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PRELUDE 
 
A Philosophical Approach to Mathematics 

Jean Paul Van Bendegem and Karen François 
 

GETTING THINGS STARTED: AN EXPERIMENT  
OF THOUGHT  

Take a look at the following list: 
 

• mathematics 
• education 
• philosophy 
• society 
• history 
• sociology 
• anthropology 

 
Imagine that this was an IQ-test and a typical question would be: which 

item definitely does not belong in this list? We expect that the one word at 
the top of the list, even if it is not the only answer, will be “mathematics”. 
Although there is a connection between mathematics and education and 
history (after all, there exists a history of mathematics, although this is not 
proper mathematics), the links between the six other members of the list are 
certainly more recognized than that between each one of them and 
mathematics. 

Let us do a mental exercise, however, and look at all the various 
combinations that include mathematics. Because each of the remaining six 
items on the list can be examined in relation to mathematics, this gives us 26 
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(i.e., 64) possibilities. One might argue, however, that society and history-
sociology-anthropology can be grouped into a single larger unit, called 
“society-plus”, in the way that we have society and its reflective study both 
on the level of individuals and in groups in a temporal-historical and cross-
cultural perspective. So, that leaves us with: 

 
• mathematics 
• education 
• philosophy 
• society-plus 

 
It is tempting to further develop this line of thinking. We could imagine 

all the pairs that can be made out of these four, with mathematics as one of 
the elements, then look at all the triplets we can form and finally the quartet 
itself. We will resist this move, however, for the simple reason that the 
collection of papers brought together here have the interesting quality that at 
least three of the four (if not all four) aspects are somehow covered. It 
would, therefore, be quite arbitrary to invent a framework so each one of the 
contributions can be inserted into a slot, making it necessary to misrepresent 
(more or less) its contents. Perhaps it is a rather bold claim, but we do 
believe that mathematics, education, philosophy, and society-plus, (MEPS 
for short), form a connected whole and should preferably be approached as 
such. 

In addition, we would like to emphasize the presence of the letter P in 
MEPS. Mathematics, education and society are well-studied, but we have the 
impression that the case is not entirely the same for mathematics, education 
and philosophy. As to the former, it does not—or more strongly, should 
not—come as a surprise that society-plus enters into mathematics through 
education. After all, an educational system, whatever particular shape it 
takes, involves society at large and involves ways to transmit knowledge, 
practices, and social skills from one generation to the next. It is no small 
wonder then that we should reflect on how mathematics is imbedded in 
society. As for the latter, the relationship between the three elements is not at 
all clear. It ranges from a trivial relationship such as a simple philosophy of 
mathematics (a philosophy of education is always possible if not already 
existing) to a relationship that has received little attention up to now (e.g., 
can philosophy be integrated into a mathematics curriculum for 12-year 
olds?). Philosophers themselves are not truly impressed by educational 
problems, regardless of the area we are talking about. Tongue in cheek, it 
seems that philosophical knowledge has a curious property in common with 
mathematical knowledge. It seems to be passed on from one generation to 
the next directly through sublime or fine adult minds without the usual 
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detour of a long, cumbersome education. One is tempted to think that eternal 
truths (as so many among us wish to see mathematical knowledge consist of) 
will somehow seek out the fine and exquisite mind and give it direct access 
to the ideal mathematical realm without requiring any ediucation. 

 Let us elaborate on this thought a bit further. These questions have 
been asked a million times before.  Nevertheless, let us ask again: Why do 
we consider mathematical knowledge and possibly mathematical practices 
so important that generation after generation must undergo the extreme 
displeasure of calculating fractions, square roots, derivatives, or integrals? 
Remember the famous quote “When was the last time you had to calculate 
the determinant of a matrix?” This assumes that one is still capable of 
performing this small miracle of numeracy. Indeed, should these capabilities 
not be reserved for those who have a privileged access to them—i.e., the 
mathematically gifted? Or, in other words, should mathematics education not 
promote selection? 

And, for that matter, should we be fighting segregation at all? Is selection 
not inevitable in education? After all, there will always be bright pupils and 
weak pupils. Should we not then apply a method that allows the brightest to 
surface as quickly as possible, so as to be able to offer them the best 
education and reduce the suffering of the not so bright? Until a few decades 
ago, segregation was still produced on the basis of an elite language. For 
example, in some European countries, Latin was the language of knowledge 
and was by no means accessible to all because it was not the language of the 
people. Has mathematics not taken over this role in many countries as a kind 
of lingua franca for the sciences? The differences between bright pupils and 
poor pupils will remain, but that does not mean that we must endeavor to 
generate this segregation as quickly and as sharply as possible. As an 
alternative, would it not be better to make our ideological-philosophical 
project known and to indicate that we are advocates—or at least 
proponents—of an emancipatory education that helps to develop democratic 
values, via mathematics education, as well? Just as people have a right to 
literacy, do they not have a right to numeracy as well? These questions are 
more frequently raised now as internationally promoted measurements of the 
prosperity of a population include measurements of the mathematical 
capacities of that population. This does not imply that differences between 
strong and weak pupils are ignored. After all, everyone is helped by the best 
education and, in fact, is even entitled to it. The point is that mathematics 
education in this project should not be a means to strengthen, let alone to 
justify, the current divide. 

In summary, as Alan Bishop and others have so clearly shown, a set of 
values, a view of society, an implicit philosophy—basically a way of 
looking, perceiving, being in the world—are also transmitted at the same 
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time. Whatever one’s perspective or view on this matter, gaining insight into 
this conceptual cluster is of the utmost importance. 

THE CORE THEME OF THE BOOK: MAKING THE 
IMPLICIT EXPLICIT AND ASKING QUESTIONS 

Given such a set of values, two questions come quite naturally: 1) whether 
these values, if implicitly present, can be made explicit, and 2) if such values 
are found wanting, whether alternative values exist and, if so, how they 
could be implemented? All contributors to this volume share this thought—
that the mathematics being taught in Western culture carries with it a 
questionable philosophy and world-view and that alternatives do indeed 
exist. 

The contributions presented in this volume have more is common. What 
we understand by “philosophy of mathematics” is not restricted to the 
meaning of philosophy in the sense of axiology. When speaking about 
implicit philosophy, we strongly emphasize the aspect of values. While 
speaking about explicit philosophy, we are searching for ellaborations on the 
notion of philosophy. What all these articles share in addition is the strong 
belief that critical philosophical reflections should be included in the 
standard mathematics curriculum. At the same time, it should be noted that it 
is less clear what particular form this implementation should take.  

First, are we thinking about philosophical systems, theories, views, and 
the like, or do we see philosophy as (a set of) practice(s)? Do we see pupils 
as little philosophers or rather as human beings with a philosophical 
attitude? Related to this point, are we looking for a philosophical system that 
supports, explains, and motivates the mathematics taught—or, quite the 
opposite, do we wish to confront the pupils with critical remarks and 
observations about the mathematics they have learned?  

Second, are we striving for an explicit presence of a philosophical 
reflection in the curriculum, or does the philosophical content enter in 
somewhat indirect ways? Using the history of mathematics—or is a history 
of mathematics a more apt expression?—to show the flexibility of 
mathematical concepts is, after all, a nice way to induce a philosophical-
critical attitude concerning mathematics. 

Third, it seems obvious to us that all parties concerned with the 
educational process should be involved in the process. We tend to focus on 
the curriculum and on the pupils, but there is really no reason to exclude the 
teachers themselves. Ideally, one could imagine a philosophically motivated 
mathematics teacher who, given a classic curriculum, manages to present the 
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material in such a way that the pupils sense or feel the teacher’s 
philosophical attitude. 

All these considerations lead to the following connected set of questions: 
 
• What is the philosophical set of values implicitly present in 

mathematics curricula today? 
• Conversely, what are the views on mathematics education from the 

viewpoint of present-day philosophies of mathematics (Note: it is our 
belief that this question is hardly ever asked)? 

• Given answers to the above questions, which philosophies are 
compatible with which kinds of education, and what specific form 
can such philosophies take? 

• How can such philosophies be explicitly included in the curriculum? 
What particular shape can such implementation take? 

• If all of the above can be, one way or another, satisfactorily 
answered, how are we to evaluate afterwards? 

 
In short, this sequence of questions corresponds to a movement away 

from an implicit philosophy of mathematics towards an explicit philosophy 
in mathematics. Each in his or her own specific fashion, the authors have 
tackled one or more of these questions, either by focusing on broad 
theoretical reflections or by presenting quite concrete ideas for actual, 
alternative practices—in some cases, those already implemented. What 
follows is a detailed introduction to the individual papers in this volume, 
interspersed with the editors’ philosophical and other commentaries. 

OVERVIEW OF THE PAPERS 

The paper by Karen François, “The Untouchable and Frightening Status of 
Mathematics: Didactics, Hidden Values and the Role of Ethnomathematics 
in Mathematics Education,” explores the connection between the absence of 
an explicit philosophy and the implicit philosophy of a curriculum. In the 
case where an explicit philosophy is mainly absent, the implicit philosophy 
seems to be rather absolutist with no room for reflection or critical attitudes. 
She criticises a curriculum which presents mathematics as a series of merely 
technical procedures without an embeddingof culture. 

The papers by Susanne Prediger, “Philosophical Reflections in 
Mathematics Classrooms. Chances and Reasons;” Dimitris Chassapis, 
“Integrating the Philosophy of Mathematics in Teacher Training Courses. 
The Relevant Problems Encountered in Greece as an Example;” and 
Albrecht Heeffer, “Learning Concepts through the History of Mathematics: 
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The Case of Symbolic Algebra” contain several proposals, ideas, and 
suggestions as to how to steer the mathematical education process in other 
directions. What will strike the reader most is the variety of possibilities. As 
Prediger suggests, you can introduce philosophy directly into the classroom. 
She explains why and how philosophical reflections should be included in 
mathematics classrooms by presenting three examples. Chassapis would like 
to see more emphasis at the teachertraining level and has actually put this 
into practice. The philosophy of mathematics should be considered an 
essential component of teachers’ professional knowledge. He presents some 
examples of courses in learning and teaching primary school mathematics, 
and issues that arise in its implementation. Heeffer has a dream at the level 
of the history of mathematics (and note that it is an historical tale with 
philosophical consequences, for he questions the invariance of mathematical 
meanings of concepts over the ages). He argues for the integration of the 
history of mathematics within the mathematics curriculum as a way to teach 
students about the evolution and context-dependency of human knowledge. 
Moreover, an emphasis on the understanding of mathematical concepts is a 
necessary condition for a philosophical discourse about mathematics. 

 The above characterization wrongly suggests that to solve the problem 
at hand it is basically sufficient to introduce some additional topics, such as a 
philosophical reflection or an historical tale. One could (and should) also 
criticize the way it is presented—how mathematics is carried out. An 
obvious is to emphasize the problem-solving nature of any intellectual 
activity, hence also mathematics. What is more central to problem-solving 
than learning from errors? This topic is dealt with in a number of papers 
(e.g., Chassapis, Meletiou-Mavrotheris, and Prediger), but Carmen Batanero 
and Carmen Díaz’s paper, “The Meaning and Understanding of 
Mathematics: The Case of Probability,” is a truly fine example. They 
distinguish between the personal and the institutional meaning of mathematical 
concepts to differentiate between the meaning that has been proposed for a 
given concept, or fixed in a specific institution, and the meaning given to the 
concept by a particular person in the institution. Furthermore, they describe 
mathematical activity as a chain of semiotic functions and introduce the idea of 
semiotic conflict that can be used to give an alternative explanation to some 
widespread probabilistic misconceptions. The paper also contains an excellent 
critique of the fact that the probability theory is often presented as if there 
exists one and only one interpretation, whereas a first-order philosophical 
exploration reveals at least five or six fundamentally different meanings. 

 There is, however, no need to stop here. It is a fruitful and (we believe) 
rather original exercise to take the philosophy of mathematics as a starting 
point and, having a particular view on what mathematics is and how it is 
practised, ask what implications it has for an educational view on 
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mathematics. If one is a Platonist or a formalist, then it is to be expected that 
there will be a focus on mathematical results, such as theorems and proofs. If 
an historical component is included, it will tend to focus on the great 
achievements of great mathematical, and almost exclusively masculine fine 
and exquisite minds (one may safely ignore the mathematicians’ bodies). In 
these last few decades, there has been an emphasis—and this is a rather 
novel development—on mathematical practice and thinking through its 
philosophical implications. 

 In this collection of papers, the contributions by Maria Meletiou-
Mavrotheris, “The Formalist Mathematical Tradition as an Obstacle to 
Stochastical Reasoning,” Ard Van Moer’s “Logic and Intuition in 
Mathematics and Mathematical Education,” and Bart Van Kerkhove’s “A 
Place for Education in the Contemporary Philosophy of Mathematics: The 
Case of Quasi-Empirism” explore this dimension. Van Moer draws attention 
to the faculty of mathematical intuition not as a gift of the gods or a 
supernatural ability or, to follow today’s fashions, genetically given, but as 
the result of a learning process—hence something that can be thought. Van 
Kerkhove shows that at the basis of Lakatos’s quasi-empiricist philosophical 
excavations lies a central concern, through his affinities with Pólya, with 
pedagogical principles surrounding the informal phases of mathematical 
inquiry, which suggests that the development of humanistic mathematics is 
indeed not unconnected with the educational. Meletiou-Mavrotheris 
criticises the continuing impact of the formalist mathematical tradition. She 
reconsiders some empirical findings on students’ understanding of statistics, 
and forms some hypotheses regarding the link between student difficulties 
and mathematical formalism. Subsequently, she suggests the pedagogical 
and curricular changes that ought to take place in order to move away from 
the formalist mathematical tradition and to improve people’s impoverished 
probabilistic and statistical reasoning. 

 Have we now reached a point where our explorations can temporarily 
end, or are there further dimensions to study, scrutinize and criticize? In fact, 
we believe there are. Better still, we believe we have to. Many of the papers 
in this book deal with it implicitly, but the paper by Rik Pinxten and Karen 
François, “Ethnomathematics in Practice” does so explicitly (thus making a 
full circle). It tackles the question of the relationship between mathematics 
with the big M or eurocentric mathematics, and ethnomathematics with the 
small m or usually non-Western systems of mathematical thinking and 
doing. There is a major difference to note here. As transpires from the above 
formulation, our mathematics comes with a capital M and all non-Western 
mathematics comes with a small m. 

 In line with all the contributions already mentioned, it is a far more 
interesting hypothesis to explore that big M and small m are also present in 
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our Western world and are thus translated into mathematical education. If 
one explicitly considers mathematical thinking as the highest, or the purest, 
or the noblest, or the most abstract form of human intelligence 
achievements, then it seems inevitable that he (sometimes she) who masters 
this superior form of knowledge somehow already had the disposition for it. 
In short, as Alan Bishop has shown, there is a difference between 
m(athematics) and M(athematics), where m(athematics) stands for a set of 
mathematical basic competence (such as counting, designing, explaining, 
locating, measuring, and playing), and M(athematics) stands for mathematics 
as it is known and developed as a Western scientific discipline. It is the 
mathematical knowledge of the mathematician and of the highly specialised 
student in physics or engineering. In contrast to this, m(athematics) is a set of 
mathematical basic skills and procedures that an individual or group uses in 
daily life. It is a clear invitation to connect the dividing line between the 
mathematically initiated (the “happy few”) and the rest of the world—i.e., 
most of us with the “mathematics for the million” (although the splendid 
work by carrying this title, is really a scaled-down version of what the happy 
few think—a form of Theology Made Easy or Theology for Dummies) —to 
social and political dividing lines. We did not make a mistake here. We did 
write theology and not mathematics. This introduction is not the right place 
to pursue these matters, but we dare to provoke the thesis that the similarities 
are more striking than the differences. 

 Another route not to be explored here is that the big M in an 
educational setting has a curious and complex relationship what actually 
happens in the mathematical research community. Either mathematicians are 
idealized, losing all connection with blood-and-flesh mathematicians, or the 
focus is mainly on the fossilized results—again breaking the link with the 
messy (and usually more interesting) practice of mathematicians. This 
strongly suggests that a distorted M is presented to the pupils. 

 The example of Navajo geometry in the contribution of Pinxten and 
François serves not so much to illustrate that other mathematical systems (to 
be understood in the broadest terms possible) are possible—we consider this 
question to have been dealt with, and, if one does object, we believe that a 
definitional game is played along the lines of “I don’t care what it is they do, 
as long as you do not call it mathematics”—to throw light on the Western 
cultural situation. The example of the Turkish ethnic minority shows how 
ethnomathematics comes into the picture in Western classrooms. After all, 
Western societies have transformed into multicultural societies, hence ethnic 
minorities are part and parcel of everyday life. Where better does one find its 
reflection than in an educational setting? The issue at stake is how to deal 
with diversity in the classrooms and more specifically in the mathematics 
classroom. We have to be aware of the institutional context of mathematics 
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education. The point seems to be that mathematical learning or thinking is 
contextual in any living culture; it lives and develops and it is used in a 
particular cultural context. The often decontextualized use of knowledge in a 
Western school setting is then alienating and foreign to pupils. And so the S 
in MEPS again enters into the picture, demonstrating what we claimed at the 
start—that ME without S does not really make sense and that ME without P 
does not make much sense either. This last statement should be taken 
seriously in our minds (and bodies for that matter), for as we hope this 
volume shows, thinking about P in the context of ME leads one straight back 
to S, thus making the impact of this component clearer and more pertinent. 

 



  

 

INTERLUDE 1 
 
 
When we are talking about a philosophy of mathematics and implementing it 
in general in a mathematics curriculum, it is good to first ask how 
mathematics curricula are doing. Every one of us has a vague idea about 
what mathematics education should look like. Perhaps our memories go back 
to our own training where only a rara avis had another mathematics 
education rather than a technically oriented training. The history of 
mathematics was probably limited to an interlude in a handbook showing a 
gallery of male mathematicians, that we were not expected to memorize and 
who we crossed out, marking “don’t study.” What has become of the current 
mathematics curricula? In the following article, we read about a study of the 
mathematics curriculum in Flemish secondary education (Belgium). The 
Flemish mathematics education outshines that of most countries in 
international rankings—certainly for Trends in International Mathematics 
and Science Study (TIMSS), but for Programme for International Student 
Assessment (PISA) too. In this respect, the Flemish mathematics education 
could be a model for other countries. But alongside the success story of 
Flemish mathematics education there is also a—perhaps not uninteresting—
critical story to be told. This critical story is a perfect introduction to a 
philosophy of mathematics in education. 

This article does not just concentrate on the explicit philosophical aspects 
which may, or may not, be part of the curriculum. The absence of an explicit 
philosophy, too, is a story in itself. Despite the absence of explicit 
philosophical aspects, a philosophy indeed hides behind the curriculum. In 
fact, a curriculum is the result of a lengthy debate among experts about 
whether or not to include certain aspects. There is an underlying view that 
suggests some interpretations about the perspective on mathematics with 
regard to society. The question remains whether the perspectives of the 
experts responsible for developing the curriculum also filter through to what 
pupils are eventually expected to know in class. After all, the curriculum 
excels in creating an accumulation of technical mathematical facts. With an 
ever-increasing complexity, the various subdisciplines of mathematics are 
pieced together and systematically taught, practised, practised and… 
practised. Their relevance and the links to the pupils’ social world are 
generally absent. Yet, this approach is characterised by its underlying values, 
and it is important to uncover these—not just to dispel the idea that 
mathematics is something neutral and objective, with no link to human 
interests, but to show how these values remain reserved for a select group, 
through the way that they are transferred, of elite pupils who understand 
abstract mathematics without need of concrete applications. 



  

 

  

THE UNTOUCHABLE AND FRIGHTENING 
STATUS OF MATHEMATICS 
 
Didactics, Hidden Values, and the Role of Ethnomathematics in 
Mathematics Education 
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Centre for Logic and Philosophy of Science – Free University of Brussels, Belgium 

Abstract: During my research into the mathematics curriculum of Flanders secondary 
education (age 12-18), I first discovered that there is small scope for an 
explicit philosophy of mathematics. Nevertheless, there are some initial 
concepts formulated in the general objectives which tend to a more absolutist 
view of mathematics. In formulating the new curriculum, however, there was 
some attention paid to the inclusion of humanistic values. The mainstream of 
the implicit philosophy of mathematics is still a rather absolutist one, viewing 
mathematical truth as absolute and certain, connected with some humanistic 
values. Second, I discovered a large gap between general and vocational 
education. On the one hand, we can say that mathematics in vocational 
education is completely embedded in a modular system, and that attention is 
paid to core skills. On the other hand, we must say that pupils are prepared for 
specific occupations, for personal and social functioning, and to survive in our 
society. Access to higher education is theoretically possible, but unlikely for 
the majority. Mathematics in general education is a separate and different 
course. General education provides a strong base for higher education. In this 
paper, I shall briefly present some findings of the case study in which I want to 
make the connection with the theoretical framework of Alan J. Bishop. Bishop 
believes in a difference between the small m and the large M of mathematics, 
where the small m stands for a set of mathematical basic competence (such as 
counting, designing, explaining, locating, measuring, and playing) and the 
large M stands for mathematics, as in the Western scientific discipline. I shall 
argue that pupils in vocational mathematics are taught the small m and pupils 

 
1  Research for this paper was done within the framework of the Inter University Attraction 

Poles program (Phase V) granted by the Belgian Federal Science Policy. 
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in general education are taught the large M. The more general the education is, 
the larger the M is, which gains higher respect in society. In line with this M-m 
distinction, I shall elaborate on the connection which exists between the view 
on mathematics education and the didactics used in classroom. International 
comparative research on the results of mathematics educations shows us—in 
the case of Flanders—the best results nearly all over the world. I shall, 
however, criticize the way in which mathematics in schools chooses between 
the smart and the not so smart and what the role of ethnomathematics should 
be in Western school curricula to overcome this social stratification. Finally, I 
want to go on to explore two central hidden values in mathematics education 
to demystify the untouchable and frightening status of mathematics.  

Key words: Mathematics education, philosophy of mathematics, hidden values, 
ethnomathematics 

1. INTRODUCTION 

Research on the implicit and explicit philosophy of mathematics in school 
curricula takes place in a broader research project, in which we are looking 
for the relationship between the sciences, society, politics, and the 
democratic constitutional state. Within this project, one of the key questions 
are: “What is the place of mathematics in (or indeed above?) the sciences” 
and more broadly, “What is the place of mathematics in society?” By 
narrowing this question down, we shall elaborate on the question of how 
mathematical knowledge is reproduced in our society and how mathematics 
is handed down from generation to generation. Obviously, education is an 
important, if not the most important way to reproduce knowledge in our 
society. 

In a first stage of the research, I was looking for the answer to “is there 
room for a philosophy of mathematics in school curriculum?” At a later 
point, this question seems rather simplistic. So does the question “Why 
should we implement a philosophy of mathematics in the mathematics 
curriculum?” because there already exists a philosophy of mathematics in 
the current curriculum. It has not yet been made explicit, however—it 
remains hidden. Moreover traditional mathematics is strongly directed 
towards the performance of techniques and has little to do with the study of 
mathematics as a historical and cultural product nor with the underlying 
cultural values. If we make the difference between an implicit and an explicit 
philosophy, we can propose the question, “Is there room for an explicit 
philosophy of mathematics?” The existence of an implicit philosophy is 
obvious, as I shall argue in the last section on hidden values in mathematics 
education. The absence of an explicit philosophy of mathematics tells us 
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something about the implicit values of the curriculum. To discover them, we 
need to implement an explicit philosophy. If an explicit philosophy is 
generally absent, the implicit philosophy will be a rather absolutist one with 
no room for reflection or critical attitudes. I will show this statement in the 
following chapters, where I shall first present some main findings on the 
screening of the mathematics curricula. Second, we will search for a deeper 
understanding of these results by presenting three main aspects of the 
curriculum. Finally, I shall criticize the current curriculum that presents 
mathematics as a series of technical procedures without a cultural 
embedding. Our research shall be based on the study of relevant literature on 
philosophy, mathematics and on education (Bishop [1988a] 1997, Bishop 
(2002), Bishop (2006) and Ernest [1991] 2003). 

2. CURRICULUM SCREENING 

During my research into the curriculum of mathematics in Flanders 
secondary education, I discovered three main aspects: 1) the absolutist view 
on mathematics, 2) the gap between vocational and general education, and 3) 
the related distinction between mathematics with a large M and mathematics 
with a small m. Before arguing these aspects, we will give an overview of 
the retained philosophical issues. 

The method used to analyze the curriculum was a qualitative screening at 
two levels: 

 
• the level of the curriculum as developed by the community (as 

strictly enforced by law) 
• the level of the authorities of the differing school systems 

 
In Flanders, there are three differing school systems—public schools, 

subsidized private schools, and subsidized community schools. They have to 
integrate the attainment targets into their own developed curricula. 

Before we present the kinds of philosophical items in the curriculum, we 
need to point out that there are two parts of the curriculum where 
philosophical issues can be found. The first part is the view on mathematics 
in education and some general objectives. The second part is the attainment 
targets. It is understandable that teachers are focused on Part Two because 
the attainment targets are the criteria for the evaluation of pupils. 

Secondary education has four forms: general, technical, art, and 
vocational. The four forms of education are not organized separately in the 
first stage (12-14-year olds), but they are in the second stage (14-16-year 
olds) and in the third stage (16-18-year olds). In grade I, there is an A class 
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that has access to the general, technical and art forms and there is a B class 
that only has access to vocational education classes. 

The research question is whether there are targets—beside the technically 
oriented targets—integrated in the curricula concerning philosophical issues 
in the broad meaning of the term (e.g., (strictly) philosophical, cultural, 
historical, and so on). 

In the following tables, you will find listings of retained paragraphs on 
philosophy (in the broad meaning of the term) and the non-technically 
oriented targets. 

2.1 The Curriculum as Developed by the Community at 
the Level of the View 

In a first general overview (Table 1), one can see that there is no room for 
philosophy in vocational education. As we shall explain in section 3.2, there 
is a real gap between general and vocational education. 
 

 
Table 1: “Philosophy”2 of Mathematics at the Level of the View. An Overview 

 
 

Grade 
 

Type of Education 
Types of education are shaded where philosophy occurs. 

 
 
I 
 

 
A-Type 
General 

 

 
B-Type 

Vocational 

 
II 
 

 
General 

 

 
Technical 

 
Art 

 
Vocational 

 
III 

 

 
General 

 
Technical 

 
Art 

 
Vocational 

 
 

Now we will go into the philosophical issues in more detail. Table 2 
presents a listing of all issues referring to non-technical goals in the 
curriculum. We differentiate by grade (I, II and III, that correspond 

 
2  We placed philosophy between apostrophes because we needed to use a very broad 

interpretation of philosophy. 
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respectively with the ages of 12-14, 14-16, 16-18) and by type of education 
(general, technical, and art), if necessary. 

 
 

Table 2: “Philosophy” of Mathematics at the Level of the View. Detail 
 

 
Grade I: A-Type (General Education) 

 
 
Ontological proposition: The proposition that mathematics is abstract 
and formal and that mathematics has no connection with reality, has 
increased to a certain degree. 

 
Appreciation: Pupils must be encouraged to see the beauty and perfection 
of a geometric figure, the clarity of a well-reasoned argument, and the 
elegance of a formula.  

 
The cultural and dynamic meanings of mathematics: Pupils should 
experience that mathematics has a practical use, and that it has educative 
and aesthetic value. The history of mathematics helps pupils to understand 
that mathematics is an important aspect and component of culture, both in 
the past and the present. Mathematics in the past developed via many 
cultures. Due to the emphasis of this development, pupils gain the 
knowledge that mathematics is a dynamic process. 

 
The fundamental goals are: Pupils will have the experience of 
mathematics as a dynamic science. Pupils will have the experience of 
mathematics as an important cultural component. 

 
 

Grade II: general, technical and art education 
 

 
The ontological proposition: Absent. 

 
Appreciation: In addition, when the commission determined the selection 
of the goals, they took the effect of the development of a relationship with 
mathematics into account. 
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The cultural and dynamic meanings of mathematics: (more abstract): 
Pupils should experience that mathematics has a practical use, and that it 
has educative and aesthetic value. Attention to the development of 
mathematics helps pupils understand that mathematics is an important 
aspect and component of culture, both in the past and the present. In this 
manner pupils will gain the knowledge that mathematics is a dynamic 
process. 

 
The fundamental goals are: Pupils will have the experience of 
mathematics as a dynamic science. Pupils will have the experience of 
mathematics as an important cultural component. 

 
 

Grade III: General Education 
 

 
The same content as in Grade II. 

 
 

Grade III: Technical and Art Education 
Text [between square brackets] is dropped at this level. 

 
 
The same content as in Grade II. 

 
The cultural and dynamic meanings of mathematics (a partial 
interpretation): Pupils should experience that mathematics has a practical 
use, and that it has educative and aesthetic value. [Attention to the 
development of mathematics helps pupils understand that mathematics is 
an important aspect and component of culture, both in the past and the 
present. In this manner pupils will gain the knowledge that mathematics is 
a dynamic process.] 

 
The fundamental goals are (one goal has been dropped): Pupils will 
have the experience of mathematics as a dynamic science. [Pupils will 
have the experience of mathematics as an important cultural component.] 

 
 
In section 2.2, we move on to the more important level of the attainment 

targets. While it is possible to ignore the viewpoint and general objectives of 
a curriculum, teachers are supposed to take into account the attainment 
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targets. They have to focus on that part, because the attainment targets are 
the criteria for the evaluation of pupils and textbooks are created based on 
these targets. 

2.2 The Curriculum as Developed by the Community to 
Reach the Attainment Targets 

Looking at the overview of possible locations for philosophical issues (see 
Table 3), one will see there are no philosophical (historical or cultural) goals 
formulated for either the B type (vocational education), or for grade I. The 
philosophical issues are reserved only for grades II and III (see Table 3) of 
general education. 
 
Table 3: “Philosophy” of Mathematics at the Level of the Attainment Targets. An 
Overview 

 
 

Grade 
 

Type of Education 
Types of education are shaded where philosophy occurs. 

 
 
I 
 

 
A-Type 
General 

 

 
B-Type 

Vocational 

 
II 
 

 
General 

 

 
Technical 

 
Art 

 
Vocational 

 
III 

 

 
General 

 
Technical 

 
Art 

 
Vocational 

 
 
Table 4 presents the listing of the non-technical attainment targets of the 

curriculum. We only retained three different attainment targets over the six 
years of secondary education. Philosophical goals are completely skipped in 
vocational education and in Grade I (age 12-14). While there is some 
attention paid to a philosophy of mathematics at the level introductory of the 
curriculum, one can see that at the level of the content of the course—the real 
stuff that pupils have to gain—there is very little room for philosophical 
reflection.  
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Table 4: “Philosophy” of Mathematics at the Level of the Set Attainment Targets. 
Detail 

 
 

Grade II: General Education 
 

 
Pupils can give examples of the contribution of mathematics to art. 3 

 
 

Grade II: Technical and Art Education 
 

 
Pupils will gain an appreciation for mathematics (possibilities and 
limitations) in confrontation with the cultural, historical, and scientific 
aspects of mathematics.4 

 
 

Grade III: General Education 
 

 
The same content as in  Grade II: General Education 

 
 

Grade III: Technical and Art Education 
 

 
Pupils can give examples of the application of mathematics in other 
courses and society in general.5 

 

 
3  Attainment Target 8 of the General attainment targets. 
4  Attainment Target 11 of the General attainment targets. 
5  Attainment Target 7 of the General attainment targets. 
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2.3 The Curriculum as Developed by the Different 

School Organizations 

It is interesting to see what happens at the level of the self-developed 
curriculum of the different school organizations. They have the freedom to 
add some targets, to fill in the content of the attainment targets, and of 
attitude. What did they do with this freedom? We shall not repeat those 
aspects that are integral to the self-developed curricula. We shall only pay 
attention to the new aspects that have been added. 

First, it can be said that they (unfortunately) do not appear to have done a 
great deal with this freedom. Only the curriculum of the Catholic schools 
displays an explicit ideological message that is directed at teachers of 
mathematics: 

“A teacher of mathematics at a catholic school will teach the same 
mathematics as their colleagues in public and community schools. However, 
they have a duty to refer to the ideological project, wherever they can. As a 
member of the Christian pedagogical project, they should be alert in order to 
seize any opportunity to emphasize a deeper and more intense dimension. 
Also the course in mathematics opens up other possibilities. The better 
teachers know their pupils personally, the better they can feel the moment 
when pupils have the openness to advance toward ontological and existential 
questions.”  (Licap  1997, 14, my translation).  

 
Looking at the level of the attainment targets, we discovered the 

following three additional philosophical issues: 
 
Grade II (Public School): General, Technical and Art Education 
Mathematics can contribute to expressive-creative education, specifically 
to architecture and the art of painting and sculpture. 
 
Grade II (Catholic School): General, Technical and Art Education 
The education of mathematics is bound with other disciplines and 
courses. Moreover, even mathematics has been developed in a historical 
context with its specific ideas and problems during the past centuries. It is 
also important, therefore, to pay attention to the historical context to 
assist the pupils in gaining an understanding of mathematical problems. 
 
Grade II (Catholic School): Only for General Education 
In geography for example, a teacher can pay attention to the contribution 
of mathematics in architecture, music, painting and sculpture. (Escher, 
Vasarély, Mondriaan, Roelofs, Le Corbusier, the Pantheon …) 
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3. FINDINGS OF THE CURRICULUM SCREENING 

Based on the theoretical framework of Bishop and Ernest, (Bishop [1988a] 
1997, Bishop (2002), Bishop (2006), and Ernest [1991] 2003), we will argue 
why we retained the following three aspects that characterize the curriculum: 
1) the absolutist view on mathematics, 2) the gap between vocational and 
general education and 3) the related distinction between mathematics with a 
large M and with a small m. 

3.1 The Absolutist View on Mathematics 

By screening all the curricula, we discovered that the more specific the 
targets were, and the more important the impact on the educational process 
was, the fewer philosophical issues we found. There is a limited scope for an 
explicit philosophy of mathematics, especially if we are looking at the level 
of the specific objectives. Nevertheless, there are some initial concepts 
formulated at the level of the view on mathematics in education that give us 
an argument for supporting the existence of some humanistic values. 

The initial concepts formulated at the level of the view, however, are not 
translated to attainment targets. This means that the mainstream of the 
current implicit philosophy of mathematics is still a rather absolutist one—
considering mathematical truth as absolute and certain (See Pinxten and 
François, this volume). 

The absolutist view on mathematics is defined by Ernest as “it consists of 
certain and unchallengeable truths. According to this view, mathematical 
knowledge is made up of absolute truths, and represents the unique realm of 
certain knowledge, apart form logic and statements true by virtue of 
meanings of terms, such as ‘All bachelors are unmarried’” (Ernest 1991, 7). 

The current curricula do not pay attention to reflection, critical attitudes, 
or the social construction or cultural variety of mathematics. Mathematics is 
handed down as if there exists only one mathematics that is made up of 
absolute truths and certain knowledge where specific deductive methods 
provide the warrant for the assertion of mathematical knowledge.  

 
In support of the absolutist view, offer the following arguments: 
 
• There is no room to discuss the status of mathematics 
• The status is very clear and rather static 
• There is no philosophy at all in vocational education 
• The larger the M, the higher the respect in society 
• The appreciation for mathematics that pupils are encouraged to gain 

is seen as the highest form of motivation 
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• Experience-based learning is only used to gain the interest and to 
motivate disinterested pupils, to help them to gain appreciation for 
mathematics with the truly large M 

 
As for the humanistic values, we observed the following: 
 
• There is only a small space for philosophy in education in general 
• There is limited attention given to “the possibilities and the 

limitations of mathematics,” although in the curriculum it is placed 
between brackets 

• Some attention is given to the applications of mathematics 
• There is limited attention to historical and cultural components 

(where, in addition, most of the space is filled with art) 

3.2 The Gap between General and Vocational Education 

As presented previously (Tables 1 and 3), there is not even one reference to 
an explicit philosophy in the curriculum of vocational education. That 
creates a large gap between general (technical and art) and vocational 
education. Pupils in vocational education are prepared for specific 
occupations, for personal and social functioning, and to survive in our 
society. Therefore, it seems to be that they do not need any critical or 
philosophical reflection on mathematics, nor on the history or the cultural 
embedding of it. Access to higher education is theoretically possible, but 
unlikely for the majority, while general education provides a strong base for 
higher education. Hence, vocational and general education have a truly 
differing status and this brings us to our third main point. 

3.3 The More General Education is, the Larger  
the M Value is 

Alan J. Bishop distinguishes between the small m and the large M of 
mathematics, where the large M stands for mathematics as the Western 
scientific discipline, and the small m stands for universal mathematical basic 
competencies. What does Bishop mean by the small m? Bishop ([1988a] 
1997, 20-60) presents six key universal activities that are the foundations for 
the development of mathematics in culture—namely counting, locating, 
measuring, designing, playing, and explaining. He claims that those six 
activities are universal and therefore mathematics is a pan-cultural 
phenomenon. With the help of the available cross-cultural evidence, he 
explores the hypothesis that these six activities are universal, and yet one 
cannot establish whether such activities are indeed universal. One can only 
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infer from the available evidence. Hence, plausibility is a reasonable 
criterion to use here so that one can argue that it is at least plausible that the 
six activities are universal. Furthermore, Bishop demonstrates that all 
cultures have necessarily developed their own symbolic technology of 
mathematics in response to the demands of the environment. In other words, 
mathematics is a culturally embedded human activity. It is not only 
universal—it is at the same time a pan-cultural phenomenon. Bishop argues 
that the six key activities are, and were, the significant activities for the 
development of mathematical aspects of culture. As a result of certain 
within-cultural developments, and also of different cultures interacting and 
conflicting, a particular and traceable line of development has emerged. An 
interesting example of the evolution of the concept of number is given by 
Heeffer (see Heeffer, this volume). 

In terms of Bishop‘s distinction between the small m and the large M, 
pupils in vocational education are taught a form of mathematics that is closer 
to the small m than is the case for pupils in general education. The 
pedagogical systems in general and vocational education are strongly 
differentiated. Mathematics in vocational education is completely embedded 
in a modular system, while mathematics in general education is a separate 
course. 

Due to this different pedagogical structure, pupils in vocational education 
are taught the core skills of mathematics in response to the demands of the 
environment and are connected to real live problems. These pupils are taught 
the small m, while pupils in general education are taught the introduction of 
the large M in a separate course with a curriculum that is strongly directed 
towards the performance of techniques. This brings us to three critical 
remarks concerning the curriculum of mathematics. 

4. CRITICAL REMARKS 

In this last section, we would like to embed the findings of our case study in 
a broader critical theory on mathematics education. We, therefore, have to 
make the connection between our findings and contemporary theory on 1) 
didactics (Bishop [1988a] 1997; Cohen and Lotan 1997), 2) 
ethnomathematics (Powell and Frankenstein 1997; Powell 2002; Setati 
2002), and 3) values in mathematics education (Bishop 2002; Bishop 2006; 
Forgasz 1999; Morge 2005). In doing so, we embark on three critical 
remarks concerning the three characteristics of the screened curriculum. First 
we would like to criticize the didactics frequently used in classrooms. 
Second, we would like to widen the narrow use of the word 
ethnomathematics. Finally, we will reveal so-called value-free mathematics. 
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4.1 The Absolutist View on Mathematics has an Impact 

on the Didactics Used 

Looking at the results of the curriculum screening, we did not say much 
about the way in which mathematics is taught. One could clearly anticipate 
the link between the content of the curriculum and the manner of teaching, 
however. In addition, it is not surprising that the didactics used in vocational 
education are completely different from that used in general education. The 
pedagogical systems used in general and vocational education are strongly 
differentiated. Mathematics in vocational education is completely embedded 
in a modular system, and project-based teaching commonly uses didactics. 
In general education, mathematics is a separate course and the didactics 
frequently used are rather technique-oriented, as we shall explain below. 
Due to this different pedagogical system, pupils in vocational education are 
taught the core skills of mathematics in response to the demands of the 
environment, and are connected to real world problems. A strong base for 
higher education is provided in general education but vocational education is 
directed to the practice of a profession. 

With Bishop ([1988a], 1997, 7-10) we see three major areas of concern 
about the present state of mathematics teaching in general education, where 
the introduction of M mathematics is required by a society based on 
knowledge. He distinguishes between the small m and the large M of 
mathematics, where the large M stands for mathematics as a Western 
scientific discipline, and the small m stands for universal mathematical basic 
competencies such as counting, locating, measuring, designing, playing, and 
explaining. 

In these terms, we can say that pupils in vocational education are taught a 
form of mathematics that is closer to the small m than is the case for pupils 
in general education. In the case of Flanders, the following criticisms of the 
didactics used are applicable to general education, which is 1) strongly 
directed towards the performance of techniques, 2) a more impersonal 
learning process, and 3) more dominated by textbooks. 

4.1.1 The Performance of Techniques 

The technique-oriented curriculum lays down mathematics as the 
performance of techniques without any reflection or interaction. It is based 
on the assumption that a top-down approach is superior.  It therefore does 
not portray mathematics as a reflective subject, and there is less room for 
interaction during the educational process. For example, in Flanders 
secondary education there is no attention paid to critical reflection, nor to the 
historical, human, and cultural aspects of mathematics. Mathematics is 
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presented as if there exists one and only one mathematical system that is 
made up of absolute truths and certain knowledge. The deductive method 
provides the warrant for the assertion of mathematical knowledge. Hence, 
the curriculum is strongly directed towards the performance of techniques. 
Arithmetic is entrenched as the basis of the mathematics curriculum from the 
very beginning, with the first instruction occurring in kindergarden and 
during primary school. In secondary education, arithmetic is gradually 
developed to handle more and more complicated number systems (N, Z, Q, 
R, and C). From the first year of secondary education, pupils are taught 
algebra and geometry. Later on, for those who have succeeded, the gateway 
stands open to further delights such as statistics, functions, integrals, and 
differentials—depending on the level and type of education. The curriculum 
is fully loaded with those technical performances. Pupils drop out at 
different levels when the subject becomes too difficult or too meaningless. 
The Flanders secondary school system is characterised by the so-called 
waterfall system where pupils drop to a lower level when they fail—lower in 
the sense that it has less status at school and in society in general. 
Mathematics plays a prominent role—more than sciences—as a gatekeeper 
in society. It is used as a selection device for entry to higher education or 
employment. The mathematical skills that are tested are not automatically 
related to the ultimate purpose (Bishop 2006). Mathematical skills, as such, 
are the selection device. 

For those who succeed, and for the smart ones (e.g., the curriculum for 
the ‘eight hours mathematics’), however, the curriculum includes room for 
moments to explore the broader context of mathematics. It is strange to see 
how teachers use the virtual mathematical Yahoo group to inform each other 
about what to do with those free hours (confirming their uneasiness with the 
topic, as they are successful mathematicians).  

The question remains, “Why do we transform pupils into technique 
handlers par excellence, without any understanding or critical awareness of 
why, how, and when to use these mathematical techniques? Why don’t we 
enable the learner to develop a critical stance either inside or outside 
mathematics?” A technical-oriented curriculum reduces us to merely 
instructing and training pupils without any critical reflection. 

4.1.2 Impersonal and Individual Learning Process 

Within an impersonal learning process, the task for the learner is conceived 
as being independent of the personal interest of the learner. The main system 
of education, and especially mathematics education, perpetuates this idea, 
which is closely connected to the top-down approach. There is no time 
(needed) for interaction in classroom or for experience-based learning. The 
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teacher is seen as the expert, and the learners are seen as empty barrels. It 
may well be that the teacher does recognise the personal interests of the 
learners, or that pupils may have philosophical interests in mathematics, but 
it has nothing to do with mathematics education per se. Reflections on 
mathematics are not a part of mathematics education—at best it can be a 
topic in a philosophy course. 

In line with Van Moer (see Van Moer, this volume), we can say that 
mathematics is often presented as a purely deductive science, using a 
technique-oriented curriculum. The rules must be learned, the procedures 
accepted, and the skills practised. It doesn’t matter what the learner brings to 
the situation. The mathematical result is, and shall always be, the same. 
Learners are not regarded as individuals but as generalized learners. Even if 
universal mathematical truths exist (e.g., the universality of m mathematics), 
that does not mean that mathematical education should ignore the learner’s 
individuality. As Batanero and Díaz (see Batanero and Díaz, this volume) 
argue, the emphasis on the individual process of learning and understanding 
probability can give us an insight into the problems and the struggle of 
learners. Moreover, some false or mistaken answers can show a truly logical 
reasoning behind them. Especially in multicultural and multilingual 
classrooms, a personalized learning process should enable more pupils to 
succeed. It implies that presenting mathematics as an impersonal object to be 
transmitted in a one-way communication is a matter of priorities. To do 
differently—to leave room for interaction, for views, and for discussion—is 
the same. 

Much research about interaction in the classroom has been done by 
Cohen and Lotan (1997). They developed a didactic called Cooperative 
Learning in Multicultural Classes (CLIM). CLIM is a cooperative didactic 
based on Complex Instructions (CI), as invented by Elisabeth Cohen at 
Stanford University, to foster the participation of inner city children in the 
educational process (Cohen and Lotan, 1997). The method basically consists 
of giving a challenging task to a group of pupils that has to be solved by 
them by following a highly structured procedure. Each of the pupils was 
assigned a specific role. In total, there were five roles and each pupil (at a 
given point in time) takes on each role within the execution of the task. In 
this way, pupils become dependent upon each other. They will have to draw 
as much as possible on each other’s capacities to fulfill the task. Because of 
this principle of rotating roles, every pupil is confronted with varying duties, 
among which there is always at least one that he or she is able to perform 
well. In this way, they learn by doing and simultaneously learn the strong 
and weak points of themselves and the others. The tasks are carried out by 
the pupils only. The teacher is the initial organizer and functions mainly as a 
mediator. This means he or she will intervene, only when asked by the pupils 
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to do so. In this kind of teaching, the pupil is active and a producer of 
knowledge. This implies a changed role for the teacher, who is not 
immediately evident. When pupils participate in the process of building 
knowledge, the way the session develops is uncertain and partly unknown 
(Morge 2005). This creates a rather uncomfortable situation for the teacher, 
who is supposed to capture absolute mathematical knowledge by using the 
structured performance of the textbooks. This brings us to the final aspect of 
the didactics used in general education, according to the textbooks. 

4.1.3 Dominance of Textbooks 

In Flanders, there are more than a hundred textbooks with a companion 
workbook available only for mathematics in secondary education. Each level 
at each school system has its own books. Textbooks are firmly based on the 
curriculum as developed by the different school systems, and based on the 
curriculum as developed and recognized by the government. A teacher does 
not need to elaborate on the curriculum. Using the textbook, the teacher can 
be sure that he or she is teaching in the right way and that he or she will 
reach the attainment targets with his or her pupils. Teachers are controlled by 
textbooks and therefore are prevented from knowing their learners and from 
helping them. The dominance of the textbook embodies the top-down 
approach. The mathematical material for exams is written down in textbooks 
and provides certainty both for teachers and learners. The companion 
workbooks offer the possibility to practise the technical procedures at length. 
The learners have to sit quietly, listen carefully, and receive instruction 
without hesitation, and they have to practise and give the right answers 
(which are sometimes given in a special companion book for teachers). Here, 
the question remains how to motivate pupils in such a sterile educational 
process. 

Teachers should be educated not to be dependent on the textbook. 
Teacher training needs to enable the teacher to control the material and not 
vice versa. The responsibility for teaching lies with the teacher and not with 
the text. If teachers need to personalize the educational process, they need to 
work critically with the available material and include the interests and 
experiences of the learners. They can personalize the teaching process by 
taking into account the diversity in the classroom. This is a central aspect to 
be considered and dealt with if we wish to introduce ethnomathematical 
praxis in Western curricula. 
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4.2 The Role of Ethnomathematics 

In this section we will explaine the role of ethnomathematics in Western 
school curricula to overcome social stratification. 
 
4.2.1 The Notion of Ethno 

In the early 1980s, the word ethnomathematics was used for the 
mathematical practices of non-literate peoples. Marcia Ascher (a 
mathematician), and Robert Ascher (an anthropologist), (Ascher and Ascher 
[1986] 1997), used the term non-literate to counter the outmoded usage of 
the term primitive. Their work has provided detailed evidence of 
sophisticated mathematical ideas among non-literate peoples—ideas akin to, 
and as complex as, those of modern Western mathematics. 

It was D’Ambrosio, a Brazilian mathematician and philosopher of 
mathematics education, and the intellectual father of the ethnomathematics 
program who presupposed “a broader concept of ethno, to include all 
culturally identifiable groups with their jargons, codes, symbols, myths, and 
even specific ways of reasoning and inferring.” (D’Ambrosio [1985] 1997, 
17; Powell 2002, 18; Vithal and Skovsmose 1997, 138). The word ethno 
should be understood as referring to cultural groups, and not as the 
anachronistic concept of race. Even the concept of culturally differentiated 
groups is no longer reserved for non-literal people. The use of the word is 
broader now and refers to heterogeneous groups, even within a Western 
classroom (Cohen and Lotan 1997). The notion of ethno refers to the ethnic, 
national, racial group, the gender, the professional group, and to the cultural 
group defined by a philosophical and ideological perspective (Powell 2002, 
19). In short, we can say that the notion of ethno refers to diversity within 
mathematics and within mathematical teaching. Within ethnomathematics, 
scientists are currently collecting examples and data on the practices of 
culturally differentiated groups that are identifiable as mathematical 
practices. Within this field of research, we also have to look further than 
classical research on the mathematical practices of non-literate peoples. 
Even in a highly literate group, there can be a great difference between the 
mathematical practices of the different cultural subgroups. This also seems 
to be an interesting subject within research on ethnomathematics (Vithal and 
Skovsmose 1997, 143-135).  

Obviously, we are living in a multicultural society. Even Western 
classrooms are characterised by diversity, by diverse mathematical practices, 
and by a diverse use and understanding of mathematical concepts. Each 
pupil is a cognizant being that functions within the language and 
interpretative codes of his or her sociocultural group. The challenge for 
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teachers nowadays is to deal with this diversity in such a way that it gives 
pupils equal chances. This brings us to the question, “What should the role 
of ethnomathematics be in Western classrooms?” 

4.2.2 Dealing with Diversity 

A central question within ethnomathematics today is whether the 
philosophical, ideological, and discursive norms of ethnomathematics differ 
from those of mathematics (Setati 2002). Many definitions suggest that 
ethnomathematics is a special type of mathematics. As Vithal and 
Skovsmose (1997, 142) have argued, most of the definitions or descriptions 
of ethnomathematics feature the term mathematics in various ways. 
Mathematics has to do with mathematical knowledge, with mathematical 
ideas, with mathematical activities, and with mathematical practices. There 
is no fundamental difference between mathematics and ethnomathematics. 
We could say that ethnomathematics gave the floor to critical voices, to 
other minority voices, and to different voices in mathematics education 
(Gilligan 1982). The central question within the discussion on the actual 
status and meaning of ethnomathematics is not whether ethnomathematics is 
its own discipline. Ethnomathematics is the way in which mathematics is 
handed down to pupils and this involves two aspects of diversity. First, there 
is the aspect of diversity within the content of the curriculum.  Second, there 
is the aspect of diversity in the classroom, where the central question is 
“What do the children bring to school?” (Graham 1988) Referring to the 
definition of numeracy given by the OECD/PISA, we can say that we should 
teach mathematical literacy to all pupils. 

“Mathematical literacy is an individual’s capacity to identify and 
understand the role that mathematics plays in the world, to make well-
founded judgements and to use and engage with mathematics in ways 
that meet the needs of that individual’s life as a constructive, concerned 
and reflective citizen.” (OECD 2003) 

This definition is clearly not a neutral definition. Instead, it includes 
values as a fundamental part (Bishop 2006). Even if we say that we are now 
trying to teach mathematics to all pupils, we use a political statement—a 
statement which is fundamental to the political philosophy of the 
emancipation of all people within a democratic school system. Trying to 
teach mathematics to all pupils implies that we have to deal with diversity 
within the content of mathematics and with the diversity found in the 
classroom (Vithal and Skovsmose 1997, 145). This way of teaching 
mathematics is ethnomathematics. 
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The classical ethnomathematical enrichment of a curriculum is seen as 
“investigating the ethnomathematics of a culture to construct curricula with 
people from that culture, and by exploring the ethnomathematics of other 
cultures to create curricula so that people’s knowledge of mathematics will 
be enriched.” (Powell and Frankenstein 1997, 249). The questions then 
remain: “How can we enrich a Western curriculum? How can we apply this 
interesting view to Western school curricula? Moreover, why should we 
enculture mathematics in education while we (in Flanders) have nearly the 
best  school results for mathematics on the international level, as presented 
in the results of the TIMSS6 report.” Flanders has the best results in Europe 
and is in fifth place on the international level (after Singapore, Hong Kong, 
Japan, and Chinese Taipei) for fourth-grade students. For eighth-grade 
students, it has the best results in Europe and is in sixth place on the 
international level (after Singapore, Republic of Korea, Hong Kong, Chinese 
Taipei, and Japan). These results are nearly the same as the results presented 
by the PISA7 report. Flanders is in third place in Europe and reaches eighth 
on the international level (after Hong Kong, Finland, Korea, Netherlands, 
Liechtenstein, Japan, and Canada) for 15-year olds in school. Even if we 
have such a high level in international ranking, we have to reflect on it 
critically. 

