ = d = 1 inthe definition, we seethat alinear function T is additive that is,
T(u+v)=T(u)+ T (v). Also, by taking d = 0 in the definition, we see that alinear
function is outative that is, T'(cu) = ¢I'(u). As amatter of fact, these two conditions
imply the linearity property, and so are equivalent to it. We leavethisfact asan exercise.

By repeated application of the linearity definition, we can extend the linearity property
to any linear combination of vectors, not just two terms. Thismeansthat for any scalars
c1,Co,...,cp, andvectorsvy, v, ..., v,, wehave

T(eivi+cava+ - +epvp) =arT(vi) + T (va) + - + ¢ T(va)
ExAMPLE 3.1.13. Determineif T : R? — R? isalinear operator, where T is given by

theformula(a) T'((z,y)) = («*, zy,y*) or (b) T((x,y)) = [ } —(1) ] { Zj

SoLUTION. If T is defined by (a) then we show by a simple example that 7 failsto be
linear. Let us calculate

T((1,0)+ (0,1)) =T((1,1)) = (1,1,1)
while
T((1,0)) + T((0,1)) = (1,0,0) + (0,0,1) = (1,0, 1).
These two are not equal, so 7' failsto satisfy the linearity property.

1 -1
and we see that the action of T' can be givenasT'(v) = Av. Now we have already seen
in Section 2.3 of Chapter 2 that the operation of multiplication by a fixed matrix is a
linear operator. O

Next consider the operator 7" defined asin (b). Write A = { ! 0 ] andv = { ; ]

In Chapter 2 the following useful fact was shown, which we now restate for real vectors,
though it is equally valid for standard complex vectors.

THEOREM 3.1.14. Let A be anm x n matrix and define an operatd@ 4 : R* — R™
by the formuldl'(v) = Av, for all v € R™. ThenT4 is a linear operator.
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Abstraction gives us a nice framework for certain key properties of mathematical ob-
jects, some of which we have seen before. For example, in cal culus we were taught that
differentiation has the “linearity property.” Now we can view this assertion in a fuller
context: let V' bethe space of differentiable functions and define an operator 7' on V' by
theruleT'(f(z)) = f'(x). ThenT isalinear operator on the space V.

3.1 Exercises

In Exercises 1-6 you are to determine if the given set and operations define a vector
space. If not, indicate which laws fail.

1. V= {[ 8 a_be ] |a,b € R} with the usual matrix addition and scalar multipli-

cation.

2.V = {[ 8 (1) ] |a € R} with the usual matrix addition and scalar multiplication.
3.V={[a b a]labe C}withtheusua matrix addition and scalar multiplica-
tion. In this example the scalar field is the complex numbers.

4. V consists of al continuousfunctions f(x) ontheinterval [0, 1] such that f(0) = 0.
5. V consists of all quadratic polynomial functions f(z) = az? + bz + c,a # 0.

6. V consists of al continuous functions f(z) on theinterval [0, 1] such that f(0) =
f(1).
7. Usethe definition of vector space to prove Vector Law of Arithmetic 2: ¢0 = 0.

8. Use the definition of vector space to prove Vector Law of Arithmetic 3: (—c)v =
e(—v) = —(ev).

9. Use the definition of vector space to prove Vector Law of Arithmetic 4: If cv = 0,
thenv =0o0rc =0.

10. Letu,v € V, where V' is a vector space. Use the vector space laws to prove that
the equation x +u = v hasoneand only one solution vector x € V, namely x = u—v.

11. Let V be a vector space and form the set V2 consisting of all ordered pairs (u, v)
whereu, v € V. We can define an addition and scalar multiplication on these ordered
pairs as follows

(wr,vi) + (a1, v1) = (g + u, vi + V)

c- (g, vi) = (cuy,cvy)

Verify that with these operations V2 becomes a vector space over the same field of
scalarsas V.

12. Determine which of the following functions 7" : R? — R? is alinear operator and
if so, write the operator as a matrix multiplication. Herex = (z, y, z)

@Tx) =(x—-yz+2y—4z) OTE) =(x+y2y) () T(x) =(y,27)
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13. Let V = (0, 1] and define an operator T' : V' — V by the following formulas for
T(f):

@ T(f)(z) = fz* O)T(f)(x) = f2(z) ©T(f)(z)=2f(x) (T(f)(x) =
fo f(s)ds

Which, if any of these operatorsislinear? If so, isthetarget V' of the operator equal to
its range?

14. Determine if the operator T : R? — R? is alinear transformation or not (give
reasons) where

@ T(z,y) =z(0,y) (B)T(z,y) = (z+2y,0) (c) T'(z,y) = (sinz,cosy)

15. Let T : R® — P, be defined by T((a,b,c)) = a + bx + cx?. Show that T isa
linear operator whose rangeis Ps.

16. Prove the remark following Definition 3.1.12: if afunctionT : V' — W between
vector spaces V' and IV is additive and outative, then it is linear.

3.2. Subspaces

We now turn our attention to the concept of a subspacgwhichisarich source of useful
examples of vector spaces. It frequently happens that a certain vector space of interest
is a subset of alarger, and possibly better understood vector space, and that the vector
operations are the same for both spaces. A good example of this situationis given by the
vector space V' of Example3.1.8 which isasubset of thelarger vector space C'[0, 1] with
both spaces sharing the same definitions of vector addition and scalar multiplication.
Here is aprecise definition for the subspaceidea.

DEFINITION 3.2.1. A subspacef the vector space V isasubset W of V' such that 1/,
together with the binary operations it inherits from V7, forms a vector space (over the
samefield of scalarsas V) inits own right.

Given a subset W of the vector space V', we can apply the definition of vector space
directly to the subset W to obtain the following very useful test.

THEOREM 3.2.2. LetW be a subset of the vector spaéeThenlV is a subspace df’
if and only if

1. W contains the zero element 6f
2. (Closure of addition) For alu,v € W, u+v € W.
3. (Closure of scalar multiplication) For alh € W and scalars:, cu € W.
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PROOF. Let W be a subspace of the vector space V. Then the closure of addition
and scalar multiplication are automatically satisfied by the definition of vector space.
For condition 1, we note that W must contain a zero element by definition of vector
space. Let 0* be this element and 0 the zero element of V, so that 0* + 0* = 0*. Add
the negative of 0* (as an element of V") to both sides, cancel terms and we see that
0* = 0. Thisshowsthat 1 satisfies condition 1.

Conversely, suppose that 1 is a subset of V' satisfying the three conditions. Since the
operations of W are those of the vector space V, and V' is a vector space, most of
the laws for W are automatic. Specifically, the laws of commutativity, associativity,
distributivity and the monoidal law hold for elements of W. The additive identity law
follows from condition 1.

Theonly law that needs any work is the additiveinverselaw. Let w € T. By closure of
scalar multiplication, (—1)w isin W. By the laws of vector arithmetic in the preceding
section, this vector issimply —w. This provesthat every element of 1 has an additive
inversein W, which showsthat 17 is a subspace of V. O

One notable point that comes out of the subspace test is that every subspace of V' con-
tains the zero vector. Thisis certainly not true of arbitrary subsets of V' and serves to
remind us that, although every subspaceis a subset of V, not every subset is a subspace.
Confusing the two is a common mistake, so much so that we issue the following

Caution: Every subspace of avector space is a subset, but not conversely.

EXAMPLE 3.2.3. Which of the following subsets of the standard vector space V' = R3
are subspaces of 1?

@ Wy ={(z,y,2) |z —2y+2=0} (b) Wy ={(z,y,2)|z,y,andz are positive}
(C) W3 :{(07050)} (d) Wy :{(x,y,z)|x2—y:0}
SOLUTION. (a) Takew = (0,0, 0) and obtain that
0-2-0+0=0,

so that w € W;. Next, check closure of 177, under addition. Let's name two general
elements from Wy, say u = (z1,41,21) and v = (22,2, 22). Then we know from
definition of 1/, that

x1—2y1+21:0
$2—2y2+22:0

We want to show that u + v = (z; + z2,y1 + Y2, 21 + 22) € Wi. So add the two
equations above and group terms to obtain

(1 +m2) = 2(y1 +y2) + (21 + 22) = 0.

This equation shows that the coordinates of u + v fit the requirement for being an
element of W1y, i.e, u + v € Wy. Similarly, if ¢ is a scalar then we can multiply the
equation that saysu € Wy, i.e, x; — 2y, + z; = 0, by ¢ to obtain

(cx1) — 2(eyr) + (cz1) = c0 = 0.
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This showsthat the coordinatesof cv fit the requirement for beingin 14, i.e., cu € Wy.
It follows that 1/, is closed under both addition and scalar multiplication, so it is a
subspace of R3.

(b) This oneis easy. Any subspace must contain the zero vector (0,0, 0). Clearly Wo
does not. Hence it cannot be a subspace. Another way to see it is to notice that closure
under scalar multiplication fails (try multiplying (1,1, 1) by —1).

(c) The only possible choice for arbitrary elements u, v, in this space areu = v =
(0,0,0). But then we see that 3 obviously contains the zero vector and for any scalar
C

(0,0,0) + (0,0,0) = (0,0,0)
¢(0,0,0) = (0,0,0)

Therefore W3 is a subspace of V' by the subspace test.

(d) First of al, 0> — 0 = 0, which means that (0,0,0) € W,. Likewise we see that
(1,1,0) € Wy aswell. But (1,1,0) + (1,1,0) = (2,2,0) which is not an element of
Wy since 22 — 2 £ 0. Therefore, closure of addition fails and 1, is not a subspace of
V' by the subspace test. O

Part (c) of thisexamplehighlights part of asimplefact about vector spaces. Every vector
space V' must have at least two subspaces, namely, {0} (where 0 is the zero vector in
V) and V itself. These are not terribly exciting subspaces, so they are commonly called
thetrivial subspaces.

ExAMPLE 3.2.4. Show that the subset P of C[0, 1] consisting of all polynomial func-
tions is a subspace of C'[0, 1] and that the subset P,, consisting of all polynomials of
degree at most n is a subspace of P.

SOLUTION. Certainly P is a subset of C0, 1], since any polynomial is uniquely de-
termined by its values on the interval [0, 1] and P contains the zero constant function
whichisapolynomial function. Let f and g be two polynomial functionson theinterval

[0,1], say

fx) =ao+ a1z + --- + apa”

g(x) =bo + byz + -+ + by
where n is an integer equal to the maximum of the degrees of f(x) and g(x). Let ¢ be
any real number and we see that

(f+9)(@) = (a0 + bo) + (a1 + b1)z + -+ + (an + by)z"
(ef)(x) = cap + carx + - -+ + capa™

which shows that P is closed under function addition and scalar multiplication. By the

subspace test P is a subspace of C'[0, 1]. The very same equations above al so show that
the subset P,, passes the subspace test, so it is a subspace of C[0, 1]. O

ExAMPLE 3.2.5. Show that the set of all upper triangular matrices (see page 74) in the
vector space V = R™™ of n x n real matricesis a subspace of V.
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SOLUTION. Since the zero matrix is upper triangular, the subset 17 of all upper trian-
gular matrices containsthe zero element of V. Let A = [a; ;] and B = [b; ;] be any two
matrices in W and let ¢ be any scalar. By definition of upper triangular, we must have
ajj = 0 and bi,j =0ifi> j. However,
A+ B = [ai; + bi;]
cA = [ca;j].
andfori > jwehavea; ;+b; ; =0+0=0andca;; = c0 =0, s0that A+ B andcA
are also upper triangular. It followsthat W is asubspace of V' by the subspacetest. [

There is an extremely useful type of subspace which requires the notion of a linear
combination of thevectors vy, vs, ... , v, inthe vector space V': an expression of the
form

civi+cave+ -+ ep vy

wherecy, co, ... ,c, arescalars. We can consider the set of al possible linear combi-
nations of agiven list of vectors, which iswhat our next definition is about.

DEFINITION 3.2.6. Let v, vo,..., Vv, bevectorsin the vector space V. The spanof
these vectors, denoted by span{vi,vs,...,v,}, is the subset of V' consisting of all
possible linear combinations of these vectors, i.e.,

span{vy,va,...,vp} ={c1vi + cava + ... + eV | €1, 0o, . .., c @€ scaars}

Caution: Thescalarswe are using really make adifference. For example, if v, = (1,0)
and v, = (0,1) are viewed as elements of the real vector space R?, then
span{vy, va} = {c1(1,0) + ¢2(0,1) | e1,¢2 € R}

= {(01,02) | Cc1,Cy € ]R}

= R?
Similarly, if weview v, and v, aselementsof the complex vector space C2, then we see
that span{vi,v2} = C*>. Now R? consists of those elements of C? whose coordinates
have zero imaginary parts, so R? is a subsetof C2; but these are certainly not equal

sets. By theway, R? is definitely not a subspaceof C? either, since the subset R? is not
closed under multiplication by complex scalars.

We should take note here that the definition of span would work perfectly well with
infinite sets, as long as we understand that linear combinations in the definition would
be finite and therefore not involve al the vectorsin the span. A situation in which this
extensionisneeded isasfollows: consider the space P of all polynomialswith the usual
addition and scalar multiplication. It makes perfectly good sense to write

P =span{l,z,2% 2°,... ;2" ...}
since every polynomial is afinite linear combination of various monomialsz *.

EXAMPLE 3.2.7. Interpret the following linear spansin R? geometrically:

1 1 2
@W,=span{| 1 |}, (OWy=span{| 1 |,| O |}
2 0

Linear
Combinations
and Span
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span{,(l,l,Z)}

R . span{(2,0,0), (1,1,2)}

FIGURE 3.2.1. Cross-hatched portion of span{(2,0,0), (1,1,2)} and span{(1,1,2)}.

SOLUTION. Elements of W, are simply scalar multiples of the single vector (1,1, 2).
The set of al such multiples gives us a line through the origin (0, 0, 0) . On the other
hand, elements of 1, give all possible linear combinations of two vectors (1, 1, 2) and
(2,0,0). Thelocus of points generated by these combinationsis aplanein R? contain-
ing the origin, so it is determined by the points with coordinates (0, 0, 0), (1, 1, 2), and
(2,0,0). See Figure 3.2.1 for a picture of these spans. O

Spans are the premier examples of subspaces. In acertain sense, it can be said that every
subspace is the span of some of its vectors. The following important fact is a very nice
application of the subspace test.

THEOREM 3.2.8. Let v, vo,...,v, be vectors in the vector spadé ThenW =
span{vy,va,...,v,}is asubspace df .

PROOF. First, we observe that 17 the zero vector can be expressed as the linear
combinationOvy +0vs + - - - + 0v,,, which isan element of TW. Next, let ¢ be any scalar
and form general elementsu, v € W, say

u=c1vy +cava +---+cpvy
V:d1V1 +d2V2+"'+dnvn

Add these vectors and collect like terms to obtain
utv=_(c1+di)vi+(ca+da)va+-- +(cn+dp)vn

Thusu+ v isaso alinear combinationof vy, vs,... ,v,, SO W isclosed under vector
addition. Finally, form the product cu to obtain

cu = (cep)vy + (eco)va + - + (cen)Vn

which is again a linear combination of v,vs,...,v,, SO W is closed under scalar
multiplication. By the subspacetest, 17 is a subspace of V. |
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There are a number of simple properties of spans that we will need from time to time.
One of the most useful isthis basic fact.

THEOREM 3.2.9. Letvy,vs,..., v, bevectorsinthe vector spabeand letw, ws, ... , wy
be vectors ispan{vy,va,...,v,}. Then
span{wl,wz, tee ,Wk} g Span{vl,V% v ,Vn}

PROOF. Supposethat for eachindexj =1,2,.. .k,
W; =C1jV1 + C25Va + -+ + CpjVn.

Then we may write a linear combination of the w ;s by regrouping the coefficients of
each Vi aS

diwy +dows + -+ dpwi = di(c11ve + ea1va + -+ e Vi)
—+ d2 (012V1 —+ C22Vy + -4 anvn) —+ ...
+dp(c1kv1 + copva + - -+ Cur V)

k k k
= (Z dicﬂ) vy + (Z dicﬂ) Vo + ... (Z diCil) Vn-
i=1 i=1 i=1

It follows that each element of span{wi,ws,... ,w;} belongs to the vector space
span{vy,va, ..., vy}, adesired. O

Hereisasimpleapplication of thistheorem: if v;,, v;,,... ,v;, isasubsetof vy, va,... , vy,
then

span{v;,, Viy,... , Vi } C span{vy,va,... ,v,}

Thereason is that each
wi=v;; =0vi +0va +---+1v;, +--- +0v,

so that the theorem applies to these vectors. Put another way, if we enlarge the list of
spanning vectors, we enlarge the spanning set. However, we may not obtain a strictly
larger spanning set, as the following example shows.

ExAmMPLE 3.2.10. Show that

w3 [ =[] (1] 3]

Why might one prefer the first spanning set?

SOLUTION. Label vectorsv, = (1) :|,V2 =

} ],andv3 = { ; } . Every element

of span{vy, vy} belongstospan{vy, va,v3}, sincewecanwritec; vy +cave = ¢1 vy +
cava + 0vs. So we certainly have that span{vy, vo} C span{vy,va,v3}. However, a
little fiddling with numbersreveals this fact:

2 [=enlo] 2 [h]
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In other words vy = —v; + 2vy. Therefore any linear combination of v, vy, vs can
be written as

C1V1 + CaVa + €c3V3 = C1 V] + C2Va + Cg(—Vl + 2V2)
= (Cl - CB)Vl + (CQ + 203)V2

Thus any element of span{vy, v, v3} belongsto span{v;, v.}, so the two spans are
equal. Thisis an algebraic representation of the geometric fact that the three vectors
v1, Vs, v3 belong to the same plane in R? that is spanned by the two vectors v, vs.
It seems reasonabl e that we should prefer the spanning set v, v, tothe set vy, vo, vs,
since the former is smaller yet carriesjust as much information as the latter. Asamatter
of fact, we would get the same span if we used v, vs or va,v3. The spanning set
v1, Vs, vy has“redundant” vectorsinit. O

3.2 Exercises

In Exercises 1-7, determine if the subset W is a subspace of the given vector space V.
1. V=R andW = {(a,b,a—b+1)|a,beR}.

2. V=R andW = {(a,0,a —b)|a,b € R}.

3. V=R andW = {(a,b,¢) |2a — b+ c = 0}.

a b 0
b a O

V =CJ0,1]and W = {f(x) € C[0,1]| f(1) + f(1/2) = 0}.
V =C[0,1]and W = {f(x) € C[0,1]| f(1) <0}.

V =R™" and W isthe set of all invertiblematricesin V.
Recall that amatrix A is skew-symmetrigf A7 = —A.

4.V:IR{2’3andW:{[ ]|a,be]R}.

© N o o

a

(a) Show that every skew-symmetric matrix hastheform A = [ b

')
, for some
C
scdarsa, b, c.
(b) Show that the set V' of al 2 x 2 skew-symmetric real matrices is a subspace of
R2:2,

9. Shovvthatspan{[ (1) ] , [ (1) }}:IR@.

10. Shovvthatspan{{ g') } , [ } ]} =R2.

11. Which of the following spans equal the space P of polynomials of degree at most
27? Justify your answers.

(@ span{1,1+ x,2%} (b)span{xz,4z — 22,22} (c)span{l+z + 2% 1+ z,3}
12. Findtwo vectorsv, w € R3 suchthat if u = (1, —1, 1), then R?® = span{u,v,w}

13. Letu = (2,-1,1),v = (0,1,1) andw = (2,1, 3). Show that span{u + w,v —
w} C span{u, v, w} and determine whether or not these spans are actually equal.
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14. Provethat if V' = R™", then the set of all diagonal matricesis a subspace of V.
15. Let U and V' be subspaces of W. Use the subspace test to prove the following.
(a) The set intersection U NV is asubspace of W.

(b) Thesum of thespaces, U +V = {u +v|u € U andv € V} isasubspace of W.

(c) The set union U U V' is not a subspace of W unlessone of U or V' is contained in
the other.

16. Let V and W be subspaces of R? given by
V=Alzy,2) |t =y=zeRland W = {(z,9,0) |2,y € R}
Showthat V + W = R® and V N W = {0}.

17. Let V be the space of 2 x 2 matrices and associate with each A € V' the vector
vec(A) € R* obtained from A by stacking the columns of A underneath each other.
(For example, vec( { _} f } ) =(1,—1,2,1).) Provethefollowing

(8) The vec operation establishes a one-to-one correspondence between matricesin V'
and vectorsin R%.

(b) The vec operation preserves operationsin the sensethat if A, B are matricesand ¢, d
scalars, then

vec(cA + dB) = cvec(A) + dvec(B)

18. You will need acomputer algebrasystem (CAS) such as Mathematicaor Maplefor
this exercise. Use the matrix

1 0 2

1 -1 0

1 01

and the tranglation method of the preceding exercise to turn powers of A into vectors.
Then use your CAS to find a spanning set (or basis, which is a special spanning set) for
subspaces V;, = span{A° Al ... A*} k = 1,2,3,4,5,6. Based on this evidence,
how many matrices will be required for aspan of V;,? (Remember that A° = I.)

A=

3.3. Linear Combinations

We have seen in Section 3.2 that linear combinations give us a rich source of subspaces
for a vector space. In this section we will take a closer look at properties of linear
combinations.
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Linear Dependence

First we need to make precise the idea of redundant vectors that we encountered in
Example 3.2.10. About lists and sets. Listsinvolve an ordering of elements (they can
just as well be called finite sequences), while setsdon’t really imply any ordering of
elements. Thus, every list of vectors, e.g., vy, vy, vs, gives rise to a unique set of
vectors {vy, vy, v3}. A differentlist vy, v, vo may definethesame set {v,vs, va} =
{v1,v2,vs}. Lists can have repeats in them, while sets don’'t. For instance, the list
vy, Ve, vy defines the set {vy,va}. The terminology “the vectors vy, vy, vs” redly
means “the set or alist of vectors consisting of v, vy, v3”; the definitions below work
perfectly well for either sets or lists.

DEFINITION 3.3.1. Thevector v; isredundanin thevectorsv,, vy ..., v, if thelin-
ear spanV = span{vi, v, ..., v,} doesnot changewhenv; isremoved.

1

O )

ExAaMPLE 3.3.2. Which vectors are redundant in the set consisting of v, = [

e[t [4]:

SOLUTION. Asin Example 3.2.10, we notice that
V3 = (—1)V1 + 2V2

Thus any linear combination involving v can be expressed in terms of v; and vs.
Therefore, vs isredundant inthelist vy, vo, v3. But thereis more going on here. Let's
write the equation above in aform that doesn’t single out any one vector:

0= (—].)Vl + 2V2 + (—].)Vg

Now we see that we could solve for any of v, vy, v3 in terms of the remaining two
vectors. Therefore, each of these vectorsis redundant in the set. However, this doesn’t
mean that we can discard all three and get the same linear span. Thisis obvioudly false.
What we can do is discard any oneof them, then start over and examine the remaining
set for redundant vectors. O

This example shows that what really countsfor redundancy is that the vector in question
occur with a nonzero coefficient in a linear combination that equals 0. This situation
warrants its own name:

DEeFINITION 3.3.3. The vectors  vy,vs, ... ,v, are said to be linearly dependentf
thereexist scalars ¢y, ¢o, . . . , ¢, NOt @l zero, such that
(3.3.1) vy +eve+---+ e, v, =0

If these vectors are not linearly dependent, i.e., no nontrivial linear combination of them
is equal to zero, then they are called linearly independent

For convenience, we will call alinear combination trivial if it equals0. Just as with re-
dundancy, linear dependence or independenceis a property of thelist or set in question,
not of the individual vectors. We are going to connect the ideas of linear dependence
and redundancy. Here is the key fact.



Redundancy
Test

144 3. VECTOR SPACES

THEOREM 3.3.4. The list of vectors/y,v» ... ,v, of a vector space has redundant
vectors if and only if it is linearly dependent, in which case the redundant vectors are
those that occur with nonzero coefficient in some linear combination that sums to zero.

PrROOF. Observe that if (3.3.1) holds and some scalar, say c1, is nonzero, then we
can use the equation to solve for v, asalinear combination of the remaining vectors:

-1
Vi = 6—(02V2 +e3vs + o+ cpVa)
1
Thus we see that any linear combination involving vi,vs, ..., v, can be expressed
usingonly vy, vs ..., v,. It followsthat
span{vz,Vvs ...,v,} =span{vy,va ..., vy}

Conversdly, if these spans are equal then v belongs to the left hand side, so there are
scalarsdy, ds, . . . , d,, such that
vy =dovy +d3vy + -+ dp vy
Now bring al termsto the right hand side and obtain the nontrivial linear combination
—vi +davy +dsvs + -+ dpv, =0
All of thisworks equally well for any index other than 1 so thetheoremisproved. [

It is instructive to examine the simple case of two vectors v, vo. What does it mean
to say that these vectors are linearly dependent? Simply that one of the vectors can be
expressed in terms of the other. In other words, that each vector is a scalar multiple
of the other. However, matters are more complex when we proceed to three or more
vectors, a point that is often overlooked. So we issue awarning here.

Caution: If weknow that v, vs, ..., v, islinearly dependent, it does not necessarily
imply that one of these vectors is a multiple of one of the others unlessn = 2. In
genera, all we can say is that one of these vectorsis alinear combination of the others.

ExamPLE 3.3.5. Which of the following lists of vectors have redundant vectors, i.e.,
are linearly dependent?

1 0 1 0 1 0 1 2 1
(a) 1 ) 1 ) -1 (b) 1 ) 1 ) 1 (C) 1 ) 1 ) 1
0 1 -2 0 0 1 0 0 0

SOLUTION. Consider the vectorsin each list to bedesignated as v, vo, v3. Let'stry to
see the big picture. The general linear combination can be written as

C1
c1vi +cva +c3vy = [vi, Vo, v3] | ¢ | = Ac
C3

where A = [vy,va,v3] and ¢ = (c1, ¢2, c3). Now we see that a nontrivial linear com-
bination that adds up to 0 amountsto a nontrivial solution to the homogeneous equation
Ac = 0. We know how to find these! In case (a) we have that

1 0 1 1 0 1 1 0
1 1 -1 Ex(-1) 0 1 -2 E55(—1) 0 1 -2
0 1 -2 0 1 -2 0 0
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so that the solutions to the homogeneous system are ¢ = (—c¢3, 2¢3,¢3) = ¢3(—1,2,1).
Take c3 = 1 and we have that

—1vi +2vy +1vz3 =0
which showsthat vy, vs, v3 isalinearly dependent list of vectors.

We'll solve (b) by a different method. Notice that

0 1 0
det| 1 1 1 :—ldet{(l) (1)]:—1.
0 0 1

It follows that A is nonsingular, so the only solution to the system Ac = 0 isc = 0.
Since every linear combination of the columns of A takes the form Ac, the vectors
v1, vy, vy must be linearly independent.

Finally, we see by inspectionin (c) that since v; isarepeat of vy, thelinear combination
V1+0V2—V3 =0.

Thus, thislist of vectorsis linearly dependent. Notice, by the way, that not every coef-
ficient ¢; has to be nonzero. O

ExAamMPLE 3.3.6. Show that any list of vectors that contains the zero vector is linearly
dependent.

SOLUTION. Let vy, va,..., v, besuchalist and suppose that for someindex j, v; =
0. Examine the following linear combination which clearly sumsto 0:

Ovi+0vo+ -+ 1v;+---0v, =0.

Thislinear combinationis nontrivial because the coefficient of the vector v ; is 1. There-
forethislist islinearly dependent by definition of dependence. O

The Basis Idea

We are now ready for one of the big ideas of vector space theory, the notion of abasis.
We already know what a spanning set for a vector space V' is. Thisis a set of vec-
tors v, va,...,v, suchtha V = span{vy,va,...,v,}. However, we saw back in
Example 3.2.10 that some spanning sets are better than others because they are more
economical. We know that a set of vectors has no redundant vectorsinit if and only if it
is linearly independent. This observation is the inspiration for the following definition.

DEFINITION 3.3.7. A basisfor the vector space V' is a spanning set of vectorsv, v,
., vpwhichisalinearly independent set.

We should take note here that we could have just as well defined a basis as a mini-
mal spanning set, by which we mean a spanning set such that any proper subset is not
spanning set. The proof that this is equivalent to our definition of basis is left as an
exercise.

Usually we think of a basis as a set of vectors and the order in which we list them
is convenient but not important. Occasionally, ordering is important. In such a situa
tion we speak of an ordered basif v by which we mean a spanning list of vectors
vi,Vs,..., v, Whichisalinearly independent list.
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ExAMPLE 3.3.8. Whichsubsetsof {v, vy, v3} = {[ (1) ] , [ i } ) { ; }}yieldbas&

of the vector space R??

SOLUTION. Thesearejust the vectors of Example 3.2.10 and Example 3.3.2. Referring
back to that Example, we saw that

—V1+2V2—V3 =0
which told us that we could remove any one of these vectors and get the same span.
Moreover, we saw that these three vectors span R?, so the same is true of any two of
them. Clearly, asingle vector cannot span R? since the span of asingle vector isaline

through the origin. Therefore, the subsets {v 1, va}, {v2,v3} and {vy,v3} areall bases
of R2. O

An extremely important generic type of basisis provided by the columns of the identity
matrix. For future reference, we establish this notation.

NoTATION 3.3.9. Thestandard basisf R or C* istheset {e1, es,... ,e,} wheree;
is the column vector of size n whose jth entry is 1 and all other entries 0.

ExAMPLE 3.3.10. Let V' be the standard vector space R™ or C". Verify that the stan-
dard basisredlly is a basis of this vector space.

SOLUTION. Letv = (c¢1,c¢o,...,c,) be avector from V so that ¢1,c¢o,...,c, are
scalars of the appropriate type. Now we have
C1 1 0 0
C2 0 1 :
v = . =c | . |t . [+ Fen 0
Cn 0 0 1

=511 + s2€3 + - + spey

This equation tells us two things: first, every vector in V' is alinear combination of the
e;'s, s0 V = span{eq,es,...,e,}. Secondly, if some linear combination of vectors
sums to the zero vector, then each scalar coefficient of the combinationis 0. Therefore,
these vectors are linearly independent. Thereforethe set {eq, e.,... ,e,} isabassof
V. O

Coordinates

In the case of the standard basis e, e, , e3 of R? we know that it is very easy to write
out any other vector v = (c1, ¢, ¢3) interms of the standard basis:
o]
V=, c2 | =cie1 + cze2 + c3€3
L]
We call the scalars ¢4, ¢z, c3 the coordinatesof the vector v. Up to this point, thisis

the only sense in which we have used the term “coordinates.” We can see that these
coordinates are strongly tied to the standard basis. Yet R? has many bases. |sthere a
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corresponding notion of “coordinates’ relative to other bases? The answer is a definite
“yes,” thanksto the following fact.

THEOREM 3.3.11. Letvy,vs,...,v, be a basis of the vector spadé Then every
v € V can be expressed uniquely as a linear combinatiow gfvs,... ,v, up to
order of terms.

PROOF. To seethis, note first that since
V =span{vy,va,...,v,}

thereexist scalarscy, ¢s, . . . , ¢, Suchthat

v=cvy+cave+---4+c,vp
Suppose aso that we could write

v=divy+dyve +---+d,v,
Subtract these two eguations and obtain

0=(c1 —di)vi+ (ca —da)va + -+ + (cn — dn)vp

However, abasisis alinearly independent set, so it follows that each coefficient of this
equation is zero, whencec; = d;, forj =1,2,... ,n. O

In view of thisfact, we may speak of coordinates of a vector relative to a basidereis
the notation that we employ:

DEFINITION 3.3.12. If vy, vs,..., v, isabasisof thevector spaceV andv € V with
v =c1vi+eava+---+e, vy, thenthescaarsey, e, . . . , ¢, arecaled the coordinates
of v with respect to the basig;, vo,... , v,.

As we have noted, coordinates of a vector with respect to the standard basis are what
we havereferred to as “coordinates’ so far in thistext. Perhapswe should call these the
standard coordinatesf a vector, but we will usually stick with the convention that an
unqualified reference to a vectors coordinates assumes we mean standard coordinates.
Normally vectorsin R™ are given explicitly in terms of their standard coordinates, so
these are trivia to identify. Coordinates with respect to other bases are fairly easy to
caculateif we have enough information about the structure of the vector space.

EXAMPLE 3.3.13. The following vectors form a basis of R3: v; = (1,1,0), vo =
(0,2,2) and v = (1,0, 1). Find the coordinates of v = (2,1, 5) with respect to this
basis.

SOoLUTION. Noticethat thebasisvy, va, v3 wasgiven in terms of standard coordinates.
Begin by writing

2
v=| 1| =c1vy +cavy +c3vV3
)
C1 1 0 1 C1
= [Vl, V2, V3] C2 - 1 2 0 C2
C3 0 2 1 C3
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wherethecoordinatescy, ¢z, c3 of v relativetothebasis vy, v, v areto be determined.
Thisis a straightforward system of equations with coefficient matrix A = [v,va, V3]
and right hand side v. It follows that the solution we want is given by

C1 [ 1 0
Cy = 1 2
C3 0 2

This shows us that

|
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It does not prove that v = (—1, 1, 3), which is plainly false. Only in the case of the
standard basis can we expect that a vector actually equalsits vector of coordinates with

respect to the basis. O
In general, vectors vy, va,...,v, € R" arelinearly independent if and only if the
system Ac = 0 hasonly thetrivial solution, where A = [vy,vs, ... ,v,]. Thisinturnis

equivalent to the matrix A being of full column rank n (see Theorem 2.5.9 of Chapter 2
where we see that these are equivalent conditions for a matrix to be invertible). We can
see how this idea can be extended, and doing so tells us something remarkable. Let
Vi,Va,..., Vi beabasisof V = R" andformthen x k matrix A = [vy,va,... , vg].
By the same reasoning as in the example, for any b € V' thereis a unique solution to
the system Ax = b. In view of the Rank Theorem of Chapter 1 we see that A has full
column rank. Therefore, k& < n. On the other hand, we can take b to be any one of
the standard basis vectorse;, j = 1,2, ... ,n, solve the resulting systems and stack the
solutions vectors together to obtain a solution to the system AX = I,,. From our rank
inequalities, we see that

n =rankl, =rank AX <rankA =n

What this showsisthat £ = n, that is, every basis of R™ has exactly n elementsin it.
Does this idea extend to abstract vector spaces? Indeed it does, and we shall return to
thisissuein Section 3.5.

We are going to visit a problem which comesto us straight from cal culus and anal ytical
geometry (classification of conics) and show how the matrix and coordinate tools we
have developed can shed light on this problem.

EXAMPLE 3.3.14. Suppose we want to understand the character of the graph of the
curvez? — zy + y2 — 6 = 0. It issuggested to usthat if we that we execute a change of
variables by rotating the zy-axis by 7 /4 to get anew z'y’-axis, the graph will become
more intelligible. OK, we do it. The algebraic connection between the variables z, y
and 2', y', resulting from a rotation of # can be worked out using a bit of trigonometry
(which we omit) toyield

r = xcosh + ysinf
y' = —zsinf + ycosh

~
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FIGURE 3.3.1. Change of variablesand the curve 22 — zy + 4> — 6 = 0.

Use matrix methods to formulate these equations and execute the change of variables.
SOLUTION. First, we write the change of variable equationsin matrix form as
A cosf sinf z |
x _{y’}_{—sin() cosﬁ} {y}—G(G)x
We might recognize G(6) as the Givens matrix introduced in Exericse x. This matrix
isn’t exactly what we need for substitution into our curve equation. Rather, we need z, i

explicitly. That's easy enough. Simply invert G(6) to obtain the rotation matrix R(6)
as

GO) ' = R(9) = { cosf —sinf ]

sin @ cos 6

sothat x = R(6)x’. Now observe that the original equation can be put in the form

|

_1
2 —ry+yt -6 = XT|: 11 2}){—6
2

—_tol—

= x'R(@®)T [ _ } R(#)x — 6

[V [y

We leave it as an exercise to check that with § = /4 the equation reducesto 1 (z'? +
3y'?) — 6 = 0 or equivalently

1./2 ylz

i Z_ -1

12 + 4
This curveis simply an ellipse with axes 21/3 and 2. With respect to the z'y’-axes, this

ellipseisin so-called “standard form.” For agraph of the ellipse, see Figure3.3.1. O

The change of variableswe have just seen can be interpreted as achange of coordinates
in thefollowing sense. Noticethat the variables z and y are just the standard coordinates
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(with respect to the standard basis e, e ) of agenera vector

= [ 2] o] 1] 0] verve

The meaning of the variables =’ and y’ becomes clear when we set x' = (2',y’) and
write the matrix equation x = R(6)x’ out in detail as a linear combination of the
columns of R(#):

x = R(O)X' = ' [ cosf ] , [ —sinf

o '
sin @ cos @ ] Taw Aty

Thusthe numbersz’ and ¢’ are just the coordinates of the vector x with respect to anew
basis u;, u, of R?. This basis consists of unit vectorsin the direction of the z’ and y’
axes. See Figure 3.3.1 for a picture of the two bases. Thus we see that the matrix R(#)

could reasonably be called a change of coordinatesatrix or, asit is more commonly
called, achange of basimatrix. Indeed, we can see from this example that the change
of variableswe encountered is nothing more than a change from one basis (the standard

one, ey, ey) to another (uy, us). The reason for a change of basis is that sometimes a
problemlooksalot easier if welook at it using a basis other than the standard one, such
as in our example. The concept of change of basis is explored in more generality in

Section 3.7.

3.3 Exercises

1. Which of the following sets are linearly independent in V' = R3? If not linearly
independent, which vectors are redundant in the lists?

@ (1,0,1),(1,-1,1) (b)(1,2,1),(2,1,1), (3,4,1),(2,0,1)
(C) (17 07 _1)7 (17 170)7 (]-7 _]-7 _2) (d) (07 ]-, _1), (]-7 0,0)7 (_17 1,3)

2. Which of the following sets are linearly independent in V' = P,? If not linearly
independent, which vectors are redundant in the lists?

@z,5z 0)2,2—z,22,1+2> Q) 1+z,1+2%1+z+22 (dz—1,22-1,z+1

3. Which of the following sets are linearly independent in V' = P3? If not linearly
independent, which vectors are redundant in the lists

@1,z,2%2> O14+2,14+22 1423
©1-—2214+2,1—3—-222 () z®-23 2, —+2%+32°

4. Find the coordinates of v with respect to the following bases:

(@ v = (0,1, 2) with respect to basis (2,0, 1), (—1,1,0), (0,1,1) of R3.
(b) v =2 + 22 with respect to basis 1 + z, = + 22, 1 — z of P».

©v= z}withrespecttobasjs{o 1],[1 0},[8 (l)}ofthespace

a
b 10 0 0
of real symmetric 2 x 2 matrices.

(d) v = (1,2) with respect to basis (2 + i, 1), (—1,i) of C2.
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5. Inthefallowing, u; = (1,0,1) anduy, = (1,-1,1).

(a) Determineif v = (2,1, 2) belongsto the space span{u;, uz2}.

(b) Find abasis of R* which containsu; and us.

6. Inthefollowing,u; =1 — z + 22 anduy = = + 222.

(a) Determineif v = 4 — 7z — 22 belongsto the space span{uy,us}.

(b) Find a basis of R? which containsu; and u,.

7. If 2vy + v3 + v4 = 0 and v, + v3 = 0 then what is the smallest spanning set
span {vy,va, v, v4} may be reduced to?

8. Let V = R™" be the vector space of rea n x n matricesand let A, B € R™"
such that both are nonzero matrices, A is nilpotent (some power of A iszero) and B is
idempotent (B2 = B). Show that the subspace W = span{A, B} cannot be spanned
by asingle element of V.

9. Let V be a vector space whose only subspaces are {0} and V. Show that V' is the
span of asingle vector.

10. Suppose that vy, vs, ..., v, are linearly independent elements of R™ and A =
[vi,Va,...,Vg]. Show that rank A = k.

11. Determine a largest subset of the following set of matrices which is linearly inde-
pendent. Then expand this subset to abasis of R?:2.

11 0 1 0 0]

==l a]e- [V 1]

12. The Wronskian of smooth functions f(z), g(x), h(x) is defined as follows (a simi-
lar definition can be made for any number of functions):

f@)  glx) A=)

W(f,g.h)(x)=det | f'(z) g'(z) N(x)

f'(@) g¢"(x) h"(z)

Cd culate the Wronskians of the three polynomial functionsin parts (b) and (c) of Ex-
ercise 3.

13. Show that if f(z), g(x), h(x) arelinearly dependent smooth functions, then for all
z, W(f,g,h)(x) =0

14. Show that the functions e®, ® and sin(z) are linearly independent in C[0, 1] in
two ways:

(a) Use Exercise 13.

(b) Assume alinear combination sumsto zero and evaluateit at various pointsto obtain
conditions on the coefficients.

15. Prove that alist of vectors v, vs,... , v, with repeated vectorsin it is linearly
dependent.

16. Showthatalinear operator 7' : V- — W mapsalinearly dependentset v, va, ... , v,
tolinearly dependentset T'(v1), T'(va), ... , T (vy), butif vy, va,... v, islinearlyin-
dependent, T'(v1), T'(v2), - .. , T(v,) need not be linearly independent (give a specific
counterexample).
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cosf —sinf
17. Lt R(6) = [ sin @ cos b

inthe casethat 6 = 7 /4.

] and A — { %11 B }.Cajcume}z(e)TAR(e)

—_

18. Use matrix methods as in Example 3.3.14 to express the equation of the curve
1122 + 10v/3zy + y% — 16 = 0 in new variables z', y' obtained by rotating the zy-axis
by an angle of 7 /4.

19. Supposethat alinear change of variablesfrom old coordinates z 1 , 2> to new coor-
dinates |, x4, is defined by the equations

T = pu¥) + Prath

Ty = P ¥) + Parh

where the 2 x 2 change of basis matrix P = [p;;] is invertible. Show that if a linear
matrix multiplication function T4 : R? — R? isgiven in old coordinates by

s=[ 2] =ma([2]) =760 =

where A = [a;;] isany 2 x 2 matrix, thenitisgivenby y'=P~'APx' = Tp-1 4p(x')
in new coordinates. Hint: Both domain and range elements x and y are givenin terms
of old coordinates. Express them in terms of new coordinates.

T

T2

3.4. Subspaces Associated with Matrices and Operators

Certain subspaces are a rich source of information about the behavior of a matrix or
alinear operator. We will define and explore the properties of these subspaces in this
section.

Subspaces Defined by Matrices

Suppose we are given a matrix A. There are three very useful subspaces that can be
associated with the matrix A. Understanding these subspaces is a great aid in vector
space calculations that might have nothing to do with matrices per se, such as the deter-
mination of aminimal spanning set for a vector space. We shall follow each definition
below by an illustration using the following example matrix.

111 -1
(34.1) A:{O L g 1]

We make the default assumption that the scalars are the real numbers, but the definitions
we will give can be stated just as easily for the complex numbers.
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DEFINITION 3.4.1. Thecolumn spacef them x n matrix A isthe subspace C(A) of
R™ spanned by the columns of A.

EXAMPLE 3.4.2. Describe the column space of the matrix A in Equation 3.4.1

SoLUTION. Herewe havethat C(A) C R?. Also

o= 3] [} (3] 4]

Technically, this describes the column space in question, but we can do much better. We

saw in Example 3.2.10 that the vector was readly redundant since it is a linear

1
2
combination of the first two vectors. We a so see that
-1 1 1

=l

so0 that Theorem 3.2.9 shows us that
1 1
ey =soanf| o || 1

This description is much better, in that it exhibits abasisof C(A). O

This example shows that not all the columns of the matrix A are really needed to span
the entire subspace C(A). Clearly, thislast expression for C(A) is much more econom-
ical than the first. How do you think it compares to the containing space R2?

DEFINITION 3.4.3. Therow spaceof them x n matrix A isthe subspace R(A) of R™
spanned by the transposes of the rows of A.

The “transpose” part of the preceding definition seems a bit odd. Why would we want
rows to look like columns? It's a technicality, but later it will be convenient for us
to have the row spaces live inside a R™ instead of an (R?)”. Remember, we had to
make a choice about R™ consisting of rows or columns. Just to make the elements of a
row space look like rows, we can always adhere to the tuple notation instead of matrix
notation.

EXAMPLE 3.4.4. Describe the row space of A in Equation 3.4.1

SOLUTION. We have from definition that
R(A) =span{(1,1,1,-1),(0,1,2,1)} C R*

Now it's easy to see that neither one of these vectors can be expressed as a multiple
of the other (if we had ¢(1,1,1,—1) = (0,1,2,1), then read the first coordinates and
obtain ¢ = 0), so that spanis given aseconomically aswe can do, that is, thetwo vectors
listed constitute abasisof R(A). O

DEFINITION 3.4.5. The null spaceof the m x n matrix A is the subset A'(A) of R™
defined by

N(4) = {x € R" | Ax = 0}

Column Space
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Observe that '(A) isthe solution set to the homogeneouslinear system Ax = 0. This
means that null spaces are really very familiar. We were computing these solution sets
back in Chapter 1. We didn't call them subspaces at the time. Here is an application
of this concept. Let A be a square matrix. We know that A is invertible exactly when
the system Ax = 0 has only the trivial solution (see Theorem 2.5.9). Now we can
add one more equivalent condition to the long list of equivalencesfor invertibility: A is
invertible exactly when A/(A) = {0}. Let us next justify the subspace property implied
by the term “null space.”

EXAMPLE 3.4.6. Usethe subspace test to verify that A'(A) really is asubspace of R™.

SOLUTION. Since A0 = 0, the zero vector isin N'(4). Now let ¢ be a scalar and
u,v € R" arbitrary elements of A'(A). By definition, Au = 0 and Av = 0. Add these
two equations to obtain that

0=0+0=Au+ Av=A(u+v)
Thereforeu + v € N (A). Next multiply the equation Au = 0 by the scalar ¢ to obtain
0 =c0 = c¢(Au) = A(cu)
Thuswe see from that definition that cu € N (A). The subspace test impliesthat N (A)
is a subspace of R™. O

ExAMPLE 3.4.7. Describe the null space of the matrix A of Equation 3.4.1.

SOLUTION. Proceed as in Chapter 1. We find the reduced row echelon form of A,
identify the free variables and solve for the bound variables using theimplied zero right
hand side and solution vector = = [z1, z2, T3, z4] T :

111 1] [10 -1 -2
[012 1]E12(_1){01 2 1

Pivots are in the first and second columns, so it follows that =3 and x4 arefree, z; and
T» are bound and

T = T3 + 224
To = —2x3 — T4
Let’swrite out the form of a general solution, which will be strictly in terms of the free

variables, and write the result as a combination of x 3 times some vector plus x4, times
another vector:

T T3 + 2134 1 2
o _ —2.773 — T4 _ -2 —1
I3 - T3 -3 1 + T 0
T4 T4 0 1

This is really a wonderful trick! Remember that free variables can take on arbitrary
values, so we see that the general solution to the homogeneous system has the form of
an arbitrary linear combination of the two vectors on the right. In other words,

1 2
2 -1 .
N =span{| "1 || T3 [YCR

0 1
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Neither of these vectorsis amultiple of the other, so thisis as economical an expression
for N'(A) as we can hope for. In other words, we have exhibited a minimal spanning
set, that is, abasisof NV'(A). O

ExAMPLE 3.4.8. Suppose that we have a sequence of vectors x(¥) k& = 0,1,....
which arerelated by the formula
<D — A4 (k)

where

(k) _ Qg _ 0.7 04
X _[bk] and A‘[o.?, 0.6

Further, suppose these vectors converge to some limiting vector z. What could the lim-
iting vector be? (This example relates null spaces to the idea of a limiting state for a
Markov chain as discussed in Example 2.3.4 of Chapter 2.)

SoLUTION. We reason as follows: since the limit of the sequenceis x, we can take the
limits of both sides of the matrix equation above and obtain that

x=Ax=1Ix
so that
O=x—-Ax=Ix—-Ax=(I - A)x
It followsthat x € N (I — A) . Now
roa— |1 O] _Jo7 04]_T 03 -04
10 1 03 06 | | —-0.3 0.4
Cdculate the null space by Gauss-Jordan elimination:
_
0.3 —0.4 B (1) 1 —4/3
—03 04 | E(1/03) |0 0

Thereforethe null space of I — A is spanned by the single vector 4/3, 1). In particular,
any multiple of this vector qualifies as a possible limiting vector. If we want alimiting
vector whose entries are nonnegative and sum to 1, then the only choice is the vector
resulting from dividing (4/3, 1) by the sum of its coordinatesto obtain

(3/7)(4/3,1) = (4/7,3/7) = (0.57143,0.42857) .
Interestingly enough, thisisthe vector that resulted from the calculation on page66. [

Animportant point that comes out of the previousexamplesisthat we can expressanull
space as a simple linear span by using the methods for system solving we developed in
Chapter 1, together with alittle algebra.

We conclude this excursion on subspaces with an extremely powerful way of thinking
about the product Ax, which was first introduced in Example 2.2.6 of Chapter 2. We
shall use thisidea often.

