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Introduction

I have written this book mainly for students who will need to apply maths in science or
engineering courses. It is particularly designed to help the foundation or first year of such
a course to run smoothly but it could also be useful to specialist maths students whose
particular choice of A-level or pre-university course has meant that there are some gaps in
the knowledge required as a basis for their University course. Because it starts by laying the
basic groundwork of algebra it will also provide a bridge for students who have not studied
maths for some time.

The book is written in such a way that students can use it to sort out any individual
difficulties for themselves without needing help from their lecturers.

A message to students

I have made this book as much as possible as though I were talking directly to you about the
topics which are in it, sorting out possible difficulties and encouraging your thoughts in
return. I want to build up your knowledge and your courage at the same time so that you are
able to go forward with confidence in your own ability to handle the techniques which you
will need. For this reason, I don’t just tell you things, but ask you questions as we go along
to give you a chance to think for yourself how the next stage should go. These questions are
followed by a heavy rule like the one below.

It is very important that you should try to answer these questions yourself, so the rule is
there to warn you not to read on too quickly.

I have also given you many worked examples of how each new piece of mathematical
information is actually used. In particular, I have included some of the off-beat non-standard
examples which I know that students often find difficult.

To make the book work for you, it is vital that you do the questions in the exercises as
they come because this is how you will learn and absorb the principles so that they become
part of your own thinking. As you become more confident and at ease with the methods, you
will find that you enjoy doing the questions, and seeing how the maths slots together to solve
more complicated problems.

Always be prepared to think about a problem and have a go at it — don’t be afraid of
getting it wrong. Students very often underrate what they do themselves, and what they can
do. If something doesn’t work out, they tend to think that their effort was of no worth but
this is not true. Thinking about questions for yourself is how you learn and understand what
you are doing. It is much better than just following a template which will only work for very
similar problems and then only if you recognise them. If you really understand what you are
doing you will be able to apply these ideas in later work, and this is important for you.

Because you may be working from this book on your own, I have given detailed solutions
to most of the questions in the exercises so that you can sort out for yourself any problems
that you may have had in doing them. (Don’t let yourself be tempted just to read through my
solutions — you will do infinitely better if you write your own solutions first. This is the most
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important single piece of advice which I can give you.) Also, if you are stuck and have to
look at my solution, don’t just read through the whole of it. Stop reading at the point that
gets you unstuck and see if you can finish the problem yourself.

I have also included what I have called thinking points. These are usually more open-
ended questions designed to lead you forward towards future work.

If possible, talk about problems with other students; you will often find that you can help
each other and that you spark each other’s ideas. It is also very sensible to scribble down your
thoughts as you go along, and to use your own colour to highlight important results or
particular parts of drawings. Doing this makes you think about which are the important bits,
and gives you a short-cut when you are revising.

There are some pitfalls which many students regularly fall into. These are marked

to warn you to take particular notice of the advice there. You will probably recognise some
old enemies!

It often happens in maths that in order to understand a new topic you must be able to use
earlier work. I have made sure that these foundation topics are included in the book, and I
give references back to them so that you can go there first if you need to. I have linked topics
together so that you can see how one affects another and how they are different windows
onto the same world. The various approaches, visual, geometrical, using the equations of
algebra or the arguments of calculus, all lead to an understanding of how the fundamental
ideas interlock. I also show you wherever possible how the mathematical ideas can be used
to describe the physical world, because I find that many students particularly like to know
this, and indeed it is the main reason why they are learning the maths. (Much of the maths
is very nice in itself, however, and I have tried to show you this.)

I have included in some of the thinking points ideas for simple programs which you could
write to investigate what is happening there. To do this, you would need to know a
programming language and have access to either a computer or programmable calculator. I
have also suggested ways in which you can use a graph-sketching calculator as a fast check
of what happens when you build up graphs from combinations of simple functions.
Although these suggestions are included because I think you would learn from them and
enjoy doing them, it is not necessary to have this equipment to use this book.

Much of the book has grown from the various comments and questions of all the students I
have taught. It is harder to keep this kind of two-way involvement with a printed book but no
longer impossible thanks to the Web. I would be very interested in your comments and
questions and grateful for your help in spotting any mistakes which may have slipped through
my checking. You can contact me via my website and I look forward to putting little additions
on the Web, sparked by your thoughts. My website is at http://www.mathssurvivalguide.com

Finally, I hope that you will find that this book will smooth your way forward and help
you to enjoy all your courses.

j% Clhwve
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Introduction to the second edition

I have thoroughly revised all the ten chapters in the original edition, both making some
changes due to comments from my readers and also checking for errors. I've also added a
chapter on vectors which continues naturally from the present chapter on complex
numbers.

I wrote the first version of this new chapter as an extension to the book’s website (which
is now at http://www.mathssurvivalguide.com) building up the pages there gradually. Their
content was influenced by emails from visitors, often with particular problems with which
they hoped for help. I’ve now extensively rewritten and rearranged this material. Writing in
book form, it was possible to structure the content much more closely than on the Web so
that it’s easy to see the connections between the different areas and how results can be
applied to later problems. The new chapter also has, of course, many practice exercises with
complete solutions just as the earlier chapters have.

I’'m once again very grateful to Rodie and Tony Sudbery and to David Olive for their
helpful suggestions and comments. I must also thank all the people who emailed me, both
with comments on the original ten chapters, and also with particular needs in using vectors
which I’ve tried to fulfil here.

I hope that this two-way communication will continue. You can email me from the book’s
website if you would like to. Finally, I once again hope that this book will help you and
encourage you with your studies.

j% Clhwve
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1

Basic algebra: some reminders of
how it works

In many areas of science and engineering, information can be made clearer and

more helpful if it is thought of in a mathematical way. Because this is so, algebra is

extremely important since it gives you a powerful and concise way of handling

information to solve problems. This means that you need to be confident and

comfortable with the various techniques for handling expressions and equations.
The chapter is divided up into the following sections.

1.A Handling unknown quantities

(@) Where do you start? Self-test 1, (b) A mind-reading explained,

() Some basicrules, (d) Working out in the right order, () Using negative numbers,
(f) Putting into brackets, or factorising

1.B Multiplications and factorising: the next stage
(@) Self-test2, (b) Multiplying out two brackets,
(©) More factorisation: putting things back into brackets

1.C Using fractions

(@) Equivalent fractions and cancelling down, (b) Tidying up more complicated fractions,
() Adding fractions in arithmetic and algebra, (d) Repeated factors in adding fractions,
(e) Subtracting fractions, (f) Multiplying fractions, (g) Dividing fractions

1.D The three rules for working with powers
(@) Handling powers which are whole numbers, (b) Some special cases

1.E The different kinds of numbers

(@ The counting numbers and zero, (b) Including negative numbers: the set of integers,
(© Including fractions: the set of rational numbers,

(d) Including everything on the number line: the set of real numbers,

(e) Complex numbers: a very brief forwards look

1.F Working with different kinds of number: some examples

(@) Other number bases: the binary system, (b) Prime numbers and factors,
() A useful application — simplifying square roots,

(d) Simplifying fractions with / signs underneath

1.A

Handling unknown quantities

1.A.(a)

Where do you start? Self-test 1

All the maths in this book which is directly concerned with your courses depends on a
foundation of basic algebra. In case you need some extra help with this, I have included two
revision sections at the beginning of this first chapter. Each of these sections starts with a

short self-test so that you can find out if you need to work through it.

It’s important to try these if you are in any doubt about your algebra. You have to build
on a firm base if you are to proceed happily; otherwise it is like climbing a ladder which has
some rungs missing, or, more dangerously, rungs which appear to be in place until you tread

on them.
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Self-test 1
Answer each of the following short questions.

(A)

(B)

©

(D)

(E)

Find the value of each of the following expressions ifa=3,b=1,c=0and d = 2.
(1) a? (2) b? (3) ab+d 4) ab+d) (5) 2¢ + 3d
6) 2> (7) (2a)? (8) 4ab +3bd (9) a+ bc (10) d°

Find the values of each of the following expressions if x =2, y=-3, u=1,v=-2,
w=4andz=-1.

(1) 3xy (2) 5wy (3) 2x + 3y + 2v 4) v? (5) 3z2

©® w+vy () 2x-5mw (8 y-3v+2z-w (9 2* (10) 23

Simplify (that is, write in the shortest possible form).
(1) 3p-2q+p+q  (2) 3p*+2pq—q*>~Tpg  (3) 5p—Tq—2p-3q+3pq

Multiply out the following expressions.
(1) 52g+3h) (2) gB8g—2h) (3) 3k*>(2k—5m+2n) (4) 3k—(2m+3n—>5k)

Factorise the following expressions.
(1) 3x2 + 2xy (2) 3pg + 642 (3) 5x%y — Txp?

1.A.(b)

Here are the answers. (Give yourself one point for each correct answer, which gives a
maximum possible score of 30.)

(A)
(B)
©
(D)
(E)

M9 @1 B)5 49 (5)6 (6)18 (7)36 (8) 18 (9) 3 (10) 8
()-18 (2)30 (3)-9 #4 (53 (6)10 ()44 (8)—6 (9)18 (10)-1
(1) 4p—q (2) 3p*>-5pg —q> (3) 3p—10q + 3pq

(1) 10g + 15k (2) 3g>—2gh (3) 6k — 15k2m + 6k>n  (4) 8k — 2m — 3n

(D) xBx +2y) (2) 3q(p +29) () x(5x=Ty)

If you scored anything less than 25 points then I would advise you to work through
Section 1.A. If you made just the odd mistake, and realised what it was when you saw the
answer, then go ahead to Section 1.B. If you are in any doubt, it is best to go through Section
1.A. now; these are your tools and you need to feel happy with them.

A mind-reading explained
Much of what was tested above can be shown in the handling of the following. Try it for
yourself. (You may have met this apparently mysterious kind of mind-reading before.)

(1
2)
3)
“4)
)
(6)
(7

Think of a number between 1 and 10. (A small number is easier to use.)
Add 3 to it.

Double the number you have now.

Add the number you first thought of.

Divide the number you have now by 3.

Take away the number you first thought of.

The number you are thinking of now is . .. 2!
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1.A.(c)

How can we lay bare the bones of what is happening here, so that we can see how it is
possible for me to know your final answer even though I don’t know what number you were
thinking of at the start?

It is easier for me to keep track of what is happening, and so be able to arrange for it to
go the way I want, if I label this number with a letter. So suppose I call it x. Suppose also
that your number was 7 and we can then keep a parallel track of what goes on.

You Me
(nH 7 by
2) 10 x +3 (My unknown number plus 3.)
3) 20 2(x + 3) =2x + 6 (Each of these show the doubling.)
4) 27 2x+ 6 +x=3x+6 (Iadd in the unknown number.)
o) 9 3x3+ S—x+2 (The whole of 3x + 6 is divided by 3.)

o) 2 2 (The x has been taken away.)

Both your 7 and my x have been got rid of as a result of this list of instructions.
My list uses algebra to make the handling of an unknown quantity easier by tagging it
with a letter. It also shows some of the ways in which this handling is done.

Some basic rules
There are certain rules which need to be followed in handling letters which are standing for
numbers. Here I remind you of these.

Adding
a + b means quantity ¢ added to quantity b.

a+a+b+b+b=2a+ 3b Here, we have twice the first quantity and three times the
second quantity added together. There is no shorter way of writing 2a + 3b unless we know
what the letters are standing for.

We could equally have said b + a for @ + b, and 3b + 2a for 2a + 3b. It doesn’t matter
what order we do the adding in.

Multiplying
ab means a X b (that is, the two quantities multiplied together) and the letters are usually,
but not always, written in alphabetical order.

In particular, a X 1 =a,and a X 0 =0.
S5ab would mean 5 X a X b.

It doesn’t matter what order we do the multiplying in, for example 3 X 5=15 X 3.

Working out powers
If numbers are multiplied by themselves, we use a special shorthand to show that this is
happening.
a? means a X a and is called a squared.
a® means a X a X a and is called a cubed.

a” means a multiplied by itself with » lots of a and is called a to the power 7.

Little raised numbers, like the 2, 3 and n above, are called powers or indices. Using these
little numbers makes it much easier to keep a track of what is happening when we multiply.
(It was a major breakthrough when they were first used.) You can see why this is in the
following example.
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EXERCISE 1.A.1

Suppose we have a? X a>.
Thena’=a X aanda’>=a X aXasoa>Xa*=aXaXaXaXa=a’.
The powers are added. (For example, 22 X 23 =4 X 8 =32 =25)

We can write this as a general rule.

a X q™m=qg"tm
where a stands for any number except 0
and n and m can stand for any numbers.

In this section, #n and m will only be standing for positive whole numbers, so we can see
that they would work in the same way as the example above.

To make the rule work, we need to think of @ as being the same as a'. Then, for example,
a X a?>=a' X a® = a® which fits with what we know is true, for example 2 X 2% = 23 or
2 X 4=8.

Also, this rule for adding the powers when multiplying only works if we have powers of
the same number, so 22 X 23 =2 and 7> X 73 = 7° but 22 X 73 cannot be combined as a
single power.

If we have numbers and different letters, we just deal with each bit separately, so for
example 3a%b X 2ab> = 6a3b*.

Working out mixtures — using brackets
a + bc means quantity a added to the result of multiplying b and c¢. The multiplication of b
and ¢ must be done before « is added.

Ifa=2andb=3andc=4thena+bc=2+3 X4=2+12=14.

If we want a and b to be added first, and the result to be multiplied by ¢, we use a bracket
and write (a + b)c or c(a + b), as the order of the multiplication does not matter. This gives
aresult of 5 X 4 =4 X 5=20.

A bracket collects together a whole lot of terms so that the same thing can be done to all
of them, like corralling a lot of sheep, and then dipping them. So a(b + ¢) means ab + ac.
The a multiplies every separate item in the bracket.

Similarly, 2x(x + y + 3xy) = 2x2 + 2xy + 6x2y. The brackets show that everything inside
them is to be multiplied by the 2x. It is important to put in brackets if you want the same
thing to happen to a whole collection of stuff, both because it tells you that that is what you
are doing, and also because it tells anyone else reading your working that that is what you
meant. Many mistakes come from left-out brackets.

Here is another example of how you need brackets to show that you want different
results.

If a = 2 then 3a® =3 X 2 X 2 =12 but (3a)? = 6% = 36. The brackets are necessary to
show that it is the whole of 3a which is to be squared.

Try these questions yourself now.

(1) Put the following together as much as possible.

(@ 3a+2b+5a+7c-b-4c (b) 3ab + b + 5a + 2b + 2ba

() 7p +3pg-2p +2pq +8q (d) 5x+2y—3x+Xxy+3y+2xy
(2) Ifa=2and b =1, find

@@ a*> (b) 5a*> () (5a)> (d) b> (e) 2a® + 3b?
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1.A.(d)

EXERCISE 1.A.2

(3) Multiply the following together.
@ (@9)@By) () Bx*)(xy) (c) 3(2a +3b) (d) 2a(3a + 5b)
(e) 2p(3p* + 2pq + %) (F) 2x® 3x + 2xy + y?)

Working out in the right order
If you are replacing letters by numbers, then you must stick to the following rules to work
out the answer from these numbers.

(1) In general, we work from left to right.

(2) Any working inside a bracket must be done first.

(3) When doing the working out, first find any powers, then do any multiplying and
dividing, and finally do any adding and subtracting.

Here are two examples.

EXAMPLE (1) Ifa=2,b=3,c=4and d = 6, find 3a(2d + bc) — 4c.

Find the inside of the bracket, whichis2 X 6 +3 X 4 =12 + 12 = 24.
Multiply this by 3a, giving 6 X 24 = 144.

Find 4c, which is 4 X 4 = 16.

Finally, we have 144 — 16 = 128.

EXAMPLE (2) Ifx=2,y=3,z=4and w = 6, work out the value of x(2y? — z) + 3w?.

We start by working out the inside of the bracket.
Find y? which is 9.

The bracket comes to 2 X 9 — 4 = 14.
Multiply this by x, getting 28.

w? =62 =36 so 3w? = 108.

Finally, we get 28 + 108 = 136.

Now try the following yourself.

(1)) fa=2,b=3,c=4,d=r5 and e = o find the values of:
@) ab + cd (b) abze (c) ab3d (d) (abd)? (e) a(b + cd)
(f) ab?d +c® (g) ab+d-c (h) alb+d)-c

(2) Multiply out the following, tidying up the answers by putting together as much
as possible.
(@) 3x(2x + 3y) + 4y(x + 7y) (b) 5p(2p +39) + g*(3p + 59) + pq(p + 2q)
Check your answers to these two questions, before going on.
Questions (3) and (4) are very similar to (1) and (2) and will give you some
more practice if you need it.

3) fa=3,b=4,c=1,d=r5 and e = o find the values of:
(@ a> () 3b2 (c) 3b)> (d) c2 (e) ab+c (f) bd-—ac (g) b(d-ac)
(h) d*- b2 @ d-b)d+b) () d>+b> (k) (d+b)(d+Db)
) a3b + cd (m) se(@®>-3b%  (n) a’® +d°
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(4) Multiply out and collect like terms together if possible:
(@) 3a(2b + 3¢) + 2a(b + 5¢) (b) 2xy(3x2 + 2xy + y?)
(0 5p(2p +3q) +29Bp +q)  (d) 2¢* (3¢ + 2d) + 5d? (2c + d)

1.A.(e) Using negative numbers
We shall need to be able to do more complicated things with minus signs than we have met
so far, so here is a reminder about dealing with signed numbers.

Ordinary numbers, such as 6, are written as +6 in order to show that they are different
from negative numbers such as —5. If the sign in front of a number is +, then it can
sometimes be left out. (We don’t speak of having +2 apples, for example.) A negative sign
can never be left out, in any working combination of numbers.

One way of understanding how signed numbers work is to think of them in terms of
money. Then +2 represents having £2, and —3 represents owing £3, etc.

So using brackets to keep each number and its sign conveniently connected, we have
for example:

(+2) + (+5) = (+7) Ordinary addition.

(-3) + (-7) = (-10)  Adding two debts.

(+4) + (-9) =(-5)  You still have a debt.

(+3) = (=7) = (+10)  Taking away a debt means you gain.

The same idea carries through to multiplication (which can be thought of as repeated
addition, so 3 X 2 means 3 lots of 2, or adding 2 to itself three times).
Some examples are:

(+2) X (=3)= (-6) Doubling a debt!

(=3) X (+5)=(-15)  Taking away 3 lots of 5.
(=3) X (-7)= (+21)  Taking away a debt of 7 three times.

The rule for multiplying signed numbers

Two signs which are the same give plus and two different signs give minus.

Here are two examples of this in action.

(1) 3a—-2(b—2a)+7b=3a—-2b+4a+7b="Ta+ 5b.
2 2p-(p+2q—m).
Here, you can think of the minus sign outside the bracket as meaning —1, so that when

the bracket is multiplied by it, all the signs inside it will change.
Weget2p—p—2g+m=p—2q+m.

EXERCISE 1.A.3 Now try the following questions.

Multiply out the following, tidying up the answers as much as possible.

(1) 2x-(x-2y) + 5y (2) 4B3a - 2b) - 6(2a - b)

(3) 6(2c +d) -2Bc-d) +5 (4) 6a-2(3a-5b) - (a + 4b)
(5) 3x(2x - 3y + 22) - 4x(2x + 5y - 32)  (6) 2xy(3x — 4y) - 5xy(2x - y)
(7) 2a*(3a - 2ab) - 5ab(2a - 4ab) (8 -3p-(+q) +29(p-3)
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1.A.(f) Putting into brackets, or factorising
The process described in the previous section can be done in reverse, so, for example,
xy +xz=x(y + z).
This reverse process is called factorisation and x is called a factor of the expression, that
is, something you multiply by to get the whole answer, just as 2, 3, 4, 6 are all factors of
12. We can say 12 =3 X 4 =2 X 6. Each factor divides into 12 exactly.
Here are three examples showing this process happening.

(1) 3a? + 2ab = a(3a + 2b). This is as far as we can go.
(2)  3p?%q + 4pg® = pq (3p + 4q) factorising as much as possible.
(3) 4a’*b? — 6a’b? = 2a’b*(2b — 3a) factorising as far as possible.

xy+x=x(y+1) not x(y+0) because x X 1=x but x X 0=0.

It is useful to remember that factorisation is just the reverse process to
multiplying out. If you are at all doubtful that you have factorised correctly,
you can check by multiplying out your answer that you do get back to what
you started with originally.

Here’s an example.
If you factorise 3¢? + 2cd + ¢, which of the following gives the right answer?

(1) 3c(c+2d+1) (2) cBc+2d) (3) c(3c+2d + 1).

Multiplying out gives (1) 3¢?+6cd + 3¢ (2) 3c?>+2cd and (3) 3c¢?+2cd+cso(3)is
the correct one.

EXERCISE 1.A.4 Factorise the following yourself, taking out as many factors as you can.
(1) 5a + 10b (2) 3a2 + 2ab (3) 3a% - 6ab
(4) 5xy + 8xz (5) 5xy —10xz (6) a®b + 3ab?
(7) 4pq® - 6p3q (8) 3x%y3 + 5x3y?

(9) 4p3q + 2pg? - 6p2q> (10) 2a3b3 + 3a3b? - 6a>b?

1.B Multiplications and factorising: the next stage

1.B.(a) Self-test 2
This section also starts with a self-test. It is sensible to do it even if you think you don’t have
any problems with these because it won’t take you very long to check that you are in this
happy state. It’s a good idea to cover my answers until you’ve done yours.

(A) Multiply out the following
(1) 2x +3y) (x + 5p) (2) (3a —5b)2a - b) (3) (Bx +2)?
4) 2y -5)? (5) 2p* + 3pq)(q® - 2pq)

1.B Multiplications and factorising: the next stage 11



Factorise the following.
B) (1) x*2+9%+14 (2)y>+8+12 (@B)x*>+8&+16 @) p>+13p+22
(© (1) 2x*2+7x+3 (2)3a*+16a+5 (3) 3b2+10b+7 (4) 5x* + 8x + 3
M) (1) x*2+x-2 (2) 2a>+a-15 (3) 2x2+5x—-12 (4) p?-4?
(5) 6y2—19y + 10 (6) 4x? — 81y? (7) 6x2-19x+10 (8) 4x> - 12x+9

1.B.(b)

As in the first test, give yourself one point for each correct answer so that the highest total
score is 21. Again, if you got 16 or less, work through this following section.

If you are in any doubt, it is much better to get it sorted out now, because lots of later
work will depend on it.

These are the answers that you should have.

(A) (1) 222+ 13y +15y% (2) 64— 13ab+5b> (3) 9x2+12x+4
(4) 492 -20y+25  (5)3pg>—4p q—4p*q?
B) (1) &x+2)(x+7) 2)(+t2)(y+6) (3) (x+4) 4 @p+2)(p+11)
©) ()QRx+Dx+3) Q) Ba+)a+5)  3)GBb+7)b+1) (4) (5x+3)x+1)
D) 1) x+2)(x-1) (2) 2a-5)(a+3) B)2x-3)x+4) D @E-9p+tq)
(5) By—2)2y-5)  (6) (2x—9)(2x+9y) (7) Bx—2)2x—5) (8) 2x—3)

Multiplying out two brackets
To multiply out two brackets, each bit of the first bracket must be multiplied by each bit of
the second bracket, so

(a+b)c+d)=ac+ bd+ ad+ bc.

The ac + bd + ad + bc can be written in any order.
You could also think of this process, if you like, as

(a+b)ct+d)y=alc+d)+ blc+d) =ac+ad+ bc+ bd.
You can see this working numerically by putting a = 1, b =2, c =3 and d = 4.

(a+b)(c+td)y=(1+2)3+4)=3X7=21
and
ac+ad+bc+bd=3+4+6+8=21.

Also, you can see that the order of doing the multiplying doesn’t matter, since
ac+bd+bc+ad=3+8+6+4=21 too.

Figure 1.B.1 shows this process happening with areas. (a + b)(c + d) gives the total area of
the rectangle.

/////// 7

//////
Figure 1.B.1

b
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Exactly the same system is used to work out (a + 5)>. We have
(@a+b?=(a+b)a+b)=a>+ab+ab+ b?>=a’+ 2ab + b?

We can see this working in Figure 1.B.2.

Figure 1.B.2

We can see the two squares and the two same-shaped rectangles.

Don’t forget the middle bit of 2ab.

The diagram shows that (a + b)? is not the same thing as a? + b2. In a similar way, we have
(a—b)*=(a—b)a-b)=a*-2ab+ b2

What happens if the signs are opposite ways round, so we have (a + b)(a — b)?

We get
(a + b)a-b)=a?*-b?
because the middle bits cancel out.

This result is called the difference of two squares.

You need to be good at spotting examples of this because it is of very great importance
in simplifying and factorising in many different situations.
To help you to get good at this, here are some further examples.

Put back into two brackets (1) x? — 9y?, (2) 49a> — 64b°.

The answers are (1) (x + 3y)(x — 3y) and (2) (7a + 8b)(7a — 8b).
Check these are true by multiplying them back out, and then try the following ones for
yourself.

() x%2-y% (2) 4a>-9b> (3) 16p? —9g°> (4) 16a> —25b* (5) 36p* — 100g°
|
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These are the answers that you should have.

(D) (& +y)x —y) (2) (2a + 3b)(2a - 3b) () (4p +39)(4p — 3q)
(4) (4a + 5b)(4a — 5b) (5) (6p + 10g)(6p — 10q)

In each case, the brackets can equally well be written the other way round since the letters
are standing for numbers.
Here is a more complicated example of multiplication of brackets.

(3x + xp)xy + y?) = 3x%y + x%* + 3xp® + xp°

Again, the basic strategy is the same. Each bit or chunk of the first bracket is multiplied
by each bit or chunk of the second one.
(This can be checked by putting x = 2 and y = 3. Each side should come to 180.)

EXERCISE 1.B.1 Multiply out the following pairs of brackets.
(1) x+2)(x +3) (2 (@a+3)a-4) () x-2)(x-3)
4 P+3)@2p+1) (5) Bx-2)3x +2) (6) (2x-3y)(x + 2y)
(7) 3a - 2b)(2a - 5b) (8) Bx+4y)? (9) Bx-4y)?

(10) 3x + 4y)(3x - 4y) (11) (2p* +3pq)(5p +3q)  (12) (2ab - b>)(a® - 3ab)
(13) (@ + b)(@®>-ab + b?) (14) (a - b)(a® + ab + b?)
(15) Try working through the following steps.

(@) Think of a positive whole number, and write down its square.

(b) Add 1 to your original whole number, and multiply the result by the

original number with 1 taken away from it.

(c) Repeat this process twice more.

(d) Describe in words what seems to be happening.

(e) Must this always happen whatever your starting number is?
Show that it must by taking a starting number of n so that you can see exactly
what must happen every time.

1.B.(c) More factorisation: putting things back into brackets
Again, the reverse process to multiplying out two brackets is called factorisation. Very often
it is important to be able to replace a more complicated expression by two simpler
expressions multiplied together.
We have already done some examples of this, when we were working with the difference
of two squares in the previous section.
What happens, though, if there is a middle bit to be sorted out?
For example, suppose we have x> + 7x + 12.
Can we replace this expression by two multiplied brackets?
We would have x? + 7x + 12 = (something) (something), and we have to find out what
the somethings must be.
We can see that we will need to have x at the beginning of each of the brackets.
Both signs in the brackets are positive since the left-hand side is all positive, so at the
ends we need two numbers which when multiplied give +12 and which when added give +7.
What two numbers will do this?

+3 and +4 will do what we want, so we can say x> + 7x + 12 = (x + 3) (x + 4), giving
us an alternative way of writing this expression.
Equally, x2 + 7x + 12 = (x + 4)(x + 3).
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The order of the brackets is not important because multiplication of numbers gives the
same answer either way on. For example, 2 X 3 =3 X 2 =6.

In all the questions which follow, your answer will be equally correct if you have your
brackets in the opposite order from mine.

EXERCISE 1.B.2 Try putting the following into brackets yourself.
(1) x2+8x+7 (2 p>+6p+5 B) x2+7x+6
(4) x> +5x+6 (5) y>+6y+9 (6) x>+ 6x+8
(7) a? + 7a + 10 (8) x2+9x + 20 (9) x2 +13x + 36

Now, a step further! Suppose we have 2x? + 7x + 3 = (something) (something). This time
we need 2x and x at the fronts of the brackets to give the 2x2. If it is possible to factorise
this with whole numbers then the ends will need 1 and 3 to give 1 X 3 = 3.

Do we need (2x + 3)(x + 1) or (2x + 1)(x + 3)?

|
Multiplying out, we see that

(2x + 3)(x + 1) = 2x?> + 5x + 3 which is wrong,
(2x + I)(x + 3) =2x> + 7x + 3 so this is the one we need.

EXERCISE 1.B.3 Try factorising these for yourself now.
(1) 3x2+8x +5 (2 2y2+15y + 7 (3) 3a>+11a+ 6
(4) 3x2 +19x + 6 (5) 5p + 23p + 12 (6) 5x2 + 16x + 12

The system is exactly the same if the expression involves minus signs. Here are two
examples showing what can happen.

EXAMPLE (1) Factorise x> — 10x + 16.

Here we require two numbers which when multiplied give +16, and
which when put together give —10. Can you see what they will be?

Both the numbers must be negative, and we see that —2 and —8 will
fit the requirements. This gives us x> — 10x + 16 = (x — 2)(x — 8) =
(x —8)(x—2).

EXAMPLE (2) Factorise x% — 3x — 10.

Now we require two numbers which when multiplied give —10 and
which when put together give —3. Can you see what we will need?

This time, to give the —10, they need to be of different signs.
We see that —5 and +2 will do what we want, so we have

x2-3x—-10=(x—-5)(x+2)=(x+2)x-5).

Remember that it makes no difference which way round you write
the brackets.

1.B Multiplications and factorising: the next stage 15



EXERCISE 1.B.4

Now try factorising the following yourself.

1.C

(1) x2-11x + 24 (2 y>-9y +18 (3) x> -11x + 18
(4) p* +5p-24 (5) x* + 4x - 12 (6) 2g>-59-3
(7) 3x* —10x-8 (8) 2a®>-3a-5 (9) 2x* - 5x-12
(10) 3b% - 20b + 12 (11) 9x2 - 25y? (12) 16x* — 81y*, a sneaky one!

e @

Using fractions

1.C.(a)

Very many students find handling fractions in algebra quite difficult, but it is important to
be able to simplify these fractions as far as possible. This is because they often come into
longer pieces of working and, if you do not simplify as you go along, the whole thing will
become hideously complicated. It is only too likely then that you will make mistakes.

This section is designed to save you from this. You will find that if you understand how
arithmetical fractions work then using fractions in algebra will be easy. If you have been
using a calculator to do fractions, it’s likely that you will have forgotten how they actually
work, so I’'ve drawn some little pictures of what is happening to help you.

If you think that you can already work well with fractions, try some of each exercise to
be sure that there are no problems before you move on to the next section.

Because we are looking here at what we can and can’t do with fractions, we shall need
to use the sign #.

The sign # means ‘is not equal to’.

Equivalent fractions and cancelling down

a
; means «a divided by b.

a is called the numerator and b is called the denominator.

In dividing, the order that the letters are written in matters, unlike a X b, which is the
same as b X a.
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The order also matters with subtraction; a — b is not the same as b — a unless both a and
b are zero. But ¢ + b = b + a always.
For example, 2 X 3=3 X 2and2+3=3+2, but#3and 2 —3 =3 — 2.
a+b a b 2+3 2 3 5

— + —.  For example, = —+4—=—
c c c 7 7 7 7

Also,

The whole of a + b is divided by ¢, and so we can get the same result by splitting this up
into two separate divisions. The line in the fraction is effectively working as a bracket.

. .athb (a+b) :
In fact, it is safer to write as if it is part of some working.
c c
a
In , , the number « is divided by the whole of the number (b + ¢).
+c

From this, we see that

a a a
£ —+—.
b+c b ¢

You can check this by putting a = 4, b = 2, ¢ = 3, say.
Dividing by c is the same as multiplying by 1/c, so

at+b 1
= —(a + b).
c

c
For example, if a = 6, b = 4, and ¢ = 2 then

6+4 |
=16+4)=5.

If you find half of 10, it is the same as dividing 10 by 2.

Fractions always keep the same value if they are multiplied or divided top and bottom by
the same number, so

4 8 6 2
—=—=—=—, etc.
6 12 9 3
These are shown in the drawings in Figure 1.C.1.
These four equal fractions are said to be equivalent to each other. The process of dividing
the top and bottom of a fraction by the same number is called cancellation or cancelling
down.

Figure 1.C.1
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EXERCISE 1.C.1

2) 4 X2 4 X2
3 4 X3

For example, 4(; = not which is still ;

In words, four lots of two thirds is eight thirds.
This works in exactly the same way with fractions in algebra.

So, for example:

2a 2
— = — (dividing top and bottom by «)
Sa 5
xw X o
— = — (dividing top and bottom by w)
yw oy
24 2a o
and = — (dividing top and bottom by a?b).
a’*h* b

Check these three results by giving your own values to the letters.

When doing this, it is important to avoid values which would involve you in trying to divide
by zero, because this cannot be done.

You can use a calculator to investigate this by dividing 4, say, by a very small number,
say 0.00001.

Now repeat the process, dividing 4 by an even smaller number.

The closer the number you divide by gets to zero, the larger the answer becomes. In fact,
by choosing a sufficiently small number, you can make the answer as large as you
please.

If you try to divide by zero itself, you get an ERROR message.

Cancel down the following fractions yourself as far as possible.

1.C.(b)

9 6 25 24 5X ab
(0 — (@ — B — (@) — (5) — 6 —
12 30 95 64 8x ac
3y? 8pq 4a? 3x7%y3 6pq sab
@) ‘| — (9) (20) (12) (2) —
2y 2q 2ab 2xy4 5pqG> b3

Tidying up more complicated fractions
Sometimes, the process of factorising will be very important in simplifying fractions. Here
are some examples of possible simplifications, and some warnings of what can * be done.
If you have always found this sort of thing difficult, it may help you here to highlight the
matching parts which are cancelling with each other in the same colour.
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xy+xz x(yv+tz) y+z

(1
xw xw w
dividing top and bottom by x.
ab+ac alb+c)
(2) = =a
b+c b+c
dividing top and bottom by the whole chunk of (b + ¢).
ab + ¢

3) can’t be simplified.
b+c
We can’t cancel the (b + ¢) here because a only multiplies b.
x+txy  x(l+y) 1+y

@ =g s

X X X
dividing top and bottom by x.

5) x2+5x+6 _(x+3)(x+2)_x+3
x2-3x-10 (x-5x+2 x-5
dividing top and bottom by (x + 2).
x2(x? + x

© I i)

X

dividing top and bottom by x.

. xX(x? + xp)
It is not true that ——— = x + y.
X

This wrong answer comes from cancelling the x twice on the top of the fraction, but only
once underneath.

It is like saying 3(4)(6) = (2)(3) = 6 but really 3(4)(6) = 3(24) = 12.

You can halve either the 4 or the 6 but not both!

xytz yt+z
1s not the same as
xw w

(7

We cannot cancel the x here because x is only a factor of part of the top. You can check
this by putting x = 2,y = 3,z = 4, and w = 5. Then
xy+z 10 y+z 7

=— =1 and —
xw 10 w 5
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LicaTe If we had put x = 1, the c;ifference would not have shown up, since both
POINT answers would have been s.
This is because multiplying by 1 actually leaves numbers unchanged.
This example shows that checking with numbers is only a check, and never
a proof that something is true.

EXERCISE 1.C.2 Try these questions yourself now.

(1) Which of the following fractions are the same as each other (equivalent)?

2 4 12 10 2 6 ax a a(c+d) a*x
(a) Ty Ty T s T s Ty T (b) Ty Ty T
3 9 18 15 6 9 bx b b(c+d) abx
ab+ac ab+c b+c X Xz Xxp
© , ; (d) ! ,
ad ad d X+y XxZ+yz x+yp

(2) Factorise and cancel down the following fractions if possible.

2x + 6y 6a — 9b bx — pq
@ (b) ©
6x — 8y 4a — 6b p? - px
3X + 2y 2Xy + 5xZ 4XZ + 6yz
(d) (e —— () ——
6x 6x 2X + 3y
2p -39 x2-y? X2 +5x+6
(h) ) ——
2p +3¢q x +y)? X2+ x-2
1.C.(~c) Adding fractions in arithmetic and algebra

It is particularly easy to add fractions which have the same number underneath.
For example, % + % = % I’ve drawn this one in Figure 1.C.2 below.

Figure 1.C.2

If the fractions which we want to add don’t have the same denominator then we have to
first rewrite them as equivalent fractions which do share the same denominator.
3 2 8 3 9

2
For example, to find —+ —we use — = —and — = —.
3 4 12 4 12
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EXERCISE 1.C.3

The two fractions have both been written as parts of 12. The number 12 is called the
common denominator. It’s now very easy to add them, and we have

2 3 8 9 17
—__t— = — 4 — = —_
3 4 12 12 12
The answer of % can also be written as 115—2, but in general, for scientific and engineering
purposes, it is better to leave such arithmetical fractions in their top-heavy state.
You should be safe now from the most usual mistake made when adding fractions, which
is to add the tops and add the bottoms.

1 3 _ 1+3 4
— + — (for example) is not = —.
6 4 6+4 10

We can see that this must be wrong from Figure 1.C.3.

Figure 1.C.3

Since the process in arithmetic is exactly the same as the process we use to add

fractions in algebra, it is worth practising adding some numerical fractions
yourself without using a calculator, before we move on to this.

Try adding these three.

3 2 2 4 1 2 4

(W =—+— (@ —+— B) —+—+—
4 7 3 5 2 3 5

The letters work in exactly the same way as the numbers. We can say

a c ad bc ad + bc
b d bd bd bd
where a, b, ¢ and d are standing for unknown numbers, and neither b nor d are zero. We have
written both fractions as parts of bd to make it easy to add them.
Indeed, we can say
A C AD BC AD+ BC

- — = 4+ — =
B D BD BD BD

where 4, B, C and D are standing for whole lumps or chunks of letters and numbers.
As an example of this, we will find

x+2y 3x+2
+ .
xX—y x + 3y
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Here, A = x+2y,B = x—y C = 3x+2yand D = x + 3y. So we have:
(x + 2y)(x + 3y) . Gx+2y)x—y)  (x+2p)x+3y)+ (Gx + 2y)(x - y)

(x—y)x+3y)  (x+3y)x-y) (x —y)x +3y)
x2+ 5xy + 62 + 3x2 —xy — 2)2
(x —y)(x + 3y)
4x2 + 4xy + 4 - 4(x? + xy + y?)
(=M@ @y 3y

We don’t usually multiply out the brackets on the bottom, because then we might miss a
possible cancellation. (This saves you some work.)
3x-2 2x-3

Try combining + into a single fraction, yourself.
x+3 x+1

1.C.(d)

The working should go as follows:
Bx-2)x+1) N 2x-3)(x+3) CBx-2)x+1)+2x-3)x+3)
x+3)x+1)  (x+ D +3) (r +3)x+ 1)

3x2+x—-24+2x2+3x-9

x+3)x+1)

5x% + 4x — 11
(x+3)x+1)

(Remember that the order in which we multiply the brackets doesn’t matter.)

Repeated factors in adding fractions
Sometimes, the addition is a little easier because there is a repeated factor. Here’s a
numerical example of this.

3 5
Z + g has a repeated factor of 2 underneath.

So, instead of saying
3 5 18 20 38 19
46 24 24 u 12
we can say more directly
3 5 9 10 19

—t—=—+— = —
4 6 12 12 12

The number 12, which is the smallest number which both 4 and 6 will divide into, is called
the lowest common denominator or lc.d. for short.

This same simplification applies to fractions in algebra.
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2 3
EXAMPLE (1) +
x(x+3) x2x-1)

There is a repeated factor of x underneath, so we say
2 2(2x — 1)
xx+3) x(x+3)2x-1)

and
3 3(x + 3)
x(2x — 1) B x(2x — 1)(x + 3)
So
2 3 2x-1+3E+3)

xx+3) x(2x-1) x(x +3)2x - 1)

Tx +7 B Tx + 1)
X2x—x+3) x2x—-1)x+3)

You can follow through this example experimentally, converting it into arithmetical fractions
by putting in some value of your choice for x.

Be careful though! There are three values which you mustn’t choose. Can you see what
they are?

You can’t have x = Oorx = -3 orx = %, because each of these values would involve
trying to divide by zero, which is impossible as we saw at the end of Section 1.C.(a).

In this example, it would not have been wrong to put everything over the common
denominator of x(x + 3)x(2x — 1) or x? (x + 3)(2x — 1). It would just have taken longer to
work out.

2x 3y

EXAMPLE (2) +
y(3x —2y) 4x(3x —2y)

Here, (3x — 2y) is a repeated factor underneath, so the expression is
equal to

(2x)(4x) . 3y() &P+ 3P
y(3x — 2y)(4x)  4x(3x — 2»)(») - 4xy(3x — 2y) '

Check this example by puttingx = 4,y = 2andz = 5.

You should get
8 6 8(16) + 6(2) 128 + 12 140 35
J’_ = = =
2(8) 16(8) 32(8) 256 256 64

8(16) +3(4) 128+12 140 35

32(8) 256 256 64
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EXERCISE 1.C.4 Try these for yourself.

2 7 5 3 1 3 5
(0 —+— (2 =+ B —+—+=>
9 15 6 8 3 4 6

3X 5y 2 5 4 3

@ y(@x -y) * x(2x - y) ®) x(3x + 1) * x(2x - 1) ©

2_2+ 2
x2-y> (x+y

1.C.(e) Subtracting fractions
Subtraction works in exactly the same kind of way as addition, so, for example

2 5 2X8 5X3 16 15 1

3 8 3x8 8xX3 24 24 24

In just the same way,

ad c¢b ad — bc

bd db  bd

a c
b d

where a, b, ¢ and d are standing for numbers such as the 2,3,5 and 8 we had in the first
example.
Equally, just as in adding fractions, we can say that

A C AD-BC
B D BD

where 4, B, C and D stand for any chunks of letters and numbers.

The line in a fraction works in the same way as a bracket. If we are adding
fractions this won’t affect what happens, but if we are subtracting them we
have to be careful. For example, suppose we have

4 -3 2x+1
2 3

The minus sign in the middle is affecting the whole right-hand chunk. We
can show this most safely by rewriting using brackets. Then we have:

(4x-3) (@x+1) 34x-3) 22x+1)
2 3 3 X2 2 X3

3(4x — 3) - 2(2x + 1)
6

12x -9 —4x - 2
6

& — 11
6

The safest strategy is always to put the brackets in, because then they will be
there on the occasions when their presence is vital.

24 Basic algebra: some reminders of how it works



EXERCISE 1.C.5

Try these mixed additions and subtractions yourself.

1.C.(F)

3X—-5 2Xx-3 3a+5b a-3b
@ + 2 -
10 15 4 2
3m-5n 3m-7n 2b 3a
G) - (@) +
6 2 a(za+b) b(2a + b)
2a 3b 5 2
(5) 6

(@a+ b)Ba+b) ¥ (@a-b)Ba +b) X2 -y? _x(x+y)

Multiplying fractions
This is very straightforward. (It is much easier than adding!) We simply say

ac

b

X

SN
Qo

That is, we multiply the tops, and multiply the bottoms.
We can take % X % = % = % as a numerical example of what’s happening. If you take

two thirds of three quarters, you get one half. I show this happening in Figure 1.C.4.

2/3 of the shaded part

Vo

Figure 1.C.4

If 4, B, C and D are standing for any chunks of letters and numbers,

A C AC
then we can say — X — = —.
B D BD

It may then be possible to cancel down, for example

x(b + ¢) y xy (b+c¢) 1
>< p—

¥ x(b+c) x3HAbtc)  xy

dividing top and bottom by x)(b + ¢). You should always cancel down the answer like this
if it is possible. The reason for this is that often fractions like this come in as part of the
working out of a larger problem, and it pays to simplify them as much as possible before
going on to the next step, to make that next step as easy as possible for yourself.
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You can also do the cancelling before you do the multiplying if you want; I show the
working done this way in Figure 1.C.5. Cancellations are usually shown by diagonal lines.
Notice that, when everything on the top cancels, we finish up with 1 not 0.

X@ErQ 9 -
3% XC+g) xy

Figure 1.C.5
1.C.(8) Dividing fractions
The rule for dividing fractions is to turn the second fraction upside down and then
multiply.
a c

We can see that this works by taking the numerical example of one and one half divided
by one half. We get

—+—===X T = 3 (that is, there are three halves in 1%).

EXERCISE 1.C.6 Now try these questions, cancelling down your answers where possible.

2 3 2X-1 X-7
- (2
x(2x-3y)  2x(x + 4y) 3 5

(@

3a> ab 2a b 3x 2x2
X— (b)) — =+ ()
2b

a
G) @ 6c 3b 9a? y?z  5yz?

X2 (2x+3y)  y>*(x-y) 5pq(p + q) (3p + 29)
X b X

@ @ 2y (x-y) x(x + 3y) Gp+29) q>Gp-q)

(@*-b**  (a*-b*) )
(© X Be cunning!
(a? + b?) (a + b)4

1.D The three rules for working with powers

1.D.(a) Handling powers which are whole numbers
It will be useful for us now to spend some time looking in more detail at how numbers
written as powers of other numbers can be combined with each other. (We have already
looked briefly at the rules for multiplying such numbers in Section 1.A.(c).)
We’ll use the four numbers 8 = 23,32 = 25,9 = 32 and 81 = 3% as examples.
We could combine these numbers in many ways, some of which I have written down here.

(1) 32x8 (2)9x8l (3) 32+8
4) 81 +9 (5) 8 X9 (6) 81 + 32 (7) 8°
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If we rewrite the numbers as powers, we get the following results.

(1)

2)

3)

4)

)

(6)

(7

32X 8 =29X2% = (2X2X2X2X2)X(2X2X2) =25 =28 =256,
The answer to the multiplication can be obtained by adding the powers.

Similarly, 9 X 81 = 32X 3% = (3 X3) X (3 X3 X3 X3) =32 =136=729,
Again, the result can be obtained by adding the powers.

2X2X2X2X2
2X2X2

32+8 =223 2Xx2=2%3=22=4

This time, the answer has been obtained by subtracting the powers.
3 X3X3X3
3X3

and again the result is obtained by subtracting the powers.

3X3=3=9

Similarly, 81 + 9 = 34 232 =

8 X 9 = 2% X 32 This time, the calculation is made no easier by writing the
numbers in this form. As they are powers of different numbers, we cannot use the
same system as we did in (1) and (2).

Returning to the original form, 8 X 9 = 72.

Similarly, there is no advantage to be gained by writing 81 + 32 as 3% + 25,

1
3—2 can be left like this, or written in decimal form as 2.53125.

82 =(2X2X22=2X2X2)X((2X2xX2)=2%and 8 = (2°)? = 2°
The answer comes from multiplying the two powers.

Any powers which are whole numbers will work in the same kind of way, so we will now
write down the three rules or laws for working with powers.

The three rules for powers

Rule (1) a™ X a" = ™"

Rule 2) a™+a” = a™™"

Rule 3) (a™)" = a™

Example: a®> X a> = (a X a) X (a X a X a) = a°.

aXaXaXaXa
Example: a° + a? = = a’.
a X a

Example: ()’ = (a X a) X (a X a) X (a X a) = a°

We saw from the numerical examples that we must have powers of the same number for
these rules to work. There, we used either 2 or 3, and for the rules above I have used a. The
number a is called the base that we are working with.
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1.D.(b) Some special cases
It can be shown that the three rules above are true for any values of m and n, provided that
a # 0, but it is not possible for us to prove this yet. However, by using powers which are
whole numbers we can see how some particular cases will have to go.
aXaXa

(1) a*>+a?>=———=gqand by Rule (2),a®>+a? = a*2 = al.
aXa

aXaXa
(2) a*+a®>=————=1and by Rule (2), a®+a> = a*>> = a°
aXaXa

So we must have

aXa 1
3) a*+a’= T = —and, by Rule 2), a®> + a> = a*3 = a” ..
axXaXa a

So we must have

. 1
a = —.
a
1
In fact, more generally, a™ = —.
an

4) a"? X a"? = a' by Rule (1), and a' = a.

So a'? is the number which multiplied by itself gives a.

a'? means the square root of a.

Similarly, ' X a'? X a’? = a' by Rule (1).

So a"? means the cube root of a, or 3a.

1/n g

-
and  a'” means the nth root of a or a Va.

Here are four examples.
What are (1) 472 (2) 82 (3) 27%®  (4) 16'#?
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(1) 42 means the square root of 4, so it means the number which multiplied by itself
gives 4. There are two numbers which do this. What are they?

They are + 2 and —2. So 42 = +2 or 2.

We can write this as 4!/ = £2. (The symbol + means + or —.)

(2)  8!3 means the cube root of 8 so it means finding a number a so that a X a X a = 8.
What can a be?

There is only one possible value for a in ordinary numbers, which is +2.

(I say ‘ordinary numbers’ here because it is possible to extend the number system so that
other possibilities open up. In fact, as we shall see in Chapter 10, we then rather pleasingly
get three cube roots. But for the present, we are only interested in solutions in ordinary
numbers.)

(3) 27?7 = (27"3)? by Rule (3). But 273 = 3 50 (273)> = 32 = 9.

(4)  16"% means the fourth root of 16. What are the possibilities here?

There are two possibilities using ordinary numbers.
Wehave 2 X 2 X2 X2 =16 and -2 X -2 X -2X -2 = 16s0 16" = £2.

In general we can say that each even root of a positive number has two possible solutions,
and each odd root of either a positive or a negative number has just one solution.

At present, we cannot find any even roots of negative numbers, although in Chapter 10
we will find out how it is possible to extend the number system so that we can have roots
for these numbers too. Have a guess at how many fourth roots of 16 we shall then have.

EXERCISE 1.D.1

Yes, it is most satisfyingly four.

It is very useful to get a feeling for what these powers do, so that you can quickly

recognise alternative ways of writing them, or possible simplifications.
Try these numerical examples without a calculator to help you develop this feel.

Then go through, checking all your answers on your calculator. If you have a
mismatch, try to spot which one has gone wrong. Maybe the answers are the
same but just in a different form? (Your calculator will only give you positive
values for roots; you have to add possible alternative negative answers yourself.)
Make sure that you know how powers work on your calculator; read its little
instruction book if necessary!

() 3™ (2) 16Y/2 (3) 93/ (4) 2773 (5) 4° © 7
@ 72 (8) 472 (9) 32*/5 (10) 1673/4 (11) 2532 (12) 4972
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1.E

The different kinds of numbers

1.E.(a)

The number system has been invented and extended as people needed ways to describe ever
more complicated situations and transactions. This procedure took thousands of years, so |
have to compress it somewhat in this brief description.

The counting numbers and zero
By inventing names, with symbols for those names, it became possible to count how many
distinct objects there were when they were collected together. It was also then possible to
count the totals when collections were combined together, provided enough names or
symbols had been invented.

Having a symbol for zero was a great advance. The oldest written record with a symbol
for zero dates from the ninth century in a Hindu manuscript.

We don’t very often have to say that we have none of something. So why is having a
symbol for zero so important?

1.E.(b)

It makes it possible to put in all the necessary place values in our system for writing
numbers, for example 301. Having a place value system means that once the symbols for 1
to 9 are learnt, a number of any size can be written. This use of the symbol for zero was
ridiculed by some people when it was first adopted. How could it be possible to write a large
number, they said, by using lots of symbols which each individually stand for nothing?

The fact that it took two centuries before this symbol for zero was invented shows what
a subtle development it was.

Including negative numbers: the set of integers
The first important extension to the system of counting numbers for a collection of objects
is having some arrangement to represent what happens if we want to take away more than
we have, so that we owe.

If we include the negative numbers we can do this.

We now have the number system of integers given by

_4a _3a _2> _15 0: 15 23 3) 49

The German mathematician Kronecker said of these numbers: ‘God made the whole
numbers; everything else is the work of man.’

Also now we have a nice symmetry.

For every number there is another number so that put together they make zero, so each
number has its matching pair. These pairs of numbers are reflections of each other around
zero. What are the pairs of (a) +7, (b) -9, and (¢) 0?

1.E.(c)

(a) +7 has the pair —7. (b) —9 has the pair +9. (c) 0 is its own pair.

Putting together any two numbers in this system gives us another number in the system.
It has a nice completeness about it.

Including fractions: the set of rational numbers
The next major extension to the number system results from the requirement of being able
to divide quantities up. To do this, we have to include fractions, that is, numbers which
can be written in the form a/b where a and b are integers or whole numbers, excluding
the case when b = 0. These numbers are called the rational numbers. Then the integers
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themselves come from the special case in which » = 1, so they are included in this
description.

We can now divide quantities into smaller amounts, even if the numbers involved mean
that the result of the division is not a whole number (provided of course that the quantity
concerned is physically divisible into non-integer amounts).

We have a second nice symmetry here, this time about 1.

For every number except zero, there is now another number so that multiplied together
we get 1. For example, % has the pair %

What are the pairs of (a) %, (b) % and (c) 1?

|
(a) % has the pair % (b) —% has the pair —%. (c) 1 is its own pair.

Putting together any two numbers in this system by multiplying them together gives us
another number in the system, so we have exactly the same sort of completeness that we had
above with adding. The two systems have the same underlying structure of each number
having its own individual partner so that each pair together gives a special number, zero in
the case of adding and 1 in the case of multiplying.

If we put little tiny points for the value of each possible fraction on a number line how
close will these points be together? Will there be any gaps?

. . 1
Suppose we have two fractions F'; and F, which are very close together, say F'; = 755 and
1
Fy = 101
Then, there must be at least one fraction which lies between these two. Can you think of
one?

There are lots of possibilities for this. In particular, we could take (F; + F,)/2.

This is exactly midway between F; and F,. Here, it would be %.

This system of insertion can be infinitely repeated, so we see that there can’t be any
spaces between these fractions.

1.E.(d) Including everything on the number line: the set of real numbers
If the fractions are packed infinitely closely together, where is \5?
Is it a fraction? Trying a few possibilities doesn’t look very promising, but maybe we just
haven’t got the right numbers.

Suppose that it is possible, and we have found a and b so that
2

a — a
— =42 so — =2
b b?

and therefore
a’? = 2b2.

We’ll also suppose that any possible cancelling down of the fraction a/b has already been
done, so it is tidied up as much as possible.
What kind of number must 252 be?

It must be even, so a® must be even as well.

What happens if you square (a) even numbers (b) odd numbers?
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An even number squared gives another even number and an odd number squared gives
an odd number. We can show this by writing even numbers as 2n (with » standing for any
whole number) and odd numbers as 2n + 1.

Then (2rn)? = 4n? and 2n + 1)> = 4n? + 4n + 1.