At the same time, we have to recognize the social stratification in 
education and the fact that our school system perpetuates social inequality in 
society. Social inequality becomes visible in primary education and 
increases in secondary and higher education (Nicaise 2003). Mathematics 
selects pupils at hierarchical levels. The more hours that are reserved for 

 
6  The Trends in International Mathematics and Science Study (TIMSS, formerly known as 

the Third International Mathematics and Science Study) provides reliable and timely data 
on the mathematics and science achievements of U.S. fourth- and eighth-grade students, 
compared to that of students in 45 other countries. Offered in 1995, 1999, 2003, and 2007, 
TIMSS provides trend data on students’ mathematics and science achievements from an 
international perspective. TIMSS is conducted under the auspices of the International 
Association for the Evaluation of Educational Achievement (IEA) at 
http://nces.ed.gov/timss. 

7 The Programme for International Student Assessment (PISA) is an internationally 
standardized assessment that was jointly developed by participating countries and 
administered to 15-year-olds in schools. PISA is a three-year survey in the principal 
industrialized countries. The survey was implemented in 43 countries in the first 
assessment in 2000, in 41 countries in the second assessment in 2003, and in 57 countries 
in the third assessment in 2006. It assesses how students near the end of compulsory 
education have acquired some of the knowledge and skills that are essential for full 
participation in society. PISA is sponsored by the Organization for Economic Cooperation 
and Development (OECD). While PISA is on a 3-year cycle, TIMSS is on a 4-year cycle 
(http://www.pisa.oecd.org). 
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mathematics in the curriculum equal a higher status in the education 
structure and the more chances there are to improve and succeed in higher 
education. This kind of educational system is characterized by contradiction 
and perpetual motion. 

On the one hand, it is the educational system that makes students feel that 
mathematics is important to study, and that it is important to succeed in 
higher education and to achieve a higher status in society. On the other hand, 
it is the very same educational system that makes students fail and that 
perpetuates social stratification. In Flanders’ school system, the so-called 
eight hours of mathematics is reserved for the elite pupils whose teachers 
dream of teaching. It seems to be a contradiction that the system that creates 
the need is the same system that fails to satisfy that need. 

Besides the contradiction within the system of mathematics education, 
there exists a perpetual motion where the successful never question their 
mathematical knowledge or their mathematics education. After all, there is 
no need to do so if you are successful. Furthermore, you need to be a rather 
successful student to become a teacher in mathematics. Hence, teachers do 
not really deal with the frustration of the losers in mathematics. 

If we try to generate a democratic school system, it is a challenge in 
teacher training to try to teach mathematics to everyone. If mathematics 
education is about helping people to relate better to their environment, then it 
is clearly failing in this task.  

We would like to emphasize the importance of using culture within the 
learning process to include—broadly speaking—societal as well as personal 
experiences of pupils to make mathematics learning more effective for all 
pupils. This is the way in which ethnomathematics can enrich Western 
school curricula. It is the way in which teachers can develop the self-
confidence of pupils and replace their previous feelings of alienation towards 
traditional school mathematics. By doing this, mathematics can become a 
matter of intellectual stimulation instead of a dead-boring, pointless game. If 
we are now in a period of trying to teach mathematics to all, then we need to 
be critical of traditional practice and the current curriculum. 

So far, we have criticized didactics. Now we move on to criticize the so 
called value-free curriculum. 

4.3 Revealing Values in Mathematics Education 

The mathematics that is taught is presented as being value-free. Mathematics 
is dehumanised, depersonalised, and decontextualised. It seems to be 
stripped of all historical and cultural phenomena to retain its purity and to 
avoid its disastrous contingencies. In line with this conception of 
mathematics, teachers are unaware of the values that they are teaching 
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within mathematics education. There even seems to be a lack of reference to 
any teaching of values by either curricula documents or textbooks. Teachers 
have no vocabulary to articulate implicit and explicit values. Some research 
is done to overcome this lack (Bishop 2002).  

In his article, Heefer (see Heefer, this volume) gives some arguments 
against the view that mathematics offers absolute truth and explaines that it 
is not so much a lack of knowledge, but rather the static and unalterable 
mode of presentation of concepts in the mathematics curriculum that 
contributes to this misconception. He argues for the integration of the history 
of mathematics within the mathematics curriculum as a way to teach 
students about the evolution and context-dependency of human knowledge. 
Moreover, to enculturate our learners properly, we should be conscious of 
inherent values as a first step, while in the following steps we should make 
those values explicit. The implicit philosophy should become explicit so that 
we are conscious of what we teach. 

In literature, there are several sets of values questioned. Alan J. Bishop 
([1988a] 1997, 60-82) presents different sets of ideals and values associated 
with mathematics. He differentiates between six categories in three 
dimensions: the value of rationalism and objectism (the dimension of 
ideology), the value of control and progress (the dimension of sentiment), 
and the value of openness and mystery (the dimension of sociology). He 
makes the difference between four components of culture: the ideological, 
the sociological, the sentimental, and the technical component, where the 
technological factor is the basic one and all others are dependent upon it. 
Later on, he elaborates on his research on values in mathematics and science 
education (Bishop 2006). He had to, therefore, make a small change in the 
initial framework used for the interpretation of values in mathematics 
education. The value of objectism had to be recast as empiricism to 
accommodate scientists. The highly empirical nature of science means that it 
has many more value aspects than does mathematics, due to the 
experimental and observational activities of science. The model suggests that 
there are strong similarities in the values of science and mathematics. So, it 
comes as no surprise in the research findings that empiricism and rationalism 
are the most important values for both mathematics and science. However, 
interesting and, in terms of education, revealing different values are also 
represented. For secondary education especially, we can see an important 
difference between the rankings for mathematics and science and between 
empiricism and rationalism, where rationalism ranks much higher in 
mathematics than it does in science. 

Revealing values in science education seems to be important. Findings of 
quantitative research that has been done in the field of science education 
(physics) shows the relationship between the teacher’s beliefs and the way 
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he or she manages the conclusion of the pupils’ answers (Morge 2005). 
More research on this topic is required to extrapolate this relationship in the 
case of mathematics. 

In addition, Paul Ernest inquires about the inherent values in 
mathematics. Abstract is valued above concrete, formal above informal, 
objective above subjective, justification above discovery, rationality above 
intuition, reason above emotion, general above particular, theory above 
practice, the work of the brain above the work of the hand, and so on (Ernest 
1991, 259). 

Much research has been done on the issue of gender and mathematics. 
Since 1976, the Fennema-Sherman Mathematics Attitude Scales (MAS) 
have been frequently used to measure attitudes towards mathematics. Boys 
always stereotyped mathematics more strongly as a male domain than girls 
did. Mathematics as a male domain still remains a relevant variable in 
explanations for persistent patterns of gender differences in the learning of 
mathematics (Forgasz 1999). 

In a highly original paper, Suzanne Prediger (2006) emphasises the value 
of coherence and consensus. She answers the question of why mathematical 
theories are always made or remade coherent. The prevalent view of 
mathematics is that when the mathematic community is convinced that 
inconsistencies may not appear, participants will make great efforts to 
remove them whenever they do appear. 

Unfortunately, we cannot elaborate here on all these values. We would 
like to mention two which are, in our opinion, the most interesting: 
rationalism and objectivism. 

Before we present our case, we would like to clarify that we do not argue 
against rationalism and objectivity. We would not like to be suspected of 
radical relativity, of subjectivity, and of course not of promoting the occult 
sciences or forms of divination. But over the years, we have learned that it 
can be fruitful to be explicit from time to time. All values have their power 
on the one hand and their limitations on the other. 

4.3.1 The Value of Rationalism 

Rationalism is undeniably at the heart of mathematics. It guarantees its 
power and authority. This value is ranked as the highest value in 
mathematics by teachers (Bishop 2006). Rationalism has to do with certain 
knowledge, with deductive reasoning, with logical truth, completeness and 
consistency, as opposed to tradition, religion, personal beliefs and biased 
knowledge. Rationalism has become more and more important in our 
Western culture and has largely influenced the organization of our complex 
society, our view of theworld, and our view of human beings. Rationalism is 
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present everywhere in our culture, including our own personal life. 
Arguments are accepted and tolerated, while a lack of logical coherence in 
an argument is not. What needs to be explained in education is the fact that it 
is not the tangible world of material objects that is logical, nor people or 
things that are rational. It is mathematical explanations and representations 
that are rational, logical, and, abstract. This is one perspective of how to 
explain and represent the world. We must, however, accept the power of 
abstracting and operating with ideas. In mathematics, it is a particular way of 
theorising about phenomena that is valued. 

For pupils to appreciate rationalism, it is necessary to make them aware 
of what it is to explain, to abstract, and to theorize—all tools that we need to 
solve problems. Without understanding this, the language and symbols of 
mathematics will be totally meaningless to our pupils.  

The argument for rationalism does not imply a negative connotation of 
emotions. It has nothing to do with the classical opposition between 
rationality and emotions. In some areas, we need the application of 
mathematics, while in other domains we need our emotions. Pupils have to 
understand this and know how to deal with it. 

4.3.2 The Value of Objectivism 

At the dawn of modern science, it was Galileo who wrote “the book of 
nature is written in the language of mathematics” and Descartes also saw 
mathematics both as the language in which nature is written and as the 
method to deduce our knowledge about nature. 

This philosophical idea about science became the core of our modern 
conception of science and was further generalized from then on. Moreover, 
the idea of the mathematization of the world, of grasping it with absolute 
certainty and hence with the highest degree of objectivity, became a 
challenge not only for the so-called hard sciences but also for the human or 
soft sciences. 

The core story of present-day sciences seems to be a story of neutrality, 
without any political connection. Nevertheless, it is a fact that taking an 
option for a method that guarantees the highest certainty and objectivity 
implies constraints on their objects of knowledge. 

So, if the method determines the objects that are knowable, and if the 
method actually produces these objects of knowledge, then we can claim 
that it indeed produces objective knowledge, though definitely not neutral 
knowledge. Any use of a particular method implies choices and, in general, 
choices having social relevance. Therefore, we can indeed call such socially 
relevant choices political acts (in the broad meaning of the term). 
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Little research has been conducted regarding applied mathematics and its 
political, social, and ethical impact. The most obvious relationship seems to 
be the connection between mathematics and war, where mathematicians 
have lent their services and expert knowledge in the furtherance of war. 
Another much less evident example, as we have seen, is the way in which 
mathematics is handed down in education, and how it is taught—including a 
set of values, both implicit and explicit. 

What, then, is the political aspect of the story of neutrality and 
objectivity? Basically, it is the proliferation of one perspective that elevates 
itself above all others—namely the objective perspective—and moreover that 
this claims neutrality. The choice for an objective representation of nature is 
presented as neutral in the sense that within this perspective one removes the 
impact of subjectivity (to the best of one’s capabilities), as well as all needs 
and interests (those of objectivity itself excepted). It is not neutral, however, 
to make such a choice concerning the way things are represented—a choice 
concerning how to epistemize the world—in this case, in an abstract way by 
isolating things and stripping them of various variables aimed at grasping 
nature in universal and immutable laws and representing it in a formal 
framework. At this point mathematics enters the picture, i.e., as the language 
to objectify, to abstract, and to isolate things. This is also where mathematics 
becomes both neutral and political—political in the sense that one makes a 
particular choice, however implicit, to represent nature in an objective way, 
sedimented in universal laws, and a choice that is made without any 
ideological, social, or political argumentation. While Galileo may very well 
have preached that the book of nature is written in the language of 
mathematics, we contend that, contrary to this, he has referred to only one of 
the possible books with surely many more to be written (François and De 
Sutter, 2004). 

Let us repeat that we believe that teachers of mathematics should be 
conscious of what they teach. Therefore, any implicit philosophy, including 
hidden values, has to be made explicit. By doing this, we can enculturate and 
humanize the curricula of mathematics—once again creating room for 
ethnomathematical praxis in Western curricula. 

5. CONCLUSION 

A cultural, historical, and philosophical perspective of mathematical 
knowledge implies much more than merely teaching children to do 
mathematics. Education, as one of the most important societal institutions 
that hands down knowledge and reflections on mathematics, has to go 
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beyond the stereotype of mathematics as coldly rational without any 
connection to the real world. 

If we want to give mathematics its proper social status, we have to teach 
how mathematics is embedded in our culture and our history—how other 
kinds of mathematics are embedded in their cultures and their histories. 
Mathematics presented as a cultural practice implies a view on mathematics 
with room for diversity. At the same time, mathematical practices can differ 
from one pupil to another, even if they are sitting next to each other in the 
same classroom. If we want to teach our pupils to become critical citizens, 
mathematics has to be taught as a way of knowing, rather than as a series of 
automated techniques. 

Moreover, if it is our aim (as it us for us now), to teach mathematics to all 
pupils, we need to criticize traditional practice and the current curriculum. 
Even in those countries with the highest levels of mathematical knowledge 
and mathematical literacy, school systems perpetuate social inequality that 
increases during a school career. This is not registered, however, as it seems 
that mathematical education is value free. Opposing this view, we argue that 
we do transmit values, maybe unconsciously, but certainly implicitly and 
uncritically. We need to make these inherent values explicit so that teachers 
are conscious of what they teach. 

In the first place, we argue for the implementation of philosophy in the 
curriculum of mathematics now that we are in an era of trying to teach 
mathematics to all pupils, and in the second place we argue that as we are 
now living in a multicultural and global world we need to enculturate our 
learners properly. We are, therefore, challenged to make mathematical 
education a more humanized and encultered process. 
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INTERLUDE 2 
 
 
 
The preceding contribution is a rather general analysis of what we could call 
a paragon of a mathematics curriculum, if we were to use the international 
comparative reports as reference here. Attention was paid to the absence of 
an explicit philosophy of mathematics and to the technical-mathematically 
high-level content of the curriculum. At the same time, it was shown how at 
a micro level, too, the segregation between strong pupils and weak pupils 
comes into play. At a macro level, one can frankly state that the Flemish 
mathematics education shines. However, if we take a closer look, we notice 
that the selfsame segregation mechanisms that appear worldwide repeat 
themselves at the local level. How are we to fight this segregation? How can 
we succeed in including all children in mathematics education? This not only 
requires a didactic skill from the teacher, but also a vision of mathematics 
education as something that needs to be more than just the technical-
mathematically oriented exercises. A surplus value for mathematics 
education can be the philosophical reflection, not just to involve all pupils in 
the learning process, but also to bring to the classroom the genuinely 
philosophical items relating to mathematics. As a teacher, it is crucial to 
acquire a trained eye for the many philosophical ideas that open-minded 
pupils have at times. This, too, calls for a corresponding didactic. The one-
way traffic, where, the teacher knows everything and the pupils know 
nothing, precludes the possibility of getting to know the sometimes 
ingenious ideas of pupils. A teacher who advocates an emancipatory project 
will need to be open to interaction. In the next contribution, we are presented 
a number of examples of what classroom practice can be like. But first and 
foremost, the philosophical question is put forward about what a 
philosophical reflection actually is before moving on to an application of it. 
Stimulating philosophical reflections in mathematics education can be done 
in a very explicit, guided, and purposeful manner, but it can also just happen 
in class. This contribution presents examples of both forms, opening one’s 
eye to the way in which, as a teacher, you can seize moments of learning 
during the mathematics lesson to reflect philosophically about a 
mathematical theme. As the examples show, philosophical reflections about 
mathematical themes can have a very playful preamble—like the story about 
The Little Prince—to end up with a rather heavy-looking philosophical 
debate about something like the ontological status of mathematical objects. 
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Abstract: “Mathematics in education: Is there room for a philosophy of mathematics in 
school practice?” That was the central question at the conference from which 
this volume grew. My answer to the question is yes—absolutely! In the article, 
I argue why and how philosophical reflections should be included in 
mathematics classrooms. The general ideas will be explained by three 
examples from classrooms. 
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1. INTRODUCTION 

“Mathematics in education: Is there room for a philosophy of mathematics in 
school practice?” That was the central question at the conference in May 
2004 from which this volume grew.  

It was nearly thirty years ago that several well-known German 
researchers in philosophy of mathematics and mathematics education posed 
the question of whether philosophy should be integrated into mathematics 
classrooms and how (cf. Otte 1977). The researchers extensively discussed 
the relationship between mathematics and philosophy and made suggestions 
for how to include philosophical considerations in mathematics education. 
But although all authors agreed on the importance of philosophical 
considerations in mathematics classrooms, they had to admit that classroom 
practices did not reflect this importance.  
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Nearly thirty years after these discussions, the question must still (or 
again) be posed in the same sense. Since then, many aspects of the 
philosophy of mathematics and classroom practices have changed. Whereas 
the suggestions of 1977 basically concentrated on classical philosophical 
issues (like questions for the foundations of mathematics, the ontology of 
mathematical objects, and the status of mathematical truths), the 
contemporary philosophy of mathematics has shifted focus.  Nowadays, 
large parts of the philosophy of mathematics are not only concerned with 
questions about the foundations, but with descriptions and analyses of 
mathematical practices (Kitcher 1984, Tymoczko 1985), the relationship 
between mathematics and human beings (Davis/Hersh 1980), and socio-
philosophical reflections on the role of mathematics for society 
(Restivo/Fischer/Van Bendegem 1993, Keitel/Kotzmann/Skovsmose 1993, 
and many others). Mathematics is not seen as an absolute corpus of well-
founded knowledge anymore, but as “a human activity, a social 
phenomenon, part of human culture, historically evolved, and intelligible 
only in a social context” (Hersh 1997, 11). 

Not completely independent of these developments in philosophy, 
classrooms practices have also changed since 1977. For this contribution, the 
most important changes can be seen in the new orientation towards realistic 
mathematics education (de Lange 1996) and the development of innovative 
classroom practices (where argumentation and communication play a greater 
role, as well as learning by discovery—see, for example, NCTM-Standards 
2000).  

In spite of all these changes, I suspect that a survey about the explicit role 
of philosophy in mathematics classrooms would not provide a better picture 
than it did thirty years ago. Karen François’s investigation of the Flanders 
(Belgian) curricula gives a hint for this assumption (cf. François/Van 
Bendegem 2004). So, what might be the reasons that philosophical 
considerations could hardly find an adequate place in mathematical 
classrooms, although it has been claimed many times?  

The main argument against philosophical reflections that we hear from 
practitioners is always the argument of too little time, caused by overloaded 
syllabuses. Beyond this argument, we find a few other reasons. The most 
important reason might be that universities still educate too many teachers 
who are not acquainted with philosophical reflections themselves (which is 
an enormous deficit at least in German teacher education). Additionally, 
there are not many convincing materials for classrooms that stimulate 
philosophical reflections. The only exception is the well-equipped field of 
mathematics and reality, as far as mathematical modeling and the evaluation 
of their chances and limits are concerned.  
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Especially the field of mathematical modeling, however, has shown that 
the development of material for classrooms alone might be a necessary, but 
not sufficient, condition for modeling being integrated into classrooms. 
Decades of experience show that even more important than the materials are 
the teacher’s conceptions and beliefs about mathematics (Thompson 1984). 
Hence, it is the image of mathematics that proves to be the biggest obstacle 
for modeling being included in classrooms (Kaiser/Maaß 2007). 

Without knowing any empirical studies on obstacles of integrating 
philosophical reflections in the courses, I suspect that the situation might be 
similar. Philosophical reflections do not significantly appear in classrooms 
because they do not fit with many teachers’ beliefs  on mathematics learning 
because: 

 
• philosophical reflections are often considered too difficult or only 

possible if the learning of the pure subject is completed 
• philosophical reflections are considered additional, not integral part 

of mathematics 
• philosophical reflections go against the traditional conception that 

mathematics education should be restricted to inner mathematical 
concepts, theorems and problem-solving procedures. 

 
In view of all these obstacles, this article will not restrict itself to some 

suggestions of how to integrate philosophical reflections into mathematical 
classrooms. Instead, it aims to develop the thesis that for an adequate 
understanding of mathematics and an adequate specification of aims for 
mathematics education, philosophical reflections must play a prominent role 
in the learning process. And if they do, this is not only an additional 
(difficult?) learning content, but they can even enrich the mathematical 
learning in the narrowest sense. In order to substantiate this thesis, different 
aspects must be explained: What exactly is meant by philosophical 
reflections? (Section 2), What is the understanding of mathematics and 
mathematics education behind that? (Section 4) How can suitable reflections 
be stimulated? (Section 3). 

2. WHAT DOES PHILOSOPHICAL  
REFLECTION MEAN? 

To clarify the term philosophical reflection, we can start from Roland 
Fischer’s definition of philosophy as reflecting discipline. 
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“[…] I understand philosophy as the reflecting discipline 
(Reflexionswissenschaft) with respect to being, perceiving and acting which 
has not set itself any boundaries” (Fischer 1982, 198, my translation).  

This understanding of philosophy implies that including philosophy in 
mathematics classrooms is definitely not a matter of teaching about classical 
philosophers and existing philosophical theories. Instead, it should focus on 
doing philosophy in the sense of reflecting philosophically. This shift to the 
activity itself can well be expressed by creating the verb philosophize.  

Many mathematics educators have—for various reasons—suggested that 
the learning process be enriched by deeper reflection (Pólya 1945, Steiner 
1987, Cobb, et al. 1997, Neubrand 2000, Sjuts 2002, Prediger 2005, 
Lengnink/Siebel 2004, and many more). Reflecting alone, however, can not 
characterize a philosophical approach, because reflection can be 
concentrated on many different issues. In his article, Reflecting as a Didaktik 
Construction, Neubrand (2000) structured the complex and widespread field 
of suggestions for areas of reflection by specifying four different levels of 
reflecting on and speaking about mathematics.  

 
The level of the mathematician: 
“Speaking about mathematical subjects and problems themselves, for 
example, about the correctness of a proof, about the adequacy of the 
formulation of a definition, about logical dependencies, and so on.”  
 
The level of the deliberately working mathematician: 
“Speaking about specific mathematical ways of working, their value and 
meaning, for example, about heuristic techniques in problem solving; 
about various modes of concept formation in mathematics, about specific 
mathematics methods like systematization, classification, or abstraction; 
about schemes and techniques of proof; and so forth […].”  
 
The level of the philosopher of mathematics: 
“Speaking about mathematics as a whole with critical distance, for 
example about the roles of applications and their relation to mathematics 
concepts, about proofs as a characteristic issue in mathematics, and so on 
[…].” 
 
The level of the epistemologist: 
“Speaking about mathematics from an epistemological perspective, for 
example, about the characteristic distinctions between mathematics and 
other sciences, about the nature and the origin of mathematical 
knowledge, and so on […].” 

     (Neubrand 2000, 255f) 
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Obviously, most of the reflections in mathematics classrooms are (and  
should be) located on the level of the mathematician itself - for example, 
when open-ended problems or powerful tasks are explored and discussed in 
the class (Becker/Shimada 1997, Krainer 1993). 
 
Figure 1: Levels of Reflection. 

The most emphasized level of reflection in 
newer mathematics education literature is 
located on the level of the deliberately 
working mathematician. Especially all 
aspects of meta-cognitive activities (i.e., 
the thinking about your own thinking) are 
located on this level. They are emphasized 
by many researchers who are inspired by 
cognitive psychology (like Flavell 1979, 
Sjuts 2002). Classical problem solvers (like 
Pólya 1945, Schoenfeld 1992), however, 
have already emphasized their importance. 
Many empirical studies have shown that 
metacognitive awareness on the level of the 

deliberatively working mathematician can enhance learning processes in a 
significant way. 

In contrast, the level of the philosopher of mathematics and the level of 
the epistemologist, being the natural locations of philosophical reflections, 
are often underemphasized in the theory of mathematics education, as well 
as in practice. Those are exactly the levels that are the focus of this article.  

What are the current issues of philosophical reflections? Steiner has 
compiled the following list of subjects within philosophical thinking. 

 
• “Questions of justifying mathematical knowledge (context of 

justification), especially the role of proofs in this context 
• relations between pure and applied mathematics, methodology of 

mathematisation and modeling 
• the role of problems and problem solving in mathematics 
• the role of tools for representation and cognition 
• the dynamics of genesis and development of mathematical concepts 

and theories and the role of proofs in this context 
• relationship between justification, application and development.”  

(Steiner 1989, 47f, my translation)  
 

Reflecting on the level of the 
epistemologist 
 
Reflecting on the level of the 
philosopher of mathematics 
 
Reflecting on the level of the 
deliberately working 
mathematician 
 
Reflecting on the level of the 
mathematician 
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In light of the developments in the philosophy of mathematics in the last 
twenty years since Steiner’s article, this list must be appended, at least by the 
following aspects: 

 
• issues of mathematical practices (for example, technical language 

and its purposes, the questions considered to be important, etc.) 
• role of mathematics in society 
• relation between mathematics and human beings 

 
All these aspects can and should be issues for philosophical reflection at 

all stages of mathematics education. Although I am personally convinced 
that even primary students can start philosophizing about these issues, I will 
restrict myself to the secondary level (my professional field of work) here. 

3. STRATEGIES FOR INITIATING 
PHILOSOPHICAL REFLECTIONS – THREE 
EXAMPLES 

How is it possible to teach students to reflect? Neubrand has pointed out that 
reflecting cannot easily be taught. Nevertheless, 

“Reflecting is always a very personal task of the learner herself; that is, it 
is her own responsibility. But teachers can provide opportunities and the 
stimulation of reflection.” (Neubrand 2000, 252) 

Mathematics education research has made many efforts to develop 
materials and reflection-oriented tasks that stimulate reflections on the level 
of the mathematician and of the deliberative working mathematician (e.g., 
Sjuts 2002, Kaune 2006, Krainer 1993). 

Even for reflections on a higher level, it is possible to formulate 
reflection-oriented tasks, as the following example from my Grade 5 (10-
year old students) class shows.  

 
 

Example 1: The Little Prince and the Numbers 
 

My Grade 5 students worked on the task shown in Figure 2. Obviously, the 
role of mathematical means in everyday-communication can be reflected 
much deeper with older students, and convincing examples have been given 
by Lengnink (2002). The answers of my fifth graders, however, made me 
optimistic that reflection about the role of quantitative descriptions in our 
society can and should be initiated at every age. 
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Figure 2: The Little Prince—Task for Grade 5; one student’s answer (10-year old). 

 
 

The Little Prince, the Grown-ups, and the Numbers 
 

The Little Prince wonders why the grown-ups love numbers. “When you 
tell them that you have made a new friend, they never ask you any 
questions about essential matters. They never say to you, ‘What does his 
voice sound like? What games does he love best? Does he collect 
butterflies?’ Instead, they demand: ‘How old is he? How many brothers has 
he? How much does he weigh? How much money does his father make?’ 
Only from these figures do they think they have learned anything about 
him. If you were to say to the grown-ups: ‘I saw a beautiful house made of 
rosy brick, with geraniums in the windows and doves on the roof,’ they 
would not be able to get any idea of that house at all. You would have to 
say to them: ‘I saw a house that cost $20,000.’ Then they would exclaim: 
‘Oh, what a pretty house that is!’” (De Saint-Exupéry 1943, Chapter 4). 

 
Questions:  

a.) Find another example in 
which grown-ups express 
things by numbers.  

 
b.) Do you have an idea 

why the grown-ups like 
numbers so much? What 
benefits do we have by 
describing phenomena by 
numbers? 

 
c.) Why is the Little Prince 

so critical of grown-ups’ love 
for numbers? Do you agree 
with him? Why (not)? Can you 
also find an example where the 
description by numbers is 
problematic? 

 
Translation of one student’s answer: 

a. For example, in the do-it-yourself store, we could say flower shop, 
but adults often say section 7c, or something like that.  

b. Perhaps, because they believe that it is faster and easier, or that they 
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describe it more exactly. Or that everything is more ordered and you have a 
better overlook. Or that everything is just more structured, or that you can 
learn it better with numbers. Perhaps it is only because they believe they 
can remember it better or it is just faster to write down.  

c. Because he prefers the sound of the words to the one of numbers. 
Perhaps because numbers are used too often. Or because there are no 
numbers in his homeland and they sound so strange and bizarre.  
I agree with the Little Prince since I believe that a sentence without 
numbers sounds better. And I think that they are used too often and without 
numbers, it is more exact. But for calculating and learning, numbers are 
very helpful, practical and smart. I think that for some people, numbers do 
not mean anything and that they cannot imagine anything by it. 

 
Although these examples show some possible ways to initiate reflections 

at the higher levels by prepared learning arrangements, we have to deal with 
the problem that many issues of philosophical reflections are by nature far 
away from students’ interest and questions - at least at first sight. That is 
why it is not always easy to follow the important pedagogical imperative to 
connect all reflections to the students’ prior experiences and their own 
questions. 

One important idea in overcoming this difficulty is not to introduce all 
sequences of philosophical reflection by planning in advance. The more 
effective and pupil-oriented approach is to pick up situational chances for 
reflections that appear in the normal interactions in classrooms. Let me give 
an example of this principle of situational reflection (cf. Prediger 2004 for a 
detailed argumentation and further examples). 

 
 

Example 2: Lisa, Matt and the Ontology of Mathematical 0bjects  
 

This is a lesson about geometrically interpreted solutions of 2x2 linear 
equation systems in my colleague’s Grade 9 classroom (15-year old 
students). Question: What happens if we have two equations of two parallel 
straight lines? 
 
Lisa: Parallel lines never do meet; hence there cannot be a solution. 
Matt: Oh yes, they do meet!  
Lisa: No, they do not! Parallels cannot. Yours are perhaps not parallel. 

Look at these! [draws parallel lines on the paper] 
Matt: They also meet, although very, very far away [draws a meeting 

point on the table outside the paper].  
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Having listened to this little controversy, the teacher mediated the 
controversy by adopting a meta-point of view and asked both students what 
ontological status they gave their lines: 

 
Teacher: I have the impression that you are not talking about the same 

objects, aren’t you? What exactly are those lines you are talking 
about? Where do they exist? 

 
By means of this clarifying question, both students realized that for Lisa, 

parallel straight lines were theoretical constructs with idealized attributes 
(parallelism), whereas Matt focused on the drawn figures on the sheet of 
paper. Unlike the idealized constructs, drawn figures do have an existence in 
the real world, and with this ontological status, they indeed nearly always 
intersect.  

By these considerations, the students were engaged in discussions about 
controversial ontological positions that are both well known in the 
philosophy of mathematics. Many questions can arise in such a discussion 
such as  

 
• About what kind of objects can we state anything in mathematics?  
• In which one are we interested?  
• Which ontology is suitable for the original interest in linear equation 

systems? 
 
Starting from the inner mathematical problem (do parallel lines have a 

meeting point?), this situation led into interesting philosophical 
considerations. The situational picking up of chances for reflections got its 
dynamics from the fact that the ontological question about the nature of lines 
here was not another thing to learn (as my students would say), but instead 
was an important tool for clarifying an ongoing mathematical controversy.  

Like in this situation, philosophical reflections can often help to clarify 
different point of views. Another important approach to reflections is via 
questions for sense and self reflection (cf. Prediger 2005, where this idea is 
elaborated extensively). Again, an example shall illustrate the idea.  

 
 

Example 3: Anne and the Missing Personal Access to Algebraic Calculus 
 

While solving algebraic equations in Grade 10, my 16-year old student Anne 
asked me in a frustrated mood: “What have all these transformations got to 
do with me?” Anne was achieving quite well in the technical part but she 
was searching for personal access to the rules and techniques. My first 
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answer with the typical examples for applications (that can show the 
practical use of solving equations) could not convince her. So, we continued 
by discussing why she considered transforming equations not to be 
connected with her own person. In this way, we could approach the core of 
the problem: “When I solve equations, I feel like a machine. I do not even 
have to start real thinking.”  

Following this idea of a machine, we reached an interesting place: We 
realized that it is an important characteristic of algebraic transformations that 
we can do them without thinking—i.e., without any interpretation of the 
syntactical steps. They can indeed be drawn mechanically since they are 
rule-guided and independent of any meaning in a concrete context. That is 
why Krämer talks about symbolic machines and describes the historic 
development as a “long-going and difficult history of the mechanical use of 
symbols, a history in which we learned to behave like machines when 
operating with symbols” (Krämer 1988, 4, my translation). In a certain way, 
this mechanical calculus is dehumanized and hence there is hardly any 
personal access possible. Exactly this characteristic, however, offers the very 
important opportunity to discharge our thinking.  

Anne could experience this discharge directly when we reconsidered a 
geometrical question (concerning changes of areas) that we had solved by 
algebraic equations. We experienced that it is theoretically possible to 
interpret all the algebraic transformations in the geometrical context, but it is 
much more difficult to do so. Now, she began to value the possibility of 
discharge as a strategy of extending her own thinking. At the same time, 
Anne took enormous comfort in the knowledge that it took a long time in the 
history of algebra to develop this dehumanized calculus (Personal experience 
in my class). 

Unforeseen in advance for me as the teacher, the frustration about solving 
algebraic equations and the search for making sense of it took a fruitful 
development in this situation. Via a self reflection (“What exactly is it that I 
do not like in transforming equations?”), Anne came to the realization of a 
fundamental idea of mathematics—algorithmizing —or, more generally, the 
rule-guided operating without interpretation. With reference to the concrete 
example of an algebraic equation, Anne has approached the philosophically 
important question about the relationship between human beings and 
mathematics and how it is threatened by its mechanization (see Prediger 
2004 for this philosophical question). 

Like in this example, the search for making sense of mathematical 
contents has often proved to be an excellent starting point for reflections that 
can (but not necessarily) become deeply philosophical. That is why Fischer 
has repeatedly underlined the role of negotiations about individual sense 
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constructions for mathematics learning (Fischer/Malle 1985, 9-20; Fischer 
2001).  

The most important precondition for applying the described principle of 
situational reflections is the teacher’s awareness of the reflective potential 
underlying a situation. If this awareness is not well developed, teachers will 
miss the chance to exploit potentially reflection-rich situations as they were 
briefly sketched in the two examples. That is why this article does not want 
to stop with giving ideas about how to initiate philosophical reflections in 
the classrooms. It is even more important to make explicit the underlying 
positions about the aims of mathematics education and the understanding of 
mathematics.  

4. UNDERLYING POSITIONS ABOUT 
MATHEMATICS (EDUCATION) 

Philosophical reflections are not an arbitrary part of the learning process that 
can be exchanged by any other content. They belong to the core of Bildung 
as Hartmut von Hentig has emphasized.1 

“Literacy [Bildung] is a state of mind, the result of a contemplative way 
of approaching principles and phenomena of the own culture.” (von 
Hentig 1980, 6, my translation) 

This understanding of literacy is of great relevance also for mathematics. 
We can read this from the conception for mathematical literacy as it was 
defined by international consensus in the normative framework of PISA 
(Programme for International Student Assessment) implemented by the 
OECD (Organization for Economic Co-operation and Development, see 
OECD 1999). 

“Mathematics Literacy is an individual’s capacity to identify and 
understand the role that mathematics plays in the world, to make well-
founded mathematical judgments and to engage in mathematics, in ways 
that meet the needs of that individual’s current and future life as a 
constructive, concerned and reflected citizen.” (OECD 1999, italics 
added) 

The PISA framework has been under critique because, in many test 
items, this deep and challenging understanding of mathematical literacy has 

 
1 Bildung is the traditional German expression that can hardly be translated. The perhaps best 
translation might be the modern word literacy when this is meant in the wider sense. 
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simply been interpreted as the capacity to apply mathematics in 
nonmathematical situations. This formulation, however, is the official 
consensus of all OECD-countries. If it is taken seriously, mathematics 
classrooms all over the world will be asked to initiate not only high-level 
problem-solving processes, but also reflections about mathematics itself and 
its role in the world (cf. Jablonka 2003 for a detailed discussion of this 
perspective). This does not just include reflections about chances and limits 
for mathematical models (like in Example 1 on a very simple level), but also 
includes considerations about the ontological nature of mathematical objects 
(like in Example 2) or the advantages and difficulties of mechanizations in 
mathematics (like in Example 3) and many other aspects.  

Unlike applying mathematics in nonmathematical situations, which is 
nowadays widely considered to be an integral part of mathematics itself, 
many mathematics teachers and researchers in mathematics education 
consider the claim for the “capacity to identify and understand the role that 
mathematics plays in the world” as an additional task for mathematics 
education—i.e., a demand that lies beside the “pure learning” of mathematics 
itself. Once the two issues are conceptually separated, and borders between 
both are defined, questions like the following are naturally asked: “Isn’t it 
necessary to learn mathematics first before reflecting on its role in the 
world?” or “How should we dedicate any time for these philosophical issues 
as long as our students are not even able to solve the equations?” 

 
This is why Fischer concluded in 1982 that the primary aim for including 

philosophical considerations into mathematics classrooms should be to 
transcend the border between mathematics and other issues around 
mathematics:  

“Finally, my main aim is the transcending of the (arbitrarily drawn) 
borders of mathematics. You can even demand to abolish the borders and 
understand mathematics in a wider sense. In this way, you can reach a 
didactically fruitful understanding of mathematics as a processual 
phenomenon that includes applications as well as historical, 
psychological, sociological and all other imaginable perspectives.” 
(Fischer 1982, 201, my translation) 

 
This claim for a wider understanding of mathematics is the exact central 

idea of a philosophical program that has been pursued in Darmstadt for 
twenty five years under the title General Mathematics (e.g., Wille 2001), and 
it has heavily influenced this paper. The program of General Science and 
especially General Mathematics starts with the idea that every scientific 
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discipline should be in critical communication with the general public. 
Therefore, Rudolf Wille has characterized General Mathematics as: 

 
• “the attitude to open mathematics to the public, and to make it 

principally learnable and criticizable 
• the presentation of mathematical developments embedded in its 

senses, meanings, and conditions 
• the teaching of mathematics in its everyday contexts transcending 

the borders of disciplines 
• the discourse about aims, techniques, values, and claims for validity 

of mathematics” 
(Wille 2001, 7, my translation). 

 
General Mathematics is explicitly not considered to be a separate 

discipline, but an integral part of mathematics. Originally formulated as a 
program for the scientific disciplines, it is also a suitable and fruitful 
perspective for describing mathematics for mathematical literacy:  

“Students should learn mathematics primarily as General Mathematics, 
that especially includes the capacity to understand motives, 
consequences, purposes, aims, meanings, interpretations, relationships, 
connections, patterns of thinking and mathematising, analyses, historical 
backgrounds, typical obstacles and the rich means for expression in 
mathematics. This does not prevent from learning specific contents or 
skills. In contrast, it will increase the success for those contents that 
contribute to the development of the mentioned capacities.” (Wille 1995, 
54, my translation) 

5. CONCLUDING REMARKS 

It is exactly this idea of learning mathematics in the broad understanding of 
General Mathematics that led me to answer the initial question “Is there 
room for a philosophy of mathematics in school practice?” with a “Yes, 
absolutely!” If we take the normative orientation of mathematical literacy as 
formulated in the PISA-framework seriously, we cannot exclude 
philosophical reflections from mathematics classrooms, and the experiences 
show that there exist strategies and starting points for including them.  

Most obviously, philosophical reflections can only take place in an 
adequate classroom culture. Philosophical reflections will best take place in 
a community of reflectiveness, dialogue, and mutual respect for diverging 
thoughts (Prediger 2005). Although still in the minority, there are an 
increasing number of German teachers who have succeed in moving their 
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classroom cultures in this direction. This movement makes me optimistic 
that the situation will change in another thirty years.  

To facilitate the dissemination of these ideas, mathematics educators and 
teacher educators will have to care for the most important obstacles - the 
teachers’ beliefs . Teacher education should 

 
• work on the beliefs of learning and should show by many examples 

that philosophical reflections are not necessarily difficult and can 
enhance the learning process before it is completed 

• work on the beliefs in mathematics and help develop a broad 
understanding of mathematics that includes its meanings, senses, 
and purposes 

• work on the beliefs in the aims of mathematics education and help to 
let the PISA-definition of mathematical literacy become practice 
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INTERLUDE 3 
 
 
 
Following the previous contribution, which can serve as a direct manual for 
whoever has direct contact with mathematics education (be it in mathematics 
teacher training or as a teacher), the next contribution expands on good 
practices. Whereas the philosophical question in the preceding contribution 
focused on what a philosophical reflection precisely is, the question in the 
next contribution is broadened to what mathematics actually is. Going back 
to Hersh (1979), the proposition is substantiated that a person’s notion of 
what mathematics is affects the way he/she teaches mathematics. In this 
contribution, the two aspects of the critical philosophy of mathematics touch. 
A first point is the philosophy of mathematics itself. What are we talking 
about when talking about mathematics? A second point is the rendition of, 
and the inextricable bond between, this view and the way in which 
mathematical knowledge is passed on to next generations. Thus, this 
contribution again deals with the values underlying a mathematics 
curriculum. A significant contribution in this context is the stress put on the 
values and ideas held by math teachers. They play a very important role at 
this level, too—in the teaching style, in the way that mathematical themes 
are introduced, in the way one stresses some things and not others, and in 
terms of whether one is open to new and alternative forms of mathematical 
knowledge. Taking this aspect into account, it is important that a future 
mathematics teacher’s attitude is trained to engage in philosophical 
reflections. A teacher will need to question time and again what values he or 
she holds so as to be conscious about how these ideas influence his/her 
practice. In this respect, this development of a teacher’s critical 
mathematical-philosophical consciousness is a necessary condition to raising 
this selfsame consciousness in pupils. How this can, in fact, be integrated 
into a mathematics teacher training is a matter that this contribution amply 
demonstrates through practice at the Faculty of Education, Aristotle 
University of Thessaloniki, Greece. 
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Abstract: The philosophy of mathematics may be assumed to provide a unifying 
framework that potentially supports an epistemological clarification of 
mathematical knowledge, as well as a critical reflection on the beliefs and 
values about mathematical knowledge that a teacher holds in connection with 
the content and the prevailing practices of mathematics teaching. Thus, the 
philosophy of mathematics may be considered an essential component of 
teachers’ professional knowledge. In such a perspective, a relevant venture 
integrating philosophy of mathematics themes in a course of learning and 
teaching primary school mathematics that is offered to teachers as part of an 
in-service training program in Greece is presented. The rationale of the venture 
is outlined, selected examples are briefly presented, and issues that arise in its 
implementation are reported. 
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mathematics 

1. BACKGROUND ORIENTATION 

Arguments from three different, although interrelated, perspectives that are 
briefly presented in the following support directly or indirectly the thesis that 
the philosophy of mathematics has to be considered an indispensable 
component of teachers’ professional knowledge. This thesis constitutes the 
starting point of a venture attempting to integrate selected themes from the 
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philosophy of mathematics into teachers’ training course on primary school 
mathematics, which is reported in this paper. 

The first argument asserts the direct association of a philosophy of 
mathematics with fundamental features of mathematics education. Many 
years ago, Thom claimed that a philosophy of mathematics has powerful 
implications for educational practice pointing out that “In fact, whether one 
wishes it or not, all mathematical pedagogy, even if scarcely coherent, rests 
on a philosophy of mathematics” (Thom 1973, 204). Hersh, few years later, 
emphasised this claim noting that 

“One’s conception of what mathematics is affects one’s conception of 
how it should be presented. One’s manner of presenting it is an indication 
of what one believes to be most essential in it. … The issue, then, is not, 
What is the best way to teach? but, What is mathematics really about? 
…” (Hersh 1979, 33). 

Generalizing and exemplifying further this position of association 
between a philosophy and didactics of mathematics, Steiner notes that 

“Concepts for teaching and learning mathematics—more specifically: 
goals and objectives (taxonomies), syllabi, textbooks, curricula, teaching 
methodologies, didactical principles, learning theories, mathematics 
education research design (models, paradigms, theories, etc.), but 
likewise teachers’ conceptions of mathematics and mathematics teaching 
as well as students’ perception of mathematics—carry with them or even 
rest upon (often in an implicit way) particular philosophical and 
epistemological views of mathematics” (Steiner 1987, 8). 

The argument of association of a philosophy of mathematics with 
fundamental features of mathematics education, exemplified in the above 
quotations, has been principally developed on the grounds of theoretical 
analyses. 

A second argument is that teachers’ ideas, views, conceptions, or beliefs 
(the terms are dependent on conceptual frameworks and thus on adopted 
theoretical perspectives) about mathematics, its learning, and teaching, 
implicitly reflect, or are related to, a philosophy of mathematics. These 
teachers’ beliefs about mathematics, in their turn, play a significant role in 
shaping characteristic patterns of their didactic practices, as it is widely 
accepted nowadays, either on the basis of empirical evidence (Thompson 
1984, 1992) or on a philosophical realm (Lerman 1983, 1990; Steiner, 1987; 
Ernest, 1989). 

Teachers’ beliefs about mathematics are personally held mental 
constructs about the nature of mathematical knowledge, which includes, 
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among others, beliefs about the origins of mathematical knowledge, the 
nature of mathematical knowledge as a discipline, the nature of 
mathematical problems and tasks, the relationships between mathematical 
knowledge and empirical reality, and, in particular, about the applicability 
and utility of mathematical knowledge, the nature of mathematical 
knowledge as a subject taught in schools (Törner 1996), as well as beliefs 
about oneself as a learner and user of mathematics, and more generally, 
beliefs about the process of learning mathematics (Ernest 1989, Pehkonen 
1994).  

Teachers’ beliefs about mathematics reflect, or are related to, a 
philosophy of mathematics and, in fact, constitute a kind of practical 
philosophy of mathematics, which, as a complex, practically-oriented set of 
understandings, regulates and shapes to a great extent the teachers’ thoughts 
and practices within classrooms, although subject to the constraints and 
contingencies of the school context. Moreover, this teachers’ practical 
philosophy of mathematics, often takes precedence over knowledge, shaping 
the interpretation of their held knowledge and selectively admitting or 
rejecting new knowledge. The process of how, why, when, and under what 
circumstances beliefs about mathematics are adopted and defined by the 
individual teacher is not yet clearly and definitely described by relevant 
literature. In any case, their discussion falls beyond the aim of this paper. 

Therefore, assuming an association of a philosophy of mathematics with 
mathematics education issues on the one hand and teachers’ philosophical 
and epistemological views of mathematics on the other, then philosophy of 
mathematics per se has to be considered as an indispensable component of 
teachers’ professional training in mathematics learning and teaching—a 
training, however, that aims at enabling teachers to develop a questioning 
stance towards dominant canons of mathematics education, a critical 
reflection of their personal didactical practices, and an increase in their 
professional autonomy in teaching mathematics. Or, more broadly, it needs 
to be a training that aims to support teachers in becoming reflective 
practitioners, playing an important role in the definition of the purposes and 
goals of their work, as well as on the means to attain them, and therefore, 
participating in the production of knowledge about teaching mathematics. It 
must be a knowledge about teaching mathematics, however, with an element 
of critique of the established standards. 

The third argument—the assumption that a philosophy of mathematics is 
directly associated to a deeper understanding of mathematics as the subject 
matter knowledge of teaching it—seems reasonably hard to doubt.  

In recent years, the importance of mathematical knowledge has been well 
documented in the literature, and the lack of it has been linked to less 
competent mathematics teaching (Rowland, Martyn, Barber and Heal, 2000, 
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2001) and over-reliance on commercial schemes (Millett and Johnson 1996). 
It has been well documented, as well, that understanding mathematics for 
teaching entails both knowledge of mathematics and knowledge about 
mathematics or, using Shulman’s distinction, substantive and syntactic 
knowledge of mathematics (Shulman 1987, 8). Knowledge of mathematics 
includes both propositional and procedural knowledge (i.e., concepts, 
principles, facts, and the ways that they are organized). Ball argued that to 
teach mathematics effectively, teachers must have knowledge of 
mathematics, characterized by an explicit conceptual understanding of the 
principles and meanings underlying mathematical procedures and by 
connectedness—in contrast to compartmentalization of mathematical topics, 
rules, and definitions (Ball 1990). Knowledge about mathematics includes 
an understanding of the nature of mathematical knowledge and the 
mechanisms through which new knowledge is introduced and accepted in 
the community of mathematicians, as well as knowledge about proofs, rules 
of evidence, and structures (Schwab 1978).  
In summary, the philosophy of mathematics, as well as the history and 
sociology of mathematics, are essential components of the domain of 
knowledge about mathematics. Against this background, a venture of 
integrating selected themes from the philosophy of mathematics into teacher 
training has been undertaken over the last five years as a constituent element 
of a course on learning and teaching primary school mathematics. This 
course is offered to primary school teachers by the author of this paper, as 
part of an in-service training program run by the Primary Education 
Department of the Aristotle University of Thessaloniki, Greece. 

In accordance with the aims of the course, the philosophy of mathematics 
is conceived in a descriptive and social perspective and is considered to 
account for: 

 
• Mathematical knowledge: its nature, justification, and genesis 
• The objects of mathematics: their nature and origins 
• The application of mathematics: its effectiveness in science, 

technology, and other realms 
• Mathematical practice: the activities of mathematicians, both in the 

present and the past (Ernest 1991, 27). 
 
In the following section, main features of the rationale of this venture are 

outlined, and issues that have arisen by an overall evaluation of the course 
are briefly reported and commented upon. 
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2. INTEGRATING THEMES FROM PHILOSOPHY 

OF MATHEMATICS IN A TEACHER TRAINING 
COURSE: A GREEK PROJECT 

The philosophy of mathematics may be considered an essential component 
of teachers’ professional knowledge. In such a perspective, a relevant 
venture integrating philosophy of mathematics themes in a course of 
learning and teaching primary school mathematics that is offered to teachers 
as part of an in-service training program in Greece is presented. 

2.1 The Rationale and its Background 

Any introduction of the philosophy of mathematics to teacher’ training 
courses has to be designed on a basis framed by the proposed answers to the 
following core questions: 
 

• Content: What topics from the philosophy of mathematics should be 
taught to teachers? 

• Method: What methods are most appropriate to teach them to 
teachers? 

• Incorporation: What relationships should be established between 
courses of philosophy of mathematics, mathematics, and didactics of 
mathematics offered to teachers in a training program? 

 
Answering these questions first, and in accordance with the aims outlined 

above, a course was offered including topics from the philosophy of 
mathematics, adopting mainly an informative approach, designed and 
implemented on an experimental basis, and offered to teachers as a 
supplementary course to the main course on learning and teaching primary 
school mathematics. Both courses were one semester long, each taught in 
one-and-a-half hour lecture followed by a one-and-a-half hour discussion 
session. After two semesters of implementation, however, this option of 
distinct, although supplementary, courses was evaluated and found to have a 
non-significant impact on teachers’ thinking. The main reason for failure 
was ascribed to a revealed inability of teachers to perceive any relevance 
between the topics of philosophy of mathematics and their immediate 
teaching interests.  

In this account, two prerequisites of any attempt to introduce the 
philosophy of mathematics in a teacher training course were noticed. First, 
an apparent relevance of topics between the philosophy of mathematics and 
mathematics teaching may be a crucial factor for teachers’ motivation. 
Second, thought-provoking questions regarding mathematics taught in 
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primary schools could function as a catalyst in attracting teachers’ interest 
and involvement in the philosophy of mathematics. At the same time, an 
empirical investigation showed that primary school teachers’ prevailing 
beliefs about mathematics were dominated by a conception of mathematics 
as a fixed, predictable, absolute, certain, value-free, culture-free, and 
applicable body of knowledge involving a set of facts, rules, and procedures 
to be used in the pursuance of some external end (Chassapis 2003). In 
addition, teachers’ poor mathematical backgrounds and a rather narrow view 
of mathematics as an academic discipline were also evidenced by relevant 
studies and ought to be considered. 

Taking into account the previously summarized issues, and in addition to 
the main aims of teachers’ training, the scheme of integrating themes from 
the philosophy of mathematics into the main course on learning and teaching 
primary school mathematics has been developed and implemented using the 
following rationale: 

• Themes from the philosophy of mathematics have been selected and 
were developed along three threads stemming from the primary 
mathematics content: 

- Concepts (cardinal and ordinal number concepts, definitions 
of natural and rational numbers, questions on the nature and 
properties of numbers, irrational numbers, numeration 
systems as cultural constructs, continuity and infinity issues 
arisen from rational and real number concepts) 

- Processes (definition, justification and proving in 
mathematics, the what and the why of axiomatic systems in 
mathematics) 

- Applications (problem-solving and relationships between 
mathematical knowledge and empirical reality) 

• Themes from the philosophy of mathematics are introduced and 
discussed using thought-provoking questions, which create dissonant 
situations for the teachers and thus motivate them to be actively 
involved in discussion, learning, and reflective thinking 

• Questions concerning the nature of mathematical knowledge and 
practice have arisen recurrently, on many occasions, during lectures 
and discussions of the course—for instance, issues concerning the 
use of manipulatives in teaching particular mathematical concepts 

 
The organizing concepts of this rationale are themes and thought-

provoking questions. By themes in the philosophy of mathematics we mean 
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collections of learning experiences that assist students in relating their 
learning to questions that are important and meaningful for them, as well as 
practice-bounded (Freeman and Sokoloff, 1996). Themes are the organizers 
of the philosophy of mathematics content, which is presented and discussed 
using questions meaningful to the teachers as starting points. They are 
intended to give meaning and direction to the reflection and learning process 
(Perfetti and Goldman, 1975). Finally, the thematic approach seems to 
provide an environment where knowledge can be individually and socially 
constructed, so it may be considered to be associated with constructivist 
ideas of knowing. 

