






Basic Mathematics for Economists

Economics students will welcome the new edition of this excellent textbook. Given
that many students come into economics courses without having studied mathematics
for a number of years, this clearly written book will help to develop quantitative skills
in even the least numerate student up to the required level for a general Economics
or Business Studies course. All explanations of mathematical concepts are set out in
the context of applications in economics.

This new edition incorporates several new features, including new sections on:

• financial mathematics
• continuous growth
• matrix algebra

Improved pedagogical features, such as learning objectives and end of chapter ques-
tions, along with an overall example-led format and the use of Microsoft Excel for
relevant applications mean that this textbook will continue to be a popular choice for
both students and their lecturers.
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Preface

Over half of the students who enrol on economics degree courses have not studied mathe-
matics beyond GCSE or an equivalent level. These include many mature students whose last
encounter with algebra, or any other mathematics beyond basic arithmetic, is now a dim and
distant memory. It is mainly for these students that this book is intended. It aims to develop
their mathematical ability up to the level required for a general economics degree course (i.e.
one not specializing in mathematical economics) or for a modular degree course in economics
and related subjects, such as business studies. To achieve this aim it has several objectives.

First, it provides a revision of arithmetical and algebraic methods that students probably
studied at school but have now largely forgotten. It is a misconception to assume that, just
because a GCSE mathematics syllabus includes certain topics, students who passed exami-
nations on that syllabus two or more years ago are all still familiar with the material. They
usually require some revision exercises to jog their memories and to get into the habit of
using the different mathematical techniques again. The first few chapters are mainly devoted
to this revision, set out where possible in the context of applications in economics.

Second, this book introduces mathematical techniques that will be new to most students
through examples of their application to economic concepts. It also tries to get students
tackling problems in economics using these techniques as soon as possible so that they can
see how useful they are. Students are not required to work through unnecessary proofs, or
wrestle with complicated special cases that they are unlikely ever to encounter again. For
example, when covering the topic of calculus, some other textbooks require students to
plough through abstract theoretical applications of the technique of differentiation to every
conceivable type of function and special case before any mention of its uses in economics
is made. In this book, however, we introduce the basic concept of differentiation followed
by examples of economic applications in Chapter 8. Further developments of the topic,
such as the second-order conditions for optimization, partial differentiation, and the rules
for differentiation of composite functions, are then gradually brought in over the next few
chapters, again in the context of economics application.

Third, this book tries to cover those mathematical techniques that will be relevant to stu-
dents’ economics degree programmes. Most applications are in the field of microeconomics,
rather than macroeconomics, given the increased emphasis on business economics within
many degree courses. In particular, Chapter 7 concentrates on a number of mathematical
techniques that are relevant to finance and investment decision-making.

Given that most students now have access to computing facilities, ways of using a spread-
sheet package to solve certain problems that are extremely difficult or time-consuming to
solve manually are also explained.
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Although it starts at a gentle pace through fairly elementary material, so that the students
who gave up mathematics some years ago because they thought that they could not cope with
A-level maths are able to build up their confidence, this is not a watered-down ‘mathematics
without tears or effort’ type of textbook. As the book progresses the pace is increased and
students are expected to put in a serious amount of time and effort to master the material.
However, given the way in which this material is developed, it is hoped that students will be
motivated to do so. Not everyone finds mathematics easy, but at least it helps if you can see
the reason for having to study it.
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Preface to Second Edition

The approach and style of the first edition have proved popular with students and I have tried
to maintain both in the new material introduced in this second edition. The emphasis is on the
introduction of mathematical concepts in the context of economics applications, with each
step of the workings clearly explained in all the worked examples. Although the first edition
was originally aimed at less mathematically able students, many others have also found it
useful, some as a foundation for further study in mathematical economics and others as a
helpful reference for specific topics that they have had difficulty understanding.

The main changes introduced in this second edition are a new chapter on matrix algebra
(Chapter 15) and a rewrite of most of Chapter 14, which now includes sections on differential
equations and has been retitled ‘Exponential functions, continuous growth and differential
equations’. A new section on part-year investment has been added and the section on interest
rates rewritten in Chapter 7, which is now called ‘Financial mathematics – series, time and
investment’. There are also new sections on the reduced form of an economic model and
the derivation of comparative static predictions, in Chapter 5 using linear algebra, and in
Chapter 9 using calculus. All spreadsheet applications are now based on Excel, as this is now
the most commonly used spreadsheet program. Other minor changes and corrections have
been made throughout the rest of the book.

The Learning Objectives are now set out at the start of each chapter. It is hoped that students
will find these useful as a guide to what they should expect to achieve, and their lecturers
will find them useful when drawing up course guides. The layout of the pages in this second
edition is also an improvement on the rather cramped style of the first edition.

I hope that both students and their lecturers will find these changes helpful.

Mike Rosser
Coventry
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1 Introduction

Learning objective

After completing this chapter students should be able to:

• Understand why mathematics is useful to economists.

1.1 Why study mathematics?
Economics is a social science. It does not just describe what goes on in the economy. It
attempts to explain how the economy operates and to make predictions about what may
happen to specified economic variables if certain changes take place, e.g. what effect a crop
failure will have on crop prices, what effect a given increase in sales tax will have on the
price of finished goods, what will happen to unemployment if government expenditure is
increased. It also suggests some guidelines that firms, governments or other economic agents
might follow if they wished to allocate resources efficiently. Mathematics is fundamental to
any serious application of economics to these areas.

Quantification

In introductory economic analysis predictions are often explained with the aid of sketch
diagrams. For example, supply and demand analysis predicts that in a competitive market if
supply is restricted then the price of a good will rise. However, this is really only common
sense, as any market trader will tell you. An economist also needs to be able to say by how
much price is expected to rise if supply contracts by a specified amount. This quantification
of economic predictions requires the use of mathematics.

Although non-mathematical economic analysis may sometimes be useful for making qual-
itative predictions (i.e. predicting the direction of any expected changes), it cannot by itself
provide the quantification that users of economic predictions require. A firm needs to know
how much quantity sold is expected to change in response to a price increase. The government
wants to know how much consumer demand will change if it increases a sales tax.

Simplification

Sometimes students believe that mathematics makes economics more complicated. Algebraic
notation, which is essentially a form of shorthand, can, however, make certain concepts much
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clearer to understand than if they were set out in words. It can also save a great deal of time
and effort in writing out tedious verbal explanations.

For example, the relationship between the quantity of apples consumers wish to buy and
the price of apples might be expressed as: ‘the quantity of apples demanded in a given time
period is 1,200 kg when price is zero and then decreases by 10 kg for every 1p rise in the
price of a kilo of apples’. It is much easier, however, to express this mathematically as:
q = 1,200 − 10p where q is the quantity of apples demanded in kilograms and p is the price
in pence per kilogram of apples.

This is a very simple example. The relationships between economic variables can be much
more complex and mathematical formulation then becomes the only feasible method for
dealing with the analysis.

Scarcity and choice

Many problems dealt with in economics are concerned with the most efficient way of allo-
cating limited resources. These are known as ‘optimization’ problems. For example, a firm
may wish to maximize the output it can produce within a fixed budget for expenditure on
inputs. Mathematics must be used to obtain answers to these problems.

Many economics graduates will enter employment in industry, commerce or the public
sector where very real resource allocation decisions have to be made. Mathematical methods
are used as a basis for many of these decisions. Even if students do not go on to specialize
in subjects such as managerial economics or operational research where the applications of
these decision-making techniques are studied in more depth, it is essential that they gain
an understanding of the sort of resource allocation problems that can be tackled and the
information that is needed to enable them to be solved.

Economic statistics and estimating relationships

As well as using mathematics to work out predictions from economic models where the
relationships are already quantified, one also needs mathematics in order to estimate the
parameters of the models in the first place. For example, if the demand relationship in an
actual market is described by the economic model q = 1,200 − 10p then this would mean
that the parameters (i.e. the numbers 1,200 and 10) had been estimated from statistical data.

The study of how the parameters of economic models can be estimated from statistical
data is known as econometrics. Although this is not one of the topics covered in this book,
you will find that a knowledge of several of the mathematical techniques that are covered
is necessary to understand the methods used in econometrics. Students using this book will
probably also study an introductory statistics course as a prerequisite for econometrics, and
here again certain basic mathematical tools will come in useful.

Mathematics and business

Some students using this book may be on courses that have more emphasis on business studies
than pure economics. Two criticisms of the material covered that these students sometimes
make are as follows.

(a) These simple models do not bear any resemblance to the real-world business decisions
that have to be made in practice.

(b) Even if the models are relevant to business decisions there is not always enough actual
data available on the relevant variables to make use of these mathematical techniques.
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Criticism (a) should be answered in the first few lectures of your economics course when
the methodology of economic theory is explained. In summary, one needs to start with a
simplified model that can explain how firms (and other economic agents) behave in general
before looking at more complex situations only relevant to specific firms.

Criticism (b) may be partially true, but a lack of complete data does not mean that one
should not try to make the best decision using the information that is available. Just because
some mathematical methods can be difficult to understand to the uninitiated, this does not
mean that efficient decision-making should be abandoned in favour of guesswork, rule of
thumb and intuition.

1.2 Calculators and computers
Some students may ask, ‘what’s the point in spending a great deal of time and effort studying
mathematics when nowadays everyone uses calculators and computers for calculations?’
There are several answers to this question.

Rubbish in, rubbish out

Perhaps the most important point which has to be made is that calculators and computers
can only calculate what they are told to. They are machines that can perform arithmetic
computations much faster than you can do by hand, and this speed does indeed make them
very useful tools. However, if you feed in useless information you will get useless information
back – hence the well-known phrase ‘rubbish in, rubbish out’.

At a very basic level, consider what happens when you use a pocket calculator to perform
some simple operations. Get out your pocket calculator and use it to answer the problem

16 − 3 × 4 − 1 = ?

What answer did you get? 3? 7? 51? 39? It all depends on which order you perform the
calculations and the type of calculator you use.

There are set rules for the order in which basic arithmetic operations should be performed,
which are explained in Chapter 2. Nowadays, these are programmed into most calculators
but not some older basic calculators. If you only have an old basic calculator then it cannot
help you. It is you who must tell the calculator in which order to perform the calculations.
(The correct answer is 3, by the way.)

For another example, consider the demand relationship

q = 1,200 − 10p

referred to earlier. What would quantity demanded be if price was 150? A computer would
give the answer −300, but this is clearly nonsense as you cannot have a negative quantity
of apples. It only makes sense for the above mathematical relationship to apply to positive
values of p and q. Therefore if price is 120, quantity sold will be zero, and if any price higher
than 120 is charged, such as 130, quantity sold will still be zero. This case illustrates why
you must take care to interpret mathematical answers sensibly and not blindly assume that
any numbers produced by a computer will always be correct even if the ‘correct’ numbers
have been fed into it.
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Algebra

Much economic analysis involves algebraic notation, with letters representing concepts that
are capable of taking on different values (see Chapter 3). The manipulation of these algebraic
expressions cannot usually be carried out by calculators and computers.

Rounding errors

Despite the speed of operation of calculators and computers it can sometimes be quicker and
more accurate to solve a problem manually. To illustrate this point, if you have an old basic
calculator, use it to answer the problem

10

3
× 3 = ?

You may get the answer 9.9999999. However, if you use a modern mathematical calculator
you will have obtained the correct answer of 10. So why do some calculators give a slightly
inaccurate answer?

All calculators and computers have a limited memory capacity. This means that numbers
have to be rounded off after a certain number of digits. Given that 10 divided by 3 is 3.3333333
recurring, it is difficult for basic calculators to store this number accurately in decimal form.
Although modern computers have a vast memory they still perform many computations
through a series of algorithms, which are essentially a series of arithmetic operations. At
various stages numbers can be rounded off and so the final answer can be slightly inaccurate.
More accuracy can often be obtained by using simple ‘vulgar fractions’ and by limiting the
number of calculator operations that round off the answers. Modern calculators and computer
programs are now designed to try to minimize inaccuracies due to rounding errors.

When should you use calculators and computers?

Obviously pocket calculators are useful for basic arithmetic operations that take a long time to
do manually, such as long division or finding square roots. If you only use a basic calculator,
care needs to be taken to ensure that individual calculations are done in the correct order so
that the fundamental rules of mathematics are satisfied and needless inaccuracies through
rounding are avoided.

However, the level of mathematics in this book requires more than these basic arithmetic
functions. It is recommended that all students obtain a mathematical calculator that has at
least the following function keys:

[yx] [ x
√
y] [LOG] [10x] [LN] [ex]

The meaning and use of these functions will be explained in the following chapters.
Most of you who have recently left school will probably have already used this type of

calculator for GCSE mathematics, but mature students may only currently possess an older
basic calculator with only the basic square root [

√
] function. The modern mathematical

calculators, in addition to having more mathematical functions, are a great advance on these
basic calculators and can cope with most rounding errors and sequences of operations in
multiple calculations. In some sections of the book, however, calculations that could be done
on a mathematical calculator are still explained from first principles to ensure that all students
fully understand the mathematical method employed.
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Most students on economics degree courses will have access to computing facilities and
be taught how to use various computer program packages. Most of these will probably be
used for data analysis as part of the statistics component of your course. The facilities and
programs available to students will vary from institution to institution. Your lecturer will
advise whether or not you have access to computer program packages that can be used to
tackle specific types of mathematical problems. For example, you may have access to a
graphics package that tells you when certain lines intersect or solves linear programming
problems (see Chapter 5). Spreadsheet programs, such as Excel, can be particularly useful,
especially for the sort of financial problems covered in Chapter 7 and for performing the
mathematical operations on matrices explained in Chapter 15.

However, even if you do have access to computer program packages that can solve specific
types of problem you will still need to understand the method of solution so that you will
understand the answer that the computer gives you. Also, many economic problems have
to be set up in the form of a mathematical problem before they can be fed into a computer
program package for solution.

Most problems and exercises in this book can be tackled without using computers although
in some cases solution only using a calculator would be very time-consuming. Some students
may not have easy access to computing facilities. In particular, part-time students who only
attend evening classes may find it difficult to get into computer laboratories. These students
may find it worthwhile to invest a few more pounds in a more advanced calculator. Many
of the problems requiring a large number of calculations are in Chapter 7 where methods of
solution using the Excel spreadsheet program are suggested. However, financial calculators
are now available that have most of the functions and formulae necessary to cope with these
problems.

As Excel is probably the spreadsheet program most commonly used by economics students,
the spreadsheet suggested solutions to certain problems are given in Excel format. It is
assumed that students will be familiar with the basic operational functions of this program
(e.g. saving files, using the copy command etc.), and the solutions in this book only suggest
a set of commands necessary to solve the set problems.

1.3 Using the book
Most students using this book will be on the first year of an economics degree course and
will not have studied A-level mathematics. Some of you will be following a mathematics
course specifically designed for people without A-level mathematics whilst others will be
mixed in with more mathematically experienced students on a general quantitative methods
course. The book starts from some very basic mathematical principles. Most of these you will
already have covered for GCSE mathematics (or O-level or CSE for some mature students).
Only you can judge whether or not you are sufficiently competent in a technique to be able
to skip some of the sections.

It would be advisable, however, to start at the beginning of the book and work through all
the set problems. Many of you will have had at least a two-year break since last studying
mathematics and will benefit from some revision. If you cannot easily answer all the questions
in a section then you obviously need to work through the topic. You should find that a lot
of material is familiar to you although more applications of mathematics to economics are
introduced as the book progresses.

It is assumed that students using this book will also be studying an economic analysis
course. The examples in the first few chapters only use some basic economic theory, such as
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supply and demand analysis. By the time you get to the later chapters it will be assumed that
you have covered additional topics in economic analysis, such as production and cost theory.
If you come across problems that assume a knowledge of economics topics that you have not
yet covered then you should leave them until you understand these topics, or consult your
lecturer.

In some instances the basic analysis of certain economic concepts is explained before the
mathematical application of these concepts, but this should not be considered a complete
coverage of the topic.

Practise, practise

You will not learn mathematics by reading this book, or any other book for that matter. The
only way you will learn mathematics is by practising working through problems. It may be
more hard work than just reading through the pages of a book, but your effort will be rewarded
when you master the different techniques. As with many other skills that people acquire, such
as riding a bike or driving a car, a book can help you to understand how something is supposed
to be done, but you will only be able to do it yourself if you spend time and effort practising.

You cannot acquire a skill by sitting down in front of a book and hoping that you can
‘memorize’ what you read.

Group working

Your lecturer will make it clear to you which problems you must do by yourself as part of
your course assessment and which problems you may confer with others over. Asking others
for help makes sense if you are absolutely stuck and just cannot understand a topic. However,
you should make every effort to work through all the problems that you are set before asking
your lecturer or fellow students for help. When you do ask for help it should be to find out
how to tackle a problem.

Some students who have difficulty with mathematics tend to copy answers off other students
without really understanding what they are doing, or when a lecturer runs through an answer in
class they just write down a verbatim copy of the answer given without asking for clarification
of points they do not follow.

They are only fooling themselves, however. The point of studying mathematics in the first
year of an economics degree course is to learn how to be able to apply it to various economics
topics. Students who pretend that they have no difficulty with something they do not properly
understand will obviously not get very far.

What is important is that you understand the method of solving different types of problems.
There is no point in having a set of answers to problems if you do not understand how these
answers were obtained.

Don’t give up!

Do not get disheartened if you do not understand a topic the first time it is explained to you.
Mathematics can be a difficult subject and you will need to read through some sections several
times before they become clear to you. If you make the effort to try all the set problems and
consult your lecturer if you really get stuck then you will eventually master the subject.

Because the topics follow on from each other, each chapter assumes that students are
familiar with material covered in previous chapters. It is therefore very important that you
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keep up-to-date with your work. You cannot ‘skip’ a topic that you find difficult and hope to
get through without answering examination questions on it, as it is sometimes possible to do
in other subjects.

About half of all students on economics degree courses gave up mathematics at school
at the age of 16, many of them because they thought that they were not good enough at
mathematics to take it for A-level. However, most of them usually manage to complete their
first-year mathematics for economics course successfully and go on to achieve an honours
degree. There is no reason why you should not do likewise if you are prepared to put in the
effort.
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2 Arithmetic

Learning objectives

After completing this chapter students should be able to:

• Use again the basic arithmetic operations taught at school, including: the use of
brackets, fractions, decimals, percentages, negative numbers, powers, roots and
logarithms.

• Apply some of these arithmetic operations to simple economic problems.
• Calculate arc elasticity of demand values by dividing a fraction by another

fraction.

2.1 Revision of basic concepts
Most students will have previously covered all, or nearly all, of the topics in this chapter.
They are included here for revision purposes and to ensure that everyone is familiar with
basic arithmetical processes before going on to further mathematical topics. Only a fairly
brief explanation is given for most of the arithmetical rules set out in this chapter. It is assumed
that students will have learned these rules at school and now just require something to jog
their memory so that they can begin to use them again.

As a starting point it will be assumed that all students are familiar with the basic operations
of addition, subtraction, multiplication and division, as applied to whole numbers (or integers)
at least. The notation for these operations can vary but the usual ways of expressing them are
as follows.

Example 2.1

Addition (+): 24 + 204 = 228
Subtraction (−): 9,089 − 393 = 8,696
Multiplication (× or .): 12 × 24 = 288
Division (÷ or /): 4,448 ÷ 16 = 278

The sign ‘.’ is sometimes used for multiplication when using algebraic notation but, as you
will see from Chapter 2 onwards, there is usually no need to use any multiplication sign to
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signify that two algebraic variables are being multiplied together, e.g. A times B is simply
written AB.

Most students will have learned at school how to perform these operations with a pen and
paper, even if their long multiplication and long division may now be a bit rusty. However,
apart from simple addition and subtraction problems, it is usually quicker to use a pocket
calculator for basic arithmetical operations. If you cannot answer the questions below then
you need to refer to an elementary arithmetic text or to see your lecturer for advice.

Test Yourself, Exercise 2.1

1. 323 + 3,232 =
2. 1,012 − 147 =
3. 460 × 202 =
4. 1,288/56 =

2.2 Multiple operations
Consider the following problem involving only addition and subtraction.

Example 2.2

A bus leaves its terminus with 22 passengers aboard. At the first stop 7 passengers get off
and 12 get on. At the second stop 18 get off and 4 get on. How many passengers remain on
the bus?

Most of you would probably answer this by saying 22 −7 = 15, 15+12 = 27, 27−18 = 9,
9 + 4 = 13 passengers remaining, which is the correct answer.

If you were faced with the abstract mathematical problem

22 − 7 + 12 − 18 + 4 = ?

you should answer it in the same way, i.e. working from left to right. If you performed the
addition operations first then you would get 22 − 19 − 22 = −19 which is clearly not the
correct answer to the bus passenger problem!

If we now consider an example involving only multiplication and division we can see that
the same rule applies.

Example 2.3

A restaurant catering for a large party sits 6 people to a table. Each table requires 2 dishes of
vegetables. How many dishes of vegetables are required for a party of 60?
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Most people would answer this by saying 60 ÷ 6 = 10 tables, 10 × 2 = 20 dishes, which is
correct.

If this is set out as the calculation 60 ÷ 6 × 2 =? then the left to right rule must be used.
If you did not use this rule then you might get

60 ÷ 6 × 2 = 60 ÷ 12 = 5

which is incorrect.
Thus the general rule to use when a calculation involves several arithmetical operations and

(i) only addition and subtraction are involved or
(ii) only multiplication and division are involved

is that the operations should be performed by working from left to right.

Example 2.4

(i) 48 − 18 + 6 = 30 + 6 = 36

(ii) 6 + 16 − 7 = 22 − 7 = 15

(iii) 68 + 5 − 32 − 6 + 14 = 73 − 32 − 6 + 14

= 41 − 6 + 14

= 35 + 14 = 49

(iv) 22 × 8 ÷ 4 = 176 ÷ 4 = 44

(v) 460 ÷ 5 × 4 = 92 × 4 = 368

(vi) 200 ÷ 25 × 8 × 3 ÷ 4 = 8 × 8 × 3 ÷ 4

= 64 × 3 ÷ 4

= 192 ÷ 4 = 48

When a calculation involves both addition/subtraction and multiplication/division then the
rule is: multiplication and division calculations must be done before addition and subtraction
calculations (except when brackets are involved – see Section 2.3).

To illustrate the rationale for this rule consider the following simple example.

Example 2.5

How much change do you get from £5 if you buy 6 oranges at 40p each?

Solution

All calculations must be done using the same units and so, converting the £5 to pence,

change = 500 − 6 × 40 = 500 − 240 = 260p = £2.60

© 1993, 2003 Mike Rosser



Clearly the multiplication must be done before the subtraction in order to arrive at the correct
answer.

Test Yourself, Exercise 2.2

1. 962 − 88 + 312 − 267 =
2. 240 − 20 × 3 ÷ 4 =
3. 300 × 82 ÷ 6 ÷ 25 =
4. 360 ÷ 4 × 7 − 3 =
5. 6 × 12 × 4 + 48 × 3 + 8 =
6. 420 ÷ 6 × 2 − 64 + 25 =

2.3 Brackets
If a calculation involves brackets then the operations within the brackets must be done
first. Thus brackets take precedence over the rule for multiple operations set out in
Section 2.2.

Example 2.6

A firm produces 220 units of a good which cost an average of £8.25 each to produce and sells
them at a price of £9.95. What is its profit?

Solution

profit per unit = £9.95 − £8.25

total profit = 220 × (£9.95 − £8.25)

= 220 × £1.70

= £374

In a calculation that only involves addition or subtraction the brackets can be removed.
However, you must remember that if there is a minus sign before a set of brackets then all
the terms within the brackets must be multiplied by −1 if the brackets are removed, i.e.
all + and − signs are reversed. (See Section 2.7 if you are not familiar with the concept of
negative numbers.)

Example 2.7

(92 − 24)− (20 − 2) = ?
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Solution

68 − 18 = 50 using brackets

or

92 − 24 − 20 + 2 = 50 removing brackets

Test Yourself, Exercise 2.3

1. (12 × 3 − 8)× (44 − 14) =
2. (68 − 32)− (100 − 84 + 3) =
3. 60 + (36 − 8)× 4 =
4. 4 × (62 ÷ 2)− 8 ÷ (12 ÷ 3) =
5. If a firm produces 600 units of a good at an average cost of £76 and sells them all

at a price of £99, what is its total profit?
6. (124 + 6 × 81)− (42 − 2 × 15) =
7. How much net (i.e. after tax) profit does a firm make if it produces 440 units of a

good at an average cost of £3.40 each, and pays 15p tax to the government on each
unit sold at the market price of £3.95, assuming it sells everything it produces?

2.4 Fractions
If computers and calculators use decimals when dealing with portions of whole numbers why
bother with fractions? There are several reasons:

1. Certain operations, particularly multiplication and division, can sometimes be done more
quickly by fractions if one can cancel out numbers.

2. When using algebraic notation instead of actual numbers one cannot use calculators, and
operations on formulae have to be performed using the basic principles for operations
on fractions.

3. In some cases fractions can give a more accurate answer than a calculator owing to
rounding error (see Example 2.15 below).

A fraction is written as

numerator

denominator

and is just another way of saying that the numerator is divided by the denominator. Thus

120

960
= 120 ÷ 960

Before carrying out any arithmetical operations with fractions it is best to simplify individual
fractions. Both numerator and denominator can be divided by any whole number that they are
both a multiple of. It therefore usually helps if any large numbers in a fraction are ‘factorized’,
i.e. broken down into the smaller numbers that they area multiple of.
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Example 2.8

168

104
= 21 × 8

13 × 8
= 21

13
In this example it is obvious that the 8s cancel out top and bottom, i.e. the numerator and
denominator can both be divided by 8.

Example 2.9

120

960
= 12 × 10

12 × 8 × 10
= 1

8

Addition and subtraction of fractions is carried out by converting all fractions so that they have
a common denominator (usually the largest one) and then adding or subtracting the different
quantities with this common denominator. To convert fractions to the common (largest)
denominator, one multiplies both top and bottom of the fraction by whatever number it is
necessary to get the required denominator. For example, to convert 1/6 to a fraction with 12
as its denominator, one simply multiplies top and bottom by 2. Thus

1

6
= 2 × 1

2 × 6
= 2

12

Example 2.10

1

6
+ 5

12
= 2

12
+ 5

12
= 2 + 5

12
= 7

12

It is necessary to convert any numbers that have an integer (i.e. a whole number) in them into
fractions with the same denominator before carrying out addition or subtraction operations
involving fractions. This is done by multiplying the integer by the denominator of the fraction
and then adding.

Example 2.11

1
3

5
= 1 × 5

5
+ 3

5
= 5

5
+ 3

5
= 8

5

Example 2.12

2
3

7
− 24

63
= 17

7
− 8

21
= 51 − 8

21
= 43

21
= 2

1

21

Multiplication of fractions is carried out by multiplying the numerators of the different
fractions and then multiplying the denominators.
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Example 2.13

3

8
× 5

7
= 15

56

The exercise can be simplified if one first cancels out any whole numbers that can be divided
into both the numerator and the denominator.

Example 2.14

20

3
× 12

35
× 4

5
= (4 × 5)× (4 × 3)× 4

3 × 35 × 5
= 4 × 4 × 4

35
= 64

35

The usual way of performing this operation is simply to cross through numbers that cancel

4
 2
 0

 3
1

×
4


 1
 2

 3
 5
7

× 4

5
= 64

35

Multiplying out fractions may provide a more accurate answer than the one you would get by
working out the decimal value of a fraction with a calculator before multiplying. However,
nowadays if you use a modern mathematical calculator and store the answer to each part you
should avoid rounding errors.

Example 2.15

4

7
× 7

2
= ?

Solution

4

7
× 7

2
= 4

2
= 2 using fractions

0.5714285 × 3.5 = 1.9999997 using a basic calculator

Using a modern calculator, if you enter the numbers and commands

4 [÷] 7 [×] 7 [÷] 2 [=]

you should get the correct answer of 2.
However, if you were to perform the operation 4 [÷] 7, note the answer of 0.5714286 and

then re-enter this number and multiply by 3.5, you would get the slightly inaccurate answer
of 2.0000001.
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To divide by a fraction one simply multiplies by its inverse.

Example 2.16

3 ÷ 1

6
= 3 × 6

1
= 18

Example 2.17

44

7
÷ 8

49
= 44

7
× 49

8
= 11

1
× 7

2
= 77

2
= 38 1

2

Test Yourself, Exercise 2.4

1.
1

6
+ 1

7
+ 1

8
=

2.
3

7
+ 2

9
− 1

4
=

3.
2

5
× 60

7
× 21

15
=

4.
4

5
÷ 24

19
=

5. 4
2

7
− 1

2

3
=

6. 2
1

6
+ 3

1

4
− 4

5
=

7. 3
1

4
+ 4

1

3
=

8. 8
1

2
÷ 2

1

6
=

9. 20
1

4
− 3

5
× 2

1

8
=

10. 6 − 2

3
÷ 1

12
+ 3

1

3
=

2.5 Elasticity of demand
The arithmetic operation of dividing a fraction by a fraction is usually the first technique that
students on an economics course need to brush up on if their mathematics is a bit rusty. It
is needed to calculate ‘elasticity’ of demand, which is a concept you should encounter fairly
early in your microeconomics course, where its uses should be explained. Price elasticity
of demand is a measure of the responsiveness of demand to changes in price. It is usually
defined as

e = (−1)
% change in quantity demanded

% change in price
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The (−1) in this definition ensures a positive value for elasticity as either the change in price
or the change in quantity will be negative. When there are relatively large changes in price and
quantity it is best to use the concept of ‘arc elasticity’ to measure elasticity along a section
of a demand schedule. This takes the changes in quantity and price as percentages of the
averages of their values before and after the change. Thus arc elasticity is usually defined as

arc e = (−1)

change in quantity

0.5 (1st quantity + 2nd quantity)
× 100

change in price

0.5 (1st price + 2nd price)
× 100

Although a positive price change usually corresponds to a negative quantity change, and vice
versa, it is easier to treat the changes in both price and quantity as positive quantities. This
allows the (−1) to be dropped from the formula. The 0.5 and the 100 will always cancel top
and bottom in arc elasticity calculations. Thus we are left with

arc e =
change in quantity

(1st quantity + 2nd quantity)
change in price

(1st price + 2nd price)

as the formula actually used for calculating price arc elasticity of demand.

Example 2.18

Calculate the arc elasticity of demand between points A and B on the demand schedule shown
in Figure 2.1.

£

A

B

D

0

20

15

 60 Quantity

Price

 40

Figure 2.1
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Solution

Between points A and B price falls by 5 from 20 to 15 and quantity rises by 20 from 40 to
60. Using the formula defined above

arc e =
20

40 + 60
5

20 + 15

=
20

100
5

35

= 20

100
× 35

5
= 1

5
× 7

1
= 7

5

Example 2.19

When the price of a product is lowered from £350 to £200 quantity demanded increases from
600 to 750 units. Calculate the elasticity of demand over this section of its demand schedule.

Solution

Price fall is £150 and quantity rise is 150. Therefore using the concept of arc elasticity

e =
150

600 + 750
150

350 + 200

=
150

1,350
150

550

= 150

1,350
× 550

150
= 1

27
× 11

1
= 11

27

£

D

0 40 100 12060 80

18

20

6

3

Quantity

Price

9

15

12

Figure 2.2
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Test Yourself, Exercise 2.5

1. With reference to the demand schedule in Figure 2.2 calculate the arc elasticity of
demand between the prices of (a) £3 and £6, (b) £6 and £9, (c) £9 and £12, (d) £12
and £15, and (e) £15 and £18.

2. A city bus service charges a uniform fare for every journey made. When this fare
is increased from 50p to £1 the number of journeys made drops from 80,000 a day
to 40,000. Calculate the arc elasticity of demand over this section of the demand
schedule for bus journeys.

3. Calculate the arc elasticity of demand between (a) £5 and £10, and (b) between
£10 and £15, for the demand schedule shown in Figure 2.3.

£

D

0 120 Quantity

5

15

Price

10

8040

Figure 2.3

4. The data below show the quantity demanded of a good at various prices. Calculate
the arc elasticity of demand for each £5 increment along the demand schedule.

Price £40 £35 £30 £25 £20 £15 £10 £5 £0
Quantity 0 50 100 150 200 250 300 350 400

2.6 Decimals
Decimals are just another way of expressing fractions.

0.1 = 1/10

0.01 = 1/100

0.001 = 1/1,000 etc.

Thus 0.234 is equivalent to 234/1,000.
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Most of the time you will be able to perform operations involving decimals by using
a calculator and so only a very brief summary of the manual methods of performing arithmetic
operations using decimals is given here.

Addition and subtraction

When adding or subtracting decimals only ‘like terms’ must be added or subtracted. The
easiest way to do this is to write any list of decimal numbers to be added so that the decimal
points are all in a vertical column, in a similar fashion to the way that you may have been
taught in primary school to add whole numbers by putting them in columns for hundreds,
tens and units. You then add all the numbers that are the same number of digits away from
the decimal point, carrying units over to the next column when the total is more than 9.

Example 2.20

1.345 + 0.00041 + 0.20023 = ?

Solution

1.345 +
0.00041 +
0.20023 +
1.54564

Multiplication

To multiply two numbers involving decimal fractions one can ignore the decimal points,
multiply the two numbers in the usual fashion, and then insert the decimal point in the
answer by counting the total number of digits to the right of the decimal point in both the
numbers that were multiplied.

Example 2.21

2.463 × 0.38 = ?

Solution

Removing the decimal places and multiplying the whole numbers remaining gives

2,463 ×
38

19,704

73,890

93,954
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There were a total of 5 digits to the right of the decimal place in the two numbers to be
multiplied and so the answer is 0.93594.

Division

When dividing by a decimal fraction one first multiplies the fraction by the multiple of 10
that will convert it into a whole number. Then the number that is being divided is multiplied
by the same multiple of 10 and the normal division operation is applied.

Example 2.22

360.54 ÷ 0.04 = ?

Solution

Multiplying both terms by 100 the problem becomes

36,054 ÷ 4 = 9,013.5

Given that actual arithmetic operations involving decimals can usually be performed with
a calculator, perhaps one of the most common problems you are likely to face is how to
express quantities as decimals before setting up a calculation.

Example 2.23

Express 0.01p as a decimal fraction of £1.

Solution

1p = £0.01

Therefore

0.01p = £0.0001

In mathematics a decimal format is often required for a value that is usually specified as a
percentage in everyday usage. For example, interest rates are usually specified as percentages.
A percentage format is really just another way of specifying a decimal fraction, e.g.

62% = 62

100
= 0.62

and so percentages can easily be converted into decimal fractions by dividing by 100.
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Example 2.24

22% = 0.22 0.24% = 0.0024
24.56% = 0.2456 0.02% = 0.0002 2.4% = 0.024

You will need to convert interest rate percentages to their decimal equivalent when you learn
about investment appraisal methods and other aspects of financial mathematics, which are
topics that we shall return to in Chapter 7.

Because some fractions cannot be expressed exactly in decimals, one may need to ‘round
off’ an answer for convenience. In many of the economic problems in this book there is not
much point in taking answers beyond two decimal places. Where this is done then the note
‘(to 2 dp)’ is normally put after the answer. For example, 1/7 as a percentage is 14.29%
(to 2 dp).

Test Yourself, Exercise 2.6

(Try to answer these without using a calculator.)

1. 53.024 − 16.11 =
2. 44.2 × 17 =
3. 602.025 + 34.1006 − 201.016 =
4. 432.984 ÷ 0.012 =
5. 64.5 × 0.0015 =
6. 18.3 ÷ 0.03 =
7. How many pencils costing 30p each can be bought for £42.00?
8. What is 1 millimetre as a decimal fraction of

(a) 1 centimetre (b) 1 metre (c) 1 kilometre?

9. Specify the following percentages as decimal fractions:

(a) 45.2% (b) 243.15%

(c) 7.5% (d) 0.2%

2.7 Negative numbers
There are numerous instances where one comes across negative quantities, such as tempera-
tures below zero or bank overdrafts. For example, if you have £35 in your bank account and
withdraw £60 then your bank balance becomes −£25. There are instances, however, where
it is not usually possible to have negative quantities. For example, a firm’s production level
cannot be negative.

To add negative numbers one simply subtracts the number after the negative sign, which is
known as the absolute value of the number. In the examples below the negative numbers are
written with brackets around them to help you distinguish between the addition of negative
numbers and the subtraction of positive numbers.
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Example 2.25

45 + (−32)+ (−6) = 45 − 32 − 6 = 7

If it is required to subtract a negative number then the two negatives will cancel out and one
adds the absolute value of the number.

Example 2.26

0.5 − (−0.45)− (−0.1) = 0.5 + 0.45 + 0.1 = 1.05

The rules for multiplication and division of negative numbers are:

• A negative multiplied (or divided) by a positive gives a negative.
• A negative multiplied (or divided) by a negative gives a positive.

Example 2.27

Eight students each have an overdraft of £210. What is their total bank balance?

Solution

total balance = 8 × (−210) = −£1,680

Example 2.28

24

−5
÷ −32

−10
= 24

−5
× −10

−32
= 3

1
× 2

−4
= 6

−4
= −3

2

Test Yourself, Exercise 2.7

1. Subtract−4 from−6.
2. Multiply−4 by 6.
3. −48 + 6 − 21 + 30 =
4. −0.55 + 1.0 =
5. 1.2 + (−0.65)− 0.2 =
6. −26 × 4.5 =
7. 30 × (4 − 15) =
8. (−60)× (−60) =
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9.
−1

4
× 9

7
− 4

5
=

10. (−1)

4

30 + 34
−2

16 + 18

=

2.8 Powers
We have all come across terms such as ‘square metres’ or ‘cubic capacity’. A square metre
is a rectangular area with each side equal to 1 metre. If a square room had all walls 5 metres
long then its area would be 5 × 5 = 25 square metres.

When we multiply a number by itself in this fashion then we say we are ‘squaring’ it. The
mathematical notation for this operation is the superscript 2. Thus ‘12 squared’ is written 122.

Example 2.29

2.52 = 2.5 × 2.5 = 6.25

We find the cubic capacity of a room, in cubic metres, by multiplying length × width ×
height. If all these distances are equal, at 3 metres say (i.e. the room is a perfect cube) then
cubic capacity is 3 × 3 × 3 = 27 cubic metres. When a number is cubed in this fashion the
notation used is the superscript 3, e.g. 123.

These superscripts are known as ‘powers’ and denote the number of times a number is
multiplied by itself. Although there are no physical analogies for powers other than 2 and 3,
in mathematics one can encounter powers of any value.

Example 2.30

124 = 12 × 12 × 12 × 12 = 20,736

125 = 12 × 12 × 12 × 12 × 12 = 248,832 etc.

To multiply numbers which are expressed as powers of the same number one adds all the
powers together.

Example 2.31

33 × 35 = (3 × 3 × 3)× (3 × 3 × 3 × 3 × 3) = 38 = 6,561

To divide numbers in terms of powers of the same base number, one subtracts the superscript
of the denominator from the numerator.
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Example 2.32

66

63
= 6 × 6 × 6 × 6 × 6 × 6

6 × 6 × 6
= 6 × 6 × 6 = 63 = 216

In the two examples above the multiplication and division processes are set out in full to
illustrate how these processes work with exponents. In practice, of course, one need not do
this and it is just necessary to add or subtract the indices.

Any number to the power of 1 is simply the number itself. Although we do not normally write
in the power 1 for single numbers, we must not forget to include it in calculation involving
powers.

Example 2.33

4.6 × 4.63 × 4.62 = 4.66 = 9,474.3 (to 1 dp)

In the example above, the first term 4.6 is counted as 4.61 when the powers are added up in
the multiplication process.

Any number to the power of 0 is equal to 1. For example, 82 × 80 = 8(2+0) = 82 so 80

must be 1.
Powers can also take negative values or can be fractions (see Section 2.9). A negative

superscript indicates the number of times that one is dividing by the given number.

Example 2.34

36 × 3−4 = 36

34
= 3 × 3 × 3 × 3 × 3 × 3

3 × 3 × 3 × 3
= 32

Thus multiplying by a number with a negative power (when both quantities are expressed as
powers of the same number) simply involves adding the (negative) power to the power of the
number being multiplied.

Example 2.35

84 × 8−2 = 82 = 64

Example 2.36

147 × 14−9 × 146 = 144 = 38,416
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The evaluation of numbers expressed as exponents can be time-consuming without a calcu-
lator with the function [yx], although you could, of course, use a basic calculator and put
the number to be multiplied in memory and then multiply it by itself the required number of
times. (This method would only work for whole number exponents though.)

To evaluate a number using the [yx] function on your calculator you should read the
instruction booklet, if you have not lost it. The usual procedure is to enter y, the number to be
multiplied, then hit the [yx] function key, then enter x, the exponent, and finally hit the [=]
key. For example, to find 144 enter 14 [yx] 4 [=] and you should get 38,416 as your answer.

If you do not, then you have either pressed the wrong keys or your calculator works in
a slightly different fashion. To check which of these it is, try to evaluate the simpler answer
to Example 2.35 (82 which is obviously 64) by entering 8 [yx] 2 [=]. If you do not get 64
then you need to find your calculator instructions.

Most calculators will not allow you to use the [yx] function to evaluate powers of negative
numbers directly. Remembering that a negative multiplied by a positive gives a negative
number, and a negative multiplied by a negative gives a positive, we can work out that if
a negative number has an even whole number exponent then the whole term will be positive.

Example 2.37

(−3)4 = (−3)2 × (−3)2 = 9 × 9 = 81

Similarly, if the exponent is an odd number the term will be negative.

Example 2.38

(−3)5 = 35 × (−1)5 = 243 × (−1) = −243

Therefore, when using a calculator to find the values of negative numbers taken to powers,
one works with the absolute value and then puts in the negative sign if the power value is an
odd number.

Example 2.39

(−19)6 = 196 = 47,045,881

Example 2.40

(−26)5 = −(265) = −11,881,376
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Example 2.41

(−2)−2 × (−2)−1 = (−2)−3 = 1

(−2)3
= 1

−8
= −0.125

Test Yourself, Exercise 2.8

1. 42 ÷ 43 =
2. 1237 × 123−6 =
3. 64 ÷ (62 × 6) =
4. (−2)3 × (−2)3 =
5. 1.424 × 1.423 =
6. 95 × 9−3 × 94 =
7. 8.6733 ÷ 8.6736 =
8. (−6)5 × (−6)−3 =
9. (−8.52)4 × (−8.52)−1 =

10. (−2.5)−8 + (0.2)6 × (0.2)−8 =

2.9 Roots and fractional powers
The square root of a number is the quantity which when squared gives the original number.
There are different forms of notation. The square root of 16 can be written

√
16 = 4 or 160.5 = 4

We can check this exponential format of 160.5 using the rule for multiplying powers.

(160.5)2 = 160.5 × 160.5 = 160.5+0.5 = 161 = 16

Even most basic calculators have a square root function and so it is not normally worth
bothering with the rather tedious manual method of calculating square roots when the square
root is not obvious, as it is in the above example.

Example 2.42

22460.5 =
√

2,246 = 47.391982 (using a calculator)

Although the positive square root of a number is perhaps the most obvious one, there will
also be a negative square root. For example,

(−4)× (−4) = 16
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and so (−4) is a square root of 16, as well as 4. The negative square root is often important in
the mathematical analysis of economic problems and it should not be neglected. The usual
convention is to use the sign ± which means ‘plus or minus’. Therefore, we really ought to say

√
16 = ±4

There are other roots. For example, 3
√

27 or 271/3 is the number which when multiplied by
itself three times equals 27. This is easily checked as

(271/3)3 = 271/3 × 271/3 × 271/3 = 271 = 27

When multiplying roots they need to be expressed in the form with a superscript, e.g. 60.5,
so that the rules for multiplying powers can be applied.

Example 2.43

470.5 × 470.5 = 47

Example 2.44

15 × 90.75 × 90.75 = 15 × 91.5

= 15 × 91.0 × 90.5

= 15 × 9 × 3 = 405

These basic rules for multiplying numbers with powers as fractions will prove very useful
when we get to algebra in Chapter 3.

Roots other than square roots can be evaluated using the [ x
√
y] function key on a calculator.

Example 2.45

To evaluate 5
√

261 enter

261 [ x
√
y] 5 [=]

which should give 3.0431832.

Not all fractional powers correspond to an exact root in this sense, e.g. 60.625 is not any
particular root. To evaluate these other fractional powers you can use the [yx] function key
on a calculator.
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Example 2.46

To evaluate 4520.85 most calculators require you to enter

452 [yx] 0.85 [=]

which should give you the answer 180.66236.

If you do not have this function key then you can use logarithms to evaluate these fractional
powers (see Section 2.10). Roots and other powers less than 1 cannot be evaluated for negative
numbers on calculators. A negative number cannot be the product of two positive or two
negative numbers, and so the square root of a negative number cannot exist. Some other roots
for negative numbers do exist, e.g. 3

√−1 = −1, but you are not likely to need to find them.

In Chapter 7 some applications of these rules to financial problems are explained. For the
time being we shall just work through a few more simple mathematical examples to ensure
that the rules for working with powers are fully understood.

Example 2.47

240.45 × 24−1 = 24−0.55 = 0.1741341

Note that you must use the [+/−] key on your calculator after entering 0.55 when evaluating
this power. Alternatively you could have calculated

1

240.55
= 1

5.7427007
= 0.1741341

Example 2.48

20 × 80.3 × 80.25 = 20 × 80.55 = 20 × 3.1383364 = 62.766728

Sometimes it may help to multiply together two numbers with a common power. Both
numbers can be put inside brackets with the common power outside the brackets.

Example 2.49

180.5 × 20.5 = (18 × 2)0.5 = 360.5 = 6
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Test Yourself, Exercise 2.9

Put the answers to the questions below as powers and then evaluate.

1.
√

625 =
2. 3

√
8 =

3. 50.5 × 5−1.5 =
4. (7)0.5 × (7)0.5 =
5. 60.3 × 6−0.2 × 60.4 =
6. 12 × 40.8 × 40.7 =
7. 200.5 × 50.5 =
8. 160.4 × 160.2 =
9. 462−0.83 × 4620.48 ÷ 462−0.2 =

10. 760.62 × 180.62 =

2.10 Logarithms
Many people thought that logarithms went out of the window when pocket calculators became
widely available. In the author’s schooldays logarithms were used as a short-cut method for
awkward long multiplication and long division calculations. Although pocket calculators
have indeed now made log tables redundant for this purpose, they are still useful for some
economic applications. For example, Chapters 7 and 14 show how logarithms can help
calculate growth rates on investments. So, for those of you who have never seen log tables,
or have forgotten what they are for, what are these mysterious logarithms?

The most commonly encountered logarithm is the base 10 logarithm. What this means
is that the logarithm of any number is the power to which 10 must be raised to equal that
number. The usual notation for logarithms to base 10 is ‘log’.

Thus the logarithm of 100 is 2 since 100 = 102. This is written as log 100 = 2. Similarly

log 10 = 1

and

log 1,000 = 3

The square root of 10 is 3.1622777 = 100.5 and so we know that log 3.1622777 = 0.5.
The above logarithms are obvious. For the logarithms of other numbers you can use the

[LOG] function key on a calculator or refer to a printed set of log tables.
If two numbers expressed as powers of 10 are multiplied together then we know that the

indices are added, e.g.

100.5 × 101.5 = 102

Therefore, to use logs to multiply numbers, one simply adds the logs, as they are just the
powers to which 10 is taken. The resulting log answer is a power of 10. To transform it back
to a normal number one can use the [10x] function on a calculator or ‘antilog’ tables if the
answer is not obvious, as it is above.
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Although you can obviously do the calculations more quickly by using the relevant function
keys on a calculator, the following examples illustrate how logarithms can solve some mul-
tiplication, division and power evaluation problems so that you can see how they work. You
will then be able to understand how logarithms can be applied to some problems encountered
in economics.

Example 2.50

Evaluate 4,632.71 × 251.07 using logs.

Solution

Using the [LOG] function key on a calculator

log 4,632.71 = 3.6658351

log 251.07 = 2.3997948

Thus

4,632.71 × 251.07 = 103.6658351 × 102.3997948

= 106.0656299 = 1,163,134.5

using the [10x] function key.

The principle is therefore to put all numbers to be multiplied together in log form, add the
logs, and then evaluate.

To divide, one index is subtracted from the other, e.g.

102.5 ÷ 101.5 = 102.5−1.5 = 101 = 10

and so logs are subtracted.

Example 2.51

Evaluate 56,200 ÷ 3,484 using logs.

Solution

From log tables

log 56,200 = 4.7497363

log 3,484 = 3.5420781
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To divide, we subtract the log of the denominator since

56,200 ÷ 3,484 = 104.7497363 ÷ 103.5420781

= 104.7497363−3.5420781

= 101.2076582

= 1.6130884

Note that when you use the [LOG] function key on a calculator to obtain the logs of numbers
less than 1 you get a negative sign, e.g.

log 0.31 = −0.5086383

Logarithms can also be used to work out powers and roots of numbers.

Example 2.52

Calculate 1,242.676 using logs.

Solution

log 1,242.67 = 3.0943558

This means

1,242.67 = 103.0943558

If this is taken to the power of 6, it means that this index of 10 is multiplied 6 times. Therefore

log 1,242.676 = 6 log 1,242.67 = 18.566135

Using the [10x] function to evaluate this number gives

3.6824 × 1018 = 3,682, 400,000,000,000,000

Example 2.53

Use logs to find 8
√

226.34.

Solution

Log 226.34 must be divided by 8 to find the log of the number which when multiplied by
itself 8 times gives 226.34, i.e. the eighth root. Thus

log 226.34 = 2.3547613

1
8 log 226.34 = 0.2943452

Therefore 8
√
(226.34) = 100.2943452 = 1.9694509.
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To summarize, the rules for using logs are as follows.

Multiplication: add logs
Division: subtract logs
Powers: multiply log by power
Roots: divide log by root

The answer is then evaluated by finding 10x where x is the resulting value of the log.
Having learned how to use logarithms to do some awkward calculations which you could

have almost certainly have done more quickly on a calculator, let us now briefly outline some
of their economic applications. It can help in the estimation of the parameters of non-linear
functions if they are specified in logarithmic format. This application is explained further in
Section 4.9. Logarithms can also be used to help solve equations involving unknown exponent
values.

Example 2.54

If 460(1.08)n = 925, what is n?

Solution

460(1.08)n = 925

(1.08)n = 2.0108696

Putting in log form

n log 1.08 = log 2.0108696

n = log 2.0108696

log 1.08

= 0.3033839

0.0334238

= 9.0768945

We shall return to this type of problem in Chapter 7 when we consider for how long a
sum of money needs to be invested at any given rate of interest to accumulate to a speci-
fied sum.

Although logarithms to the base 10 are perhaps the easiest ones to use, logarithms can be
based on any number. In Chapter 14 the use of logarithms to the base e = 2.7183, known as
natural logarithms, is explained (and also why such an odd base is used).

© 1993, 2003 Mike Rosser



Test Yourself, Exercise 2.10

Use logs to answer the following.

1. 424 × 638.724 =
2. 6,434 ÷ 29.12 =
3. 22.437 =
4. 9.6128.34 =
5. 36

√
5,200 =

6. 143.2 × 6.24 × 810.2 =
7. If (1.06)n = 235 what is n?

8. If 825(1.22)n = 1,972 what is n?

9. If 4,350(1.14)n = 8,523 what is n?
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3 Introduction to algebra

Learning objectives

After completing this chapter students should be able to:

• Construct algebraic expressions for economic concepts involving unknown values.
• Simplify and reformulate basic algebraic expressions.
• Solve single linear equations with one unknown variable.
• Use the summation sign �.
• Perform basic mathematical operations on algebraic expressions that involve

inequality signs.

3.1 Representation
Algebra is basically a system of shorthand. Symbols are used to represent concepts and
variables that are capable of taking different values.

For example, suppose that a biscuit manufacturer uses the following ingredients for each
packet of biscuits produced: 0.2 kg of flour, 0.05 kg of sugar and 0.1 kg of butter. One way
that we could specify the total amount of flour used is: ‘0.2 kg times the number of packets
of biscuits produced’. However, it is much simpler if we let the letter q represent the number
of packets of biscuits produced. The amount of flour required in kilograms will then be 0.2
times q, which we write as 0.2q.

Thus we can also say

amount of sugar required = 0.05q kilograms

amount of butter required = 0.1q kilograms

Sometimes an algebraic expression will have several terms in it with different algebraic
symbols representing the unknown quantities of different variables.

Consider the total expenditure on inputs by the firm in the example above. Let the price
(in £) per kilogram of flour be denoted by the letter a. The total cost of the amount of flour
the firm uses will therefore be 0.2q times a, written as 0.2qa.

If the price per kilogram of sugar is denoted by the letter b and the price per kilogram of
butter is c then the total expenditure (in £) on inputs for biscuit production will be

0.2qa + 0.05qb + 0.1qc
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When two algebraic symbols are multiplied together it does not matter in which order they
are written, e.g. xy = yx. This of course, is, the same rule that applies when multiplying
numbers. For example:

5 × 7 = 7 × 5

Any operation that can be carried out with numbers (such as division or deriving the
square root) can be carried out with algebraic symbols. The difference is that the answer
will also be in terms of algebraic symbols rather than numbers. An algebraic expression
cannot be evaluated until values have been given to the variables that the symbols represent
(see Section 3.2).

For example, an expression for the length of fencing (in metres) needed to enclose a square
plot of land of as yet unknown size can be constructed as follows:

The length of a side will be
√
A for a square that has area A square metres.

All squares have four sides.
Therefore the length of fencing = 4 × (length of one side) = 4

√
A.

Without information on the value of A we cannot say any more. Once the value of A is
specified then we can simply work out the value of the expression using basic arithmetic.

For example, if the area is 100 square metres, then we just substitute 100 for A and so

length of fencing = 4
√
A = 4

√
(100) = 4 × 10 = 40 metres

One of the uses of writing an expression in an algebraic form is that it is not neces-
sary to work out a solution for every different value of the unknown variable that one
is faced with. The different values can just be substituted into the algebraic expression.
In this section we start with some fairly simple expressions but later, as more complex
relationships are dealt with, the usefulness of algebraic representation will become more
obvious.

Example 3.1

You are tiling a bathroom with 10 cm square tiles. The number of square metres to be tiled is
as yet unknown and is represented by q. Because you may break some tiles and will have to
cut some to fit around corners etc. you work to the rule of thumb that you should buy enough
tiles to cover the specified area plus 10%. Derive an expression for the number of tiles to be
bought in terms of q.

Solution

One hundred 10 cm square tiles will cover 1 square metre and 110% written as a decimal is
1.1. Therefore the number of tiles required is

100q × 1.1 = 110q
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Test Yourself, Exercise 3.1

1. An engineering firm makes metal components. Each component requires 0.01
tonnes of steel, 0.5 hours of labour plus 0.5 hours of machine time. Let the number
of components produced be denoted by x. Derive algebraic expressions for:

(a) the amount of steel required;
(b) the amount of labour required;
(c) the amount of machine time required.

2. If the price per tonne of steel is given by r , the price per hour of labour is given by
w and the price per hour of machine time is given bym, then derive an expression
for the total production costs of the firm in question 1 above.

3. The petrol consumption of your car is 12 miles per litre. Let x be the distance you
travel in miles and p the price per litre of petrol in pence. Write expressions for
(a) the amount of petrol you use and (b) your expenditure on petrol.

4. Suppose that you are cooking a dinner for a number of people. You only know
how to cook one dish, and this requires you to buy 0.1 kg of meat plus 0.3 kg of
potatoes for each person. (Assume you already have a plentiful supply of any other
ingredients.) Define your own algebraic symbols for relevant unknown quantities
and then write expressions for:

(a) the amount of meat you need to buy;
(b) the amount of potatoes you need to buy;
(c) your total shopping bill.

5. You are cooking again! This time it’s a turkey. The cookery book recommends a
cooking time of 30 minutes for every kilogramme weight of the turkey plus another
quarter of an hour. Write an expression for the total cooking time (in hours) for
your turkey in terms of its weight.

6. Make up your own algebraic expression for the total profit of a firm in terms of the
amount of output sold, the price of its product and the average cost of production
per unit.

7. Someone is booking a meal in a restaurant for a group of people. They are
told that there is a set menu that costs £9.50 per adult and £5 per child, and
there is also a fixed charge of £1 per head for each meal served. Derive an
expression for the total cost of the meal, in pounds, if there are x adults and
y children.

8. A firm produces a good which it can sell any amount of at £12 per unit.
Its costs are a fixed outlay of £6,000 plus £9 in variable costs for each unit
produced. Write an expression for the firm’s profit in terms of the number of units
produced.

3.2 Evaluation
An expression can be evaluated when the variables represented by algebraic symbols are
given specific numerical values.
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Example 3.2

Evaluate the expression 6.5x when x = 8.

Solution

6.5x = 6.5(8) = 52

Example 3.3

A firm’s total costs are given by the expression

0.2qa + 0.05qb + 0.1qc

where q is output and a, b and c are the per unit costs (in £) of the three different inputs used.
Evaluate these costs if q = 1,000, a = 0.6, b = 1.3 and c = 2.1.

Solution

0.2qa + 0.05qb + 0.1qc = 0.2(1,000 × 0.6)+ 0.05(1,000 × 1.3)+ 0.1(1,000 × 2.1)

= 0.2(600)+ 0.05(1,300)+ 0.1(2,100)

= 120 + 65 + 210 = 395

Therefore the total cost is £395.

Example 3.4

Evaluate the expression (3x + 4)y when x = 2 and y = 6.

Solution

(3x + 4)y = (32 + 4)6 = (9 + 4)6 = 13 × 6 = 78

Example 3.5

A Bureau de Change will sell euros at an exchange rate of 1.62 euros to the pound and charges
a flat rate commission of £2 on all transactions.

(i) Write an expression for the number of euros that can be bought for £x (any given quantity
of sterling), and

(ii) evaluate it for x = 250.
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Solution

(i) Number of euros bought for £x = 1.62(x − 2).
(ii) £250 will therefore buy

1.62(250 − 2) = 1.62(248) = e401.76

Test Yourself, Exercise 3.2

1. Evaluate the expression 2x3 + 4x when x = 6.
2. Evaluate the expression (6x + 2y)y2 when x = 4.5 and y = 1.6.
3. When the UK government privatized the Water Authorities in 1989 it decided

that annual percentage price increases for water would be limited to the rate of
inflation plus z, where z was a figure to be determined by the government. Write
an algebraic expression for the maximum annual percentage price increase for
water and evaluate it for an inflation rate of 6% and a z factor of 3.

4. Make up your own values for the unknown variables in the expressions you have
written for Test Yourself, Exercise 3.1 above and then evaluate.

5. Evaluate the expression 1.02x + x−3.2 when x = 2.8.
6. A firm’s average production costs (AC) are given by the expression

AC = 450q−1 + 0.2q1.5

where q is output. What will AC be when output is 175?
7. A firm’s profit (in £) is given by the expression 7.5q − 1650. What profit will it

make when q is 500?
8. If income tax is levied at a rate of 22% on annual income over £5,400 then:

(a) write an expression for net monthly salary in terms of gross monthly salary
(assumed to be greater than £450), and

(b) evaluate it if gross monthly salary is £2,650.

3.3 Simplification: addition and subtraction
Simplifying an expression means rearranging the terms in it so that the expression becomes
easier to work with. Before setting out the different rules for simplification let us work through
an example.

Example 3.6

A businesswoman driving her own car on her employer’s business gets paid a set fee per mile
travelled for travelling expenses. During one week she records one journey of 234 miles, one
of 166 miles and one of 90 miles. Derive an expression for total travelling expenses.
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Solution

If the rate per mile is denoted by the letter M then her expenses will be 234M for the first
journey and 166M and 90M for the second and third journeys respectively. Total travelling
expenses for the week will thus be

234M + 166M + 90M

We could, instead, simply add up the total number of miles travelled during the week and
then multiply by the rate per mile. This would give

(234 + 166 + 90)× rate per mile = 490 × rate per mile = 490M

It is therefore obvious that, as both methods should give the same answer, then

234M + 166M + 90M = 490M

In other words, in an expression with different terms all in the same format of

(a number)×M

all the terms can be added together.

The general rule is that like terms can be added or subtracted to simplify an expression.
‘Like terms’ have the same algebraic symbol or symbols, usually multiplied by a number.

Example 3.7

3x + 14x + 7x = 24x

Example 3.8

45A− 32A = 13A

It is important to note that only terms that have exactly the same algebraic notation can be
added or subtracted in this way. For example, the terms x, y2 and xy are all different and
cannot be added together or subtracted from each other.

Example 3.9

Simplify the expression 5x2 + 6xy − 32x + 3yx − x2 + 4x.

Solution

Adding/subtracting all the terms in x2 gives 4x2.
Adding/subtracting all the terms in x gives −28x.
Adding/subtracting all the terms in xy gives 9xy.
(Note that the terms in xy and yx can be added together since xy = yx.)
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Putting all these terms together gives the simplified expression

4x2 − 28x + 9xy

In fact all the basic rules of arithmetic (as set out in Chapter 2) apply when algebraic symbols
are used instead of actual numbers. The difference is that the simplified expression will still
be in a format of algebraic terms.

The example below illustrates the rule that if there is a negative sign in front of a set of
brackets then the positive and negative signs of the terms within the brackets are reversed if
the brackets are removed.

Example 3.10

Simplify the expression

16q + 33q − 2q − (15q − 6q)

Solution

Removing brackets, the above expression becomes

16q + 33q − 2q − 15q + 6q = 38q

Test Yourself, Exercise 3.3

1. Simplify the expression 6x − (6 − 24x)+ 10.
2. Simplify the expression 4xy + (24x − 13y)− 12 + 3yx − 5y.
3. A firm produces two goods, X and Y, which it sells at prices per unit of £26 and £22

respectively. Good X requires an initial outlay of £400 and then an expenditure of
£16 on labour and £4 on raw materials for each unit produced. Good Y requires a
fixed outlay of £250 plus £14 labour and £3 of raw material for each unit. If the
quantities produced of X and Y are x and y, respectively, write an expression in
terms of x and y for the firm’s total profit and then simplify it.

4. A worker earns £6 per hour for the first 40 hours a week he works and £9 per hour
for any extra hours. Assuming that he works at least 40 hours, write an expression
for his gross weekly wage in terms of H , the total hours worked per week, and
then simplify it.

3.4 Simplification: multiplication
When a set of brackets containing different terms is multiplied by a symbol or a number
it may be possible to simplify an expression by multiplying out, i.e. multiplying each term
within the brackets by the term outside. In some circumstances, though, it may be preferable
to leave brackets in the expression if it makes it clearer to work with.
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Example 3.11

x(4 + x) = 4x + x2

Example 3.12

5(7x2 − x)− 3(3x2 + 6x) = 35x2 − 5x − 9x2 − 18x

= 26x2 − 23x

Example 3.13

6y(8 + 3x)− 2xy + 12y = 48y + 18xy − 2xy + 12y

= 60y + 16xy

Example 3.14

The basic hourly rate for a weekly paid worker is £8 and any hours above 40 are paid at £12.
Tax is paid at a rate of 25% on any earnings above £80 a week. Assuming hours worked
per week (H ) exceed 40, write an expression for net weekly wage in terms of H and then
simplify it.

Solution

gross wage = 40 × 8 + (H − 40)12

= 320 + 12H − 480

= 12H − 160

net wage = 0.75(gross wage − 80)+ 80

= 0.75(12H − 160 − 80)+ 80

= 9H − 120 − 60 + 80

= 9H − 100

If you are not sure whether the expression you have derived is correct, you can try to check
it by substituting numerical values for unknown variables. In the above example, if 50 hours
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per week were worked, then

gross pay = (40 hours @ £8)+ (10 hours @ £12)

= £320 + £120

= £440

tax payable = (£440 − £80)0.25 = (£360)0.25 = £90

Therefore

net pay = £440 − £90 = £350

Using the expression derived in Example 3.14, if H = 50 then

net pay = 9H − 100 = 9(50)− 100 = 450 − 100 = £350

This checks out with the answer above and so we know our expression works.

It is rather more complicated to multiply pairs of brackets together. One method that can be
used is rather like the long multiplication that you probably learned at school, but instead
of keeping all units, tens, hundreds etc. in the same column it is the same algebraic terms
that are kept in the same column during the multiplying process so that they can be added
together.

Example 3.15

Simplify (6 + 2x)(4 − 2x).

Solution

Writing this as a long multiplication problem:

6 + 2x ×
4 − 2x

Multiplying (6 + 2x) by −2x −12x − 4x2

Multiplying (6 + 2x) by 4 24 + 8x
Adding together gives the answer 24 − 4x − 4x2

One does not have to use the long multiplication format for multiplying out sets of brackets.
The basic principle is that each term in one set of brackets must be multiplied by each term in
the other set. Like terms can then be collected together to simplify the resulting expression.

Example 3.16

Simplify (3x + 4y)(5x − 2y).
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Solution

Multiplying the terms in the second set of brackets by 3x gives:

15x2 − 6xy (1)

Multiplying the terms in the second set of brackets by 4y gives:

20xy − 8y2 (2)

Therefore, adding (1) and (2) the whole expression is

15x2 − 6xy + 20xy − 8y2 = 15x2 + 14xy − 8y2

Example 3.17

Simplify (x + y)2.

Solution

(x + y)2 = (x + y)(x + y) = x2 + xy + yx + y2 = x2 + 2xy + y2

The above answer can be checked by referring to Figure 3.1. The area enclosed in the
square with sides of length x + y can be calculated by squaring the lengths of the sides, i.e.
finding (x + y)2. One can also see that this square is made up of the four rectangles A, B,
C and D whose areas are x2, xy, xy and y2 respectively – in other words, x2 + 2xy + y2,
which is the answer obtained above.

x

y

A

D

B

C

x y

Figure 3.1
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Example 3.18

Simplify (6 − 5x)(10 − 2x + 3y).

Solution

Multiplying out gives

60 − 12x + 18y − 50x + 10x2 − 15xy = 60 − 62x + 18y + 10x2 − 15xy

Some expressions may be best left with the brackets still in.

Example 3.19

If a sum of £x is invested at an interest rate of r% write an expression for the value of the
investment at the end of 2 years.

Solution

After 1 year the investment’s value (in £) is x
(

1 + r

100

)

After 2 years the investment’s value (in £) is x
(

1 + r

100

)2

One could multiply out but in this particular case the expression is probably clearer, and
also easier to evaluate, if the brackets are left in. The next section explains how in some
cases, some expressions may be ‘simplified’ by reformatted into two expressions in brackets
multiplied together. This is called ‘factorization’.

Test Yourself, Exercise 3.4

Simplify the following expressions:
1. 6x(x − 4)
2. (x + 3)2 − 2x
3. (2x + y)(x + 3)
4. (6x + 2y)(7x − 8y)+ 4y + 2y
5. (4x − y + 7)(2y − 3)+ (9x − 3y)(5 + 6y)
6. (12 − x + 3y + 4z)(10 + x + 2y)
7. A good costs a basic £180 a unit but if an order is made for more than 10 units this

price is reduced by a discount of £2 for every one unit increase in the size of an
order (up to a maximum of 60 units purchased), i.e. if the order size is 11, price
is £178; if it is 12, price is £176 etc. Write an expression for the total cost of an
order in terms of order size and simplify it. Assume order size is between 10 and
60 units.
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8. A holiday excursion costs £8 per person for transport plus £5 per adult and £3 per
child for meals. Write an expression for the total cost of an excursion for x adults
and y children and simplify it.

9. A firm is building a car park for its employees. Assume that a car park to accom-
modate x cars must have a length (in metres) of 4x+10 and a width of 2x+10. If
24 square metres will be specifically allocated for visitors’ cars, write an expres-
sion for the amount of space available for the cars of the workforce in terms of x
if x is the planned capacity of the car park.

10. A firm buys a raw material that costs £220 a tonne for the first 40 tonnes, £180
a tonne for the next 40 tonnes and £150 for any further quantities. Write an
expression for the firm’s total expenditure on this input in terms of the total amount
used (which can be assumed to be greater than 80 tonnes), and simplify.

3.5 Simplification: factorizing
For some purposes (see, e.g. Section 3.6 below and Chapter 6 on quadratic equations) it may
be helpful if an algebraic expression can be simplified into a format of two sets of brackets
multiplied together. For example

x2 + 4x + 4 = (x + 2)(x + 2)

This is rather like the arithmetical process of factorizing a number, which means finding all
the prime numbers which when multiplied together equal that number, e.g.

126 = 2 × 3 × 3 × 7

If an expression has only one unknown variable, x, and it is possible to factorize it into two
sets of brackets that do not contain terms in x to a power other than 1, the expression must
be in the form

ax2 + bx + c

However, not all expressions in this form can be factorized into sets of brackets that only
involve integers, i.e. whole numbers. There are no set rules for working out if and how an
expression may be factorized. However, if the term in x2 does not have a number in front of
it (i.e. a = 1) then the expression can be factorized if there are two numbers which

(i) give c when multiplied together, and
(ii) give b when added together.

Example 3.20

Attempt to factorize the expression x2 + 6x + 9.

© 1993, 2003 Mike Rosser



Solution

In this example a = 1, b = 6 and c = 9.
Since 3 × 3 = 9 and 3 + 3 = 6, it can be factorized, as follows

x2 + 6x + 9 = (x + 3)(x + 3)

This can be checked as

x + 3 ×
x + 3

3x + 9
x2 + 3x
x2 + 6x + 9

Example 3.21

Attempt to factorize the expression x2 − 2x − 80.

Solution

Since (−10)× 8 = −80 and (−10)+ 8 = −2 then the expression can be factorized and

x2 − 2x − 80 = (x − 10)(x + 8)

Check this answer yourself by multiplying out.

Example 3.22

Attempt to factorize the expression x2 + 3x + 11.

Solution

There are no two numbers which when multiplied together give 11 and when added together
give 3. Therefore this expression cannot be factorized.

It is sometimes possible to simplify an expression before factorizing if all the terms are
divisible by the same number.

Example 3.23

Attempt to factorize the expression 2x2 − 10x + 12.
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Solution

2x2 − 10x + 12 = 2(x2 − 5x + 6)

The term in brackets can be simplified as

x2 − 5x + 6 = (x − 3)(x − 2)

Therefore

2x2 − 10x + 12 = 2(x − 3)(x − 2)

In expressions in the format ax2 + bx + c where a is not equal to 1, then one still has to find
two numbers which multiply together to give c. However, one also has to find two numbers
for the coefficients of the two terms in x within the two sets of brackets that when multiplied
together equal a, and allow the coefficient b to be derived when multiplying out.

Example 3.24

Attempt to factorize the expression 30x2 + 52x + 14.

Solution

If we use the results that 6 × 5 = 30 and 2 × 7 = 14 we can try multiplying

5x + 7 ×
6x + 2

10x + 14
30x2 + 42x

This gives 30x2 + 52x + 14

Thus

30x2 + 52x + 14 = (5x + 7)(6x + 2)

Similar rules apply when one attempts to factorize an expression with two unknown variables,
x and y. This may be in the format

ax2 + bxy + cy2

where a, b and c are specified parameters.

Example 3.25

Attempt to factorize the expression x2 − y2.
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Solution

In this example a = 1, b = 0 and c = −1. The two numbers −1 and 1 give −1 when
multiplied together and 0 when added. Thus

x2 − y2 = (x − y)(x + y)

To check this, multiply out:

(x − y)(x − y) = x2 − xy + y2 − yx = x2 − y2

Example 3.26

Attempt to factorize the expression 3x2 + 8x + 23.

Solution

As 23 is a positive prime number, the only pairs of positive integers that could possibly be
multiplied together to give 23 are 1 and 23. Thus, whatever permutations of combinations
with terms in x that we try, the term in x when brackets are multiplied out will be at least
24x, e.g. (3x + 23)(x + 1) = 3x2 + 26x + 23, whereas the given expression contains the
term 8x. It is therefore not possible to factorize this expression.

Unfortunately, it is not always so obvious whether or not an expression can be
factorized.

Example 3.27

Attempt to factorize the expression 3x2 + 24 + 16.

Solution

Although the numbers look promising, if you try various permutations you will find that this
expression does not factorize.

There is no easy way of factorizing expressions and it is just a matter of trial and error. Do
not despair though! As you will see later on, factorizing may help you to use short-cut
methods of solving certain problems. If you spend ages trying to factorize an expres-
sion then this will defeat the object of using the short-cut method. If it is not obvious
how an expression can be factorized after a few minutes of thought and experimentation
with some potential possible solutions then it is usually more efficient to forget factoriza-
tion and use some other method of solving the problem. We shall return to this topic in
Chapter 6.
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Test Yourself, Exercise 3.5

Attempt to factorize the following expressions:

1. x2 + 8x + 16
2. x2 − 6xy + 9y2

3. x2 + 7x + 22
4. 8x2 − 10x + 33
5. Make up your own expression in the format ax2+bx+c and attempt to factorize it.

Check your answer by multiplying out.

3.6 Simplification: division
To divide an algebraic expression by a number one divides every term in the expression by
the number, cancelling where appropriate.

Example 3.28

15x2 + 2xy + 90

3
= 5x2 + 2

3
xy + 30

To divide by an unknown variable the same rule is used although, of course, where the
numerator of a fraction does not contain that variable it cannot be simplified any further.

Example 3.29

2x2

x
= 2x

Example 3.30

4x3 − 2x2 + 10x

x
= x(4x2 − 2x + 10)

x

= 4x2 − 2x + 10

Example 3.31

16x + 120

x
= 16 + 120

x
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Example 3.32

A firm’s total costs are 25x + 2x2, where x is output. Write an expression for average cost.

Solution

Average cost is total cost divided by output. Therefore

AC = 25x + 2x2

x
= 25 + 2x

If one expression is divided by another expression with more than one term in it then terms
can only be cancelled top and bottom if the numerator and denominator are both multiples
of the same factor.

Example 3.33

x2 + 2x

x + 2
= x(x + 2)

x + 2
= x

Example 3.34

x2 + 5x + 6

x + 3
= (x + 3)(x + 2)

x + 3
= x + 2

Example 3.35

x2 + 5x + 6

x2 + x − 2
= (x + 2)(x + 3)

(x + 2)(x − 1)
= x + 3

x − 1

Test Yourself, Exercise 3.6

1. Simplify

6x2 + 14x − 40

2x

2. Simplify

x2 + 12x + 27

x + 3
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3. Simplify

8xy + 2x2 + 24x

2x

4. A firm has to pay fixed costs of £200 and then £16 labour plus £5 raw materi-
als for each unit produced of good X. Write an expression for average cost and
simplify.

5. A firm sells 40% of its output at £200 a unit, 30% at £180 and 30% at £150. Write
an expression for the average revenue received on each unit sold and then simplify
it.

6. You have all come across this sort of party trick: Think of a number. Add 3.
Double it. Add 4. Take away the number you first thought of. Take away 3. Take
away the number you thought of again. Add 2. Your answer is 9. Show how this
answer can be derived by algebraic simplification by letting x equal the number
first thought of.

7. Make up your own ‘think of a number’ trick, writing down the different steps in
the form of an algebraic expression that checks out the answer.

3.7 Solving simple equations
We have seen that evaluating an expression means calculating its value when one is given
specific values for unknown variables. This section explains how it is possible to work
backwards to discover the value of an unknown variable when the total value of the expression
is given.

When an algebraic expression is known to equal a number, or another algebraic expression,
we can write an equation, i.e. the two concepts are written on either side of an equality sign.
For example

45 = 24 + 3x

In this chapter we have already written some equations when simplifying algebraic expres-
sions. However, the ones we have come across so far have usually not been in a format where
the value of the unknown variables can be worked out. Take, for example, the simplification
exercise

3x + 14x − 5x = 12x

The expressions on either side of the equality sign are equal, but x cannot be calculated from
the information given.

Some equations are what are known as ‘identities’, which means that they must always be
true. For example, a firm’s total costs (TC) can be split into the two components total fixed
costs (TFC) and total variable costs (TVC). It must therefore always be the case that

TC = TFC + TVC

Identities are sometimes written with the three bar equality sign ‘≡’ instead of ‘=’, but
usually only when it is necessary to distinguish them from other forms of equations, such as
functions.
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A function is a relationship between two or more variables such that a unique value of one
variable is determined by the values taken by the other variables in the function. (Functions
are explained more fully in Chapter 4.) For example, statistical analysis may show that a
demand function takes the form

q = 450 − 3p

where p is price and q is quantity demanded. Thus the expected quantity demanded can be
predicted for any given value of p, e.g. if p = 60 then

q = 450 − 3(60) = 450 − 180 = 270

In this section we shall not distinguish between equations that are identities and those that
relate to specific values of functions, since the method of solution is the same for both.
We shall also mainly confine the analysis to linear equations with one unknown variable
whose value can be deduced from the information given. A linear equation is one where the
unknown variable does not take any powers other than 1, e.g. there may be terms in x but not
x2, x−1 etc.

Before setting out the formal rules for solving single linear equations let us work through
some simple examples.

Example 3.36

You go into a foreign exchange bureau to buy US dollars for your holiday. You exchange
£200 and receive $343. When you get home you discover that you have lost your receipt.
How can you find out the exchange rate used for your money if you know that the bureau
charges a fixed £4 fee on all transactions?

Solution

After allowing for the fixed fee, the amount actually exchanged into dollars will be

£200 − £4 = £196

Let x be the exchange rate of pounds into dollars. Therefore

343 = 196x

343

196
= x

1.75 = x

Thus the exchange rate is $1.75 to the pound.
This example illustrates the fundamental principle that one can divide both sides of an

equation by the same number.
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Example 3.37

If 62 = 34 + 4x what is x?

Solution

Subtracting 34 from both sides gives

28 = 4x

then dividing both sides by 4 gives the solution

7 = x

This example illustrates the principle that one can subtract the same amount from both sides
of an equation.

The basic principles for solving equations are that all the terms in the unknown variable
have to be brought together by themselves on one side of the equation. In order to do this
one can add, subtract, multiply or divide both sides of an equation by the same number or
algebraic term. One can also perform other arithmetical operations, such as finding the square
root of both sides of an equality sign.

Once the equation is in the form

ax = b

where a and b are numbers, then x can be found by dividing b by a.

Example 3.38

Solve for x if 16x − 4 = 68 + 7x.

Solution

Subtracting 7x from both sides

9x − 4 = 68

Adding 4 to both sides

9x = 72

Dividing both sides by 9 gives the solution

x = 8
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Example 3.39

Solve for x if

4 = 96

x

Solution

Multiplying both sides by x

4x = 96

Dividing both sides by 4 gives the solution

x = 24

Example 3.40

Solve for x if 6x2 + 12 = 162.

Solution

Subtracting 12 from both sides

6x2 = 150

Dividing through by 6

x2 = 25

Taking square roots gives the solution

x = 5 or − 5

Example 3.41

A firm has to pay fixed costs of £1,500 plus another £60 for each unit produced. How much
can it produce for a budget of £4,800?

Solution

budget = total expenditure on production

Therefore if x is output level

4,800 = 1,500 + 60x

© 1993, 2003 Mike Rosser



Subtracting 1,500 from both sides

3,300 = 60x

Dividing by 60 gives the solution

55 = x

Thus the firm can produce 55 units for a budget of £4,800.

Example 3.42

You sell 500 shares in a company via a stockbroker who charges a flat £20 commission rate
on all transactions under £1,000. Your bank account is credited with £692 from the sale of
the shares. What price (in pence) were your shares sold at?

Solution

Let price per share be x. Therefore, working in pence,

69,200 = 500x − 2,000

Adding 2,000 to both sides

71,200 = 500x

Dividing both sides by 500 gives the solution

142.4 = x

Thus the share price is 142.4p.

Test Yourself, Exercise 3.7

1. Solve for x when 16x = 2x + 56.
2. Solve for x when

14 = 6 + 4x

5x

3. Solve for x when 45 = 24 + 3x.
4. Solve for x if 5x2 + 20 = 1,000.
5. If q = 560 − 3p solve for p when q = 314.
6. You get paid travelling expenses according to the distance you drive in your car

plus a weekly sum of £21. You put in a claim for 420 miles travelled and receive
an expenses payment of £105. What is the payment rate per mile?

7. In one module that you are studying, the overall module mark is calculated on the
basis of a 30 : 70 weighting between coursework and examination marks. If you
have scored 57% for coursework, what examination mark do you need to get to
achieve an overall mark of 40%?
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8. You sell 900 shares via your broker who charges a flat rate of commission of £20
on all transactions of less than £1,000. Your bank account is credited with £340
from the share sale. What price were your shares sold at?

9. Your net monthly salary is £1,950. You know that National Insurance and pension
contributions take 15% of your gross salary and that income tax is levied at a rate
of 25% on gross annual earnings above a £5,400 exemption limit. What is your
gross monthly salary?

10. You have 64 square paving stones and wish to lay them to form a square patio in
your garden. If each paving stone is 0.5 metres square, what will the length of a
side of your patio be?

11. A firm faces the marginal revenue schedule MR = 80 − 2q and the marginal cost
schedule MC = 15 + 0.5q where q is quantity produced. You know that a firm
maximizes profit when MC = MR. What will the profit-maximizing output be?

3.8 The summation sign
∑

The summation sign
∑

can be used in certain circumstances as a shorthand means of express-
ing the sum of a number of different terms added together. (� is a Greek letter, pronounced
‘sigma’.) There are two ways in which it can be used.

The first is when one variable increases its value by 1 in each successive term, as the
example below illustrates.

Example 3.43

A new firm sells 30 units in the first week of business. Sales then increase at the rate of 30 units
per week. If it continues in business for 5 weeks, its total cumulative sales will therefore be

(30 × 1)+ (30 × 2)+ (30 × 3)+ (30 × 4)+ (30 × 5)

You can see that the number representing the week is increased by 1 in each successive term.
This is rather a cumbersome expression to work with. We can instead write

sales revenue =
5∑
i=1

30i

This means that one is summing all the terms 30i for values of i from 1 to 5.
If the number of weeks of business n was not known we could instead write

sales revenue =
n∑
i=1

30i

To evaluate an expression containing a summation sign, one may still have to calculate the
value of each term separately and then add up. However, spreadsheets can be used to do
tedious calculations and in some cases short-cut formulae may be used (see Chapter 7).
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Example 3.44

Evaluate

n∑
i=3

(20 + 3i) for n = 6

Solution

Note that in this example i starts at 3. Thus

6∑
i=3

(20 + 3i) = (20 + 9)+ (20 + 12)+ (20 + 15)+ (20 + 18)

= 29 + 32 + 35 + 38

= 134

The second way in which the summation sign can be used requires a set of data where
observations are specified in numerical order.

Example 3.45

Assume that a researcher finds a random group of twelve students and observes their weight
and height as shown in Table 3.1.

If we let Hi represent the height and Wi represent the weight of student i, then the total

weight of the first six students can be specified as
6∑
i=1

Wi .

In this method i refers to the number of the observation and so the value of i is not
incorporated into the actual calculations.

Staying with the same example, the average weight of the first n students could be
specified as

1

n

n∑
i=1

Wi

When no superscript or subscripts are shown with the
∑

sign it usually means that all
possible values are summed. For example, a price index is constructed by working out how
much a weighted average of prices rises over time. One method of measuring how much, on

Table 3.1

Student no. 1 2 3 4 5 6 7 8 9 10 11 12
Height (cm) 178 175 170 166 168 185 169 189 175 181 177 180
Weight (kg) 72 68 58 52 55 82 55 86 70 71 65 68
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average, prices rise between year 0 and year 1 is to use the Laspeyre price index formula

∑
p1
i xi∑
p0
i xi

where p1
i is the price of good i in year 1, p0

i is the price of good i in year 0 and xi is the
percentage of consumer expenditure on good i in year 0. If all goods are in the index then∑
xi = 100 by definition.

Example 3.46

Given the figures in Table 3.2 for prices and expenditure proportions, calculate the rate of
inflation between year 0 and year 1 and compare the price rise of food with the weighted
average price rise.

Solution

Note that in this example we are just assuming one price for each category of expenditure. In
reality, of course, the prices of several individual goods are included in a price index. It must
be stressed that these are prices not measures of expenditure on these goods and services.

The weighted average price increase will be

∑
p1
i xi∑
p0
i xi

= 1,944 + 1,666 + 1,012 + 910 + 2,160 + 781 + 1,176 + 1,500

1,800 + 1,360 + 770 + 840 + 2,120 + 682 + 1,128 + 1,300

= 11,149

10,000
= 1.115

This means that, on average, prices in year 1 are 111.5% of prices in year 0, i.e. the inflation
rate is 11.5%. The price of food went up from 80 to 98, i.e. by 22.5%, which is greater than

Table 3.2

Percentage of Prices, year 0 (p0
i ) Prices, year 1 (p1

i )
expenditure (xi)

Durable goods 9 200 216
Food 17 80 98
Alcohol and tobacco 11 70 92
Footwear and clothing 7 120 130
Energy 8 265 270
Other goods 11 62 71
Rent, rates, water 12 94 98
Other services 25 52 60

100

Note
All prices are in £.
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the inflation rate. Adjusted for inflation, the real price increase for food is thus

100

(
1.225

1.115
− 1

)
= 100(1.099 − 1) = 9.9%

Test Yourself, Exercise 3.8

1. Refer to Table 3.1 above and write an expression for the average height of the first
n students observed and evaluate for n = 6.

2. Evaluate

5∑
i=1

(4 + i)

3. Evaluate

5∑
i=2

(2i )

(Note that i is an exponent in this question.)
4. A firm sells 6,000 tonnes of its output in its first year of operation. Sales then

decrease each year by 10% of the previous year’s sales figure. Write an expression
for the firm’s total sales over n years and evaluate for n = 3.

5. Observations of a firm’s sales revenue (in £’000) per month are as follows:

Month 1 2 3 4 5 6 7 8 9 10 11 12
Revenue 4.5 4.2 4.6 4.4 5.0 5.3 5.2 4.9 4.7 5.4 5.3 5.8

(a) Write an expression for average monthly sales revenue for the first n months
and evaluate for n = 4.

(b) Write an expression for average monthly sales revenue over the preceding
3 months for any given month n, assuming that n is not less than 4. Evaluate
for n = 10.

6. Assume that the expenditure and price data given in Example 3.46 above all still
hold except that the price of alcohol and tobacco rises to £108 in year 1. Work out
the new inflation rate and the new real price increase in the price of food.

3.9 Inequality signs
As well as the equality sign (=), the following four inequality signs are used in algebra:

> which means ‘is always greater than’
< which means ‘is always less than’
≥ which means ‘is greater than or equal to’
≤ which means ‘is less than or equal to’

The last two are sometimes called ‘weak inequality’ signs.
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Example 3.47

If we let the number of days in any given month be represented by N , then whatever month
is chosen it must be true that

N > 27

N < 32

N ≥ 28

N ≤ 31

Special care has to be taken when using inequality signs if unknown variables can take
negative values. For example, the inequality 2x < 3x only holds if x > 0.

If x took a negative value, then the inequality would be reversed. For example, if x = −5,
then 2x = −10 and 3x = −15 and so 2x > 3x.

When considering inequality relationships, it can be useful to work in terms of the absolute
value of a variable x. This is written |x| and is defined as

|x| = x when x ≥ 0

|x| = −x when x < 0

i.e. the absolute value of a positive number is the number itself and the absolute value of
a negative number is the same number but with the negative sign removed.

If an inequality is specified in terms of the absolute value of an unknown variable, then
the inequality will not be reversed if the variable takes on a negative value. For example

|2x| < |3x| for all positive and negative non-zero values of x.

In economic applications, the unknown variable in an algebraic expression often represents
a concept (such as quantity produced or price) that cannot normally take on a negative value.
In these cases, the use of inequality signs is therefore usually more straightforward than in
cases where negative values are possible.

It is possible to simplify an inequality relationship by performing the same arithmetical
operation on both sides of the inequality sign. However, the rules for doing this differ from
those that apply when manipulating both sides of an ordinary equality sign.

One can add any number to or subtract any number from both sides of an inequality sign.

Example 3.48

If x + 6 > y + 2 then x + 4 > y

One can multiply or divide both sides of an inequality sign by a positive number,
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Example 3.49

If x < y then 8x < 8y (multiplying through by 8).

However, if one multiplies or divides by a negative number then the direction of the
inequality is reversed.

Example 3.50

If 3x < 18y then − x > −6y (dividing both sides by − 3)

If both sides of an inequality sign are squared, the same inequality sign only holds if both
sides are initially positive values. This is because a negative number squared becomes a
positive number.

Example 3.51

If x + 3 < y then (x + 3)2 < y2 if (x + 3) ≥ 0 and y > 0

Example 3.52

−6 < −4 but (−6)2 > (−4)2 since 36 > 16

If both sides of an inequality sign are positive and are raised to the same negative power,
then the direction of the inequality will be reversed.

Example 3.53

If x > y then x−1 < y−1 if x and y are positive,

Example 3.54

Two leisure park owners A and B have the same weekly running costs of £8,000. The numbers
of customers visiting the two parks are x and y respectively. If x > y, what can be said about
comparative average costs per customer?
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Solution

Since x > y

then x−1 < y−1

thus
£8,000

x
<

£8,000

y

and so average cost for A < average cost for B.

Test Yourself, Exercise 3.9

1. You are studying a subject which is assessed by coursework and examination with
the total mark for the course being calculated on a 30 : 70 weighting between
these two components. Assuming you score 60% in coursework, insert the appro-
priate inequality sign between your possible overall mark for the course and the
percentage figures below.

(a) 18% ? overall mark (b) 16% ? overall mark
(c) 88% ? overall mark (d) 90% ? overall mark

2. If x ≥ 1, insert the appropriate inequality sign between:

(a) (x + 2)2 and 3 (b) (x + 2)2 and 9
(c) (x + 2)2 and 3x (d) (x + 2)2 and 6x

3. If Q1 and Q2 represent positive production levels of a good and the equality
Q2 = ZnQ1 always holds where Z > 1, what can be said about the relationship
between Q1 and Q2 if

(a) n > 0 (b) n = 0 (c) n < 0 ?

4. If a monopolist can operate price discrimination and charge separate prices P1

and P2 in two different markets, it can be proved that for profit maximization the
monopolist should choose values for P1 and P2 that satisfy the equation

P1

(
1 − 1

e1

)
= P2

(
1 − 1

e2

)

where e1 and e2 are elasticities of demand in the two markets. In which market
should price be higher if |e1| > |e2|?
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4 Graphs and functions

Learning objectives

After completing this chapter students should be able to:

• Interpret the meaning of functions and inverse functions.
• Draw graphs that correspond to linear, non-linear and composite functions.
• Find the slopes of linear functions and tangents to non-linear function by graphical

analysis.
• Use the slope of a linear demand function to calculate point elasticity.
• Show what happens to budget constraints when parameters change.
• Interpret the meaning of functions with two independent variables.
• Deduce the degree of returns to scale from the parameters of a Cobb–Douglas

production function.
• Construct an Excel spreadsheet to plot the values of different functional formats.
• Sum marginal revenue and marginal cost functions horizontally to help find

solutions to price discrimination and multi-plant monopoly problems.

4.1 Functions
Suppose that average weekly household expenditure on food (C) depends on average net
household weekly income (Y ) according to the relationship

C = 12 + 0.3Y

For any given value of Y , one can evaluate what C will be. For example

if Y = 90 then C = 12 + 27 = 39

Whatever value of Y is chosen there will be one unique corresponding value of C. This is an
example of a function.

A relationship between the values of two or more variables can be defined as a function
when a unique value of one of the variables is determined by the value of the other variable
or variables.

If the precise mathematical form of the relationship is not actually known then a function
may be written in what is called a general form. For example, a general form demand
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function is

Qd = f(P )

This particular general form just tells us that quantity demanded of a good (Qd) depends
on its price (P ). The ‘f’ is not an algebraic symbol in the usual sense and so f(P ) means
‘is a function of P ’ and not ‘f multiplied by P ’. In this case P is what is known as the
‘independent variable’ because its value is given and is not dependent on the value of Qd,
i.e. it is exogenously determined. On the other hand Qd is the ‘dependent variable’ because
its value depends on the value of P .

Functions may have more than one independent variable. For example, the general form
production function

Q = f(K,L)

tells us that output (Q) depends on the values of the two independent variables capital (K)
and labour (L).

The specific form of a function tells us exactly how the value of the dependent variable is
determined from the values of the independent variable or variables. A specific form for a
demand function might be

Qd = 120 − 2P

For any given value of P the specific function allows us to calculate the value of Qd.
For example

when P = 10 then Qd = 120 − 2(10) = 120 − 20 = 100

when P = 45 then Qd = 120 − 2(45) = 120 − 90 = 30

In economic applications of functions it may make sense to restrict the ‘domain’ of the func-
tion, i.e. the range of possible values of the variables. For example, variables that represent
price or output may be restricted to positive values. Strictly speaking the domain limits the
values of the independent variables and the range governs the possible values of the dependent
variable.

For more complex functions with more than one independent variable it may be helpful to
draw up a table to show the relationship of different values of the independent variables to
the value of the dependent variable. Table 4.1 shows some possible different values for the
specific form production functionQ = 4K0.5L0.5. (It is implicitly assumed thatQ,K0.5 and
L0.5 only take positive values.)

Table 4.1

K L K0.5 L0.5 Q

1 1 1 1 4
4 1 2 1 8
9 25 3 5 60
7 11 2.64575 3.31662 35.0998

When defining the specific form of a function it is important to make sure that only one
unique value of the dependent variable is determined from each given value of the independent
variable(s). Consider the equation

y = 80 + x0.5
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This does not define a function because any given value of x corresponds to two possible
values for y. For example, if x = 25, then 250.5 = 5 or −5 and so y = 75 or 85. However,
if we define

y = 80 + x0.5 for x0.5 ≥ 0

then this does constitute a function.
When domains are not specified then one should assume a sensible range for functions

representing economic variables. For example, it is usually assumed K0.5 > 0 and L0.5 > 0
in a production function, as in Table 4.1 above.

Test Yourself, Exercise 4.1

1. An economist researching the market for tea assumes that

Qt = f(Pt, Y,A,N, Pc)

where Qt is the quantity of tea demanded, Pt is the price of tea, Y is average
household income, A is advertising expenditure on tea, N is population and Pc is
the price of coffee.

(a) What does Qt = f(Pt, Y,A,N, Pc) mean in words?
(b) Identify the dependent and independent variables.
(c) Make up a specific form for this function. (Use your knowledge of economics

to deduce whether the coefficients of the different independent variables
should be positive or negative.)

2. If a firm faces the total cost function

TC = 6 + x2

where x is output, what is TC when x is (a) 14? (b) 1? (c) 0? What restrictions on
the domain of this function would it be reasonable to make?

3. A firm’s total expenditure E on inputs is determined by the formula

E = PKK + PLL

where K is the amount of input K used, L is the amount of input L used, PK is
the price per unit of K and PL is the price per unit of L. Is one unique value for E
determined by any given set of values for K , L, PK and PL? Does this mean that
any one particular value for E must always correspond to the same set of values
for K , L, PK and PL?

4.2 Inverse functions
An inverse function reverses the relationship in a function. If we confine the analysis to
functions with only one independent variable, x, this means that if y is a function of x, i.e.

y = f(x)
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then in the inverse function x will be a function of y, i.e.

x = g(y)

(The letter g is used to show that we are talking about a different function.)

Example 4.1

If the original function is

y = 4 + 5x

then y − 4 = 5x

0.2y − 0.8 = x

and so the inverse function is

x = 0.2y − 0.8

Not all functions have an inverse function. The mathematical condition necessary for
a function to have a corresponding inverse function is that the original function must be
‘monotonic’. This means that, as the value of the independent variable x is increased, the
value of the dependent variable y must either always increase or always decrease. It cannot
first increase and then decrease, or vice versa. This will ensure that, as well as there being one
unique value of y for any given value of x, there will also be one unique value of x for any
given value of y. This point will probably become clearer to you in the following sections on
graphs of functions but it can be illustrated here with a simple example.

Example 4.2

Consider the function y = 9x − x2 restricted to the domain 0 ≤ x ≤ 9.
Each value of x will determine a unique value of y. However, some values of y will

correspond to two values of x, e.g.

when x = 3 then y = 27 − 9 = 18

when x = 6 then y = 54 − 36 = 18

This is because the function y = 9x − x2 is not monotonic. This can be established by
calculating y for a few selected values of x:

x 1 2 3 4 5 6 7
y 8 14 18 20 20 18 14

These figures show that y first increases and then decreases in value as x is increased and so
there is no inverse for this non-monotonic function.

Although mathematically it may be possible to derive an inverse function, it may not
always make sense to derive the inverse of an economic function, or many other functions
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that are based on empirical data. For example, if we take the geometric function that the area
A of a square is related to the length L of its sides by the function A = L2, then we can
also write the inverse function that relates the length of a square’s side to its area: L = A0.5

(assuming that L can only take non-negative values). Once one value is known then the other
is determined by it. However, suppose that someone investigating expenditure on holidays
abroad (H ) finds that the level of average annual household income (M) is the main influence
and the relationship can be explained by the function

H = 0.01M + 100 for M ≥ £10,000

This mathematical equation could be rearranged to give

M = 100H − 10,000

but to say that H determines M obviously does not make sense. The amount of holidays
taken abroad does not determine the level of average household income.

It is not always a clear-cut case though. The cause and effect relationship within an eco-
nomic model is not always obviously in one direction only. Consider the relationship between
price and quantity in a demand function. A monopoly may set a product’s price and then see
how much consumers are willing to buy, i.e. Q = f(P ). On the other hand, in a competitive
industry firms may first decide how much they are going to produce and then see what price
they can get for this output, i.e. P = f(Q).

Example 4.3

Given the demand function Q = 200 − 4P , derive the inverse demand function.

Solution

Q = 200 − 4P

4P +Q = 200

4P = 200 −Q

P = 50 − 0.25Q

Test Yourself, Exercise 4.2

1. To convert temperature from degrees Fahrenheit to degrees Celsius one uses the
formula

◦C = 5

9
(◦F − 32)

What is the inverse of this function?
2. What is the inverse of the demand function

Q = 1,200 − 0.5P ?
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3. The total revenue (TR) that a monopoly receives from selling different levels of
output (q) is given by the function TR = 60q− 4q2 for 0 ≤ q ≤ 15. Explain why
one cannot derive the inverse function q = f(TR).

4. An empirical study suggests that a brewery’s weekly sales of beer are determined
by the average air temperature given that the price of beer, income, adult population
and most other variables are constant in the short run. This functional relationship
is estimated as

X = 400 + 16T 0.5 for T 0.5 > 0

where X is the number of barrels sold per week and T is the mean average air
temperature, in oF. What is the mathematical inverse of this function? Does it
make sense to specify such an inverse function in economics?

5. Make up your own examples for:

(a) a function that has an inverse, and then derive the inverse function;
(b) a function that does not have an inverse and then explain why this is so.

4.3 Graphs of linear functions
We are all familiar with graphs of the sort illustrated in Figure 4.1. This shows a firm’s annual
sales figures. To find what its sales were in 2002 you first find 2002 on the horizontal axis,
move vertically up to the line marked ‘sales’ and read off the corresponding figure on the
vertical axis, which in this case is £120,000. These graphs are often used as an alternative to
tables of data as they make trends in the numbers easier to identify visually. These, however,
are not graphs of functions. Sales are not determined by ‘time’.

Sales
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Figure 4.1
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Mathematical functions are mapped out on what is known as a set of ‘Cartesian axes’, as
shown in Figure 4.2. Variable x is measured by equal increments on the horizontal axis and
variable y by equal increments on the vertical axis. Both x and y can be measured in positive
or negative directions. Although obviously only a limited range of values can be shown on
the page of a book, the Cartesian axes theoretically range from +∞ to −∞ (i.e. to plus or
minus infinity).

Any point on the graph will have two ‘coordinates’, i.e. corresponding values on the x and
y axes. For example, to find the coordinates of point A one needs to draw a vertical line down
to the x axis and read off the value of 20 and draw a horizontal line across to the y axis and
read off the value 17. The coordinates (20, 17) determine point A.

As only two variables can be measured on the two axes in Figure 4.2, this means that only
functions with one independent variable can be illustrated by a graph on a two-dimensional
sheet of paper. One axis measures the dependent variable and the other measures the indepen-
dent variable. (However, in Section 4.9 a method of illustrating a two-independent-variable
function is explained.)

