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PREFACE

Tais book is written for intellectually minded people who are
not mathematicians, It is written for men of literature, of art,
of the humanities. I have received a great deal from the arts
and I would now like in my turn to present mathematics and
let everyone see that mathematics and the arts are not so
different from each other. I love mathematics not only for its
technical applications, but principally because it is beautiful;
because man has breathed his spirit of play into it, and because
it has given him his greatest game—the encompassing of the
infinite. Mathematics can give to the world such worthwhile
things—about ideas, about infinity; and yet how essentially
human it is—unlike the dull multiplication table, it bears on
it for ever the stamp of man’s handiwork.

The popular nature of the book does not mean that the sub-
ject is approached superficially. I have endeavoured to pre-
sent concepts with complete clarity and purity so that some
new light may have been thrown on the subject even for mathe-
maticians and certainly for teachers. What has been left out
is the systematization which can so easily become boring; in
other words, only technicalities have been omitted. (Itis not
the purpose of the book to teach anyone mathematical tech-
niques.) If an interested pupil picks up this book it will give
him a picture of the whole of mathematics. In the beginning
I did not mean the book to be so full; the material expanded
itself as I was writing it and the number of subjects which could
be omitted rapidly decreased. If there were parts to which
memories of boredom previously attached I felt that I was pick-
ing up some old piece of furniture and blowing the dust off in
order to make it shine.

It is possible that the reader may find the style a little naive
in places, but I do not mind this. A naive point of view in
relation to simple facts always conjures up the excitement of
new discovery.

I shall tell the reader in the Introduction how the book

originated. The writer of whom I speak there is Marcell
v



vi PREFACE

Benedek. I began by writing to him about differentiation and
it was his idea that a book could grow out of these letters.

I do not refer to any sources. I have learned a lot from
others but today I can no longer say with certainty from whence
each piece came. There was no book in front of me while I
was writing. Here and there certain similes came to my mind
with compelling force, the origins of which I could sometimes
remember; for example, the beautiful book by Rademacher and
Toeplitz,* or the excellent introduction to analysis by Beke.}
Once a method had been formed in my mind I could not really
write it in any other way just to be more original. I chiefly
refer, in this connexion, to the ideas I gained from Laszlé
Kalmar. He was a contemporary of mine as well as my
teacher in mathematics. Anything I write is inseparably
linked with his thoughts. I must mention, in particular, that
the ‘chocolate example’, with the aid of which infinite series are
discussed, originated with him, as well as the whole idea of the
building up of logarithm tables.

I shall have to quote my little collaborators in the schoolroom
by their christian names; they will surely recognize themselves.
Here I must mention my pupil Katé, who has just finished the
fourth year at the grammar school and contributed to the book
while it was being written. It is to her that I must be grateful
for being able to see the material with the eyes of a gifted pupil.

The most important help I received was from those people
who have no mathematical interests. My dear friend Béla
Lay, theatrical producer, who had always believed that he had
no mathematical sense, followed all the chapters as they were
being written; I considered a chapter finished only when he was
satisfied with it. Without him the book perhaps would never
have been written.

Pal Csillag examined the manuscript from the point of view
of the mathematician; also Liszl6 Kalmar found time, at the
last minute, for a quick look. I am grateful to them for the
certainty I feel that everything in the book is right.

Budapest
Autumn, 1943 ROZSA PETER
* Rademacher and Toeplitz: The Enjoyment of Mathematics.

1 Mané Beke: Introduction to the Differential and Integral Calculus.
[T mention this here for those who might be eager to follow it up.]



PREFACE TO THE ENGLISH EDITION

SiNcE 1943, seventeen eventful years have passed. During this
time my mathematician friend, Pal Csillag, and my pupil, Katé
(Katé Fuchs), have fallen victims of Fascism. The father of
my pupil Anna, who suffered imprisonment for seventeen years
for illegal working-class activity, has been freed. In this way
perhaps even in Anna’s imagination the straight lines forever
approaching one another will meet. (See page 218.) No book
could appear during the German occupation; a lot of existing
copies were destroyed by bombing, the remaining copies
appeared in 1945—on the first free book-day.

I am very grateful to Dr. Emma Barton, who took up the mat-
ter of the English publication of my book, to Professor Dr. R. L.
Goodstein, who brought it to a head, to Dr. Z. P. Dienes for the
careful translation and to Messrs. G. Bell & Sons for making
possible the propagation of the book in the English-speaking
world.

The reader should remember that the book mirrors my
methods of thinking as they were in 1943; I have hardly altered
anything in it. Only the end has been altered substantially.
Since then, Lészlé Kalmar and I have proved that the existence
of absolutely undecidable problems follows from Godel’s
Theorem on relatively undecidable problems, but of course in
no circumstances can a consequence be more important than
the Theorem from which it follows.

Budapest
1960 ROZSA PETER

vii
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INTRODUCTION

A conveRsaTiON I had a long time ago comes into my mind.
One of our writers, a dear friend of mine, was complaining to
me that he felt his education had been neglected in one im-
portant aspect, namely he did not know any mathematics.
He felt this lack while working on his own ground, while
writing. He still remembered the co-ordinate system from his
school mathematics, and he had already used this in similes
and imagery. He felt that there must be a great deal more
such usable material in mathematics, and that his ability to
express himself was all the poorer for his not being able to
draw from this rich source. But it was all, so he thought,
quite hopeless, as he was convinced of one thing: he could
never penetrate right into the heart of mathematics.

I have often remembered this conversation; it has always
suggested avenues of thought to me and plans. I saw imme-
diately that there was something to do here, since in mathe-
matics for me the element of atmosphere had always been the
main factor, and this was surely a common source from which
the writer and the artist could both draw. I remember an
example from my schooldays: some fellow students and I were
reading one of Shaw’s plays. We reached the point where
the hero asked the heroine what was her secret by means of
which she was able to win over and lead the most unmanage-
able people. The heroine thought for a moment and then
suggested that perhaps it could be explained by the fact that
she really kept her distance from everyone. At this point
the student who was reading the part suddenly exclaimed:
“That is just the same as the mathematical theorem we learnt
today!”” The mathematical question had been: Is it possible
to approach a set of points from an external point in such a
way that every point of the set is approached simultaneously?
The answer is yes, provided that the external point is far
enough away from the whole set:

X1
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farther away from others.

I did not wish to believe the writer’s other statement, namely
that he could never penetrate right into the heart of mathe-
matics, that for instance he would never be able to understand
the notion of the differential coefficient. I tried to analyse
the introduction of this notion into the simplest possible,
obvious steps. The result was very surprising; the mathe-
matician cannot even imagine what difficulties the simplest
formula can present to the layman. Just as the teacher cannot
understand how it is possible that a child can spell c-a-t
twenty times, and still not see that it is really a cat; and there
is more to this than to a cat!

This again was an experience that caused me to do a great
deal of thinking. I had always believed that the reason why
the public was so ill-informed about mathematics was simply
that nobody had written a good popular book for the general
public about, say, the differential calculus. The interest
patently exists, as the public snaps up everything of this kind
that is available to it; but no professional mathematician has
so far written such a book. I am thinking of the real pro-
fessional who knows exactly to what extent things can be
simplified without falsifying them, who knows that it is not
a question of serving up the usual bitter pill in a pleasanter
dish (since mathematics for most is a bitter memory); one
who can clarify the essential points so that they hit the eye,
and who himself knows the joy of mathematical creation and
writes with such a swing that he carries the reader along with
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him. I am now beginning to believe that for a lot of people
even the really popular book is going to remain inaccessible.

Perhaps it is the decisive characteristic of the mathematician
that he accepts the bitterness inherent in the path he is travel-
ling. ‘There is no royal road to mathematics’, Euclid said
to an interested potentate; it cannot be made comfortable
even for kings. You cannot read mathematics superficially;
the inescapable abstraction always has an element of self-
torture in it, and the one to whom this self-torture is joy is the
mathematician. Even the simplest popular book can be
followed only by those who undertake this task to a certain
extent, by those who undertake to examine painstakingly the
details inherent in a formula until it becomes clear to them.

I am not going to write for these people. I am going to
write mathematics without formulae. I want to pass on some-
thing of the feel of mathematics. I do not know if such an
undertaking can succeed. By giving up the formula, I give
up an essential mathematical tool. The writer and the
mathematician alike realize that form is essential. Try to
imagine how you could express the feel of a sonnet without
the form of the sonnet. But I still intend to try. Itis possible
that, even so, some of the spirit of real mathematics can be
saved.

One way of making things easy I cannot allow; the reader
must not omit, leave for later reading, or superficially skim
through, any of the chapters. Mathematics can be built up
only brick by brick; here not one step is unnecessary, for each
successive part is built on the previous one, even if this is not
quite as obviously so as in a boringly systematic book. The
few instructions must be carried out, the figures must really be
studied, simple drawings or calculations must really be attempted
when the reader is asked to do so. On the other hand I can
promise the reader that he will not be bored.

I shall not make use of any of the usual school mathematics.
I shall begin with counting and I shall reach the most recent
branch of mathematics, mathematical logic.






PART I
THE SORCERER’S APPRENTICE

1. Playing with fingers

LET us begin at the beginning. I am not writing a history of
mathematics; this could be done only on the basis of written
evidence, and how far from the beginning is the first written
evidence! We must imagine primitive man in his primitive
surroundings, as he begins to count. In these imaginings, the
little primitive man, who grows into an educated human being
before our eyes, will always come to our aid; the little baby,
who is getting to know his own body and the world, is playing
with his tiny fingers. It is possible that the words ‘one’, ‘two’,
‘three’ and ‘four’ are mere abbreviations for ‘this little piggie
went to market’, ‘this little piggie stayed at home’, ‘this one
had roast beef”, ‘this one had none’ and so on; and this is not
even meant to be a joke: I heard from a medical man that
there are people suffering from certain brain injuries who can-
not tell one finger from another, and with such an injury
the ability to count invariably disappears. This connexion,
although unconscious, is therefore still extremely close even in
educated persons. I am inclined to believe that one of the
origins of mathematics is man’s playful nature, and for this
reason mathematics is not only a Science, but to at least the
same extent also an Art.

We imagine that counting was already a purposeful activity
in the beginning. Perhaps primitive man wanted to keep
track of his property by counting how many skins he had. But
it is also conceivable that counting was some kind of magic
rite, since even today compulsion-neurotics use counting as a
magic prescription by means of which they regulate certain
forbidden thoughts; for example, they must count from one to
twenty and only then can they think of something else. How-

ever this may be, whether it concerns animal skins or successive
I
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time-intervals, counting always means that we go beyond what
is there by one: we can even go beyond our ten fingers and so
emerges man’s first magnificent mathematical creation, the
infinite sequence of numbers,

1,2,3,4,586,...

the sequence of natural numbers. It is infinite, because after
any number, however large, you can always count one more.
This creation required a highly developed ability for abstrac-
tion, since these numbers are mere shadows of reality. For
example, 3 here does not mean 3 fingers, 3 apples or 3 heart-
beats, etc., but something which is common to all these, some-
thing that has been abstracted from them, namely their number.
The very large numbers were not even abstracted from reality,
since no one has ever seen a billion apples, nobody has ever
counted a billion heartbeats; we imagine these numbers on the
analogy of the small numbers which do have a basis of reality:
in imagination one could go on and on, counting beyond any
so-far known number.

Man is never tired of counting. If nothing else, the joy of
repetition carries him along. Poets are well aware of this;
the repeated return to the same rhythm, to the same sound
pattern. This is a very live business; small children do not get
bored with the same game; the fossilized grown-up will soon
find it a nuisance to keep on throwing the ball, while the child
would go on throwing it again and again.

We go as far as 4?7 Let us count one more, then one more,
then one more! Where have we got to? To 7, the same
number that we should have got to if we had straight away
counted 3 more. We have discovered addition

4+1+1+1=4+4+3=7

Now let us play about further with this operation: let us
add to 3 another 3, then another 3, then another 3! Here
we have added 3’s four times, which we can state briefly as:
four threes are twelve, or in symbols:

3+3+3+3=4x3=12
and this is multiplication.

We may so enjoy this game of repetition that it might seem
difficult to stop. We can play with multiplication in the




PLAYING WITH FINGERS 3

same way: let us multiply 4 by 4 and again by 4, then we shall
get
4 x4 x4=064

This repetition or ‘iteration’ of multiplication is called
raising to a power. We say that 4 is the base, and we indicate
by means of a small number written at the top right-hand
corner of the 4 the number of 4’s that we have to multiply;
i.e. the notation is this:

P =4x4x4=064

As is easily seen, we keep getting larger and larger numbers:
4 x 3 is more than 4 + 3, and 4% is a good deal more than
4 x 3. This playful repetition carries us well up amongst the
large numbers; even more so, if we iterate raising to a power
itself. Let us raise 4 to the power which is the fourth power of
four:

4 =4x4x4x4=064 x4 =256
and we have to raise 4 to this power:
=4 =4 x4 x4 x4...

I have no patience to write any more, since I should have to
put down 256 4’s, not to mention the actual carrying out of the
multiplication! The result would be an unimaginably large
number, so that we use our common sense, and, however
amusing it would be to iterate again and again, we do not
include the iteration of powers among our accepted operations.

Perhaps the truth of the matter is this: the human spirit is
willing to play any kind of game that comes to hand, but only
those of these mathematical games become permanent features
that common sense decides are going to be useful.

Addition, multiplication and raising to powers have proved
very useful in man’s common-sense activities and so they have
gained permanent civil rights in mathematics. We have
determined all those of their properties which make calculations
easier; for example, it is a great saving that 7 x 28 can be
calculated not only by adding 28 7 times, but also by splitting
it into two multiplication processes: 7 X 20 as well as 7 x 8
can quite easily be calculated and then it is readily determined
how much 140 + 56 will be. Also in adding long columns of
numbers how useful it is to know that no amount of rearranging
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of the order of the additions is going to spoil the result, as for
example 8 + 7 + 2 can be carried out as 8 + 2 = 10 and to
101t is quite easy to add 7; in this way I have cunningly avoided
the awkward addition 8 + 7. 'We merely have to consider that
addition really means counting on by just as much as the
numbers to be added and then it becomes clear that changing
the order does not alter the result. To be convinced of the
same thing about multiplication is a little harder, since 4 x 3
means 3 +3 +3 +3and3 x4 means 4 +4 +4 and it is
really not obvious that

34+34+3+3=4+4+4

But this straightaway becomes clear if we do a little drawing.
Let us draw four times three dots in these positions
one underneath the other

Everyone can see that this is the same thing as if we had
drawn three times four dots in the following positions

next to each other. In this way 4 x 3 =3 x 4. This is
why mathematicians have a common name for the multiplier
and the multiplicand; the factors.

Let us look at one of the rules for raising to powers:

4 x4 x4 xdxd=4"

If we get tired of all this multiplying, we can have a little rest;
the product of the first three 4’s is 4%, there is still 4* left, so

43 x 4% =45

The exponent of the result is 5, which is 3 + 2; so we can mul-
tiply the two powers of 4 by adding their exponents. As a
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matter of fact this is always so. For example:
5 x5 x5 =5Xx5Xx5x5x5%x5%x5%x5%x5=5

here again 9 =4 + 2 + 3.

Let us recapitulate the ground we have covered: it was
counting that led to the four rules. It could be objected,
where does subtraction come in all this? And division? But
these are merely reversals of the operations we have had so far
(as are extraction of roots and logarithms). Because, for
example, 20 = 5 involves our knowing the result of a multipli-
cation sum, namely 20, we are seeking the number which if
multiplied by 5 gives 20 as the result. In this case we succeed
in finding such a number, since 5 x 4 = 20. But it is not
always easy to find such numbers; in fact it is not even certain
that there is one. For example 5 does not go into 23 without a
remainder since 4 X 5 = 20 is too little and 5 X 5 =25 is
more than 23, and so we are forced to be satisfied with the
smaller one and to say that 5 goes 4 times into 23, but 3
is left over. This kind of thing certainly causes more head-
aches than our playful iterations; the reversed operations are
usually bitter operations. It is for this reason that they are
favourite points of attack in mathematical research, since
mathematicians are well known to take delight in difficulties.
So I shall have to return to these reversed or inverse operations
in what follows.



2. The “temperature charts’ of the operations

WE saw that iteration of operations carried us higher and
higher in the realm of large numbers. It is worth spending a
little time thinking about just what heights we have reached.
For example, we must raise to a power when we want to
calculate the volume of a cube. We choose some small cube
as a unit and the question is how many of these small cubes
would fill up a bigger cube. Let us take for example an inch
cube as our unit, i.e. a cube whose length, breadth and height

are all one inch.
1/n
%> in

Let us put four of these little cubes next to each other, and we

get a row like this:

Then, if we put four such rows next to each other, we make a

layer like this: @

In this there are 4 x 4 = 4 cubes. Finally if we put four
such layers on top of each other, we shall have made a big
cube like this:

/

(A

e e
P
N~
-

43 = 64 little cubes.

and this is made up of 4 x 4 x 4
6
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Taking it the other way round, if we start off with the big
cube whose length, breadth and height are 4 inches, this can be
made up of 4® inch cubes; in general, we get the volume of a
cube by raising an edge to the third power. This is why we
call raising to the third power cubing.*

One consequence of this cubing is that a cube with a relatively
short edge will have an enormous volume. For example
1000 yards is not a great distance; everyone can visualize it,
if they recall for example that Charing Cross Road in London
is about that long. But if we built a cube so that each of its
edges was as long as Charing Cross Road, then its volume
would be so large that practically the whole of the human
race could be accommodated in it. If anyone does not believe
this he can make the following calculations: There are no
people taller than say 2} yards (7’ 6”), so at every 2} yards
we should make a floor, and so there would be 400 floors to
a height of 1000 yards. If we subdivide these floors length-
wise as well as across into strips a yard wide, like this

1yd
1yd

fyd fyd . ..

then in every strip we shall have made 1000 squares and there
will be 1000 such strips, i.e. there will be 1000 x 1000 =
1,000,000 squares on each floor. The length and the breadth
of each square is one yard, we can certainly place ftve people on
each of these squares and so we can squeeze in 1,000,000 times 5,
i.e. 5 million people quite well into one of these floors. On
the 400 floors there will be 400 times 5 million people, i.e.
2,000,000,000, and this is about as many as there are people

* I know the teacher’s objection: I should have said that I get the measure of
the volume if I raise to the third power the measure of an edge. But I am not going
to bore my readers with such hairsplitting. There is a weightier matter to con-
sider: the question is, is it possible to express the edges of any cube ininches? I
shall come back to this later.
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in the world, or at least there were not more than this when I
was told about this cube before 1943.

And yet in the calculation of the volume of a cube only the
third power comes in; a larger exponent carries us much faster
still up amongst the large numbers. This fact must have been
a great surprise to the potentate from whom the inventor of
the game of chess modestly asked for only a few grains of wheat
as his reward; he asked for the following to be put on his
chessboard of 64 squares, one grain on the first square, twice

as many on the second square, i.e. 2; twice as many as that on
the third square, i.e. 2 x 2 = 2% =4, and so on. At first
this request seems modest enough, but as we run through the
squares, we come across higher and higher powers of 2, until
finally we are dealing with

1 42422 428 424 ... 4 2%

grains of wheat (please imagine that all the powers in between
are there as well; I could not be bothered to write in all the 64
terms), and, if someone cares to work out how much this is,
he will get so much wheat as a result that the whole surface of
the earth could be covered with a half-inch layer of it.

After all this it is not surprising that the iteration of powers
carries us up to such enormous heights. I shall mention just
one fact as a point of interest: it is possible to estimate that 9°°
is such a large number that just for writing it down you would
need 11,000 miles of paper (writing five digits in every inch),
and a whole lifetime would not be sufficient for its exact
calculation.

As I read over what I have written so far, it strikes me that I
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have been making use of expressions like ‘carries us high up’
amongst the numbers, whereas the number series

1,23, 4,5,...

is a horizontal series; by right, I should be able to say only
that T am going to the right or at the most that I am going
forward towards the large numbers. The choice of this par-
ticular expression must have been influenced by the element
of atmosphere: to become larger and larger means to grow,
and growth gives rise in us to a feeling of breaking through to
new heights. The mathematician puts this feeling into con-
crete form: he often accompanies his imaginings with drawings,
and the drawing for very rapid growth is the line that rises
steeply upwards.

The sick are very familiar with such drawings; they know
that they need only to glance at their temperature charts and
this shows the whole progress of their illness. Let us suppose
that the following were the temperatures, taken at regular
intervals:

101, 102, 103, 103, 101, 102, 99, 98

These are represented in the following way: first we draw a
horizontal line and on this we show the equal time-intervals
by equal distances,

b

| S B B SEEA S e N

then we choose a certain distance to stand for a degree and
from each point of time we draw upwards* that multiple of
this distance (corresponding to the rising temperature) which is
the sick person’s temperature at the point of time in question.
But there is no need to draw such long lines, since the tempera-
ture never falls below 97, and so we can agree that the height
of our horizontal line should correspond to 97. We shall
have to draw above this line one after the other

4,5,6,6,4,5,2,1

* ‘Upwards’ as a matter of fact is figurative speech even here, since you can onlz
draw horizontallines on a piece of paper lying flat. We still feel that a line in suc
a direction | points upwards.
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degrees. In this way we get the following picture

l“ .
y
o

1 5 : 4 5
10eg

1Deg 1 z}
- ’
]

1Deg
1 2 J 4 J 6 7 Y

97

and if we join the end-points of the lines we have drawn, we get

I

1 2 J [ H ¢ 14 ,.97’

The temperature chart so obtained explains everything. The
rising lines indicate the rising of the temperature, the level
line shows a stationary period of the illness; the rise in the
beginning was steady, this is shown by the fact that the first
two joins are equally steep, and so form one straight line;
apart from a slight relapse at the sixth time the temperature
was taken, the patient improved rapidly: the fall of the line
joining the 6th and 7th points is very steep, steeper than any
rise.

There is no reason why we should not draw the ‘temperature
charts’ of our arithmetical operations.

The numbers themselves are usually represented in a similar
way along a line: on this line we pick out an arbitrary starting
point which we call zero and from this point we measure off
equal distances next to one another, i.e. we count in terms of
such distances

2 &

0 1 [ 3 4 s 6

Anyone who is handy at counting can carry out the operations
mechanically on such a line: for example, if we were consider-
ing the operation 2 4 3, we need only take 3 steps to the right
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from the 2 and we can read off the result as being 5. If we
were considering 5 — 3 we should take 3 steps to the left from
the 5 and so on.

In a similar way is the abacus used, on the wires of which
beads can be moved up or down.

But let us leave the horizontal and go upwards. Let us
start with a certain number, say 3, and let us see how it grows
if we add to it 1, then 2, then 3 and so on, or else if we multiply
it by 1, then by 2, then by 3, and finally if we raise it to the
first, second and third powers (‘raise’ to a power: in this
expression, too, we have the idea of pointing upwards).

Let us begin with addition. One of the terms is always 3,
the other variable term will be represented on the horizontal
line and the corresponding sum will point upwards

3+1=4
34+2=5
3+3=6
3+4=7

Thus if we represent 1 horizontally by a distance such as this:
}— and vertically by a distance such as this: J the ‘tem-
perature chart’ for addition will be the following:

4

7 2 J 4
Here every joining line falls onto one and the same straight line.
The sum grows steadily as we increase one of its terms.
In the case of multiplication we have:

WO LY WO WO
X X X X
B 00 NO

o
NO O

i
|
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It can be seen that the product also grows steadily if we
increase one of its factors, but much more rapidly than the
sum: the straight line we get here is a good deal steeper.

Finally if we take powers we have:

31
32
33

Xx3=09
X3 x3=27

I

3
3
3

The powers do not even grow steadily, but more and more
rapidly. There would not even be room for 3* on this page.
This is the origin of the saying that a certain effect ‘increases
exponentially’.

In the same way we can construct the charts for the inverse
operations; for example for subtraction we should have:

3_1=2
3_9-1 \2{\11\0
3—-3%3=0 [} 2 J o~

which gives a falling straight line; so the difference decreases
steadily if we increase the term to be subtracted.

Division is rather a delicate operation; I shall return to its
chart at a later stage.
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I shall just make one more remark; what we have been
engaged in doing here is what the mathematicians call the
graphical representation of functions. The sum depends on
our choice of value for the variable term; we express this by
saying that the sum is a function of the variable term, and we
have represented the growth of this function. In the same way
the product is a function of its variable factor, the power of its
exponent and so on. Already at the very first operations we
have come face to face with functions, and in what follows we
shall be examining functional relationships. The notion of
function is the backbone of the whole structure of mathematics.



3. The parcelling out of the infinite number series

WHAT a long way we have travelled from our games with our
fingers! If we have practically forgotten that we have 10
fingers it is only because I did not want to tire my reader
with a lot of calculation. Otherwise he would already have
noticed that however large a number we write down, we make
use of only 10 different symbols, namely,
0,1,23,4,5,6,7,8,9
How is it possible to write down any one of the numbers from
the infinite number series by using a mere 10 symbols? It is
done by parcelling out this indefinitely increasing number
series, by enclosing some of its parts: when we have counted
10 units, we say that we can still grasp that amount at a glance.
Let us gather them up in one bundle and call such a bundle a
ten, the collective name for the 10 units. We can exchange
10 silver shillings for a single 10-shilling note. Now we can
count on in longer steps, progressing by tens; then we can
bundle together ten tens, for example we could tie a ribbon
round them on which we can write ‘1 hundred’. Going on
like this, we can bundle 10 hundreds into one thousand, 10
thousandsinto a tenthousand, 10 tenthousands into a hundred-
thousand, and 10 hundredthousands into a million. In this
way every number can really be written down with the aid of
the above-mentioned ten symbols. When we get beyond 9, we
write a | again, indicating 1 ten. The number after this con-
sists of one ten and one unit, i.e. it can be written down with the
aid of two 1’s. On the other hand, while writing them down
we also have to use the words ‘tens’, ‘hundreds’ and similar
words. A clever idea makes even these unnecessary: the shop-
keeper puts his shilling, two-shilling, half-crown pieces into
different sections of his till, the small change on the right
because he needs to deal with that a lot in giving change,
and towards the left he will put larger and larger denomina-
tions. The shopkeeper’s hands get so used to this arrange-
ment that he will know without looking what kind of coin he is
picking up, for example, from the third section. In the same
14



THE INFINITE NUMBER SERIES 15

way we could agree about the places in which to put the ones,
tens, hundreds. Let us write the ones on the right, and then
the larger and larger units, moving along towards the left: the
second place is for the tens, the third one for the hundreds. In
this way we can leave out the words, because we can recognize
the values of the number symbols from their positions; the
symbols have thus place-value.

354

consists of 3 hundreds, 5 tens and 4 ones. This is what we
mean when we say that we use the decimal system.

On the other hand there would have been no reason why we
should not have stopped before or after 10. I have heard of
primitive tribes whose knowledge of counting consists of 1, 2,
many. We could build 2 number system even for them:
let us bundle the numbers together in twos. The 2 therefore is
a new unit, a two, 2 twos again another unit, a four, 2 fours are
eight, and so on. In this number system the symbols

0, 1

are sufficient for writing down any number. We can see this
most easily in this way: let us suppose that we have coins like

T OO0 ~0

in other words the units of the binary number system figure as
coins. How could we make up 11s. with the smallest possible
number of coins? Clearly out of the following three

OGO e

which give 11s., and out of fewer coins you could never make up

11s. Similarly

make 9s., and
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O@-® -

make up 15s. The reader should try himself to see that every
number from 1 to 15 can be made up out of

OOOO

in such a way that each coin is not used more than once, i.e.
either O times or 1 times. (We cannot make up 16 in this way
but no wonder, since 2 x 8 = 16; a ‘sixteen’ is in fact the next
unit). According to example (1) 11 can be written in the
binary system as

1011

since this really means 1 one, 1 two, 0 four, and 1 eight, and
these together do in fact give 11. Similarly we can gather
from examples (2) and (3) that 9 and 15 can be written in the
following ways respectively in the binary system

1001, 1111

So we can really make do with two symbols. It is worth
while having some practice the other way round:

In the binary system 11101 = 1 one, 1 four, 1 eight and 1
sixteen = 1 4+ 4 4+ 8 + 16 = 29 in the decimal system.

What is the use of a number system? Every operation
becomes unquestionably simpler if we keep the number system
tidy in this way and, for example in additions, we add ones to
ones and tens to tens. The shopkeeper does not add up his
takings in a topsy-turvy way, he counts the like coins in each
section separately and then adds up these sums. Convenience
is an oft-recurring and important factor in the development of
mathematics. The most inconvenient operation is division;
probably all the bother that went with it gave the first push
towards the parcelling out of the number series. How pleasant
are those divisions which can be carried out without remainders!
There are some good, friendly numbers into which a great
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number of other numbers will go without remainder. Such a
one is for example 60

1 x 60
2 x 30
3 x20
4 x 15
5 x 12
6 x 10

and so 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 will all go into 60
without remainder. Thus if we want to divide by one of
these twelve numbers (although it is a pity to include 1 amongst
them as this fortunately has no effect in either multiplication or
division) let us remember that we reached the number we wish
to divide (as every other number) by counting in I’s. Let us
now count 60 of these 1’s, then another 60 and so on as far as
we can; the division of these 60’s is child’s play, and no more
than 59 can be left over, i.e. not a very large number. It is not
much trouble to divide this number, even if there is going to be
a remainder. From this point of view we ought to bundle our
numbers in 60’s, and the ancients did in fact introduce the 60
number system for the measurement of angles and time in
connexion with their astronomical activities, which required a
lot of awkward divisions. To this day what we call a degree
isa 6 x 60 = 360th of a whole arc, 1 degree is divided into 60
minutes and 1 minute into 60 seconds, and the subdivision of
the hour into minutes and seconds is just the same.

On the other hand 60 is rather a large number and not
convenient to work with. Among the numbers around 10,
12 has the greatest number of divisors:

1 x 12
12=12x 6

60 =

3x 4

ie. 1,2, 3,4, 6, 12, six divisors, whereas there are only 4 num-
bers that go into 10 without remainder: 1, 2, 5 and 10. There
are still traces of the use of the duodecimal (twelve) system:
there are 12 months in a year, 12 units in a dozen. That the
decimal system despite this got the upper hand is probably due
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to the fact that man was more influenced by his games with his
fingers than by utility. The French remember that once upon
a time they played with their toes. Only such people could
call 80 four times twenty (quatre-vingt); they must once have
been used to the twenty number system.

Restricted as we are to the decimal system, let us see what
kind of advantages this has for division.

In the first place there is a definite advantage if we want to
divide by one of the divisors of 10, i.e. by 2, by 5 or by 10 itself.
These will go into 10 without a remainder, as also into 2 x 10,
i.e. into 20,into 3 x 10, i.e. into 30, and in the same way into
all multiples of 10; also into 10 X 10, i.e. into 100, therefore
also into 2 x 100, i.e. into 200, into 3 x 100, i.e. into 300, and
so on into all the hundreds. So we see that 2, 5, and 10 go into
the tens, hundreds, thousands and so on; it is only uncertain
whether they go into the ones. For example 10 is greater
than every possible value of the unit, and so whatever number
there is in the one’s place, that number cannot be divisable by
10 (without remainder); this is why only those numbers are
divisible by 10 which have no ones. The non-existent one is
indicated by a 0, and so we get the well-known rule that only
numbers ending in zero are divisible by 10. The only unit
which goes into 5 is 5 itself; that is why it is that 5 only goes into
numbers ending in 0 or 5. Finally 2 will go into 2, 4, 6, 8,
and so 2 will go into those numbers which end in 0, 2, 4, 6, or
8. These are called the even numbers.

We have exhausted all the divisors of 10, but not yet all the
possibilities inherent in the decimal system. The next unit in
this system is 100. This opens up a way to dealing with all the
divisors of 100. For example, 4 does not go into 10 but it
does go into 100 since 4 x 25 = 100. Therefore 4 also goes
into 2 x 100, i.e. therefore into 200, or into any multiple of 100
without remainder, into all the hundreds, into 10 x 100, i.e.
into 1000 and so into all the thousands and so on; it is only un-
certain whether it goes into the tens and ones. So if we want
to decide whether a number, however long, is divisible by 4,
we need only to examine the last two places. For instance

3,478,524
is divisible by 4, because 24 is divisible by 4. We can see this
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at a glance, just as though the previous five figures were not
there at all. In the same way we can see at a glance that

312,486,434

is not divisible by 4, since 4 does not go into 34 without re-
mainder.

After the divisors of 100 we can deal with the divisors of 1000.
For example 8 is not a divisor of 100, since it goes into 80 but
does not go into the remaining 20 without a remainder. On
the other hand it is a divisor of 1000, since 1000 can be split up
like this: 800 + 160 + 40, and 8 goes into every part without
remainder. For this reason 8 will go into all the thousands,
tenthousands, hundredthousands, etc., without remainder; so if
we want to decide whether a number, however long, is divisible
by 8, we need look only at the last three places.

Now we have a recipe for deciding when a certain chosen
number is a divisor of some other number: we need only to see
whether this number is a divisor of 10. In this case the ques-
tion can already be decided by the ones; if not, we need to go
further and see if the number in question is a divisor of 100,
of 1000, of 10,000, and accordingly we must examine more
and more places to get an answer to the question of divisibility.
Of course there are numbers which are not divisors of 10, nor
of 100, nor of 1000, nor of any unit in the decimal system; as a
matter of fact the majority of numbers are like that. But we
can discover some regularity about these by similar investiga-
tions. The simplest case is the 9:

10=9+1,100 =99 + 1,1000 =999 + 1, ...

s0 9 cannot be a divisor of 10, nor of 100, nor of 1000, because
whichever we try to divide by it, there is always 1 left over.
But just this fact that there is always 1 left over leads to a simple
rule of divisibility: if we divide 10 by 9, 1 is left over, if we
divide 20 by it, there will be 2 left over, if we divide 30, there
will be 3 left over. In general if we divide tens by 9 as many
units are left as the number of tens that we divide., In the
same way, if we divide 100 by 9, 1 is left over, so if we divide
200 by it there will be 2 left over; in general in the case of the
division of hundreds by 9 there are again as many units left
over as the number of hundreds that we divide, and so on,
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So if we want to decide whether a number is divisible by 9,
it is best to split the number into ones, tens, hundreds, etc.
For example

234 = 2 hundreds + 3 tens + 4 ones

when we divide the 2 hundreds, there are 2 left over, when we
divide the 3 tens there are 3 and when we divide the 4 ones
there are 4, i.e. altogether there are
2+344=9
left over: the remainders added together give a number which
is divisible by 9, therefore 234 is divisible by 9. So here is
the rule we have been looking for: a number is divisible by 9
if when we add up all its digits we get a number divisible by 9.
The digits of a number which has several of them usually add
up to a much smaller number than the number itself, so we can
usually decide at a glance whether it is divisible by 9. Let us
examine for example the following number
2,304,576

The sum of the digits is

2+34+44+5+74+6=27
and anyone who knows his tables will know straightaway that
this is divisible by 9. On the other hand

2,304,577

is not divisible by 9 since

2+34+44+54+74+7=28
and 9 will not go into 28 without a remainder.

Our object in all we have just been doing is to avoid the
difficulties caused by division. But even in avoiding these
difficulties our search has been fertile: we kept hitting on un-
expected interesting relationships while doing so. Soon we
shall pluck up courage and dare to face the kind of division
that cannot be carried out without remainder and this will
open up new vistas towards the most daring mathematical
ideas.



4. The Sorcerer’s Apprentice

THE idea of divisibility leads on to many other interesting things,
and it may be worth while to play about with these, such as,
for example, the discovery that there are ‘friendly numbers’.
Two numbers are friendlyif, when we add up the divisors of one,
we get the other number as the result and vice versa. It is
usual not to count among the ‘proper’ divisors of a number the
number itself, so, for example, the proper divisors of 10 are 1, 2
and 5. Such friendly numbers are 220 and 284, because

1 x 220
i X 1;3 1 x 284
220 = 5 and 284 = {2 x 142
x 44 4 x 71

10 x 22

11 x 20

So the sum of the proper divisors of 220 is
1+2+4+5+104+11+20 + 22 + 44 + 55 + 110 = 284,
and the sum of the proper divisors of 284 is

1 +24+4+71 +142 =220

Moreover, there are also ‘perfect numbers’: a number is per-
fect when it is equal to the sum of its own proper divisors.
Such a number is, for example, 6, since its proper divisors are
1,2 and 3, and

1+2+3=6

The ancients endowed such numbers with magic properties
and research was started to find more perfect numbers. They
did find several perfect numbers; among these we can easily

check 28
1 x 28
28 =<¢2 x 14
4 x 7
1 +2+44+7+14=28

21
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The others are much larger. These are all even numbers.
They were even able to give a recipe for the construction of
even perfect numbers, but we do not know to this day whether
this recipe will yield any number of perfect numbers or whether
it will break down somewhere. No one has yet found an odd
perfect number; it is an open question whether there are any
at all.

What is all this really about? Man created the natural
number system for his own purposes, it is his own creation; it
serves the purposes of counting and the purposes of the opera-
tions arising out of counting. But once created, he has no
further power over it. The natural number series exists; it has
acquired an independent existence. No more alterations can
be made; it has its own laws and its own peculiar properties,
properties such as man never even dreamed of when he created
it. The sorcerer’s apprentice stands in utter amazement before
the spirits he has raised. The mathematician ‘creates a new
world out of nothing® and then this world gets hold of him with
its mysterious, unexpected regularities. He is no longer a
creator but a seeker; he seeks the secrets and relationships of the
world which he has raised.

This search is so tempting just because you need practically
no previous training for it except two eyes filled with curiosity.
One of my little pupils of about ten came to me once with the
following problem: ‘I already noticed when I was in the
primary school that if I add up all the numbers up to an odd
number, for example up to 7, I get the same thing as if I multi-
ply this number by its “middle”. For instance the middle of
7 is 4’ (this must be understood as meaning that 4 lies in the
middle of the numbers, 1, 2, 3, 4, 5,6, 7) ‘and 7 x 4 = 28; the
sum of the numbers up to 7,

14+24+3+44+5+6 -+ 7is likewise 28

I know this is always so, but I don’t know why’. Well, I
thought to myself, this is an arithmetical series all right; how
should I explain it on this level? In any case I put it to the
class: ‘Susie has an interesting problem’. I had hardly finished
speaking when the brightest little girl put her hand up and was
so excited she nearly fell out of her desk. ‘I’m sure it’s going to
be something silly, Eve; you couldr’t possibly have got it in
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the time.’ But no, she insisted that she knew. ‘Well, tell us
then.’

‘Susie said 7 x 4, this means

4 +4+4+4+4+4+4
Susie said this instead of
1+2+3+4+5+6+7

She said 4 instead of 1, that is 3 more. But she also said 4
instead of 7, that is 3 less, and these equal out. In the same
way it is true that 4 is 2 more that 2, but it is 2 less than 6 and
so these too equal out. Similarly for the 4’s which she said in-
stead of the 3 and the 5 and so the twosums are really the same.’

I had to give Eve her due; I could never have explained it so
well myself,

These little unprejudiced researchers make some extra-
ordinary observations. ‘It’s like an exercise book,’” exclaimed
Mary, another little pupil. ‘How do you mean?’ ‘Here the
first and last terms equalled out, then the second and the last
but one; the pages in an exercise book are joined together in the
same way, the first with the last, the second with the last but
one.” Pure interest was guiding these little researchers.
Gauss, ‘princeps mathematicorum’ is supposed to have discovered
this relationship for utilitarian reasons during his primary-school
days. As the story goes, Gauss’s teacher once wanted a little
peace and so he gave the class the lengthy task of adding up all
the numbers from 1 to 100. He did not have his peace, how-
ever, since little Gauss exclaimed after a few moments: “The
result is 5,050.” The teacher had to admit that this was right,
but how was it possible to calculate this so quickly? ‘I noticed
that 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 and so on,
—I always get 101; the last one is 50 + 51 = 101, so after 50
such additions the terms taken from the beginning and the
end finally meet in the middle. And then, of course, 50 x 101
= 5050.’

Little Gauss added the numbers up to an even number and
so obtained a clever method for the quicker addition of such a
lot of terms, just as my Susie, who reached an odd number. If
we use a slightly tortuous argument we can unite the two pro-
cedures. There is a well-known joke about a person who
glanced at a grazing flock of sheep and said, ‘There are 357
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sheep in the flock.” When they asked how he could have
counted them, he replied: ‘It was simple. I counted all the
legs and divided by 4. The mathematician does just that sort
of thing. If, for instance, we need to add all the numbers up
to a certain number, whether this is even or odd, we can calcu-
late the double of the required sum without thinking, by adding
the first to the last, the second to the last but one, etc., in the
following way: let us write down the required addition twice,
in two different ways. For example

14+2+3+4 or 1+2+3+4+5
4+3+2+41 S5+44+3+2+1

In this way we write just those numbers in the same columns
which we need to add up. Adding the numbers in these
columns, we have

54+54+5+5 and 6+6+6+6+4+6
=4 x5=20 =5x6=30

respectively, and these are the doubles of the required sums; the
sums themselves we can get if we divide these by 2. Thus the
results are 10 and 15 respectively, and in fact

1+24+3+4+4=10 and 1 4+2+4+3+4+5=15

We can see that in both cases we must multiply the sum of the
first and the last terms by the number of terms and take half of
this. In this is included Susie’s as well as Gauss’s result: in the
caseof ] +2 +3 4+ 4 + 5 4 6 + 7, the sum of the first and
the last terms is 8, multiplying this by the number of terms
7 x 8 = 56 and half of thisis 28. Inthecaseofl + 2 4 3 +
... + 100, the sum of the first and the last terms is 101, multi-
plying by the number of terms 100 x 101 = 10100, and half
of this is 5050.

It is quite obvious (my class noticed it straightaway) that it
is not only sums of consecutive numbers that can be calculated
by means of this rule, but in general sums of such numbers that
succeed one another by equal steps, for example (you could
start with any number)

54+7+9+11+13
where every term is 2 more than the previous one, or
10 + 15 + 20 + 25 + 30 + 35
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where the difference between any neighbouring terms is 5.
For these it is also true that the sum of the first and last terms is
the same as the sum of the second and the last but one and so
on. Try to test them: in the first example

5+13=18, 7+11 =18

and for the calculation of double the first sum we need 9 + 9
which is also 18. In the second example

10 + 35 =45, 15 4 30 = 45, 20 + 25 = 45

Such series of numbers with equal intervals are called arith-
metical series by mathematicians.

It is interesting that we come across the same argument in
other branches of mathematics. For example, the same trick,
by means of which we added the terms of an arithmetical
series, is helpful in calculating areas. It is easy to calculate the
area of a rectangle; this is even more simple than finding the
volume of a cube: we choose a little square as our unit and we
see how many of these units will make up the rectangle. Let
us take for example a square inch as the unit, i.e. a small
square whose length and breadth are one inch.

Iin.

1n.

Let us put 8 such little squares next to each other

This is a rectangle. To make it less thin, let us put 3 such
rows next to each other.

The rectangle so obtained consists of 3 x 8 = 24 little squares.
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Conversely, if we start off with a rectangle whose length is 8”
and whose width is 3” then there will be room in it for 3 x 8
= 24 square inches, and in general we can obtain the area of a
rectangle by multiplying the lengths of two adjacent sides.

Let us note that the adjacent sides of a rectangle in addition
form a right angle with each other (this is sometimes expressed
by saying that they are perpendicular to each other). The
right angle is an angle that you have to be very exact about,
if, for example, we are building a house; neither arm of this
angle leans towards or away from the other arm, as is the case
with acute and obtuse angles respectively:

(for walls leaning like this would fall over very easily). The
right angle preserves a proper balance.

In the figure bounded by three lines, i.e. in the triangle, it is
possible to have a right angle, but only one. The reader should
make a few trials: however we try, the other two angles always
turn out to be acute

The side of a right-angled triangle which is opposite the right
angle is called the hypotenuse.