By thought provoking-questions, which create dissonant situations for the 
teachers and thus motivate them to be actively involved in approaching the 
philosophy of mathematics, we mean questions create perplexity, challenge 
beliefs, spot questionable issues, and potentially foster a conceptual 
reconstruction of mathematical knowledge and pedagogy for the teachers. 

2.2 The Content and Organization of the Course 

In the outline of the course on learning and teaching primary school 
mathematics that follows, a record is found of the attempted articulation of 
thematic units from the philosophy of mathematics into the content of this 
course. Besides the themes from the philosophy of mathematics, selected 
issues from the historical development of mathematical concepts are 
occasionally introduced to emphasize that mathematics is a constantly 
changing creation of human activity and not a fixed and finished, a priori 
existing product, which one is expected to discover. Inset examples (see 
Appendix at the end of this chapter) indicate the types of questions 
introducing the philosophy of mathematics issues, which are posed during 
the lectures of the course. The questions are put forward in various 
wordings, depending on the case at hand. 

 
The following is an outline of the course on learning and teaching primary 
school mathematics, integrating themes from the philosophy of mathematics. 
Items in italic represent issues of philosophy. 

 
UNIT 1 Mathematical concepts and their characteristics 
 
Topics 

• Fundamental features of the mathematical concepts and the initial 
difficulties children find in comprehending them  

• The articulation and organization of the mathematical concepts in 
systems 
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Questions / Thematic unit from philosophy of mathematics  
Why the organization of mathematics concepts in axiomatic 
systems?  
Euclid: the axiomatization of geometry  
Peano: the axiomatization of natural numbers  
Gödel: the incompleteness theorems 
What does the axiomatic organization of mathematics concepts 
mean for the learning of mathematics? 
Further discussion issues: definition, justification, and proving in 
mathematics (example: Pythagorean theorem proofs) 
 

• The graphical and symbolic representations and the linguistic 
expressions of the mathematical concepts 

• The relationships of mathematical concepts to empirical reality 
 

 Questions / Thematic unit from philosophy of mathematics  
Are mathematical concepts and truths discovered or invented?  
Realism and anti-realism in mathematics 

 
UNIT 2 Classes, sets and relations in mathematics 

 
Topics 

• Classes, sets and relations 
• Equivalence and ordering relations 

   
Questions / Thematic unit from philosophy of mathematics  
Are the collections of objects used in primary mathematics classes 
or sets?  
And how is the difference between classes and sets conceived?  
The Russell’s paradox and its consequences 
Finite and infinite sets  
Whole and part 
The Cantor’s paradox 
The continuum hypothesis 
The question of foundations of mathematics: answers, approaches 
and schools of thought (logicism, formalism and intuitionism) 

 
• Logical operations 
• The formation and development of logical-mathematical concepts 

and relations in childhood: Piagetian and socio-cultural perspectives 
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UNIT 3 The number concepts 

 
Topics 

• The concept of cardinal and ordinal number 
 

Questions / Thematic unit from philosophy of mathematics  
What does the numerocity of a class of objects mean? 
Using potency of classes of objects, which concept of cardinal and 
ordinal numbers is implicitly constructed in primary mathematics?  
What are numbers: objects or properties? 
What is the relation of the so constructed (and implicitly defined) 
concept of cardinal and ordinal numbers to counting and its 
outcomes?  
Number definition approaches and issues in philosophy of 
mathematics (Pythagoreans, Cantor, Peano, Frege) 
Do different number definitions impact any differences in teaching 
number concept? (Example: Cardinal and ordinal numbers in 
primary mathematics) 

 
• Numeration systems and linguistic numerical expressions  

   
Questions / Thematic unit from philosophy of mathematics  
Why are various numeration systems invented and used over time 
and across cultures?  
Numeration systems as cultural constructs 
The cultural aspects of mathematical activity 
Piagetian and constructivist approaches to the formation of number 
concepts 
 

• Socio-cultural approaches to the acquisition of number concepts  
 
 

UNIT 4 Number operations 
 

Topics 
• Mathematical definitions and properties of number operations 

 
 Questions / Thematic unit from philosophy of mathematics  
How is number addition and multiplication defined in mathematics? 
Do different definitions of number operations impact any differences 
in their teaching? 
A further discussion issue: Definition in mathematics 
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• Number operations in the decimal numeration system—Algorithms 
• The mapping of number operations to real world situations 

   
Questions / Thematic unit from philosophy of mathematics  
What truth is expressed by a number operation and, more generally, 
by a mathematical statement? 
Is a truth about objects, concepts, or neither? 
The question of mathematical truth 
The indispensability of mathematics arguments  

 
 

UNIT 5 Expansions of number concept 
 

Topics 
• On the mapping of numerical concepts to real world situations: 

Counting, ordering and measuring 
• Natural numbers and integers 
• The concept of zero in natural numbers and in integers 
• The fraction concept and the rational numbers  
• Decimals and percentages 

   
Questions / Thematic unit from philosophy of mathematics  
What happens when ordering rational numbers?  
Discreteness and continuity 
Infinity and its paradoxes: From Zeno to Cantor and beyond 

 
• The concept of irrational numbers 
• The concept of real numbers 

   
Questions / Thematic unit from philosophy of mathematics  
Is any number modeled to an attribute of empirical reality and vice-
versa? 
Does square root of 2 exist? 
The existence of mathematical entities  
In what sense, if any, do mathematical entities (numbers, for 
instance) exist? 
The nature of mathematics concepts: Mathematical entities and 
empirical objects 
Approaches and schools of thought on the nature of mathematics and 
mathematical activity 
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UNIT 6 On methods and media for teaching mathematics in primary 
classroom 

 
Topics 

• Methods for teaching mathematics in primary classroom 
• Tools and materials for teaching mathematics in primary classroom 

  
Question / Thematic unit from philosophy of mathematics  
Is there any, and what, meaning in the discovery methods for 
teaching mathematics concepts? 
Are mathematics concepts embodied in manipulatives? 
(Example: Multi-base Arithmetic Blocks) 
The ontology of mathematics and its implications for mathematics 
education 
A further discussion issue: What is mathematics after all? 

 
Schematically, and in a figurative language, the attempted mode of 

articulation of philosophy of mathematics themes into the units of the course 
on learning and teaching primary school mathematics could be described as 
a spiraling one. 

2.3 Feedback and Evaluation of the Course 

The course, as outlined above, has been offered for the last two years. Each 
semester, after the completion of the course, the teachers that have 
participated are asked to write a short anonymous report evaluating the main 
aspects of the course, describing the most important gains they enjoyed from 
attending the course and spotting the main obstacles that they encountered in 
following the lectures and participating in the discussions of the course. All 
reports are being carefully and read many times, so the evaluative comments 
made by the teachers can be clearly elicited from their writing and the 
derived data recorded and analyzed.  
From the analysis of the evidence collected over the two years of this 
course’s implementation, a number of conclusions were drawn. Most of the 
teachers point out that their main gain from attending the course was 
incitement for conceptual change, or an actual conceptual reconstruction 
they engaged in. In many cases, it was vaguely described as a change of 
mind about mathematics. In every case, this re-conceptualization of the 
nature of mathematics led them to view the discipline from a perspective 
different from their own long-held perspective. This perspective on 
mathematics that is new for them has, among its impacts, the adoption of a 
critical approach towards many dominant standards of, and prevailing 
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practices in, mathematics education. This critical approach is mostly 
emanated, according to all available evidence, from the possibility of 
questioning what is taken for granted in school mathematics—offered by 
their involvement in the philosophy of mathematics. 

The themes from the philosophy of mathematics that are obviously 
appreciated by the teachers, and which seem to have the greatest effect on 
their thinking, are those which offer explicit opportunities for challenging 
their conceptions about teaching particular concepts of school mathematics 
(e.g., numbers) or elements of their teaching models (e.g., the use of 
manipulatives as embodiments of mathematical concepts or processes). 

The most serious problem encountered during the implementation of the 
course originated from the poor mathematical backgrounds of the teachers. 
The lack of specific mathematical knowledge does not permit them to 
comprehend specific questions and ideas from the philosophy of 
mathematics, and delimits the extent, depth, and quality of the relevant 
discussions. Infinity and continuity issues are the most characteristic 
examples. Most of the teachers enrolled in this and other in-service courses, 
had already graduated from Higher Teachers’ Training Colleges offering 
three-year courses (which was operative in Greece up to 1985, when they 
were replaced by university departments), so their original mathematical 
background is relatively poor. The outcomes of this course, as far the 
philosophy of mathematics is concerned, are crucially dependent on 
teachers’ mathematical backgrounds. The repeated conclusion of many 
research studies, that teachers’ existing knowledge and beliefs are critical in 
shaping what and how they learn from teacher training experiences, seems to 
be validated once more in our case. 

A second problem, crucial for the efficacy of the course, appeared to be 
the lack of appropriate resources in Greek language on the philosophy of 
mathematics intended for primary school teachers to meet their reading 
requirements, which was necessary for their constructive participation in the 
course learning activities. 

A final issue—not induced from teachers reports but from the author’s 
experience—which must be registered in the assessment of the course, is the 
demand in time and work both for the preparation and for the running of 
each course session, placed, as a rule, on the professor. 

3. CONCLUDING COMMENTS 

Until recently, mathematics education has been developed in a way that is 
scarcely related to the philosophy of mathematics. Rationales and practical 
proposals in mathematics education are even now mainly informed by 



Philosophy of Mathematics in Teacher Training Courses 73
 
educational and psychological research, disregarding ideas coming from 
disciplines that study the nature of mathematics, as do the philosophy, 
history, and sociology of mathematics. Nowadays, however, this situation 
seems to be changing through the work of many scholars and teacher 
trainers. 

In this paper, I have presented an attempt to integrate themes from the 
philosophy of mathematics in a teachers training course on learning and 
teaching mathematics in primary school, aimed to contribute into supporting 
teachers in becoming reflective practitioners. The overwhelmingly positive 
feedback from the majority of teachers that attended this course, was an 
initially surprising finding. It must be recognized, however, that no single 
course is a panacea for promoting aims concerning teachers’ reflective 
thinking and acting. Teacher courses, even sequences of courses over 
multiple semesters, seem to make some difference, but may be insufficient to 
promote the kinds of changes in the conceptual understanding and ideology 
of teachers necessary to achieve outcomes compatible with the ideals of 
reflective practice. It may be that to fight against those years of learning 
reinforces the status quo, and that the slow accumulation and layering of 
reconstructive experiences over many other years will be required. 

Finally, there is no doubt that a careful review of the course syllabus, 
together with empirical evidence or experiences from similar efforts, will 
likely reveal additions and deletions or a reorganization of the course 
content. Any such review is welcomed and necessary to establish a dialogue 
for optimal approaches to the integration of the philosophy of mathematics 
in prospective and in-service teachers training programs. 

APPENDIX 

Example 1: Pythagorean Theorem Proofs  

In right-angled triangles, the square on the side opposite the right angle 
equals the sum of the squares on the sides containing the right angle. 

 
 

1.1: Euclid’s proof based on deductive reasoning: 
(Euclid’s Elements, Book 1, Proposition 47)  
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Figure 1: Euclid’s Proof of the Pythagorean Theorem. 
 

 
Let ABC be a right-angled triangle having the angle BAC right. The 

square on BC equals the sum of the squares on BA and AC. Describe the 
square BDEC on BC, and the squares GB and HC on BA and AC. Draw AL 
through A parallel to either BD or CE, and join AD and FC. Because each of 
the angles BAC and BAG are right, it follows that with a straight line BA, 
and at the point A on it, the two straight lines AC and AG (not lying on the 
same side) make the adjacent angles equal to two right angles. Therefore, 
CA is in a straight line with AG. For the same reason, BA is also in a straight 
line with AH. Because the angle DBC equals the angle FBA (each is right), 
add the angle ABC to each. The whole angle DBA equals the whole angle 
FBC. Because DB equals BC, and FB equals BA, the two sides AB and BD 
equal the two sides FB and BC, respectively, and the angle ABD equals the 
angle FBC. Therefore, the base AD equals the base FC, and the triangle 
ABD equals the triangle FBC. Now, the parallelogram BL is double the 
triangle ABD, for they have the same base BD and are in the same parallels 
BD and AL. The square GB is double the triangle FBC, for they again have 
the same base FB and are in the same parallels FB and GC. Therefore, the 
parallelogram BL also equals the square GB. Similarly, if AE and BK are 
joined, the parallelogram CL can also be proved equal to the square HC. 
Therefore, the whole square BDEC equals the sum of the two squares GB 
and HC. And the square BDEC is described on BC, and the squares GB and 
HC on BA and AC. Therefore, the square on BC equals the sum of the 
squares on BA and AC. In right-angled triangles, the square on the side 
opposite the right angle equals the sum of the squares on the sides containing 
the right angle.  
Quod erat demonstrandum (Q.E.D). 
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1.2: Liu Hui’s proof based on the Chinese dissection process: 
(Liu Hui, commentary on the Jiuzhang suanshu, third century B.C. In 
Swienciki, L.W. The Ambitious Horse. Ancient Chinese mathematics 
problems, Emeryville, CA: Key Curriculum Press, 2001, 58) 
 
 
Figure 2: Liu Hui’s Proof of the Pythagorean Theorem. 
 
 
 

 

Start with square ABCD, whose side is c and area is c2. Remove pieces 1, 
2, and 3 by translation and rotate to form pieces 4, 5, and 6, respectively. 
The original square has now been transformed into two new squares: 1) 
square EFBG of side b and area b², 2) square GHIC of side a and area a².  

We write Area (GHIC) + Area (EFBG) = Area (ABCD) or  a2+b2=c2. 
 

Questions:  
Which proof of the Pythagorean theorem is accepted by the discipline of 

mathematics, is included in mathematics textbooks, and is used in 
teaching mathematics? 

Why? 
Why are hands-on activities not accepted as justification arguments in 

mathematical proofs? 
What is the aim of a proof in mathematics? 
Why is deductive, and not creative, thinking mostly valued in mathematics? 
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Example 2: Cardinal and Ordinal Numbers in Greek Primary 
Mathematics 
Source: My mathematics, 1st primary school grade, Athens: OEDB, 2003, 
26, 74.  (in Greek) 
 
 
Figure 3: Cardinal and Ordinal Numbers in Greek Primary Mathematics. 
 

 

 

 
 
Questions:  
Using the potency of classes of objects, which concept of cardinal and 

ordinal numbers is implicitly defined in primary mathematics?  
What are numbers: objects or properties? 
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Example 3: Multi-base Arithmetic Blocks (Base Ten) 
 
How many blocks do you see? 
These blocks stand for a certain number. What number do you think they 

stand for? 
 
 
Figure 4: Multi-base Arithmetic Blocks (Base Ten). 
 
 

 
 
Answers given by 3rd graders: 

9 (counting discrete objects, disregarding differences in size and the 
markings on the blocks) 
About 1¼ (measuring using as reference unit 1 (block/cube) + the rest 
make about a quarter) 
923 (measuring surfaces/areas using as reference unit 1 surface = 100 
therefore 6 x 100 =600 on the cube + 3x100=300 flat pieces + 20+3) 
1.323 (decimal number system) 
 

Questions:  
Which interpretation do you consider as “correct”? 
Why? 
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INTERLUDE 4 
 
 
 
After the examples of ways a philosophy of mathematics can be 
implemented in mathematics teacher training and in the classroom itself—
which gave rise to philosophical questions like “what is a mathematical 
philosophical reflection?” and particularly “what is mathematics, really?” 
and “what is its nature?”, it is time for mathematics history to intervene. It is 
hard to present an image of what mathematics is without referring to the 
story of its origins. A history of mathematics is indispensable if we are to 
adjust the image of mathematics as a discipline, which, like other scientific 
disciplines, is imbedded socially and culturally. Long and beautiful stories 
have been written about the history of mathematics, and even these illustrate 
that there are different ways in which this history is told (Kline 1972, Struik 
1948, Restivo 1992). As is the case with other origin stories, there apparently 
is not just one history of mathematics. Within the great story, we can zoom 
in on one facet or another. In the next contribution we are taken on an 
adventure tour of symbolic algebra. Even though history in itself is a 
fascinating story, its surplus value—as far as this book is concerned—lies in 
the fact that the author indicates what a math teacher can do with such a 
historical approach. Should you know about the history of the number zero 
to grasp the most confusing mathematical conventions related to it? It can be 
done without history, that is a fact. This is shown very commonly in 
traditional mathematics education, in which a number of short biographies of 
male mathematicians—fathers of mathematics—are presented, but not 
considered material for the exam. A history of mathematics, then, is little 
more than a means to embellish a handbook. Clearly, this is not what 
mathematics history contributes to mathematics education. Mathematics 
education without history, or a somewhat special interpretation of history, is 
possible. The argument in the following contribution, however, is that the 
history of mathematics can stimulate the insight that mathematics is 
characterized by a plurality of methods. This insight will be elaborated on in 
a later chapter, where the relevance of the intuitive mathematical method is 
shown, as well as the educational praxis, and the so dominant deductive 
method (see Van Moer, this volume). In addition, a history of mathematics 
can demonstrate the dynamics to which mathematical concepts are subject. 
This should heighten the philosophical alertness of pupils. Here is yet 
another contribution touching upon the value system behind the curriculum 
of mathematics. Here, too, it is illustrated how we can give mathematics a 
place at a given time, in a given culture and context—a theme which is 
explored further in this book (see Pinxten and François, this volume). 



  

 

  

LEARNING CONCEPTS THROUGH  
THE HISTORY OF MATHEMATICS 

 
The Case of Symbolic Algebra 

Albrecht Heeffer 
Centre for Logic and Philosophy of Science - Ghent University, Belgium 

Abstract: The adolescent’s notion of rationality often encompasses the epistemological 
view of mathematics as knowledge which offers absolute certainty. Several 
findings such as Gödel’s theorem and the construction of a strict finite 
arithmetic, however, provide strong arguments against that view. The static 
and 
unalterable mode of presentation of concepts in the mathematics curriculum, 
rather than lack of knowledge of metatheory, contributes to this 
misconception. I will argue that the conceptual history of mathematics 
provides excellent opportunities to convey the basic epistemological and 
ontological questions of the philosophy of mathematics in mathematics 
education. In particular, the emergence of the concept of an equation will be 
presented in a historical context. Such examples will alert students of the 
relativity of mathematical methods, truth, and knowledge, and will put 
mathematics back in the perspective of time, culture, and context. 

Key words: History of algebra, concept formation, absolute truth, inconsistency 

1. INTRODUCTION 

In this chapter, we argue for the integration of the history of mathematics in 
mathematics education. Although history is not the same as philosophy, we 
believe that the history of mathematics provides many opportunities to 
convey basic philosophical concepts concerning the epistemological and 
ontological aspects of mathematics. 

On the epistemological level, a conceptual history of mathematics raises 
questions such as: 
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• How are concepts formed in mathematics? 
• Which factors influence or change the meaning of concepts? 
• Is there an internal logic and order in the development of 

mathematical concepts? 
• What is the role of symbolism in mathematical knowledge? 
• What constitutes a valid proof in mathematics? 

Concerning ontology, the history of mathematics provides challenging 
arguments in the realism-constructivism debate. If the meaning of basic 
mathematical concepts, such as number or equation, changes during the 
development of mathematics, what happens to the ontological status of these 
concepts? We will explore how these questions can be approached within the 
teaching of elementary algebra.  

Several studies have been published on the use of the history of 
mathematics in mathematics education.1 Arguing for the use of the history of 
mathematics may therefore seem to be a superfluous task. The official 
curriculum for secondary education in Flanders (Belgium) defines the role of 
the history of mathematics explicitly:2 

Mathematics education is necessarily connected with other disciplines. 
Mathematics itself has developed through centuries in close connection 
with prevailing opinions and problems. Today, certain historical contexts 
still provide useful starting points to approach specific mathematical 
concepts and educational topics. The historical context shall therefore be 
integrated in our curriculum. 

When looking for concrete guidelines of how to integrate the history of 
mathematics, however, the examples offered by the plan are disappointing. 
We only find generalities such as “an approach with examples from 
architecture and painting can illustrate the role of mathematics in the 
development of certain art forms” (ibid. 11) and “assignments can be given 
to research historical facts, such as an internet search for mathematicians, 
important mathematical theorems, mathematical illustrations and 
applications” (ibid. 28). The history of mathematics is forced into an 
illustrative role. History delivers the pictures for lighting up dreary 
textbooks, to force a connection with other disciplines, and to keep students 
busy between other assignments. An integrated view on mathematics 

 
1  Some representative collections are Callinger 1996 and Fauvel and van Maanen 2000. 
2  Cited from the education plan of the first two years of secondary school used by Catholic 

schools (2002, 29, my translation). The education plans of other schools in Belgium and in 
other European countries employ very similar formulations. For an overview of the place 
of history in mathematics education in several countries, see the ICMI study of Fauvel and 
van Maanen 2000, Chapter 1. 
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education, in which the history of mathematics has a methodological and 
philosophical relevance, is absent. 

We will provide some basic arguments for the integration of the history 
of mathematics into mathematics education. The first addresses the 
epistemological status of mathematics. The adolescent’s notion of rationality 
often encompasses the epistemological view of mathematics as knowledge 
that offers absolute certainty. He probably has heard of a geometry in which 
the parallel postulate does not hold, but most likely believes that Euclidian 
geometry is the real one. We can assume that he is not familiar with Gödel’s 
theorems and undecidability. It is further unlikely that he has been taught 
about the existence of inconsistent arithmetic that performs finite 
calculations as correct as traditional arithmetic. These findings provide 
strong arguments against the view that mathematics offers absolute truth. 
The static and unalterable mode of presentation of concepts in the 
mathematics curriculum, rather than lack of knowledge, contributes to this 
misconception. Mathematical concepts, even the most elementary ones, have 
changed completely and repeatedly over time. Major contributions to the 
development of mathematics have been possible only because of significant 
revisions and expansions of the scope and contents of the objects of 
mathematics. Yet, we do not find this reflected in classroom teaching. While 
the room for integrating philosophy in mathematics education is very 
limited, an emphasis on the understanding of mathematical concepts is a 
necessary condition for a philosophical discourse about mathematics. The 
conceptual history of mathematics provides ample material for such focus, 
and leads to a better understanding of mathematics and our knowledge of 
mathematics. I will argue for the integration of the history of mathematics 
within the mathematics curriculum, as a way to teach students about the 
evolution and context-dependency of human knowledge. Such a view agrees 
with the contextual approach to rationality as proposed by Batens (2004). As 
a prime example, I will treat the development of the concept of a symbolic 
equation before the seventeenth century. In line with Lakatos (1976) and 
Kitcher (1984), my example is motivated by the epistemological relevance 
of the history of mathematics. 

2. LIVING WITH INCONSISTENCIES 

When asked for an example of an absolute truth, a student might likely 
answer “one plus one equals two.” This is a grateful example to expand on. 
One plus one equals two is a current axiomatization of arithmetic, and is 
therefore true with respect to that theory. It is rather easy, however, to tailor 
the axiomatization to undermine the truth value of the given statement. 
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Adapting the Peano axioms leading to one being the successor of one, would 
yield the example false in the new theory.3 Given that “one plus one equals 
two” is true in one theory and not in another refutes the example as an 
absolute truth. The student might object that changing the rules of arithmetic 
would lead to complete anarchy in society. The more intelligent student 
might notice that changing the Peano axioms in the given way would lead to 
an inconsistent theory, and that anything can be derived from 
inconsistencies. Let us look at these objections. 
 The point that changing the truth value of the given example makes no 
sense might be true, for now. There can be reasons, however, for changing 
the axioms of arithmetic. Van Bendegem (1994) did develop an inconsistent 
arithmetic by changing the Peano axioms so that there exists one number 
that is the successor of itself. His reason for doing so is to demonstrate the 
feasibility of a strict finite arithmetic. The fifth Peano axiom states that if 
equality applies for x = y then x and y are the same number. This is the 
axiom that is tweaked by Van Bendegem so that starting from some number 
n, all its successors will be equal to n. If we take n to be one, then in this 
newly defined arithmetic, 1 + 1 = 1. That would be a trivial arithmetic, 
however, which is not the intention of this enterprise. Rather than using one, 
the number n can be any number you like. Given a sufficiently large n, all 
operations of arithmetic behave the same way, as long as this number n is 
not reached during calculations. Now, a problem arrives when we reach n. 
The statement n = n + 1 is thus both true and false at the same time. This 
makes the new arithmetic inconsistent. 

In classical logic you have the rule ex falso quodlibet (EFQ) which states 
that p p q∧¬ →  or from an inconsistency you can derive anything. This 
would render the arithmetic trivial within classical logic (CL). Several 
paraconsistent logics now exist that do not have this problem, as well as 
inconsistency-adaptive logics developed at the Centre of Logic and 
Philosophy of Science (Batens 2001). Van Bendegem used the three-valued 
paraconsistent logic PL from Priest (1987), in which EFQ does not hold. 
With this underlying logic, he proved that if A is a valid statement in 
classical elementary number theory, then A is also valid in an elementary 
numbers theory based on a finite model. Gödel proved that every consistent 
formal theory that is rich enough to model arithmetic will contain true 
statements that cannot be proved within that theory. In other words, every 
consistent formal theory is incomplete. Giving up consistency, this new 
arithmetic, based on a finite model, has the advantage of being complete.  

 
3  The first axiomatization of arithmetic was given by Giuseppe Peano in a Latin publication 

of 1889, Arithmetices principia, nova methodo exposita. For an annotated English 
translation, see van Heijenoort 1967, 83–97. 



Learning Concepts Through the History of Mathematics 87
 

There remains the objection of anarchy. What would happen if some 
people decided to change the rules of arithmetic? Would our accounting and 
wage calculation programs become unreliable when working with 
inconsistent arithmetic? In some sense, we already use this finite and 
inconsistent arithmetic in computer programs. An unsigned integer in a 
programming language such as C is represented by a 32- or 64-bit data 
structure, depending on the underlying hardware. Our inconsistent number n 
here becomes 232 – 1 or 264 – 1, while its successor is 0. Usually compilers 
warn for overflow situations such as these. When manipulating the binary 
structure with bit shift operations, the programmer has to reason within an 
inconsistent arithmetic and take care of the borderline situations himself. 
Apparently, many are more worried about giving up absolute certainty in 
mathematics than they are about their own life by relying on computers in 
daily situations. We do not have the slightest proof that the current 
commercial computers and compilers we use to create programs function the 
way we think they do. Such programs activate the anti-braking system in our 
car, guide traffic lights, and are used to calculate the structure of bridges and 
buildings. If they fail to work, human life may be at risk. There are attempts 
to prove the correctness of hardware design and computer programs, but 
these are not for practical or commercial use. In fact, we have proof of the 
contrary. Commercial computers have been known to be inconsistent in their 
arithmetic, as was shown with the famous Intel Pentium bug.4 The fact, 
therefore, is that we live with inconsistencies every day of our life. Why is it 
so hard to accept this on a philosophical level? 

3. ABSOLUTE CERTAINTY IN MATHEMATICS? 

“Gentleman, that 1 0ie + = is surely true, but it is absolutely paradoxical; 
we cannot understand it, and we don’t know what it means, but we have 
proved it, and therefore we know it must be the truth.” 

This well-known quote by Benjamin Peirce after proving Euler’s identity 
in a lecture, reflects the predominant view of mathematicians before 1930, 
when mathematical truth equalled provability.5 When Gödel proved that 
there are true statements in any consistent formal system that cannot be 

 
4  Given the calculation xx y z

y
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

 , the first Pentium chip produced the solution z = 256  

for x = 4195835 and y = 3145727, instead of the correct z = 0.  For more, see Coe, Tim,

5  Quoted in Kasner and Newman 1940. 
et al. 1995. 
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proved within that system, truth became peremptorily decoupled of 
provability.  

Peirce seems to imply something stronger, however, proving things in 
mathematics leads us to the truth. This goes beyond an epistemological 
viewpoint and is a metaphysical statement about the existence of 
mathematical objects and their truth independent of human knowledge. The 
great mathematician Hardy formulates it more strongly (Hardy 1929): 

“It seems to me that no philosophy can possibly be sympathetic to a 
mathematician which does not admit, in one manner or another, the 
immutable and unconditional validity of mathematical truth. 
Mathematical theorems are true or false; their truth or falsity is absolute 
and independent of our knowledge of them. In some sense, mathematical 
truth is part of objective reality.” 

Such statements are more than innocent metaphysical reflections open for 
discussion. They hide implicit values about the way mathematics develops, 
and have important consequences for the education and research of 
mathematics. An objective reality implies the fixed and timeless nature of 
mathematical concepts. The history of mathematics provides evidence of the 
contrary. Mathematical concepts—even the most elementary ones, like the 
concept of number—continuously change over time. The objects signified by 
the ancient Greek concept of arithmos differ from that of number by 
Renaissance mathematicians, which in turn differ from our current view. 
One could object that—not mathematics itself—our understanding of 
mathematical reality changes. Jacob Klein’s landmark study (1934-6), 
however, focuses precisely on the ontological shift in the number concept. In 
Greek arithmetic one was not a number, but later it was. After that, the root 
of two was accepted as a number, and by the end of the sixteenth century, 
the root of 15−  became a number.  

4. LOOKING BEHIND THE BARRIER OF 
SYMBOLIC THINKING 

Dealing with the development of symbolic algebra, we must define some 
terms more explicitly. Let us call algebra an analytical problem-solving 
method for arithmetical problems in which an unknown quantity is 
represented by an abstract entity. There are two crucial conditions in this 
definition: analytical, meaning that the problem is solved by considering 
some unknown magnitudes hypothetical and deductively deriving statements 
so that these unknowns can be expressed as a value, and an abstract entity 
that is used to represent the unknowns. This entity can be a symbol, a figure, 
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or even a color as, we shall see below. More strictly, symbolic algebra is an 
analytical problem-solving method for arithmetical and geometrical 
problems consisting of systematic manipulation of a symbolic representation 
of the problem. Symbolic algebra thus starts from a symbolic representation 
of a problem, meaning something more than a short-hand notation. There is 
no room here to expand on this important difference.6 Instead, we will focus 
on one important misunderstanding: “as arithmetical problems are solved 
algebraically for over 3,000 years, an algebraic equation is a very old 
concept.” This is not the case, as we shall argue. The symbolic equation is an 
invention of the sixteenth century.  

We are all educated in the symbolic mode of thinking, which is so 
predominant that it becomes very difficult to grasp how non-symbolic 
algebra really works. In fact, in the history of mathematics there are many 
cases in which one completely ignored the difference. Let us take one 
example of Babylonian algebra. That Babylonians had an advanced 
knowledge of algebra is a fact that became known rather late—around 1930. 
Many thousands of clay cuneiform tablets were found that contained either 
tables with numbers or the solutions to numerical problems. One such tablet 
is YBC 6967 from Yale University, written in the Akkadian dialect around 
1500 B.C. The most prominent scholar who studied and edited these 
mathematical tablets was Otto Neugebauer (1935-7, 1945). For the problem 
on YBC 6967, Neugebauer writes the following:7  

The problem treated here belongs to a well-known class of quadratic 
equations characterized by the terms igi and igi-bi (in Akkadian igūm and 
igibūm respectively) (..) We must here assume the product  

60xy =  (0.1) 

as the first condition to which the unknowns x and y are subject. The 
second condition is explicitly given as 

 7x y− =  (0.2) 

From these two equations, it follows that x and y can be found from  

 
6  Mahony (1980) is one of the few to clarify the distinction. See also my forthcoming 

“Sixteenth century algebra as a shift in predominant models.” 
7  Neugebauer and Sachs (1945, 129-30). The Babylonians used the sexadecimal number 

system, in which a unit is represented by Neugebauer as 1,0. I have changed this to 
decimal numbers and added the reconstructed text fragments for easier reading, which 
leaves the problem text otherwise intact. 
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a formula which is followed exactly by the text, leading to x = 12 and 
y = 5. 

Important here is that Neugebauer claims that equations are explicitly 
given and that the problem is “found from a formula which is followed 
exactly by the text.” There are not so many people around who can go back 
to the cuneiform text and are able to check this claim. Fortunately, 
Neugebauer added an English translation which allows us to perform the 
task. 

For the explicitly given equation, we read “The igibūm exceeds the igūm 
by 7.” This indeed corresponds with the equation (0.3). For the formula, we 
read “As for you – halve 7, by which the igibūm exceeded the igūm, and the 
result is 3.5. Multiply together 3.5 with 3.5 and the result is 12.25. To the 
12.25, that resulted you add 60, and the result is 72.25. What is the square 
root of 72.25?—8.5. Lay down 8.5, its equal, and then subtract 3.5 (the 
takīlum), from the one and add it to the other. One is 12, the other 5 (12 is 
the igibūm, 5 the igūm).” Again, the text seems to correspond with the 
formula. There are two minor details here: the lay down part sounds a little 
strange in this context, and Neugebauer adds “we have refrained from 
translating takīlum,” because no sense could be given to it.  

Recently, Jens Høyrup (2002) published a book that completely 
overthrows the standard interpretation of Babylonian mathematics and adds 
a new one. For Høyrup, Babylonian algebra works with geometric figures. 
This went by completely unnoticed because no figures appear on the tablets. 
Høyrup’s study, however, is very convincing and its importance for the 
history of mathematics cannot be overestimated. In this problem, the 
unknowns igibūm and igūm, are represented by the sides of a rectangle 
(Høyrup 2002, 55-6). The term product used by Neugebauer should be read 
as surface, square root as equal side or the side of a square surface and 
adding means appending in length. According to Høyrup, the term takīlum 
should be read as make-hold, or making the sides of a rectangle hold each 
other. Only within a geometrical interpretation, does it make sense to lay 
down something. Using a rectangle with sides igibūm and igūm, everything 
fits together. The igibūm is 7 longer than the igūm. Cutting that part in half 
leads us to Figure 1. 
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Figure 1: an example of the geometric algebra from the Babylonians. 

 
 
If we paste one of the halves below the rectangle at the length of the igūm, 

we get a figure with the same surface equal to 60. 
 
Figure 2: Cut and paste method for solving quadratic problems. 
 

 
 
The part in the lower left corner must be a square, as its sides are both 3 

½. We can thus determine its surface as 12 ¼. The complete figure must also 
be a square with sides equal to igūm plus 3 ½. We know that the total surface 
is 72 ¼—the equal side of that square, therefore, is 8 ½. That leads us to a 
value of the igūm being 5. Pasting the cut-out half back to its original place 
gives a length of the igibūm of 12. 

We are presented here with an interpretation completely different from 
that of Neugebauer. Høyrup accounts for anomalies in the standard 
interpretation and gives strong arguments for the reading of terms and 
actions in the geometrical sense. In this new interpretation, it makes no sense 
to speak about equations. Babylonian algebra does not solve equations, as 
the concept of an equation was absent. It fits in with our definition of 
algebra, however—the method is unquestionably analytical. It uses the 
unknowns igūm and igibūm and they are represented as abstract entities, 
namely the sides of a rectangle. We cannot blame Neugebauer for his 
symbolic reading of Babylonian algebra in 1945. Looking behind the barrier 

ū

igūm 
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7
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of symbolic thinking proves to be a difficult task. His book was a major 
contribution to the early history of mathematics, but the history of 
mathematics has changed in the past decades and conceptual analyses such 
as Høyrup’s have become the new methodological standard. 

5. DIOPHANTUS: ALGEBRA OR THEORY OF 
NUMBERS? 

The Arithmetica of Diophantus is often considered to be a primary source of 
European algebra.8 This interpretation is questionable. The discovery of 
Diophantus in the fifteenth century had an important influence on the 
development of symbolic algebra. Its influence, however, is not as decisive 
as some want us to believe. The prime source for the myth that algebra was 
invented by Diophantus is Regiomontanus in his Padua lecture of 1464. Just 
having discovered the manuscript, Regiomontanus describes the Arithmetica 
enthusiastically as a book “in which the flower of the whole of arithmetic is 
hidden, namely the art of the thing and the census, which today is called 
algebra by an Arabic name. Here and there, the Latins have come in contact 
with this beautiful art9”. Later, humanist mathematicians of the sixteenth 
century, such as Petrus Ramus, were more explicit with the idea that algebra 
originated with Diophantus and the Arabs learned the art from him.10 
Paradoxically, sixteenth-century humanists continued the program of 
reassessing mathematics from ancient sources, initiated by the Arabs, and in 
doing so precisely denied the contribution of the Arabs. Høyrup (1998) 
traces this evolution over several authors in Renaissance Europe. After 
Ramus, Bombelli, and Viète were also well acquainted with the Arithmetica 
and carefully avoided references to Arab influences. On the other hand, the 
Arab roots of algebra have mostly been acknowledged by the Italian abacus 
tradition from Fibonacci (1202, Boncompagni 1857) through the fifteenth 
century up to Cardano (1545, Witmer 1968) and the German cossist 
tradition, with Stifel (1544) as a most important author. It is probably thanks 
to them that we still use the name algebra today. 

To assess the Arithmetica, it is important to draw a distinction between 
the context of the original text and its adaptations since its discovery by 
Regiomontanus. The treatment of problems from the Arithmetica by 
Bombelli (1572) and Simon Stevin (1585) are without doubt algebraic. 
Several editions of the Arithmetica have given an algebraic formulation to 

 
8  E.g., Varadarajan 1991, Bashmakova 1997. 
9  Regiomontanus 1972, 47, cited and translated by Høyrup 1998, 30. 
10  Ramus gives a short history of mathematics in his Scholae mathematicae (1569). 
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problems, as has been done with Euclid’s Elements. Such reformulation has 
been historically important for diophantine analysis, but was not necessarily 
a correct interpretation of the original work. Let us look at Problem 16 from 
the first book as an illustration. This is a rather simple problem looking for 
three numbers given their sum two by two: 
 
Table 1: Two Interpretations of Problem 16 from Book I of the Arithmetica by 
Diophantus 

 
Tannery (1893, 39) 

 
Ver Eecke (1926, 21, my translation) 

 
Invenire tres numeros tales 
ut bini simul additi faciant 
propositos numeros. 
Oportet propositorum trium 
dimidiam summam 
maiorem esse unoquoque 
horum.  

To find three numbers which, taken two by 
two, form the proposed numbers. It is 
necessary, however, that half of the sum of 
the proposed numbers is larger than each 
one of these numbers. 

Proponatur iam  
X1 + X2 = 20,  
X2 + X3 = 30,  
X3 + X1 = 40 

Let us propose that the first number, 
increased with the second, forms 20 units; 
that the second, increased with the third, 
forms 30 units, and that the third, increased 
with the first, forms 40 units. 

Ponatur X1 + X2 + X3 = x Let us pose that the sum of the three 
numbers is 1 arithm. 

Quoniam X1 + X2 = 20, 
si a x aufero 20, 
habebo X3 = x – 20 

Consequently, because the first number 
with the second forms 20 units, if we take 
off 20 units from 1 arithm, we will have the 
third number: 1 arithm less 20 units. 

Eadem ratione erit 
X1 = x – 30,  
X2 = x – 40 

For the same reason, the first number will 
be 1 arithm less 30 units, and the second 
number will be 1 arithm less 40 units. 

Linquitur summam trium 
aequari x, sed est haec 
summa 3x – 90; ista 
aequentur x; fit x = 45. 

It is necessary, still, that the sum of the 
three numbers becomes equal to 1 arithm. 
The sum of the three numbers, however, 
forms 3 arithms less 90 units. Let us 
equalize to 1 arithm, and the arithm 
becomes 45 units. 

Ad positiones. Erit X1 = 15, 
X2 = 5, X3 = 25. Probatio 
evidens est. 

Let us return to what we posed: the first 
number will be 15 units, the second will be 
5 units, the third will be 25 units, and the 
proof is clear. 
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Paul Tannery’s respected critical edition of 1893 gives the original Greek 
text, reconstructed from several manuscripts, together with a Latin 
translation. As shown, the Latin translation presents the problem as one of 
three linear equations with three unknowns X1, X2, and X3, and the use of an 
auxiliary x. The idea of linear equations with several unknowns, however, 
did not emerge before the mid-sixteenth century. Ver Eecke (1926) 
performed his French translation from the same Greek text as Tannery, but 
gives a more cautious interpretation. He does not use any symbols, and 
draws a distinction between number and arithmos. The unknowns X1, X2, 
and X3 of Tannery are numbers in the French translation. Instead, the 
arithmos designates the unknown. After stating the problem, Diophantus 
reformulates the problem expressing the numbers in terms of a chosen 
unknown. 

The interpretation of the Arithmetica as symbolic algebra is highly 
problematic. Even its designation as algebra cannot go without careful 
qualification. Nesselmann (1842) called it syncopated algebra as an 
intermediate stage between rhetoric and symbolic algebra. This would 
consist of short-hand notations that had not yet developed to full symbolism. 
The Greek text uses the letters Δγ and Κγ, which have been interpreted by 
many as the powers of an unknown, x2 and x3. Ver Eecke simply translates 
this as square and cube respectively. And this is without doubt closer to the 
original context than Tannery’s Latin translation. Diophantus is primarily 
interested in the properties of numbers. A typical problem sounds like “Find 
two numbers with their sum and the difference of their squares given” (Book 
I, Problem 29; Tannery 1893, 65). The aim is to find numbers that satisfy the 
given property rather than solving the equations 2 220, 80x y x y+ = − = . 
All problems of the Arithmetica are stated in the general way. A reading of 
the Arithmetica as a general theory of numbers is further emphasized by the 
character of diophantine problems having an infinity of numbers satisfying a 
given property. Diophantus’s Arithmetica can be equally, or better, 
understood as a study on the properties of natural numbers than as early 
algebra. To read the text as an early form of symbolic algebra cannot be 
reconciled with the definition we have given above. 

6. THE COLORFUL ALGEBRA OF THE HINDUS 

Hindu tradition has passed down to us several important works on arithmetic 
and algebra, the importance of which to the development of algebra is still 
underestimated. The major handicap in drawing a line of influence of Indian 
sources on the development of Renaissance arithmetic and algebra is its 
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indirect character and lack of written evidence. We can trace some important 
paths of transmission for arithmetic and the Hindu-Arabic number system 
we currently use today. Some Arab texts that were translated into Latin 
clearly refer to Hindu sources.11 Early arithmetic books are structurally very 
similar, for example, to Bhramagupta’s Brāhmasphut ̣asiddhānta (BSS) of 
628 AD (Colebrook 1817). There is no known textual evidence, however, 
that shows a direct influence of Hindu algebra in the West. Comparing many 
problems treated in Hindu sources as well as in Renaissance algebra, we 
cannot avoid the particular similarity of both the formulation of the problems 
and most of the solution methods. Many linear problems solved algebraically 
in the abacus tradition have their counterpart in Hindu sources, while they 
are only rarely treated in Arab texts. We can discern an important influence 
of the oral tradition of recreational problems. Practical and recreational 
problems have functioned as vehicles for problem prototypes with typical 
solution patterns.12 The solution method for typical problems are given as 
rules in Hindu texts. These rules are mostly formulated in Sanskrit verse, as 
stanzas or sūtras. Given the scarcity and cost of writing aids, memorizing 
aids in the form of verse was very important in mathematical texts before the 
age of printing. As an example, consider the following rule for solving linear 
problems given both in the BSS and the Bīja-Ganita (BG) of Bhāskarācārya 
of c. 1150: 
 
Table 2: Solving Linear Problems BSS and Bīja-Ganita (BG) of Bhāskarācārya 

Colebrook (1817, 227) Dvivedi (1902) 
 

Subtract the first colour [or letter] from 
the other side of the equation; and the 
rest of the colours [or letters] as well as 
the known quantities, from the first side: 
the other side being then divided by the 
[coefficient of the] first, a value of the 
first colour will be obtained. If there be 
several values of one colour, making in 
such case equations of them and 
dropping the denominator, the values of 
the rest of the colours are to be found 
from them. 

Removing the other unknowns 
from [the side of] the first 
unknown and dividing the 
coefficient of the first 
unknown, the value of the first 
unknown [is obtained]. In case 
of more [values of the first 
unknown], two and two [of 
them] should be considered 
after reducing them to 
common denominators. 

 
11  Dixit Algorizmi c. 825. For a French translation, see Allard, 1992, 1-22. 
12  I have argued this more extensively in “How algebra spoiled Renaissance’s practical and 

recreational problems” (forthcoming). 



96 Albrecht Heeffer

In the English rendition of the Sanskrit verses, Colebrook uses the term 
equation but he is not followed by Dvivedi. Instead, Dvivedi uses the terms 
unknown and coefficient, which in turn are not used by Colebrook. We can, 
therefore, cast some doubt about the use of these modern terms. 
Furthermore, Datta and Singh (1962, II, 9) claim that “in Hindu algebra there 
is no systematic use of any special term for the coefficient.”  

Prthūdakasvāmī (860), Srīpati (1039) and later Bhāskara (1150), solved 
linear problems by the use of several colors representing the unknowns. In 
other cases, flavors such as sweet (madhura) or flowers were also used for 
the same purpose. Solutions were mostly based on rules for prototypical 
cases, such as the rule of concurrence (sankramana ) { },x y a x y b+ = − = , 
or the pulverizer (Kuttaka) ax by c− = . In several texts, starting with the 
BSS, we find reference to samīcarana, samīcarā, or samīcriyā often 
translated as equation. The rationale for this is that sama means equal and 
cri stands for to do. As with the terms aequatio and aequationis in early 
Latin works on algebra, we should be careful interpreting these terms in the 
modern way. They basically mean the act of making even—an essential 
operation in the algebraic solution of problems. They do not necessarily 
mean an equation in the sense of symbolic algebra. The basis of Hindu 
algebra is to reduce problems to the form of given precepts that provide a 
proven solution to the problem. The method is algebraic, as it uses abstract 
entities for the unknowns and is analytical in its approach. The Hindu 
methods for solving linear problems were transmitted to the West by 
prototypical problems, mostly of the recreational type, which served as 
vehicles for the corresponding problem-solving recipes. An example is the 
case { }( ), ( )x a c y a y b d x b+ = − + = − , which we find in the 
Ganitasārasangraha of Mahāvīra and the BG, but also in several fifteenth-
century arithmetics under the name regula augmentationis. 

7. ARAB ALGEBRA 

Arab algebra was introduced in Europe by the translations of the Algebra of 
Mohammed ibn Mūsa al-Kwārizmī by Guglielmo de Lunis, Gerhard von 
Cremona (1145), and Robert of Chester (1450; Hughes 1981). Most 
importantly however was the Liber Abaci of Fibonacci (1202). Fibonacci 
devoted the last part of his book to algebra and used mostly problems and 
solution methods from al-Kwārizmī and Al-Karkhī. Although Arab algebra 
developed to a high degree of sophistication during the next centuries, it was 
mostly the content of these early works that were known in Europe. Recent 
studies have provided us with a new picture on the continuous development 
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of algebra in the Italian abacus schools between Fibonacci and Luca 
Pacioli’s Summa de arithmetica geometria proportioni (1494) (Franci and 
Rigatelli 1985). It took about four centuries before the transition to symbolic 
algebra was completed.  

al-Kwārizmī gives solutions to algebraic problems by applying proven 
procedures in an algorithmic way. The validity of the solution is further 
demonstrated by geometrical diagrams. In contrast with Babylonian algebra, 
the method is not geometrical in nature—only the demonstration and 
interpretation is. As an example let us look at the way al-Kwārizmī solves 
Case 4 of the quadratic problem that can be represented by the well-known 
equation, 2 10 39x x+ =  (Rosen 1831, italics are mine): 

For instance, one square, and ten roots of the same, amount to thirty-nine 
dirhems. That is to say, what must be the square which, when increased 
by ten of its own roots, amounts to thirty-nine? The solution is this: you 
halve the number of the roots, which in the present instance yields five. 
This you multiply by itself; the product is twenty-five. Add this to 
thirty-nine; the sum is sixty-four. Now take the root of this, which is 
eight, and subtract from it half the number of the roots, which is five; the 
remainder is three. This is the root of the square which you sought for; 
the square itself is nine. 

If we write the case as 2x bx c+ = , the solution fully depends on the 

application of the procedure that corresponds to
2

2 2
b bc⎛ ⎞ + −⎜ ⎟

⎝ ⎠
. Solving 

problems in Arab algebra consists of formulating the problem in terms of the 
unknown and reducing the form to a known case. Methods for solving 
quadratic problems were given before in Babylonian and Hindu algebra. 
Again, we see no equations in Arab algebra. The explicit treatment of 
operations on polynomials is new, however. The basic operations of 
addition, subtraction, multiplication, and division, which were applied before 
to numbers, are now extended to an aggregation of algebraic terms. A further 
expansion of these operations would lead to the concept of a symbolic 
equation in the sixteenth century. 

8. THE EMERGENCE OF THE CONCEPT  
OF AN EQUATION 

So, what is it that constitutes the concept of an equation? I propose to adopt 
an operational definition of the term to reconstruct the historical emergence 
of the concept. We now consider an equation as a mathematical object on 
which certain operations are allowed. Let us, therefore, look at the precise 
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point in time in which an equation is named, consistently used, and operated 
upon as a mathematical object. As said before, the use of the term aequatio 
is not a sufficient condition for the existence of an equation. The observation 
that two polynomials are numerically identical does not in itself constitute an 
equation. An operation on an equation, however, would be. The first 
historical instance that I could find is in Cardano’s Practica arithmetice 
(1539, f. 91r).  

This is probably the most important page in the development of symbolic 
algebra, as it combines two important conceptual innovations in a single 
problem solution—the use of a second unknown and the first operation on an 
equation.  

 
Figure 3: The first operation on an equation  
in Cardano’s Practica arithmetice of 1539. 

 
Cardano uses co. for the 

primary unknown and quan. for a 
secondary one. We can justly write 
this as x and y without 
misinterpreting the original 
context. In the example given in 
Figure 3, Cardano manipulates 
several polynomials, but at some 
point moves to equations. 

 
We find 7 co. aequales 151 p. 

27 quan. ( 7 151 27x y= + ) and 10 
co. aequales 1018 p 18 quant 
(10 1018 18x y= + ). He divides 
these equations by 7 and 10 
respectively, without explicitly 
saying so. By equating both, 
however, he arrives at 

8 280 2
35 35

y= , which he 

explicitly multiplies by 35 to arrive 
at 72y = 2808 or y = 39 

(misprinted as 2008 = 72y). From this moment on, algebra changed 
drastically. Cardano’s book was widely read and several authors built further 
on this milestone. Stifel (1545) introduced the letters 1A, 1B, and 1C to 
differentiate multiple unknowns, which removed most of the ambiguities 
from earlier notations. It was Johannes Buteo (1559), however, who 
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established a method for solving simultaneous linear equations by 
systematically substituting, multiplying, and subtracting equations to 
eliminate unknowns. These developments between 1539 and 1559 
constituted the concept of a symbolic equation. The equation became, not 
only a representation of an arithmetical equivalence, but also represented the 
combinatorial operations possible on the symbolic structure. This paved the 
road for Viète (1591) and Harriot to study the structure of symbolic 
equations. 

9. CONCLUSION 

We treated 3000 years of algebra in a few paragraphs with the risk of over 
simplification. One important conclusion emerges, however, —at some point 
in history there was a dramatic change in the way arithmetical problems 
were solved. By the second half of the sixteenth century, algebraic problem 
solving became the systematic manipulation of symbolic equations. We 
argue that the concept of an equation, as we understand it today, did not exist 
before that time. The development of sixteenth-century algebra is one of 
those occasions in which we see the birth of a new important concept in 
mathematics. Algebra did exist before, but functioned in a different way. 
Symbolic algebra, as it is currently taught in secondary education, is only 
one aspect of algebraic practice. While symbolic algebra may be the most 
efficient kind in problem solving, it is not always the most adequate one for 
teaching basic algebraic concepts to children. Luis Radford (1995, 1996, 
1997) has demonstrated how procedures from the pre-symbolic abacus 
tradition can contribute to a better didactic understanding of the use of 
multiple unknowns. Joëlle Vlassis (2002) points out that conceptual 
difficulties with negative numbers originate from symbolic algebra and 
argues for a non-symbolic way to convey the concept. Our current 
conceptualization of algebra may confuse students in their first exposure to 
symbolic problem solving. An approach to improving such a situation, 
which has found some recognition during the past years, is to employ a 
plurality of methods. A new concept, method, or theorem, explained in 
multiple ways, is more likely to reach a broader range of students. Some 
students have difficulties with purely symbolic accounts of mathematics. 
Others are weak in spatial representations. Still others need numerical 
examples to be able to grasp abstract relations and functions. Teaching 
concepts by a plurality of methods levels out these difficulties. The history 
of mathematics provides a vast repository of alternative cases, 
representations, and methods. 