Because of this, we see that the number ¢ must be even. We could call it 2a; to show
this. Then

a’> = (2a,)(2a,) = 4a? = 2b*> which means that b? = 2a?.

Now, by the same argument as before, b must also be even, so a and b could have been
cancelled down.

But if we cancel them, we can use exactly the same argument to show that they would
cancel down again, and so on for ever.

So there is no fraction which is exactly equal to 2.

This argument is due to the Pythagoreans of Ancient Greece. They were disconcerted and
alarmed by such numbers, which they called ‘incommensurable’. There is a story that the
first Pythagorean to show their existence was thrown into the sea for his pains.

In fact, 2 is somewhere between % and %. So although the fractions are packed
infinitely closely, there are still gaps where the numbers like /2, \/7, etc. are.

(This is one of the mysteries of maths and is because infinite numbers of things behave
in very peculiar ways.)

These numbers, together with 77 and similar numbers, are called irrational numbers. The
rational and irrational numbers together are called the set of real numbers.

Here’s another example of how infinite quantities of things behave in unexpected
ways.

If we have two collections or sets of objects and we can tally off each object in the first
set with a corresponding object in the second set and vice versa, like knives and forks in
place settings, then the two sets must have an equal number of objects in them.

Or must they?

®

O A B
Figure 1.E.1

Suppose we start with the two lines meeting at O which I have drawn above in Figure
1.E.1, and we then draw parallel lines like AP and BQ so that point 4 is matched with point
P and point B is matched with point Q. All the points on the two lines can be paired off in
this way, so the two lines must be equal in length. But clearly they are not! We can no longer
say that the sets are equal because now there are an infinite number of objects involved and
the usual rules no longer apply.
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1.E.(e)

1.F

Complex numbers: a very brief forwards look
Finally, to make the list complete, we will jump ahead of ourselves briefly. We know that
2 X2 =4and-2 X -2 = 4. So the square root of 4 is +2 or —2. But we have no number
for the square root of —4.

In Chapter 10, we shall find out how it is possible to extend the number system even
further so that we can have an answer for \—4. In fact, even better, we get fwo answers, just
like \4 has two answers.

We get this extension by including the so-called imaginary numbers. The real and
imaginary numbers together form the set of complex numbers.

Working with different kinds of number: some examples

1.F.(a)

EXERCISE 1.F.1

Other number bases: the binary system
We have to use ten symbols for writing numbers because our counting system is based on
10. Our whole system is therefore called the decimal system, although in ordinary speech
we use ‘decimals’ for just the fractions written in this system.

However, other bases can be used. One of the most important of these is the system based
on 2, the binary system. This involves counting in place values given by powers of 2 instead
of powers of 10.

So, for example,

324 in the decimal system = 4(10°) + 2(10') + 3(10)*> = 4 + 2(10) + 3(100).
12% + 02" + 0(2%) + 1(2°) + 1(2%)
1+ 0(2) + 0(4) + 1(8) + 1(16)

=1+ 8+ 16 = 25 in the decimal system.

11001 in the binary system

Notice that, in each case, we have processed the number from right to left, instead of from
left to right.

In each case, we wrote down the number of units, the number of ‘tens’, the number of
‘hundreds’, etc., where the ‘ten’ or 10 of the binary system is 2, the ‘hundred’ or 100 of the
binary system is 2 or 4, and so on.

Counting in binary goes 1, 10, 11, 100, 101, 110, 111, 1000, etc. instead of the decimal
1,2,3,4,5,6,7, 8, etc.

The binary system only requires two symbols to write, those for one and zero, which is
why it is so important. The separate digits of numbers written in this system can be
represented by electric current either flowing or not flowing in a circuit, and therefore
numbers can be handled in this form by computers.

Try converting these three binary numbers into decimal numbers for yourself.

(1) 10111 (2) 1111 (3) 111011
How can we go the other way, and convert decimal numbers into binary numbers?
If we have the number 109, say, we could do it just by splitting it up into powers of two.
109 = 64+45 =64+32+13 =64+32+8+5
=64+32+8+4+1=20+29+23+22+1
= 1101101 in binary or base 2.

(A useful way of showing that this number is in base 2 is to write the 2 as a little
subscript, so we write the number as 1101101,.)
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EXERCISE 1.F.2

This is good for seeing what is happening, but not so good as a standard method of

conversion.

What we have actually done here is to split the number up into progressively higher

powers of 2, which we can do equally well by repeatedly dividing it by 2, recording the
remainder at each stage so we get the smaller powers as they shed off.

I show the working for this below.

Remainder

2| 109
2| 54 1 The answer is:
2 27 0 109, is the same as 1101101,.
2| 13 1
2 6 1 T
2 3 0
2 1 1

0 1

Try converting these three decimal numbers to binary numbers for yourself.

(172 (@ 2431  (3) 3251

If you have the use of a computer and know a programming language, you
could write a program to do this, since the process of dividing by 2 is a
repeated loop until the number being divided is itself less than 2. You just have
to record the remainders so that you can display or print out your binary
conversion at the end.

34

This system works equally well in other number bases.

For example, in base 8, we have a ‘ten’ of 8 and a ‘hundred’ of 82, etc.

S0 237¢ = 7+ 3(8") +2(8%) = 7+ 24+ 128 = 159,,.

Working the other way round is done by repeated division by 8.

So, for example, to convert 397, into base 8, you would do the working shown below.

Remainder
8 | 397
8| 49 5
8 6 1 T
0 6
397, = 6155.

Check: 6154 =5+ 1 X 8+ 6 X 8
= 39710.
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1.F.(b) Prime numbers and factors
In this section, we look briefly at how the different numbers are built up.
Many numbers can be written as products (i.e. multiplications) of smaller numbers or
factors in quite a few different ways, for example

12=2X6=2X3X2=3X4=12X1.

Numbers which have no factors other than themselves and one are called prime
numbers. No smaller number (except for 1) will divide into them exactly. 7, 11 and 19 are
all examples of prime numbers.

Are there any even prime numbers?

Every even number can be divided exactly by 2, so there is just one even prime number,
which is 2 itself.

Every number can be written as a product of its prime factors, so for example
15=3X5 and 12 = 2% X 3.

Mathematicians have shown that every number can only be broken down into a product
of prime factors in one way, so, if we split 126 as 2 X 3% X 7, we don’t have to worry that
maybe it could also be split so that it has some completely different prime factors.

Is there a pattern for how prime numbers slot into the other numbers? Figure 1.F.1 shows
all the prime numbers between 1 and 50, as shaded squares.

|2 3

af5]e 78]
i 2 i34 s g i 18 e

3132 | 33|34
4142 [43] 44

24 | 25| 26| 27| 28 [29] 30
1374 38 |39 |40
471484150

Figure 1.F.1

It doesn’t look as though there is a pattern, although we do notice that many of them seem
to come in pairs with just one number in between. We also see that, as we go down through
the numbers, we are getting more and more possible prime factors for the numbers which
we haven’t yet reached. Does this mean that after a while we will have collected all the
building blocks that we need to make future numbers, so that there will no longer be any new
prime numbers?

The answer to this question is that we will never have enough building blocks to make
all the possible future numbers. Given any prime number, however large, it is always possible
to find at least one larger one.

We can show that this is true in the following neat way.

We start by taking a numerical example, because it is easier then to explain how the
argument goes.
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Suppose we think that 23 might be the largest prime number. (I have deliberately chosen
quite a small number here. It is, in fact, easy to find larger prime numbers than 23, but it
will do very nicely to show how the general argument goes.) First, we list all the prime
numbers up to 23. (We don’t normally include the number 1 in these — 1 is its own special
unique case of a number.) Doing this gives us 2, 3, 5, 7, 11, 13, 17, 19 and 23 itself.

Next, we use all these prime numbers to write down a new number. This new number is

(2X3X5X7X11X13X17X 19X 23)+ L.

What kind of number is this? None of the prime numbers up to 23 will divide into it
exactly, because each of these divisions would leave a remainder of 1. So either it is itself
a prime number, or it has prime factors which are larger than 23.

Either way round, we have shown that there must be at least one prime number which is
larger than 23, and we could use this argument in exactly the same way to show that if we start
with any prime number », then there must be at least one prime number larger than N.

This very nice ingenious method is due to Euclid, a mathematician from Ancient
Greece.

1.F.(0) A useful application — simplifying square roots
We can often use a number’s prime factors to simplify its square root.
For example,

JI2 = 2 X2 X3, but y2X2=2 sowecansay 12 =2

Here is another example.

V72 = (2 X2 X2X3X3=\2X22X32=2X3X,2=62.

When square roots appear as part of a long calculation, it often makes things much easier
if you rewrite them like this. Using a calculator to find them is often not very helpful in mid-
calculation because it frequently gives you a string of decimals which is very awkward to
handle.

EXERCISE 1.F.3 Try some for yourself now. Simplify these numbers in the same way.
@ V28 (2 V45 B) V50 (&) Va4 (5) V63 (6) 4o

1.F.(d) Simplifying fractions with | signs underneath

In Section 1.E.(d), I showed that |2 is irrational. Most square roots are irrational, the
exceptions being numbers such as 2 = /4, 6 = /36, etc. Numbers such as 4 and 36 are
called perfect squares.

If we have a number made up of two separate bits, one of which is rational and one of
which is irrational, like 3 + /5, then the combined number will be irrational.

But the matching pair of numbers of 3 + |5 and 3 — /5 have two rather nice
properties.

We can see the first of these by adding them.

This gives us (3 + /5) + (3 — /5) = 6. (We have lost the irrational part.)

Can you see what other good possibility we have?

Multiplying them together also works very nicely.
Weget 3+V5)(3-V5) =9+3/5-3/5-5=4.
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This is another application of the ubiquitous difference of two squares. (We have also
used (y/5)? = 5.)

Fractions such as 5/(2 — \/3) are particularly unwelcome because they involve dividing by
a number which is partly rational and partly irrational. We can get round this problem in the
following way.

5 52 +43)
2-3 -3 @e+3)

multiplying top and bottom of the fraction by 2 + /3. This gives

10 + 53 10 + 53 _
— = = 10 + 53.
27 - (3 4-3

We have cleverly got the |/ signs on the bottom to cancel out, by multiplying the fraction top
and bottom by (2 + 3). Then we use the fact that (\3)> = 3.

3-42
As another example, we will simplify g—\i
VI =

The denominator (or underneath number) is particularly unpleasant this time.
Can you see what we could multiply by to get rid of the \/ signs on the bottom? Look
again at the previous example if necessary.

EXERCISE 1.F.4

We multiply the top and the bottom by (/5 + \/2) and get:
G-\V2)(5+y2)  3/5-2-y10+3y2 3y5-2-10+3\2
(5 -V2) (5 +2) 5-2 3 '

It may help you to recognise references to this process if you know that this process of
removing the /s on the bottom is called rationalising the denominator. Numbers like 2
are called surds.

We shall use exactly this process in Chapter 10 to simplify complex numbers.

Try simplifying these three for yourself.

0 —— @22 g 222

3+42 3+45 5+ 32
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Graphs and equations

In this chapter we look at different ways of solving equations. We shall do this both
by using the algebra from the first chapter and also by seeing what the solutions we
find mean when we look at them graphically.

The chapter is split up into the following sections.

2.A Solving simple equations

(@) Do you need help with this? Self-test 3, (b) Rules for solving simple equations,
() Solving equations involving fractions,

(d) A practical application - rearranging formulas to fit different situations

2.B Introducing graphs

(@) Self-test 4, (b) A reminder on plotting graphs,

() The midpoint of the straight line joining two points, (d) Steepness or gradient,
(e) Sketching straight lines, (f) Finding equations of straight lines,

(g) The distance between two points,

(h) The relation between the gradients of two perpendicular lines,

() Dividing a straight line in a given ratio

2.C Relating equations to graphs: simultaneous equations
(@) What do simultaneous equations mean?
(b) Methods of solving simultaneous equations

2.D Quadratic equations and the graphs which show them

(@) What do the graphs which show quadratic equations look like?
(b) The method of completing the square,

(c) Sketching the curves which give quadratic equations,

(d) The ‘“formula’ for quadratic equations,

(e) Special properties of the roots of quadratic equations,

(f) Getting useful information from ‘b2 — 4ac’,

(g) A practical example of using quadratic equations,

(h) All equations are equal — but are some more equal than others?

2.E Further equations - the Remainder and Factor Theorems

(@) Cubic expressions and equations, (b) Doing long division in algebra,
() Avoiding long division — the Remainder and Factor Theorems,

(d) Three examples of using these theorems, and a red herring

2.A

Solving simple equations

2.A.(a)

Do you need help with this? Self-test 3

In the first chapter, we revised the various methods for using the rules of algebra to handle
and simplify unknown quantities. We now see how we can use these rules to find
information from different kinds of equation. In case you need to be reminded how to solve
simple equations, I have put in another self-test here. As before, if you are in any doubt about
how much you remember, you should try the test now because it is much easier to go

forward happily if any problems are sorted out at the beginning.
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Self-test 3

Answer each of the following short questions by finding the value which the letter is
standing for in each case.

() x+7=4 ) 3y =27 (3) 5y =12
@) 2p+3=8 (5) 2a+3=5a—2 6) 10-2b=b+7
(7) 3(2x — 1) = 2(2x + 3) & 1=2 ©) x_3
4 5 8 9

(10)§=2 (11)2x+l=i (12)523

X 2 5 y 7

x+1 2y +3 2y+1 y+3
(13) 5 =5 (14) ; =5 (15) 7
(16)3—x+3=fo (17)2—)Cf3=i (18) =3

5 3 2 3a -2
(19) —— = — Q) —— =

pt+t3 p+4 2a+1 3a-2

2.A.(b)

Save your working on this test because I shall do most of these questions as examples, and
you will be able to compare what you did with my solutions. Indeed, you might find as we go
through that you can change some to make them right before you look at my version.

If your present answers are right, give yourself one mark each for questions (1) to (10),
and two marks each for questions (11) to (20), so the test has a possible total of 30 marks.
If you have less than 25 marks, you should work through the next section. Remember that
if you are in any doubt about your handling of these equations, it is best to get the difficulties
sorted out straight away.

The answers to the test are as follows:

=3  @y=9 Gry=3  @p=3 (5) a=}
©) b=1 (7) x=3 8) x=% ©) x =3 (10) x=4
(1) x =35 (12) y=% (13) x=9 (14) y=7 (15) y=7
(16) x =20 (17) x = 18 (18) a =% (19) p = —6 (20) a = 2.

Rules for solving simple equations
Since the two sides of an equation are equal, in general you are safe if you do the same thing
to each side. For example, the equation is still true if:

we add the same amount to each side;

we subtract the same amount from each side;

we multiply both sides by the same amount;

we divide both sides by the same amount, remembering that we must not try to divide
by zero. (See the end of Section 1.C.(a) for what happens then.)

We can use these rules to simplify equations to the point where it is easy to see the
solution.
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EXERCISE 2.A.1

Here is an example:

3x+17=x+17.

Taking 17 from both sides gives

SO

x=x+7-17,
3x =x - 10.

Taking x from both sides gives

2x = -10.

Dividing both sides by 2 gives

x =-5.

We see from this example that adding or subtracting the same amount from each side has the
same effect as shifting bits from one side of the equation to the other provided that we
change the signs from + to — or — to + as we do so.

We can now check the solution we have found by putting it back into the original
equation. If it is correct then the two sides should indeed be equal, so we look at each side
in turn. It is helpful to have a shorthand for this, and I shall use LHS to stand for the left-
hand side and RHS to stand for the right-hand side.

Here, putting x = -5, the LHS =3 X -5+ 17 = 2, and the RHS = -5 + 7 = 2 also.

As further examples, here are the solutions of the first seven questions of Self-test 3.

(1
)
3)
“4)
)

(6)
(7

2.A.(c)

x+7=4sox=4-7=-3.

3y =27 so y = % = 9 (dividing both sides by 3).

5y =12 so y = £ (dividing both sides by 5).
2p+3=8s02p=8-3=5andp=3.
2a+3=5a-2s03+2=5a-2a=3aand a =3

(Notice, it was easier to rearrange here so that we had a positive number of the
unknown amount.)

10-2b=b+7s010-7=b+2b=3band b= 1.
32x — 1) =2(2x +3) 50 6x —3 =4x + 650 2x = 9 and x = 3.

Try these for yourself now. The best method is to do what you comfortably can in
your head, without chopping out so many steps that mistakes begin to creep in.
Check that all your answers fit their equations.

(1) x+8=5 (2) 5y = 40 B3 2y=7
(4) 7+2x=5-x (5) 4+2b=5b+9 (6) 3.x-3) =6
@) 3(y-2)=2(-1) (8) 2Ba-1)=3(4a+3) (9) 3x-1=2(2x-1)+3

(10) 2(p+2)=6p-3(p-4).

Solving equations involving fractions
I think that the easiest way to solve this kind of equation is to start by getting rid of the
fractions. We can do this by multiplying both sides of the equation by a number chosen so
that, after cancelling, we have only whole numbers to deal with.
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I shall now use some further questions from Self-test 3 as examples of this.

® x 3
4 5
Multiplying both sides of the equation by 4 X 5 = 20, and cancelling, gives

12
S5x=4X3=12 so x=?.

1 3

() 2x+ ==
Multiplying both sides by 2 X 5 = 10 gives

10Q2x+3)=10X2 so 20x+5=6 so x=3,.

Notice that I used a bracket to make sure that every separate piece of the original equation
got multiplied by 10.

(12) 5_3
y 7

Multiplying both sides by 7y gives
35
7X5=3y so y=?.

This has the same effect as doing a sort of cross-multiplying of bottoms to tops. It is fine
to use this method so long as you only do it for equations with single fractions each side.
It wouldn’t work for (11), for example.

2y +3
14 =5
(14) 2

Multiplying both sides by 4 gives

17
2y +3=20 so 2y=17 and y=7.
2y + 1 +3

(15) 24 _Y
3 2

Multiplying both sides by 3 X 2 = 6 gives
2y +1)=3(+3) so 4+2=3y+9 and y=7.
2x

(17) 3=
3 2

Multiplying both sides by 3 X 2 = 6 gives

2x X
6<?3)=6X5 so 4x—-18=3x and x=18.

It is important to remember that the —3 also gets multiplied by the 6. Again,
I’ve used a bracket to make clear that this is what I must do.
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(1) 3a -2

Multiplying both sides by (3a — 2) and cancelling on the left-hand side gives

5=3Ba—-2) so 5=9 -6 so 11=9¢ and a=1%.

5
2+1 3a-2

(20)

Multiplying both sides by (2a + 1) (3a — 2), and cancelling, gives
23a—-2)=5QR2a+1) so 6a—4=10a+5 so -9=4a and a=f%.
My last example involves three fractions. Solve

2x+1 3x-2 x-1

3 4 6

What should we multiply by to get rid of the fractions this time?

Did you think of 3 X 4 X 6 = 72? This will do, but we could use the more delicate
instrument of 12 since 3, 4 and 6 are all factors of 12.

This equation has a tricky bit which often leads to mistakes. Can you see
what it is? It was mentioned as a warning in Section 1.C.(e). Try the next
step yourself before looking at what I’ve done to see if you can avoid this
pitfall.

3x -2 2x +1

The whole of is being subtracted from 3

The line of the fraction is acting in the same way as a bracket, and it is safest to put brackets
round each fraction chunk to keep the working clear and the signs correct.
Then, multiplying through by 12, we have

<2x+1> <3x2> (xl)
12 - 12 =12 .
3 4 6

Cancelling each fraction in turn, we get

42x +1)-3Bx—-2)=2(x—-1) so 8&x+4-9x+6=2x-2

(Leaving out the brackets could mean that you would wrongly have a —6 in this last
equation.)

So4 + 6+ 2 =—-8 + 9x + 2x therefore 12 = 3x and x = 4.

Checking back, the LHS = % - % = % and the RHS = % = %
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It is important that we can only get rid of fractions by multiplying if we are
dealing with an equation. It will not work if we just have an expression such as

x+4 x+3
+ .
2 5

Here we would have no justification for making this 10 times larger.
The best we can do is to simplify as we did in Section 1.C.(c). Then
x+4 x+3 5S5x+4) 2x+3) Sx+4)+2x+3) Tx+26
> s 10 10 10 10

I’ve put in quite a lot of detail in these examples so that you can see exactly what’s
happening. As you get more confident, you’ll find you probably don’t need to write down
all the steps. This is fine, but it’s a good idea to check your answers to make sure that they
do fit the given equations.

EXERCISE 2.A.2 Try these questions for yourself now.
Solve each of the following equations.

5X 2X X X
(D —=2 (2 5+x=— B —-—=1
3 3 3 4
y 3y-7 y-2 3m-5 9-2m
4 —-——= (5) - =0
3 6 4 3
X-1 x-2 p+1 3 2 3
©) - =1 @ == ®) — =
p-1 4 y y+1
4 3 2x 3x
)] = (10) = -1
2x+3 x-2 X+2 X+5

X+3 Xx-1 2X -1

2X+1 X+5 3x-1
+ = (12)

2 7 4 5 10

(11)

2.A.(d) A practical application - rearranging formulas to fit different situations
We can also use the rules for solving equations to rearrange formulas so that they are in a
more convenient form to use in changed situations.

EXAMPLE (1) The formula

Il
T=2m | —
g

gives the period T of a pendulum of length /. The period is the length of
time for a complete to-and-fro swing. 7 is the 7 of circles, and g stands
for the acceleration due to gravity.
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If we want to find the length of a pendulum which has a given
period, it would be more convenient to have the formula rearranged so
that the length / is given in terms of the other quantities. This is
sometimes called changing the subject of the formula to /. We have

/
T=2m|—.
g

Since the two sides of an equation are equal, they must still be equal if
we square both of them. Therefore

[
T° = 4n? (—)
g
(Notice that everything must be squared, including the 277.) So now we
have
TZ

g C . o
/= F (multiplying both sides by g and dividing by 4s?)
7T
and this gives us the new formula we wanted.

EXAMPLE (2) For this, I’ll take the formula relating the distance u of an object from a lens
of focal length fto the distance v of its image from the lens. This is

I 1 1

u v f

Suppose you want to find the distance of the image from the lens for
certain given distances of the object from the lens; you need a formula
for v in terms of u and f.

Students sometimes think that they can go through the equation above turning
everything upside down and it will still be true. This is not so!

1 1
Itistruethat—+—=5 but 3 +6%2.

Remember, it is only possible to turn both sides of an equation upside
down if there is just one fraction on each side. For example we can say that

2 4 3 6
36 2 4
What do you think we should do to help us rearrange
I 1 1
_— "t — = —
u v f

if we can’t turn it all upside down?
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EXERCISE 2.A.3

We can get rid of all the fractions by multiplying both sides of the
equation by uvf. Then we have

2-2)-w)
uvf R = uvf F;

so, cancelling down,
vf + uf = uv.

We want a formula for v, so we put everything with a v in it on the
same side of the equation. This gives uf = uv — vf so, factorising,
uf = v(u — f). Now, dividing both sides by (z — f), we have

uf
u—f

which gives us the new formula for v that we wanted.

v =

We shall use exactly these same techniques for shifting stuff around when we find inverse
functions in Section 3.B.(h).

Try some rearranging of actual formulas for yourself now.

2.B

(1) The surface area, S, of a sphere of radius ris given by the formula S = 47r2. Its
volume, V, is given by V = gnr3. Rearrange these two formulas to give (a) the
radius in terms of the surface area, and (b) the radius in terms of the volume.

(2) The volume, V, of a closed cylinder of radius r and height h is given by the
formula V = zr?h. Its surface area S is given by S = 27r®> + 27rh. Rearrange
these two formulas to give (a) the height in terms of the radius and the
volume, and (b) the radius in terms of the height and the volume, and (c) the
height in terms of the radius and the surface area.

(3) v = u? + 2as is a formula which relates the final velocity v to the initial
velocity u of a body which travels a distance s with constant acceleration a.

Find (a) a formula for a in terms of u, v and s, and (b) a formula for u in
terms of v, a and s.

(4) If two resistances, R, and R,, in an electric circuit are arranged in parallel then
they are equivalent to a single resistance R, with the relation between them
being given by the formula

1 1 1

R R, R,
Find a formula which will give the value of R, in terms of R and R,, in the form
R, = ... Use this formula to find out what resistance should be put in parallel
with a resistance of 3Q to give an effective resistance of 2 Q. (Q is the symbol
used for ohms, the unit in which resistance is measured.)

Introducing graphs

It can be very helpful when thinking about how equations work if we can show them
graphically, so that we can see what is happening in another way. I shall start by considering
equations which can be shown by straight lines. This section is here in case you need any
reminders on how to handle straight line graphs. I have put in another self-test here, so that
you can see if you need to work through this.
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2.B.(a) Self-test 4
Try answering each of the following questions.

(1)  What are the coordinates of the midpoints of the straight lines joining
(a) (2,-1)and (8, 5) (b) (-3, 1) and (2, —8)?
(2) What is the steepness or gradient of the straight lines joining
(a) (2,5)to (8, 17) (b) (-1, 3) to (8, —6)?
(3) What are the gradients of the following straight lines?
(@ y=3x+4 b)y+4x=2 (¢c)2y=x-4 (d) 3y+4x=0.
(4) Find the equations of the following straight lines:
(a) with gradient 2 and passing through (1, 3)
(b) with gradient —1 and passing through (2, —1)
(c) with gradient % and passing through (2,4)
(d) passing through (2, 5) and (8, 10)
(e) passing through (-4, —2) and (-1, 5).
(5) What is the distance between each of the two pairs of points given in the first
question? (Give your answers to two decimal places or d.p.)
(6) Find the equations of the straight lines which pass through (1, 4) and are
perpendicular to (a) y=2x+5 (b) 3y+2x=1 (c) 4y +x=0.
(7)  What are the coordinates of the point which divides the straight line joining the
points (1, 3) and (6, 18) in the ratio 2:3?

Here are the answers which you should have.
Give yourself one mark for each correct part of (1), (2) and (3), and two marks for each
correct part of (4), (5), (6) and (7).

M @ 5.2 O (53

2 (@2 (b -1 1 )

B @3 (b -4 ©; -3

4 (@ y=2x+1 (b) y+tx=1 (c) 3y=2x+8 (d) 6y=5x+20 (e) 3y=Tx+22
(5) (a) V72=8.491t0o2dp. (b) {106 =10.30 to 2 d.p.

6) (@ 2y+x=9 (b)2y=3x+5 (c) y=4x (7) (3,9)

As with the other self-tests, if you have less than 25 marks you should certainly work
through this next section. Each particular point is dealt with here in the same order as the test
questions, so it is also possible to go directly to any particular area where you need help.

2.B.(b) A reminder on plotting graphs
Here is a brief reminder of how graph plotting works. Suppose we have the equation y =2x + 3.
Then, for each value of x that we might choose, there will be a corresponding value of y. The
values of y depend on the values of x, and we call y the dependent variable and x the
independent variable. We could show some of these pairs of values in a table, as below.

X -2 -1 0 1 2 3
y -1 5 9

Fill in the three missing y values yourself.
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2.B.(c)

You should have 1, 3 and 7.

We can write these pairs of values grouped together as (-2, —1), (-1, 1), (0, 3), (1, 5),
(2, 7) and (3, 9). The independent value always comes first, and belongs to the variable
which is plotted from side to side on a piece of graph paper, using the horizontal axis.
The dependent variable is plotted from top to bottom, using the vertical axis. Because it
matters what order we write these pairs of numbers in, they are often called ordered
pairs.

To plot them, we mark out a piece of graph paper with suitable scales to include all of
the points which we are interested in.

The point (0, 0) where the axes cross is called the origin.

If the point P is (2, 7) then the numbers 2 and 7 are called the coordinates of P. 2 is its
x-coordinate and 7 is its y-coordinate.

The scales do not have to be equal. Here, it was more convenient to make the scale on
the y-axis smaller, and we get a graph which looks like the one in Figure 2.B.1.

N
109 J

Figure 2.B.1

It is important always to label the axes of your graphs with the letters of the variables you
are using, so here I have labelled them x and y.

I have joined the points with a straight line. ’ve done this because I am thinking that for
every value of x there is a corresponding value of y, and all these points together make the
line. (For example, if x = %, then y = 6 and (%, 6) is also a point on the line.)

When you plot a graph accurately on graph paper, you should use a well-sharpened
pencil to mark each point with a small cross as accurately as you can. Then, if it is a straight
line, draw this through the points in pencil. Of course, for any particular straight line, you
only need to find two points, but it is always safer to work out three because this allows you
to check your arithmetic if they turn out not to be in line.

The midpoint of the straight line joining two points
To show this, I shall draw two diagrams for you. Figure 2.B.2(a) shows the special case of
(1)(a) from the Self-test, and Figure 2.B.2(b) shows two general points which I shall call

(x1, y1) and (x;, y»).
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Figure 2.B.2

If you find this at all difficult, I think it will help you to get a feeling of exactly what is
going on if you use different colours on the two differently dashed lines. It may also help you
to understand how everything fits in if you write in the measurements for the separate bits
yourself.

The midpoint in each case is found by taking the half-way or average value of the x values
at either end of the line, and then doing the same for the y values.

The midpoint in (a) is

<8+2 5+ (-1)

, ) which is (5, 2).
2 2

The midpoint in (b) is
(xl X2 » +J’2>

b

2 2

We can now use this to find the midpoint of the line joining (-3, 1) and (2, —8). (This was
question (1)(b).) We let (-3, 1) be (x;, y;) and (2, —8) be (x5, y»), which gives us the
midpoint as

<—3+2 1+(—8)> (—1 —7)
, or |—,—|.
2 2 27 2

It would have worked equally well if we had taken (x,, y;) as (2, —8) and (x,, ,) as (-3, 1).
(Try it and see.)

(If you have any problems with putting together the positive and negative numbers, you
should go back to Section 1.A.(e) in the first chapter. It will also help you if you make your
own drawings of the pairs of points and their midpoints. Then you can actually see how the
numbers are combining together to work.)

The midpoint of the line joining (x;, y,) and (x,, y,) is given by

(xl +Xx 0 "'J’z)

b

2 2
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EXERCISE 2.B.1

Find the coordinates of the midpoints of the straight lines joining these pairs of

2.B.(d)

points.

(1) (-3, 2) and (1, -6)
(2) (-2,-1) and (3, 4)
(3) (-1, -5) and (-4, -6)

Steepness or gradient
Straight lines have the same steepness or gradient all the way along. This gradient can be
measured by the distance moved vertically in the y direction for a unit distance moved from
left to right in the x direction. If the line goes uphill from left to right so that this vertical
distance is being measured in the positive direction up the y-axis, then the gradient is
positive. If the line goes downhill from left to right then the vertical distance and the gradient
are negative. We could think of the gradient as telling us the rate of change of y as x
changes.

Figure 2.B.3(a) shows the line joining (2, 5) and (8, 17) (question 2(a) from Self-test(4)),
and Figure 2.B.3(b) shows the line joining the two points (x;, y,) and (x,, y,).

VG o ®

]7 1 (8/ 17 A 32' (xnlﬂ A
12 (Y7 y)
25,
51 (/,) 6 v y | (".,H J
> ) /(__ (xz- X)) —
o % g > o =, CANNE
!

Figure 2.B.3

The gradient in (a) is given by The gradient in (b) is given by
distance up 12 distance up Vi — W
distance along 6 distance along  x, — x;

The gradient of a straight line is often written as the single letter m. Using this, we can now
write down the following formula:

The gradient, m, of the straight line joining (x;, y;) to (x,, y,) is given by

Y2 =1
m= .
X2 — X
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The m gives us the measure of how y is changing relative to x. We have already seen that
the line y = 2x + 3 has a gradient of 2, with y increasing twice as fast as x. Similarly, the line
y = mx + ¢ has a gradient of m. Rewriting the equation of any straight line in this form
enables us to read off its gradient. For example, in question (3) of Self-test 4, the line (a),
y = 3x + 4, has a gradient of 3.

Line (b), y + 4x = 2, can be rewritten as y = —4x + 2 so m, the gradient, is —4.

Line (¢), 2y = x — 4, can be rewritten as y = %x —2som= %

ES

Line (d), 3y + 4x = 0, can be rewritten as y = —%x som= 3.

EXERCISE 2.B.2 Find the gradients of the following straight lines.
(1) y=3-5x
(2 2y=3x+7
B) 3y+x=1
(4) 4y-5x=2

2.B.(e) Sketching straight lines
We said in the previous section that if the equation of a straight line is written in the form
y = mx + ¢ them m is its gradient. What does the value of ¢ tell us?

If we put x = 0 we get y = ¢ so the point (0, ¢) is where the line cuts the y-axis (its y
intercept). For example, the line y = 2x + 3 cuts the y-axis at (0, 3).

If we know the values of m and ¢, we can use these to draw a sketch of the line. Figure
2.B.4 shows three examples with sketches of (a) y = 3x + 1 so m = 3 and ¢ = 1,
b)y+x=2soy=-=x+2and m = -1 andc=2,(c)4y=3x+4soy=%x+1
andm=%andc=1.

A \3

d
" a— . - PR -
Jo iz 7% 5 i 2\* o 2 i
@ y= 3x+1 ® y+x=2 © 4y= 3x+4
Figure 2.B.4
EXERCISE 2.B.3 Each of the following sketches in Figure 2.B.5 fits one of the lines whose

equations are given below. Pair each equation up with its correct sketch.
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Figure 2.B.5

(W y=x @ y+ax=4 B)ay=x+4 (@y=x-2
B)y=2x () y=x+2 (7) y=3x 8) y+2x=-2

How can we write the equations of the lines shown in the four sketches in
Figure 2.B.6?

/
)T Y 1Y Ay Ny
3 >
2
) >X =3 ) 37

Figure 2.B.6

The first sketch shows a line every point of which has a y-coordinate of 2, so it can be
written as y = 2. (The value of x can be anything you like, since you can choose any point
on this line.) Similarly, the second sketch shows y = —3. What do the third and fourth
sketches show?

The third sketch shows x = 3 and the fourth sketch shows x = —2.

The lines in the first two sketches are flat, so their gradient, m, is zero.

We can’t write down the gradient for the last two lines because they are infinitely steep
and we can’t divide by zero.
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2.B.(f) Finding equations of straight lines
How much do you need to know to distinguish a particular straight line from all the other
possible straight lines?

You would either have to know two points which lie on it, or one point on it and its
gradient. It is useful to be able to write down the equation of a straight line from either of
these two starting positions.

Figure 2.B.7 shows a straight line with gradient m passing through two known points which
I have called (x,, y;) and (x,, y,). We take (x, ) to be any general point on this line.

1Y
BZ‘P (xzag
(x,9)
(xl)g')
Y /
// ‘ * e X
O x| xz
Figure 2.B.7
We have
Y2 = _ |

= m.
Xy — X1 X—X

Two useful forms for the equation of a straight line come from this.

Form (1) y—y; =m@x—x)

— X —X
Form ) ~ 21— :

Ya—=)y1 X2—X

Form (2) comes from rearranging
2= Y=

Xy — X1 X—X

in the same way that we can rearrange
8 6 6 9

12 9 8 12

exAMPLE (1) Find the equation of the line with gradient % which passes through (3, 2).

Substituting in form (1) gives y — 2 = % (x—=3)so2y=x+1.
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EXERCISE 2.B.4

exAMPLE (2) Find the equation of the line passing through (3, 2) and (9, 5).

Substituting in form (2) gives

y—2 x-3

5-2 9_3

so 6(y—2)=3(x-3) and 2y=x+1.

Notice that this is the same line as we got from the first example. The reason for this is that
I have chosen the points (3, 2) and (9, 5) because they fit nicely on Figure 2.B.7 above. If
you have found any difficulty with the general rules in the two boxes above, you can feed
these numbers in and mark the different numerical distances on the diagram to help you.

For completeness, | also include the equation of a straight line written in the form
y = mx + ¢ which we have already used in Section 2.B.(d). This gives us

Form 3) y=mx +c.

Writing the numerical example of 2y = x + 1 in the form y = %x + %, we have m = % and
1
c =7

Have another go at question (4) from Self-test 4 if you couldn’t do it earlier. You

2.B.(8)

should be able to do it now.

The distance between two points
Suppose we need to find the distance D between the two points (x, y;) and (x5, y,) as I have
shown in Figure 2.B.8(a).

N

Y]

\Y @ (x2,42) ®
5 / T Y

6,4
(52—‘.5:) 47 / }r
1/ l D 3
J

Y, (., 92 (X,-%,) ' 14 2D
.<_'_ 27" —‘——)L >x 7 f-_ 4 ______? x
0 X, Xy e 2 6

Figure 2.B.8

We use Pythagoras’ Theorem which says that:

The distance between the two points (x;, ;) and (x,, y,) is given by
D*=(y, —y1)* + (x; — x;)°
s0 D= -+ @-x)
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EXERCISE 2.B.5

In the numerical example of Figure 2.B.8(b), this will give us

D=\@4-12+(6-27=3>+4 = 25 = 5.

(Pythagoras’ Theorem is shown to be true in Section 4.A.(b).)

Try question (5) of Self-test 4 again if you couldn’t do it earlier.

2.B.(h)

The relation between the gradients of two perpendicular lines
If we know the gradient of a line, surely it must be possible to write down the gradient of
a line perpendicular to it. Suppose we start with the line y = %x. What is the gradient of any
line perpendicular to this?

EXERCISE 2.B.6

We can see the way in which we can find the answer to this question by looking at Figure
2.B.9 below. Figure 2.B.9(a) shows the special case of line (1) being y = %x and Figure
2.B.9(b) shows the general case of line (1) having a gradient of p/q = m,, say. (I have only
shown where the two lines cross each other in the two diagrams.)

Line (2)
Line (2)
' P
2
Line v
0 2 : -
Line (1D /
{
® ® P
Figure 2.B.9

In diagram (a), line (2) has a gradient of —2/1 = —2. (The minus sign is because the 2 is
being measured downwards.) In diagram (b), line (2) has a gradient m, of —¢g/p.
We see that the gradients of the two perpendicular lines multiplied together give

1
5 X =2 =plg X —g/p =-1.

If two lines with gradients m; and m, are perpendicular, then m,m, = —1.

Do question (6) from Self-test 4 again if you couldn’t do it earlier.

2.B.(i)

Dividing a straight line in a given ratio
In Section 2.B.(c) we found that the midpoint of the line joining (x;, y;) and (x,, ¥, ) is given by

(xl tXx 0 "‘yz)

B

2 2
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We now look at how to find the coordinates of a point which divides a line in any
proportion or ratio.

Figure 2.B.10(a) shows the special case of question (7) of Self-test 4, where we are
looking for the point which divides the straight line joining the points (1, 3) and (6, 18) in
the ratio 2: 3.

Figure 2.B.10(b) shows the point (x, y) which divides the straight line joining (x;, y;) to
(x5, ) in the ratio p: g. We shall use this to find a general formula.

g (X%,

Figure 2.B.10

In (a), the point P is % of the way along line AB so each of its x- and y-coordinates is given
by moving on from 4 by % of the total change from 4 to B.
So we could say that P is given by (1 +3 (6 — 1), 3 + 3 (18 — 3)) which is (3, 9).

Similarly, we can see in (b) that P is given by

p p
(xl + (x2 —x1), 1 + 02 —)’1)>-
ptyq ptyq

This looks rather clumsy. Perhaps we can make it nicer if we put the whole of each
coordinate over (p + ¢). Then we get

x; (p+q)+p;—x)
pPtq

xp+ (2 —xy) =

_Xig T xpp
ptq
and, similarly, the y coordinate of P is

yiq t yaop
ptq

This gives us a much neater form for the coordinates of 7.
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The point P which divides (x;, y,) and (x,, y,) in the ratio p:q is given by

(mq+xw Mq+yw>
p+tq p+tq

Putting p = ¢ in this formula gives us the same formula for the midpoint that we quoted
at the beginning of this section. (Try it yourself, putting p = ¢ = 1, and also p = ¢ = 3,
say.)

When p and ¢ are different from each other, they adjust the position of the point P by
separately multiplying x; and x,, and y, and y,.

Notice that p and ¢ flip over so that it is ¢ which multiplies x; and p which
multiplies x,.

EXAMPLE (1) If we use this formula to give the answer to question (7) of Self-test 4,
shown in Figure 2.B.10(a), we get

I X3+6X2 3X3+18X2
2+3 ’ 2+3

P is given by ( ) =(3,9).

EXERCISE 2.B.7 Find the coordinates of the points which divide

(1) the line joining (-1, 2) and (5, 14) in the ratio 2:1,
(2) the line joining (-2, -3) and (6, 9) in the ratio 1:3.

2.C Relating equations to graphs: simultaneous equations

2.C.(a) What do simultaneous equations mean?
We now have two ways in which we can look at equations. We can find ways of solving them

using algebra and we can also see what the meaning of these solutions is graphically.
We will use this double approach first on pairs of equations like the following:

2x+3y=5 (1)
x=2y=6 (2)

These are two equations which are true together, so that we have two pieces of information
about the two unknowns, x and y.

Such pairs of equations are called simultaneous equations.

We could show these as two straight lines on a graph sketch. (See Figure 2.C.1.). To draw
this sketch, I have rearranged 2x +3y =5 as y = —% x+3and x-2y=6 as y= %x -3.
Then we can see that there is just one possible pair of values for x and y which fit both
equations. These are the coordinates of the point where the two lines cross each other (here
this is at about (4, —1)).
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1\3

2

Figure 2.C.1

Does this mean that any two equations which give straight lines on a graph will have a
solution which can be shown in this way? What might happen which would make this
impossible?

If the two lines have the same gradient so that they are parallel there will be no
solutions which will fit both. (For example, there is no solution which fits 2x + 3y = 1
and 2x + 3y = 5))

What happens if we have the two equations x — 2y = 6 and 2x — 4y = 12?

2.C.(b)

We only actually have one piece of information here since the second equation is just the
first one multiplied by 2, and so we have the same line drawn on top of itself. Every point
on this line fits both equations and we therefore have an infinite number of possible
answers.

What happens if we have a third equation which we want to be true at the same time as
the original pair?

Geometrically, it is easy to see what happens. Either its line passes through the same
crossing point as the other two, in which case it agrees with them or is consistent with them,
but doesn’t add any new information. Or its line does not pass through this crossing point
at all. In this case, it is inconsistent with the other two equations, and the three equations
cannot be simultaneously true.

Methods of solving simultaneous equations
Although the graph method makes it easy to see what is happening, it can be very difficult
to read off an accurate answer. A far simpler way to find this answer is to use algebra. There
are various methods which can be used, and the best choice depends on the actual equations
and comes with practice. I will show you two different ways of solving the pair of equations
which were shown in Figure 2.C.1 above.
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MeTtHoD (A) Substitution.
From equation (2), we have x = 2y + 6.

We are looking for values of x and y so that both the equations are true
together, so we can replace the ‘x” in equation (1) by 2y + 6. We then have

22y +6)+3y=5
so 4y +12+3y=5
so Ty =-7
and y=-1.
Now, substituting —1 for y in equation (2) we have
X+2=6 so x=4.

Checking in equation (1), LHS =8 — 3 =5 = RHS.
I am again using the shorthand LHS for the left-hand side of an
equation, and RHS for its right-hand side.

Metvoo (B) Elimination. Returning to the beginning, multiply equation (1) by 2
and equation (2) by 3. Then we have

4x+ 6y =10 (3)
3Ix—6y=18 (4)

Adding equations (3) and (4) gives 7x = 28 so x = 4 and, by
substitution, y = —1 as before.

Method (B) could also have been done by multiplying equation (2) by —2. Then

2x +3y =15 (3a)
—2x +4y=-12 (4a)

and adding equations (3a) and (4a) gives 7y = —7 and y = —1 as before.

Alternatively, you could multiply equation (2) by +2 and subtract. This gives

2x+3y=5 (3b)
2x — 4y =12 (4b)

Subtracting equation (4b) from (3b) gives 7y = -7 and y = —1.

It is easier to make mistakes when subtracting negative quantities, so it is
usually better to choose your numbers so that you can get rid of one of the
letters by adding.

It is likely, if a real-life situation is being modelled, that we would have to solve more

equations in more variables. If there is the same number of equations as there are variables,
and provided we don’t have a situation similar to the two equations being either parallel or
just the same equation, as described above, then we can usually solve them by successive
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elimination until just one variable is left. Once this is known, the other variables can be
found in turn by substituting back into the equations. Such sets of equations, and their more
complicated cousins in which the number of variables does not tally with the number of
equations, can be dealt with more systematically by using matrix methods.

Try solving these two pairs of simultaneous equations yourself before continuing.

Qu(l) 3x-2y=21 (1) Qu(2) §—§+1=0 (1
2x+5y=-5 (2) 6x+y+8=0 (2)

These are possible routes to solutions.

For Qu(1), multiply equation (1) by 2 and equation (2) by —3. This gives
6x —4y =42 3)
—6x—15y=15 (4

Equation (3) added to (4) gives —-19y =57 so y=-3.
Putting y = -3 in equation (1) gives 3x + 6 =21 so x=35.
Now check in equation (2). LHS = 10 — 15 = -5 = RHS.

In Qu(2), we start by getting rid of the fractions in equation (1) by multiplying by 6. Then
we multiply equation (2) by 3. This gives us
2x—-3y+6=0 (3)
18x+3y+24=0 (4)

Adding equations (3) and (4) gives 20x +30=0 so 20x=-30 and x= —%.
Putting this value in (2) gives -9+ y+8=0 so y=1.
Checking in (1) gives LHS =—3 —3 + 1 = 0 = RHS.

Sometimes we can use these techniques in situations which at first sight don’t look very
promising. Here is an example.

6 2 1 O
x y 2

4 3
———=0 @
Xy

Our usual method is to get rid of fractions first. To do this, we would have to multiply
equation (1) by 2xy and equation (2) by xy. Then we would have:

12y —4x=xy (3)
49 -3x=0 &)

which looks rather unpleasant.
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EXERCISE 2.C.1

But if we put

the original equations become
6X-2Y=1 (3)
4X-3Y=0 4)
Then multiplying equation (3) by 2 and equation (4) by —3 gives
12X-4Y=1 (5)
-12X+9Y=0 (6)
Adding these two equations gives 5V =1so0 Y = % and y = 5. Now (2) becomes

4 3 20

4 3
———=0 so —=— so 20=3x and x=—.
x 5 5 3

=

Checking in (1) gives LHS = ;—g — % = % = RHS.

Solve the following pairs of simultaneous equations.

2.D

50-2b=68 (1) sp-2g=9 (1)
(@ (2
3a+b=10 (2) 2p+50=-8 (2)
f_y=_2 (1) EANL AP (@
8 2 X y
€)] (4)
y 2 2
3x+—=13 (2 —=-—=7 (2
3 Xy

Quadratic equations and the graphs which show them

2.D.(a)

Because quadratic equations have many applications, I have emphasised the particular
aspects of them here which will help you later on. For this reason, I haven’t started this
section with a self-test. You will be able to check through quite quickly to see what is here,
doing some of the exercises to be sure you understand. As usual, [ am starting from scratch

just in case some of you do need this basic help.

What do the graphs which show quadratic equations look like?

So far, we have only looked at graphs of straight lines. These all have equations of the form
y = mx + ¢ where, as we have seen, m tells us the relative change in the y values for a given

change in the x values, and c tells us where the line cuts the y-axis.
What effect will it have if we include an x? term as well?
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We will look at y = x? — x — 6 as a first example and we start by making a table of some
values below.

y=x*-x-6
X -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 0

(Fill in the three missing ones yourself.)

You should have —6, —4 and 6.

If we plot these pairs of values we will get the graph I show in Figure 2.D.1.

Y

3: 11—1—6

Figure 2.D.1

Clearly, this is not a straight line. Because of the x2, the y values no longer change evenly
in proportion to the x values.

If we join the points smoothly, we get a curve. (We can justify doing this because working
out intermediate values gives us more points which lie on the same curve.) This curve that
we get is called a parabola.

Factorising as we did in Section 1.B.(c), we can also say that

x2—x—-6=(x-3)x+2).
Now, if y =0 then x> —x — 6 = (x — 3)(x + 2) = 0.

x? —x — 6 =0 is an example of a quadratic equation.

We can see from the graph that y = 0 when x = 3 or x =—2. We also see that each of these
values for x makes one of the brackets (x — 3) and (x + 2) equal to zero.

If two numbers multiplied together give zero, then one of them must itself be zero. (There
is no other number which behaves like this; we saw in Section 1.E.(c) that there are infinitely
many pairs of numbers which multiply together to give the number 1, and the same is true
for any other number but zero. Zero drops any number it multiplies into a black hole of
Zero.)

We now use this special property of zero to find solutions for quadratic equations like

x2 — x — 6 = 0 directly by algebra, without having to draw a graph.
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For example, suppose we have the equation x> — x + 12 = 0.
Factorising, we get
x2-x+12=(x-4)(x+3)=0.

Therefore, either x — 4 = 0 givingx =4, or x + 3 =0 giving x = -3.

Notice that the signs of the solutions for x are the opposite of the signs in the
corresponding brackets.

(If you need help with factorising, go back to Section 1.B.(c) in Chapter 1.)

EXERCISE 2.D.1 Try solving these for yourself.
(1) x?+9x+14=0 (2) x>+ 4x-12=0 B) x*-11x+18 =0
(4) x>-x-20=0 (5) 2x>+13x+6 =0 (6) 3x2-7x-6=0

Sometimes, with an equation involving x2, it is easy to write down the answers without
factorising. For example, the equation x> = 16 can be solved simply by taking the square root
of both sides.

If x> = 16 then x = +4. (The sign + means ‘plus or minus’.)

Don’t forget the —4 which comes because (—4)> = 16 as well as (+4). Notice,
too, that you only need the + one side; putting it both sides will just give you
the same pair of answers twice over.

So that you can see that we get the same answers, I will also show you how to solve this
equation by factorising.

We would say x* — 16 = 0 so (x — 4)(x + 4) = 0 so x = £4. This factorising is another
example of the difference of two squares.

Now I shall take the slightly more complicated equation of (x + 2)?> = 16 as a second
example.

Again, we square-root both sides. This gives us the following working:
(x+2?=16 so x+2=24 so x=2 or x=-6.
This is quicker than the working needed for factorising which goes
(x+2°=16 so x*+4x+4=16 so x*+4x-12=0

sO x-2)x+6)=0 so x=2 or x=-6.

EXERCISE 2.D.2 Solve the following equations yourself.
@ x*=9 @ x* =% G) (k-3)2=4
(4) 2x-3)*=25 (5) Bx-2)*=36
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2.D.(b)

EXERCISE 2.D.3

The method of completing the square
There is another way of finding the solutions for quadratic equations which is called
completing the square. This method may seem clumsy at first, but it is worth persevering
with it because it has other very useful applications. In particular, we shall use it to handle
the equations of circles in Section 4.C.(d), Section 8.F.(a) and Section 10.E.(c). We shall
also use it in Section 9.B.(d) to help us with integration, and in Section 2.D.(d) to show
how we get the ‘formula’ for quadratic equations. Finally, we shall need it in the next
section to help us to sketch graphs, so altogether we see that it will be worth the effort
we put into it.

The following example shows how it works.

Suppose we have the equation x? + 6x — 16 = 0. Then either we can say

x2+6x—16=(x+8(x—-2)=0 so x=-8 or x=2,

which is the method that we have been using so far, or we can rearrange the equation so that
it looks like the equation (x + 2)*> = 16 which we solved in the previous section.
We do this as follows. We have

x>+6x-16=0 so x%+ 6x=16.

Now we say that x2 + 6x could have come from (x + 3)? except that (x + 3)? gives us an
extra term of 9 since (x + 3)> = x2 + 6x + 9.

So, taking account of this, we can replace x> + 6x by (x + 3)> — 9. We have written
x2 + 6x by completing a square and then taking off the extra +9 which this has given
us.

The equation now becomes

(x+32-9=16 so (x+3)*=25.
Square-rooting both sides, as we did in the last section, we have x +3=+5 so x=2or
x =-8.
Here is a second example in which I have shown the working more briefly.
I will solve the equation x> — 2x — 3 = 0 by completing the square.
x2-2x-3=0 so x*>-2x=3 but x>*-2x=(x-17%-1
Therefore we have
x-1)%-1=3 so (x—12>=4.
Square-rooting both sides gives us
x—1=%+2 so x=3 or x=-1.

We see from this and the previous example that all we have to do to get the correct bracket
for completing the square is to halve the coefficient of x. In the first example, we halved 6
to get 3, and in the second we halved -2 to get —1.

We must also remember to take off the extra bit which we have added on by squaring the
bracket. These were 3% = 9 in the first example, and 12 = 1 in the second.

Now try solving these three quadratic equations yourself by completing the

square.
(1) X2+ 4x =21 (2 x2-6x+8=0 B) x2-3x-10=0
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2.D.(c) Sketching the curves which give quadratic equations
The method of completing the square gives us a neat way of sketching the curves connected
with quadratic equations. We shall now look at how this is done by taking y = x% — 2x — 3
as an example.
We can rewrite x? — 2x — 3 as

(x-12-1-3 or (x-17%-4.

Using this rewritten form of y = (x — 1)*> — 4, what is the smallest possible value which y can
take, and what value of x makes this happen?

Since we can’t get a negative result when we square a number, the smallest possible value
of (x — 1)? is zero, and this happens when x = 1. So the smallest possible value of y is —4
and the lowest point on the curve of y = x> — 2x — 3 has the coordinates (1, —4).

As the values taken by x move further and further away either side from x = 1, the value
of y becomes increasingly large since the value of x> becomes increasingly large. (It very
soon swamps out the effect of the —2x — 3.) If you are unsure about this behaviour of y, test
it for yourself using your calculator by choosing pairs of values of x symmetrically placed
either side of x = 1. The further away you go, the larger the value of y becomes.

We can also use two other pieces of information to help us to draw the sketch of
y=x%-2x-3.

The first is the value of the y-intercept, that is, the place where the curve crosses the
y-axis. For this curve, this is (0, —3), since y = -3 when x = 0.

The second is the values of x for which y = 0. These are called the roots of the equation
y = 0. Here, putting

y=@x-12-4=0
gives
(x—-1)2=4
SO x—1=%2 giving x=3 or x=-1.

We can now draw a sketch of the parabola y = x> — 2x — 3 using all the information which
we have found above. I show this in Figure 2.D.2.

(=4

Figure 2.D.2
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The roots are the values of x which are the solutions of the equation

x? — 2x — 3 = 0. It is very important to remember to write this as an
equation by including the ‘= 0. The expression x> — 2x — 3 on its own can
have infinitely many values, some of which are shown by the y values in the
graph sketch of y = x? — 2x — 3 shown above.

Notice that all the important information is clearly labelled on the graph.

What will happen if we have to sketch a graph which starts off with —x>?

For instance, what happens if we sketch y = —x2 + 2x + 3 (the same as the one which we have
just done, but with all the signs changed? Try doing this for yourself before reading on.)