Now a right-angled triangle cannot in any way be made up
out of our little square units of area on account of its acute
angles:
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T~

In the first row, for a start, we have left out the shaded area.
The calculation of the area presents a problem.

But the problem can quite easily be solved; if we cannot cal-
culate the area of one triangle, let us calculate the area of two.
Let us fit the hypotenuse of an identical triangle upside down
against the hypotenuse of our triangle. We get a rectangle

and we can calculate the area of this: we have only to multiply
the two adjacent sides. The adjacent sides of the rectangle are
in fact those sides of the triangle which are adjacent to the right
angle. In this way we can calculate double the area of the
triangle: we get the area of one triangle by dividing the result
by 2. So we calculate the area of a right-angled triangle by
multiplying the lengths of the sides adjacent to the right angle
and dividing by 2.

It becomes quite obvious that the main argument here is the
same as in the summing of the terms of an arithmetical series if
we follow the exposition of the mathematician Euclid, who
bequeathed to the world a marvellously complete mathematical
work 2000 years ago. Euclid dresses up the properties of
numbers in geometrical clothes: with him the symbols for

1, . could be

5 a B,...

and so the sum
14+2+3+4
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could be represented by means of a ‘triangle with steps’ like this

s

L

The trick in which we put the sum written backwards under-
neath now becomes that of fitting another triangle with steps on
top of the first one, like this

In this way 1 comes on top of 4, 2 on top of 3, 3 on top of 2 and
4ontopofl. Thesquares that are on top of each other every-
where amount to 5, altogether giving 4 x 5 = 20, correspond-
ing to the fact that the rectangle so formed has a length 4 units
and width 5 units, i.e. the rectangle takesup 4 x 5 units of area.
This is the double of the sum in question; the sum itself is the
half of this, since the area of each triangle with steps is half the
area of the rectangle. It should now be quite clear that we
have gone through the same argument, once in arithmetical,
once in geometrical language. We shall see that this argument
has still a great many more variations.




5. Vanations on a_fundamental theme

UNDER what circumstances do we have to sum numbers from
1 onwards? The following, seemingly quite different problem,
leads also to this process.

We have already come across triangles and quadrilaterals;
in general, figures enclosed by straight lines are called polygons.

A7 <O

All these drawn above are so-called ‘convex’ polygons. They
are not indented anywhere as are those below

A I

The latter differ from the former in that you can produce a side
of the latter and thus slice them in two:

AN )

The reader should try to convince himself that this cannot be
done with the former, for we must be clear about this difference.
In what follows we shall be dealing only with convex figures.
(We shall make the same distinction among solids too.)
The lines joining non-neighbouring vertices are called
diagonals (since the line joining two neighbouring vertices is not
29
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a diagonal, but a side.) For example I shall draw a few
diagonals in the polygon below

Now the problem is this: given a polygon, say an octagon,
how many diagonals can I drawin it? Even if I draw them all
in, it is not so easy to count them, for they cover the figure so
thickly.

The problem is simplified if we do not distinguish between
neighbouring and non-neighbouring vertices, and so count in
the sides for the time being. We know in any case that there
are 8 sides, so we shall have to subtract 8 from the result.

In this form the problem can be put in the following way.
Given the 8 vertices of an octagon,

7x 8*
7%

x
2 fx

\?* 4% S*

in how many ways can we join these up in pairs? Two ways
appear to be indicated for the solution. One of them is that we
join point 1 with the other seven, in this way we get 7 joins,



VARIATIONS ON A FUNDAMENTAL THEME 31
?

Then we join point 2 with the others, except for 1, with which
itis already joined. In this way we add another 6 joins to those
we have already.

7] %

Now we join point 3 with the others except for the two
points already dealt with; in this way we get 5 new joins; simi-
larly by joining point 4 we get 4 new joins, joining point 5 will
yield 3 more joins, point 6, 2 more and point 7 just one, while
point 8 has already been joined to all the other points and so it
will not yield any new joins. Altogether therefore we get

7T+64+5+4+3+241
joins, or writing it the other way round

1 +24+34+4+5+6+7
lines.

The other way of counting these joins is to see how many you
can draw from each vertex, independently of all the others. Of
course you can draw 7, since each vertex can be joined to all of
the 7 other vertices. Now we can argue further in the follow-
ing way: if from one vertex we can draw 7 lines, from 8 vertices
we can draw 8 x 7 such lines. This is wrong though, since
every line joins 2 vertices; so for example the line joining the
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vertices 1 and 6 was included when we were counting the lines
drawn from the vertex 1 as well as when we were counting those
from the vertex 6. The mistake is simply that we counted
every join twice. The correct result is the half of 8 x 7 = 56,
i.e. 28.

We must reach the same result with both ways, so

1 4+24+3+4+4+5+6+7

is therefore the half of 8 x 7; this is again the result obtained
by my pupil Susie.

But the theme can be varied even further. The problem
that has arisen can be formulated differently in the following
way: since any line joins two vertices, the question really is in
how many ways can 2 vertices be chosen out of 8 So we see
that the fact that we have been talking about vertices is really
quite irrelevant; we could just as well pose the problem of a bag
with 8 balls all of different colours where we ask in how many
ways we can choose different pairs of balls. Or if we wish to
divide 8 children into pairs, in how many ways can we choose
the first pair? All this is expressed mathematically by saying:
how many combinations of 2 can be generated out of 8 elements?

If we denote the elements by the numbers 1,2, 3,4, 5,6, 7, 8,
then the following are the combinations of 2 (or, more simply,
pairs) that can be generated from them

12 23 34 45 56 6 7 78
13 24 35 46 57 6 8

14 25 36 47 58

15 26 37 48

16 27 38

17 28

18

We can see very well that the number of these pairs is (from
right to left)

1 +2+3+44+54+6+7

On the other hand we might have argued that any element
can be paired with the remaining 7, so the 8 elements would
yield 8 x 7 pairs; but we have counted every pair twice, first
when we were pairing the first term and then when we were
pairing the second. The correct result is therefore again half
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of 8 x 7. All these different starting points lead to the same
end-result. I cannot help expressing this in the form of a
formula. The only thing I must warn the reader about is
that in mathematics the bracket does not indicate something of
lesser importance; we should note that mathematicians put in
brackets things whose coherence they want to emphasize. For
example (2 + 3) x 6 means that we must multiply by 6 the
result of the addition 2 + 3, i.e. 5, whereas if we wrote it with-
out brackets 2 + 3 x 6 would mean that we must add to 2 the
result of the multiplication 3 Xx 6 [there is a convention that
multiplication ‘ties more closely’ than addition, and so the latter
need not be written as 2 4 (3 x 6)]. Everybody knows that

the half of 4, of 6, of 10 can be written as respectively

4610
22 2
and that,in general, division can be expressed in this ‘fractional’
form. Then, if we denote by n the number up to which we
have been summing all the numbers, the sum of the first and the
last terms will be 1 4+ n. So we must multiply this by the
number of terms, i.e. by # and then divide this by 2. In other
words all the variations of our fundamental theme can be
condensed in the following formula

(1 + n)n
2

Mathematics is really a language, a queer language which
speaks entirely in symbols. The above formula is only a
symbol, and means nothing by itself; everybody can substitute
into it his own experiences. For one it might mean the count-
ing of the diagonals of a polygon, for another the counting of
the number of possibilities for choosing the leading pair among
his pupils. The writing down of a formula is an expression of
our joy that we can answer all these questions by means of one
argument.

14+24+34+...4+n=

Postscript on geometry without measurements

We have now become aware of two new themes, one geo-
metrical and one arithmetical. I should like to follow up the
geometrical one a little further at first.

Let us have another look at the figure showing the octagon
with all its diagonals. You cannot make head or tail of this
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figure because the diagonals cut across each other all over the
place, and there is an enormous number of intersections; it is a
good job that the polygon is convex, for its vertices are all on the
outside and so we cannot mix them up with the intersections.
The whole thing would be easier to see if the diagonals were
made of elastic string fixed at the vertices and then you could
pull the pieces of string out into space. One person could hold
each one of these diagonals, the second one would be pulled
a little higher than the first, the third a little higher than the
second and so on. In this way they would not intersect each
other and they could be counted, since this stretching does not
alter their number.

There is a special branch of Geometry, called Topology,
which deals with those properties of figures which are not altered
if we make the figures of elastic and stretch them or compress
them in any way whatsoever. It is a strange thing that this
study is classed as part of geometry, since there is no question of
metric properties, i.e. of measurements, because the distances and
angles are altered during the stretching. From our point of
view what makes these considerations interesting is that they
are new and we know their origin: before our very eyes we
picture a whole branch of mathematics being born out of
a game.

This game was a puzzle in connection with the bridges at
Konigsberg. The River Pregel, which runs through Koénigs-
berg, has two islands. Those two islands are joined to each
other and to the shores by means of seven bridges, as shown on
the diagram below

o
=

The puzzle is whether it is possible, starting at any point, to
work out a walk so that we get back to our starting point
having walked across all the bridges, but only once over each
bridge. The reader should try this for himself a few times; in
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the meantime it should become clear to him that the problem
would not be altered at all if the bridges leading to the same
island or shore converged at the same points (this would merely
cut out the walks on the banks of the river), so that the map

S
&VQ

It would of course be quite silly to have two bridges connecting
the same points of the shore and the island, but we might sup-
pose that one was built for pedestrians and the other for cars.
This consideration enables us to sketch a simpler schematic
drawing

and the problem can now be re-formulated by asking whether
this figure can be drawn with one stroke of a pencil without
lifting the pencil off the paper (since our walker cannot rise into
the air) in such a way that no part of the figure should be
drawn twice and that at the end we should get back to the start-
ing point. This puzzle probably sounds familiar; it is usual to
pose the problem in connection with envelopes like the following

It is obvious that these problems belong to Topology, for whether
such a figure can or cannot be drawn by one pencil stroke is not
influenced by imagining the whole figure made of pieces ot
elastic which can be stretched, compressed and generally
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deformed; though we must not tear it or stick any parts of it
together.

The great Euler gave a simple answer to all questions of this
kind. If a figure can be drawn by one pencil stroke leading
back to its starting point, then the pencil must start from the
starting point, and must also return to it, and every time it
comes to a vertex, it must also leave that vertex in order to go
farther. So every line coming to a vertex has a mate, namely
a line leaving the vertex, and therefore at every vertex there
must be an even number of lines meeting. It can be proved
that this statement is sufficient; a figure can always be drawn by
means of one line ending at its starting point if there is an even
number of lines meeting at every vertex.

According to this the problem of the walk in Konigsberg is
insoluble; every vertex in the corresponding diagram makes
this impossible, since on the far-left vertex there are 5 lines
meeting and at the remaining three vertices there are 3 lines
meeting at each and these are all odd numbers.

On the other hand the first envelope can be drawn if we do
not insist on our pencil coming back to the original starting
point, since at the upper vertices there are 4 lines meeting, in
the middle also 4 and these are even numbers; only the two
lower vertices could spoil things, since here there are only 3 lines
meeting. But if we allow the line to start at one of these ver-
tices and end at the other, then we can draw it in the following
stages.

L] © o °

°
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° °
The second envelope is a hopeless case, since it has more than
two recalcitrant vertices: it is only at the uppermost and at the
central vertex that an even number of lines meet; at the
remaining vertices three lines meet at each.

This is the game from which Topology originally started, but
it must not be thought that it has remained at the playful stage;
it has become a very serious branch of Science, so that other
Sciences make use of it to a considerable extent. For example

Physics uses Topology in the description of circuits, Organic
Chemistry uses it in connexion with molecular models; in
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general, topological considerations occur in every case where
we want to produce a structure irrespective of magnitudes.

It is worthwhile to ponder for a while on what kind of geo-
metrical notions go by the board in Topology. Such notions
are those of congruence and of similarity. Congruence of
triangles plays the most important part in Geometry, since
other plane figures can be split up into triangles; polygons can
be split by means of diagonals

Even a circle can be considered as made up of triangles approxi-
mately (we shall come back to this approximation), if we draw
the radii quite close to one another

so that each bit of arc looks almost like a straight line. (I
know that this ‘almost’ is an unpleasant school memory, a cer-
tain sense of uncertainty is associated with it, I promise that
later I shall give a precise meaning to it.)

Two triangles are congruent if you can put one on top of the
other so that one exactly covers the other; for example the two
triangles below are like that.

SN

The reader can convince himself of this by cutting them out of
paper and turning them into identical positions. When one
is placed on top of the other, all six elements (three sides and
three angles) are covered exactly. To achieve this it is enough
that certain pairs of elements should be equal, for example,
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when two sides and the included angle of one triangle are equal
to the two sides and included angle of the other triangle.

A A

Since we know that the heavily drawn elements are equal, we
can place the equal angles on top of each other, and then the
end-points of the adjacent sides will also lie on top of each other;
the third side of the uppermost triangle lies between these two
points, and so it cannot do anything else but lie on the third
side of the lower triangle, with the angles likewise covering
each other.

Two triangles are similar if their shape is similar but they
may be different sizes; one might be a small edition of the other.

AN

We can imagine this by thinking that we have taken a picture
of the large triangle and the camera has made the triangle
smaller. It will be readily seen that we can choose the length
of one of the sides of the little triangle at will for we are sup-
posing that our camera is capable of making things as small as
we like. We must certainly also assume that it does not distort;
namely that it makes the other two sides smaller in just the same
ratio. On the small figure the sides lean away from each other
to the same extent, so that the angles are not altered at all. We
see therefore that the sides of similar triangles are bigger or
smaller than each other in just the same ratio (we express this
by saying that they are proportional) and their corresponding
angles are equal.

For this, on the other hand, it is enough that two of the angles
should be equal. Since, if we wish to draw a triangle similar to
a given triangle,
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we can take any side of the triangle, for example the lower one,
as smaller or larger

After this we must draw the two lower angles of the triangle

A

and now we have used everything up: if we produce the arms
of the two angles, the triangle will be closed

and so this must be the similar triangle required. Thus simi-
larity is really decided by the equality of two sets of correspond-
ing angles.

In Geometry we keep coming across congruent and similar
figures; for example in the isosceles trapezium, below, the white
triangles are congruent and the shaded ones are similar:

Now in Topology we cannot deal with congruence or simi-
larity; if we stretch and compress figures, both the size and the
shape are altered, straight lines might be bent into curves, they
might even escape out of their plane.

It is interesting, however, that topological considerations can
be used to decide the question of how many regular solids there
are, although the ‘regularity’ of solids is intimately connected
with congruence, i.e. with measurements. A convex solid is
regular if it is bounded by plane figures with equal sides and
equal angles like these:

AO0QOOO -
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All these bounding figures are congruent, and at every vertex
the same number of them meet. The way Topology deals with
this problem is by confining itself to certain properties of regular
solids, namely that every face is bounded by the same number
of edges, and that at every vertex the same number of edges
meet. These properties have nothing to do with size or shape.
In this way it is possible to prove by means of topological tools
alone that there can be only five solids satisfying even these few
requirements. To prove that there really are five bodies
satisfying these conditions we use the branch of Geometry that
can measure. Three of these bodies are bounded by triangles,
the well-known cube is bounded by squares, and one is bounded
by pentagons.

VA
=

This is quite a surprising discovery since in the plane there is
no reason why there should not be regular polygons with as
many sides as we like. The series shown on p. 39 could be con-
tinued indefinitely. What we imagine in the plane therefore
must not be transferred without thinking to three dimensions.
In space a lot of things happen differently.

It is again worth while to ponder over these things a little.
We did anticipate that we should meet new phenomena in space,
since it is so much easier to move about in space than if we are
restricted to moving in a plane. We expected that there would
be more possibilities than in a plane, for example a greater
variety of kinds of regular solids. But this does mean that the
larger number of possibilities create conditions harder to fulfil
in some cases, since there are more possibilities in the deter-
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mination of the conditions themselves. At one vertex of a
three-dimensional solid not only two edges can meet, as in the
case of plane figures, but any number of edges, and what is
more, any number of faces; you could have 30 edges meeting at
a vertex, 3 at another, one face could be a triangle, while
another could be a polygon with 30 sides. It is an extremely
severe restriction on a solid not to be able to make use of all
these possibilities, confining it to an equal number of edges at
every vertex and round every face, and allowing it only a single
choice. Altogether only five solids can cope with these
restrictions.

It is strange that I thought of Topology in connexion with
carrying out the addition 1 +2 +3 + ... + 7 in a more
sensible way. This shows too that Mathematics is an organic
whole: wherever we touch it, connecting links from all other
branches come crowding into our minds.



6. We go through all possibilities

THE teacher is not likely to trouble very much about how many
possible ways there are of choosing pairs of children out of his
class; he will solve the problem of pairing quite satisfactorily by
considering friendships and hostilities among the children.
But the young research worker who is still full of fresh curiosity
will want to go through all possible ways. In one of my first
forms in the secondary school when we were discussing a point
about multiplying by 357 namely, that we could start the multi-
plication either with the units or with the hundreds, somebody
immediately asked whether you could not start with the tens.
When I replied that you could, but that you would have to be
extra careful about where you wrote down your partial products,
they straightaway wanted to know in how many ways you could
actually carry out a certain given multiplication. On account
of this I was obliged to make a little excursion into the theory
of combinations, this being the branch of Mathematics which
deals with the number of possible arrangements.

There is hardly a child who would not be interested to know
how many different flags you could make with three different
colours., With one colour you can of course make only one flag:

<

and we can add a coloured strip to this in only two ways (if
we want to use every colour once only): we have to put it either
above or below the first strip:

i G ¢

How is it possible to add another colour? You could put it
42




WE GO THROUGH ALL POSSIBILITIES 43

above, in between or below. From the two-colour flag on the
left we can then make three new flags:

and we can do likewise with the flag on the right:
M |

So out of three colours we can make altogether 2 x 3 = 6 flags.
From this we can proceed to four colours in just the same way.
The fourth colour can be put above the first colour, between
the first and the second, between the second and the third,
finally under the third colour, and this can be done with any of
the three-colour flags. In this way out of every three-colour
flag we can make four four-colour flags, for example out of the
first we can make:

IS ]

In this way, therefore, out of 2 X 3 = 6 three-colour flags, we
can make altogether 2 X 3 X 4 =6 x 4 = 24 flags. We can
put the 1 in as a factor, since it does not make any difference,
and then we notice the following beautiful regularity:

The number of one-colour flags . . 1

The number of two-colour flags . . 1 x 2 =2

The number of three-colour flags . . 1 x2 x3 =6

The number of four-colour flags . . 1 x2 x3 x4 =24

It is quite clear that the procedure will be the same even if we
are not dealing with colours. For example you can serve out
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soup for five children in 1 x 2 x 3 x 4 x 5 = 120 different
orders, or any six ‘elements’ can be arranged, or ‘permuted’,
in 1 x2x3x4x5x6=720 different ways. In the
expression

Il X2 x3x4x5x%x6

the following command is expressed: multiply all the numbers
from 1 to 6 but no further! This is usually abbreviated by writ-
ing down only the last factor and putting an exclamation mark
after it, so that a short way of writing the above would be

6!
Since we are dealing with factors, we say ‘six factorial’ when we
read this sign. For example:

1t =1, 20=1x2, 31=1x2x3 and so on.

The value of the factorial depends of course on how far we go
on multiplying, so we have again come across a function. Let
us quickly construct its ‘temperature chart’, representing on a
horizontal line that number at which we stop the multiplica-
tions, and upwards the corresponding factorial

17 2 7 4
On the opposite page are shown the powers of 2.
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We can see that at first the curve of the factorials remains below
the curve of the powers (please look at the portion between
1 and 2, for example), but afterwards it rises above the power
curve and shoots up much more steeply. And this is not only
true of the powers of 2; the factorial curve rises more steeply
than the curve of any power whatsoever. Of course this is
quite natural; whatever the value of the base, for example 100,
when we raise it to a power, we always multiply by this same
100. The first 99 factors of the factorial are of course smaller
than 100, but after a 100 they get bigger, and we multiply by
100, 101, 102, 103, . . . and so sooner or later they will get the
upper hand.

We were able to work out the number of two-, three- and
four-colour flags gradually from the number of the one-colour
flag by means of the beautifully regular series

1 x 2, l x2 x3, I x2x3x4,...

Other problems in the theory of combinations also lead to simi-
larly beautiful results. For example we already know how to
pick out all the possible pairs from a certain number of ele-
ments: we have shown that out of 8 elements you can do this in
8 x7

2

different ways; out of 15 elements in
15 x 14
2
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different ways, and so on. Would it not be possible step by
step to construct from this the number of possible groups of 3,
of 4, and of 5 that can be chosen out of a given number of
elements?

Let us see in how many ways we can join a third element to
one of the pairs, for example to

1’ 2,

from the pairs that can be constructed out of the elements 1, 2,
3,4,5,6,7,8. In thiscase we are going to disregard the order
of choosing the elements; we shall be concerned only with
whether a certain element has found its way into a group or not
(for example one might consider the problem of appointing a
committee of 3 out of a group of 8 people, the only point being
who shall be appointed). Therefore to the pair 1, 2 we could
add any one of the remaining 6 elements and so we obtain the
following six groups of three:

1
1
1

N NN
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(please ignore the line in the middle for the time being).

In the same way we can enlarge every other pair into a group
of three in six different ways, for example the pair 2, 5 can be
enlarged into the groups

251 125
253 235
254 . . 245
956 O arranged in order of magnitude 256
257 257
258 258

At first it might appear that we can construct six times as many
groups of three out of 8 elements as we can construct pairs.
But among these there will be identical groups, for example 1, 2,
5 can be constructed out of 1, 2 as well as out of 2, 5 (I have
underlined them in both places), and what is more it must also
occur among the enlargements of the pair 1, 5, since we can
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add 2 to this pair as the third element. It is obvious that every
group of three will be constructed three times, i.e out of each
pair which we obtain by leaving out an element from that group
of three. For example if we leave out an element from 2, 3, 5,
we are left with one of the following pairs:

23
25
35

and the group 2, 3, 5 is constructed out of the first pair by join-
ing a 5, out of the second by joining a 3, out of the third by
oining a 2. If, therefore, we wish to obtain every group only
once then we must divide by 3.  So finally we see that to obtain
all groups of 3 that can be chosen out of 8 elements, we must
multiply the number of pairs that can be chosen out of 8 ele-
ments by 6, then divide the result by 3. We already know that
the number of pairs is (8 x 7)/2; we can multiply this by 6 in
such a way that the division by 2 is left to the last
8 X7 x6
2

We still need to divide by 3. To divide by 2 and then to divide
by 3 is the same as to divide by 2 x 3 (for example 12/2 = 6
and 6/3 = 2, and if we divide 12 by 2 x 3 = 6, we get 2).
So finally—putting in an inessential factor 1 in the denominator
for aesthetic reasons—from 8 elements we can choose

8 x7x6
1 x2x3
groups of threc. In the same way we can see that out of 12
elements we can choose
12 x 11 x 10
1 x2x3
groups of three and out of 100 elements
100 x 99 x 98
1 x2x3
groups of three.
Once we know the number of groups of three, we can go on
to groups of four in just the same way. Let us consider again
8 elements, then out of every group of three we can construct 5
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groups of four by adding one of the remaining elements: for
example out of the group
123

we can construct the groups

Pt otk ot it
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According to this we should get five times as many groups of
four as there were groups of three, obtaining every group four
times. For example

1234
can be obtained from
1 2 3 byjoining 4
from 12 4 by joining 3
from 1 3 4 by joining 2
and from 2 3 4 by joining 1

so we should divide the result by 4. The number of groups of
three was

8 Xx7x6
I'x2x3
so we must multiply this by 5 and divide it by 4. The number
of groups of 4 will be
8 x7x6x5
1 x2x3 x4

The reader will surely see the rule emerging. The number of
groups of 7 that can be chosen out of 10 elements is

I0 X9 x8x7x6x%x5x4
I Xx2x3 x4 x5x6x7

This too is a beautifully regular result: when we choose groups
of 7 we have seven factors in the numerator as well as in the
denominator, only in the denominator the factors proceed up-
wards from 1, while in the numerator they proceed downwards
from 10, if we are choosing out of 10 elements.

For example, the number of single elements that can be
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chosen out of 5 elements is 5/1 = 5, which is obvious; the num-
ber of groups of three that can be chosen out of three elements is

3 x2x1l 6

1x2x3 6
and this is also quite obvious, since out of three balls you can
choose all three in one way only. There is also only one way of
withdrawing our hand without choosing any balls at all, no
matter how many balls there are in the bag. So let us agree
that, however many elements we are choosing from, the number
of zero combinations will be 1. Therefore the number of
combinations can be expressed in the following table:

=1

choose
none one two three four

from 1 1 %:l — _— —

2 2x1
from 2 1 T = l_x2 = —_— R

3 3x2 3x2x1
from3 1 T=3 1x2_3 1x2x3 o

4 4x%3 4x3x2 4x3x2xl
from4 1 T=4 1><2=6 1x2x3 = 1x2x3x4

and so on.

We can arrange these results in the following order, if we add
another 1 at the highest position, corresponding to the fact that
there is only one way of withdrawing our hand with nothing in
it from an empty bag, i.e. the number of zero combinations out
of a zero number of elements can also be considered as 1:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

This triangular figure is called the Pascal Triangle. Ithasa
number of interesting properties. It is natural that it is
symmetrical, i.e. that its lefi-hand side is a mirror image of its
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right-hand side, since for example out of 3 balls you can pull out
1 in the same number of ways as leaving 2 in the bag. Simi-
larly, if we are constructing pairs out of 5 elements, every time
we construct a pair, we also construct a group of three out of the
remaining elements, i.e. in the case of 5 elements the number of
pairs is the same as the number of groups of three. And it is
Jjust these numbers that we can see in the Pascal Triangle as
mirror images of each other.

Another property yields a simple rule for constructing the
other rows in the Pascal Triangle. I have not written 2 in
between the 1 and the 1 without reason;itis becausel 4+ 1 = 2,
In the same way 3 is between the | and the 2and 1 +2 =3
and so on. This goes on like that quite regularly, and so,
since | +4 =5 and 4 + 6 = 10, the row following the last
one in the figure is

1 5 10 10 5 1
and similarly the one after that will be
1 6 15 20 15 6 1 and so on.

The proof is also quite simple, but let a trial verification suffice.
The first 15 is in the place of the number of pairs that can be
constructed out of 6 elements. The number in question is

6 x5 30

1 x2 2

and this is really 15.

It follows from this that the sum of the terms in each row is
double the sum of the terms in the previous row. For example
let us construct the row after the last one we wrote down. Itis
done in the following way:

1 146 6415 15+20 20415 15+6 6+1 1

S ot [NE— ———

and we can see clearly that in this row every term of the row
1 6 15 20 15 6 1

occurs exactly twice.

This throws further light on another property of the Pascal
Triangle: adding the terms of a row we obtain the successive
powers of 2. Since this is the case in the beginning (apart from
the uppermost 1):ie. 1 +1 =2=2142+1=4 =22
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we need not trouble to look any farther; if this property is true
for one row, then it will be ‘inherited’ by the next row. We
know that the sum of the terms of each row is twice as much as
the sum of the terms in the previous row, and if we multiply any
power of 2 by 2, we shall geta product2 x 2 x 2 x...2 x 2
with one more 2 in it, i.e. we shall get the next power of 2.

This kind of proof, which is based entirely on the construction
of the natural number series, is called mathematical induction.
The natural number series begins with 1, and by continuing to
count one more, we can reach any member of the series. The
idea of mathematical induction is simply that if something is
true at the beginning of the number series, and if this is ‘in-
herited’ as we proceed from one number to the next, then it is
also true for a// natural numbers. This has given us a method
to prove something for all natural numbers, whereas to try out
all such numbers is impossible with our finite brains. We need
prove only two things, both conceivable by means of our finite
brains: that the statement in question is true for 1, and that it is
the kind that is ‘inherited’.

This is a most important lesson, namely that the infinite in
mathematics is conceivable by means of finite tools.

Those who like to play about with multiplications will be
familiar with the first few rows in the Pascal Triangle. If we
construct the powers of 11 successively, we find that

IBE = 1 1

112 =11 x 11
11
121 = 1 2 1

113 =121 x 11
121
1331 = 1 3 3 1

11* = 1331 x 11
1331
14641 =1 4 6 4 1

The figures in the results are the very numbers in the Pascal
Triangle. Those who had a good look at the multiplications
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will know straight away why this is so; when we added the par-
tial products, we carried out just the same additions as in the
construction of the rows in the Pascal Triangle (in the case of
115 this is spoilt by the fact that in the addition of the partial
products there is carrying to be done
115 = 14641 x 11
14641
161051
whereas the corresponding row in the Pascal Triangle is
1 5 10 10 5 1)
11 isreally 10 + 1
121 =100 +20 +1 =1x 10* +2 x 10 + 1
1331 = 1000 + 300 + 30 + 1 =
1 x10°+3 x10° +3 x 10 +1
and so on. So the numbers in the Pascal Triangle occur as co-
efficients of descending powers of 10 in the expression of the
powers of 10 + 1. The second term in 10 + 1 is 1, and every
power of 1isstill 1 (since 1 x 1 = 1), and so it does not appear
that the powers of the second term come into the expression at
all. But we can smuggle them in in the following way:
11® = 1331 = 1000 + 300 + 30 + 1 =
1 x1004+3x10°x1+3x10x12+1x18

We see that while the powers of the first term decrease, the
powers of the second term increase. The importance of this
lies in the fact that we can generalize this expression to yield the
expansion of powers of other sums of two terms. For example

P=05+2P=1x54+3x5%x2+3x5x2%2+1x2°

After what we have seen, it would not be difficult to prove this

in the general case, but let us be satisfied with a numerical
check:

1 x5 =5x5%x5=25%x5 = 125
3 x5 Xx2=3x5x5%x2=15x%x10 = 150
3 x5 Xx2=3x5%x2%x2=3%x10x2 = 60
1 x 2 =2x2x2=4x%x2 == 8

343

andinfact 7°=7x7 X7 =49 x7 =343
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This discovery is again a very convenient one; quite often it is
easier, instead of raising a single number to a power, to split
this number into two terms whose powers are easy to calculate.
For example some people do not like multiplying by 7; when
we calculate the expanded form of (5 + 2)3, we need only to do
easy multiplications, namely those by 5 and by 2 (these, if pos-
sible, should be carried out in such a way as to yield as many
multiplications by 10 as possible; multiplication by 10 is really
child’s play).

Another word for ‘two terms’ is binomial, this is why this ex-
pansion is called the Binomial Theorem, and the numbers in the
Pascal Triangle are called the binomial coefficients.

It is the second power which is most often needed. The
second row in the Pascal Triangle is

1 2 1

According to this, if we wish to calculate (5 + 3)2, then these
are the numbers by which we have to multiply; powers of 5
decreasing from 2, and powers of 3 increasing up to 2, will
enter into the expansion, so that

5+32=1x5+2x5x3+1x3
or leaving out the superfluous factors 1:
5+3)2=5+2x5x3+3

Thus we reach the well-known rule (of which the reader may
have unpleasant memories!): to raise the sum of two terms to
the second power, we add the second power of the first term to
double the product of the first two terms, and then to the
second power of the second term.

Of course we could have seen this in a much simpler way, for
example by looking at it geometrically. We know that the
area of a rectangle is the product of the lengths of the two adja-
cent sides. So, conversely, if we have a product, we can repre-
sent it by means of the area of a rectangle, the lengths of the
adjacent sides of which are the factors. For example here is
the representation of the product 3 x 5

2l x5

S
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and that of the product 5* =5 x 5

5[ 5xs5=52

PO S

5

This is of course a square. That is why the second power is also
called a square.
Let us now represent the expression (5 + 3)*

kA

.......

Here the separate identity of the terms has all but been lost
sight of, but dividing up the square in the manner shown will
throw more light on the role played by the terms.

3

J 2

Out of the pieces thus produced we see that the area of the
larger square is 5% the area of the smaller square is 3%. Apart
from these there are two more rectangles with areas 5 x 3 units
each, making up the original large square. Therefore in fact

(5+3)?=5+2x5x%x3+3
This is just as clear as the figures in Hindu textbooks. The

Hindus do not believe in a lot of verbiage. They state the
theorem: a sum of two terms can be squared in such and such a
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way. Then they write: ‘See below’, and they draw a figure

which explains it all:

axb

bl

a!

axb

Those who have eyes to see, will see.



7. Colouring the grey number series

THE Hindus have been excellent mathematicians from time
immemorial, and they have abilities quite peculiar to them-
selves in this field. I heard the following anecdote about one
of their scientists: One of his European friends once asked him
jokingly whether the registration number, 1729, of the taxi he
had just been in was an unlucky number; he replied quite
naturally: ‘Oh no, on the contrary, this number 1729 is a very
interesting number. It is the first number that can be ex-
pressed in two ways as a sum of two cubes, since 10° + 9° as
well as 12° + 13 are both 1729.’

To the Hindus even the four-digit numbers are somehow like
personal friends endowed with their own special peculiarities.
In our primary schools the small numbers are treated in this
individual sort of way: for the young pupil 2 is not just one of
the many grey numbers, but has an individuality which he has
learnt to recognize in many of its aspects: it is the first even
number, it is I 4 1, it is half of 4 and so on. But whether we
colour our numbers up to 10 or up to such large numbers as the
Hindus, all this is a very tiny fraction of the infinite number
series, which goes rolling on and on in a grey sort of way.

We know that there are even numbers; yes, every other
number is even:

1,2,3,45,6,7,8,9,10,11, 12, ...
In the same way every third number is divisible by 3,
1,2,3,4,5,6,7,8,9,10,11, 12, . ..
every fourth number by 4,
1,2,3,4,5,6,7,8,9,10, 11, 12, . ..

and so on. These are only waves, some small, some larger,
but once they have started, they go rolling on with monotonous
regularity. Is there nothing unexpected here, no individual
unpredictability, which would brighten up this monotony?
Fortunately there is: it is the distribution of prime numbers,
which is quite unpredictable and quite impossible to squeeze
56
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into any regular pattern. Let us remind ourselves what
divisibility is:
All the divisors of 10 are 1, 2, 5,
All the divisors of 12 are I, 2, 3
But all the divisors of 11 are 1, 11

Every number is divisible by 1 and by itself. There are num-
bers which are not divisible by any other number besides
these, such as for example 11. These are the numbers that
are called prime numbers.

The number 1 behaves irregularly from this point of view, it
has only one divisor, 1, and this is also itself. For this reason it
is usual not to include 1 among the prime numbers. According
to this convention the smallest prime number is 2, and this is
also the only even prime number, as every even number is
divisible by 2. In accordance with this an even number can
only be a prime number if the divisor is the number itself,
namely 2.

What gives prime numbers great importance is the fact
that every other number can be built out of them as out of
bricks. For this reason the other numbers are called com-
posite numbers. We can formulate this more exactly by saying
that every composite number can be expressed as a product of
prime numbers.

Let us try for example to write down 60 as a product:

60 =6 x 10
Both 6 and 10 can be further split into factors,
6 =2x3and10 =2 x5
and writing these in place of 6 and 10 we have
60 =2 x3 x2 x5
where all its factors are prime numbers.

We could have done this differently, since we have already
seen that 60 can be expressed as a product of two numbers in a
number of different ways. If we start with

60 =4 x 15
where 4 =2 x 2 and 15 = 3 x 5, we have
60 =2 x2x3x35
or if we choose the splitting
60 =2 x 30

10,
,» 4 6, 12
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then 30 =5 x 6and 6 =2 X3 s0 30=5x2x3
or 30 =2 x15and15=3 x5 s0 30=2x3 x5
or 30=3x10and10 =2 x5 so 30 =3 x2 x5

We see that 30 can always be split into the product of the prime
numbers 2, 3, and 5. If we write this product in place of 30,
we have

60 =2 x2x3 x5

Start off how we will, 60 will be split into the same prime
numbers, only they may occur in different orders. Tidying
up and writing the products of equal factors as powers, we have
60 =22 x3 x5

It is just as easy to split any composite number into its prime
factors (and it can be proved that every time we can obtain
only one kind of split). If in the beginning we get stuck and
do not know how to begin, let us remember that the smallest
divisor of a number, apart from 1, is certain to be a prime
number, since if it were composite, then there would have to
be a divisor smaller than it, which would also go into the
original number without remainder. So, by always looking
for the smallest divisor, we can easily find the prime factors of
any number. For example:

90 =2 x 45
=2 x3 x15
=2x3%x3 x5

Such a splitting of a number throws light on the structure of the
number; for example we can gather straight away that the
divisors of 90, apart from 1, are

primes: 2, 3, 5
products of two primes:
2x3=6 2x5=10, 3 x3=9, 3 x5=15
products of three primes:
2x3x3=18, 2x3x5=30, 3 x3x5=45
product of four primes: 2 X 3 x 3 X 5 =90

So it is worth while to make friends with the bricks out of
which numbers are built. Let us try to write down the prime
numbers in order. We know that the smallest prime number is
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2, and that we can certainly leave out all other even num-
bers, since all these are divisible by 2. Then 3, 5, 7 are
prime numbers; it is tempting to say that 9 is also a prime
number, but it is not, since 9 is divisible by 3. Now we might
think that from here on the prime numbers are going to thin
out, but again they do not, since 11 and 13 are prime numbers.
For once I shall ask the reader to take a little trouble: he
should try to list all the prime numbers for himself at least up to
50. As a check, the reader will find the series written below,
but he will only appreciate its irregularity if he has gone
through the series himself, having made a number of mistakes
while doing so.
The sequence of prime numbers is as follows:

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

A clever idea has been handed down to us from the
Greeks, by means of which we can construct this irregular
sequence mechanically without any possibility of error. Let
us write down all the numbers from 2 to 50. The first number
must be a prime number (even if we did not know what it was
we should be sure of this), as all its divisors apart from itself
must be smaller than itself, and (apart from 1) would have to
come before it, but there is nothing before it. Now let us see
what this first number is—2. Every second number is a
multiple of 2, and so, apart from 2 itself, is not a prime number.
So, starting from here, let us cross out every other number.

2 3 A 5 & 1, 8 9, M 1, M

13, M, 15, )} 17, J& 19, 30, 21, o4, 23,

M, 25, 26 21, X 29, 3 31, 32 33, A,

35, 36, 37, 36 39, M, 41, 42 43, 4, 45,
46, 47, 48 49, 54

The first number which remains after the number 2 again can
only be a prime number, since it can only be a multiple of
numbers that come before it, and before it there is only a
number whose multiples we have crossed out. Let us have a
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look at this number: 3. Every third number is a multiple of 3,
so from here on let us cross out every third number (it does not
matter if some numbers get crossed out twice).

VAN RV S S

13, M, )8 Y 11, Y19, 3 A A 3,

H 25, )6 7, )6 0, o 3, A B M,

35, 36, 371, 36 39, s 41, &£ 43, A, 45
46 41, S 419, A6

Then we go on in the same way. We keep the number 5, but
we naturally cross out all multiples of 5. So after 5 we must
cross out every fifth number, similarly after 7 we must cross out
every seventh number.

2 3% A 5K LA AMN K
13, Y& M 36, 11, B 19, #6, A, 23,
Ao 3506 7 36 0, 5, 4 3
35 36 31, 6, 39 4 4, g 65, 44 M
1, p 45

We need not go any farther, since the first remaining number is
11 and if we multiply 11 by a number greater than 7, we
obtain a number greater than 50, and the smaller multiples of
11 have already been crossed out. Let us write out the num-
bers that have survived:
2,3,5,7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

these are in fact the prime numbers under 50 which we wrote
down before.

It is possible to build a machine which would carry out all
these instructions, and so would yield all prime numbers up to a
certain point. But this does not alter the fact that prime
numbers turn up again and again in a most unpredictable
manner however far we like to go.

X XX
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For example it can be proved that we can find gaps as large
as we like between successive prime numbers, provided we go
far enough in the number series. For example, the results of
the following operations will yield a gap of six units, i.e. six
successive numbers none of which is a prime number:

2x3 X4 x5x6x%x7+2, 2x§x4x5x6x7+§
2X3 x4 x5x6x7+4 2x3Xx4xIx6x7+3
2X3x4x5x6x7+58, 2x3x4x5x6x7+7

These are in fact successive numbers, each one being just one
more than the previous one, and not one of them is a prime
number, since 2 x 3 x 4 x 5 x 6 x 7 is divisible by each
one of its factors. Therefore our first number is such that
both terms are divisible by 2, the second number is similarly
divisible by 3, the third by 4, the fourth by 5, the fifth by 6 and
the sixth by 7. If we calculate this number, we have

2 x3 x4 x5 x6x7=>5040
so the six successive numbers are
5042, 5043, 5044, 5045, 5046, 5047

These numbers are quite large, and we have been obliged to go
quite a long way in the number series to find a gap of six
terms among the prime numbers by means of this method.
It is of course possible that there is such a gap between them
considerably earlier. If we are not averse to going a long way,
we can find a gap of 100 terms in the same way, by adding
to the product of all the numbers between 2 and 101

2x3 x4 x5x...x 100 x 101

first 2, then 3, then 4, and finally 101. By this method we
can find as long a gap as we like.

On the other hand, as far as the number series has so far
been examined, we find again and again successive odd num-
bers which have turned out to be prime numbers, as for ex-
ample at the beginning of the number series we have 11 and
13 or 29 and 31. Mathematicians have an idea that there are
in fact such ‘twin’ prime numbers however far we go in the
number series, i.e. beyond the part so far examined: but so
far it has not proved possible to show this in any general way.
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Of course we might ask whether there are prime numbers
among random numbers as large as we please? Do they
just colour the first section of the number series? To this
question we can provide an answer. We have in fact had the
answer for 2000 years; Euclid published a very clever proof
to show that there are an infinite number of prime numbers.

We can see this in much the same way as the infinity of the
natural number series itself; should somebody say that the
prime numbers end at such and such, he cannot get away
with it, because we can show that there are still prime numbers
beyond.

It is enough to show this in one case; it will be just the same
in every other case. We need only remember that every
other number is divisible by 2, every third number by 3 and so
on. Therefore the number that comes immediately after a
number divisible by 2 cannot itself be divisible by 2, the num-
ber that comes immediately after a number divisible by 3
cannot be divisible by 3 and so on. If somebody were to state
that the following are all the prime numbers:

2,3,5,7
and that here they end, we can refute this statement, since we
can construct the following number out of the given ones:
2x3x5x7+1
2 x3 x5 x 7 is divisible by 2, by 3, by 5 and by 7.
The number that comes immediately after this one, i.e.
2 X3 x5x7+1, cannot be divisible by any of these.
But the poor thing must be divisible by some prime number,
for it is still a number and so can be split up into prime num-
bers, or if by chance it is a prime number it can at any rate be
divided by itself. The person who made the statement re-
ferred to must have made a mistake, there must be prime
numbers beyond 7. And in the same way beyond any prime
number.
Let us calculate this number

2 X3 x5 x7+1

The result is 211. We can convince ourselves after a few
trials that this number is not divisible by any other number
besides 1 or itself| i.e. it happens to be a prime number. So
this is the very prime number whose existence I have stipulated,
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a prime number greater than 7. Of course it does not mean
that this is the first prime number after 7; we could not have
expected for one moment that the succession of prime numbers
could be constructed in such a regular way.
More exactly stated, our method ensures that in order to find
a prime number after 7 we certainly need not go beyond
2 x3 x5 x7+ 1. In the same way to find one after 11
we need not go beyond 2 x 3 x 5 x 7 x 11 4+ 1. But these
are rather large distances; would it not be possible to find
prime numbers within narrower limits?
Many people have given their attention to this problem.
I shall just mention one beautiful result: a Russian mathe-
matician Tchebicheff has proved that from the number 2
onwards there is always a prime number between any number
and its double.
Between 2 and 4 we have 3
between 3 and 6 we have 5
between 4 and 8 we have S5and 7
and between 5 and 10 we have 7 only

and although there does not appear to be any regularity in
this, it is nevertheless true, however far we go in the number
series. We can find as many primes as we like between num-
bers and their doubles if we care to go far enough.