THEOREM 3.4.9. Let the matrix A have columns, ...,a,, i.e., A = [a;,as,...,a,].
Letx = [z1, T2, ..., )T . Then

AX = 2121 + T2a2 + -+ Tha,
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In other words,Ax is simply a linear combination of the columns.4fwith vector of
coefficients.

PrROOF. Asusual, let A = [a;;]. Theith entry of the vector v = Ax is, by defini-
tion of matrix multiplication

Vi = @121 + Qjp%2 + + -+ QinTy

However, a; = [a1,as;,...,a,;]7 so that the ith entry of the linear combination
r1a; + x2as + - +x,a, IS

T1G;1 + T2a42 + - - + TpQin = V;

which iswhat we wanted to show. O

This theorem shows that the column space of the matrix A can be thought of as the set
of all possible matrix products Az, i.e.,
C(A) = {Ax|x € R"}

Furthermore, the coefficients of alinear combination Ax are precisely the entries of the
vector x. Two important insights follow from these observations: firstly, we see that the
linear system Ax = b is consistent exactly when b € C(A). Secondly, we see that the
linear combination of columns of A with coefficients from the vector x is trividl, i.e.,
the combination sums to the zero vector, exactly when x € N'(A).

ExAMPLE 3.4.10. Interpret the linear combination
1 1 1
=alo]-[1]+e ]3]
as amatrix multiplication.

SOLUTION. By using Theorem 3.4.9 we can obtain several interpretations of thislinear
combination. The most obviousis

O

Notice that the linear combination of the previous example is not trivid, i.e., does not
sum to the zero vector. Also, if we were working with the matrix of Equation 3.4.1, we
could obtain a linear combination with the same value as the previous example in the
form

This gives the same result.
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Subspaces Defined by a Linear Operator

Suppose we are given a linear operator 7' : V. — W. We immediately have three
spaces we can associate with the operator, namely, the domain V, target W and range
range(T) = {y |y = T'(x) for some x € V'} of the operator. The domain and range
are vector spaces by definition of linear operator. That that range is a vector spaceis a
nice exampl e of using the subspace test.

ExAMPLE 3.4.11. Show that if T : V' — W isalinear operator, then range(7') is a
subspace of .

SoLUTION. Apply the subspace test. First, we observe that range(7") contains 7'(0).
We leave it as an exercise for the reader to check that 7°(0) is the zero element of .
Next let y and z be in range(T"), say y = T'(u) and z = T'(v). We show closure of
range(T") under addition: by the linearity property of T

v+z=T(u)+T(v) =T(u+v) € range(T)
where the latter term belongs to range(7") by definition of image. Finally, we show
closure under scalar multiplication: let ¢ be a scalar and we obtain from the linearity
property of T' that
cy = cT'(u) = T'(cu) € range(T)

where the latter term belongs to range(T") by definition of range. Thus, the subspace
test shows that range(7") is a subspace of V. O

Here is another space that has proven to be very useful in understanding the nature of a
linear operator.

DEFINITION 3.4.12. The kernelof the linear operator T' : V' — W is the subspace of
V given by

ker(T) = {x e V|T(x) =0}

The definition claimsthat the kernel is asubspace and not merely a subset of the domain.
The proof of thisisleft to the exercises. Thefact isthat we have been computing kernels
since the beginning of thetext. To see this, suppose that we have alinear transformation
T : R* — R™ given by matrix multiplication, that is, T'4(x) = Ax, for dl z € R".
Then

ker(T) = {x €e R" | Tu(x) = 0}
={xeR"|Ax =0}
= N(A)
In other words, for matrix multiplications kernels are the same thing as null spaces.

Here is one redlly nice application of kernels. Suppose we are interested in knowing
whether or not agiven operator T : V' — W isone-to-one, i.e,, if the equation T'(u) =
T'(v) necessarily implies that u = v. In generdl, this is a nontrivia question. If, for
example, V. = W = R, then we could graph the function 7" and try to determine if a
horizontal line cut the graph twice. But for linear operators, the answer ismuch simpler:
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THEOREM 3.4.13. If T': V. — W is a linear operator, thefl" is one-to-one if and only
if ker(T") = {0}.

PrOOF. If T is one-to-one, then only one element can map to 0 under 7'. Thus,
ker(7T") can consist of only one element. However, we know that ker(7') contains the
zero vector sinceit is a subspace of the domain of T'. Therefore, ker(7') = {0}.

Conversely, suppose that ker(T") = {0}. If u and v are such that T'(u) = T'(v), then
subtract terms and use the linearity of T' to obtain that

0=T(u)—-Tv)=T()+ (-1)T(v) =T(u—-v).
It followsthat u — v € ker(T') = {0}. Therefore,u — v = 0 and henceu = v. O

Before we leave the topic of one-to-one linear mappings, let’s digest its significance
in a very concrete case. The space P> = span{1,z, x> }of polynomials of degree at
most 2 has a basis of three elements, like R and it seems very reasonable to think that
P, is“just like” R? in that a polynomia p(z) = a + bz + cx? is uniquely described
by its vector of coefficients (a, b,¢) € R* and corresponding polynomials and vectors
add and scalar multiply in a corresponding way. Here is the precise version of these
musings. define an operator 7' : P, — R? by theformulaT (a + bz + cz?) = (a, b, c).
One can check that T is linear, the range of T is its target, R?, and ker(7)) = 0. By
Theorem 3.4.13thefunctionT" is one-to-oneand mapsits domain onto its target. Hence,
it describes a one-to-one correspondence between elements of P, and elements of R?
such that sums and scalar products in one space correspond to the corresponding sums
and scalar productsin the other. In plain words, this means we can get one of the vector
spaces from the other simply by relabelling elements of one of the spaces. So, in a
very real sense, they are “the same thing.” More generally, whenever there is a one-to-
one linear mapping of one vector space onto ancther, we say the two vector spaces are
isomorphicwhichisafancy way of saying that they are the same, up to arelabelling of
elements. A one-to-one and onto linear mapping, like our T', is called an isomorphism

In summary, there are four important subspaces associated with a linear operator, the
domain, target, kernel and range. In symbols

domain(T) =
target(T) =
ker(T) = {v eV|T(v) =0}
range(T) = {T(v)|v € V}

There are important connections between these subspaces and those associated with a
matrix. Let A beanm x n matrix and T4 : R* — R™ the corresponding operator
defined by matrix multiplication by A. Then

domain(Ty) = R"

target(T4) = R™
ker(T4) = N(A)
range(T4) = C(A)
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The proofs of these are |€eft to the exercises. One last example of subspaces associated
with alinear operator 7' : V' — W isrealy awhole family of subspaces. Suppose that
U is asubspace of the domain V. Then we define the image ofU underT to be the set

T(U) ={T(u)|ue U}

Interestingly enough, T'(U) is aways a subspace of range(T'). We leave the proof of
this fact as an exercise. In words, what it saysisthat a linear operator maps subspaces
of its domain into subspaces of its range.

3.4 Exercises

1.LetA:{2 -1 0}

4 -2 1

(a) Find the reduced row echelon form of the matrix A .

(b) Find a spanning set for the null space of A. Hint: See Example 3.4.7.
(c) Find a spanning set for the column space of A.

(d) Find a spanning set for the row space of A.

(e) Find all possiblelinear combinationsof the columns of A that add upto 0. Hint: See
the remarks following Theorem 3.4.9.

1 2 0 01 7
2.LleeA=(1 2 1 1 1 |[andb = | a | definethesystem Ax = b. First
3 6 2 2 3 B

find the reduced row echelon form for the augmented matrix [A|b]. Then answer ques-
tions (a)-(e) of Exercise 1 and also

(f) For what values of oz and 3 is the vector b in the column space of A? Hint: The
remarks following Theorem 3.4.9 are helpful.

. . 1 ¢ 0 a
3. RepeettExerC|se1W|thA_{1 9 l]andb_{ﬂ}.

4. Letu = [1,1,0]7,v =[0,1,1]7, and w = [1,3 — 2i,1]T. Express the expression
2u — 4v — 3w asasingle matrix product.

05 0 05
5. Thematrix | 0.5 0.5 0 [ isatransition matrix for aMarkov chain. Find the
0 05 0.5
null space of I — A and determine all state vectors (nonnegative entries that sum to 1)
in the null space.

6. Show the range of the linear transformation 7" : R? — R3 given by

1 T — 2z + 23
T T2 = r1 + Ty + 23
I3 2.1’1 — T2 + 2.1’3

isnot R?, and find a vector not in the range. Is T' one-to-one? Give reasons.

7. Show thatif T : V' — W isalinear operator, then 7(0) = 0.
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8. Show that if ' : V' — W isalinear operator, then the kernel of 7' is a subspace of
V.

9. Provethat if 7" isalinear operator, then for al u, v in the domain of 7" and scalars ¢
andd, wehave T (cu — dv) = ¢T'(u) — dT'(v).

10. Provethatif A isanilpotentn x n matrix then V'(A) # {0} and V(I — A) = {0}.
11. Let thefunction T : R? — P, be defined by

T([ Z ]) =az + b(z — 1) + cz?
C

(a) Show that 7" is alinear operator.

(b) Show that ker T = {0}.

(c) Show that range T' = Ps.

(d) Conclude that R® and P, are isomorphic vector spaces.

12. Let T : V — W bealinear operator and U a subspace of V. Show that the image
of U, T(U) ={T(v)|v € U}, isasubspace of .

13. Let T4 : R* — R™ be the matrix multiplication operator defined by the m x n
matrix A. Show that ker T4 = N'(A) andrangeT = C(A).

3.5. Bases and Dimension

We have used the word “dimension” many times aready, without really making the
word precise. Intuitively, it makes sense when we say that R? is “two dimensional”
or that R? is “three dimensional”: we reason that it takes two coordinate numbers to
determine a vector in R? and three for a vector in R?. What can we say about general
vector spaces? |s there some number that is a measure of the size of the vector space?
These are questions we propose to answer in this section. In the familiar cases of geo-
metrical vector spaces, the answerswill merely confirm our intuition. The answers will
also enable us to solve this kind of problem, which is a bit more subtle: suppose we
solve alinear system of 5 equationsin 10 unknowns and obtain through Gauss-Jordan
elimination a solution that involves 4 free variables, which means that we can express
al 10 unknownsin terms of these 4 free variables. |Is it somehow possible, perhaps by
using atotally different method of system solving, to arrive at asimilar kind of solution
that involves fewer free variables, say 3? Thiswould, in effect, reduce the “degrees of
freedom” of the system.

We aren’t going to answer this question just yet. This exampleis rather vague; nonethe-
less, our intuition might suggest that if the free variables really are independent, we
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shouldn’t be able to reduce their number. Therefore the answer to the question of this
example should be“no.” What we are really asking is a question about the nature of the
solution set of the system. As a matter of fact, our intuition is correct. Reasons for this
answer will be developed in this section.

The Basis Theorem

We now know that the standard vector spaces aways have a basis. Given an abstract
vector space V', can we be sure that a basis for V' exists? For the type of vector spaces
that we introduced in Section 1, that is, subspaces of the standard vector spaces, we
will see that the answer is an unconditional “yes.” For the more general concept of an
abstract vector space the answer is“ sometimes.” The following concept turns out to be
helpful.

DEFINITION 3.5.1. Thevector space V' is caled finite dimensionaif thereis afinite
set of vectors {vy,vs, ... ,v, } Whichisaspanning set for V.

Examples of finite dimensional vector spaces are the standard spaces R™ or C*. Asa
matter of fact, we will see shortly that every subspace of a finite dimensional vector
space is finite dimensional, which includes most of the vector spaces we have studied
so far. However, some very important vector spaces are not finite dimensional, and
accordingly, we call them infinite dimensionaspaces. Hereis an example.

ExXAMPLE 3.5.2. Show that the space of all polynomial functions P is not a finite di-
mensional space, while the subspaces P,, arefinite dimensional.

SoLUTION. If P were afinite dimensiona space, then there would be afinite spanning
set of polynomials p; (z),p2(z), - .. , pm(z) for P. This means that any other polyno-
mial could be expressed as a linear combination of these polynomials. Let m be the
maximum of all the degrees of the polynomialsp ; (). Notice that any linear combina-
tion of polynomialsof degreeat most m must itself beapolynomial of degreeat most m.
(Remember that polynomial multiplication plays no part here, only addition and scalar
multiplication.) Therefore, it is not possible to express the polynomial ¢(z) = z ™!
as alinear combination of these polynomials, which means that they cannot be a basis.
Hence, the space P has no finite spanning set.

On the other hand, it is obvious that the polynomial

p(r) =ap+ a1z + -+ apa”
is alinear combination of the monomials1, z, ... ,z™ fromwhich it followsthat P,, is
afinite dimensional space. O
Hereisthefirst basic result about these spaces. It is simply aformalization of what we
have already done with preceding examples.

THEOREM 3.5.3. Every finite dimensional vector space has a basis.

PrROOF. To seethis, supposethat V' is afinite dimensional vector space with

V =span{vy,va,...,v,}
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Now if the set {vy,va,...,v,} has aredundant vector in it, discard it and obtain a
smaller spanning set of V. Continue discarding vectors until you reach a spanning set
for V' that has no redundant vectorsin it. (Since you start with a finite set, this can't go
onindefinitely.) By the redundancy test, this spanning set must be linearly independent.
Henceitisabasisof V. |

The Dimension Theorem

No doubt you have already noticed that every basis of the vector space R? must have
exactly two elementsin it. Similarly, one can reason geometrically that any basis of R>
must consist of exactly three elements. These numbers somehow measure the “size’
of the space in terms of the degrees of freedom (number of coordinates) one needs to
describe a general vector in the space. The content of the dimension theorem is that
this number can be unambiguously defined. First, we need avery handy theorem which
is sometimes called the Steinitz substitution principle. This principle is a mouthful to
swallow, so wewill precedeits statement with an examplethat illustrates the basic idea.

ExamMpPLE354. Letw; = (1,—1,0),ws = (0,—1,1),v; = (0,1,0),v2 = (1,1,0),
vy = (0,1,1). Then w;, wo form a linearly independent set and v, vy, vs form a
basis of V = R? (assume this). Show how to substitute both w, and w into the set
v1, v, v While substituting out some of the v ; and at the same time retaining the basis
property of the set.

SOLUTION. Since R? = span{vy, va, v3}, we can express w; as alinear combination
of these vectors. We have aformal procedure for finding such combinations, but in this
case we don't haveto work too hard. A little trial and error shows

1 0 1
W = -1 =-1 1 + 2 1 = —1vy + 2vy + 0vs
0 0 0

so that 1w + 1v; — 2v, — Ovs = 0. It follows that v; or v, is redundant in the set
w1, Vy, Ve, vs. SO discard, say, vs, and obtain a spanning set w1, vy, vs. Infact, itis
actually abasis of V' since two vectors can only span a plane. Now start over: express
wy asalinear combination of this new basis. Again, alittle trial and error shows

0 0 0
Wo = -1 =-2 1 + 1 = 0W1 - 2V1 + 1V3
1 0 1

Therefore vy or vs is redundant in the set wy, wo, vy, vs3. So discard, say, v, and
obtain a spanning set w1, wo, vy. Again, this set is actually a basis of V' since two

vectors can only span a plane; and thisis the kind of set we were looking for. O

THEOREM 3.5.5. Letw;,ws,... ,w, be a linearly independent set in the spdce Steinitz
and letvy,vo, ..., v, be a basis of. Thenr < n and we may substitute all of the Substitution
w;'s for some of the;'s in such a way that the resulting set of vectors is still a basis of Principle

V.
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PROOF. Let's do the substituting one step at atime. Suppose that £ < r and that
we have relabelled the remaining v;'s so that

V = span{wi, Wa,... Wy, V1, Va,... ,Vs}

withk+s <mnandwi,ws,...wg,vy,vs,... ,vsabasisof V. (Noticethat £ = 0 and
s =nwhenwestart, S0k + s = n.)

We show how to substitute the next vector w4, into the basis. Certainly
V = span{wi,Wa, ... Wk, Wr11,V1,Va,...,Vs}

as well, but this spanning set is linearly dependent since w41 is linearly dependent
onwy,Wws,...Wg, Vi, Va,...,Vs. Also, there have to be some v;s left if & < r, for
otherwise a proper subset of the w ;s would be a basis of V. Now use the redundancy
test to discard, one at atime, as many of the v ;'s from this spanning set as possible,
all the while preserving the span. Again relabel the v ;’sthat are |eft so as to obtain for
somet < s aspanning set

Wi, W2,...Wg41,V1,V2,...,Vt

of V from which no v; can be discarded without shrinking the span. Could this
set be linearly dependent? If so, there must be some equation of linear dependence
among the vectors such that none of the vectors v ; occurs with a nonzero coeffi-
cient; otherwise, according to the redundancy test, such a v ; could be discarded and
the span preserved. Therefore, there is an equation of dependency involving only the
w;’s. This means that the vectors wi,w»,... ,w, form a linearly dependent set,
contrary to hypothesis. Hence, there is no such linear combination and the vectors
Wi, Ws, ... Wgt1, V1, Va,. .., Ve arelinearly independent, as well as a spanning set of
V. Now we have to have discarded at least one of the v;’ssince wy, wa, ... Wi, Wiy 1,
vi,Va,..., Vg isalinearly dependent set. Therefore, t < s — 1. It follows that

k+1)+t<k+14+s—1
<k+s
<n
Now continue this process until k = r. O
Dimension THEOREM 3.5.6. LetV be a finite dimensional vector space. Then any two bases of

Theorem V have the same number of elements which is called the dimension of the vector space
and denoted adim V.

PROOF. Letwy,ws,...,w, andvy,vs,..., v, betwo given bases of V. Apply
the Steinitz substitution principle to the linearly independent set w, ws,... ,w, and
thebasis vy, vs, ... , v, toobtainthat » < n. Now reverse the roles of these two sets
in the substitution principle to obtain the reverse inequality n < r. We conclude that
r = n, asdesired. O

Remember that a vector space always carries a field of scalars with it. If we are con-
cerned about that field we could specify it explicitly as part of the dimension notation.
For instance, we could write

dim R" = dimg R" or dim C"* = dim¢ C".

Usually, the field of scalarsis clear and we don’t need the subscript notation.
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As afirst application, let's dispose of the standard spaces. We already know from Ex-
ample 3.3.10 that these vector spaces have abasis consisting of n elements, namely the
standard basis ey, es, . . . , e,,. According to the dimension theorem, thisis all we need
to specify dimension of these spaces.

COROLLARY 3.5.7. For the standard spaces we have
dimR* = n

dimC"* = n

Thereis one more question we want to answer right away. How do dimensions of afinite
dimensional vector space V' and a subspace W of V' relate to each other? Actually, we
don’'t even know if 17 isfinite dimensional. Our intuition tells us that subspaces should
have smaller dimension. Sure enough, our intuition is right this time! The tool that we
use to confirm this fact is useful inits own right.

CoROLLARY 3.5.8. If W is a subspace of the finite dimensional vector spgacéhen
W is also finite dimensional and

dimW < dimV
with equality if and only i = W.

PROOF. Let wy,ws,...,w, bealinearly independent set in 1" and suppose that
dim V' = n. According to the Steinitz substitution principle, » < n. So there is an
upper bound on the number of elements of a linearly independent set in T/. Now if
we had that the span of wy,wo, ..., w, issmaller than T, then we could find a vec-
tor w41 in T but not in span{wi,ws,...w,}. Thenew set wy, wa, ... , Wy, Wyt
would aso be linearly independent (we leave this as an exercise). Since we cannot
continue adding vectors indefinitely, we have to conclude that at some point we obtain
abasis wi,wo,... ,wfor W. Furthermore, s < n, so we conclude that W is finite
dimensional and dim W < dim V. Finally, if we had equality, then a basis of 1/ would
bethe same size asabasis of V. However, Steinitz substitution ensuresthat any linearly
independent set can be expanded to abasis of V. It follows that a basis for W isaso a
basisfor V, whence W = V. O

3.5 Exercises

1. Find all possible subsets of the following sets of vectors that form abasis of R2.

@ (1,0,1),(1,-1,1) (b)(1,2,1),(2,1,1), (3,4,1),(2,0,1)

() (2,-3,1),(4,-2,-3),(1,1,1)

2. The sets of vectors listed below form bases and linearly independent sets in their
respective spaces. According to Steinitz substitution , the w’s may be substituted in

for some v;’s and retain the basis property. Which v ;'s could be replaced by w;and
Wo.

(a) In]:RB: Vi = (1,37 ]-)’VZ = (2,—1,1),V3 = (170,]—) and w1 = (0,]—70)’W2 =
(1,1,1)

®INPy, vi=1l—2z,vo=24+z,v3=1+z2andw; =z, wy = 22
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3. If U and V are subspaces of thefinite dimensional vector space W andUNV = {0},
provethat dim(U + V) = dim U + dim V.

4. Let wi,wo,...,w, belinearly independent vectors in the vector space W. Show
that if w isavector inW and w ¢ span{wy,ws,... ,w,},thenwy, wo,... ,w,, w
isalinearly independent set.

5. Answer True/False to each part. In what follows, assumethat V' is a vector space of
dimensionnand S = {vy,va,... ,vp} C V.

(a) If Sisabasisof V then k = n.

(b) If S spansV thenk < n.

(c) If S islinearly independent then k& < n.

(d) If S islinearly independent and k = n then S spans V.
(e) If S spansV and k = n then S isabasisfor V.

() If Aisabby 5 matrix and det A = 2, then the first 4 columns of A span a 4
dimensional subspace of R>.

(9) A linearly independent set contains redundant vectors.

(h) If V = span{vq,vs} anddim V = 2, then {v,, v3, v3} isalinearly dependent set.
(i) A set of vectors containing the zero vector is alinearly independent set.

() Every vector space is finite dimensional.

(k) The set of vectors (i, 0]7, 10,47, [1,i]” in C? contains redundant vectors.

6. Show that the functions 1, z, 22, ... , 2™ form abasis for the space P,, of polynomi-
asof degree at most n.

7. Provethat C|0, 1] isaninfinite dimensional space (Hint: P isasubspaceof C[0, 1]).

8. Let E; j bethem x n matrix with a unit in the (¢, j)th entry and zeros elsewhere.
Provethat {E; ;|i =1,...,m, j=1,... ,n} isabasisof the vector space R"".

9. LetT : V — W bealinear operator such that range ' = W and ker T' = {0}. Let
vi,Va,...,v, beabassof V. Showthat T'(vy), T(v2),... ,T(v,) isabasisof W.

10. Let V = {0}, a vector space with a single element. Explain why the element 0 is
notabasis of V' and the dimension of ¥V must be 0.

11. Show that aset of vectorsvy,vs, ... , v, inthevector space V' isabasisif and only
if it isaminima spanning set, that is, no proper subset of these vectors is a spanning
Set.

12. LetT : V — W bealinear operator where V' is afinite dimensional space and U
is asubspace of V. Provethat dim 7'(U) < dim U.

13. Determine the dimension of the subspace of R™"™ consisting of all symmetric ma-
trices by exhibiting a basis.
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14. Let U be the subspace of W = R™" consisting of all symmetric matricesand V'
the subspace of all skew-symmetric matrices.

(8 Show that U NV = {0}.
(b) Show that U + V = .

(c) Use Exercises 8, 3 and 13 to calculate the dimension of V.

3.6. Linear Systems Revisited

We now have some very powerful tools for understanding the nature of solution sets of
the standard linear system Ax = b. This understanding will help us design practical
computational methods for finding dimension and bases for vector spaces and other
problems as well.

The first business at hand is to describe solution sets of non-homogeneous systems.
Recall that every homogeneous system is consistent since it has the trivial solution.
Nonhomogeneous systems are another matter. We already have one criterion, namely
that rank of augmented matrix and coefficient matrix of the system must agree. Hereis
one moreway to view the consistency of such asystem in thelanguage of vector spaces.

THEOREM 3.6.1. The linear systemix = b of m equations im unknowns is consis-
tentif and only ifb € C(A).

PrRoOOF. The key to this fact is Theorem 3.4.9, which says that the vector Ax is
alinear combination of the columns of A with the entries of x as scalar coefficients.
Therefore, to say that Ax = b has asolution is simply to say that some linear combi-
nation of columnsof A addsuptob,i.e, b € C(A). O

ExAMPLE 3.6.2. Oneof thefollowing vectorsbelongsto the space V spanned by v =
(1,1,3,3), vo = (0,2,2,4) and v3 = (1,0,2,1). The vectors in question are u =
(2,1,5,4)andw = (1,0,0,0). Which and why?

SOLUTION. Theorem 3.6.1tellsusthat if A = [vy,v2,v3], then we need only deter-
mine whether or not the systems Ax = u and Ax = w are consistent. In the interests
of efficiency, we may aswell do both at once by forming the augmented matrix for both
right hand sides at once as

101 2 1
1 2010
[Alulvl=13 5 5 5
341 4 0

Consistency in

Terms of
Column Space
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Thereduced row echelon form of thismatrix (whose cal cul ation we leave as an exercise)
is

10 0 00
01 -1 -1 0
00 0 01
00 0 00

Observe that there is a pivot in the fifth column but not in the fourth column. This
tells us that the system with augmented matrix [A | u] is consistent, but the system
with augmented matrix [A | v] is not consistent. Thereforeu € span{vi, vz, vs}, but
v ¢ span{vy, va,v3}. Asamatter of fact, the reduced row echelon formof [A | u] tells
us what linear combinationswill work, namely

1
u=(2-c3)vy — 5(1 —¢3)Va + c3V3.

where c3 isan arbitrary scalar. The reason for the non-unigqueness of the coordinates of
u isthat the vectors vy, v,, v3 are not linearly independent. O

The next matter of business is a description of the solution space itself, given that it
is not empty. We already have a pretty good conceptual model for the solution of a
homogeneous system Ax = 0. Remember that thisis just the null space, N'(A), of the
matrix A. In fact, the definition of AV/(A) isthe set of vectors x such that Ax = 0. The
important point hereis that we proved that A'(A) really is a subspace of the appropriate
n dimensional standard space R™ or C™. As such we can really pictureit whenn is2 or
3: N (A) iseither the origin, aline through the origin, a plane through the origin, or in
thecase A = 0, all of R®. What can we say about a non-homogeneous system? Hereis
a handy way of understanding these solution sets.

THEOREM 3.6.3. Suppose the systeAx = b is consistent with a particular solution
Xp. Then the general solutiax to this system can be described by the equation

X=X9+2

wherez runs over all elements of (A).

PrROOF. On the one hand, suppose we are given a vector of theformx = xg + z,
where Axp = bandz € A'(A). Then

Ax = A(xg +2) = Axg+ Az=b +0=Dh.

Thus x is asolution to the system. Conversely, suppose we are given any solution x to
the system and that x is a particular solution to the system. Then

Alx —x¢) =Ax —Axp=b-b =0
It followsthat x — xg = z € N (A) sothat x hastherequired form xg + z. O

Thisisreally a pretty fact, so let’s be clear about what it istelling us. It says that the
solution space to a consistent system, asa set, can be described asthe set of al translates
of elementsin the null space of A by some fixed vector. Such a set is sometimes called
an affine setor aflat. When n is 2 or 3 this says that the solution set is either a single
point, aline or a plane — not necessarily through the origin!
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ExAMPLE 3.6.4. Describe geometrically the solution sets to the system
r+2y = 3
r+y+z = 3

SOLUTION. First solve the system, which has augmented matrix
—_—
1203E(_1 1 20 3] En?2 [1 0 23
111 3|7 0 -1 1 0| Ey(=1) |0 1 -1 0

The general solution to the system is givenin terms of the free variable z, which we will
relabel as z = ¢ to obtain

r=3-—2t
y=t
z=t

We recognize this from cal culus as a parametric representation of alinein three dimen-
sional space R?. Noticethat thisline does not pass throughthe origin since z = 0 forces
x = 3. So the solution set is definitely not a subspace of R?. O

Now we turn to another computational matter. How do we find bases of vector spaces
prescribed by a spanning set? How do we find the linear dependencies in a spanning
set or implement the Steinitz substitution principle in a practical way? We have dl the
tools we need now to solve these problems. Let’s begin with the question of finding a
basis. We are going to solve this problem in two ways. Each has its own merits.

First we examine the row space approach. We require two simple facts.

THEOREM 3.6.5. Let A be any matrix and? an elementary matrix. Then
R(A) = R(EA).

PrROOF. Suppose the rows of A are the vectorsry,rs, ... ,r,, SO that we have
R(A) = span{ry,ra, ... ,ry}. If E = E;;, then the effect of multiplication by E isto
switch the ith and jth rows, so the rows of EA are simply the rows of A in adifferent
order. Hence, R(A) = R(EFA) inthiscase. If E = E;(a), with a a nonzero scalar,
then the effect of multiplication by E is to replace the ith row by a nonzero multiple
of itself. Clearly, this doesn’t change the span of the rows either. To simplify notation,
consider thecase E = E»(a). Thenthefirst row r; isreplaced by ry + ar», so that any
combination of the rowsof E A isexpressible as alinear combination of the rows of A.
Conversdly, sincer,; = r; + ars — ars, we see that any combinationof ry,rs,... ,r,
can be expressed in terms of the rows of EA. This provesthe theorem. O

THEOREM 3.6.6. If the matrixR is in reduced row echelon form, then the nonzero rows
of R form a basis oR (R).

PROOF. Supposetherowsof R aregivenasri,rs, ... ,r,,sothawehave R(R) =
span{ry,rs,... ,r;}, wherethefirst k rows of R are nonzero and the remaining rows
are zero rows. So certainly the nonzero rows span R(R). In order for these vectors to
form a basis, they must also be a linearly independent set. If some linear combination
of these vectorsis zero, say

0=ciry +---+cpry
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we examine the ith coordinate of this linear combination, corresponding to the column
inwhich the ith pivot appears. Inthat columnr ; hasacoordinate value of 1 and all other
r; have avalue of zero. Therefore, the linear combination above yields that ¢; = 0.
Since this holdsfor each i < k, we obtain that al ¢; = 0 and the nonzero rows must be
linearly independent. It follows that these vectorsform abasis of R(R). O

These theorems are the foundations for the following algorithm for finding abasis for a
vector space.

Row Space Algorithm: GivenV = span{vy,vs,... , v} CR* or C".
1. Formthem x n matrix A whoserowsarev? vl ... vI.

2. Find the reduced row echelon form R of A.
3. List the nonzero rows of R. Their transposes form a basis of V.

ExAMPLE 3.6.7. Given that the vector space V' is spanned by

vi = (1,1,3,3)
vo = (0,2,2,4)
vy = (1,0,2,1)
vy = (2,1,5,4)

Find abasis of V' by the row space algorithm.

SOLUTION. Form the matrix

1 1 3 3
0 2 2 4
4= 1 0 2 1
2 1 5 4
Now find the reduced row echelon form of A
11 3 3| ——F——71|1 1 3 3|————] 1 0 2 1
E3(-1) E35(1)
0 2 2 4 0 1 1 2 01 1 2
Ey(-2) -1 -1 — B2 (1)
Loz 1 oy |0 -1 =1 =2 g 1000 000
2 1 5 4 2 0 -1 -1 =2 12 0000

From this we see that the vectors (1,0,2,1) and (0,1, 1,2) form a basis for the row
space of A.

O

The second a gorithm for computing a basis does alittle more than find abasis: it gives
us away to tackle the question of what linear combinations sum to zero.

THEOREM 3.6.8. Let A = [a;,a,,...,a,] be a matrix with columna,, a,, ... ,a,.
Suppose the indices of the non-pivot columns in the reduced row echelon fdraref
i1,42,...,0x. Then every trivial linear combination

0=ca; +coas +---+cpa,

of the columns ofl is uniquely determined by the valuescgf, ¢;,, . .. , ¢;, . In partic-
ular, if these coefficients afg then all the other coefficients must e
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PROOF. Expressthelinear combination in the form
0=cia; + cas + -+ cpa, = Ac

wherec = (¢1,¢2,...,¢p) and A = [a1,a9,...,a,]. In other words, the column ¢
of coefficients is in the null space of A. Every solution ¢ to this system is uniquely
specified as follows: assign arbitrary values to the free variables, then use the rows of
the reduced row echelon form of A to solve for each bound variable. Thisis exactly
what we wanted to show. O

In view of this theorem, we see that the columns of A corresponding to pivot columns
(equivalently, bound variables) in the reduced row echelon form of A must be them-
selvesalinearly independent set. We also see from the proof of thistheorem that we can
express any column corresponding to a non-pivot column (equivalently, free variable)
in terms of columns corresponding to bound variables by setting the free variable cor-
responding to this columnto 1, and all other free variablesto 0. Therefore, the columns
of A corresponding to pivot columns form abasis of C(A). Thisjustifies the following
algorithm for finding a basis for a vector space.

Column Space Algorithm:  Given V' = span{vy,va,...,v,} C R™ or
cm.
1. Formthem x n matrix A whose columnsarevi,vs,... ,vy,.
2. Find the reduced row echelon form R of A.
3. List the columns of A that correspond to pivot columns of R. These
formabasisof V.

Caution: It is not the columns (nor the rows) of the reduced row echelon form matrix
R that yield the basis vectorsfor V. Infact, if E isan elementary matrix, in general we
haveC(A) # C(EA).

ExAMPLE 3.6.9. Given that the vector space V' is spanned by

vi = (1,1,3,3)
vy = (0,2,2,4)
vy = (1,0,2,1)
vy = (2,1,5,4)

Find abasis of V' by the column space agorithm.

SoLUTION. Form the matrix A whose columns are these vectors:

101210 1 2]——[10 1 2

120 1| B by o p | By -1/2 —1/2
E31(-3) By (—2)

3225 5|02 -1 -1 B (1/2) 00 0 0

341 4 " 0 4 -2 -2 2 0 0 0 0

We can see from this cal culation that thefirst and second columnswill be pivot columns,
while the third and fourth will not be. According to the column space algorithm, C(A)
isatwo dimensional space with the first two columnsfor abasis. O
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Just for the record, let’s notice here that Theorem 3.6.8 shows us exactly how to express
the last two columns in terms of the first two. From the first two rows of the reduced
row echelon form of A weseethat if ¢ = (¢1, ¢, ¢3,¢4) and Ac = 0, then

c1+e3+2c,=0

1 1
02—503—504:0
Sofor v wechoosecs = 1andey = Otoobtainthatc; = —1and ey = 1/2. Therefore
we have
1
—1vy + §V2 +1v3+0vy =0
so that

1

V3 = V] — §V2.

A similar calculation with c; = 0 and ¢4 = 1 yieldsthat ¢; = —2 and co = 1/2.
Thereforewe obtain

1
—2V1 + §V2 + 0V3 + 1V4 =0
S0 that

Vg4 = 2V1 — —Vy
2

Finally, we consider the problem of finding a basis for anull space. Actualy, we have
aready dealt with this problem in an earlier example (Example 3.4.7), but now we will
justify what we did there.

THEOREM 3.6.10. Let A be anm xn matrix such thatank A = r. Suppose the general
solution to the homogeneous equatiér = 0 withx = (21, 2, ... ,x,) IS written in
the form

X=Tj Ve + T Ve + -+ T, Vpp

wherez;, , z;,,... ,z;, . are the free variables. Thew,v,,...,v,_, form a basis
of N'(4).

PROOF. Thevector x = 0 occurs precisely when al the free variables are set equal
to 0, for the bound variables are linear combinations of the free variables. This means
that the only linear combination of the vectorsv {, vs, ... , v,_, that sumto 0 are those
for which all the coefficients z;, , x;,, ... ,z;,_, are (0. Hence these vectorsare linearly
independent. They span A/ (A) since every element x € A/ (A) isalinear combination
of them. Therefore, vy, vs, ..., v,_, formabasisof N'(A). O

We see from the statement of this theorem that the nullity of a matrix is smply the
dimension of the null space of the matrix. It is also the basis of this agorithm.
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Null Space Algorithm: Givenanm x n matrix A.
1. Compute the reduced row echelon form R of A.
2. Use R to find the general solution to the homogeneoussystem Ax = 0.
3. Write the general solutionx = (z1,x2,... ,z,) to the homogeneous
system in the form

X=2ZTy Vi +ZipVo+ -+ T4, Vpr

wherez;, , z;,, ... ,z;,_, arethefreevariables.
4. Listthevectorsvy,vs,...,v, . Theseformabasisof N'(A).

EXAMPLE 3.6.11. Find a basis for the null space of the matrix A in the preceding
example by the null space algorithm.

SoLuTION. We aready found the reduced row echelon form of A as

10 1 2
o1 o—1/2 —1/2
E=19 9 0 0

0 0 0 0

Thevariablesz3 and x4 arefree, while x, and x5 are bound. Hence the general solution
of Ax = 0 can bewritten as

T = T3+ 224

1 1

To = —5.753 + —5.754

T3 = I3

Ty = T4

which becomes, in vector notation,

T 1 2
T2 | -1/2 -1/2
I3 - 1 + T 0
Ta 0 1

Therefore, vi = (1,—1/2,1,0) and v; = (2,—-1/2,0,1) formabasisof A'(4). O

Hereisasummary of the key dimensional facts that we have learned in this section:
THEOREM 3.6.12. Let A be anm x n matrix such thatank A = r. Then

1 dimC(A) =r
2. dimR(A) =r
3. dimN(A)=n—r

Rank Theorem



3.6. LINEAR SYSTEMS REVISITED 173

3.6 Exercises

1. Find basesfor the row space, column space and null space of the following matrices
and the dimension of each of these subspaces.

0 2 2 2 —4
@A=| -1 1| ®B=|-10 2
11 11 -2

NERCIEERI RS

2. Find all possible linear combinations of the following sets of vectors that sum to 0
and the dimension of the subspaces spanned by these vectors.

@ (0,1,1), (2,0,1), (2,2,3), (0,2,2) in k3.

() z,2% + z,2%> — zinPy.

3. Let
U 4 R R
219

[ I [ 75 7]

Compute abasisfor (a) R(A) + R(B) and for (b) N'(A4) + N(B).

o= 12

4. Inthisexercise you should use the fact that B is the reduced row-echelon form of A
where

3 1 =2 0 1 2 1 10 -1 0 0 -2 -3
1 1 0 -1 1 2 2 0 1 1 0 0 2 3
A=|(3 2 -1 1 18 9|,B=|00 010 4 5
0 2 2 -1 1 6 8 0o 001 6 7
03 3 3 -3 0 3 00 0O0O0 O O
(a) Find a basis for the row space of A and givetherank of A.
(b) Find a basis for the column space of A.
(c) Find abasis for the set of solutionsto Ax = 0 and give the nullity of A.
5. Describe geometrically the solution sets to the systems
@ 3z+6y+32z = 9 (b) z+2y+2 = 3 (¢) 6x+4y—4z = 0
T—z =1 dx+3y+3z = 6
6rx+2y—2z = 0

6. Let A beanm x n matrix of rank r. Supposethat there existsavector b € R™ such
that the system Ax = b isinconsistent. Use the consistency and rank theorems of this
section to deduce that the system A7y = 0 must have nontrivial solutions. Hint: What
doesb ¢ C(A) tell you about r?

7. Find bases for the subspace V' = span{vy, vy, vs,v4} of R by the row space
algorithm and the column space agorithm, wherev; = (1,1, 3,3), vo = (0,2,2,4),
vz = (1,0,2,1),and vy = (2,1,5,4).
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8. Find bases for the subspace V' = span{vy,vs,v3,v4} of R® by the row space
algorithm and the column space algorithm, where v, = (1,1,2,2),v2 = (0,2,0,2),
vy =(1,0,2,1) and vy = (2,1,4,3).

9. Find two bases for the subspace V' = span{vy,vs,vs, vy, vs} Of Py wherev; =
l+z,vo=14z—2%vs=1+z+2% vy =2—2% andvs = 1+ 2z. Hint:
You can tackle this directly or use standard vectors instead, which can be done by the
isomorphism of Page 158.

10. Supposethat the linear system Ax = b is aconsistent system of equations, where
Aisanm x n matrixandx = [z1,... ,7,|’. Provethat if the set of columns of A has
redundant vectorsin it, then the system has more than one solution.

11. Letp(z) = co + 1z + - -+ + cpz™ beapolynomia and A ann x n matrix. The
valueof p at A is defined to bethe n x n matrix

p(A) =col + 1A+ -+ e A™

Use the result of Exercise 8 of Section 6 to show that there exists a polynomial p(z) of
degree at most n? for which p(A) = 0. (Aside: this estimate is actually much too pes-
simistic. Thereis atheorem, the Cayley-Hamilton theorem, that shows that n works.)

12. Use Theorem 3.6.3 and the Dimension theorem to answer the question posed in
Example 3.5 of Section 3.6.

13. Usetherank theorem to prove that any rank 1 matrix can be expressed in the form
uv” for suitable standard vectors u and v.

14. Letuy,uy,... ,u, andvy,vs, ..., v, bebasesof U and V, respectively, where
U and V' are subspaces of the vector space .

(8) Show that the set of mn vectorsu; + vi, j = 1,2,... ,m, k =1,2,... ,n spans
the subspace U + V.

(b) Show that if U NV = {0}, then the vectorsin (a) form abasisof U + V.
(c) Show by examplethat part (b) failsif U NV # {0}.

3.7. *Change of Basis and Linear Operators

How much information do we need to uniquely identify an operator? For a genera
operator the answer is. alot! Specifically, we don’t really know everything about it
until we know how to find its value at every possible argument. This is an infinite
amount of information. Yet we know that in some circumstances we can do better.
For example, to know a polynomial function completely, we only need a finite amount
of data, namely the coefficients of the polynomial. We have aready seen that linear
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operators are special. Are they described by a finite amount of data? The answer is a
resounding “yes’ in the situation where the domain and target are finite dimensional.

LetT : V — W be such an operator. Supposethat B = {vy,vs,...,v,} isabass
of VadC = {wy,ws,... ,w,, }isabasisof W. Now let v € V' be given. We know
that there exists a unique set of scalars (the coordinates of v with respect to this basis)
c1,Co, ... ,Cp SUchthat

v=cvy+cve+---4+c,vp

Thus by linearity of T we see that

T(v)=T(c1v1 +cava+ -+ cpvy)
aT(vy) + T (ve) + -+ e, T(vy)

It follows that we know everything about the linear operator 7" if we know the vectors
T(v1),T(v2),...,T(vp).

Now go astep further. Each vector T'(v ;) can be expressed uniquely as alinear combi-
nation of wi, ws ..., Wy, namely

(3.7.1) T(vj) =a1,;Wi + azjWa + -+ + Qm, jWim.

In other words, the scalars ay ;, a2 j, - - - am,; arethe coordinates of T'(v ;) with respect
tothebasisw,ws, ..., w,,. Stack thesein columnsand we now havethem x n matrix
A = [a;,;] which contains everything we need to know in order to compute 7'(v). In
fact, with the above terminol ogy, we have

T(v)=c1T(vi) + T (va) + -+ ¢ T(vy)
=ci(a1,wi1 + a2 1Wo + -+ am 1 W) +
cot ep(a1,, W1 + a2 nWa + 0+ A Win)
=(a1,161 + @126 + -+ + a1 pnCn) W1 +
st (amact + amaca + - F QmonCn) Wiy
L ook closely and we see that the coefficients of these vectors are themsel ves coordinates
of a matrix product, namely the matrix A times the column vector of coordinates of
v with respect to the chosen basis of V. The result of this matrix multiplication is a
column vector whose entries are the coordinates of 7'(v) relative to the chosen basis of
W. Soin a certain sense, computing the value of a linear operator amountsto no more

than multiplying a (coordinate) vector by the matrix A. Now we make the following

definition.

DEFINITION 3.7.1. The matrix of the linear operatofl" : V' — W relative to the
basesB = {vi,va,...,vy,tof Vand C = {wy,wo,... ,w,,} of W isthe matrix
[TB,c = lai,;] whose entries are specified by Equation 3.7.1. Inthe case that B = C,

we simply write [T] 5.

Denote the coordinate vector of a vector v with respect to abasis B by [v] g. Then the
above calculation of T'(v) can be stated succinctly in matrix/vector terms as

(37.2) [T(W)le = [T]s.clv]s
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Even in the case of an operator as simple as the identity map I(v) = v, the matrix of a
linear operator can be useful and interesting.

DEFINITION 3.7.2. Let B = {vy,Va,...,vp,} ad C = {wy,wa,... ,w,} both be
bases of V. Then the matrix [I]g,c of theidentity map I : V' — V relative to these
bases is called the change of basimatrix from the basis C to the basis B.

A very fundamental fact about these change of bases matricesis the answer to the fol-
lowing question. Supposethat T : V — W and S : U — V arelinear operators. Can
we relate the matricesof 7',.S and T o S? The answer is as follows.

THEOREM 3.7.3. Suppose thaB = {vy,va,... , vy}, C ={wi,wa,... ,wp},and
D = {uj,u,,... ,u,} are bases o/, W andU, respectively, and thaf : V' — W
andS : U — V are linear operators. Then

[T o S]p,c =[T]B,clS]p,B

Animmediate corollary isthat if 7" isinvertible, then so is the matrix of 7" with respect
to any basis. In particular, al change of bases matrices are invertible.

We can now also see exactly what happens when we make a change of basis in the do-
main and target of alinear operator and recal culate the matrix of the operator. Specif-
icaly, supposethat T : V' — W and that B, B’ are bases of V and C, C' are bases of
W. Let P and () be the change of basis matrices from B’ to B and C' to C, respec-
tively. Identify a matrix with its operator action by multiplication and we have a chain
of operator maps

BEBLcL ¢
so that application of the theorem shows that
Tg,c =Q '[Tp,cP

NOTATION 3.7.4. If T : R® — R™ isalinear operator, then the matrix of T" with
respect to the standard bases of the domain and target of 7", which we simply denote as
[T] is caled the standard matrixof 7.

We havejust obtained avery important insight into the matrix of alinear transformation.
Hereisthe form it takes for the standard spaces.

COROLLARY 3.7.5. LetthatT : R* — R™ be a linear operatorB a basis ofR™ and

C abasis ofR™. Let P and(@ be the change of basis matrices from the standard bases
to B and(, respectively. If4 is the matrix ofl" with respect to the standard bases and
M the matrix ofl" with respect to the basds andC, then

M=Q AP
EXAMPLE 3.7.6. Given thelinear operator T : R* — R? by therule

T +31‘2 — 3
201 + T2 — x4

T(.’L’l,l'2,.1’3,.1’4) = |:

find the standard matrix of 7.

Change of
Basis
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SOLUTION. We see that
1 3 -1 0
T(e1) = |: ) :| ,T(ez) = |: 1 :| ,T'(e3) = |: 0 :| ,T(eq) = |: 1 :|
Thus, since the standard coordinate vector of a standard vector issimply itself, we have

m=[3 %% 2]

O

ExAMPLE 3.7.7. With T" asabove, find the matrix of T" with respect to the domain basis
B ={(1,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1)}andrangebasisC = {(1, 1), (1,-1)}.

SOLUTION. Let A be the matrix of the previous example, so it represents the stan-
dard matrix of T. Let B’ = {(1,0,0,0),(1,0,0,0),(0,0,1,0),(0,0,0,1)} and C" =
{(1,0), (0, 1)} bethe standard bases for the domain and target of 7". Then we have

A = [T] = [T]BI,CI

The change of basis matrix from any basis B to the standard basisis easy to calculate:
simply form the matrix that has the vectors of B listed as its columns. In our case, this
means that

P - [I]B,B’ =

O OO =
OO = =
O = O =
—_—0 O =

and

Now the chain of operators

Therefore

OO O =
OO = =
O = O =
—_0 O

I
| — |
| oo
M VIR
|~
p—
O =
| S
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3.7 Exercises

1. Letthe operator T : R? — R® be given by

T+ 2y
f((xvyaz)): [ r—Y ]

y+z
Show that T is linear and find the standard matrix for 7. Determine bases for each of
the spaces associated with the operator (domain, range, image and kernel).
2. Let B = {u;,uy} and B’ = {u},u}} bebases of R?, whereu; = [2,2]7, uy =
[4, _I]T' ull = []-7 3]T and ul2 = [_17 _1]T'
(a) Find the change of basis (transition) matrix 7' from B to B'.
(b) Given that w = 3u; + 4u,, use (8) to express w as alinear combination of u} and
;)

(c) What is the transition matrix from B to the standard basis B” = {e;, e2}?

3. Let the linear transformation 7" : R? — R? be given by the formula T'(

Iry — 41‘2
[ 2x1 + 2
standard basis B = {ey, e»}, the transition matrix from B’ to B and use this informa-
tion to find the matrix of 7" with respect to the basis B.

n)-

} ,and B' = {1[3,4]%, £[—4, 3]}. Find the matrix of T" with respect to the

4. Define the determinantof a linear operator 7 : V. — V' to be the determinant of
[T]s, where B is any basis of the finite dimensional vector space V. Show that this
definition is independent of the basis B.

3.8. *Computational Notes and Projects

Project Topics

Project: Modeling with Directed Graphs I

We develop the background for this project by way of an example. You might also
review the materia of page 66.