Having set up the Cartesian axes in Figure 4.2, let us use it to determine the shape of the
function

y = 5 + 0.6x

Calculating a few values of y for different values of x we get:

when x = 0 then y = 5 + 0.6(0) = 5

when x = 10 then y = 5 + 0.6(10) = 5 + 6 = 11

when x = 20 then y = 5 + 0.6(20) = 5 + 12 = 17
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These points are plotted in Figure 4.2 and it is obvious that they lie along a straight line. The
rest of the function can be shown by drawing a straight line through the points that have been
plotted.

Any function that takes the format y = a + bx will correspond to a straight line when
represented by a graph (where a and b can be any positive or negative numbers). This is
because the value of y will change by the same amount, b, for every one unit increment in
x. For example, the value of y in the function y = 5 + 0.6x increases by 0.6 every time x
increases by one unit.

Usually the easiest way to plot a linear function is to find the points where it cuts the two
axes and draw a straight line through them.

Example 4.4

Plot the graph of the function, y = 6 + 2x.

Solution

The y axis is a vertical line through the point where x is zero.
When x = 0 then y = 6 and so this function must cut the y axis at y = 6.
The x axis is a horizontal line through the point where y is zero.

When y = 0 then 0 = 6 + 2x

−6 = 2x

−3 = x

and so this function must cut the x axis at x = −3.
The function y = 6 + 2x is linear. Therefore if we join up the points where it cuts the x

and y axes by a straight line we get the graph as shown in Figure 4.3.

y

0

–y

x

y = 6 + 2x

–3–x

6

Figure 4.3
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If no restrictions are placed on the domain of the independent variable in a function then
the range of values of the dependent variable could possibly take any positive or negative
value, depending on the nature of the function. However, in economics some variables may
only take on positive values. A linear function that applies only to positive values of all the
variables concerned may sometimes only intercept with one axis. In such cases, all one has
to do is simply plot another point and draw a line through the two points obtained.

Example 4.5

Draw the graph of the function, C = 200 + 0.6Y , where C is consumer spending and Y is
income, which cannot be negative.

Solution

Before plotting the shape of this function you need to note that the notation is different from
the previous examples and this time C is the dependent variable, measured in the vertical
axis, and Y is the independent variable, measured on the horizontal axis.

When Y = 0, then C = 200, and so the line cuts the vertical axis at 200.
However, when C = 0, then

0 = 200 + 0.6Y

−0.6Y = 200

Y = −200

0.6

As negative values of Y are unacceptable, just choose another pair of values, e.g. when
Y = 500 then C = 200 + 0.6(500) = 200 + 300 = 500. This graph is shown in Figure 4.4.

0

500

C

200

y

C = 200 + 0.6y

500

Figure 4.4
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In mathematics the usual convention when drawing graphs is to measure the independent
variable x along the horizontal axis and the dependent variable y along the vertical axis.
However, in economic supply and demand analysis the usual convention is to measure price
P on the vertical axis and quantity Q along the horizontal axis. This sometimes confuses
students when a function in economics is specified with Q as the dependent variable, such
as the demand function

Q = 800 − 4P

but then illustrated by a graph such as that in Figure 4.5. (Before you proceed, check that you
understand why the intercepts on the two axes are as shown.)

Theoretically, it does not matter which axis is used to measure which variable. However,
one of the main reasons for using graphs is to make analysis clearer to understand. There-
fore, if one always has to keep checking which axis measures which variable this defeats
the objective of the exercise. Thus, even though it may upset some mathematical purists,
in this text we shall stick to the economist’s convention of measuring quantity on the hor-
izontal axis and price on the vertical axis, even if price is the independent variable in a
function.

This means that care has to be taken when performing certain operations on functions. If
necessary, one can transform monotonic functions to obtain the inverse function (as already
explained) if this helps the analysis. For example, the demand function Q = 800 − 4P has
the inverse function

P = 800 −Q

4
= 200 − 0.25Q

Check again in Figure 4.5 for the intercepts of the graph of this function.
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Test Yourself, Exercise 4.3

Sketch the graphs of the linear functions 1 to 8 below, identifying the relevant
intercepts on the axes. Assume that variables represented by letters that suggest they
are economic variables (i.e. all variables except x and y) are restricted to non-negative
values.

1. y = 6 + 0.5x
2. y = 12x − 40
3. P = 60 − 0.2Q
4. Q = 750 − 5P
5. 1,200 = 50K + 30L

(Note that this budget constraint for a firm is an accounting identity rather than
a function although a given value of K will still determine a unique value of L,
and vice versa.)

6. TR = 8Q
7. TC = 200 + 5Q
8. TFC = 75
9. Make up your own example of a linear function and then sketch its graph.

10. Which of the following functions do you think realistically represents the supply
schedule of a competitive industry? Why?

(a) P = 0.6Q+ 2 (b) P = 0.5Q− 10

(c) P = 4Q (d) Q = −24 + 0.2P

Assume P ≥ 0,Q ≥ 0 in all cases.

4.4 Fitting linear functions
If you know that two points lie on a straight line then you can draw the rest of the line.
You simply put your ruler on the page, join the two points and then extend the line in either
direction as far as you need to go. For example, suppose that a firm faces a linear demand
schedule and that 400 units of output Q are sold when price is £40 and 500 units are sold
when price is £20. Once these two price and quantity combinations have been marked as
points A and B in Figure 4.6 then the rest of the demand schedule can be drawn in.

One can then use this graph to predict the amounts sold at other prices. For example, when
price is £29.50, the corresponding quantity can be read off as approximately 450. However,
more accurate predictions of quantities demanded at different prices can be made if the
information that is initially given is used to determine the algebraic format of the function.

A linear demand function must be in the formatP = a−bQ, where a and b are parameters
that we wish to determine the value of. From Figure 4.6 we can see that

when P = 40 then Q = 400 and so 40 = a − 400b (1)

when P = 20 then Q = 500 and so 20 = a − 500b (2)

Equations (1) and (2) are what is known as simultaneous linear equations. Various methods of
solving such sets of simultaneous equations (i.e. finding the values of a and b) are explained
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later in Chapter 5. Here we shall just use an intuitively obvious method of deducing the values
of a and b from the graph in Figure 4.6.

Between points B and A we can see that a £20 rise in price causes a 100 unit decrease in
quantity demanded. As this is a linear function then we know that further price rises of £20
will also cause quantity demanded to fall by 100 units. At A, quantity is 400 units. Therefore
a rise in price of £80 is required to reduce quantity demanded from 400 to zero, i.e. a rise in
price of 4 × £20 = £80 will reduce quantity demanded by 4 × 100 = 400 units. This means
that the intercept of this function on the price axis is £80 plus £40 (the price at A), which is
£120. This is the value of the parameter a.

To find the value of the parameter b we need to ask ‘what will be the fall in price necessary
to cause quantity demanded to increase by one unit?’ Given that a £20 price fall causes
quantity to rise by 100 units then it must be the case that a price fall of £20/100 = £0.2 will
cause quantity to rise by one unit. This also means that a price rise of £0.2 will cause quantity
demanded to fall by one unit. Therefore, b = 0.2. As we have already worked out that a is
120, our function can now be written as

P = 120 − 0.2Q

We can check that this is correct by substituting the original values of Q into the function.

If Q = 400 then P = 120 − 0.2(400) = 120 − 80 = 40

If Q = 500 then P = 120 − 0.2(500) = 120 − 100 = 20

These are the values of P originally specified and so we are satisfied that the line that passes
through points A and B in Figure 4.6 is the linear function P = 120 − 0.2Q.
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The inverse of this function will beQ = 600−5P . Precise values ofQ can now be derived
for given values of P . For example,

when P = £29.50 then Q = 600 − 5(29.50) = 452.5

This is a more accurate figure than the one read off the graph as approximately 450.

Having learned how to deduce the parameters of a linear downward-sloping demand
function, let us now try to fit an upward-sloping linear function.

Example 4.6

It is assumed that consumption C depends on income Y and that this relationship takes the
form of the linear function C = a + bY . When Y is £600, C is observed to be £660. When
Y is £1,000, C is observed to be £900. What are the values of a and b in this function?

Solution

We expect b to be positive, i.e. consumption increases with income, and so our function will
slope upwards, as shown in Figure 4.7. As this is a linear function then equal changes in Y
will cause the same changes in C.

A decrease in Y of £400, from £1,000 to £600, causes C to fall by £240, from £900 to
£660.

If Y is decreased by a further £600 (i.e. to zero) then the corresponding fall inC will be 1.5
times the fall caused by an income decrease of £400, since £600 = 1.5 × £400. Therefore
the fall in C is 1.5 × £240 = £360.

C (£)

0 (£)

C = 200 + 0.6Y

Y

900

1,000600

660

300

Figure 4.7
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This means that the value of C when Y is zero is £660 − £360 = £300. Thus a = 300.
A rise in Y of £400 causes C to rise by £240. Therefore a rise in Y of £1 will cause C to rise
by £240/400 = £0.6. Thus b = 0.6.

The function can therefore be specified as

C = 300 + 0.6Y

Checking against original values:

When Y = 600 then predicted C = 300 + 0.6(600)

= 300 + 360 = 660. Correct.

When Y = 1,000 then predicted C = 300 + 0.6(1,000)

= 300 + 600 = 900. Correct.

Test Yourself, Exercise 4.4

1. A monopoly sells 30 units of output when price is £12 and 40 units when price is
£10. If its demand schedule is linear, what is the specific form of the actual demand
function? Use this function to predict quantity sold when price is £8. What domain
restrictions would you put on this demand function?

2. Assume that consumption C depends on income Y according to the function
C = a + bY , where a and b are parameters. If C is £60 when Y is £40 and C is
£90 when Y is £80, what are the values of the parameters a and b?

3. On a linear demand schedule quantity sold falls from 90 to 30 when price rises
from £40 to £80. How much further will price have to rise for quantity sold to fall
to zero?

4. A firm knows that its demand schedule takes the form P = a − bQ. If 200 units
are sold when price is £9 and 400 units are sold when price is £6, what are the
values of the parameters a and b?

5. A firm notices that its total production costs are £3,200 when output is 85 and
£4,820 when output is 130. If total cost is assumed to be a linear function of
output what expenditure will be necessary to manufacture 175 units?

4.5 Slope
British road signs used to give warning of steep hills by specifying their slope in a format
such as ‘1 in 10’, meaning that the road rose vertically by 1 foot for every 10 feet travelled
in a horizontal direction. Now the European format is used and so instead of ‘1 in 10’ a road
sign will say 10%. In mathematics the same concept of slope is used but it is expressed as a
decimal fraction rather than in percentage terms.

The graph in Figure 4.8 shows the function y = 2 + 0.1x. The slope is obviously the
same along the whole length of this straight line and so it does not matter where the slope is
measured. To measure the slope along the stretch AB, draw a horizontal line across from A
and drop a vertical line down from B. These intersect at C, forming the triangle ABC with a
right angle at C. The horizontal distance AC is 20 and the vertical distance BC is 2, and so
if this was a cross-section of a hill you would clearly say that the slope is 1 in 10, or 10%.
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In mathematics the slope of a line is defined as

slope = height

base

where height and base measure the sides of a right-angled triangle drawn as above. (Note
that this only applies to lines that slope upwards from left to right.) Thus in this example

slope = 2

20
= 0.1

This is also known as the tangent of the angle a.
One can see that the slope of this function (0.1) is the same as the coefficient of x. This is

a general rule. For any linear function in the format y = a+ bx, then b will always represent
its slope.

Example 4.7

Find the slope of the function y = −2 + 3x.

Solution

The value of y increases by 3 for every 1 unit increase in x and so the slope of this linear
function is 3.

When a line slopes downwards from left to right it has a negative slope. Thus the b in the
function y = a + bx will take a negative value.

Consider the function P = 60 − 0.2Qwhere P is price andQ is quantity demanded. This
is illustrated in Figure 4.9. As P andQ can be assumed not to take negative values, the whole
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function can be drawn by joining the intercepts on the two axes which are found as follows.

When Q = 0 then P = 60

When P = 0 then 0 = 60 − 0.2Q

0.2Q = 60

Q = 60

0.2
= 300

The slope of a function which slopes down from left to right is found by applying the
formula

slope = (−1)
height

base

to the relevant right-angled triangle. Thus, using the triangle 0AB, the slope of the function
in Figure 4.9 is

(−1)
60

300
= (−1)0.2 = −0.2

This, of course, is the same as the coefficient of Q in the function P = 60 − 0.2Q.

Remember that in economics the usual convention is to measure P on the vertical axis of
a graph. If you are given a function in the format Q = f(P ) then you would need to derive
the inverse function to read off the slope.

Example 4.8

What is the slope of the demand function Q = 830 − 2.5P when P is measured on the
vertical axis of a graph?
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Solution

If Q = 830 − 2.5P

then 2.5P = 830 −Q

P = 332 − 0.4Q

Therefore the slope is the coefficient of Q, which is −0.4.

If the coefficient of x in a linear function is zero then the slope is also zero, i.e. the line
is horizontal. For example, the function y = 20 means that y takes a value of 20 for every
value of x.

Conversely, a vertical line will have an infinitely large slope. (Note, though, that a vertical
line would not represent y as a function of x as no unique value of y is determined by a given
value of x.)

Slope of a demand schedule and elasticity of demand In Chapter 2, the calculation of arc
elasticity was explained. Because elasticity of demand can alter along the length of a demand
schedule the arc elasticity measure is used as a sort of ‘average’. However, now that you
understand how the slope of a line is derived we can examine how elasticity can be calculated
at a specific point on a demand schedule. This is called ‘point elasticity of demand’ and is
defined as

e = (−1)
P

Q

(
1

slope

)

where P and Q are the price and quantity at the point in question. The slope refers to the
slope of the demand schedule at this point although, of course, for a linear demand schedule
the slope will be the same at all points. The derivation of this formula and its application to
non-linear demand schedules is explained later in Chapter 8. Here we shall just consider its
application to linear demand schedules.

Example 4.9

Calculate the point elasticity of demand for the demand schedule

P = 60 − 0.2Q

where price is (i) zero, (ii) £20, (iii) £40, (iv) £60.

Solution

This is the demand schedule referred to earlier and illustrated in Figure 4.9. Its slope must
be −0.2 at all points as it is a linear function and this is the coefficient of Q.

To find the values of Q corresponding to the given prices we need to derive the inverse
function. Given that

P = 60 − 0.2Q

then 0.2Q = 60 − P

Q = 300 − 5P
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(i) When P is zero, at point B, then Q = 300 − 5(0) = 300.
The point elasticity will therefore be

e = (−1)
P

Q

(
1

slope

)
= (−1)

0

300

(
1

−0.2

)
= 0

(ii) When P = 20 then Q = 300 − 5(20) = 200.

e = (−1)
20

200

(
1

−0.2

)
= 1

10

(
1

0.2

)
= 1

2
= 0.5

(iii) When P = 40 then Q = 300 − 5(40) = 100.

e = (−1)
40

100

(
1

−0.2

)
= 2

5

(
1

0.2

)
= 2

1
= 2

(iv) When P = 60 then Q = 300 − 5(60) = 0.
If Q = 0, then P/Q → ∞.

Therefore e = (−1)
P

Q

(
1

slope

)
= (−1)

60

0

(
1

−0.2

)
→ ∞

Test Yourself, Exercise 4.5

1. In Figure 4.10, what are the slopes of the lines 0A, 0B, 0C and EF?

E

A

B

C

F
0 x

y

 60 8020

90

75

45

120

30

Figure 4.10

2. A market has a linear demand schedule with a slope of −0.3. When price is
£3, quantity sold is 30 units. Where does this demand schedule hit the price and
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quantity axes? What is price if quantity sold is 25 units? How much would be sold
at a price of £9?

3. For the demand schedule P = 60 − 0.2Q illustrated in Figure 4.9, calculate point
elasticity of demand when price is (a) £24 and (b) £45.

4. Consider the three demand functions

(a) P = 8 − 0.75Q
(b) P = 8 − 1.25Q
(c) Q = 12 − 2P

Which has the flattest demand schedule, assuming that P is measured on the
vertical axis? In which case is quantity sold the greatest when price is (i) £1 and
(ii) £5?

5. For positive values of x which, if any, of the functions below will intersect with
the function y = 1 + 0.5x?

(a) y = 2 + 0.4x (c) y = 4 + 0.5x
(b) y = 2 + 1.5x (d) y = 4

6. In macroeconomics the average propensity to consume (APC) and the marginal
propensity to consume (MPC) are defined as follows:

APC = C/Y where C = consumption, Y = income

MPC = increase in C from a 1 unit increase in Y

Explain why APC will always be greater than MPC if C = 400 + 0.5Y .
7. For the demand schedule P = 24 − 0.125Q, calculate point elasticity of demand

when price is

(a) £5 (b) £10 (c) £15

8. Make up your own examples of linear functions that will

(a) slope upwards and go through the origin;
(b) slope downwards and cut the price axis at a positive value;
(c) be horizontal.

4.6 Budget constraints
A frequently used application of the concept of slope in economics is the relationship between
prices and the slope of a budget constraint. A budget constraint shows the combinations
of two goods (or inputs) that it is possible to buy with a given budget and a given set of
prices.

Assume that a firm has a budget of £3,000 to spend on the two inputs K and L and that input
K costs £50 and input L costs £30 a unit. If it spends the whole £3,000 on K then it can buy

3,000

50
= 60 units of K
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and if it spends all its budget on L then it can buy

3,000

30
= 100 units of L

These two quantities are marked on the axes of the graph in Figure 4.11. The firm could also
split the budget between K and L. Many different combinations are possible, e.g.

30 of K and 50 of L

or

48 of K and 20 of L

If K and L are divisible into fractions of a unit then all the combinations of K and L that
can be bought with the given budget of £3,000 can be shown by the line AB which is known
as the ‘budget constraint’ or ‘budget line’. The firm could in fact also purchase any of the
combinations of K and L within the triangle OAB but only combinations along the budget
constraint AB would entail it spending its entire budget.

Along the budget constraint any pairs of values of K and L must satisfy the equation

50K + 30L = 3,000

where K is the number of units of K bought and L is the number of units of L bought.
All this equation says is that total expenditure on K (price of K × amount bought)
plus total expenditure on L (price of L × amount bought) must sum to the total budget
available.
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We can check that this holds for the combinations of K and L shown in Figure 4.11.

At A £50 × 60 + £30 × 0 = 3,000 + 0 = £3,000

At B £50 × 0 + £30 × 100 = 0 + 3,000 = £3,000

At C £50 × 30 + £30 × 50 = 1,500 + 1,500 = £3,000

At D £50 × 48 + £30 × 20 = 2,400 + 600 = £3,000

As budget lines usually slope down from left to right they have a negative slope. From the
graph one can see that this budget constraint has a slope of

−60

100
= −0.6

The slope of a budget constraint can be deduced from the values of the prices of the two
goods or inputs concerned. Consider the general case where the budget is M and the prices
of the two goods X and Y are PX and PY respectively. The maximum amount of X that
can be bought will be M/PX. This will be the intercept on the horizontal axis. Similarly the
maximum amount of Y that can be purchased will be M/PY, which will be the intercept on
the vertical axis. Therefore

slope of budget constraint = (−)

(
M

PY

)
(
M

PX

) = (−) M
PY

PX

M
= (−)PX

PY

Thus for any budget constraint the slope will be the negative of the price ratio. However, you
should note that it is the price of the good measured on the horizontal axis that is at the top
in this formula.

From this result we can also see that

• if the price ratio changes, the slope of the budget line changes
• if the budget alters, the slope of the budget line does not alter.

Example 4.10

A consumer has an income of £160 to spend on the two goods X and Y whose prices are £20
and £5 each, respectively.

(i) What is the slope of the budget constraint?
(ii) What happens to this slope if PY rises to £10?

(iii) What happens if income then falls to £100?

Solution

(i) slope = −PX

PY
= −20

5
= −4
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This can be checked by considering the intercepts on theX andY axes shown in Figure 4.12
by points B and A.

If the total budget of £160 is spent on X then 160/20 = 8 units are bought. If the total
budget is spent on Y then 160/5 = 32 units are bought. Therefore

slope = (−) intercept on Y axis

intercept on X axis
= (−)32

8
= −4

(ii) WhenPY rises to £10 the new slope of the budget constraint (shown by BC in Figure 4.12)
becomes

−PX

PY
= −20

10
= −2

(iii) The price ratio remains unchanged if income then falls to £100. There is a parallel shift
inwards of the budget constraint to EF. The new intercepts are

M

PY
= 100

10
= 10 on the Y axis

and

M

PX
= 100

20
= 5 on the Xaxis

The slope is thus −10/5 = −2, as before.
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Example 4.11

A consumer can buy the two goods A and B at prices per unit of £6 and £4 respectively, and
initially has an income of £120.

(i) Show that a 25% rise in all prices will have a lesser effect on the consumer’s purchasing
possibilities than would a 25% reduction in money income with prices unchanged.

(ii) What is the opportunity cost of buying an extra unit of A? (Assume units of A and B are
divisible.)

Solution

(i) The original intercept on the A axis = 120

6
= 20

The original intercept on the B axis = 120

4
= 30

If price of A rises by 25% to £7.50 the new intercept on the A axis = 120

7.50
= 16

If price of B rises by 25% to £5 the new intercept on the B axis = 120

5
= 24

Reducing income by 25% to 90 changes intercept on the A axis to
90

6
= 15

and intercept on the B axis to
90

4
= 22.5

Thus the 25% fall in income shifts the budget constraint towards the origin slightly more
than does the 25% rise in prices, i.e. it reduces the consumer’s purchasing possibilities by a
greater amount.

(Note that the slope of the budget constraint always remains the same at −6/4 = −1.5.)
(ii) The opportunity cost of something is the next best alternative that one has to forgo in
order to obtain it. In this context, the opportunity cost of an extra unit of A will be the amount
of B the consumer has to forgo.

One unit of A costs £6 and one unit of B costs £4. Therefore, the opportunity cost of A in
terms of B is 1.5, which is the negative of the slope of the budget line.

Test Yourself, Exercise 4.6

1. A consumer can buy good A at £3 a unit and good B at £2 a unit and has a budget
of £60. What is the slope of the budget constraint if quantity of A is measured on
the horizontal axis?

What happens to this slope if

(a) the price of A falls to £2?
(b) with A at its original price the price of B rises to £3?
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(c) both prices double?
(d) the budget is cut by 25%?

2. A firm has a budget of £800 per week to spend on the two inputs K and L. One
week it is observed to buy 120 units of L and 25 of K. Another week it is observed
to buy 80 units of L and 50 of K. Find out what the intercepts of its budget line on
the K and L axes will be and use this information to deduce the prices of K and
L, which are assumed to be unchanged from one week to the next.

3. A firm can buy the two inputs K and L at £60 and £40 per unit respectively, and
has a budget of £480. Explain why it would not be able to purchase 6 units of K
plus 4 units of L and then calculate what price reduction in L would make this
input combination a feasible purchase.

4. If a firm buys the two inputs X and Y, what would the slope of its budget constraint
be if the price of Y was £10 and

(a) the price of X was £100? (b) the price of X was £10?
(c) the price of X was £1? (d) the price of X was 25p?
(e) X was free?

5. If a consumer’s income doubles and the prices of the two goods that she spends
her entire income on also double, what happens to her budget constraint?

6. An hourly paid worker can choose the number of hours per day worked, up to a
maximum of 12, and gets paid £10 an hour. Leisure hours are assumed to be any
hours not worked out of this 12. On a graph with leisure hours on the horizontal axis
and total pay on the vertical axis draw in the budget constraint showing the feasible
combinations of leisure and pay that this worker might choose from. Show that
the slope of this budget constraint equals −1 multiplied by the hourly wage rate.

7. A firm has a limited budget to spend on inputs K and L. Make up your own values
for the budget and the prices of K and L and then say what the slope of the budget
constraint and its intersection points on the K and L axes will be.

4.7 Non-linear functions
If the function y = f(x) has a term with x to the power of anything other than 1, then it will
be non-linear. For example,

y = x2 is a non-linear function

y = 6 + x0.5 is a non-linear function

but

y = 5 + 0.2x is a linear function

Non-linear functions can take a variety of shapes. We shall only consider a few possibilities
that will be useful at a later stage when looking at functions of economic variables.

If the function y = f(x) has one term in x with x to the power of something greater than 1
then, as long as x takes positive values, it will rise at an increasing rate as x is increased. This
is obvious from Table 4.2. The graphs of the functions y = x2 and y = x3 will curve upwards
since y increases at a faster rate than x. These functions all go through the origin, as y is zero
when x is zero. The table shows that the greater the power of x then the more quickly y rises.
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Table 4.2

x 0 1 2 3 4 5 6
y = x2 0 1 4 9 16 25 36
y = x3 0 1 8 27 64 125 216

0

6.5

14

y = 4 + 0.1x2y

x105

4

Figure 4.13

Although the intercept may vary if there is a constant term in a function, and the rate of
change of y may be modified if the term in x has a coefficient other than 1, the general shape
of an upward-sloping curve will still be retained. For example, Figure 4.13 illustrates the
function

y = 4 + 0.1x2

In economics the quantities one is working with are frequently constrained to positive
values, e.g. price and quantity. However, if variables are allowed to take negative values then
the functions y = x2 and y = x3 will take the shapes shown in Figure 4.14. Note that, when
x < 0, x2 > 0 but x3 < 0.

If the power of x in a function lies between 0 and 1 then, as long as x is positive, the value
of the function increases as x gets larger, but its rate of increase gets smaller and smaller. The
values in Table 4.3 and Figure 4.15 illustrate this for the function y = x0.5 (where only the
positive square root is considered).

If the power of x in a function is negative then, as long as x is positive, the graph of
the function will slope downwards and take the shape of a curve convex to the origin. The
examples in Table 4.4 are illustrated in Figure 4.16 for positive values of x. Note that the
value of y in these functions gets larger as x approaches zero.

A firm’s average fixed cost (AFC) schedule typically takes a shape similar to the functions
illustrated in Figure 4.16.
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Table 4.3

x 0 1 2 3 4 5 6 7 8 9
y = x0.5 0 1 1.414 1.732 2 2.236 2.449 2.646 2.828 3

0

y

3

1

2

y = x0.5

1 4 9 x

Figure 4.15

Table 4.4

x 0 0.1 1 2 3 4 5
y = x−1 ∞ 10 1 0.5 0.33 0.25 0.2
y = x−2 ∞ 100 1 0.25 0.11 0.0625 0.04
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Example 4.12

A firm has to pay a fixed annual cost of £90,000 for leasing its premises. Derive its average
fixed cost function (AFC).

Solution

AFC = total fixed cost

Q
= 90,000

Q
= 90,000Q−1

Although all values ofQ−1 will be multiplied by 90,000, this will not alter the general shape
of the function which will be similar to the graph of y = x−1 illustrated in Figure 4.16
above.

Test Yourself, Exercise 4.7

1. Sketch the approximate shapes of the following functions for positive values of
x and y.

(a) y = −8 + 0.2x3 (b) y = 250 − 0.01x2

(c) y = x−1.5 (d) y = x−0.5

(e) y = 20 − 0.2x−1
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2. Sketch the approximate shapes of the following functions when x and y are allowed
to take both positive and negative values.

(a) y = 4 + 0.1x2 (b) y = 0.01x3

(c) y = 10 − x−1

3. Will the non-linear demand schedule p = 570 − 0.4q2 get flatter or steeper as q
rises?

4. A firm has to pay fixed costs of £65,000 before it starts production. What will its
average fixed cost function look like? What will AFC be when output is 250?

5. Make up your own example of a non-linear function and sketch its approximate
shape.

4.8 Composite functions
When a function has more than one term then one can build up the shape of the overall
function from its different components. We have already done this when showing how a
constant term determines the starting point of a function on the vertical axis of a graph. Now
some more complex functions are considered.

Example 4.13

A firm faces the average fixed cost function

AFC = 200x−1

where x is output, and the average variable cost (AVC) function

AVC = 0.2x2

What shape will its average total cost function (AC) take?

Solution

The graphs of AFC and AVC are illustrated in Figure 4.17. By definition,

AC = AFC + AVC

Therefore, substituting the given AFC and AVC functions, average total cost is

AC = 200x−1 + 0.2x2

For any given value of x, this means that the position of the AC function can be found by
vertically summing the corresponding values on the AFC and AVC schedules.

As x gets larger then the value of AFC gets closer and closer to zero and so the value of
AC gets closer and closer to AVC. Therefore the AC function will take the U-shape shown.
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A composite function that takes the form

y = a0 + a1x + a2x
2 + · · · + anx

n

where a0, a1, . . . , an are constants and n is a non-negative integer is what is called a ‘poly-
nomial’. The ‘degree’ of the polynomial is the highest power value of x. For example, the
total cost (TC) function

TC = 4 + 6x − 0.2x2 + 0.1x3

is a polynomial of the third degree. (See if you can sketch the shape of this function. Don’t
worry of you can’t. In Section 6.6 we will return to polynomials and Section 4.9 explains
how computer spreadsheets can help to plot functions.)

To see how the graph of a composite function is constructed when one term has a negative
value, an example of a total revenue function is worked through below.

Example 4.14

If a demand schedule is represented by the function P = 80 − 0.2Q, what shape will the
corresponding total revenue function take?

Solution

Total revenue (TR) is simply the total amount of money raised by selling a good and so

TR = PQ

If we substitute the demand function P = 80 − 0.2Q for P in this TR function then

TR = (80 − 0.2Q)Q = 80Q− 0.2Q2
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Now that we have derived the function for TR in terms of the single variable Q, its shape
can be built up as shown in Figure 4.18. The component 80Q is clearly a straight line from
the origin. The component 0.2Q2 is a curve rising at an increasing rate. One can easily see
that, for low values of Q, 80Q > 0.2Q2. However, as Q becomes larger, the value of Q2,
and hence 0.2Q2, rapidly increases and eventually exceeds 80Q.

Given that TR is the difference between 80Q and 0.2Q2, its value is the vertical distance
between these two functions. This gets larger as Q increases to 200 and then decreases. It
is zero when Q is 400 (when 80Q = 0.2Q2) and then becomes negative. Thus we get the
inverted U-shape shown.

We can check that this shape makes sense by referring to the demand schedule P =
80 − 0.2Q illustrated at the top of Figure 4.18. When Q is zero, nothing is sold and so TR
must be zero. To sell 400, price must fall to zero and so again TR will be zero. Between these
two output levels, TR will rise and then fall.

Slope of non-linear functions

We have seen how the slopes of non-linear composite functions can change along their length,
but how can the slope of non-linear functions be measured from a graph? In Chapter 8 a
mathematical method for finding the precise value of the slope of a function at any point
using calculus is explained. Here we shall just consider an approximate geometrical method
assuming that the graph of the function has already been drawn.
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Example 4.15

The graph of the composite function

y = 40x − 2x2

is illustrated in Figure 4.19. Find its slope at point A where x = 5.

Solution

First find the y coordinate of point A which will be

y = 40x − 2x2 = 40(5)− 2(5)2 = 200 − 50 = 150

Draw a straight line that just touches the curve at point A. This line is known as a ‘tangent’
and is shown by TT′ in Figure 4.19. The slope of the line is the same as the slope of the
function at A.

To understand why this is so, first consider point B which is slightly to the left of A. The
function is steeper at B than at A and also has a greater slope than the tangent at A. On the
other hand, at point C (slightly to the right of A) the function is flatter than at A and has a
slope less than that of the tangent TT′. If the slope of the tangent TT′ is less than the slope of
the function for points slightly to the left of A and greater than the slope of the function for
points slightly to the right of A, then it will be equal to the slope of the function at point A
itself.

T�

E

C

A

B

T

D

0 x

y

 5

50

150

Figure 4.19
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To determine the actual value of the slope of the tangent TT′ and hence the value of the
slope of the function at A, it is necessary to find two sets of coordinates for the line TT′. We
already know that it goes through A where x = 5 and y = 150. If TT′ is extended leftwards,
it cuts the y axis at D where y is 50.

Using the method explained in Section 4.5, we can now fit an equation in the format
y = a + bx to this straight line.

We have already worked out that the y intercept a is 50 when x = 0. Between points D
and A the value of x increases from 0 to 5 and the value of y increases by 100 from 50 to
150. Therefore, for every one unit increment in x the increase in y must be

100

5
= 20 = b = the slope of the tangent

Therefore the equation y = 50 + 20x can then be fitted to TT′.
The slope of this tangent is 20 and so the slope of the function y = 40 − 2x2 will also be

20 at point A.
The slope of the function at other points can be determined in the same way by drawing

other tangents. For example, the slope at the highest point of the function E will be the
same as the slope of the tangent at E. This tangent is a horizontal line. A horizontal line
always has a slope of zero and so at its maximum point the slope of this function will also
be zero.

Sometimes you may encounter composite functions with similar terms. The summed
function can then usually be simplified so that it does not remain a composite function.

Example 4.16

A firm’s manufacturing system requires two processes for each unit produced. Process A
involves a fixed cost of £650 plus £15 for each unit produced and process B involves a fixed
cost of £220 plus £45 for each unit. What is the composite total cost function?

Solution

For process A

TCA = 650 + 15Q

For process B

TCB = 220 + 45Q

The overall total cost is therefore

TC = TCA + TCB

= (650 + 15Q)+ (220 + 45Q)

The summed function is thus

TC = 870 + 60Q

© 1993, 2003 Mike Rosser



Test Yourself, Exercise 4.8

1. Sketch the approximate shape of the following composite functions for positive
values of all independent variables.

(a) TR = 40q − 4q2

(b) TC = 12 + 4q + 0.2q2

(c) π = −12 + 36q − 3.8q2

(d) y = 15 − 2x−1

(e) AVC = 8 − 3q + 0.5q2

2. Make up your own example of a composite function and sketch its approximate
shape.

3. A firm is able to sell all its output at a fixed price of £50 per unit. If its average
cost of production is given by the function

AC = 100x−1 + 0.4x2

where x is output, derive a function for profit (π ) in terms of x. What approximate
shape will this profit function take?

4. A small group of companies operate in an industry where all firms face the average
cost function AC = 40+1,250q−1 whereq is output per week. This function refers
only to production costs. They then decide to launch an advertising campaign, not
just to try to increase sales but also to try to raise the total average cost of low
output levels and deter potential smaller-scale rival firms from competing in the
same market. The cost of the advertising campaign is £2,000 per week per firm
and any competitor would have to spend the same sum on advertising if it wished
to compete in this market.

(a) Derive a function for the new total average cost function including advertising,
and sketch its approximate shape.

(b) Explain why this advertising campaign will deter competition if the original
companies sell a 100 units a week at a price of £100 each and new competitors
cannot produce more than 25 units a week.

4.9 Using Excel to plot functions
It may not immediately be obvious what shape some composite functions take. If this is the
case then it may help to set up the function as a formula on a spreadsheet and then see how
the value of function changes over a range of values for the independent variable. Learning
how to set up your own formulae on a spreadsheet can help you to in a number of ways. In
particular, spreadsheets can be very useful and save you a lot of time and effort when tackling
problems that entail very complex and time-consuming numerical calculations. They can also
be used to plot graphs to get a picture of how functions behave and to check that answers to
mathematical problems derived from manual calculations are correct. This book will not teach
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you how to use Excel, or any other computer spreadsheet package, from scratch. It is assumed
that most students will already know the basics of creating files and spreadsheets, or will
learn about them as part of their course. What we will do here is run through some methods of
using spreadsheets to help solve, or illustrate and make clearer, certain aspects of economic
analysis. In particular, spreadsheet applications will be explained when manual calculation
would be very time-consuming. The detailed instructions for constructing spreadsheets are
given in Excel format, as this is now the most commonly used spreadsheet package. However,
the basic principles for constructing the formulae relevant to economic analysis can also be
applied to other spreadsheet programmes.

Although Excel offers a range of in-built formulae for commonly used functions, such as
square root, for many functions you will encounter in economics you will need to create your
own formulae. A few reminders on how to enter a formula in an Excel spreadsheet cell:

• Start with the sign =
• Use the usual arithmetic + and − signs on your keyboard, with ∗ for multiplication

and / for division.
• Do not leave any spaces between characters and make sure you use brackets properly.
• For powers use the sign ∧ and also for roots which must be specified as powers, e.g. use

∧0.5 to denote square root.
• Arithmetic operations can be performed on numbers typed into a formula or on cell

references that contain a number.
• When you copy a formula to another cell all the references to other cells change unless

you anchor their row or column by typing the $ sign in front of it in the formula.
• The quickest way to copy cell contents in Excel is to

(a) highlight the cells to be copied
(b) hold the cursor over the bottom right corner of the cell (or block of cells) to be

copied until the + sign appears
(c) drag highlighted block over the cells where copy is to go.

Example 4.17

Use an Excel spreadsheet to calculate values for TR for the function TR = 80Q − 0.2Q2

from Example 4.14 above for range the range where bothQ and TR take positive values. and
then plot these values on a graph.

Solution

To answer this question, the essential features of the required spreadsheet are:

• A column of values for Q.
• Another column that calculates the value of TR corresponding to the value in the Q

column.

Table 4.5 shows what to enter in the different cells of a spreadsheet to generate the relevant
ranges of values and also gives a brief explanation of what each entry means. Once a formula
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has been entered only the calculated value appears in the cell where the formula is. However,
when you put the cursor on a cell containing a formula, the full formula should always appear
in the formula bar just above the spreadsheet.

When a formula is copied down a column any cell’s numbers that the formula contains
should also change. As the main formulae in this example are entered initially in row 4 and
contain reference to cell A4, when they are copied to row 5 the reference should change to
cell A5.

Table 4.5 

CELL Enter Explanation 
A1 Ex. 4.17 Label to remind you what example this is
B1 TR= 80Q – 0.2Q^2 Label to remind you what the demand schedule 

is.  NB This is NOT an actual Excel formula 
because it does not start with the sign  = 

A3 Q Column heading label 
B3 TR Column heading label 
A4 0 Initial value for Q
B4 =80*A4– 0.2*A4^2

(The value 0 should 
appear) 

This formula calculates the value for TR that
corresponds to the value of Q in cell A4. 

A5 =A4+20 Calculates a 20 unit increase in Q. 

A6 to
A25 

Copy  cell A5 formula 
down column A 

Calculates a series of values of Q in 20 unit 
increments (so we will only need 25 rows in
the spreadsheet rather than 400 plus.)

B5 to
B25 

Copy cell B4 formula 
down column B 

Calculates values for TR in each row 
corresponding to the values of Q in column A.

If you follow these instructions you should end up with a spreadsheet that looks like
Table 4.6. This clearly shows that TR increases as Q increases from 0 to 200 and then starts
to decrease.

We can also use this spreadsheet to read off the value of TR for any given quantity. This
can save you entering the whole formula in a calculator every time you have to find a value
of the function. (Although we have only used increments of 20 units forQ to keep down the
number of rows, the same formula can be used to calculate TR for any value of Q.)

Plotting a graph using Excel

Although it is obvious just by looking at the values of TR that this function rises and then falls,
it is not quite so easy to get an idea of the exact shape of the function. It is easy, though, to
use Excel to plot a graph for the columns of data forQ and TR generated in the spreadsheet.

1. Put the cursor on a cell in the region of the spreadsheet where you want the chart to go.
You can adjust the position and size of the chart afterwards so don’t worry too much
about this, but try to choose a cell, such as F5, that is well away from the data columns
so that you will still be able to see the data when the chart instructions appear.

2. Click on the Chart Wizard button at the top of your screen (the one with coloured
columns) so that you enter Step 1 Chart Type.

3. Select ‘Line’ for the Chart Type and click on the first box in the Chart Sub-type examples.
(This will give a plain line graph.) Then hit the Next button.
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4. The cursor should now be flashing in the Data Range box. Use the mouse to take the
cursor to cell A3, where the data start, then drag so that the dotted lines enclose the
whole range A3 to B25, including the column headings. Once you let go of the left side
of the mouse these cells should appear in the Data Range box.

5. Now click on the Series tag at the top of the grey instruction box.
6. At the bottom where it says ‘Category (X) axis label’ click on the white box and then use

the mouse to take the cursor to cell A3 in the data and then drag down theQ column so
that the dotted lines enclose the Q range A3 to A25. (This is to put Q on the horizontal
axis.)

7. In the other box that says ‘Series’, make sure thatQ is highlighted then click the ‘Remove’
button. (Otherwise the chart would draw a graph of Q.)

8. Click Next to go to Step 3.
9. You can choose your own labels, but probably best to enter ‘TR = 80Q− 0.2Q2’ in the

Chart title box and ‘Q’ in the Category (X) axis label box.
10. Click Next to go to Step 4.
11. Make sure ‘Sheet 1’ is shown in the bottom box and the ‘As object in’ button is clicked

and has a black dot in the circle.
12. Click the Finish button, and your chart should appear.

If you want to enlarge or reposition the chart just click on it and then click on a corner or
edge and drag. Clicking on the chart itself will allow you to change colours, which may be
helpful if pale colours on graphs don’t come out clearly on your black-and-white printer. You

Table 4.6 

A B C D E 
1 Ex 4.17 TR = 80 - 0.2Q^2 
2 
3 Q TR 
4 0 0 
5 20 1520 
6 40 2880 
7 60 4080 
8 80 5120 
9 100 6000 

10 120 6720 
11 140 7280 
12 160 7680 
13 180 7920 
14 200 8000 
15 220 7920 
16 240 7680 
17 260 7280 
18 280 6720 
19 300 6000 
20 320 5120 
21 340 4080 
22 360 2880 
23 380 1520 
24 400 0 
25 420 -1680 
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Figure 4.20

can also click on Chart in the toolbar at the top of the screen to go back and alter any of the
formatting details, e.g. print font size. (The Data button in the toolbar only changes to Chart
when the chart itself is clicked on.) Try experimenting to learn how to get the chart format
that suits you best.

Your finished graph should look similar to Figure 4.20. This confirms that this function
takes a smooth inverted U-shape. It has zero value whenQ is 0 and 400 and has its maximum
value of 8,000 whenQ is 200. We will use this tool again in Section 6.6 to help find solutions
to polynomial equations.

Test Yourself, Exercise 4.9

Use an Excel spreadsheet to plot values and draw graphs of the following functions:

1. TR = 40q − 4q2

2. TC = 12 + 4q + 0.2q2

3. π = −12 + 36q − 3.8q2

4. AC = 24q−1 + 8 − 3q + 0.5q2

4.10 Functions with two independent variables
On a two-dimensional sheet of paper you cannot sketch a function with more than one
independent variable as this would require more than two axes (one for the dependent variable
and one each for the independent variables). However, in economics we often need to analyse
functions that have two or more independent variables, e.g. production functions. When there
are more than two independent variables then a function cannot really be visually represented
(and mathematical analysis has to be employed), but when there are only two independent
variables a ‘contour line’ graphing method can be used.

Consider the production function

Q = f(K,L)
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Table 4.7

K L K0.5 L0.5 Q

64 4 8 2 320
16 16 4 4 320

4 64 2 8 320
256 1 16 1 320

1 256 1 16 320

Assume that the way in whichQ depends onK and L is represented by the height above the
two-dimensional surface on which K and L are measured. To show this production ‘height’
economics borrows the idea of contour lines from geography. On a map, contour lines join
points of equal height and so, for example, a steep hill will be represented by closely spaced
contour lines. In production theory a line that joins combinations of inputs K and L that
will give the same production level (when used efficiently) is known as an ‘isoquant’. An
‘isoquant map’ is shown in Figure 4.21. Isoquants normally show equal increments in output
level which enables one to get an idea of how quickly output responds to changes in the
inputs. If isoquants are spaced far apart then output increases relatively slowly, and if they
are spaced closely together then output increases relatively quickly.

One can plot the position of an isoquant map from a production function although this is
a rather tedious, long-winded business. As we shall see later, it is not usually necessary to
draw in all the isoquants in order to tackle some of the resource allocation problems that this
concept can be used to illustrate. Examples of some of the different combinations of K and
L that would produce an output of 320 with the production function

Q = 20K0.5L0.5

are shown in Table 4.7. In this particular case there is a symmetrical curve known as a
‘rectangular hyperbola’ for the isoquant Q = 320.
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A quicker way of finding out the shape of an isoquant is to transform it into a function
with only two variables.

Example 4.18

For the production function Q = 20K0.5L0.5 derive a two-variable function in the form
K = f(L) for the isoquant Q = 100.

Solution

20K0.5L0.5 = Q = 100

Thus K0.5L0.5 = 5.

K0.5 = 5

L0.5.

Squaring both sides gives the required function

K = 25

L
= 25L−1

From Section 4.7 we know that this form of function will give a curve convex to the origin
since the value of K gets closer to zero as L increases in value.

Example 4.19

For the production function Q = 4.5K0.4L0.7 derive a function in the form K = f(L) for
the isoquant representing an output of 54.

Solution

Q = 54 = 4.5K0.4L0.7

12 = K0.4L0.7

12L−0.7 = K0.4

Taking both sides to the power 2.5

122.5L−1.75 = K

K = 498.83L−1.75

This function will also give a curve convex to the origin since the value ofL−1.75 (and henceK)
gets closer to zero as L increases in value.
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The Cobb–Douglas production function

The production functions given in this section are examples of what are known as ‘Cobb–
Douglas’ production functions. The general format of a Cobb–Douglas production function
with two inputs K and L is

Q = AKαLβ

whereA, α and β are parameters. (The Greek letter α is pronounced ‘alpha’ and β is ‘beta’.)
Many years ago, the two economists Cobb and Douglas found this form of function to be a
good match to the statistical evidence on input and output levels that they studied. Although
economists have since developed more sophisticated forms of production functions, this
basic Cobb–Douglas production function is a good starting point for students to examine the
relationship between a firm’s output level and the inputs required, and hence costs.

Cobb–Douglas production functions fall into the mathematical category of homogeneous
functions. In general terms, a function is said to be homogeneous of degree m if, when
all inputs are multiplied by any given positive constant λ, the value of y increases by the
proportion λm. (λ is the Greek letter ‘lambda’.) Thus if

y = f(x1, x2, . . . , xn)

then yλm = f(λx1, λx2, . . . , λxn)

An example of a function that is homogeneous of degree 1 is the production function

Q = 20K0.5L0.5.

The powers in a Cobb–Douglas production function determine the degree of returns to scale
present.

Assume that initially the input amounts are K1 and L1, giving production level

Q1 = 20K0.5
1 L0.5

1

If input amounts are doubled (i.e. λ = 2) then the new input amounts are

K2 = 2K1 and L2 = 2L1

giving the new output level

Q2 = 20K0.5
2 L0.5

2 (1)

This can be compared with the original output level by substituting 2K1 for K2 and 2L1 for
L2. Thus

Q2 = 20(2K1)
0.5(2L1)

0.5 = 20(20.5K0.5
1 20.5L0.5

1 ) = 2(20K0.5
1 L0.5

1 ) = 2Q1

Therefore, when inputs are doubled, output doubles, and so this production function exhibits
constant returns to scale.

The degree of homogeneity of a Cobb–Douglas production function can easily be deter-
mined by adding up the indices of the input variables. This can be demonstrated for the
two-input function

Q = AKαLβ
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If we let initial input amounts be K1 and L1, then

Q1 = AKα
1 L

β

1

If all inputs are multiplied by the constant λ then new input amounts will be

K2 = λK1 and L2 = λL1

The new output level will then be

Q2 = AKα
2 L

β

2 = A(λK1)
α(λL1)

β = λα+βAKα
1 L

β

1 = λα+βQ1

Given thatλ, α andβ are all assumed to be positive numbers, this result tells us the relationship
between α and β and the three possible categories of returns to scale.

1. If α + β = 1 then λα+β = λ and so Q2 = λQ1, i.e. constant returns to scale.
2. If α + β > 1 then λα+β > λ and so Q2 > λQ1, i.e. increasing returns to scale.
3. If α + β < 1 then λα+β < λ and so Q2 < λQ1, i.e. decreasing returns to scale.

Example 4.20

What type of returns to scale does the production function Q = 45K0.4L0.4 exhibit?

Solution

Indices sum to 0.4 + 0.4 = 0.8. Thus the degree of homogeneity is less than 1 and so there
are decreasing returns to scale.

To estimate the parameters of Cobb–Douglas production functions requires the use of
logarithms. The standard linear regression analysis method (that you should cover in your
statistics module) allows you to use data on p and q to estimate the parameters a and b in
linear functions such as the supply schedule

p = a + bq

If you have a non-linear function, logarithms can be used to transform it into a linear form so
that linear regression analysis method can be used to estimate the parameters. For example,
the Cobb–Douglas production function

Q = AKaLb

can be put into log form as

logQ = logA+ a logK + b logL

so that a and b can be estimated by linear regression analysis.

In your economics course you should learn how the optimum input combination for a firm
can be discovered using budget constraints, production functions and isoquant maps. We shall
return to these concepts in Chapters 8 and 11, when mathematical solutions to optimization
problems using calculus are explained.
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Test Yourself, Exercise 4.10

For the production functions below, assume fractions of a unit of K and L can be
used, and

(a) derive a function for the isoquant representing the specified output level in the
form K = f(L)

(b) find the level of K required to achieve the given output level if L = 100, and
(c) say what type of returns to scale are present.

1. Q = 9K0.5L0.5,Q = 36
2. Q = 0.3K0.4L0.6,Q = 24
3. Q = 25K0.6L0.6,Q = 800
4. Q = 42K0.6L0.75,Q = 5,250
5. Q = 0.4K0.3L0.5,Q = 65
6. Q = 2.83K0.35L0.62,Q = 52
7. Use logs to put the production function Q = AKαLβRγ into a linear format.

4.11 Summing functions horizontally
In economics, there are several occasions when theory requires one to sum certain functions
‘horizontally’. Students are most likely to encounter this concept when studying the theory
of third-degree price discrimination and the theory of multiplant monopoly and/or cartels.
By ‘horizontally’ summing a function we mean summing it along the horizontal axis. This
idea is best explained with an example.

Example 4.21

A price-discriminating monopolist sells in two separate markets at pricesP1 andP2 (measured
in £). The relevant demand and marginal revenue schedules are (for positive values of Q)

P1 = 12 − 0.15Q1 P2 = 9 − 0.075Q2

MR1 = 12 − 0.3Q1 MR2 = 9 − 0.15Q2

It is assumed that output is allocated between the two markets according to the price-
discrimination revenue-maximizing criterion that MR1 = MR2. Derive a formula for the
aggregate marginal revenue schedule which is the horizontal sum of MR1 and MR2.
(Note: In Chapter 5, we shall return to this example to find out how this summed MR schedule
can help determine the profit-maximizing prices P1 and P2 when marginal cost is known.)

Solution

The two schedules MR1 and MR2 are illustrated in Figure 4.22. What we are required to
do is find a formula for the summed schedule MR. This tells us what aggregate output will
correspond to a given level of marginal revenue and vice versa, assuming that output is
adjusted so that the marginal revenue from the last unit sold in each market is the same.
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Figure 4.22

As you can see in Figure 4.22, the summed MR schedule is in fact kinked at point K. This
is because the MR schedule sums the horizontal distances of MR1 and MR2 from the price
axis. Given that MR2 starts from a price of £9, then above £9 the only distance being summed
is the distance between MR1 and the price axis. Thus between £12 and £9 MR is the same
as MR1, i.e.

MR = 12 − 0.3Q

where Q is aggregate output. If MR = £9 then

9 = 12 − 0.3Q

0.3Q = 3

Q = 10

Thus the coordinates of the kink K are £9 and 10 units of output.
The proper summation occurs below £9. We are given the schedules

MR1 = 12 − 0.3Q1 and MR2 = 9 − 0.15Q2

but if we simply added MR1 and MR2 we would be summing vertically instead of horizontally.
To be summed horizontally, these marginal revenue functions first have to be transposed to
obtain their inverse functions as follows:

MR1 = 12 − 0.3Q1 MR2 = 9 − 0.15Q2

0.3Q1 = 12 − MR1 0.15Q2 = 9 − MR2

Q1 = 40 − 3 1
3 MR1 (1) Q2 = 60 − 6 2

3 MR2 (2)
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Given that the theory of price discrimination assumes that a firm will adjust the amount sold
in each market until MR1 = MR2 = MR, then

Q = Q1 +Q2

= (
40 − 3 1

3 MR
) + (

60 − 6 2
3 MR

)
by substituting (1) and (2)

= 100 − 10MR

10MR = 100 −Q

MR = 10 − 0.1Q

This summed MR function will apply above an aggregate output of 10.

From the above example it can be seen that the basic procedure for summing functions
horizontally is as follows:

1. transform the functions so that quantity is the dependent variable;
2. sum the functions representing quantities;
3. transform the function back so that quantity is the independent variable again;
4. note the quantity range that this summed function applies to, given the intersection points

of the functions to be summed on the price axis.

This procedure can also be applied to multiplant monopoly examples where it is necessary
to find the horizontally summed marginal cost schedule.

Example 4.22

A monopoly operates two plants whose marginal cost schedules are

MC1 = 2 + 0.2Q1 and MC2 = 6 + 0.04Q2

Find the function which describes the horizontal summation of these two functions.
(As with the previous example, we shall return to the use of the summed function in
determining profit-maximizing price and output levels in Chapter 5.)

Solution

The relevant schedules are illustrated in Figure 4.23. The horizontal sum of MC1 and MC2

will be the function MC which is kinked at K. Below £6 only MC1 is relevant. Therefore,
MC is the same as MC1 from £2 to £6. The corresponding output range can be found by
substituting £6 for MC1. Thus

MC1 = 6 = 2 + 0.2Q1

4 = 0.2Q1

20 = Q1

Therefore MC = 2 + 0.2Q between Q = 0 and Q = 20.
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Above this output we need to derive the proper sum of the two functions. Given

MC1 = 2 + 0.2Q1 and MC2 = 6 + 0.04Q2

then MC1 − 2 = 0.2Q1 and MC2 − 6 = 0.04Q2

5MC1 − 10 = Q1 (1) 25MC2 − 150 = Q2 (2)

Summing the functions (1) and (2) gives

Q = Q1 +Q2 = (5MC1 − 10)+ (25MC2 − 150) (3)

A profit-maximizing monopoly will adjust output between two plants until

MC1 = MC2 = MC

Therefore, substituting MC into (3) gives

Q = 5MC − 10 + 25MC − 150

Q = 30MC − 160

160 +Q = 30MC

5 1
3 + 1

30Q = MC

This summed MC function applies above an output level of 20.

In the examples above the summation of only two linear functions was considered. The
method can easily be adapted to situations when three or more linear functions are to be
summed. However, the inverses of some non-linear functions are not in forms that can easily
be summed and so this method is best confined to applications involving linear functions.
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Test Yourself, Exercise 4.11

Sum the following sets of marginal revenue and marginal cost schedules horizontally
to derive functions in the form MR = f(Q) or MC = f(Q) and define the output ranges
over which the summed function applies.

1. MR1 = 30 − 0.01Q1 and MR2 = 40 − 0.02Q2

2. MR1 = 80 − 0.4Q1 and MR2 = 71 − 0.5Q2

3. MR1 = 48.75 − 0.125Q1 and MR2 = 75 − 0.3Q2 and MR3 = 120 − 0.15Q3

4. MC1 = 20 + 0.25Q1 and MC2 = 34 + 0.1Q2

5. MC1 = 60 + 0.2Q1 and MC2 = 48 + 0.4Q2

6. MC1 = 3 + 0.2Q1 and MC2 = 1.75 + 0.25Q2 and MC3 = 4 + 0.2Q3
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5 Linear equations

Learning objectives

After completing this chapter students should be able to:

• Solve sets of simultaneous linear equations with two or more variables using the
substitution and row operations methods.

• Relate mathematical solutions to simultaneous linear equations to economic
analysis.

• Recognize when a linear equations system cannot be solved.
• Derive the reduced-form equations for the equilibrium values of dependent

variables in basic linear economic models and interpret their meaning.
• Derive the profit-maximizing solutions to price discrimination and multiplant

monopoly problems involving linear functions
• Set up linear programming constrained maximization and minimization problems

and solve them using the graphical method.

5.1 Simultaneous linear equation systems
The way to solve single linear equations with one unknown was explained in Chapter 3. We
now turn to sets of linear equations with more than one unknown. A simultaneous linear
equation system exists when:

1. there is more than one functional relationship between a set of specified variables, and
2. all the functional relationships are in linear form.

The solution to a set of simultaneous equations involves finding values for all the unknown
variables.

Where only two variables and equations are involved, a simultaneous equation system can
be related to familiar graphical solutions, such as supply and demand analysis. For example,
assume that in a competitive market the demand schedule is

p = 420 − 0.2q (1)

and the supply schedule is

p = 60 + 0.4q (2)

If this market is in equilibrium then the equilibrium price and quantity will be where the
demand and supply schedules intersect. As this will correspond to a point which is on both
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the demand schedule and the supply schedule then the equilibrium values of p and q will be
such that both equations (1) and (2) hold. In other words, when the market is in equilibrium (1)
and (2) above form a set of simultaneous linear equations.

Note that in most of the examples in this chapter the ‘inverse’ demand and supply functions
are used, i.e. p = f(q) rather than q = f(p). This is because price is normally measured on the
vertical axis and we wish to relate the mathematical solutions to graphical analysis. However,
simultaneous linear equations systems often involve more than two unknown variables in
which case no graphical illustration of the problem will be possible. It is also possible that
a set of simultaneous equations may contain non-linear functions, but these are left until the
next chapter.

5.2 Solving simultaneous linear equations
The basic idea involved in all the different methods of algebraically solving simultaneous
linear equation systems is to manipulate the equations until there is a single linear equation
with one unknown. This can then be solved using the methods explained in Chapter 3. The
value of the variable that has been found can then be substituted back into the other equations
to solve for the other unknown values.

It is important to realize that not all sets of simultaneous linear equations have solutions.
The general rule is that the number of unknowns must be equal to the number of equations
for there to be a unique solution. However, even if this condition is met, one may still come
across systems that cannot be solved, e.g. functions which are geometrically parallel and
therefore never intersect (see Example 5.2 below).

We shall first consider four different methods of solving a 2 × 2 set of simultaneous linear
equations, i.e. one in which there are two unknowns and two equations, and then look at how
some of these methods can be employed to solve simultaneous linear equation systems with
more than two unknowns.

5.3 Graphical solution
The graphical solution method can be used when there are only two unknown variables. It
will not always give 100% accuracy, but it can be useful for checking that algebraic solutions
are not widely inaccurate owing to analytical or computational errors.

Example 5.1

Solve for p and q in the set of simultaneous equations given previously in Section 5.1:

p = 420 − 0.2q (1)

p = 60 + 0.4q (2)

Solution

These two functional relationships are plotted in Figure 5.1. Both hold at the intersection
point X. At this point the solution values

p = 300 and q = 600

can be read off the graph.
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A graph can also illustrate why some simultaneous linear equation systems cannot be
solved.

Example 5.2

Attempt to use graphical analysis to solve for y and x if

y = 2 + 2x and y = 5 + 2x

Solution

These two functions are plotted in Figure 5.2. They are obviously parallel lines which never
intersect. This problem therefore does not have a solution.
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Test Yourself, Exercise 5.1

Solve the following (if a solution exists) using graph paper.
1. In a competitive market, the demand and supply schedules are respectively

p = 9 − 0.075q and p = 2 + 0.1q

Find the equilibrium values of p and q.
2. Find x and y when

x = 80 − 0.8y and y = 10 + 0.1x

3. Find x and y when

y = −2 + 0.5x and x = 2y − 9

5.4 Equating to same variable
The method of equating to the same variable involves rearranging both equations so that the
same unknown variable appears by itself on one side of the equality sign. This variable can
then be eliminated by setting the other two sides of the equality sign in the two equations
equal to each other. The resulting equation in one unknown can then be solved.

Example 5.3

Solve the set of simultaneous equations in Example 5.1 above by the equating method.

Solution

In this example no preliminary rearranging of the equations is necessary because a single
term in p appears on the left-hand side of both. As

p = 420 − 0.2q (1)

and

p = 60 + 0.4q (2)

then it must be true that

420 − 0.2q = 60 + 0.4q

Therefore

360 = 0.6q

600 = q
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The value of p can be found by substituting this value of 600 for q back into either of the
two original equations. Thus

from (1) p = 420 − 0.2q = 420 − 0.2(600) = 420 − 120 = 300

or

from (2) p = 60 + 04q = 60 + 0.4(600) = 60 + 240 = 300

Example 5.4

Assume that a firm can sell as many units of its product as it can manufacture in a month at
£18 each. It has to pay out £240 fixed costs plus a marginal cost of £14 for each unit produced.
How much does it need to produce to break even?

Solution

From the information in the question we can work out that this firm faces the total revenue
function TR = 18q and the total cost function TC = 240 + 14q, where q is output. These
functions are plotted in Figure 5.3, which is an example of what is known as a break-even
chart. This is a rough guide to the profit that can be expected for any given production level.

The break-even point is clearly at B, where the TR and TC schedules intersect. Since

TC = 240 + 14q and TR = 18q

and the break-even point is where TR = TC, then

18q = 240 + 14q

4q = 240

q = 60

Therefore the output required to break even is 60 units.

B

0 q

£

60

TR

TC

1080

240

Figure 5.3
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Note that in reality at some point the TR schedule will start to flatten out when the firm has
to reduce price to sell more, and TC will get steeper when diminishing marginal productivity
causes marginal cost to rise. If this did not happen, then the firm could make infinite profits
by indefinitely expanding output. Break-even charts can therefore only be used for the range
of output where the specified linear functional relationships hold.

What happens if you try to use this algebraic method when no solution exists, as in
Example 5.2 above?

Example 5.5

Attempt to use the equating to same variable method to solve for y and x if

y = 2 + 2x and y = 5 + 2x

Solution

Eliminating y from the system and equating the other two sides of the equations, we get

2 + 2x = 5 + 2x

Subtracting 2x from both sides gives 2 = 5. This is clearly impossible, and hence no solution
can be found.

Test Yourself, Exercise 5.2

1. A competitive market has the demand schedule p = 610 − 3q and the supply
schedule p = 20 + 2q. Calculate equilibrium price and quantity.

2. A competitive market has the demand schedule p = 610 − 3q and the supply
schedule p = 50 + 4q where p is measured in pounds.

(a) Find the equilibrium values of p and q.
(b) What will happen to these values if the government imposes a tax of £14 per

unit on q?

3. Make up your own linear functions for a supply schedule and a demand schedule
and then:

(a) plot them on graph paper and read off the values of price and quantity where
they intersect, and

(b) algebraically solve your set of linear simultaneous equations and compare
your answer with the values you got for (a).

4. A firm manufactures product x and can sell any amount at a price of £25 a unit.
The firm has to pay fixed costs of £200 plus a marginal cost of £20 for each unit
produced.

(a) How much of x must be produced to make a profit?
(b) If price is cut to £24 what happens to the break-even output?

5. If y = 16 + 22x and y = −2.5 + 30.8x, solve for x and y.
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5.5 Substitution
The substitution method involves rearranging one equation so that one of the unknown vari-
ables appears by itself on one side. The other side of the equation can then be substituted into
the second equation to eliminate the other unknown.

Example 5.6

Solve the linear simultaneous equation system

20x + 6y = 500 (1)

10x − 2y = 200 (2)

Solution

Equation (2) can be rearranged to give

10x − 200 = 2y

5x − 100 = y (3)

If we substitute the left-hand side of equation (3) for y in equation (1) we get

20x + 6y = 500

20x + 6(5x − 100) = 500

20x + 30x − 600 = 500

50x = 1,100

x = 22

To find the value of y we now substitute this value of x into (1) or (2). Thus, in (1)

20x + 6y = 500

20(22)+ 6y = 500

440 + 6y = 500

6y = 60

y = 10

Example 5.7

Find the equilibrium level of national income in the basic Keynesian macroeconomic model

Y = C + I (1)

C = 40 + 0.5Y (2)

I = 200 (3)

Solution

Substituting the consumption function (2) and given I value (3) into (1) we get

Y = 40 + 0.5Y + 200
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Therefore

0.5Y = 240

Y = 480

Test Yourself, Exercise 5.3

1. A consumer has a budget of £240 and spends it all on the two goods A and B
whose prices are initially £5 and £10 per unit respectively. The price of A then
rises to £6 and the price of B falls to £8. What combination of A and B that uses
up all the budget is it possible to purchase at both sets of prices?

2. Find the equilibrium value of Y in a basic Keynesian macroeconomic model where

Y = C + I the accounting identity

C = 20 + 0.6Y the consumption function

I = 60 exogenously determined

3. Solve for x and y when

600 = 3x + 0.5y

52 = 1.5y − 0.2x

5.6 Row operations
Row operations entail multiplying or dividing all the terms in one equation by whatever
number is necessary to get the coefficient of one of the unknowns equal to the coefficient of
that same unknown in another equation. Then, by subtraction of one equation from the other,
this unknown can be eliminated.

Alternatively, if two rows have the same absolute value for the coefficient of an unknown
but one coefficient is positive and the other is negative, then this unknown can be eliminated
by adding the two rows.

Example 5.8

Given the equations below, use row operations to solve for x and y.

10x + 3y = 250 (1)

5x + y = 100 (2)

Solution

Multiplying (2) by 3 15x + 3y = 300

Subtracting (1) 10x + 3y = 250

Gives 5x = 50

x = 10
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Substituting this value of x back into (1),

10(10)+ 3y = 250

100 + 3y = 250

3y = 150

y = 50

Example 5.9

A firm makes two goods A and B which require two inputs K and L. One unit of A requires
6 units of K plus 3 units of L and one unit of B requires 4 units of K plus 5 units of L. The
firm has 420 units of K and 300 units of L at its disposal. How much of A and B should it
produce if it wishes to exhaust its supplies of K and L totally?

(NB. This question requires you to use the economic information given to set up a mathe-
matical problem in a format that can be used to derive the desired solution. Learning how to
set up a problem is just as important as learning how to solve it.)

Solution

The total requirements of input K are 6 for every unit of A and 4 for each unit of B, which
can be written as

K = 6A+ 4B

Similarly, the total requirements of input L can be specified as

L = 3A+ 5B

As we know that K = 420 and L = 300 because all resources are used up, then

420 = 6A+ 4B (1)

and

300 = 3A+ 5B (2)

Multiplying (2) by 2 600 = 6A+ 10B

Subtracting (1) 420 = 6A+ 4B

gives 180 = 6B

30 = B

Substituting this value for B into (1) gives

420 = 6A+ 4(30)

420 = 6A+ 120

300 = 6A

50 = A

The firm should therefore produce 50 units of A and 30 units of B.
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(Note that the method of setting up this problem will be used again when we get to linear
programming in the Appendix to this chapter.)

Test Yourself, Exercise 5.4

1. Solve for x and y if

420 = 4x + 5y and 600 = 2x + 9y

2. A firm produces the two goods A and B using inputs K and L. Each unit of A
requires 2 units of K plus 6 units of L. Each unit of B requires 3 units of K plus 4
units of L. The amounts of K and L available are 120 and 180, respectively. What
output levels of A and B will use up all the available K and L?

3. Solve for x and y when

160 = 8x − 2y and 295 = 11x + y

5.7 More than two unknowns
With more than two unknowns it is usually best to use the row operations method. The basic
idea is to use one pair of equations to eliminate one unknown and then bring in another
equation to eliminate the same variable, repeating the process until a single equation in
one unknown is obtained. The exact operations necessary will depend on the format of
the particular problem. There are several ways in which row operations can be used to solve
most problems and you will only learn which is the quickest method to use through practising
examples yourself.

Example 5.10

Solve for x, y and z, given that

x + 12y + 3z = 120 (1)

2x + y + 2z = 80 (2)

4x + 3y + 6z = 219 (3)

Solution

Multiplying (2) by 2 4x + 2y + 4z = 160 (4)

Subtracting (4) from (3) y + 2z = 59 (5)

We have now eliminated x from equations (2) and (3) and so the next step is to eliminate x
from equation (1) by row operations with one of the other two equations. In this example the
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easiest way is

Multiplying (1) by 2 2x + 24y + 6z = 240

Subtracting (2) 2x + y + 2z = 80

23y + 4z = 160 (6)

We now have the set of two simultaneous equations (5) and (6) involving two unknowns
to solve. Writing these out again, we can now use row operations to solve for y and z.

y + 2z = 59 (5)

23y + 4z = 160 (6)

Multiplying (5) by 2 2y + 4z = 118

Subtracting (6) 23y + 4z = 160

Gives −21y = −42

y = 2

Substituting this value for y into (5) gives

2 + 2z = 59

2z = 57

z = 28.5

These values for y and z can now be substituted into any of the original equations. Thus using
(1) we get

x + 12(2)+ 3(28.5) = 120

x + 24 + 85.5 = 120

x = 120 − 109.5

x = 10.5

Therefore, the solutions are x = 10.5, y = 2, z = 28.5.

Example 5.11

Solve for x, y and z in the following set of simultaneous equations:

14.5x + 3y + 45z = 340 (1)

25x − 6y − 32z = 82 (2)

9x + 2y − 3z = 16 (3)
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Solution

Multiplying (1) by 2 29x + 6y + 90z = 680

Adding (2) 25x − 6y − 32z = 82 (2)

Gives 54x + 58z = 762 (4)

Having used equations (1) and (2) to eliminate y we now need to bring in equation (3) to
derive a second equation containing only x and z.

Multiplying (3) by 3 27x + 6y − 9z = 48

Adding (2) 25x − 6y − 32z = 82 (2)

gives 52x − 41z = 130 (5)

Multiplying (5) by 27 1,404x − 1,107z = 3,510

Multiplying (4) by 26 1,404x + 1,508z= 19,812

Subtracting gives − 2,615z = −16,302

z = 6.234

(Note that although final answers are more neatly specified to one or two decimal places,
more accuracy will be maintained if the full value of z above is entered when substituting to
calculate remaining values of unknown variables.)

Substituting the above value of z into (5) gives

52x − 41(6.234) = 130

52x = 130 + 255.594

x = 7.415

Substituting for both x and z in (1) gives

14.5(7.415)+ 3y + 45(6.234) = 340

3y = −48.05

y = −16.02

Thus, solutions to 2 decimal places are

x = 7.42 y = −16.02 z = 6.23

The above examples show how the solution to a 3 × 3 set of simultaneous equations can be
solved by row operations. The same method can be used for larger sets but obviously more
stages will be required to eliminate the unknown variables one by one until a single equation
with one unknown is arrived at.

It must be stressed that it is only practical to use the methods of solution for linear equation
systems explained here where there are a relatively small number of equations and unknowns.
For large systems of equations with more than a handful of unknowns it is more appropriate
to use matrix algebra methods and an Excel spreadsheet (see Chapter 15).

© 1993, 2003 Mike Rosser



Test Yourself, Exercise 5.5

1. Solve for x, y and z when

2x + 4y + 2z = 144 (1)

4x + y + 0.5z = 120 (2)

x + 3y + 4z = 144 (3)

2. Solve for x, y and z when

12x + 15y + 5z = 158 (1)

4x + 3y + 4z = 50 (2)

5x + 20y + 2z = 148 (3)

3. Solve for A,B and C when

32A+ 14B + 82C = 664 (1)

11.5A+ 8B + 52C = 349 (2)

18A+ 26.2B − 62C = 560.4 (3)

4. Find the values of x, y and z when

4.5x + 7y + 3z = 128.5

6x + 18.2y + 12z = 270.8

3x + 8y + 7z = 139

5. Solve for A,B,C and D when

A+ 6B + 25C + 17D = 843

3A+ 14B + 60C + 21D = 1,286.5

10A+ 3B + 4C + 28D = 1,206

6A+ 2B + 12C + 51D = 1,096

5.8 Which method?
There is no hard and fast rule regarding which of the different methods for solving simulta-
neous equations should be used in different circumstances. The row operations method can
be used for most problems but sometimes it will be quicker to use one of the other methods,
particularly in 2×2 systems. It may also be quicker to change methods midway. For example,
one may find that in a 3 × 3 problem it may be quicker to revert to the substitution method
after one of the unknowns has been eliminated by row operations. Only by practising solving
problems will you learn how to spot the quickest methods of solving them.
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Not all economic problems are immediately recognizable as linear simultaneous equation
systems and one first has to apply economic analysis to set up a problem. Try solving Test
Yourself, Exercise 5.6 below when you have covered the relevant topics in your economics
course.

Example 5.12

A firm uses the three inputs K, L and R to manufacture its final product. The prices per unit
of these inputs are £20, £4 and £2 respectively. If the other two inputs are held fixed then the
marginal product functions are

MPK = 200 − 5K

MPL = 60 − 2L

MPR = 80 − R

What combination of inputs should the firm use to maximize output if it has a fixed budget
of £390?

Solution

The basic rule for optimal input determination is that the last £1 spent on each input should
add the same amount to output, i.e.

MPK

PK
= MPL

PL
= MPR

PR

Therefore, substituting the given marginal product functions, we get

200 − 5K

20
= 60 − 2L

4
= 80 − R

2

Multiplying out two of the three pairwise combinations of equations to getK and R in terms
of L gives

4(200 − 5K) = 20(60 − 2L) 2(60 − 2L) = 4(80 − R)

800 − 20K = 1,200 − 40L 120 − 4L = 320 − 4R

40L− 400 = 20K 4R = 4L+ 200

2L− 20 = K (1) R = L+ 50 (2)

The third pairwise combination will not add any new information. Instead we use the budget
constraint

20K + 4L+ 2R = 390 (3)
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Substituting (1) and (2) into (3),

20(2L− 20)+ 4L+ 2(L+ 50) = 390

40L− 400 + 4L+ 2L+ 100 = 390

46L = 690

L = 15

Substituting this value for L into (1)

K = 2(15)− 20 = 10

and into (2)

R = 15 + 50 = 65

Therefore the optimal input combination is

K = 10 L = 15 R = 65

Example 5.13

In a closed economy where the usual assumptions of the basic Keynesian macroeconomic
model apply,

C = £60m + 0.7Yt

Y = C + I +G

Yt = 0.6Y

where C is consumption, Y is national income, Yt is disposable income, I is investment and
G is government expenditure. If the values of I and G are exogenously determined as £90
million and £140 million respectively, what is the equilibrium level of national income?

Solution

Once the given values of I and G are substituted, we have a 3 × 3 set of simultaneous
equations with three unknowns:

C = 60 + 0.7Yt (1)

Y = C + 90 + 140 = C + 230 (2)

Yt = 0.6Y (3)

This sort of problem is most easily solved by substitution. Substituting (3) into (1) gives

C = 60 + 0.7(0.6Y )

C = 60 + 0.42Y (4)
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Substituting (4) into (2) gives

Y = (60 + 0.42Y )+ 230

0.58Y = 290

Y = 500

Therefore the equilibrium value of the national income is £500 million.

Example 5.14

In a competitive market where the supply price (in £) is p = 3 + 0.25q

and demand price (in £) is p = 15 − 0.75q

the government imposes a per-unit tax of £4. How much of a price rise will this tax mean to
consumers? What will be the tax revenue raised?

Solution

The original equilibrium price and quantity can be found by equating demand and supply
price. Hence

15 − 0.75q = 3 + 0.25q

12 = q

Substituting this value of q into the supply schedule gives

p = 3 + 0.25(12) = 3 + 3 = 6

If a per-unit tax is imposed each quantity would be offered for sale by suppliers at the old
price plus the amount of the tax. In this case the tax is £4 and so the supply schedule shifts
upwards by £4. Thus the new supply schedule becomes

p = 3 + 0.25q + 4 = 7 + 0.25q

Again equating demand and supply price

15 − 0.75q = 7 + 0.25q

8 = q

Substituting this value of q into the demand schedule

p = 15 − 0.75(8) = 15 − 6 = 9

Therefore, consumers see a price rise of £3 from £6 to £9 (and producers will incur a £1 price
reduction and receive a net price of £5).

Total tax revenue = quantity sold× tax per unit = 8 × 4 = £32
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Test Yourself, Exercise 5.6

1. A firm faces the demand schedule p = 400 − 0.25q
the marginal revenue schedule MR = 400 − 0.5q
and the marginal cost schedule MC = 0.3q
What price will maximize profit?

2. A firm buys the three inputs K, L and R at prices per unit of £10, £5 and £3
respectively. The marginal product functions of these three inputs are

MPK = 150 − 4K

MPL = 72 − 2L

MPR = 34 − R

What input combination will maximize output if the firm’s budget is fixed at
£285?

3. In a competitive market, the supply schedules is p = 4 + 0.25q
and the demand schedule is p = 16 − 0.5q

What would happen to the price paid by consumers and the quantity sold if

(a) a per-unit tax of £3 was imposed, and
(b) a proportional sales tax of 20% was imposed?

4. In a Keynesian macroeconomic model of an economy with no foreign trade it is
assumed that

Y = C + I +G

C = 0.75Yt

Yt = (1 − t)Y

where the usual notation applies and the following are exogenously fixed:
I = £600 m,G = £900 m, t = 0.2 is the tax rate. Find the equilibrium value of
Y and say whether or not the government’s budget is balanced at this value.

5. In an economy which engages in foreign trade, it is assumed that

Y = C + I +G+X −M

C = 0.9Yt

Yt = (1 − t)Y

and imports

M = 0.15Yt

The usual notation applies and the following values are given:

I = £200m G = £270m X = £180m t = 0.2
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What is the equilibrium value ofY ? What is the balance of payments surplus/deficit
at this value?

6. (Leave this question if you have not yet covered factor supply theory.) In a factor
market for labour, a monopsonistic buyer faces

the marginal revenue product schedule MRPL = 244 − 2L
the supply of labour schedule w = 20 + 0.4L
and the marginal cost of labour schedule MCL = 20 + 0.8L

How much labour should it employ, and at what wage, if MRPL must equal MCL

in order to maximize profit?

5.9 Comparative statics and the reduced form of
an economic model

Now that you are familiar with the basic methods for solving simultaneous linear equations,
this section will explain how these methods can help you to derive predictions from some
economic models. Although no new mathematical methods will be introduced in this section
it is important that you work through the examples in order to learn how to set up eco-
nomic problems in a mathematical format that can be solved. This is particularly relevant for
those students who can master mathematical methods without too many problems but find
it difficult to set up the problem that they need to solve. It is important that you understand
the application of mathematical techniques to economics, which is the reason why you are
studying mathematics as part of your economics course.

Equilibrium and comparative statics

In Section 5.1 we saw how two simultaneous equations representing the supply and demand
functions in a competitive market could be solved to determine equilibrium price and quantity.
Markets need not always be in equilibrium, however. For example, if

Quantity demanded = qd = 90 − 0.05p

and

Quantity supplied = qs = −12 + 0.8p

then if price is £100

qd = 90 − 0.05(100) = 90 − 5 = 85

qs = −12 + 0.8(100) = −12 + 80 = 68

and so there would be excess demand equal to

qd − qs = 85 − 68 = 17

In a freely competitive market this situation of excess demand would result in price rising.
As price rises the quantity demanded will fall and the quantity supplied will increase until
quantity demanded equals quantity supplied and the market is in equilibrium.

The time it takes for adjustment to equilibrium to take place will vary from market to
market and the analysis of this dynamic adjustment process between equilibrium situations is
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considered later in Chapters 13 and 14. Here we shall just examine how the equilibrium values
in an economic model change when certain variables alter. This is known as comparative
static analysis.

If a market is in equilibrium it means that quantity supplied equals quantity demanded and
so there are no market forces pushing price up or pulling it down. Therefore price and quantity
will remain stable unless something disturbs the equilibrium. One factor that might cause
this to happen is a change in the value of an independent variable. In the simple supply and
demand model above both quantity demanded and quantity supplied are determined within
the model and so there are no independent variables, but consider the following market model

Quantity supplied = qs = −20 + 0.4p

and

Quantity demanded = qd = 160 − 0.5p + 0.1m

where m is average income.
The value of m cannot be worked out from the model. Its value will just be given as it

will be determined by factors outside this model. It is therefore an independent variable,
sometimes known as an exogenous variable. Without knowing the value of m we cannot
work out the values for the dependent variables determined within the model (also known as
endogenous variables) which are the equilibrium values of p and q.

Once the value ofm is known then equilibrium price and quantity can easily be found. For
example, if m is £270 then

qd = 160 − 0.5p + 0.1m = 160 − 0.5p + 0.1(270) = 187 − 0.5p

In equilibrium

qs = qd

and so

−20 + 0.4p = 187 − 0.5p

0.9p = 207

p = 230

Substituting this value for p into the supply function to get equilibrium quantity gives

q = −20 + 0.4p = −20 + 0.4(230) = −20 + 92 = 72

If factors outside this model cause the value of m to alter, then the equilibrium price and
quantity will also change. For example, if income rises to £360 then quantity demanded
becomes

qd = 160 − 0.5p + 0.1m = 160 − 0.5p + 0.1(360) = 196 − 0.5p

and so equating supply and demand quantities to find equilibrium price and quantity

−20 + 0.4p = 196 − 0.5p

0.9p = 216

p = 240

and so q = −20 + 0.4(240) = 76

To save having to work out the new equilibrium values in an economic model from first
principles every time an exogenous variable changes it can be useful to derive the reduced
form of an economic model.
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Reduced form

The reduced form specifies each of the dependent variables in an economic model as a
function of the independent variable(s). This reduced form can then be used to:

• Predict what happens to the dependent variables when an independent variable changes.
• Estimate the parameters of the model from data using regression analysis (which you

should learn about in your statistics or econometrics module).

It is usually possible to derive a reduced form equation for every dependent variable in an
economic model.

Example 5.15

A per unit tax t is imposed by the government in a competitive market with the

demand function q = 20 − 1 1
3p

and

supply function q = −12 + 4p

Derive reduced form equations for the equilibrium values of p and q in terms of the tax t .

Solution

Firms have to pay the government a per unit tax of t on each unit they sell. This means that
to supply any given quantity firms will require an additional amount t on top of the supply
price without the tax, i.e. the supply schedule will shift up vertically by the amount of the tax.
To show the effect of this it is easier to work with the inverse demand and supply functions,
where price is a function of quantity.

Thus the demand function q = 20 − 1 1
3p becomes p = 15 − 0.75q (1)

and the supply function q = −120 + 4p becomes p = 3 + 0.25q

After the tax is imposed the inverse supply function becomes

p = 3 + 0.25q + t (2)

In equilibrium the supply price equals the demand price and so equating (1) and (2)

3 + 0.25q + t = 15 − 0.75q

q = 12 − t (3)

This is the reduced form equation for equilibrium quantity. From this reduced form we can
easily work out that

when t = 0 then q = 12

when t = 4 then q = 8
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(You can check these solutions are the same as those in Example 5.14 which had the same
supply and demand functions.)

In a model with two dependent variables, like this supply and demand model, once the
reduced form equation for one dependent variable has been derived then the reduced form
equation for the other dependent variable can be found. This is done by substituting the
reduced form for the first variable into one of the functions that make up the model. Thus,
in this example, if the reduced form equation for equilibrium quantity (3) is substituted into
the demand function p = 15 − 0.75q

it becomes p = 15 − 0.75(12 − t)

giving p = 6 + 0.75t (4)

which is the reduced form equation for equilibrium price.
The reduced form equations can also be used to work out the comparative static effect of

a change in t on equilibrium quantity or price, i.e. what happens to these equilibrium values
when tax is increased by one unit.

In this example the reduced form equation for price (4) tells us that for every one unit
increase in t the equilibrium price p increases by 0.75. This is illustrated below for a few
values of t :

when t = 4 then p = 6 + 0.75(4) = 6 + 3 = 9

when t = 5 then p = 6 + 0.75(5) = 6 + 3.75 = 9.75

when t = 6 then p = 6 + 0.75(6) = 6 + 4.5 = 10.5

Note that this method can only be used with linear functions. If a dependent variable is a
non-linear function of an independent variable then calculus must be used (see Chapter 9).

Before proceeding any further, students should make sure that they understand an important
difference between the supply and demand functions and the reduced form of an economic
model. The supply and demand functions give the quantities supplied and demanded for
any price, which includes prices out of equilibrium. The reduced form only includes the
equilibrium values of p and q.

Reduced form and comparative static analysis of monopoly

The basic principles for deriving reduced form equations for dependent variables can be
applied in various types of economic models, and are not confined to supply and demand
analysis. The example below shows how the comparative static effect of a per unit tax on a
monopoly can be derived from the reduced form equations.

Example 5.16

A monopoly operates with the marginal cost function MC = 20 + 4q

and faces the demand function p = 400 − 8q

If a per unit tax t is imposed on its output derive reduced form equations for the profit
maximizing values of p and q in terms of the tax t and use them to predict the effect of a
one unit increase in the tax on price and quantity. Assume that fixed costs are low enough to
allow positive profits to be made.
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Solution

The per unit tax will cause the cost of supplying each unit to rise by amount t and so the
monopoly’s marginal cost function will change to

MC = 20 + 4q + t

For any linear demand function the corresponding marginal revenue function will have the
same intercept on the price axis but twice the slope. (See Section 8.3 for a proof of this result.)
Therefore, if

p = 400 − 8q then MR = 400 − 16q

If the monopoly is maximizing profit then

MC = MR

20 + 4q + t = 400 − 16q

20q + t = 380

q = 19 − 0.05t (1)

From this reduced form equation for equilibrium q we can see that for every one unit increase
in the sales tax the monopoly’s output will fall by 0.05 units.

To find the reduced form equation for equilibrium p we can substitute (1), the reduced
form for q, into the demand function. Thus

p = 400 − 8q = 400 − 8(19 − 0.05t) = 400 − 152 + 0.4t = 248 + 0.4t

Thus the reduced form equation for equilibrium p is

p = 248 + 0.4t

This tells us that for every one unit increase in t the monopoly’s price will rise by 0.4. So,
for example, a £1 tax increase will cause price to rise by 40p.

The effect of a proportional sales tax

In practice sales taxes are often specified as a percentage of the pre-tax price rather than being
set at a fixed amount per unit. For example, in the UK, VAT (value added tax) is levied at
a rate of 17.5% on most goods and services at the point of sale. To work out the reduced
form equations, a proportional tax needs to be specified in decimal format. Thus a sales tax
of 17.5% becomes 0.175 in decimal format.

Example 5.17

A proportional sales tax t is imposed in a competitive market where

demand price = pd = 375 − 2.5q

and

supply price = ps = 55 + 4q
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Derive reduced form equations for the equilibrium values of p and q in terms of the tax rate t
and use them to predict the effect of an increase in the tax rate on the equilibrium values of
p and q.

Solution

To supply any given quantity firms will require the original pre-tax supply price ps plus the
proportional tax that is levied at that price. Therefore the total new price p∗

s that firms will
require to supply any given quantity will be

p∗
s = ps(1 + t) = (55 + 4q)(1 + t) (1)

The supply function therefore swings up as shown in Figure 5.4. (Instead of the parallel shift
caused by a per unit tax.)

Setting this new supply price function (1) equal to demand price

p∗
s = pd

(55 + 4q)(1 + t) = 375 − 2.5q

55 + 55t + 4q + 4qt = 375 − 2.5q

6.5q + 4qt = 320 − 55t

q(6.5 + 4t) = 320 − 55t

q = 320 − 55t

6.5 + 4t

This reduced form equation for equilibrium q is a bit more complicated than the one we
derived for the per unit sales tax case. However, we can still use it to work out the predicted
value of q for a few values of t . Normally we would expect sales taxes to lie between 0% and
100%, giving a value of t in decimal format between 0 and 1.
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If t = 10% = 0.1 then q = 320 − 55(0.1)

6.5 + 4(0.1)
= 320 − 5.5

6.5 + 0.4
= 314.5

6.9
= 45.58

If t = 20% = 0.2 then q = 320 − 55(0.2)

6.5 + 4(0.2)
= 320 − 11

6.5 + 0.8
= 309

7.3
= 42.33

If t = 30% = 0.3 then q = 320 − 55(0.3)

6.5 + 4(0.3)
= 320 − 16.5

6.5 + 1.2
= 303.5

7.7
= 39.42

These examples show that as the tax rate increases the value of q falls, as one would expect.
However, these equal increments in the tax rate do not bring about equal changes in q because
the reduced form equation for equilibrium q is not a simple linear function of t .

Lastly, we can derive the reduced form equation for equilibrium p by substituting the
reduced form for q that we have already found into the demand schedule. Thus

p = 375 − 2.5q = 375 − 2.5

(
320 − 55t

6.5 + 4t

)

= 2,437.5 + 1,500t − 800 + 137.5t

6.5 + 4t
= 1,637.5 + 1,637.5t

6.5 + 4t

= 1,637.5(1 + t)

6.5 + 4t

To check this reduced form equation, we can calculate p for some extreme values of t to see
if the prices calculated lie in a reasonable range for this demand schedule.

If t = 0 (i.e. no tax) then p = 1,637.5 + 1,637.5(0)

6.5 + 4(0)
= 1,637.5

6.5
= 251.92

If t = 100% = 1 then p = 1,637.5 + 1,637.5

6.5 + 4
= 3,275

10.5
= 311.81

These values lie in a range that one would expect for this demand schedule.

The reduced form of a Keynesian macroeconomic model

Consider the basic Keynesian macroeconomic model used in Example 5.7 earlier where

Y = C + I (1)

C = 40 + 0.5Y (2)

As the value of investment is exogenously determined we can derive a reduced form equation
for the equilibrium value of the dependent variable Y in terms of this independent variable I .
Substituting the consumption function (2) into the accounting identity (1) gives

Y = 40 + 0.5Y + I

0.5Y = 40 + I

Y = 80 + 2I (3)
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From this reduced form we can directly predict the equilibrium value of Y for any given level
of I . For example

when I = 200 then Y = 80 + 2(200) = 80 + 400 = 480 (check with Example 5.7)

when I = 300 then Y = 80 + 2(300) = 80 + 600 = 680

From the reduced form equation (3) we can also see that for every £1 increase in I the value
of Y will increase by £2. This ratio of 2 to 1 is the investment multiplier.

Reduced forms in models with more than one independent variable

Equilibrium values of dependent variables in an economic model may be determined by more
than one independent variable. If this is the case then all the independent variables will appear
in the reduced form equations for these dependent variables.

Consider the Keynesian macroeconomic model

Y = C + I +G (1)

C = 50 + 0.8Yd (2)

and disposable income Yd = (1 − t)Y (3)

The values of investment, government expenditure and the tax rate (I, G and t) are exogenously
determined. Substituting the function for disposable income (3) into the consumption function
(2) gives

C = 50 + 0.8Yd = 50 + 0.8(1 − t)Y (4)

Substituting (4) into (1) gives

Y = 50 + 0.8(1 − t)Y + I +G

Y(1 − 0.8 + 0.8t) = 50 + I +G

Y = 50 + I +G

0.2 + 0.8t

This reduced form equation tells us that the equilibrium value of Y will be determined by the
values of the three exogenous variables I,G and t . For example

when I = 180,G = 150 and t = 0.375 then

Y = 50 + I +G

0.2 + 0.8t
= 50 + 180 + 150

0.2 + 0.8(0.375)
= 380

0.5
= 760

The comparative static effect of an increase in one of the three independent variables can
only be worked out if the values of the other two are held constant. For example,

if I = 180 and t = 0.375

then

Y = 50 + 180 +G

0.2 + 0.3
= 230 +G

0.5
= 460 + 2G
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From this new reduced form equation we can see that (when I is 180 and t is 0.375) for
every £1 increase in G there will be a £2 increase in Y , i.e. the government expenditure
multiplier is 2.

In Chapter 9 we will return to this form of analysis when we have shown how calculus can
be used to derive comparative static effects for economic models with non-linear functions.

Test Yourself, Exercise 5.7

1. In a competitive market

qs = −12 + 0.3p and qd = 80 − 0.2p + 0.1a

where a is the price of an alternative substitute good.
Derive reduced form equations for equilibrium price and quantity and use them

to predict the values of p and q when a is 160.
2. A per unit tax t is imposed on all items sold in a competitive market where

qs = −10 + 0.5p and qd = 200 − 2p

Derive reduced form equations for equilibrium price and quantity and use them to
predict the values of p and q when t is 5.

3. A monopoly faces the marginal cost function MC = 12 + 6q

and the demand function p = 150 − 2q

If a per unit tax t is imposed on its output derive reduced form equations for the
profit maximizing values of p and q in terms of the tax t and use them to predict
these values when t is 5.

4. In a Keynesian macroeconomic model Y = C + I +G

C = 20 + 0.75Yd

and disposable income Yd = (1 − t)Y

(a) If the values of investment and government expenditure (I and G) are exoge-
nously fixed at 50 and 30, respectively, derive a reduced form equation for
equilibrium Y in terms of t and use it to predict Y when the tax rate t is 20%.

(b) Explain what will happen to this reduced form equation and the equilibrium
level of Y if G changes to 40.

5. A proportional sales tax v is imposed in a competitive market where

pd = 800 − 4q and ps = 50 + 5q

Derive reduced form equations for the equilibrium values of p and q in terms of
the tax rate v and use them to predict p and when v is 15%.
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5.10 Price discrimination
In Section 4.10 we examined how linear functions could be summed ‘horizontally’. We shall
now use this method to help tackle some problems involving price discrimination and, in
the following section, multiplant firm/cartel pricing. It is assumed that the main economic
principles underpinning these models will be explained in your economics course and only
the methods of calculating prices and output are explained here.

In third-degree price discrimination, firms charge different prices in separate markets. To
maximize profits the theory of price discrimination says that firms should

1. split total sales between the different markets so that the marginal revenue from the last
unit sold in each market is the same, and

2. decide on the total sales level by finding the output level where the aggregate marginal
revenue function (derived by horizontally summing the marginal revenue schedules from
each individual market) intersects the firm’s marginal cost function.

It is usually assumed that the firm practising price discrimination is a monopoly. All the
examples in this section assume that the firm faces linear demand schedules in each of the
separate markets. We shall also make use of the rule that the marginal revenue schedule
corresponding to a linear demand schedule will have the same intercept on the price axis but
twice the slope. The method of solution is best explained with some examples.

Example 5.18

A monopoly can sell in two separate markets at different prices (in £) and faces the marginal
cost schedule

MC = 1.75 + 0.05q

The two demand schedules are

p1 = 12 − 0.15q1 and p2 = 9 − 0.075q2

What price should it charge and how much should it sell in each market to maximize profit?

Solutionl

It helps to draw a sketch diagram when tackling this type of problem so that you can relate the
different quantities to the economic model. Note that the demand schedules in this example,
illustrated in Figure 5.5, are the same as those in Example 4.20 in the last chapter when the
marginal revenue summation process was explained in more detail. You can refer back if you
do not follow the steps below.

First, the relevant MR schedules and their inverse functions are derived from the demand
schedules. Given

p1 = 12 − 0.15q1 p2 = 9 − 0.075q2

then MR1 = 12 − 0.3q1 MR2 = 9 − 0.15q2

and so q1 = 40 − MR1

0.3
(1) q2 = 60 − MR2

0.15
(2)
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For profit maximization

MR1 = MR2 = MR (3)

and by definition

q = q1 + q2 (4)

Therefore, substituting (1), (2) and (3) into (4)

q =
(

40 − MR

0.3

)
+

(
60 − MR

0.15

)

= 12 − MR + 18 − 2MR

0.3

= 30 − 3MR

0.3
= 100 − 10MR

and so MR = 10 − 0.1q (5)

This function does not apply above £9 as only MR1 applies above this price. In this example
Figure 5.5 shows that MC will cut MR in the section below the kink K.

The aggregate profit-maximizing output is found where

MR = MC

Thus using the MC function given in the question and the aggregated marginal revenue
function (5) derived above we get

10 − 0.1q = 1.75 + 0.05q

8.25 = 0.15q

55 = q
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Therefore

MR = 10 − 0.1(55) = 10 − 5.5 = 4.5

and so

MR1 = 4.5 MR2 = 4.5

To determine the prices and output levels in each market we now just substitute these MR
values into the inverse marginal revenue functions (1) and (2) derived above. Thus

q1 = 40 − MR1

0.3
= 40 − 4.5

0.3
= 40 − 15 = 25

q2 = 60 − MR2

0.15
= 60 − 4.5

0.15
= 60 − 30 = 30

You can check these output figures to ensure that q1 + q2 = q.

Relating these calculations to Figure 5.5, what we have done is found the intersection point
of MR and MC to determine the profit-maximizing levels of q and MR. Then a horizontal
line is drawn across to see where this level of marginal revenue cuts MR1 and MR2. This
enables us to read off q1 and q2 and the corresponding prices p1 and p2 These prices can
be determined by simply substituting the above values of q1 and q2 into the two demand
schedules specified in the question. Thus

p1 = 12 − 0.15q1 = 12 − 0.15(25) = 12 − 3.75 = £8.25

p2 = 9 − 0.075q2 = 9 − 0.075(30) = 9 − 2.25 = £6.75

Finally, refer back to the sketch diagram to ensure that the relative magnitudes of the answer
correspond to those read off the graph. In this type of problem it is easy to get mixed up in
the various stages of the calculation. From Figure 5.5, we can see that p1 should be greater
than p2 which checks out with the above answers.

Not all price discrimination models involve the horizontal summation of demand schedules.
In first-degree (perfect) price discrimination each individual unit is sold at a different

price. Because the prices of other units do not have to be reduced for a firm to increase sales,
the marginal revenue from each unit is the price it sells for. Therefore the marginal revenue
schedule is the same as the demand schedule, instead of lying below it.

In second-degree price discrimination a firm breaks the market up into a series of price
bands. In a two-part pricing scheme this might mean that the first few units are sold at a
previously determined price and then a price is chosen for the remaining units that will
maximize profits, given the first price and the marginal cost schedule.

The example below explains how the relevant prices and quantities can be calculated under
these different forms of price discrimination.

Example 5.19

A monopoly faces the demand schedule p = 16 − 0.064q

and the marginal cost schedule MC = 2.2 + 0.019q

© 1993, 2003 Mike Rosser



A

Demand

B
0 q

£

9.99

2.20

94 120 166 250

MR�

60

16.00

12.16

MC

MR

8.32

Figure 5.6

It has already been decided that the first 60 units will be sold at a price of £12.16. Given this
constraint, what price for the remaining units will maximize profits? How will total output
compare with output when

(i) the firm can only set a single price?
(ii) perfect price discrimination takes place?

Solution

We can check that the price of £12.16 for the first 60 units corresponds to point A on the
demand schedule in Figure 5.6 since

p = 16 − 0.064q = 16 − 0.064(60) = 16 − 3.84 = £12.16

If the firm wishes to sell more output it will not have to reduce the price of these first 60
units. It therefore effectively faces the marginal revenue schedule MR′. This is constructed
by assuming that the zero on the quantity axis is moved 60 units to the right to point B. MR′ is
then drawn in the usual way with the same ‘intercept’ on the price axis (effectively point A)
but twice the slope of the demand schedule. The firm should then employ the usual rule for
profit maximization, which is to produce the output level at which marginal revenue MR′
equals marginal cost.

To derive a function for MR′, define q ′ = q − 60, i.e. q ′ measures output from point B
on the quantity axis. The demand schedule over this output range has the same slope as the
original demand schedule (−0.064) but the new ‘intercept’ value of £12.16. It is therefore
described by the function

p = 12.16 − 0.064q ′
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and therefore

MR′ = 12.16 − 0.128q ′ (1)

using the rule that a marginal revenue function has twice the slope of a linear demand schedule.
Substituting the original definition of output for q ′ into (1)

MR′ = 12.16 − 0.128(q − 60)

= 12.16 − 0.128q + 7.68

= 19.84 − 0.128q (2)

Profit maximization, subject to the given price constraint on the first 60 units, requires

MR′ = MC

Therefore, equating (2) and the given MC function

19.84 − 0.128q = 2.2 + 0.019q

17.64 = 0.147q

120 = q

This is total output. The amount sold at the second (lower) price will be

q ′ = q − 60 = 120 − 60 = 60

The price for these units will be

p = 12.16 − 0.064q ′ = 12.16 − 0.064(60) = 12.16 − 3.84 = £8.32

The total output level of 120 units under this second-degree price discrimination policy can
be compared with

(a) single-price profit maximization:

given the demand schedule p = 16 − 0.064q

then MR = 16 − 0.128q

Single-price profit maximization occurs when

MR = MC

16 − 0.128q = 2.2 + 0.019q

13.8 = 0.147q

93.877 = q (marked as 94 on graph)

Output is therefore lower than the 120 units produced under a two-part pricing scheme.
This is what one would expect given that price discrimination allows a firm to sell extra
output without reducing the price of all previously sold units and hence shifts the relevant
marginal revenue schedule to the right.
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The profit-maximizing single price can be found from the demand schedule as

p = 16 − 0.064q = 16 − 0.064(93.877) = £9.99

This is higher than the £8.32 price for the second batch of output in the second-degree
price discrimination example above.