Thus we have found some regularity in these seemingly
unmanageable prime numbers; they cannot get away from
each other quite arbitrarily.

And in spite of everything, in a certain sense there is a
‘rule of prime numbers’. It is in the sense of ‘almost’, the
kind of sense in which a circle can be considered as being put
together out of a lot of thin triangles (which I have promised
to make precise later).

Up to and including 2 there is one prime number, namely
2 itself. Up to 3 there are 2, namely 2 and 3, up to 4 again
these same 2, up to 5 there are 3 since 5 is now added to the list,
up to 6 it is still these 3, up to 7 there are already 4, i.e. 2, 3, 5,
and 7. Up to 8, 9, and 10 it is still these same 4, and so on.
So the number of prime numbers is

up to 6
3

up to S
3

up to 4

2

up to 2
1

up to 3
2

upto7upt08|upt09,upt010
4 \ 4 | 4| 4
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This sequence jumps every time we get to a prime number, and
this happens at quite irregular intervals. Nevertheless we
can write down a well-known sequence constructed according
to a certain rule,* in which the farther we go the more they
become like the numbers in our sequence, and so the numbers
in these two sequences are ‘almost’ equal if we go far enough
in both sequences, in the same sort of way as the curved sub-
divisions of the circle, so difficult to handle,

XL &

are more and more like the well-known triangles, and the
longer we continue the subdivisions the more truly can the
segments be said to be ‘almost’ the same as the triangles:

D & E

An exact rule is not even imaginable for prime numbers, but
even this ‘almost’ kind of regularity has its exact meaning;
I shall keep my promise and come back to this point later.

I could not even attempt to sketch the proof of the rule for
prime numbers; the best mathematicians have handed it
down over a long period of time, improving on it here and
there, until it has reached its present form. Research is still
in progress in this field, attempts are being made to gauge more
and more accurately the extent of the error made by substi-
tuting for the terms of our irregular sequence those of the

* For the sake of those who still remember logarithms I give the sequence which is
2 3 4 5
log 2’ log 3’ log 4’ log 5" "
It is unlikely that the reader will remember this kind of logarithm: it is the so-called
natural logarithm. We shall come across it later on.
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sequence that can be constructed according to a rule. Here it
is not utility that inspires research, nor convenience, but the
beauty and the difficulty of the subject. This is a very
different kind of beauty from the beauty of our playful numbers
in the results we saw in the theory of combinations; it is rather
the aesthetics of lack of organization. It is a noble task to
constrain the irregular to conform to the regular.

The fact that there is a rule for prime numbers means that
although the prime numbers are distributed irregularly along
the sections of the number series that can be examined, they
are nevertheless subject to some kind of order if they are con-
sidered in their infinite entirety. I am reminded of a simile
which I read somewhere in connexion with the problem of
free will: if we observe a swarm of bees at close quarters they
will appear to be flying hither and thither in all directions,
although the whole swarm is nevertheless carried along in a
certain direction towards a definite goal.



8. ‘I have thought of a number’

LET us go back for a while to the useful kind of Mathematics.
We can already work out the volume of a cube; but often we
need to know the volumes of other irregular-shaped solids,
and we cannot work these out by means of direct measure-
ments. In these cases we can make use of the following
device: let us suppose that our solid is made of oak. We can
weigh it. Then we can carve out of oak an inch cube (i.e.
one whose volume is one cubic inch), and weigh it. The
number of times the weight of the cube goes into the weight of
the solid in question will be the volume of our solid in cubic
inches.

Here we cannot determine volume directly, but we can
determine something else, with which volume is in a well-
known relationship, namely the weight of the solid. It is
from this that we try to deduce the unknown volume.

This is a very common situation in Mathematics; a required
quantity is unknown to us, but we do know certain relation-
ships in which it stands to other quantities. From these
relationships we may be able to find out the value of the un-
known quantity.

From the point of view of applications such a process is
fundamental, and it is essentially the same as the process of
solving the following well-known type of problem: ‘I have
thought of a number, added something to it, multiplied the
result by 3’ and so on. Further operations are enumerated
that are performed on the number in question, and eventually
it is revealed that after all has been done the end-result is, for
example, 36. The problem is, then, to find out what the
original number was.

Well, let the reader find out: I have thought of a number,
added 5 to it and got 7; what was the number I thought of?
Everybody will know that it was 2.

Let us make it a little harder. I have thought of a number,
multiplied it by 5, then divided it by 2, then added 3, and I

obtained the number 18. What number did I think of?
66
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Such problems are usually given verbally and not in writing,
and so anyone trying to solve them soon forgets what the opera-
tions were; it is therefore better to jot them down as the
problem is being given out.

Since we do not know the number, we call it X. If the poet
Babits can write

The Styx awaits all other rivers,
Oh, X, the best of all resolvers!

then perhaps I shall be allowed to suggest that the resolver
of the problem should write X in place of the unknown number
awaiting discovery. He will then jot down the following:
X was the original number, this was multiplied by 5, so it

became 5X, then it was divided by 2, so it became %, then

3 was added, so it became SX + 3 and we know that this is 18,

2

In other words

5X

— +3=18

5 +

The number originally thought of satisfies this kind of ‘equa-
tion’; it is from this that its value can be found out.

There are people who have such feeling for numbers that
they can find out the value of the number from the equation
in this form. Those who cannot do this, can go back one
step; if something became 18 after adding 3, then it must have
been 15 before:

X _
5 =

From this it is easier to find out what the X was. Those who
still cannot do so, can make matters easier for themselves by
going back another step. If we get 15 when we divide some-
thing by 2, then it must have been 30 before we divided it:

5X =30

15

Now everybody will know that if you take a number five times
and get 30, then the number can only be 6.
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This gradual dismantling of an equation can be done with
any other equation. When we passed from

5X
va =1
5 +3 8

X _
5 =
the term 3 disappeared from the left and we subtracted 3
from the number on the right. This is what we mean when

we say that a positive term can be taken over to the other side
of an equation as a term to be subtracted. When

5?X = 15 became 5X = 30

the divisor 2 disappeared from the left, and we multiplied the
number on the right by 2. This is expressed by saying that a
divisor can be taken over to the other side of an equation as a
multiplier. In general, opposite operations can be carried from
one side of an equation to the other.

Even when confronted with a more cunningly devised
equation, if we give the matter a little thought we shall see
that this is still the same as the problem of finding the value of
a number somebody thought of. Let the problem be for-
mulated in the following way, for example: ‘A father is 48
years old, his son is 23. In how many years will the father be
just twice as old as the son?” Of course there are people who
will find this out straight away without any equation. Those
who are a little slower can think it out in the following way:
the quick ones already know the result, they will have thought
of the right number; for us this number is still X. So after X
years the father will be twice as old as the son. How will
those who have already solved the problem check their result?
They will see how old the father will be in X years and how old
the son will be in X years, and notice whether in fact the father
will then be twice as old as the son. After X years the father’s
age is X more than 48, i.e. 48 + X years; the son’s age is
23 ++ X years. So the clever ones thought of a number,
added this number both to 48 and to 23 and they say that the
result of the first addition is just double the result of the second:

48 + X =2x (23 +X)

to 15
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It is from this that we must find out what X is. The multi-
plication by 2 on the right can be carried out by multiplying
both terms by 2:

48 + X =46 + 2X

The X on the left can be taken over to the right as a subtraction,
and the 46 on the right can be taken over to the left as a sub-
traction, so that all the X’s accumulate on the same side of the
equation

48 — 46 =2X — X

48 — 46 = 2, and it is obvious if we take away one X from 2X,
we shall be left with one X:

2=X

so the right number is 2. In 2 years’ time the father will be
twice as old as the son. In factin 2 years the father will be 50
and the son 25.

Let us complicate things further. ‘I have thought of two
numbers, their sum is 10. What are the two numbers?

We can write this as follows: let the two numbers be X and
Y (if somebody’s surname and Christian name are both
unknown, he might be called XY). So the person who set the
problem states that

X+Y=10

It is easy enough to find such numbers. For example 1 and 9
will do. But also 2 and 8, or perhaps 4 and 6, might have
been the numbers thought of, and there are still other solutions.
Of course this is altogether unfair, for it is impossible to find
out what the two numbers were from what we were given.
If we really want to find out, we can justifiably ask: ‘We want
to know something more about these two numbers!” All
right, then we can be told that the difference between the two
numbers is 2:
Y -X=2

Now we can find out what they are quite easily. The num-
bers whose sum is 10 and which differ from one another by 2
are 4 and 6.

Therefore in order to find out two unknowns, we need two
equations, i.e. a so-called system of equations. If it is not
immediately clear from these equations what the numbers are,
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we can use a few tricks in order to make them more easily
accessible to us.

For example, if somebody had not discovered that the solu-
tion of the above system of equations is 4 and 6, he could have
done the following: in the second equation carry the term to be
subtracted from the left to the right as a term to be added,
then Y will be left by itself:

Y=X+2

We can see from this that the second number is 2 more than the
first number. So we could formulate the problem more
simply as follows: ‘I thought of a number, then added a number
to this which is 2 more than the number I thought of, and the
result was 10; what number did I think of?” We can write
this as follows:

X+X+2 =10

and in this there is only one unknown. We can find out what
this one unknown is, as we already know some tricks for doing
this. And once we know what X is, we need not worry about
what Y will be, since we know that it will be two more than X.

Here is another example: ‘I have thought of two numbers.
To the first I added double the second and got 11, and to
double the first I added four times the second, the result
being 22. What numbers did I think of?’

The problem can be written in a short form as follows:

X+2Y =11
2X +4Y =22
If the reader has any eyes, he should see straight away that
the problem is not fair. Let us try: 1 and 5 satisfy the first
equation, since
I +2x5=11

and the same numbers satisfy the second equation too, since
2x14+4x5=22

So we might think that we had already found the unknown
numbers. But let us have another look. The numbers 3
and 4 also satisfy the first equation, since

34+2x4=11
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as well as the second, since
2x3+4x4=22

It seems that every pair of numbers satisfying the first equation
also satisfies the second. The second condition does not help
in choosing among these pairs a certain definite one. But this
is really quite natural. Whatever X and Y are, 2X is always
twice as much as X and 4V is always twice as much as 2Y, so
obviously their sum 2X + 4Y is twice as much as X + 2V, so
if X +2Y =11, then 2X + 4Y can only be 22. According
to this, the second equation does not tell us anything new
about the unknown numbers; it tells us just the same thing as
the first, only in a more complicated way.

It would be even more unfair if we had to find the values of
X and Y out of the system of equations

X+2Y =11
2X +4Y =23

We can rack our brains till doomsday; no two numbers will
satisfy both the conditions. We have already seen that what-
ever X and Y are, 2X + 4Y is always the double of X + 27,
so if X +2Y =11, then 2X 4+ 4Y must be 22, it is quite
impossible for it to be 23. The second condition contradicts
the first.

To sum up: we can find out the values of two unknowns
from two equations, provided these equations do not state
just the same thing or they do not contradict each other.

Now how would we cope with a problem like the following?
‘I have thought of a number, squared it, added to it 8 times the
number I thought of, and got 9. Writing it down:

X2 4+8X=9
Here there is only one unknown, but the additional complica-
tion is that it occurs raised to the second power. The equation
is a ‘quadratic’ one.
But let us not begin with such a complicated quadratic
equation. The simplest form is

X2 =16

Everybody can see in a flash that the number is 4, since 4 is
the number whose square is 16.
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The following is just as simple:

(X+3)?*=16
since the number whose square is 16 is still 4, so here
X+3=4

and from this everybody will see that X = 1.

In the last equation (X + 3)2 occurred; let us remember how
a sum of two terms is squared. To the square of the first
term (here to X2) we have to add double the product of the
two terms (here 2 x 3X = 6X), and the square of the second
term (here 32 = 9). So our equation in expanded form would
look like this:

X24+6X+9=16

But if we had been confronted with it in this form, we should
have had no idea how to begin to solve it. Therefore we have
to practise recognizing squares of sums of two terms even in
their expanded forms. If for example we had the equation:

X2 +8X 416 =25

then we should need to notice that 8X = 2 x 4X, and that 16
is the square of the 4 occurring in the previous product, so that

X2+ 8X+16=X4+2 x4X +4 = (X +4)®
and that therefore we are dealing with the equation
(X+42=25

which we can solve in the same way as the previous ones.

Of course we do not really alter the equation we have just
been considering if we carry the 16 to the right as a term to be
subtracted: 25 — 16 = 9, giving us the equation

X24+8X =9

which is the form we started with. Even in this form we ought
to be able to see that the left-hand side can be completed into
the square of two terms:

X2 +8X=X24+2 x4X

and the term that is missing to make (X + 4)* from this is
4* =16. If we add the same thing to both the left- and the
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right-hand sides of an equation, the two sides still remain
equal; so let us here add 16 to both sides:

X2 4+8X4+16=9+16
X2 4+8X 416 =25

and we can cope with it in this form.

This completion into the square of two terms is always
possible. If the quadratic term is not X* but, for example,
3X? as in the following equation:

3X% + 24X =27

then we can divide both sides of the equation by 3, since if
the left-hand side and the right-hand side are equal, then their
thirds will also be equal. The third of 3X? is X% the third of
24X is 8X and the third of 27 is 9, so that

X?+8X=9

which equation we can solve in this form. If the numbers
had not been all divisible by 3, or if the coefficient of X were an
odd number, then fractions would come into the working;
but for the time being I do not want to bother the reader with
fractions or with subtractions, although they do not really
represent any difficulties of principle.

In any case we see that we can carry out the completion
into a perfect square, and in this form the equations can be
solved.

The above methods of reasoning are typical of the way
mathematicians think. Quite often they do not deliver a
frontal attack against a given problem, but rather they shape it,
transform it, until it is eventually changed into a problem
that they have solved before. This is of course the good old
convenient point of view which is made fun of by the following
problem, well known in mathematical circles: ‘There is a gas
ring in front of you, a tap, a saucepan, and a match. You
want to boil some water. What do you do? The reply is
usually given with an air of uncertainty: ‘I light the gas, put
some water in the saucepan and put it on the gas.” ‘So far
you are quite correct. Now I shall modify the problem:
everything is the same as before, the only difference is that
there is already enough water in the saucepan. Now what do
you do?”” Now the problem-solver speaks up, more sure of
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himself, knowing himself to be in the right: ‘I light the gas
and put the saucepan on.” Then comes the superior reply:
‘Only a physicist would do that. A mathematician would
pour the water away and say that he had reduced the problem
to the previous one.’

Certainly this reduction is the essence of the solution of
quadratic equations, not the formula which is derived from it,
and which is learnt by pupils so effectively that they can recite
it in their sleep years afterwards.

Another difficulty may arise; let us suppose that the com-
pletion of the perfect square has already been carried out on
the left-hand side, but we cannot find a number whose square
is equal to the number on the right-hand side. For example:

(X+32=2

If I really did think of a number and X stands for that number,
then this could not happen, but among the more advanced
applications of equations this situation could in fact arise.
The problem is the inversion of the operation of raising to a
power; we are looking for a number whose square is 2. This
is called extracting the square root, and, as an inverse operation,
belongs to a later chapter (where I shall also be dealing with
the problem of how many solutions there could be to a quad-
ratic equation—at the moment we think ourselves lucky to
find one). But the reader need not worry: the problem can
be solved.

Those who do not rely on the formula but understand the
line of argument, can also solve some equations of a higher
order if they are in certain forms. Given for example

(X 4+ 1) =27
since 27 =3 x 3 x 3 = 33, so0 3 is the number whose cube is
27. Therefore X + 1 =3 andso X = 2.

We could expand (X + 1)® by means of the binomial
theorem by now familiar to the reader; from such an expanded
form we can see that it is obtained by cubing the sum of two
terms, but the completion into a perfect cube is not possible
with every cubic equation. But there are general processes
for the solution of cubic equations, even for the solution of
equations of the fourth degree; apart from the four funda-
mental operations and the extraction of the square root we
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have to use cube roots and fourth roots, i.e. find numbers whose
cubes or whose fourth powers are equal to certain given num-
bers, for example to 2.

The branch of Mathematics dealing with equations is called
Algebra. In the secondary school we used to call all those
parts of Mathematics Algebra that did not belong to Geometry.
It is certainly true that in every branch of Mathematics (even
in Geometry) we keep coming across equations, so that students
of Mathematics may have formed the idea that it is the study
of equations, and Higher Mathematics is the study of more
complicated equations. Certainly there was an epoch when
most mathematicians directed their attention to Algebra, and
they imagined the development of Mathematics, after the
equations of the third and fourth degrees had been disposed of]
would consist of finding clever methods of solving equations
of the fifth, sixth and higher degrees. We can imagine the
general consternation when Abel discovered the conditions
which must be satisfied for an equation of any degree to be
solved by means of the four fundamental operations and the
extraction of roots; it was found that only the equations of the
first, second, third and fourth degrees satisfy these conditions.
It is quite out of the question for us to be able to solve, for
example, equations of the fifth degree by means of our opera-
tions. It seemed that the algrebraists might as well down tools.

Here we reach one of the most romantic parts of the history
of Mathematics. It happened that a young Frenchman of
20, Galois, fought a duel over a girl, and was killed in the duel.
The night before he died he wrote a letter to a friend, and in
this, as though in a last will and testament, put down his ideas
which breathed new life into Algebra just at the time when
it had all but lost its raison d’étre.

Even though there is no general procedure for the solution of
equations of the fifth degree, there are some equations of this
type which we can solve. For example

X® =32
and, similarly, (X +1)° =32
can very easily be solved: 2 x 2 x 2 X 2 x 2 =32 =2% So
the solution of the first equation is

X =2
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The solution of the second is obtained from
X+1=2
and so it is X=1

But there are equations of quite different form which can

also be solved. One such would, for example, be
Xo+2X*+X=0

X = 0 is certainly a solution, since every multiple and every

power of 0 is 0, so that 0° + 2 x 0* + O is in fact equal to 0.

This was the situation which enabled algebraic research to be
resumed; even if we could not think of a general procedure,
it was still an interesting problem to decide which were those
special equations of higher degree which could be solved by
means of our operations.

Galois’s last will and testament gave a method of attack for
this problem.

This method has proved remarkably fertile. It is due to it
that Algebra, at the time quite moribund, started to flower
again, with even greater force than before. Wherever
Mathematics is wounded, regeneration invariably begins
with renewed vigour. This new branch of Algebra enshrines
Galois’s memory in its very name; it is called the Galois
Theory.

There is just one thing of which I should like the reader to
be aware: it is in Algebra that we have first come across the
phenomenon of Mathematics, by means of its own tools,
proving its own incapacity within a certain circumscribed area.
We shall come across this phenomenon again.
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9. Duverging numbers

DurinG the preceding chapters a whole heap of debts have
accumulated; these have been in most cases in connexion with
the inversion of operations. It is now time we faced the
problems of the inverse operations.

Subtraction would appear to be the more harmless. What
is it actually about? We can invert addition as follows: we
know the sum of two terms, suppose it is 10. One of the terms
is 6, what is the other? Of course it is 4. This is what is left if
we take away the given term from 10; where is the difficulty?

The difficulty begins with the fact that I had to do a little
thinking before deciding on the numbers 10 and 6 for our
example. In the case of addition, I could point blindfolded
to any two places in the natural-number series, and it would be
certain that the numbers so found could be added, and what is
more, that this could be done in any order. But what would
have happened if I had formulated the above example by say-
ing that the sum of two terms was 6, one term being 10; what
would the other term be? Here even the statement of the
problem clearly shows that the whole thing is impossible,
since the sum cannot be less than one of its terms. We have to
be careful not to subtract more than there is to subtract from.

Is this all? The reader will think it was a pity to leave this
simple operation for so long just for this. It would not occur
to anybody to take away more than there is, and other, sen-
sible, subtractions can be carried out without any difficulty.

This would be quite a reasonable line to take but for the
consideration that in fact problems arise in practice where we
have to subtract a larger number from a smaller one.

Let us recall for a moment the problem where we had to
find out in how many years the father would be twice as old as

77
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the son and ask the same question about a father who is 52
and a son who is 27. The argument is the same as before:
the situation in question will occur in X years’ time, when every-
body is X years older. The father will be 52 4 X years old,
the son 27 + X years old. We are saying that

52 + X =2 x (27 + X)

Let us do what we did before. On the right let us carry out
both multiplications:

52 + X =54 +2X

Then let us collect the unknowns on the right-hand side, i.e.
bring the X from the left over to the right as a subtraction, and
take the 54 likewise over to the left:

52 - 54 =2X—-X
Taking one X from 2X, only one X is left:
52 -54=X

but here we get stuck. The result of the impossible subtraction
52 — 54 ought to be the value of the unknown number.

To this we could reply: if the unknown can only be the result
of an impossible subtraction, then we must look for the mistake
in the formulation of the problem itself; this father will never
be twice as old as his son.

But let us have a closer look at the numbers occurring in the
problem: 52 years and 27 years. Anyone who has some
number sense will see straight away that 2 years ago the father
was 50 and the son 25, and so that is when the father was twice
as old as the son.

It seems that the example ought to be reformulated. How
many years ago was the father twice as old as the son?

In this way we should have no trouble with the equation.
X years ago everybody was X years younger, so the father was
52 — X years old and the son 27 — X years old, and we are
stating about these ages that

52 — X =2 x (27 - X)
On the right we can multiply the difference by 2 by multiplying
27 as well as X by 2 (if we are confronted with the problem
2 x 99, it is easier to do it by multiplying 100 by 2, though
from the 200 so obtained we must subtract 2, since we are
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considering 99 as the difference between 100 and 1, and so
double this difference is the difference between 2 x 100 and
2 x 1):

52 — X =54 - 2X
Now let us collect the unknowns on the left-hand side, i.e. let us
bring the subtracted 2X over to the left as an added 2.X:

2X +52 —X =54

Now the added 52 can be taken over to the right as a subtracted
52:

2X — X =54 — 52
We can now carry out all the subtractions and obtain

X =2
just as we had thought.

This is all very well; we can always do this, but it is very
tiresome. It means following the old patterns until we run
up against a blank wall, then going back to the beginning,
reformulating the problem, and starting the whole thing again.
And all the time the solution was ready to hand. Let us go
back to the point where we got stuck. The expression

52 — 54

itself solves the difficulty; it seems to say: ‘I give away the fact
that the difference is 2! Moreover, I tell you that you need
to look for these two years in the opposite direction, not ahead
but in the past. Why can’t you read this from me?’

Thus it is very tempting to attribute a meaning to the
difference 52 — 54. We ought to mean by it the same as
the difference between 54 and 52, but it should somehow have
a different direction, opposite to the usual one. Since this
direction points towards the past in time, it indicates that we
must subtract two years from today’s ages: for it is usual to
denote it by means of the sign for subtraction, and we usually
write

52 — 54 = —2

Correspondingly, we ought to put + signs in front of our
numbers that we have dealt with so far, since if the result of
solving our equation had been that the situation in question
would occur in two years’ time, then we should have had to add 2
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years to today’s ages. If we wish to emphasize this, we can
put in the 4 sign.

The need to attribute directions to quantities is not uncom-
mon. Ifon a very cold winter’s day we say that the tempera-
ture outside is 4 degrees, we have not given any exact informa-
tion about the temperature in the street. We need to add
whether it is 4 degrees above or below zero; for a sensitive
man this could represent quite a difference.

For the same reason it is loose to talk about the third cen-
tury, without stating whether we mean A.D. or B.C.. or about
15 degrees longitude, without adding whether it is 15 degrees
East or West of Greenwich. The bookkeeper is also careful
whether an item of £10 is put on the left or on the right of the
ledger, since for most people it would be a matter of some impor-
tance whether their account had increased or decreased by £10.

In all these cases we could use the signs ‘+’ and ¢ —’ for the
quantities which may have one of two directions. We give
these signs special names: the 4+’ sign is called the positive
sign, and the ‘—’ sign is called the negative sign. The negative
numbers can be thought of as results of sub-
tractions in which we subtract a larger posi-
tive number from a smaller one.

If the temperature outside is 5 degrees
above zero, and then it drops by 8 degrees,
this means that it becomes less, and we can
consider it as a subtraction; we must take
8 away from 5. There is no difficulty in
this, we must merely go beyond zero; the
temperature will be 3 degrees below zero,
i.e. — 3 degrees.

5-8=-3

Such a subtraction always takes us beyond
the zero point in the direction opposite to
the usual one. If we wish to represent our
directed numbers on a line, we can show the positive numbers
going one way (usually from left to right) and the negative
numbers in the opposite direction

e e/

cer =@ -2 =1 0 +1 42 4G ...
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This very line can be thought of as one of our examples to
illustrate the directed numbers. Let us imagine that it is a
trunk road with a signpost placed at the zero point

[«—— Newcastre | London —]

n n fnl n n n 0

n
4mi  gmi. 2mi. imi Doncaster{mi. 2mi. Jmi. 4mi.
ridge

There are cases when we are interested only in the ‘absolute’
values of numbers, that is we are not interested in their direc-
tions. For example, we may want to know how far two points
are from one another. The length of a snake, for example,
is 3 yards, without any sign: for of course nobody thinks of it
as 3 yards from head to tail, then 3 yards from tail to head,
in all 6 yards.

It was really to be expected that opposites should turn up
sooner or later in Mathematics; to think in opposites is so
typically human: truth and falsehood, light and shade, thesis
and antithesis.

The more exact mind will notice not just the most obvious of
opposites. The transition from light to shade is infinitely
gradual. From one starting point we can go in more than
two directions: roads go in all directions from Doncaster

Bridge. So we should not only complete the half-line in our
diagram on which we represented natural numbers with the



82 THE CREATIVE ROLE OF FORM

other half in the opposite direction, but with all possible lines
radiating from the zero point.

This is not just abstract thinking; quantities with arbitrary
directions, so-called ‘vectors’, play an important part in
Physics. Motion can take place in any direction, a force can
act in any direction. Even operations with such directed
quantities have a meaning; it happens sometimes that two
forces are acting at the same time and we are interested in the
joint result. Every oarsman knows that if he wants to cross
the river, he will not reach the other bank dead opposite his
starting point but lower down, since he is not only being
propelled by his own muscles, but also by the current
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In still water the boat would proceed along the dotted line; if
there were a current a boat that was not being rowed would be
carried down along the thick line during the same time; the
boat actually proceeds along the line it does under the influence
of these two forces, and will get there as though it had done the
two journeys separately one after the other:

M A
w : . v
N : PN,
., : or in the O
N : reverse order : N

In either order the boat would get to the same place. The
terms are interchangeable even in this addition.

Even this kind of adding can be considered as successive
counting. First we count the units of one vector in this direc-
tion 4, then we go on counting in this direction <— with the
units of the other vector; next we see what vector would have
led us there direct. This is the sum, or, as it is called in this
case, the resultant.
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This is a queer sort of addition. For example #] and

4

.—q—-z—o-} have for their sum g 2

and, if we measure it exactly, we shall find that it consists of
5 units, and we obtain the apparently absurd result
34+4=5

But here we must not express ourselves loosely even for a
moment; we must state what direction our 3 has, what direc-
tion our 4 has, and what direction our 5 has, and then it is not
so impossible to get a sum less than 3 + 4 = 7, since the result
of opposite forces can even be zero. A story has it that eight
horses were used to pull a very heavy cart, and the cart did not
move at all, till somebody noticed that four horses were pulling
one way and four the other way.

Let us leave the numbers diverging in all directions, and be
content with just two opposing directions.

We already have our instructions how to add positive and
negative numbers. For example if we want to add 8 and —35,
then starting from zero we count 8 units to the right,

g

—

c=5 =4 =3 -2 < 0 ¢1 ¢2 13 t4 +5 ¢6 +7 +§...

e

then 5 units to the left

< S

ceem8 % -3 -2 f 0 +1 +2 +3 +4 +5 16 +7 8...

and we reach the number 3, so that the sum of 4+8 and —5 is
+3. Let us not forget, on account of certain things that will
come later, that

8+ (-5 =3=8-5

so that instead of adding a negative number we can carry out a
simple subtraction.
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Subtraction is also quite easy on our line of numbers; it is
the inverse of the previous process. For example, let us
subtract —3 from 2. This means that a certain addition
yields the sum 2, one of the terms is —3, and we are looking for
the other term. In the case of addition we started in this way:
we went 3 units to the left from zero

3
S

<1 0 +*f »2

[

-J -

Now we are asking what we must have done to obtain 42 as
the result? From —3 we have to go to the right in order to

get to +2,
5

Y

~2 -2 -1 0 +/

so that the difference between 2 and —3is +5. This is quite
interesting; it is just the same as if we had added 3 to 2. And
it is always like this: instead of a subtraction, we can always
do an addition, but we must add a number of opposite sign.

We might think that, since we know how to add, multiplica-
tion should not present any difficulty. To take —2 3 times
means the following addition

(=2 +(=2) + (=2
and if from —2 we count another 2 to the left and then another,
we get to —6, so

(+3) x(—2)=—-6
But supposing the multiplier is a negative number? We can
add a number twice, three times or four times, one after the
other, but there is no sense in which we can add them —2
times.

Now that we have a little experience, we shall not say light-
heartedly: if it has no meaning, let us not do it; let us admit
that we cannot multiply by a negative number. Negative
numbers were introduced in order not to have to attack the
same problem in two different ways, so as to have a uniform
procedure in all cases. This is just the same with multiplica-
tion; if we are dealing with a problem which can be solved by
multiplication by positive numbers it is most inconvenient to
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separate the cases and to say: if the numbers are positive, we
multiply; if they are not, we do something else. Let us,
rather, note carefully what this other thing is that we do in
these cases, and let us call it multiplication by negative numbers.
We are quite justified in doing this, since if something had no
meaning before, we are at liberty to give it a meaning.

But an example will make matters clearer than a lot of talk.

If somebody is walking at a uniform rate of 3 miles an hour,
how far will he have walked in 2 hours? The answer to this
question is clearly given by a multiplication. If our walker
walks 3 miles in one hour, then in two hours he will walk
2 X 3 = 6 miles. So I shall obtain the length of the walk
by multiplying the length of time taken over the walk by the
speed of the walker.

Now let us arrange the problem in such a way that the length
of the walk, the time taken, as well as the speed, shall all be
directed quantities. On the road there is a point which I
shall call ‘here’; walks to the right of this will be called positive,
walks to the left will be called negative. If our walker does 3
miles an hour towards the right, his speed will be +3 miles per
hour; if towards the left, his speed will now be called —3 miles
per hour. Finally a moment in time can be chosen which can
be called ‘now’, and the time after this can be regarded as
positive and the time before it as negative. The starting point
is always labelled ‘Now the walker is here’:

NOW THE WALKER
- € IS HERE —> +

[

TTE 5 % 9 2 A 0+ 2w < 5 <6...

Let us restrict ourselves to the critical cases:

1. Somebody is walking at a speed of +3 miles an hour.
Now he is here. Where was he two hours ago? Our result
should be considered as the result of the multiplication:

(—2) x (+3)
Let us think it over carefully: our walker has positive speed,
so he is walking towards the right. Now he is here, he has
arrived (the reader should point to the relevant point in the

figure, i.e. where the notice is), so that 2 hours ago he must
have been to the left of the notice. And he must have been at a
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distance to the left which he covered in 2 hours, i.e. at a distance
of 2 X 3 = 6 miles. The point -—6 is 6 miles to the left of the
notice, so that

(—2) x (+3)=—6

According to this, multiplying a positive number by a
negative number, we obtain a negative number.

2. Now let the speed be —3 miles an hour. Our walker is
here now. Where was he two hours ago? This can be re-
garded as the result of the multiplication

(=2) x(=3)

The negative speed means that our walker is now walking
towards the left, he has arrived here now (the reader should
again point at the notice on the figure). This could have
happened only if he was to the right of the notice two hours ago,
and again 6 miles away. The point +6 is 6 miles to the right
of the notice, so that

(=2) x(=3)=+6

According to this the product of two negative numbers is
positive.

This is rather like a double negation: ‘It is not true that I
have not been paying attention’ means that I was paying

attention.
From the rules of signs in the case of multiplication we can

immediately deduce that the rule for division is similar. For
example,

(+6) ~ (=3
means that we are looking for a number which if multiplied by

—3 gives +6; this is of course obviously —2. The rule of
signs for powers is just as easy:

(—2)* =(=2) X (=2) x(=2) x(=2) =(+4) x(+4)

N s ~ "

— 116
and (— 2)° = (—2) x (—2) x (—2) x (—2) x (—2)

N ” ~ "

— (+4) x (+4) x (—2) = (+16) x (—2) = —32

In general, negative factors will yield positive products in pairs
and we need only to see whether there is a factor left which is
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not in a pair. In the same way an even power of a negative
number is positive and an odd power is negative.

We arrived at the extension of the notion of multiplication
from one single example; we might begin to wonder whether
another example might not have led to different rules. What
alone can finally satisfy us on this point is the fact that the
new rules of multiplication obey the same laws which we gathered
from the old multiplication of natural numbers, and so we can
use the rules without any fear of arriving at results contra-
dicting the Mathematics that we had built so far. For ex-
ample here it is also true that the factors are interchangeable,
since we saw that

(—2) +(~2) + (-2 = =6
ie. (+3) x(—2) = —6

From the example of the walker we have however obtained:

(—2) x(+3)=-6
so that (+3) x(—2)=(—2) x(+3)

We must always be careful of this sort of thing. Whenever
we introduce new numbers or new operations, we should al-
ways see that they obey the old laws, since the reason we
introduce them is to make procedures more uniform. We do
not want to have to split our operations into different types,
depending on whether the new numbers or operations do or
do not occur. This regard for the extension of old, established
concepts is called the ‘principle of permanence’.

The natural-number series was a spontaneous creation. It
was the breaking down of the structure, which had worked
quite well in the past, that led to the conscious creation of new
numbers. It is the shape of the structure which is helpful in
this process. The framework for the new numbers is given
exactly by the laws derived from the old numbers, and we
are unwilling to abandon these laws if we can help it. This is
the signpost in this conscious creation: we must shape the new
numbers in such a way as to fit them well into this predeter-
mined shape. As Goethe says, since words give thoughts
their shape:

Where ideas are not yet,
Words will serve to fill the net . ..



10.  Limitless density

For the next problem we do not need even an equation; the
smallest child can come across divisions which cannot be
carried out with the natural numbers. Two children have to
share an apple; they will be quite certain that neither of them
can get a whole apple. They will quite simply cut the apple in
half

4 an apple

and without any idea that by doing so they will have extended
the concept of number.

So far we have regarded a unit as indivisible. Now we have
introduced half of this as a new, smaller unit, and once we have
taken this daring step, there is no reason why we should not
divide a whole into 3, 4, 5... or any number of parts, and
then reckon with these new smaller units so obtained; for
instance two halves, three halves, four halves, . . . or symboli-
cally

2 3 4
229 "

This notation does not contradict the fact that we have
denoted division by means of a line, since if for example we had
to divide 2 into 3 parts, let us say three children are sharing out
two cakes, the cleverest way of doing this is to divide both cakes

into three parts, and every child then gets two-thirds, i.e. 2 of a
cake.

O 00

The number under the line names the size of the unit, this is
88
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the denominator.* The number over the line enumerates how
many of these units we have taken; this is the numerator.

In this way still more numbers have come into our line of
numbers. We can draw more and more lines, with smaller
and smaller units. A few will be found below:

0 1...
7 2
0 3 z..
0 z 2 2 3
J ) 7 J..
; 7 Z 7 4 ;
g 4 4 4 A %
T Z 2 4 3 £ 7z
o 3 6 i € ) 6 6 %
0 1 2 3 4 5 ¢ 7 8 9 1011 12 3 1 15 16
2 72 72 12 12 72 12 72 iz 12 12 12 72 12 T2 T2---

Among the numbers appearing on the different lines there
are some that are equal to one another. Let us see which are
the ones that come exactly below one another. Such numbers
are, for instance,

1

2

_3

2
=5

3

8

I
612

2 6

E == E or
and from these we can work out what the apparent differences
are which do not actually alter the value of a fraction. For
example ¢ has the same value as the simpler-looking £; we can
‘simplify’ £ into 2. We can carry this out by dividing both the
numerator and the denominator by 2: 4 -2 =2,6 ~ 2 = 3,
4 = 2. But this is quite natural. Let us have a look; the
thirds are twice as big as the sixths. If; therefore, we take
half as much out of pieces that are twice as big, we get the
same amount.

We also see that 2 is really one whole; 4 on the other hand is
one whole and ! which is written for short as 1. These are not
really proper fractions at all, since their value is not a part of
the whole; they are called improper fractions.

* nomen is the Latin for name (translator’s note).
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0 1...
3 7 Z
7 Z. .
7 7 7 7 %
0 7 7 5 7..
I 2 J %
o * % % 3 %
0 £ 2 3 4 P z 8
6 6 [ 6 6 6 6 E..
g 2 3 4 5 6 8 9 10 1 12 13 fé 15 16

I 2z 4 7z 6 10 11 12 G I
1z 72 77 72 12 72 72 7Z 77 72 12 TZ 72 TZ 17 7Z: -+

It is obvious that on one and the same line we can add and
subtract by means of counting; for example from 2 we get to
by counting another two quarters, so that

3 2 5

1T17s
Multiplication by a whole number is done in just the same way:

5 5 5 5
“TtE
and counting five-twelfths beyond -5 we get to 12.

We get into a little difficulty when we have to add numbers
that are counted in different sizes of units; for example we
might want to do

2 3

313
We can get round the problem in the following way: let us
find the line which has on it a number equal to both % and 2
(we need to do only a little thinking to realize that there will
always be such a line). Here the line of the twelfths will do:

8 2 9 3
12-3 7%
and now we can carry out the addition
8 9
12711

on the same line.
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We have similarly to leap across to another line if we want to
divide.* The reader should check by measurement that the
half of 1 is 1 and that the quarter of 2 is equal to 4. But this
is to be expected, since a denominator which is four times as
large means that we have divided something into four times as
many pieces, and we have taken the same number of these
pieces as we took of the larger pieces. In this way what we
get is one-fourth of what we had before: for example, if we

Al
<>

So we see that, if we apply any of our fundamental operations
tofractions, we again get fractions as a result, either proper orim-
proper; it does not matter that, while working on them, the stops
of the organ we play on must at times come from different rows.

We only have to face a real problem when we come up
against multiplication by a fraction. There is no meaning in
the statement: add something repeatedly a half times. A pupil
of mine once said to me: ‘If one whole times 3 is 3, then 1 times 3
is g,” and there was of course something in what he said. How-
ever, everyday speech helps us. ‘Peter is 2 times the height that
his brother is’ means that Peter’s height is two-thirds of the
height of his brother. To take something 2 times means not
taking the whole thing but just two-thirds of it. And this is
that multiplication which recommends itself in, e.g., the follow-
ing example: If a pound of tea costs 5 shillings, then 4 Ibs. will
cost 4 X 5 = 20 shillings, so that we obtain the cost by multi-
plying the price of one pound by the number of pounds that we
buy. Modifying the problem: the price of a pound of tea is
5 shillings, how much is 2 1b.? The result that we get ought
to be called the result of the multiplication

3

;XS

* Here I am reminded of the fact that, during radiation, electrons leap across
from one possible path to another. Perhaps some readers will find this com-
parison from atomic theory meaningful.
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The price of £ 1b. is obviously 3 times the price of 1 Ib.
The price of £ Ib. will be a quarter of 5 shillings (this is 1s. 3d.).
This must be multiplied by 3 (this will be 3s. 94.), so that2 x 5
does really mean that we take ® of 5. This can of course be
carried out by dividing by 4 and multiplying by 3.

Quite similar considerations lead to the requirement that to
divide by 3 we must multiply by 4 and divide by 3. So these
operations again give as results other fractions, on one or other
of the lines, and it can be shown that in spite of the extension of
the concept of multiplication, all previous operational rules
remain intact. We must not be surprised that it can happen
that the product may be smaller than the number we multiply.
To multiply a number by 2 means taking a 2 part of it, and this
is obviously smaller than the number itself.

It is very easy to multiply 20 by 1; we simply take one
quarter of 20, which is 5. It is just as easy to multiply it
by 1, by 1 and by 1, since in this case we must merely take the
half, the third or the fifth of 20. For this reason it is some-
times worth while to split fractions into such ‘partial’ fractions,

g 1

1 2
Z 7..
0 7 7 A
7 5 g 7.
0 7 2 J 4 3 £ Z )]
6 i i G i & 6 Z...
0 7 23 4 5 6 7 8 9 190111218 % 158

_—e— =L L 2 2D M X

2 J2 72 72 7272 12 712 1Z 121272702 7272 12...

for example
5 4 1

IPARRTIY,
Let us verify on the relevant lines that % is the same as , so
that
5 1 1

2311

and ; is one quarter of 1 (the reader should look at the figure
and see). According to this, for example,

5 1 1
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and this multiplication can be carried out by taking the third of
84, that is 28, then taking a quarter of this, thatis 7, and 28 4 7
is 35. This is particularly useful in Britain where the relics of
all sorts of number systems are preserved in the units of
measurement. For example, the British shilling is split into
12 pence, and so in Britain multiplications by twelfths are
very common.

We have seen that all our fundamental operations can be
carried out within the field of fractions. Let us just do another
example to show this: somebody is doing some arithmetic
exercises; he does the easiest ones in § of an hour (i.e. in 20
minutes), and the hardest ones in 4 an hour. What is the
average time he spends on an exercise? On the hardest and
on the easiest exercise he spends altogether
1 1
313
hours. If these were equally difficult, half of this sum would be
spent on one exercise. He probably spends about that time on
an exercise of average difficulty. Let us calculate how much
this time is. On the line occupied by the sixths we find num-
bers equal to both { and to },

. 2 1 d3_1

1.c. 6—-3an 6—2

so that the sum of 1 and } is the same as
2 3 5
676 6

Half of this (please have a look) is the same as the number on the
line for the twelfths

5

12
so that an average exercise takes 5 of an hour (25 minutes).
This is of course more than he would spend on the easiest and
less than he would spend on the hardest exercises.

We can calculate the average of any two numbers by taking
half of their sum. In this way we always obtain a number
whose value lies between the two given numbers. That is why
mathematicians call it the arithmetic mean.*

* Middle (translator’s note).
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This seemingly innocent example opens up enormous possi-
bilities if we spend just a little time thinking about it.

First of all let us unite all our lines on to one line. There
is no reason why we should not do this, why we should not
represent all fractions on one line. It was just easier in the
beginning to have separate lines for the different units, since
on the unified line all the fractions whose value is the same will
coincide at one point. Below I shall write every fraction in
the form in which it occurred first:

3 b

FR R IS FRY R BREY Y LENE Y

This is already becoming quite dense, but let us remember
that we have united only a few lines: the fifths, the sevenths,
the thirteenths, the hundredths and so on, an enormous num-
ber of subdivisions, do not figure on our line. Let us try some-
how to find our way amongst them.

First of all we see that the whole numbers are amongst them.
These can be considered as fractions whose denominators are 1.
For example § is really 3, if we think of that meaning of
fractions which tells us that this is 3 divided by 1. The whole
numbers and the fractions together are called rational num-
bers, and this foreshadows the possibility of numbers that are
constructed in a less rational way.

Apart from zero (which can be considered as g, or $ or ¢
and so on) which will be the smallest fraction? It is obvious
that & is not the smallest, since {4 is still smaller. If we
divide a cake into one more number of equal pieces than before,
then the pieces will be smaller. But the same thing is true
whichever fraction we try. 3t is smaller than iy, oot IS
smaller than 5. So among the rational numbers there is
not only no greatest, there is no smallest either.