EXERCISE 2.D.4

The whole curve is simply turned upside down, because each positive value for y is
changed to the corresponding negative value, and vice versa.

The roots of x = —1 and x = 3 are still the same, but now the highest point is given by
(1, +4), and the y-intercept is (0, 3).

If you weren’t able to sketch it before reading this, sketch it on top of my graph of
y = x% — 2x — 3 now.

Whenever we have an equation for y which starts with a negative quantity of x2, we will
get an upside-down or inverted U-shaped curve like this one. (The negative changes the
smiley parabola into a sad parabola.)

Try using the same techniques to sketch the following two pairs of graphs.

2.D.(d)

(W @y=x>-4x+3 (b) y=-x>+4x-3
2 @ y=x>+2x-8 (b) y=-x>-2x+8

(The general rules for sketching curves like this are given at the end of Section
2.D.(f) as they also involve results which come from the formula for solving
quadratic equations.)

The ‘formula’ for quadratic equations
So far, all the quadratic equations we have looked at have turned out to have roots which are
either whole numbers or fractions. Surely this will not always be true? The square roots of
most numbers cannot be written as exact fractions or whole numbers. (In Section 1.E.(d) we
showed that |2 can’t be written in this way.)

Also, how can we tell if the curve of a particular equation never actually crosses the
x-axis without drawing it?

It will be much easier for us to answer these questions if we can find a general rule for
solving quadratic equations. Then we shall be able to see exactly what makes particular
problems arise.

We start with ax? + bx + ¢ = 0 with a, b and c standing for numbers and a # 0.

We want to find a formula from this which will give us a rule for finding the possible
values of x if we know the values of the numbers a, b and c.

First, we divide through by « as it is easier then to complete the square. Then we have

c

c
X2+—x+—=0 so x>+—x=——.
a a a a
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Now we complete the square, halving the coefficient of x, and taking off the square of this
amount just like we did in the numerical examples in Section 2.D.(b). This gives us

b \2 b \2 c b \2 b\? ¢
x+—) -[—] =—= so (x+—| =[—) ——
2a 2a a 2a 2a a
( b)z b? c ( b>2 b? — 4ac
SO xt—]| =—-—— 50 |xt+—| =—7F.
4a> a 2a 4q°

Now, taking the square root of both sides, we get

b b —dac  +\b* - 4ac
X+—== =
2a 4a? 2a

b \b?* = dac

SO X=——=
2a 2a

Finally, we get

B —b + \b?* — dac

2a

X

This is the so-called ‘formula’ for solving quadratic equations.

If you have seen this before, you may have realised that the right-hand side of the above
working was growing more and more familiar.

All we have to do to make use of it is to substitute the values of a, b and ¢ from the
particular equation that we want to solve.

For example, to solve 2x?> —5x + 1 =0 we put a =2, b = -5 and ¢ = 1. Then

525421 5E17
4

4

X =2.28 or 0.22 to 2 d.p.
Because \/ﬁ is irrational, that is, it has no exact square root, it would not have been possible
to factorise this equation in any simple way.

Even equations which can be solved by factorising are often more easily dealt with by
using the formula, if the factorisation is at all difficult.

For example, the equation 12x* + 19x — 18 = 0 will factorise into brackets with whole
number coefficients. We know that this is possible from working out the value of ‘b* — 4ac’.
Here b = 19, a = 12 and ¢ = —18, so b? — 4ac = 1225 = (35)%. (The number 1225 is called
a perfect square because it has an exact square root.)

In fact, 12x2 + 19x — 18 = (4x + 9) (3x — 2) but these brackets may not spring immediately
into your head. Substitution into the formula gives

-19 £ 35 9 2
X=————=—-— or —
24 4 3
just as we would obtain from the factorised form. So the equation 12x2 + 19x — 18 = 0 has
the two roots or solutions of f% and %
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EXERCISE 2.D.5

Use the formula to solve the following quadratic equations. (If the answers are not

2.D.(e)

exact fractions, give them correct to 2 d.p.)
(1) x>+10x+16 =0 (2) x2-2x-8=0 (B) 2x2+5x-3 =0
4 x> +4x+2=0 (5) 3x2-x-2=0 6) 2x2-x-7=0

You should try this now as you will need your answers for the next section.

(a) For each equation which you have just solved, find what you get if you
add the two solutions or roots together. Can you connect this answer
with the a, b and ¢ of the particular equation in any way?

(b) Now find what you get if you multiply each of the pairs of roots
together. Then again see if you can connect the results with the a, b and
¢ of the particular equation. If your answers aren’t exact fractions or
whole numbers, you will find that the more decimal places you take, the
closer you will get to a nice result, because you will be lessening the
rounding errors.

(c) Now for the tricky bit. Can you see why you are getting these neat
results from adding and multiplying the pairs of roots even when the
roots themselves are not simple numbers? Try looking at how your
working went when you used the formula to get your two answers.

Special properties of the roots of quadratic equations
This section is based on your answers to the thinking point at the end of the previous
section.

When you add the pairs of roots for each of the equations in Exercise 2.D.5, you should
find each time that you get the answer of —b/a for that equation.

For example, in question (3), the two roots are 5 > and —3,anda=2,b=5and c =-3.

Adding the roots gives ; 3= 2- =—3

We can see exactly why this should be so by looking at the roots of the equation
ax? + bx + ¢ = 0. These are

~b + \b* — dac q ~b — \b* - 4ac
an .
2a 2a

Splitting each of them into two parts and adding them gives
(—b \rb2—4ac) (—b b? —4ac) -b b b
_ |+ L — —
2a a

=t — = _
2a 2a 2a 2a

2a

The two complicated bits have cancelled out.
When you multiply the pairs of roots for each of the equations in Exercise 2.D.5, you
should find that you get the answer of +c/a for that equation. (For example, in question (3)
1 3 ) . : .
you get 5 X —3 = —5. The minus agrees with ¢ being negative here.)
We can see why this happens if we multiply the two roots of ax? + bx + ¢ = 0 together,
though it’s a bit more complicated this time. We have

(—b \b2—4ac)<b b2—4ac>_<—b>2 (N/b2—4ac>2
2a 2a 2a 2a 2a 2a '
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The two middle bits have cancelled out, because of the + and — signs. This is the difference
of two squares of Section 1.B.(b) again. Tidying up gives us

b%>  (b*>—-4ac) 4dac

4q? 4a? 4q?

C
a

When we either add or multiply any pair of roots, we get rid of the square root of the number
b? — 4ac. We therefore also get rid of any complications which might arise from trying to
find this square root.

Two special properties of the quadratic equation ax? + bx + ¢ = 0

® Adding its two roots together gives —b/a.
This is called the sum of the roots.

® Multiplying its two roots together gives c/a.
This is called the product of the roots.

We shall also get this same pair of results by following a different route in Section

2.D.(h).
EXERCISE 2.D.6 This is an exercise of mixed questions on solving quadratic equations. If the
answers to any question are not exact, give them correct to three decimal places.
(1) Solve these in whatever way seems suitable.
(@ 2x2+7x+3=0 (b) 3x2+4x+1=0 (c) 2x>+x-4=0
(d) 6x2-7x+2=0 (e) x>-5x+3=0 (f) 6x2+5x-6=0
(g) x2-81=o0 (h) 6x2-x-12=0 (i) x2-2=o0 () x2-5x=0
Check that the sum and product of the roots of each equation do fit the results
given in the box above.
(2) Solve the following equations.
2Xx-3 x-1 2 1 3 2X+4 x-8
@ = (b) F—=2 -
2x+3 X+1 y+1 y-1 y X+1 2x-1
2.D.(f) Getting useful information from ‘b2 - 4ac’

From the quadratic equations which we have solved and the work of the last section, we have
seen that it is having to find the square root of 5? — 4ac which can make us sometimes get
complicated answers.

The b2 — 4ac in the quadratic equation formula works as a kind of litmus paper or probe
to tell us what kind of roots any particular equation will have.

We look now at the different possibilities.

(1) If b? —4ac is positive then the equation will have two distinct roots. Geometrically,
the curve of y = ax? + bx + ¢ cuts the x-axis in two separate places.
If b2 — 4ac has an exact square root, then the two roots will be either whole
numbers or fractions. This means that it must be possible to solve the equation by
factorising and so gives a good quick test for this.
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(2) If b> — dac = 0 then the two roots will come together as one root. For example,
6 £+ 36 — 36

2

if we have x2> — 6x + 9 = 0 then x =

Also
x2—6x+9=(x-3)(x—-3)=(x—-3)>~

It is as though we have the root of 3 repeated twice. Geometrically, this is
because y = (x — 3)? just touches the x-axis when x = 3. (See Figure 2.D.3.) The
usual two roots have met up together to make just one root.

Two roots One repeated root No roots
b? —4ac>0 b?> —4ac=0 b%> —4ac<0
y Y Y
S nS ¢
x 3] > ol >X
Figure 2.D.3

We shall use this property geometrically in Section 4.C.(e).

(3)  Ifb%—4ac is negative, we cannot find a square root for it. The curve of the equation
does not cut the x-axis at all. It is either completely above or completely below it so
there are no values of x on the x-axis which fit the equation y = ax? + bx + ¢ = 0.
For some purposes, this lack of roots is not very satisfactory, and we cleverly
get round it in Chapter 10 by inventing a new sort of number.

A summary of everything that we now know which will help us to sketch
curves of the form y = ax*> + bx + ¢

o If a is positive, the curve is U-shaped.
If a is negative, the curve is an upside-down U.

® The value of c tells us the y-intercept.
The curve crosses the y-axis at (0,c).

® We can factorise (or use the formula) to find whether and where the curve cuts
the x-axis.
If b2 — 4ac is negative, the curve does not cut the x-axis at all.

® We can complete the square to find where the least value of the curve is (or the
greatest value, if it is an inverted U-shape). We shall see in Section 8.E.(b) that
this can also be found by using calculus.
If the curve does cut the x-axis, substituting the midway value of x between
the cuts into the equation for y gives the least value of y (or the greatest value
of y if the curve has an inverted U-shape).
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EXERCISE 2.D.7

Each of the six sketches shown below in Figure 2.D.4 comes from one of the ten

2.D.(g)

curves whose equations are given. Fit each sketch to its correct equation, and then
draw your own sketches for the four equations which are left over.

(1) y=x*+6x+5 (2 y=x>-6x+5 B y=x* (4) y=-x*
(B y=x*-4x+4 (6) y=4x-x2-4 (7) y=x>-8x+16
(8 y=x*+1 (9 y=x2-3x-4 (10) y =3x + 4 - x?

P
N-
v R

Figure 2.D.4

A practical example of using quadratic equations

s =ut— % gt? is a formula which gives the distance s in metres travelled by a ball from the
thrower’s hands if it is thrown upwards with an initial velocity of um s™! (metres per second),
after a time of ¢ seconds. g is the acceleration due to gravity and is 9.8 m s 2 (metres per
second per second) to 1 d.p.

We shall now use this formula to answer the following questions.

(1)  Ifarubber ball is thrown upwards at 14 m s~!, how high has it gone after 1 second?

(2) How long does it take for the ball to reach a height of (a) Sm, (b) 10m, (¢) 15m
from the thrower’s hands?

(3) Using the information you have now found, draw a sketch showing the relation
between s and ¢.

(4) How long does the ball take to fall back into the thrower’s hands, which we will
assume are ready and waiting?

(5) Where is the ball after 2.9 seconds?

70

(1) Using s = ut — %gtz, we have u =14, t=1and g=9.8 so s = 14 — (9.8/2) = 9.1;
the ball has reached a height of 9.1 metres after 1 second.

(2) (a) Putting s = 5, we have 5 = 14¢ — (9.8/2)t? so 4.9t> — 14t + 5 = 0. Solving this
using the formula for quadratic equations gives
14196 -98 14 +98
" 9.8 98
which gives ¢ = either 2.4 or 0.4 to 1 d.p.
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(b) Putting s = 10 gives 10 = 14¢ — 4.9¢> so 4.9¢> — 14t + 10 = 0.
Again using the formula, we get
14 + 1196 — 196
B 9.8

(c) Putting s = 15 gives 15 = 14¢ — 4.9¢? so 4.9t> — 14t + 15 = 0.

t =1.41to1dp.or1.43to2dp.

Using the formula gives
14 £ {196 —294 14 + /-98
t= = .
9.8 9.8

Because we have a negative square root here, it is impossible to find any value
of ¢ on the horizontal ¢ axis which fits this equation.

What is the physical meaning of the three answers we have found for question (2)?

® Why are there two possible times to reach a height of 5 metres?
® Why is there just one time to reach a height of 10 metres?
® Why couldn’t we find a time to reach a height of 15 metres?

Try answering each of these questions yourself.

The ball reaches a height of 5 metres from the thrower’s hands both on the way up and
on the way down, so there are two possible answers for the time.

The single answer for the time taken to reach 10 metres means that this was the highest
point the ball reached. So it never reached a height of 15 metres and it was impossible to find
a time for this.

The mathematics of the quadratic equations has exactly corresponded back to the
physical situation.

(3)  With this information we can now draw a sketch of the relation between s and ¢.
I show this below in Figure 2.D.5.

\ S (metres)

10+ n

N

Sl — e fe e e e e e - - l actval
1
i : path of
: | the ball

|

f l st §

o o4 ) 2428 7

_ (seconds
Figure 2.D.5
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Notice that the graph sketch shows the height of the ball after time ¢. The little
sketch at the side shows the actual path of the ball which is straight up and then
straight back down.

(4) Because the curves giving quadratic equations are symmetrical, if we know that the
time taken for the ball to reach its highest point is 1.4 seconds, then the time taken
for it to fall back into the thrower’s hands will be 2.8 seconds.

(5) Clearly, from the sketch, after 2.9 seconds the ball should have been safely caught.
Ifweputt=29ins=ut- % gt?, we get s = —0.6 to 1 d.p. This describes what has
happened to the ball if the thrower completely misses it and it just carries on
downwards. It will be 0.6 metres below the thrower’s hands after 2.9 seconds.

Now see if you can answer this question.
What is the meaning of the quadratic equation 0 = uft — % gt*?

2.D.(h)

Solving this equation tells us when the ball is in the thrower’s hands, that is, when s = 0.
Factorising, we have

0=ut—%gt2=t(u—%gt)

so either £ = 0 (the ball is just about to be thrown up) or u — % gt =0 so ¢t = 2u/g which is
the time taken for the ball to return to the thrower’s hands. Whenu =14, ¢t=2.86 =2 X 1.43
seconds. Strictly speaking, the time of 2.8 seconds is an underestimate.

The above working has ignored air resistance. It describes the motion of a rubber ball
quite well but would be of no use to describe the motion of a feather. We are using the
formula s = ut — % gt? as a mathematical model we can work with and which approximates
quite well to the actual physical situation.

If the ball is thrown up at 14m s~ we know that s = 147 — 5 g*.
Therefore we know the ball’s height at any time during the throw.
Surely, if we know this, we ought to be able to find out how fast it is
moving at any particular time?

See if you can answer these questions.

(1)  When does the ball move fastest?

(2) When does it move slowest?

(3) Can you estimate how fast it is going one second after it has been
thrown up?

(These questions will be answered in Section 8.A.(a) later on but it would be
very good for you to think about the possibilities yourself here.)

All equations are equal — but are some more equal than others?
In the last section, we looked at some of the physical meanings which equations can hold.
We will end this chapter by spending some time examining the equations themselves.

Do equations always work in the same kind of way, so that by solving them we find some
specific answers which fit these particular circumstances?
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Or, if not, what else can happen?
The following examples all look straightforward at first sight, but try solving each of
them yourself. Things are not always quite as they seem.

() x*+5x+6=x>+x-2 2) x>-x-6=x>+3x-4
B) 2x*-8x+8=x>-4x+5 4) x>-—6x+8=(x-2)(x—4).
It will help you to see what is happening if you also sketch the graph of each side of each

equation. Then you can see whether, and if so where, these graphs cross.
You should try doing this for yourself before looking at my solutions.

() x*>+5x+6=x>+x—-2 so 4x=-8 and x=-2.
To show this single solution graphically, we sketch, using the same axes,
@y=x>+5x+6=@x+3)(x+2)and (b)y =x>+x-2=(x +2)(x - 1).
The sketch in Figure 2.D.6 shows that y = 0 for both (a) and (b) when x = -2.

\BA
[°

Figure 2.D.6

2 x2-x-6=x>+3x—4 so —2=4x and x=-1.

The sketch in Figure 2.D.7 of (a) y = x> —x — 6 = (x — 3) (x + 2) and
(b) y=x%+3x -4 =(x— 1) (x + 4) shows that there is the single solution of
x= —% which gives equal y values for both (a) and (b).

Figure 2.D.7
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(3) 2x?—8x+8=x2—4dx+5s0x?—4x+3=0so(x—3)(x—1)=0andx=3orx=1.
The sketch in Figure 2.D.8 of (a) y = 2x? — 8x + 8 = 2(x% — 4x + 4) = 2(x — 2)? and
(b)y=x2—4x+5=(x—2)>—4+5=(x—2)>+ 1 shows the two possible values of x
which make the y values of (a) and (b) the same. These are x =1 and x = 3.

O ] 2 3

Figure 2.D.8

4) x2—6x+8=(x—-2)(x—4)
Multiplying out the right-hand side gives exactly the same expression as the left-
hand side. Therefore, any value of x is a possible solution since it will make each
side of (4) have the same value. The two graphs lie on top of each other — they are
the same graph. I show this in Figure 2.D.9.

all points on this curve
fit both @ and (®.

0 _~

(o] 2 —4 -

Figure 2.D.9

What we have here is not an ordinary equation but just two different ways of writing the
same piece of information. The two sides are identically equal to each other (rather like
identical twins). We call an equation like this an identity.

Just like identical twins, the two sides are equal in every detail, so there are the same
number of x? terms on both sides of the ‘=" sign, and the same number of xs. The number
terms on each side are also equal. This is the only way that the two sides can remain equal
to each other for all possible values of x.

Remembering that the number which tells you how many you have of x2, say, is called
its coefficient, we see that comparing the coefficients will give us three equal pairs of
values.
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If two expressions are identically equal to each other, the coefficients of each separate
power of x on each side of the ‘=" sign must be the same as each other.

This rule gives us a very neat method of finding out how to write expressions in different
ways. We’ll use it in the next section to factorise expressions which involve terms with x?,
and then later on in Section 10.D.(c) to find complex roots of equations. Also, we’ll see in
Section 6.E.(d) that it will make finding some kinds of partial fraction much easier.

I’ll now finish this section by showing you how to use this rule to find the special
properties of the sum and product of the roots of quadratic equations. We have already found
these properties in Section 2.D.(e) by working directly from the roots themselves, but this
new method will avoid the tricky algebra which we had to use there.

Suppose that the equation ax? + bx + ¢ = 0 has the two solutions x = & and x = f so that
its two roots are « and . (« and f are the Greek letters for a and b and are called alpha and
beta. They are very often used to stand for the roots of quadratic equations.)

We start by dividing both sides of the equation ax? + bx + ¢ = 0 by a. This gives us

b c
¥+ —x+—=0.
a a
(We do this division because it will simplify the working which follows.)
Now, (x — a) (x — ) = 0 is just another way of writing

x2 + (bla)x + c/a = 0.
Also,
x-a)x-P=x>-ax—-Px+af=x*>—-(a+p)x+af

soy =x?—(a + fB) x + af gives exactly the same curve as y = x? + (b/a)x + cla.

(The earlier division by a means that we now have two curves which are identical for
every value of x. You can see exactly how this works if you take the numerical example of
2x? — 6x + 4 = x?> — 3x + 2 = 0 which has the two roots x = 1 and x = 2.)

We already have matching terms of x2 on both sides.

Comparing the coefficients of x (which must also be equal), we have

b b
—(a+pf)=— so a+tf=——.
a a

Also, comparing the two number terms, we have aff = c/a.
This gives us the following two rules.

If we have the quadratic equation ax? + bx + ¢ = 0,
then the sum of its roots = — b/a and the product of its roots = c/a.

A note on writing identities
The special form of equality called an identity in maths, where the two sides of the
expression remain equal for all possible values of x, is sometimes written using the triple
equals sign ‘=’. You can think of the sign ‘=" as meaning ‘is the same as’ or ‘is equivalent
to’. Mathematicians often speak of the two sides as being identically equal to each other.
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2.E

Further equations — the Remainder and Factor Theorems

2.E.(a)

Cubic expressions and equations
How could we set about solving an equation like 2x> — 5x2 — 6x + 9 = 0?

This is called a cubic equation since the highest power of x is x>. There isn’t a very simple
formula for solving cubic equations, so we see if we can successfully guess one answer to
start us off. (The following method will only work for equations which have exact solutions
which are also not too hard to guess; if this is not the case, other methods involving closer
and closer approximations to the true solutions would have to be used.)

Here, if we try putting x = 1, we get 2x> —5x> —6x +9=2-5-6 +9 =0, so we
immediately have one solution of our equation.

It will make the working much shorter and easier to follow if we now introduce a
shorthand way of describing 2x> — 5x% — 6x + 9. We will call it f{x), with the name f{x)
meaning this particular collection of terms whose value changes as x changes.

This gives us a neat way of showing particular values of f(x) associated with their
corresponding values of x.

For example, if x = 2 we have £(2) = 2(2%) - 5(2%) - 6(2) + 9 = 7 so0 f(2) = - 7.

(In fact, f(x) is what is called a function of x. In Section 3.B, we shall look at what
functions are in more detail.)

We can now say that f(x) = 2x> — 5x% — 6x + 9 and we know that (1) = 0.

Since x = 1 is a solution or root of this equation, it seems reasonable to think that (x — 1)
must be a factor of f(x), just as we found with quadratic equations.

(We will show that it is all right to say this in Section 2.E.(c).)

If (x — 1) is a factor, we can say that

f(x) =2x* - 5x? — 6x + 9 = (x — 1) (something).

Since the right-hand side is just another way of writing the left-hand side, the two sides must
be exactly the same as each other. Therefore we must have the same matching quantities of
x3, x2, x and numbers on both sides. This means that it is easy to match up the two end terms
in the right-hand bracket. It is just the middle one which will take a bit more thought. We

can say
2x3 —5x2—6x+9=(x—-D2x>+px-9)

where p is standing for the number which we haven’t found yet.

Now, matching the terms in x2, we have —5x2 = —2x? + px?, picking out the ways in which
we can get x? on the right-hand side.

Therefore, -5=-2+p so p=-3.

We can check that this is correct by matching the terms in x.

Doing this gives us —6x = —px — 9x which does indeed work for p = 3.

So now we can say 2x> — 5x2 — 6x + 9 = (x — 1)(2x? — 3x — 9).

What we have here is an example of an identity, like the ones which we described in
Section 2.D.(h) where we also matched up terms in this way.

We can find the other two solutions or roots of the equation f{x) = 0 by solving
2x2 — 3x — 9 = 0. Factorising,

2x2-3x—-9=2x+3)x-3)=0
so x=3 or —%.
The three solutions or roots of f(x) = 2x> — 5x? — 6x + 9 = 0 are therefore given by x = 1,

3
x=3and x = —3.
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What will the graph of y = f(x) = 2x> — 5x? — 6x + 9 look like?

We know that it must cut the x-axis three times, at x = 1, x =3 and x = f%.

It also seems reasonable to say that, if we find enough values of y from feeding in values
for x into f(x), the graph would be able to be drawn in one continuous line.

Ifwe putx=0, we get f(x) =9, so we know that the curve cuts the y-axis at the point (0,9).

If x is large and positive, which has the most powerful effect: the 2x> or the —5x2? Try
putting x = 2, x = 10 and x = 100. You will see that, as x gets larger, the 2x> term swamps
out the —5x2 term. So y will also become large and positive.

In just the same way, if x is large and negative, 2x> will also be large and negative, and
so y also is large and negative.

We now know enough to make a sketch of the graph of f(x) and I show this below in
Figure. 2.E.1.

/l\3
q

- l
‘s/:/ o \/3

Figure 2.E.1 f(x) = 2x3 -5x> - 6X + 9

This is the best that we can do at the moment. With straight lines, we could also use the
steepness or gradient to help us with the graph sketch. With quadratic graphs, we were able
to complete the square to find the least (or greatest) value of the graph. You might perhaps
feel that, since we can find the value of y for any value of x here, surely we ought to be able
to find out a bit more about the size of the greatest value coming between x = f% and x =
1, and the least value coming between x = 1 and x = 3. We can’t discover these values yet,
except approximately by trying lots of values of x, but we shall find out how it is possible
to do it in Section 8.E.(b).

ExAMPLE (1) We will now solve the equation f{x) = 3x> + 2x% — 12x — 8 and use the
roots to sketch the graph of y = f(x).
(f(x) is now referring to the new collection of terms of
3x3 + 2x? — 12x — 8. We could also have used some other letter, calling
it, say, g(x) or i(x) if we had wished.)
First, we hope to find a root of f(x) = 0. Can you find one?

This time, if we try x =1, we get f(1) =3+2-12-8#0sox =1
is not a solution of f(x) = 0.

Puttingx =2 gives f(2)=3X8+2X4-12X2-8=0 so x=2
is a root. This means that (x — 2) is a factor of f(x). We can now say

fx)=3x3+2x2 - 12x -8 = (x = 2)(3x% + px + 4)

matching up the two end terms in the right-hand bracket and letting p
stand for the number which we still have to find.
Matching up the terms in x2, we have 2x% = —6x2 + px% so p = 8.
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EXERCISE 2.E.1

Checking with the terms in x, we have —12x = —2px + 4x so p = 8 is
correct.

(It is also possible to find the second bracket here of (3x? + 8x + 4)
by long division of (x — 2) into 3x> + 2x2 — 12x — 8, but I think the
method above is easier. I shall show you how to do long division in
algebra in the next section.)

We now have

f(x)=(x—2)3x>+ 8x +4) = (x — 2)(3x + 2)(x + 2)

factorising the second bracket, and the equation f(x) = 0 has the three
solutions or roots: x =2 or x = —5 or x = —2.

We will now use these three roots to help us to sketch the graph of
y = fx).

Putting x = 0 gives us f(0) = —8, so the curve of y = f(x) cuts the
y-axis at the point (0, —8).

f(x) will behave in a similar way to the first example when x takes
very large positive or negative values, so we now use all the information
we have to draw the sketch in Figure 2.E.2.

2\
-2 ‘/3\ O 2

-8

Figure 2.E.2 f(x) = 3x3 + 2x>-12x- 8

For each of the following, first find the roots of f(x) = o and then use these to

help you to sketch the graphs of y = f(x) in each case. For each graph, you will
also need to find out where it cuts the y-axis, and how f(x) behaves when x takes
either very large positive values or very large negative values.

(1) y=flx) =3x3+2x2-3x-2 (2 y=fx) =2+3x-3x>-2x3
B y=fx)=g3-15x>+12x+4 (4 y=flx) =x3-3x>+3x-1

We could use exactly the same method to solve equations which start with a term in x*.
The only problem is that it depends upon being able to guess some roots correctly to start
with. Often, none of the roots of f(x) = 0 will be simple whole numbers, and indeed they may
not even be real numbers, as we have already found with some quadratic equations. If this
happens, the graph sketches will no longer look like the ones we have drawn, though in the
case of a cubic graph it will have to cross the x-axis at least once, because the y values must
go from large negative to large positive or vice versa, and the graph itself is a continuous
line. So a cubic equation will always have at least one real root (that is, a root which can be
found on the x-axis).

Also, once we have got beyond quadratic equations, general formulas for finding the
roots are either far more complicated or do not exist at all. It is, however, possible to use
numerical methods for solving such equations by approximating to the roots with any
desired degree of accuracy.
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2.E.(b) Doing long division in algebra
Usually long division in algebra can be avoided (as we did in the last section when we used
the method of matching up the terms on the two sides for factorising), but sometimes this
isn’t possible, so we will now look at how this process works.

2x3 +9x%2 - 3x - 20

x+3

We will take as a first example

We will have:

Lx +3x —12
X+ 3 | 2x3+9x*~3x ~20
2>+ 6x"
3x -3
3Ix"+9x
-12x~20
—-)12x-36
+16

Figure 2.E.3

The working for the division is set out as I have shown in Figure 2.E.3.
x + 3 is called the divisor and 2x> + 9x? — 3x — 20 is called the dividend.
The process consists of the following.

¢ Divide the highest power by the highest power in the divisor.
Here, divide 2x> by x, which gives us 2x2.

¢ Multiply the divisor by this quantity.
Here, we multiply x + 3 by 2x? to get 2x> + 6x2.

o Subtract. This gives us the mismatch at each stage.
Here, we get 3x°2.

¢ Bring down the next term in the quantity being divided to the working level.
Here, we now get 3x? — 3x.

® Repeat the process until the highest power of x in the divisor is greater than the
highest power of x it would be divided into.

What is then left is called the remainder, and the result of the division is called the

quotient.
Here we have the result
2x3 4+ 9x% - 3x — 20 16
=2x2+3x— 12 + .
x+3 x+3

The quotient is 2x> + 3x — 12 and the remainder is +16.

Compare this with the numerical example
187 7
=12

+—.
15 15

We see that 15 goes 12 times into 187 with a remainder of 7.
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2.E.(c)

Here is another example of long division, this time with no remainder.

If (x — 3) is a factor of 2x> — 9x2 + 7x + 6 then it must divide into it exactly, (just as 3
is a factor of 12 and divides into it exactly four times).

We will now prove that (x — 3) is a factor of 2x> — 9x? + 7x + 6 by using long division.
The working is shown in Figure 2.E.4.

2x-3x~2

% =3 [2x3-9x*+Tx + 6

2x>—6x*

-3+ 7x
—3x*+9x

T =2x +6

—2x+6

(o]

Figure 2.E.4

In practice, it is almost always possible to avoid long division if you do not take kindly
to it; we managed to do this when we were doing the factorising earlier, and there are other
ingenious methods which can be used, which I will show you as you need them.

Avoiding long division — the Remainder and Factor Theorems
In Section 2.E.(a), we found that if f(x) = 2x> — 5x? — 6x + 9 then f(1) = 0.

It is certainly true that if (x — 1) is a factor of f(x) then putting x = 1 will make f(x) = 0.
We assumed in that section that this would work the other way round too, so that if /(1) =0
then (x — 1) must be a factor of f(x). We shall now prove that this assumption was justified,
and we shall also find a very neat way of finding the remainder from doing an algebra long
division without actually having to do this rather tedious process.

We prove these useful results as follows:

Suppose we have some general cubic equation f(x) = ax> + bx? + cx + d, and we divide
it by (x — k). (Here, a, b, ¢, d and k are all standing for whatever particular numbers we might
have.) We will get

ax* + bx* +cx +d @
=q(x) +
@k e
where ¢ (x) corresponds to the 2x? + 3x — 12 of the first example in the last section, and R

corresponds to the remainder of +16.
Now we multiply all through by (x — k). This gives us

(1)

ax* + bx?> + cx +d = (x — k)g(x) + R.

We can compare this with an arithmetical example.
—=5+— s0o 79=5X15+4.

15 goes 5 times into 79 with a remainder of 4. In other words, 79 is made up of 5 lots of
15 with an extra 4 added on.
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Here, ax® + bx? + cx + d is made up of (x — k) lots of g(x) with an extra R added on.

Since we have f(x) = ax® + bx?> + cx + d = (x — k) g(x) + R, putting x = k gives us
flk) = ak® + bk* + ck + d = (k- k) q (k) + R, that is, f(k) = R.

From this, if f(k) = 0 then R = 0 also, which means that (x — k) divides into f{x) exactly.
It is a factor of f(x).

We now have the following pair of results.

If we have f(x) = ax> + bx* + ex + d

then dividing f(x) by (x — k) gives a remainder of f(k).
This is the Remainder Theorem for cubics.

If f(k) = 0, then (x — k) is a factor of f(x).

This is the Factor Theorem for cubics.

We now see how we can use these results by looking at the two long division examples
from the previous section.

In the first example, we divided f(x) = 2x> + 9x? — 3x — 20 by (x + 3). To find the
remainder, we no longer need to do this division. All we have to do is to work out
f(=3)=2(-3)> +9(-3)> - 3(-3) — 20 = —54 + 81 + 9 — 20 = 16 which agrees with the answer
that we found there.

Notice the switch in sign from x + 3 to f(— 3).
This is because x + 3 = x — (-3) which corresponds to the x — k.

If we only need to know the remainder from a long division, we can now find this just by
working out f(k).

In the second example, putting x = 3 in f(x) = 2x> — 9% + 7x + 6 gives us
f(3) =54 — 81 + 21 + 6 = 0 so therefore (x — 3) must be a factor of f(x).

Again, we don’t need to do the long division to prove this.

Although we have taken the special case of f(x) being a cubic expression, the argument
would have worked in exactly the same way for higher whole number powers of x, so these
two theorems are true for any such expression.

2.E.(d) Three examples of using these theorems, and a red herring
ExAMPLE (1) Find the remainder when f{(x) = 3x> — 4x2 + 5x — 2 is divided by (x — 2).
We simply find £(2). This is 3(8) —4(4) + 5(2) — 2 = 16 so the remainder is

16 and we have not had to do the actual division to find this out.

ExAMPLE (2) Given that (x — 4) is a factor of f(x) = 6x> + ax? + bx + 8 and that the
remainder when f{(x) is divided by (x + 1) is — 15, find @ and b and the
other two factors.

We have

f(x) = 6x3 + ax? + bx + 8.
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EXAMPLE (3)

We are told that (x — 4) is a factor, therefore f(4) = 0. So
f(4)=384+16a+4b+8=0 and 4a+b=-98. (D

The remainder when f(x) is divided by (x + 1) is — 15.  So
f(=1) = — 15. We have

fi-l)=-6+a-b+8=-15 so a-b=-17. )

Adding equations (1) and (2) gives 5a =115 so a =-23.
Substituting in (1) gives —92 + b =-98 so b =—-6.
Check in (2): LHS = -23 — (-6) = —-17 = RHS.

Now we have
f(x) = 6x3 — 23x% — 6x + 8 = (x — 4)(something).

Comparing the two sides, the first term in the second bracket must be
6x2. The last term of the second bracket must be —2. Let the middle
term be px. Then we have

6x> — 23x2 —6x + 8 = (x — 4)(6x2 + px — 2).
Matching the terms in x? gives
—23x2=24x>+px* so p=1.

Checking with the term in x we have —6x = —4px — 2x so again we have
p = 1. So we have

fxX)=(x—-4)(6x>+x—-2)=(x—4) 2x - DH(Bx + 2)
factorising the second bracket.

The other two factors are (2x — 1) and (3x + 2).

This example is just sufficiently different that you might find it a little
difficult.

Suppose you have been asked to show that x> — 4 is a factor of
3x3 + 4x% — 12x — 16. Can you see that you have actually been asked
about two factors? What are they?

82

EXAMPLE (4)

We can use the difference of two squares to say x> —4 = (x — 2)(x + 2).
Now, f(2) =24+ 16-24-16=0 so (x—2)is a factor.
f(-2)=-24+16+24-16=0 so (x+ 2)is a factor also.

If two factors are multiplied together, then the resulting expression is
also a factor.
(This is the red herring.) Solve the equation 4x* — 37x2 + 9 = 0.

It is possible to solve this equation by finding two solutions by
guessing, but they are quite hard to find, and there is a much neater and
quicker way of finding the answers.

This is because what we have been asked to solve is really a heavily
disguised quadratic equation.
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EXERCISE 2.E.2

If we put y = x2, the equation becomes 4y? — 37y + 9 = 0.

Factorising, we get (y —9) 4y —1)=0soy=9ory= %. (If you
couldn’t spot these factors, you could have used the quadratic equation
formula to find y.)

Replacing y by x, we get x* = 9 or x? = 3.

o . 1
This gives us the four solutions of x = +3 or x = £5.

Try these questions for yourself now.

(1) Show that (x — 2) is a factor of x3 + 2x2 - 5x — 6, and find the other two.

(2) Show that (x — 3) is a factor of 2x3 — 3x2 — 8x — 3, and find the other two.

(3) Factorise completely the expression f(x) = 3x3 + x2 - 12x - 4, and hence solve
the equation f(x) = o.

(4) Factorise completely the expression f(x) = 2x3 + 7x2 + 2x — 3, and hence solve
the equation f(x) = o.

(5) Solve the equation f(x) = x* — 29x2 + 100 = o.

(6) Given that (x - 3) is a factor of f(x) = 5x3 + ax + bx — 6, and that the
remainder when f(x) is divided by (x + 2) is —40, find a and b, and the other
two factors.

(7) Show by using long division that (3x — 2) is a factor of 12x3 + 4x> — 17x + 6.
Show also that this is true by using the Factor Theorem.

(8) Using long division, find the remainder when 6x3 + 5x2 — 8x + 1 is divided by
(2x — 1). Check that your answer is correct by using the Remainder Theorem.
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Relations and functions

We now build on the work of the previous two chapters to introduce functions.
These are very important in scientific and engineering applications, and this chapter
helps you to understand how they work.

It is split up into the following sections.

3.A Two special kinds of relationship

(@) Direct proportion, (b) Some physical examples of direct proportion,
(©) More exotic examples,

(d) Partial direct proportion — lines not through the origin,

(e) Inverse proportion, (f) Some examples of mixed variation

3.B An introduction to functions

(@) What are functions? Some relationships examined,

(b) y = f(x) — a useful new shorthand, (c) When is a relationship a function?
(d) Stretching and shifting — new functions from old,

(e) Two practical examples of shifting and stretching,

(f) Finding functions of functions,

(g) Can we go back the other way? Inverse functions,

(h) Finding inverses of more complicated functions,

() Sketching the particular case of f(x) = (x + 3)/(x — 2), and its inverse,

() 0dd and even functions

3.C Exponential and log functions

(@) Exponential functions — describing population growth,

(b) The inverse of a growth function: log functions,

() Finding the logs of some particular numbers, (d) The three laws or rules for logs,
(e) What are ‘e’ and ‘exp’? A brief introduction,

(f) Negative exponential functions — describing population decay

3.D Unveiling secrets — logs and linear forms
(@) Relationships of the form y = ax”, (b) Relationships of the form y = an*,
() What can we do if logs are no help?

We start this chapter with some more practical examples of the use of equations. Many
physical laws can be described by the two particular sorts of relation which we shall consider

3.A Two special kinds of relationship
next.
3.A.(a) Direct proportion

This describes a situation in which two quantities are related together so that as one gets
bigger the other does also, in the same proportion. If the first quantity is doubled then the
second quantity will be doubled also. We could take as an example the number of identical

objects bought and the price paid.
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The relationship between the number pairs making up the coordinates of the points on the
straight line shown in Figure 3.A.1 also fits this description because it passes through the
origin.

Fill in the blanks for the points C, D and E yourself.

VS
Y )
61 c
CAD)
. ) D
31 (4,2) c
(2,0 B
A
3 2 4 6 g o iz °
Figure 3.A.1

You should have C is (6,3), D is (8,4) and E is (12,6).
Each fraction y/x gives the gradient of the line because all of them give the relative
change of y with respect to x measured from the origin. We have

2 3 4 6 vy )
= —=—=—=— = — = the gradient, m.
4 6 8 12 «x

1

2

For any two general pairs (x;,y;) and (x,,/,), we have y,/x; = y,/x, = % We know from

Section 2.B.(f) that the equation of the line through these points is given by y = %x. The % is

called the constant of proportionality and tells us the relation between this particular set of
ys and xs.

If two quantities x and y vary directly then we can write
x o« y or x = ky where k is a constant.

The symbol « means ‘is proportional to’.

3.A.(b) Some physical examples of direct proportion
Here are some examples of physical quantities which are related in this way.

EXAMPLE (1) Charles’ Law of gases. This states that the volume, V] of a certain mass
of gas is directly proportional to its temperature, 7, measured from
absolute zero, which is —273 °C. Therefore we can say

o n
Vel o —=— cetc. or V=FKL
i T
where k is the constant of proportionality. The numerical value of £ will
depend upon the units in which we measure V and T.
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EXAMPLE (2)

EXAMPLE (3)

The volume, V] of a cylinder of a given cross-section is directly
proportional to its height, 4. (This is shown with two such cylinders in
Figure 3.A.2.)

« 7>

o \;ﬁi

Each cgln'nder has
the same radius.
Figure 3.A.2

Wecansay Vo h or Vi/h =Vy/h, or V=kh

Can you see what & will be this time?

The formula for the volume of a cylinder is V= wa>h, so k = ma>.

For simple tension or compression (so no bending is involved), stress, o,
is directly proportional to strain, €.

Wecansay o x¢ or o0,/e; =0,/¢, or o= FEe whereFE is
the constant of proportionality.

A possible (rather simplified) situation is shown in Figure 3.A.3(a).

®) =

L

\

PP PP PP Y

L
Sause

The cross-sectional

orea = A

Figure 3.A.3

” Al = lfhe, change length
m L

Force=F

Figure 3.A.3(b) shows the cross-section of a typical test specimen with a pre-determined
gauge length to perform the test on, and large end pieces to enable them to be clamped

firmly.

The strain is the fractional change in length, and the stress is the stretching force per unit
cross-sectional area. AL stands for the change in the original length, L. (The symbol ‘A’ is
often used to mean ‘the change in’.)
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So we have
AL F AL
e=— and o=— and therefore F/A=F —.
A L
E, the constant of proportionality, is called Young’s Modulus of elasticity and is a physical
property of the particular material concerned.
Physically, the relationship will only be one of direct proportion, and so represented by
a straight line through the origin, up to a certain critical point which will depend upon the
properties of the material concerned. When the strain is increased beyond this critical value,
deformation takes place and the material behaves differently. The mathematical model of
direct proportion only works over a limited physical range.

3.A.(c) More exotic examples

exAMPLE (1) The kinetic energy, £, of an object of mass M moving at a speed of v is
given by the relation £ = %Mvz. (Notice that we have used the symbol E to
mean different things in this example and the last one. This is because
engineers and physicists do commonly use this same letter with these two
different meanings. It is very important in any practical application to
make sure that you know what the different symbols represent.)

For two objects moving at the same speed, v, the kinetic energies will
be directly proportional to the masses of the objects. For example, a
lorry of mass 6 tonnes moving at a speed of 10m s! has six times the
kinetic energy of a car of mass 1 tonne, also moving at 10m s™'.

But how does the kinetic energy of the car compare when it is
moving at a speed of 10m s™! to when it is moving at a speed of
30ms!?

The speed is now three times greater but the kinetic energy is
proportional to the square of the speed. Therefore the kinetic energy is
nine times greater.

Here, E = kv? with this particular k being % since the mass of the car
is one tonne.

EXAMPLE (2) The area of a circle, 4, of radius 7 is given by 4 = 2.
What is A4 directly proportional to?
What is the constant of proportionality?

A is directly proportional to 72, and the constant of proportionality is 7.

The table below shows possible values for 4, » and 2.

A 0 T 4r 9 167 257
r 0 1 2 3 4 5
r? 0 1 4 9 16 25

Figure 3.A.4(a) shows a sketch of the graph of 4 against », and Figure 3.A.4(b) shows a
sketch of the graph of 4 against 2.
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Figure 3.A.4

2

B

From these you will see that plotting 4 against  gives a graph of the same form as y = x
but plotting A against 72 gives a straight line through the origin of gradient 7.
exAMPLE (3) The volume, V] of a sphere of radius r is given by V' = % .
What is V directly proportional to?
What is the constant of proportionality?

Vis directly proportional to > and the constant of proportionality is %n.

EXAMPLE (4) In Section 2.A.(d), we used the formula 7= 2x \J’Efor the period, 7, of a
simple pendulum of length /. (g stands for the acceleration due to gravity.)
What is T directly proportional to here?
What is the constant of proportionality?
|
T is directly proportional to \7, the square root of the length, so 7= k\f‘T
The constant of proportionality is 277/\/g. (This is assuming that the
acceleration due to gravity can be taken to be constant when we are
making our measurements.) A graph of 7 against \// will give a straight
line through the origin with gradient 27/\g.

EXERCISE 3.A.1 Try answering these questions yourself. Each question is an example of a
relationship involving direct proportion, and you are asked to compare pairs of
physical measurements.

(1) Compare the volumes of the cylinders (a) A and B (b) C and D shown in Figure
3.A.5.

(2) Compare the kinetic energy, E,, of a car moving at a speed of 5 ms™ with its
kinetic energy E, when it is moving at 3oms™.

(3) Compare the volumes V, and V, of two spheres if the first sphere has a radius
of 2cm and the second has a radius of 8 cm.

(4) Compare the time of the swing of a simple pendulum of length 9 cm with a
pendulum of length 25 cm.
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3.A.(d)

1
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|

Figure 3.A.5

Partial direct proportion — lines not through the origin
We have seen that every direct proportion relationship gives us a straight line graph through
the origin.

Can we give any physical meaning to pairs of points lying on a straight line which doesn’t
pass through the origin?

If we take any straight line, so that its equation can be written in the form y = mx + ¢
(Section 2.B.(f)), then y is partly directly proportional to x and partly made up of the
constant, c.

An electricity bill is a physical example of such a relationship. This is made up partly of
the cost of the number of units of electricity used and partly of a standing charge which is
a constant amount added to each bill. (See Figure 3.A.6.)

2y ( Yotal Ch“—"se)

}This fePY¢SentS The Standu’nj (J'\Qrse.

> x
o ( No. of units used)

Figure 3.A.6

The equation for a typical electricity bill might read y = 7.42x + 910 where the cost in
pence per unit used is 7.42 and the standing charge is £9.10.
, the total cost, is given in pence by this equation.

There are many other physical situations which can be described in a similar way. A second
example is given by the relationship between the volume and the temperature of a gas if we
dont measure the temperature on a scale starting from absolute zero. This is because we can
only have zero volume if the temperature is also at absolute zero, so measurements on a
temperature scale which starts from here are necessary to make the line pass through the
origin.

If the temperature is measured in °C, we shall get a graph like the one shown in Figure
3.A7.
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3.A.(e)

AV (volume)

Ve
This represents the volume of The gas ot Tz O%C.
> T
m278°¢ © (temperature in °C)

Figure 3.A.7

The equation which relates the volume to the temperature is V' = kT + V,, where k (the
gradient) = V,/273.

Compare this with the graph of Figure 3.A.8 which shows the simple relationship of
direct proportion of volume to absolute temperature, so V = k7. (The absolute temperature
is measured in degrees Kelvin where 0 K is equivalent to —273 °C.)

AV

& > T(K)

Figure 3.A.8

In the second graph we have effectively shifted the vertical axis back by 273 °C. We see
that the mathematical model which correctly describes the physical situation depends upon
the units we choose to measure in.

Inverse proportion
Two quantities are in inverse proportion if, as one gets larger, the other gets proportionally

smaller and vice versa.
For example, if 24 apples are to be shared out equally among different numbers of people,
we have all the possibilities shown in the table below.

x (number of apples) 1 2 3 4 6 8 12 24

vy (number of people) | 24 12 8 6 4 3 2 1

Evidently, in each case xy must be equal to 24.
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If we plot these pairs of values we no longer get a straight line graph. (The graph we get
is shown in Figure 3.A.9(a).

@ ®

AY ( people) A4 (tength in cm)
24> 24
18t 18
ar * 12+
®
B b 3
6 . ¢
.3
N X N N z S
o 6 12 ] 24 (;xm) I3 12 1% 24 »b
PP (breadth in cm)
Figure 3.A.9

Nor can we reasonably join the points together to form a curve unless we start dividing
up the apples (or, even more alarmingly, the people).

However, if we consider instead the possible variation in the measurements of the length
and breadth of a rectangle of a given area of 24 cm?, we get exactly the same pairs of values
as in the table above but we also get all the intermediate values too, including fractions as
in the pair % and 48, and irrationals such as 24, since 24 X 24 = 24.

This time, the set of all possible pairs does give a smooth curve and this is shown in
Figure 3.A.9(b).

Notice what happens at the two ends of this curve.

As we make one measurement smaller, so the other measurement has to become
correspondingly larger to give the fixed area of 24 cm?. If the rectangle gets very thin it will
also have to be extremely long. The points on the curve become closer and closer to the two
axes but they can never touch since a zero measurement either way gives a zero area. Lines
like this which a curve approaches but never touches are called asymptotes.

The relationship here is that / X b = 24 which is a constant.

A relationship of inverse variation can always be written in this form.

If two quantities x and y vary inversely,
then we can write xy = ¢ where c is a constant.

Another physical example of inverse variation is Boyle’s Law for gases which states that,
for a given mass of gas at a constant temperature, the pressure is inversely proportional to
the volume, so PV = a constant.
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3.A.(F)

3.B

Some examples of mixed variation
Some physical laws involve a combination of direct and inverse variation. Here are two
examples.

(1)  For a given mass of gas, Boyle’s Law and Charles’ Law can be combined into a
single law which states that PV/T = a constant.
(2) Newton’s Law of gravitation states that F, the force of attraction between two bodies
of masses m, and m, whose distance apart is r, is given by F = k mm,/r>.
This force is directly proportional to the product of the masses, and inversely
proportional to the square of the distance between the bodies.

In this first section, we have looked at how some physical relationships can be expressed
mathematically. If it is possible to describe a physical situation in a mathematical way, it will
then be possible to obtain reliable and exact information about how the physical variables
interact with each other. But it is important to realise that the information will only be as
reliable as the fit of the mathematical model itself to the particular physical situation which
it is describing. For example, the extension of a spring can be predicted for a known load but,
if the load is too great, the spring deforms and the new length can no longer be found.

An introduction to functions

3.B.(a)

What are functions? Some relationships examined
To be able to describe physical situations mathematically, and so to be able to extract
detailed information about how they can behave, you need to be confident about handling
the necessary maths. This next section is about different kinds of mathematical relationship
and how they work. In particular, we shall look at the special relationships which are called
functions.

Suppose we consider the four equations:

(a) y=2x+3, (b) y=x2—-2x-3,

© y=— () y=Gx+ D'
X

+4

2

Each of these gives a relationship between x and y from which we could build up a set of
ordered pairs or coordinates to draw a graph.
For each of these four in turn, try answering for yourself the following four questions.

(1) If you feed different values of x into the relationship, is there just one
corresponding value of y for each possible value of x?

(2)  Does every new value of x which you feed in give you a correspondingly new value
of y, or do you sometimes find that two different values of x lead to the same y
value?

(3) Do you think that you could reasonably choose any real number as a value of x to
feed into each of the four cases above? (That is, could you choose any number
which lies somewhere on the x-axis? Section 1.E gives you a description of all the
different kinds of number which can be found here.)

(4) Finally, if we make the set of x values as large as possible in each case, what
happens to the complete set of possible values for y? Is it the same as the set of
possible values for x? If not, what is it?
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It will very much help your understanding if you think about these four questions
carefully yourself and write down what you think is going to happen in each case before you
go on to look at my answers.

I will answer the four questions for each example in turn.
(a) y=2x+3

Itis clear that for every value of x which we feed in there is just one possible value of y, and also
that each value of y can only come from one possible value of x. Also there is no reason for
excluding any real number from the possible values of x if we want to make the choice as wide
as we can. Likewise, y can take all real values. We can see this graphically in Figure 3.B.1.

Figure 3.B.1

The arrows indicate that the line is infinitely long in either direction. Imagining this
extension, we see that all possible values of x are included, and also all possible values of
y. Also, each x value gives only one possible y value, and vice versa.

(b) y=x?>-2x-3

This time, for every value of x which we feed in, again there is only one possible value of y.
But what about the other way round? For example, if we put x = 4 we get y =5, and if
we put x = -2 we also get y = 5. Similarly, both x = 3 and x = —1 give y = 0, so the answer
to question (2) is ‘no’ for this relationship.
The graph sketch looks like Figure 3.B.2. We also see from this that, while there is no
reason why we shouldn’t choose any real number for an x value, the possible values for y

+Y y= x-2x-3
3
4

=3 -'Y\Js =
- (1,-42

Figure 3.B.2
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only go down to the lowest value of the curve. This we can find by completing the square
like we did in Section 2.D.(b) in the last chapter.

Wehave y =x? - 2x -3 =(x—-1)> -1 -3=(x—1)* - 4.

The least possible value of y is —4 and this happens when x = 1.

We see that the range of possible values for y is restricted, because y > —4.

() y 2ia
Again, it is clear here that each value of x fed in gives only one possible value of y. But, like
last time, we can get the same y value from two different values of x.

For example, if x = +1 then y = % and if x = —1 then y = % also. Notice that every
symmetrical pair of + values of x will give the same value for y.

There is no reason not to allow all possible real numbers as values for x, but think
carefully about what happens to y!

First of all, x> + 4 must always be positive, so y is always positive.

The least value of x> + 4 is 4 when x = 0. This gives a corresponding value of y = JT SO
the point (0, %) lies on this curve.

Also, y must have its largest value when x? + 4 has its least value since y = 1/(x> + 4).
As x becomes larger, y becomes correspondingly smaller. (Large positive values of x will
have the same effect as large negative values since x is being squared.) The graph will be
symmetrical about the y-axis. You can check this using your calculator if you like; putting
in a few values such as x = =1, x = £2 and x = +4 also helps with drawing the sketch of
Figure 3.B.3 below.

-4 -3 -2 -
Figure 3.B.3

We see that the possible values of y lie between 0 and %.

Also, y can have the value of %, but it never actually reaches 0 although it gets infinitely
close to it. We say that the values of y lie in the interval from 0 to % on its number line, with
the value % included, but 0 excluded even though, by taking a sufficiently large value of x,
we can get as close to 0 as we please.

We write this interval (0, %]. The round bracket means that we don’t include that end point
in the set of possible values; and the square bracket means that this end point is included.

(d) »y=Cx+ D2

Firstly, we see that, unlike the other three, here we can get more than one value of y for just
one value of x. For example, if x = 5, y = 16”2 so y = +4. (Remember that the
convention is that ' means ‘the positive square root’, so if we had written y = \/3x + 1 we
would have avoided the complication of double-valued ys.)

94 Relations and functions



3.B.(b)

However, it does look as though each possible y value can come from only one x value.
For example, if y = —5, we have (3x + 1)"> =—5s0 3x + 1 =25 and x = 8.

Can we choose any real numbers for our values of x? Not unless we want complications
coming from trying to take the square root of negative numbers, which is not something
which we can yet do.

We must keep 3x + 1 >0 so 3x =-1 and x = —%.

The possible y values include all the real numbers, however.

You can see that this will be so from the example which we took of y = —5. For any
chosen number, we could repeat this process.

Figure 3.B.4(a) shows a sketch of the graph of y = (3x + 1)/2. Figure 3.B.4(b) shows
the graph of y = \/3x + 1. If we always take the positive square root, we just get the top half
of (a).

® 19 ® 1
2/ 2/
! ]

oy A
”SQ * | % © % X
-l\ )
-2 -2

CH (3™ Y= J3x+1

Figure 3.B.4

y = f(x) — a useful new shorthand
To make explanations simpler, it is often helpful to write what we have so far been calling
y as f(x), so that we have y = f(x). (We have already used this notation for cubic equations
in Section 2.E.(a).)