An additional consequence of a plurality of methods and 
conceptualizations is situated on the philosophical level. If one thing should 
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be clear from our 3,000-year overview of algebra, it is that mathematics is 
subject to a historical process, that is based not only on the insights of some 
inventive individuals but also involves socio-cultural aspects of 
mathematical practice. The predominant view passed on by mathematics 
education hides implicit values on the superiority of modern ideas over past 
ones, and possibly of Western concepts over non-Western ones. Again, the 
history of mathematics shows that mathematics has always adapted to the 
needs of society. Mathematics was born in the Fertile Crescent, extending to 
the belt from North Africa to Asia, where wild seeds were large enough and 
mammals capable of employable domestication.13 Modern algebra fertilized 
in the mercantile context of merchants and craftsman in Renaissance Italy. 
Several important figures in the development of symbolic algebra wrote also 
on bookkeeping, as well as on algebra often in one and the same volume.14 If 
we accept that double-entry bookkeeping emerged in the fifteenth century as 
a result of the expanding commercial structures of sedentary merchant in 
Renaissance Italy, why not consider symbolic algebra within the same 
context? Ideas should be interpreted within the historical context in which 
they emerged and perhaps their superiority is dependent on the degree in 
which they adapted to the needs of society.  

The idea of an objective reality of mathematical concepts, therefore, 
evades the veracity of conceptual dynamics and conceptual problems in 
mathematics. Conceptual dynamics challenges mathematical realism with 
some awkward questions. Take the simple concept of an algebraic equation 
as we have explored it. Of the different historical meanings of an equation, 
which one corresponds with the metaphysical object separate from human 
mathematical practice and understanding? If there have been different 
meanings for a given concept, such as an algebraical unknown, do they all 
correspond with the object of an unknown for a realist, or only our current 
conceptualization? If so, what is the ontological status of historical 
conceptualizations? What about inconsistent conceptualizations? Time and 
again, there have been serious crises in the conceptual foundations of 
mathematics.15 There have been inconsistent theories, such as the early use 
of analysis and set theory, which have existed for several decades. It is 
precisely in times of crisis and conceptual difficulties that new ideas emerge 

 
13  For an eye-opening study on the relationship between these coincidental factors and the 

development of culture and thus mathematics, see the excellent work of Jared Diamond, 
1996. 

14  Between 1494 and 1586: Luca Pacioli, Grammateus, Valentin Mennher, Elcius Mellema, 
Nicolas Petri and Simon Stevin. 

15  An important case study on crisis in mathematics is Carl Boyer, The History of the 
Calculus and Its Conceptual Development, 1959. As the title suggests, Boyer concentrates 
on the conceptual difficulties in developing the modern ideas of calculus. 
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and breakthroughs are made. According to Lakatos (1976, 140) such periods 
are “the most exciting from the historical point of view and should be the 
most important from the teaching point of view.” 

The aim of this paper is to show that the history of mathematics offers 
ample opportunities to illustrate the plurality of methods and the dynamics of 
concepts in mathematics. Integrating threads of conceptual development of 
mathematics in classroom teaching contributes to students’ philosophical 
attentiveness. Such examples will alert students of the relativity of 
mathematical methods, truth, and knowledge and will put mathematics back 
in the perspective of time, culture, and context. The conceptual history of 
mathematics provides excellent opportunities to convey the basic 
epistemological and ontological questions of philosophy of mathematics in 
mathematics education. 
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INTERLUDE 5 
 
 
 
It may seem like a gigantic leap from sixteenth century mathematics, algebra 
in particular, the time when Albrecht Heeffer’s paper ended, to present-day 
mathematics, and more specifically, the theory of probability as taught in the 
classroom, the topic of Carmen Batanero and Carmen Díaz’s paper. We 
believe this is not the case, which explains why we have chosen to let 
Heeffer be followed by Batanero and Díaz. 

To take a rather trivial example, many problems in probability theory can 
be easily reformulated as algebraic problems. Is this not how we typically 
judge elementary probabilities? The six sides of a die are equivalent, so they 
must all have the same probability of coming up, but the sum of all 
probabilities is 1, so the probability of any one side coming up has to be 1/6. 
In algebraic terms we are simply asking for a number p, such that 6 × p = 1. 
Trivial indeed! 

In the preceding paragraph, however, we used one word that is really 
begging for trouble: equivalent. As soon as one reflects on the meaning of 
the word, one uncovers one problem after another. This is shown quite 
clearly by Batanero and Díaz when they go through the known attempts at 
formulating a convincing definition of probability. As one might expect, 
none of them are completely right (that is, if we happen to know what right 
here means.) Should one then be amazed that children in a classroom setting 
have difficulties understanding and applying a probability concept, as they 
show? Of course not. 

But we now have used another word that is really begging for trouble: 
convincing. Does this not seem truly odd? Here we are in the framework of 
mathematics, where proof is the central idea and the core aim to strive for, 
and all of a sudden we are talking about convincing someone. Does not such 
a term belong within the humanities, where arguments and similar devices 
are the best tools one can use? In other words, proof belongs to the exact 
sciences, argument to the human sciences. Tempting though it may perhaps 
be to nod approvingly, one must resist if science wars are to be avoided. We 
are left with an important problem to deal with: what concept or theory can 
unite proofs and arguments, show their relatedness and their continuity? 
Perhaps not surprisingly the answer is: semiotics. For is not mathematics on 
a par with music, logic, and playing games, if we look at all of them as very 
particular sign systems, sometimes partly ritualized and partly formalized, 
and often used for creating, if not maintaining, social contrasts? 



  

 

Abstract: We summarize a model with which to analyze the meaning of mathematical 
concepts, distinguishing five interrelated components. We also distinguish 
between the personal and the institutional meaning to differentiate between the 
meaning that has been proposed for a given concept in a specific institution, and 
the meaning given to the concept by a particular person in the institution. We use 
these ideas to analyze the historical emergence of probability and its different 
current meanings (intuitive, classical, frequentist, propensity, logical, subjective 
and axiomatic). We furthermore describe mathematical activity as a chain of 
semiotic functions and introduce the idea of semiotic conflict that can be used to 
give an alternative explanation to some widespread probabilistic misconceptions. 

Key words: Probability, history of probability, proof, semiotics, misconceptions 

1. INTRODUCTION 

The teaching of probability has been included for many years in the 
mathematics curriculum for secondary school. There is, however, a recent 
emphasis on the experimental approach and on providing students with 
stochastics experience (e.g., M.E.C. 1992; N.C.T.M. 2000; Parzysz 2003). 
As argued in Batanero, Henry, and Parzysz (2005) these changes force us to 
reflect on the nature of chance and probability, since the analysis of 
obstacles that have historically emerged in the formation of concepts can 
help educators understand students’ difficulties in learning mathematics.  

 Moreover, a well-grounded mathematics education researcher or teacher 
requires a wide view of understanding, so that understanding probability, for 
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example, is not simply reduced to the student’s ability to define the word. 
Vergnaud (1982; 1990) suggested that psychological and educational 
researchers should consider a concept to include not just the set of invariant 
properties that make the concept meaningful, but also the situations (problems, 
task, phenomenology) and representations associated with the concept. Godino 
and Batanero (1999) take from Vygotski (1934) the suggestion that the 
meanings of words are the main units to analyze psychological activity, 
since words reflect the union of thought and language, and include the 
properties of the concept to which they refer. As such, one main goal in 
mathematics education research is finding out what meanings students assign to 
mathematical concepts, symbols, and representations; and explaining how these 
meanings are constructed during problem solving activities and how they 
evolve, as a consequence of instruction, and progressively adapt to the 
meanings we are trying to help students understand. Of particular relevance for 
the teaching of probability are the informal ideas which children and 
adolescents assign to chance and probability before instruction, which can 
affect their subsequent learning. For example, Truran (1995) found substantial 
evidence that young children do not see random generators such as dice or 
marbles in urns as having constant properties, but believe that a random 
generator has a mind of its own or may be controlled by outside forces. 

1.1 Components of the Meaning and Understanding  
of Mathematics 

In trying to develop a systematic research program for mathematics 
education at the University of Granada, Spain, we have developed a 
theoretical model to carry out these analysis (Godino and Batanero 1994; 
1998; Godino 2002; Godino, Batanero and Roa 2005; Godino, Contreras, 
and Font in press), which has been successfully applied in different works of 
research in statistics education, in particular in some Ph.D. theses carried out 
at different universities in Spain. 

In this paper we will use the concept of probability as an example, 
although the theory we are describing is also useful for other types of 
mathematical objects, such as theorems (e.g., the central limit theorem) or 
even a complete part of mathematics or statistics (e.g., variance analysis). In 
this model we distinguish five interrelated components in the meaning of the 
concept, as described below: 

 
• The field of problems from which the concept has emerged. One 

such problem was posed to Galileo by the Great Duke of Tuscany 
(about 1620): although 9 and 12 can be made up as the sum of the 
eyes of two dice, in as many different ways as 10 and 11, and 
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therefore should be expected to have the same frequency, the 
observation of long series of trials makes players prefer 10 and 11 to 
9 and 12. In spite of its simplicity both Leibnitz and D’Alembert 
were unable to solve this problem (Székely 1986). Many other 
problems related to chance games were used to develop the first 
ideas of expectation and probability. 

• The representations of the concept. To solve problems we need 
ostensive representations, since concepts are abstract entities. For 
example, in his letter to Fermat dated July 29, 1654, Pascal used the 
words value, chance, combinations, as well as numbers, symbols 
(letters), fractions, and a representation of the arithmetic triangle to 
solve a problem proposed by the Chevalier de Meré. In another letter 
to Fermat dated August 24, 1654, he used a tabular arrangement to 
enumerate the different possibilities in an interrupted game (Pascal 
1963/1654). Modern representations of probability include density 
curves, algebraic expressions, distribution tables, or dynamical 
graphs produced by computers. 

• The procedures and algorithms to deal with the problem and data, 
to solve related problems, or to compute values. Primitive 
probability problems were solved by simple enumeration or using 
other combinatorial tools. Today we have a wide variety of 
mathematical tools to help us solve probability problems, including 
combinatorics, analysis, algebra, and geometry. Distribution tables, 
calculators, and computers have also reduced the gap between the 
understanding of a problem and the technical competence required 
to solve it (Biehler 1997).  

• The definitions of the concept. These will include its properties and 
relationships to other concepts, such as the different definitions of 
probability, the idea that a probability is always positive, the sum 
and product rule, the relationships between probability, expectation, 
frequency, and odds, and limit theorems. 

• The arguments and proofs we use to convince others of the validity 
of our solutions to the problems or the truth of the properties related 
to the concepts. Galileo gave a complete combinatorial proof of the 
solution of the two dice problem and showed by enumeration that 
there are 25 different possibilities for both 9 and 12 and 27 for both 
10 and 11. This same proof would be understandable by secondary 
school students; although the teacher might first allow the students 
to get some experience with randomness by organizing a classroom 
experiment in which students would throw the dice, record the 
results, and compare the relative frequencies of the different sums 
after a long series of trials. Computers and Internet applets possibly 
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could improve the simulation and increase the students’ possibilities 
of exploring the experiments. This experimental confirmation is, 
however, very different from mathematical proof, although it can 
play a main role in the probability classroom, especially when we 
are dealing with complex ideas, such as sampling distributions.  

 
Our previous discussion suggests the multifaceted nature of even 

apparently simple concepts, such as probability and the need to take into 
account the different elements of meaning in organizing instruction. It is also 
important to notice that different levels of abstraction and difficulty can be 
considered in each of the five components defined above, and that the 
meaning of probability is thus very different at different institutions. In 
primary school or for the ordinary citizen, an intuitive idea of probability and 
the ability to compute simple probabilities by using the Laplace rule would 
be sufficient, using a simple notation and avoiding algebraic formulae. A 
probability literate citizen (Gal, in press) would also need to understand the 
use of probability in decision making situations (stock market, medical 
diagnosis), sampling, and voting, etc. In scientific or professional work, or at 
university level, however, a more complex meaning of probability, including 
knowledge of main probability distribution, limit theorems, and even 
stochastic processes would be needed.  

We therefore distinguish between personal and institutional meanings to 
take into account these varieties of meanings for the same concept at 
different institutions and also to differentiate between the meaning that has 
been proposed or fixed for a given concept in a specific teaching institution, 
and the meaning given to the concept by a particular student in the 
institution.  

2. MEANINGS OF PROBABILITY 

These ideas are particularly relevant in analyzing the historical emergence of 
probability and its different meanings (laplacian, frequentist, subjective, 
axiomatic, etc.). The concept of probability has received different 
interpretations according to the metaphysical component of people’s 
relationships with reality (Hacking 1975), and the progressive development 
of probability has been linked to a large number of paradoxes that show the 
disparity between intuition and conceptual development in this field 
(Székely 1986, Borovcnik and Peard 1996). Below we summarize these 
different meanings, using some ideas from Batanero, Henry, and Parzysz 
(2005). 
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2.1 Intuitive Meaning 

No one knows when humans first started to play games of chance. Nor is it 
clear why probability theory only started recently as compared to other 
branches of mathematics. Hacking (1975) analyzes and discards different 
reasons that have been proposed to explain this delay, including obsession 
with determinism, lack of collections of empirical frequencies, religious 
beliefs, scarcity of easily understood empirical examples, or economic 
incentives; and he argues that even if none of these reasons are valid, the 
idea of probability did not appear until around 1600.  

Intuitive ideas related to chance and probability appeared very early, as 
they appear in young children or non-educated people who use qualitative 
expressions (probable, unlikely, feasible) to express their degrees of belief in 
the occurrence of random events. These ideas were of course too imprecise, 
and people needed the fundamental idea of assigning numbers to uncertain 
events to be able to compare their likelihood, thus applying mathematics to 
the wide world of uncertainty. Bellhouse (2000) analyzed a 13th-century 
manuscript, “De Vetula”, attributed to Richard de Fournival (1201-1260), 
which is possibly the oldest known text establishing the link between 
observed frequencies and the enumeration of possible configurations in a 
game of chance. By counting the 216 possible permutations of all the 
different values of three dice, the author computes the possibilities of the 16 
different sums.  

Hacking (1975) indicates that probability has had a dual character since 
its emergence: a statistical side is concerned with stochastic rules of random 
processes, while the epistemic side views probability as a degree of belief. 
This duality was present in many of the authors who contributed to the 
progress of probability theory. For example, while Pascal’s solution to 
games of chance reflects an objective theoretical probability, his theoretical 
argument for the existence of God is a question of personal belief.  

2.2 Classical Meaning 

The first probability problems were linked to games of chance, and it is 
therefore not surprising that the pioneer interpretations of probability were 
expressed in terms of winning expectations. Cardano (1961/1663) advised 
players in his “Liber de Ludo Aleae” to consider the number of total 
possibilities and the number of ways the favorable results can occur, and 
compare the two numbers in order to make a fair bet. Pascal (1963a/1654) 
solved the problem of estimating the fair amount to be given to each player 
in an interrupted game by proportionally dividing the stakes among each 
player’s chances. In his “Traité du triangle arithmétique” (1963b/1654) he 
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developed combinatorial rules that he applied to solve some probability 
problems arising in his correspondence with Fermat. In “De Ratiociniis in 
Aleae Ludo” Huygens (1998/1657) showed that if p is the probability of 
someone winning a sum a, and q that of winning a sum b, then one may 
expect to win the sum pa + qb.  

The first definition of probability was given by Abraham de Moivre in 
“The Doctrine of Chances”: Wherefore, if we constitute a Fraction whereof 
the Numerator is the number of Chances whereby an Event might happen, 
and the Denominator the number of all the chances whereby it may either 
happen or fail, that Fraction will be a proper definition of the Probability of 
happening (de Moivre, 1967/1718, 1). 

This definition was not without problems. Laplace suggested that the 
theory of chance consists of reducing all the events of the same kind to a 
certain number of equally possible cases, that is to say, to such as we may be 
equally undecided about in regard to their existence, and gave this definition: 
probability is thus simply a fraction whose numerator is the number of 
favourable cases and whose denominator is the number of all cases possible 
(Laplace, 1985/1814, 28).  

This Laplacian definition of probability was based on a subjective 
interpretation, associated with the need to judge the equipossibility of 
different outcomes. Although equiprobability is clear when throwing a die or 
playing a chance game, it is not the same in complex human or natural 
situations. As noted by Bernoulli in “Ars Conjectandi” published in 1713, 
equiprobability can be found in very rare cases and does not only happen 
except in games of chance.  

2.3 Frequentist Meaning 

Bernoulli suggested a possible way to assign probabilities to real events, in 
applications different from games of chance, through a frequentist estimate 
(Bernoulli 1987/1713). He also justified a frequentist estimation of 
probability in giving a first proof of the Law of Large Numbers: if an event 
occurs a particular set of times (k) in n identical and independent trials, then 
if the number of trials is arbitrarily large, k/n should be arbitrarily close to 
the “objective” probability of that event. 

The convergence of frequencies for an event, after a large number of 
identical trials of random experiments, had been observed over several 
centuries. Bernoulli’s proof that the stabilized value approaches the classical 
probability was interpreted as a confirmation that probability was an 
objective feature of random events. Given that stabilized frequencies are 
observable, they can be considered as approximate physical measures of this 
probability. 
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In the frequentist approach, moreover, probability is defined as the 
hypothetical number towards which the relative frequency tends when 
stabilizing (Von Mises 1952/1928). In this conception, the existence of the 
number for which the observed frequency is an approximate value is 
assumed. According to authors such as Gnedenko and Kolmogorov, 
mathematical probability would be a useless concept if it did not find this 
precise expression in the relative frequency of events resulting from long 
sequences of random trials, carried out under identical conditions. 

From a practical viewpoint, however, the frequentist approach does not 
provide the exact value of the probability of an event, and we cannot find an 
estimate of the probability when it is impossible to repeat an experience a 
very large number of times. It is also difficult to decide how many trials are 
needed to get a good estimation for the probability of an event. And of 
course we cannot give a frequentist interpretation of the probability of an 
event which occurs only one time under the same conditions, such as is often 
found in econometrics (Batanero, Henry, and Parzysz, 2005).  

2.4 Propensity Meaning 

In trying to solve some of the problems in the frequentist meaning of 
probability, as well as to make sense of single-case probabilities, Popper 
(1957, 1959) considered probability as a physical propensity, disposition, or 
tendency to produce an outcome of a certain kind, or the long run relative 
frequency of such an outcome. This idea was also suggested by Peirce 
(1932/1910) who advanced a concept of probabilities according to which a 
die, for example, possesses would-bes for its various possible outcomes, and 
these would-bes are intentional, dispositional, directly related to the long 
run, and indirectly related to singular events.  

While the classical and frequentist meanings reduce the notion of 
probability to other, already known concepts (ratio, frequency, etc.), Popper 
introduces the idea of propensity as a measure of the “probabilistic causal 
tendency” of a random system to behave in a certain way. This idea was 
discussed by different authors, who distinguished long run and single case 
propensity (Gillies 2000). In the long run theories, propensities are 
tendencies to produce relative frequencies with particular values, but the 
propensities are not the probability values themselves (Popper, 1957, 1959, 
Hacking 1965); for example, a fair die has an extremely strong tendency 
(propensity) to produce a 5 with long run relative frequency of 1/6. The 
probability value 1/6 is small, so it does not measure this strong tendency.  
In single-case theory (e.g., Mellor 1971) the propensities are identical to the 
probability value and are considered as probabilistic causal tendencies to 
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produce a particular result on a specific occasion. In this theory we consider 
the die to have a weak propensity (1/6) to produce a 5.  

Again this interpretation was controversial. In the long run interpretation, 
propensity is not expressed in terms of other empirically verifiable 
quantities, and we then have no method of empirically finding the value of 
the propensity. Moreover, the assumption that an experimental arrangement 
has a tendency to produce a given limiting relative frequency of a particular 
outcome presupposes a uniformity which is hard to test, either a priori or 
empirically (Cabriá 1992). 

As regards single case interpretation, it is difficult to assign an objective 
probability for single events. The probability will vary according different 
conditions, and then the probability is attached to the conditions and not just 
to the event itself. Since the same event can be included in different 
reference sets, we might introduce subjective elements when selecting the 
reference class in which to include the event (Gillies 2000). It is also unclear 
whether single case propensity theories obey the probability calculus or not.  

2.5 Logical Meaning 

Keynes (1921) and Carnap (1950), among other authors, developed the 
logical theories, which retain the classical idea that probabilities can be 
determined a priori by an examination of the space of possibilities, although 
the possibilities may be assigned unequal weights. This approach defines 
probability as a degree of implication that measures the support provided by 
some evidence E to a given hypothesis H. Keynes accepts the conventional 
calculus of probability since it applies to his probability relations. He 
symbolizes certainty and impossibility by 1 and 0, and all other degrees of 
the probability relation lie between these limits. Since the deductive relations 
of implication and incompatibility can be considered as extreme cases (with 
degree of implication values 1 and 0 respectively), deductive logic is 
amplified in this approach.  

Carnap (1959) started by constructing a formal language and defined 
probability as a rational credibility function, using the technical term degree 
of confirmation. The degree of confirmation of one hypothesis H, given 
some evidence E, depends entirely on the logical and semantic properties of 
and relations between H and E, and therefore it is only defined for the 
particular formal language in which these relations are made explicit. This 
degree of confirmation is just the conditional probability of H given E and 
allows inductive learning from experience. Carnap reduces the problem of 
defining the degree of confirmation for the particular formal language in 
which he is operating to the problem of selecting a probability for 
elementary state descriptions in that language.  
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One problem in this approach is that there are many possible 
confirmation functions, depending on the possible choices of initial 
measures and on the language in which the hypothesis is stated and in which 
the confirmation function is defined. A change of language might then make 
invalid any particular confirmation of a theory. A further problem is in 
selecting the adequate evidence E in an objective way, since the amount of 
evidence might vary from one person to another. 

2.6 Subjective Meaning 

Bayes’s formula permitted the finding of the probabilities of various causes 
when one of their consequences is observed. The probability of such a cause 
would thus be prone to revision as a function of new information and would 
lose its objective character postulated by the above conceptions. Keynes, 
Ramsey, and de Finetti described probabilities as degrees of belief, based on 
personal judgment and information about experiences related to a given 
outcome. They suggested that the possibility of an event is always related to 
a certain system of knowledge and is thus not necessarily the same for all 
people.  

The difficulty with the subjectivist viewpoint is that it seems impossible 
to derive mathematical expressions for probabilities from personal beliefs. 
Both Ramsey (1926) and de Finetti (1937), however, suggested a way of 
deriving a consistent theory of choice under uncertainty that could isolate 
beliefs from preferences while still maintaining subjective probabilities. The 
basic idea behind the Ramsey-de Finetti derivation is that by observing the 
bets people make, one can assume that this reflects their personal beliefs 
about the outcomes, and then subjective probabilities can be inferred. 

From this subjectivist viewpoint, the repetition of the same situation is 
no longer necessary to make sense of probability. The fact that repeated 
trials are no longer needed is used to expand the field of applications of 
probability theory. Today, the Bayesian school assigns probabilities to 
uncertain events, even non-random phenomena, although controversy 
remains about the scientific status of results which depend on judgments that 
vary with the observer. 

2.7 Mathematical Meaning and Axiomatization 

Throughout the 20th century, different mathematicians contributed to the 
development of the mathematical theory of probability. Borel’s view of 
probability as a special type of measure was used by Kolmogorov, who 
applied sets and measure theories to derive a satisfactory axiomatic system, 
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which was generally accepted by different schools regardless of their 
philosophical interpretation of the nature of probability.  

Probability is, therefore, a mathematical object, and probabilistic models 
are used to describe and interpret random reality. Probability theory proved 
its efficiency in many different fields, but the particular models used are still 
subjected to heuristic and theoretical hypotheses, which need to be evaluated 
empirically. These models also allow assigning probabilities to new events 
that made no sense in previous interpretations. One such example is the 
Cantor distribution, a probability distribution with a Cantor function as a 
cumulative distribution. This distribution is a mixture of continuous and 
discrete; it has neither probability density function nor point-probability 
masses. It serves to solve problems such as the following: Let the random 
variable X take a value in the interval [0, 1/3] if we get heads in flipping a 
coin and in the interval [2/3, 1] if we get tails. Let X then take a value in the 
lowest third of the aforementioned interval if we get heads in the second 
flipping of the coin, and in the highest third if we get tails. If we imagine this 
process continuing to infinity, then the probability distribution of X is the 
Cantor distribution, with an expected value of 1/2. Of course interest in this 
distribution is mainly theoretical. 

2.8 Summary 

In this brief description, we have analyzed different historical views of 
probability that still persist and are used in the teaching and practice of 
probability. We can consider these views as different meanings for 
probability, according to our theoretical framework, since there are 
differences not only in the definition of probability, but also in the related 
problems, tools, representations, properties, and concepts that have emerged  
to solve various problems (see a summary in Table 1). 

When teaching probability (or any other mathematical concept), these 
five different types of knowledge should be considered and interrelated, as 
research on the understanding of mathematics has shown that students find 
difficulties in each of these components. In the same way, the different 
meanings of probability should be progressively taken into account, starting 
with the students’ intuitive ideas of chance and probability, since, 
understanding is a continuous constructive process in which students 
progressively acquire and relate the different elements of the meaning of the 
concept. 
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3. SEMIOTIC FUNCTIONS AND MATHEMATICAL 

REASONING 

While our analysis of the elements of meaning is used to focus the attention 
on the different components of mathematical teaching and learning, it is 
insufficient to describe mathematical reasoning and mathematical activity (at 
a micro level of analysis). From a didactical point of view it is useful to 
consider the notion of semiotic function: “There is a semiotic function when 
an expression and a content are put in correspondence” (Eco 1979, 83). The 
original in this correspondence is the significant (plane of expression), the 
image is the meaning (plane of content), that is, what is represented, what is 
referred to by the speaker.  

An elementary meaning is produced when a person interprets a semiotic 
function with a semiotic act (interpretation or understanding), in which 
he/she relates an expression to a specific content. An elementary meaning is 
the content that the author of an expression refers to, or the content that the 
reader/listener interprets. Some examples are given below: 

 
• The expression “product rule” or the symbolic representation P(M ∩ 

I) = P(M) x P(I) describes a procedure carried out by a student to 
compute a compound probability in the case that M and I are 
independent. 

• The statement of a problem can represent the real situation; the 
simulation of random phenomena can represent the phenomena 
themselves; for example, we can simulate the number of girls in a 
sample of 10 newborn babies with coins. 

• We can say “Pascal and Fermat’s solution of de Meré’s paradox” to 
refer to an argument. 

• In expressions such as, “Let μ be the mathematical expectation of a 
random variable”, the notations μ, the expressions mathematical 
expectation and random variable refer to particular abstract 
concepts. 

 
Semiotic functions are always involved in creating mathematical 

concepts, establishing and validating mathematical propositions, and, as a 
rule, in problem solving processes; and they can produce elementary or 
systemic meanings. For example, when we say “computing probabilities in 
the normal distribution” in a general sense we refer to the whole set of 
procedural elements to compute these probabilities, including use of tables, 
standardization, computer programs, simulation, etc. When we speak of 
studying the normal distribution, we refer to the whole system of practices 
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associated with this distribution, whose structural elements are the five types 
described in section 1. These are examples of systemic meanings. 

In each semiotic function, the correspondence between the expression 
and the content is fixed by explicit or implicit codes, rules, habits, or 
agreements. Sometimes the teacher and the student attribute different 
meanings to the same expression and there is a semiotic conflict (Godino, 
2002). These conflicts appear in the linguistic interaction between people or 
institutions, and they frequently explain the difficulties and limitations of 
teaching and learning mathematics.  

3.1 Reasoning as a Chain of Semiotic Functions 

When solving a mathematical problem or carrying out any mathematical 
activity or reasoning, one or more semiotic functions appear among the five 
components described in section 1. It is then useful to consider mathematical 
reasoning as a sequence of semiotic functions (or as a chain of related pieces 
of knowledge) that a person establishes in the problem-solving process. The 
notion of semiotic function is used to indicate the essentially relational nature 
of mathematical activity and of teaching/learning processes. Let us consider, 
as an example, the incorrect solution given by a student to the following 
problem (taken from Díaz and de la Fuente 2006). 

 
Problem 
We threw two dice and the product of the two numbers was 12. What is the 
probability that neither of the two numbers was 6? 

The solution given by a student is the following: 
 

 

 
 
We have broken down this solution into analysis units in order to show 

the semiotic activity carried out by the student and to discover his or her 
semiotic conflicts (see Table 2). 
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Table 2. Semiotic Analysis of the Student’s Solution 
 

 
 

Analysis  Unit Semiotic Functions 
Established by the Student 

[U1] 
 
3.4=12; 4.3=12 

The expressions 3, 4 (symbols) refer to the 
numbers 3 and 4 (concepts) and these refer to the 
possible outcomes for each die 
(phenomenological object). 
The expression 12 (symbol) refers to the number 
12 (concept) and this refers to the fixed value of 
the product (operation). 
The student identifies the favorable cases in the 
event (applies  a concept to a practical situation). 
The student is able to distinguish that order 
(concept) is relevant. 

[U2] 
 

1 2
1 1 1P(3 4 )=
6 6 36

x∩ =  

The expression 1 2P(3 4 )∩ refers to compound 
probability and at the same time to the 
intersection of two events (concepts).  
[U2] refers to  the  product rule (proposition) in 
the case of independent events (property). 

The expression 
1 1 1
6 6 36

x =  refers to the product 

of fractions (rule) and its result (procedure). 
The student is able to perceive the independence 
of the two dice. 
The student distinguishes the order of outcomes. 

[U3] 

1 2
1 1 1P(4 3 )=
6 6 36

x∩ =  

Similar to Unit 2 

[U4] 
 

>  
2
36

 

The arrows (graphical representation) refer to the 
sum of the two probabilities. 

 

The symbol 
2
36

 refers to the value of this sum. 

The student is correctly identifying and applying 
the union axiom to compute the probability of the 
union of two incompatible sets. 
The student does not restrict the sample space. 



The Meaning and Understanding of Mathematics 121
 

We can see from this example the complexity of solving even 
elementary probability problems. This student was able to identify the 
problem data, apply the sum and product rules, assess independence and the 
relevance of order, use complex notation, and identify the favorable cases. 
He has not, however, restricted the sample space in computing the 
conditional probability (none of the numbers is 6, given that the product is 
12) to the relevant cases (only 4 possibilities). A semiotic conflict appears 
when the student computs the compound probability “that the product is 12 
and none of the numbers is six,” instead.  

4. PROBABILITY MISCONCEPTIONS  
AND SEMIOTIC CONFLICTS 

Probability misconceptions have been widely documented, although recently 
some researchers are wondering if they can be explained only in terms of 
psychological mechanisms (e.g., Callaert, in press). Below we analyze some 
of these misconceptions and suggest that semiotic conflicts are alternative 
explanations for some of them. 

4.1 Equiprobability Bias 

Pratt (2000) reports interviews with two children who declared that the totals 
2 and 3 for the sum of two dice were equally easy to obtain. He explained 
this response in terms of Lecoutre’s (1992) equiprobability bias, by which 
children consider all the events in a random experiment to be equiprobable. 
Callaert (2003) analyzed these results and remarked that the final outcome 
for which the probability is being determined is not at all related, in a simple 
and direct way, to any underlying experiment that can easily be 
conceptualised by the children. In the experiment there are exactly 36 
different ordered pairs (x,y) of numbers and 21 different unordered pairs of 
numbers. 

When the children in Pratt’s (2000) experiment are interviewed about 
their response, one of them (Anne) replies: “Well, 1 and 2 and 2 and 1 are 
the same ...; they come to the same number”. As suggested by Callaert, 
children were paying too much attention to the mathematical operation of 
adding numbers. Since this operation is commutative, it invites children not 
to pay attention to order when computing probabilities. Here a semiotic 
conflict appears when children assign a non–existent property 
(commutativity) to the sample space, assuming the outcomes (1, 2) and (2, 1) 
are identical when they are not. The students and the teachers are, moreover, 
assuming different sample spaces for this experiment (see Table 3, a and b). 
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Table 3. Different Sample Spaces Assumed by the Teacher and the Student 
 

 

 

4.2 Conditional Probability and the Fallacy of the Time 
Axis 

Falk (1979; 1999) proposed the following problem to eighty-eight university 
students and found that while students easily answered part (a), they were 
confused about part (b).  

 
Problem 
An urn contains two white balls and two red balls. We pick up two balls at 
random, one after the other without replacement. (a) What is the probability 
that the second ball is red, given that the first ball is also red? (b) What is the 
probability that the first ball is red, given that the second ball is also red? 
 

Students typically argued that, because the second ball had not been 
drawn at the same time as the first ball, the result of the second draw could 

a. Sample Space Assumed by the Teacher 
 
1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6
 

 
b. Sample Space Assumed by the Student 
 
1,1 1,2 1,3 1,4 1,5 1,6

 2,2 2,3 2,4 2,5 2,6

  3,3 3,4 3,5 3,6

   4,4 4,5 4,6

    5,5 5,6

     6,6
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not influence the first. Hence, the students claimed that the probability in 
part (b) is 1/2. 

Falk suggested that these students confused conditional and causal 
reasoning and also demonstrated the fallacy of the time axis. That is, they 
thought that one event could not condition another event that occurs before 
it. This is false reasoning, because even though there is no causal relation 
from the second event to the first one, the information in the problem that the 
second ball is red has reduced the sample space for the first drawing. In 
essence, there are now just one red ball and two white balls for the first 
drawing. Hence, P (B1 is red/ B2 is red) =1/3. Our hypothesis is that there is 
a semiotic conflict in the use we make of the words dependent/ independent 
in statistics and in other areas of science and mathematics, where this word 
has a causal meaning that students bring to the study of statistics (Díaz and 
de la Fuente 2006). 

4.3 Ruling out Semiotic Conflict Does Not Always Solve 
Probabilistic Misconceptions 

Of course the conjecture that the above difficulties might be explained by the 
participants’ semiotic conflicts in interpreting the tasks should be empirically 
tested. On the other hand, there are many other probabilistic misconceptions 
and errors which seem to defy semantic explanations. One such example is 
the conjunction fallacy. In related research, many students and professionals 
were presented with different variations of the following problem 
(Kahneman and Tversky 1982). 

 
Problem 
Linda is 31 years old, single, outspoken, and very bright. She majored in 
philosophy. As a student, she was deeply involved with issues of 
discrimination and social justice, and also participated in antinuclear 
demonstrations. The task is to rank various statements by their probabilities, 
including these two: 

(a) Linda is a bank teller 
(b) Linda is a bank teller and is active in the feminist movement 
 

Many students and professionals ranked response (b) as more probable 
than (a). This judgment apparently violates the probability rules, since 
sentence (a) refers to the probability of a single event P (B), while sentence 
(b) refers to the probability of the compound event P (B and F), which at 
best is equal to P(B) assuming P(F)=1. 
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Some researchers organized experiments to ensure that participants were not 
misled into interpreting (a) as “Linda is a bank teller and not active in the 
feminist movement” and did not therefore assign an incorrect meaning to the 
term probability (Sides, Osherson, Bonini, and Viale 2002). In spite of these 
precautions, conjunction fallacies were still very frequent. Attempts to 
explain the fallacy in terms of misinterpreting the word and in sentence (b) 
to refer to the conjunction of two events (even though the word possesses 
semantic and pragmatic properties that are foreign to conjunction) were still 
unsuccessful (Tentori, Bonini, and Oshershon 2004). 

5. IMPLICATIONS FOR TEACHING 
PROBABILITY 

This discussion shows the multifaceted meanings of probability and suggests 
that teaching cannot be limited to any one of these different meanings 
because they are all dialectically and experientially intertwined. Probability 
can be viewed as an a priori mathematical degree of uncertainty, evidence 
supported by data, a propensity, a logical relation, a personal degree of 
belief, or as a mathematical model that helps us understand reality. 

The controversies that historically emerged about the meaning of 
probability have also influenced teaching. Before 1970, the classical view of 
probability based on combinatorial calculus dominated the secondary school 
curriculum. Since combinatorial reasoning is difficult, students often found 
this approach to be very hard; moreover, the applications of probability in 
different sciences were hidden. Probability was considered by many 
secondary school teachers as a subsidiary part of mathematics, since it only 
dealt with games of chance. In other cases it was considered to be only 
another application of set theory (Henry 1997; Parzysz 2003). 

With increasing computer development, there is growing interest in the 
experimental introduction of probability as a limit of the stabilized 
frequency. Simulation and experiments help students solve some paradoxes 
which appear even in when teaching simple probability problems. A pure 
experimental approach, however, is not sufficient in the teaching of 
probability. Even when a simulation can help to find a solution to a 
probability problem arising in a real world situation, it cannot prove that this 
is the most relevant solution, because the solution will depend on the 
hypotheses and the theoretical setting on which the computer model is built. 
A genuine knowledge of probability can be achieved only through the study 
of some formal probability theory, and the acquisition of such theory should 
be gradual and supported by the students’ stochastic experience. 
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On the other hand, much more research is needed to clarify the 
fundamental components of the meaning of probability (and in general of 
every specific mathematical concept) as well as the adequate level of 
abstraction in which each component should be taught, since students might 
have difficulties in any or all the different components of the meaning of a 
concept. We also emphasize the need to take into account students’ semiotic 
activity when solving mathematical problems or carrying out mathematical 
activity, in order to help them overcome errors and difficulties that might be 
explained in terms of semiotic conflicts. Even when semiotic conflicts are 
not the only explanation for students’ difficulties in probability, the teacher 
should be conscious of the existence of such conflicts and of the high 
semiotic complexity of mathematical work. 
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INTERLUDE 6 
 
 
 
The transition from Carmen Batanero and Carmen Díaz’s paper to Maria 
Meletiou-Mavrotheris’s paper seems quite obvious: probability and 
stochastics are as close as you want. So basically they are dealing with the 
same subject, are they not? Well, it depends. If we look at the topic from a 
pure mathematical point of view, yes of course; but if we put the topic into 
another context, such as the classroom, then things become quite different.  

As it happens, both authors agree that there are serious problems as to the 
translation of the pure mathematics into classroom understanding and the 
insights required for specific applications. Then where do we find the 
differences? Quite simply, in their diagnosis. Looking for answers to the 
question “Why do students perform so poorly?”, different answers are given 
by Batanero and Díaz and by Meletiou-Mavrotheris. 

The former authors focused on the problem of the multiplicity of 
meanings, the latter author looks at the sharp contrast between the formal 
notion of probability and stochasticity and the corresponding everyday 
notions (i.e., the way we humans in our everyday lives think, talk, and 
reason about chance events, probabilities, and the like). In a way, it is close 
to a miracle that so many mathematicians and philosophers are profoundly 
shocked when they learn from the cognitive psychologists that everyday 
people reason differently from their idealized formal alter egos. 
Unfortunately (or fortunately?), we no longer recognize our alter egos 
because they are not even relatives of ours, let alone a variation of ourselves. 
But don’t we have a problem now? If the answers of both authors are 
different, does that not mean that a choice must be made, that someone is 
right and someone is wrong? Perhaps, if the question is “What is 2 + 2?,” 
and two answers “4” and “5” were given (although in this case too, perhaps 
not, as it could very well be that both answers are wrong, the right answer 
being: “an addition.”) What needs to be done is to integrate the ideas in both 
papers into a more encompassing (semiotic?) theory that takes into account 
the curious kind of being we are, a being that generates concepts and then 
discovers it fails to understand them. Are intuitions going berserk? 
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1. INTRODUCTION 

New values and competencies are necessary for survival and prosperity in 
the rapidly changing world, where technological innovations have made 
redundant many skills of the past (Ghosh 1997). The Lisbon European 
Council of March 23-24, 2000, placed the development of a knowledge-
based society at the top of the Union’s policy agenda, considering it to be the 
key to the long-term competitiveness and the personal aspirations of its 
citizens. Statistics education has a crucial role to play in this regard. The 
pressure for democratization of mathematics education and the shift of 



132 Maria Meletiou-Mavrotheris
 
mathematical studies towards a more “utilitarian approach” (Moore 1997), 
have opened up a larger place for statistics, which now, at the post-
secondary level, is probably studied by more students than any other topic 
(Philips 1999). The development of a statistically literate society is a key 
factor in achieving the objective of an educated citizenry. However, the 
research literature in the area of stochastics education indicates that most 
people tend to think deterministically and to have weak intuitions about the 
stochastic. Students’ difficulties persist despite the significant reform efforts 
that have led to wide-scale incorporation of technology and interesting 
activities in the statistics classroom.  

Wilensky (1993) has claimed that the failure in developing sound 
probabilistic intuitions is similar to other failures in mathematical 
understanding and is the result of deficient learning environments and 
reliance on “brittle formal methods.” It is, in my opinion, these same reasons 
that also cause the neglect of a number of other statistical concepts observed 
both in the curriculum and in the research literature. It is argued here that 
deep-rooted beliefs about the nature of mathematics are imported into 
statistics, affecting instructional approaches and curricula and acting as a 
barrier to the kind of instruction that would provide students with the skills 
necessary to recognize and intelligently deal with uncertainty and variability.  

In this paper, I give an overview of the literature on the formalist view of 
mathematics and its impact on statistics instruction and learning. While little 
empirical work has focused on examining the impact that formalism may 
have on student understanding, I use here examples from a number of studies 
in statistics that discuss student understanding in general and I illustrate how 
student difficulties may be related to mathematical formalism. Next, I 
provide suggestions about the pedagogical and curricular changes that ought 
to take place in order for mathematics and statistics education to break away 
from the formalist tradition and ensure that all students develop their ability 
to reason effectively about the stochastic. Finally, I discuss possible 
directions for research on this important topic. 

2. FORMALIST VS. RELATIVISTIC VIEW  
OF MATHEMATICS 

In recent years, the formalist tradition in mathematics and science has come 
under attack and a second agenda, which views mathematics as a meaning-
making activity of a society of practitioners (Wilensky 1993), has begun to 
emerge. The emergence of the new paradigm has been the result of 
developments in the history and philosophy of science, which have caused a 
general shift in the last thirty years in virtually every social science and field 
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of humanities away from rationalistic, linear ways of thinking. In the social 
sciences several critics have attacked formalist tradition in mathematics and 
science. Hermeneutic critics (Packer and Addison 1989 in Wilensky 1993) 
have criticized it for its detachment from context, its foundation on axioms 
and principles rather than practical understanding, and its formal, syntactic 
reconstruction of competence. Feminists have criticized it for alienating a 
large number of people, especially women (Gilligan 1986). Sociologists such 
as Latour (1987) have maintained that science can only be understood 
through its practice.  

Kuhn (1962) has argued that the progress of science, rather than being 
linear and hypothetico-deductive as claimed by logical positivists, is made 
possible through revolution. New theories are not incremental modifications 
of existing ones but ideas that posit basic entities of the world, which are 
fundamentally incompatible with old theories. An anomaly occurs, which is 
an event that cannot be explained by the existing theory. In effect, the 
theory/paradigm is disproved. A whole new paradigm takes over, which 
explains everything the old paradigm explained and also explains the 
anomaly (Wiesman and Wotring 1997). Pólya (1962) and Lakatos (1976) 
have argued that, “by placing such a strong emphasis on mathematical 
verification and the justification of mathematical theorems after their 
referent terms have been fixed, mathematics literature has robbed our 
mathematics of its basic life” (Wilensky 1993, 34). Mathematics for Lakatos 
is a human enterprise and advances happen through the negotiation of 
meaning among a community of practitioners. It is not given in advance but 
is constructed through the practices, needs, and applications of this 
community of practitioners. Proofs are not developed in a linear way, but 
follow “the zig-zag path of example, conjecture, counter-example, revised 
conjecture or revised definition of the terms referred to in the conjecture” 
(Wilensky 1993, 34). In the new paradigm, the history of mathematics takes 
an important role. Its examination reveals that “mathematics is messy and 
not the clean picture we see in textbooks and proofs,” that “the path to our 
current mathematical conceptions was filled with argument, negotiations, 
multiple and competing representations” (Wilensky 1993, 17). 

In response to criticisms following research findings, and reports of the 
1970s and early 1980s exposing students’ impoverished understanding of 
mathematics and science, leaders and professional organizations in 
mathematics education are now finally promoting a relativistic view of 
mathematics (Confrey 1980; Nickson 1981). They have come to believe that 
current teaching approaches are deficient in that they do not give students 
the chance to encounter different perspectives on the nature and uses of 
mathematics. Reformers argue that the culture of the mathematics classroom 
should change. Mathematics should be presented as open to discussion and 
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investigation, as a socially constructed discipline which, even at the 
classroom level, “is not held to be exempt from interpretations that require 
‘reconsideration, revision and refinement’” (Nickson 1992, 104). The 
emphasis “should not be on mirroring some unknowable reality, but in 
solving problems in ways that are increasingly useful to one’s experience” 
(Confrey 1991, 136). The teacher should encourage discussion, and allow 
students to generate and test their own theories.  

Wilson, Teslow, and Osman-Jouchoux (1995) warn us that although 
recent models of cognition are clearly challenging our traditional notions of 
learning and teaching, changing long-held beliefs and attitudes towards 
mathematics is proving to be quite difficult. There is an enormous gap 
between the mechanistic-instrumental portrayal of the nature of mathematics 
and the more realistic-fundamental view that reformers try to advance. The 
formalist tradition has been around for too long and runs deeply into 
people’s veins. For people raised in this tradition, it is very difficult to accept 
the fallabilist nature of mathematics. 

3. IMPACT OF FORMALIST VIEW  
ON STATISTICS EDUCATION 

In the statistics domain, there has already been a move towards modernizing 
statistics education and a general acknowledgment that learning occurs most 
effectively when students engage in authentic activities. Statistics educators 
are pushing for courses that put more emphasis “on data collection, 
understanding and modeling variation, graphical display of data, design of 
experiments and surveys, problem solving, and process improvements, and 
less emphasis on mathematical and probabilistic concepts” (Ballman 1997). 
This has caused a movement away from statistical content emphasizing the 
abstract and the memorization of a list of formulas and procedures, toward 
content emphasizing exploratory data analysis. Although many students are 
still being taught in traditional classrooms, there is already a large number of 
statistics instructors who have adopted alternative approaches to their 
teaching and many statistics classrooms are experiencing wide incorporation 
of technology. But, as Hawkins (1997a) points out, for reform efforts to be 
successful, it is also necessary to change attitudes and expectations about 
statistical education. Changing long-held beliefs and attitudes towards 
statistics is proving to be quite difficult (Wilensky, 1993). Many people still 
view statistics as “a branch of the older discipline of mathematics that takes 
its place alongside analysis, calculus, number theory, topology, and so on” 
(Glencross and Binyavanga 1997, 303). This affects statistics instruction and 
hampers the reform efforts. 
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The linear and hierarchical approach adopted by statistical courses and 
syllabuses is testimony to the profound and continuing effect of the formalist 
mathematics culture on statistics. The structure of almost every introductory 
statistics course is to start with descriptive and exploratory data analysis, 
then move into probability, and finally go to statistical inference. It is 
assumed that this simplifies the process of learning by gradually leading 
students from more basic to more complex connections (Steinbring 1990). 
However, presenting statistical content as a sequenced list of curricular 
topics might lead to compartmentalization of knowledge and fail to 
communicate to students the interconnectedness of the different statistical 
ideas they encounter in the course. 

Statistical methods were developed to help us filter out any signals in 
data from surrounding noise.  Signals are the messages, the meanings we 
find in explained variation, the patterns that we have not discounted as being 
transient. Noise is the unexplained variation that remains after we have 
removed all patterns. Randomness and probability theory are human 
constructs created to deal with unexplained variation. We use probability 
theory to model and describe phenomena in the world for which no patterns 
can be discerned, assuming that they had been randomly generated. Thus, 
“what probability is can only be explained by randomness, and what 
randomness is can only be modeled by means of probability” (Steinbring 
1990, 4). Stochastical knowledge is created as “a relational form or linkage 
mechanism between formal, calculatory aspects on the one hand, and 
interpretative contexts on the other” (Steinbring 1990, 5). The classroom 
culture, however, often comes in sharp contrast with this conception of 
stochastical knowledge as being developed through a “self-organized” 
process that balances the objective aspects of a situation and the formal 
means employed to model and describe it.  

The linear, completely elaborated, and hierarchical structure of 
knowledge presentation encourages the development of the chance concept 
as a concrete, totally clear and unambiguous generalization defined by 
methodological conventions. Steinbring (1990), who analyzed teaching 
episodes from several different classrooms in order to see how the concept 
of chance was introduced, found that in all instances chance was first 
introduced through performing and discussing a chance experiment. An 
attempt was then made to describe the experimental outcomes using a rule or 
a simple stochastical model. Naturally, there was always variation observed 
between the theoretical predictions and the empirical data. The pattern of 
justification for the observed variation, regardless of its size, always was that 
the difference between the empirical result and the theoretical prediction was 
produced by chance (Steinbring 1990). The difference between theory and 
experiment was thus neutralized, with chance degenerating into “a substitute 
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for justification, which serve[d] to deny the importance of the difference 
between theory and empirical facts in probability” (Steinbring 1990, 14). 

The assumptions posed in the statistics classroom are often too simplistic. 
Although not necessarily denying underlying causal explanations in the case 
of chance events, a probabilistic approach views them as impractical and 
adopts a blackbox model (Biehler 1994, 10). As Biehler indicates, however, 
the assumption of independence is not plausible in many real world contexts: 
“Even coin flipping can be done in a way that independence has to be 
rejected in favor of serial correlation, and physical theories can be developed 
to explain some aspects of coin flipping” (Biehler 1994, 10). Borovcnik and 
Peard (1996) warn that instruction has traditionally underrated the 
complexity and dangers of using pseudo-real examples that conflict with 
students’ emotions or with their common sense. 

The over-emphasis of the traditional mathematics curriculum on 
determinism and its “orientation towards exact numbers” (Biehler 1997,  
187) affects statistics instruction, becoming an obstacle for the adequate 
judgment of stochastic settings. The law of large numbers is often presented 
as a canon in the statistics classroom, giving students the false impression 
that the stabilization of the relative frequency of repeated sampling to the 
ideal value is guaranteed. Similarly, traditional instruction leaves students 
with the impression that a larger random sample guarantees a more 
representative sample. There is a deterministic mindset and an over-reliance 
on rules and theorems, forgetting that we are dealing with uncertainty; and 
the variability accompanying all finite statistical processes implies that a 
sample is almost never totally representative of the population from which it 
was selected. People have a hard time distinguishing between the real world 
problem and the statistical model. At one extreme are many people who use 
statistical methods for solving real world problems in the same way that they 
would use an artificial mathematics problem coming out of a textbook. At 
the other extreme, we find people who distrust statistics completely due to 
the fact that, unlike mathematics, it deals with uncertainty. Both of these two 
extreme attitudes suggest inadequate understanding of statistics as a 
decision-support system (Biehler 1997). 

4. FORMALISM AND STUDENT DIFFICULTIES 
WITH STATISTICAL REASONING 

Despite the criticisms regarding the impact of formalism on statistics 
education, little empirical work has been done towards the better 
understanding of the difficulties students face that may or may not relate to 
formalism. Therefore, little is known regarding the details of how 
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misconceptions are formed and how they may be prevented. I hereby attempt 
to touch upon this issue through a reconsideration of some well-known 
empirical findings on students’ understanding of statistics. I compiled a list 
of difficulties students face, as documented in the literature, and I formed 
some hypotheses regarding the link between these difficulties and the 
formalist tradition. 

4.1 Over-reliance on Sample Representativeness 

Statistical reasoning follows from two notions which, when seen from a 
deterministic framework, seem antithetical—sample representativeness and 
sample variability. Whereas sample representativeness is “the idea that a 
sample taken from a population will often have characteristics identical to 
those of its parent population,” sample variability is “the contrasting idea 
that samples from a single population are not all the same and thus do not all 
match the population” (Rubin, Bruce, and Tenney 1990, 3). Due to sample 
representativeness we can put bounds on the value of a characteristic of the 
population; due to sampling variability however, we never know exactly 
what that value is (Rubin et al. 1990). Balancing these two ideas lies at the 
heart of statistical inference. Although recognizing that random selection 
always leads to variation, however, most students tend to underestimate the 
effect of sampling variability and, over-relying on sample 
representativeness, they search for patterns in the data with a certainty that 
such patterns exist – an outcome of their training in formalist tradition. 
Indeed, mathematics teaching with roots in formalist tradition often 
encourages this searching for patterns. In statistics however, when reasoning 
in terms of patterns, students often fail to conceptualize the chance variation 
involved in those patterns and hence often exaggerate the information 
provided. Students view random fluctuations in data as causal and proceed to 
develop deterministic explanations. 

4.2 Neglect of Variation 

A common finding in statistics studies is a neglect of variation (e.g., 
Meletiou 2000; Meletiou-Mavrotheris and Lee C. 2002; 2003). Most people 
have a limited ability to cope with uncertainty and variation in the real 
world. They tend to think deterministically and to have difficulties in 
differentiating between chance variation in the data and variation due to 
some form of underlying causality.  

Joiner and Gaudard (1990) consider awareness of variation and how it 
affects processes to be one of the main determinants of success in business 
management. Hoerl, Hahn, and Doganaksoy (1997) point to the gross 
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inefficiencies that occur in industry because managers and technical 
personnel have a deterministic mindset and lack awareness of variation, 
despite the fact that many of them have had substantive formal statistical 
training: “They expect mass balances to match exactly, or actual financial 
figures to exactly equal budget. Any variance from budget must be 
explained” (Hoerl et al. 1997, 149). A partial explanation Hoerl et al. (1997) 
see for the shortcomings in statistics education goes back to the math vs. 
statistics issue:  

Perhaps because of the over-emphasis on mathematics, statisticians seem 
uncomfortable with statistical concepts which cannot be derived or 
proven mathematically. The omnipresence of variation is admitted, but 
often not clearly explained. (Simulating a histogram on the computer 
does not teach business people how to interpret a financial report.) (Hoerl 
et al. 1997, 150)  

The results of a study conducted by Shaughnessy, Watson, Moritz, and 
Reading (1999) to investigate elementary and high school students’ 
understanding of variability indicated a steady growth across grades on 
center criteria, but no clear corresponding improvement on spread criteria. 
Indeed, most students treat the task of finding the center of a dataset as a 
typical mathematics task requiring the application of a simple formula for its 
solution.  Ignoring the possibility of outliers, they rush into adding up all the 
numbers and dividing by the number of data values. Further, when asked to 
compare group means, students tend to focus exclusively on the difference in 
averages and to believe that any difference in means is significant.  