We cannot therefore start the enumeration of the rational
numbers. So let us start with any small fraction, for example
with 4, and try to enumerate all the rational numbers at
least from this point onwards. What is the fraction that comes
after ? This cannot be the 1 which follows it on our line,
since we know that the arithmetic mean of 4 and % comes
between these two fractions. But even if we had chosen some
other number to the right of {; instead of 1, we could have




LIMITLESS DENSITY 95

constructed the arithmetic mean of % and of this number,
and this again would have been nearer to {; than the number
we thought of. So there is no number which comes imme-
diately after {&. It is therefore equally impossible to enumer-
ate the rational numbers starting with {&. Wecan see that, in
quite a general way, if we choose any two rational numbers,
however close to one another on our line, these two numbers
will not be immediate neighbours, for there will always be
another rational number between them. Thisis what we mean
when wesay thattheset of rational numbersis ‘everywheredense’.

Here we have come across another aspect of the Infinite;
hard upon the limitless growth of the natural numbers and of
prime numbers, comes limitless density. There is no number so
large that there is not a larger one among the sequence of
natural numbers or among the sequence of prime numbers.
This is the exact meaning of what mathematicians say when
they state that these sequences tend to Infinity. There is no
distance so small that within this distance of {}; there are no
other rational numbers. This is expressed by saying that
is a condensation point of theset of rational numbers. Of course
not only {%; all other rational numbers are condensation points.

In spite of the foregoing, it is still possible to arrange all the
rational numbers in one sequence, but not in order of size,

We have already seen that we can arrange them in an
infinite number of sequences, when
we represented all fractions with
the same denominators on one
line. For the sake of uniformity
let us also write the whole numbers
in the form of fractions:
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and so on. Now we must rearrange these in one single se-
quence. This can be done by writing down the numbers one
after the other along the slanting lines that have been drawn in.
In this way every one of them will have its turn:

121 321 4321 54321
T, T’ §) T’ §’ 3’ 1, 2, 3, 4’ 1, 2, 3’ 4’ 5)

—— —

and we shall have successive groups, getting longer and longer,
but each one consisting of a finite number of numbers. Thus
we do in fact get one single sequence, and anyone could
continue this sequence once he has understood its rule of
construction. He need not even look at the slanting lines in
the above figure if he notices that the sum of the numerator and
the denominator of the single fraction in the first group is 2,
in both fractions in the second group the sum of the numerator
and the denominator is 3; this sum is 4 in the fractions of the
third group; in the group which was the last to be written down
this sum is 6. On this basis

7=6+1=54+2=44+3=3+4=2+5=1+6
and so the next group can be constructed as follows:

6 543 21

T?PL56
Now anyone could continue the process mechanically. An
infinite sequence is usually regarded as completely given if after
recognizing its rule of construction anybody can write down its
numbers to any desired point.

In our sequence there will of course be numbers whose
values are the same; we already saw this with our lines. If we
want to write every rational number only once, then we must
add to the rule for their construction that those fractions that
can be simplified should be left out. For example from the
part of the sequence that has been written down we must leave
out 2, 4, 3, 2. Among these Z and § have the same value as

2 2’ 3

1, 4 the same as 2, and 2 the same as ‘ So in fact the sequence

of rational numbers beglns as follows
12131432

3 3 =Y Ty

15
r'T2131723%41

1
> 5’
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and this can be continued mechanically. I can state suc-
cessively what the first, second, third . .. numbers are in the
sequence. The sequence can be numbered, counted. This is
described by a slightly misleading technical term as ‘enumer-
able’, or ‘countable’.

This simple fact again sheds light on another surprising
state of affairs.  This is that, in spite of the fact that the rational
numbers (i.e. all fractions) are everywhere dense, in some
sense there are just as many rational numbers as there are
whole numbers. How can we compare infinite sets with one
another? A very simple method suggests itself for doing this.
If in a dancing class I want to know whether there are just
as many boys as girls present, I do not have to count them all.
It is enough to tell the boys to take their partners. If after
this no boy remains without a partner, and there are no wall-
flowers left, then it is clear that there are the same number of
boys as of girls. This comparison can be applied to infinite
sets; if we can pair the elements of two infinite sets in such a way
that no element remains without a pair from the other set, then
we say that these sets are equally numerous.

Now the sequence of rational numbers we have just con-
structed can be paired with the sequence of natural numbers.
Let us pair 1 with }, 2 with $, 3 with }, so,for example, 10 will be
paired with the 10th number in our sequence, i.e. with £; if we
want to know what will be the number with which 100 is paired,
we have only to construct the 100th number in our sequence by
means of the given procedure, and that will be the required
number. It is obvious that anybody could carry on with this
pairing to any desired point, and it would be impossible to
give a number, either out of the sequence of rational numbers
or out of the sequence of natural numbers, that would be left
without a partner. In this sense the set of natural numbers is
as numerous as the set of rational numbers, and this is so in
spite of the fact that the natural numbers can be imagined as
scattered like raisins in a cake within the everywhere dense set
of rational numbers, forming an apparently negligible minority
of these.

This again throws light on a very important state of affairs;
we must treat Infinity very gingerly. There are those who
believe that it is a logical principle of permanent validity that
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the part is smaller than the whole. Here we have just seen an
example of the contrary; the natural numbers form only a
negligible part of the set of rational numbers, and yet they are
just as numerous as the rational numbers. Such general
logical principles have been abstracted from a great variety of
human experience, but all such experience is taken from the
finite. It has already led to much confusion when principles
derived from finite experiences have been used to clothe the
infinite. The infinite soon shakes itself free of such unsuitable
clothing.

The fact that, in spite of everything, we still seem to kick
against the possibility of the part becoming equal to the whole
in any situation whatever, is probably due to unconscious
forces, apart from experience itself, lending support to logical
principles. The very foundations of morality itself seem to be
undermined if the part can start competing with the whole.
But perhaps for this reason there might be something of the
joys of forbidden fruit in venturing out of the world of inexor-
able laws into the freedom of Infinity.



11. We catch Infinity again

LET us come back for a little while from the Infinite to the
tangible world, and consider again the fact that on our hands,
with which we try to reach out into this world, there are 10
fingers. Would it not be possible to force fractions into the
decimal system too?

Let us remember what this system was: to the left of the ones
was the place for units ten times as big, i.e. for the tens. To the
left of these was the place for the hundreds, which are again ten
times as big and so on. The idea seems to suggest itself that
we continue this arrangement to the right as well: let us write
the tenths in the first place to the right of the ones, in the second
place let us write the tenths of tenths, i.e. the hundredths, in the
third place the thousandths and so on. But we must somehow
separate these new units from the ones, for although I might
intend that in

12

the 1 means a one, and the 2, two-tenths, everybody else would
read it as twelve. That is why the decimal point is used:

1-2

and it must not be forgotten that this is merely an abbreviation
for

2
1+T()

In just the same way

4 5 6
32436 =32+ 75 + 760 * To00
and this is the way we obtain decimal fractions or decimals.
Those fractions, whose denominators are 10, 100, 1000 or any
other unit of the decimal system, can all be written down in
decimal form too. For instance

23 20 3

100 — 100 T 100
99
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But in 2% we can divide both the numerator and the de-
nominator by 10, so that

2 _2 3
100 10 ° 100
and since there are no whole numbers in this, we have finally

23
00 = 0-23

We might wonder whether every fraction can be written
down as a decimal?
The simplest method of transformation is to carry out the
division indicated in the fraction.
6

5= 6 — 5 = 1, remainder 1.

The remaining 1 can also be changed into tenths, so that it
becomes 10 tenths, and dividing this by 5 we get 2 tenths. In
the answer we must put in the decimal point:
6 -5=12
so that 4 =1.2.
Similarly 75 =17 =25 =02
and we are left with 20 tenths; these we can change into 200

hundredths, and if we divide this by 25 we get 8 hundredths,
so that

7+25=028
and 5 = 0.28.
But quite often we get stuck in the simplest cases:
§=4—:—9=0-44...
40
40
4

and this division will never end. We can carry it on as long as
we like but we always have a remainder 4. So % cannot be
written down as a decimal.

But how convenient it is to reckon with decimals! Let us
just quote one example: it is absolutely child’s play to multiply
a decimal by 10. For example, if we have to do the following:

45-365 x 10
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then we merely have to remember that 10 times 4 tens will be
4 hundreds, 10 times 5 units will be 5 tens, ten times 3 tenths
will be 3 wholes (ones) and so on. We see immediately that
we can carry out the whole multiplication by merely shifting
the decimal point one place to the right:

453-65

since in this way every place-value has moved to the left, with,
for example, tens becoming hundreds. If we multiply our
result by another 10, we get

4536-5

giving us one hundred times the original number (for example
the 5 ones have become 5 hundreds), and so we can see im-
mediately that to multiply by 100 we must shift the decimal
point two places to the right. In the same way we see that
division by 10 can be carried out by shifting the decimal point
one place to the left. This really is very little trouble. How
useful it would be if we could write all fractions as decimals!
Now let us have a look again at where we got stuck before.

%=4—:-9=0-44...

9 w
40
4

The remainder here will always be 4; this will in turn become
40 when we change down to units which are one-tenth of the
previous units, and into 40 9 will always go 4 times. Even if
this division is never finished, we still have the answer at hand:
the 4 is going to repeat itself indefinitely.

The practical man will say to this: Even if the division came
to an end at the tenth place, I should not make use of the whole
answer; I am only interested in decilitres at most (one decilitre
is one tenth of a litre), or in centimetres (one centimetre is one
hundredth of a metre), or perhaps in grammes (one gramme is
one thousandth of a kilogramme). The negligible amount that
is left after one thousandth it would be real hairsplitting to con-
sider atall. I need only the following from the infinite decimal:

0-4
or 0-44
or 0-444
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so I can do all my calculations with 4 in the same way as with
an honest-to-goodness finite decimal.

Physicists might need more figures than these in their much
more accurate measurements, but even in these there is the so-
called margin of error. A physicist can estimate, if an experi-
ment is to be repeated, what sort of variations can be expected
on account of the inaccuracies in our own senses and in the
instruments themselves, and decimal places beyond this point
are not worth bringing into the calculations. It can be
assumed that instruments will be perfected more and more, that
the margin of error will be reduced, but some error will always
remain, and we shall always be able to stop somewhere in the

sequence
0-4444444 ...

of decimal places, although possibly at a very distant place. It
does not matter that we do not know in advance how far we
shall have to go in the distant future; we certainly know that we
shall be able to go to the place required, since we know the
expansion of 4 beyond any possible limit. However far we go
in the expansion, the figure 4 will only repeat itself.

Is it then possible to transform every fraction into a decimal
at least in this sense? Or, putting the question in another way,
although a division is never finished, do the numbers in the
answer at least follow one another according to some rule,
which would enable us to get a general idea of the whole
expansion?

We can easily see that the answer to this is in the affirmative.
Every such expansion will sooner or later begin to repeat itself.
Let us, for example, examine the fraction 21:

If we divide by 22, the remainder is bound to be less than 22.
If the division is never finished, every remainder will be one of
the numbers:

L, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21

Let us suppose that we have a chest of drawers with 21 drawers
in it, and these numbers are written one on each drawer. If,
while we carry out the division, we get a remainder 7, let us put
a ball into drawer number 7. If we carry on patiently with the
division until we have completed 22 steps, we have had to put



WE CATCH INFINITY AGAIN 103

22 balls into 21 drawers, and so there is bound to be at least
one drawer with two balls in it. After 21 steps one of the
remainders must be repeated. If we are lucky, one of them
will get repeated well before this and, once one of the re-
mainders turns out the same as a previous one, everything will
repeat itself from here on. Let us see this in our example:

2l 91 . 99 — 0954
22 919
120
100
12

Stop! We have already had 12 as a remainder. Here the
numbers begin to repeat themselves:

21 = 22 = 0-9545454 . ..
210
120
100
120
100
120
100

so that, apart from an ‘irregular’9, 54 getsrepeated indefinitely.

Conversely, if we are presented with such a periodic decimal,
is it possible to find out of what fraction it is the expansion?
Let us begin with 0-9545454 . .. and let us suppose that we
do not know the fraction of which this is the expansion. Since
we do not know it, we shall call it X:

X = 09545454 . ..
If we multiply this by 1000, i.e. we carry the decimal point
three places to the right, the whole-number part will be repre-
sented by the part of the expansion as far as the end of the first
period,

1000X = 954-545454 . . .

If, on the other hand, we multiply X by 10, the whole-number
part will be the irregular part before the periods begin:

10X = 9-545454 . ..

If we subtract the latter from the former, we must take 10 times
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X from 1000 times X and so we are left with 990 times X. On
the other hand the part after the decimal point consists in the
case of both numbers of the indefinite repetition of 54, and
so these parts are quite identical; when we subtract them, they
will cancel out. The difference between 954 and 9 is of course
945, so that finally we have
990X = 945
Let us take 990 over to the right as a divisor; we shall have
945
X = 990
This fraction can be simplified by 45:
945 —- 45 =21 and 990 - 45 =22
so that
21
X= 22
as of course we already knew.

During the working we made one careless step: we were not
careful with the Infinite. We imagined 0-9545454 ... not
just up to a certain degree of accuracy, but written down
indefinitely, and we multiplied it as though it was a common-
or-garden finite number. How are we justified in thinking that
0-9545454 . . . has any sort of finite meaning whatever?

Let us consider this problem in a simpler example, since it
is just as dubious whether

I-11111111111 . ..

where the 1’s are repeated indefinitely, has any finite meaning,
It is a curious thing that people on the whole do not boggle
over an infinite decimal of this kind, but they look aghast at an
infinite addition like this:
1 1 1 1 o
1+ 10 + 100 + 1000 + 10000 + ... ad infimitum

although this is just another way of writing the other. But I
am not surprised at their looking aghast at the latter, though
rather surprised that they accept the former. The sequence

1 1 1 1
100 1000 1000° 10000° """
can be regarded as given even in its infinite extent, since anyone

1,
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could continue it as far as he likes, but to regard this infinite
path as so well-trodden that we can add all its terms is surely
a little daring to imagine. What can we understand by it?

A well-known mathematician while still a child formulated
for himself the meaning of the sum of an infinite series in the
following way.

There was a type of chocolate which the manufacturers were
trying to popularize by putting a coupon in the silver-paper
wrapping, and anyone who could produce 10 such coupons
would get another bar of chocolate in exchange. If we have
such a bar of chocolate, what is it really worth?

Of course it is worth more than just one bar of chocolate,
because there is a coupon in it, and for each coupon you can
get ¢ of a bar of chocolate (since for 10 you can obtain one bar
of chocolate). But with this {4;th of a bar will go one-tenth of a
coupon, and if for one coupon we get {sth of a bar of chocolate,
for {5th of a coupon we get one tenth of this, i.e. y35th of a bar
of chocolate. To this yi5th of a bar of chocolate belongs t45th
of a coupon, and for this we again get one-tenth as much choco-
late, and one-tenth of 115 is 1o45th of a bar of chocolate, and so
on indefinitely. It is obvious that this will never stop, so that
my one bar of chocolate together with its coupon is in fact worth

1 +%+ﬁ+l—olm+. . . bars of chocolate

On the other hand, we can show that this is worth exactly
1% of a bar of chocolate.

The 1 in this is of course the value of the actual chocolate, so
all that needs to be shown is that the coupon that goes with it is
worth ith of a bar of chocolate. It is enough to demonstrate
that 9 coupons are worth one bar of chocolate, since then it is
certain that one coupon is worth 3th of this. Suppose that I
have 9 coupons, then I can go into the shop and say: ‘Please
can I have a bar of chocolate? I should like to eat it here and
now and I will pay afterwards.” I eat the chocolate, take out
the accompanying coupon, and now I have 10 coupons, with
which in fact I can actually pay and the whole business is con-
cluded, I have eaten the chocolate and I have no coupons left.
So the exact value of 9 coupons is in fact one bar of chocolate,
the value of one coupon is $th of a bar of chocolate, one bar of
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chocolate with a coupon is worth 1} bars of chocolate. So the
sum of the infinite series

1 l + i + __1_ + _l -
10 7 100 T 7000 T 10000

is exactly 1}, quite tangibly, even edibly.*

We can sum up the result roughly as follows: if something
is equal to 1 as a first rough approximation, equal to I + 4 as
a slightly better approximation, equal to 1 + ¢ + ti5 as a
still better approximation but still not exact, and so on in-
definitely, then it is equal to 1} exactly, not approximately.t

Now I can keep the promises I made in the previous chapters;
it is in this way that we can make quite precise the statement
that the area of a circle can be approximated by means of
polygons, as well as the theorem about the distribution of
prime numbers. Of course the reader will have to take my
word for this, since I cannot go into the lengthy proofs that
would be involved.

In Algebra for example we determined a number in the fol-
lowing way: let X be the number which is such that if you divide
it by 2, multiply it by 3 and add 3 to it, you get 11, i.e. let X
denote the number which satisfies the equation

%x3+5=11

Here we have learnt another method of determining a number.
The branch of Mathematics which deals with the determination
of numbers with the aid of successive approximations, but at the
same time with complete accuracy, is called Analysis.

Let us start on the other hand from 1i. One whole can be
divided in 9 ninths, so that

1 9 1 10 .
lg=g+g=g =10+9=T1III1...

indefinitely, and the identity of 1} and this infinitely long
expansion have just received a definite meaning above.

In Mathematics this is expressed by saying that the sequence
of the ‘partial sums’

+ ...

1 1 1
l, 11=1+1—0‘, lll:l+l—0 T(‘)T),...

* This will be referred to as ‘the chocolate example’ (translator’s note).
t Approximations in general will be dealt with in the next chapter,
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‘tends to the limit’ 11, or by saying that the series
1 1

1+E+WO+--.

is convergent and its sum is 1%.

Here we have introduced a new kind of addition. We ought
to see whether it obeys the rules of the old operations. I do not
want to go into the examination of such fiddly little details;
I shall just state the reply to the statement: there is no question
of the old rules being obeyed. The Infinite escapes from our
rules here, too, so much so that a special study has developed
concerning those series of which the terms can be interchanged
in any order or grouped in any way. The series we have
discussed is just such a series:

1 1

1—0—+E(_)+...

But let us have a look at the series

I —-14+1—-14+1-1+...
If we change the order of the operations and group the terms
together in pairs

I—-14+1-1+1-1+4...

0 0 0
we shall get a series consisting of zeros only, and, however many
zeros we add, the result is always zero, and so the result of the
addition must be zero. But if we group the terms as below
I—-1+1-14+1—...
0 0
then we construct the series
l1+0+0+0+...
and the sum of this series is obviously 1. So we cannot expect
to be able to carry out operations in any order.
Some things survive, however: for example we can multiply
an infinite series term by term by a number.
Let us go on playing with our result. If from
1T ..o =13
we take away the 1, we get
0-1111111 ... =1}

1 +
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and multiplying by 9 we have
0-9999999 ... =2 =1

Dividing by 10 (if we carry the decimal point one place to the
left, imagining this decimal point following the 1 whole
number, there will be 0 whole numbers) we have

0-0999 ... =01
Dividing by another 10 we have
0-00999 ... = 0-01

and so on. So that the finite decimals 1, 0-1, 0-01, . . . can be
written down also as infinite decimals in which after the zeros
there are nothing but 9°s. From this it follows straight away
that every finite decimal can be written down as an infinite
decimal in two ways. Let 0-2 be the finite decimal in question.
We can write it first of all like this:

0-2000000 . . .

since adding 0 hundredths, 0 thousandths, 0 tenthousandths
cannot alter the number. Another way of writing it would be

0-199999...

since the 1 tenth, i.e. 0-1, which has been left out of 0-2 is the
same as 0-099999 ..., which has been added (it would be
possible to prove that this is the only possible ambiguity that
could arise in the decimal expansions of numbers).

In the series we have examined, i.e. iu

1 1 1 1
*10 T 100 T 000

every term is one-tenth of the previous one, i.e. is obtained from
the previous one by multiplying it by {&%. The reader should
remind himself of the arithmetical series in which any two
neighbouring terms have the same difference. The kind of
series in which the quotient of any two neighbouring terms is
the same is called a geometrical series.

We must not get conceited and think that we can now sum
all infinite series. Let us have a look at the following geo-
metrical series, for example:

1 + 10 + 100 + 1000 + ...
in which the quotient of neighbouring terms is 10, It is

+ ...
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obvious that its partial sums will eventually get larger than any
individual number (for example, already from the fourth one
onwards they are greater than 1000), and so this series tends to
infinity. What is more, even that geometrical series in which
every term is followed by that term multiplied by 1 does like-
wise, since in

1+14+1+14+14...

every partial sum is greater than 1000 from the thousandth on,
greater than 1,000,000 from the millionth on and so on.

If every term is followed by that term multiplied by —1, then
since 1 X (=1) = —1, (—=1) x (=1) = +1, (+1) x (-1)
= —1 and so on, the series will be

l—14+1—-14+1-1+...

and we already know all sorts of dreadful things about this one.
Its partial sums in order are :

1,
1-1=0
l1—-14+1=0+1=1
1—-1+4+1—-1=0+4+0=0
and so on. We can see that these are alternately equal to 1
and to 0.
Y B o 1 2

They jump about between 0 and 1 (using a longer word, they
‘oscillate’), and so they do not approximate to any kind of
number at all. You can have bigger jumps, even increasingly
bigger jumps, if the quotient of two neighbouring terms is a
negative number whose absolute value is greater than 1. The
picture for this would be:
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Among the series we have examined up to now there has so

far been only one that we have been able to sum, i.e.
1 1 1 1
* 10 * 100 T 1000

This is probably to do with the fact that the terms of this series
get smaller and smaller; moreover they will become as small as
we please, provided we go far enough in the series. With the
precision of the chocolate example, they tend to zero. (It can
be shown that if something is equal to 1 as a first approxima-
tion, equal to % as a second approximation, equal to ;15 as a
third approximation and so on, then with perfect accuracy this
thing can only be zero. I shall not formulate this always in
such a lengthy way, but I shall refer to the precise formulation
of the chocolate example.) In this way we can imagine that
even if we have to add an infinite number of numbers, of which
the terms get smaller and smaller, or rather more and more
negligible, then these will influence the result less and less, and
so the partial sums which include further terms of the series
represent the sum of the series better and better.

But this is not really enough to make it possible to sum a
series. The sequence

+ ...

1 1 1 1

2 3 ¢ 5

converges likewise to zero, although more slowly than the pre-
vious one. In our first series every term is less than 45 from
the fourth term onwards; in the series just given this is only so
from the thousandth term onwards. The partial sums of the
series

1,

Ls4at T
273 4+5+ 7B e T TR
L1 11
MR TRETRETRS

nevertheless tend to infinity.

We can understand this in the following way: we know that
the value of a fraction becomes less if we make the denominator
bigger (if we cut the cake into more slices, the slices will be
smaller). Accordingly the partial sums will be made smaller
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ifinstead of 1 we put a smaller number, 1, instead of each of the
’ffactiions 1, 4, 1 we put %, instfead of each of §, &%, 1 1% 1
0 75> We put 4 and so on, for in general we always go as far as
the terms in whose denominators a power of 2 is found (4 = 22,
8 = 23, 16 = 2%), and replace the previous terms by this term.
So the partial sums of the following series are sure to be smaller
than the partial sums of our series:

ISR SIS SR L S
tTotgtgrtgtgtgts™

) ~ -

1 1 1 1 1 1 1 1
+1—6+T6+E +E+T+E+E+l_6

’

+...

Here are the values of the groups one after the other:

11 2 -
17312 simplified = }
p 1 1.1 4 _
s T8 787873 » =1
t, 1 .1 1 1. 1.1 381
6 16 T16 716 16 16 16716 16 2

and so on. We see that every group yields 3. Thus 2000 x }
is 1000; 2,000,000 x } = 1,000,000, so that the partial sums of
this series, if they are long enough, become larger than any
number. Even more so therefore would this be true for the
larger sums of the original series.

Thus in order that an infinite series be summable it is not
enough that the terms tend to zero in a half-hearted sort of way;
they must approach zero at a fair rate.
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THE expansions of fractions into decimal form turned out to be
surprisingly regular; they resulted either in fiaite or in recur-
ring decimals. In the meantime we have got used to the idea
of treating an infinite expansion as a single definite number,
since for example starting with 1-111111 . . . we found out that
this was exactly equal to 11. It is almost impossible to avoid
wondering whether we could imagine decimals which are not
recurring; will there be no number corresponding to such an
expansion?

As a matter of fact we can construct an expansion whose
decimal places are quite regular, so that anyone could go on
writing them down; in this way we have a conception of the
whole expansion, yet we cannot find any recurring groups in it.
For example

0-101001000100001000001 . . . is such an expansion.

The rule is very simple. There is always one more 0 after each
successive 1; so there can be no question of recurrence, since
then sooner or later the 1’s occurring between the 0’s would
follow one another at regular intervals. This cannot be the
expansion of any fraction; its partial sums cannot converge to
any rational number.

I shall show that they nevertheless converge to some sort of
gap in the set of rational numbers. This will show that in spite
of the limitless density of the rational numbers, some gaps
nevertheless occur among them.

If we stop at the tenths, we neglect a lot of places. On the
other hand every partial sum is less than 0-2, since the 1 tenth
would have to be followed by nothing but 9%,

0-199999999 . ..

in order for it to be equal to 0-2, according to what we have
said in the previous chapter. Accordingly all further partial
sums will lie between 0-1 and 0-2, that is they will be repre-
sented on the line below somewhere along its thick part

2 N " e

L) ¢

bl o} + + $ + + +
o1 02 07 0% 10132 0¢ a7 08 09
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As a first approximation we could take any arbitrary point in
this interval.

In the same way we can see that if we stop at the thousandths,
the partial sums will be squeezed between 0-101 and 0-102.
This can be shown only roughly on the figure as the points in
question come so close together (their difference is one thou-
sandth). So the points of this interval give a much better
approximation; the new interval lies entirely inside the first
interval. Continuing the argument, the longer and longer
partial sums will be boxed in the narrower and narrower
intervals:

between 0:101001 and 0-101002
between 0-1010010001 and 0-1010010002 . . .

If these intervals did not get so small so quickly, the picture
would look something like this:

1% Interval

The lengths of our intervals are as follows
01
0-001
0-000001
0-0000000001

1.e, one-tenth, one-thousandth, one-millionth of a unit and so on.
These do, of course, converge to zero (and with such terrific
speed that it is impossible to follow it either by drawing or even
by means of words). Our longer partial sums will therefore all
crowd into these intervals, which become smaller and smaller
indefinitely.

This is the same kind of boxing as little children’s boxes that
fit into each other. Or it is like the parcel passed round in
‘pass the parcel’, when each time one wrapping is taken off
another wrapping is found and which you undo more and more
excitedly, and yet with the accumulation of more and more wrap-
pings. The big parcel gets smaller and smaller, but eventually
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one gets to the end, and there is usually some little thing inside
all the wrappings, if only a little paper ball. But you cannot
go on indefinitely annoying someone with a parcel like that.
The second interval is entirely inside the first, the third one
is inside the first and the second, the fourth interval is inside all
previous intervals and so on. Our intuition tells us that if we
continue to construct these intervals contained inside one
another, which grow smaller and smaller indefinitely, the little
bit which they become in the end should be a common part
of them all. It can be proved that more than one point could
not be contained in all of them. Let us suppose in fact that
I have found such a common point, and somebody comes and
says that he has found a different one, a point which is different
from mine, and yet is contained in all the intervals. Of course
his point would not be very far from my point. In the figure
below I must draw them at quite a distance so that we can see
them easily, but the argument applies to any small distances.

2 Thousandths
e ™ s

My point His point

However close the points are, if they are different, there will
still be a certain distance between them, let us say 2 thou-
sandths of a unit. Let us take half of this, i.e. one-thousandth.
The lengths of the intervals that are boxed inside one another
tend to zero, so that sooner or later their lengths will be less than
one-thousandth of a unit. My point will be included in one
of them, and even if it happens to be near the left end of an
interval whose length is less than one-thousandth, this interval
could never extend as far as the point lying at a distance of
2 thousandths.

! Thousandth

.N\_/\
My point

His point
The other point therefore which has been given as a counter-
example will certainly be left out of such intervals or of any

smaller intervals. So it is quite impossible that this other point
is also a common point of all the intervals.
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All our intervals have just one single definite point in com-
mon, and, since whichever interval we choose, the partial sums
0f 0-1010010001 . . . will all be in it provided we go far enough,
the points corresponding to these partial sums get nearer and
nearer to our point, in other words they converge to our point.

In this way we have found a point on our line of numbers to
which up till now no number has corresponded. However
thickly the fractions cover the line, no fraction has found its
way to this point. The decimal forms of fractions are recurring,
yet our 0-101001000100001 . . . which converges to this point,
never becomes recurring. And yet this is a quite definite
point, and is at a certain determinate distance from 0. But if
we try to measure this distance, it is impossible to do so in
whole units, and impossible in fractions of a whole unit. So up
till now this distance has not even possessed a measure. In
order to make up for the lack of this, we shall say that the
measure of this distance is the ‘irrational’ number

0-101001000100001000001 . . .

and so we introduce this so far nameless but quite determinate
something to which the rational values

01, 0-101, 0-101001,...

are better and better approximations. Thisis no less useful for
the practical man or for the physicist than the expansion
4 = (0444444 ... There is no degree of accuracy which
could not be achieved in the approximations to this number,
and we know all its digits that we are ever likely to need, since
we have a picture of the pattern of the digits as a whole.

We can show in just the same way that a definite point
corresponds to any infinite decimal which is non-recurring but
given by some rule, i.e. such a point is at a definite distance
from 0 along the line. We shall regard all such infinite
decimal expansions as the measures of the corresponding
distances and we shall call them irrational numbers.

Perhaps these considerations appear very abstract. Yet I
once had a pupil, Eva, in my fourth form, who found out for
herself that there were distances whose lengths could not be
expressed either in whole units or in fractions. She was doing
the following amusing puzzle. At every corner of a square



116 THE CREATIVE ROLE OF FORM

fishpond there is a tree. The problem is to make the fishpond
twice as big, though it has to remain a square and the trees have
to remain where they are:

& &

6 &

Eva found that the solution was as follows:

& 62

The big square is in fact twice as big as the small square,
because if we draw the diagonals in the small square,

we can readily see that if we fold the four triangles so obtained
outwards,

¥4

we obtain the larger square. It is obvious that we have added
to the small square as much again as its original area.
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But Eva was not satisfied with this. She was curious to
know how long the sides of the new fishpond would be if the
old fishpond had sides whose lengths were 1 mile. The area of
the old pond in this case was 1 X 1 = 1 square mile and so the
area of the enlarged fishpond was twice as much, i.e. 2 square
miles. The problem was to find a number which, squared,
gave 2. This is how we arrived at the inversion of the opera-
tion of raising to a power, i.e. the extraction of roots. The

problem was the calculation of V2, the number whose square

is 2. If there is such a number it is denoted by V2.

So Eva started to try this and that. The side of the small
square was 1 mile, the side of the larger square was obviously
longer. But it could not be 2 miles long, since 2 x 2 =4
and so its area would be 4 square miles. So the length of the
side must be between 1 mile and 2 miles.

Then Eva tried to take a few tenths more than 1. During
these trials she found that

14> =14 x 14 =196 and 152=15 x 15 =225

1.96 is less, while 2:25 is more than the area of the pond,
which is 2 units. So the length of the side must lie between
1-4 and 1-5 miles. She then went on dividing this interval into
hundredths, and it became apparent in much the same way that
the length of the side must lie between

1-41 and 1-42

Continuing this for some time, Eva became more and more
convinced that she would never find the number whose square
was 2. ‘But there must be such a number! Here it is quite
clearly as the side of the larger square. I have constructed it
myself!” said Eva.

Eva was right in her intuition. There is no rational number
whose square is 2. Eva had proved that there was no such
whole number, when she showed that the number required
must lie between 1 and 2, for between 1 and 2 there are no
more whole numbers. So it only remains to examine the frac-
tions that lie between 1 and 2.

Let us simplify these until they cannot be simplified any
more. Their denominator cannot in this way become 1, since,
for example, 2 is really 3 wholes, and there are no whole
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numbers between 1 and 2. And it is equally certain that we
cannot simplify their squares, for example,

(1_5)2 15 x 15
14/ 14 x 14
and we cannot simplify for 1%, because 15 =3 x 5 and
14 =2 x 7, and 15 and 14 have no common prime factor.

On the other hand they cannot acquire common prime factors
through multiplications by themselves,
(3><5)2 3x5x3x%x5
2x7 T 2x7Tx2x7
and so there can be no question of any simplification. But a
fraction which cannot be further simplified and whose de-
nominator is not 1 cannot possibly be equal to 2.

In spite of this, however, Eva’s trials are the beginnings of
successive boxings, and, at the same time, the beginning of the
decimal expansion of V2. The decimal form of any number
between 1 and 2 is certainly going to begin like this:

1-. ..
Any number with such a beginning can be considered as a first
approximation for V2.

If we know, further, that this number lies between 1:4 and
1-5, then the decimal expansion will continue like this:

14...
and numbers with such a beginning already give a better

approximation. From the fact that the number we are looking
for lies between 141 and 1-42, we continue

1-41...

Now we must divide the interval between 1-41 and 1-42 into
thousandths and see which one among
1-410, 1-411, 1-412, 1-413, 1-414, 1415, 1-416,
1-417, 1-418, 1-419

is the number whose square is smaller than 2, but such that the
square of the number after it is greater than 2. These two
numbers give us a_box whose length is only one-thousandth,
in which to put V2, and at the same time we have found the
third decimal place in the expansion of V2.
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There is a more mechanical method for determining the

decimal expansion of V2, but the essential point can be seen
through this squeezing into smaller and smaller boxes.

This process can be continued indefinitely and it gives con-
tinually better and better approximations. We know that it
can never come to an end or become recurring, since V'2 can-
not be a rational number. Still, there it stands before us quite
exactly and tangibly; we know just how big this number is that
we obtained by more and more exact approximations. It is
just the length of the enlarged fishpond.

The well-known theorem due to Pythagoras also helps to
clarify for us what this V2 reallyis. Let usdraw a right-angled
triangle so that the sides adjacent to the right angle are both
one unit, and let us draw a square on each of its sides.

If we put in one diagonal in each of the small squares and both
diagonals in the large square, we get all congruent triangles

AN

and four of these will be found in the two little squares together
and four in the large square. Therefore the sum of the areas
of the little squares will be the same as the area of the larger
square, and since we can calculate the area of a square by
squaring the length of a side, the sum of the squares of the two
sides adjacent to the right angle is equal to the square of the
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hypotenuse (this is not only true of this special triangle but of
all right-angled triangles, the proof in the general case being a
little more complicated). Here the sum of the squares of the
two sides adjacent to the right angle is

P+12=141=2
and this is just the same as the square of the hypotenuse, so that

the length of the hypotenuse is /2 units.

It can be shown that operations with irrational numbers can
be carried out by working on the approximate values. The
approximate values are rational numbers, and these still obey
the old rules of manipulation. Here we are dealing with a case
in which the old rules hold even for an infinite series.

Now we can go back to the problem, left in abeyance, of
whether you can always express the length of the edge of a cube
or the length of the side of a rectangle in inches. The answer
is that you cannot always do this, in the sense that there are
distances which cannot be measured even by means of any
fraction of an inch. For example if ;4;th of an inch covers a
certain distance 31 times, then this distance is 21 of an inch;
yet we have just seen that, if each side adjacent to the rectangle
in a right-angled triangle is 1 inch, then the length of the
hypotenuse cannot be expressed in terms of this unit by any
rational number whatsoever. (The reason we must emphasize
that it is in terms of this unit is because there is of course a

certain length corresponding to v/2 and we could choose this
length as the unit, and in terms of this unit it would itself be
of course expressible.)

In spite of these difficulties, we can prove with the aid of the
rational approximate values with ‘chocolate’ precision that the
old results about areas and volumes still remain valid.

I am still in the reader’s debt in connexion with quadratic
equations. We got into difficulty with the equation

(X+3)2=2
Now we can solve this equation. Since we now have negative
numbers as well, and we know that the squares of positive and
of negative numbers are positive, both + V2 and —v/2 can be
regarded as the number whose square is 2. Accordingly

either X +3 = +v2 or X+ 3 = —12
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and, if we take the 3 over to the right as a subtraction, we get
two answers:

X=+4+vV2 -3 or X=-v2_-3

But the negative numbers introduce a new complication.

We do not know what to do with the equation

Xt = -9
since both +3 and —3 when squared give 4+9. We do not
know any number whose square is —9. We shall return to
this question later.

We introduced irrational numbers because we found gaps in
the line of our numbers, points to which no number corre-
sponded. The rational and the irrational numbers together
(the so-called real numbers; we shall have to do with numbers
whose reality is much more questionable) already fill up the
line completely, since if we take any point on the line, this will
be in turn between certain wholes, between certain tenths, be-

tween certain hundredths, just as was /2 that my pupil Eva
examined, and these intervals give us one after the other the
digits in the decimal expansion of some number. If this ex-
pansion ends somewhere (that is, if the point coincides with one
of the tenths, hundredths, thousandths, ...) or becomes re-
curring, then the number corresponding to our point is rational;
if not, then it is irrational.

If for example we tried to shut up the point corresponding to
the number 1} occurring in our chocolate example* in such
boxes, we should see that it would come between 1 and 2, then
between 1:1 and 1-2, then between 1:11 and 1:12, then between
1-111 and 1:112, and so each of

1, 11, 111, I-111,...
would one after the other fall into our shrinking boxes (coming
just at the left-hand ends of the boxes each time). This is the
background situation to the fact that these numbers give better
and better approximations for 11, i.e. they get as near as we like
to this number. Of course they yield a recurring decimal,
since 1} is rational.

Are there a lot of irrational numbers? Even though we have
so far only come across them accidentally, there must be a lot

* See pages 105-106.
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of them, since we instinctively feel that if a decimal expansion
turns out to be recurring, it is just chance. But we have
been led astray before by such feelings; we thought it went
without saying that there were more rational numbers than
natural numbers, but we found eventually that all rational
numbers could be arranged in a single sequence, and so could
be paired off with the natural numbers: the first number in
the sequence with 1, the second number with 2, andsoon. We
might wonder what this pairing process has to say about irra-
tional numbers.

Let us first of all examine the rational and irrational numbers
jointly, i.e. the real numbers, and let us imagine them all in
their decimal expansions. Of these let us restrict ourselves to
numbers between 0 and 1, i.e. to numbers which begin with
0 whole-number parts, so that we do not need to bother with
the whole parts. I am suggesting that even this section of real
numbers is more numerous than all the natural numbers, i.e.
that you cannot arrange them in a sequence without leaving
some real numbers out of it.

Let us suppose that somebody tells me that I am wrong, that
this somebody knows of an example to the contrary. He
claims to have constructed a sequence of all the real numbers
(which have 0 whole parts) without leaving any of them out.
He writes down this sequence, by giving a few numbers from
which a definite regularity can be seen which enables anyone
to continue the sequence as far as he likes. But he can give in
this way the individual numbers too, since these are already
infinite decimals. Let us say the sequence begins as follows:

the first number: 0-1
the second number: 0-:202020 . ..
the third number: 0-3113111311113...

and these are supposed to be continued according to some kind
of rule so that sooner or later every real number will be in-
cluded in the sequence.

Whatever this rule may be, we can immediately construct
a real number with 0 whole part which has certainly been left
out of the sequence.
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First of all we complete the finite decimals by joining a lot of
innocent 0’s indefinitely, in this way:

the first number:  0-100000000000000000 . . .
the second number: 0-202020202020202020 . . .
the third number: 0-311311131111311111...

Now we can begin: the first figure of our number is:
0 ...

What shall we write in the tenths place? We can have a
look and see what number appears at the tenths place in the
first number of the sequence of the example, and we, to the
contrary, can write something else, only we must be careful never
towritea Oor a9. Inorder to be more definite, since the first
digit in the counterexample is 1, let us write a 2 in the tenths
place (I could here or in any of the others have written any of
the numbers 3, 4, 5, 6, 7 or 8). If there had been any other
number in the tenths place in the counterexample, we should
have chosen 1 for our tenth. So our number so far is

0-2...

We can fill in the hundredths place by looking at the hun-
dredths place in the second number of the counterexample, and
again we can write something else in the hundredths place of our
number. Let us keep to1 and 2. At the hundredths place in
the second number of the counterexample here quoted there is
a 0; since this is not a 1, we write a 1 in its place (if there had
been a 1 there, we should have written a 2). Our number then
is continued like this:
0-21...

We can continue with this indefinitely: we shall write a 2 in
the thousandths place, since there is 1 thousandth in the third
number, so that up to three places of decimals our number is

0-212. ..

and now anyone can continue the process as far as he likes:
if the numbers in the counterexample succeed one another
according to some sensible rule, then we cannot get stuck in
the construction of our number. In this way we obtain an
infinite decimal with 0 whole-number part which certainly has
been left out of the sequence. Our number differs from the
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first number at least in the tenths place, from the second
number at least in the hundredths place, from the third at
least in the thousandths place, so it differs from every one of
them in at least one digit. It is even impossible for our number
to differ in form only and not in value from any of the numbers
in the counterexample, since such ambiguity can occur only
with numbers whose expansions consist of either all 0’s or all 9’s
from a certain place onwards, and our number consists of only
I’s and 2’s.

So however anyone were to try to pair off the real numbers
with the natural numbers 1, 2, 3, 4, 5, . . . by writing them in
a sequence, there would always be a real number that was left
out of it. The real numbers are more numerous than the
natural numbers. If we do not restrict ourselves to those
whose whole-number parts are 0, this must of course be even
more so.

We have actually proved this only about rational and
irrational numbers taken together. But we already know that
the rational numbers are countable, i.e. they can be written
out in the form of a sequence. If the irrational numbers could
also be written out in the form of a sequence, then it would be
very easy to unite these two sequences by taking numbers
alternately from each to make the new sequence (for example
we can unite the sequences of the positive and negative whole
numbers

1, 2, 3, 4, 5,...
and -1, -2, -3, —4, -5, ...
into a single sequence by writing:

1, -1, 2, -2, 3, -3, 4, -4, 5, —5,...)
The joint sequence of rational and irrational numbers would
contain all real numbers, but we have just proved that it is
impossible to have one sequence to do this. Therefore the set
of irrational numbers cannot be written out in a sequence even
on their own; they cannot be countable and so they are more
numerous than the rational numbers.

When we introduced irrational numbers it was therefore not
just a question of filling in a few gaps in the everywhere dense
set of rational numbers. The irrational numbers spread con-
tinuously over the whole line in spite of the density of the
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rational numbers, so now the rational numbers are the raisins
scattered in the cake of irrational numbers. This seems a little
similar to the old hypothesis about ether, which was that ether
takes up all the room in the atmosphere without leaving any
gaps, and yet the apparently ubiquitous molecules of air are
still swimming dispersed in it.



13.  The charts get smoothed out

In going through all the items representing my debt to the
reader, I suddenly thought of the poor lonely 1 at the top of the
Pascal Triangle:

1 3 3 1

We proved that, starting from the second row, the sum of the
terms in each row is successively
21, 22 23,...

and if we wanted to fit the topmost 1 into this order then its
value would have to be 2°. But 2° has so far had no meaning;
you cannot multiply something by itse’f 0 times, and up till now
we have not felt the necessity of giving such an expression a
meaning.

Let us devote a little more time to the operation of raising to
a power. We remember how easy it was to multiply the
powers of a certain number by each other; we just had to add
the exponents. For example:

32x34=3x?3x3x3x3x§=3°
and 6=2+4

Other operations too can be easily carried out, if we are dealing
only with the powers of a single number. For example:

3“_3><3x3x3><3x3

32 3x3
and if we cancel 3 x 3, we obtain
3——-—-——X3T?’X3=3x3x3x3=3‘
36
so that f))—2=34 and 4 =6 —2

126
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and the division can be carried out by subtracting the
exponents.

Or (3%)* =32 x 32 x 3% x 32
=3x3x§x§x3x§x3x§

and 8=2x4.

