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Preface

The major objective of this book is to give methods for estimating errors and
uncertainties of real measurements: measurements that are performed in industry,
commerce, and experimental research.

This book is needed because the existing theory of measurement errors was
historically developed as an abstract mathematical discipline. As a result, this
theory allows estimation of uncertainties of some ideal measurements only and is
not applicable to most practical cases. In particular, it is not applicable to single
measurements. This situation did not bother mathematicians, whereas engineers,
not being bold enough to assert that the mathematical theory of errors cannot satisfy
their needs, solved their particular problems in one or another ad hoc manner.

Actually, any measurement of a physical quantity is not abstract, but it involves
an entirely concrete procedure that is always implemented with concrete tech-
nical devices—measuring instruments—under concrete conditions. Therefore, to
obtain realistic estimates of measurement uncertainties, mathematical methods
must be supplemented with methods that make it possible to take into account
data on properties of measuring instruments, the conditions under which measure-
ments are performed, the measurement procedure, and other features of measure-
ments.

The importance of the methods of estimating measurement inaccuracies for
practice can scarcely be exaggerated. Indeed, in another stage of planning a mea-
surement or using a measurement result, one must know its error limits or uncer-
tainty. Inaccuracy of a measurement determines its quality and is related to its cost.
Reliability of product quality control also depends on accuracy of measurements.
Without estimating measurement inaccuracies, one cannot compare measurement
results obtained by different authors. Finally, it is now universally recognized that
the precision with which any calculation using experimental data is performed
must be consistent with the accuracy of these data.

In this book, the entire hierarchy of questions pertaining to measurement errors
and uncertainties is studied, a theory of measurement inaccuracy is developed,
and specific recommendations are made for solving the basic problems arising in
practice. In addition, methods are presented for calculating the errors of measuring
instruments. The attention devoted to the properties of measuring instruments,
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taking into account their relations with measurement inaccuracies, is one highlight
of this book.

This book is a product of my professional scientific experience accumulated
over many years of work in instrumentation and metrology. From 1948 to 1964,
I was involved in the investigation and development of various electric measur-
ing instruments, including calibrating potentiometers and stabilizers, extremely
sensitive dc voltage and current amplifiers, automatic plotters, and so on. This ex-
perience gave me a grip in understanding problems arising in real measurements.
Then, in 1965, I organized, and until 1980 directed, a laboratory of theoretical
metrology. I focused on the analysis and generalization of theoretical problems in
metrology. In particular, because I discovered that a rift exists between theory and
practice (as mentioned above), I concentrated on the problem of estimating mea-
surement errors and uncertainties. The results achieved during these years formed
the foundation of my book Measurement Errors [44]. Further work and new results
led to the writing of this book.

This book was initially published under the title Measurement Errors: Theory
and Practice and has since gone through several editions, each reflecting new
results that I have obtained. The initial hardware edition recommended a way
to calculate the inaccuracy of single measurements. The paperback edition that
followed added new treatment of indirect measurements, notably, a way of ac-
counting for dependencies between the components of the uncertainty of indirect
measurements. The second edition offered a full analysis of the method of re-
duction for processing indirect measurement data. The analysis shows the great
advantage of this method over the traditional one based on the Taylor’s series. In
particular, the method of reduction obviates the need for the calculation of corre-
lation coefficients. This development is important because the calculation of the
correlation coefficient is one of the most notorious stumbling blocks in estimating
the inaccuracy of measurement results.

However, the method of reduction is applicable only to dependent indirect mea-
surements such as the measurement of electrical resistance using a voltmeter and
ammeter. For independent indirect measurements, such as the measurement of
the density of a solid body, the traditional method with its shortcomings was still
inevitable. Only recently did I find a better solution for processing independent
indirect measurement data. I called it the method of transformation. This method
supplements the method of reduction and thus completes the creation of the new
theory of indirect measurements. In addition to removing the need to calculate the
correlation coefficient, the new theory allows the construction of the confidence in-
tervals and produces well-grounded estimates of the uncertainty of both types of in-
direct measurements. This new theory is presented in this third edition of the book.

This edition has 12 chapters. Chapter 1 contains general information on measure-
ments and metrology. Although introductory, the chapter includes some questions
that are solved or presented anew. Also partially introductory is Chapter 2, de-
voted to measuring instruments. However, a large portion of it presents analysis of
methods of standardization of the metrological characteristics of measuring instru-
ments, which are important for practice and necessary for estimating measurement



Preface vii

errors and uncertainties. Statistical analysis of errors of several batches of various
measuring instruments obtained by standards laboratories is given. The analysis
shows that such data are statistically unstable and hence cannot be the basis for ob-
taining a distribution function of errors of measuring instruments. This important
result has influenced the ways in which many problems are covered in this book.

The inaccuracy of measurements always has to be estimated based on indirect
data by finding and then summing the elementary components of the inaccuracy.
In Chapter 3, a general analysis of elementary errors of measurements is given.
Also, the classification of elementary errors is presented and their mathematical
models are introduced. Two important methods of constructing a convolution of
distribution functions are presented. These methods are necessary for summing
elementary errors.

Chapter 4 contains methods of mathematical statistics as applied to idealized
multiple measurements. In essence, these methods constitute the classical theory
of measurement errors. New to the third edition is the review of modern robust
and nonparametric methods of measurement data processing.

In Chapter 5, real direct measurements are considered. It is shown that single
measurements should be considered as the basic form of measurement. Various
methods for estimating and combining systematic and random errors are consid-
ered, and a comparative analysis of these methods is given. Special attention is
paid to taking into account the errors of measuring instruments. For instance, it is
shown how the uncertainty of a measurement result decreases when more accu-
rate information on the properties of measuring instruments is used. This chapter
concludes with a step-by-step procedure for estimating errors and uncertainties of
direct measurements.

Chapter 6 presents the new theory of indirect measurements including the
method of transformation that is added in this edition. The current edition also ex-
pands the examples of indirect measurements to illustrate the new method. These
examples are taken out from Chapter 6 and organized into a separate Chapter 7.

In Chapter 8, combined measurements are considered. The well-known least-
squares algorithm is described in detail. The new theory of indirect measurements
allowed us to eliminate here the category of simultaneous measurements.

Chapter 9 contains methods for combining measurement results. Such methods
are necessary in the cases where the same measurand is measured in multiple
stages or in different laboratories. Along with the traditional solution, which takes
into consideration only random errors, Chapter 9 includes a method taking into
account systematic errors as well.

In Chapters 10 and 11, I return to considering measuring instruments. Chapter
10 gives general methods for calculating their total errors that are useful during
the development of the instruments. In Chapter 11, calibration methods that tie
measuring instruments to corresponding standards are considered.

The current edition also adds Chapter 12 with concluding remarks. This chapter
briefly reviews the history of measurement data processing and outlines some
current open problems in the theory and practice of measurements. The chapter
also discusses two recent documents produced by international standards bodies,
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which are of fundamental importance to metrology: The “International Vocabulary
of Basic and General Terms in Metrology” [2] and the “Guide to the Expression
of Uncertainty in Measurement” [1].

In addition to the new theory of indirect measurements, the third edition contains
many clarifications and corrections to the text of the second edition. Also, the list
of references is updated.

The book is targeted for practical use and, to this end, includes many concrete
examples, many of which illustrate typical problems arising in the practice of
measurements.

This book is intended for anyone who is concerned with measurements in any
field of science or technology, who designs technological processes and chooses
for them instruments having appropriate accuracy, and who designs and tests new
measuring devices. I also believe this book will prove useful to many university
and college students. Indeed, measurements are of such fundamental importance
for modern science and engineering that every engineer and every scientist doing
experimental research must know the basics of the theory of measurements and
especially how to estimate their accuracy.

In conclusion, I would like to thank Dr. E. Richard Cohen for carefully reading
the manuscript of the second edition of this book and for many useful comments.

I would like to also thank Dr. Abram Kagan, now Professor at the University
of Maryland, College Park, for the many years of collaboration and friendship.
This book benefited from our discussions on various mathematical problems in
metrology.

The initial hardback edition of the book was translated by M. E. Alferieff.
The additions and changes to the subsequent editions were translated or edited
by my son, Dr. Michael Rabinovich. Beyond that, Michael provided support and
assistance throughout my work on this book, from editing the book proposal to
publishers to discussing new results and the presentation. This book would not be
possible without his help.

Basking Ridge, New Jersey Semyon G. Rabinovich
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1
General Information About
Measurements

1.1. Basic Concepts and Terms

The theory of measurement errors is a branch of metrology—the science of mea-
surements. In presenting the theory we shall adhere, whenever possible, to the
terminology given in the International Vocabulary of Basic and General Terms of
Metrology [2]. We shall discuss the terms that are most important for this book.

A measurable quantity (briefly—measurand) is a property of phenomena, bod-
ies, or substances that can be defined qualitatively and expressed quantitatively.

The first measurable quantities were probably length, mass, and time, i.e., quan-
tities that people employed in everyday life, and these concepts appeared uncon-
sciously. Later, with the development of science, measurable quantities came to
be introduced consciously to study the corresponding laws in physics, chemistry,
and biology.

Measurable quantities are also called physical quantities. The principal feature
of physical quantities is that they can be measured.

The term quantity is used in both the general and the particular sense. It is used in
the general sense when referring to the general properties of objects, for example,
length, mass, temperature, or electric resistance. It is used in the particular sense
when referring to the properties of a specific object: the length of a given rod, the
electric resistance of a given segment of wire, and so on.

Measurement is the process of determinating the value of a physical quantity
experimentally with the help of special technical means called measuring instru-
ments.

The value of a physical quantity is the product of a number and a unit adapted
for these quantities. It is found as the result of a measurement.

The definitions presented above underscore three features of measurement:

(1) The result of a measurement must always be a concrete denominated number
expressed in sanctioned units of measurements. The purpose of measurement
is essentially to represent a property of an object by a number.

(2) A measurement is always performed with the help of some measuring instru-
ment; measurement is impossible without measuring instruments.

(3) Measurement is always an experimental procedure.
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The true value of a measurand is the value of the measured physical quantity,
which, being known, would ideally reflect, both qualitatively and quantitatively,
the corresponding property of the object.

Measuring instruments are created by humans, and every measurement on the
whole is an experimental procedure. Therefore, results of measurements cannot be
absolutely accurate. This unavoidable imperfection of measurements is expressed
in their inaccuracy. Quantitatively the measurement inaccuracy is characterized by
the notion of either limits of error or uncertainty.

We shall use the term uncertainty to characterize the inaccuracy of a measure-
ment result, whereas the term error is used to characterize the components of the
uncertainty. We shall return to these terms many times later in this book.

The measurement error is the deviation of the result of measurement from the
true value of the measurable quantity, expressed in absolute or relative form.

If A is the true value of the measurable quantity and Ã is the result of measure-
ment, then the absolute error of measurement is ζ = Ã − A. This equation is often
used as a definition of this term, but by doing that, one narrows the essence of this
term.

The error expressed in absolute form is called the absolute measurement error.
The error expressed in relative form is called the relative measurement error.

The absolute error is usually identified by the fact that it is expressed in the same
units as the measurable quantity.

Absolute error is a physical quantity, and its value may be positive, negative,
or even given by an interval that contains that value. One should not confuse the
absolute error with the absolute value of that error. For example, the absolute error
−0.3 mm has the absolute value 0.3.

The relative error is the error expressed as a fraction of the true value of the
measurable quantity ε = ( Ã − A)/A. Relative errors are normally given as per-
cent and sometimes per thousand (denoted by ‰). Very small errors, which are
encountered in the most precise measurements, are customarily expressed directly
as fractions of the measured quantity.

Uncertainty of measurement is an interval within which a true value of a mea-
surand lies with a given probability. Uncertainty is defined with its limits that are
read out from a result of measurement in compliance with the mentioned proba-
bility. Like an error, uncertainty can be specified in absolute or relative form. The
relation between the terms “error” and “uncertainty” is discussed in more detail in
Section 3.1.

Inaccuracy of measurements characterize the imperfection of measurements.
A positive characteristic of measurements is their accuracy. The accuracy of a
measurement reflects how close the result is to the true value of the measured
quantity.

A measurement is all the more accurate the smaller its error is. Absolute errors,
however, depend in general on the value of the measured quantity, and for this
reason, they are not a suitable quantitative characteristic of measurement accuracy.
Relative errors do not have this drawback. For this reason, accuracy can be char-
acterized quantitatively by a number equal to the inverse of the relative error
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expressed as a fraction of the measured quantity. For example, if the limits of error
of a measurement are ±2 × 10−3% = ±2 × 10−5, then the accuracy of this mea-
surement will be 5 × 104. The accuracy is expressed only as a positive number; that
calculation is based on the absolute value of the limits of the measurement error.

Although it is possible to introduce in this manner the quantitative characteristic
of accuracy, in practice, accuracy is normally not estimated quantitatively and it
is usually characterized indirectly with the help of the measurement error or the
uncertainty of measurement.

Other concepts and terms will be explained as they are introduced, and they are
given in the Glossary.

1.2. Metrology and the Basic Metrological Problems

Comparison is an age-old element of human thought, and the process of making
comparisons lies at the heart of measurement: Homogeneous quantities charac-
terizing different objects are identified and then compared; one quantity is taken
to be the unit of measurement, and all other quantities are compared with it. This
process is how the first measures, i.e., objects the size of whose corresponding
physical quantity is taken to be unity or a known number of units, arose.

At one time even different cities each had their own units and measures. Then
it was necessary to know how measures were related. This problem gave birth to
the science of measures—metrology.

But the content of metrology, as that of most sciences, is not immutable. Espe-
cially profound changes started in the second half of the nineteenth century, when
industry and science developed rapidly and, in particular, electrical technology
and instrument building began. Measurements were no longer a part of production
processes and commerce, and they became a powerful means of gaining knowl-
edge—they became a tool of science. The role of measurements has increased
especially today, in connection with the rapid development of science and tech-
nology in the fields of nuclear, space, electronics, information systems, and so on.

The development of science and technology, intercourse among peoples, and in-
ternational trade have prompted many countries to adopt the same units of physical
quantities. The most important step in this direction was the signing of the Met-
ric Convention [(Treaty of the Meter), 1875]. This act had enormous significance
not only with regard to the unification of physical quantities and dissemination of
the metric system, but also with regard to unifying measurements throughout the
world. The Metric Convention and the institutions created by it—the General Con-
ference on Weights and Measures (CIPM), the International Committee, and the
International Bureau of Weights and Measures (BIPM)—continue their important
work even now. In 1960, the General Conference adopted the international system
of units (SI) [10]. Most countries now use this system.

The content of metrology also changed along with the change in the problems of
measurements. Metrology has become the science of measurements. The block di-
agrams in Fig. 1.1 show the range of questions encompassed by modern metrology.
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Figure 1.1. Schematic picture of the basic problems of metrology: (a) metrology,
(b) applied metrology, (c) particular metrology, and (d) general metrology.
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Figure 1.1. (continued )
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Figure 1.1. (continued )
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The questions are incorporated into sections and subsections, whose names
give an idea of their content. The content of some of them must nonetheless be
explained.

(1) The Study of Physical, i.e., Measurable, Quantities
and their Units [Fig. 1.1 (d)]

Physical quantities are introduced in different fields of knowledge, in physics,
chemistry, biology, and so on. The rules for introducing and classifying them and
for forming systems of units and for optimizing these systems cannot be addressed
in any of these sciences, and already for this reason, they must be included among
the problems addressed in metrology. Moreover, the size of a quantity to be used
as a unit of measurement and its determination are also important for measurement
accuracy. One need only recall that when the distance between two markings on
a platinum-irridium rod was adopted for the meter, for the most accurate mea-
surement of length, the inaccuracy was not less than 10−6. When the meter was
later defined as a definite number (1,650,763.73) of wavelengths of krypton-86
radiation in vacuum, this inaccuracy was reduced to 10−7 − 10−8. Now, when the
definition of the meter is based on the velocity of light in vacuum, the inaccuracy
in measuring length has been reduced by another order of magnitude and it can be
reduced even more.

(2) General Theory of Reference Standards and
Initial Measuring Devices

The units of physical quantities are materialized; i.e., they are reproduced, with the
help of reference standards and initial measuring devices, and for this reason, these
measuring devices play an exceptionally important role in the unity of measure-
ments. The reference standard of each unit is unique, and it is physically created
based on the laws of specific fields of physics and technology. For this reason,
general metrology cannot answer the question of how a reference standard should
be constructed. But metrology must determine when a reference standard must be
created, and it must establish the criteria for determining when such a reference
standard must be a single or group reference standard. In metrology, the theory
and methods of comparing reference standards and monitoring their stability as
well as methods for expressing errors must also be studied. Practice raises many
such purely metrological questions.

(3) Theory of Transfer of the Size of Units into
Measurement Practice

In order that the results of all measurements be expressed for established units,
all means of measurement (measures, instruments, measuring transducers, mea-
suring systems) must be calibrated with respect to reference standards. This prob-
lem cannot, however, be solved directly based on primary reference standards,
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i.e., reference standards that reproduce units. It is solved with the help of a sys-
tem of secondary reference standards, i.e., reference standards that are calibrated
with respect to the primary reference standard, and working reference standards,
i.e., reference standards that are calibrated with respect to secondary reference
standards. Thus the system of reference standards has a hierarchical structure.
The entire procedure of calibrating reference standards and, with their help, the
working measuring instruments is referred to as transfer of the sizes of units into
measurement practice. The final stages of transferring the sizes of units consists of
calibration of the scales of the measuring instruments, adjustment of measures, and
determination of the actual values of the quantities that are reproduced by them,
after which all measuring instruments are checked at the time they are issued and
then periodically during use.

In solving these problems, a series of questions arises. For example, how many
gradations of accuracy of reference standards are required? How many secondary
and working reference standards are required for each level of accuracy? How
does the error increase when the size of a unit is transferred from one reference
standard to another? How does this error increase from the reference standard
to the working measuring instrument? What should be the relation between the
accuracy of the reference standard and the measuring instrument that is calibrated
(verified) with respect to it? How should complicated measurement systems be
checked? Metrology should answer these questions.

The other blocks in the diagram of Fig. 1.1 (d) do not require any explanations.
We shall now turn to Fig. 1.1 (a) and focus on the section particular metrology,
which the fields of measurement comprise. Examples are lineal–angular mea-
surements, measurements of mechanical quantities, measurements of electric and
magnetic quantities, and so on. The central problem arising in each field of mea-
surement is the problem of creating conditions under which the measurements
of the corresponding physical quantities are unified. For this purpose, in each
field of measurement, a system of initial measuring devices—reference standards
and standard measures—is created, and methods for calibrating and checking the
working measuring instruments are developed. The specific nature of each field
of measurement engenders a great many problems characteristic of it. However,
many problems that are common to several fields of measurement are encountered.
The analysis of such problems and the development of methods for solving them
are now problems of general metrology.

Applied metrology, which incorporates the metrological service and legislative
metrology, is of great importance for achieving the final goals of metrology as a
science. The metrological service checks and calibrates measuring instruments and
certifies standards of properties and composition; i.e., it maintains the uniformity
of measuring instruments employed in the country. The functions of legislative
metrology are to enact laws that would guarantee uniformity of measuring instru-
ments and unity of measurements. Thus, a system of physical quantities and the
units, employed in a country, can only be established by means of legislation.
The rules giving the right to manufacture measuring instruments and to check the
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state of these instruments when they are in use are also established by means of
legislation.

We shall now define more accurately some of the expressions and terms men-
tioned above.

Uniformity of measuring instruments refers to the state of these instruments
in which they are all carriers of the established units and their errors and other
properties, which are important for the instruments to be used as intended, fall
within the established limits.

Unity of measurements refers to a common quality of all measurements per-
formed in a region (in a country, in a group of countries, or in the world) such that
the results of measurements are expressed for established units and agree with one
another within the limits of estimated error or uncertainties.

Uniformity of measuring instruments is a necessary prerequisite for unity of
measurements. But the result of a measurement depends not only on the quality
of the measuring instrument employed but also on many other factors, including
human factors (if measurement is not automatic). For this reason, unity of mea-
surements in general is the limiting state that must be strived for, but which, as any
ideal, is unattainable.

This is a good point at which to discuss the development of reference standards.
A reference standard is always a particular measuring device: a measure, instru-
ment, or measuring apparatus. Such measuring devices were initially employed as
reference standards arbitrarily by simple volition of the institution responsible for
correctness of measurements in the country. However, there is always the danger
that a reference standard will be ruined, which can happen because of a natural dis-
aster, fire, and so on. An arbitrarily established reference standard, i.e., a prototype
reference standard, cannot be reproduced.

As a result, scientists have for a long time strived to define units of measurement
so that the reference standards embodying them could be reproducible. For this,
the units of the quantities were defined based on natural phenomena. Thus, the
second was defined based on the period of revolution of the Earth around the sun:
the meter was defined based on the length of the Parisian meridian, and so on.
Scientists hoped that these units would serve “for all time and for all peoples.”
Historically this stage of development of metrology coincided with the creation of
the metric system.

Further investigations revealed, however, that the chosen natural phenomena are
not sufficiently unique or are not stable enough. Nonetheless the idea of defining
units based on natural phenomena was not questioned. It was only necessary to
seek other natural phenomena corresponding to a higher level of knowledge of
nature.

