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INTRODUCTION 

Th e word trigonometry comes from Greek words meaning measurement 
of triangles. Solving triangles is one of many aspects of trigonometry 

that you study today. To develop methods to solve triangles, trigonomet- 
ric functions are constructed. The study of the properties of these func- 
tions and related applications form the subject matter of trigonometry. 
Trigonometry has applications in navigation, surveying, construction, and 
many other branches of science, including mathematics and physics. 

Why You Need This Book 
Can you answer yes to any of these questions? 

.I Do you need to review the fundamentals of trigonometry fast? 

II Do you need a course supplement to trigonometry? 

II Do you need a concise, comprehensive reference for trigonometry? 

If so, then CliffsQuickReview Trigonometry is for you! 

HOW to Use This Book 
You're in charge here. You get to decide how to use this book. You can 
either read the book from cover to cover or just look for the information 
you need right now. However, here are a few recommended ways to search 
for topics: 

II Flip through the book looking for your topics in the running heads. 

II Look in the Glossary for all the important terms and definitions. 

.I Look for your topic in the Table of Contents in the front of the book. 

II Look at the Chapter Check-In list at the beginning of each chapter. 

II Look at the Chapter Check-Out questions at the end of each 
chapter. 

II Test your knowledge with the CQR Review at the end of the book. 



Visit Our Web Site 
A great resource, www . c 1 i f f sno t e s . c om, features review materials, valu- 
able Internet links, quizzes, and more to enhance your learning. The site 
also features timely articles and tips, plus downloadable versions of many 
CliffsNotes books. 

When you stop by our site, don't hesitate to share your thoughts about this 
book or any Hungry Minds product. Just click the Talk to Us button. We 
welcome your feedback! 



Chapter 1 

Chapter Checkin 

U Understanding angles and angle measurements 

O Finding out about trigonometric functions of acute angles 

U Defining trigonometric functions of general angles 

U Using inverse notation and linear interpolation 

H istorically, trigonometry was developed to help find the measurements 
in triangles as an aid in navigation and surveying. Recently, trigonom- 

etry is used in numerous sciences to help explain natural phenomena. In 
this chapter, I define angle measure and basic trigonometric relationships 
and introduce the use of inverse trigonometric functions. 



An angle is a measure of rotation. Angles are measured in degrees. One 
complete rotation is measured as 360". Angle measure can be positive or 
negative, depending on the direction of rotation. The angle measure is the 
amount of rotation between the two rays forming the angle. Rotation is 
measured from the initial side to the terminal side of the angle. Positive 
angles (Figure 1 - 1 a) result from counterclockwise rotation, and negative 
angles (Figure 1 - 1 b) result from clockwise rotation. An angle with its ini- 
tial side on the x-axis is said to be in standard position. 

Figure 1-1 (a) A positive angle and (b) a negative angle. 

Angles that are in standard position are said to be quadrantal if their ter- 
minal side coincides with a coordinate axis. Angles in standard position 
that are not quadrantal fall in one of the four quadrants, as shown in 
Figure 1-2. 



Figure 1-2 Types of angles. 
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Example 1: The following angles (standard position) terminate in the 
listed quadrant. 

94" 2nd quadrant 

500" 2nd quadrant 

-100" 3rd quadrant 

180" quadrantal 

-300" I st quadrant 

Two angles in standard position that share a common terminal side are 
said to be coterminal. The angles in Figure 1-3 are all coterminal with an 
angle that measures 30". 

All angles that are coterminal with do can be written as 
ci!" + i l .  360 " 

where n is an integer (positive, negative, or zero). 

Example 2: Is an angle measuring 200" coterminal with an angle mea- 
suring 940°? 

If an angle measuring 940" and an angle measuring 200" were cotermi- 
nal, then 

Because 740 is not a multiple of 360, these angles are not coterminal. 



Figure 1-3 Angles coterminal with -70'. 



Example 3: Name 4 angles that are coterminal with -70°. 

Angle measurements are not always whole numbers. Fractional degree mea- 
sure can be expressed either as a decimal part of a degree, such as 34.25O, 
or by using standard divisions of a degree called minutes and seconds. The 
following relationships exist between degrees, minutes, and seconds: 

1 degree = 60 minutes 

1 minute = 60 seconds 

or 

1 " - 60' 

1'- GO" 

Example 4: Write 34" 1 i' using decimal degrees. 

- 34.25" 

Example 5: Write 12 " 18'44" using decimal degrees. 

z i z O +  .jo+ .onzO 
=r-: 12.312' 

Example 6: Write 8 1 .29:i0 using degrees, minutes, and seconds. 



Functions of Acute Angles 
The characteristics of similar triangles, originally formulated by Euclid, 
are the buildine blocks of trieonometrv. Euclid's theorems state if two 

0 0 J 

angles of one triangle have the same measure as two angles of another tri- 
angle, then the two triangles are similar. Also, in similar triangles, angle 
measure and ratios of corresponding sides are preserved. Because all right 
triangles contain a 90" angle, all right triangles that contain another angle 
of equal measure must be similar. Therefore, the ratio of the correspond- 
ing sides of these triangles must be equal in value. These relationships lead 
to the trigonometric ratios. Lowercase Greek letters are usually used to 
name angle measures. It doesn't matter which letter is used, but two that 
are used quite often are alpha (a) and theta (8). 

Angles can be measured in one of two units: degrees or radians. The rela- 
tionship between these two measures may be expressed as follows: 

) 

The following ratios are defined using a circle with the equation .Y ' + 1' - i- 
and refer to Figure 1-4. 

Figure 1-4 Reference triangles. 



Remember, if the angles of a triangle remain the same, but the sides 
increase or decrease in length proportionally, these ratios remain the same. 
Therefore, trigonometric ratios in right triangles are dependent only on 
the size of the angles, not on the lengths of the sides. 

The cotangent, secant, and cosecant are trigonometric functions that 
are the reciprocals of the sine, cosine, and tangent, respectively. 

/~ngt /?  c[ J ~ & J  c ~ l j a c ~ ~  t to  
cot(~ngentrf = cot u = = 

.l I ~ n g t h  o f  s i d ~  oppos i t~  to a 

If trigonometric functions of an angle 8 are combined in an equation and 
the equation is valid for all values of 8, then the equation is known as a 
trigonometric identity. Using the trigonometric ratios shown in the pre- 
ceding equation, the following trigonometric identities can be constructed. 

Symbolically, (sin a)' and sin2 a can be used interchangeably. From Fig- 
ure 1-4 (a) and the Pythagorean theorem, x ' + y = ;* '. 

These three trigonometric identities are extremely important: 



Example 7: Find sin 8 and tan 8 if 8 is an acute angle ( o 0  < 8 i 90" and 
cos 8 = 114. 

sin' 8 i- cos' 8 - 1 sin 8 tar18 - - 
cos 8 

15 
sin ' 8 = - 

i 6 

Example 8: Find sin 8 and tan 8 if 8 is an acute angle ( O"  i 8 < 90") and 
tan 8 = 6. 

If the tangent of an angle is 6, then the ratio of the side opposite the angle 
and the side adjacent to the angle is 6. Because all right triangles with this 
ratio are similar, the hypotenuse can be found by choosing 1 and 6 as the 
values of the two legs of the right triangle and then applying the 
Pythagorean theorem. 

lmgth of xi& izajf~c~~lt to 8 
cos Cj" - 

1 
/qpotrnrwe 

- 

,/ 37 



Trigonometric functions come in three pairs that are referred to as cofunc- 
tions. The sine and cosine are cofunctions. The tangent and cotangent are 
cofunctions. The secant and cosecant are cofunctions. From right triangle 
XYZ, the following identities can be derived: 

X 1' sirlX= , = cos 5.' sin I;'= $ = cosX 

.Y 2' t , l t lX - - cot Y 
1' 

tan Y -  - cotX 

Using Figure 1-5, observe that / S  and / Y are complementary. 

Figure 1-5 Reference triangles. 

Thus, in general: 

r i n a - c u s ( 9 0 ~ - a )  c o s a - s i 1 1 ( 9 0 ' - a j  , 

t . ~ n a  = cot (90' - a )  coca = tan j 90' - a )  

Example 9: What are the values of the six trigonometric functions for 
angles that measure 30°, 45", and 60" (see Figure 1-6 and Table 1 - 1). 



Figure 1-6 Drawings for Example 9. 

Table 1-1 Trigonometric Ratios for 30°, 45", and 60" Angles 

8 sin 8 csc 8 cos 8 sec 8 tan 8 cot 8 

Functions of General Angles 
Acute angles in standard position are all in the first quadrant, and all of 
their trigonometric functions exist and are positive in value. This is not 
necessarily true of angles in general. Some of the six trigonometric func- 
tions of quadrantal angles are undefined, and some of the six trigonomet- 
ric functions have negative values, depending on the size of the angle. 
Angles in standard position have their terminal side in or between one of 



the four quadrants. Figure 1-7 shows a point A (x, y) located on the ter- 
minal side of angle 8 with r as the distance AO. Note that r is always pos- 
itive. Based on the figures, 

Figure 1-7 Positive angles in various quadrants. 



If angle 8 is a quadrantal angle, then either x or y will be 0, yielding the 
undefined values if the denominator is zero. The sign, positive or negative, 
of the trigonometric functions depends on which quadrant this point A 
(x, y) is located in. Table 1-2 summarizes this information. 

Table 1-2 Signs of Trig Functions in Various Quadrants 

Function Quadrant 

sin 8, csc 8 + + - - 

cos 8, sec 8 + - - + 
tan 8, cot 8 + - + - 

One way to remember which functions are positive and which are nega- 
tive in the various quadrants is to remember a simple four-letter acronym, 
ASTC. This acronym can remind you that All are positive in quadrant I, 
the Sine is positive in quadrant 11, the Tangent is positive in quadrant 111, 
and the Cosine is positive in quadrant N. This acronym could stand for 
Arizona State Teacher's College, All Students Take Classes, or some other 
four-word expression that will help you remember the relationships. 

Table 1-3 summarizes the values of the trigonometric functions of quad- 
rantal angles. Note that undefined values result from division by 0. 

Table 1-3 Values of Trig Functions for Various 
Quadrantal Angles 

sin 8 cos 8 tan 8 cot 8 sec 8 csc 8 

0" 0 1 0 undefined 1 undefined 

90" 1 0 undefined 0 undefined 1 

180" 0 - 1 0 undefined -1 undefined 

270" -1 0 undefined 0 undefined -1 

The six trigonometric functions of angles that are not acute can be con- 
verted back to functions of acute angles. These acute angles are called the 
reference angles (see Table 1-4). The value of the function depends on 
the quadrant of the angle. If angle 8 is in the second, third, or fourth quad- 
rant, then the six trigonometric functions of 8 can be converted to equiv- 
alent functions of an acute angle. Geometrically, if the angle is in quadrant 



11, reflect about the y-axis. If the angle is in quadrant IV, reflect about the 
x-axis. If the angle is in quadrant 111, rotate 180". Keep in mind the sign 
of the functions during these conversions to the reference angle. 

Table 1-4 Reference Angle Values in Various Quadrants 

Function Quadrant 

sin 8 sin (1 80" - 8) -sin (8 - 180 ") -sin (360" - 8) 

cos 8 -COS (180" - 8) -COS (8 - 180") cos (360" - 8) 

tan 8 -tan (180" - 8) tan (8 - 180") -tan (360" - 8) 

cot 8 -cot (180" - 8) cot (8 - 180") -cot (360" - 8) 

sec 8 -sec (180" - 8) -sec (8 - 180") sec (360" - 8) 

csc 8 csc (180" - 8) -CSC (8 - 180") -CSC (360" - 8) 

Example 10: Find the six trigonometric functions of an angle a that is 
in standard position and whose terminal side passes through the point 
(-5, 12). 

From the Pythagorean theorem, the hypotenuse can be found. Then, the 
six trigonometric functions follow from the definitions (Figure 1-8). 

Figure 1-8 Drawing for Example 10. 



Example 11: If sin 8 = 113, what is the value of the other five trigono- 
metric functions if cos 8 is negative? 

Figure 1-9 Drawing for Example 11. 

Because sin 8 is positive and cos 8 is negative, 8 must be in the second 
quadrant. From the Pythagorean theorem, 

and then it follows that 

1 
co te  =- 2\12 

3 3 J 2  scce =- /=-/I 2 J t  



Example 12: What is the exact sine, cosine, and tangent of 330°? 

Because 330" is in the fourth quadrant, sin 330" and tan 330" are nega- 
tive and cos 330" is positive. The reference angle is 30". Using the 30": 
60" - 90" triangle relationship, the ratios of the three sides are 1, 2, ,/1. 
Therefore, 

1 
0 3 / 3 

C O S ~ O  - -i-- and cos330"- + 

Tables of Trigonometric Functions 
Calculators and tables are used to determine values of trigonometric func- 
tions. Most scientific calculators have function buttons to find the sine, 
cosine, and tangent of angles. The size of the angle is entered in degree or 
radian measure, depending on the setting of the calculator. Degree mea- 
sure will be used here unless specifically stated otherwise. When solving 
problems using trigonometric functions, either the angle is known and the 
value of the trigonometric function must be found, or the value of the 
trigonometric function is known and the angle must be found. These two 
processes are inverses of each other. Inverse notations are used to express 
the angle in terms of the value of the trigonometric function. The expres- 
sion sin8 - 0.4295 can be written as 8  - S i n  0.4295 01- 8 - ArcsinO.4295 
and these two equations are both read as "theta equals Arcsin 0.4295." 
Sometimes the expression "inverse sine of 0.4295" is used. Some calcula- 
tors have a button marked "arc," which is pressed prior to the function key 
to express "arc" functions. Arc functions are used to find the measure of 
the angle if the value of the trigonometric function is known. If tables are 
used instead of a calculator, the same table is used for either process. Note: 
The use of calculators or tables gives only approximate answers. Even so, 
an equal (=) sign is sometimes used instead of an approximate (:=: or 2) 
sign. 

Example 13: What is the sine of 48"? 

Example 14: What angle has a cosine of 0.39 12? 



Although a calculator can find trigonometric functions of fractional angle 
measure with ease, this may not be true if you must use a table to look up 
the values. Tables cannot list allangles. Therefore, approximation must be 
used to find values between those listed in the table. This method is known 
as linear interpolation. The assumption is made that differences in func- 
tion values are directly proportional to the differences of the measures of 
the angles over small intervals. This is not really true, but yields a better 
answer than just using the closest value in the table. This method is illus- 
trated in the following examples. 

Example 15: Using linear interpolation, find tan 28.43" given that tan 
28.40" = 0.5407 and tan 28.50" = 0.5430. 

1 tan?8.50° - 0.5430 ~ '. I 

Set up a proportion using the variable x. 

x 2: 0.000" 

Because xis the difference between tan 28.40" and tan 28.43", 

Example 16: Find the first quadrant angle cx where cos -: 0.2622, given 
that cos "4" 2: 0.2756 and cos 7.5" - 0.2588. 

/ coa 75.0":: 0.5588 
I I 

Set up a proportion using the variable x. 

Therefore, a = 74.0" + O.X" = 74.8". 



An interesting approximation technique exists for finding the sine and tan- 
gent of angles that are less than 0.4 radians (approximately 23"). The sine 
and tangent of angles less than 0.4 radians are approximately equal to the 
angle measure. For example, using radian measure, sin(). 15 = 0.149 and 
tan 0.15 zz 0.151. 

Example 17: Find 8 in Figure 1 - 10 without using trigonometry tables or 
a calculator to find the value of any trigonometric functions. 

Figure 1-10 Drawing for Example 17. 

Because sin 8 = 5/23 = 0.21739, the size of the angle can be approximated 
as 0.217 radians, which is approximately 12.46". In reality, the answer is 
closer to 0.219 radians, or 12.56"-quite close for an approximation. If 
the Pythagorean theorem is used to find the third side of the triangle, the 
process could also be used on the tangent. 

5'i-x'- 23 
5 

25 + s' = 529 tar16 - - - - 0.223 
22.45 

x = 504 
i Thus, 8 =: 0.223 radians. 

x - J 504 = 22.45 Also, a close approximation. 

Example 18: Find the measure of an acute angle a accurate to the near- 
est minute if tan a = 0.8884. 

a = 'l'nn ' 0.8884 
a 2: 41,6179" 

Using a calculator a .- l o +  i 0 . ~ 1 7 9 ) ( 6 0  ) '  



Chapter Checkout 

Q&A 
I .  True or false: An angle of size -20" is coterminal with an angle of 

size 700". 
2. Write 34.603 using degrees, minutes, and seconds. 

3. If 0" < 8 < 90" and sin 8 = i, find cos 8. 

4. If O0 < 8 < 90° and tan 8 = $, find sin 8. 

5. What is the exact cosine of 21 OO? 

6. Find the measure of an angle to the nearest minute if its cosine is 
0.678. 

7. What angle has a tangent of 3.4? r - 
J i J 3  

Answers: 1. T 2.  34O36'10.8" 3. cos8 = 7 4. sin 8 = 415 5. --j- 
6.47" 19' 7.73.6 1 ". 



Chapter 2 

TRIGONOMETRY OF TRIANGLES 

Chapter Checkin 

U Figuring out trigonometric ratios to find missing parts of right 
triangles 

O Using the law of cosines to solve triangles 

O Applying the law of sines to solve triangles 

U Finding the area of triangles by using trigonometric functions 

T riangles are made up of three line segments. They meet to form three 
angles. The sizes of the angles and the lengths of the sides are related 

to one another. If you know the size (length) of three out of the six parts 
of the triangle (at least one side must be included), you can find the sizes 
of the remaining sides and angles. If the triangle is a right triangle, you can 
use simple trigonometric ratios to find the missing parts. In a general tri- 
angle (acute or obtuse), you need to use other techniques, including the 
law of cosines and the law of sines. You can also find the area of triangles 
by using trigonometric ratios. 

Solving Right Triangles 
All triangles are made up of three sides and three angles. If the three angles 
of the triangle are labeled LL/I,LU, and LC,', then the three sides of the tri- 
angle should be labeled as a, 6, and c. Figure 2- 1 illustrates how lowercase 
letters are used to name the sides of the triangle that are opposite the angles 
named with corresponding uppercase letters. If any three of these six mea- 
surements are known (other than knowing the measures of the three 
angles), then you can calculate the values of t i e  other three measurements. 
The process of finding the missing measurements is known as solving the 
triangle. If the triangle is a right triangle, then one of the angles is 90". 