If, therefore, we have to raise a power to another power, we
simply multiply the exponents. For this reason, it is worth
while making a table of the powers of a certain base. Let us
choose 2 as our base; we can easily calculate its successive
powers:

2 = 2 If we have to multiply two numbers, and we
2 _ 4 are lucky, we can extract the result from this
- table without any trouble. For example if we
2 = 8 have to multiply
2* = 16 64 x 32
2% — 32 then we are in luck since both numbers occur
. in our table. The corresponding exponents
2 = 64 are 6 and 5, and it is no great difficulty to add
27 = 128  these, giving 11. One look at the 11th row

8 _ gives the result
28 = 256 9048

2" = 512 Or if on the other hand we need to square 32,
210 — 1024 the corresponding exponent is 5. We can
o1 _ 9048 multiply this by 2 in a fraction of a second; we

get 10, and from the 10th row we can read off
22 = 4096 the result:

322 = 1024

This is really child’s play; the pity of it is that all numbers do
not figure in the table. It might be worth while to extend the
meaning of raising to a power so that every number (for
example even 3) should be expressible as a power of 2.

In this way we arrive at a different inversion of the operation
of raising to a power. We are now looking for the exponent,
to which we should need to raise 2 in order to get 3 as a result.
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This operation is called taking the logarithm, and the result of
the operation is the logarithm.

The most inconvenient things from the point of view of cal-
culations are fractions. These have not yet occurred in our
table. The smallest power of 2, 2! is equal to 2 wholes. In the
attempt to find new meanings our leading consideration will be,
as before, that numbers greater than 2 should be expressible as
greater powers of 2, so that we shall not have to look for them
all over the table. We must therefore introduce powers of 2
which are less than 1 if we want to express fractions as well.
If we go backwards in whole steps, the symbols

20, 271, 27% 27%, ...

are patiently queuing up to be given meanings.

In this extension of operations we must be extra careful to see
that the old rules remain valid; we must not lose sight of our
aim: we want calculations with the new powers to be just as
convenient as they were with the old ones.

Among other things we must be careful that if we multiply
any power of 2 by 2° we get the same answer as if we added 0
to the exponent. But the adding of 0 does not alter anything,
so that we need to give 2° that meaning which will ensure that
if we multiply by it, the value of the number multiplied is not
altered. The multiplier which does not change the value of
a number is of course 1, and thus we must define 2° (and
similarly the Oth power of any other base) by the requirement

20 =1

With this definition the Pascal Triangle acquires a uniform
meaning.

When we want to give a meaning to 2™, then we must be
careful to ensure that

91 ¢ 9-1 — 91+(~1) _ 90 _ |

If, on the other hand, we take 2! over to the other side in the
equation
M x 27t =1

the equation becomes

2-1 —

l\?|'—‘
-
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Similarly from the requirement
22 x 272 =222 = 20 = |

we get 272 = %5

and from the requirement
23 X 2—3 — 23+(—3) — 20 — l

we get 273 = %
and so on. If we wish to preserve intact all our convenient
processes, we must interpret the powers with negative ex-
ponents as a division of 1 by the corresponding power with
positive exponents. In this way our table is extended back-
wards as well, and includes some fractions:

1 1
-3 = = = _ = -
2% = = =1+8=012
1 1
-2 _ = - = - =
7t =y =14=02
1 1
T - = U
2 == =1+2=05
2 — 1
8 = 2
2 = 4

This is quite a help for reckoning with the fractions £, 1, 2, . ..
i.e. with the decimals 0-5, 0-25, 0-125, . ..

But there are still big gaps between the numbers in our table,
for example 2! = 2, 2% = 4. If we want to write a number
lying between 2 and 4 as a power of 2 (for example 3, or 2:7),
then this is only possible, following the previous pattern, by
using a power somewhere between 1 and 2. For example the
number 1} lies between these two numbers, and since 2 = 1,
this is equal to 2; in this manner we must interpret the 3th
power of 2, and in general all fractional powers.

The interpretation will be decided by the consideration that
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we are still anxious to preserve the rule of raising a power to
a power. If this is to remain valid, then

(22) — 9™ — 93 — o8

3
so that 22 can be the only number whose square is 2% but this
is the number which we denoted by /2 and so
3 — —

22 = vV2* = V8
and calculating this V8 to one place of decimals, we get 2-8.
However, since

3

R i =1
5 32 5

(we shall have to do our calculations with exponents, and it is
easier to handle decimals than fractions like £), we can insert
a new row between the rows for 2! and 2 as follows:

I

o1
21-5
22

2
2.8
4

Our secret ambition to write 3 as a power in this way has not
been achieved, although 2-8 is quite near it. It can be shown
that you cannot write down 3 as any kind of fractional power
of 2 exactly, but it can be approximated to any desired extent
by such fractional powers. We define the power to an irra-
tional exponent by means of such approximations.

This is the fundamental idea behind the preparation of
logarithm tables. The old logarithm tables were in fact pre-
pared in just this way. The tables known in secondary schools
all have the base 10 (the base is not even indicated, only the
exponent). Here the games with our fingers have entailed
considerable sacrifices. There are much longer gaps between
the powers of 10, i.e. between 10, 100, 1000, . . . than between
the powers of 2, and it is much more trouble to fill in these gaps.

In certain logarithm tables there are logarithms to the base
‘¢’, called natural logarithms. This number ‘¢’ is an irrational
number which begins like this: 2-71.... What kind of
thought process leads to taking such a number as a natural base?
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There are many avenues that lead to an understanding of this,
but I feel that the following is the best.
10is not a very good number for the calculation of logarithms.
It might in fact be quite an idea to take a number even less
than 2 as our base, then the gaps between the whole-number
powers of such a base will be even smaller. We cannot of
course go as far as 1 itself| since all powers of 1 are 1, and it is
not a very good idea to go below 1, since if we raise a proper
fraction to a power, we make it smaller, for example
(2) x () =1 Let us try 1-1; this will be easy since we
already know the powers of 11 from the Pascal Triangle. We
just have to be careful about putting in the decimal point and
to realize that every time we multiply by a tenth it is really a
division by 10, so the decimal point will shift one place to the
left every time. Let us also not forget that the Oth power of
any base is 1.
1-1°

.11

l-l

[P P —y
B GO KD

1
' 31
1-1¢ 4641
These powers grow very slowly, and we have already a whole
host of numbers between 1 and 2 before we need to start on the
troublesome business of filling in the gaps.

Of course a still smaller number, even nearer to 1, would be
better still. Let us try the base 1-001 (here we separate the
elements in the Pascal Triangle by pairs of zeros):

1.001° =1

1-001' = 1-001

1-001% = 1-002001
1-:001% = 1-0030003001

This is already a terrific density, for these powers grow at
such a snail’s pace that we might begin to wonder whether they
will ever reach 2.  But it is possible to prove that the powers of
any number greater than 1, even if very little greater, tend to
infinity, although extremely slowly.

This table still has a certain aesthetic drawback. Just on
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account of this very slow growth, disproportionately large
exponents correspond to the small numbers. We need to go
about as far as the thousandth power to reach 2. If the
exponents were a thousand times as big, they would behave in
a more harmonious way. But this is quite easily achieved: let
us raise the base to the thousandth power. Since
1 1 1000
(1-0011%)1066 = 1.001'*°*10% — 1.0011000 — 1.001
2 2 2000
(1-0012000)1065 = 1-001'*"** 700 — 1.0011000 = 1.0012
and so on, so the base 1-0011° has in fact only to be raised to
one-thousandth of the power that 1-001 has to be raised to, in
order to get the same result.
When we raise the base 1-001'%° to powers, we can proceed
in steps of one-thousandth. In decimal form

1 2 3
f000 — %% o0 = %%%  To00
so that, using the connexions just established with the powers

of the base 1001, we have

(1-0011000)0

(1 001 1000)0-001
(1 ,0011000)0002
( 1 0011000) 0-003

= 0-003, . ..

1.001° = 1

1-001' = 1.001
1.001% = 1-002001
1-001® = 1-003003001

1

The exponents and the corresponding numbers do not grow
disproportionately, and the density has been unimpaired.
It is clear that the bases

1-00011%0, 1.0000110%00 1.0000011000000 ",

will do better and better for our purpose, and it can be proved
that this sequence converges to an irrational number beginning
with 2:71, ... This number plays a very important role in
Mathematics; it has received the distinction of a special name,
it is called ‘¢’. The logarithms to this base ¢ are called natural
logarithms, as it is the search for more and more suitable bases
that leads to them so naturally.

We filled in the gaps in the definition of power for the sake
of logarithms, and now powers to any exponent have a mean-
ing, not only powers to whole-number exponents. In this way
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we are now in a position to complete the very incomplete
chart of the power function. We can deal with equations, and
so we can write down this function in the form of an equation.
Let the base be 2 again; we shall be varying the exponent.
As this will be some unknown number, so I shall denote it by X,
and the value of the power will vary, depending on this X. We
shall call this value Y, i.e.

Y =2%
We shall represent the values of X by means of units like this

j————1 along a horizontal line (we can now put a 0 on this,
as well as negative numbers to the left of 0), and the values of ¥

we shall represent upwards by means of units like this: :[

1 1
IfX=—3then V=2 =3 =¢
| 1

- — == _2=—=—-
SX=—2 , v=2t=l-]
1 1

= — =9l = _ =
”X—‘ l 'Y} Y 2 21 2
”X= O '3} Y=20 —_-1
;:X= 1 ’ Y=2l =2
)9X= 2 ”» Y=22 =4‘
”X= 3 Y =28 =8

Eh

so that at the points, —3, —2, —1,0, 1, 2, 3,
we must measure upwards the following
number of units:

111 i
g ¢ 2

1, 2, 4, 8
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We could even choose intermediate values for X. For example
we have already seen that
1 8 — —
217 =27 = V2 = V8 =28...
Similarly we can calculate values between other whole num-
bers. Accurate to one place of decimals we have:

IfX = — 2} then ¥ = 02
,,X=—1% ” Y =04

”» X=- % »y Y= 0-7
» X = % » Y= 1-4
w X= 14 ,, ¥Y=28
yy X = 2% ,, Y =57

With these results let us now complete the graph we obtained
before. At the points —23%, —13, —3%, 3, 14, 2}, we must
measure upwards respectively

02, 04, 07, 1-4,2-8,57 units

/N

~3 2% -2-14-1 -f 0 £+ 1 1§82 243

On this chart there are hardly any ‘elbows’ at the points
where the straight segments meet. If we continue these in-
sertions, at least in our imagination, through all rational and
irrational values of X, the chart will become a single smooth
curve.

Going towards the left the curve gets perceptibly nearer and
nearer to the horizontal line, but it will never reach it. We
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have not found any power to which we could raise 2 and get
zero, and only those points can lie on this line to which ¥
values of zero height correspond.

We can see the same thing happening on the chart for division
which we have put aside. While we only had whole numbers
this was not really possible to see. Let for example the divi-
dend be 12 (we know that this has a lot of divisors); we are
going to vary the divisor, so let us call it X. The result of the
division will vary according to the divisor chosen; this will be
the quotient, we shall call it Y:

12
Y=%
12
IfX=——12,thenY=_—12-=—l
because (— 12) x (— 1) = + 12
wX= —6, , Y=—136 = — 2 for similar reasons
12
» X = -4, 5 Y=__'4=_3
12
X = — = = —
»» 3, »w Y _3 4
12
w X = — y o » Y=— = —6
2 -2
» X = —1 tH) Y=l_21=—12
» X = 1, Y=1T2 =12
12
3 - 29 131 Y—‘7 - 6
12
”X— 3, 3] Y"‘? - 4’
12
”X= 4'5 ” Y"‘T = 3
12
”X_ 6’ 13 Y_'G_ - 2
9 = 12a 1 Y 12 = 1

T 12
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We measured the positive ¥Y’s upwards from the axis; let us
draw the negative ones downwards, so that at the points

-12, —6, —4, -3, —2, -1, wedraw
-1, -2, -3, —4, —6, -—12 units downwards

and at the points 1, 2, 3, 4, 6, 12 wedraw
12, 6, 4, 3, 2, 1 units upwards.

Let the unit be I in all directions

I \4

We hardly need any intermediate values; the curve is already
getting nice and smooth, but it might be worth while to study
its ends a little further. Here it is useful to draw another
straight line upwards through the point 0. In this case we call
the horizontal line the X-axis and the line perpendicular to it
the Y-axis. We can see that each of the two parts of the
curve gets near to both the X and the Y axes without any
chance of reaching either of them; we call these lines the
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asymptotes of the curve. In fact, if we go farther along the
X-axis towards the right, e.g. if X = 24,

12 12
Y=%~u
We can cancel the factor 12, giving
1
YV = -
2
If X = 36, and again we cancel the factor 12, we have
12 1
Y=%~3
if X = 48,
12 1
Y=%8~1

and so on. The farther we go along the X-axis, the smaller
will the Y-values become, but they will never become zero,
since however we divide 12 into parts, each part will still have
some size. In the same way we can go a long way in the
negative direction, and we shall get the values

b1

2 % ¢
which tend to zero but never become zero. The other part of
the curve approaches the X-axis from below more and more
closely but never reaches it.

If, on the other hand, X = }, we know that in one whole

there are 2 halves, so in 12 wholes there will be 12 x 2 halves,
i.e. 24 halves, and thus

Y =24
In the same way we can see that in 12 there are 36 thirds and
48 quarters, so that

ifxzé,then Y =36

,,X=;}, ,, Y =48 and so on

According to this if X gets nearer and nearer to 0, the corre-
sponding Y grows taller and taller; the curve cannot reach the
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Y-axis, since this could happen only if X = 0. But in this case
we should have Y =312 and we should be up against the
permanent and insurmountable prohibition: you shall not
divide by zero!

The check for division is multiplication: 20 -5 =4
because 5 x 4 = 20. What are the usual things people say?

5«0 =0. Check:0 x 0 = 0 and this is not 5.
Or 5=0=5. Check:0 x 5 = 0 and this is not 5.
Or 5=-0=1. Check:0 x 1 = 0 and this is not 5.

Whatever number we multiply by 0, the result is always 0, so
we cannot divide 5 by 0.

Let us think this over a little. If a number is very small, it
goes into 5 a great number of times; the smaller the number
that we divide by, the larger number we get as the result. If
there were a greatest number, this would be the result of the
division by the smallest number, by zero. But there is no
greatest number.

But perhaps we might still be able to divide 0 itself by 0?
Let us have a try: 0 — 0 = 1, check: 0 x 1 = 0; this seems to
be right. But supposing I said

0+0=137

this is also right, since 0 x 137 is also 0. So here we get into
different sort of trouble. The result is quite indeterminate,
the check gives every answer as correct. So in every case the
prohibition is upheld. An amusing students’ publication once
formulated it in the following way: ‘By every number canst
thou divide, but by 0 shalt thou not divide!’ said the Lord when
he placed Adam in the Garden of Eden.

One might think that, since it is so strictly forbidden, it
would not occur to anyone to divide by 0. So unashamedly
perhaps not, but sometimes 0 turns up with a mask on, for
example in the following form:

(x + 2)2 — (x® + 4x + 4)
Not everybody would recognize it immediately, although here
we have subtracted from (x + 2)? its own expanded form.
There is always some division by some such hidden zeros in
the ‘proofs’ where it is proved for example that 1 =2. In
Mathematics, if we make just one mistake, if we admit just one
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statement which is in contradiction to the other statements,
then it becomes possible to prove anything at all, even that
1 =2

Let us try to remember the picture of the curve we have been
studying. (I shall tell the reader its name; it is called a
hyperbola.) Then we shall not forget about this prohibition.
The first thing one notices about the curve is that it is in two
parts. Each branch proceeds smoothly and continuously, but
at the point 0 we see a terrible tear, a wound stretching to
Infinity: the left-hand branch runs downwards, the right-hand
branch upwards towards Infinity. And between them stands
the Y-axis, like a drawn sword: ‘You can approach, but you
shall not come to the zero divisor!’



14. Mathematics is one

Just because we can write down functions in the form of
equations, we must not jump to the conclusion that such
formulae play a decisive role in the determination of a function.
Let the reader try, for example, to express the following
function Y of X by means of some simple formula: every time
X is a rational number, let the value of ¥ be 1, and every time
X is an irrational number, let the value of ¥ be 0. (This is
called a Dirichlet type of function.) The determination is un-
impeachable: the value of ¥ depends only on what kind of an
X we have chosen, and to every X corresponds quite a definite
Y, for example if X = 1-5,then ¥ = 1,if X = v'2,then Y =0.
Nevertheless it is a very difficult problem to find a formula for
this function, and unfortunately we cannot even represent it
by a graph; it jumps about between 0 and 1 with such crazy
frequency, rational as well as irrational numbers being
distributed densely everywhere.

The essence of the concept of a function is the pairing of the
Y values with the corresponding X values. It may happen
that X cannot assume every single value; we know already from

the function given by the equation ¥ = % that it leaves out

the value 0; the function is not defined for X = 0. Every time
we define a function we need to state from what set of numbers
X may be chosen, and instructions must be given which will
make it clear what the number ¥ will be with which X is
paired.

It is always a great help if we can draw a graph of the func-
tion. A good graph will tell us more than any detailed,
verbose description.

Let us define for example the following function: whatever
X may be, let Y be equal to the whole-number part of the X.
For example:

if X = 545,then Y =5

ifX=+v2,thenY =1

since we have already seen that V2 = 14 . ..
140
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Let us try to draw the graph of this function:
ifX=0 then Y =0

if X =01 then Y =0
ifX=09999 then Y =0

we can see that ¥ = 0 until X reaches 1, after this

fX=1 then Y =1
if X = 1-001 then YV =1
if X =199 then ¥V =1

so that ¥ = 1 until X reaches 2, and so on; similarly in the
negative direction. The graph will look like this:

.

..-’j "2' -1 6 i 2' éoo-

The curve consists of the above separate horizontal segments.
One glance at the curve tells us everything about the function.
Where the curve is broken, the value of the function jumps by
one, and it remains constant along the horizontal lines. We
can see that functions can have not only such infinite tears as

Y= 1—)? has at X = 0; they can also have more moderate ones.

The graphs of both these functions do at least proceed smoothly
and continuously along the untorn portions; the Dirichlet type
of function, on the other hand, is not continuous anywhere. It
is impossible to find an interval, however short, which would
not contain rational as well as irrational points, and the value
of the function is bound to jump while passing from one to the
other.

We must not be led to believe that, if a function can be ex-
pressed by means of a simple formula, then by taking our points
close enough to each other, its graph will be smoothed out into
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a curve without any ‘elbows’. Suppose, for example, that we
define a function in the following way: Whatever X may be, let
Y be equal to the absolute value of X, that is to the value of X
without regard to its algebraic sign. There is an accepted
notation for the absolute value; we put a little vertical line
before and after the number; for example

| ~3|=3
| +3] =3
and of course | 0 | =0

The function we have just defined can be expressed therefore
by means of the following simple formula:

Y=|X|
Accordingly, while X runs through the values
—4, -3, -2, -1, 0, I, 2, 3, 4
Y assumes the values
4, 3, 2, 1, 0 1, 2, 3 4
The graph would look like this:

19

-4 -9 -2 -1 o0 11}2 J 4

The picture of our function is therefore two straight lines
leaning away from each other. This is not affected even by
inserting other intermediate values. For example

ifX =1}, then Y = |13 | = 1}

This value has been drawn in with a dotted line: the point
obtained again falls right on one part of the ‘elbow’.

Such geometrical representation gives a very vivid picture of
the function, even if not an accurate one. Our pencils are not
able to draw quite thinly enough, our rulers are not dead
straight, our eyes as well as our hands are imperfect. But there
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are certain things that Geometry has to say about figures which
have nothing to do with actual drawing. Once we get to know
the geometrical properties of a hyperbola, and that the graph of

Y= IYQ is a hyperbola, then we shall know almost everything

about our function.

But even Geometry quite often looks to other branches of
Mathematics for help. For example it borrows the formula
when its aim is to co-ordinate the discussion of some matter; we
have already seen how one formula can state a lot of different
problems at one and the same time. We saw this in calculating
areas and volumes. Mathematics is one, it is not split into two
separate sciences, Geometry and Algebra, as children believe,
particularly if the teacher has divided the syllabus in such a way
that for instance there is Algebra on Mondays and Fridays and
Geometry on Wednesdays; in this way Mathematics is indeed
split into two subjects.

One of the bridges which joins Geometry to the other
branches is the co-ordinate system: the two perpendicular
straight lines passing through the point 0, the X and the Y axes,
which we have already used for the description of the hyperbola.
These axes give us a method of characterizing the points of the
plane with the aid of numbers. We can conceive them as two
paths which cross a field. If I have found a bird’s nest in one
of the bushes in the field, I can make a note of its position by
going straight to one of the paths with as even paces as possible
and counting these paces, and then counting those paces which
I must take to the intersection of the paths:

NN
/// \\ \

< WEST EASTH>

AN\ w0 00

/ 12 PACE




144 THE CREATIVE ROLE OF FORM

Now if I wish to direct someone else to the nest, I know that
if he walks 21 paces from the crossing of the paths towards the
East and then 12 paces towards the North, he will be certain
to find the spot. These two directed numbers are the ‘co-
ordinates’ of the required point. In Geometry it is usual to
determine the directions by means of the signs ‘+’ and *—’, so
that the positive directions point towards the right and up-
wards, the negative directions towards the left and downwards.
Instead of paces it will be necessary to use a certain definite
unit, and the co-ordinates will be measured in terms of such a
unit. In this way a definite pair of numbers corresponds to
every point of the plane, and one definite point to every pair of
numbers. The path travelled in the direction of the X-axis
(this one is always given first) is the X-co-ordinate of the point,
the path travelled in the direction of the Y-axis is the Y-co-
ordinate of the point.

The reader will find the co-ordinates of a number of points
written by the corresponding points in the figure below; it is a
good idea to get some practice in this:

(AN 4

(-3.5) 6.6)
¢ (0.4)

8.0 0
-© g

i(—é. 2 Lw)

(Naturally this is not the only method of associating numbers
and points. For example the paths may not be perpendicular
to each other, but following them we can still find our way
about; or there may be one path on which we can find a certain
definite tree; we can walk straight to this tree from the bush,
and we may have some apparatus by means of which we can
determine the direction of the bush as seen from our tree.)

Since we can characterize points by means of pairs of num-
bers, we have a ready method for characterizing lines by means
of connexions between pairs of numbers; in othet words by
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means of equations. Consider for example the straight line
which passes through the starting point and the point (1, 1):

A

If this were a railway line, its gradient would be denoted by
1:1

This means that while we walk one yard along a horizontal path
next to the railway line, the line itself rises a yard. Since this
slope rises quite evenly, after 2 yards it will also rise 2 yards,
after 3 yards it will rise 3 yards and so on. So all the points
which lie on our straight line are characterized by the fact that
their two co-ordinates are equal. At every such point

Y=X
Outside our line there are no points in the place whose co-
ordinates are equal. If we join any point outside our line to

the starting point, we obtain a different slope, possibly even a
downward slope, e.g.

by Y
(%]

Here in the first figure the rise is in the ratio 2 : | all the time,
so the Y co-ordinate of any point lying on this straight line is
twice its X co-ordinate; in the second figure the slope is really
1 : 1, but the slope falls away instead of rising, and we ought
really to denote this slope by 1: (—1) in our system of co-
ordinates; the effect of this is that the co-ordinates of any
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point on this line are equal in absolute value but different in
sign, and so they are not actually equal.

We see that the points outside our original line cannot have
equal co-ordinates. The equation

Y=X

characterizes completely the points of our original straight line,
and we are justified in saying that this is the equation of our
straight line.

In the meantime we also happen to have found out the equa-
tions of the other two straight lines which we have drawn,

the one whose slopeis2:1is ¥V =2X

(we shall come across this again, so please try to recognize it
then) and

the one whose slope is 1 : (— 1) is = —-X

Let us shift the straight line whose slope is 2 : 1 up a little, say
by three units, but in such a way as not to change its direction.

Ay

Its slope has not altered, as we can readily verify by starting
from any of its points and going one unit to the right, and
noticing that during this time the line has risen two units. The
only thing that makes this different from the previous situation
is that every point has been pushed into a position 3 units
higher than it was before, and so the Y co-ordinate of every
point has been increased by 3. The Y that was 2.X before has
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now become 2X + 3 so that the equation of a straight line in
this position will be
Y=2X+3

One common characteristic feature of the equations so far

obtained, namely:

Y=X, Y=2X, Y=—-X, Y=2X+3

is that every one of them is a linear equation with two unknowns.
It was to be expected that there would be two unknowns, since
points are characterized by two numbers. The fact to be
stressed is that the equation of a straight line in any position is
a linear one. Conversely, it can be shown that any linear
equation with two unknowns, expressed in any form whatever,
can be regarded as the equation of a certain definite straight
line. Linear equation and straight line are two different ex-
pressions of the same concept.

This is a neat but not a very surprising result. We may
draw straight lines in any sort of position; these will after all
still be straight lines, they will belong to the same family, and it
is quite natural that their equations should also form a definite
family of equations.

Let us now have a look at a curved line. Everyone knows
what a circle is. Let us, for example, consider a wheel with a
lot of equal spokes; these spokes are the radii of the circle.

Let one of these radii be, for instance, 5 units long, and
imagine the centre of the circle to
be our starting point. Wherever
we pick a point on the circum-
ference of the circle and draw
its co-ordinates and the corre-
sponding radius passing through
the point, we obtain a right-
angled triangle. The hypotenuse
is the radius and the other two sides are the co-ordinates.

y
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Let us remember the connexion we already know of between
the sides of a right-angled triangle. This is good old Pytha-
goras’ theorem. The square on the hypotenuse is equal to the
sum of the squares on the other two sides. So if we square and
add the co-ordinates of any point lying on the circle, we must
get 52 = 25:

X24+Y2=125
This will be the equation of the circle.

We can see straight away that this is a quadratic equation;
what is more, it is not the simplest kind of quadratic equation.
Let us see what kind of a curve corresponds to the simplest kind,
i.e. to the equation

Y = X2
IfX=—3 then Y=(—3)2%2= +9
IfX= —2 then Y =(—-22= 4
IfX= —1then Y =(—-12= 1
IfX= 0 then Y = 2= 0
IfX = 1 then Y = 12 = 1
IfX= 2 then Y = 2= 4
IfX= 3 then Y = 2= 9

Let us take some intermediate values around 0.

IfX = % then ¥ = <%>2 =%
IfX = ——%, then Y:(—% : :;‘
Let us now draw the graph: ? y
] 9
LA/
-3-211 Wg/z 3 > X
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The curve obtained when this is quite smoothed out is called
a parabola. Both sides of course continue indefinitely getting
steeper and steeper, becoming more and more like vertical
straight lines. This is certainly not even remotely like a circle.

We have come across another curve before whose equation is
a quadratic, but we did not notice this fact. I am thinking
of the hyperbola. Its equation was

12
Y=%

but if we bring X over to the left as a multiplier, we get

X xY=12
In an equation with two unknowns the term X x Y, in which
the sum of the exponents of the two unknowns is 2, is usually
regarded as a quadratic one. If this sounds unconvincing, we
need only to turn our hyperbola around a little so as to bring it
into the following position:

/\Y

then its equation is going to be
X2 — Y2 =24
and there can be no doubt about this being quadratic.
We might as well mention here that the equation of a com-
pressed circle, i.e. of an ellipse,

is also a quadratic one. With it we have exhausted these types
of curves (disregarding some ‘degenerate’ cases): if we could
draw all the four types of curves discussed above in every
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possible position in our co-ordinate system, then we should
obtain the family corresponding to all quadratic equations with
two unknowns. But it seems difficult to imagine a family
whose members differ from one another so much. Where is
the family likeness in this family of curves, of which some are
finite and closed, some wander off to Infinity, some are in one
piece, others in two?

When this family is introduced it is immediately revealed
where the family likeness lies: they all bear the name of ‘Conic
Sections’.

Here again we must leave the plane for three-dimensional
space; what a pity it is that we cannot draw in three dimensions
in the way we can draw on a flat piece of paper! Let us at least
imagine some paint with which the air can be painted. Then
let us imagine a horizontal disc and a slanting straight line
leaning over the centre of the disc which just touches the disc at
a certain point:

We next have to imagine that someone has dipped the straight
line in the magic paint from top to bottom (it actually has no
top or bottom, since the straight line is infinitely long).

Now let us take this imaginary straight line, holding it fast at
the point which lies just above the centre of the disc with one
hand and with the other hand exactly at the point where it
touches the disc, and take this point round the circle. Then the
paint will paint a surface in the air below as well as above the
fixed point. Such a surface is called a cone.
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If we cut the double cone so formed by means of planes in
various positions, our curves will appear along the edges of the
truncated pieces.

ellipse parabola

Only the fourth plane has succeeded in finding the upper cone
as well.

Even had we been unable to find such a geometrical family
likeness between the four curves, the very fact that all their
equations are quadratic brings to light a number of their com-
mon characteristics. We merely need to ask what Algebra has
tosay about such equations, and establish what can subsequently
be deduced from this; anything that we may deduce in this way
will be a common property of our four curves. Let us for
example have a look at their points of intersection with a given
straight line. A point of intersection is a point which is on the
curve as well as on the straight line, so its co-ordinates satisfy
both the equations in question. The equation of a straight line
is linear; Algebra teaches us that a linear and a quadratic
equation, each with two unknowns, either have no (real) solu-
tion, or one common solution or two. Thus it is true for any of
our conic sections that a straight line can be in one of three
relationships with respect to it: either it does not get anywhere
near it, or it touches it in one point, or it cuts it in two points,
for example:
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No line can cut even the two-piece hyperbola in more than two
points.

Such are the services that Algebra can render Geometry.

Postscript about waves and shadows

During our discussions we have come across two geometrical
ideas. It would be a pity to pass them by.

One is to do with different ways in which the direction of a
straight line can be given: we can compare the rise in height
with the horizontal distance travelled, as in the right-angled
triangle drawn below, where the two sides adjacent to the right

angle are compared:
AY ?
2

> X

a

There is, of course,.another way of precisely determining a
direction; we can state what angle it makes with a certain
definite direction. It is usual to take the positive direction of
the X-axis for such a definite direction. This angle may be
called the direction-angle of the straight line. It is an acute
angle if the straight line rises towards the upright, it is obtuse if
it falls away beyond it:

AV/

Now the ratio between the two sides of the right-angled triangle
adjacent to the right angle completely determines the direction,
and so with it the angle too. We could therefore choose this
as a measure of our angle. We could for example describe the
size of the acute angle by saying that the corresponding slope is
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2 : 3; i.e. if we drop a perpendicular from any point on one of
the arms of the angle on to the other arm, we shall get a right-
angled triangle in which the ratio of the side opposite the angle
to that adjacent to the angle is 2 : 3, or with a different nota-
tion 2.

If 3given the ratio ¢ the angle can immediately be drawn.
We must go 3 units to the right and 2 units upwards:

.}

3

and, if we join the point we have reached to our starting point,
we shall obtain the required angle:

éﬁ 2
3
If the angle is obtuse, then the slope falls away, and we have
already seen that the corresponding ratio is going to be nega-
tive. If for example the ratio is —%, then we know that the
slope rises backwards, i.e. if we go 3 units to the left and 2 units
upwards, then join the point so obtained to our starting point,
the join will make an obtuse angle with the positive direction of

the X-axis (since the direction-angle is always the angle made
with the positive direction of the X-axis):

z&g_)

An obtuse angle like this cannot form a part of a right-angled
triangle, but still we have constructed a right-angled triangle
right next to it, whose sides adjacent to the right angle are in the
ratio of 2; this is the ratio characterizing our obtuse angle, apart
from the sign.

It can be shown that the ratio of any pair of sides of the right-
angled triangle can characterize angles as well. These ratios
are called circular functions, since their values depend on the
amount of circular movement of one arm of the angle away
from the other. The name given to the circular function we
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have just examined is the tangent; the ratio of the side opposite
the angle to the hypotenuse is the sine of the angle, the ratio of
the side adjacent to the angle to the hypotenuse is the cosine of
the angle. For example in the triangle below:

5

A

the sine of the shaded angle is 2, its cosine is £, The definitions
of all circular functions can be extended to angles larger than
acute angles. The values of the circular functions correspond-
ing to all sorts of different angles have been tabulated; if we
know the lengths of the sides of a right-angled triangle (and
other triangles can always be split into two right-angled
triangles):

we have only to look in the tables and we immediately know all
its angles as well. It is true that we can draw the triangle if we
know the lengths of its sides, and then we can measure its angles,
but the standard of accuracy of such measurements is far below
what can be achieved through the calculations of those who
prepare the tables! For it must not be imagined that the com-
pilers of such tables obtain the values of the circular functions
by measurement! One method for their calculation is based
on the fact that we know some of the values precisely. For
example, our first straight line bisected the right angle exactly

AY

Ser AN

and so the tangent of its direction-angle was 1 ~ 1, i.e. 1 =1.
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The right angle is the result of a quarter turn; so we know that
the tangent of the angle which is the result of an eighth of a turn
is 1. If we know the values of the circular functions for some
angles, we might enquire how we can find the values corre-
sponding to the sum of two such angles, or to double or half an
angle. Trigonometry is concerned with the search for such
relationships. The tables, on the other hand, are prepared in
a different way; we shall come back to this later on.

The circular functions have great importance far beyond the
bounds of Trigonometry. If, for example, we draw the chart
corresponding to the sine function for all values of the angle
starting from O right up to one complete turn, we get a wavy

line like this:
N\
<

This can be continued even farther. An angle really
measures the turning away of one straight line from another
fixed straight line. Imagine, for instance, that we slowly open
out a Japanese fan:

acute angle right angle obtuse angle

reflex angle complete angle

in this way we can make all possible angles, and it is easily seen
that the arc of a circle drawn about the vertex measures the
amount of turning. Of course the length of the arc also depends
on the size of the fan, but we can measure our angles by the
length of the arc of unit radius. (This is much more sensible
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arc

e and
I
than the usual degrees used in schools.) Now we can imagine
(not with the fan, this would get torn) that the turning
straight line goes on turning even after one complete revolution

so that the part thickly drawn in the figure has been covered
twice. It is quite obvious that our straight line is in just the
same direction as if it had turned only through this small arc.

=

So the values of the circular functions get repeated for angles
greater than one complete turn, and the curve goes on rising
and falling in the same way:

N N\ e
\/ "

This is just like the recurrence of the periods in the expansion of
fractions. For this reason the sine function is called a periodic
function.

Every physicist knows this curve very well: it is the curve
representing vibrations and plays a decisive role in modern
Physics. Those who have taken an interest in radio might
have seen such modified wave-graphs as this one:
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In this graph the denser waves are the so-called electro-
magnetic waves. Their picture by itself would be like this:

but sound modifies these in places by means of big waves like

these:

Here we can still see the two sets of waves out of which the
modified wave is compounded. But in fact sound waves are
never so simple, as there is no such thing as absolutely pure
sound; there are always several sounds vibrating at the same
time, and these do not differ from one another to the extent that
electromagnetic waves differ from sound waves, and so they do
not play such easily distinguishable parts. The results of their
superimposition is merely a degeneration of the waves, for
example they might become like this:

eV eV

It is often necessary to discover, given such a degenerate set of
waves, what the waves were, out of which our curve has been
compounded. The question can be put in the following way:
if we have a continuous curve, however degenerate, but
periodic, is it possible to find waves whose simultaneous effect
would generate just this curve?

The answer to this question is that it is possible to find such
waves (although not with perfect accuracy), which, if super-
imposed upon one another, approximate to our curve to any
desired extent. This can be done even if our curve consists of
a lot of elbows, for example if it consists of a lot of segments like

this:
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This is of course proved in function-language, which deals
not with waves, but with the functions corresponding to

these.
In this field pioneer work was done by Lip6t Fejér and this

made his name as a young man.
* * *

The other geometrical idea we have come across is in con-
nexion with slicing up the cone. Let us just cut the lower cone
twice; once in a horizontal plane, once in a slanting one:

A
=

Let us draw separately the vertex of this cone, the circle and
the ellipse.

Let us imagine that the vertex of the cone is a little electric light
bulb which emits rays of light in all directions. The circle is a
paper disc, interrupting the rays of light, which therefore does
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not allow the rays falling on it to pass through it; the rays just
able to get past the edge generate the surface of our cone, and so
the circle produces an elliptical shadow on the plane put under
it in a slanting position:

A=

L \\

p—

An ellipse can therefore be regarded as the shadow of a circle.
It can be generated by the projection of a circle from a point on
to a slanting plane.

In the same way we can produce a parabolic or a hyperbolic
shadow by turning the plane about (if we wish to obtain the
other branch of the hyperbola, we need to place an identical
circular disc in the way of the rays emitted upwards). We can
see that the extent to which a shadow can distort is considerable.

So-called ‘Projective Geometry’ hasfor itsobject thesearch for
properties which are not lost even through the distortion caused
by projection. It has been possible to find such ‘projective’
properties which have proved ‘invariant’ even under such pro-
jections. This enables us to examine conic sections in a uni-
form and simple way from quite a novel angle. It is enough to
deal with the well-known circle; all its ‘projective’ properties
will be transmitted unscathed to all conic sections that can be
generated out of it by projections. The shadow can stretch
and stretch, even to Infinity. Yet it cannot altogether free
itself from its master.



15.  ‘Write 1t down’ elements

I oncE went to see the stage version of an amusing Russian short
story called ‘General, write it down!” The main idea behind
the story is that someone misunderstands an interjection
‘General, write it down! in the middle of something being
dictated, and so the name ‘General Writeitdown’ gets put on
the list of officers. Since the omnipotent Czar signs this list,
nobody dares to come forward with the information that there
is in fact no General whose name is Writeitdown. General
Writeitdown is therefore not a human being at all, he is only a
misprint, but nevertheless all sorts of extraordinary things hap-
pen to him and about him: he gets imprisoned, gets married,
foments insurrection and generally has a decisive influence on
the lives of other people.

Even in Mathematics we find such non-existent ‘writeitdown’
elements, which nevertheless play an important part. Mathe-
maticians call them ideal elements. Such is for example the
so-called ‘point at infinity’, in which ‘parallel lines meet’.
This serves the purpose of making our discussions more unified.
For example it can be proved that points and straight lines are
in a relationship of ‘duality’ to each other: some theorems con-
cerning points and lines remain true if we interchange the
words ‘point’ and ‘straight line’. For example, 3 points, not
lying on the same straight line, determine a triangle. This is

certainly true:
/"*.‘5 -
P e
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The dual statement would be: 3 straight lines, not passing
through the same point, also determine a triangle:

~ <

This duality is very convenient; it is enough to prove one of the
160
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statements, and we have automatically proved its dual. We
state one thing, and it immediately becomes two things.

But in this very simple example something is a little wrong
with the dual theorem. We ought to have added: ‘provided
the straight lines are not parallel’. In this case it is convenient
to say that we have already excluded the case of three parallels
in the wording of the theorem, since these parallels would meet
in one and the same point at infinity.

But this ideal point at an infinite distance away is capable of
greater things than merely saving a few sentences beginning
with ‘provided’. If we associate a single common point at
infinity with straight lines having the same direction, i.e. with
lines parallel to each other, and a different point at infinity to
straight lines with different directions, then we have created as
many ideal points as there are directions. We can even state
exactly which ideal point we are talking about; we have only
to give the direction which points towards it. By a little modi-
fication of our co-ordinate system, we can even write down the
equation of the line containing all the ideal points. This
equation turns out to be the kind of equation usually associated
with straight lines, and so we can say that all the points at
infinity lie on a straight line at infinity.

So far this may appear a very empty sort of game: we have
written down the equation of a non-existent straight line. Per-
haps it would be better not to try even to imagine it. A
straight line is infinite both ways, and yet we have associated
only one point at infinity with it (in this way the duality prin-
ciple is satisfied, two ideal points would spoil it); it is as though
its two ends met at infinity, where it would turn into some sort
ofacircle. Our straight lines, although stretching away in two
opposite senses, are nevertheless hanging on the various points
of the line at infinity, like fruit on a fruit-tree, turned into
circles by magic, parallel lines hanging at the same point:

DO D

We should not have drawn the line at infinity so straight, really,
although goodness knows how we could have drawn it, since
one of its points is in the East and the West at the same time;
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North and South meet at one of its other points and so on for all
other directions. Let us rather forget the whole thing, it does
not belong to a world of imaginable things. ‘General Write-
itdown’ is only a misprint.

But nevertheless this line at infinity can give us an enormous
amount of information. We have already obtained its equa-
tion, and so it is perhaps not too daring an enterprise to try to
determine its points of intersection with, for example, a para-
bola, since all we have to do is to find the common solutions to
the two equations. It happens then that this line at infinity,
which we at first thought was trouble personified, is just what
we wanted to throw light on the family of conic sections.

Everyone who has had anything to do with this subject is
bound sooner or later to ask the following question: given a
quadratic equation with two unknowns, how is it possible to
decide what kind of conic section corresponds to it? The line
at infinity gives a definite answer to this question: if the given
equation has no common solution with the line at infinity, then
it is an ellipse; if it has only one common solution, it is a para-
bola; and if it has two solutions, then our equation must repre-
sent a hyperbola. And there are no other possibilities. (The
circle is the most regular sub-case of the ellipse.)

Now we can allow our imagination free rein—and the results
obtained correspond entirely to our imagination. The ellipse
lies entirely within a finite region, so of course it has no common
point with the line at infinity. The two sides of the parabola
get steeper and steeper, they become more and more like two
parallel straight lines, so it is quite natural that they meet in one
and the same point at infinity. The two branches of the
hyperbola stretch away into the distance along two asymptotes
with different directions; it is likewise quite natural that these
branches reach Infinity at two distinct points.

Perhaps the reader will now agree that it would have been a
pity not to let these non-existent points speak.

Now I can pluck up courage to come back to the last of our
problems which had been temporarily shelved, namely to
quadratic equations like this one:

X2= -9

I should denote a number whose square was —9 by the sign
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v —9, if such a number existed. The trouble is that we have
not yet come across numbers whose squares are negative.
Whether we square —3 or 43, the result is always +9. We
have even no idea of what V' —1 might be. ‘I don’t know’ is
the only truthful answer. But let us suppose that, since I was
thinking very hard, I rather drawled over the ‘I’, and someone
who was taklng notes feverishly of cverythmg I was saying
thought that ¢ was perhaps the answer, i.e.
V-l=i
and so he excitedly interrupts me by saying: ‘Then I also know
what vV —9 is, it must be 3¢, or it could also be —3:" Well,
in this he is of course quite right: if V' —1 = i, then i is the
number whose square is —1,
2= —1
and so
(+3)2=3x3=92=9x(—1)=—-9
or
(—3)2=(—3) x(—=3)=92=9x(—1)=—-9
The only trouble is that this i does not exist, the whole thing is a
misunderstanding, a misprint. In actual fact we do not know
what V' —1 is.

But now that the misprint has got into the book, let us play
about with it a little, just as we did when we worked out what
v —9 was. Perhaps this non-existent element can do a thing
or two as well.

We shall see that it can do quite amazing things. The whole
of Function Theory, which is the most respectable branch of
Mathematics, is based on it. If this ¢ is to be left out, it has to
be specially stated that Real Function Theory is meant. There
is no branch of Mathematics which does not turn to this ¢ for
help, especially when something of a deep significance needs to
be expressed; even Geometry is no exception to this. The
attempts at systematic unification of apparently quite in-
dependent theorems are crowned with success thanks to i.

I can give the reader only a taste of such unifications in this
Mathematics without formulae, since ideal elements exist
entirely in virtue of their form.
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For example, if we allow the use of ¢, connexions previously
undreamed of suddenly appear between certain functions.

Who would imagine that there was any connexion between
the circular functions and the power function?

Nevertheless it can be proved, if we measure angles by the
length of the arcof a circle of unit radius drawn about the vertex,

2 Units

1

that the cosine of an angle of two units (written for short cos 2)
can be written as follows:
eZi + e—2i

2

where ¢ is the base of the natural logarithms. A similar for-
mula holds for angles of any size:

cos 2 =

e3i + e—3’L
cos 3 =
2
41 —41
et + ¢
cos 4 = 5 and so on.