This means that y can be found from x according to some rule, in the way that the
different ys of (a), (b), (c) and (d) above can be found, for example.

In the case of (a), we would have y = f(x) = 2x + 3,

so f2Q)=4+3=7 and f(-3)=-6+3=-3 etc.
In case (b),
y=fx)=x>-2x—-3, so f(0)=-3 and f(3)=f(-1)=0 etc.

This notation is particularly useful when we want to talk about specific values, as we
have done here. It is also useful for making clear what the variable quantity is.

An example of this is the case of the ball thrown up in the air, given in Section 2.D.(g).
There, we used the formula s = ut — % gt? to find s, the distance moved from the thrower’s
hands. Both « and g are constants, and ¢ gives the changing measurement of time. Therefore,
we could write s = f(¢) meaning that the distance moved is a function of the time that the
ball has been in the air.

A function is a particular form of relationship. Just what makes it particular is the subject
of the following section.
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3.B.(c)

3.B.(d)

When is a relationship a function?
We shall now use the answers which we have just found to the four questions above to lead
us to some important definitions.

If a relationship y = f(x) is a function then, for any chosen value of the variable x,
there is only one corresponding possible value of y.

Of the four examples from Section 3.B.(a), we found that (a), (b) and (c) are all functions,
but (d) is not. However, y = y/3x + 1 would have been.

Looking at this requirement graphically, we see that any vertical line on the graph must
never cut the curve more than once if it is the graph of a function. I call this the raindrop
test; the raindrop is only allowed to hit the curve once as it slides down the paper.

A function y = f(x) is called one-to-one if, for each value of y, there is just one
possible value of x, and for each value of x there is just one possible value of y.

Example (a) is one-to-one but neither (b) nor (c) are one-to-one since in both cases it is
possible to have the same value of f(x) for different values of x.

The domain is the set of numbers from which we choose the possible values of x.

In our four examples we deliberately made this choice as wide as possible, but as we saw
in case (d), it may be restricted because of the formula involved. There might be
circumstances in which you would choose to restrict the domain yourself. For example, if
you were considering a physical problem in which x represented a length, you would require
the domain to be restricted to positive numbers.

The set of all possible values of y is called the range.

We found that in (a) this was the complete set of real numbers (any value for y was
possible), but in each of (b) and (c) it was restricted in some way. Case (d) is a bit more
subtle: if y = (3x + 1) then, as we can see from Figure 3.B.4(a), y can take any value.
But, as we also saw there, y = (3x + 1)'/? isn’t a function. If we force a function by writing
y = {3x + 1 then, as we can see from Figure 3.B.4(b), the possible values of y are
restricted to y = 0.

Stretching and shifting — new functions from old
What kinds of effect will we get if we create new functions from old ones by adding or
multiplying the first function in various different ways? We will now look at the results
obtained from four possible different types of alteration.
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(1) Adding a fixed amount to a function
What happens if we go from f(x) to f(x) + a, where a is some given constant number? Here
are two examples, both taking a = 3.

(@ flx)=2x+1 (b) fx)=x?
so f(x)+3=2x+4. so f(x)+3=x%+3.

I show sketches of the two pairs of graphs below in Figure 3.B.5(a) and (b).

§()+3

Figure 3.B.5

We see that the effect of adding 3 to f(x), so that y = f(x) + 3, is to shift the graph up by
3 units.

(2) Adding a fixed amount to each x value
What will happen if we add a fixed amount to each x value instead, so that we go from f{(x)
to f(x + a) in each case? Again, we look at two examples, taking a = 3.

(@ flx)=2x+1 ) f(x) = x>
so fx+3)=2x+3)+1=2x+7. so f(x+3)=(x+3)>

Notice that, to find f(x + 3) from f(x), we just replace x by (x + 3).

I show sketches of the two pairs of graphs in Figure 3.B.6(a) and (b).

This time, the effect is to slide the whole graph 3 units to the left. Notice that the
interesting bits happen 3 units sooner. For example, each contact with the x-axis happens 3
units earlier now.

What actually happens here is not what you might think at first; notice that
f(x + 3) is what you get if you slide f(x) three units to the /ef?, not to the right.

Because the function of (a) is a straight line, we can get the same effect as this sideways
shift by giving the line an upwards shift of 6 units, so making f(x) go to f(x) + 6 with our

3.B An introduction to functions 97



Roth graphs show a shift of 3 units to Che left.

Figure 3.B.6

particular f(x) of 2x + 1. The only way we could tell which of these transformations had been
done would be to keep track of what happened to particular points. For example, in the first
case, the point (0, 1) goes to (-3, 1), as we can see on Figure 3.B.6(a). In the second case,
(0, 1) would go to (0, 7).

We could also get the same end result for the line by moving it both sideways and upwards.
Once we allow two shifts, the number of different possibilities becomes infinite.

(3) Multiplying the original function by a fixed amount
What will happen if we go from f(x) to a f(x) where a is some given constant number?
Working with the same two examples as before, and with ¢ = 3 again, we get

(a) J&x)=2x+1 (b) [ flx) =x?
so  3f(x) = 6x + 3. so  3f(x) = 3x?

Sketches of the two pairs of graphs are shown below in Figure 3.B.7(a) and (b).

® 1 3£00=6x+3 ® 19
: 3f(1)=3x1
1
3f A 3
: H(x) = 2+ : :
I i
I T i f(x) x
| -
A | 4} !
I )
-1 -‘/2. ol 1 >x T f A
4|' -2 -1 O { R >

Figure 3.B.7

This time, the whole graph has been pulled away from the x-axis by a factor of 3, so that
every point is now three times further away than it was originally. Therefore the only points
on the graph which will remain unchanged are those on the x-axis itself.
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(4) Multiplying x by a fixed amount
What will happen if we go from f(x) to f(ax)?
Taking our same two examples, with @ = 3, we have

(@ [/fx)=2x+1 (b) [ flx)=x
so f(Bx)=2Bx)+t1=6x+1 so  f(3x) = (3x)* = 9x2.

Notice that we simply replace x by 3x to find f(3x) from f(x).
I show sketches of the two pairs of graphs below in Figure 3.B.8(a) and (b).

A
@ J F(30= 6x+!

F(3x) ="

—_—— e - oD

Figure 3.B.8

This time the stretching effect is more complicated because it only affects the part of the
function involving x. Any purely number parts remain unchanged. The points which are
unaffected by the stretching are those where the graphs cut the y-axis, so x = 0.

Notice too that the strength of the effect now depends upon the power of x. Having (3x)?
in example 4(b) gives a more extreme effect than the 3x? in 3(b), since the 3 is also being
squared here.

We can relate examples 3(a) and 4 (a) to the real-life situation of the electricity bill graph
shown earlier in Section 3.A.(d). The positive parts of the two graphs of 3(a) correspond to
a situation of increasing both the standing charge and the cost per unit by a factor of three,
while the positive parts of the two graphs of 4(a) could show an increase in the cost per unit
of three, but an unchanged standing charge. (In this physical application, negative values of
x or y would be meaningless.)

It has been easier in all these descriptions to stick to the same variable, x, for the
functions. However, there is no reason why another letter should not be used.

In the physical example in Section 2.D.(g), on the motion of a ball when it is thrown up
in the air, we described the distance travelled in terms of ¢, the time from when it left the
thrower’s hands.

We used the function s = f(¢) = ut — % gt?, and the horizontal axis was a t-axis instead of
an x-axis.
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We have now looked at the four simplest kinds of transformation of functions, and their
graphical effects. I will list these for you below.

A summary of some effects of transforming functions

(1)  Transforming f(x) to f(x) + a shifts the whole of f(x) upwards by a distance a.
We have

@ )H‘j HxX)+a

S

/ y
A
7 //o >
Figure 3.B.9 (a)

(2)  Transforming f(x) into f(x + @) shifts the whole of f(x) back a distance a,
because the curve is getting to each of its values faster, by an amount a. We have

Y4
@ F(x+a)
bt FOx)

e B

Shifts are sometimes called translations.

Figure 3.B.9 (b)

(3) Transforming f(x) into af(x) stretches out each value of f(x) by a factor a. We have

Sx)

v

a-f(x) Figure 3.B.9 (c)

(4) Transforming f(x) into f(ax) has a more complicated effect, since how much a
affects each part of f(x) depends on what is happening to x itself in f(x). For
example, if f(x) =x2+x + 1, then f(ax) = a®x* + ax + 1. Each term has been
affected differently. Therefore it is not possible to show this case on one sketch;
the change in shape will depend entirely upon the function concerned.
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The following exercise gives you a chance to practise recognising these shifts and
stretches for yourself. Although f is the letter most commonly used for functions, it is
sometimes more convenient to use other letters to avoid confusion. I do this here, having
functions called g(x), A(x) etc.

EXERCISE 3.B.1 This exercise contains four questions, each of which involves one of the following

four functions.
(@) fx)=3x-1 (@ gx)=2x-2 @) hx)=3x+1 (4 plx) =x*-4x+3.

Each question shows the original function on the left, followed by two
examples of stretching or shifting it beside it. (See Figure 3.B.10 below.)

You have to decide what particular stretch or shift has happened in each case, and
then write it in beside its graph. (For example, in Figure 3.B.5(a) earlier, | showed the
shift of f(x) to f(x) + 3.) Then check in the answers given at the back of the book to
see if you have decided correctly. (Don’t be tempted to go straight there!)

To make the questions easier for you, the constant number involved in each
transformation (its ‘a’) is always either +2 or —2. This also means that you will be
able to tell whether I have shifted my straight lines up or down or sideways to get
them to their new positions.
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Figure 3.B.10
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3.B.(e)

Two practical examples of shifting and stretching

The method of completing the square
When we do the process of completing the square for a quadratic expression, as we did in
Section 2.D.(b), we are actually finding what shift we would need to do to make the curve
sit on the x-axis.

For example, if we take the curve y = x> — 4x + 9, we can use the method of completing
the square to rewrite this as y = (x —2)> =4 + 9 = (x — 2)> + 5.

The curve y = (x — 2)?, which I have drawn in Figure 3.B.11(a), just touches the x-axis
when x = 2.

The curve y = (x — 2)*> + 5 is the result of shifting the curve y = (x — 2)* up by 5 units.
I have drawn this in Figure 3.B.11(Db).

We can see from this picture that y = (x — 2)? + 5 = x> — 4x + 9 has a minimum value
of 5 when x = 2.

© ®
y 19
Y \

4 5]
up 5 units
> X i [
o 2 4 o 2 4 %
y=(x-2>* y= (c~22*+5
Figure 3.B.11

How we get the standard Normal distribution
If you have used Normal probability distributions in statistics, you will already have met an
application of stretching and shifting. Briefly, the situation here is that we can model the
likelihood of certain types of measurements occurring within particular intervals by
considering the area under a curve called a Normal distribution curve which I sketch below
in Figure 3.B.12(a).

Two examples of the kinds of measurement which can have their likelihoods modelled by
this kind of graph are the heights of all adult males, and the errors made in measuring a
particular length as accurately as possible. In both cases, a large number of measurements
will be bunched symmetrically about the mean and the more extreme examples will tail off
fairly steeply either side.

®
Y

ol ,u-:o- /u /..H-o'
Figure 3.B.12
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On the graph sketch, u represents the mean or average measurement, and o represents a
measure of how spread out these measurements are. The curve flexes itself at a distance o
away from u either side.

The area under the curve gives the probabilities of measurements lying between certain
values. For example, the likelihood of a randomly chosen x lying between x, and x, is given
by the shaded area shown in Figure 3.B.12(b).

These areas are extremely difficult to calculate since the equation of the curve is
mathematically complicated, but since they are very frequently needed, tables have been
calculated from which the different probabilities can be read off.

There is only one problem: it would be impossible to print the tables for every Normal
distribution curve, and the tables just give the results for the simplest possible case, which
I show in Figure 3.B.13(a). For this curve, 4 = 0 and o = 1. The variable along the horizontal
axis is called the standard Normal variable. This is always given the letter z.

Beside the standard Normal distribution curve, 1 show again the general Normal
distribution curve in Figure 3.B.13(b).

@ ®

R
Figure 3.B.13

How can we get from the curve shown in (b) to the curve shown in (a)?

In order to transform (b) into (a) we have to shift the y-axis forwards by u, so this would
make z = x — u.
But this alone is not sufficient because, in (a), we have also squeezed the x measurements
by a factor of 1/0. So to get from (b) to (a), we put
X—u
z= .
o

This is the formula for finding the standard Normal variable, z, which corresponds to a
value x in a Normal distribution curve like Figure 3.B.13(b) above with mean u and standard
deviation o.

To sketch the correct graph, the y measurements have to be stretched by a factor of o
since the total area under the graph remains one unit. (This is because it gives the sum of
all the possible likelihoods or probabilities of the measurements concerned.)

The equation of each Normal distribution curve is in terms of its particular 4 and o, and
this stretching of the y measurement takes place automatically in the new curve because of
the property of unit area.

Instead of having to find the area between x; and x, shown in Figure 3.B.12(b) above, we
can now use the tables to find the area between the corresponding z, and z, of the standard
Normal curve. The tables give the two cumulative areas measured from the left-hand end of
the curve up to z, and z, respectively, and the required area is the difference between these
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two. Since the total area remains 1, this area is unchanged in the two graphs. It is just a
different shape.

There is one other rather neat spin-off from this transformation. Because the standard
Normal curve is symmetrically placed about the origin, the tables only have to give values
for one side. In practice, this is the right-hand side, and values for the left-hand side are
found by using the symmetry of the curve.

3.B.(f) Finding functions of functions

In Section 3.B.(d), we were able to see graphically the effects that some simple changes have
on functions. But suppose the changes are more complicated because they have been built
up from a number of simple steps. It’s not so easy then to work out what is happening
geometrically, but it is easy to find out what has happened using algebra. We can think of
these changes as involving functions of functions.

Suppose we start with the two functions f(x) = 2x + 3 and g(x) = 5x.

What kind of meaning can we give to the expressions f(g(x)) and g(f(x))?

Do they mean the same thing?

This is a topic which sometimes makes students nervous, so we will look at it in some
detail.

The instruction which f(x) gives us is to ‘double and add three’, so we will have
f(lump) = 2 (lump) + 3, whatever the ‘lump’ may be.

Similarly, g(lump) = 5(lump), whatever that lump may be.

Therefore f(g(x)) = f(5x) = 2(5x) + 3 = 10x + 3 and g(f(x)) = g(2x + 3) = 52x + 3) =
10x + 15.

The two results are different, and in general f(g(x)) will not be the same as g(f(x)). In
fact, in this example, f(g(x)) is never equal to g(f(x)) for any value of x since we can’t find
an x so that 10x + 3 = 10x + 15.

Notice the order of the operations. The inside function acts on x first, and then the outside
function acts on the result.

P(9(x) and G(FPE)

EXERCISE 3.B.2 Try these for yourself.
Find (a) flgkx)) () g(fx)) if
(1) fix) =3x-5and g(x) = 2x
(2) fx) =x*>and g(x) =4 -x
B3 fix) =;and gix) = x - 4.

Similarly, f(f(x)), which is the function of the function itself, holds no terrors.
We’ll look at two examples to prove that this is so.

EXAMPLE (1) f(x)=2x+3 so f(f(x))=2(f(x))+3=22x+3)+3=4x+09.
We can check that this works by putting x = 2, say. Then we can find
f(f(2)) either by doing f twice, getting f(2) = 7 and f(7) = 17, or in one

step using f(f(x)) = 4x + 9 so f(f(2)) =8+ 9 =17.
Try doing one for yourself before we go on.
If g(x) = 2x% + 3 what is g(g(x))? Check with x = 1.

104 Relations and functions



g(g(x)) = g(2x* +3) = 22x* +3)° +3

2(4x* + 12x% + 9) + 3 = 8x* + 24x2 + 21.

Check: g(1) = 5 and g(5) = 50 + 3 = 53.
Alternatively, g(g(1)) = 8 + 24 + 21 = 53.
2x +3

EXAMPLE (2) Now we’ll find f(f(x)) if f(x) = Y

To find f(f(x)) we simply replace the x of the formula by f(x), so we get

255+ 3
JUx) = m
3x+2
We then simplify this unwieldy fraction by multiplying top and bottom
by (3x + 2). (Remember that this leaves the value of the fraction
unchanged — see Section 1.C.(a) if necessary.) So we have

22x +3)+3Bx +2) 13x+ 12

JYeN = 32x +3) +2(3x+2) 12x+13°

We must exclude the one value of x for which the function is undefined
by saying x # — % This value would make 12x + 13 = 0, and so involve
us in trying to divide by zero which is impossible. (This is also in
Section 1.C.(a).)

Try this very similar example for yourself, because it is also good practice for tidying up
fractions within fractions, sort of double-decker fractions. See if you can get right through
without referring back to the example above. (You could have another good look at that one
first.)

2x — 5
1ff<x)=4j§—+1 find (a) f3). (b) fx2), (¢) fQx + 1) and (d) f(f(x)).

Here are the answers.

First of all, you wouldn’t even consider cancelling the 2 and the 4 in the definition of f(x).
If you would, you should return to Sections 1.C.(a) and (b) and go through them again!
You should have:

G205 1
@) f()_4(3)+1_13

2y 2
) f(x2):2(x) 5_2x 5

A2+ 1 42+ 1

22x+1)—5 4x-3
42x+ 1)+ 1 8x+5

() f(2x+1)
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22x—=5)-5M@x+1) o
= (multiplying top and bottom by (4x + 1))
42x = 5)+(@x+ 1)

—l6x — 15
12x — 19
16x + 15 o
= ———— (multiplying top and bottom by —1 to make the answer
19— 12x 150k more tasteful).
3.B.(8) Can we go back the other way? Inverse functions

We have now worked with quite a large number of functions each of which gives us a rule
for finding the function from any given starting value of x. We also know that, in order for
this relationship to be a function, the rule must give just one possible answer for each
starting value of x.

Is it possible to go back the other way? If we know a value of f(x) for a particular function
can we work out from this what the original value of x must have been?

Can you see any difficulty which we might have?

We can only do the backwards process if each value of f(x) comes from just one possible
x. This is why the answer to the second question of Section 3.B.(a) was so important. For
example, in the case of function (b) which was y = f(x) = x> — 2x — 3, we have f(4)=f(-2)=5.
Therefore, from knowing that f(x) = 5, it is not possible to say what value of x gave this,
since it could be either 4 or —2. Since the backwards relation has more than one possible
answer, it is not a function.

The function (if it exists) which undoes the effect of f(x) and brings you back to
where you started, is called the inverse function of x. It is written /! (x).

® A function can only have an inverse function if it is one-to-one. This means that
fla) = f(b) only if a = b.

o If /! (x) exists, then ! (f (x)) = f(f '(x)) = x.

e Each of fand /! undoes the effect of the other.

f1(x) does not mean 1/f(x).

You can, if you want, write 1/f(x) as (f(x))!. It is just unfortunate that the
mathematical way of writing these two very different things looks so similar.
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For simple functions, it is often very easy to see what the inverse function must be. Here
are two examples.

(1) Iff(x)=x+3,then /' (x) =x — 3 so, for example, f(4) =7 and /! (7) = 4.
(2) Ifg(x)=>5xthen g ! (x)= éx so g(2) =10 and g~! (10) = 2.

Graphically, these two examples correspond to shifting x up and then shifting back down
by 3 units in the case of (1), and stretching x and then shrinking it back by a factor of 5 in
the case of (2). (These graphical effects were looked at in Section 3.B.(d).)

To make clearer what is happening here, it can sometimes be helpful to use an alternative
way of writing functions which emphasises the carrying across or mapping of x into the
function f(x).

Taking f(x) = x + 3 as an example, we can also write this as f: x — x + 3 which means the
function f'in which x maps to x + 3. Then we write the inverse function as f!: x — x — 3.

Similarly, if g:x — 5x, then g1 x — %x.

Try finding the inverse functions of the following three functions yourself.

(D fx)=x-2 (2) g)=2x (3) plx)=6—-x

You should have (1) f! (x) =x+ 2 and (2) g '(x) = %x.

Students often find (3) a little bit tricky. Clearly, it isn * true that p~! (x) = 6 + x since this
doesn’t bring us back to where we started.

If you haven’t been able to find an answer, try finding p(1), p(5), p(2) and p(4).

You will see that doing p(x) twice brings you back to the original x, so that p(x) is its own
inverse function. We can say that p(p(x)) = x.

A function which is its own inverse is called self-inverse.

If f(x) is self-inverse, then /! (x) = f(x) so f(f(x)) = x.

(4) Can you find the inverse function for g(x) = 12/x?

Trying the pairs of values for x of 12 and 1, 6 and 2, and 3 and 4, shows us that this
function is also self-inverse. These pairs of values are behaving symmetrically with respect
to each other.

This is the same kind of relationship as those that we looked at in Section 3.A.(e) on
inverse proportion. However, unlike the physical examples of inverse proportion which
we looked at there, this function also includes negative pairs such as —3 and —4, and -2
and —6.

I show in Figure 3.B.14 graph sketches for the pairs of functions and their inverses from
the four questions above, taking equal scales on the x and y axes.

This is a good place to add colour to the sketches yourself. If you use two colours
so that you can highlight each function and its inverse function differently, you will bring
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Figure 3.B.14

out two important points. The first is that the two self-inverse functions are the same
function; they lie on top of one another. The second is that all the four pairs of graphs
shown have the same line of symmetry. Try sketching in this line yourself on each of the
four graphs.

Each function and its inverse function are symmetrically placed about the diagonal line
y = x. This symmetry stresses the equal standing of each function with its inverse; each is
the inverse of the other. They are mirror images of each other in the line y = x because the
original function is taking x to y, and the inverse function takes y back to x. This symmetry
means that the domain, the set of all possible x values for the original function, is the same
as the range, the set of all possible y values for the inverse function, and the range of the
original function gives the domain of the inverse function.

For the two self-inverse functions, the original function is itself symmetrical about the
line y = x. Each half of the line or curve reflects onto the other half, and therefore we can
see geometrically that these functions must be their own inverses.

Notice that this symmetry means that it is always possible to sketch an inverse function
if we know what the original function looks like. This sketching is easier if equal scales are
chosen on the two axes, so that the line y = x is at 45°. A quick sketch is much the easiest
way of seeing how an inverse function works.
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3.B.(h)

Finding inverses of more complicated functions
How can we find the inverse function if the starting function is more complicated? For
example, what is /! for f(x) = 2x — 5 or f: x —> 2x — 5?

It’s not very easy to write down the answer immediately. (Try it and see, checking with
some numbers to see if your answer works.) However, we can work out what it must be in
the following way.

We have y = f(x) = 2x — 5. This gives the rule or formula for finding y if we know x.

We are looking for the rule which, if we know y, will take us back to the original x. We
can find this by rearranging y = 2x — 5 to change it to the form x = some rule involving y.
This is called changing the subject of the formula to x, and we have already done this for
some physical formulas in Section 2.A.(d).

Wehave y=2x—-5 so y+5=2x so x= % (y + 5), so giving us the rule which will
take us back from y to the original x.

We can check that it works by doing a numerical test. [f x =3 then y=6 — 5 =1 and if
y=1thenx=3(l+5)=3.

We now use the rule we have found to write the inverse function so that it is itself a

function of x. Using the mirror-image property of the function and its inverse about y = x, we
simply swap x and y getting ! (x) =3 (x + 5). The line giving f~' (x) is y =3 (x + 5).
I show both f(x) and /! (x) in Figure 3.B.15.

Line of
symmetry /
Y= / fx) = 2x~5

/

Figure 3.B.15

I have also shown 3 — 1 using f(x), and 1 — 3 using /! (x).
Can you work out where the two functions cross over each other?
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EXERCISE 3.B.3

They cross over where f(x) = f! (x) so 2x—5 = % (x+5) giving 4x —10 = x+5 so x = 5.

Check: f(5)=10-5=5and ' (5) =3 (5 +5) =5.

The crossing point is at (5, 5) on the line y = x which checks with what we know must
be true geometrically.

We set about finding the inverse function for a function involving a fraction like
f(x) = (x+3)/(x—2) in exactly the same kind of way. We have

x+3 x+3
f(x)=z or fix~> 5
meaning that, under the function £, x maps to (x+3)/(x—2), so, for example, 3 maps to 6. Let
X3
- x-2

where y gives the outcome of feeding x into the function, as 6 is the outcome of feeding 3
into the function.

As before, we are looking for a formula which, if we know y, will take us back to the
original x, so we change the subject of the formula to x.

x+3

x—2

y= soO yx-2)=x+3 so xy—-2y=x+3.
Now we collect all the terms with x in on the same side of the equation, because then we will
be able to factorise. We have
2y +3
xy—-x=2y+3 so x(y-1)=2y+3 so x= o
y —
We’ve now got the rule which, if we know y, will give us the original x.
Just as we did in the last example, we can now use this rule, and the mirror-image
property of the function and its inverse in the line y = x, to get the inverse function by
swapping y and x. This gives us

2x +3 2x + 3
flx) = or flixm .
x—1 x—1
Check: if we feed in x = 6 we have /! (6) = 15/5 = 3.
) 2x + 3
To draw the graph of this inverse function, we would draw y = "
x p—

We shall look together at how we can sketch fand /! in the next section, but before that I’ll
give you a chance to find a few inverse functions for yourself.

Find the inverse functions for each of the following functions. (Some of them you

will be able to write down straight away and some of them will need rearranging
like the last two examples.)

(@) flx) = 5x (@ fx)=x-9 B) fx) =5x-9

@ f)=8-x (5 fix) =x/4 (6) flx) = 4/x (7 y=3-2x
x-3 2X +

B fx)=—— k=#-2) (9) fx) = (x#2)
X+2 X-2

We say x # -2 in (8) and x # 2 in (9) to make it clear that we don’t think that we
can divide by zero.
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3.B.(i) Sketching the particular case of f(x) = (x + 3)/(x — 2), and its inverse
We will now look into how we can set about drawing graph sketches for

x+3 2x + 3
f)y=—— and [ (x)= :
x—2

x—1

Each of these functions is more complicated than any that we have sketched so far, but they
have interesting properties that it will be useful for you to see here. Also, if we can draw a
sketch for f(x) we shall then be able to reflect this in the line of symmetry y = x to draw the
sketch of £! (x).

In order to sketch y = f(x) we need to find out what it does at all its interesting bits. We
do this rather than making a table of values because we might choose the x values badly, so
that what we sketched was just a boring bit, such as a piece of curve which is almost a
straight line. (Many students panic at this stage, and make it into a completely straight line,
so finishing up with a total disaster.)

To investigate the interesting bits, we need to answer the following questions.

(a) When does f(x) = 0?
(b)  What is the value of f(x) when x = 0?
(c) Is there any value of x which we can’t have because f(x) would be undefined for
this value? If so, what happens to f(x) when x gets near this forbidden value?
(d)  What happens to f(x) when x becomes very large?
Test your theory with some large positive and negative values of x.

Try answering each of these four questions yourself for the function f(x) above which we
want to sketch.

x+3
=0.

(@ fx)=0 if
This happens if x = —3. (Notice that we only have to look at the top of the fraction to answer
this question. However many parts something is divided into, if you get none of those parts
you’ve got nothing.)

We now know that f(x) cuts the x-axis at (-3, 0).

b)) fx)= —% when x =0 so f(x) cuts the y-axis at (0, —%).

(c) We can’t have x = 2 because we can’t divide by zero.
If x is very close to 2, say 1.999 or 2.001, then (x — 2) is very small, and dividing
by a very small number gives a very large result.
Just before x = 2, f(x) is very large and negative, and just after x = 2, f(x) is very
large and positive. (You can check this on your calculator if you wish.)
f(x) becomes closer and closer here to the line x = 2. (This line is called a
vertical asymptote.)

x+3
(d)  What happens to y = f(x) =

as x becomes very large?
x —_—

The easiest way of seeing what must happen here is to divide the top and bottom of f(x) by
x. This gives us

x+3_1+(3/x)
x—2 1-Qk)

Sfx) =
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Now, as x becomes very large, (either positive or negative), both (3/x) and (2/x) will become
extremely small. The larger x becomes, the tinier they get, and indeed we can make them as
small as we please by choosing a large enough value of x. (We can’t actually make them
equal to zero because this would require x to be infinitely large and, as we saw with the two
straight lines in Section 1.E.(d), infinite quantities of things behave in strange ways.)

We see that, as x becomes very large, f(x) will become closer and closer to 1/1 = 1.

This means that we know that the curve of y = f(x) becomes closer and closer to the
straight line y = 1 as the values of x become larger and larger. (This line is called a
horizontal asymptote.)

We now have enough information to be able to have a good try at sketching this curve.
First, we draw the two axes and mark on them where the curve crosses them using our
answers to (a) and (b). Then we draw in the two lines y = 1 and x = 2 which we know the
curve gets closer and closer to. We then sketch in the curve which seems to fit in best with
this information. I’ve done this in Figure 3.B.16.
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Figure 3.B.16

The only question we can’t yet answer is how the slope of the curve changes from point
to point. Could it perhaps have some kinks and wiggles that we don’t know about? Finding
out how slopes change is the subject of Chapter 8, and in Section 8.E.(c) I shall give you a
full list of curve-sketching help which will include this. Also, in Section 8.C.(e), we shall
show that this particular curve must always have a negative slope (except when x = 2).

For this particular curve, it is also possible to show that its slope is always downhill by
taking any two points which lie on it which are both either to the left of x = 2 or to the right
of it. If you then work out the gradient of the straight line joining them, you will find that
it is always negative.

This curve is interesting because of another special property. It’s only the second one
we’ve met which does this particular thing. Can you see what it is?
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It does a jump. This jump, which happens when x = 2, is called a discontinuity. Because
of it, this curve can’t be drawn with a continuous pencil line. (The other one like it is
example (4) at the end of Section 3.B.(g) — in fact, it is very like it indeed. When we’ve
finished this graph sketch, I shall show you how to turn this one into that one.)

Using the fact that the graph of /7! (x) is the same as the graph of f(x) reflected in the
line of symmetry y = x, we can now sketch both of these graphs together.

If you are sketching an inverse function by this method, the best method for
drawing it convincingly is to turn your paper so that the line y = x is vertical.
This makes it much easier to get f'and /' symmetrically placed either side of
this line.

I show my two graphs in Figure 3.B.17.

The two asymptotes of y = f(x) will also be reflected in the line y = x to give the
corresponding pair of asymptotes of y = f~!(x).

Adding your own colours to f'and f~! and the two pairs of asymptotes x =2 and y = 1,
and x = 1 and y = 2 would help you to see exactly what is going on.

x+3
xX~-2

and

- .2X+3
UNOL =1

I
!
o
[} I
E \ F(x)=
Vo
]
i
I
l

O F
The asymptotes for f(x) are [he lines x=2 and y=1I.

The asymptotes for F'G0) are Ihe lines x=| and y=2.

Figure 3.B.17
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From this graph sketch, you can see the symmetry of the gaps in the domain and range
of f(x) and 7~ !(x) respectively. The value 2 is excluded from the domain, the set of possible
x values for f(x), and also from the range, the set of possible y values for /!(x), and the value
1 is excluded from the range of f(x) and the domain of f!(x).

Using similar methods to those we used together above, find out as much
information as you can about the following two functions.

X - 2X-5

@) g =2 ) h(x) =
X+4 X+1

Use this information to sketch the graphs of the two functions. (Of course, for
all of this sketching you could just use a graph-sketching calculator — but if you
answer the questions for each curve like we did in the example, you’ll know why it

does what it does.)
Find also the two inverse functions, g~*(x) and h™(x).

EXERCISE 3.B.4

(3) Sketch the function
2X + 3

fx) =
X-2
from question (9) of Exercise 3.B.3 and draw in the line y = x on your sketch.

Now we find out how to turn y = (x+3)/(x—2) into y = 12/x which was (4) at the end of
Section 3.B.(g).

Looking at the sketch of y = (x+3)/(x—2) in Figure 3.B.16, we can see that, if we move
the x-axis up by one unit and the y-axis to the right by two units, we shall have transformed
this sketch into one very similar to the sketch for (4).

We could think of this as putting Y =y — 1 and X =x — 2.

We can see this nicely by using algebra. We have

x+3 x-2+5 5
y=f(x)=x_2= x—2 :1+x—2

5

SO y—1=x_2.

Putting Y=y — 1 and X =x — 2 gives Y = 5/X.
I show its graph sketch below in Figure 3.B.18, with the graph sketch of y = 12/x.

@ ®

)IJ’\ 5;[
Xy: 5 5 it xys= 12
9(‘L;§<
25 ST 3
g -2 v G -2 ¢ X
sy & X W 5% 12~
-25 -6
L -5 L 12,

Figure 3.B.18

The only difference now is one of scale. If we shrink (b) by a factor of 5/12, we get the
identical graph to (a).

114 Relations and functions



3.B.(j) 0dd and even functions
Make sketches for yourself of the graphs of the following four functions.

(@ y=x (B y=x> (c)y=x> (d y=]|x|

|x| means ‘take the positive value whatever the sign of x itself”.
What kinds of symmetry do you see in your sketches? Describe them.

Your four graphs should show two different sorts of symmetry, so giving you examples
of what are called even and odd functions.

Even functions

A function is even if it is symmetrical about the y-axis.
For these functions, f(x) = f(—x) for any value of x.

The functions (b) and (d) above are both examples of this. The standard Normal
distribution, which we talked about in Section 3.B.(¢e), is also an even function, and it is this
property which makes it possible to halve the size of the tables needed to work with it.

The sketches for (a) and (c¢) show a different sort of symmetry. In each case, if we rotate
the graph through a half turn about the origin, then it exactly fits onto itself. Put another way,
turning the page upside down leaves the graph unchanged.

Odd functions

A function is odd if rotation through a half-turn leaves it unchanged.
This is the same as saying that the function reverses its sign if it is
reflected in the y-axis, so f(x) = — f(—x).

Figure 3.B.19 shows my sketches of the four graphs for (a), (), (¢) and (d).

)LB

K 8

4 3 1\3 43

2 4
= oz % =3 e 2

2 =9 2 % 2 o 2z *

-3
@
@ y=x ®3=x ® y=x* @D y=Ixl

Figure 3.B.19

See if you can decide which of (a), (b), (c) and (d) have inverse functions.
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3.C

(a) and (c) will each have an inverse function because each value of y is given by only
one possible value of x, but (b) and (d) will only have inverse relations.

With (b) for example, if y = 4 then x could be +2 or —2.

If y = x? then x = y'/2. The inverse relation is x — x'2, and x '/ can be either + or —.

The sketch in Figure 3.B.20(a) shows the graphs of y = x? and its inverse relation
y=x2

Figure 3.B.20

However, if we say that x cannot be negative, so that we restrict the domain of y = x? to
values of x which are greater than or equal to O (which we write as x > 0), then we shall have
a perfectly good inverse function which is y = \E. This is shown in Figure 3.B.20(b). The
symbol \F is taken to mean the positive square root only.

Exponential and log functions

3.C.(a)

Exponential functions — describing population growth
The functions which we shall look at in this next section are of huge importance to scientists
and engineers. This is because they describe many physical situations where there is a
smooth rate of growth which depends on how much of the substance is present at any
particular time. An example of this is the process by which cell growth takes place through
the repeated division of individual cells into two new cells.

To help us to see what is going on in this kind of situation, we’ll look at what happens if we
have a population of cells which doubles in size every hour. We’ll suppose that there are 1000
cells at the time when we start measuring. Then after 1 hour we would have 2000 cells, after 2
hours we would have 4000 cells, and so on. (We will assume that the growth process is taking
place as smoothly as possible, so that particular groups of cells don’t all double at the same
instant, and that conditions remain favourable for this continued growth. When the nutrients
start to run out, this mathematical description of what is happening will break down.)

We could make the table shown below to show the number of cells present at particular
instants in time, measured from a starting value of 7 = 0 when there are one thousand cells.
(I am using the letter ¢ to stand for time as this is the usual choice.) Then x, the number of
thousands of cells present, is a function of z.

NI
—_
S}
)
N

t (time in hours) -2 | -1 0

x (number of cells in thousands) 1 2 4
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I have left some gaps in the table. Try filling in these for yourself, in the following
order:

(a)  the numbers of thousands of cells which will be present after 3 hours and after 4
hours,

(b)  the number of thousands of cells present both 1 hour and 2 hours before the
measuring started,

(c)  the number of thousands of cells present after half an hour.

(a)  For this, you should have 8000 after 3 hours and 16 000 after 4 hours, giving x = 8
and x = 16. The rule that gives you these answers is x = 2’

(b)  For this, you should have x = % when ¢ = —1, meaning that there were 500 cells
present 1 hour before measuring started, and x = % when ¢ = -2, meaning there were
250 cells present 2 hours before the measuring started. These numbers fit in with
the meanings which we gave to negative powers in Section 1.D.(b).

(c)  From Section 1.D.(b), too, we take 2'/? as meaning +/2 so that there will be about
1414 cells after half an hour. You should go through this section now if you are
unsure about these last results.

I show in Figure 3.C.1 a sketch of what happens if we plot the first seven of these pairs

of values.
A4 % (number of cells present 1 Thousands)
9 b
6 3
4
2
—--)-——"""'*//l
A . . J L S \ 1 h
= — 5 ' 3 % »t (Eime In ours)
Figure 3.C.1

They appear to form part of a smooth curve, so it would seem reasonable to join them
up in this way since it shows very well what is happening physically. We could then use the
curve to read off values for 2° which come between the points which we have plotted. (It’s
worth mentioning very briefly here that if the process of doubling is not smooth, so that it
goes in definite steps like the numbers of people involved in a game which starts with one
person picking a partner, and then both these people picking partners and so on, then the
mathematical description of what is going on will be very different. We shall look at this
situation in Section 6.C. Then, later on in Section 8.B.(a), we look at what happens if you
start with stepped time intervals, but then make these intervals smaller and smaller, so that
you are getting closer and closer to a continuous process — something which is at the heart
of the maths of the physical world.)
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Now try answering the following questions yourself.

(1) How many cells will there be after 5 hours?
(2) How many cells are there after 1% hours?
(3) How long is it until there are 16 000 cells?
(4) How long is it until there are 64 000 cells?

As you answer these four questions, you will probably guess what I’'m working towards
here. The answers go as follows.

(1)  There will be 32000 cells after 5 hours (that is, 1000 X 2°).

(2) After 1% hours there will be approximately 2828 cells (that is, 1000 X 2%2), using
a calculator for 2* and giving the answer to the nearest whole number.

(3) It takes 4 hours to get 16000 cells because 1000 X 2% = 16 000.

(4) It takes 6 hours to get 64 000 cells because 1000 X 2° = 64 000.

The last two questions are put the other way round from the first two so that, to find the
answers, you have to go back from a known x to find the # which gave it. In other words, you
are using the inverse function of x = 2°.

So what is this inverse function that you are using?

The answer to this question is so important that it needs a section of its own.

3.C.(b) The inverse of a growth function: log functions
This inverse function has to describe 16 = 2* giving us the power 4, and 64 = 2° giving us
the power 6. It is the inverse function of x = 2' and we call it log to the base 2.

If x=f(t) =2" then f!(t)=log,t

Because any function and its inverse also work opposite ways round, it is also true
that if 7! (¢) = log, t then f(¢) = 2".

I show a sketch of x = 27 and its inverse function of x = log, ¢ in Figure 3.C.2.

4> x= f(tr=2"
4
xX= t
3
2
_/
=2 =
-
-2
Figure 3.C.2
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3.C.>d)

EXERCISE 3.C.1

We know that these curves work well for giving a description of what is happening
physically. We can’t therefore allow negative roots here, since these would give us points
which would not lie on the curve of x = 2’. (For example, we don’t want x = 7\5 when ¢ = %.)
For this reason we only include positive roots, meaning that our inverse function is safe.

This means that we can only have logs of positive numbers.

Finding the logs of some particular numbers
Many students find logs rather alarming. They are so important in applications that it’s
important for you not to be scared of them, so now we will look at some particular examples
of how they actually work.

We have already seen the particular cases of log, (2%) = 4 and log, (2°) = 6 from the
answers to questions (3) and (4) in the previous section.

We can say that if some number n = 2 then ¢ = log, n.

This means that if we can write any particular number as a power of 2 then it is very easy
to write down its log to base 2. Here are two examples.

(1) 128 =27 so log, (128) =7 and (2) 1/8 = 1/2*> = 273 so log, (1/8) = -3.

Some of the questions in this exercise use the special results for powers from

Section 1.D.(b) - you may need to go back to these before you do them.
(1) Try finding the logs to base 2 of the following yourself.
@4 B)8 (2 (1 @5 O
(2) Logs to other bases work in exactly the same sort of way.
For example, 27 = 33 so log; 27 = 3.
Try finding the logs to base 3 of the following numbers yourself.
@9 M8 % W3 @1 N3 @5 M27 ()3
(3) Now try finding the logs to base 10 of these numbers.
(@ 100 (b) 1000 (c) 10 (d) 1 (e) % (f) o0.01

Some important points come out of the answers to this exercise. This is the first.

It is always true that log, a =1 and log, 1 = 0 for any base a.

We’ll also widen the definition of logs to a general base, here.

If x = a’ then t=1log, x and if7=log, x then x = a’.

Also, logs to base 10 are given on your calculator, because we count in base 10. This
means that you can get the same answers to question (3) above by using your calculator —
do this, just to check. You will need to use the key marked ‘Ig’ or ‘log’. (The one marked
‘In” or ‘log,” will give you a different sort of log which I’ll come to in Section 3.C.(e).)
Because logs to base 10 are so common, we don’t usually bother to write the little 10 below.
Your calculator will also give you values for all those in-between points on the smooth curve
of x = log;, t where we can’t work out the answers in the way we’ve done the ones above.
We can’t explain mathematically how it does this yet.
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3.C.(d) The three laws or rules for logs
In Section 1.D.(a) we wrote down the three rules for working with powers. These are as
follows:

Rule (1) a™ X a"=a™""
Rule 2) a” + a" =a" "

Rule 3) (a")" = a™

We showed there that they worked for whole number powers, and said that they do, in
fact, work for any values of m and » provided that a # 0. We can’t yet show that this is true
though at least now we have a mental picture of the graph of x = a’ to give us some idea of
how the intermediate values work. Our next results come from assuming that the three laws
above are indeed true.

The special striking property of these three laws of powers is that they make things easier.
They write a multiplication in the form of an addition, a division in the form of a subtraction,
and raising to a power in the form of a multiplication.

Because logs are the inverses of powers, they also have this property of making things
nicer. Through the three rules for powers, we get the three rules for logs which I have put
in a box below.

The three rules for working with logs

Rule (1) log,(xy) = log, x + log, v

X
Rule (2) log, (—) = log, x — log, y
y

Rule (3) log,(x") =n log, x

I will show you through a numerical example how the first rule for logs comes from the
first rule for powers.

Suppose we have log; (9 X 81).

Then Rule (1) says that log; (9 X 81) = log; 9 + log; 81.

Can we show by using the first rule of powers that the LHS is equal to the RHS above?

We know that 9 = 32 and 81 = 3* so we can say that log; 9 = log; (3%) = 2 and
log; 81 = log; (3%) = 4.

Therefore the RHS = log; 9 + log; 81 =2 + 4 =6.

We can also say that the LHS = log; (9 X 81) =log; (3% X 3*) =log; (3*™)=2+4=6.

Therefore we have shown that the RHS is equal to the LHS.

In exactly the same way, suppose we have log, (xy) and we rewrite each of x and y as
powers of a, so that x = ¢” and y = a”.
This then means that m = log, x and » = log, y. Then

log, (xy) = log, (a™ a”) = log, (@™ ™) (from the first rule)

=m + n = log, x + log, y.
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We can see from what we have just done that it cannot be true that log, (x + )
= log, x + log, y (except for the very special case when xy = x + y).

We can show similarly that log, (x/y) = log, x — log, y.
Again, we start by looking at a numerical example.
Can you show that log, (32/4) = log, 32 — log, 4?

We can say that log, (32/4) = log, (2°/2%) = log, (2°?) =5 -2 =3.
Also log, 32 — log, 4 = log, 2° — log, 22 =5 -2 =3.
Therefore the LHS above is equal to the RHS.

Now we show in a more general way that

X
log, (—) = log, x — log, .
y

We rewrite x as a™ and y as a” as we did before. Then log, x = m and log, y = n. So

X

log, (—) = log, (a_n) =log, (@™~ ") (from Rule (2))
y a

m — n = log, x — log, y.

Finally, we look at log, x".
Taking a numerical example first, can you show that log, (8*) = 4log, 8?

You can say that 8* = (2%)* = 2!2 from Rule (3), so log, 8* = log, 2'% = 12.
Also, log, 8 = log, 2> =3,s04 log, 8 =4 X 3 =12.
Therefore, log, (8*) = 4 log, 8.

We now show in a more general way that
log, x" = n log, x.
We rewrite x as a™, so m = log, x.
Now, we have log, (¢”)" = log, (a”") (from Rule (3)) = mn = nlog, x.

A little piece of history
Before calculators were invented, the multiplication and particularly the division of large
numbers were very tedious and time-consuming processes. However, it was realised that if
the numbers could be written as powers of 10, the processes could be converted into addition
instead of multiplication, and, even better, subtraction instead of division. Books with tables
of these corresponding powers were published, to use for these calculations.

You can relive the experience of past days by using logs to divide 231.4 by 27.2.

First, find the logs of the two numbers on your calculator, then subtract the second from
the first, and finally do INV log or SHIFT log. You get the result 8.5074 to 4 d.p., an answer
which you, of course, can obtain far more quickly by simply feeding in the original numbers
and pressing the + button. Back in those days, finding the logs from log tables and then
subtracting them was vastly preferable to the alternative of long division. Calculators are a
great blessing for those faced with complicated arithmetic.
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EXERCISE 3.C.2

For you, the three rules or laws of logs will be of great importance when you are solving
physical problems. They can be used either for splitting expressions up or for combining
separate logs together. Being able to rearrange in both directions is important so I will give
two examples of each.

In the first two, we split up as far as possible.

EXAMPLE (1) log, 8x? = log, 8 + log, x> = log, 2% + 2 log, x = 3 + 2 log, x.

EXAMPLE (2) log, (3x%/y3) = log, (3x?) — log,(»?) = log, 3 + log, x* — log, »>
=log, 3 + 2 log, x — 3 log, y.

In the second two examples, we combine as far as possible.

EXAMPLE (3) log, 3 + 4 log, x = log, 3 + log, x* = log, (3x%).

Xz—

x2+1
EXAMPLE (4) log;, (x% + 1) — log;y (x2 — 1) = log, 1 )

You can’t split the insides of the brackets here!

(1) Use the rules of logs to split the following expressions up into separate logs

3.C.(e)

(or numbers) as much as possible.
(@) log, 3x (b) log; 27x
() log;(x/y) (d) log; (x*/a?)
(e) log; (ax") (F) log; (9a™) (8) log; (2x + 3y)
(2) Combine the logs in the following as far as possible, using the laws of logs.
(@) log,, x + log,, (x - 1) (b) 2 log,, x - log,, ¥
(0) log,, (x + 1) —log,, (x—1) (d) 3 log,, x + 2 log,, ¥

What are ‘e’ and ‘exp’? A brief introduction
In the physical example of cell growth in Section 3.C.(a), the number of cells present at any
particular time ¢ was given by the equation x = 2’. Also, the rate of increase of this number
of cells was directly proportional to the number of cells present at any particular time. Using
the ideas of Section 3.A.(a), we could say that

the rate of increase = k (the number of cells present)

where k is some constant. (We aren’t yet in a position to work out the value of this constant
— this has to wait until Section 8.F.(d).)

The special and particular property of the number e is that the rate of growth at any
instant of a quantity x given by x = e’ is actually equal to x itself. The constant of
proportionality, &, is equal to 1, which greatly simplifies many situations. We can’t go into
what this will mean mathematically until Section 8.B, but because functions involving e are
of central importance in describing many physical processes, you are likely to meet them
early on in your course. This is why I’'m putting in this brief introduction for you here.

The value of e lies between 2 and 3, and its value to 3 d.p. is 2.718. (It is a number like
st which cannot be written with an exact numerical value.)

The curve of x = e’ lies between the curves of x = 2’ and x = 3°. I show this in
Figure 3.C.3.
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Figure 3.C.3

Notice that all the curves pass through the point (0,1), because 2° = % = 3% = 1.

You may sometimes see e’ written as exp(¢). (The ‘exp’ is short for ‘exponent’.) This
notation is particularly useful if you have a complicated power of e because it makes it much
easier to read than the tiny writing of a power.

The word ‘exp’ is also sometimes used by calculators when they display very
large or very small numbers in scientific notation. For example, 314 000
might be displayed as 3.14 EXP 5, meaning 314000 = 3.14 X 10°, or
0.00176 might be displayed as 1.76 EXP —3, meaning 0.00176 = 1.76 X 107.

When ‘exp’ is used like this, it is referring to powers of 10 not e.

Calculators also sometimes use a gap instead of putting ‘exp’ when they are displaying
numbers in scientific notation. They may also write the power of 10 raised above the level
of the number. It is important for you to know how your own calculator does this. If you are
at all unsure, put in (600 000)?. This is 3.6 X 10'! in scientific notation, and you will be able
to see just how your calculator displays the 3.6 and the 11. (Your calculator will display this
number in this way because it is too large for the conventional display.)

Logs to base e are written as ‘In’ or ‘log,’. They are often shown as ‘In’ on calculators.
Because the behaviour of e’ and therefore of In ¢ is so special, these logs are often called
natural logs. We can say

ifx=e’ then t=lnx
and

iff=Inx then x=e¢"
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3.C.(f)

One example of how e creeps into physical laws is given by the value of the constant k&
which we referred to at the beginning of this section. We shall show in Section 8.F.(d) that
k=1n 2.

I show a sketch of x = e and its inverse function of x = In ¢ in Figure 3.C 4.

A t
5 S
x=t
3 o
X= Qn t
/
-2 -.l (o] ] 3. ) >t

Figure 3.C.4

If you plot the curve of y = e* as accurately as possible on graph paper,
taking values of x between 0 and 4 inclusive, you will be able to see more
clearly how the curve builds up. (You can fill in as many intermediate
points as you wish, using the e* button on your calculator. The curve of

y = e* is exactly the same as that for x = e¢’. We are just using different
letters.)

You will see that the steepness of the curve is changing smoothly as the
value of x increases. Clearly this is a very different situation from the
graphs of straight lines where the steepness, or rate of change of y with
respect to x, remains the same, and they have a constant gradient.

Can you think of a way of estimating the steepness or rate of change of
the curve of y = e* when x = 1.5, by drawing in a straight line and
finding its gradient? (If you choose different scales on the two axes, be
careful to allow for this when you find the gradient of the line.)

What answer do you expect to get?

Negative exponential functions — describing population decay
The situations represented by the graphs of x = 2” and x = e’ are examples of what is called
exponential growth.

What would the graphs of x = 277 or x = e’ represent?
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I show some values for x = 277 in the table below.

t -3 -2 -1 0 1 2 3 4

I—
|.—

X 8 4 2 1

=
e
—_
o

You will see that the values match those of the table on page 114 except that they have
been switched either side of # = 0.

I have drawn a sketch of the graphs of x = 277 and x = 2’ together on the same axes in
Figure 3.C.5(a). This shows that they are mirror images of each other in the vertical axis.

In Figure 3.C.5(b), I have sketched the two graphs of x = e’ and x = e’. These, like all
similar pairs of equations, also form a pair of mirror images of each other in the vertical
axis. These mirror images will always intersect each other at the point (0,1) since a® = 1 for
all non-zero values of a.

xX=e

= - 9 1 2
Figure 3.C.5

Don’t confuse the graph of x = e with the graph of x = — ¢’. The second of
these is the same as the graph of x = e’ except that every value of x has now
become negative. Therefore it is the same as the graph of x = e’ reflected in
the horizontal axis.

The graph of x = 277 could represent the radioactive decay of 1 tonne of a substance with
a half-life of one hour. (This means that during each hour the mass of the substance becomes
half what it was at the beginning of that hour. The total mass of substance present will
probably not change very much since most radioactive elements decay into another element
with a very similar mass.) The left-hand side of the graph then shows the mass of the
substance present at various times before the instant when we started measuring. These times
therefore have negative values.
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This graph represents what is called the exponential decay of the substance.
We shall look at this kind of situation in more detail in the first example in Section
9.C.(b).

3.D Unveiling secrets - logs and linear forms

The use of logs gives us an extremely powerful method for analysing experimental
results to reveal underlying physical laws of relationship. This section describes how this
works. There are some practical applications of these methods to physical examples in
Section 9.C.(b), where we look at how we can solve some equations involving rates of
change.

3.D.(a) Relationships of the form y = ax”
Suppose that we have a table of pairs of experimental measurements x and y, and we suspect
that there is a relationship between x and y of the form y = ax”, where a and n are two
constants which we want to find out.
If our suspicion is correct, and we plot the points given by the pairs on graph paper, we
will find that they appear to lie on or close to a curve similar to the sketch I have shown in
Figure 3.D.1 (unless » = 1 when we will have the straight line y = ax).

J}&

o
Figure 3.D.1

But this curve will take us no further forward since we can’t see from it what its equation
1s, and so we can’t find out from it what a and » are.

However, we know that we can get information from a straight line. If we have a straight
line with the equation y = mx + ¢ then m is the gradient of the line, and c is its y intercept.
(Look in Sections 2.B.(d) and (e) if necessary.)

If we can somehow convert the curve into a straight line, we shall be able to read useful
information from it.

How can we do this?

We can take logs of both sides of the equation y = ax”. We do this usually either to base
10, or by finding natural logs (i.e. to base e), since these are the two possibilities given on
calculators. In my example, I use logs to base 10.

Then we use the laws of logs to write this new equation in a simpler form.
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These three laws or rules of logs come in Section 3.C.(d). As we shall be using them a
lot here, I have put them in again for you.

The three laws of logs
log(ab) = log a + log b
log(a/b) = log a — log b
log(a”) =nlog a

To fit any of these laws, all the logs involved must be taken to the same base.

Remember that log(a + b) is not equal to log a + log b.

If we take logs on both sides of the equation y = ax”, we get
log y = log(ax") = log a + log(x") = n log x + log a.

Now we compare this with the equation of a straight line, ¥ = mX + c.
I’ve put this in a box for you as it is important.

Finding a linear form for y = ax”
Taking logs gives log y = n log x + log a.
Comparing this with ¥ = mX + ¢ gives

Y=1logy, X=logx, m=n and c=loga.

So we can now see that if the physical relationship is of the form y = ax” then we should
get an approximate straight line if we plot log y against log x. (I say ‘approximate’ because
if these are experimental values there is likely to be some error in the measurements.)