Therefore, you can solve the right triangle if you are given the measures of 
two of the three sides or if you are given the measure of one side and one 
of the other two angles. 

Figure 2-1 Drawing for Example 1. 

Example 1 : Solve the right triangle shown in Figure 2- 1 (b) if / /j = t 2 " and 
6=16. 

Because the three angles of a triangle must add up to 180°, 
A -- 90" - 1 B .  Thus, A -- 68". 

16 i'= - 
sin 22 * 

The following is an alternate way to solve for sides a and c: 

This alternate solution may be easier because no division is involved. 

Example 2: Solve the right triangle shown in Figure 2-1 (b) if 6 = 8 and 
a = 13. 



You can use the Pythagorean theorem to find the missing side, but trigono- 
metric relationships are used instead. The two missing angle measurements 
will be found first and then the missing side. 

6 a 
t ,~n h" = 7 tanA - - 6 

b sin h' = , 
8 - - - n3 o 8 
13 - 8 sim31.6 - 7 

In many applications, certain angles are referred to by special names. Two 
of these special names are angle of elevation and angle of depression. 
The examples shown in Figure 2-2 make use of these terms. 

Figure 2-2 a) Angle of elevation and b) angle of depression. 

horizontal 

horizontal 

(4 

Example 3: A large airplane (plane A) flying at 26,000 feet sights a smaller 
plane (plane B) traveling at an altitude of 24,000 feet. The angle of depres- 
sion is 40". What is the line of sight distance (x) between the two planes? 

Figure 2-3 illustrates the conditions of this problem. 

Figure 2-3 Drawing for Example 3. 



From Figure 2-3, you can find the solution by using the sine of 40": 

2000' x=- 
sin 40 O 

Example 4: A ladder must reach the top of a building. The base of the lad- 
der will be 25' from the base of the building The angle of elevation from 
the base of the ladder to the top of the building is 64". Find the height of 
the building (A) and the length of the ladder (m). 

Figure 2-4 illustrates the conditions of this problem. 

Figure 2-4 Drawing for Example 4. 

ExampIe 5: A woodcutter wants to determine the height of a tall tree. He 
stands at some distance from the tree and determines that the angle of ele- 
vation to the top of the tree is 40". He moves 30' closer to the tree, and 
now the angle of elevation is 50". If the woodcutter's eyes are 5' above the 
ground, how tall is the tree? 



Figure 2-5 can help you visualize the problem. 

Figure 2-5 Drawing for Example 5. 

From the small right triangle and from the large right triangle, the fol- 
lowing relationships are evident: 

0 i! cot 5 0  = ; 

Substituting the first equation in the second yields: 

.Y = 0.830 1 (0.839lx + 30' 1 

x = 0.7041~ + 25.17' 
.2959x - 25.17' 

x - 85.06' 

Note that 5' must be added to the value of x to get the height of the tree, 
or 90.06' tall. 

Example 6: Using Figure 2-6, find the length of sides x and y and the area 
of the large triangle. 



Figure 2-6 Drawing for Example 6. 

Because this is an isosceles triangle, and equal sides are opposite equal 
angles, the values of x and y are the same. If the triangle is divided into two 
right triangles, the base of each will be 6. Therefore, 

- - (12 j(16.48 ) 
2 

= 98.88 scl units 

Law of Cosines 
The previous section covered the solving of right triangles. In this section, 
and the next, you see formulas that can solve any triangle. If a ,  P, and y 
are the angles of any (right, acute, or obtuse) triangle, and a, 6, and c are 
the lengths of the three sides opposite a,P, and y, respectively, then 

These three formulas are called the Law of Cosines. Each follows from 
the distance formula and is illustrated in Figure 2-7. 



Figure 2-7 Reference triangle for Law of Cosines. 

From the figure, 

1' 
s i n 7  = i lndcosy = 1 il G 

Thus the coordinates of A are 

.Y= hcosynnd y = bsin y 

Remember, all three forms of the Law of Cosines are true even if is acute. 
Using the distance formula, 

7 7 1 '  

i . '  i; sin + h cos - L ~ G c o s y + n '  

i ' b ' (   in'^ + C U S ' Y )  - L N ~ C O S Y  + R' 

In the preceding formula, if 7 is 90°, then the cos 90° = 0, yielding the 
Pythagorean theorem for right triangles. If the orientation of the triangle 
is changed to have A or B at the origin, then the other two versions of the 
Law of Cosines can be obtained. 

Two specific cases are of particular importance. First, use the Law of 
Cosines to solve a triangle if the length of the three sides is known. 

Example 7: If a, P, and yare the angles of a triangle, and a, 6, and c are 
the lengths of the three sides opposite a, P, and 7, respectively, and a = 12, 
b = 7, and c = 6, then find the measure of p. 



Use the form of the Law of Cosines that uses the angle in question. 

b ' =  n. '+  r ' -  zaccosp 

Rewrite solving for cos P. 
L 1 2  + c 2  - b 2  

cosp = 2nc 

Because cos p > 0 and /3 : 1 80°, < 910". 'l'hus, 

/3 z 224.54" 
z 24'32' 

The measure of a can be found in a similar way. 

Rewrite solving for cos CX. 

Because cos a < 0 and a < 180°, a > 90". Thus, 

Because the three angles of the triangle must add up to 1 80°, 



Next, solve a triangle knowing the lengths of two sides and the measure 
of the included angle. First, find the length of the third side by using the 
Law of Cosines. Then proceed as in Example 7 to find the other two 
angles. 

Example 8: Using Figure 2-8, find the length of side 6. 

Figure 2-8 Drawing for Example 8. 

Example 9: Find the area of the triangle in Example 8. 

First reposition the triangle as shown in Figure 2-9 so that the known angle 
is in standard position. 



Figure 2-9 Drawing for Example 9. 

The base of the triangle is 11. You can find the height of the triangle by 
using the fact that 

Therefore, 

Law of Sines 
You can use the Law of Cosines discussed in the last section to solve gen- 
eral triangles, but only under certain conditions. The formulas that will 
be developed in this section provide more flexibility in solving these gen- 
eral triangles. 

The following discussion centers around Figure 2- 10. 



Figure 2-10 Reference triangles for Law of Sines. 

Line segment Tli is the altitude in each figure. Therefore AACZ, and ABCII 
are right triangles. Thus, 

/I s i n a  = - * i7 = hs ina  h 
In Figure 2- 1 0 (b) , i ( X L I  has the same measure as the reference angle for 
p. Thus, 

It follows that 

hsin a dsi l lp  -- - 

n b /nb 

Similarly, if an altitude is drawn from A, 

Combining the preceding two results yields what is known as the Law of 
Sines. 

In other words, in any given triangle, the ratio of the length of a side and 
the sine of the angle opposite that side is a constant. The Law of Sines is 



valid for obtuse triangles as well as acute and right triangles, because the 
value of the sine is positive in both the first and second quadrant-that is, 
for angles less than 180". You can use this relationship to solve triangles 
given the length of a side and the measure of two angles, or given the 
lengths of two sides and one opposite angle. (Remember that the Law of 
Cosines is used to solve triangles given other configurations of known sides 
and angles.) 

First, consider using the Law of Sines to solve a triangle given two angles 
and one side. 

Example 10: Solve the triangle in Figure 2-1 1 given 8 = 32", 5b=77", and 
d =  12. 

Figure 2-1 1 Drawing for Example 10. 

It follows from the fact that there are 180" in any triangle that 

6 -  ISO0-4-8 

6 =  ISOO-77"-32" 

6 - 71" 

From the Law of Sines, the following relationships are obtained: 

d r .f' - - -  - - 

sin 8 s i n 6  sin+ 

12 - - f - .  - f --- 

sin 32" sirl7l0 sin77" 

Solving as two independent proportions, 



12 .f 
sin 32 " sin 77 " 

Example 1 1: Solve the triangle in Figure 2- 12 given a - 1 2 5 ", P - 3 5 ", and 
6, = 42. 

Figure 2-12 Drawing for Example 11 

From the fact that there are 180" in any triangle, then 

Again, using the Law of Sines, 



The second use of the Law of Sines is for solving a triangle given the lengths 
of two sides and the measure of the angle opposite one of them. In this 
case, it is possible that more than one solution will exist, depending on the 
values of the given parts of the triangle. The next example illustrates just 
such a case. 

Example 12: Solve the triangle(s) given a = 13, b = 20, and cx = 35". 

Figure 2-13 shows two possible positions for side a. This will occur if 
1: > / i .  To determine if a is greater than h, the value of h is found. 

Figure 2-13 Drawing for Example 12. 

Therefore, a > h and the diagram shows two solutions for the triangle. From 
the Law of Sines, 



Because sin p is positive in both quadrant I and quadrant 11, P can have 
two values and therefore two different solutions for the triangle. 

Solution 1: The sum of the angles of a triangle is 1 80°. Thus, 

Using the Law of Sines, 

n sin y 
(' - - 

sin (2 

Solution 2: The sum of the angles of a triangle is 1 80°. Thus, 



Using the Law of Sines, 

, it(siriyl 
C ' =  

sin (2 

( 1  3 ) ( si1126.95~ ) 

Solving General Triangles 
The process of solving triangles can be categorized into several distinct 
groups. The following is a listing of these categories along with a proce- 
dure to follow to solve for the missing parts of the triangle. The assump- 
tion is made that all three missing Darts are to be found. If onlv some of 

U I J 

the unknown values are to be determined, a modified approach may be in 
order. 

.I SSS: If the three sides of a triangle are known, first use the Law of 
Cosines to find one of the angles. It is usuallv best to find the largest 

U J U 

angle first, the one opposite the longest side. Then, set up a propor- 
tion using the Law of Sines to find the second angle. Finally, subtract 
these angle measures from 180" to find the third angle. 

The reason that the Law of Cosines should be used to find the largest - 
angle in the triangle is that if the cosine is positive, the angle is acute. 
If the cosine is negative, the angle is obtuse. If the cosine is zero, the 
angle is a right angle. Once the largest angle of the triangle is known, 
the other two angles must be acute. 

If the largest angle is not found by using the Law of Cosines but by 
using the Law of Sines instead, the determination whether the angle 
is acute or obtuse must be done using the Pythagorean theorem or 
other means because the sine is positive for both acute (first quad- 
rant) and obtuse (second quadrant) angles. This adds an extra step to 
the solution of the problem. 

If the size of only one of the angles is needed, use the Law of Cosines. 
The Law of Cosines may be used to find all the missing angles, 
although a solution using the Law of Cosines is usually more com- 
plex than one using the Law of Sines. 



III SAS: If two sides and the included angle of a triangle are known, first 
use the Law of Cosines to solve for the third side. Next, use the Law 
of Sines to find the smaller of the two remaining angles. This is the 
angle opposite the shortest or shorter side, not the longest side. Finally, 
subtract these angle measures from 180" to find the third angle. 
Again, you can use the Law of Cosines to find the two missing angles, 
although a solution using the Law of Cosines is usually more com- 
plex than one using the Law of Sines. 

II A s k  If two angles and the included side of a triangle are known, first 
subtract these angle measures from 180" to find the third angle. Next, 
use the Law of Sines to set up proportions to find the lengths of the 
two missing sides. You can use the Law of Cosines to find the length 
of the third side, but why bother if you can use the Law of Sines 
instead? 

III AAS: If two angles and a nonincluded side of a triangle are known, 
first subtract these angle measures from 180" to find the third angle. 
Next, use the Law of Sines to set up proportions to find the lengths 
of the two missing sides. The given side is opposite one of the two 
given angles. If all that is needed is the length of the side opposite the 
second given angle, then use the Law of Sines to calculate its value. 

III SSA: This is known as the ambifuous case. If two sides and a nonin- 
cluded angle of a triangle are known, there are six possible configura- 
tions, two if the given angle is obtuse or right and four if the given 
angle is acute. These six possibilities are shown in Figures 2- 14,2- 15, 
and 2-1 6. In Figures 2-14 and 2-1 5, h is an altitude where h = a sin P 
and p is an acute angle. 

In Figure 2-14(a), if b < h, then b cannot reach the other side of the tri- 
angle, and no solution is possible. This occurs when b < a sin p. 
In Figure 2-14(b), if b = h = a sin P, then exactly one right triangle is 
formed. 



Figure 2-14 Two cases for SSA. 

In Figure 2-1 5(a), if h < b < a-that is, a sin P < b < a-then two differ- 
ent solutions exist. 

In Figure 2-1 5(b), if b 2 a, then only one solution exists, and if b = a, then 
the solution is an isosceles triangle. 

Figure 2-1 5 Ambiguous cases for SSA. 

If p is an obtuse or right angle, the following two possibilities exist. 

In Figure 2-16(a), if b > a, then one solution is possible. 

In Figure 2-16(b), if ii < n, then no solutions are possible. 



Figure 2-16 Two cases for SSA. 

Example 13: (SSS) Find the difference between the largest and smallest 
angles of a triangle if the lengths of the sides are 10, 19, and 23, as shown 
in Figure 2- 17. 

Figure 2-17 Drawing for Example 13. 

First, use the Law of Cosines to find the size of the largest angle (P) which 
is opposite the longest side (23). 

2 3 ' -  l o i +  19 - 1?)(10)(19)corp 

Next, use the Law of Sines to find the size of the smallest angle (a), which 
is opposite the shortest side (1 0). 



1 a =: Sin - 0.4278 

Thus, the difference between the largest and smallest angle is 

Example 14: (SAS) The legs of an isosceles triangle have a length of 28 
and form a 17" angle (Figure 2- 18). What is the length of the third side 
of the triangle? 

This is a direct application of the Law of Cosines. 

Figure 2-18 Drawing for Example 14. 



Example 15: (ASA) Find the value of d in Figure 2-1 9. 

Figure 2-19 Drawing for Example 15. 

First, calculate the sizes of angles cx and P. Then find the value of a using 
the Law of Sines. Finally, use the definition of the sine to find the value 
of d. 

~l - 120 
sin 1 1 5" sin 34" 

Finally, 



Example 16: (AAS) Find the value of x in Figure 2-20. 

Figure 2-20 Drawing for Example 16. 

First, calculate the size of angle a. Then use the Law of Sines to calculate 
the value of x. 

(41  ) ( i i n 4 ~ " )  
"Y % 

sin 22 O 

Example 17: (SSA) One side of a triangle, of length 20, forms a 42" angle 
with a second side of the triangle (Figure 2-21). The length of the third 
side of the triangle is 14. Find the length of the second side. 

Figure 2-21 Drawing for Example 17. 



The length of the altitude (A) is calculated first so that the number of solu- 
tions (0, 1, or 2) can be determined. 

Because 13.38 < 14 < 20, there are two distinct solutions. 

Solution I :  Use of the Law of Sines to calculate tx. 

Use the fact that there are 180° in a triangle to calculate P. 

Use the Law of Sines to find the value of 6. 

Solution 2: Use a to find tx', and tx' to find P' 

p'- 1 8 0 ° - 4 2 "  a':: 1 8 0 " - 4 2 '  107.08".: 30.92' 



Next, use the Law of Sines to find 6'. 

i,' - 14 - - - 

sin 0' sin42 " 

Areas of Triangles 
The most common formula for finding the area of a triangle is K= 4 bh, 
where Kis the area of the triangle, 6 is the base of the triangle, and h is the 
height. (The letter Kis used for the area of the triangle to avoid confusion 
when using the letter A to name an angle of a triangle.) Three additional 
categories of area formulas are useful. 

Two sides and the included angle (SAS): Given AABC (Figure 2-22), the 
height is given by h = c sinA. Therefore, 

Two angles anda side (AAS) or (ASA): Using the Law of Sines and substi- 
tuting in the preceding three formulas leads to the following formulas: 

i' - (1 - - - 

sir1 C: sin A 
n sin C 

l ,  - sin A 
1 K= - MC sill f? 2 

i7 1 7 sin K s inC 
\ = - d  2 sin A 



Figure 2-22 Reference triangles for area formulas. 

1 ,_ sir1 A sir1 R 
sin C 

Three sides (SSS): A famous Greek philosopher and mathematician, Heron 
(or Hero), developed a formula that calculates the area of triangles given 
only the lengths of the three sides. This is known as Heron's formula. If 
a, 6, and c are the lengths of the three sides of a triangle, and s is the 
semiperimeter, then 

and 



One of many proofs of Heron's formula starts out with the Law of Cosines: 

d ' +  b ' -  ~ ~ c o s ( :  i 

+ h -  211bcos(,' 

jn  + b ' -  i - ' ) L - 4 t 2 ' b ' c c 1 s ' C  

, i 

( n  + 6 ' - i - )  4 7  b  1 C )  

, > 

( r  + / I ' = ~ ' )  =4[7 b  - 4 t ~ ' k  5 i n ' C  

Example 18: (SAS) As shown in Figure 2-23, two sides of a triangle have 
measures of 25 and 12. The measure of the included angle is 5 1 ". Find the 
area of the triangle. 



Figure 2-23 Drawing for Example 18. 

Use the SAS formula: 

1 IT-- - nb $in (,' 2 

1 K= - (25 ) (12 )  sii151" 2 

1 k'z --((25) (12)  (0.7771 ) 2 

K= 116.5" scl units 

Example 19: (AAS and ASA) Find the area of the triangle shown in 
Figure 2-24. 

Figure 2-24 Drawing for Example 19. 

First find the measure of the third angle of the triangle since all three angles 
are used in the area formula. 

LC,'= 180 - 11' - 28 = 35' 

1 2 sin11 sin12 I<= -=j i 
sin (,' 



Example 20: (AAS orASA) Find the area of an equilateral triangle with a 
perimeter of 78. 

If the perimeter of an equilateral triangle is 78,  then the measure of 
each side is 26. The nontrigonometric solution of this problem yields an 
answer of 

The trigonometric solution yields the same answer. 

I\'= 292.7 scl innaits 

Example 21: (SSS) Find the area of a triangle if its sides measure 31,44, 
and 60. 

Use Heron's formula: 

K -  4434,235,9375 

I\" 2: 659 sq units 

Heron's formula does not use trigonometric hnctions directly, but trigono- 
metric functions were used in the development and proof of the formula. 



Chapter Checkout 

I .  In a right triangle, the two legs have lengths of 8 inches and 10 inches. 
Find the size of the angle opposite the 10-inch side. 