EXAMPLE 3.8.1. Supposewe have acommunications network that connectsfive nodes
which we label 1,2,3,4,5. Communications between points are not necessarily two-
way. We specify the network by listing ordered pairs (i, j),the meaning of which is that
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Vertex 1 Edge 1 Vertex 2
Edge 6
Edge 5 Edge 2 Vertex 5
Edge
Edge 4 Edge8
Vertex 4 Edge 3 Vertex 3

FIGURE 3.8.1. Datafrom Example 3.8.1

information can be sent from point 7 to point j. For our problem the connection datais
the set

E={(1,2),3,1),(1,4),(2,3),(3,4),(3,5),(4,2),(5,3)}

By aloop we mean awalk that starts and ends at some node, i.e., a sequence of directed
edges connecting a node to itself. For example, the sequence (3, 5), (5,3) isaloop in
our example. It is important to be able to account for loops in such a network. For
one thing, we know that we have two-way communication between any two pointsin a
loop (start at one point and follow the arrows around the loop till you reach the other).
Find all the loops of this example and formulate an algorithm that one could program to
compute all the loops of the network.

SOLUTION. We recognizethis as datathat can be modeled by a directed graph (see Ex-
ample 2.3.4). Thus, “nodes’ are just vertices in the graphs and connections are edges.
We can draw a picture that contains all the data that we are given by representing each
team, or “vertex”, as a point and then connecting two points with an arrow, or “di-
rected edge”, which points from the winner towards a loser in one of the matches. See
Figure 3.8.1 for a picture of this graph.

It isn't so simple to eyeball this graph and count al loops. In fact, if you count go-
ing around and around in the same loop as different from the original loop, there are
infinitely many. Perhaps we should be a bit more systematic about it. Let’s count the
smallest loops only, that is, the loops that are not themselves a sum of other loops. It
appears that there are only three of these, namely,

Ly :(3,5),(5,3)
L,: (2, 3)7 (3’ 4)7 (4’ 2)
Lj: (1, 2)7 (2’3)7 (3’ 1)

There are other loops, eg., L4 : (2,3),(3,5),(5,3),(3,4), (4,2). But thisis built up
out of Lyand L». In a certain sense, Ly = L, + L». There seems to be a “calcu-
lus of loops.” Lurking in the background is another matrix, different from the adja-
cency matrix that we encountered in Chapter 2, that describes all the data necessary
to construct the graph. It is called the incidence matrixof the graph and is given as
follows:. the incidence matrix has its rows index by the vertices of the graph and its
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columns by the edges. If the edge (i, j) is in the graph, then the column correspond-
ing to this edge has a —1 in its ith row and a +1 in its jth row. All other entries
are 0. In our example we see that the vertex setis V' = {1,2,3,4,5}, the edge set is
E = {(1,2),(2,3),(3,4),(4,2), (1,4), (1,3), (3,5),(5,3)} and so the incidence ma-
trix is

1 o 0 0 -1 1 0 O
1 -1 0 1 o 0 0 O
A= 0 1 -1 0 0 -1 -1 1
0 0 1 -1 1 0o 0 O
o o0 0 0 0 O 1 -1

= [ Vi Vg V3 V4 Vy Vg V7 Vg ]

We can now describe all loops. Each column of A defines an edge. Thus, linear combi-
nations of these columns with integer coefficients represent alisting of edges, possibly
with repeats. Consider such a linear combination with defining vector of coefficients
c=(c1,-..,c8),

v =cvy+-cgvg = Ac

When will such acombination represent aloop? For one thing the coefficients should al
be nonnegativeintegers. But thisisn’t enough. Here's the key idea: we should examine
this combination locally, that is, at each vertex. There we expect the total number of
“in-arrows’ (—1's) to be exactly cancelled by the total number of “out-arrows” (+1's).
In other words, each coordinate of v should be 0 and thereforec € A/(A4). Now let's
find abasisof NV'(A) by using the null space algorithm. To make our work alittle easier,
compute the null space of — A instead of A.

1 0 0 0 1 -1 0 0
-1 1 0 -1 0 0 0 0
~A=| 0 -1 1 0 0 1 1 -1
0O 0 -1 1 -1 0 0 0

0o 0 0 0 0 0 -1 1
100 01 -1 0 0

Ey(1) |01 0 -1 1 -1 0 0
Ep(l) 001 -1 1 0 1 -1
Eg(l) OO O 00 0 1 -1
000 00 0 -1 1|

100 01 -10 0]

— 010 -11-10 0
EEf((_li) 001 -11 00 0
000 OO0 01 -1

000 00 0O O]

From thiswe seethat the freevariablesare ¢4, c5, cg, cs. The general form of an element
of the null space takes the form

C = (C4Vy4 + C5V5 + CgVg + CgVy
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where the columns are given by setting the corresponding free variable to 1 and the
othersto 0:

vs = (0,1,1,1,0,0,0,0)
=(-1,-1,-1,0,1,0,0,0)

(1,1,1,0 0,1,0,0)

=(0,0,0,0,0,0,1,1)

Now we seethat v; and v don't represent loops in the sense that we originally defined
them since we only allow loops to move in the direction of the edge arrow. However,

the basis vectors of coefficients that represent loops as we defined them are v, and vs.
The loop can be expressed algebraically as %(vﬁ — v5). Therefore, al possible loops
can be represented by the basis vectors for the null space. O

This null space calculation is trying to tell us something. What the null space saysis
that if we allowed for paths that moved against the direction of the edge arrows when
the coefficient of the edge is negative, we would have four independent loops. These
“algebraic” loops include our original loops. They are much easier to calculate since
we don’t have to worry about all the coefficients ¢; being of the same sign. They may
not be very useful in the context of communication networks, since they don’t specify
aflow of information; but in the context of electrical circuits they are very important.
In fact, the correct definition of a“loop” in electrical circuit theory isan element N'(A)
with integer coefficients.

Project Description:Thisassignment isintended to i ntroduce you to another application
of the concept of a graph as used as atool in mathematical modeling. You are given that
the (directed) graph G has vertex set

V={1,2,3,4,56}
and edge set
E={(2,1),(1,5),(2,5),(5,4),(3,6),(4,2),(4,3),(3,2),(6,4),(6,1)}

Answer the following questions about the graph G. It involves one more idea about
graphs. If we thought of the graph as representing an electrical circuit where the pres-
ence of an edge indicates some electrical object like a resistor or capacitor we could
attach a potential

1. What does the graph look like? You may |eave spacein your report and draw this by
hand or, if you prefer, you may use the computer drawing applications available to you
on your system.

2. Next view the graph as representing an electrical circuit with potentialsz 4, ..., z5 to
be assigned to the vertices. Find A'(A) and N'(A”) using a computer algebra system
available to you. What does the former tell you about the loop structure of the circuit?
Distinguish between graphical and “algebraic’ loops. Finally, usethat fact that Ax = b
impliesthat for all y € N'(AT), y"b = 0 tofind conditionsthat a vector b must satisfy
in order for it to be a vector of potential differences for some potential distribution on
the vertices.
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Review

Chapter 3 Exercises

1. Usethe subspace test to determine which of the following subsets W is a subspace
of the vector space V':

(a) V isthe space of al 2 x 2 matrices and W is the subset of matrices of the form

0

(b) V is the space of al polynomials and W is the subset of polynomials that have
nonzero constant term.

2. Let W = R>? and consider the subsets
0 0 0
U_{{ . b] |a,b€]R}andV_{{ 0

A= { @ ﬁ } , Where a, c are arbitrary scalarsand b is an arbitrary nonzero scalar.

fl } le,d € R}
(a) Show that U and V' are subspaces of W.

(b) Find abasis for the subspace U + V.

(c) Find abasisfor the subspace U N V.

3. Show that u; = (1,0,1) andu, = (1, —1,1) form alinearly independent set. Then
fill this set out to a basis of R3.

4. Show that 1,1 + z,1 + z + 22 isabasis of P3 and compute the coordinates of the
polynomia 2 — z + 422 with respect to this basis.

5. LetT : V — W bealinear operator and supposethat dimV = 4 and dim W = 8.
Determine al possible valuesfor ker 7" and range 7'.

6. Youaregiventhat T : V — R3 isalinear operator, where v, vo, vs isabasisof V,
and moreover T'(vy) = (0,1,1), T'(v2) = (1,1,0) and T'(vs) = (—1,0,1).

(8) Compute ker T'. Hint: Find conditions on coefficients such that T'(ci; vy + cava +
c3v3) = 0.

(b) Find range T'.

(c) Isthevector (—3,2,5) inrange T'? Explain.

7. Let V beareal vector spacewith basis vy, vs, v and define the coordinate mapas

the operator T that assignsto each v € V' the vector of coordinates of v relative to the
basis vy, vy, v3. Provethe following:

(@ T :V — R? isalinear operator.
(b) ker T = {0} (c) range T = R3.

8. A square matrix H = [h;;] is called upper Hessenberdf all entries below the first
subdiagonal are zero, that is, h;; = 0 wheni > j + 1. Provethat theset V of al n x n
real Hessenberg matricesis a subspace of R™™.
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9. Answer True/False:

(a) Every spanning set of avector space contains a basis of the space.

(b) The set consisting of the zero vector is alinearly independent set.

(c) The dimension of the real vector space C'™ as a vector space over R isn.
(d) Thevectors[1,0]7, [0,1]7 and [1, 1]T arelinearly dependent.

(e) If Aisa6 x 4 matrix and the system Ax = b hasinfinitely many solutions, then A
has rank at most 3.

(f) If Aisa4 x 4 matrix and the system Ax = b has no solutions, then the columns of
A arelinearly independent.

(g) In avector space the set consisting of the zero vector is alinearly independent set.
(h) Every subspace of an infinite dimensional spaceis infinite dimensional.
(i) A square matrix isinvertibleif and only if its rows form alinearly independent set.
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CHAPTER 4

GEOMETRICAL ASPECTS OF STANDARD SPACES

The standard vector spaces have many important extra features that we have ignored
up to this point. These extra features made it possible to do sophisticated calculations
in the spaces and enhanced our insight into vector spaces by appealing to geometry.
For example, in the geometrical spaces R? and R? that were studied in calculus, it was
possible to compute the length of a vector and angles between vectors. These are visual
concepts that feel very comfortable to us. In this chapter we are going to generalize
these ideas to the standard spaces and their subspaces. We will abstract these ideas to
general vector spaces in Chapter 6.

4.1. Standard Norm and Inner Product

Throughout this chapter vector spaces will be assumed to be subspaces of the standard
vector spaces R™ or C".

The Norm Ildea

Consider this problem. Can we make sense out of the idea of a sequence of vectorsu;
converging to alimit vector u, i.e.,
lim u, =u
n— 00

in standard spaces? What we need is some idea about the length, or norm, of a vector,
S0 we can say that the length of the difference u — u,, shouldtendto 0 asn — oco.
We have seen such an idea in the geometrical spaces R? or R®. There are different
ways to measure length. We shall begin with the most standard method, one which you
have aready encountered in calculus. It is one of the outcomes of geometry and the
Pythagorean theorem. Thereis no compelling reason to stop at geometrical dimensions
of two or three, so hereisthe general definition.

DEFINITION 4.1.1. Letu = (z1,22,- .- ,x,) € R". The (standard) nornof u is the
nonnegative real number

lull= /s +a3 +-- +3

EXAMPLE 4.1.2. Computethenormsof thevectorsu = (1,—1,3) andv = [2,-1,0,4,2] 7.
185
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SOLUTION. From definition

|ul| = /12 + (=1)2 + 32 = V11 ~ 3.3166

and

v =v22+ (-1)24+02+42+22=V25=5
O

Even though we can't really “se€” the five dimensional vector y of this example, it is
interesting to note that calculating its length is just as routine as calculating the length
of the three dimensional vector z. What about complex vectors? Shouldn’t there be an
analogous definition of norm for such objects? The answer is “yes,” but we have to be
alittle careful. We can’t use the same definition that we did for real vectors. Consider
the vector z = (1,1 + 7). The sum of the squares of the coordinatesis just

P+(1+i)?=1+14+2-1=1+2i
Thisisn’t good. We don’t want “length” to be measured in complex numbers. The fix
isvery simple. We aready have away of measuring the length of a complex number z,
namely the absolute value| z |. So length squared should be | z | 2. That istheinspiration

for the following definition which is entirely consistent with our first definition when
applied to real vectors:

DEFINITION 4.1.3. Letu = (21, 22,...,2,) € C*. Thenormof z is the nonnegative
real number

lull = VIzP + 2P+ + 2]

Notice that |2|> = zz. (Remember that if 2 = a + bi, thenz = a — bi and zz =
a? + b = | z|?.) Therefore,

llul| =VZiz1 + Z220 + - + Znzn

ExAMPLE 4.1.4. Computethenormsof thevectorsu = (1,1+4) andv = [2, —1,4,3—
2i]"

SOLUTION. From definition
lu||=vVI2E+ A -1 +i)=VI+1+1~1.7321

and

v =22+ (12 + (—i)i + (3 + 2i)(3 — 2i)
=VA+1+1+9+4=+19~ 4.3589

O

Just as we have asked for other key ideas, we now ask the question “What are the
essential properties of a norm concept?’ The answer:

Basic Norm Laws. Let ¢ beascaar andu,v € V where the vector space V'

has the standard norm || ||. Then the following hold.
1. ||u]| > 0 with equality if and only if u = 0.
2. ||euf|=]e|[[u]l

3. (Triangle Inequdlity) [|u+ v || < |[u|| + || v ]|
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That (1) istrueisimmediate from the definition of || u || asasum of the lengths squared
of the coordinates of u. This sum is zero exactly when each term is zero. Condition (2)
isfairly straightforward too. Supposeu = (z1, 22, - - - ,25), SO that

|| cu|| = /(¢Z1)cz1 + (CFa)cza + - -+ + (C2n)czn

= \/(Ec)(Elzl +7222 + -4 ?nzn)
=V|cPVZi21 + Zaza + -+ Zn2n

= lel |[ul]

The triangle inequality (which gets its name from the triangle with representatives of
the vectors u, v, u + v as its legs) can be proved easily in two or three dimensional
geometrical space by appealing to the fact that the sum of lengths of any two legs of a
triangle is greater that the length of the third leg. A justification for higher dimensions
isanontrivia piece of agebrathat we will postpone until after the introduction of inner
products below.

First we consider afew applications of the norm concept. The first of these isthe idea
of “normalizing” a vector. This means finding a unit vector which means a vector of
length 1, that has the same direction as the given vector. This process is sometimes
called “normalization.” How do we do it? The following simple fact helps.

THEOREM 4.1.5. Letu be a nonzero vector. Then the vector
1
w=_—
[l
is a unit vector in the same direction as

PrROOF. Any two vectorsdetermine the same directidihoneis a positive multiple
of the other (actually, thisis adefinition of “determining the same direction”). Therefore
we see immediately that w and u determine the same direction. Now check the length
of w and use basic norm law 2 to obtain that

[[a]]

1
||w||=\— \ ‘II -l
ol = |l Tl

Hence w is a unit vector, as desired. O

ExAMPLE 4.1.6. Use the normalization procedureto find unit vectorsin the directions
of vectorsu = (2,-1,0,4) and v = (—4, 2,0, —8). Conclude that these vectors deter-
mine the same direction.

SOLUTION. Let us find a unit vector in the same direction of each vector. We have
parallel

[[ul]] = /22 + 2402 +42 =21

and

v = V-4 + (2)2 + +02 + (—8)% = V84 = 221
It follows that unit vectorsin the d| rections of u and v, respectively, are

w1 = (2,-1,0,4)/v21

wa = (—4,2,0,-8)/(2v21) = (2,-1,0,4)/v21 = w,
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It follows that u and v determine the same direction. O

ExAMPLE 4.1.7. Find aunit vector in the direction of the vector v = (2 + 4, 3).

SOLUTION. We have

v=v22+(1)2+32=v14
It follows that a unit vector in the direction of v is
1 .
w=——=(2+14,3)

V14

In order to work the next example we must express the idea of vector convergence
of asequence uy, us, ... to the vector u in a sensible way. The norm idea makes this
straightforward: to say that the u,,’s approach the vector u should mean that the distance
between u and u,, goesto 0 asn — oo. But norm measures distance. Therefore the
correct definition is as follows:

DEFINITION 4.1.8. Let uy,u,, ... beaseguence of vectorsin the vector space V' and
u also avector in V. We say that the sequence convergesto u and write

lim u, =u
n— 00

if the sequence of real numbers || u,, — u || convergesto 0, i.e.,
lim ||u, —u||=0
n—o0

ExAamMPLE 4.1.9. Usethenorm concept to justify the statement that sequence of vectors
u, convergesto alimit vector u, i.e.,

lim u, =u
n— 00

whereu,, = [1+ 1/n%,1/(n? + 1),sinn/n]T andu = [1,0,0]T.

SOLUTION. Inour case we have

1+ 1/n? 1 1/n?
u,—u=| 1/n>+1) | = | 0| =] 1/(n*+1)
sinn/n 0 sinn/n

o= () (o) + (52 050

which is what we wanted to show. O

Convergence of
Vectors
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FIGURE 4.1.1. Angle# between vectorsu and v.
The Inner Product Idea

In addition to norm concept we had another fundamental tool in our arsenal when we
tackled two and three dimensional geometrical vectors. Thistool was the so-called “ dot
product” of two vectors. It had many handy applications, but the most powerful of these
was the ability to determine the angle between two vectors. In fact, some authors use
this idea as the basis for defining dot products as follows: let 8 be the angle between
representatives of the vectors u and v. (See Figure 4.1.1.) The dot product of u and v
is defined to be the quantity ||u|| ||v|| cos 6. It turned out that with some trigonometry
and algebra, one could come up with a very convenient form for inner products; for
example, in the two dimensional case, if u = (uy,u2) andv = (v, v2), then

(4.1.1) U-v=uiv; + Usts

This made the calculation of dot products vastly easier since we didn’t have to use any
trigonometry to computeit. A particularly nice application was that we could determine
cos # quite easily from the dot product, namely

(4.1.2) cosf = L

lal[[[v]|

We have seen that it is useful to try to extend these geometrical ideas to higher dimen-
sions even if we can't literally use trigonometry and the like. So what we do is reverse
the sequence of ideas we've discussed and take Equation 4.1.1 as the prototype for our
next definition. As with norms, we are going to have to distinguish carefully between
the cases of real or complex scalars. First we focus on the more common case of real
coefficients.

DEFINITION 4.1.10. Letu = (z1,22,... ,z,) &V = (y1, Y2, ... ,yn) bevectorsin
R™. The (standard) inner productalso called the dot productof u and v, is the real
number

u-v = llTV

= T1Y1 +22Y2+ ...+ Th¥n

We can see from the first form of this definition where the term “inner product” came
from. Recall from Section 2.4 of Chapter 2 that the matrix product u”'v is called the
inner product of these two vectors.

ExAMPLE 4.1.11. Compute the dot product of the vectorsu = (1,—1,3,2) and v =
(2,-1,0,4) inR*.
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SOLUTION. From definition

u-v=1-2+(-1)-(-1)+3-0+2-4
=11.

O

There is a wonderful connection between the standard inner product and the standard
norm for vectors which isimmediately evident from the definitions. Hereit is:

(4.1.3) [[u]| =vVu-u

Thus computing norms amounts to an inner product calculation followed by a square
root. Actualy, we can even avoid the square root and put the equation in the form

Jul? =u-u

We say that the standard norm is inducedby the standard inner product. We would
like this property to carry over to complex vectors. Now we have to be a bit careful.
In general, the quantity u”'u may not even be areal number, or may be negative. This
meansthat v uZu could be complex, which doesn’t seem like agood ideafor measuring
“length.” So how can we avoid this problem? Recall that when we introduced trans-
poses, we also introduced Hermitian transposes and remarked that for complex vectors,
thisis a more natural tool than the transpose. Now we can back up that remark! Recall
the definition for complex norm: for u = (z4, 22, ... ,2,) € C*, thenormof z isthe
nonnegative real number

||ll|| :\/2121 +Zo20 4+ -+ Zn2n
=Vufu.

Therefore, in our definition of complex “dot products’ we had better replace transposes
by Hermitian transposes. Thisinspires the definition

DEFINITION 4.1.12. Letu = (wy,w2,... ,w,) andv = (z1, 22,...,2,) be vectors
in C". The (standard) inner producihich is aso called the dot productof u and v, is
the complex number

u'v = Wiz +Woezs+...+wpzy

llHV

With this definition we still have the close connection given above in (4.1.3) between
norm and standard inner product of complex vectors.

ExAMPLE 4.1.13. Compute the dot product of the vectorsu = (1 + 24,4,1) and v =
(i,—1—1,0)inC>.

SOLUTION. Just apply the definition:;

u-v=(1+2)i+i(-1—-4)+1-0
= (1-2i)i—i(—1—1i)
=142
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What are the really essentia defining properties of these standard inner products? It
turns out that we can answer the question for both real and complex inner products at
once. However, we should bear in mind that most of the time we will be dealing with
real dot products, and in this case all the dot products in questions are real numbers, so
that any reference to a complex conjugate can be omitted.

Basic Inner Product Laws. Let c beascadar andu,v,w € V whereV isa
vector space with the standard inner product. Then the following hold.

1. u- u > 0 witheguality if andonly if u =0

2 u-v=v-u

B u-(v+w)=u-v+u-w

4. u-(cv) =c(u-v)

That (1) is true is immediate from the fact that u - u = ufu is a sum of the length
squared of the coordinates of u. Thissum is zero exactly when each term is zero. Con-
dition (2) follows from thisline of calculation:
- —\T
v-u=viu= (VHII) =wvinf =ulv=u-v
One point that stands out in this calculation is the following

Caution: A key difference between real and complex inner productsis in the commu-
tativelaw u-v = v - u, which holdsfor real vectorsbut notfor complex vectors, where
u-v=v-u.

Conditions (3) and (4) are similarly verified and left to the exercises. We can aso use
(4) to provethisfact for real vectors:

(cu)-v=v-(cu)=c(v-u) =c(u-v)

If we are dealing with complex dot products, matters are a bit trickier. One can show
then that

(cu)-v=¢(u-v)

so we don't quite have the symmetry that we have for real dots.

4.1 Exercises

1. For the following pairs of vectors, caculate ||u||, u - v, and a unit vector in the
direction of u :

@u=[1,-1"andv = [-2,3]" (b)ju=(2,0,1)andv = (—3,4,1)

©u=11,22-407adv =[-2,1,1,1]7 (du=(1+2i2+i)adv =
(4 +3i,1).

2. Verify that u,, convergesto alimit vector u, whereu,, = [2/n, (1+n2)/(2n?+n +
1)]7 by using the norm definition of vector limit.

3. Compute an angle # between the following pairs of real vectors.
(a) (37 _5) and (27 4) (b) (31 4) and (47 _3) (C) (]-7 11 2) and (25 _15 3)
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4. Lete=3,u=(4,-1,2,3)andv = (-2,2,-2,2).

(@) Verify that the three basic norm laws hold for these vectors and scalars.

(b) Verify the four basic inner product laws for these vectors and scalars.
5. Verify basic normlaw 1: || u || > 0 with equality if and only if u = 0.

6. Provethat if v isavector and cisapositivereal, then normalizing v and normalizing
cv yield the same unit vector. How are the normalized vectorsrelated if ¢ is negative?

7. Show that for real vectorsu, v and real number ¢ one has
(cu) v =v-(cu)=e(v-u)=c(u-v)

8. Show that if u,v,w € R” (or C*) and c isascalar, then

@u-(v+w)=u-v+u-w

(b) u(ev) = c(u-v)

9. Show from definition that if lim,, o, u, = u, whereu,, = (z,,y,) € R? and
u = (z,y), thenlim,, o z, = z andlimy, 00 Y = .

10. Show that for any two vectors u, v in the same space, |||u|| — ||v]|| < |lu — w]|.
Hint: Apply thetriangleinequalitytou + (v — u) andv + (u — v).

4.2. Applications of Norms and Inner Products

Projections and Angles

Now that we have dot products under our belts we can tackle geometrical issues like
angles between vectorsin higher dimensions. For the matter of angles, we will stick to
real vector spaces, though we could do it for complex vector spaces with alittle extra
work. What we would like to do is take Equation 4.1.2 as the definitionof the angle
between two vectors. There's one dight problem: how do we know that it will give a
quantity that could be a cosine? After al, cosines only take on values between —1 and
1. We could use some help and the Cauchy-Bunyakovsky-Schwarz inequality (CBS for
short) is just what we need:

THEOREM 4.2.1. For vectorsu,v € R"”,

lu-v| <|[ufl{lv]|

CBS Inequality
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PROOF. Let ¢ bean arbitrary real number and compute the nonnegative quantity
fle)=llutev]?
=(u+cev)-(u+cv)
=u-u+u-(cv)+ (ev)-u+ (ev) - (cv)
lal]? +2¢(u-v) + || v []°.

Thefunction f(c) isthereforeaquadraticin the variable ¢ with nonnegativevalues. The
low point of this quadratic occurs where f'(¢) = 0, that is, where

0=2(u-v)+2|v|?
i.e., where

—(u-v)

c= —F——5=
INglE

Evaluate f at this point to get that

(u-v)>  (@v)? o ,_ (u-v)?
5 T VI = [lull® - A
Vi v vl

Now add (u - v)2/|| v ||? to both sides and multiply by || v ||? to obtain that
(u-v)* < [lu|P (v

0< |ull® -2

Take sguare roots and we have the desired inequality. O

This inequality has a number of useful applications. For instance, because of it we
can articulate the following definition. Thereis a certain ambiguity in discussing angle
between vectors, since more than one angle works. Actudly it's the cosine of these
anglesthat is really unique.

DEFINITION 4.2.2. For vectorsu, v € R"™ we define the anglebetween u and v to be
any angle # satisfying
u'v

cos = ————
[l fv]]

Thanks to the CBS Inequality, we know that |u - v |/(||u]|||v]|]) < 1 so that this
formulafor cos § makes sense.

ExAMPLE 4.2.3. Findtheanglebetweenthevectorsu = (1,1,0,1)andv = (1,1,1,1)
inR*.

SOLUTION. We have that

cosf =

TLLO D LLL

Hencewe cantake § = /6. O

ExAMPLE 4.2.4. Use the laws of inner products and the CBS Inequality to verify the
triangleinequality for vectorsu and v. What happensto thisinequality if we also know
that u-v =07
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SOLUTION. Here the trick is to avoid square roots. So square both sides of Equa-
tion 4.1.3 to obtain that
lu+v|f* = (u+v)- (u+v)
=u-u+u-v+v-u+v-v
2 2
= [[ull” + 2(u-v) + [|v]|
2 2
<|laf[” +2[u-v]+||v]|
2 2
< [laf[™ + 2 {[al| [[v]| + [Iv]]
2
= ([[al[+ [[v]])
where the last inequality follows from the CBS Inequality. If u - v = 0, then the single
inequality can be replaced by an equality. O

We havejust seen avery important case of angles between vectorsthat warrantsits own
name. Recall from geometry that two vectors are perpendicularor orthogonalif the
angle betweenthemisn /2. Sincecos /2 = 0, we see that this amountsto the equation
u - v = 0. Now we can extend the perpendicularity idea to arbitrary vectors, including
complex vectors.

DEFINITION 4.25. Two vectors u and v in the same vector space are orthogonalif Orthogonal
u-v = 0. Inthiscasewewriteu L v. Vectors

In the case that one of the vectorsis the zero vector, we have the little oddity that the
zero vector is orthogonal to every other vector, since the dot product is always 0 in this
case. Some authorsrequirethat u and v be nonzero as part of the definition. It'saminor
point and we won’t worry about it. When u and v are orthogonal, i.e., u - v = 0, we
see from the third equality in the derivation of CBS above that

l[a+v][* = [l + [v]]
which isreally the Pythagorean theorem for vectorsin R™.
ExAMPLE 4.2.6. Determineif the following pairs of vectors are orthogonal. Pythagorean
@u=(2,-1,31)andv = (1,2,1,-2). Theorem

b)u=(1+4,2)andv = (—2i,1+1).

SOLUTION. For (a) we calculate
u-v=2-14+(-1)2+3-1+1(-2)=1

so that u is not orthogonal to v. For (b) we calculate

u-v=_>1-14)(-2i)+2(1+1)
=—-20—-2+2+2:=0.

so that u is orthogonal to v in this case. O

The next exampleillustrates areally handy little trick that is well worth remembering.

ExXAMPLE 4.2.7. Givenavector (a,b) inR™ or C", find a vector orthogonal to (a, b).
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FIGURE 4.2.1. Angle between vectors u and v, and projection p of
udongv .

Solution. Simply interchange coordinates, conjugate them (this does nothing if entries
are real) and insert a minus sign in front of one of the coordinates, say the first. We
obtain (—b,a). Now check that

(a,b) - (=b,a). = —a(=b) + ba =0
O

By parallel vectorswe mean two vectorsthat are nonzero scalar multiples of each other.
Notice that parallel vectors may determine the same or opposite directions. Our next
application of the dot product relates back to a fact that we learned in geometry: given
two nonzero vectorsin the plane, it is aways possible to resolve one of them into asum
of avector parallel to the other and a vector orthogonal to the other (see Figure 4.2.1).
The paralel component was called the projection of one vector along the other. Asa
matter of fact, we can develop this sameideain arbitrary standard vector spaces. That is
the content of the following useful fact. Remember, by the way, that “parallel” vectors
simply meansthat the vectorsin question are scalar multiples of each other (any scalar).

THEOREM 4.2.8. Letu andv be vectors in a vector space with# 0. Let
v-u
p=——v and q=u-p
V-V
Thenp is parallel tov, q is orthogonal tov andu = p + q.

PROOF. Letp = cv, anarbitrary multiple of v. Then p isautomatically parallel to
v. Impose the constraint that ¢ = u — p be orthogonal to v. This means, by definition,
that

0O=v-g=v-(u—p)=v-u—v-(cv).
Add v - (¢v) to both sides and pull the scalar ¢ outside the dot product to obtain that
e(v-v)=v-u

and therefore

c=——

V'V

So for this choice of ¢, q is orthogonal to p. Clearly, u = p + u — p, so the proof is
complete. O
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It is customary to call the vector p of this theorem the projection ofu alongv. We
write
. v-'u
proj,u = ——Vv
V-V
The projection of one vector along another isitself a vector quantity. A scalarquantity
that is frequently associated with these calculations is the so-called componenbf u
aongv. Itisdefined as
_ v-u
vl

The connection between these two quantitiesis that
. v
proj, u = comp, u——-
v MR

comp,, u

Notice that v/|| v || is a unit vector in the same direction as v. Therefore, comp ,, u is
the signed magnitude of the projection of u along v.

ExamPLE 4.2.9. Caculate the projection and component of u = (1,—-1,1,1) aong
thev = (0,1,—2,—1) and verifythat u — p L v.
SOLUTION. We have that
vou=0-1+41(-1)+(-2)1+(-1)1 = -4
v-v=0"+1*+ (-2 +(-1)*=6

so that
. —4 1
P =proj,u = ?(Oa 17_27_1) = 5(05 _25472)
It follows that
1
-p=-(3,-1,-1,1
u—-p 3( ,—1,-1,1)
and

_1
~3

Also, the component of u along v is

(u—p)-v (3-0+1(=1) + (=1)(—2) + 1(-1)) = 0.

v-u
comp, u = Tl =

5L

Least Squares

ExAMPLE 4.2.10. You are using a pound scale to measure weights for produce sales
when you notice that your scaleis about to break. The vendor at the next stall isleaving
and loans you ancther scale as she departs. Soon afterwards your scale breaks. You
then realize that the new scale is in units you don’t recognize. You happen to have a
some known weights that are approximately 2, 5 and 7 pounds respectively. When you
weigh these items on the new scale you get the numbers 0.9, 2.4 and 3.2. You get your
calculator out and hypothesize that the unit of weight should be some constant multiple

Components
and Projections
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of pounds. Model thisinformation as a system of equations. Isit clear from this system
what the units of the scale are?

SOLUTION. Express the relationship between the weight p in pounds and the weight w
in unknown units as w - ¢ = p, where ¢ is an unknown. Your data show that we have

0.7¢c =2
24c=5
34c=7

Asasystem of three equationsin one unknown you see immediately that this overdeter-
mined system (too many equations) is inconsistent. After all, the pound weights were
only approximate and in addition there is always some error in measurement. Conse-
quently, itisnot at all clear what the units of the scale are, and wewill haveto investigate
this problem further. You could just average the three inconsistent values of ¢, thereby
obtaining

c=(2/0.7+5/2.4+4+7/3.4)/3 =2.3331
Itisn't at al clear that this should be agood strategy. O

Therereally isabetter way and it will lead to adlightly different estimate of the number
c. This method, called the method of least squaregvas invented by C. F. Gauss to
handle uncertaintiesin orbital calculationsin astronomy.

Hereisthe basic problem: suppose we have data that leads to a system of eguationsfor
unknowns that we want to solve for, but the data has errorsin it and consequently leads
to aninconsistent linear system

Ax=Db

How do we find the “best” approximate solution? One could answer this in many ways.
One of the most commonly accepted ideas is one that goes back to C. F. Gauss: the
quantity so-called residualr = b — Ax should be 0 so its departurefrom 0 is ameasure
of our error. Thus we should try to find a value of the unknown x that minimizes the
norm of the residual squared, i.e., a“solution” x so that

b — Ax||?

is minimized. Such a solution is called a “least squares’ solution to the system. This
is used extensively by statisticians, in situations where one has many estimates for un-
known parameters which, taken together, are not perfectly consistent. Let'stry to get a
fix on this problem. Even the 1 variable case is instructive, so let’s use the preceding
example.

In this case the coefficient matrix A is the column vector a = [0.7,2.4,3.4]7 and the
right hand side vector isb = [2,5,7]7. What we are really trying to find is a value
of thescalar = ¢ suchthat b — Ax = b — za isaminimum. Hereis a geometrical
interpretation: we want to find the multiple of the vector a that is closest to b. Geometry
suggests that this minimum occurswhen b — za isorthogonal to a, in other words, when
za isthe projection of b along a. Inspection of the projection formulashows us that we
must have
a-b 0.7-24+24-5+34-7

aa 07 07+2424734.34 28T

Tr =
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FIGURE 4.2.2. The vector in subspaceC(A) nearest to b.

Notice that this doesn’t solve any of the original equations exactly, but it is, in acertain
sense, the best approximate solution to all three equations taken together. Also, this
solution is notthe same as the average of the solutions to the three equations, which we
computed to be 2.3331.

Now how do we tackle the more general system Ax = b? Since Ax isjust alinear
combination of the columns, what we should find is the vector of this form which is
closest to the vector b. See Figure 6 for a picture of the situation with n = 2. Our
experiencewith the 1-dimensional case suggests that we should require that the residual
be orthogonal to each column of A, that is, a; - (b — Ax) = al'(b — Ax) = 0, for
al columns a; of A. Each column gives rise to one equation. We can write al these
eguations at once in the form of the so-called normal equations Normal

AT Ax — ATH Equations

Infact, thisisthe same set of equations we get if we wereto apply calculusto the scalar

function of variables 1, z2, ..., ¥, givenas f(x) = ||b — Ax||? and search for alocal

minimum by finding al partials and setting them equal to 0. Any solution to this system

will minimize the norm of the differenceb — Ax asx ranges over all elementsof R™.

The coefficient matrix B = AT A of the normal system has some pleasant properties.

For one, it is a symmetric matrix. For another, it is a positive semidefinite matriky

which we mean that B isasquare (say n x n) matrix suchthat x ” Bx > 0 for all vectors

x € R™. Infact, in some cases B is even better behaved because it is a positive definite

matrix , by which we mean that B isasquare (say n x n) matrix suchthat x” Bx > 0  Positive Definite
for al vectorsx € R™. Matrix

Does there exist a solution to the normal equations? The answer is “yes.” In general,
any solution to the normal equations minimizes the residual norm and is called aleast
squares solutioto the problem Ax = b. Since we now have two versionsof “solution”
for the system Ax = b, we should distinguish between them in situations which may
refer to either. If the vector x actualy satisfies the equation Ax = b, we call x a
genuine solutiorto the system to contrast it with a least squares solution. Certainly,
every genuine solution is aleast squares solution, but the coverse will not be true if the
original system isinconsistent. We |leave the verifications as exercises.
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The normal equations are guaranteed to be consistent —a nontrivial fact —and will have
infinitely many solutionsif A7 A is a singular matrix. However, we will focus on the
most common case, namely that in which A isarank n matrix. Recall that in this case
we say that A has full column rank.We can show that the n x n matrix AT A is also
rank n. Thismeansthat it is an invertible matrix and therefore the solution to the normal

equationsis unique Hereis the necessary fact.

THEOREM 4.2.11. Suppose that they x n matrix A has full column rank.. Then the
n x n matrix AT A also has rank: and is invertible.

PROOF. Assume A hasrank n. Now suppose that for some vector x we have
0=A"Ax
Multiply on the left by x” to obtain that
0=x70=x"AT Ax = (4x)T (Ax) = || Ax |?

so that Ax = 0. However, we know by Theorem 1.4.15 that the homogeneous system
with A asits coefficient matrix must have a unique solution. Of course, this solution is
the zero vector. Therefore, x = 0. It follows that the square matrix A7 A has rank n
(and isinvertible as well) by Theorem 2.5.9 O

EXAMPLE 4.2.12. Two parameters, x, and z», are linearly related. Three samples are
taken that lead to the system of equations

201 +x2 = 0
Ty +x2 =
2.1’1 + Ty = 2

Show this system is inconsistent, and find the least squares solution for x = (1, z2)-
What is the minimum norm of theresidual b — Ax in this case?

SOLUTION. Inthiscaseit is obviousthat the system is inconsistent: the first and third
equations have the same quantity, 2x 1 + 2, equal to different values 0 and 2. Of course,
we could have set up the augmented matrix of the system and found a pivot in the right
hand side column as well. We see that the (rank 2) coefficient matrix A and right hand

sideb are
2 1 0
A=1(1 1], b= 0
2 1 2
Thus
2 17
2 1 2 9 5
o[t H[H] -0
1 1 1 [21_ 5 3
and
0]
o [2 1 2 _[4
w212 )0] <[]
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As predicted by the preceding theorem, A™ A isinvertibleand werecall the2x 2 formula

for theinverse:
—1
Tao-1_ |9 D 1 3 =5
(474) _[5 3} _2[—5 9]

so that the unique least squares solutionis

o] 3 3[4 2]

The minimum value for the residual b — Ax occurswhen x is aleast squares solution,
so we get

SSHRHI
el lolol o]
2] ]

and therefore
I|b— Ax|| = V2 =~ 1.414

Thisisn't terribly small, but it's the best we can do with this system. This number tells
us the system is badly inconsi stent. O

4.2 Exercises

1. Determineif the following pairs of vectors are orthogonal, and if so, verify that the
Pythagorean theorem holds for the pair. If not, use the projection formula (which is
valid even in the complex case — assume this) to find the projection of u aong the
vector v and express u as the sum of avector parallel to v and avector orthogonal to v.

@u=(-2,1,3)andv = (1,2,0) (b)u=(i,2) and v = (2,1)
(©u=(1,1,0,-1)andv = (1,—1,3,0) (d)u=(i,1)andv = (1,—i)
2. Letv, =[1,0,1)" and v, = [1,1,-1]7.

(a) Find the cosine of the angle between the vectors v, and vs.

(b) Find unit vectorsin the directions of v, and vs.

(c) Find the projection and component of the vector v along vs.

(d) Verify the CBS Inequality for the vectors v, and v.

3. Repeat Exercise2 withv; = (—1,0,2) andvs = (1,1, -1).

4. For thefollowing, find the normal equations and solve them for the system Ax = b.
Also find the residual vector and its norm in each case. (Note: these systems need not
have a unique least squares solution.)
2 =2 2 1 -1 0 1
@A=1|1 1|,b=| -1 b)A=1|1 1 2 (,b=|1
3 1 1 1 2 3 3
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(d)A:H (2) g],b:[ﬂ
1 2 3

1 23] |s)

5. Show that if two vectors u and v satisfy the equation |ju + v||% = |[ul]* + ||v]|?,
then u and v must be orthogonal. Hint: Express each norm in terms of dot products.

© A=

0
1

-1 b=
1

N = =N
—_ o O =
OO =W

6. Suppose that you have collected data points (., yi) that are theoretically linearly
related by aline of the form y = ax + b. Each data point gives an equation for ¢ and
b. Suppose the collected data points are (0, .3), (1,1.1), (2, 2), (3, 3.5), and (3.5, 3.6).
Write out the system of 5 equations that result, compute the normal equationsand solve
them to find the line that best fits this data. A calculator or computer might be helpful.

7. Let Abeanm x n real matrix and B = AT A. Show the following
(a) The matrix B is nonnegative definite.
(b) If A hasfull columnrank, then B is positive definite.

8. Show that the CBSinequality isvalid for complex vectorsu and v by evaluating the
nonnegative expression ||u + cv||2 with the complex dot product and evaluating it at
¢=ul]>/(u-v)inthecaseu - v # 0.

9. In Example 4.2.10 two values of ¢ are calculated: The average value and the best
squares value. Calculate the resulting residual and its norm in each case.

10. Show that if A isarank 1 real matrix, then the normal equations with coefficient
matrix A are consistent. Hint: Use Exercise 13.

11. Show that if u and v are vectors of the same length, then u + v is orthogonal to
u + v. Sketch apicturein the plane and interpret this result geometrically.

12. Verify that the projection formula (Theorem 4.2.8) is valid for complex vectors.
13. If Aisarea matrix, then AT A is symmetric nonnegative definite.

14. If Aisarea matrix, then AT A is positive definite if and only if A hasfull column
rank.
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4.3. Unitary and Orthogonal Matrices

Orthogonal Sets of Vectors

In our discussion of bases in Chapter 3, we saw that linear independence of a set of
set of vectors was a key idea for understanding the nature of vector spaces. One of
our examples of a linearly independent set (a basis, actually) was the standard basis
e1,es,...,e, of R". Here e¢; is the vector with a 1 in the ith coordinate and zeros
elsawhere. In the case of geometrical vectors and n = 3, these are just the familiar
i, j, k. These vectors have some particularly nice propertiesthat go beyond linear inde-
pendence. For one, each isaunit vector with respect to the standard norm. Furthermore,
these vectors are pairwise orthogonal to each other. These properties are so desirable
that we elevate them to the status of a definition.

DEFINITION 4.3.1. The set of vectors vy, vs, ... , v, in astandard vector space are

said to be an orthogonal seif v; - v; = 0 whenever ¢ # j. If, in addition, each vector

has unit length, i.e.,, v; - v; = 1 then the set of vectorsis said to be an orthonormal set
of vectors.

ExAaMPLE 4.3.2. Which of thefollowing sets of vectors are orthogonal ? Orthonormal ?
Use the standard inner product in each case.

(a) {(3/574/5)7 (_4/573/5)} (b) {(1, _1,0)7 (1, ]-7 0), (07 0, 1)}

SOLUTION. Inthecaseof (a) welet v, = (3/5,4/5), v2 = (—4/5,3/5) to obtain that
S22 _9 16
VIR T s Tas T VIV Ty Ty T T Y

It follows that thefirst set of vectorsis an orthonormal set.
Inthe case of (ii) welet vy = (1,-1,0),v2 = (1,1,0),vs = (0,0, 1) and see that
V1'V2:1'1—1'1+0'0:0andV1'V3:1'0—1'0+0'1:0:V2'V3

Hence this set of vectorsisorthogonal, but v, - vy = 1-1+4(—1)-(—=1)+0 = 2, which
is sufficient to show that the vectors do not form an orthonormal set. O

One of the principal reasons that orthogonal sets are so desirable is the following key
fact, which we call the orthogonal coordinates theorem.

THEOREM 4.3.3. Letwvy,vs,...,v, be an orthogonal set of nonzero vectors and
suppose thav € span{vy,vs,...,v,}. Thenv can be expressed uniquely (up to
order) as a linear combination of, vs, ... , v,, namely

ViV VoV Vp 'V
vV = Vi + Vo 4+ ...+ Vi
vVi-Vvi Va -V Vn - Vp

Orthogonal
Coordinates
Theorem
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PROOF. Sincew € span{ vi,va,..., vy}, weknow that v is expressible as some
linear combination of thev;'s, say
V=cVi+cve+...+c,Vp

Now we carry out a simple but wonderful trick that one sees used frequently with or-
thogonal sets, namely, take the inner product of both sides with the vector v . Also, we
havethat (v, v;) = 0if j # k, soweobtain
Vi V=V (e1vi +cava+ ...+ cpVy)
=ClVE V1 +CaVE-Va+ ...+ CpVE " Vp
=CkVk - Vi

Since vy # 0, it followsthat vy, - v, # 0, so that we may solve for ¢;, to obtain that

Vi -V
Cp =
Vi Vi
This proves that the coefficients ¢;, are unique and establishes the formula of the theo-
rem. |

COROLLARY 4.3.4. Every orthogonal set of nonzero vectors is linearly independent.
PrROOF. Consider alinear combination of the vectorsv{, vs, ..., v,. If somelin-
ear combination were to sum to zero, say
O0=civi +cave +...+cpvp

it would follow from the preceding theorem that

e - 0
Cp = Vi = 0
Vi Vi
It followsfrom the definition of linear independencethat the vectorsv ¢, v, ... , v, ae
linearly independent. O

Several observations are worth noting:

e The converse of the corollary is fase, that is, not every linearly independent
set of vectorsis orthogonal. For an example, consider the linearly independent
vectorsvy = (1,0), vo = (1,1) inV = R%.

e The vector ﬁvk looks familiar. In fact, it is the projection of the vector
v adong the vector v;. Thus, we can say Theorem 6.2.18 in words as follows:
any linear combination of an orthogonal set of nonzero vectorsis the sum of its
projectionsin the direction of each vector in the set.

e Thecoefficientscy of Theorem 6.2.18 are also familiar: they arethe coordinates
of v relative to the basis vy, vs, ... ,v,. This terminology was introduced in
Section 3.3 of Chapter 3. Thus Theorem 6.2.18 shows us that coordinates are
rather easy to calculate with respect to an orthogonal basis. Contrast this with

Example 3.3.13 of Chapter 3.

e Theformulaof Theorem 6.2.18 simplifiesvery nicely if vectorsv,va, ... , vy,
form an orthonormal set (which automatically consists of nonzero vectors!),
namely

V=V -VV]+Vy-VVo+...+V, - VV,
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e Given an orthogonal set of nonzero vectors, it is easy to manufacture an or-
thonormal set of vectors. Simply replace every vector in the original set by the
vector divided by its length.

Orthogonal and Unitary Matrices

Ingeneral, if wewant to determinethe coordinates of avector b with respect to acertain
basis of vectorsin R™ or C", we stack the basis vectors together to form a matrix A,
then solve the system Ax = b for the vector of coordinates x of b with respect to this
basis. Infact, x = A~'b. Now we have seen that if the basis vectors happen to form
an orthonormal set, the situation is much simpler and we certainly don’t have to find
A~ Isthissimplicity reflected in properties of the matrix A? The answer is“yes’ and
we can see this as follows: supposethat u;, us, ... ,u, isan orthonormal basis of R™
andlet A = [uy,u,...,u,]. Orthogonality saysthat ulu; = §;;. This means that
the matrix AT A, whose (i, j)th entry isulu,,, issimply [6;;] = I, thatis, ATA = I.
Now recall that Theorem 2.5.9 of Chapter 2 shows that if a matrix acts as an inverse
on one side and the matrices in question are square, then the matrix realy is the two-
sided inverse. Hence, A=! = AT. A similar argument works if uy, us, ..., u, isan
orthonormal basis of C™ and we use Hermitian transpose instead of transpose. Matrices
bearing these properties are important enough to have their own names.

DEFINITION 4.3.5. A square matrix U is called unitaryif U# = U~! and  is called
orthogonalif Q isreal and Q7 = Q.

One could alow orthogonal matrices to be complex as well, but these are not particu-
larly useful for us, so in this text we will always assume that orthogonal matrices have
real entries. Since for real matrices Q, we have QF = Q7, we see from the definition
that orthogonal matrices are exactly thereal unitary matrices.

The naming is traditional in matrix theory, but a bit unfortunate because it sometimes
causes confusion between the terms “ orthogonal vectors’ and “orthogonal matrix.” By
orthogonal vectorswe mean a set of vectors with a certain relationship to each other,
while an orthogonal matrix is areal matrix whose inverseisits transpose. And to make
matters more confusing, there is a close connection between the two terms, since a
square matrix is orthogonal exactly when its columns form an orthonormal set.

EXAMPLE 4.3.6. Show that the matrix U = % { 1Z 12 ] is unitary and that for any

cosf —sinf

angle d, the matrix R(0) = { sinf cos f

} is orthogonal.
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R(O) v

FIGURE 4.3.1. Action of rotation matrix R(6).

SOLUTION. It is sufficient to check that U#U = I and R(§)TR(f) = I. So we

caculate
g (L1 i\ L1
V2 i1 2| i
. 1
(3

ro7r0) = (| G —sinobT[cosa e

sinf cos@ sinf cos@

[ cosf sin0] { cosf —sinf }

—sinf cos#f sin 0 cos @
_ cos® 6 +sin® @ cosfsinf —sinflcosf | | 1 0
| —cosfsin® + sinf cosf cos? 6 + sin” @ 10 1|
which showsthat R(6) is orthogonal. O

Orthogonal and unitary matrices have a certain “rigidity” quality about them which is
nicely illustrated by the rotation matrix R(6) that turns up in calculus as coefficients for
arotational change of basis. The effect of multiplying a vector x € R? by R(f) isto
rotate the vector counterclockwisethrough an angle of 6 asillustratedin Figure 4.3.1. In
particular, angles between vectors and lengths of vectors are preserved by such a mul-
tiplication. Thisis no accident of R(#), but rather a property of orthogonal and unitary
matricesin general. Hereis a statement of these propertiesfor orthogonal matrices. An
analogous fact holds for complex unitary matrices with vectorsin C™.