Drawing a line of best fit through the points will give us something similar to the
sketch I have shown in Figure 3.D.2(a). The reason for drawing this line of best fit is that
it evens out the inaccuracies as much as possible since it uses al/l the data that we have.
Trying to calculate an equation from just two of the pairs of values which we found from
taking the logs would be less accurate. Sometimes you may draw this line in by eye, or
in some cases you may do the job more accurately by finding a regression line, in which
case you will be able to write down the values for ¢ = log a and m = n immediately from
its equation.

If you have drawn a line of best fit by eye, you will now have to use it to find your ¢ and
m, so I will explain to you next how you would do this from your graph.

This graph will look similar to my drawing of Figure 3.D.2(a).

In Figure 3.D.2(b), I show a sketch on which I have put some numerical values, so that
I can more easily explain to you the process for the next stage.
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Firstly, we use the graph to find the value of c. This is given by reading off the value of
the ¥intercept. This gives us ¢ = log a in (a) and ¢ = log @ = 1.8 in the numerical example
of (b), so a = 63 to 2 s.f.

Secondly, because we now have a straight line, we can find its gradient by using any two
points lying on the line. (This is explained in Section 2.B.(d).) Because this is a line of best fit,
it may be that neither of these points corresponds to an actual pair of plotted measurements.

The gradient is given by PR/OR in (a), and 2.4/0.8 = 3 giving n = 3 in (b).

The graph of Figure 3.D.2(b) would give us the result that the pairs of measurements x and
y are linked by the relationship y = 63x>.

Remember that you must take account of the scales that you have used on
your horizontal and vertical axes when you work out the gradient of your
line. You can’t do it simply from the graph paper squares.

Dealing with a possibly tricky situation
In order to make the best use of the pairs of measurements that you have, it is often better
to use only the parts of the scales which cover the range of your measurements, rather than
showing the entire scale from zero at the origin. The convention for showing that you have
done this is to use a zig-zag at the origin as I have done on my X-axis in Figure 3.D.3.

\
e
~£
"
&
(¥

- V\V\/ AT lo,‘s.zv‘)(:lo\gx

Figure 3.D.3
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It’s quite easy to find the gradient of the line here, as it is

21-15 1

1052 - 812 4

The tricky bit is finding the ¥intercept correctly. It isn ¥ 1.2 because of the
break in the x-axis which means that it is not true that ¥ = 1.2 when X = 0.

But, since we now know that the gradient of the line is %, we know that its
equation is ¥ = %X + c.

We also know that Y = 1.5 when X = 8.12, so ¢ = 1.5 - 2.03 = -0.53.

But c=loga so a=0.295 and we have the equation linking the
measurements as y = 0.295x 14,

3.D.(b) Relationships of the form y = an*
Suppose we have a table of pairs of experimental measurements x and y, and this time we
suspect there is a relationship between them of the form y = an* where, as before, a and n
are two constants for which we want to find the value.

Just like last time, if this relationship is true, plotting y against x will give us a curve from
which we can obtain no further information except that there does seem to be some form of
relationship.

Try taking logs of both sides of the equation y = ax” yourself, and see if you can
work out what we should make X and Y be so that we get a straight line when we plot
Y against X.

Taking logs of both sides of the equation y = an™, you should have
log y = log(an™) = log a + log(n™) = x log n + log a.

I’ve put the next part of the working in a box for you, so that it is easy to refer to when you
need it. This is what you should have found.

Finding a linear form for y = an*
Taking logs gives log y = x log n + log a.

Comparing this with ¥ = mX + ¢ gives
Y=logy, m=logn, X=x and c=loga.

Therefore, plotting ¥ = log y against X = x should give us a straight line if our suspicion
is correct.

Doing this will give us a sketch similar to Figure 3.D.4(a).

Again, I have shown a numerical example in Figure 3.D.4(b).
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From Figure 3.D.4(a) we have ¢ = log a and m = log n = PR/RQ.

From Figure 3.D.4(b) we have log a = 2.3 so a = 200 to 2 s.f. and m = log n = %
son=13to 2 s.f

This would mean the original relationship in this case was y = 200(1.3%).

If we do not know which of these forms the relationship has, then it would be sensible
to try both log y against log x, and log y against x, in the hope of getting a straight line.

It is possible to do this by using special log/linear or log/log graph paper, which saves you
having to do the logging yourself.

The log scales are in powers of 10 called cycles, so you would choose the number of
cycles according to the range of measurements you need to cover. For example, if this range
runs from 27 to 1540, then you would need the three cycles 10—100, 100—1000 and
1000—10 000.

What can we do if logs are no help?
Unfortunately, it isn’t possible to bring all relationships to a linear form by taking logs both
sides.

For example, if we suspect a relationship of the form y = a + bx?, taking logs both sides
does not help us since log(a + bx?) cannot be split up, and so the values of a and b will
remain hidden inside the log.

It isn’t true that log(a + bx?) is the same as log a + log(bx?).

If you think this should be true, go quickly back to Section 3.C.(d) and sort
out these risky ideas.

All is not lost in the search for the values of a and b.

If you compare y = a + bx? with ¥ = mX + ¢, what could you choose for ¥ and X for the
points to lie on a straight line?

How would you then find the values of a and b from this straight line?
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Plotting ¥ = y against X = x* will give a straight line if the relationship is y = a + bx?.
In this case, a is the y intercept, and b is the gradient of this line.

This may seem surprising so I will show you that it works by taking the example of
y =3 + 2x? (which you will recognise gives the left-hand sketch of Figure 3.D.5(a)).

Plotting y against x> from the table of values in Figure 3.D.5(b) gives the straight line
shown in Figure 3.D.5(c).
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Figure 3.D.5

This straight line has a y intercept of 3 and its gradient is (11 —3)/4=2,s0a=3 and b =2,
giving us the equation we know we should have of y = 3 + 2x2.

If you suspected a relationship of the form (1) y = a + bx> or (2) y = a + b\/x what would
you plot in each case in order to get a straight line if your theory is correct?

For (1), you would try plotting values of y against values of x°.

For (2), you would try plotting values of y against values of \;

You will see that the problem we have here is that, in order to get the straight line, we
need to know what power of x is involved. In the first example which we looked at, the logs
took care of that problem for us.

3.D Unveiling secrets - logs and linear forms 131



4 Some trigonometry and geometry
of triangles and circles

This chapter reminds you of what trig is for, and how it works in triangles. It also
explains some of the special geometrical properties of triangles and circles, because
they may be very useful to you in applications of maths to your own special subject
area.

The chapter is divided into the following sections.

4.A Trigonometry in right-angled triangles

(@) Why use trig ratios? (b) Pythagoras’ Theorem,

(©) General properties of triangles, (d) Triangles with particular shapes,
(e) Congruent triangles — what are they, and when?

(f) Matching ratios given by parallel lines,

(g) Special cases — the sin, cos and tan of 30°, 45° and 60°,

(h) Special relations of sin, cos and tan

4.B Widening the field in trigonometry
(@) The Sine Rule for any triangle, (b) Another area formula for triangles,
(©) The Cosine Rule for any triangle

4.C Circles

(@) The parts of a circle, (b) Special properties of chords and tangents of circles,
(c) Special properties of angles in circles,

(d) Finding and working with the equations which give circles,

(e) Circles and straight lines — the different possibilities,

(f) Finding the equations of tangents to circles

4.D Using radians

(@ Measuring angles in radians,

(b) Finding the perimeter and area of a sector of a circle,
() Finding the area of a segment of a circle,

(d) What do we do if the angle is given in degrees?

(e) Very small angles in radians — why we like them

4.E Tidying up — some thinking points returned to
(@) The sum of interior and exterior angles of polygons,
(b) Can we draw circles round all triangles and quadrilaterals?

4.A Trigonometry in right-angled triangles
4.A.(a) Why use trig ratios?
When you began learning trigonometry (often referred to as ‘trig’), you will have started by
working with right-angled triangles. Since my policy is to make sure of the groundwork for
each topic before going further, I will start from here, too.
We begin by looking at the right-angled triangle ABC shown in Figure 4.A.1.
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A C
Figure 4.A.1

We will describe the sides of this triangle by their position relative to the angle at 4.
BC is the side opposite to angle A (opp. for short).

AC is the side adjacent to angle 4 (adj. for short).

(The word ‘adjacent’ means ‘lying next to’).

AB is the longest side, opposite to the right angle. It is called the hypotenuse (hyp. for

short).
Then we give particular names to each of the ratios of the different pairs of sides. We say:
BC  opp. AC  adj. BC  opp.
sinA=—=ﬂ, cosA=—=—J, tand = —= pp‘
AB  hyp. AB  hyp. AC  adj.

To do the thing thoroughly, the ratios obtained by turning the above three ratios upside
down are also given names as follows:
1 AB 1 AB 1 AC

= —— = cosec 4, =—=3ec4d, =—=cot 4.
sind BC cosd AC tandA BC

These three ratios are the reciprocals of the first three ratios.

(Sin, cos, tan, cosec, sec and cot are all shortened versions of longer names which are
relatively rarely used. They are, in the same order, sine, cosine, tangent, cosecant, secant and
cotangent.)

The question now is why did anyone think these different ratios so important that they
ought to be given special names? We can see the answer to this by looking at the triangles
in Figure 4.A.2 which are nested into each other because they are the same shape. Only their

F
5 I2
B 6
S 3
A 4 cC E G
Figure 4.A.2
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size is different. Triangles ADE and AF'G are enlargements of triangle ABC. It is as though
triangle ABC is stretched out into these larger triangles under a constant pull, so that all the
proportions stay the same. (If it is some time since you did any trig, you may find that it
helps you to draw in the outlines of the three triangles in three different colours.)

From the lengths shown on the triangles, how long will the sides AE, AD, AG and
AF be?

Triangle ADE has sides which are all twice as long as triangle ABC, since it is just a
scaled-up version of triangle ABC. So AE = 8 and AD = 10 units long.

Similarly, triangle AF'G is scaled up by a factor of 4, so AG = 16 units and AF = 20 units
long.

Next, we write down the values of sin 4, cos 4 and tan 4 in these three triangles.
I have left some blank for you to fill in because you will then see why they are so
important.

In A ABC,

sind=—, cosd=— tand=—.
5 5 4

In A ADE,
6 3 8 3
simnd=—=—, cosd=—=—, tand=—=—.
10 5 5 8
In A AFG,
12
sinA=2—=—, cosd=—=—, tand=—=—.

We see that the fractions or ratios giving the sin, cos and tan of angle 4 remain the same,
although the sizes of the triangles are different. It is this property of remaining constant for
a given angle, whatever the scale of the triangle that the angle is in, which makes these
ratios so important.

Practically, it makes it possible to find heights or depths in situations where we can’t
make these measurements directly. For example, if we wish to find the height of a tree, it can
be done by measuring the distance to the foot of the tree, and the angle of elevation £ to the
top of the tree. We can then use the tan of this angle of elevation to find its height.

¢«—" 20m —
Figure 4.A.3
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In the case shown in Figure 4.A.3 we would have:

H
tan 38° = % so H=20tan 38°=15.6mto 1 d.p.

There are two standard ways of measuring angles. They can be measured in
degrees, where 90° is a right angle, as shown in Figure 4.A.4 below. Then
180° is a straight line, and 360° is a full turn.

o

90

180° Fin O and
A [ A

360°

270 Figure 4.A.4

Angles can also be measured in radians which are described later on in
this chapter in Section 4.D.(a).

There is a third way of measuring angles on your calculator (called grad),
which is very rarely used.

The ratios for any sin, cos or tan are programmed into your calculator so
that you can then use them to find either unknown angles, or the lengths of
unknown sides of triangles.

Here’s a quick revision of how the working out goes, just in case you haven’t used it for
some time.

EXAMPLE (1) Find the length of PR in triangle POR, in which the length of OR =
5cm and the angle P is 32°. I show a sketch of this in Figure 4.A.5.

R

32°
Q 1L P Figure 4.A.5

If we let PR = h, we have sin P = 5/h = sin 32°, so

hsin32°=15
and

5
h=— = 9.44 cm to 3 significant figures (s.f.).
sin 32°
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EXAMPLE (2) Find angle b in triangle ABC in Figure 4.A.6, if AB = 7Tm and

BC =4m.
B
b
7 4
-
A c
Figure 4.A.6

We have cos b =4/7 so b =55.2° to 1 d.p. (using INV cos or
SHIFT cos or 2nd/F cos on the calculator to find the angle with the
known cos). This angle is cos™! (4/7), where cos! stands for ‘the angle
whose cos is’. (We shall look at this in more detail in Section 5.A.(g).)

EXERCISE 4.A.1 For completeness, | have included this exercise on finding angles and lengths of

sides in right-angled triangles. If you are at all unsure that you remember how to
do these, this exercise gives you something to check against.

(A) If the sketches in Figure 4.A.7 all show triangles with lengths given in
centimetres find the lengths of the sides marked with a letter to 2 d.p.

O] ®@ ©)
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Figure 4.A.7

(B) Find the marked angles in these triangles giving your answers in degrees to
one decimal place (Figure 4.A.8).

® @ ©) @
4
7 8
Figure 4.A.8
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Comparing the areas of the triangles in Figure 4.A.2
Returning to the three nested triangles of Figure 4.A.2, we know that the lengths of the
matching sides go in the ratio of 1: 2 :4 as we move from the smallest triangle to the largest
triangle.

How do their areas compare? Do they also go 1:2:4?

YA

v

Figure 4.A.9

Each triangle is half a rectangle as you can see from Figure 4.A.9. Using A to stand for
‘triangle’, we have

A ABC =% X 4 X 3 = 6 square units,
A ADE = % X 8 X 6 = 24 square units,
A AFG =3 X 16 X 12 = 96 square units.

The ratio of the areas is given by

AABC: AADE: AAFG = 6 :24 : 96
=1:4 :16
= 1%2: 2%2: 42

The ratio of the areas is the same as the ratio of the lengths squared, which makes sense
as the area is found from multiplying two lengths together. So, for example, if each length
has been doubled, the area will be four times larger.

4.A.(b) Pythagoras’ Theorem

You will almost certainly have recognised the smallest triangle in Figure 4.A.2 as having
sides of the smallest whole numbers which fit Pythagoras’ Theorem. This says that the
square on the longest side (or hypotenuse) of a right-angled triangle is equal to the sum of
the squares on the other two sides.

(In this particular case, we have 5% = 32 + 42)

The ancient Egyptians knew that they could use a 3, 4, 5 triangle to give them a square
corner to true their buildings.
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EXERCISE 4.A.2

We can see that Pythagoras’ Theorem must be true for any right-angled triangle from the
pair of drawings in Figure 4.A.10.

Figure 4.A.10

This beautiful visual proof was first given in an old Chinese text.

It is based on the symmetry of the four triangles all sitting on the sides of the square on
their longest sides so that together they form a larger square. The larger square is then
rearranged to give the same four triangles and the two squares on each of the shorter
sides.

A similar proof by rearrangement was given by the twelfth-century Hindu mathema-
tician, Bhoskara. Underneath his drawing he wrote the single word ‘Behold!’.

Two other examples of right-angled triangles in which the sides are whole numbers are
given by 5, 12 and 13 units, and 8, 15 and 17 units, because 5% + 122 = 132 and 8> + 152
= 17°

Sets of three whole numbers like these are called Pythagorean triples, and there are, in
fact, infinitely many of them. In the huge majority of cases, however, the sides of right-
angled triangles are not all exact numbers, and therefore involve those irrational numbers
like \E which caused Pythagoras such distress. (See Section 1.E.(d).)

Pythagoras’ Theorem can be used to calculate the length of the third side of any right-
angled triangle if we know the other two.

Here are two examples.

In each of the two triangles in Figure 4.A.11 find the length of the third side.

© @

24 7
Figure 4.A.11

In (a), h> = 7>+ 24> =49 + 576 = 625 so h = 25 units.
In (b), 102=»2+7% so 100=»>+49 and y?>=51 so y=7.14t02dp.

Find the lengths of the third sides of each of the four triangles from Exercise 4.A.1

part (B).
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4.A.(0) General properties of triangles
We have just seen that right-angled triangles have a remarkable special property. Do all
triangles have special properties regardless of their shape?
The most important property held in common by all triangles is that their interior angles
always add up to 180°.
This can be seen from the drawing shown in Figure 4.A.12.

C
Figure 4.A.12

We start with any triangle ABC, and then draw the line CE so it is parallel to AB. (The
two arrows on AB and CE are to show that these lines are parallel.)

Then the two angles marked a exactly slot into each other, and so do the two angles
marked b.

a + b + ¢ makes a straight line, and so adds to 180°.

Therefore, the angles of the triangle must also add up to 180°.

We also see from this same diagram that, if we have a triangle with one side extended,
then the exterior angle e is equal to a + b, the sum of the two interior opposite angles.

This is shown drawn in on Figure 4.A.13.

A C D
Figure 4.A.13

4.A.(d) Triangles with particular shapes
Triangles can come in an infinite variety of shapes, but there are two particular types which
have specific names.
If a triangle has two sides equal then it is called isosceles (originally by the Greeks who
were very keen on geometry — ‘iso’ means ‘equal’ and ‘sceles’ means ‘sides’.
‘Trigonometry’ also comes from the Greeks — ‘trigono’ is the Greek word for triangle.)
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The two equal sides give these triangles a line of symmetry, so that one half folds exactly
on to the other half, and the pair of angles opposite the equal sides are also equal. The line
of symmetry divides the triangle into two equal right-angled triangles. (See Figure
4.A.14(a).) The little dashes are there to mark the two equal sides.
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isosceles equilateral

Figure 4.A.14

If a triangle has all three sides equal then it is called equilateral. Such a triangle is
pictured in Figure 4.A.14(b).

It will have three lines of symmetry as shown, and will fit exactly onto itself three times
in a complete turn. Therefore all its angles are equal, and so must be 60° each.

All equilateral triangles can nest into each other, in any chosen corner.

Some are shown here in Figure 4.A.15.

Figure 4.A.15

They are all similar to each other. (‘Similar’ in maths doesn’t just mean ‘more or less the
same as’ but ‘an exact scale model of” so that all the angles remain the same, and the pairs
of sides are all in the same proportion.)

4.A.(e) Congruent triangles — what are they, and when?

If two triangles are exactly the same size and shape so that they can be fitted onto each other
exactly, they are called congruent. In this case, they will obviously have three equal pairs
of angles and three equal pairs of sides. (It may be necessary to lift one triangle out of the
paper, and turn it over, in order to fit it exactly on top of the other one.)

How many measurements (and which ones) do you need to know are the same in order
to be sure that two triangles must be congruent?

In general, three pairs of equal measurements will be enough, provided that they are the
right pairs. See how many of these you can find — draw little sketches if necessary! (Things
are not always what they seem.)
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Case (1) We have already seen that having three pairs of equal angles certainly isn’t
enough. This would just mean that the triangles were similar.

Case (2) On the other hand, having three pairs of equal sides is certainly sufficient. The
triangles will then exactly match.

Case (3) If we have two pairs of equal angles, then the third pair of angles must be equal
since the angles of a triangle add to 180°. Just one pair of equal sides opposite same-sized
angles is then enough to tell us that the scale is the same, and so the two triangles are
congruent.

Case (4) If we have two pairs of equal sides and one pair of equal angles, then it all
depends where the angle is! You can see the danger in Figure 4.A.16. We are only safe if the
angles are between the matching sides (except for one case when it doesn’t matter where the
matching pair is . . .).

/'\
// \
Fi Y '™ ‘ a3l

These are congruent these are not!
Figure 4.A.16

Case (5) This special case is when the two equal angles are both right angles.

In practice, similar and congruent triangles often appear at a slant to each other.

One example of this is shown in Figure 4.A.17 below. The two congruent triangles shown
here, with one of them turned through 180° relative to the other one, fit together to form a
parallelogram.

—H
Figure 4.A.17

If the two triangles are isosceles, as shown in Figure 4.A.18(a), then together they make
what is called a rhombus or diamond.

® ®
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i

Figure 4.A.18
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By showing the two axes of symmetry set horizontally and vertically, we see why this
shape is called a diamond, and also that the diagonals cut at right angles.
This is shown in Figure 4.A.18(b).

® What do you get if you add up all the interior angles shown in this
drawing of a six-sided figure? (See Figure 4.A.19(a)). Does it depend on
its shape?

® What is the sum of its exterior angles? (See Figure 4.A.19(b).)

® What would be the sum of the interior angles if the figure had » sides?
(It would then be what is called an n-sided polygon.)

® What would be the sum of its exterior angles?
See if you can work out the answers yourself to these four questions.
(I give solutions later on in the chapter for you to check against.)

@ ®
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Figure 4.A.19

4.A.(f) Matching ratios given by parallel lines
Here is another useful property of similar triangles.
Suppose we have two similar triangles nested into each other.
This is shown in Figure 4.A.20.

A

B

[N\

D Z E

Figure 4.A.20
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O

Then BC is parallel to DE. This is shown in the diagram by using little arrows.
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Because the triangles are similar, corresponding pairs of sides are in the same proportion,

so we have
AD AE DE
AB AC BC’

But AD/AB = AE/AC can be written as
AB +BD AC + CE

AB AC
Also
AB + BD BD AC + CE CE
=1+ and —=1+—.
AB AB AC AC
Therefore
BD CE AB  AC
—=—or, equally, —=—
AB  AC BD CE

turning both fractions upside down if we prefer them that way.
You will find that this property of parallel lines cutting off sections with the same ratio
is often very useful when working with problems involving similar physical shapes.

4.A.(8) Special cases - the sin, cos and tan of 30°, 45° and 60°
It is often useful to know the ratios of the sides of right-angled triangles which have
particularly simple divisions of 90° for the other two angles.
The two most useful ones are as follows:

(a)  the ratios for all triangles which have angles of 90°, 45° and 45°,
(b)  the ratios for all triangles which have angles of 90°, 60° and 30°.

(@)  The 90°, 45°, 45° triangle is isosceles.
The simplest example is the one which has two equal sides of 1 unit, shown in
Figure 4.A.21(a).
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Figure 4.A.21

By Pythagoras, h% =12 + 12 =2 so h = /2 so we have

1

sin 45° = cos 45° = and tan 45° = T =1.

o)l =

v
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(b)  The 90°, 60°, 30° triangle is half of an equilateral triangle, so if we take 2 units for
each side, the base is conveniently divided into 1 unit for each side.
A sketch of this triangle is shown in Figure 4.A.21(b).
Again, we can find the vertical height by using Pythagoras’ Theorem.
We have 22 = 12 + »? s0 y? = 3 and y = /3. This gives us

J’@

sin 60° = cos 30° = 7 and cos 60° = sin 30° = —

- 1
tan 60° =3 and tan 30° = _3
\;"

You will find that these exact values do also check with the decimal values given
on your calculator for these angles. (Make sure of this for yourself.)

4.A.(h) Special relations of sin, cos and tan
Are there any relationships between the sin, cos and tan of the two angles @ and » which will
be true in any right-angled triangle?
Use the triangle shown in Figure 4.A.22 below to write down the sin, cos and tan of ¢ and
b. Then see if you can find any connections between them.

Figure 4.A.22

You should have found the following relationships.
b = 90° — a because the angle sum of the triangle is 180°.

y 1
x

. y X )
sima=—=cosb, cosa=—=sinb, tana=—= .
h h tan b

We see also that

sina yh vy sin b
=—=—=tana and
cosa x/h x cos b

= tan b.
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We also find a very nice relationship between the sin and cos of each of ¢ and b which
comes directly from Pythagoras’ Theorem. We have

. . . X2 2 2
+ — _+_:—:
x“+ty =h SO PO 1.
But
2 » ¥2 .
—=sin“a and — =cos"a
2 2

2

sin? a + cos® a = 1.

This is an enormously useful result and it is worth surrounding its box with bright
colour.

It is, of course, equally true that sin® b + cos® b = 1. Indeed, all the special relationships
which we have shown above will carry through truthfully when we move on to consider
general angles instead of just being restricted to angles between 0° and 90°.

sin? a is the usual way that (sin a)? is written. Equally, cos®> a means
(cos a)? etc.

sin® a is not the same as sin(a?). For example, if a = 5°, then sin a =
0.0872 to 3 s.f. and sin? a = 0.00760 to 3 s.f. but sin(a?) = sin 25° = 0.423
to 3 s.f.

The last result which we found above has two offspring which are also often very useful.
We start with

sin> a + cos?> a = 1. )
Dividing through by cos? a we get
sin @  cos®a 1

—+ =
0082 a COS2 a COS2 a

SO

tan® a + 1 = sec? a. ()

Starting again from (1), and dividing through by sin? @, what do you get?
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sina  cos®a 1
. + . = .
sina  sin®a  sin®a

SO

1 + cot® a = cosec? a. 3)

It’s also worth surrounding (2) and (3) in bright colour.

4.B Widening the field in trigonometry
4.B.(a) The Sine Rule for any triangle
We are now in a good position to get trig formulas for any triangle, which we will then be
able to use to find unknown angles and sides.
We start this process by finding what is called the Sine Rule.

A
C
h b
i
B H =
< a —>
Figure 4.B.1

I have drawn a general-shaped sort of triangle in Figure 4.B.1. I have labelled the sides
with the lower case letter corresponding to the capital letter of the opposite angle. (This is
the usual way in which such labelling is done.)

I’ve also drawn in the perpendicular line AH (so that we shall have two right-angled
triangles to work from!). I have labelled its length A.

Then, in AABH,

simB=— so h=csinB.
c

Write down for yourself the same sort of thing for sin C in A4HC.
|

You will have

h
sinC=Z so h=bsinC.

So we can say ¢ sin B = b sin C. Therefore,
c b

sin C sin B

We could equally have drawn the triangle in such a way that we used 4 and a.
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Therefore, by symmetry, we have

The Sine Rule

a b c

sinA sinB sinC

This applies to any triangle, and we can use it to calculate the lengths of unknown sides
and angles.

Here is an example of this.

In triangle ABC, £ B is 58°, £ C is 40° and the side AC is 6 m long. Calculate the lengths
of the unknown sides and angles.

We start by drawing a sketch. 4 sketch is important in any geometrical or physical
problem, because it gives you some idea of what you are looking for.

Figure 4.B.2

My sketch is Figure 4.B.2. I have labelled it in the same sort of way that I labelled the
original triangle. Also, although it is not accurate, I have tried to make it believable, so that
the angles of 58° and 40° are roughly the right size.

So now we start. What is £ A?

It is 180° —58° —40° = 82° because the angles of a triangle add to 180° (Section

4.A.(c)).
Now, to find a, we have
a 6
= so a =sin 82° X =7.0lm to 2 d.p.
sin 82°  sin 58° sin 58

To find ¢, we can say

c 6
= so c¢=4.55mto 2 dp.
sin 40°  sin 58°

(It is safer not to use the newly found length of a to find c just in case it has a mistake in
it.)

Finally, before going on, we look at the sketch to see if our answers seem reasonably
convincing for this particular triangle. They do, so we can proceed happily to the next thing,
which is an exercise on using the Sine Rule.
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EXERCISE 4.B.1

Find, if possible, the missing sides and angles in each of the three triangles

4.B.(b)

whose measurements are given below, giving the angles in degrees to 1 d.p. and
the sides in centimetres to 2 d.p. In each case, start by drawing a labelled sketch,
as | did in the previous example. It’s particularly important to do this exercise
because things are not always quite as they seem.

(1) Triangle ABC in which LA = 78°, /B = 65° and AB = 5cm
(2) Triangle ABC in which 2C = 33° BC = 6cm and AB = 4cm
(3) Triangle ABC in which 2C = 40° AB = 9cm and BC = 5cm

Another area formula for triangles
The most usual formula for the area of a triangle is

the area of the triangle = % base X height.

You can see that this must be so from Figure 4.B.3 below which shows the triangle as half
a rectangle.

c h b

L

Be——— « ——C
Figure 4.B.3

Sometimes it is useful to be able to write this area in another way. We know that
the area = % ah

but 2 = b sin C = ¢ sin B as we saw when we proved the Sine Rule in Section 4.B.(a), above.
So, by symmetry,

1 . 1 . 1 .
the area = 5 ab sin C = 5 ac sin B = 5 bc sin 4.

In words, we can say

The area of a triangle is equal to one half of any two sides multiplied together and
then multiplied by the sine of the angle between them.

Here is an example of the use of this new formula.
Find the area of the equilateral triangle ABC with sides of length 3 cm, shown in Figure
4.BA4.

148 Some trigonometry and geometry



Figure 4.B.4

Instead of having to mess around finding the vertical height, we can say that

[
/

9.3
the area =+ X 3 X 3 X sin 60° :%z 3.90cm? to 2 d.p.

The new formula is particularly useful for finding the area of triangles enclosed by two
radius lengths in circles such as the one I've shown in Figure 4.B.5. I’ve marked the angle
with the Greek letter 6 (called theta), since this is often used for angles.

r e r
Figure 4.B.5

The area of the triangle is % r? sin 6.

4.B.(c) The Cosine Rule for any triangle
Suppose we have a triangle in which we know the lengths of the three sides, and we want
to find its angles, like the one in Figure 4.B.6.

Figure 4.B.6
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The Sine Rule will be of no help to us here because it always involves two angles. But
there is a formula which will help us, which is called the Cosine or Cos Rule.

To get this, we start with a general-shaped triangle like we did with the Sine Rule,
and label it in the same sort of way, except that this time we let the length of BH = x.
(See Figure 4.B.7.)

A

4
E><—::r.-—>H c
< X —

Figure 4.B.7

In triangle ABH, using Pythagoras’ Theorem, we have
c2=h*+x* so x?*=c?-h%

What is the length of CH using the given letters? Use this to write down how Pythagoras’
Theorem will go for A AHC.

CH=a—x.

So, in A AHC, we have
b2=h>+(a—x)?>=h*+a®+ x? - 2ax.

But x? = ¢? — h?, so we have
b2=h*>+a’+c*> - h*>-2ax =a®+ c? - 2ax.

In A ABH, what is cos B?

We have
X
cosB=— so x=ccosB.
c

Therefore, we have
b%=a?+ ¢? — 2ac cos B.

Equally, by symmetry, we have the two other formulas which we could have got by labelling
the triangle differently.
We now have the Cosine Rule for any triangle.

150 Some trigonometry and geometry



The Cosine Rule

a’=b?+ c* - 2bc cos A (1)
b? =c*+ a* - 2ac cos B )
c?=a?+ b*—-2ab cos C 3)

Notice also that if we put 4 = 90° in (1) above, we get Pythagoras’ Theorem for what is
now a right-angled triangle.
That is, we get a® = b2 + c2 because cos 90° = 0, so everything connects up as it should do.

Here is an example of using the Cosine Rule to find a side of a triangle. We will use it
to find a in AABC shown in Figure 4.B.8.

A

72°

B o C
Figure 4.B.8

This triangle is another example of a case in which the Sine Rule will not give us what
we want. This is because the known facts slot into it in such a way that every possible
equation has two unknowns.

We would have

a 10

; = = — which is no use.
sin 72° sin B sin C

Using the Cosine Rule, we have a® = b* + ¢ — 2bc cos A.

Substituting the known values, this gives us a? = 64 + 100 — 160 cos 72° so a=10.7
to 1 d.p.

If we want to find the angles of a triangle using the Cosine Rule, it will pay us to
rearrange the three formulas.

For example, we have a? = b? + ¢? — 2bc cos A so 2bc cos A = b? + c? — a>.

Rearranging this gives us

b2+ 2 _ g2
cos 4 = T, @9
c
2+ a2 b2
cos B = 2—, 2)
ca
a2+ b2 — 2
cos C = T, (3)
a

shifting the letters round again in turn to give the other two formulas.
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We take the triangle from the beginning of this section to show the use of the Cosine
Rule to find its angles. It has sides of 5cm, 7cm and 9cm and I show it again in
Figure 4.B.9.

Figure 4.B.9

We will now find the angles 4, B and C. I want the angles to go in this way, which is why
my lettering of the triangle isn’t the usual one.

Using the Cosine Rule to find 24, we have
b?+c*—a*> 49 +81 -25 105

sO cosAd=——
2bc 126 126

and /L A=33.6°to1dp. (£A4=233.56°to2dp.)

cos A4 =

Similarly, using the Cosine Rule again to find £ B we have

c?+a*-b> 81+25-49 57
= =—1s0 B=50.7(0)° to 1 d.p.
2ca 90 90

cos B =

Working with 2 d.p. to avoid a rounding error in the first decimal place, we can find the third
angle using the angle sum of the triangle.

This gives us £ C=180°—33.56 — 50.70° =95.7° to 1 d.p. which is an angle greater than
90°.

Are we going to have the same problem that we had with the Sine Rule if we are dealing
with an angle which might be greater than 90°? Will we be unsure about the shape of the
triangle?

If we had used the Cosine Rule to find £ C we would have got

a?+b%-c? 25+49 -8l 7
2ab 70 70"

cos C =

If you now use your calculator to find £ C (putting in the fraction complete with its minus
sign), you will find that you again get 95.7° to 1 d.p. so it agrees with what we know it
should be.

We find, using the Cosine Rule, that angles between 90° and 180° have a negative cos.
This means that there can’t be any ambiguous cases from using the Cosine Rule — we will
know from the sign of the answer whether the angle we have found is less than 90° (acute),
or greater than 90° (obtuse).

We saw earlier that, if the angle 4 = 90°, then the Cosine Rule for angle 4 of
a? = b% + ¢? — 2bc cos A becomes a? = b% + ¢? (that is Pythagoras’ Theorem).

If the angle 4 is acute, we are taking something off b2 + c? to get a>.

If the angle 4 is obtuse, because cos A4 is then negative, we are adding something on to
b% + ¢? to get a’.
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EXERCISE 4.B.2

o b o b a
A A A
c c ' c
The lengths of b and c are the same in all three Eriangles.

Figure 4.B.10

You can see from the three cases which I show in Figure 4.B.10 that this must happen in
order that the length of a will work out correctly in each case.

If you think that the angle you are finding may be obtuse, it is safer to use the Cosine Rule
if possible, rather than the Sine Rule.

I shall explain exactly what we mean by the cos of an angle greater than 90° in Section
5.A.(c).

Now try the following questions.

(1) Find the sides and angles marked with a question-mark in the three triangles
shown in Figure 4.B.11.

Figure 4.B.11

(2) Figure 4.B.12 shows a triangle formed by joining together the two halves of an
equilateral triangle by their shortest sides.

Figure 4.B.12

(@) How large are the angles Q and R?

(b) How large is ~QPR?

(c) Use the Cosine Rule in AQPR to find the cos of ~QPR.
(d) Use the Sine Rule in AQPR to find the sin of ~QPR.
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4.C Circles

4.C.(a) The parts of a circle
Once we start considering angles larger than 90°, we become involved with the circles which
are used to show their turn (Figure 4.C.1).

q0°

mo‘\/i O’ and 360°

270°

Figure 4.C.1

The convention is that angles are shown turning anticlockwise from the positive x-axis,
so that angles from 0° to 90° lie in the quarter-circle or quadrant where all measurements
are positive. (Bearings are not measured like this; they turn clockwise from a zero position
at due north.)

Because circles are intimately connected with the trigonometry of angles which are
greater than 90°, I am including a section specially devoted to them next.

I start with a reminder of the names of the parts of a circle which we shall need to use.
These are shown in Figure 4.C.2 and described underneath.

minorl
sector

rnao'or
sector

sgment

Figure 4.C.2

® The whole curve of the circle is called the circumference.

Any line from the centre to the circumference is called a radius (plural: radii). Clearly,
from the symmetry of the circle, these are all the same length.

A line drawn right across a circle through its centre is called a diameter.

A line like 4B drawn across a circle is called a chord, so a diameter is a special case
of a chord.

The curved piece of the circle from A to B is called an are. The short way round from
A to B is called the minor arc, and the long way round is called the major arc.
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4.C.(b)

® The part of the circle enclosed between the minor arc AB and the chord 4B is called
a minor segment. The rest of the circle is a major segment.

® The shaded piece shown in circle (c) is called a minor sector. The rest of the circle is
called a major sector.

To avoid mixing up segments and sectors, you can remember that ‘a sector is like a piece
of cake because it’s got a “c” in it’.

If the radius of the circle is 7, then the length of the circumference is 277, and the area
of the circle is 772, 7t is a number which cannot be written exactly as a fraction (though 22/7
is sometimes used as an approximation to it.) To 4 d.p. it is 3.1412. As a decimal, it is non-
repeating, and has been calculated to a huge number of decimal places using computers.

If C stands for the circumference and 4 stands for the area

C=2ar and A=mr?

Special properties of chords and tangents of circles
The chords and tangents of circles have special properties because any diameter of a circle
is a line of symmetry.

(The circle can be folded along any diameter so that the two halves exactly match.)

The most important properties of chords and tangents

® Any line perpendicular to a chord from the centre of the circle divides that
chord equally in two (or bisects it).

¢ If a line from the centre of a circle divides a chord equally in two then it must
be perpendicular to that chord.

® Any line which is perpendicular to a chord and bisects it must pass through the
centre of the circle.

® [f a chord is pushed to the edge of a circle and extended to make a tangent (a
line which touches the circle and gives its slope at that point), the tangent is
perpendicular to the radius to the point of contact.

® The two tangents to a circle from any outside point must be equal in length.

I show examples of all these properties in Figure 4.C.3.

@ ®

Figure 4.C.3
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The matching pairs of little marks show lines which are equal in length.
Draw in the diameters which show the lines of symmetry in colour if it helps you.

4.C.(c) Special properties of angles in circles
We come next to a result which does not come so obviously from the symmetry of the circle.
In Figure 4.C.4, I have shown three angles all standing on the same arc of the circle. This arc
is drawn with a thicker line. If you measure these three angles, you will find that they are all
equal. Any similar drawings will give other sets of equal angles. Why should this be so?

Figure 4.C.4

To find the answer to this, we compare the size of the angle at the centre of the circle with
any angle at the circumference which stands on the same arc.
We can do this in the way I have shown in the sequence of drawings in Figure 4.C.5.

AN

USl.nJ 4-.A.(d.)

usfnj 4.A. (@)
Figure 4.C.5
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From this, we see that the angle at the centre of the circle is twice the size of the angle
at the circumference.

This will be true wherever this angle touches the circumference above 4B, so long as it
is standing on the same arc, so all the angles standing on this arc must be equal; an
unexpected and beautiful result.

If the angle is below AB, as 1 show in Figure 4.C.6, the angle at the circumference
is still half the angle at the centre, but we are looking at the situation upside down, so
the angle at the centre is now greater than 180°. (An angle like this is called a reflex
angle.) The two angles are now standing on the major arc of the circle which I have
shown using a thicker line.

Figure 4.C.6

From these two results we can now deduce a useful special case, which is that the
angle in a semi-circle is a right angle.

We can see that this must be so either way round from the two diagrams shown in
Figure 4.C.7.

1¥0°

Figure 4.C.7

A summary of special properties of angles in circles
® The angle at the centre of a circle is twice any angle standing on the same arc.
® Angles at the circumference and standing on the same arc are equal.

® The angle in a semi-circle is a right angle.
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4.C.(d)

(a) Is it possible to draw a circle round any triangle as in Figure 4.C.8(a)?
(b) Is it possible to draw a circle round any four-sided shape (quadrilateral)
as shown in Figure 4.C.8(b)?

@ ®

Figure 4.C.8

In each case, if it isn’t always possible, what special conditions must you
have in order to be able to do it?

Finding and working with the equations which give circles
How can we find the equation of the curve which gives a particular circle in terms of
x and y?

We will start by considering the simplest case which is a circle of radius r sym-
metrically placed so that its centre is at the origin. I have drawn a circle like this in Figure
4.C.9(a).

y 19
@ - ®

Figure 4.C.9

Any point P on it, with coordinates (x, y), must be a distance » from the origin, so
x2 + y2 = r? by Pythagoras’ Theorem.
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The equation of any circle with radius » and whose centre is the origin can be
written in the form x? + y? = 2.

For example, if the radius r is 4 units, we get the circle whose equation is x> + y? = 3% or
x2+y?=09.

If the centre of the circle is not at the origin, we can still use the property that the distance
of any point on the circumference from the centre is equal to the constant length of the
radius.

In Figure 4.C.9(b) the length of PC remains constant, and equal to .

If P has coordinates (x, y), using Pythagoras’ Theorem here gives us (x —a)*>+ (y—b)*=r>.

The equation of the circle with centre (a,b) and radius 7 is given by

(x—a)2+(y—b)2=r2.

For example, the circle with a radius of 4 units, and with its centre at the point (6,5), has
the equation

(x — 6)> + (y — 5) = 42
or x2—12x+36+y>— 10y +25=16
giving x> — 12x +y? — 10y + 45 = 0.

(These numbers will fit Figure 4.C.9(b) quite nicely. If you are at all unsure about the
algebra version of the equation of this circle, feed in the numbers to make yourself an actual
example of the algebra working.)

Now we do the same thing of multiplying out with the algebra version of the equation
given in the box above.

We have (x — a)*> + (y — b)? = r2.

Multiplying out the brackets gives x> — 2ax + a? + y? — 2by + b> = r?

Tidied up, this gives us an alternative form for the equation of this circle.

The equation of the circle with centre (a,b) and radius » can also be written as

x? = 2ax + y* — 2by + ¢ = 0 where ¢ = a® + b — 2.

For an equation like this to give a circle it must fit the following conditions.

(1)  There must be equal coefficients of x? and y2. The coefficient is the number which
tells us how many we’ve got. The coefficient of 3x? is 3. The coefficient of y? is
1. If there are no terms in x, say, then the coefficient of x is zero.

(2)  There must only be, at the most, terms in x2, y2, x, y and a number.
(We mustn’t have any terms with xy, for instance.)

(3)  The value of »> must be positive so that we have a physically possible length for
the radius.
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It’s easy to remember that the circle with equation x? — 2ax + y% — 2by + ¢ =0
has its centre at the point (a, b). But its radius is not c.

From above, we have 7> = a®> + b?> —c so r = ya* + b?> — c.

This is a very clumsy formula to remember. I think that much the best way of finding the
centre and radius of a circle is to complete the two squares. (Completing the square is
explained in Section 2.D.(b).)

Here is an example of this, to show you how it works.

Suppose we have the circle whose equation is x* — 4x + y? + 6y — 3 = 0.

Completing the two squares gives us (x —2)> -4+ (y +3)> -9 -3 =0 so
(x -2+ ( +3)*=16.

Therefore the centre of the circle is at (2, —3) and its radius is 4 units.

Notice that the signs flip to give the coordinates of the centre, just as they
do to give the solutions to quadratic equations.

EXERCISE 4.C.1 Find the centre and radius of each of the following circles.
(1) x-12+ (y + 2)% = 16. (2) x2+y*>-2x-4y=o0.
(3) x2+y2-8x+7=o. (4) x> +y*>-6x+2y-6 =o0.
(5) x2+y2-x+y=o. (6) x2+y2+3x+2y+1=o.

(7) Find the equation of the circle which is concentric with the circle
X2 + y? + 2x — 4y = o and which has a radius of 5 units.
(‘Concentric’ means ‘having the same centre as’.)
(8) Find the equation of the circle which passes through the origin and the points
(3,0) and (o,4), writing it in the form x> — 2ax + y2 - 2by + ¢ = o.
Find also its centre and radius.

4.C.(e) Circles and straight lines - the different possibilities
What are the three possible relationships between a straight line and a circle? Try sketching
them for yourself.

You should have a line which passes through the circle so that it cuts it twice, a line which
just touches the circle and so is a tangent, and a line which misses the circle altogether.

How will these three different possibilities show up if we work from the equations of the
particular line and circle?

We will go through the following example together, to see what happens.

EXAMPLE (1) Find whether, and if so where, the lines
(@a)y=2x—4®)3y=x+1land(c) y=3x+6
cut the circle whose equation is x> — 4x + y2 — 2y — 5 = 0.
Draw a sketch showing the three lines and the circle.
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(a) Ifthe line y = 2x — 4 cuts the circle, the values of x and y at the points where it cuts
must fit both the equations of the circle and of the line. (In other words, we have
two simultaneous equations at these points, but they involve a line and a circle
instead of two straight lines like the ones in Section 2.C.)

This means that we can put y = 2x — 4 into the equation of the circle to find the
possible values of x.
This gives us

X2 —4x+(2x -4 -22x-4)-5=0
x?—dx+4x? - 16x+16-4x+8-5=0
5x2 - 24x+19=0

Gx-19)x-1)=0

x=1 o x=3.

(You could use the formula for quadratic equations from Section 2.D.(d) to find
these two roots if you prefer.)

Substituting these values of x back in the line y = 2x — 4 gives us the
corresponding two values for y of —2 and 15—8

So the line y = 2x — 4 cuts the circle at the two points with coordinates (1, —2)
and (% %). Sometimes, the word ‘intersects’ is used instead of the word ‘cuts’.

(b) To find if the line 3y = x + 11 cuts the circle, we can rewrite its equation as
x = 3y — 11 and substitute this for x in the equation of the circle.
This gives us

By —112—4@y - 11)+y> -2y -5=0
92 — 66y + 121 — 12y + 44 +1y% -2y - 5=0
10y2 — 80y + 160 = 0

Y2 -8y +16=0

(vy—472=0.

The two possible cutting points have come together here to give the single point
for which y=4andx =12 - 11 = 1.

This means that the line 3y = x + 11 just fouches the circle — it is a tangent
to it.

The point of contact has the coordinates (1,4).

(c) This time, we put y = 3x + 6 in the equation of the circle.
This gives us

x2—4x+(Bx+6-23x+6)-5=0
X2 —4x+ 9> +36x+36-6x—12-5=0
10x% + 26x + 19 = 0.

Using the quadratic formula on this equation, with a = 10, b = 26 and ¢ = 19 gives
b? — 4ac = -84, so we can’t find any value for x which will satisfy this equation.
This must mean that the line misses the circle completely.
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The three different quadratic equations of (a), (b) and (c) have revealed exactly what is
happening geometrically.

For the sketch, we need the centre and the radius of the circle.

We have

x2—4x+y?-2y-5=0
(x-22-4+@F-12-1-5=0
SO (x -2+ (@ - 1)?=10.

The centre of the circle is at the point (2,1) and its radius is \/10.
I have drawn a sketch of the three lines and the circle in Figure 4.C.10.

JLS

( Zél)

5

I’'ve summarised the results which we have just found in the box below for you.

Figure 4.C.10

Straight lines and circles

Substituting the equation of the line into the equation of the circle will give you a
quadratic equation in x or .
There are then three possibilities.

® The equation has two roots. This means that the line cuts the circle in two points.
® The equation has one repeated root. This means that the line is a tangent to the
circle — it just touches it.
e ‘b2 _ 4qgc’ is negative, and the equation has no real roots.
This means that the line misses the circle altogether.
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EXERCISE 4.C.2

Find whether, and if so where, the lines (@) 3y =x-5 (b) 2y = x + 4 and

4.C.(f)

(c) y = 2x + 3 cut the circle x2 - 6x + y> - 2y + 5 = 0.
Draw a sketch showing the three lines and the circle.

Finding the equations of tangents to circles
The circle is the first curve for which we can find the steepness or gradient at any point on
it. We saw in Section 4.C.(b) that any tangent to a circle must be perpendicular to the radius
going to the point of contact. The gradient of the tangent will then tell us the slope or
gradient of the circle at this point of contact.

We will look at the following example together to see how these ideas work out in
practice.

exAaMPLE (1) Find the equations of the four tangents to the circle
x2-6x+y?—4y-12=0

with points of contact (a) (7,5), (b) (-1, —1), (c) (8,2) and (d) (3,7).
Draw a sketch showing the circle and these four tangents.
We start by finding the centre and radius of the circle.
We have

x2—6x+y?—4y—12=0=(x-3P-9+ (-2 -4-12.

So the equation of the circle is also given by (x — 3)> + (y — 2)? = 25.

Its centre is at the point (3,2) and its radius is 5 units.

I have drawn a sketch of this circle in Figure 4.C.11 showing the
first tangent that we shall find. I think that it will help you in the
working which follows if you sketch in how you think the other three
tangents will go.

2

O
N
(. , § ] _l)

Figure 4.C.11

(a) The first tangent touches the circle at the point (7,5).
The radius to the point of contact joins (3,2) to (7,5), so its
gradient is
vy 5-2

X2—xl_7—3

3
= Z using Section 2.B.(d).
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The tangent is perpendicular to this radius, so its gradient is f%,
using m;m, = —1 from Section 2.B.(h).

It passes through the point (7,5) so its equation is y — 5 = ,% (x=7).

(This uses y — y; = m(x — x;) from Section 2.B.(f).)

Tidied up, this gives 3y — 15 =—4x + 28 or 3y + 4x =43.

I have shown this tangent on my sketch on the previous page.

Try finding the other three tangents yourself.
If curious things happen, look at the sketch and see if you can
see why.

This is what you should have.

-1-2
(b) The gradient of the radius which joins (3,2) to (-1, —1) is

3
1= 4
Therefore, the gradient of tangent (b) is —%.

The equation of tangent (b) isy + 1 = —% (x+Dor3y+4x+7=0.
You can sketch this tangent yourself, if you haven’t already done so.
It is parallel to the one which we found in (a).

(c) The gradient of the radius which joins (3,2) to (8,2) is s 3 =0.

This gives us a real problem for finding the equation of the
tangent by algebra but, when we look at the sketch, everything
becomes clear.

The gradient of this radius is zero because it is horizontal.

Therefore the tangent at the point (8,2) is vertical and its
equation is x = 8.

(The x coordinate of every point on it is 8 while the y coordinate
can be any value you choose. Excellent thinking if you got this
equation correctly!)

If you got stuck on this one, have another go now at answering (d).

(d) The gradient of the radius which joins (3,2) to (3,7) is given by
7-2 4

3-3 0

This gives us even more algebraic trouble since we know we
can’t divide by zero. (Students in desperation sometimes say that
this fraction is equal to zero but this is not true!)

Again, looking at the sketch we see that everything falls into
place.

This radius is vertical and the tangent at the point (3,7) is
horizontal. Its gradient is zero and its equation is y = 7.

Add tangents (c) and (d) to the sketch if you haven’t already
done so.

Because the circle is a curve for which we can find out what is
happening with the algebra which we can do now, the example
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EXERCISE 4.C.3

above will be very useful to you when you start working with the
slopes of general curves using implicit differentiation in Section
8.F.(a). It will help you to see why things happen in the way that
they do.

Draw a sketch of the circle x* + 16x + y2 — 4y — 101 = 0.

4.0

Find the equations of the four tangents to this circle with the points of contact
@ (4 -3), () (-3,14), (c) (-23,2) and (d) (-8, -13).

Show these four tangents on your sketch.

Using radians

4.D.(a)

Measuring angles in radians
So far, all the angles to which we have given a size have been measured in degrees. This
form of measurement has an arbitrary element about it in that somebody originally
decided that 90 would be a nice number of units to have in a right angle. It could equally
well have been 100 or 80, say. Had the scale been chosen by Napoleon, it probably would
have been 100, to fit with his other metric measurements. (Indeed, the mysterious
gradians on your calculator are divided so that there are 100 parts to each right
angle.)

The special property of the radian is that it does not depend upon any arbitrary choice of
number. It does depend on that beautiful and symmetrical shape, the circle.

I show how in Figure 4.D.1.

2r

C) ® ®

Figure 4.D.1

If we draw an angle as shown in Figure 4.D.1(a), so that the length of the arc is equal to
the radius, then this angle is defined to be 1 radian.
If the arc is 2 radius lengths long, the angle is 2 radians (Figure 4.D.1(b)).

From Figure 4.D.1(c), an angle of 6 radians gives an arc length of 76.

(6 is the Greek letter theta and is a hot favourite for describing an unknown angle, just
as x is for describing general unknown quantities.)
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Since a full turn gives an arc length of the whole circumference of the circle, which is
an arc length of 2mr, we see from Figure 4.D.1(d) that a full turn is 27t radians.

This means that 27t radians is the same angle as 360°.

Remembering, too, that st is a bit bigger than 3, we have the following box of results.

Useful rules connecting degrees and radians

¢ 7 radians is the same angle as 180°.
(You can think of 7 as a symbol for a straight line angle.)
® To convert degrees to radians, multiply by 72/180.
® To convert radians to degrees, multiply by 180/7x.
® [t is useful to remember that one radian is just slightly less than 60°.

(In practice, you very rarely have to use the conversion from degrees to radians or vice
versa, because you will set your calculator in either degree or radian mode depending upon
which units you want to work in.)

Because radians come from the structure of the circle, they will slot directly into any
working involving angles when we use calculus. If we work with degrees, however, we shall
keep having to do a sort of gear change — and it’s much nicer not having to worry about that!
For this reason you need to be happy working with radians, so it is a good idea now to
become familiar with the corresponding radian measurements for the standard divisions

of 360°.
EXERCISE 4.D.1 Use the two circles of Figure 4.D.2 to help you to fill in the missing angles in the
table.
z
gj0°
135° =
0 o
180 3¢0°
7
7z
270°
Figure 4.D.2
Degrees| o 60 | 90 135 | 150 | 180 240 | 270 360
Radians| o | | 7 21z = =

166 Some trigonometry and geometry



4.D.(b) Finding the perimeter and the area of a sector of a circle
I have shown the minor sector AOB shaded in the circle with radius 7 in Figure 4.D.3.

The anjle 6 Is n radians.

Figure 4.D.3

We know from the last section that the arc length AB is equal to 6.
Therefore, the length of the perimeter of the sector AOB (that is, the distance round its
boundary) is given by 2r + r6.

Don’t forget to include the two radius lengths here.

The perimeter of the sector is 27 + rf.

We can find the area of the sector AOB by thinking of it as a fraction of the area of the
whole circle (which is 7r?).

0
The area of the sector AOB is given by 2— X qr? = % 0.
4

Both these formulas are only true if 0 is in radians.

Try writing down for yourself what the area of the major sector AOB is (that is, the area
of the rest of the circle).
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4.D.(c)

Subtracting the area of the minor sector AOB from the area of the whole circle gives the
result that the area of the major sector AOB = mr2 — 3r2.

Alternatively, you could say that the angle of the major sector is 27 — 6.

Therefore its area is given by

32 — 0) = r? — 5126.

Finding the area of a segment of a circle
We can find the area of the segment drawn in Figure 4.D.4 by noticing that it comes from
subtracting AAOB from sector AOB. (I’'m using A to stand for ‘triangle’.)

A

()©

Figure 4.D.4

Again, the angle 0 is in radians.
We know from Section 4.B.(b) that the area of A4AOB is equal to %r2 sin 0, so the area
of the segment shown (that is, the minor segment), is given by the rule below.

The area of the segment AOB = 3720 — 372 sin 6 = 37 (6 — sin 6)

(Make sure that your calculator is in radian mode when you find this!)
Now try writing down for yourself the area of the major segment 4B (that is, the
unshaded part of the circle in Figure 4.D.4).

4.D.(d)

It is given by 77> — %rz (0 —sin 0) = %rz (2w — 6 + sin 0).