I hypothesize that this over-emphasis on center criteria and tendency to 
underestimate the effect of variation in real world settings is related to the 
emphasis of the traditional mathematics curriculum on determinism and its 
orientation towards exact numbers. Since centers are often used to predict 
what will happen in the future, or to compare two different groups, the 
incorporation of variation into the prediction would confound people’s 
ability to make clean predictions or comparisons (Shaughnessy 1997). The 
formalist tradition prepares students to search for the one and only correct 
answer to a problem—a condition that can easily be satisfied by finding 
measures of center such as the mean and the median. Variation, though, 
rarely involves a clean numerical response. Standard deviation, the measure 
of variation on which statistics instruction over-relies, is computationally 
messy and difficult for both teachers and curriculum developers to 
recommend to students as a good choice for measuring spread (Shaughnessy, 
1997). 
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4.3 Local Representativeness Heuristic - Perceiving 

Patterns in Random Data  

The research literature has identified a series of heuristics often subject to 
bias that humans develop in an effort to rationalize stochastic events. These 
heuristics indicate people’s limited understanding of randomness, as well as 
their tendency to reason deterministically and to develop causal explanations 
for random fluctuations in the data. Well-documented in the research 
heuristic is local representativeness, the phenomenon in which “people 
believe that a sequence of events generated stochastically will represent the 
essential characteristics of that process, even when the sequence is quite 
short” (Pratt 1998, 37). For example, when tossing coins, people consider it 
less likely to obtain HHHTTT or HHHHTH than to obtain HTHTTH, 
because HTHTTH seems to better represent the two possible outcomes. 
Similarly, the fallacy of the gambler who, after a long sequence of red 
outcomes, expects the next outcome to be black is, for Kahneman and 
Tversky (1973), the consequence of employing the local representativeness 
heuristic and perceiving a pattern in random data. The gambler’s fallacy is 
also called the “law of averages” as it describes people’s tendency to believe 
that things should balance out to better represent the population distribution. 
This is the same idea as that which Shaughnessy (1992) calls active 
balancing strategy. For him, an active balancer is the person who, when 
given the problem “The average SAT score for all high school students in a 
district is known to be 400. You pick a random sample of 10 students. The 
first student you pick had an SAT of 250. What would you expect the 
average of the other scores to be?” (Shaughnessy 1992, 477), would predict 
the average of the remaining 9 scores to be higher than 400, in order to make 
up for the “strangely” low score. 

Conventional instruction often fails to establish enough links between the 
learners’ primary intuitions about the stochastic and “the clear cut codified 
theory of the mathematics” (Borovcnik and Bentz 1991; in Pfannkuch and 
Brown 1996). Students coming to the statistics class have already 
experienced the highly fluctuating and irregular pattern of random 
phenomena such as the occurrence of Heads and Tails in sequential coin 
tosses. The theoretical statement that P (Head on next toss)=1/2, which 
describes the relative limiting frequency of an event, seems to students to be 
in sharp contrast to the intuitively felt inability to make specific predictions 
of this outcome (Borovcnik 1990). Even if students understand probabilistic 
theory, they often fall back into the trap of causal thinking. In their urge to 
overcome uncertainty, to order the chaos, they might attempt to search for 
logical patterns, to develop different mathematical theories and causal links. 
Such an approach “is highly interwoven with magic belief and astrology (the 
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law of series, a change is overdue, etc.) and the search for the signs to detect 
this early enough” (Borovcnik 1990, 8); it leads to the development of 
heuristics such as the local representativeness heuristic.  

Fischbein (1975) notes that although probabilistic intuitions exist from a 
very early age they are suppressed by schooling. In order to make his point, 
he reports on a study where participants were asked to predict the outcomes 
of a repetitive series of stochastic trials, and where even young children were 
able to make sound predictions based on the relative frequencies of the 
different outcomes. The reason that the intuition of chance remains excluded 
from intellectual development is the emphasis of school mathematics on 
causality and determinism and its sole focus on deductive reasoning. Due to 
the lack of nourishment of probabilistic intuitions, or (as I argue in this 
article) due to the training in formalist traditions that discourage non-
deterministic reasoning, learners develop a series of heuristics often subject 
to bias, in an effort to rationalize stochastic events. 

4.4 The Outcome Orientation 

This heuristic also describes students’ tendency to interpret in deterministic 
terms phenomena that are actually stochastic (Konold 1989). Lacking 
awareness of the stochastic dimension of such phenomena, students often 
make predictions based solely on causal factors (Pratt 1998). Influenced by 
tasks posed in mathematics classrooms to which there is always a right 
answer, students tend to deal with uncertainty by predicting what the next 
outcome will be and then by evaluating the prediction as either right or 
wrong. A probability of 50 percent is often assigned when no sensible 
prediction is possible. The information that there is a 50 percent chance of 
rain tomorrow sounds totally useless, a probability of 30 percent implies that 
there is no possibility of rain, whereas a probability of 70 percent means that 
it will definitely rain. 

4.5 Disconnection from Context – Good Mathematics  
Is “Pure”  

In the statistics classroom, concepts related to probability are most often 
taught through standard probability tasks such as throwing dice and tossing 
coins. This norm of using pseudo-real examples, borrowed from 
mathematics instruction, does not serve students well.  As the research 
literature indicates, the ability to solve problems involving random devices 
does not transfer very effectively to more applied problems (Garfield and 
delMas 1990; Pfannkuch and Brown 1996; Meletiou-Mavrotheris and Lee C. 
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2002; 2003). People’s understanding of probability is more limited in real 
world contexts than in the contrived context of standard probability tasks.  

According to Nisbett, Krantz, Jepson, and Kunda (1983), dealing with 
standard random devices makes easier the recognition of the operation of 
chance factors than dealing with social events. Random devices have an 
obvious sample space and the repeatability of trials can be easily imagined. 
By contrast, the random nature of social events is often not as explicit and 
the sample space not well understood, since use of a real world context 
increases the likelihood of prior beliefs and knowledge about the issues 
under investigation. Students comfortable thinking probabilistically when 
dealing with standard probability tasks, seem oblivious to probabilistic 
thinking for problems posed in real world settings. Although, for example, 
students might be aware of the dangers involved when drawing conclusions 
from small samples, for problems posed in realworld contexts they often 
ignore these dangers and do not hesitate to use small samples as a basis for 
inferences, erring thus towards the deterministic side (Pfannkuch and Brown 
1996; Meletiou-Mavrotheris and Lee C. 2002; 2003).  

5. MOVING AWAY FROM THE FORMALIST 
MATHEMATICAL TRADITION:  
IMPLICATIONS FOR INSTRUCTION 

In this paper, I have reconsidered some well-known empirical findings on 
students’ understanding of statistics, and asserted that student difficulties 
might stem from training in formalist mathematics traditions. As a 
consequence of their prior experience with traditional mathematics curricula 
and classroom settings that discourage non-deterministic reasoning, students 
have not developed adequate intuitions about the stochastic. Statistics 
instruction itself, also influenced by the formalist mathematics tradition, fails 
to build bridges between students’ intuitions and statistical reasoning. 
Although notions such as randomness and variation have a nature very much 
dependent on context and lend themselves especially well to the new 
perspective of mathematical concepts as social constructs, they are typically 
presented in the classroom as rigidly established bodies of mathematical 
knowledge without any reference to real world context. As a result, 
instruction fails to convey to students the relationship between the 
knowledge they acquire in the statistics classroom and its uses in the real 
world. 

Society’s expanding use of data for prediction and decisionmaking in all 
domains of life makes data literacy increasingly important in our modern 
society. Recognizing uncertainty as a characteristic of reality, and behaving 
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intelligently within it, now form a fundamental part of the intellectual 
development of the individual (Azcarate and Cardnoso 1994). Thus we could 
no longer accept instructional practices that lead to the strong inclination of 
interpreting the world in deterministic ways currently observed among most 
adults. It becomes a priority for mathematics and statistics education to 
break away from the formalist tradition in order to ensure that all students 
develop their stochastical reasoning (National Council of Teachers of 
Mathematics 2000).  

5.1 Redefining Statistics Instruction 

Current practices in statistics education have evolved from a background 
quite different from today’s needs and possibilities. Hawkins (1997b) argues 
that nothing should be taken for granted. Reform efforts “must have the 
momentum and energy to challenge even the most fundamental and widely-
held ideas about statistical education, and the ways in which these are 
currently manifested” (Hawkins 1997b, 142). Technological advances and 
the forces of democratization demand fundamental pedagogical as well as 
curricular changes that would make statistical reasoning more accessible to 
all students.  

The review of the research literature and insights gained from personal 
research lead us to conclude that in order to build connections between 
formal mathematical expressions of the stochastic and everyday informal 
intuitions, we have to redefine statistics instruction based on the following 
principles: 

5.1.1 Interconnectedness of Statistical Ideas  

The current practice in almost every introductory course of presenting 
statistics content as a sequenced list of curricular topics fails to communicate 
to students the interconnectedness of the different statistical ideas they 
encounter in the course. The assumption that by building concepts 
“separately but directly”, students would eventually have an array of 
statistical ideas at their disposal (Lachance and Confrey 1996), is a very 
simplistic view of the development of human understanding. Learning about 
a statistical concept without exploring its connection to the other main 
statistical constructs can only lead to weak and narrow understandings. As 
Lachance and Confrey (1996) assert, “the best route between two points is 
not always a straight line” (Lachance and Confrey 1996, 23). Instruction 
should instead provide an interconnected path which would better encourage 
students to follow their own, unique nonlinear developmental paths from 
smaller to larger ideas (Lachance and Confrey 1996). Following such a path, 
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rather than a compartmentalized statistics curriculum, would lead students to 
stronger and deeper understandings. 

5.1.2 Complementarity of Theory and Experience  

In the increasingly many sectors of society relying on data, the purpose of a 
statistical investigation is to help inform decisions and actions by expanding 
the existing body of context knowledge about the situation under study. 
Therefore the ultimate goal of statistical investigation is “learning in the 
context sphere” (Wild and Pfannkuch 1999). This means much more than 
collecting new information or understanding different statistical ideas in 
isolation. Statistical reasoning necessitates a complementarity of theory and 
experience. It is not a separable entity but a synthesis of statistical 
knowledge, context knowledge, and the information in the data in order to 
produce implications, insights, and conjectures (Wild and Pfannkuch 1999).  

The arid, context-free landscape on which so many examples used in 
statistics teaching are built ensures that large numbers of students never ever 
see, let alone engage in, statistical reasoning. If the statistics classroom is to 
be an authentic model of the statistical culture, it should model realistic 
statistical investigations rather than teaching methods and procedures in a 
sequential manner and in isolation. The emphasis should be on the statistical 
process.  The teaching of the different statistical tools should be achieved 
through putting students in a variety of authentic contexts where they need 
those tools to make sense of the situation. Students should come to view and 
value statistical tools as a means to describe and quantify the variation 
inherent in almost any realworld process.  

The teaching of probability concepts should be achieved through realistic 
investigations and not through the use of pseudo-real examples. As already 
pointed out, research has proved naïve the expectation that students will 
transfer the understanding obtained through coins, dice, and games of chance 
to everyday contexts. The skills required to understand variation of outcomes 
in random devices are very different from the skills required to understand 
variation of outcomes in reallife contexts. Consequently, instruction ought to 
take into account the great variety of prior beliefs, conceptions, and 
interpretations that students bring to each situation.  

The concepts of randomness and probability should be organized under a 
dynamical perspective rather than being presented as ready-made elements 
through clear-cut context-free definitions, as is currently the case in most 
statistics curricula. There is a need for intuitive representations to help 
students “see the fundamental relationship between chance and regularity, 
between irregular, unpatterned phenomena on the one hand, and the 
mathematical intentions to model and describe them in a regular and formal 
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way on the other” (Steinbring 1990, 3). Probability theory should not be 
presented as a body of clear and unambiguous mathematical generalizations 
free of any concrete interpretations, but as an attempt by humans to attain a 
degree of certainty in contexts where “it is no longer possible to advance 
certain predictions about future events on the basis of strictly causal 
linkages” (Steinbring 1990, 2).  

Particular attention should be paid to the relation between probability 
theory and empirical outcomes. Doing stochastic experiments and 
simulations and evaluating experimental outcomes, provides a socially 
constituted teaching context that opens up two main possibilities for further 
development of the chance concept. The first possibility is what is typically 
observed in classrooms—“a narrowing reduction of the chance concept to a 
formalized, conventional label” (Steinbring 1990, 17). Often stark 
contradictions between theoretical prediction and empirical observation are 
justified as being the result of “chance” in the naïve sense. The second 
possibility is for instruction to broaden the chance concept to that of a device 
for controlling the underlying connection between the stochastical model and 
the experimental situation. Experiments and computer simulations 
performed in the classroom to facilitate learning of statistical concepts 
should be perceived as fundamental sources for the students and not simply 
as motivations for step-by-step teaching of the teacher’s intended goals 
(Steinbring 1990). The self-referent epistemological structure of stochastical 
concepts should also be reflected in the social process of the classroom. 
Stochastical knowledge necessitates direct subjective decisions and 
interpretations; thus contradictions between theoretical arguments and 
empirical results pointed out by students should not overlooked.  

Whenever a very rare event is observed, one ought to question the whole 
process, and decisions must be taken as to whether it would be necessary to 
modify some basic assumptions or the experimental conditions of the 
process (Steinbring 1990). Such an approach, of lifting chance from “a naïve 
intuitive concept, which is defined only negatively as non-existing 
regularity” (Steinbring 1990, 18), to a theoretical concept that calls for 
careful analysis of experimental conditions and theoretical assumptions, 
emphasizes the complexity of real life situations, rather than making 
simplistic assumptions that conflict with students’ common sense. It permits 
the re-establishment of an appropriate balance between objective and 
subjective aspects of knowledge and lays solid foundations for the 
development of the most important stochastical concepts. 
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5.1.3 Building on Student Intuitions  

Student thinking about the stochastic has a manifold nature. It is not only 
probabilistic reasoning that drives students’ thinking, but also impressions, 
prior beliefs, and expectations. Instruction that ignores students’ prior 
knowledge and intuitions will not take us far from the formal knowledge 
(itself quite shaky, as the research literature suggests) of statistical methods 
and procedures with no connection whatsoever to reality. Konold (1995) 
insists that the forget-everything approach probability and statistics teachers 
often embrace in the hope that what they convey to students will be 
accurately encoded does not work simply because “learning is both limited 
and, at the same time, made possible by prior knowledge.” The only way 
people can cope with new information is to relate it to things they already 
know, since “there is no blank space in our minds within which new 
information can be stored so as not to contaminate it with existing 
information” (Konold 1995). One cannot overwrite students’ beliefs and 
intuitions with more appropriate ones. Unless instruction establishes direct 
links between the intuitive and theoretical level, students’ understanding of 
probabilistic concepts will remain impoverished.  

Pfannkuch and Brown (1996) argue that an effect of the clash between 
students’ intuitions and probabilistic reasoning might be that students learn 
to distrust their intuitions, but because they do not actually understand why 
they are wrong, return back to them. In order to prevent this possibility, 
statistics education ought to find ways to help learners build powerful 
connections between formal mathematical expressions of the stochastic and 
everyday informal intuitions (Borovcnik, 1990). In order to simplify 
mathematical relations and build links to students’ intuitions, instruction 
should emphasize the use of analogies from students’ everyday experience, 
in contexts familiar to students. Instruction should revolve around students’ 
ways of thinking and understanding, and not around a pre-determined, rule-
based curriculum. “Rather than molding and shaping students to do 
[statistics] a certain way, and rewarding those with the best fit” (Scarano and 
Confrey 1996, 32), classroom activities and assessments should allow for a 
variety of perspectives and approaches. Curricular activities should be 
designed to be flexible and open-ended so that they can be adapted in 
response to feedback received from students. 

5.1.4 Balance between Stochastic and Deterministic Reasoning 

Students’ understanding of randomness and chance variation involves not 
only conceptual construction, but also beliefs about the place of chance in 
the world. The students’ epistemological set is an important dimension of 
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their understanding and application of ideas related to chance variation. An 
epistemological set is an individual’s inclination to interpret the world in 
relative deterministic or stochastic terms, based on their beliefs about the 
place of chance and variation in the world (Metz 1997). Individual beliefs 
about the place of chance and uncertainty in the world can affect students’ 
ability to grasp the main ideas behind inferential statistics and their 
propensity to apply chance interpretative schemas. Understanding, for 
example, that a population proportion of ¾ is a ratio of the expected relative 
distribution over an infinite number of repetitions of the event, but that this 
ratio is only approximated across many repetitions, requires more than 
having constructed the concepts of randomness and chance. It also requires 
an inclination to interpret the situation in terms of chance and uncertainty 
(Metz 1997). 

All individuals have both chance and deterministic interpretations within 
their cognitive repertoire, which one they utilize depends on many factors, 
including the context of the situation. Nevertheless, different individuals 
have varying tendencies of interpreting phenomena toward one or the other 
end of the stochastic/deterministic continuum (Metz 1997). As we have seen, 
the research literature indicates that the majority of students tend to have 
relatively deterministic epistemological sets. The lack of nourishment of 
probabilistic intuitions in mathematics classrooms, results in a clear 
tendency among students to err toward the side of attributing too much to 
deterministic causality, and a failure to appreciate the extent to which chance 
operates in what one experiences in the world. 

The idea that “chance variation, rather than deterministic causation, 
explains many aspects of the world” (Moore 1990, 99) is a fundamental 
notion for students’ effective handling of data-based curricula, as well as 
their adequate interpretation and prediction of patterns outside of school. It is 
then crucial for statistics instruction to help students develop their ability to 
reason more effectively about the stochastic. However, instruction should 
not present probabilistic thinking as an alternative to deterministic thinking, 
but as something to be grafted on top of students’ propensity to assume 
deterministic explanations for fluctuations in the data. Statistical thinking 
should be presented as a balance between stochastic and deterministic 
reasoning.  

Viewing as a negative quality students’ intuitive tendency to come up 
with causal explanations for any situation they have contextual knowledge 
about is an attitude that will not take us far in our efforts to help students 
improve their intuitions of the stochastic. Since most realworld problems are 
arise from a desire to improve something by identifying and controlling 
causes, we should rather view this impulse of students to find causes for 
phenomena as a positive resource (Wild and Pfannkuch 1999), an important 
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precursor of statistical reasoning. Shaughnessy (1992) reminds us that the 
heuristics people use to deal with uncertainty are not necessarily bad and 
often give good information. We should not forget that, for example, 
representativeness is fundamental to the epistemology of statistical events. 
Representativeness is, after all, the very idea that allows us to draw 
conclusions about an underlying population based on a random sample. We 
should understand that “it is not that there is something wrong with the way 
our students think, just that they—and we—can carry the usefulness of 
heuristics too far” (Shaughnessy 1992, 479). Thus we should try to create a 
curriculum that builds on the strengths of students’ intuitive tendency to 
come up with causal explanations, while at the same time helping them 
develop secondary intuitions which will raise their awareness of  
probabilistic interpretation, and allow them to understand how stochastic 
thinking is related to causal thinking. 

Instead of emphasizing individual irregularity, it is more constructive for 
statistics instruction to promote in students a way of thinking that perceives 
probability distributions as models of real situations that are based on some 
conditions which, when changed, might lead to changes in the distribution 
(Biehler 1994). Such an approach, which Biehler (1994) calls “statistical 
determinism,” is especially useful for dealing with more realistic situations. 
Students should understand that we could analyze causes of why an 
individual event (e.g., a traffic accident) took place, but also realize that we 
can learn something from a consideration of a system of events (e.g., 
aggregated data on traffic accidents) that we cannot learn if we focus only on 
the individual event. This complementarity of individual and system level, 
which is usually suppressed by instructors who call attention only to the 
system level, is more intuitively convincing for students and more 
productive. It will help students realize that the best way to search for real, 
non-ephemeral causes is through an in-depth study of a system and not 
looking only for a cause among recent changes (Wild and Pfannkuch 1999). 

Students know from everyday experience that, even when studies are 
conducted under very similar conditions, the patterns observed in one study 
will never appear identical in another study. What statistics instruction 
should be stressing is that statistical strategies, based on probabilistic 
modeling, are the best way to counteract our natural tendency to view 
patterns even where none exist, and to distinguish between real causes and 
ephemeral patterns that are part of our imagination. Statistics instruction 
should encourage students to adopt a critical attitude whenever receiving 
new ideas and information, to develop “a healthy skepticism and the 
imagination needed for alternative explanations” (Breslow 1999, 253). This 
critical attitude means being constantly on the outlook for logical and factual 
flaws, and it includes learning to counteract the human tendency to be less 
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judgmental of results that agree with one’s predispositions, expectations, and 
worldviews. It can be taught by gaining experience and seeing ways in 
which certain types of information turn out to be false and unsoundly based.  

5.1.5 Variation as the Central Tenet of Statistics Instruction  

A main reason I see for students’ difficulties with the stochastic is the 
neglect of variability and the statistical determinism hidden in standard 
approaches to statistics instruction. Although variation is a critical issue 
throughout the statistical inquiry process, from posing a question to drawing 
conclusions (Pfannkuch 1997), the overemphasis of the traditional 
mathematics curriculum on causality and determinism (Biehler 1997) affects 
statistics instruction, resulting in a tendency to under-recognize the role of 
variation in statistical reasoning. I believe that the objectives of an 
introductory statistics course might be better met through topics and 
activities that help build sound intuitions about the characteristics of random 
variation and its role on statistics.  

Variation is the foundation of statistical thinking, the very reason for the 
existence of the discipline of statistics (Shaughnessy and Ciancetta 2001). 
Statistical thinking is concerned with learning and decisionmaking under 
conditions of uncertainty. Variation is a critical source of uncertainty. The 
fact that all processes vary is what creates the need for statistics; and it is the 
need to deal with variation through measurements that provides the 
numerical basis for comparison that produces data (Snee 1999). We use 
statistical tools to analyze this data and observe the pattern that exists despite 
(or because of) the variation. Thus, according to Snee (1999), the elements 
of statistical methods are variation, data, and statistical tools. Understanding 
of variation and using this understanding to improve the performance of 
processes is the core competency; and it should be the focus of statistical 
education, research, and practice (Snee 1999). Understanding what data is 
relevant and how to construct proper methods of data collection and analysis 
enhances successful application of this core competency (Snee 1999). 

A number of other authors have stressed the central role that variation 
plays in statistical reasoning and that it should also play in statistics 
instruction. Moore argues that the essential components of statistical 
reasoning are (1) recognition of the omnipresence of variation, of the fact 
that “chance variation rather than deterministic causation explains many 
aspects of the world” (Moore 1990, 99), and (2) familiarity with the ways in 
which variation is quantified and explained. Pfannkuch (1997) considers the 
two essential and interlinked components of statistical thinking to be: (1) the 
recognition of variation, including the ability to distinguish between special 
cause variation (variation that can be assigned to an identifiable source) and 
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common cause variation (variation that is hard to link to any particular 
source); and (2) the realization that a sound judgment of a situation can be 
made only by collecting and analyzing data. 

Because the central element of statistical thinking is variation, statistics 
instruction should aim at providing students with the skills necessary to be 
able to notice and acknowledge variation, to explain it and deal with it. But 
if variation is indeed to be “the standard about which the statistical troops are 
to rally” (Wild and Pfannkuch 1999, 235), we have to arrive at a common 
conceptualization of statistics instruction in terms of variation.  Pfannkuch 
(1997) discusses the characteristics of statistical reasoning laid out by a 
practicing as well as teaching statistician during an in-depth interview she 
conducted to investigate his perspective on the nature of statistical reasoning. 
Based on insights obtained from the interview, she offers the following 
epistemological triangle, which has at its core the development of an 
understanding of variation, as a model for introductory statistics instruction. 

 
Figure 1. Pfannkuch’s Epistemological Triangle. 

 

     

In encouraging students to develop their understanding of the concept of 
variation, Pfannkuch’s epistemological triangle aims at the same time to 
promote a richer understanding of all the other main statistical ideas. The 
epistemological triangle indicates that for conceptualization of variation, a 
combination of subject and context knowledge is essential (Pfannkuch 
1997). The interlinked arrows indicate the strong connection that has to be 
created between statistical tools and the context of the problem. The 
assumption underlying the epistemological triangle is that the concept of 
variation would be subject to development over a long period of time, 
through a variety of tools and contexts (Pfannkuch 1997). As pointed out 
earlier, emphasizing “the interplay of data and theory” is vital, since the 
main purpose of statistical tools such as graphs and statistical summaries is 
to help understand or make predictions about stochastic realworld 
phenomena using a statistical model of them.  
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Meletiou-Mavrotheris and Lee (2002) describe the experiences and 
insights gained from a teaching experiment that employed Pfannkuch’s 
epistemological triangle as a guide to curriculum development and 
instruction. The teaching experiment, which took place in a college level 
introductory statistics course in the United States, implemented a 
nontraditional path to statistics instruction with variation at its core. The 
conjecture guiding the study was that the reason behind students’ difficulties 
with the stochastic might be the instructional neglect of variation, and that if 
statistics instruction were to put more emphasis on helping students build 
sound intuitions about variation and its relevance to statistics, then we would 
be able to witness improved understanding of statistical concepts.  

By contrasting students’ intuitions about the stochastic prior to 
instruction with their stochastical reasoning at the completion of the course, 
Meletiou-Mavrotheris and Lee (2002) illustrate how the instructional 
approach employed in the study proved a promising alternative to more 
conventional instruction. Findings from student assessments at the beginning 
of the course further supported the conjecture that variation is neglected and 
its critical role in statistical reasoning is under-recognized. Students 
participating in the study exhibited, at the outset of instruction, a strong 
tendency to think deterministically and difficulties in differentiating between 
chance variation in the data and variation due to some form of underlying 
causality. This tendency was more pronounced in real world-contexts.  

Assessment of student learning at the end of the teaching experiment 
described in Meletiou-Mavrotheris and Lee (2002) suggests that the 
pedagogy implemented in the experiment did promote understanding of the 
stochastic nature of statistical concepts and might deserve further 
investigation. Findings also indicate that the emphasis of instruction on the 
omnipresence of variation and the complementarity of theory and experience 
was indeed helpful in building bridges between students’ intuitions, and 
statistical reasoning. Students were much less quick than before to assume 
that short-term fluctuations in the data must be causal and to develop causal 
explanations. The efforts of instruction to present statistical thinking as a 
balance between deterministic and stochastical reasoning succeeded in 
helping students move away from uni-dimensional thinking and integrate 
center and variation into their analyses and predictions. Although not totally 
letting go of their deterministic mindset, students were much more willing to 
interpret situations using a combination of stochastic and deterministic 
reasoning. The teaching experiment increased significantly students’ 
awareness of variation and its effects. Instruction managed to get across to 
students the idea that “thinking about variability is the main message of 
statistics” (Smith 1999, 249). 
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5.2 Changing the Culture of the Mathematics Classroom 

The research literature indicates a strong deterministic mindset among 
adults, which is extremely difficult to change. In order to ensure that sound 
intuitions about the stochastic become “part of the permanent intellectual 
bloodstream of the student” (Kettenring 1997, 153), reformers should 
concentrate efforts on finding ways to develop students’ statistical reasoning 
at a young age. I am convinced that if mathematics instruction started 
offering to children from a very early age an alternative learning 
environment that would nourish the development not only of deterministic 
but also of probabilistic reasoning, people would be able to reason much 
more effectively about the stochastic. Although stochastics has already been 
established as a vital part of the K-12 mathematics curriculum in many 
countries, instruction of statistical concepts is, as at the college level, still 
highly influenced by the formalist mathematical tradition. In order to move 
away from that tradition, there ought to be fundamental changes to the 
curricular materials, instructional methods, tools, and cognitive technologies 
employed in the classroom to teach statistical and probabilistic concepts.  

One of the most important factors in educational change is, in fact, the 
change in teaching practices. The extent to which students assume that 
deterministic causality underlies variation, as opposed to the possibility of 
random variation, depends in part upon the orientation of their classroom 
culture (Metz 1997). The culture of the classroom, in the activities it 
structures and the interpretations it values, might embody a deterministic or 
a non-deterministic view of the world (Metz 1997). Teachers’ choices in 
their instruction are a central factor in students’ learning. For it is what a 
teacher knows and can do that influences how she or he organizes and 
conducts lessons, and it is the nature of these lessons that ultimately 
determines what students learn and how they learn it. Teachers who 
currently teach statistics, however, have, for the most part, received a purely 
formalistic education, holding degrees in pure mathematics, with little if any 
training in stochastic reasoning. Thus they are likely to have relatively 
deterministic epistemological sets. Reformers in mathematics education are 
calling for efforts to retrain teachers in the new paradigm, not only through 
statistics coursework, but also in appropriate pedagogical courses that may 
help them understand the difficulties young students face with respect to 
stochastical reasoning.  

A second important factor in educational change is the development of 
appropriate curricula that incorporate ideas of stochastical reasoning in 
activities appropriate for young students. Currently very few curricula make 
an effort to develop stochastical reasoning in a systematic manner through 
the years. For example, activities that involve exploratory data collection can 
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be introduced as early as pre-school. Children may collect, organize, and 
display data that are relevant to their interests and lives from an early age 
and may be encouraged to develop conjectures and hypotheses based on 
these data. As students progress through the grades, the sophistication of 
their data collection techniques, their organization and display of data, as 
well as the interpretations and conjectures they may reach will have to 
increase appropriately. Hence questions about issues such as variability, 
representativeness, and patterns may arise naturally over time; and students 
may have the opportunity to explore these issues in contexts that are both 
rich and meaningful to them.  

6. IMPLICATIONS FOR FURTHER RESEARCH 

Statistics education research could significantly contribute towards finding 
ways to help learners build powerful connections between formal 
mathematical expressions of the stochastic and everyday informal intuitions 
(Borovcnik 1990). Longitudinal studies that trace the evolution over time of 
students’ fundamental statistical concepts (such as understanding of 
variation as a consequence of the interaction between mathematics and 
statistics curricula and instruction) would be extremely helpful towards 
discovering the sources of student difficulties with the stochastic. Such 
studies should investigate the relationship between stochastical and 
mathematical thinking, learning, and teaching, with regard to not only the 
cognitive dimension but also the epistemological and cultural dimensions 
(Metz 1997). The epistemological dimension involves looking at the effect 
of students’ beliefs about the place of chance and uncertainty on their 
emergent understandings. The cultural dimension involves investigating how 
messages about the place of chance and determination, implicit in the 
practices and values of the classroom, influence students’ beliefs and ideas. 
Indicators of the classroom culture (Metz 1997) that should be examined 
include choice of subject matter, structuring of problems, the teacher’s 
reaction to students’ claims about causality, the aesthetics of what constitutes 
a good solution or explanation, and the teacher’s willingness to accept 
multiple strategies and viewpoints.   
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INTERLUDE 7 
 
 
 
“Are intuitions going berserk?” was the last sentence of the previous 
Interlude. The next contribution by Ard Van Moer wants to address the 
famous problem of what intuition actually is. We need to be careful here, 
because intuition tends to appear in quite different contexts and it is a good 
thing to keep them, at least in an initial phase, separated. Meletiou-
Mavrotheris calls it intuitions when we think spontaneously (by the way, 
what are our intuitions about that magical term?) about specific 
mathematical notions. There is apart from that also the intuition that 
professional mathematicians talk about, the famous or infamous 
mathematical intuition that for some, Kurt Gödel and Roger Penrose being 
the best known examples, constitutes a direct access to mathematical heaven, 
the Platonic realm of ideal forms, concepts, and ideas. That very same 
intuition allows mathematicians to discover (or to invent, or to construct?) 
their proofs. 

We hear the reader protesting: “Please could you tell us something new? 
We know about Platonism and the like, we know about discovery versus 
invention in the philosophy of mathematics.” Many answers are possible. 
How about the following idea? Suppose you agree that a particular kind of 
philosophical position about mathematics must have some reflection on how 
mathematics is taught, e.g., in secondary schools. If so, please consider the 
following statement: “Philosophically, I consider myself to be a [ ____ ], 
hence my preferred theory or view about mathematics education is [ ____ ]”; 
the idea being that, if the first blank is filled in, it becomes immediately clear 
what one should write for the second blank. We are convinced that very, 
very few among us have ever done this particular exercise. True, for some 
positions, such as formalism, constructivism, Platonism (although we have 
doubts about this one), the exercise has been done; but what if you feel 
inclined towards a sociological understanding of mathematics? This surely is 
less trivial. 

Do note that these considerations, as important as they may are, do not 
answer the even more important question whether intuition can be taught or 
not. A major part of Van Moer’s paper is dedicated precisely to that 
problem. Is it a matter of “Either you have it or you don’t” or is it a matter of  
training? Yes, this question too has been posed over and over again, but did 
we ever get a satisfactory answer? 



  

 

  

LOGIC AND INTUITION IN MATHEMATICS 
AND MATHEMATICAL EDUCATION 

Ard Van Moer 
Free University of Brussels, Belgium 

Abstract: A good mathematics teacher is not only a good mathematician, but also a good 
teacher. In other words, a good mathematics teacher is not only able to solve 
mathematical problems, (s)he is also able to explain how mathematical 
problems are solved. Many mathematicans (and mathematics teachers) are, 
however, able to solve mathematical problems without knowing or 
understanding how they solve these problems: solving a mathematical problem 
often involves a multitude of unconscious or intuitive mental processes. And a 
person who solves certain problems without knowing or understanding how 
(s)he solves these problems is not able to explain to others how these problems 
can be solved. Consequently, many mathematics teachers would be better 
teachers if they knew more about the psychology of mathematicians and 
mathematical invention. In this article, the distinction between mathematical 
invention and mathematical discovery will be discussed from a psychological 
viewpoint. Some ideas about the psychology of mathematicians and 
mathematical invention will be formulated. These ideas fit in with so-called 
universal Darwinism and will be helpful in understanding the distinction 
between mathematical intuition on the one hand, and deduction or logic on the 
other. 

Key words: Discovery, invention, deduction, intuition, mathematical education  

1. DISCOVERY AND INVENTION IN 
MATHEMATICS 

Cars are very important in modern society. Most people use cars regularly, 
even if they have no idea at all―or only a very vague idea―how or why a 
car works. Some people, however, know more about cars. Most car 
mechanics, for instance, have more than just a vague idea how or why a car 
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works: they are familiar with the different parts of cars, they understand how 
and why these different parts are interconnected, and they know a lot about 
the processes that take place in some of these parts and about the way some 
of these parts are structured or built up. And then there are some lucky 
persons who are actually able to construct cars: these people design cars, 
invent new ways to structure or build up certain parts of cars, and sometimes 
even invent completely new parts or new kinds of cars. 

Mathematics is also very important in modern society. Most people use 
mathematics regularly, even if they have no idea at all―or only a very vague 
idea―how or why mathematics works. Some people, however, know more 
about mathematics. Most mathematicians and mathematics teachers, for 
instance, have more than just a vague idea how or why mathematics works: 
they are familiar with the different parts of mathematics, they understand 
how and why these different parts are interconnected, and they know a lot 
about the processes that take place in some of these parts and about the way 
some of these parts are structured or built up. And then there are some lucky 
persons who are actually able to construct mathematics: these people design 
mathematics, invent new ways to structure or build up certain parts of 
mathematics, and sometimes even invent completely new parts or new kinds 
of mathematics. 

There is, however, an important difference between cars on the one hand, 
and mathematics on the other. It seems that there is, in most human beings, a 
natural tendency to like cars and to dislike mathematics. After all, cars are 
concrete objects that seem to enhance our liberty and to enable us to move 
freely from one place to another (when we’re not stuck in a queue), whereas 
mathematics is often regarded as abstract stuff that limits―in one way or 
another―our capacity to think freely and creatively, as if it is possible that 
an overdose of mathematics would reduce all our thought processes to some 
weird or spooky kind of purely deductive reasoning that resolves itself into a 
servile and blind process of observing certain given rules. In this article, I 
will argue that this way of looking at mathematics is completely wrong.  

It is, however, a fact that many people are averse to mathematics. Some 
people are even downright afraid of mathematics. Since it is almost 
impossible to impart mathematical knowledge to a student who is afraid of 
mathematics, one of the most important―and difficult―tasks of 
mathematics teachers is to try to motivate their students to do mathematics. 

Some students do not like mathematics, but understand that mathematics 
is very important in modern society. These students regard mathematics as 
some kind of necessary evil. As a consequence, they just want to know how 
to use mathematics, because they realize that this knowledge may come in 
handy later on. This is, however, not good enough. We do not only need 
students who want to know how to use mathematics, we also need some 
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students who want to know how or why mathematics works. We even need 
some students who want to know how mathematics can be constructed and 
how new parts or new kinds of mathematics can be invented. It is, therefore, 
necessary to teach at least some students how inventions are effected in the 
mathematical field and to give them the opportunity to experience the “kick” 
of mathematical invention by themselves. This is another important―and 
difficult―task of mathematics teachers. Although some mathematics 
teachers neglect this task, it is, in my view, as important as their task to 
motivate their students to do mathematics. I also think it is even more 
difficult. 

Before I pay closer attention to the challenges mathematics teachers are 
faced with, I want to elucidate my use of the word invention in this 
(mathematical) context. Some philosophers assert that mathematics is, all 
things considered, a human invention. Other philosophers, however, assert 
that mathematics is not invented but discovered. This raises the interesting 
question of which properties or attributes of inventions and discoveries 
scientific, artistic, or other really constitute the difference between an 
invention and a discovery. 

It is often argued that a discovery of a fact, a law, a thing, or a place is 
always a discovery of a fact, a law, a thing, or a place that already existed 
before it was discovered, whereas an invention is always an invention of 
something new that did not exist before it was invented. We say that 
Columbus discovered America, because America already existed before it 
was discovered by Columbus. We also say that Alexander Graham Bell 
invented the telephone, because there were no telephones before Bell 
invented them. Inventions, unlike discoveries, bring about new kinds of 
things. 

This difference between discoveries and inventions is, however, not 
always crystal-clear.  Discoveries and intentions often go hand in hand. For 
instance, Toricelli discovered that, when one inverts a closed tube on a 
mercury trough, the mercury ascends to a certain determinate height, but in 
doing this he invented the barometer (Hadamard 1945, xi). 

We also encounter serious ontological problems if we try to apply the 
above-mentioned distinction between discoveries and inventions to 
mathematical concepts, ideas, and theorems. Did Newton and Leibniz 
discover or invent the integral and the integral calculus? If it is true that 
inventions, unlike discoveries, bring about new kinds of things, this question 
narrows down to the ontological question whether the integral and the 
integral calculus already existed before Newton and Leibniz or not. It may 
seem obvious that there were no integrals and no integral calculus before 
Newton and Leibniz, and that for this reason Newton and Leibniz invented 
them. But did Newton also invent the binomial theorem? Did Euler invent 
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Euler’s formula? Did Euler invent the number e ? Did mathematicians invent 
the theorem that 2  is an irrational number? Did mathematicians, for that 
matter, invent the equality 2 +2 = 4?  

Applying the above-mentioned distinction between discoveries and 
inventions to mathematical concepts, ideas, and theorems is, at the very 
least, problematic. I will argue that the question whether mathematicians 
discover mathematical concepts, ideas, and theorems or invent them, is not 
an ontological question, but a psychological question.  

So we should not ask ourselves the ontological question whether or not 
mathematical concepts, ideas, and theorems already existed before they were 
discovered or invented. This question inevitably leads to perpetual 
philosophical discussions. We should ask ourselves the psychological 
question whether or not mathematical concepts, ideas, and theorems are, in 
some way, dependent on the personality and the creativity of the 
mathematicians who discovered or invented them. Most mathematicians 
would say that they have discovered a certain mathematical concept, idea, or 
theorem if they are under the impression that it is entirely independent of 
their own personality and creativity, but that they have invented a 
mathematical concept, idea, or theorem if they are under the impression that 
it is, in some way, dependent on their personality and creativity.  

According to this second distinction between discoveries and inventions, 
the question of whether mathematical concepts, ideas, and theorems are 
discovered by mathematicians or invented by mathematicians narrows down 
to the question of whether or not these mathematical concepts, ideas, and 
theorems are dependent on the personality and the creativity of the 
mathematicians who discovered or invented them. Well then, what is the 
answer to this last question? It depends. As an example, consider once again 
the integral and the integral calculus. According to the second distiction 
between discoveries and inventions, there can be no doubt that Newton and 
Leibniz invented the integral and the integral calculus. After all, Newton and 
Leibniz defined or described an integral in slightly different ways. We can 
say, therefore, that there was a Newton-style integral and a Leibniz-style 
integral. The Newton-style integral differed from the Leibniz-style integral, 
because Newton and Leibniz both defined or described the integral in their 
own personal and creative way. The invention of the Newton-style integral 
depended on the personality and creativity of Newton, whereas the invention 
of the Leibniz-style integral depended on the personality and creativity of 
Leibniz. Nowadays, mathematicians often use the so-called Riemann-
integral. The Riemann-integral was defined or invented by the 
mathematician Bernhard Riemann. The invention of the Riemann-integral 
was most certainly dependent on the personality and the creativity of 
Riemann. 



Logic and Intuition in Mathematics and Mathematical Education 163
 

It is, in fact, completely impossible to simply discover a new 
mathematical concept. If a mathematician concocts a new mathematical 
concept, (s)he has to define or to describe this new concept. It is, however, 
inevitable that this definition or description will reflect―at least in some 
degree―his or her own personality and creativity. As a consequence, all new 
mathematical concepts are invented. 

There is, however, a difference between new mathematical concepts on 
the one hand, and mathematical theorems on the other hand1. According to 
the second distinction between discoveries and inventions, mathematical 
theorems are discovered. Consider, for instance, Euler’s solution of the so-

called Basel-problem. Euler proved that 1 1 1 ²1
4 9 16 6

π
+ + + + =K . He proved 

this in a very original, personal and creative way. I’m pretty sure, however, 
that Euler never was under the impression that the fact itself that 

1 1 1 ²1
4 9 16 6

π
+ + + + =K  was in some way dependent on his own personality 

or creativity. Euler must have understood that the mathematical theorem that 
1 1 1 ²1
4 9 16 6

π
+ + + + =K  was, after all, just a logical and inevitable 

consequence of the axioms and the transition rules of the mathematical 
theory he was using. So Euler discovered the mathematical theorem that 

1 1 1 ²1
4 9 16 6

π
+ + + + =K .  

Euler’s proof of this mathematical theorem is, however, most certainly 
dependent on Euler’s personality and creativity. It is original, brilliant, pretty 
intuitive and daring, and, on the whole, very Euler-like. So Euler invented 
his renowned proof of the mathematical theorem that 1 1 1 ²1

4 9 16 6
π

+ + + + =K .  

The mathematical theorem that 1 1 1 ²1
4 9 16 6

π
+ + + + =K  can be proved in 

many different ways. Euler proved this theorem in one particular way that 
reflected his own personality and creativity. In other words, he discovered 

 
1  The philosopher Yehuda Rav seems to agree with me. In his article Philosophical 

Problems of Mathematics in the Light of Evolutionary Epistemology, he writes: “I propose 
to argue that: (1) the concept of ‘prime number’ is an invention; (2) the theorem that there 
are infinitely many prime numbers is a discovery. […] should the concept of prime 
number be considered an invention, a purely creative step that need not have been taken, 
while contrariwise it appears that an examination of the factorization properties of the 
natural numbers leads immediately to the “discovery” that some numbers are composite 
and others are not, and this looks like a simple “matter of fact” ” (Rav, in Restivo, Van 
Bendegem and Fischer 1993, 97). 
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the mathematical theorem that 1 1 1 ²1

4 9 16 6
π

+ + + + =K  by inventing a proof of 

this theorem. 
 
This kind of reasoning can be applied to all mathematical theorems and 

proofs. All mathematical theorems are logical and inevitable consequences 
of the axioms and the transition rules of certain mathematical theories. They 
are not dependent on the personality and the creativity of the 
mathematician(s) who proved them. Consequently, all mathematical 
theorems are discovered, not invented. However, mathematical theorems can 
be proved in many different ways. A mathematician who proves a certain 
theorem, necessarily proves this theorem in one particular way that reflects 
his or her own personality and creativity. A proof of a mathematical theorem 
is, therefore, always an invention. In other words, mathematicians discover 
mathematical theorems by inventing certain proofs of these theorems. 
Indeed, mathematical discoveries and mathematical inventions often go hand 
in hand. 

I want to conclude these remarks on the difference between discoveries 
and inventions by pointing out that the second―or 
psychological―distinction is also applicable to other, non-mathematical 
discoveries and inventions. I’m sure Columbus never thought that the 
American continent―as a geographical entity―would have been any 
different without his magnificent personality. The American continent was 
just lying there, and Columbus stumbled upon it. We say that Columbus 
discovered America, because America―as a geographical entity―is in no 
way dependent on the personality or creativity of Columbus. It is, on the 
other hand, very well possible that Alexander Graham Bell thought that there 
would have been no telephones without him, or that, at the very least, 
telephones would have been different without him. We say that Alexander 
Graham Bell invented the telephone, because telephones are―at least in 
some degree―dependent on the personality or creativity of Bell. 

Let’s sum things up. I stated that mathematics teachers are faced with 
two important―and difficult―tasks, viz.: 

 
• Mathematics teachers should try to motivate their students to do 

mathematics, and should do whatever is possible to interest them in 
mathematics; so that, in the end, these students may come to like 
mathematics 

• Mathematics teachers should teach some bright students how 
inventions are effected in the mathematical field and give these 
students the opportunity to experience the “kick” of mathematical 
invention by themselves. 
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I also discussed two different kinds of mathematical invention, viz.: 
 
• The invention of new mathematical concepts and ideas 
• The invention of proofs of certain mathematical theorems. 

 
What’s more, it should by now be clear why mathematical invention 

often provides a certain kick. If a student or a professional mathematician 
invents a mathematical concept, idea, or proof, (s)he will―by the very 
definition of the concept invention―be under the impression that the 
invented mathematical concept, idea, or proof is―at least to some 
degree―dependent on his or her personality or creativity. In other words, 
(s)he will feel that the invented mathematical concept, idea; or proof is, in 
some way, reflecting his or her own personality or creativity. A student who 
acquires the ability to invent mathematical concepts, ideas, or proofs will no 
longer perceive mathematics as an impersonal science. For this student, 
doing mathematics will become a personal experience. The personal and 
subjective experience of inventing a mathematical proof, idea, or concept on 
your own is the kick I wrote about.  

So far, I have not addressed the question of how we can give certain 
students the opportunity to experience this kick of mathematical invention by 
themselves. It is, however, impossible to teach our pupils and students how 
inventions are effected in the mathematical field, if we do not understand 
ourselves how these inventions are effected! For this reason, I will first try to 
figure out how professional mathematicians invent mathematical concepts, 
ideas, and proofs. In the second section of this article, I will give 
some―tentative―answers to the question of how inventions are effected in 
the mathematical field. In the third section, I will finally address the question 
of how we can give certain students the opportunity to experience the kick of 
mathematical invention. 

2. LOGIC AND INTUITION IN MATHEMATICS 

The French poet Paul Valéry (1871-1945) wrote: “It takes two to invent 
anything. The one makes up combinations; the other one chooses, recognizes 
what he wishes and what is important to him in the mass of the things which 
the former has imparted to him” (Hadamard 1945, 30; Dennett, 1978, 293).  

Of course, Valéry is not saying that it takes two persons to invent 
anything. He is, in fact, saying that two different kinds of mental processes 
are needed in order to invent anything. The French mathematician Jacques 
Hadamard agrees with Valéry. Hadamard elucidates his views as follows: 
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Indeed, it is obvious that invention or discovery, be it in mathematics or 
anywhere else, takes place by combining ideas. Now, there is an 
extremely great number of such combinations, most of which are devoid 
of interest, while, on the contrary, very few of them can be fruitful. […] 
However, to find these [fruitful combinations], it has been necessary to 
construct the very numerous possible combinations, among which the 
useful ones are to be found. 
It cannot be avoided that this first operation take place, to a certain 
extent, at random, so that the role of chance is hardly doubtful in this first 
step of the mental process. […] 
It is obvious that this first process, this building up of numerous 
combinations, is only the beginning of creation, even, as we should say, 
preliminary to it. […][T]o create consists precisely in not making useless 
combinations and in examining only those which are useful and which 
are only a small minority. Invention is discernment, choice. (Hadamard 
1945, 29-30) 
 
Dennett relates this mental procedure, described by Paul Valéry and 

Jacques Hadamard, to the so-called generate-and-test procedure in artificial 
intelligence. He writes: “A ubiquitous strategy in AI programming is known 
as generate-and-test, and [the] quotation of Paul Valéry perfectly describes 
it. The problem solver (or inventor) is broken down at some point or points 
into a generator and a tester. The generator spews up candidates for solutions 
or elements of solutions to the problems, and the tester accepts or rejects 
them on the basis of stored criteria” (Dennett 1978, 81). 

Valéry’s description of the invention of poetry, Hadamard’s conception 
of problem solving in mathematics, and the generate-and-test procedure in 
artificial intelligence are, in fact, all examples of so-called universal 
Darwinism. According to universal Darwinism, all phenomena with a certain 
degree of complexity are the result of a random process on the one hand and 
a selection process on the other hand, just as, according to Darwin, all 
biological evolution is the result of a number of random genetic mutations 
on the one hand, and natural selection on the other hand.  

It is possible to apply universal Darwinism to the invention of 
mathematical concepts, ideas, and proofs. According to Hadamard, an 
invention in the mathematical field is always the result of two different kinds 
of mental processes, viz.: 

 
• More or less uncontrolled and chaotic processes in which 

mathematical concepts are generated at random 
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• More or less controlled and orderly processes in which the randomly 
generated mathematical concepts are examined for their usefulness 
to solve certain mathematical problems 

 
In the first kind of mental process, mathematical concepts are generated. 

In the second kind of mental process, mathematical concepts are tested. 
From this, it follows that every invention in the mathematical field is the 
result of a generate-and-test procedure. I will now discuss these two kinds of 
mental processes in more detail. 

First consider the so-called generator or the mental process in which 
mathematical concepts are generated. Suppose that a certain mathematician 
is trying to prove a given theorem. When this mathematician starts thinking 
about the problem at hand, a multitude of mathematical concepts and ideas is 
generated in his or her mind. These concepts can be generated in two ways. 
Most of them are simply remembered by the mathematician. These concepts 
are ones the mathematician has encountered on previous occasions when 
(s)he was studying similar problems. However, not all ideas that are 
generated in the mathematician’s mind are remembered. Some ideas are 
generated by combining other ideas. Hadamard claimed that invention or 
discovery, be it in mathematics or anywhere else, takes place by combining 
ideas.” It is, for instance, possible that the idea of a hypercube is generated in 
the mathematician’s mind by combining the idea of a cube and the idea of a 
four-dimensional space. 

Now consider the so-called tester, the mental process in which 
mathematical concepts are tested. Suppose, once again, that a certain 
mathematician is trying to prove a given theorem. The concepts which are 
being generated in the mind of this mathematician when (s)he starts thinking 
about the problem are examined by the tester for their usefulness to prove 
the given theorem. A professional mathematician is familiar with many 
heuristic methods, rules, and tricks that enable him or her to distinguish 
useful mathematical concepts from useless ones. Of course, mathematical 
concepts that are very useful in one mathematical context can be completely 
useless in another mathematical context. Suppose, however, that, after 
having worked on the problem for some time, the mathematician thinks (s)he 
has found a proof of the given theorem by using different kinds of heuristic 
methods. How does the tester in the mathematician’s mind decide whether 
this proof is useful or not? The answer to this question is very simple. Most 
proofs are only useful if they are correct. A useful proof is, in other words, a 
proof that is consistent with the axioms and the transition rules of a certain 
mathematical theory. So it would seem that the tester in the mind of a 
mathematician consists of different levels, and that it operates in different 
ways at different levels. At most levels, the tester examines the usefulness of 
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generated mathematical concepts by using different kinds of heuristic 
methods. At the last level, however, the tester examines the usefulness of a 
proposed proof by checking whether the proposed proof is correct or not. 
There is only one criterion at this last level of the selection process in the 
mind of a professional mathematician who is trying to prove a given 
theorem—the consistency of the proposed proof with the axioms and the 
transition rules of a certain mathematical theory. 