2. In a right triangle, the side opposite the 38" angle is 6.4 inches long. 
Find the length of the hypotenuse. 

3. You are standing 400 feet from the base of a building. The angle 
elevation to the top of the building is 28". Find the height of the 
building. 

4. Find the size of the smallest angle in a triangle if the three sides mea- 
sure 7 inches, 8 inches, and 10 inches. 

5. Two sides of a triangle measure 12 feet and 18 feet, and the angle 
between them measures 16". Find the length of the third side. 

6. True or False: In some cases, the law of sines will not provide you 
with a unique answer. 

7. Find the area of a triangle if its sides measure 10 feet, 14 feet, and 
20 feet. 

8. Find the area of a triangle if two of its sides measure 8 inches and 
14 inches, and the angle between them measures 72". 

Answers: 1. 51.34" 2. 10.395 inches 3. 213 feet 4. 44.05" 5. 7.26 feet 
6. True 7.64.99 square feet 8. 53.26 square inches 



Chapter 3 

GRAPHS OF TRIGONOMETRIC 
FUNCTIONS 

Chapter Checkin 

LI Defining angles in terms of the radius of a circle 

U Understanding the relationship between radian and degree measure 

U Defining trig functions in terms of a unit circle 

LI Figuring out the period and symmetry of trig functions 

U Creating the graphs of trig functions 

ou can measure angle sizes by using more than one scale. The degree 
scale is probably the most well-known scale, although the radian scale Y 

is equally as popular and useful. Although most applications deal only in 
one of these two scales, it is important to understand their differences and 
how to convert from one to the other. 

You can define trig functions by using a unit circle, a circle with a radius 
of 1. As a point revolves around the circle, its distance from the x-axis is 
defined as the sine, and its distance from the y-axis is defined as the cosine. 
These definitions match the previous definitions in terms of a right trian- 
gle. The graphs of trigonometric functions are used to visually represent 
their behavior. 

Radians 
A central angle of a circle has an angle measure of 1 if it subtends an arc 
that is %60 of the circumference of the circle. This form of angle measure is 
quite common. Another form of angle measure that is in use is radian 
measure. If a central angle subtends an arc that is equal to the radius of 
the circle (Figure 3- 1 a), then the central angle has a measure of one radian. 



Figure 3-1 Radian measure and subtended arcs. 

If a central angle 8 of a circle with radius r subtends an arc of length q 
(Figure 3- 1 b), then its radian measure is defined as 

Because both q and r are in the same units, when q is divided by r in the 
preceding formula, the units cancel. Therefore, radian measure is unitless. 

Example 1: What is the radian measure of a central angle in a circle with 
radius 6 m if it subtends an arc of 24 m? 

0 = = = 4y(16/i(17/1= /$ 7"(16[ = 4 
Î  61~1 

(Note that if no units are listed for an angle measure, it is assumed to be 
in radians.) 

If 8 is one complete revolution, then the subtended arc is the circumfer- 
ence of the circle. In this case, 

q - 22-?- 

2Xr 
Q=- 

8=2n 

Because one complete revolution is 360°, 



The fact that 180" is the same as n; radians is extremely important. From 
this relationship, the following proportion can be used to convert between 
radian measure and degree measure: 

Example 2: What is the degree measure of 2.4 rad? 

Example 3: What is the radian measure of 63"? 

The radian measures of many special angles follow directly from the radian- 
degree relationships. Some of these are summarized in Table 3-1. 

Table 3-1 Degree/Radian Equivalencies 

degrees 0" 30" 45" 60" 90" 720" 735" 750" 780" 

radians E E E - - - - 2 7 z Z B i Z  E 
O 6 4  .? '3 i- 3 .? 3 /I 6 

The areas of sectors of a circle are directly proportional to the measures of 
their central angles and directly proportional to the arcs subtended by the 
central angles (Figure 3-2). 

(u*~~(i of' il .v(~,to r of' iz circle - s l i ~  of' cen tinl cr7iqJr. r$' secto T 
- 

ni-~.ii: of the c.jn.h s i n  or c~~ntin1(~3c4~/~ {IJ 1.ir~1~) 

( x i  ' 1 (tr) 



Figure 3-2 Sector area. 

Example 4: Find r given that A = 1 4 ~  and 8 = ~ 1 2 .  

Example 5: Find 8 ifA = 6 and r = 4. 

Example 6: What is the angle measure, in radians, of the acute angle 
formed by the minute and hour hands of a clock at 7: 15? 

The hour hand moves Yir of a complete revolution each hour. Therefore, 
every 15 minutes (one quarter of an hour), the hour hand moves 1/48 of a 
complete revolution. Therefore, at 7: 15, the hour and minute hands are 
'748 of a revolution apart. 



Example 7: Find the area of the shaded portion of the sector of the circle 
shown in Figure 3-3. 

Figure 3-3 Drawing for Example Z 

First, use the Pythagorean theorem to find the value of a. 

The area of the triangular (unshaded) portion of the sector can be calcu- 
lated using the area formula of a triangle. 

a = Sin '0.5 



It follows that 

t o t t ~ /  IT?"PIT of ' S ~ T ~ I I  T - TIZ(YI'IZI I-P of' TPYL~I'III ( IYL~I~> of' s ~ t o  I' 
- 

o f  / ?~/ctls~ii-c ([ (,en t ~ l  ([ circ.k 

E )  
t o  c(~(7l nr-rw of' s r ~ t o  7. 3 ,  

Therefore, 

area of shaded portion 

= area of total sector - area of unshaded portion 

area of shaded portion = 1 2 ~  - o J j  - 3 (42- - 3 d.3 
area of shaded portion - 22.1 1 

Circular Functions 
The graph of the equation x2 + j2 = 1 is a circle in the rectangular coordi- 
nate system. This gaph is called the unit circle and has its center at the 
origin and has a radius of 1 unit. Trigonometric functions are defined so 
that their domains are sets o f  angles and their ranges are sets of real num- 
bers. Circular functions are defined such that their domains are sets o f  
numbers that correspond to the measures (in radian units) of the angles of 
analogous trigonometric functions. The ranges of these circular functions, 
like their analogous trigonometric functions, are sets of real numbers. These 
functions are called circular functions because radian measures of angles 
are determined by the lengths of arcs of circles. In particular, trigonomet- 
ric functions defined using the unit circle lead directly to these circular 
functions. 



Begin with the unit circle x2 + y2 = 1 shown in Figure 3-4. Point A (1,O) is 
located at the intersection of the unit circle and the x-axis. Let q be any 
real number. Start at point A and measure 141 units along the unit circle in 
a counterclockwise direction if q t O and in a clockwise direction if q < 0, 
ending up at point P(x,y). Define the sine and cosine of q as the coordi- 
nates of point P. The other circular functions (the tangent, cotangent, 
secant, and cosecant) can be defined in terms of the sine and cosine. 

Slll l/ = j' 

cosq = x 

Slll y 
tar1 q - -. cosy , cosq 4 O 

cost/ 
cot4 -- -;sing # O 

S l l l  "I 

sccq = -. cosy ' cosq f  0 

I 
C S C ~  - -: sing # 0 

sin q 

Figure 3-4 Unit circle reference. 

Sin q and cos q exist for each real number q because (cos q, sin q) are the 
coordinates of point P located on the unit circle, that corresponds to an 
arc length of lq I .  Because this arc length can be positive (counterclock- 
wise) or negative (clockwise), the domain of each of these circular func- 
tions is the set of real numbers. The range is more restricted. The cosine 
and sine are the abscissa and ordinate of a point that moves around the 



unit circle, and they vary between - 1 and 1. Therefore, the range of each 
of these functions is a set of real numbers z such that - I 5 z 5 1 (see 
Figure 3-5). 

Figure 3-5 Range of values of trig functions. 

Example 8: What value(s) x in the domain of the sine function between 
-2n and 2~ have a range value of 1 (Figure 3-6)? 

Figure 3-6 Drawing for Example 8. 

The range value of sin x is 1 when point 1' ( JI: /j. - 1/31 has coordinates 
of (0, 1). This occurs when x = n;/2 and x = -3~12. 



Example 9: What value(s) x in the domain of the cosine function between 
-2n; and 2n; have a range value of - 1 (Figure 3-7)? 

Figure 3-7 Drawing for Example 9. 

The range value of cos x is -1 when point P(cosx, sinx) has coordinates of 
(-1,O). This occurs when x = 76 and x = -76. 

Example 10: The point P(J 813,-113) is on the unit circle. The length of 
the arc from point A(1,O) to point Pis  q units. What are the values of the 
six circular functions of q? 

The values of the sine and cosine follow from the definitions and are the 
coordinates of point I? The other four functions are derived using the sine 
and cosine. 

- 

v '8 cosq = -7- 
.) 



The sign of each of the six circular functions (see Table 3-2) is dependent 
upon the length of the arc q. Note that the four intervals for q correspond 
directly to the four quadrants for trigonometric functions. 

Table 3-2 Signs of Trig Functions in Various Quadrants 

Function E ll 3 E  3E o < y < -  < n<q<- - 2 2 < q < 2  
,L 

sin q, csc q + + - - 

cos q, sec q + - - + 
tan q, cot q + - + - 

Periodic and Symmetric Trigonometric 
Functions 
The unit circle has a circumference of C = 2'irtr = 2.;re(l) = 2 ~ .  Therefore, 
if a point P travels around the unit circle for a distance of 2 ~ ,  it ends up 
where it started. In other words, for any given value q, if 2'irt is added or 
subtracted, the coordinates of point P remain unchanged (Figure 3-8). 

Figure 3-8 Periodic coterminal angles. 



It follows that 

sin (q + 2n) = sin q 

sin (q - 276) = sin q 

cos (q + 2n) = cos q 

cos (q - 2n) = cos q 

If k is an integer, 

sin (q - 2 h )  = sin q 

Functions that have this property are called periodic functions. A func- 
tion f is periodic if there is a positive real number q such that f (x+ q) = f (x) 
for all x in the domain off The smallest possible value for q for which this 
is true is called the period off 

Example 11: If sin y = 1, - { j i j  / I 0, then what is the value of each of the 
following: sin( 11 + 8n ). sin ( y - b n  ),sin ( + 2 1 On 1 i 

All three have the same value of ( 3 Ji ) / I  o because the sine function is peri- 
odic and has a period of 2n. 

The study of the periodic properties of circular functions leads to solutions 
of many real-world problems. These problems include planetary motion, 
sound waves, electric current generation, earthquake waves, and tide 
movements. 

Example 12: The graph in Figure 3-9 represents a function f that has a 
period of 4. What would the graph look like for the interval -10 I x 2 lo?  

Figure 3-9 Drawing for Example 12. 

This graph covers an interval of 4 units. Because the period is given as 4, 
this graph represents one complete cycle of the function. Therefore, sim- 
ply replicate the graph segment to the left and to the right (Figure 3- 10). 



Figure 3-10 Drawing for Example 12. 

I 

The appearance of the graph of a function and the properties of that func- 
tion are very closely related. It can be seen from Figure 3-1 1 that 

cos (-q) = cosq 

sin (--q) = --sinq 

Figure 3-1 1 Even and odd trig functions. 

The cosine is known as an even function, and the sine is known as an odd 
function. Generally speaking, 

g is an even function if g(-x) = g(x) 

g is an odd function if g(-x) = -g(x) 

for every value of x in the domain of g. Some functions are odd, some are 
even, and some are neither odd nor even. 

g a  function is even, then the graph of the function will be symmetric with 
the y-axis. Alternatively, for every point (x, y) on the graph, the point 
(-x, -y) will also be on the graph. 



g a  function is odd, then the graph of the function will be symmetric with 
the origin. Alternatively, for every point (x, y) on the graph, the point 
(-x, -y) will also be on the graph. 

Example 13: Graph several functions and give their periods (Figure 3-1 2). 

Figure 3-12 Drawings for Example 13. 

Example 14: Graph several odd functions and give their periods (Fig- 
ure 3-13). 

Figure 3-13 Drawings for Example 14. 



Example 15: Is the function f (x) = 2x3 + x even, odd, or neither? 

f ( - , V ) = 2 ( - V \ ' + ( - x )  

- --" - x  

=-  (L.\-'+s) 

-- , f (x )  

Because f (-x) = -f (x), the function is odd. 

Example 16: Is the function f (x) = sin x - cos x even, odd, or neither? 

( - 2  ) - s i n ( - x )  - L O S ( - . Y )  

-- sinx - cosx 

- (sinlx ) + cosx 

Because - ( si11.v + cosx ) 7 - ( sinx - cosx ) 

and - (si11.x + cos .~)  + sinx - cos,zc 

the function is neither even nor odd. Note: The sum ofan odd function and 
an even function is neither even nor odd. 

Example 17: Is the function f(x) = x sin x cos x even, odd, or neither? 

- 
- xsinxcosx 

= /-(x ) 

Because f(-x) = f(x), the function is even. 

Graphs of the Sine and Cosine 
TO see how the sine and cosine functions are graphed, use a calculator, a 
computer, or a set of trigonometry tables to determine the values of the 
sine and cosine functions for a number of different degree (or radian) mea- 
sures (see Table 3-3). 



Table 3-3 Values of the Sine and Cosine at Various Angles 

degrees 0" 30" 45" 60" 90" 120" 

radians 

sin x 

cos x 1 0.866 0.707 0.500 0 -0.500 

degrees 

radians 

sin x 0.707 0.500 0 -0.500 -0.707 -0.866 

cos x -0.707 -0.866 -1 -0.866 -0.707 -0.500 

degrees 

radians 

sin x 

COS X 

Next, plot these values and obtain the basic graphs of the sine and cosine 
function (Figure 3- 14). 

Figure 3-14 One period of the a) sine function and b) cosine function. 

The sine function and the cosine function have periods of 2n; therefore, 
the patterns illustrated in Figure 3-14 are repeated to the left and right 
continuously (Figure 3- 1 5 ) .  



Figure 3-1 5 Multiple periods of the a) sine function and b) cosine 
function. 

/ y  = sin x 

(a) 

Several additional terms and factors can be added to the sine and cosine 
functions, which m o d i ~  their shapes. 

The additional term A in the function y = A + sin x allows for a vertical 
shift in the graph of the sine hnctions. This also holds for the cosine func- 
tion (Figure 3- 16). 

Figure 3-16 Examples of several vertical shifts of the sine function. 

y = ~ + s ~ n x  
y =  1 + s i n x  
y  = sin x 
y =  -1 + sinx 

The additional factor B in the function y = B sin x allows for amplitude 
variation of the sine function. The amplitude, IB 1, is the maximum devi- 
ation from the x-axis-that is, one half the difference between the maxi- 
mum and minimum values of the graph. This also holds for the cosine 
function (Figure 3- 17). 

Figure 3-17 Examples of several amplitudes of the sine function. 

y  = 3 sin x 
y  = 2 sin x 
y  = sin x 
y =  112 sinx 



Combining these figures yields the functions y = A + B sin x and also 
y = A + B cos x. These two functions have minimum and maximum 
values as defined by the following formulas. The maximum value of the 
function is 13.4 = 11 + / B . This maximum value occurs when 
cos x = 1. The minim m value of the function is m = A 
mum occurs whenever sin x = - 1 or cosx = - 1. 

Example 18: Graph the function y = 1 + 2 sin x. What are the maximum 
and minimum values of the function? 

The maximum value is 1 + 2 = 3. The minimum value is 1 -2 = -1 (Fig- 
ure 3-18). 

Figure 3-18 Drawing for Example 18. 

Y I 

Example 19: Graph the function y = 4 + 3 sin x. What are the maximum 
and minimum values of the function? 

The maximum value is 4 + 3 = 7. The minimum value is 4 - 3 = 1 (Fig- 
ure 3-19). 

Figure 3-19 Drawing for Example 19. 



The additional factor C in the function y = sin Cx allows for period 
variation (length of cycle) of the sine function. (This also holds for the 
cosine function.) The period of the function y = sin Cx is LE/ 

the function y = sin 5x has a period of 27~15. Figure 3-20 illustrates addi- 
tional examples. 

Figure 3-20 Examples of several frequencies of the a) sine function and 
b) cosine function. 

The additional term D in the function y = sin (x + D) allows for a phase 
shift (moving the graph to the left or right) in the graph of the sine func- 
tions. (This also holds for the cosine function.) The phase shift is I D 1. 
This is a positive number. It does not matter whether the shift is to the left 
(if D is positive) or to the right (if D is negative). The sine function is odd, 
and the cosine function is even. The cosine function looks exactly like the 
sine function, except that it is shifted 7612 units to the left (Figure 3-21). 
In other words, 

Figure 3-21 Examples of several phase shifts of the sine function. 



Example 20: What is the amplitude, period, phase shift, maximum, and 
minimum values of 

1. j z = 3 + 2  s in l (3 .v-2)  

Table 3-4 Attributes of the General Sine Function 

Function Ampli- Phase Max- Min- 
tude Period Shift imum imum 

l 1 = 3 + ?  s i n ( j x - 2 )  2 3 r i g h t  5 
2E 1 

Example 21: Sketch the graph ofy = cos~x.  

Because cos x has a period of 2n, cos nx has a period of 2 (Figure 3-22). 

Figure 3-22 Drawing for Example 21. 

Example 22: Sketch the graph ofy = 3 cos (2x + ~ 1 2 ) .  

Because cos x has a period of 2n;, cos 2x has a period of IT (Figure 3-23). 



Figure 3-23 Drawing for Example 22. 

I y = 3 cos (2x + ~ 1 2 )  

The graph of the function y = -f (x) is found by reflecting the graph of the 
function y = f (x) about the x-axis. Thus, Figure 3-23 can also represent the 
graph of y = -3 sin 2x. Specifically, 

-sin x = sin (x + n;) 

-cos x = cos (x + n) 

-sin x = cos (x + n12) 

-cos x = sin (x - n12) 

It is important to understand the relationships between the sine and cosine 
functions and how phase shifts can alter their graphs. 

Graphs of Other Trigonometric Functions 
The tangent is an odd function because 

The tangent has a period of n because 

The tangent is undefined whenever cos x = 0. This occurs when x = qn12, 
where q is an odd integer. At these points, the value of the tangent 
approaches infinity and is undefined. When graphing the tangent, a dashed 
line is used to show where the value of the tangent is undefined. These 
lines are called asymptotes. The values of the tangent for various angle 
sizes are shown in Table 3-5. 