What do we do if the angle is given in degrees?
I will call the angle D° to avoid confusing it with the angle 0 in radians.
There are two things you can do in this situation.

MeTtrvop (1) Immediately convert the angle D° into radians by multiplying it by
7/180. (See Section 4.D.(a) if necessary.) Then you can use all the rules
given above for angles in radians. This is the method I would
recommend.
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MeTHop (2) Alternatively, you can change the rules that we have already found so
that they will be right for working with angles in degrees by replacing 6
by D7m/180.

This will then give you, for an angle D measured in degrees,

D nwrD  angle
180 180 360
(2) The area of the sector is

X circumference.

(1) The arc length is » X

1 Dr ar’D  angle
— 2 x = =

= X the area of the circle.
2 180 360 360

These rules are more clumsy than the rules for radians because of
the arbitrary nature of the choice of 360 for the number of degrees
in a full turn.

Because radians use the structure of the circle itself, they give
much nicer results.

EXERCISE 4.D.2 Now try these questions, giving your answers correct to 2 d.p. (if they are not

exact) in the units used on the drawings.
(1) Using the sketch shown in Figure 4.D.5(a), find
(@) the minor arc length AB,
(b) the area of A AOB,
(c) the area of the minor segment AB.
(2) Find the shaded area (that is, the major sector) shown in Figure 4.D.5(b).

o)

Figure 4.D.5

The circle shown in Figure 4.D.5(c) above has a fixed radius of » units. What
do you think the size of the angle 6 should be in order to make triangle AOB
have maximum area?

4.D.(e) Very small angles in radians — why we like them
Radians have a second very special quality, as well as being independent of anyone’s
particular choice of number.
Suppose we start with an angle of 6 radians as shown in Figure 4.D.6.
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Figure 4.D.6

We know from Section 4.D.(a) that the arc length is 70, and we also know that

sin6=z, cost9=f and tan9=1.
r r X
What happens to these trig ratios as @ becomes very small?

Try finding this out yourself experimentally with your calculator. Use radian mode,
and put in very small values for the angle, say 0.001 as one possible value. See what
values the answers are close to. Can you see why this might be if you look at the drawing
of Figure 4.D.7?

< % >’l

Figure 4.D.7

Look also to see if there seems to be any connection between the size of the angle that
you put in and the values for sin, cos and tan that you get out.

Remember that your calculator must be in radian mode for this experiment.
A mistake here will seriously affect your results. (For example, 1° is quite a
small angle, but 1 radian is about 60°, so an input of 1 will give you vastly
different results depending on which mode your calculator is in.)

You should now have a good experimental idea of what is happening.
We will now look together at why this should be so.
Figure 4.D.7. shows a very small angle 8 set inside its circle.
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As 0 becomes increasingly smaller, x becomes closer and closer to 7 so cos 8 — 1.

(The — symbol I have used above is a mathematical shorthand for saying ‘becomes
increasingly closer in value to’. It saves a lot of writing!)

Also, y becomes very small indeed, so sin & — 0, and tan 6 — 0 also.

But you should also have found a more startling result. Not only are sin 0 and tan 0
becoming very small, they are also becoming very close to 0 itself, as 6 becomes small.

We can see from the diagram that this must be so.

As y becomes smaller it gets closer and closer in length to the arc #6. So

70
sin @ - —, thatissin 8 — 0 as 8 — 0.
r

The smaller the angle becomes, the closer these two are. We also see that sin 6 will
always be slightly less than 6 because y stays less than 70. Notice that the arc 70 will become
closer and closer to a straight line as 8 becomes smaller.

Now, what happens to tan 6?

Since tan 6 = y/x, it is clearly going to get smaller and smaller just as sin 8 does. It looks
from the calculator as if it is close to 6 too, but a little bit larger.

Will it stay like this?

We can see that it will from Figure 4.D.8.

Figure 4.D.8

This uses the fourth property from Section 4.C.(b) to give the right angle between the
radius and the tangent. Using this right-angled triangle, tan 6 = d/r, but d is getting closer
and closer to 70 while remaining just slightly larger.

So

70
tan 6 — —, that is tan 8 — 6 also, as 6 — 0.
r

But it stays slightly larger than @ while sin 6 stays slightly smaller.
The fact that when we measure in radians sin 6 and tan 6 are approximately the same as
0 when 6 is very small is of crucial importance when we come to calculus.
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4.E Tidying up - some thinking points returned to

4.E.(a) The sum of interior and exterior angles of polygons
At the end of Section 4.A.(e) on congruent triangles, I asked you if you could find the sum
of the interior angles of a six-sided figure. (This is called a hexagon.)

C ®

Figure 4.E.1

(a) One way of answering this question is to split the shape into triangles by joining
up to one corner as I have shown in Figure 4.E.1(a).
This gives us four triangles, that is, two fewer triangles than there are sides.
Together they account for all the interior angles.
We see, therefore, that the sum of the interior angles is 4 X 180° = 720°.

(b)  You could also have got this answer by joining up each corner (or vertex) to some
point inside the hexagon, as I have shown in Figure 4.E.1(b). This would then give
you six triangles, so 6 lots of 180°. You then take off the 360° for the full turn in
the middle, so finishing up with the same answer as (a).

You can then use either of these methods to answer my third question.

Using (a), we can say that, if the polygon has #n sides, splitting it up in the same
way will give n — 2 triangles.

Therefore the sum of the interior angles would be (r — 2) X 180°.

This result is usually written in the following form.

The sum of the interior angles of an n-sided polygon is equal to (2n — 4)
right angles.

The sum of the exterior angles will be the same whatever the shape of the hexagon is,
so long as we are turning inwards all the while as we go round.

We find this sum by noticing in Figure 4.E.2(a) that we have six straight lines formed by
the exterior angles and the interior angles together.

Therefore, the exterior angles together make 6 X 180° — 720° = 360° or a full turn.

We can see that this must be so because if we start at 4 and travel round the sides of the
shape, we will have made a full turn when we come back to 4. This full turn is built up from
all the small turns made by the exterior angles, as I have shown in Figure 4.E.2(b). Exactly
the same thing will happen however many sides the shape has, provided we are always
turning inwards as we go round, that is, none of the interior angles is greater than 180°. The
exterior angles will always add to four right angles.
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4.E.(b)

® X

Indeed, this result is still true if our particular choice of shape means that we do sometimes
turn outwards, but in this case we must count these outwards turns as negative.

Figure 4.E.2

Can we draw circles round all triangles and quadrilaterals?
I asked you this question at the end of Section 4.C.(c) on the special properties of circles.
The answer is that it is always possible to draw a circle round a triangle.

You can see this from the drawings of Figure 4.E.3(a) and (b).

A A

R~

| )
B " E * C 5\ C
® - @\/

Figure 4.E.3

From (3) in Section 4.C.(b), the centre of the circle would have to lie on the line PQ. (The
little marks are to show that PQ divides BC equally in two as well as being perpendicular to it.)

For the same reason, it would have to lie on RS.

But where PQ and RS cross, we have CO = BO and BO = AO. So CO = AO too, and O
is the centre of the circle which triangle ABC sits inside.

We can also see from this that it isnt always possible to draw a circle round a
quadrilateral like ABCD.

If we have a quadrilateral ABCD sitting inside a circle, as in Figure 4.E.4, then this must
be the particular circle which can be drawn round triangle ABC.

But a small adjustment to D, either inwards or outwards, will mean that this point is no
longer on the circle which works for 4, B and C.

So what particular property must ABCD have for it to be possible to draw a circle through
its four corners?
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D Figure 4.E.4

We can see the answer to this from Figure 4.E.5(a).

Using (1) from Section 4.C.(c), we know that £ AOC = 2/ ABC.

Looked at the other way up, the other part of £A0C =2/ ADC.

But the two parts together of 2~ AOC make 360°, so ZABC + £ ADC = 180°.
Also, since ZA+ /B + /£C+ 2D =360° 24+ 2C = 180° too.

8 L)
>

@ ® D

Figure 4.E.5

It is only possible to draw a circle through the four corners of a quadrilateral if its
opposite angles add up to 180°. Such a quadrilateral is called cyelic.

This is the same as saying that each exterior angle must equal its interior opposite angle.
We can see that this must be so from Figure 4.E.5(b) since the two angles at 4 together make
a straight line.
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5

Extending trigonometry to angles
of any size

This chapter makes it possible for us to use trig ratios with angles of any size, and
looks at the graphs of these trig functions. These are very important in many
physical applications, so we look at what happens if we shift them and combine
them. We also look at methods of handling trig functions and equations.

The chapter is divided into the following sections.

5.A Giving meaning to trig functions of any size of angle

(@) Extending sin and cos, (b) The graph of y = tan x from o° to 90°,

() Defining the sin, cos and tan of angles of any size,

(d) How does X move as P moves round its circle?

(e) The graph of tan 6 for any value of 6, (f) Can we find the angle from its sine?
(g) sin™* x and cos™ x: what are they?

(h) What do the graphs of sin™ x and cos™ x look like? (i) Defining the function tan™ x

5.B The trig reciprocal functions

(@ What are trig reciprocal functions?

(b) The trig reciprocal identities: tan? 6 + 1 = sec® 6 and cot? 6 + 1 = cosec® 6,
(©) Some examples of proving other trig identities,

(d) What do the graphs of the trig reciprocal functions look like?

(e) Drawing other reciprocal graphs

5.C Building more trig functions from the simplest ones

(@) Stretching, shifting and shrinking trig functions,

(b) Relating trig functions to how P moves round its circle and SHM,
(©) New shapes from putting together trig functions,

(d) Putting together trig functions with different periods

5.D Finding rules for combining trig functions

(@) How else can we write sin (A + B)?

(b) A summary of results for similar combinations,

(c) Findingtan (A +B) andtan (A—B), (d) The rules for sin 24, cos 24 and tan 24,
() How could we find a formula for sin 3A?

(f) Using sin (A + B) to find another way of writing 4 sin t + 3 cos t,

(g) More examples of the R sin (t + @) and R cos (t ¢ «) forms,

(h) Going back the other way — the Factor Formulas

5.E Solving trig equations

(@) Laying some useful foundations, (b) Finding solutions for equations in cos x,

(¢) Finding solutions for equationsintanx, (d) Finding solutions for equations in sin x,
(e) Solving equations using R sin (x + «) etc.

5.A

Giving meaning to trig functions of any size of angle

5.A.(a)

Extending sin and cos
In the last chapter we discovered that we were able to find the sin and cos of some angles
between 90° and 180° by using the Sine and Cosine Rules for any triangle. (In fact, it would be
possible, by choosing suitable triangles, to find the sin and cos of any angle in this range.)
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It seemed, from the results which we got there, that we would need to put sin (180° — x)
= sin x and cos (180° — x) = — cos x in order to make the Sine and Cosine Rules work for
all triangles. If we use this to draw graphs of y = sin x and y = cos x for values of x from
0° to 180° we will get curves like those in Figure 5.A.1.(a) and (b).

Ay Yy=sin x Ay Yz cos x
| ]
5 351805 ¢ 5 q o
. ® ®

Figure 5.A.1

The shape of these two curves suggests that what we have here is part of a much longer
pattern, and that indeed they are parts of the same graph which has just been shifted by 90°
to the left to give the second case.

This view will seem very reasonable if you have seen, for example, sound waves displayed
on an oscilloscope, or the graph of an alternating electric current in a wire, or the waves which
you get along a rope if you fix one end and move the other end up and down.

From these physical examples, we will get the pair of graphs shown in Figure 5.A.2.(a)
and (b). I have used units of radians here for the angles. I explain how radians work in
Section 4.D and if you are at all unsure about them you should go back there now, before
going on. This is because they are very important throughout this chapter and for future
work, particularly if it involves calculus.

A .
@ Y1 ; Yy=swm x
\-'n -7 =) kg 37 2T b_‘n>x
3 % 2 b
=l
® Y1 Y= cos x
- 5 T S 2w S
n 2 < z 2
-1
Figure 5.A.2
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Clearly, there is no particular reason to stop anywhere, so we imagine the two graphs as
extending an infinite distance in both the + and — directions.

How many special distinctive properties can you see in these two graphs?

Make a note of as many as you can.

Here are some of the important particular properties of these two graphs which I hope
that you will have noticed.

(1)  The cos graph is symmetrical about the y-axis, or the line x = 0.
For example, cos % = cos (—%). In fact, cos x = cos(—x), whatever x is.
A graph like this is called even, as we saw in Section 3.B.(j).

(2) The sin graph exactly fits onto itself if it is rotated through half a complete turn
about the origin. If you turn the page upside down, this graph is unchanged.
You could also describe this by saying that the graph of sin x reverses sign if it
is reflected through the y-axis.

sin 5 = — sin(—3), and sin x = — sin(—x) whatever x is.
A graph like this is called odd. (Again, there were similar ones in Section
3.B.(j).)

(3) They are the same graph, except that the sin graph must be shifted 7/2 to the left
to give the cos graph.
For example, sin % = cos 0, sin 7t = cos % and, in general, sin (x + %) = COS X.
(There are other examples of shifts in Section 3.B.(d).)

(4) Both of the graphs infinitely repeat themselves, with the length of the unit of
repeat being 277 in each case. This is called the period of the graph.

(5) In both cases, the graphs are enclosed in a pair of horizontal lines which are one
unit either side of the x-axis so the maximum displacement of the graph from this
axis is one unit.

EXERCISE 5.A.1 We have already found (in Section 4.A.(g)), values for the sin and cos of angles of
0°, 30°, 45°, 60° and 90°.
I have shown these values again set out in the table below, using both radians
and degrees.

Angle (x)

-180|—120|-90 |-30| 0 |30 | 45|60 |90 | 120 | 180 | 210 | 270 | 315 | 360
degrees
di gl I i B N A In | 3| 7x
radians -t | -3 |3 %9 8|33z |3 | 7|% S 3 | 27
. 1 1 V3
sin X 0| 3 2|z 1

V3 1 1

COS X 1,75 \—2 2 (o]

Use these values, and the symmetrical properties of the graphs shown in
Figure 5.A.3 (a) and (b), to write down the values of the sin and cos of the other
angles listed in the table. Check your values using your calculator.
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4
@ ! 2 Y= cos x
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=30 O 304560 0 35 4
(degrees)

Figure 5.A.3

5.A.(b) The graph of y = tan x from 0° to 90°
We have not yet thought about what the graph of y = tan x will look like. We know from
Section 4.A.(g) that

1
tan 45° =1, tan30°=—=0.58to2 d.p. and

/3

N
tan 60° = \/3 = 1.73 to 2 d.p.

We also know, from Section 4.A.(h), that

sin x

0 1
tan x = so tan 0° = T =0 and tan90° = 6 = trouble,

cOS X
since we can’t divide by zero.

Using your calculator, you can see that, the closer the angle gets to 90°, the larger its tan
becomes. (Try this for yourself.) You can also see that this will happen from the three
triangles in Figure 5.A.4(a) by finding the tans of the three marked angles. The height of the
triangles remains the same but the horizontal measurement becomes smaller, so the fraction
which gives the tan is becoming larger.

Using all our known information, we get a sketch for y = tan x from 0° to 90° which looks
like Figure 5.A.4(b).
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5.A.(c)

@ @ .AL.H c
=z lon x
5 5|
4
15 15 1s
3
2
] I !
3 2 !
o 30 45 6O G0 >~
(degrees)
Figure 5.A.4

Defining the sin, cos and tan of angles of any size
There is no general Tangent Rule which works for any triangle, like the Sine and Cosine
Rules, so we have no simple way to sketch the continuation of the graph for tan x.

It would be good to have a definition for the sin, cos and tan of angles of any size so that
we wouldn’t have to rely on what is apparently happening physically, although, to be useful,
any definition would have to fit in with observed wave phenomena.

We shall now do this by using the turn or angle measured out on a circle. (We have already
used this method for showing the turn of angles in Figure 4.C.1 in the last chapter.)

We consider the rotation of a unit length through a full turn about the origin, in an
anticlockwise direction from the positive x-axis. I have shown this in four separate diagrams
which show rotations round to each quadrant or quarter-circle, in turn. The angles of rotation
are shown shaded.

You can think of OP as a rod of length one unit which is turning about O.

First quadrant
In the first quadrant, shown in Figure 5.A.5, the definition exactly tallies with the definitions
given at the beginning of the last chapter in Section 4.A.(a) for the sin, cos and tan of angles
between 0° and 90°. I have used the symbol 6 for the angle here, as I want to keep x for the
length OX. (0 is the Greek letter theta.)

-1

Figure 5.A.5
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We use the right-angled triangle OPX, and say

) PX PX
sinf=——=—=y
oP 1
oX Ox
cos=——=—=ux
oP 1
Both sin 8 and cos 8 are positive since they are measured along the positive x and y axes.
PX y o
tan § = — = — so tan 6 is positive, also.
oX «x

It is very important that this new definition is giving sin € and cos 0 as
measurements along the y- and x-axes respectively — so important that |

suggest that you use one colour for y = sin 6 and another for x = cos 6 here,
and on the following three diagrams.

Second quadrant

The angle we are considering is now between 7/2 and 7 radians (or 90° and 180°.) Again,
we use the right-angled triangle OPX for our definitions.

P
J
=1 X€E—
-1 Figure 5.A.6
We say
PX PX
sin = —=—=y,
OP 1
oxX OX
cosf=——=—=x
OP 1

This time, although y is positive, x will now be negative since it is measured along the
negative x-axis, so sin 0 is positive but cos 6 is negative. This agrees with what we found
when we used the Sine and Cosine Rules for angles larger than 90°.

PX . . .
tan § = — =— 5o it is also negative.
oX «x
We can see from the diagram that sin(;t — 8) = sin 0 and that cos(t — 8) = — cos 6.

(mr — 0) = LPOX in size, so it would come in the first quadrant.
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Third quadrant
Again using the right-angled triangle OPX for our definitions, we say

) PX PX
sin = —=—=y,
opr 1

oxX o0X
cosf=—=—=nx.
OoP 1

MY

Figure 5.A.7

This time, both sin 8 and cos 6 are negative, since they are measured along the negative y
and x axes respectively.
PX y L .
tan @ = — =—  so it is positive.
ox «x

We also see from the diagram that sin 8 = —sin(f — ;) and cos 6 = —cos(0 — 7).
(60 — ) = LPOX in size, so it would come in the first quadrant.

Fourth quadrant
Again using the right-angled triangle OPX for our definitions, we have

PX PX
sin = —=—=y,
oprP 1

oxX o0X
cosf=—=—=x
OP 1

Figure 5.A.8
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5.A.(d)

We see that sin 6 is negative, and cos 6 is positive, from the positions of y and x on the two
axes.

PX y . :
tan § = — =— 5o it is negative.
X x

We also see that sin 6 = — sin(2 — 6) and cos 0 = cos(2w — 0).
(27 — 0) = L POX in size, so it would come in the first quadrant.

You can see from these four diagrams that, by using the right-angled triangle OP.X in each
quadrant, we have now defined the sin and cos of the angle 0 in terms of the shadow or
projection of the unit length OP on the x-axis for cos 0 (the distance shown as x in the
diagrams), and the shadow or projection of OP on the y-axis for sin @ (the distance shown
as y in the diagrams). If you have highlighted x and y with two different colours on these
diagrams, it will emphasise for you, when you look back at them, where the sin and cos are
and how they are changing.

The + or — signs automatically follow from where the projections lie on the two axes. You
may find it helpful to use the picture shown in Figure 5.A.9 to remember the changing signs
for sin, cos and tan in a complete turn.

L3

/? A
hiy O and 211
NIE

%

Figure 5.A.9

The letters A S T C stand for whatever is positive in that particular quadrant. A = ‘all’,
S = ‘sin’, T = ‘tan’ and C = ‘cos’. This can be remembered by a catch-phrase if you like,
such as ‘All Silly Tom Cats.’

When OP has turned through an angle of 27 it will have returned to its original position.
(It has completed one cycle.) If we then continue to rotate it, the whole identical process will
be repeated with each new full turn or cycle.

We can obtain negative angles by rotating OP in the opposite direction, so we would
rotate it clockwise from the positive x-axis to get these angles.

Plotting the graphs for y = sin 6 and y = cos 0, using the definitions which we have just
given, will give us identical graphs to the ones in Figure 5.A.2 which we know describe
actual physical happenings.

How does X move as P moves round its circle?

Suppose the point P is moving round the circle shown in Figure 5.A.10 at a
steady speed, starting from the point 4. Suppose that the radius of the circle
is 1 m (metre), and that, after one second, P has moved a distance of 1 m.
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e = -

O———>%X |A

Figure 5.A.10

Try answering the following questions.

(1

2)
3)

4)

What angle (in radians) has the line OP turned through after one second?
(See Section 4.D.(a) if you need help with radians.)
How long will it take P to make a full turn round the circle?
How far is the point X from O after a time of
(a) 0 seconds, (b) 1 second, (c) 1.5 seconds, (d) 7/2 seconds, (e) & seconds,
(f) 37/2 seconds, and (g) ¢ seconds?
As P turns round the circle at its steady speed, how is the point X moving? Does
it also have a constant speed? If not, when do you think it is moving fastest? When
is it moving slowest?

5.A.(e)

These are the answers which I hope you have found.

(1
2)
3)

“4)

One radian. We say that the angular velocity of P is one radian per second.

A full turn is 27 radians, so 27t seconds.

(a) OX=1m. (b) OX=cost=cos 1=0.54m to 2 d.p.

(c) After 1.5 seconds, OX = cos 1.5 =0.07m to 2d.p.

(d) After ;t/2 seconds, X is at O, so OX = 0.

(e) After ;r seconds, the distance OX is again 1 m as P is now at B. We can think of
this distance as negative, since it is measured in the opposite direction to OA4.

(f) After 37/2 seconds, OX = 0.

(g) After ¢t seconds, OX = cos ¢ metres. If we let OX = x, we could write the
equation giving the position of X after time ¢ as x = cos ¢.

X is not moving at a constant speed. It moves fastest as it passes through O and

slowest at the points 4 and B when it instantaneously comes to rest before turning

back on itself.
The point X is moving in what is called simple harmonic motion or SHM.
Surely, if we know the distance or displacement of X from O at any time, we

have enough information to discover its speed exactly? Indeed we have, and we

shall be able to do just this in Section 8.A.(e).

The graph of tan 6 for any value of 6
Using tan 6 = y/x = sin 6/cos 6 in the four diagrams of Figures 5.A.5-5.A.8, we can now
define tan 6 for any size of angle . We can therefore draw the extended graph of y = tan 6
which I’ve done in Figure 5.A.11.
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5.A.(f)
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Figure 5.A.11

What special properties does this graph have? Make a note of as many as you can.

The graph shows these special properties.

It is periodic, but the period of repeat this time is & rather than 27, as it was for sin 6
and cos 6.

It is odd, that is, if you rotate it through half a turn about the origin, it fits exactly onto
itself, so if you turn the page upside down you get the same graph. Equally you could
say that, if you reflect it through the y-axis, it reverses its sign, so

tan x = — tan(—x).

The tan of an angle just less than 7/2 (or 90°) is very large and positive.

The tan of an angle just greater than 7r/2 (or 90°) is very large and negative.

There is a jump or discontinuity in the graph when 6 = 7/2 and we therefore see that
the tan of 90° can t be given a value, and any calculator asked to display it will give
an ERROR message. The same thing happens for all odd multiples of 7/2, so on the
graph we see it happening at

T T T 4
-1 X—, +1X— and +3X— and +5 X —.
2 2 2 2

The graph has a vertical asymptote for each of these values of 6, just as the graph in
Section 3.B.(i) had a vertical asymptote of x = 2.

Can we find the angle from its sine?
In Figure 5.A.12, I show again the graph of y = sin x for values of x from -7 to 27.

From this graph, find x for these values of sin x.

—_

(a) sinx =1 (b) sinx =10 (c) sin x = -1 (d) sinx =3 (e) sinx =— %
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Figure 5.A.12

Here are the answers which you should have found.

(a) x=ua/2.

(b)  As soon as we try this one, we find that we’ve got a more complicated situation.
There are four possible values of x on this graph for which sin x = 0.
We can have x = -t or x = 0 or x = 7 or x = 27.

(¢)  Similarly, if sin x = —1, from the graph we have x = —7/2 or + 37/2.

(d) Ifsinx= %, then from the graph we have x = /6 or 57/6.

(e) Ifsinx=- %, then from the graph we have x = —57/6 or —/6 or 77/6 or 117/6.

We can see that extending the graph further in either direction would give us more
solutions for x for any given value of sin x, and that there are, in fact, an infinite number of
possible solutions.

Although this infinitely repeating possibility will be very important in describing some
situations, such as those involving waves of one kind or another, in many other
circumstances they will just be an awkward embarrassment. If you have sin x = 0.6, for
example, and you want to find an angle from this on your calculator, you don’t really want
it to try to flash up an infinite number of answers for you.

So what do we do?

It would make sense for us to restrict the possible angle shown for a given sin to a short
range so that we only get one answer, but every possible value for sin x is included, that is,
we have all values of sin x from —1 to +1. If we do require further answers, we can then find
them using the repeating pattern of the graph. (We shall look into this in more detail later
on in Section 5.E.(d).)

We shall want to include 0° to 90° (or 0 to /2 radians) in our range because this is the
cradle of civilisation as far as trig is concerned — it all started with right-angled triangles. But
this will only give us answers for positive values of sin x, so what should we add to it?

We see from the graph that if we add —90° to 0° (or —7/2 to 0 radians) we shall be all
fixed up.

Then if, for example, sin x = —0.4, using INV or SHIFT or 2nd Function Sin on your
calculator (in degree mode) should give you an angle lying between —90° and 0°. Try it
and see.

You should get —23.6° to 1 d.p.
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It would have been no good trying to extend the range by adding on 90° to 180° because
this would have just given us repeats for the positive values of sin x and no solutions for the
negative values.

Exactly the same sort of problem with multiple solutions will happen if we want to find
an angle from its cos.

Look back to the graph of y = cos x in Figure 5.A.3(b) and decide for yourself what you
think a sensible range for the answers would be.

What do you think you should have for x if cos x = %?

What should you have for x if cos x = —%?

Test out your ideas by seeing if your calculator agrees with you.

5.A.(8)

You should have the range from 0° to 180° this time (or 0 to st radians). This then gives
you one and only one possible solution for any value of cos x between —1 and +1, and
includes those important angles between 0° and 90°.

Using this range gives x = 60°, or 7r/3 radians, if cos x = %, and x = 120°, or 271/3 radians,
if cos x = —%.

What we have cunningly done here, by restricting the range of values which we will allow
for the angle from a given sin or cos, is to give ourselves inverse functions to take us back
from a known sin or cos to just the one possible angle. (If you need help with inverse
functions, you should go back now to Section 3.B.(g).)

We have already dealt with a similar situation to the one which we have here when we
were looking for an inverse relation for f{x) = x? in Section 3.B.(j). There we also found that
we could define an inverse function by restricting the possible values for x.

sin™ x and cos™ x: what are they?
Don’t panic! We have just found them.

sin! x is the inverse function which takes us back from a value of sin x to an angle with
that sin, and cos™! x is the function which takes us back from a value of cos x to an angle
with that cos. The possible values of these angles are restricted in the way we have just
decided above will make sense.

With these restrictions, there is only one possible value for the angle from a given sin or
cos, which is a condition which we must have for a relation to be a function as we saw in
Section 3.B.(c).

Two inverse trig functions

sin! x is the angle in the range from —90° to +90°
(or — 71/2 to +m/2 radians) whose sin is x.

cos ! x is the angle in the range from 0° to 180°
(or 0 to ot radians) whose cos is x.

1

sin”! x is sometimes called arcsin x and cos™' x is sometimes called arccos x.

sin”! x does not mean 1/sin x. This would be written as (sin x)'. It is one of
those tricky bits of mathematical notation which make a trap for the unwary.
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5.A.(h)

What do the graphs of sin™ x and cos™ x look like?

We can use the method which we found in Section 3.B.(g) to draw a sketch of these two
graphs.

Since the inverse relations take us from the y values back to the original x values, their
graphs are mirror images of the original graph in the line y = x. The sketches will be easier
to draw if we take equal scales on the two axes. We then get graphs as sketched in Figure
5.A.13 and Figure 5.A.14. If you are sketching these graphs for yourself, you may find it
helps if you use the helpful hint I suggested for complicated inverse sketches in Section
3.B.(i). If you use equal scales on your two axes, and turn your paper so that the line y = x
is vertical, it is much easier to sketch the mirror image of f(x) in the line y = x which gives
you the graph of f! (x).

You can see from Figure 5.A.13(a) that, without the restrictions, the inverse relation is not
a function — extending the graph would give an infinite number of solutions to ‘y is the angle
whose sin is x.” (Remember the raindrop test in Section 3.B.(c).)

Y IV, is the angle whose sin 1s x
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Figure 5.A.13
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You can also see how we have forced a function from this relation by restricting the range
of values which we will accept.

This is shown in the graph in Figure 5.A.13(b) which represents the function ‘y is the
angle in the range from —/2 to +s/2 radians whose sin is x.” Notice that this function is only
defined for values of x lying between —1 and +1 inclusive, that is, —1 < x < +1, because this
is the range of possible values for sin x.

Similarly, the graph in Figure 5.A.14(a) shows the repeated solutions of ‘y is the angle
whose cos is x’, while Figure 5.A.14(b) shows the function ‘y is the angle in the range from
0 to & radians whose cos is x’, which gives a single solution for y for each x.

Again, -1 < x <+ 1.

A . .
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Figure 5.A.14

I think it will help you a lot here if you put your own two colours on each of the pairs
of graphs of y = sin x and y is the angle whose sin is x, and y = cos x and y is the angle whose
cos is x. It’s much easier then to see which wiggle belongs to which.
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5.A.(i)

Defining the function tan™ x
To do this, we need to look at the graph of y = tan x which I show in Figure 5.A.15.

We see from this graph that, for any given value of tan x, there will be an infinite possible
number of angles x which have this tan value. For example, if tan x = 1 then, from the graph,
we could have x = @/4 or 57/4 or 9m/4. Clearly, there are infinitely many more answers
stretching out in both the right-hand and left-hand directions.
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Figure 5.A.15

To define the function tan~! x, we shall again have to restrict the possible range of angles
which we will allow. We certainly want to include 0 to ;r/2 and we could extend the range
so as to go either from —/2 to +7/2, or from 0 to 7 in order to get just one possible solution
for the angle from each possible value of tan x.

The agreed convention is that we take the range from —/2 to +7/2.

I show a sketch of the graph of y = tan"! x below, in Figure 5.A.16.

I’ve drawn it by using the reflection in the line y = x of the graph of y = tan x for values
between — 71/2 and 7/2.

Again, using two colours, one for each of tan x and tan! x, will make the two graphs

stand out more clearly for you.

ya u= tan x

[¢]
|

—_— e — — — — — —— e e — g— — —

Figure 5.A.16
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5.B The trig reciprocal functions

5.B.(a) What are trig reciprocal functions?

1
The reciprocal function of a function, f(x), is defined as —.

Sx)
The three trig reciprocal functions are
—— = (sin x)™' = cosec x, = (cos x) ! = sec x,
sin x coS X
1
= (tan x)! = cot x.
tan x

Remember that these are not the same as the inverse functions,
sin”! x, cos™! x and tan"! x.

5.B.(b) The trig reciprocal identities: tan® 6 + 1 = sec? 6 and cot? 6 + 1 = cosec? 0
In Section 4.A.(h), we used Pythagoras’ Theorem to show that the three identities,

sin? @ + cos®> 0 = 1,
tan> 0 + 1 = sec? 0,

cot> 0 + 1 = cosec? 6,

are true for any angle 6 which is less than 90°.

These three identities will remain true for any angle 6 since, as we have seen in Section
5.A.(c), we still have the right-angled triangles. Although negative values for the sin, cos and
tan of 6 are now possible, when they are squared they become positive, and therefore the
three identities remain true.

5.B.(c) Some examples of proving other trig identities
Students quite often find this process difficult, so we shall now look at some examples of
how it is done.

1
EXAMPLE (1) Prove that tan 6 + cot 6 = ————  for any angle 6.
sin 6 cos 6

We have to show that the two sides are equal, so we mustn’t write them down
as equal from the start.
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Instead, we deal with the sides separately. Here,

sinf cosf sinf sin® cos @ cos 0

LHS = tan 6 + cot 6 = +—= X ——+ — X
cos® sinf@ cosb sinf sinf cos 0
sin” 6 cos? 6 sin? @ + cos’ 6 1
= — - = : =— = RHS.
sin @ cos @ sin O cos 0 sin 0 cos 0 sin 6 cos 0

Just like adding any other fractions, we make it possible to put them
over the same denominator in the first line of working above — see
Section 1.C.(c) if necessary.

EXAMPLE (2) Try showing that sec? 6 + cosec® 6 = sec® 6 cosec? O for yourself.

It looks quite an unexpected result!

You could do it like this:
1 1 sin® 6 cos> 0

LHS = sec? 6 + cosec? 6 = ot S s S oot 3
cos“ 0 sin© @ cos-Osin“ 6 sin® 6 cos” O

sin® 8 + cos’ 0 1
= : = : = sec® 6 cosec® 6 = RHS.
cos? O sin’ 0 cos? @ sin’® 0

I'say above ‘you could do it like this’ because identities can usually be proved in a large number
of different ways. This is because the process is a bit like following a maze; you can write down
a sequence of true statements starting from one side, but they do not always bring you any
closer to the other side. Sometimes, after much effort, they bring you back where you started —
at least you know then that what you have written down is true if not helpful.

Usually it is best to start with the more complicated side and show that this can be
reduced to the simpler side. In really tough cases, it pays to work on each side separately and
bring both of them to some third form. (The example which we have just done can be proved
very neatly by using the two relevant identities of Section 5.B.(b) on each side in turn. Try
it and see!)

Because there are all these possible branches to follow, you should never spend too long
trying to prove an identity in an exam. If it doesn’t come out quite quickly, leave it and return
to it later if you’ve got time.

Have a go at the one below too. It is a bit tricky, but you have all the working knowledge
and skills to get through it all right. We’ll take it in stages.

cos X sin x _
EXAMPLE (3) Show that + = sin x + cos x for any angle, x.
l—tanx 1 -—cotx

The LHS is more complicated, so we will work with this and try to
show that it is the same as the RHS. It would seem to be a good idea to
have the whole of this side in terms of sin x and cos x. How can we
rewrite tan x and cos x to do this?
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We can put

sin x coS X
and cotx=—
CoS X sin x

tan x =

then, at least, everything is in terms of sin x and cos x. Then

coS X sin x
LHS = — + .
1— sin x _cosx
cos x sin x

Now what should we do? (See if you can tidy up what we’ve now got.)

We get rid of fractions inside fractions by multiplying the first bit
top and bottom by cos x, and the second bit top and bottom by sin x.
(Try doing this if you didn’t already.)

You should get

cos? x sin? x
LHS = — + — .
COS X —sinx  sin x — cos x
Using sin x — cos x = —(cos x — sin x), how can we rewrite what we’ve
now got?

We can say that

cos? x sin® x cos? x — sin? x
LHS = S - —
COS X —Sinx cosSx—sinx  cosx—sinx

How can we rewrite the top? (Try using a neat factorisation.)

cos? x — sin? x = (cos x — sin x) (cos x + sin x)
(using the difference of two squares)

Try to finish it off now.

(cos x — sin x) (cos x + sin x)

LHS = cos x + sin x = RHS.

CcoS x — sin x

You may have recognised that cos? x — sin? x could also be written as cos 2x.
Although this is true, it would not have helped us here. The trickiest part in
proving identities is picking out the possible steps which will also lead you
forward in the proof.
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5.B.(d) What do the graphs of the trig reciprocal functions look like?
We start by thinking about how we can draw a sketch of the graph of

1

y =cosec x = —.
sin x

I show in Figure 5.B.1 a sketch of y = sin x to work from.
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Figure 5.B.1

To help us, we need first to answer the following five questions.

(1)  When sin x = 1, what is cosec x?

(2)  When sin x = —1, what is cosec x?

(3) Does cosec x have the same sign as sin x?

(4)  What happens to cosec x when sin x is positive but very close to zero?

(5) What happens to cosec x when sin x is negative but very close to zero?

Try answering each of these for yourself.
|

Here are the answers.

(1) cosecx=1 (2) cosecx=-1 (3)  Yes it does, since it is just 1/sin x.

(4) cosec x becomes very large and positive.

(5) cosec x becomes very large and negative.

(When sin x = 0, cosec x is undefined because we can’t divide by zero.)
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EXERCISE 5.B.1 Using the answers to the five questions above, try to sketch in for yourself the
graph of y = cosec x on the sketch | have already drawn for you of y = sin x. Use
pencil so that you can have second thoughts if necessary!

(The sketch is shown in the answers at the back of the book, but it is
important to try to draw it yourself before looking.)

Because the functions of y = sin x and y = cos x are periodic, so also are the functions
of y = cosec x and y = sec x. The graph of y = sec x is the same as the one for y = cosec x
shifted by 7/2 to the left.

(Strictly speaking, when we say that y = cosec x and y = sec x are functions, we must
exclude any value of x which would involve dividing by zero, as this is impossible.)

EXERCISE 5.B.2 Using the same methods as you used for sketching y = cosec x, try sketching for
yourself the graph of y = cot x (that is, the reciprocal graph of y = tan x), using
the sketch of y = tan x which | have drawn for you in Figure 5.B.2.
To do this successfully, you will need the answer to one more question.
What happens to cot x as tan x becomes very large?
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Figure 5.B.2

cot x will become closer and closer to zero, so that when tan x is undefined, say for
x=m/2, cot x = 0.

5.B.(e) Drawing other reciprocal graphs
Drawing and checking the two reciprocal graphs of y = cosec x and y = cot x will have shown
you many of the basic guidelines to use when drawing reciprocal graphs.
I will summarise these here for you in a box. Then you will be able to have a go at
drawing reciprocal graphs for some of the functions which have been mentioned in earlier
chapters.
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EXERCISE 5.B.3

Rules for drawing reciprocal graphs
If we have a function y = f(x), its reciprocal function is y = 1/f(x).

o If the graph of y = f(x) has symmetries (for example, being odd or even or
periodic), then the graph of 1/f(x) will have the same symmetries.

® If y = f(x) = 0 for some value of x, then 1/f(x) is undefined. There is a jump or
discontinuity in its graph for this value of x.
This means that, as f(x) gets close to 0, 1/f(x) will become very large in value.
Equally, if there is a jump or discontinuity in the graph of y = f(x) for some
value of x, then y = 1/f(x) = 0 for that value of x.

¢ If you know a few key values for y = f(x), it is easy to calculate the
corresponding values for y = 1/f(x). These can then be used to help you to get
the sketch in the right place.

Using the rules above, try drawing in the reciprocal functions for the six functions

shown on my graph sketches. Use any values given on my sketches to write in the
corresponding values on the reciprocal sketches.

In case some of these functions are unfamiliar, | have given you a reference back
to where | have talked about them earlier in this book.

| suggest that you sketch them first in pencil to allow for second thoughts. When
you have got them right, it might help you to use two colours on them (one for
the original graph and one for its reciprocal), to emphasise how they depend upon
each other.
1
(1) Sketchy = —— using my sketchof y = x> - 2x+ 2 = (x - 1)? + 1.
X>-2x+2
(My sketch uses Sections 2.D.(b) and (c) on completing the square and graph
sketching.)
1

(2) Sketch y = ——  using my sketch for y = x> — 4x + 3 = (x - 1)(x - 3).
X —4x +3

(3) Sketch the graph of y = 1/x using my sketch of y = x.
(4) Sketch the graph of y = 1/x* using my sketch of y = x.

(5) Sketch the graph of y = 1/e* using my sketch of y = e*.
You may find that Section 3.C.(f) helps you here.
X-2 X+3

(6) Sketch the graph of y = using my sketch of y = .
X+3 X-2

(We drew this sketch in Section 3.B.(i).) See if you can also find the coordinates of
the point where this graph and its reciprocal graph cross over each other.)
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Building more trig functions from the simplest ones

5.C.(a)

Stretching, shifting and shrinking trig functions
In Section 3.B.(d), we looked at what happens to functions when we add or multiply them
in different ways. You should look back at this section if you haven’t yet read it, and make
sure that these ideas are familiar to you. I have summarised the effects of the simplest kinds
of transformation there.

196 Extending trigonometry



Because trig functions are periodic, particularly interesting possibilities of combination
arise which have profound physical implications. In particular, they are very useful in
thinking about mechanically vibrating systems and the behaviour of current and voltage in
electric circuits. They can also be used to describe the different qualities of particular notes
played on different musical instruments.

We have already seen that, because these functions are periodic, and because of their
symmetries, they are very closely related to each other. For example, the cos curve y = cos x
is the same as the sin curve y = sin x except that the sin curve has been shifted 7/2 to the
left (Figure 5.C.1).

/\‘x /\7_3;
N ¥/

-1 -1r .
3=Cos:>c 3=smx

Figure 5.C.1

Using the second result from the summary at the end of Section 3.B.(d), we see that this
means that sin(x + 7r/2) = cos x.

Combinations of sin and cos functions are often used to describe how various kinds of
wave motion change with time. In this case we would need to have the horizontal axis in the
graphs representing time, and so it is better to use ¢ rather than x for the variable on this axis.
The vertical axis is then measuring some displacement, so it is often labelled x, with x being
a function of time, ¢.

Because so many of the different kinds of waves which occur in the natural world can be
represented by various combinations of trig functions, these functions are often called wave
functions or waveforms.

Using the results summarised in Section 3.B.(d), we can sketch graphs for functions such
as x =3 cos t, or x = cos 2t. | show the sketches for these in Figure 5.C.2(a) and (b). In each
case, the graph of x = cos ¢ is shown by a dashed line.

A X x=3cost X= Cos 2t

Figure 5.C.2
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In the graph of x = 3 cos ¢, each value of cos ¢ has been pulled out three times as far from
the t-axis.

In the graph of x = cos 2¢, each point of the curve as we move out from ¢ = 0 is being
reached twice as fast. So, if ¢t = 7/2, cos /2 = 0 but cos(2 X 7/2) = cos & = —1.

We can now use these two graphs to illustrate some important definitions.

¢ The maximum displacement or amplitude, 4, is 3 units in (a), and 1 unit in (b).

® [f ¢ is in seconds, the period, 7, or time taken for each complete cycle is 27t seconds
in (a), and st seconds in (b).

® The frequency, f, which is the number of cycles per second, is 1/27 in (a), and 1/ in
(b). The units for frequency are hertz, written as Hz.

1
T and f are related by the equation 7 = ?

EXERCISE 5.C.1 Using the results from Section 3.B.(d), and the two examples shown in Figure
5.C.2 in this section, try sketching the following six wave functions for yourself in
pencil using my drawings in Figure 5.C.3 on the next page. | have already drawn in
the graph of x = sin t on each of them, to help you.

(1) x=2sint (2) x = sin 2t B) x =sin (t/2) (4) x=1+sint
(5) x=cost 6) x =cos (t +/2)

Also, for each wave function, answer the following questions.

(@) What is its amplitude, A?

(b) What is its period, T?

(c) What is its frequency, f?

(d) Is the function odd or even?

(e) If o = 2/T find w in each case. The physical interpretation of w is described
in the next section.

Then check your results against the answers in the back of the book. (If
necessary, draw the graph sketches in again so that you have the right version.)

5.C.(b) Relating trig functions to how P moves round its circle and SHM

We can also think about the two functions whose graphs we sketched in Figure 5.C.2(a) and
(b) in the last section by relating them to the motion of X as P moves round its circle. I
described this in the thinking point of Section 5.A.(d). We looked there at how the distance
x = cos ¢ was changing as P moved round the circle with an angular velocity of 1rad/s. Have
another look at this thinking point now.

Can you see how you could draw two similar pictures to show how P would be moving
to give (a) OX =x = 3 cos t and (b) OX = x = cos 2¢?

x =3 cos ¢ would be illustrated by the motion of X if P moves round a circle with a radius
of 3 units, but still with an angular velocity of 1rad/s. I show this in Figure 5.C.4(a). As P
moves round this circle, the distance OX = x varies between the two extremes of +3 and —3
units, corresponding to the amplitude of 3 in Figure 5.C.2(a).

x = cos 2t would be illustrated by the motion of X if P moves round a circle of radius one
unit, but twice as fast, so its angular velocity is 2 rad/s. I show this on Figure 5.C.4(b).
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In each case, I have shown the displacement x after time ¢ as a thick black line. Because
these changing displacements are very important in many physical applications, you may
like to highlight them for yourself in colour in the same way that I suggested you should for
the four pictures showing the definitions for the sin and cos of angles greater than 90° in
Section 5.A.(c).

In both cases, the point X is moving in what is called simple harmonic motion, or SHM.
‘Harmonic’ is just another way of saying ‘periodic’ — used because sound waves are
produced by combinations of waves of this kind. The word ‘simple’ is used here because we
are looking at a motion which can be described by a single cos.

SHM also describes many other important physical situations. Often these involve an
object being slightly displaced from its equilibrium position. Examples of this are the
motion of a weight hung on a spring which is slightly pulled down from its equilibrium
position, and the motion of a small weight hanging on a long string which is pulled slightly
to one side and then released so that it moves as a simple pendulum. Again, the ‘simple’
means that the motion can be described in terms of a single cos or sin.

If a point X moves in SHM it is called a harmonic oscillator. Harmonic oscillators are
fundamental to the understanding of physical systems. Amazingly, any real-life situation
involving small vibrations, however complicated it is, can be reduced to a system of
harmonic oscillators.

If we write the equation of motion of X as

x =4 cos wt

then A4 is the amplitude and w is the constant angular velocity of the point P.
o is called the angular frequency of the wave described by this equation.
(w is the Greek letter called omega.)

In the two examples we have just looked at, we have the following results.

(1) Ifx=3cost thend =3 and w = 1. We also saw that 7= 2w and /= 1/27.
(2) Ifx=cos2t,then4 =1 and w = 2. We also know that 7= and /= 1/m.

2w ()
We also have the relations that 7= — and f=—.
) 2

If, in the simplest case described in the thinking point of Section 5.A.(d), where P is
moving round its circle of radius one unit, at a constant angular velocity of 1rad/s, we had
looked at the motion of the point ¥ on the vertical axis instead, we would have had the
equation for OY of y = sin ¢ (Figure 5.C.5). This is also SHM. Now, when t =0, y = 0
also.

The point Y is starting from the central position of its motion, unlike X which started from
its most extreme positive position.

These circle diagrams make it much easier to see what is happening with more
complicated sin and cos functions. Such functions are very important in physical

applications such as describing the voltage and current waveforms in electric circuits. It is
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much simpler to handle them mathematically through the use of complex numbers and the
first step in doing this is to become happy with using these circle diagrams.

I have already drawn for you

the examples of x = 3 cos ¢ and x = cos 2¢ in Figure 5.C.4,

and y = sin ¢ in Figure 5.C.5. Since I have used x to represent the displacement after time
t on all my graph sketches, 1 shall also use it from now on to show displacements on both
the horizontal axis of my circle (which gives a cos function), and on the vertical axis of my
circle (which gives a sin function).

Here are two more examples

showing this kind of relationship.

EXAMPLE (1) Show the relation of x = 2 sin 3¢ to the motion of P round its circle.

+2

L _ P affer time t

3t START

when =0

w=3 rad /s

-2

x=2Sin 3t Figure 5.C.6

I show this on Figure 5.C.6. The maximum value of x is 2, therefore
A =2, and the radius of the circle must be 2 units. When t=0, x = 0. After a
time ¢, x = 2 sin 3¢, so P is moving with an angular velocity of 3 rad/s
therefore w = 3. A full turn or cycle takes 27t/3 s so T=2 7/3.

EXAMPLE (2) Show the relation of x = cos (¢ + 7r/6) to the motion of P round its circle.

5.C Building more trig functions

P after time t

w=| rad/s

x=cos( t+ %) Figure 5.C.7
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I show this on Figure 5.C.7. The maximum value of x is 1, so 4 = 1
and the radius of the circle must be 1 unit. x = cos /6 when ¢ = 0.
Notice that x would have been equal to one unit 7t/6 s before the instant
when we took ¢ = 0. After a time of ¢, x = cos (¢ + 7/6). P is moving
with an angular velocity of 1rad/s, so w = 1. A full turn or cycle takes
27s so T =2m.

EXERCISE 5.C.2 Now have a go at these yourself.
Draw sketches showing the motion of the point P round its circle for each of
the following:

(1) x = cos 3t (2) x=2sint (3) x =3 cos 2t
(4) x =4 sin(t/2) (5) x =sin(t + 7/6) (6) x =sin(2t + /4)
(7) x=2cos(t-m/6) (8) x =5 sin(3t + /6).

Label each sketch in a similar way to my two examples. In each case, you should
also give the value of the amplitude, A, and of the angular velocity, w, and of the
period, T. It is very important to actually do these sketches yourself; don’t just
look at my answers.

5.C.(c) New shapes from putting together trig functions
What happens if we add sin ¢ to cos (¢ + 7/2)? (Have a look at your sketch for question (6)
of Exercise 5.C.1.)
What happens if we add sin ¢ to cos ¢? Try sketching for yourself what the result would
be in each case.

In (6), because cos (¢ + 7/2) = —sin ¢, the result of adding the two waves is always zero.
They are exactly out of phase with each other.

I show in Figure 5.C.8 a sketch for x = sin ¢ + cos ¢ drawn from putting together the two
curves x = cos ¢ and x = sin ¢ and marking in all the easy points such as where one of them
is equal to zero, or they are equal to each other and so just double, or they are equal but
opposite in sign and so balance out.

AX —— shows x=sint+ cost ---- shows x=§int -~~~ shows x=cost

Figure 5.C.8
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We see from this sketch that x = sin ¢ + cos ¢ has an amplitude of 2 sin (7r/4) =2 X 1/y/2

[
/

= /2, and a period of 2.
It looks as if it might also be sin-shaped. (We shall find out how to show that it is a sin
curve in Section 5.D.(f).)

Sketching graphs by hand becomes very time-consuming (and difficult if the functions
are more complicated), but if you have access to a graph-sketching calculator or computer
it would be good to see what happens when you add all the pairs of functions in the six
graphs shown in the answers to Exercise 5.C.1.

It is also very interesting to see what happens if you add a sequence of sines. You will
see that the shape of the resulting curve gets successively modified to give some remarkable
results.

Here are two examples you could try.

(I have used the — symbol here to mean ‘put in the next bit of the sequence and see how
it affects your graph.”)

) . sin 2¢ . sin 2¢  sin 3¢
(1) (sin¢) = |sint— 5 — [sin - 5 + 3 - ...

sin 3¢ sin 3¢  sin 5¢
(2) (sint)—)(sint+ )—)(sinﬂr + )—)
3 3 5
The further you go with these sequences the more interestingly modified the shapes of the
graphs become.

By this kind of method it is possible to get graphs which are very close approximations
to the ones shown in Figure 5.C.9, both of which are waveforms which can occur naturally
in electrical signals.

If you have done the experiments of (1) and (2) above, you will find that you get
increasingly good matches except for little overshoots close to the vertical parts of the graph.

AN

it

O iy
; 'nl/rn 3,1/;" T =

o~

-1+

Figure 5.C.9
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This is called Gibb’s phenomenon and it comes from the problems in accurately representing
a graph which is effectively doing a jump at these points.

The fact that these functions can be thought of as sums of sines (or, more generally, to
include other cases, as sums of sines and cosines) is of great practical importance. This
whole area of what is called harmonic analysis was developed by the French mathematician,
Fourier.

Can you see why we couldn’t represent any periodic functions just by sums of sines of
multiples of ¢ as in the two earlier examples I gave you?

5.C.(d)

The sums of such sines will always give odd functions. If the function we want to
represent isn’t odd then we shall need also to include cosines of multiples of 7 to get a correct
representation of what is happening.

If the function is made up entirely from cosines of multiples of ¢ it will always be
even.

Try the following sequence to see this happening.

cos 3x cos 3x  cos 5x
(cos x) > |cos x + — [cos x + + ...
32 32 52

Putting together trig functions with different periods
All the examples of putting trig functions together which we have looked at so far in this
section have had periods which were the same as at least one of the input functions. For
example, both sin 7 and cos ¢ have a period of 27 and x = sin ¢ + cos ¢ also has a period of
27.

x=sint+ % sin 3¢ + % sin 5¢ has the period of 27 belonging to sin ¢ since all the other
functions neatly sit inside this. (sin 3¢ has a period of % X 25, and sin 5¢ has a period of
% X 2m.)

What happens if we put together trig functions with different periods?

For example, suppose we take the case of x = sin (#/4) + sin (#/5).

sin (#/4) has a period of 87 and sin (#/5) has a period of 10s.

The joint period, when these two functions are added together, is given by the smallest
number which both 87 and 10s divide into exactly (their l.c.m.), which is 40z. This is the
smallest number which can accommodate a whole number of cycles of both functions.

I show in Figure 5.C.10(a) a sketch of x = sin(#/4) and x = sin (#/5) on the same axes.
Underneath that, in Figure 5.C.10(b), I show a sketch of the joint function, x = sin (#/4) +
sin (#/5) so that you can see how it comes from the two functions above.

The complete cycle shown of x = sin (#/4) + sin (#/5) has a more complicated shape than
its two building functions because, at the beginning and end of the cycle these two functions
are quite close and so their sum produces roughly twice the displacement.

Then, because sin (#/5) is changing more slowly, it gets more and more behind sin (#/4).
This means that around the middle of the cycle the two functions are nearly cancelling each
other out.

By the end of the cycle, sin (#/5) has got so far behind that it gets lapped by sin (#/4), and
the two functions are again close together.

If the two building functions have periods which are very close together, then the contrast
between the peaking effect at the two ends of each cycle and the level trough near its centre
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becomes very much more marked. A physical example of this is what happens if two musical
notes, very close to each other in pitch, are played at the same time. The peaks are heard as
beats which will disappear when the two notes exactly match. This phenomenon is made use
of by piano tuners and by other musicians when they tune their instruments.

5.D Finding rules for combining trig functions

5.D.(a) How else can we write sin (A + B)?
If 4 and B are two different angles, is it true that sin(4 + B) = sin 4 + sin B?
Test your answer with two examples on your calculator.

Except for some very special cases, such as when B = 0, it is nof true that
sin (4 + B) = sin 4 + sin B.

Students sometimes write that sin 24 = 2 sin 4, for example, but from the
first two questions of Exercise 5.C.1 earlier it is clearly obvious that sin 2¢
and 2 sin ¢ are not at all the same thing.

Can we find a way of writing sin (4 + B) using the sin and cos of 4 and B?

(As we shall see in Section 5.D.(f) it is often important to be able to do this.)

To show this geometrically, we shall need right-angled triangles to work from.

We start by drawing the tilted triangle for £ B, as this is the trickiest one to get, and then
build up the diagram as I show in Figure 5.D.1.