(b) Perfect price discrimination:
If all units are sold at different prices then marginal revenue is the same as the demand
schedule, i.e.

MR = 16 − 0.064q

The profit-maximizing output is determined where

MR = MC

16 − 0.064q = 2.2 + 0.019q

13.8 = 0.083q

166.265 = q (166 on graph)

This is greater than the two-part pricing discrimination output, which is what is expected.
The greater the number of different segments a market can be broken up into the higher
will be the profits that can be extracted and the output that can be sold.

Note that in the above example, and in all the others in this section, we shall assume that
total costs, which are not actually specified, are low enough to allow an overall profit to be
made.

Test Yourself, Exercise 5.8

1. A price-discriminating monopoly sells in two markets whose demand functions are

q1 = 160 − 10p1 and q2 = 240 − 20p2

and it faces the marginal cost schedule MC = 1.2 + 0.02q, where q = q1 + q2.
How much should it sell in each market, and at what prices, in order to maximize
profits?

2. A monopoly faces the marginal cost schedule MC = 1.1 + 0.01q and can price-
discriminate between the two markets where

p1 = 10 − 0.1q1 and p2 = 6 − 0.04q2

How much should it sell in each market to maximize profit, and at what prices?
3. A price-discriminating monopoly sells in two markets whose demand sched-

ules are

p1 = 12.5 − 0.0625q1 p2 = 7.2 − 0.002q2

and faces the horizontal marginal cost schedule MC = 5.
What price and output should it choose for each market?
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4. A monopoly faces the horizontal marginal cost schedule MC = 42 and can operate
a two-part pricing scheme in the market with the demand schedule

p = 180 − 0.6q

If the first 100 units are sold at a price of £120 each, what price should be charged
for the remaining units in order to maximize profit?

5. A monopoly sells in a market where p = 12 − 0.06q

and has the marginal cost schedule MC = 3 + 0.04q

If it can operate second-degree price discrimination, what price should it sell the
remaining units for if it has already been decided to sell the first 50 units for a price
of £9?

6. A price-discriminating monopoly sells in two markets whose demand schedules
are

q1 = 120 − 6p1 q2 = 110 − 8p2

If its marginal cost function is MC = 2.26+0.02q calculate the profit-maximizing
price and sales levels for each market.

7. A monopoly has the demand schedule p = 210 − 0.2q

and the marginal cost schedule MC = 20 + 0.8q

(a) If it can practise first-degree price discrimination how much should it sell?
(b) If it can practise second-degree price discrimination and it has already made

the decision to sell the first 100 units at a price of £190, what price should
it charge for the rest of the units it sells?

5.11 Multiplant monopoly
The theory of multiplant monopoly is analogous to the model of third-degree price discrimi-
nation explained above except that it is marginal cost schedules that are summed rather than
marginal revenue schedules. The basic principles of the multiplant model are:

1. The firm should adjust production so that the marginal cost of the last unit produced in
each plant is equal to the marginal cost of the last unit produced by the other plant(s).

2. Total output is determined where the aggregate marginal cost schedule (derived by hor-
izontally summing the marginal cost schedules in each individual plant) intersects the
firm’s marginal revenue schedule.

The firm is usually assumed to be a monopoly so that the demand and marginal rev-
enue schedules can be clearly defined. The multiplant monopoly model can also be used to
determine price and output levels for the different (single-plant) firms in a cartel where
perfect collusion takes place. This is a less likely scenario, however, as perfect collu-
sion within cartels is beset with many problems, as you will know from your economics
course.
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Example 5.20

A firm operates two plants whose marginal cost schedules are

MC1 = 2 + 0.2q1 MC2 = 6 + 0.04q2

It is a monopoly seller in a market where the demand schedule is

p = 66 − 0.1q

where q is aggregate output and all costs and prices are measured in £.
How much should the firm produce in each plant, and at what price should total output be

sold, if it wishes to maximize profits?

Solution

We need to derive the horizontally summed marginal cost schedule MC, find where it inter-
sects MR, and then see which output levels this marginal cost value corresponds to in each
plant. Price is read off the demand schedule at the aggregate output level. (You will note that
the marginal cost schedules to be summed are the same as those in Example 4.21 which was
illustrated in Figure 4.23.)

Given the demand schedule

p = 66 − 0.1q

we know that the marginal revenue schedule will have the same intercept and twice the slope.
Thus

MR = 66 − 0.2q (1)

To be able to set MC = MR and solve for q we need to derive MC as a function of q. To
do this, we first derive the inverse functions of the individual plant MC schedules, as shown
below.

MC1 = 2 + 0.2q1 MC2 = 6 + 0.04q2

MC1 − 2 = 0.2q1 MC2 − 6 = 0.04q2

5MC1 − 10 = q1 25MC2 − 150 = q2

Given that q = q1 + q2 by definition and MC = MC1 = MC2 for profit maximization then
by substituting the above inverse functions for q1 and q2 we get

q = (5MC − 10)+ (25MC − 150)

q = 30MC − 160

q + 160 = 30MC

q + 160

30
= MC (2)
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Setting MC = MR, from (1) and (2) we now get

q + 160

30
= 66 − 0.2q

q + 160 = 1,980 − 6q

7q = 1,820

q = 260 (9)

Substituting this aggregate output level into (2) gives

MC = q + 160

30
= 260 + 160

30
= 420

30
= 14

Therefore MC1 = MC2 = MC = 14

and so q1 = 5(14)− 10 = 70 − 10 = 60

and q2 = 25(14)− 150 = 350 − 150 = 200

We can easily check that these output levels for the individual plants correspond to the
aggregate output of 260 calculated above since

q1 + q2 = 60 + 200 = 260 = q

To find the price at which this aggregate output is sold, simply substitute this value of qinto
the demand schedule. Therefore

p = 66 − 0.1q = 66 − 0.1(260) = 66 − 26 = £40

The basic principles explained above can also be applied to more complex problems where
there are more than two plants.

Example 5.21

A firm operates four plants whose marginal cost schedules are

MC1 = 20 + q1 MC3 = 40 + q3

MC2 = 40 + 0.5q2 MC4 = 60 + 0.5q4

and it is a monopoly seller in a market where

p = 580 − 0.3q

How much should it produce in each plant and at what price should its output be sold if it
wishes to maximize profit?
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Solution

First we find the inverses of the marginal cost functions. Thus

MC1 = 20 + q1 MC2 = 40 + 0.5q2 MC3 = 40 + q3 MC4 = 60 + 0.5q4

q1 = MC1 − 20 q2 = 2MC2 − 80 q3 = MC3 − 40 q4 = 2MC4 − 120

Given that

q = q1 + q2 + q3 + q4

and for profit maximization

MC = MC1 = MC2 = MC3 = MC4

then, by summing all the inverses of the individual MC functions and substituting MC,
we can write

q = (MC − 20)+ (2MC − 80)+ (MC − 40)+ (2MC − 120)

q = 6MC − 260

q + 260

6
= MC (1)

Since

p = 580 − 0.3q

MR = 580 − 0.6q (2)

To maximize profits MC = MR and so equating (1) and (2)

q + 260

6
= 580 − 0.6q

q + 260 = 3,480 − 3.6q

4.6q = 3,220

q = 700

For this aggregate output level the marginal cost is

MC = q + 260

6
= 700 + 260

6
= 960

6
= 160

Substituting this value of MC into the individual inverse marginal cost functions to find plant
output levels gives

q1 = MC1 − 20 = 160 − 20 = 140

q2 = 2MC2 − 80 = 320 − 80 = 240

q3 = MC3 − 40 = 160 − 40 = 120

q4 = 2MC4 − 120 = 320 − 120 = 200

These total to 700, which checks out with the answer for q above.
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The price to sell at is found by substituting the total output of 700 units into the demand
schedule given in the question. Thus

p = 580 − 0.3q = 580 − 0.3(700) = 580 − 210 = £370

Note that we did not draw a sketch diagram for the above example to check whether or
not the MR schedule cuts the aggregated MC schedule at a level where output by all four
plants is positive, i.e. where the value of MC is above the intercept on the vertical axis for
each individual MC schedule. However, as all four output levels were calculated as positive
numbers we know that this must be the case.

In this type of question, if the usual mathematical method throws up a negative quantity for
output by one or more plants (or a negative sales figure in a price discrimination model), then
this means that output in this plant (or plants) should be zero. The question should then be
reworked with the marginal cost schedule for any such plants excluded from the aggregated
MC schedule.

Price discrimination with multiplant monopoly

It is possible to apply the principles of both price discrimination and multiplant monopoly at
the same time, if all the necessary conditions hold.

Example 5.22

A multiplant monopoly operates two plants whose marginal cost schedules are

MC1 = 42.5 + 0.5q1 MC2 = 130 + 2q2

It also sells its product in two separable markets whose demand schedules are

pA = 360 − qA pB = 280 − 0.4qB

(Note that the subscripts A and B are used to distinguish quantities sold in the two markets
from the quantities q1 and q2 produced in the two plants.)

Calculate how much it should produce in each plant, how much it should sell in each
market, and how much it should charge in each market.

Solution

First derive the aggregate MC function by the usual method. Given

MC1 = 42.5 + 0.5q1 MC2 = 130 + 2q2

then q1 = 2MC − 85 q2 = 0.5MC2 − 65

To maximize profits, output is adjusted so that MC1 = MC2 = MC

Therefore q = q1 + q2 = (2MC − 85)+ (0.5MC − 65)

q = 2.5MC − 150

60 + 0.4q = MC (1)
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Next, derive the aggregate MR function. Given

pA = 360 − qA pB = 280 − 0.4qB

then

MRA = 360 − 2qA MRB = 280 − 0.8qB

qA = 180 − 0.5MRA qB = 350 − 1.25MRB

To maximize profits, sales are adjusted so that MRA = MRB = MR

Therefore q = qA + qB = (180 − 0.5MR)+ (350 − 1.25MR)

q = 530 − 1.75MR

MR = 530 − q

1.75
(2)

To maximize profits MC = MR. Therefore, equating (1) and (2)

60 + 0.4q = 530 − q

1.75

105 + 0.7q = 530 − q

1.7q = 425

q = 250

Thus

MC = 60 + 0.4q = 60 + 0.4(250) = 60 + 100 = 160

and also

MR = MC = 160

To find production levels in the two plants, substitute this value of MC into the inverse MC
functions above. Thus

q1 = 2MC − 85 = 2(160)− 85 = 320 − 85 = 235

q2 = 0.5MC − 65 = 0.5(160)− 65 = 80 − 65 = 15

To find sales levels in each market, substitute this value of MR into the inverse MR functions
above. Thus

qA = 180 − 0.5MR = 180 − 0.5(160) = 180 − 80 = 100

qB = 350 − 1.25MR = 350 − 1.25(160) = 350 − 200 = 150

A quick check shows that the two production levels and the two sales levels both add to 250,
which is what is expected.

Finally, the prices charged in the two markets A and B are found by substituting the above
values of qA and qB into the demand schedules. Thus

pA = 360 − qA = 360 − 100 = £260

pB = 280 − 0.4qB = 280 − 0.4(150) = 280 − 60 = £220

© 1993, 2003 Mike Rosser



Test Yourself, Exercise 5.9

1. A monopoly operates two plants whose marginal cost schedules are

MC1 = 2 + 0.1q1 MC2 = 4 + 0.08q2

and sells in a market where the demand function is q = 1160 − 20p.
How much should it produce in each plant and at what price should its product
be sold?

2. A multiplant monopoly sells in a market where the demand schedule is

p = 253.4 − 0.025q

and produces in two plants whose marginal cost schedules are

MC1 = 20 + 0.0625q1 MC2 = 50 + 0.1q2

How should it split output between the two plants in order to maximize profit?
What price should it sell at?

3. A firm operates two plants whose marginal cost schedules are

MC1 = 22.5 + 0.25q1 MC2 = 15 + 0.25q2

It is also a monopoly which can price-discriminate between two markets, A and
B, whose demand schedules are

pA = 600 − 0.125qA pB = 850 − 0.1qB

If it wishes to maximize profits, how much should it produce in each plant, how
much should it sell in each market, and what prices should it sell at?

4. A multiplant monopoly produces using two plants with the marginal cost schedules

MC1 = 8 + 0.2q1 MC2 = 10 + 0.05q2

It can also price-discriminate between three markets whose demand schedules are

pA = 150 − 0.1875qA pB = 80 − 0.15qB pC = 80 − 0.1qC

In order to maximize profits, how much should it produce in each plant, how much
should it sell in each market, and what prices should it sell at?

5. A monopoly operates three plants with marginal cost schedules

MC1 = 0.1 + 0.02q1 MC2 = 0.3 + 0.004q2 MC3 = 0.2 + 0.008q3

How much should it make in each plant to maximize profit if its market demand
schedule is

p = 28 − 0.2q

and what price will the total output be sold at?

© 1993, 2003 Mike Rosser



Appendix: linear programming
Although basically an extension of the linear algebra covered in the main body of this chapter,
the technique of linear programming involves special features which distinguish it from other
linear algebra applications. When all the relevant functions are linear, this technique enables
one to:

• calculate the profit-maximizing output mix of a multi-product firm subject to restrictions
on input availability, or

• calculate the input mix that will minimize costs subject to minimum quality standards
being met.

This makes it an extremely useful tool for managerial decision-making.
However, it should be noted that, from a pure economic theory viewpoint, linear pro-

gramming cannot make any general predictions about price or output for a large number of
firms. Its usefulness lies in the realm of managerial (or business) economics where economic
techniques can help an individual firm to make efficient decisions.

Constrained maximization

A resource allocation problem that a firm may encounter is how to decide on the product mix
which will maximize profits when it has limited amounts of the various inputs required for
the different products that it makes. The firm’s objective is to maximize profit and so profit
is what is known as the ‘objective function’. It tries to optimize this function subject to the
constraint of limited input availability. This is why it is known as a ‘constrained optimization’
problem.

When both the objective function and the constraints can be expressed in a linear form
then the technique of linear programming can be used to try to find a solution. (Constrained
optimization of non-linear functions is explained in Chapter 11.) We shall restrict the analysis
here to objective functions which have only two variables, e.g. when only two goods contribute
to a firm’s profit. This enables us to use graphical analysis to help find a solution, as explained
in the example below.

Example 5.A1

A firm manufactures two goods A and B using three inputs K, L and R. The firm has at its
disposal 150 units of K, 120 units of L and 40 units of R. The net profit contributed by each
unit sold is £4 for A and £1 for B. Each unit of A produced requires 3 units of K, 4 units of L
plus 2 units of R. Each unit of B produced requires 5 units of K, 3 units of L and none of R.
What combination of A and B should the firm manufacture to maximize profits given these
constraints on input availability?

Solution

From the per-unit profit figures in the question we can see that the linear objective function
for profit which the firm wishes to maximize will be

π = 4A+ B

where A and B represent the quantities of goods A and B that are produced.
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Figure 5.A1

The total amount of input K required will be 3 for each unit of A plus 5 for each unit of B
and we know that only 150 units of K are available. The constraint on input K is thus

3A+ 5B ≤ 150 (1)

Similarly, for L

4A+ 3B ≤ 120 (2)

and for R

2A ≤ 40 (3)

As the firm cannot produce negative quantities of the two goods, we can also add the two
non-negativity constraints on the solutions for the optimum values of A and B, i.e.

A ≥ 0 (4)

and

B ≥ 0 (5)

Now turn to the graph in Figure 5.A1 which measures A and B on its axes. The first step
in the graphical solution of a linear programming problem is to mark out what is known
as the ‘feasible area’. This will contain all the values of A and B that satisfy all the above
constraints (1) to (5). This is done by eliminating the areas which could not possibly contain
the solution.

We can easily see that the non-negativity constraints (4) and (5) mean that the solution
must lie on, or above, the A axis and on, or to the right of, the B axis.

To mark out the other constraints we consider in turn what would happen if the firm entirely
used up its quota of each of the inputs K, L and R. If all the available K was used up, then in
constraint (1) an equality sign would replace the ≤ sign and it would become the function

3A+ 5B = 150 (6)
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This linear constraint can easily be marked out by joining its intercepts on the two axes. When
A = 0 then B = 30 and when B = 0 then A = 50. Thus the constraint will be the straight
line marked (K). This is rather like a budget constraint. If all the available K is used then
the firm’s production mix will correspond to a point somewhere on the constraint line (K).
It is also possible to use less than the total amount available, in which case the firm would
produce a combination of A and B below this constraint. Points above this constraint are not
feasible, though, as they correspond to more than 150 units of K.

In a similar fashion we can deduce that all points above the constraint line (L) are not
feasible because when all the available L is used up then

4A+ 3B = 120 (7)

The constraint on R is shown by the vertical line (R) since when all available R is used up then

2A = 40 (8)

Points to the right of this line will not be feasible.
Having marked out the individual constraints, we can now delineate the area which contains

combinations ofA andB which satisfy all five constraints. This is shown by the heavier black
lines in Figure 5.A1.

We know that the firm’s objective function is π = 4A + B. But as we do not yet know
what the profit is, how can we draw in this function? To overcome this problem, first make
up a figure for profit, which when divided by the two per-unit profit figures (£4 and £1) will
give numbers within the range shown on the graph. For example, if we suppose profit is £40,
then we can draw in the broken line π40 corresponding to the function

40 = 4A+ B

If we had chosen a figure for profit of more than £40 then we would have obtained a line
parallel to this one, but further away from the origin; e.g. the line π80 corresponds to the
function 80 = 4A+ B.

If the firm is seeking to maximize profit then it needs to find the furthest profit line from
the origin that passes through the feasible area. All profit lines will have the same slope and
so, using π40 as a guideline, we can see that the highest feasible profit line is π∗ which just
touches the edge of the feasible area at X. The optimum values of A and B can then simply
be read off the graph, giving A = 20 and B = 13 (approximately).

A more accurate answer may be obtained algebraically, once the graph has been used to
determine which is the optimum point, since the solution to a linear programming problem
will nearly always be at the intersection of two or more constraints. (Exceptionally the
objective function may be parallel to a constraint – see Example 5.A3.)

The graph in Figure 5A.1 tells us that the solution to this problem is where the constraints
(L) and (R) intersect. Thus we have the two simultaneous equations

4A+ 3B = 120 (7)

2A = 40 (8)
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which can easily be solved to find the optimum values of A and B.

From (8) A = 20

Substituting in (7) 4(20)+ 3B = 120

3B = 40

B = 13.33 (to 2 dp)

Thus maximum profit is

π = 4A+ B = 4(20)+ 13.33 = 80 + 13.33 = £93.33

The optimum combination X is on the constraints for L and R, but below the constraint for K.
Thus, as the K constraint does not ‘bite’, there must be some spare capacity, or what is often
called ‘slack’, for K. When the firm produces 20 of A and 13.33 of B, then its usage of K is

3A+ 5B = 3(20)+ 5(13.33) = 60 + 66.67 = 126.67

The amount of K available is 150 units; therefore slack is

150 − 126.67 = 23.33 units of K

Now that the different steps involved in solving a linear programming problem have been
explained let us work through another problem.

Example 5.A2

A firm produces two goods A and B, which each contribute a net profit of £1 per unit sold.
It uses two inputs K and L. The input requirements are:

3 units of K plus 2 units of L for each unit of A

2 units of K plus 3 units of L for each unit of B

If the firm has 600 units of K and 600 units of L at its disposal, how much of A and B should
it produce to maximize profit?

Solution

Using the same method as in the previous example we can see that the constraints are:

for input K 3A+ 2B ≤ 600 (1)

for input L 2A+ 3B ≤ 600 (2)

non-negativity A ≥ 0 B ≥ 0

The feasible area is therefore as marked out by the heavy black lines in Figure 5A.2.
As profit is £1 per unit for both A and B, the objective function is

π = A+ B
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If we suppose profit is £200, then

200 = A+ B

This function corresponds to the line π200 which can be used as a guideline for the slope
of the objective function. The line parallel to π200 that is furthest away from the origin but
still within the feasible area will represent the maximum profit. This is the line π∗ through
point M. The optimum values of A and B can thus be read off the graph as 120 of each.

Alternatively, once we know that the optimum combination ofA andB is at the intersection
of the constraints (K) and (L), the values of A and B can be found from the simultaneous
equations

3A+ 2B = 600 (1)

2A+ 3B = 600 (2)

From (1) 2B = 600 − 3A

B = 300 − 1.5A (3)

Substituting (3) into (2)

2A+ 3(300 − 1.5A) = 600

2A+ 900 − 4.5A = 600

300 = 2.5A

120 = A
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Substituting this value of A into (3)

B = 300 − 1.5(120) = 120

As both A and B equal 120 then

π∗ = 120 + 120 = £240

The optimum combination at M is where both constraints (K) and (L) bite. There is therefore
no slack for either K or L.

It is possible that the objective function will have the same slope as one of the constraints.
In this case there will not be one optimum combination of the inputs as all points along the
section of this constraint that forms part of the boundary of the feasible area will correspond
to the same value of the objective function.

Example 5.A3

A firm produces two goods x and y which require inputs of raw material (R), labour (L) and
components (K) in the following quantities:

1 unit of x requires 12 kg of R, 10 hours of L and 15 units of K

1 unit of y requires 21 kg of R, 10 hours of L and 6 units of K

Both x and y add £200 per unit sold to the firm’s profits. The firm can use up to a total of
252 kg of R, 150 hours of L and 180 units of K. What production mix of x and y will maximize
profits?

Solution

The constraints can be written as

12x + 21y ≤ 252 (R)

10x + 10y ≤ 150 (L)

15x + 6y ≤ 180 (K)

x ≥ 0, y ≥ 0

These are shown in Figure 5.A3 where the feasible area is marked out by the shape ABCD0.
The objective function is

π = 200x + 200y

To find the slope of this objective function, assume profit is £2,000. This could be achieved
by producing 10 of x and none of y, or 10 of y and no x, and is therefore shown by the broken
line π2000. This line is parallel to the constraint (L). Therefore if we slide out the objective
function π to find the maximum value of profit within the feasible area we can see that it
coincides with the boundary of the feasible area along the stretch BC.
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What this means is that both points B and C, and anywhere along the portion of the
constraint line (L) between these points, will give the same (maximum) profit figure.

At B the constraints (R) and (L) intersect. Therefore these two resources are used up
completely and so

12x + 21y = 252 (1)

10x + 10y = 150 (2)

From (2) x = 15 − y (3)

Substituting (3) into (1)

12(15 − y)+ 21y = 252

180 − 12y + 21y = 252

9y = 72

y = 8

Substituting this value of y into (3)

x = 15 − 8 = 7

Thus profit at B is

π = 200x + 200y = 200(7)+ 200(8) = £1,400 + £1,600 = £3,000
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At C the constraints (L) and (K) intersect, giving the simultaneous equations

10x + 10y = 150 (2)

15x + 6y = 180 (4)

Using (3) again to substitute for x in (4),

15(15 − y)+ 6y = 180

225 − 15y + 6y = 180

45 = 9y

5 = y

Substituting this value of y into (3)

x = 15 − 5 = 10

Thus, profit at C is

π = 200x + 200y = 200(10)+ 200(5) = 2,000 + 1,000 = £3,000

which is the same as the profit achieved at B, as expected. This example therefore illustrates
how a linear programming problem may not have a unique solution if the objective function
has the same slope as one of the constraints that bounds the feasible area.

You should also note that the solution to a linear programming problem may be on one
of the axes, where a non-negativity constraint operates. Some students who do not fully
understand linear programming sometimes manage to draw in the constraints correctly, but
then incorrectly assume that the solution must lie where the constraints they have drawn
intersect. However, it is, of course, also necessary to draw in the objective function to find
the solution. The example below illustrates such a case.

Example 5.A4

A company uses inputs K and L to manufacture goods A and B. It has available 200 units
of K and 180 units of L and the input requirements are

10 units of K plus 30 units of L for each unit of A

25 units of K plus 15 units of L for each unit of B

If the per-unit profit is £80 for A and £30 for B, what combination of A and B should it
produce to maximize profit and how much of K and L will be used in doing this?

Solution

The resource constraints are

10A+ 25B ≤ 200 (K)

30A+ 15B ≤ 180 (L)

A ≥ 0 B ≥ 0
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The corresponding feasible area ZXY0 is marked out in Figure 5.A4. The objective function is

π = 80A+ 30B

To find the slope of the objective function, assume total profit is £240. This could be obtained
by selling 8 of B or 3 of A, and so the broken line π240 in Figure 5A.4 illustrates the
combinations of A and B that would yield this level of profit. The maximum profit mix is
obtained when a line parallel to π240 is drawn as far from the origin as possible but still within
the feasible area. This will be line π∗ through point Y.

Therefore, profit is maximized at Y, where no B is produced and 6 units of A are produced.
Maximum profit = 6 × £80 = £480.

In this example only the constraint (L) bites and so there will be slack in the (K) constraint.
The total requirement of K to produce 6 units of A will be 60. There are 200 units of K
available and so 140 remain unused. All 180 units of L are used up.

Test Yourself, Exercise 5.A1

1. A firm manufactures products A and B using the two inputs X and Y in the
following quantities:

1 tonne of A requires 80 units of X plus 148 units of Y

1 tonne of B requires 200 units of X plus 120 units of Y

The profit per unit of A is £20, and the per-unit profit of B is £30. If the firm has
at its disposal 1,600 units of X and 1,800 units of Y, what combination of A and
B should it manufacture in order to maximize profit? (Fractions of a tonne may
be produced.)

Should the firm change its production mix if per-unit profits alter to

(a) £25 each for both A and B, or (b) £30 for A and £20 for B?
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2. A firm produces the goods A and B using the four inputs W, X, Y and Z in the
following quantities:

1 unit of A requires 9 units of W, 30 of X, 20 of Y and 20 of Z

1 unit of B requires 13 units of W, 55 of X, 28 of Y and 20 of Z

The firm has available 468 units of W, 1,980 units of X, 1,120 units of Y and 800
units of Z. What production mix will maximize its total profit if each unit of A
adds £60 to profit and each unit of B adds £75?

3. A firm sells two versions of a device for cutting and drilling. Version A is sold
direct to the public in DIY stores, yielding a profit per unit of £50, and version B is
sold to other firms for industrial use, yielding a per-unit profit of £20. Each day the
firm is able to use 400 hours of labour, 750 kg of raw material and 240 metres of
packaging material. These inputs are required to produce A and B in the following
quantities: one version A device requires 20 hours of labour, 50 kg of raw material
and 20 metres of packaging, whilst one of version B only requires 20 hours of
labour plus 30 kg of raw material. How many of each version should be produced
each day in order to maximize profit?

4. A firm uses three inputs X, Y and Z to manufacture two goods A and B. The
requirements per tonne are as follows.

A: 5 loads of X, 4 containers of Y and 6 hours of Z

B: 5 loads of X, 6 containers of Y and 2 hours of Z

Each tonne of A brings in £400 profit and each tonne of B brings in £300. What
combination of A and B should the firm produce to maximize profit if it has at its
disposal 150 loads of X, 240 containers of Y and 150 hours of Z?

5. A firm makes the two food products A and B and the contribution to profit is £2
per unit of A and £3 per unit of B. There are three stages in the production process:
cleaning, mixing and tinning. The number of hours of each process required for
each product and the total number of hours available for each process are given in
Table 5.A1. Given these constraints what combination of A and B should the firm
produce to maximize profit?

Table 5.1

Hours of

Cleaning Mixing Tinning

1 unit of A requires 3 6 2
1 unit of B requires 6 2 1.5
Total hours available 210 120 60

6. Make up your own values for the per-unit profit of A and B in the above question
and then say what the optimum production combination is.
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7. A firm manufactures two compounds A and B using two raw materials R and Q,
in addition to labour and a mixing additive. Input requirements per tonne are:

For A: 1 container of R, 3 sacks of Q, 4 hours labour and 2 tins of mixing additive
For B: 2 containers of R, 5 sacks of Q and 3 hours labour, but no mixing additive

Both A and B add £200 per tonne to the firm’s profits and it has at its disposal
60 containers of R, 150 sacks of Q, 120 hours of labour and 50 tins of mixing
additive.

What combination of A and B should it produce to maximize profits, assuming
that fractions of a tonne can be manufactured? What will these profits be? What
surplus amounts of the inputs will there be?

8. A firm manufactures two products A and B which sell for respectively £900 and
£2,000 each. It uses the four processes cutting, drilling, finishing and assembly
and the requirements per unit of output are:

A: 5 hours cutting, 18 hours drilling, 9 hours finishing and 10 hours assembly

B: 15 hours cutting, 7 hours drilling, 15 hours finishing and 10 hours assembly

How can this firm maximize its weekly sales revenue if the capacity of its factory
is limited to 390 hours cutting, 630 hours drilling, 450 hours finishing and 400
hours assembly per week?

9. If a firm is faced with the constraints described in question 2 in Test Yourself,
Exercise 5.4, what combination of A and B will maximize profit if A contributes
£30 per unit to profit and B contributes £10?

10. Show that more than one solution exists if one tries to maximize the objective
function

π = 4A+ 4B

subject to the constraints

20A + 20B ≤ 60

20A + 80B ≤ 120

A ≥ 0 B ≥ 0

11. A firm has £120,000 to invest. It can buy shares in company X which cost £2 each
and give an expected annual return of 6%, or shares in company Y which cost £4
each and give an expected annual return of 8%. It is advised not to put more than
60% of its total investments into any one type of share. What investment portfolio
will maximize the expected return? (You may answer this question with or without
a diagram.)

12. Make up your own linear programming problem involving the constrained maxi-
mization of an objective function with two variables and at least two constraints,
and solve it.
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Constrained minimization

Another problem a firm might be faced with is how to minimize the cost of producing a good
subject to constraints regarding its quality. If the objective function and the constraints are
both linear then the method used for constrained minimization is analogous to that used in
the maximization problems. The main differences in constrained minimization problems are
that:

• the feasible area is usually above the constraint lines,
• one needs to find the objective function line that is nearest to the origin within the feasible

area.

The following examples show how this method operates.

Example 5.A5

A firm manufactures a medicinal product containing three ingredients X, Y and Z. Each unit
produced must contain at least 100 g of X, 30 g of Y and 75 g of Z. The product is made by
mixing the inputs A and B which come in containers costing respectively £3 and £6 each.

These contain X, Y and Z in the following quantities:

1 container of A contains 50 g of X, 10 g of Y and 15 g of Z

1 container of B contains 20 g of X, 10 g of Y and 50 g of Z

What mix of A and B will minimize the cost per unit of the product subject to the above
quality constraints? (It does not matter if these minimum requirements are exceeded and all
other production costs can be ignored.)

Solution

Total usage of X will be 50 g for each container of A plus 20 g for each container of B. Total
usage must be at least 100 g. This quality constraint for X can thus be written as

50A+ 20B ≥ 100

Note that the constraint has the ≥ sign instead of ≤. The quality constraints on Y and Z can
also be written as

10A+ 10B ≥ 30

15A+ 50B ≥ 75

As negative amounts of the inputs A and B are not feasible there are also the two non-negativity
constraints

A ≥ 0 B ≥ 0

If the quality constraint for X is only just met then

50A+ 20B = 100 (X)
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The line representing this function is drawn as (X) in Figure 5.A5. Any combination of A
and B above this line will more than satisfy the quality constraint for X. Any combination of
A and B below this line will not satisfy this constraint and will therefore not be feasible.

In a similar fashion the constraints for Y and Z are shown by the lines representing the
functions

10A+ 10B = 30 (Y)

and

15A+ 50B = 75 (Z)

Taking all the constraints into account, the feasible area is marked out by the heavy black
lines in Figure 5A.5, or at least its lower bounds are. As these are minimum constraints then
theoretically there are no upper limits to the amounts of A and B that could be used to make
a unit of the final product.

The objective function is total cost (TC) which the firm is seeking to minimize. Given the
prices of A and B of £3 and £6 respectively, then

TC = 3A+ 6B

To obtain a guideline for the slope of the TC function assume any value for TC that is easily
divisible by the two prices of £3 and £6. For example, if TC is assumed to be £12 then the
line TC12 representing the function

12 = 3A+ 6B

can be drawn, which has a slope of −0.5.
One now needs to ask the question ‘can a line with this slope be drawn closer to the

origin (thus representing a smaller value for TC) but still going through the feasible area?’
In this case the answer is ‘yes’. The line TC∗ through M represents the lowest cost method
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of combining A and B that still satisfies the three quality constraints. The optimum amounts
of A and B can now be read off the graph at M as approximately 2.1 and 0.9 respectively.

More accurate answers can be obtained algebraically. The optimum combination M is
where the quality constraints for Y and Z intersect. These correspond to the linear equations

10A+ 10B = 30 (1)

15A+ 50B = 75 (2)

Dividing (2) by 5 we get 3A+ 10B = 15

Subtracting (1) 10A+ 10B = 30

−7A = −15

A = 15

7
= 2 1

7

Substituting this value for A into (1)

10

(
15

7

)
+ 10B = 150

7
+ 10B = 30 (3)

Multiplying (3) by 7

150 + 70B = 210

70B = 60

B = 6

7

Thus the firm should use 2 1
7 containers of A plus 6

7 of a container of B for every unit of the
final product it makes. As long as large quantities of the product are made, the firm does not
have to worry about unused fractions of containers. It just needs to use containers A and B
in the ratio 2 1

7 to 6
7 which is the same as the ratio 2.5 to 1.

The constraint on X does not bite and so there is some slack. In a minimization problem
slack means overabundance. The total amount of X contained in a unit of the final product
will be

50A+ 20B = 50

(
15

7

)
+ 20

(
6

7

)
= 750 + 120

7
= 970

7
= 138.57 mg

This exceeds the minimum requirement of 100 g of X by 38.57 g.

Example 5.A6

A firm makes a product that has minimum input requirements for the four ingredients W, X,
Y and Z. These cannot be manufactured individually and can only be supplied as part of the
composite inputs A and B.

1 litre of A includes 20 g of W, 5 g of X, 5 g of Y and 20 g of Z

1 litre of B includes 90 g of W, 7 g of X and 4 g of Y but no Z
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One drum of the final product must contain at least 7,200 g of W, 1,400 g of X, 1,000 g of Y
and 1,200 g of Z. (The volume of the drum is fixed and not related to the volume of inputs
A and B as evaporation occurs during the production process.) If a litre of A costs £9 and a
litre of B costs £16 how many litres of A and B should the firm use to minimize the cost of a
drum of the final product? Assume that all other costs can be ignored.

Solution

The minimum input requirements can be written as

20A+ 90B ≥ 7,200 (W)

5A+ 7B ≥ 1,400 (X)

5A+ 4B ≥ 1,000 (Y)

20A ≥ 1,200 (Z)

plus the non-negativity conditionsA ≥ 0, B ≥ 0. These constraints are shown in Figure 5.A6.
If only the minimum 7,200 g of W is included in the final product then 20A+90B = 7,200.

If no B was used then one would need 7,200/20 = 360 litres of A to satisfy this constraint.
If no A was used then 7,200/90 = 80 litres of B would be needed. Thus the values where
the linear constraint (W) hits the A and B axes are 360 and 80 respectively. Combinations
of A and B below this line do not satisfy the minimum amount of W requirement. The other
constraints, for X, Y and Z, are constructed in a similar fashion and the feasible area is marked
out by the heavy black lines in Figure 5.A6.

To find a guideline for the slope of the objective function, assume that the total cost (TC)
of A and B is £1,440, giving the budget constraint

1,440 = 9A+ 16B
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B

160  200 24460

26
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Figure 5.A6
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This particular budget constraint is shown by the broken line TC1440 and does not go through
the feasible area. Therefore total cost must be greater than £1,440. An increased budget will
mean a budget line further from the origin but still with the same slope as TC1440. The budget
line with this slope that is closest to the origin and that also passes through the feasible area
is TC∗.

Minimum TC is therefore achieved by using the combination of A and B corresponding
to point M. Approximate values read off the graph at M are 244 litres of A and 26 litres of B.

More accurate answers can be obtained algebraically as we know that M is at the intersec-
tion of the constraints for W and X. This means that the minimum requirements for W and
X are only just met and so

20A+ 90B = 7,200 for W (1)

5A+ 7B = 1,400 for X (2)

Multiplying (2) by 4 gives 20A+ 28B = 5,600

Subtracting (1) 20A+ 90B = 7,200

−62B = −1,600

B = 1,600

62
= 25.8 (to 1 dp)

Substituting this value for B into (1) gives

20A+ 90(25.8) = 7,200

20A+ 2,322 = 7,200

A = 4,878

20
= 243.9

Therefore the firm should use 243.9 litres of A and 25.8 litres of B for each drum of the final
product.

The total input cost will be

243.9 × £9 + 25.8 × £16 = £2,195.10 + £412.80 = £2,607.90

Test Yourself, Exercise 5.A2

1. Find the minimum value of the functionC = 40A+20B subject to the constraints

10A+ 40B ≥ 40 (x)

30A+ 20B ≥ 60 (y)

10A ≥ 10 (z)

A ≥ 0, B ≥ 0

Will there be slack in any of the constraints at the optimum combination of A and
B? If so, what is the excess capacity?
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2. A firm manufactures a product that, per litre, must contain at least 18 g of chemical
X and 10 g of chemical Y. The rest of the product is water whose costs can be
ignored. The two inputs A and B contain X and Y in the following quantities:

1 unit of A contains 6 g of X and 5 g of Y

1 unit of B contains 9 g of X and 2 g of Y

The per-unit costs of A and B are £2 and £6 respectively. What combination of
A and B will give the cheapest way of producing a litre of the final product?

3. A firm mixes the two inputs Q and R to make a vitamin supplement in liquid form.
The inputs Q and R contain the four vitamins A, B, C and D in the following
amounts:

6 mg of A, 50 mg of B, 35 mg of C and 12 mg of D per unit of Q

30 mg of A, 25 mg of B, 30 mg of C and 20 mg of D per unit of R

The inputs Q and R cost respectively 5 p and 12 p per unit. Each centilitre of the
final product must contain at least 60 mg of A, 100 mg of B, 105 mg of C and 60 mg
of D. What is the cheapest way of making the final product? Which vitamins will
exceed the minimum requirements per centilitre using this method?

4. A delivery firm has two types of van, A and B, and carries three types of load,
X, Y and Z. Each van is capable of carrying a mixed load, but only in certain
proportions, given the special size and weight of the different loads. When fully
loaded,

type A can carry 20 of X, 15 of Y and 15 of Z

type B can carry 10 of X, 60 of Y and 15 of Z

A typical daily delivery schedule requires the firm to carry 200 loads of X, 450 loads
of Y and 225 loads of Z. Each van is only loaded for deliveries once a day. The
smaller van, A, costs £50 a day to run and the larger van, B, costs £100 a day. How
many of each type of van should the firm use to minimize total running costs? Will
there be space in the vans for any more of any of the loads X, Y or Z should more
orders be placed?

5. A firm uses two inputs R and T which cost £40 each per tonne. They both contain
the chemical compounds G and H in the following quantities:

1 tonne of R contains 6 kg of G and 3 kg of H

1 tonne of T contains 15 kg of G and 4 kg of H

The final product must contain at least 180 kg of G and 60 kg of H per batch. How
many tonnes of R and T should the firm use to minimize the cost of a batch of
the final product? Will the amount of G or H it contains exceed the minimum
requirement?

6. An aircraft manufacturer fitting out the interior of a plane can use two fitments
A and B, which contain components X, Y and Z in the following quantities:

1 unit of A contains 3 units of X, 4 units of Y plus 2 units of Z

1 unit of B contains 6 units of X, 5 units of Y plus 8 units of Z
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The aircraft design is such that there must be at least 540 units of X, 600 units
of Y and 480 units of Z in total in the plane. If each unit of A weighs 4 kg and
each unit of B weighs 6 kg, what combination of A and B will minimize the total
weight of these fitments in the plane?

7. Construct your own linear programming problem involving the minimization of
an objective function and then solve it.

Mixed constraints

Some linear programming problems may contain both ‘less than or equal to’ and ‘greater
than or equal to’ constraints. It is also possible to have equality constraints, i.e. where one
variable must equal a specified quantity.

Example 5.A7

Minimize the objective function C = 12A+ 8B subject to the constraints

10A+ 40B ≥ 40 (1)

12A+ 16B ≤ 48 (2)

A = 1.5 (3)

Solution

The constraints are marked out in Figure 5.A7. Constraint (1) means that the feasible area
must be above the line

10A+ 40B = 40

L

[2]
[1]

0
 

  

[3]

A   4

B

2  1.5

3

M

1

C24

C*

Figure 5.A7

© 1993, 2003 Mike Rosser



Constraint (2) means that the feasible area must be below the line

12A+ 16B = 48

Constraint (3) means that the feasible area must be along the vertical line through A = 1.5.
The only section of the graph that satisfies all three of these constraints is the heavy black
section LM of the vertical line through A = 1.5.

If C is assumed to be 24 then the line C24 representing the function

24 = 12A+ 8B

can be drawn in and has a slope of −1.5. To minimize C, one needs to find the closest line to
the origin that has this slope and also passes through the feasible area. This will be the line
C∗ through M.

The optimum value of A is therefore obviously 1.5.
The optimum value of B occurs at the intersection of the two lines

A = 1.5

and 10A+ 40B = 40

Thus 10(1.5)+ 40B = 40

15 + 40B = 40

40B = 25

B = 0.625

Test Yourself, Exercise 5.A3

1. A firm makes two goods A and B using the three inputs X, Y and Z in the following
quantities:

20 units of X, 8 units of Y and 20 units of Z per unit of A

20 units of X, 20 units of Y and 14 units of Z per unit of B

The per-unit profit of A is £1,500, and for B the figure is £1,000. Input availability
is restricted to 60 units of X, 40 units of Y and 70 units of Z. The firm has already
committed itself to a contract to supply one customer with 1 unit of B. What
combination of A and B should it produce to maximize total profit?

2. A company produces two industrial compounds X and Y that are mixed in a final
product. They both contain one common input, R. The amount of R in one tonne
of X is 8 litres and the amount of R in one tonne of Y is 12 litres. A load of the
final product must contain at least 240 litres of R to ensure that its quality level is
met. No R is lost in the production process of combining X and Y.

The total cost of a tonne of X is £30 and the total cost of a tonne of Y is £15.
If the firm has already signed a contract to buy 7.5 tonnes of X per week, what mix
of X and Y should the firm use to minimize the cost of a load of the final product?
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3. A firm manufactures two goods A and B which require the two inputs K and L in
the following amounts:

1 unit of A requires 6 units of K and 4 of L

1 unit of B requires 8 units of K and 10 of L

The firm has at its disposal 96 units of K and 100 of L. The per-unit profit of A is
£600 and for B the figure is £300. The firm is under contract to produce a minimum
of 6 units of B. How many units of A should it make to maximize profit?

4. Construct and solve your own linear programming problem that has two variables
in the objective function and three constraints of at least two different types.

More than two variables

When the objective function in a linear programming problem contains more than two vari-
ables then it cannot be solved by graphical analysis. An advanced mathematical technique
known as the simplex method can be used for these problems. This is based on the principle
that the optimum value of the objective function will usually be at the intersection of two or
more constraints.

It is an iterative method that can be very time-consuming to use manually and for most
practical purposes it is best to use a computer program package to do the necessary calcu-
lations. If you have access to a linear programming computer package then you may try to
use it now that you understand the basic principles of linear programming. The way that data
are entered will depend on the computer package you use and you will need to consult the
relevant handbook.
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6 Quadratic equations

Learning objectives

After completing this chapter students should be able to:

• Use factorization to solve quadratic equations with one unknown variable.
• Use the quadratic equation solution formula.
• Identify quadratic equations that cannot be solved.
• Set up and solve economic problems that involve quadratic functions.
• Construct a spreadsheet to plot quadratic and higher order polynomial functions.

6.1 Solving quadratic equations
A quadratic equation is one that can be written in the form

ax2 + bx + c = 0

where x is an unknown variable and a, b and c are constant parameters with a 
= 0. For
example,

6x2 + 2.5x + 7 = 0

A quadratic equation that includes terms in both x and x2 cannot be rearranged to get a single
term in x, so we cannot use the method used to solve linear equations.

There are three possible methods one might try to use to solve for the unknown in a
quadratic equation:

(i) by plotting a graph
(ii) by factorization

(iii) using the quadratic ‘formula’

In the next three sections we shall see how each can be used to tackle the following question.
If a monopoly can face the linear demand schedule

p = 85 − 2q (1)

at what output will total revenue be 200?
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It is not immediately obvious that this question involves a quadratic equation. We first need
to use economic analysis to set up the mathematical problem to be solved. By definition we
know that total revenue will be

TR = pq (2)

So, substituting the function for p from (1) into (2), we get

TR = (85 − 2q)q = 85q − 2q2

This is a quadratic function that cannot be ‘solved’ as it stands. It just tells us the value of
TR for any given output. What the question asks is ‘at what value of q will this function be
equal to 200’? The mathematical problem is therefore to solve the quadratic equation

200 = 85q − 2q2 (3)

All three solution methods require like terms to be brought together on one side of the equality
sign, leaving a zero on the other side. It is also necessary to put the terms in the order given
in the above definition of a quadratic equation, i.e.

unknown squared (q2), unknown (q), constant

Thus (3) above can be rewritten as

2q2 − 85q + 200 = 0

It is this quadratic equation that each of the three methods explained in the following sections
will be used to solve.

Before we run through these methods, however, you should note that an equation involving
terms in x2 and a constant, but not x, can usually be solved by a simpler method. For example,
suppose that

5x2 − 80 = 0

this can be rearranged to give

5x2 = 80

x2 = 16

x = 4

6.2 Graphical solution
Drawing a graph of a quadratic function can be a long-winded and not very accurate process
that involves separately plotting each individual value of the variable within the range that is
being considered. It is therefore usually not a very practical method of solving a quadratic
equation. The graphical method can be useful, however, not so much for finding an approx-
imate value for the solution, but for explaining why certain quadratic equations do not have
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a solution whilst others have two solutions. Only a rough sketch diagram is necessary for this
purpose.

Example 6.1

Show graphically that a solution does exist for the quadratic equation

2q2 − 85q + 200 = 0

Solution

We first need to define a new function

y = 2q2 − 85q + 200

If the graph of this function cuts the q axis then y = 0 and we have a solution to the
quadratic equation specified in the question. Next, we calculate a few values of the function
to get an approximate idea of its shape.

When q = 0, then y = 200

When q = 1, then y = 2 − 85 + 200 = 117

and so the graph initially falls.

When q = 3, then y = 18 − 255 + 200 = −37

and so it must cut the q axis as y has gone from a positive to a negative value.

When q = 50 then y = 5,000 − 4,250 + 200 = 950

and so the value of y rises again and must cut the q axis a second time.
These values indicate that the graph is a U-shape, as shown in Figure 6.1. This cuts the

horizontal axis twice and so there are two values of q for which y is zero, which means that
there are two solutions to the question. The precise values of these solutions, 2.5 and 40, can
be found by the other two methods explained in the following sections or by computation of
y for different values of q. (See spreadsheet solution method below.)

If we slightly change the problem in Example 6.1 we can see why there may not always
be a solution to a quadratic equation.

Example 6.2

Find out if there is an output level at which total revenue is 1,500 for the function

TR = 85q − 2q2
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y = 2q2 – 85q + 200
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50 60

Figure 6.1

Solution

The quadratic equation to be solved is

1,500 = 85q − 2q2

which can be rewritten as

2q2 − 85q + 1,500 = 0

If we now specify the new function

y = 2q2 − 85q + 1,500

and calculate a few values, we can see that it falls and then rises again but never cuts the
q axis, as Figure 6.2 shows.

When q = 0, then y = 1,500

When q = 10, then y = 850

When q = 20, then y = 600

When q = 25, then y = 625

There are therefore no solutions to this quadratic equation, i.e. there is no output at which
total revenue will be 1,500.
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y = 2q2 – 85q + 1,500

q

y
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600
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Figure 6.2

Although one would never try to plot the whole graph of a quadratic function manually,
one may of course get a computer plot. The accuracy of the answer you obtain will depend
on the graphics package that you use.

Plotting quadratic functions with Excel

An Excel spreadsheet for calculating different values of the function y in Example 6.1 above
can be constructed by following the instructions in Table 6.1. Rather than building in formulae
that are specific to this example, this spreadsheet is constructed in a format that can be used
to plot any function in the form y = aq2 + bq+ c once the parameters a, b and c are entered
in the relevant cells. The range for q has been chosen to ensure that it includes the values
when y is zero, which is what we are interested in finding.

If you construct this spreadsheet you should get the series of values shown in Table 6.2.
The q values which correspond to a y value of zero can now be read off, giving the solutions
2.5 and 40.

You may also use the Excel spreadsheet you have created to plot a graph of the function
y = 2q2 − 85q + 200. Assuming that you have q and y in single columns, then you just use
the Chart Wizard command to obtain a plot with q measured on the X axis and y as variable
A on the vertical axis. (It you don’t know how to use this chart command, refer back to
Example 4.17.) To make the chart clearer to read, enlarge it a bit by dragging the corner. The
legend box for y can also be cut out to allow the chart area to be enlarged. This should give
you a plot similar to Figure 6.3, which clearly shows how this function cuts the horizontal
axis twice.
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Table 6.1

CELL Enter  Explanation 
A1 Ex.6.2 Label to remind you what example this is
B1 QUADRATIC SOLUTION TO  

y = aq^2+bq+c = 0 
Title of spreadsheet (Note that this label is 
not an actual Excel formula.) 

B2 a = 
D2 b = 
F2 c = 

These are labels that tell you that the actual 
parameter values will go in the cells next
to them. Right justify these labels. 

C2 2 
E2 -85 
G2 200 

These are the actual parameter values for 
this example.

A4 q Column heading label 
B4 y Column heading label 
A5 0 Initial value for q
A6 =A5+0.5 Calculates a 0.5 unit increment in q

A7 to
A90 

Copy formula from cell A6
down column A 

Calculates a series of values of q in 0.5 
unit increments

B5 =$C$2*A5^2+$E$2*A5+$G$2 This formula calculates the value of the 
function corresponding to the value of q in
cell A5 and the parameter values in cells
C2, E2 and G2. 
Note that the $ sign is used so that these 
cell references do not change when this
function is copied down the y column. 

B6 to
B92 

Copy formula from cell B5
down column B

Calculates values for y in each row 
corresponding to values of q in column A.

This spreadsheet can easily be amended to calculate values and plot graphs of other
quadratic functions by entering different values for the parameters a, b and c in cells C2,
E2 and G2. For example, to calculate values for the function from Example 6.2

y = 2q2 − 85q + 1,500

the value in cell G2 should be changed to 1,500. A computer plot of this function should
produce the shape shown in Figure 6.2 above, confirming again that this function will not cut
the horizontal axis and that there is no solution to the quadratic equation

0 = 2q2 − 85q + 1,500

6.3 Factorization
In Chapter 3 factorization was explained, i.e. how some expressions can be broken down into
terms which when multiplied together give the original expression. For example,

a2 − 2ab + b2 = (a − b)(a − b)

If a quadratic function which has been rearranged to equal zero can be factorized in this way
then one or the other of the two factors must equal zero. (Remember that if A× B = 0 then
either A or B, or both, must be zero.)
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Table 6.2 

A B C D E F G H 
1 Ex 6.2 QUADRATIC SOLUTION TO    y = aq^2+bq+c = 0 
2 a = 2 b = -85 c = 200 
3 q y q y q y q y 
4 0 200 11 -493 22 -702 33 -427 
5 0.5 158 11.5 -513 22.5 -700 33.5 -403 
6 1 117 12 -532 23 -697 34 -378 
7 1.5 77 12.5 -550 23.5 -693 34.5 -352 
8 2 38 13 -567 24 -688 35 -325 
9 2.5 0 13.5 -583 24.5 -682 35.5 -297 
10 3 -37 14 -598 25 -675 36 -268 
11 3.5 -73 14.5 -612 25.5 -667 36.5 -238 
12 4 -108 15 -625 26 -658 37 -207 
13 4.5 -142 15.5 -637 26.5 -648 37.5 -175 
14 5 -175 16 -648 27 -637 38 -142 
15 5.5 -207 16.5 -658 27.5 -625 38.5 -108 
16 6 -238 17 -667 28 -612 39 -73 
17 6.5 -268 17.5 -675 28.5 -598 39.5 -37 
18 7 -297 18 -682 29 -583 40 0 
19 7.5 -325 18.5 -688 29.5 -567 40.5 38 
20 8 -352 19 -693 30 -550 41 77 
21 8.5 -378 19.5 -697 30.5 -532 41.5 117 
22 9 -403 20 -700 31 -513 42 158 
23 9.5 -427 20.5 -702 31.5 -493 42.5 200 
24 10 -450 21 -703 32 -472 43 243 
25 10.5 -472 21.5 -703 32.5 -450 43.5 287 

Excel plot of function y = 2q^2 – 85q + 200

–800

–600

–400

–200

0

200

400

0 4 8 12 16 20 24 28 32 36 40

q

Figure 6.3

Example 6.3

Solve by factorization the quadratic equation

2q2 − 85q + 200 = 0
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Solution

This expression can be factorized as

(2q − 5)(q − 40) = 2q2 − 85q + 200

Therefore

(2q − 5)(q − 40) = 0

This means that

2q − 5 = 0 or q − 40 = 0

giving solutions

q = 2.5 or q = 40

As expected, these are the same solutions as those found by the graphical method.

It may be the case that mathematically a quadratic equation has one or more solutions with
a negative value that will not apply in an economic problem. One cannot have a negative
output, for example.

Example 6.4

Solve by factorization the quadratic equation

2x2 − 6x − 20 = 0

Solution

By factorization (2x − 10)(x + 2) = 0

Therefore

2x − 10 = 0 or x + 2 = 0

x = 5 or x = −2

If x represented output, then x = 5 would be the only answer we would use.

If a quadratic equation cannot be factorized then the formula method in Section 6.5 below
must be used. The formula method can also be used, however, when an equation can be
factorized. Therefore, if you cannot quickly see a way of factorizing then you should use the
formula method. Factorization is only useful as a short-cut way of solving certain quadratic
equations. It defeats the object of the exercise if you spend half an hour trying to find a way
of factorizing an expression when it would be quicker to use the formula.
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It should also go without saying that quadratic equations for which no solutions exist
cannot be factorized. For example, it is not possible to factorize the equation

2q2 − 85q + 1,500 = 0

which we have already shown to have no solution.

Test Yourself, Exercise 6.1

1. Solve for x in the equation x2 − 5x + 6 = 0.
2. Find the output at which total revenue is £600 if a firm’s demand schedule is

p = 70 − q

3. A firm faces the average cost function

AC = 40x−1 + 10x

where x is output. When will average cost be 40?
4. Is there a positive solution for x when

0 = 12x2 + 90x − 48?

5. A firm faces the total cost schedule

TC = 6 − 2q + 2q2

when q > 2. At what output level will TC = £150?

6.4 The quadratic formula
Any quadratic equation expressed in the form

ax2 + bx + c = 0

where a, b and c are given parameters and for which a solution exists can be solved for x by
using the quadratic formula

x = −b ± √
b2 − 4ac

2a

(The sign ± means + or −.) There is no need for you to understand how the formula is
derived. You just need to know that it works.

Example 6.5

Use the quadratic formula to solve the quadratic equation

2q2 − 85q + 200 = 0
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Solution

In the quadratic formula applied to this example a = 2, b = −85 and c = 200 (and, of
course, x = q). Note that the minus signs for any negative coefficients must be included.
One also needs to take special care to remember to use the rules for arithmetic opera-
tions using negative numbers. Substituting these values for a, b and c into the formula
we get

q = −(−85)± √
(−85)2 − 4 × 2 × 200

2 × 2

= 85 ± √
7,225 − 1,600

4

= 85 ± √
5,625

4

= 85 ± 75

4
= 160

4
or

10

4
= 40 or 2.5

These are, of course, the same as the solutions found by factorization in Example 6.3
above.

What happens if you try to use the quadratic formula when no solution exists? We can find
out by applying the formula to the quadratic equation in Example 6.2 above, where a sketch
graph showed that there was no solution.

Example 6.6

Use the quadratic formula to try to solve

2q2 − 85q + 1,500 = 0

Solution

In this example a = 2, b = −85 and c = 1,500. Therefore

q = −(−85)± √
(−85)2 − 4 × 2 × 1,500

2 × 2

= 85 ± √
7,225 − 12,000

4

= 85 ± √−4,775

4

We are now stuck! It is impossible to find the square root of a negative number. In other
words, no solution exists.

It will always be the case that the quadratic formula will require the square root of a negative
number if no solution exists.
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Test Yourself, Exercise 6.2

(Use the quadratic formula to try to solve these problems.)

1. Solve for x if 0 = x2 + 2.5x − 125.
2. A firm faces the demand schedule q = 400 − 2p − p2. What price does it need

to charge to sell 100 units?
3. If a firm’s demand function is p = 100 − q, what quantities need to be sold to

bring in a total revenue of

(a) £100 (b) £1,000 (c) £10,000?

(Give answers to 2 decimal places, where they exist.)
4. Make up your own quadratic equation and then find whether a solution exists.

6.5 Quadratic simultaneous equations
If one or more equations in a simultaneous equation system are quadratic then it may be
possible to eliminate all but one unknown and to reduce the problem to a single quadratic
equation. If this can be solved then the other unknowns can be found by substitution.

Example 6.7

Find the equilibrium values of p and q in a competitive market where the demand schedule is

p = 200q−1

and the supply function is

p = 30 + 2q

Solution

In equilibrium, demand price equals supply price. Therefore

200q−1 = 30 + 2q

Multiplying through by q,

200 = 30q + 2q2

0 = 2q2 + 30q − 200

0 = (2q − 10)(q + 20)

Therefore 2q − 10 = 0 or q + 20 = 0

q = 5 or q = −20
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We can ignore the second solution as negative quantities cannot exist. Thus the equilibrium
quantity is 5.

Substituting this value into the supply function gives equilibrium price

p = 30 + 2 × 5 = 40

You should now be able to link the different mathematical techniques you have learned so far
to tackle more complex problems. If you have covered the theory of perfect competition in
your economics course, then you should be able to follow the analysis in the example below.

Example 6.8

An industry is made up of 100 firms, all with the cost schedules

AC = 40q−1 + 0.4q2 TC = 40 + 0.4q3 MC = 1.2q2

They sell in a market where the demand schedule is

p = 70 − 0.08Q

where Q is industry output (and q is an individual firm’s output).

(i) What will be the short-run price, industry output and profit for each firm?
(ii) What will happen to price, industry output and the number of firms in the long run?

(Assume new entrants have the same cost structure.)

Solution

(i) The industry supply schedule is the horizontal sum of the individual firms’ marginal cost
schedules. Given the marginal cost function

MC = 1.2q2

(
MC

1.2

)0.5

= q

There are 100 firms, and so the amount supplied by the whole industry is

Q = 100q = 100

(
MC

1.2

)0.5

(1)

In perfect competition MC corresponds to the price at which any given quantity will be
supplied, and so (1) can be rewritten as

Q = 100
( p

1.2

)0.5
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Therefore

0.01Q =
( p

1.2

)0.5

(0.01Q)2 = p

1.2

0.0001Q2 = p

1.2

0.00012Q2 = p (2)

The function (2) will be the industry supply schedule. The demand schedule given in the
question is

p = 70 − 0.08Q (3)

In equilibrium, demand price equals supply price. Thus equating (3) and (2) we get

70 − 0.08Q = 0.00012Q2

0 = 0.00012Q2 + 0.08Q− 70 (4)

Using the quadratic formula to solve (4)

Q = −0.08 ± √
0.0064 + 0.0336

0.00024

= −0.08 ± √
0.04

0.00024

= −0.08 + 0.2

0.00024
or

−0.08 − 0.2

0.00024

= 0.12

0.00024
or

−0.28

0.00024

= 500 (ignoring the negative answer)

Substituting this value of Q into the demand schedule (3) gives

p = 70 − 0.08(500) = 70 − 40 = £30

Each of the 100 firms produces the same amount q. Therefore,

q = Q

100
= 500

100
= 5

Each firm’s profit will be

TR − TC = pq − (40 + 0.4q3)

= 30(5)− (40 + 50)

= 150 − 90 = £60

(ii) If existing firms are making a profit then in the long run new entrants will be attracted into
the industry. This will shift the supply schedule to the right and price will be driven down
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until each firm is only just breaking even, when price equals the lowest value on the firm’s
U-shaped average cost schedule.

How do we find when AC is at its minimum point? The MC and AC functions are given
in the question. From cost theory you should know that MC always cuts AC at its minimum
point. Therefore

MC = AC

1.2q2 = 40q−1 + 0.4q2

0.8q2 = 40q−1

q3 = 50

q = 3.684 (to 3 dp)

When q = 3.684, then

AC = 40q−1 + 0.4q2

= 40(3.684)−1 + 0.4(3.684)2

= 16.2865

Therefore p = £16.29 (to the nearest penny)

The old supply schedule does not now apply because of the increased number of firms in the
industry. Therefore, substituting this price into the demand schedule (3) to get total output
gives

16.29 = 70 − 0.08Q

0.08Q = 53.71

Q = 671.375

We already know that each firm produces 3.684 units in long-run equilibrium. Therefore, the
new number of firms in the industry is

Q

q
= 671.375

3.684
= 182.24 = 182 firms

Given that there were originally 100 firms, the number of new entrants is therefore 82. Note
that the fraction is rounded down to the nearest whole number. Any extra firms would bring
price below the break-even level.

Test Yourself, Exercise 6.3

1. If y = 255 − x − x2 and y = 180 + (2/3)x2 − 21x, find x and y.
2. Find x and y given the functions

2y + 4x2 + 10x − 36 = 0

and

4y − 10x2 + 24x = 24
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3. A monopoly faces the marginal cost function MC = 0.5q2

and the marginal revenue function MR = 200 − 4q
What output will maximize profits?

4. A price-discriminating monopoly sells in two markets whose demand schedules
are

p1 = 200 − 20q1 and p2 = 120 − 5q2

Total output q = q1 + q2 and the firm’s marginal cost schedule is

MC = 40 + 0.5q2

How much should it sell in each market, and at what price, in order to maximize
profit?

5. A firm’s marginal cost schedule is MC = 2.3 + 0.00012q2 and it sells its output
in two separate markets with demand schedules

p1 = 25 − 0.125q1 and p2 = 12 − 0.05q2

What prices and quantities will maximize profits if this firm is a price-
discriminating monopoly?

6.6 Polynomials
Quadratic equations are a special case of polynomial equations. The general format of a
polynomial function is

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n

where n is any non-negative integer. Linear equations contain polynomials where n = 1.
Quadratic equations contain polynomials where n = 2.

When n is greater than 2 the solution of a polynomial equation by algebraic means becomes
complex and time-consuming. For practical purposes, however, you may use a spreadsheet
to find a solution by the iterative method. This means calculating values of a function for
different values of the unknown variable until a solution or a good approximation to it is
found. As a spreadsheet can quickly perform the necessary calculations, it is an ideal tool for
the calculation of polynomial solutions.

The format of the spreadsheet will depend on the problem tackled. Below are some
examples of how problems can be approached.

Example 6.9

A firm’s total costs (TC) are given by the function

TC = 420 + 32.5q − 6.25q2 + 0.8q3

where q is output level and TC is measured in pounds. If the firm’s management is given a
budget of £43,000, what output can it produce?
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Solution

A spreadsheet needs to be constructed that will calculate TC for different values of q. You
can then experiment with different ranges of q until the solution is found.

The method for constructing the spreadsheet is basically the same as that used for quadratic
equations as set out in Table 6.1 earlier. This time the spreadsheet calculates the cubic TC
function that corresponds to the parameters entered. The instructions for doing this are set
out in Table 6.3.

Although AC and MC may initially fall as a firm’s output increases, its TC function should
never fall. It would therefore be useful to have a check that this cubic TC function always
increases as q increases and MC is never negative. To do this the spreadsheet also includes
a third column where values of MC are calculated. (See Section 8.4 for further analysis of
cubic functions with this property.)

Table 6.3

CELL Enter  Explanation 
A1 Ex.6.9 Label to remind you what example this is
B2 CUBIC POLYNOMIAL

SOLUTION TO   
B3 TC =a + bq + cq^2 + dq^3 

Title of spreadsheet  

(Note that this is not an actual Excel
formula.) 

F2 Parameter 
F3 Values

Labels that tell you that the parameter values
will be shown below 

E4 a = 
E5 b = 
E6 c = 
E7 d = 

These are labels that tell you that the 
parameter values will go in the cells next to
them. 
Right justify these cells. 

F4 420
F5 32.5 
F6 -6.25 
F7 0.8 

These are the actual parameter values for 
a,b,c and d, respectively, for this example.

A3 q 
B3 TC
C3 MC

Column heading labels

A4 0 Initial value for q
A5 =A4+1 Calculates a one unit increment in q

A6 to
A45 

Copy formula from cell A5
down column A

Calculates a series of values of q in one unit 
increments

B4 =F$4+F$5*A4+F$6*A4^2+
F$7*A4^3 

Formula to calculate value of TC
corresponding to value of q in cell A4 and 
parameter values in cells F4, F5, F6 and F7. 
Note the $ sign used to anchor row 
references for when this formula is copied
down row B.

B5 to
B45 

Copy formula from cell B4
down column B

Calculates values for TC in each row 
corresponding to values of q in column A.

C5 =B5-B4 Calculates values MC as the change in TC
from a one unit increment in q. 

C6 to
C45 

Copy formula from cell C5
down column C

Calculates MC of a unit of q corresponding 
to increment in TC shown in column B.

B4 to
C45 

Highlight these columns and 
format to 2 decimal places

TC and MC are both monetary values
measured in £ so use numerical format 0.00
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Table 6.4 

A B C D E F 
1 Ex 6.9 CUBIC POLYNOMIAL SOLUTION TO    
2 TC =a + bq + cq^2 + dq^3  Parameter 
3 q TC MC Values
4 0 420.00 a = 420 
5 1 447.05 27.05 b = 32.5 
6 2 466.40 19.35 c = -6.25
7 3 482.85 16.45 d = 0.8 
8 4 501.20 18.35 
9 5 526.25 25.05 
10 6 562.80 36.55 
11 7 615.65 52.85 
12 8 689.60 73.95 
13 9 789.45 99.85 
14 10 920.00 130.55 
15 11 1086.05 166.05 
16 12 1292.40 206.35 
17 13 1543.85 251.45 
18 14 1845.20 301.35 
19 15 2201.25 356.05 
20 16 2616.80 415.55 
21 17 3096.65 479.85 
22 18 3645.60 548.95 
23 19 4268.45 622.85 
24 20 4970.00 701.55 
25 21 5755.05 785.05 
26 22 6628.40 873.35 
27 23 7594.85 966.45 
28 24 8659.20 1064.35 
29 25 9826.25 1167.05 
30 26 11100.80 1274.55 
31 27 12487.65 1386.85 
32 28 13991.60 1503.95 
33 29 15617.45 1625.85 
34 30 17370.00 1752.55 
35 31 19254.05 1884.05 
36 32 21274.40 2020.35 
37 33 23435.85 2161.45 
38 34 25743.20 2307.35 
39 35 28201.25 2458.05 
40 36 30814.80 2613.55 
41 37 33588.65 2773.85 
42 38 36527.60 2938.95 
43 39 39636.45 3108.85 
44 40 42920.00 3283.55 
45 41 46383.05 3463.05 

Your spreadsheet should now look like Table 6.4, which shows that when q is 40, TC will
be 42,920. Thus, if output is constrained to whole units, 40 is the maximum output that the
firm’s management can produce for a budget of £43,000.

This spreadsheet also confirms that MC declines in value then increases, but is never
negative. This is what we would expect. Save your spreadsheet for use with other examples.
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This example was constructed for a range of values of q that contained the answer we
were seeking. If you had no idea where the solution to this cubic polynomial lay then you
could get a ‘ball park’ estimate by producing a range of values in jumps of 10 in the column
headed q by entering the formula = A4+10 in cell A5 and then copying it down the column
for a few dozen rows. This would tell you that when q = 31,TC = £19,254.05, and when
q = 41,TC = £46,383.05. Therefore, TC = £43,000 must lie somewhere between these
values of q. Once you have a rough idea of where the solution value for q will lie, you can
change the q column so that values increase in only one unit increments, or smaller units if
necessary, until the actual solution is pinpointed.

To solve other cubic polynomials, one simply enters the corresponding parameters into the
spreadsheet set up for Example 6.9 above and adjusts the range of the independent variable
(q) until the solution is found.

Example 6.10

If TC = 880 + 72q − 14.5q2 + 1.5q3, at what value of q will TC = £9,889?

Table 6.5 

A B C D E F 
1 Ex 6.10 CUBIC POLYNOMIAL SOLUTION TO    
2 TC =a + bq + cq^2 + dq^3  Parameter 
3 q TC MC Values
4 0 880.00 a = 880 
5 1 939.00 59.00 b = 72 
6 2 978.00 39.00 c = -14.5
7 3 1006.00 28.00 d = 1.5 
8 4 1032.00 26.00 
9 5 1065.00 33.00 
10 6 1114.00 49.00 
11 7 1188.00 74.00 
12 8 1296.00 108.00 
13 9 1447.00 151.00 
14 10 1650.00 203.00 
15 11 1914.00 264.00 
16 12 2248.00 334.00 
17 13 2661.00 413.00 
18 14 3162.00 501.00 
19 15 3760.00 598.00 
20 16 4464.00 704.00 
21 17 5283.00 819.00 
22 18 6226.00 943.00 
23 19 7302.00 1076.00 
24 20 8520.00 1218.00 
25 21 9889.00 1369.00 
26 22 11418.00 1529.00 
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Solution

Entering the new values for a, b, c and d into the spreadsheet constructed for Example 6.9
and adjusting the range of q, one should get a spreadsheet similar to Table 6.5. This shows
that q = 21 when TC = £9,889.

This spreadsheet can also be adjusted to cope with more complex polynomials. Its crucial
part is the formula in cell B4. This needs to be amended to calculate the value of the new
polynomial function if more terms are added. Note, however, that large polynomial equations
may have several solutions. In particular, if there are both positive and negative coefficients,
a polynomial function may equal zero at more than two values of the independent variable.
You can usually deduce the number of solutions from the format of the equation, or get a plot
from your spreadsheet to see how many times the function crosses the horizontal axis. On
the other hand, no solutions may exist, in which case a graph will not cut the axis; e.g. there
is no positive value of x which will satisfy the equation

0 = 8 + 32x + 6x2 + 0.9x3

although in this case there will be a negative solution.

Example 6.11

Assuming x < 1,000, is there a positive value of x that is a solution to the function

0 = −770,077.6 + 262x − 74x2 + 12x3 + 2x4 − 0.05x5?

Solution

To solve this equation we need to calculate values of the polynomial function

y = −770,077.6 + 262x − 74x2 + 12x3 + 2x4 − 0.05x5

and find the value(s) of x where this function equals zero. To do this, call up the spreadsheet
created for Example 6.9 and then follow the instructions in Table 6.6 to add two new terms
so that it will be able to calculate values for polynomials in the format

y = a + bx + cx2 + dx3 + ex4 + f x5

Once the basic spreadsheet has been created, the ball-park method explained above can be
used to narrow down the possible solution range to between 30 and 40. This should give you
a spreadsheet that looks like Table 6.7. This clearly shows that y is zero when x is 38 and so
this is the solution. (If you try increasing the range of x you will see that there are no other
solutions in the range 0 < x < 1,000.)
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Table 6.6 

(Only shows changes needed to adapt Table 6.3 for this example.) 

CELL Enter  Explanation 
A1 Ex.6.11 Label for example number 
B2 y =a + bx + cx^2 + dq^3 + 

ex^4 + fx^5
Title of new formula.

E8 e = 
E9 f = 

Additional labels for the two extra 
parameter values. (Right justify.) 

A3 x 
B3 y 

New labels for column headings. 

Column
C 

Highlight and hit Edit-Clear- All This column can be cleared as MC not
calculated  for this example.

F4 -770077.6 
F5 262
F6 -74 
F7 12
F8 2 
F9 -0.05 

These are the actual parameter values for 
a,b,c, d, e and f , respectively, for this
example.

A4 30 Initial value for x (Ball-park range found.) 
Rows 15 
onward 

Highlight-Edit-Delete Delete extra rows as only need range of x
from 30 to 40 for this example.

B4 =F$4+F$5*A4+F$6*A4^2+F$
7*A4^3+F$8*A4^4+F$9*A4^5

Calculates the value of y function 
corresponding to value of x in cell A4 and 
the parameter values in cells F4 to F9. 
Note $ sign used to anchor row references. 

B5 to
B14 

Copy formula from cell B4 down 
column B 

Calculates values for y in each row 
corresponding to values of x in column A.

Table 6.7 

A B C D E F 
1 Ex 6.11 CUBIC POLYNOMIAL SOLUTION TO    
2 y =a + bx + cx^2 + dq^3 + ex^4 + fx^5 Parameter 
3 x y Values
4 30 -99817.60 a = -770077.6
5 31 -59993.15 b = 262 
6 32 -24823.20 c = -74 
7 33 4298.75 d = 12 
8 34 25835.20 e = 2 
9 35 38098.65 f = -0.05
10 36 39245.60 
11 37 27270.55 
12 38 0.00 
13 39 -44913.55 
14 40 -109997.60 
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Test Yourself, Exercise 6.4

(You will need to use a spreadsheet to tackle these questions.)

1. How much of q can be produced for £60,000 if the total cost function is

TC = 86 + 152q − 12q2 + 0.6q3?

2. What output can be produced for £150,000 if

TC = 130 + 62q − 3.5q2 + 0.15q3?

3. Solve for x when

0 = −1,340 + 14x + 2x2 − 1.5x3 + 0.2x4 + 0.005x5 − 0.0002x6
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7 Financial mathematics
Series, time and investment

Learning objectives

After completing this chapter students should be able to:

• Calculate the final sum, the initial sum, the time period and the interest rate for an
investment.

• Calculate the Annual Equivalent Rate for part year investments and compare this
with the nominal annual rate of return.

• Calculate the Net Present Value and Internal Rate of Return on an investment,
constructing relevant spreadsheets when required.

• Use the appropriate investment appraisal method to decide if an investment project
is worthwhile.

• Find the sum of finite and infinite geometric series.
• Calculate the value of an annuity.
• Calculate monthly repayments and the APR for a loan.
• Apply appropriate mathematical methods to solve problems involving the growth

and decline over discrete time periods of other economic variables, including the
depletion of natural resources.

7.1 Discrete and continuous growth
In economics we come across many variables that grow, or decline, over time. A sum of money
invested in a deposit account will grow as interest accumulates on it. The amount of oil left
in an oilfield will decline as production continues over the years. This chapter explains how
mathematics can help answer certain problems concerned with these variables that change
over time. The main area of application is finance, including methods of appraising different
forms of investment. Other applications include the management of natural resources, where
the implications of different depletion rates are analysed.

The interest earned on money invested in a deposit account is normally paid at set regular
intervals. Calculations of the return are therefore usually made with respect to specific time
intervals. For example, Figure 7.1(a) shows the amount of money in a deposit account at any
given moment in time assuming an initial deposit of £1,000 and interest credited at the end of
each year at a rate of 10%. There is not a continuous relationship between time and the total
sum in the deposit account. Instead there is a ‘jump’ at the end of each year when the interest
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(a)  Deposit account balance

(b)  Oil extraction
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Figure 7.1

on the account is paid. This is an example of a ‘discrete’ function. Between the occasions
when interest is added there is no change in the value of the account.

A discrete function can therefore be defined as one where the value of the dependent
variable is known for specific values of the independent variable but does not continuously
change between these values. Hence one gets a series of values rather than a continuum.
For example, teachers’ salaries are based on scales with series of increments. A hypothetical
scale linking completed years of service to salary might be:

0 yrs = £20,000, 1 yr = £21,800, 2 yrs = £23,600, 3 yrs = £25,400

The relationship between salary and years of service is a discrete function. At any moment
in time one knows what a teacher’s salary will be but there is not a continuous relationship
between time and salary level.

An example of a continuous function is illustrated in Figure 7.1(b). This shows the cumu-
lative total amount of oil extracted from an oilfield when there is a steady 5 million barrels per
year extraction rate. There is a continuous smooth function showing the relationship between
the amount of oil extracted and the time elapsed.

In this chapter we analyse a number of discrete-variable problems. Algebraic formulae
are developed to solve some applications of discrete functions and methods of solution using
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spreadsheets are explained where appropriate, for investment appraisal analysis in particular.
The analysis of continuous growth requires the use of the exponential function and will be
explained in Chapter 14.

7.2 Interest
Time is money. If you borrow money you have to pay interest on it. If you invest money in
a deposit account you expect to earn interest on it. From an investor’s viewpoint the interest
rate can be looked on as the ‘opportunity cost of capital’. If a sum of money is tied up in
a project for a year then the investor loses the interest that could have been earned by investing
the money elsewhere, perhaps by putting it in a deposit account.

Simple interest is the interest that accrues on a given sum in a set time period. It is not
reinvested along with the original capital. The amount of interest earned on a given investment
each time period will be the same (if interest rates do not change) as the total amount of capital
invested remains unaltered.

Example 7.1

An investor puts £20,000 into a deposit account and has the annual interest paid directly into
a separate current account and then spends it. The deposit account pays 8.5% interest. How
much interest is earned in the fifth year?

Solution

The interest paid each year will remain constant at 8.5% of the original investment of £20,000.
Thus in year 5 the interest will be

0.085 × £20,000 = £1,700

Most investment decisions, however, need to take into account the fact that any interest
earned can be reinvested and so compound interest, explained below, is more relevant. The
calculation of simple interest is such a basic arithmetic exercise that the only mistake you are
likely to make is to transform a percentage figure into a decimal fraction incorrectly.

Example 7.2

How much interest will be earned on £400 invested for a year at 0.5%?

Solution

To convert any percentage figure to a decimal fraction you must divide it by 100. Therefore

0.5% = 0.5

100
= 0.005

and so

0.5% of £400 = 0.005 × £400 = £2
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If you can remember that 1% = 0.01 then you should be able to transform any interest rate
specified in percentage terms into a decimal fraction in your head. Try to do this for the
following interest rates:

(i) 1.5% (ii) 30% (iii) 0.075% (iv) 1.02% (v) 0.6%

Now check your answers with a calculator. If you got any wrong you really ought to go back
and revise Section 2.5 before proceeding. Converting decimal fractions back to percentage
interest rates is, of course, simply a matter of multiplying by 100;

e.g. 0.02 = 2%, 0.4 = 40%, 1.25 = 125%, 0.008 = 0.8%.

Compound interest is interest which is added to the original investment every time it
accrues. The interest added in one time period will itself earn interest in the following time
period. The total value of an investment will therefore grow over time.

Example 7.3

If £600 is invested for 3 years at 8% interest compounded annually at the end of each year,
what will the final value of the investment be?

Solution
£

Initial sum invested 600.00
Interest at end of year 1 = 0.08 × 600 48.00
Total sum invested for year 2 648.00
Interest at end of year 2 = 0.08 × 648 51.84
Total sum invested for year 3 699.84
Interest at end of year 3 = 0.08 × 699.84 55.99
Final value of investment 755.83

Example 7.4

If £5,000 is invested at an annual rate of interest of 12% how much will the investment be
worth after 2 years?

Solution
£

Initial sum invested 5,000
Year 1 interest = 0.12 × 5,000 600
Sum invested for year 2 5,600
Year 2 interest = 0.12 × 5,600 672
Final value of investment 6,272
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The above examples only involved the calculation of interest for a few years and did not
take too long to solve from first principles. To work out the final sum of an investment after
longer time periods one could construct a spreadsheet, but an even quicker method is to use
the formula explained below.

Calculating the final value of an investment

Consider an investment at compound interest where:

A is the initial sum invested,
F is the final value of the investment,
i is the interest rate per time period (as a decimal fraction) and
n is the number of time periods.

The value of the investment at the end of each year will be 1 + i times the sum invested
at the start of the year. For instance, the £648 at the start of year 2 is 1.08 times the initial
investment of £600 in Example 7.3 above. The value of the investment at the start of year 3
is 1.08 times the value at the start of year 2, and so on. Thus, for any investment

Value after 1 year = A(1 + i)

Value after 2 years = A(1 + i)(1 + i) = A(1 + i)2

Value after 3 years = A(1 + i)2(1 + i) = A(1 + i)3 etc.

We can see that each value is A multiplied by (1 + i) to the power of the number of
years that the sum is invested. Thus, after n years the initial sum A is multiplied by
(1 + i)n.

The formula for the final value F of an investment of £A for n time periods at interest
rate i is therefore

F = A(1 + i)n

Let us rework Examples 7.3 and 7.4 using this formula just to check that we get the same
answers.

Example 7.3 (reworked)

If £600 is invested for 3 years at 8% then the known values for the formula will be

A = £300 n = 3 i = 8% = 0.08

Thus the final sum will be

F = A(1 + i)n = 600(1.08)3 = 600(1.259712) = £755.83
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Example 7.4 (reworked)

£5,000 invested for 2 years at 12% means that

A = £5,000 n = 2 i = 12% = 0.12

F = A(1 + i)n = 5,000(1.12)2 = 5,000(1.2544) = £6,272

Having satisfied ourselves that the formula works we can now tackle some more difficult
problems.

Example 7.5

If £4,000 is invested for 10 years at an interest rate of 11% per annum what will the final
value of the investment be?

Solution

A = £4,000 n = 10 i = 11% = 0.11

F = A(1 + i)n = 4,000(1.11)10

= 4,000(2.8394205)

= £11,357.68

(Refer back to Chapter 2, Section 8 if you cannot remember how to use the [yx] function key
on your calculator to work out large powers of numbers.)

Sometimes a compound interest problem may be specified in a rather different format, but
the method of solution is still the same.

Example 7.6

You estimate that you will need £8,000 in 3 years’ time to buy a new car, assuming
a reasonable trade-in price for your old car. You have £7,000 which you can put into
a fixed interest building society account earning 4.5%. Will you have enough to buy
the car?

Solution

You need to work out the final value of your savings to see whether it will be greater than
£8,000. Using the usual notation,

A = £7,000 n = 3 i = 0.045

F = A(1 + i)n = 7,000(1.045)3 = 7,000(1.141166) = £7,988.16
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So the answer is ‘almost’. You will have to find another £12 to get to £8,000, but perhaps
you can get the dealer to knock this off the price.

Changes in interest rates

What if interest rates are expected to change before the end of the investment period? The
final sum can be calculated by slightly adjusting the usual formula.

Example 7.7

Interest rates are expected to be 14% for the next 2 years and then fall to 10% for the following
3 years. How much will £2,000 be worth if it is invested for 5 years?

Solution

After 2 years the final value of the investment will be

F = A(1 + i)n = 2,000(1.14)2 = 2,000(1.2996) = £2,599.20

If this sum is then invested for a further 3 years at the new interest rate of 10% then the final
sum is

F = A(1 + i)n = 2,599.20(1.1)3 = 2,599.20(1.331) = £3,459.54

This could have been worked out in one calculation by finding

F = 2,000(1.14)2(1.1)3 = £3,459.54

Therefore the formula for the final sum F that an initial sum A will accrue to after n time
periods at interest rate in and q time periods at interest rate iq is

F = A(1 + in)n(1 + iq)q

If more than two interest rates are involved then the formula can be adapted along the same
lines.

Example 7.8

What will £20,000 invested for 10 years be worth if the expected rate of interest is 12% for
the first 3 years, 9% for the next 2 years and 8% thereafter?

Solution

F = 20,000(1.12)3(1.09)2(1.08)5 = £49,051.90
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Test Yourself, Exercise 7.1

1. If £4,000 is invested at 5% interest for 3 years what will the final sum be?
2. How much will £200 invested at 12% be worth at the end of 4 years?
3. A parent invests £6,000 for a 7-year-old child in a fixed interest scheme which

guarantees 8% interest. How much will the child have at the age of 21?
4. If £525 is invested in a deposit account that pays 6% interest for 6 years, what will

the final sum be?
5. What will £24,000 invested at 11% be worth at the end of 5 years?
6. Interest rates are expected to be 10% for the next 3 years and then to fall to 8%

for the following 3 years. How much will an investment of £3,000 be worth at the
end of 6 years?

7.3 Part year investment and the annual equivalent rate
If the duration of an investment is less than a year the usual final sum formula does not
always apply. It is usually the custom to specify interest rates on an annual basis for part year
investments, but two different types of annual interest rates can be used:

(a) the nominal annual interest rate, and
(b) the Annual Equivalent Rate (AER).

The ways that these annual interest rates relate to part year investments differ. They are also
used in different circumstances.

Nominal annual interest rates

For large institutional investors on the money markets, and for some forms of individual
savings accounts, a nominal annual interest rate is quoted for part year investments. To find
the interest that will actually be paid, this nominal annual rate is multiplied by the fraction
of the year that it is quoted for.

Example 7.9

What interest is payable on a £100,000 investment for 6 months at a nominal annual interest
rate of 6%?

Solution

6 months is 0.5 of one year and so the interest rate that applies is

0.5 × (nominal annual rate) = 0.5 × 6% = 3%

Therefore interest earned is

3% of £100,000 = £3,000
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and the final sum is

F = (1.03)100,000 = £103,000

If this nominal annual interest rate of 6% applied to a 3-month investment then the actual
interest payable would be a quarter of 6% which is 1.5%. If it applied to an investment for
one month then the interest payable would be 6% divided by 12 which gives 0.5%.

The calculation of part year interest payments on this basis can actually give investors
a total annual return that is greater than the nominal interest rate if they can keep reinvesting
through the year at the same part year interest rate. The total final value of the investment
can be calculated with reference to these new time periods using the F = A(1 + i)n formula
as long as the interest rate i and the number of time periods n refer to the same time periods.

For example, if £100,000 can be invested for four successive three month periods at
a nominal annual interest rate of 6% then, letting i represent the effective quarterly interest
rate and n represent the number of three month periods, we get

A = £100,000 n = 4 i = 0.25 × 6% = 1.5% = 0.015

F = A(1 + i)n = 100,000(1.015)4 = £106,136.35

This final sum gives a 6.13635% return on the initial £100,000 sum invested. (Although in
practice interest rates are usually only specified to 2 dp.)

The more frequently that interest based on the nominal annual rate is paid the greater will
be the total annual return when all the interest is compounded. For example, if a nominal
annual interest rate of 6% is paid monthly at 0.5% a month and £100,000 is invested for
12 months then

A = £100,000 n = 12 i = 0.5% = 0.005

F = A(1 + i)n = 100,000(1.005)12 = £106,167.78

This new final sum is greater than that achieved from quarterly interest payment and is
equivalent to an annual rate of 6.17%.

The Annual Equivalent Rate (AER) and Annual Percentage Rate (APR)

Although some part year investments on money markets may earn a return which is not
equivalent to the nominal annual interest rate, individual investors are usually quoted an
annual equivalent rate (AER) which is an accurate reflection of the interest that they earn
on investments. For example, interest on the money you may have in a building society will
normally be worked out on a daily basis although you will only be told the AER and the
interest on your account may only be credited once a year. For loan repayments the annual
equivalent rate is usually referred to as the annual percentage rate (APR). If you take out
a bank loan you will usually be quoted an APR even though you will be asked to make
monthly repayments.

The examples above have already demonstrated that the AER is not simply 12 times the
monthly interest rate. To determine the relationship between part year interest rates and their
true AER, consider another example.
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Example 7.10

If interest is credited monthly at a monthly rate of 0.9% how much will £100 invested for
12 months accumulate to?

Solution

Using the standard investment formula where the time period n is measured in months:

A = £100 n = 12 i = 0.9% = 0.009

F = A(1 + i)n = 100(1.009)12 = 100(1.1135) = £111.35

This final sum of £111.35 after investing £100 for one year corresponds to an annual rate of
interest of 11.35%. This is greater than 12 times the monthly rate of 0.9%, since

12 × 0.9% = 10.8%

The calculations in the above example that tell us that the ratio of the final sum to the initial
sum invested is (1.009)12. Using the same principle, the corresponding AER for any given
monthly rate of interest im can be found using the formula

AER = (1 + im)12 − 1

Because (1 + im)12 gives the ratio of the final sum F to the initial amount A the −1 has to be
added to the formula in order to get the proportional increase in F over A. The APR on loans
is the same thing as the annual equivalent rate and so the same formula applies.

Example 7.11

If the monthly rate of interest on a loan is 1.75% what is the corresponding APR?

Solution

im = 1.75% = 0.0175

APR = (1 + im)12 − 1

= (1.0175)12 − 1

= 1.2314393 − 1

= 0.2314393 = 23.14%

If you have a credit card you can check out this formula by referring to the leaflet on inter-
est rates that the credit card company should give you. For example, in October 2001 the
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LloydsTSB Trustcard had an interest rate per month of 1.527% and quoted the APR as 19.9%.
We can check this using the formula

APR = (1 + im)12 − 1

= (1.01527)12 − 1

= 1.19944 − 1

= 0.19944 = 19.9%

The calculation of monthly loan repayments from a given APR will be explained later, in
Section 7.9.

Savers may put money into deposit accounts with banks and building societies, or may
make withdrawals, at any time throughout the year and so different amounts will remain
in their accounts for different periods of time. The interest on these accounts is therefore
usually calculated on a daily basis. However, only the AER is widely publicized as this
is much more useful to savers to help them make comparisons between different possible
investment opportunities. The relationship between the daily interest rate id on a deposit
account and the AER can be formulated as

AER = (1 + id)365 − 1

For example, if a building society tells you that it will pay you an AER of 6% on a savings
account, what it actually will do is credit interest at a rate of 0.015954% a day. We can check
this out using the formula

AER = (1 + id)365 − 1

= (1.00015954)365 − 1

= 1.06 − 1 = 0.06 = 6%

To derive a formula for the daily interest rate id that corresponds to a given AER, we start
with the AER formula. Thus

AER = (1 + id)365 − 1

AER + 1 = (1 + id)365

365
√

AER + 1 = 1 + id(
365
√

AER + 1
)

− 1 = id

Example 7.12

A building society account pays interest on a daily basis at an AER of 4.5%. If you deposited
£2,750 in such an account on 1st October how much would you get back if you closed the
account 254 days later?
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Solution

First we find the daily interest rate using the formula derived above. Thus

id =
(

365
√

AER + 1
)

− 1 =
(

365
√

0.045 + 1
)

− 1 = 1.0001206 − 1

= 0.0001206 = 0.01206%

The final sum accumulated when £2,750 is invested at this daily rate for 254 days will
therefore be

F = 2,750(1 + 0.0001206)254 = 2,750(1.0311045) = £2,835.54

(So you could earn about £85 interest if you put a student loan of this amount in a building
society and didn’t touch it for the whole academic year – not a very likely scenario!)

Interest rates on Treasury Bills

A government Treasury Bill, like certain other forms of bond, guarantees the owner a fixed
some of money payable at a fixed date in the future. So, for example, a 3-month Treasury Bill
for £100,000 is effectively a promise from the government that it will pay £100,000 to the
owner on a date 3 months from when it was issued. The prices that the institutional investors
who trade in these bills will pay for them will reflect the returns that can be made on other
similar investments.

Suppose that investors are currently willing to pay £95,000 for 12-month Treasury Bills
when they are issued. This would mean that they consider an annual return of £5,000 on their
£95,000 investment to be acceptable.

An annual return of £5,000 on a £95,000 investment is equivalent to an interest rate of

i = 5,000

95,000
= 0.0526316 = 5.26%

However, in the financial press the interest rates quoted relate to a nominal annual rate of
return based on the final sum paid out when the Treasury Bill matures. Thus, in the example
above the 12-month Treasury Bill rate quoted would be 5%, because this is the discount the
price of £95,000 yields on the final maturity sum of £100,000. This is why they are called
discount rates.

Although the above example considered a 12-month Treasury Bill so that the equivalent
annual rate of return could be easily compared, in practice UK government Treasury Bills
are normally issued for shorter periods. Also, the nominal annual rates are quoted using
fractions, such as 4 5

16 %, rather than in decimal format.

Example 7.13

If an annual discount rate of 4 7
8 % is quoted for 3-month Treasury Bills, what would it cost

to buy a tranch of these bills with redemption value of £100,000? What would be the annual
equivalent rate of return on the sum paid for them?
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Solution

A nominal annual rate of 4 7
8 % corresponds to a 3-month rate of

4 7
8

4
= 1 7

32 = 1.21875%

As this rate is actually the discount on the maturity sum then the cost of 3-month Treasury
Bills with redemption value of £100,000 of would be

£100,000(1 − 0.0121875) = £98,781.25

and the amount of the discount is £1,218.75.
Therefore, the rate of return on the sum of £98,781.25 invested for 3 months is

1,218.75

98,781.25
= 0.012338 = 1.2338%

If this investment could be compounded for four 3-month periods at this quarterly rate of
1.2338% then the annual equivalent rate calculated using the standard formula would be

AER = (1.012338)4 − 1 = 1.050273 − 1 = 0.050273 = 5.0273%

Test Yourself, Exercise 7.2

1. If £40,000 is invested at a monthly rate of 1% what will it be worth after 9 months?
What is the corresponding AER?

2. A sum of £450,000 is invested at a monthly interest rate of 0.6%. What will the
final sum be after 18 months? What is the corresponding AER?

3. Which is the better investment for someone wishing to invest a sum of money for
two years:

(a) an account which pays 0.9% monthly, or
(b) an account which pays 11% annually?

4. If £1,600 is invested at a quarterly rate of interest of 4.5% what will the final sum
be after 18 months? What is the corresponding AER?

5. How much interest is earned on £50,000 invested for three months at a nominal
annual interest rate of 5%? If money can be reinvested each quarter at the same
rate, what is the AER?

6. If a credit card company charges 1.48% a month on any outstanding balance, what
APR is it charging?

7. A building society pays an AER of 5.5% on an investment account, calculated on
a daily basis. What daily rate of interest will it pay?

8. If 3-month government Treasury Bills are offered at an annual discount rate of
4 7

16 %, what would it cost to buy bills with redemption value of £500,000? What
would the AER be for this investment?
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7.4 Time periods, initial amounts and interest rates
The formula for the final sum of an investment contains the four variables F, A, i and n.
So far we have only calculated F for given values of A, i and n. However, if the values
of any three of the variables in this equation are given then one can usually calculate the
fourth.

Initial amount

A formula to calculate A, when values for F, i and n are given, can be derived as follows.
Since the final sum formula is

F = A(1 + i)n

then, dividing through by (1 + i)n, we get the initial sum formula

F

(1 + i)n
= A

or

A = F(1 + i)−n

Example 7.14

How much money needs to be invested now in order to accumulate a final sum of £12,000
in 4 years’ time at an annual rate of interest of 10%?

Solution

Using the formula derived above, the initial amount is

A = F(1 + i)−n

= 12,000(1.1)−4

= 12,000

1.4641
= £8,196.16

What we have actually done in the above example is find the sum of money that is equivalent
to £12,000 in 4 years’ time if interest rates are 10%. An investor would therefore be indifferent
between (a) £8,196.16 now and (b) £12,000 in 4 years’ time. The £8,196.16 is therefore known
as the ‘present value’ (PV) of the £12,000 in 4 years’ time. We shall come back to this concept
in the next few sections when methods of appraising different types of investment project are
explained.

Time period

Calculating the time period is rather more tricky than the calculation of the initial amount.
From the final sum formula

F = A(1 + i)n
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Then

F

A
= (1 + i)n

If the values of F, A and i are given and one is trying to find n this means that one has to
work out to what power (1 + i) has to be raised to equal F/A. One way of doing this is via
logarithms.

Example 7.15

For how many years must £1,000 be invested at 10% in order to accumulate £1,600?

Solution

A = £1,000 F = £1,600 i = 10% = 0.1

Substituting these values into the formula

F

A
= (1 + i)n

we get
1,600

1,000
= (1 + 0.1)n

1.6 = (1.1)n (1)

If equation (1) is specified in logarithms then

log 1.6 = n log 1.1 (2)

since to find the nth power of a number its logarithm must be multiplied by n. Finding logs,
this means that (2) becomes

0.20412 = n 0.0413927

n = 0.20412

0.0413927
= 4.93 years

If investments must be made for whole years then the answer is 5 years. This answer can be
checked using the final sum formula

F = A(1 + i)n = 1,000(1.1)5 = 1,610.51

If the £1,000 is invested for a full 5 years then it accumulates to just over £1,600, which
checks out with the answer above.

A general formula to solve for n can be derived as follows from the final sum formula:

F = A(1 + i)n

F

A
= (1 + i)n
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Taking logs

log

(
F

A

)
= n log (1 + i)

Therefore the time period formula is

log (F/A)

log (1 + i)
= n (3)

An alternative approach is to use the iterative method and plot different values on
a spreadsheet. To find the value of n for which

1.6 = (1.1)n

this entails setting up a formula to calculate the function y = (1.1)n and then computing
it for different values of n until the answer 1.6 is reached. Although some students who
find it difficult to use logarithms will prefer to use a spreadsheet, logarithms are used in the
other examples in this section. Logarithms are needed to analyse other concepts related to
investment and so you really need to understand how to use them.

Example 7.16

How many years will £2,000 invested at 5% take to accumulate to £3,000?

Solution

A = 2,000 F = 3,000 i = 5% = 0.05

Using these given values in the time period formula derived above gives

n = log (F/A)

log (1 + i)

= log 1.5

log 1.05

= 0.1760913

0.0211893
= 8.34 years

Example 7.17

How long will any sum of money take to double its value if it is invested at 12.5%?
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Solution

Let the initial sum be A. Therefore the final sum is

F = 2A

and i = 12.5% = 0.125

Substituting these value for F and i into the final sum formula

F = A(1 + i)n

gives

2A = A(1.125)n

2 = (1.125)n

Taking logs of both sides

log 2 = n log 1.125

n = log 2

log 1.125
= 0.30103

0.0511525
= 5.9 years

Interest rates

A method of calculating the interest rate on an investment is explained in the following
example.

Example 7.18

If £4,000 invested for 10 years is projected to accumulate to £6,000, what interest rate is used
to derive this forecast?

Solution

A = 4,000 F = 6,000 n = 10

Substituting these values into the final sum formula

F = A(1 + i)n

Gives 6,000 = 4,000(1 + i)10

1.5 = (1 + i)10

1 + i = 10
√

(1.5)

= 1.0413797

i = 0.0414 = 4.14%
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A general formula for calculating the interest rate can be derived. Starting with the familiar
final sum formula

F = A(1 + i)n

F

A
= (1 + i)n

n
√

(F/A) = 1 + i

n
√

(F/A) − 1 = i (4)

This interest rate formula can also be written as

i =
(

F

A

)1/n

− 1

Example 7.19

At what interest rate will £3,000 accumulate to £10,000 after 15 years?

Solution

Using the interest rate formula (4) above

i = n

√(
F

A

)
− 1 = 15

√(
10,000

3,000

)
− 1

= 15
√

(3.3333 − 1 = 1.083574 − 1

= 0.083574 = 8.36%

Example 7.20

An initial investment of £50,000 increases to £56,711.25 after 2 years. What interest rate has
been applied?

Solution

A = 50,000 F = 56,711.25 n = 2

Therefore

F

A
= 56,711.25

50,000
= 1.134225
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Substituting these values into the interest rate formula gives

i = n

√(
F

A

)
− 1 = 2

√
(1.13455) − 1 = 1.065 − 1 = 0.065

i = 6.5%

Test Yourself, Exercise 7.3

1. How much needs to be invested now in order to accumulate £10,000 in 6 years’
time if the interest rate is 8%?

2. What sum invested now will be worth £500 in 3 years’ time if it earns interest at
12%?

3. Do you need to invest more than £10,000 now if you wish to have £65,000 in
15 years’ time and you have a deposit account which guarantees 14%?