Table 3-5 Values of the Tangent Function at Various Angles 

degrees 0" 30" 45" 60" 75" 80" 85" 87" 90" 

radians 0 
?I 2- - - - ? I = -  4 ; z n 7 n B ? r  - 
6 4 7 n 12 9 3 6 60 2 

tan x 0 0.577 1 1.73 3.73 5.67 11.43 19.08 * 
* undefined 

The graph of the tangent function over the interval from O to 7612 is as 
shown in Figure 3-24. 

Figure 3-24 A portion of the tangent function. 

v = tan x I 

The tangent is an odd function and is symmetric about the origin. The 
graph of the tangent over several periods is shown in Figure 3-25. Note 
that the asymptotes are shown as dashed lines, and the value of the tan- 
gent is undefined at these points. 

Figure 



The cotangent is the reciprocal of the tangent, and its graph is shown in 
Figure 3-26. Note the difference between the graph of the tangent and the 
cotangent in the interval from O to 7~12. 

Figure 3-26 A portion of the cotangent function. 

As shown in Figure 3-27, in the graph of the cotangent, the asymptotes 
are located at multiples of n. 

Figure 3-27 Several periods of the cotangent function. 

y = cot x 

Because the graphs of both the tangent and cotangent extend without 
bound both above and below the x-axis, the amplitude for the tangent and 
cotangent is not defined. 

The general forms of the tangent and cotangent functions are 

y = A  + Btan (Cx+D)andy = A  + Bcot(Cx+D) 



The variables C and D determine the period and phase shift of the func- 
tion as they did in the sine and cosine functions. The period is xi(,' and 
the phase shift is iXC/.  The shift is to the right if ID/C I < 0, and to the 
left if ID/C I > 0. The variable B does not represent an amplitude because 
the tangent and cotangent are unbounded, but it does represent how much 
the graph is "stretched" in a vertical direction. The variable A represents 
the vertical shift. 

Example 23: Determine the period, phase shift, and the location of the 
asymptotes for the function 

and graph at least two complete periods of the function. 

The asymptotes can be found by solving Cjx + 1) = E/L. and Gx + i> = - ni2 
for x. 

The period of the function is 

The phase shift of the function is 

Because the phase shift is positive, it is to the left (Figure 3-28). 



Figure 3-28 Phase shift of the tangent function. 

y = tan(zxl3 + RIG) 

The amplitude is not defined for the secant or cosecant. The secant and 
cosecant are graphed as the reciprocals of the cosine and sine, respectively, 
and have the same period ( 2 ~ ) .  Therefore, the phase shift and period of 
these functions is found by solving the equations Cx + D = O and Cx + D 
= 2n; for x. 

Example 24: Determine the period, phase shift, and the location of the 
asymptotes for the function 

1 
J, = 7 csc - .u + -;j- i: "1 .L 

and graph at least two periods of the function. 

The asymptotes can be found by solving Cx + D = 0, Cx + D = E,  and Cx 
+ D = 2n; for x. 



The period of the function is 

The phase shift of the function is 

1) - - (9) - - 
c: = 1 

if) 
Because the phase shift is positive, it is to the left. 

The graph of the reciprocal function 

11 = 2 sin j -$- \- + 7 
i- " i 

is shown in Figure 3-29. Graphing the sine (or cosine) can make it easier 
to graph the cosecant (or secant). 



Figure 3-29 Several periods of the cosecant function and the sine 
function. 

y = 112 csc(7tx12 + ~ 1 2 )  
I 

Graphs of Special Trigonometric Functions 
A pure tone, such as one produced by a tuning fork, is a wave form that 
looks like a sine curve. Sounds in general are more than just simple sine 
waves. They are combinations of sine waves and other functions. A vibrat- 
ing string on a violin or fiddle is made up of a combination of several sine 
waves. The resulting wave form can be found by adding the ordinates of 
the respective sine waves. This can easily be seen if all the component wave 
forms are graphed on the same set of axes. Figures 3-30, 3-31, and 3-32 
show the resulting wave form when two component wave forms are added 
together. 

Example 25: Graph the functions y = x and y = 4 sin x on the same coor- 
dinates and graph their sum. 



Figure 3-30 Drawing for Example 25. 

+ y = 4 sin x 

Example 26: Graph the hnctions y = xI2 and y = 4 sin x on the same coor- 
dinates and graph their sum. 

Figure 3-31 Drawing for Example 26. 

10 y = 4 sin I x + xI2 

t y = 4 sin x 

Example 27: Graph the hnctions y = 10 sin x and y = 4 sin 3x on the same 
coordinates and graph their sum. 



Chapter Checkout 

Q&A 
I .  What is the radian measure of 83"? 

2. What is the degree measure of 3.9 radians? 

3. In radian measure, what is the size of the angle equal to one complete 
revolution around the unit circle? 

4. What is the period of the sine function in degrees? 

5. True or False: The sine and the tangent are negative in the fourth 
quadrant. 

6. True or False: The sine and the tangent functions are odd functions. 

7. True or False: The graph of the sine function and the graph of the 
cosine function are the same except for a shift to the left or right. 

8. What is the period of the tangent function in radians? 

Answers: 1. 1.45 radians 2.  223.45" 3. 2n; 4. 360" 5. F 6. T 7. T 
8. n; radians. 



Chapter 4 

Chapter Checkin 

U Defining several fundamental trigonometric identities 

O Using sum and difference formulas to extend the fundamental 
identities 

O Using double and half angle identities 

U Understanding the tangent identities 

O Using the product-to-sum and sum-to-product identities 

S ome equations are only true for one value of the unknown. Some equa- 
tions are true for all values of the unknown. This second type of equa- 

tion is called an identity because it is true for all values of the unknown 
variables. The knowledge of these identities is useful in solving more com- 
plex equations. As you explore new properties of trigonometric functions, 
new identities are established and then those can be used to establish still 
more identities, and so on. 

Fundamental Identities 
If an equation contains one or more variables and is valid for all replace- 
ment values of the variables for which both sides of the equation are 
defined, then the equation is known as an identity. The equation x2 + 2x 
= x(x + 2), for example, is an identity because it is valid for all replacement 
values of x. 

If an equation is valid only for certain replacement values of the variable, 
then it is called a conditional equation. The equation 3x + 4 = 25, for 
example, is a conditional equation because it is not valid for all replace- 
ment values of x. An equation that is said to be an identity without 



stating any restrictions is, in reality, an identity only for those replacement 
values for which both sides of the identity are defined. For example, the 
identity 

is valid only for those values of a for which both sides of the equation are 
defined. 

The fundamental (basic) trigonometric identities can be divided into sev- 
eral groups. First are the reciprocal identities. These include 

1 
cots = - 

1 a xeca = - 
1 

cos a C S C ~  = - sin a 
Next are the quotient identities. These include 

sir1 uos a 
t a n a  = - cos a cots = - sin (2 

Then there are the cofunction identities. These include 

sin a = cos (90" - a) cot a = tan (90" - a) 
cos a = sin (90" -a) sec a = csc (90" - a) 
tan a = cot (90" - a) csc a = sec (90" - a) 

Next there are the identities for negatives. These include 

sin (- a) = -sin a 
cos (-- a) = cos a 
tan (- a) = -tan a 

Finally there are the Pythagorean identities. These include 

The second identity is obtained by dividing the first by cos2 a ,  and the 
third identity is obtained by dividing the first by sin2 a. The process of 
showing the validity of one identity based on previously known facts is 
called proving the identity. The validity of the foregoing identities fol- 
lows directly from the definitions of the basic trigonometric functions and 
can be used to verify other identities. 

No standard method for solving identities exists, but there are some gen- 
eral rules or strategies that can be followed to help guide the process: 

I .  Try to simplify the more complicated side of the identity until it is 
identical to the second side of the identity. 



2. Try to transform both sides of an identity into an identical third 
expression. 

3. Try to express both sides of the identity in terms of only sines and 
cosines; then try to make both sides identical. 

4. Try to apply the Pythagorean identities as much as possible. 

5. Try to use factoring and combining of terms, multiplying one side 
of the identity by an expression that is equal to 1, squaring both 
sides of the identity, and other algebraic techniques to manipulate 
equations. 

Example 1: Use the basic trigonometric identities to determine the other 
five values of the trigonometric functions given that 

sill ' + cos ' a = 1 

1 seca - - - cos a 

S scca  = - 7 
41s 

sir1 a 
t;illa = - cos a 

1 csca - - - sin a 
I csca  - - - 7 - 
X 

8 csca  - -;. 



Example 2: Verify the identity cos a + sin a tan a = sec a. 

C O L ~  + L ~ I I O C  tails = S C C ~  identity to be verified 

cos OC si110l + ( + s - s c c a  quotient identity 

cos ' a + sin ' a 
cos a = scca  algebraic manipulation 

1 

cos a = scca  Pythagorean identity 

s e a  = seca  reciprocal identity 

Example 3: Verify the identity 

t a n a  - - seca  + 1 
seca  - 1 tail identity to be verified 

( t ; l ~ l a ) ( s c ~ a - t  1 )  ( s c ~ a +  I )  
( s e c a  - l ) ( s e c a  + I )  

- 

t,ln a algebraic manipulation 

( t r ina)  ( seca  + i )  s eca  + 1 - - 

scc a - 1 tan (2 

seca  + 1 
tan Ct 

factoring rule 

Pythagorean identity 

seca  + I - secCC + I 
- 

tail a t-nil a algebraic manipulation 

Example 4: Verify the identity 

sin' GC + t C O S ~  - 1 - I 
sill ) 61 + 3 c o s a  - 3 1 - seca  

sir1 a + 2 c o s a  - 1 1 identity to be verified 
sin2 a + IS C O S ~  - .j 1 - secQ 

1 

1 - seca  Pythagorean identity 

- ( c o L ' ~  - L C O S ~  j 
- - 

I 
I - scca  combining term 

- ( c o \ ' a - . i c o \ a +  2 )  



cos a 1 
- 

cosa  = 1 1 - seca algebraic manipulation 

\a/ 1 
- 

1 - seca algebraic manipulation 
( c*::; 1 

I - - 
1 

1 1 - S C C ~  algebraic manipulation 1 - ----- cos a 
I - - 

I 
1 = s c c a  1 = s c c a  reciprocal identity 

Addition Identities 
The fundamental (basic) identities discussed in the previous section 
involved only one variable. The following identities, involving two vari- 
ables, are called trigonometric addition identities. 

sin ( CY + /3 i = sins cosp + cosa  s inp  

sin ( - /3 ) = sirla cosp - cosa  silip 

cos ( a + /3 ) - cosa cosp - sin a sin/? 

cos ( CY - p ) = cosa  cosp + s i n a  s inp  

These four identities are sometimes called the sum identity for sine, the 
difference identity for sine, the sum identity for cosine, and the dif- 
ference identity for cosine, respectively. The verification of these four 
identities follows from the basic identities and the distance formula 
between points in the rectangular coordinate system. Explanations for each 
step of the proof will be given only for the first few examples that follow. 

Example 5: Change sin 80" cos 130" + cos 80" sin 130" into a trigono- 
metric function in one variable (Figure 4- 1). 

sini80° cos 130' + cos8O0 sin1 130' 

=sin (80 ' + 1.10' ) sum idcntit! 61- sinc 

- sin (21 0'- 180') s i ~ i r i i  ncp.~rivri~i r h i n c l i ~ o ~ ~ d r ~ ~ r ~ r  

- sin 30" 



Figure 4-1 Drawing for Example 5. 

YI 

Additional identities can be derived from the sum and difference identi- 
ties for cosine and sine. 

Example 6: Verify that cob / 180" - s - cosx 

cob ( 1  80" - s)  - cob 1 8 0 ° c o s w ~  + i n  180°sins 

c o s j l i ( ~ ~ - x  I ( )  = - 1  cosx+ (())sin\  

coc( lxoO- s )  =- co \ s  

Example 7: Verify that co5 ( 180" + s = - cosx 

( cos 180' + x = cos 180" cosx - sir1 180" sins i 

cos( 1 8 0 ° + i )  - cosi  

Example 8: Verify that co5 ( 360 " - s ) = cosr 

cos ( 360" - x = eos360" cosx + sill 360" sin* i 
coc j 360" - s )  = ( I )  eoyx + i O ) sills 

The preceding three examples verify three formulas known as the reduc- 
tion formulas for cosine. These reduction formulas are useful in rewrit- 
ing cosines of angles that are larger than 90" as functions of acute angles. 



Example 9: Verify that sin ( 180" - I )  = s i n i  

sin( l X O O  s )  = sin 180°cosi -  cos 1XO'sin.x 

sin ( 180'- x )  - (0 )  cosx - ( -  1 ) i n u  

>in ( I 80'- x )  = sills 

Example 10: Verify that s i n ( 1 8 0 " + . ~ )  =- sin* 

sin ( 1 SO0 + r ) - sin 1 SO0 uosv + cos 180°s i~iu  

sin ( 180°+ s) = ( 0 )  c o w  + ( -  I )  s i n . ~  

s i n ( l 8 0 ~ + . x /  =-sin\- 

Example 11: Verify that sin ( 360" - s ) = - sin\- 

sin ( 360' - x ) = sin360° cosx - cosi60° sinx 

sin (3600  - x )  - (0) cosx - ( 1 )  i inx 

sir1 360" - x = - sinx i i 
The preceding three examples verify three formulas known as the reduc- 
tion formulas for sine. These reduction formulas are useful in rewriting 
sines of angles that are larger than 90" as functions of acute angles. 

To recap, the following are the reduction formulas (identities) for sine and 
cosine. They are valid for both degree and radian measure. 

c o s ( 1 4 0 ° + s )  =-  C0S.Y c o s i 2 l + x )  =- cosx 

ios ( 160 ' - x )  - cosx cos(2.z - x ) - c0s.u 

sin(l8O0- .Y) = sinx sin i ?i: - .Y) = sinx 
I 

sin(lXO0+.') =- sinx sin (a + .x ) = - $in.x 

sin(360'- x )  - s inr  i n  2 - ) - - sinx 



Example 12: Verify that sin 2x = 2 sin x cos x. 

sin2x= s in ix i -x )  

sin2x = sinxcosx i- cos.vsin.v 

sin 2s = 2 sinx cosx 

Example 13: Write iosP ios  ( ( I  - P,) - s inp sin ( a  - P )  as a function of 
one variable. 

C O \ ~  CO, o - p) - ~ i l l p  \in ( ( x  - P ) 

Example 14: Write cos 303" in the form sinp, whcre 0 < p < 90 ". 

cos303" - uos 360" - 303 

L O S  57 O 

( " 1 
i n / 9 0 " -  57") 

= sin1 33" 

Example 15: Write sin 234" in the form cos < < 90". 

4 15 Example 16: Find sin (a + P) if sin (a + /3) if sin a = - 7, cosp = -, and 
'1 

n and p are fourth quadrant angles. 
17 

First find cos and sin P. The sine is negative and the cosine is positive 
in the fourth quadrant. 



rill ' a + coy ' a = 1 sin p + cos P = 1 

16 c o s 7 -  I - - 22 5 
2 5 s i n ' p -  1 - - 289 

1 9 
C O ~  a = - 64 

25 5i'I"p = 7j.q- 
L 9 

3 
C O C ~  = 8 

5 s i n p  = - - 17 

sin /a + p ]  = s i n a  cosp + m s ~ r i n p  

4 15 s i l l ( a + p ) = ( - T ) ( v ) + ( + )  

60 
S ~ I I ( C Y  +/3) - (-?I 6 s + 

84 s i n ( ~ + p ) = - ~  

Double-Angle and Half-Angle Identities 
Special cases of the sum and difference formulas for sine and cosine yields 
what are known as the double-angle identities and the half-angle iden- 
tities. First, using the sum identity for the sine, 

sin 201 = sin (a + a) 

sin 2a = sin a cos a + cos a sin a 

sin 2a = 2 sin a cos a 

Similarly for the cosine, 

cosLG! - c o s ( 0  + 0) 

Using the Pythagorean identity, sin' a + cos' a = 1, two additional cosine 
identities can be derived. 

c o s 2 a  = cos a - silli 61 

c o s 2 a  - ( -  1 i ) - i n ' a  

c o s 2 ~ 1 -  I - 2 s i n l a  

and 



cosLa = cos- a - s i n  a 

C O S L ~  = c o s a -  ( 1  -COS a )  
cos2a = 2 coy' a - 1 

The half-angle identities for the sine and cosine are derived from two of 
the cosine identities described earlier. 

cos2a = 2 cos a - 1 

' P  cosp  = l c o s  - I 

2cos (G) = 1 + cosP 

cosp = 1 - 2 sin' 

I sin: j G) = 1 - rosp 

p - I + cusp  > p - I - cosp  
c o s -  sin ( y ) - 2 

P ; I + cosp  P / I  - cc1sp 
'0' j T I  -f ) b , 

The sign of the two preceding functions depends on the quadrant in which 
the resulting angle is located. 

Example 17: Find the exact value for sin 105" using the half-angle 
identity. 

In the following verification, remember that 105" is in the second quad- 
rant, and sine functions in the second quadrant are positive. Also, 21 0" is 
in the third quadrant, and cosine functions in the third quadrant are neg- 
ative. From Figure 4-2, the reference triangle of 21 0" in the third quad- 
rant is a 30"-60"-90" triangle. Therefore, cos 210" = - cos 30". 



Figure 4-2 Drawing for Example 17. 

Using the half-angle identity for sine, 

210" sin 105" - sir1 --j-- 
A 

/ I  -cos210O sin 105"- g 7 
* 

11 - (-cos30") 
sin 105' - ,/ 3 

I : 2 +  J j  
sin 105" = r 4 

1 / 2 + , / j  
sin 105'= ,, 

Example 18: Find the exact value for cos 165" using the half-angle 
identity. 

In the following verification, remember that 165" is in the second quad- 
rant, and cosine functions in the second quadrant are negative. Also, 330" 
is in the fourth quadrant, and cosine functions in the fourth quadrant are 
positive. From Figure 4-3, the reference triangle of 330" in the fourth quad- 
rant is a 30"-60"-90" triangle. Therefore, cos 330" = cos 30". 



Figure 4-3 Drawing for Example 18. 

Y 

Using the half-angle identity for the cosine, 

Example 19: Use the double-angle identity to find the exact value for 

cos 2x given that sin x = sin x = Ji /5. 