It was found that the most stable or even absolutely stable phenomena are char-
acteristic of phenomena studied in quantum physics, and that the physical constants
can be employed successfully for purposes of defining units, and the corresponding
effects can be employed for realizing reference standards. The meter, the second,
and the volt have now been defined in this manner. It can be conjectured that in the
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near future, the volt, defined and reproduced based on the Josephson effect, will
replace the ampere as the basic electric unit.

The numerical values of the basic physical constants are widely used in various
calculations, and therefore, these values must be in concordance with each other.
To reach this goal, all values of fundamental physical constants obtained by ex-
periments must be adjusted. The most recent adjustment was carried out in 1998,
and the results were published in 1999 [40].

As one can see from the problems with which it is concerned, metrology is an
applied science. However, the subject of metrology—measurement—is a tool of
both fundamental sciences (physics, chemistry, and biology) and applied disci-
plines, and it is widely employed in all spheres of industry, in everday life, and in
commerce. No other applied science has such a wide range of applications as does
metrology.

We shall return once again to particular metrology. A simple list of the fields
of measurement shows that the measurable quantities and therefore measurement
methods and measuring instruments are extremely diverse. What then do the dif-
ferent fields of measurement have in common? They are united by general or theo-
retical metrology and, primarily, the general methodology of measurement and the
general theory of inaccuracy of measurements. For this reason, the development
of these branches of metrology is important for all fields of science and for all
spheres of industry that employ measurements. The importance of these branches
of metrology is also indicated by the obvious fact that a specialist in one field of
measurement can easily adapt to and work in a different field of measurement.

1.3. Initial Points of the Theory of Measurements

Measurements are so common and intuitively understandable that one would think
there is no need to identify the prerequisites on which measurements are based.
However, a clear understanding of the starting premises is necessary for the devel-
opment of any science, and for this reason, it is desirable to examine the prerequi-
sites of the theory of measurements.

When some quantity characterizing a specific object is being measured, this ob-
ject is made to interact with a measuring instrument. Thus to measure the diameter
of a rod, the rod is squeezed between the jaws of a vernier caliper; to measure the
voltage of an electric circuit, a voltmeter is connected to it; and so on. The indica-
tion of the measuring instrument—the sliding calipers, voltmeter, and so on—gives
an estimate of the measurable quantity, i.e., the result of the measurement. When
necessary, the number of divisions read on the instrument scale is multiplied by a
certain factor. In many cases, the result of measurement is found by mathematical
analysis of the indications of a instrument or several instruments. For example,
the density of solid bodies, the temperature coefficients of the electric resistance
of resistors, and many other physical quantities are measured in this manner.

The imperfection of measuring instruments, the inaccuracy with which the sizes
of the units are transferred to them, as well as some other factors that we shall study
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below, result in the appearance of measurement errors. Measurement errors are in
principle unavoidable, because a measurement is an experimental procedure and
the true value of the measurable quantity is an abstract concept. As the measure-
ment methods and measuring instruments improve, however, measurement errors
decrease.

The introduction of measurable quantities and the establishment of their units
is a necessary prerequisite of measurements. Any measurement, however, is al-
ways performed on a specific object, and the general definition of the measurable
quantity must be specified taking into account the properties of the object and
the objective of the measurement. The true value of the measurable quantity is
essentially introduced and defined in this manner. Unfortunately, this important
preparatory stage of measurements is usually not formulated and not singled out.

To clarify this question, we shall study a simple measurement problem—the
measurement of the diameter of a disk. First we shall formulate the problem. The
fact that the diameter of a disk is to be measured means that the disk, i.e., the object
of study, is a circle. We note that the concepts “circle” and “diameter of a circle”
are mathematical, i.e., abstract, concepts. The circle is a representation or model
of the given body. The diameter of the circle is the parameter of the model and is a
mathematically rigorous definition of the measurable quantity. Now, in accordance
with the general definition of the true value of the measurable quantity, it can be
stated that the true value of the diameter of the disk is the value of the parameter
of the model (diameter of the disk) that reflects, in the quantitative respect, the
property of the object of interest to us; the ideal qualitative correspondence must
be predetermined by the model.

Let us return to our example. The purpose of the disk permits determining the
permissible measurement error and choosing an appropriate measuring instrument.
Bringing the object into contact with the measuring instrument, we obtain the result
of measurement. But the diameter of the circle is, by definition, invariant under
rotation. For this reason, the measurement must be performed in several different
directions. If the difference of the results of the measurements are less than the
permissible measurement error, then any of the obtained results can be taken as
the result of measurement. After the value of the measurable quantity, a concrete
number, which is an estimate of the true value of the measurand, has been found,
the measurement can be regarded as being completed.

But it may happen that the difference of the measurements in different directions
exceeds the permissible error of a given measurement. In this situation, we must
state that within the required measurement accuracy, our disk does not have a
unique diameter, as does a circle. Therefore, no concrete number can be taken, with
prescribed accuracy, as an estimate of the true value of the measurable quantity.
Hence, the adopted model does not correspond to the properties of the real object,
and the measurement problem has not been correctly formulated.

If the object is a manufactured article and the model is a drawing of the article,
then any disparity between them means that the article is defective. If, however, the
object is a natural object, then the disparity means that the model is not applicable
and it must be reexamined.
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Of course, even when measurement of the diameter of the disk is assumed to be
possible, in reality, the diameter of the disk is not absolutely identical in different
directions. But as long as this inconstancy is negligibly small, we can assume that
the circle as a model corresponds to the object and therefore a constant, fixed true
value of the measurable quantity exists, and an estimate of the quantity can be found
as a result of measurement. Moreover, if the measurement has been performed, we
can assume that the true value of the measurable quantity lies somewhere near the
obtained estimate and differs from it by not more than the measurement error.

Thus the idealization necessary for constructing a model gives rise to an un-
avoidable discrepancy between the parameter of the model and the real property
of the object. We shall call this discrepancy the threshold discrepancy.

As we saw above, the error caused by the threshold discrepancy between the
model and the object must be less than the total measurement error. If, however,
this component of the error exceeds the limit of permissible measurement error,
then it is impossible to make a measurement with the required accuracy. This
result indicates that the model is inadequate. To continue the experiment, if this
is permissible for the objective of the measurement, the model must be redefined.
Thus, in the example of the measurement of the diameter of a disk, a different
model could be a circle circumscribing the disk.

The case studied above is simple, but the features demonstrated for it are present
in any measurement, although they are not always so easily and clearly perceived
as when measuring lineal dimensions.

The foregoing considerations essentially reduce to three prerequisites:

(a) Some parameter of the model of the object must correspond to a measurable
property of the object.

(b) The model of the object must permit the assumption that during the time re-
quired to perform the measurement, the parameter of the object, corresponding
to the property of the object being measured, is constant.

(c) The error caused by the threshold discrepancy between the model and the
object must be less than the permissible measurement error.

Generalizing all three assumptions, we formulate the following principles of
metrology: A measurement with fixed accuracy can be performed only, if to a
measurable property of the object, it is possible to associate with no less accuracy
a determinate parameter of its model.

Any constant parameter is, of course, a determinate parameter. The instanta-
neous value of a variable (varying) quantity can also be regarded as a determinate
parameter.

We note that the parameter of a model of an object introduced in this manner is
the true value of the measurable quantity.

The foregoing considerations are fundamental, and they can be represented in
the form of postulates of the theory of measurement [44], [50]:

(α) The true value of the measurable quantity exists.
(β) The true value of the measurable quantity is constant.
(γ ) The true value cannot be found.
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The threshold discrepancy between the model and the object was employed
above as a justification of the postulate (γ ). However, other unavoidable restric-
tions also exist on the approximation of the true value of a measurable quantity.
For example, the accuracy of measuring instruments is unavoidably limited. For
this reason, it is possible to formulate the simple statement: The result of any
measurement always contains an error.

It was mentioned above that a necessary prerequisite of measurements is the
introduction of physical quantities and their units. These questions are not di-
rectly related with the problem of estimating measurement errors, and for this rea-
son, they are not studied here. These questions are investigated in several works.
We call attention to the book by B.D. Ellis [24] and the work of K.P. Shirokov
[48].

At this point we shall discuss some examples of models that are employed for
specific measurement problems.

Measurement of the Parameters of Alternating Current

The object of study is an alternating current. The model of the object is a
sinusoid

i = Im sin(ωt + ϕ),

where t is the time and Im , ω, and ϕ are the amplitude, the angular frequency, and
the initial phase, and they are the parameters of the model.

Each parameter of the model corresponds to some real property of the object
and can be a measurable quantity. But, in addition to these quantities (arguments),
several other parameters that are functionally related with them are also introduced.
These parameters can also be measurable quantities. Some parameters can be
introduced in a manner such that by definition they are not related with the “details”
of the phenomenon. An example is the effective current

I =
√

1

T

∫ T

0
i2dt,

where T = 2π/ω is the period of the sinusoid.
A nonsinusoidal current is also characterized by an effective current. However,

in developing measuring instruments and describing their properties, the form of
the current, i.e., the model of the object of study, must be taken into account.

The discrepancy between the model and the object in this case is expressed as
a discrepancy between the sinusoid and the curve of the time dependence of the
current strength. In this case, however, only rarely is it possible to discover the
discrepancy between the model and the process under study by means of simple
repetition of measurements of some parameters. For this reason, the correspon-
dence between the model and the object is checked differently, for example, by
measuring the form distortion factor.

The model is usually redefined by replacing one sinusoid by a sum of a certain
number of sinusoids.
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Measurement of the Parameters of Random Processes

The standard model is a stationary ergodic random process on the time interval
T . The constant parameters of the process are the mathematical expectation E[X ]
and the variance V [X ]. Suppose that we are interested in E[X ]. The expectation
E[X ] can be estimated, for example, with the help of the formula

x̄ =

⎛
⎜⎜⎝

n∑
i=1

xi

n

⎞
⎟⎟⎠

T

,

where T is the observational time interval, xi are the estimates of the realization
of the random quantity, whose variation in time forms a random process at times
ti ε T , and n is the total number of realizations obtained.

Repeated measurements on other realizations of the process can give some-
what different values of x̄ . The adopted model can be regarded as corresponding
to the physical phenomenon under study, if the differences between the obtained
estimates of the mathematical expectation of the process are not close to the per-
missible measurement error. If, however, the difference of the estimates of the
measured quantity are close to the error or exceed it, then the model must be
redefined, which is most simply done by increasing the observational interval T .

It is interesting to note that the definitions of some parameters seem, at first
glance, to permit arbitrary measurement accuracy (if the errors of the measuring
instrument are ignored). Examples of such parameters are the parameters of sta-
tionary random processes, the parameters of distributions of random quantities,
and the average value of the quantity. One would think that to achieve the required
accuracy in these cases, it is sufficient to increase the number of observations when
performing the measurements. In reality, however, the accuracy of measurement is
always limited, and in particular, it is limited by the correspondence between the
model and the phenomenon, i.e., by the possibility of assuming that to the given
phenomenon, there corresponds a stationary random process or a random quantity
with a known distribution.

In the last few years, much has been written about measurements of variable
and random quantities, But these quantities, as such, do not have a true value, and
for this reason, they cannot be measured.

For a random quantity, it is possible to measure the parameters of its distribution
function, which are not random; it is possible to measure the realization of a random
quantity. For a variable quantity, it is possible to measure its parameters that are
not variable; it is also possible to measure the instantaneous values of a variable
quantity.

We shall now discuss in somewhat greater detail the measurement of instanta-
neous values of quantities. Suppose that we are studying an alternating current,
the model of which is a sinusoid with amplitude Im , angular frequency ω, and
initial phase ϕ. At time t1 to the instantaneous current, there corresponds in the
model the instantaneous value i1 = Im sin(ωt1 + ϕ). At a different time, there will
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be a different instantaneous value, but at each moment, it has some definite value.
Thus to the measurable property of the object, there always corresponds a fixed
parameter of its model.

Measurement, however, requires time. The measurable quantity will change
during the measurement time, and this will generate a specific error of the given
measurement. The objective of the measurement permits setting a level that the
measurement error, as well as its component caused by the change in the measurable
quantity over the measurement time, must not exceed.

If this condition is satisfied, then the effect of the measurement time can be
neglected, and it can be assumed that as a result we obtain an estimate of the
measured instantaneous current, i.e., the current strength at a given moment in
time.

In the literature, the term measurement of variable quantities usually refers
to measurement of instantaneous values, and the expression measurement of a
variable quantity is imprecise. In the case of measurement of a random quantity,
the writer usually has in mind the measurement of a realization of a random
quantity.

Physical quantities are divided into active and passive. Active quantities are
quantities that can generate measurement signals without any auxiliary sources
of energy; i.e., they act on the measuring instruments. Such quantities are the
emf, the strength of an electric current, mechanical force, and so on. Passive
quantities cannot act on measuring instruments, and for measurements, they must
be activated. Examples of passive quantities are mass, inductance, and electric
resistance. Mass is usually measured based on the fact that in a gravitational field,
a force proportional to the mass acts on the body. Electric resistance is activated
by passing an electric current through a resistor.

When measuring passive physical quantities characterizing some objects, the
models of the objects are constructed for the active quantities that are formed by
activation of passive quantities.

1.4. Classification of Measurements

In metrology there has been a long-standing tradition to distinguish direct, indi-
rect, and combined measurements. In the last few years, metrologists have begun to
divide combined measurements into strictly combined measurements and simul-
taneous measurements [4]. This classification is connected with a definite method
used for processing experimental data to find the result of a measurement and to
estimate its uncertainty.

In the case of direct measurements, the object of study is made to interact with the
measuring instrument, and the value of the measurand is read from the indications
of the latter. Sometimes the instrumental readings are multiplied by some factor,
corresponding corrections are made in it, and so on.

In the case of indirect measurements, the value of the measurable quantity is
found based on a known dependence between this quantity and its arguments. The
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arguments are found by means of direct and sometimes indirect or simultaneous or
combined measurements. For example, the density of a homogeneous solid body
is found as the ratio of the mass of the body to its volume, and the mass and volume
of the body are measured directly.

Sometimes direct and indirect measurements are not so easily distinguished.
For example, an ac wattmeter has four terminals. The voltage applied to the load
is connected to one pair of terminals, whereas the other pair of terminals is con-
nected in series with the load. As is well known, the indications of a wattmeter
are proportional to the power consumed by the load. However, the wattmeter
does not respond directly to the measured power. Based on the principle of op-
eration of the instrument, measurement of power with the help of a wattmeter
would have to be regarded as indirect. In our case, it is important, however, that
the value of the measurable quantity can be read directly from the instrument
(in this case, the wattmeter). In this sense, a wattmeter is in no way different
from an ammeter. For this reason, in this book, it is not necessary to distinguish
measurement of power with the help of a wattmeter and measurement of current
strength with the help of an ammeter: We shall categorize both cases as direct
measurements. In other words, when referring a specific measurement to one or
another category, we will ignore the arrangement of the measuring instrument
employed.

Simultaneous and combined measurements employ close methods for finding
the measurable quantities: In both cases, they are found by solving a system of
equations, whose coefficients and separate terms are obtained as a result of mea-
surements (usually direct). In both cases, the method of least squares is usually
employed. But the difference lies in that in the case of combined measurements,
several quantities of the same kind are measured simultaneously, whereas in the
case of simultaneous measurements, quantities of different kinds are measured
simultaneously. For example, a measurement in which the electric resistance of a
resistor at a temperature of +20 ◦C and its temperature coefficients are found based
on direct measurements of the resistance and temperature performed at different
temperatures is a simultaneous measurement. A measurement in which the masses
of separate weights in a set are found based on the known mass of one of them and
by comparing the masses of different combinations of weights from the same set
is a combined measurement.

Depending on the properties of the object of study, the model adopted for the
object, and the definition of the measurable quantity given in the model as well as
on the method of measurement and the properties of the measuring instruments,
the measurements in each of the categories mentioned above are performed either
with single or repeated observations. The method employed for processing the ex-
perimental data depends on the number of observations—are many measurements
required or are one or two observations sufficient to obtain a measurement? If a
measurement is performed with repeated observations, then to obtain a result the
observations must be analyzed statistically. These methods are not required in the
case of measurements with single observations. For this reason, for us, the number
of observations is an important classification criterion.



1.4. Classification of Measurements 17

We shall term measurements performed with single observations single mea-
surements and measurements performed with repeated observations multiple mea-
surements. An indirect measurement, in which the value of each of the arguments
is found as a result of a single measurement, must be regarded as a single mea-
surement.

Combined measurements can be regarded as single measurements, if the number
of measurements is equal to the number of unknowns when the measurements
are performed, so that each unknown is determined uniquely from the system of
equations obtained.

Among combined measurements, it is helpful to single out measurements for
which the measurable quantities are related by known equations. For example,
in measuring the angles of a planar triangle, it is well known that the sum of
all three angles is equal to 180°. This relation makes it possible to measure two
angles only, and this is a single and, moreover, direct measurement. If, however,
all three angles are measured, then the relation mentioned permits correlating their
estimates, using, for example, the method of least squares. In the latter case, this
is a combined and multiple measurement.

Measurements are also divided into static and dynamic measurements. Adhering
to the concept presented in [49], we shall classify as static those measurements
in which, in accordance with the problem posed, the measuring instruments are
employed in the static regime and as dynamic those measurements in which the
measuring instruments are employed in the dynamic regime.

The static regime of a measuring instrument is a regime in which, based on
the function of the instrument, the output signal can be regarded as constant. For
example, for an indicating instrument, the signal is constant for a time sufficient
to read the instrument. A dynamic regime is a regime in which the output signal
changes in time, so that to obtain a result or to estimate its accuracy, this change
must be taken into account.

According to these definitions, static measurements include, aside from triv-
ial measurements of length, mass, and so on, measurements of the average and
effective (mean-square) values of alternating current by indicating instruments.
Dynamic measurements refer to measurements of successive values of a quantity
that varies in time (including stochastically). A typical example of such measure-
ments is recording the value of a quantity as a function of time. In this case, it is
logical to regard the measurement as consisting not of a single measurement but
of many measurements.

Other examples of dynamic measurements are measurement of the magnetic
flux by the ballistic method and measurement of the high temperature of an object
based on the starting section of the transfer function of a thermocouple put into
contact with the object for a short time (the thermocouple would be destroyed if
the contact time was long).

Static measurements also include measurements performed with the help of
digital indicating instruments. According to the definition of static measurements,
for this conclusion, it is not important that during the measurement, the state of
the elements in the device changes. The measurement will also remain static when
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the indications of the instrument change from time to time, but each indication
remains constant for a period of time sufficient for the indication to be read or
recorded automatically.

A characteristic property of dynamic measurements is that to obtain results and
estimate their accuracy in such measurements, it is necessary to know a complete
dynamic characteristic of the measuring instrument: a differential equation, trans-
fer function, and so on. (The dynamic characteristics of measuring instruments
will be examined in Chapter 2.)

The classification of measurements as static and dynamic is justified by the
difference in the methods employed to process the experimental data. At the present
time, however, dynamic measurements as a branch of metrology are still in the
formative stage.

The most important characteristic of the quality of a measurement is accu-
racy. The material base, which ensures the accuracy of numerous measurements
performed in the economy, consists of reference standards. The accuracy of any
particular measurement is determined by the accuracy of the measuring instru-
ments employed, the method of measurement employed, and sometimes by the
skill of the experimenter. However, as the true value of a measurable quantity is
always unknown, the errors of measurements must be estimated computationally
(theoretically). This problem is solved by different methods and with different
accuracy.

In connection with the accuracy of the estimation of a measurement error, we
shall distinguish measurements whose errors are estimated before and after the
measurement. We shall refer to them as measurements with ante-measurement
or a priori estimation of errors and measurements with postmeasurement or a
posteriori estimation of errors.

Estimates with ante-measurement estimation of errors must be performed ac-
cording to an established procedure, included in the calculation of the errors. Mea-
surements of this type include all mass measurements. For this reason, we shall
call them mass measurements. Sometimes they are called technical measurements.

Mass measurements are common. Their accuracy is predetermined by the types
(brands) of measuring instruments indicated in the procedure, the techniques for
using them, as well as the stipulated conditions under which the measurements
are to be performed. For this reason, the person performing the measurement is
interested only in the result of measurement, and he or she knows nothing about
the accuracy beforehand, i.e., whether it is adequate.

A posteriori estimation of errors is characteristic for measurements performed
with an objective in mind, when it is important to know the accuracy of each result.
For this reason, we shall call such measurements individual measurements.

We shall divide individual measurements, in turn, into two groups: measure-
ments with exact estimation of errors and measurements with approximate esti-
mation of errors.

Measurements with exact estimation of errors are measurements in which
the properties of the specific measuring instruments employed are taken into
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account. Measurements with approximate estimation of errors are measurements
in which the specifications of the measuring instruments employed are taken into
account.

In both cases, the conditions under which the measurements are performed are
taken into account. For this reason, the influence quantities or some of them are
often measured; in other cases, they are estimated.

Here we must call attention to a fact whose validity will become obvious from
further discussion. Suppose that measurements whose errors are estimated with
different accuracy are performed with the same measuring instruments. Despite
that the same instruments are employed, the accuracy of the measurements in this
case is different. The most accurate result will be the result obtained with exact
estimation of the errors. Measurements for which the errors are estimated approx-
imately will in most cases be more accurate than measurements whose errors are
estimated beforehand. The results of measurements with ante- and postmeasure-
ment estimation of errors will be only rarely equally accurate.

But when measuring instruments having different accuracy are employed, this
result will no longer be the case. For example, measurement of voltage with the help
of a potentiometer of accuracy class 0.005, performed as a mass measurement, i.e.,
with preestimation of errors, will be more accurate than measurement with the help
of an indicating voltmeter of class 0.5, performed as an individual measurement
with exact estimation of the errors.