These remarks on the generate-and-test procedure in the mind of a 
mathematician who is trying to prove a given theorem deepen our 
understanding of the distinction between mathematical discoveries and 
mathematical inventions. In the first section of this article, I stated that the 
question of whether mathematicians discover mathematical concepts, ideas, 
and theorems or invent them is, in fact, not an ontological question, but a 
psychological question. Most mathematicians would say that they have 
discovered a certain mathematical concept, idea or theorem if they are under 
the impression that it is entirely independent of their own personality and 
creativity, and that they have invented a mathematical concept, idea, or 
theorem if they are under the impression that it is, in some way, dependent 
on his or her personality and creativity. I also claimed that mathematical 
discoveries and mathematical inventions often go hand in hand, and that 
mathematicians discover mathematical theorems by inventing certain proofs 
of these theorems. 

It’s now easy to understand why mathematical discoveries and 
mathematical inventions often go hand in hand. In the mind of a 
mathematician who is trying to prove a given theorem, some mental 
processes will be independent of the personality and the creativity of this 
mathematician, whereas other mental processes will be dependent on the 
personality and the creativity of this mathematician. 

First consider, once again, the generator or the mental processes in which 
mathematical concepts are generated. We have seen that the generated 
concepts in the mind of a mathematician who is trying to prove a given 
theorem are either remembered by the mathematician or generated by 
combining other ideas. Simply remembering a certain mathematical concept 
is not exactly a very creative mental process. A mathematician can only 
remember concepts (s)he has encountered on previous occasions. The ability 
of a mathematician to remember interesting mathematical concepts is, 
therefore, dependent on the mathematical knowledge of this mathematician. 
So it could be argued that the ability of a mathematician to remember 
mathematical concepts is―at least in some degree―dependent on his or her 
personality. Generating a new mathematical concept or idea by combining 
other mathematical concepts is most certainly a creative mental process. The 
ability of a mathematician to generate a new mathematical concept by 
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combining other mathematical concepts is, therefore, dependent on his or her 
personality and creativity.  

Now consider, once again, the tester or the mental process in which 
mathematical concepts are tested. We have seen that the tester in the mind of 
a mathematician operates at different levels. At most levels, the tester 
examines the usefulness of generated mathematical concepts by using 
different kinds of heuristic methods. Most heuristic methods used by 
mathematicians are ones these mathematicians already used on previous 
occasions when they were studying similar problems. In other words, most 
heuristic methods used by a mathematician are heuristic methods this 
mathematician simply remembers. Simply remembering a certain heuristic 
method is not exactly a very creative mental process. However, it also 
happens that mathematicians―or, for that matter, students―find and 
develop their own heuristic methods. Finding or developing a new heuristic 
method is most certainly a very creative mental process. The ability of a 
mathematician to find or develop new heuristic methods is, therefore, 
dependent on his or her personality and creativity. Heuristic methods are 
used by mathematicians at most levels of the selection process. The last level 
of the selection process is, however, an exception. At this level, the 
usefulness of a proposed proof is examined by checking whether the 
proposed proof is correct or not. A correct proof is a proof that is consistent 
with the axioms and the transition rules of a certain mathematical theory. 
Checking whether a proposed proof is consistent with the axioms and the 
transition rules of a certain mathematical theory or not, is in fact a dull and 
almost mindless activity. This activity can be performed by any person who 
knows and understands the axioms and the transition rules of the 
mathematical theory. The ability of a mathematician to check whether a 
proposed proof is consistent with the axioms and the transition rules of a 
certain mathematical theory or not is, therefore, independent of his or her 
personality and creativity.  

According to universal Darwinism, it is impossible to find a proof of a 
given mathematical theorem without some kind of generate-and-test 
procedure. Most mental processes in which mathematical concepts are 
generated seem to be―at least in some degree―dependent on the 
personality or the creativity of the mathematician who is trying to prove the 
given theorem. At the last level of the selection process, however, 
mathematical ideas are tested in a way that is necessarily independent of the 
personality and the creativity of the mathematician who is trying to prove the 
given theorem. Proving a given mathematical theorem is, therefore, always 
partly an invention and partly a discovery. 

I will now pay closer attention to the mental processes in which 
mathematical concepts are tested. Some of these processes occur at an 
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unconscious―or subconscious―level. I will use the word intuition to refer 
to mental processes in which mathematical concepts are tested at an 
unconscious―or subconscious―level. It also happens, however, that 
mathematical concepts are tested at a conscious level. I will use the word 
deduction to refer to mental processes in which mathematical concepts are 
tested at a conscious level. 

I am using the word deduction here for lack of a better word. It seems the 
word intuition has no obvious opposite. However, my use of the word 
deduction should not be confused with a more common use of this word as a 
denotation of a process of reasoning in which a conclusion follows 
necessarily―or logically―from the stated premises. An inference from the 
general to the specific is an example of such a process of reasoning. 

This common use of the word deduction might, at first sight, seem 
entirely unconnected to my use of the word as a denotation of mental 
processes in which mathematical concepts are tested at a conscious level. It 
is nevertheless possible to relate the distinction between conscious 
mathematical thought processes and unconscious mathematical thought 
processes to the distinction between deductive―or logical―mathematical 
thought processes and intuitive mathematical thought processes. At 
unconscious levels of the mind, thought processes and ideas tend to be rather 
vague or indeterminate. Mathematicians―and other people―often use quick 
and dirty heuristics at the unconscious levels of their minds. These heuristics 
make it possible to reach conclusions very quickly. However, some of the 
conclusions that are reached by the use of quick and dirty heuristics may be 
completely wrong. In other words, processes of reasoning at unconscious 
levels of the mind are often flawed or illogical. Most mathematical thought 
processes in which conclusions follow necessarily or logically from the 
stated premises occur at a conscious level of the mind. 

My use of the word intuition more or less conforms to the common use of 
this word. A mathematician who says that (s)he has used his or her 
mathematical intuition is, in fact, just saying that (s)he has accepted or 
rejected a mathematical idea without really knowing or understanding why. 
In other words, a mathematician who says that (s)he has used his or her 
mathematical intuition is aware of the fact that (s)he has accepted or rejected 
a mathematical idea, but is unaware of the mental processes involved. So 
these mental processes must have occurred at an unconscious―or 
subconscious―level. 

Now suppose that John is trying to prove a given theorem about triangles. 
When he starts thinking about the problem at hand, a multitude of ideas is 
generated in his mind. Some of these ideas will be entirely non-
mathematical. It is, for instance, possible that some thoughts concerning the 
beauty of his wife are generated at an unconscious level of his mind. 
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However, if John is really serious about trying to prove the given theorem 
and is concentrating on the problem at hand, these thoughts will be rejected 
as non-mathematical and irrelevant to any possible proof of the given 
theorem at an unconscious level of his mind. In this case, John will not be 
aware of the fact that some thoughts concerning the beauty of his wife were 
ever generated at all. Some of the ideas generated in John’s mind will be 
mathematical, but unrelated to triangles and geometry. It is, for instance, 
possible that some ideas about matrices or Taylor series are generated at a 
certain―conscious or unconscious―level of John’s mind. If John is an 
experienced mathematician, these ideas will be rejected at an unconscious 
level of his mind as irrelevant to any possible proof of the given theorem 
about triangles. In other words, John’s ideas about matrices or Taylor series 
will, in this case, be rejected intuitively as irrelevant to any possible proof of 
the given theorem about triangles. However, if John is a rather inexperienced 
student, he may have to consider carefully the possibility of a connection 
between triangles on the one hand and matrices or Taylor series on the other 
hand before he will be convinced that there is no such connection. In this 
case, John’s ideas about matrices or Taylor series will be rejected at a 
conscious level of John’s mind as irrelevant to any possible proof of the 
given theorem about triangles.  

Some of the ideas generated in John’s mind will be more promising. 
When John hits upon a promising idea, he may have to go into details. 
Looking into details, however, is usually a conscious process. It is, for 
instance, possible that John surmises―for some reason―that the given 
theorem about triangles might be solved by calculating the coordinates of the 
point of intersection of two straight lines. Such a calculation is, under normal 
conditions, a process that occurs at a conscious level of the mind of a 
mathematician. 

Suppose that John, after having worked on the problem at hand for some 
time, thinks he has found a proof of the given theorem. At this point, he 
should check whether the proposed proof is correct or not. In other words, 
John should examine now whether the proposed proof is consistent with the 
axioms and the transition rules of a certain mathematical theory or not. We 
have seen that this examination takes place at the last level of the tester. 
Examining whether a proposed proof is consistent with the axioms and the 
transition rules of a certain mathematical theory or not is, however, a rather 
dull process that often requires one to check lots and lots of details. Under 
normal conditions, this examination is, therefore, a process that occurs at a 
conscious level of the mind. 

These conclusions about the processes in John’s mind are applicable to 
the processes in the mind of any mathematician who is trying to solve a 
mathematical problem. Proving a mathematical theorem or solving a 
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mathematical problem always involves mental processes in which 
mathematical concepts are tested at an unconscious level as well as mental 
processes in which mathematical concepts are tested at a conscious level. In 
other words, proving a mathematical theorem or solving a mathematical 
problem always involves both intuition and deduction. I have to admit, 
however, that there are conditions in which the difference between an 
unconscious level of the mind and a conscious level of the mind can be 
rather obscure. In fact, no one really knows what consciousness is or how it 
works. Consequently, there are conditions in which the difference between 
intuition and deduction is not very clear. 

It is very important for mathematics education that mathematicians, 
philosophers of mathematics, and teachers of mathematics admit the fact that 
mathematics is not a purely deductive science and that it is impossible to 
solve a mathematical problem without at least some mathematical intuition. 
Nevertheless, mathematics has often been regarded and/or presented as a 
purely deductive science by mathematicians, philosophers, and mathematics 
teachers. The allegation that mathematics is a purely deductive science can 
be interpreted in two different ways, corresponding to the two above-
mentioned definitions of the word deduction. 

 
• The allegation that mathematics is a purely deductive science can be 

interpreted as the statement that all mathematical thought processes 
occur at a conscious level of the mind of a mathematician 

• The allegation that mathematics is a purely deductive science can be 
interpreted as the statement that all mathematical processes of 
reasoning are processes of reasoning in which conclusions follow 
necessarily or logically from the stated premises 

 
I am convinced that both statements are false. It cannot be doubted that 

mathematics is not a purely deductive science after all. 

3. MATHEMATICAL INTUITION  
AND MATHEMATICAL EDUCATION 

There are three kinds of evidence for the fact that mathematics is not a 
purely deductive science. 
First, and most important of all, there is psychological evidence. Consider, 
for instance, the story of Henri Poincaré. In a famous lecture at the Société 
de Psychologie in Paris, Poincaré described his discovery of certain 
important mathematical theorems: 
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I wanted to represent these [Fuchsian] functions by the quotient of two 
series; this idea was perfectly conscious and deliberate; the analogy with 
elliptic functions guided me. I asked myself what properties these series 
must have if they existed, and succeeded without difficulty in forming the 
series I have called thetafuchsian. 

Just at this time, I left Caen, where I was living, to go on a geological 
excursion under the auspices of the School of Mines. The incidents of the 
travel made me forget my mathematical work. Having reached 
Coutances, we entered some omnibus to go some place or other. At the 
moment when I put my foot on the step, the idea came, without anything 
in my former thoughts seeming to have paved the way for it, that the 
transformations I had used to define the Fuchsian functions were 
identical with those of non-Euclidean geometry. I did not verify the idea; 
I should not have had time, as, upon taking my seat in the omnibus, I 
went on with a conversation already commenced, but I felt a perfect 
certainty. On my return to Caen, for conscience’ sake, I verified the result 
at my leisure. 

Then I turned my attention to the study of some arithmetical questions 
apparently without much success and without a suspicion of any 
connection with my preceding researches. Disgusted with my failure, I 
went to spend a few days at the seaside and thought of something else. 
One morning, walking on the bluff, the idea came to me, with just the 
same characteristics of brevity, suddenness and immediate certainty, that 
the arithmetic transformations of indefinite ternary quadratic forms were 
identical with those of non-Euclidean geometry. (Hadamard 1945, 13-14) 

It would seem that a great deal of Poincaré’s mathematical thought 
processes occurred at unconscious levels of his mind. Consequently, not all 
mathematical thought processes occur at a conscious level of the mind of a 
mathematician. 

There is also evidence for the fact that not all mathematical processes of 
reasoning are ones in which conclusions follow necessarily from the stated 
premises. Consider, for instance, the famous Indian mathematician Srinivasa 
Ramanujan. Ramanujan discovered many beautiful and amazing 
mathematical theorems and formulae in a rather mysterious and intuitive 
way. It would seem that the theorems and formulae discovered by 
Ramanujan were not the result of mathematical processes of reasoning in 
which conclusions followed necessarily from the stated premises. As a 
matter of fact, Ramanujan often had no idea at all how the theorems and 
formulae he discovered could be proved correctly. 
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Many mathematicians and philosophers agree that mathematics is not a 
purely deductive science and that it would be a mistake to deny the 
importance of intuition in the discovery and the invention of mathematics. 
Jacques Hadamard writes: 

This carries [...] the consequence that, strictly speaking, there is hardly 
any completely logical discovery. Some intervention of intuition issuing 
from the unconsciousness is necessary at least to initiate the logical work. 
(Hadamard 1945, 112; my emphasis) 

According to Poincaré, there are two sorts of mathematicians: 

The one sort are above all preoccupied by logic; to read their works, one 
is tempted to believe they have advanced only step by step, after the 
manner of a Vauban who pushes on his trenches against the place 
besieged, leaving nothing to chance. The other sort are guided by 
intuition and at the first stroke, make quick but sometimes precarious 
conquests, like bold cavalrymen of the advance guard. (Poincaré, in 
Hadamard 1945, 106; my emphasis) 

And Morris Kline writes: 

What then is mathematics if it is not a unique, rigorous, logical structure? 
It is a series of great intuitions carefully sifted, refined, and organized by 
the logic men are willing and able to apply at any time. […] 

Several of the schools have tried to enclose mathematics within the 
confines of man’s logic. But intuition defies encapsulation in logic. The 
concept of a safe, indubitable, and infallible body of mathematics built 
upon a sound foundation stems of course from the dream of the classical 
Greeks, embodied in the work of Euclid. This ideal guided the thinking 
of mathematicians for more than twenty centuries. But apparently 
mathematicians were misled by the “evil genius” Euclid. (Kline 1980, 
312; my emphasis) 

Hadamard, Poincaré, and Kline all seem to think that mathematics is 
more than just logic and that it is only possible to do mathematics if logic, or 
deduction, is supplemented with some kind of mathematical intuition. 

There is also historical evidence for the fact that mathematics is not a 
purely deductive science. If mathematics really were a purely deductive 
science, and all mathematical processes of reasoning really were processes in 
which conclusions follow necessarily from the stated premises, then it would 
be impossible to reach a wrong conclusion or to deduce a false theorem from 
true premises. The history of mathematics is, however, replete with false 
theorems, false proofs, and false conjectures. Fermat’s conjecture that every 
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number ( )22 1

n

+  (with n a natural number) is a prime number, is an example 
of a false conjecture. The theorem that a function ( )f x  is derivable in 0x  if 
it is continuous in 0x , was proved in many mathematical handbooks of the 
nineteenth century. This theorem is, however, a false theorem. The proofs of 
this theorem in the handbooks were, of course, false proofs. 

What’s more, there have been many paradoxes and contradictions in the 
history of mathematics. The ancient Greeks thought, for some reason, that 
irrational numbers are paradoxical. And Russell’s paradox is a notorious 
example of a contradiction. This contradiction in the naive set theory of 
Cantor and Frege was discovered by Bertrand Russell. 

There is still another reason why mathematics cannot be a purely 
deductive science. If it were, mathematicians who want to construct and to 
develop a new mathematical theory would start by defining or describing 
certain basic concepts of the theory and by formulating certain axioms and 
transition rules. This would enable them to define other more complex 
concepts and to prove many interesting and uninteresting theorems. In 
reality, however, things often seem to go the other way around. It sometimes 
happens that mathematicians are constructing or developing a new 
mathematical theory without even realizing it themselves. The construction 
or development of a mathematical theory often starts with a mathematical 
problem or the formulation of certain mathematical conjectures. The words, 
symbols, or concepts used to formulate these conjectures are often ill-
defined. A mathematician who wants to prove the formulated conjectures 
needs to define these words, symbols, or concepts by reducing them to other 
more terms. He or she also needs to determine the transition rules of the new 
mathematical theory. In other words, (s)he also needs to determine the rules 
that may be used to prove theorems. The formulation of the axioms is often 
one of the last steps in the development of a mathematical theory! 

Mathematics is, after all, an instance of problem solving. Mathematical 
problems, not sets of axioms and sets of transition rules, are the real drive of 
mathematics. If mathematics really were a purely deductive science, it would 
always go forward, from the basic concepts, the axioms, and the transition 
rules of a mathematical theory, via other more complex concepts and proofs 
of mathematical theorems, to the solution of all sorts of mathematical 
problems. In reality, however, mathematics often goes “backward”, from a 
given mathematical problem, via the concepts and the theorems that are 
needed in order to solve this problem, to the basic concepts, the axioms, and 
the transition rules of a new mathematical theory. 

So mathematics is not a purely deductive science. This raises an 
interesting question. If mathematics is not a purely deductive science, why is 
it so often regarded and presented as a purely deductive science by 



176 Ard Van Moer
 
mathematicians, philosophers, and mathematics teachers? There are 
undoubtedly many different reasons for this. 

First of all, people who believe that mathematics is a purely deductive 
science also tend to believe that mathematics is an exact science, and that all 
conclusions reached by the use of mathematics are absolutely certain. It 
sometimes happens that other scientists are envious of mathematicians 
because of the supposed exactness and absolute certainty of mathematics. 
This exactness and absolute certainty are, however, little more than a myth. 

In the first section of this article, I stated that all mathematical theorems 
are inevitable consequences of the axioms and the transition rules of certain 
mathematical theories, and that these theorems are independent of the 
personality and the creativity of the mathematician(s) who proved them. It is 
possible that a mathematician who has proved a certain theorem is so 
impressed with the inevitability of the theorem that (s)he forgets his or her 
own contribution to the proof and is apt to think that not only the theorem 
itself, but also its proof is independent of his or her personality and 
creativity. It is in other words possible that a mathematician who has 
discovered a certain theorem neglects the fact that (s)he has invented the 
proof of this theorem. A mathematician who remembers that (s)he has 
discovered a certain theorem but has forgotten how (s)he has invented the 
proof of this theorem, will probably realize that this theorem is a logical and 
inevitable consequence of the axioms and the transition rules of the 
mathematical theory (s)he was using; although (s)he may not remember that 
(s)he proved this theorem by the use of his or her mathematical intuition and 
all sorts of quick and dirty heuristics at unconscious levels of his or her 
mind. 

In the second section of this article, I defined or described the words 
deduction and intuition. Deduction was described as “the mental processes in 
which mathematical concepts are tested at a conscious level”. Intuition was 
described as “the mental processes in which mathematical concepts are 
tested at an unconscious level.” So mathematicians are only aware of their 
deductive mathematical thought processes. They are unaware of their 
intuitive mathematical thought processes. It is, therefore, only logical that 
many mathematicians regard mathematics as a purely deductive science2. 

 
2  It is still very difficult to study unconscious mental activity scientifically. In research on 

mathematcal thinking, researchers often use the talking aloud procedure and/or the so-
called clinical interview technique. Both methods focus on conscious mental activities. 
Although some behavioral observations may be made in the talking aloud procedure, the 
data gathered from this method are mainly the verbalizations of a subject who is instructed 
to say anything that comes to his or her mind while solving a mathematical problem. And 
the clinical interview technique is, nor surprisingly, an interview technique; all data 
gathered from this method are entirely verbal. These verbalizations represent only what 
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There are, however, some mathematicians who realize that they often 
accept or reject certain mathematical ideas without knowing why they accept 
or reject them. Most of these mathematicians also realize that they accept 
and reject mathematical ideas at an unconscious level of their mind. So 
mathematicians are beginning to realize that the unconscious plays a part in 
mathematics. The unconscious is, as a matter of fact, a rather new discovery. 

It is easier to teach mathematics as a deductive science. There are two 
reasons for this. First, it is easier to teach students to go forward, from given 
axioms, transition rules, and basic concepts, via more complex concepts and 
proofs of mathematical theorems, to the solution of mathematical problems, 
than to teach them to go backward from given mathematical problems, via 
the complex concepts and the theorems that are needed in order to solve 
these problems, to the comparatively simple basic concepts, axioms, and 
transition rules. Second, it is easier to teach students some clear-cut 
concepts, axioms, and rules they can use consciously than to teach them how 
they can develop and use their mathematical intuition and all sorts of quick 
and dirty heuristics at unconscious levels of their minds. 

It seems we have come full circle. This article began with some general 
remarks on the education of mathematics. Now, at the end of the article, I 
will try to explain why it is so important for the education of mathematics 
that mathematicians, philosophers of mathematics, and teachers of 
mathematics admit the fact that mathematics is not a purely deductive 
science. I will also try to answer the question of how we can give certain 
pupils and students the opportunity to experience the kick of mathematical 
invention by themselves. 

I think it is a very bad idea to teach mathematics as a purely deductive 
science, if it is, in fact, not a purely deductive science at all. Pretending that 
mathematics is a purely deductive science constitutes a lie. I know from 
experience that it is very tempting for mathematics teachers to present 
mathematics as an exact science that offers absolute certainty. Some 
mathematics teachers almost pose as deities by their benevolence of offering 
their students a glimpse of the absolute and eternal truth and certainty of 
mathematics. However, students have a right to know that the history of 
mathematics is replete with false theorems, false proofs, false conjectures, 
paradoxes, and contradictions. 

There is another, equally important, reason why mathematics should not 
be taught as a purely deductive science. In the first section of this article, I 
stated that most people can function normally in daily life if they just know 
how to use certain mathematical concepts. Nevertheless, we also need some 

 
goes on at the conscious levels of the mind of the subject. (See the article of Ginsburg, 
Kossan, Schwartz, and Swanson in Ginsburg 1983, 7-16.) 
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people who know how or why mathematics works, how mathematics can be 
constructed, and how new parts or new kinds of mathematics can be 
invented. For this reason, mathematics teachers should give bright pupils and 
students the opportunity to experience the kick of mathematical invention by 
themselves. A student who invents a mathematical concept, idea or proof 
will often experience some kind of kick, because a person who invents a 
mathematical concept, idea, or proof is under the impression that it at least to 
some degree, dependent on his or her personality or creativity.  

In the second section of this article, I stated that the ability of a 
mathematician to check whether ore not a proposed proof is consistent with 
the axioms and the transition rules of a certain mathematical theory is 
independent of the personality and creativity of the mathematician. The 
ability of a mathematician to find and develop new heuristic methods is, 
however, most certainly dependent on his or her personality and creativity. If 
mathematics is taught as a purely deductive science and pupils and students 
are told only how they should perform certain dull and mindless activities, 
then the students will perceive mathematics as an impersonal science. In this 
case, students are not given the opportunity to experience the kick of 
mathematical invention by themselves. If, however, mathematics is not 
taught as a purely deductive science and students are also helped to develop 
their own heuristics and mathematical intuition, then students will have a 
chance to experience the kick of mathematical invention by themselves. 

For this reason, mathematics teachers should help their students to 
develop their mathematical intuition. This is not an easy task. I have already 
stated that it is easier to teach students some clear-cut concepts, axioms, and 
rules they can use consciously than to teach them how they can develop and 
use their mathematical intuition and all sorts of quick and dirty heuristics at 
unconscious levels of their minds. The task is, however, not an impossible 
one. Mathematics teachers can help their students to develop their 
mathematical intuition by the use of certain techniques. For instance, the list 
of questions published by George Pólya in his book How to Solve It (1945) 
can be used by mathematics teachers to help their students solve 
mathematical problems. Mathematics teachers can help their students 
develop their mathematical intuition by posing them these questions. Many 
philosophers, including Imre Lakatos, were influenced by Pólya. These 
philosophers understood the importance of heuristics and of the so-called 
“context of discovery” (Van Kerkhove. See this volume). However, 
mathematical problem solving in the framework of mathematics education is 
still of current interest. Much work remains to be done in this area.  
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INTERLUDE 7 
 
 
 
“Are intuitions going berserk?” was the last sentence of the previous 
Interlude. The next contribution by Ard Van Moer wants to address the 
famous problem of what intuition actually is. We need to be careful here, 
because intuition tends to appear in quite different contexts and it is a good 
thing to keep them, at least in an initial phase, separated. Meletiou-
Mavrotheris calls it intuitions when we think spontaneously (by the way, 
what are our intuitions about that magical term?) about specific 
mathematical notions. There is apart from that also the intuition that 
professional mathematicians talk about, the famous or infamous 
mathematical intuition that for some, Kurt Gödel and Roger Penrose being 
the best known examples, constitutes a direct access to mathematical heaven, 
the Platonic realm of ideal forms, concepts, and ideas. That very same 
intuition allows mathematicians to discover (or to invent, or to construct?) 
their proofs. 

We hear the reader protesting: “Please could you tell us something new? 
We know about Platonism and the like, we know about discovery versus 
invention in the philosophy of mathematics.” Many answers are possible. 
How about the following idea? Suppose you agree that a particular kind of 
philosophical position about mathematics must have some reflection on how 
mathematics is taught, e.g., in secondary schools. If so, please consider the 
following statement: “Philosophically, I consider myself to be a [ ____ ], 
hence my preferred theory or view about mathematics education is [ ____ ]”; 
the idea being that, if the first blank is filled in, it becomes immediately clear 
what one should write for the second blank. We are convinced that very, 
very few among us have ever done this particular exercise. True, for some 
positions, such as formalism, constructivism, Platonism (although we have 
doubts about this one), the exercise has been done; but what if you feel 
inclined towards a sociological understanding of mathematics? This surely is 
less trivial. 

Do note that these considerations, as important as they may are, do not 
answer the even more important question whether intuition can be taught or 
not. A major part of Van Moer’s paper is dedicated precisely to that 
problem. Is it a matter of “Either you have it or you don’t” or is it a matter of  
training? Yes, this question too has been posed over and over again, but did 
we ever get a satisfactory answer? 
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AND MATHEMATICAL EDUCATION 

Ard Van Moer 
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Abstract: A good mathematics teacher is not only a good mathematician, but also a good 
teacher. In other words, a good mathematics teacher is not only able to solve 
mathematical problems, (s)he is also able to explain how mathematical 
problems are solved. Many mathematicans (and mathematics teachers) are, 
however, able to solve mathematical problems without knowing or 
understanding how they solve these problems: solving a mathematical problem 
often involves a multitude of unconscious or intuitive mental processes. And a 
person who solves certain problems without knowing or understanding how 
(s)he solves these problems is not able to explain to others how these problems 
can be solved. Consequently, many mathematics teachers would be better 
teachers if they knew more about the psychology of mathematicians and 
mathematical invention. In this article, the distinction between mathematical 
invention and mathematical discovery will be discussed from a psychological 
viewpoint. Some ideas about the psychology of mathematicians and 
mathematical invention will be formulated. These ideas fit in with so-called 
universal Darwinism and will be helpful in understanding the distinction 
between mathematical intuition on the one hand, and deduction or logic on the 
other. 

Key words: Discovery, invention, deduction, intuition, mathematical education  

1. DISCOVERY AND INVENTION IN 
MATHEMATICS 

Cars are very important in modern society. Most people use cars regularly, 
even if they have no idea at all―or only a very vague idea―how or why a 
car works. Some people, however, know more about cars. Most car 
mechanics, for instance, have more than just a vague idea how or why a car 
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works: they are familiar with the different parts of cars, they understand how 
and why these different parts are interconnected, and they know a lot about 
the processes that take place in some of these parts and about the way some 
of these parts are structured or built up. And then there are some lucky 
persons who are actually able to construct cars: these people design cars, 
invent new ways to structure or build up certain parts of cars, and sometimes 
even invent completely new parts or new kinds of cars. 

Mathematics is also very important in modern society. Most people use 
mathematics regularly, even if they have no idea at all―or only a very vague 
idea―how or why mathematics works. Some people, however, know more 
about mathematics. Most mathematicians and mathematics teachers, for 
instance, have more than just a vague idea how or why mathematics works: 
they are familiar with the different parts of mathematics, they understand 
how and why these different parts are interconnected, and they know a lot 
about the processes that take place in some of these parts and about the way 
some of these parts are structured or built up. And then there are some lucky 
persons who are actually able to construct mathematics: these people design 
mathematics, invent new ways to structure or build up certain parts of 
mathematics, and sometimes even invent completely new parts or new kinds 
of mathematics. 

There is, however, an important difference between cars on the one hand, 
and mathematics on the other. It seems that there is, in most human beings, a 
natural tendency to like cars and to dislike mathematics. After all, cars are 
concrete objects that seem to enhance our liberty and to enable us to move 
freely from one place to another (when we’re not stuck in a queue), whereas 
mathematics is often regarded as abstract stuff that limits―in one way or 
another―our capacity to think freely and creatively, as if it is possible that 
an overdose of mathematics would reduce all our thought processes to some 
weird or spooky kind of purely deductive reasoning that resolves itself into a 
servile and blind process of observing certain given rules. In this article, I 
will argue that this way of looking at mathematics is completely wrong.  

It is, however, a fact that many people are averse to mathematics. Some 
people are even downright afraid of mathematics. Since it is almost 
impossible to impart mathematical knowledge to a student who is afraid of 
mathematics, one of the most important―and difficult―tasks of 
mathematics teachers is to try to motivate their students to do mathematics. 

Some students do not like mathematics, but understand that mathematics 
is very important in modern society. These students regard mathematics as 
some kind of necessary evil. As a consequence, they just want to know how 
to use mathematics, because they realize that this knowledge may come in 
handy later on. This is, however, not good enough. We do not only need 
students who want to know how to use mathematics, we also need some 
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students who want to know how or why mathematics works. We even need 
some students who want to know how mathematics can be constructed and 
how new parts or new kinds of mathematics can be invented. It is, therefore, 
necessary to teach at least some students how inventions are effected in the 
mathematical field and to give them the opportunity to experience the “kick” 
of mathematical invention by themselves. This is another important―and 
difficult―task of mathematics teachers. Although some mathematics 
teachers neglect this task, it is, in my view, as important as their task to 
motivate their students to do mathematics. I also think it is even more 
difficult. 

Before I pay closer attention to the challenges mathematics teachers are 
faced with, I want to elucidate my use of the word invention in this 
(mathematical) context. Some philosophers assert that mathematics is, all 
things considered, a human invention. Other philosophers, however, assert 
that mathematics is not invented but discovered. This raises the interesting 
question of which properties or attributes of inventions and discoveries 
scientific, artistic, or other really constitute the difference between an 
invention and a discovery. 

It is often argued that a discovery of a fact, a law, a thing, or a place is 
always a discovery of a fact, a law, a thing, or a place that already existed 
before it was discovered, whereas an invention is always an invention of 
something new that did not exist before it was invented. We say that 
Columbus discovered America, because America already existed before it 
was discovered by Columbus. We also say that Alexander Graham Bell 
invented the telephone, because there were no telephones before Bell 
invented them. Inventions, unlike discoveries, bring about new kinds of 
things. 

This difference between discoveries and inventions is, however, not 
always crystal-clear.  Discoveries and intentions often go hand in hand. For 
instance, Toricelli discovered that, when one inverts a closed tube on a 
mercury trough, the mercury ascends to a certain determinate height, but in 
doing this he invented the barometer (Hadamard 1945, xi). 

We also encounter serious ontological problems if we try to apply the 
above-mentioned distinction between discoveries and inventions to 
mathematical concepts, ideas, and theorems. Did Newton and Leibniz 
discover or invent the integral and the integral calculus? If it is true that 
inventions, unlike discoveries, bring about new kinds of things, this question 
narrows down to the ontological question whether the integral and the 
integral calculus already existed before Newton and Leibniz or not. It may 
seem obvious that there were no integrals and no integral calculus before 
Newton and Leibniz, and that for this reason Newton and Leibniz invented 
them. But did Newton also invent the binomial theorem? Did Euler invent 
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Euler’s formula? Did Euler invent the number e ? Did mathematicians invent 
the theorem that 2  is an irrational number? Did mathematicians, for that 
matter, invent the equality 2 +2 = 4?  

Applying the above-mentioned distinction between discoveries and 
inventions to mathematical concepts, ideas, and theorems is, at the very 
least, problematic. I will argue that the question whether mathematicians 
discover mathematical concepts, ideas, and theorems or invent them, is not 
an ontological question, but a psychological question.  

So we should not ask ourselves the ontological question whether or not 
mathematical concepts, ideas, and theorems already existed before they were 
discovered or invented. This question inevitably leads to perpetual 
philosophical discussions. We should ask ourselves the psychological 
question whether or not mathematical concepts, ideas, and theorems are, in 
some way, dependent on the personality and the creativity of the 
mathematicians who discovered or invented them. Most mathematicians 
would say that they have discovered a certain mathematical concept, idea, or 
theorem if they are under the impression that it is entirely independent of 
their own personality and creativity, but that they have invented a 
mathematical concept, idea, or theorem if they are under the impression that 
it is, in some way, dependent on their personality and creativity.  

According to this second distinction between discoveries and inventions, 
the question of whether mathematical concepts, ideas, and theorems are 
discovered by mathematicians or invented by mathematicians narrows down 
to the question of whether or not these mathematical concepts, ideas, and 
theorems are dependent on the personality and the creativity of the 
mathematicians who discovered or invented them. Well then, what is the 
answer to this last question? It depends. As an example, consider once again 
the integral and the integral calculus. According to the second distiction 
between discoveries and inventions, there can be no doubt that Newton and 
Leibniz invented the integral and the integral calculus. After all, Newton and 
Leibniz defined or described an integral in slightly different ways. We can 
say, therefore, that there was a Newton-style integral and a Leibniz-style 
integral. The Newton-style integral differed from the Leibniz-style integral, 
because Newton and Leibniz both defined or described the integral in their 
own personal and creative way. The invention of the Newton-style integral 
depended on the personality and creativity of Newton, whereas the invention 
of the Leibniz-style integral depended on the personality and creativity of 
Leibniz. Nowadays, mathematicians often use the so-called Riemann-
integral. The Riemann-integral was defined or invented by the 
mathematician Bernhard Riemann. The invention of the Riemann-integral 
was most certainly dependent on the personality and the creativity of 
Riemann. 
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It is, in fact, completely impossible to simply discover a new 
mathematical concept. If a mathematician concocts a new mathematical 
concept, (s)he has to define or to describe this new concept. It is, however, 
inevitable that this definition or description will reflect―at least in some 
degree―his or her own personality and creativity. As a consequence, all new 
mathematical concepts are invented. 

There is, however, a difference between new mathematical concepts on 
the one hand, and mathematical theorems on the other hand1. According to 
the second distinction between discoveries and inventions, mathematical 
theorems are discovered. Consider, for instance, Euler’s solution of the so-

called Basel-problem. Euler proved that 1 1 1 ²1
4 9 16 6

π
+ + + + =K . He proved 

this in a very original, personal and creative way. I’m pretty sure, however, 
that Euler never was under the impression that the fact itself that 

1 1 1 ²1
4 9 16 6

π
+ + + + =K  was in some way dependent on his own personality 

or creativity. Euler must have understood that the mathematical theorem that 
1 1 1 ²1
4 9 16 6

π
+ + + + =K  was, after all, just a logical and inevitable 

consequence of the axioms and the transition rules of the mathematical 
theory he was using. So Euler discovered the mathematical theorem that 

1 1 1 ²1
4 9 16 6

π
+ + + + =K .  

Euler’s proof of this mathematical theorem is, however, most certainly 
dependent on Euler’s personality and creativity. It is original, brilliant, pretty 
intuitive and daring, and, on the whole, very Euler-like. So Euler invented 
his renowned proof of the mathematical theorem that 1 1 1 ²1

4 9 16 6
π

+ + + + =K .  

The mathematical theorem that 1 1 1 ²1
4 9 16 6

π
+ + + + =K  can be proved in 

many different ways. Euler proved this theorem in one particular way that 
reflected his own personality and creativity. In other words, he discovered 

 
1  The philosopher Yehuda Rav seems to agree with me. In his article Philosophical 

Problems of Mathematics in the Light of Evolutionary Epistemology, he writes: “I propose 
to argue that: (1) the concept of ‘prime number’ is an invention; (2) the theorem that there 
are infinitely many prime numbers is a discovery. […] should the concept of prime 
number be considered an invention, a purely creative step that need not have been taken, 
while contrariwise it appears that an examination of the factorization properties of the 
natural numbers leads immediately to the “discovery” that some numbers are composite 
and others are not, and this looks like a simple “matter of fact” ” (Rav, in Restivo, Van 
Bendegem and Fischer 1993, 97). 
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the mathematical theorem that 1 1 1 ²1

4 9 16 6
π

+ + + + =K  by inventing a proof of 

this theorem. 
 
This kind of reasoning can be applied to all mathematical theorems and 

proofs. All mathematical theorems are logical and inevitable consequences 
of the axioms and the transition rules of certain mathematical theories. They 
are not dependent on the personality and the creativity of the 
mathematician(s) who proved them. Consequently, all mathematical 
theorems are discovered, not invented. However, mathematical theorems can 
be proved in many different ways. A mathematician who proves a certain 
theorem, necessarily proves this theorem in one particular way that reflects 
his or her own personality and creativity. A proof of a mathematical theorem 
is, therefore, always an invention. In other words, mathematicians discover 
mathematical theorems by inventing certain proofs of these theorems. 
Indeed, mathematical discoveries and mathematical inventions often go hand 
in hand. 

I want to conclude these remarks on the difference between discoveries 
and inventions by pointing out that the second―or 
psychological―distinction is also applicable to other, non-mathematical 
discoveries and inventions. I’m sure Columbus never thought that the 
American continent―as a geographical entity―would have been any 
different without his magnificent personality. The American continent was 
just lying there, and Columbus stumbled upon it. We say that Columbus 
discovered America, because America―as a geographical entity―is in no 
way dependent on the personality or creativity of Columbus. It is, on the 
other hand, very well possible that Alexander Graham Bell thought that there 
would have been no telephones without him, or that, at the very least, 
telephones would have been different without him. We say that Alexander 
Graham Bell invented the telephone, because telephones are―at least in 
some degree―dependent on the personality or creativity of Bell. 

Let’s sum things up. I stated that mathematics teachers are faced with 
two important―and difficult―tasks, viz.: 

 
• Mathematics teachers should try to motivate their students to do 

mathematics, and should do whatever is possible to interest them in 
mathematics; so that, in the end, these students may come to like 
mathematics 

• Mathematics teachers should teach some bright students how 
inventions are effected in the mathematical field and give these 
students the opportunity to experience the “kick” of mathematical 
invention by themselves. 
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I also discussed two different kinds of mathematical invention, viz.: 
 
• The invention of new mathematical concepts and ideas 
• The invention of proofs of certain mathematical theorems. 

 
What’s more, it should by now be clear why mathematical invention 

often provides a certain kick. If a student or a professional mathematician 
invents a mathematical concept, idea, or proof, (s)he will―by the very 
definition of the concept invention―be under the impression that the 
invented mathematical concept, idea, or proof is―at least to some 
degree―dependent on his or her personality or creativity. In other words, 
(s)he will feel that the invented mathematical concept, idea; or proof is, in 
some way, reflecting his or her own personality or creativity. A student who 
acquires the ability to invent mathematical concepts, ideas, or proofs will no 
longer perceive mathematics as an impersonal science. For this student, 
doing mathematics will become a personal experience. The personal and 
subjective experience of inventing a mathematical proof, idea, or concept on 
your own is the kick I wrote about.  

So far, I have not addressed the question of how we can give certain 
students the opportunity to experience this kick of mathematical invention by 
themselves. It is, however, impossible to teach our pupils and students how 
inventions are effected in the mathematical field, if we do not understand 
ourselves how these inventions are effected! For this reason, I will first try to 
figure out how professional mathematicians invent mathematical concepts, 
ideas, and proofs. In the second section of this article, I will give 
some―tentative―answers to the question of how inventions are effected in 
the mathematical field. In the third section, I will finally address the question 
of how we can give certain students the opportunity to experience the kick of 
mathematical invention. 

2. LOGIC AND INTUITION IN MATHEMATICS 

The French poet Paul Valéry (1871-1945) wrote: “It takes two to invent 
anything. The one makes up combinations; the other one chooses, recognizes 
what he wishes and what is important to him in the mass of the things which 
the former has imparted to him” (Hadamard 1945, 30; Dennett, 1978, 293).  

Of course, Valéry is not saying that it takes two persons to invent 
anything. He is, in fact, saying that two different kinds of mental processes 
are needed in order to invent anything. The French mathematician Jacques 
Hadamard agrees with Valéry. Hadamard elucidates his views as follows: 
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Indeed, it is obvious that invention or discovery, be it in mathematics or 
anywhere else, takes place by combining ideas. Now, there is an 
extremely great number of such combinations, most of which are devoid 
of interest, while, on the contrary, very few of them can be fruitful. […] 
However, to find these [fruitful combinations], it has been necessary to 
construct the very numerous possible combinations, among which the 
useful ones are to be found. 
It cannot be avoided that this first operation take place, to a certain 
extent, at random, so that the role of chance is hardly doubtful in this first 
step of the mental process. […] 
It is obvious that this first process, this building up of numerous 
combinations, is only the beginning of creation, even, as we should say, 
preliminary to it. […][T]o create consists precisely in not making useless 
combinations and in examining only those which are useful and which 
are only a small minority. Invention is discernment, choice. (Hadamard 
1945, 29-30) 
 
Dennett relates this mental procedure, described by Paul Valéry and 

Jacques Hadamard, to the so-called generate-and-test procedure in artificial 
intelligence. He writes: “A ubiquitous strategy in AI programming is known 
as generate-and-test, and [the] quotation of Paul Valéry perfectly describes 
it. The problem solver (or inventor) is broken down at some point or points 
into a generator and a tester. The generator spews up candidates for solutions 
or elements of solutions to the problems, and the tester accepts or rejects 
them on the basis of stored criteria” (Dennett 1978, 81). 

Valéry’s description of the invention of poetry, Hadamard’s conception 
of problem solving in mathematics, and the generate-and-test procedure in 
artificial intelligence are, in fact, all examples of so-called universal 
Darwinism. According to universal Darwinism, all phenomena with a certain 
degree of complexity are the result of a random process on the one hand and 
a selection process on the other hand, just as, according to Darwin, all 
biological evolution is the result of a number of random genetic mutations 
on the one hand, and natural selection on the other hand.  

It is possible to apply universal Darwinism to the invention of 
mathematical concepts, ideas, and proofs. According to Hadamard, an 
invention in the mathematical field is always the result of two different kinds 
of mental processes, viz.: 

 
• More or less uncontrolled and chaotic processes in which 

mathematical concepts are generated at random 
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• More or less controlled and orderly processes in which the randomly 
generated mathematical concepts are examined for their usefulness 
to solve certain mathematical problems 

 
In the first kind of mental process, mathematical concepts are generated. 

In the second kind of mental process, mathematical concepts are tested. 
From this, it follows that every invention in the mathematical field is the 
result of a generate-and-test procedure. I will now discuss these two kinds of 
mental processes in more detail. 

First consider the so-called generator or the mental process in which 
mathematical concepts are generated. Suppose that a certain mathematician 
is trying to prove a given theorem. When this mathematician starts thinking 
about the problem at hand, a multitude of mathematical concepts and ideas is 
generated in his or her mind. These concepts can be generated in two ways. 
Most of them are simply remembered by the mathematician. These concepts 
are ones the mathematician has encountered on previous occasions when 
(s)he was studying similar problems. However, not all ideas that are 
generated in the mathematician’s mind are remembered. Some ideas are 
generated by combining other ideas. Hadamard claimed that invention or 
discovery, be it in mathematics or anywhere else, takes place by combining 
ideas.” It is, for instance, possible that the idea of a hypercube is generated in 
the mathematician’s mind by combining the idea of a cube and the idea of a 
four-dimensional space. 

Now consider the so-called tester, the mental process in which 
mathematical concepts are tested. Suppose, once again, that a certain 
mathematician is trying to prove a given theorem. The concepts which are 
being generated in the mind of this mathematician when (s)he starts thinking 
about the problem are examined by the tester for their usefulness to prove 
the given theorem. A professional mathematician is familiar with many 
heuristic methods, rules, and tricks that enable him or her to distinguish 
useful mathematical concepts from useless ones. Of course, mathematical 
concepts that are very useful in one mathematical context can be completely 
useless in another mathematical context. Suppose, however, that, after 
having worked on the problem for some time, the mathematician thinks (s)he 
has found a proof of the given theorem by using different kinds of heuristic 
methods. How does the tester in the mathematician’s mind decide whether 
this proof is useful or not? The answer to this question is very simple. Most 
proofs are only useful if they are correct. A useful proof is, in other words, a 
proof that is consistent with the axioms and the transition rules of a certain 
mathematical theory. So it would seem that the tester in the mind of a 
mathematician consists of different levels, and that it operates in different 
ways at different levels. At most levels, the tester examines the usefulness of 
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generated mathematical concepts by using different kinds of heuristic 
methods. At the last level, however, the tester examines the usefulness of a 
proposed proof by checking whether the proposed proof is correct or not. 
There is only one criterion at this last level of the selection process in the 
mind of a professional mathematician who is trying to prove a given 
theorem—the consistency of the proposed proof with the axioms and the 
transition rules of a certain mathematical theory. 

These remarks on the generate-and-test procedure in the mind of a 
mathematician who is trying to prove a given theorem deepen our 
understanding of the distinction between mathematical discoveries and 
mathematical inventions. In the first section of this article, I stated that the 
question of whether mathematicians discover mathematical concepts, ideas, 
and theorems or invent them is, in fact, not an ontological question, but a 
psychological question. Most mathematicians would say that they have 
discovered a certain mathematical concept, idea or theorem if they are under 
the impression that it is entirely independent of their own personality and 
creativity, and that they have invented a mathematical concept, idea, or 
theorem if they are under the impression that it is, in some way, dependent 
on his or her personality and creativity. I also claimed that mathematical 
discoveries and mathematical inventions often go hand in hand, and that 
mathematicians discover mathematical theorems by inventing certain proofs 
of these theorems. 

It’s now easy to understand why mathematical discoveries and 
mathematical inventions often go hand in hand. In the mind of a 
mathematician who is trying to prove a given theorem, some mental 
processes will be independent of the personality and the creativity of this 
mathematician, whereas other mental processes will be dependent on the 
personality and the creativity of this mathematician. 

First consider, once again, the generator or the mental processes in which 
mathematical concepts are generated. We have seen that the generated 
concepts in the mind of a mathematician who is trying to prove a given 
theorem are either remembered by the mathematician or generated by 
combining other ideas. Simply remembering a certain mathematical concept 
is not exactly a very creative mental process. A mathematician can only 
remember concepts (s)he has encountered on previous occasions. The ability 
of a mathematician to remember interesting mathematical concepts is, 
therefore, dependent on the mathematical knowledge of this mathematician. 
So it could be argued that the ability of a mathematician to remember 
mathematical concepts is―at least in some degree―dependent on his or her 
personality. Generating a new mathematical concept or idea by combining 
other mathematical concepts is most certainly a creative mental process. The 
ability of a mathematician to generate a new mathematical concept by 
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combining other mathematical concepts is, therefore, dependent on his or her 
personality and creativity.  

Now consider, once again, the tester or the mental process in which 
mathematical concepts are tested. We have seen that the tester in the mind of 
a mathematician operates at different levels. At most levels, the tester 
examines the usefulness of generated mathematical concepts by using 
different kinds of heuristic methods. Most heuristic methods used by 
mathematicians are ones these mathematicians already used on previous 
occasions when they were studying similar problems. In other words, most 
heuristic methods used by a mathematician are heuristic methods this 
mathematician simply remembers. Simply remembering a certain heuristic 
method is not exactly a very creative mental process. However, it also 
happens that mathematicians―or, for that matter, students―find and 
develop their own heuristic methods. Finding or developing a new heuristic 
method is most certainly a very creative mental process. The ability of a 
mathematician to find or develop new heuristic methods is, therefore, 
dependent on his or her personality and creativity. Heuristic methods are 
used by mathematicians at most levels of the selection process. The last level 
of the selection process is, however, an exception. At this level, the 
usefulness of a proposed proof is examined by checking whether the 
proposed proof is correct or not. A correct proof is a proof that is consistent 
with the axioms and the transition rules of a certain mathematical theory. 
Checking whether a proposed proof is consistent with the axioms and the 
transition rules of a certain mathematical theory or not, is in fact a dull and 
almost mindless activity. This activity can be performed by any person who 
knows and understands the axioms and the transition rules of the 
mathematical theory. The ability of a mathematician to check whether a 
proposed proof is consistent with the axioms and the transition rules of a 
certain mathematical theory or not is, therefore, independent of his or her 
personality and creativity.  

According to universal Darwinism, it is impossible to find a proof of a 
given mathematical theorem without some kind of generate-and-test 
procedure. Most mental processes in which mathematical concepts are 
generated seem to be―at least in some degree―dependent on the 
personality or the creativity of the mathematician who is trying to prove the 
given theorem. At the last level of the selection process, however, 
mathematical ideas are tested in a way that is necessarily independent of the 
personality and the creativity of the mathematician who is trying to prove the 
given theorem. Proving a given mathematical theorem is, therefore, always 
partly an invention and partly a discovery. 

I will now pay closer attention to the mental processes in which 
mathematical concepts are tested. Some of these processes occur at an 
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unconscious―or subconscious―level. I will use the word intuition to refer 
to mental processes in which mathematical concepts are tested at an 
unconscious―or subconscious―level. It also happens, however, that 
mathematical concepts are tested at a conscious level. I will use the word 
deduction to refer to mental processes in which mathematical concepts are 
tested at a conscious level. 

I am using the word deduction here for lack of a better word. It seems the 
word intuition has no obvious opposite. However, my use of the word 
deduction should not be confused with a more common use of this word as a 
denotation of a process of reasoning in which a conclusion follows 
necessarily―or logically―from the stated premises. An inference from the 
general to the specific is an example of such a process of reasoning. 

This common use of the word deduction might, at first sight, seem 
entirely unconnected to my use of the word as a denotation of mental 
processes in which mathematical concepts are tested at a conscious level. It 
is nevertheless possible to relate the distinction between conscious 
mathematical thought processes and unconscious mathematical thought 
processes to the distinction between deductive―or logical―mathematical 
thought processes and intuitive mathematical thought processes. At 
unconscious levels of the mind, thought processes and ideas tend to be rather 
vague or indeterminate. Mathematicians―and other people―often use quick 
and dirty heuristics at the unconscious levels of their minds. These heuristics 
make it possible to reach conclusions very quickly. However, some of the 
conclusions that are reached by the use of quick and dirty heuristics may be 
completely wrong. In other words, processes of reasoning at unconscious 
levels of the mind are often flawed or illogical. Most mathematical thought 
processes in which conclusions follow necessarily or logically from the 
stated premises occur at a conscious level of the mind. 

My use of the word intuition more or less conforms to the common use of 
this word. A mathematician who says that (s)he has used his or her 
mathematical intuition is, in fact, just saying that (s)he has accepted or 
rejected a mathematical idea without really knowing or understanding why. 
In other words, a mathematician who says that (s)he has used his or her 
mathematical intuition is aware of the fact that (s)he has accepted or rejected 
a mathematical idea, but is unaware of the mental processes involved. So 
these mental processes must have occurred at an unconscious―or 
subconscious―level. 

Now suppose that John is trying to prove a given theorem about triangles. 
When he starts thinking about the problem at hand, a multitude of ideas is 
generated in his mind. Some of these ideas will be entirely non-
mathematical. It is, for instance, possible that some thoughts concerning the 
beauty of his wife are generated at an unconscious level of his mind. 
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However, if John is really serious about trying to prove the given theorem 
and is concentrating on the problem at hand, these thoughts will be rejected 
as non-mathematical and irrelevant to any possible proof of the given 
theorem at an unconscious level of his mind. In this case, John will not be 
aware of the fact that some thoughts concerning the beauty of his wife were 
ever generated at all. Some of the ideas generated in John’s mind will be 
mathematical, but unrelated to triangles and geometry. It is, for instance, 
possible that some ideas about matrices or Taylor series are generated at a 
certain―conscious or unconscious―level of John’s mind. If John is an 
experienced mathematician, these ideas will be rejected at an unconscious 
level of his mind as irrelevant to any possible proof of the given theorem 
about triangles. In other words, John’s ideas about matrices or Taylor series 
will, in this case, be rejected intuitively as irrelevant to any possible proof of 
the given theorem about triangles. However, if John is a rather inexperienced 
student, he may have to consider carefully the possibility of a connection 
between triangles on the one hand and matrices or Taylor series on the other 
hand before he will be convinced that there is no such connection. In this 
case, John’s ideas about matrices or Taylor series will be rejected at a 
conscious level of John’s mind as irrelevant to any possible proof of the 
given theorem about triangles.  

Some of the ideas generated in John’s mind will be more promising. 
When John hits upon a promising idea, he may have to go into details. 
Looking into details, however, is usually a conscious process. It is, for 
instance, possible that John surmises―for some reason―that the given 
theorem about triangles might be solved by calculating the coordinates of the 
point of intersection of two straight lines. Such a calculation is, under normal 
conditions, a process that occurs at a conscious level of the mind of a 
mathematician. 