Because sin x is positive, angle x must be in the first or second quadrant. 
The sign of cos 2x will depend on the size of angle x. If 0" < x < 45" or 
135" < x < 180°, then 2x will be in the first or fourth quadrant and cos 
2x will be positive. On the other hand, if 45" < x < 90" or 90" < x < 135", 
then 2x will be in the second or third quadrant and cos 2x will be 
negative. 



Example 20: Verify the identity 1 - cos 2x = tanx sin 2x. 

I - cos Lx = "in' x 

1 - ( 1  - Lsin 'w)   sin i 

"in' x = 2 sin' .Y 

Tangent Identities 
Formulas for the tangent function can be derived from similar formulas 
involving the sine and cosine. The sum identity for tangent is derived as 
follows: 

s i n a  + cosp + C O S ~  s i n p  
t , n ( a + p )  = 

cosa cosp - sin a sinp 



To determine the difference identity for tangent, use the fact that 
tan (- p) = - tanp. 

t a n a  - t anp  

t~lll(a -') = I + tala rn~ip 
Example 2 1: Find the exact value of tan 75". 
Because "5" = 45' + 30' 

tan75" = tan( 45" + 30") 



Example 22: Verify that tan (1 80" - x) = -tan x. 

mn (180'- x )  -- t e l ~ ~ s  

Example 23: Verify that tan (1 80" + x) = tan x. 

tan 1 80' + tanlx 

Example 24: Verify that tan (360" - x) = - tan x. 

t a n ( 5 6 0 ~ - x ) =  t,lm 360 O + tanx 
I + tan.360" t,In.u 

tan ( 360 - s ) = - t C m i  

The preceding three examples verify three formulas known as the reduc- 
tion identities for tangent. These reduction formulas are useful in rewrit- 
ing tangents of angles that are larger than 90" as functions of acute angles. 

The double-angle identity for tangent is obtained by using the sum iden- 
tity for tangent. 

tan (2 + tar1 01 t a n ( 2 a )  = 1 - tan 01 tam 01 

2 t ana  
tan ( L a )  - 

1 - t a n l a  

The half-angle identity for tangent can be written in three different 
forms. 

01 sin 01 tan - = 2 ~ + C O S ~  

a I - C O S ~  
t'lll -j- - - sin (2 



In the first form, the sign is determined by the quadrant in which the angle 
a12 is located. 

Example 25: Verify the identity 

a a s i n 7  
tala - = - 2 a cos , 

Example 26: Verify the identity tan (aI2) = (1 - cos a)lsin a. 
a a " i n 7  

tam - = - 2 a cos , 

CI L sin ' q 
* tan1 - - 2 a a 2 sin - = cos - 2 2 

Example 27: Verify the identity tan (aI2) = sin al(1 + cos a). 

Begin with the identity in Example 26. 



a I - C O S ~  
tc1n -j- = 

A sin G! 

1 + C O S ~  

a 1 - cos cf 
trln -j- - - ( s i n a ) ( l + c o s O f )  

a sin- a 
t,ln 7 - 

( s i i ~ a j i l  + c o s a )  

IX  sin a 
tan = - I ~ C O S ~  

Example 28: Use a half-angle identity for the tangent to find the exact 
value for tan 1 5". 

What follows are two alternative solutions. 

Solution A Solution B 

30" tan 15" = t,in - 2 

tan 15"- 1 - cos30° 
sin 30 " 

Solution A Solution B 

Product-Sum and Sum-Product Identities 
The process of converting sums into products or products into sums can 
make a difference between an easy solution to a problem and no solution 



at all. Two sets of identities can be derived from the sum and difference 
identities that help in this conversion. The following set of identities is 
known as the product-sum identities. 

These identities are valid for degree or radian measure whenever both sides 
of the identity are defined. 

Example 29: Verify that sin a cos P = 

*l(a+p)  +s 'n l \" -p) j .  

Start by adding the sum and difference identities for the sine. 

sill j a + p ) = s ina  cosp + ~ o s a  s i n p  

sin ( a - p ) - sinla cosp  - C O S ~  s i n p  

s ~ I ~ ( L Y + / ? )  + s i n ( ~ ~ - p )  = 2 i n a  cosp 

The other three product-sum identities can be verified by adding or sub- 
tracting other sum and difference identities. 

Example 30: Write cos 3x cos 2x as a sum. 

1 
cosa  cosp  - 7 ir c . s ( a + p )  + c o s ( " - p ) j  

cos5.c cosx 
cos3x Coszx- + 7 

ir * 

Alternate forms of the product-sum identities are the sum-product 
identities. 



a+p a=P 
sin + sirlP = 1 sin cos- 

'5 2 

a + p  a-/3 
cosa + cosp = 2 cos 7 cos ------- 

A 2 

These identities are valid for degree or radian measure whenever both sides 
of the identity are defined. 

x +  11 " = J '  
Example 31: Verify that sin x + sin y = 2 sin 7 cos - 2 

Solve for by adding the following two equations and then dividing by 2. 
Solve for p by subtracting the two equations and then dividing by 2. 

If .z. = a + and jt = a - p 

" Y l y  .Y .y 
si1i.x + sill 1) - 2 L l n l y  cos - 

L 2 

Example 32: Write the difference cos 8a - cos 2 a as a product. 

Example 33: Find the exact value of sin 75" + sin 15". 

. X + J 1  . Y - j v  
si11.x + sin 11 = 2 sin - 2 2 

si1175" + sin 15" = 2 sin45" cos30° 

J.3 
sin7*S0 + sin l*SO= 7 

\I 2 

J(; 
sin7*S0 + sin l*SO= - 2 



Chapter Checkout 

I .  Use the fundamental trig identities to find the remaining five trig 
functions if cos a = 213 and tan a < 0. 

2. Establish this identity: sec 8 - cos 0 = tan 8 sin 8. 
3. True or False: The sum and difference formulas can be used to find 

the exact value of the cosine of 75". 
4. True or False: When establishing an identity, you may only work on 

one side of the identity at a time. ; 
3 ,,'-I 

5. Establish this identity: csc8 = - y. 

:5 :5 
I 

245 
Answers: 1. s i n e  - -, tan@ - ,-, c o t e  --  - 3 i 5 '  

3 3 Ji Sc'C @ = -i-, CSC @ =- - - 5 

2. sec 8 - case - tan1 8 sin 8 

I cos- 8 - 
COS@ C O Y @  

I - cos' 8 - 
cos e 

sini28 - 
cosQ 

"118 \iI1@ = 
cos 8 
t;ln 8 sin 8 = 

3. T 4. T 

c o t e  + 1 - 



Chapter 5 

VECTORS 

Chapter Checkin 

U Understanding vectors and their components 

O Applying the tip tail rule for combining vectors 

U Using vectors to solve problems 

U Defining vector operations involving addition and the dot product 
rule 

I n the physical world, some quantities, such as mass, length, age, and 
value, can be represented by only magnitude. Other quantities, such as 

speed and force, also involve direction. You can use vectors to represent 
those quantities that involve both magnitude and direction. One common 
use of vectors involves finding the actual speed and direction of an aircraft 
given its air speed and direction and the speed and direction of a tailwind. 
Another common use of vectors involves finding the resulting force on an 
object being acted upon by several separate forces. 

Vector Operations 
Any quantity that has both size and direction is called a vector quantity. 
If A and B are two points that are located in a plane, the directed line seg- 
ment from point A to point B is denoted by 3. Point A is the initial 
point, and point B is the terminal point. 

A geometric vector is a quantity that can be represented by a directional 
line segment. From this point on, a vector will be denoted by a boldface 
letter, such as v or u. The magnitude of a vector is the length of the 
directed line segment. The magnitude is sometimes called the norm. Two 
vectors have the same direction if they are parallel and point in the same 
direction. Two vectors have opposite directions if they are parallel and point 



in opposite directions. A vector that has no magnitude and points in any 
direction is called the zero vector. Two vectors are said to be equivalent 
vectors if they have the same magnitude and same direction. 

Figure 5-1 demonstrates vector addition using the tail-tip rule. To add 
vectors v and u, translate vector u so that the initial point of u is at the ter- 
minal point of v. The resulting vector from the initial point of v to the ter- 
minal point of u is the vector v + u and is called the resultant. The vectors 
v and u are called the components of the vector v + u. If the two vectors 
to be added are not parallel, then the parallelogram rule can also be used. 
In this case, the initial points of the vectors are the same, and the resultant 
is the diagonal of the parallelogram formed by using the two vectors as 
adjacent sides of the parallelogram. 

Figure 5-1 Example of vector addition. 

In order to multiply a vector u by a real number q, multiply the length of 
u by lq I and reverse the direction of u if q < 0. This is called scalar mul- 
tiplication. If a vector u is multiplied by -1, the resulting vector is 
designated as -u. It has the same magnitude as u but opposite direction. 
Figure 5-2 demonstrates the use of scalars. 



Figure 5-2 Examples of vectors. 

Example 1: A plane is traveling due west with an air speed of 400 miles 
per hour. There is a tailwind blowing in a southwest direction at 50 miles 
per hour. Draw a diagram that represents the plane's ground speed and 
direction (Figure 5-3). 

Figure 5-3 Drawing for Example 1 - vector representation. 

The vector represented in the preceding example is known as a velocity 
vector. The bearing of a vector v is the angle measured clockwise from 
due north to v. In the example, the bearing of the plane is 270" and the 
bearing of the wind is 225". Redrawing the figure as a triangle using the 
tail-tip rule, the length (ground speed of the plane) and bearing of the 
resultant can be calculated (Figure 5-4). 



Figure 5-4 Drawing for Example 1- angle representation. 
I 
I 
I 

I 

A 
I 
I 

First, use the law of cosines to find the magnitude of the resultant. 

Then, use the law of sines to find the bearing. 

sin C - sinh' - -  
L ' - b 

I$ -- 4.64" 
The bearing, P, is therefore 270" - 4.64", or approximately 265.4". 

Example 2: A plane flies at 300 miles per hour. There is a wind blowing 
out of the southeast at 86 miles per hour with a bearing of 320". At what 
bearing must the plane head in order to have a true bearing (relative to the 
ground) of 14"? What will be the plane's groundspeed (Figure 5-5)? 



Figure 5-5 Drawing for Example 2. 

Use the law of sines to calculate the bearing and the groundspeed. Because 
these alternate interior angles are congruent, the 54" angle is the sum of 
the 14" angle and the 40" angle. 

S;l, 54 O sir1 ( 180 - 54 - 13.4) " 
sin a sir1 54 - 

-- 300 x 
86 300 

( 86) (0.809) 
s i r l a  zz "y :=: 

3 0 0 sir1 54" 

Therefore, the bearing of the plane should be 14" + 13.4" = 27.4". The 
groundspeed of the plane is 342.3 miles per hour. 

Any vector can be broken down into two component vectors, a horizon- 
tal component and a vertical component. These component vectors are 
called projections (Figure 5-6). 



Figure 5-6 Example of projections. 

Example 3: A force of 11 pounds and a force of 6 pounds act on an object 
at an angle of 41" with respect to one another. What is the magnitude of 
the resultant force, and what angle does the resultant force form with the 
1 1 -pound force (Figure 5-7)? 

Figure 5-7 Drawing for Example 3. 

First, use the Law of Cosines to find the magnitude of the resultant force. 

~ . ' - i l ' +  h i -  d n b c o s ~ :  

'=  6 - +  11'- (2) (6)(11)(cos13!J0)  



Next, use the Law of Sines. 

sin a sin 139" 
6 16.02 

( 0 )  0,656 
sir161 z-z 16.02 
sir161 =: 0.246 

Thus the resultant force is 16.02 pounds, and this force makes an angle of 
14.24" with the I 1-pound force. 

Vectors in the Rectangular Coordinate 
System 
The following discussion is limited to vectors in a two-dimensional coor- 
dinate plane, although the concepts can be extended to higher dimensions. 

---+ 
If vector i l B  is shifted so that its initial point is at the origin of the rectan- A 
gular coordinate pkne, it is said to be in standard posiion. If vector 01; 
is equal to vector AU anLhas its initial point at the origin, it is said to be 
the standard vector for AB. Other names for the standard vector include 
radius vector and position vector (Figure 5-8). 

Figure 5-8 Vectors drawn on a plane. 

Y 

-----$ 

Vector OP is the standard vec2r for all vectors in the plane with the same 
direction and magnitude as OJ1. In order to find the standard vector for a 



geometric vector in the coordinate plane, only the coordinates of point P 
must be found because point O is at the origin. If the coordinates of point 
A are (x,, y,) and the coordinates of point B are (xb, yb), then the coordi- 
nates of point P are (xb - x,, y,b- y,). 

+ 
Example 4: If the endpoints of a vector AB have coordinates of A (-2 4 
-7) and B (3,2), then what are the coordinates of point P such that 01' is ---+ --+ 
a standard vector and OP = AB (see Figure 5-9)? 

Figure 5-9 Drawing for Example 4. 

If the coordinates of point P are (x, y), 

y = x  = x  =.j- ( - 2 )  = j 

1 , = J i  -), = 4 - ( - j ) = " )  

An algebraic vector is an ordered pair of real numbzrs. An algebraic vec- 
tor that corresponds to standard geometric vector 01' is denoted as ( [ I ,  h )  
if terminal point P has coordinates of &, b). The numbers a and b are called 
the components of vector (il. b ) (see Figure 5- 10). 

Figure 5-10 Components of a vector. 



If a, 6, c, and dare all real numbers such that a = c and 6 = d, then vector 
v = ( N .  b)  and vector u = ( c ,  d )  are said to be equal. That is, algebraic vec- 
tors with equal corresponding components are equal. If both components 
of a vector are equal to zero, the vector is said to be the zero vector. The 
magnitude of a vector v = <a, 6> is / 2)  

Example 5: What is the magnitude of vector u = ( 3 ,  - j)? 

I L L /  - \/fl'+ b 

Vector addition is defined as adding corresponding components of 
vectors-that is, if v = (o, G) and u = (c, (i), then v + u = ( N  + b. c +  d )  
(Figure 5- 1 1). 

Figure 5-1 1 Vector addition. 

Scalar multiplication is defined as multiplying each component by a con- 
stant-that is, if v = ( L L ,  b )  and q is a constant, then qv = q (//, b - qa, qb). 

Example 6: If v = ( 8 .  - 2 )  and w = ( 3 .  -) then find 5v -2w. 

5~ - ZW = 5(8. - 2 )  - Z(3.7) 

5 ~ -  2 w =  5(40, - lo)-((, ,  14) 

5v - 2w = (34.  - 24)  



A unit vector is a vector whose magnitude is 1. A unit vector v with the 
same direction as a nonzero vector u can be found as follows: 

, , 

Example 7: Find a unit vector v with the same direction as the vector u 
given that u = (7. - I )  . 

Two special unit vectors, i = (1.0)  and j = (0 .1)  , can be used to express 
any vector v = (ii, b). 

v = ( A ,  b )  
v = ( , I .  0)  + (0 ,  h )  

v = ai + bj 

Example 8: Write u = ( j , 3 )  in terms of the i and j unit vectors (Fig- 
ure 5-12). 



Figure 5-12 Drawing for Example 8. 

Vectors exhibit algebraic properties similar to those of real numbers 
(Table 5- 1). 

Table 5-1 Properties of Vectors 

Associative property u+(v+w)=(u+v)+w a(bv)=(ab)v 

Commutative property u + v = v + u 

Distributive property a(u +v )  = a u  + av (a + b)v = av + bv 

Identity v + O = O + v = v  1v = v 

Inverse v + (--v) = 0 

Example 9: Find 4u + 5v if u = 7i - 3j and v = -2i + 5j. 



Given two vectors, u = ( L ! .  h )  = ai + bj and v = (i: d )  = ci + dj, the dot prod- 
uct, written as usv, is the scalar quantity u . v = ac + bd. If u, v, and w are 
vectors and q is a real number, then dot products exhibit the following 
properties: 

U ' V - V  U 

The last property, u .v = lul lvl cos CX, can be used to find the angle between 
the two nonzero vectors u and v. If two vectors are perpendicular to each 
other and form a 90" angle, they are said to be orthogonal. Because cos 
90°= 0, the dot product of any two orthogonal vectors is 0. 

Example 10: Given that u = (5. - 3 )  and v = ( 6 , l  o), show that u and v are 
orthogonal by demonstrating that the dot product of u and v is equal to 
zero. 

Example 11: What is the angle between u = (5, - 2) and v = (6.1 I ) ?  

a z 83.2" 
An object is said to be in a state of static equilibrium if all the force vec- 
tors acting on the object add up to zero. 



Example 12: A tightrope walker weighing 150 pounds is standing closer 
to one end of the rope than the other. The shorter length of rope deflects 
5" from the horizontal. The longer length of rope deflects 3". What is the 
tension on each part of the rope? 

Draw a force diagram with all three force vectors in standard position (Fig- 
ure 5-13). 

Figure 5-13 Drawing for Example 12. 

The sum of the force vectors must be zero for each component. 

For the i component: - 

For the j component: v / cos jO  - 150 = 0 

Solve these two equations for lul and lvl: 

v / c o s . ~ O -  150 -0  

Substituting the values for the sines and cosines: 



Multiply the first equation by 0.0872 and the second by 0.9962: 

- 0.0869 I u 1 i- 0.087 1 / v 

Add the two equations and solve for lvl: 

0.13929 / v / = 149.43 

Substitute and solve for lul: 

Chapter Checkout 

Q&A 
I .  An airplane is traveling with airspeed of 225 mph at a bearing of 

205". A 60 mph wind is blowing with a bearing of 100". What is the 
resultant ground speed and direction of the plane? 

2. A force of 22 pounds and a force of 35 pounds act on an object at an 
angle of 32" with respect to one another. What is the resultant force 
on the object? 

----f 

3. If the endpoints of a vector AH have coordinates of A(-4, 6 b n d  
B(10,4), then what a%the$oordinates of a point P such that 01) is a 
standard vector and (91' = AL3? 

4. True or False: The dot product of two orthogonal vectors is always 
zero. 

5. What is the angle between vector u = <5,7> and v = <-6,6> ? 

Answers: 1. 217 mph, bearing 189.53" 2.  54.91 pounds 3. (14,-2) 
4. True 5. 80.54". 