In all cases studied above, the objective of the measurements was to obtain an
estimate of the true value of the measurable quantity, which, strictly speaking, is
the problem of any measurement. However, measurements are often performed
during the preliminary study of a phenomenon. We shall call such measurements
preliminary measurements.

The purpose of preliminary measurements is to determine the conditions under
which some indicator of the phenomenon can be observed repeatedly and its regular
relations with other properties of the object, systems of objects, or with an external
medium can be studied. As the object of scientific investigation of the world is to
establish and study regular relations between objects and phenomena, preliminary
measurements are important. Thus, it is known that the first task of a scientist who
is studying some phenomenon is to determine the conditions under which a given
phenomenon can be observed repeatedly in other laboratories and can be checked
and confirmed.

Preliminary measurements, as one can see from the concepts presented above,
are required to construct a model of an object. For this reason, preliminary mea-
surements are also important for metrology.

Apart from preliminary measurements, for metrological purposes it is also pos-
sible to distinguish supplementary measurements. Supplementary measurements
are measurements of influence quantities that are performed to determine and make
corrections in the results of measurements.

Enormous literature exists on different aspects of measurements. Massey [38]
gives an idea of the wide range of questions pertaining to real measurements.
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1.5. Classification of Measurements Errors

A measurement of a quantity whose true value is A gives an estimate Ã of that
quantity. The absolute measurement error ζ expresses the difference between Ã
and A : ζ = Ã − A.

However, this equation cannot be used to find the error of a measurement for the
simple reason that the true value of the measurable quantity is always unknown.
If the true value was known, then there would be no need for a measurement.

Measurements performed for calibration of measuring instruments are an ex-
ception. In this case, the value of the measurable quantity must be known with
sufficient accuracy so that it can be used for this purpose instead of the true value
of the quantity.

For this reason, measurement errors must be estimated with indirect data.
The necessary components of any measurement are the method of measure-

ment and the measuring instrument; measurements are often performed with the
participation of a person. The imperfection of each component of measurement
contributes to the measurement error. For this reason, in the general form,

ζ = ζm + ζi + ζp,

where ζ is the measurement error, ζm is the methodological error, ζi is the instru-
mental error, and ζp is the personal error.

Each component of the measurement error can in turn be caused by several
factors. Thus, methodological errors can arise as a result of an inadequate theory of
the phenomena on which the measurement is based and inaccuracy of the relations
that are employed to find an estimate of the measurable quantity. In particular, the
error caused by the threshold discrepancy between the model of a specific object
and the object itself is also a methodological error.

Instrumental measurement errors are caused by the imperfection of measuring
instruments. Normally the intrinsic error of measuring instruments, i.e., the error
obtained under reference conditions regarded as normal, are distinguished from
additional errors, i.e., errors caused by the deviation of the influence quantities
from their values under reference conditions. Properties of measuring instruments
that cause the instrumental errors will be examined in detail in Chapter 2.

Personal errors: Measurements are often performed by people. Someone reads
the indications of instruments, and records the moment at which an image of a
filament vanishes on the screen of an optical pyrometer. The individual character-
istics of the person performing the measurement give rise to individual errors that
are characteristic of that person. They include errors caused by incorrect reading
of the tenths graduation of an instrument scale, asymmetric placement of the mark
of an optical indicator between two graduation lines, and so on.

Improvement of the reading and regulating mechanisms of measuring instru-
ments has led to the fact that for modern measuring instruments, the personal errors
are usually insignificant; for example, for digital instruments, they are virtually
nonexistent.
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The foregoing classification of measurement errors is based on the cause of the
errors.

Another important classification of measurement errors is based on their prop-
erties. In this respect, systematic and random errors are distinguished.

A measurement error is said to be systematic if it remains constant or changes
in a regular fashion in repeated measurements of one and the same quantity. The
observed and estimated systematic error is eliminated from measurements by in-
troducing corrections. However, it is impossible to eliminate completely the sys-
tematic error in this manner. Some part of the error will remain, and then this
residual error will be the systematic component of the measurement error.

To define a random measurement error, imagine that some quantity is measured
several times. If there are differences between the results of separate measurements,
and these differences cannot be predicted individually and any regularities inherent
to them are manifested only in many results, then the error from this scatter of the
results is called the random error.

The division of measurement errors into systematic and random is important,
because these components are manifested differently and different approaches are
required to estimate them.

Random errors are discovered by performing measurements of one and the same
quantity repeatedly under the same conditions, whereas systematic errors can be
discovered experimentally either by comparing a given result with a measurement
of the same quantity performed by a different method or by using a more accurate
measuring instrument. However, systematic errors are normally estimated by the-
oretical analysis of the measurement conditions, based on the known properties of
a measurand and of measuring instruments. Other specifics of the terms systematic
and random errors are discussed in Section 3.2.

The quality of measurements that reflects the closeness of the results of mea-
surements of the same quantity performed under the same conditions is called the
repeatability of measurements. Good repeatability indicates that the random errors
are small.

The quality of measurements that reflects the closeness of the results of measure-
ments of the same quantity performed under different conditions, i.e., in different
laboratories (at different locations) and using different equipment, is called the
reproducibility of measurements. Good reproducibility indicates that both the ran-
dom and systematic errors are small.

In speaking about errors, we shall also distinguish gross or outlying errors and
blunders. We shall call an error gross (outlying) if it significantly exceeds the error
justified by the conditions of the measurements, the properties of the measuring
instrument employed, the method of measurement, and the qualifications of the
experimenter. Such measurements can arise, for example, as a result of a sharp, brief
change in the grid voltage (if the grid voltage in principle affects the measurements).

Outlying or gross errors in multiple measurements are discovered by statistical
methods and are usually eliminated from analysis.

Blunders occur as a result of errors made by the experimenter. Examples are a slip
of the pen when writing up the results of observations, an incorrect reading of the
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indications of an instrument, and so on. Blunders are discovered by nonstatistical
methods, and they must always be eliminated from the analysis.

Measurement errors are also divided into static and dynamic. Static errors were
mentioned above. Dynamic errors are caused by the inertial properties of measuring
instruments.

If a varying quantity is recorded with the help of a recording device, then the
difference between the obtained function and the actual process of change of the
recorded quantity in time (taking into account the necessary scale transformations)
is the dynamic error of the given dynamic measurement. In this case, it is also a
function of time, and the instantaneous dynamic error can be determined for each
moment in time.

We shall now study the case when the process is recorded by measuring individ-
ual instantaneous values. It is clear that if within the time of a single measurement,
the measurable quantity does not change significantly and the instantaneous values
of the process are obtained at known times and sufficiently frequently, then the col-
lection of points ultimately obtained gives a picture of the change of the measure-
ment in time with a negligibly small error. Thus, there will be no dynamic error here.

The inertial properties of an instrument can be such, however, that the changes
in the measurable quantity over the measurement time will give rise to a definite
error in the results of measurements of the instantaneous values. In this case, the
obtained collection of instantaneous values will not be coincident with the process
of change of the measurable quantity in time, and their difference, exactly as in
the case of an analog automatic-plotting instrument, will give the dynamic error.
Correspondingly, it is natural to call the instantaneous dynamic error the error
arising in the measurement of a separate instantaneous quantity as a result of
the rate of change of the measurable quantity and the inertial properties of the
instrument.

If some isolated instantaneous quantity, for example, the amplitude of a pulse,
is measured and the measurement is performed with a special indicating device,
then the difference between the shape of the pulse and the shape obtained with
a calibrated instrument will give rise to a supplementary error as a result of the
measurement. Based on what we have said above, one could call this error a
dynamic error. However, the general term “dynamic error” is normally avoided in
such situations, and such an error is given a name that indicates its cause. In this
example, it is natural to call the error the pulse-shape error. In practice, the pulse
shape is characterized by several parameters, and to each parameter, a separate
component of the error is associated.

1.6. Principles of Estimation of Measurement
Errors and Uncertainties

Measurements are regarded metrologically to be better the lower their uncertainty
is. However, measurements must be reproducible, because otherwise they lose
their objective character and therefore become meaningless.
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A measure of the nonreproducibility of a measurement permitted by the ex-
perimenter is the limits of measurement error or uncertainty estimated by the
experimenter.

Correctly estimated measurement uncertainty permits comparing the obtained
result with the results obtained by other experimenters. The fact that the correctness
of a given estimate is later confirmed in a more accurate measurement attests to
the high skill of the experimenter.

The validity of the uncertainty calculated for every measurement result is based
on the validity of the estimates of errors of this measurement. Therefore, we shall
pay attention to the practice of estimating measurement errors.

Errors are customarily estimated based on the following considerations:

(1) The measurement is regarded as more accurate and, in this sense, better, the
smaller its relative error is

ε = ζ

A
≈ 


Ã
,

where Ã is an estimate of the true value of the measurand A and 
 is an estimate of
the limits of measurement error ζ . The relative error is studied because its value,
as a rule, does not depend on the value of the measurable quantity. This condition
is not true for the absolute error.

(2) The estimate of the measurement error must satisfy the inequality

|ζ | ≤ |
|.
The meaning of this inequality is as follows. For any measurement, it is, in prin-

ciple, desirable that no error exists. But despite all efforts Ã �= A and correspond-
ingly ζ �= 0, and in our case, the error can be both greater than and less than zero. In
the primary estimate of any error, the limits for ζ , i.e., 
1 and 
2, are established,
so that 
1 ≤ ζ ≤ 
2. In the calculations, the value of |
1| or |
2|, whichever is
larger, is often used as the estimate for ζ . Most often, |
1| = |
2| = |
|. Thus,
we arrive at the inequality |ζ | ≤ |
|.

If a measurement error is mainly random, its limits should be estimated with
such a high probability that the above inequality is practically always satisfied.

The second assumption means that the estimate of the measurement error must
be an upper estimate. This requirement should be regarded as a principle of error
estimation.

It makes a great deal of sense to use the limiting values of an error as estimates
of the error. First, humans naturally make comparisons and they establish relations
of the type greater than, equal to, and less than. For this reason, limiting errors
are easily perceived. Furthermore, measurement results are most easily compared
when the limiting errors are known.

It should not be forgotten, however, that the measurement error characterizes the
uncertainty of the result of a measurement and the spread and nonreproducibility
of the measurement. For this reason, the estimate of error cannot be precise, and
it is not required that it be precise. But its uncertainty, if one can say so, should be
weighted toward overestimation and not underestimation. In accordance with this
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principle, we shall still say that it is better to overestimate than to underestimate
an error: In the first case, the quality of the measurement is reduced, whereas in
the second case, the entire measurement can be made worthless. Of course, the
overestimation should be kept to a minimum.

It should also be kept in mind that the correctness of estimates of measurement
errors or uncertainty cannot be checked based on data obtained in a particular
measurement. Regarding a given measurement, all obtained experimental data
and other reliable information, for example, corrections to the indications of in-
struments, are employed to find the measurement result, and the error must be
estimated with additional information about the properties of the measuring in-
struments, the conditions of the measurements, and the theory. There is no point
in performing a special experiment to check or estimate the measurement error
or uncertainty. It would then be necessary to organize in parallel with the given
measurement a more accurate measurement of the same measurable quantity. Then
the given measurement would be meaningless: Its result would be replaced by the
result of the more accurate measurement. The problem of estimating the error in
a given measurement would be replaced by the problem of estimating the error of
the more accurate measurement; i.e., the basic problem would remain unsolved.

The correctness of estimates of errors and uncertainty is nonetheless checked. It
is confirmed either by the successful use of the measurement result for the purpose
intended or by the fact that the measurement agrees with the results obtained by
other experimenters. As in the case of measurement of physical constants, the
correctness of the estimates of uncertainties is sometimes checked with time as
a result of improvements in measuring instruments and methods of measurement
and increased measurement accuracy.

1.7. Presentation of Results of Measurements;
Rules for Rounding Off

If Ã is the result of a measurement and 
U and 
L are the upper and lower
limits of the error in the measurement, then the result of the measurement and the
measurement error can be written in the form

Ã, 
U , 
L , and Ã
U

L

.

In the first case, it is convenient to preserve the conventional notation, for exam-
ple, Ã = 1.153 cm, 
U = +0.002 cm, and 
L = −0.001 cm. The second case
is convenient for technical documentation. For example, 1.153+0.002

−0.001 cm. Often
|
U | = |
L | = 
. Then the result and the error are written in the form Ã ± 
.

In the cases above, the inaccuracy of measurement results is expressed as per-
missible errors. But usually, the inaccuracy is expressed as uncertainty. In this case,
the corresponding probability must be given. For uniformity, it is recommended
that the probability be given in parentheses after the value of the uncertainty or a
symbol of a measurand.
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For example, if a measurement gives the value of the voltage, 2.62 V, and the
uncertainty of this result, u = ±2%, was calculated for the probability 0.95, then
the result will be written in the form

Ũ = 2.62V, u = ±2%(0.95),

or in the more compact form

U (0.95) = (2.62 ± 0.05)V .

The remark regarding compactness refers to the method for indicating the value
of the probability and is unrelated to the fact that the relative error is given in the
first case and the absolute error is given in the second case.

If the confidence probability is not indicated in the measurement result, then the
inaccuracy must be assumed to have been estimated without the use of probability
methods. For example,

U = (2.1 ± 0.1)V .

Although an error estimate obtained without the use of probability methods can
be reliable, it cannot be associated with a probability of one or some other value.
As a probabilistic model was not employed, the probability cannot be estimated
and it should not be indicated. So, in this case again, we have the limits of an error
of a measurement.

The form, examined above, for representing measurement errors is desirable for
the final result, intended for direct practical application, for example, in quality con-
trol problems. In this case, it is usually convenient to express the error in the form
of absolute errors. In many cases, however, it is desirable to know not the limiting
values of the total measurement error but the characteristics of the random and sys-
tematic components separately. Such a representation of the error makes it easier to
analyze and determine the reasons for any discrepancy between the results of mea-
surements of one and the same quantity performed under different conditions. Such
an analysis is usually necessary in the case of measurements performed for scien-
tific purposes, for example, measurements of physical constants. It is also desirable
to record the components separately in those cases when the result of a measure-
ment is to be used for calculations together will other data that are not absolutely
precise. For example, for errors of measurements of quantities measured directly
in indirect measurements, recording the error in this form makes it possible to
estimate more accurately the uncertainty of the result of the indirect measurement.

When the error components are recorded separately, the systematic component is
characterized, as a rule, by the limiting values θU , θL , and θ , if |θU | = |θL | = θ . If
these limits are calculated by probabilistic methods, then the probability employed
should be indicated in parentheses immediately after the value of the error. For a
random error, the standard deviation Sx̄ , determined from the experimental data
and the number of observations n are usually indicated. Sometimes the uncertainty
and the corresponding probability are given instead of Sx̄ .

For scientific measurements, apart from the above-indicated parameters of the
error, it is helpful to describe the basic sources of error together with an estimate
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of their contribution to the total measurement uncertainty. For the random error,
it is of interest to present the form and parameters of the distribution function of
the observations and how it was determined (the method employed for testing the
hypothesis regarding the form of the distribution function, the significance level
used in this testing, etc.).

The errors in the results of mass measurements are usually not indicated at all,
because they are estimated and are known beforehand.

The number of significant figures employed in the number expressing the result
of a measurement must correspond to the accuracy of the measurement, which
means that the uncertainty of a measurement can be equal to 1 or 2 units in the last
figure of the number expressing the result of the measurement. In any case, this
uncertainty should not exceed 5 units in the last figure.

As measurement uncertainty determines only the vagueness of the resuits, it
need not be known precisely. For this reason, in its final form, the uncertainty is
customarily expressed by a number with one or two significant figures. Two figures
are retained for the most accurate measurements and if the most significant digit
of the number expressing the uncertainty is equal to or less than 3.

It should be noted, however, that in calculations and intermediate computations,
depending on the computational operations performed, one or two significant fig-
ures more than suggested by the result should be retained so that the roundoff error
not distort the results too much.

The numerical value of the result of a measurement must be represented in a
manner so that the last decimal digit is of the same rank as its uncertainty. There is
no point in including more digits, because this will not reduce the uncertainty of the
result. But less digits, which can be obtained by further rounding off the number,
would increase the uncertainty and make the result less accurate, and thereby it
would make pointless the measures employed in the measurement.

When analyzing the results of observations and recording the results of mea-
surements, the rounding off should be done according to the following rules:

(1) The last digit retained is not changed if the adjacent digit being discarded
is less than 5. Extra digits in integers are replaced by 0’s, whereas extra digits in
decimal fractions are dropped.

Examples. The numerical value of the result of a measurement 85.6342 with
an error in the limits ±0.04 should be rounded off to 85.63. If the error limits are
±0.012, the same number should be rounded off to 85.634.

Retaining four significant figures, the number 165,245 should be rounded off
to 165.2.

(2) The last digit retained is increased by 1 if the adjacent digit being discarded
is greater than 5 or if it is 5 and there are digits other than 0 to its right.

Examples. If three significant digits are retained, the number 18,598 is rounded
off to 18,6 and the number 152.56 is rounded off to 153.

(3) If the digit being discarded is equal to 5 and the digits to its right are unknown
or are equal to 0, then the last retained digit is not changed if it is even and it is
increased by 1 if it is odd.
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Examples. If two significant digits are retained, the number 10.5 is rounded off
to 10 and the number 11.5 is rounded off to 12.

(4) If the decimal fraction in the numerical value of the result of a measurement
terminates in 0’s, then the 0’s are dropped only up to the digit that corresponds to
the rank of the numerical value of the error.

The foregoing rules were established by convention, and for calculations per-
formed by humans, they are entirely satisfactory. In the case of calculations per-
formed with the help of computers, however, rounding off depending on the even-
ness or oddness of the last retained digit [rule (3)] is inconvenient, because it
complicates the algorithm. It has been suggested that this rule be dropped and the
last retained figure not be changed, irrespective of whether it is even or odd. This
suggestion, however, has not been adopted. The main objection is that many such
roundoffs of intermediate results can significantly distort the final result.

If the rules presented above are used, then the number of significant figures
in the numerical value of the result of a measurement makes it possible to judge
approximately the accuracy of a measurement. For this reason, it should be noted
that the limiting error, caused by roundoff, is equal to one half the last digit in the
numerical value of the result of the measurement, and the measurement error can
reach two units in the next-to-last and several units in the last digit.

We shall now estimate the relative roundoff error. Assume, for example, that
the result of a measurement is expressed by a number with two significant figures.
Then the minimum number will be equal to 10 and the maximum number will be
equal to 99. Therefore, the relative roundoff error will be 0.5% < ε2 ≤ 5%.

If the result of a measurement is expressed by a number with three significant
figures, this error will fall in the range 0.05% < ε3 ≤ 0.5%, and so on.

The error limits obtained above show the effect of roundoff on the measurement
error. In addition, these data permit focusing on the minimum number of signifi-
cant figures necessary to record the result of a measurement with the prescribed
accuracy.

When analyzing the results of observations and, especially, when estimating the
errors, it is useful to employ methods and formulas of approximate calculations.

1.8. Basic Conventional Notations

We shall employ Latin letters for the measurands. Greek letters will be employed
for errors.

The notations employed for errors, their limits, and uncertainties are presented
in Table 1.1.

The notations for confidence limits of errors are constructed by adding to the
symbol of the corresponding error a subscript α.

We shall distinguish estimates of quantities from the true values by adding a
tilde to the corresponding symbol. For example, Ã is the estimate of the true value
of A.
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Table 1.1. Designations of measurement
errors and uncertainties.

Uncertainty u
Combined uncertainty uc

Total uncertainty ut

Error ζ

Limits of error 


Random error ψ

Limits of random error 


Conditionally constant error ϑ

Limits of conditionally constant error θ

Absolutely constant error η

Limits of absolutely constant error H

We shall denote the arithmetic mean with the help of an overbar on the corre-
sponding symbol. For example, x̄ is the arithmetic mean of the obtained values of
xi (i = 1, . . . , n).

In addition, we shall use the following mathematical symbols: E[X ] is the
mathematical expectation, and V [X ] is the variance of a random quantity X.

Of the notation used for specific concepts, we present the following: p is the
probability at which an event first occurs, α is the confidence probability, q is the
significance level, σ 2 is the variance of a random quantity, σ is the rms or standard
deviation, and S2 and S are the estimations of σ 2 and σ .



2
Measuring Instruments and
Their Properties

2.1. Types of Measuring Instruments

Measuring instruments are the technical objects that are specially developed for the
purpose of measuring specific physical quantities. A general property of measuring
instruments is that their accuracy is standardized.

Measuring instruments are divided into material measures, measuring transduc-
ers, indicating instruments, measuring setups, and measuring systems.

A material measure is a measuring instrument that reproduces one or more
known values of a given physical quantity. Examples of measures are balance
weights, measuring resistors, and measuring capacitors.

Single-valued measures, multiple-valued measures, and collections of measures
are distinguished. Examples of multiple-valued measures are graduated rulers,
measuring tapes, resistance boxes, and so on.

In addition to multiple-valued measures, which reproduce discrete values of
quantities, multiple-valued measures exist that continuously reproduce quantities
in some range, for example, a measuring capacitor with variable capacitance.
Continuous measures are usually less accurate than discrete measures.

When measures are used to perform measurements, the measurands are com-
pared with the known quantities reproduced by the measures. The comparison is
made by different methods, but so-called comparators are a specific means that are
used to compare quantities. The simplest comparator is the standard equal-armed
pan balance.