4. You need to have £7,500 on 1 January next year. How much do you need to invest
at 1.3% per month if your investment is made on 1 June?

5. How much do you need to invest now in order to earn £25,000 in 10 years’ time
if the interest rate is
(a) 10% (b) 8% (c) 6.5%?

6. How many complete years must £2,400 be invested at 5% in order to accumulate
a minimum of £3,000?

7. For how long must £5,000 be kept in a deposit account paying 8% interest before
it accumulates to £7,500?

8. If it can earn 9.5% interest, how long would any given sum of money take to treble
its value?

9. If one needs to have a final sum of £20,000, how many years must one wait if
£12,500 is invested at 9%?

10. How long will £70,000 take to accumulate to £100,000 if it is invested at 11%?
11. If £6,000 is to accumulate to £10,000 after being invested for 5 years, what rate

must it earn interest at?
12. What interest rate will turn £50,000 into £60,000 after 2 years?
13. At what interest rate will £3,000 accumulate to £4,000 after 4 years?
14. What monthly rate of interest must be paid on a sum of £2,800 if it is to accumulate

to £3,000 after 8 months?
15. What rate of interest would turn £3,000 into £8,000 in 10 years?
16. At what rate of interest will £600 accumulate to £900 in 5 years?
17. Would you prefer (a) £5,000 now or (b) £8,000 in 4 years’ time if money can be

borrowed or lent at 11%?

7.5 Investment appraisal: net present value
Assume that you have £10,000 to invest and that someone offers you the following proposal:
pay £10,000 now and get £11,000 back in 12 months’ time. Assume that the returns on this
investment are guaranteed and there are no other costs involved. What would you do? Perhaps

© 1993, 2003 Mike Rosser



you would compare this return of 10% with the rate of interest your money could earn in
a deposit account, say 4%. In a simple example like this the comparison of rates of return,
known as the internal rate of return (IRR) method, is perhaps the most intuitively obvious
method of judging the proposal.

This is not the preferred method for investment appraisal, however. The net present value
(NPV) method has several advantages over the IRR method of comparing the project rate
of return with the market interest rate. These advantages are explained more fully in the
following section, but first it is necessary to understand what the NPV method involves.

We have already come across the concept of present value (PV) in Section 7.4. If a certain
sum of money will be paid to you at some given time in the future its PV is the amount of
money that would accumulate to this sum if it was invested now at the ruling rate of interest.

Example 7.21

What is the present value of £1,500 payable in 3 years’ time if the relevant interest rate is 4%?

Solution

Using the initial amount investment formula, where

F = £1,500 i = 0.08 n = 3

A = F(1 + i)−n

= 1,500

(1.04)3
= 1,500(1.04)−3

= 1,500

1.124864
= £1,333.49

An investor would be indifferent between £1,333.49 now and £1,500 in 3 years’ time. Thus
£1,333.49 is the PV of £1,500 in 3 years’ time at 4% interest.

In all the examples in this chapter it is assumed that future returns are assured with 100%
certainty. Of course, in reality some people may place greater importance on earlier returns
just because the future is thought to be more risky. If some form of measure of the degree
of risk can be estimated then more advanced mathematical methods exist which can be used
to adjust the investment appraisal methods explained in this chapter. However, here we just
assume that estimated future returns and costs, are correct. An investor has to try to make the
most rational decision based on whatever information is available.

The net present value (NPV) of an investment project is defined as the PV of the future
returns minus the cost of setting up the project.

Example 7.22

An investment project involves an initial outlay of £600 now and a return of £1,000 in 5 years’
time. Money can be invested at 9%. What is the NPV?
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Solution

The PV of £1,000 in 5 years’ time at 9% can be found using the initial amount formula as

A = F(1 + i)−n = 1,000(1.09)−5 = £649.93

Therefore NPV = £649.93 − £600 = £49.93.
This project is clearly worthwhile. The £1,000 in 5 years’ time is equivalent to £649.93

now and so the outlay required of only £600 makes it a bargain. In other words, one is being
asked to pay £600 for something which is worth £649.93.

Another way of looking at the situation is to consider what alternative sum could be earned
by the investor’s £600. If £649.93 was invested for 5 years at 9% it would accumulate to
£1,000. Therefore the lesser sum of £600 must obviously accumulate to a smaller sum. Using
the final sum investment formula this can be calculated as

F = A(1 + i)n = 600(1.09)5 = 600(1.538624) = £923.17

The investor thus has the choice of

(a) putting £600 into this investment project and securing £1,000 in 5 years’ time, or
(b) investing £600 at 9%, accumulating £923.17 in 5 years.

Option (a) is clearly the winner.

If the outlay is less than the PV of the future return an investment must be a profitable ven-
ture. The basic criterion for deciding whether or not an investment project is worthwhile
is therefore

NPV > 0

As well as deciding whether specific projects are profitable or not, an investor may have to
decide how to allocate limited capital resources to competing investment projects. The rule
for choosing between projects is that they should be ranked according to their NPV. If only
one out of a set of possible projects can be undertaken then the one with the largest NPV
should be chosen, as long as its NPV is positive.

Example 7.23

An investor can put money into any one of the following three ventures:

Project A costs £2,000 now and pays back £3,000 in 4 years
Project B costs £2,000 now and pays back £4,000 in 6 years
Project C costs £3,000 now and pays back £4,800 in 5 years

The current interest rate is 10%. Which project should be chosen?

© 1993, 2003 Mike Rosser



Solution

NPV of project A = 3,000(1.1)−4 − 2,000

= 2,049.04 − 2,000 = £49.04

NPV of project B = 4,000(1.1)−6 − 2,000

= 2,257.90 − 2,000 = £257.90

NPV of project C = 4,800(1.1)−5 − 3,000

= 2,980.42 − 3,000 = −£19.58

Project B has the largest NPV and is therefore the best investment. Project C has a negative
NPV and so would not be worthwhile even if there was no competition.

The investment examples considered so far have only involved a single return payment at
some given time in the future. However, most real investment projects involve a stream of
returns occurring over several time periods. The same principle for calculating NPV is used
to assess these projects, the initial outlay being subtracted from the sum of the PVs of the
different future returns.

Example 7.24

An investment proposal involves an initial payment now of £40,000 and then returns of
£10,000, £30,000 and £20,000 respectively in 1, 2 and 3 years’ time. If money can be
invested at 10% is this a worthwhile investment?

Solution

PV of £10,000 in 1 year’s time = £10,000

1.1
= £9,090.91

PV of £30,000 in 2 years’ time = £30,000

1.12
= £24,793.39

PV of £20,000 in 3 years’ time = £20,000

1.13
= £15,026.30

Total PV of future returns £48,910.60

less initial outlay −£40,000

NPV of project £8,910.60

This NPV is greater than zero and so the project is worthwhile. At an interest rate of 10% one
would need to invest a total of £48,910.60 to get back the projected returns and so £40,000
is clearly a bargain price.

The further into the future the expected return occurs the greater will be the discounting
factor. This is made obvious in Example 7.25 below, where the returns are the same each
time period. The PV of each successive year’s return is smaller than that of the previous year
because it is multiplied by (1 + i)−1.
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Example 7.25

An investment project requires an initial outlay of £7,500 and will pay back £2,000
at the end of the next 5 years. Is it worthwhile if capital can be invested elsewhere
at 12%?

Solution

PV of £2,000 in 1 year’s time = £2,000

1.12
= £1,785.71

PV of £2,000 in 2 years’ time = £2,000

1.122
= £1,594.39

PV of £2,000 in 3 years’ time = £2,000

1.123
= £1,423.56

PV of £2,000 in 4 years’ time = £2,000

1.124
= £1,271.04

PV of £2,000 in 5 years’ time = £2,000

1.125
= £1,134.85

Total PV of future returns £7,209.55

less initial outlay −£7,500.00

NPV of project − £290.45

The NPV < 0 and so this is not a worthwhile investment.

Investment appraisal using a spreadsheet

From the above examples one can see that the mathematics involved in calculating the NPV
of a project can be quite time-consuming. For this type of problem a spreadsheet program
can be a great help. Although Excel has a built in NPV formula, this does not take the initial
outlay into account and so care has to be taken when using it. We shall therefore construct
a spreadsheet to calculate NPV from first principles.

To derive an algebraic formula for calculating NPV assume that Rj is the net return in
year j, i is the given rate of interest, n is the number of time periods in which returns occur
and C is the initial cost of the project. Then

NPV = R1

1 + i
+ R2

(1 + i)2
+ · · · + Rn

(1 + i)n
− C

Using the � notation this becomes

NPV =
n∑

j=1

Rj

(1 + i)j
− C (1)
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If the initial outlay C is considered as a negative return at time 0 (i.e. R0 = −C) the formula
can be more neatly stated as

NPV =
n∑

j=0

Rj

(1 + i)j
(2)

There will be no discounting of the initial outlay in the first term

R0

(1 + i)0

since (1 + i)0 = 1. (Remember that x0 = 1 whatever the value of x.)
The following example shows how an Excel spreadsheet program based on this formula

can be used to work out the NPV of a project. The answer obtained is then compared with
the solution using the Excel built in NPV function.

Example 7.26

An investment project requires an initial outlay of £25,000 with the following expected
returns:

£5,000 at the end of year 1
£6,000 at the end of year 2

£10,000 at the end of year 3
£10,000 at the end of year 4
£10,000 at the end of year 5

Is this a viable investment if money can be invested elsewhere at 15%?

Solution

Follow the instructions for creating an Excel spreadsheet set out in Table 7.1, which should
give you the spreadsheet in Table 7.2. This calculates the PVs of the returns in each year sep-
arately, including the outlay in year 0. It then sums the PVs, giving a total NPV of £1,149.15
which is positive and hence means that the project is a viable investment opportunity.

This can be compared with the answer obtained using the Excel built-in NPV formula.
Because this formula always treats the number in the first cell of the range as the return at the
end of year 1, the computed answer of £26,149.15 is the total PV of the returns in years 1 to
5 only. To get the overall NPV of the project one has to subtract the initial outlay. (The outlay
amount was entered as a negative quantity and so this is actually added in the formula.) This
adjusted Excel NPV figure should be the same as the NPV calculated from first principles,
which it is. Having an answer computed by two separate methods is a useful check. If you
save this spreadsheet and adapt it for other problems then, if you do not get the same answer
from both methods, you will know that a mistake has been made somewhere.

The spreadsheet created for the above example can be used to work out the NPV for other
projects. The initial cost and returns need to be entered in cells B4 to B9 and the new interest
rate goes in cell D2. Obviously if there are more (or less) years when returns occur then rows
will need to be added (or deleted or left blank).

As investment appraisal involves the comparison of different projects, as well as the assess-
ment of the financial viability of individual projects, a spreadsheet can be adapted to work
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Table 7.1 

CELL Enter  Explanation 
A1 Ex.7.26 Label to remind you what example this is 
A3 YEAR Column heading label 
B3 RETURN Column heading label 
C3 PV Column heading label 
C1 Interest rate = Label to tell you interest rate goes in next cell.
D1 15% Value of interest rate. (NB Excel automatically

treats this % format as 0.15 in any calculations.)
A4 to A9 Enter numbers 0 to 5 These are the time periods

B4 -25000 Initial outlay (negative because it is a cost) 
B5 5000
B6 6000
B7 10000
B8 10000
B9 10000

Returns at end of years 1 to 5 

C4 =B4/(1+$D$1)^A4 Formula calculates PV corresponding to return
in cell B4, time period in cell A4 and interest
rate in cell D1. Note the $ to anchor cell D1. 

C5 to C9 Copy cell C4 formula 
down column C

Calculates PV for return in each time period.
Format to 2 d.p. as monetary values

B11 NPV = Label to tell you NPV goes in next cell.
C11 =SUM(C4:C9) Calculates NPV of  project by summing PVs for 

each year in cells C4-C9, which includes the 
negative return of the initial outlay.

B13 Excel NPV Label tells you Excel NPV goes in next cell.
B14 less cost = Label tells you what goes in next cell.
C13 =NPV(D1,B5:B9) The Excel NPV formula will calculate NPV 

based only on the interest rate in D1 and the 5 
years of future returns in cells B5 to B9. 

C14 =C13+B4 Adjusts the Excel computed NPV in C13 by 
subtracting initial outlay in B4. (This was 
entered as a negative number so it is added.) 

Table 7.2 

A B C D 
1 Ex 7.26 Interest rate= 15%
2 
3 YEAR RETURN PV 
4 0 -25000 -25000 
5 1 5000 4347.83 
6 2 6000 4536.86 
7 3 10000 6575.16 
8 4 10000 5717.53 
9 5 10000 4971.77 
10
11 NPV = 1149.15 
12
13  Excel NPV £26,149.15 
14 less cost = £1,149.15 
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out the NPV for more than one project. The following example shows how the spreadsheet
created for Example 7.26 can be extended so that two projects can be compared.

Example 7.27

An investor has to choose between two projects A and B whose outlay and returns are set out
in Table 7.3. Which is the better investment if the going rate of interest is 10%?

Table 7.3

(All values in £) Project A Project B

Initial outlay 30,000 30,000
Return in 1 year’s time 6,000 8,000
Return in 2 years’ time 10,000 8,000
Return in 3 years’ time 10,000 8,000
Return in 4 years’ time 10,000 8,000
Return in 5 years’ time 8,000 8,000

Table 7.4 

CELL Enter  Explanation 
A1 Ex.7.27 New example label 
B3 PROJECT A Changed column heading label 
C3 PV A Changed column heading label 
D1 10% New value of interest rate. 
D3 PROJECT B New column heading label for project B returns.
E3 PV B New column heading label for project B PVs.
B4 -30000 Project A initial outlay 
B5 6000
B6 10000
B7 10000
B8 10000
B9 8000

Project A returns at end of years 1 to 5 

D4 -30000 Project B initial outlay 
D5 8000
D6 8000
D7 8000
D8 8000
D9 8000

Project B returns at end of years 1 to 5 

E4 =D4/(1+$D$1)^A4 Formula calculates PV for project B 
corresponding to return in cell D4. 

E5 to E9 Copy cell E4 formula 
down column E 

Calculates PV for project B for return in each
time period.

E11 =SUM(E4:E9) Calculates NPV of  B by summing PVs for each
time period

E13 =NPV(D1,D5:D9) Excel NPV formula applied to project B 
E14 =E13+D4  Adjusts the Excel NPV for project B 
C12 =B3 Writes “PROJECT A” under relevant NPV 
E12 =D3 Writes “PROJECT B” under relevant NPV 
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Table 7.5

A B C D E 
1 Ex 7.27 Interest rate = 10% 
2 
3 YEAR PROJECT A PV A PROJECT B PV B 
4 0 -30000 -30000.00 -30000 -30000.00
5 1 6000 5454.55 8000 7272.73
6 2 10000 8264.46 8000 6611.57
7 3 10000 7513.15 8000 6010.52
8 4 10000 6830.13 8000 5464.11
9 5 8000 4967.37 8000 4967.37

10
11  NPV = 3029.66 326.29
12 PROJECT A PROJECT B 
13  Excel NPV £33,029.66 £30,326.29
14 less cost = £3,029.66 £326.29

Solution

Call up the worksheet which you created for Example 7.26 and make the changes shown in
Table 7.4. This should give you a spreadsheet that looks similar to Table 7.5. The computed
NPV for project B is £326.29 compared with £3,029.66 for project A. Therefore, although
both projects are financially viable, the better investment is project A because it has the
greater NPV.

If you do not have access to a spreadsheet program then you can still work out the NPV of
different projects from first principles. However, there are now available financial calculators
with an NPV function which may be a cheaper alternative than a computer. To assist students
without a spreadsheet program or a financial calculator, a set of discounting factors is repro-
duced in Table 7.6. Although the actual monetary returns will differ from project to project
the discounting factor will be the same for a given time period and a given rate of interest.
For example, the PV of a sum of money £x payable in 8 years’ time when the interest rate is
7% will be

£x

(1.07)8
or £x(1.07)−8

The value of (1.07)−8 can be read off from Table 7.6 by looking at the column headed 7%
and the row corresponding to year 8, giving a figure of 0.582009. If £x was £525 then the
PV would be

£525(0.582009) = £305.55

You can also compute these values on any mathematical calculator with a [yx]
function key. For example, to calculate £525(1.07)−8 enter 525 [÷] 1.07 [yx] 8 [=] or
525 [×] 1.07 [yx] 8 [+/−] [=].
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Table 7.6 Discounting factors for Net Present Value

Rate of 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%
interest i

Year 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0.961538 0.952381 0.943396 0.934579 0.925926 0.917431 0.961538 0.952381 0.943396 0.934579 0.925926 0.917431
2 0.924556 0.907029 0.889996 0.873439 0.857339 0.84168 0.924556 0.907029 0.889996 0.873439 0.857339 0.84168
3 0.888996 0.863838 0.839619 0.816298 0.793832 0.772183 0.888996 0.863838 0.839619 0.816298 0.793832 0.772183
4 0.854804 0.822702 0.792094 0.762895 0.73503 0.708425 0.854804 0.822702 0.792094 0.762895 0.73503 0.708425
5 0.821927 0.783526 0.747258 0.712986 0.680583 0.649931 0.821927 0.783526 0.747258 0.712986 0.680583 0.649931
6 0.790315 0.746215 0.704961 0.666342 0.63017 0.596267 0.790315 0.746215 0.704961 0.666342 0.63017 0.596267
7 0.759918 0.710681 0.665057 0.62275 0.58349 0.547034 0.759918 0.710681 0.665057 0.62275 0.58349 0.547034
8 0.73069 0.676839 0.627412 0.582009 0.540269 0.501866 0.73069 0.676839 0.627412 0.582009 0.540269 0.501866
9 0.702587 0.644609 0.591898 0.543934 0.500249 0.460428 0.702587 0.644609 0.591898 0.543934 0.500249 0.460428

10 0.675564 0.613913 0.558395 0.508349 0.463193 0.422411 0.675564 0.613913 0.558395 0.508349 0.463193 0.422411
11 0.649581 0.584679 0.526788 0.475093 0.428883 0.387533 0.649581 0.584679 0.526788 0.475093 0.428883 0.387533
12 0.624597 0.556837 0.496969 0.444012 0.397114 0.355535 0.624597 0.556837 0.496969 0.444012 0.397114 0.355535
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Test Yourself, Exercise 7.4

1. The following investment projects all involve an outlay now and a single return
at some point in the future. Calculate the NPV and say whether or not each is a
worthwhile investment:

(a) £1,100 outlay, £1,500 return after 3 years, interest rate 8%
(b) £750 outlay, £1,000 return after 5 years, interest rate 9%
(c) £10,000 outlay, £12,000 return after 3 years, interest rate 8%
(d) £50,000 outlay, £75,000 return after 3 years, interest rate 14%
(e) £50,000 outlay, £100,000 return after 5 years, interest rate 14%
(f) £5,000 outlay, £7,000 return after 3 years, interest rate 6%
(g) £5,000 outlay, £7,750 return after 5 years, interest rate 6%
(h) £5,000 outlay, £8,500 return after 6 years, interest rate 6%

2. An investor has to choose between the following three projects:

Project A requires an outlay of £35,000 and returns £60,000 after 4 years
Project B requires an outlay of £40,000 and returns £75,000 after 5 years
Project C requires an outlay of £25,000 and returns £50,000 after 6 years

Which project would you advise this investor to put money into if the cost of
capital is 10%?

3. A firm has a choice between three investment projects, all of which involve an
initial outlay of £36,000. The returns at the end of the next 4 years are given in
Table 7.7. If the interest rate is 15%, say (a) whether each project is viable or not,
and (b) which is the best investment.

Table 7.7

Year Project A Project B Project C

1 15,000 5,000 20,000
2 15,000 10,000 15,000
3 15,000 20,000 10,000
4 15,000 25,000 5,000

Note
All values are given in £.

4. If money can be invested elsewhere at 6%, is the following project worthwhile?

Initial outlay £100,000
Return at end of year 1 £10,000
Return at end of year 2 £12,000
Return at end of year 3 £15,000
Return at end of year 4 £18,000
Return at end of year 5 £20,000
Return at end of year 6 £20,000
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Return at end of year 7 £20,000
Return at end of year 8 £15,000
Return at end of year 9 £10,000
Return at end of year 10 £5,000

5. Would you put £40,000 into a project which pays back nothing in the first year
but then brings annual net returns of £12,000 from the end of year 2 until the end
of year 6, assuming an interest rate of 8%?

6. A project requires an initial outlay of £20,000 and will pay back the following
returns (in £):

1,000 at the end of years 1 and 2
2,000 at the end of years 3 and 4
5,000 at the end of years 5, 6, 7, 8, 9 and 10

Is this project a worthwhile investment if the going rate of interest is (a) 9%,
(b) 10%?

7. Which of the three projects shown in Table 7.8 is the best investment if the interest
rate is 20%?

Table 7.8

Project A Project B Project C

Outlay now 85,000 40,000 40,000
Return after year 1 20,000 15,000 10,000
Return after year 2 24,000 20,000 12,000
Return after year 3 30,000 25,000 12,000
Return after year 4 30,000 0 12,000
Return after year 5 25,000 0 15,000
Return after year 6 20,000 0 15,000

Note
All values are given in £.

7.6 The internal rate of return
The IRR method of investment appraisal involves finding the rate of return (r) on a project
and comparing it with the market rate of interest (i). If r > i then the project is viable.
Alternative projects can be ranked according to the magnitude of the different rates of
return.

Example 7.28

Find the IRR for the three projects in Table 7.9, decide whether they are viable if the market
rate of interest is 7%, and then rank them in order of profitability according to the IRR
method.
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Table 7.9

Project A Project B Project C

Initial outlay £5,000 £4,000 £8,000
Return after 1 year £5,750 £4,300 £8,500

Solution

In this simple example it is obvious from basic arithmetic that

IRR for A = rA = 750

5,000
= 0.15 = 15%

IRR for B = rB = 300

4,000
= 0.075 = 7.5%

IRR for C = rC = 500

8,000
= 0.0625 = 6.25%

Only projects A and B produce an IRR of more than the market rate of interest of 7% and so
C is not viable.

A is preferred to B because rA > rB.

From the above example one can see that the IRR is the rate of interest which, if applied to
the initial outlay, gives the return in year 1. Put another way, r is the rate of interest at which
the PV of the future return equals the initial outlay, thus making the NPV of the whole project
zero. This principle can be used to help calculate the IRR for more complex problems.

Example 7.29

Use the IRR method to evaluate the following project given a market rate of interest of 11%.

Initial outlay £75,000
Return at end of year 1 £15,000
Return at end of year 2 £20,000
Return at end of year 3 £20,000
Return at end of year 4 £25,000
Return at end of year 5 £25,000
Return at end of year 6 £12,000

Solution

One needs to find the value of r for which

0 = −75,000 + 15,000(1 + r)−1 + 20,000(1 + r)−2 + 20,000(1 + r)−3

+ 25,000(1 + r)−4 + 25,000(1 + r)−5 + 12,000(1 + r)−6

The algebraic method of solution is far too complex and time-consuming to consider using
here. The most practical method is to use a spreadsheet. Excel has a built-in IRR formula
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Table 7.10

CELL Enter  Explanation 
A1 Ex.7.29 Label to remind you what example this is 
A3 YEAR Column heading label 
B3 RETURN Column heading for project returns 
D2 Interest
D3 rate

Column heading label for the range of interest
rates for which NPV will be computed

E3 NPV Column heading label 
A4 to A10 Enter numbers 0 to 6 These are the time periods for this example 

B4 -75000 Initial outlay (negative because it is a cost) 
B5 15000
B6 20000
B7 20000
B8 25000
B9 25000
B10 12000

Project returns at end of years 1 to 6 

D4 4% Interest rate to start range used
D5 =D4+0.01 Calculates a 1% rise in interest rate. 

D6 to D20 Copy cell D5 formula 
down column D 

Calculates a series of interest rates with
increments of 1%. 

E4 =NPV(D4,B$5:B$10)
+B$4

Calculates project NPV corresponding to
interest rate in D4 using Excel NPV formula 
less outlay in B4. Note the $ to anchor rows. 

E5 to E20 Copy cell E4 formula 
down column E

Calculates NPV corresponding to interest rates 
in column D.

A12 IRR = Label to tell you IRR calculated in next cell.
B12 =IRR(B4:B10) Excel IRR formula calculates IRR of project

returns in cells B4 to B10, which includes the 
negative return of the initial outlay.

which can immediately calculate r. You could also find r by using Excel to calculate the
project NPV for a range of interest rates and then identifying the interest rate at which NPV
is zero. Instructions for constructing a spreadsheet to solve this problem by both methods
are shown in Table 7.10. Note that because the Excel NPV function does not take into
account the initial outlay in cell B4 this is subtracted to get the true NPV of the project in
column E.

The resulting spreadsheet should look like Table 7.11. This shows that the rate of interest
that corresponds to an NPV of zero will lie somewhere between 14% and 15%, which checks
out with the precise value for the IRR of 14.14% computed in cell B12. The market rate of
interest given in the question is 11% and so, as the calculated IRR of 14.14% exceeds this,
the project is worthwhile according to the IRR criterion.

Deficiencies of the IRR method

Although the IRR method may appear to be the most obvious and easily understood criterion
for deciding on investment projects, and is still frequently used, it has several deficiencies
which make it less useful than the NPV method.

First, it ignores the total value of the profit, as illustrated in the following example.
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Table 7.11

A B C D E 
1 Ex .7.29 
2 Interest 
3 YEAR RETURN Rate NPV 
4 0 -75000 4% 27096.19
5 1 15000 5% 23813.36
6 2 20000 6% 20686.58
7 3 20000 7% 17706.57
8 4 25000 8% 14864.67
9 5 25000 9% 12152.86

10 6 12000 10% 9563.64
11 11% 7090.04
12 IRR = 14.14% 12% 4725.54
13 13% 2464.06
14 14% 299.94
15 15% -1772.14
16 16% -3757.14
17 17% -5659.71
18 18% -7484.20
19 19% -9234.68
20 20% -10914.99

Example 7.30

A firm has to choose between projects A and B. Project A involves an initial outlay of £18,000
and a return in 1 year’s time of £20,000. Project B involves an initial outlay of £2,000 and
a return in 1 year’s time of £2,500. The interest rate is 6%. Which would be the better
investment?

Solution

The IRR method ranks B as the best investment opportunity, since

rA = 20,000

18,000
− 1 = 1.11 − 1 = 0.11 = 11%

rB = 2,500

2,000
− 1 = 1.25 − 1 = 0.25 = 25%

The NPV method, however, would rank A as the better investment since

NPVA = −18,000 + 20,000

1.06
= −18,000 + 18,867.92 = £867.92

NPVB = −2,000 + 2,500

1.06
= −2,000 + 2,358.49 = £358.49

If the firm has a straightforward choice between A and B, then A is clearly the better invest-
ment. (The possibility of the firm using its initial £18,000 for investing in nine separate
projects all with the same returns as B is ruled out.)
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Some students may still not be convinced that the IRR method is faulty in the above example
as one so often sees the rate of return used as a measure of the success of an investment in
the press and other sources. Let us therefore work from first principles and consider the total
assets of the firm after one year.

Assume that the firm has up to £18,000 at its disposal. If it puts this all into project A, then
at the end of the year total assets will be £20,000.

If its puts £2,000 into project B, then it can also invest the remaining £16,000 elsewhere
at the going rate of interest of 6%. Its total assets will therefore be as follows:

Return on project B £2,500
plus £16,000 invested at 6% = 16,000 × 1.06 £16,960
Total assets £19,460

Thus the firm is in a better financial position overall at the end of the year if it chooses project
A, which is what the NPV method recommends but what the IRR method advises against.

Another way of reinforcing this point is to consider a third project C. Assume that this
involves an investment now of £1 giving a return in one year’s time of £1.90. This has a very
high IRR of 90% but the small sum involved does not make it an attractive investment, which
is why the NPV method should be used.

The second advantage that the NPV investment appraisal method has over the IRR method
is that it can easily cope with forecasts of variable interest rates. The IRR method just involves
comparing the computed IRR from an investment project with one given interest rate and so
it could not be applied to Example 7.31 below.

Example 7.31

An investment project involves an initial outlay of £25,000 and net annual returns as follows:

£6,000 at the end of year 1
£8,000 at the end of year 2
£8,000 at the end of year 3

£10,000 at the end of year 4
£6,000 at the end of year 5

Interest rates are currently 15% but are forecast to fall to 12% next year and 10% the
following year. They will then rise by 1 percentage point each year. Is the project worthwhile?

Solution

The variation in interest rates means that one cannot simply use the Excel NPV formula. To
compute the answer manually we have to adjust the basic discounting formula to allow for
the different discount rates each year. Thus

NPV = −25,000 + 6,000

1.15
+ 8,000

1.15 × 1.12
+ 8,000

1.15 × 1.12 × 1.1

+ 10,000

1.15 × 1.12 × 1.1 × 1.11
+ 6,000

1.15 × 1.12 × 1.1 × 1.11 × 1.12
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= −25,000 + 6,000

1.15
+ 8,000

1.288
+ 8,000

1.4168
+ 10,000

1.572648
+ 6,000

1.7613657

= −25,000 + 5,217.39 + 6,211.18 + 5,646.53 + 6,358.70 + 3,406.45

= −25,000 + 26,840.25

= £1,840.25

This is positive and so the investment is worthwhile.
Although this is not a straightforward NPV calculation, a spreadsheet can be constructed to

do the calculations. One suggested format for solving Example 7.31 is shown in Table 7.12,
which shows the formulae to enter in relevant cells. This should produce the figures shown
in Table 7.13, which confirm that NPV is £1,840.25.

A third drawback of the IRR method is that there may not be one unique solution for r
when there are several negative terms in the polynomial to be solved. This point was made in
Chapter 6 when the solution of polynomial equations was discussed. Apart from the initial
outlay, negative returns may occur if further investment is required, or if a company has to
pay to dismantle a project and return it to an environmentally acceptable state and the end of
its useful life. However, investment project multiple solutions for the IRR are unusual and
you are unlikely to come across them.

Table 7.12

A B C D E F 
1 Ex 7.31 NPV WITH VARIABLE INTEREST RATES 

2 
3 YEAR i DISCOUNT FACTOR RETURN PV
4 0 0   =1/(1 + B4) 1 −25000 =D4*E4

5 1 0.15 =1/(1 + B5) =D4∗C5 6000 =D5∗E5
6 2 0.12 =1/(1 + B6) =D5∗C6 8000 =D6∗E6
7 3 0.1 =1/(1 + B7) =D6∗C7 8000 =D7*E7

8 4 0.11 =1/(1 + B8) =D7∗C8 10000 =D8∗E8
9 5 0.12 =1/(1 + B9) =D8∗C9 6000 =D9∗E9

10
11 TOTAL NPV =SUM(F4.F9)

Table 7.13

A B C D E F 
1 Ex 7.31 NPV WITH VARIABLE INTEREST RATES 
2 
3 YEAR i DISCOUNT FACTOR RETURN PV
4 0 0 1 1 -25000 -25000.00
5 1 0.15 0.8695652 0.869565 6000 5217.39
6 2 0.12 0.8928571 0.776398 8000 6211.18
7 3 0.1 0.9090909 0.705816 8000 5646.53
8 4 0.11 0.9009009 0.63587 10000 6358.70
9 5 0.12 0.8928571 0.567741 6000 3406.45

10
11 TOTAL NPV = 1840.25
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Test Yourself, Exercise 7.5

1. Calculate the IRR for the projects in Table 7.14 and then say whether or not the
IRR ranking is consistent with the NPV ranking for these projects if the market
rate of interest is 15%.

Table 7.14

Project A Project B Project C Project D

Outlay now (All values in £) 20,000 6,000 25,000 10,000
Return after 1 year (All values in £) 24,000 8,500 30,000 12,000

2. Two projects A and B each involve an initial outlay of £40,000 and guarantee the
returns (in £) given in Table 7.15. The market rate of interest is 18%. Which is the
better investment according to (a) the IRR criterion, (b) the NPV criterion?

Table 7.15

Project A Project B

End of year 1 15,000 10,000
End of year 2 20,000 12,000
End of year 3 25,000 12,000
End of year 4 0 12,000
End of year 5 0 15,000
End of year 6 0 15,000

3. Using a spreadsheet, find the IRR and show that the NPV of the following project
is zero when the discount rate used is approximately equal to this IRR.

Outlay now: £25,000
Annual returns: (1) £4,000 (2) £6,000 (3) £7,500

(4) £7,500 (5) £10,000 (6) £10,000

7.7 Geometric series and annuities
You may have noted that in some of the examples in Sections 7.5 and 7.6 above the return
on the investment was the same in each time period. Although not many actual industrial
investment projects give such a constant stream of returns there are other forms of financial
investments which are designed to. These are called ‘annuities’. For example, someone might
pay a fixed sum for a guaranteed pension payment of £14,000 a year for the next 5 years.

The present value of a steady stream of a fixed return of £a per year for the next n years
when interest rates are i% will be

PV = a(1 + i)−1 + a(1 + i)−2 + · · · + a(1 + i)−n

This sequence of terms is a special case of what is known as a ‘geometric series’. There exists
a mathematical formula for the sum of such sequences of numbers so that one does not have
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to calculate each of the terms separately before summing. This would obviously be useful if
you did not have access to a computer with an NPV program, but is this formula of any use
otherwise? Well, there are some forms of annuities that are called ‘perpetual annuities’ which
promise a fixed annual monetary return forever. For example, a bond that pays a fixed 6%
return on a nominal price of £100 is a perpetual annuity of £6. The NPV of such an annuity
at a rate of interest i would be

6

1 + i
+ 6

(1 + i)2
+ · · · + 6

(1 + i)n
+ · · ·

as n continues to infinity. Each successive term gets smaller and smaller but the sum of
this sequence continues to grow as n gets bigger. You cannot sum such an infinite series
of numbers without using the formula for the sum of an infinite geometric series. The next
section deals with infinite geometric series and perpetual annuities but first we shall look at
some more general features of geometric series and the appraisal of investments in annuities
with a finite life span.

Geometric series

A geometric series is a sequence of terms where each successive term is the previous term
multiplied by a common ratio. The series starts with a given initial term. Any number of
terms may be in a series.

Example 7.32

If the given initial term is 24 and the common ratio is 5, what is the corresponding geometric
series? (Find up to six terms.)

Solution

The series will be

24 24 × 5 24 × 52 24 × 53 24 × 54 24 × 55

or
24 120 600 3,000 15,000 75,000

Example 7.33

A firm’s sales revenue is initially £40,000 and then grows by 20% each successive year. What
is the pattern of sales revenue over 5 years?

Solution

Each year’s sales are 120% of the previous year’s. The time profile of sales revenue is therefore
a geometric series with an initial term of £40,000 and a common ratio of 1.2. Thus (in £) the
series is

40,000 40,000 × 1.2 40,000 × 1.22 40,000 × 1.23 40,000 × 1.24
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If we use the algebraic notation a for the initial term, k for the common ratio and n for the
number of terms then the general form of a geometric series will be

a, ak, ak2, . . . , akn−1

Note that the last (nth) term is akn−1 and not akn, because the initial term a is not
multiplied by k.

Sum of a geometric series

The sum of a geometric series can be found by simply adding all the terms together. This is
easy enough to do using a pocket calculator for the examples above. More complex series are
more difficult to sum in this way, however, and so we need to derive a formula for summing
them.

The general format for the sum of a geometric series with n terms will be

GPn = a + ak + ak2 + · · · + akn−1 (1)

Multiplying each term by k gives

kGPn = ak + ak2 + · · · + akn−1 + akn

Subtracting (1) GPn = a + ak + ak2 + · · · + akn−1

gives (k − 1)GPn = −a + akn

Therefore

GPn = −a + akn

k − 1
= −a(1 − kn)

k − 1
= ( − 1)a(1 − kn)

( − 1)(1 − k)
= a(1 − kn)

1 − k

Thus the formula for the sum of a geometric series is

GPn = a(1 − kn)

1 − k

The examples below illustrate how this formula can be used to sum some simple numerical
sequences of numbers.

Example 7.34

Use the geometric series sum formula to sum the geometric series

15 45 135 405 1,215 3,645

Solution

In this geometric series with six terms, each number except the first is 3 times the previous
one. Thus

a = 15 k = 3 n = 6
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Substituting these values into the geometric series sum formula we get

GPn = a(1 − kn)

1 − k
= 15(1 − 36)

−2

= 15(1 − 729)

−2
= 15( − 728)

−2

= 15 × 364 = 5,460

You can check that this formula gives the same answer as that found using a calculator.
In fact, in simple examples like this using the calculator may be the quicker method, but in
other more complex cases the formula will provide the quickest method of solution.

Example 7.35

A firm expects its sales to grow by 12% per month. If its January sales figure is £9,200 per
month what will its expected total annual sales be?

Solution

The firm’s total annual sales will be the sum of the geometric series

9,200 + 9,200(1.12) + 9,200(1.12)2 + · · · + 9,200(1.12)11

In this example a = 9,200, k = 1.12 and n = 12. Therefore, the sum is

GPn = 9,200(1 − 1.1212)

1 − 1.12
= 9,200(1 − 3.895976)

1 − 1.12
= −26,642.979

−0.12
= £222,024.83

Example 7.36

A 5-year saving scheme requires investors to pay in £5,000 now followed by £5,000 at 12-
month intervals. Interest is credited at 14% at the end of each year of the investment. What
will the final sum be at the end of the fifth year?

Solution

The £5,000 invested at the start of year 5 will be worth 5,000(1.14). The £5,000 invested at
the start of year 4 will be worth 5,000(1.14)2 etc. Therefore the final sum will be

5,000(1.14) + 5,000(1.14)2 + · · · + 5,000(1.14)5

This is a geometric series with a = 5,000(1.14), k = 1.14 and n = 5. The sum will
therefore be

GPn = a(1 − kn)

1 − k
= 5,000(1.14)(1 − 1.145)

1 − 1.14

= 5,700(1 − 1.9254146)

−0.14
= −5,274.8626

−0.14
= £37,677.59
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The formula for the sum of a geometric series can be used in Present Value (PV) calculations
for a constant stream of returns. However, one has to be very careful not to get the algebraic
terminology mixed up when, as in the previous example, the initial payback figure includes
the constant ratio.

Example 7.37

An annuity will pay £8,000 at the end of each year for 5 successive years, the first payment
being 12 months from the initial purchase date. What is the maximum price any rational
investor would pay for such an annuity if the opportunity cost of capital is 10%?

Solution

The maximum purchase price will be the PV of the stream of returns, using 10% as the
discount rate. Therefore (in £):

PV = 8,000

1.1
+ 8,000

1.12
+ 8,000

1.13
+ 8,000

1.14
+ 8,000

1.15

This is a geometric series with five terms. The first term a is 8,000
1.1 (not 8,000). The constant

ratio k is 1
1.1 . Therefore

PV = a(1 − kn)

1 − k
=

8,000

1.1

[
1 −

(
1

1.1

)5
]

1 − 1

1.1

= 8,000(1 − 0.6209211)

1.1(1 − 1/1.1)
= 8,000(0.3790789)

1.1 − 1

= 3,032.6312

0.1
= £30,326.31

In the above example some of the terms cancelled out. The same terms will cancel in any
annuity PV calculations and so a simplified general formula for the PV of an annuity can be
derived.

Assuming an annual payment of R for n years and an interest rate of i, then

PV = R

1 + i
+ R

(1 + i)2
+ · · · + R

(1 + i)n

In this geometric series the initial term is

a = R

1 + i

And the constant ratio is

k = 1

1 + i
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Therefore

PV = a(1 − kn)

1 − k
=

R

1 + i

[
1 −

(
1

1 + i

)n]

1 − 1

1 + i

=
R

[
1 − 1

(1 + i)n

]
1 + i − 1

= R[1 − (1 + i)−n]
i

Thus for any annuity

PV = R[1 − (1 + i)−n]
i

We can use this formula to check the answer to Example 7.37 above. Given R = 8,000,
i = 0.1 and n = 5, then

PV = 8,000[1 − (1.1)−5]
0.1

= £30,326.31

This is the same answer as that derived from first principles.

Example 7.38

An annuity will pay £2,000 a year for the next 5 years, with the first payment in 12 months’
time. Capital can be invested elsewhere at an interest rate of 14%. Is £6,000 a reasonable
price to pay for this annuity?

Solution

For this annuity (in £)

PV = 2,000(1.14)−1 +2,000(1.14)−2 +2,000(1.14)−3 +2,000(1.14)−4 +2,000(1.14)−5

In this example the annual payment R = 2,000, i = 0.14 and n = 5. Therefore, using the
annuity formula

PV = R[1 − (1 + i)−n]
i

= 2,000[1 − (1.14)−5]
0.14

= 2,000(1 − 0.5193686)

0.14
= £6,866.16

The PV of this annuity is greater than its purchase price of £6,000 and so it is clearly
a worthwhile investment.

Example 7.39

What would you pay for an annuity that promises to pay £450 a year for the next 10 years
given an interest rate of 8%?
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Solution

In this example R = £450, i = 8% = 0.08 and n = 10. The present value of the stream of
returns will be

PV = R[1 − (1 + i)−n]
i

= 450[1 − (1.08)−10]
0.08

= 450(1 − 0.4631935)

0.08
= £3,019.54

Thus any price less than £3,019.54 would make this annuity a worthwhile purchase.

Test Yourself, Exercise 7.6

1. In the geometric series below (i) identify the constant ratio, (ii) say what the sixth
term will be and (iii) calculate the sum of each series up to ten terms using the
formula for summation of a geometric series.

(a) 8,20, 50, . . .
(b) 0.5, 1.5, 4.5, . . .
(c) 2, 2.8, 3.92, . . .
(d) 60, 48, 38.4, . . .
(e) 2.4, 1.8, 1.35, . . .

2. A firm starts producing a new product. It sells 420 units in January and then sales
increase by 10% each month. What will total demand be in the last 6 months of
the year?

3. What would be the maximum price you would pay for the following annuities if
money can be invested elsewhere at 8%?

Annuity A pays £200 a year for the next 8 years
Annuity B pays £900 a year for the next 4 years
Annuity C pays £6,000 a year for the next 12 years

4. Would you pay £3,500 for an annuity which guarantees to pay you £750 annually
for the next 7 years if you can invest money elsewhere at 9%?

5. What would be a reasonable price to pay for a pension plan which guarantees to
pay £200 a month for the next 2 years if you can earn 1.2% a month on your bank
deposit account?

7.8 Perpetual annuities
We now return to the problem of how to calculate the worth of an annuity that promises
to pay a fixed annual return indefinitely. The PV of the stream of returns from a perpetual
annuity is an infinite geometric progression. Whether or not one can find the sum of an infinite
geometric progression depends on whether the progression is convergent or divergent. Before
looking at the formal mathematical conditions for convergence or divergence these concepts
are illustrated with some simple examples.
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When you were at school you may have come across the teaser about the frog jumping
across a pond, which goes something like this. ‘A frog is sitting on a leaf in the middle of
a circular pond. The pond is 10 metres in radius and the frog jumps 5 metres with its first
jump. Its second jump is 2.5 m, its third jump 1.25 m and so on. How many jumps will it take
for the frog to reach the edge of the pond? Assume that each time it jumps it lands on a leaf.’

The correct answer is, of course, ‘never’. Each time the frog manages to jump half of the
remaining distance to the edge of the pond. The total distance the frog travels in n jumps is
given by the sum of the geometric series

5 + (0.5)5 + (0.5)25 + · · · + (0.5)n−15

As n gets larger the sum of this series continues to increase but never actually reaches
10 metres. Only if an infinite number of jumps can be made will the total distance travelled
be 10 metres. Thus in this example we have a geometric series which converges on 10 metres.

Geometric series may also be divergent. For example the sequence

40 60 90 135 . . . etc.

can be written as the geometric series

40 40(1.5) 40(1.5)2 40(1.5)3 . . . 40(1.5)n

It is intuitively obvious that each successive term is larger than the previous one. Therefore,
as the number of terms approaches infinity the sum of the series will also become infinitely
large. The last term 40(1.5)n will itself become infinitely large. There is thus no set quantity
towards which the sum of the series converges.

You will probably have already guessed by now that the way to distinguish a convergent
and a divergent geometric series is to look at the value of the common ratio k.

If |k| > 1 then successive terms become larger and larger and the series diverges.
If |k| < 1 then successive terms become smaller and smaller and the series converges.
The absolute value is used because it is possible to have a negative common ratio.
To find the sum of a convergent geometric series (such as the case of a perpetual annuity)

let us look again at the general formula for the sum of a geometric series:

GPn = a(1 − kn)

1 − k

This can be rewritten as

GPn = a

1 − k
−

(
a

1 − k

)
kn (1)

If −1 < k < 1 then kn → 0 as n → ∞ (i.e. the value of kn approaches zero as n approaches
infinity) and so the second term in (1) will disappear and the sum to infinity will be

GPn = a

1 − k
(2)

We can now use formula (2) for the frog example. The total distance jumped is

∞∑
n=0

5(0.5)n
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In this geometric series k = 0.5 and a = 5. The sum for an infinite number of terms will thus
be

a

1 − k
= 5

1 − 0.5
= 5

0.5
= 10 metres

The PV of a perpetual annuity can also be found using this formula although care must
be taken to include the discounting factor in the initial term, as explained in the following
example.

Example 7.40

What is the PV of an annuity which will pay £6 a year ad infinitum, with the first payment
due in 12 months’ time? Assume that capital can be invested elsewhere at 15%.

Solution

PV = 6

1.15
+ 6

1.152
+ · · · + 6

1.15n

where n → ∞.
In this geometric series a = 6

1.5 and k = 1
1.5 . This is clearly convergent as |k| < 1. The

sum to infinity is therefore

NPV = a

1 − k
=

6

1.15

1 − 1

1.15

= 6

1.15

(
1 − 1

1.15

)

= 6

1.15 − 1
= 6

0.15
= £40

A simplified formula for the PV of a perpetual annuity can be derived as certain terms will
always cancel out, as Example 7.40 above illustrates.

Assume that an annuity pays a fixed return R each year, starting in 12 months’ time, and
the opportunity cost of capital is i%. For this annuity

PV = R(1 + i)−1 + R(1 + i)−2 + · · · + R(1 + i)−n where n → ∞

In this geometric series the initial value a = R(1 + i)−1 and constant ratio k = (1 + i)−1.
Therefore, using the formula for the sum of an infinite converging geometric series

PV = a

1 − k
= R(1 + i)−1

1 − (1 + i)−1
= R

(1 + i)[1 − (1 + i)−1] = R

1 + i − 1
= R

i

Thus the formula for the PV of a perpetual annuity is

PV = R

i
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Reworking Example 7.40 above using this formula we get

PV = 6

0.15
= £40

which is identical to the answer derived from first principles, although the formula obviously
makes the calculations much easier.

Example 7.41

An investment opportunity involves an initial outlay of £50,000 and gives a £5,000 annual
return, starting in 12 months’ time and continuing indefinitely. Capital can be invested
elsewhere at 8%. Is this worth considering?

Solution

The PV of the annual income stream can be calculated using the formula for the PV of
a perpetual annuity as

PV = R

i
= 5,000

0.08
= £62,500

This is greater than the initial outlay of £50,000 and so this investment is clearly an attractive
proposition.

Example 7.42

What would be the maximum price you would pay for a perpetual annuity that will pay £900
per annum, starting in 12 months’ time, given an interest rate of 15%?

Solution

For this stream of returns

PV = R

i
= 900

0.15
= £6,000

This is the maximum price a rational investor would pay for this annuity.

Test Yourself, Exercise 7.7

1. Identify which of the following geometric series are convergent and then calculate
the sum to which these series converge as the number of terms approaches infinity:

(a) 4, 6, 9, . . .
(b) 120, 96, 76.8, . . .
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(c) 0.8, −1.2,1.8, . . .
(d) 36,12, 4, . . .
(e) 500, 500(0.48), 500(0.48)2, . . .
(f) 850, 850(1.2)−1, 850(1.2)−2, . . .

2. What is the maximum price you would pay for a perpetual annuity that will com-
mence annual payment of £400 in 12 months’ time if the market rate of interest
is 13%?

3. Is it worth paying £40,000 for a perpetual annuity of £1,500 per annum, com-
mencing payments in 12 months’ time, if money can be invested elsewhere
at 3%?

4. What would you calculate the price of an annuity paying £12,000 per annum
(starting in 12 months’ time) to be if the market rate of interest is

(a) 5%, (b) 10%, (c) 15%, (d) 20%?
5. A government bond guarantees an annual payment of £140 in perpetuity; what

will it be priced at, given a market rate of interest of 4%?

7.9 Loan repayments
If someone takes out a loan now, to be paid off in regular equal instalments over a given
time period, how can these payments be calculated? The following example shows how the
formula for calculating the PV of an annuity can be adapted for this type of problem. As most
loans are paid off monthly we shall mainly use monthly rates of interest in this section.

Example 7.43

If a £2,000 loan is taken out now to be paid back over the next 12 months at a monthly interest
rate of 2% what will the monthly payments be?

Solution

From the lender’s viewpoint the repayments can be viewed as a monthly annuity which pays
£R per month for the following 12 months, where R is the monthly repayment. If the lender
is willing to exchange the loan of £2,000 for this stream of payments then this must be the
PV of this ‘annuity’. Therefore, for a loan of amount L we can adapt the formula for the PV
of an annuity as

PV = R[1 − (1 + i)−n]
i

= L

However, instead of calculating PV we need to find the value of R for a given size of loan L.
Since

R[1 − (1 + i)−n]
i

= L

R[1 − (1 + i)−n] = iL
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Table 7.16 Powers for loan repayments: calculation of (1 + i)−n

i (%) n = 12 n = 24 n = 36 n = 60 n = 240 n = 300

0.50 0.941905 0.887185 0.835644 0.741372 0.302096 0.223965
0.55 0.936300 0.876658 0.820815 0.719574 0.268103 0.192920
0.60 0.930731 0.866260 0.806255 0.698427 0.237949 0.166190
0.65 0.925197 0.855991 0.791961 0.677911 0.211199 0.143174
0.70 0.919700 0.845848 0.777927 0.658008 0.187467 0.123355
0.75 0.914238 0.835831 0.764148 0.638699 0.166412 0.106287
0.80 0.908811 0.825937 0.750621 0.619966 0.147731 0.091588
0.85 0.903418 0.816165 0.737339 0.601791 0.131154 0.078927
0.90 0.898061 0.806514 0.724299 0.584157 0.116444 0.068022
0.95 0.892738 0.796981 0.711495 0.567049 0.103390 0.058627
1.00 0.887449 0.787566 0.698924 0.550449 0.091805 0.050534
1.05 0.882194 0.778266 0.686582 0.534343 0.081523 0.043561
1.10 0.876972 0.769081 0.674463 0.518717 0.072397 0.037553
1.15 0.871784 0.760008 0.662564 0.503554 0.064296 0.032376
1.20 0.866630 0.751048 0.650880 0.488842 0.057105 0.027915
1.25 0.861508 0.742197 0.639409 0.474567 0.050721 0.024070
1.30 0.856419 0.733454 0.628145 0.460715 0.045053 0.020757
1.35 0.851363 0.724819 0.617084 0.447275 0.040022 0.017900
1.40 0.846339 0.716290 0.606224 0.434232 0.035554 0.015438
1.45 0.841347 0.707865 0.595560 0.421577 0.031586 0.013316
1.50 0.836387 0.699543 0.585089 0.409295 0.028064 0.011486
1.55 0.831459 0.691324 0.574807 0.397378 0.024935 0.009908
1.60 0.826562 0.683204 0.564711 0.385813 0.022156 0.008584
1.65 0.821696 0.675185 0.554797 0.374590 0.019689 0.007375
1.70 0.816861 0.667263 0.545061 0.363699 0.017497 0.006363
1.75 0.812057 0.659438 0.535501 0.353130 0.015550 0.005491
1.80 0.807284 0.651708 0.526114 0.342873 0.013820 0.004738
1.85 0.802541 0.644073 0.516895 0.332918 0.012284 0.004089
1.90 0.797828 0.636531 0.507842 0.323257 0.010919 0.003529
1.95 0.793146 0.629080 0.498953 0.313881 0.009706 0.003046
2.00 0.788493 0.621721 0.490223 0.304782 0.008628 0.002629

R = iL

1 − (1 + i)−n

which is the general formula for calculating loan repayments.
The known values for this example are L = 2,000, i = 2% = 0.02 and n = 12. Substituting

these into the loan repayment formula gives

R = 0.02 × 2,000

1 − (1.02)−12

= 40

1 − 0.7884934

= £189.12 per month

To work out loan repayments using the above formula you need to use the power function
key on a calculator. Table 7.16 shows some calculated values that may be useful for this type
of problem for those of you who do not have such a calculator to hand.
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Example 7.44

What will be the monthly repayments on a loan of £6,000 taken out for 5 years at a monthly
interest rate of 0.7%?

Solution

L = £6,000 i = 0.7% = 0.007 n = 5 × 12 = 60

Using the loan repayment formula

R = iL

1 − (1 + i)−n
= 0.007 × 6,000

1 − (1.007)−60

= 0.007 × 6,000

1 − 0.658008
= 42

0.342

= £122.81 monthly repayment

(Note: To use Table 7.16 to find the value of 1.007−60 in the above example, just read along
the row for 0.7% until you get to the column for 60.)

Example 7.45

What are the monthly payments on a repayment mortgage of £60,000 taken out for 25 years
if the monthly rate of interest is 0.75%?

Solution

L = 60,000 i = 0.75% = 0.0075 n = 25 × 12 = 300 months

Using the loan repayment formula the monthly payments will be

R = iL

1 − (1 + i)−n
= 0.0075 × 60,000

1 − (1.0075)−300

= 450

1 − 0.106287
= £503.32

If only the APR for a loan is quoted, then it will be necessary to calculate the equivalent
monthly interest rate before working out monthly repayments.

Example 7.46

If a loan of £4,200 is taken out over a period of 3 years at an APR of 6.8% what will the
monthly repayments be?
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Solution

First we need to convert the APR of 6.8% to its equivalent monthly rate im. We know that

1 + APR = (1 + im)12

and so

12
√

(1 + APR) = 1 + im
12
√

(1 + APR) − 1 = im

Substituting in the value of APR = 6.8% = 0.068

im = 12
√

(1 + 0.068) − 1

= 12
√

(1.068) − 1

= 1.0054974 − 1

= 0.0055 = 0.55%

The values to be entered into the loan repayment formula are therefore

L = 4,200 i = 0.0055 n = 3 × 12 = 36

Giving R = iL

1 − (1 + i)−n
= 0.0055 × 4,000

1 − (1.0055)−36

= 23.1

1 − 0.820815
= £128.92 monthly payment

From an individual consumer’s viewpoint you may be more interested in finding out the
interest rate you have to pay on a loan. All lenders now have to quote their APR by law, but
you may still wish to check this.

Example 7.47

A car dealer offers you a £12,000 car for a £4,000 deposit now followed by 24 monthly
payments of £400. What is the APR on this effective loan of £8,000?

Solution

As in the examples above, treat the stream of repayments as an annuity for the lender.
Referring again to the formula for loan repayments

R = iL

1 − (1 + i)−n
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Table 7.17

CELL Enter  Explanation 
A1 Ex.7.47 Label to remind you what example this is 
B1 LOAN = Label to tell you loan value goes in next cell.
C1 8000 Loan value for this example.
D1 n MONTHS= Label to tell you number of months for 

repayment  goes in next cell.
E1 24 Number of months for this example.
A3 APR
B3 MONTHLY i 
C3 REPAYMENT 

Column heading labels

A4 15.00% Start of (guessed) interest rate for APR 
range

A5  =A4+0.0025 Gives increment of 0.25%
A6 to
A24 

Copy cell A5 formula down 
column A

Gives a range of values for APR in 0.25%
increments. (Format to 2 d.p. ) 

B4 =(1+A4)^(1/12)-1 Formula calculates monthly interest rate
corresponding to APR in cell A4. 

B5 to
B24 

Copy cell B4 formula down 
column B 

Calculates monthly interest rates 
corresponding to APR in column A.

C4 =B4*C$1/(1-(1+B4)^-E$1) Formula calculates repayment 
corresponding to value of total loan in cell 
C1, number of months in cell E1 and the 
monthly interest rate in cell B4, which is
determined by APR in column A.

C5 to
C24 

Copy cell C4 formula down 
column C

Calculates repayment corresponding to
different APR values. 

we can see that even if we know that L = 8,000, R = 400 and n = 24 this still leaves us with
the awkward equation

400 = i × 8,000

1 − (1 + i)−24

to solve for i (the monthly interest rate) which can then be used to calculate the APR.
The quickest way to solve this is to use a spreadsheet. Instructions for constructing an

appropriate Excel format are shown in Table 7.17, which should give the actual spreadsheet
shown in Table 7.18. This calculates the repayment values that correspond to a range of
monthly interest rates which, in turn, will correspond to specific values for the APR. Once
a repayment equal (or very close) to £400 has been identified then the corresponding monthly
interest rate and APR can be read off. Near the bottom of Table 7.18 we can see that a £400.01
repayment corresponds to a 1.51% monthly interest rate and a 19.75% APR, which is the
solution to this problem.

This spreadsheet format can be used to solve similar types of problems. You only need to
change the total loan figure in cell C1 and the time period in cell E2 to compute a new set of
repayment figures for a range of monthly interest rates and, in some cases, you may have to
extend the interest rate range or just change the initial trial value in cell A4.

Example 7.48

A loan company will require 36 monthly payments of £438.25 in return for a loan of £12,500.

© 1993, 2003 Mike Rosser

What APR is it charging?



Table 7.18

A B C D E 
1 Ex 7.47 LOAN = 8000 n MONTHS= 24
2 
3 APR MONTHLY i REPAYMENT 
4 15.00% 1.17% 384.32 
5 15.25% 1.19% 385.15 
6 15.50% 1.21% 385.98 
7 15.75% 1.23% 386.81 
8 16.00% 1.24% 387.64 
9 16.25% 1.26% 388.47 
10 16.50% 1.28% 389.30 
11 16.75% 1.30% 390.13 
12 17.00% 1.32% 390.95 
13 17.25% 1.33% 391.78 
14 17.50% 1.35% 392.61 
15 17.75% 1.37% 393.43 
16 18.00% 1.39% 394.26 
17 18.25% 1.41% 395.08 
18 18.50% 1.42% 395.90 
19 18.75% 1.44% 396.73 
20 19.00% 1.46% 397.55 
21 19.25% 1.48% 398.37 
22 19.50% 1.50% 399.19 
23 19.75% 1.51% 400.01 << Solution
24 20.00% 1.53% 400.83 

Solution

Using the spreadsheet constructed for Example 7.47 above, enter the new values for the loan
and time period in cells C1 and E1. In row 12 you should then be able then read off the values:

APR MONTHLY i REPAYMENT
17.00% 1.32% 438.25

The APR this company charges is therefore 17%.

Test Yourself, Exercise 7.8

1. What will be the monthly repayments on a loan of £6,500 taken out over 5 years
at a monthly interest rate of 1.2%?

2. You wish to buy a car priced at £6,000 by putting down a cash deposit of £2,000 and
borrowing £4,000, the loan being paid back in monthly instalments over 2 years.
How much will you have to budget to pay out of your salary if the monthly interest
rate is 1.4%?

3. A loan company will lend you £5,000, repayable over the next 3 years in
monthly payments. What will these payments be if the APR on the loan is 24.6%?

4. What will be the monthly payments on a repayment mortgage of £75,000 taken
out over 20 years if the interest rate is fixed at 0.95% per month?
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5. A loan of £800 is taken out. What APR is being charged if the monthly
payments are

(a) £27.00 over 36 months?
(b) £31.13 over 36 months?
(c) £25.00 over 48 months?
(d) £21.78 over 48 months?

6. A car dealer has on offer a special ‘0% finance’ deal on the advertised price of
£8,671 for a particular model. This requires an initial deposit of £1,734 followed
by 24 monthly payments of £289.00. If you could get the price reduced to £8,095
if you paid cash and can earn 9% per annum on money invested in a building
society, which method would you use to purchase this car?

7.10 Other applications of growth and decline
In the previous sections of this chapter, various mathematical methods have been explained
in order to solve a variety of problems concerned with finance and investment. Rather than
introducing even more mathematical methods, this section now considers how the techniques
already explained can be adapted to some non-financial problems. A series of different types
of problem are presented and the most appropriate method of solution is explained. Note that
in all these examples growth and decline are still treated as discrete processes.

Example 7.49

There are limited world reserves of mineral M. The current rate of extraction is 45 million
tonnes a year, with all mined material being used up by manufacturing industry. This
extraction rate is expected to increase at 3% per annum. Total estimated reserves are 1,200
million tonnes. When will they be expected to run out if this 3% growth rate continues?

Solution

The annual pattern of consumption will be (in millions of tonnes) the geometric series

45, 45(1.03), 45(1.03)2, . . . 45(1.03)n−1

where n is the number of years that mining continues. The initial term a = 45 and the
common ratio k = 1.03. The sum of this geometric series is therefore

a(1 − kn)

1 − k
= 45(1 − 1.03n)

1 − 1.03

which must sum to 1,200 if all reserves are used up. Therefore

1,200 = 45(1 − 1.03n)

−0.03

−0.8 = 1 − 1.03n

1.03n = 1.8
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Putting this in logarithmic form we get

n log 1.03 = log 1.8

n = log 1.8

log 1.03
= 0.2552725

0.0128372
= 19.885

Therefore mineral M is expected to run out within 20 years at the current rate of extraction.

Example 7.50

A developing country currently produces 3,600 million units of food per annum and this rate
of production is expected to increase by 4% a year. Its population is currently 2.5 million and
expected to grow by 6% per annum. The minimum recommended average intake of food is
1,200 units of food per person per year. Assuming no changes in production or population
growth rates, no imports and exports and no foreign aid, when will food production fall below
the subsistence level?

Solution

The demand for food is 1,200 × population.
Initial demand is therefore 1,200 × 2.5 million = 3,000 million units.
The rate of growth of the population is 6% and so total demand for food after n years will

be 3,000(1.06)n million units.
Initial production is 3,600 million units of food. The rate of growth of production is 4%

and so total production after n years will be 3,600(1.04)n million units.
The subsistence level is reached in year n when

food demand = food production

3,000(1.06)n = 3,600(1.04)n(
1.06

1.04

)n

= 3,600

3,000

(1.0192307)n = 1.2

putting this in log form,

n log 1.01923 = log 1.2

n = log 1.2

log 1.01923
= 0.079182

0.0082722
= 9.572

Therefore food production will fall below the subsistence level in 10 years’ time.

Example 7.51

Estimated reserves of an oil field are 84 million barrels. What annual growth in the rate of
extraction will exhaust the oil in 12 years given that this year’s production is 6 million barrels?
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Solution

Total oil extraction will be the sum of the geometric series with 12 terms:

6 + 6(1 + r) + 6(1 + r)2 + · · · + 6(1 + r)11

where r is the growth in the extraction rate. The oilfield will be exhausted when this totals to
84. Therefore, given the initial term a = 6 and the constant ratio k = 1 + r, and employing
the formula for the sum of a geometric series

84 = GPn = a(1 − kn)

1 − k
= 6[1 − (1 + r)12]

1 − (1 + r)

84 = 6[1 − (1 + r)12]
−r

The easiest way to solve for r in this equation is to set up a spreadsheet to calculate different
values of GPn for different values of r and then see which one is closest to 84.

An Excel spreadsheet which does this is shown in Table 7.19. To construct this spreadsheet
yourself, you should now be able to enter the labels, given parameter values and the range of
interest rates without any difficulty. The crucial calculation is the formula that calculates the
total amount of extraction corresponding to the given initial extraction rate, the time period
and the interest rate. This is achieved by entering the formula =C$2∗ − (1 + A6) ^C$3/− A6
in cell B6 and then copying it down the column.

You can now read off the interest rate that corresponds to the total extraction amount which
is closest to 84, which is 2.75% giving total extraction of 83.953. If you wanted to get a more
precise answer, you could make the interest rate increments smaller close to this approximate
solution. This should show that a growth rate of 2.76% in the annual level of extraction will
exhaust the oil reserves in 12 years.

Example 7.52

In a water authority’s area the current river flows allow a maximum extraction rate of 100
million gallons per day and current usage is 25 million gallons per day. When will a crisis
point be reached if consumption grows by 4% per annum? What rate of growth would allow
current supply sources to be sufficient for the next 100 years?

Solution

Consumption rate in n years’ time (in millions of gallons) will be 25(1.04)n.
The crisis point will be reached when consumption equals the maximum extraction rate

and so

100 = 25(1.04)n

4 = 1.04n
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Table 7.19

A B C D 
1 Ex 7.51 OIL RESERVES 
2 INITIAL EXTRACTION = 6 m barrels
3 TIME PERIOD = 12 years 
4 GROWTH TOTAL 
5 r EXTRACTION 
6 2.00% 80.473 
7 2.05% 80.699 
8 2.10% 80.927 
9 2.15% 81.155 
10 2.20% 81.384 
11 2.25% 81.613 
12 2.30% 81.844 
13 2.35% 82.075 
14 2.40% 82.307 
15 2.45% 82.540 
16 2.50% 82.773 
17 2.55% 83.008 
18 2.60% 83.243 
19 2.65% 83.479 
20 2.70% 83.715 
21 2.75% 83.953 << solution
22 2.80% 84.191 
23 2.85% 84.430 
24 2.90% 84.670 
25 2.95% 84.911 
26 3.00% 85.152 

Putting this in log form this gives

log 4 = n log 1.04

n = log 4

log 1.04
= 0.60206

0.017033
= 35.346

Therefore a growth rate of 4% can be sustained for 35 years.
If current water supplies are to last another 100 years at growth rate r, then the current

maximum supply rate of 100 million gallons per day will equal demand when

100 = 25(1 + r)100

4 = (1 + r)100

100
√

4 = 1 + r

1.0139595 = 1 + r

0.0139595 = r

Therefore current water supplies will be sufficient for the next 100 years with a growth rate
of 1.4%.
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Example 7.53

A retailer has to order stock of a particular summer seasonal product in one batch at the start
of the season. The first week’s sales are expected to be 200 units. Past years’ sales suggest
that demand will then grow by 5% a week for the next 14 weeks and then fall by 10% a week
for the remaining 10 weeks of the season. How much stock needs to be ordered to meet the
anticipated sales for the whole 25-week season?

Solution

This problem involves the summing of two separate geometric series.
Sales over the first 15 weeks are expected to be

200 + 200(1.05) + 200(1.05)2 + · · · + 200(1.05)14

In this geometric series a = 200, k = 1.05, n = 15 and so its sum will be

a(1 − kn)

1 − k
= 200(1 − 1.0515)

1 − 1.05

= 200(1 − 2.0789282)

−0.05

= −215.78564

−0.05

= 4,315.7128

Thus, to the nearest whole unit over the first 15 weeks, sales will be 4,316.
In the fifteenth week (which is part of the first geometric series) the sales will be

200(1.05)14 = 395.98632

= 396 (to nearest whole unit)

Over the remaining 10 weeks the total sales will therefore be

396(0.9) + 396(0.9)2 + · · · + 396(0.9)10

In this geometric series a = 396(0.9), k = 0.9 and n = 10. Its sum will therefore be

a(1 − kn)

1 − k
= 396(0.9)(1 − 0.910)

1 − 0.9

= 356.4(0.6513216)

0.1

= 232.131

0.1
= 2,321.31
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Thus, to the nearest whole unit, expected total sales over the whole season sales will be

4,316 + 2,321 = 6,637 units

Example 7.54

Average annual income in a developing country is $420, and average annual expenditure on
food is $280. If average income rises at 3% per annum and income elasticity of demand for
food is 0.8, when will average expenditure on food reach $340?

Solution

For every 1% rise in average income Y , there will be a 0.8% rise in food consumption F,
given an income elasticity of demand of 0.8. Therefore a 3% growth in Y will mean a 2.4%
growth in F. The mathematical problem then becomes ‘how long will it take $280 to grow
to $340 at a growth rate of 2.4%?’ and we need to solve for n in the equation

340 = 280(1.024)n

340

280
= 1.024n

1.2142857 = 1.024n

Putting this in log form

log 1.2142857 = n log 1.024

n = log 1.2142857

log 1.024
= 0.0843209

0.0103
= 8.1865

Therefore, average food expenditure will reach $340 after approximately 8.19 years.

Test Yourself, Exercise 7.9

1. Total reserves of mineral Z are 140 million tonnes. Current annual consumption is
18 million tonnes. If consumption is expected to grow by 4.5% a year, how long
will these reserves last?

2. A country’s gross national product (GNP) is forecast to grow at 3% per annum and
its population is expected to expand at 1.5% per annum. GNP is currently $12,000
million and the population is 15 million, giving a GNP per capita of $800. When
will GNP per capita reach $1,000?

3. What rate of growth of consumption will allow the current reserves of a natural
resource to last for the next 50 years if this year’s consumption is forecast to be
8 million tonnes and total reserves are 1,220 million tonnes?
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4. World annual usage of mineral M is actually declining by 5% a year. The current
rate of extraction is 65 million tonnes per year. Total reserves in existence amount
to 1,500 million tonnes. Will they last forever if the 5% per annum decline persists?

5. The estimated reserves of resource R are 1,650 million tonnes. Current annual
consumption is 80 million tonnes. What percentage reduction in the annual
consumption rate will ensure that the resource never runs out, assuming that
consumption falls each year by the same percentage?
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8 Introduction to calculus

Learning objectives

After completing this chapter students should be able to:

• Differentiate functions with one unknown variable.
• Find the slope of a function using differentiation.
• Derive marginal revenue and marginal cost functions using differentiation and

relate them to the slopes of the corresponding total revenue and cost functions.
• Calculate point elasticity for non-linear demand functions.
• Use calculus to find the sales tax that will maximize tax yield.
• Derive the Keynesian multiplier using differentiation.

8.1 The differential calculus
This chapter introduces some of the basic techniques of calculus and their application to
economic problems. We shall be concerned here with what is known as the ‘differential
calculus’.

Differentiation is a method used to find the slope of a function at any point. Although this
is a useful tool in itself, it also forms the basis for some very powerful techniques for solving
optimization problems, which are explained in this and the following chapters.

The basic technique of differentiation is quite straightforward and easy to apply. Consider
the simple function that has only one term

y = 6x2

To derive an expression for the slope of this function for any value of x the basic rules of
differentiation require you to:

(a) multiply the whole term by the value of the power of x, and
(b) deduct 1 from the power of x.

In this example there is a term in x2 and so the power of x is reduced from 2 to 1. Using the
above rule the expression for the slope of this function therefore becomes

2 × 6x2−1 = 12x

This is known as the derivative of y with respect to x, and is usually written as dy/dx, which
is read as ‘dy by dx’.
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We can check that this is approximately correct by looking at the graph of the function
y = 6x2 in Figure 8.1. Any term in x2 will rise at an ever increasing rate as x is increased. In
other words, the slope of this function must increase as x increases. The slope is the derivative
of the function with respect to x, which we have just worked out to be 12x. As x increases
the term 12x will also obviously increase and so we can confirm that the formula derived for
the slope of this function does behave in the expected fashion.

To determine the actual value of the slope of the function y = 6x2 for any given value
of x, one simply enters the given value of x into the formula

Slope = 12x

When x = 4, then slope = 48; when x = 5, then slope = 60; etc.

Example 8.1

What is the slope of the function y = 4x2 when x is 8?

Solution

By differentiating y we get

Slope = dy

dx
= 2 × 4x2−1 = 8x

When x = 8, then slope = 8(8) = 64.
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Example 8.2

Find a formula that gives the slope of the function y = 6x3 for any value of x.

Solution

Slope = dy

dx
= 3 × 6x3−1 = 18x2 for any value of x.

Example 8.3

What is the slope of the function y = 45x4 when x = 10?

Solution

Slope = dy

dx
= 180x3

When x = 10, then slope = 180(1,000) = 180,000.

Test Yourself, Exercise 8.1

1. Derive an expression for the slope of the function y = 12x3.
2. What is the slope of the function y = 6x4 when x = 2?
3. What is the slope of the function y = 0.2x4 when x = 3?
4. Derive an expression for the slope of the function y = 52x3.
5. Make up your own single-term function and then differentiate it.

8.2 Rules for differentiation
The rule for differentiation can be formally stated as:

If y = axn where a and n are given parameters then

dy

dx
= naxn−1

When there are several terms in x added together or subtracted in a function then this rule
for differentiation is applied to each term individually. (The special rules for differentiating
functions where terms are multiplied or divided are explained in Chapter 12.)

Example 8.4

Differentiate the function y = 3x2 + 10x3 − 0.2x4.
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Solution

dy

dx
= 2 × 3x2−1 + 3 × 10x3−1 − 4 × 0.2x4−1 = 6x + 30x2 − 0.8x3

Example 8.5

Find the slope of the function y = 6x2 − 0.5x3 when x = 10.

Solution

Slope = dy

dx
= 12x − 1.5x2

When x = 10, slope = 120 − 1.5(100) = 120 − 150 = −30.

Example 8.6

Derive an expression for the slope of the function y = 4x2 + 2x3 − x4 + 0.1x5 for any
value of x.

Solution

Slope = dy

dx
= 8x + 6x2 − 4x3 + 0.5x4

In using the formula for differentiation, one has to remember that x1 = x and x0 = 1.

Example 8.7

Differentiate the function y = 8x.

Solution

y = 8x = 8x1

dy

dx
= 1 × 8x1−1 = 8x0 = 8

Example 8.8

Derive an expression for the slope of the function y = 30x − 0.5x2 for any value of x.

© 1993, 2003 Mike Rosser



Solution

Slope = dy

dx
= 30x0 − 2(0.5)x = 30 − x

Example 8.9

Differentiate the function y = 14x.

Solution

dy

dx
= 14x1−1 = 14x0 = 14

The example above illustrates the point that the derivative of any term in x (to the power of 1)
is simply the value of the parameter that x is multiplied by.

Any constant terms always disappear when a function is differentiated. To understand why,
consider a function with one constant such as the function y = 5. This could be written as
y = 5x0. Differentiating this function gives

dy

dx
= 0(5x−1) = 0

Example 8.10

Differentiate the function y = 20 + 4x − 0.5x2 + 0.01x3.

Solution

dy

dx
= 4 − x + 0.03x2

Example 8.11

Derive an expression for the slope of the function y = 6 + 3x − 0.1x2.

Solution

Slope = dy

dx
= 3 − 0.2x

Even when the power of x in a function is negative or not a whole number, the same rules
for differentiation still apply.
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Example 8.12

What is the slope of the function y = 4x0.5 when x = 4?

Solution

Slope = dy

dx
= 0.5 × 4x0.5−1 = 2x−0.5

When x = 4, slope = 2 × 4−0.5 = 2 × ( 1
2

) = 1.

Example 8.13

Differentiate the function y = x−1 + x0.5.

Solution

dy

dx
= −1 × x−1−1 + 0.5x0.5−1 = −x−2 + 0.5x−0.5

Test Yourself, Exercise 8.2

1. Differentiate the function y = x3 + 60x.
2. What is the slope of the function y = 12 + 0.5x4 when x = 5?
3. Derive a formula for the slope of the function y = 4 + 4x−1 − 4x.
4. What is the slope of the function y = 4x0.5 when x = 4?
5. Differentiate the function y = 25 − 0.1x−2 + 2x0.3.
6. Make up your own function with at least three different terms in x and then

differentiate it.

8.3 Marginal revenue and total revenue
What differentiation actually does is look at the effect of an infinitely small change in the
independent variable x on the dependent variable y in a function y = f(x). This may seem
a strange concept, and the rest of this section tries to explain how it works, but first consider
the following example which shows how a function can be differentiated from first principles.

Example 8.14

Differentiate the function y = 6x + 2x2 from first principles.

© 1993, 2003 Mike Rosser



Solution

Assume that x is increased by the small amount 5x (5 is the Greek letter ‘delta’ which
usually signifies a change in a variable). This will produce a small change 5y in y.

Given the original function

y = 6x + 2x2 (1)

the new value of y (i.e. y+5y) can be found by substituting the new value of x (i.e. x+5x)
into the function. Thus

y +5y = 6(x +5x)+ 2(x +5x)2

y +5y = 6x + 65x + 2x2 + 4x5x + 2(5x)2

Subtracting (1) y = 6x + 2x2

gives 5y = 65x + 4x5x + 2(5x)2

Dividing through by 5x,

5y

5x
= 6 + 4x + 25x

If 5x becomes infinitely small, then the last term disappears and

5y

5x
= 6 + 4x (2)

By definition, dy/dx is the effect of an infinitely small change in x on y. Thus, from (2),

dy

dx
= 6 + 4x

This is the same result for dy/dx that would be obtained using the basic rules for differentiation
explained in Section 8.2. It is obviously quicker to use these rules than to differentiate from first
principles. However, Example 8.14 should now help you to understand how the differential
calculus can be applied to economics.

Up to this point we have been using the usual algebraic notation for a single variable
function, assuming that y is dependent on x. Changing the notation so that we can look at
some economic applications does not alter the rule for differentiation as long as functions
are specified in a form where one variable is dependent on another.

In introductory economics texts, marginal revenue (MR) is sometimes defined as the
increase in total revenue (TR) received from sales caused by an increase in output by 1 unit.
This is not a precise definition though. It only gives an approximate value for marginal revenue
and it will vary if the units that output is measured in are changed. A more precise definition
of marginal revenue is that it is the rate of change of total revenue relative to increases in
output.
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In Figure 8.2 the rate of change of total revenue between points B and A is

5TR

5Q
= AC

BC
= the slope of the line AB

which is an approximate value for marginal revenue over this output range.
Now suppose that the distance between B and A gets smaller. As point B moves along TR

towards A the slope of the line AB gets closer to the value of the slope of TT′, which is the
tangent to TR at A. (A tangent to a curve at any point is a straight line having the slope at
that point.) Thus for a very small change in output, MR will be almost equal to the slope of
TR at A. If the change becomes infinitesimally small, then the slope of AB will exactly equal
the slope of TT′. Therefore, MR will be equal to the slope of the TR function at any given
output.

We know that the slope of a function can be found by differentiation and so it must be the
case that

MR = dTR

dq

Example 8.15

Given that TR = 80q − 2q2, derive a function for MR.

Solution

MR = dTR

dq
= 80 − 4q

This result helps to explain some of the properties of the relationship between TR and MR.
The linear demand schedule D in Figure 8.3 represents the function

p = 80 − 2q (1)
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We know that by definition TR = pq. Therefore, substituting (1) for p,

TR = (80 − 2q)q = 80q − 2q2

which is the same as the TR function in Example 8.15 above. This TR function is plotted in
the lower section of Figure 8.3 and the function for MR, already derived, is plotted in the top
section.

You can see that when TR is rising, MR is positive, as one would expect, and when TR is
falling, MR is negative. As the rate of increase of TR gets smaller so does the value of MR.
When TR is at its maximum, MR is zero.

With the function for MR derived above it is very straightforward to find the exact value of
the output at which TR is a maximum. The TR function is horizontal at its maximum point
and its slope is zero and so MR is also zero. Thus when TR is at its maximum

MR = 80 − 4q = 0

80 = 4q

20 = q
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One can also see that the MR function has the same intercept on the vertical axis as this
straight line demand schedule, but twice its slope. We can show that this result holds for any
linear downward-sloping demand schedule.

For any linear demand schedule in the format

p = a − bq

TR = pq = (a − bq)q = aq − bq2

MR = dTR

dq
= a − 2bq

Thus both the demand schedule and the MR function have a as the intercept on the ver-
tical axis, and the slope of MR is 2b which is obviously twice the demand schedule’s
slope.

It should also be noted that this result does not hold for non-linear demand schedules. If
a demand schedule is non-linear then it is best to derive the slope of the MR function from
first principles.

Example 8.16

Derive the MR function for the non-linear demand schedule p = 80 − q0.5.

Solution

TR = pq =
(

80 − q0.5
)
q = 80q − q1.5

MR = dTR

dq
= 80 − 1.5q0.5

In this non-linear case the intercept on the price axis is still 80 but the slope of MR is 1.5 times
the slope of the demand function.

For those of you who are still not convinced that the idea of looking at an ‘infinitesimally
small’ change can help find the rate of change of a function at a point, Example 8.17 below
shows how a spreadsheet can be used to calculate rates of change for very small increments.
This example is for illustrative purposes only though. The main reason for using calculus
in the first place is to enable the immediate calculation of rates of change at any point of
a function.

Example 8.17

For the total revenue function

TR = 500q − 2q2
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find the value of MR when q = 80 (i) using calculus, and (ii) using a spreadsheet that
calculates increments in q above the given value of 80 that get progressively smaller. Compare
the two answers.

Solution

(i) MR = dTR

dq
= 500 − 4q

Thus when q = 80

MR = 500 − 4(80) = 500 − 320 = 180

(ii) The spreadsheet shown in Table 8.2 can be constructed by following the instructions in
Table 8.1. This spreadsheet shows that as increments in q (relative to the initial given
value of 80) become smaller and smaller the value of MR (i.e. 5TR/5q) approaches
180. This is consistent with the answer obtained by calculus in (i).

Table 8.1

CELL Enter Explanation
A1 to B4

and
A6 to E6

Enter labels as shown 
in Table 8.2

Labels to indicate where initial values go plus 
column heading labels

D2 TR = 500q - 2q^2 Label to remind you what function is used.
D3 80 Given initial value for q.
D4 =500*D3-2*D3^2 Calculates TR corresponding to given q value.
B7 10 Initial size of  increment in q.
B8 =B7/10 Calculates an increment in q that is only 10% of 

the value of the one in cell above.
B9 to 
B13

Copy cell B8 formula 
down column B

Calculates a series of increments in q that get 
smaller and smaller each time.

A7 =B7+D$3 Calculates new value of q by adding the 
increment in cell A7 to the given value of 80.

A8 to 
A13

Copy cell A7  formula 
down column A

Calculates a series of values of q that increase by 
smaller and smaller increments each time.

C7 =500*A7-2*A7^2 Calculates TR corresponding to value of q in cell 
A7.

C8 to 
C13

Copy cell C7  formula 
down column C

Calculates a series of values of TR 
corresponding to values of q in row A.

D7 =C7-D$4 Calculates the change in TR relative to the initial 
given value in cell D4.

D8 to 
D13

Copy cell D7  formula 
down column D

Calculates series of changes in TR 
corresponding to increments in q in row B.

E7 =D7/B7 Calculates  ∆TR / ∆ q  
Calculates  values of ∆TR / ∆ q corresponding to   E8 to 

E13
Copy cell E7  formula 
down column E decreasing increments in q and TR

A7 to 
E13

Widen columns and 
increase number of 
decimal places as 
necessary.

The point of this example is to show how the 

the decimal places need to be shown.
value of  ∆TR / ∆ q converges on dTR/dq so all 
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Table 8.2 

A B C D E 
1 Ex 8.17 DIFFERENTIATION OF TR FUNCTION 
2 GIVEN FUNCTION TR = 500q - 2q^2 
3 INITIAL q VALUE = 80 
4 INITIAL TR VALUE = 27200 
5 Marginal Revenue 
6 q Delta q TR Delta TR (DeltaTR)/(Delta q)
7 90 10 28800 1600 160
8 81 1 27378 178 178
9 80.1 0.1 27217.98 17.98 179.8 

10 80.01 0.01 27201.7998 1.7998 179.98
11 80.001 0.001 27200.18 0.179998 179.998
12 80.0001 0.0001 27200.018 0.01799998 179.9998
13 80.00001 0.00001 27200.0018 0.001800000 179.9999802

Test Yourself, Exercise 8.3

1. Given the demand schedule p = 120 − 3q derive a function for MR and find the
output at which TR is a maximum.

2. For the demand schedule p = 40 − 0.5q find the value of MR when q = 15.
3. Find the output at which MR is zero when p = 720 − 4q0.5 describes the demand

schedule.
4. A firm knows that the demand function for its output is p = 400 − 0.5q. What

price should it charge to maximize sales revenue?
5. Make up your own demand function and then derive the corresponding MR

function and find the output level which corresponds to zero marginal revenue.

8.4 Marginal cost and total cost
Just as MR can be shown to be the rate of change of the TR function, so marginal cost (MC)
is the rate of change of the total cost (TC) function. In fact, in nearly all situations where one
is dealing with the concept of a marginal increase, the marginal function is equal to the rate
of change of the original function, i.e. to derive the marginal function one just differentiates
the original function.

Example 8.18

Given TC = 6 + 4q2 derive the MC function.

Solution

MC = dTC

dq
= 8q
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The example above is somewhat unrealistic in that it assumes an MC function that is a straight
line. This is because the TC function is given as a simple quadratic function, whereas one
normally expects a TC function to have a shape similar to that shown in Figure 8.4. This
represents a cubic function with certain properties to ensure that:

(a) the rate of change of TC first falls and then rises, and
(b) TC never actually falls as output increases, i.e. MC is never negative. (Although it is

quite common to find economies of scale causing average costs to fall, no firm is going
to find the total cost of production falling when output increases.)

The flattest point of this TC schedule is at M, which corresponds to the minimum value
of MC.

A cubic total cost function has the above properties if

TC = aq3 + bq2 + cq + d

where a, b, c and d are parameters such that

a, c, d > 0, b < 0 and b2 < 3ac.

This applies to the TC functions in the examples below.

Example 8.19

If TC = 2.5q3 − 13q2 + 50q + 12 derive the MC function.
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Solution

MC = dTC

dq
= 7.5q2 − 26q + 50

Example 8.20

When will average variable cost be at its minimum value for the TC function.

TC = 40 + 82q − 6q2 + 0.2q3?

Solution

The theory of costs tells us that MC will cut the minimum point of both the average cost (AC)
and the average variable cost (AVC) functions. We therefore need to derive the MC and AVC
functions and find where they intersect.

It is obvious from this TC function that total fixed costs TFC = 40 and total variable costs
TVC = 82q − 6q2 + 0.2q3. Therefore,

AVC = TVC

q
= 82 − 6q + 0.2q2

and

MC = dTC

dq
= 82 − 12q + 0.6q2

Setting MC = AVC

82 − 12q + 0.6q2 = 82 − 6q + 0.2q2

0.4q2 = 6q

q = 6

0.4
= 15

at the minimum point of AVC.
(When you have covered the analysis of maximization and minimization in the next chapter,
come back to this example and see if you can think of another way of solving it.)

Test Yourself, Exercise 8.4

1. If TC = 65 + q1.5 what is MC when q = 25?
2. Derive a formula for MC if TC = 4q3 − 20q2 + 60q + 40.
3. If TC = 0.5q3 − 3q2 + 25q + 20 derive functions for: (a) MC, (b) AC, (c) the

slope of AC.
4. What is special about MC if TC = 25 + 0.8q?
5. Make up your own TC function and then derive the corresponding MC function.
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8.5 Profit maximization
We are now ready to see how calculus can help a firm to maximize profits, as the following
examples illustrate. At this stage we shall just use the MC = MR rule for profit maxi-
mization. The second condition (MC cuts MR from below) will be dealt with in the next
chapter.

Example 8.21

A monopoly faces the demand schedule p = 460 − 2q

and the cost schedule TC = 20 + 0.5q2

How much should it sell to maximize profit and what will this maximum profit be? (All costs
and prices are in £.)

Solution

To find the output where MC = MR we first need to derive the MC and MR functions.

Given TC = 20 + 0.5q2

then MC = dTC

dq
= q (1)

As TR = pq = (460 − 2q)q = 460q − 2q2

then MR = dTR

dq
= 460 − 4q (2)

To maximize profit MR = MC. Therefore, equating (1) and (2),

460 − 4q = q

460 = 5q

92 = q

The actual maximum profit when the output is 92 will be

TR − TC = (460q − 2q2)− (20 + 0.5q2)

= 460q − 2q2 − 20 − 0.5q2

= 460q − 2.5q2 − 20

= 460(92)− 2.5(8,464)− 20

= 42,320 − 21,160 − 20 = £21,140
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Example 8.22

A firm faces the demand schedule p = 184 − 4q

and the TC function TC = q3 − 21q2 + 160q + 40

What output will maximize profit?

Solution

Given TR = pq = (184 − 4q)q = 184q − 4q2

then MR = dTR

dq
= 184 − 8q

MC = dTC

dq
= 3q2 − 42q + 160

To maximize profits MC = MR. Therefore,

3q2 − 42q + 160 = 184 − 8q

3q2 − 34q − 24 = 0

(q − 12)(3q + 2) = 0

q − 12 = 0 or 3q + 2 = 0

q = 12 or q = −2

3

One cannot produce a negative quantity and so the firm must produce 12 units of output in
order to maximize profits.

Test Yourself, Exercise 8.5

1. A monopoly faces the following TR and TC schedules:

TR = 300q − 2q2

TC = 12q3 − 44q2 + 60q + 30

What output should it sell to maximize profit?
2. A firm faces the demand function p = 190 − 0.6q

and the total cost function TC = 40 + 30q + 0.4q2

(a) What output will maximize profit?
(b) What output will maximize total revenue?
(c) What will the output be if the firm makes a profit of £4,760?
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3. A firm’s total revenue and total cost functions are

TR = 52q − q2

TC = q3

3
− 2.5q2 + 34q + 4

At what output will profit be maximized?

8.6 Respecifying functions
Many of the examples considered so far have included a demand schedule in the format

p = a + bq

although, as was explained in Chapter 4, economic theory normally defines a demand function
in the format q = f(p), with q being the dependent variable rather than p. However, because
the usual convention is to havep on the vertical axis in supply and demand graphical analysis,
and also because cost functions have q as the independent variable, it usually helps to work
with the inverse demand function p = f(q). The examples below show how to derive the
relationship between MR and q by finding the inverse demand function.

Example 8.23

Derive the MR function for the demand function q = 400 − 0.1p.

Solution

Given q = 400 − 0.1p

10q = 4,000 − p

p = 4,000 − 10q

Using this inverse demand function we can now derive

TR = pq = (4,000 − 10q)q = 4,000q − 10q2

MR = dTR

dq
= 4,000 − 20q

Example 8.24

A firm faces the demand schedule q = 200 − 4p

and the cost schedule TC = 0.1q3 − 0.5q2 + 2q + 8

What price will maximize profit?
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Solution

The demand function q = 200 − 4p

can be rewritten as p = 50 − 0.25q

This is a linear demand schedule and so MR has the same intercept and twice the
slope. Thus

MR = 50 − 0.5q

From the TC function

MC = dTC

dq
= 0.3q2 − q + 2

To maximize profits MC = MR. Therefore, equating the MR and MC functions already
derived

0.3q2 − q + 2 = 50 − 0.5q

0.3q2 − 0.5q − 48 = 0

Using the formula for the solution of quadratic equations

q = −(−0.5)± √
(−0.5)2 − 4 × 0.3 × (−48)

2 × 0.3

= 0.5 ± √
0.25 + 57.6

0.6

= 0.5 ± √
57.85

0.6

Disregarding the negative solution as output cannot be negative

q = 0.5 + 7.6

0.6
= 8.1

0.6
= 13.5

Substituting this output into the demand function

p = 50 − 0.25q = 50 − 3.375 = 46.625

Test Yourself, Exercise 8.6

1. Given the demand function q = 150 − 3p, derive a function for MR.
2. A firm faces the demand schedule q = 40 − p0.5 (where p0.5 ≥ 0, q ≤ 40) and

the cost schedule TC = q3 − 2.5q2 + 50q + 16. What price should it charge to
maximize profit?

3. Find the MR function corresponding to the demand schedule q = (60 − 2.5p)0.5.
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8.7 Point elasticity of demand
Price elasticity of demand is defined as

e = (−1)
percentage change in quantity

percentage change in price

However, looking at the changes in price and quantity between points A and B on the demand
schedule D in Figure 8.5, the question you may ask is ‘percentage of what’? Clearly the
change in quantity 5q is a much larger percentage of q1 than of the larger quantity q2.
Although arc elasticity gives an approximate ‘average’ measure, a more precise measure can
be obtained by finding the elasticity of demand at a single point on the demand schedule. In
Chapter 4 some simple examples of point elasticity based on linear demand schedules were
considered. With the aid of calculus we can now also derive point elasticity for non-linear
demand schedules.

If the movement along D from A to B in Figure 8.5 is very small then we can assume
p1 = p2 = p and q1 = q2 = q and so

e = (−1)
5q/q

5p/p
= (−1)

p

q

1

5p/5q
(1)

As B gets nearer to A the value of 5p/5q, which is the slope of the straight line AB, gets
closer to the slope of the tangent TT′ at A. (Note that, as price falls in this example, 5p is
negative, giving a negative value for the relevant slopes.) Thus for an infinitesimally small
movement from A

5p

5q
= dp

dq
= slope of D at A
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Thus, substituting this result into (1) above, the formula for point elasticity of demand
becomes

e = (−1)
p

q

1

dp/dq

Example 8.25

What is point elasticity when price is 12 for the demand function p = 60 − 3q?

Solution
dp

dq
= −3

Given p = 60 − 3q, then

3q = 60 − p

q = 60 − p

3

When p = 12, then

q = 60 − 12

3
= 48

3
= 16

Therefore,

e = (−1)
p

q

1

dp/dq
= (−1)

12

16
× 1

−3
= 0.25

Example 8.26

What is elasticity of demand when quantity is 8 if a firm’s demand function is q = 60−2p0.5

(where p0.5 ≥ 0, q ≤ 60)?

Solution

Deriving the inverse of the demand function

q = 60 − 2p0.5

2p0.5 = 60 − q

p0.5 = 30 − 0.5q

p = (30 − 0.5q)2 = 900 − 30q + 0.25q2
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Therefore,

dp

dq
= −30 + 0.5q

When q = 8,

dp

dq
= −30 + 0.5(8) = −30 + 4 = −26

Also, when q = 8,

p = 900 − 30(8)+ 0.25(8)2

= 900 − 240 + 16 = 676

Thus

e = (−1)
p

q

1

dp/dq
= (−1)

676

8
× 1

−26
= 3.25

Test Yourself, Exercise 8.7

1. What is the point elasticity of demand when price is 20 for the demand schedule
p = 45 − 1.5q?

2. Explain why the point elasticity of demand decreases in value as one moves down
a straight line demand schedule.

3. Given the demand function q = (1,200 − 2p)0.5, what is elasticity of demand
when quantity is 30?

4. Explain why the demand function q = 265p−1 will have the same point elasticity
of demand at all prices and say what its value is.

8.8 Tax yield
Elementary supply and demand analysis tells us that the effect of a per-unit tax t on a good
sold in a competitive market will effectively shift up the supply schedule vertically by the
amount of the tax. This will cause the price paid by consumers to rise and the quantity bought
to fall. The change in total revenue spent by consumers will depend on the price elasticity of
demand.

The Chancellor of the Exchequer, however, is more interested in the total amount of tax
raised for the government, or the tax yield (TY), than total consumer expenditure. If a per-unit
tax is increased, the quantity bought will always fall. The question, however, is whether or
not this fall in quantity will outweigh the effect on TY of the increase in the amount of tax
raised on each unit. To answer this we need to know the rate of change of the tax yield with
respect to increases in the per-unit tax.
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Example 8.27

A market has the demand schedule p = 92−2q and the supply schedule p = 12+3q. What
per-unit tax will raise the maximum tax revenue for the government? (All prices are in £.)

Solution

Let the per-unit tax be t . This changes the supply schedule to

p = 12 + t + 3q

i.e. the intercept on the price axis shifts vertically upwards by the amount t .
We now need to derive a function for q in terms of the tax t . In equilibrium, supply price
equals demand price. Therefore,

12 + 3q + t = 92 − 2q

5q = 80 − t

q = 16 − 0.2t

The tax yield is (amount sold) × (per-unit tax). Therefore,

TY = qt = (16 − 0.2t)t = 16t − 0.2t2

and so the rate of change of TY with respect to t is

dTY

dt
= 16 − 0.4t

If dTY/dt > 0, an increase in t will increase TY. However, from the formula for dTY/dt
derived above, one can see that as the amount of the tax t is increased the value of dTY/dt
falls. Therefore in order to maximize TY, t should be increased until dTY/dt = 0. Any further
increases in t would cause dTY/dt to become negative and cause TY to start to fall. Thus

dTY

dt
= 16 − 0.4t = 0

16 = 0.4t

40 = t

Therefore a per-unit tax of £40 will maximize the tax yield.

Rather than working from first principles, as in the above example, a general formula can
be derived for the rate of change of the tax yield with respect to a per-unit tax if both demand
and supply schedules are linear. Assume that these schedules are:

demand p = a + bq supply p = c + dq

where a, b, c and d are parameters (note that we expect b < 0).
With a per-unit tax of t , the supply schedule becomes

p = c + dq + t

© 1993, 2003 Mike Rosser



Setting supply price equal to demand price we can derive the reduced form equation for TY
in terms of the independent variable t and then differentiate it to find the comparative static
effect of a change in t .

c + dq + t = a + bq

q(d − b) = a − c − t

q = a − c

d − b
− t

d − b

TY = qt =
(
a − c

d − b

)
t − t2

d − b

dTY

dt
= a − c

d − b
− 2t

d − b
(1)

We can check this formula using the figures from Example 8.27 above. Given the demand
schedule p = 92 − 2q and the supply schedule p = 12 + 3q, then

a = 92 b = −2 c = 12 d = 3

Substituting these values into (1) above

dTY

dt
= 92 − 12

3 − (−2)
− 2t

5
= 80

5
− 2t

5
= 16 − 0.4t

This is the same as the function derived from first principles in Example 8.27.

Test Yourself, Exercise 8.8

1. Given the demand schedule p = 180 − 8q and the supply schedule p = 25 + 2q,
what level of per-unit tax would maximize the government’s tax yield?

2. Change one of the parameters in Question 1 above and work out the new answer.
3. Assume a market has the demand function q = 40−0.5p and the supply function

q = 2p − 4. The government currently imposes a per-unit tax of £3. If this tax is
slightly increased will the tax yield rise or fall?

8.9 The Keynesian multiplier
In a simple Keynesian macroeconomic model with no government sector and no foreign
trade, it is assumed that

Y = C + I (1)

C = a + bY (2)

where Y is national income, C is consumption and I is investment, exogenously fixed, and
a and b are parameters.

The marginal propensity to consume (MPC) is the rate of change of consumption as
national income increases, which is equal to dC/dY = b. The multiplier is the rate of
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change of national income in response to an increase in exogenously determined investment,
i.e. dY/dI . The result that the multiplier is equal to

1

1 − MPC

can be easily derived by differentiation.
Substituting (2) into (1) we get

Y = a + bY + I

Y (1 − b) = a + I

Y = a + I

1 − b
= a

1 − b
+ I

1 − b

Therefore

dY

dI
= 1

1 − b

which is the formula for the multiplier.
This multiplier can be used to calculate the increase in investment necessary to achieve

any specified increase in national income.

Example 8.28

In a basic Keynesian macroeconomic model it is assumed that Y = C + I where I = 250
and C = 0.75Y . What is the equilibrium level of Y ? What increase in I would be needed to
cause Y to increase to 1,200?

Solution

Y = C + I = 0.75Y + 250

0.25Y = 250

Equilibrium level Y = 1,000.

For any increase (5I ) in I the resulting increase(5Y ) in Y will be determined by the formula

5Y = K5I (1)

where K is the multiplier. We know that

K = 1

1 − MPC

In this example, MPC = dC/dY = 0.75. Therefore,

K = 1

1 − 0.75
= 1

0.25
= 4 (2)
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The required change in Y is

5Y = 1,200 − 1,000 = 200 (3)

Therefore, substituting (2) and (3) into (1),

200 = 45I

5I = 50

This is the required increase in I .

Multipliers for other exogenous variables in more complex macroeconomic models can be
derived using the same method. However, for differentiation with respect to one exogenous
variable the other variables must remain constant and so we shall return to this topic in
Chapter 10 when partial differentiation is explained.

Test Yourself, Exercise 8.9

1. In a basic Keynesian macroeconomic model it is assumed that Y = C + I where
I = 820 and C = 60 + 0.8Y .

(a) What is the marginal propensity to consume?
(b) What is the equilibrium level of Y ?
(c) What is the value of the multiplier?
(d) What increase in I is required to increase Y to 5,000?
(e) If this increase takes place will savings (Y − C) still equal I?
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9 Unconstrained optimization

Learning objectives

After completing this chapter students should be able to:

• Find the maximum or minimum point of a single variable function by differenti-
ation and checking first-order and second-order conditions.