Chapter 6 

POLAR COORDINATES AND 
COMPLEX NUMBERS 

Chapter Checkin 

O Defining polar coordinates in terms of rectangular coordinates 

U Converting between polar and rectangular coordinates 

U Recognizing the graphs of some important polar curves 

O Defining complex numbers in terms of polar coordinates 

U Converting between complex numbers and polar coordinates 

61 Defining and using De Moivre's Theorem 

M any systems and styles of measure are in common use today. When 
graphing on a flat surface, the rectangular coordinate system and the 

polar coordinate system are the two most popular methods for drawing 
the graphs of relations. Polar coordinates are best used when periodic func- 
tions are considered. Although either system can usually be used, polar 
coordinates are especially useful under certain conditions. 

Polar Coordinates 
The rectangular coordinate system is the most widely used coordinate sys- 
tem. Second in importance is the polar coordinate system. It consists of 
a fixed point O called the pole, or origin. Extending from this point is a 
ray called the polar axis. This ray usually is situated horizontally and to 
the right of the pole. Any point, R in the plane can be located by specify- 
ing an angle and a distance. The angle, 8, is measured from the polar axis 
to a line that passes through the point and the pole. If the angle is mea- 
sured in a counterclockwise direction, the angle is positive. If the angle is 
measured in a clockwise direction, the angle is negative. The directed 



distance, r, is measured from the pole to point I? If point P is on the ter- 
minal side of angle 8, then the value of r is positive. If point P is on the 
opposite side of the pole, then the value of r is negative. The polar coor- 
dinates of a point can be written as an ordered pair (r, 8). The location of 
a point can be named using many different pairs of polar coordinates. Fig- 
ure 6-1 illustrates three different sets of polar coordinates for the point P 
(450") .  

Figure 6-1 Polar forms of coterminal angles. 

Conversion between polar coordinates and rectangular coordinates is illus- 
trated as follows and in Figure 6-2. 



Figure 6-2 Polar to rectangular conversion. 

Examplel: Convert P (4,9) to polar coordinates. 

7 * - x L +  Ji 

" 4 ' +  9)'  

-97  
7 

)"= J97 

X cose = , 
4 cose - 7 

J 97 
cose 2: 0.406 

&I :z 66" 

The ~ o l a r  coordinates for P (4, 9) are P ( JG, 66' ). 
Example 2: Convert P (5,20°) to rectangular coordinates. 

x - z-cose 

y--  5 sin2O0 

.yz (5)((1.34) 

J'z  I.-' 

The rectangular coordinates for P (5,20°) are I' (4.7, 1-71 



Example 3: Transform the equation x2 + y2 + 5x = O to polar coordinate 
form. 

The equation r = O is the pole. Thus, keep only the other equation. 

,.+ 5cose  = 0 

Graphs of trigonometric functions in polar coordinates are very distinctive. 
In Figure 6-3, several standard polar curves are illustrated. The variable a 
in the equations of these curves determines the size (scale) of the curve. 

Figure 6-3 Graphs of some common figures in polar form. 

Circle: r = a Circle: I r = a cos 

Circle: r = a sin@ Line: 8 = a 



Horizontal line: r = a Isin 8 Vertical line: r = a /COS 8 

(el 

Cardioid: r = a + a cos 8 

(f) 

Cardioid: r = a + a sin B 

Archimedes' spiral: r = a6 Three-leaved rose: r = a cos 3 8 



Three-leaved rose: r = a sin 30 

Lemniscate: r = a2 cos 2 8 Lemniscate: r = a2 sin 28 

Four-leaved rose: r = a cos 28 

90" 
I 

(m) 

Four-leaved rose: r = a sin 28 



Geometry of Complex Numbers 
Complex numbers can be represented in both rectangular and polar coor- 
dinates. All complex numbers can be written in the form a + bi, where a 
and b are real numbers and i2 =-I. Each complex number corresponds to 
a point in the complex plane when a point with coordinates (a, 6) is asso- 
ciated with a complex number a + bi. In the complex plane, the x-axis is 
named the real axis and the y-axis is named the imaginary axis. 

Example 4: Plot 4- 2i -3 + 2i, and -5 - 3i in the complex plane (see Fig- 
ure 6-4). 

Figure 6-4 Complex numbers plotted in the complex plane. 

Complex numbers can be converted to polar coordinates by using the rela- 
tionships x = r cos 8 and y = r sin 8. Thus, if z is a complex number: 

Sometimes the expression cos 8 + sin 8 is written as cis 8. The absolute 
value, or modulus, of z is I x - ,/x ' + JJ '. The angle formed between the 
positive x-axis and a line drawn from the origin to z is called the argument 
or amplitude of z. If z = x + iy is a complex number, then the conjugate 
of z is written as I= = .v - 411 



Example 5: Convert the complex number 5 - 3i to polar coordinates (see 
Figure 6-5). 

Reference angle 8 2: 3 1 ". 
Since 8 is in the fourth quadrant, 

Figure 6-5 Drawing for Example 5. 

Therefore, 

To find the product of two complex numbers, multiply their absolute val- 
ues and add their amplitudes. 

!f ,:= il ( cosa  + i s i n a )  

m d  ii; = b (cosji + i s inp  ) 



To find the quotient of two complex numbers, divide their absolute val- 
ues and subtract their amplitudes. 

/J' 2 - ir j C O S ~  + i s i n a )  

i*nd to = b ( c o s p  + i s i n p )  

c o s ( ~ v - p . i  + i s i n i a - P )  

Example 6: If z = a(cosa + i sin@ and w = b(cosp +i sinp), then find their 
product zw. 

cosa  cosp  - sirla sirlp + i ( sirla cosp + cosa  sirlp ) 

Example 7: If z = a(cosa + i sinat) and w = b(cosp +i sinp), then find their 
quotient z/w. 

( coca cosp + cina  cinp ) + i [ cina  cocp - cosu s i n p  ) 
z - fl - - - 
Z L '  (, ( 1 )  

Example 8: I f z  = 4(cos 65" + i sin 65") and w = 7(cos 105" + i sin 105"), 
then find zw and z/w. 



De Moivre9s Theorem 
The process of mathematical induction can be used to prove a very 
important theorem in mathematics known as De Moivre's theorem. If 
the complex number z = r(cos cx + i sin CX), then 

z = i .  ' ( coy .M + j sin .)a ) 

z - : - ' [ ( cos ia  + i \ i n i a ) ] [ l - ( c o s a  + i s i n a ) ]  

The preceding pattern can be extended, using mathematical induction, to 
De Moivre's theorem. 

If z = r(cos a + i sin a ) ,  and n is a natural number, then 

Example 9: Write jJ.1 + i ) in the form s + bi. 

First determine the radius: 



Since cos a - J 3  /2 and sin a = 112, a must be in the first quadrant and 
a = 30". Therefore, 

r 
( 4 3  +,) - -64 t /? -64 i  

Example 10: Write (JT - i JT 1 in the form a + bi. 

First determine the radius: 

1 Since cos a = !a = 4 2 / 2  and sin a = - J2/2, must be in the fourth quad- 
rant and a = 3 1 5". Therefore, 



Problems involving powers of complex numbers can be solved using bino- 
mial expansion, but applying De Moivre's theorem is usually more direct. 

De Moivre's theorem can be extended to roots of complex numbers yield- 
ing the nth root theorem. Given a complex number z = r(cos a + i sina), 
all of the nth roots of z are given by 

where k = 0, l , 2 ,  . . . , (n - 1) 

If k = 0, this formula reduces to 

This root is known as the principal nth root of z. If a = O0 and r = 1, then 
z = 1 and the nth roots of unity are given by 

where k = 0, 1 ,2,  . . . , (n - 1) 

Example 11: What are each of the five fifth-roots of i = Ji + i expressed 
in trigonometric form? 

i 

Since c o  Q = ,/ i i2 and sin Q = 1 /Z, is in the first quadrant and a = 30°. 
Therefore, since the sine and cosine are periodic, 

z = 7. cosCC + isin CC ) 



and applying the nth root theorem, the five fifth-roots of z are given by 

where k = 0, 1 ,2,  3, and 4 

Thus the five fifth-roots are 

i l =  2 '  ' (coc(iO + i s inhO)  

i ,  L '(cos~sO+ i i n 7 8 O )  

I  r = 2 (cos150*+ isin 150') 

Observe the even spacing of the five roots around the circle in Figure 6-6. 

Figure 6-6 Drawing for Example 11 .  

y (imaginary) 

I 22 



Chapter Checkout 

I .  Convert P(2, 5) from rectangular coordinates to polar coordinates. 

2. Convert P(8,26") from polar coordinates to rectangular coordinates. 

3. True or False: The Rose: r = sin 2 8 has two "petals." 

4. Convert the complex number 4 + 2i to polar coordinates. 

5. If z = 2(cos70° + i sin 70") and w=6(cos80° + i sin 80°), then find zw. 

Answers: 1. r = J29 ; 8 = 68.2" 2. P(7.2, 3.5) 3. F 
4. ,/ro(c0~26.6" + i sin26.6") 5. 12(cos 150" + i sin 150"). 



Chapter 7 

INVERSE FUNCTIONS 
AND EQUATIONS 

Chapter Checkin 

O Defining inverse trig functions 

U Demonstrating how to restrict the basic trig functions to certain 
quadrants 

U Showing that the restricted trig functions are one to one and have 
inverses 

U Solving problems using inverse trig functions 

O Identifying trig equations with primary solutions 

U Solving trig equations 

Th e standard trig functions are periodic, meaning that they repeat them- 
selves. Therefore, the same output value appears for multiple input val- 

ues of the function. This makes inverse functions impossible to construct. 
In order to solve equations involving trig functions, it is imperative for 
inverse functions to exist. Thus, mathematicians have to restrict the trig 
function in order create these inverses. 

Inverse Cosine and Inverse Sine 
To define an inverse function, the original function must be one-to-one. 
For a one-to-one correspondence to exist, (1) each value in the domain 
must correspond to exactly one value in the range, and (2) each value in 
the range must correspond to exactly one value in the domain. The first 
restriction is shared by all functions; the second is not. The sine function, 
for example, does not satisfy the second restriction, since the same value 
in the range corresponds to many values in the domain (see Figure 7-1). 



Figure 7-1 Sine function is not one to one. 

TO define the inverse functions for sine and cosine, the domains of these 
functions are restricted. The restriction that is placed on the domain val- 
ues of the cosine function is 5 .v 5 7~ (see Figure 7-2). This restricted 
function is called Cosine. Note the capital "C" in Cosine. 

Figure 7-2 Graph of restricted cosine function. 

7 y =  Cosx 

Domain: 0 < x < 
Range: - 1 < y < l  

The inverse cosine function is defined as the inverse of the restricted 
Cosine function Cos- ' ( cosx ) = .u r) 5 x 5 TL. Therefore, 

y  = Cos-'x, where O < y  < n and -1 < x < I 



Figure 7-3 Graph of inverse cosine function. 

v 

Domain: -1 < x < 1 

Range: O < y < 7 ~  

Identities for the cosine and inverse cosine: 

cos (Cos-'x) = x -1 2 x 2  1 

cos-' (cosx) = x O < x < n ;  

The inverse sine function's development similar to that of the cosine. 
The restriction that is placed on the domain values of the sine function is 

a 
=- 

a 5 x 5 -  7 
'5 

This restricted function is called Sine (see Figure 7-4). Note the capital "S" 
in Sine. 

Figure 7-4 Graph of restricted sine function. 

y = Sin x 

Domain: -n/2 < x < n;/2 

Range: - 1 < y < l  



The inverse sine function (see Figure 7-5) is defined as the inverse of the 
restricted Sine function y = Sin x, 

Therefore, 
7C 4 X 7C X 4 

2 - s 2 --- and y = S i n  .I:, where - --- j :I -I --- and - 1 - x 5 1 2 2 - 2 

Figure 7-5 Graph of inverse sine function. 

Domain: - 1 l x l 1 

Range: -7i12 l y l 7~12 

Identities for the sine and inverse sine: 

\ x'< 1 sin (Sin ' . Y )  = x - 1 <' 

The graphs of the functions y = Cos x and y = Cos-' x are reflections of 
each other about the line y = x. The graphs of the functions y = Sinx and y = 

Sin-'x are also reflections of each other about the line y = x (see Figure 7-6). 



Figure 7-6 Symmetry of inverse sine and cosine. 

Example 1: Using Figure 7-7, find the exact value of CoC ' ( - JS 12 ). 

Thus, y = 5 ~ 1 6  or y = 150". 

Figure 7-7 Drawing for Example 1. 

Y 

Example 2: Using Figure 7-8, find the exact value of S i n  ( J 2  /L ) 



Figure 7-8 Drawing for Example 2. 

Thus, y = ~ 1 4  or y = 45". 

Example 3: Find the exact value of cos ( C o s  0.62 ). 

Use the cosine-inverse cosine identity: 

coa ( Coa ' 0.62 ) - 0.62 

Other Inverse Trigonometric Functions 
To define the inverse tangent, the domain of the tangent must be 
restricted to 

n: -- X 
3 <.Y<, 
A ri 

This restricted function is called Tangent (see Figure 7-9). Note the capi- 
tal "T" in Tangent. 

Figure 7-9 Graph of restricted tangent function. 



The inverse tangent function (see Figure 7-10) is defined as the inverse 
of the restricted Tangent function y = Tan x, 

Therefore, 
71: 71: 

1, = 'l'ann ' .Y, lvhere - - < 1' < 7 and - .x < x < x 2 - ,  

Figure 7-10 Graph of inverse tangent function. 

Domain: All real numbers 

n; n; < x < -  Range: - 7 3 

Identities for the tangent and inverse tangent: 

The inverse tangent, inverse secant, and inverse cosecant functions are 
derived from the restricted Sine, Cosine, and Tangent functions. The 
graphs of these functions are shown in Figure 7- 1 1. 



Figure 7-1 1 Graphs of inverse cotangent, inverse secant, and inverse 
cosecant functions. 

Domain: All real numbers Domain: x < -1 or x > 1 
Range: 0 < y < n Range: 0 l y l n, y f n;/2 

Domain: x < -1 or x > 1 

Range: -n/2 < y < ~ 1 2 ,  y f 0 

(4 

Trigonometric identities involving inverse cotangent, inverse secant, and 
inverse cosecant: 

I 1 Cot x= ' l ' an  _I_ where .Y > O 

I 1 Cot ' .r = rr + i n n  wlicrc A < O 
1 1  Sec x Cos y where x ='> 1 or "1;- < - 1 

I 1 
~ s c  i = Sin where x 2 1 or x 5 - 1 



Example 4: Determine the exact value of sin [Sec-' (-4)] without using a 
calculator or tables of trigonometric functions. 

Ifa = Sec ' ( -  ), then 

Sec (Y, - 4, where 0 < 01 < E ,  (Y, f 7 ~ / 2  

In this range, the cosine and the secant are negative in the second quad- 
rant. From this reference triangle, calculate the third side and find the sine 
(see Figure 7- 12). 

Figure 7-12 Drawing for Example 4. 

Therefore, 



Example 5: Determine the exact value of cos (Tan-' 7) without using a 
calculator or tables of trigonometric functions. 

1 - If cx = 'l'al : , then 

In this range, the tangent and the cotangent are positive in the first quad- 
rant. From this reference triangle, calculate the third side and find the 
cosine (see Figure 7-13). 

(.J - 11 + -1 

Figure 7-13 Drawing for Example 5. 

Therefore, 



Trigonometric Equations 
Trigonometric identities are true for all replacement values for the variables 
for which both sides of the equation are defined. Conditional trigonometric 
equations are true for only some replacement values. Solutions in a specific 
interval, such as O I x I 27~, are usually called primary solutions. A general 
solution is a formula that names all possible solutions. 

The process of solving general trigonometric equations is not a clear-cut 
one. No rules exist that will always lead to a solution. The procedure usu- 
ally involves the use of identities, algebraic manipulation, and trial and 
error. The following guidelines can help lead to a solution. 

If the equation contains more than one trigonometric function, use identi- 
ties and algebraic manipulation (such as factoring) to rewrite the equation 
in terms of only one trigonometric function. Look for expressions that are 
in quadratic form and solve by factoring. Not all equations have solutions, 
but those that do usually can be solved using appropriate identities and alge- 
braic manipulation. Look for patterns. There is no substitute for experience. 

Example 6: Find the exact solution: 

First, transform the equation by using the identity sin2 + cos2a = 1. 

c o s ' ~ = = c o s ~ ~ + ( l  =cos Q )  

2 LOS ( X  i- L O S a  - 1 = 0 

( 2 c o s u -  l ) ( c o s c x +  1 ) O  

Therefore, 
2cosa- 1 = O  cosa + 1 = (1 

cos tx = - 1 

a -  180" 

Thus, 



Example 7: Solve cos 2x = 3(sin x - 1) for all real values of x. 

coc2x = 3 (si11.u - I ) given 

double ,xnglo fornrula 

quadratic ecluation 

The first answer, -2.35 1, is not a solution, since the sine function must 
range between - 1 and 1. The second answer, 0.8508, is a valid value. 
Thus, if k is an integer, 

x = Sin ' (3.8508 i- 2il.n x = K - Sin 0.8508 + 2/31 

In radian form, 

x = 1 . 0 1 ' 5 + 2 k ~  x = 2 . 1 2 4 + 2 k n  

In degree form, 

O )  i r =  5S.j0+ 360 ( L )  x =  121.7"+ 3600)1k)  

Example 8: Find the exact solution: 

First, transform the equation by using the double angle identity cos 28 = 

2 c0s28 - 1. 

2cos7e  - I - cose 

2 c o s ' e - c o s e -  I - 0  

( ~ c o s ~ +  I ) ( C O C ~ -  1 1  = o 



Therefore, 

~ C O S Q  + 1 = o C O S ~  - I = o 
t COSQ = -1 C O S ~  = 1 

C O S ~  = - q 0 = o 0  

8 -  120' 

Thus, 

Chapter Checkout 

Q&A 
1. Solve sin 8 = 2 cos2 8 - 1 where 0" < 8 < 360". 

2. Find the exact value of cos ( si11- ' (- --I 1. 
3. Find the exact value of t,m (sin- ' + 1. 
4. True or False: The inverse sine and inverse cosine are defined in the 

same quadrants. 

5. Find the exact value of sin1 ( sin i j .  

6. Solve sin2 2 ff = 1. 
2J10 2 J j  

Answers: 1. 30°, 150°, 270" 2. - 3 
7 3 . 7  4. F 5. j=j 6.45", 225". 