THEOREM 4.3.7. Let( be an orthogonah xn matrix andx,y € R™ with the standard
inner (dot) product. Then

lex||=Ix|| and @x-Qy=x-y
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PROOF. Let uscalculate the norm of Qx:
||Qx||2 =Qx-Qx = (QX)T Qx=xTQTQx=x"x = ||x||2
which provesthe first assertion, while similarly
Qx-Qy=(@Qx)" Qy=x"Q"Qy =x"y =x-y
([l

There is one more kind of orthogonal matrix that has turned out to be very useful in
numerical calculations and has a very nice geometrical interpretation as well. It gives
us avery simple way of forming orthogonal matrices directly.

DEFINITION 4.3.8. A matrix of theform H, = I — 2(vv?)/(vTv), wherev € R", is
called a Householdematrix.

ExAMPLE 4.3.9. Let v = (3,0,4) and compute the Householder matrix H .. What is
the effect of multiplying it by the vector v?

SoLUTION. We cdlculate H, to be

5 (1 0 0] 5 3
I———vwi=]010|-5—=]0[[3 0 4]
T 2 2
vly _001_ 32+4 4
(1 0 0] 5 [ 9 0 12
=101 0 -5 0 0 0
_001_ 2 0 16

1
24

1

LIN I

25 [ —24 0 ]

Thus we have that multiplying H, by v gives
1 7 0 -—24 3 1 —75 3
Hyv = % 0 25 0 0| = % 0l=-10
-24 0 -7 4 —100 4

The behavior of this example is no accident. Multiplication by a Householder matrix
can be thought of as a geometrical reflection that reflects the vector v to —v and leaves
any vector orthogonal to v unchanged. Thisisimplied by the following theorem. For a
picture of this geometrical interpretation, see Figure 4.3.2. Notice that in thisfigure V/
is the plane perpendicular to v and the reflections are across this plane.

THEOREM 4.3.10. Let H,, be the Householder matrix defined by R™ and letw €
R™ be written asw = p + u, wherep is the projection ofv alongv andu = w — p.
Then

H,w=-p+u



4.3. UNITARY AND ORTHOGONAL MATRICES 207

FIGURE 4.3.2. Action of H, on w as areflection across the plane
V perpendicularto v.

ProoOF. With notation as in the statement of the theorem, we havep = “’,TT‘:,VV and
w = p + u. Let uscalculate

2 T
H,w=(I - TvVY )(p+u)

T

T T

v viw
:p+u—272vav—2Tvau

vTv) viv

viw
=ptu—2——-v-0

vy
=p+u-2p
:u—p

O

ExAMPLE 4.3.11. Letv = (3,0,4) and H, the corresponding Householder matrix (as
in Example 4.3.9). The columns of this matrix form an orthonormal basis for the space
R3. Find the coordinates of the vector w = (2, 1, —4) relative to this basis.

SOLUTION. We have aready calculated Hy = [ui,us,u3] in Example 4.3.9. The
vector ¢ = (¢1, ¢2, ¢3) Of coordinates of w must satisfy the equations
W = ciu; + cauy + cauz = Hyc.

Since H, isorthogonal, it follows that

1 7 0 -24 2 4.56
c:Hv—lw:HVT:2—5 0 25 0 1| = 1
-24 0 -7 —4 -0.8

which gives us the required coordinates. O
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For the most part we work with real Householder matrices. However, occasionaly
complex numbers are a necessary part of the scenery. In such situations we can define
the complexHouseholder matrix by the formula

H, =T -2(vvi)/(vFv)

The projection formula (Theorem 4.2.8) remains valid for complex vectors which is
all we need to see that the proof of Theorem 4.3.10 carries over to complex vectors
provided that we replace al transposes by Hermitian transposes.

One might ask if thereis any other way to generate orthogonal matrices. In particular, if
we start with asingle unit vector, can we embed it as a column in an orthogonal matrix?
The answer is “yes,” and truth of this answer follows from an even stronger statement,
which is reminiscent of the Steinitz substitution principle.

THEOREM 4.3.12. Every orthogonal set of nonzero vectors in a standard vector space
can be expanded to an orthogonal basis of the space.

PROOF. Suppose that the space in questionis R and we have expanded our orig-
inal orthogonal set to vy, vs, ..., vy, where k < n. We show how to add one more
element. Thisis sufficient, because by repeating this step we eventually fill up R™. Let
A =[vy,vs,...,vi]T andlet viy; beany nonzero solution to Ax = 0, which exists
since k < n. Thisvector isorthogona tothevy, va, ..., v. O

WEe'll see a more efficient way to perform this calculation when we study the Gram-
Schmidt algorithm in Chapter 6.

EXAMPLE 4.3.13. The vectorsu; = £(1,2,2) and uy = %(—2, 1,0) form an or-
thonormal set. Find an orthogonal matrix with these vectors as the first two columns.

SOLUTION. To keep the arithmetic simple, let v, = (1,2,2) and vo = (—2,1,0).
Form the matrix A with these vectors as rows and solve the system Ax = 0 to get a
general solution (the reader should check this) x = (— §x3, —%173,173). Sotakezs =5
and get a particular solution vs = (—2,—4,5). Now normalize all three vectors v ; to

recover the origina u;, u, and the new uz = ﬁg(—Q, —4,5). Stack these columns
together and factor out ﬁ to obtain the orthogonal matrix
1 V5 -6 -2
P:[ul,u2,U3]:— 2\/5 3 —4
V5 95 0 s
which is the matrix we want. O

4.3 Exercises

1. Which of the following sets of vectors are linearly independent? Orthogonal? Or-
thonormal ?

(a) (17 _17 2)7 (27 270) (b) (3, _]-, ]-)7 (1, 27 _1)7 (2, _1,0)
(C) %(374),%(47 _3) (d) (1+i71)5(171_i)
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1 -1 1/2
2. Letvi=| 1 |,vy= 1 |,vs=1| —1/2 | .Show thissetisan orthogonal
B EIE R
1
basis of R? and find the coordinates of v = 2 ] with respect to this basis.
-2

3. For what values of the angle 6 is the orthogonal matrix A = [ cosf —sinf ]

sin @ cos @
symmetric? Skew-symmetric?

4. Determine which of the following matrices are orthogonal or unitary. For such ma-
trices, find their inverses.

1 0 -1 . .
3 4 1
(a)%|:4 _3:| (b)\/Lﬁ[_(l) (1) 0](C)\/L§|: +Z I—Z:|

1
Lo 1] [10 0] i_} _}}

5. Letu = (1,2,—1) andw = (1/6,0,0). Let v = u — w and construct the House-
holder matrix H.. Now apply it to the vectorsu and w. Conclusions?

6. Find orthogonal or unitary matrices that include the following orthonormal vectors
in their columns

@u = %(1,2;—1): u; = %(—1,1:1) (b)u; = £3,-4) ©Qu =31+
i1—i)

(d) u; = \/Lg(l,l,l), (e) u; = %(1717_17_1)5 uz = %(17_1717_1)5 uz =
%(07 17170)
7. Show that if P is an orthogona matrix, then e’ P is aunitary matrix for any real 6.
1 0 -1
8. LetP:% 0 0 0 | . Verify that P isaprojection matrix, that is, PT = P
-1 0 1

and P? = P, and that if R = I — 2P, then R is a reflection matrix that is, R is a
symmetric orthogonal matrix.

9. Let P be areal projection matrix and R = I — 2P. Provethat R is a reflection
matrix. (See Exercise 8 for definitions.)

0 0 1
10. LetR= | 0 —1 0 | and P = $(I — R). Verify that R is areflection matrix
1 0 0

and P isaprojection matrix. (See Exercise 8 for definitions.)
11. Let R be areflection matrix. Provethat P = £ (I — R) is aprojection matrix.

12. Provethat every Householder matrix is a reflection matrix.
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13. Let U and V' be orthogonal matrices.
(a) Show that the product UV is aso orthogonal.

(b) Find examples of orthogonal matrices U and V' whose sum is not an orthogonal
matrix.

14. Let the quadratic function f : R™ — R be defined by the formulay = f(x) =
xT Ax, where A isareal matrix. Supposethat an orthogonal change of variablesis made
from in both domain and range, say x = Qz' andy = Qy', where () is orthogonal.
Show that in the new coordinatesx’ andy’, y' = x'T(QT AQ)x'

4.4. *Computational Notes and Projects

Project: Least Squares

The Big Eight needs your help! Below is atable of scores from the games played thus
far: The (i, j)th entry is team i’s score in the game with team j. Your assignment is
two-fold. First, write a notebook that contains instructions for the illiterate on how to
plug in known data and obtain team ratings and predicted point spreads based on the
least squares and graph theory ideas you have seen. Secondly, you are to write a brief
report (one to three pages) on your project which describes the problem, your solution
to it, its limitations and the ideas behind it.

[ [CUJIS[KS[KU[MU|NUJOS]OU]

Cu 24 21 | 45 21 | 14
IS | 12 42 | 21 | 16 7
KS 12 | 21| 3 |27 | 24
KU|l 9 |14| 30 10 14

MU| 8 | 3|52 18 | 21

NU 51|48 | 63 | 26 63

0S| 41 45 49 | 42 28
Ou| 17 35| 70 | 63 31

Implementation NotesYou will need to set up suitable system of equations, form the
normal equations, and have a computer algebra system solve the problem. For purposes
of illustration, we assume in this project that the tool in use is Mathematica. If not, you
will need to replace these commands with the appropriate ones that your computational
tools provide. The equationsin question are formed by letting the variables be a vector
x of “potentials” x(i), one for each team ¢, so that the “potential differences’ best
approximate the actual score differences (i.e., point spreads) of the games. To find the
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vector x of potentials you solve the system Ax = b, where b is the vector of observed
potential differences. N.B: the matrix A is not the table given above. You will get
one equation for each game played. For example, by checking the (1, 2)th and (2, 1)th
entries, we see that CU beat | S by a score of 24 to 12. So the resulting equation for this
gameisz(1) — z(2) = 24 — 12 = 12. ldedlly, the resulting potentials would give you
numbers that would enable you to predict the point spread of an as yet unplayed game:
al you would have to do to determine the spread for team ¢ versusteam j is calculate
the difference z(j) — x (7). Of course, it doesn't really work out this way, but thisis a
good use of the known data. When you set up this system, you obtain an inconsi stent
system. Thisis where least squares enter the picture. You will need to set up and solve
the normal equations, one way or another. You might notice that the null space of the
resulting coefficient matrix is nontrivial, so this matrix is not full column rank. This
makes sense: potentials are unique up to a constant. To fix this, you could arbitrarily fix
the value of oneteam’s potential. E.g., set the weakest team’s potential value to zero by
adding one additional equation to the system of the form z(i) = 0.

Notes to the Instructorthe data above came from the now defunct Big Eight Confer-
ence. This project works better when adapted to your local environment. Pick asportin
season at your institution or locale. Have students collect the data themselves, make out
adatatable as above, and predict the spread for some (as yet) unplayed games of local
interest. It can be very interesting to make it an ongoing project, where for a number
of weeks the students are required to collect last week’s data and make predictions for
next week based on all data collected to date.

4.4 Exercises

1. Itishypothesizedthat sale of acertain product is linearly dependent on three factors.
The sales output is quantified as z and the three factors as x 1, 2 and z3. Six samples
are taken of the sales and the factor data. Results are contained in the following table.
Does the linearity hypothesis seem reasonable? Explain your answer.

z 1 | Lo | T3
527 113| 5| 6
711 6| 17| 7
1201 |12 | 16 | 23
62511 | 13| 4
1301 | 12| 27 | 14
1350 | 5|14 |31
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Review

Chapter 4 Exercises

1. Find aunit vector orthogonal and a unit vector parallel to [1,3,2] 7 in R®.

2. Letu=[1,2,-1,1]7 andv = [-2,1,0,0]” and compute ||u||, u - v, and the angle
between these vectors.

3. Find the projection of u = (1,2,0,1) alongv = (1,1, 1, 1) and the projection of v
aong u and express v as the sum of avector paralel to u and a vector orthogonal to u.

4. Let u, v be linearly independent vectors in a standard vector space and let W =
span{u, v}. Show that u,v — ((u-v)/(v - v))u isan orthogonal basis of V.

5. Let W = span{(1,2,1),(2,-1,0)}
(a) Show this spanning set is an orthogonal set.

(b) The vector v = (—4,7,2) belongs to V. Calculate its coordinates with respect to
this basis.

6. Determineif W = {v €R? | ||v|| = 1} isasubspace of R?.
7. Find an orthogonal matrix which has as its first column the vector %(1, 0,2,-2).

8. Show that if A isareal symmetricn x n matrix and u, v are vectorsin R™, then
(Au) - v =u-Av




Eigenvalues
and
Eigenvectors

CHAPTER 5

THE EIGENVALUE PROBLEM

The first major problem of linear algebrais to understand how to solve the basis linear
system Ax = b and what the solution means. We have explored this system from three
points of view: in Chapter 1 we approached the problem from an operationa point
of view and learned the mechanics of computing solutions. In Chapter 2, we took a
more sophisticated ook at the system from the perspective of matrix theory. Finaly, in
Chapter 3, we viewed the problem from the vantage of vector space theory.

Now it time for usto begin study of the second major problem of linear algebra, namely
the eigenvalueproblem. It was necessary for usto tacklethe linear systems problem first
because the eigenval ue problem is more sophisticated and will require most of the tools
that we have thus far developed. This subject has many useful applications; indeed, it
arose out of these applications. One of the more interesting applications of eigenvalue
theory that we study in this chapter isthe analysis of discrete dynamical systems. Such
systems include the Markov chains we have seen in earlier chapters as a special case.

5.1. Definitions and Basic Properties

What are They?

Good question. Let’s get right to the point.

DErFINITION 5.1.1. Let A beasquaren x n matrix. An eigenvectoof A isanonzero
vector x in R™ (or C, if we are working over complex numbers), such that for some
scalar A , we have

Ax = \x

The scalar ) is called an eigenvaluef the matrix A, and we say that the vector x isan
eigenvector belonging to the eigenvalueThe pair (), x) is called an eigenpairfor the
matrix A.

The only kinds of matrices for which these objects are defined are square matrices, so
we'll assume throughout this Chapter that we are dealing with such matrices.

Caution: Be aware that the eigenvalue ) is allowed to be the 0 scalar, but eigenvectors
x are, by definition, never the) vector.
213
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As amatter of fact, it is quite informative to have an eigenvalue 0. This says that the
system Ax = 0x = 0 hasanontrivial solution x, in other words, A is not invertible by
Theorem 2.5.9.

Here are afew simple examples of eigenvalues and vectors. Let A = [ ; g ] , X =
(—=1,1) andy = (4, 3). One checks that Ax = (—3,3) = 3x and Ay = (40,30) =
10y. It follows that x and y are eigenvectors corresponding to eigenvalues 3 and 10,
respectively.

Why should we have any interest in these quantities? A general answer goes something
like this: knowledge of eigenvectors and eigenvalues gives us deep insights into the
structure of the matrix A. Hereisjust one example: suppose that we would like to have
a better understanding of the effect of multiplication of a vector x by powers of the
matrix A, that is, of A*x. Let's start with the first power, Ax. If we knew that x were
an eigenvector of A, then we would have that for some scalar A,

Ax = dx
A’x = A(Ax) = AXx = Mx = \x

Afx = A(AF1x) = = Nex

Thisisvery nice, becauseit reduces something complicated, namely matrix-vector mul-
tiplication, to something simple, namely scalar-vector multiplication.

There are other reasons for the usefulness of the elgenvector/value concept which we
will develop later, but hereis one that is fairly immediate: is there any significance in
knowing that one of the eigenvalues of A is 07 Check the definition of eigenvalue and
we see that this means that Ax = 0 for some nonzero vector x. By Theorem 2.5.9 of
Chapter 2 (page 91) it follows that A is not invertible. So eigenvalues can tell us about
invertibility.

We need some handles on these quantities. Let's ask how we could figure out what
they are for specific matrices. Here are some of the basic points about eigenvalues and
eigenvectors.

THEOREM 5.1.2. Let A be a squarer x n matrix. Then

1. The eigenvalues of consist of all scalars\ that are solutions to theth degree
polynomial equation
det(A\I —A) =0
2. For a given eigenvalu@, the eigenvectors of the matrix belonging to that
eigenvalue consist of all nonzero elementd/ghl — A).

PROOF. Notethat Ax = AIx. Thuswe have thefollowing chain of thought: A has
eigenvalue X if and only if Ax = A\x, for some nonzero vector x, which is true if and
only if

0=Xx —Ax=ANx—Ax = (A — A)x
for some nonzero vector x. This last statement is equivalent to the assertion that 0 #
x € N(AI — A). Thematrix A\I — A is square, so it has anontrivial null space precisely
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whenitissingular (recall the characterizationsof nonsingular matricesin Theorem 2.5.9
of Chapter 2). This occurs only when det(AI — A) = 0. If we expand this determinant
down the first column, we see that the highest order term involving A that occursisthe
product of the diagonal terms (A — a;;), so that the degree of the expression det (Al — A)
asapolynomia in A isn. This proves(1).

We saw from this chain of thought that if A isan eigenvalue of A, then the eigenvectors
belonging to that eigenvalue are precisely the nonzero vectorsx such that (A — A)x =
0, that is, the nonzero elements of A'(A), which iswhat (2) asserts. O

Here is some terminology that we will use throughout this chapter.

NOTATION 5.1.3. We call apolynomial monicif the leading coefficient is 1.

For instance, A2 + 2\ + 3 isamonic polynomial in A while 2A% + X\ + 1 isnot.

DEFINITION 5.1.4. Given asquaren x n matrix A, the equation det(A\I — A) =0 is
called the characteristic equatiomf A and the nth degree monic polynomial p(\) =
det(AI — A) is caled the characteristic polynomiabf A.

Suppose we aready know the eigenvalues of A and want to find the eigenvalues of
something like 3A + 41. Do we have to start over to find them? The next calculationis
really a useful tool for answering such questions.

THEOREM 5.1.5. If B = cA + dI for scalarsd andc # 0, then the eigenvalues &f
are of the formu = cA+d, where) runs over the eigenvalues df and the eigenvectors
of A and B are identical.

PROOF. Let x be an eigenvector of A corresponding to the eigenvalue A. Then by
definition x #0 and

Ax = dx
Also, we have that
dIx = dx
Now multiply the first equation by the scalar ¢ and add these two equations to obtain
(cA+dl)x = Bx = (cA+d)x

It follows that every eigenvector of A belonging to A is also an eigenvector of B be-
longing to the eigenvalue cA + d. Conversely, if y isan eigenvalue of B belonging to u,
then

By = py = (cA+dl)y
Now solvefor Ay to obtain that
1
“(p—d
(p—d)y
sothat A\ = (u — d)/c is an eigenvalue of A with corresponding eigenvector y. It
follows that A and B have the same eigenvectors and their eigenvalues are related by
theformulapy = cA +d. O

Ay =
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EXAMPLES.1.6. Let A = { ; g ] ,x = (-1,1)andy = (4,3), so that Ax =
(—3,3) = 3x and Ay = (40,30) = 10y. Find the eigenvalues and corresponding

eigenvectorsfor the matrix B = 3A + 41.

SoLUTION. From the calculations given to us, we observe that x and y are eigenvec-
tors corresponding to the eigenvalues 3 and 10, respectively, for A. These are all the
eigenvalues of A, since the characteristic polynomial of A is of degree 2, so has only
two roots. According to Theorem 5.1.5, the eigenvalues of 34 + 47 must be u; =
3 -3+ 4 = 13 with corresponding eigenvector x = (—1,1),and u> = 3-10+ 4 = 34
with corresponding eigenvaluey = (4, 3).

DEFINITION 5.1.7. Given an eigenvalue \ of the matrix A, the eigenspaceorrespond-
ing to \ isthe subspace (AT — A) of R™ (or C™).

Notation: Wewrite £x(A4) = V(AT — A).

DEFINITION 5.1.8. By an eigensysteraf the matrix A, we mean alist of al the eigen-
values of A and, for each eigenvalue A\, a complete description of the eigenspace corre-
sponding to A.

The usual way to give a complete description of an eigenspace is to list a basis of the
space. Remember that there is one element of the eigenspace A/ (AT — A) that isnotan
eigenvector, namely 0. In any case, the computational route is now clear. To call it an
algorithmisreally an abuse of language, since we don’t have a complete computational
description of the root finding phase, but hereitis:

Eigensystem Algorithm. Let A bean n x n matrix. To find an eigensystem
of A:
1. Find the scalars that are roots to the characteristic equation det(AI —
A) =0.
2. For each scalar A in (1), use the null space algorithm to find a basis of
the eigenspace N/ (AI — A).

As a matter of convenience, it is sometimes a little easier to work with A — \I when
calculating eigenspaces (because there are fewer extra minus signs to worry about).
Thisisperfectly OK, since N (A — AI) = N'(AI — A). It doesn’t affect the eigenvaues
either, since det(AI — A) = £ det(A — AI). Hereisour first eigensystem calculation.

ExAMPLE 5.1.9. Find an eigensystem for the matrix A = { ; g ] .

SOLUTION. First solve the characteristic equation

A—=T —4 ]
-3 -6

=A-=7A=6)—(=3)(-4)

=M — 13X +42— 12

=\ — 13X + 30

= (A -3)(A—-10)

0 =det(AI — A) = det {
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Hence the eigenvalues are A = 3,10. Next, for each eigenvector calculate the corre-
sponding eigenspace.

A=3 ThenA — 3] = [ -

w w

} = [ 3 g ] and row reduction gives

6
5a ] T Lo o)

so the general solutionis

Thereforeabasisof £5(4) is{(-1,1)}.

A =10: Then A — 10] = [

gives

7-10 4]:{_3

4 .
3 6-10 } and row reduction

3 —4

5 acs [0 )

so the general solutionis

2]-[2] 0[]

Thereforeabasisof £19(A4) is{(4/3,1)}. O

Concerning this example, there are several interesting points worth noting:

1. Sincethe 2 x 2 matrix A — AI is singular for eigenvalue A, one row should

always be a multiple of the other. Knowing this, we didn’t have to do even the
little row reduction we did above. However, itsagood ideato check this; it helps
you avoid mistakes. Remember: any time that row reduction of A — AT leadsto
full rank (only trivial solutions) you have either made an arithmetic error or you
do not have an eigenvalue.

This matrix is familiar. In fact, B = (0.1)A is the Markov chain transition
matrix from Example 2.3.4 of Chapter 2. Therefore the eigenvalues of B are
0.3 and 1, by Example5.1.9 with¢ = 0.1 and d = 0. The eigenvector belonging
to A = 1 isjust a solution to the equation Bx = x, which was discussed in
Example 3.4.8 of Chapter 2.

The vector
#7)-3[]

is aso an eigenvector of A (or B) belongingto A = 1 since it too belongs to
Ex(A).

ExampPLE 5.1.10. How do we find eigenvalues of a triangular matrix? Illustrate the

0 0 -1

2 1 1
methodwithA = | 0 1 1.
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SOLUTION. Eigenvaluesarejust the roots of the characteristic equationdet(A — A) =
0. Notice that — A istriangular if A is. Also, the only entriesin \I — A that are any
different from the entries of — A are the diagonal entries, which change from —a ;; to
A — a;;. Therefore, A\I — A istriangular if A is. We aready know that the determinant
of atriangular matrix is easy to compute: just form the product of the diagonal entries.
Therefore, the roots of the characteristic equation are the solutions to

0= det()\I - A) = ()\ - all)(/\ — azz) s ()\ — ann)

that is, A\ = ay1,a29,...,an,,. In other words, for a triangular matrix the eigenvalues
are simply the diagonal elements! In particular, for the example A given above, we see
with no calculations that the eigenvaluesare A = 2,1, —1. O

Notice, by the way, that we don’t quite get off the hook in the preceding example if we
arerequired to find the eigenvectors. It will still be some work to compute each of the
relevant null spaces, but much less than it would take for a general matrix.

Example 5.1.10 can be used to illustrate another very important point. The reduced
row echelon form of the matrix of that example is clearly the identity matrix 3. This
matrix has eigenvalues 1, 1, 1, which are not the same as the eigenvalues of A (would
that eigenvalue calculations were so easy!). In fact, a single elementary row operation
on amatrix can change the eigenvalues. For example, simply multiply the first row of
A above by % This point warrants a warning, since it is the source of afairly common
mistake.

Caution: The eigenvalues of amatrix A and the matrix EA, where E is an elementary
matrix, need not be the same.

ExAaMPLE 5.1.11. Find an eigensystem for the matrix A = { } _} ] .

SOLUTION. For eigenvalues, compute the roots of the equation

1-) -1
O—det(A—)\I)—det{ 1 1_)\]
=(1-X1%-(-1)
=M -2\ +2.

Now we have alittle problem. Do we allow complex numbers? If not, we are stuck
because the roots of this equation are

A:_(_Q)imzlii

In other words, if we did not enlarge our field of scalars to the complex numbers, we
would have to conclude that there are no eigenvalues or eigenvectors! Somehow, this
doesn’t seem like a good idea. It is throwing information away. Perhaps it comes as
no surprise that complex numbers would eventually figure into the eigenvalue story.
After all, finding eigenvalues is al about solving polynomial equations, and complex
numbers were invented to overcome the inability of real numbers to provide solutions
to al polynomial equations. Let's allow complex numbers as the scalars. Now our
eigenspace calculations are really going on in the complex space C? instead of RZ.
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A= 140 Then A — (1+i)T = [ 1_(”? 1_(1;5 ] _ { o } and

row reduction gives (recall that 1/i = —1)
_
—-i -1 B (—i) 1 —i
1 —i | E(1/(=%) |0 0
so the general solutionis
z1 _ 7:22 _ )
zZ9 o zZ9 =2 1

Thereforeabasisof £14;(A4) is{(i,1)}.

A:l—z’:ThenA—(l—i)I:{1_(1_? 1_(1__5}:[i }androw
reduction gives (remember that 1/i = —i)
—_

i =1 Exi(i) [1

1 i| EQ1/i) |0 0
so the general solutionis

z1 _ —iZQ _ —1

Z9 - Z9 A 1
Thereforeabasisof £14;(A4) is{(—i,1)}. O

In view of the previous example, we are going to adopt the following practice: unless
otherwise stated, if the eigenvalue calculation leads us to complex numbers, we take the
point of view that the field of scalars should be enlarged to include the complex numbers
and the eigenvaluesin question.

Multiplicity of Eigenvalues

The following example presents yet another curiosity about eigenval ues and vectors.
2 1

0 2 |°

SOLUTION. Here the eigenvalues are easy. This matrix is triangular, so they are A =
2,2. Now for eigenvectors.

EXAMPLE 5.1.12. Find an eigensystem for the matrix A =

A =2 Then A — 2] = 0 2-9 0 0

necessary here. Notice that the variable z, is free here while z, is bound. The general

solution is [Z}:[Jg}:m[ﬂ

Thereforeabasisof £5(A) is{(1,0)}. O

2-2 1}:[0 1}androwreduc’[ionisnot
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The manner in which we list the eigenvaluesin this exampleisintentional. The humber
2 occurs twice on the diagonal, suggesting that it should be counted twice. As a matter
of fact, \ = 2 is aroot of the characteristic equation (A — 2)2 = 0 of multiplicity
2. Yet there is a curious mismatch here. In al of our examples to this point, we have
been able to come up with as many eigenvectors as eigenval ues, namely the size of the
matrix if we allow complex numbers. In this case there is a deficiency in the number
of eigenvectors, since there is only one eigenspace and it is one dimensional. Isthisa
failing entirely due to the occurrence of multiple eigenvalues? The answer is no. The
situation is a bit more complicated, as the following example shows.

ExAMPLE 5.1.13. Discuss the eigenspace corresponding to the eigenvalue A = 2 for
these two matrices for these two matrices

2 1 2 2 1 1
@ |01 2| |0 11
00 2 00 2

SoLUTION. Noticethat each of these matrices has eigenvalues A = 1,2, 2. Now for the
eigenspace £ (A).

(a) For this eigenspace calculation we have

2-2 1 2 0 1 2
A-2I= 0 1-2 -2 |=]0 -1 -2

0 1 2

0 -1 -2

0 0 2—-2
1 2
0 0
0 0 0 0 0
so that free variablesare z 1, z3 and the general solution is

X1 X1 1 0
To | = | =223 | =21 | O | + 23| —2
T3 T3 0 1

Thusabasisfor £5(A) is{(1,0,0), (0, —2,1)}. Noticethat in this case we get as many
independent eigenvectors as the eigenvalue A = 2 occurs.

and row reduction gives

o O O

Es (1) [

(b) For this eigenspace cal culation we have

2-2 1 1 0 11
A-2]= 0 1-2 1 =10 -1 1
0 0 2-2 0 0 0

and row reduction gives

0 1 2 0 1 2 |0 1
—_—

0 -1 1| Ex(l) [0 0 -1 51(2521)) 0 0

0 00 2 00

so that the only free variableis z; and the general solutionis

BRHE

0
1
0
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Thus a basis for £5(A4) is {(1,0,0)}. Notice that in this case we don’t get as many
independent eigenvectors as the eigenvalue A = 2 occurs. O

This example shows that there are two kinds of “multiplicities’ of an eigenvector. On
the one hand there is the number of times that the eigenvalue occurs as a root of the
characteristic equation. On the other hand there is the dimension of the corresponding
eigenspace. One of these is agebraic in nature, the other is geometric. Here are the
appropriate definitions.

Algebraicand DEFINITION 5.1.14. Let A be aroot of the characteristic equation det(Al — A) = 0.
Geometric The algebraic multiplicity of A is the multiplicity of )\ as a root of the characteris-
Multiplicity  tic equation. The geometricmultiplicity of X is the dimension of the space £, (4) =

N(AI — A).

We categorize eigenvalues as simple or repeated, according to the following definition.

DEerINITION 5.1.15. The eigenvalue X of A is said to be simpleif its algebraic multi-
plicity is 1, that is, the number of timesit occurs as aroot of the characteristic equation
is 1. Otherwise, the eigenvalueis said to be repeated

In Example 5.1.13 we saw that the repeated eigenvalue A = 2 has algebraic multiplicity
2 in both (a) and (b), but geometric multiplicity 2 in (a) and 1 in (b). What can be said
in general? The following theorem summarizes the facts. In particular, part 2 says that
algebraic multiplicity is always greater than or equal to geometric multipliciRsrt 1
is immediate since a polynomia of degree n has n roots, counting complex roots and
multiplicities. We defer the proof of part 2 to the next section.

THEOREM 5.1.16. Let A be ann x n matrix with characteristic polynomial(\) =
det(AI — A). Then:

1. The number of eigenvalues 4f counting algebraic multiplicities and complex
numbers, i31.
2. For each eigenvalug of A, if m(A) is the algebraic multiplicity of\, then

1 < dim &, (4) < m(\)

Now when we wrote that each of the matrices of Example 5.1.13 has eigenvalues A =
1,2, 2, what we intended to indicate was a complete listing of the eigenvalues of the
matrix, counting algebraic multiplicities. In particular, A = 1 is asimple eigenvalue of
the matrices, while A = 2 is not. The geometric multiplicities of (a) areidentical to the
agebraicin (a) but not in (b). The latter kind of matrix is harder to deal with than the
former. Following atime honored custom of mathematicians, we call the more difficult
matrix by aless than flattering name, namely, “ defective.”

DEerINITION 5.1.17. A defectivamatrix is onefor which the sum of the geometric mul-
tiplicitiesis strictly less than the sum of the algebraic multiplicities.

Notice that the sum of the algebraic multiplicities of an n x n matrix is the size n of
the matrix. Thisis due to the fact that the characteristic polynomial of the matrix has
degree n, hence exactly n roots, counting multiplicities.
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5.1 Exercises

1. Find eigenvaluesfor these matrices:

9 1o 2 0 0 2 1 1] 2 0 1
(@ 1__5](b)[031](c)[031 (d)[ooo]
- 0 6 2 00 2| 1 0 2
(-1 0 0] 0 -2 0 2] 1+i 3
@] 1 -1 0 (f)[ }(g) [ (") [ }
0 1_1J 2 0 2 1| 0 i

2. Find eigensystems for the matrices of Exercise 1 and specify the algebraic and geo-
metric multiplicity of each eigenvalue.

3. You are given that the matrix { 0 1 } has eigenvalues 1, —1 and respective eigen-

1 0
3—5}

vectors(1, 1), (1, —1). Use Theorem 5.1.5to determine an eigensystem for { 5 3

without further eigensystem calculations.

4. The trace of a matrix A is the sum of al the diagona entries of the matrix and
denoted tr A. Find the trace of each matrix in Exercise 1 and verify that it is the sum of
the eigenvalues of the matrix.

5. Let

—
o

QU
|

beageneral 2 x 2 matrix.

(a) Compute the characteristic polynomial of A and find its roots, i.e., the eigenvalues
of A.

(b) Show that the sum of the eigenvaluesis the trace of A.
(c) Show that the product of the eigenvaluesis the determinant of A.

6. Let A = [ (1) ; } and show that A and A7 have different eigenvectors but the
same eigenvalues.

7. Show that the matrix A = [ t
plex.

21 } is symmetric and that its eigenval ues are com-

8. Show that for any square matrix A, the matrices A and A7 have the same eigenval-
ues.

9. Show that if x isan eigenvector for the matrix A belonging to the eigenvalue A, then
soiscx for any scalar ¢ # 0.

10. Let A be a matrix whose eigenvalues are al less than 1 in absolute value. Show
that every eigenvalue of I — A isnonzero and deducethat I — A isinvertible.

11. Provethat if A isinvertibleand A isan eigenvalueof A, then 1/ isan eigenvalue
of A~1,
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12. Let A be any square real matrix and show that the eigenvalues of AT A are all
nonnegative.
13. Show that if A is an eigenvalue of an orthogonal matrix P, then |A| = 1.

14. Let T}, bethek x k tridiagonal matrix whose diagonal entries are 2 and off-diagonal
nonzero entries are —1. Use aMAS or CAS (MAS would probably be better) to build
an array y of length 30 whose kth entry is the minimum of the absolute value of the
eigenvalues of T4, Plot this array. Use the graph as a guide and try to approximate
y(k) asasimplefunction of k.

15. Show that if B isarea symmetric positive definite matrix, then the eigenval ues of
B arepositive.

16. Let A bearea matrix and (A, x) an eigenpair for A.
(@) Show that (X, X) is also an eigenpair for A.

2 -2 0
(b) Giventhat A= | 1 0 1 | andthat(2,(—1,0,1))and (1414, (1+14,1,0))are
0 0 2

eigenpairs, with no further calculations exhibit an eigensystem for the matrix A and a
matrix P for which P~* AP isdiagonal.

(c) Deduce from part (a) that the real quadratic A2 — 2R()\) + |A|® is a factor of the
characteristic polynomial of A.

17. Let A and B be matrices of the same size with eigenvalues o and 3, respectively.
Show by example that it is false to conclude that o + 3 is an eigenvalue of A + B or
that a5 isan eigenvalue of AB.

18. Show that A and A™ have the same eigenvalues.

19. Show that if A and B arethe same size, then AB and B A have the same eigenval-
ues. Hint: Deal with the 0 eigenvalue separately. If A isan eigenvalue of AB,multiply
the equation ABx = Ax ontheleft by B.

5.2. Similarity and Diagonalization

Diagonalization and Matrix Powers

Eigenvalues: why are they? Thisis a good question and the justification for their exis-
tence and study could go on and on. We will try to indicate their importance by focusing
on one special class of problems, namely, discrete linear dynamical systemklere is
the definition of such a system.
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DEFINITION 5.2.1. A discrete linear dynamical systesasequence of vectorsx ()| k =
0,1,..., caled stateswhich is defined by an initial vector x (°) and by the rule

x(FH) = 4x(k) k=0,1,...
where A isagiven fixed square matrix, called the transition matrixof the system.

We have seen examples of this kind of system before, namely in Markov chains and
difference equations. Evidently, the entire sequence of state vectors is determined by
the matrix A and the initial state x(°). Here is the sort of question that we would like
to answer: when is it the case that there is a limiting vector x for this sequence of
vectors and, if so, how does one compute this vector? The answers to these questions
will explain the behavior of the Markov chain that was introduced in Example 2.3.4 of
Chapter 2.

If there is such a limiting vector x for a Markov chain, we saw in Example 3.4.8 of
Chapter 3 how to proceed: find the null space of the matrix I — A, that is, the set of
all solutionsto the system (I — A)x =0. However, the question of whether or not all
initial states x(?) lead to this limiting vector is a more subtle issue which requires the
insights of the next section. We've already done some work on this problem. We saw
in Section 2.3 that the entire sequence of vectors is uniquely determined by the initial
vector and the transition matrix A in the explicit formula

x(F) = 4Fx(0),

Before proceeding further, let's consider another example that will indicate why we
would be interested in limiting vectors.

ExAMPLE 5.2.2. By some unfortunate accident a new species of frog has been intro-
duced into an area where it has too few natural predators. In an attempt to restore
the ecological balance, ateam of scientists is considering introducing a species of bird
which feeds on this frog. Experimental data suggests that the population of frogs and
birds from one year to the next can be modeled by linear relationships. Specifically, it
has been found that if the quantities F';, and By, represent the populations of the frogs
and birdsin the kth year, then

By = 0.6By + 0.4F;

Fk+1 = —TBk + 14Fk
Here the positive number r is akill rate which measures the consumption of frogs by
birds. It varies with the environment, depending on factors such as the availability of
other food for the birds, etc. Experimental data suggests in the environment where the

birds are to be introduced, » = 0.35. The question is this: in the long run, will the
introduction of the birds reduce or eliminate the frog population growth?

SOLUTION. The discrete dynamical system concept introduced in the preceding dis-
cussion fits this situation very nicely. Let the population vector in the kth year be
x(®) = (By, F;,). Then the linear relationship above becomes

By | _ 0.6 0.4 By,

Fryp | | 035 1.4 Fy,
which is a discrete linear dynamical system. Notice that this is different from the
Markov chains we studied earlier, since one of the entries of the coefficient matrix

Discrete
Dynamical
System
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is negative. Before we can finish solving this example we need to have a better under-
standing of discrete dynamical systems and the relevance of eigenvalues. O

Let's try to understand how state vectors changein the general discrete dynamical sys-
tem. We have x(*) = A*x(%), So, to understand how a dynamical system works, what
we really need to know is how the powers of the transition matrix A behave. But in
general, thisis very hard!

Hereis an easy case we can handle: what if A = [a;;] is diagonal? Since we'll make
extensive use of diagonal matrices, let’s use the following notation.

Notation: The matrix diag{\1, Az, ..., A} isthen x n diagona matrix with entries
A1, A2, ..., A, down the diagonal.

For example,

A 0 O
diag{)\l, )\2, )\3} = 0 /\2 0
0 0 A3

By matching up the ith row and jth column of A we see that the only time we could
have a nonzero entry in A% iswheni = j, and in that case the entry is a?,. A similar
argument applies to any power of A. In summary, we have this handy

THEOREM 5.2.3. If D = diag{A1,\a,..., A}, thenD¥ = diag{\¥ Ak ... Ak},
for all positive integers:.

Just as an aside, this theorem has a very interesting consequence. We have seen in some
exercisesthat if f(z) = ap + a1z + ... + apz™ isapolynomial, we can evaluate f(z)
at the square matrix A as long as we understand that the constant term a is evaluated
asapl. Thisnotion of f(A) has someimportant applications. In the case of a diagonal
A, the following fact reduces evaluation of f(A) to a sequence of scalar calculations.

COROLLARY 5.24. If D = diag{\1, A2, ..., A, }and f(z) is a polynomial, then
f(D) = diag{f(A1), fF(A2), ..., F(An)}

PrRoOOF. Simply observethat f(D) = aol+a; D+...4+a, D™, apply the preceding
theorem to each monomia and add diagonal terms up. O

Now for the powers of a more general A. For ease of notation, let’s consider a3 x 3
matrix A. What if we could find threelinearly independent eigenvectorsv 1, vo, v3? We
would have

AV1 = )\1V1, AV2 = AZVQ, AV3 = A3V3

or
A1 0 O
Alvi,va,v3] =[vi,va,v3] | 0 Ay 0 | =[vy,ve,vs]diag{Ai, A2, A3}
0 0 A3
Now set

P = [Vl,V2,V3]
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and
D= diag{/\l, Az, )\3}

Then P isinvertible since the columns of P are linearly independent. (Remember that
any nonzero solution to Ax = 0 would give rise to a nontrivial linear combination of
the column of A that sumsto 0.) Moreover, the equation AP = PD., if multiplied on
theleft by P, givesthe equation

P'AP =D
This is a beautiful equation, because it makes the powers of A simple to understand.
The procedurewe just went through isreversible aswell. In other words, if P isagiven
invertible matrix such that P~1 AP = D, then we can obtain that AP = PD, identify
the columns of P by the equation P = [v, v2, v3] and conclude that the columns of

P are linearly independent eigenvectors of A. We make the following definition and
follow it with a simple but key theorem relating similar matrices.

DEFINITION 5.25. A matrix A is said to be similar to amatrix B if there exists an
invertible matrix P such that

P'AP =B
A simple size check shows that similar matrices have to be square and of the same size.

Furthermore, if A is similar to B, then B is similar to A. To see this, suppose that
P~1AP = B and multiply by P ontheleft and P~! ontheright to obtain that

A=PP'APP~!' = PBP~! = (P~ H~'BP!
Similar matrices have much in common, as the following theorem shows.
THEOREM 5.2.6. Suppose that is similar to B, sayP "' AP = B. Then:
1. For every positive integek,
BY = p~tAkp

Similar Matrices

2. The matricesA and B have the same characteristic polynomial, hence the same

eigenvalues.

PROOF. We see that successive terms P—! P cancel out in the k-fold product
BY = (P"'AP)(P'AP)--- (P 'AP)
to give that
BY = p~tAkp

This proves (1). For (2), remember that the determinant distributes over products, so
that we can pull this clever little trick:

det(\] — B) = det(A\P~'IP — P71 AP)
=det(P~Y(\ — A)P)
=det(P~") det(\ — A) det(P)
= det(A — A) det(P~'P)
=det(AI — A).
This proves(2). O
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Now we can see the significance of the equation P ' AP = D, where D isdiagonal. It
follows from this equation that for any positive integer k, we have P ~' A*P = D*, so
multiplying on the left by P and on theright by P —! yields

(5.2.1) A¥ = ppkp—1
Aswe have seen, theterm PD* P~! is easily computed.
EXAMPLE 5.2.7. Apply the results of the preceding discussion to the matrix in part (a)

of Example 5.1.13.

SOLUTION. The eigenvalues of this problem are A = 1, 2,2. We aready found the
eigenspace for A = 2. Denote the two basis vectors by v; = (1,0,0) and vo =
(0,—2,1). For A\ = 1, apply Gauss-Jordan elimination to the matrix

2-1 1 2 11 2
A-1I= 0 1-1 -2 1=10 0 -2
0 0 2-1 0 0 1

and we can obviously reduce this matrix by using the pivot in the third row to

which gives agenera eigenvector of the form

BRI

Hence the eigenspace E;(A) has basis {(—1,1,0)}. Now set v = (—1,1,0). Form

the matrix
1 0 -1
P = [Vl,Vg,Vg] = 0 -2 1
0 1 0
This matrix is nonsingular since det P = —1, and a calculation which we leave to the
reader shows that

11 2
P'=|0 01
01 2

The discussion of thefirst part of this section shows us that

0 0
PlAP = 2 0| =D
0 1

O O N
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As we have seen, this means that for any positive integer k, we have
Ak = ppDkp~1

(1 0 -1 2 0 0 1 1 2
=10 -2 1 0 28 0 0 01
0 1 0 0 o0 1k 01 2
[2k 2k 1 2k+l_2 ]
= 0 1 —ok+1 4 9
00 2k
This is the formulawe were looking for. 1t's mucheasier than calculating A * directly!

O

This example showcases a very nice calculation. Given a general matrix A, when can
we pull off the same calculation? First, let’s give the favorable case aname.

DEFINITION 5.2.8. The matrix A isdiagonalizabléf it is similar to a diagonal matrix,
that is, thereis an invertible matrix P and diagonal matrix D such that P ~*AP = D.
In this case we say that P isadiagonalizing matriXor A or that P diagonalizesA.

The question is, can we be more specific about when a matrix is diagonalizable? We
can. Asalfirst step, notice that the cal culations that we began the section with can easily
be written in terms of an n x n matrix instead of 3 x 3. What these cal culations prove
isthe following basic fact.

THEOREM 5.2.9. Then x n matrix A is diagonalizable if and only if there exists Diagonalization
a linearly independent set of eigenvecters,vs,...,v, of A, in which caseP = Theorem
[vi,Ve,...,V,]is adiagonalizing matrix ford.

Can we be more specific about when a linearly independent set of eigenvectors ex-
ists? Actualy, we can. Clues about what is really going on can be gleaned from a
re-examination of Example 5.1.13.

ExAaMPLE 5.2.10. Apply the results of the preceding discussion to the matrix in part
(b) of Example 5.1.13 or explain why they fail to apply.

SOLUTION. The eigenvalues of this problem are A = 1,2, 2. We aready found the
eigenspace for A = 2. Denote the single basis vector of £5(A) by vi = (1,0,0) . For
A = 1, apply Gauss-Jordan elimination to the matrix

2-1 1 1 1 11
A-1I= 0 1-1 11=(0201
0 0 2-1 0 01

and we can obviously reduce this matrix by using the pivot in the second row to

110
0 01
0 0 0

which gives a general eigenvector of the form

HEEEN!



5.2. SIMILARITY AND DIAGONALIZATION 229

Hence the eigenspace F (A) has basis {(—1,1,0)}. All we could come up with here
is two eigenvectors. As a matter of fact, they are linearly independent since one is
not a multiple of the other. But they aren’t enough and there is no way to find a third
eigenvector, since we have found them al! Therefore we have no hope of diagonalizing
this matrix according to the diagonalization theorem. Thereal problem hereisthat A is
defective, since the algebraic multiplicity of A = 2 exceeds the geometric multiplicity
of this eigenvalue. O

It would be very handy to have some working criterion for when we can manufacture
linearly independent sets of eigenvectors. The next theorem gives us such a criterion.

THEOREM 5.2.11. Letvy,vs,..., v, be a set of eigenvectors of the matrxsuch
that corresponding eigenvalues are all distinct. Then the set of veetgre,, ... , vy
is linearly independent.

PROOF. Suppose the set is linearly dependent. Discard redundant vectors until
we have a smallest linearly dependent subset, say v, vs,...,Vv,, iSsuch a set with
v; belonging to A;. All the vectors have nonzero coefficients in a linear combination
that sums to zero, for we could discard the ones that have zero coefficient in the linear
combination and still have alinearly dependent set. So thereis somelinear combination
of theform

(5.2.2) cvi +eave+ ...+ v, =0

with each ¢; # 0 and v; belonging to eigenvalue A ;. Multiply (5.2.2) by A; to obtain
the equation

(5.2.3) 1AV + A Ve + ...+ e A1 vy, = 0.
Next multiply (5.2.2) on the left by A to obtain

0=A(ct\1vi + a2 \iva + ...+ enAiV) = 1 Avy + 2 Avo + ... + ¢ Avy,
that is,
(5.2.4) CiIA1VL + 2 Aava + ...+ AV = 0.
Now subtract (5.2.4) from (5.2.3) to obtain

Ovi +ca(A — X)va+ ...+ (N — Ap) v, =0

This is a new nontrivial linear combination ( since ca(A; — A2) # 0) of fewer terms

which contradictsour choiceof vy, vs, ... , v. It followsthat the original set of vectors
must be linearly independent. O
Actually, alittle bit more is true: if vy, vs, ..., vy issuch that for any eigenvalue \

of A, the subset of al these vectors belonging to A is linearly independent, then the
conclusion of the theorem is valid. We leave this as an exercise. Here's an application
of the theorem which is useful for many problems.

COROLLARY 5.2.12. If then x n matrix A hasn distinct eigenvalues, the# is diag-
onalizable.

ProoF. We can always find one nonzero eigenvector v ; for each eigenvalue \; of
A. By the preceding theorem, theset vy, v, . .. , v, islinearly independent. Thus A is
diagonalizable by the Diagonalization theorem. O
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Caution: Just because the n x n matrix A has fewer than n distinct eigenvalues, you
may not concludethat it is not diagonalizable.

An example that illustrates this caution is part (&) of Example 5.1.13.

5.2 Exercises

1. Given each matrix A below, find amatrix P such that P~ AP is diagonal. Use this
to deduce aformulafor A*.

1 0 0
@y o 02 1 CEES

2. Determineif the following matrices are diagonalizable with a minimum of calcula-
tion.

@10 o é%’? © 5]

3. For each of the following matrices A find the characteristic polynomia p(z) and
evaluate p(A). (This means that the matrix A replaces every occurrence of z and the
constant term ¢ is replaced by ¢ 1.)