• Use calculus to help find a firm’s profit-maximizing output.
• Find the optimum order size for a firm wishing to minimize the cost of holding

inventories and purchasing costs.
• Deduce the comparative static effects of different forms of taxes on the output of

a profit-maximizing firm.

9.1 First-order conditions for a maximum
Consider the total revenue function

TR = 60q − 0.2q2

This will take an inverted U-shape similar to that shown in Figure 9.1. If we ask the question
‘when is TR at its maximum?’ the answer is obviously at M, which is the highest point on
the curve. At this maximum position the TR schedule is flat. To the left of M, TR is rising
and has a positive slope, and to the right of M, the TR schedule is falling and has a negative
slope. At M itself the slope is zero.

We can therefore say that for a function of this shape the maximum point will be where its
slope is zero. This zero slope requirement is a necessary first-order condition for a maximum.

Zero slope will not guarantee that a function is at a maximum, as explained in the next
section where the necessary additional second-order conditions are explained. However, in
this particular example we know for certain that zero slope corresponds to the maximum
value of the function.

In Chapter 8, we learned that the slope of a function can be obtained by differentiation.
So, for the function

TR = 60q − 0.2q2

slope = dTR

dq
= 60 − 0.4q
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The slope is zero when

60 − 0.4q = 0

60 = 0.4q

150 = q

Therefore TR is maximized when quantity is 150.

Test Yourself, Exercise 9.1

1. What output will maximize total revenue if TR = 250q − 2q2?
2. If a firm faces the demand schedule p = 90 − 0.3q how much does it have to sell

to maximize sales revenue?
3. A firm faces the total revenue schedule TR = 600q − 0.5q2

(a) What is the marginal revenue when q is 100?
(b) When is the total revenue at its maximum?
(c) What price should the firm charge to achieve this maximum TR?

4. For the non-linear demand schedule p = 750 − 0.1q2 what output will maximize
the sales revenue?

9.2 Second-order condition for a maximum
In the example in Section 9.1, it was obvious that the TR function was a maximum when its
slope was zero because we knew the function had an inverted U-shape. However, consider
the function in Figure 9.2(a). This has a slope of zero at N, but this is its minimum point not
its maximum. In the case of the function in Figure 9.2(b) the slope is zero at I, but this is
neither a maximum nor a minimum point.

The examples in Figure 9.2 clearly illustrate that although a zero slope is necessary for a
function to be at its maximum it is not a sufficient condition. A zero slope just means that
the function is at what is known as a ‘stationary point’, i.e. its slope is neither increasing nor
decreasing. Some stationary points will be turning points, i.e. the slope changes from positive
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to negative (or vice versa) at these points, and will be maximum (or minimum) points of the
function.

In order to find out whether a function is at a maximum or a minimum or a point of inflexion
(as in Figure 9.2(b) ) when its slope is zero we have to consider what are known as the second-
order conditions. (The first-order condition for any of the three forms of stationary point is
that the slope of the function is zero.)

The second-order conditions tell us what is happening to the rate of change of the slope of
the function. If the rate of change of the slope is negative it means that the slope decreases as
the variable on the horizontal axis is increased. If the slope is decreasing and one is at a point
where the actual slope is zero this means that the slope of the function is positive slightly
to the left and negative slightly to the right of this point. This is the case in Figure 9.1. The
slope is positive at Y, zero at M and negative at Z. Thus, if the rate of change of the slope of
a function is negative at the point where the actual slope is zero then that point is a maximum.

This is the second-order condition for a maximum. Until now, we have just assumed that
a function is maximized when its slope is zero if a sketch graph suggests that it takes an
inverted U-shape. From now on we shall make this more rigorous check of the second-order
conditions to confirm whether a function is maximized at any stationary point.

It is a straightforward exercise to find the rate of change of the slope of a function. We
know that the slope of a function y = f(x) can be found by differentiation. Therefore if we
differentiate the function for the slope of the original function, i.e. dy/dx, we get the rate of
change of the slope. This is known as the second-order derivative and is written d2y/dx2.
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Example 9.1

Show that the function y = 60x− 0.2x2 satisfies the second-order condition for a maximum
when x = 150.

Solution

The slope of this function will be zero at a stationary point. Therefore

dy

dx
= 60 − 0.4x = 0 (1)

x = 150

Therefore the first-order condition for a maximum is met when x is 150.
To get the rate of change of the slope we differentiate (1) with respect to x again, giving

d2y

dx2
= −0.4

This second-order derivative will always be negative, whatever the value of x. Therefore, the
second-order condition for a maximum is met and so y must be a maximum when x is 150.

In the example above, the second-order derivative did not depend on the value of x at the
function’s stationary point, but for other functions the value of the second-order derivative
may depend on the value of the independent variable.

Example 9.2

Show that TR is a maximum when q is 18 for the non-linear demand schedule.

p = 194.4 − 0.2q2

Solution

TR = pq = (194.4 − 0.2q2)q = 194.4q − 0.2q3

For a stationary point on this cubic function the slope must be zero and so

dTR

dq
= 194.4 − 0.6q2 = 0

194.4 = 0.6q2

324 = q2

18 = q

When q is 18 then the second-order derivative is

d2TR

dq2
= −1.2q = −1.2(18) = −21.6 < 0
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Therefore, second-order condition for a maximum is satisfied and TR is a maximum when
q is 18. (Note that in this example the second-order derivative −1.2q < 0 for any positive
value of q.)

Test Yourself, Exercise 9.2

Find stationary points for the following functions and say whether or not they are at
their maximum at these points.

1. TR = 720q − 0.3q2

2. TR = 225q − 0.12q3

3. TR = 96q − q1.5

4. AC = 51.2q−1 + 0.4q2

9.3 Second-order condition for a minimum
By the same reasoning as that set out in Section 9.2 above, if the rate of change of the slope
of a function is positive at the point when the slope is zero then the function is at a minimum.
This is illustrated in Figure 9.2(a). The slope of the function is negative at S, zero at N and
positive at T. As the slope changes from negative to positive, the rate of change of this slope
must be positive at the stationary point N.

Example 9.3

Find the minimum point of the average cost function AC = 25q−1 + 0.1q2

Solution

The slope of the AC function will be zero when

dAC

dq
= −25q−2 + 0.2q = 0 (1)

0.2q = 25q−2

q3 = 125

q = 5

The rate of change of the slope at this point is found by differentiating (1), giving the
second-order derivative

d2AC

dq2
= 50q−3 + 0.2

= 50

125
+ 0.2 when q = 5

= 0.4 + 0.2 = 0.6 > 0
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Therefore the second-order condition for a minimum value of AC is satisfied when q is 5.
The actual value of AC at its minimum point is found by substituting this value for q into

the original AC function. Thus

AC = 25q−1 + 0.1q2 = 25
5 + 0.1 × 25 = 5 + 2.5 = 7.5

Test Yourself, Exercise 9.3

Find whether any stationary points exist for the following functions for positive
values of q, and say whether or not the stationary points are at the minimum values of
the function.

1. AC = 345.6q−1 + 0.8q2

2. AC = 600q−1 + 0.5q1.5

3. MC = 30 + 0.4q2

4. TC = 15 + 27q − 9q2 + q3

5. MC = 8.25q

9.4 Summary of second-order conditions

If y = f(x) and there is a stationary point where
dy

dx
= 0, then

(i) this point is a maximum if
d2y

dx2
< 0

(ii) this point is a minimum if
d2y

dx2
> 0

Strictly speaking, (i) and (ii) are conditions for local maximums and minimums. It is possible,
for example, that a function may take a shape such as that shown in Figure 9.3. This has no
true global maximum or minimum, as values of y continue towards plus and minus infinity
as shown by the arrows. Points M and N, which satisfy the above second-order conditions
for maximum and minimum, respectively, are therefore just local maximum and minimum
points. However, for most of the examples that you are likely to encounter in economics any
local maximum (or minimum) points will also be global maximum (or minimum) points and
so you need not worry about this distinction. If you are uncertain then you can always plot a
function using Excel to see the pattern of turning points.

If d2y/dx2 = 0 there may be an inflexion point that is neither a maximum nor a minimum,
such as I in Figure 9.2(b). To check if this is so one really needs to investigate further, looking at
the third, fourth and possibly higher order derivatives for more complex polynomial functions.
However, we will not go into these conditions here. In all the economic applications given
in this text, it will be obvious whether or not a function is at a maximum or minimum at any
stationary points.

Some functions do not have maximum or minimum points. Linear functions are obvi-
ous examples as they cannot satisfy the first-order conditions for a turning point, i.e. that
dy/dx = 0, except when they are horizontal lines. Also, the slope of a straight line is always
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a constant and so the second-order derivative, which represents the rate of change of the
slope, will always be zero.

Example 9.4

In Chapter 5 we considered an example of a break-even chart where a firm was assumed to
have the total cost function TC = 18q and the total revenue function TR = 240+14q. Show
that the profit-maximizing output cannot be determined for this firm.

Solution

The profit function will be

π = TR − TC

= 240 + 14q − 18q

= 240 − 4q

Its rate of change with respect to q will be

dπ

dq
= −4 (1)

There is obviously no output level at which the first-order condition that dπ/dq = 0 can
be met and so no stationary point exists. Therefore the profit-maximizing output cannot be
determined.

End-point solutions

There are some possible exceptions to these first- and second-order conditions for maximum
and minimum values of functions. If the domain of a function is restricted, then a maximum or
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minimum point may be determined by this restriction, giving what is known as an ‘end-point’
or ‘corner’ solution. In such cases, the usual rules for optimization set out in this chapter will
not apply. For example, suppose a firm faces the total cost function (in £)

TC = 45 + 18q − 5q2 + q3

For a stationary point its slope will be

dTC

dq
= 18 − 10q + 3q2 = 0 (1)

However, if we try using the quadratic equation formula to find a value of q for which (1)
holds we see that

q = −b ± √
b2 − 4ac

2a
= −(−10)± √

102 − 4 × 18 × 3

2 × 3
= 10 ± √−116

6

We cannot find the square root of a negative number and so no solution exists. There is no
turning point as no value of q corresponds to a zero slope for this function.

However, if the domain of q is restricted to non-negative values then TC will be at its
minimum value of £45 when q = 0. Mathematically the conditions for minimization are not
met at this point but, from a practical viewpoint, the minimum cost that this firm can ever
face is the £45 it must pay even if nothing is produced. This is an example of an end-point
solution.

Therefore, when tackling problems concerned with the minimization or maximization of
economic variables, you need to ask whether or not there are restrictions on the domain of
the variable in question which may give an end-point solution.

Test Yourself, Exercise 9.4

1. A firm faces the demand schedule p = 200 − 2q and the total cost function

TC = 2
3q

3 − 14q2 + 222q + 50

Derive expressions for the following functions and find out whether they have
maximum or minimum points. If they do, say what value of q this occurs at and
calculate the actual value of the function at this output.

(a) Marginal cost
(b) Average variable cost
(c) Average fixed cost
(d) Total revenue
(e) Marginal revenue
(f) Profit

2. Construct your own example of a function that has a turning point. Check the
second-order conditions to confirm whether this turning point is a maximum or a
minimum.

3. A firm attempting to expand output in the short-run faces the total product of
labour schedule TPL = 24L2 − L3. At what levels of L will (a) TPL, (b) MPL,
and (c) APL be at their maximum levels?
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4. Using your knowledge of economics to apply appropriate restrictions on their
domain, say whether or not the following functions have maximum or minimum
points.

(a) TC = 12 + 62q − 10q2 + 1.2q3

(b) TC = 6 + 2.5q
(c) p = 285 − 0.4q

9.5 Profit maximization
We have already encountered some problems involving the maximization of a profit function.
As profit maximization is one of the most common optimization problems that you will
encounter in economics, in this section we shall carefully work through the second-order
condition for profit maximization and see how it relates to the different intersection points of
a firm’s MC and MR schedules.

Consider the firm whose marginal cost and marginal revenue schedules are shown by MC
and MR in Figure 9.4. At what output will profit be maximized?

The first rule for profit maximization is that profits are at a maximum when MC = MR.
However, there are two points, X and Y, where MC = MR. Only X satisfies the second rule
for profit maximization, which is that MC cuts MR from below at the point of intersection.
This corresponds to the second-order condition for a maximum required by the differential
calculus, as illustrated in the following example.

Example 9.5

Find the profit-maximizing output for a firm with the total cost function

TC = 4 + 97q − 8.5q2 + 1/3q3

and the total revenue function

TR = 58q − 0.5q2.

X

0

MC

MR

Y

D

q

£

Figure 9.4
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Solution

First let us derive the MC and MR functions and see where they intersect.

MC = dTC

dq
= 97 − 17q + q2 (1)

MR = dTR

dq
= 58 − q (2)

Therefore, when MC = MR

97 − 17q + q2 = 58 − q

39 − 16q + q2 = 0 (3)

(3 − q)(13 − q) = 0

Thus q = 3 or q = 13

These are the two outputs at which the MC and MR schedules intersect, but which one
satisfies the second rule for profit maximization? To answer this question, the problem can
be reformulated by deriving a function for profit and then trying to find its maximum. Thus,
profit will be

π = TR − TC = 58q − 0.5q2 − (4 + 97q − 8.5q2 + 1/3q3)

= 58q − 0.5q2 − 4 − 97q + 8.5q2 − 1/3q3

= −39q + 8q2 − 4 − 1/3q3

Differentiating and setting equal to zero

dπ

dq
= −39 + 16q − q2 = 0 (4)

0 = 39 − 16q + q2 (5)

Equation (5) is the same as (3) above and therefore has the same two solutions, i.e. q = 3 or
q = 13. However, using this method we can also explore the second-order conditions. From
(4) we can derive the second-order derivative

d2π

dq2
= 16 − 2q

When q = 3 then d2π/dq2 = 16 − 6 = 10 and so π is a minimum.

When q = 13 then d2π/dq2 = 16 − 26 = −10 and so π is a maximum.

Thus only one of the intersection points of MR and MC satisfies the second-order conditions
for a maximum and corresponds to the profit-maximizing output. This will be where MC
cuts MR from below. We can prove that this must be so as follows:

By differentiating (1) we get

slope of MC = dMC

dq
= −17 + 2q
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By differentiating (2) we get

slope of MR = dMR

dq
= −1

When q = 3, then the slope of MC is

−17 + 2(3) = −17 + 6 = −11 < −1 (i.e. steeper negative slope than MR)

When q = 13, then the slope of MC is

−17 + 2(13) = 9 (i.e. positive slope, greater slope than MR)

Thus, when q = 3, the MC schedule has a steeper negative slope than MR and so must cut
it from above. When q = 13, MC has a positive slope and so must cut MR from below.

Test Yourself, Exercise 9.5

1. A monopoly faces the total revenue schedule TR = 300q − 2q2

and the total cost schedule TC = 12q3 − 44q2 + 60q + 30
Are there two output levels at which MC = MR? Which is the profit-maximizing
output?

2. If a firm faces the demand schedule p = 120 − 3q
and the total cost schedule TC = 120 + 36q + 1.2q2

what output levels, if any, will (a) maximize profit, and (b) minimize profit?
3. Explain why a firm which is a monopoly seller in a market with the demand

schedule p = 66.8 − 0.4q and which faces the total cost schedule

TC = 220 + 120q − 12q2 + 0.5q

can never make a positive profit.
4. What is the maximum profit a firm can make if it faces the demand schedule

p = 660 − 3q and the total cost schedule TC = 25 + 240q − 72q2 + 6q3?
5. If a firm faces the demand schedule p = 53.5 − 0.7q, what price will maximize

profits if its total cost schedule is TC = 400 + 35q − 6q2 + 0.1q3?

9.6 Inventory control
In Chapter 8, we considered a few applications of differentiation, such as tax yield maximiza-
tion, without taking second-order conditions into account. We can now look at an application
where it is not obvious that a function is maximized or minimized when its slope is zero and
where second-order conditions must be fully investigated. This application analyses how the
optimum order size can be calculated for a firm wishing to minimize ordering and storage
costs.

A manufacturing company has to take into account costs other than the actual purchase
price of the components that it uses. These include:

(a) Reorder costs: each order for a consignment of components will involve administration
work, delivery, unloading etc.
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(b) Storage costs: the more components a firm has in storage the more storage space will be
needed. There is also the opportunity cost of the firm’s capital which will be tied up in
the components it has paid for.

If a firm only makes a few large orders its storage costs will be high but, on the other hand,
if it makes lots of small orders its reorder costs will be high. How then can it decide on the
optimum order size?

Assume that the total annual demand for components (Q) is evenly spread over the year.
Assume that each order is of equal size q and that inventory levels are run down to zero
before the next consignment arrives. Also assume that F is the fixed cost for making each
order and S is the storage cost per-unit per year. If each consignment of size q is run down
at a constant rate, then the average amount of stock held will be q/2. (This is illustrated in
Figure 9.5 where t represents the time interval between orders.) Thus total storage costs for
the year will be (q/2)S. The number of orders made in a year will be Q/q. Thus the total
order costs for the year will be (Q/q)F .

The firm will wish to choose the order size that minimizes the total of order costs plus
storage costs, defined as TC. The mathematical problem is therefore to find the value of q
that minimizes

TC =
(
Q

q

)
F +

(q
2

)
S

As Q,F and S are given constants, and remembering that 1/q is q−1, differentiating with
respect to q gives

dTC

dq
= −QF

q2
+ S

2
(1)

For a stationary point

0 = −QF
q2

+ S

2

QF

q2
= S

2

2QF

S
= q2

0 Timet/2 3t

q/2

Stock 
held

2tt

q

Figure 9.5
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Therefore the optimal order size is

q =
√

2QF

S
(2)

Thusq depends on the square root of the total annual demandQwhenF andS are exogenously
given.

The second-order conditions now need to be inspected to check that this turning point is
a minimum. If (1) above is rewritten as

dTC

dq
= −QFq−2 + S

2

then we can see that

d2TC

dq2
= 2QFq−3 > 0

as Q,F and q must all be positive quantities.
Thus any positive value of q that satisfies the first-order condition (2) above must also

satisfy the second-order condition for a minimum value of TC.

Example 9.6

A firm uses 200,000 units of a component in a year, with demand evenly spread over the
year. In addition to the purchase price, each order placed for a batch of components costs
£80. Each unit held in stock over a year costs £8. What is the optimum order size?

Solution

The optimum order size is q and so the average stock held is q/2. The number of orders is

Q

q
= 200,000

q

As each order made costs £80 and each unit stored for a year costs £8 then

TC = order + stock-holding costs

= 200,000(80)

q
+ 8q

2

= 16,000,000q−1 + 4q

For a stationary point

dTC

dq
= −16,000,000q−2 + 4 = 0

4 = 16,000, 000

q2

q2 = 16,000,000

4
= 4,000,000

q = √
(4,000,000) = 2,000
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The second-order condition for a minimum is met at this stationary point as

d2TC

dq2
= 32,000,000 q−3 > 0 for any q > 0

Therefore the optimum order size is 2,000 units.
We could, of course, have solved this problem by just substituting the given values into

the formula for optimal order size (2) derived earlier. Thus

q =
√

2QF

S
=

√
2 × 200,000 × 80

8
= 2,000

Test Yourself, Exercise 9.6

In all the questions below assume that demand is spread evenly over the year and stock
is run down to zero before a new order is placed.

1. A firm uses 6,000 tonnes of commodity X every year. The fixed transaction costs
involved with each order are £80. Each tonne of X held in stock costs £6 per
annum. How many separate orders for X should the firm make during the year?

2. If each order for a batch of components costs £700 to make, storage costs per
annum per component are £20 and annual usage is 4,480 components, what is the
optimal order size?

3. A firm uses 1,280 units of a component each year. The cost of making an order is
£540 and each component held in stock for a year costs the firm £6. What average
order size would you advise the firm to make? Assume that the demand for this
component is steady from year to year and that the same number of orders do not
have to be made within each 12-month period.

4. A firm uses 1,400 units per year of component G. Each order costs £350 to make
and average storage costs per unit of G are £20. There is also an extra ‘capacity’
cost given that the firm has to provide warehousing capable of storing a full order
size of q even though this warehousing space will be underutilized most of the
time. This ‘capacity’ cost will be £15 per unit of G. Adapt the optimal order size
formula to include this extra cost and then find the optimal order size for this firm.

9.7 Comparative static effects of taxes
In Chapter 5, we examined the comparative static effects of taxes on a firm’s profit-maximizing
output and price when all the relevant functions were linear. Calculus now enables us to
extend this analysis to non-linear functions. Having learned how to determine a firm’s profit-
maximizing output and price by setting up a firm’s profit function and then maximizing it,
we can now deduce what may happen to these equilibrium values if an exogenous variable
changes.

Suppose that a firm operates with the total cost function

TC = 50 + 0.4q2
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and is a monopoly facing the demand schedule

p = 360 − 2.1q

There is no independently determined exogenous variable in this economic model as it cur-
rently stands and so, if equilibrium was attained, output and price would remain at their
profit-maximizing levels. We shall now examine what would happen to these equilibrium
values if the following different forms of tax were imposed on the firm:

(a) a per-unit sales tax
(b) a lump sum tax
(c) a percentage profits tax

The approach used in each case is to:

• formulate the firm’s objective function for the net (after tax) profit that it will be striving
to maximize,

• find the output when the objective function is maximized, checking both first- and second-
order conditions,

• specify the profit-maximizing output and price as reduced form functions dependent on
the exogenously determined tax and

• differentiate to find the impact of a change in the tax on these optimum values.

It is important for you to learn how to set up objective functions from the economic
information available and to understand the different impacts that these different types of
taxes will have. A common mistake that students sometimes make in this sort of problem is
to try to show the effect of a tax by shifting up the supply schedule by the amount of the tax.
That method only applies for a sales tax in a perfectly competitive market. This time we have
a firm that operates in a monopolistic market (and so there is no supply schedule as such)
and some of these taxes are on profit rather than sales.

(a) Per-unit sales tax

If the firm has to pay the government an amount t on each unit of q that it sells then the total
tax it has to pay will be tq. Its total costs, including the tax, will therefore be

TC = 50 + 0.4q2 + tq

Given the demand schedule p = 360q − 2.1q the firm’s total revenue function will be

TR = pq = 360q − 2.1q2

The net profit objective function that the firm will wish to maximize will therefore be

π = TR − TC

= 360q − 2.1q2 − (50 + 0.4q2 + tq)

= 360q − 2.1q2 − 50 − 0.4q2 − tq

= 360q − 2.5q2 − 50 − tq
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Differentiating with respect to q and setting equal to zero to find the first-order condition for
a maximum

dπ

dq
= 360 − 5q − t = 0 (1)

Before proceeding with the comparative static analysis we need to check the second-order
conditions to confirm that this stationary point is indeed a maximum. Differentiating (1) again
gives

d2π

dq2
= −5 < 0

and so the second-order condition for a maximum is met.
Returning to the first-order condition (1) in order to find the optimal level of q in

terms of t

360 − 5q − t = 0 (1)

360 − t = 5q

q = 72 − 0.2t (2)

This is the reduced form equation for profit-maximizing output in terms of the independent
variable t .

Differentiating (2) with respect to t to find the comparative static effect of a change in t
on the optimum value of q gives

dq

dt
= −0.2

This means that a one unit increase in the per-unit sales tax will reduce output by 0.2 units.
This comparative static effect is not dependent on any other variable and so at any output
level the impact of the tax on q will be the same, as long as it is still profitable for the firm
to produce.

The comparative static effect of this tax on price can be found by substituting the function
for the optimal level of q

q = 72 − 0.2t (2)

into the firm’s demand schedule

p = 360 − 2.1q

Thus

p = 360 − 2.1(72 − 0.2t)

= 360 − 151.2 + 0.42t
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Giving the reduced form

p = 208.8 + 0.42t (3)

Differentiating

dp

dt
= 0.42

This tells us that the comparative static effect of a £1 increase in the per-unit tax t will be a
£0.42 increase in the firm’s profit-maximizing price.

(b) A lump sum tax

A lump sum tax is a fixed amount that firms are required to pay to the government. The
amount of the tax (T ) is not related to sales or profit levels.

Before the tax is introduced the firm in our example faces the total cost and total revenue
functions

TC = 50 + 0.4q2

TR = 360q − 2.1q2

The imposition of a lump sum tax T will effectively increase fixed costs by the amount of
the tax. The firm’s total cost function will therefore become

TC = 50 + 0.4q2 + T

and the net profit objective function that the firm attempts to maximize will become

π = TR − TC

= 360q − 2.1q2 − (50 + 0.4q2 + T )

= 360q − 2.1q2 − 50 − 0.4q2 − T

= 360q − 2.5q2 − 50 − T

Differentiating with respect to q and setting equal to zero to find the first-order conditions
for a maximum

dπ

dq
= 360 − 5q = 0 (4)

Differentiating (4) again gives

d2π

dq2
= −5 < 0

and so the second-order condition for a maximum is met.
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Returning to (4) to find the optimal level of q

−5q + 360 = 0

360 = 5q

q = 72 (5)

As (5) does not contain any term in T , the firm’s profit-maximizing output will always be
72, regardless of the amount of the lump sum tax. Therefore a change in the lump sum tax
T will have no effect on output. If the tax has no impact on output then it will also have no
effect on price.

This is what economic analysis would predict. If a firm has to pay a fixed sum out of its
profits then it would want to be in a position where total gross (before tax) profits are at a
maximum in order to maximize net after tax profit. Note, though, that if the lump sum tax was
greater than the firm’s pre-tax profit then the firm would not be able to pay the tax and might
have to close down. It is still possible, though, that the tax might be paid out of accumulated
past profits, like the windfall tax that was imposed on some of the UK privatized utility
companies in the late 1990s because the government thought that they had earned excessive
profits.

(c) A percentage profits tax

If a firm has to pay a proportion of its profits as tax then it will attempt to maximize net profit
which will be

π = (TR − TC)(1 − c)

where c is the rate of profits tax. (Profits tax is called corporation tax in the UK, so we will
use the notation c.)

Thus for the firm in this example

π = (TR − TC)(1 − c)

= (360q − 2.1q2 − 50 − 0.4q2)(1 − c)

= (360q − 2.5q2 − 50)(1 − c)

The term (1 − c) can be treated as a constant that multiplies each of the values in the first
set of brackets and so differentiating and setting equal to zero to get first-order condition for
profit maximization

dπ

dq
= (360 − 5q)(1 − c) = 0 (6)

Checking the second-order condition for a maximum

d2π

dq2
= −5(1 − c) < 0 as long as 0 < c < 1

We would expect a percentage profits tax rate to lie between 0% and 100%. Therefore c will
take a value between 0 and 1 and so the second-order condition for a maximum will be met.

© 1993, 2003 Mike Rosser



Returning to (6) to find the optimal level of q

(360 − 5q)(1 − c) = 0

Unless there is a 100% profits tax

(1 − c) 
= 0

and so it must be the case that

360 − 5q = 0

q = 72 (7)

As (7) does not contain any term in c, we can say that the firm’s profit-maximizing output
will always be 72, regardless of the amount of the profits tax. Therefore a change in the rate
of profits tax c will have no effect on output. It will therefore also have no effect on price.

This result is what economic analysis would predict and is similar to the case (b) for a
lump sum tax. If a firm has to pay a percentage of its profits as tax then it would want to be
in a position where total profits before the tax are at a maximum in order to maximize net
after tax profit.

Test Yourself, Exercise 9.7

1. Derive reduced form equations for equilibrium price and output in terms of

(a) a per-unit sales tax t
(b) a lump sum tax T
(c) a percentage profits tax c

in each of the cases below:

(i) p = 450 − 2q and TC = 20 + 0.5q2

(ii) p = 200 − 0.3q and TC = 10 + 0.1q2

(iii) p = 260 − 4q and TC = 8 + 1.2q2

In each case assume that the demand schedule and total cost function apply to a
single firm in an industry.

2. Derive a reduced form equation that will show the comparative static effect of a
percentage sales tax on a company that faces the demand schedule p = 680 − 3q
and the total cost function TC = 20 + 0.4q2.
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10 Partial differentiation

Learning objectives

After completing this chapter students should be able to:

• Derive the first-order partial derivatives of multi-variable functions.
• Apply the concept of partial differentiation to production functions, utility

functions and the Keynesian macroeconomic model.
• Derive second-order partial derivatives and interpret their meaning.
• Check the second-order conditions for maximization and minimization of a

function with two independent variables using second-order partial derivatives.
• Derive the total differential and total derivative of a multi-variable function.
• Use Euler’s theorem to check if the total product is exhausted for a Cobb–Douglas

production function.

10.1 Partial differentiation and the marginal product
For the production function Q = f(K,L) with the two independent variables L and K the
value of the function will change if one independent variable is increased whilst the other is
held constant. IfK is held constant and L is increased then we will trace out the total product
of labour (TPL) schedule (TPL is the same thing as outputQ). This will typically take a shape
similar to that shown in Figure 10.1.

In your introductory microeconomics course the marginal product ofL(MPL)was probably
defined as the increase in TPL caused by a one-unit increment in L, assuming K to be fixed
at some given level. A more precise definition, however, is that MPL is the rate of change of
TPL with respect to L. For any given value of L this is the slope of the TPL function. (Refer
back to Section 8.3 if you do not understand why.) Thus the MPL schedule in Figure 10.1 is
at its maximum when the TPL schedule is at its steepest, at M, and is zero when TPL is at its
maximum, at N.

Partial differentiation is a technique for deriving the rate of change of a function with
respect to increases in one independent variable when all other independent variables in the
function are held constant. Therefore, if the production functionQ = f(K,L) is differentiated
with respect toL, withK held constant, we get the rate of change of total product with respect
to L, in other words MPL.
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Figure 10.1

The basic rule for partial differentiation is that all independent variables, other than the one
that the function is being differentiated with respect to, are treated as constants. Apart from
this, partial differentiation follows the standard differentiation rules explained in Chapter 8.
A curved ∂ is used in a partial derivative to distinguish it from the derivative of a single
variable function where a normal letter ‘d’ is used. For example, the partial derivative of the
production function above with respect to L is written ∂Q/∂L.

Example 10.1

If y = 14x + 3z2, find the partial derivatives of this function with respect to x and z.

Solution

The partial derivative of function y with respect to x is

∂y

∂x
= 14

(The 3z2 disappears as it is treated as a constant. One then just differentiates the term 14x
with respect to x.)

Similarly, the partial derivative of y with respect to z is

∂y

∂z
= 6z
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(The 14x is treated as a constant and disappears. One then just differentiates the term 3z2

with respect to z.)

Example 10.2

Find the partial derivatives of the function y = 6x2z.

Solution

In this function the variable held constant does not disappear as it is multiplied by the other
variable. Therefore

∂y

∂x
= 12xz

treating z as a constant, and

∂y

∂z
= 6x2

treating x (and therefore x2) as a constant.

Example 10.3

For the production function Q = 20K0.5L0.5

(i) derive a function for MPL, and
(ii) show that MPL decreases as one moves along an isoquant by using more L.

Solution

(i) MPL is found by partially differentiating the production function Q = 20K0.5L0.5 with
respect to L. Thus

MPL = ∂Q

∂L
= 10K0.5L−0.5 = 10K0.5

L0.5

Note that this MPL function will continuously slope downward, unlike the MPL function
illustrated in Figure 10.1.

(ii) If the function for MPL above is multiplied top and bottom by 2L0.5, then we get

MPL =
(

2L0.5

2L0.5

) (
10K0.5

L0.5

)
= 20K0.5L0.5

2L
= Q

2L
(1)

An isoquant joins combinations ofK andL that yield the same output level. Thus ifQ is
held constant and L is increased then the function (1) shows us that MPL will decrease.

(Note that moving along an isoquant entails using moreL and lessK to keep output constant.
Although the amount of K used does therefore change, what this result tells us is that with
the new amount of capital MPL will be lower than it was before.)
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We can now see that for any Cobb–Douglas production function in the formatQ = AKαLβ

the law of diminishing marginal productivity holds for each input as long as 0 < α, β < 1.
IfK is fixed and L is variable, the marginal product of L is found in the usual way by partial
differentiation. Thus, when

Q = AKαLβ

MPL = ∂Q

∂L
= βAKαLβ−1 = βAKα

L1−β

If K is held constant then, given that α, β and A are also constants, the numerator in this
expression βAKα is constant. In the denominator, as L is increased, L1−β gets larger (given
0 < β < 1) and so the whole function for MPL decreases in value, i.e. the marginal product
falls as L is increased.

Similarly, if K is increased while L is held constant,

MPK = ∂Q

∂K
= αAKα−1Lβ = αALβ

K1−α

which falls as K increases in value.
When there are more than two inputs in a production function, the same principles still

apply. For example, if

Q = AXa1X
b
2X

c
3X

d
4

where X1, X2, X3 and X4 are inputs, then the marginal product of input X3 will be

∂Q

∂X3
= cAXa1X

b
2X

c−1
3 Xd4 = cAXa1X

b
2X

d
4

X1−c
3

which decreases as X3 increases, ceteris paribus.
We can also see that for a production function in the usual Cobb–Douglas format the

marginal product functions will continuously decline towards zero and will never ‘bottom
out’ for finite values of L; i.e. they will never reach a minimum point where the slope is zero.
If, for example,

Q = 25K0.4L0.5

MPL = ∂Q

∂L
= 12.5K0.4L−0.5

The first-order condition for a minimum is

12.5K0.4

L0.5
= 0

This is satisfied only if K = 0 and hence Q = 0, or if L becomes infinitely large. Since,
for finite values of L,MPL will still remain positive however large L becomes, this means
that on the isoquant map for a two-input Cob–Douglas production function the isoquants will
never ‘bend back’; i.e. there will not be an uneconomic region.

Other possible formats for production functions are possible though. For example, if

Q = 4.6K2 + 3.5L2 − 0.012K3L3
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then MPL will first rise and then fall since

MPL = ∂Q

∂L
= 7L− 0.036K3L2

The slope of the MPL function will change from a positive to a negative value as L increases
since

slope = ∂MPL

∂L
= 7 − 0.072K3L

The actual value and position of this MPL function will depend on the value that the other
input K takes.

Example 10.4

If q = 20x0.6y0.2z0.3, find the rate of change of q with respect to x, y and z.

Solution

Although there are now three independent variables instead of two, the same rules still apply,
this time with two variables treated as constants. Therefore, holding y and z constant

∂q

∂x
= 12x−0.4y0.2z0.3

Similarly, holding x and z constant

∂q

∂y
= 4x0.6y−0.8z0.3

and holding x and y constant

∂q

∂z
= 6x0.6y0.2z−0.7

To avoid making mistakes when partially differentiating a function with several variables,
it may help if you write in the variables that do not change first and then differentiate. In
the above example, when differentiating with respect to x for instance, this would mean first
writing in y0.2z0.3 as y and z are held constant.

When a function has a large number of variables, a shorthand notation for the partial
derivative is usually used. For example, for the function f = f(x1, x2, . . . , xn) one can write

f1 instead of
∂f

∂x1
, f2 instead of

∂f

∂x2
, etc.

Example 10.5

Find fj where j is any input number for the production function

f(x1, x2, . . . , xn) =
n∑
i=1

6x0.5
i
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Solution

This function is a summation of several terms. Only one term, the j th, will contain xj . If one
is differentiating with respect to xj then all other terms are treated as constants and disappear.
Therefore, one only has to differentiate the term 6x0.5

j with respect to xj , giving

fj = 3x−0.5
j

This shorthand notation can also be used to express second-order partial derivatives. For
example,

f11 = ∂2f

∂x2
1

Uses of second-order partial derivatives will be explained in Section 10.3.

Test Yourself, Exercise 10.1

1. Find ∂y/∂x and ∂y/∂z when

(a) y = 6 + 3x + 16z+ 4x2 + 2z2

(b) y = 14x3z2

(c) y = 9 + 4xz− 3x−2z3

2. Show that the law of diminishing marginal productivity holds for the produc-
tion function Q = 12K0.4L0.4. Will the MPL schedule take the shape shown in
Figure 10.1?

3. Derive formulae for the marginal products of the three inputs in the production
function Q = 40K0.3L0.3R0.4.

4. Use partial differentiation to explain why the production function

Q = 0.4K + 0.7L

does not obey the law of diminishing marginal productivity.
5. IfQ = 18K0.3L0.2R0.5, will the marginal products of any of the three inputsK,L

and R become negative?
6. Derive a formula for the partial derivativeQj , where j is an input number, for the

production function

Q(x1, x2, . . . , xn) =
n∑
i=1

4x0.3
i

10.2 Further applications of partial differentiation
Partial differentiation is basically a mathematical application of the assumption of ceteris
paribus (i.e. other things being held equal) which is frequently used in economic analysis.
Because the economy is a complex system to understand, economists often look at the effect
of changes in one variable assuming all other influencing factors remain unchanged. When
the relationship between the different economic variables can be expressed in a mathematical
format, then the analysis of the effect of changes in one variable can be discovered via partial
differentiation. We have already seen how partial differentiation can be applied to production
functions and here we shall examine a few other applications.

© 1993, 2003 Mike Rosser



Elasticity

In a market the quantity demanded, q, depends on several factors. These may include the
price of the good (p), average consumer income (m), the price of a complement (pc), the
price of a substitute (ps) and population (n). This relationship can be expressed as the demand
function

q = f(p,m, pc, ps, n)

In introductory economics courses, price elasticity of demand is usually defined as

e = (−1)
percentage change in quantity demanded

percentage change in price

This definition implicitly assumes ceteris paribus, even though there may be no mention
of other factors that influence demand. The same implicit assumption is made in the more
precise measure of point elasticity of demand with respect to price:

e = (1)
p

q

1

dp/dq

Recognizing that quantity demanded depends on factors other than price, then point elasticity
of demand with respect to price can be more accurately redefined as

e = (1)
p

q

1

∂p/∂q
= (−1)

p

q

∂q

∂p

Note that we have employed the inverse function rule here. This states that, for any function
y = f(x), then

dx

dy
= 1

dy/dx

as long as dy/dx 
= 0. This rule can also be used for partial derivatives and so

1

∂p/∂q
= ∂q

∂p

Point elasticity (with respect to own price) can now be determined for specific demand
functions that include other explanatory variables.

Example 10.6

For the demand function

q = 35 − 0.4p + 0.15m− 0.25pc + 0.12ps + 0.003n

where the terms are as defined above, what is price elasticity of demand when p = 24?
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Solution

We know the value of p and we can easily derive the partial derivative ∂q/∂p = −0.4.
Substituting these values into the elasticity formula

e = (−1)
p

q

∂q

∂p

= (−1)
24

35 − 0.4(24)+ 0.15m− 0.25pc + 0.12ps + 0.003n
(−0.4)

= 9.6

25.4 + 0.15m− 0.25pc + 0.12ps + 0.003n

The actual value of elasticity cannot be calculated until specific values for m,pc, ps and n
are given. Thus this example shows that the value of point elasticity of demand with respect
to price will depend on the values of other factors that affect demand and thus determine the
position on the demand schedule.

Other measures of elasticity will also depend on the values of the different variables in the
demand function. For example, the basic definition of income elasticity of demand is

em = percentage change in quantity demanded

percentage change in income

If we assume an infinitesimally small change in income and recognize that all other factors
influencing demand are being held constant then income elasticity of demand can be defined as

em =
5q

q

5m

m

= m

q

5q

5m
= m

q

∂q

∂m

Thus, for the demand function in Example 10.6 above, income elasticity of demand will be

em = m

q

∂q

∂m
= m

q
(0.15)

If the value of m is given as 30, say, then

em = 30

35 − 0.4p + 0.15(30)− 0.25pc + 0.12ps + 0.003n
(0.15)

= 4.5

39.5 − 0.4p − 0.25pc + 0.12ps + 0.003n

Thus the value of income elasticity of demand will depend on the value of the other factors
influencing demand as well as the level of income itself.

Consumer utility functions

The general form of a consumer’s utility function is

U = U(x1, x2, . . . , xn)

where x1, x2, . . . , xn represent the amounts of the different goods consumed.
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Unlike output in a production function, one cannot actually measure utility and this the-
oretical concept is only of use in making general predictions about the behaviour of large
numbers of consumers, as you should learn in your economics course. Modern economic
theory assumes that utility is an ‘ordinal concept’, meaning that different combinations of
goods can be ranked in order of preference but utility itself cannot be quantified in any way.
However, economists also work with the concept of ‘cardinal’ utility where it is assumed
that, hypothetically at least, each individual can quantify and compare different levels of their
own utility. It is this cardinal utility concept which is used here.

If we assume that only the two goods A and B are consumed, then the utility function will
take the form

U = U(A,B)

Marginal utility is defined as the rate of change of total utility with respect to the increase
in consumption of one good. Therefore the marginal utility functions for goods A and B,
respectively, will be

MUA = ∂U

∂A
and MUB = ∂U

∂B

Three important principles of utility theory are:

(i) The law of diminishing marginal utility says that if, ceteris paribus, the quantity
consumed of any one good is increased, then eventually its marginal utility will decline.

(ii) A consumer will consume a good up to the point where its marginal utility is zero if
it is a free good, or if a fixed payment is made regardless of the quantity consumed,
e.g. water rates.

(iii) A consumer maximizes satisfaction when each good is consumed up to the point where
an extra pound spent on one good will derive the same utility as an extra pound spent
on any other good.

Some applications of the first two principles are given in the following examples. We shall
return to principle (iii) in Chapter 11, when we study constrained optimization.

Example 10.7

Find out whether the law of diminishing marginal utility holds for both goods A and B in the
following utility functions:

(i) U = A0.6B0.8

(ii) U = 85AB − 1.6A2B2

(iii) U = 0.2A−1B−1 + 5AB

Solutions

(i) For the utility function U = A0.6B0.8 partial differentiation yields the marginal utility
functions

MUA = ∂U

∂A
= 0.6A−0.4B0.8 and MUB = ∂U

∂B
= 0.8A0.6B−0.2
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Thus MUA falls asA increases (when B is held constant) and MUB falls as B increases
(when A is held constant). As both marginal utility functions decline, the law of
diminishing marginal utility holds.

(ii) For the utility function U = 85AB − 1.6A2B2 the marginal utility functions will be

MUA = ∂U

∂A
= 85B − 3.2AB2

MUB = ∂U

∂B
= 85A− 3.2A2B

Both MUA and MUB will be downward-sloping straight lines given that the quantity of
the other good is held constant. Therefore the law of diminishing marginal utility holds.

(iii) When U = 0.2A−1B−1 + 5AB then

MUA = ∂U

∂A
= −0.2A−2B−1 + 5B

MUB = ∂U

∂B
= −0.2A−1B−2 + 5A

AsA increases, the term 0.2A−2B−1 gets smaller. As this term is subtracted from 5B, which
will be constant as B remains unchanged, this means that MUA rises. Similarly, MUB will
rise as B increases. Therefore the law of diminishing marginal utility does not hold for this
function.

Example 10.8

Given the following utility functions, how much of A will be consumed if it is a free good?
If necessary give answers in terms of the fixed amount of B.

(i) U = 96A+ 35B − 0.8A2 − 0.3B2

(ii) U = 72AB − 0.6A2B2

(iii) U = A0.3B0.4

Solutions

In each case we need to try to find the value of A where MUA is zero. (The law of diminishing
marginal utility holds for all three functions.) Consumers will not consume extra units of A
which have negative marginal utility and hence decrease total utility.

(i) For utility function U = 96A + 35B − 0.8A2 − 0.3B2 marginal utility of A is zero
when

MUA = ∂U

∂A
= 96 − 1.6A = 0

96 = 1.6A

60 = A

Thus 60 units of A are consumed if A is free, regardless of the amount of B consumed.
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(ii) When U = 72AB − 0.6A2B2 then MUA is zero when

∂U

∂A
= 72B − 1.2AB2 = 0

72B = 1.2AB2

60B−1 = A

Thus the amount of A consumed if it is free will depend inversely on the amount B
consumed.

(iii) When U = A0.3B0.4 then the marginal utility of A will be

MUA = ∂U

∂A
= 0.3A−0.7B0.4

This marginal utility function will decline continuously but, for any non-zero value of
B,MUA will not equal zero unless the amount of A consumed becomes infinitely large.
Therefore no finite solution can be found.

The Keynesian multiplier

If a government sector and foreign trade are introduced then the basic Keynesian macroeco-
nomic model becomes the accounting identity

Y = C + I +G+X −M (1)

and the functional relationships of the consumption function

C = cYd (2)

where c is the marginal propensity to consume, plus

M = mYd (3)

where M is imports and m is the marginal propensity to import, and

Yd = (1 − t)Y (4)

where Yd is disposable income and t is the tax rate.
Investment I , government expenditure G and exports X are exogenously determined and

c,m and t are given parameters. Substituting (2), (3) and (4) into (1) we get

Y = c(1 − t)Y + I +G+X −m(1 − t)Y

Y [1 − c(1 − t)+m(1 − t)] = I +G+X

Y = I +G+X

1 − c(1 − t)+m(1 − t)
= I +G+X

1 − (c −m)(1 − t)
(5)

In the basic Keynesian model without G and X, the investment multiplier is simply dY/dI .
However, in this extended model one also has to assume that G and X are constant in order
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to derive the investment multiplier. Thus the investment multiplier is found by partially
differentiating (5) with respect to I , which gives

∂Y

∂I
= 1

1 − (c −m)(1 − t)

You should also be able to see that the government expenditure and export multipliers will
also take this format as

∂Y

∂I
= ∂Y

∂G
= ∂Y

∂X
= 1

1 − (c −m)(1 − t)

Example 10.9

In a Keynesian macroeconomic system, the following relationships and values hold:

Y = C + I +G+X −M

C = 0.8Yd M = 0.2Yd Yd = (1 − t)Y

t = 0.2 G = 400 I = 300 X = 288

What is the equilibrium level of Y ? What increase in G would be necessary to increase Y to
2,500? If this increased expenditure takes place, what will happen to

(i) the government’s budget surplus/deficit, and
(ii) the balance of payments?

Solution

First we derive the relationship between C and Y . Thus

C = 0.8Yd = 0.8(1 − t)Y = 0.8(1 − 0.2)Y (1)

Next we substitute (1) and the other functional relationships and given values into the
accounting identity to find the equilibrium Y . Thus

Y = C + I +G+X −M

= 0.8(1 − 0.2)Y + 300 + 400 + 288 − 0.2(1 − 0.2)Y

= 0.64Y + 988 − 0.16Y

(1 − 0.48)Y = 988

Y = 988

0.52
= 1,900

At this equilibrium level of Y the total amount of tax raised will be

tY = 0.2(1,900) = 380

Thus budget deficit, which is the excess of government expenditure over the amount of tax
raised, will be

G− tY = 400 − 380 = 20
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The amount spent on imports will be

M = 0.2Yd = 0.2(0.8Y ) = 0.16 × 1,900 = 304

and so the balance of payments will be

X −M = 288 − 304 = −16

i.e. a deficit of 16.
The government expenditure multiplier is

∂Y

∂G
= 1

1 − (c −m)(1 − t)
= 1

1 − (0.8 − 0.2)(1 − 0.2)

= 1

1 − (0.6)(0.8)
= 1

1 − 0.48
= 1

0.52
(2)

As equilibrium Y is 1,900, the increase in Y required to get to the target level of 2,500 is

5Y = 2,500 − 1,900 = 600 (3)

Given that the impact of the multiplier on Y will always be equal to

5G
∂Y

∂G
= 5Y (4)

where 5G is the change in government expenditure, then substituting (2) and (3) into (4)
gives

5G
1

0.52
= 600

5G = 600(0.52) = 312

This is the increase in G required to raise Y to 2,500.
At the new level of national income, the amount of tax raised will be

tY = 0.2(2,500) = 500

The new government expenditure level including the 312 increase will be

400 + 312 = 712

Therefore, the budget deficit will be

G− tY = 712 − 500 = 212

i.e. there is an increase of 192 in the deficit.
The new level of imports will be

M = 0.2(0.8)2,500 = 400

and so the new balance of payments figure will be

X −M = 288 − 400 = −112

i.e. the deficit increases by 96.

© 1993, 2003 Mike Rosser



Cost and revenue functions

Some firms produce several different products. When common production facilities are used
the costs of the individual products will be related and this will be reflected in the total cost
schedules. The marginal cost schedules of the individual products can then be derived by
partial differentiation.

Example 10.10

A firm produces two goods, with output levels q1 and q2, and faces the total cost function

TC = 45 + 125q1 + 84q2 − 6q2
1q

2
2 + 0.8q3

1 + 1.2q3
2

What are the two relevant marginal cost functions?

Solution

Marginal cost is the rate of change of TC with respect to output. Therefore

MC1 = ∂TC

∂q1
= 125 − 12q1q

2
2 + 2.4q2

1

MC2 = ∂TC

∂q2
= 84 − 12q2

1q2 + 3.6q2
2

These marginal cost schedules show that the level of marginal cost for one good will depend
on the amount of the other good that is produced.

Some firms may produce different goods which compete with each other in the market
place, or are complements. This means that the price of one good will influence the quantity
demanded of the other goods sold by the same firm. Marginal revenue for one good will
therefore be the partial derivative of total revenue with respect to the output level of that
particular good, assuming that the price of the other goods are fixed.

Example 10.11

A firm produces goods A and B which are complements. Derive marginal revenue functions
for the two goods if the relevant demand schedules are

qA = 850 − 12.5pA − 3.8pB

qB = 936 − 4.8pA − 24pB

Solution

Marginal revenue is usually expressed as a function of quantity. Therefore, in order to derive
total and marginal revenue functions, the demand functions are first rearranged to get price
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as a function of quantity. Thus, for good A

qA = 850 − 12.5pA − 3.8pB

12.5pA = 850 − 3.8pB − qA

pA = 850 − 3.8pB − qA

12.5

TRA = pAqA

=
(

850 − 3.8pB − qA

12.5

)
qA

= 850qA − 3.8pBqA − q2
A

12.5

MRA = ∂TR

∂qA

= 850 − 3.8pB − 2qA

12.5

= 68 − 0.304pB − 0.16qA (1)

Similarly, for good B

qB = 936 − 4.8pA − 24pB

24pB = 936 − 4.8pA − qB

pB = 39 − 0.2pA − qB

24

TRB = pBqB

=
(

39 − 0.2pA − qB

24

)
qB

= 39qB − 0.2pAqB − q2
B

24

MRB = ∂TR

∂qB

= 39 − 0.2pA − qB

12
(2)

The marginal revenue functions (1) and (2) for MRA and MRB confirm that, because the
demand functions for the two goods are interrelated, the marginal revenue function for one
good will depend on the price level of the other good.
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Test Yourself, Exercise 10.2

1. The demand function for a good is

q = 56.6 − 0.25p − 0.03m+ 0.45ps + 0.6n

where q is the quantity demanded per week, p is the price per unit,m is the average
weekly income, ps is the price of a competing good and n is the population in
millions. Given values are p = 65,m = 350, ps = 60 and n = 24.

(a) Calculate the price elasticity of demand.
(b) Find out what would happen to (a) if n rose to 26.
(c) Explain why this is an inferior good.
(d) If producers of the competing product and the manufacturer of this good

both increased their prices by the same percentage, what would happen to the
quantity demanded (of the original good), assuming that the proportional price
change is small and relevant elasticity measures do not alter significantly.

2. Do the following utility functions obey the law of diminishing marginal utility?

(a) U = 5A+ 8B + 2.2A2B2 − 0.3A3B3

(b) U = 24A0.8B1.2

(c) U = 6A0.7B0.8

3. An individual consumes two goods and has the utility function U = 2A0.4B0.4,
where A and B represent the quantities of the two goods consumed. Will she ever
consume either good up to the point where its marginal utility is zero?

4. In a Keynesian macroeconomic model of an economy, using the usual terminology,

Y = C + I +G+X −M Yd = (1 − t)Y C = 0.75Yd

M = 0.25Yd I = 820 G = 960 t = 0.3 X = 650

What will be the equilibrium value of Y ? Use the export multiplier to find out what
will happen to the balance of payments if exports exogenously increase by 100.

5. A multiplant firm faces the total cost schedule

TC = 850 + 18q1 + 25q2 + 0.6q2
1q2 + 1.2q1q

2
2

where q1 and q2 are output levels in its two plants. What marginal cost sched-
ule does it face if output in plant 2 is expanded while output in plant 1 is kept
unchanged?

6. In a closed economy (i.e. one with no foreign trade) the following relationships
hold:

C = 0.6Yd Yd = (1 − t)Y Y = C + I +G

I = 120 t = 0.25 G = 210
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where C is consumer expenditure, Yd is disposable income, Y is national income,
I is investment, t is the tax rate and G is government expenditure. What is the
marginal propensity to consume out of Y ? What is the value of the govern-
ment expenditure multiplier? How much does government expenditure need to
be increased to achieve a national income of 700?

10.3 Second-order partial derivatives
Second-order partial derivatives are found by differentiating the first-order partial derivatives
of a function.

When a function has two independent variables there will be four second-order partial
derivatives. Take, for example, the production function

Q = 25K0.4L0.3

There are two first-order partial derivatives

∂Q

∂K
= 10K−0.6L0.3 ∂Q

∂L
= 7.5K0.4L−0.7

These represent the marginal product functions for K and L. Differentiating these functions
a second time we get

∂2Q

∂K2
= −6K−1.6L0.3 ∂2Q

∂L2
= −5.25K0.4L−1.7

These second-order partial derivatives represent the rate of change of the marginal product
functions. In this example we can see that the slope of MPL (i.e. ∂2Q/∂L2) will always
be negative (assuming positive values of K and L) and as L increases, ceteris paribus, the
absolute value of this slope diminishes.

We can also find the rate of change of ∂Q/∂K with respect to changes in L and the rate
of change of ∂Q/∂L with respect to K . These will be

∂2Q

∂K∂L
= 3K−0.6L−0.7 ∂2Q

∂L∂K
= 3K−0.6L−0.7

and are known as ‘cross partial derivatives’. They show how the rate of change of Q with
respect to one input alters when the other input changes. In this example, the cross partial
derivative ∂2Q/∂L∂K tells us that the rate of change of MPL with respect to changes in K
will be positive and will fall in value as K increases.

You will also have noted in this example that

∂2Q

∂K∂L
= ∂2Q

∂L∂K

In fact, matched pairs of cross partial derivatives will always be equal to each other.
Thus, for any continuous two-variable function y = f(x, z), there will be four second-order

partial derivatives:

(i)
∂2y

∂x2
(ii)

∂2y

∂z2
(iii)

∂2y

∂x∂z
(iv)

∂2y

∂z∂x
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with the cross partial derivatives (iii) and (iv) always being equal, i.e.

∂2y

∂x∂z
= ∂2y

∂z∂x

Example 10.12

Derive the four second-order partial derivatives for the production function

Q = 6K + 0.3K2L+ 1.2L2

and interpret their meaning.

Solution

The two first-order partial derivatives are

∂Q

∂K
= 6 + 0.6KL

∂Q

∂L
= 0.3K2 + 2.4L

and these represent the marginal product functions MPK and MPL.
The four second-order partial derivatives are as follows:

(i)
∂2Q

∂K2
= 0.6L

This represents the slope of the MPK function. It tells us that the MPK function will have a
constant slope along its length (i.e. it is linear) for any given value of L, but an increase in L
will cause an increase in this slope

(ii)
∂2Q

∂L2
= 2.4

This represents the slope of the MPL function and tells us that MPL is a straight line with
slope 2.4. This slope does not depend on the value of K .

(iii)
∂2Q

∂K∂L
= 0.6K

This tells us that MPK increases if L is increased. The rate at which MPK rises as L is
increased will depend on the value of K .

(iv)
∂2Q

∂L∂K
= 0.6K

This tells us that MPL will increase if K is increased and that the rate of this increase will
depend on the value of K . Thus, although the slope of the MPL schedule will always be 2.4,
from (ii) above, its actual position will depend on the amount of K used.

Some other applications of second-order partial derivatives are given below.

© 1993, 2003 Mike Rosser



Example 10.13

A firm sells two competing products whose demand schedules are

q1 = 120 − 0.8p1 + 0.5p2 q2 = 160 + 0.4p1 − 12p2

How will the price of good 2 affect the marginal revenue of good 1?

Solution

To find the total revenue function for good 1 (TR1) in terms of q1 we first need to derive the
inverse demand function p1 = f(q1). Thus, given

q1 = 120 − 0.8p1 + 0.5p2

0.8p1 = 120 + 0.5p2 − q1

p1 = 150 + 0.625p2 − 1.25q1

TR1 = p1q1

= (150 + 0.625p2 − 1.25q1)q1

= 150q1 + 0.625p2q1 − 1.25q2
1

Thus

MR1 = ∂TR1

∂q1
= 150 + 0.625p2 − 2.5q1

This marginal revenue function will have a constant slope of −2.5 regardless of the value of
p2 or the amount of q1 sold.

The effect of a change in p2 on MR1 is shown by the cross partial derivative

∂TR1

∂q1∂p2
= 0.625

Thus an increase in p2 of one unit will cause an increase in the marginal revenue from good
1 of 0.625, i.e. although the slope of the MR1 schedule remains constant at −2.5, its position
shifts upward if p2 rises. (Note that in order to answer this question, we have formulated the
total revenue for good 1 as a function of one price and one quantity, i.e. TR1 = f(q1, p2).)

Example 10.14

A firm operates with the production functionQ = 820K0.3L0.2 and can buy inputsK and L
at £65 and £40 respectively per unit. If it can sell its output at a fixed price of £12 per unit,
what is the relationship between increases in L and total profit? Will a change in K affect
the extra profit derived from marginal increases in L?
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Solution

TR = PQ = 12(820K0.3L0.2)

TC = PKK + PLL = 65K + 40L

Therefore profit will be

π = TR − TC

= 12(820K0.3L0.2)− (65K + 40L)

= 9,840K0.3L0.2 − 65K − 40L

The effect of an increase in L on profit is shown by the first-order partial derivative:

∂π

∂L
= 1,968K0.3L−0.8 − 40 (1)

This effect will be positive as long as

1,968K0.3L−0.8 > 40

However, if L is continually increased while K is held constant, the value of the term
1,968K0.3L−0.8 will eventually fall below 40 and so ∂π/∂L will become negative.

To determine the effect of a change inK on the marginal profit function with respect to L,
we need to differentiate (1) with respect to K , giving

∂2π

∂L∂K
= 0.3(1,968K−0.7L−0.8) = 590.4K−0.7L−0.8

This cross partial derivative will be positive as long asK and L are positive. This is what we
would expect and so an increase inK will have a positive effect on the extra profit generated
by marginal increases in L. The magnitude of this impact will depend on the values of K
and L.

Second-order and cross partial derivatives can also be derived for functions with three
or more independent variables. For a function with three independent variables, such as
y = f(w, x, z) there will be the three second-order partial derivatives

∂2y

∂w2

∂2y

∂x2

∂2y

∂z2

plus the six cross partial derivatives

∂2y

∂w∂x
= ∂2y

∂x∂w

∂2y

∂x∂z
= ∂2y

∂z∂x

∂2y

∂w∂z
= ∂2y

∂z∂w

These are arranged in pairs because, as with the two-variable case, cross partial derivatives
will be equal if the two stages of differentiation involve the same two variables.
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Example 10.15

For the production function Q = 32K0.5L0.25R0.4 derive all the second-order and cross
partial derivatives and show that the cross partial derivatives with respect to each possible
pair of independent variables will be equal to each other.

Solution

The three first-order partial derivatives will be

∂Q

∂K
= 16K−0.5L0.25R0.4 ∂Q

∂L
= 8K0.5L−0.75R0.4

∂Q

∂R
= 12.8K0.5L0.25R−0.6

The second-order partial derivatives will be

∂2Q

∂K2
= −8K−1.5L0.25R0.4 ∂2Q

∂L2
= −6K0.5L−1.75R0.4

∂2Q

∂R2
= −7.68K0.5L0.25R−1.6

plus the six cross partial derivatives:

∂2Q

∂K∂L
= 4K−0.5L−0.75R0.4 = ∂2Q

∂L∂K

∂2Q

∂L∂R
= 3.2K0.5L−0.75R−0.6 = ∂2Q

∂R∂L

∂2Q

∂R∂K
= 6.4K−0.5L0.25R−0.6 = ∂2Q

∂K∂R

Second-order derivatives for multi-variable functions are needed to check second-order
conditions for optimization, as explained in the next section.

Test Yourself, Exercise 10.3

1. For the production function Q = 8K0.6L0.5 derive a function for the slope of the
marginal product of L. What effect will a marginal increase in K have upon this
MPL function?

2. Derive all the second-order and cross partial derivatives for the production function
Q = 35KL+ 1.4LK2 + 3.2L2 and interpret their meaning.
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3. A firm operates three plants with the joint total cost function

TC = 58 + 18q1 + 9q2q3 + 0.004q2
1q

2
3 + 1.2q1q2q3

Find all the second-order partial derivatives for TC and demonstrate that the cross
partial derivatives can be arranged in three equal pairs.

10.4 Unconstrained optimization: functions with two variables
For the two variable function y = f(x, z) to be at a maximum or at a minimum, the first-order
conditions which must be met are

∂y

∂x
= 0 and

∂y

∂z
= 0

These are similar to the first-order conditions for optimization of a single variable function
that were explained in Chapter 9. To be at a maximum or minimum, the function must be at
a stationary point with respect to changes in both variables.

The second-order conditions and the reasons for them were relatively easy to explain in
the case of a function of one independent variable. However, when two or more indepen-
dent variables are involved the rationale for all the second-order conditions is not quite so
straightforward. We shall therefore just state these second-order conditions here and give a
brief intuitive explanation for the two-variable case before looking at some applications. The
second-order conditions for the optimization of multi-variable functions with more than two
variables are explained in Chapter 15 using matrix algebra.

For the optimization of two variable functions there are two sets of second-order conditions.
For any function y = f(x, z).

(1)
∂2y

∂x2
< 0 and

∂2y

∂z2
< 0 for a maximum

∂2y

∂x2
> 0 and

∂2y

∂z2
> 0 for a minimum

These are similar to the second-order conditions for the optimization of a single variable
function. The rate of change of a function (i.e. its slope) must be decreasing at a stationary
point for that point to be a maximum and it must be increasing for a stationary point to be a
minimum. The difference here is that these conditions must hold with respect to changes in
both independent variables.

(2) The other second-order condition is

(
∂2y

∂x2

) (
∂2y

∂z2

)
>

(
∂2y

∂x∂z

)2

This must hold at both maximum and minimum stationary points.

To get an idea of the reason for this condition, imagine a three-dimensional model with x
and z being measured on the two axes of a graph and y being measured by the height above
the flat surface on which the x and z axes are drawn. For a point to be the peak of the y
‘hill’ then, as well as the slope being zero at this point, one needs to ensure that, whichever
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direction one moves, the height will fall and the slope will become steeper. Similarly, for
a point to be the minimum of a y ‘trough’ then, as well as the slope being zero, one needs
to ensure that the height will rise and the slope will become steeper whichever direction one
moves in. As moves can be made in directions other than those parallel to the two axes, it
can be mathematically proved that the condition

(
∂2y

∂x2

) (
∂2y

∂z2

)
>

(
∂2y

∂x∂z

)2

satisfies these requirements as long as the other second-order conditions for a maximum or
minimum also hold.

Note also that all the above conditions refer to the requirements for local maximum or
minimum values of a function, which may or may not be global maxima or minima. Refer
back to Chapter 9 if you cannot remember the difference between these two concepts.

Let us now look at some applications of these rules for the unconstrained optimization of
a function with two independent variables.

Example 10.16

A firm produces two products which are sold in two separate markets with the demand
schedules

p1 = 600 − 0.3q1 p2 = 500 − 0.2q2

Production costs are related and the firm faces the total cost function

TC = 16 + 1.2q1 + 1.5q2 + 0.2q1q2

If the firm wishes to maximize total profits, how much of each product should it sell? What
will the maximum profit level be?

Solution

The total revenue is

TR = TR1 + TR2

= p1q1 + p2q2

= (600 − 0.3q1)q1 + (500 − 0.2q2)q2

= 600q1 − 0.3q2
1 + 500q2 − 0.2q2

2

Therefore profit is

π = TR − TC

= 600q1 − 0.3q2
1 + 500q2 − 0.2q2

2 − (16 + 1.2q1 + 1.5q2 + 0.2q1q2)

= 600q1 − 0.3q2
1 + 500q2 − 0.2q2

2 − 16 − 1.2q1 − 1.5q2 − 0.2q1q2

= −16 + 598.8q1 − 0.3q2
1 + 498.5q2 − 0.2q2

2 − 0.2q1q2
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First-order conditions for maximization of this profit function are

∂π

∂q1
= 598.8 − 0.6q1 − 0.2q2 = 0 (1)

and

∂π

∂q2
= 498.5 − 0.4q2 − 0.2q1 = 0 (2)

Simultaneous equations (1) and (2) can now be solved to find the optimal values of q1 and q2.

Multiplying (2) by 3 1,495.5 − 1.2q2 − 0.6q1 = 0
Rearranging (1) 598.8 − 0.2q2 − 0.6q1 = 0

Subtracting gives 896.7 − q2 = 0
Giving the optimal value 896.7 = q2

Substituting this value for q2 into (1)

598.8 − 0.6q1 − 0.2(896.7) = 0

598.8 − 179.34 = 0.6q1

419.46 = 0.6q1

699.1 = q1

Checking second-order conditions by differentiating (1) and (2) again:

∂2π

∂q2
1

= −0.6 < 0
∂2π

∂q2
2

= −0.4 < 0

This satisfies one set of second-order conditions for a maximum.
The cross partial derivative will be

∂2π

∂q1∂q2
= −0.2

Therefore(
∂2π

∂q2
1

) (
∂2π

∂q2
2

)
= (−0.6)(−0.4) = 0.24 > 0.04 = (−0.2)2 =

(
∂2π

∂q1∂q2

)2

and so the remaining second-order condition for a maximum is satisfied.
The actual profit is found by substituting the optimum values q1 = 699.1 and q2 = 896.7.

into the profit function. Thus

π = −16 + 598.8q1 − 0.3q2
1 + 498.5q2 − 0.2q2

2 − 0.2q1q2

= −16 + 598.8(699.1)− 0.3(699.1)2 + 498.5(896.7)− 0.2(896.7)2

− 0.2(699.1)(896.7)

= £432, 797.02

© 1993, 2003 Mike Rosser



Example 10.17

A firm sells two products which are partial substitutes for each other. If the price of one
product increases then the demand for the other substitute product rises. The prices of the
two products (in £) are p1 and p2 and their respective demand functions are

q1 = 517 − 3.5p1 + 0.8p2 q2 = 770 − 4.4p2 + 1.4p1

What price should the firm charge for each product to maximize its total sales revenue?

Solution

For this problem it is more convenient to express total revenue as a function of price rather
than quantity. Thus

TR = TR1 + TR2 = p1q1 + p2q2

= p1(517 − 3.5p1 + 0.8p2)+ p2(770 − 4.4p2 + 1.4p1)

= 517p1 − 3.5p2
1 + 0.8p1p2 + 770p2 − 4.4p2

2 + 1.4p1p2

= 517p1 − 3.5p2
1 + 770p2 − 4.4p2

2 + 2.2p1p2

First-order conditions for a maximum are

∂TR

∂p1
= 517 − 7p1 + 2.2p2 = 0 (1)

and

∂TR

∂p2
= 770 − 8.8p2 + 2.2p1 = 0 (2)

Multiplying (1) by 4 2,068 − 28p1 + 8.8p2 = 0

Rearranging and adding (2) 770 + 2.2p1 − 8.8p2 = 0

2,838 − 25.8p1 = 0

2,838 = 25.8p1

110 = p1

Substituting this value of p1 into (1)

517 − 7(110)+ 2.2p2 = 0

2.2p2 = 253

p2 = 115

Checking second-order conditions:

∂2TR

∂p2
1

= −7 < 0
∂2TR

∂p2
2

= −8.8 < 0
∂2TR

∂p1∂p2
= 2.2
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(
∂2TR

∂q2
1

) (
∂2TR

∂q2
2

)
= (−7)(−8.8) = 61.6 > 4.84 = (2.2)2 =

(
∂2TR

∂q1∂q2

)2

Therefore all second-order conditions for a maximum value of total revenue are satisfied
when p1 = £110 and p2 = £115.

Example 10.18

A multiplant monopoly operates two plants whose total cost schedules are

TC1 = 8.5 + 0.03q2
1 TC2 = 5.2 + 0.04q2

2

If it faces the demand schedule

p = 60 − 0.04q

where q = q1 + q2, how much should it produce in each plant in order to maximize profits?

Solution

The total revenue is

TR = pq = (60 − 0.04q)q = 60q − 0.04q2

Substituting (q1 + q2) for q gives

TR = 60(q1 + q2)− 0.04(q1 + q2)
2

= 60q1 + 60q2 − 0.04q2
1 − 0.08q1q2 − 0.04q2

2

Thus, subtracting the two total cost schedules, profit is

π = TR − TC1 − TC2

= 60q1 + 60q2 − 0.04q2
1 − 0.08q1q2 − 0.04q2

2 − 8.5 − 0.03q2
1 − 5.2 − 0.04q2

2

= −13.7 + 60q1 + 60q2 − 0.07q2
1 − 0.08q2

2 − 0.08q1q2

First-order conditions for a maximum value of π require

∂π

∂q1
= 60 − 0.14q1 − 0.08q2 = 0 (1)

and

∂π

∂q2
= 60 − 0.16q2 − 0.08q1 = 0 (2)

Multiplying (1) by 2 120 − 0.28q1 − 0.16q2 = 0

Rearranging and subtracting (2) 60 − 0.08q1 − 0.16q2 = 0

60 − 0.2q1 = 0

60 = 0.2q1

300 = q1

© 1993, 2003 Mike Rosser



Substituting this value of q1 into (1)

60 − 0.14(300)− 0.08q2 = 0

18 = 0.08q2

225 = q2

Checking second-order conditions:

∂2π

∂q2
1

= −0.14 < 0
∂2π

∂q2
2

= −0.16 < 0
∂2π

∂q1∂q2
= −0.08

(
∂2π

∂q2
1

) (
∂2π

∂q2
2

)
= (−0.14)(−0.16) = 0.0224 > 0.0064 = (−0.08)2 =

(
∂2π

∂q1∂q2

)2

Therefore all second-order conditions are satisfied for profit maximization when q1 = 300
and q2 = 225.

We can also check that the total profit is positive for these output levels. Total output is

q = q1 + q2 = 300 + 225 = 525

Substituting this value into the demand schedule

p = 60 − 0.04q = 60 − 0.04(525) = 39

Therefore

TR = pq = 39(525) = 20,475

TC = TC1 + TC2

= [8.5 + 0.03(300)2] + [5.2 + 0.04(225)2]
= 2,708.5 + 2,030.2 = 4,738.7

π = TR − TC = 20,475 − 4,738.7 = £15,736.30

Note that this method could also be used to solve the multiplant monopoly problems in
Chapter 5 that only involved linear functions. The unconstrained optimization method used
here is, however, a more general method that can be used for both linear and non-linear
functions.

Example 10.19

A firm sells its output in a perfectly competitive market at a fixed price of £200 per unit. It
buys the two inputs K and L at prices of £42 per unit and £5 per unit respectively, and faces
the production function

q = 3.1K0.3L0.25

What combination of K and L should it use to maximize profit?
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Solution

TR = pq = 200(3.1K0.3L0.25) = 620K0.3L0.25

TC = 42K + 5L

Therefore the profit function the firm wishes to maximize is

π = TR − TC = 620K0.3L0.25 − 42K − 5L

First-order conditions for a maximum require

∂π

∂K
= 186K−0.7L0.25 − 42 = 0

∂π

∂L
= 155K0.3L−0.75 − 5 = 0

giving

186L0.25 = 42K0.7 and 155K0.3 = 5L0.75

L0.25 = 42

186
K0.7 (1) 31K0.3 = L0.75 (2)

Taking (1) to the power of 3

L0.75 =
(

42

186
K0.7

)3

= 423

1863
K2.1 (3)

Setting (3) equal to (2)

423

1863
K2.1 = 31K0.3

K1.8 = 31(186)3

423
= 2, 692.481

K = 80.471179 (4)

Substituting (4) into (1)

L0.25 = 42

186
(80.471179)0.7 = 4.8717455

L = (L0.25)4 = (4.8717455)4 = 563.29822

Therefore, first-order conditions suggest that the optimum values are L = 563.3 and
K = 80.47 (to 2 dp).
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Checking second-order conditions:

∂2π

∂K2
= (−0.7)186K−1.7L0.25

= −130.2(80.47)−1.7(563.3)0.25

= −0.3653576 < 0

∂2π

∂L2
= (−0.75)155K0.3L−1.75

= −116.25(80.47)0.3(563.3)−1.75

= −0.0066572 < 0

∂2π

∂K∂L
= (0.25)186K−0.7L−0.75

= 46.5(80.47)−0.7(563.3)−0.75

= 0.0186404

(
∂2π

∂K2

) (
∂2π

∂L2

)
= (−0.3653576)(−0.0066572) = 0.0024323

(
∂2π

∂K∂L

)2

= (−0.0186404)2 = 0.0003475

Therefore

∂2π

∂K2

∂2π

∂L2
>

(
∂2π

∂K∂L

)2

and so all second-order conditions for maximum profit are satisfied when K = 80.47 and
L = 563.3.

The actual profit will be

π = 620K0.3L0.25 − 42K − 5L

= 620(80.47)0.3(563.3)0.25 − 42(80.47)− 5(563.3)

= 11,265.924 − 3,379.74 − 2,816.5

= £5,069.68

Note that in this problem, and other similar ones in this section, the indices in the Cobb–
Douglas production function add up to less than unity, giving decreasing returns to scale and
hence rising average and marginal (long-run) cost schedules. If there were increasing returns
to scale and the average and marginal cost schedules continued to fall, a firm facing a fixed
price would wish to expand output indefinitely and so no profit-maximizing solution would
be found by this method.
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Example 10.20

A multiplant monopoly operates two plants whose total cost schedules are

TC1 = 36 + 0.003q3
1 TC2 = 45 + 0.005q3

2

If its total output is sold in a market where the demand schedule is p = 320 − 0.1q, where
q = q1 + q2, how much should it produce in each plant to maximize total profits?

Solution

The total revenue is

TR = pq = (320 − 0.1q)q = 320q − 0.1q2

Substituting q1 + q2 = q gives

TR = 320(q1 + q2)− 0.1(q1 + q2)
2

= 320q1 + 320q2 − 0.1(q2
1 + 2q1q2 + q2

2 )

= 320q1 + 320q2 − 0.1q2
1 − 0.2q1q2 − 0.1q2

2

Thus profit will be

π = TR − TC = TR − TC1 − TC2

= (320q1 + 320q2 − 0.1q2
1 − 0.2q1q2 − 0.1q2

2 )− (36 + 0.003q3
1 )− (45 + 0.005q3

2 )

= 320q1 + 320q2 − 0.1q2
1 − 0.2q1q2 − 0.1q2

2 − 36 − 0.003q3
1 − 45 − 0.005q3

2

First-order conditions for a maximum require

∂π

∂q1
= 320 − 0.2q1 − 0.2q2 − 0.009q2

1 = 0 (1)

and

∂π

∂q2
= 320 − 0.2q1 − 0.2q2 − 0.015q2

2 = 0 (2)

Subtracting (2) from (1)

−0.009q2
1 + 0.015q2

2 = 0

q2
2 =

(
0.009

0.015

)
q2

1 = 0.6q2
1

q2 =
√

0.6q2
1 = 0.07746q1 (3)
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Substituting (3) for q2 in (1)

320 − 0.2q1 − 0.2(0.7746q1)− 0.009q2
1 = 0

320 − 0.2q1 − 0.15492q1 − 0.009q2
1 = 0

0 = 0.009q2
1 + 0.35492q1 − 320 (4)

Using the quadratic formula to solve (4)

q1 = −b ± √
b2 − 4ac

2a
= −0.35492 ± √

(0.35492)2 − 4(0.009)(−320)

0.018

= −0.35492 ± √
11.64598

0.018

= −0.35492 ± 3.412619

0.018

Disregarding the negative solution, this gives plant 1 output

q1 = 3.057699

0.018

= 169.87216 = 169.87 (to 2 dp)

Substituting this value for q1 into (3)

q2 = 0.7746(169.87216) = 131.58 (to 2 dp)

Checking second-order conditions:

∂2π

∂q2
1

= −0.2 − 0.018q1 = −0.2 − 0.018(169.87) = −3.25766 < 0

∂2π

∂q2
2

= −0.2 − 0.03q2 = −0.2 − 0.03(131.58) = −4.1474 < 0

∂2π

∂q1∂q2
= −0.2

Thus, using the shorthand notation for the above second-order derivatives,

(π11)(π22) = (−3.25766)(−4.1474) = 13.51 > 0.04 = (−0.2)2 = (π12)
2

Therefore all second-order conditions for a maximum value of profit are satisfied when
q1 = 169.87 and q2 = 131.58.

When a function involves more than two independent variables the second-order conditions
for a maximum or minimum become even more complex and matrix algebra is needed to
check them. However, until we get to Chapter 15, for economic problems involving three or
more independent variables, we shall just consider how the first-order conditions can be used
to determine optimum values. From the way these problems are constructed it will be obvious
whether or not a maximum or a minimum value is being sought, and it will be assumed that
second-order conditions are satisfied for the values that meet the first-order conditions.
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Example 10.21

A firm operates with the production function

Q = 95K0.3L0.2R0.25

and buys the three inputs K, L and R at prices of £30, £16 and £12 respectively per unit. If
it can sell its output at a fixed price of £4 a unit, what is the maximum profit it can make?
(Assume that second-order conditions for a maximum are met at stationary points.)

Solution

π = TR − TC = PQ− (PKK + PLL+ PRR)

= 4(95K0.3L0.2R0.25)− (30K + 16L+ 12R)

= 380K0.3L0.2R0.25 − 30K − 16L− 12R

First-order conditions for a maximum are

∂π

∂K
= 114K−0.7L0.2R0.25 − 30 = 0 (1)

∂π

∂L
= 76K0.3L−0.8R0.25 − 16 = 0 (2)

∂π

∂R
= 95K0.3L0.2R−0.75 − 12 = 0 (3)

From (1)

114L0.2R0.25 = 30K0.7

R0.25 = 30K0.7

114L0.2
(4)

Substituting (4) into (2)

76K0.3L−0.8
[

30K0.7

114L0.2

]
= 16

76K0.3(30K0.7) = 16L0.8(114L0.2)

2,280K = 1,824L

K = 0.8L (5)

Substituting (5) into (4)

R0.25 = 30(0.8L)0.7

114L0.2
= 30(0.8)0.7L0.5

114
(6)
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Taking each side of (6) to the power of 3

R0.75 = 27,000(0.8)2.1L1.5

1143

Inverting

R−0.75 = 1143

27,000(0.8)2.1L1.5
(7)

Substituting (7) and (5) into (3)

95K0.3L0.2R−0.75 − 12 = 0

95(0.8L)0.3L0.2(114)3

27,000(0.8)2.1L1.5
= 12

95(0.8)0.3L0.3L0.2(114)3

(0.8)2.1L1.5
= 324,000

95(114)3

(0.8)1.8L
= 324,000

95(114)3

324,000(0.8)1.8
= L

649.12924 = L (8)

Substituting (8) into (5)

K = 0.8(649.12924) = 519.3034 (9)

Substituting (8) into (6)

R0.25 = 30(0.8)0.7(649.12924)0.5

114

R = 304(0.8)2.8(649.12924)2

1144

= 1,081.882

It is assumed that the second-order conditions for a maximum are met whenK,L andR take
these values.

The maximum profit level will therefore be (taking quantities to 1dp)

π = 3800(519.3)0.3(649.1)0.2(1,081.9)0.25

− 30(519.3)− 16(649.1)− 12(1,081.9)

= 51,929.98 − 15,579 − 10, 385.6 − 12,982.8

= £12,982.58
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Test Yourself, Exercise 10.4

(Ensure that you check that second-order conditions are satisfied for these uncon-
strained optimization problems.)

1. A firm produces two products which are sold in separate markets with the demand
schedules

p1 = 210 − 0.4q2
1 p2 = 491 − 6q2

Production costs are related and the firm’s total cost schedule is

TC = 32 + 0.8q2
1 + 0.7q2

2 + 0.1q1q2

How much should the firm sell in each market in order to maximize total profits?
2. A company produces two competing products whose demand schedules are

q1 = 219 − 1.8p1 + 0.5p2 q2 = 303 − 2.1p2 + 0.8p1

What price should it charge in the two markets to maximize total sales revenue?
3. A price-discriminating monopoly sells in two separable markets with demand

schedules

p1 = 215 − 0.012q1 p2 = 324 − 0.023q2

and faces the total cost schedule TC = 4,200 + 0.3q2, where q = q1 + q2.
What should it sell in each market to maximize total profit? (Note that negative
quantities are not allowed, as was explained in Chapter 5.)

4. A monopoly sells its output in two separable markets with the demand schedules

p1 = 20 − q1

6
p2 = 13.75 − q2

8

If it faces the total cost schedule TC = 74 + 2.26q + 0.01q2 where q = q1 + q2,
what is the maximum profit it can make?

5. A multiplant monopoly operates two plants whose cost schedules are

TC1 = 2.4 + 0.015q2
1 TC2 = 3.5 + 0.012q2

2

and sells its total output in a market where p = 32 − 0.02q.
How much should it produce in each plant to maximize total profits?

6. A firm operates two plants with the total cost schedules

TC1 = 62 + 0.00018q3
1 TC2 = 48 + 0.00014q3

2

and faces the demand schedule p = 2,360 − 0.15q.
To maximize profits, how much should it produce in each plant?

7. A firm faces the production functionQ = 0.8K0.4L0.3. It sells its output at a fixed
price of £450 a unit and can buy the inputs K and L at £15 per unit and £8 per
unit respectively. What input mix will maximize profit?
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8. A firm selling in a perfectly competitive market where the ruling price is £40 can
buy inputs K and L at prices per unit of £20 and £6 respectively. If it operates
with the production functionQ = 21K0.4L0.2, what is the maximum profit it can
make?

9. A firm faces the production function Q = 2.4K0.6L0.2, where K costs £25 per
unit and L costs £9 per unit, and sells Q at a fixed price of £82 per unit. Explain
why it cannot make a profit of more than £20,000, no matter how efficiently it
plans its input mix.

10. A firm can buy inputs K and L at £32 per unit and £20 per unit respectively and
sell its output at a fixed price of £5 per unit. How should it organize production to
ensure maximum profit if it faces the production function Q = 82K0.5L0.3?

10.5 Total differentials and total derivatives
(Note that the mathematical methods developed in this section are mainly used for the proofs
of different economic theories rather than for direct numerical applications. These proofs
may be omitted if your course does not include these areas of economics as they are not
essential in order to understand the following chapters.)

In Chapter 8, when the concept of differentiation was introduced, you learned that the
derivative dy/dx measured the rate of change of y with respect to x for infinitesimally small
changes in x and y. For any non-linear function y = f(x), the value of dy/dx will alter if x
and y alter. It is therefore not possible to predict the effect of a given increase in x on y with
complete accuracy. However, for a very small change (5x) in x, we can say that it will be
approximately true that the resulting change in y will be

5y = dy

dx
5x

The closer the function y = f(x) is to a straight line, the more accurate will be the prediction,
as the following example demonstrates.

Example 10.22

For the functions below assume that the value of x increases from 10 to 11. Predict the effect
on y using the derivative dy/dx evaluated at the first value of x and check the answer against
the new value of the function.

(i) y = 2x (ii)y = 2x2 (iii)y = 2x3

Solution

In all cases the change in x is 5x = 11 − 10 = 1.

(i) y = 2x
dy

dx
= 2

Therefore, predicted change in y is

5y = dy

dx
5x = 1 × 2 = 2
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The actual values are y = 2(10) = 20 when x = 10

y = 2(11) = 22 when x = 11

Thus actual change is 22 − 20 = 2 (accuracy of prediction 100%)

(ii) y = 2x2 dy

dx
= 4x = 4(10) = 40

Therefore, predicted change in y is

5y = dy

dx
5x = 40 × 1 = 40

The actual values are y = 2(10)3 = 200 when x = 10

y = 2(11)2 = 242 when x = 11

Thus actual change is 242 − 200 = 42 (accuracy of prediction 95%)

(iii) y = 2x3 dy

dx
= 6x2 = 6(10)2 = 600

Therefore, predicted change in y is

5y = dy

dx
5x = 600 × 1 = 600

The actual values are y = 2(10)3 = 2,000 when x = 10

y = 2(11)3 = 2,662 when x = 11

Thus actual change is 2,662 − 2,000 = 662 (accuracy of prediction 91%).

The above method of predicting approximate actual changes in a variable can itself be
useful for practical purposes. However, in economic theory this mathematical method is
taken a stage further and helps yield some important results.

Total differentials

If the changes in variables x and y become infinitesimally small then even for non-linear
functions

5y = dy

dx
5x

These infinitesimally small changes in x and y are known as ‘differentials’. When y is a
function of more than one independent variable, e.g. y = f(x, z), and there are infinitesimally
small changes in all variables, then the total effect will be

5y = ∂y

∂x
5x + ∂y

∂z
5z

This is known as the ‘total differential’ as it shows the total effect on y of changes in all
independent variables.

It is usual to write dy, dx, dz etc. to represent infinitesimally small changes instead of
5y,5x,5z, which usually represent small, but finite, changes. Thus

dy = ∂y

∂x
dx + ∂y

∂z
dz
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Example 10.23

What is the total differential of y = 6x2 + 8z2 − 0.3xz?

Solution

The total differential is

dy = ∂y

∂x
dx + ∂y

∂z
dz

= (12x − 0.3z)dx + (16z− 0.3x)dz

We can now demonstrate some examples of how the concept of a total differential can be
used in economics.

In production theory, the slope of an isoquant represents the marginal rate of technical
substitution (MRTS) between two inputs. The use of the total differential can help demonstrate
that the MRTS will equal the ratio of the marginal products of the two inputs.

In introductory economics texts the MRTS of K for L (usually written as MRTSKL) is
usually defined as the amount of K that would be needed to compensate for the loss of one unit
of L so that the production level remains unchanged. This is only an approximate measure
though and more accuracy can be obtained when the MRTSKL is defined at a point on an
isoquant. For infinitesimally small changes in K and L the MRTSKL measures the rate at
which K needs to be substituted for L to keep output unchanged, i.e. it is equal to the negative
of the slope of the isoquant at the point corresponding to the given values of K and L, when
K is measured on the vertical axis and L on the horizontal axis.

For any given output level, K is effectively a function of L (and vice versa) and so, moving
along an isoquant,

MRTSKL = −dK

dL
(1)

For the production function Q = f(K,L), the total differential is

dQ = ∂Q

∂K
dK + ∂Q

∂L
dL

If we are looking at a movement along the same isoquant then output is unchanged and so
dQ is zero and thus

∂Q

∂K
dK + ∂Q

∂L
dL = 0

∂Q

∂K
dK = −∂Q

∂L
dL

−dK

dL
=
∂Q

∂L
∂Q

∂K

(2)
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We already know that ∂Q/∂L and ∂Q/∂K represent the marginal products of K and L.
Therefore, from (1) and (2) above,

MRTSKL = MPL

MPK

Euler’s theorem

Another use of the total differential is to prove Euler’s theorem and demonstrate the conditions
for the ‘exhaustion of the total product’. This relates to the marginal productivity theory of
factor pricing and the normative idea of what might be considered a ‘fair wage’, which was
debated for many years by political economists.

Consider a firm that uses several different inputs. Each will contribute a different amount
to total production. One suggestion for what might be considered a ‘fair wage’ was that each
input, including labour, should be paid the ‘value of its marginal product’ (VMP). This is
defined, for any input i, as marginal product (MPi) multiplied by the price that the finished
good is sold at (PQ), i.e.

VMPi = PQMPi

Any such suggestion is, of course, a normative concept and the value judgements on which it
is based can be questioned. However, what we are concerned with here is whether it is even
possible to pay each input the value of its marginal product. If it is not possible, then it would
not be a practical idea to set this as an objective even if it seemed a ‘fair’ principle.

Before looking at Euler’s theorem we can illustrate how the conditions for product exhaus-
tion can be derived for a Cobb–Douglas production function with two inputs. This example
also shows how the product price is irrelevant to the product exhaustion question and it is the
properties of the production function that matter.

Assume that a firm sells its output Q at a given price PQ and that Q = AKαLβ where
A, α and β are constants. If each input was paid a price equal to the value of its marginal
product then the prices of the two inputs K and L would be

PK = VMPK = PQ × MPK = PQ
∂Q

∂K

PL = VMPL = PQ × MPL = PQ
∂Q

∂L

The total expenditure on inputs would therefore be

TC = KPK + LPL

= K

(
PQ

∂Q

∂K

)
+ L

(
PQ

∂Q

∂L

)

= PQ

(
K
∂Q

∂K
+ L

∂Q

∂L

)
(1)

Total revenue from the sale of the firm’s output will be

TR = PQQ
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Total expenditure on inputs (which are paid the value of their marginal product) will equal
total revenue when TR = TC. Therefore

PQQ = PQ

(
K
∂Q

∂K
+ L

∂Q

∂L

)

Cancelling PQ, this gives

Q = K
∂Q

∂K
+ L

∂Q

∂L
(2)

Thus the conditions of product exhaustion are based on the physical properties of the
production function. If (2) holds then the product is exhausted. If it does not hold then there
will be either not enough revenue or a surplus.

For the Cobb–Douglas production function Q = AKαLβ we know that

∂Q

∂K
= αAKα−1Lβ

∂Q

∂L
= βAKαLβ−1

Substituting these values into (2), this gives

Q = K(αAKα−1Lβ)+ L(βAKαLβ−1)

= αAKαLβ + βAKαLβ

= αQ+ βQ

Q = Q(α + β) (3)

The condition required for (3) to hold is that α+ β = 1. This means that product exhaustion
occurs for a Cobb–Douglas production function when there are constant returns to scale.

We can also see from (3) and (1) that:

(i) when there are decreasing returns to scale and α + β < 1, then

TC = PQ(α + β)Q < PQQ = TR

and so there will be a surplus left over if all inputs are paid their VMP, and
(ii) when there are increasing returns to scale and α + β > 1, then

TC = PQ(α + β)Q > PQQ = TR

and so there will not be enough revenue to pay each input its VMP.

Euler’s theorem also applies to the case of a general production function

Q = f(x1, x2, . . . , xn)

The previous example showed that the price will always cancel in the TR and TC formulae
and what we are interested in is whether or not

Q = x1
∂Q

∂x1
+ x2

∂Q

∂x2
+ · · · + xn

∂Q

∂xn
(1)

Using the notation

f1 = ∂Q

∂x1
, f2 = ∂Q

∂x2
, . . . etc.
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the total differential of this production function will be

dQ = f1dx1 + f2dx2 + · · · + fndxn (2)

Assume that all inputs are increased by the same proportion λ. Thus

dxi
xi

= λ for all i

and so dxi = λxi (3)

Substituting (3) into (2) gives

dQ = f1λx1 + f2λx2 + · · · + fnλxn

= λ(f1dx1 + f2dx2 + · · · + fndxn)

dQ

λ
= f1x1 + f2x2 + · · · + fnxn (4)

Multiplying top and bottom of the left-hand side of (4) by Q gives(
1

λ

dQ

Q

)
Q = f1x1 + f2x2 + · · · + fnxn

Thus, product exhaustion will only hold if

1

λ

dQ

Q
= 1

If this result does hold it means that output increases by the same proportion as the inputs,

dQ

Q
= λ

i.e. there are constant returns to scale.
If there are decreasing returns to scale, output increases by a smaller proportion than the

inputs. Therefore,

dQ

Q
< λ

and so

1

λ

dQ

Q
< 1

This means that

f1x1 + f2x2 + · · · + fnxn < Q

so that if each input is paid the value of its marginal product there will be some surplus left
over.

Similarly, if there are increasing returns to scale then

dQ

Q
> λ
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Therefore,

1

λ

dQ

Q
> 1

and

f1x1 + f2x2 + · · · + fnxn > Q

which means that the total cost of paying each input the value of its marginal product will
sum to more than the total revenue earned, i.e. it will not be possible.

To sum up, Euler’s theorem proves that if each input is paid the value of its marginal
product the total cost of the inputs will

(i) equal total revenue if there are constant returns to scale;
(ii) be less than total revenue if there are decreasing returns to scale;

(iii) be greater than total revenue if there are increasing returns to scale.

Example 10.24

Is it possible for a firm to pay each input the value of its marginal product if it operates with
the production function Q = 14K0.6L0.8?

Solution

If each input is paid its VMP then the price of input K will be

PK = VMPK = PMPK = P
∂Q

∂K
= P(8.4K−0.4L0.8)

where P is the price of the final product. For input L,

PL = VMPL = PMPL = P
∂Q

∂L
= P(11.2K0.6L−0.2)

The total cost of inputs will therefore be

TC = PKK + PLL

= P(8.4K−0.4L0.8)K + P(11.2K0.6L−0.2)L

= P(8.4K0.6L0.8)+ P(11.2K0.6L0.8)

= P(8.4K0.6L0.8 + 11.2K0.6L0.8)

= P(19.6K0.6L0.8)

The total revenue from selling the product will be

TR = PQ = P(14K0.6L0.8)
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Therefore,

TC

TR
= P(19.6K0.6L0.8)

P (14K0.6L0.8)
= 19.6

14
= 1.4

Thus the total revenue is not enough to pay each input the value of its marginal product. This
checks out with the predictions of Euler’s theorem, given that there are increasing returns to
scale for this production function.

Total derivatives

In partial differentiation it is assumed that one variable changes while all other independent
variables are held constant. However, in some instances there may be a connection between
the independent variables and so this ceteris paribus assumption will not apply. For example,
in a production function the amount of one input used may affect the amount of another
input that can be used with it. From the total differential of a function we can derive a total
derivative which can cope with this additional effect.

Assume y = f(x, z) and also that x = g(z).
Thus any change in z will affect y:

(a) directly via the function f(x, z), and
(b) indirectly by changing x via the function g(z), which in turn will affect y via the function

f(x, z).

The total differential of y = f(x, z) is

dy = ∂y

∂x
dx + ∂y

∂z
dz

Dividing through by dz gives

dy

dz
= ∂y

∂x

dx

dz
+ ∂y

∂z

The first term shows the indirect effect of z, via its impact on x, and the second term shows
the direct effect.

Example 10.25

If Q = 25K0.4L0.5 and K = 0.8L2 what is the total effect of a change in L on Q? Identify
the direct and indirect effects.

Solution

The total differential is

dQ = ∂Q

∂K
dK + ∂Q

∂L
dL
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The total derivative with respect to L will be

dQ

dL
= ∂Q

∂K

dK

dL
+ ∂Q

∂L
(1)

From the functions given in the question we can derive

∂Q

∂K
= 10K−0.6L0.5 ∂Q

∂L
= 12.5K0.4L−0.5 dK

dL
= 1.6L

Substituting these derivatives into (1), we get

dQ

dL
= (10K−0.6L0.5)1.6L+ 12.5K0.4L−0.5

= 16K−0.6L1.5 + 12.5K0.4L−0.5

The first term shows the indirect effect of changes in L on Q and the second term shows the
direct effect.

Test Yourself, Exercise 10.5

1. Derive the total differentials of the following production functions:

(a) Q = 20K0.6L0.4

(b) Q = 48K0.3L0.2R0.4

(c) Q = 6K0.8 + 5L0.7 + 0.8K2L2

2. If each input is paid the value of its marginal product, will this exhaust a firm’s
total revenue if the relevant production function is

(a) Q = 4K + 1.5L?
(b) Q = 8K0.4L0.3?
(c) Q = 3.5K0.25L0.35R0.3?

3. If y = 40x0.4z0.3 and x = 5z0.25, find the total effect of a change in z on y.
4. A consumer spends all her income on the two goods A and B. The quantity of

good A bought is determined by the demand functionQA = f(PA, PB,M)where
PA and PB are the prices of the two goods and M is real income. A change in the
price of A will also affect real income M via the function M = g(PA, PB, £M)
where £M is money income. Derive an expression for the total effect of a change
in PA on QA.
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11 Constrained optimization

Learning objectives

After completing this chapter students should be able to:
• Solve constrained optimization problems by the substitution method.
• Use the Lagrange method to set up and solve constrained maximization and

constrained minimization problems.
• Apply the Lagrange method to resource allocation problems in economics.

11.1 Constrained optimization and resource allocation
Chapters 9 and 10 dealt with the optimization of functions without any constraints imposed.
However, in economics we often come across resource allocation problems that involve
the optimization of some variable subject to certain limitations. For example, a firm may
try to maximize output subject to a budget constraint for expenditure on inputs, or it may
wish to minimize costs subject to a specified output being produced. We have already seen
in Chapter 5 how constrained optimization problems with linear constraints and objective
functions can be tackled using linear programming. This chapter now explains how problems
involving the constrained optimization of non-linear functions can be tackled, using partial
differentiation.

We shall consider two methods:

(i) constrained optimization by substitution, and
(ii) the Lagrange multiplier method.

The Lagrange multiplier method can be used for most types of constrained optimization
problems. The substitution method is mainly suitable for problems where a function with
only two variables is maximized or minimized subject to one constraint. We shall consider
this simpler substitution method first.

11.2 Constrained optimization by substitution
Consider the example of a firm that wishes to maximize output Q = f(K,L), with a fixed
budget M for purchasing inputs K and L at set prices PK and PL. This problem is illustrated
in Figure 11.1. The firm needs to find the combination of K and L that will allow it to reach
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PL

Q2
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K

Q3

M
PK

Figure 11.1

the optimum point X which is on the highest possible isoquant within the budget constraint
with intercepts M/PK and M/PL.

To determine a solution for this type of economic resource allocation problem we have to
reformulate it as a mathematical constrained optimization problem. The following examples
suggest ways in which this can be done.

Example 11.1

A firm faces the production function Q = 12K0.4L0.4 and can buy the inputs K and L at
prices per unit of £40 and £5 respectively. If it has a budget of £800 what combination of K
and L should it use in order to produce the maximum possible output?

Solution

The problem is to maximize the function Q = 12K0.4L0.4 subject to the budget constraint

40K + 5L = 800 (1)

(In all problems in this chapter, it is assumed that each constraint ‘bites’; e.g. all the budget
is used in this example.)

The theory of the firm tells us that a firm is optimally allocating a fixed budget if the last £1
spent on each input adds the same amount to output, i.e. marginal product over price should
be equal for all inputs. This optimization condition can be written as

MPK

PK
= MPL

PL
(2)
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The marginal products can be determined by partial differentiation:

MPK = ∂Q

∂K
= 4.8K−0.6L0.4 (3)

MPL = ∂Q

∂L
= 4.8K0.4L−0.6 (4)

Substituting (3) and (4) and the given prices for PK and PL into (2)

4.8K−0.6L0.4

40
= 4.8K0.4L−0.6

5

Dividing both sides by 4.8 and multiplying by 40 gives

K−0.6L0.4 = 8K0.4L−0.6

Multiplying both sides by K0.6L0.6 gives

L = 8K (5)

Substituting (5) for L into the budget constraint (1) gives

40K + 5(8K) = 800

40K + 40K = 800

80K = 800

Thus the optimal value of K is

K = 10

and, from (5), the optimal value of L is

L = 80

Note that although this method allows us to derive optimum values of K and L that satisfy
condition (2) above, it does not provide a check on whether this is a unique solution, i.e. there
is no second-order condition check. However, it may be assumed that in all the problems in
this section the objective function is maximized (or minimized depending on the question)
when the basic economic rules for an optimum are satisfied.

The above method is not the only way of tackling this problem by substitution. An alter-
native approach, explained below, is to encapsulate the constraint within the function to be
maximized, and then maximize this new objective function.

Example 11.1 (reworked)

Solution

From the budget constraint

40K + 5L = 800

5L = 800 − 40K (1)

L = 160 − 8K (2)
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Substituting (2) into the objective function Q = 12K0.4L0.4 gives

Q = 12K0.4(160 − 8K)0.4 (3)

We are now faced with the unconstrained optimization problem of finding the value ofK that
maximizes the function (3) which has the budget constraint (1) ‘built in’ to it by substitution.
This requires us to set dQ/dK = 0. However, it is not straightforward to differentiate the
function in (3), and we must wait until further topics in calculus have been covered before
proceeding with this solution (see Chapter 12, Example 12.9).