A comparator is a measuring device that makes it possible to compare similar
physical quantities and has a known sensitivity.

In some cases, quantities are compared without comparators, by experimenters,
with the help of their viewing or listening perceptions.

Thus, when measuring the length of a body with the help of a ruler, the ruler is
placed on the body and the observer fixes visually the graduations of the ruler (or
fractions of a graduation) at the corresponding points of the body.

A measuring transducer is a measuring instrument that converts the measure-
ment signals into a form suitable for transmission, processing, or storage. The
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measurement information at the output of a measuring transducer cannot, as a
rule, be directly observed by the observer.

It is necessary to distinguish measuring transducers and the transforming ele-
ments of a complicated instrument. The former are measuring instruments, and
as such, they have standard metrological properties (see below). The latter, on the
other hand, do not have an independent metrological significance and are not used
separately from the instrument of which they are a part.

Measuring transducers are diverse. Examples are thermocouples, resistance ther-
mometers, measuring shunts, the measuring electrodes of pH meters, and so on.
Measuring current or voltage transformers and measuring amplifiers are also mea-
suring transducers. But this group of transducers is characterized by the fact that
the signals at their inputs and outputs are a physical quantity of the same form,
and only the dimension of the quantity changes. For this reason, these measuring
transducers are called scaling measuring transducers.

Measuring transducers that convert an analog quantity at the input (the mea-
surand) into a discrete signal at the output are called analog-to-digital converters.
Such converters are manufactured in the form of autonomous, i.e., independent
measuring instruments, and in the form of units built into other instruments, in par-
ticular, in the form of integrated microcircuits. Analog-to-digital converters are a
necessary component of digital devices, but they are also employed in monitoring,
regulating, and control systems.

An indicating instrument is a measuring instrument that is used to convert
measurement signals into a form that can be directly perceived by the observer.

Based on the design of the input circuits, indicating instruments are just as
diverse as measuring transducers, and it is difficult to survey all of them. Moreover,
such a review and even classification are more important for designing instruments
than for describing their general properties.

A common feature of all indicating instruments is that they all have readout
devices. If these devices are implemented in the form of a scale and an indicating
needle, then the indications of the instrument are a continuous function of the
measurand. Such instruments are called analog instruments. If the indications of
instruments are in a digital form, then such instruments are called digital instru-
ments.

The definition of digital instruments presented above formally includes both
automatic digital voltmeters, bridges, and similar instruments and induction meters
for measuring electrical energy. In these instruments, however, the measuring
transformations are performed in a discrete form, and in the case of induction
meters, all measuring transformations of signals occur in an analog form and
only the output signal assumes a discrete form. The conversions of measurement
information into a discrete form have several specific features. Therefore, only
instruments in which the measurement conversions occur in a discrete form are
usually considered to be digital instruments.

The indications of digital instruments are easily recorded and are convenient
for entering into a computer. In addition, their design usually makes it possible
to obtain significantly higher accuracy than analog instruments. Moreover, when
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digital instruments are employed, no reading error occurs. However, when analog
instruments are used, it is easier to judge trends in the variation of the measurands.

In addition to analog and digital instruments, analog-discrete measuring instru-
ments also exist. In these instruments, the measuring conversions are performed in
an analog form, but the readout device is a discrete unit. The readout device has a
scale and a glowing strip, whose length changes discretely, which plays the role of
the indicator. Sometimes the indicator is a glowing dot that moves along a scale.

Analog-discrete instruments combine the advantages of both analog and digital
instruments. Induction meters for measuring electric energy are examples of such
hybrid instruments.

In many cases, measuring instruments are designed so that their indications
are recorded. Such instruments are said to be recording instruments. Data can be
recorded in the form of a continuous record of the variation of the measurand in
time or in the form of a series of points of this dependence.

Instruments of the first type are called automatic-plotting instruments, and in-
struments of the second type are called printing instruments. Printing instruments
can record the values of a measurand in digital form. Printing instruments give a
discrete series of values of the measurand in some interval of time. The continuous
record provided by automatic-plotting instruments can be regarded as an infinite
series of values of the measurand.

Sometimes measuring instruments are equipped with induction, photooptical, or
contact devices and relays for purposes of control or regulation. Such instruments
are called regulating instruments. Designers strive to design regulating units so as
not to reduce the accuracy of the measuring instrument. However, this is rarely
possible.

Measuring instruments also customarily include comparators, mentioned above,
for comparing measures, and null indicators, for example, galvanometers. The
reason is that a comparator with a collection of measures becomes a comparison
measuring instrument, whereas a galvanometer can be used as a highly sensitive
indicating instrument.

A measurement setup is a collection of functionally and structurally integrated
measuring instruments and auxiliary devices that provides efficient organization of
the measurements. An example is the potentiometric setup for electric measuring
instrument calibration.

A measuring system is a collection of functionally unified measuring, comput-
ing, and auxiliary means for obtaining measurement information and for converting
and processing it to provide the user with information in the required form, intro-
ducing it into the control system, or performing logical functions automatically.
Modern measuring systems include microprocessors and even entire computers,
and apart from processing and providing output of the measurement information,
they can control the measurement process.

Finally, systems whose units must, in accordance with the purpose of the system,
operate under the same conditions can be distinguished from systems whose units
operate under different conditions. We shall call the former uniform measuring
systems and the latter nonuniform measuring systems. This classification makes it
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easier to study questions concerning the metrological support of measuring systems
and the calculation of the errors of such systems.

2.2. The Concept of an Ideal Instrument: Metrological
Characteristics of Measuring Instruments

Any technical object can be described by a collection of characteristics. Measuring
instruments are not an exception in this respect. We shall divide all characteristics of
measuring instruments into two groups: metrological, which is necessary for using
a measuring instrument in the manner intended, and secondary. We shall include in
the latter such characteristics as mass, dimensions, and degree of protection from
moisture and dust. We shall not discuss characteristics of the secondary group,
although sometimes they determine the selection and application of an instrument,
because they are not directly related with the measurement accuracy.

By metrological characteristics of a measuring instrument, we mean the char-
acteristics that make it possible to judge the suitability of the instrument for per-
forming measurements in a known range with known accuracy, to obtain a value
of the measurand, and to estimate its inaccuracy.

To sort the metrological characteristics, it is helpful to introduce the concept
of an ideal instrument. The ideal of any technical object is its design, i.e., its
model. For measuring instruments, this is not sufficient, because such a device
must contain also an “impression” of the corresponding unit of measurement. The
impression of the unit cannot be prepared; it must be obtained from a standard.
We shall give several examples.

Gauge block. The ideal is a completely regular parallelepiped, one edge of which
is determined exactly for the established units of length.

Measure of constant voltage. The ideal is a source of constant voltage with a value
that is known exactly and that is free of any noise at the output.

Measuring transformer. The ideal is a voltage or current transformer with a con-
version factor that is known exactly and that has no losses and parasitic noise in
the input and output circuits.

Integrating analog-to-digital converter of voltage. The ideal is an instrument with
an output voltage U0 that is related to the input voltage Ux by the dependence

U0 = K1

∫ t2

t1

Ux dt,

where K1 = const and 
t = t2 − t1 = const.
As a result, we obtain U0 = K2Ux . The voltage U0 can be quantized, and a code,

reflecting the voltage at the input without any distortions (with the exception of
the quantization error, which can be made to be small), is obtained at the output
of the converter.
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Moving-coil ammeter. In this instrument, a constant current flows through a
moving coil and forms with the help of a permanent magnet a mechanical moment,
which twists a spring to a point of balance. In the process, an indicating needle is
deflected by an amount along a scale that is proportional to the current strength.
Each value of the current strength corresponds to a definite indication, which is
fixed by calibrating the instrument.

Thus, the ideal instrument performs (theoretically) a series of single-valued
transformations and after calibration acquires a precise scale in the units of the
measurand.

An ideal representation of each type of measuring instruments is formed for a
specific model of the objects—carriers of the corresponding physical quantity.

We shall call the metrological characteristics established for ideal measuring in-
struments of a specific type the nominal metrological characteristics. An example
of such a characteristic is the nominal value of the measure (10 �, 1 kG, etc.), the
measurement range of the instrument (0–300 V, 0–1200 ◦C, etc.), the conversion
range of the transducer, the value of the scale factor of the instrument scale, and
so on.

The relation between the input and the output signals of instruments and trans-
ducers is determined by the transfer function. For instruments, it is fixed by the
scale, whereas for measuring transducers, it is determined by a graph or an equation.
Either the graph or the equation represents the nominal metrological characteris-
tic if the graph or equation was determined (indicated) before these measuring
instruments were developed.

The real characteristics of measuring instruments differ from the nominal char-
acteristics because of fabrication errors and changes occurring in the corresponding
properties in time.

An ideal measuring instrument (transducer) would react only to the measured
physical quantity or to the parameter of the input signal of interest, and its indication
would not depend on the external conditions, the power supply regime, and so on.
For a real measuring transducer, as for other types of measuring instruments, these
undesirable phenomena occur.

The quantities characterizing the external conditions are called influence quan-
tities.

For some types of measuring instruments, the dependence of the output signal,
the indications, or the error from one or another influence quantity can be rep-
resented as a functional dependence, called the influence function. The influence
function can be expressed in the form of an equation (for example, the temperature
dependence of the emf of standard cells) or a graph. In the case of a linear depen-
dence, it is sufficient to give the coefficient of proportionality between the output
quantity and the influence quantity. We shall call this coefficient the influence
coefficient.

Influence coefficients and functions make it possible to take into account the
conditions under which measuring instruments are used by introducing the cor-
responding corrections. The imperfection of measuring instruments is also man-
ifested because when one and the same quantity is measured repeatedly under
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identical conditions, the results can differ somewhat from one another. In this
case, it is said that the indications are nonrepeatable.

The inaccuracy of a measuring instrument is usually characterized by its er-
ror. We shall explain this concept for the example of an indication measuring
instrument. Let the true value of a quantity at the input of the instrument be
At . The instrument indicates the value Ar . The absolute error of the instrument
will be

ζ = Ar − At .

The nonrepeatability of the indications of the instrument is manifested by the
fact that when At is measured repeatedly, the indications of the instrument will
be somewhat different. For this reason, one can talk about a random component
of instrument error. This component is referred to as the repeatability error of a
measuring instrument.

The random component of instrument error is normally caused by friction in
the supports of a movable part of the instrument and hysteresis phenomena, and its
limits are sharp. The limits can be found experimentally if the quantity measured by
the instrument varies continuously. The strength of the electric current, the voltage,
and other quantities can be varied continuously. Correspondingly, the indications
of ammeters and voltmeters can vary continuously. The indications of weighing
balances and several other instruments cannot be varied continuously.

For instruments whose indications can vary continuously, the limits of the ran-
dom error are found by continuously driving the indicator of the instrument up
to the same scale marker, first from below and then from above (or vice versa)
a marker. We will call the dead band the absolute value of the difference of the
values of the measurand that are obtained in such a test and that correspond to a
given scale marker of the instrument.

The dead band is the length of the range of possible values of the random
component of instrument error, and one half of this length is the limiting value of
the random.

Figure 2.1 shows graphs of the “input-output” in the presence of (a) only friction,
(b) only hysteresis, and (c) friction together with hysteresis. These examples of
processes reveal dead bands.

The random error of weighing scales is usually characterized by the stan-
dard deviation [12]. This characteristic of an instrument is calculated from the
changes produced in the indications of the scales by a load with a known mass;
the test is performed at several scale markers, including the limits of the mea-
surement range. One method for performing the tests, and the computational
formula for calculating the standard deviation of weighing scales, are presented
in [12].

Measuring instruments are created to introduce certainty into the phenomena
studied and to establish regular relations between the phenomena, and the uncer-
tainty created by the non-single-valuedness of instrument indications interferes
with using an instrument in the manner intended. For this reason, the first prob-
lem that must be solved when developing a new measuring device is to make its



2.2. The Concept of an Ideal Instrument 35

Figure 2.1. Dependences between the input and output of the instrument with a dead
band. (a) In the presence of a friction, (b) in the presence of hysteresis (two types, for
example), and (c) in the presence of a friction and hysteresis (two types mentioned
above).

random error insignificant, i.e., either negligibly small compared with other errors
or falling within prescribed limits as the limits of admissable errors for measuring
devices of the given type.

If the random error is insignificant and the elements determining instrument
accuracy are stable, then by calibration, the measuring device can always be “tied”
to a corresponding standard and the potential accuracy of the instrument can be
realized.

The value of a scale division or the value of a significant figure is the value of
the measurand corresponding to the interval between two neighboring markers on
the instrument scale or one figure of some digit of a digital readout device.

The sensitivity is the ratio of the change in the output value of the measuring
instruments to the input value of the quantity that causes the output value to
change. The sensitivity can be a nominal metrological characteristic and an actual
characteristic of a real instrument.
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The discrimination threshold is the minimum change in the input signal that
causes an appreciable change in the output signal.

The resolution is the smallest interval between two distinguishable neighboring
discrete values of the output signal.

Instability (of a measuring instrument) is a general term that expresses the
change in any property of the measuring instrument in time.

Drift is the change occurring in the output signal (always in the same direction)
over a period of time that is significantly longer than the measurement time when
using a given measuring instrument.

The drift and the instability do not depend on the input signal or the load, but
they can depend on the external conditions. The drift is usually determined in the
absence of a signal at the input.

The metrological characteristics of measuring instruments should also include
their dynamic characteristics. These characteristics reflect the inertial properties
of measuring instruments. It is necessary to know them to correctly choose and use
many types of measuring instruments. The dynamical characteristics are examined
below in Section 2.5.

The properties of measuring instruments can normally be described based on
the characteristics enumerated above. For specific types of measuring instruments,
however, additional characteristics are often required. Thus, for the gauge rods,
the so-called flatness and polishability are important. For voltmeters, the input
resistance is important. We shall not study such characteristics, because they refer
only to individual types of measuring instruments.

2.3. Standardization of the Metrological Characteristics
of Measuring Instruments

Measuring instruments can only be used as intended when their metrological prop-
erties are known. In principle, the metrological properties can be established by
two methods. One method is to find the actual characteristics of a specific in-
strument. In the second method, the nominal metrological characteristics and the
permissable deviations of the real characteristics from the nominal characteristics
are given.

The first method is laborious, and for this reason, it is used primarily for the most
accurate and stable measuring instruments. Thus, the second method is the main
method. The nominal characteristics and the permissible deviations from them are
given in the technical documentation when measuring instruments are designed,
which predetermines the properties of measuring instruments and ensures that they
are interchangeable.

In the process of using measuring instruments, checks are made to determine
whether the real properties of the devices deviate from the established standards.
If one real property deviates from its nominal value by an amount greater than
demonstrated by the standards, then the measuring instrument is adjusted, remade,
or discarded and no longer used.
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Thus, the choice of the nominal characteristics of measuring instruments and
the designation of permissable deviations of the real characteristics from them—
standardization of the metrological characteristics of measuring instruments—are
of great importance for measurement practice. We shall examine the practice of
standardization of the metrological characteristics of measuring instruments that
has evolved.

Both the production of measuring instruments and the standardization of their
characteristics initially arose spontaneously in each country. Later, rules that gave
order to this standardization were developed in all countries in which instrument
building was highly developed. The recommendations developed at this time by in-
ternational organizations, primarily Publication 51 of the International Electrotech-
nical Commission (IEC), were of great importance for the preparation or national
standards [8]. We should also mention the International Organization for Stan-
dardization (ISO) and the International Organization of Legal Metrology (OIML).
The terminological documents are also of great value for this work [2], [4], [7].

We shall now return to the gist of the problem. The significance of nominal
metrological characteristics, such as the upper limits of measurement ranges, the
nominal values of the measures, the scale factors of instruments and so on, is chosen
from a standardized series of values of these characteristics. There is nothing
special here. Another task is to standardize the accuracy characteristics, errors,
and stability.

Despite the efforts of designers, the real characteristics of measuring instruments
depend to some extent on the external conditions. For this reason, some narrow
ranges of values of all influence quantities are fixed first, and in this manner, the
conditions under which measuring instruments are to be calibrated and checked
are determined. These conditions are called reference conditions. The error of
measuring instruments under reference conditions is called the intrinsic error.

In the standard in [7], this question is solved less formally: The conditions
under which the characteristics of measuring instruments depend negligibly on
the possible variations of influence quantities are called reference conditions. In
other words, these are conditions under which the metrological characteristics are
practically constant.

This definition of reference conditions seems attractive. I stated the identical idea
in [44]. However, I also stated there my doubts in the possibility of implementing
the idea. We shall return to this question in the next section.

Thus, the reference conditions of measuring instruments are prescribed and the
intrinsic errors of measuring instruments are determined.

In addition to the reference conditions, the normal operating conditions of mea-
suring instruments are also established, i.e., the conditions under which the charac-
teristics of measuring instruments remain within certain limits and the measuring
instruments can be employed as intended. Understandably, errors in the normal
operating conditions are larger than errors in the reference conditions (i.e., these
errors are larger than the intrinsic errors).

When any influence quantity exceeds the normal value or range for a refer-
ence condition, the error of the measuring instrument changes. This change is
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characterized and standardized by indicating the limit of the permissable addi-
tional error, by indicating the highest permissable value of the influence factor of
the corresponding influence quantity, or by indicating the limit of the permissable
error under the normal operating conditions.

The errors of measuring instruments are expressed not only in the form of
absolute and relative errors, adopted for estimating measurement errors, but also
in the form of fiducial errors. The fiducial error is the ratio of the absolute error of
the measuring instrument to some standardizing value—fiducial value. The latter
value is established by standards on separate types of measuring instruments. For
indicating instruments, for example, the fiducial value is established depending
on the characteristic features and character of the scale. The fiducial errors make
it possible to compare the accuracy of measuring instruments that have different
measurement limits. For example, the accuracy of an ammeter with a measurement
limit of 1 A can be compared with that of an ammeter with a measurement limit
of 100 A.

In addition, cases when the error of an indicating instrument is expressed in
fractions of a graduation are also encountered.

For measuring transducers, the errors can be represented by the errors relative
to the input or output.

Figure 2.2 shows the nominal and, let us assume, the real transfer functions of
some transducer. The nominal dependence, as done in practice whenever possible,
is assumed to be linear. We shall investigate the relationship between the errors of
the transducer that are scaled to the input and the output.

We denote the input quantity by x and the output quantity by y. They are related
by the relation

x = K y,

where K is the nominal transduction constant.
At the point with true values of the quantities xt and yt , the true value of

the transduction constant will be Kt = xt/yt . Calculations based on the nominal
constant K , however, are given an error.

Let xa = K yt and ya = xt/K be determined based on yt and xt (see Fig. 2.2).
Then the absolute transducer error with respect to the input will be


x = xa − xt = (K − Kt )yt .

The error with respect to the output is expressed analogously:


y = ya − yt =
(

1

K
− 1

Kt

)
xt .

We note, first, that 
x and 
y always have different signs: If (K − Kt ) > 0,

then (1/K − 1/Kt ) < 0.
But this is not the only difference. The quantities x and y can also have different

dimensions; i.e., they can be physically different quantities, so that the absolute
input and output errors are not comparable. For this reason, we shall study the
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Figure 2.2. Nominal (curve 1) and real (curve 2) functions of a measuring transducer.

relative errors:

εx = 
x

xt
= (K − Kt )

yt

xt
= K − Kt

Kt
,

εy = 
y

yt
= (Kt − K )

K Kt

xt

yt
= Kt − K

K
.

As Kt �= K , we have |εx | �= |εy |.
We denote the relative error in the transduction constant at the point (xt , yt ) as

εk , where εk = (K − Kt )/Kt . Then

εx

εy
= −(1 + εk).

However, εk � 1, and in practice relative errors with respect to the input and output
can be regarded as equal in magnitude.

We must stop to consider how the error of measures is determined: The error of
measures is the difference between the nominal value of the measure and the true
value of the quantity reproduced by the measure. Indeed, in the case of indicating
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instruments, the nominal value of measures is the analog of the indication of the
instrument, and the definition given becomes obvious.

It is also interesting that measures that reproduce passive quantities, for example,
mass, electric resistance, and so on, have only systematic errors. The error of
measures of active quantities (electric voltage, electric current, etc.) can have
both systematic and random components. Multiple-valued measures of passive
quantities can have random errors from switching elements.

So, when the errors of measuring instruments are standardized, the permissible
limits of the intrinsic and all additional errors are prescribed. At the same time,
the reference and normal operating conditions are indicated.

Of all forms enumerated above for expressing the errors of measuring instru-
ments, the best is the relative error, because in this case, the indication of the
permissible limit of error gives the best idea of the level of measurement accuracy
that can be achieved with the given measuring instrument. The relative error, how-
ever, usually changes significantly over the measurement range of the instrument,
and for this reason, it is difficult to use for standardization.

The absolute error is frequently more convenient than the relative error. In the
case of an instrument with a scale, the limit of the permissible absolute error
can be standardized with the same numerical value for the entire scale of the
instrument. But then it is difficult to compare the accuracies of instruments having
different measurement ranges. This difficulty disappears when the fiducial errors
are standardized.

In the following discussion, we shall follow primarily [8] and [9].
The limit of the permissible absolute error 
 can be expressed by a single value

(neglecting the sign)


 = ± a,

in the form of the linear dependence


 = ±(a + bx), (2.1)

where x is the nominal value of the measure, the indication of a measuring in-
strument, or the signal at the input of a measuring transducer, and a and b are
constants, or by a different equation,


 = f (x).