1 3 0

@11 (b){—i : _ﬂ © ]

4. Supposethat A isaninvertible matrix which is diagonalized by the matrix P, that is,
P~1AP = D isadiagona matrix. Use this information to find a diagonalization for
AL

5. Adapt the proof of Theorem 5.2.11 to provethat if eigenvectorsv {,vs,... , vy are

such that for any eigenvalue A of A, the subset of all these vectors belonging to A is
linearly independent, then the vectors v, va, ... , v arelinearly independent.

6. Supposethat thekill rate r of Example5.2.2 is viewed as a variable positive param-
eter. Thereis avaue of the number » for which the eigenvalues of the corresponding
matrix are equal.

(a) Find this value of r and the corresponding eigenvalues by examining the character-
istic polynomia of the matrix.

(b) Usetheavailable MAS (or CAS) to determine experimentally the long term behavior
of populations for the value of r found in (a). Your choices of initial states should
include [100, 1000].

7. The thirteenth century mathematician Leonardo Fibonacci discovered the sequence
of integers1,1,2,3,5,8, ... caled the Fibonacci sequencd hese numbers have away
of turning up in many applications. They can be specified by the formulas

fo=1
fi=1
frnr2 = fav1 + fns n=0,1,....
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(@ Let x, = (fn+1, frn) and show that these equations are equivalent to the matrix

equationsxy = (1,1) and x,+1 = Ax,, n=0,1,... ,where A = { } (1) ]

(b) Use part (a) and the diagonalization theorem to find an explicit formulafor the nth
Fibonacci number.

, Where k is

8. Calculate second, third and fourth powers of the matrix J,(3) =

O >
> = O

1
o o >

Based on these calculations, make a conjecture about the form of J (3)
any positive integer.

9. Show that any upper triangular matrix with constant diagona is diagonalizable if
and only if it is already diagonal. Hint: What diagonal matrix would such a matrix be
Similar to?

10. Let A bea2 x 2 transition matrix of a Markov chain where A is not the identity
matrix.

(@) Show that A can be written in the form A = [ I;G lﬁb

numbers0 < a,b < 1.

} for suitable real

(b) Show that (b, a) and (1, —1) are eigenvectorsfor A.

(c) Use (b) to diagonalize the matrix A and obtain aformulafor the powers of A.
11. Show that if A isdiagonalizable, thensois AH.

12. Let A, B, P square matrices of the same size with P invertible.

(@ Showthat P~'(A+ B)P = P"'AP + P"'BP

(b) Show that P~' ABP = (P~'AP)(P~'BP)

(c) Use (8 and (b) to show that if f(z) = ao + a1z + -+ + a,x™ is a polynomia
function, then P~ f(A)P = f(P~'AP).

13. Provethe Cayley-Hamilton theorem for diagonalizable matrices; that is, show that
if p(z) isthe characteristic polynomial of the diagonalizable matrix A, then A satisfies
its characteristic equation, that is, p(4) = 0. Hint: You may find Exercise 12 and
Corollary 5.2.4 very helpful.

14. Let A and B be matrices of the same size and suppose that A has no repeated eigen-
values. Show that AB = BA if and only if A and B are simultaneously diagonalizable,
that is, asingle matrix P diagonalizes A and B. Hint: The diagonalization theorem and
Exercise 24 are helpful.
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5.3. Applications to Discrete Dynamical Systems

Now we have enough machinery to come to a fairly complete understanding of the
discrete dynamical system

x(k+1) — Ax(k)

Diagonalizable Transition Matrix

Let us first examine the case that A is diagonalizable. So we assume that the n x n
matrix A is diagonalizable and that v, vs, ... , v, isacomplete linearly independent
set of eigenvectorsof A belonging to the distinct eigenvalues A1, Ao, ... , A, Of A. Let
us further suppose that these eigenval ues are ordered so that

M) < fAz] <o <A

The eigenvectors vy, vo, ... ,v, form abasis of R™ or C*, whichever is appropriate.
In particular, we may write x(©) asalinear combination of these vectors, say

(5.3.1) x0) = c1vi +eavo 4+ CnVin-
Now we can see what the effect of multiplication by A is:
Ax(©) = A(e1vi + cava + -+ epvy)

=c1(Avy) + c2(Ava) + - + e (Avy,)

=ciAM VL + AV + -+ A\ V-
Now apply A on the left repeatedly and we see that
(5.3.2 x(F) = AFx(0) — cl)\’fvl + cz/\gw + o4 cn/\];;vn.

O

Equation 5.3.2 is the key to understanding how the state vector changes in a discrete
dynamical system. Now we can see clearly that it is the size of the eigenvalues that
governs the growth of successive states. Because of this fact, a handy quantity that
can be associated with a matrix A (whether it is diagonalizable or not) is the so-called
spectral radiuof A, which we denote by p(A). This number is defined by the formula

p(A) = max{[A], Azl 5 [Anl}.

That is, p(A) is the largest absolute value of the eigenvalues of A. We summarize a
few of the conclusions that can be drawn in terms of the spectral radius and dominant
eigenvalues.

THEOREM 5.3.1. Let the transition matrix for a discrete dynamical system beitken
diagonalizable matrix4 as described above. L&t® be an initial state vector given as
in Equation 5.3.1. Then the following are true:

1. If p(A) < 1, thenlimy_, xk) = 0.
2. If p(A) = 1, then the sequence of noriifx(*)||} is bounded.
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3. If p(A) = 1 and the only eigenvalues of A with |A\| = 1 are A = 1, then
limg o, x(®) is an element of; (4), hence either an eigenvector or
4. If p(A) > 1, then for some choices &f% we havdim_,« ||x¥)|| = cc.

PROOF. Suppose that p(4) < 1. Thenfor al i, \¥ — 0 ask — oo, so we see
from Equation 5.3.2 that x(¥) — 0 ask — oo, which iswhat (1) says. Next suppose
that p(A) = 1. Then take norms of Equation 5.3.2 to obtain that, since each | A ;| < 1,

[ = 45 = fertvn +exdbva -+ cnsiva]

< Pal* llevall+ Pl leavall + -+ + Al * lleavall
< lewvall + lleavall + - + lleavnll -

Therefore the sequence of norms ||x()|| is bounded by a constant that only depends on
[|x@1|, which proves (2). The proof of (3) follows from inspection of (5.3.2): Observe
that the eigenvalue powers /\§ = 1if A = 1 and otherwise the powers tend to zero since
al other eigenvalues are less than 1 in absolute value. Hence if any coefficient ¢ ; of
an eigenvector v; corresponding to 1 is not zero, the limiting vector is an eigenvector
correspondingto A = 1. Otherwise, the coefficientsall tend to 0 and the limiting vector
is0. Findly, if p(4) > 1, thenforx(® = ¢, v,,, wehavethatx¥) = ¢, \fv,,. However,
|An| > 1, sothat |\¥| — o0, as k — oo, from which the desired conclusion for (4)
follows. O

We should note that the cases of the preceding theorem are not quite exhaustive. One
possibility that is not covered is the case that p(A) = 1 and A has other eigenvalues of
absolute value 1. In this case the sequence of vectorsx (*) &k = 0,1, ... , isboundedin
norm but need not converge to anything. An example of this phenomenonis given in
Example5.3.4

ExAMPLE 5.3.2. Apply the preceding theory to the population of Example 5.2.2.

SOLUTION. We saw in this example that the transition matrix is

a=] 8 0]

-035 14
The characteristic equation of thismatrix is
06—X 04
det | 35 14— } = (0.6 —\)(1.4—))+0.35-0.4

=X —2)\+0.84+0.14
=A% -2X+0.98
whence we see that the eigenvalues of A are
A=10+V4-3.92/2
~ 0.85858, 1.1414

A calculation which we leave to the reader aso shows that the eigenvectors of A cor-
responding to these eigenvalues are approximately v, = (.8398,.54289) and v, =
(1.684,2.2794), respectively. Since p(4) =~ 1.1414 > 1, it follows from (1) of Theo-
rem 5.3.1 that for every initial state except amultiple of v 1, the limiting state will grow
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without bound. Now if we imagine an initia state to be a random choice of values for
the coefficients ¢; and ¢, we see that the probability of selecting c. = 0, isfor al prac-
tical purposes, 0. Therefore, with probability 1, we will make a selection with ¢ # 0,
from which it follows that the subsequent states will tend to arbitrarily large multiples
of thevector vy = (1.684,2.2794).

Finally, we can offer some advice to the scientists who are thinking of introducing a
predator bird to control the frog population of this example: don’'t do it! Almost any
initial distribution of birds and frogs will result in a population of birds and frogs that
grows without bound. Therefore, we will be stuck with both non-indigenousfrogs and
birds. To drive the point home, start with a population of 10, 000 frogs and 100 birds.
In 20 years we will have a population state of

06 0.4 1% 100 ] _ [ 197,320

—-0.35 1.4 10,000 | ~ | 267,550
In view of our eigensystem analysis, we know that these numbers are no fluke. Almost
any initial population will grow similarly. The conclusion is that we should try another
strategy or perhaps leave well enough alonein this ecology. O

ExAamMPLE 5.3.3. Apply the preceding theory to the Markov chain Example 2.3.4 of
Chapter 2.

SoLUTION. Recall that this example led to a Markov chain whose transition matrix is

given by
0.7 04
A= [ 0.3 0.6 ] '

Conveniently, we have aready computed the eigenvalues and vectors of 104 in Ex-
ample 5.1.9. There we found eigenvalues A = 3, 10, with corresponding eigenvectors
vi = (1,-1) and vy = (4/3,1), respectively. It follows from Example 5.1.9 that the
eigenvalues of A are A = 0.3, 1, with the same eigenvectors. Therefore 1 is the dom-
inant eigenvalue. Any initial state will necessarily involve v, nontrivialy, since mul-
tiples of v, are not probability distribution vectors (the entries are of opposite signs).
Thus we may apply part 3 of Theorem 5.3.1 to conclude that for any initial state, the
only possible nonzero limiting state vector is some multiple of v,. Which multiple?
Since the sum of the entries of each state vector sum to 1, the same must be true of the
initial vector. Since

X(O) =C1V] + vy = |: _1 :| + o [ 4/3 :|

o il o

we see that
1= 011 + co (4/3) +Cl(—1) + 021
= c2(7/3)

so that ¢, = 3/7. Now use the facts that A\; = 0.3, A\» = 1 and Equation 5.3.2 with
n = 2 to see that the limiting state vector is

4/7 7 [ 57143
3/7 | 7| 42857 |

lim ¢; (0.3)kv1 + co1Fvy = covy = [
k— o0
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Comparethisvector with the result obtained by direct calculationin Example2.2.5. O

When do complex eigenvalues occur and what do they mean? In general, all we can say
is that the characteristic polynomial of a matrix, even if it is real, may have complex
roots. This is an unavoidable fact, but it can be instructive. To see how this is so,
consider the following example.

EXAMPLE 5.3.4. Suppose that a discrete dynamical system has transition matrix A =

—a 0
x®) k=12, if theinitial state x(?) isan arbitrary nonzero vector?

[ 0 a , Where a is a positive real number. What can be said about the states

SOLUTION. The eigenvalues of A are +ai. Now if a < 1 then according to part 1 of
Theorem 5.3.1 the limiting state is 0. Part 3 of that theorem cannot occur for our matrix
A since 1 cannot be an eigenvalue. So suppose a > 1. Since the eigenvalues of A are
distinct, thereis an invertible matrix P such that

ai 0 }

P'AP=D= [ s
0 —az

So we see from Equation 5.2.1 that
kE _ kEp—1 _ (ai)* 0 -1
A¥ = PD"P _P{ 0 (—az’)’“}P
The columns of P are eigenvectorsof A, hence complex. We may take real parts of the

matrix D* to get a better idea of what the powers of A do. Now i = e’%, so we may
use DeMoivre'sformulato get

R((ai)*) = a* cos(kg) = (—1)"2a* if k is even

We know that x* = A*x°. In view of the above equation, we see that the states x*
will oscillate around the origin. In the case that a = 1 we expect the states to remain
bounded, but if a > 1, we expect the values to become unbounded and oscillate in sign.
Thisoscillation isfairly typical of what happenswhen complex eigenvaluesare present,
though it need not be as rapid as in this example. O

Non-Diagonalizable Transition Matrix

How can a matrix be non-diagonalizable? All the examples we have considered so
far suggest that non-diagonalizability is the same as being defective. Put another way,
diagonalizable equals non-defective. Thisis exactly right, as the following shows.

THEOREM 5.3.5. The matrixA is diagonalizable if and only if it is non-defective.

PROOF. Suppose that then x n matrix A is diagonalizable. According to the di-
agonalization theorem, there exists a complete linearly independent set of eigenvectors
vy, Va,...v, Of thematrix A. The number of these vectors belonging to a given eigen-
value \ of A isanumber d()\) at most the geometric multiplicity of A, sincethey forma
basis of the eigenspace £ (A). Hence their number is at most the algebraic multiplicity
m(A) of A by Theorem 5.1.16. Since sum of al the numbersd (1)) isn, asisthe sum of
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all the algebraic multiplicitiesm (1)), it follows that the sum of the geometric multiplic-
ities must also be n. The only way for this to happen is that for each eigenvalue A, we
have that geometric multiplicity equalsalgebraic multiplicity. Thus, A isnon-defective.

Conversely, if A is non-defective, we can produce m(\) linearly independent eigen-
vectors belonging to each eigenvalue \. Assemble al of these vectors and we have n
eigenvectors such that for any eigenvalue A of A, the subset of all these vectors belong-
ing to A is linearly independent. Therefore, the entire set of eigenvectorsis linearly
independent by the remark following Theorem 5.2.11. Now apply the diagonalization
theorem to obtain that A is diagonalizable. O

The last item of business in our examination of diagonalization is to prove part 2 of
Theorem 5.1.16, which asserts:

For each eigenvalug of A, if m(u) is the algebraic multiplicity of:, then
1 <dimé&,(A4) < m(u).

To see why this is true, suppose the eigenvalue u has geometric multiplicity & and
that vi,vs,..., vy is abasis for the eigenspace £,,(A). We know from the Steinitz
substitution theorem that this set can be expanded to a basis of the vector space R™ (or

C"), say
Vi,V2, .. s Vi, VEgtl,... ,Vp
Form the nonsingular matrix
S =1[vi,Va,...,Vy]

Let

B = [S_lAVk+1,S_1AVk+2,... ,S_IAVTL] = |: g j|

where F' consists of the first £ rows of B and G the remaining rows. Thus we obtain
that

AS =[Avy, Avsy, ..., Av,]

= [pvi, uva, ... , 4V, AVigi1, ..., Avy]

. ,U/Ik F
-s[" 6]

Now multiply both sides on the left by S —! and we have

Ca-lga_ | #ly F
c=5 AS—[O G}

We see that the block upper triangular matrix C is similar to A. By part 2 of Theo-
rem 5.2.6 we see that A and C' have the same characteristic polynomial. However, the
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characteristic polynomial of C'is

p(A) = det </\In - [ “ék g D

= det ({ > _Ou)Ik G —I;Infk D

= det(\ — )1, - det (G — Alp—g)
= (A= " det (G = M)

The product term above results from Exercise 11 of Section 2.6 of Chapter 2. It follows
that the algebraic multiplicity of u as aroot of p()) is at least as large as k, which is
what we wanted to prove.

Our newfoundinsight into non-diagonalizablematricesis somewhat of anegativenature
—they are defective. Unfortunately, thisisn’t much help in determining the behavior of
discrete dynamical systems with a non-diagonalizabletransition matrix. If matrices are
not diagonalizable, what simple kind of matrix are they reducible to? Thereis a very
nice answer to this question; this answer requires the notion of a Jordan block, which
can be defined asad x d matrix of theform

Al
A
Ta(\) =
1
A

where the entries off the main diagonal and first super-diagonal are understood to be
zeros. This matrix is very close to being a diagonal matrix. Its true value comes from
the following classical theorem, the proof of which is somewhat beyond the scope of
this text. We refer the reader to the textbooks[7] or [6] of the bibliography for a proof.
These texts are an excellent references for higher level linear algebraand matrix theory.

Jordan THEOREM 5.3.6. Every matrixA is similar to a block diagonal matrix which consists
Canonical Form of Jordan blocks down the diagonal. Moreover, these blocks are uniquely determined
Theorem by A up to order.

Inparticular, if J = S~1AS, where J consists of Jordan blocks down the diagonal, we
call J “the” Jordan canonical form of the matrix A. Thisis a slight abuse of language,
since the order of occurrence of the Jordan blocks of .J could vary. To fix ideas, let's
consider an example.

EXAMPLE 5.3.7. Find al possible Jordan canonical formsfor a3 x 3 matrix A whose
eigenvaluesare —2, 3, 3.

SOLUTION. Notice that each Jordan block J4() contributes d eigenvalues \ to the
matrix. Therefore, there can be only one 1 x 1 Jordan block for the eigenvalue —2 and
either two 1 x 1 Jordan blocksfor the eigenvalue 3 or one 2 x 2 block for the eigenvalue
3. Thus, the possible Jordan canonical formsfor A (up to order of blocks) are

-2 0 0 -2 0 0
0 3 0 |or 0 3 1
0 0 3 0 0 3



238 5. THE EIGENVALUE PROBLEM
(|

Noticethat if all Jordan blocksare 1 x 1, then the Jordan canonical form of amatrix is
simply adiagonal matrix. Thus, another way to say that a matrix is diagonalizableisto
say that its Jordan blocksare 1 x 1. In reference to the previous example, we see that if
the matrix has the first Jordan canonical form, then it is diagonalizable, while if it has
the second, it is non-diagonalizable.

Now suppose that the matrix A is a transition matrix for a discrete dynamical system
and A is not diagonalizable. What can one say? For one thing, the Jordan canonical
form can be used to recover part 1 of Theorem 5.3.1. Part 4 remains valid as well; the
proof we gave does not depend on A being diagonalizable. Unfortunately, things are
a bit more complicated as regards parts (2) and (3). In fact, they fail to be true, as the
following example shows.

ExAMPLE5.3.8. Let A = J»(1). Show how parts (2) and (3) of Theorem 5.3.1 fail to
be true for this matrix.

SOLUTION. We check that

s, [1 1 1 1] [1 2
=101 lo =10 1)
s [1 2771 1] _[1 3
e=o 1o 1]=10 1]
and in general
e |1 Kk
=l 1]

Now takex(®) = (0, 1) and we see that

(k) _ Ak (0) _ 1 k 0 _ k
<-ao =[5 ][] -

It follows that the norms ||x(*)|| = /&% + 1 are not a bounded sequence, so that part
2 of the theorem fails to be true. Also, the sequence of vectors x (*) does not converge
to any vector in spite of the fact that 1 is the largest eigenvalue of A. Thus (3) fails as
well. O

In spite of this example, the news is not all negative. It can be shown by way of the
Jordan canonical form that a wesker version of (3) halds: if p(A) = 1, 1 isthe only
eigenvalue of A of absolute value 1 and the eigenvalue 1 has multiplicity 1, then the
conclusion of (3) in Theorem 5.3.1 holds.

5.3 Exercises

1. Which of the following matrices are diagonalizable? Do not carry out the diagonal -
ization, but give reasons for your answers.

@i 1] o] H,(c)lé % ?]




5.3. APPLICATIONS TO DISCRETE DYNAMICAL SYSTEMS 239

101 2 0 0 2 1 0
@|lo1ol,©l0 11|, H]|0 21
00 1 00 2 00 1

2. For each matrix A below find an eigensystem of A and use this to produce an invert-
ible matrix P and diagonal matrix D suchthat P~' AP = D, where

2 0 0
1 3 2 1(3 0
(a)Azlg g ;]’(b)Azﬁ{—él —3}’(C)A:§{8 _1]

3. Do the powers A* tend to 0 as k tends to infinity for any of the matrices of Exer-
cise 2?

4. You aregiventhat a5 x 5 matrix has eigenvalues 2, 2, 3, 3, 3. What are the possible
Jordan canonical forms for this matrix?

1 1 0
5. Compute by hand or calculator various power of thematrix J3(1) = [ 0 1 1 } .
0 0 1

Make a conjecture about a general formula for the kth power of this matrix, based on
these calculations.

Inthe next two exercises, we usetheideaof adominant eigenvalue, that is, an eigenvalue
A of the matrix A such that X is a simple eigenvalue and |\| > |u| for every other
eigenvalue u of A.

6. If the eigenvaluesof a3 x 3 matrix A are one of thefollowing lists, determinewhich
is the dominant eigenvalue of A, if any.

@rx=1,22 MAX=2,2-4 (QA=5/4,1+i1—i

7. Suppose the transition matrix A of a discrete dynamica system has a dominant
eigenvalue of 1. What conclusion can you extract from Theorem 5.3.1? Illustrate this
conclusion with an example.

8. Part (3) of Theorem 5.3.1 suggeststhat two possiblelimiting values are possible. Use
your CAS or MAS to carry out this experiment: Compute arandom 2 x 1 vector and
normalizeit by dividing by itslength. Let the resulting initial vector bex (9 = (zy, z5)
and compute the state vector x(29) using the transition matrix A of Example 5.3.3. Do
this for alarge number of times (say 500) and keep count of the number of times x (29)
iscloseto 0, say ||x(?|| < 0.1. Conclusions?

9. UseaCASor MASto construct a3 x 10 table whose jth columnis A7x, wherex =

10 17 8
(I,1,1)and A = | —8 —13 —6 | . What can you deduce about the eigenvalues
4 7T 4

of A based on inspection of this table? Give reasons. Check your claims by finding the
eigenvalues of A.

10. A species of hird can be divided into three age groups, say birds of age less than
2 years for group 1, birds of age between 2 and 4 years for group 2, and birds of age
between 4 and 6 years for the third group. Assume that for all practical purposes, these
birds have at most a6 year life span. It is determined that the survival rates for group 1
and 2 birdsare 50% and 25%, respectively. On the other hand, group 1 birds produce no
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offspring, while group 2 birds average 4 offspring in any biennium (period of 2 years),

and birdsin group 3 average 3 offspring in a biennium. Model this bird population as a
discrete dynamical system, where a state vector (p1, p2, p3) for agiven biennium means
that there are p; birdsin group 1, p» birdsin group 2 and p3 birdsin group 3.

11. Compute the largest eigenvalue of the transition matrix for the model of Exer-
cise 10. What does this suggest about the biennial growth rate of the bird population?

12. Let A = J3()), the Jordan block. Show that the Cayley-Hamilton theorenis valid
for A, thatis, p(A) = 0, where p(x) isthe characteristic polynomial of A.

13. Thefinancial model of Example 2.3.12 gaverise to difference equation which was
converted to the dynamical system z(k*1) = Az(¥) wherethe transition matrix is given

by
1 0.06 0.12
A=1|1 0 0
0 1 0
Usea CAS or MAS to calculate the eigenval ues of this matrix. Deducethat A is diago-

nalizable and determine the approximate growth rate from one state to the next, given a
random initial vector. Compare the growth rate with aflat interest rate.

5.4. Orthogonal Diagonalization

Orthogonal and unitary matrices are particularly attractive when we have to deal with
inverses. Recall that one situation which calls for an inverse matrix is that of diago-
nalization. For A is diagonalizable when there exists an invertible matrix P such that
P~1AP is adiagonal matrix. We are going to explore some very remarkable facts
about Hermitian and real symmetric matrices. These matrices are diagonalizable, and
moreover, diagonalization can be accomplished by a unitary (orthogonal if A is real)
matrix. This meansthat P~'AP = PH AP isdiagonal. In this situation we say that
the matrix A isunitarily (orthogonally) diagonalizable

Eigenvalue of Hermitian Matrices

As afirst step, we need to observe a curious property of Hermitian matrices. It turns
out that their eigenvalues are guaranteed to be real, even if the matrix itself is complex.
Thisis one reason that these matrices are so nice to work with.

THEOREM 5.4.1. If A is a Hermitian matrix, then the eigenvalues4fre real.
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PROOF. Let A be an eigenvalue of A with corresponding nonzero eigenvector x,
so that Ax = Ax. Form the scalar ¢ = x Ax. We have that
t=cl = (XHAX)H =xTAH (xM)H = xH Ax = ¢
It follows that ¢ isareal number. However, we also have that
¢ =xPxx = axfx = \||x|)?

sothat A = ¢/ ||x|| isalso real. 0

EXAMPLE 5.4.2. Show that Theorem 5.4.1 is applicableif A = [ 1+t 1_8 } and

verify the conclusion of the Theorem.

SOLUTION. First notice that
L 1 1-4q 1" 1 1+i " L1-i)_
T 1+ 0 Tl 14 0 T 144 0]
It follows that A is Hermitian and the theorem is applicable. Now we compute the
eigenvalues of A by solving the characteristic equation
1-X 1—4
1+i =X
=1-XN-N-14+9)1Q—-1)

0 =det(A — AI) = det {

=X -)A-2
=A+1H(A-2)
Hencethe eigenvaluesof A are A = —1,2 which areredl. O

Caution: Although the eigenvaluesf a Hermitian matrix are guaranteed to be real, the
eigenvectorsnay not be real unless the matrix in question isreal.

The Principal Axes Theorem

A key fact about Hermitian matrices is the so-called principal axes theorerrits proof
is asimple consequence of the Schur triangularization theorem which is proved in Sec-
tion 5.5. We will content ourselves here with stating the theorem and supplying a proof
for the case that the eigenvalues of A are distinct. This proof aso shows us one way to
carry out the diagonalization process.

Principal Axes THEOREM 5.4.3. Every Hermitian matrix is unitarily diagonalizable, and every real
Theorem Hermitian matrix is orthogonally diagonalizable.

PROOF. Let us assume that the eigenvalues of the n x n matrix A are distinct.
We saw in Theorem 5.4.1 of Chapter 4 that the eigenvalues of A are real. Let these
eigenvaluesbe A1, \o, . .. , A,. Now find an eigenvector v, for each eigenvalue A ;.. We
can assumethat each v, isunit length by replacing it by the vector divided by its length
if necessary. We now have a diagonalizing matrix, as prescribed by the Diagonalization
Theorem, namely the matrix P = vy, va,...Vy,].
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Rememberingthat Av; = \;v;, Avy = \pvi andthat A = A, we seethat
Mevi v = viTheve = vilAve = (Av;) v = (\vy) v = AviTvi

Hy . toobtain

Now bring both termsto one side of the equation and factor out theterm v ;

()\k — /\j)Vj-r{Vk =0

Thusif A\, # A;, itfollowsthat v; - vi, = vak = 0. In other words the eigenvectors
Vi, Vs, ...V, forman orthonormal set. Therefore, the matrix P isunitary. If A isred,
then so arethe vectors vy, vo, ... v, and P isorthogonal in this case. O

The proof we have just given suggests a practical procedure for diagonalizing a Her-

mitian or real symmetric matrix. The only additiona information that we need for the

complete procedure is advice on what to do if the eigenvalue A is repeated. Thisisa
sticky point.What we need to do in thiscaseisfind an orthogonal basis of the eigenspace
Ex(A) = N(A—-XI). Itisaways possibleto find such abasis using the so-called Gram-

Schmidt algorithm, which is discussed in Chapter 6 or the modified Gram-Schmidt al-

gorithm discussed on Page 208. For the hand cal culations that we do in this chapter, the
worst situation that we will encounter isthat the eigenspace £, istwo-dimensional, say
withabasisvy, vo. Inthiscasereplace v, by v = vo —proj,, vo. Weknow that v3 is
orthogonal to v, (see Theorem 6.2.16) so that v, viis an orthogona basis of £, (A)..
We illustrate the procedure with a few examples.

1 2 0

EXAMPLE 5.4.4. Find an eigensystem for the matrix A = [ 2 40 ] and use this
0 05

to orthogonally diagonalize A.

SOLUTION. Noatice that A is real symmetric, so diagonalizable by the principal axes
theorem. First calculate the characteristic polynomial of A as

1-X 2 0
|A— M| = 2 4—- X 0
0 0 5-X\
=((1-XN4-XN)—-2-2)(5-1X)
=-\\X-5)2
so that the eigenvaluesof A are A = 0, 5, 5.

Next find eigenspaces for each eigenvalue. For A = 0, we find the null space by row

reduction
1 20 12 0]——[1 20
A=0I=1{2 4 0| Ex(=2 |0 0 0| & 001
00 5 0 0 5 235 0 0 0

so that the null spaceis spanned by thevector (—2, 1, 0). Normalizethis vector to obtain
vi = (=2,1,0)/+/5. Next compute the eigenspace for A = 5 viarow reductions

-4 20 -4 2 0 1 -1/2 0
_

A-5I=| 2 -1 0| Ex(1/2) 00 0| BE(-1/4 |0 0 0

0 00 00 0 0 0 0
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which gives two eigenvectors, (1/2,1,0) and (0,0, 1). Normalize these to get v, =
(1,2,0)/+v/5 and vs = (0,0,1). In this case v, and v3 are aready orthogonal, so the
diagonalizing matrix can be written as

1 -2 1 0
P:[Vl,Vg,V3]:— 1 2 0
51 0 0 1
In fact, we can check that
[0 0 0 '|
PTAP=10 5 0
100 5 J
We leave this calcul ation to the reader.
PROOF. EXAMPLE 5.4.5. Let A = 1+£ 1 _é ] asin Example 5.4.2. Uni-

tarily diagonalize this matrix.

SOLUTION. In Example 5.4.2 we computed the eigenvaluesto be A = —1, 2. Next find
eigenspaces for each eigenvalue. For A = —1, we find the null space by row reduction

2 1—i —=[2 1—i 1 (1-1)/2
1+ . } Es(—=(1+14)/2) { 0 0 ] E(1/2 [ 0 0 }
so that the null space is spanned by the vector ((—1 + 4)/2,1). A similar calculation
shows that a basis of eigenvectors for A = 2 consists of the vector (—1, (-1 — 7)/2).
Normalize these vectorsto obtainu; = ((—1 +14)/2,1)/y/3/2 anduy = (-1, (-1 —

1=

i)/2)//3/2. So et
2 =Lt
i _ 2 N
=i [ 2]
and obtain that
—1 _ H _ _1 0
U AU = U" AU = { 0 2 ]
Thelast calculation is left to the reader. O

5.4 Exercises

1. Show the following matrices are Hermitian and find their eigenvalues:

@} o] ﬂ(c)ll—:g Hé §]

. . 1 2 0
ot ilel 2o 3 44

2. Find eigensystems for the matrices of Exercise 1 and orthogonal (unitary) matrices
that diagonalize these matrices.
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3. Show that these matrices are orthogonal and compute their eigenvalues. Determine
if it is possible to orthogonally diagonalize these matrices

01 0 .
o[ de 2] ou[di] el
a LetA:[_gi ;}
(a) Show that A isaHermitian matrix.
(b) Find the eigenvalues and eigenvectorsof A.
(c) Find a unitary matrix P and diagonal D suchthat P~'AP = D.
(d) Use (c) to find aformulafor the kth power of A.

5. Supposethat A is symmetric and orthogonal. Prove that the only possible eigenval-
uesof A are +1.

6. Let A bereal symmetric positive definite matrix. Show that A has areal symmetric
positive definite squareroot, that is, there is asymmetric positive definite matrix S such
that S2 = A. Hint: First show it for a diagonal matrix with positive diagonal entries.
Then use Exercise 15 and the principal axes theorem.

2 1 0
7. Let A = [ 1 3 -1 -| so that the eigenvaluesof A are 1, 2 and 4 (assumethis).
0o -1 2

Use the method of Exercise 6 to find a square root of A.

5.5. *Schur Form and Applications

Recall that matrices A and B are similar if there is an invertible matrix S such that
B = S1AS; if the transformation matrix S is unitary, then S—' = S¥. The main
object of this section is to prove a famous theorem in linear algebra which provides a
nice answer to the following question: if we only wish to use orthogonal (or unitary)
matrices as similarity transformation matrices, what is the simplest form to which a
given matrix A can be transformed. It would be nice if we could say something like
“diagona” or “Jordan canonical form.” Unfortunately, neither is possible. However,
upper triangular matrices are very nice specia forms of matrices. In particular, we can
see the eigenvalues of an upper triangular matrix at a glance. That makes the follow-
ing theorem extremely attractive. Its proof is also very interesting, in that it actualy
suggests an algorithm for computing the so-called Schur triangular form.
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THEOREM 5.5.1. Let A be an arbitrary square matrix. Then there exists a unitarySchur Triangu-
matrix U such thatU " AU is an upper triangular matrix. 14 and its eigenvalues are larization
real, thenU can be chosen to be orthogonal. Theorem

Proor. We will show how to triangularize A one column at time. First we show
how to start the process. Compute an eigenvalue A ; of A and a corresponding eigenvec-
tor w of unit length in the standard norm. We may assume that thefirst coordinate of w
isreal. If not, replace w by e ~*w where  is a polar argument of the first coordinate
of w. This does not affect the length of w and any multiple of w is still an eigenvector
of A. Now letv = w — e, wheree; = (1,0,...,0). We make the convention that
Hy = I. Form the (possibly complex) Householder matrix H,. Since w - e; isred,
it follows from Exercise 3 that H,w = e;. Now recall that Householder matrices are
unitary and symmetric, sothat HY = H, = H;'. Hence

HYAH,e, = H AH,'e; = H Aw = H )\ W = \je;
Therefore, the entries under the first row and in the first column of H 5’ AH, arezero.

Suppose we have reached the kth stage (k = 0 is start) where we have a unitary matrix
Vi such that

Ak e
: . : R, C
VHEAV, = |+ - ox z{ ¢ }
BT 0 - A 0 B

with the submatrix Ry, upper triangular. Compute an eigenvalue A ;.1 of the submatrix
B and a corresponding eigenvector w of unit length in the standard norm. Now repeat
the argument of thefirst paragraph with B in place of A to obtain a Householder matrix
H, of thesame size as B such that the entries under thefirst row and in the first column
of HY BH, are zero. Form the unitary matrix

I, O
Vit1 = { S i ]Vk
and obtain that
(I, O I, O
VB AV = S i, ]Vk AV { 6” i, ]

This new matrix is upper triangular in the first £ + 1 columns, so we can continue in
this fashion until we reach the last column, at which point we set U = V,, to obtain that
UM AU is upper triangular. Finally, notice that if the eigenvalues and eigenvectors that
we calculate are real, which would certainly be the case if A and the eigenvalues of A
werereal, then the Househol der matrices used in the proof are all real, so that the matrix
U isorthogonal. O
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Of course, the upper triangular matrix 7" and triangularizing matrix U are not unique.
Nonetheless, thisis a very powerful theorem. Consider what it says in the case that A
is Hermitian: the Principal Axes Theorem isasimple specia case of it.

COROLLARY 55.2. Every Hermitian matrix is unitarily (orthogonally, if the matrix is
real) diagonalizable.

PrROOF. Let A be Hermitian. According to the Schur triangularization theorem
thereis aunitary matrix U such that U ¥ AU = R isupper triangular. We check that

RY = (UM Av)" =" At (UH)" = UH AU = R.
Therefore R is both upper and lower triangular. This makes R a diagonal matrix and
provesthe theorem, except for the fact that U may be chosen orthogonal if A isredl. To

see this last fact, notice that if A isreal symmetric, then A and its eigenvalues are redl,
so according to the triangularization theorem, U can be chosen orthogonal. |

As alast application of the Schur triangularization theorem, we show the real signifi-
cance of normal matrices. This term has appeared in severa exercises. Recall that a
(square) matrix A isnormal if AHFA = AAH.

COROLLARY 5.5.3. A matrix is unitarily diagonalizable if and only if it is normal.

PROOF. It is easy to see that every unitarily diagonalizable matrix is normal. We
leave this as an exercise.

Let A be normal. According to the Schur triangularization theorem there is a unitary
matrix U such that U7 AU = R is upper triangular. But then we have that R =
UH ARU, so that

RER=UHARUUM AU = UH AP AU = UH AARU = U AUU® AHU = RRY
Therefore R commutes with R | which means that R is diagonal by Exercise. This
completes the proof. O

Our last application of Schur’stheoremisafar reaching generalization of Theorem5.1.5.

COROLLARY 554, Let f(z) andg(z) be polynomials andl a square matrix such that
g(A) is invertible (e.g., g(x)=1). Then the eigenvalues of the mafix)g(A) ! are of
the formf(\)/g(\), where) runs over the eigenvalues df

ProoF. We sketch the proof. As afirst step, we make two observations about up-
per triangular matrices S and 7" with diagonal terms A1, Ao, ... , A, and g, po, - - - i,
respectively.

1. ST isupper triangular with diagonal terms Ay pe1, Aot . .. 5 Apfin-

Principal Axes
Theorem

2. If Sisinvertible, then S isupper triangular with diagonal terms1/A1,1/ A2, ... , 1/ A,.

Now we have seen in Exercise 12 of Section 5.2 that for any invertible P of the right
size, P"Lf(A)P = f(P tAP). Similarly, if we multiply the identity g(A)g(A4) ! =
Iby P~' and P, we seethat P~1g(A)~'P = g(P~'AP)~'. Thus, if P isamatrix
that unitarily diagonalizes A, then

P~ f(A)g(A)~'P = f(P~'AP)g(PT'AP)™!
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so that by our first observations, this matrix is upper triangular with diagonal entries of
the required form. Since similar matrices have the same eigenvalues, it follows that the
eigenvaluesof f(A)g(A) ! areof the required form. O

5.5 Exercises

1. The matrix

-1 2 2
A= 2 -1 2
2 2 -1

has 3 as an eigenvalue. Carry out the first step of Schur triangulation on A.
2. Provethat every unitarily diagonalizable matrix is normal.
3. UseCorollary 5.5.2 to show that the eigenval ues of a Hermitian matrix must bereal.

4. Provethat if an upper triangular matrix commutes with its Hermitian transpose, then
the matrix must be diagonal. Hint: Equate (1, 1)th coefficients of the equation R’ R =
RR* and see what can be gained from it. Proceed to the (2, 2)th coefficient, etc.

5. Show that if x,y € C", x andy havethe samelengthand x - y isreal, thenx + y
isorthogonal tov = x — y.

6. Withx,y, v asin Exercise 5, show that
1
x=5(x-y)+(x+y)=p+u
where p is parallel to v and u is orthogonal to v.

7. With x,y, v as in Exercise 5, show that H,x = y. Hint: A text theorem about
Householder matrices applies to this setup.

5.6. *The Singular Value Decomposition

The object of this section is to devel op yet one more factorization of a matrix that tells
us a lot about the matrix. For simplicity, we stick with the case of a real matrix A
and orthogonal matrices. However, the factorization we are going to discuss can be
done with complex A and unitary matrices. This factorization is caled the singular
value decomposition (SVD for shortlt has a long history in matrix theory, but was
popularized in the sixties as a powerful computational tool. Here is the basic question
that it answers: if multiplication on one side can produce an upper triangular matrix, as
in the QR factorization, how simple a matrix can be produced by multiplying on each
side by a (possibly different) orthogonal matrix? The answer, as you might guess, is a
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matrix that is both upper and lower triangular, that is, diagonal. However, verification
of this fact is much more subtle than that of one sided factorizations such as the QR
factorization. Here is the key result:

THEOREM 5.6.1. Let A be anm x n real matrix. Then there exist x m orthogonal
matrix U, n x n orthogonal matrixV” and m x n diagonal matrixX with diagonal
entrieso; > o2 > ... > 0,, Withp = min{m, n}, such that/7 AV = X. Moreover,
the numbers, 03, ... , 0, are uniquely determined hy.

PROOF. Thereisno loss of generality in assuming that n = min{m, n}. Forif this
is not the case, we can prove the theorem for A” and by transposing the resulting SVD
for AT, obtain a factorization for A. Form then x n matrix B = AT A. This matrix
is symmetric and its eigenvalues are nonnegative (we leave these facts as exercises).
Because they are nonnegative, we can write the eigenvalues of B in decreasing order
of magnitude as the squares of positive real numbers, say aso? > o3 > ... > o2,
Now we know from the Principal Axes Theorem that we can find an orthonormal set of
eigenvectors corresponding to these eigenvalues, say Bvy, = oivy, k= 1,2,...,n.
LetV = [v1,Va,...,Vvy]. ThenV isan orthogona n x n matrix. Next, suppose that
Opt1,0pt2,--. 0, aezero, whileo, # 0.

Next set u; = %Avj, j=1,2,...,r. Theseare orthonormal vectorsin R since
J

1 1 2 if
u;‘.r’uk = V]TATAVk = v;‘-Fka = Tk v;‘-r’vk = { 0, If] 7k
00k ook o0k Lifj =k

Now expand this set to an orthonormal basisuy, uy, ... ,u,, of R™. Thisis possible
by Theorem 4.3.12 in Section 4.3. Now set U = [uy,up,...,u,]. This matrix is
orthogonal and we calculate that if £ > r, then uJTAv,c = 0 since Av, = 0, and if
k < r, then

T T
u; Avy = u; Avy, = opu’ up, = 7
; Avg j Avy = opujuy o if G =k

- { 0, if j £k

It followsthat UT AV = [u] Av;] = .

Finally, if U,V are orthogonal matricessuchthat U7 AV = X, then A = UXV " and
therefore

B=ATA=vxUTUxVT = vx2y7T

so that the squares of the diagonal entries of 3 are the eigenvalues of B. It follows that
thenumbersoy, oo, ... , 0, areuniquely determined by A. O

NOTATION 5.6.2. The numbers o1, 03,...,0, are cdled the singular valuesof the
matrix A, the columns of U are the left singular vectorof A, and the columns of V
aretheright singular valuesf A.

Thereis an interesting geometrical interpretation of this theorem from the perspective
of linear transformations and change of basis as developed in Section 3.7. It can can be
stated as follows.

Singular Value
Decomposition
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COROLLARY 5.6.3. LetT : R® — R™ be a linear transformation with matriX with
respect to the standard bases. Then there exist orthonormal bgses, . .. , u,, and
vy, Va,..., v, Of R™ andR", respectively, such that the matrix ‘Bfwith these bases
is diagonal with nonnegative entries down the diagonal.

PrROOF. First observethat if U = [uj,ug,...,un]andV = [vy,va,...,v,],
then U and V' are the change of basis matrices from the standard bases to the bases
up,uy,...,u, advy,vs,...,v, of R™ and R", respectively. Also, U~ = UT.
Now apply Corollary 3.7.5 of Section 3.7 and the result follows. O

We leave the following fact as an exercise.

COROLLARY 5.6.4. LetUTAV = ¥ be the SVD off and suppose that, # 0 and
or+1 = 0. Then

1 rank A =r
2. ker A =span{v,41,Vr42,...,Vn}
3. range A = span{u;,us,... ,u,}

We have only scratched the surface of the many facets of the SVD. Like most good
ideas, it isrich in applications. We mention one more. It is based on the following fact,
which can be proved by examining the entriesof A = UXV T : The matrix A of rank r
can be written as a sum of r rank one matrices, namely

T T T
A=o01uyv] +02usv, +---+o,u,v,

wherethe oy, uy, vy arethesingular values, left and right singular vectors, respectively.
Infact, it can be shown that this representation is the most economical in the sense that
the partial sums

T T T
o1u1vy +0ousvy + - 4+ opugvy, k=1,2,...,r

give the rank & approximation to A that is closest among all rank & approximations to
A. Thisgives usan intriguing way to compress datain alossy way (i.e., with some loss
of data). For example, suppose A is amatrix of floating point numbers representing a
picture. We might get a reasonable good approximation to the picture by using only the
oy, larger than a certain threshhold. Thus, witha1, 000 x 1, 000, matrix A that hasavery
small 051, wecould get by withthedatao, uy, vi, k = 1,2,. .. ,20. Consequently, we
would only store these quantities, which add up to 1000 x 40 + 20 = 40, 020 numbers.
Contrast this with storing the full matrix of 1,000 x 1,000 = 1,000,000 entries, and
you can see the gain in economy.

5.6 Exercises

1. Exhibit asingular value decomposition for the following matrices.
-2 0 1 0 1
3 00}(@{0 1-|(c){000-|
0 -1 0
[ 0 —1J [0 0 QJ

2. Expressthe singular values and vectorsof AT in terms of those of A.

@)
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3. Trace through the proof of the SVD with the matrix and construct the SVD of the

matrix
1 0
1 1
0 -1

4. Find the least squares solution to the problem Az = b when A only has nonzero
entries along the main diagonal. Then use this solution to design an algorithm for
solving the general least squares problem by means of the SVD of A.

5. Let A bearea matrix and U, V' orthogonal matrices.

(@) Show from definitionthat [|[UT AV |2 = ||A]|2

(b) Determine ||X||, if ¥ isadiagonal matrix with non-negative entries.

(c) Use parts (a),(b) and the SVD to express || A||2 in terms of the singular values of A.
6. Prove Corollary 5.6.4.

7. Digitizeapictureinto a640 x 400 (standard VGA) matrix of greyscale pixels, where
the value of each pixel isanumber z, 0 < = < 1, with black corresponding to z =
0 and white to x = 1. Compute the SVD of this image matrix and display various
approximations using 10, 20 and 40 of the singular values and vector pairs. Do any of
these give a good visual approximation to the picture? If not, find a minimal number
that works. You will need computer support for this exercise.

5.7. *Computational Notes and Projects

Computation of Eigensystems

Nowadays, one can use a MAS like MATLAB or Octave on a home PC to find a com-
plete eigensystem for, say a 100 x 100 matrix, in less than a second. That's pretty
remarkable and, to some extent, a tribute to the fast cheap hardware commonly avail-
ableto the public. But hardwareis only part of the story. Bad computationa algorithms
can bring the fastest computer to its knees. The rest of the story concerns the remark-
able developmentsin numerical linear algebra over the past 50 years which have given
usfast reliable algorithms for eigensystem calculation. We can only scratch the surface
of these developmentsin this brief discussion. At the outset, we rule out the methods
developed in this chapter as embodied in the eigensystem agorithm (Page 216). These
arefor simple hand cal culations and theoretical purposes. See the polynomial equations
project that follows this discussion for some more comments about root finding.
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We are going to examine some iterative methods for selectively finding eigenpairs of a
real matrix whose eigenvalues are real and distinct. Hence the matrix A is diagonaliz-
able. The hypothesis of diagonalizability may seem too constraining, but there is this
curious aphorism that “numerically every matrix is diagonalizable” The reason is as
follows. once you perform store and numerical calculations on the entries of A, you
perturb them a small essentially random amount. This has the effect of perturbing the
eigenvalues of the calculated A a small random amount. Thus, the probability that any
two eigenvalues of A are numerically equal is quite small. To focus matters, consider

the test matrix
-8 -5 8
A= 6 3 -8
-3 1 9

Just for the record, the actual eigenvalues of A are —2,1 and 5 (see Exercise 1 for an
explanation). Now we ask three questions about A :

(1) How can we get a ballpark estimate of the location of the eigenvalues of A?

(2) How can we estimate the dominanteigenpair (A, x) of A? (Dominantmeans that A
is larger in absolute value than any other eigenvalue of A.

(3) Given a good estimate of any eigenvalue A of A, how can we improve the estimate
and compute a corresponding eigenvector?

One answer to question (1) is the following theorem, which predates modern numerical
analysis, but has proved to be quite useful. Because it helps locate eigenvalues, it is
called a“localization theorem.”

Gershgorin THEOREM 5.7.1. LetA = [a;;] be ann x n matrix and define disks in the complex
Circle Theorem plane by

n

rpo= Y el
k=1
k#j

C; = A{z|lz—rj| <layyl

Then

1. Every eigenvalueof A iscontained in somedisk C';.
2. If k of the disks are digoint from the others, then exactly & eigenvalues are
contained in the union of these disks.

PrRoOOF. To prove 1, let A be an eigenvalue of A and x = (z1,22,... ,2,) be
an eigenvector corresponding to A. Suppose that « ; is the largest coordinate of x in
absolute value. Divide x by this entry to obtain an eigenvector whose largest coordinate
isz; = 1. Without loss of generality, this vector isx. Consider the jth entry of the zero
vector Ax — Ax whichis

n
()\—aj)1+ Z ajkTk =0.
k=1
k#j
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FIGURE 5.7.1. Gershgorincirclesfor A.

Bring the sum to the right hand side and take absolute values to obtain

n

A=l = | D aja]

k=1
k#3j
<Y agellak] <
k=1
k#j
sinceeach | z;, |[< 1. Thisshowsthat A € C; which proves1. We will not prove 2, asit
requires some complex analysis. O

ExAMPLE 5.7.2. Apply the Gershgorin circle theorem to A and sketch the resulting
Gershgorin disks.

SOLUTION. Thecircles are easily seen to be

Ci = {z||z+8 <13}
Co = {z]]z-3/<14)
O3 = {z|[z-9/<4}
A sketch of themis providedin Figure5.7.1. O

Now we turn to question (2). One answer to it is contained in the following agorithm,
known as the power method

Power Method: To compute an approximate eigenpair (A,x) of A with ||x|| = 1 and A
the dominant eigenvalue.