To make sure that you understand the basic substitution method, we shall use it to tackle
another constrained maximization problem.

Example 11.2

A firm faces the production function Q = 20K0.4L0.6. It can buy inputs K and L for £400 a
unit and £200 a unit respectively. What combination of L and K should be used to maximize
output if its input budget is constrained to £6,000?

Solution

MPL = ∂Q

∂L
= 12K0.4L−0.4 MPK = ∂Q

∂K
= 8K−0.6L0.6

Optimal input mix requires

MPL

PL
= MPK

PK

Therefore

12K0.4L−0.4

200
= 8K−0.6L0.6

400

Cross multiplying gives

4,800K = 1,600L

3K = L

Substituting this result into the budget constraint

200L+ 400K = 6,000

gives

200(3K)+ 400K = 6,000

600K + 400K = 6,000

1,000K = 6,000

K = 6
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Therefore

L = 3K = 18

The examples of constrained optimization considered so far have only involved output
maximization when a firm faces a Cobb–Douglas production function, but the same technique
can also be applied to other forms of production functions.

Example 11.3

A firm faces the production function

Q = 120L+ 200K − L2 − 2K2

for positive values of Q. It can buy L at £5 a unit and K at £8 a unit and has a budget of £70.
What is the maximum output it can produce?

Solution

MPL = ∂Q

∂L
= 120 − 2L MPK = ∂Q

∂K
= 200 − 4K

For optimal input combination

MPL

PL
= MPK

PK

Therefore, substituting MPK and MPL and the given input prices

120 − 2L

5
= 200 − 4K

8

8(120 − 2L) = 5(200 − 4K)

960 − 16L = 1,000 − 20K

20K = 40 + 16L

K = 2 + 0.8L (1)

Substituting (1) into the budget constraint

5L+ 8K = 70

gives

5L+ 8(2 + 0.8L) = 70

5L+ 16 + 6.4L = 70

11.4L = 54

L = 4.74 (to 2 dp)
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Substituting this result into (1)

K = 2 + 0.8(4.74) = 5.79

Therefore maximum output is

Q = 120L+ 200K − L2 − 2K2

= 120(4.74)+ 200(5.79)− (4.74)2 − 2(5.79)2

= 1,637.28

This technique can also be applied to consumer theory, where utility is maximized subject
to a budget constraint.

Example 11.4

The utility a consumer derives from consuming the two goods A and B can be assumed to be
determined by the utility function U = 40A0.25B0.5. If A costs £4 a unit and B costs £10 a
unit and the consumer’s income is £600, what combination of A and B will maximize utility?

Solution

The marginal utility of A is

MUA = ∂U

∂A
= 10A−0.75B0.5

The marginal utility of B is

MUB = ∂U

∂B
= 20A0.25B−0.5

Consumer theory tells us that total utility will be maximized when the utility derived from
the last pound spent on each good is equal to the utility derived from the last pound spent on
any other good. This optimization rule can be expressed as

MUA

PA
= MUB

PB

Therefore, substituting the above MU functions and the given prices of £4 and £10, this
condition becomes

10A−0.75B0.5

4
= 20A0.25B−0.5

10

100B = 80A

B = 0.8A (1)

Substituting (1) for B in the budget constraint

4A+ 10B = 600
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gives

A+ 10(0.8A) = 600

4A+ 8A = 600

12A = 600

A = 50

Thus from (1)

B = 0.8(50) = 40

The substitution method can also be used for constrained minimization problems. If
output is given and a firm is required to minimize the cost of this output, then one variable
can be eliminated from the production function before it is substituted into the cost function
which is to be minimized.

Example 11.5

A firm operates with the production function Q = 4K0.6L0.4 and buys inputs K and L at
prices per unit of £40 and £15 respectively. What is the cheapest way of producing 600 units
of output?

Solution

The output constraint is

600 = 4K0.6L0.4

Therefore

150

K0.6
= L0.4

(
150

K0.6

)2.5

= L

275,567.6

K1.5
= L (1)

The total cost of inputs, which is to be minimized, is

TC = 40K + 15L (2)

Substituting (1) into (2) gives

TC = 40K + 15(275,567.6)K−1.5
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Differentiating and setting equal to zero to find a stationary point

dTC

dK
= 40 − 22.5(275,567.6)K−2.5 = 0 (3)

40 = 22.5(275,567.6)

K2.5

K2.5 = 22.5(275,567.6)

40
= 155,006.78

K = 119.16268

Substituting this value into (1) gives

L = 275,567.6

(119.1628)1.5
= 211.84478

This time we can check the second-order condition for minimization. Differentiating (3)
again gives

d2TC

dK2
= (2.5)22.5(275,567.6)K−3.5 > 0 for any K > 0

This confirms that these values minimize TC. We can also check that these values give 600
when substituted back into the production function.

Q = 4K0.6L0.4 = 4(119.16268)0.6(211.84478)0.4 = 600

Thus cost minimization is achieved whenK = 119.16 and L = 212.84 (to 2 dp) and so total
production costs will be

TC = 40(119.16)+ 15(211.84) = £7,944

Test Yourself, Exercise 11.1

1. If a firm has a budget of £378 what combination ofK and Lwill maximize output
given the production function Q = 40K0.6L0.3 and prices for K and L of £20 per
unit and £6 per unit respectively?

2. A firm faces the production function Q = 6K0.4L0.5. If it can buy input K at £32
a unit and input L at £8 a unit, what combination of L and K should it use to
maximize production if it is constrained by a fixed budget of £36,000?

3. A consumer spends all her income of £120 on the two goods A and B. Good A
costs £10 a unit and good B costs £15. What combination of A and B will she
purchase if her utility function is U = 4A0.5B0.5?

4. If a firm faces the production function Q = 4K0.5L0.5, what is the maximum
output it can produce for a budget of £200? The prices ofK and L are given as £4
per unit and £2 per unit respectively.

5. Make up your own constrained optimization problem for an objective function
with two independent variables and solve it using the substitution method.
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6. A firm faces the production functionQ = 2K0.2L0.6 and can buy L at £240 a unit
and K at £4 a unit.

(a) If it has a budget of £16,000 what combination of K and L should it use to
maximize output?

(b) If it is given a target output of 40 units of Q what combination of K and L
should it use to minimize the cost of this output?

7. A firm has a budget of £1,140 and can buy inputs K and L at £3 and £8 respectively
a unit. Its output is determined by the production function

Q = 6K + 20L− 0.025K2 − 0.05L2

for positive values of Q. What is the maximum output it can produce?
8. A firm operates with the production function Q = 30K0.4L0.2 and buys inputs K

and L at £12 per unit and £5 per unit respectively. What is the cheapest way of
producing 750 units of output? (Work to nearest whole units of K and L.)

11.3 The Lagrange multiplier: constrained maximization
with two variables

The best way to explain how to use the Lagrange multiplier is with an example and so we
shall work through the problem in Example 11.1 from the last section using the Lagrange
multiplier method.

The firm is trying to maximize output Q = 12K0.4L0.4 subject to the budget constraint
40K + 5L = 800. The first step is to rearrange the budget constraint so that zero appears on
one side of the equality sign. Therefore

0 = 800 − 40K − 5L (1)

We then write the ‘Lagrange equation’ or ‘Lagrangian’ in the form

G = (function to be optimized)+ λ(constraint)

where G is just the value of the Lagrangian function and λ is known as the ‘Lagrange
multiplier’. (Do not worry about where these terms come from or what their actual values
are. They are just introduced to help the analysis. Note also that in other texts a ‘curly L’ is
often used to represent the Lagrange function. This can confuse students because economics
problems frequently involve labour, represented by L, as one of the variables in the function
to be optimized. This text therefore uses the notation ‘G’ to avoid this confusion. However,
if you are already accustomed to using the ‘curly L’ you can, of course, continue to use it
when answering problems yourself. What matters is whether you understand the analysis,
not what symbols you use.)

In this problem the Lagrange function is thus

G = 12K0.4L0.4 + λ(800 − 40K − 5L) (2)
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Next, derive the partial derivatives of G with respect to K , L and λ and set them equal to
zero, i.e. find the stationary points ofG that satisfy the first-order conditions for a maximum.

∂G

∂K
= 4.8K−0.6L0.4 − 40λ = 0 (3)

∂G

∂L
= 4.8K0.4L−0.6 − 5λ = 0 (4)

∂G

∂λ
= 800 − 40K − 5L = 0 (5)

You will note that (5) is the same as the budget constraint (1). We now have a set of three linear
simultaneous equations in three unknowns to solve for K and L. The Lagrange multiplier λ
can be eliminated as, from (3),

0.12K−0.6L0.4 = λ

and from (4)

0.96K0.4L−0.6 = λ

Therefore

0.12K−0.6L0.4 = 0.96K0.4L−0.6

Multiplying both sides by K0.6L0.6,

0.12L = 0.96K

L = 8K (6)

Substituting (6) into (5),

800 − 40K − 5(8K) = 0

800 = 80K

10 = K

Substituting back into (5),

800 − 40(10)− 5L = 0

400 = 5L

80 = L

These are the same values of K and L as those obtained by the substitution method. Thus,
the values of K and L that satisfy the first-order conditions for a maximum value of the
Lagrangian function G are the values that will maximize output subject to the given budget
constraint. We shall just accept this result without going into the proof of why this is so.

Strictly speaking we should now check the second-order conditions in the above problem
to be sure that we actually have a maximum rather than a minimum. These, however, are
rather complex, involving an examination of the function at and near the stationary points
found, and are discussed in the next section. For the time being you can assume that once
the stationary points of a Lagrangian function have been found the second-order conditions
for a maximum will automatically be met. Some more examples are worked through so that
you can become familiar with this method.
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Example 11.6

A firm can buy two inputs K and L at £18 per unit and £8 per unit respectively and faces
the production function Q = 24K0.6L0.3. What is the maximum output it can produce for a
budget of £50,000? (Work to nearest whole units of K, L and Q.)

Solution

The budget constraint is 50,000 − 18K − 8L = 0 and the function to be maximized is
Q = 24K0.6L0.3. The Lagrangian for this problem is therefore

G = 24K0.6L0.3 + λ(50,000 − 18K − 8L)

Partially differentiating to find the stationary points of G gives

∂G

∂K
= 14.4K−0.4L0.3 − 18λ = 0

14.4L0.3

18K0.4
= λ (1)

∂G

∂L
= 7.2K0.6L−0.7 − 8λ = 0

7.2K0.6

8L0.7
= λ (2)

∂G

∂λ
= 50,000 − 18K − 8L = 0 (3)

Setting (1) equal to (2) to eliminate λ

14.4L0.3

18K0.4
= 7.2K0.6

8L0.7

115.2L = 129.6K

L = 1.125K (4)

Substituting (4) into (3)

50,000 − 18K − 8(1.125K) = 0

50,000 − 18K − 9K = 0

50,000 = 27K

1,851.8519 = K (5)

Substituting (5) into (4)

L = 1.125(1,851.8519) = 2,083.3334

Thus, to the nearest whole unit, optimum values ofK andL are 1,852 and 2,083 respectively.
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We can check that when these whole values of K and L are used the total cost will be

TC = 18K + 8L = 18(1,852)+ 8(2,083) = 33,336 + 16,664 = £50,000

and so the budget constraint is satisfied. The actual maximum output level will be

Q = 24K0.6L0.3 = 24(1,852)0.6(2,083)0.3 = 21,697 units

Although the same mathematical method can be used for various economic applications,
you must learn to use your knowledge of economics to set up the mathematical problem in
the first place. The example below demonstrates another application of the Lagrange method.

Example 11.7

A consumer has the utility function U = 40A0.5B0.5. The prices of the two goods A and B
are initially £20 and £5 per unit respectively, and the consumer’s income is £600. The price
of A then falls to £10. Work out the income and substitution effects of this price change on
the amount of A consumed using Hicks’s method and say whether A and B are normal or
inferior goods.

Solution

To help solve this problem the relevant budget schedules and indifference curves are illustrated
in Figure 11.2, although the indifference curves are not accurately drawn to scale. The original
optimum is at X. The price fall for A causes the budget line to become flatter and swing round,
giving a new equilibrium at Y.

Hicks’s method for splitting the total change in A into its income and substitution effects
requires one to draw a ‘ghost’ budget line parallel to the new budget line (reflecting the new

X Y

0

60

A

B

30

120

15 21.2

42.4
II

I

60

H

Figure 11.2
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relative prices) but tangential to the original indifference curve. This is shown by the broken
line tangential to indifference curve I at H. From X to H is the substitution effect and from H to
Y is the income effect of the price change. This problem requires us to find the corresponding
values of A and B for the three tangency points X, Y and H and then to comment on the
direction of these changes.

The original equilibrium is the combination ofA andB that maximizes the utility function
U = 40A0.5B0.5 subject to the budget constraint 600 = 20A + 5B. These values of A and
B can be found by deriving the stationary points of the Lagrange function

G = 40A0.5B0.5 + λ(600 − 20A− 5B)

Thus

∂G

∂A
= 20A−0.5B0.5 − 20λ = 0 giving A−0.5B0.5 = λ (1)

∂G

∂B
= 20A0.5B−0.5 − 5λ = 0 giving 4A0.5B−0.5 = λ (2)

∂G

∂λ
= 600 − 20A− 5B = 0 (3)

Setting (1) equal to (2)

A−0.5B0.5 = 4A0.5B−0.5

B = 4A (4)

Substituting (4) into (3)

600 − 20A− 5(4A) = 0

600 = 40A

15 = A

Substituting this value into (4)

B = 4(15) = 60

Thus, A = 15 and B = 60 at the original equilibrium at X.
When the price of A falls to 10, the budget constraint becomes

600 = 10A+ 5B

and so the new Lagrange function is

G = 40A0.5B0.5 + λ(600 − 10A− 5B)

New stationary points will be where

∂G

∂A
= 20A−0.5B0.5 − 10λ = 0 giving 2A−0.5B0.5= λ (5)

∂G

∂B
= 20A0.5B−0.5 − 5λ = 0 giving 4A0.5B−0.5= λ (6)

∂G

∂λ
= 600 − 10A− 5B = 0 (7)
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Setting (5) equal to (6)

2A−0.5B0.5 = 4A0.5B−0.5

B = 2A (8)

Substituting (8) into (7)

600 − 10A− 5(2A) = 0

600 = 20A

30 = A

Substituting this value into (8) gives

B = 2(30) = 60.

Thus, the total effect of the price change is to increase consumption of A from 15 to 30 units
and leave consumption of B unchanged at 60.

There are several ways of finding the values of A and B that correspond to point H. We
know that H is on the same indifference curve as point X, and therefore the utility function
will take the same value at both points. We can find the value of utility at X where A = 15
and B = 60. This will be

U = 40A0.5B0.5 = 40(15)0.5(60)0.5 = 40(900)0.5 = 40(30) = 1,200

Thus, at any point on the indifference curve I

40A0.5B0.5 = 1,200

B0.5 = 30A−0.5

B = 900A−1 (9)

The slope of indifference curve I will therefore be

dB

dA
= −900A−2 (10)

At point X, the indifference curve I is tangential to the new budget line whose slope will be

−PA

PB
= −10

5
= −2 (11)

Therefore, from (10) and (11)

−900A−2 = −2

450 = A2

21.2132 = A

Substituting this value into (9)

B = 900(21.2132)−1 = 42.4264
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Thus the substitution effect of A’s price fall, from X to H, increases consumption of A from
15 to 21.2 units and decreases consumption of B from 60 to 42.4 units. This effect is negative
(i.e. quantity rises when price falls) in line with standard consumer theory.

The income effect, from H to Y, increases consumption of A from 21.2 to 30 units and
also increases consumption of B from 42.4 back to its original 60 unit level. As both income
effects are positive, both A and B must be normal goods.

Test Yourself, Exercise 11.2

Use the Lagrange method to answer questions 1, 2, 3, 4, 6(a) and 7 from Test
Yourself, Exercise 11.1.

11.4 The Lagrange multiplier: second-order conditions
Inasmuch as it involves setting the first derivatives of the objective function equal to zero,
the Lagrange method of solving constrained optimization problems is similar to the method
of solving unconstrained optimization problems involving functions of several variables that
was explained in Chapter 10. However, one cannot simply apply the same set of second-order
conditions to check for a maximum or minimum because of the special role that the Lagrange
multiplier takes. The mathematics required to prove why this is so, and to explain what
additional second-order conditions are necessary for a Lagrangian function to be a maximum
or minimum, becomes rather complex. We shall therefore just look at an intuitive explanation
of what these conditions involve here. The use of matrix algebra to check second-order
conditions in constrained optimization problems will then be explained later in Chapter 15.

First, we shall consider the conditions for a maximum. If we assume that a function has two
independent variables then both the function to be maximized, f(A,B), and the constraint
could take on several possible forms, as illustrated in Figure 11.3. These diagrams are all
constructed on the same basis as isoquant maps. Thus the lines I, II and III represent different
levels of the objective function with its value increasing as one moves away from the origin.

In Figure 11.3(a), the objective function is convex to the origin and the constraint CD is
linear. Maximization of the objective function occurs at the tangency point T.

(a) (b) (c)

T
T

D

0 A

I

III

II

D

B

C

0 AD

B

0 A

B

C

III

II

I

T

C

R

S

III
II

I

Figure 11.3

© 1993, 2003 Mike Rosser



In Figure 11.3(b), the objective function is concave to the origin and so it is maximized
subject to the linear constraint CD at the corner point C. Thus the tangency point T does not
determine the maximum value.

In Figure 11.3(c), the objective function is convex to the origin but the constraint CD is
non-linear and more sharply curved than the objective function. Thus the tangency point T
is not the maximum value. Higher values of the objective function can be found at points R
and S, for example.

From the above examples we can see that, for the two-variable case, a linear constraint
and an objective function that is convex to the origin will ensure maximization at the point
of tangency. In other cases, tangency may not ensure maximization. If a problem involves
the maximization of production subject to a linear budget constraint this means that output
is maximized where the slope of the isoquant is equal to the slope of the budget constraint.
We have already seen in Chapter 10 how a Cobb–Douglas production function in the form
Q = AKαLβ will correspond to a set of isoquants which continually decline and become
flatter as L is increased, i.e. are convex to the origin. Thus in any constrained optimization
problem where one is attempting to maximize a production function in the Cobb–Douglas
format subject to a linear budget constraint, the input combination that satisfies the first-order
conditions will be a maximum.

If the Lagrangian represents other concepts with similar shaped functions and constraints,
such as utility, the same conditions apply. In all such cases, one assumes that the independent
variables in the objective function must take positive values and so any negative mathematical
solutions can be disregarded.

Although we cannot illustrate functions with more than two variables diagrammatically, the
same basic principles apply when one is attempting to maximize a function with three or more
variables subject to a linear constraint. Thus any Cobb–Douglas production function with
more than two inputs will be at a maximum, subject to a specified linear budget constraint,
when the first-order conditions for optimization of the relevant Lagrange equation are met. For
the purpose of answering the problems in this Chapter, and for most constrained maximization
problems that you will encounter in a first-year economics course, it can be assumed that
the stationary points of the Lagrange function will satisfy the second-order conditions for a
maximum.

The properties of the objective function and constraint that guarantee that a Lagrange
function is minimized when first-order conditions are met are the reverse of the properties
required for a maximum, i.e. the objective function must be linear and the constraint must
be convex to the origin. Thus if one is required to find values of K and L that minimize a
budget function in the form

TC = PKK + PLL

subject to a given outputQ∗ being produced via the production functionQ = AKαLβ , then
the corresponding Lagrange function is

G = PKK + PLL+ λ(Q∗ − AKαLβ)

and the values of K and L which satisfy the first-order conditions

∂G

∂K
= 0

∂G

∂L
= 0

will also satisfy second-order conditions for a minimum.
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If you refer back to Figure 11.3(a) you can see the rationale for this rule in the two-input
case. If input prices are given and one is trying to minimize the cost of the output represented
by isoquant II, then one needs to find the budget constraint with slope equal to the negative
of the price ratio which is nearest the origin and still goes through this isoquant. The linear
objective function and the constraint convex to the origin guarantee that this will be at the
tangency point T. Some examples of minimization problems that use this rule are given in
the next section.

To conclude this section, let us reiterate what we have learned about second-order condi-
tions and Lagrangians. When the objective function is in the Cobb–Douglas format and the
constraint is linear, then the second-order conditions for a maximum are met at the stationary
points of the Lagrange function. This rule is reversed for minimization.

11.5 Constrained minimization using the Lagrange multiplier
As was explained in Section 11.4, the same principles used to construct a Lagrange function
for a constrained maximization problem are used to construct a Lagrange function for a
constrained minimization problem. The difference is that the components of the function
are reversed, as is shown in the following examples. In all these cases the constraints and
objective function take formats which guarantee that second-order conditions for a minimum
are met.

Example 11.8

A firm operates with the production function Q = 4K0.6L0.5 and can buy K at £15 a unit
and L at £8 a unit. What input combination will minimize the cost of producing 200 units of
output?

Solution

The output constraint is 200 = 4K0.6L0.5 and the objective function to be minimized is the
total cost function TC = 15K + 8L. The corresponding Lagrangian function is therefore

G = 15K + 8L+ λ(200 − 4K0.6L0.5)

Partially differentiating G and setting equal to zero, first-order conditions require

∂G

∂K
= 15 − λ2.4K−0.4L0.5 = 0 giving

15K0.4

2.4L0.5
= λ (1)

∂G

∂L
= 8 − λ2K0.6L−0.5 = 0 giving

4L0.5

K0.6
= λ (2)

∂G

∂λ
= 200 − 4K0.6L0.5 = 0 (3)
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Setting (1) equal to (2) to eliminate λ

15K0.4

2.4L0.5
= 4L0.5

K0.6

15K = 9.6L

1.5625K = L (4)

Substituting (4) into (3)

200 − 4K0.6(1.5625K)0.5 = 0

200 = 4K0.6(1.5625)0.5K0.5

200

4(1.5625)0.5
= K1.1

40 = K1.1

K = 1.1
√

40 = 28.603434

Substituting this value into (4)

1.5625(28.603434) = L

44.692866 = L

Thus the optimal input combination is 28.6 units of K plus 44.7 units of L (to 1 dp). We can
check that these input values correspond to the given output level by substituting them back
into the production function. Thus

Q = 4K0.6L0.5 = 4(28.6)0.6(44.7)0.5 = 200

which is correct, allowing for rounding error. The actual cost entailed will be

TC = 15K + 8L = 15(28.6)+ 8(44.7) = £786.60

Example 11.9

The prices of inputs K and L are given as £12 per unit and £3 per unit respectively, and a firm
operates with the production function Q = 25K0.5L0.5.

(i) What is the minimum cost of producing 1,250 units of output?
(ii) Demonstrate that the maximum output that can be produced for this budget will be the

1,250 units specified in (i) above.

Solution

This question essentially asks us to demonstrate that the constrained maximization and
minimization methods give consistent answers.
(i) The output constraint is that

1,250 = 25K0.5L0.5
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The objective function to be minimized is the cost function

TC = 12K + 3L

The corresponding Lagrange function is therefore

G = 12K + 3L+ λ(1,250 − 25K0.5L0.5)

First-order conditions require

∂G

∂K
= 12 − λ12.5K−0.5L0.5 = 0 giving

12K0.5

12.5L0.5
= λ (1)

∂G

∂L
= 3 − λ12.5K0.5L−0.5 = 0 giving

3L0.5

12.5K0.5
= λ (2)

∂G

∂λ
= 1,250 − 25K0.5L0.5 = 0 (3)

Setting (1) equal to (2)

12K0.5

12.5L0.5
= 3L0.5

12.5K0.5

4K = L (4)

Substituting (4) into (3)

1,250 − 25K0.5(4K)0.5 = 0

1,250 = 25K0.5(4)0.5K0.5

1,250 = 50K

25 = K

Substituting this value into (4)

4(25) = L

100 = L

When these optimum values of K and L are used the actual minimum cost will be

TC = 12K + 3L = 12(25)+ 3(100) = 300 + 300 = £600

(ii) This part of the question requires us to find the values of K and L that will maximize
output subject to a budget of £600, i.e. the answer to (i) above. The objective function to
be maximized is therefore Q = 25K0.5L0.5 and the constraint is 12K + 3L = 600. The
corresponding Lagrange equation is thus

G = 25K0.5L0.5 + λ(600 − 12K − 3L)
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First-order conditions require

∂G

∂K
= 12.5K−0.5L0.5 − 12λ = 0 giving

12.5L0.5

12K0.5
= λ (5)

∂G

∂L
= 12.5K0.5L−0.5 − 3λ = 0 giving

12.5K0.5

3L0.5
= λ (6)

∂G

∂λ
= 600 − 12K − 3L = 0 (7)

Setting (5) equal to (6)

12.5L0.5

12K0.5
= 12.5K0.5

3L0.5

3L = 12K

L = 4K (8)

Substituting (8) into (7)

600 − 12K − 3(4K) = 0

600 − 12K − 12K = 0

600 = 24K

25 = K

Substituting this value into (8) L = 4(25) = 100
These are the same optimum values of K and L that were found in part (i) above. The

actual output produced by 25 of K plus 100 of L will be

Q = 25K0.5L0.5 = 25(25)0.5(100)0.5 = 1,250

which checks out with the amount specified in the question.

Although most of the examples of constrained optimization presented in this chapter are
concerned with a firm’s output and costs, or a consumer’s utility level and income, the
Lagrange method can be applied to other areas of economics. For instance, in environmental
economics one may wish to find the cheapest way of securing a given level of environmental
cleanliness.

Example 11.10

Assume that there are two sources of pollution into a lake. The local water authority can clean
up the discharges and reduce pollution levels from these sources but there are, of course, costs
involved. The damage effects of each pollution source are measured on a ‘pollution scale’.
The lower the pollution level the greater the cost of achieving it, as is shown by the cost
schedules for cleaning up the two pollution sources:

Z1 = 478 − 2C0.5
1 and Z2 = 600 − 3C0.5

2
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where Z1 and Z2 are pollution levels and C1 and C2 are expenditure levels (in £000s) on
reducing pollution.

To secure an acceptable level of water purity in the lake the water authority’s objective is
to reduce the total pollution level to 1,000 by the cheapest method. How can it do this?

Solution

This can be formulated as a constrained optimization problem where the constraint is the
total amount of pollution Z1 +Z2 = 1000 and the objective function to be minimized is the
cost of pollution control TC = C1 + C2. Thus the Lagrange function is

G = C1 + C2 + λ(1,000 − Z1 − Z2)

Substituting in the cost functions for Z1 and Z2, this becomes

G = C1 + C2 + λ[1,000 − (478 − 2C0.5
1 )− (600 − 3C0.5

2 )]
G = C1 + C2 + λ(−78 + 2C0.5

1 + 3C0.5
2 )

First-order conditions require

∂G

∂C1
= 1 + λC−0.5

1 = 0 giving λ = −C0.5
1 (1)

∂G

∂C2
= 1 + λ1.5C−0.5

2 = 0 giving λ = −C0.5
2

1.5
(2)

∂G

∂λ
= −78 + 2C0.5

1 + 3C0.5
2 = 0 (3)

Equating (1) and (2)

−C0.5
1 = −C0.5

2

1.5

1.5C0.5
1 = C0.5

2 (4)

Substituting (4) into (3)

−78 + 2C0.5
1 + 3(1.5C0.5

1 ) = 0

2C0.5
1 + 4.5C0.5

1 = 78

6.5C0.5
1 = 78

C0.5
1 = 12

C1 = 144 (5)

Substituting (5) into (4)

C0.5
2 = 1.5(12) = 18

C2 = 324
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We can use these optimum pollution control expenditure amounts to check the total pollution
level:

Z1 + Z2 = [(478 − 2C0.5
1 )+ (600 − 3C0.5

2 )]
= 478 − 2(12)+ 600 − 3(18)

= 1,000

which is the required level. Thus the water authority should spend £144,000 on reducing the
first pollution source and £324,000 on reducing the second source.

Test Yourself, Exercise 11.3

1. Use the Lagrange multiplier to answer Questions 6(b) and 8 from Test Yourself,
Exercise 11.1.

2. What is the cheapest way of producing 850 units of output if a firm operates with
the production functionQ = 30K0.5L0.5 and can buy input K at £75 a unit and L
at £40 a unit?

3. Two pollution sources can be cleaned up if money is spent on them according to
the functions Z1 = 780 − 12C0.5

1 and Z2 = 600 − 8C0.5
2 where Z1 and Z2 are

the pollution levels from the two sources and C1 and C2 are expenditure levels
(in £000s) on pollution reduction. What is the cheapest way of reducing the total
pollution level from 1,380, which is the level it would be without any controls, to
1,000?

4. A firm buys inputs K and L at £70 a unit and £30 a unit respectively and faces the
production functionQ = 40K0.5L0.5. What is the cheapest way it can produce an
output of 500 units?

11.6 Constrained optimization with more than two variables
The same procedures that were used for two-variable problems are also used for applying the
Lagrange method to constrained optimization problems with three or more variables. The
only difference is that one has a more complex set of simultaneous equations to solve for
the optimum values that satisfy the first-order conditions. Although some of these sets of
equations may initially look rather awkward to work with, they can usually be greatly sim-
plified and solutions can be found by basic algebra, as the following examples show. As
with the two-variable problems, it is assumed that second-order conditions for a maximum
(or minimum) are satisfied at stationary points of the Lagrange function in the problems set
out here.

Example 11.11

A firm has a budget of £300 to spend on the three inputs x, y and z whose prices per unit are
£4, £1 and £6 respectively. What combination of x, y and z should it employ to maximize
output if it faces the production function Q = 24x0.3y0.2z0.3?
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Solution

The budget constraint is

300 − 4x − y − 6z = 0

and the objective function to be maximized is

Q = 24x0.3y0.2z0.3

Thus the Lagrange function is

G = 24x0.3y0.2z0.3 + λ(300 − 4x − y − 6z)

Differentiating with respect to each variable and setting equal to zero gives

∂G

∂x
= 7.2x−0.7y0.2z0.3 − 4λ = 0 λ = 1.8x−0.7y0.2z0.3 (1)

∂G

∂y
= 4.8x0.3y−0.8z0.3 − λ = 0 λ = 4.8x0.3y−0.8z0.3 (2)

∂G

∂z
= 7.2x0.3y0.2z−0.7 − 6λ = 0 λ = 1.2x0.3y0.2z−0.7 (3)

∂G

∂λ
= 300 − 4x − y − 6z = 0 (4)

A simultaneous three-linear-equation system in the three unknowns x, y and z can now be
set up if λ is eliminated. There are several ways in which this can be done. In the method
used below we set (1) and then (3) equal to (2) to eliminate x and z and then substitute into
(4) to solve for y. Whichever method is used, the point of the exercise is to arrive at functions
for any two of the unknown variables in terms of the remaining third variable.

Thus, setting (1) equal to (2)

1.8x−0.7y0.2z0.3 = 4.8x0.3y−0.8z0.3

Multiplying both sides by x0.7y0.8 and dividing by z0.3 gives

1.8y = 4.8x

0.375y = x (5)

We have now eliminated z and obtained a function for x in terms of y. Next we need to
eliminate x and obtain a function for z in terms of y. To do this we set (2) equal to (3), giving

4.8x0.3y−0.8z0.3 = 1.2x0.3y0.2z−0.7

Multiplying through by z0.7y0.8 and dividing by x0.3 gives

4.8z = 1.2y

z = 0.25y (6)
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Substituting (5) and (6) into the budget constraint (4)

300 − 4(0.375y)− y − 6(0.25y) = 0

300 − 1.5y − y − 1.5y = 0

300 = 4y

75 = y

Therefore, from (5)

x = 0.375(75) = 28.125

and from (6)

z = 0.25(75) = 18.75

If these optimal values of x, y and z are used then the maximum output will be

Q = 24x0.3y0.2z0.3 = 24(28.125)0.3(75)0.2(18.75)0.3 = 373.1 units.

Example 11.12

A firm uses the three inputs K, L and R to manufacture good Q and faces the production
function

Q = 50K0.4L0.2R0.2

It has a budget of £24,000 and can buy K, L and R at £80, £12 and £10 respectively per unit.
What combination of inputs will maximize its output?

Solution

The objective function to be maximized isQ = 50K0.4L0.2R0.2 and the budget constraint is

24,000 − 80K − 12L− 10R = 0

Thus the Lagrange equation is

G = 50K0.4L0.2R0.2 + λ(24,000 − 80K − 12L− 10R)

Differentiating

∂G

∂K
= 20K−0.6L0.2R0.2 − 80λ = 0 λ = 0.25K−0.6L0.2R0.2 (1)

∂G

∂L
= 10K0.4L−0.8R0.2 − 12λ = 0 λ = 10

12
K0.4L−0.8R0.2 (2)

∂G

∂R
= 10K0.4L0.2R−0.8 − 10λ = 0 λ = K0.4L0.2R−0.8 (3)

∂G

∂λ
= 24,000 − 80K − 12L− 10R = 0 (4)
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Equating (1) and (2) to eliminate R

0.25K−0.6L0.2R0.2 = 10

12
K0.4L−0.8R0.2

3L = 10K

0.3L = K (5)

Equating (2) and (3) to eliminate K and get R in terms of L

10

12
K0.4L−0.8R0.2 = K0.4L0.2R−0.8

10R = 12L

R = 1.2L (6)

Substituting (5) and (6) into (4)

24,000 − 80(0.3L)− 12L− 10(1.2L) = 0

24,000 = 24L+ 12L+ 12L

24,000 = 48L

500 = L

Substituting this value for L into (5) and (6)

K = 0.3(500) = 150 R = 1.2(500) = 600

Using these optimal values for K,L and R, the firm’s maximum output will be

Q = 50K0.4L0.2R0.2 = 50(150)0.4(500)0.2(600)0.2 = 4,622 units

Example 11.13

A firm buys the four inputs K, L, R and M at per-unit prices of £50, £30, £25 and £20
respectively and operates with the production function

Q = 160K0.3L0.25R0.2M0.25

What is the maximum output it can make for a total cost of £30,000?

Solution

The relevant Lagrange function is

G = 160K0.3L0.25R0.2M0.25 + λ(30,000 − 50K − 30L− 25R − 20M)
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Differentiating to find stationary points, setting equal to zero and then equating to λ

∂G

∂K
= 48K−0.7L0.25R0.2M0.25 − 50λ = 0 λ = 48L0.25R0.2M0.25

50K0.7
(1)

∂G

∂L
= 40K0.3L−0.75R0.2M0.25 − 30λ = 0 λ = 4K0.3R0.2M0.25

3L0.75
(2)

∂G

∂R
= 32K0.3L0.25R−0.8M0.25 − 25λ = 0 λ = 32K0.3L0.25M0.25

25R0.8
(3)

∂G

∂M
= 40K0.3L0.25R0.2M−0.75 − 20λ = 0 λ = 2K0.3L0.25R0.2

M0.75
(4)

∂G

∂λ
= 30,000 − 50K − 30L− 25R − 20M = 0 (5)

Equating (1) and (2)

48L0.25R0.2M0.25

50K0.7
= 4K0.3R0.2M0.25

3L0.75

Dividing through by R0.2M0.25 and cross multiplying

144L = 200K

0.72L = K (6)

Note that, because it is simpler to divide by 200 than 144, we have expressedK as a fraction
of L rather than vice versa. Having done this we must now find R and M in terms of L and
so (2) must be equated with (3) and (4) to ensure that L is not cancelled out in each set of
equalities. Thus, equating (2) and (3)

4K0.3R0.2M0.25

3L0.75
= 32K0.3L0.25M0.25

25R0.8

Cancelling out K0.3M0.25 and cross multiplying

100R = 96L

R = 0.96L (7)

Equating (2) and (4)

4K0.3R0.2M0.25

3L0.75
= 2K0.3L0.25R0.2

M0.75

Cancelling K0.3R0.2 and cross multiplying

4M = 6L

M = 1.5L (8)
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Substituting (6), (7) and (8) into (5)

30,000 − 50(0.72L)− 30L− 25(0.96L)− 20(1.5L) = 0

30,000 − 36L− 30L− 24L− 30L = 0

30,000 = 120L

250 = L

Substituting this value for L into (6), (7) and (8)

K = 0.72(250) = 180 R = 0.96(250) = 240 M = 1.5(250) = 375

Using these optimal values of L,K,M and R gives the maximum output level

Q = 160K0.3L0.25R0.2M0.25

= 160(1800.3)(2500.25)(2400.2)(3750.25) = 39,786.6 units

Example 11.14

A firm operates with the production function Q = 20K0.5L0.25R0.4. The input prices per
unit are £20 for K, £10 for L and £5 for R. What is the cheapest way of producing 1,200 units
of output?

Solution

This time output is the constraint such that

20K0.5L0.25R0.4 = 1,200

and the objective function to be minimized is the cost function

TC = 20K + 10L+ 5R

The corresponding Lagrange function is therefore

G = 20K + 10L+ 5R + λ(1,200 − 20K0.5L0.25R0.4)

Differentiating to get stationary points

∂G

∂K
= 20 − λ10K−0.5L0.25R0.4 = 0 λ = 2K0.5

L0.25R0.4
(1)

∂G

∂L
= 10 − λ5K0.5L−0.75R0.4 = 0 λ = 2L0.75

K0.5R0.4
(2)

∂G

∂R
= 5 − λ8K0.5L0.25R−0.6 = 0 λ = 5R0.6

8K0.5L0.25
(3)

∂G

∂λ
= 1,200 − 20K0.5L0.25R0.4 = 0 (4)
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Equating (1) and (2)

2K0.5

L0.25R0.4
= 2L0.75

K0.5R0.4

K = L (5)

Equating (2) and (3)

2L0.75

K0.5R0.4
= 5R0.6

8K0.5L0.25

16L = 5R

3.2L = R (6)

Substituting (5) and (6) into (4) to eliminate R and K

1,200 − 20(L)0.5L0.25(3.2L)0.4 = 0

1,200 − 20(3.2)0.4L1.15 = 0

60 = 1.5924287L1.15

37.678296 = L1.15

23.47 = L

Substituting this value for L into (5) and (6) gives

K = 23.47 R = 3.2(23.47) = 75.1

Checking that these values do give the required 1,200 units of output:

Q = 20K0.5L0.25R0.4 = 20(23.47)0.5(23.47)0.25(75.1)0.4 = 1,200

The cheapest cost level for producing this output will therefore be

20K + 10L+ 5R = 20(23.4)+ 10(23.47)+ 5(75.1) = £1,079.60

Example 11.15

A firm operates with the production function Q = 45K0.4L0.3R0.3 and can buy input K at
£80 a unit, L at £35 and R at £50. What is the cheapest way it can produce an output of
75,000 units?

Solution

The output constraint is 45K0.4L0.3R0.3 = 75,000 and the objective function to be minimized
is TC = 80K + 35L+ 50R. The corresponding Lagrange function is thus

G = 80K + 35L+ 50R + λ(75,000 − 45K0.4L0.3R0.3)
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Differentiating to get first-order conditions for a minimum

∂G

∂K
= 80 − λ18K−0.6L0.3R0.3 = 0 λ = 80K0.6

18L0.3R0.3
(1)

∂G

∂L
= 35 − λ13.5K0.4L−0.7R0.3 = 0 λ = 35L0.7

13.5K0.4R0.3
(2)

∂G

∂R
= 50 − λ13.5K0.4L0.3R−0.7 = 0 λ = 50R0.7

13.5K0.4L0.3
(3)

∂G

∂λ
= 75,000 − 45K0.4L0.3R0.3 = 0 (4)

Equating (1) and (2)

80K0.6

18L0.3R0.3
= 35L0.7

13.5K0.4R0.3

1,080K = 630L

12K

7
= L (5)

As we have L in terms of K we now need to use (1) and (3) to get R in terms of K . Thus
equating (1) and (3)

80K0.6

18L0.3R0.3
= 50R0.7

13.5K0.4L0.3

1,080K = 900R

1.2K = R (6)

Substituting (5) and (6) into (4)

75,000 − 45K0.4
(

12K

7

)0.3

(1.2K)0.3 = 0

75,000 − 45

(
12

7

)0.3

(1.2)0.3K0.4K0.3K0.3 = 0

75,000 = 55.871697K

1,342.3612 = K

Substituting this value into (5)

L = 12

7
(1,342.3612) = 2,301.1907

Substituting into (6)

R = 1.2(1,342.3612) = 1,610.8334

Thus, optimum values are

K = 1,342.4 L = 2,301.2 R = 1,610.8 (to 1 dp)
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Total expenditure on inputs will then be

80K + 35L+ 50R = 80(1,342.4)+ 35(2,301.2)+ 50(1,610.8) = £268,474

Test Yourself, Exercise 11.4

1. A firm has a budget of £570 to spend on the three inputs x, y and z whose prices per
unit are respectively £4, £6 and £3. What combination of x, y and zwill maximize
output given the production function Q = 2x0.2y0.3z0.45?

2. A firm uses inputs K, L and R to manufacture good Q. It has a budget of £828 and
its production function (for positive values of Q) is

Q = 20K + 16L+ 12R − 0.2K2 − 0.1L2 − 0.3R2

If PK = £20,PL = £10 and PR = £6, what is the maximum output it can produce?
Assume that second-order conditions for a maximum are satisfied for the relevant
Lagrangian.

3. What amounts of the inputs x, y and z should a firm use to maximize output if
it faces the production function Q = 2x0.4y0.2z0.6 and it has a budget of £600,
given that the prices of x, y and z are respectively £4, £1 and £2 per unit?

4. A firm buys the inputs x, y and z for £5, £10 and £2 respectively per unit. If its
production function isQ = 60x0.2y0.4z0.5 how much can it produce for an outlay
of £8,250?

5. Inputs K, L, R and M cost £10, £6, £15 and £3 respectively per unit. What is
the cheapest way of producing an output of 900 units if a firm operates with the
production function Q = 20K0.4L0.3R0.2M0.25?

6. Make up your own constrained optimization problem for an objective function
with three variables and solve it.

7. A firm faces the production function Q = 50K0.5L0.2R0.25 and is required to
produce an output level of 1,913 units. What is the cheapest way of doing this if
the per-unit costs of inputs K, L and R are £80, £24 and £45 respectively?
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12 Further topics in calculus

Learning objectives

After completing this chapter students should be able to:

• Use the chain, product and quotient rules for differentiation.
• Choose the most appropriate method for differentiating different forms of

functions.
• Check the second-order conditions for optimization of relevant economic func-

tions using the quotient rule for differentiation.
• Integrate simple functions.
• Use integration to determine total cost and total revenue from marginal cost and

marginal revenue functions.
• Understand how a definite integral relates to the area under a function and apply

this concept to calculate consumer surplus.

12.1 Overview
In this chapter, some techniques are introduced that can be used to differentiate functions that
are rather more complex than those encountered in Chapters 8, 9, 10 and 11. These are the
chain rule, the product rule and the quotient rule. As you will see in the worked examples, it
is often necessary to combine several of these methods to differentiate some functions. The
concept of integration is also introduced.

12.2 The chain rule
The chain rule is used to differentiate ‘functions within functions’. For example, if we have
the function

y = f(z)

and we also know that there is a second functional relationship

z = g(x)

then we can write y as a function of x in the form

y = f[g(x)]
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To differentiate y with respect to x in this type of function we use the chain rule which
states that

dy

dx
= dy

dz

dz

dx

One economics example of a function within a function occurs in the marginal revenue
productivity theory of the demand for labour, where a firm’s total revenue depends on output
which, in turn, depends on the amount of labour employed. An applied example is explained
later. However, we shall first look at what is perhaps the most frequent use of the chain
rule, which is to break down an awkward function artificially into two components in order
to allow differentiation via the chain rule. Assume, for example, that you wish to find an
expression for the slope of the non-linear demand function

p = (150 − 0.2q)0.5 (1)

The basic rules for differentiation explained in Chapter 8 cannot cope with this sort of
function. However, if we define a new function

z = 150 − 0.2q (2)

then (1) above can be rewritten as

p = z0.5 (3)

(Note that in both (1) and (3) the functions are assumed to hold for p ≥ 0 only, i.e. negative
roots are ignored.)

Differentiating (2) and (3) we get

dz

dq
= −0.2

dp

dz
= 0.5z−0.5

Thus, using the chain rule and then substituting equation (2) back in for z, we get

dp

dq
= dp

dz

dz

dq
= 0.5z−0.5(−0.2) = −0.1

z0.5
= −0.1

(150 − 0.2q)0.5

Some more examples of the use of the chain rule are set out below.

Example 12.1

The present value of a payment of £1 due in 8 years’ time is given by the formula

PV = 1

(1 + i)8

where i is the given interest rate. What is the rate of change of PV with respect to i?
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Solution

If we let

z = 1 + i (1)

then we can write

PV = 1

z8
= z−8 (2)

Differentiating (1) and (2) gives

dz

di
= 1

dPV

dz
= −8z−9

Therefore, using the chain rule, the rate of change of PV with respect to i will be

dPV

di
= dPV

dz

dz

di
= −8z−9 = −8

(1 + i)9

Example 12.2

If y = (48 + 20x−1 + 4x + 0.3x2)4, what is dy/dx?

Solution

Let

z = 48 + 20x−1 + 4x + 0.3x2 (1)

and so

dz

dx
= −20x−2 + 4 + 0.6x (2)

Substituting (1) into the function given in the question

y = z4

and so

dy

dz
= 4z3 (3)

Therefore, using the chain rule and substituting (2) and (3)

dy

dx
= dy

dz

dz

dx

= 4z3(−20x−2 + 4 + 0.6x)

= 4(48 + 20x−1 + 4x + 0.3x2)3(−20x−2 + 4 + 0.6x)
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The marginal revenue productivity theory of the demand for labour

In the marginal revenue productivity theory of the demand for labour, the rule for profit
maximization is to employ additional units of labour as long as the extra revenue generated
by selling the extra output produced by an additional unit of labour exceeds the marginal cost
of employing this additional unit of labour. This rule applies in the short run when inputs
other than labour are assumed fixed.

The optimal amount of labour is employed when

MRPL = MCL

where MRPL is the marginal revenue product of labour, defined as the additional revenue
generated by an additional unit of labour, and MCL is the marginal cost of an additional unit
of labour. The MCL is normally equal to the wage rate unless the firm is a monopsonist (sole
buyer) in the labour market.

If all relevant functions are assumed to be continuous then the above definitions can be
rewritten as

MRPL = dTR

dL
MCL = dTCL

dL

where TR is total sales revenue (i.e. pq) and TCL is the total cost of labour. If a firm is a
monopoly seller of a good, then we effectively have to deal with two functions in order to
derive its MRPL function since total revenue will depend on output, i.e. TR = f(q), and
output will depend on labour input, i.e. q = f(L). Therefore, using the chain rule,

MRPL = dTR

dL
= dTR

dq

dq

dL
(1)

We already know that

dTR

dq
= MR

dq

dL
= MPL

Therefore, substituting these into (1),

MRPL = MR × MPL

This is the rule for determining the profit-maximizing amount of labour which you should
encounter in your microeconomics course.

Example 12.3

A firm is a monopoly seller of good q and faces the demand schedule p = 200−2q, where p
is the price in pounds, and the short-run production function q = 4L0.5. If it can buy labour
at a fixed wage of £8, how much L should be employed to maximize profit, assuming other
inputs are fixed?
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Solution

Using the chain rule we need to derive a formula for MRPL in terms ofL and then set it equal
to £8, given that MCL is fixed at this wage rate. As

MRPL = dTR

dL
= dTR

dq

dq

dL
(1)

we need to find dTR/dq and dq/dL.
Given p = 200 − 2q, then

TR = pq = (200 − 2q)q = 200q − 2q2

Therefore

dTR

dq
= 200 − 4q (2)

Given q = 4L0.5, then the marginal product of labour will be

dq

dL
= 2L−0.5 (3)

Thus, substituting (2) and (3) into (1)

MRPL = (200 − 4q)2L−0.5 = (400 − 8q)L−0.5

As all units of L cost £8, setting this function for MRPL equal to the wage rate we get

400 − 8q

L0.5
= 8

400 − 8q = 8L0.5 (4)

Substituting the production function q = 4L0.5 into (4), as we are trying to derive a formula
in terms of L, gives

400 − 8(4L0.5) = 8L0.5

400 − 32L0.5 = 8L0.5

400 = 40L0.5

10 = L0.5

100 = L

which is the optimal employment level.

In the example above the idea of a ‘short-run production function’ was used to simplify
the analysis, where the input of capital (K) was implicitly assumed to be fixed. Now that
you understand how an MRPL function can be derived we can work with full production
functions in the format Q = f(K,L). The effect of one input increasing while the other is
held constant can now be shown by the relevant partial derivative.
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Thus

MPL = ∂Q

∂L

The same chain rule can be used for partial derivatives, and full and partial derivatives can
be combined, as in the following examples.

Example 12.4

A firm operates with the production function q = 45K0.7L0.4 and faces the demand function
p = 6,980 − 6q. Derive its MRPL function.

Solution

By definition MRPL = ∂TR/∂L, where K is assumed fixed.
We know that

TR = pq = (6,980 − 6q)q = 6,980q − 6q2

Therefore

dTR

dq
= 6,980 − 12q (1)

From the production function q = 45K0.7L0.4 we can derive

MPL = ∂q

∂L
= 18K0.7L−0.6 (2)

Using the chain rule and substituting (1) and (2)

MRPL = ∂TR

∂L
= dTR

dq

∂q

∂L
= (6,980 − 12q)18K0.7L−0.6 (3)

As we wish to derive MRPL as a function of L, we substitute the production function given
in the question into (3) for q. Thus

MRPL = [6,980 − 12(45K0.7L0.4)]18K0.7L−0.6

= 125,640K0.7L−0.6 − 9,720K1.4L−0.2

Note that the value MRPL will depend on the amount that K is fixed at, as well as the
value of L.

Point elasticity of demand

The chain rule can help the calculation of point elasticity of demand for some non-linear
demand functions.
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Example 12.5

Find point elasticity of demand when q = 10 if p = (120 − 2q)0.5.

Solution

Point elasticity is defined as

e = (−1)
p

q

1(
dp

dq

) (1)

Create a new variable z = 120 − 2q. Thus p = z0.5 and so, by differentiating:

dz

dq
= −2

dp

dz
= 0.5z−0.5

Therefore

dp

dq
= dp

dz

dz

dq

= 0.5z−0.5(−2)

= 0.5(120 − 2q)−0.5(−2)

= −1

(120 − 2q)0.5

and so, inverting this result,

1

dp/dq
= −(120 − 2q)0.5

When q = 10, then from the original demand function price can be calculated as

p = (120 − 20)0.5 = 1000.5 = 10

Thus, substituting these results into formula (1), point elasticity will be

e = (−1)
10

10
(−1)(120 − 2q)0.5 = (120 − 20)0.5 = 1000.5 = 10

Sometimes it may be possible to simplify an expression in order to be able to differentiate
it, but one may instead use the chain rule if it is more convenient. The same result will be
obtained by both methods, of course.

Example 12.6

Differentiate the function y = (6 + 4x)2.
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Solution

(i) By multiplying out

y = (6 + 4x)2 = 36 + 48x + 16x2

Therefore

dy

dx
= 48 + 32x

(ii) Using the chain rule, let z = 6 + 4x so that y = z2. Thus

dy

dx
= dy

dz

dz

dx
= 2z× 4 = 2(6 + 4x)4 = 48 + 32x

Test Yourself, Exercise 12.1

1. A firm operates in the short run with the production function q = 2L0.5 and faces
the demand schedule p = 60 − 4q where p is price in pounds. If it can employ
labour at a wage rate of £4 per hour, how much should it employ to maximize
profit?

2. If a supply schedule is given by p = (2 + 0.05q)2 show (a) by multiplying out,
and (b) by using the chain rule, that its slope is 2.2 when q is 400.

3. The return R on a sumM invested at i per cent for 3 years is given by the formula

R = M(1 + i)3

What is the rate of change of R with respect to i?
4. If y = (3 + 0.6x2)0.5 what is dy/dx?
5. If a firm faces the total cost function TC = (6 + x)0.5, what is its marginal cost

function?
6. A firm operates with the production function q = 0.4K0.5L0.5 and sells its output

in a market where it is a monopoly with the demand schedule p = 60 − 2q. If K
is fixed at 25 units and the wage rate is £7 per unit of L, derive the MRPL function
and work out how much L the firm should employ to maximize profit.

7. A firm faces the demand schedule p = 650 − 3q and the production function
q = 4K0.5L0.5 and has to pay £8 per unit to buy L. If K is fixed at 4 units how
much L should the firm use if it wishes to maximize profits?

8. If a firm operates with the total cost function TC = 4 + 10(9 + q2)0.5, what is its
marginal cost when q is 4?

9. Given the production function q = (6K0.5 + 0.5L0.5)0.3, find MPL whenK is 16
and L is 576.
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12.3 The product rule
The product rule allows one to differentiate two functions which are multiplied together.

If y = uv where u and v are both functions of x, then according to the product rule

dy

dx
= u

dv

dx
+ v

du

dx

As with the chain rule, one may find it convenient to split a single awkward function into
two artificial functions even if these functions do not have any particular economic meaning.
The following examples show how this rule can be used.

Example 12.7

If y = (7.5 + 0.2x2)(4 + 8x−1), what is dy/dx?

Solution

This function could in fact be multiplied out and differentiated without using the product
rule. However, let us first use the product rule and then we can compare the answers obtained
by the two methods. They should, of course, be the same.

We are given the function

y = (7.5 + 0.2x2)(4 + 8x−1)

so let

u = 7.5 + 0.2x2 v = 4 + 8x−1

Therefore

du

dx
= 0.4x

dv

dx
= −8x−2

Thus, using the product rule and substituting these results in, we get

dy

dx
= u

dv

dx
+ v

du

dx

= (7.5 + 0.2x2)(−8x−2)+ (4 + 8x−1)0.4x

= −60x−2 − 1.6 + 1.6x + 3.2

= 1.6 + 1.6x − 60x−2 (1)

The alternative method of differentiation is to multiply out the original function. Thus

y = (7.5 + 0.2x2)(4 + 8x−1) = 30 + 60x−1 + 0.8x2 + 1.6x

and so

dy

dx
= −60x−2 + 1.6x + 1.6 (2)

The answers (1) and (2) are the same, as we expected.
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When it is not possible to multiply out the different components of a function then one
must use the product rule to differentiate. One may also need to use the chain rule to help
differentiate the different sub-functions.

Example 12.8

A firm faces the non-linear demand schedule p = (650 − 0.25q)1.5. What output should it
sell to maximize total revenue?

Solution

When the demand function in the question is substituted for p then

TR = pq = (650 − 0.25q)1.5q

To differentiate TR using the product rule, first let

u = (650 − 0.25q)1.5 v = q

Thus, employing the chain rule

du

dq
= 1.5(650 − 0.25q)0.5(−0.25) = −0.375(650 − 0.25q)0.5

and also

dv

dq
= 1

Therefore, using the product rule

dTR

dq
= u

dv

dq
+ v

du

dq

= (650 − 0.25q)1.5 + q(−0.375)(650 − 0.25q)0.5

= (650 − 0.25q)0.5(650 − 0.25q − 0.375q)

= (650 − 0.25q)0.5(650 − 0.625q) (1)

For a stationary point

dTR

dq
= (650 − 0.25q)0.5(650 − 0.625q) = 0

Therefore, either

650 − 0.25q = 0 or 650 − 0.625q = 0

2,600 = q or 1,040 = q

We now need to check which of these values of q satisfies the second-order condition
for a maximum. (You should immediately be able to see why it will not be 2,600 by
observing what happens when this quantity is substituted into the demand function.) To
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derive d2TR/dq2 we need to use the product rule again to differentiate dTR/dq. From (1)
above

dTR

dq
= (650 − 0.25q)0.5(650 − 0.625q) = 0

Let

u = (650 − 0.25q)0.5 and v = 650 − 0.625q

giving

du

dq
= 0.5(650 − 0.25q)−0.5(−0.25) = −0.125(650 − 0.25q)−0.5

using the chain rule and

dv

dq
= −0.625

Therefore, employing the product rule

d2TR

dq2
= u

dv

dq
+ v

du

dq

= (650 − 0.25q)0.5(−0.625)+ (650 − 0.625q)(−0.125)(650 − 0.25q)−0.5

= (650 − 0.25q)(−0.625)+ (650 − 0.625q)(−0.125)

(650 − 0.25q)0.5
(2)

Substituting the value q = 1,040 into (2) gives

d2TR

dq2
= (390)(−0.625)+ 0

3900.5
= −12.34 < 0

Therefore, the second-order condition is met and TR is maximized when q = 1,040. We can
double check that the other stationary point will not maximize TR by substituting the value
q = 2,600 into (2) giving

d2TR

dq2
= 0 + (−975)(−0.125)

0
→ +∞

Therefore this second value for q obviously does not satisfy second-order conditions for
a maximum.

Example 12.9

At what level of K is the function Q = 12K0.4(160 − 8K)0.4 at a maximum? (This is
Example 11.1 (reworked) which was not completed in the last chapter.)
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Solution

We need to differentiate the function Q = 12K0.4(160 − 8K)0.4 to check the first-order
condition for a maximum. To use the product rule, let

u = 12K0.4 and v = (160 − 8K)0.4

and so

du

dK
= 4.8K−0.6 and

dv

dK
= 0.4(160 − 8K)−0.6(−8)

= −3.2(160 − 8K)−0.6

Therefore,

dQ

dK
= 12K0.4(−3.2)(160 − 8K)−0.6 + (160 − 8K)0.44.8K−0.6

= −38.4K + (160 − 8K)4.8

(160 − 8K)0.6K0.6

= 768 − 76.8K

(160 − 8K)0.6K0.6
(1)

Setting (1) equal to zero for a stationary point must mean

768 − 76.8K = 0

K = 10

As we have already left this example in mid-solution once already, it will not do any harm
to leave it once again. Although the second-order condition could be worked out using the
product rule it is more convenient to use the quotient rule in this case and so we shall continue
this problem later, in Example 12.13.

Example 12.10

In a perfectly competitive market the demand schedule is p = 120 − 0.5q2 and the supply
schedule is p = 20 + 2q2. If the government imposes a per-unit tax t on the good sold in
this market, what level of t will maximize the government’s tax yield?

Solution

With the tax the supply schedule shifts upwards by the amount of the tax and becomes

p = 20 + 2q2 + t

In equilibrium, demand price equals supply price. Therefore

120 − 0.5q2 = 20 + 2q2 + t

100 − t = 2.5q2

40 − 0.4t = q2

(40 − 0.4t)0.5 = q (1)
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The government’s tax yield (TY) is tq. Substituting (1) for q, this gives

TY = t (40 − 0.4t)0.5 (2)

We need to set dTY/dt = 0 for the first-order condition for maximization of TY.
From (2) let

u = t and v = (40 − 0.4t)0.5

giving

du

dt
= 1

dv

dt
= 0.5(40 − 0.4t)−0.5(−0.4)

= −0.2(40 − 0.4t)−0.5

Therefore, using the product rule

dTY

dt
= t (−0.2)(40 − 0.4t)−0.5 + (40 − 0.4t)0.5

= −0.2t + 40 − 0.4t

(40 − 0.4t)0.5

= 40 − 0.6t

(40 − 0.4t)0.5
= 0 (3)

For finite values of t the first-order condition (3) will only hold when

40 − 0.6t = 0

66.67 = t

To check second-order conditions for this stationary point we need to find d2TY/dt2.
From (3)

dTY

dt
= (40 − 0.6t)(40 − 0.4t)−0.5

To differentiate using the product rule, let

u = 40 − 0.6t and v = (40 − 0.4t)−0.5

giving

du

dt
= −0.6

dv

dt
= −0.5(40 − 0.4t)−1.5(−0.4)

Therefore

d2TY

dt2
= (40 − 0.6t)[0.2(40 − 0.4t)−1.5] + (40 − 0.4t)−0.5(−0.6) (4)

When t = 66.67 then 40 − 0.6t = 0 and so the first term in (4) disappears giving

d2TY

dt2
= [40 − 0.4(66.67)]−0.5(−0.6) = −0.1644 < 0

Therefore, the second-order condition for a maximum is satisfied when t = 66.67. Maximum
tax revenue is raised when the per-unit tax is £66.67.
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Test Yourself, Exercise 12.2

1. If y = (6x + 7)0.5(2.6x2 − 1.9), what is dy/dx?
2. What output will maximize total revenue given the non-linear demand schedule

p = (60 − 2q)1.5?
3. Derive a function for the marginal product of L given the production function

Q = 85(0.5K0.8 + 3L0.5)0.6.
4. If Q = 120K0.5(250 − 0.5K)0.3 at what value of K will dQ/dK = 0? (That is,

find the first-order condition for maximization of Q.)
5. In a perfectly competitive market the demand schedule is p = 600 − 4q0.5 and

the supply schedule is p = 30 + 6q0.5. What level of a per-unit tax levied on the
good sold in this market will maximize the government’s tax yield?

6. Make up your own function involving the product of two sub-functions and then
differentiate it using the product rule.

7. For the demand schedule p = (60 − 0.1q)0.5:

(a) derive an expression for the slope of the demand schedule;
(b) demonstrate that this slope gets flatter as q increases from 0 to 600;
(c) find the output at which total revenue is a maximum.

12.4 The quotient rule
The quotient rule allows one to differentiate two functions where one function is divided by
the other function.

If y = u/v where u and v are functions of x, then according to the quotient rule

dy

dx
=
v

du

dx
− u

dv

dx
v2

Example 12.11

What is
dy

dx
if y = 4x2

8 + 0.2x
?

Solution

Defining relevant sub-functions and differentiating them

u = 4x2 and v = 8 + 0.2x

du

dx
= 8x

dv

dx
= 0.2
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Therefore, according to the quotient rule,

dy

dx
=
v

du

dx
− u

dv

dx
v2

= (8 + 0.2x)8x − 4x2(0.2)

(8 + 0.2x)2

= 64x + 1.6x2 − 0.8x2

(8 + 0.2x)2

= 64x + 0.8x2

(8 + 0.2x)2
(1)

This solution could also have been found using the product rule, since any function in the
form y = u/v can be written as y = uv−1. We can check this by reworking Example 12.11
and differentiating the function y = 4x2(8 + 0.2x)−1.

Defining relevant sub-functions and differentiating them

u = 4x2 v = (8 + 0.2x)−1

du

dx
= 8x

dv

dx
= −0.2(8 + 0.2x)−2

Thus, using the product rule

dy

dx
= u

dv

dx
+ v

du

dx

= 4x2[−0.2(8 + 0.2x)−2] + (8 + 0.2x)−18x

= −0.8x2 + (8 + 0.2x)8x

(8 + 0.2x)2

= −0.8x2 + 64x + 1.6x2

(8 + 0.2x)2

= 64x + 0.8x2

(8 + 0.2x)2
(2)

The answers (1) and (2) are identical, as expected.

Whether one chooses to use the quotient rule or the product rule depends on the functions
to be differentiated. Only practice will give you an idea of which will be the easier to use for
specific examples.

Example 12.12

Derive a function for marginal revenue (in terms of q) if a monopoly faces the non-linear

demand schedule p = 252

(4 + q)0.5
.
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Solution

TR = pq = 252q

(4 + q)0.5

Defining

u = 252q and v = (4 + q)0.5

gives
du

dq
= 252

dv

dq
= 0.5(4 + q)−0.5

Therefore, using the quotient rule

MR = dTR

dq
=
v

du

dq
− u

dv

dq
v2

= (4 + q)0.5252 − 252q(0.5)(4 + q)−0.5

4 + q

= (4 + q)252 − 126q

(4 + q)1.5

= 1,008 + 126q

(4 + q)1.5

Note that, in this example, MR only becomes zero when q becomes infinitely large. TR will
therefore rise continually as q increases.

All three rules may be used in some problems. In particular, one may find it convenient to
use the chain rule and the product rule to derive the first-order condition in an optimization
problem and then use the quotient rule to check the second-order condition. If we return to
the unfinished Example 12.9 we can now see how the quotient rule can be used to check the
second-order condition.

Example 12.13

The objective is to find the value of K which maximizes Q = 12K0.4(160 − 8K)0.4. In
Example 12.9, first-order conditions were satisfied when

dQ

dK
= 768 − 76.8K

(160 − 8K)0.6K0.6

which holds when K = 10.
To derive d2Q/dK2 let u = 768 − 76.8K and v = (160 − 8K)0.6K0.6. Therefore,

du

dK
= −76.8 (1)
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and, using the product rule,

dv

dK
= (160 − 8K)0.60.6K−0.4 +K0.60.6(160 − 8K)−0.4(−8)

= (160 − 8K)0.6 − 4.8K

K0.4(160 − 8K)0.4

= 96 − 9.6K

K0.4(160 − 8K)0.4
(2)

Therefore, using the quotient rule and substituting (1) and (2)

d2Q

dK2
=
(160 − 8K)0.6K0.6(−76.8)− (768 − 76.8K)

96 − 9.6K

K0.4(160 − 8K)0.4

(160 − 8K)1.2K1.2

= (160 − 8K)K(−76.8)− 76.8(10 −K)9.6(10 −K)

(160 − 8K)1.6K1.6

At the stationary point when K = 10 several terms become zero, giving

d2Q

dK2
= −76.8(800)

(800)1.6
< 0

Therefore, the second-order condition for a maximum is satisfied when K = 10.

Minimum average cost

In your introductory economics course you were probably given an intuitive geometrical
explanation of why a marginal cost schedule cuts a U-shaped average cost curve at its
minimum point. The quotient rule can now be used to prove this rule.

In the short run, with only one variable input, assume that total cost (TC) is a function
of q. Thus, MC = dTC/dq (as explained in Chapter 8) and, by definition, AC = TC/q.

To differentiate AC using the quotient rule let

u = TC and v = q

giving

du

dq
= dTC

dq
= MC

dv

dq
= 1

Therefore, using the quotient rule, first-order conditions for a minimum are

dAC

dq
= qMC − TC

q2
= 0 (1)

qMC − TC = 0 (or q → ∞, which we disregard)

MC = TC

q
= AC (2)

Therefore, MC = AC when AC is at a stationary point.
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To check second-order conditions we need to find d2AC/dq2. From (1) above we know
that

dAC

dq
= qMC − TC

q2

Again use the quotient rule and let u = qMC − TC and v = q2 giving

du

dq
=

(
q

dMC

dq
+ MC

)
− MC = q

dMC

dq

and

dv

dq
= 2q

Therefore

d2AC

dq2
=
q2

(
q

dMC

dq

)
− (qMC − TC)2q

q4
(3)

The first-order condition for a minimum is satisfied when qMC = TC, from (2) above.
Substituting this result into (3) the second term in the numerator disappears and we get

d2AC

dq2
=
q2

(
q

dMC

dq

)
q4

= 1

q

dMC

dq
> 0 when

dMC

dq
> 0

Therefore, the second-order condition for a minimum is satisfied when MC = AC and MC
is rising. Thus, although MC may cut AC at another point when MC is falling, when MC is
rising it cuts AC at its minimum point.

12.5 Individual labour supply
Not all of you will have encountered the theory of individual labour supply. Nevertheless
you should now be able to understand the following example which shows how the utility-
maximizing combination of work and leisure hours can be found when an individual’s utility
function, wage rate and maximum working day are specified.

Example 12.14

In the theory of individual labour supply it is assumed that an individual derives utility from
both leisure (L) and income (I ). Income is determined by hours of work (H ) multiplied by
the hourly wage rate (w), i.e. I = wH .

Assume that each day a total of 12 hours is available for an individual to split between
leisure and work, the wage rate is given as £4 an hour and that the individual’s utility function
is U = L0.5I 0.75. How will this individual balance leisure and income so as to maximize
utility?
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Solution

Given a maximum working day of 12 hours, then hours of work H = 12 − L.
Therefore, given an hourly wage of £4, income earned will be

I = wH = w(12 − L) = 4(12 − L) = 48 − 4L (1)

Substituting (1) into the utility function

U = L0.5I 0.75 = L0.5(48 − 4L)0.75 (2)

To differentiate U using the product rule let

u = L0.5 and v = (48 − 4L)0.75

giving

du

dL
= 0.5L−0.5 dv

dL
= 0.75(48 − 4L)−0.25(−4)

= −3(48 − 4L)−0.25

Therefore

dU

dL
= L0.5[−3(48 − 4L)−0.25] + (48 − 4L)0.75(0.5L−0.5)

= −3L+ (48 − 4L)0.5

(48 − 4L)0.25L0.5

= 24 − 5L

(48 − 4L)0.25L0.5
= 0 (3)

for a stationary point. Therefore

24 − 5L = 0

24 = 5L

4.8 = L

and so

H = 12 − 4.8 = 7.2 hours

To check the second-order condition we need to differentiate (3) again. Let

u = 24 − 5L and v = (48 − 4L)0.25L0.5

giving

du

dL
= −5
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and

dv

dL
= (48 − 4L)0.250.5L−0.5 + L0.50.25(48 − 4L)−0.75(−4)

= (48 − 4L)0.5 − L

L0.5(48 − 4L)0.75

= 24 − 3L

L0.5(48 − 4L)0.75

Therefore, using the quotient rule,

d2U

dL2
= (48 − 4L)0.25L0.5(−5)− (24 − 5L)[(24 − 3L)/L0.5(48 − 4L)0.75]

(48 − 4L)0.5L

When L = 4.8 then 24 − 5L = 0 and so the second part of the numerator disappears. Then,
dividing through top and bottom by (48 − 4L)0.25L0.5 we get

d2U

dL2
= −5

(48 − 4L)0.25L0.5
= −0.985 < 0

and so the second-order condition for maximization of utility is satisfied when 7.2 hours are
worked and 4.8 hours are taken as leisure.

Test Yourself, Exercise 12.3

1. If y = (3x + 0.4x2)

(8 − 6x1.5)0.5
what is

dy

dx
?

2. Derive a function for marginal revenue for the demand schedule

p = 720

(25 + q)0.5

3. Using your answer from Test Yourself, Exercise 12.2.4, show that the second-
order condition for a maximum value of the functionQ = 1200.5(250 − 0.5K)0.3

is satisfied when K is 312.5 and evaluate d2Q/dK2.
4. For the demand schedulep = (800−0.4q)0.5 find which value of q will maximize

total revenue, using the quotient rule to check the second-order condition.
5. Assume that an individual can choose the number of hours per day that they work

up to a maximum of 12 hours. This individual attempts to maximize the utility
function U = L0.4I 0.6 where L is defined as hours not worked out of the 12-hour
maximum working day, and I is income, equal to hours worked (H ) times the
hourly wage rate of £15. What mix of leisure and work will be chosen?

6. Show that when a firm faces a U-shaped short-run average variable cost (AVC)
schedule, its marginal cost schedule will always cut the AVC schedule at its
minimum point when MC is rising.

© 1993, 2003 Mike Rosser



12.6 Integration
Integrating a function means finding another function which, when it is differentiated, gives
the first function. It is basically differentiation in reverse, and the rules for integration are
the reverse of those for differentiation. Unlike differentiation, which we have seen to be very
useful in optimization problems, the mathematical technique of integration is not as widely
used in economics and so we shall only look at some of the basic ideas involved.

Assume that you wish to integrate the function

f ′(x) = 12x + 24x2

This means that you wish to find a function y = f(x) such that

dy

dx
= f ′(x) = 12x + 24x2

From your knowledge of differentiation you should be able to work out that if

y = 6x2 + 8x3

then

dy

dx
= 12x + 24x2

However, although this is one solution, the same derivative can be obtained from other
functions. For example, if y = 35 + 6x2 + 8x3 then we also get

dy

dx
= 12x + 24x2

In fact, whatever constant term starts the function the same derivative will be obtained.
Because constant numbers disappear when a function is differentiated, we cannot know what
constant should appear in an integrated function unless further information is available. We
therefore simply include a ‘constant of integration’ (C) in the integral.

The notation used for integration is

y =
∫

f ′(x)dx

This means that y is the integral of the function f ′(x). The sign ∫ is known as the integration
sign. The ‘dx’ signifies that if y is differentiated with respect x the result will equal f ′(x).
We can therefore write the integral of the above example as

y =
∫
(12x + 24x2)dx = 6x2 + 8x3 + C (4)

The general rule for the integration of individual terms in an expression is∫
axndx = axn+1

n+ 1
+ C

where a and n are given parameters and n 
= −1. As this procedure is simply the reverse of
the rule for differentiation you should have no problems in seeing how the answers below
are derived.
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Example 12.15

Find the following integrals: Solutions:
(i) ∫ 30x4dx y = 6x5 + C

(ii) ∫(24 + 7.2x)dx y = 24x + 3.6x2 + C

(iii) ∫ 0.5x−0.5dx y = x0.5 + C

(iv) ∫(48x − 0.4x−1.4)dx y = 24x2 + x−0.4 + C

(v) ∫(65 + 1.5x−2.5 + 1.5x2)dx y = 65x − x−1.5 + 0.5x3 + C

There are rules for integrating more complex functions, based on the chain, product and
quotient rules for differentiation. However, they are awkward to use and will not be much use
to you at present and so they are not covered in this text. The special case when n = −1, i.e.
the integral ∫(1/x)dx, will be dealt with in Chapter 14 when we cover exponential functions.

In earlier chapters we have seen how differentiation of total cost, total revenue and
other functions gives the corresponding marginal function. For example, using the usual
terminology

dTC

dq
= MC

dTR

dq
= MR

Therefore the integration of the marginal function will give the corresponding total function,
apart from the unknown constant.

Total cost functions can usually be split into fixed and variable components. The integral
of marginal cost will give total variable costs plus a constant of integration which should
equal Total Fixed Cost (TFC). For example, if we are given the information that total variable
cost is

TVC = 25q − 6q2 + 0.8q3

and total fixed cost is

TFC = 10

then, by definition,

TC = TVC + TFC

= 10 + 25q − 6q2 + 0.8q3

Thus, marginal cost will be

MC = dTC

dq
= 25 − 12q + 2.4q2

On the other hand, if we were given the information that total fixed cost was 10 and that

MC = 25 − 12q + 2.4q2

then we could find total variable cost by integration as

TVC =
∫

MC dq − TFC = 25q − 6q2 + 0.8q3
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Thus

TC = TFC + TVC = 10 + 25q − 6q2 + 0.8q3

Example 12.16

If a firm spends £650 on fixed costs what is its total cost function if its marginal cost
function is MC = 82 − 16q + 1.8q2?

Solution

We know that for any cost function∫
MC dq = TC

Therefore∫
(82 − 16q + 1.8q2)dq = TC

82q − 8q2 + 0.6q3 + TFC = TC

We are told that TFC = 650 and so

TC = 650 + 82q − 8q2 + 0.6q3

If one is given a firm’s marginal revenue function then one can integrate this to find the total
revenue function. For example, if

MR = 360 − 2.5q

TR =
∫

MR dq = 360q − 1.25q2 + C

When q is zero, TR must also be zero. Thus C = 0 and so∫
MR dq = 360q − 1.25q2 = TR (1)

Example 12.17

If MR = 520 − 3q0.5 what is the corresponding TR function?

Solution

TR =
∫

MR dq =
∫
(520 − 3q0.5)dq = 520q − 2q1.5

Once the TR function corresponding to a given MR function has been derived then one simply
has to divide this through by q to arrive at the demand function.
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Example 12.18

What total revenue will a firm earn if it charges a price of £715 and its marginal revenue
function is MR = 960 − 0.15q2?

Solution

As we have established that the integral of this form of MR function will not have a constant
of integration then

TR =
∫

MR dq =
∫
(960 − 0.15q2)dq = 960q − 0.05q3

In this example we need to use the TR function to find the price. Since TR = pq then
p = TR/q and so

p = 1

q
(960q − 0.05q3) = 960 − 0.05q2

0.05q2 = 960 − p

q2 = 19,200 − 20p

q = (19,200 − 20p)0.5

When p = 715 then

q = (19,200 − 14,300)0.5 = 4,9000.5 = 70

and so total revenue will be

TR = pq = 715(70) = £50,050

If both MC and MR functions are specified then one can use integration to work out what the
actual profit is at any given output, provided that TFC is specified.

Example 12.19

If a firm faces the marginal cost schedule MC = 180 + 0.3q2

and the marginal revenue schedule MR = 540 − 0.6q2

and total fixed costs are £65, what is the maximum profit it can make? (Assume that the
second-order condition for a maximum is met.)
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Solution

Profit is maximized when MC = MR. Therefore,

180 + 0.3q2 = 540 − 0.6q2

0.9q2 = 360

q2 = 400

q = 20

To find the actual profit (π ), we now integrate to get TR and TC and then subtract TC from TR.

TR =
∫

MR dq =
∫
(540 − 0.6q2)dq = 540q − 0.2q3

TC =
∫

MC dq + TFC =
∫
(180 + 0.3q2)dq + 65 = 180q + 0.1q3 + 65

π = TR − TC

= 540q − 0.2q3 − (180q + 0.1q3 + 65)

= 540q − 0.2q3 − 180q − 0.1q3 − 65

= 360q − 0.3q3 − 65

Thus when q = 20 the maximum profit level is

π = 360(20)− 0.3(20)3 − 65 = £4,735

Test Yourself, Exercise 12.4

1. Find the integrals for the following functions:

(a) 25x (b) 5 + 1.2x + 0.15x2

(c) 120x4 − 60x3 (d) 42 − 18x−2

(e) 90x0.5 − 44x−1.2

2. Find the total variable cost functions corresponding to the following marginal cost
functions:

(a) MC = 4 + 0.1q (b) MC = 42 − 18q + 6q2

(c) MC = 35 + 0.9q2 (d) MC = 62 − 16q + 1.5q2

(e) MC = 185 − 24q + 1.2q3

12.7 Definite integrals
The integrals we have looked at so far are called ‘indefinite integrals’. Another form of
integral is the ‘definite integral’. This is specified with two values of the independent variable
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(placed at the top and bottom of the integration sign) and is defined as the value of the integral
at one value minus its value at the other value.

For example, the definite integral
∫ 8

3 6x2dx is the value of this integral when xis 8 minus
its value when x is 3. Thus, given that

∫
6x2dx = 2x3 + C

then

∫ 8

3
6x2dx = [2(8)3 + C] − [2(3)3 + C]

= 1024 + C − 54 − C = 970

In any definite integral the two constants of integration will always cancel out, as in the
example above, and so they can be omitted.

The usual notation used when evaluating a definite integral is to write the relevant values
outside a set of squared brackets which contains the integral of the given function. For example

∫ 8

3
6x2dx = [2x3]8

3 = 2(8)3 − 2(3)3 = 1024 − 54 = 970

The same procedure is used for more complex functions.

Example 12.20

Evaluate the definite integral

∫ 6

5
(6x0.5 − 3x−2 + 85x4)dx

Solution

∫ 6

5
(6x0.5 − 3x−2 + 85x4)dx = [4x1.5 + 3x−1 + 17x5]6

5

= (58.787752 + 0.5 + 132,192)

− (44.72136 + 0.6 + 53,125)

= 132,251.29 − 53,170.32

= 79,080.97

An important feature of definite integrals is that they are equal to the area between a function
and the horizontal axis that is between the two specified values of the independent variable.
For example, assume that you wished to find the area between x = 1 and x = 3 under the
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y = 20 + 4x
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Figure 12.1

function y = 20 + 4x which is illustrated in Figure 12.1, i.e. the area BFDA. This would be
equal to the definite integral

∫ 3

1
(20 + 4x)dx = [20x + 2x2]3

1

= (60 + 18)− (20 + 2)

= 78 − 22 = 56

(Although the spacing on the x and y axes in Figure 12.1 differs, if the same unit of
measurement is used for both x and y then this area is measured in abstract ‘square units’.)

As this example uses a linear function, the answer obtained by integration can be checked
using basic geometry.

Area of rectangle ABCD = 2 × 24 = 48

Area of triangle BFC = 1
2 area EBCF = 1

2 (2 × 8) = 8

Total area BFDA = ABCD + BFC = 56

Definite integrals of marginal cost functions

This concept of the definite integral has several applications in economics. To evaluate TVC
from an MC function for a given value of output one simply substitutes the given quantity
into the TVC function. This is the same as evaluating the definite integral between zero and
the given quantity. For example, assume that you wished to find the value of TVC when
q = 8 and you are given the function MC = 7.5 + 0.3q2. This value would be

∫ 8

0
(7.5 + 0.3q2)dq = [7.5q + 0.1q3]8

0 = 60 + 51.2 = 111.2

Therefore, TVC is equal to the area under the MC schedule between zero and the given
quantity.
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We can also see that the increase in TVC between two quantities will be equal to the area
under the corresponding MC schedule between the given quantities. Assume that marginal
cost is the function MC = 20 + 4x, where x is output and cost is in pounds (same format as
Figure 12.1), and you wish to determine the increase in TVC when output is increased from
1 to 3 units. This will be the area BFDA which we have already found to be 56 ‘square units’,
or £56 when the function represents MC.

This must be so because this area represents the definite integral [20x + 2x2]3
1 which is

the value of TVC when quantity is 3 minus its value when quantity is 1.

The definite integral of a function between two given quantities has been shown to be equal
to the area under the function between the two quantities but above the horizontal axis. If
a function takes negative values, i.e. it goes below the horizontal axis, then areas below the
axis but above the function are treated as ‘negative’ areas.

Definite integrals of marginal revenue functions

This phenomenon is illustrated in Figure 12.2 which shows the linear demand schedule
p = 60−2q and the linear marginal revenue schedule MR = 60−4q. The corresponding total
revenue schedule TR = 60q − 2q2 is shown in the lower part of the diagram. Total revenue
is at its maximum when

MR = 60 − 4q = 0

q = 15

A

G H

B C
0

E

0

q

£

£

30

TR

15 30 q

D

MR

450

60

7.5

Figure 12.2
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Therefore

p = 60 − 2(15) = 30

and so the maximum value of TR is pq = 450.
Given the linear demand and marginal revenue schedules we can see that TR rises from

0 to 450 when q increases from 0 to 15, and then falls back again to zero when q increases
from 15 to 30. These changes in TR correspond to the values of the definite integrals over
these quantity ranges and are represented by the area between the MR schedule and the
quantity axis.

When q is 15, TR will be equal to the area 0AB which is∫ 15

0
MR dq =

∫ 15

0
(60 − 4q)dq = [60q − 2q2]15

0 = 900 − 450 = 450

The change in TR when q increases from 15 to 30 will be the ‘negative’ area BCE which lies
above the MR schedule and below the quantity axis. This will be equal to∫ 30

15
MR dq =

∫ 30

15
(60 − 4q)dq = [60q − 2q2]30

15

= (1,800 − 1,800)− (900 − 450) = −450

This checks with our initial assessment. Total revenue rises by 450 and then falls by the same
amount.

Finally, let us see what happens when we look at the definite integral of the MR function
over the entire output range 0–30. This will be∫ 30

0
MR dq =

∫ 30

0
(60 − 4q)dq = [60q − 2q2]30

0 = 1,800 − 1,800 = 0

The negative area BCE has exactly cancelled out the positive area 0AB, giving zero TR when
q is 30, which is correct.

Integration and consumer surplus

We can also use the demand schedule in Figure 12.2 to determine consumer surplus.This
is defined as the area below a demand schedule but above the ruling price. This difference
between what consumers are willing to pay for a good and what they actually have to pay is
often used as a measure of welfare.

Returning to Figure 12.2, if price were zero then consumer surplus would be the entire area
under the demand schedule, the triangle OAC. Geometrically this area can be calculated as

1
2 (height × base) = 1

2 (60 × 30) = 900

Using the definite integral of the demand function the area will be∫ 30

0
(60 − 2q)dq = [60q − q2]30

0 = 1,800 − 900 = 900

Both answers are, of course, the same.
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If price is 30 then consumer surplus is the area AHG. The corresponding quantity is 15
and so the area AHB0 is equal to the definite integral∫ 15

0
(60 − 2q)dq = [60q − q2]15

0 = 900 − 225 = 675

Thus consumer surplus = AHG = AHB0 − GHB0 = 675 − 450 = 225

The above examples of linear functions were used so that the integration method of finding
areas under functions could be easily compared with the geometric solutions. The same
principles can also be applied to a non-linear function.

Example 12.21

For the non-linear demand function p = 1,800 − 0.6q2 and the corresponding marginal
revenue function MR = 1,800 − 1.8q2, use definite integrals to find:

(i) TR when q is 10;
(ii) the change in TR when q increases from 10 to 20;

(iii) consumer surplus when q is 10.

Solution

(i) TR when q is 10 will be∫ 10

0
MR dq =

∫ 10

0
(1,800 − 1.8q2)dq

= [1,800q − 0.6q3]10
0

= 18,000 − 600 = £17,400

(ii) The change in TR when q increases from 10 to 20 will be∫ 20

10
MR dq =

∫ 20

10
(1,800 − 1.8q2)dq

= [1,800q − 0.6q3]20
10

= (36,000 − 4,800)− (18,000 − 600) = £13,800

(iii) Consumer surplus when q is 10 will be the definite integral of the demand function
minus total revenue actually spent by consumers. This integral will be∫ 10

0
(1,800 − 0.6q2)dq = [1,800q − 0.2q3]10

0 = 18,000 − 200 = £17,800

and

TR = pq = 1,800q − 0.6q3 = 18,000 − 600 = £17,400

Therefore consumer surplus = £17,800 − £17,400 = £400
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Test Yourself, Exercise 12.5

1. Given the non-linear demand schedule p = 600 − 6q0.5 and the corresponding
marginal revenue function MR = 600 − 9q0.5, use definite integrals to find:

(a) total revenue when q is 2,500;
(b) the change in total revenue when q increases from 2,025 to 2,500;
(c) consumer surplus when q is 2,500 and price is £300;
(d) the change in consumer surplus when q increases from 2,025 to 2,500 owing

to a price fall from £330 to £300.

2. If a firm faces the marginal cost function MC = 40 − 18q + 4.5q2, what would
be the increase in total cost if output were increased from 30 to 40 ?

3. Specify your own function representing a marginal concept in economics, find the
indefinite integral and the definite integral over a specified range of values and
interpret the meaning of your answers.
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13 Dynamics and difference equations

Learning objectives

After completing this chapter students should be able to:

• Demonstrate how a time lag can affect the pattern of adjustment to equilibrium in
some basic economic models.

• Construct spreadsheets to plot the time path of dependent variables in economic
models with simple lag structures.

• Set up and solve linear first-order difference equations.
• Apply the difference equation solution method to the cobweb, Keynesian and

Bertrand models involving a single lag.
• Identify the stability conditions in the above models.

13.1 Dynamic economic analysis
In earlier chapters much of the economic analysis used has been comparative statics. This
entails the comparison of different (static) equilibrium situations, with no mention of the
mechanism by which price and quantity adjust to their new equilibrium values. The branch
of economics that looks at how variables adjust between equilibrium values is known as
‘dynamics’, and this chapter gives an introduction to some simple dynamic economic models.

The ways in which markets adjust over time vary tremendously. In commodity exchanges,
prices are changed by the minute and adjustments to new equilibrium prices are almost
instantaneous. In other markets the adjustment process may be a slow trial and error process
over several years, in some cases so slow that price and quantity hardly ever reach their proper
equilibrium values because supply and demand schedules shift before equilibrium has been
reached. There is therefore no one economic model that can explain the dynamic adjustment
process in all markets.

The simple dynamic adjustment models explained here will give you an idea of how
adjustments can take place between equilibria and how mathematics can be used to calculate
the values of variables at different points in time during the adjustment process. They are
only very basic models, however, designed to give you an introduction to this branch of
economics. The mathematics required to analyse more complex dynamic models goes beyond
that covered in this text.
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In this chapter, time is considered as a discrete variable and the dynamic adjustment process
between equilibria is seen as a step-by-step process. (The distinction between discrete and
continuous variables was explained in Section 7.1.) This enables us to calculate different
values of the variables that are adjusting to new equilibrium levels:

(i) using a spreadsheet, and
(ii) using the mathematical concept of ‘difference equations’.

Models that assume a process of continual adjustment are considered in Chapter 14, using
‘differential equations’.

13.2 The cobweb: iterative solutions
In some markets, particularly agricultural markets, supply cannot immediately expand to
meet increased demand. Crops have to be planted and grown and livestock takes time to
raise. Some manufactured products can also take a while to produce when orders suddenly
increase. The cobweb model takes into account this delayed response on the supply side of
a market by assuming that quantity supplied now (Qs

t ) depends on the ruling price in the
previous time period (Pt−1), i.e.

Qs
t = f(Pt−1)

where the subscripts denote the time period. Consumer demand for the same product (Qd
t ),

however, is assumed to depend on the current price, i.e.

Qd
t = f(Pt )

This is a reasonable picture of many agricultural markets. The quantity offered for sale this
year depends on what was planted at the start of the growing season, which in turn depends
on last year’s price. Consumers look at current prices, though, when deciding what to buy.

The cobweb model also assumes that:

• the market is perfectly competitive
• supply and demand are both linear schedules.

Before we go any further, it must be stressed that this model does not explain how price
adjusts in all competitive markets, or even in all perfectly competitive agricultural markets.
It is a simple model with some highly restrictive assumptions that can only explain how
price adjusts in these particular circumstances. Some markets may have a more complex lag
structure, e.g. Qs

t = f(Pt−1, Pt−2, Pt−3), or may not have linear demand and supply. You
should also not forget that intervention in agricultural markets, such as the EU Common
Agricultural Policy, usually means that price is not competitively determined and hence the
cobweb assumptions do not apply. Having said all this, the cobweb model can still give a fair
idea of how price and quantity adjust in many markets with a delayed supply.

The assumptions of the cobweb model mean that the demand and supply functions can be
specified in the format

Qd
t = a + bPt and Qs

t = c + dPt−1

where a, b, c and d are parameters specific to individual markets.
Note that, as demand schedules slope down from left to right, the value of b is expected to

be negative. As supply schedules usually cut the price axis at a positive value (and therefore
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the quantity axis at a negative value if the line were theoretically allowed to continue into
negative quantities), the value of c will also usually be negative. Remember that these
functions have Q as the dependent variable but in supply and demand analysis Q is usually
measured along the horizontal axis.

Although desired quantity demanded only equals desired quantity supplied when a market
is in equilibrium, it is always true that actual quantity bought equals quantity sold. In the
cobweb model it is assumed that in any one time period producers supply a given amountQs

t .
Thus there is effectively a vertical short-run supply schedule at the amount determined by
the previous time period’s price. Price then adjusts so that all the produce supplied is bought
by consumers. This adjustment means that

Qd
t = Qs

t

Therefore

a + bPt = c + dPt−1

bPt = c − a + dPt−1

Pt = c − a

b
+ d

b
Pt−1 (1)

This is what is known as a ‘linear first-order difference equation’. A difference equation
expresses the value of a variable in one time period as a function of its value in earlier
periods; in this case

Pt = f(Pt−1)

It is clearly a linear relationship as the terms (c − a)/b and d/b will each take a single
numerical value in an actual example. It is ‘first order’ because only a single lag on the
previous time period is built into the model and the coefficient of Pt−1 is a simple constant.
In the next section we will see how this difference equation can be used to derive an expression
for Pt in terms of t .

Before doing this, let us first get a picture of how the cobweb price adjustment mechanism
operates using a numerical example.

Example 13.1

In an agricultural market where the assumptions of the cobweb model apply, the demand and
supply schedules are

Qd
t = 400 − 20Pt and Qs

t = −50 + 10Pt−1

A long-run equilibrium has been established for several years but then one year there is an
unexpectedly good crop and output rises to 160. Explain how price will behave over the next
few years following this one-off ‘shock’ to the market.

(Note: In this example and in most other examples in this chapter, no specific units of
measurement for P or Q are given in order to keep the analysis as simple as possible. In
actual applications, of course, price will usually be in £ and quantity in physical units, e.g.
thousands of tonnes.)
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Solution

In long-run equilibrium, price and quantity will remain unchanged each time period. This
means that:

the long-run equilibrium price P ∗ = Pt = Pt−1

and the long-run equilibrium quantity Q∗ = Qd
t = Qs

t

Therefore, when the market is in equilibrium

Q∗ = 400 − 20P ∗ and Q∗ = −50 + 10P ∗

Equating to solve for P ∗ and Q∗ gives

400 − 20P ∗ = −50 + 10P ∗

450 = 30P ∗

15 = P ∗

Q∗ = 400 − 20P ∗ = 400 − 300 = 100

These values correspond to the point where the supply and demand schedules intersect, as
illustrated in Figure 13.1.

If an unexpectedly good crop causes an amount of 160 to be supplied onto the market one
year, then this means that the short-run supply schedule effectively becomes the vertical line
S0 in Figure 13.1. To sell this amount the price has to be reduced to P0, corresponding to the
point A where S0 cuts the demand schedule.

Producers will then plan production for the next time period on the assumption thatP0 is the
ruling price. The amount supplied will therefore beQ1, corresponding to point B. However,
in the next time period when this reduced supply quantityQ1 is put onto the market it will sell

Supply

Demand

0

B

C

F

Q160100Q1

P0
A

P

5

15

20

P1

S0

E

D

Figure 13.1
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for price P1, corresponding to point C. Further adjustments in quantity and price are shown
by points D,E,F , etc. These trace out a cobweb pattern (hence the ‘cobweb’ name) which
converges on the long-run equilibrium where the supply and demand schedules intersect.

In some markets, price will not always return towards its long-run equilibrium level, as we
shall see later when some other examples are considered. However, first let us concentrate
on finding the actual pattern of price adjustment in this particular example.

Approximate values for the first few prices could be read off the graph in Figure 13.1, but
as price converges towards the centre of the cobweb it gets difficult to read values accurately.
We shall therefore calculate the first few values of P manually, so that you can become
familiar with the mechanics of the cobweb model, and then set up a spreadsheet that can
rapidly calculate patterns of price adjustment over a much longer period.

Quantity supplied in each time period is calculated by simply entering the previously ruling
price into the market’s supply function

Qs
t = −50 + 10Pt−1

but how is this price calculated? There are two ways:

(a) from first principles, using the given supply and demand schedules, and
(b) using a difference equation, in the format (1) derived earlier.

(a) The demand function

Qd
t = 400 − 20Pt

can be rearranged to give the inverse demand function

Pt = 20 − 0.05Qd
t

The model assumes that a fixed quantity arrives on the market each time period and then price
adjusts untilQd

t = Qs
t . Thus, Pt can be found by inserting the current quantity supplied, Qs

t ,
into the function for Pt . Assuming that the initial disturbance to the system whenQs rises to
160 occurs in time period 0, the values of P and Q over the next three time periods can be
calculated as follows:

Qs
0 = 160 (initial given value, inserted into inverse demand function)

P0 = 20 − 0.05Qs
0 = 20 − 0.05(160) = 20 − 8 = 12

This price in period 0 then determines quantity supplied in period 1, which is

Qs
1 = −50 + 10P0 = −50 + 10(12) = −50 + 120 = 70

This quantity then determines the market-clearing price, which is

P1 = 20 − 0.05Qs
1 = 20 − 0.05(70) = 20 − 3.5 = 16.5

The same adjustment process then continues for future time periods, giving

Qs
2 = −50 + 10P1 = −50 + 10(16.5) = −50 + 165 = 115

P2 = 20 − 0.05Qs
2 = 20 − 0.05(115) = 20 − 5.75 = 14.25
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Qs
3 = −50 + 10P2 = −50 + 10(14.25) = −50 + 142.5 = 92.5

P3 = 20 − 0.05Qs
3 = 20 − 0.05(92.5) = 20 − 4.625 = 15.375

The pattern of price adjustment is therefore 12, 16.5, 14.25, 15.375, etc., corresponding
to the cobweb graph in Figure 13.1. Price initially falls below its long-run equilibrium value
of 15 and then converges back towards this equilibrium, alternating above and below it but
with the magnitude of the difference becoming smaller each period.

(b) The same pattern of price adjustment can be obtained by using the difference equation

Pt = c − a

b
+ d

b
Pt−1 (1)

and substituting in the given values of a, b, c and d to get

Pt = (−50)− 400

−20
+ 10

−20
Pt−1

Pt = 22.5 − 0.5Pt−1 (2)

The original price P0 still has to be derived by inserting the shock quantity 160 into the
demand function, as already explained, which gives

P0 = 20 − 0.05(160) = 12

Then subsequent prices can be determined using the difference equation (2), giving

P1 = 22.5 − 0.5P0 = 22.5 − 0.5(12) = 16.5

P2 = 22.5 − 0.5P1 = 22.5 − 0.5(16.5) = 14.25

P3 = 22.5 − 0.5P2 = 22.5 − 0.5(14.25) = 15.375 etc.

These prices are the same as those calculated by method (a), as expected.

Table 13.1 

A B C D E F G H 
1 Ex. COBWEB MODEL 
2 13.1  Qd=a+bPt  Qs=c+dPt 
3 
4 Parameter a = 400 c = -50 
5 values b = -20 d = 10 
6 Initial shock Quantity = 160 
7  Equilibrium Price = 15 
8 Time Quantity Price Change  Equilibrium Quantity = 100 
9 t Qt Pt in Pt 

10 0 160 12.00 Stability => STABLE 
11 1 70 16.50 4.50 
12 2 115 14.25 -2.25 
13 3 92.5 15.38 1.13 
14 4 103.75 14.81 -0.56 
15 5 98.125 15.09 0.28 
16 6 100.9375 14.95 -0.14 
17 7 99.53125 15.02 0.07 
18 8 100.23438 14.99 -0.04 
19 9 99.882813 15.01 0.02 
20 10 100.05859 15.00 -0.01 
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Table 13.2

CELL Enter  Explanation 
As in

Table 13.1
Enter all  labels and 
column headings
shown in Table 13.1 

Note: do not enter for the word “STABLE” in
cell G10. The stability condition will be deduced
by the spreadsheet. 

D4 400
D5 -20 
F4 -50 
F5 10

These are the parameter values for this example.

D6 160 This is initial “shock” quantity in time period 0.
A10 to

A20 
Enter numbers 
from 0 to 10

These are the time periods.

B10 =D6 Quantity in time period 0 is initial “shock” value.
C10 =(B10-D$4)/D$5 Calculates P0, the initial market clearing price.

Given that Qd
t = a + bPt then Pt =(Qd

t –a )/ b.
Note the $ on cells D4 and D5. Format to 2 dp.

C11 to
C20 

Copy formula from
C10 down column. 

Will calculate price in each time period (when
all quantities in column B are calculated) 

B11 =F$4+F$5*C10 Calculates quantity in year 1 based on price in
previous time period according to supply 
function Qs

t = c + dPt – 1.       Format to 2 dp.
D11 =C11-C10 Calculates change in price between time periods. 

B12 to
B20 

Copy formula from
B11 down column. 

Calculates quantity supplied in each time period.

D12 to
D20 

Copy formula from
D12 down column. 

Calculates price change since previous time
period

H7 =(F4-D4)/(D5-F5) Calculates equilibrium price using the formula 
P* = (c – a)/ (b – d) 

H8 =F4+F5*H7 Calculates equilibrium quantity Q* = a + bP*
G10 

Enter the formula 
below 

This uses the Excel “IF” logic function to
determine whether d /(–b) is less than 1, greater
than 1, or equals 1. This stability criterion is
explained later.

=IF(-F5/D5<1,"STABLE",IF(-F5/D5>1,"UNSTABLE","OSCILLATING")) 

A spreadsheet can be set up to calculate price over a large number of time periods. Instruc-
tions are given in Table 13.2 for constructing the Excel spreadsheet shown in Table 13.1. This
calculates price for each period from first principles, but you can also try to construct your
own spreadsheet based on the difference equation approach.

This spreadsheet shows a series of prices and quantities converging on the equilibrium
values of 15 for price and 100 for quantity. The first few values can be checked against the
manually calculated values and are, as expected, the same. To bring home the point that each
price adjustment is smaller than the previous one, the change in price from the previous time
period is also calculated. (The price columns are formatted to 2 decimal places so price is
calculated to the nearest penny.)