Suppose that John, after having worked on the problem at hand for some 
time, thinks he has found a proof of the given theorem. At this point, he 
should check whether the proposed proof is correct or not. In other words, 
John should examine now whether the proposed proof is consistent with the 
axioms and the transition rules of a certain mathematical theory or not. We 
have seen that this examination takes place at the last level of the tester. 
Examining whether a proposed proof is consistent with the axioms and the 
transition rules of a certain mathematical theory or not is, however, a rather 
dull process that often requires one to check lots and lots of details. Under 
normal conditions, this examination is, therefore, a process that occurs at a 
conscious level of the mind. 

These conclusions about the processes in John’s mind are applicable to 
the processes in the mind of any mathematician who is trying to solve a 
mathematical problem. Proving a mathematical theorem or solving a 
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mathematical problem always involves mental processes in which 
mathematical concepts are tested at an unconscious level as well as mental 
processes in which mathematical concepts are tested at a conscious level. In 
other words, proving a mathematical theorem or solving a mathematical 
problem always involves both intuition and deduction. I have to admit, 
however, that there are conditions in which the difference between an 
unconscious level of the mind and a conscious level of the mind can be 
rather obscure. In fact, no one really knows what consciousness is or how it 
works. Consequently, there are conditions in which the difference between 
intuition and deduction is not very clear. 

It is very important for mathematics education that mathematicians, 
philosophers of mathematics, and teachers of mathematics admit the fact that 
mathematics is not a purely deductive science and that it is impossible to 
solve a mathematical problem without at least some mathematical intuition. 
Nevertheless, mathematics has often been regarded and/or presented as a 
purely deductive science by mathematicians, philosophers, and mathematics 
teachers. The allegation that mathematics is a purely deductive science can 
be interpreted in two different ways, corresponding to the two above-
mentioned definitions of the word deduction. 

 
• The allegation that mathematics is a purely deductive science can be 

interpreted as the statement that all mathematical thought processes 
occur at a conscious level of the mind of a mathematician 

• The allegation that mathematics is a purely deductive science can be 
interpreted as the statement that all mathematical processes of 
reasoning are processes of reasoning in which conclusions follow 
necessarily or logically from the stated premises 

 
I am convinced that both statements are false. It cannot be doubted that 

mathematics is not a purely deductive science after all. 

3. MATHEMATICAL INTUITION  
AND MATHEMATICAL EDUCATION 

There are three kinds of evidence for the fact that mathematics is not a 
purely deductive science. 
First, and most important of all, there is psychological evidence. Consider, 
for instance, the story of Henri Poincaré. In a famous lecture at the Société 
de Psychologie in Paris, Poincaré described his discovery of certain 
important mathematical theorems: 
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I wanted to represent these [Fuchsian] functions by the quotient of two 
series; this idea was perfectly conscious and deliberate; the analogy with 
elliptic functions guided me. I asked myself what properties these series 
must have if they existed, and succeeded without difficulty in forming the 
series I have called thetafuchsian. 

Just at this time, I left Caen, where I was living, to go on a geological 
excursion under the auspices of the School of Mines. The incidents of the 
travel made me forget my mathematical work. Having reached 
Coutances, we entered some omnibus to go some place or other. At the 
moment when I put my foot on the step, the idea came, without anything 
in my former thoughts seeming to have paved the way for it, that the 
transformations I had used to define the Fuchsian functions were 
identical with those of non-Euclidean geometry. I did not verify the idea; 
I should not have had time, as, upon taking my seat in the omnibus, I 
went on with a conversation already commenced, but I felt a perfect 
certainty. On my return to Caen, for conscience’ sake, I verified the result 
at my leisure. 

Then I turned my attention to the study of some arithmetical questions 
apparently without much success and without a suspicion of any 
connection with my preceding researches. Disgusted with my failure, I 
went to spend a few days at the seaside and thought of something else. 
One morning, walking on the bluff, the idea came to me, with just the 
same characteristics of brevity, suddenness and immediate certainty, that 
the arithmetic transformations of indefinite ternary quadratic forms were 
identical with those of non-Euclidean geometry. (Hadamard 1945, 13-14) 

It would seem that a great deal of Poincaré’s mathematical thought 
processes occurred at unconscious levels of his mind. Consequently, not all 
mathematical thought processes occur at a conscious level of the mind of a 
mathematician. 

There is also evidence for the fact that not all mathematical processes of 
reasoning are ones in which conclusions follow necessarily from the stated 
premises. Consider, for instance, the famous Indian mathematician Srinivasa 
Ramanujan. Ramanujan discovered many beautiful and amazing 
mathematical theorems and formulae in a rather mysterious and intuitive 
way. It would seem that the theorems and formulae discovered by 
Ramanujan were not the result of mathematical processes of reasoning in 
which conclusions followed necessarily from the stated premises. As a 
matter of fact, Ramanujan often had no idea at all how the theorems and 
formulae he discovered could be proved correctly. 
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Many mathematicians and philosophers agree that mathematics is not a 
purely deductive science and that it would be a mistake to deny the 
importance of intuition in the discovery and the invention of mathematics. 
Jacques Hadamard writes: 

This carries [...] the consequence that, strictly speaking, there is hardly 
any completely logical discovery. Some intervention of intuition issuing 
from the unconsciousness is necessary at least to initiate the logical work. 
(Hadamard 1945, 112; my emphasis) 

According to Poincaré, there are two sorts of mathematicians: 

The one sort are above all preoccupied by logic; to read their works, one 
is tempted to believe they have advanced only step by step, after the 
manner of a Vauban who pushes on his trenches against the place 
besieged, leaving nothing to chance. The other sort are guided by 
intuition and at the first stroke, make quick but sometimes precarious 
conquests, like bold cavalrymen of the advance guard. (Poincaré, in 
Hadamard 1945, 106; my emphasis) 

And Morris Kline writes: 

What then is mathematics if it is not a unique, rigorous, logical structure? 
It is a series of great intuitions carefully sifted, refined, and organized by 
the logic men are willing and able to apply at any time. […] 

Several of the schools have tried to enclose mathematics within the 
confines of man’s logic. But intuition defies encapsulation in logic. The 
concept of a safe, indubitable, and infallible body of mathematics built 
upon a sound foundation stems of course from the dream of the classical 
Greeks, embodied in the work of Euclid. This ideal guided the thinking 
of mathematicians for more than twenty centuries. But apparently 
mathematicians were misled by the “evil genius” Euclid. (Kline 1980, 
312; my emphasis) 

Hadamard, Poincaré, and Kline all seem to think that mathematics is 
more than just logic and that it is only possible to do mathematics if logic, or 
deduction, is supplemented with some kind of mathematical intuition. 

There is also historical evidence for the fact that mathematics is not a 
purely deductive science. If mathematics really were a purely deductive 
science, and all mathematical processes of reasoning really were processes in 
which conclusions follow necessarily from the stated premises, then it would 
be impossible to reach a wrong conclusion or to deduce a false theorem from 
true premises. The history of mathematics is, however, replete with false 
theorems, false proofs, and false conjectures. Fermat’s conjecture that every 
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number ( )22 1

n

+  (with n a natural number) is a prime number, is an example 
of a false conjecture. The theorem that a function ( )f x  is derivable in 0x  if 
it is continuous in 0x , was proved in many mathematical handbooks of the 
nineteenth century. This theorem is, however, a false theorem. The proofs of 
this theorem in the handbooks were, of course, false proofs. 

What’s more, there have been many paradoxes and contradictions in the 
history of mathematics. The ancient Greeks thought, for some reason, that 
irrational numbers are paradoxical. And Russell’s paradox is a notorious 
example of a contradiction. This contradiction in the naive set theory of 
Cantor and Frege was discovered by Bertrand Russell. 

There is still another reason why mathematics cannot be a purely 
deductive science. If it were, mathematicians who want to construct and to 
develop a new mathematical theory would start by defining or describing 
certain basic concepts of the theory and by formulating certain axioms and 
transition rules. This would enable them to define other more complex 
concepts and to prove many interesting and uninteresting theorems. In 
reality, however, things often seem to go the other way around. It sometimes 
happens that mathematicians are constructing or developing a new 
mathematical theory without even realizing it themselves. The construction 
or development of a mathematical theory often starts with a mathematical 
problem or the formulation of certain mathematical conjectures. The words, 
symbols, or concepts used to formulate these conjectures are often ill-
defined. A mathematician who wants to prove the formulated conjectures 
needs to define these words, symbols, or concepts by reducing them to other 
more terms. He or she also needs to determine the transition rules of the new 
mathematical theory. In other words, (s)he also needs to determine the rules 
that may be used to prove theorems. The formulation of the axioms is often 
one of the last steps in the development of a mathematical theory! 

Mathematics is, after all, an instance of problem solving. Mathematical 
problems, not sets of axioms and sets of transition rules, are the real drive of 
mathematics. If mathematics really were a purely deductive science, it would 
always go forward, from the basic concepts, the axioms, and the transition 
rules of a mathematical theory, via other more complex concepts and proofs 
of mathematical theorems, to the solution of all sorts of mathematical 
problems. In reality, however, mathematics often goes “backward”, from a 
given mathematical problem, via the concepts and the theorems that are 
needed in order to solve this problem, to the basic concepts, the axioms, and 
the transition rules of a new mathematical theory. 

So mathematics is not a purely deductive science. This raises an 
interesting question. If mathematics is not a purely deductive science, why is 
it so often regarded and presented as a purely deductive science by 
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mathematicians, philosophers, and mathematics teachers? There are 
undoubtedly many different reasons for this. 

First of all, people who believe that mathematics is a purely deductive 
science also tend to believe that mathematics is an exact science, and that all 
conclusions reached by the use of mathematics are absolutely certain. It 
sometimes happens that other scientists are envious of mathematicians 
because of the supposed exactness and absolute certainty of mathematics. 
This exactness and absolute certainty are, however, little more than a myth. 

In the first section of this article, I stated that all mathematical theorems 
are inevitable consequences of the axioms and the transition rules of certain 
mathematical theories, and that these theorems are independent of the 
personality and the creativity of the mathematician(s) who proved them. It is 
possible that a mathematician who has proved a certain theorem is so 
impressed with the inevitability of the theorem that (s)he forgets his or her 
own contribution to the proof and is apt to think that not only the theorem 
itself, but also its proof is independent of his or her personality and 
creativity. It is in other words possible that a mathematician who has 
discovered a certain theorem neglects the fact that (s)he has invented the 
proof of this theorem. A mathematician who remembers that (s)he has 
discovered a certain theorem but has forgotten how (s)he has invented the 
proof of this theorem, will probably realize that this theorem is a logical and 
inevitable consequence of the axioms and the transition rules of the 
mathematical theory (s)he was using; although (s)he may not remember that 
(s)he proved this theorem by the use of his or her mathematical intuition and 
all sorts of quick and dirty heuristics at unconscious levels of his or her 
mind. 

In the second section of this article, I defined or described the words 
deduction and intuition. Deduction was described as “the mental processes in 
which mathematical concepts are tested at a conscious level”. Intuition was 
described as “the mental processes in which mathematical concepts are 
tested at an unconscious level.” So mathematicians are only aware of their 
deductive mathematical thought processes. They are unaware of their 
intuitive mathematical thought processes. It is, therefore, only logical that 
many mathematicians regard mathematics as a purely deductive science2. 

 
2  It is still very difficult to study unconscious mental activity scientifically. In research on 

mathematcal thinking, researchers often use the talking aloud procedure and/or the so-
called clinical interview technique. Both methods focus on conscious mental activities. 
Although some behavioral observations may be made in the talking aloud procedure, the 
data gathered from this method are mainly the verbalizations of a subject who is instructed 
to say anything that comes to his or her mind while solving a mathematical problem. And 
the clinical interview technique is, nor surprisingly, an interview technique; all data 
gathered from this method are entirely verbal. These verbalizations represent only what 
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There are, however, some mathematicians who realize that they often 
accept or reject certain mathematical ideas without knowing why they accept 
or reject them. Most of these mathematicians also realize that they accept 
and reject mathematical ideas at an unconscious level of their mind. So 
mathematicians are beginning to realize that the unconscious plays a part in 
mathematics. The unconscious is, as a matter of fact, a rather new discovery. 

It is easier to teach mathematics as a deductive science. There are two 
reasons for this. First, it is easier to teach students to go forward, from given 
axioms, transition rules, and basic concepts, via more complex concepts and 
proofs of mathematical theorems, to the solution of mathematical problems, 
than to teach them to go backward from given mathematical problems, via 
the complex concepts and the theorems that are needed in order to solve 
these problems, to the comparatively simple basic concepts, axioms, and 
transition rules. Second, it is easier to teach students some clear-cut 
concepts, axioms, and rules they can use consciously than to teach them how 
they can develop and use their mathematical intuition and all sorts of quick 
and dirty heuristics at unconscious levels of their minds. 

It seems we have come full circle. This article began with some general 
remarks on the education of mathematics. Now, at the end of the article, I 
will try to explain why it is so important for the education of mathematics 
that mathematicians, philosophers of mathematics, and teachers of 
mathematics admit the fact that mathematics is not a purely deductive 
science. I will also try to answer the question of how we can give certain 
pupils and students the opportunity to experience the kick of mathematical 
invention by themselves. 

I think it is a very bad idea to teach mathematics as a purely deductive 
science, if it is, in fact, not a purely deductive science at all. Pretending that 
mathematics is a purely deductive science constitutes a lie. I know from 
experience that it is very tempting for mathematics teachers to present 
mathematics as an exact science that offers absolute certainty. Some 
mathematics teachers almost pose as deities by their benevolence of offering 
their students a glimpse of the absolute and eternal truth and certainty of 
mathematics. However, students have a right to know that the history of 
mathematics is replete with false theorems, false proofs, false conjectures, 
paradoxes, and contradictions. 

There is another, equally important, reason why mathematics should not 
be taught as a purely deductive science. In the first section of this article, I 
stated that most people can function normally in daily life if they just know 
how to use certain mathematical concepts. Nevertheless, we also need some 

 
goes on at the conscious levels of the mind of the subject. (See the article of Ginsburg, 
Kossan, Schwartz, and Swanson in Ginsburg 1983, 7-16.) 
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people who know how or why mathematics works, how mathematics can be 
constructed, and how new parts or new kinds of mathematics can be 
invented. For this reason, mathematics teachers should give bright pupils and 
students the opportunity to experience the kick of mathematical invention by 
themselves. A student who invents a mathematical concept, idea or proof 
will often experience some kind of kick, because a person who invents a 
mathematical concept, idea, or proof is under the impression that it at least to 
some degree, dependent on his or her personality or creativity.  

In the second section of this article, I stated that the ability of a 
mathematician to check whether ore not a proposed proof is consistent with 
the axioms and the transition rules of a certain mathematical theory is 
independent of the personality and creativity of the mathematician. The 
ability of a mathematician to find and develop new heuristic methods is, 
however, most certainly dependent on his or her personality and creativity. If 
mathematics is taught as a purely deductive science and pupils and students 
are told only how they should perform certain dull and mindless activities, 
then the students will perceive mathematics as an impersonal science. In this 
case, students are not given the opportunity to experience the kick of 
mathematical invention by themselves. If, however, mathematics is not 
taught as a purely deductive science and students are also helped to develop 
their own heuristics and mathematical intuition, then students will have a 
chance to experience the kick of mathematical invention by themselves. 

For this reason, mathematics teachers should help their students to 
develop their mathematical intuition. This is not an easy task. I have already 
stated that it is easier to teach students some clear-cut concepts, axioms, and 
rules they can use consciously than to teach them how they can develop and 
use their mathematical intuition and all sorts of quick and dirty heuristics at 
unconscious levels of their minds. The task is, however, not an impossible 
one. Mathematics teachers can help their students to develop their 
mathematical intuition by the use of certain techniques. For instance, the list 
of questions published by George Pólya in his book How to Solve It (1945) 
can be used by mathematics teachers to help their students solve 
mathematical problems. Mathematics teachers can help their students 
develop their mathematical intuition by posing them these questions. Many 
philosophers, including Imre Lakatos, were influenced by Pólya. These 
philosophers understood the importance of heuristics and of the so-called 
“context of discovery” (Van Kerkhove. See this volume). However, 
mathematical problem solving in the framework of mathematics education is 
still of current interest. Much work remains to be done in this area.  
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INTERLUDE 8 
 
 
 
We human beings are particularly fond of making distinctions. If we are to 
believe Spencer-Brown in his little known Laws of Form, that is the 
beginning of all our thinking about and acting in the world. No doubt it is a 
good thing to distinguish the wall from the door in the wall, to see the 
difference between high and low when jumping out of the window. That 
does not, however, prevent us from making unnecessary, unhelpful, or worse 
still, counterproductive distinctions. To a large extent, what Van Moer has 
done in his paper is, almost unnoticed, to ignore such a counterproductive 
distinction, one that has managed to become one of the most basic boundary 
lines in the present-day philosophy of science and, by extension, in the 
present-day philosophy of mathematics, viz., the distinction between the 
context of discovery and the context of justification. Something all of us have 
known for years. 

That being said, it is our feeling that one aspect of this distinction has 
been and still is usually ignored: it is generally accepted that by making this 
distinction and by focusing on only one of the two distinctive things, in 
almost all cases the context of justification, one is driven towards specific 
philosophies of science. Take the most famous example: focusing on 
justification allows the use of logical methods as ingredients for a potential 
methodology of science, for does not the context of discovery require the 
presence of irrational elements that logic shuns away from? This we all 
know, but what about the reverse situation: if you are willing to erase the 
distinction, if you are willing to treat both contexts as necessary elements of 
a full-fledged theory of what it is mathematicians do when they claim that 
they are doing mathematics, what will be the effect on your philosophical 
view(s)? 

Bart Van Kerkhove performs such an exercise in his contribution. Taking 
Imre Lakatos as a starting-point, taking his quasi-empiricism seriously and 
thinking it through, relying on, among others, Paul Ernest, Eduard Glas, and 
Teun Koetsier, it soon becomes apparent that it makes sense to talk about a 
humanistic mathematics. Presenting mathematics to school children as a 
human enterprise and not as a godly affair does indeed have profound 
repercussions on one’s view of what mathematics is. So, at least in some 
cases, the philosopher has a lesson to learn. 



  

 

  

A PLACE FOR EDUCATION IN THE 
CONTEMPORARY PHILOSOPHY  
OF MATHEMATICS 
 
The Case of Quasi-Empiricism 

Bart Van Kerkhove 
Free University of Brussels – Center for Logic and Philosophy of Science, Belgium 

Abstract: The paper examines the possibility of a positive role for the educational 
perspective in progressive philosophy of mathematics. In particular, 
dialectalism in mathematics, as initiated by Imre Lakatos under the inspiration, 
among others, of the giant mathematics educator George Pólya, is looked into. 
Important “humanistic” issues such as fallibility and plausibility are addressed. 
Although still requiring further scrutiny, the quasi-empiricism presented at the 
very least proves to be a viable contender to the various mainstream a priori 
philosophical positions concerning the nature of mathematical 
knowledge/science. 
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1. INTRODUCTION 

In this paper, we shall trace a particular connection between mathematics 
education and mathematical humanism, a philosophical school broadly 
concerned with mathematics as a distinctively human cultural product, and 
therefore with the practice of mathematicians as epistemologically relevant. 
As an entry into this subject, we consider the statement of purpose of the 
Humanistic Mathematics Network Journal (HMNJ). Founded in 1987 as a 
newsletter following a conference, HMNJ evolved as an irregularly 
published periodical, which in 2002 went exclusively online. It was started 
with the intention, reprinted at the beginning of every issue, of reflecting on 
and promoting what were thought of as two intimately related themes: the 
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development of humanistic mathematics, and the humanistic teaching of 
mathematics. There is no question that the latter cannot exist without the 
former. But what about the other way round? This will be our topic of 
interest. That is, in what ways, if any, does, can, or should pedagogical 
settings contribute to the (re)development of mathematics and its 
philosophical (re)assessment? In particular, we shall focus on how the 
pedagogical perspective can teach us about the extent to which mathematical 
progress is of a dialectical nature, and how this can accordingly be of service 
in building proper humanistic reconstructions of mathematics, which “relate 
mathematical discoveries to personal courage, discovery to verification, 
mathematics to science, truth to utility, and in general, mathematics to the 
culture within which it is embedded” (from the HMNJ manifesto). 

Note that our chosen option does not involve an exclusivity claim: 
humanistic mathematics might indeed be interpreted differently, and thus be 
associated with a number of different alternative schools in the philosophy of 
mathematics. In various ways, these are all humanistic alternatives to 
absolutism (regularly combined with an all-pervasive Platonism) about 
mathematics, which says: there is conceivably something like total certainty 
in mathematics, and it is the philosopher’s job to look for and secure it. 
Humanism, on the contrary, brings in an element of fallibility, the 
philosopher’s task in this case being to challenge absolutism and develop 
another type of foundational thinking, viz., one more broadly conceived, and 
questioning what is at the basis of mathematical knowledge, as being 
unlimited to formal or logical foundations. Constructivists, for example, 
would stress the fact that mathematics is a product of the human mind. 
Intuitionists, in the wake of Brouwer, even envisaged that it be built up from 
scratch on an absolutely a priori or empirically neutral mental basis—a 
radical view which has been widely disapproved of for being utterly 
unrealistic, viz., dismissing the bulk of spectacular mathematical results 
(e.g., rejecting the infinite). Less radical spirits will therefore at the very 
least postpone this dismissal until it has been conclusively shown that the 
main results of modern mathematics are roughly translatable in their 
proposed constructivist systems. Humanism might also be taken in another 
sense, in which it means “the service of mankind and its set goals,” 
mathematics thus above all having to be applicable, practical, instrumental, 
pragmatical, convenient. One would then associate it not with a 
constructivist, but rather with a conventionalist picture, in the style of Hilbert 
or the logical positivists: pick your axiom system, in accordance with what 
the mathematics should be capable of. A similar stance yields a 
philosophically rare combination of a posteriori and a priori, for actual 
problems determine the choice of system, while after this choice, one 
continues within the system without any external interference.  
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A third option, to be traced here, removes the a priori component 
altogether: empiricists consider mathematics to result essentially from 
human sense experience, viz., as the most extreme form of generalization 
and abstraction. As an important prior remark, a disclaimer of reproaches of 
antifoundationalism, please note that empiricism does not require radical 
reform either, although it does create room, at least in principle, for possible 
alternatives to prevalent universal mathematics. It seems especially to give 
rise to thought experiments in the style of: Had our senses evolved 
somewhat differently, would mathematics have been anything like what it is 
now? Although philosophically important, possibilities like these remain 
hypothetical and are being formulated above all to underscore the humanism 
involved. Contrary to this, the focus of empiricists will lie on how existing 
mathematics is actually (but not-inevitably) rooted in our dealings with the 
material world, how it has historically evolved, etc. The structure of this 
paper is as follows: To begin with, in Section 2 the topic of plausible 
reasoning in mathematics is addressed, through one of its most famous 
advocates, at least in philosophical circles, George Pólya. After that, we start 
tackling the issue of mathematical empiricism, in Section 3 in general, then 
in Section 4 in its more specific, dialectical guise, as embodied by Imre 
Lakatos (who was influenced by Pólya). This will lead us into considerations 
about the further development of Lakatos’s philosophy of mathematics, a 
topic which will occupy us in Section 5. 

2. FROM CERTAINTY TO PLAUSIBILITY  

Mainly from reading Descartes’ Regulae ad directionem ingenii (Rules for 
the direction of the mind, c. 1628) and Mach’s history of mechanics, as well 
as from a love for Euler’s mathematical style, George (born György) Pólya 
(1887-1985) increasingly grew to appreciate the importance of the context of 
discovery in mathematics, and thus developed a serious interest in 
heuristics.1 As a result, in How to Solve It (HSI, 1945),2 his most famous and 
accessible work, Pólya set out a four-stage model of the mathematical 
problem solving process, according to which one (1) first tries to understand 
any problem at hand, (2) on the basis of that devises a plan, (3) then carries 
out that plan, and finally (4) returns to the problem and verifies whether it 
has thereby been satisfactorily settled. Years later, the efforts of this first 
publication were continued and expanded in two double-volume books, 
providing a myriad of examples, more sophisticated ones in Mathematics 

 
1  Albers and Alexander, 1985, 251. 
2  Pólya, 1957. 
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and Plausible Reasoning (MPR), and more elementary ones in Mathematical 
Discovery.3 

This extensive body of work has been of profound influence on pedagogy 
both in America and abroad (the initial book having been translated at least 
fifteen times), especially in the 1980s. Even at its height, however, the status 
of Pólya’s heuristics remained the subject of much debate and empirical 
pressure. More specifically, in addition to a minimal amount of clear 
practical success, the account was particularly suffering the attacks of 
artificial intelligence (AI), a discipline which seemed to do strikingly better 
using other, less fuzzy approaches. “In essence, the difficulties with the 
implementation of Pólya’s ideas were that (a) they were not specified in 
adequate detail for implementation, and (b) they appeared to be superseded 
by more general methods”.4 In the last two decades, however, the tables 
seem to have turned in favor of Pólya, as a consequence of which his spirit 
definitely lives on in mathematics education. 

First, cognitive science has provided methods for fleshing out the details 
of Pólya’s strategies, making them more accessible for problem solving 
instruction. […] In addition, the general methods of AI have turned out to 
be much weaker than had been thought; methods once thought general 
and powerful have turned out to have limited scope and power. Research 
from the past decade [the 1980s] indicates that problem-solving strategies 
are much more tightly bound to domain-specific subject matter 
understanding than early AI researchers had claimed.5 

The pursuit of mathematics education proper is outside the scope of the 
present paper. Instead, what is of clear interest is the extent to which this 
field has any actual or potential influence on the philosophy of mathematics. 
And our current protagonist is relevant at this point, as there is no doubt that 
this particular connection was in fact sought after by Pólya himself. As will 
be illustrated below, Imre Lakatos picked up this implicit appeal and 
endorsed Pólya’s ideas, to begin with through the in-depth investigation, in 
the illustrious study Proofs and Refutations, of one of Pólya’s specific 
examples. Let us therefore have a look at where Pólya gets closest to being 
philosophical himself, which will allow us to elaborate on the role of the 
non-deductive in mathematics. This is at the outset of MPR’s first volume, 
Induction and Analogy in Mathematics, where Pólya himself labels his book 
as “in a sense” a philosophical essay, and then develops the difference 

 
3  Resp Pólya, 1973, 1968, 1962, 1965. 
4  Schoenfeld, 2000, 235. 
5  Ibidem. 
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between demonstrative and plausible reasoning.6 The former method, aimed 
at proving mathematical statements, “has rigid standards, codified and 
clarified by logic, [. . . it] is safe, beyond controversy, and final”.7 The 
latter’s standards, on the contrary, are “fluid”, and directed towards 
generating and supporting conjectures. This type of reasoning, thinks Pólya, 
is being unjustly neglected in education. “Certainly, let us learn proving, but 
also let us learn guessing”.8 Demonstrative reasoning, he claims, is but one 
side of mathematics, viz., the format of results, finished mathematics. “Yet 
mathematics in the making resembles any other human knowledge in the 
making. You have to guess a mathematical theorem before you prove it; you 
have to guess the idea of the proof before you carry through the details. You 
have to combine observations and follow analogies; you have to try and try 
again”.9 

The two kinds of reasoning do not contradict but complement and 
complete each other. Both are indispensable for any ambitious student of 
mathematics. From them, plausible, heuristically driven reasoning 
constitutes the way to establishing rigorous proof. Focusing on this hitherto 
neglected type, Pólya offers many examples; this he considers the most 
proper manner of instructing the interested reader, offering him or her ample 
material for imitation and opportunity for practice. There exists, in his view, 
no foolproof method to learn guessing. Explicit heuristics and search 
strategies may of course be offered, but these, in principle, will only 
approximately fit any of the concrete circumstances in which they are later 
applied. Pólya’s approach therefore is, as he himself calls it, naturalist in 
spirit. “I collect observations, state conclusions, and emphasize points in 
which my observations seem to support my conclusions. Yet I respect the 
judgment of the reader and I do not want to force or trick him into adopting 
my conclusions.”10 Being essentially unable to literally retell the details of 
the examples offered, he reconstructs their history in a plausible way.  

Pólya suggests that his results be put to philosophical use by introducing 
them into the discussion about induction in mathematics—inductive 
reasoning being a special kind of plausible reasoning. Drawing attention to 
the case of Goldbach’s Conjecture, he aptly points to a lost mathematical 
tradition (involving, e.g., Euler and Laplace) of acknowledging a vital place 
for inductive evidence in mathematical inquiry.11 In the sciences in general, 

 
6  Likewise, in the introduction to HSI, he had distinguished the Euclidean or deductive from 

the experimental or inductive way of mathematics. 
7  Pólya, 1973 (MPR I), v. 
8  Pólya, 1973 (MPR I), vi.  
9  Pólya, 1973 (MPR I), vi. 
10  Pólya, 1968 (MPR II), v. 
11  See indeed Echeverría, 1976. 
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he notes, the proper selection of experimental material is considered to be of 
utmost importance. For Pólya, mathematics lends itself very well to a study 
of its inductive patterns of reasoning (i.e., how the degree of confidence in a 
conjecture is influenced either way by the bringing in of evidence), because 
of the inherent simplicity and clarity of mathematical subjects. Pólya 
himself, in MPR (II, chs.1-4), actually attempts such an investigation for a 
variety of specific cases, remaining however very cautious as to its proper 
philosophical calibre.12 Also in MPR (I, ch.2),13 Pólya reflects on the 
heuristic devices of generalization, specialization, and analogy. 
Generalization and specialization he considers pretty straightforward and 
precise techniques often used in mathematical inquiry, viz., when trying to 
prove a more general proposition than the one at hand, or trying to prove its 
special cases first. Mathematical analogy, on the other hand, seems more 
difficult to put one’s finger on. Pólya defines it as a type of conceptual 
similarity essentially rooted in the intentions of the thinker using it. 
Clarification of analogy thus consists in pinpointing the shared concepts 
involved.14 

In §6 of the chapter mentioned, Pólya develops the historical example of 
Euler’s derivation, by analogy, of a formula expressing the sum of the 
reciprocals of the sequence of squares (1 + 1/4 + 1/9 + 1/16 + ...), viz., π2/6. 
Euler arrived at it by applying a decomposition rule of algebraic equations to 
an equation which is clearly not of that type, viz., sin x = 0 (being of infinite 
degree). This was a daring move, but Euler found he had good reason to be 
confident, as “the numerical value for the sum of the series which he [had] 
computed before, agreed to the last place with π2/6.”15 Notice that these 
reasons were inductive and not demonstrative, although later Euler was able 
to actually prove the equality, and thus deductively confirm his informal 
reasoning. While undoubtedly in favor of the exact mode of mathematical 
reasoning (like Pólya), “Euler seems to think the same way as reasonable 
people, scientists or non-scientists, usually think. He seems to accept certain 
principles: A conjecture becomes more credible by the verification of any 
new consequence. And: A conjecture becomes more credible if an analogous 
conjecture becomes more credible”.16 This being said, induction alone 
clearly does not suffice. Typically, a (true?) mathematician cannot rest 

 
12  “If it is philosophy, it is certainly a pretty low-brow kind of philosophy, more concerned 

with understanding concrete examples and the concrete behavior of people than with 
expounding generalities” (Pólya, 1973 (MPR I), viii). 

13  A chapter that was reprinted in Tymoczko, 1998, 103-24. 
14  E.g., two systems are analogous “if they agree in clearly definable relations of their 

respective parts” (Pólya, 1973 (MPR I), 13). 
15  Pólya, 1973 (MPR I), 20. 
16  Pólya, 1973 (MPR I), 22; original emphasis. 
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content with it, and wants to pass from the inductive into the demonstrative 
phase of inquiry. “The verification of any consequence increases our 
confidence in the conjecture, but the verification of the [inductive 
generalization] can do more: it can prove the conjecture.”17 But what if 
things stop short before formal proof is ever attained? What if there are, at 
least in certain cases, limits in principle to the scope of mathematical 
(demonstrative) thinking itself? Might it then not be appropriate to actually 
embrace a quasi-empiricist or naturalist philosophy of mathematics more 
firmly? 

We shall attend to the positive answer to the latter question in the next 
section. For now, let us assess the extent to which Pólya has been of actual 
influence on this philosophical course. That there is at least an affinity seems 
clear. Pólya must be considered a frontrunner of quasi-empiricism (or 
whatever you want to call it), if only because of his implicit recognition of 
mathematical practice (in casu plausible reasoning) as philosophically 
important. Note that he refrained from ever explicitly proclaiming as much. 
The final products of mathematics, completed proofs, apparently remained 
for him beyond controversy, residing as they did in the realm of 
“demonstrative reasoning,” to be dealt with in an isolated context of 
justification.  

Pólya’s work had little impact on the philosophy of mathematics until it 
was taken up by the more radical quasi-empiricists. They push his 
analysis one step further by questioning the assumption of completely 
safe proofs. [. . . ] According to [them . . . ], it is our informal proofs, the 
kind investigated by Pólya, that are often safer than any derivative 
formalizations of them. Once this extra step is taken, Pólya’s work ceases 
to be a mere gloss on the foundational conception of mathematics, but 
instead becomes a genuine alternative to it.18 

Pólya exerted most of his philosophical influence in the above sense 
through Lakatos, who ascribed to him his own interest in mathematical 
heuristics,19 and who also derived from Pólya the theme for his most famous 
work. In MPR (I, Ch.3), Pólya describes Euler’s development of the 
polyhedron conjecture V-E+F=2, without however addressing its proof at all. 
That is where Lakatos picks it up, to turn it into a detailed historical 
reconstruction (see Section 4). Lakatos departs from Pólya, who is mainly in 
the business of identifying “problems ready to be proved” (or refuted), by 
pointing to the co-development of proof and assertion. Although both men 

 
17  Pólya, 1973 (MPR I), 110. 
18  Tymoczko, 1998, 97. 
19  Particularly HSI, which he translated into Hungarian. 
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highlight the development of mathematical knowledge, there is thus a big 
difference. Pólya restricts himself to the context of discovery and embraces 
the fundamental inductive nature of it. The latter feature was apparently 
unacceptable to Lakatos.20 

Pólya’s heuristics may be closer to the students, and that of Lakatos to 
the working mathematicians. In these cases, Pólya and Lakatos speak of 
different processes. Pólya speaks of learning mathematics, Lakatos of 
making mathematics. This is why Lakatos’s first rule states: if you have a 
conjecture, set out to prove it and to disprove it. Both processes belong to 
scientific research.21 

3. MATHEMATICS AS REALLY REAL  

After this consideration of Pólya and his use of inductive methods of 
plausible reasoning in mathematics, we now move to a more general 
philosophical level, viz., that of mathematical empiricism. We will then 
discuss, in Section 4, one of the most original theorists of mathematics, and 
who has been explicitly inspired by the pedagogical perspective of Pólya, his 
fellow-countryman Imre Lakatos. As a starting point, remember that in 
Kant’s view, Euclidean geometry provided us with a priori knowledge about 
actual space. The development of non-Euclidean geometry was a first blow 
to this account; the availability of full-fledged alternatives allowed the 
dismissal of any exclusivity claim, at least until empirically verified. In any 
case, if Euclidean geometry could have then established its syntheticity, i.e., 
if it indeed had been shown to be a correct description of reality, it would 
have ceased to be a priori, and would have become a posteriori instead.  

In fact, something worse than that happened: the position of Euclidean 
geometry was further weakened by Einstein, who in 1916 actually made use 
of Riemannian geometry to arrive—in combination with the equations of his 
General Relativity Theory—at a cosmological model that did receive 
empirical approval. This not only confirmed the loss of Euclidean privileges 
as far as representing reality was concerned: the model was exposed as 
offering a plainly false picture of reality (at least on a cosmological scale).  
In reaction to this geometrical crisis, a turn towards arithmetization occurred 
in subsequent foundational studies. But what if, instead, mathematicians had 
rejected such a move as ad hoc, and decided rather to bite the bullet. Then 
empiricism would have perhaps turned out to be a most elegant alternative, 

 
20  Lakatos touches upon this in the case-study referred to Lakatos, 1976, 74. 
21  Kiss, 2002, 251. 
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for therein “the correctness or otherwise of [mathematical] results must be as 
much an empirical question as that of the correctness or otherwise of a 
scientific theory.”22 Another possibility, instead of reversing epistemic 
priority, is to consider geometry and arithmetic as distinct, logically 
independent disciplines, and to combine a different treatment of both. One 
might, e.g., become an empiricist in geometry, while safeguarding the a 
priori in arithmetic. While such a peculiar combination seems quite exotic, it 
is not to be excluded. Indeed, Brouwer and Poincaré might in some sense be 
considered representatives of this approach. In contrast, the empiricist 
attitude has almost invariably been defended in geometry and arithmetic 
alike (whether or not reducing one to the other).  

Scientists, in general, are in the business of describing and explaining the 
world as it appears to us. This necessarily includes some kind of grasp of the 
mechanisms at work beyond the merely apparent—i.e., what is immediately 
accessible via the senses only. Especially over the past few centuries, hand 
in hand with conceptual evolution, the invention and rising accuracy of all 
sorts of instruments have brought about an enormous improvement of both 
qualitative observation (e.g., the microscope and the telescope) and 
quantitative measurement (e.g., of temperature, pressure, weight, length, 
size, etc). Although for many, science has remained synonymous with 
natural or exact science, a recognition of the variety and complexity of 
phenomena to be systematically dealt with has resulted, at present, in 
dozens—if not hundreds—of disciplines and subdisciplines operating under 
its wings, including human and social sciences. While the latter’s object of 
study, human behavior (individually and collectively), belongs to the spatio-
temporal world as much as trees or planets do, its operating mechanisms 
remain largely concealed, buried deep down within such elusive things as 
the mind, culture, or society, there being far from even a beginning of 
consensus regarding the instruments and methods of properly charting them.  

Nevertheless, postulating an essential divide between the rock-certainty 
of the natural sciences and the speculative loose talk of humanities and 
sociology, is drawing too harsh a distinction. Recurring philosophical 
controversy about this matter, though seemingly fought over purely 
intellectual values, particularly Holy Truthfulness, also to a large extent 
thrives on strategic conflicts of interest regarding interconnected issues such 
as demonstrable usefulness (economical or other), appropriate recognition 
thereof, and—consequently—proper funding. While on the face of it this 
topic seems rather remote from any discussion of the nature of mathematics, 
it is nevertheless of importance in order to appreciate the distinction between 
two types of empiricism in the philosophy of mathematics. The original 

 
22  Tiles, 1996, 339. 
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conception, physicalism, to be discussed in the rest of this section, is about 
one and a half centuries old; the other, dialectalism, the topic of the section, 
is of more recent date.  

Physicalism, quite unsurprisingly, is the metaphysical theory that all is 
physical. As a philosophy of science, it holds that all meaningful discourse is 
expressible in the language of physics. The origin of the latter discipline lies 
in the materialistic tradition of the natural philosophers in ancient Greece, 
who replaced animist explanations of the world by theories describing 
observable, material, or natural processes. In its modern sense, physics is the 
result of a nineteenth century synthesis of some then existing disciplines, 
such as mechanics, optics, and electricity. Physics is the basic of the physical 
sciences, probing for the most fundamental laws of nature. Physicalism 
about mathematics, as pioneered by the father of utilitarianism, John Stuart 
Mill (1806-1873), implies that mathematics, the queen of the sciences,23 is 
considered an empirical science among all others—i.e., based on deduction 
from premises that have first been inductively established. Its particular task 
is capturing the most general properties of the world. Mathematical objects, 
then, at least the fundamental ones,24 are not real in any abstract sense, but 
really real, that is, in the most concrete of ways: they exist inside space-time, 
constituting properties of and relations between material things.25 
Consequently, physicalists denounce not just Platonism, but also two other 
popular positions: constructivism and conventionalism, as all of these defend 
a form of non-empirical or a priori access to, or at least characterization of, 
true mathematical knowledge (as explained very briefly in the introduction). 

Like Frege, although one of his fiercest opponents,26 Mill thought of 
conceptualism as confusing logic with psychology—i.e., propositions with 
judgments, and properties with ideas. The human mind, for him, could not 
be the innate seat of mathematical truth, as it was but another piece of 
nature. In contrast to versions of nominalism, he, like Hobbes, maintained 
the identificalness connotation and denotation of names. At the risk of being 
but a circular play-on-words, Mill believed, mathematics cannot be merely 
analytic: numerals connote attributes of aggregates while denoting the 
aggregates themselves, thus actually saying something about the world. 
Hence, for Mill, the real basis of mathematical knowledge was inference 

 
23  Such Gauss is reputed to have first called it. See Bell, 1938. 
24  Indeed Mill seems to have made the explicit distinction between “contingent” inductive 

generalizations and “necessary” deductive reasoning on the basis of them (Van Bendegem, 
1990). 

25  Bigelow, 1988, 1. 
26  In Frege’s Grundlagen (§7 and §23) is contained a bitter critique of the physical 

underpinning of arithmetic propagated by Mill. For a commentary see, e.g., Bigelow, 1988 
(§4) or Resnik, 1980 (Ch.4). 
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from observation, i.e., generalization, up to and including idealization. “In 
this sense, the propositions of geometry are inductive generalizations about 
possible physical figures drawn in physical space. They have been confirmed 
by long-standing experience.”27 Similarly, in arithmetic, numerals are 
general terms ranging over aggregates of ordinary objects.28 These are not 
unproblematic suppositions. Exactly how are the ideal mathematical objects, 
e.g., perfect figures and large numbers, to be derived from inherently limited 
human experience? The Millian line here seems to be that they aren’t, which 
brings out a very important facet of empiricism, when consequently thought 
through: fallibilism. This term, alleged to have been first coined by Charles 
Sanders Peirce (1839-1914),29 points at the circumstance that, even in 
science, we cannot be absolutely sure of anything, but rather can have only 
approximate knowledge. Why does mathematics nevertheless strike us as a 
priori and universally true? The empiricist’s answer is Humean: through 
repeated association of what co-emerges, we can hardly conceive things to 
be otherwise.  

Another related weakness of Mill’s account is apparently its limited 
scope. Because of a restriction as to what real human agents are capable of 
actually performing, “Mill only deals with geometry, arithmetic [little more 
than simple sums and differences, or what is learned in elementary school], 
and some algebra, not the branches of higher mathematics”.30 Present-day 
empiricists like Philip Kitcher or John Bigelow, therefore, are surely more 
liberal when it comes to characterizing idealization. “Instead of speaking of 
the collecting and constructing activities of actual humans, Kitcher speaks of 
the activities of fictitious constructors who do not share human limitations of 
time, space, attention-span, or even lifetime.”31 Bigelow, from his side, has 
developed a physicalist account of mathematics (and numbers in particular) 
as the theory of multiply located universals, extending at least over all 
primary qualities of material objects.32 The higher degree of contemporary 
sophistication is definitely connected with the considerable attention that is 
devoted today to the place and function of mathematics in the whole of 
scientific practice. Indeed, to consider mathematics as a science (good or 
bad) like the others, as naturalists do, should not imply epistemologically 

 
27  Shapiro, 2000, 94. For specific details on Mill’s conception of geometry, see Torretti, 

1984 (§4.1.1). 
28  See Kitcher, 1995 for an analysis. 
29  Peirce seems to have held a rather dubious position as far as mathematics was concerned, 

though. See, e.g., Goudge, 1969, 39-41, or Cooke, 2003. 
30  Shapiro, 2000, 100. 
31  Shapiro, 2000, 101; emphasis added. See Kitcher, 1983. 
32  As distinguished by John Locke in An Essay Concerning Human Understanding (1689), 

these include solidity, extension, figure, motion or rest, and number (Bigelow, 1988, 14). 
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and/or methodologically disconnecting it from these, as one particular 
naturalist (Maddy33) claims. After all, mathematical language is amply and 
ever increasingly used in the other sciences, natural, life, human, or social 
ones alike.34 

4. QUASI-EMPIRICISM OR DIALECTALISM  

The conception of quasi-empiricism in mathematics is usually ascribed to 
the Hungarian Imre Lakatos, born Lipschitz (1922-1974).35 Having served 
time, first in the Communist government, and then in a Communist jail, in 
1956 Lakatos fled to the West. After some years in Cambridge, in 1960 he 
became a lecturer at the London School of Economics, where he was 
associated with Karl Popper (1902-1994). Lakatos’s philosophy of 
mathematics is inextricably connected with his casestudy Proofs and 
Refutations: the Logic of Mathematical Discovery (PR; 1963-4), a series of 
papers extracted from his doctoral dissertation, edited and published 
posthumously in one volume in 1976.36 Its topic is Euler’s conjecture V-
E+F=2, the respective variables standing for the number of Vertices, Edges, 
and Faces of any polyhedron. In this section, we shall largely limit ourselves 
to commenting on the significance of this exercise in rational 
reconstruction, which reformulates the historical narrative in order to allow 
it to be tested against a proposed logical scheme of scientific progress. As 
the actual history therein gets relegated largely to the footnotes, Lakatos’s 

 
 33 See e.g., Maddy, 1997. 
34  Besides other sources mentioned, this section has substantially benefitted from 

Encyclopedia Britannica CD Multimedia Edition, 1999 (entry “Natural Sciences”); and 
Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge, 1998 (entry 
“Mill, John Stuart” by John Skorupski). For an elaborate review of some recent 
empiricists’ work, see Milne, 1994. 

35  Oliveri, 1997 (§2) includes the Kantian and Quinean conceptions as being quasi-empiricist 
in nature, meaning that they both strike a balance between the rational or a priori and the 
empirical or a posteriori. Although Lakatos has arguably drawn on some of Quine’s ideas 
(such as holism or underdetermination), none of these compromises shares with Lakatos’s 
version the feature of fallibility, a result of accepting mathematics as a science among the 
others, where what is considered truth and falsity evolves over time. Therefore, Oliveri 
proposes a definition of quasi-empiricism encompassing all these versions: “a 
mathematical theory is quasi-empirical just in case experience is indispensable to provide 
an account of the knowledge produced by it even though the statements of the theory are a 
priori true” (op.cit., 232). A more restrictive definition (op.cit., 234) then corresponds to 
the Lakatosian account, just leaving those theories quasi-empirical that are actually 
falsifiable (viz., in the sophisticated manner of Lakatos, 1972; see Section 5). 

36  Lakatos, 1976. 
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format has also disapprovingly been called footnote history. Below, in 
Section 5, we shall turn to a more thorough discussion of Lakatos’s 
rationalism about scientific progress. Many a present-day mathematical 
naturalist or humanist has been inspired either directly or indirectly by the 
Lakatosian body of thought. Therefore some core naturalist interests are 
foreshadowed here, most notably and generally, the primacy of mathematical 
practice over philosophical discourse about it. It is important to note right 
away, however, that Lakatos never developed a full-fledged philosophical 
program for mathematics himself. The simple reason for this is as mundane 
as can be: his untimely and sudden death. Although after PR he left the 
subject, to embrace more generally scientific concerns, there is clear 
evidence that he did plan to return to it in a systematic way.  

What makes Lakatos’s approach to mathematics, provisional as it might 
be, particularly salient, is its combination—or synthesis, if you will—of three 
major influences exerted on him: Hegel’s dialectics (mainly through George 
Lukács, back in Hungary), Popper’s falsificationism (in London), and 
Pólya’s plausibilism, highlighted in Section 2.37 The latter mathematician, 
who was largely responsible for the outspoken heuristical dimension to 
Lakatos’s approach, unwittingly suggested through his writings the topic for 
PR by describing Euler’s inductive derivation of the conjecture mentioned 
above. Lakatos picked it up there, and went on to look into the proof process 
as well (completing the casestudy, as it were). More generally, Pólya 
inspired Lakatos’s philosophical inclination to pay attention to the context of 
discovery. Indeed, for Lakatos, the proper way to evaluate mathematical 
heuristics—i.e., all the instruments put to use on the road to mathematical 
conjecture and proof, was through dialectics. As Lakatos confided in a letter 
to Max Wartowsky, he had the solemn wish to establish a well-founded 
dialectical school in the philosophy of mathematics.38 While in non-
dialectical logic attention remains restricted to static patterns of inference 
between propositions, students of the dialectical are also interested in 
conceptual dynamics. Accordingly, a dialectical philosophy of mathematics 
looks into what drives the argumentative development of mathematical 
concepts. PR prominently exhibits this in its dialogue form (a technique also 
forcefully exploited before by famous philosophers such as Plato, Berkeley, 
or Hume), staging the search for a proof for Euler’s formula as a classroom 
discussion between various (invariably brilliant) students representing 

 
37  This triple indebtedness was pointed out by Lakatos himself at the outset of his Ph.D., part 

of which would evolve into PR (Ernest, 1997, 117n2). 
38  See Larvor, 1998, or 2001, 9 resp 212. 
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different positions in the debate.39 In the course of this discussion, two 
modes of conceptual refinement surface (specifically in the definition of 
polyhedron): the presenting of a novel kind of geometrical object (involving 
the famous monster-barring, or dismissing certain constructions as genuine 
polyhedra),40 and the proposing of a novel kind of proof (involving new 
techniques that allow the incorporation of local counterexamples or guilty 
lemmas into the conjecture as conditions). 

The point about the fallibility of mathematics as an epistemological 
endeavor connects Lakatos’s account with his London teacher and colleague 
Popper and with empiricism, the general topic of the previous section. 
Lakatos explicitly tackled this topic in the paper A Renaissance of 
Empiricism in the Recent Philosophy of Mathematics (1967),41 in which he 
affirmed not that mathematics is exactly like the rest of a posteriori science 
(i.e., the rarely defended Millian position), but that it is in any case much like 
it. More particularly, it is liable to the Popperian upward flow of falsity 
rather than to the Euclidean downward flow of truth (as defended by the big 
foundational programs). This in order to accord it with the more refined—
Hegelian—dialectical mechanism of informal negotiation, a mechanism 
which involves—Pólyan—heuristic falsifiers (e.g., lack of generality or 
explanatory power),42 as described in PR. Consequently, for Lakatos, 
mathematics is a quasi-empirical science. Popper’s influence on PR is 
clearly acknowledged by the work’s title and subtitle, which 
straightforwardly suggest an application to mathematics of both Popper’s 
Conjectures and Refutations (1963) and The Logic of Scientific Discovery 
(1959).43 In these works Popper first set out his general method of 
conjectures and refutations, depicting good science as a maximally 
vulnerable thus fallible enterprise, open to disconfirmation at any point and 
time. In other words, potential falsification is more important than is 

 
39  “Alpha is a constant creator of counterexamples to Euler’s Theorem; Beta and Sigma 

represent methodological aspects of both Cauchy’s and Abel’s mathematics, a method 
Lakatos calls ‘exception-barring’, and which plays, he argues, a key role in the 
mathematics of the nineteenth century; Delta is a ‘monster-barrer’ who repeatedly 
contracts and redefines his definitions of polyhedra when faced with Alpha’s 
counterexamples; Lambda is the spokesman for lemma-incorporation; and so on” 
(Kadvany, 1995, 265). 

40  ‘Exception-barring’ is a variant whereby polyhedra, although accepted as genuine, are 
excluded from the field of application of the theorem (e.g., concave ones). 

41  Lakatos, 1998. 
42  For the latter topic, see, e.g., Sandborg, 1998, and Mancosu, 2000, commenting and 

expanding on the few earlier philosophical treatments (involving Steiner, Kitcher, and 
Resnik). 

43  Popper, 1978, and 2002. 
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verification or, in the case of mathematics, proof.44 

As a result of all this, Lakatos’s approach can be rightfully considered as 
a synthesis of at least these three complementary essential influences: 
fallibilism (Popper), methodology (Pólya), and intersubjectivity (Hegel). In 
his own words: “Its modest aim is to elaborate the point that informal, quasi-
empirical, mathematics does not grow through a monotonous increase of the 
number of indubitably established theorems but through the incessant 
improvement of guesses by speculation and criticism, by the logic of proofs 
and refutations.”45 Indeed, an important ingredient is the bringing to the fore 
of aspects belonging to what we introduced above as the context of 
mathematical discovery, involving the informal or productive phases of 
doing mathematics, which precede its formal or evaluative stage (i.e., the 
context of justification). Note that for Lakatos, it is perfectly possible to 
speak of progress in this context. In other words, it is liable to rational 
philosophical inquiry, and is not to be left to “relativist” treatments by 
psychologists and/or sociologists. “An investigation of informal mathematics 
will yield a rich situational logic for working mathematicians, a situational 
logic which is neither mechanical nor irrational, but which cannot be 
recognized and still less, stimulated, by the formalist philosophy.”46 That is, 
for formalism, informal mathematics, being neither tautological nor 
empirical, is meaningless. “Formalism [the obvious target of PR] 
disconnects the history of mathematics from the philosophy of mathematics, 
since, according to the formalist conception of mathematics, there is no 
history of mathematics proper. [. . . ] Under the present dominance of 
formalism, one is tempted to paraphrase Kant: the history of mathematics, 
lacking the guidance of philosophy, has become blind, while the philosophy 
of mathematics, turning its back on the most intriguing phenomena in the 
history of mathematics, has become empty.”47 Through the latter famous 
adaption of Kant, “Lakatos indicated that the classical theories in the 
philosophy of mathematics are not adequate with respect to actual research 
practice and proposed a new model being closer to that practice.”48 This 
touches upon a very important point. Although Lakatos’s philosophy of 

 
44  No picture of Popper’s own philosophy of mathematics is aimed at here. See, e.g., Glas, 

2001a and 2001b. Glas argues, among other things, that there is certainly more to Popper’s 
philosophy of mathematics than its merely having served as an inspiration for Lakatos, 
who transposed Popper’s fallibility thesis from science to mathematics. Particularly, Glas 
claims that despite his “third world” theory Popper already was a mathematical fallibilist 
himself. 