1. Input aninitial guess x, for x
2. Fork =0,1, ... until convergenceof A(¥)’s;
@ y = Axy

(0) Xpo1 =
y]]
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(©) A*+D) = x{HAka

That's dl thereis to it! Why should this algorithm converge? The secret to this a-
gorithm lies in a formula we saw earlier in our study of discrete dynamical systems,
namely Equation 5.3.2 which we reproduce here

x(F) = Akx(0) — cl)\’fvl + cZA!jw + -+ cn)\flvn.

Here it is understood that vq,vs, ..., v, isabass of eigenvectors corresponding to
eigenvalues A1 Ao, . .. , A, Which, with no loss of generality, we can assume to be unit
length vectors. Notice that at each stage of the power method we divided the com-
puted iterate y by its length to get the next x 1, and this division causes no direc-
tional change. Thus we would get exactly the same vector if we smply set x11 =
xk+D) /||lx(E+D || Now for large k the ratios (A;/A1)* can be made as small as we
please, so we can rewrite the above equation as

A\ A\
xF) = Akx(0) :)\’f Cc1Vy + ¢ 22 Vot -dep, | =) vy, %)\’fclvl.
)\1 )\1
Assuming that ¢; # 0, whichislikely if xq israndomly chosen, we see that

Ax(k) - )\'fcl )\1V1

Xk+1 [Ax®[ ™ [Nrerh | -
AEHD = Axp & (v)TA(EV) = A

Thus we see that the sequence of \(¥)’s convergesto \; and the sequence of x,’s con-
vergesto +v;. Theargument (it isn’t rigorous enough to be called a proof) we have just
given showsthat the oscillationin sign in xoccursin the case A < 0. You might notice
aso that the argument doesn’t require the initial guess to be a real vector. Complex
vectors are permissible.

If we apply the power method to our test problemwith aninitial guessof xo = (1,1, 1),
we get every third value as follows:

(™ ] |
0 (1,1,1)
3 | 5.7311 | (0.54707, —0.57451,0.60881

(
6 | 4.9625 | (0.57890, —0.57733,0.57581
9 | 5.0025 | (0.57725,—0.57735,0.57745
12| 4.9998 | (0.57736,—0.57735,0.57734

~— | [— | —

Notice, that the eigenvector looks a lot like a multiple of (1, —1, 1) and the eigenvalue
looksalot like 5. Thisis an exact eigenpair, as one can check.

Finally, weturnto question (3). Oneanswer toit is contained in the following algorithm,
known as the inverse iteration methad

Inverse Iteration Method: To compute an approximate eigenpair (\,x) of A with
lIx]| = 1.

1. Input aninitial guessx, for x and a closeapproximation u = Ag to \.
2. Fork =0, 1,. .. until convergenceof \(*)’s;
(@ y = (A—pul)'x;
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y
() Xpr1 =
0yl
(©) A*+D) = X{-HAX]“‘H

Notice that the inverse iteration method is simply the power method applied to the ma-
trix (A — pI)~t. Infact, it is sometimes called the inverse power method. The scalar
1 is called a shift. Here is the secret of success for this method: we assume that 1 is
closer to a definite eigenvalue A of A than to any other eigenvalue. But we don’t want
too much accuracy! We need 1 # \. Theorem 5.1.5in Section 1 of this chapter shows
that the eigenvalues of the matrix A — I are of theform o — u where o runs over the
eigenvalues of A. Thus the matrix A — uI is nonsingular since no eigenvalue is zero,
and Exercise 11 shows us that the eigenvaluesof (4 — uI) ~! areof theform 1/(o — )
where o runs over the eigenvalues of A. Since p is closer to A than to any other eigen-
vaueof A, theeigenvalue1/(\ — p) isthe dominant eigenvalueof (A — uI) =1, which
is exactly what we need to make the power method work on (A — pI) =1, Indeed, if p
isveryclose (but not equal!) to A convergence should be very rapid.

In agenera situation, we could now have the Gershgorin circle theorem team up with
inverse iteration. Gershgorin would put us in the right ballpark for values of x and
inverseiteration would finish thejob. Let’stry thiswith our test matrix and choices of i
in the interval [—21, 17] suggested by Gershgorin. Let'stry u = 0. Here are the results
in tabular form.

| k | A(F) | xp With . = 0.0 |
0 0.0 (1,1,1)
3 10.77344 | (—0.67759,0.65817, —0.32815)
6 | 1.0288 | (—0.66521,0.66784,—0.33391)
9 |0.99642 | (—0.66685,0.66652, —0.33326)
12 | 1.0004 | (—0.66664,0.66668, —0.33334)

It appearsthat inverseiteration is convergingto A = 1 and the eigenvector looks suspi-
ciously likeamultiple of (—2,2, —1). Thisisin fact an exact eigenpair.

Thereis much moreto modern el genvalue algorithms than we have indicated here. Cen-
tral topics include deflation, the QR algorithm, numerical stability analysis and many
other issues. The interested reader might consult more advanced text such as references
such as[5], [4], [8] or [3], to name a few.

Project Topics

Project: Solving Polynomial Equations

In homework problems we solve for the roots of the characteristic polynomial in order
to get eigenvalues. To this end we can use algebra methods or even Newton’'s method
for numerical approximations to the roots. This is the conventional wisdom usually
proposed in introductory linear algebra. But for larger problems than the simple 2 x 2
or 3 x 3 matrices we encounter, this method can be too slow and inaccurate. In fact,
numerical methods hiding under thehoodinaMAS (and some CASs) for finding eigen-
values are so efficient that it is better to turn this whole procedure on its head. Rather
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than find roots to solve linear algebra (eigenvalue) problems, we can use (humerical)
linear algebrato find roots of polynomials. In this project we discuss this methodol ogy
and document it in afairly nontrivial example.

Given apolynomial f(z) = ¢ + c1z + -+ + cp_12" ! + 2™, form the companion
matrix of f(z)

0 1 0 0
0 0 1 0
c(f) = : : . - :
0 o - 0 1
—C —C€ - —Cp-2 —Cp-1

It is a key fact that the eigenvalues of C'(f) are precisely the roots of the equation
f(z) = 0. Experiment withn = 2, 3,4 and try to find a proof by expansion across the
bottom row of det(A — AI) that thisresult istrue for al n.

Then use a CAS (or MAS) to illustrate this method by finding approximate roots of
three polynomials: a cubic and quartic of your choice and then the polynomial

f(z) =5+ 11z + 42” + 62° + 2* — 152° + 52° — 327 — 22 4+ 82° — 5210 + 2!

In each case use Newton’'s method to improve the values of some of the roots (it works
with complex numbers as well as reals, provided one starts close enough to a root.)
Check your answers to this problem by evaluating the polynomial. Use your results to
write the polynomial as aproduct of thelinear factorsz — A\, where A isaroot and check
the correctness of this factorization.

Project: Finding a Jordan Canonical Form A challenge: Find the Jordan canon-
ical form of this matrix, which is given exactlyas follows. The solution will require
some careful work with a CAS or (preferably) MAS.

111 -2 1 -1 2 -2 4 =3
-1 2 3 -4 2 -2 4 -4 8 —6
-1 05 -53 -3 6 -6 12 -9
-1 03 -4 4 -4 8 -8 16 —-12
A= -1 03 -6 5 —4 10 —-10 20 -15
-1 0 3 -6 2 -2 12 -—-12 24 -18
-1 03 -6 2 -5 15 —-13 28 -21
-1 0 3 -6 2 =5 15 —-11 32 -24
-1 0 3 -6 2 -5 15 —-14 37 -26
| -1 0 3 -6 2 -5 15 —-14 36 -25 |

Your main task is to devise a strategy for identifying the Jordan canonical form matrix
J. Do not expect to find the invertible matrix S for which J = S~1AS. However, a
key fact to keep in mind isthat if A and B are similar matrices, i.e., A = S~'BS for
someinvertible S, then rank A = rank B. In particular, if S isamatrix that puts A into
Jordan canonical form, then J = S 1 AS.

First prove this rank fact for A and B. Show it appliesto A — ¢I and B — cI aswsll,
for any scalar c. Then extend it to powers of A and B.
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Now you have the necessary machinery for determining numerically the Jordan canon-
ica form. Asafirst step, one can use a CAS or MAS to find the eigenvalues of A. Of
course, these will only be approximate, so one has to decide how many eigenvalues are
really repeated.

Next, one has to determine the number of Jordan blocks of a given type. Suppose X is
an eigenvalue and find the rank of various powersof A — AI. It would help greatly in
understanding how al this counts blocks if you first experiment with a matrix aready
in Jordan canonical form, say, for example,

[ Ji(2) 0 0 ]
J=| 0 Jh2 o0 |.
[ 0 0  JL(3) J

Project: Classification of Quadratic Forms

Recall from calculusthat in order to classify all quadratic equationsin x and y one went
through roughly three steps. First, do arotation transformation of coordinatesto get rid
of mixed termslike, say, 2zy in the quadratic equation z2 + 2zy — y2 + = — 3y = 4.
Second, do atranglation of coordinatesto put the equation in a*“standard form.” Third,
identify the curve by your knowledge of the shape of a curve in the given standard
form. Standard forms were equations like z2/4 + y?/2 = 1. Also recall from your
calculus study of the conics that it was the second degree terms aone that determined
the nature of a quadratic. For example, the second degree terms of the equation above
arez? + 2zy — y2. Thediscriminant of the equation was determined by these terms. In
this case the discriminant is 8, which tells us that the curve represented by this equation
is a hyperbola. Findly, recall that when it came to quadric equations, i.e., quadratic
equationsin 3 unknowns, your text simply provided some examplesin “standard form”
(six of them to be exact) and maybe mumbled something about thislist being essentially
all surfaces represented by quadric equations.

Now you are ready for the rest of the story. Just as with curvesin x and y, the basic
shape of the surface of a quadric egquation in x, y and z is determined by the second
degreeterms. Sincethisis so, we will focus on an example with no first degree terms,
namely,

Q(z,y,2) = 22° + 4y* + 62 — 4oy — 222 + 2yz = 1.

The problem is simply this. find a change of coordinates that will make it clear which
of the six standard forms is represented by this surface. Here is how to proceed:
first you must express the so-called “quadratic form” Q(z,y,z) in matrix form as
Q(z,y,2) = [z,y,2]A[z,y,2]T. Itis easy to find such matrices A. But any such A
won't do. Next, you must replace A by the equivalent matrix (4 + A7) /2. (Check
that if A specifies the quadratic form @, then so will (4 + AT)/2.) The advantage of
this latter matrix isthat it is symmetric. Now our theory of symmetric matrices can be
brought to bear. In particular, we know that there is an orthogonal matrix P such that
PT AP is diagonal, provided A is symmetric. So make the linear change of variables
[#,y,2]" = Plz',y', 2" and get that Q(a.y,2) = [¢',y', #/|PTAP[z',y',2']". But
when the matrix in the middle is diagonal, we end up with squares of 2/, ' and 2’, and
no mixed terms.

Use the computer algebra system available to you to calculate a symmetric A and to
find the eigenvalues of this A. From this data alone you will be able to classify the
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surface represented by the above equation. Also find unit length eigenvectors for each
eigenvalue. Put these together to form the desired orthogonal matrix P which eliminates
mixed terms.

An outstanding reference on this topic and many othersrelating to matrix analysisisthe
recently republished textbook [1] by Richard Bellman which iswidely considered to be
aclassicinthefield.

A Report Topic: Management of Sheep Populations

Description of the problemYou are working for the New Zealand Department of Agri-
culture on a project for sheep farmers. The species of sheep that these shepherds raise
have alife-span of 12 years. Of course, some live longer but they are sufficiently few in
number and their reproductive rate is so low that they may be ignored in your popula
tion study. Accordingly, you divide sheep into 12 age classes, namely those in the first
year of life, etc. You have conducted an extensive survey of the demographics of this
species of sheep and obtained the following information about the demographic param-
eters a; and b;, where a; is the reproductive rate for sheep in the ith age classand b; is
the survival rate for sheep in that age class, i.e., the fraction of sheep in that age class
that survive to the i + 1th class. (As a matter of fact, this table is related to real data.
The interested reader might consult the article [2] in the bibliography.)

i 1 2 3 4 5 6 7 8 9 10 | 11 | 12
a; | .000 | .023 | .145 | .236 | .242 | .273 | .271 | .251 |.234 |.229 |.216 |.210
b; | .845 | .975 | .965 | .950 | .926 |.895 |.850 |.786 |.691 |.561 |.370 | -

The problem is as follows: in order to maintain a constant population of sheep, shep-

herds will harvest a certain number of sheep each year. Harvesting need not mean

slaughter; it can be accomplished by selling animals to other shepherds, for example. It

simply means removing sheep from the popul ation. Denote the fraction of sheep which

are removed from the ith age group at the end of each growth period (ayear in our case)

by h;. If these numbers are constant from year to year, they constitute a harvesting
policy. If, moreover, the yield of each harvest, i.e., total number of animals harvested

each year, is aconstant and the age distribution of the remaining populaceis essentially

constant after each harvest, then the harvesting policy is caled sustainable.If all the
h;'s are the same, say h, then the harvesting policy is called uniform An advantage
of uniform policies is that they are simple to implement: One selects the sheep to be
harvested at random.

Your problem: Find a uniform sustainable harvesting policy to recommend to shep-
herds, and find the resulting distribution of sheep that they can expect with this policy.
Shepherds who raise sheep for sale to markets are also interested in a sustainable pol-
icy that gives a maximum yield. If you can find such a policy that has a larger annual
yield than the uniform policy, then recommend it. On the other hand, shepherds who
raise sheep for their wool may prefer to minimize the annual yield. If you can find a
sustainable policy whoseyield is smaller than that of the uniform policy, make arecom-
mendation accordingly. In each case find the expected distribution of your harvesting
policies. Do you think there are optimum harvesting policies of this type? Do you
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think that there might be other economic factors that should be taken into account in
this model? Organize your results for a report to be read by your supervisor and an
informed public.

Procedure:Express this problem as a discrete linear dynamical system x**! = Lx*,
where L isaso-called Leslie matrix of the form

ay a2 asz . Ap_—1 Gp
b 0 O --- 0 0
=0 b 0 -~ 0 0
o o o0 --- b,1 O

It is understood that the 0 < b; < 1,0 < q; and a least one a; # 0. The facts you
need to know (and may assume as standard facts about Leslie matrices) are as follows:
such amatrix will have exactly one positive eigenvalue which turns out to be a simple
eigenvalue (not repeated). Moreover, if at least two adjacent entries of the first row
are positive, this eigenvalue will be adominanteigenvalue, i.e., it is strictly larger than
any other eigenvalue in absolute value. In particular, if the positive eigenvalue is 1,
then starting from any nonzero initial state with nonnegative entries, successive states
converge to an eigenvector belonging to the eigenvalue 1 which has al nonnegative
entries. Scale this vector by dividing it by the sum of its components and one obtains
an eigenvector which is a probability distribution vector, i.e., its entries are nonnegative
and sumto 1. The entries of this vector give thelong term distribution of the population
in the various age classes.

In regardsto harvesting, let H be a diagona matrix with the harvest fractions h ; down
the diagonal. (Here 0 < h; < 1.) Then the population that results from this harvesting
at the end of each period is given by x*+! = Lx* — HLx* = (I — H)Lx*. But the
matrix (I — H)L isitself aLedie matrix, so the theory appliesto it aswell. Thereare
other theoretical tools, but al you need to do isto find amatrix H = hI sothat 1is
the positive eigenvalue of (I — H) L. You can do this by trial and error, a method which
is applicable to any harvesting policy, uniform or not. However, in the case of uniform
policiesit’'s simpler to notethat (I — H)L = (1 — h)L, where h is the diagonal entry
of H.

Implementation Notes(To the instructor: Add local notes here and discuss available
aids. For example, when | give this assignment under Maple or Mathematica, | create
a notebook that has the correct vector of a;'s and b;’s in it to avoid a very common
problem: data entry error.)

5.7 Exercises

-2 0 0
0 10

0 0 5

A = P71 DP. Explain why the eigenvalues of A are —2, 1, 5. Also explain why, given

the form of M, we know that P —! is sure to have integer entries before we even calcu-
late P,

1l LetD =

1 1 0
] andM:[O 1 1].ComputeP:MTMand
0 0 1
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2. A sguare matrix is said to be strictly diagonally dominantif in each row the sum of
the absolute values of the off-diagonal entriesis strictly less than the absolute value of
the diagonal entry. Show that a strictly diagonally dominant matrix is invertible. Hint:
Use Gershgorin to show that 0 is not an eigenvalue of the matrix.

3. Thematrix A below may have complex eigenvalues.

1 -2 -2 0

6 -7 21 -18
4 -8 22 -18
2 -4 13 -13

Use the Gerschgorin circle theorem to locate eigenvalues and the iteration methods of
this section to compute an approximate eigensystem.

A=

Review

Chapter 5 Exercises

O O N

1. Find the characteristic polynomial and eigenvalues of matrix A = {

N = =
|

B O

| I—

1 3 3
2. For the matrix A = [ 0 5 4 ] find a matrix P and a diagonal matrix D such
0 01

that P~' AP = D. (You do nothaveto find P~1).

3. Giventhat a5 x 5 hasonly one eigenvalue A, what are the possible Jordan canonical
forms of the matrix?

4. Answer True/Fase:

(a) The matrix { 3 ; ] is diagonalizable.
. 2 1. . .

(b) The matrix { 01 ] isdiagonalizable.

(c) Every eigenvalue of the matrix A is nonzero.

(d) Every rea matrix is similar to adiagonal matrix.

(e) If A isdiagonalizable, then AT is diagonalizable.

5. Verify directly from definition that if A is an eigenvalue of A, then A + 1 is an
eigenvalueof A + I.
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6. Find two matrices A, B such that the only eigenvalues of A and B are0 but AB has
nonzero eigenvalues.

7. Let A = ab” wherea and b are n x 1 column vectors. Find all eigenvalues and
eigenvectorsfor A.

8. Show that if 0 isan eigenvalue of A, then A isnot invertible

9. A matrix A iscallednormalif A# A = AAY . Provethat every Hermitian symmetric
matrix is normal.

1 1+
1—14 2
(a) Use the trace (Exercise 4) to find the other eigenvalue.

10. Let A = [ } . One of the eigenvaluesof A is0.

(b) Find eigenvectorsfor each eigenvalue.
(c) Unitarily orthogonalize the matrix A.

11. Show that if the matrix A is diagonalizable and has only one eigenval ue (repeated,
of course), then A isascalar matrix.

12. Show that if the matrix A is unitarily diagonalizable, then so is A . Prove or dis-
provethat the sameistruefor A™
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Properties

CHAPTER 6

GEOMETRICAL ASPECTS OF ABSTRACT SPACES

Two basic ideas that we learn in geometry are that of length of aline segment and angle
between lines. We have aready seen how to extend the ideas to the standard vector
spaces. The objective of this chapter is to extend these powerful ideas to general linear
spaces. A surprising number of concepts and techniques that we learned in a standard
setting can be carried over, almost word for word, to more general vector spaces. Once
this is accomplished, we will be able to use our geometrical intuition in entirely new
ways. For example, we will be able to have notions of length and perpendicularity for
nonstandard vectors such as functions in a function space. Another application is that
we will be able to give a sensible meaning to the size of the error incurred in solving
a linear system with finite precision arithmetic. There are many more uses for this
abstraction, as we shall see.

6.1. Normed Linear Spaces

Definitions and Examples

Thebasic function of anormisto measure length and distance, independent of any other
considerations, such as angles or orthogonality. There are different ways to accomplish
such a measurement. One method of measuring length might be more natural for a
given problem, or easier to calculate than another. For these reasons, we would like to
have the option of using different methods of length measurement. You may recognize
the properties|listed below from earlier in the text; they are the basic norm laws givenin
Section 4.1 of Chapter 4 for the standard norm. We are going to abstract the norm idea
to arbitrary vector spaces.

DerINITION 6.1.1. A norm on the vector space V' is a function ||-|| which assigns
to each vector v € V areal number ||v|| such that for ¢ ascalar and u,v € V the
following hold:

1. ||u]| > 0 with equality if and only if u = 0.
2. [[eul[ =[] ||u]|
3. (Triangle Inequdlity) [|u+ v || < |[u|| + || v ]|

DEFINITION 6.1.2. A vector space V, together with a norm ||-|| on the space V, is
called anormed linear space
261
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Noticethat if V isanormed linear space and W isany subspace of V', then W automat-
ically becomes a normed linear space if we simply use the norm of V' on elements of
W. For obvioudly all the norm laws till hold, since they hold for elements of the bigger
space V.

Of course, we have aready studied some very important examples of normed linear
spaces, namely the standard vector spaces R™ and C", or any subspace thereof, together
with the standard norms given by

(21,22, ,2n)|| = V2121 + 2222 + - + 2nZn
1/2
= (12 + |l + -+ + J2aP)

If the vectors are real then we can drop the conjugate bars. This normis actually one of
afamily of normswhich are commonly used.

DEFINITION 6.1.3. Let V' be one of the standard spaces R™ or C* and p > 1 area
number. The p-norm of avector in V' is defined by the formula

1
21,225+ ,%n =\~ 22 Zn
[1( My = (aal” + |af” + -+ [2a]P)

Notice that when p = 2 we have the familiar example of the standard norm. Another
important case is that in which p = 1 which gives (not surprisingly) the so-called 1-
norm. The last important instance of a p-normis one that isn't so obvious: p = oo. It
turns out that the value of this normisthe limit of p-normsas p — oc. To keep matters
simple, we'll supply a separate definition for this norm.

DEFINITION 6.1.4. Let V' be one of the standard spaces R™ or C™. The co-norm of a
vector in V' is defined by the formula

(21, 22, .., 2n)|| o = max {|z1],|22|,---,|2nl}

EXAMPLE 6.1.5. Calculate ||v||, wherep = 1,2 0orco andv = (1,-3,2, —1) €R*.
SOLUTION. We calculate:
(L, =3,2, =D, = A +[=3| + 2| + | =1 =7

10, =3,2,=D)ll, = /11> + =31 + 2 + -1 = V5
||(1’ —3,2, _]‘)”oo = max{|1| ) |_3| ) |2| ) |_1|} =3

O

It may seem abit odd at first to speak of the same vector as having different lengths. You
should take the point of view that choosing a norm is a bit like choosing a measuring
stick. If you choose ayard stick, you won’t measure the same number as you would by
using ameter stick on the same object.

EXAMPLE 6.1.6. Verify that the norm propertiesare satisfied for the p-normin the case
that p = cc.

SOLUTION. Letc beascdar, u = (21,22,-.-,2n) and v = (wy,ws, ..., wy,) tWo
vectors. Any absolute value is nonnegative and any vector whose largest component in

p-Norms
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absolute value is zero must have all components equal to zero. Property (1) follows.
Next, we have that

lleull, = [[(c21, cz2, .., czn)llo
= max {|]cz1]|,|cza|, ..., |czn|}
= [elmax {|z1], [z2] . s [2nl} = |e] [Ju]l

which proves (2). For (3) we observe that
[+ vl = max{[z1] + wi], |z2] + w2l - .., |zn] + [wn]}
< maX{|21| ) |Z2| P ,|Zn|} +max{|w1| ’ |w2| g ,|wn|}

< hufle +1Vlloo

Unit Vectors

Sometimes it is convenient to deal with vectors whose length is one. Such a vector is
called aunit vector We saw in Chapter 3 that it is easy to concoct a unit vector u in the
same direction as a given nonzero vector v when using the standard norm, namely take

(6.1.1) u=
vl

The same formula holds for any norm whatsoever because of norm property (2).
ExAMPLE 6.1.7. Construct a unit vector in the direction of v = (1, —3,2, —1), where
the 1-norm, 2-norm, and oc-norms are used to measure length.

SOLUTION. We already calculated each of the norms of v in Example 6.1.5. Use these
numbersin Equation 6.1.1 to obtain unit length vectors

1
ulz?( 7_372,_1)
up = ——(1,-3,2,-1)
2_\/ﬁ ) )&y
1
002_17_372,_1
we = X )

O

From a geometric point of view there are certain sets of vectors in the vector space V'
that tell usalot about distances. These are the so-called balls about a vector (or point)
v of radiusr whose definition is as follows:

Br(vo) ={veV||lv-voll <r}

Sometimes these are called closed ballsas opposed to open ballswhich are defined by
using strict inequality. Here is a situation in which these balls are very helpful: imagine
trying to find the distance from a given vector v to a closed (this means it contains
al points on its boundary) set .S of vectors which need not be a subspace. One way to
accomplish thisis to start with a ball centered at v such that the ball avoids S. Then
expand this ball by increasing its radius until you have found a least radius r such that
the ball B,.(vo) intersects .S nontrivially. Then the distance from v to this set is this
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number r. Actually, thisis a reasonable definitionof the distance from v to the set S.
One expects these balls, for a given norm, to have the same shape, so it is sufficient to
look at the unit balls, that is, the case wherer = 1.

ExXAMPLE 6.1.8. Sketch the unit balls centered at the origin for the 1-norm, 2-norm,
and co-normsin the space V =R2.

SOLUTION. Ineach caseit’s easiest to determine the boundary of the ball B1(0), i.e.,
the set of vectors v = (z,y) such that ||v|| = 1. These boundaries are sketched in
Figure 6.1.1 and the ball consists of the boundaries plus the interior of each boundary.
Let’s start with the familiar norm 2-norm. Here the boundary consists of points (z, y)
such that

L= |z, y)ll, = 2" +y°

whichisthe familiar circle of radius 1 centered at the origin. Next, consider the 1-norm
in which case

L=||(z,9)lly = |«] + [y]
It's easier to examine this formulain each quadrant, where it becomes one of the four
possibilities
trty=1

For example, in the first quadrant we get « + y = 1. These equations give lines which
connect to from a square whose sides are diagonal lines. Finaly, for the co-norm we
have

1=, y)llo = max{lz], [y[}

which gives four horizontal and vertical linesxz = +1 and y = +1 which intersect to
form another square. Thus we see that the unit “balls’ for the 1- and oo-norms have
corners, unlike the 2-norm. see Figure 6.1.1 for a picture of these balls. O

One more comment about norms. Recall from Section 4.1 that one of the impor-
tant applications of the norm concept is that it enables us to make sense out of the
idea of limits of vectors. In a nutshell lim,,_,o, v,, = v was taken to mean that
limp oo ||V — V|| = 0. Will we have to have a different notion of limits for dif-
ferent norms? The somewhat surprising answer is “no.” The reason is that given any
two norms |||, and ||-||, on afinite dimensional vector space, it is always possible to
find positive real constants ¢ and d such that for any vector v

IVlla < e-lIvll, and |Iv]l, <d-[lvl],

Hence, if ||v,, — v|| tendsto 0 in one norm, it will tend to 0 in the other norm. In this
sense, it can be shown that all normson afinite dimensional vector space are equivalent.
Indeed, it can be shown that the condition that ||v,, — v|| tends to 0 in any one norm
is equivalent to the condition that each coordinate of v ,, converge to the corresponding
coordinate of v. We will verify the limit fact in the following example.

EXAMPLE 6.1.9. Verify that lim,,_, ., v,, existsand is the same with respect to both the
1-norm and 2-norm, where
v, = [ (I1-n)/n ]

e "+1

Limit of Vectors
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i

vk =
lIvip7 1

V=1

FIGURE 6.1.1. Boundariesof unit ballsin various norms.

Which norm s easier to work with?

SoLUTION. First we have to know what the limit will be. Let's examine the limit in
each coordinate. We have
1—n

1
lim =lim --1=0-1=-1 and lime™™+1=0+1=1.

n—soo N n—oo N n— 00

Sowewill try tousev = (—1, 1) asthelimiting vector. Now calculate

v—Vn:[_i}_{ejil]:{ea}

o that
1 _
v = vally = I+ ™) = 0,
n n—o00
and
1 2
v =vall=1/(3) + 7 =20
n n—00

which shows that the limits are the same in either norm. In this case the 1-norm appears
to be easier to work with since no squaring and square roots are involved. O

6.1 Exercises

1. Letx = [1+4,-1,0,1]T andy = [1,1,2,—4]7 be vectorsin C*. Find the 1- 2-
and co- norms of the vectorsx and y.

2. Find unit vectorsin the direction of v = (1, —3, —1) with respect to the 1-, 2-, and
0o-norms.
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3. Verify thetriangleinequality foru = (0,2,3,1),v = (1, —3,2, —1) and the 1-norm.

4. Verify that dl three of the norm laws hold in the case that ¢ = —3, u = (2, —4,1),
v = (1,2, —1) and the normis the infinity norm.

5. Findthedistancefromtheorigintothelinez+y = 2 using the co-norm by sketching
apicture of the ball centered at the origin that touches the line.

d
ranges over the vectors whose co-normis 1.

7. Verify that the 1-norm satisfies the definition of anorm.

6. Given the matrix Cé b ] , find the largest possible value of ||Ax]|| ., where x

8. Verify that lim,,_, o, v,, existsand isthe same with respect to both the 1- and 2-norm,

where
ey

9. Calculatelim,,_,, v, using the co-norm, where

Y= [ siffl)(7<23+i)1> }

10. An example of a norm on R™™ (or C™") is the Frobenius normof an m x n
matrix A = [a;;] is defined by the formula

Al = [ DD lai* ) M
i=1 j=1
Compute the Frobenius norm of the following matrices.
110 .
b i] e[t 2e[y 2]
0 2 2
11. Show that the Frobenius norm satisfies norm properties 1 and 2.

6.2. Inner Product Spaces

Definitions and Examples

We saw in Section 4.2 that the notion of a dot product of two vectors had many handy
applications, including the determination of the angle between two vectors. This dot
product amounted to the “ concrete” inner product of the two standard vectors. We now
extend thisideain a setting that allows for real or complex abstract vector spaces.
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DEFINITION 6.2.1. An (abstract) inner producton the vector space V isafunction (-, -)
which assigns to each pair of vectorsu,v € V ascalar (u,v) such that for ¢ a scalar
andu,v,w € V thefollowing hold:

1. (u, u) > 0 withequalityif andonly if u =10
2. (u,v) = (v,u)

3 (W v+ w) = (u,v) + (u,w)

4. (u,cv) =c{u,v)

DEFINITION 6.2.2. A vector space V, together with an inner product on the space V,
is called an inner product space

Notice that in the case of the more common vector spaces over real scalars property 2
becomes acommutativity law: (u, v) = (v,u).

Also observe that if V' is an inner product space and W is any subspace of V', then W
automatically becomes an inner product space if we simply use the inner product of V/
on elements of W. For obviously al the inner product laws still hold, since they hold
for elements of the bigger space V.

Of course, we have the standard examples of inner products, namely the dot productson
R™ and C". Here is an example of anonstandard inner product that is useful in certain
engineering problems.

EXAMPLE 6.2.3. For vectorsu = (uj,uz) and v = (vy,v2) inV = R?, define an
inner product by the formula

(u,v) = 2ujv1 + 3ugve

Show that this formula satisfies the definition of inner product.

SOLUTION. First we see that
(u,u) = 2u} + 3u3

so the only way for this sum to be 0 is for u; = u2 = 0. Hence (1) holds. For (2)
calculate

(u,v) = 2u1v1 + 3usvs = 2v1u1 + 3vaus = (v,u) = m
since all scalarsin question arered. For (3) let w = (w1, ws) and calculate
(u,v+w) = 2uy(v1 +w1) + 3uz(ve + ws)
= 2u1v1 + 3usvs + 2uiwy + 3us
= (u,v) + (u,w)
For the last property, check that for ascalar ¢
(u,cv) = 2uicvr + 3uacus
= ¢(2u1v1 + 3usvs)
=c(u,v)
([l
It follows that this “weighted” inner product is indeed an inner product according to

our definition. In fact, we can do a whole lot more with even less effort. Consider this
example, of which the preceding is a special case.
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EXAMPLE6.24. LetV =R™ or C" andletu,v € V. Let A beafixed n x n nonsin-
gular matrix. Show that the matrix A defines an inner product by the formula
(u,v) = (Au)f (Av) = uf A" Av.
SOLUTION. Asusud, letu,v,w € V and let ¢ be ascalar. Use the norm sign for the
ordinary 2-norm and we have
2
(u,u) = [|Au]|

so that if (u,u) = 0, then Au = 0. We are assuming A is nonsingular, so that this
implies that u = 0, which establishes property (1). For (2), remember that foral x 1
scalar quantity ¢, ¢ = g so we calculate:

(v,u) = v AT Au = (uT AT AV)H = (u,v)" = (u,v)

Next, we have
(u,v+w) =uT A7 A(v + w)
=ulf A" Av + uT A" Aw
= (u,v) + (u,w)
Finally, we have that
(u,ev) = uf A" Acv
=cull A7 Av
=c(u,v)

This shows that the inner product properties are satisfied. O

We leave it to the reader to check that if we take

[ 4]

then the inner product defined by this matrix is exactly the inner product of Example
6.2.3.

There is an important point to be gleaned from the previous example, namely, that a
given vector space may have more than one inner product on it. In particular, V = R?2
could have the standard inner product — dot products — or something like the previous
example. The space V', together with each one of these inner products, provide us with
two separate inner product spaces.

Hereis arather more exotic example of an inner product, in that it does not involve one
of standard spaces for its underlying vector space.

EXAMPLE 6.2.5. Let V = (|0, 1], the space of continuous functions on the interval
[0, 1] with the usua function addition and scalar multiplication. Show that the formula

(f.g) = / f(2)g(x)de

defines an inner product on the space V.
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SOLUTION. Certainly (f, g) isareal number. Nowiff( ) isacontinuousfunctionthen
f (z)” isnonnegative on [0, 1] and therefore fo z)%dz = (f, f) > 0. Furthermore, if

f(x) is nonzero, then the area under the curve y = f ()> must also be positive since
f (z) will be positive and bounded away from 0 on some subinterval of [0,1]. This
establishes property (1) of inner products.

Now let f(x), g(z), h(z) € V. For property (2), notice that
1
/ f@ga)ds = [ g@)f(@)ds = (o.1).

Also,

(f.g+ 1) = / F(@)(g(z) + h(@))de

1
:/ flz dx-{—/ f(z)h(z)dx
0
= +(f, h)
which establishes property (3). Fi nally, we see that for ascalar ¢

(f,cq) = /f 2)eg(o a:—c/f 2)dz = c(f,g)

which shows that property (4) holds. O

Clearly we could similarly define an inner product on the space C|a, b] of continuous
functions on any finite interval [a, b] just as in the preceding example by changing the
limits of the integrals from [0, 1] to [a,b]. We shall refer to this inner product on a
function space as the standard inner produabn a function space.

Following are a few simple facts about inner products that we will use frequently. The
proofs are | ft to the exercises.

THEOREM 6.2.6. Let V' be an inner product space with inner prodyet-) . Then we
have that for allu, v, w € V and scalars:

1. (0,u) =0
2. {u+v, w) = (u,w) + (v, )
3. {au,v) = alu,v)

Induced Norms and the CBS Inequality

It is a striking fact that we can accomplish al the goals we set for the standard inner
product with general inner products as well: we can introduce the ideas of angles, or-
thogonality, projections and so forth. We have aready seen much of the work that has
to be done, though it was stated in the context of the standard inner products. As afirst
step, we want to point out that every inner product has a“natural” norm associated with
it.
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DEFINITION 6.2.7. Let V' be an inner product space. For vectorsu € V, the norm
defined by the equation

]| = V{u, )

is called the norm induced by the inner produ¢t -) on V.

As amatter of fact, thisideais not really new. Recall that we introduced the standard

inner producton V.=V = R™ or C" with an eye towards the standard norm. At the
time it seemed like a nice convenience that the norm could be expressed in terms of the
inner product. It is, and so much so that we have turned this cozy relationship into a
definition. Istheinduced norm really anorm? We have somework to do. Thefirst norm
property is easy to verify for the induced norm: from property (1) of inner products we
see that (u,u) > 0, with equdlity if and only if u = 0. This confirms norm property
(1). Norm property (2) isn't too hard either: let ¢ be ascalar and check that

lleu]| = /{ew, ew) = /@ (ww) = /Jef v/Tw,w) = [el [[u]

Norm property (3), the triangle inequality, remains. Thisoneisn’t easy to verify from
first principles. We need a tool that we have seen before, the Cauchy-Bunyakovsky-
Schwarz (CBS) ineguality. We restate it below as the next theorem. Indeed, the very
same proof that is given in Theorem 4.2.1 of Chapter 3 carries over word for word
to general inner products over real vector spaces. We need only replace dot products
u - v by abstract inner products (u, v) . Similarly, the proof of the triangle inequality as
givenin Example 4.2.4 of Chapter 3, carries over to establish the triangle inequality for
abstract inner products. Hence property (3) of norms holds for any induced norm.

THEOREM 6.2.8. LetV be an inner product space. Far,v € V, if we use the inner
product ofV and its induced norm, then

[ (w,v) | <[lull]|v]]

Just as with the standard dot products, thanks to this inequality, we can formulate the
following definition.

DEFINITION 6.2.9. For vectorsu, v € V, aninner product space, we define the angle
between u and v to be any angle 6 satisfying

(u,v)

cosf = ———
[l {Iv]l

We know that | (u, v) |/(]|u|||| v ||) < 1 sothat thisformulafor cos§ makes sense.

EXAMPLE 6.2.10. Letu = (1,—1) andv = (1, 1) be vectorsin R?. Compute an angle
between these two vectors using the inner product of Example 6.2.3. Compare this to
angle found when one uses the standard inner product in R2.

SoLUTION. According to 6.2.3 and the definition of angle, we have

(u,v) 2-1-143-(-1)-1 -1
- [vll ~ 2 2+3-(—1)>vV2- 2+3-12 5
Hencetheanglein radiansis

cosf =

-1
6= arccos(?) ~ 1.7722

Induced Norm

CBS Inequality

Angle Between
Vectors
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On the other hand, if we use the standard norm then
(u,v)=1-14+(-1)-1=0
from which it followsthat u and v are orthogonal and § = /2 ~ 1.5708. O

Inthe previous example, it shouldn’t be too surprising that we can arrive at two different
values for the “angle” between two vectors. Using different inner products to measure
angle is somewhat like measuring length with different norms. Next, we extend the
perpendicularity ideato arbitrary inner product spaces.

DEFINITION 6.2.11. Two vectorsu and v in the sameinner product space are orthog-
onalif (u,v) =0.

Note that if (u,v) = 0, then (v,u) = (u,v) = 0. Also, this definition makes the
zero vector orthogonal to every other vector. It also allows us to speak of things like
“orthogonal functions.” One has to be careful with new ideas like this. Orthogonality
in afunction space is not something that can be as easily visualized as orthogonality of
geometrical vectors. Inspecting the graphs of two functions may not be quite enough.
If, however, graphical dataistempered with alittle understanding of the particular inner
product in use, orthogonality can be detected.

EXAMPLE 6.2.12. Show that f(z) = = and g(x) = = — 2/3 are orthogonal elements
of C10, 1] with the inner product of Example 6.2.5 and provide graphical evidence of
this fact.

SoLuUTION. According to the definition of inner product in this space,

1 1 2 22 |t
)= [ f@g@s = [ ate=Hie= (G- 0.

0
It follows that f and g are orthogonal to each other. For graphical evidence, sketch
f(z), g(z) and f(z)g(z) ontheinterva [0, 1] asin Figure 6.2.1. The graphs of f and
g are not especially enlightening; but we can see in the graph that the areabelow f - ¢
and above the z-axis to the right of (2/3, 0) seems to be about equal to the areato the
left of (2/3,0) above f - g and below the z-axis. Therefore the integral of the product
ontheinterval [0, 1] might be expected to be zero, which is indeed the case. O

Some of the basic ideas from geometry that fuel our visua intuition extend very ele-
gantly to the inner product space setting. One such exampleis the famous Pythagorean
Theorem, which takes the following form in an inner product space.

THEOREM 6.2.13. Letu, v be orthogonal vectors in an inner product spdéeThen
[lal[* + vl = [lu+ ]
ProOF. Compute
lu+v|]? = (u+v,u+v)
u,u) + (u,v) + (v,u) + (v, v)
= (u,u) + (v, v)

o~~~

2 2
= [[u][” +[v]]
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f(x)=x

1t
FIGURE 6.2.1. Graphof f,g and f - g ontheinterva [0, 1].

Here is an example of another standard geometrical fact that fits well in the abstract
setting. Thisis equivalent to the law of parallelograms, which says that the sum of the
squares of the diagonals of a parallelogramis equal to the sum of the squares of all four
Sides.

EXAMPLE 6.2.14. Use properties of inner products to show that if we use the induced
norm, then

v+ = v =2 (Jhull® + 1vI7?)
SOLUTION. The key to proving this fact is to relate induced norm to inner product.
Specifically,
[u+v[* = (u+v,u+v) = (a,u) + (u,v) + (v,u) + (v,v)
while
[u—v[* = (u—v,u—v) = (a,u) — (u,v) - (v,u) + (v,v)

Now add these two equations and obtain by using the definition of induced norm again
that

[+ v + [la = vI* = 2 (u,u) + 2 (v, v) = 2(||al* + [Iv]|*)
which iswhat was to be shown. O
It would be nice to think that every norm on a vector space is induced from some inner
product. Unfortunately, thisis not true, as the following example shows.
EXAMPLE 6.2.15. Use the result of Example 6.2.14 to show that the infinity norm on
V = R? isnot induced by any inner product on V.
SOLUTION. Suppose the infinity norm were induced by some inner product on V. Let
u = (1,0) and v = (0, 1/2). Then we have

lla+ vI2 + [la = vII2, = (11, 1/2)|, + 111, =1/2)|[%, =2
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while
2 (1ull® + 1vI*) = 201+ 1/4) = 5/2

This contradicts Example 6.2.14, so that the infinity norm cannot be induced from an
inner product. O

One last example of a geometrical idea that generalizes to inner product spaces is the
notion of projections of one vector along another. The projection formulafor vectors of
Chapter 4 works perfectly well for general inner products. Since the proof of this fact
amounts to replacing dot products by inner products in the original formulation of the
theorem (see page 273), we omit it and simply state the result.

THEOREM 6.2.16. Letwu andv be vectors in an inner product space with# 0.
Define the projection af alongv as

(v, u)
v, V)

p = proj,u = v

—~

and letq = u — p. Thenp is parallel tov, q is orthogonal tov andu = p + q.

Orthogonal Sets of Vectors

We have already seen the development of the ideas of orthogonal sets of vectors and
bases in Chapter 4. Much of this development can be abstracted easily to general inner
product spaces, simply by replacing dot products by inner products. Accordingly, we
can make the following definition.

DEFINITION 6.2.17. The set of vectors vy, vs, ..., v, in aninner product space are
said to be an orthogonal setf (v;, v;) = 0 whenever i # j. If, in addition, each vector
has unit length, i.e,, (v;, v;) = 1 then the set of vectorsis said to be an orthonormal set
of vectors.

The proof of the following key fact and its corollary are the same as that of Theo-
rem 6.2.18 in Section 4.3 of Chapter 4. All we have to do is replace dot products by
inner products. The observations that followed the proof of this theorem are valid for
genera inner products as well. We omit the proofs and refer the reader to Chapter 4.

THEOREM 6.2.18. Letwvy,vs,...,v, be an orthogonal set of nonzero vectors and
suppose that € span{ v, va,...,v,}. Thenv can be expressed uniquely (up to
order) as a linear combination of, v, ... ,v,, hamely
_ <V17V> <V27V> (Vn,V>
= \21 Vo n
(vi,v1) (v2,Vv2) (Vi, Vi)

COROLLARY 6.2.19. Every orthogonal set of nonzero vectors is linearly independent.

Another useful corollary is the following fact about length of a vector whose proof is
left as an exercise.
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COROLLARY 6.2.20. If vy, va,... v, is an orthonormal set of vectors and
V=cCV]i+CVy+...+¢C,Vp
then
VP =i+ +... +c,

ExAMPLE 6.2.21. Turn the orthogonal set {(1,-1,0),(1,1,0),(0,0,1)} into an or-
thonormal set, calculate the coordinates of the vector v = (2, —1, —1) with respect to
this orthonormal set and verify the formulajust given for the length of v.

SOLUTION. From the example we have v; = (1,—1,0),vy = (1,1,0), and vz =
(0,0,1) We see that <V1,V1> =2 = <V2,V2> and <V3,V3> = 1. SO0 set u =
(1/V/2)vi, upy = (1/v/2)vy, and us = v3 to obtain an orthonormal set of vectors
uy, us, uz. Now the coordinates of v are easily calculated:

(1424 (=1) (=1) + 0 (=1)) =

¢ = (ug,v) =

Siles

(1-24+1-(-1)+0-(-1)) =

¢y = (ug,v) =

Sl- -
Sl

c3={u3,v)=0:-24+0-(-1)+1-(-1)=-1
from which we conclude that

3 1
=—F—=u+—F/=u —uz3=_-Vy+ -Vy —V

\/§ 1 \/§ 2 3 2 1 2 2 3
Now from definition we havethat||v||* = 22+ (=1)2+(—1)2 = 6 whilec? + 2 + ¢ =
9/2+1/2+ 1 = 6 aswell. This confirms that the length squared of v is the sum of
squares of the coordinates of v with respect to an orthonormal basis. O

A\

6.2 Exercises

1. Verify the Cauchy-Bunyakovsky-Schwarzinequality foru = (1,2) andv = (1, —1)
using the weighted inner product on R? givenby < (z,y), (w, z) >= 2zw + 3yz.

2. Find the angle between the vectors u and v in the following:
(8) u and v in Exercise 1 with the inner product given therein.

M) u==zandv = 2% inV = CJ0, 1] with the standard inner product as in Exam-
ple6.2.5.

3. Which of the following sets of vectors are linearly independent? Orthogonal? Or-
thonormal ?

@ (1,-1,2),(2,2,0) in R? with the standard inner product.

(b) 1, z, 22 asvectorsin C[—1, 1] with the standard inner product on theinterval [—1, 1].
(c) £(3,4), (4, -3) in R? with the standard inner product.

(d) 1,cos(x), sin(z) in C[—m, w] with the standard inner product.

(© (2,4), (1,0) in R? with inner product (assumeit is) (x,y) = xT { _? -! } y.
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4. Thelaw < [z1,z2]7, [y1,y2]T >= 3x1y1 — 222y fails to define an inner product
on R?. Why?

5. If the square real matrix A has a nonpositive real eigenvalue, then the formula
(u,v) = u’ Av does not define an inner product. Why? Hint:  Start with the defi-
nition of eigenvalue.

6. Show that thelaw < (1171,.1’2), (yl,yz) >=T1Y1 — T1Y2 — T2Y1 + 222Y> defines an

. ) ro]f1 =1]_[ 1 =1
mnerproductonR.(I'[helpstoknorwthat[_1 1 o 1171 21 2 )

7. Verify that the inner product of Example 6.2.3 can be defined by using the matrix

a=|v2 0
= 0 V3
together with the definition of matrix defined inner products from Example 6.2.4.
8 IfA= [ _i’ ; } find the cosine of the angle # between the two vectors u =

[1,0]" and v = [0,1]" in the vector space R? with respect to the inner product defined
by

(u,v) = (Au)T (Av) = uT (AT A)v.
9. Explain how one could use Theorem 4.3.3 to test for whether or not agiven vector w
in the inner product space 1 belongs to a subspace V' and illustrate it by determining
if w = (2,—4,3) belongs to the subspace of R* spanned by v; = (1,1,0) and vy =
(1,1, 1).

10. Provethat ||-||, is not an induced norm on R™. Hint: See Example 6.2.15.

11. Let A be an n x n real matrix and define the product (u,v) = u” Av for al
u,v €R”.

(&) Show this product satisfies inner product laws 2,3 and 4 (page 267).

(b) Show that if A isadiagona matrix with positive entries, then the product satisfies
inner product law 1.

(c) Show that if A isareal symmetric positive definite matrix, then the product satisfies
inner product law 1. Hint: Let P be an orthogona matrix that diagonalizes A, write
x = Py and calculate (x, x). Now use Exercise 15 and part (b).

12. Let v; = (1,0,0), vo = (—1,2,0), vz = (1,—2,3). Let V = R® be an inner
product space with inner product defined by the formula (x,y) = x T Ay, where

(a) Use Exercise 11 to show that the formulareally does define an inner product.
(b) Verify that vy, v, v3 form an orthogonal basis of V.

(c) Find the coordinates of (1,2, —2) with respect to this basis by using the orthogonal
coordinates theorem.
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13. Let V be an inner product space. Use the definition of inner product to prove that
foru,v € V, and scalar a, the following are true.

@ (0,v) =0

(b) (u + v, w) = (u,w)+ (v, w)

(©) (au,v) = a(u,v)

14. Provethe following generalization of the Pythagorean Theorem: If v 1, vs,... , v,
are pairwise orthogonal vectorsintheinner product spaceV andv = v +va+...4+v,,
then

V7 = Vil + 1[vall® 4 vl
15. Show that ||-||, is not an induced norm on R?. Hint: See Example 6.2.15.

16. Let V' be an inner product space with inner product (-, ) and induced norm ||-|| .
Express ||u + v||* and |ju — v||* in terms of inner products and use this to prove the
polarization identity

1
(,v) = 7 {lla+ VI = Ju+viP}

(Thisidentity shows that any inner product can be recovered from its induced norm.)