Then we complete this chain by drawing the triangle RNQ. This is because it gives us
another right-angled triangle with lengths that we want. ZRON = £ A because NOP is a
straight line, and so 180°, and the angles of AOQP also add to 180°.
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Then we have:

M PO+ (QON OQsind+ QR cos A

sin(4 + B) =
OR OR OR

=——sin4d +——cosA4 =cos BsinA + sin B cos 4.
OR OR

This is more usually written as

sin(4 + B) =sin 4 cos B + cos 4 sin B.

5.D.(b) A summary of results for similar combinations
In a very similar way, we can get formulas for sin(4 — B), cos(4 + B) and cos(4 — B).
(These can also all be shown to be true for angles larger than 90°.)
These are listed in the box below:

sin(4 + B) =sin 4 cos B + cos A4 sin B,
sin(4 — B) =sin 4 cos B — cos 4 sin B,
cos(4 + B) = cos A cos B — sin 4 sin B,

cos(4 — B) = cos A cos B + sin 4 sin B.
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Notice the + and — signs in the middle of the formulas for cos(4 + B) and
cos (4 — B). It makes sense that they should be this way round when you

remember that cos (60° + 30°) = cos 90° = 0 but cos (60° — 30°) = cos 30° =
[3/2.
N

5.D.(c) Finding tan (A + B) and tan (A - B)
How shall we set about getting a formula for tan(4 + B)? We can say
sin(4 + B) sinA cos B+ cos A4 sin B

tan (4 + B) = = - —
cos(4+ B) cosAdcosB—sind sin B

It would be nicer to have the answer entirely in terms of tan 4 and tan B. Can you see what
we need to do to the top and bottom of this fraction to make this possible?

If we divide top and bottom by cos 4 cos B, and cancel where possible, we shall get

tan 4 + tan B
tan (4 + B) =

1 —tan A4 tan B

(Remember that each of the four separate chunks in the fraction is getting divided.)
You should now be able to show for yourself that

tan 4 — tan B
tan (4 - B) = ———.
1 +tan 4 tan B
5.D.(d) The rules for sin 24, cos 24 and tan 2A

These follow immediately from the previous results, putting B = 4. We get:

sin 24 = 2 sin A cos A,
cos 24 = cos®> A — sin® 4,
2tan 4

tan 24 = ——.
1 —tan® 4

In the case of cos 24, it is possible to write this rule in two other ways, using the identity
that sin? 4 + cos®> 4 = 1. We then get:

cos 24 = cos’ A — (1 —cos?> A) =2 cos’ 4 — 1,
cos 24 = (1 —sin? A) —sin> 4 = 1 — 2 sin® 4.
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5.D.(e)

5.D.(f)

We shall find these alternative versions very useful later on in solving trig equations and
for integrating sin® x and cos? x. I give you examples of this in Section 5.E.(d) and example
(4) of Section 9.B.(c).

How could we find a formula for sin 3A4?
We can now find a formula for sin 34 completely in terms of sin 4.

We do it by writing sin 34 as sin (4 + 24) and then using the sin (4 + B) formula on this.
Then we have

sin 34 = sin(4 + 24) = sin A cos 24 + cos A sin 24

sin A(1 — 2 sin? 4) + cos A(2 sin 4 cos A)

(using the rules for sin 24 and cos 24 from the section above)
sind —2sin®> A4+ 2 sinA4 cos’> 4
sin 4 — 2 sin®> 4 + 2 sin A(1 — sin® 4)
=3 sinAd — 4 sin® 4.

You should now be able to find a similar rule for cos 34 in terms of cos 4 for yourself.
I have put this pair of rules in the box below for you:

sin 34 = 3 sin 4 — 4 sin® 4,
cos 34 =4 cos> A — 3 cos A.

Using sin (A + B) to find another way of writing 4 sin t + 3 cos t
In Section 5.C.(c), we investigated graphically the effect of adding sin 7 to cos ¢ for each
value of ¢. The result seemed to be a sin curve which had been shifted by some angle from
the origin.

There are many physical and mathematical situations where it is much easier to deal with
a single sin or cos function rather than having combinations of such functions. Such
examples include describing the wave functions for alternating current and voltage, and
making it easier to solve certain kinds of trig equation as we shall see in Section 5.E.(e).

I will show you how we can do this conversion to a single function by taking the
particular example of x = 4 sin ¢ + 3 cos ¢.

We start by noticing that 4 sin ¢ + 3 cos ¢ looks a little bit like

sin A4 cos B + cos A sin B, which is sin(4 + B)
as we saw in Section 5.D.(a). So we try writing
4sint+3cost=Rsintcosa+ Rcostsina

which is R sin(¢ + a).

(We need to include the R here to avoid getting into the impossible position of needing
a sin or cos greater than 1.)

We now have to find the particular numerical values of R and & which will make this
equation be true for every value of ¢, so that each of the two sides is just another way of
writing the same thing. This means that the equation is an identity and each separate part
must match up, just as we matched up the separate terms in the identity in Section
2.D.(h).
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Here, the two sides will only be equal for every value of ¢ if we have both the same
quantity of sin ¢ each side, and the same quantity of cos ¢ on each side.
Matching up the parts with sin ¢, we get

4sint=Rcosasint so 4=Rcosa.
Matching up the parts with cos ¢, we get
3cost=Rsinacost so 3 =Rsina.

The easiest way to find R and « is to draw a picture showing the information we now have.
I do this here in Figure 5.D.2.

Rsinat=3

-

Rcecost=4
Figure 5.D.2

Using Pythagoras’ theorem gives us R*> =32+ 4%2=25s0 R = 5.

We also see that tan a = % so «a = 0.6435 radians to 4 d.p.

We can now write x = 4 sin ¢ + 3 cos ¢ in the alternative form of x = 5 sin (¢ + «) with
a = 0.6435 to 4 d.p. (I shall continue calling this angle « for short.)

What will the graph of x =4 sin ¢+ 3 cos ¢t = 5 sin(¢ + «) look like?

(You will find the answer to this question much easier to understand if you did Exercises
5.C.1 and 5.C.2 in Sections 5.C.(a) and 5.C.(b). If you haven’t yet done these, you should
go back and do them now.)

To help us to sketch the curve of x =4 sinz+ 3 cos ¢ =5 sin(¢ + &), we relate this to
how the point P moves round its circle. The displacement x will be shown on the vertical axis
since it is a sin function. I show this below in Figure 5.D.3(a).

P is moving round its circle of radius 5 units with an angular velocity of one radian per
second. It starts at the angle & when ¢ = 0.

x=5s5in (t+K)

Figure 5.D.3
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When it has moved through a further angle of ¢, the displacement x is given by x =
5 sin(t + Q).

We can see from the picture that x will increase first to its maximum value of +5 and then
decrease through zero to —5.

We can also see that x would have been equal to zero at @ or 0.6435 seconds before the
instant when we are taking ¢ = 0.

Using this information we can then draw the sin curve x = 5 sin (¢ + &) shown in Figure
5.D.3(b). I have also drawn x = 5 sin #, using a dashed line. You can see that we have a gap
of a between these two graphs. The angle « is called the phase angle or phase. We see that
x =5 sin (¢t + @) leads x = 5 sin ¢ by a seconds.

For both graphs, the amplitude 4 = 5, the angular velocity w = 1, and the period 7 =
2.

We have just seen that it is possible to write the function x =4 sin # + 3 cos ¢
in the form x = 5 sin (¢ + &) with a = 0.6435 radians.

Would it be possible to combine 4 sin ¢+ 3 cost¢ to give a single cos function instead,
and if so which rule should we use?

It is possible to do this, and we would need to use the rule for cos (4 — B) because this
gives us the plus sign in the middle. Doing this will give us

3cost+4sint=Rcostcosf + Rsintsinf

which is the same as R cos (t — j3).
We can see that R will still be equal to 5 here, but I have called the angle § to avoid
confusing it with the angle ¢ which we found earlier.

R 4= RsfnP

3= R cosg '

Figure 5.D.4

Matching up the separate terms in sin and cos gives us 3 = R cos 8 and 4 = R sin 8. This
information is shown on the little triangle in Figure 5.D.4. We see that tan § = % s03=10.9273
radians to 4 d.p. We can also see now that & + = /2 because «a is the top angle in this
triangle. So we now have the result that x =4 sin # + 3 cos ¢ can also be written as
5 cos (¢t — B) with § = 0.9273 radians to 4 d.p.

Drawing the circle diagram for x =5 cos(¢—f) in Figure 5.D.5(a) shows us that we
have exactly the same displacement x after time ¢ as before. The only difference is that it is
now being shown on the horizontal axis as a cos function. This shift in position through a
right angle is the reason why a + 8 = /2.

At time ¢ we have x = 5 cos (¢ — f3).

When t=0,x=35cos(—f)=5cosf because the cos graph is even (see Section 5.A.(a)
if necessary).
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5.D.(g)

when £=0 3

x:Scos(t—p)

Figure 5.D.5

When ¢ = 8, x has its maximum value of 5 cos (0) = 5 units.

The graph for x = 5 cos (¢ — ) is, of course, identical to the graph for x = 5 sin (¢ + &)
because both represent x = 4 sin ¢ + 3 cos .

I have shown it again in Figure 5.D.5(b) with the graph of x = 5 cos ¢ shown as a dashed
line. We see that the phase angle is § and x = 5 cos (¢ — ) lags x = 5 cos ¢ by 8 seconds.
The a + f together make the 7/2 shift between x = 5 cos # and x = 5 sin ¢.

Again, 4 =5, w = 1 and T = 27 for both graphs.

You can see from Figure 5.D.5(a) that, as P moves round from its starting position, what
happens first is that x increases in size to its maximum value of 5 units, and this is what the
graph of x =5 cos (¢ — ) is also doing.

More examples of the R sin (t £ «) and R cos (t + ) forms
Here is another example, this time involving a minus sign.
Write x = 3 cos ¢ — 2 sin ¢ as a single trig function and sketch its curve.

We start by choosing a rule which will fit nicely to what we have this time, including the
minus sign in the middle. Which rule should we choose?

cos(4 + B) = cos A cos B — sin 4 sin B will give the kind of fit that we want.
We write

3cost—2sint=Rcos(t+a)=Rcostcosa—Rsintsina

so, matching up the separate parts as before, 3 = R cos & and 2 = R sin «.
Using the little triangle in Figure 5.D.6 shows us that R = \/13 and tan a = % giving
a = 0.5880 radians to 4 d.p.

R=J13 2=Rsina

3= R cosst
Figure 5.D.6
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We can therefore rewrite x = 3 cos # — 2 sin 7 in the form x = /13 cos(t + a) with
a = 0.5880 radians.

This can then be related to the way in which P moves round its circle which I show in
Figure 5.D.7(a).

@ ®

P ofter time t ;_'é

START
when
t=0
—o
-3 7 o
“JT3*'

x=JT3 cos(t+e)
Figure 5.D.7

After time ¢, the displacement x is given by x = \/T3 cos(t + ).

When t =0, x = \J’T3 cos a.

When ¢ = — « (that is, a seconds before the instant at which we are taking ¢ = 0), x will
have its maximum size of \,rT3 cos(0) = \T3

When ¢t = /2 —a, x =13 cos(/2) = 0.

We can now sketch the graph of x = /13 cos (¢ + «). I show this in Figure 5.D.7(b), with
the graph of x = |13 cos ¢ shown as a dashed line. The phase angle is @ and x =
V’T3 cos (t+a) leads x = V’T3 cos t by a seconds.

For both the graphs, we have 4 = \fﬁ, w=1and T=27.

Each of the circle diagrams which we have drawn shows very nicely how its related graph
works. (It’s very easy to see on the circle diagram just what effect the shift given by the angle
« is having.) But you may be thinking that it is just being perverse to measure time in such
a way that we get these shifts to worry about. Surely in the real world we can choose to have
t =0 when a = 0?

Not necessarily so! There are some physical situations where we have to deal with waves
which are out of phase with each other. For example, if we are working with the functions
which describe how the voltage and current in an alternating current (a.c.) circuit change
with time, and if this circuit includes components with inductance or capacitance, the
current will peak after the voltage does, and so the two wave functions describing them will
be out of phase with each other.

I’ll now give you an example which involves functions of 2¢ instead of #. We’ll combine
x =3 sin 2¢ + cos 2t into a single trig function and sketch its graph.
How can we write 3 sin 2¢ + cos 2¢ using one of the rules for combined angles?

|
We could say either
3 sin 2¢ + cos 2t = R sin (2t + @) = R sin 2¢ cos a + R cos 2¢ sin a

or cos 2t + 3 sin 2¢ = R cos (2t — 8) = R cos 2t cos B + R sin 2¢ sin 3.
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I shall work with the first of these, but the second would of course give an identical curve.
We have

x =3 sin 2t + cos 2¢t = R sin 2¢ cos & + R cos 2¢ sin «.

(Notice that everything here is in terms of 2¢ instead of ¢.)

Now, matching up the separate parts, we have 3 = R cos ¢ and 1 = R sin a.

Drawing the little triangle in Figure 5.D.8 shows us that R = \"% and tan o = % SO
a = 0.3218rads to 4 d.p.

%l:t& sina

3= Rcos« Figure 5.D.8

This gives us
x =3 sin 2¢ + cos 27 = /10 sin (27 + a)

with ¢ = 0.3218 radians to 4 d.p.

We now know that when t =0, x = \,rTO sin « and, when 2t + a = 7/2, x = \y'% sin (71/2)
= /10. This happens when ¢ = % (t/2 — a) = 0.624 seconds to 3 d.p.

As usual, we shall need the circle picture to help us to draw the graph. I show this in
Figure 5.D.9(a) below. We shall also use these two diagrams in Section 9.C.(c) when we look
at some differential equations which describe SHM.

This time, P is moving at 2 rad/s.

~Jio
2= J10 sin (2t+«)

Figure 5.D.9

From the circle picture, we can see that we shall have to be very careful
about labelling the interesting points on the graph sketch this time.

P is moving at 2rad/s so the period of the function is 7t seconds. (Each cycle takes &
seconds.) Because it is moving at 2 rad/s it would have been at the point 4 at /2 seconds
before the instant when we took ¢ = 0.
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We also know that x has its first maximum value of /10 after % (/2 — a) seconds.

Using this information, I have drawn the function x = /10 sin (2¢ + «) in Figure 5.D.9(b).
I've also sketched x = /10 sin 2¢ using a dashed line.

The phase angle is « and we see that x = \/10 sin (2¢ + @) leads x = \ﬁ sin 2¢ by a/2
seconds.

For each graph, 4 = \J%, w=2and T=2n/2 =u.

EXERCISE 5.D.1 Now try the following questions yourself. Give all your angles in radians, either
exactly or to 3 d.p.

For each question, you should also draw a diagram showing the related motion
of P round its circle. Then use this to sketch the graph of the single combined trig
function which you have found, in the same way that | have done in my examples.
Make sure that you label your diagrams clearly, and then use them to write down
the values of A (the amplitude), » (the angular velocity) and T (the period), of
each of your combined trig functions.

(1) Find x = 3 cos t —sin t in the form x = R cos(t + a).

(2) Findx =5 cost+12sint inthe form x =R cos(t- ).

(3) By choosing a suitable formula, find x =15 cos t - 8 sint as a single
combined trig function.

(4) By choosing a suitable formula, find x =2 cost-3 sint as a single
combined trig function.

(5) Find x = cos 4t — sin 4t in the form R cos(4t + «).

(6) Write /3 sin 3t — cos 3t in the form R sin(3t - ).

5.D.(h) Going back the other way - the Factor Formulas
We can use the formulas for sin(4 + B) and sin(4 — B) to find a useful new way of writing
the sum of the sines of two angles.
If we call the two angles P and 0, then we shall find another way of writing sin P + sin Q.
This is how we do it. We know

sin (4 + B) =sin 4 cos B + cos 4 sin B,

sin (4 — B) =sin 4 cos B — cos A4 sin B.
Adding these two equations gives

sin (4 + B) +sin (4 — B) = 2 sin 4 cos B.

What we actually want is a formula for sin P + sin Q. How can we choose P and Q so that
they match up with what we have just got?

Weneedtoput P=A+B and Q=4 — B. Then we have

P+ P -
o and P-Q=2B so B:—Q

P+0=24 so A= 5

This gives us the result

P P -
sinP+sinQ—25in< J;Q)cos( 2Q>.
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5.E

Similarly, it can be shown that

sinP—sinQ=2cos(PZQ> sin(P_Q>,

2
cos P+ cos O =2 cos (P+Q> cos (P_Q>,
2 2
cos P —cos Q =-2 sin (P+Q> sin (P_Q).
2 2

Notice the minus sign at the start of the rule for cos P — cos Q.

You can see that it must be there if you put £P = 60° and £Q = 30°, for
example. cos 60° is smaller than cos 30°, but sin 45° and sin 15° are both
positive.

It is sometimes useful to be able to make use of the midway steps for each of these.
We found in the working above that sin (4 + B) + sin (4 — B) = 2 sin 4 cos B.
The three rules like this one, put together in a box, are:

2 sin 4 cos B =sin(4 + B) + sin(4 — B),
2 sin 4 sin B = cos(4 — B) — cos(4 + B),
2 cos 4 cos B =cos(4 + B) + cos(4 — B).

These two sets of rules are useful to turn adding into multiplying to make it easier to
solve certain types of trig equation. I show you an example of this in Section 5.E.(d). They
are also useful the other way round, when they turn multiplying into adding, for certain kinds
of integral. Example (8) in Section 9.B.(f) shows you how this works.

We have now obtained all the basic trig rules involving two angles, and so have them
ready for use whenever we need them.

You might find it helpful now to go through the previous sections highlighting in colour
all the boxes with these rules inside, so that you can quickly find them when you need them,
and can become familiar with them.

Solving trig equations

5.E.(a)

Laying some useful foundations
Quite often, students don’t like solving trig equations because they find the possibilities of
more than one answer confusing. It’s in the nature of trig equations that they will have an
infinite number of solutions — we only need to look at the repeating graphs of y = sin x and
y = cos x to see this. (Of course, physical circumstances may limit the number of possible
answers; for example, any angle in a triangle must be somewhere between 0° and 180°.)
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EXERCISE 5.E.1

When infinite numbers of answers are possible, we shall use the patterns of how they
come to describe them. To do this, we shall need the circle definitions for the trig ratios of
angles greater than 90° of Section 5.A.(c). I think you will find that it will help you here if
you read through this section again before going on. Then do the following exercise which
is based on the results of this section, and which will also give you some particular values
which will be useful for solving equations.

The table below is very similar to the one | gave you for Exercise 5.A.1 in Section

5.A.(a) except that | have only included positive angles here, and | have put in a
line for the tan of the angles, too. In that exercise, you worked out the values for
the sin and cos of the extra angles by using the graphs of y = sin x and y = cos x.

Try filling in the blanks again by thinking how each angle will come in the
turning circle, and then matching it up with an angle for which I’'ve given you the
sin, cos and tan. The values for your angle will then be the same as these except
for a change of sign in some cases.

Write your answers in the same form that mine are given in, including | signs if
necessary, because you will find when you use these results that exact answers
are often easier to work with than strings of decimals. Then check that your
answers are right by using your calculator. (It’s best to use pencil until you have

checked!)
Angles n ||| x| 2w | 3w | 57 7n 57 4 3 57T 7n | 1w 5
. gl z 13l T 1 71!/ |l gl T 3|5 | 3| 7T T
(radians) 6 |4 |3|2|3 |4/ 6 6 4 3 2 3 4 6

Degrees |0(30|45|60(90|120 135|150 180|210 | 225|240 | 270|300 | 315 |330|360

. 11|43
sin 0z Z|l2 |1
3111
cos 117171210
1 =
tan 03|13 U

U stands for ‘undefined’.

We can now start solving trig equations by using the patterns of how these solutions come
to give us a way of describing the infinite number of possible answers. This is called giving
the general solution.

The easiest way for me to explain how to do this is for us to work through some particular
examples together. I shall take separate examples for sin, cos and tan with one positive and
one negative value in each case, so that we cover all the possibilities. Then we shall use these
to build up the rules for the general solutions for each particular case.

When we solve trig equations, we are working back from the sin, cos or tan of the angle
to the angle itself. This means that we shall have to use the inverse functions of sin!, cos™
and tan~! (or arcsin, arccos and arctan as they are sometimes known). If you are unsure about

these, you should go back now to Sections 5.A(f), (g), (h) and (i) to see how they work.
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5.E.(b)

The angle given by your calculator from a known sin, cos or tan is the angle given by
using the inverse function. (Remember that a function gives just one possible result for every
value fed into it.) We know that for any particular value of sin, cos or tan, there are an
infinite number of possible matching angles.

The angle given by using a trig inverse function is called the principal value.

For example, if sin x = %, then the principal value for the angle x in radians is 7z/6. This
is what sin™! (%) gives you. But other possible solutions to the equation sin x = % are the
angles 571/6, 137/6, 177/6, etc. and there are an infinite number of these.

Finding solutions for equations in cos x
I am starting with cos x because this is the easiest one to write down the patterns for. We’ll
solve the equation 6 cos®> x —cos x — 1 =0

(a) for the principal values,
(b)  for all angles between 0° and 360°,
(c) for all possible angles, giving the answers in degrees.

This is just a quadratic equation like the ones we worked with in Chapter 2. If you like, you can
put cos x = y in the equation, which then gives you 6y* — y — 1 = 0. This factorises to give

2y-1D@By+1)=0 or

replacing y by cos x. You can also factorise straight to this form without bothering with the
y if you like.

From this, there are two possible solutions for cos x.

Either Cos X = % and the principal value of x is 60°, or
3cosx+1=0 so cosx= —% and the principal value of x is 109.5° to 1 d.p. (This
answer is 109.47 to 2 d.p. and I'll use this in any further working to avoid rounding errors.)
These two angles give us the answer to (a).

(2cosx—1)3cosx+1)=0

2cosx—1=0 so

Now we answer (b) by finding all the solutions of the equation between 0° and 360°.

It’s easiest to see where these must be if we use the two circle diagrams of Figure 5.E.1.

From Figure 5.E.1(a) we get a second possible solution of 360° — 60° = 300°.

From Figure 5.E.1(b) we get a second possible solution of 360° — 109.47 =250.5°to 1 d.p.

Use your calculator to check that x = 300° and x = 250.5 do fit the equation which we
started with.

@ l ¢0° @ 101'50 !
]
| |
| )
AN N
=1 \ 1% ! - -)3; !
' 1
: |
l
300°
CoS Xz Vo ~I 250:5* -7 cosx=-J}3
Figure 5.E.1
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(c) Now we want to find a// the possible solutions to the given equation.

Looking at the two circle diagrams of Figure 5.E.1, we can see that each pair of answers
is symmetrically placed either side of the horizontal axis.

Adding any number of full turns to each of the four solutions we already have will give
further possible solutions.

We can show all these further solutions by writing the ones which we already have in the
form

x=360°7 £ 60° and x=360° + 109.5°

where n is any whole number. (Remember that ‘+’ means ‘plus or minus’.)

The answers which we already have for (ii) could have been found by putting » = 0 and
n =1 in the two general solutions above and then picking out the ones which come between
0° and 360°. (Try doing this for yourself.)

You can also see that these answers agree entirely with what happens if you use the graph
of cos x, by looking at Figure 5.E.2. The answers are given here by the x values at the
intersections of y = cos x with the two lines y = % and y = —3.

We have now seen that the two sets of general solutions are given by

x = 360n < (the principal value in degrees)

and that this was true whether the principal value was positive or negative.

1Y
/7 /\
3 =}§, f }5 ' 1 ]
Y ¥ Y Y
-m:s ! H 103 - 250 ' N : 4'6‘1-5 >
==L i
=3 -k ]
I
1
i
= CoS X = .
J 4 solutions between O and 3¢C '
Figure 5.E.2

These are the rules which we now have.

Finding all possible solutions for the angles from a given cos

You must decide whether you are working in degrees or radians before you start.

! a on your calculator.

® [f cos x = a, first find cos™
cos ! a is called the principal value for the angle.
® [f you are working in degrees, all the possible values are then given by
x = 360°n * (the principal value in degrees).
¢ If you are working in radians, all the possible values are then given by
x = 27mn + (the principal value in radians).

where n is any whole number.

This is called the general solution of the equation cos x = a.
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Never give a mixed answer like x = 2nm = 60° because this is meaningless.
You must work completely either in degrees or in radians. (If you need help
with radians, see Section 4.D.)

EXERCISE 5.E.2 Try solving the similar equation 2 cos® x + 3 cos x + 1 = o for yourself,

(a) for the principal values, (giving your answers in degrees),
(b) for all angles between 0° and 360°,
(c) for all possible angles, that is, the general solution.

5.E.(c) Finding solutions for equations in tan x
We’ll use the following example to show how this is done.
Solve the equation sec” x — tan x — 3 = 0

(a) for the principal values,
(b) for all angles between 0° and 360°,
(c) for all possible angles.

We have a difficulty here which is that this equation is partly in terms of sec x and partly
in terms of tan x, and we can’t do anything with it as it stands. But we found earlier a
relationship between sec x and tan x which we can use here.

Can you remember what it is?

We can use the identity tan® x + 1 = sec® x (Section 5.B.(b)).
Substituting for sec® x using this, we now have

tan® x + —tanx — 3 = sO tan“x—tanx — 2 =
2 1 3=0 2 2=0
so (tanx —2)(tanx + 1) =0.

(a)  Either tan x — 2 = 0 so tan x = 2 and the principal value of x is 63.43 = 63.4° to
1 dpp., ortan x + 1 = 0 so tan x = —1 and the principal value of x is —45°.

(b) Now we want all the solutions between 0° and 360°.
Using the definition for the tan of an angle greater than 90° from Section
5.A.(c), we can see where the other two solutions between 0° and 360° must be.
Figure 5.E.3(a) shows the two solutions of tan x = 2, and Figure 5.E.3(b) shows

the two solutions of tan x = —1 between 0° and 360°.

® I ® '

1252

180%+ 63-4° 1 Tanx= 2 = Tanx = ~1
Figure 5.E.3
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(c) Adding any number of full turns to the solutions above will give all the possible
solutions.
Can you see what pattern these will have? Look particularly at what happens
after any number of half turns.

This time, the principal value is always added on to however many half turns have been
made.

This adding on takes into account the sign of the principal value, so 135° = 180° +
(—45°), for example.

The general solution is given by x = 180°z + 63.4 and x = 180°n — 45°, where n is a whole
number (or integer).

You can see how these solutions will also work graphically by looking at Figure 5.E.4

below.
JkH
[ S i 1 Y= Eanx)i
| | I I
l ] 1 | 1
1 1 I l
} 2 } + +y=2
) v ! /3( | /y !
|_-45 L 1135 1) N
| i o 634 Mgo 243-4 | ,:\/360 4234 'L ’
t ~- T t ==1
I : i | | J
! | l l
| | I |
s | i i
4—4 Solutions between 0°and 360°—
Figure 5.E.4

The solutions are given by the x values at the intersections of y = tan x with the two lines
y=2andy=-1.
These are the rules which we now have.

Finding all possible solutions for the angles from a given tan

e If tan x = a, first find tan"! @ on your calculator.
tan! a is the principal value for the angle.

¢ If you are working in degrees, all the possible values are then given by
x = 180°n + (the principal value in degrees).

® [f you are working in radians, all the possible values are then given by
x = nx + (the principal value in radians)

where n is any whole number.

(You must include the sign of the principal value in these rules.)
This is called the general solution of the equation tan x = a.
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EXERCISE 5.E.3

Try solving the similar equation of sec® x + 2 tan x — 4 = o for yourself
(a) for the principal values, giving your answers in degrees,

(b) for all angles between 0° and 360°,

(c) for all possible angles, that is, the general solution.

5.E.(d) Finding solutions for equations in sin x
We’ll use the example of solving the equation 1 + 3 sin x — 5 cos 2x =0

(a)
(b)
(c)

for the principal values,
for all angles between 0° and 360°,
for all possible angles, giving the answers in degrees.

Again we have a mixed equation. We need to use a trig identity so that we can write it
just in terms of sin x.
How else can we write cos 2x?

We can say that cos 2x = 1 — 2 sin? x from Section 5.D.(d).
Substituting this in the equation gives us

1+3sinx—5(1-2sin’>x)=0.

From this we get

(a)

(b)

(©)

10sin>x+3sinx—4=0 so (2sinx—1)(5sinx+4)=0.

Either sin x = %, which gives the principal value of x = 30°, or sin x = — %, which
gives the principal value of x = -53.13° = -53.1° to 1 d.p.

All the possible solutions between 0° and 360° can be seen from the two circle
diagrams in Figure 5.E.5.

D3

30¢-9°
Sinx=-45

233-4°

-1 Sinx = )a

Figure 5.E.5

Circle (a) gives us 30° and 180° — 30° = 150°.
Circle (b) gives us 360° — 53.13° = 306.9° to 1 d.p. and 180° + 53.13° = 233.1°
to 1d.p.

The pattern for getting all the possible solutions is a little bit harder to spot this
time as the principal value is sometimes being added on and sometimes being
taken off. Can you see how to describe this pattern? It might help you if you think
about the number of half turns involved as you get to each new solution.
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We know that all the possible solutions will be given by adding any number of full turns
to the four solutions which we already have.

If we look at Figure 5.E.5(a) first, this gives 360°n + 30° and 360°n + 180° — 30°.

Now 360°n = 2 X 180°n, so we can write these two answers as 2 X 180°z + 30° and
2 X 180°n + 180° — 30°.

This is the same as 2n (180°) + 30° and (2n + 1) 180° — 30°.

If the number of half turns is even, we add on the 30°.

If the number of half turns is odd, we take off the 30°.

These two results can be ingeniously combined by using (—1)", because (—1)”" gives us +1
if n is even and —1 if n is odd.

All the possible solutions from sin x = % are given by x = 180°r + (—1)" 30°. (The two
solutions of (b) are given by putting n =0 and n = 1.)

In just the same way, all the possible solutions of sin x = — % are given by writing
x = 180°1 + (=1)" (-=53.1°).

You can also see how these solutions are building up in the sketch graph of Figure 5.E.6.
They are given by the x values at every intersection of the curve of y = sin x with the two
lines y = % and y = —% respectively.

4 solutions between o and 3¢0"'
Figure 5.E.6

The box below gives the rules which we have now found.

Finding all possible solutions for the angles from a given sin

e If sin x = q, first find sin”' @ on your calculator.
sin”! g is called the principal value for the angle.

® [f you are working in degrees, all the possible values are then given by
x = 180°1 + (=1)" (the principal value in degrees).

¢ If you are working in radians, all the possible values are then given by
x =an + (-1)" (the principal value in radians).
where n is any whole number.

(You must include the sign of the principal value in this rule.)
This is called the general solution of the equation sin x = a.
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EXERCISE 5.E.4 Try solving the equation cos? x + 2 sin x = 1 for yourself
(a) for the principal values (giving your answers in radians),
(b) for all angles from o to 2,
(c) for all possible angles, that is, the general solution.

I will finish this section with an example of a slightly different kind of equation involving
sin x.

Suppose we need to solve sin 3x = sin x for angles between 0 and 2.

See how far you can get with this yourself before looking at what I have done.

It’s easy to spot that x = 0 is one solution of this equation, but how can we set about
finding the others?
Figure 5.E.7 shows a snapshot of what’s happening graphically.

,)"9 Y= Sina
i j
\ {
[} H
o : 72, ' i 31y, 2y
N T - T >X
] |
. :
\ '
-1 \
5: sm3x
Figure 5.E.7

We can now see that x =t and x = 27t will also fit, but what values of x will give the other
four solutions?

We have sin 3x =sinx so sin 3x —sin x = 0.

Now we use the second of the four factor formulas from Section 5.D.(h)

sinP—sinQ=2cos(P+Q> sin(P_Q>
2 2

and put 3x = P and x = Q. This gives us
2cos(2x)sinx=0 so sinx=0 or cos2x=0.

From sin x = 0 we get x = 0 or 7T or 27.

Fromcos 2x=0 we get 2x=2nm +£m/2 so x=nm +ma/4, giving us the other four
solutions of x = «/4, 37/4, 57/4 and 77/4.

There is often more than one possible method for solving these equations. For example,
we could have done this one by writing sin 3x = 3 sin x — 4 sin® x from Section 5.D.(e) and
then factorising. Also, in the method above, when we had cos 2x = 0 we could have used
cos 2x = 1 — 2 sin? x, giving sin® x = % so sin x = + % Sometimes one method is neater
than another, but there is no magic ‘right way’. '
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EXERCISE 5.E.5 Try solving the following equations which use the whole of Section 5.E so far.
In each case, find (a) the principal value(s), (b) solutions for 0° < x < 360° or
o0 = x < 27 (I give the units after each question), and (c) the general solution. (Give
your answers correct to 1 d.p. for degrees and 2 d.p. for radians.)

I think it is much easier to use the general solutions to find the answers
between 0° and 360° or 0 and 27. You just need to put in the values for n
which give the answers in the desired range. I suggest you try doing this.

(1) cos x = % (deg) (2) tan x =5 (deg) (3) cosx = —% (rad)
(4) tan x = -1 (rad) (5) sin x = 0.4 (deg) (6) 6 sin®> x + 5 cos x = 7 (rad)

(7) tan? x = tan x (rad) (8) 3 sec® x + tan® x = 5 (deg)
(9) sin 2x = 3 cos x (rad) (10) sin 5x + sin x = 0 (deg)
5.E.(e) Solving equations using R sin (x + «) etc

What should you do if you meet a problem like the following one?
Solve, when possible, for angles between 0° and 360°, the three equations

(1) 4sinx+3cosx=6,
(2) 4sinx+3cosx=35,
(3) 4sinx+3cosx=2.

It is not difficult to do this if we use the results of Section 5.D.(f).

We showed there that we can write 4 sin ¢ + 3 cos ¢ in the form 5 sin (¢ + «) with
a = tan’! %. (The only differences here are that we have x instead of ¢, and that we are
working in degrees instead of radians, so @ = 36.87° to 2 d.p.)

If you are at all unsure about this, you should go back now to Sections 5.D.(f) and (g),
and work through them before going any further. Then see if you can solve the three
equations yourself.

This is what I hope you have found.

(1)  There is no possible solution here. We can see this in two ways.
Firstly, if 5 sin (x + &) = 6 then sin (x + a) = % which is impossible.
You can also see this by looking at the graph of y = 5 sin (x + ) which I have
sketched in Figure 5.E.8.
You can see here that the line y = 6 misses this sine curve completely, so there
are no solutions to the equation.

(2) Again, we can look at this in two ways.

We have 5 sin (x + @) = 5 which gives sin (x + @) = 1, so the principal value
of (x + a) is 90°.

From this, we can say that (x + ) = 180°z + (—1)" 90° using the rule for the
general solution from Section 5.E.(d).

This then gives us x = 180°n + (—1)" 90° — a.

Putting a = 36.87 gives us the single solution between 0° and 360° of x = 53.1°
to 1 d.p.
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Figure 5.E.8

3)

This answer fits with what we can see is happening graphically. The line y = 5
is a tangent to the curve y = 5 sin (x + &), and only touches it once between x =

0° and x = 360°.

Now we have 5 sin (x + @) =2 so sin (x + @) = % which gives the principal value
of (x + @) as 23.58° to 2 d.p.

Therefore, the general solution for (x + &) is given by 180°z + (—1)" (23.58°)
or x + 36.87° = 180°n + (-1)" (23.58°), putting o = 36.87°.

Putting n =0 gives x =—13.3°, n =1 gives x = 119.6° and n = 2 gives x = 346.7°
all to 1 d.p.

You can see all three of these answers on the sketch graph in Figure 5.E.8. The last two
of them give the solutions in the range from 0° to 360° that we want.

Notice that the answers given by the general solution for (3) are symmetrically placed
either side of the answers for (2), and that all these answers have been affected by the sliding

along to

the left by « of the graph of y = 5 sin x to give y = 5 sin (x + «).

The most usual mistake made when solving this sort of equation goes as

follows:
The solver gets to x + a = 23.58° correctly and then rearranges this to

get the correct answer for x of —13.3°.

Then they think ‘Curses, I needed a general solution here! Oh well, I’ll
put x = 180°n + (-1)" (-13.3°).

This is not true! The general solution comes from using the graph of
y =5 sin (x + ) and the solutions must be found taking the whole of
(x + ) as I have done.

EXERCISE 5.E.6

Try these two for yourself now.

(1) Solve, when possible, the three equations
(@ 3cost-2sint =4,
(b) 3 cost-2sint =13,
(c) 3cost—-2sint=1foro=ts 27 giving your answers to 2 d.p.
Show your answers on a sketch graph.

(2) Solve the equation 3 sin 2t + cos 2t = 2 for angles between 0° and 360°.
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Sequences and series

In this chapter we look at different patterns in sequences of numbers, and how they
might be described. We discover how it is possible to find the sum of the terms of
some of these sequences, and find some practical applications of these sums. We
begin to see how infinite quantities of things behave through looking at what
happens if we have very large numbers of them. Endless quantities of things have
to be treated with great caution, so | show you some examples of what can happen
otherwise.

The chapter is divided into the following sections.

6.A Patterns and formulas
(@) Finding patterns in sequences of numbers,
(b) How to describe number patterns mathematically

6.B Arithmetic progressions (APs)

(@) What are arithmetic progressions? (b) Finding a rule for summing APs,
() The arithmetic mean or ‘average’, (d) Solving a typical problem,

(e) A summary of the results for APs

6.C Geometric progressions (GPs)

(@) What are geometric progressions? (b) Summing geometric progressions,

(©) The sum to infinity of a GP, (d) What do ‘convergent’ and ‘divergent’ mean?
() More examples using GPs; chain letters, (f) A summary of the results for GPs,
(g) Recurring decimals, and writing them as fractions,

(h) Compound interest: a faster way of getting rich, (i) The geometric mean,

() Comparing arithmetic and geometric means,

(k) Thinking point: what is the fate of the frog down the well?

6.D A compact way of writing sums: the X notation
(@) What does X stand for? (b) Unpacking the s,
(©) Summing by breaking down to simpler series

6.E Partial fractions

(@) Introducing partial fractions for summing series,

(b) General rules for using partial fractions, (c) The cover-up rule,
(d) Coping with possible complications

6.F The fate of the frog down the well

6.A

Patterns and formulas

6.A.(a)

Finding patterns in sequences of numbers

We shall start by looking at some lists of numbers for which there is an underlying pattern
so that there is some rule for writing down the next number. A list of numbers like this is
called a sequence. A particular number from a sequence is called a term of the

sequence.

Here are some examples. In each case, see if you can fill in the next three terms in the
sequence, and write down the rule that you are using so that somebody else could continue

filling in where you have stopped.

226 Sequences and series



@ 1,2,3,4,5,... b) 1,3,57,9,...

) 2,58, 11, 14,... d 1,2,4,8,...

) 1,2,4,7,11,... (f) 54,18,6,2,3,

® Lhii RSN

() 1,4,9,16,25,... G 1,2,3,5,8, 13,21,
) 1,827, 64,... @ 1,2, 6,24, 120,

6.A.(b)

Here are the answers for you to check yours against.

(a) 6,7, 8. The counting numbers, or add 1 each time.

(b) 11, 13, 15. The odd numbers. Add 2 each time, starting from 1.

(c) 17,20, 23. Add 3 each time, starting from 2.

(d) 16, 32, 64. Double each time, starting from 1.

(e) 16,22,29. Start by adding 1 to the first term, which is itself 1. Then, for each new
term, add 2, 3, 4, etc. so that the number you add is always 1 more than the

previous number added.

2, 22—7, 82—1 Take one third of the previous term each time, starting with 54.

1

S
(2) > 96 ﬁ. Take one half of the previous term, starting from one third.
6 7

(h) %, 7, 5. For each new term, add 1 to both the top and the bottom of the fraction
which makes the previous term.

(1) 36, 49, 64. This sequence is formed from the squares of the counting numbers.

(G) 34,55, 89. After the first two terms, each term is made by adding the previous two
terms. This is called a Fibonacci sequence.

(k) 125, 216, 343. These terms are the cubes of the counting numbers.

(I) 720, 5040, 40320. The terms of this sequence are formed by finding 1, 2 X 1,
3 X 2 X 1, etc. They are called factorials, and are written as 1!, 2!, 3!, etc.

ol

-
o]

How to describe number patterns mathematically
It is often useful to be able to write down a rule or formula which will tell us how to find
any term we want in a sequence of numbers such as the ones above. To be able do this, we
shall need a shorthand system for labelling the terms. We will use the system of calling them
Uy, Uy, Us, ... so that u, for (b) is 7, and us for (e) is 11. If we don’t want to specify a
particular number, we can call the term u, where n is standing for any number which we
might later want to choose. We call u,, the general term.

The n in u, is called a subscript and is just a label telling us how far we
have gone. Don’t confuse it with #” which means « multiplied by itself
n times.

What we now want to do is to find some way of writing a rule which gives the general
term or u, for each of the sequences from (a) to (1).

The easiest way of explaining how we can set about doing this is to take two particular
examples.
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EXAMPLE (1) Sequence (c) goes 2, 5, 8, 11, 14,. ..

The description in words for this was ‘add 3 each time, starting from 2.’
There are two ways in which we can write this mathematically.
Wecansay u; =2, u, =2 +3,u3 =2+ 2 X3),u, =2+ 3 X 3)

and so on, so that we are describing each term using the actual numbers

which make it up. We’ll call this description (A).

Sticking to the same system, how would you write u,? How would

you write u,,?

|
u;=2+(6X3) and u,=2+((n-1)X3)=2+3n-3=3n-1.

Notice that we needed (n — 1) rather than n» when we first wrote down the rule for u,,. We
can check this rule by testing it when n = 5. We get 3 X 5 — 1 = 14 which we know is
correct.

We could also think of this sequence as building up in a chain, each new term coming
from the previous term according to a particular rule. We’ll call this description (B).
Description (B) for this sequence would be u, = u,,_; + 3. But just knowing this would

not be enough, because, for example, the sequence 1, 4, 7, 10, 13, ... would also fit this
description. However, if we also give the value of the first term, the sequence is fully
described.

Description (B) is u, = u,,_; + 3 and u; = 2.

111 1
EXAMPLE (2) Sequence (g) g0€S 3, ¢> 13> 53~ - - -
The description in words for this was ‘take one half of the previous
term starting from one third’.

Description (A)  We can say that u; = %, U :% X %, U =% X % X %= (%)2 X %
SO i, say, is (%)6 X % and u, = (%)” T x %
Notice that we need a power of » — 1 here to make u, work
correctly, not 7.

Description (B)  We can say that u, = %un,l and u, = %
Just as in the last example, if we don’t say what u, is, we could
get quite a different sequence. For example, the sequence 24, 12,
6, 3, ... also fits the description u,, =5 u, ;.

Sometimes both these methods of description are useful when we are considering
particular sequences. Sometimes one is very much easier to find than the other.

EXERCISE 6.A.1 Try finding the following descriptions for yourself now. Keep a special eye out for
sequences which can be described in a similar way to each other because we shall
be looking at some of these in more detail in the next two sections.

(1) Find descriptions (A) and (B) for sequence (a) on page 225.
(2) Find descriptions (A) and (B) for sequence (b).

(3) Find descriptions (A) and (B) for sequence (d).

(4) Find just description (B) for sequence (e).

(5) Find both descriptions (A) and (B) for sequence (f).

(6) Find just description (A) for sequence (h).
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(7) Find just description (A) for sequence (i).
(8) Find just description (B) for sequence (j).
(9) Find just description (A) for sequence (k).
(10) Find both descriptions (A) and (B) for sequence (l).

I am giving the answers to this exercise here as we shall be needing some of them in the
next two sections.

(1)

2)

Description (A) for sequence (a) gives u,, = n and description (B) gives

u, =u,  +1 with u; = 1.

For description (A) for sequence (b), we can say that each odd number is one behind
the corresponding term in the sequence of even numbers, so u,, =2n — 1.

It is useful to remember this as a formula which must give an odd number.
Similarly, 2n + 1 must also always be an odd number, while 2 is always
even.

3)

4)

)

(6)

(7)
)

Description (B) for this sequence says u,, = u,,_ | + 2, with u; = 1.

Description (A) for sequence (d) is u, =2 X 1 and u; = 2% X 1 etc.
sou,=2""1x1=2""1
For description (B) we have u,, = 2u,,_, with u; = 1.

Description (B) for sequence (e) is u, = u,_; + (n — 1) with u; = 1, or you could
write this as u, | = u,, + n with u; = 1.

It is quite difficult to find a formula for u,, in terms of » here, just by looking
at the terms, which is why I didn’t ask you to do it.

In fact, the rule for (A) is u,, = %nz — %n + 1. Check for yourself that this works
forn =1, 2 and 3.

For sequence (f), if we write u, = 18 = (%) 54, and u; = 6 = (%)2 54, we see that
u, = (%)"‘1 54, so this is description (A).

Notice, here, that the first term uses (%)0 = 1, which is one of the rules from
Section 1.D.(b).

Description (B) is u,, = %(un, 1) with u; = 54.

n
Description (A) for sequence (h) is u, = —1
n+

Description (A) for sequence (i) is u, = n>.

Description (B) for sequence (j) is u, = u,, | + u, _» with u; = 1 and u, = 2.
The formula for u,, in terms of # is so unlikely that even your wildest guesses
would never have produced it.

1 [/1+ 5\ [1—5\n+1
Itisun=7 — .
J5 2 2

If you substitute some values for # in this formula, and use a calculator, you will
find that you do indeed get the right terms.
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6.B

(9) Description (A) for sequence (k) is u, = n>.
(10) Description (A) for sequence (1) is u,, = n!
This means that u, _; = (n — 1)!  But n! = n(n — 1)! so description (B) is
u, = nu,_, with u; = 1.

A formula which describes u, using the previous terms of the sequence, such as
u,=u,_,+u,_, for the Fibonacci sequence, is called a recurrence relation or difference
equation. Such equations have important applications in electrical engineering.

Arithmetic progressions (APs)

6.B.(a)

What are arithmetic progressions?
The sequences (a), (b) and (c) in Section 6.A.(a) are all examples of arithmetic progressions
or APs for short.

If you look back, you will see that in each case each new term is made by adding the
same constant number to the previous term.

We can write this type of sequence in the form

a,atd a+2da+3d...

where a is the first term (so #; = @) and d is what is called the common difference between
each successive pair of terms.
In (a), a =1 and d = 1. What are a and d in (b) and (c)?

We would have a = 1 and d =2 in (b), and a = 2 and d = 3 in (c).

The nth term of an AP is given by u, = a + (n — 1)d since we have only added d
on (n — 1) times.

It’s easy to think that the nth term will be a + nd but this is not so!

If the particular AP which we are considering only has # terms, so that u,, is the last term,
we sometimes call this last term /, so then u,, =/ =a + (n — 1)d.

Suppose we have the AP 1, 3,5,7, ..., 33.

(The dots in the middle signify that there are a whole lot of other terms here which we
do not want to (or even in some cases cannot) list individually. This use of dots is a standard
piece of mathematical language.)

How many terms have we got here?

Using u, =/ =a+ (n—1)d with a = 1 and d = 2 gives

[=33=1+m-1)2=1+2n-2 so 2n=34 and n=17.

(Equally, each individual jump is of size 2, and the total jump from 1 to 33 is 32.
Therefore, we have 16 jumps and 17 terms. This is like fence-posts and the gaps between
them; there is one more post than there are gaps.)
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Try these two yourself.
For each of the APs (1) 3,7, 11, ..., 79 and (2) 102, 100, 98, ..., 14 write down the
values of a and d. How many terms are there in each series?

6.B.(b)

You should have these answers.
For (1), a =3 and d = 4 which gives 79 =u,=1=3+(n—-1)4=3+4n—4s0 80 =4n
and n = 20.

For (2), a = 102 and d = -2. (The common difference here is negative.)
We have u, =1 =14=102+ (n - 1) (-2) =102 - 2n +2 so 2n =104 — 14
and n=45.

Finding a rule for summing APs
For practical purposes, we often need the sum of some number of terms of an AP.
When the terms are added together, we call the result a series.
The process of actually adding the terms to find their sum is called summing the series.
Is there any way in which we can do this without actually having to add on each term
separately?

There is a very neat way to do this. Think what happens if we turn the series the other
way round, and then add it to itself in the original order. The pairs of terms exactly slot into
each other to give the same result, like two staircases fitted opposite ways round.

Figure 6.B.1 shows the steps in adding the first eight terms of an AP as the sums build
up term by term.

Figure 6.B.1

Turn it upside down and you have the identical situation.

To show how we can use this, we’ll take the example of the series (1) which is
3+7+11+...+75+79.

We have just found that it has 20 terms, so we can write, using .S for ‘sum’,

Swo=3+7+11+...+75+79.
Reversing the order, we can also write

S=79+75+71+...+7+3.
Adding these two sums, we get

25,0=82+82+82+...+82+82
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and there are 20 lots of 82. Therefore
S0 =13 X 20 X 82 = 820.

We can now see how this same system will work for a general AP with a first term of a,
a common difference of d and a last term, u,,, of /, by writing

S,=at(@a@+d)y+t@+2d)+...+(-d)+1
Reversing the order, we can also write
S,=1+(-d)+(-2d)+...+(a+d)+a.
Adding, we get
28, =@+ D+@+D+@+hH+...+@++(a+]).
There are n terms here, so we have
2S,=n(a+1) or S,=3n(a+]).
Also, since [ = u,, = a + (n — 1)d, we can say

S, =3m(a+a+ - 1)d) =3 2a+ (n—1)d).

The rule for the sum of n terms of an AP is

n n
S,,=—<a+l>=—(2a+(n—l)d>.
2 2

6.B.(c) The arithmetic mean or ‘average’

We define the arithmetic mean, 4, of two numbers, a and b, to be the number which makes
a, A, and b form an AP.

In other words, the arithmetic mean of a and b is the midway value between a and b, since
an arithmetic progression is formed by taking equal steps between the terms.

This means that 4 = % (a+ D). A is what people commonly mean when they talk about
the ‘average’ of two numbers.

This definition can also be generalised by defining the arithmetic mean of » numbers to be

a1+az+a3+a4+...+an

n

Again, this is what is commonly meant by the ‘average’ of these n numbers.

6.B.(d) Solving a typical problem
Here is an example of a typical problem on APs.
The 7th term of an AP is 23, and the 4th term is 14. Find the sum of the first 20 terms.

First, we must find @ and d from the information that we have been given. The 7th term is
a + 6d, and the 4th term is a + 3d, so we have

a+6d=23 (1)
a+3d=14 (2)

Subtracting equation (2) from (1) gives 3d = 9 so d = 3. Therefore

20
a=5, and S =—(10+19X3)=670.
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6.B.(e) A summary of the results for APs
Before asking you to try some similar questions yourself, I will group together all the
formulas which we have found for APs.

® We write APs as a, a +d, a + 2d, ..., where d is called the common difference.
The nth term is given by u,, = a + (n — 1)d. If this is also the last term, we call it /.
The sum of n terms is given by S, = n/2 (a + [) where [ is the last or nth term,

or S,=5[2a+ (n—1)d].

a+b

The arithmetic mean of two numbers, a and b, is

The arithmetic mean of n numbers, a,, a5, as, ..., a,, is

a,ta, +tazta,+...+a,
n
EXERCISE 6.B.1 Try these questions yourself.

(1) For each of the following APs:
(i) write down the values of g and d,
(ii) find the number of terms in the series,
(iii) sum the series.

@ 2+9+16+...+107
(b) 100 + 95 + 90 + ... + 15
© 6+6,+65+...+172

(2) (@) Find the sum of the natural numbers from 1 to 100 (that is, find 1 + 2 + 3 +
...+ 100).
(b) Find the sum of the even numbers up to, and including 100, starting with 2.
(c) Find the sum of the odd numbers up to 100, starting from 1.
(d) Find the sum of the first n natural numbers.

(3) The first term of an AP is 11 and the sum of the first 18 terms is 1269. What is
the common difference?

(4) How many terms must be taken in the series 7 + 11 + 15 + . . . for the sum to
be 13757

(5) An AP is such that the third term equals twice the first term. The sum of the
first ten terms is 195. Find the first term and the common difference.

6.C Geometric progressions (GPs)

6.C.(a) What are geometric progressions?
We move on now to consider sequences like those in (d), (f) and (g) in Section 6.A.(a). Each
of these is an example of a sequence in which each new term is found by multiplying the
previous term by a constant amount. This amount is called the common ratio. A sequence
like this is called a geometric progression, or GP for short.

6.C Geometric progressions 233



We can write this type of sequence as a, ar, ar?, ar>, . . ., ar"

and 7 is the common ratio.

~! where a is the first term,

The nth term is ar” L.

(Notice that it isn’t ar”. Again, we are one behind ourselves.) r is called the common ratio
because if we divide any term by the previous term, we get » as the answer.

u, ar’ !

It is always true for a GP that — =

u ar

n—1

In other words, the ratio between any pair of successive terms is 1: 7.
It is often helpful to use this property in problems on GPs.
Taking (d) as a numerical example, we have @ = 1 and » = 2, and

2 4 8 16 )
— = —=—=— etc. = the common ratio, 2.
1 2 4
6.C.(b) Summing geometric progressions
How can we find S, =a +ar + ar> + ar’> + ...+ ar"~1?

It will be no good turning the sum the other way round this time, as the two sums will
not slot together nicely as they did for the AP.
However, if we multiply S, by r, the whole sequence gets shifted along by one. We get

rS, = ar+ar’*+ar’*+ ... +ar" (1)
S,=a+ar+ar’+ ... +ar""! ()
Can you see what makes a good next step?
|
Subtracting (2) from (1) makes nearly everything disappear, and neatly gives us
rS,—S,=ar" —a.

Factorising, we get S,(r — 1) = a(r" — 1), so

S, = a(r—ll) (G1)

v —

Equally, by multiplying the top and bottom of the previous formula by —1, we can write
this as

.
S, =—— (G2
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The working is easier if you use (G2) when r is between —1 and +1, and (Gl)
otherwise.

Here are some typical problems on GPs. (You might like to try having a go yourself first,
before looking at how I have done them.)

(1)  Sum the following GPs.
(a) 2+ 6+ 18 + ... for the first 20 terms.
b)) 1-2+4-8+16... for (i) 10 terms, (ii) 11 terms.

The solutions for this first question are as follows:

(1) (a) We want S,, with a =2 and r = 3.
Using formula (G1), we have

23 - 1)
Shy = ——— = 3486784 398.
3-1
(b) We want (i) S;o, (ii) S;;, with a = 1 and r = 2.
Again using (G1), we have

. 1(=2)"" - 1)
(l) S102T2—341
1(-2)"" -1

It seems as if, for this series, not only are the terms alternating in sign, but also the
sums, as we add on each new term.

6.C.(c) The sum to infinity of a GP
Suppose we have the GP 24 + 12+ 6 +3 + ... and we want to find (a) S4, (b) S, and
() Sz-

We have a = 24 and r = %

(a)  The easiest way to find S, is simply to add the first four terms, which gives us 45.
It is slightly more convenient to use formula (G2) for (b) and (c).