Chapter 8 

Chapter Checkin 

U Defining an alternate form for the equation y = A sin (Bt + C) 

U Converting between y = A sin (Bt + C) and y = M sin Bt + N cos Bt 

U Finding period, frequency, and phase shift 

U Defining uniform circular motion 

U Using uniform circular motion to solve problems about linear velocity 

U Defining simple harmonic motion in terms of uniform circular motion 

U Solving problems using simple harmonic motion 

H ave you ever noticed that the motions of some objects seem to be very 
rhythmic and repetitive? Motions like train wheels and linkages, a 

child's swing, the pistons in a car engine, throwing a ball, and bouncing a 
ball are all related to harmonic motion and the sine curve. Understanding 
simple harmonic motion and uniform circular motion can help explain 
how most of these very common movements are related. 

The Expression M sin St + IY cos St 
The equation y = M sin Bt + Ncos Bt and the equation y = A sin (Bt + C) 
are equivalent where the relationships ofA, B, C, M, and Nare as follows. 
The proof is direct and follows from the sum identity for sine. The fol- 
lowing is a summary of the properties of this relationship. 

M sin Bt +NcosBt = ,/M + sin (Bt + C) given that Cis an angle with 
a point P(M, N) on its terminal side (see Figure 8-1). 



amplitodc= J/M + A' ' 

2n pc-riod = - R 
N frcc~ucllcy = - 2n 

C' phase shift - - - N 

Figure 8-1 Reference graph for y=  M sin Bt + N cos Bt. 

Example 1: Convert the equation ! = J5 sin 3t + 2 cos 3t to the form y = 

A sin (Bt + C). Find the period, frequency, amplitude, and phase shift (see 
Figure 8-2). 



Figure 8-2 Drawing for Example 1. 

Example 2: Convert the equation y = -sin nt + cos nt to the form y = A 
sin (Bt + C). Find the period, frequency, amplitude, and phase shift (see 
Figure 8-3). 

. . J 2  
sin (, = 7 



Figure 8-3 Drawing for Example 2. 

Uniform Circular Motion 
If a is the measure of a central angle of a circle, measured in radians, then 
the length of the intercepted arc 6) can be found by multiplying the radius 
of the circle (r) by the size of the central angle (a); s = r a. Remember, 
must be measured in radians. 

Example 3: Find the length 6) of the arc intercepted by a central angle of 
size 3 radians if the radius of the circle is 5 centimeters (see Figure 8-4). 

Figure 8-4 Drawing for Example 3. 

Thus, the length of the intercepted arc is 15 centimeters. 

Example 4: Using Figure 8-5, find the length 6) of the arc intercepted by 
a central angle of size - 100" if the radius of the circle is 7 centimeters. 



Round the answer to two decimal places. (In this problem, the negative 
value of the angle and the arc length refer to a negative direction.) 

First, convert - 100" to radian measure. 

Figure 8-5 Drawing for Example 4. 

Thus, the length of the intercepted arc is -12.25 centimeters. 

The linear velocity (v) of a point traveling at a constant speed along an arc 
of a circle is given as: 

lenagth of the ,Ire ;. a - U -  p 

rime I: 

Example 5: If the earth has a radius of 4,050 miles and rotates one com- 
plete revolution (2n; radians) each 24 hours, what is the linear velocity of 
an object located on the equator? 

21 2: 1060 

Thus, the linear velocity of the object is 1,060 miles per hour. 



The angular velocity (w) of a point traveling at a constant speed along an 
arc of a circle is given as: 

nleasiii-e of aumgle of rotation a 
(1)  - 

- - 
time t 

Angular and linear velocity are both positive if the movement is counter- 
clockwise and negative if the movement is clockwise. 

Example 6: Point P revolves counterclockwise around a point O making - A - 
7 complete revolutions in 5 seconds. If the radius of the circle shown in 
Figure 8-6 is 8 centimeters, find the linear and angular velocities of point 
I? Approximate 7 ~ :  to two decimal places. 

Figure 8-6 Drawing for Example 6. 

Thus, the linear velocity is approximately 70.34 centimeters per second. 



Thus, the angular velocity is approximately 8.79 radians per second 

Simple Harmonic Motion 
Circular functions representing periodic motion that satisfy the equations 

d=AsinBt and d=AcosBt 

where d is an amount of displacement, A and B are constants determined 
by the specific motion, and t is a measurement of time are referred to as 
simple harmonic motion. 

Example 7: If the instantaneous voltage in a current is given by the equa- 
tion E = 204 sin 3680t, where E is expressed in volts and t is expressed in 
seconds, find E if t = 0.27 seconds. Use 3.14 16 for n;. 

Since sinx = sin (x - 2h) and (993.6 +- 2n;) = 158 with a remainder 
of .8544, 

E= 204sill[793.6 - (158) 6.2832) 

1:- 284 sin 0.8544 

/: ::-: ( 2 0 4 )  (0.7542) 

1, 2: 153.86 

Example 8: The horizontal displacement (d) of the end of a pendulum is 
d = Ksin 271;t. FindK if d = 12 centimeters and t =3.25 seconds. 



Chapter Checkout 

I .  Given the equation y = 3sin 4t + 6 cos4t, find the amplitude and the 
period of the function. 

2. Find the length of an arc intercepted by a central angle of size 2.3 
radians if the circle has a radius of 12 inches. 

3. If a ball of radius 2 feet is spinning at 12 rpm, what is the linear veloc- 
ity of a point on the equator of the ball? 

4. If a point revolves around a circle of radius 12 at a constant rate of 4 
revolutions every 2 minutes, find its angular velocity. 

5. If the displacement of a spring (d) is given by d = A cosat where A, 
the initial displacement and d are expressed in inches, .t in seconds, 
and a = 8, find d when A is 10 inches and t = 2 ~ .  

Answers: 1. Amplitude = i 45 period = $2.27.6 inches 3.48 K feetlmin 
cn 4 ( 2 ~ )  4 . ( 0 = 7 - -  L. = 4n: 5. 10 inches. 



CQR REVIEW 

Use this CQR Review to practice what you've learned in this book. After 
you work through the review questions, you're well on your way to achiev- 
ing your goal of understanding trigonometry. 

Chapter 1 

I .  Convert 44.4714 to DM'S" form. 

2. Find the exact value of cos270°. Do not use a calculator. 

3. Find the exact value of C O S ~ O "  cos 60 ". Do not use a calculator. 

4. Determine the sign of the following trigonometric hnctions: a) sin 255" 
b) tan 240" c) cos (- 1 10"). 

1 5. Find sin tj and cos $ for the acute angle 8 if tan 8 = -. 
7 !2 " t1 

6. What is the reference angle for -649"? 

Chapter 2 

7. Solve this triangle: cx = 5 1 ", P = 49", b = 70. 

8. Solve this triangle: a = 10, b = 11, a =27". 

9. Solve this triangle: b = 7, c = 4, a = 94". 

10. Solve this triangle: a = 1 1, b = 17, c = 14. 



1 1 .  Find the area of a triangle with a = 68", b = 7 feet, and c = 7 feet. 

a. 9.18 square feet 
b. 45.43 square feet 
c. 22.72 square feet 
d. 24.50 square feet 

12. Find the area of a triangle with sides 4 meters, 5 meters, and 6 meters. 

Chapter 3 

13. For a circle of radius 3 feet, find the arc length s subtended by a 
central angle of 6". 

14. Convert 17 1 " to radian measure. Give the exact answer. 

15. Find the exact value of sin -ZI- - tan -ZI-. Do not use a calculator. 4 4 

16. I f f  (x) = tan x and f (a) = 9, find the exact value o f f  (a) + 
f (a + 3n;) + f (a - 3 ~ ) .  

1 
Cm i 

3 

d. 27 
2 17. Find the exact value of r.ln ( - T rr 
-3 

18. Find the amplitude and period off (x) = -8sin(2x). 



Chapter 4 

19. Is this statement an identity? 
cosx 

= secx + td1lX 1 - sinx 
3 n 5 3n 20. If sinA - -, 7 < '4 << n and i o s i j -  ?j < i j  < 7, find the exact 8 

value of cos(A + B). 

21. Establish this identity: ros ( 6 + - s in8  

3 n 22. Find the exact value of sin26 if sin 8 = 5, -7 < 6 r n. 
i, 

23. The expression csc28 + cot28 forms an identity with which of the fol- 
lowing? 

a. tan 0 
8 b. tan - 2 

C. cot 6' 

24. Express sin2 8 cos7 H as a sum containing only sines or cosines. 
1 a. - ( sirlCIH + sin 58)  2 
1 b. 2 ("in 9H - sin 56) 

9 8  56 
C. sin- - sin- L 2 

d. sin 5 8 + sin20 

Chapter 5 - 
25. Find the position vector of the vector u - i f  / (5, - 4) and K =  

(-6, -7). 



26. If v = -3i + 7j and w = 5i + 1 Oj, find v - w. 

27. If v = 3i + 2j and w = 3i + 8j, find 5v - 3w and /I S U  - ~ Y L I / / .  

28. Find the unit vector having the same direction as v = -1Oi + 24j. 

29. If v = 5i - 9j and w = 27i + 15j, find v . w. 

30. Find the measure of the angle between the vectors v = i + 4j and 
w = -3i + 4j. 

31. Find the component form of v given / /  11 / - 6 and the angle between 
the direction of v and the positive x-axis is ct = 150". 

32. Which of the following vectors is orthogonal to -lOi + 6j? 



Chapter 6 

33. Find the rectangular coordinates of (9, 30"). 

34. Find the polar coordinates of (-12, -12) for r > 0, 0 I 8 < 2n. 

35. Determine the polar form of the complex number 2 - 4i. Express the 
angle H in degrees where O I 8 < 360°, and round numerical entries 
to two decimal places. 

Chapter 7 

36. Find the exact value of tan 
/ 

a. J.3 

I 
37. Solve the equation t 4 .i cosx - li - 0, where O I x < 2n. 

38. Solve the equation sin2 H + 2sin H + 1 = 0, where O I H < 2n. 

39. Solve the equation -sin H + 1 = 2cos2 8, where O I 6 < 2n. 

a. 8 = 0 , H = n  



Chapter 8 

40. A propeller, 2 meters from tip to tip, is rotating at a rate of 400 rev- 
olutions per minute. Find the linear velocity of a tip of the propeller 
In meters per second. 

41. The horizontal displacement of a pendulum is described by the equa- 
l tion d = Ksin2n. Find Kif d = 20 and r - z. 

42. The horizontal displacement of a pendulum is described by the equa- 
tion d = Ksin2n. Find d if t = l .2 and K = l l .  

1 Answers: 1. - 44O28'17" 2. 0 3. 7 4. negative, positive, negative 
2;2 

I 

1 5. cost) - ----i----sitlt) - 7 6. d 7. y =  80°, a = 72.08, c = 91.34 8. cl = 18.46, 
. / .I 

p1 = 29.96",y1 = 123.04" a n d c 2 =  1.14, p 2 =  150.04" 9 . a =  8.3, p = 

57.3", y1 = 28.7" 10. c 11. c 12. 9.92 square meters 13. 0.31 feet 
19 14. n 15. d 16. d 17. ,:? 18. amplitude = 8 and period = x 19. Yes 

1 I I j?T 27 i 'i) 20. - ( +  21. cos 8 + 1  = c o s t ) c o s ~ - s i ~ ~ ~ s i ~ ~ ~ =  56 L. ir 

24 
(cost)) (0) - sin t) ( I  ) - i n  t) 22. - 23. c 24. b 25. c 26. a 27. 5v - 3w 

2 J 5 8  28. a29 .  d 30. c 31. - 3 , h i c j j  32. c 
- 

327 40 J 3  
' 

' 38. @ - 7 39. d 40. 8 0 0 ~  meters per minute 41. -7- 3 7 * L ? ) ~ )  - 



CQR RESOURCE CENTER 

CQR Resource Center offers the best resources available in print and online 
to help you study and review the core concepts of trigonometry. You can 
find additional resources, plus study tips and tools to help test your knowl- 
edge, at www. cliffsnotes. com. 

Books 

This CliffsQuickReview book is one of many great books about trig- 
onometry. If you want some additional resources, check out these other 
publications: 

Schaurn's Outline of Tn'gonornetry, by Robert E. Moyer and Frank Ayres, 
focuses on plane trigonometry and contains hundreds of problems. 
McGraw-Hill Professional Book Group. 

Tn'gonornetry the Easy Way, by Douglas A. Downing, takes the form of 
a fantasy novel where the King of Carmorra and his subjects solve 
practical problems by applying principles of trigonometry. Barron's 
Educational Series, Inc. 

Hungry Minds also has three Web sites that you can visit to read about all 
the books we publish: 

Internet 

The Internet is loaded with web sites related to trigonometry. Many offer 
tutorials. Some link to many other useful sites about trigonometry and 
other related subjects. Just spend some time exploring, and you will prob- 
ably find what you need. In particular, visit the following Web sites for 
more information about trigonometry: 

Dave's short course in trigonometry, alephO.clarku.edu/+djoyce/ 
javaltrigl, introduces you to trigonometry and has a few exercises. 



An introduction to Trigonometq www.ping.be/math/, provides a more 
advanced tutorial on trigonometry. 

Syvum Homepage: Online Education and Interactive Learning, 
www.syvum.comlmathltrigonometry.html, offers a variety of math prob- 
lems, including some on trigonometry. 

SOSMath Homepage, www.sosmath.com/trig/trig.html, is a valuable 
resource that lists hundreds of sites covering all phases of mathematics. 

Next time you're on the Internet, don't forget to drop by www. 
cliffsnotes.com. 



GLOSSARY 

AAS reference to solving a triangle 
given the measure of two angles and 
the length of a non-included side. 

absolute value of a complex number 
square root of the sum of the squares 
of its real and imaginary coefficients. 

algebraic vector an ordered pair of 
numbers representing the terminal 
point of a standard vector. 

amplitude of a complex number 
same as the argument of a complex 
number. 

amplitude the vertical stretch of a 
function. 

angle a measure of rotation. 

angle of depression an angle mea- 
sured below the horizontal. 

angle of elevation an angle measured 
above the horizontal. 

angular velocity defined in terms of 
angle of rotation and time. 

argument of a complex number 
angle formed between the positive x- 
axis and a line segment between the 
origin and the number. 

ASA reference to solving a triangle 
given the measure of two angles and 
the length of the included side. 

ASTC an acronym representing which 
trigonometric functions are positive 
in the I, 11,111, and IV quadrants 
respectively. 

asymptotes lines representing unde- 
fined values for trigonometric 
functions. 

bearing an angle measured clockwise 
from due north to a vector. 

circular functions functions whose 
domains are angles measured in radi- 
ans and whose ranges are values that 
correspond to analogous trigonometric 
functions. 

cofunction identities fundamental 
identities that involve the basic trig 
functions of complementary angles. 

cofunctions pairs of trigonometric 
functions of complimentary angles 
whose trigonometric ratios are equal. 

complex plane a coordinate system 
for complex numbers. 

component vectors the horizontal 
and vertical component vectors of a 
given vector. 

components the individual vectors 
that are combined to yield the resul- 
tant vector. 

components of an algebraic vector 
the ordered pair of numbers represent- 
ing the vector. 

conditional equation an equation 
that is valid for a limited number of 
values of the variable. 

conditional trigonometric equations 
true for only a limited number of 
replacement values. 



conjugate of a complex number same 
as original except for the sign of the 
imaginary component. 

cosecant the reciprocal of the sine 
function. 

cosine a trigonometric ratio equal to 
the adjacent side divided by the 
hypotenuse. 

cotangent the reciprocal of the tangent 
function. 

coterminal two angles in standard 
position that share a terminal side. 

De Moivre's theorem a theorem 
involving powers of complex numbers. 

degree a unit of angle measurement 
equal to 11360 of a revolution. 

difference identities for tangent iden- 
tities involving the tangents of differ- 
ences of angles. 

difference identity for cosine one of 
the trigonometric addition identities. 

difference identity for sine one of the 
trigonometric addition identities. 

directed line segment a line segment 
of a given length and a given direction. 

dot product a process of combining 
two vectors yielding a single number. 

double-angle identities useful in writ- 
ing trig functions involving double 
angles as trig functions of single angles. 

double-angle identities for tangent 
useful in writing trig functions involv- 
ing double angles as functions of single 
numbers. 

equivalent vectors two vectors that 
have the same magnitude and direction. 

even function a function is even if 
f(-x) = f(x). 

general solution solutions defined over 
entire domain. 

geometric vector a quantity that can 
be represented by a directional line 
segment. 

half-angle identities useful in writing 
trig functions involving half angles as 
trig functions of single angles. 

half-angle identities for tangent use- 
ful in writing trig functions involving 
half angles as functions of single angles. 

Heron's formula a formula for finding 
the area of a triangle given the lengths 
of the three sides. 

identities for negatives fundamental 
identities that involve the basic trig 
functions of negative angles. 

identity see trigonometric identity. 

imaginary axis an axis in the complex 
plane. 

initial point the beginning point of a 
vector. 

initial side side of angle where angle 
measurement begins. 

inverse cosecant function defined 
in terms of the restricted sine function. 

inverse cosine function inverse of the 
restricted cosine function. 

inverse cotangent function defined 
in terms of the restricted tangent 
function. 

inverse notation notation used to 
express an angle in terms of the value of 
trigonometric functions. 



inverse secant function defined in odd function a function is odd if 
terms of the restricted cosine function. f(-x) = -f(x). 

inverse sine function inverse of the odd-even identities see identities for 
restricted sine function. negatives. 

inverse tangent function inverse of the one-to-one a characteristic of functions - 
restricted tangent function. where each element in the domain is 

- - . . . .  .  airs with one and onlv one element in 
law of cosines a relationship between ' 

the range and vice versa. 
the lengths of the three sides of a trian- 
gle and the cosine of one of the angles. orthogonal perpendicular. 

law of sines a relationship between the parallelogram rule a process used to 
ratios of the sines of angles of a triangle add together two nonparallel vectors. 
and the side opposite those angles. 

period the smallest value of q such that 
linear interpolation a method of f(x) = f(x+q) where f(x) is a periodic 
approximating values in a table using function. 
adjacent table values. 

periodic functions trigonometric func- 
linear velocity defined in terms of arc tions whose values repeat once each 
length and time. period. 

magnitude of a vector the length of phase shift the horizontal displacement 
the directional line segment. of a function to the right or left of the 

mathematical induction a method of 
vertical axis. 

mathematical proof. polar axis a ray extending from the 
pole in a polar coordinate system. 

maximum value largest value of a - 

function in a given interval. polar coordinate system a coordinate 
system using distance and angle for 

minimum value smallest value of a 
position. 

function in a given interval. 
~ o l a r  coordinates an ordered  air con- 

minute an angle measurement equal to I 

sisting of a radius and an angle. 
1/60 of a degree. 

pole the fixed center of the polar coor- 
modulus of a complex number same 

dinate system. 
as absolute value of a complex number. 

position vector another name for a 
negative angle results from clockwise 

standard vector. 
rotation. 

positive angle results from counter- 
norm another name for the magnitude - clockwise rotation. 
of a vector. 

primary solutions solutions defined 
nth root theorem an extension of De 

over a limited domain. 
Moivre's theorem involving roots of 
complex numbers. principal nth root the unary root of a 

complex number. 



product-sum identities useful in writ- 
ing the product of trig functions as the 
sum and difference of trig functions. 

projections another name for compo- 
nent vectors. 

proving the identity showing the 
validity of one identity by using previ- 
ously known facts. 