6.3. Gram-Schmidt Algorithm

We have seen that orthogonal bases have some very pleasant properties, such asthe ease
with which we can compute coordinates. Our goal in this section is very simple: given
a subspace V' of some inner product space and a basis wi, ws, ... w, of V, to turn
this basisinto an orthogonal basis. Thisis exactly what the Gram-Schmidt algorithmis
designed to do.

Description of the Algorithm

THEOREM 6.3.1. Letwy,ws,...w, be a basis of the inner product spateDefine = Gram-Schmidt

vectorsvy, vo, ... v, recursively by the formula Algorithm
Vi = W}, — <v1’wk>v1 - <v2’wk>v2 - = ka_l, k=1,...,n.
(v1,v1) (va,Vv2) (Vi—1,VE-1)

Then we have

1. The vectors, va, ... vy form an orthogonal set.
2. Foreachindex =1,...n,

span{wi, ws,... Wy} = span{vy,va,...vi}.
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PROOF. Inthecasek = 1, we havethat the single vector v, = w; isan orthogonal
set and certainly span{w; } = span{v; }. Now suppose that for someindex £ > 1 we
have shown that v, vs, ... vi_1 iSan orthogonal set such that

span{wi, wso, ... Wi_1} =span{vy,va,...Vi_1}

Then it is true that (v,,vs) = 0 for any indices r, s both less than k. Take the inner
product of v, as given by the formulaabove, with the vector v ;, where j < k£ and we
obtain

(Vi Vi) = <v' Wy — <V17Wk>V1 3 (V2;Wk>v2 o vk, we) . 1>
7 7 <V1,V1> <V2,V2> (Vk—1,Vk71>
Vi, Vi (vj, V1)

= (vj, wi) = (vi, Wg) —---—(Vk—1,Wk><

Vi—1, Vk71>

Vi,V
= (vj, wi) — (vj, Wg) Vj,,V;
=0

It follows that vi,va, ..., v isan orthogona set. The Gram-Schmidt formula show

us that one of v, or w;, can be expressed as a linear combination of the other and
Vi,Vs,...,Vi_1. Therefore

span{wi, Wa,... Wi_1, Wi} =span{vy,va,...Vg_1, Wi}

= span{vy,va,... Vi_1,Vi}

which is the second part of the theorem. We can repeat this argument for each index
k =2,...,ntocompletethe proof of the theorem. O

The Gram-Schmidt formulais easy to remember: One simply subtracts from the vec-
tor wy, all of the projections of w;, along the directions vy, v, ... v;_; to obtain the
vector v;. The Gram-Schmidt algorithm appliesto any inner product space, not just the
standard ones. Consider the following example.

ExAMPLE 6.3.2. Let C[0, 1] be the space of continuous functions on the interval [0, 1]
with the usual function addition and scalar multiplication, and (standard) inner product
given by

(f.9) = / f(2)g(x)de

asin Example 6.25. Let V = Py = span{l,z,z?} and apply the Gram-Schmidt
algorithm to the basis 1, z, 22 to obtain an orthogonal basis for the space of quadratic
polynomials.
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SoLUTION. It helpsto recall the calculusformula fol zmx"dx = 1/(m+n+1). Now
st wy = 1, wy =z, ws = 22 and calculate the Gram-Schmidt formulas:

Vi :lel,

Vo = Wo — <V1,W2>
? ? <V1,V1>
1/2 1
—p— 11 =—p—=
T T
_ <V1,W3> <V2,W3>
vemw <V1,V1>V1 (va,Vv2) v

1 1/12 1

2 _1/3 —/—(:n——)

1 1122
1
2t
=z :6+6.

Had we used C[—1, 1] and required that each polynomial have value 1 at = 1, the
same calculations would have given us the first three so-called Legendre polynomials
These polynomialsare used extensively in approximation theory and applied mathemat-
ics.

If we prefer to have an orthonormal basis rather than an orthogonal basis, then, asafinal
step in the orthogonalizing process, simply replace each vector v, by the normalized
vector u,, = vy./ ||vi]| . Hereis an exampleto illustrate the whole scheme.

EXAMPLE 6.3.3. LetV = C(A), where

1 2 0 -1

1 -1 3 2

A= 1 -1 3 2
-1 1 -3 1

and V' has the standard inner product. Find an orthonormal basis of V.

SoLUTION. We know that V' is spanned by the four columnsof A. However, the Gram-
Schmidt algorithm requestsabasis of V' and we don’t know that the columnsare linearly
independent. We leave it to the reader to check that the reduced row echelon form of A
isthe matrix

1.0 20
01 -1 0
k= 00 01
00 00

It follows from the column space algorithm that columns 1,2 and 4 of the matrix A
yieldabasisof V. Soletw; = (1,1,1,—1),wy = (2,-1,-1,1), w3 = (—1,2,2,1)
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and apply the Gram-Schmidt algorithm to obtain that
Vi =W = (]., ]., ]., —].),

_ <V1,W2>
Vg = Wo —
<V17V1>
-1
:(27_17_171)_T(171717_1)
~ Lo, 23,33
_4 ) ) ) )
Vs = W3 — <V17w3>vl _ <V27w3>v2
(vi,v1) (v, v2)
2 —18
- (_172,27 1) - 1(17 ]-, ]-7 _]-) - m(g, _3, _3,3)
L us 80— L2902 -2+ 6,-2,-2,2
1 PASERSS) gl 4\ ’ ’

=(0,1,1,2).

Finally, to turn this set into an orthonormal basis, we normalize each vector to obtain
the basis

V1 1
u; = = _(131717_1)7
Ivall 2
Vo 1 1
uA:—:—g,_B,_B,S :—37_]—7_]‘71’
*= ] = V08| v )
V3 ]-
ws = - —(0,1,1,2).
Ivsll 6

O

There are several useful observations about the preceding example which are particu-
larly helpful for hand calculations.

¢ |f oneencountersan inconvenient fraction, such asthe i invsy, onecould replace
the calculated v, by 4v,, thereby eliminating the fraction, and yet achieving the
same results in subseguent calculations. The idea here is that for any nonzero
scaar ¢

(va, W) _ (cva, W)
(va, Vo) 2 (cva,cva)

So we could have replaced i(g, —3,-3,3) by (3,—1,—1,1) and achieved the

V.

same results.
e The same remark appliesto the normalizing process, since in general,
Va2  CVa
[vall  [leva]l

The Gram-Schmidt algorithm is robust enough to handle linearly dependent spanning
sets gracefully. We illustrate this fact with the following example:

EXAMPLE 6.3.4. Suppose we had used all the columns of A in Example 6.3.3 instead
of linearly independent ones, labelling them w, ws, w3, ws. How would the Gram-
Schmidt calculation work out?
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SOLUTION. Everything would have proceeded as above until we reached the calculation
of vz, which would then yield

V3 = W3 — <V17w3>vl _ <V27w3>v2
(vi,v1) (v2,v2)
9 1
= (073537 _3) - 1(17 17 1a _1) + 1(97 _37 _373)
1 9 27
=-(0,12,12,—12 —(-1,-1,-1,1) = —(9,-3,-3,3
4(07 ) ) )+ 4( ) ) ) ) 108( ) ) ) )

= (O’ 07 0’ 0)

Thistellsusthat v; isalinear combination of v; and vy, which mirrorsthe fact that ws
isalinear combination of w; and ws. Now discard v; and continue the calculations to
get that

Vi = w <V1,W4>V (V2,W4>
4 — 4 — 1 —
(vi,v1) (va,v2)

2
= (_172,27 1) - 1(1’ ]-7 ]-, -1
= (O, ]-7 1,2)

—18

) - m(gv _37 _37 3)

Interestingly enough, this is the same third vector that we obtained in the example cal-
culation. The upshot of this calculation is that the Gram-Schmidt algorithm can be
applied to any spanning set, provided that one discards any zero vectorsthat result from
the formula. The net result is still an orthogonal basis. O

Application to Projections

We can use the machinery of orthogonal vectorsto giveanice solutionto avery practical
and important question which can be phrased as follows (see Figure 6.3.1 for agraphical
interpretation of it):

TheProjection Problem: Given afinitedimensional subspaceV of areal inner product
space W, together with avector b € W, to find the vector v € V which isclosest to b
in the sensethat ||b — v||* is minimized.

Observe that the quantity ||b — v||> will be minimized exactly when ||b — v|| is mini-
mized, since the latter is always nonnegative. The squared term has the virtue of avoid-
ing square roots that computing ||b — v|| requires.

The projection problem looks vaguely familiar. It reminds us of the least squares prob-
lem of Chapter 4, which was to minimizethe quantity ||b — Ax||*where A isanm x n
real matrix and b, x are standard vectors. Recall that v = Ax isatypica element in
the column space of A. Therefore, the quantity to be minimizedis

b — Ax|[” = [b - v||”

where on the left hand side x runsover all standard n-vectorsand on the right hand side
v runs over al vectorsin the space V = C(A). The difference between least squares
and projection problemis this: in the least squares problem we want to know the vector
x of coefficientsof v asalinear combination of columnsof A, whereasin the projection
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proj\/b:v AN -

FIGURE 6.3.1. Projection v of b into subspace V' spanned by or-
thogonal vy, vs.

problem we are only interested in v. Knowing v doesn’t tell uswhat x is, but knowing
x easily givesv sincev = Ax.

To find a solution to the projection problem we need the following key concept.

DEFINITION 6.3.5. Let vy, vs,... v, beanorthogonal basisfor the subspace V' of the
inner product space W. For any b € W, the projection of b into the subspace V' isthe
vector

<v1,b>v + <V2,b> Vo 4o+ <Vn,b> v

rojb =
R e ) (Vi Vi)

n

Noticethat inthe case of n = 1 thedefinition amountsto afamiliar friend, the projection
of b along the vector v;. Now we call this the projection of b into the subspace V/
spanned by v . This projection has the same nice property that we observed in the case
of standard inner products, namely, p = proj, b isamultipleof v, whichisorthogonal
tob — p. Simply check that

(Vl ) b>

(Vl, V1>

(vi,b = p) = (v1,b) - <v1, vl> by V)

<V1, V1>

It would appear that the definition depends on the basis vectors v, v, ... vy, but we
see from the next theorem that this is not the case.

THEOREM 6.3.6. Letvy,vs,...v, beanorthogonal basisfor the subspace I of the
inner product space . For any b € W, the vector v = projy b is the unique vector
inV that minimizes ||b — v||*.

PROOF. Let v beasolution to the projection problem and p the projectionof b — v
along any vector in V. Use the remark preceding thistheoremwith b — v in place of b to
write b — v asthe sum of orthogonal vectorsb — v — p and p. Now use the Pythagorean
Theorem to see that

2 2 2
b —v|” = b —v—pl|" +pl
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However, v + p € V so that ||b — v|| cannot be the minimum distance b to a vector
inV unless ||p|| = 0. It follows that b — v is orthogonal to any vector in V. Now let
vy, Vs, ... v, beanorthogonal basis of V' and expressthe vector v in the form

V=cCV]+CVy+---+c,Vp
Then for each v;, we must have
0= (vi,b—v)=(vig,b—c1vi —cava — -+ — ¢y Vp)
= (v, b) — 1 (Vi, V1) — o (VE, Vo) — - Cn (Vi, Vi)
= (v, b) — ¢ (Vi, Vi)
from which we deducethat ¢, = (vi,b) / (v, vi) . It followsthat

— <V15b> v + <V25b> Vo 4ot <Vn7b> Vi = pI'Ojb

<V1,V1> <V2,V2> <Vn,Vn> 1%
This proves that there can be only one solution to the projection problem, namely the
one given by the projection formulaabove.

There is one more point to be established, namely that proj- b actually solves the
projection problem. Thisisleft to the exercises. O

It is worth noting that in proving the preceding theorem, we showed that proj b is
orthogonal to every element of a basis of V' and therefore to every element of V/, since
such elements are linear combinations of the basis elements.

Let us specialize to standard real vectors and inner products and take a closer look at
the formulafor the projection operator in the case that v 1, v», . . . v,, isan orthonormal
set. Wethen have (v;,v;) =1, s0

projyy b = (vi,b) vi + (va,b) vo + -+ 4 (v, b) vy,
= (vipb) vi+ (vg’b) vo+ -+ (V,le) Vi
= vlvfb + V2ng + -+ vnvZ;b

= (vlvip +vovl 44 ang) b

= Pb.
Thuswe have the following expression for the matrix P : Orthogonal
Projection
Formula
P:vlv{+v2vg+---+vnvz
The significance of thisexpression for projectionsin standard spaces over the reals with
the standard inner product is as follows. computing the projection of a vector into a
subspace amounts to no more than multiplying the vector by a matrix P which can be
computed from V. Evenin the case n = 1 thisfact gives us anew slant on projections:
proju = (vv)u
Soherewehave P = vv'. Projection
Matrices

The general projection matrix P has some interesting properties. It is symmetric, i.e.,
PT = P, and idempotent, i.e., P? = P. Therefore, this notation is compatible with the
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definition of projection matrix introduced in earlier exercises (see Exercise 8). Symme-
try follows from the fact that (v¢v7)" = v, v For idempotence, notice that

(vivi)(vivi) = (v] Vi) (viv]) = 6 ;.

It followsthat P2 = P. In general, symmetric idempotent matrices are called projection
matrices. The nameisjustified because multiplication by them projects vectorsinto the
column space of P.

EXAMPLE 6.3.7. Find the projection matrix for the subspace of R? spanned by the
orthonormal vectors v, = (1/v/2)[1, —1,0]” and v = (1/4/3)[1,1,1]” and useit to
solve the projection problemwith V' = span{v;,v,} andb = [2,1, -3]7T.

SoLUTION. Use the formula devel oped above for the projection matrix

P=vivl +vyvl

1 1
:%[_(1)][1 1 o1+%[}][1 11

E R
¢

The solution to the projection problem is now given by

I
Jl-s] Lo

wl=

=]
W=t
W0 | = =

et
|
o~
|

M

v=Pb= [ -
[

=3[
Wl Ut
W0 | = =
(e]

wl=

O

The projection problem is closely related to another problem that we have seen before,
namely the least squares problem of Section 4.2 in Chapter 4. Recall that the least
squares problem amounted to minimizing the function f(z) = ||b — Ax||2, whichin
turn led to the normal equations. Here A isan m x n real matrix. Now consider the
projection problem for the subspace V. = C(A) of R™, where b € R™. We know
that elements of C(A) can be written in the form v = Ax, wherex € R™. Therefore,
[|b — Ax||? = ||b — v||?, where v ranges over elements of V. It follows that when we
solve aleast squares problem, we are solving a projection problem as well in the sense
that the vector Ax isthe element of C(A) closest to the right hand side vector b. One
could also develop normal equationsfor general spanning sets of V. An example of this
is givenin the exercises.

The normal equations also give us another way to generate projection matrices in the
case of standard vectors and inner products. As above, let the subspace V' = C(A)
of R, andb € R™. Assumethat V' = C(A) and that the columns of A are linearly
independent, i.e., that A hasfull columnrank. Then, aswe have seenin Theorem4.2.11
of Chapter 3, the matrix A” A is invertible and the normal equations A7 Ax = A”Tb
have the unique solution

x = (AT4) 1A D.
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Consequently, the solution to the projection problemis
v=Ax = A(ATA)"1ATb.

Itisasotruethat v = Pb; sincethisholdsfor al b, it followsthat the projection matrix
for this subspace is given by the formula

P =A(ATA)1AT

ExamMPLE 6.3.8. Find the projection matrix for the subspace V' = span{w, w2} of
R? withw;, = (1,—1,0) and w, = (2,0, 1).

SOLUTION. Let A = [wy, wo] so that

Thus

N
I
=
N
H
=

|
b
H

@]t
|
D=

D=
Wl Ut
W ==
| I —

T
ol

O

Curioudly, thisis exactly the same matrix as the projection matrix found in the preceding
example. What is the explanation? Notice that w, = v/6v; and wa = v6v; + v/3vs,
so that V' = span{w;,wy} = span{vy,v2}. So the subspace of both examplesis
the same, but specified by different bases. Therefore we should expect the projection
operator to be the same.

6.3 Exercises

1. Find the projection of the vector w = (2, 1, 2) into the subspace
V =span{(1,-1,1),(1,1,0)}

where the inner products used are the standard inner product on R?3 and the weighted
inner product

< (z,y,2), (u,v,w) >=2zu + 3yv + 2w

1 1 1
2. Let[wy,wy, W3] = [ 0 -1 -1 ] andw = (2,1,4).
0 -1 1

(a) Usethe Gram-Schmidt algorithmonw { , wo, w3 to obtain an orthonormal set v, v, vs.

(b) Find the projection of w into the subspace V' = span{vi, v2}.
(c) Use (b) to express w as a sum of orthogonal vectors, one of whichisin V.

Column Space
Projection
Formula
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(d) Find the projection matrix P for the subspace V.
(e) Verify that multiplication of w by P givesthe same result asin (b).

3. Letwy = (—1,-1,1,1), wy=(1,1,1,1), w3 =(0,0,0,1), w=(1,0,0,0)
andV = span{w;, wy, w3 }. Repeat parts (a)-(€) of Exercise 2 for these vectors, except
inpart (b) use V' = span{vy, v, vs}.

4. Find an orthonormal basis of C(A), where A is one of the following
1 0 2

-1 1 121
(a)[ 1 24](b) R (c)[004]
120 B 12 0

5. Find the projection matrix for the column space of each of the following matrices by
using the orthogonal projection formula.

2 1 1
B _g} 0 | 024 (c)[_} ‘é]
-1 2 0
6. Redo Exercise 5 by using the column space projection formula (remember to use a
matrix of full column rank for thisformula).

@

1 3 4 1 2 2
7. Show that thematrices A= | 1 4 2 |andB=| -2 -3 -2 | havethe
1 1 8 7 12 10

same column space by computing the projection matrices into these column spaces.

8. Let W = C[—1, 1] with the standard inner product asin Example 6.3.2. Suppose V/
is the subspace of linear polynomialsand b = e®.

(a) Find an orthogonal basisfor V.
(b) Find the projection p of b into V.

(c) Compute the “mean error of approximation” ||b — p||. How does it compare to the
mean error of approximation when one approximates b by q, its Taylor series centered
a 0.

(d) UseaCAStoplot b — p and b — q. Find the points at which thiserror is largest and
compare the two.

9. Write out a proof of the Gram-Schmidt algorithm (Theorem 6.3.1) in the case that
n = 3.

10. Complete the proof of the Projection Theorem (Theorem 6.3.6) by showing that
projy- b solvesthe projection problem.

11. Verify directly that if P = A(AT A)~' AT, (assume A has full column rank) then
P is symmetric and idempotent.

12. How doesthe orthogonal projection formulaon page 282 have to be changed if the
vectors in question are complex? Illustrate your answer with the orthonormal vectors
vi = ((1414)/2,0,(1+1i)/2),v2 = (0,1,0) inC>.
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13. Show that if P isasquaren x n rea matrix suchthat P” = P and P? = P, thatis,
A isaprojection matrix, then for every v € R™, Pv € C(A) and v — Pv isorthogonal
to every element of C(A).

6.4. Linear Systems Revisited

Onceagain, werevisit our old friend, Ax = b, where A isan m xn matrix. The notions
of orthogonality can be made to shed still more light on the nature of this system of
equations, especially in the case of a homogeneous system Ax = 0. The kth entry of
the column vector Ax is simply the kth row of A multiplied by the column vector x.
Designate thisrow by r;, and we see that

r, - x=0, k=1,...,n.

In other words, Ax = 0, that is, x € N (A), precisely when x is orthogonal (with the
standard inner product) to every row of A. We will see in Theorem 6.4.4 below that this
means that x will be orthogonal to any linear combination of the rows of A. Thus, we
could say

(6.4.1) NA) ={xeR"|r-x=0 for every r € R(A4)}

Thisis an instance of a very important idea. We are going to digress to put this idea
in a more general context, after which we will return to linear systems with a new
perspective on their meaning.

Orthogonal Complements and Homogeneous Systems

DEFINITION 6.4.1. Let V' beasubspace of aninner product space . Then the orthog-
onal complement of V' in W is the set

Vi={weW]|(v,w)=0 fordlveV}

We can see from the subspace test that V -+ is a subspace of 1. Before stating the basic
facts, we mention that if U and V' are two subspaces of the vector space 17/, then two
other subspaces that we can construct are the intersection and sum of these subspaces.
The former is just the set intersection of the two subspaces and the latter is the set of
elements of theform u + v, whereu € U, and v € V. One can use the subspace test
to verify that these are indeed subspaces of W (see Exercise 15 of Section 2, Chapter 3.
Infact, it isn't too hard to seethat U + V' isthe smallest space containing all elements
of both U and V. We can summarize the basic facts about the orthogonal complement
of V asfollows.

THEOREM 6.4.2. Let V' be a subspace of the finite dimensional inner product space .
Then the following are true:
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1. V* isa subspace of .
2.Vnvi=1{0
3V4+VE=W

4, dimV 4+ dimV+ =dim W
5. (VH)t =V

PrOOF. We leave 1 and 2 as exercises. To prove 3, we noticethat V. + V- C W
since IV is closed under sums. Now suppose that w € W. Let v = proj,, w. We know
that v € V and w — v isorthogonal to every element of V. It followsthat w —v € V .
Therefore every element of W can be expressed as a sum of an element in V' and an
elementin VL. Thisshowsthat W C V+V+, fromwhichit followsthat V+V + = W.

To prove 4, let vq,va, ... ,v, beabasisof V and wy,ws,... ,w, beabasisof V.
Certainly the union of the two sets spans V' because of 3. Now if there were an equation
of linear dependence, we could gather all termsinvolving v, vs, ..., v, on one side
of the equation, thoseinvolvingw 1, ws, ... , w, on the other side and deduce that each
is equal to zero separately, in view of 2. It follows that the union of these two bases
must be an independent set. Thereforeit formsabasis of 1. It follows that dim W =
r+s=dimV +dimV*",.

Finally, apply 4 to V- in place of V and obtain that dim (Vl)l =dimW —dim V*.
But 4 implies directly that dim V = dim W — dim V', so that dim (V£) " = dim V-

Now if v € V, then certainly (w,v) = 0 foral w € V. Hence V C (VL)L . Since
these two spaces have the same dimension, they must be equal, which proves 5. O

Orthogonal complements of the sum and intersections of two different subspaces have
an interesting relationship to each other. We will leave the proofs of these facts as
eXercises.

THEOREM 6.4.3. Let U and V' be subspaces of the inner product space W. Then the
following are true:

LUnV)t=Uut+Vv*
2 (U+V)t=vutnvt

There is a very useful fact about the orthogona complement of a finite dimensional
space that greatly simplifies the cal culation of an orthogonal complement. What it says
in words is that a vector is orthogonal to every element of a vector space if and only if
it is orthogonal to every element of a spanning set of the space.

THEOREM 6.4.4. Let V = span{vy,va,...,Vv,} bea subspace of the inner product
space W. Then

Vi={weW|(w,v;)=0,j=1,2,... ,n}

PrROOF. Letv € V, sothat for somescaarscy,cs, ... ,cp
V=cCV1+cVy+ -+ vy

Take the inner product of both sides with a vector w. We see by the linearity of inner
products that

<W,V> = 01<W,V1> + 02<W,V2> +ot Cn<W,Vn>
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so that if (w,v;) = 0 for each j then certainly (w,v) = 0. Conversely, if (w,v;) =
0,7 =1,2,...,n,clearly (w,v;) = 0. This proves the theorem. O
EXAMPLE 6.4.5. Compute V-, where

V =span{(1,1,1,1),(1,2,1,0)} C R*
with the standard inner product on R*.

SOLUTION. Form the matrix A with the two spanning vectorsof V' asrows. According
to Theorem 6.4.4, V + is simply the null space of this matrix. We have

111 1]—w——-[1 11 1]=——[101 2
A_{l 2 1 0} Ex=0"1¢9 1 o —1] Fi2(=1) {0 10 —1}

from which it followsthat the null space of A consists of vectors of the form

—I3 — 2174 i -1 -2
T4 _ 0 1
23 el I O R
T4 i 0 1

Therefore the null spaceis spanned by (—1,0,1,0) and (—2,1,0,1).

Nothing prevents us from considering more exotic inner products as well. The arith-
metic may be a bit more complicated, but the underlying principles are the same. Here
is such an example.

EXAMPLE 6.4.6. LetV = span{l,z} C W = P,, wherethe space P- of polynomials
of degree at most 2 has the same standard inner product as C0, 1]. Compute V + and
usethisto verify that dim V + dim V+ = dim W.

SOLUTION. According to Theorem 6.4.4, V + consists of those polynomials p(z) =
co + c1x + cox? for which

1 1 1 1
Oz(p,l):/ (co+clx+02x2)1dx:co/ 1dx+cl/ xd:n—l—cQ/ 2% dz
0 0 0 0

and

1 1 1 1
Oz(p,x):/ (co+clx+02x2)xdx:c()/ :vd:v—l—cl/ x> d:n—l—cQ/ z° dx
0 0 0 0

Use the fact that f01 #™dr = 15 for nonnegative m and we obtain the system of
eguations
tlerin=o0
Co 201 302 =
1 n 1 n 1 0
—co+ zc1 +—c2=0.
2 03 Ty

Solve this system to obtain ¢y = %02, ¢ = —cy and ¢, isfree. Therefore, V -+ consists
of polynomials of the form

1 1
p(x) = 602 — C + C2;L'2 = Cy (6 — +.'L'2>
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It followsthat V- = span{3 — z + z*}. Inparticular, diim V+ = 1, and since {1, z}
is alinearly independent set, dim V = 2. Therefore, dimV + dimV+ = dim P, =
dim W. |

Finally, we return to the subject of solutions to the homogeneous system Ax = b. We
saw at the beginning of this section that the null space of A consisted of elements that
are orthogonal to the rows of A. One could turn things around and ask what we can say
about a vector that is orthogona to every element of the null space of A. How does it
relate to therows of A? Thisquestion has a surprisingly simple answer. Infact, thereis
afascinating interplay between row spaces, column spaces and null spaces which can
be summarized in the following theorem:

THEOREM 6.4.7. Let A bea matrix. Then

1. R(A)* = N(4)
2. N(A)* = R(A)
3. N(AT)* = C(A)

PrRoOOF. We have already seen item 1 inthe discussion at the beginning of this sec-
tion, whereit was stated in Equation 6.4.1. For item 2 we take orthogonal complements
of both sides of 1 and use part 5 of Theorem 6.4.2 to obtain that

N(AL = (R(AY) T =R(A)

which proves 2. Finaly, for 3 we observe that R(AT) = C(A). Apply 2 with AT in
place of A and the result follows. O

The connections spelled out by this theorem are powerful ideas. Here is one exampl e of
how they can be used. Consider the following problem: suppose we are given subspaces
U and V of the standard space R™ with the standard inner product (the dot product) in
some concreteform, and we want to compute abasis for the subspace UNV'. How dowe
proceed? Oneanswer isto use part 1 of Theorem 6.4.3toseethat (UNV) + = U+ +V+.
Now use part 5 of Theorem 6.4.2 to obtain that

Unv=UnwVtt=@wtsvh)t

The strategy that this equation suggests is as follows: express U and V' as row spaces
of matrices and compute bases for the null spaces of each. Put these bases together to
obtain a spanning set for U+ + V+. Use this spanning set as the rows of a matrix B.
Then the complement of this space is, on the one hand, U N V, but by the first part of
the orthogonal complements theorem, it isalso A/(B). ThereforeU NV = N(B), so
al we haveto dois calculate abasis for A/(B), which we know how to do.

EXAMPLE 6.4.8. Find a basis for U N V, where these subspaces of R* are given as
follows:

U span{(1,2,1,2),(0,1,0,1)}

v span{(1,1,1,1),(1,2,1,0)}.

SOLUTION. We have already determined in Exercise 6.4.5 that the null spaceof V' hasa
basis (—-1,0,1,0) and (—2,1,0,1). Similarly, form the matrix A with the two spanning
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vectors of U asrows. By Theorem 6.4.4, V- = A/(A). We have

121221010
A‘{0101}E21(_2)[0101]

from which it followsthat the null space of A consists of vectors of the form

—I3 -1 0
—T4 _ 0 1
I3 R 1 + 24 0
T4 0 1

Therefore the null space has basis (—1,0,1,0) and (0, 1,0,1). One of the vectors in
this set is repeated in the basis of V' so we only to need list it once. Form the matrix
B whoserowsare (—1,0,1,0), (—2,1,0,1) and (0, 1,0, 1), and calculate the reduced
row echelon formof B :

-1 0 1 0 W 1 0 -1 0]
B=|-2101 E”(_l) 01 -2 1
0101 ! 01 0 1]
1 0 -1 0 FE5(1/2) 1 00 0]
Ey(-1) [0 1 -2 1 Es35(2) 01 01
0 0 2 0 E5 (1) 0 0 1 0]
It follows that the null space of B consists of vectors of the form
0 0
—T4 _ -1
0 R B
Ta 1

Therefore, U NV isaone-dimensional space spanned by the vector (0,—1,0,1). O

Our last application of the orthogonal complements theorem is another Fredholm alter-
native theorem (compare thisto Corollary 2.5.10 of Chapter 2).

COROLLARY 6.4.9. Given a square real linear system Ax = b, whereb # 0, either Fredholm
the system is consistent or there is a solution y to the homogeneous system A7y = 0 Alternative
suchthat y”'b # 0.

PROOF. Let V' = C(A). By part 3 of Theorem 6.4.2, R® = V + V1, where R®
has the standard inner product. From part 3 of the orthogonal complements theorem,
C(A) = N(AT)L. Take complements again and use part 5 of Theorem 6.4.2 to get
that V+ = N (AT). Now the system either has a solution or not. If the system has no
solution, then by Theorem 3.6.1 of Chapter 3, b does not belongto V' = C(A). Since
b ¢ V,wecanwriteb = v +y, wherey # 0,y € V+ andv € V. It follows that

(y,;b)=y-b=y-(v+y)=0+y -y #0

On the other hand, if the system has a solution x, then for any vector y € AN (4) we
have y" Ax = yTb. It follows that if y” A = 0, then y”b = 0. This completes the
proof. O
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The QR Factorization

We are going to use orthogonality ideas to develop one more way of solving the linear
system Ax = b, wherethe m x n rea matrix A is full column rank. In fact, if the
system is inconsistent, then this method will find the unique least squares solution to
the system. Hereis the basic idea: express the matrix A intheform A = QR, where
the columns of the m x n matrix () are orthonormal vectorsand then x n matrix R is
upper triangular with nonzero diagonal entries. Such afactorization of A iscaled aQR
factorization of A. It follows that the product Q 7Q = I,,. Now multiply both sides of
the linear system on the left by Q7' to obtain that

QTAx =QTQRx=IRx = Qb

The net result is a simple sguare system with a triangular matrix which we can solve by
backsolving. That is, we use the last equation to solvefor z ,,, then the next to the last to
solvefor z,,_1, and so forth. Thisis the backsolving phase of Gaussian elimination as
wefirst learned it in Chapter 1, before we were introduced to Gauss-Jordan elimination.

One has to wonder why we have any interest in such a factorization, since we aready
have Gauss-Jordan elimination for system solving. Furthermore, it can be shown that
finding a QR factorization is harder by afactor of about 2, that is, requires about twice
as many floating point operations to accomplish. So why bother? There are many
answers. For one, it can be shown that using the QR factorization has an advantage of
higher accuracy than Gauss-Jordan elimination in certain situations. For another, QR
factorization gives us another method for solving least squares problems. We'll see an
example of this method at the end of this section.

Where can we find such a factorization? As a matter of fact, we already have the
necessary tools, compliments of the Gram-Schmidt algorithm. To explain matters, let's
suppose that we have amatrix A = [w1, wo, w3] with linearly independent columns.
Application of the Gram-Schmidt algorithm leads to orthogonal vectors v 1, vs, v3 by
the following formulas:

Vi = Wi
V17W2>
Vo = W9 ——F———FV]
<V17V1>
_ Vi, W3) (v2, ws)
V3 = W3 ——F———-V] ———F—— V9
(vi,v1) (v2,Vva)

Next, solve for wy, wo, w3 in the above equations to obtain

W = V]
<V1 ) W2>
Wz = —S———V+V
<V1 9 V1>
w3 = (Vl,W3>V1 <v27w3>v2 + vy
<V17 V1> <V2, V2>
In matrix form, these equations become
(vi,w2) (vi,wz)
1 (vi,v1) (vi,v1)
A= [W1,W2,W3] = [vl,vQ,v3] 0 1 Vo, W3)

(va,v2)

0 0 1
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Now normalizethe v;’s by setting q; = v,/ ||v;|| and observe that

— (V s, W ) <v W >
||V1|| 0 0 1 <v11,V12> <V117Vf>
A = [abasas]| 0 |val| 0 0 1 fewy
0 0 sl 0
r (vi,wa) (vi,w3)
Vil ST e
= lavanwl| 0 |vf S
0 0 [[vsl]

This gives our QR factorization, which can be alternately written as

||V1|| <Q1,W2> <Q1,W3>
A =[wi, Wy, W3] = [q1,q2,q3] 0 [vall (a2, w3) | =QR
0 0 [ vsl|

In generd, the columns of A are linearly independent exactly when A is full column
rank. It is easy to see that the argument we have given extends to any such matrix, so
we have the following theorem.

THEOREM 6.4.10. If A isanm x n matrix full column rank matrix, then A = QR,
where the columns of the m x n matrix @Q are orthonormal vectors and the n x n matrix
R is upper triangular with nonzero diagonal entries.

EXAMPLE 6.4.11. Let thefull column rank matrix A be given as

1 2 -1

1 -1 2

A= 1 -1 2
-1 1 1

Find a QR factorization of A and usethisto find theleast squares solution to the problem
Ax = b, whereb = (1,1,1,1). What is the norm of theresidual r = b — Ax in this
problem?

SoLUTION. Notice that the columns of A are just the vectors w, wo, w3 of Exam-
ple 6.3.3. Furthermore, the vectors u, u,, ug calculated in that example are just the
q1, 92, q3 that we require. Thus we have from those cal cul ations that

il = 0,1, 1, -1 =2
1 3
Ivall = | 0. -3,-3.3)| = 3v3

[Ivsll = 11(0,1,1,2)[| = V6

1
qi1 = 5(171717_1)
LN I
q2 = 2\/?—) ) ) )
1
qs = (0717172)

S

QR

Factorization
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Now we calculate

1 1
(qi,ws) = 5(1, 1,1,-1)-(2,-1,-1,1) = -5
(qi,ws) = %(1, 1,1,-1)-(-1,2,2,1) =1
(q2, ws) = %(3,—1,—1,1) (~1,2,2,1) = —V/3
It follows that
/2 3/(2V3) 0 2 12 .
1/2 —-1/(2v3) 1/V6 3
A= 0 3v3 —V3 |=QR

-1/2  1/(2v3) 2/V6

Solving the system Rx = Q7b, whereb = (1,1,1,1), by hand is rather tedious even
though the system is a simple triangular one. We leave the detailed calculations to the
reader. Better yet, use a CAS or MAS to obtain the solutionx = (4,2, 2). Another
calculation shows that

1 1 2 -1
1 1 -1 2 { 1/3 -| 8
r=b-Ax = 1l 1 _1 9 2/3 | = 0
L 2/3 |
1 1 1 1 0
It followsthat the system Ax = b isactually consistent, since the least squares solution
turns out to be a genuine solution to the problem. O

There remains the question of why we really solve the least squares problem by this
method. To see why this is so, notice that with the above notation we have AT =
(QR)T = RTQT, so that the normal equations for the system Ax = b (which are
givenby AT Ax = A"b) become

ATAx = RTQTQRx = RTIRx = RTRx = ATb = RTQ"b.

But the triangular matrix R isinvertible becauseits diagonal entries are nonzero; cancel
it and obtain that the normal equations are equivalent to Rx = Q Tb, which is exactly
what the method we have described solves.

6.4 Exercises

1. LetV =span{(1,—1,2)} C R® = W with the standard inner product.
(@) Compute V.
(b) Verify that V + V- = R® and V N VL = {0}.

2. LetV = span{l+=z,2?} C W = P, wherethe space P of polynomialsof degree
at most 2 has the same standard inner product as C[0, 1]. Compute V .
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3. LetV beasinExercise1but endow W with theweightedinner product < (z,y, z), (u, v, w) >=
2zu + 3yv + zw.

() Compute V.
(b) Verify that (V£)" = V.
4. Confirm that the Fredholm alternative of this section holds for the system

.’L’1—|-.’L’2—|-2.Z’3:5
2x1 + 3x2 — x3 = 2
4r1 + 522 + 323 =1

5. Use the subspace test to provethat if 1 is a subspace of the inner product space 17/,
thensoisV+.

6. Show that if V is a subspace of the inner product space W, then V. NV + = {0}.
7. Let U and V' be subspaces of the inner product space .

(@ Provethat (UNV)L =U+ + V.

(b) Provethat (U + V)t =ULtnV+.

8. Find a QR factorization for the matrix A = [ _} ? ] .

3 2
A=1]10 1
4 1

(a) Use the Gram-Schmidt algorithm to find a QR factorization of A.

9. Let

(b) Use the result of (a) to find the least squares solution to the system Ax = b, where
b=(1,2,3).

10. Carry out the method of computing U N V' discussed on page 288 using these two
subspacesof W = R3 :

U =span{(1,2,1),(2,1,0)} V =span{(1,1,1),(1,1,3)}

11. Thefollowing is a simplified description of the QR algorithm (which is separate
from the QR factorization, but involvesit) for areal n x n matrix A :

To =4, Qo=1Ip

fork=0,1,...
Tr = Qr+1Rr+1  (QR factorization of T7,)
Tit1 = Rit1Qp+1

end

Apply thisagorithm to the following two matrices and, based on your results, speculate
about what it is supposed to compute. You will need a CAS or MAS for this exercise
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and, of course, you will stop in afinite number of steps, but expect to take more than a
few.

1 2 0 -8 =5 8
A= 2 1 -2 A= 6 3 -8
0 -2 1 -3 1 9

6.5. *Operator Norms

The object of this section is to develop a useful notion of the norm of a matrix. For
simplicity, we stick with the case of areal matrix A, but al of the resultsin this section
carry over easily to complex matrices. In Chapters 3 and 5 we studied the concept
of a vector norm, which gave us a way of thinking about the “size” of a vector. We
could easily extend this to matrices, just by thinking of a matrix as a vector which had
been chopped into segments of equal length and restacked as a matrix. Thus, every
vector norm on the space R™™ of vectors of length mn gives rise to a vector norm on
the space R™™ of m x n matrices. Experience has shown that, with one exception —
the standard norm, this is not the best way to look for norms of matrices. After all,
matrices are deeply tied up with the operation of matrix multiplication. It would be
too much to expect normsto distribute over products. The following definition takes a
middle ground that has proved to be useful for many applications.

DEFINITION 6.5.1. A vector norm ||-|| which is defined on the vector space R™™ of
m X n matrices, for any pair m, n, issaid to beamatrix normif, for all pairs of matrices
A, B which are conformable for multiplication,

IAB]| < [|A[I1BI|

Our first example of such anorm is called the Frobenius norm; it is the one exception
that we alluded to above.

DEFINITION 6.5.2. The Frobeniusnormof amatrix A = [a;;]m,» iS defined by
1/2
Al = [ DD eyl
i=1 j=1

THEOREM 6.5.3. The Frobenius normis a matrix norm.

PROOF. Let A and B be matrices conformable for multiplication and suppose that
therowsof A areal,al ...  al, whilethe columnsof B areb;,bs,... ,b,. Then

» Amyy
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we have that AB = [a]'b,], so that by applying the definition and the CBS inequality,
we obtain that

m n 9
IAB|lp = | Y. [alby]
=1 j=1

J

1/2 1/2

m n
o> Ml by

i=1 j=1

) 1/2
(14163 1B11) " = 141l 1Bl

IN

IN

O

The most important multiplicative norm comes from a rather general notion. Just as
every inner product “induces’ a norm in a natural way, every norm on the standard
spaces induces a norm on matrices in a natural way. This type of norm is defined as
follows.

DEFINITION 6.5.4. The operator norm induced on matrices by a norm on the standard
spacesis defined by the formula

[|Ax]]

[|A| = sup =-—-
0 |||

A useful fact about these normsis the following equivalent form.

1411 = sup 12

= = sup ||Av||
x#0 HXH x#0

[lvll=1

|1l

THEOREM 6.5.5. Every operator normisa matrix norm.

PROOF. For agivenmatrix A clearly || A|| > 0 with equality if and only if Ax =0
for al vectors z, which is equivalent to A = 0. The remaining two norm properties are
left as exercises. Findly, if A and B are conformable for multiplication, then

ABx Bx
AP < ) sup 1220 — gy 1
|Ix]] 20 |[X[|

||AB|| = sup
x#0
O

Incidentally, one difference between the Frobenius norm and operator normsis how the
identity I,, is handled. Noticethat ||,,||z = n, while with any operator norm || - ||, we
have from the definition that || I,,|| = 1.

How do we compute these norms? The next result covers the most common cases.

THEOREM 6.5.6. Let A = [a;j]m,n- Then

L 1Al = maxi<icm {2y |aijl}
2. |4l = maxi <j<n{d 22, laijl}
3. ||4]], = p(AT4)1/

ProOF. Items (1) and (3) are left as an exercises. For the proof of (2), use the
fact that ||A||, = sup)jy)_—1 [|AV]||,, - Now avector hasinfinity norm 1 if each of its
coordinatesis 1 in absolute value. Notice that we can make the ith entry of Av aslarge
as possible simply by choosing v so that the jth coordinate of v is +1 and agrees with
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the sign of a;;. Hence the infinity norm of Av is the maximum of the row sums of the
absolute values of the entries of A, asstated in (2). O

One of the more important applications of the idea of a matrix norm is the famous
Banach Lemma. Essentially, it amounts to a matrix version of the familiar geometric
series encountered in calculus.

THEOREM 6.5.7. Let M bea square matrix such that ||M|| < 1 for some operator
norm ||-||. Then thematrix I — M isinvertible. Moreover,

(I—M)"'=T+M+M*+- + M +...

and | (1 2) || < 1701~ ).

PrROOF. Form the familiar telescoping series
I-M)(I+M+M+--+M")=1- M
so that
I—(I—M)(I+M+M?+---+ M) =M
Now by the multiplicative property of matrix normsand fact that || M|| < 1
[AE | < it - o
It follows that the matrix limj_,oo (I + M + M? +---+ M*) = N exists and that
I— (I —M)B =0, fromwhichitfollowsthat B = (I — M)~". Finally, note that
17+ M+ M? 4o MY < )+ M|+ M+ -+ (]

2 k
STH(IM A+ IMIT + -+ | M]]
1
L—[|M|
Now take the limit as k — oo to obtain the desired result. O

<

A fundamental idea in numerical linear algebrais the notion of the condition number
of amatrix A. Roughly speaking, the condition number measures the degree to which
changesin A lead to changesin solutions of systems Ax = b. A large condition number
meansthat small changesin A may leadto large changesin x. Inthe case of aninvertible
matrix A, the condition number of A is defined to be

cond(4) = ||4]| ||A*1||

Of course this quantity is norm dependent. In the case of an operator norm, the Banach
lemma has a nice application.

COROLLARY 6.5.8. If A =1+ N, where||N|| < 1, then

1+ [|V]]
cond(4) < ——
1—[|V]]
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We leave the proof as an exercise.

We conclude with a very fundamental result for numerical linear algebra. The context
is a more general formulation of the problem which is discussed in Section 6.6. Here
is the scenario: suppose that we desire to solve the linear system Ax = b, where A is
invertible. Due to arithmetic error or possibly input data error, we end up with avalue
x + dx which solves exactly a “nearby” system (A + §A)(x + dx) = b + db. (It
can be shown by using an idea called “backward error analysis’ that thisis really what
happenswhen many algorithms are used to solve alinear system.) The questionis, what
is the size of the relative error ||dz||/||z||? As long as the perturbation matrix ||§A]| is
reasonably small, thereis avery elegant answer.

THEOREM 6.5.9. Suppose that A isinvertible, Ax = b, (A+dA)(x +dx) =b + b
and ||A713A]| = ¢ < 1 with respect to some operator norm. Then A + 6 A isinvertible
and

| 0x|| _ cond(A) [IIMII + ||5b||]
Ixll = 1—c L[lIA]  [Ib]]
PROOF. That the matrix I + A~'§A follows from hypothesis and the Banach
lemma. Expand the perturbed equation to obtain
(A4 6A)(x+ 0x) = Ax + 0Ax + Adx + dAdx =b + b
Now subtract the terms Ax = b from each side solve for §x to obtain
(A4 64)0x = A (I +6A P A)ox = —0Ax + b
so that
ox = (I +5A AP A [-6Ax + 0b]
Now take norms and use the additive and multiplicative properties and the Banach
lemmato obtain
A-1
ot < 20 g i+ 1w

Next divide both sides by ||z|| to obtam

lox]l IIA Hl ||5b||]

T < e 1o+ g

Finaly, noticethat ||b|| < || A]l||z||- Therefore, 1/11x]] < [|4]l/|b||- Replace 1/]|x]| in
theright hand side by || A||/||b]| and factor out || A|| to obtain

x| _ [[A~ Al [IIMII . ||5b||}
1Al bl
which completes the proof, since by definition, cond A = || A ||| 4]| O

W S 1-c

If we believe that the inequality in the perturbation theorem can be sharp (it can!),
then it becomes clear how the condition number of the matrix A is a direct factor in
how relative error in the solution vector is amplified by perturbationsin the coefficient
matrix.

Perturbation
Theorem
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6.5 Exercises

1. Let

-1 2 2
A= 2 -1 2
2 2 -1

Compute the Frobenius, 1—, 2—, and co-norms of A.
2. With A asin Exercise 1, compute the condition number of A using theinfinity norm.

3. Prove Corollary 6.5.8 by making use of the Triangle inequality and the Banach
lemma.

4. Use the Banach lemmato show that if A isinvertible, then sois A + § A provided
that ||A—16A| < 1.

5. Provethat for asquare matrix A, ||A||, = max;<i<m{>_j_; lai;|}-
6. Provethat for asquare matrix A, || A, = p(AT A)'/2

7. Example 6.6.4 gives an upper bound on the error propagated to the solution of a
system due to right hand side error. How pessimistic is it? Experiment with several
different erroneous right hand sides of your own choosing and compare the actual error

with estimated error.
3 2
A=|0 1
4 1

8. Let
(a) Use Householder matrices to find afull QR factorization of A.

(b) Use the result of (a) to find the least squares solution to the system Ax = b,
whereb = (1,2,3).

6.6. *Computational Notes and Projects

Error and Limit Measurements

We are going to consider a situation where infinity norms are both more natural to a
problem and easier to use than the standard norm. Thismaterial isasimplified treatment
of some of the conceptsintroducedin Section 6.5 and isindependent of that section. The
theorem below provides a solution to this question: how large an error in the solution
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to alinear system can there be, given that we have introduced an error in the right hand
side whose size we can estimate? (Such an error might be due to experimental error or
input error.) The theorem requires an extension of the idea of vector infinity norm to
matrices for its statement.

DEFINITION 6.6.1. Let A beann x n matrix whoserowsarer,rs,... ,r,. Thein-
finity norm of the matrix A is defined as

|4l = max {[[re][;, [[r2]ly - s [rnlly }
If, moreover, A isinvertible, then the condition number of A is defined to be

cond(A4) = ||A|] ||A_1||oo

EXAMPLE 6.6.2. Let A = [ } } -Find||A]| ., ||A7"|| ., and cond(A).

2
4
SOLUTION. Herewe seethat AL = 2 -1

' = —1/2 172

we obtain that

] . From the preceding definition

[ Alloe = max {[1] + [2[, [1] + [4[} =5

1 1
*\5\}—3

7|

and

1471, = e {12+ 111

s0 it follows that
cond(A) =5-3 =15.
O

THEOREM 6.6.3. Supposethat then x n matrix A isnonsingular, Ax = b and A(x +
0x) = b + db. Then

PROOF. Subtract the first equation of the statement of the theorem from the second
one to obtain that

Ax —Ax = A(X—x)=b—-b=6b
from which it follows that
fx=%x—x=A"1%b

Now write A=! = [¢;;], db = [d;] and compute the ith coordinate of Jx:

(6%)i = Y cijd;
j=1
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sothatif r; = (ci1, cio, - - - , Cin) istheith row of A=1, then
6%)i < leijl 1
j=1
<max{ldi|,...|dal} > |eij
j=1
< |16b][ [rilly
Therefore,
(6.6.1) l|0x||., < 116bll [|A7]

A similar calculation shows usthat sinceb = Ax,
1]l < 11%llo [[Allo
Divide both sides by ||b|| ||x||., and obtain that

1
(6.6.2) o S Al o
[ES1P bl
Now multiply the inequalities 6.6.1 and 6.6.2 together to obtain the asserted inequality
of the theorem. O

EXAMPLE 6.6.4. Suppose we wish to solve the nonsingular system Ax = b exactly,
where the coefficient matrix A is asin Example 6.6.2 but the right hand side vector b
is determined from measured data. Suppose aso that the error of measurement is such
that the ratio of the largest error in any coordinate of b to the largest coordinate of b
(thisratio is called the relative error) is no more than 0.01 in absolute value. Estimate
the size of the relative error in the solution.