When the latter dependence is complicated, it is given in the form of a table or
graph.

The fiducial error γ (in percent) is defined by the formula

γ = 100
/xN ,

where xN is the fiducial value.
The fiducial value is assumed to be equal to the following:

(i) The value at the end of the instrument scale, if the zero marker falls on the
edge or off the scale.
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(ii) The span that is a sum of the end values of the instrument scale (neglecting
the signs), if the zero marker falls within the scale.

(iii) The nominal value of the measurand, if it has been established.
(iv) The length of the scale, if the scale graduations narrow sharply toward the end

of the scale. In this case, the error and the length of the scale are expressed
in the same units.

For instruments having a scale that is calibrated in units of a quantity for which
a scale with a conventional zero is adopted (for example, in degrees Celsius) the
fiducial value is assumed to be equal to the difference of the final and starting
values of the scale (the measurement range or span).

According to Recommendation 34 of OIML [9], for measuring instruments with
a zero marker within the scale, the fiducial value is taken to be equal to the larger
(neglecting the sign) of the end values of the indication range of the instrument.
According to Publication 51 of IEC [8], for electrical measuring instruments, it
can be set equal to the sum of the end values of the scale.

A progressive and correct solution is the one recommended by OIML. Indeed,
consider, for example, an ammeter with a scale 100–0–100 A and with a permissible
absolute error of 1 A. In this case, the fiducial error of the instrument will be 1%
according to OIML and 0.5% according to IEC. But when using this instrument,
the possibility of performing a measurement with an error of up to 0.5% cannot
be guaranteed for any point of the scale. An error not exceeding 1%, however,
can be guaranteed when measuring a current of 100 A under reference conditions.
The tendency to choose a fiducial value such that the fiducial error would be close
to the relative error of the instrument was observed in the process of improving
IEC Publication 51. Thus, in the previous edition of this publication, the fiducial
value for instruments without a zeromarker on the scale was taken to be equal to
the difference of the end values of the range of the scale, and now it is taken to be
equal to the larger of these values (neglecting the sign). Consider, for example, a
frequency meter with a scale 45–50–55 Hz and a limit of permissible absolute error
of 0.1 Hz. Previously, the fiducial error of the frequency meter was assumed to be
equal to 1%, and now it is equal to 0.2%. But when measuring a 50-Hz frequency,
its relative error indeed will not exceed 0.2% (under reference conditions), and the
1% error has no relation to the error of frequency measurement with this meter, so
that the new edition is more correct.

The next step in this direction was made in Recommendation 34 of OIML.
One must hope that in the future IEC will take into account the recommenda-
tion of OIML, and the stipulation mentioned regarding electrical measurement
instruments in the recommendation of OIML will disappear.

The fiducial error is expressed in percent, but it is not a relative error. As its
limit is equal to that of the permissible relative error, the limit of the permissible
relative error for each value of the measurand must be calculated according to the
formula

δ = γ
xN

x
.



42 2. Measuring Instruments and Their Properties

The limit of permissible relative error δ is usually expressed in percent according
to the formula

δ = 100


x
= ± c.

If the limit of the absolute error 
 is determined by formula (2.1), then the last
expression is possible for a ≈ 0.

For digital instruments, the errors are often standardized in the conventional
form ±(b + q), where b is the relative error in percent and q is some number
of figures of the least significant digit of the digital readout device. For example,
an instrument with a measurement range of 0–300 mV is assigned the limits of
permissible error ±(0.5% + 2). The indicator of the instrument has four digits, so
that the figure 2 of the least significant digit corresponds to 0.2 mV. Now the limit
of the relative error of the instrument when measuring, for example, a voltage of
300 mV can be calculated as follows:

δ = ±
(

0.5 + 0.2 × 100

300

)
= ±0.57%.

Thus, to estimate the limit of permissible error of an instruments, some calcu-
lations must be performed. For this reason, although the conventional form gives
a clear representation of the components of instrument error, it is inconvenient to
use.

A more convenient form is given in Recommendation 34 of OIML: The limit
of permissible relative error is expressed by the formula

δ = ±
[
c + d

( xe

x
− 1

)]
, (2.2)

where xe is the end value of the measurement range of the instrument or the input
signal of a transducer and c and d are relative quantities.

With the adopted form of formula (2.2), the first term on the right-hand side is
the relative error of the instrument at x = xe. The second term in this expression
characterizes the increase of the relative error as the indications of the instrument
decrease.

Formula (2.2) can be obtained from ±(b + q) as follows. To the figure q, there
corresponds the measurand qD, where D is the value of one figure in the same
digit as the figure q, in units of the measurand. In the relative form, it is equal to
qD/x . Now the sum of the terms b and qD/x has the following physical meaning:
It is the limit of permissible relative error of the instrument.

So

δ =
(

b + qD

x

)
.

With the help of identity transformation, we obtain

δ = b + qD

x
+ qD

xe
− qD

xe
=
(

b + qD

xe

)
+ qD

xe

( xe

x
− 1

)
.
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Writing

c = b + qD

xe
, d = qD

xe
,

we obtain formula (2.2).
In application to the example of a digital millivoltmeter studied above, we have

δ = ±
[
0.57 + 0.07

( xe

x
− 1

)]
.

It is clear that the last expression is more convenient to use, and in general, it is
more informative than the conventional expression.

Note that for standardization, the error limits are established for the total instru-
ment error and not for the separate components. If, however, the instrument has
an appreciable random component, then a permissible limit is established sepa-
rately for it. For example, aside from the limit of the permissible intrinsic error,
the limit of the permissible dead band or hysteresis is also established. Sometimes,
however, the limits are nonetheless set separately for the systematic and random
components. For example, the error of reference standards is customarily given in
this manner in Russia.

Additional errors of measuring instruments are standardized by prescribing the
limits for each additional error separately. The intervals of variation of the corre-
sponding influence quantities are indicated simultaneously with the limits of the
additional errors. The collection of ranges provided for all influence quantities de-
termines the normal operating conditions of the measuring instrument. The limit
of permissible additional error is often represented in proportion to the value of
the influence quantity or its deviation from the limits of the interval determining
the standard values of these quantities. In this case, the corresponding coefficients
are standardized. We shall call it the influence coefficient.

In the case of measuring instruments the term variation of indications is used
as well as the term additional error. The term variation of indications is used, in
particular, for electric measuring instruments [8].

The additional errors arising when the influence quantities are fixed are sys-
tematic errors. For different instruments of the same type, however, they can have
different values and, what is more, different signs. For this reason, in the over-
whelming majority of standards, the limits of additional errors are set both positive
and negative with equal numerical values. For example, the change in the indica-
tions of an electric measuring instrument caused by a change in the temperature
of the surrounding medium should not exceed the limits ±0.5% for each 10 ◦C
change in temperature under normal operating conditions (the numbers here are
arbitrary).

If, however, the properties of a measuring device are sufficiently uniform, it
is best to standardize the influence function, i.e., to indicate the dependence of
the indications of the instruments or output signals of the transducers on the in-
fluence quantities and the limits of permissible deviations from each such depen-
dence. If the influence function can be standardized, then it is possible to introduce
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corrections to the indications of the instruments and thereby to use the capabilities
of the instruments more fully.

It should be emphasized that the properties of only the measuring instruments
are standardized with the help of the norms of the additional errors. The actual
additional error that can arise in a measurement will depend not only on the
properties of the measuring instrument but also on the value of the corresponding
influence quantity.

Often a measuring instrument has an electrical signal on its input. This input
signal can be characterized by several parameters. One of them reflects the value of
a measurand. This parameter is called the informative parameter: By measuring
its value, we can find the value of the measurand. All other parameters do not
have direct connections with the value of the measurand, and they are called
noninformative parameters.

Measuring instruments are constructed to make them insensitive to all nonin-
formative parameters of the input signal. This result, however, cannot be achieved
completely, and in the general case, the effect of the noninformative parameters
is only decreased. Furthermore, for all noninformative parameters, it is possible
to determine limits such that when the noninformative parameters vary within
these limits, the total error of the measuring instrument will change insignifi-
cantly, which makes it possible to establish the reference ranges of the values of
the noninformative parameters.

If some noninformative parameter falls outside the reference limits, then the
error arising is regarded as an additional error. The effect of each non-informative
parameter is standardized separately, as for influence quantities.

Standardization of the effect of the noninformative parameters and estimation
of the errors arising from them are performed based on the same assumptions as
those used for taking into account the additional errors caused by the external
influence quantities.

The errors introduced by changes in the noninformative parameters of the input
signals are occasionally called dynamic errors. In the case of several parameters,
however, little information is provided. It is more informative to give each error
a characteristic name, as is usually done in electric and radio measurements. For
example, the change produced in the indications of an ac voltmeter by changes
in the frequency of the input signal is called the frequency error. In the case of a
voltmeter, for measurements of the peak variable voltages, apart from the frequency
errors, the errors caused by changes in the widths of the pulse edges, the decay of
the flat part of the pulse, and so on, are taken into account.

The errors caused by deviations of the noninformative parameters of the input
signal from the standard values should also be included among the additional errors
of a measuring instrument. For example, for a voltmeter in an electromagnetic
system, the frequency of the alternating current is one noninformative parameter
of the signal. According to Section 1.3, these errors are because one or more
parameters of the model do not correspond to the properties of the real object.
As these errors are characteristic for the measuring instruments in which they are
observed, they are usually given the name of the corresponding parameter of the
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Figure 2.3. Variants of standardization of the limits of additional errors of measuring
instruments. The interval (x3 − x2) corresponds to reference conditions; the interval
(x4 − x1) corresponds to the normal operating conditions; d is the limit of permissible
intrinsic error; c is the limit of permissible error in the normal operating conditions;
and (c − d) is the limit of permissible additional error.

model. Thus, in the foregoing example, the model of the signal is a sinusoidal
voltage with a fixed parameter (frequency). The corresponding error is called the
frequency error.

The basic cases of standardization of additional errors are shown in Fig. 2.3.

Stability of measuring instruments. Stability, like accuracy, is a positive quality of
a measuring instrument. Just as the accuracy is characterized by inaccuracy (error,
uncertainty), stability is characterized by instability.

Instability is standardized by the limits of permissible variations of the error
over a definite period of time or by prescribing different error limits to different
“lifetimes” of the instrument after it is calibrated. In addition, limits are sometimes
prescribed for the drift of the indications of the instrument; these limits, naturally,
are indicated together with the time. It is desirable to standardize drift for the
automatic-plotting instruments. But standards for the drift are also helpful for
other types of measurement instruments, because it makes it possible to judge how
often the indications or the zeros of the instruments must be corrected.

To correct the indications of electric measuring instruments, standard cells or
electronic voltage stabilizers are often built into them. For example, weak sources
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of stable radioactivity are built into meters for measuring the parameters of ra-
dioactive radiations.

It is significant that separate standardization of the drift does not change the
standards for the instrumental error; i.e., it gives additional information about the
properties of the instruments.

The second method of standardization of instability consists of indicating differ-
ent standards for the error of the instrument for different periods of time after the
instrument is calibrated. For example, a table with the following data is provided
in the specifications of some digital instrument:

Time after
calibration 24 hour 3 month 1 year 2 years

Temperature 23 ± 1 ◦C 23 ± 5 ◦C 23 ± 5 ◦C 23 ± 5 ◦C
Limit of error 0.01% + 1 digit 0.015% + 1 digit 0.02% + 1 digit 0.03% + 2 digit

The limits of error are presented here in the conventional form.
The first method for standardizing instability of instruments is widely used in

Russia, and the second method is widely used in the United States. The second
method reveals more fully the capabilities of instruments. For example, the limits of
error of a digital instrument manufactured in Russia, with the parameters indicated
in the table above, would have to be checked once per year ± (0.02% + 1 digit).
The maximum instrument accuracy that can be realized in a short period of time
after calibration, although in a more restricted temperature regime, would remain
unknown.

Standardization predetermines the properties of measuring instruments and is
closely related with the concept of accuracy classes of measuring instruments.

Accuracy classes were initially introduced for indicating electric measuring in-
struments [8]. Later this concept was also extended to all other types of measuring
instruments [9]. Unification of the accuracy requirements of measuring instru-
ments, the methods for determining them, and the notation in general are certainly
useful to both the manufacturers of measuring instruments and to users, because it
makes it possible to limit, without harming the manufacturers or the users, the list
of instruments, and it makes it easier to use and check the instruments. We shall
discuss this concept in greater detail.

In [2], the following definition is given for the term accuracy class (the following
definition is that close to that given in [8]): The accuracy class is a class of measuring
instruments that meet certain metrological requirements that are intended to keep
errors within specified limits.

Every accuracy class has conventional notation, established by agreement—the
class index—that is presented in [8] and [9].

On the whole, the accuracy class is a generalized characteristic that determines
the limits for all errors and standards for all other characteristics of measur-
ing instruments that affect the accuracy of measurements performed with their
help.
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For measuring instruments whose permissible limits of intrinsic error are ex-
pressed in the form of relative or fiducial errors, the following series of numbers,
which determine the limits of permissible intrinsic errors and are used for denoting
the accuracy classes, was established in [9]:

(1, 1.5, 1.6, 2, 2.5, 3, 4, 5, and 6) × 10 n,

where n = +1, 0, −1, −2, . . .; the numbers 1.6 and 3 can be used, but they are not
recommended. For any one value of n, not more than five numbers of this series
are allowed. The limit of permissible intrinsic error for each type of measuring
instrument is set equal to one number in the indicated series.

Conventional designations of accuracy classes, employed in documentation ac-
companying measuring instruments, as well as the designations imposed on them,
have been developed with the numbers in the indicated series. Of course, this pro-
cess refers to measuring instruments whose errors are standardized in the form of
relative and fiducial errors. Table 2.1 gives examples of the adopted designations
of accuracy classes of these measuring instruments.

In those cases when the limits of permissible errors are expressed in the form
of absolute errors, the accuracy classes are designated by Latin capital letters or
roman numerals.

If formula (2.2) is used to determine the limit of permissible error, then both
numbers c and d are introduced into the designation of the accuracy class. These
numbers are selected from the series presented above, and in calculating the limits
of permissible error for a specific value of x, the result is rounded off so that it
would be expressed by not more than two significant figures; the roundoff error
should not exceed 5% of the computed value.

The limits of all additional errors and other metrological characteristics of
measuring instruments must be related with their accuracy class. In general, it
is impossible to establish these relations for all types of measuring instruments
simultaneously—measuring instruments are too diverse. For this reason, these
relations must be given in the specifications together with the characteristics of
specific types of measuring instruments, which the designers formulate.

Table 2.1. Designations of accuracy classes.

Form of the Limit of permissible Designation of the accuracy
expression for the error error (examples) class (for the given example)

Fiducial error, if the fiducial value
is expressed in units of the
measurand

γ = ±1.5% 1.5

Fiducial error, if the fiducial value
corresponds to the span

γ = ±0.5% |0.5|

Relative error, constant δ = ±0.5% 0.5©
Relative error, increasing as the

measurand decreases
δ = ±

[
0.02 + 0.01

( xe

x
− 1

)]
% 0.02/0.01



48 2. Measuring Instruments and Their Properties

2.4. Some Suggestions for Changing Methods of
Standardization of Errors of Measuring
Instruments and Their Analysis

Standardization, i.e., establishment of standards, is basically a volitional act. For
this reason, in principle, different suggestions can be made for solving this ques-
tion, and in the last few years, several new methods for expressing the errors of
measuring instruments and for standardizing them have indeed been proposed.

To evaluate these suggestions, it is necessary to determine how well they solve
problems for whose sake the properties of measuring instruments are standardized.
From what we have said above, it can be concluded that the purpose of standard-
ization of errors of measuring instruments is to solve the following problems:

(1) To ensure that the entire collection of measuring instruments of the same type
have the required accuracy and to ensure that they are uniform and interchange-
able.

(2) To make sure that it is possible to evaluate the instrumental measurement errors
according to established standards for metrological properties of measuring
instruments.

(3) To ensure that measuring instruments can be compared with one another ac-
cording to accuracy.

The first problem is ultimately solved by monitoring new measuring instruments
during the manufacturing process and checking periodically the units that are in
use. As measuring instruments are employed individually, the standards must be
established so that it is possible to check that each sample measuring instrument
satisfies these standards.

To solve the second problem successfully, it is desirable to know accurately
the properties of measuring instruments. For this reason, the established standards
must be as close as possible to the real properties of the measuring instruments. The
degree of detail with which the errors of measuring instruments can be described
is limited by the instability of the instruments, by the change in their errors in time,
as well as by the degree of nonuniformity of the measuring instruments introduced
by their construction and manufacturing technology. In addition, the calibration
process must be simple. Complicated methods for describing and standardizing the
errors of measuring instruments, which lead to laborious and prolonged checks,
are nonviable.

Having made these preliminary remarks, we shall now examine the most inter-
esting suggestions.

(1) The calculation of the errors of measuring instruments under real conditions
involves summation of the errors and presents several difficulties. For this reason, it
has been repeatedly suggested that the reference conditions be extended to absorb
all possible values of the influence quantities. One would think that in so doing
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the additional errors of measuring instruments would vanish and only the intrinsic
error would remain, and all difficulties would be simply resolved.

The actual properties of measuring instruments, however, do not depend on the
method by which they are standardized, and they remain unchanged. Suppose that
in the usual method of standardization, we have the following:


0, the limit of permissible intrinsic error; and

i , the limit of permissible additional error, caused by the change in the i th

influence quantity from the standard value to the limit of the range of the
given influence quantity (i = 1, . . . , n) for normal operating conditions.

By transferring to a new method of standardization, the manufacturer of the
instruments can adopt as the limit of permissible error of the measuring instrument
only the arithmetic sum


 = 
0 +
n∑

i=1


i .

The manufacturer cannot proceed otherwise, because he or she must guarantee
that the errors of a given measuring instrument will be less than 
 for any combi-
nation of limiting values of the influence quantities. What then can this suggestion
give?

From the standpoint of evaluating the measurement errors, it can significantly
simplify the procedure. But in exchange, the error is significantly overestimated
because under the actual operating conditions of the measuring instrument in the
overwhelming majority of the cases, the influence quantities do not all reach their
limiting values simultaneously and in the most unfavorable combination. For this
reason, even the arithmetic sum of the errors occurring in a specific measurement
will be less than 
 and closer to the real value.

With respect to uniformity and interchangeability of measuring instruments of
the same type, the suggestion worsens the existing situation, because the same
value of 
 can be obtained for different values of the components. Thus, to
adopt this suggestion means taking a step backward compared with the present
situation.

The foregoing analysis also shows that the definition of reference conditions
given in [7] gives the most complete disclosure of the properties of a measur-
ing instrument. In the overwhelming majority of the cases, however, before a
measuring instrument can be developed, it is necessary to establish the technical
requirements that it must meet. In the process, the reference conditions and the
permissible limits of the intrinsic error are determined. During the design pro-
cess, the investigators and designers strive to satisfy these requirements within
some margin. Normally this result is possible, which essentially means that the
reference conditions established earlier can be defined more stringently. But if
this path is followed, then the reference conditions would have to be redetermined
after the sample measuring instruments have been built, and it would be found
that they are diverse for different types of measuring instruments, which would
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create great difficulties for technical monitoring services and calibrating labora-
tories. For this reason, on the whole, the reference conditions are best determined
by agreement between specialists, and these conditions should be unified as much
as possible for different types of measuring instruments. When developing mea-
suring instruments, however, it should be kept in mind that if the intrinsic error is
appreciably correlated with one or another influence quantity, then the real prop-
erties of the measuring instruments are not completely disclosed by the prescribed
standards.

(2) It has been suggested that the integral accuracy index I , calculated according
to the formula

I =
√√√√ n∑

i=0

ε2
i ,

where εi is the limit of additional error determined by the i th influence quantity
and ε0 is the limit of intrinsic error, be standardized.

It is clear that one and the same value of I can be obtained for different values of
the components. For example, one instrument can have a large temperature error
and a small frequency error, whereas the opposite could be true for a different
instrument. Ultimately, replacing one instrument by another (of the same type)
results in a large error, and this error cannot be estimated beforehand. Therefore,
it becomes more difficult to estimate the measurement errors. In addition, unifor-
mity of measuring instruments is not achieved. The conclusion is obvious: The
suggestion is not acceptable.

(3) Another suggestion was to characterize the accuracy of instruments by the
weighted mean of the permissible relative error, determined according to the for-
mula

δc =
∫ x f

xi

[ε(x) f (x)]dx,

where xi and x f are the initial and final (upper) values of the instrument scale,
ε(x) is the relative error of the instrument, and f (x) is the probability distribution
of the indications of the instrument.

This suggestion has the drawback that the probability distribution of the indi-
cations of instruments is, in general, unknown. More importantly, however, this
weighted-mean characteristic, as any other average characteristic, is completely
unsuitable for standardizing the properties of measuring instruments, because uni-
formity of measuring instruments cannot be achieved in this manner. For example,
an instrument that has one or two significant error components, and for which
other errors are small, can have the same weighted-mean error as an instrument
whose errors are approximately the same.

In addition, when using an instrument whose errors are standardized as weighted
means, experimenters cannot estimate the error of a specific result they have ob-
tained, because in this method of standardization, the error of the instrument with
a fixed indication can in principle be virtually arbitrarily large.
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Thus, none of the goals of standardization is achieved with this method of
standardization of errors of measuring instruments and this method cannot be
used.