Although the stability of this example is obvious from the way that price converges on
its equilibrium value of 15, a stability check is entered which may be useful when this
spreadsheet is used for other examples. Assuming that b is always negative and d is positive,
the market will be stable if d/− b < 1 and unstable (i.e. price will not converge back to its
equilibrium) if d/− b > 1. (The reasons for this rule are explained later in Section 13.3.)
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When you have constructed this spreadsheet yourself, save it so that it can be used for
other examples.

To understand why price may not always return to its long-run equilibrium level in markets
where the cobweb model applies, consider Example 13.2.

Example 13.2

In a market where the assumptions of the cobweb model apply, the demand and supply
functions are

Qd
t = 120 − 4Pt and Qs

t = −80 + 16Pt−1

If in one time period the long-run equilibrium is disturbed by output unexpectedly rising to
a level of 90, explain how price will adjust over the next few time periods.

Solution

The long-run equilibrium price can be determined from the formula

P ∗ = c − a

b − d
= (−80)− 120

−4 − 16
= −200

−20
= 10

Thus, the long-run equilibrium quantity is

Q∗ = 120 − 4P ∗ = 120 − 4(10) = 80

You could use the spreadsheet developed for Example 13.1 above to trace out the subsequent
pattern of price adjustment but if a few values are calculated manually it can be seen that
calculations after period 2 are irrelevant.

Using the standard cobweb model difference equation

Pt = c − a

b
+ d

b
Pt−1 (1)

and substituting the known values, we get

Pt = (−80)− 120

−4
+ 16

−4
Pt−1 = 50 − 4Pt−1 (2)

The initial price P0 can be found by inserting the shock quantity of 90 into the demand
function. Thus

Qs
0 = 90 = 120 − 4P0

4P0 = 30

P0 = 7.5

Putting this value into the difference equation (2) above we get

P1 = 50 − 4P0 = 50 − 4(7.5) = 20

P2 = 50 − 4P1 = 50 − 4(20) = −30
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Figure 13.2

There is not much point in going any further with the calculations. Assuming that producers
will not pay consumers to take goods off their hands, negative prices cannot exist. What has
happened is that price has followed the path ABCD traced out in Figure 13.2.

The initial quantity 90 put onto the market causes price to drop to 7.5. Suppliers then
reduce supply for the next period to

Qs
1 = −80 + 16P0 = −80 + 16(7.5) = 40

This sells for price P1 = 20 and so supply for the following period is increased to

Qs
2 = −80 + 16P1 = −80 + 16(20) = 240

Consumers would only consume 120 even if price were zero (where the demand schedule
hits the axis) and so, when this quantity of 240 is put onto the market, price will collapse to
zero and there will still be unsold produce. Producers will not wish to supply anything for the
next time period if they expect a price of zero and so no further production will take place.

This is clearly an unstable market, but why is there a difference between this market and
the stable market considered in Example 13.1? It depends on the slopes of the supply and
demand schedules. If the absolute value of the slope of the demand schedule is less than the
absolute value of the slope of the supply schedule then the market is stable, and vice versa.
These slopes are inversely related to parameters b and d, since the vertical axis measures p
rather than q. Thus the stability conditions are

Stable: |d/b| < 1 Unstable: |d/b| > 1

A formal proof of these conditions, based on the difference equation solution method, plus
an explanation of what happens when |d/b| = 1, is given in Section 13.3.
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Although in theoretical models of unstable markets (such as Example 13.2) price ‘explodes’
and the market collapses, this may not happen in reality if:

• producers learn from experience and do not simply base production plans for the next
period on the current price,

• supply and demand schedules are not linear along their entire length,
• government intervention takes place to support production.

Another example of an exploding market is Example 13.3 below, which is solved using the
spreadsheet developed for Example 13.1.

Example 13.3

In an agricultural market where the cobweb assumptions hold and

Qd
t = 360 − 8Pt and Qs

t = −120 + 12Pt−1

a long-run equilibrium is disturbed by an unexpectedly good crop of 175 units. Use a
spreadsheet to trace out the subsequent path of price adjustment.

Solution

When the given parameters and shock quantity are entered, your spreadsheet should look
like Table 13.3. This is clearly unstable as both the automatic stability check and the pattern

Table 13.3 

A B C D E F G H 
1 Ex. COBWEB MODEL 
2 13.3 Qd=a+bPt  Qs=c+dPt 
3 
4 Parameter a = 360 c = -120 
5 Values b = -8 d = 12 
6 Initial shock quantity = 175 
7  Equilibrium Price = 24 
8 Time Quantity Price Change  Equilibrium Quantity = 168 
9 t Qt Pt in Pt 

10 0 175 23.13 Stability => UNSTABLE 
11 1 157.5 25.31 2.19 
12 2 183.75 22.03 -3.28 
13 3 144.375 26.95 4.92 
14 4 203.4375 19.57 -7.38 
15 5 114.84375 30.64 11.07 
16 6 247.73438 14.03 -16.61 
17 7 48.398438 38.95 24.92 
18 8 347.40234 1.57 -37.38 
19 9 -101.10352 57.64 56.06 
20 10 571.65527 -26.46 -84.09 
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of price adjustments show. According to these figures, the market will continue to operate
until the eighth time period following the initial shock. In period 9 nothing will be produced
(mathematically the model gives a negative quantity) and the market collapses.

Test Yourself, Exercise 13.1

(In all these questions, assume that the assumptions of the cobweb model apply to
each market.)

1. The agricultural market whose demand and supply schedules are

Qd
t = 240 − 20Pt and Qs

t = −33 1
3 + 16 2

3Pt−1

is initially in long-run equilibrium. Quantity then falls to 50% of its previous level
as a result of an unexpectedly poor harvest. How many time periods will it take
for price to return to within 1% of its long-run equilibrium level?

2. In an unstable market, the demand and supply schedules are

Qd
t = 200 − 12.5Pt and Qs

t = −60 + 20Pt−1

A shock reduction of quantity to 80 throws the system out of equilibrium. How
long will it take for the market to collapse completely?

3. By tracing out the pattern of price adjustment after an initial shock that disturbs the
previously ruling long-run equilibrium, say whether or not the following markets
are stable.

(a) Qd
t = 150 − 1.5Pt and Qs

t = −30 + 3Pt−1

(b) Qd
t = 180 − 125Pt and Qs

t = −20 + Pt−1

13.3 The cobweb: difference equation solutions
Solving the cobweb difference equation

Pt = c − a

b
+ d

b
Pt−1 (1)

means putting it into the format

Pt = f(t)

so that the value of Pt at any given time t can be immediately calculated without the need to
calculate all the preceding values of Pt .

There are two parts to the solution of this cobweb difference equation:

(i) the new long-run equilibrium price, and
(ii) the complementary function that tells us how much price diverges from this equilibrium

level at different points in time.
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A similar format applies to the solution of any linear first-order difference equation. The
equilibrium solution (i) is also known as the particular solution (PS). In general, the par-
ticular solution is a constant value about which adjustments in the variable in question take
place over time.

The complementary function (CF) tells us how the variable in question, i.e. price in the
cobweb model, varies from the equilibrium solution as time changes.

These two elements together give what is called the general solution (GS) to a difference
equation, which is the full solution. Thus we can write

GS = PS + CF

Finding the particular solution is straightforward. In the long run the equilibrium price P ∗
holds in each time period and so

P ∗ = Pt = Pt−1

Substituting P ∗ into the difference equation

Pt = c − a

b
+ d

b
Pt−1 (1)

we get

P ∗ = c − a

b
+ d

b
P ∗

bP ∗ = c − a + dP ∗

a − c = (d − b)P ∗

a − c

d − b
= P ∗ (2)

This, of course, is the same equilibrium value for price that would be derived in the single-
time-period linear supply and demand model

Qd = a + bP and Qs = c + dP

To find the complementary function, we return to the difference equation (1) but ignore the
first term, which is a constant that does not vary over time, i.e. we just consider the equation

Pt = d

b
Pt−1 (3)

This may seem rather a strange procedure, but it works, as we shall see later when some
numerical examples are tackled.

We then assume that Pt depends on t according to the function

Pt = Akt (4)

where A and k are some (as yet) unknown constants. (Note that in this formula, t denotes
the power to which k is raised and is not just a time superscript.) This function applies to all
values of t , which means that

Pt−1 = Akt−1 (5)
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Substituting the formulations (4) and (5) for Pt and Pt−1 back into equation (3) above we get

Akt = d

b
Akt−1

Dividing through by Akt−1 gives

k = d

b

Putting this result into (4) gives the complementary function as

Pt = A

(
d

b

)t
(6)

The value of A cannot be ascertained unless the actual value of Pt is known for a specific
value of t . (See the following numerical examples.)

The general solution to the cobweb difference equation therefore becomes

Pt = particular solution + complementary function = (2) plus (6), giving

Pt = a − c

d − b
+ A

(
d

b

)t

Stability

From this solution we can see that the stability of the model depends on the value of d/b. If
A is a non-zero constant, then there are three possibilities

(i) If

∣∣∣∣db
∣∣∣∣ < 1 then

(
d

b

)t
→ 0 as t → ∞

This occurs in a stable market. Whatever value the constant A takes the value of the com-
plementary function gets smaller over time. Therefore the divergence of price from its
equilibrium also approaches zero. (Note that it is the absolute value of |d/b| that we consider
because b will usually be a negative number.)

(ii) If

∣∣∣∣db
∣∣∣∣ > 1 then

∣∣∣∣
(
d

b

)t ∣∣∣∣ → ∞ as t → ∞

This occurs in an unstable market. After an initial disturbance, as t increases, price will
diverge from its equilibrium level by greater and greater amounts.

(iii) If

∣∣∣∣db
∣∣∣∣ = 1 then

∣∣∣∣
(
d

b

)t ∣∣∣∣ = 1 as t → ∞

Price will neither return to its equilibrium nor ‘explode’. Normally, b < 0 and d > 0, so
d/b < 0, which means that d/b = −1. Therefore, (d/b)t will oscillate between +1 and
−1 depending on whether or not t is an even or odd number. Price will continually fluctuate
between two levels (see Example 13.6 below).

We can now use this method of obtaining difference equation solutions to answer some
specific numerical cobweb model problems.
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Example 13.4

Use the cobweb difference equation solution to answer the question in Example 13.1 above,
i.e. what happens in the market where

Qd
t = 400 − 20Pt and Qs

t = −50 + 10Pt−1

if there is a sudden one-off change in Qs
t to 160?

Solution

Substituting the values for this market a = 400, b = −20, c = −50 and d = 10 into the
general cobweb difference equation solution

Pt = a − c

d − b
+ A

(
d

b

)t
(1)

gives

Pt = 400 − (−50)

10 − (−20)
+ A

(
10

−20

)t

= 450

30
+ A(−0.5)t

= 15 + A(−0.5)t (2)

To find the value of A we then substitute in the known value of P0.
The question tells us that the initial ‘shock’ output levelQ0 is 160 and so, as price adjusts

until all output is sold, P0 can be calculated by substituting this quantity into the demand
schedule. Thus

Qd
0 = 160 = 400 − 20P0

20P0 = 240

P0 = 12

Substituting this value into the general difference equation solution (2) above gives, for time
period 0,

12 = 15 + A(−0.5)0

12 = 15 + A, since (−0.5)0 = 1

A = −3

Thus the complete solution to the difference equation in this example is

Pt = 15 − 3(−0.5)t

This is usually called the definite solution or the specific solution because it relates to a
specific initial value.
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We can use this solution to calculate the first few values of Pt and compare with those we
obtained when answering Example 13.1.

P1 = 15 − 3(−0.5)1 = 15 + 1.5 = 16.5

P2 = 15 − 3(−0.5)2 = 15 − 3(0.25) = 14.25

P3 = 15 − 3(−0.5)3 = 15 − 3(−0.125) = 15.375

As expected, these values are identical to those calculated by the iterative method.

In this particular example, price converges fairly quickly towards its long-run equilibrium
level of 15. By time period 9, price will be

P9 = 15 − 3(−0.5)9

= 15 − 3(−0.0019531)

= 15 + 0.0058594 = 15.01 (to 2 dp)

This is clearly a stable solution. In this difference equation solution

Pt = 15 − 3(−0.5)t

and so we can see that, as t gets larger, the value of (−0.5)t approaches zero. This is because

|d/b| = | − 0.5| = 0.5 < 1

and so the stability condition outlined above is satisfied.
Note that, because −0.5 < 0, the direction of the divergence from the equilibrium value

alternates between time periods. This is because for any negative quantity −x, it will always
be true that

x < 0, (−x)2 > 0, (−x)3 < 0, (−x)4 > 0, etc.

Thus for odd-numbered time periods (in this example) price will be above its equilibrium
value, and for even-numbered time periods price will be below its equilibrium value.

Although in this example price converges towards its long-run equilibrium value, it would
never actually reach it if price and quantity were divisible into infinitesimally small units.
Theoretically, this is a bit like the case of the ‘hopping frog’ back in Chapter 7 when infinite
geometric series were examined. The distance from the equilibrium gets smaller and smaller
each time period but it never actually reaches zero. For practical purposes, a reasonable cut-
off point can be decided upon to define when a full return to equilibrium has been reached. In
this numerical example the difference from the equilibrium is less than 0.01 by time period
9, which is for all intents and purposes a full return to equilibrium if P is measured in £.

The above example explained the method of solution of difference equations applied to
a simple problem where the answers could be checked against iterative solutions. In other
cases, one may need to calculate values for more distant time periods, which are more
difficult to calculate manually. The method of solution of difference equations will also
be useful for those of you who go on to study intermediate economic theory where some
models, particularly in macroeconomics, are based on difference equations in an algebraic
format which cannot be solved using a spreadsheet.
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We shall now consider another cobweb example which is rather different from Example
13.4 in that

(i) price does not return towards its equilibrium level and
(ii) the process of adjustment is more gradual over time.

Example 13.5

In a market where the assumptions of the cobweb model hold

Qd
t = 200 − 8Pt and Qs

t = −43 + 8.2Pt−1

The long-run equilibrium is disturbed when quantity suddenly changes to 90. What happens
to price in the following time periods?

Solution

In long-run equilibrium

Q∗ = Qd
t = Qs

t

and

P ∗ = Pt = Pt−1

Substituting these equilibrium values and equating demand and supply we can find the new
equilibrium price. Thus

200 − 8P ∗ = Q∗ = −43 + 8.2P ∗

243 = 16.2P ∗

15 = P ∗

This will be an unstable equilibrium as∣∣∣∣db
∣∣∣∣ =

∣∣∣∣8.2

−8

∣∣∣∣ = 1.025 > 1

The difference equation that describes the relationship between price in one period and the
next will take the usual cobweb model format

Pt = c − a

b
+ d

b
Pt−1 (1)

where a = 200, b = −8, c = −43 and d = 8.2, giving

Pt = −43 − 200

−8
+ 8.2

−8
Pt−1

= 30.375 − 1.025Pt−1
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Using the formula derived above, the solution to this difference equation will therefore be

Pt = a − c

d − b
+ A

(
d

b

)t

= 200 − (−43)

8.2 − (−8)
+ A

(
8.2

−8

)t

= 243

16.2
+ A(−1.025)t

= 15 + A(−1.025)t (2)

The first part of this solution is of course the equilibrium value of price which has already
been calculated above. To derive the value of A, we need to find price in period 0. The
quantity supplied is 90 in period 0 and so, to find the price that this quantity will sell for, this
value is substituted into the demand function. Thus

Qd
0 = 90 = 200 − 8P0

8P0 = 110

P0 = 13.75

Substituting this value into the general solution (2) we get

P0 = 13.75 = 15 + A(−1.025)0

13.75 = 15 + A

−1.25 = A

Note that, as in Example 13.1 above, the value of parameter A is the difference between the
equilibrium value of price and the value it initially takes when quantity is disturbed from its
equilibrium level, i.e.

A = P0 − P ∗ = 13.75 − 15 = −1.25

Putting this value of A into the general solution (2), the specific solution to the difference
equation in this example now becomes

Pt = 15 − 1.25(−1.025)t

Using this formula to calculate the first few values of Pt gives

P0 = 15 − 1.25(1.025)0 = 13.75

P1 = 15 + 1.25(1.025)1 = 16.28

P2 = 15 − 1.25(1.025)2 = 13.69

P3 = 15 + 1.25(1.025)3 = 16.35

We can see that, although price is gradually moving away from its long-run equilibrium value
of 15, it is a very slow process. By period 10, price is still above 13.00, as

P10 = 15 − 1.25(1.025)10 = 13.40
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and it takes until time period 102 before price becomes negative, as the figures below show:

P100 = 15 − 1.25(1.025)100 = 0.23

P101 = 15 + 1.25(1.025)101 = 30.14

P102 = 15 − 1.25(1.025)102 = −0.51

This example is not a particularly realistic picture of an agricultural market as many
changes in supply and demand conditions would take place over a 100-year time period.
(Also, quantity becomes negative in time period 85 when the market would collapse – check
this yourself using a spreadsheet.) However, it illustrates the usefulness of the difference
equation solution in immediately computing values for distant time periods without first
needing to compute all the preceding values.

The following example illustrates what happens when a market is neither stable nor
unstable.

Example 13.6

The cobweb model assumptions hold in a market where

Qd
t = 160 − 2Pt and Qs

t = −20 + 2Pt−1

If the previously ruling long-run equilibrium is disturbed by an unexpectedly low output of
50 in one time period, what will happen to price in the following time periods?

Solution

Substituting the values a = 160, b = −2, c = −20 and d = 2 for this market into the
cobweb difference equation general solution

Pt = a − c

d − b
+ A

(
d

b

)t
(1)

gives

Pt = 160 − (−20)

2 − (−2)
+ A

(
2

−2

)t

= 180

4
+ A(−1)t

= 45 + A(−1)t (2)

To determine the value of A, first substitute the given value of 50 for Q0 into the demand
function so that

160 − 2P0 = 50 = Q0

110 = 2P0

55 = P0
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Now substitute this value for P0 into the general solution (2) above, so that

P0 = 55 = 45 + A(−1)0

55 = 45 + A

10 = A

The specific solution to the difference equation for this example is therefore

Pt = 45 + 10(−1)t

Using this formula to calculate the first few values of Pt we see that

P0 = 45 + 10(−1)0 = 45 + 10 = 55

P1 = 45 + 10(−1)1 = 45 − 10 = 35

P2 = 45 + 10(−1)2 = 45 + 10 = 55

P3 = 45 + 10(−1)3 = 45 − 10 = 35

P4 = 45 + 10(−1)4 = 45 + 10 = 55 etc.

Price therefore continually fluctuates between 35 and 55.

This is the third possibility in the stability conditions examined earlier. In this example

∣∣∣∣db
∣∣∣∣ =

∣∣∣∣ 2

−2

∣∣∣∣ = | − 1| = 1

Therefore, as t → ∞, Pt neither converges on its equilibrium level nor explodes until the
market collapses. This fluctuation between two price levels from year to year is sometimes
observed in certain agricultural markets.

Test Yourself, Exercise 13.2

(Assume that the usual cobweb assumptions apply in these questions.)

1. In a market where

Qd
t = 160 − 20Pt and Qs

t = −80 + 40Pt−1

quantity unexpectedly drops from its equilibrium value to 75. Derive the difference
equation which will calculate price in the time periods following this event.

2. If Qd
t = 180 − 0.9Pt and Qs

t = −24 + 0.8Pt−1 say whether or not the long-run
equilibrium price is stable and then use the difference equation method to calculate
price in the thirtieth time period after a sudden one-off increase in quantity to 117.
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3. Given the demand and supply schedules

Qd
t = 3450 − 6Pt and Qs

t = −729 + 4.5Pt−1

use difference equations to predict what price will be in the tenth time period after
an unexpected drop in quantity to 354, assuming that the market was previously
in long-run equilibrium.

13.4 The lagged Keynesian macroeconomic model
In the basic Keynesian model of the determination of national income, if foreign trade and
government taxation and expenditure are excluded, the model reduces to the accounting
identity,

Y = C + I (1)

and the consumption function

C = a + bY (2)

To determine the equilibrium level of national income Y ∗ we substitute (2) into (1), giving

Y ∗ = a + bY ∗ + I

Y ∗(1 − b) = a + I

Y ∗ = a + I

1 − b

This can be evaluated for given values of parameters a and b and exogenously determined
investment I .

If there is a disturbance from this equilibrium, e.g. exogenous investment I alters, then the
adjustment to a new equilibrium will not be instantaneous. This is the basis of the well-known
multiplier effect. An initial injection of expenditure will become income for another sector
of the economy. A proportion of this will be passed on as a further round of expenditure, and
so on until the ‘ripple effect’ dies away.

Because consumer expenditure may not adjust instantaneously to new levels of income,
a lagged effect may be introduced. If it is assumed that consumers’ expenditure in one
time period depends on the income that they received in the previous time period, then the
consumption function becomes

Ct = a + bYt−1 (3)

where the subscripts denote the time period.
National income, however, will still be determined by the sum of all expenditure within

the current time period. Therefore the accounting identity (1), when time subscripts are
introduced, can be written as

Yt = Ct + It (4)

© 1993, 2003 Mike Rosser



From (3) and (4) we can derive a difference equation that explains how Yt depends on Yt−1.
Substituting (3) into (4) we get

Yt = (a + bYt−1)+ It

Yt = bYt−1 + a + It (5)

This difference equation (5) can be solved using the method explained in Section 13.3 above.
However, let us first illustrate how this lagged effect works using a numerical example.

Example 13.7

In a basic Keynesian macroeconomic model it is assumed that initially

Yt = Ct + It

where It = 134 is exogenously determined, and

Ct = 40 + 0.6Yt−1

The level of investment It then falls to 110 and remains at this level each time period. Trace
out the pattern of adjustment to the new equilibrium value of Y , assuming that the model was
initially in equilibrium.

Solution

Although this pattern of adjustment can best be viewed using a spreadsheet, let us first
work out the first few steps of the process manually and relate them to the familiar 45◦-line
income-expenditure graph (illustrated in Figure 13.3) often used to show how Y is determined
in introductory economics texts.

If the system is initially in equilibrium then income in one time period is equal to
expenditure in the previous time period, and income is the same each time period. Thus

Yt = Yt−1 = Y ∗

where Y ∗ is the equilibrium level of Y . Therefore, when the original value of It of 134 is
inserted into the accounting identity the model becomes

Y ∗ = Ct + 134 (1)

Ct = 40 + 0.6Y ∗ (2)

By substitution of (2) into (1)

Y ∗ = (40 + 0.6Y ∗)+ 134

Y ∗(1 − 0.6) = 40 + 134

0.4Y ∗ = 174

Y ∗ = 435
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Figure 13.3

This is the initial equilibrium value of Y before the change in I .
Assume time period 0 is the one in which the drop in I to 110 occurs. Consumption in

time period 0 will be based on income earned the previous time period, i.e. when Y was still
at the old equilibrium level of 435. Thus

C0 = 40 + 0.6(435) = 40 + 261 = 301

Therefore

Y0 = C0 + I0 = 301 + 110 = 411

In the next time period, the lagged consumption function means that C1 will be based
on Y0. Thus

Y1 = C1 + 110

= (40 + 0.6Y0)+ 110

= 40 + 0.6(411)+ 110

= 40 + 246.6 + 110 = 396.6

The value of Y for other time periods can be calculated in a similar fashion:

Y2 = C2 + I2

= (40 + 0.6Y1)+ 110

= 40 + 0.6(396.6)+ 110

= 387.96
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Y3 = C3 + I3

= (40 + 0.6Y2)+ 110

= 40 + 0.6(387.96)+ 110

= 382.776

and so on. It can be seen that in each time period Y decreases by smaller and smaller amounts
as it readjusts towards the new equilibrium value. This new equilibrium value can easily be
calculated using the same method as that used above to work out the initial equilibrium.

When I = 110 and Yt = Yt−1 = Y ∗ then the model becomes

Y ∗ = Ct + I = Ct + 110

Ct = 40 + 0.6Y ∗

By substitution

Y ∗ = (40 + 0.6Y )+ 110

(1 − 0.6)Y ∗ = 150

Y ∗ = 150

0.4
= 375

This path of adjustment is illustrated in Figure 13.3 by the zigzag line with arrows which
joins the old equilibrium at A with the new equilibrium at B. (Note that this diagram is not
to scale and just shows the direction and relative magnitude of the steps in the adjustment
process.)

Unlike the cobweb model described earlier, the adjustment in this Keynesian model is
always in the same direction, instead of alternating on either side of the final equilibrium.
Successive values of Y just approach the equilibrium by smaller and smaller increments
because the ratio in the complementary function to the difference equation (explained below)
is not negative as it was in the cobweb model. If the initial equilibrium had been below the
new equilibrium then, of course, Y would have approached its new equilibrium from below
instead of from above.

Further steps in the adjustment of Y in this model are shown in the Excel spreadsheet in
Table 13.4, which is constructed as explained in Table 13.5. This clearly shows Y closing in
on its new equilibrium as time increases.

Difference equation solution

Let us now return to the problem of how to solve the difference equation

Yt = bYt−1 + a + It (1)

The general solution can then be applied to numerical problems, such as Example 13.7 above.
By ‘solving’ this difference equation we mean putting it in the format

Yt = f(t)

so that the value of Yt can be determined for any given value of t .
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Table 13.4

A B C D E 
1 Ex. LAGGED KEYNESIAN MODEL 
2 13.7 where Yt = Ct + It 
3  Ct = a + bYt-1 
4 Parameters 
5 a = 40 Old I value = 134 
6 b = 0.6 New I value = 110 
7 Old Equil Y = 435 
8 Time New Equil Y = 375 
9 t C Y 
10 0 301.00 411.00 
11 1 286.60 396.60 
12 2 277.96 387.96 
13 3 272.78 382.78 
14 4 269.67 379.67 
15 5 267.80 377.80 
16 6 266.68 376.68 
17 7 266.01 376.01 
18 8 265.60 375.60 
19 9 265.36 375.36 
20 10 265.22 375.22 
21 11 265.13 375.13 
22 12 265.08 375.08 
23 13 265.05 375.05 
24 14 265.03 375.03 
25 15 265.02 375.02 
26 16 265.01 375.01 
27 17 265.01 375.01 
28 18 265.00 375.00 

The basic method is the same as that explained earlier, i.e. the solution is split into two
components: the equilibrium or particular solution and the complementary function. We first
need to find the particular solution, which will be the new equilibrium value of Y ∗. When
this is equilibrium achieved

Yt = Yt−1 = Y ∗

In equilibrium, the single lag Keynesian model

Ct = a + bYt−1 (2)

and

Yt = Ct + It (3)

can therefore be written as

Ct = a + bY ∗

Y ∗ = Ct + It
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Table 13.5

CELL Enter  Explanation 
As in

Table 13.4 
Enter all labels and 
column headings 

B5 40
B6 0.6 

These are given parameter values for 
consumption function in this example.

E5 134 Original given investment level.
E6          110 New investment level.
D6 160 This is initial “shock” quantity in time period 0.

A10 to
A28 

Enter numbers 
from 0 to 18 

These are the time periods used. 

E7 =(B5+E5)/(1-B6) Calculates initial equilibrium value of Y using 
formula Y = (a + I)/(1 - b).

E8 =(B5+E6)/(1-B6) Same formula calculates new equilibrium
value of Y, using new value of I in cell E6. 

B10 =B5+B6*E7 Calculates consumption in time period 0 using 
formula C = a + bYt – 1 where Yt – 1  is the old 
equilibrium value in cell E7. 

C10 =B10+E$6 Calculates Y  in time period 0 as sum of
current consumption value in cell B10 and new 
investment value. Note the $ on cell E6 to
anchor when copied. 

B11 =B$5+B$6*C10 Calculates consumption in time period 1 based 
on Y0 value in cell C10. Note the $ on cells B5
and B6 to anchor when copied. 

B12 to
B28 

Copy formula from 
B11 down column. 

Calculates consumption in each time period.

C11 to
C28 

Copy formula from 
C10 down column. 

Calculates national income Yt in each time 
period.

By substitution

Y ∗ = a + bY ∗ + It

(1 − b)Y ∗ = a + It

Y ∗ = a + It

1 − b
(4)

If the given values of a, b and It are put into (4) then the equilibrium value of Y is determined.
This is the first part of the difference equation solution.

Returning to the difference equation (1) which we are trying to solve

Yt = bYt−1 + a + It (1)

If the two constant terms a and It are removed then this becomes

Yt = bYt−1 (5)

To find the complementary function we use the standard method and assume that this solution
is in the format

Yt = Akt (6)
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where A and k are unknown parameters. This means that

Yt−1 = Akt−1 (7)

Substituting (6) and (7) into (5) gives

Akt = bAkt−1

k = b

Thus the complementary function is

Yt = Abt (8)

The general solution to the difference equation is the sum of the particular solution (4) and
the complementary function (8). Hence

Yt = a + It

1 − b
+ Abt (9)

If t is increased, then the value of bt in the general solution (9) will diminish as long as
|b| < 1. This condition will be met since b is the marginal propensity to consume which has
been estimated to lie between 0 and 1 in empirical studies. Therefore Yt will always head
towards its new equilibrium value.

The value of the constant A can be determined if an initial value Y0 is known. Substituting
into (9), this gives

Y0 = a + It

1 − b
+ Ab0

Remembering that b0 = 1, this means that

A = Y0 − a + It

1 − b
(10)

Thus A is the value of the difference between the initial level of income Y0, immediately
after the shock, and its final equilibrium value Y∗.

Putting this result into (9) above, the general solution to our difference equation becomes

Yt = a + It

1 − b
+

(
Y0 − a + It

1 − b

)
bt (11)

This may seem to be a rather cumbersome formula but it is straightforward to use. If you
remember that

a + It

1 − b
= Y ∗

is the equilibrium value of Yt and rewrite (11) as

Yt = Y ∗ + (Y0 − Y ∗)bt (12)

you will find it easier to work with.
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We can now check that this solution to the lagged Keynesian model difference equation
works with the numerical Example 13.7 considered above. This model assumed

Yt = Ct + It

where It was initially 134 and

Ct = 40 + 0.6Yt−1

which corresponded to an initial equilibrium of Yt of 435.
When It was exogenously decreased to 110, the adjustment path towards the new equilib-

rium value of Y of 375 was worked out by an iterative method. Now let us see what values
our difference equation will give.

We have to be careful in determining the initial value Y0, immediately after the increase
in investment has taken place. This depends on I0, which will be the new level of investment
of 110, and C0. The level of consumption in period 0 depends on the previously existing
equilibrium level of Yt which was 435 in time period ‘minus one’. Therefore

C0 = a + bYt−1 = 40 + 0.6(435) = 301

Y0 = C0 + I0 = 301 + 110 = 411 (13)

This is the same initial value Y0 as that calculated in Example 13.7. The new equilibrium
value of income is

Y ∗ = a + It

1 − b
= 40 + 110

1 − 0.6
= 150

0.4
= 375 (14)

Substituting (13) and (14) into the formula for the general solution to the difference equation
derived above

Yt = Y ∗ + (Y0 − Y ∗)bt (15)

the general solution for this numerical example becomes

Yt = 375 + (411 − 375)0.6t

= 375 + 36(0.6)t

The first few values of Y are thus

Y1 = 375 + 36(0.6) = 375 + 21.6 = 396.6

Y2 = 375 + 36(0.6)2 = 375 + 12.96 = 387.96

Y3 = 375 + 36(0.6)3 = 375 + 7.776 = 382.776

These are exactly the same as the answers computed by the iterative method in Example 13.7
and also the same as those produced by the spreadsheet in Table 13.4, which is what one
would expect.

This difference equation solution can now be used to calculate Yt in any given time period.
For example, in time period 9 it will be

Y9 = 375 + 36(0.6)9 = 375 + 0.3628 = 375.3628
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As t increases in value, eventually the value of (0.6)t becomes so small as to make the second
term negligible. In the above example we can say that for all intents and purposes Yt has effec-
tively reached its equilibrium value of 375 by the ninth time period, although theoretically
Yt would never actually reach 375 if infinitesimally small increments were allowed.

By now, many of you may be thinking that this difference equation method of computing
the different values of Y in the adjustment process in a Keynesian macroeconomic model is
extremely long-winded and it would be much quicker to compute the values by the iterative
method, particularly if a spreadsheet can be used.

In many cases you may be right. However, you must remember that this chapter is only
intended to give you an insight into the methods that can be used to trace out the time
path of adjustment in dynamic economic models. The mathematical methods of solution
explained here can be adapted to tackle more complex problems that cannot be illustrated
on a spreadsheet. Also, economists need to set up mathematical formulations for functional
relationships in order to estimate the parameters of these functions. Those of you who study
econometrics after the first year of your course will discover that the algebraic solutions to
difference equations can help in the setting up of models for testing certain dynamic economic
relationships.

Now that the general solution to the lagged Keynesian macroeconomic model has been
derived, it can be applied to other numerical examples and may even allow you to compute
answers more quickly than by switching on your computer and setting up a spreadsheet.

Example 13.8

There is initially an equilibrium in the basic Keynesian model

Yt = Ct + It

Ct = 650 + 0.5Yt−1

with It remaining at 300. Then It suddenly increases to 420 and remains there. What will be
the actual level of Y six time periods after this change?

Solution

The initial equilibrium in period ‘minus 1’ before the change is

Y ∗−1 = a + It

1 − b
= 650 + 300

1 − 0.5
= 950

0.5
= 1,900

Therefore the value of C in time period 0 when the increase in I takes place is

C0 = 650 + 0.5(1,900) = 650 + 950 = 1,600

and so the value of Yt immediately after this shock is

Y0 = C0 + I0 = 1,600 + 420 = 2,020

The new equilibrium level of Y is

Y ∗ = a + It

1 − b
= 650 + 420

1 − 0.5
= 1,070

0.5
= 2,140
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Substituting these values into the general solution for the lagged Keynesian macroeconomic
model difference equation, we get the general solution for this example, which is

Yt = Y ∗ + (Y0 − Y ∗)bt

= 2,140 + (2,020 − 2,140)0.5t

= 2,140 − 120(0.5)t

Therefore, six time periods after the increase in investment

Y6 = 2,140 − 120(0.5)6

= 2,140 − 1.875 = 2,138.125

Example 13.9

How many time periods will it take Yt to reach 2,130 in the preceding example?

Solution

We know that Yt = 2,130 and we wish to find t . Thus substituting this value and the initial
value Y0 and the new equilibrium Y ∗ calculated in Example 13.8, into the Keynesian model
general solution formula

Yt = Y ∗ + (Y0 − Y ∗)bt

we get

2,130 = 2,140 + (2,020 − 2,140)0.5t

−10 = −120(0.5)t

0.08333 = (0.5)t

To get t , put this into the log form, which gives

log 0.08333 = t log 0.5

log 0.083333

log 0.5
= t

3.585 = t

Therefore Y will have exceeded 2,130 by the end of the fourth time period.

Only the most basic lagged Keynesian model has been considered so far in this section.
Other possible formulations have been suggested for the ways in which past income levels
can determine current expenditure. For example

Ct = a + bYt−2
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or

Ct = a + b1Yt−1 + b2Yt−2

The latter example is known as a ‘distributed lag’ model. The solutions of these more com-
plex models require more advanced mathematical methods than are explained in this basic
mathematics text. You should, however, be able to adapt the spreadsheet set up in Table 13.4
to trace out the adjustment path of income in a distributed lag model with given parameters.

Example 13.10

Use a spreadsheet to estimate Yt for the twelve time periods after It is increased to 140,
assuming that Yt is determined by the distributed lag Keynesian model

Yt = Ct + It

Ct = 320 + 0.5Yt−1 + 0.3Yt−2

and that the system had previously been in equilibrium with I at 90.

Solution

This is a spreadsheet exercise that you can do yourself by making the necessary adjustments
to the formulae that were used to set up the spreadsheet in Table 13.4 when tackling Exam-
ple 13.7. Be careful in setting up the initial values, however, as C will depend on the old
equilibrium level of Y up to period 1. Some of the initial values are calculated manually
below for you to check against.

The initial equilibrium level Y ∗ would have satisfied the equations

Y ∗ = Ct + 90 (1)

Ct = 320 + 0.5Y ∗ + 0.3Y ∗ = 320 + 0.8Y ∗

By substitution into (1)

Y ∗ = 320 + 0.8Y ∗ + 90

0.2Y ∗ = 410

Y ∗ = 2,050 = Yt−1 = Yt−2

Thus

C0 = 320 + 0.5(2,050)+ 0.3(2,050) = 1,960

Y0 = C0 + I0 = 1,960 + 140 = 2,100

C1 = 320 + 0.5(2,100)+ 0.3(2,050) = 1,985

Y1 = C1 + I1 = 1,985 + 140 = 2,125 etc.

Your spreadsheet should show Yt converging on 2,300.
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Test Yourself, Exercise 13.3

1. A Keynesian macroeconomic model with a single-time-period lag on the con-
sumption function, as described below, is initially in equilibrium with the level of
It given at 500.

Yt = Ct + It

Ct = 750 + 0.5Yt−1

It is then increased to 650. Use difference equation analysis to find the value of
Yt in the fourth time period after this disturbance to the system. Will it then be
within 1% of its new equilibrium level?

2. There is initially an equilibrium in the macroeconomic model

Yt = Ct + It

Ct = 2,500 + 0.9 Yt−1

with the level of It set at 1,100. Investment is then increased to 1,500 where it
remains for future time periods. Calculate what the level of Yt will be in the fortieth
time period after this investment increase.

3. In a basic Keynesian model with a government sector

Yt = Ct + It +Gt

where It = 269,Gt = 310 (exogenously determined Government expendi-
ture), and

Ct = 80 + 0.8YD
t−1

where YD
t is disposable (after-tax) income. Assume that all income is taxed at a

rate of 25%. Government expenditure is then increased to 450 and kept at this
level. What tax revenue can the government expect to raise five time periods after
this initial rise in expenditure?

4. Use a spreadsheet to trace out the pattern of adjustment of Yt towards its new
equilibrium value in the model

Yt = Ct + It

Ct = 310 + 0.7Yt−1

if It is exogenously increased from 240 to 350 and then kept at this new level.
Assume the system was initially in equilibrium. What is the value of C in the
fourteenth time period after this increase in It?
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13.5 Duopoly price adjustment
An oligopoly is a market with a small number of sellers. It is difficult for economists to
predict price and output in oligopoly because firms’ reactions to their rivals’ actions can vary
depending on the strategy they adopt. Firms may naively assume that rivals will not react
to whatever pricing policy they themselves operate, they may try to outguess their rivals,
or they may collude. You will learn more about these different models in your economics
course. Here we will just examine how price may adjust over time in one of the simpler
‘naive’ models applied to a duopoly, which is an oligopoly with only two sellers.

Two models, the Cournot model and the Bertrand model, assume that firms do not think
ahead. The Cournot model assumes that firms think that their rivals will not change their
output in response to their own output decisions and the Bertrand model assumes that firms
think that rivals will not change their price.

Without going into the details of the model, the predictions of the Bertrand model can be
summarized in terms of the ‘reactions functions’ shown in Figure 13.4 for two duopolists X
and Y. These show the price that will maximize one firm’s profits given the value of the other
firm’s price read off the other axis. For example, X’s reaction function RX slopes up from
right to left. If Y’s price is higher, then X can get away with a higher price, but if Y lowers
its price then X also has to reduce its price otherwise it will lose sales.

This model assumes that both firms have identical cost structures and so the reaction
functions are symmetrical, intersecting where they both cross the 45◦-line representing equal
prices. The prediction is that prices will eventually settle at levels PX∗ and PY∗ , which are
equal. The path of adjustment from an initial price PX0 is shown in Figure 13.4. In time
period 1, Y reacts to PX0 by setting price PY1 ; then X sets price PX2 in time period 2, and so
on until PX∗ and PY∗ are reached. Note that we are assuming that the firms take it in turns
to adjust price and so each firm only sets a new price every other time period. More recent
applications of this basic model based on Game Theory assume that forms go straight to the
intersection point, which is called the ‘Nash equilibrium’.

Let us now use our knowledge of difference equations to derive a function that will tell us
what the price of one of the firms will be in any given time period with the aid of a numerical
example.

0

PY
*

PY
1

45°
PX

*

PY

PXPX
0 PX

2

RX RY

Figure 13.4
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Example 13.11

Two duopolists, firms X and Y, have the reaction functions

PXt = 45 + 0.8PYt−1 (1)

PYt = 45 + 0.8PXt−1 (2)

If the assumptions of the Bertrand model hold, derive a difference equation for PXt and
calculate what PXt will be in time period 10 if firm X starts off in time period 0 by setting a
price of 300.

Solution

Substituting Y’s reaction function (2) into X’s reaction function (1), we get

PXt = 45 + 0.8(45 + 0.8PXt−2)

PXt = 45 + 36 + 0.64PXt−2

PXt = 81 + 0.64PXt−2 (3)

Note that the value PXt−2 appears because we have substituted in the reaction function of Y
for period t − 1 to correspond to the value of PYt−1 in X’s reaction function, i.e. X is reacting
to what Y did in the previous time period which, in turn, depends on what X did in the period
before that one and so we have substituted in the equation

PYt−1 = 45 + 0.8PXt−2

The particular solution to the difference equation (3) will be where price no longer changes and

PXt−2 = PXt = PX∗

which is the equilibrium value of PXt . Substituting PX∗ into (3)

PX∗ = 81 + 0.64PX∗
0.36PX∗ = 81

PX∗ = 225

To find the complementary function we use the standard method of ignoring the constant
term and assuming that

PXt = Akt

where A and k are constant parameters. Substituting into the difference equation

PXt = 81 + 0.64P ∗
t−2 (4)
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where the constant 81 is ignored, gives

Akt = 0.64Akt−2

Cancelling the common term Akt−2, we get

k2 = 0.64

k = 0.8

The complementary function is therefore

PXt = A(0.8)t

Adding the complementary function and particular solution, the general solution to difference
equation (1) becomes

PXt = A(0.8)t + 225

To find the value of A we need to know the specific value of PXt at some point in time. The
question specifies that initially (i.e. in time period 0) PXt is 300 and so

PX0 = 300 = A(0.8)0 + 225

300 = A+ 225

A = 75

Thus, as in the previous difference equation applications, A is the difference between the
final equilibrium and the initial value of the variable in question. The general solution to the
difference equation (1) is therefore

PXt = 75(0.8)t + 225

This can be used to calculate the value of PXt every alternate time period. (Remember that
in the intervening time periods X keeps price constant while Y adjusts price.) The price
adjustment path will therefore be

PX0 = 75(0.8)0 + 225 = 75 + 225 = 300

PX2 = 75(0.8)2 + 225 = 48 + 225 = 273

PX4 = 75(0.8)4 + 225 = 30.72 + 225 = 255.72 etc.

The question asks what price will be in time period 10 and so this can be calculated as

PX10 = 75(0.8)10 + 225 = 8.05 + 225 = 233.05
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Example 13.12

Two firms X and Y in an oligopolistic market take a shortsighted view of their situation and
set price on the basis of their rivals’ price in the previous time period according to the reaction
functions

PXt = 300 + 0.75PYt−1

PYt = 300 + 0.75PXt−1

Assume that each adjusts its price every other time period. The market is initially in equilib-
rium with PXt = PYt = 1,200. Firm X then decides to try to improve its profits by raising
price to 1,650. Taking into account the reactions to rivals’ price changes described in the
above functions, calculate what X’s price will be in the eighth time period after its breakaway
price rise.

Solution

PXt = 300 + 0.75PYt−1

= 300 + 0.75(300 + 0.75PXt−2)

= 300 + 225 + 0.5625PXt−2

= 525 + 0.5625PXt−2 (1)

This difference equation is in the same format as that found in Example 13.11 above. Its
solution will therefore also be in the same format, i.e.

PXt = Akt + PX∗
The equilibrium value PX∗ is given in the question as 1,200. This can easily be checked in
our difference equation (1) because in equilibrium

PXt = PXt−2 = PX∗
and so

PX∗ = 525 + 0.5625PX∗
0.4375PX∗ = 525

PX∗ = 1,200

To find the complementary function, let PXt = Akt and substitute into the difference
equation (1) after dropping the constant 525. Thus

Akt = 0.5625Akt−2

Cancelling Akt−2 this gives

k2 = 0.5625

k = 0.75
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Adding the complementary function and particular solution, the general solution to the
difference equation becomes

PXt = A(0.75)t + 1,200

The value of A can be found when the initial PX0 = 1,650 is substituted. Thus

PX0 = 1,650 = A(0.75)0 + 1,200

1,650 = A+ 1,200

450 = A

The definite solution to this difference equation is therefore

PXt = 450(0.75)t + 1,200

and so in the eighth period after the initial price rise

PX8 = 450(0.75)8 + 1,200

= 45.05 + 1,200 = 1,245.05

Test Yourself, Exercise 13.4

1. Two duopolists X and Y react to each others’ prices according to the functions

PXt = 240 + 0.9PYt−1

PYt = 240 + 0.9PXt−1

If firm X sets an initial price of 2,900, what will its price be twenty time periods
later? Assume that each firm adjusts price every alternate time period.

2. In an oligopolistic market, the two firms X and Y have the following price reaction
functions:

PXt = 800 + 0.6PYt−1

PYt = 800 + 0.6PXt−1

The usual assumptions of the Bertrand model apply and price is initially in equi-
librium at a level of 2,000 for both firms. Firm X then decides to cut price to
1,500 to try to steal Y’s market share. We know from the analysis of this model
that X’s price reduction will be short-lived and price will creep back towards its
equilibrium level, but how short-lived? Calculate whether or not PX will be back
within 1% of its equilibrium value within six time periods. (Be careful how you
calculate the value of A in the difference equation as this time the initial value is
below the equilibrium value of PX.)
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3. In a duopoly where the assumptions of the Bertrand model hold, the two firms’
reaction functions are

PXt = 95.54 + 0.83PYt−1

PYt = 95.54 + 0.83PXt−1

If firm X unexpectedly changes price to 499, derive the solution to the difference
equation that determines PXt and use it to predict PXt in the twelfth time period
after the initial change.
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14 Exponential functions, continuous
growth and differential equations

Learning objectives

After completing this chapter students should be able to:

• Use the exponential function and natural logarithms to derive the final sum, initial
sum and growth rate when continuous growth takes place.

• Compare and contrast continuous and discrete growth rates.
• Set up and solve linear first-order differential equations.
• Use differential equation solutions to predict values in basic market and macro-

economic models.
• Comment on the stability of economic models where growth is continuous.

14.1 Continuous growth and the exponential function
In Chapter 7, growth was treated as a process taking place at discrete time intervals. In this
chapter we shall analyse growth as a continuous process, but it is first necessary to understand
the concepts of exponential functions and natural logarithms. The term ‘exponential function’
is usually used to describe the specific natural exponential function explained below. However,
it can also be used to describe any function in the format

y = Ax where A is a constant and A > 1

This is known as an exponential function to base A. When x increases in value this function
obviously increases in value very rapidly ifA is a number substantially greater than 1. On the
other hand, the value of Ax approaches zero if x takes on larger and larger negative values.
For all values of A it can be deduced from the general rules for exponents (explained in
Chapter 2) that A0 = 1 and A1 = A.

Example 14.1

Find the values of y = Ax when A is 2 and x takes the following values:
(a) 0.5, (b) 1, (c) 3, (d) 10, (e) 0 , (f) −0.5, (g) −1, and (h) −3
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Solution

(a) A0.5 = 1.41 (b) A1 = 2 (c) A3 = 8

(d) A10 = 1024 (e) A0 = 1 (f) A−0.5 = 0.71

(g) A−1 = 0.50 (h) A−3 = 0.13

The natural exponential function

In mathematics there is a special number which when used as a base for an exponential
function yields several useful results. This number is

2.7182818 (to 7 dp)

and is usually represented by the letter ‘e’. You should be able to get this number on your
calculator by entering 1 and then using the [ex] function key.

To find ex for any value of x on a calculator the usual procedure is to enter the number (x)
and then press the [ex] function key. To check that you can do this, try using your calculator
to obtain the following exponential values:

e0.5 = 1.6487213

e4 = 54.59815

e−2.624 = 0.0725122

If you do not get these values, ask your tutor for assistance. If your calculator does not
have an [ex] function key then it is probably worth buying a new calculator, or you can use
the EXP function in Excel. There also exist tables of exponential values which were used by
students before calculators with exponential function keys became available.

In economics, exponential functions to the base e are particularly useful for analysing
growth rates. This number, e, is also used as a base for natural logarithms, explained later
in Section 14.4. Although it has already been pointed out that, strictly speaking, the specific
function y = ex should be known as the ‘natural exponential function’, from now on we
shall adopt the usual convention and refer to it simply as the ‘exponential function’.

To understand how this rather awkward value for e is derived, we return to the method
used for calculating the value of an investment developed in Chapter 7. You will recall that
the final value (F ) of an initial investment (A) deposited for t discrete time periods at an
interest rate of i can be calculated from the formula

F = A(1 + i)t

If the interest rate is 100% then i = 1 and the formula becomes

F = A(1 + 1)t = A(2)t

Assume the initial sum invested A = 1. If interest is paid at the end of each year, then after
1 year the final sum will be

F1 = (1 + 1)1 = 2
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In Chapter 7 it was also explained how interest paid monthly at the annual rate divided by 12
will give a larger final return than this nominal annual rate because the interest credited each
month will be reinvested. When the nominal annual rate of interest is 100% (i = 1) and the
initial sum invested is assumed to be 1, the final sum after 12 months invested at a monthly
interest rate of 1

12 (100%) will be

F12 =
(

1 + 1

12

)12

= 2.6130353

If interest was to be credited daily at the rate of 1
365 (100%) then the final sum would be

F365 =
(

1 + 1

365

)365

= 2.7145677

If interest was to be credited by the hour at a rate of 1
8760 (100%) (given that there are 8,760

hours in a 365-day year) then the final sum would be

F8,760 =
(

1 + 1

8,760

)8,760

= 2.7181267

From the above calculations we can see that the more frequently that interest is credited
the closer the value of the final sum accumulated gets to 2.7182818, the value of e. When
interest at a nominal annual rate of 100% is credited at infinitesimally small time intervals
then growth is continuous and e is equal to the final sum credited. Thus

e =
(

1 + 1

n

)n
= 2.7182818 where n → ∞

This result means that a sum A invested for one year at a nominal annual interest rate of
100% credited continuously will accumulate to the final sum of

F = eA = 2.7182818A

This translates into the annual equivalent rate of

AER = 2.7182818 − 1 = 1.7182818 = 171.83% (to 2 dp)

Although bank interest may not actually be paid instantaneously so that a sum invested grows
continually every second, the crediting of interest on a daily basis, which is quite common,
gives an equivalent annual rate that is practically the same as the continuous rate. (One has
to go to the 4th decimal place to find a difference between the two.) Continuous growth
also occurs in other variables relevant to economics, e.g. population, the amount of natural
materials mined. Other variables may continuously decline in value over time, e.g. the stock
of a non-renewable natural resource.

14.2 Accumulated final values after continuous growth
To derive a formula that will give the final sum accumulated after a period of continuous
growth, we first assume that growth occurs at several discrete time intervals throughout
a year. We also assume that A is the initial sum, r is the nominal annual rate of growth, n is
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the number of times per year that increments are accumulated and y is the final value. Using
the final sum formula developed in Chapter 7, this means that after t years of growth the final
sum will be

y = A
(

1 + r

n

)nt
To reduce this to a simpler formulation, multiply top and bottom of the exponent by r so that

y = A
(

1 + r

n

)(
n
r

)
rt

(1)

If we let m = n
r

then 1
m

= r
n

and so (1) can be written as

y = A

(
1 + 1

m

)mrt
= A

[(
1 + 1

m

)m]rt
(2)

Growth becomes continuous as the number of times per year that increments in growth are
accumulated increases towards infinity. When n → ∞ then n

r
= m → ∞.

Therefore, using the result derived in Section 14.1 above,

(
1 + 1

m

)m
→ e as m → ∞

Substituting this result back into (2) above gives

y = Aert

This formula can be used to find the final value of any variable growing continuously at a
known annual rate from a given original value.

Example 14.2

Population in a developing country is growing continuously at an annual rate of 3%. If the
population is now 4.5 million, what will it be in 15 years’ time?

Solution

The final value of the population (in millions) is found by using the formula y = Aert and
substituting the given numbers: initial valueA = 4.5; rate of growth r = 3% = 0.03; number
of time periods t = 15, giving

y = 4.5e0.03(15) = 4.5e0.45 = 4.5 × 1.5683122 = 7.0574048 million

Thus the predicted final population is 7,057,405.
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Example 14.3

An economy is forecast to grow continuously at an annual rate of 2.5%. If its GNP is currently
e56 billion, what will the forecast for GNP be at the end of the third quarter the year after
next?

Solution

In this example: t = 1.75 years, r = 2.5 % = 0.025, A = 56 (e billion). Therefore, the
final value of GNP will be

y = Aert = 56e0.025(1.75) = 56e0.04375 = 58.504384

Thus the forecast for GNP is e58,504,384,000.

So far we have only considered positive growth, but the exponential function can also
be used to analyse continuous decay if the rate of decline is treated as a negative rate of
growth.

Example 14.4

A river flow through a hydroelectric dam is 18 million gallons a day and shrinking
continuously at an annual rate of 4%. What will the flow be in 6 years’ time?

Solution

The 4% rate of decline becomes the negative growth rate r = −4% = −0.04. We also know
the initial values A = 18 and t = 6. Thus the final value is

y = Aert = 18e−0.04(6) = 18e−0.24 = 14.16

Therefore, the river flow will shrink to 14.16 million gallons per day.

Continuous and discrete growth rates compared

In Section 14.1 it was explained how interest at a rate of 100% credited continuously through-
out a year gives an annual equivalent rate of r = e−1 = 1.7182818 = 171.83%, a difference
of 71.83%. However, in practice interest is usually credited at much lower annual rates. This
means that the difference between the nominal and annual equivalent rates when interest is
credited continuously will be much smaller. This is illustrated in Table 14.1 for the case when
the nominal annual rate of interest is 6%.

These figures show that the annual equivalent rate when interest is credited continuously is
the same as that when interest is credited on a daily basis, if rounded to two decimal places,
although there will be a slight difference if this rounding does not take place.
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Table 14.1

Interest Frequency rate per Nominal rate Annual equivalent rate
credited annum (n)

(
i
n

) (
1 + i

n

)n − 1

Annually 1 6% 6%
6 monthly 2 3% (1.03)2 − 1 = 0.0609 = 6.09%
3 monthly 4 1.5% (1.015)4 − 1 = 0.06136 = 6.14%
Monthly 12 0.5% (1.005)12 − 1 = 0.06167 = 6.17%
Daily 365 0.0164% (1.00016)365 − 1 = 0.061831 = 6.18%
Continuously → ∞ → 0 e0.06 − 1 = 0.0618365 = 6.18%

Test Yourself, Exercise 14.1

1. A country’s population is currently 32 million and is growing continuously at an
annual rate of 3.5%. What will the population be in 20 years’ time if this rate of
growth persists?

2. A company launched a successful new product last year. The current weekly sales
level is 56,000 units. If sales are expected to grow continually at an annual rate
of 12.5%, what will be the expected level of sales 36 weeks from now? (Assume
that 1 year is exactly 52 weeks.)

3. Current stocks of mineral M are 250 million tonnes. If these stocks are continually
being used up at an annual rate of 9%, what amount of M will remain after 30
years?

4. A renewable natural resource R will allow an estimated maximum consumption
rate of 200 million units per annum. Current annual usage is 65 million units.
If the annual level of usage grows continually at an annual rate of 7.5% will there
be sufficient R to satisfy annual demand after (a) 5 years, (b) 10 years, (c) 15 years,
(d) 20 years?

5. Stocks of resource R are shrinking continually at an annual rate of 8.5%. How
much will remain in 30 years’ time if current stocks are 725,000 units?

6. If e25,000 is deposited in an account where interest is credited on a daily basis
that can be approximated to the continuous accumulation of interest at a nominal
annual rate of 4.5%, what will the final sum be after five years?

14.3 Continuous growth rates and initial amounts

Derivation of continuous rates of growth

The growth rate r can simply be read off from the exponent of a continuous growth function
in the format y = Aert .

To prove that this is the growth rate we can use calculus to derive the rate of change of this
exponential growth function.

If variable y changes over time according to the function y = Aert then rate of change of
y with respect to t will be the derivative dy/dt . However, it is not a straightforward exercise
to differentiate this function. For the time being let us accept the result (explained below in
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Section 14.4) that

if y = et then
dy

dt
= et

i.e. the derivative of an exponential function is the function itself.

Thus, using the chain rule,

when y = Aert then
dy

dt
= rAert

This derivative approximates to the absolute amount by which y increases when there is a
one unit increment in time t , but when analysing growth rates we are usually interested in the
proportional increase in y with respect to its original value. The rate of growth is therefore

dy

dt
y

= rAert

Aert
= r

Even though r is the instantaneous rate of growth at any given moment in time, it must be
expressed with reference to a time interval, usually a year in economic applications, e.g. 4.5%
per annum. It is rather like saying that the slope of a curve is, say, 1.78 at point X. A slope of
1.78 means that height increases by 1.78 units for every 1 unit increase along the horizontal
axis, but at a single point on a curve there is no actual movement along either axis.

Example 14.5

Owing to continuous improvements in technology and efficiency in production, an empirical
study found a factory’s output of product Q at any moment in time to be determined by the
function

Q = 40e0.03t

where t is the number of years from the base year in the empirical study and Q is the output
per year in tonnes. What is the annual growth rate of production?

Solution

When the accumulated amount from continuous growth is expressed by a function in the
format y = Aert then the growth rate r can simply be read off from the function. Thus when

Q = 40e0.03t

the rate of growth is

r = 0.03 = 3%
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Initial amounts

What if you wished to find the initial amount A that would grow to a given final sum y after
t time periods at continuous growth rate r? Given the continuous growth final sum formula

y = Aert

then, by dividing both sides by ert , we can derive the initial sum formula

A = ye−rt

Example 14.6

A parent wants to ensure that their young child will have a fund of £35,000 to finance his/her
study at university, which is expected to commence in 12 years’ time. They wish to do this
by investing a lump sum now. How much will they need to invest if this investment can be
expected to grow continuously at an annual rate of 5%?

Solution

Given values are: final amount y = 35,000, continuous growth rate r = 5% = 0.05, and
time period t = 12. Thus the initial sum, using the formula derived above, will be

A = ye−rt = 35,000 e−0.05(12) = 35,000 e−0.6

= 35,000 × 0.5488116 = £19,208.41

Example 14.7

A manager of a wildlife sanctuary wants to ensure that in ten years’ time the number of
animals of a particular species in the sanctuary will total 900. How many animals will she
need to start with now if this particular animal population grows continuously at an annual
rate of 8.5%?

Solution

Given the final amount of y = 900, continuous growth rate r = 8.5% = 0.085, and time
period t = 10, then using the initial sum formula

A = ye−rt = 900 e−0.085(10) = 900 e−0.85 = 900 × 0.4274149 = 384.67

Therefore, she will need to start with 385 animals, as you cannot have a fraction of an
animal!
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Test Yourself, Exercise 14.2

1. A statistician estimates that a country’s populationN is growing continuously and
can be determined by the function

N = 3,620,000e0.02t

where t is the number of years after 2000. What is the population growth rate?
Will population reach 10 million by the year 2050?

2. Assuming that oil stocks will continue to be depleted at the same continuous rate
(in proportion to the amount remaining), the amount of oil remaining in an oilfield
(B), measured in barrels of oil, has been estimated as

B = 2,430,000,000e−0.09t

where t is the number of years after 2000. What proportion of the oil stock is
extracted each year? How much oil will remain by 2020?

3. An individual wants to ensure that in 15 years’ time, when they plan to retire, they
will have a pension fund of £240,000. They wish to achieve this by investing a
lump sum now, rather than making regular annual contributions. If their investment
is expected to grow continuously at an annual rate of 4.5%, how much will they
need to invest now?

4. The owner of an artificial lake, which has been created with the main aim of
making a commercial return from recreational fishing, has to decide how many
fish to stock the lake with. Allowing for the natural rate of growth of the fish
population and the depletion caused by fishing, the number of fish in the lake is
expected to shrink continuously by 3.2% a year. How many fish should the owner
stock the lake with if they wish to ensure that the fish population will still be 500
in 5 years’ time, given that it will not be viable to add more fish after the initial
stock is introduced?

14.4 Natural logarithms
In Chapter 2, we saw how logarithms to base 10 were defined and utilized in mathematical
problems. You will recall that the logarithm of a number to base X is the power to which X
must be raised in order to equal that number. Logarithms to the base ‘e’ have several useful
properties and applications in mathematics. These are known as ‘natural logarithms’, and the
usual notation is ‘ln’ (as opposed to ‘log’ for logarithms to base 10).

As with values of the exponential function, natural logarithms can be found on a mathe-
matical calculator. Using the [LN] function key on your calculator, check that you can derive
the following values:

ln 1 = 0

ln 2.6 = 0.9555114

ln 0.45 = −0.7985
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The rules for using natural logarithms are the same as for logarithms to any other base. For
example, to multiply two numbers, their logarithms are added. But how do you then transform
the sum of the logarithms back to a number, i.e. what is the ‘antilog’ of a natural logarithm?

To answer this question, consider the exponential function

y = ex (1)

By definition, the natural logarithm of y will be x because that is the power to which e is
taken to equal x. Thus we can write

ln y = x (2)

If we only know the value of the natural logarithm ln y and wish to find y then, by substituting
(2) into (1), it must be true that

y = ex = eln y

Therefore y can be found from the natural logarithm ln y by finding the exponential of ln y.
For example, if

ln y = 3.214

then

y = eln y = e3.214 = 24.8784

We can check that this is correct by finding the natural logarithm of our answer. Thus

ln y = ln 24.8784 = 3.214

Although you would not normally need to actually use natural logarithms for basic numeric
problems, the example below illustrates how natural logarithms can be used for multiplication.

Example 14.8

Multiply 5,623.76 by 441.873 using natural logarithms.

Solution

Taking natural logarithms and performing multiplication by adding them:

ln 5,623.760 = 8.6347558+
ln 441.873 = 6.0910225

14.725778 (to 6 dp)

To transform this logarithm back to its corresponding number we find

e14.725778 = 2,484, 987.7

This answer can be verified by carrying out a straightforward multiplication on your calculator.
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Determination of continuous growth rates using natural logarithms

To understand how natural logarithms can help determine rates of continuous growth, consider
the following example.

Example 14.9

The consumption of natural mineral resource M has risen from 38 million tonnes (per annum)
to 68.4 million tonnes over the last 12 years. If it is assumed that growth in consumption has
been continuous, what is the annual rate of growth?

Solution

If growth is continuous then the final consumption level of M will be determined by the
exponential function:

M = M0ert (1)

This time the known values are: the final value M = 68.4, the initial consumption value
M0 = 38, and t = 12, with the rate of growth r being the unknown value that we are trying
to determine.

Substituting these known values into (1) gives

68.4 = 38e12r

1.8 = e12r (2)

In (2), the power to which e must be raised to equal 1.8 is 12r . Therefore,

ln 1.8 = 12r

r = ln 1.8

12
= 0.5877867

12
= 0.0489822

and so consumption has risen at an annual rate of 4.9%.

A general formula for finding a continuous rate of growth when y,A and t are all known
can be derived from the final sum formula. Given

y = Aert

then
y

A
= ert

taking natural logs ln
( y
A

)
= rt

giving the rate of growth formula

1

t
ln

( y
A

)
= r
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Example 14.10

Over the last 15 years a country’s population has risen continuously at the same annual growth
rate from 8.2 million to 11.9 million. What is this rate of growth?

Solution

Using the formula for finding a continuous growth rate and entering the known values gives
the rate of growth as

r = 1

t
ln

( y
A

)
= 1

15
ln

(
11.9

8.2

)

= 1

15
ln(1.45122) = 1

15
(0.3724) = 0.02483 = 2.48%

Natural logarithms can also be used to work out rates of decay, which are negative rates of
growth.

Example 14.11

The annual catch of fish from a specific sea area is declining continually at a constant rate.
Ten years ago the total catch was 940 tonnes and this year the total catch is 784 tonnes. What
is the rate of decline?

Solution

If the decline is continuous then the catch C at any point in time will be determined by the
function

C = C0ert

where C0 is the catch in the initial time period.
Substituting the known values into this function gives

784 = 940e10r

0.8340426 = e10r

ln 0.8340426 = 10r

−0.1814708 = 10r

−0.0181471 = r

Therefore the rate of decline is 1.8%.

Rates of growth and decay can also be determined over time periods of less than a year by
employing the same method.
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Example 14.12

Consumption of mineral M is known to be increasing continually at a constant rate per annum.
The daily rate of consumption was 46.4 tonnes on 1 March and had risen to 47.2 tonnes by
1 June. What is the annual growth rate for consumption of this mineral?

Solution

From 1 March to 1 June is 3 months, or a quarter of a year. Thus using the standard final sum
formula for continuous growth

47.2 = 46.4er(0.25)

1.017241 = e0.25r

ln 1.017241 = 0.25r

0.0170944 = 0.25r

0.0683778 = r

Therefore the annual growth rate is 6.84%.

Comparison of discrete and continuous growth

A direct comparison of the continuous growth rate r and the discrete growth rate i that would
accumulate the same final sum F over 1 year for a given initial sum A can be found using
natural logarithms, as follows:

Continuous growth final sum F = Aer

Discrete growth final sum F = A(1 + i)

Therefore

Aer = A(1 + i)

er = (1 + i)

Taking logs gives the required function for r in terms of i

r = ln(1 + i) (1)

To get i as a function of r , the exponential of each side of (1) is taken, giving

er = eln(1+i)

er = 1 + i

er − 1 = i
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Example 14.13

(i) Find the continuous growth rate that would correspond over a discrete growth annual
rate of:
(a) 0% (b) 10% (c) 50% (d) 100%

(ii) Find the discrete annual growth rates that would correspond to the continuous growth
rates (a), (b), (c) and (d) in (i) above.
Give all answers to 2 significant decimal places.

Solution

(i) Using the formula r = ln(1 + i) the answers are:

(a) i = 0% = 0 r = ln(1 + 0) = ln 1 = 0%

(b) i = 10% = 0.1 r = ln(1 + 0.1) = ln 1.1 = 0.09531 = 9.53%

(c) i = 50% = 0.5 r = ln(1 + 0.5) = ln 1.5 = 0.405465 = 40.55%

(d) i = 100% = 1 r = ln(1 + 1) = ln 2 = 0.6931472 = 69.31%

(ii) Using the formula i = er − 1 the answers are

(a) r = 0% = 0 i = e0 − 1 = 1 − 1 = 0%

(b) r = 10% = 0.1 i = e0.1 − 1 = 1.10517 − 1 = 0.10517 = 10.52%

(c) r = 50% = 0.5 i = e0.5 − 1 = 1.64872 − 1 = 0.64872 = 64.87%

(d) r = 100% = 1 i = e1 − 1 = 2.7182818 − 1 = 1.7182818 = 171.83%

Test Yourself, Exercise 14.3

1. In an advanced industrial economy, population is observed to have grown at a
steady rate from 50 to 55 million over the last 20 years. What is the annual rate of
growth?

2. If the average quantity of petrol used per week by a typical private motorist has
increased from 32.1 litres to 48.4 litres over the last 20 years, what has been the
average annual growth rate in petrol consumption assuming that this increase in
petrol consumption has been continuous? If, over the same time period, petrol
consumption for a typical private car has fallen from 8.75 litres per 100 km to 6.56
litres per 100 km, what has been the average annual growth rate in the distance
covered each week by a typical motorist?

3. World reserves of mineral M are observed to have declined from 830 million tonnes
to 675 million tonnes over the last 25 years. Assuming this decline to have been
continuous, calculate the annual rate of decline and then predict what reserves will
be left in 10 years’ time.

4. An economy’s GNP grows frome5,682 million toe5,727 million during the first
quarter of a new government’s term of office. If this growth rate persisted through
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its entire term of office of 4 years, what would GNP be at the time of the next
election?

5. If the number of a protected species of animal in a reserve increased continually
from 600 in 1992 to 1,450 in 2002, what was the annual growth rate?

6. Over a 12-month period what continuous growth rate is equivalent to a discrete
growth rate of 6%?

7. What discrete annual growth rate is equivalent to a continuous growth rate of 6%
persisting over 12 months?

8. What interest rate would you prefer to be used to add interest to your savings: 8%
applied on a continuous basis or 9% applied once a year?

14.5 Differentiation of logarithmic functions
We have already used the rule that if y = et then dy/dt = et . This result can be derived if we
accept as given the rule for differentiation of the natural logarithm function. This rule says
that if

f(y) = ln y

then
df

dy
= 1

y

This rule can be proved mathematically but the proof is rather complex. It is not necessary
for you to understand it to follow the economic applications in this basic mathematics text
and so you are just asked to accept it as given. Note that this rule also implies that∫

1

x
= ln x

This was the exceptional case in integration not dealt with in Chapter 12.
Returning to the exponential function, we write this with the two sides of the equality side

swapped around. Thus

et = y

As the natural logarithm of y is the exponent of e, by definition, then

t = ln y

Therefore, using the rule for differentiating natural logarithmic functions stated above

dt

dy
= 1

y
(1)

The inverse function rule in calculus states that

dy

dt
= 1(

dt

dy

) (2)
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Substituting (1) into (2) gives

dy

dt
= 1(

1

y

) = y

Thus we have shown that when y = et then

dy

dt
= y

which is the result we wished to prove.

14.6 Continuous time and differential equations
We have already seen how continuous growth rates can be determined and how continuous
growth affects the final sum accumulated, but to analyse certain economic models where
continuous dynamic adjustment occurs we also need to understand what differential equations
are and how they can be solved.

Differential equations contain the derivative of an unknown function. For example

dy

dt
= 6y + 27

Solving a differential equation in this format entails finding the function y in terms of t . This
will enable us to find the value of y for any given value of t .

There are many forms that differential equations can take, but we will confine the analysis
here to the case of linear first-order differential equations. First-order means that only first-
order derivatives are included. Thus a first-order differential equation may contain terms in
dy/dt but not higher order derivatives such as d2y/dt2. Linear means that a differential equa-
tion does not contain a product such as y (dy/dt). More advanced mathematical economics
texts will cover the analysis of higher-order and non-linear differential equations.

As well as containing the first-order derivative, a first-order differential equation will
usually also contain the unknown function (y) itself. Thus a first-order differential equation
may contain:

• a constant (although this may be zero)
• the unknown function y
• the first-order derivative dy/dt

At first sight you might think integration would be the way to find the unknown function.
However, as a differential equation will include terms in y rather than t the solution is not
quite so straightforward. For example, if we had started with a basic derivative such as

dy

dt
= t then we could use integration to find

y =
∫
t · dt = 0.5t2 + C where C is an unknown constant.
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But if we start with a differential equation such as

dy

dt
= 6y + 27

this method cannot be used to find y.
The next two sections explain how to find solutions to linear first-order differential equa-

tions. Firstly, the homogeneous case is considered, where there is no constant term and the
differential equation to be solved takes the format

dy

dt
= by where b is a constant parameter

Secondly, the non-homogeneous case is considered, where there is a non-zero constant term
c and the differential equation to be solved takes the format

dy

dt
= by + c

The information in these forms of differential equations corresponds to some not uncom-
mon situations in economics. We may know the rate at which an economic variable is
increasing and its value at a specific time but may not know the direct relationship between
its value and the time period.

14.7 Solution of homogeneous differential equations
The exponential function can help us to derive the solution to a differential equation. In
Section 14.4 we learned that the exponential function has the property that

if y = et then
dy

dt
= et

Thus, using the chain rule for differentiation, for any constant b,

if y = ebt then
dy

dt
= bebt

Therefore, if the differential equation to be solved has no constant term and has the format

dy

dt
= by

then a possible solution is

y = ebt

because this would give

dy

dt
= bebt = by
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For example, if the differential equation to be solved is

dy

dt
= 5y

then one possible solution is

y = e5t

as this gives

dy

dt
= 5e5t = 5y

However, there are other possible solutions. For example,

if y = 3e5t then
dy

dt
= 5(3e5t ) = 5y

if y = 7e5t then
dy

dt
= 5(7e5t ) = 5y

In fact, we can multiply the original solution of e5t by any constant parameter and still get
the same solution after differentiation.

Therefore, for any differential equation in the format

dy

dt
= by

the general solution can be specified as

y = Aebt where A is an arbitrary constant.

This must be so since

dy

dt
= bAebt = by

The actual value of A can be found if the value for y is known for a specific value of t . This
will enable us to find the definite solution. This is easiest to evaluate when the value of y is
known for t = 0 as any number taken to the power zero is the number itself.

For example, the general solution to the differential equation

dy

dt
= 5y

will be

yt = Ae5t (1)
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where y has been given the subscript t to denote the time period that it corresponds to. If it
is known that when t = 0 then y0 = 12 then by substituting these values into (1) we get

y0 = 12 = Ae0

As we know that e0 = 1 then

12 = A

Substituting this value into the general solution (1) we get the definite solution

yt = 12e5t

This definite solution can now be used to predict yt for any value of t . For example, when
t = 3, then

y3 = 12e5(3) = 12e15 = 12(3,269,017.4) = 39,228,208

Example 14.14

Solve the differential equation dy/dt = 1.5y if the value of y is 34 when t = 0 and then use
the solution to predict the value of y when t = 7.

Solution

Using the method explained above, the general solution to this differential equation will be

yt = Ae1.5t

When t = 0 then

y0 = 34 = Ae0

Therefore

34 = A

The definite solution is thus

yt = 34e1.5t

When t = 7 then using this definite solution we can predict

y7 = 34e1.5(7) = 34e10.5 = 34(36,315.5) = 1,234, 727
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Table 14.2

t yt = 8e0.2t Change in y per time period (dy/dt) /yt = r

dy/dt = 0.2y = 1.6e0.2t

0 8.00 1.6 0.2
1 9.77 1.954 0.2
2 11.93 2.387 0.2
3 14.58 2.915 0.2
4 17.80 3.561 0.2
5 21.75 4.349 0.2

Differential equation solutions and growth rates

You may have noticed that the solutions to these differential equations have the same format as
the functions encountered in Section 14.2 which gave final values after continuous growth for
a given time period. This is because what we have done this time is to derive the relationship
between y and t , starting from the knowledge that dy/dt = ry, i.e. that the rate of increase of
y (over time) depends on the growth rate r and the specific value of y. This can be a difficult
point to grasp, because there are actually two rates involved and it is easy to confuse them.

(i) dy/dt is the rate of increase of y with respect to time t (but over a specified time period
it will be a quantity of y rather than a ratio)

(ii) r is the rate of increase of y with respect to its own current value

When y increases in magnitude over time, larger and larger increases in the value of
y each time period will be necessary to maintain the same proportional rate of growth r .
In other words, the value of dy/dt must get bigger as t increases. Table 14.2 illustrates
how this happens for the function yt = 8e0.2t , assuming an initial value of 8. To keep the
ratio of the increase in y to its current value constant at the 20% rate of growth implicit
in this function, the value of dy/dt has to keep increasing. You can check that this must
be so by differentiating. Since dy/dt = 0.2yt it is obvious that dy/dt must increase if
yt does.

Test Yourself, Exercise 14.4

1. For each of the differential equations below (i) derive the definite solution, and
(ii) use this solution to predict the value of y when t = 10.

(a)
dy

dt
= 0.2y with initial value y0 = 200

(b)
dy

dt
= 1.2y with initial value y0 = 45

(c)
dy

dt
= −0.4y with initial value y0 = 14

(d)
dy

dt
= 1.32y with initial value y0 = 40

(e)
dy

dt
= −0.025y with initial value y0 = 128
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2. The function yt = 3e0.1t gives the value of yt at any given time t . When t = 8

(a) what is the rate of growth of y with respect to itself?
(b) what is the rate of growth of y with respect to time?

14.8 Solution of non-homogeneous differential equations
When the constant is not zero and a differential equation takes the format

dy

dt
= by + c

the solution is derived in two parts:

(i) The complementary function, and
(ii) The particular solution.

The complementary function (CF) is the same as the solution derived above for the case
with no constant, i.e. yt = Aebt .

The particular solution (PS) is any one particular solution to the complete differential
equation. It is also sometimes called the particular integral. For most economic applications
you can normally use the final equilibrium value of the unknown function as the particular
solution.

Thus the full solution, which is called the general solution (GS), is the sum of these two
components, i.e.

GS = CF + PS

This will be in the format

yt = Aebt + PS

The value of the arbitrary constant A can be calculated if a value for y is known for a given
value of t . A specific value for A will turn the general solution into a definite solution (DS).

In an economic model this definite solution can usually be interpreted as

y = {Function that shows divergence from equilibrium} + {Equilibrium value}
The example below explains how this method of solution works.

Example 14.15

Solve the differential equation dy/dt = 6y + 27 if the value of y is 18 when t = 0.

Solution

To derive the complementary function from the differential equation in the question, we first
consider the ‘reduced equation’ (RE) without the constant term. Thus in this example the
elimination of the constant gives the reduced equation

dy

dt
= 6y (RE)
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Using the result derived in the previous section that for any differential equation in the format

dy

dt
= by then yt = Aebt

the solution to the (RE) above in this example will therefore be the complementary function

yt = Ae6t (CF)

To derive the particular solution we consider the situation where the function y reaches its
equilibrium value and will not change any more if t increases and so

dy

dt
= 0

The value of y for which this result holds will be a constant, which we can denote by the
letter K . This will be the particular solution to the differential equation. In this example,
given that

dy

dt
= 6y + 27

if y is constant at value K then

dy

dt
= 6K + 27 = 0

K = −4.5 (PS)

Putting this PS together with the CF already derived, the general solution will be

yt = Ae6t − 4.5 (GS)

As the initial value of y is 18 when t = 0 then (remembering that e0 = 1)

y0 = 18 = Ae0 − 4.5

18 = A− 4.5

22.5 = A

Putting this value for A into the GS gives the definite solution

yt = 22.5e6t − 4.5 (DS)

If you enter a few values for t you will see that the value of y in this function rapidly becomes
extremely large. For example, when t = 3 then

y3 = 22.5e6(3) − 4.5 = 22.5e18 − 4.5 = 22.5(65,659,969)− 4.5 = 1,477,349,303

Before we investigate the usefulness of this method for the analysis of dynamic economic
models, we will work through another example just to make sure that you understand how to
arrive at a solution.
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Example 14.16

Given the differential equation dy/dt = −1.5y + 12 derive a function for y in terms of t
given the initial value y0 = 10.

Solution

The reduced equation without the constant is

dy

dt
= −1.5y (RE)

This means that the complementary function will be

yt = Ae−1.5t (CF)

If y is assumed to equal a constant K then

dy

dt
= −1.5K + 12 = 0

giving the particular solution

K = 8 (PS)

Putting (CF) and (PS) together, the general solution is therefore

yt = Ae−1.5t + 8 (GS)

Given the initial value for y0 we can find A as

y0 = 10 = Ae0 + 8

2 = A

Putting this value for A into the GS gives the definite solution

yt = 2e−1.5t + 8 (DS)

Convergence and stability

If the solution to Example 14.16 above is used to calculate a few values of y, it can be seen that
these values converge on the equilibrium value of 8 as t gets larger, as shown in Table 14.3.

Why does this set of values differ from the pattern in Example 14.15 where the values of
yt increased exponentially? The answer is that in any differential equation with a solution in
the format

yt = Aebt + PS
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Table 14.3

t yt = 2e−1.5t + 8

0 10
1 8.44626
2 8.099574
3 8.022218
4 8.004958
5 8.001106

Table 14.4

t y = et y = e−t

0 1 1
1 2.718 0.367879
2 7.389 0.135335
3 20.086 0.049787
4 54.598 0.018316
5 148.413 0.006738
6 403.429 0.002479

it is the value of the exponent b that determines convergence or divergence.

Convergence towards the particular solution occurs if b < 0

Divergence away from the particular solution occurs if b > 0

The reason for this becomes obvious when we compare what happens to the basic exponential
functions y = et and y = e−t when t increases. As Table 14.4 illustrates, the function et

expands at an increasing rate whilst the function e−t rapidly diminishes. If any positive value
of bmultiplies t then the function will be a multiple of the expanding values in the et column
above. On the other hand, a negative value for b will mean that the function will be a multiple
of the diminishing values in the e−t column. As the CF normally shows the divergence of an
economic variable from equilibrium, if the CF diminishes towards zero then the function as
a whole approaches its equilibrium value.

Checking differential equation solutions with Excel

If you wish to check that you have derived the correct solution to a differential equation you
can use a spreadsheet to calculate a set of values. (Table 14.3 did this for an earlier example.)
Just enter a series of values for t in one column and then enter the formula for the solution
in the first cell in the next column, using the Excel EXP formula, and then copy it down the
column. For example, if the first value for t = 0 is in cell A5 then the formula to enter for
the first value of the function y = 2e−1.5t + 8 from Example 14.16 above will be:

= 2∗EXP(−1.5∗A5)+ 8

When t = 0 the formula should give the given initial value of y0 and if the exponent of e is
negative then the values of y should converge on the particular solution. If they do not then

© 1993, 2003 Mike Rosser



you may have made some mistake in your derivation of the solution and it is worth checking
through your calculations again.

Test Yourself, Exercise 14.5

For each of the differential equations below:
(a) derive the definite solution,
(b) use this solution to predict the value of y when t is 5, and
(c) say whether values of y converge or diverge as t increases.

1.
dy

dt
= 0.4y − 80 with initial value y0 = 180

2.
dy

dt
= −1.5y + 48 with initial value y0 = 12.8

3.
dy

dt
= −0.75y − 90 with initial value y0 = 100

4.
dy

dt
= 0.08y + 24 with initial value y0 = −225

14.9 Continuous adjustment of market price
Assume that in a perfectly competitive market the speed with which price P adjusts towards
its equilibrium value depends on how much excess demand there is. This is quite a reasonable
proposition. If consumers wish to purchase a lot more produce than suppliers are willing to
sell at the current price, then there will be great pressure for price to rise, but if there is only
a slight shortfall then price adjustment may be sluggish. If excess demand is negative this
means that quantity supplied exceeds quantity demanded, in which case price would tend
to fall.

To derive the differential equation that describes this process, assume that the demand and
supply functions are

Qd = a + bP and Qs = c + dP

with the parameters a, d > 0 and b, c < 0.
If r represents the rate of adjustment ofP in proportion to excess demand then we can write

dP

dt
= r(Qd −Qs)

Substituting the demand and supply functions for Qd and Qs gives

dP

dt
= r[(a + bP )− (c + dP )]
= r(a − c + bP − dP )

= r(b − d)P + r(a − c)
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As r, a, b, c and d are all constant parameters this is effectively a first-order linear differential
equation with one term in P plus a constant term. This format is similar to the ones in the
previous examples, except that it is P that changes over time rather than y, and so the same
method of solution can be employed, as the following examples illustrate.

Example 14.17

A perfectly competitive market has the demand and supply functions

Qd = 170 − 8P and Qs = −10 + 4P

When the market is out of equilibrium the rate of adjustment of price is a function of excess
demand such that

dP

dt
= 0.5(Qd −Qs)

In the initial time period price P0 is 10, which is not its equilibrium value. Derive a function
for P in terms of t , and comment on the stability of this market.

Solution

Substituting the functions for Qd and Qs into the rate of price change function gives

dP

dt
= 0.5[(170 − 8P)− (−10 + 4P)] = 0.5(−8 − 4)P + 0.5(170 + 10)

which simplifies to

dP

dt
= −6P + 90

To solve this linear first-order differential equation we first consider the reduced equation
without the constant term

dP

dt
= −6P (RE)

The complementary function that is the solution to this RE will be

Pt = Ae−6t (CF)

The particular solution is found by assuming P is equal to a constant K so that

dP

dt
= −6K + 90 = 0

K = 15 (PS)

This is the market equilibrium price. (Check this yourself using the supply and demand
functions and basic linear algebra.)
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Putting (CF) and (PS) together gives the general solution

Pt = Ae−6t + 15 (GS)

The value of A can be determined by putting the initial value of 10 for P0 into the GS. Thus

P0 = 10 = Ae0 + 15

−5 = A

Using this value forA in (GS) gives the definite solution to this differential equation, which is

Pt = −5e−6t + 15 (DS)

The coefficient of t in this exponential function is the negative number −6. This means that
the first term in (DS), i.e. the complementary function, will get closer to zero as t gets larger
and so Pt will converge on its equilibrium value of 15. This market is therefore stable.

We can check this by using the above solution to calculate Pt . For example, when

t = 2 then P2 = −5e−6(2) + 15 = −5e−12 + 15 = 14.99997

This is extremely close to the equilibrium price of 15 and so we can say that price returns to
its equilibrium value within the first few time periods in this particular market.

In other markets the rate of adjustment may not be so rapid, as the following example
demonstrates.

Example 14.18

If the demand and supply functions in a competitive market are

Qd = 50 − 0.2P Qs = −10 + 0.3P

and the rate of adjustment of price when the market is out of equilibrium is

dP

dt
= 0.4(Qd −Qs)

derive and solve the relevant difference equation to get a function for P in terms of t given
that price is 100 in time period 0. Comment on the stability of this market.

Solution

Substituting the demand and supply functions into the rate of change function gives

dP

dt
= 0.4[(50 − 0.2P)− (−10 + 0.3P)] = 0.4(−0.2 − 0.3)P + 0.4(50 + 10)

dP

dt
= −0.2P + 24

The reduced equation without the constant term is

(RE)
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The complementary function will therefore be

Pt = Ae−0.2t (CF)

To find the particular solution we assume P is equal to a constant K at the equilibrium price
and so

dP

dt
= −0.2K + 24 = 0

K = 120 (PS)

The CF and PS together give the general solution

Pt = Ae−0.2t + 120 (GS)

As price is 100 in time period 0 then

P0 = 100 = Ae0 + 120

−20 = A

and so the definite solution to this differential equation is

Pt = −20 e−0.2t + 120 (DS)

We can tell that this market is stable as the coefficient of t in the exponential function
is the negative number −0.2. However, the sample values calculated below show that the
convergence of Pt on its equilibrium value of 120 is relatively slow.

t Pt = −20 e−0.2t + 120
0 100
5 112.642

15 119.004

If a spreadsheet is used to calculate Pt for values of t from 0 to 21 and these are plotted
on a graph using the Excel Chart Wizard function, it will look like Figure 14.1. You should
note that this differs from the pattern in the cobweb model considered in Chapter 13, where
price alternated above and below its final equilibrium value by smaller and smaller amounts
if the market was stable. This time, price gradually approaches its equilibrium value from
one direction only. A similar time path will occur in other similar market models with

Excel plot of  Pt = –20e^–0.2t + 120
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Figure 14.1
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continuous price adjustment, although if the initial value is above the equilibrium then price
will, obviously, approach this equilibrium from above rather than from below.

Test Yourself, Exercise 14.6

1. If the demand and supply functions in a competitive market are

Qd = 35 − 0.5P and Qs = −4 + 0.8P

and the rate of adjustment of price when the market is out of equilibrium is

dP

dt
= 0.25(Qd −Qs)

derive and solve the relevant differential equation to get a function for P in terms
of t given that price is 37 in time period 0. Comment on the stability of this market.

2. The demand and supply functions in a competitive market are

Qd = 280 − 4P and Qs = −35 + 8P

and price is currently 19. When not at equilibrium the rate of adjustment of price is

dP

dt
= 0.08(Qd −Qs)

Derive and solve the relevant differential equation to get a function for P in terms
of t and use the solution to explain how close price will be to its equilibrium value
after seven time periods.

3. A raw commodity is traded in a market where it has been reliably estimated that

Qd = 95 − 1.8P and Qs = −12.4 + 2.1P

Its price adjusts in proportion to excess demand at the rate

dP

dt
= 0.28(Qd −Qs)

where t is measured in months. The current spot price is $29.35 a tonne. In 4
months’ time your company will need to buy a large amount of this commodity. If
someone offers you a forward contract and guarantees to supply the amount you
need at a price of $24.75 would it be worth signing this contract?

4. In a competitive market whereQd = 560−6P andQs = −46+28.7P the initial
price P0 is £50. Derive a function for the time path of P and use it to predict price
in time period 5 given that price adjusts in proportion to excess demand at the rate

dP

dt
= 0.01(Qd −Qs)

How many time periods would you have to wait for the price to drop by £20?
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5. A price of $65 per tonne is currently being quoted for a mineral traded in a
competitive commodity market whereQd = 243−3.5P andQs = −7.8+2.2P .

This price adjusts in proportion to excess demand at the rate

dP

dt
= 0.16(Qd −Qs)

What is your forecast for price when t is 8?

14.10 Continuous adjustment in a Keynesian macroeconomic model
In a basic Keynesian macroeconomic model, with no foreign trade and no government sec-
tor, total expenditure (E) will be the sum of consumer expenditure (C) and exogenously
determined investment (I ). This model can therefore be specified as

where consumption E = C + I

C = a + bY

In equilibrium E = Y

and so Y = C + I

However, this macroeconomic system may not always be in equilibrium. For example, if there
is an exogenous increase in I , it may take a while before all the knock-on multiplier effects
work through. Let us assume that the speed with which Y adjusts is directly proportional to
the difference between total expenditure E and current income Y at ratio r . This relationship
can be written as

dY

dt
= r(E − Y ) = r(C + I − Y )

= r(a + bY + I − Y )

= r(b − 1)Y + r(a + I )

As r, a, b and I are all constant this is effectively a differential equation with one term in
Y with the constant coefficient r(b − 1) plus another constant term r(a + I ). The standard
method of solution for first-order linear differential equations can therefore be employed, as
shown in the following examples.

Example 14.19

In a basic Keynesian macroeconomic model

C = 360 + 0.8Y

I = 120

When the system is out of equilibrium the rate of adjustment of Y is

dY

dt
= 0.25(E − Y ) = 0.25(C + I − Y )
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If national income is initially 2,000, derive a function for Y in terms of t and comment on
the stability of this system.

Solution

Substituting the consumption function C and the given level of investment I into the rate of
adjustment function gives the differential equation to be solved

dY

dt
= 0.25(360 + 0.8Y + 120 − Y )

= 0.25(480 − 0.2Y )

= 120 − 0.05Y

The relevant reduced equation without the constant term is

dY

dt
= −0.05Y (RE)

The corresponding complementary function will therefore be

Yt = Ae−0.05t (CF)

Assuming Y equals a constant value K in equilibrium to determine the particular solution

dY

dt
= 120 − 0.05K = 0

K = 2,400 (PS)

The CF and PS together give the general solution

Yt = Ae−0.05t + 2,400 (GS)

As Y is 2,000 in the initial time period 0 then substituting this known value into the
GS gives

Y0 = 2,000 = Ae0 + 2,400

−400 = A

The definite solution given this initial value is therefore

Yt = −400e−0.05t + 2,400 (DS)
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This market is stable because the coefficient of t in the exponential function is negative.
The convergence on the equilibrium value of 2,400 is very slow though, as the values below
illustrate.

t Yt = −400e−0.05t + 2,400
10 2157.388
20 2252.848
50 2367.166

You will also note that as t increases the values of Yt approach equilibrium from one
direction only.

Now that you are familiar with the different steps of the solution method, we will work
through another similar example, but with the initial value above the final equilibrium value.

Example 14.20

In a macroeconomic model

C = 200 + 0.75Y

E = C + I and I = 80

dY

dt
= 0.8(E − Y )

If Y0 = 1,200, derive a function for Y in terms of t and comment on the stability of this
model.

Solution

Substituting C and I for E in the rate of adjustment function gives

dY

dt
= 0.8(C + I − Y ) = 0.8(200 + 0.75Y + 80 − Y )

= 0.8(280 − 0.25Y )

= 224 − 0.2Y

To solve this differential equation we first set up the reduced equation

dY

dt
= −0.2Y (RE)

The complementary function is therefore

Yt = Ae−0.2t (CF)

Assuming Y equals a constant value K in equilibrium, the particular solution will be

dY

dt
= 224 − 0.2K = 0

K = 1,120 (PS)
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The CF and PS together give the general solution

Yt = Ae−0.2t + 1,120 (GS)

As Y is 1,200 in the initial time period 0 then

Y0 = 1,200 = Ae0 + 1,120

80 = A

The definite solution given this initial value is therefore

Yt = 80e−0.2t + 1,120 (DS)

This market is stable because the coefficient of t in the exponential function is negative.
The initial value was higher than the final equilibrium of 1,120 and so values of Y approach
equilibrium from above, as the values below illustrate.

t Yt = 80e−0.2t + 1,120
5 1149.43

10 1130.83
20 1121.47

Test Yourself, Exercise 14.7

Given thatE = C+ I , derive a function for Y in terms of t for each of the following
macroeconomic models and then use it to predict Y when t is 10.

1. C = 50 + 0.6Y and
dY

dt
= 0.5(E − Y ) given I = 22 and Y0 = 205.

2. C = 360 + 0.7Y and
dY

dt
= 0.65(E − Y ) given I = 115 and Y0 = 1520.

3. C = 275 + 0.82Y and
dY

dt
= 0.2(E − Y ) given I = 90 and Y0 = 2040.

4. C = 48 + 0.53Y and
dY

dt
= 0.48(E − Y ) given I = 18.5 and Y0 = 132.

5. C = 90 + 0.61Y and
dY

dt
= 0.45(E − Y ) given I = 45 and Y0 = 328.
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15 Matrix algebra

Learning objectives

After completing this chapter students should be able to:

• Formulate multi-variable economic models in matrix format.
• Add and subtract matrices.
• Multiply matrices by a scalar value and by another matrix.
• Calculate determinants and cofactors.
• Derive the inverse of a matrix.
• Use the matrix inverse to solve a system of simultaneous equations both manually

and using a spreadsheet.
• Derive the Hessian matrix of second-order derivatives and use it to check the

second-order conditions in an unconstrained optimization problem.
• Derive the bordered Hessian matrix and use it to check the second-order conditions

in a constrained optimization problem.

15.1 Introduction to matrices and vectors
Suppose that you are responsible for hiring cars for your company’s staff to use. The weekly
hire rates for the five different sizes of car that are available are: Compact: £139, Intermediate:
£160, Large: £205, 7-Seater People Carrier: £340 and Luxury limousine: £430. For next week
you know that your car hire requirements will be: 4 Compact, 3 Intermediate, 12 Large, 2
People Carrier and 1 Luxury limousine. How would you work out the total car hire bill?

If you worked out total expenditure as

4 × £139 + 3 × £160 + 12 × £205 + 2 × £340 + 1 × £430 = £4,606

then you would be correct. You would have also already done a matrix multiplication problem,
although you may not have realized it! Before we look at the formal theory of matrices, let
us continue with this example for a while longer.

If you know that your car hire requirements will change from week to week, it can help
make calculations clearer if the number of cars required in each category are set out in tabular
form, as in Table 15.1.
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Table 15.1

Cars required Week 1 Week 2 Week 3

Compact 4 7 2
Intermediate 3 5 5
Large 12 9 5
People carrier 2 1 3
Luxury limousine 1 1 2

The total car hire bill for each week can then be calculated by multiplying the number of
cars to be hired in each category by the corresponding price.

A matrix is defined as an array of numbers (or algebraic symbols) set out in rows and
columns. Therefore, the car hire requirements for the 3-week period in this example can be
set out as the matrix

A =




4 7 2
3 5 5

12 9 5
2 1 3
1 1 2




where each row corresponds to a size of car and each column corresponds to a week. The
usual notation system is to denote matrices by a capital letter in bold type, as for matrix A
above, and to enclose the elements of a matrix in a set of squared brackets, i.e. [ ].

Matrices may also be specified with algebraic terms instead of numbers. Each entry is
usually known as an ‘element’. The elements in each matrix must form a complete rectangle,
without any blank spaces. For example, if there are 5 rows and 3 columns there must be
3 elements in each row and 5 elements in each column. An element may be zero though.

The size of a matrix is called its ‘order’. The order is specified as:

(number of rows)× (number of columns)

For example, the matrix A above has 5 rows and 3 columns and so its order is 5 × 3.
Matrices with only one column or row are known as vectors. These are usually represented

by lower case letters, in bold. For example, the set of car rental prices we started this chapter
with can be specified (in £) as the 1 × 5 row vector

p = [
139 160 205 340 430

]
and the car hire requirements in week 1 can be specified as the 5 × 1 column vector

q =




4
3

12
2
1




Matrix addition and subtraction

Matrices that have the same order can be added together, or subtracted. The addition, or
subtraction, is performed on each of the corresponding elements.
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Example 15.1

A retailer sells two products, Q and R, in two shops A and B. The number of items sold
for the last 4 weeks in each shop are shown in the two matrices A and B below, where the
columns represent weeks and the rows correspond to products Q and R, respectively.

A =
[

5 4 12 7
10 12 9 14

]
and B =

[
8 9 3 4
8 18 21 5

]

Derive a matrix for total sales for this retailer for these two products over the last 4 weeks.

Solution

Total sales for each week will simply be the sum of the corresponding elements in matrices
A and B. For example, in week 1 the total sales of product Q will be 5 plus 8. Total combined
sales for Q and R can therefore be represented by the matrix

T = A + B =
[

5 4 12 7
10 12 9 14

]
+

[
8 9 3 4
8 18 21 5

]

=
[

5 + 8 4 + 9 12 + 3 7 + 4
10 + 8 12 + 18 9 + 21 14 + 5

]
=

[
13 13 15 11
18 30 30 19

]

An element of a matrix can be a negative number, as in the solution to the example below.

Example 15.2

If A =
[

12 30
8 15

]
and B =

[
7 35
4 8

]
what is A − B?

Solution

A − B =
[

12 30
8 15

]
−

[
7 35
4 8

]
=

[
12 − 7 30 − 35
8 − 4 15 − 8

]
=

[
5 −5
4 7

]

Scalar multiplication

There are two forms of multiplication that can be performed on matrices. A matrix can
be multiplied by a specific value, such as a number (scalar multiplication) or by another
matrix (matrix multiplication). Scalar multiplication simply involves the multiplication of
each element in a matrix by the scalar value, as in Example 15.3. Matrix multiplication is
rather more complex and is explained later, in Section 15.2.
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Example 15.3

The number of units of a product sold by a retailer for the last 2 weeks are shown in matrix
A below, where the columns represent weeks and the rows correspond to the two different
shop units that sold them.

A =
[

12 30
8 15

]

If each item sells for £4, derive a matrix for total sales revenue for this retailer for these two
shop units over this two-week period.

Solution

Total revenue is calculated by multiplying each element in matrix of sales quantities A by
the scalar value 4, the price that each unit is sold at. Thus total revenue can be represented
(in £) by the matrix

R = 4A =
[

4 × 12 4 × 30
4 × 8 4 × 15

]
=

[
48 120
32 60

]

The scalar value that a matrix is multiplied by may be an algebraic term rather than a specific
number value. For example, if the product price in Example 15.3 above was specified as p
instead of £4 then the total revenue matrix would become

R =
[

12p 30p
8p 15p

]

Scalar division works in the same way as scalar multiplication, but with each element divided
by the relevant scalar value.

Example 15.4

If the set of car rental prices in the vector p = [
139 160 205 340 430

]
includes VAT

(Value Added Tax) at 17.5% and your company can claim this tax back, what is the vector v
of prices without this tax?

Solution

First of all we need to find the scalar value used to scale down the original vector element
values. As the tax rate is 17.5% then the quoted prices will be 117.5% times the basic price.
Therefore a quoted price divided by 1.175 will be the basic price and so the vector of prices
(in £) without the tax will be

v =
(

1

1.175

)
p =

(
1

1.175

) [
139 160 205 340 430

]

=
[(

1

1.175

)
139

(
1

1.175

)
160

(
1

1.175

)
205

(
1

1.175

)
340

(
1

1.175

)
430

]

= [
118.30 136.17 174.47 289.36 365.96

]
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Test Yourself, Exercise 15.1

1. A firm uses 3 different inputs K, L and R to make two final products X and Y.
Each unit of X produced requires 2 units of K, 8 units of L and 23 units of R. Each
unit of Y produced requires 3 units of K, 5 units of L and 26 units of R. Set up
these input requirements in matrix format.

2. ‘A vector is a special form of matrix but a matrix is not a special form of vector’.
Is this statement true?

3. For the pairs of matrices below say whether it is possible to add them together and
then, where it is possible, derive the matrix C = A + B.