45  Lakatos, 1976, 5. 
46  Lakatos, 1976, 4. 
47  Lakatos, 1976, 1-2; original emphasis. 
48  Murawski, 1999, 18. 
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mathematics is generally identified with or reduced to fallibilism, there is 
something much more fundamental about it, viz., its “having turned 
philosophical attention to what one might call the inner life of 
mathematics,”49 —mathematical practice. 

5. LAKATOSIAN RESEARCH PROGRAMS  

In the previous section, we introduced Lakatos’s Proofs and Refutations 
(PR), leading mathematical theories from the initial phase of naive 
conjecturing, through various stages of proof re-examination, finally to yield 
complex, proof-generated theorems.50 As was indicated there, this was not at 
all supposed to be the end of it; for Lakatos, by the time of his premature 
death, still dreamt of founding a proper dialectical school in the philosophy 
of mathematics. In it, Lakatos would have probably wished to distinguish a 
further phase in the development of mathematical theories, viz., that of their 
maturity, past the seemingly directionless PR-scheme. That is, as he had 
done for science in general (apparently under the influence of Kuhn), he 
would have defined research programs, embodying a particular logic of 
mathematical discovery—i.e., mathematical methodology put on rational 
footings. Following Pólya but contra Popper, Lakatos held that both 
justification and discovery are liable to logical investigation,51 while 
following Popper but contra Pólya, he stripped discovery of its strictly 
inductive character at the conjectural phase, and was concerned also with the 
deductive flow of truth (or rather falsity) through constructing actual proofs. 
Further developing this discovery phase as rational could keep fallibilism—
the presumed primacy of the informal—from lapsing into skepticism, or 
Kuhnian relativist excesses. Still hypothetically speaking, this is also where 
Lakatos would have been able to firmly couple his criticism of the 
foundationalist approach with having mathematics epistemologically fall 
into place as a non-exceptional part of the general scientific endeavor.52 

Lakatosian research programs, as conceived in the lengthy paper 
Falsification and the Methodology of Scientific Research Programmes 

 
49  Larvor, 2001, 213. 
50  For an overview of the seven different stages, see Lakatos, 1976, 127-8. For some critical 

appraisals, see Currie, 1979, Feferman, 1998, or Steiner, 1983. 
51  “[H]is research demonstrates convincingly that mathematical discovery not only belongs 

to the field of psychological analysis but also can be analysed rationally” (Yuxin, 1990, 
382). 

52  Yuxin, 1990, 388. 
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(MSRP; 1970),53 consist of a hard core of laws never to be given up without 
dissolving the program, and a protective belt of laws which on the contrary 
can be fiddled with in the light of recalcitrant experience. Also adhering to a 
research program, are negative and positive heuristics, together constituting 
its inherent methodology: keeping the hard core from being affected, and 
driving the protective belt to pro-actively develop itself (i.e., heuristic 
progress), respectively.54 The result has been called a synthesis of Popper’s 
and Kuhn’s philosophies of science, but also clearly steers away from both. 
As opposed to Popperian “naive” falsification, theories are not abandoned 
just like that. They are part of a historical chain situated within a more 
sophisticated program that is engaged in a competition with rival ones. For 
Popper no alternatives need be available in order to refute theories. As 
opposed to Kuhnian revolutions or Gestalt-switches between successive 
incommensurable paradigms, then, past the pre-scientific stage, old research 
programs are not necessarily overturned by new ones, but may continue to 
exist next to these, even when (apparently) superseded.55 This points to a 
moderately rationalistic caliber: although there are normative reasons for 
preferring a paradigm (which means they are in principle comparable), not 
all scholars will necessarily agree on what criteria are in play and/or 
dominantly important; this mitigates the rational element, allowing for 
psychological and/or sociological influences, without however lapsing into 
total irrationality. Also, with regard to mathematics, “MSRP was [the later] 
Lakatos’s answer to the extreme sceptics. Rational reconstructions are 
Lakatos’s main tool to defend both the fallibility of mathematical knowledge 
and the rationality of its development.”56 

A number of elaborations of MSRP into the field of mathematics have 
been attempted, e.g., by Hallett, Glas, and Koetsier.57 We shall have a 
combined look into the latter two. As a starting point, it should be 
understood that Lakatos saw a continuity between PR and MSRP, as he saw 
isolated theories gradually turn into mathematical research programs. Basic 
to this process are the lemmas (including conjectures) that are not refuted in 
the course of applying the method of proofs and refutations. They develop 

 
53  Lakatos, 1972, originally published in the volume ensuing from the Popper-Kuhn debate 

organized by Lakatos in the late 1960s, and a modified version of the 1968 paper of this 
title published in Proceedings of the Aristotelian Society 69: 149-86. 

54  Lakatos considers Newton’s celestial mechanics as exemplary for his proposed 
methodology. 

55  Koetsier, 2002, (§4.2) develops the mathematical example of the major rivaling 
foundational programs of the early twentieth century: logicism, intuitionism, and 
formalism. 

56  Koetsier, 2002, 189. 
57  Hallett, 1979a and, 1979b, Glas, 1995, Koetsier, 1991. 
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into axioms, to form the hard core of the research program, to which no 
straightforward contradiction is any longer possible. Through mechanisms 
forming the so-called negative heuristic, any topic for discussion is relegated 
to the protective belt of auxiliary hypotheses and concepts. On the other 
hand, the method of concept stretching induced by producing counter-
examples is a PR-forerunner of the “positive” heuristic in MSRP.58 This 
continuity claim however raises a difficult issue: that of the level at which 
research programs operate. Lakatos himself apparently wavered between 
situating them at a higher-order level, e.g., like Kuhn, that of the discipline 
(where the central MSRP concepts are however extremely hard to 
operationalize), or rather at some lower level in between that of research 
branch and individual theories, viz., consisting of a cluster of the latter 
(which seems more plausible).59 Whatever Lakatos’s intentions, it seems 
clear that actual patterns of development are more diverse and intricate than 
would allow for a simple choice between these two levels (which would 
perhaps suggest a pluralistic stance).  

In relation to this, Glas considers the main reason MSRP resists 
straightforward application, especially to mathematics, is that it is too 
restrictive, and leaves a vital discrepancy between actual history and a 
rationally reconstructed one.60 In the light of various cases developed by him, 
Glas maintains that theories do not develop as autonomously as Lakatos 
would have us believe, and that external factors are more important than is 
allowed for by his framework.  

Lakatos’s methodology is aimed, not at historiographic explanations of 
scientific development, but at the rational reconstruction of what is 
considered to be its [Popperian] third-world equivalent, to which alone 
methodological standards apply. Methodology has itself to be appraised 
by the extent to which it is able to perform this task without having to 
appeal to factors that are external to it, hence non-rational by its intrinsic 
methodological standards. Internal history in this—unusual—sense is 
said to be self-sufficient, and external history irrelevant for understanding 
the growth of disembodied objective knowledge. The Lakatosian 
reconstruction of the history of science and mathematics presupposes that 
its rational aspect is fully accountable by the logic of discovery, whereas 
external factors are invoked only for the non-rational explanation of the 

 
58  Glas, 1995 (§1), Yuxin, 1990 (§2.2). 
59  Kvasz, 2002 (§3.1). 
60  Glas, 1995. 
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remaining discrepancies between real history and its rationally 
reconstructed logical substitute.61 

Although Lakatos, in translating Kuhn’s findings, derevolutionizes the 
latter account, assimilating problems by patching up existing programs 
rather than allowing crises to erupt (which in the case of mathematics makes 
no difference anyway, as Kuhn was a disbeliever in this), we find this 
accusation of implicit internalism and weak sociology, thus concealed 
apriorism, a bit exaggerated. Conversely, we think Lakatos’s framework, 
when elaborated, does offer opportunities for a genuine naturalist 
philosophical treatment, potentially offering a well-balanced place to both 
empirical findings about mathematical practice and its epistemological 
assessment, thus steering between both extremes of externalist contingency 
and internalist normativity. Of course Lakatos should then be taken as an 
important source of inspiration, calling for an abandonment of linear and 
cumulative historiography. This other, more favorable approach is not 
incompatible with a critical one. This is even suggested by Glas himself. He 
notes that, while perhaps working very well within research, MSRP fails to 
account for the so-called rational comparison across research programs, 
which leads to their overtaking one another. This would be particularly the 
case for criteria concerning the social (e.g., educational) functionality of 
mathematical programs. Thus factors seem to be in play that cannot be 
accounted for from within Lakatos’s internalistic framework. Yet, as Glas 
himself recognizes,62 this was implicitly admitted by Lakatos. “So the 
Lakatosian methodological perspective must at least be complemented by a 
socio-historical perspective in the Kuhnian vein in order to account for the 
latter sort of changes [i.e., meta-level innovations drawing upon different 
programs].”63 The seemingly strict separation between the rational and the 
social awaits annihilation (as, for another also does Kuhn’s separation 
between the locally and the globally social).  

Clearly that young mathematicians do not enter the immense field of 
inquiry just like that, but rather choose a particular segment of it. Therefore, 
some additional structure seems to be called for on top of Lakatos’s (and 
Pólya’s) low-level heuristics of proving and refuting. To begin to 
accommodate threatening confusion and/or deadlock with respect to MSRP, 
as far as this larger structure is concerned, Teun Koetsier has proposed an 
alternative to the later Lakatos account: distinguishing, instead of programs, 
research projects and traditions, a kind of enriching differentiation which we 
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think—at least in principle—should be applauded from a descriptive point of 
view.64 A research tradition, operating on the macro level, carries general 
assumptions about the appropriate objects and methods of study; while a 
research project, operating on an intermediate level, sets a specific agenda of 
goals and tools.65 On both levels, a methodology of mathematical research 
traditions is at work, driving progress through the favoring of traditions and 
projects that generate important and likely-to-be-solved conjectures, and 
then going on to actually succeed in proving or refuting these. Some 
examples will be given below.  

As he concedes, Koetsier is indebted to a large extent to the ideas of 
philosopher of science Larry Laudan, a leading figure, with Lakatos, in the 
kind of approach which blends, in the wake of Kuhn, historicity with 
rationality. Because of their clinging to the latter, and in view of their 
avoidance of reflexivity (i.e., the application of a proposed methodology to 
one’s own theorizing), both Laudan and Lakatos might still be considered by 
naturalistic purists (or extremists), proto-naturalists.66 On the other hand, 
both, in their account of scientific practice, are trying to strike a balance 
between the normative and the descriptive, a quite reasonable endeavor, in 
our estimate. In putting forward specific criteria for measuring scientific 
rationality or progress, they propose metamethodologies (a term coined by 
Lakatos), that is, epistemologies of methodology. For Laudan, the criterion 
of whether to pursue (as distinguished from accept) a specific research 
program is its problem-solving effectiveness, as determined by a weighted 
comparison of solved vs. outstanding problems in the discipline under 
consideration.67  

Laudan has called his scientific epistemology normative naturalism, and 
has contrasted it to Lakatos’s historicism.68 Science, following the latter, 
embodies its own rationality through the actual methodologies applied in 
subsequent stages of inquiry, this process being philosophically 
reconstructible independent of any prior theory of rationality. This indeed 
turns out to be quite in line with Kuhn’s proposal, at least to the extent that 
the history of science is self-justifying, and thus provides test cases for any 
supplementary philosophical theorizing. Where (Kuhn and Lakatos) diverge 
is on whether or not this history is a rational or progressive one. From the 
early Kuhn, one might go one of two ways: embracing relativism, a line 
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suggested by the early Kuhn (and fully endorsed by Paul Feyerabend, among 
others),69 or seeing regular restrictions as being implicitly imposed on past 
practice and therefore being of interest to future practice, an idea which is 
more compatible with the later Kuhn’s partial return to the a priori, and 
which would then roughly correspond to the option followed by Lakatos, in 
devising his MSRP.  

Normative naturalism, in contrast, “is a prescriptive enterprise whose 
acknowledged aim is to uncover standards for the appraisal of scientific 
theories and explanations, and to specify conditions under which theory-
replacement constitutes progress.”70 The normative naturalist, following the 
author of this characterization, John Losee, holds that such standards, first, 
arise from within the practice of science itself; and second, have provisional 
status only, depending on future developments in the field (included in this 
school are Otto Neurath and Philip Kitcher). Returning to Koetsier then, his 
embracing of rationality is indeed not so much reconstructionist as 
Laudanesque, meaning that what is rational is understood in terms of what 
induces actual progress (i.e., concrete problem-solving effectiveness), 
instead of the other way round.  

As far as major scientific shifts are concerned, ever since Kuhn, the mere 
mention of research traditions (or paradigms, or the like) has invariably 
raised questions about alleged revolutions. The nice thing about Koetsier’s 
approach is that, unlike Lakatos, it remains impartial on this issue, as 
progress as such is its crucial point, whether revolutionary or not. In his 
book, Koetsier has himself worked out some historical case studies on 
transitions between research traditions, both from ancient Greek and modern 
mathematics. Various transitional episodes are accounted for: in Greece, 
from a practical, demonstrative tradition to the axiomatic, Euclidean one; in 
modern times, from the latter one to seventeenth-century geometrical, 
eighteenth-century formalist, and nineteenth-century conceptual ones in the 
calculus. In the first half of the twentieth century, the most important 
research tradition is claimed to have been the Bourbaki structuralist one. 
Examples of research projects (explicitly likened to Kuhn’s paradigms as 
exemplars) include Lagrange’s and Weierstrass’s analytic schools, part of, or 
even dominating, the formalist and conceptualist traditions referred to above; 
and more recently, Gorenstein’s classification project, revolving around 
finite simple groups. 

In view of present-day mathematics (a topic largely neglected by 
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philosophers), David Corfield—who in his turn has put Lakatos to the test—
judges that neither Glas (calling to externalize MSRP) nor Koetsier 
(complicating it) have fully succeeded in their reappraisal of Lakatos’s 
account. The former does not consider the higher-level interaction between 
different programs and also seems to put a rather unilateral stress on outside 
determinants; while for Corfield the ludic character of mathematics, i.e., 
mathematicians fooling around without any external concerns, should not be 
neglected. Instead, Corfield urges us to simultaneously appreciate internal 
and external factors and also attend to the interweaving of theories, when 
devising a theory of mathematical practice.71 Koetsier, in his turn, although 
being applauded for proposing a more complex methodological schema, is 
said not to have pushed this exercise far enough.72 For one thing, his 
formulation in terms of conjectures and theorems seems to have become 
outdated by now. “Other candidates for signs of progress include the 
reorganization of existing bodies of work and the production of new 
techniques to solve problems which need not be theorems.”73 As for the 
classification with traditions and projects, variation is said to be still 
insufficient. For example, for the twentieth century, structuralism is 
presented as virtually the one remaining tradition, “and so the term ‘research 
project’ is left to do an immense amount of work. In effect it has to describe 
all the developments that have occurred since, say, the 1930s. [. . . ] Why not 
then allow for three levels—tradition, program, and project—each of which 
may fade away through lack of results or be superseded or swallowed up by 
a rival, the latter two also being able to spur new developments in the next 
higher level.”74 Corfield gives the forceful example of Category Theory, 
which “began as a project to study continuous mapping within the program 
of algebraic topology, has since become a program in its own right, and is 
challenging set theory to become the language of the dominant tradition”.75  

As for the original Lakatosian MSRP, Corfield, in view of the 
developments in algebraic topology, i.e., the field of Euler’s conjecture 
treated by Lakatos in PR, deems it extremely hard to hold on to, especially 
its conception of a hard core of immutable beliefs.76 The reason is that so-
called homology theories were fairly easily admitted into the field, despite 
their being in utter contradiction with its basic axioms. Therefore, Corfield 
suggests, instead of maintaining a strict policy of admission to the hard core 
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(viz., only allowing axioms), we ought to move towards a wider notion, and 
thus pass “from seeing a mathematical theory as a collection of statements 
making truth claims, to seeing it as the clarification and elaboration of 
certain central ideas by providing definitions to isolate classes of relevant 
entities and ways of categorizing and organizing information about 
entities.”77 This proposed shift involves an important role for the concepts of 
model or construction, in the sense that what is of primary importance is not 
so much whether a particular formal system can be established as true or 
false but what a system contributes to providing interesting models or 
valuable constructions. Through loosening the conception of the hard core, 
for Corfield, room could also be made for taking into consideration 
metaphysical or higher-level beliefs and/or aims (such as understanding), 
thus mutually approaching hard core and heuristics. After all, he remarks, 
“not all research programs are launched by the progressive understanding 
generated by improved attempts at solving a single conjecture.”78 Some, that 
is, are to serve more general purposes, such as refining the conceptual 
apparatus or deepening existing theoretical insights.79 

6. CONCLUSION  

Let us sum up. Lakatos attacked the logical approach to mathematics, which 
has been entirely focused on laying bare the time- and culture-independent, 
rational nature of the enterprise. The problem is that if such a stance were 
really to provide a truthful picture of current (or even ideal) affairs, then it 
would become simply impossible to account for various past (or alternative) 
methods, as these would be deemed utterly irrational from this presentist 
perspective. Lakatos proposed to solve this tension by philosophically 
embracing the historicity of mathematics—conceptual development, as part 
and parcel of genuine practice. Instead of mathematics being cumulative in 
its dynamics, room was now being made for error and improvement, through 
the rational dialectics of PR. In particular, although mathematical knowledge 
cannot be refuted in view of recalcitrant experience, it can be informally 
attacked and thus driven to further refinement or progress (improvement of 
proofs and techniques). Lakatos later developed a framework suited to 
account for this circumstance: MSRP. As applied to mathematics (which it 
never was, at least by him), it would ideally have been “intended to be 
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normative of good mathematical practice,”80 viz., able to explain or 
rationally reconstruct more of the actual history of mathematics than any of 
its rivals. Lakatos did not bring about a radical break with past logical 
approaches, however; for methodically reconstructed, not actual, history was 
his testing ground, thereby explaining real history. On the other hand, he did 
turn out to be a major source of inspiration for philosophers to embrace 
socio-historically tinted approaches to mathematics, and thus is clearly one 
of the major initiators of the externalist tradition that has philosophically 
translated the Kuhnian principles to mathematics, this former “paragon of 
certitude” (Hilbert).  

In conclusion, one might be left with the impression of being stuck in the 
middle with Lakatos. “To some [. . .], Lakatos did not go far enough because 
he only partially admitted social, cultural, and other contingent factors into 
his philosophy of mathematics. Others would view his halting at the 
boundary of rationality as a strength, thereby avoiding a slide into 
sociologism.”81 Since fallibilism was the most distinctive feature of his 
philosophy of mathematics, at the very least “Lakatos might be considered to 
have potentially freed the philosophy of mathematics to reconsider its 
function, as well as to question the hitherto unchallenged status of 
mathematical truth.”82 It is then up to his students to develop and adapt his 
uncompleted views to better fit present-day meta-scientific insights. With 
Glas, Koetsier, and Corfield, we have briefly pointed out some possible 
directions. In any case, to reconnect with the original issue of mathematical 
education, we hope to have shown what was, after all, at stake: viz., that at 
the very basis of Lakatos’s quasi-empiricist philosophical excavations lay a 
central concern, shown through his affinities with Pólya, for the pedagogical 
principles surrounding the informal phases of mathematical inquiry 
(heuristics). This suggests that the development of humanistic mathematics 
is indeed not at all unconnected from the educational dimension—i.e., from 
teaching and learning it. 
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INTERLUDE 9 
 
 
 
There was a time—although in private we think this time has never really 
ceased—when the question “Is God a mathematician?” was considered a 
serious conundrum whose answer would reveal deep truths about the world, 
ourselves, and God. Bart Van Kerkhove already made clear in his paper that 
in our mathematics we need not necessarily reserve a place for God; or, to 
quote a famous mathematician, “If God has mathematics of His own, let 
Him do it Himself.” Well, at least not in the mathematics we actually 
practice, as he tried to show.  

Did you notice the curious term we used in the paragraph above? We 
spoke about our mathematics. Does that make sense? To paraphrase 
Wittgenstein, what can you possibly mean if you are saying that “2 + 2 = 4 
in Ghent on Friday the 22nd of July, 2007 at 8:00 pm?” But we do know that 
different cultures have different mathematics. So it does make sense to speak 
about ours and theirs. Unfortunately to many it also makes sense to 
conclude, on the premise that there can be only one mathematics, that there 
should really be an orderly relation among the different kinds of 
mathematical systems. Or, to put it bluntly and in semi-formal language to 
increase its credibility: ours > theirs. 

There is an alternative way to formulate what we are claiming here. The 
question “Is God a mathematician?” should really read “Is God a 
Mathematician?” In other words, using the well known device of Alan 
Bishop, perhaps it is all right that “God is a Mathematician” with a capital 
M, but does it make sense to ask “Is God a mathematician?” with a small m. 
Is it not much more meaningful to talk about all the diverse forms of 
mathematics with small m and to reserve in a very specific niche of its own, 
our Mathematics with capital M? Therefore, we have no orderly relation, but 
rather a network of mutually inspiring systems and/or practices of 
mathematics, each one forcing us to reflect about what a mathematics 
education could be like, should be like, but usually isn’t. Nevertheless, the 
contribution of Rik Pinxten and Karen François shows us that it is not an 
impossible task to transform, at least for once, could and should into is. 
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Rik Pinxten and Karen François 
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Abstract: In this paper we elaborate on the difference Bishop made between 
mathematics with a capital M and mathematics with a small m. The relation 
between M and m is far from clear and, confronted with the task of teaching 
mathematics, the problem only sharpens. In the first section 
(Ethnomathematics) we give a brief presentation of the critical role of 
mathematics. We make clear that we should be conscious of the institutional 
aspects of mathematical learning and teaching. Mathematics education always 
takes place in an institutional context, e.g. the school context. The point is that 
mathematical learning or thinking is contextual in any living culture; it lives 
and develops and is used in a particular cultural context. We make a plea to 
consciously and explicitly seize and actively practice these different world 
views, to have pupils attain a level of comprehension and sophistication.  This 
practice should be an ingrained part, implicitly or unconsciously, of the 
curriculum of mathematics. In the second section (Empirical Facts) we offer 
some suggestions about the practical use of ethnomathematics in the 
classroom, taking as a starting point examples of field research among the 
Navajo Indians (in the U.S.) and among the Turkish ethnic minority (in 
Belgium). 

Key words:  Ethnomathematics, Navajo Indians, Turkish ethnic minority, Hooghan 

1. INTRODUCTION 

Bishop (1988a) rightly stressed the difference between M(athematics) and 
m(athematics). M is mathematics as it is known and developed as a scientific 
discipline, for example at universities. In other words, it is the mathematical 
knowledge of the mathematician and of the highly specialised student in 
physics or engineering. Opposed to this is m as the set of skills and 
procedures to count, to measure, and the like, which an individual uses in 
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daily life. There is probably a certain degree of overlap between them, but on 
the whole the relation between M and m is far from clear. In mathematics 
education this problem is posed even more poignantly: should we accept the 
idea that the mathematician’s M ought to be learned by everyone, or should 
we develop the m in the subjects’ culture through our mathematics classes? 
Are these choices exclusive, as is often said? We will offer some suggestions 
about this matter, taking as a starting point examples of field research among 
the Navajo Indians in the U.S. and among the Turkish ethnic minority in 
Belgium. 

2. ETHNOMATHEMATICS 

Partly because of the growing crisis in mathematics education and partly 
because of fundamental problems in the so-called absolutist views in the 
foundations of mathematics, a naturalist theory of mathematical knowledge 
is currently gaining the field. The absolutist views regarding mathematics 
(formalism, logicism, and constructivism; see Ernest 1991) claim that M 
knowledge is a priori and indisputable. They believe that mathematically 
true statements are always logically deducted from a priori or given 
propositions. According to this school, empirical reality does not intervene. 
Consequently, mathematics education had better follow the structure of M 
and initiate pupils in the deductive and thus fundamentally decontextualized 
(or not reality-bound) knowledge of the mathematical field. Ideally, one can 
start by teaching the concepts and the procedures belonging to the basement 
of the mathematical building (e.g., set theory), and logically continue 
climbing up to every next floor (e.g., arithmetic, algebra, etc.). The 
philosophy of the so-called “Modern Mathematics” (in programmed form or 
otherwise) is the most radical version of this view. The concepts and 
procedures of m are then regarded as “bad mathematics”, false procedures, 
or at best pre-scientific versions of M. They need to be stamped out or 
thoroughly corrected by education. 

An alternative view of M is now gradually developing. The failure of the 
absolutist foundation approaches (shown by Gödel, but also proved by the 
contradictions within absolutist visions: see Ernest 1991) and the increasing 
collapse of mathematics education programs have given rise to more 
naturalistic theories about mathematical knowledge. One theory argues that 
mathematics can be seen as essentially a symbolical technology (Bishop 
1988a, 18), based on skills or environmental activities of a cultural nature. 
Another theory is rightly labelled ethnomathematics, as we see it. In general, 
proponents of the naturalistic approach claim that mathematical knowledge 
(including insights and intuitions of M) is rooted in the cultural context of 
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the knower. Knowledge in general—and mathematical knowledge in 
particular—is cultural and contextual by nature (Pinxten 1992). One 
consequence of this position is that M, in a way that is not trivial, builds on 
and is led by concepts and intuitions of m: empirical facts, arguments and 
even action procedures of someone’s culture provide the real contextual 
foundation for M. The rest of this article will focus on this perspective of 
mathematics only. 

One question which automatically crops up in relation to such an 
approach to mathematics is: what is m like? It is this selfsame question that 
the chief part of ethnomathematics seeks to answer. In our world, in all 
cultures that we know of, people develop activities which lay the 
foundations for formal or mathematical knowledge. Bishop (1988a and 
1988b) distinguishes six different types of activities: counting, locating in 
space, measuring, drawing, playing, and explaining. Different cultures 
engage in and develop these activities in different ways, and the study of 
particular forms in each culture will yield an insight into mathematical skills 
and the ways that they are exercised and learned in those cultures.  

Over the years various researchers have discovered and documented one 
or more of these activities in a multitude of cultures. Some early works 
include, of course Zaslavsky’s (1973) about counting in Africa, and 
Needham’s monumental volume about algebra and geomancy in Old China 
(1965). Lancy (1983) offers interesting information about Papua skills and 
traditions, and I myself (Pinxten) have mainly concentrated on spatial 
knowledge and theory of forms among Navajo Indians (Pinxten et al. 1983 
and 1987). 

The first comprehensive work in this field is the outstanding book by M. 
Ascher (1991). Ascher is obviously a mathematician and not a social 
scientist (like Lancy and me). Her approach therefore starts from a deep 
insight into M. Being rooted in this disciplinary background, she selects the 
concepts and skills in our mathematical experience which seem most 
relevant and interprets other cultures’ varied activities and knowledge in this 
light. In this manner, numerical understanding (and not just counting as an 
activity), for example, is studied as an implicit or explicit concept in various 
cultural phenomena. Ascher develops an deep-structural analysis, beyond the 
mere description of terminology and actions which numbers express in a 
cultural community, and thereby shows how numbers operate in observable 
cultural phenomena. The same goes for graphs: complex drawings of so-
called geometrical figures in the sand are systematically analyzed as an 
example of the use of graphs; spatial conduct, geometrical decorations, the 
logic of family relations and diverse other cultural phenomena are thus 
described and explained on the basis of mathematical concepts and 
procedures that are used or expressed through them. In our opinion, the 
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importance of Ascher’s work is twofold. In the first place, she develops a 
complement to the social-scientific studies in this domain: instead of 
describing phenomena in terms of the subjects’ culture or psychology, she 
takes the other road and describes the cultural and psychological givens as 
ways to tackle the mathematical problems which she recognizes. This adds 
another dimension to the soft approach of anthropologists and psychologists. 
In the second place, we recognize a solid bridge between M and m in her 
work. Indeed, where social scientists have given detailed descriptions of at 
least part of m (i.e., the mathematical knowledge of the layperson in a 
particular culture), Ascher provides a reinterpretation of these facts in terms 
of M (i.e., the concepts of mathematics as a discipline) and demonstrates 
how m and M can be linked to one another. This allows for the development 
of an explicit relation. In other words, an educational program can be set up 
which would lead learners from their m to M. This perspective takes 
D’Ambrosio’s (1987) broad aim one step further: the scheme can finally be 
implemented. It is with regard to this that this current work wishes to make a 
small modification. 

3. EMPIRICAL FACTS: NAVAJO INDIANS  
AND THE TURKISH ETHNIC MINORITY 

In 1976-1977 and 1981, fieldwork was undertaken (together with Ingrid van 
Dooren: Pinxten et al. 1987) which led to a curriculum booklet for geometry 
teaching among Navajo Indians. Facts about the Turkish ethnic minority and 
their spatial knowledge were mainly collected by Marijke Huvenne, an 
assistant for a project of immigrant studies in our department (University of 
Ghent).  

3.1 Navajo Material 

During our research on Navajo Indians’ spatial knowledge, various things 
struck us. Navajo experience their world as a fundamentally dynamic world: 
nothing is still, in fact, there is only movement and change. Their world 
consists of events and processes, whereas ours consists first and foremost of 
situations and objects.  

There is a correlate in the language: Navajo language expresses almost 
everything in verb forms, whereas Indo-European languages make a 
distinction between (pro)nouns and verbs. In Navajo the verb to go is 
conjugated in no less than 300,000 ways, yet there is no counterpart for to 
be. Many aspects of the language describe a myriad of ways in which actions 
begin, stop, are repeated, etc. As a consequence of this manner of speaking 
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and thinking Navajo do not use a part-whole logic in their world view. In 
Western views this logic is the basis of our formal (and daily) thinking: we 
see the world of experience as a whole which can be split up in many parts. 
We thus tackle a problem by splitting it into parts that are easier to deal with. 
The sum of all partial solutions then leads us to the answer to the whole 
problem. In mathematics education, too, this part-whole characteristic of our 
world view is very prominent: set theory distinguishes between the set (the 
whole) and its elements (parts), with special operations defined for both; in 
geometry, a line is the set of all points; etc. In the Navajo world view such 
part-whole reasoning is non-existent. 

A second characteristic is that Navajo concepts of space and forms are 
almost always determined by movements or shifts: a limit or side is not a 
line, but an obstacle which modifies a running act (like stopping, 
transgressing, etc.); distances are thought of in terms of running or moving 
and of specific characteristics of landscape. In the curriculum booklet on 
theory of forms which we have developed, these specific emphases are 
incorporated thoroughly. As we take the naturalist view of mathematical 
knowledge to be the most sensible, the booklet explicitly and consciously 
starts with the spatial “world as it is experienced by the Navajo children.” So 
we selected different contexts of experience in the children’s preschool 
cognitive world and worked with these to spur them on toward a more 
sophisticated geometrical cognitive development. The difference in detail 
between this and existing ethnomathematical propositions is that we propose 
to take the autochthonous categories seriously and to develop, practices, and 
refine them as much as possible. This could take many years of training, 
wherein only the Navajo language and Navajo concepts of space and form 
are dealt with. Only after this period, and on the basis of the insights which 
have by then become conscious in one’s own spatial perspective, can the 
step towards Euclidean, or Western, geometry and mathematics be taken. 
Without this, mathematics education for most children and adults in this 
culture remains abortive; the necessary leaps of insight have not been made, 
because of the blindness to Navajo interpretations of space and world 
throughout the teaching process. Indeed, the mathematics program as it is 
normally taught is Western-based—i.e., it starts from a Western world view 
that remains implicit and that, taking its scientific basis for granted, is 
thought to be typical of all people and cultures.  

The mathematics teacher ought to become conscious of the cultural 
baggage or bias in his/her curriculum. Visualization is a crucial element in 
this teaching process, from exploring one’s own categories to the conscious 
exploration and sophistication of geometry and proper mathematics. The 
relation between m and M is not automatic in my view, and should first be 
developed in the autochthonous form. An example will clarify this. 
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One of the contexts of experience which we have elaborated is the 
hooghan (traditional housing). The hooghan is a cosmological scale model 
of the world and illustrates the Navajo concepts for above-below, 
proportions, wind directions, room to move, etc. The child knows all this by 
visiting hooghans, by living in one, or by receiving explicit explanations 
about it. The hooghan is also a didactic instrument. In the classroom children 
are invited to mentally explore all aspects of the hooghan and to reconstruct 
a hooghan. A group of children work in a team to build a hooghan with 
refuse. During this process, notions of orientation and proportion are 
explored. In the second phase, a scale model is built. The visualization 
process becomes more intense and the group must agree about size, 
proportions, and some technical terms. Finally, graphic presentations of the 
hooghan are made, leading to a more abstract conception. Navajo language 
is used all the time and autochthonous concepts are respected and developed 
further by these lessons. 

In the following section, we will elaborate on the example of the 
hooghan project, which is only one example among others (e.g., rodeo, 
school compound, herding sheep, and rug weaving; Pinxten et al. 1987, 63-
69). 

3.1.1 Project: the Hooghan 

The hooghan is the single most important construction of the Navajo 
tradition. Although more and more Navajos go to live in new prefabricated 
houses or trailers nowadays, the hooghan is not only still in use by many, but 
it remains the necessary ceremonial construction for all. Thus, it is not rare 
to see people live in a house or trailer and build a hooghan on the side for 
ceremonial purposes. Again, although the rather primitive and barely 
furnished traditional form of the hooghan might be vanishing rapidly now, 
the modern and often well-equipped hooghans still have the same basic form 
as the traditional one (McAllester 1980). 

It is to be expected that all children know hooghans from their personal 
experience, either because they assisted a ceremony or because they have 
lived in one for a longer or shorter period (with grandparents, for example). 
Not only that, but because of the fundamental structural characteristics of the 
building, all children will have some knowledge of the meaning and the form 
of the hooghan. 

3.1.2 Constructing a Hooghan Scale Model 

Children will go and visit a hooghan in the neighbourhood. They will ask 
about the way it was constructed, and eventually assist at the construction of 
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a new hooghan in the vicinity. They will note down what they learn and 
explain everything in the classroom. Beginning with this material, they 
proceed to construct a scale hooghan in the classroom, again using simple 
materials and mud most of all.  

Apart from this, we advise simulating a hooghan space in the classroom, 
e.g., by sitting together in the proper way, surrounded by a “wall” of carton 
boxes with only one opening to the east. With this preparation, the 
exploration period can start. In the construction of a scale model hooghan or 
of a hooghan space to sit in, the following elements of the sturcture should 
be kept in mind whatever variation of form one might use: the hooghan has a 
center, it has one door opening to the east, and it is more or less circular.  A 
first rough approximation of the hooghan can be simulated; during the 
lessons the faults and difficulties of this construction will be detected, after 
which a more accurate version can be tried out. 

3.1.3 Exploration 

“Playing hooghan”: The children are visiting their grandparents who live in 
a hooghan. What should they do? When is eating time, and where will the 
meal be cooked? When is sleeping time, and where do they sleep? From 
examples and the talk of the children, it will appear that the center is the 
main structural element of the internal space of the hooghan: people sleep 
around the center, walk around it, etc. The center is where the fire usually is 
and where the sand painting ceremony will be held. Around the center one 
can detect the walls and the poles in all cardinal directions. The notion of 
center can now be explored more systematically by the following exercises: 
 

• Try to point to the center of the sit-in-hooghan in the classroom. 
• Walk from any “wall” towards the center and count your steps. 
• Adjust the center of the hooghan until it is more accurately in the 

middle of the hooghan space. 
• How can we know the distance between center and “wall”? —by 

stepping. But the length of steps differs with the length of one’s legs. 
You can explore this with teachers and students stepping. How can 
we get to a uniform measure? —by using rope or stick. One chooses 
a rope or stick and reconstructs the distance between center and 
“walls” in a more accurate way. To practice the notion of measure, 
smaller and bigger hooghans can be constructed in order to grasp the 
idea of interdependence between center and distance (width) by 
using different lengths of sticks or ropes. One should always keep 
each of the ropes or sticks used, in order to aid visualisation. 



220 Rik Pinxten and Karen François
 
The structure of the hooghan: A hooghan is a bowl-shaped form, 
consisting of a shell-like top and a shell-like bottom. These represent heaven 
and earth in Navajo tradition. Those forms are constructed by defining a 
center and four cardinal directions (east, west, south, and north). These can 
be determined in the classroom and oriented the proper way. Around the four 
main poles (one in each direction) sticking straight up in the sky, legs or 
planks are attached, one on the top on the other. In this instance the 
difference between vertical and horizontal extension is clear. The horizontal 
logs reach a certain height (man-high); on top of this construction the roof is 
built. So what you have in different stages of construction is the following: 

 
• A flat surface with center and peripheral walls. 
• A determination of the border of the hooghan by indicating the 

place of the vertical poles and the horizontal walls. 
• This gives a sort of open cylinder, which is then topped off by a 

roof. 
 
The children will try to represent this process in drawing and in actual 

manufacture. Once the principles of the construction procedure are more or 
less grasped, one can go on and represent the model of the hooghan at a 
more abstract level by using folding figures (in the sense of the UNICEF 
Educoll system). 

 
Figure 1. Representing the model of the hooghan at a more abstract level. 

 

 
In Figure 1, above, the hooghan has six sides, one of them being the door 

opening. The figure should be prepared by the teacher and can be cut and 
colored by the children. The lid or roof is somewhat problematic. It might be 
best to use a flat hexagon and fill it up if need be with some waste material 
to have it bulb out a little bit. 
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One can now explore the hooghan shape in a systematic way. While 
turning the hooghan model around, it looks approximately the same from all 
directions. This corresponds with the real hooghan: its geometric shape 
(hexagon or octagon) makes it appear more or less identical from any angle. 
The following exercises in visualization can now be performed: 

 
• Looking at it from one direction, one sees a rib extending towards 

one’s eyes in front, whereas the back ribs cannot be seen. Is this rib 
bigger than the other ones? Why do we see it as bigger and not see 
the other ones? 

• Turning the paper model around, we always have a similar 
appearance (except for the door) however we turn it. How is this 
possible? In this way the uniformity of the geometric shape is 
perceived and consciously understood. 

• Looking at the top of the hooghan (as from the rim of a canyon 
down onto the hooghan in the canyon), we perceive the polygon as a 
whole. When looking directly from above, we cannot see the 
entrance, and the polygon appears to be regular on all sides, with a 
hole in the center (the smoke hole). 

Once this point is grasped, children will try to draw the hooghan from 
different perspectives. These drawings will be imprecise, because the 
children cannot master the use of the drawing instruments of geometry. 
Nevertheless, they will try to approximate the form in a graphic 
representation. They will gradually learn that they should start from the 
center position and measure a uniform rod distance from there. Eventually, a 
stick or a piece of rope can be used to contruct the polygon, as shown in 
Figure 2. 

 
 
Figure 2. Constructing the polygon. 
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By means of these drawing exercises, it will become clear that the 
polygons fit nicely into a circle and that many polygons can be fitted into the 
same circle. This may lead to the drawing of different maps of hooghans: 
hooghans with six, eight, or ten walls, and perfectly round hooghans (like 
the mud hooghans that can be seen in some places still). 

Details: The logs or planks which are used to erect the walls of the hooghan 
have a particular shape. By means of interviews the children will become 
aware of this shape and the functionality of it in the construction: What 
shape do they have? (straight, smooth, just long enough for one side). Why 
would that be so? (it is easier to build with flat and straight logs or planks 
than with irregular or bulky ones; they fit nicely on top of each other). 

By imitating the construction of hooghan walls by means of building 
block games, it will become clear that straightness along the length 
dimension and regular straight angles for the thickness dimension make it 
easier to put one on the other. By making corners (to reach the hexagon 
figure), the construction gets more stability: each wall supports the other 
ones. This can be easily tested by the children: construct a wall of light 
material and try to push it. The wall easily gives way. Now do the same to 
make a cube or a hexagon: the construction is much more stable and cannot 
be pushed so easily. Even human beings making such forms by their 
intertwined bodies can illustrate this principle (children in classroom). 

This exercise teaches about the use of flat surfaces (walls) to make a 
stable space (hooghans). During this process, we take up notions like 
straight, angle, surface, hexagon, bottom/top, and center. 

The above mentioned aspects of space can be handled abundantly in 
drawing lessons. 

 
• Make a plan of a hooghan with eight sides. 
• Draw the walls next to one other as flat surfaces. 
• Develop different perspectives on the hooghan and represent these 

simply in drawings: 
 

a) Looking from the top down (from the rim of a canyon), we see the 
polygon structure with center and walls; 
b) Looking at it in a horizontal plane (as when coming up to a 
hooghan when sheep herding, looking at it up front), we see a 
rectangle with a bulbing roof, as in Figure 3. 
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Figure 3. Looking at a hooghan in a horizontal plane. 
 

 
 

c) Looking at the dirt hooghan from the side, we see a half sphere. 
This shape can be studied some more. First it should be drawn, as in 
Figure 4. What are the characteristics of this shape? Use the rope to 
detect these characteristics (from center out, the whole 
circumference can be drawn, ending in a straight line on the 
surface). Suppose we put two dirt hooghans on top of each other, 
one upside down, and touching each other’s base, what would we 
have? (A sphere). What can you do with a sphere? (Roll it on every 
side). When is it standing up? When is it lying sideways? Children 
will then look for other spheres in their environments (like balls, 
tumble weeds, etc.). They will explore the peculiarities of the sphere 
and try to reconstruct one in plasticine or other material. 
 

Figure 4. Looking at a dirt hooghan from the side. 
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Conclusion: Children should gradually grasp the terminology (standardized 
for the purpose), the graphical representation, the situational and the process 
aspects of all geometric figures in this context. We think it is clear that one 
should always start from the natural context, then visualize the features in it 
and turn to graphical representation. This holds true in the hooghan project 
as in the other projects. The hooghan project is one of the five projects used 
in Navajo geometry teaching. In addition to these, we started similar projects 
with children of the Turkish minority in Flanders (Belgium). 

3.2 The Turkish Ethnic Minority 

The Turkish ethnic minority in Belgium comes predominantly from rural 
areas in Turkey. Their language and world view can to a considerable degree 
be called pre-Newtonian, although their distance to European subjects is of 
course much smaller than that between Navajo and European worlds of 
experience. During our observations we particularly found two differences in 
the daily world of experience. The tasks in mathematics education are often 
ethnocentric (e.g. about Western city life instead of about Turkish country 
life), which for Turkish pupils causes misunderstandings. Moreover, the 
Turkish language is sometimes a source of difficulties in a Western school 
context: plurals are not shown in nouns, but an appellative usually replaces 
numerals and the plural. In Turkish, there is no such thing as a prefix, which 
leads to difficulties with self-evident spatial references like above, under, 
beside, etc. These few remarks give an idea of the problem confronting us. 
We propose the following curriculum project to overcome the difficulties.  

Children in mixed class groups (migrants and autochthonous) are asked 
to discuss their neighborhood. Concepts like center, border, near and far off, 
etc. are described in both Turkish and Dutch. The children are encouraged to 
work together across cultural borders. Translation problems that crop up in 
the process are largely left to the children themselves. The building of scale 
models and the development of graphic presentations of the neighborhood 
allow them to get a grip on the differences and communalities in meaning 
and speech about abstract notions such as distance, size, proportion, 
geometrical shapes (after all, we are working in a highly geometricised 
urban environment), etc. It is only after this initial period of consciousness-
building and training in visualising that the leap towards Euclidean geometry 
and mathematics in the strict sense may be given a try. In this way, insights 
into the functionality and the use of geometrical notions and into the 
relevance of precise agreements will become clear to the children. They can 
thus lay the foundations for a better take-off with regard to proper 
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mathematics education. The mixed class groups stimulate a mutual 
understanding and a deeper awareness of the difficulties and the possibilities 
of a multicultural learning environment. 

At the same time, it seems to be important to be conscious of the 
institutional aspects of mathematical learning. Mathematics education 
always takes place in an institutional context. The context that is dominant, 
and for which both teacher training and curriculum development programs 
have been set up over the years, is the school context. The point seems to be 
that mathematical learning or thinking is contextual in any living culture; it 
lives and develops and is used in particular cultural contexts. The often 
decontextualized use of knowledge in the Western school setting is then 
alienat and foreign to the pupils. Our experience with pupils of the Turkish 
minority gave us the following impression: for them the school is felt to be 
an alienating but necessary instrument to reach a better position in life. In 
their case the heavy emphasis on rote learning, which at least correlates with 
the Koran school paradigm of learning, appears to me as a compensation for 
the lack of insightful learning. At the same time, the present understanding 
in Belgium about the lag in school results between native (Flemish) and non-
native (Turkish) children is explained also by the different familiarity in each 
group with the institution of the school. For example, we find on our 
research that the children of the Turkish minority continue to have duties at 
home (e.g., washing dishes, caring for newborns, etc.) after they finish 
school, forcing them to postpone homework until late in the evening. Their 
parents are either unable or unwilling to help them with tasks for school 
because the parents are illiterate in the Flemish language or because they 
say, “That is the task of the school.” The parents motivate their children to 
perform well in language but much less or not at all in mathematics classes. 
These and similar findings seem to suggest strongly that school as an 
institution must be felt as doubly alien by immigrant children: it has little or 
nothing to do with life in their home culture and it is a foreign world they 
have to confront all by themselves. Motivation turns out to be problematic; 
and special programs, geared to overcome these problems of retardation in 
school, are hence often seen as indicating and continuing deficiency rather 
than as helping with the learning difficulties of the children. 

4. CONCLUSION 

Even this very brief presentation about these cases may have clarified to the 
reader what it is that we wish to stress in this article. In general, we agree 
with the ethnomathematics approach as we understand it. There is just one 
point which we feel is lacking and which we want to mention here. We want 
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to suggest, on the basis of this action research, that children of different 
cultures live with another world view than those implied in the mathematics 
curricula that are used in education. Our plea is to consciously and explicitly 
seize and actively practice this other world view, to have pupils attain a level 
of comprehension and sophistication which forms an ingrained part, either 
implicitly or unconsciously, of the curriculum of mathematics. 

Exploring the functionality relations and spatial concepts in the 
children’s mother tongue and in their real worlds of experience can bring 
this about.  

Through such exploration, linguistic processing, and the true exercise of 
visualizing, the child will attain the insights needed to grasp the underlying 
(implicit) world view of M. That is why the transfer from m to M, and the 
use of m concepts when developing M successfully, will need to take place 
via the conscious, systematic, and explicit exploration of the largely 
unconscious and half-developed perspective of m which preschool children 
of another culture possess. The choice between opting for a version of M 
which is seen as standard, or leaving room for alternative elaborations of 
mathematical thinking, is not dealt with here. A conservative and an 
unorthodox attitude remain possible. 
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POSTLUDE 
 

Alan J. Bishop 
 

When Karen François and Jean Paul Van Bendegem invited me to write a 
postlude to this volume, it was with a slight sense of trepidation that I 
agreed. My trepidation arose from two quarters—firstly, I am not a 
philosopher, and second, at that stage I had not seen many of the chapters of 
the book.  

I also should express one other issue that I considered—that is, as the 
editor for this book series, I have always been reluctant to give an 
impression that it should contain only those ideas and interests which I 
personally wish to promote. Indeed the reason for having an impressive and 
authoritative editorial board for the MEL series is precisely to counteract and 
moderate any bias which I might have in facilitating the books which are 
offered to the series. This is particularly the case with this book, for as the 
reader will have seen, some of the developments in the book specifically 
refer to the main ideas of my 1988 book Mathematical Enculturation. That, 
of course, was one of the reasons that the editors of this book invited me to 
contribute this brief postlude.  

My pursuit of the consequences of adopting a cultural perspective on 
mathematics education led me first into the ideas of ethnomathematics, 
cultural diversity, and the negative social consequences of continuing to 
adopt a non-cultural, or universalist approach to mathematics education. 
Fortunately this field has developed hugely since the 80’s, and as a result of 
many people’s efforts it would be surprising if a young mathematics 
education researcher today would be ignorant of that field, and of its 
implications for educational research and practices. As we have seen in the 
chapters of François, and Pinxten and François, the ideas of 
ethnomathematics still challenge the assumptions and philosophy underlying 
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the so-called universalist mathematics education still practiced today in most 
countries. 

I was also delighted to see many of the authors’ interest in the second of 
my consequential explorations from the cultural perspective—namely, the 
role and development of a mathematics education which recognises the 
existence of values and valuing. If mathematics is a form of cultural 
knowledge, I argued, then it must also involve certain values. Consequently, 
mathematics education must also learn how to deal with those values. The 
core theme of this book, as stated by the editors in the prelude is “Making 
the implicit explicit and asking questions” It is a theme that I am happy to 
share—particularly as through my research on values it is clear that there is 
much to be done to make sure that the many implicits and assumptions in 
mathematics education become more explicit and questioned. 

Much of my research interest in values relates to the fact that one can 
often find references in mathematics curriculum documents to values, but 
there is never any follow-up as to how any of the values might be addressed 
in the mathematics education which is being encouraged or prescribed. Thus 
there is a challenge for us in research. If values are a significant feature of 
mathematics education, why is there so little known, written, and practiced 
about them? Why are values so implicit in mathematics education? 

I believe the main reason concerns the relationship between mathematics 
and science, and in particular the shared belief of Western Mathematics and 
Science (henceforth capitalized) in theoretical universalism – the idea that 
Mathematics and Science knowledge is universal and in that sense non-
culturally specific. If there is no reference to culture, there is likely to be no 
reference to values. The fact that all of that is implicit does not mean that 
universalism is not valued. Of course it is; and it is practiced too, in implicit 
and covert ways.  

Ethnomathematics represents a huge challenge to the Mathematics 
community precisely because it challenges their fundamental belief in, and 
assumption of, universalism. Nowadays, however, an equally provoking 
challenge is coming from the idea of numeracy. This construct has many 
meanings. Some see it as practical math, some as applied math, some as 
everyday math, and some as out-of-school math. Some see it as involving 
only numerical calculations, while others see it as the whole of school 
mathematics. 

I would like to use the context of this book to raise another possibility. I 
see the relationship between numeracy and Mathematics being based on the 
idea of Mathematics as theory, with its chief educational role being to 
explain, and to extend, numeracies and ethnomathematical practices. 

Mathematics intersects with the scientists’ world also through the use of 
mathematical expressions, formulas, and concepts. Indeed modern science 
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progresses largely through the use of both traditional and modern 
mathematical constructs. Mathematics, however, can also be used to explain 
numeracy and ethnomathematics practices, and here are a few simple 
examples: 

 
• Why do the different algorithms for addition, subtraction, 

multiplication, and division work, and give the same results? 
• Why can one calculate in different bases? 
• Why do planes fly the great circle route? 
• How do percentages work? (Why does 5% added then taken away 

not give one back the original cost?) 
 
Eventually, of course, higher Mathematics explains and extends the 

Mathematical ideas at lower levels, through proofs and investigations. As 
someone who taught New Math in the U.S. in the early 1960s, this idea of 
Mathematics as explainer resonates with the valuing at that time of building 
proofs into every level of the Mathematics curriculum. Certainly the role of 
proof marks out Mathematics as different from Science—science explains, 
but not by proof, more by experiment and data analysis. Mathematics 
explains both by being theory, and reflexively by proof.  

Note, however, that I am not recommending a full-scale return to the 
challenges of trying to teach New Math to the whole school population. The 
relevant problem with the New Math approach was the scant reference to the 
real world, or to the scientific world. There was also no overt reference to 
the values which it was promoting. It was not a questioning curriculum.  

Nor am I recommending a Back-to-Basics approach either. What I am 
doing, in the spirit of this book, is to support the core idea, and the various 
proposals in the book, for a more explicit consideration of the values and the 
philosophies behind mathematics education. This is not to satisfy a desire for 
mathematical navel gazing, but to explore how to enable mathematics 
education to revitalize itself and help tomorrow’s students better understand 
why mathematical knowledge and values are so important in their world. 
Exploring the Mathematics/numeracy relationship is but one example of the 
necessary revitalization. 

If, as I believe, values are the vehicles for approaching the questioning of 
philosophies of mathematics education, then there are many questions for 
our research agendas: 

 
• What are these values, and where do they come from? I believe we 

have made a start with this question through historical analysis of 
mathematical writings, but much remains to be done. 
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• How are these values being “taught” (if at all)? Does “teaching 
values” mean anything sensible? Are values things which can be 
taught? 

• How do we know if they have been learned? If we have a problem 
with whether values can be taught, do we nevertheless feel 
comfortable with the fact that values can be, and are, learned?  

• If we accept that values can be learned, are we happy with which 
values are being learned? 

• Are teachers responsible for this values teaching/learning? 
• How much of values learning comes from “teachers” other than 

professional teachers, for example, parents, the media, communities? 
• How much of this learning comes from other learners? 

 
In the spirit of this book, I will leave these questions hanging, so to 

speak. Progress in knowledge is not just a matter of problem solving, or of 
finding new answers to old questions; it is mainly about posing the right 
problems and asking the right questions. Whether the questions asked here, 
or elsewhere in this book, are the right ones, is then the ultimate question for 
the reader to answer. 
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