(4) It has been repeatedly suggested that the additional error caused by the si-
multaneous action of all influence quantities be standardized. It can be conjectured
that some of them will mutually compensate one another so that it will be possible
to use the instruments more fully or, vice versa, the error will be larger than in the
case when each influence quantity acts separately.

In practice, however, normally not all influence quantities assume their worst
(for us) values simultaneously, and it is impossible to take into account only some
influence quantities by standardizing in this manner. Instead of lowering the esti-
mate of the measurement error or increasing its accuracy, the measurement error
will increase and it will not be estimated as accurately. In addition, the testing
equipment would become much more complicated.

In reality, some additional errors can be correlated with one another, and it
would be correct to determine these cases and to standardize the correlation of the
corresponding errors. However, I have never encountered in practice such cases of
standardization of additional errors. There does not appear to be any need to do
so. However, this question deserves a detailed study.

(5) In the former USSR, in 1972, a standard that decisively changed the practice
of standardization of errors of measuring instruments was adopted. This standard
greatly complicates the standardization of errors of measuring instruments and
contains wholly unrealistic requirements. They include, for example, the require-
ment that the mathematical expectation and the rms deviation of the systematic
component of the errors of measuring instruments of each type be standardized.
These characteristics must be estimated according to the formulas

x̄ =

m∑
i=1

xi

m
, S =

√√√√√
m∑

i=1
(xi − x̄)2

m − 1
,

where m is the number of instruments in a batch and xi is the systematic error of
the i th instrument.

Estimates of these parameters can be calculated by checking instruments in
a batch. Let us assume that they satisfy the standards. Does this mean that the
systematic error is sufficiently small for all instruments in the batch? Obviously
not. In exactly the same way, nothing can be said about a separate instrument,
if these estimates do not satisfy the standard. According to this standard, an in-
strument cannot be rejected, and it cannot be judged satisfactory in the case of
verification. Of course, once estimates have been found for a batch of instruments,
then the entire batch of instruments can either be discarded or accepted. But this
action is absurd: A bad batch can contain several good instruments, and they should
not be discarded. Conversely, it is absurd to pass as satisfactory some unsatisfactory
instruments simply because they are contained in the batch that has been found to
satisfy the standard. Every instrument is used individually, and the standard must
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make it possible to determine whether the instrument is good or bad. Parameters
pertaining to batches do not meet this requirement, and for this reason, they cannot
be used as standards for measuring instruments.

I opposed the adoption of this standard, but the standard was adopted (GOST
8.009-72). In 1984, a new edition of this standard was published. Now the charac-
teristics that we studied above are no longer obligatory, and this eases somewhat
the situation of instrument manufacturers: They do not have to standardize these
characteristics, and this will not be a violation of the standard.

In conclusion, we shall formulate the basic rules for standardization of errors of
measuring instruments:

(i) all properties of a measuring instrument that affect the accuracy of the results
of measurements must be standardized;

(ii) every property that is to be standardized should be standardized separately;
(iii) methods of standardization must make it possible to check experimentally,

and as simply as possible, how well each sample of a measuring instrument
corresponds to the established standards; and

(iv) the standardization must be performed so that measuring instruments can be
chosen based on the established standards and so that the measurement error
can be estimated.

In some cases, exceptions must be made to these rules. Such an exception is
necessary for strip strain gauges that can be glued on an object only once. For this
reason, the strain gauges that are checked can no longer be used for measurements,
whereas the gauges that are used for measurements usually cannot be checked or
calibrated. In this case, it is necessary to resort to regulation of the properties
of a collection of strain gauges, such as, for example, the standard deviation of
the sensitivity and mathematical expectation of the sensitivity. The sensitivity of
a separate strain gauge, which is essentially not a random quantity, is a random
quantity in application to a collection of strain gauges. Once the sensitivity xi of
every strain gauge chosen at random from a batch (sample) has been determined,
it is possible to construct a statistical tolerance interval, i.e., the interval into which
the sensitivity of a prescribed fraction p of the entire collection of strain gauges
will fall with a chosen probability a. As a �= 1 and p �= 1, there is a probability
that the sensitivity of any given strain gauge falls outside these tolerance limits.
For this reason, the user must take special measures that exclude such a case. In
particular, several strain gauges, rather than one, should be used.

2.5. Dynamic Characteristics of Measuring Instruments
and Their Standardization

The dynamic characteristics of measuring instruments reflect the relation between
the change in the output signal and one or another action that produces this change.
The most important action is a change in the input signal. In this case, the dynamic
characteristic is called the dynamic characteristic for the input signal. Dynamic
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characteristics for one or another influence quantity and for a load (for measuring
instruments whose output signal is an electric current or voltage) are also studied.

Complete and partial dynamic characteristics are distinguished [28].
The complete dynamic characteristics determine uniquely the change in time of

the output signal caused by a change in the input signal or other action. Examples
of such characteristics are a differential equation, transfer function, amplitude–and
phase–frequency response, the transient response, and the impulse characteristic.
These characteristics are essentially equivalent, but the differential equation is still
the source characteristic.

A partial dynamic characteristic is a parameter of the full dynamic characteristic
or a functional of it. Examples are the response time of the indications of an
instrument and the transmission band of a measuring amplifier.

Measuring instruments can most often be regarded as inertial systems of first
or second order. If x(t) is the signal at the input of a measuring instrument and
y(t) is the corresponding signal at the output, then the relation between them can
be expressed with the help of first-order (2.3) or second-order (2.4) differential
equations, respectively, which reflect the dynamic properties of the measuring
instrument:

T y′(t) + y(t) = K x(t), (2.3)

1

ω2
0

y′′(t) + 2β

ω0
y′(t) + y(t) = K x(t). (2.4)

The parameters of these equations have specific names: T is the time constant
of a first-order device, K is the transduction coefficient in the static state, ω0 is the
angular frequency of free oscillations, and β is the damping ratio.

Equations (2.3) and (2.4) reflect the properties of real devices, and for this reason,
they have zero initial conditions: for t ≤ 0, x(t) = 0 and y(t) = 0, y′(t) = 0, and
y′′(t) = 0.

For definiteness, in what follows, we shall study the second-order equation
and we shall assume that it describes a moving-coil galvanometer. Then ω0 =
2π f0, where f0 is the frequency of free oscillations of the moving part of the
galvanometer.

To obtain transfer functions from differential equations, it is first necessary to
transfer from signals in the time domain to their Laplace transforms, and then to
form their ratio. Thus

L [x(t)] = x(s), L [y(t)] = y(s),

L [y′(t)] = sy(s), L [y′′(t)] = s2 y(s),

where s is the Laplace operator.
For the first-order system, we obtain

W (s) = y(s)

x(s)
= K

1 + sT
,



54 2. Measuring Instruments and Their Properties

and for the second-order system, we obtain

W (s) = y(s)

x(s)
= K(

1/ω2
0

)
s2 + (2β/ω0)s + 1

. (2.5)

If in the transfer function the operator s is replaced by the complex frequency
jω (s = jω), then we obtain the complex frequency response. We shall study
the relation between the named characteristics for the example of a second-order
system. From (2.4) and (2.5), we obtain

W ( jω) = K(
1 − ω2/ω2

0

)+ j2βω/ω0
, (2.6)

where ω = 2π f is the running angular frequency.
The complex frequency response is often represented for its real and imaginary

parts,

W ( jω) = P(ω) + j Q(w).

In our case,

P(ω) = K
(
1 − (

ω2/ω2
0

))
(
1 − (

ω2/ω2
0

))2 + 4β2
(
ω2/ω2

0

) ,
Q
(
ω
) = 2β(ω/ω0)K(

1 − (
ω2/ω2

0

))2 + 4β2
(
ω2/ω2

0

) .
The complex frequency response can also be represented in the form

W ( jω) = A(ω)e jϕ(w),

where A(ω) is the amplitude-frequency response and ϕ(ω) is the frequency re-
sponse of phase. In the case at hand

A(ω) =
√

P2(ω) + Q2(ω) = K√(
1 − (

ω2/ω2
0

))2 + 4β2
(
ω2/ω2

0

) ,
(2.7)

ϕ(ω) = arctan
Q(ω)

P(ω)
= −arctan

2β(ω/ω0)

1 − (
ω2/ω2

0

) .
Equations (2.7) have a well-known graphical interpretation.

The transient response is the function h(t) representing the output signal pro-
duced by a unit step function 1(t) at the input. We recall that the unit step function is
a function x(t) satisfying the following conditions: x(t) = 0 for t < 0 and x(t) = 1
for t ≥ 0. As the input is not periodic, h(t) is calculated with (2.3) or (2.4). Omit-
ting the simple but, unfortunately, complicated calculations, we arrive at the final
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Figure 2.4. The transient response of an instrument described by a second-order
differential equation; β is the damping ratio.

form of the transient response of the instrument under study:

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−βτ
1√

1 − β2
sin

(
τ
√

1 − β2 + arctan

√
1 − β2

β

)
if β < 1,

1 − e−τ (τ + 1) if β = 1,

1 − e−βτ
1√

β2 − 1
sinh

(
τ
√

β2 − 1 + arctanh

√
β2 − 1

β

)
if β > 1.

Here τ = ω0t and the steady-state value of the output signal is taken to be equal
to unity, i.e., h(t) = y(t)/K . Thanks to this condition, the formulas above and the
graphs corresponding to them, presented in Fig. 2.4, are universal in the sense that
they do not depend on the specific values of ω0 and K .

The impulse characteristic g(t) is found from the transient response in accor-
dance with its definition:

g(t) = dh(t)

dt
.

It should be noted that some types of measuring instruments do not have dynamic
characteristics at all: measures of length, weights, vernier calipers, and so on. Some
measuring instruments, such as measuring capacitors (measures of capacitance),
do not have an independent dynamic characteristic. But when they are connected
into an electric circuit, which always has some resistance and sometimes an induc-
tance, the circuit always acquires, together with a capacitance, definite dynamic
properties.

Measuring instruments are diverse. Occasionally, to describe adequately their
dynamic properties, it is necessary to resort to linear equations of a higher order,
nonlinear equations, or equations with distributed parameters. However, compli-
cated equations are used rarely, which is not an accident. After all, measuring
instruments are created specially to perform measurements, and their dynamic
properties are made to guarantee convenience of use. For example, in design-
ing an automatic plotting instrument, the transient response is made to be short,
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approaching the established level monotonically or oscillating insignificantly. In
addition, the instrument scale is made to be linear. But when these requirements are
met, the dynamic properties of the instrument can be described by one character-
istic corresponding to a linear differential equation of order no higher than second.

A differential equation of high order is most often obtained when synthesizing
the dynamic characteristics of an instrument based on the dynamic characteristics
of its subunits. Thus, for example, calculating the dynamic characteristic of a
galvanometric amplifier with a photoelectric converter that converts the angle of
rotation of the moving part of the galvanometer into a voltage (current), we formally
obtain an equation of third order: The galvanometer gives two orders, and the
photoelectric converter gives one order. Such a description of the properties of the
amplifier is necessary at the design stage, because otherwise it is impossible to
understand why self-excited oscillations sometimes arise in the system. But when
the design is completed and reasonable parameters of the subunits are chosen,
it is desirable to simplify the description of the dynamic properties. Thus, the
amplifier must be regarded as a black box. Analyzing the relation between the
input and output, we find that it is described well by a second-order equation.
The same result can also be obtained informally, as done, for example, in [42].
Decomposing the dynamic characteristics of all subunits of the amplifier into first-
order characteristics and comparing them, we can see that one can be neglected.

Standardization of the dynamic characteristics of measuring instruments is per-
formed for a specific type of instrument. The problem is solved in two stages. First,
an appropriate dynamic characteristic must be chosen, after which the nominal
dynamic characteristic and the permissible deviations from it must be established.
Thus, for recording instruments and universal measuring transducers, one com-
plete dynamic characteristic must be standardized: Without having the complete
dynamic characteristic, a user cannot effectively use these instruments.

For indicating instruments, it is sufficient to standardize the response time. In
contrast to the complete characteristics, this characteristic is a partial dynamic
characteristic. The dynamic error is another form of a partial dynamic characteris-
tic. Standardization of the limits of a permissible dynamic error is convenient for
the measuring instruments employed, but it is justified only when the form of the
input signals does not change much.

For measuring instruments described by linear first- and second-order differen-
tial equations, the coefficients of all terms in the equations can be standardized.
In the simplest cases, the time constant is standardized in the case of a first-order
differential equation, and the natural frequency and the damping ratio of the oscil-
lations are standardized in the case of a second-order differential equation.

When imposing requirements on the properties of measuring instruments, it is
always necessary to keep in mind how compliance will be checked. For dynamic
characteristics, the basic difficulties are connected with creating test signals of pre-
determined (with sufficient accuracy) form, or with recording the input signal with
a dynamically more accurate measuring instrument than the measuring instrument
whose dynamic properties are being checked.
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If test signals with adequate accuracy can be created and the dynamic charac-
teristic is found with the help of the corresponding signal, i.e., a transient response
as a response of a unit step function signal and frequency response as a response
of a sinusoidal test signal, then in principle the obtained experimental data can be
processed without any difficulties.

But sometimes the problem must be solved with a test signal that does not corre-
spond to the signal intended for determining the complete dynamic characteristic.
For example, one would think that the problem can be solved given the tracing of
signals at the input and output of a measuring instrument. In this case, however,
special difficulties arise because small errors in recording the test signal and read-
ing the values of the input and output signals often lead to the fact that the dynamic
characteristic obtained based on them do not correspond to the dynamic properties
of the measuring instrument and are physically meaningless. Such an unexpected
effect is explained because the problem at hand is a so-called improperly posed
problem. A great deal of attention is currently being devoted to such problems
in mathematics, automatics, geophysics, and other disciplines. Improperly posed
problems are solved by the methods of regularization, which essentially consist of
the fact that the necessary degree of filtering (smoothing) of the obtained solution
is determined based on a priori information about the true solution.

Improperly posed problems in dynamics in application to measurement engi-
neering are reviewed in [28].

A separate problem, which is important for some fields of measurement, is
the determination of the dynamic properties of measuring instruments directly
when the instruments are being used. An especially important question here is the
question of the effect of random noise on the accuracy with which the dynamic
characteristics are determined.

This section, then, has been a brief review of the basic aspects of the problem of
standardizing and determining the dynamic properties of measuring instruments.

2.6. Statistical Analysis of the Errors of Measuring
Instruments Based on Data Provided by
Calibration Laboratories

A general characteristic of the errors of the entire population of measuring instru-
ments of a specific type could be their distribution function. I made an attempt
to find such functions for several types of measuring instruments. The results of
these investigations, which were performed together with T.L. Yakovleva, were
published in [43] and [53].

The errors of measuring instruments are determined by calibration, and a deci-
sion was made to use the data provided by calibration laboratories. Because it is
impossible to obtain the errors of all instruments of a given type that are in use,
the use of a sampling method is unavoidable.
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Table 2.2. The example of main statistical characteristics of errors for six types of
measuring instruments.

Moment
Type of
measuring Year of Point of Sample Second
instrument calibration check size First central Skewness Excess

Coefficient

э59 ammeter 1974 80 Divisions 160 0.163 0.0074 −0.40 0.56
1976 160 0.180 0.042 −1.33 4.27

э59 voltmeter 1974 150 Divisions 120 0.050 0.063 −0.47 −0.29
1976 108 0.055 0.065 −0.18 0.15

д 566 wattmeter 1974 150 Divisions 86 0.088 0.024 −0.50 −0.54
1976 83 0.062 0.021 0.05 0.81

TH-7 thermometer 1975 100 ◦C 92 −0.658 0.198 0.14 −0.14
1976 140 −0.454 0.128 0.45 1.57

Standard spring 1973 9.81 kPa 250 0.158 0.012 0.55 0.54
manometer 1976 250 0.128 0.012 0.59 −0.13

P331 resistance 1970 100 � 400 0.33 × 10−3 1.6 × 10−2 0.82 1.08
measure 1975 400 0.1 × 10−3 1.2 × 10−2 0.44 2.02

To establish a property of an entire group (general collection) based on a sample,
the samples must be representative. Sample homogeneity is a necessary indicator
of representativeness. In the case of two samples, to be sure that the samples are
homogeneous, it is necessary to check the hypothesis H0 : F1 = F2, where F1 and
F2 are distribution functions corresponding, respectively, to the first and second
samples.

The results of the check, as is well known, depend not only on the error of the
measuring instrument being calibrated but also on the error of the standard. For
this reason, measuring instruments that are checked with not less than a fivefold
margin of accuracy were selected for analysis.

In addition, to ensure that the samples are independent, they were formed either
based on data provided by calibration laboratories in different regions of the former
USSR or, if data from a single laboratory were used, the data were separated
by a significant time interval. The sample size was maintained approximately
constant.

We shall discuss [43] first. Table 2.2 gives the basic statistical characteristics of
the samples for six types of different instruments. Two samples, obtained at differ-
ent times, are presented for each of them. For brevity, the data referring to only one
numerical scale marker are presented. The arithmetic mean of the values obtained
by continuously approaching the marker checked from both sides was taken as the
value of the error. The first initial and second central moments are given in the same
units in which the value of the point of checking is presented, i.e., in fractions of a
scale graduation, in degrees Celsius, and so on. (in the corresponding power). Errors
exceeding twice the limit of permissible error were eliminated from the analysis.

The test was made with the help of the Wilcoxon–Mann–Whitney and Siegel–
Tukey criteria with a significance level q = 0.05. The technique of applying these
criteria is described in Chapter 4.
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Table 2.3. The results of testing the hypothesis of homogeneity for samples of six
types of measuring instruments.

Result of testing the hypothesis
based on the criterion of

Type of
measuring Year of Point of Wilcoxon–Mann–
instrument calibration check Whitney Siegel–Tukey

э59 ammeter 1974 30 Divisions + −
1976 60 0 −

80 0 −
100 + +

э59 voltmeter 1974 70 Divisions − 0
1976 150 + +

д 566 wattmeter 1974 70 Divisions + +
1976 150 + +

TH-7 thermometer 1975 100 ◦C 0 −
1976 150 ◦C − +

200 ◦C + +
Standard spring 1973 9.81 kPa + +

manometer 1976
P331 resistance 1970 10 k� 0 −

measure 1975 100 � 0 −
10 � 0 −

The results of the analysis are presented in Table 2.3. Rejection of the hypothesis
is indicated by a minus sign, and acceptance is indicated by a plus sign. The symbol
0 means that a test based on the given criterion was not made.

The Wilcoxon–Mann–Whitney and Siegel–Tukey criteria are substantially dif-
ferent: The former is based on comparing averages, and the latter is based on
comparing variances. For this reason, it is not surprising that cases when the hy-
pothesis H0 is rejected according to one criterion but accepted according to the
other are encountered. The hypothesis of sample homogeneity must be rejected if
even one of the criterion rejects it. Both samples were found to be homogeneous
only for the д 566 wattmeters and standard manometers. For other measuring
instruments, the compared samples were often found to be nonhomogeneous. It
is interesting that on one scale marker, they can be homogeneous, on another,
they are inhomogeneous (э59 voltmeters and ammeters). TH-7 thermometers had
homogeneous samples in one range of measurement and nonhomogeneous in a
different range. The calculations were repeated for significance levels of 0.01 and
0.1, but on the whole, the results were the same in both cases.

The experiment described was formulated to check the stability of the distribu-
tion functions of the errors, but because in the samples compared, the instruments
were not always the same, the result obtained has a different but no less important
meaning: It indicates that they are nonhomogeneous. It means that the parameters
of one sample are statistically not the same as these parameters of another sample
of the same type of measuring instruments. Thus, the results obtained show that
samples of measuring instruments are frequently nonhomogeneous with respect to
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errors. For this reason, they cannot be used to determine the distribution function
of the errors of the corresponding instruments.

This result is indicated also by the results of [53], in which samples obtained
based on data provided for э59 ammeters by four calibration laboratories in differ-
ent regions of the former USSR were compared. The number of samples was equal
to 150–160 everywhere. The errors were recorded at the numerical markers 30, 60,
80, and 100 graduations. The samples were assigned the numbers 1, 2, 3, and 4,
and the hypotheses H0 : F1 = F2, F2 = F3, F3 = F4, and F4 = F2 were checked.
The combinations of samples were arbitrary. The hypothesis testing was based on
the Wilcoxon–Mann–Whitney criterion with q = 0.05. The analysis showed that
we can accept the hyphothesis H0 : F1 = F2 only, and only at the marker 100. In
all other cases, the hypothesis had to be rejected.

Thus, the sample method does not permit finding the distribution function of the
errors of measuring instruments. There are evidently two reasons for this result.
The first reason is that the stock of instruments of each type is not constant. On the
one hand, new instruments that have just been manufactured are added to it. On the
other hand, in the verification, some instruments are rejected, some instruments
are replaced, and others are discarded. The ratio of the numbers of old and new
instruments is constantly changing. The second reason is that the errors of the
instruments unavoidably change with time. Moreover, many instruments are used
under different conditions, and the conditions of use affect differently the rate at
which the instrumental errors change.

The temporal instability of measuring instruments raises the question of whether
the errors of measuring instruments are in general sufficiently stable so that a col-
lection of measuring instruments can be described by some distribution function.
At a fixed moment in time, each type of instruments without doubt can be described
by distribution function of errors. The other problem is how to find this distribution
function. The simple sampling method, as we saw above, is not suitable. But even
if the distribution function can be found by some complicated method, after some
time, it would have to be redetermined, because the errors, and the composition of
the stock of measuring instruments, change. Therefore it must be concluded that
the distribution of errors of measuring instruments cannot be found based on the
experimental data.