Pythagorean identities fundamental 
identities that relate the sine and cosine 
functions and the Pythagorean 
Theorem. 

quadrantal angle an angle in standard 
position with its terminal side on a 
coordinate axis. 

quotient identities fundamental iden- 
tities that involve the quotient of basic 
trig functions. 

radian the measure on an angle with 
vertex at the center of a circle that sub- 
tends an arc equal to the radius of the 
circle. 

radius vector another name for a stan- 
dard vector. 

real axis an axis in the complex plane. 

reciprocal identities fundamental 
identities that involve the reciprocals of 
basic trig functions. 

reduction formulas for cosine useful 
in rewriting cosines of angles greater 
than 90' as functions of acute angles. 

reduction formulas for sine useful in 
rewriting sines of angles greater than 
90' as functions of acute angles. 

reduction formulas for tangent useful 
in rewriting tangents greater than 90' 
as functions of acute angles. 

reference angle an acute angle whose 
trigonometric ratios are the same 
(except for sign) as the given angle. 

resultant vector the result obtained 
after vector manipulation. 

SAS reference to solving a triangle 
given the lengths of two sides and the 
measure of the included angle. 

scalar multiplication changing the 
magnitude of a vector without chang- 
ing its direction. 

scalar multiplication of algebraic vec- 
tors a process of multiplying vector 
components. 

scalar quantity the value of a dot prod- 
uct of two vectors. 

secant the reciprocal of the cosine 
function. 

second an angle measurement equal to 
1/60 of a minute. 

sector a portion of a circle enclosed by 
a central angle and its subtended arc. 

semiperimeter one-half the perimeter 
of a triangle. 

similar triangles two triangles whose 
angle measurements are the same. 

simple harmonic motion a compo- 
nent of uniform circular motion. 

sine a trigonometric ratio equal to the 
opposite side divided by the 
hypotenuse. 

solving the triangle a process for find- 
ing the values of sides and angles of a 
triangle given the values of the remain- 
ing sides and angles. 



SSA reference to solving a triangle tip-tail rule a process for doing vector 
given the lengths of two sides and the addition. 
measure of a non-included angle. 

trigonometric addition identities 
SSS reference to solving a triangle given identities involving the trig functions of 
the lengths of the three sides. sums and differences of angles. 

standard position (angle) an angle trigonometric identity an equation 
with its initial side on the positive x- made up of trigonometric functions of 
axis and vertex at the origin. an angle that is valid for all values of 

the angle. 
standard position (vector) a vector 
that has been translated so that its ini- trigonometric ratios the ratios of the 
tial point is at the origin. length of two side of a right triangle. 

standard vector a vector in standard uniform circular motion circular 
position. motion about a point at a uniform lin- 

ear and angular velocity. 
static equilibrium the sum of all the - 
force vectors add up to zero. unit circle a circle with a radius of one 

unit. 
sum identities for tangent identities 
involving the tangents of sums of vector addition process of combining 
angles. two vectors. 

sum identity for cosine one of the vector quantity a quantity that has 
trigonometric addition identities. both size and direction. 

sum identity for sine one of the velocity vector a vector representing 
trigonometric addition identities. the speed and direction of a moving 

object. 
sum-product identities useful in writ- 
ing the sum and difference of trig func- vertical shift the vertical displacement 
tions as the product of trig functions. of a function above or below the hori- 

zontal axis. 
tangent a trigonometric ratio equal to 
the opposite side divided by the adja- zero algebraic vector an algebraic vec- 
cent side. tor whose components are both zero. 

terminal point the ending point of a zero vector a vector with a magnitude 
vector. of zero and any direction. 

terminal side side of angle where angle 
measurement ends. 



AAS 
definition, 156 
examples, 43, 48-49 
Law of Sines, 38 

abscissa, circular functions, 57 
absolute value of a complex number, 119, 156 
acute angles 

examples, 1 1-1 3 
formulas, 10 
reference triangles, 9 
similar triangles, 9 

algebraic vector, 106, 156 
alpha, Greek letter, 9 
ambiguous case, SSA, 38 
amplitude, 66, 74, 156 
amplitude of a complex number, 119, 156 
amplitude, sine function, 66 
An introduction to Trigonometry, Web site, 

155 
angle of depression, 24, 156 
angle of elevation, 24, 156 
angles 

acute, functions of, 9-13 
definition, 156 
examples, 6-8 
first quadrant angle, 5 
fourth quadrant angle, 5 
general, functions of, 13-1 8 
negative, 4 
positive, 4 
rotation, 4 
second quadrant angle, 5 
third quadrant angle, 5 

angular velocity, 156 
arc functions, 18 
Archimedes' spiral, polar form graph, 117 
Arcsin, 18 
area of triangles 

AAS area formula, 45-46 
ASA area formula, 45-46 

examples, 47-49 
Heron's formula, 46-47 
reference, area formulas, 46 
SAS area formula, 45 
SSS area formula, 46-47 
using to find area of circle sectors, 55 

argument of a complex number, 119, 156 
ASA 

definition, 156 
examples, 42, 48-49 
Law of Sines, 38 

Associative property, vectors, 109 
ASTC 

definition, 156 
general angles, 16 

asymptotes, 70, 73, 156 
axis 

imaginary, 1 19, 157 
real, 119, 159 

bearing, 101, 156 

calculators, 19 
cardioid, polar form graph, 1 17 
circle, polar form graph, 117 
circular functions 

abscissa, 57 
definition, 56, 156 
domain, 57 
examples, 58-60 
ordinate, 57 
range, 57-58 
signs of trig functions in various 

quadrants, 60 
unit circle, 56 

cofunction identities, 80, 156 
cofunctions, 12, 156 
Commutative property, vectors, 109 



complex numbers 
absolute value, 1 19, 156 
amplitude, 1 19, 156 
argument, 119, 156 
De Moivre's theorem, 122-125, 157 
examples, 120-122 
imaginary axis, 11 9, 157 
modulus, 119, 158 
real axis, 1 19, 159 

complex plane, 1 19, 156 
component vectors, 103, 156 
components, 100, 156 
components of an algebraic vector, 100, 

106, 156 
conditional equation, 79, 156 
conditional trigonometric equations, 

137, 156 
conjugate of a complex number, 157 
cosecant, 10, 12, 157 
cosine 

definition, 157 
frequencies of, 68 
period of, 65-66 
values of at various angles, 64-65 

cotangent, 10, 12, 72, 157 
coterminal, 6-7, 157 
coterminal angles, polar coordinates, 1 14 

Dave's short course on trigonometry, 
Web site, 154 

De Moivre's theorem, 122-125, 157 
degree, 4, 8-9, 53, 157 
degree measure, 18 
degree of scale, 5 1 
depression, angle of, 24, 156 
difference identities for tangent, 157 
difference identity for cosine, 83, 157 
difference identity for sine, 83, 157 
different identity for cosine, 83 
directed line segment, 99, 157 
direction, vectors, 99 
Distributive Property, vectors, 109 
domain, circular functions, 57 
dot product, 1 10, 157 
double-angle identities, 87-91, 157 
double-angle identities for tangent, 93, 157 

elevation, angle of, 24, 156 
equations, conditional, 79, 156 
equivalent vectors, 100, 157 
Euclid, 9 
even function, 62-64, 157 
exercises 

acute angles, functions of, 21 
angles, 21 
areas of triangles, 50 
circular functions, 78 
complex numbers, 126 
cosine graphs, 78 
De Moivre's Theorem, 126 
general angles, functions of, 21 
general triangles, 50 
identities, 98 
inverse cosecant, 139 
inverse cosine, 139 
inverse cotangent, 139 
inverse secant, 139 
inverse sine, 139 
inverse tangent, 139 
Law of Cosines, 50 
Law of Sines, 50 
M sin Bt + N cos Bt expression, 147 
periodic trigonometric functions, 78 
polar coordinates, 126 
radians, 78 
right triangles, 50 
simple harmonic motion, 147 
sine graphs, 78 
symmetric trigonometric functions, 78 
tangent graphs, 78 
trigonometric equations, 137 
uniform circular motion, 147 
vectors, 112 
wave forms, 78 

first quadrant angle, 5 
four-leaved rose graph, polar form, 11 8 
fourth quadrant angle, 5 
fractional angle measure, 19 



general angles 
ASTC, 16 
examples, 16-1 8 
formulas, 14 
standard position, 13-14 

general solution, 137, 157 
geometric vector, 99, 157 
Greek letters, lower case, 9 

half-angle identities, 87-91, 157 
half-angle identities for tangent, 93, 157 
Heron's formula, 46-49, 157 
horizontal line graph, polar form, 117 
hypotenuse 

acute angles, 9 
Pythagorean theorem, 16 

identities for negatives, 80, 157 
identity 

cofunction, 80 
conditional equation, 79 
definition, 79, 157 
difference identity for sine, 83 
different identity for cosine, 83 
double-angle, 87-9 1 
examples, 8 1-87 
half-angle, 87-9 1 
negatives, 80 
product-sum, 95-97 
proving, 80 
Pythagorean, 80 
reciprocal, 80 
sum identity for cosine, 83 
sum identity for sine, 83 
sum-product, 96-97 
tangent, 91-95 
trigonometric addition, 83 

Identity property, vectors, 109 
imaginary axis 

complex numbers, 119 
definition, 157 

initial point, 99, 157 
initial side, 4, 157 
Internet Web sites, 154-1 55 
intervals, 19 

inverse contangent function 
definition, 157 
graph, 134 
trigonometric identity, 134 

inverse cosecant function 
definition, 157 
graph, 134 
trigonometric identity, 134 

inverse cosine function 
definition, 127, 157 
examples, 131-132 
formula, 128 
graph, 129 
one-to-one, 127-128 
symmetry, 131 

inverse notation, 157 
Inverse property, vectors, 109 
inverse secant function 

definition, 158 
graph, 134 
trigonometric identity, 134 

inverse sine function 
definition, 158 
examples, 131-132 
formula, 130 
graph, 130 
symmetry, 13 1 

inverse tangent function 
definition, 158 
graph, 132-133 

Law of Cosines 
definition, 158 
examples, 28-3 1 
formulas, 27 
reference triangle, 28 

Law of Sines 
definition, 158 
examples, 33-37 
formulas, 32-33 
reference triangles, 32 

lemniscate, polar form graph, 1 18 
line segment 

definition, 22 
directed, 99, 157 

linear interpolation, 19, 158 
linear velocity, 158 
look up values, tables of, 19 
lowercase letters, 22 



M sin Bt + N cos Bt expression, 140-143 
magnitude of a vector, 99, 107, 158 
mathematical induction, 158 
maximum value, 67, 158 
minimum value, 67, 158 
minute, 8, 158 
modulus of a complex number, 1 19, 158 

negative angle, 1 5, 1 58 
norm, 99, 158 
nth root theorem, 124, 158 
numbers, complex 

absolute value, 1 19, 156 
amplitude, 119, 156 
argument, 11 9, 156 
De Moivre's theorem, 122-125, 157 
examples, 120-1 22 
imaginary axis, 11 9, 157 
modulus, 1 19, 158 
real axis, 1 19, 159 

polar coordinates 
coterminal angles, 1 14 
definition, 113, 158 
examples, 1 15-1 18 
ordered pairs, 114 
polar to rectangular conversion, 1 15 

pole 
definition, 158 
polar coordinate system, 113 

position vector, 158 
positive angle, 14, 158 
primary solutions, 137, 158 
principal nth root, 124, 158 
product-sum identities 

definition, 95, 159 
examples, 96-97 
formulas, 96 

projections 
definition, 103, 159 
examples, 104-1 05 

proving the identity, 80, 159 
Pythagorean identities, 80, 159 
Pythagorean theorem 

hypotenuse, 16 
right triangles, 24 
trigonometric identity, 10-1 1 
using to find area of circle sector, 55 

odd function, 62-64, 158 
odd-even identities, 158 
one-to-one, 127-128, 158 
ordered pairs, polar coordinates, 114 

Q 
quadrant angle, 5 

origin, polar coordinate system, 113 quadrantal angle 

orthogonal, 110, 158 definition, 4-5, 159 
examples, 13, 15 

P quotient identities, 159 

parallelogram rule, 100, 158 
period, 61, 68, 158 
periodic coterminus angles, 60 
periodic functions 

definition, 60-61, 158 
examples, 6 1-64 
formulas, 61 

phase shift, 68, 73, 158 
plane, complex, 1 19, 1 56 
polar axis, 113, 158 
polar coordinate system 

definition, 158 
origin, 1 13 
pole, 113 

radian measure, 5 I 
radians 

definition, 9, 51, 159 
degree equivalencies, 53 
examples, 52-56 
subtended arcs, 52 
unitless quality, 52 

radius vector, 159 
range, circular functions, 57 
real axis 

complex numbers, 1 19 
definition, 159 



reciprocal identities, 79, 159 
reduction formulas for cosine, 84, 159 
reduction formulas for sine, 85, 159 
reduction formulas for tangent, 159 
reference angles 

definition, 159 
values in various quadrants, 16 

reference triangles 
acute angles, 9, 12 
law of cosines, 28 

resultant vector, 100, 159 
review questions, 148-1 53 
right triangles 

examples, 23-27 
Pythagorean theorem, 24 
solving, 23 

rotation 
clockwise, 4 
counterclockwise, 4 
measuring, 4 

solving the triangle, 22, 159 
SOSMAth Homepage, Web site, 155 
sound waves, 76-78 
SSA 

ambiguous case, 38 
definition, 156 
example, 43-45 

SSS 
definition, 160 
Law of Cosines, 37 

standard position (angle), 4, 160 
standard position (vector), 105, 160 
standard vector, 160 
static equilibrium, 110, 160 
subtended arcs, radian measure, 52 
sum identities for tangent, 160 
sum identity for cosine, 83 
sum identity for sine, 83, 160 
sum-product identities, 96, 160 
symmetric trigonometric functions, 60-64 
Syvum Homepage, Web site, 155 

SAS 
definition, 159 
examples, 41, 47-48 
Law of Cosines, 38 

scalar multiplication, 100, 107, 159 
scalar multiplication of algebraic vectors, 

107, 159 
scalar quantity, 159 
scale, degree of, 5 1 
Schaum's Outline of Trigonometry, 154 
secant, 10, 12, 159 
second, 8, 159 
second quadrant angle, 5 
sector, 159 
semiperimeter, 46, 159 
similar triangles, 9, 159 
simple harmonic motion 

definition, 159 
examples, 146 

sine 
amplitude, 66 
attributes of, 69 
definition, 159 
examples, 67-70 
frequencies of, 68 
period of, 65-66 
values of at various angles, 64-65 
vertical shifts. 66 

tables, look up values, 19 
tail-tip rule, 100, 160 
Tangent, 132 
tangent 

asymptotes, 70 
cotangents, 72 
definition, 70, 160 
examples, 73-76 
identities, 91-95 
values of at various angles, 71 

terminal point, 99, 160 
terminal side, 4, 13-14, 1 60 
theta, Greek letter, 9 
third quadrant angle, 5 
three-leaved rose graph, polar form, 1 17-1 I8 
triangles. See also areas of triangles 

AAS area formula, 45-46 
ASA area formula, 45-46 
examples, 47-49 
Heron's formula, 46-47 
Pythagorean theorem, 24 
reference, area formulas, 46 
right, 23-27 
SAS area formula, 45 
SSS area formula, 46-47 

trigonometric addition identities, 83, 160 



trigonometric equations 
conditional, 137 
examples, 137-1 39 
general solution, 137 
primary solutions, 137 

trigonometric functions 
acute angles, 10 
examples, 18-20 
signs of in various quadrants, 15 
values of for various quadrantal angles, 15 

trigonometric identity, 10, 160 
trigonometric ratios, 9, 13, 22, 160 
Trigonometry the Easy Way, 154 

uniform circular motion 
definition, 160 
examples, 143-1 46 

unit circle, 5 1, 56, 160 
unit vectors, 108 

geometric, 99, 157 
Identity property, 109 
initial point, 99 
Inverse property, 109 
magnitude, 99, 107, 158 
orthogonal, 110, 158 
projections, 103, 159 
resultant, 100, 159 
scalar multiplication of, 107, 159 
standard position, 105 
static equilibrium, 110, 160 
tail-tip rule, 100, 160 
terminal point, 99 
unit, 108 
vector quantity, 99 
velocity, 101, 160 
zero, 60, 100, 107 

velocity vector, 101, 160 
vertical line graph, polar form, 117 
vertical shift, 66, 160 

unitless quality, radians measure, 52 
uppercase letters, 22 

wave forms 

vector addition, 100, 107, 160 
vector quantity, 99 
vectors, 99 

addition, 1 60 
algebraic, 106, 156 
Associative Property, 109 
bearing, 101, 156 
Commutative property, 109 
component, 103 
components of, 100, 106, 156 
direction, 99 
Distributive Property, 109 
dot product, 1 10, 157 
equivalent, 100, 157 
examples, 101-105, 108-1 12 

adding together, 76-77 
examples, 77-78 

Web sites, recommended, 154-1 55 

x-axis, 16, 1 19 

y-axis, 16, 1 19 

zero algebraic vector, 160 
zero vector, 100, 107, 160 