(b) S is given by
241 -3
== -

-3

0 = 47.953125.

(¢)  Similarly,

1
24(1 - (5)%°
= (—(f)) = 47.99995422.

20
-3

We notice here that the difference between the sum of the first four terms and the first ten
terms is small. The difference between the sum of the first ten terms and the first twenty
terms is very small indeed.
We can see why this is so if we look at the sum of #n terms. We have
1
24(1 - (2)") 1
S =T 480 -G

2
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6.C.(d)

As n becomes larger and larger, (%)" will become smaller and smaller. In fact, by taking a
sufficiently large value of n, we can make the value of (%)" become as close to zero as we
please, although it will never equal zero.

We can write this mathematically by saying lim (%)" =0.
n— o

This means that the limiting value of (%)", as n tends to infinity, is zero. The symbol
represents infinity, a boundlessly huge amount.
Since (%)" — 0 as n — %, we see that the sum to which the series is approaching, is 48.
We call this the sum to infinity, and write it as S...
The same kind of thing will happen with any r which lies between —1 and +1.

The example which we have just looked at could be demonstrated by what happens if you
start with a piece of string 48 centimetres long and cut it in half. Lay down the stretched out
left-hand piece, and halve the right-hand piece. Continue with this process, each time laying
the new left-hand piece end to end with the previous pieces, and halving the right-hand
piece. The lengths which you have joined end to end are the same as the numbers in the
sequence, and your infinite process (mathematicians have no problem in halving infinitely
tiny bits of string) brings you closer and closer to your original 48 centimetres of string.

Another way of explaining what conditions » must fit in order for us to have a sum to
infinity is to say that we must have |7| < 1 where |r| means the absolute value of 7. This is
the value of r taken as positive, whatever the value of r itself, so for example, |%| = %
but |-3| = 3. |#| < 1 means the same as -1 <r <+ 1.

The sum to infinity of a GP

a(l —r") a
If|[r]<1 and §,= r—— then S, =

—-r 1—r

This sum to infinity only exists if |r| < 1, so that the values of 7 actually
do become smaller, as n becomes larger.

For example, if we have the sequence 2, 6, 18,54, ... soa=2and r =3, and
we say that
2
Sm=2+6+18+54+...=i=71

it is clearly absolute nonsense. (It must be, because now r” is getting larger
and larger.)

What do ‘convergent’ and ‘divergent’ mean?
A series whose sum becomes closer and closer to a definite finite value, S.., as we take a
larger and larger number of terms, is called convergent.

For a convergent series, it must be possible to make the difference S, — S.. as small as we
please, by taking a large enough value of x.
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6.C.(e)

If a series is not convergent, then it is called divergent.

An AP is always divergent. However tiny we make each individual step, we can always
add together enough terms to get an absolute total which is larger than any number we are
challenged with, because each step is equal in size.

The different sums that we can find by taking different values of n are called partial
sums. For example, if we have the series 1 +2+4+8+16+...,thenS,=1,S,=1+2=3,
Ss=1+2+4+ 8+ 16 =31 and each of these are partial sums.

More examples using GPs; chain letters
The following three examples also use GPs.

(1

2
3)

How many terms of the GP 1 + 2 + 4 + 8 + ... are required for the sum to be
greater than one million?

The third term of a GP is 72, and the sixth term is 243. Find the first term.

The numbers n + 1, n + 5, and 2n + 4 are consecutive terms in a GP. (Consecutive
terms are terms which come immediately after each other in order.) Find the
possible values of n, and of the common ratio. Find also the values of the three
given terms in each case.

Have a go at these yourself before looking at what I have done.

Here are my answers.

(1

We have 1 +2 +4+8 +...

Suppose we let n be the first number for which .S, > 1000 000.
12" -1)
a=1 ad r=2 so §,=—=2"-1.
2-1
2" —-1>1000000 so 2">1000001.
Taking logs to base 10 both sides, we have
logm (2”) > loglo (1 000 001)

Using the third law of logs from Section 3.C.(d), we have
log;o (1000001)
> .

nlog,, (2) > log;o (1000001) so
logyo (2)

Therefore n > 19.93 to 2 d.p.

The first whole number for which this is true is 20, so n = 20.

This series appears in the story of the slave who was offered a reward by a
grateful King. Spurning gold, he asked for wheat to be placed on a chess-board,
with one grain for the first square, two for the second, and the number of grains
doubled for each subsequent square. We have seen that there were already over a
million grains by the 20th square. For the 64th square, he had 2%* — 1 grains. This
is a seriously large number. If each grain is % cm long, and they are placed end to
end, they stretch more than one million times round the equator.

Chain letters do not work for the same reason. Suppose you receive a chain
letter asking you to post £1 to the sender, and then send off two identical letters
yourself. In theory, you end up £1 better off, but, in practice, this is exactly the
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same situation as the grains of wheat. By the twentieth step in the chain, even with
the number of letters only doubling each time, over a million people are involved,
and clearly the system must break down. The more letters there are in each step of
the chain, the sooner it breaks down. The only people who will safely make money
are those near the beginning of the chain. For them, the larger the number of letters
the better they do. The system is, in effect, a confidence trick.

(2)  The third term of the GP is 72 so ar? = 72.

The sixth term is —243 so ar® = —243. Dividing, we get
ar® 243

ar? 7

Because GPs are formed by continued multiplication, dividing is often a technique
which works well.

Cancelling down gives us 7* = —3.375.

This can be solved on a calculator by finding the cube root of +3.375, by using
the ‘x!?” key.

This gives 1.5, so the cube root of —3.375 is —1.5.

Now, 72 = a(-1.5)?, so a = 32.

(3) The ratio from dividing consecutive terms of a GP is constant, so

n+5 2n+4

= = the common ratio, r, of the series.
n+1 n+5

We have
n+S5m+5=m+1)(2n+4)
so n2+10n+25=2n2+6n+4
which gives
n?—4n—-21=0.
Factorising this, we get
nmn-7(m+3)=0 so n=7 or n=-3.

Both of these answers are possible.
We substitute back each in turn into (n + 5)/(n + 1) to find the common
ratio.
If n = 7, the common ratio is %
If n = -3, the common ratio is —

= %, and the three terms are 8, 12 and 18.
% = —1, and the three terms are —2, 2 and —2.
6.C.(f) A summary of the results for GPs

e We write GPs as a, ar, ar?, . .., where r is called the common ratio.

e The nth term is ar” .

® The sum of n terms is given by

a(r* — 1) : .
S, = —— (best used if || is greater than 1) (G1)
v —
or
a(l —r") . .
S, = r (best used if || is less than 1). (G2)
—r
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e If |r| <1, then
a

Soe = (G3)
1-r
e |r| < 1 means the same thing as —1 < r < +1.
EXERCISE 6.C.1 This exercise introduces some very important ideas, so you should do it now as |

shall use your answers straight away to show you how things work. Don’t be

tempted just to look at mine — thinking about your own answers makes an infinite

difference to how much you learn.

(1) Which of the following GPs are convergent? If they are convergent, find the
sum to infinity in each case.

(@ 12 + 18 + 27 +... (b) 18 +12+8 +...
(c) 64-48+36-27+... (d) 16 - 40 + 100 — 250 +. ..
e 1-1+1-1+1-1+... () 1-2+i-5+5%+...

(2) The sum of the first two terms of a GP is 30, and the sum of the second and
third terms is 20. Find the first term and the common ratio.

(3) The numbers n + 3, 3n — 3, and 5n + 3 are consecutive terms of a GP. Find the
possible values of n and of the common ratio. Find also the values of the three
given terms in each case.

(4) (@) Which is the first term of the GP 3 + 12 + 48 + ... to be greater than

1000 0007?
(b) How many terms of this GP are required in order to make a sum which is
greater than 10%°?

These are the answers which I hope you will have found.

1 (@ r= % so |7| > 1 and the series is not convergent. In fact, we can easily see that
the sums will increase rapidly.

2 o
(b) r =5 so |r| <1 and the series is convergent.

18
S, = — =54

1-3

(c) r=— % so |r| = % < 1 and the series is convergent.
64 25

-3 7
d) r=- % so |#| > 1 and the series is not convergent.
(€) ¥=—1s0|r| < 1. The symbol ‘<’ means ‘is not less than’. The series is not

convergent.

In fact, a very curious thing happens with (e).

Normally, if we are adding a string of numbers, we can add them in any
order that we please, so for example

1+2+5+18+24=(1+2)+(5+18)+24=(1+2+5)+(18+24) etc.

Here, if we put in brackets to group the terms, we get a very odd result.
It would appear that it is possible to say

S,=(1-DH+0-DH+{A-1)+...=0.
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2)

3)

240

®

Also, it would seem reasonable to say
S, =1+(C1+DH)+1+DH+(-1+1)+...=1.

Clearly, something is going wrong here.

The fault in the argument is that, by taking the sum to infinity, we are
implicitly assuming that the sum of this series is going to get closer and closer
to a definite number the further we go. Here, this is not at all true. In fact, if
we take an even number of terms the sum is zero, and if we take an odd number
of terms the sum is 1, and there is a continual flip-flop between the two. The
sum to infinity does not exist and the series is divergent.

At the time when mathematicians were first working on the theory of
infinite series, around the beginning of the nineteenth century, this kind of
result caused considerable consternation, followed by a big jump forwards in
understanding. It is often the cases which behave in peculiar ways which lead
to advances in maths, because they make it necessary to look in more detail at
what is actually going on. Situations like the one above make it evident that
everything is not always as it seems, and that it can be dangerous to jump too
soon to conclusions.

It is true that we can group together the terms in any way we please in any
finite sum of numbers. Also, if all the terms are positive, we can group the
terms in any convenient way in an infinite series, because each next term is just
another step up in the staircase. Putting some steps together into a larger step
will make no difference to the total height of the staircase, whether this height
is infinite or not.

1 .
Here, r = — 5 so |r| < 1 and the series is convergent.
1
2
Se = T = 3.
1+ 3

If we calculate some partial sums, that is, sums of different numbers of terms,
we find that they are alternately larger and smaller than %, but getting closer
and closer to this value the more terms of the series we take. (Try this for
yourself, using a calculator.) By taking a sufficiently large number of terms,
we can get as close to 5 as we please. Furthermore, and importantly, any greater
number of terms will bring us even closer to %

Writing the given information mathematically, we have

a+ar=30 (1)
ar +ar*=20 (2)

These equations can be solved rather neatly in the following way. Instead of
writing equation (2) in the obvious factorisation of ar(1 + ») = 20, we write it as
r(a + ar) = 20. We do this because the (a + ar) exactly matches up with the first
equation.

Now we can substitute in this new equation, using equation (1), and we get

307 = 20 so r = 5. Then, since a(1 + r) = 30, a = 18.

The ratio of successive terms of a GP is the same, so

3n—-3 5n+3
= = the common ratio.
n+3 3n -3
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So
92— 18n+9 =5n>+ 18n + 9.
4n? —36n =0 so, factorising, we have
4nn-9)=0 so n=0 or 9.

If n = 0, we get » = —1 and the three terms of the series are 3, —3, 3.
Ifn=9,r= % = 2 and the three terms are 12, 24 and 48.

(4) Here,a=3 and r=4.
(a) Let n be the first number for which u, is greater than 1000 000. Then

1 000000
u,=34)""1'>1000000 so 4" !> T
Taking logs, we have
- 1000 000
logyo (4”7 7) > logyo 3 /)

Now, using the third law of logs, we get
1000000
(n —1) logo (4) > logyo 3

from whichn —1>9.17 to 2 d.p. So the first possible integer value of n is 11.

(b) Now let n be the first integer such that S, > 10'°.

In the first part of this question, we are looking for the first term which is
larger than some given value. In the second part, we are looking at the size
of the sum of all the terms up to that point. Students quite often mix up
these two different situations.

We have
34"-1)
4 -1

>10"% so  4">10"+ 1.

Taking logs, and using the third law, we have
nlog;o (4) > logyo (10" + 1)
so n>16.6 to 1 d.p. The first possible integer value of n is 17.

6.C.(g) Recurring decimals, and writing them as fractions
We come next to some applications of GPs.

The first of these gives us a way to convert some decimals to fractions. The strength of
the decimal system for writing fractions is that it uses the same system of place values based
on powers of 10 as our system of whole numbers uses. This means that decimal fractions are
particularly easy to add and subtract and multiply, in just the same way that whole number
calculations are straightforward with our number system. If you’ve ever tried adding or

subtracting with Roman numerals, you will appreciate this.
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Here are some examples of the place values.

3 4 7 47
0.3 means —, 0.47 means — + ——=——,
10 10 100 100

1 0 8 108
and 0.108 means — + + = .
10 100 1000 1000

(In general, we simply put a zero underneath for every digit on the top.)

Don’t be tempted to say that é, for example, is 0.8!
In fact, to write % as a decimal, we divide the bottom into the top and our
number system automatically takes care of the rest so % =(.125.

A single-digit repeating decimal, like % =0.333 ... is written as 0.3.

In a similar way, 1—11 =0.090909 . .. = 0.09, where the line signifies that these two digits
are repeated.

Both of these examples are called recurring decimals, because the same group of digits
is repeated infinitely.

What happens if we want to convert a recurring decimal into fraction form?

For example, suppose we have 0.17171717. .. or 0.17.

It is no use trying to use our rule of zeros underneath for each digit, as this gives us a
fraction with an infinitely long top and bottom.

Instead, we use exactly the same device which we used to find the sum of a GP. In other
words, we multiply by a number which slides everything along so that it exactly slots for a
subtraction to work. Suppose we let

F=0171717...
Then
100F = 17.171717 . . .
and, subtracting, we get
17
= @

You can check this result on your calculator, allowing for the fact that, as it gives a limited
number of decimal places, it will round the last digit.

The reason that the same technique works so well is that 0.171717 . .. is a GP. We can
see this by writing it as

OF=17 so F

0.17 = 0.17171717 . ...
—(1>17+<1)217+<1)3 17 +
“\100/ 1? \ge) 9P \Tge) U

17 1
a=—— and r=—.
100 100

We have
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|| <1, so the sum to infinity of this series exists.
o 1o 17 17
T l-r 1-7g 100-1 99

which agrees with our previous result.
Here is another example. Find in fraction form
12.4125125125... or 12.4125.

What do you think we should multiply by this time in order to slot everything into the
optimum position?

It will need to be 1000. (It is the number of digits which are repeated which is important
here.)
If we let F = 12.4125, then we have

1000F = 12412.5125125 . ..
F= 12.4125125 . ..

Subtracting, we have 999F = 12400.1, so
12400.1 124001

999 9990
multiplying top and bottom of this fraction by 10, to tidy it up.

EXERCISE 6.C.2 Try converting the following decimals to fractions yourself.
(1) 07 (2 0.25 (3) 0.401 (4) o.011 (5) 0.7
(6) 0.29 (7) 2.534 (8) 40.2106 (9) 0.142857

6.C.(h) Compound interest: a faster way of getting rich
Another application of GPs is in calculating compound interest. If money is invested to
obtain compound interest, this means that, in each successive period (usually a year or six
months), you not only receive money on the original amount invested (the principal) but
also on the accumulated interest so far obtained.
With simple interest, on the other hand, you receive only the interest on the original
capital or principal.

EXAMPLE (1) James invests £800 at 5% compound interest per annum (year). How
much money has he at the end of six years?
Compare this with what he would have received if his money was
invested at 5% per annum simple interest.

We will look at how much he gets with simple interest first.
At the end of the first year, he receives 5% extra, so he gets

5
— X £800 = £40 extra.
100

Exactly the same thing happens in the other five years since he receives
no extra interest on his accumulating interest. So at the end of six years
he will have

£800 + 6 X £40 = £1040.
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Under the compound interest system, the result at the end of the first
year is unchanged. Writing what happens in detail, we see that he has

5 105
£800 + —— (£800) = [ — (£800) = (1.05) (£800) = £840.
Too £300) (1()0)( ) = (1.05) (£800)

Now the difference in the two systems starts to show because the
interest for the second year is calculated from the total amount of
money he now has.

At the end of the second year, he has

(1.05) (the amount now there) = ((1.05)(1.05)(£800)) = (1.05)? £800.

So, at the end of six years, he has (1.05)° £800 = £1072.08 to the
nearest penny.
We see that he is £32.08 better off with the compound interest.

When James is on a system of simple interest, the steps of his increases form an AP with
‘a’ = 800 and ‘d” = 0.05 X 800 = 40.

When he is on a system of compound interest, the steps of his increases form a GP with
‘a’ = 800 and ‘7’ = 1.05.

How much money does James have in total after n years?
If the money was invested at 5% simple interest, he will have n X (0.05 X £800) in
accumulated interest, giving him a total of £800 + 0.051(£800).

If his money was invested at 5% compound interest, he would have (1.05)" £800
altogether.

Notice that these two formulas give us practical examples of working sequences.
The sequence for his totals with simple interest over periods of a year, in £ units, is the
AP which goes:
800, 840, 880, 920, ..., [800 + (n — 1) (0.05 X 800)], ...

The nth term of this AP is 800 + (r — 1) (0.05 X 800).
This can also be written as a recurrence relation or difference equation, using the
method of description (B) from Section 6.A.(b). We would write
u, =u,_; +(0.05 X 800)=wu,_, +40 with u; = 800.
The sequence for his totals with compound interest form the GP

800, 840, 882, 926.10, .. ., (1.05)" ' 800, . ..

with (1.05)" ! 800 as its nth term.
It can also be written as a difference equation in the form

u, = (1.05u,_, with u; = 800.

What if James invests the same amount each year with compound interest?
Suppose that he was able to invest £800 at the beginning of each of the six years at the same
rate of compound interest of 5%. How much would he have altogether on 2 January of the
seventh year, when he has just deposited his most recent £800?

He would have

£800 + (1.05)£800 + (1.05)? £800 + ... + (1.05)® £800

which is a GP with a = £800, » = 1.05, and » = 7. So his total investment is

800 ((1.05)" — 1
S, = (1.05) )=£6513.61.
1.05 - 1
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6.C.(I)

6.C.(J)

The geometric mean
We have already seen that the arithmetic mean, 4, of two numbers, a and b, is defined as the
number 4 such that a, A and b form an arithmetic progression.

In a similar way, we define the geometric mean G, of two positive numbers a and b, to
be the number such that a, G, b are in geometric progression.

So a, G, b can also be written as a, ar, ar? giving G = ar and b = ar?>. Now

ab=a(ar?) =a*?*=G> so G=lab.

For example, suppose we have the pair of numbers 2 and 8.

The arithmetic mean of these two numbers is the midway point of 5 (Section 6.B.(c)).
This then gives a mini AP of 2, 5, 8 with a common difference of 3.

The geometric mean of these two numbers is 4, given by /2 X 8, resulting in the mini
GP of 2, 4, 8 with common ratio 2.

The definition of the geometric mean can also be extended to n numbers, provided that
they are positive, in the following way.
. . /7
If the numbers are a,, a,, as, . . ., a, then the geometric mean is \a,a5a;5 . . . a,.

Comparing arithmetic and geometric means
We can also show that the arithmetic mean of any two positive numbers a and b is greater
than their geometric mean. We have to show that
a+b

2

This can be done rather neatly by putting @ =x? and b = 2. Since we have said that ¢ and b are
positive, this is a safe move, and it gets rid of the \/ sign. We now have to show that
X2+ 2

2
Can you see how the rest of the argument will go?

—
> \;” ab.

2 X).

6.C.(k)

We must show that x> + y? > 2xy.
So we must show that x? + y? — 2xy > 0, that is, that (x — y)?> > 0. But (x — »)? must be
either positive (or zero, if x = ), since it is something squared. Therefore 4 > G.

What is the fate of the frog down the well?

I will finish this section by asking you the following question.

A frog is at the bottom of a well. He finds that he can jump up the side
of the well, hanging on briefly between jumps. This procedure is exhausting
so he jumps a shorter distance each time, starting with 1 m then %m, %m,
and so on, so that the total height he has reached after » jumps is given by

1 1 1 1
1+—+—+—+ ...+ — metres.
2 3 4 n

Obviously, if the well is only 2 metres deep, he will have escaped by his
fourth jump. How deep must the well be for him never to escape, or will he
always gain his freedom?
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It is worth testing your ideas here numerically in any way you can.

You could sum as many terms as you have the patience for on a calculator to get some
idea of what is happening.

Even better, if you can write computer programs, you could test any particular depth
which you might think would definitely spell the frog’s doom, by seeing if there is some
number of jumps whose sum would actually come to more than this depth, so that he does
escape. (I shall return to this puzzle later on in this chapter.)

6.D A compact way of writing sums: the X notation

6.D.(a) What does X stand for?
We have looked fairly thoroughly at APs and GPs because they are relatively easy to sum,
and also come up quite often in practical situations. Now we will widen the field by looking
at some other kinds of series.

To make this easier, I will show you a neat new method of writing the sum of a series.

It is called the X notation, from the Greek capital letter S which is written 2, and pronounced
‘sigma’.

1 1 1 ) no
To write 1 + —+ — + ... + — in this notation, we write >, —.
2 3 n r=1r
What we have done is to write down the sum using the general term of the series. The value
of r at the bottom of the X gives the first term, and the value (of ») at the top of the X gives
the last term. You can think of this 2 as meaning ‘The sum of all such things as 1/r with
going from 1 to »’.

The letters used need not necessarily be » and n but the general idea will be
the same.

Here is another example, which uses » as the letter inside the Z.

10
> on=1+2+3+...+10.
n=1
The r in the first example and the # in the second example are dummy variables with the
information about how far they run being written at the bottom and the top of the 2. Once
this information has been filled in, the answer will be purely numerical, and it won’t matter
what letter we chose to use.

EXERCISE 6.D.1 Try writing the following in = notation for yourself.
1 2 3 11
(1) 1+4+9+16+...+81 @ —+—+=+...+—
2 3 4 12
1 1 1 1
(3) + + .o+ —
1X2 2X3 3X4 29 X 30
(4) 1 +4-9+16-25+...-81 Be ingenious!
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6.D.(b) Unpacking the =s
It will be quite useful for you to get some practice here in unpacking the X notation into the
separate numerical terms, as sometimes it is necessary to convert back in this way.
Here is an example of this.

Find the sum of the first four terms, and also write down the nth term and the (n + 1)th

term, of the series
n 1

F=1 o+ DRr+ 1)

The first four terms are
1 1 1 1
+ + +

1(2)3)  23)5) 347 4(5)09)
feeding in » = 1, 2, 3, 4 in turn. Tidying up, we get

1 1 1 1 137

—_t =

6 30 84 180 630
The nth term is

1
nin+1)2n+1)
For the (n + 1)th term, we put » = n + 1, and get
1 1
m+DHn+2)Q2nH+1)+1) B (n+ D(n+2)2n+3)

Students sometimes find this last procedure a bit tricky, but it is well worth practising it now
because you will need it if you have to work with more complicated series.

putting » = n.

EXERCISE 6.D.2 For each of the following series, write down the first four terms, and then add
them together. Also, write down the nth term and the (n + 1)th term.

n n . n 1
) 2 (ar+3) (2) 21 36(3)* B> —

r=1 r=1r!

n n
@ > (L) QG Y !

r=1\r+2 r=1(2r-1) (2r+1)

6.D.(c) Summing by breaking down to simpler series
Sometimes it is possible to sum series by breaking them down into simpler series which have
known sums. I will give you some examples of this, using the following three standard sums.

n

1+2+3+4+...+n= 2 r =snmn+1) (S1)
1

r=

n
12+22+32+4%+ ... +n2= > r2=én(n+1)(2n+1) (S2)
r=1

n
P+ 4B 443+, +n3= zlr3=%n2(n+1)2 (S3)

=
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(If not knowing where these have come from worries you, we showed the first one when
we did APs in question 2(d) of Exercise 6.B.1. The other two are shown to be true in the next
chapter in Section 7.D.)

Here is an example of how they can be used.

Find Zl (r+ D+ 2).

il r+DHr+2)= il (r* +3r +2).

This can then be split into separate sums since it makes no difference what order we do the
adding in. We say

Z(r +3r+2)—2r+23r+22

r=1 r=1 r=1

since multiplying each separate number by 3, and then adding, is the same as adding first
and then multiplying the total by 3.
You can see all this actually working if I put n = 3.

3 3 3 3
> (FPH3r+2)= > 243 2 rt 2 2
r=1 r=1 r=1 r=1

The LHS of thisis (12 +3 +2)+ 22+ 6 +2) + (32 + 9 +2) = 38.
The RHS of this is (12 + 22+ 3%) +3(1 +2 +3) + 2 + 2 + 2) = 38.

3
Notice >, 2 is 2+2+2andnot just 2. The 2 is being added in three times.

r=1

So we have

n

Z r+DHr+2)= Z r2+3 Z r+ Z 2.

r=1 r=1
Using (S1) and (S2), we find this is the same as
La(m+ D@n+ 1) +3 [nn + D] + 2n.

(The 2 is now being added » times.)
Factorising this by taking out %n, we get

%n[(n + 1)+ 1DH+9m+1)+ 12]_

(It is good to have the % out of the way in the front. If you are doubtful about what is inside
the bracket, check by multiplying out.) Multiplying out the inside brackets, we have

tn[@n? + 30+ 1) + 9+ 9) + 12] = tn@n® + 120 + 22) = Tn(n? + 6n + 11)

taking out an extra factor of 2, and cancelling. So

il (r+ ) +2) = 3n(n® + 6n + 11),
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EXERCISE 6.D.3

Check: If n = 3, we have just seen that
3
LHS = > (r+ 1)(r+2)=38.
r=1
Putting n = 3 in the answer gives

RHS = 2n(n? + 6n + 11) with n = 3, which is 5 (3)(9 + 18 + 11) = 38.

Try these two yourself. Find

6.E

n n
W > (r-1r+3) @ > rr-9(+2).

r=1 r=1

In each case, check your answers by putting n = 3.

Partial fractions

6.E.(a)

Introducing partial fractions for summing series
In the earlier part of this chapter, we found out how to sum APs and GPs. Now we look at
a rather ingenious technique which can be used for summing series involving fractions.
(This particular technique also has many other uses.)

Suppose we want to find

n 1
r=1r(r+1)
that is, we want to find

1 1 1 1 1 I 1 1 1 1
—_—t—t—F—+ . =t -t —+—+ L —
1.2 23 34 45 nn+1) 2 6 12 20 n(n+1)
As it stands, there is no simple way of calculating this sum.
However, the fraction ﬁ looks as if it has come from putting two simpler fractions
into one single fraction, as we did in Section 1.C.(c). Suppose we try writing
1 A B

- =+
re+1) r r+1

where 4 and B are standing for numbers which we would need to find out. I’ve used the ‘=’
sign here to emphasise that the two sides are just different ways of writing the same thing.
What we have here is another example of an identity. I explained what this means in Section
2.D.(h).

To find 4 and B, we get rid of fractions by multiplying through by r(» + 1).

Cancelling where possible, we get 1 = A(r + 1) + Br.

Since this is just a rewriting, or identity, it must be true for all values of r.

Putting r = 0, we get 1 = 4.

Putting r=—1, we get 1 =— B, so B =—1.

We can check by putting » = 1, say. With these values of 4 and B, we get the LHS =1,
and the RHS =2 — 1 =1 also.

We now know that we can replace

1 1 1

r(r+1) ror+ 1l
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Will this help us? We can say

“ 1 o1 1

r=1r(r+1) r=1\r r+1
o1 “ 1
r=1\r r=1\r+1

( 1 1 1 1)
=|l+—+—+—+.. . +—
2 3 4 n

(1 1 1 1 1 )
—=+=+—+.. =+ ,
2 3 4 n n+1

and we see that it does indeed help us.

The second bracket is almost exactly the same as the first bracket. It has the same number
of terms, but everything has been slid one place to the right.

When we do the subtraction, we are left with just 1 — 1/(n + 1) so

n 1 1

—=1- .
r=1r(r+1) n+1

You can check that this actually works by putting » = 2. This gives a LHS of
% + % and a RHS of 1 — %, so the two sides do come out the same.

What will happen as n becomes very large? Will this series have a sum to infinity? In
other words, is it convergent?

The larger n gets, the closer 1/(rn + 1) becomes to zero, so the sum of the series will get
closer and closer to 1.
The series is convergent, with a sum to infinity of 1. We can say
& 1
— =1
r=1 r(r + 1)

Now have a go at using the same method yourself to find the sum of the series

2 2 2 2 2 n 2
—_—t et —t— > —
3 8 15 24 nn+2) r=1 r(r+2)

Check how you got on.

2 A B
can be split up into two simpler fractions as — + .
r(r+2) roor+2

Then, multiplying by »(» + 2) to get rid of fractions, we have
2=A@r+2)+ Br.

Putting » = -2 gives 2 = -2B, so B = —1.
Putting » = 0 gives 2 =24, s04 = 1.
Checking, by putting » = 1, we have the LHS = 2 and the RHS =3 -1 = 2.
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6.E.(b)

We can therefore say
2 1 1

r(r+2) 7 2

and we now have
n 2

r:lr(7‘+2) r

l
IS

2 3 4 n
(1 1 1 1 1 )
==t =+ - :
3 4 n n+tl n+2

(The last three terms in the second bracket come from putting » =n — 2, n — 1, and n
respectively.)

This time, it is as though the right-hand bracket has been slid along two places instead
of just one, as it was in the previous example.

Subtracting all the overlapping parts, we are left with

n 2 1 1 1 3 1 1
So——={1+—]|- + =—- - .
r=1r({r+2) 2 n+tl n+2 2 n+l n+2

1
Both and will become very small as n becomes large. We can say that
n+1 n+?2
1 1
— 0 and -0 asn—>»®
n+1 n+2

. . 3
so we see that the sum of the series is getting closer and closer to 5.

n

The series ., ; is convergent, and its sum to infinity is %

r=1r(r+2)

The number % forms a barrier beyond which the sum cannot go, however many extra
terms we add, although we can get as close to it as we please if we take a sufficiently large
number of terms. (We never quite get there, though! We are always a tiny bit less than it since
all the terms of the series are positive.)

General rules for using partial fractions
When we summed the series

" 1 " 2
- d -
r=1r(r+1) r=1r(r+2)

we split up the complicated fraction into two simpler fractions, in each case.

This technique of rewriting complicated fractions in the form of separate simpler
fractions is called the method of partial fractions. It is often extremely useful, not only for
summing series as we have already used it, but also in integration, as you will see in
Section.9.B.(e).

Because it is such an important technique, we shall look at it now in more detail. The two
examples which we have already met both had two factors underneath. If the fraction has
more factors underneath, it is simply split into more fractions.
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6.E.(c)

EXERCISE 6.E.1

So, for example,

6 ] ) A B C
1s written as + + 5
x-Dx+DH2x+1) x—1 x+1 2x+1

where 4, B and C are standing for numbers which we have to find.
Getting rid of fractions as before, by multiplying by (x — 1) (x + 1) (2x + 1) and cancelling
where possible, we get

6=Ax+1D2x+ 1) +Bx-1D2x+ 1)+ Cx-1) (x+ 1).

Putting x = 1 gives 6 = 64, so 4 = 1.
Putting x = —1 gives 6 = 2B, so B = 3.
Putting x = — % gives 6= — %C, so C=-8.

Notice that we cunningly choose values of x so that two parts get knocked out each time,
and we can easily find the value of the remaining letter.

Then it is sensible to check the values we have found, by putting x = 0, say, with these
values, and making sure that the two sides balance.

Here, the LHS = 6, andthe RHS =4 -B-C=1-3 +8 =6.

Often, finding the partial fractions is only a small part of the complete problem, so it is
wise to check that nothing has gone wrong at this stage.

The cover-up rule
In a case like the above, it is also possible to find 4, B and C by what is known as the cover-
up rule.

To do this, we choose each of the three values of x in turn which gives a zero in the
denominator of

6
x-—Dx+DH2x+1)

(that is, we choose the same three values which we used in the previous working).

Suppose we start with x = 1. Then we cover up the bracket (x — 1), and feed x = 1 into
the rest of the fraction.

This gives 6/6 = 1 as A4, the number over (x — 1).

Similarly, covering up (x + 1), and feeding in x = —1 to the rest of the fraction, gives
B =6/2=3.

Finally, covering up (2x + 1), and feeding in x = —% to the rest of the fraction, gives
C=-8.

You can use whichever method you prefer.

Use whichever method you find most convenient to write the following as partial

6.E.(d)

fractions.

4 6 10

O araery P acomrn D xe-oxra

Coping with possible complications
Unfortunately, sometimes complications arise. These can be split into three types and I’ll
describe each of them in turn.
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Repeated factors
Suppose we have the fraction

4
(x+ D -1
Can we say
4 A B

- " ?
x+DE-172 x+1 (x-1)7

We’ll see what happens when we try to find 4 and B.
Getting rid of fractions, we have 4 = A(x — 1)> + B(x + 1).
Putting x = 1 gives 4 = 2B so B = 2.
Putting x = —1 gives 4 =44 so 4 = 1.
Now check with x = 0. The LHS = 4 and the RHS =1 + 2 = 3.
Clearly, something has gone wrong!

If we think what fractions we could have put together to give the original fraction then
we see that there could have been a hidden one extra to the two which we wrote down above.
Can you see what this extra one is?

There could also have been the fraction

C

x—1
If we now write
4 A B C
= + +
x+Dx-172 x+1 -1 x-1

and get rid of fractions by multiplying by (x + 1)(x — 1)?, cancelling where possible, we get

4=Ax -1 +Bx+ 1)+ Cx—-Dx+1). (1)

You need to think carefully here about the cancelling down. If you try to get
rid of the fractions on autopilot, you will almost certainly go wrong.

Now, putting x = 1 we get 4 = 2B so B = 2 as before.

Putting x = — 1 gives us 4 = 44 so 4 = 1, also as before.

To find C, we can apply the very useful technique which we employed when we were
factorising cubic equations in Section 2.E.(a).

The way to do this is as follows.

Since equation (1) above is an identity, the coefficients of each separate power of x on
each side of it must match up. For example, there must be the same number of x? terms on
each side; this is the only way that (1) can be true for all values of x.

Looking at the terms in x2, we have 0 = Ax? + Cx? so C = -4 so C = —1.

Now we check again, putting x = 0.
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This time, the LHS = 4 and the RHS =1 + 2 + 1 = 4, which is a much better state of
affairs. Our final result is

4 1 2 1

(x+ D)(x —1) x+1+(x—1)27x—1.

The rule for dealing with repeated factors

If there is a repeated factor underneath, we must put in extra fractions to make up
the whole power. For example,

1 A B C D
= + + + .
x+DEx+3)7° x-1 x+3 (x+32 (x+3)3

EXERCISE 6.E.2 Try these two for yourself. Find partial fractions for
5 2
O — @ —-——-
(x-2)(x +3) y2y-1)

Non-linear factors
S have (1) > d @ >
uppose we nave —— an _—.
PP (DG 4) (c+ D + 4)

How could we split up (1) to find its partial fractions?

We could use the difference of two squares (again!) on x> — 4, and write

3 3 A B C
+ +

(x+ D(x2 - 4) - (x + D(x — 2)(x + 2) Tl x-2 xi2

Finish this for yourself. You should get

3 -1 i 3

= + 4 + 4 .
x+DE*>-4) x+1 x-2 x+2

However, when we come to (2), we can’t split up x> + 4 into two linear factors. (A linear
factor is one like (x + 2) where, if we plotted y = x + 2, we would get a straight line.)
Now, if we are dividing by x? + 4, the remainder can have xs in, as well as numbers, so
we have to split (2) up into partial fractions as follows:
3 A Bx+C
= + .
x+Dx*+4) x+1 x*+4
Getting rid of fractions, 3 = A(x?> + 4) + (Bx + C)(x + 1).
Putting x = -1 gives 3 =54, s04 =3.
Putting x =0 givesus 3 =44+ C, so C = %
Matching the terms in x2 gives us 0 = Ax? + Bx%, so B = -4 = —3.
Checking with x = 1 gives the LHS = 3, and the RHS =3 + 0 = 3.
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So

3 P (Ex+i 3( 1 x—l)
= + = — —
x+DE2+4) x+1 x2+4 S5\x+1 x*+4

taking out the factor of % Notice carefully the signs in the two forms of writing this answer.
Remember that the line of the fraction acts as a bracket. (See, if necessary, Section 1.C.(e)
on subtracting fractions.)

The rule for dealing with non-linear factors

If one of the factors on the bottom of a fraction has an x? term, and this factor
won'’t itself factorise any further, then we need both xs and numbers on the top,
like the Bx + C above.

Similarly, if we had a factor underneath with an x> term, and this factor wouldn’t itself
factorise, we would need to have Ax? + Bx + C on the top, and so on.

EXERCISE 6.E.3 Try finding partial fractions for
14 4
Q0 @ ——.
(x* +3)(x + 2) yy? +1)

Top-heavy fractions
Consider these four examples.
x2+3x-5 x2+4x -2 x2+1 x>+ 3x2+2x -3

O O

x2+2x -8 x2+5x+6 x2-9 x+2)(x-1)

Each of these fractions is top-heavy. By this I mean that the highest power of x on the top
is greater than, or equal to, the highest power of x on the bottom.

If we have this situation, it is necessary to divide before finding partial fractions for the
rest of the expression.

(This division is exactly the same process that we use in writing the fraction 1,79 as 2%. The
arithmetical fraction 1—89 is top-heavy.)

Fortunately, quite often this dividing can be done without using the full long-division
process.

(1)  In this example, we can cunningly rewrite the top of the fraction as follows:

x2+3x-5 X2 +2x—8+x+3

x2+2x—8 x> +2x—8
This can then be written as
x+3
1+ —
x2+2x-8
Now we find partial fractions for
x+3

x2+2x— 8
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This factorises to
x+3
x+dHx-2)

giving partial fractions of
1 3
6, &
x+4 x-2

(Check this for yourself.)

The complete solution is then given by
x2+3x-5 1 2
S N R

x?+2x -8 x+4 x-2

It’s very easy to forget to include the 1 here.

(2) Can you see how to rewrite the top of the fraction in example (2) to make the
division easy?

We can say

x2+4x -2 X>+5x+6-x-8

X2+5x+6 x2+5x+6

This can then be written as
x+8

] - ——.

x2+5x+6

Notice the signs again! The line of the fraction is acting as a bracket.
Now, find partial fractions for

x+8
X2+5x+6
You should have
x+38 x+38 A4 B
x2+5x+6:(x+3)(x+2) =x+3+x+2

so x+8=A(x+2)+ B(x+3).

Putting x = -2 gives 6 = B.

Putting x = -3 gives us 5 = —4.

Notice that, in this example, it is necessary to substitute for x on the LHS too.
So the complete solution is

x2+4x -2 (—5 6 ) 5 6

J’_
x+3 x+2

x2+5x+6_ x+3 x+2

256 Sequences and series



There are two things to remember here: we must include the 1 like last time, and we also
have to remember the minus sign in front of the big bracket.

(3) Try doing this example for yourself.

You should have
x2+1 x>-9+10

x?>-9 x?>-9

10 10
= + —"
x> -9 x—3)x+3)
10/(x — 3)(x + 3) can then be easily split into partial fractions, giving a final complete
answer of

=1+

wlwn
wlwn

1+ — .
x—3 x+3

(4) Here, we shall have to have recourse to the full long-division process. I explained
how to do this in Section 2.E.(b). We have

x3+3x2+2x -3

2

x2+x-2

so we find
x +2
x2+x72)x3+3x2+2x73
X3+ x?—2x

2x2+4x -3
2x2+2x — 4
2x + 1

Since x2 + x — 2 = (x + 2)(x — 1), we now have

x4 3x% 4+ 2x - 3 2x + 1
=x+2+—m—,
x+2)x-1) x+2)x-1)
You should check for yourself that this comes to
x3 4 3x% +2x - 3 1 1
=x+2+ +
x2+x-2 x+2 x-1

remembering to include the x + 2 in the final answer.

The rule for dealing with top-heavy fractions

If the fraction is top-heavy, that is, if the highest power of x on the top is greater
than or equal to the highest power of x on the bottom, then we must divide out
first, and find partial fractions for the remaining fraction.
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EXERCISE 6.E.4

We shan’t need to use partial fractions which are as complicated as these for summing
series, but you will need them for integration, and you are now set up for dealing with them
when this happens.

The following questions involve a mixture of the complications we have just been

6.F

looking at. In each case, find suitable partial fractions.

4 3p+1 4x -5

@ x+3)x-1) @) (2p-1)(p + 2)? G) (2x+1) x*-6x+9)
@ 0y ) 10X © r’+1
4 y-9p*+9) ° x-1)kx*-9) r’-1
()x4+1 u?-1 © X2 +1
7 X4 -1 u?(2u + 1) 2 x+2)(x + 4)
n

2

(10) (a) Write down the first four terms of the series .
r=14r>-1
2

(b) Factorise 4r* — 1 and then use this to find partial fractions for " .
4r* -1

n
(c) Now use these to find .
r=14r*-1

(d) What is the sum to infinity for this series?

The fate of the frog down the well

In this last section, we return to the series 1 + % + % + % + ... which describes the attempts
of the frog to escape from the well in the thinking point of Section 6.C.(k). What I was really
asking you there was whether this series is convergent or divergent. If it is divergent then,
however deep the well, the frog will eventually escape. If it is convergent, then it must be
possible to find a depth D so that anything deeper than this spells his doom. (D wouldn’t
necessarily have to be the sum to infinity of the series — this could well be tricky to find. It’s
like the headroom of a bridge: if a lorry crashes into it we know that anything higher than
the lorry certainly won’t get through, and we know this without having measured the exact
headroom of the bridge.) Even if this series is convergent, there will be some depths which
the frog can escape from, just like most cars can probably go safely under the bridge.

We know that four jumps are sufficient to escape from a well which is 2 metres deep.
Adding up the terms on a calculator, it is quite easy to discover that 31 jumps are sufficient
if the well is 4 metres deep. We also know that each individual jump is getting smaller and
smaller the more jumps the frog makes.

Is knowing this sufficient for us to say that this series must converge towards some
particular sum? (We know from Section 6.C.(c) that it would be enough in the case of a GP
because, if the terms get smaller, then its common ratio must be less than 1 and therefore
it will have a sum to infinity.)

Might it help us here if we find the ratio of successive terms? We can see that, as »
becomes large, there will be very little difference between 1/n and 1/(n + 1), although each
of them separately is also becoming very tiny. We can say that

u,,+1_1/(n+1)_ n 1

u, 1/n n+1_1+1/n'

(We did this same sort of thing when we were graph-sketching in Section 3.B.(i).)
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Now, since % becomes closer and closer to zero the larger n becomes, this ratio gets closer
and closer to 1. This still leaves us in a bit of a quandary. The terms are getting more and
more equal but they are also getting exceedingly tiny. Which will win?

Mathematicians have actually shown that, if the terms of a series are positive, and if the
ratio of successive terms gets closer and closer to some number less than 1, then the series
is convergent. If this ratio gets closer and closer to a number greater than 1 then the series
is divergent. But if the ratio is equal to 1, we need to do more investigation.

Figure 6.F.1 gives a picture of what is happening as the number of jumps increases. I have
laid them out sideways to fit them into the space better. The full height travelled is what we
get if we place all these lines on top of each other, including the ones which will be too small
to see, but which go on for ever.

1+ The hei\ghif of each jumP in metres
( 3
)i.
1 2 3 4 S 6 7 ) C] 10 1 12 7
The number gives the Partic.ulo.r dump in the sequence.
Figure 6.F.1

There is a very neat way of showing what happens in the case of this series. It goes
like this:

Since all the terms are positive, we can reasonably group them in any way we please,
because where we add bits on makes no difference to the total result. Every term you add
on is moving you in the same positive direction, so each of these forward steps will have the
same effect wherever it is placed.

So we can say

1 1 1 1 1 1 1
l+—+—+—+—+—+—+—+ ...
2 3 4 5 6 7 8

1 (1 1) (1 1 1 1)
=l+—+|(—F+t—|+|=—Ft—F+—=—+—|+..

2 3 4 5 6 7 8
1 (1 1) (1 I 1 1)
>l+—+|—+—|+|—F+—+—+—]+...
2 4 4 8§ 8 8 8
I 1 1
thatis, >1+—+—+—+...
2 2 2

Clearly, this second series is divergent since we can make the sum as large as we like by
taking enough terms. Therefore, the first series must also be divergent, and the frog does
eventually escape. Actually, although mathematically his escape is assured, practically his
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situation is not very rosy. After 1000 jumps he has still only gone about 7% metres. This series
is very close to the convergence/divergence divide. Its true name is the harmonic series.
Each term is related to a different mode of oscillation of a stretched string, with 1
corresponding to the fundamental mode or first harmonic. Oscillation modes are important
in all oscillating systems including the strings of musical instruments, which explains the
use of the word ‘harmonic’.

In working out what happened in the case above we were able to compare the series we
got by grouping the terms of the original series with the behaviour of a known series. Such
comparisons make a very good method of attack on series which we can’t easily sum, but
we have to be very pernickety about when we can rearrange or regroup the terms of a
series.

We have already met the curious case of the flip-flop series in question (1)(e) of Exercise
6.C.1 in Section 6.C.(f).

Thisgoes 1 —1+1—-1+1-1+1—...and its sum alternates between 0 and 1 depending
on whether we’ve taken an odd or even number of terms. This series is divergent. It’s
important that ‘divergent’ doesn’t necessarily mean that the sum gets larger and larger the
more terms you take, though it does describe this possibility. ‘Divergent’ means any series
which isn’t convergent, and so doesn’t have a sum to infinity.

We can only rearrange or regroup the terms of an infinite series if they are all positive.
(You can do what you like with a finite number of terms of any series — the order you add
the terms in will make no difference to that particular total.) Once we start letting the series
go on endlessly we find that the obvious is not always true.

You might think that it would be safe to group the terms in brackets in a series where the
individual terms are becoming smaller, and which is known to be convergent, even though
these terms alternate in sign.

The series 1 — % + % - % + % - % + ... is convergent. We’ll find in Example (4) of Section
8.G that its sum is equal to In 2.

Now have a look at the following apparently plausible steps of working.

1,1 1,1 1.1 1
In2=1-53+3-7+35-5+7—-3..

11,1 1 1,1 1 1
=1l-5-3+3-5-5t5—-w5—1m+... well, why not?

I, 1,1 1, 1,,1 1
=1-3)-7tG-35-stTG-1)—... hmm...
11,1 1,1 1
=2 3ts 3T 12
1 1,1 1,1 1 1 o
=3(1-3+3-7+35-¢...=3n2 a minefield!

It is because of unexpected and curious results like this that mathematicians have had to
investigate what actually happens so carefully. Since series are deeply involved in many
practical applications, knowing what can and can’t be done with them is very important. For
these purposes, it may often only be necessary to consider what happens when you take a
limited number of terms, but you need to know when it is safe to do this. It is the difference
between taking a permitted liberty and sailing ahead without noticing the warning signs.
Mathematically, as well as socially, this can lead to disaster.
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7

Binomial series and proof by
induction

In this chapter we find out how to do binomial expansions, and see how they can
describe some real-life situations. We also look at a new method of proving
mathematical statements.

The chapter is divided into the following sections.

7.A Binomial series for positive whole numbers

(@) Looking for the patterns, (b) Permutations or arrangements,

(c) Combinations or selections, (d) How selections give binomial expansions,
(e) Writing down rules for binomial expansions,

(f) Linking Pascal’s Triangle to selections, (g) Some more binomial examples

7.B Some applications of binomial series and selections
(@) Tossing coins and throwing dice,

(b) What do the probabilities we have found mean?

(©) When is a game fair? (Or are you fair game?)

(d) Lotteries: winning the jackpot . .. or not

7.C Binomial expansions when n is not a positive whole number
(@) Can we expand (1 + x)" if n is negative or a fraction? If so, when?
(b) Working out some expansions, (c) Dealing with slightly different situations

7.D Mathematical induction

(@) Truth from patterns — or false mirages?

(b) Proving the Binomial Theorem by induction,
() Two non-series applications of induction

7.A

Binomial series for positive whole numbers

7.A.(a)

Looking for the patterns
The first half of this chapter describes what are called binomial series. I have given them so
much space because they have many applications. For this reason it is important that you
should be able to do binomial expansions correctly and happily. The word ‘binomial’ comes
from the two quantities put together in a bracket which we start from. Binomial expansions
are what we get when we raise these brackets to different powers and then multiply the
brackets together to find the result. In this first section all these powers will be positive
whole numbers.

Here are some examples.

(a+b)isjusta+b
(a+b)?=(a+b)a+b)=a’*+ 2ab+ b>
The 2ab comes from the two middle terms of ab which add together because it doesn’t

matter what order we multiply a and b in.
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Next comes
(a+ b)Y =(a+b)a+b)a+b)=a’>+3a®b+3ab>+ b>.

We find the answer by picking one letter from each bracket in every possible way and
then multiplying these choices together.

There is only one way of getting a> and b

The a?b term comes in three ways, as we can choose the b from any of the three brackets,
and then multiply it with the a terms in the other two brackets. Similarly, ab? can be made
in three possible ways.

What happens with

(a +b)* = (a + b)(a + b)a + b)(a + b)?

There will be just one a* and just one »*. There will also be some numbers of terms for each
of a3b, a’b? and ab’.

Because the a and the b are symmetrically placed in the brackets, there must be the same
number of terms in a>b as there are in ab>.

There will be four of each since we can pick either a single b or a single a in four different
ways from the four brackets.

The six possibilities for ah? are given by aabb, abba, abab, baab, baba and bbaa.

We see that by multiplying the four brackets together, we get

(a + b)* = a* + 4a>b + 6a°b? + 4ab> + b*.

Now we ask two questions.

Firstly, is there an easier way than this of finding, for example, the 6a2h? term?

Secondly, is there a general pattern building up from these results?

If we write down how many we have of each possible combination of as and bs for all
the brackets which we have multiplied out so far, we get the four lines of numbers written
out below, which make a kind of blunt-topped triangle.

1 4 6 4 1

These numbers give the coefficients for the different combinations of as and bs.
Can you see what the next line of it will be?

|
It is
1 5 10 10 5 1

Each number in each row is found by adding the two numbers nearest in the line above.
If it is at the end of a row, the single number closest to it is used.

We can use the row which we have just worked out to write down the expansion of
(a+b). Itis

(a+ by =a®+ 5a*h + 10a® b? + 10ab> + 5ab* + b°.

This triangle, which gives the various different sets of binomial coefficients, is called
Pascal’s Triangle, after the French mathematician who first observed it, Blaise Pascal.
Provided the power is not too high, it is the easiest way of working out what the coefficients
will be.
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EXERCISE 7.A.1

Write down, by extending this triangle, the expansions of

(1) (a+b)® (2) (a+b)”

EXERCISE 7.A.2

I’ve put the answers in straight away because they show something important. You should
have

(1) a®+ 6a® b+ 15a*b? + 20a°b> + 15a%b* + 6ab> + b
(2) a’ +7a® b+ 21a°b? + 35a*h> + 35a°b* + 21a%b> + Tab® + b’.

Notice how the power of @ moves down by 1 and the power of b up by 1 for each new
term. The powers together add up to 6 for (1) and 7 for (2).

We will now get some practice in the mechanics of binomial expansions in which the ‘a’
and the ‘b’ are replaced by more complicated expressions. (These often form part of the
working of longer problems, and it is important that you should be able to do them
confidently and accurately.)

We’ll work out (2x + 3y)° as an example.

Here, the ‘a’ is 2x, and the ‘b’ is 3y, and n = 6.

We get the binomial coefficients by using the sixth line of Pascal’s Triangle. This is

1 6 15 20 15 6 1. (P6)

I’ve labelled it (P6) so I can easily refer back to it.
The expansion goes

(2x +3y)° = (2x)° + 6(2x)° (3y) + 15(2x)* (3y)?
+20(2x)° (3y)* + 15(2x) (3y)* + 6(2x)(3y)° + (3y)°.
Notice again the pattern of the powers. They move down by 1 each time for the ‘a’ and up
1 each time for the ‘b’ of the expansion.

Added together, they always give n, the overall power we are calculating.
Multiplying out, we have

(2x + 3y)% = 64x° + 576x°y + 2160x*y? + 4320x> 3 + 4860x2 y* + 2916xy° +
729y°.

Don’t forget the part of each coefficient which comes from the ‘a’ and the
‘b’ raised to the various different powers. Students very frequently make
mistakes here. It is safer always to put brackets round the whole of the ‘a’
and the ‘b’ as I have done above.

Try expanding these for yourself.

7.A.(b)

4 3
@ k-2 @ @-y» 6 (”‘%) @ (34*)

Permutations or arrangements
The pattern shown in Pascal’s Triangle is very neat and, as we have seen, is very useful for
writing down the answers for binomial expansions when the power is not too large. It would,
however, be rather tedious to have to go much further than (P7) and we look now at how we
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can find a general rule to give us these results. (This will also explain why we get this pattern
in the first place.)

To do this, we will look at the numbers of different possibilities of choosing some objects
from a larger number of objects. We know that when we multiply out the brackets the order
of the letters doesn’t matter, so, for example, both aba and baa count as a2b. It’s actually
easier to find a general rule for what happens when the order of choice does matter, so we’ll
look at some examples of this first.

Because it can make it easier to see what is happening if we look at it pictorially, and
because the total number of choices quite quickly becomes amazingly large as we increase
the possibilities, we will start with a relatively simple situation.

Let’s consider the number of possible choices of three counters from four differently
shaped counters, and let’s also suppose that the order of choice matters. Then the first
counter can be chosen in four ways. The second one can be chosen in three ways from the
three which are now left, and the third counter can then be chosen in two ways. This gives
us a grand total of 4 X 3 X 2 = 24 choices.

All the possibilities are shown in Figure 7.A.1.

aoa
OOor
OAR
oAl

0AO
oo
Ora
ora

ooa
Hwle
oA
roAa

oAO
rono
A O
FAO

AOQO
oro
Alrg
AFO

ACO
oarr
AR
AOFP

Figure 7.A.1

Here is another example.

Suppose there is a class of ten children and six of them will be given a prize. It is not
allowed for any child to have more than one prize, and six different books have been bought
for the purpose. We’ll also suppose that these prizes are being handed out randomly — no
awards for merit here!

The child who gets the first book may be chosen in ten ways. For each of these ten
choices, there are nine ways of choosing the child to get the second book. Then, for each of
these choices, there are eight ways of choosing the third child. The total number of choices
of the six fortunate children is given by 10 X 9 X 8 X 7 X 6 X 5 = 151200 which is a
surprisingly large number. The order of choice of the children matters because the books are
all different so the same six children chosen in a different order will count as a different
choice, since they would each then get different books.

We can use the fact that the numbers are running down by 1 each time to write the total
number of ways of distributing the prizes in a very neat compact form. We let the top run
right down to 1 and then d