How is it possible that the cosine of an angle, which is after
all the ratio of two numbers and so an honest-to-goodness real
number, can be equal to the non-existent number on the right?

This is possible only if the number on the right is also a real
number. While the operations designated on the right are
being performed, ¢ suddenly appears from some imaginary
world, throws light on the relationships, and then disappears
again. This sort of thing can occur in the games we play of
finding out a number that somebody has thought of. For
example: ‘“Think of a number, multiply it by 3, add 4 to it,
then multiply what you have by 2, and subtract from it 6 times
the number you thought of.” Here we can wait till our friend
has finished the problem, we need ask no further questions, yet
we can say: ‘The result was 8" In fact, we can write out the
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steps as follows: Let the number be X, this multiplied by 3 is
3X, adding 4 it will become 3X + 4. This must be multiplied
by 2, so we have 2 x (3X + 4); and finally we must subtract 6
times the number we thought of, and so

2 x (3X +4) — 6X

will be the result. Multiplying both terms in 3X + 4 by 2,
we shall have

6X + 8 — 6X or, written in a different order, 8 4+ 6X — 6X

but if we add 6X to 8 and then subtract 6X afterwards, surely
we shall be left with 8. The number we thought of came into
our calculations, but it disappeared again.

Out of the connexion between the circular functions and
powers it is even possible to derive relationships in which there
is no apparent trace of i. For example let us calculate the
square of cos 2 from the formula

e2l' + e—Zi
2

and to avoid the bother of fractions let us take the divisor 2
from the right over to the left as a multiplier:

2 X cos 2 =¥ 4 %

Now let us square this equation. The square of the left-hand
side is

cos 2 =

2 xcos2 x2xcos2 =2 x2 Xx (cos 2)%

(there is a good reason for pretending to forget that 2 x 2 = 4).

The right-hand side is the sum of two terms and to square it
we must first square the first term, remembering that when we
square a power we multiply the exponents:

(%) = et

To this we must add double the product of the two terms, not
forgetting that we can multiply the powers of ¢ by adding the
exponents, and that the value of the Oth power is 1:

2XFxeF =2 xHWN=2 xe®=2x1=2
Finally we must add the square of the second term:

(e7%)2 = g%
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so that the square of the right-hand side can be written as
follows:

et 2 e
or, in a different order,
e et 4+ 2
and so 2 X 2 X (cos 2)2 =¢* 4 ¢7% + 2

Now let us take one of the multipliers over to the right as a
divisor, one of the 2’s. All the terms on the right-hand side
must then be divided by 2. We can divide 2 by 2, that will be
1, and we can just indicate formally the division of the other
two terms:

eﬁ + 8_“

2><(c052)2=-——-—2———+1

But here we have come across an old friend
e!i _+_ e—(i
2

which is just the one we said was equal to cos 4. So let us re-
place it by cos 4:

2 X (cos 2)2 =cos 4 + 1

or, in a different order (since someone might think that we are
talking about the cosine of 4 + 1, i.e. the cosine of 5):

2 X (cos2)2 =1 + cos 4
Finally let us take the second 2 over to the right as a divisor:

2_l—+—cos4
- 2

This is one of the well-known trigonometrical relationships; and
there is no trace of ¢ in it. It may be quite comforting to know
that we have not made a mistake in our calculations; but this is
nothing new. But if we remember that the sum of two terms
can not only be squared, but can also be raised to any power
with the aid of the binomial theorem, then at one stroke we can
prove a whole lot of trigonometrical theorems.

I beg the reader’s pardon for the lengthy calculation in which

(cos 2)
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he needed to remember so many different rules all at once.
But I think this is unavoidable; in order to understand, the
reader needs to experience for himself at least once how this ¢
disappears from the calculations, having infused them with a
new lease of life.

But we shall see that this is not the most important part that
it plays.

It is quite natural that it should provide solutions to the in-
soluble cases of the quadratic equation, since it was really intro-
duced to deal with these situations, enabling us to extract
square roots of negative numbers. It is true that we obtain
only an ‘imaginary’ result, but, after the foregoing, perhaps the
reader will be convinced that such imaginary results are not to
be lightly cast aside. For example the solution of

(X—22=-9
is X-2=v -9
and vV —9 =3, or vV —9 = —3i. Let us now take the

subtracted 2 from the left over to the right as an added 2, and
we shall obtain the two ‘roots’ (the solutions of equations are
called roots, since often we obtain them after the extraction of
roots):

X=2+3

or X=2 -3

These are numbers consisting of a real and an imaginary part.
This strange kind of joining up of the real and of the imaginary
worlds is known as ‘complex number’. These numbers might
appear rather impossible at first sight, although their sum is
real; when we add them up the 3: and the —3¢ cancel each
other out. Moreover, it can quite easily be seen that their
product is also real.

Among the complex numbers are also to be found the real
and the purely imaginary numbers. For example 5 + 0i = 5
is real and 0 + 2¢ purely imaginary.

If we want to take the fourth root, or the sixth or the eighth
root, of a negative number, we get stuck in the same way as we
did in the case of square roots. If we raise a positive or a nega-
tive number to an even power, we are bound to get a positive
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result. For example the fourth root of —16 is neither positive
nor negative, since

(+2)*=2x2x2x2=16
and  (—2)*= (=2 x (—=2) x (—2) x(—2)

=(+4 x(+9

which is also +16. We might wonder if we now need to intro-
duce new ideal elements. It turns out, rather oddly, that this
is quite unnecessary. We can carry out all these operations
with the aid of what we already have. Moreover, it can be
proved that any equation of any degree can be solved within the
field of complex numbers. This is called the fundamental
theorem of Algebra. It does not contradict Abel’s result that
we are bound to get stuck with the solutions of equations of the
fifth degree; the fundamental theorem is proved in the sense of
‘pure existence’; it gives no method for finding any number
satisfying the equation by means of the fundamental operations
and extraction of roots.

The extraction of square roots always gives two values, a
positive and a negative one. This is why a quadratic equa-
tion always has two roots in the field of complex numbers. Or
rather, not quite always, for the equation

(X—-32=0
has only one solution, since the number whose square is zero
can only be zero itself, so that
X—-3=0

or X=3
is the only solution. The expanded form of this equation is

X?—6X49=0
We can find equations which approximate to this one more and
more, i.e. in which the numbers differ from the above 6 and 9
by less and less. Each of these will have two roots, but these
roots will get nearer and nearer to each other as the equations
become closer and closer to our one. This is why it is some-
times said that the moment these equations become exactly
identical with the equation

X2—6X+9=0
the two roots ‘coincide’.
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How many roots would an equation of the fourth degree
have? We can solve the equation

Xt=1
without the aid of .. We can raise either 41 or —1 to the
fourth power; we shall get +1, so it would appear that it has
two roots, +1 and —1. But now ¢ interrupts: ‘Oh, no! this is
quite irregular, the equation is of the fourth degree, it ought to
have four roots; here am 1. And in fact ¢ is a root, and even
—1 is a root, since
P=ixixixXxi=2x2=(—-1)x(-1)=+1

—

(=it =(=4) x (=4 x (=4 x (=)

=Zxit=(—1)x(=1)=+1

In this way ¢ tidies up the roots of all the equations. It can
be proved that within the field of complex numbers equations
have as many roots as their degree, apart from some roots
which may coincide.

Such is the service that ¢ renders Algebra.

Its greatest service, however, is reserved for Function Theory.

But in order to give the reader even a small taste of this, I
must explain the graphical representation of complex numbers.

Let us consider ¢ as a new kind of unit; the multiples of i can
be represented on a new line. The zero point of this line may
coincide with the zero point of the real line, since 0 x i = 1.
In this way the two lines can be considered as being similar to
a co-ordinate system

1 Imaginary Axis
5
2¢
i
> Real Axis
2 3...

Sz |7
321 |
-2
3

.

This suggests that the complex numbers can be represented by
means of the points of the plane, as they consist of real and



170 THE CREATIVE ROLE OF FORM

imaginary parts; the X co-ordinate will be the real part, the
Y co-ordinate the imaginary part. Below will be found the
pictures of a few complex numbers:

A

3
}J*Zi
— .
} L4
-2-2t

Complex numbers are therefore distributed not along a line but
all over a plane.

By the absolute value of a complex number is meant its dis-
tance from the zero point. This distance can be small or
large, but there are a whole lot of complex numbers, all at the
same distance from the zero point; these are situated on a circle
whose centre is at 0:

2¢f e

1 k)
“\‘ l 0 '# 2 "i

S

There is absolutely no reason why we should call one of these
smaller than the others. There can therefore be no question of
any kind of ‘less than’ or ‘greater than’ concept with complex
numbers.

Nevertheless we can easily assure ourselves that all the old
rules of manipulation have remained intact, as long as we treat
the complex numbers as ordinary numbers and i as some un-
known about which all we know is that, every time % occurs, we
can replace it by —I.
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Now let us go back to one of our previous results. We
obtained from the chocolate example that

11 ) 1 1 1
5= T10 " 100 T 1000
Here on the right-hand side every number is {% times as big as
the previous one; & is the ‘common ratio’ of the geometrical
series. Let us try to transform 11 in such a way that there is a
T in it.

+ ...

9 I 10
=9 =3

We have done quite a lot of simplifying. We know that we

can divide numerator and denominator by the same number;

let us divide here by 10, not bothering about the fact that the

division can only be indicated in the denominator:

1

2]

Ol —

This is useful because we can express 2 quite easily in terms
of {5: one whole consists of 10 tenths, and if we take away one
tenth, we are left with exactly &, so that

S _,_ L
10 10
Finally we have
1 1
10

If we replace 1} by this, we have

UMD L S S
1T~ "o 100 " 1600
10
In this form our result can be generalized. Ifinstead of {; the
common ratio of the geometrical series is for example £, then

every term is ¢ times the previous one, so that the terms of the

+...



172 THE CREATIVE ROLE OF FORM

serieswillbe 1,1 X 2 =2,2 X 2 =4,4 X 2 = £, and soon,
one after the other, and we can prove that
1 1 2 4 8
A R RE VAR
3

But we must be careful, for we have seen that not every geo-
metrical series can be summed. For example when the com-
mon ratio was 1 or —1 or any number whose absolute value is
even greater, the series could not be summed. It can be proved
that if the common ratio is nearer to zero than 1, the series is
convergent, and its sum can be expressed in the same way as in
the case of the values {; and 2. So all the common ratios for
which the series can be summed lie between —1 and +1 on
our line

. . >
.~ 4 -1 0 1 2 J

If we think of one of these numbers, without saying which
one, we can then call it X. Even without knowing what the
number is, we can say that the terms of the geometrical series
constructed from it will be

I, I1xX=X, XxX=X% X?xX=XxXxX=X5
XxX=XxXxXxX=2X4...
and that it is likewise true for this series that

L
1 —-X
This will always be true, whatever X is, provided I am careful

to choose it from the interval of numbers ranging from —1
to +1.

=1 +X+X2+X34+X+...

1
The value of 1% naturally depends on what number X

really is, so it is a function of X. It is usual to express the above
relationship by saying that we have expanded the function in a
power series, or else in an infinite series consisting of ever-in-
creasing powers of X. It is the partial sums of this series that

give a better and better approximation to the value of I l d
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As a first, rather rough approximation we can actually replace
1 . .

mby 1; 1 4+ Xis a better approximation, 1 + X + X2an

even better approximation and so on. The question arises

whether it is possible in general to expand a function in a power

series (of course we could not expect a series like the previous

one, but one in which the powers of X are multiplied by certain

numbers)? This is a question of fundamental importance in

the Theory of Functions. The function is still quite

1
1 - X
simple, its values can easily be calculated. But it has also been
possible to expand the power function as a function of the ex-

ponent in a power series; what is more, this has turned out to be

simplest when the baseise = 2:71 ... The series is as follows,
where X can be any number:
1 1 1
X _
ef =1 +X+ﬂX2+3—!X3+4—!X4+...

where—perhaps the reader will not have forgotten—
2!=1x2, 31=1x2x3 4!=1x2x3 x4
and so on.

This is a great help in the calculation of the values of %, if
we write definite numbers in place of X. It would not be very
amusing to raise e, this irrational infinite decimal, to different
powers. If X is small, 1 + X is going to be a quite good
approximation for it, and to work this out, i.e. to add a number
to 1, is really child’s play. If we require greater accuracy, we
can take a longer partial sum; in this case we have to calculate
some of the powers of the given number. For example if
X = &, itis still much easier to raise this number to the second,
third, fourth powers, than to extract the 10th root of the

]
irrational number (2:71...)%, which is after all what (2:71...)0
really means.

It is very fortunate that this expansion is true for all values
of X.

The circular functions as well as the logarithm function can
be expanded in power series, and nowadays their tables are
prepared on this basis.

These series, however, are not all convergent for all values of
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X, and great care must be exercised lest we try to replace some-
thing by a supposed approximation when there can be no
question of approximations at all. So the problem arises,
given a function, how it can be ascertained for which values of
X it may be expanded in a power series.

Let us have another look at our geometrical series. We have

stated that the expansion
% _1_X=1 +X+X2+ X+ X+

is valid in the interval between —1 and +1

10 o

| . g
Is it possible to see from =% that 1 is this limit of validity

(it will be at the same distance on the other side of 0)?
It hits you in the eye! What would happen if X stood for 1?

o1
1—-170

it is even painful to write it! Here is the perpetual prohibition,
division by 0! Even if we do not look at the series, the function
itself calls ‘Halt! at the point 1.

Does the function always give away in such a definite way the
limits to which we can go?

If we are dealing with real numbers only, this is not so.
This fact resulted in a lot of trouble with a number of functions.
It was time that ¢ intervened, and by so doing it cleared the
whole question up once and for all.

Let us take an example.

Those who are a little handy with formulae will see straight

. . . 1
away from our geometrical series that the function ——; can
1 + X?

be expanded in the following power series:
1
I 4+ X2
and this series is also convergent if and only if X lies between
—land +1.

=1 -X24+X*—-X+...
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R ——
1 0 1

Does this function give away the secret of the limits beyond
which its expansion will not be valid?
Let us write 1 for X:

1 = ! -—l'notruble
T+12 141 g notroube

Perhaps the trouble is at the other limit. Let us write —1 for X,
1 1
1+(=12 141
Now we are in a bit of a mess.
This is where i comes to the rescue: “Why don’t you write
me in for X?* Let us try:
11 1
1+ 14+(=1 0
Halt! This is a division by zero. If we think of the complex
plane, we see straight away that ¢ lies at a unit distance from the
0 point, and the fact that there is trouble with the function at
such a point indicates that it is forbidden to go beyond the unit
distance from 0

= % ; no trouble here either.

So there is some point in examining the values of a function
at complex points, not merely at the real points. And it is
quite generally true that if there is some trouble with the func-
tion at any one point, then the function cannot be expanded in
a power series at any point which is farther from 0 than the
troublesome point. So we have to find the nearest troublesome
point to the zero point in the complex plane. This is as far as
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the circle will reach inside which the function can still be
expanded in a power series.

X Trouble T Imaginary Axis
X Trouble

Trouble

Trouble
2 Real Axis

In this way we obtain a circle inside which the series will be
convergent, and perhaps also at some points on its circumfer-
ence, but outside which it certainly will not be. Such a circle
will always cut an interval about the zero point out of the real
axis, shown by a thick line on the figure.

So ¢ has come along again, put everything in order, and, if we
wish it, can discreetly disappear. We may restrict ourselves to
this real interval of numbers which was exactly determined by
it. But the bewitched mathematician will not let it go now.
If it can do all these things, it cannot really be called non-
existent. It is worth while to explore the Theory of Complex
Functions, this ‘World created out of nothing’, which is much
more orderly than the real world.



16.  Some workshop secrets

AFTER recovering from the immediate effects of standing face
to face with a masterpiece, it is natural to begin to wonder about
more mundane things; one might wish to know how the master-
piece came into existence, of what its essentially human element
might consist, the detailed problems of the worker, the sweat of
his brow. It would in short be interesting to have a look inside
the workshop.

Let us come back from our imaginary world and see if we
can discover some of the mathematician’s workshop secrets. I
mean the detailed, day-to-day work, which I really wanted to
spare the reader, but which I cannot altogether hide from him.
The writer who started me off on this book was actually curious
to know about the differential coefficient, and the differential
coefficient certainly belongs to the mathematician’s technical
store. Even though it is not as brilliantly alluring a subject as
that we have already touched upon, its importance is extra-
ordinarily great; there is never a masterpiece without a lot of
fiddling detail.

We have emphasized from the beginning that the concept of
function is the backbone of the whole of Mathematics, and it is
the associated curve which gives us a picture of the function.
But by the nature of things this picture is bound to be imperfect.
We have constructed the curve out of straight segments and
tried to smooth them out by using more and more of them, but
the pencilled segments have already coalesced after the first few
steps in the smoothing process; a polygon with 16 sides is hardly
distinguishable from a circle when we draw it. Nobody will
believe that we can possibly derive serious relationships con-
cerning our functions from such rough pictures. We need
more of a precision instrument, which will register small varia-
tions, however fine; an instrument which can follow the be-
haviour of a function to any desired degree of accuracy. The
differential co-efficient is just such a precision instrument.

Let us begin with the picture.

When we tried to obtain a picture of the parabola, we said

177
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that both its parts become steeper and steeper. But how is it
possible to speak about the direction of a smooth curve? We
know what is meant by the direction of a straight line, since we
can check its rise at any of its points; we can be sure about it: it
will never deviate from a direction once assumed. But the
curve is a curve just because it changes its direction. If we get
hold of it at one of its points, we may well ask: ‘What is your
direction just here?’

But the curve is smooth and slips out of our hands without
giving any definite answer. Somehow we still feel that the
curve has some sort of definite direction even at this point; it was
not meaningless talk to talk about the steepness of the parabola.

Let us run our film back to the point where our curve was not
yet so smooth. Let us choose one of its definite points on a
picture of the curve in this state:

At the point indicated there was still an ‘elbow’. Here the
curve had not yet any definite direction, because before the
point its direction was like this:

and after the point it was like this:

/

and so at the point itself there was a change of direction in our




SOME WORKSHOP SECRETS 179

curve. Now let us turn the film forward to where we have
taken several intermediate points:

Here the elbow is not quite so acute:

T~~—

and the two directions that meet at our point hardly differ from
one another.

We cannot go much farther by drawing, i.e. we cannot fol-
low what will happen to the curve if we put in more intermediate
points, but everyone can imagine that the elbow will get
straighter and straighter, and the direction before the point will
differ less and less from the direction after the point. By the
direction of the curve at our point we ought to understand the
common direction to which each side of the elbow approxi-
mates more and more as the elbow itself gets straighter and
straighter.

When we are satisfied that these two directions approximate
to the same common direction, then it will be sufficient to deal
with one side only.

Let us take, for example, the segments after our point. We
can see their directions better if we make them longer:

In this way we get different secants of the curve one after the
other. As we put in more points, the nearest point gets nearer
and nearer to our point, and smaller and smaller portions of the
secant will fall inside the curve. We can observe what happens
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quite clearly if we replace the secant by a ruler and keep on
turning it outwards while making sure that one of its points is
permanently fixed over our point:

There will be a moment when the neighbouring point coincides
exactly with our point, and the ruler will come away from the

curve altogether.

The secant has now become a tangent:

N

We feel that just at this moment we have caught the direction
to which the upper part of the elbow approximates. If we
approached the curve from the outside with a ruler placed
along this direction, then it would reach the curve just at our

point and
4 \/
m"’"’"’"""i,

=——
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for one moment it would cling to the curve; if the two cling
together, they have the same direction. We are in the lucky
position of not having to examine this direction in the extremely
small place where they cling together; the straight line pre-
serves the memory of this moment for ever, its direction re-
mains the same all the time.

Now we know what we should mean by the direction of a
curve at one of its points: it is the direction of the tangent
drawn to the curve at the point in question. This can be com-
pletely characterized by the ratio by means of which we express
the rise of the slope. This will be the differential coefficient.

We have already come across the notion of tangent once
before. We met it when we obtained the result in a purely
algebraic way that a conic section may have 0, 1 or 2 points in
common with a straight line, and we said that if they have only
one point in common the straight line touches the conic section.
This is true enough of conic sections, but in general the decisive
property of a tangent is not that the straight line and the curve
in question have only one common point. For example we
may have a curve with an elbow left in it:

the straight line passing through it cannot really be considered a

tangent, even though it has only one point in common with the

curve. Itis quite obvious that this straight line cannot indicate

the direction of the curve. The curve has no ascertainable

direction at this point, and our straight line does not even indi-

cate the left- or the right-hand direction of the curve there.
On the other hand this straight line

has two points in common with the curve, yet we still have to

regard it as a tangent at the first point, where it clings to the curve
so nicely.
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We might think that the decisive property would be that tan-
gents touch and secants intersect, but even this is wrong.
Take for example the straight line below

which manages to intersect the curve at the very moment when
it clings to it. In spite of intersecting it, it clings beautifully to
the lower as well as to the upper part and there is no reason
why we should not regard it as a tangent.

The only decisive condition is whether we reach the straight
line in question at the moment when the ever-approaching
secants, passing through neighbouring points, leave the curve.
This is so in the last two cases, and the reader is advised to
verify this by using a ruler turning about a point.

Accordingly, if we wish to determine the direction of a tan-
gent, we cannot in general hope to avoid detailed work with the
secants getting closer and closer to the tangent.

Of course it must not be thought that this use of rulers is an
accurate method. If we need to establish some relationship in
all seriousness in connexion with the direction of a curve, we
should not dare to come forward with a result obtained by the
mere turning of a ruler. We cannot expect a precision instru-
ment to be derived from drawing; this can come only from
calculations.*

Let us begin with a definite example. We shall try to follow
the behaviour of the function given by the equation

Y = X2

We already know that its picture is a parabola. Let us try to
decide with complete accuracy what the direction of its tangent
is at the point whose X co-ordinate is 1.

At this point the ¥ co-ordinate is

Yy =12=1

* Those who are not curious to know about the differential and integral calculus
and tend to get bored with fiddling details, may, as an exception, omit the re-
mainder of this chapter as well as the next chapter.
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so that our parabola passes through the point (1, 1). We are
looking for the direction of the tangent drawn at the point (1, 1).
The picture, or graph, of the curve is an old friend:

AY

41

>X

We know what to do: we must choose points on the curve which
are progressively nearer and nearer to the point (1, 1). We
must then draw secants through these points and the point (1, 1)
respectively and determine the directions of these secants, for
example in the form of quotients in terms of which we expressed
the gradient of a railway line. Then we must find out to what
direction these directions approximate as the secants approach
the moment when they leave the curve.

We shall choose the neighbouring points in the following
way: first we go to the right of the point (1, 1) by one unit, then
by onlyone-tenth of a unit, then by one-hundredth, then by one-
thousandth of a unit, and so on. So the X co-ordinates of the
neighbouring points will be as follows:

1 +1=2,11,1.01, 1-001, ...

We shall need to calculate the ¥ co-ordinates of these points as
well, and since ¥ = X2, this will be done by squaring. This
will be very easy, since 22 is of course 4, and we may perhaps
still remember the second row in the Pascal Triangle (apart
from the intervening zeros and decimal points, though actually
we have had those too before now), so that

1-12 = 1-21, 1-012 = 1-0201, 1-001% = 1.002001, . . .

There is just one more thing that needs to be said before we can
go ahead, in order not to be worried by little details during
more important considerations. We have done quite a lot of
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simplifying, so we now know that we can divide the numerator
and the denominator of a fraction by one and the same number.
If, for example, we simplify by 2 as follows:

6 3
8 4
we can also have, in reverse:
3_6
4 8

We can therefore also multiply the numerator and the denomin-
ator by 2, or by any other number. The form of the fraction
thus becomes rather less simple, but we can make good use of
this new knowledge if there are decimals in the fraction, for
example if we are faced with a disagreeable kind of division
such as

0-21

0-1

We know, of course, that in order to multiply a decimal by 10,
we merely need to shift the decimal point one place to the right;
it is unnecessary to write zeros in front of whole numbers, so
multiplying the numerator and the denominator here by 10,
we get

E _21 2.1

01 1
In the same way the fraction

0-0201
0-01
0-02 01

< 2:01

becomes W—“ = '—l = 2-01

-

if we multiply the numerator and the denominator by 100, and
SO on.

Now we are in a position to begin. The first neighbouring
number has 2 for its X co-ordinate, its ¥ co-ordinate is 2% = 4.
Let us draw the first secant through the points (1, 1) and (2, 4)
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AY

(2,4)

1

4,1 }

0/12”‘

Now we must determine the direction of this secant. It is clear
that we have moved one unit to the right from the point (1, 1),
so this is the difference between the X co-ordinates. We have
moved upwards 3 units, since this is the amount by which the ¥
co-ordinate of the second point has risen above our point. This
is the difference between the Y co-ordinates. It can be seen on
the diagram, in thick lines:

AY
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so the slope of the first secant is measured by 3 : 1, i.e.

%— =3=2+1
(there is a good reason why we should write it like this).

Now let us take the next neighbouring point. Here X = 1-1,
and we have already calculated that ¥ = 1-1* = 1-21, so now
we are dealing with the point (1-1, 1-21). If we try to draw a
secant through this point and our point (the rise is again in-
dicated by means of thick lines), parts of the figure are so small,
they almost coalesce:

AS

(1, 121)
@)

0 -~
7114 >X

Let us put the relevant bit of the drawing under a magnifying
glass:
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How far have we moved to the right? By 0-1, since this is the
difference between the X co-ordinates. By how much has the
Y co-ordinate of the second point risen above our point? By as
much as the difference between the two ¥ co-ordinates, i.e. by

1.21 — 1 =021
units. So the second secant has a slope which is measured by
0-21: 0-1
i.e. 021
0-1
which, as we have seen, is the same as
1
21 =2+ 10

If we go on to the next neighbouring point for which X = 0-01
and, as we have already found, ¥ = 1-01* = 1-0201, we should
need a much more powerful magnifying glass. But perhaps
we may now dispense with drawing, since, as we have noticed,
we always have to divide the difference of the ¥ co-ordinates by
the difference of the X co-ordinates. The Y co-ordinates at
this point and at the original point differ by

1.0201 — 1 = 0-0201
and the X co-ordinates of these points differ by

1.01 — 1 =001
so the slope of the third secant is measured by
0-0201 : 0-01
i.e. by 00201
0-01
which we have already seen is equal to
1
2:01 =2 + 100

We can go on in this way with the result that the quotients of
the Y differences and the X differences (for short, the ‘difference
quotients’) of the secants, as they come closer and closer to the
starting point on the curve, have the values

l

24+1, 2 4+ — 1000°

respectively,

» 2 4+ ey 2 4

l 1
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We know that the sequence
11 1
> 10’ 100" 1000°
converges to zero with the precision of the ‘chocolate example’.*

The number to which the above slopes approximate more and
more is therefore exactly

1

2

with one hundred per cent precision. Where the secant just
leaves the curve, it becomes the tangent, so that the slope of
the tangent drawn to the parabola at its point (1, 1) is 2, i.e. %.
On this basis we can draw the tangent:

AY

oV

and, if we construct the parabola near it with the aid of a num-
ber of intermediate values, we shall have the definite feeling
that this straight line touches the parabola:

AY

[/

It appears that, while drawing our pictures, a completely
accurate method of computing the direction of the tangent has
fallen into our hands as a by-product; we must choose another
point on the curve in the vicinity of our point, then we must
divide the difference of the Y co-ordinates of these points by the

* See pages 105-106.
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difference of the corresponding X co-ordinates, and find out to
what the quotients so obtained approximate, as.the neighbour-
ing point approaches our point.

The quotients of such differences are called the difference
quotients and the definite value to which the difference quotients
approximate is called the differential quotient, or differential
coefficient. Differentiation is therefore what I said it would
be: a precise process for determining the tangents of a smooth
curve, as well as for examining the behaviour of the entire curve.

The procedure can be applied at other points too; if the
curve is smooth, it will have a definite direction at every one of
its points. At the point (2, 4) we feel that the parabola is
steeper, and if we calculate the difference quotients correspond-
ing to the points

X=2+1, 21, 201, 2.001, ...
we obtain

1 1 1
4+1,4+'1—0‘,4+m,4+m)’“'

respectively, and 4 is the number, with absolute accuracy, to
which these approximate more and more. Therefore the slope
of the tangent at the point (2, 4) is 4 = 4, and this is in fact
more than the slope of the tangent drawn at the point (1, 1),
which was 2 = 2.

It can be shown in just the same way that the slope of the
tangent corresponding to the point X = 3 is 6, the slope of the
tangent corresponding to the point X = 4 is 8; in general the
value of the slope at every point of the parabola is twice
the value of the X co-ordinate of the point in question. This is
expressed by saying that the differential coefficient of the
function

Y = X?

for any arbitrary value of X is

2X
And this does in fact give us the clue to the behaviour of the
whole parabola.

To begin with something definite, let us note from the equa-
tion of the function that the curve passes through the zero
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point, since if X = 0, then ¥ = X2 = 0* = 0. The rest of the
information is provided by the differential coefficient.

Let X for example be a negative number. Its double 2X is
then likewise negative, so that the slope of the tangent is nega-
tive; at a point like this the tangent drops downwards and with
it the curve that clings toit. If, on the other hand, X is positive,
then its double is likewise positive and the curve rises upwards
atsuch a point. If X = 0 then its double 2.Xis also 0, so that at
the zero point the slope of its tangent is zero. A zero slope is of
course not a slope, i.e. it is a horizontal path; the path here is
the X axis itself. As the absolute value of X increases, its
double increases with it more and more and with it the steep-
ness of the tangent.

To sum up, we obtain the following picture of the curve: to
the left of the zero point the slope falls away, at the zero point
it becomes horizontal for a moment and clings to the X axis, and
from here onwards it goes on rising. It follows that its lowest
point is at the zero point. As we go farther away from the zero
point, whether to the right or to the left, both sides of the curve
will get steeper. Of course we already know all this about the
parabola, but in the case of a lesser-known function the differ-
ential coefficient would have provided all this information.

The knowledge of the differential coefficient may increase the
exactness of our existing knowledge about the parabola. We
saw when we drew the first few charts that the picture of the
multiplication function

2X

was a straight line (this was to be expected, since it is linear);
therefore this function increases at an even rate. It follows
that the steepness of each side of the parabola increases, not
capriciously or with greater intensity, but quite gradually.

It may happen that the parabola is shifted from its usual place

y

> X
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to some other positions, for example into positions like these:

A

and it then becomes a problem to decide where its lowest or
highest point might be. The differential coefficient gives an
immediate answer to this question, since the tangent of the
parabola will still be horizontal at such points.

The search for such lowest or highest points, or, in the
language of Function Theory, the determination of the maxima
and the minima of functions, can have a great number of
practical applications.

For example, if we want to make a box out of a square piece
of material by cutting out small squares from the four corners
and folding the remaining pieces upwards,

the question arises what size squares must we cut out in order to
obtain a box of maximum volume?

We do not know the length of the side of the small square, so
let us call it X. It is quite an easy matter to determine in what
way the volume of the box depends on the choice of X. Itis
obvious that if X is small, i.e. if we cut out only a little, we shall
get a low, wide box; if we cut away larger squares, then we
shall get a smaller base and the box will be taller but narrower.
So we must not make X either too small or too big, the right
value must lie somewhere in between. The differential co-
efficient establishes with perfect accuracy that we shall obtain
a box of maximum volume if the side of the small square is
exactly 1 of the side of the large square.

A heavy stone is flying through the air; we know the greatest
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height it will reach, since the differential coefficient tells us
exactly the highest point of a projectile.

The applications are too numerous to be counted.

Let us examine a case where the curve of the function is not
such an old friend as the parabola. In exactly the same way,
by examining the difference quotients, it can be established that
the function given by the equation

Y =X°
has a tangent at each point whose slope is exactly 3 times the
square of the X co-ordinate of the point, i.e. the differential
coefficient of the function is
3Xx*?

What information can we gather from this?

In order to have a concrete starting point, we observe from
the equation of the function itself that

ifX=0thenY=0"=0

and so the curve passes through the zero point.

Now let us see what the differential coefficient has to say.

The first thing that strikes us is that X occurs in it squared
(its own picture is a parabola). We can draw two conclusions
from this: one is that in the case of the curve of ¥ = X there
can be no question of a uniform growth of its steepness; this
steepness becomes more and more precipitous as we move away
fromthezeropoint. Theotherconclusionisthat whether we are
looking at a positive or at a negative X co-ordinate, X2 is always
going to be positive, so that the tangent, and, with it, the curve,
must be a rising curve both on the left and on the right of the
zero point. Since the curve passes through the zero point, the
only way it can be a rising one before the zero point is by
remaining below zero, below the X axis. After the zero point
the curve rises above this height, so it must cut the X axis at the
zero point. But

ifX =0,then3X2 =3 x0*=3 x0=0

so the slope of the tangent at the zero point is itself zero, and the
tangent here must be horizontal. The horizontal line passing
through the zero point is, of course, again the X axis. The X
axis therefore touches the curve and at the same time cuts it at
the zero point. Approaching this point from the left the slope
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becomes gentler, it has a moment’s rest at the actual point, and
then again gathers fresh strength and begins to rise, becoming
steep very rapidly.

On the basis of the above the picture we have formed of the
curve is something like this:

AV

> X
0
Now let us represent the function
Y =X8
on a graph,
IfX= OthenY = 0= 0
wA= lthenY = P= 1
s A= 2then? = 2= 8
wX=—1thenV = (—-1%= —1
w X=—2thenY = (—-23=—38
and, taking a few intermediate values:
1 IV 1 1 1 1
IfX = = Y = — —_— — — =
5 then (2) 5 X3%X37g
1 I\ 1
X=—_ = —=—} = — =
’ 2 then Y ( 2) 3

1 I\? 1 1 1 1
X= —_ i - = — —_— —_— = —
. 4thc:nY (4) 3 ><4 ><4 64

For the representation of ¢, a pencilled point would come too
high; it appears from our drawing that the curve already clings
to the X axis at this point (a more thorough examination of the
differential coefficient would have predicted this closer form of
clinging). We have seen that at the points
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we must measure

0o, & 1, 8

8
units upwards, and at the points
1
-3 -1, -2
we must measure
1
-3 -1, —8
units downwards:
Ay
B
.z -’-{ ’ - -
Tz
..B 3

This is in fact the picture that the differential coefficient pre-
dicted. There cannot be any freak variation at the intermediate
points either, as the differential coefficient would have pre-
dicted these too. It goes without saying that it does not only
predict the approximate picture, but determines the direction
of the curve with perfect accuracy at every one of its points.

Itis small wonder that mathematicians have taken the trouble
to determine the differential coefficients of all the functions they
are likely to come across, and that they have worked with these
such a lot that they know them all by heart.
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Whenever a physicist fetches a function out of his mathe-
matical store-cupboard, he will always find with it, as one of the
most important instructions for use, the differential coefficient
of the function, thoughtfully provided by mathematicians.



17. ‘Many small make a great’

WE have done so many multiplications in our lives that we
know our tables completely by heart, and so in the case of the
inverse operation we immediately recognize 5 as the number
which if we multiply by 4 will give us 20. Mathematicians
know the differential coefficients of all the usual functions by
heart, and recognize them when they see them. If somebody
should mention the function 2X, even we should feel that it
is somehow familiar. Where did we come across it? Of
course, it was the differential coefficient of the function X2. So
we can speak about the inversion of an operation here too.
Given a function, we might ask if there is another function of
which our function is the differential coefficient, and, if there is
one, what function isit? If there is one, it is called the integral,
for example the integral of 2.X is the function X% There are
tricks here, too, which facilitate the finding of the function we
are looking for, in the same sort of way as in the case of equa-
tions, if we do not recognize a function straight away as a dif-
ferential coefficient. Let us take, for example, X* as our given
function. This may remind us to some extent of the function
3X?% which we already know is the differential coefficient of the
function given by the equation ¥ = X% Our X% whatever X
is, is just one-third of 3X2. Perhaps it will be the differential
coefficient of one-third of X3, i.e. of the function
X3
Y= 3

It is quite easy to show that this is in fact the case.

In most cases, unfortunately, tricks are of no avail. There is
a need for more general methods. And there is something a
little wrong with the above guessing method. The differential
coefficient does not tell us that for example the curve of the
function ¥ = X? passes through the 0 point. We had to read
this off the equation of the function itself at the time. How can
we imagine, then, that the differential coefficient is sufficient for

the complete determination of the curve?
196
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In fact it is not quite enough, as we can see in a moment.
Let us shift our parabola upwards by one unit:

> X

It is obvious that the shape of the curve is not affected by a mere
shift. Its steepness is the same at every one of its points, so that
the differential coefficient is still the same. On the other hand,
the equation of the curve must have been altered, since the ¥V
co-ordinate of every point has become 1 unit more than it was
before. Therefore any Y which was previously X2 has now
become X? + 1, so the equation of the shifted parabola is

Y=X2+1

From the variation of the direction alone, i.e. from the dif-
ferential coefficient, it is not possible to find out whether we
meant this function or the other one, or any of the innumerable
parabolas which we might have obtained by shifting our original
parabola up and down. To this extent our problem remains
indeterminate.

If, on the other hand, we give one single point of the required
curve, then the problem becomes determinate. If, for example,
we say that as an ‘initial value’ we require the curve to pass
through the zero point, then from our differential coefficient
we can get only our original parabola. This will be made
clear from what follows.

We shall show the general method, using the parabola. Let
us suppose that we do not recognize the integral of the function
2X. Let us try to determine the curve about which all we
know is that it passes through the 0 point, and that the slope of its
tangent at any point is 2.X.
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Let us start with a drawing, though here again our eventual
aim will be to find a precise method.

Let us subdivide the X axis at first into unit intervals, and at
the points of subdivision let us draw vertical lines for the un-
known Y co-ordinates.

AY

b3 2 g # s w5 e X

It is only at the zero point that we know that Y is also zero.
Let us start drawing the curve here, only approximately of
course.

The basic idea behind the drawing must be that the tangent
clings to the curve for a little while, so that for a short distance
from the point of contact it may still be used as a reasonable
substitute for the curve. We shall assume such a short distance
to be the distance between two consecutive verticals on our
drawing. At first we draw the tangent corresponding to the 0
point, and we may assume that this tangent will represent our
curve up to +1 on the right and up to —1 on the left. The
points reached in this way we can regard as the points on the
curve corresponding to X = + 1 or to X = - 1 respectively,
and starting from these we can draw the corresponding tangents
up as far as the next vertical lines. 'The points we thus obtain
we can consider as the points on the curve corresponding to
X = +2and X = — 2 respectively. We can then draw the
tangents at these points up as far as the next vertical lines and
so on. The tangents must, of course, be drawn in accordance
with the given slope. At the 0 point this is

2X=2x0=0
at the point X =1

2X=2x1=2
and as we know that the product function 2X increases uni-
formly at successive points after X = 1 the slopes will be 4, 6,
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8, . . .; similarly from O towards the left they will be —2, —4,
—6, ... Accordingly the slope of the tangent at the points
0[1]2] —1] —2 will be respectively

0 2 4 -2 —4

Of course we know that a slope of 2, i.e. of 2, means that, if we
go one unit to the right, we must rise by 2 units, and similarly
that a slope of —2 means that, if we go one unit to the left, we
rise by 2 units. So, for example, we measure the same amount
upwards at the points X = + 1 and X = — 1, and it follows that
the drawing is symmetrical. It is enough to draw the right-
hand side of the drawing accurately, since we can then copy it
for the left-hand side.

Now we can start drawing. At the 0 point the value 0 of the
slope tells us that a zero slope means a horizontal path; we pro-
ceed horizontally as far as the point 1, then we proceed from
there with a slope of 2 = 2 as far as the next vertical, from here
our path will have a slope of 4 = 4 to carry us farther:

p

> X

5 2 -1 ¢

We obtain a somewhat rough figure of the parabola.

Let us check the accuracy of our result by calculation. Let
us restrict ourselves to the point X = 3 and calculate the Y co-
ordinate of the curve Y = X? at this point.

IfX=3then Y =3*=9
Of course we are not yet supposed to know that we are dealing
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with the function ¥ = X?, but since we nevertheless do secretly
know it, we can use it as our measure. We shall see to what
extent our bent line has a Y co-ordinate different from 9 at
X=3.

We see from our drawing that we have reached the Y co-
ordinate in question by going from the zero point and adding
up all the rises in between the vertical lines, so that for us

Y=0+2+4=6=9-3

and 3 is quite a big difference. Let us take more points of sub-
division by drawing vertical lines at intervals of 4 a unit:

| Y

UM

Fd-2-14-1-¢ 0| § 1243

The slope of the tangent at the 0 point is still zero (the tangent
is horizontal)., At the point X = }

1
2X =2 x5=1
2 2
and in the equal intervals the slope increases uniformly, so that
it will be always 1 more at the successive points of subdivision.
The slope of the tangent at the points

0[311[13]2]23] —3] —1| —13| —2| —2} will be respectively
012345 —1-2 -3 —4 —5

There is just one thing we must be careful about before we
begin to draw this. At the 0 point the slope is 0 and from here
we must proceed horizontally as far as the point 3. But at the
point } the slope is 1, i.e. 1, so that from here we ought to go 1
unit to the right and 1 unit upwards. Now we did not draw
our vertical lines at every }-unit with the idea of proceeding
by whole units to the right as before. We must realize that if
a railway line has slope 1, then walking alongside it on a hori-
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zontal path for 1 yard, the line would rise 1 yard, and that if we
walked 1 a yard alongside it on the horizontal path the line

would rise 1 a yard:
A

i1
In the same way, if the railway line has slope 2 = 2, then if we
walk } a yard beside it horizontally instead of 1
yard, then it will rise not by 2 yards but by 1 yard.
Therefore, if we proceed by }-units, we have to
take } of the slopes just calculated as representing 2
the amounts of actual rise. For example, starting
from 0 and proceeding towards the right at the 31
points

0 3 1 13 2 2%
we do not rise

0 1 2 3 4 5
but

0 ix1=13% $x2=1}x3=14 Ix4=2 Ix5=2}
Now we can prepare our drawing without any further difficulty.

by

~1 R
\LT'K 12 2§ 3 > X




202 THE CREATIVE ROLE OF FORM

This looks as though it is going to smooth out into a parabola;
it merely exaggerates the clinging to the X axis.

Let us again calculate the Y co-ordinate corresponding to
the point X = 3.

This time it is not added up from the slopes, but from half of
these slopes. It is better not to write these in their computed
forms

0 3 1 13 2 2%
but rather in the forms
P x0 $x1 3 x2 + x3 x4 3 x5

so that we have
Y=3x0+3x1+3x2+3x3+32x4+%x5

Since 3 x 0 = 0, we can leave this one out.
If we have to take half of every term, it is simpler to add the
terms first and then take half of the result

Y=(142+4+3+4+44+5) x%
In this way we need only to add whole numbers in the brackets.
Even these can be added up more neatly by the method of my
pupil Susie. We can take their ‘middle’, i.e. 3, 5 times, this is
15; this must now be taken 1 times, that will be 15 If we
added 3 more to 15, we should get the number 18, which is
divisible by 9, so that finally we have
15 18 3 3

Y=9=97"3"%"3
The corresponding Y co-ordinate of the previous curve differed
from 9 by 3; this one only differs by 2.