The results presented above were obtained in the former USSR, and instruments
manufactured in the former USSR were studied. However, there are no grounds
for expecting that instruments manufactured in other countries will have different
statistical properties.



3
Prerequisites for the Analysis of the
Inaccuracy of Measurements and for
Synthesis of Their Components

3.1. Relationship Between Error and Uncertainty

As mentioned, a measurement error cannot be found directly from its definition,
i.e., using the definition as an algorithm, because the true value of the measured
quantity is unknown. The problem must be solved by performing calculations based
on estimates of all components of the measurement inaccuracy. This condition is
why the problem of analysis—the identification of the sources and the reasons for
the appearance of the measurement errors and estimation of these errors—is so
important.

We shall call the smallest of the measurement errors, based on whose estimates
the total measurement error or uncertainty of measurement is calculated, the ele-
mentary errors.

If in the analysis it is possible to find for some elementary errors concrete spe-
cific values, i.e., in the language of mathematical statistics, to find point estimates
of these errors, then these components are immediately eliminated by introducing
the corresponding corrections. Of course, this is possible only in the case of el-
ementary systematic errors. However, no corrections can make the measurement
result absolutely accurate; an uncertainty always remains. In particular, the cor-
rections cannot be absolutely accurate, and after they are introduced, residuals of
the corresponding errors remain that have not been eliminated and that later play
the role of elementary errors.

Let us turn back once more to the terms error and uncertainty. For the last two
decades or perhaps a bit longer, both were used in the United States with the same
meaning.1 Thus, they were synonyms. But synonyms are not allowed in a proper
system of terms, and this situation had to be improved.

One would think article [18] provides the solution to this problem. The main
idea of that paper is that the term “measurement error” appears to be used in two
different senses. In one sense, in the opinion of the authors of [18], it expresses that
the measurement result is different from the true value of the measured quantity,

1 John R. Taylor. An Introduction to Error Analysis. The Study of Uncertainty in Physical
Measurements. Oxford University Press, 1982. Second ed. 1997.
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whereas in the other sense, it reflects the uncertainty of the measurement result. For
example, in the first case, one would use the expression “the error +1%,” whereas
in the second case, one would say “the error ±1%.” To distinguish the meaning
of the word “error” in these cases, it is proposed that in the second case, the word
“uncertainty” be used instead of the word “error.”

To understand the essential significance of this proposition, it is first necessary to
check the correctness of the examples presented. The first example is obvious. The
second example requires some analysis. To be precise, the expression “the error
±1%” means that the measurement error is simultaneously both +1% and −1%.
But this result cannot be, because there can only be one result of a measurement, a
fixed numerical value; i.e., this expression is incorrect. In this case, one should say
“the error falls within the range±1%” or “the limits of error are±1%.” If the correct
expression were used, then the contradiction mentioned in [18] would not occur.

Thus, the problem lies not in that the term measurement error has two meanings
but that this term is not used correctly. Nevertheless, it may seen that this proposal
eliminates the synonymy. But as a matter of fact, it replaces the term error with the
term uncertainty because the first case mentioned above is rare; it is used almost
only in calibration practice.

A much better solution follows from [3] and [14]. An inaccuracy of measurement
results is expressed there with the term uncertainty, but every numerical value of
uncertainty is accompanied with a corresponding confidence probability. The latter
is important, and it is a good reason to have a special term in this case. Of course, a
new term could be constructed by adding special adjectives to the root word error.
For example, there is a term confidence limits of error or just confidence error in
[4]. But shorter terms are preferable. Therefore, we shall use the term uncertainty
in the present book with this meaning. Also, we shall use the term error for all
components of uncertainty, and the term limits of error of measurement results for
those cases where the cause of inaccuracy of measurement is the intrinsic error of
the measuring instrument involved. In other words, the term limits of error will
be used when a corresponding level of confidence cannot be stated, Thus, this
solution keeps both terms giving them different areas of application. Therefore
this solution enriches the terminology while the first one demages it.

I would like to note that the second edition of Vocabulary [2] foresees now the
term uncertainty exactly with the same meaning as was described above.

Thus the imperfection of measurement results can be quantitatively described
using two terms: limits of error and uncertainty. Yet another term is needed to refer
to the imperfection of measurements. In this book, the term inaccuracy is used for
this purpose.

3.2. Classification of Elementary Errors

The classification of measurement errors presented in Chapter 1 also applies, of
course, to elementary errors. Continuing the analysis, this classification must be
further developed.
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Most elementary errors are estimated by analysis, and definite limits are found
for them. We shall divide elementary errors that have definite limits into absolutely
constant and conditionally constant errors.

By absolutely constant elementary errors, we mean errors that, although they
have definite limits, remain the same in repeated measurements performed under
the same conditions as well as for all measuring instruments of the same type.
An example of such an error is the error caused by the inaccuracy in the formula
used to determine the quantity being measured, if the limits of this error have been
established. Another example is the error of digital thermometers, for which the
temperature dependence of the emf of the thermocouple is linearized with the help
of a polynomial of a fixed degree. Thus, absolutely constant elementary errors are,
based on their properties, purely systematic errors.

By conditionally constant errors, we mean errors that have certain limits but
can vary within these limits both caused by the nonrepeatability and because of
the nonreproducibility of the results. A typical example of such an error is the
measurement error because of the intrinsic error of the measuring instrument.

The intrinsic error, by its nature, can be a purely systematic error, but it can
also have a random component. For example, for weights, the intrinsic error does
not have a random component, but its actual magnitude varies from one weight
to another. The intrinsic error of an electric measuring instrument with an indi-
cator needle has both systematic and random components, but on the whole, the
intrinsic error has definite limits that are the same for any instrument of a given
type.

A conditionally constant error can even be purely random. Examples are the
roundoff error in reading the indications of analog instruments and the error caused
by the limited resolution of digital instruments.

Thus, a fundamental property of conditionally constant elementary errors is that
although they have certain limits, they can vary within these limits.

An elementary error that does not have estimable limits is the common random
error.

A random error, as is well known, is estimated after a measurement is performed.
The estimate is based on data obtained in the course of the measurements. If the
random error is significant, then the measurement is performed many times. The
primary characteristic of a random error is usually the standard deviation, which is
calculated from the experimental data, and the entire standard deviation, and not
its separate components, is estimated directly. For this reason, there is no need to
add to the term random component of the measurement error or briefly random
measurement error the additional word elementary.

Let us note that the random error of a multiple measurement includes all random
components of conditionally constant errors, and therefore, it can happen that
random parts of conditionally constant errors in multiple measurements are taken
into account twice.

When performing an analysis, however, it is important to distinguish purely
random and quasirandom errors. Purely random errors can arise from different
reasons. For example, they can arise from noise or small (regarded as permissible)
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variations in the influence quantities or the random components of the errors of
the measuring equipment.

Quasirandom errors appear in measurements of quantities that are by defini-
tion averages when the quantities appearing in the group being averaged are of
different size. The difference is not random but is regarded as random and is char-
acterized, just as in the case of a purely random error, by an estimate of the standard
deviation.

The error classification studied above is reminiscent of the classification con-
tained in the Guide [1], but the last does not separate absolutely constant errors.
There is some difference in terminology also. The Guide avoids the term error, and
names the components of measurement uncertainty as type A and type B uncertain-
ties. The type A uncertainty is defined there as a component of the measurement
uncertainty that is estimated by statistical methods, whereas the type B uncertainty
is estimated by nonstatistical methods. These terms are purely arbitrary, and the
Vocabulary [2] does not contain them. It is important also that the classification
indicator here refers not to the object of classification and to its properties but to
the method employed to estimate them, and in general, it is a secondary indicator
that follows from something that has not been identified.

The proposed classification does not have this deficiency.

3.3. Mathematical Models of Elementary Errors

A measurement error and uncertainty is calculated based on data of its components;
i.e., this is a problem of synthesis, performed mathematically. Correspondingly,
elementary errors must be represented by mathematical models. We shall examine
all four types of elementary errors from this viewpoint.

Absolutely constant errors. Each such error has a constant value that is the same
in any measurement, although it is unknown. Only the limits of these errors are
known. A mathematical model of such errors could be a determinate quantity
whose magnitude has an interval estimate; i.e., it lies within an interval of known
limits. We shall use this model for absolutely constant elementary errors.

We can foresee an objection to this model. Some people think that if the value
of the error is unknown, then it can be regarded as a random quantity. However,
this is not correct. A model of an object can be constructed only based on what we
know about it and not based on what we do not know.

There is another objection. If a determinate model is adopted, then when several
absolutely constant errors are summed, their limits must be added arithmetically.
This process is equivalent to the assumption that all terms have limiting values and
the same sign, which is unlikely. This objection also is invalid. First, the argument
“unlikely” is not correct here, because we are not using a probabilistic model. Sec-
ond, the fact that we do not like the result—the answer seems exaggerated—is also
not an argument. In mathematics, precisely the same situation arises in methods
of approximate calculations and the limits of errors are added arithmetically.
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Fortunately, in a measurement, rarely more than one or two absolutely constant
errors exist, and they are, as a rule, insignificant.

Conditionally constant errors. The values of these errors characteristically vary
from one measurement to another and from one measuring instrument to another,
and they are different under different conditions. In all cases, however, in each
such error, the limits of the interval containing any possible realization of such an
error remain unchanged.

As a mathematical model of conditionally constant errors, one would like to use
a random quantity. For this reason, however, it is necessary to know the probability
distribution function corresponding to this random quantity. Best of all, one would
like to find this function based on the experimental data. Such an attempt was made
for the intrinsic error of measuring instruments. The results of such an investigation
were presented in Chapter 2. They showed that the distribution function of the
intrinsic error and, of course, the distribution function of the additional errors
cannot be found from selective data.

Thus, to adopt a probability model, the form of the distribution function, in this
case, must be prescribed. It is well known that among distributions with fixed limits,
the uniform distribution has the highest uncertainty (in the sense of information
theory). The roundoff error also has known limits, and in mathematics, this error
has for a long time been regarded as a random quantity with a uniform probability
distribution. For this reason, we shall also assume that the model of conditionally
constant errors will be a random quantity with a uniform probability distribution
within prescribed limits.

This suggestion was made comparatively a long time ago [41]. At the present
time, this model is widely employed in the theory of measurement errors [1], [5],
[6].

Purely random errors. Such errors appear in multiple measurements. They are
characterized by the standard deviation that is computed from the experimental
data.

The form of the distribution function of random errors can, in principle, be
found based on the data from each multiple measurement. In practice, however,
the number of measurements performed in each experiment is insufficient for this.
Every time measurements are performed, it is assumed that the hypothesis of a
normal distribution was checked in the preceding experiment. For example, when
measures of mass are compared on the standard balances at the D.I. Mendeleev
All-Union Scientific-Research Institute of Metrology (USSR), it is assumed that
the distribution is normal, but this is not directly checked. True, the results ob-
tained are not inconsistent with the practice so that this assumption is evidently
justified.

In general, I have never encountered a case when the normality of the distri-
bution of a random error was checked mathematically and when this has led to
misunderstandings. Thus, we shall assume that the mathematical model of random
errors is, as a rule, a normal distributed random quantity.



66 3. Inaccuracy of Measurements and Synthesis of Their Components

Quasirandom errors. As noted above, these errors occur when measuring quanti-
ties that are averages by definition, and the value of each separate quantity in the
group of quantities being averaged remains constant. These quantities are essen-
tially not random, but in aggregate, they can be regarded as a general collection
of quantities, which is possible in accordance with the goal of the measurement,
based on agreement of experts. The parameters of the distribution that character-
ize this distribution should be determined by agreement. Most often the standard
deviation is chosen as this parameter.

We shall now discuss the question of interdependence and correlation of ele-
mentary errors. Mathematically, it is preferable to regard these errors as correlated
quantities, because this approach has great generality. However, such an approach
complicates the problem, and most of the time, it is not justified. Under refer-
ence conditions, all elementary errors are independent and they are uncorrelated.
Exceptions can be encountered in measurements performed under normal operat-
ing conditions, especially in the case of indirect measurements and measurements
performed with the help of measuring systems, when one and the same influence
quantity gives rise to appreciable additional errors in several instruments or com-
ponents in the measuring channel of the system. An example is a measurement
in which a measuring transducer, amplifier, and automatic-plotting instrument is
employed. A change in the temperature of the medium can cause these devices to
acquire an additional temperature-induced error. Obviously, these additional errors
will be interrelated.

3.4. Methods for Describing Random Quantities

Random quantities are studied in the theory of probability, a well-developed field
of mathematics. The properties of a random quantity are completely described by
the distribution function F(x), which determines the probability that a random
quantity X will assume a value less than x :

F(x) = P{X < x}.

The distribution function is a nondecreasing function, defined so that F(−∞) = 0
and F(+∞) = 1.

Together with the distribution function F(x), which is said to be cumulative or
integral, the differential function, usually called the probability density f (x), is
also widely employed:

f (x) = d F(x)

dx
.

We call attention to the fact that the probability density is a dimensional function:

dim f (x) = dim
1

X
.
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Figure 3.1. (a) The probability distribution and (b) the probability density for a normal
distribution (on the left) and uniform distribution (on the right) of continuous random
quantities.

In the practice of precise measurements one most often deals with normal and
uniform distributions. Figure 3.1(a) shows integral functions of these distributions,
and Fig. 3.1(b) shows the probability densities of the same distributions.

For the normal distribution, we have

f (x) = 1

σ
√

2π
e−(x−A)2/2σ 2

,

F(x) = 1

σ
√

2π

∫ x

−∞
e−(x−A)2/2σ 2

dx, (3.1)

The parameter a2 is the variance, and A is the mathematical expectation of the
random quantity.

Calculation of F(x) for some fixed x f gives the probability P{X < x f } = Pf .
When the graph of f (x) is used to calculate this probability, it is necessary to find
the area under the curve to the left of the point x f in Fig. 3.1(b).

The normal distribution function obtained by transforming to the random quan-
tity z = (X − A)/σ is widely employed in calculations:

f (z) = 1√
2π

e−z2/2, F(z) = 1√
2π

∫ z

−∞
e−y2/2dy. (3.2)

Tables of values of the function �(z) defined by the expression

�(z) = 1√
2π

∫ z

0
e−y2/2dy (3.3)
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and called the normalized Gaussian function are often given.
It is obvious that for z ≥ 0

F(z) = 0.5 + �(z).

The branch for z < 0 is found based on symmetry considerations:

F(z) = 0.5 − �(z).

A table of the function �(z) is given in the Appendix (Table A.1).
The normal distribution is remarkable in that according to the central limit

theorem, a sum of an infinite number of infinitesimal random quantities with an
arbitrary distribution has a normal distribution. In practice, the distribution of the
sum of a comparatively small number of random quantities already is found to be
close to a normal distribution.

The uniform distribution is defined as

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < d,

1

b − d
, d ≤ x ≤ b,

0, x > b,
(3.4)

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < d,

x − d

b − d
, d ≤ x ≤ b,

1, x > b.

We shall also use the uniform distribution often.
In addition to continuous random variables, discrete random variables are also

encountered in metrology. An example of an integral distribution function and the
probability distribution of a discrete random variable are given in Fig. 3.2.

Distribution functions are complete characteristics of random quantities, but they
are not always convenient to use in practice. For this reason, random quantities

Figure 3.2. (a) The probability distribution and (b) the distribution of probabilities of
a discrete random quantity.
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are also described by their numerical characteristics, and the moments of random
quantities are employed.

The initial moments mk (moments about zero) and central moments µk (mo-
ments about the mean value) of order k are defined by the formulas

mk = E[Xk] =
∫ ∞

−∞
xk f (x)dx,

(3.5)

mk = E[Xk] =
n∑

i=1

xk
i pi .

µk = E[X − E[X ]]k =
∫ ∞

−∞
(x − E[X ])k f (x)dx,

(3.6)

µk = E[X − E[X ]]k =
n∑

i=1

(xi − E[X ])k pi .

In the relations (3.5)–(3.8), the first formulas refer to continuous and the second
to discrete random quantities.

Of the initial moments, the first moment (k = 1) is most often employed. It gives
the mathematical expectation of the random quantity

m1 = E[X ] =
∫ ∞

−∞
x f (x)dx,

(3.7)

m1 = E[X ] =
n∑

i=1

xi pi .

It is assumed that
∑n

i=1 pi = 1; i.e., the complete group of events is studied.
Of the central moments, the second moment (k = 2) plays an especially impor-

tant role. It is the variance of the random quantity

µ2 = V[X ] = E[(X − m1)2] =
∫ ∞

−∞
(x − m1)2 f (x) dx,

(3.8)

µ2 = V[X ] = E[(X − m1)2] =
n∑

i=1

(xi − m1)2 pi .

The positive square root of the variance is called the standard deviation of the
random quantity

σ = +
√

V [X ]. (3.9)

Correspondingly, V [X ] = σ 2.
The third and fourth central moments are also used in applications. They are

used to characterize the symmetry and sharpness of distributions. The symmetry
is characterized by the skewness a = µ3/σ

3, and the sharpness is characterized
by the excess e = µ4/σ

4. The latter is defined some times as e′ = µ4/σ
4 − 3.

The normal distribution is completely characterized by two parameters: m1 = A
and σ . For it, characteristically, a = 0 and e′ = 0. The uniform distribution is also
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determined by two parameters: m1 = A and l = d − b. It is well known that

m1 = d + b

2
, V [X ] = (d − b)2

12
= l2

12
. (3.10)

Instead of l, the quantity h = l/2 is often used. Then V [X ] = h2/3 and σ (X ) =
h/

√
3.

3.5. Construction of the Composition
of Uniform Distributions

So, we have adopted the uniform distribution as a mathematical model of condi-
tionally constant elementary errors. In solving the problem of synthesis of these
errors, one must know how to construct the composition of uniform distributions.

The theoretical solution of this problem is well known and is presented, for
example, in [52]. For our purposes, it is interesting to clarify the possibility of
constructing a simplified solution for the applied problem at hand.

Consider n random quantities xi (i = 1, . . . , n), each of which has a uniform
distribution centered at zero in the interval [− 1

2 ; + 1
2 ]. We introduce the notation

ϑ = ∑n
i=1 xi . The probability densities of the sum of these random quantities has

the form

fn(ϑ) = 1

(n − 1)!

[(
ϑ + n

2

)n−1
− C1

n

(
ϑ + n

2
− 1

)n−1

+ C2
n

(
ϑ + n

2
− 2

)n−1
+ · · ·

]
,

where the sum must include only those terms in which the additive to ϑ , i.e., n/2,
(n/2 − 1), and so on, is nonnegative for a given value of n; for example, if n = 2,
then

f2(ϑ) = (ϑ + 1) − 2ϑ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ϑ ≤ −1,

ϑ + 1, −1 < ϑ ≤ 0,

1 − ϑ, 0 ≤ ϑ < 1,

0, 1 < ϑ.

The probability density of the sum of two terms has the form of a triangle. For
n = 3, the graph of f3(ϑ) consists of three segments of a quadratic parabola and
looks very much like the curve of a normal distribution. For n = 4, this distribution
function is almost indistinguishable from the normal distribution.

Given the equation for the probability density, it is not difficult to find the
probability distribution function

Fn(ϑ) = 1

n!

[(
ϑ + n

2

)n
− C1

n

(
ϑ + n

2
− 1

)n
+ C2

n

(
ϑ + n

2
− 2

)n
+ · · ·

]
.

(3.11)
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In practice, however, it is desirable to have a simpler and more convenient
solution. Such a solution can be found by taking into account that in accordance
with the principle of error estimation from above, we are interested in limits ±θ

for the sum of the components such that the probability P{|ϑ | ≤ θ} > 0.9.
Bearing the last remark in mind, we shall examine the distribution function

Fn(ϑ) in the extreme intervals [−n/2, −n/2 + 1] and [n/2 − 1, n/2].
For one section, (3.11) assumes the form

Fn(ϑ) =

⎧⎪⎪⎨
⎪⎪⎩

1

n!

(
ϑ + n

2

)n
for − n

2
< ϑ − n

2
+ 1,

1 − 1

n!

(
ϑ − n

2

)n
for

n

2
− 1 < ϑ <

n

2
.

The composition of the distributions is symmetric relative to the ordinate axis.
We shall discuss how to calculate, given the probability distribution, the limits

of the confidence interval corresponding to a fixed value α of the confidence
probability. The limits of the confidence interval corresponding to α are ±θα .

By definition, the probability that the true value of a quantity lies within the
confidence interval [−θ,+θ ] is α. Therefore, the probability that the quantity
does not lie in the confidence interval is (1 − α). If the distribution is symmetric
relative to 0 (and we are studying a symmetric distribution), then the probability
that the quantity will take on a value less than −θ will be equal to the probability
that it will take on a value greater than +θ . These probabilities are obviously equal
to (1 − α)/2.

Consider first the left-hand branch of the distribution function. The probability
corresponding to the point −θ [the arguments (points) of the distribution function
are also called quantiles of the distribution] is equal to P{ϑ ≤ −θ} = (1 − α)/2.
We shall now consider the right-hand branch. The probability that ϑ ≤ +θ will
obviously be equal to 1 − [(1 − α)/2] = (1 + α)/2.

We shall now return to our problem. Given Fn(ϑ) and α, we are required to find
the quantiles −θ and +θ . Their absolute values are equal. For this reason, we shall
only calculate −θ , and we have the condition

P{ϑ ≤ −θ} = Fn(−θ ) = 1

n!