SOLUTION. In matrix notation, we can phrase the problem in this manner: let the
correct value of the right hand side be b and the measured value of the right hand side
be b, so that the error of measurement is the vector b = b — b. Rather than solving the
system Ax = b, we end up solving the system A% = b = b + b, wherex = x + 6x.
Therelative error in datais the quantity ||6b]| . / [|bl|.,, while the relative error in the
computed solution is ||0x|| . / ||x||., - This sets up very nicely for an application of
Theorem 6.6.3. Furthermore, we already calculated cond(A4) = 15 in Example 6.6.2.
It follows that the relative error in the solution satisfies the inequality

5
102lloe 45001 = 0.15

[ES]

In other words, the relative error in our computed solution could beaslargeas15%. O

A Practical QR algorithm

In the preceding section we saw that the QR factorization can be used to solve systems
including least squares. We also saw the factorization as a consequence of the Gram-
Schmidt algorithm. Asamatter of fact, the classical Gram-Schmidt al gorithm which we
have presented has certain numerical stability problems when used in practice. There
is a so-called modified Gram-Schmidt algorithm that performs better. However, there
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is another approach to QR factorization that avoids Gram-Schmidt altogether. This ap-
proach uses the Householder matrices we introduced in Section 4.3. It is more efficient
and stable than Gram-Schmidt. If you use a MAS to find the QR factorization of a
matrix, it islikely that thisis the method used by the system.

The basic idea behind this Householder QR is to use a succession of Householder ma-
trices to zero out the lower triangle of a matrix, one column at atime. The key fact
about Househol der matricesis the following application of these matrices:

THEOREM 6.6.5. Let x,y be nonzero vectorsin R™ of the same length. Then thereisa
Householder matrix H,, suchthat H,x =y.
PROOF. Letv = x —y. Then we see that
(x+y)(x—y)=x"
since x and y have the same length. Now write

x—xTy—yTx—l—yTy:xTx—yTy:O

= {x-y)+x+y)}=p+u

and obtain from Theorem 4.3.10 that

1 2y
Hox=-ptu=g{-(x-y)+x+y)}=-=y

which is what we wanted to show. O

Now we have a tool for massively zeroing out entries in a vector of the form x =
(x1,%2,...,m,). Sety = (£ |x]|,0,...,0) and apply the preceding theorem to con-
struct Householder H such that Hyx = y. It is standard to choose the + to be the
negative of the sign of x ;. In thisway, the first term will not cause any loss of accuracy
to subtractive cancellation. However, any choice of + works fine in theory. We can
picture this situation schematically very nicely by representing possibly nonzero entries
by an* x" in the following simple version:

x =+ 1|
—_—
x=| = H, 0 = H,x
X 0
X 0
We can extend this ideato zeroing out lower parts of x only, say

z z 0 0
=| =" | byusingy = [wl sov=| * |adH,x=|
*“lw | 7| x yusingy = 0 A vX= 10
X 0 X 0

We can apply this idea to systematically zero out subdiagonal entries by successive
multiplication by Householder (hence orthogonal) matrices; schematically we havethis
representation of afull rank m x n matrix A

X X X X X X X X X
X X X Em— 0 x x — | 0 x X
A= X X X H, 0 x x Hy 0 0 x
X X X 0 x X 0 0 x
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X X X
— | 0 x x

Hs 0 0 x |- F
0 0 0

sothat H3H, H1 A = R. Now we can check easily from the definition of a Househol der
matrix H that H” = H = H~'. Thus, if weset Q = H, 'H,'H; ' = H,H,H;,
it followsthat A = QQR. Notice that we don’t actually have to carry out the multipli-
cations to compute ) unless they are needed, and the vectors needed to define these
Householder matrices are themselves easily stored in a single matrix. What we have
hereis just abit different from the QR factorization discussed in the last section. Here
the matrix @ isafull m x m matrix and R isthe samesize as A. Evenif A isnot full
column rank, this procedure will work, provided we simply skip construction of H in
the case that there are no nonzero elements to zero out in some column. Consequently,
we have essentially proved the following theorem, which is sometimes called a full QR
factorization, in contrast to the reduced QR factorization of Theorem 6.4.10.

THEOREM 6.6.6. Let A beareal mxn matrix. Thenthere existsanm xm orthogonal
matrix @ and m x n upper triangular matrix R suchthat A = QR.

Actually, all of the results we have discussed regarding QR factorization carry over to
complex matrices, provided we replace orthogonal matrices by unitary matrices and
transposes by Hermitian transposes.

Project Topics

Project: Testing Least Squares Solvers

The object of thisproject isto test the quality of the solutions of three different methods
for solving least squares problems Ax = b:

(a) Solution by solving the associated normal equations by Gaussian elimination.
(b) Solution by reduced QR factorization obtained by Gram-Schmidt.
(c) Solution by full QR factorization by Householder matrices.

Hereisthetest problem: supposewewant to approximatethecurve f (z) = e®*(62) 0 <
x < 1 by atenth degree polynomial. The input datawill be the sampled values of f ()
at equally spaced nodes = = kh, k =0,1,...,20, h = 0.05. Thefact that

F(2) = co+ 1z + -+ 1g01?

gives21 equationsfor the 11 unknown coefficientscy, k = 0,1, ... , 20. The coefficient
matrix that results fromthis problemis called a Vandermondematrix. Your MAS should
have a have a built-in command for construction of such a matrix.

Procedure; First set up the system matrix A and right hand side matrix b. Method (a)
is easily implemented on any CAS or MAS. The built-in procedure for computing a
QR factorization will very likely be Householder matrices which will take care of (c).
You will need to check the documentation to verify this. The Gram-Schmidt method of
finding QR factorization will have to be programmed by you.
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Once you have solved the system by these three methods, make out a table that has the
computed coefficients for each of the three methods. Then make plots of the difference
between thefunction f (x) and the computed polynomial for each method. Discuss your
results.

There are a number of good texts which discuss numerical methods for least squares,
see, eg., [3]

Project: Approximation Theory

Suppose you work for a manufacturer of calculators, and are involved in the design of
anew calculator. The problem is this: as one of the “features’ of this calculator, the
designers decided that it would be nice to have a key which calculated a transcendental
function, namely, f(z) = sin(rz),—1 < z < 1 Your job is to come up with an
adeguate way of calculating f (), say with an error no worse than .001

Polynomials are a natural idea for approximating functions. From a designer’s point of
view they are particularly attractive because they are so easy to implement. Given the
coefficients of a polynomial, it is easy to design a very efficient and compact algorithm
for calculating values of the polynomial. Such an agorithm, together with the coeffi-
cients of the polynomial, would fit nicely into asmall ROM for the calculator, or could
even be microcoded into the chip.

Your task is to find alow degree polynomial that approximates sin(7z) to within the
specified accuracy. For comparison, find a Taylor polynomial of lowest degree for sin x
that gives sufficient accuracy. Next, use the projection problem idea to project the func-
tionsinx € C[—1, 1] with the standard inner product, into the subspace P,, of polyno-
mials of degree at most n. You will need to find the smallest n that gives a projection
whose difference from sin z is at most 0.001 on the interval [—1, 1]. Is it lower degree
than the best Taylor polynomial approximation?

Use a CAS to do the computations and graphics. Then report on your findings. Include
graphs that will be helpful in interpreting your conclusions. Also, give suggestions on
how to compute this polynomial efficiently.

A Report Topic: Fourier Analysis

This project will introduce you to a very fascinating and important topic known as
Fourier analysis. The setting is as follows. we are interested in finding approximations
to functionsin the vector spaceC,,. of continuous periodic functions on the closed inter-
val [—m, w]. This vector space becomes an inner product space with the usual definition

(frg) = j f(x)g(z) de.

In this space the sequence of trigonometric functions

1 cosz sinz cos2z sin2z coskx sinkx

/_27'(" \/E ) \/E ) \/E ) \/E DA \/E ) \/E A
forms an orthonormal set. Therefore, we can form the finite dimensional subspaces V',
spanned by the first 2n + 1 of these elements and immediately obtain an orthonormal
basis of V,,. We can a so use the machinery of projections to approximate any function
f(z) € Caor by its projection into the various subspaces V,,. The coefficients of the
orthonormal basis functions in the projection formula of Definition 6.3.5 as applied
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to a function f(z) are called the Fourier coefficients of f(z). They are traditionally
designated by the symbols

%,al,blaabb% N 7ak,bk, e

In thefirst part of this project you will write a brief introduction to Fourier analysisin
which you exhibit formulas for the Fourier coefficients of afunction f(z) and explain
the form and meaning of the projection formula in this setting. Try to prove that the
trigonometric functions given above are an orthonormal set. At minimum provide a
proof for thefirst three functions.

In the second part you will explore the quality of these approximations for various test
functions. The test functions are specified on the interval [—, 7] and then this graph is
replicated on adjacent intervals of length 27, so they are periodic.

1. f(z) =sin &
2. gla) = o(a = m)(z + )
3 hz)==x

Notice that the last function violates the continuity condition.

For each test function you should prepare a graph that includes the test function and
a least two projections of it into the V,,, n = 0,1,.... Discuss the quality of the
approximations and report on any conclusions that you can draw from this data. You
will need a MAS or CAS to carry out the calculations and graphs, as the calculations
arevery detailed. If you are allowed to do so, you could write your report up in theform
of anotebook.

6.6 Exercises

1. Example 6.6.4 gives an upper bound on the error propagated to the solution of a
system due to right hand side error. How pessimistic is it? Experiment with several
different erroneous right hand sides of your own choosing and compare the actual error

with estimated error.
3 2
A=|0 1
4 1

(a) Use Householder matrices to find afull QR factorization of A.

2. Let

(b) Use the result of () to find the least squares solution to the system Ax = b,
whereb = (1,2, 3).
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Review

Chapter 6 Exercises

1. Let the vector space V = R*, equipped with the standard inner product.

(& Apply the Gram-Schmidt algorithm to vectors (1,1,1,1), (4,2, 4,2),(0,0,0,2) to
obtain an orthogonal set {vi, v, vs}.

(b) Normalize the orthogonal list obtained to obtain an orthonormal set {w 1, wa, w3 }.
(c) Use thisto find the projection matrix for the subspace spanned by these vectors.

2. Let
3 2
01
4 1

(a) Use Householder matricesto find afull QR factorization of A.

(b) Use the result of (a) to find the least squares solution to the system Ax = b, where
b =(1,2,3).

3. Determineif the formula((u,v), (z,y)) = uz — vy definesan inner product on R2.

A=

31 0
4. Find the projection matrix into the row space of the matrix [ 01 -1 ] .
0 0 1

5. Use the Gram-Schmidt algorithm to expand the orthogonal set (1,1,1), (1,-2,1)
into an orthogonal basis of R?® and then normalize this basis to obtain an orthonormal
basis.

6. Supposethat A isann x n matrix of rank n — 1. Show that all rows of adj A are
multiples of each other. Hint: Use the adjoint formulaand orthogona complements.

7. Find the orthogonal complement of V' = span{l + = + 22} in W = P, where W
has the usual function spaceinner product f, g = fol f(z)g(z) du.
8. Given an orthonormal basisu, u,, us of R?, show that

uluf + u2u2T + llgllgl =1

where each term is a projection matrix in the sense of Exercise 8 and the product of any
two distinct termsis 0. (Such an expression is called aresolution of the identity .)
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Table of Symbols

Symbol Meaning Reference
0 Empty set Page 9
€ Member symbol Page 9
C Subset symbol Page 9
C Proper subset symbol Page 9
N Intersection symbol Page 9
U Union symbol Page 9
I@ Displacement vector Page 127
|z | Absolute value of complex z Page 12
| A] determinant of matrix A Page 98
[|ull Norm of vector u Page 185
[|ulp p-norm of vector u Page 262
u-v Standard inner product Page 189
(u,v) Inner product Page 267
adj A Adjoint of matrix A Page 106
AH Hermitian transpose of matrix A Page 77
AT Transpose of matrix A Page 77
C(A) Column space of matrix A Page 153
cond(A) Condition number of matrix A Page 297
Cla,b] Function space Page 129
C Complex numbersa + bi Page 11
c? Standard complex vector space Page 127
comp, u Component Page 196
Acos Cofactor matrix of A Page 11
z Complex conjugate of z Page 12
dij Kronecker delta Page 106
dimV Dimension of space V/ Page 163
det A Determinant of A Page 97
domain(T") Domain of operator T’ Page 158
diag{\1, A2, ..., A, } | Diagonal matrix with entries A1, Ao, ... , A, ondiagonal | Page 225
E;; Elementary row operation switching ith and jth rows Page 22
E;i(c) Elementary row operation multiplying ith row by ¢ Page 22
E;;(d) Elementary operation adding d times jth row toithrow | Page 22

307




308

A.TABLE OF SYMBOLS

Symbol Meaning Reference
Ex(A) Eigenspace Page 216
H, Househol der matrix Page 206
I, I, Identity matrix, n x n identity Page 73
J(z) Imaginary part of 2 Page 11
ker(T) Kernel of operator 7' Page 158
M;;(A) Minor of A Page 99
M(A) Matrix of minors of A Page 106
max{ay,as,... ,an} | Maximum value Page 35
min{ay,as,... ,am,} | Minimum value Page 35
N(A) Null space of matrix A Page 153
N Natural numbers1,2, ... Page 10
null A Nullity of matrix A Page 35
P Space of polynomials of any degree | Page 137
Pn Space of polynomials of degree < n | Page 137
proj, u Projection vector along a vector Page 196
projy u Projection vector into subspace Page 281
Q Rational numbersa/b Page 10
R(2) Real part of z Page 11
R(A) Row space of matrix A Page 153
R(9) Rotation matrix Page 149
R Real numbers Page 10
R™ Standard real vector space Page 127
R Space of m x n real matrices Page 128
range(T") Range of operator T' Page 158
rank A Rank of matrix A Page 34
p(A) Spectral radius of A Page 232
span{S} Span of vectorsin S Page 138
target(7T) Target of operator T Page 158
%8 Orthogona complement of V/ Page 286
/ Integers0, +1,+£2,... Page 10
[T]B,c Matrix of operator T' Page 175
® tensor symbol Page 114




APPENDIX B

Solutions to Selected Exercises

Section 1.1, Page 7

l@z=-1l,y=10Oz=2y=-2
z=1L0CQz=2,y=1

2. (8) islinear, and (b) isnot linear. (a) in

standard formatis * Y T 72
3r—y=4
3@m=3,n=3,a11 =1 a2 = -2,
a3 = 1, b1 = 3, a2 = 0, axx = 1,
asz3 = 0, b2 = 2, asy = —1, aszz = 0,
aszz = 1, b3 =1.
2y1 —y2 = 35 F(1/7)
—y1 +2y2 —yz = %f(2/7)
—y2 +2y3 —ys = %f(3/7)
—ys + 2ys — ys = 5 f(4/7)
—ya +2ys — ye = %f(5/7)
—ys + 2ys = 75 f(6/7)

Section 1.2, Page 17

1. (@ {0,1} (b) {z|]z € Zand z > 1} (C)
{z|lzx €Zand z < -1} (d) B

2 (a) 637Ti/2, (b) \/567'\'1:/4’ (C) 2627ri/3’ (d)
eﬂ'i, (e) 2\/§€7Tri/4

309

. Br—.1z2=2
5. The equations are A4 9.—3
__ 105 __ 80
=300 = 17

—8r+.1ly+ 4z + 4w =0
Br—6y+ .22+ .1lw=0

6. Br+4dy— 82+ 3w=0
204+ 1y+ 22— 8w=0
a+b+c=1

7. a+2b+4c=1

a+3b+9c=2

The equation that comes from vertex v; is
—r1 + x4 — x5 = 0, and vertex vs is
T2 — T3 = 0.

3. (8 1+ 8i, (b) 2 + 24, (c) 10 + 103, (d)
—_3_+_ii

5 5

4.@)2-1L,(b)—2+i,(c) {a+bila,beR
andb = 2a + 1}
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6. (a) ¥ = 60,627ri/3,€47ri/3, 2 =
L5t + Bt — Bi, () 2 =
2e™ 2e™/3 2e57/3 5 = —2 14 /30,1 —

V3i

11. Let 2z = r1 + iyl and
2 = ro + iyz. Then 2z1z» =
(z12 — y1y2) + i(z1y2 + 22y1). Thus

Section 1.3, Page 27

2@z =20,y = —11,(b) z1 = 3,22 =
—2,23 =1,(C) x1 = 3,2 = —5.

3. Each augmented matrix is3 x 5(8) A =

1 1 0 1 1
2 2 1 1 1 |,sizeof Ais3 x 5,
2 2 0 2 2

1 =1—x2— x4
thegenera solutionis z3 = x4 — 1
T2, x4 arefree
0 0 1 1 0
by A = -2 -4 10 0|,
3 6 -1 1 0
size of A is 3 x 5, the general solution is
1 = —2x2

2 =0
r3 = 0
2 isfree.
r1 = 4 r1 = 1
4. (@ z3=2 (b) z2=2 (c)isin-
z2 isfree T3 = 2
consistent.
2 1
T = §b1 + §b2 _
5 (a P PR (b) If b

3
2b1 # 0, then the system is inconsistent.
Otherwise, the solution isz; = b1 + x2 and
xo arbitrary.

|
|
—

2x1 + x2 + Txs
(a) 3x1 + 20 — 224 = 1
2r1 + 2x9 + 2203 — 224 =
T1+ T2+ X3 — T4 = 2
(b) 2z1 + x2 — 224 = 1
201 + 222 + 223 — 224 = 4

|z122)? = (z122 — y1y2)> + (x1y2 + T2y1)?

= wiah + yiys + aiys + 23yl
= (21 +yi) (23 +y3)
= |z’ |22 .
Since |z1], |22], and |z1 22| @l have positive
values, it followsthenthat |21 22| = |21]|22].
e/ = cos(f + ) — isin(f + 1))
= cos @ cost — sinfsin
—isinfcosy —icosf

=siny

12.

= (cosf —isinB)(costp — isinp)

— 619 67,1[1

13. The equation should have 5 roots.

r1=—-14+2x3+ 24
6. (b) o — 3 — 21’3
x3, x4 arefree
7. y= gw is the system’s solution
z = 1—7’LU
which has a nontrivial solution consisting of
positive numbers if w > 0.

8. Applying the same operations to b, you

b — by
findd’ = | 2by —bs | . Sincethe bottom
bs — 2by

row in the coefficient matrix is all zeros after
Gauss-Jordan elimination, the system isonly
consistent when by — 2b; = 0.

1'121 1'120 1‘121
9.@ 2z2=0 (b) z2=0 (¢) z2=1
1'320 1'320 1‘321
2r—y+3zy = 0
@ dr+2y—2zy = 0 ®)
yz+3zz—zy = 0
yz+2xy = 0

10 (a) If x = 0 then the system reduces to
y = 0. Similarly for y = 0. So (0, 0) isa so-
lution. If neither = nor y is zero, then divide
both equations by zy to get a linear system
inthevariables1/xz, 1/y, then solve thissys-
tem.

_ 40 _ _ 4
. y1130_ 2187'14%2 ouar vs B
Y4 = 3187 Y5 = 21870 Y6 = 31 Y7 = 21870

Y8 = 3187
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15. Physically meaningful solu-
tions are those that are nonnegative.
Coefficient matrix of the system is

Section 1.4, Page 38

1. (d) and (e) are in reduced row echelon
form.

10 2
2. (a) |: 0 1 % ] ,rank = 2, nullity =
0 0 0
1.
100 I
(b) 0 1 0 —-33 |, rank = 3,
0 0 1 2
nullity = 1.
(© { (1) (1) 8 1 ],rank = 2, nullity =
2.
1 0 3
(i 0 1 =1 j,rank = 2, nullity =
[ 0 0 O J
1.

2. (@ rank(A4) = 3,
1 3 0 4 2 0 O
0 01 2 0 0 O
000001 1
0 00 0 0 0 O

Section 1.6, Page 47
1. (@ 2v/5, (b) 7 + 6i
2@z=2¢-%i,(0)z=+V2+V2i

3. () 2™/t L 4

i
2

5. Let A be the augmented matrix of the
system.

1 00 —4 2
(@ rref(A) = 0 1 0 2 0 |.
00 1 1 1
Section 2.1, Page 54

2. (a) not possible, (b){j _01 _12 ;

CIF

1 0 0 -1 -1 0 0
-1 1 0 0 0 -1 0
0 -1 1 0 0 0 0
0 0 -1 1 0 0 1
0 0 0 0 1 1 -1
22
(e |: (1) (1) (1) ?% ], rank = 2
nullity = 2.

3. Let A be the augmented matrix and C
be the coefficient matrix. (&) rank(A) = 2,
rank(C) = 2, (b) rank(A4) = 3, rank(C) =
3
5.(@2,(0)0,(9)3,(d)1
6.0 <rank(A4) <2

7. (a) true, (b) true, (c) false

1 &
JER
9 The condition isthat the m x n coefficient
matrix of the system have rank n.

3. The total work done at the nth stage is
2
n+2[1+2+... +(n—1)] =252

r1 =2+ 4x4
, . . T2 = —21’4
The system’s solution is v =1 — a4
x4 isfree.
(b) rank(A) = 3, rref(4) =

E13(—2)E»3(1)Ex(—1)Es(3)E2(—1)A.
(c) Since the rank of the coefficient matrix is
3, the coefficient matrix augmented with any
right hand side will always be consistent and
therefore have a solution.

6. () 3, (b) true, (c) true, (d) 1
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3. X = |: -1 0 1 :| 9. Let A = [aij], B = [bij], and ¢, d be
-1 -1 =2 (c+d)A =[(c+d)aij]
4 L 2 0 scalars. So = leai; + dasj]
@z| 5 |+y| o |+2| 1 = [caij] + [das]
=cA +dA.
8. Let A = [ai;], B = [bi;], C = [cij]. So Similarly, you can show c(A + B) = cA +
(A+B)+C =lai + bij] + [cij] ¢B.
= [alj + b7,] + cl]]
= [ai;] + [bij + ci)
=A+(B+0).

Section 2.2, Page 60
1 -2 4 z1 -2
1 (a)[ 0 1—1}[932}: 5(3)[ 4

8 (b) not possible, (c)
T3 —15 15
o 25

1 -1 -3 T _[o 1 1 2
(b) [ 2 2 4-|[y = 6'(a)A_[2 S]andB_[l 2
[ -1 0 1 J [ P J work.
5] 7. Let Amxn = [a5;] a0d Broxn = [bis].
10
[ 3 J a1 0---0
L Ifb=[1,0,...,0]", : : =
2. (I+A+AH(I-A) = [ 3 4 ] = ami 0---0
I—A3 bll 0---0
|' 1 '| |' —9 '| S0 a;; = by, €tC. By
3 (a) 1 0 + x2 1 + b1 0---0
[ -1 J [ 0 J similar computations, you can show that for
4 3 eachij,aij:bijsoA:B.
xr3 -1 = 2 [} . .
4 1 8. (b) isnot nilpotent, the others are. For (d)
1 21 _3 A® = 0 s0 A isnilpotent.
O] 2 )ty e LT 12, Let A = [ay], B = [b,], and ¢ be

3 ascalar. Then the ijt* entry of c(AB) =
10 e(X,airbi;). The ij*" entry of (cA)B =
-3 Zk(caik)bkj = czkaikbkj = theijth
try of ¢c(AB). So
. 6 8 . .
4. (a) [19 + 3i], (b) { 3 4 ],(c) impossi- 12 10
14. f(A) =
ble -5 =12

Section 2.3, Page 71

6. (a) [0.3,0.4,0.3]", (b) the system does

T
tend toward [, 13 2]



0 0 0 O
1 0 0 O
82QA=|0 1 0 0
0 1 1 0
0 0 0 1
vertex | power
1 2
2 4
@) 3 3
4 5
5 3
strongess.

Section 2.4, Page 82
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SO O = =

Vertices 4 is the

2. (&) Interchange columns 1 and 2 of A.

3. () upper triangular, triangular, strictly tri-

angular and tridiagonal .

8. (a) E12(3), (b) Eij(—a), (c) E51(2), (d)

E»(3)

1 3

9.(Q) I = E15(—2)Ei (—1) { 1 2 ]

10.@[1 -3 2]" =

this matrix is not symmetric or Hermitian.

_ |
Lo

11.  (E2s(4)T

E3»(4)

1
-3 |,%
2

0 07

10| =
4 1 |

12. (a) false, (b) true, (c) fase, (d) fase, (€)

false

16. Let Q(z,y,2) = x" Ax where x =

2 2
[€,y,2)]  andA=| 0 1
0 0

Section 2.5, Page 94

1
1 @ [o

[NIEENIEENIES

—6
4 |.
1

| F—

Wi oOwl=
S— ]

—

RS)

1 -1 0
-1 2 -1 (c) inverse does not

node | power
1 7
2 8
9. (b) 3 10 , (b) 939
4 11
5 10

18. (AP A = AH(AT)H — AH A g
AT A isHermitian. Similarly, you can show
AAH isHermitian.

19. Since two vectors, a and b, will
each have rank < 1, rank(ab?) <
min{rank(a), rank(b”)} < 1.

0 *
23. If N = , N? =
0 0
0 O *
so N? has zeros
: .0
0 -+ -+ 0

along the first superdiagonal (in bold). By
similar computation, N has zeros along the
first and second superdiagonals, etc. There-
fore N"~' has zeros along al of its super-
diagonasso N ! = 0.

11 _1 1

0 1 1 -

0o 0 0 1
6 4 —4 7 -
E
iz 1t 13 tise
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2. @A = [

)
2]
3.(a)x:[2_011],(c)x: { i5 ]

7. 1f A* — 24 431 = 0, then (31 —
1A’)A = 1. S0 21 — 1 A? istheinverse
of A.

8. (@ E2(3), E2(-3), (b) Ex(-2),
Ea(~1/2)

N= Ol
NEMEMES

Section 2.6, Page 104

2.(@3,(b)1+14,(c)1,(d) —70, (e —6, (f)
—6, (g) 1. All of the matrices are invertible.
3. det A= —5,det B =4,anddet AB =
—20 so det AB = det A det B. Check that
det AT = —5 and det BT = 4.

6detV = (xl — :L'o)(xz — :L'o)(:L'Q — 1’1).
7. det Adet A™" = det AA™! = det ] =
1

1 1—2
0 142
det A" = 1—ianddetd = 1+is0
det AT £ det A.

8 Let A = [ ] Then

In general, det A¥” = det A. By D7 and
the definition of A%, det A = detA.
Two facts about conjugates in section 1.2 are
Z21+22 =71 +Zandzizz = Z1'Z2. Since
the computation of det A isacombination of
taking the products and sums of conjugates
of the coefficients of A, det A¥ = det A.

9. Let A be a square matrix with a non-zero
determinant. By determinantal law D2, if

}, (b)

Section 2.7, Page 113

2. (@ [ -

=N =
oviE O
=Nl o

13. (I+ N+ N? 4+ ...+ NF"1) (I = N)
=({T4+N+N 4+ .+ N"HT—(I+
N+N*4+.. . +N"Y)N=(I+N+N?+
AN (N N2+ N3+, +N¥)
=1—N*,

14. If N is nilpotent, (I — N)™' =
IT+N+N?4. . 4NFL

1 -1 277" 11 -3
@lo 11 =lo0o 1 —-1/|.
0 o0 1 00 1

15. f(z3) ~ 0.7391

you multiply one row of A by the scalar mul-
tiple zero, the determinant of the new matrix
is0  det A = 0 so any matrix with arow of
zeros has zero determinant.

10. —32 det(A), m
11. After preforming row oper-
ations on M, it can be reduced to
— rref(A) * i
M= 0 rref (C) Al

ter reduction, M’', rref(A4), and rref(C)
are al upper triangular so det M' =
det(rref(A)) det(xrref(C)).

Let A’ be the product of the row oper-
ations to reduce A and C' be the prod-
uct of the row operations to reduce C.
So the product of the row operations
to reduce M is A'C'. So detM' =
det M det(A'C’) = det M det A’ det C’
and  det(rref(A)) det(rref(C)) =
det Adet A’ det C det C'. Sincedet M’ =

det(rref(A)) det(rref(C)), detM =
det Adet C.
-7
-1 1 T =5
s "TITER Q m=1
Tro2 = 51)1 - 51)2 _ %1
r3 = 5
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Yo = co + C1T0 + C2Th
4. Thesystemis y1 =co +ciz1 + 021‘%

Yo = co + c1z2 + C23.
The determinant of the coefficient matrix is
(xl — xo)(:L'Q — :L'o)(:L'Q — xl) which equals
0 when 1 = 2o, X1 = x2,0l Ty = Xp.

Section 2.8, Page 117

2 -1 0 0 0 0
1 0 0 0 0 0

1 4 -2 4 -2 2 -1

' 2 0 2 0 1 0|’
2 -1 0 0 2 -1
1 0 0 0 1 0

2 0 0 -1 0 0

4 4 2 -2 -2 -1

2 0 2 -1 0 -1

1 0 0 0 0 0

2 21 0 0 0

1 0 1 0 0 0

Section 2.9, Page 123

1[ ]U

2 -1 1
0 4 -3 |,x=[,-22"

0 0 -1

1 0 0
1 1 0
2 11

Section 2.10, Page 123
4 1 5

Ll1 6 0
5 0 —4

2. A isinvetible if ¥ # 6, and then
— 1
A~ = [ k;a k=6 ] .

k—6 k—6

3.21

5. Since the matrix of minors of A has
integer coefficients, adj A must be a ma-
trix of integer coefficients. Since A™! =
= adjA = —1-adjA, A" isthe prod-
uct of an integer scalar and a matrix with in-
teger coefficients so A~ must have integer

coefficients.

andU = where u;; #

0 Unn
0. Soa; = U1, buta11 =0s0ai 7& Ul1.
Sincethereisno U, thereisnot an LU factor-
ization of A.

10
4, LetA_{Ol]andB_
1 0 . .
0 —1 . Then A and B are invertible

matricessincedet A # 0 anddet B # 0, but
A+ Bisnotinvertible since det(A + B) =
0.

5. Let A = [a;;] sotheijt" entry of A4+ AT
is a;; + aji and the jith entry is aj; + a;j.
So A + AT is symmetric.
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Section 3.1, Page 134

1. V isavector space.

2. V isnot avector space because it is not
closed under vector addition and scalar mul-
tiplication.

3. V isnot avector space because it is not
closed under scalar multiplication.

4.V isavector space.

5. V isnot a vector space because it is not
closed under vector addition.

6. V isavector space.

7.
c0 =¢(0 + 0)
c0 =c0+ c0
(c0 + (—c0)) = 0 + (c0 + (—c0))
0=c0+0
0=c0

Section 3.2, Page 141

1. W isnot a subspace of V' because W is
not closed under addition and scalar multipli-
cation.

2. W isasubspace of V.
3. W isasubspace of V.
4. W isasubspace of V.
5. W isasubspace of V.

6. W isnot a subspace of V' because W is
not closed under scalar multiplication.

7.Not a subspace, since W doesn’t contain
the zero element.

11. (a) Spans P2, (b) does not span P-

12. For example, v = (1,1,0) and w =
(1,-1,-2).

13. The spans are equal.

14. Let A and B ben x n diagonal matrices.
Then cA isadiagonal matrix and A + B isa

diagonal matrix so the set of diagonal matri-
cesis closed under matrix addition and scalar

(—e)v = (-1le)v
8. = —1(ev)
=—(cv)
Similarly, you can show (—c)v = ¢(—v) =
—(ev).
9. Supposecv = 0. If ¢ = 0, we'redone by
Law 1. Elseif ¢ # 0, then thereis 1 so that

(D)ev = (2)0

(%c)v =0
lv=0
v=0

Soc=0o0orv =0.

13. (@) Islinear, but range isnot V, (b) Is not
linear, (c) Islinear, rangeis V.

14. (a) T is not a linear transformation
because T'((1,0) + (0,1)) = T(1,1) =
1(0,1) = (0,1) but T(1,0) + 7(0,1) =
1(0,0) 4+ 0(0,1) = (0, 0).

multiplication. Therefore the set of diagonal
matrices is a subspace of R™™.

5. @ If z,y € U and z,y € V,

z,y €UNV. Thencx € Uandcx € V s0
cceUNV,andz+yeUadz+yeV
sox+y € UNV. ThereforeUNV isclosed
under addition and scalar multiplication so it
is a subspace of W.
(b) If U, u2 € U and v1,V2 € v,
u1+v1,uz+v2 € U+V. Thencu, € U and
cv1 € Vsoc(ui4vi) = cur+cvy € U4V,
and u;1 +u2 € Uand vy +v2 € V 50
(u1 +v1) + (u2 +v2) = (w1 +u2) + (v1 +
v2) € U + V. Therefore U + V is closed
under addition and scalar multiplication so it
is a subspace of W.

17. @ If A = [aij], vec(A) =
(au,azl,alz,azz) so for A there ex-
ists only one vec(A). If vec(4) =
(a11,a21,a12,a22), A = [a;;] sofor vec(A)
there exists only one A. Therefore the vec
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operation establishes a one-to-one correspon-
dence between matricesin V' and vectors in
R*.

(b) Let A = [a;j] and B =
[bij]. So cvec(A) + dvec(B) =

Section 3.3, Page 150

1. (8 linearly independent, (b) each vector
is redundant, (c) each vector isredundant
3. (a) linearly independent, (b) linearly inde-
pendent, (c) each vector is redundant
4. (a) (_17 _27 3)‘ (b) (3’ 1’ g)

5. @ v € span{ui,ux}, (b)
Spa‘n{uh uz, (17 07 _1)}

6. @ v ¢

span{u;, uz, v}

span{ui,us}, (b)

Section 3.4, Page 159

@ [, B o
NA) = span{h © ) =

span{(1,1,3),(0,1,2)},
Spa’n{(172707071)7

(e) vector of coefficients belong to
span{(-2,1,0,0,0), (0,0,

@ R(4) =
(172717171)}

[1 2 0 0 1 7
2@l 0 0 1 1 0 -7
[0 00 0 0 ﬂ—2a—7
N(4) = span{(—2,1,0,0,0),
(0,0,—1,1,0),(—1,0,0,0,1)}, (c) C(A) =
span{(1,1,3),(0,1,2)}, (d) R(4) =
Spa’n{(]‘7 707 ) (172717171)}

Section 3.5, Page 164

1 (&) none

5. () true, (b) false, (c) true, (d) true, (€)
true, (f) true, (g) fase, (h) false, (i) fase, (j)
false, (k) true

7. Since P is a subspace of C[0,1] and
dim P isinfinite, dim(C10, 1]) isinfinite.

8. dim({E;;}) = mn = dim(R™"). If
ciiBi1+ ...+ ¢cjEi; = 0,c0 =0

Section 3.6, Page 173

1. R(A) = span{(1,0),(0,1)}, C(4) =
Spa‘n{(():_l:l):(zalal)}v N( )

c(ai1,az21,a12,a22) ~+d(bi1,b21,b12,b22)
= (cair + dbi1,cas1 + dbai,carz +
db12, casz + dbzz) = vec(cA + dB).

18.1f k > 1, Vi =span{A° A'}.

7. span {v1,v2}

13. Start with anontrivial linear combination
of the functions that sumsto 0 and differenti-
aeit.

15. Assume v; = v;. Then there exists
¢i = —c¢j # 0 suchthat civi + cave +
otevi+.. . +cvi+ ...+ v, =0.
Therefore {vi,va,...,v,} is linearly de-
pendent.

(e) vector of coefficients belong to
Span{(_27 17 07 07 0)7 (07 07
() {(a, B)IB — 2a = 7 =0}

1 0 1 2
4, 1 1 3—22 —4
~1,1,0),(~1,0,0,0,1)} L 0 1 LiL-3

6. T' isnot one-to-one sinceker T’ # {0}.

10. Since A is nilpotent, there exists m such
that A™ = 0 so det(A™) = (det A)™ =
and det A = 0. Therefore A isnot invertible
so N (A) # {0}. Alsosince A is nilpotent,
by Exercise 14 in Section 2.4, (I — A)™* =
T+A4+A>+... +A™ ! Sincel — Ais
invertible, V(I — A) = {0}.

for each a,b because E, ; is the only ma-
trix with a nonzero entry in the (a, b)th po-
sition. Therefore {E;;|i=1,... ,m, j=
1,...,n} is a basis of the vector space
R™™,

13. The dimension of the space is n(n +

1)/2.

_17 17 0)7 (_17 07 07 07 1)}1
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span{0},
R(B) = span{(l 70, 2),(0,1,0)},
C(B) = span{( ) )7( 0, 1)}‘

N(B) = span{(2,0,1)},
R(C) = Spa‘n{(L 07 _27 _2)7 (07 17 é,Z)}

co) = span{(l —1),(2,0)}, N(C) =
span{(2, 5+, 1,0),(2,-2,0,1)}

2. (a) (c1,c2,c3,ca) suchthat civi+cava+
c3vs + cava = O wherec; = —2c¢3 — 2c4,
¢y = —cs, and c3, cq4 are free. Dimension of
span{vi, vz, vs, v4} iS2.

(b) (01,02,03) such that

c1Vi + cava + c3vs = 0 wherec; = 2c¢3,

ce = —c3, and c3 isfree.

4. (8 R(A) = span{(1,0,-1,0,0,—-2, -3),
(0,1,1,0,0,2,3), (0,0,0,1,0,4,5),
(0,0,0,0,1,6,7)}, rankA = 4.
C(A) = span{(3,1,3,0,0), (1,1,2,2,3),
(0,-1,1,-1,3), (1,1,1,1,-3)}.
N(A) = Span{(17 71707 07 70)7

Section 3.7, Page 178
2 0 '|

-1 0|, dom(T) =
11

Spa‘n{(la ) 0)7 (07 17 0)7 (07 07 1)}1 range(T) =

Section 3.9, Page 182

1. (a) W is not a subspace of V' because W
isnot closed under matrix addition. (b) W is
not a subspace of V' because W is not closed
under matrix addition.

Section 4.1, Page 191

1.(c) V10,2 +1

6. ||cv|| = |e|||v|| by Basic Norm Law #2.
Sincec € Rand ¢ > 0, [[ev]] = c|lv]].
So a unit vector in direction of cv iSu.y =
ev/e||lvl| = v/||vl] = uv. If ¢ < 0, then
Uey = —Uy.

Section 4.2, Page 200

N
/-\
&

Uy, =

@ 90°, (b) uy, = [*%2,0,%2]7,
[@%—%F © 0, (d) |vi-va| =

(27 _27 07 _47 _67 17 0)! (37 _37 07 _57
nullity(A) = 3.

_7707 1)}'

10. Since Ax = b isaconsistent, b €
C(A). If {c;}, the set of columns of A,
has redundant vectors in it, aic1 + azco +
.+ anc, = O for some a; # 0. If
dic1 +dsca + ... + dncn = b is asolu-
tion for Ax = b, then (a1 + di)c1 + (a2 +
d2)ea +...+ (an +dn)c, = bisasoaso-
lution. Therefore the system has more than
one solution.

11. dim(M,x,(R)) = n? 0
{I,A,A2,...,A""} must be linearly de-
pendent since dim{I, 4, A2,... A”'} =
n? 4+ 1 > dim(M,x.(R)). So there ex-
istscol + c1 A+ caA% + - + cnzA"2 =
0 € Mpxn(R) with some ¢; # 0. Pick
p(x) = cotciz+-- -+cn2A”2 sop(z) #0
and p(A) = 0.

span{(l, 17 0)7 (27 _17 1)7 (07 07 1)}1
ker(T) = {0}

9. (a) true, (b) false, (c) true, (d) true, (€) true,
(f) false, (g) false, (h) false, (i) false (consider
1 1

1 1 )
7. Letu = (u1,...,un) € R*, v =
(viy...,vn) € R*, and ¢ € R. Then
(cu) - v =(cur)vi + ... + (cun)v, and
v - (cu) = vi(cu1) + ... + vn(cun) SO
(cu)-v = v-(cu). Similarly, you can show
(cu) - v=v-(cu)=c¢(v-u) =c(u-v).

0 and [lviff[[v2]l
Ivall vl

\/6 SO |V1 'V2|
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4. The normal equations are AT Ax =
ATb.

®x = [£3z2]", b - 4ax =
[—4 —16 8 ]T’ b — Ax|| = 4v21

210 721 221 21

Section 4.3, Page 208

1. (a),(b), (), (d) are linearly independent;
(@), (c) and (d) are orthogonal; (c) is an or-
thonormal set.

2. V1 -V :0,V1-V3:0,andV2-V3:0
s0 {v1, v2, va} isan orthogonal basis of R?.

Section 4.5, Page 212

1 [\/5 V6 7\/5]T

663
Section 5.1, Page 222

1 (a) -2,-1, (b) 2,0,5, (C) 2,2,3, (e)
~1,-1,-1.

2. (8 The basis of £_5 is {(3,1)}, and
the basis of £_1 is {(4,1)}. Both age-
braic and geometric multiplicity of each is
1. (b) The basis of & is {(1,0,0)}, the
basis of & is {(0,1,—3)}, and the basis
of & is {(0,1,2)}. (c) The basis of & is
{(0,-1,1),(1,0,0)}, and the basis of &5 is
{(1,1,0)}. (¢) A basisof £_1is{(0,0,1)}.
The algebraic multiplicity of the eigenvalue
—1 is 3, while the geometric multiplicity is
1.

4. @trA=-3=—-2+-1,(b)trA =
7T=2+40+5 (QtrA=7=2+2+3

5 @ p) = (@ =N = A) = be,
AL = ta+id+3+/(a® — 2ad + d? + 4bc),
A2 = ta+id—1/(a® — 2ad + d? + 4bc),
MtrA=a+d= X+ X, (c)detA =
ad — bc = )\1)\2

6. For A, the basis of &; is {(1,0)}, and
the basis of £, is {(1,1)}. For AT, the ba-
sisof & is{(—1,1)}, and the basis of &; is
{(0,1)}.

Section 5.2, Page 230

v = [13][5] -
[fn+1+fn]

fn+1

fn+2

- [ fo+1 ] -

@Qx=[2—-as3 —a:g,xg]T where z3 is
free, b — Ax = [2,35,2], |[b— Ax|| =
2V14
7

The coordinates of v, (ci1, ¢2, ¢3), such that
c1V1 +c2va +c3vy =V are(g, =5 %5)

3. {6 = wk|k € Z} makes A symmetric.
2. ||u| =v/7,u-v=0

7. The eigenvalues of A are 2 + ¥3; and
3.
- 35 ¢

w|w

8. Since (AT — A)T = X — AT and
det(AI — A)T = det(A — A), det(\ —
A) = det(A\ — A7) so A and A” have the
same eigenval ues.

9. Sincex isan eigenvector of A with eigen-

value A\, Ax = Ax. S0 A(cx) = c¢(Ax) =
c¢(Ax) = A(cx). Therefore cx is an eigen-
vector of A with eigenvalue .

10. Let X be an eigenvalue of A with eigen-

vector v suchthat Av = Av. So(I—A)v =
Iv—Av=v—Xv=(1-X)v. Thusif A
isan eigenvalue of A, 1 — X isan eigenvalue
of I —A. Since|A\| < 1,1 —X> 0soevery
eigenvalue of T — A is nonzero. Therefore
I — Aisinvertible.

11. Let X be an eigenvalue of A with eigen-

vector v such that Av = Av. If Aisinvert-
ible, \ # 00 A" Av = A~ )\v and thus
A™'v = $v. Therefore 1/X is an eigen-
vaueof A1
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(1+2\/3)n(5-ii6/3) +

® o
(=5)m (5

)

Section 5.3, Page 238

1. (@), (b), (c), and () are diagonalizable
because they are non-defective. (d) and (f)

are not diagonalizable because they are de-
fective.

2 0 0
0 301, (P
0 0 2

Section 5.4, Page 243

I
| — |
|

—_ =
|

[N
—

1. (a) 24+v?2,2-v2, (b) —3,2,(c) 0, 2, 3,(f)
1,14+2v2

2. (a) The basis of &, 5 is {(—i —
iv/2,1)}, andthebasisof £,_ 5 is{(1, —i+
iv2)}. (b) The basis of £_3 is {(=2,1)},
and the basis of & is {(1,2)}. Also P =

27 ] e=]7 5 ]om

basisof £ is{(—1—1,1,0)}, thebasisof £,
is{(0,0,1)}, and thebasisof £ is{(1,1 —

Section 5.7, Page 258

3. Eigenvaues are 5,—4,1 + 2iv/5,1 —
2iv/5.
:|, D )

Section 5.8, Page 259

.

=
S O =
O = w

[ 1 0 0 '|

0 1 0

[ 0 0 5 J

4. (a) false, (b) true, (c) false, (d) fase, (e)
true

5. Let X\ be an eigenvalue of A and v be
an eigenvector of A so that Av = Av. So

Section 6.1, Page 265

LIl = 24+v2, [Ix]], = 2, IIXII = V2,
Iyl =8, llyll, = V22, Iyl

Ser=]i2)

0
=1
2

>

I
. | — |
=™

[

S
I
| —
oONIw

3. (b) haslim A* = 0.

6. (@) there is no dominant eigenvalue, (b)
—4, (c) thereis no dominant eigenvalue

,0)}. (d) The basis of & |s{( ,
andthebassoff,’gls{( .1}
ﬁ[ 2 1+i] D— {
6 | -1+ 2 |’

$h
P =
4. @ A = AT, (b) the basis of & is
{(—, 1)}, the bass of & is {(3,1)}, (0)

P2 1o [ e

2—l—
Also
0 0
0 3

1 1 0 4
A* = ppkpPT

(A+I)v=Av+Iv=2Av+v =(A+1)v.
Therefore, A + 1 isan eigenvalueof A + 1.

7. The eigenvalues of A are a - b and
0 (with multiplicity » — 1). The ba
sis of €a.b is {a}, and the basis of & is
{(_b27b1707 . 70)7(_b3707b1707~" 70)7

,(=bn,0,...,0,b1)}.

9. Let A be Hermitian symmetric so A =
AT S0 A(AT) = AT (AT) = AT (A).
Therefore A isnormal.
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2. up = %(1 —3 —1) 18 D) =
Y1, -3,~1), us = 5(1,-3,-1)

S utv|,=7<6+
5.v2

6. max{|[Ax|| | [|x|| =1} = maxja| +
[bl, el + |d[}

7. Letu = (ug,..

+7=[ull, +Ivlly

) and v

(v1,...0p) SO |[u]l, = Jur]|+ ...+ |un| >
0. Also |jcul|, = |cui| + ... + |cun| =
leflu] + ... + lel|ual = Ie|[[ull,, and

Section 6.2, Page 274

L|<u,v>|=4<V70 = [ull[lv]|

2. () 0 ~ 118.56 °, (b) 0 ~ 23.58 °

3. All are linearly independent; (a), (c), (d)
and (e) are orthogonal; (c) is an orthonormal
Set.

4, < [x1,22]7, [X1, 2] >= 32} — 223
Since 3z} — 223 is not necessarily greater
than or equal to 0, the given law failsthefirst

condition of the definition of an inner prod-
uct.

Section 6.3, Page 284

1. For standard inner product (2, 1,1); the

27
other gives (12, %, %)

2. @ {Q,
2(0,-1,1)}, () (2,
1
0,%2,2),@ | 0
0
2,2,3]"

Section 6.4, Page 293

vo
o
e
vl S
=
O
/\“O
|
L
|
L
=

[NIS

2,3,3)+

WiFNl= O wlo
NI=NI= O

—_
@
5
g
I

l\?lO‘

L (a) Vl = Span{(17 17 0)7 (_27 07 1)}
3.Vt =span{(2,1,0),(-1,0,1)}

PREE]

Section 6.7, Page 306

1 (a) {(171 171)7(17_1717_1)7
(07_17071)}‘(b){ ( 717171)7%(17_1717_1)7
Lo L o
01 0 0
4(07_17071)}’((:) 1 0 1 0
2 2
0 0 0 1

T Y P
lur| + ...+ |un| + |oi]| + ...+ |on] =
lall, + vl -

8 v = limyyeve = [-1,1]
vV—v, = [%,—e_n]T O [[v -y, =
(2 4+ e uwd and v —val, =
V(£)2 + (e7™)*n— 0. Therefore

lim,, o0 vy, iSthe same with respect to both
that 1- and 2-norm.

9. [0,0)"
<u,v> = (Au)?Av
7. = [2u1, 3us] [ v ]
U2
= 2u1v1 + 3us2v2
8 4%

9. If w € V, then Theorem 4.3.3 supplies a
formula for w, which we can check. Doing
so showsw ¢ span{(1,1,0),(—1,1,1)}.

3' (a) |4 = Span{%(_L_l:l:l):
1(1,1,1,1), %2(0,0,-1,1)}, (b)
(1/2,1/2,0,0), (c) (1/2 1/2,0,0

(%27 _1/27 070)1 (d)

O O NN

10. UNV = span{(3,3,1)}.
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N
alS

3. The formula does not define an inner
product on R?.
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Unitary matrix, 204
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free, 25
Vector
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convergence, 188
coordinates, 147
definition, 20
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limit, 71, 155, 188, 191
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linearly independent, 143
orthogonal, 194, 271
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unit, 187
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