While our bent line gradually gets smoothed out (the process
can give us only approximate results on account of the im-
perfect tools used) we obtain as a by-product, a computational
procedure, which can be indefinitely perfected, for calculating
the Y co-ordinate corresponding to the point X =3. It
should be obvious that if we go on to subdivisions of 1 of a unit,
the slope at the 0 point will still be 0, at the point X = 1

12 ]
2X =2 X 4= 4% simplifying: 3

and so the slope will increase always by  in the equal intervals,
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so the slope of the tangent will be, starting from the point 0,

. 112 113 11.1].3 11.1],.3

t =3 T = <3| s —s3| k=3 1—» =3 4= 4

at the points 0, ¥31=3 4,1, 14 12‘14 2, 24|22 24
0 1 2 34 56 78 910 11

? 2 22 22 272 22 72
In this case we want to proceed to the right in } units, so that
only a quarter of these figures will be the actual amounts of rise
at the corresponding points, for if we walk only one-quarter of
the distance horizontally alongside a sloping railway line, then
the railway line also onlyrises one-quarter of the amount. Our

Y will therefore be compounded out of these quarters, until we
reach the point X = 3, i.e.

yolyel o2 1.3 1 4 1 5
S3 X3ty XgTiXgtiXa Xy
Ll 17 18 19 1 1o 1 1
g Xgta Xty XgtgXg T Xyt
As};x 0 = 0it can be left out.

Here every term has to be taken 1 times, in other words we
must divide by 4. Apart from this the denominator of each
fraction indicates a further division by 2.  We know that, if we
divide something by 4 and then by 2, we shall get the same
amount as if we divide straight away by 4 x 2 = 8. Apart
from this, the terms to be divided can be added first and the
result then divided by 8. We therefore have

Y=(1+2+3+4+5+6+7+8+9+10+11)x%

With so many terms, we are really lucky in having Susie’s
method at our disposal. We need only to take the middle one
of the terms, i.e. 6, and multiply this by 11, this will be 66; but
we must divide by 8, that will be £8. We could add another
6 to 66 in order to get 72, which is a number divisible by 9, so
that finally

66 72 6 6

Y=3=-5"8=%"3
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but & can be simplified by 2, so that

3

In this refinement only ¢ are missing from the 9.

This result was obtained without any recourse to drawing, but
we still had to think what would happen if we did do the draw-
ing. We can continue the process without even thinking about
any drawing. The next step would be the subdivision of the
distance between 0 and 3 into }ths of a unit. At the successive
points of subdivision the slope would increase by steps of amount

1 2 1

so at these points the slopes would be
0,1 2 3 4 5

3 42 4> 43 43 4y * * °
We should have to multiply these numbers in turn by the length
1 of the intervals and then we should have to add up these num-
bers as far as the point X = 3. The result would be

3
Y=9—3

It can easily be seen that this can be continued indefinitely.
The sequence
3, %7 %9 %’ LR

converges to 0 (if we divided 3 cakes among more and more
people, each person would get a more and more negligible
amount), so that 9 is the number, with perfect accuracy, which is
being approximated by the Y co-ordinates corresponding to
X = 3 on our curves as they get more and more smoothed out;
9, in other symbols 3%, i.e. the value of the function ¥ = X? at
the point X = 3.

It can be proved in the same way that the ¥ co-ordinates of
our curves at X = 1 converge to 1 = 1%, at X = 2 to 4 = 2%,
at X = 4 to 16 = 4% in general at any point the ¥ co-ordinates
converge to the square of the X co-ordinate in question, i.e. to
X% so that our bent lines will finally get smoothed out into the
parabola

Y = X?
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Or in the language of functions: if just one initial value is given,
it is possible to reconstruct from it the function

2X

namely that function of which it is the differential coefficient.

During our labours we actually came across the required
precise method for doing this. The X axis must be subdivided
into intervals from the given point as far as the point to be
examined (in our case from 0 to 3), the length of the interval
must each time be multiplied by the value of the function at the
point of subdivision, and all these products must be added up.
In this way we get ‘approximate integral sums’. If we take the
points of subdivision more and more densely over the relevant
interval, these sums converge to the value of the integral at the
point examined. It must be admitted that on the whole this is
rather an awkward process. But, as we have already seen,
inverse operations tend to be bitter operations.

It is actually possible to represent the approximate sums by
means of areas. Each term of every approximate sum is a
product: we multiply the length of the interval by the value of
the function at some point or other. But we know by now that
we can represent a product by means of the area of a rectangle
whose adjacent sides are the lengths of the two factors. In this
way every term of the approximate sum gives us a rectangle.
We can represent the whole sum by simply putting all these
rectangles next to one another.

Let us have a try. Our first sum was

0+2+4

in which we cannot see the products, since in this case the length
of the intervals was one unit; so let us write our sum in the
following form:

1 x0+1x2+1x4
Now we can represent it:

(1 x 0 can be considered as a rect-
angle reaching from 0 to 1 and of
0 height; this of course is just a
horizontal segment.)

-
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Our second approximate sum was this:
P x0+3x1+34x2+3x3+3x4+%x%x5
The picture of this will be

N

7
%
/
/

/

Our third approximate sum had 12 terms:

1><0+ X 1x2+1x3+—x—+ x5+
3 4 2“’" 513 %y 2 9

r e o7 18, 19 1 1o 1 11
TgXgtgXgTgXgTgXgtg>y 73X

This can easily be represented by means of }-units. As there
really is no room now for writing out the numbers fully, the
drawing will have to suffice:

Ay 4

p .

GOII S SIS IS ISP
OGSO IS IS IS
OIS TGS IS ISP TIIII

It will be seen that these ‘staircases’ approximate more and
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more to the area of a right-angled triangle. I am thinking of
the triangle that lies below the dotted line in all the figures.
Perhaps the reader will have noticed that this straight line is the
same in all the figures. From the first figure we can read off
quite easily that its slope is

2:1

and we can check on the other figures that it is just the same in
each. Only a short time ago I suggested that the reader might
be able to recognize it. The straight line passing through the
0 point whose slope is 2 : 1 is the straight line whose equation is

Y =2X

But this is just the function that we are given! This straight
line is the exact picture of our function. So the approximate
sums actually approximate more and more accurately to the
area below the picture of the curve. What a pity that we did
not know this before, since it is very easy to calculate the area of
a right-angled triangle; we have only to multiply the two sides
adjacent to the right angle and take half of this. The hori-
zontal adjacent side is the part stretching as far as X = 3, i.e.
its length is 3 units. Let us calculate the vertical one:

ifX=3thenY =2X=2x3=6

so the other side adjacent to the right angle is 6 units:

AY
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The area of the triangle is therefore

3 x6 18 9 uni
s N units
and this agrees with the result obtained much more laboriously
just now.

In this way the calculation of areas can help us to calculate
integrals. This, in fact, is not just a matter of chance. As
long as the function we are dealing with is not too wild, like the
Dirichlet function which goes on jumping about between 0 and
1 all the time (in which case the approximate integral sums
have no intention whatever of converging), i.e. in the case of
the more normal type of function, the approximate sums can
always be represented by means of areas of such ‘staircases’:

the curve
of the
given
function

—> X
starting point point to be
examined
and these approximate to the area lying below the curve cor-
responding to the function with the accuracy of the ‘chocolate
example’, from the initial point to the point under examination,
as long as we make the subdivisions indefinitely more and more
dense. In other words: the area below the curve and the
integral are one and the same concept, only expressed differently.

The roles are often reversed and the calculation of areas can
often be made much easier by the calculation of integrals.

We can calculate the area of a right-angled triangle, and we
know that other triangles can be split into right-angled triangles
and all polygons can be split into triangles. We see that the
calculation of the areas of figures bounded by straight lines is
not a problem. We have also somehow reconciled ourselves to
calculating the area of a circle by means of stuffing a large
number of very thin triangles inside it. But what about
calculating in general the area bounded by a curve?
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Such areas can be cut up by means of straight lines, and each
piece can then be fitted with its straight side along the X axis:

N 2N
U

7 >

We can then calculate the area of each piece separately. The
calculation of the area lying under such a curve is a problem
in the integral calculus. It may happen that we hit upon an
integral that can readily be guessed, and in such cases we can
say in a few moments what the corresponding area must be.

For example we have found out that the integral of X2 is
3

. X
the function Y = 3 or rather, more accurately, that, out of all

the possible functions, this is the one that passes through the 0

point, because
3 3

X
i X = h —_ = — ==
if 0 then 3 3 0
From this we can calculate in a few moments the area under
the parabola
Y = X?
For example, as far as the point X = 1 this is equal to the value
of the integral at X = 1, i.e.
131 pr
3 =3 units of area
The shaded area, which clearly
is only a part of a unit square, is
exactly 1 of this unit square.
Perhaps it may not be considered )
very interesting to know the area > X
outside a parabola. This may be so,
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but from our result we can calculate the area between the two
branches of our parabola to any desired height. For example,
if the third of the above unit square is outside, 2 of it will be
inside, and if we add to this its mirror-image on the left, then
the shaded area in the figure below will have an area of

2 4 3 1 1 .
2><§—§=§+§—1§un1ts
y
1
ol7 > X

I should again like to draw the reader’s attention to the
number of little rectangles by means of which we have
approximated the area:

X

As the subdivision gets more dense, the rectangles become
thinner. The area of each rectangle necessarily converges to
zero, in the sense of the cake, divided into many pieces, already
mentioned so frequently. But these little slices, although be-
coming thinner and getting nearer and nearer to zero thickness,
together nevertheless approximate to a definite area different
from zero, and this area need not even be small. The area of
our triangle discussed before was in fact 9 units. This is not
surprising since, as the rectangles get thinner, they get more and
more numerous, and a lot of small things finally add up to a big
thing. The depositing of almost invisible layers of sand in
time buries even the largest pyramids. A lot of little people
think something, and the world suddenly takes an important
turn. A lot of small effects get ‘integrated’.



PART 111
THE SELF-CRITIQUE OF PURE REASON

18.  And still there are different kinds of Mathematics

THERE is hardly a well-known mathematician to whom it has
not happened that a mysterious stranger has handed him over a
greatly treasured manuscript, sometimes bulky, sometimes
quite short, in which the squaring of the circle is ‘accomplished’.
Let us see what this really means.

If somebody says: ‘I knew the two sides of a right-angled
triangle adjacent to the right angle, and I was able to con-
struct the whole triangle from these data’, the question
immediately arises: ‘What tools did you use?” Suppose that
he used a right-angled triangle made of wood, obtainable at a
shop:

in other words he drew his pencil along the sides of this object.
Of course it would not be wise to rely on the accuracy of such
articles. ‘Turn the wooden triangle round and place it next
to the right angle just drawn with its aid, and draw some
straight lines with it.” In most cases the result will be some-
thing like this

so that the wooden triangle is not exactly right-angled.
211
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The ancient Greeks took great care to choose the tools
which they were prepared to use in their constructions. Rulers
were to be used only for drawing single straight lines along
them (they were not allowed to use them for drawing right
angles); of course even that is a compromise, since it often
happens that the edge of a ruler is not really quite straight.
If we want to draw a circle, we can do this with a much more
accurate instrument; there is no need to draw round any ready-
made wooden circle, for with a pair of compasses we can form
the circle ourselves. If the two parts of the compasses are
not hinged too loosely, we can fix the pointed end of one part
by sticking it into the paper at one fixed point, the pencil end of
the other half will in fact move at a constant distance from our
fixed point, and so will describe a real circle.

m0V/ﬂgpomt fixed point

The ancient Greeks did not allow any other instruments
for their geometrical constructions. The constructions were
more reliable, the more they depended on the compasses alone,
and the less often it was necessary to have recourse to the ruler.
After several centuries it came about that there was no need for
any ruler at all. All the constructions that could be done by
means of ruler and compasses alone, could be done by using the
compasses only. Of course it is not possible to draw a straight
line with compasses, but, for example, a square can be repre-
sented by its four vertices:
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f 4

+ -+

and we can imagine the figure quite well even from points
like these.

But let us keep to ruler and compasses. The question arises
quite naturally: what constructions may be done by means of
these two tools alone?

The problem of squaring the circle belongs to this category
of problems. Given a circle, it is required to construct a
square whose area is exactly equal to the area of the given
circle.

We already know that it is possible to determine the area of
the circle with perfect accuracy, by means of other areas
bounded by straight lines, getting nearer and nearer to the
circle. For example if we have drawn a circle with a unit
radius, we obtain a definite irrational number for the measure
of its area; this number begins like

314...

and the calculation of this number to any desired degree of
accuracy can be carried out. This irrational number plays
such an important part in Mathematics that it has received a
special name. This is the number

T

well known from our school days.

If we really know the area of the circle of unit radius as
accurately as all this, we can of course say straight away which
is the square whose area is this amount. We calculate the
area of a square by squaring the length of one of its sides.
There is of course a number whose square is ; this is what we
denote by Vz. So the square whose side is Vn solves the
problem.

But the problem was not whether there was such a square,
but whether it could be constructed accurately by using ruler
and compasses only.

The fact that V' is irrational need not necessarily hinder
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the construction, since we have already drawn squares whose

sides were V2. The reader will perhaps recall doubling the
size of the fishpond. The argument sketched on that occasion
could very easily be transformed into an accurate construction.

Would it not be possible somehow or other to construct vz
by means of ruler and compasses alone?

Many people attacked this problem for centuries without
success. Finally the translation of the problem into the
language of Algebra led to its solution.

What can we draw with rulers and compasses? Straight
lines and circles. We already know that in the language of
Algebra straight lines mean linear equations and circles certain
types of quadratic equations. Anything that can be con-
structed by means of rulers and compasses will have to appear
as a common solution to such equations.

Now mathematicians have succeeded in proving that Vz
(or even z) cannot be a solution of any such equations or,
come to that, of any equations at all, of however high a degree,
unless & is somehow smuggled into the equation first (for
example from the equation

X—n=0
if we take = over to the right as a term to be added, we have
X ==
We say that 7 is not an ‘algebraic’ number, itis a ‘transcendental’
number.

Looked at in this light, the squaring of the circle is an
insoluble problem. Mathematics has again succeeded bril-
liantly in demonstrating its own inefficacy in the solution of a
problem where the methods of solution are clearly circum-
scribed.

Apart from the discovery of the existence of ‘transcendental’
numbers, which cannot occur among the solutions of any kind
of algebraic equation (it can be shown that ¢ = 2-71 . . ., the
base of natural logarithms is also such a number, moreover
that the vast majority of irrational numbers are ‘transcen-
dental’), there is one more point I should like to make, arising
out of the previous arguments. This is the importance of the
purity of the methods used, to which the ancient Greeks paid so
much attention. The question is not the general one of



DIFFERENT KINDS OF MATHEMATICS 215

whether a square can be constructed whose area is equal to the
area of a certain circle (at the end of the last century a
mechanism was constructed which would turn out just such a
square with perfect accuracy), but whether such a square can
be constructed by means of ruler and compasses alone. In this
sense the question has been definitely decided in the negative
for all mathematicians. Only some poor fools do not believe
this, and their imagination is tickled by the fantastic in the
expression ‘squaring the circle’.

Clear methodology, in other words the unambiguous state-
ment of conditions of work, is the reason why mathematicians
always understand each other so well, unlike workers in some
of the other sciences. Mathematicians of all epochs and of all
countries understand each other perfectly. Mathematicians
are proverbial for their unintelligibility, although one can
hardly imagine anyone who would clarify his statements with
such meticulous regard for the other person as the mathe-
matician. Of course even the subjects dealt with by Mathe-
matics acquire a certain personal flavour peculiar to each
mathematician in much the same way as is the case with other
disciplines. For example the words ‘point’ or ‘straight line’
can mean something quite different to different people. One
of our professors began his first lecture by asking one of the
ladies: “Madam, have you ever seen a point?” This was rather
unexpected, but the answer came: ‘No, I have not.” ‘Have you
ever drawn a point?”’ came the next question. ‘I have,” came
the reply, but the lady in question quickly changed her mind
and said: ‘I mean I have tried but have never succeeded.’
(It is this answer that endeared our year to our professor for the
rest of his life!) Those deposits of graphite or of chalk that we
draw, and which under a microscope are veritable mountains,
are, of course, not points. We all have some sort of an idea of a
point, and it is this idea that we try to realize when we try to
draw one. Our imaginings about straight lines can be even
more personal. A straight line is not at all a simple line;
little children and primitive savages never draw lines that are
straight; what they draw spontaneously is a curve. In order
to draw a straight line, it is necessary to possess self-discipline
of a high order. For these reasons, if a mathematician has
proved something about points and lines, he communicates
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his findings to his fellows as follows: ‘I do not know what kind
of pictures you have of geometrical figures. My idea is that
through any two points whatever I can draw one straight line.
Does this agree with your idea?” Ifthe answer is in the affirma-
tive, then he can proceed thus: ‘I have proved something and
during the proof I did not make use of any other property of
points and straight lines apart from the ones about which we
are already agreed. You can now think about your points and
lines; you will still understand what I have to say.’

Mathematics does not pretend to enunciate absolute truths.
Mathematical theorems are always put in the more humble
form: ‘If, . . . then ...” ‘Ifwe can use only ruler and compass,
then the circle cannot be squared. If by points and lines we
mean figures with such and such properties, then the following
things are true of them.’

It is quite true that at school we were not used to these
kinds of theorems, nor in the preceding chapters have theorems
been expressed in these ways. Those who wish to convey
knowledge do well not to convey it in a ready-made fashion,
but rather in a kind of formative stage. Exact conditions are
not readily formulated in the heat of their generation. Great
constructive epochs are usually followed by critical epochs;
mathematicians look back over the road travelled and try to
get at the very kernel of the results themselves.

Euclid was one such great systematizer, and his works have
survived and remained our models over the centuries. First
he lists the fundamental ideas and the fundamental relation-
ships between them (right up to the present day these have
always been called axioms); the proofs that follow are only for
those who imagine points, lines and planes in such a way that
they accept the corresponding axioms as true. That is why
the axioms are statements collected and chosen with great
care so that everyone’s perception should agree with them.,
For example one of the axioms states that, if we are given two
points, we can draw one and only one straight line through
them

His work is two thousand years old, and only one of the axioms
has ever been the subject of debate. This is the famous
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parallel axiom: you can draw only one line through a point
not lying on a straight line, which does not meet that straight
line, however far you produce the lines.

This one line which you can draw that does not meet the first
line is what is called a line parallel to the first line. We shall
come back to this later.

I should first like to draw the reader’s attention to another
feature of the axiomatic method. Ifthe proofs for our theorems
are such that we can all let our imagination run away with us as
far as points, lines and planes are concerned, with the important
proviso that our figures must satisfy the relationships embodied
in the axioms, then it is really quite unimportant that these
figures be points, lines or planes at all in any sense whatever.
We might actually think of quite different objects, as long as
these objects also satisfy the conditions embodied in the axioms,
and our proof will lead to a true theorem about these objects.
This again is a kind of ‘I say one thing, then it turns into two
things’, which we came across when dealing with duality.
The theorems in question would remain true even if there was a
person with such a tortuous imagination that he thought of a
straight line when we spoke about a point, and of a point when
we spoke about a straight line. (Perhaps the reader will recall
the example quoted there: three points determine a triangle,
as long as all the points are not on the same straight line: three
straight lines determine a triangle as long as they are not all on,
i.e. do not pass through, the same point.)

If for example somebody understands by a point any point
inside a certain circle (excluding the points on the circumfer-
ence), and by a straight line only those parts of straight lines
that are inside this circle
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—even in this narrow world it is still true that through two
points (i.e. through two points lying inside the circle) we can
draw one and only one straight line (i.e. part of a straight line
reaching as far as the circumference of the circle); even here all
theorems will be true which can be deduced about points and
straight lines by means of this axiom alone.

Now let us turn again to the parallel axiom. I believe that
anyone who thinks about it for a little while will agree that you
can draw only one parallel to a given straight line through a
given point, and will fail to see anything problematical about
the question at all. Most people’s perception is indeed such
that they accept the parallel axiom without question.

But I should like to tell the reader an experience I had while
teaching a first form in a Grammar School.

Every pupil had a square in her hands, and the task was to
say what could be noticed about the sides of the square.
Soon the word ‘parallel’ was mentioned, since children come
across this word in the ordinary way. I asked them what they
understood by the word parallel. One little girl said that
parallels have the same direction, another that parallel lines
always remain at the same distance from each other, a third
one that however far we produce them, they will never meet.
“This is all quite correct,” I told them. ‘We could accept any
one of these as the sign by which we recognize parallels, the
other two will then follow from it.” At this Anne, in the first
row, stood up (she was the most profound thinker in the class),
and said: ‘It would not be a good idea to accept as our definition
that they never meet. I can imagine two straight lines which
do not remain at the same distance from one another; they get
nearer and nearer to each other, and yet they never meet.’
She drew a figure on the blackboard as well, indicating what
she meant:

I had to accept the fact that Anne’s perception was indeed
different.

The trouble is that things like that cannot be checked by
experience. If we bend our usual parallel down a little then
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by producing the lines far enough we can still show that they
will meet. But supposing we bend it down by much less,
i.e. by {5th, by tisth, by 550th of the arc that we started
with; we can continue this infinite sequence as long as we like
and how do we know that we do not eventually reach an
extremely small degree of bending which results in our bent
line not cutting the lower line? The thing is we cannot go
right through the infinite sequence.

We have already come across lines which get nearer and
nearer a straight line without ever reaching it. Either branch
of the hyperbola is like this.

It is not really surprising that there are people who can
imagine straight lines getting nearer and nearer to each other in
this way. Our imaginings are guided by our sensory ex-
periences. It might be the case, for example, that for some-
body separated for a long time from a loved one, the picture of
getting nearer and nearer could develop in quite a definite form
in his imagination, without the possibility of an actual meeting.

However all this may be, ever since Euclid there have been
many people whose perception was like that of my pupil Anne.
Probably they were not very sure about the products of
their imagination, since the view of the majority was against
them, but they still doubted whether the parallel axiom was as
self-evident as the other fundamental truths. They would say:
‘Why don’t you prove it, using only such relationships as we
can also accept. Then we shall accept it too.’

Through several centuries mathematicians tried to prove the
parallel axiom with the aid of the other axioms, but without
success.

The Hungarian John Bolyai was one of the first to take a
stand by the kind of perception like that of my little pupil’s.
‘The reason that nobody has suc-
ceeded in proving the parallel axiom
is that it is not true. I see the thing
in this way: if I draw a line through
a point outside a certain fixed line to AN
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intersect this line then this intersection will move farther and
farther away as I turn my line about the point; eventually there
will not be any intersection at all:

but the turning line is still slightly bent towards the fixed one.
Of course if I turn it round some more, it will be even less likely
to intersect the other line until, of course, it begins to bend
towards the fixed line on the other side:

There are therefore two leading straight lines through the
external point, and any straight line between these two will not
meet the fixed straight Jine at all, and those that bend more
towards it will all intersect it. Let everyone join me who sees
this in the way I do, and I shall construct our own Geometry.’

Bolyai took as his fundamental relationship the opposite of
the parallel axiom, kept all the other Euclidean axioms, and
investigated what kind of theorems could be deduced from
these fundamental relationships concerning points, lines and
planes. In the Bolyai Geometry, constructed in this way, there
are a lot of things which differ from Euclidean Geometry. It
is a matter of taste which of them we care to accept.

It does not detract in any way from Bolyai’s merit (although
it utterly broke the unfortunate man) that at the same time
others also discovered the possibility of having different
geometries. This is quite a frequent occurrence: it seems as
though certain problems somehow ripen through the passage
of time, and there are people who are sensitive to this at differ-
ent points of the world, and so simultaneous but independent
discoveries are made.

There is still something not quite in order here. May it not
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still be possible to prove the parallel axiom, and if so the whole
of the Bolyai Geometry would be based on a false premiss,
and eventually a whole host of contradictions might be deduced
from it?

Fortunately we have a comforting answer to this awkward
problem. From the point of view of reliability Euclid’s and
Bolyai’s Geometries are as good as each other. If the Bolyai
Geometry were to lead to contradictions, then Euclidean
Geometry would also contain contradictions.

We can see this because it is possible to build a model of the
Bolyai Geometry entirely within Euclidean Geometry. We
have considered a world with a narrow horizon, whose points
and lines all lie within a circle of Euclidean Geometry. There
we showed that even these points and lines, understood in this
narrower sense, satisfy one of the fundamental relationships in
Euclid. It can also be shown that all the other fundamental
relationships are satisfied (assuming we suitably transform the
notion of congruence), with the single exception of the parallel
axiom, instead of which we have Bolyai’s fundamental rela-
tionship.

last
intersection

last
intersection

g )

B —

givenline

The ‘leading’ straight lines are those which lead from the given
point to the extreme points of the given fixed straight line, i.e.
to the circumference of the circle. The straight lines in be-
tween these (i.e. those parts within the circle) do not intersect
the given fixed straight line, even according to Euclid. Bolyai’s
axiom cannot therefore contradict the other Euclidean axioms,
since in this narrow world they can get along quite nicely side
by side.

So we have now come across two geometries of equal standing;
there is no reason why we should not now speak about geometries
in the plural. We could, as a matter of fact, go on playing this
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game quite independently of any perception: in the place of
any one of the axioms which cannot be proved from the others,
we could assume its contrary and investigate what kind of
theorems could be deduced from this contrary hypothesis.
Moreover, we could assume quite different axioms, since it
does not seem worth sticking to axioms derived from per-
ception; the Bolyai type of geometry has already shown us how
unreliable a basis perception is. If everyone took notice of
his own type of perception, quite contrary results could be
obtained, as we have already seen.

It is in this way that a whole series of geometries were
constructed one after the other. And this is not merely a
game; modern Physics has recourse to just such abstract
geometries to explain real events.

The perception of man is not unalterable. The develop-
ment of science goes on shaping it all the time. When it was
discovered that the Earth was not a flat disc and it had to be
worked out how people on the other side of the world could be
walking on their heads, man’s perception immediately made
great strides. If the results of modera Physics become more or
less permanent and pass over into general knowledge, then in
time people with Euclidean perception will perhaps cease to
be in the majority, and one of the geometries which today
appears as an abstract game may become the geometry of
reality.

Postscript about the fourth dimension

I should like to come back once more to the idea of a ‘model’.
We were able to construct a model for the Bolyai type of
geometry within Euclidean Geometry by circumscribing a part
of a Euclidean plane by means of a circle. To every theorem
in Bolyai Geometry corresponds a theorem that can be proved
inside this circle. We already came across this kind of inter-
twining of two branches of a science when we found a model
for Geometry in the form of Algebra. To points correspond
pairs of numbers, to lines correspond equations with two
unknowns, and we circumscribed that part of Algebra within
which every geometrical figure represented an algebraical
expression, and every geometrical theorem an algebraical
theorem. In this way we are able to prove geometrical truths
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by algebraical methods and, conversely, we are able to make
use of geometrical results in the examination of the properties
of functions represented by curves.

All this was in a plane, but there is no reason why it should
not be carried over into three dimensions, lock, stock and
barrel. In three-dimensional space a point is determined by
three numbers (if the bird’s nest had been at the top of a tree,
in order to determine its position exactly it would have been
necessary to know how tall the tree was, i.e. what size ladder
would be necessary to take along in order to reach it). To
figures in space will thus correspond equations with three
unknowns. We could denote the three unknowns by X, ¥
and K. If we are dealing with an equation of the form

2 =3X +2V

it can be seen immediately that the value of < depends on the
choice of X and of Y. Such functions are called functions
of two variables. (We often come across such functions in
everyday life; for example, the amount of a life-insurance
premium depends on the length of time the policy is in force as
well as on the capital sum insured.) Whatever we may prove
about figures in three-dimensional space will be expressible in
terms of functions of two variables.

Of course there is no need to start everything from the
beginning just because we are dealing with three-dimensional
space. The majority of theorems of plane geometry may
readily be generalized to such a space. For example, in a
plane the way to find the distance of a point from the 0 point is
as follows:

Ay
(3,4)

4

+ > X

o] 3
The distance required is the hypotenuse of the right-angled

triangle the other two sides of which are the co-ordinates of
the point in question. By Pythagoras’ theorem the square of
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this distance is equal to the sum of the squares of the other two
sides, and the distance itself will be

V3 + 4

It can be proved that the point in space characterized by the

three co-ordinates (3, 4, 5) is at a distance
V32 4+ 4% 4 5% from the 0 point

Quite often generalizations from plane to three-dimensional
space are as easy as that. The effect of this is that a whole lot of
theorems concerning functions of one variable may very simply
be generalized to functions of two variables.

It is quite possible, of course, that we may come across func-
tions of 3, 4, . . . or any number of variables. It seems a pity
that whereas we can pass from a two-dimensional plane to a
three-dimensional space, we cannot pass on beyond our three-
dimensional space. There just is no four-dimensional space
to which to pass. On the other hand, the algebraical model
allows one to act as though there were one. Let us, for example,
call a set of four numbers like (3, 4, 5, 6) a point and let us call
the number

V32 + 4* + 5% + 6°

its distance from the 0 point. We may work with these num-
bers in the same way as we worked with the numbers corre-
sponding to actual points, and we may hit upon theorems that
can be deduced about functions of three variables. We can, of
course, check that theorems obtained in such a fictitious manner
are in fact true, and so it turns out that it was worth pretending
that there was a fourth dimension, even though in fact there is
not one.

In the same way we can introduce abstract spaces of 3, 6,
... or even an infinite number of dimensions. Our starting
point is always our well-known three-dimensional space and
our aim always utility in the investigation of the properties of
functions.

These are no longer unfamiliar concepts. The multi-
dimensional points are just ‘ideal elements’, they come to our
aid from an imaginary world, and, if we wish them to, they can
disappear again, leaving behind them solid results which re-
main true without the intervention of the imaginary objects,



19.  The building rocks

ONE of the activities of the great critical epochs is the extrica-
tion of the kernels of results already obtained, the clarification
of the conditions of theorems, in a word axiomatization.
This also circumscribes each branch of Mathematics; we regard
those parts of Mathematics as unified wholes which can be
deduced from certain sets of axioms.

As we look back over the road travelled, we notice that
certain ideas appear here and there, in other words there are
ideas that do not get circumscribed even after an attempt at
systematization. They turn up in all sorts of different branches
of Mathematics. So we have come across another type of
activity in which we could engage; we could separate and make
into special objects of investigation those elements which turn
up in widely separated places.

For example we might remember that in the case of rational
numbers we could always carry out multiplications and divi-
sions (apart from division by zero), and we always obtained a
rational number as a result. In this sense rational numbers, if
we leave zero out, form a kind of closed group in relation to
multiplication and division. Whole numbers do not behave in
such an exclusive fashion, for division definitely leads us out of
the set of whole numbers.

Whole numbers and rational numbers are similar in the sense
that in relation to additions and subtractions they both form
closed groups; of course we must think of positive and negative
whole numbers, but these operations do not in fact lead out of
the sets of these numbers; it is not even necessary to exclude
zero.

There is naturally no need to have so many numbers in
order to form a group which is closed in relation to certain
operations. Supposing we consider only the two numbers

+1, —1
We can multiply and divide these numbers as long as we like,
the result can never be other than either +1 or —1.

This sphere of ideas is not even restricted to operations with
225
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numbers. Let me remind the reader of vectors, for even these
form a closed group in relation to their queer kind of addition.
The combined effect of two vectors is again some other vector
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Such an operation can be called an addition only in a figurative
sense. What we are really talking about is the combination of
movements and of forces.

One could go on for a long time giving similar examples.

The investigation of the ‘group’ idea, which seems to occur in
many different places, in an independent sort of way, i.e. the
theory of groups, has proved most fertile. It is the essence of
modern Algebra, and is made use of by modern Physics.
The various geometries can be regarded as theories corre-
sponding to different groups.

Groups themselves are ‘sets’ with certain particular prop-
erties. This idea of ‘set’ is again one that we come across all
the time in many different branches of Mathematics. When-
ever we speak about Mathematics, it is almost inevitable that
we speak about sets of points, sets of numbers or sets of func-
tions of a certain type.

It was Cantor who made this idea the object of his investiga-
tions. The ‘theory of sets’ was really largely his creation.

Let us go back a little. We spoke about the set of rational
numbers and about the set of points corresponding to it on a
line, and we decided that every single point of this set is a
‘point of condensation’. This is a most important idea in the
theory of sets of points. We call a point a point of condensa-
tion of a set if, even in the closest vicinity of the point, there are
always other points of the set.

We have also seen some of the methods employed in the
theory of sets. Let us refresh our memories by another
example. There are an infinite number of natural numbers

1,2,3,4,5,...

and yet they are not condensed anywhere, they go marching on
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for ever by unit steps. But let us stuff a whole infinite set into a
finite interval; for example

1)%)%’%’%,"'
are all within the interval between 0 and 1

b0 -7 # !
so there must be a condensation point somewhere within this
interval.

This can be proved quite generally as follows. Let us sup-
pose that all points of an infinite set lie between the points
0 and 1 mat

0 !

and it does not matter exactly where they are. Let us halve
our interval, At least in one of the halves there must be an
infinite number of points of the set, because if each half had
only a finite number of points in it, say 1 million in one half
and 10 million in the other half, this would be 11 million
altogether, quite a big number, but still finite. In our pre-
vious example the infinite number of points lie in the left-hand
half of the interval.

Now, instead of the original interval, let us consider the half
that has an infinite number of points, or either half if they both
have an infinite number of points. Suppose that the new in-
terval is:

0 t !
We can repeat the previous argument exactly about this
interval; we can proceed to one of its halves, i.e. that half in
which there are an infinite number of points of the set. This
halving can be continued indefinitely. In this way we obtain
intervals encased in each other and getting smaller and smaller.
In our example we should obtain
FTINTERVAL
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It can easily be seen that the lengths of these intervals con-
verge to zero. Here again we are dealing with the amusing
parcels consisting of wrapping after wrapping, and at the com-
mon centre of them all is a screwed-up piece of paper. We
can see in our case, too, that there will be one single point
common to all our intervals. This point must be a condensa-
tion point of our set, since within an arbitrarily close vicinity of
it will be found some of our intervals which have shrunk even
smaller, and each one of these contains not only one but an
infinite number of points of the set.

Now we have reached such dizzy heights of knowledge that
we can even answer the question of how a mathematician
catches a lion. The method employed by experimental
physicists for catching lions is well known. It can be under-
stood by any beginner and applied. The experimental
physicist pours the whole of the Sahara on to a sieve, the part
that goes through the sieve is the Sahara, the part that is left is
the lion. The mathematician, on the other hand, proceeds
quite methodically as follows:

It is necessary to distinguish two cases:

Case (1I). The lion is at rest.

We must prepare a cage, open underneath, which is large
enough to hold the lion. Now divide the Sahara into two
equal parts. The lion will be in at least one of the halves
(since if it is on the boundary, it will be in both parts). Now
let us consider such a half-Sahara. Let us divide this into two
halves. Our lion will be resting in at least one of the halves.
And so we continue these halvings and obtain areas enclosed in
each other, getting smaller and smaller. Sooner or later one
of these areas will be smaller than the base of our cage, and our
lion must be in that area too. Let us now place the cage on
top of the lion. We have caught the lion.

Case (2). The lion is moving.
This method is then not applicable.
This is the point.

So much for point sets.
We have already come across proofs in the theory of sets
which are not valid for point sets only. For example, the
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method of pairing by means of which we proved that the set of
natural numbers and the set of rational numbers are equally
numerous (though the irrational numbers are more numerous
than the rational numbers), may be used for any kinds of sets.
If I remember rightly, it was from the sets of dancing boys and
girls that we finally passed on to these less frivolous sets.
Anything we can say about how numerous sets are could be
true equally for dancing couples, for real numbers, or, come to
that, for the set of all the sentences that can be written down in
the English language. Cantor dealt with sets in just such
general terms. He proved a whole lot of remarkable theorems
about the ‘numbers’ of infinite sets, i.e. about the extension of
the finite-number concept to infinity. He showed for example
that there were not just two kinds of numbers, that of the
natural numbers and that of the real numbers; as a matter of
fact there is no set, of whatever number, which cannot be
transcended by another set of higher number. The poet
Babits called these numbers, towering ever higher and higher,
‘the towering battlements of infinity’. Cantor introduced
certain operations for these numbers, namely additions and
multiplications, somehow imitating the operations on our
tiny numbers. Now this is really what we might call playing
on a grand scale, playing with infinity. It appeared that the
human spirit had reached the greatest heights of which it was
capable.

And this is the point when the whole building started to
rock.

At the end of the last century certain contradictions turned
up inside Mathematics, inside this science which had always
been considered almost boringly safe. And it was just where it
had reached the greatest heights, in the theory of sets, that the
Achilles heel of Mathematics came to light.

Out of all the contradictions let us go over the most serious
one, Russell’s antinomy. Let us first consider it in its more
jocular form, in which it is generally known.

We can define the army barber as follows: he is that member
of the army who is obliged to shave all those in his company
who do not shave themselves, for, in order to save time, he is not
allowed to shave those that do shave themselves. The ques-
tion is whether this soldier does or does not shave himself.
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If he does, then he is one of those that shave themselves and
he is not allowed to shave such people.

If he does not, then he belongs to those that do not shave
themselves, and he is obliged to shave all such people.

What is he going to do?

Of course in a joke like this the way the problem is expressed
is inaccurate. Let us now pass on to the more serious example.

A set is not usually an element of itself. For example, the
elements of the set of natural numbers are numbers, not sets, so
the set itself, being a set, cannot belong among its own elements.

It could, of course, happen that the elements of a set contain
sets. For example, let us imagine all possible sets of numbers,
and consider the union of all these sets as a single set. One
element of this set is, for example, the set of natural numbers,
another all the numbers less than 10 and so on. Every one of
its elements is a set. But it still is not contained among its
own elements, since its elements are all sets of numbers, and
the whole set itself is a set of sets.

Now if we try to unite all imaginable sets into one single set,
then we have an example of a set which is itself one of its own
elements. Obviously so, since the whole united set is itself a
set, and every set must occur somewhere among its elements.

Those who feel that it is going to be rather a bore to think
all this out need not bother to do so. There will be no further
use made of it in what follows. It is enough to take the point
of view that in ordinary sets such oddities do not occur. So
let us call every set ‘ordinary’ if it does not itself figure among its
own elements; there is no need to bother at all with the question
of whether there are any other sets in reality. Let us then
imagine all ‘ordinary’ sets heaped together into one big set.

The problem is whether the set so obtained is ‘ordinary’ ornot.

If it is ‘ordinary’, then it must figure among the elements of
the big set, with all other ‘ordinary’ sets. Yes, but this would
make our big set not ‘ordinary’!

If it is not ‘ordinary’, then it cannot figure among the
elements of our big set, since these elements are all ‘ordinary’.
But this situation is just what we have called being ‘ordinary’!

So, if it is ‘ordinary’, then it is not ‘ordinary’, and if it is not
‘ordinary’, then it is ‘ordinary’. Anyhow we have arrived at
a contradiction.
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And this cannot be helped.

It is equally useless to say that the theory of sets was in too
much of a hurry to rise to great heights; let us drop the whole
thing and go back to the humbler and safer branches of
Mathematics. We know by now how the theory of sets was
created: its ideas are to be found in every branch of Mathe-
matics. If there were trouble in the theory of sets, then there
might be trouble anywhere.

The repercussions of this shock are with us to this day.

Mathematicians take the sort of attitude in the face of this
situation that people would usually take in the case of any
prolonged danger. Most of them do not even want to think
about it, everyone carries on with his own job, and if anyone
happens to mention the danger it is usually waved aside with a
little nervous protest.

There are of course a few who are trying to save the situation.

Of course, at first the error was sought in Russell’s antinomy
itself. Russell himself thought that the very definition of the
set occurring in the antinomy was wrong. The definition is
a ‘vicious circle’, since the set to be defined is included in the
definition. We could unite all ‘ordinary’ sets into one set only
if we could already decide beforehand of the set so generated
whether it is ordinary or not, and so whether it can be accepted
as an element at all.

Unfortunately we find such ‘vicious circles’ all over the place
in every branch of Mathematics. In the case of natural
numbers it is quite usual to give definitions like this one: ‘Let
us consider the smallest number which has such and such
properties.” This number, too, figures in its own definition.
We can choose only the smallest out of all the numbers with
the said properties, and the smallest one is bound to be among
all of them.

The most radical rescue attempt is that of the intuitionists
(the term ‘intuitionism’ is not a very fortunate one here, but we
shall not trouble about its exact meaning). The line they take
has a history longer than that of the antinomies, but the
antinomies have given its adherents a new lease of life. The
new intuitionism is coupled with Brouwer’s name. He rejects
the whole of Mathematics as conceived up till now, and makes
an attempt at building it anew on more secure foundations.



232 THE SELF-CRITIQUE OF PURE REASON

He accepts only that which can in some sense be constructed,
since once we have constructed something, it is undeniably
there, no antinomy can ever make it non-existent. He rejects
the ‘proofs of pure existence’, for example the old proof of the
fundamental theorem of Algebra, since it gives no method for
the construction of the roots of the equation. He will have no
truck with ‘actual infinity’, since we can actually construct
only a finite number of elements of any set, even if this can be
continued indefinitely. An infinite set according to him is only
‘potentially infinite’, it is always in the state of being generated,
and can never be considered as finished or closed.

Thus only the ruins of classical Mathematics remain in this
way, and what remains becomes terribly complicated by reason
of the necessity for carrying out the constructions in every case.

Only Hilbert’s rescue attempt can be regarded as realistic.
The significance of this attempt has grown beyond its original
object of coping with the above-mentioned dangers. A new
and fertile branch of Mathematics has grown up out of it.
We shall discuss these developments in what follows.



20. Form becomes independent

THE reader must not imagine that the theory of sets is still
burdened with the weight of the antinomies. When the time
came (it is the contradictions that made things so terribly
urgent) to put the original naive theory of sets in proper order,
to establish a system of axioms for it, mathematicians took great
care to restrict the idea of set sufficiently by means of the
fundamental conditions stipulated. They succeeded in keep-
ing all that is valuable in the theory of sets, and the trouble-
some sets were left outside. But this seems a very artificial
kind of order; as Poincaré has said, we have built a fence round
the flock to save the sheep from the wolves, but how do we
know that there are no wolves hiding in certain places inside
the fence? There is no security against further contradictions
turning up.

One of the greatest mathematicians of our time, Hilbert, set
himself the task for the last twenty years of his life of looking into
every nook and cranny inside the fence of the axiom system.
He acknowledged that we may justifiably be worried about
definitions involving vicious circles, about ‘pure existence
proofs’ and about ‘actual infinity’. There might be some
danger lurking in any one of these. But why is it that we feel
compelled to work with such dangerous ‘transfinite’ concepts
which seem to be beyond our finite minds? There is a very
good reason; and, except for extremely compelling reasons, we
shall never want to do without these concepts for it is they that
enable us to build comprehensive theories, since they make pos-
sible the discovery of connexions between far-distant territories.
This is shown very well by the Mathematics of the intuitionists
which falls into so many little separate pieces. Therefore we
are unwilling to give up the dangerous concepts which weld
the whole of Mathematics into one single powerful edifice.

The transfinite tools play the same kind of part in logic as
the line at infinity or ‘%’ play within Mathematics itself. We
may regard these as the ‘ideal elements’ of logic. We need to
treat them in the same way as the mathematical ideal elements:

233
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introduce them if they prove useful (and how useful they have
proved to be!), but examine them very carefully whether they
might be in contradiction with our established procedures.
It follows that the task that remains is the examination of the
freedom from contradictions of the transfinite processes.

So Hilbert’s programme is the mathematical examination of
logic itself as applied to Mathematics, i.e. of deductions, demon-
strations, etc. A precondition of doing this is to cleanse these
ideas of any vagueness which might attach to them on account
of inexact linguistic expressions, and to extract from them their
unambiguous pure form.

It was possible to begin to examine numbers in any exact
way only when, after ceasing to speak about 5 fingers or 5
apples or 5 sentences, we considered the pure form which all
these had in common. This is what we called their number
and denoted by the sign 5. If we wish to examine statements,
we must then disregard their content. For example what is of
interest to us in such statements as ‘2 x 2 = 4, ‘we can draw
just one straight line through two points’, ‘snow is white’, is
what is common to them all. This is of course the fact that
they are true. We can introduce a new sign for this, for
example 1. The common logical value of the statements:
2 x 2 =5, ‘two straight lines meet in two points’, ‘snow is
black’, is that they are all false. The sign for this could be
(like an upturned thumb, which meant life, and a thumb
pointing downwards, which meant death in the ancient Roman
circuses).