(a) A =
[

2 35
18 15

]
and B =

[
4 35
9 8

]

(b) A =
[

5 3
8 1

]
and B =

[
7 0 2
8 8 1

]

(c) A =




10
3

12
6
1


 and B =




4
0
2

−9
1




4. A company sells 4 products and the sales revenue (in £m.) from each product sold
through the company’s three retail outlets in a year are given in the matrix

R =

7 3 1 4

6 3 8 2.5
4 1.2 2 0




If profit earned is always 20% of sales revenue, use scalar multiplication to derive
a matrix showing profit on each product for each retail outlet.

15.2 Basic principles of matrix multiplication
If one matrix is multiplied by another matrix, the basic rule is to multiply elements along
the rows of the first matrix by the corresponding elements down the columns of the second
matrix. The easiest way to understand how this operation works is to first work through some
examples that only involve matrices with one row or column, i.e. vectors.

Returning to our car hire example, consider the two vectors

p = [
139 160 205 340 430

]
and q =




4
3

12
2
1




The row vector p contains the prices of hire cars in each category and the column vector q
contains the quantities of cars in each category that your company wishes to hire for the week.
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At the start of this chapter we worked out the total car hire bill as

139 × 4 + 160 × 3 + 205 × 12 + 340 × 2 + 430 × 1 = £4,606

In terms of these two vectors, what we have done is multiply the first element in the row
vector p by the first element in the column vector q. Then, going across the row, the second
element of p is multiplied by the second element down the column of q. The same procedure
is followed for the other elements until we get to the end of the row and the bottom of the
column.

Now consider the situation where the car hire prices are still shown by the vector

p = [
139 160 205 340 430

]
but there are now three weeks of different car hire requirements, shown by the columns of
matrix

A =




4 7 2
3 5 5

12 9 5
2 1 3
1 1 2




To calculate the total car hire bill for each of the three weeks, we need to find the vector

t = pA

This should have the order 1 × 3, as there will be one element (i.e. the bill) for each of the
three weeks. The first element of t is the bill for the first week, which we have already found
in the example above. The car hire bill for the second week is worked out using the same
method, but this time the elements across the row vector p multiply the elements down the
second column of matrix A, giving

139 × 7 + 160 × 5 + 205 × 9 + 340 × 1 + 430 × 1 = £4,388

The third element is calculated in the same manner, but working down the third column of A.
The result of this matrix multiplication exercise is therefore

t = pA = [
139 160 205 340 430

]



4 7 2
3 5 5

12 9 5
2 1 3
1 1 2




= [
4606 4388 3983

]
The above examples have shown how the basic principle of matrix multiplication involves

the elements across a row vector multiplying the elements down the columns of the matrix
being multiplied, and then summing all the products obtained. If the first matrix has more
than one row (i.e. it is not a vector) then the same procedure is followed across each row.
This means that the number of rows in the final product matrix will correspond to the number
of rows in the first matrix.
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Example 15.5

Multiply the two matrices A =
[

2 3
8 1

]
and B =

[
7 5 2
4 8 1

]

Solution

Using the method explained above, the product matrix will be

AB =
[

2 3
8 1

] [
7 5 2
4 8 1

]

=
[

2 × 7 + 3 × 4 2 × 5 + 3 × 8 2 × 2 + 3 × 1
8 × 7 + 1 × 4 8 × 5 + 1 × 8 8 × 2 + 1 × 1

]
=

[
26 34 7
60 48 17

]

You now may be wondering what happens if the number of elements along the rows of the
first matrix (or vector) does not equal the number of elements in the columns of the matrix
that it is multiplying. The answer to this question is that it is not possible to multiply two
matrices if the number of columns in the first matrix does not equal the number of rows in
the second matrix. Therefore, if a matrix A has order m× n and another matrix B has order
r× s, then the multiplication AB can only be performed if n = r , in which case the resulting
matrix C = AB will have order (m× s).

This principle is illustrated in Example 15.5 above. Matrix A has order 2 × 2 and matrix B
has order 2 × 3 and so the product matrix AB has order 2 × 3. Some other examples of how
the order of different matrices affects the order of the product matrix when they are multiplied
are given in Table 15.2.

Table 15.2

A B Order of product matrix AB

5 × 3 3 × 2 5 × 2
1 × 8 8 × 1 1 × 1
3 × 5 2 × 4 Matrix multiplication not possible
3 × 4 4 × 3 3 × 3
4 × 3 4 × 3 Matrix multiplication not possible

Test Yourself, Exercise 15.2

1. Given the vector v = [
2 5

]
and matrix A =

[
6 2
3 7

]
find the product matrix vA.

2. For the pairs of matrices below say if it is possible to derive the product matrix
C = AB and, when this is possible, calculate the elements of this product matrix.

(a) A =
[

2 10
7 15

]
and B =

[
4 2
9 8

]
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(b) A =
[

5 3
8 1

]
and B =

[
7 0 2

12 8 1

]

(c) A =




9
3

12
6
1


 and B =




4
0
2

−9
1




3. A company’s input requirements over the next four weeks for the three inputs X,
Y and Z are given (in numbers of units of each input) by the matrix

R =

2 0.5 1 7

6 3 8 2.5
4 5 2 0




The company can buy these inputs from two suppliers, whose prices for the three
inputs X, Y and Z are in given (in £) by the matrix

P =
[

4 6 2
5 8 1

]

where the two rows represent the suppliers and the three columns represent the
input prices. Use matrix multiplication to derive a matrix that will give the total
input bill for the next four weeks for both suppliers.

15.3 Matrix multiplication – the general case
Now that the basic principles have been explained with some straightforward examples, we
can set out a general formula for matrix multiplication that can be applied to more complex
matrix multiplication exercises. The general m × n matrix with any number of rows m and
columns n can be written as

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn




For each element aij the subscript i denotes the row number and the subscript j denotes the
column number. For example

a11 = element in row 1, column 1

a12 = element in row 1, column 2

a1n = element in row 1, column n

amn = element in row m, column n
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If this generalm× nmatrix A multiplies the general n× r matrix B then the product will be
the m× r matrix C. Thus we can write

AB =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn






b11 b12 · · · b1r

b21 b22 · · · b2r
...

...
...

...

bn1 bn2 · · · bnr




=



c11 c12 · · · · · · c1r

c21 c22 · · · · · · c2r
...

...
...

...
...

cm1 cm2 · · · · · · cmr


 = C

where

c11 = a11b11 + a12b21 + · · · + a1nbn1

c12 = a11b12 + a12b22 + · · · + a1nbn2

...
...

...
...

cmr = am1b1r + am2b2r + · · · + amnbnr

Example 15.6

Find the product matrix C = AB when

A =

4 2 12

6 0 20
1 8 5


 and B =


10 0.5 1 7

6 3 8 2.5
4 4 2 0




Solution

Using the general matrix multiplication formula, the elements of the first two rows of the
product matrix C can be calculated as:

c11 = 4 × 10 + 2 × 6 + 12 × 4 = 40 + 12 + 48 = 100

c12 = 4 × 0.5 + 2 × 3 + 12 × 4 = 2 + 6 + 48 = 56

c13 = 4 × 1 + 2 × 8 + 12 × 2 = 4 + 16 + 24 = 44

c14 = 4 × 7 + 2 × 2.5 + 12 × 0 = 28 + 5 + 0 = 33

c21 = 6 × 10 + 0 × 6 + 20 × 4 = 60 + 0 + 80 = 140

c22 = 6 × 0.5 + 0 × 3 + 20 × 4 = 3 + 0 + 80 = 83

c23 = 6 × 1 + 0 × 8 + 20 × 2 = 6 + 0 + 40 = 46

c24 = 6 × 7 + 0 × 2.5 + 20 × 0 = 42 + 0 + 0 = 42
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Now try and calculate the elements of the final row yourself. You should get the values

c31 = 78, c32 = 44.5, c33 = 75, c34 = 27

The complete product matrix will therefore be

C = AB =

100 56 44 33

140 83 46 42
78 44.5 75 27




Although the calculations for matrix multiplication of small matrices can be done manually
fairly quickly, it is now becoming obvious that for large matrices the calculations will be very
tedious and time-consuming. Several economics applications involving matrix multiplication
do not actually require you to calculate all the elements of the product matrix. For occasions
when you do need to calculate all these elements, an Excel spreadsheet can be used.

Using Excel for matrix multiplication

The best way to explain how to use the Excel MMULT formula to multiply two matrices A
and B is to work through an example.

Example 15.7

Given the two matrices

A =
[

8 4 3
4 5 6

]
and B =


0.8 0.3 0.1

0.5 0.2 0.4
0.3 0.2 0.1




find the product matrix AB using an Excel spreadsheet.

Solution

(a) Enter the values of matrices A and B on a spreadsheet. For example, put the elements
of A in cells (A2; C3) and the elements of B in cells (E2; G4). You can also enter labels
for the matrix names in the rows of cells above.

(b) Highlight the cells where you want the calculated AB matrix to go. Since the order of A
is 2 × 3 and the order of B is 3 × 3 the product matrix AB must have order 2 × 3. You
therefore need to highlight a block of cells with 2 rows and 3 columns, such as (A6; C7).

(c) With this cell range still highlighted, enter the formula = MMULT(A2;C3,E2;G4) or
use whatever cells range applies for your matrices to be multiplied, or use mouse to mark
out matrices to be multiplied with dotted lines.

(d) Hold down the CNTRL and SHIFT keys together and press ENTER (if you do not do
this then the formula will not treat all the highlighted cells as part of an array, i.e. a
matrix).

Your spreadsheet and the computed product matrix AB should now be as shown in Table 15.3.
In the simple example above you can check the answers manually. However, once you are

satisfied that you can use the Excel MMULT formula properly then you can use it for more
complex examples where manual computation would be too time-consuming.
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Table 15.3

A B C D E F G H 
1 Matrix A Matrix B 
2 8 4 3 0.8 0.3 0.1 
3 4 5 6 0.5 0.2 0.4 
4 0.3 0.2 0.1 
5 Matrix AB 
6 9 3.8 2.7 
7 8 3.4 3 

Table 15.4

A B C D E F G H I J K L M N O 
1 Matrix A Matrix B 
2 120 160 195 220 285 350 8 9 10 11 12 14 3 2 
3 125 165 200 225 290 355 12 13 14 15 16 9 12 5 
4 130 170 205 230 150 360 4 5 6 5 6 9 3 7 
5 135 175 210 235 200 380 8 9 10 11 12 3 3 4 
6 140 180 215 240 110 500 5 6 7 0 3 0 2 3 
7 2 3 4 1 4 1 2 0 
8 Product 
9 Matrix AB

10 7545 8875 10205 7465 10065 5885 4795 4140
11 7740 9100 10460 7680 10330 6065 4920 4245
12 7210 8455 9700 7895 10160 6245 4755 3915
13 7660 8995 10330 8125 10620 6440 5000 4155
14 7610 8995 10380 8455 11060 6735 5165 3975

Example 15.8

In the spreadsheet in Table 15.4, the MMULT formula has been used to multiply the 5 × 6
matrix A by the 6 × 8 matrix B to get the 5 × 8 product matrix AB. Try entering the matrices
A and B yourself and see if you can use the Excel MMULT formula to get the same product
matrix AB.

Vectors of coefficients

In economic models it is common to specify one dependent variable as a function of a
vector of explanatory variables, especially when employing econometric analysis to esti-
mate coefficients of these explanatory variables. A typical vector format for a function is
q = βx where β is the vector of coefficients for the exogenous explanatory variables in
vector x.

For example, assume that the demand for oil in time t is the linear function

qt = β0 + β1x
t
1 + β2x

t
2 + β3x

t
3 + β4x

t
4 + β5x

t
5
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where the superscript t denotes the time period (rather than an exponent) for all variables and

x1 = price of oil

x2 = average income

x3 = price of substitute fuel

x4 = price of complement (e.g. cars)

x5 = population

This linear demand function for oil in time period t may be specified in vector format as

qt = βxt = [
β0 β1 β2 β3 β4 β5

]



1
xt1
xt2
xt3
xt4
xt5




Note that, although the are five independent explanatory variables in this economic model,
the vector of coefficients β has the order 1 × 6 because there is also a constant term, β0. The
vector of values of the explanatory variables also has 6 elements and thus takes the order
6 × 1. However, because it multiplies the constant, the first element in the column remains
as 1 even though the values of other elements (i.e. the explanatory variables) may change for
different time periods. The actual values of the coefficients β0, β1, β2, etc. will be estimated
by a method such as Ordinary Least Squares, which you should come across in your statistics
or econometrics modules.

As vector β has the order 1 × 6 and the vector of values of the explanatory variables x has
the order 6 × 1 then the product matrix βx will have the order 1 × 1. This means that it will
contain the single element qt which is the predicted output.

Example 15.9

Assume that the demand for oil (in millions of barrels) can be explained by the model q = βx
and the vector of coefficients of the explanatory variables has been reliably estimated as

β = [
β0 β1 β2 β3 β4 β5

] = [
4.2 −0.1 0.4 0.2 −0.1 0.2

]
Calculate the demand for oil when the vector of explanatory variables is

x =




1
xt1

xt2

xt3

xt4

xt5




=




Constant
Price

Income

Price of substitute

Price of complement

Population (in m.)




=




1
30

18.5
52

12.8
61



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Solution

The demand for oil is calculated as

q = βx = [
4.2 −0.1 0.4 0.2 −0.1 0.2

]



1
30

18.5
52

12.8
61




= [29.92]

Thus the answer is 29.92 million barrels.
You can check the calculations for arriving at this answer manually or using Excel.

Test Yourself, Exercise 15.3

1. For each of the pairs of matrices A and B below use an Excel spreadsheet to find
the product matrix AB.

(a) A =
[

4 1 3
9 8 2

]
and B =


 2 10 2

5 5 8
1.5 0 1




(b) A =

7 10 3

9 5 2
4 0 5


 and B =


11 2.5 1 4

5 5 8 0
3 0 1 4




(c) A =




45 34 4 8
6 7 22 10

70 3 90 5
2 2 0 23

−6 5 3 9


 and B =




2 5 3 4 32 65
9 5 0 0 9 2
8 46 1 7 85 31
4 0 20 24 3 8




2. The demand for good G depends on a vector of four explanatory variables x.
There is a linear relationship, including a constant term, between these explanatory
variables and g, the amount of good G demanded such that g = βx where β is the
vector of coefficients

β = ⌊
β0 β1 β2 β3 β4

⌋ = [
36 −0.4 0.02 1.2 0.3

]
Calculate the demand for good G when the vector of values of the explanatory
variables is

x =




1
14
8

82.5
3.2


 where the element x1 refers to the constant
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15.4 The matrix inverse and the solution of
simultaneous equations

The concept of ‘matrix division’ is approached in matrix algebra by deriving the inverse of
a matrix. One reason for wanting to find a matrix inverse is because it can be used to help
solve a set of simultaneous equations specified in matrix format. For example, consider the
set of four simultaneous equations:

3x1 + 8x2 + x3 + 2x4 = 96

20x1 − 2x2 + 4x3 + 0.5x4 = 69

11x1 + 3x2 + 3x3 − 5x4 = 75

x1 + 12x2 + x3 + 8x4 = 134

These equations can be represented in matrix format by putting:

• the coefficients of the four unknown variables x1, x2, x3 and x4 into a 4 × 4 matrix A
• the four unknown variables themselves into a 4 × 1 vector x
• the constant terms from the right-hand side of the equations into the 4 × 1 vector b.

These can be written as

Ax =




3 8 1 2
20 −2 4 0.5
11 3 3 −5
1 12 1 8






x1

x2

x3

x4


 =




96
69
75

134


 = b

If this is not immediately obvious to you, try working through the matrix multiplication
process to get the product matrix Ax. Working across the rows of A, each element multiplies
the elements down the vector of unknown variables x1, x2, x3 and x4. If you write out the
calculations in full for the four elements of the product matrix Ax and equate to the corres-
ponding element in vector b, then you should get the same set of simultaneous equations.
For example, multiplying the elements across the first row of A by the elements down the
column vector x gives the first element of Ax as

3x1 + 8x2 + x3 + 2x4

so setting this equal to the first element of the product vector b, which is 96, gives us the first
of our set of simultaneous equations.

You could of course, solve this set of simultaneous equations by the standard row operations
method but there are certain advantages from using the matrix method, as you will find out
later on.

The same matrix format as that derived above can be used for the general case. Assume
that there are n unknown variables x1, x2, . . . , xn and n constant values b1, b2, b3, . . . , bn
such that

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

an1x1 + an2x2 + · · · + annxn = bn
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This system of n simultaneous equations with n unknowns can be written in matrix format
as Ax = b, where A is the n× n matrix of coefficients

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann




and x is the vector of unknown variables x =



x1

x2
...
xn




and b is the vector of constant parameters b =



b1

b2
...
bn




How does this specification of the set of simultaneous equations in the matrix format
Ax = b help us to solve for the unknown variables in x? If x andAwere single terms, instead
of vectors and matrices, and Ax = b then basic algebra would suggest that x could be found
by simply re-specifying the equation as x = A−1b. The same logic is used when x, A and b
are matrices and we try to find x = A−1b.

The derivation of the matrix inverse A−1 is, however, a rather involved procedure and it is
explained over the next few sections in this chapter. There is no denying that some students
will find it hard work ploughing through the analysis. It is worth it, though, because you will
learn:

• How to solve large sets of simultaneous equations in a few seconds by using matrix
inversion on a spreadsheet.

• How to use a set of tools that will be invaluable in the analysis of economic models
with more than two variables, particularly when checking the second-order conditions
of optimization problems.

Conditions for the existence of the matrix inverse

In Chapter 5, it was explained that in a system of linear simultaneous equations the basic
rule for a unique solution to exist is that the number of unknowns must equal the number
of equations, and linear dependence between equations must not be present. As long as
these conditions hold then matrix analysis can be used to solve for any number of unknown
variables. Since the number of unknown variables must equal the number of equations the
matrix of coefficients A must be square, i.e. the number of rows equals the number of columns.
Also, if we know the values for A and b and wish to find x using the formula x = A−1b
then we first have to establish whether the inverse matrix A−1 can actually be determined,
because in some circumstances it may not exist.

Before we can define what we mean by the inverse of a matrix we need to introduce
the concept of the identity matrix. This is any square matrix with each element along the
diagonal (from top left to bottom right) being equal to 1 and with all other elements being
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zero. For example, the 3 × 3 identity matrix is

I =

1 0 0

0 1 0
0 0 1




This identity matrix is the matrix equivalent to the number ‘1’ in standard mathemat-
ics. Any matrix multiplied by the identity matrix will give the original matrix. For
example

7 2 3
4 8 1
5 12 4





1 0 0

0 1 0
0 0 1


 =


7 2 3

4 8 1
5 12 4




Therefore, a matrix A can be inverted if there exists an inverse A−1 such that A−1A = I, the
identity matrix.

Using this definition we can now see that if

Ax = b

multiplying both sides by A−1 gives

A−1Ax = A−1b

Since A−1A = I this means that

Ix = A−1b

As any matrix or vector multiplied by the identity matrix gives the same matrix or vector then

x = A−1b

There are several instances when the inverse of a matrix may not exist:
Firstly, the zero, or null matrix, which has all its elements equal to zero. There are

zero matrices corresponding to each possible order. For example, the 2 × 2 zero matrix
will be

0 =
[

0 0
0 0

]

Just as it is not possible to determine the inverse of zero in basic arithmetic, the inverse of the
zero matrix 0 cannot be calculated. However, if we were trying to solve a set of simultaneous
equations, we would be unlikely to start of with a matrix of coefficients that were all zero as
this would not tell us very much!

Secondly, linear dependence of two or more rows (or columns) of a matrix will prevent its
inverse being calculated. Linear dependency means that all the terms in one row (or column)
are the same scalar multiple of the corresponding elements in another row (or column). The
reason for this will become obvious when we have worked through the method for finding
the inverse, but we can illustrate the problem with a simple example.

Consider the two simultaneous equations

8x + 10y = 120 (1)

4x + 5y = 60 (2)
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All the values of (2) are 0.5 of the values in (1). Clearly this pair of simultaneous equations
cannot be solved by row operations to find the unknowns x and y. If (2) was multiplied by 2
and subtracted from (1) then we would end up with zero on both sides of the equation, which
does not tell us anything. This linear dependency would also lead us down the same dead end
if we tried to solve using the matrix inverse.

To actually find the inverse of a matrix, we first need to consider some special concepts
associated with square matrices, namely:

• The Determinant
• Minors
• Cofactors
• The Adjoint Matrix

These are explained in the following sections.

Test Yourself, Exercise 15.4

1. Identify which of the following sets of simultaneous equations may be suitable
for solving by matrix algebra and then put them in appropriate matrix format:

(a) 5x + 4y + 9z = 95 (b) 6x + 4y + 8z = 56
2x + y + 4z = 32 3x + 2y + 4z = 28
2x + 5y + 4z = 61 x − 8y + 2z = 34

(c) 5x + 4y + 2z = 95 (d) 12x + 2y + 3z = 124
9x + 4y = 32 6x + 7y + z = 42
2x + 4y + 4z = 61

2. Which of the following are identity matrices?

(a)

[
1 1
1 1

]
(b) [1] (c)

[
1 0
0 1

]
(d)

[
0 1
1 0

]
(e)


1 0

0 1
1 0




3. Are there obvious reasons why it may not be possible to derive an inverse for any
of the matrices below?

(a)

[
8 6
3 1

]
(b)


8 1

4 5
7 3


 (c)

[
4 2
2 1

]
(d)

[
9 9
1 0

]
(e)


 5 11 0

−2 4 0.2
0 −5 1




15.5 Determinants
For a 2nd order matrix (i.e. order 2 × 2) the determinant is a number calculated by multiplying
the elements in opposite corners and subtracting. The usual notation for a determinant is a set
of vertical parallel lines either side of the array of elements, instead of the squared brackets
used for a matrix. The determinant of the general 2 × 2 matrix A, written as |A|, will
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therefore be:

|A| =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

Example 15.10

Find the determinant of the matrix A =
[

5 7
4 9

]

Solution

Using the formula defined above, the determinant of matrix A will be

|A| =
∣∣∣∣5 7
4 9

∣∣∣∣ = 5 × 9 − 7 × 4 = 45 − 28 = 17

If any sets of rows or columns of a matrix are linearly dependent then the determinant will
be zero and we have what is known as a singular matrix. For example, if the second row is
twice the value of the corresponding element in the first row and

A =
[

5 8
10 16

]

then the determinant

|A| =
∣∣∣∣ 5 8
10 16

∣∣∣∣ = 5 × 16 − 8 × 10 = 80 − 80 = 0

The formula for the matrix inverse (which we will derive later) involves division by the
determinant. Therefore, a condition for the inverse of a matrix to exist is that the matrix must
be non-singular, i.e. the determinant must not be zero. This condition applies to determinants
of any order.

The determinant of a 3rd order matrix

For the general 3rd order matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33




the determinant |A| can be calculated as

|A| = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
This entails multiplying each of the elements in the first row by the determinant of the matrix
remaining when the corresponding row and column are deleted. For example, the element
a11 is multiplied by the determinant of the matrix remaining when row 1 and column 1 are
deleted from the original 3 × 3 matrix. If we start from a11 then, as we use this method for
each element across the row, the sign of each term will be positive and negative alternately.
Thus the second term has a negative sign.
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Example 15.11

Derive the determinant of matrix A =

4 6 1

2 5 2
9 0 4




Solution

Expanding across the first row using the above formula, the determinant will be

|A| = 4

∣∣∣∣5 2
0 4

∣∣∣∣ − 6

∣∣∣∣2 2
9 4

∣∣∣∣ +
∣∣∣∣2 5
9 0

∣∣∣∣
= 4(20 − 0)− 6(8 − 18)+ (0 − 45) = 80 + 60 − 45 = 95

Although the determinants of the 3rd order matrices above were found by expanding along the
first row, they could also have been found by expanding along any other row or column. The
same principle of multiplying each element along the expansion row (or down the expansion
column) by the determinant of the matrix remaining when the corresponding row and column
are deleted from the original matrix A is employed. This can help make the calculations easier
if it is possible to expand along a row or column with one or more elements equal to zero, as
in the example below.

However, there are rules regarding the sign of each term, which must be followed. These are
explained for the general case in the next section. For a 3rd order determinant it is sufficient
to remember that the first term will be positive if you expand along the 1st or 3rd row or
column and the first term will be negative if you expand along the 2nd row or column. The
signs of the subsequent terms in the expansion will then alternate.

For example, another way of finding the determinant of the matrix in Example 15.11
above is to expand along the 3rd row, which includes a zero and will therefore require less
calculation.

Example 15.11 (reworked)

Derive the determinant of matrix A =

4 6 1

2 5 2
9 0 4


 by expanding along the 3rd row.

Solution

Expanding across the 3rd row, the first term will have a positive sign and so

|A| = 9

∣∣∣∣6 1
5 2

∣∣∣∣ − 0

∣∣∣∣4 1
2 2

∣∣∣∣ + 4

∣∣∣∣4 6
2 5

∣∣∣∣
= 9(12 − 5)− 0 + 4(20 − 12) = 63 + 32 = 95
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Test Yourself, Exercise 15.5

1. Evaluate the following determinants:

|A| =
∣∣∣∣8 2
3 1

∣∣∣∣ |B| =
∣∣∣∣30 12
10 4

∣∣∣∣ |C| =
∣∣∣∣ 5 8
−7 0

∣∣∣∣
|D| =

∣∣∣∣∣∣
2 5 9
4 8 3
1 7 4

∣∣∣∣∣∣ |E| =
∣∣∣∣∣∣

4 3 10
7 0 3

12 2 5

∣∣∣∣∣∣

15.6 Minors, cofactors and the Laplace expansion
The Laplace expansion is a method that can be used to evaluate determinants of any order.
Before explaining this method, we need to define a few more concepts (some of which we
have actually already started using).

Minors

The minor |Mij | of matrix A is the determinant of the matrix left when row i and column j
have been deleted.

For example, if the first row and first column are deleted from matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33




the determinant of the remaining matrix will be the minor

|M11| =
∣∣∣∣a22 a23

a32 a33

∣∣∣∣

Example 15.12

Find the minor |M31| of the matrix A =

8 2 3

1 9 4
4 3 6




Solution

The minor |M31| is the determinant of the matrix remaining when the 3rd row and 1st column
have been eliminated from matrix A. Therefore

|M31| =
∣∣∣∣2 3
9 4

∣∣∣∣ = 8 − 27 = −19
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Using this definition of a minor, the formula for the determinant of a 3rd order matrix expanded
across the first row could specified as

|A| = a11|M11| − a12|M12| + a13|M13|

Cofactors

A cofactor is the same as a minor, except that its sign is determined by the row and column
that it corresponds to. The sign of cofactor |Cij | is equal to (−1)i+j . Thus if the row number
and column number sum to an odd number, the sign will be negative. For example, to derive
the cofactor |C12| for the general 3rd order matrix A we eliminate the 1st row and the 2nd
column and then, since i + j = 3 , we multiply the determinant of the elements that remain
by (−1)3. Therefore

|C12| = (−1)3
∣∣∣∣a21 a23

a31 a33

∣∣∣∣ = (−1)

∣∣∣∣a21 a23

a31 a33

∣∣∣∣

Example 15.13

Find the cofactor |C22| of the matrix A =

8 2 3

1 9 4
4 3 6




Solution

The cofactor |C22| is the determinant of the matrix remaining when the 2nd row and 2nd
column have been eliminated. It will have the sign (−1)4 since i + j = 4. The solution is
therefore

|C22| = (−1)4
∣∣∣∣8 3
4 6

∣∣∣∣ = (+1)(48 − 12) = 36

The determinant of a 3rd order matrix in terms of its cofactors, expanded across the first row,
can now be specified as

|A| = a11|C11| + a12|C12| + a13|C13| (1)

Although this looks very similar to the formula for |A| in terms of its minors, set out above,
you should note that the sign of the second term is positive. This is because the cofactor itself
will have a negative sign.

The Laplace expansion

For matrices of any order n, using the Laplace expansion, the determinant can specified as

|A| =
i,j=n∑
i,j=1

aij
∣∣Cij

∣∣
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where the summation from 1 to n can take place across the rows (i) or down the columns
(j ). If you check the formula (1) above for determinant of a 3rd order matrix in terms of its
cofactors, you will see that this employs the Laplace expansion.

If the original matrix is 4th order or greater, then the first set of cofactors derived by
using the Laplace expansion will themselves be 3rd order or greater. Therefore, the Laplace
expansion has to be used again to break these cofactors down. This process needs to continue
until the determinant is specified in terms of 2nd order cofactors which can then be evaluated.

With larger determinants this method can involve quite a lot of calculations and so it is
usually quicker to use a spreadsheet for numerical examples. But first let us work through
an example by doing the calculations manually to make sure that you understand how this
method works.

Example 15.14

Use the Laplace expansion to find the determinant of matrix A =




8 10 2 3
0 5 7 10
2 2 1 4
3 4 4 0




Solution

Expanding down the first column (because there is a zero which means one less set of
calculations), the first round of the Laplace expansion gives

|A| = 8

∣∣∣∣∣∣
5 7 10
2 1 4
4 4 0

∣∣∣∣∣∣ − 0

∣∣∣∣∣∣
10 2 3
2 1 4
4 4 0

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
10 2 3
5 7 10
4 4 0

∣∣∣∣∣∣ − 3

∣∣∣∣∣∣
10 2 3
5 7 10
2 1 4

∣∣∣∣∣∣
A second round of the Laplace expansion is then used to break these 3rd order cofactors

down into 2nd order cofactors that can be evaluated. The second term is zero and disappears
and so this gives

|A| = 8

(
5

∣∣∣∣1 4
4 0

∣∣∣∣ − 2

∣∣∣∣7 10
4 0

∣∣∣∣ + 4

∣∣∣∣7 10
1 4

∣∣∣∣
)

+ 2

(
10

∣∣∣∣7 10
4 0

∣∣∣∣ − 5

∣∣∣∣2 3
4 0

∣∣∣∣ + 4

∣∣∣∣2 3
7 10

∣∣∣∣
)

− 3

(
10

∣∣∣∣7 10
1 4

∣∣∣∣ − 5

∣∣∣∣2 3
1 4

∣∣∣∣ + 2

∣∣∣∣2 3
7 10

∣∣∣∣
)

= 8[5(−16)− 2(−40)+ 4(18)] + 2[10(−40)− 5(−12)+ 4(−1)]
− 3[10(18)− 5(5)+ 2(−1)]

= 8[−80 + 80 + 72] + 2[−400 + 60 − 4] − 3[180 − 25 − 2]
= 8(72)+ 2(−344)− 3(153)

= 576 − 688 − 459

= −571
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Using Excel to evaluate determinants

It is very straightforward to use the Excel function MDETERM to evaluate determinants.
Just type in the matrix that you want the determinant for and then, in the cell where you want
the value of the determinant to appear, enter

=MDETERM (cell range for matrix)

The range can either be marked out by holding the left mouse key down after you have typed
the first bracket in the formula (and will be enclosed by dotted lines) or you can just type
in the cell range. For example, if you had entered the 4 × 4 matrix from Example 15.14
above in cells B2 to E5 and you wanted the determinant to appear in cell G2 you would type
= MDETERM (B2:E5) in cell G2.

Test Yourself, Exercise 15.6

1. For the matrix A =

5 0 4

8 3 6
2 7 1


 evaluate the following minors and cofactors:

(a) |M11| (b) |M33| (c) |M12| (d) |C21| (e) |C13| (f) |C12|
2. Manually calculate the values of the determinants of following matrices and then

check your answers using Excel:

A =




2 6 2 3
10 5 7 25
0 2 1 5
4 −3 4 9


 B =




8 6 2 1
3 8 7 −4
0 −2 1 5
4 3 3 2


 C =




1 5 2 1 0
6 1 0 −4 3
0 4 7 2 1
9 2 3 2 2
0 4 8 0 6




15.7 The transpose matrix, the cofactor matrix, the adjoint
and the matrix inverse formula

There are still a few more concepts that are needed before we can determine the inverse of a
matrix.

The transpose of a matrix

To get the transpose of a matrix, usually written as AT, the rows and columns are swapped
around, i.e. row 1 becomes column 1 and column 1 becomes row 1, etc. If a matrix is not
square then the numbers of rows and columns will alter when it is transposed.

For example, if A =

 5 20

16 9
12 6


 then AT =

[
5 16 12

20 9 6

]
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The cofactor matrix

If we replace every element in a matrix by its corresponding cofactor then we get the cofactor
matrix, usually denoted by C.

For example if A =

2 4 3

3 5 0
4 2 5


 then C =


 25 −15 −12

−14 −2 12
−15 9 −2




To make sure you understand how these numbers were calculated, let us work through some
of them. The cofactor |Cij | of matrix A is the determinant of the matrix remaining when row i
and column j have been eliminated, with the sign (−1)i+j . Thus, some selected elements of
the cofactor matrix are

c11 = |C11| = (−1)(1+1)
∣∣∣∣a22 a23

a32 a33

∣∣∣∣ = (−1)2
∣∣∣∣5 0
2 5

∣∣∣∣ = (25 − 0) = 25

c21 = |C21| = (−1)(2+1)
∣∣∣∣a12 a13

a32 a33

∣∣∣∣ = (−1)3
∣∣∣∣4 3
2 5

∣∣∣∣ = (−1)(20 − 6) = −14

Check for yourself the calculation of some of the other elements of C.

The adjoint matrix

The adjoint matrix, usually denoted by AdjA, is the transpose of the cofactor matrix,

Thus if A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


 then AdjA =


|C11| |C21| |C31|

|C12| |C22| |C32|
|C13| |C23| |C33|




Using the cofactor example above, we have already shown that for

matrix A =

2 4 3

3 5 0
4 2 5


 the cofactor matrix is C =


 25 −15 −12

−14 −2 12
−15 9 −2




Therefore the adjoint matrix will be AdjA = CT =

 25 −14 −15

−15 −2 9
−12 12 −2




The inverse matrix

The formula for A−1, the inverse of matrix A, can now be stated as

A−1 = AdjA
|A|

as long as the determinant |A| is non-singular, i.e. it must not be zero.

Example 15.15

Find the inverse matrix A−1 for matrix A =

2 4 3

3 5 0
4 2 5



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Solution

We have already determined the adjoint for this particular matrix in the example above. Its
determinant |A| can be evaluated by expanding down the 3rd column as

|A| = 3

∣∣∣∣3 5
4 2

∣∣∣∣ − 0 + 5

∣∣∣∣2 4
3 5

∣∣∣∣
= 3(6 − 20)+ 5(10 − 12)

= 3(−14)+ 5(−2)

= −42 − 10 = −52

Therefore, given that we already know that AdjA =

 25 −14 −15

−15 −2 9
−12 12 −2




the inverse matrix will be

A−1 = AdjA
|A| =


 25 −14 −15

−15 −2 9
−12 12 −2




−52
=


−0.48 0.27 0.29

0.29 0.04 −0.17
0.27 −0.23 0.04




The derivation of this matrix inverse has been quite long and time-consuming, but you
need to understand this underlying method before learning how to do the calculations on
a spreadsheet. However, first let us work through another example from first principles to
make sure that you understand each stage of the analysis. This time we will start with a 2 × 2
matrix.

Example 15.16

Find the inverse matrix A−1 for matrix A =
[

20 5
6 2

]

Solution

Because there are only four elements, the cofactor corresponding to each element of A will
just be the element in the opposite corner, with the sign (−1)i+j . Therefore, the corresponding
cofactor matrix will be

C =
[

2 −6
−5 20

]

The adjoint is the transpose of the cofactor matrix and so

AdjA =
[

2 −5
−6 20

]

The determinant of the original matrix A is easily calculated as

|A| = 20 × 2 − 5 × 6 = 40 − 30 = 10
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The inverse matrix is thus

A−1 = AdjA
|A| =

[
2 −5

−6 20

]
10

=
[

0.2 −0.5
−0.6 2

]

Derivation of the matrix inverse formula

You can just take the above formula for the matrix inverse as given and there is no need for
you to work through the proof of this result for the general case. However, we can show how
the inverse formula can be derived for the case of a 2 × 2 matrix.

Assume that we wish to invert the matrix A =
[
a b

c d

]

This inverse can be specified as A−1=
[
e f

g h

]

where e, f, g and h are numbers that the inverse formula will calculate.
Multiplying a square non-singular matrix by its inverse will give the identity matrix. Thus

AA−1 =
[
a b

c d

] [
e f

g h

]
=

[
ae + bg af + bh

ce + dg cf + dh

]
=

[
1 0
0 1

]
= I

From the calculations for each of the elements of I we get the four simultaneous equations

ae + bg = 1 (1)

af + bh = 0 (2)

ce + dg = 0 (3)

cf + dh = 1 (4)

The values of the elements of the inverse matrix e, f, g and h in terms of the values of the
elements of the original matrix can now be solved by the substitution method.

From (1)

ae = 1 − bg

and so

e = (1 − bg)

a
(5)

Substituting the result (5) into (3) gives

c(1 − bg)

a
+ dg = 0

c − cbg + dga = 0

g(ad − bc) = −c
g = −c

ad − bc
(6)
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Substituting the expression for g in (6) into (5) gives

e =
(

1 − b(−c)
ad − bc

)
1

a
=

(
ad − bc + bc

ad − bc

)
1

a
=

(
ad

ad − bc

)
1

a
= d

ad − bc
(7)

Using the same substitution method, you can check for yourself that the other two elements
of the inverse matrix will be

f = −b
ad − bc

(8)

and

h = a

ad − bc
(9)

Since the values for e, f, g and h that are derived in (6), (7), (8) and (9) all contain the same
term 1

ad−bc this can be written as a scalar multiplier so that

A−1 =
[
e f

g h

]
= 1

ad − bc

[
d −b

−c a

]
(10)

This checks out with the general inverse formula since for matrix A =
[
a b

c d

]
The determinant is |A| = ad − bc

The cofactor matrix C =
[
d −c

−b a

]
and so the adjoint is AdjA =

[
d −b

−c a

]
Substituting these results into (10) gives the inverse formula

A−1 = AdjA
|A|

Using Excel for matrix inversion

Although you need to understand the rationale behind the matrix inversion process, for any
actual computations involving a 3rd order or larger matrix, it is quicker to use Excel rather
than do the calculations manually.

To invert a matrix using the Excel MINVERSE formula:

• Enter the matrix that you wish to invert.
• Highlight cells where inverted matrix will go (same dimension as original matrix).
• Enter in formula bar at top of screen:

=MINVERSE (cell range of matrix to be inverted)

instead of entering actual cell references for the matrix to be inverted, if you prefer you
can use the mouse to mark out the matrix to be inverted. Do this after you have typed in
the left bracket in the formula bar and then, when the required area is enclosed within
the dotted lines, type in the right bracket.

• Hold down the Ctrl and Shift keys together and press ENTER. The programme will put
curved brackets { } round the formula automatically and the inverted matrix should be
calculated in the cells that you have chosen.
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Test Yourself, Exercise 15.7

1. Derive the inverse matrix A−1 when A =
[

25 15
10 8

]

2. For the matrix A =

5 0 2

3 4 5
2 1 2


 derive the cofactor matrix C, the adjoint

matrix AdjA and the inverse matrix A−1 by manual calculation.
3. Use Excel to derive the matrix inverse A−1 for

A =




4 6 2 3
10 5 7 20
0 2 1 5
4 −3 4 12




15.8 Application of the matrix inverse to the solution of
linear simultaneous equations

Although small sets of linear equations can be solved by other algebraic techniques, e.g.
row operations, we will work through a simple example here to illustrate how the matrix
method works before explaining how larger sets of linear equations can be solved using
Excel.

Example 15.17

Use matrix algebra to solve for the unknown variables x1, x2 and x3 given that

10x1+3x2 + 6x3 = 76

4x1 + 5x3 = 41

5x1 +2x2 + 2x3 = 34

Solution

This set of simultaneous equations can be set up in matrix format as Ax = b where

Ax =

10 3 6

4 0 5
5 2 2





x1

x2

x3


 =


76

41
34


 = b

To derive the vector of unknowns x using the matrix formulation x = A−1b we first
have to derive the matrix inverse A−1. The first step is to derive the cofactor matrix,
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which will be

C =

 (0 − 10) −(8 − 25) (8 − 0)

−(6 − 12) (20 − 30) −(20 − 15)
(15 − 0) −(50 − 24) (0 − 12)


 =


−10 17 8

6 −10 −5
15 −26 −12




The adjoint matrix will be the transpose of the cofactor matrix and so

AdjA = CT =

−10 6 15

17 −10 −26
8 −5 −12




The determinant of A, expanding along the second row, will be

|A| =
∣∣∣∣∣∣
10 3 6
4 0 5
5 2 2

∣∣∣∣∣∣ = −4(6 − 12)+ 0 − 5(20 − 15) = 24 − 25 = −1

The matrix inverse will therefore be

A−1 = AdjA
|A| =


−10 6 15

17 10 −26
8 −5 −12




−1
=


 10 −6 −15

−17 10 26
−8 5 12




To solve for the vector of unknowns x we calculate

x = A−1b =

 10 −6 −15

−17 10 26
−8 5 12





76

41
34


 =


 (10 × 76)− (6 × 41)− (15 × 34)
(−17 × 76)+ (10 × 41)+ (26 × 34)
(−8 × 76)+ (5 × 41)+ (12 × 34)




=

 760 − 246 − 510

−1292 + 410 + 884
−608 + 205 + 408


 =


4

2
5


 =


x1

x2

x3




You can check that these are the correct values by substituting them for the unknown variables
x1, x2 and x3 in the equations given in this problem. For example, substituting into the first
equation gives

10x1 + 3x2 + 6x3 = 10(4)+ 3(2)+ 6(5) = 40 + 6 + 30 = 76

Using Excel to solve simultaneous equations

A promise was made that if you worked through all this matrix inversion analysis then you
would learn how to solve a large set of simultaneous linear equations in a few seconds. Now
it’s payback time. The example below shows how to solve a set of six simultaneous equations
with six unknown variables using Excel. Once you have worked through this example and
understood what is involved, it should take you less than a minute to solve similar examples
using Excel to do the necessary matrix inversion and multiplication.
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Example 15.18

Solve for the unknown variables x1, x2, x3, x4, x5 and x6 given that

4x1 + x2 + 2x3 − 17x4 − 5x5 + 8x6 = 21
8x1 + 9x2 + 23x3 + 15x4 + 11x5 + 39x6 = 593

24x1 + 41x2 + 9x3 + 3x4 + x6 = 317
6x1 + 5x2 − x4 + 3x5 − 7x6 = 35
9x1 + 11x2 + 39x3 + 23x4 + 15x5 = 678
28x1 + 49x2 + 4x3 + 5x4 + 9x5 + 7x6 = 391

Solution

Enter the matrix of coefficients A and the vector of constant values b into Excel, as shown in
Table 15.5. In this table the cells (A3:F8) are used for the A matrix and the b column vector
is in cells (H3:H8) and so the rest of the instructions below use these cell references.

Create the inverse matrix A−1 by highlighting a 6×6 block of cells (A10:F15) and type in
the formula =MINVERSE(A3:F8) making sure both the Cntrl and Shift keys are held down
when this is entered.

To derive the vector of unknowns x by finding the product matrix A−1b, highlight a 6 × 1
column of cells (H10:H15) and then type =MMULT(A10:F15, H3:H8) in the formula bar
and hold down the Cntrl and Shift keys when you hit the return key.

The vector of unknown variables should be calculated in the six cells of this column. You
can now just read off the solution values x1 = 5, x2 = 2, x3 = 12, x4 = 1, x5 = 8 and
x6 = 4.

Note that most numbers in this table have been rounded to 5 dp. However, as this would
have rounded some very small numbers down to zero they have been left in the exponent
format displayed in Excel. For example the number −1E − 17 is −1 divided by 1017.

Table 15.5 

A B C D E F G H 
1 Example 15.17 
2 A MATRIX b 
3 4 1 2 -17 -5 8 21
4 8 9 23 15 11 39 593
5 24 41 9 3 0 1 317
6 6 5 0 -1 3 -7 35
7 9 11 39 23 15 0 678
8 28 49 4 5 9 7 391
9 Inverse A^-1 A^-1*b = x 
10 -0.0453 0.08783 0.11969 0.32077 -0.0634 -0.1339 solution 5 
11 0.02431 -0.0509 -0.0504 -0.1805 0.03194 0.08268 values 2 
12 0.03398 -0.0162 -1E-17 -0.0512 0.03343 -1E-17 12
13 -0.0723 0.03416 0.06457 0.05788 -0.0253 -0.0591 1 
14 0.03184 -0.0257 -0.1339 -0.0156 0.0331 0.11024 8 
15 0.00247 0.02302 -5E-18 -0.0118 -0.0137 4.5E-18 4 
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Estimating the parameters of an economic model

One important use of the matrix method of solution for a set of unknown variables is in
econometrics, where estimates of the parameters of an economic model are derived using
observations of different values of the variables in the model. Normally, relatively large data
sets are used to estimate parameters, and a stochastic (random) error term has to be allowed for.
However, to explain the basic principles involved we will work with only three observations
and assume no error term. This should help you to understand the more sophisticated models
that you will encounter if you go on to study intermediate econometric analysis of multi-
variable models.

Assume that y is a linear function of three exogenous variables x1, x2 and x3 so that

yi = β1x1i + β2x2i + β3x3i

where the subscript i denotes the observation number and β1, β2 and β3 are the parameters
whose values we wish to find. There are three observations, which give the values shown
below:

Observation number y x1 x2 x3

1 240 10 12 20
2 150 5 8 15
3 300 12 18 20

How can these observations be used to estimate the parameters β1, β2, and β3?
If the function yi = β1x1i + β2x2i + β3x3i holds for all three observations (i.e. all three

values of i) then there will be three simultaneous equations

240 = β110 + β212 + β320 (1)

150 = β15 + β28 + β315 (2)

300 = β112 + β218 + β320 (3)

These can be written in matrix format as y = Xβ

where y =

240

150
300


 , X =


10 12 20

5 8 15
12 18 20


 and β =


β1

β2

β3




Since Xβ = y

multiplying both sides by inverse X−1 gives X−1Xβ = X−1y
A matrix times its inverse gives the identity matrix. Thus Iβ = X−1y
and so the vector of parameters β will be β = X−1y

Although we could now finish the calculations using Excel we will continue working
through this problem manually. Note that the notation is different from that used in the
previous section because we are trying to find the values of the coefficients rather than the
values of the variables x1, x2 and x3, which are already given in matrix X. To find the matrix
inverse X−1 we first find the cofactor matrix

C =

 160 − 270 −(100 − 180) 90 − 96

−(240 − 360) 200 − 240 −(180 − 144)
180 − 160 −(150 − 100) 80 − 60


 =


−110 80 −6

120 −40 36
20 −50 20



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The adjoint matrix will then be the transpose of this cofactor matrix

AdjX = CT =

−110 120 20

80 −40 −50
−6 36 20




The determinant of matrix X can be calculated as

|X| = 10(160 − 270)− 12(100 − 180)+ 20(90 − 96) = −260

Inserting these values into the formula for the inverse matrix gives

X−1 = AdjX
|X| =


−110 120 20

80 −40 −50
−6 36 20




−260
=


0.42 0.46 −0.08

−0.3 0.15 0.19
0.02 −0.14 −0.08




Therefore the vector of coefficients is

β = X−1y =

0.42 0.46 −0.08

−0.3 0.15 0.19
0.02 −0.14 −0.08





240

150
300


 =


9.23

6.92
3.23


 =


β1

β2

β3




To check the parameters in vector β have been calculated correctly, we can insert the values
computed above into the first of the set of three simultaneous equations in this example. Thus,
from equation (1)

y1 = β110 + β212 + β320 = 9.23(10)+ 6.92(12)+ 3.23(20) = 240

and so the calculated value of 240 for y1 is correct (allowing for rounding error).

Test Yourself, Exercise 15.8

(You can solve questions 1 and 2 manually but Excel should be used for the others.)

1. Use the matrix inverse method to find the unknowns x and y when

4x + 6y = 68

5x + 20y = 185

2. Use matrix algebra to solve for x1, x2 and x3 given that

3x1 + 4x2 +3x3 = 60

4x1 + 10x2+2x3 = 104

4x1 + 2x2 +4x3 = 60

3. Assume that demand for good (Q) depends on its own price (P ), income (M) and
the price of a substitute good (S) according to the demand function

Qi = β1Pi + β2Mi + β3Si
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where β1, β2, and β3 are parameters whose values are not yet known and the
subscript i denotes the observation number. Three observations of the amount Q
demanded when P,M and S take on different values are shown below:

Observation number P M S Q

1 6 5 5 4
2 8 8 6 6.4
3 5 6 4 5.1

Find the values of β1, β2, and β3 by setting up the relevant system of
simultaneous equations in matrix format and solving using the inverse matrix.

Use the vector of parameters β that you have found to predict the value of Q
whenP,M andS take the values 7, 9 and 10, respectively, by vector multiplication.

4. Assume that the quantity demanded of oil (Q) depends on its own price (P ), income
(M), the price of the substitute fuel gas (G), the price of the complement good
cars (C), population (N ) and average temperature (T ) according to the demand
function

Qi = β1Pi + β2Mi + β3Gi + β4Ci + β5Ni + β6Ti

where β1, β2, β3, β4, β5 and β6 are parameters whose value is not yet known and
the subscript i denotes the observation number forQ and the explanatory variables.

Six observations of Q when P, M, G, C, N and T take on different values are:

Observation number P M G C N T Q

1 15 80 12.5 5 4,000 18 6.980
2 20 95 14 8 4,100 17.4 6.919
3 28 108 11 6 4,150 19.2 4.522
4 35 112 16.2 7.5 4,230 18.3 4.659
5 36 110 16 8 4,215 18.9 4.082
6 30 103 14.5 5.8 4,220 19.2 4.981

Find the values of parameters β1, β2, β3, β4, β5 and β6 by setting up the relevant
system of simultaneous equations in matrix format and solving using the inverse
matrix.

Employing the vector of parameters β that you have found, use vector multipli-
cation to predict the value ofQ if the explanatory variables take the values shown
below

P M G C N T

41 148 23 8.2 4,890 21.2

15.9 Cramer’s rule
Cramer’s rule is another method of using matrices for solving sets of simultaneous equations,
but it finds the values of unknown variables one at a time. This means that it can be quicker
and easier to use than the matrix inversion method if you only wish to find the value of one
unknown variable. This speed of manual calculation advantage is not that important if you
can use an Excel spreadsheet for matrix inversion and multiplication. However, Cramer’s rule
is still useful in economics. Those of you who go on to study more advanced mathematical
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economics will use Cramer’s rule to derive predictions from some multi-variable economic
models specified in algebraic format.

We already know that a set of n simultaneous equations involving n unknown variables
x1, x2, . . . , xn and n constants values can be specified in matrix format as

Ax = b where A is an n× n matrix of parameters,
x is an n× 1 vector of unknown variables and
b is an n× 1 vector of constant values.

Cramer’s rule says that the value of any one of the unknown variables xi can be found by
substituting the vector of constant values b for the ith column of matrix A and then dividing
the determinant of this new matrix by the determinant of the original A matrix.

Thus, if the term Ai is used to denote matrix A with column i replaced by the vector b
then Cramer’s rule gives

xi = |Ai |
|A|

Example 15.19

Find x1 and x2 using Cramer’s rule from the following set of simultaneous equations

5x1 + 0.4x2 = 12

3x1 + 3x2 = 21

Solution

These simultaneous equations can be represented in matrix format as

Ax =
[

5 0.4
3 3

] [
x1

x2

]
=

[
12
21

]
= b

Using Cramer’s rule to find x1 by substituting the vector b of constants for column 1 in matrix
A gives

x1 = |A1|
|A| =

∣∣∣∣12 0.4
21 3

∣∣∣∣∣∣∣∣5 0.4
3 3

∣∣∣∣
= 36 − 8.4

15 − 1.2
= 27.6

13.8
= 2

In a similar fashion, by substituting vector b for column 2 in matrix A we get

x2 = |A2|
|A| =

∣∣∣∣5 12
3 21

∣∣∣∣∣∣∣∣5 0.4
3 3

∣∣∣∣
= 105 − 36

15 − 1.2
= 69

13.8
= 5
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Test Yourself, Exercise 15.9

1. Use Cramer’s rule to find the unknowns x and y when

24x + 2y = 86

15x + y = 52

2. Given the set of simultaneous equations

3x1 + 4x2 + 9x3 = 45

5x2 + 2x3 = 32

4x1 + 2x2 + 4x3 = 32

Use Cramer’s rule to find the value of x2 only.
3. In Test Yourself, Exercise 15.8, use Cramer’s rule to find the values of the unknown

variables in questions 1 and 2. (Check that these are the same as those found by
the matrix inverse method.)

15.10 Second-order conditions and the Hessian matrix
Matrix algebra can help derive the second-order conditions for optimization exercises involv-
ing any number of variables. To explain how, first consider the second-order conditions for
unconstrained optimization with only two variables encountered in Chapter 10.

If one tries to find a maximum or minimum for the two variable function f(x, y) then the
FOC (first-order conditions) for both a maximum and a minimum require that

∂f

∂x
= 0 and

∂f

∂y
= 0

SOC (second-order conditions) require that

∂2f

∂x2
< 0 and

∂2f

∂y2
< 0 for a maximum

∂2f

∂x2
> 0 and

∂2f

∂y2
> 0 for a minimum

and, for both a maximum and a minimum

(
∂2f

∂x2

) (
∂2f

∂y2

)
>

(
∂2f

∂x∂y

)2

These second-order conditions can be expressed more succinctly in matrix format. For clar-
ity the abbreviated format for specifying second-order partial derivatives is also used, e.g.
fxx represents ∂2f/∂x2, fxy represents ∂2f/∂x∂y, etc.
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The Hessian matrix

The Hessian matrix contains all the second-order partial derivatives of a function, set out in
the format shown in the following examples.

For the two variable function f(x, y) the Hessian matrix will be

H =
[

fxx fxy
fyx fyy

]

The Hessian will always be a square matrix with equal numbers of rows and columns. The
principal minors of the Hessian matrix are the determinants of the matrices found by starting
with the first element in the first row and then expanding by adding the next row and column.
For any 2 × 2 Hessian there will therefore only be the two principal minors

|H1| = |fxx | and |H2| =
∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣
Note that the second-order principal minor is the determinant of the Hessian matrix itself.

The second-order conditions for a maximum and minimum can now be specified in terms
of the values of the determinants of these principal minors.

SOC for a maximum require |H1| < 0 and |H2| > 0 (Hessian is negative definite)

SOC for a minimum require |H1| > 0 and |H2| > 0 (Hessian is positive definite)

(The terms ‘negative definite’ and ‘positive definite’ are used to describe Hessians that meet
the requirements specified.)

We can show that these requirements correspond to the second-order conditions for opti-
mization of a two variable function that were set out in full above. For a maximum these SOC
require

fxx < 0, fyy < 0 (1)

and

fxxfyy > (fxy)
2 (2)

From the Hessian matrix and its principal minors we can deduce that

|H1| < 0 means that fxx < 0 (3)

|H2| > 0 means that fxxfyy − fxyfyx > 0 (4)

Given that for any pair of cross partial derivatives fxy = fyx then (4) becomes

fxxfyy > (fxy)
2

and so condition (2) is met.
In (2) the term (fxy)2 > 0 since any number squared will be greater than zero. Therefore

it must be true that

fxxfyy > 0 (5)
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As we have already shown in (3) that fxx < 0 then it must follow from (5) that

fyy < 0

(a negative value must be multiplied by another negative value if the product is positive).
Therefore SOC (1) also holds.

Thus we have shown that the matrix formulation of second-order conditions corresponds
to the second-order conditions for optimization of a two variable function that we are already
familiar with.

Returning to the price discrimination analysis considered in Chapter 10, we can now solve
some problems using standard optimization techniques and check second-order conditions
using the Hessian.

Example 15.20

A firm has the production function TC = 120 + 0.1q2 and sells its output in two separate
markets with demand functions

q1 = 800 − 2p1 and q2 = 750 − 2.5p2

Find the profit-maximizing output and sales in each market, using the Hessian to check
second-order conditions for a maximum.

Solution

From the two demand schedules we can derive

p1 = 400 − 0.5q1 TR1 = 400q1 − 0.5q2
1 MR1 = 400 − q1

p2 = 300 − 0.4q2 TR2 = 300q2 − 0.4q2
2 MR2 = 300 − 0.8q2

Given that total output q = q1 + q2 then

TC = 120 + 0.1q2 = 120 + 0.1(q1 + q2)
2

= 120 + 0.1q2
1 + 0.2q1q2 + 0.1q2

2

Therefore

π = TR1 + TR2 − TC

= 400q1 − 0.5q2
1 + 300q2 − 0.4q2

2 − 120 − 0.1q2
1 − 0.2q1q2 − 0.1q2

2

= 400q1 − 0.6q2
1 + 300q2 − 0.5q2

2 − 120 − 0.2q1q2

FOC for a maximum require

∂π

∂q1
= 400 − 1.2q1 − 0.2q2 = 0 therefore 400 = 1.2q1 + 0.2q2 (1)

∂π

∂q2
= 300 − q2 − 0.2q1 = 0 therefore 300 = 0.2q1 + q2 (2)
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To find the optimum values that satisfy the FOC, the simultaneous equations (1) and (2) can
be set up in matrix format as

Aq =
[

1.2 0.2
0.2 1

] [
q1

q2

]
=

[
400
300

]
= b

Using Cramer’s rule to solve for the sales in each market gives

q1 =

∣∣∣∣400 0.2
300 1

∣∣∣∣∣∣∣∣1.2 0.2
0.2 1

∣∣∣∣
= 400 − 60

1.2 − 0.04
= 340

1.16
= 293.1

q2 =

∣∣∣∣1.2 400
0.2 300

∣∣∣∣∣∣∣∣1.2 0.2
0.2 1

∣∣∣∣
= 360 − 80

1.2 − 0.04
= 280

1.16
= 241.4

To check the second-order conditions we return to the first-order partial derivatives and then
find the second-order partial derivatives and the cross partial derivatives. Thus, from

∂π

∂q1
= 400 − 1.2q1 − 0.2q2 and

∂π

∂q2
= 300 − q2 − 0.2q1

we get

∂2π

∂q2
1

= −1.2
∂2π

∂q1∂q2
= −0.2

∂2π

∂q2
2

= −1
∂2π

∂q2∂q1
= −0.2

The Hessian matrix is therefore

H =
[
π11 π12

π21 π22

]
=

[−1.2 −0.2
−0.2 −1

]

and the determinants of the principal minors are

|H1| = −1.2 < 0

and

|H2| =
∣∣∣∣−1.2 −0.2
−0.2 −1

∣∣∣∣ = 1.2 − 0.04 = 1.16 > 0

As |H1| < 0 and |H2| > 0 the Hessian is negative definite. Therefore SOC for a maximum
are met.

3rd order Hessians

For a three variable function y = f(x1, x2, x3) the Hessian will be the 3 × 3 matrix of
second-order partial derivatives

H =

f11 f12 f13

f21 f22 f23

f31 f32 f33



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and the determinants of the three principal minors will be

|H1| = |f11| |H2| =
∣∣∣∣f11 f12

f21 f22

∣∣∣∣ |H3| =
∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣
The SOC conditions for unconstrained optimization of a three variable function are:

(a) For a Maximum |H1| < 0, |H2| > 0 and |H3| < 0 (Hessian is Negative definite)

(b) For a Minimum |H1|, |H2| and |H3| are all > 0 (Hessian is Positive definite)

Example 15.21

A multiplant monopoly produces the quantities q1, q2 and q3 in the three plants that it operates
and faces the profit function

π = −24 + 839q1 + 837q2 + 835q3 − 5.05q2
1 − 5.03q2

2 − 5.02q2
3

− 10q1q2 − 10q1q3 − 10q2q3

Find the output levels in each of its three plants q1, q2 and q3 that will maximize profit and
use the Hessian to check that second-order conditions are met.

Solution

Differentiating this π function with respect to q1, q2 and q3 and setting equal to zero to find
the optimum values where the first-order conditions are met, we get:

π1 = 839 − 10.1q1 − 10q2 − 10q3 = 0 (1)

π2 = 837 − 10q1 − 10.06q2 − 10q3 = 0 (2)

π2 = 835 − 10q1 − 10q2 − 10.04q3 = 0 (3)

These conditions can be rearranged to get

839 = 10.1q1 + 10q2 + 10q3

837 = 10q1 + 10.06q2 + 10q3

835 = 10q1 + 10q2 + 10.04q3

These simultaneous equations can be specified in matrix format and solved by the matrix
inversion method to get the optimum values of q1, q2 and q3 as 42, 36.6 and 4.9, respectively.
(The full calculations are not set out here as the objective is to explain how the Hessian is
used to check second-order conditions, but you can check these answers using Excel if you
are not sure how these values are calculated.)

Differentiating (1), (2) and (3) again we can derive the Hessian matrix of second-order
partial derivatives

H =

π11 π12 π13

π21 π22 π23

π31 π32 π33


 =


−10.1 −10 −10

−10 −10.06 −10
−10 −10 −10.04



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The determinants of the three principal minors will therefore be

|H1| = |π11| = −10.1

|H2| =
∣∣∣∣π11 π12

π21 π22

∣∣∣∣ =
∣∣∣∣−10.1 −10

−10 −10.06

∣∣∣∣ = 101.606 − 100 = 1.606

|H3| =
∣∣∣∣∣∣
π11 π12 π13

π21 π22 π23

π31 π32 π33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−10.1 −10 −10
−10 −10.06 −10
−10 −10 −10.04

∣∣∣∣∣∣ = −0.1242

(You can check the H3 determinant calculations using the Excel MDETERM function.)
This Hessian is therefore negative definite as

|H1| = −10.1 < 0, |H2| = 1.606 > 0, |H3| = −0.1242 < 0

and so the second-order conditions for a maximum are met.

Higher order Hessians

Although you will not be asked to use the Hessian to tackle any problems in this text that
involve more than three variables, for your future reference the general SOC conditions that
apply to a Hessian of any order are:

(a) Maximum
Principal minors alternate in sign, starting with |H1| < 0 (Negative definite)
Thus a principal minor |Hi | of order i should have the sign (−1)i

(b) Minimum
All principal minors |Hi | > 0 (Positive definite)

Test Yourself, Exercise 15.10

1. A firm that sells in two separate markets has the profit function

π = −120 + 245q1 − 0.3q2
1 + 120q2 − 0.4q2

2 − 0.18q1q2

where q1 and q2 sales in the two markets. Find the profit maximizing sales in each
market, using the Hessian to check second-order conditions for a maximum.

2. Find the values of q1 and q2 that will maximizing the profit function

π = −12 + 152q1 − 0.25q2
1 + 196q2 − 0.2q2

2 − 0.1q1q2

and check that second-order conditions are met using the Hessian matrix.
3. If a firm producing three products faces the profit function

π = −73 + 242q1 + 238q2 + 238q3 − 8.4q2
1 − 8.25q2

2

− 8.1q2
3 − 16q1q2 − 16q1q3 − 16q2q3
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Find the amounts of the three products q1, q2 and q3 that will maximize profit and
use the Hessian to check that second-order conditions are met.

4. A monopoly operates three plants with total cost schedules

TC1 = 40 + 0.1q1 + 0.04q2
1 TC2 = 18 + 3q2 + 0.02q2

2

TC3 = 30 + 4q3 + 0.01q2
3

and faces the market demand schedule

p = 250 − 2q where q = q1 + q2 + q3

Set up the profit function and then use it to determine how much the firm should
make in each plant to maximize profit, using the Hessian to check that second-order
conditions are met.

15.11 Constrained optimization and the bordered Hessian
In Chapter 11, the solution of constrained optimization problems using the Lagrange multi-
plier method was explained, but the explanation of how to check if second-order conditions
for constrained optimization are met was put on hold. Now that the concept of the Hessian
has been covered, we are ready to investigate how the related concept of the bordered Hessian
can help determine if the second-order conditions are met when the Lagrange method is used.

If second-order partial derivatives are taken for a Lagrange constrained optimization objec-
tive function and put into a matrix format this will give what is known as the bordered
Hessian.

For example, to maximize a utility function U(X1, X2) subject to the budget constraint

M − P1X1 − P2X2 = 0

The Lagrange equation will be

G = U(X1, X2)+ λ(M − P1X1 − P2X2)

Taking first-order derivatives and setting equal to zero we get the first-order conditions:

G1 = U1 − λP1 = 0 (1)

G2 = U2 − λP2 = 0 (2)

Gλ = M − P1X1 − P2X2 = 0 (3)

These are used to solve for the optimum values ofX1 andX2 when actual values are specified
for the parameters.

Differentiating (1), (2) and (3) again with respect to X1, X2 and λ gives the bordered
Hessian matrix of second-order partial derivatives

HB =

U11 U12 −P1

U21 U22 −P2

−P1 −P2 0



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You can see that the bordered Hessian HB has one more row and one more column than the
ordinary Hessian. In this, and most other constrained maximization examples that you will
encounter, the extra row and column each contain the negative of the prices of the variables
in the constraint.

Although it is possible to use the Lagrange method to tackle constrained optimization
problems with several constraints, we will only consider problems with one constraint here.
The second-order conditions for optimization of a Lagrangian with one constraint require
that for:

Maximization

• If there are two variables in the objective function (i.e. HB is 3 × 3) then the determinant
|HB| > 0.

• If there are three variables in the objective function (i.e. HB is 4×4) then the determinant
|HB| < 0 and the determinant of the naturally ordered principal minor of |HB| > 0.
(The naturally ordered principal minor is the matrix remaining when the first row and
column have been eliminated from HB.)

Minimization

• If there are two variables in the objective function the determinant |HB| < 0.
• If there are three variables in objective function then the determinant |HB| < 0 and the

determinant of the naturally ordered principal minor of |HB| < 0.

Example 15.22

An individual has the utility function U = 4X0.5Y 0.5 and can buy good X at £2 a unit and
good Y at £8 a unit. If their budget is £100, find the combination of X and Y that they
should purchase to maximize utility and check that second-order conditions are met using
the bordered Hessian matrix.

Solution

The Lagrange function is

G = 4X0.5Y 0.5 + λ(100 − 2X − 8Y )

Differentiating and setting equal to zero to get the FOC for a maximum

GX = 2X−0.5Y 0.5 − 2λ = 0 (1)

GY = 2X0.5Y−0.5 − 8λ = 0 (2)

Gλ = 100 − 2X − −8Y = 0 (3)

From (1)

X−0.5Y 0.5 = λ
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From (2)

0.25X0.5Y−0.5 = λ

Therefore

X−0.5Y 0.5 = 0.25X0.5Y−0.5

Multiplying both sides by 4X0.5Y 0.5

4Y = X (4)

Substituting (4) into (3)

100 − 2(4Y )− 8Y = 0

Y = 6.25

and thus from (4) X = 25

Differentiating (1), (2) and (3) again gives the bordered Hessian of second-order partial
derivatives

HB =

UXX UXY −PX
UYX UYY −PY
−PX −PY 0


 =


−X−1.5Y 0.5 X−0.5Y−0.5 −2
X−0.5Y−0.5 −X0.5Y−1.5 −8

−2 −8 0




=

−0.02 0.08 −2

0.08 −0.32 −8
−2 −8 0




The determinant of this bordered Hessian, expanding along the third row is

|HB| = −2(−0.64 − 0.64)+ 8(0.16 + 0.16) = 2.56 + 2.56 = 5.12 > 0

and so the second-order conditions for a maximum are satisfied.
To illustrate the use of the bordered Hessian to check the second-order conditions required

for constrained optimization involving three variables, we shall just consider an example
without any specific format for the objective function.

Example 15.23

If a firm is attempting to maximize outputQ = Q(x, y, z) subject to a budget of £5000 where
the prices of the inputs x, y and z are £8, £12 and £6, respectively, what requirements are there
for the relevant bordered Hessians to ensure that second-order conditions for optimization
are met?
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Solution

The Lagrange objective function will be

G = Q(x, y, z)+ λ(5000 − 8x − 12y − 6z)

As there are three variables in the objective function and HB is 4 × 4 then the second-
order conditions for a maximum require that the determinant of the bordered Hessian of
second-order partial derivatives |HB| < 0. Therefore

|HB| =

∣∣∣∣∣∣∣∣
Qxx Qxy Qxz −8
Qyx Qyy Qyz −12
Qzx Qzy Qzz −6
−8 −12 −6 0

∣∣∣∣∣∣∣∣
< 0

As HB is 4 × 4 the second-order conditions for a maximum also require that the determinant
of the naturally ordered principal minor of HB > 0. Thus, when the first row and column
have been eliminated from HB, this problem also requires that∣∣∣∣∣∣

Qyy Qyz −12
Qzy Qzz −6
−12 −6 0

∣∣∣∣∣∣ > 0

Constrained optimization with any number of variables and constraints

All the constrained optimization problems that you will encounter in this text have only
one constraint and usually do not have more than three variables in the objective function.
However, it is possible to set up more complex Lagrange functions with many variables and
more than one constraint.

Second-order conditions requirements for optimization for the general case with m vari-
ables in the objective function and r constraints are that the naturally ordered border
preserving principal minors of dimension m of HB must have the sign

(−1)m−r for a maximum

(−1)r for a minimum

‘Border preserving’ means not eliminating the borders added to the basic Hessian, i.e. the
last column and the bottom row, which typically show the prices of the variables.

These requirements only apply to the principal minors of order ≥ (1 + 2r). For example,
if the problem was to maximize a utility function U = U(X1, X2, X3) subject to the bud-
get constraint M = P1X1 + P2X2 + P3X3 then, as there is only one constraint, r = 1.
Therefore we would just need to consider the principal minors of order greater than three
since

(1 + 2r) = (1 + 2) = 3

As the full-bordered Hessian in this example with three variables is 4th order then only HB

itself plus the first principal minor need be considered, as this is the only principal minor
with order equal to or greater than 3.
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The second-order conditions will therefore require that for a maximum:
For the full bordered Hessian m = 4 and so |HB| must have the sign

(−1)m−r = (−1)4−1 = (−1)3 = −1 < 0

and the determinant of the 3rd order naturally ordered principal minor of |HB| must have the
sign

(−1)m−r = (−1)3−1 = (−1)2 = +1 > 0

These are the same as the basic rules for the three variable case stated earlier.
The last set of problems, below, just require you to use the bordered Hessian to check that

second-order conditions for optimization are met in some numerical examples with a small
number of variables to familiarize you with the method. Those students who go on to study
further mathematical economics will find that this method will be extremely useful in more
complex constrained optimization problems.

Test Yourself, Exercise 15.11

1. A firm has the production function Q = K0.5L0.5 and buys input K at £12 a unit
and input L at £3 a unit and has a budget of £600. Use the Lagrange method to
find the input combination that will maximize output, checking that second-order
conditions are satisfied by using the bordered Hessian.

2. A firm operates with the production function Q = 25K0.5L0.4 and buys input K
at £20 a unit and input L at £8 a unit. Use the Lagrange method to find the input
combination that will minimize the cost of producing 400 units of Q, using the
bordered Hessian to check that second-order conditions are satisfied.

3. A consumer has the utility function U = 20X0.5Y 0.4 and buys good X at £10 a
unit and good Y at £2 a unit . If their budget constraint is £450, what combination
ofX and Y will maximize utility? Check that second-order conditions are satisfied
by using the bordered Hessian.

4. A consumer has the utility function U = 4X0.75Y 0.25 and can buy good X at £12
a unit and good Y at £2 a unit. Find the combination of X and Y that they should
purchase to minimize the cost of achieving a utility level of 580 and check that
second-order conditions are met using the bordered Hessian matrix.
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Answers

Chapter 2

2.1 1. 3,555 2. 865 3. 92,920 4. 23

2.2 1. 919 2. 225 3. 164 4. 627
5. 440 6. 101

2.3 1. 840 2. 17 3. 172 4. 122

5. £13,800 6. 598 7. £176

2.4 1.
73

168
2.

101

252
3. 4

4

5
4.

19

30

5. 2
13

21
6. 4

37

60
7. 14

1

12
8. 3

12

13

9. 18
39

40
10. 1

1

2

2.5 1. (a)
1

3
(b)

5

7
(c) 1

2

5
(d) 3 (e) 11

2. 1 3. (a) 1 (b) 5 4. 15, 4
1

3
, 2

1

5
, 1

2

7
,

7

9
,

5

11
,

3

13
,

1

15

2.6 1. 36.914 2. 751.4 3. 435.1096 4. 36,082

5. 0.09675 6. 610 7. 140

8. (a) 0.1 (b) 0.001 (c) 0.000001

9. (a) 0.452 (b) 2.431 (c) 0.075 (d) 0.002

2.7 1. −2 2. −24 3. −33 4. 0.45 5. 0.35

6. −117 7. −330 8. 3600

9.
−157

140
10.

17

16

2.8 1. 0.25 2. 123 3. 6 4. 64

5. 11.641754 6. 531,441 7. 0.0015328 8. 36

9. −618.47021 10. 25.000655
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2.9 1. ±25 2. 2 3. 0.2 4. 7 5. 2.4494897

6. 96 7. 10

8. 5.2780316 9. 0.03423 10. 87.977857

2.10 1. 270,818.98 2. 220.9478 3. 2.8563 × 109 4. 1.5728 × 108

5. 1.2683 6. 16,552,877 7. 93.696376 8. 4.38228

9. 5.1331868

Chapter 3

3.1 1. (a) 0.01x (b) 0.5x (c) 0.5x 2. 0.01rx + 0.5wx + 0.5mx

3. (a)
x

12
(b)

xp

12
4. (a) 0.1x kg (b) 0.3x kg (c) x(0.1m+ 0.3p)

5. 0.5w + 0.25 6. Own example 7. 10.5x + 6y 8. 3q − 6000

3.2 1. 456 2. 77.312 3. r + z, 9% 4. Own example

5. 1.094 6. £465.58 7. £2,100 8. (a) 99 + 0.78M (b) £2,166

3.3 1. 30x + 4 2. 24x − 18y + 7xy − 12 3. 6x + 5y − 650

4. 9H − 120

3.4 1. 6x2 − 24x 2. x2 + 4x + 9 3. 2x2 + 6x + xy + 3y

4. 42x2 − 16y2 − 34xy + 6y 5. 33x + 2y − 20y2 + 62xy − 21

6. 120 + 2x + 54y + 40z− x2 + 6y2 + xy + 4xz+ 8yz

7. 200q − 2q2 8. 13x + 11y 9. 8x2 + 60x + 76

10. 4,000 + 150x

3.5 1. (x + 4)2 2. (x − 3y)2 3. Does not factorize

4. Does not factorize 5. Own example

3.6 1. 3x + 7 − 20x−1 2. x + 9 3. 4y + x + 12 4. 200x−1 + 21

5. 179x 6. 2(x + 3)+ 4 − x − 3 − x + 2 = 9 7. Own example

3.7 1. 4 2. 1
11 3. 7 4. 14 5. 82 6. 20 p 7. 33%

8. 40p 9. £3,062.50 10. 4 m 11. 26

3.8 1. 1
n

n∑
i=1
Hi , 173.7 cm 2. 35 3. 60

4.
n∑
i=1

6,000(0.9)i−1,16,260 tonnes 5. (a) 1
n

n∑
i=1
Ri, £4,425

(b) 1
3

n−1∑
n−3

Ri, £4,933 6. 13.25%, 8.2

3.9 1. (a) ≤ (b) < (c) ≥ (d) > 2. (a) > (b) ≥ (c) > (d) >

3. (a) Q1 < Q2 (b) Q1 = Q2 (c) Q1 > Q2 4. P2 > P1
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Chapter 4

4.1 1. (a) Quantity demanded depends on the price of tea, average exp., etc.

(b) Qt dependent, all others independent.

(c) Qt = 99 − 6Pt − 0.5Yt + 0.8A+ 1.2N + 1.4Pc

(suggested number assumes tea is an inferior good)

2. (a) 202 (b) 7 (c) 6, x ≥ 0 3. Yes; no

4.2 1. ◦F = 32 + 1.8◦C 2. P = 2,400 − 2Q

3. It is not monotonic, e.g. TR = 200 when q = 5 or 10

4. T = (0.0625X − 25)2; no 5. Own example

4.3 (Answers to 1 to 5 give intercepts on axes)

1. x = −12, y = 6 2. x = 3 1
3 , y = −40 3. P = 60,Q = 300

4. P = 150,Q = 750 5. K = 24, L = 40 6. Goes through origin only

7. Goes through (Q = 0,TC = 200) and (Q = 10,TC = 250)

8. Horizontal line at TFC = 75 9. Own example

10. (a) and (d); both slope upwards and have positive intercepts on P axis

4.4 1. Q = 90 − 5P ; 50; Q ≥ 0, P ≥ 0 2. C = 30 + 0.75Y

3. By £20 to £100 4. P = 12 − 0.015Q 5. £6,440

4.5 1. 3.75, 0.75, 0.375, −0.75 2. P = 12,Q = 40; £4.50; 10 3. (a) 2/3 (b) 3

4. (c) (i) (a) (ii) (b) 5. (a), (d) 6. APC = 400Y−1 + 0.5 > 0.5 = MPC

7. (a) 0.263 (b) 0.714 (c)1.667 8. Own example

4.6 1. −1.5 (a) becomes −1 (b) becomes −1 (c) no change (d) no change

2. K = 100, L = 160, PK = £8, PL = £5

3. Cost £520 > budget; PL reduced by £10 to £30

4. (a) −10 (b) −1 (c) −0.1 (d) −0.025 (e) 0 5. No change

6. Height £120, base 12, slope −10 = −(wage) 7. Own example

4.7 1. Sketch graphs 2. Sketch graphs 3. Steeper

4. Like y = x−1; £260 5. Own example

4.8 1. Sketch graphs 2. Own example 3. π = 50x − 100 − 0.4x3; inverted U

4. (a) 40 = 3250q−1

(b) Original firms’ π per unit = £27.50 but new firms’ AC = £170 > price

4.9 Plot Excel graphs

4.10 1. (a) 16L−1 (b) 0.16 (c) constant

2. (a) 57,243.34L−15 (b) 57.243 (c) constant

3. (a) 322.54L−1 (b) 3.2254 (c) increasing

4. (a) 3,125L−1.25 (b) 9.882 (c) increasing
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5. (a) 23,415,916L−1.6667 (b) 10,868.71 (c) decreasing

6. (a) 4,093.062L−1.7714 (b) 1.173 (c) decreasing

4.11 1. MR = 33.33 − 0.00667Q for Q ≥ 500

2. MR = 76 − 0.222Q for Q ≥ 22.5

3. MR = 80 − 0.555Q for Q ≥ 562.5

4. MC = 30 + 0.0714Q for Q ≥ 56

5. MC = 56 + 0.1333Q for Q ≥ 30

6. MC = 3 + 0.0714Q for Q ≥ 59

Chapter 5

5.1 1. q = 40, p = 6 2. x = 67, y = 17 (approximately) 3. No solution exists

5.2 1. q = 118, p = 256 2. (a) q = 80, p = 370 (b) q falls to 78, p rises to 376

3. Own example 4. (a) 40 (b) rises to 50 5. x = 2.102, y = 62.25

5.3 1. A = 24, B = 12 2. 200 3. x = 190, y = 60

5.4 1. x = 30, y = 60 2. A = 6, B = 36 3. x = 25, y = 20

5.5 1. x = 24, y = 14.4, z = 19.2 2. x = 4, y = 6, z = 4

3. A = 6, B = 22, C = 2 4. x = 17, y = 4, z = 8

5. A = 82.5, B = 35, C = 6,D = 9

5.6 1. q = 500, p = 275 2. K = 17.5, L = 16, R = 10

3. (a) p rises from £8 to £10 (b) p rises to £9

4. Y = £3,750 m; government deficit £150 m

5. Y = £1,625 m; balance of payments deficit £15 m

6. L = 80, w = 52

5.7 1. p = 184 + 0.2a, q = 43.2 + 0.06a, p = 216, q = 52.8

2. p = 84 + 0.2t, q = 32 − 0.4t, p = 85, q = 30

3. p = 122.4 + 0.2t, q = 13.8 − 0.1t, p = 123.4, q = 13.3

4. (a) Y = 100/(0.25 + 0.75t),Y = 250 (b) Y = 110/(0.25 + 0.75t),Y = 275

5. p = (4200 + 3800v)/(9 + 5v),

q = (750 − 50v)/(9 + 5v)

p = 494.30, q = 76.94

5.8 1. q1 = 60, q2 = 80, p1 = £10, p2 = £8

2. q1 = 40, q2 = 50, p1 = £6, p2 = £4

3. p1 = £8.75, q1 = 60, p2 = £6.10, q2 = 550
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4. £81 for extra 65 units

5. £7.50 for extra 25 units

6. q1 = 48, q2 = 39, p1 = £12, p2 = £8.87

7. (a) 190 units (b) £175 for extra 75 units

5.9 1. q1 = 180, q2 = 200, p = £39 2. q1 = 1,728, q2 = 780, p = £190.70

3. q1 = 1,510, q2 = 1,540, qA = 800, qB = 2,250, PA = £500, PB = £625

4. q1 = 160, q2 = 600, qA = 293 1
3 , qB = 266 2

3 , qC = 200, PA = £95,

PB = £80, Pc = £60

5. q1 = 15.47, q2 = 27.34, q3 = 26.17, p = £14.20

5A.1 1. 8.4 of A, 4.64 of B (tonnes); (a) no change (b) no B, 12.16 of A

2. A = 13, B = 27 3. 12 of A, 5 of B 4. 22.5 of A, 7.5 of B

5. 6 of A, 32 of B 6. Own example

7. 13.64 of A, 21.82 of B; £7092; surplus 2.72 of R, 22.72 of mix additive

8. Produce 15 of A, 21 of B 9. 30 of A, B = 0

10. Objective function parallel to first constraint

11. 24,000 shares in X, 18,000 shares in Y, return £8,640

12. Own example

5A.2 1. C = 70 when A = 1, B = 1.5, slack in x = 30 2. A = 3, B = 0

3. Q = 2.5, R = 1.5; excesses 62.5 mg of B, 27.5 mg of C

4. 10 of A, 5 of B; space for 50 extra loads of X

5. Zero R, 15 tonnes of T; G exceeds by 45 kg

6. 100 of A, 40 of B 7. Own example

5A.3 1. 2 of A, 1 of B 2. 7.5 of X and 15 of Y (tonnes) 3. 8

4. Own example

Chapter 6

6.1 1. 2 or 3 2. 10 or 60 3. When x = 2 4. 0.5 5. 9

6.2 1. 10 or −12.5

2. £16.353. (a) 1.01 or 98.99 (b) 11.27 or 88.73 (c) no solution exists

4. Own example

6.3 1. x = 15, y = 15 or x = −3, y = 249

2. x = 1.75, y = 3.15 or x = −1.53, y = 20.97 3. 16.4

4. q1 = 3.2, q2 = 4.8, p1 = £136, p2 = £96

5. p1 = £15, q1 = 80, p2 = £8.50, q2 = 70

6.4 1. 52 2. 1069 3. 10
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Chapter 7

7.1 1. £4,630.50 2. £314.70 3. £17,623.16

4. £744.71 5. £40,441.40 6. £5,030.03

7.2 1. £43,747.41; 12.68% 2. £501,159.74; 7.44% 3. (a) APR 11.35%

4. £2,083.61; 19.25% 5. £625; 5.09% 6. 19.28%

7. 0.01467% 8. £494,531.25; 4.5%

7.3 1. £6,301.69 2. £355.89 3. No, A = £9,106.27

4. £6,851.65 5. (a) £9,638.58 (b) £11,579.83 (c) £13,318.15

6. 5 7. 5.27 years 8. 12.1 years 9. 5.45 years 10. 3.42 years

11. 10.7% 12. 9.5% 13. 7.5% 14. 0.8% 15. 10.3% 16. 8.4%

17. (b) as PV = £5,269.85

7.4 1. (a) £90.75 (b) −£100.07 (c) −£474.01 (d) £622.86 (e) £1,936.87

(f) £877.33 (g) £791.25 (h) £992.16

2. B, PV = £6,569.10 3. (a) All viable (b) A best, NPV = £6,824.68

4. Yes, NPV = £7,433.56 5. Yes, NPV = £4,363.45

6. (a) Yes, NPV = £610.02 (b) no, NPV = −£522.30

7. B, NPV = £856.48

7.5 1. rA = 20%, rB = 41.6%, rC = 20%, rD = 20%;

B consistently best, but others have same IRR with different NPV ranking

2. (a) A, rA = 21.25%, rB = 20.42% (b) B, NPVB = £2,698.94,

NPVA = £2,291.34 3. IRR = 16.93%

7.6 1. (a) 2.5, 781.25, 50,857.3 (b) 3, 121.5, 14,762 (c) 1.4, 10.756, 139.6

(d) 0.8, 19.66, 267.8 (e) 0.75, 0.57, 9.06

2. 5,741 (to nearest whole unit)

3. A, £1,149.32; B, £2,980.91; C, £45,216.47

4. Yes, NPV = £3,774.71 5. £4,149.20

7.7 1. (a) k = 1.5, not convergent (b) k = 0.8, converges on 600

(c) k = −1.5, not convergent (d) k = 1
3 converges on 54

(e) converges on 961.54 (f) not convergent

2. £3,076.92 3. Yes, NPV = £50,000

4. (a) £240,000 (b) £120,000 (c) £80,000 (d) £60,000 5. £3,500

7.8 1. £152.59 2. £197.38 3. £191.46

4. £794.66 5. (a) 14.02% (b) 26.08% (c) 23.86% (d) 14.71%

6. Loan is marginally better deal (PV of payments = £6,348.33 + £1,734

deposit = £8,082.33, less than cash price by £12.67)
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7.9 1. 6.82 years 2. After 15.21 years 3. 4%

4. Yes, sum of infinite GP = 1,300 million tonnes 5. 4.85%

Chapter 8

8.1 1. 36x2 2. 192 3. 21.6 4. 260x4 5. Own example

8.2 1. 3x2 + 60 2. 250 3. −4x−2 − 4 4. 1

5. 0.2x−3 + 0.6x−0.7 6. Own example

8.3 1. 120 − 6q, 20 2. 25 3. 14,400 4. £200 5. Own example

8.4 1. 7.5 2. 12q2 − 40q + 60

3. (a) 1.5q2 − 6q + 25 (b) 0.5q2 − 3q + 25 + 20q−1 (c) q − 3 − 20q−2

4. MC constant at 0.8 5. Own example

8.5 1. 4 2. (a) 80 (b) 158.33 (c) 40 or 120 3. 6

8.6 1. 50 − 2
3q 2. 900 3. 24 − 1.2q2

8.7 1. 0.8 2. Proof 3. 0.16667 4. 1

8.8 1. £77.50 2. Own example 3. Rise, maximum TY when t = £39

8.9 1. (a) 0.8 (b) 4,400 (c) 5 (d) 120 (e) Yes, both 940

Chapter 9

9.1 1. 62.5 2. 150 3. (a) 500 (b) 600 (c) 300 4. 50

9.2 1. 1,200, max. 2. 25, max. 3. 4,096, max. 4. 4, not max.

9.3 1. 6, min. 2. 14.4956. min. 3. 0, min. 4. 3, not min.

5. No stationary point exists

9.4 1. (a) MC = 2q2 − 28q + 222, min. when q = 7,MC = 124

(b) AVC = 2
3q

2 − 14q + 222, min. when q = 10.5,AVC = 148.5

(c) AFC = 50q−1, min. when q → ∞ =,AFC → 0

(d) TR = 200q − 2q2, max. when q = 50,TR = 5,000

(e) MR = 200 − 4q, no turning point, end-point max. when q = 0

(f) π = − 2
3q

3 + 12q2 − 22q − 50, max. when q = 11, π = 272.67(
π min. when q = 1, π = −60 2

3

)
2. Own example 3. (a) 16 (b) 8 (c) 12

4. No turning point but end–point min. when q = 0

5. No turning point but end–point min. when q = 0

6. Max. when x = 63.33, no minimum
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9.5 1. π max. when q = 4 (theoretical min. when q = −1.67 not realistic)

2. (a) Max. when q = 10 (b) no min. exists

3. π max. when q = 12.67, gives π = −48.8 4. 5,075 when q = 10 5. 27.6

when q = 37

9.6 1. 15 orders of 400 2. 560 3. 480 every 4.5 months 4. 140

9.7 1. (i) (a) q = 90 − 0.2t, p = 270 + 0.4t (b)&(c) q = 90, p = 270

(ii) (a) q = 250 − 1.25t, p = 125 + 0.375t (b)&(c) q = 250, p = 125

(iii) (a) q = 25 − 0.9615t, p = 160 + 0.385t (b)&(c) q = 25, p = 160

(there is no tax impact for (b) and (c) in all cases)

2. q = 100, p = 380 (no tax impact)

Chapter 10

10.1 1. (a) 3 + 8x, 16 + 4z (b) 42x2z2, 28x3z (c) 4z+ 6x−3z3, 4x − 9x−2z2

2. MPL = 4.8K0.4L−0.6, falls as L increases

3. MPK = 12K−0.7L0.3R0.4,MPL = 12K0.3L−0.7R0.4,

MPR = 16K0.3L0.3R−0.6

4. MPL = 0.7, does not decline as L increases 5. No 6. 1.2x−0.7
j

10.2 1. (a) 0.228 (b) falls to 0.224 (c) inferior as ∂q/∂m < 0 (d) elasticity with respect
to ps = 0.379 and so a 1% increase in both prices would cause a percentage rise in q of
0.379 − 0.228 = 0.151%

2. (a) Yes, MUA and MUB will rise at first but then fall;

(b) no, MUA falls but MUB continually rises, therefore law not obeyed;

(c) yes, both MUA and MUB continually fall.

3. No, MU will never reach zero for finite values of A or B.

4. 3,738.46; balance of payments changes from 4.23 deficit to 68.85 surplus.

5. 25 + 0.6q2
1 + 2.4q1q2 6. 0.45; 1.81818; 55

10.3 1. −2K0.6L−1.5, 2.4K−0.4L−0.5 2.QLL = 6.4,MPL function has constant slope; QLK =
35+2.8K , position of MPL will rise asK rises;QKK = 2.8L,MPK has constant slope, actual
value varies with L; QKL = 35 + 2.8K , increase in L will increase MPK, effect depends on
level of K .

3. TC11 = 0.008q2
3 ,TC22 = 0,TC33 = 0.008q2

1

TC12 = 1.2q3 = TC21,TC23 = 9 + 1.2q1 = TC32

TC31 = 0.016q1q3 + 1.2q2 = TC13

10.4 1. q1 = 12.46; q2 = 36.55 2. p1 = 97.60, p2 = 101.81

3. q1 = 0, q2 = 501.55 (mathematical answer gives q1 = −1,292.24,

q2 = 1,701.77 so rework without market 1)

4. £575.81 when q1 = 47.86 and q2 = 39.01 5. q1 = 266.67, q2 = 333.33

6. q1 = 1,580.2, q2 = 1,791.8 7. K = 2,644.2, L = 3,718.5
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8. £29,869.47 when K = 1,493.47 and L = 2,489.12

9. Because max. π = £18,137.95 when K = 2,176.5 and L = 2,015.22

10. K = 10,149.1, L = 9,743.1

10.5 1. (a) 12K−0.4L0.4dK + 8K0.6L−0.6dL

(b) 14.4K−0.7L0.2R0.4dK + 9.60.3L−0.8R0.4dL+ 19.2K0.3L0.2R−0.6dR

(c) (4.8K−0.2 + 1.6KL2)dK + (3.5L−0.3 + 1.6K2L)dL

2. (a) Yes (b) no, surplus (c) no, surplus

3. 40x−0.6z−0.45 + 12x0.4z−0.7

4.
∂QA

∂PA
+ ∂QA

∂M

dM

dPA

Chapter 11

11.1 1. K = 12.6, L = 21 2. K = 500, L = 2,500 3. A = 6, B = 4

4. 141.42 when K = 25, L = 50 5. Own example

6. (a) K = 1,000, L = 50 (b) K = 400, L = 20

7. 1,950 when K = 60, L = 120 8. L = 241,K = 201,TC = £3,617

11.2 See answers to 11.1

11.3 1. See answers to 11.1 2. L = 38.8,K = 20.7,TC = £3,104.50

3. C1 = £480,621, C2 = £213,609

4. L = 19.04,K = 8.18,TC = £1,145.30

11.4 1. x = 30, y = 30, z = 90 2. 877.8 when K = 15, L = 45, R = 13

3. x = 50, y = 100, z = 150 4. 79,602.1 when x = 300, y = 300, z = 1,875

5. K = 26.7, L = 33.3, R = 8.9,M = 55.6 6. Own example

7. L = 60,K = 45, R = 40

Chapter 12

12.1 1. 9 2. Answer given 3. 3M(1 + i)2 4. 0.6x(3 + 0.6x2)−0.5

5. 0.5(6 + x)−0.5 6. MRPL = 60L−0.5 − 8, L = 16 7. 169 units

8. £8 9. 0.000868

12.2 1. (6x + 7)−0.5(39x2 + 36.4x − 5.7) 2. 12

3. 76.5L−0.5(0.5K0.8 + 3L0.5)−0.4 4. 312.5 5. £190

6. Own example 7. (a) −0.05(60 − 0.1q)−0.5

(b) rate of change of slope = −0.0025(60 − 0.1q)−0.5 < 0 when q < 600

(c) 400

12.3 1. (24 + 6.4x − 4.5x1.5 − 3x2.5)(8 − 6x1.5)−1.5

2. (18,000 + 360q)(25 + q)−1.5 3. −0.113
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4. q = 1,333 1
3 , d2TR/dq2 = −0.00367 5. L = 4.8, H = 7.2

6. Adapt proof in text for MC and AC to AVC = TVC(q)−1

12.4 1. (a) 12.5x2 + C (b) 5x + 0.6x2 + 0.05x3 + C (c) 24x5 − 15x4 + C

(d) 42x + 18x−1 + C (e) 60x1.5 + 220x−0.2 + C

2. (a) 4q + 0.05q2 (b) 42q − 9q2 + 2q3 (c) 35q + 0.3q3

(d) 62q − 8q2 + 0.5q3 (e) 185q − 12q2 + 0.3q4

12.5 1. (a) £750,000 (b) £81,750 (c) £250,000 (d) £67,750

2. £49,600 3. Own example

Chapter 13

13.1 1. 20 2. No production in period 4 3. (a) Unstable (b) stable

13.2 1. Pt = 4 + 0.25(−2)t 2. Stable, 118.54 3. 404.64

13.3 1. 2,790.625; yes 2. 39,946.789 3. 492.57 4. 1,848.259

13.4 1. 2,460.79 2. No, 1,976.67 < 1,980 3. P x
t = 562 − 63(0.83)t , 555.27

Chapter 14

14.1 1. 64.44 million 2. 61,062 units 3. 16.8 million tonnes

4. Usage in million units: (a) 94.6, yes (b) 137.6, yes (c) 200.2, no

(d) 291.31, no 5. 56,609 units 6. e31,308.07

14.2 1. 2%; 9.84 million; no 2. 9%, 401,767,300 barrels

3. £122,197.54 4. 587

14.3 1. 0.48% 2. 2.05%; 3.49% 3. 0.83%, 621.43 million tones

4. e6,446.39 million 5. 8.8% 6. 5.83% 7. 6.18%

8. 9% discrete (equivalent to 8.62% continuous)

14.4 1. (a) 200e0.2t , 1477.81 (b) 45e1.2t , 7323965.61 (c) 14e−0.4t ,0.26

(d) 40e1.32t , 21614597.49 (e) 128e−0.03t , 99.69 2. 10 %, 6.77

14.5 1. −20e0.4t + 200, 52.22, unstable 2. −19.2e−1.5t + 32, 31.99, stable

3. −20e−0.75t + 120, 119.53, stable 4. 75e0.08t − 300,−188.11, unstable

14.6 1. 7e−0.325t + 30, stable 2. −7.25e−0.96t + 26.25, difference 0.01

3. Yes, as predicted spot price is $27.56

4. 32.54e−0.347t + 17.46, £23.20, 3 periods 5. $44.01
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14.7 1. 25e−0.2t + 180, 183.38 2. −63.33e−0.195t + 1583.33, 1574.32

3. 12.22e−0.036t + 2027.78, 2036.3 4. −9.49e−0.226t + 141.49, 140.495

5. −18.154e−0.176t + 346.15, 343.015

Chapter 15

15.1 1.

[
2 8 23
3 5 26

]
2. Yes

3. a. yes,

[
6 70
27 23

]
b. no c. yes,




14
3

14
−3
2




4.


1.4 0.6 0.2 0.8

1.2 0.6 1.6 0.5
0.8 0.24 0.4 0




15.2 1.
[
27 39

]
2. a.

[
98 84

163 134

]
b.

[
71 24 13
68 8 17

]

c. not possible 3. PR =
[

52 30 56 43
62 31.5 71 55

]

15.3 1. a.

[
17.5 45 19
61 130 84

]
b.


136 67.5 90 40

130 47.5 51 44
59 10 9 36




c.




460 579 299 400 2110 3181
291 1077 240 418 2155 1166
907 4505 400 1030 9932 7386
114 20 466 560 151 318
93 133 165 213 135 −215




15.4 1. a


5 4 9

2 1 4
2 5 4





xy
z


 =


95

32
61


 b.


6 4 8

3 2 4
1 −8 2





xy
z


 =


56

28
34




c.


5 4 2

9 4 0
2 4 4





xy
z


 =


95

32
61


 d. not possible

2. (b) and (c) 3. (b) not square, (c) rows linearly dependent

15.5 1. A. 2 B.0 C.56 D.137 E.119

15.6 1. a. −39 b.15 c. −4 d. 28 e. 50 f. 4

2. A.636 B. −101 C. −4462
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15.7 1.

[
0.16 −0.3
−0.2 0.5

]
2. C =


 3 4 −5

2 6 −5
−8 −19 20




AdjA =

 3 2 −8

4 6 −19
−5 −5 20


 A−1 =


0.6 0.4 −1.6

0.8 1.2 −3.8
−1 −1 4




3.




−0.5 0.5 −0.5 −0.5
0.1075 −0.0215 0.1505 −0.0538
1.7742 −1.3548 0.4839 1.6129

−0.3978 0.2796 0.043 −0.3011




15.8 1. x = 5, y = 8 2. x1 = 10, x2 = 6, x3 = 2

3. β1 = −0.5, β2 = 1, β3 = 0.4,Q = 9.5

4. β1 = −300, β2 = 75, β3 = 400, β4 = −100, β5 = 0.2, β6 = 10,Q = 8370

15.9 1. x = 3, y = 7 2. 6 3. See 15.8 answers

15.10 1. q1 = 389.6, q2 = 62.3, max SOC met as |H1| = −0.6, |H2| = 0.448

2. q1 = 216.8, q2 = 435.8, max SOC met as |H1| = −0.5, |H2| = 0.19

3. q1 = 6.485, q2 = 2.376, q3 = 5.4, max SOC met as |H1| = −16.8,

|H2| = 21.2, |H3| = −16.8

4. q1 = 5.2, q2 = 35.4, q3 = 20.8, max SOC met as |H1| = −4.08,

|H2| = 0.4832, |H3| = −0.0225

15.11 1. K = 25, L = 100, max SOC met as |HB| = 0.72

2. K = 16, L = 32, min SOC met as |HB| = −14.618

3. X = 25, Y = 100, max SOC met as |HB| = 4.543

4. K = 121.93, L = 243.86, min SOC met as |HB| = −0.945
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Symbols and terminology

|x| absolute value 60

[ ]m0 definite integral 388
dy

dx
derivative 247

ex exponential function 432
f1 first-order derivative 295
> greater than inequality 59
≥ greater than or equal to weak

inequality 59
≡ identity 52
∞ infinity 69∫

integral 390

λ Lagrange multiplier 342
< less than inequality 59
≤ less than or equal to weak inequality 59
log logarithm (base 10) 29–32
ln natural logarithm (base e) 440–1
∂y

∂x
partial derivative 291

f11 second-order partial derivative 297
5x small change in x 253–4, 257√ square root 26
x
√
y xth root of y 27∑

summation 56
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