In Mathematics we are interested only in statements which
assume one or the other of these logical values (in other words
those that are true or else false).

Here we are then about to construct a kind of arithmetic
which is much simpler than the arithmetic of natural numbers.
There is an infinite number of natural numbers, but here
there are altogether only two values. It will be very easy to
write down the tables for the various operations.

We are really going to deal with calculation; there will even
be logical operations. These will be the connexions between
different statements, connexions that we come across all the
time in Mathematics.

Any mathematician can easily discover what these connexions
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are, in a very simple way, as long as he does not speak every
language. All he needs to do is get hold of a book on Mathe-
matics written in a language that he does not know and take
note of the words that he is forced to look up in the dictionary
while he is reading it. He will be surprised to find that when
he has learnt the expressions:

‘not’, ‘and’, ‘or’, ‘if,; ... then’, ‘then and only then’, ‘all’,
‘there exists . . ., ‘the one which ...

after a little while he will no longer be aware of reading a foreign
language, for he will understand everything perfectly. The
formulae are, of course, in any case international, the text
merely serves to bring out points of emphasis, and this is not
absolutely indispensable. 'The necessary logical connexions, on
the other hand, are in the few expressions enumerated.

What is for example the table for the word ‘not’? It is
extremely simple. The negation of a true statement (for
example, ‘2 X 2is not equal to 4’) is clearly false; the negation of
a false statement is equally clearly true (for example, 2 x 2 is
not equal to 5’). So the table for ‘not’ is as follows:

not } = |
not | = %
It is usual to abbreviate the word ‘not’ by the following sign:

For example ~ (2 x 2 =05)

is the negation of 2 x 2 = 5. With this notation the table for
‘not’ is the following:
~t=1

~1 =1

We can equally easily write down the table corresponding
to the logical operation ‘and’. If two statements are true and
we connect them with an ‘and’, we again get a true statement.
For example ‘2 X 2 = 4, and only one straight line can be
drawn through two points’ is certainly true. Therefore

$and § =4

But, on the other hand, if only one of the connected statements is
false, it ruins everything. The statement 2 X 2 =4 and



236 THE SELF-CRITIQUE OF PURE REASON

2 x 3 = 7’ is a false statement, in spite of the fact that it has a
true portion. Of course, connecting two false statements by
means of ‘and’ is going to falsify all the more surely. So the
table can be continued as follows:

pand | = |

Jand f = |

Jand | =
We have thus exhausted all the possibilities. It is a nice
finite multiplication table, much simpler than any algebraical
multiplication table.

What about finding the table for ‘or’? We must make it

clear at first what kind of ‘or’ we are thinking about. Lin-
guistic expressions are in this connexion quite ambiguous.

‘Either we are all mad and will perish to the last man,
Or our Faith will be vindicated in the World’.

One of these will happen without a doubt, but both cannot
happen. They are mutually exclusive.

‘If we divide the Sahara into two halves, our lion will lie
either in one half or in the other.” It will certainly lie in one
of the halves, but it might lie in both if it happens to be having
a stretch right on the boundary.

‘A person is either eating or speaking’, these two are mutually
exclusive, but neither needs to be necessarily the case. It is
possible to do something else with our mouth, for example, we
need not open it at all.

In Mathematics the word ‘or’ is mostly used in the second
sense. In other words, statements connected by means of the
word ‘or’ can be regarded as true if at least one of the state-
ments is true. We include the case when they are both true,
but exclude the case when neither is true. Accordingly the
table for the word ‘or’ is

fort =4
for | =t
Jort =
vor =/

Once we have obtained our table, we may regard the table as

the definition of the logical operation ‘or’,  We have purged the

—
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word of its linguistic vagueness, the connexion will henceforth
never be ambiguous. The other two ‘or’s, i.e. those taken in
the other two senses, may then be defined equally precisely,
making use of our ‘or’.

It is obvious that there must be some rules of manipulation
here, too. For example, in both the operations ‘and’ and ‘or’,
the order of the two statements is interchangeable, just as the
factors in a product.

I do not want to exhaust this subject entirely, although it
would not take long to go through all the possibilities, for, with
only two logical values, there cannot be very many.

Instead, I should prefer to show the reader how it is possible
to play at arithmetic here. For example we know that we can
multiply the powers of the same base by adding the exponents,
and in this way we reduce a multiplication to an addition.
Perhaps there are such relationships amongst the logical
operations as well?

Let us take an example from the favourite topic of detective
fiction. Let us try to work out who the murderer is from the
following set of facts:

In a murder case there are two suspects, Peter and Paul.
Four witnesses are examined. The first witness testifies as
follows:

‘All T know is that Peter is innocent.’

The second one as follows:

‘All T know is that Paul must be innocent.’

The third one as follows:

‘I know that out of the last two depositions at least one is
true.’

The fourth one finally says:

‘I can state categorically that the third witness uttered a
falsehood.’

Upon examination of the facts of the case it transpires that
the fourth witness was right. Who is the murderer?

Let us analyse it, going back step by step. The fourth
deposition has been proved correct, so that the third witness
did in fact testify falsely. So it is not true that out of the first
two depositions at least one is true. Neither can be true. It
cannot be true that Peter is innocent, or that Paul is innocent.
They are both murderers. They must have been accomplices.
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Now let us try to get at the logical kernel of the argument.
It is quite useless to know what the depositions are, we must
regard their logical values as unknown, since we do not know
whether they are true or false. Let us call the logical values of
the first two depositions X and Y respectively. The third
witness testified that out of these two at least one is true, and
(since our ‘or’ operation expresses just this sort of ‘at least’),
symbolically,

XorY

is a true statement. The fourth witness denies this, the sign
for denials is ~, so according to him the truth is

~ (XorY)
When we thought the matter over, we concluded that this was

the same as saying that the truth must be the contrary of both
the first and of the second depositions, so that the truth really is

~Xand ~Y

The content of the argument is that whether X and Y are
true or false, the statement

~_(Xor Y)

is completely equivalent to the statement
~Xand ~Y

and in this way we can pass from an ‘or’ connexion to an ‘and’
connexion and vice versa.

Of course the road to such relationships is not as a rule
through any kind of joke. Their truth can be checked quite
mechanically. We can write for X and for Y the values 4 and
| respectively, and see whether the above two statements
always yield the same value. There are altogether four
possibilities to try out:

(1) Both X and Y have the value 4

(2) X has value 4, but ¥ has value |

(3) X has value |, but Y has value 4

(4) Both X and Y have the value |

Let us try the first case. What will be the value of the

statement
~ (XorY)
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if both X and ¥ have the value 4? According to the table for
‘or’ (do not trouble to think about it, just look it up)

port =4

XorY =1
so we are faced with a statement

but according to the table for ‘not’, its value is

v

so that in this case

Now what will be the value of the statement
~Xand ~Y
if both X and Y have the value 4? In this case
~X =t =y
and ~Y=~1% =]
so we are dealing with the statement

J and |

and, according to the table for ‘and’, this is likewise

y

In the same way it can be shown that, in the other three cases,
the two statements considered have always the same value.

We can play at Algebra too. We can think of a statement,
carry out all sorts of logical operations with it, and finally say
whether we have obtained a true or a false statement. We ask
someone to find out whether we started off with a true or with a
false statement. The following type of game has particular
importance here:

“Think of a statement, connect this by means of ‘or’ to its
own negation. There is no need to give anything away. 1
shall still know that you must have obtained a true statement.’
We can write it down in the following way: the statement
thought of is X| its negation is ~X, their connexion by means of
‘or’ is

Xor ~X
and our contention is that the value of this statement is bound to
be 4, whether X was 4 or |. Let us try it out.
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If the value of X is 4, then by the table for ‘not’
so we are dealing with the statement

bor
The reader can verify from the table for ‘or’ that the value of
this statement is in fact 4.

If, on the other hand, the value of X is |, then
~X = ~} = 1 by the table for ‘not’, so we are dealing with
the statement

yort

and, according to the table for ‘or’, the value of this is again 4.

There are therefore connexions between statements which
are always true, quite independently of the statements occurring
in them, i.e. independently not only of the contents but even of
the logical values of the statements. They are true entirely by
virtue of their logical structure; they are called logical identities.
These are statements that play a crucial role in Mathematics.

We can go on playing this game by pretending that the
whole statement is not unknown, we just do not give away the
subject. For example: ‘I have thought of a number, and I
state that it is an even number. Now I shall perform some
operations on this statement.” We can write down the state-
ment as follows:

‘X is even’

Whether it is true or false naturally depends on what X is.
For example if X = 4, then it is true; if X = 7, then it is false.
So we are dealing with a statement whose value is a function of
X. We have therefore reached the theory of logical functions.

There is no reason why we should not consider logical
functions of several variables. ‘I have thought of three points
and I state that they all lie on the same straight line.” We
can write this statement in this way:

‘X, Y, £ all lie on a straight line’

and its logical value depends on the choice of the points
X, Y, £ If we choose three points in this way

X X X
X y z
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then it is true; if we choose them like this

X X
X Yy X
F4

then it is false. We must take care here that the unknowns
are not chosen quite arbitrarily. In the first example we had
to choose among the natural numbers, in the second example
X, Y, and £ had to come from the points of a plane or of a
three-dimensional space. But we are already familiar with
this from the sphere of mathematical functions. In those cases
it was also necessary to specify from what set the unknowns
could be selected. Here this set is called the ‘universe of dis-
course’ of the function in question.

Now we must introduce the dangerous operations. We
apply them to these logical functions. Such is, for example, the
little word ‘all’. Let us apply this operation to our first
logical function:

‘For all X I state that X is even’

(naturally X is understood to have been chosen from among the
natural numbers). We certainly obtain a statement, although
a false one, since we can instantly think of an example to the
contrary, for example 5 is not even. Therefore

‘Xiseven forall X* = |

On the other hand, if we apply the words “There exists’ to our
function, we obtain a true statement:

‘There exists an X for which X is even’
and so
‘There exists an X for which X is even’ = ¢

We can see that the words ‘all’ or ‘there exists’ signify logical
operations which we can apply to logical functions and obtain
statements with definite values. In our example the state-
ment beginning with ‘all’ had quite definitely the value |, and
quite independently of X, and the statement beginning with
‘there exists’ had the definite value

These new operations have brought with them the trans-
finite elements. ‘Something is true for all elements of the
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universe of discourse’; if the universe of discourse is infinite,
as is the case with natural numbers or with the set of points in a
plane, then we talk about the infinite as though it were some-
thing finished and closed in our hands. “There is an X in an
infinite universe of discourse’, as though we could look right
through this infinite universe and find in it the X we are looking
for. The previous statements are statements about the
‘actually infinite’ and ‘pure-existence statements’ respectively.
‘There exists’ statements state something about an element
without being able to produce that element in fact. This is
how the ‘ideal elements’ come into Logic, which can acquire
civic rights only after proofs of non-contradiction.

The statements of the theory of logical functions can be
formulated in just as exact a way as the identity

Xor~X

In order to eliminate any ambiguity which might creep into
these purely logical statements, owing to language being
inexact, it is better to introduce signs instead of the ambiguous
words in general use, as we have already done in the case of the
word ‘not’. This is how the internationally comprehensible
books of symbolic logic are born, in which on page after page
not a single word occurs; they are mainly filled with symbols.
The professional will read the meaning of the symbols in the
same way as a musician will hear the tune when he reads the
music.

Leibniz initiated the construction of a pure and unambigu-
ous logical sign-language. Many people have since developed
it further, until finally Hilbert, with his colleague Bernays,
fashioned it into today’s fine, flexible instrument, which gives
the deductive methods of Mathematics such an exact form that
they can become objects of mathematical investigation them-
selves.



21.  Awaiting judgement by metamathematics

IT is now time to consider a well-circumscribed branch of
Mathematics and to establish whether there can be any contra-
dictions in it.

We know already what the methods are for such circum-
scribing: we must somehow get at the fundamental conditions
satisfied by the relevant theorems, i.e. the axioms, and then we
can say that this branch of knowledge consists of what can be
deduced from these axioms.

We can write down the axioms in the language of symbolic
logic and so they will consist of a certain succession of mathe-
matical and logical symbols, without any possibly ambiguous
words intruding themselves.

There is one more matter we must examine carefully. What
do we mean when we say that something can be deduced
from the axioms? In other words we must clarify quite pre-
cisely the steps of a deduction.

When we deduce the correctness of a statement from the
correctness of another statement, and write this in the language
of our symbols, what happens is that we pass from one succession
of symbols to another. Let us go back for a moment to the
solution of equations, which also consisted of some such steps.
For example, it was useful to pass from the succession of

symbols

5X
- =1
9 + 3 8

to another
5X
5 =

We thought about this quite carefully before doing so, saying

that if after adding 3 a number became 18, the number must be

15. But afterwards we noticed that formally the only difference

between the successions of signs was that in the first succession

there was a term 3 to be added, and there was no trace of this in

the second succession, whereas the number on the right-hand
243
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side was 3 less in the second than in the first succession. We
deduced the purely formal rule that it is permissible to take a
term to be added from one side of an equation to the other as a
term to be subtracted, and afterwards we made use of this rule
without giving any more real thought to the matter. The
deduction which was thought out by the consideration of its
content became in this way a mechanical ‘rule of the game’.
‘Certain symbols can be moved here and there with certain
alterations.” This is like the rules in the game of chess: e.g.,
the king can move one space in any direction.

This is what can be done in a quite general way when we
make further deductions from our axioms. We observe what
Jformal alterations in the succession of symbols correspond to the
deductions, and then we employ this formal alteration without
any considerations of content.

After all this we can even forget with what the particular
branch of knowledge is concerned, and we can say something
like this: We have a few meaningless successions of symbols (we
shall call these axioms) and a few rules for the game, which tell
us to what successions of symbols we can pass from a given
succession (these will be called rules of procedure or of deduc-
tion). This system of theorems and of proofs has indeed be-
come such pliable and obedient material in the hands of
mathematicians as have the numbers themselves. The well-
established mathematical procedures can now be applied to
this material.

These procedures, on the other hand, must on no account be
applied mechanically as rules of the game. Every single
step must be carefully weighed up: is this really an undoubtedly
permitted form of deduction, have any dangerous elements
got in by the back door? The aim must not be lost sight of for
one moment: we want to justify the use of transfinite elements
in a certain branch of knowledge and there would be no point
at all in such a justification if the dangerous elements crept
into the justification itself. Tools must be kept absolutely
pure, so pure that the most rabid intuitionist cannot take
exception to them.

This is where Mathematics is split in half. In one half there
are completely formal systems, instead of deductions there are
formal rules of procedure; the other half is a kind of super-
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Mathematics, known as metamathematics, which carefully
weighs up the content of every single step and uses only
deductions free from danger; it somehow examines the formal
systems from above, and its principal aim is the demonstration
of the freedom from contradiction of different branches of
knowledge.

But if we want to find out whether we can arrive at contradic-
tions by using our rules of procedure, is it not then necessary to
examine also the contents of the statements of the system?
We would naturally imagine that it was the contents of the
statements and not their form which might lead to contra-
dictions.

We are helped over this difficulty by the fact that it is sufficient
to take into account one single contradiction; for example,
(if the natural numbers belong to the system) this one:

1 =2

This simple succession of symbols can be remembered as a
succession of formal signs. We notice that a succession of a 1,
the symbol =, and a 2, means a contradiction. There is no
need for anything else. We have come across jocular ways of
proving that 1 = 2, and I informed the reader at that point
that once we smuggled in a single contradictory statement,
then everything becomes provable, in particular 1 =2, It is
therefore enough to show that the single formula 1 = 2 is not
capable of being deduced within the system. In that case it
will be quite certain that no contradictions can have crept
into it in any other way.

The problem for metamathematics, formulated with perfect
exactitude, is this: to show that, starting from the initial suc-
cessions of symbols called axioms of the system, we can never
reach the succession 1 = 2 by using the given rules of proce-
dure.

Hilbert himself showed in certain simple cases how to prove
such freedom from contradiction, and a number of his pupils
then generalized the procedure to wider systems. The first
in the field, even before Hilbert, was actually Gyula Kénig, the
man who transplanted into Hungary almost all the branches of
modern Mathematics.

We were now quite ready to examine a whole extensive
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branch of knowledge; we had all the tools ready. The first
branch to examine would seem quite naturally that of the
natural numbers. Everything seemed to indicate that by a
little concentration of forces Hilbert’s ideas could be extended
to the whole theory of numbers, including all the inherently
dangerous ideas.

Then something else happened. Hilbert’s ‘theory of proof’,
this slowly and carefully growing new branch of science, was
shaken by another storm.

A young Viennese mathematician called Gédel, making use
of exactly the methods of the theory of proofs, proved that the
freedom from contradiction of the theory of numbers cannot be
proved by means of tools which are themselves expressible
formally within the system. (The way he proved this will
form part of the last chapter).

Let us make sure that the meaning of this is clear.
Metamathematics does not make use of formal tools; if we are
working in metamathematics it is necessary for us to know
exactly what we are doing, we must make our deduction
consciously, not mechanically. It does not follow, of course,
that it would necessarily be impossible to turn these deductions
into formal rules of procedure. This would naturally be quite
possible for someone who wanted to play with these ideas
independently of the aims which metamathematics had set
itself. To do this it is not even necessary to be John Neumann,
whose saying has become proverbial: other mathematicians
prove things they know, Neumann proves what he wants to
prove. (He is reputed to have said at a Congress in Bologna
that the formalization of metamathematics was not interesting,
but that he would do the whole thing himself for a box of
chocolates). If we did formalize metamathematics, it would
seem self-evident that its methods of deduction, built carefully
to avoid all dangerous elements, should be capable of being
formalized in a much narrower framework than the branch of
knowledge under examination with its transfinite elements.
But no, Goédel’s result tells us that this freedom from contra-
diction can be proved only by means of methods which go
beyond the methods of the system examined. Who is going
to be satisfied with a justification of the dangerous elements by
means of methods taken from a sphere which is wider than the
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system? It seemed that the theory of proof had failed, that we
could shut up shop and go home.

Hilbert himself did not believe this for a moment. He was
convinced that there was a way out. There must be some
method of deduction which slips out of the framework of the
examined systems, and yet builds on some concrete capacity
of our finite brains in such a way that even the intuitionists
would accept it.

The search for such methods of deduction was begun im-
mediately, and the search was crowned with success. Gentzen
found the required tool for metamathematics in the form of
‘transfinite induction’, and with the aid of this tool he did in
fact manage to prove the freedom from contradiction of the
whole of the theory of numbers. The flock of natural numbers
may live and grow in peace; no wolves can possibly ever turn
up amongst them.

“Transfinite induction’ sounds very dangerous. In fact what
it means is expressed by the following innocent argument.

If we start at any member of the sequence of natural num-
bers

1,2,34,5,...

however far away, and take arbitrary steps backwards, it is
quite certain that we can take only a finite number of steps.
Even if we start at 1 million, and amble back in steps of a unit
length, we shall reach 1 after a million steps.

Now let us rearrange the sequence of natural numbers, for
example, by taking the odd numbers first and the even numbers
afterwards:

,3,57... 2,4,6,8,...

If we walk backwards in this arrangement, i.e. if we go on
choosing numbers always nearer and nearer to the beginning,
our choices will necessarily come to an end after a finite
number of steps. In fact, if we start with an odd number,
then the thing is just as obvious as in the original sequence of
natural numbers. If we start with an even one, we can see in
the same way that, going backwards, sooner or later we shall
run out of even numbers, and after this we can choose only an
odd number. The moment we leap over to the odd numbers,
however big a number we choose, we are then moving in one
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single sequence, and this is just like the sequence of natural
numbers in their original arrangement.

It is, of course, possible to rearrange the sequence of natural
numbers in a much more complicated way. For example, we
could enumerate the natural numbers by splitting them into
groups as follows: numbers divisible by 3, the numbers that are
1 more than the numbers divisible by 3, the numbers that are 2
more than the numbers divisible by 3 (let us include O for the
sake of tidiness):

0,36,9,...,1,4,7,10,...,2,5 8,11, ...

If we start off with any of the numbers in the third group, we
must leap over to the second group after a finite number of
steps, and then the situation is the same as in the case just
considered.

It is possible to obtain an infinite number of groups by, for
example, separating off the odd numbers, then those which are
divisible only by the first power of 2, then those that are divisible
by the second power 22 = 4, then those that are divisible by
the third power 2® = 8 and so on:

1,38,57,...,26, 10, 14,.. ., 4, 12, 20, 28, . . .,
8, 24, 40 56, . . .

We need not be afraid of having an infinite number of groups,
for the moment we start off with a definite number, this
must be in one of the groups which can be preceded only by
a finite number of groups.

We have secen that in each case walking backwards really
involves passing from a more complicated arrangement to a less
complicated one. So it should also be clear that if we start
from any arrangement of the sequence of numbers, however
complicated, and pass over to less and less complicated arrange-
ments, a finite number of steps will take us to a simple sequence
without any complications.

What Gentzen makes use of in his proof is the fact that,
starting from an arrangement considerably more complicated
than any just mentioned, there are still only a finite number of
steps to take us back to the beginning. This is a kind of state-
ment quite easily conceivable to our finite minds, yet it slips
outside the framework of the system considered.
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How is it possible to use this tool in a proof of non-contra-
diction?

An argument to show non-contradiction usually goes some-
thing like this: suppose that someone has found a contradiction
which can be deduced from the axioms of the system. He
hands over a proof, which starts off with the axioms, proceeds
by means of the admitted rules of procedure, and ends with
1 = 2. We have to show that this proof is fallacious; in fact
we must find the flaw in it.

If not a single dangerous element occurs in the proof, then it
is clear that we can find the flaw in it. If our starting point is
correct, then generally accepted methods of proof could lead
anyone to the result 1 = 2 only if he has made a mistake
somewhere,

But if some transfinite element slipped into the proof, then
this is not quite so certain. The contradiction could be the
direct result of the use of transfinite elements.

The end of the proofis: 1 = 2. In this there is no trace of
any transfinite ideas. If such ideas nevertheless came into the
proof, then the only thing that could have happened, according
to the inveterate habit of ideal elements, is that they appeared,
did something and disappeared again. Could it be that the
proof could be completed without them as some trigono-
metrical formulae can be proved with the aid of ‘2’ but also
without it?

If only one dangerous element turns up, or if only a few
turn up independently of each other, this is in fact the case.
Hilbert showed that such proofs could be transformed into
harmless proofs, and in these the flaw can readily be found.

Unfortunately ideal elements, like the disembodied ghosts of
our imagination which can pass through each other, can turn
up in most complicated relationships to each other. And
transfinite elements cannot so easily be eliminated from such
complicated proofs.

Gentzen noticed that the actual complications turning up in
the proofs reminded him of the various complicated ways of
rearranging the sequence of natural numbers. If we apply
Hilbert’s method to such a complicated proof, the transfinite
elements do not disappear from it, but the proof'is turned into a
kind of deduction whose type of complication is similar to some
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less involved rearrangement of the sequence of numbers. The
same thing happens if we repeat Hilbert’s procedure, applying
it to this less complicated proof. We already know that by
progressing through less and less complicated ways of re-
arranging the sequence of natural numbers we arrive at a
sequence without any complications at all after a finite number
of steps. Therefore, using Hilbert’s procedure a finite number
of times, we should arrive at a proof without any complications
at all, i.e. at a proof which does not contain any transfinite
elements, and in such a proof the flaw can readily be found.

This is a beautiful and absolutely pure mathematical argu-
ment; the result, too, has enormous significance. Our con-
fidence in the old procedures can now be restored, at least in
the case of the theory of numbers. The majority of mathe-
maticians, i.e. those that do not even want to hear about the
dangers, still consider the theory of proof as something foreign
to them; they think of it as philosophy rather than Mathematics.
They recognize the raison d’étre of a new branch of Mathematics
only if it can be made use of creatively in other branches of
Mathematics as well. Hilbert wanted to show these people the
sort of things that the theory of proof is capable of, and he
subjected one of the greatest and best-known problems, the
continuum hypothesis of the theory of sets, to the methods of
the theory of proof.

The problem is the following: in the sphere of natural
numbers, arranged in order of magnitude, there is perfect
order. Every number has an immediately succeeding one, for
example, 4 comes directly after 3, 13 comes directly after 12.
This is utterly impossible in the case of fractions, we can always
find other fractions as near as we like to any given fraction.
This is even more so if we consider all the real numbers; these
stretch right along the line of numbers continuously, quite
inextricably coalescing with each other. This is why their
totality is usually referred to as the ‘continuum’.

We might ask the question about the totalities, introduced by
Cantor, whether each number is immediately followed by an-
other one. The answer to the question is in the affirmative;
from this point of view infinite numbers are similar to natural
numbers. The smallest infinite number is that of the natural
numbers. We might ask: which is the infinite number that
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immediately follows it? We know that the continuum, the
number of the real numbers, is greater. But is it the one that
follows it immediately, or is there perhaps another number
between the two? Much research at great depth has been done
in connexion with this question; mathematicians are more
and more inclined to believe that the continuum is the infinite
number that follows immediately the number of the sequence of
natural numbers. This is called the ‘Continuum hypothesis’,
or, as those who believe in it very fervently have called it, the
‘Continuum theorem’. But no one has got anywhere with it
yet.

In quite recent years Godel (using Hilbert’s ideas as his
starting point) has proved, using the tools of the theory of proof,
that assuming the continuum hypothesis to be true cannot
introduce any contradictions into the theory of sets. Therefore
the continuum theorem is either independent of the axioms of
the theory of sets, or it can be deduced from them. In either
case, we can justifiably make use of it in our proofs; it cannot
give rise to any contradictions. The proof is similar to the
proof of the freedom from contradiction of Bolyai’s Geometry;
Godel has constructed a model within the theory of sets, in
which both the axioms of the theory of sets and the continuum
theorem can get along very well side by side.

After this Hilbert was quite justified in saying to those that
still had their doubts about the theory of proof: ‘By their fruits
ye shall know them.’

Postscript on perception projected to infinity

The freedom from contradiction of the theory of natural
numbers is now assured, and the proof can easily be modified to
prove the freedom from contradiction of other countable sets,
i.e. of the set of positive and negative whole numbers, of the set
of fractions or more generally of the set of rational numbers.

We are still left with the set of real numbers, and here we
come across new difficulties.

We caught the irrational numbers by means of better and
better approximations, by shutting them up in smaller and
smaller boxes. So here we are dealing not only with the theory
of numbers but with analysis. Here infinite processes occur to
right and left all the time, and this brings in new typesof danger.
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When we were first speaking about this sphere of ideas I was
very careful to enunciate quite honestly the very dangerous
sentence on which the success or failure of analysis entirely
depends. The sentence was this: ‘Our perception tells us that
even if we go on indefinitely with the construction of intervals
each encased in the previous one, the bit to which they all
eventually shrink is a common part of them all.” How can our
perception say anything about an infinite process? Have we
perhaps forgotten that we have absolutely no right to apply our
experiences of the finite to the infinite? We might as well
consider another example, which could make us have second
thoughts about the matter.

There is no need to be a mathematician to realize that the
shortest distance between two points is a straight line. If
somebody flies from London to Birmingham, he will get there
sooner than if he makes a detour via Bristol:

BIRMINGHAM

- LONDON

BRISTOL

We can see from this immediately that two sides of a triangle
together are longer than the third side.

I am nevertheless going to show that the two sides of a
right-angled triangle are together exactly equal to the length of
the hypotenuse. This is patently stupid, but it is the kind of
thing that perception applied to infinite processes is capable of.

Let us draw two steps on the hypotenuse, so that their bound-
ing lines are parallel to the horizontal and the vertical sides
respectively:

It is obvious that the two vertical pieces on the steps, taken
together, are just as long as the vertical side of the triangle, the
two horizontal pieces taken together are just as long as the



JUDGEMENT BY METAMATHEMATICS 253

horizontal side. The total length of all the lines drawn to
represent the steps is equal to the sum of the lengths of the
vertical and horizontal sides.

The same is the case if we draw four steps

The horizontal pieces taken together are equal to the hori-
zontal side of the triangle, the vertical pieces are equal to the
vertical side.

And if we go on subdividing the hypotenuse

it remains true all the time that the length of the stairway is
equal to the lengths of the vertical and the horizontal sides
together. On the other hand, as we go on, it becomes less and
less possible to distinguish the stairway from the hypotenuse,
and ‘our perception tells us’ that if we go on with the sub-
division indefinitely, the stairway will coalesce with the hypot-
enuse. Accordingly the hypotenuse must be equal to the sum
of the other two sides.

After this we might have further thoughts about the relia-
bility of our perception when it is projected into infinity.

It is nevertheless true that the success or failure of analysis
depends entirely on that critical sentence. Either we believe it
without any basis for doing so, merely because we should like to
believe it, or else there is nothing for it but to turn to the
methods of the theory of proof. It will then be necessary to
consider whether such a statement can lead to a contradiction.

There are therefore further transfinite elements intruding
into the system of axioms of analysis. If we admit these, the
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system will be so wide that not only will the case of transfinite
induction used by Gentzen be included in it, but other and
much more complicated cases of it as well. Gédel’s theorem is
still true in this case: the freedom from contradiction of the
system cannot be proved by methods which can themselves be
formalized within the system considered. There can be there-
fore absolutely no hope that the methods used up to now will be
sufficient to prove the freedom from contradiction of analysis.
Here we must look for new methods, probably finer methods
than before. This is still an open question today for further
research to tackle.




22.  What i1s Mathematics not capable of?

THE proof of the freedom from contradiction of the theory of
numbers has shown up one of the imperfections of axiomization.
The transfinite induction employed there can be expressed in
the language of natural numbers, it is a procedure readily con-
ceivable by a finite mind. Nevertheless it has slipped out of
the framework of the system of axioms covering the theory of
natural numbers.

This is no unique phenomenon. There is no system of
axioms that can grasp quite tightly exactly what it is intended
to circumscribe. There will always be things that slip through
the net, and other things that turn up uninvited. Axiom
systems all grasp a lot, and yet they catch but a little.

The fact that axiom systems grasp a lot was shown by the
Norwegian mathematician Skolem.

If we want only to catch the sequence of natural numbers
with our axioms, i.e. the natural numbers in their original
order, some more complicated arrangements of this sequence
slip in uninvited, whether we like it or not. It is impossible to
separate them from these.

On the other hand if we wish to circumscribe exactly by
means of axioms a universe of discourse of greater number
than the countable, for instance the set of real numbers, then
there will always exist a countable set which somehow finds its
way in, which satisfies all the conditions represented by the
axioms.

It was Godel’s surprising discovery, namely the fact that any
axiom-system worthy of the name which covers the theory of
numbers includes problems which are undecidable, which
demonstrated that axiom-systems are capable of catching only a
little.

Let us consider the exact meaning of the latter statement.

There are plenty of problems in mathematics that up to
now have not been decided. I have already mentioned a
number of these. For example: are there an infinite number of
‘twin’ prime numbers? (as for instance 11 and 13, or 29 and 31).

255
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The Goldbach conjecture is likewise undecided. It has been
noticed that

i.e. it appears that even numbers greater than 2 can be expressed
as sums of prime numbers, sometimes in more ways than one.
This is true for the largest numbers that have been examined,
but even today it is still a conjecture whether it is true of all
even numbers.

Fermat’s conjecture is the one that has acquired the greatest
fame. We know that

32 4 42 =9 4 16 = 25 = 52
1.e. 32 1 42 =52

and there are other whole numbers besides these such that if we
square two of them and add the squares we obtain the square
of the third one as a result. Fermat, scribbling notes in the
margin of a book, made the remark that he had found a proof
that this was impossible for exponents greater than 2, only
there was no room for the proof on the margin. The statement
in other words is that it is impossible to think of three whole
numbers, X, Y, and < for which the relationship

X4 vs =28
or X4 Y= 2
or X® 4 Y5 = 29

would be the case.

Fermat has been dead for some time, and mathematicians
ever since have tried to reconstruct his proof, but right up to this
day not one of them has met with success. This lack of success,
in a case where somebody is reputed to have held the proof in
his hands, has aroused such interest about this intrinsically
rather uninteresting problem that there have even been some
wills in which substantial legacies have been bequeathed to
anyone who decides the issue. It is small wonder that this has
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aroused the imagination of non-professionals even more than
the squaring of the circle. Fortunately their ardour has been
somewhat damped now that the money bequeathed has lost all
its value.

This problem has nevertheless had a fertilizing effect on
Mathematics. It has led to the introduction of more ideal
elements, the so-called ‘ideals’, in order to get at the problem,
and these have proved very useful in the more important
branches of Algebra as well. But, even so, Fermat’s conjecture
has so far been proved only in the case of particular exponents;
in its generality it is still undecided even today. Fermat
probably made a mistake, he too probably found a proof only
for some special case.

But apart from these there are in Mathematics problems
which have been proved insoluble by means of certain cir-
cumscribed methods. These are problems which have been
decided, but in the negative. Such a problem was, for instance,
the solubility of equations of the fifth degree or the effective
squaring of the circle. The trisection of an angle and the
doubling of the cube also belong to this category of problems.
It has been decided that these cannot be effected by means of
ruler and compass alone. We can bisect an angle by means of
these instruments, but we cannot divide one into three equal
parts. The doubling of the cube corresponds to the doubling
of our fishpond in three-dimensional space. In the plane we
were able to construct the side of the large square with ruler
and compass; in three-dimensional space the construction of
the edge of a cube whose volume is twice as much as the
volume of a given cube is not possible by means of the permitted
instruments. This problem is often referred to as the problem
of Delos, since the gods apparently required of the people of
Delos, who were stricken by plague, to double the size of their
altar, which was in the shape of a cube. All the good will in
the world was of no avail. Plato later consoled them by telling
them that the gods were really using the problem as a means of
urging on the Greeks the virtues of studying Geometry.

Godel’s theorem, on the other hand, is not about problems
which have up to now not been solved, or decided in the nega-
tive, but about problems which are undecidable within the
relevant system of axioms.
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Let us sketch Gadel’s argument.

Suppose that we have a well-constructed system of axioms
for the science of natural numbers, i.e. for the theory of
numbers. In the axioms we have included everything that we
are going to need in this field. Of course we have taken care
not to bring any contradictions into the system. We have
written it all down in the language of symbolic logic, and so
every statement assumes the form of a succession of symbols.

Now we can associate a number with every one of these
successions of symbols in the same way as we associated pairs
of numbers with points in the plane. This may be done in the
following way: we have a finite number of mathematical and
logical symbols; let us associate the first few prime numbers with
these (this time 1 can be included among the prime numbers).
For example, let 1 correspond to itself. We shall not need any
further symbols for numbers after this, since we can write 2 by
writing 1 + 1, 3 by writing 1 + 1 + 1 and so on. Let 2 be
associated with the symbol ‘=’; let 3 be associated with the
symbol meaning ‘not’, i.e. with ‘~’; 5 may be associated with
the symbol ‘4’ and so on. It makes no difference in what
order we do this; let us say that 17 corresponds to the last
symbol. Then let the prime numbers beginning with 19 be
associated with the letters signifying unknowns like X, Y, ...
since these occur in the statements of the system. For example,
19 could correspond to X, 23 to ¥ and so on.

In this way we obtain a ‘dictionary’:

... 0] We can read from this straight-
= 2 away that for example the three
~ 3 numbers

+ 5 1,21
———————— correspond to the formula

X . . . . .19 1 =1

Y 23

Let us make a single number out of the three numbers 1, 2, 1.
This can naturally be done quite easily and in many different
ways. For example we could add the three numbers, and we
should then get 4. The trouble is that this 4 has swallowed the
other numbers. It is impossible to see what numbers went to
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make up this 4, in what order they were, or even how many.
For example, 4 might have been

1+3, 0or3+1,0or2+4+2 0or14+14+2 0or2+1+1,

certainly not only

1 +2+1
What we want to do is to construct a number in which we could
recognize exactly the parts that went to make it. There is a
way of doing this: for example we can multiply the first three
prime numbers

2, 3 5
each one raised to the power determined by the numbers
1, 2, 1

In this way we construct the following product:
2 x 3 x5 =10x3=10x9 =290

R ———

So we associate the number
90
with the formula
1=1
From our number it is easy to recognize the formula with which
it is associated. All we have to do is to split it into its prime
factors in order of magnitude:

90 =2 x 45
=2 x3x15
=2x3x3x3
=2! x 3% x 5
and so the prime numbers
1, 2, 1
have again appeared as exponents, and with these are associated
the symbols
I, =,1
in the ‘dictionary’, so from the number 90 we can correctly
write down the formula associated with it, namely the formula

1 = 1

With every statement in the system, then, is associated
a number. Similarly with every proof we can associate a
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number. A proof is, looked at formally, nothing more than a
succession of statements (in which each statement follows from
the preceding ones). Numbers have been associated with
statements, and so, if for example a proof consists of three
statements, then three numbers will correspond to it. These
three numbers can be made into a single number by using the
previous method, and it will always be possible to discern the
constituent part of this number; all we have to do is to split it
into its prime factors.

Supposing that we know that some very large number has
already occurred among the list of associated numbers, and
further that we have the patience of Job to split it into prime
factors, giving say:

290000000000000000000 X 390

Firstly we can see that the exponents are not prime numbers,
and so these do not correspond to a simple statement but to a
proof. The proof consists of two statements, namely the state-
ments whose associated numbers are the numbers

90 000 000 000 000 000 000
and
90

which occur in the exponents. If we split these two numbers
into their prime factors, we can then reconstruct the state-
ments that correspond to them. In the first one there are
nineteen zeros, so that this number is

9 x 10 = 32 x 10" = 32 x 2! x 51

since 10 = 2 x 5. Arranging the bases according to size, we
have

219 X 32 X 519
so the numbers occurring in the exponents are
19, 2, 19
The factors of the second number are already known to us,
90 = 2! x 3* x 5
so this was constructed out of the three numbers
I, 2, 1
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The ‘dictionary’ is set down again for convenience:

1 We can read out of it that the
2 first three numbers,

3 ie. 19,2, 19
e 5 correspond to the formula
——————— — X=X

X . . . . . D and the second three numbers,
Y 23 i.e. 1,2, 1
——————— — correspond to the formula

1 =1

Then what the proof told us is:
If for any arbitrary X we have

X=X

it follows that
1 =1

This is really a miserable little proof, while the number
associated with it was of astronomical size. We can imagine
how enormous a number might be associated with a proof of
some consequence. The essential point, however, is that we
know that there is a certain definite number associated with it,
and from this number the proof can be reconstructed (not
within a lifetime, but at least in principle).

This is one way in which the formulae of a system can be
translated into certain natural numbers. But what is the use
of it all?

Metamathematics examines the system from the outside; its
statements are about formulae or proofs of such-and-such
forms in the system. Now these statements can be transformed
with the aid of our ‘dictionary’ so that they concern natural
numbers with such-and-such prime factors.

For example while metamathematics is busy examining the
formulae of the system which are expressible in terms of the
symbols of the system it takes note that the successions of
symbols

1 =1
and ~(l=1)
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must be dealt with rather gingerly, since one is the negation of
the other. We have already seen that to
1 =1
corresponds 2! x 3% x 5' =90
According to the ‘dictionary’ (apart from the brackets them-

selves being symbols, we ought really to associate some numbers
with these too)

1 1 the sequence
- 2 31,21
~ 3 corresponds to the formula
: 5 ~(1=1)
and

2, 3, 5 7

being the first four prime numbers, the number corresponding
to this formula is the number

22 x 31 x5 x 7
Let us work out this number.
BXFPxPxT=2Xx2x2xFIx5%x5x7
{ J
=10 x 10 x2 x3 x7=100 x 42 =4200

Let us put the decompositions into prime factors next to each
other:

90 = 2% x 3% x 5!
49200 = 28 x 3 x 52 x 71
Therefore we can reformulate the metamathematical statement:
“The successions of symbols of the forms

l=1and ~(1 =1)
express the contraries of each other’ in the following way:

‘90 and 4200 are numbers which are such that the decomposi-
tion into prime factors of the latter begins with 2%, and the
exponents of the prime numbers coming after this are the same
as the exponents figuring in the prime decomposition of 90.”

In the last sentence there is no trace of metamathematics, it is
a statement about numbers. The system considered has the
avowed purpose of formulating statements about numbers.
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Thus this sentence can also be written down by means of the
symbols of the system considered, so that not a single word will
remain in it. It will become one of the ordinary grey suc-
cessions of symbols; it is not immediately obvious that it has
two interpretations. But it has, in fact, two different inter-
pretations; it can be read as two different texts. One is a
text which says something about numbers, which can be ob-
tained from any formula of the system, if we remember the
original contents of the symbols, The other text is the meta-
mathematical statement which it embodies.

As Godel was playing about with such successions of symbols
that had two interpretations, he came across a number, say 8
billion. We know exactly how it is built up out of its prime
factors, but a whole lifetime would not be long enough for its
actual computation. Gédel noticed that this number is able
to give the following information. If, using the symbols of the
system in the way we did in the case of the sentence just dis-
cussed, we write down the mathematical statement:

“The formula corresponding to 8 billion is not provable in
the system’

and inquire for the number which corresponds to the formula
thus obtained according to the dictionary, we shall find to our
amazement that this number is just 8 billion. So ‘the formula
corresponding to 8 billion’ is the same formula. So the state-
ment states in one of its senses:

‘I am not provable’

Let us make it quite clear that this is no playing with words, nor
any kind of sophistry. There is an ordinary grey formula in
front of us, undeniably a succession of symbols, just like the
others. It is only when we see, with the aid of our ‘diction-
ary’, the double meaning which has been smuggled into this
succession of symbols by metamathematics that we notice that
it is humming the following tune, looking all innocent:

‘I am not provable’

It is small wonder that this formula is undecidable within the
system, in spite of expressing an innocent number theoretical
statement through its other meaning.
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If it could be proved, then it would be in contradiction to
what its metamathematical meaning asserts, namely just that it
is not provable.

If, on the other hand, it could be disproved, then it would be
this disproof which would establish the metamathematical
statement contained in it. So its disproof would be its proof.

So it is impossible to prove it or to disprove it. It is un-
decidable.

It must be emphasized again that if we did not remember the
‘dictionary’ this would be an ordinary grey formula of the
system, some quite innocent number theoretical statement
about additions and multiplications. Godel proved the
existence of undecidable formulae of this kind in every system.
It is not impossible that the Goldbach conjecture may be
among them. Quite possibly the reason why it has not been
found possible to decide the issue is that if we set up a system of
axioms out of all the tools used by those who have attempted to
settle this conjecture, it may happen that through the ‘dic-
tionary’ it would just be humming:

‘I am not provable within the system’

The same applies to any other problem which has not yet
been solved. Every mathematician must look this possibility
in the face.

There might be one more objection to all this. The trouble
might be due to imperfection in axiom systems. Surely even
such ‘Gédel problems’ can be decided if we do not restrict
ourselves to any particular axiom-system. But now Church
has constructed a problem which is not decidable by means of
any of the arguments that mathematicians today can think of,
quite independently of whether these arguments can be
circumscribed by means of any axiom-system.

This is where I must stop writing. We have come up
against the limits of present-day mathematical thinking. Our
epoch is the epoch of increasing consciousness; in this field
Mathematics has done its bit. It has made us conscious of the
limits of its own capabilities.

But have we come up against final obstacles Up to the
present there has always been a way out of all the culs-de-sac
encountered in the history of mathematics. There is one point
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about Church’s proof which we might do well to ponder over: it
would be necessary to formulate quite precisely what the argu-
ments are that mathematicians today can think of, if we wanted
to employ the processes of Mathematics in connexion with such
a concept. The moment something is formulated, it is already
circumscribed. Every fence encloses a narrow space. The
undecidable problems that turn up manage to get through the
fence.

Future development is sure to enlarge the framework, even if
we cannot as yet see how. The eternal lesson is that Mathe-
matics is not something static, closed, but living and developing.
Try as we may to constrain it into a closed form, it finds an
outlet somewhere and escapes alive.
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