(
−θ + n

2

)n
= 1 − α

2
, (3.12)

from which θ can be calculated. We shall represent in the following form the values
of θ found from formula (3.12):

θα = k

√√√√ n∑
i=1

θ2
i , (3.13)

where θi is the limit of the range of values of xi (−θi ≤ xi ≤ +θi ), where k is a
correction factor.

In the case at hand, θi = 1/2 for all i = 1, . . . , n; i.e.,

θ = k
√

n/2, k = 2θ/
√

n. (3.14)
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Table 3.1. Values of the coefficient k as a function of the number of
terms and confidence probability.

Values of the coefficient k for confidence probability α

Number of terms n 0.90 0.95 0.99 0.9973

2 0.97 1.10 1.27 1.34
3 0.96 1.12 1.37 1.50
4 ∗ 1.12 1.41 1.58
5 ∗ ∗ ∗ 1.64

. . . . . . . . . . . . . . .
∞ 0.95 1.13 1.49 1.73

∗ Cases for which the coefficient k is not calculated, because one interval is not enough
for that n.

Formula (3.13) is convenient for calculations, and for this reason, we shall investi-
gate the dependence of the coefficient k on α and n. The calculations are performed
as follows. Given α and n, we find θ from (3.12). Next, the correction factor k is
found for the given values of α and n from formula (3.13) or (3.14).

For example, let α = 0.99 and n = 4. Then (1 − α)/2 = 0.005. Let us check
whether the value of θ corresponding to this probability falls within the left extreme
interval [−2, −1]. For this reason, we shall find the probability corresponding to
the highest value of ϑ in this interval, i.e., F4(−1):

F4(−1) = 1

4!
(−1 + 2)4 = 1

1 × 2 × 3 × 4
= 0.041.

As 0.005 < 0.041, the value of θ of interest to us lies in this interval.
Substituting the initial data into (3.12), we find θ :

1

4!
(−θ + 2)4 = 0.005, −θ + 2 = 4

√
24 × 0.005, θ = 1.41.

Having found θ , we obtain from formula (3.14):

k = 2 × 1.41√
4

= 1.41.

The values of k for other values of α and n were calculated analogously and are
presented in Table 3.1.

The value of k for n → ∞ was found using the fact that by virtue of the central
limit theorem, the resulting distribution may be regarded as being normal.

We can write

ϑ =
n∑

i=1

xi , V [ϑ] = V

[
n∑

i=1

xi

]
=

n∑
i=1

V [xi ], E[xi ] = 0.
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But, as is well known, V [xi ] = θ2
i /3. Therefore

V [ϑ] =

n∑
i=1

θ2
i

3
, σ [ϑ] =

√√√√1

3

n∑
i=1

θ2
i . (3.15)

Thus, if n → ∞, we have a random quantity with a normal distribution N (0, σ ).
We shall calculate the absolute value of the limits of the confidence interval
from its upper limit θ = zpσ , where zp is the quantile of the normal distribution
corresponding to the probability p = (1 + α)/2 (see above). Thus, we obtain

θ = zp√
3

√√√√ n∑
i=1

θ2
i . (3.16)

Comparing (3.16) with (3.13), we find

k
n→∞

= zp√
3
.

For α = 0.9973, we obtain zp = 3 and k = 1.73.
Looking at the table obtained in this manner (Table 3.1), it should be noted that

the correction factor k has the interesting property that for α ≤ 0.99, it is virtually
independent of the number of terms. We can make use of this property and take
for k the average values:

α 0.90 0.95 0.98 0.99
k 0.95 1.10 1.30 1.40

The error caused by using the average values of k, as one can see by comparing
them with the exact values given in Table 3.1, does not exceed 10%.

The small effect of the number of terms indicates indirectly that it is not necessary
to assume, as was done above, that all θi are equal. Thus, if one of the terms θl is
reduced, then in the limit, instead of n, we obtain n − 1 terms. The value of the
factor k, however, in the process remains practically unchanged. If, on the other
hand, θl is gradually increased, then the factor k will decrease.

The dependence of k on the ratio c = θl/θ0 for α = 0.99 is given in Fig. 3.3; θ0

is the absolute value of the remaining terms, which are assumed to be equal.
The factor k can also be calculated using the formulas approximating the curves

presented in Fig. 3.3. For α = 0.99 and n = 4, this formula is

k = 1.45 − 0.05
θl

θ0
. (3.17)

Formula (3.16) can be used instead of (3.13) to calculate θ when the number
of terms is large. However, as follows from the above-presented estimate of the
error of calculations based on formula (3.13), the accuracy cannot be increased
by more than 10% (for α = 0.99). At the same time, formula (3.13) is also useful
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Figure 3.3. The coefficient k as a function of the change in one of the terms relative
to the other terms (n = 2, 3, 4).

for summing a small number of terms. For this reason, for practical calculations,
relation (3.13) is preferable.

3.6. Universal Method for Constructing
the Composition of Distributions

In the general case, to combine random quantities, it is necessary to construct
the composition of the distributions of the terms. If the distribution functions are
given analytically, then their composition is found either by direct integration of
the derivatives of the functions or by using the characteristic functions, which
usually simplifies the solution.

In practice, however, the analytical form of the distribution functions is usu-
ally unknown. Based on the experimental data, it is possible only to construct a
histogram, and an error is unavoidably made by passing from the histogram to
the distribution function. For this reason, we shall study the summation of ran-
dom quantities whose distribution is given by histograms and not by distribution
functions [30].

Suppose that we are required to find the distribution function of the random
quantity ζ = ζ1 + · · · + ζn , where ζi is a random quantity given by a histogram
with mi intervals in the region of possible values of ζi with the limits ai and bi .

Thus, the interval

[ai , bi ] = li1 + li2 + · · · + limi , i = 1, . . . , n.
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Figure 3.4. Histogram of the distribution
of some random quantity.

We shall assume that the probability that the random quantity falls within each
interval of the histogram is equal to the area of the part of the histogram that cor-
responds to this interval (the area of the corresponding column of the histogram):

P{ζiε lik} = pik,

where k = 1, . . . , mi is the number of the interval of the histogram of the distri-
bution of the random quantity ζi .

Figure 3.4 shows as an example a histogram with five intervals of equal length
li = l, so that bi − ai = 5l. For this histogram,

pi1 = W1l, pi2 = W2l, . . . , pi5 = W5l,

where W1, . . . , W5 are the heights of the columns of the histogram; by construction,
the area of the entire histogram is equal to unity; i.e.,

∑5
k=1 pik = 1.

We recall that in constructing histograms (which are constructed based on em-
pirical data), the height of the column of each interval is found by dividing the
relative frequency with which the values fall within the corresponding interval by
the length of this interval. This frequency is an empirically obtained estimate of
the probability of the corresponding event.

Next, we shall represent continuous random quantities by discrete random quan-
tities corresponding to them. For this reason we denote by aik the center of each
interval lik and we introduce a new random quantity ηi , which corresponds to the
random quantity ζi so that ηi assumes the value aik with probability pik . This result
is possible, because from what we have said above, it is obvious that

mi∑
k=1

pik = 1 for all i = 1, . . . , n.

It is desirable to represent the obtained data for each random quantity ηi by a
table of the following form:

ai1 ai2 · · · aimiηi
pi1 pi2 · · · pimi

∣∣∣∣∣
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We shall now study the random variable η = η1 + η2 + · · · + ηn . We obtain all
its possible values by sorting through all combinations of the obtained realizations
of aik of the components ηi .

For the calculations, it is convenient to write out the possible values of the
random quantities in a single table of the form

η1 a11 . . . a1m1 ,
η2 a21 . . . a2m2 ,

· · · ·
ηn an1 . . . anmn .

Next we calculate the values of the random quantity η that correspond to each
possible combination of realizations of the random quantities ηi ,

ηt = a1k1 + a2k2 + · · · + ankn

and the corresponding probabilities, which we find from the formula

pt = P{η1 = a1k1 , η2 = a2k2 , . . .} =
n∏

i=1

piki . (3.18)

Adding the probabilities that correspond to one and the same realization ηt = at ,
we obtain the probability that the random quantity η assumes each possible value
from series of a1, . . . , aN .

The number of combinations of terms will be
∏n

i=1 mi , but because among them
there are terms whose values are the same,

N ≤
n∏

i=1

mi . (3.19)

The obtained data make it possible to construct a step function of the distribution
F1(x) of the random quantity η:

F1(x) =
∑

t

P{η = at }, at ≤ x . (3.20)

The curve F1(x) is the first approximation to the distribution function F(x) sought.
The obtained step function can be smoothed by the method of linear interpolation
as follows.

We find the center of the intervals [at , at+1] with t = 1, . . . , N − 1:

βt = at+1 + at

2
. (3.21)

From the points βt , we raise perpendiculars up to the broken line F1(x). We
obtain points with the coordinates (βt , F1(x)) for t = 1, . . . , N − 1. To the points
obtained, we associate points at which the distribution function assumes the values
F1(β0) = 0 and F1(βn) = 1:

β0 =
n∑

i=1

ai , βN =
n∑

i=1

bi . (3.22)
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Joining the N + 1 points so obtained with straight lines, we obtain the function
F2(x), which is the approximation sought.

The method presented above gives a solution of the problem using all available
information and does not introduce any distortions. In the general case, however,
V [ζi ] �= V [ηi ] and the variance of the random quantity with the distribution F1(x)
or F2(x) can differ from the variance of the random quantity ζ . For this reason,
if the terms are independent, the variance of their sum must be calculated in the
standard manner using the formula

V [ζ ] = V

[
n∑

i=1

ζi

]
=

n∑
i=1

V (ζi ).

We note that for n > 5, the distribution of the sum of terms can be regarded
as a normal distribution, which is completely determined by the variance and
the mathematical expectation. Both parameters can be easily calculated from the
parameters of the terms

E[ζ ] =
n∑

i=1

E[ζi ], V [ζ ] =
n∑

i=1

V [ζi ],

and for this reason, the calculations presented above are useful only if the number
of terms n < 5.

It should also be noted that the method presented above for constructing a
composition of distributions is also useful in the case when the distributions of
the random quantities are given in analytic form. The smooth curve expressing the
density of the distribution of the random quantity ζi is replaced by a step curve with
mi steps, in a manner so that the area it bounds, as also the area under the smooth
curve, is equal to unity. If the branches of the smooth curve of the distribution
function approach the abscissa axis asymptotically, this distribution is replaced by
a truncated distribution.

It is also obvious that this method is useful both for the case of discrete quantities
ζi and for the mixed case.

In general, the method examined above is essentially an algorithm for construct-
ing numerically the composition of distributions and can be easily implemented
with the help of computers.

We shall illustrate the method with an example. Let ζ = ζ1 + ζ2, where ζ1 has
a normal distribution with the density

f1(x) = 1√
2π

e−(x−2)2/2,

and ζ2 has a distribution with a uniform density f2(x) = 1/6.

For a normal distribution with the parameters A = 2 and σ = 1, we shall take
the domain of ζ1 to be [A − 3σ, A + 3σ ] = [−1, 5]. We divide this interval into
five intervals (m1 = 5), symmetrically arranged relative to the point 2—the math-
ematical expectation:

[−1, 5] = [−1, 0.5] + [0.5, 1.5] + [1.5, 2.5] + [2.5, 3.5] + [3.5, 5].
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For the random quantity ζ2, whose domain is the interval [−3, 3] and which has
a distribution with a uniform density, we assume m2 = 3:

[−3, 3] = [−3, −1] + [−1, 1] + [1, 3].

Next we calculate the probability that the random quantities fall into the corre-
sponding intervals. For the normal distribution, we have

p11 =
∫ 0.5

−1

1√
2π

e−(x−2)/2 dx = 0.067,

p12 =
∫ 1.5

0.5

1√
2π

e−(x−2)2/2 dx = 0.242,

p13 =
∫ 2.5

1.5

1√
2π

e−(x−2)2/2 dx = 0.382.

In view of the symmetry of the normal distribution

p14 = p12 = 0.242, p15 = p11 = 0.067.

For the uniform distribution

p21 =
∫ −1

−3

1

6
dx = 1

3
, p22 =

∫ 1

−I

1

6
dx = 1

3
, p23 =

∫ 3

1

1

3
dx = 1

3
.

Next we find the centers of the constructed intervals:

a11 = −1 + 0.5

2
= −0.25, a12 = 0.5 + 1.5

2
= 1,

a13 = 1.5 + 2.5

2
= 2, a14 = 2.5 + 3.5

2
= 3, a15 = 3.5 + 5

2
= 4.25,

a21 = −3 − 1

2
= −2, a22 = −1 + 1

2
= 0, a23 = 1 + 3

2
= 2.

This process determines η1, which assumes values a1k with probabilities p1k , where
k = 1, . . . , 5, and η2, which assumes values a2k with probabilities p2k , where k =
1, 2, and 3. As a result of the calculations we have obtained

η1

{
a1k −0.25 1 2 3 4.25,

p1k 0.067 0.242 0.382 0.242 0.067,

η2

{
a2k −2 0 2,

p2k 0.333 0.333 0.333.

Next we transfer to the random quantity η = η1 + η2. We estimate the num-
ber of different terms η from formula (3.19). In our case, m1 = 5, m2 = 3, and
N ≤ 15.

We shall represent the values obtained for η1 and η2 in the form of a table:
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η1 −0.25 1 2 3 4.25,
η2 −2.00 0 2 — —,

We find the values of η = η1 + η2 with the help of this table. The order of the
calculations is explained in Table 3.2.

Next we arrange the values of ηt in increasing order. To each value of ηt there
corresponds a unique probability pt . If one and the same value of ηt is encountered
several times, then the probability of this value is taken to be the sum of these
probabilities. We obtain

ηt −2.25 −1 −0.25 0 1 1.75 2

pt 0.022 0.081 0.022 0.127 0.162 0.022 0.127

ηt 2.25 3 4 4.25 5 6.25
pt 0.22 0.162 0.127 0.022 0.081 0.022

As η = 1 and η = 2 were encountered twice, N = 13.
Based on the data obtained, using (3.20), it is not difficult to construct F1(x).

The values of this function in the intervals found are presented in Table 3.3, and
the corresponding graph is given in Fig. 3.5 in the form of a stepped line.

We find βt for t = 1, . . . , 12 from (3.21), and we determine β0 and β13 from
(3.22). Using these calculations as well as the data of Table 3.3, we construct the
distribution function F2(x). The function F2(x) is plotted in Fig. 3.5 as a broken

Table 3.2. Data for sorting through
variants of sums of the random quantities η1

and η2 and the corresponding probabilities.

η p

−0.25 − 2 = −2.25
−0.25 + 0 = −0.25 0.067 × 0.333 = 0.022
−0.25 + 2 = 1.75

1 − 2 = −1
1 + 0 = 1 0.242 × 0.333 = 0.081
1 + 2 = 3

2 − 2 = 0
2 + 0 = 2 0.382 × 0.333 = 0.127
2 + 2 = 4

3 − 2 = 1
3 + 0 = 3 0.242 × 0.333 = 0.081
3 + 2 = 5

4.25 − 2 = 2.25
4.25 + 0 = 4.25 0.067 × 0.333 = 0.022
4.25 + 2 = 6.25



80 3. Inaccuracy of Measurements and Synthesis of Their Components

Table 3.3. Data for the stepped
approximation to the distribution
function of a sum of two random
quantities studied.

x F1(x)

−∞ −2.25 0.000
−2.25 −1.00 0.022
−1.00 −0.25 0.103
−0.25 0.00 0.125

0.00 1.00 0.252
1.00 1.75 0.414
1.75 2.00 0.436
2.00 2.25 0.563
2.25 3.00 0.585
3.00 4.00 0.747
4.00 4.25 0.874
4.25 5.00 0.896
5.00 6.25 0.978
6.25 ∞ 1.000

line connecting the points (βt , F1(βt )) for t = 0, . . . , 13. The numerical values of
F2(x) for x = βt , where t = 0, . . . , 13 are presented in Table 3.4.

As we have already mentioned, the approximation of the limiting distribution
function F(x) by F2(x) can be improved by reducing the subdivisions of the
domains of the starting random quantities.

Figure 3.5. Step and linear approximations of the distribution function.
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Table 3.4. Data for the linear
approximation to the distribution
function of the sum of two
random quantities studied.

t βt F2(x)

0 −4.00 0.000
1 −1.62 0.022
2 −0.62 0.103
3 −0.14 0.125
4 0.50 0.252
5 0.14 0.414
6 1.87 0.436
7 2.12 0.563
8 2.62 0.585
9 3.50 0.747

10 4.12 0.874
11 4.62 0.896
12 5.62 0.978
13 8.00 1.000

It is interesting to note that the solution given above makes it possible to find the
edges of the distribution function F2(x) without constructing the entire function.
In many cases, this is the main problem.

3.7. Natural Limits of Measurements

For metrology as the science of measurements, it is of fundamental interest to
estimate the limiting possibilities of measurements. First, extremely small and
extremely large measurable quantities must be estimated. Next, in the case when
instantaneous values are measured, the question of the maximum rate of change
of the quantity arises. For functionals, such as the effective current, it is important
to establish both the maximum and the minimum frequency of the initial process.
It is obviously possible to add to this list.

Among all limiting parameters, the lower limits of measurements are of greatest
interest, because they are determined by the physical, i.e., natural, limitations.
Comparing these limits with the limits that the real measuring instruments permit
makes it possible to judge the level of development of measuring instruments and
stimulates improvements in their construction. For this reason, we shall confine
our attention to the natural limits of measurements.

3.7.1. Limitations Imposed by Thermal Noise

Measurements are always accompanied by an interaction of the object of study
and the measuring instruments. For this reason, the limiting possibilities of
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measurements must be estimated for the measuring instruments together with
the object of study—the carrier of the physical quantity.

We shall first study instruments that have an inertial moving system and elastic
elements that keep it in a position of equilibrium. Examples are galvanometers,
some types of balances, and so on. Such systems are modeled mathematically by
(2.3) and (2.4). The moving part of these instruments is continuously bombarded by
air molecules (and molecules of liquid, if the oscillations are damped by a liquid).
On average, the number of impacts and their effect are the same on all sides of the
system. But at any given moment in time, the effect of impacts from one side can be
greater than from another side, whereas at the next instant, the situation is reversed.
As a result, careful observations reveal continuous oscillations of the movable part
of the instrument around the position of equilibrium. These fluctuations limit the
possibilities of instruments.

According to a well-known theorem of statistical physics, in the state of thermal
equilibrium with a medium at temperature T , to each degree of freedom of the body,
there is associated an average energy of fluctuations equal to ε̄ = kT/2, where k
is Boltzmann’s constant. The movable part of an instrument has one degree of
freedom. For this reason, the average energy of the fluctuations of the movable
part is equal to ε̄. But this energy is equal to the average strain energy of the elastic
elements P̄ = Wα2/2, where W is the stiffness of the elastic elements and α is
the strain, i.e., the displacement of the moving part. From the equality ε̄ = P̄ , it
follows that

α2 = kT

W
. (3.23)

We shall transform this formula, introducing into it the measured quantities. It
is obvious that such a transformation cannot be universal: It depends on the type of
measured quantity and on the principle of operation of the instrument. Consider,
for example, a moving-coil galvanometer. From the relation between the current
strength I in the steady-state regime, we have αW = �I , where � is the magnetic
constant of the galvanometer. In addition, the operating parameters β and ω0 are
related to the structural parameters J, P, and W, where J is the moment of inertia
of the moving part and P is the damping constant [see (2.3) and, for example,
[42]], ω2

0 = W/J , and 2β/ω0 = P/W .
With the help of these relations, (3.23) can be transformed as follows:

I 2 = kT W

�2
= kT∑

R

W

P
= kT∑

R

ω0

2β
.

Here
∑

R is the sum of the resistances of the moving coil of the galvanometer
and the external circuit. The damping constant P is related to

∑
R by the equation

P = �2/
∑

R.
The mean-square fluctuations are usually written not for the angular frequency

ω0 but for the period of free oscillations of the system T0 = 2π/ω0. Then we obtain

I 2 = πkT∑
R

1

βT0
. (3.24)
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For the measured voltage E , we obtain analogously

E2 = πkT

∑
R

βT0
. (3.25)

It is well known that for β > 0.8, βT0 ≈ tr [42], where tr is the response time
of the moving part of the instrument. For this reason, instead of (3.24) and (3.25),
we can write

I 2 = πkT∑
R

1

tr
, E2 = πkT

(∑
R
) 1

tr
.

Analogous arguments for torsion balances give a relation that is similar to (3.24)
and (3.25): m2

x = (kTP/g2)(ω0/2β), where g is the acceleration of gravity. In
general, we can write

x2 = kT Cx
1

tr
, (3.26)

where x is the measured quantity and Cx is a constant, determined by the principle
of operation and the construction of the instrument. For balances, Cx = πP/g2,
whereas for a galvanometer,

CI = π∑
R

, CE = π
∑

R.

The expressions (3.24)–(3.26) show that the mean-square flucuations of the
indications of instruments with an inertial moving part are inversely proportional
to their response time. But the response time is also the minimum measurement time
(approximately). Moreover, it is obvious that the minimum value of the measured

quantity is related to
√

x2 by the fixed accuracy of the measurement. For this
reason, it follows from expressions (3.24)–(3.26) that

xmin = K
1√
tr

, (3.27)

where xmin is the minimum value of the measured quantity and K is a constant.
The moving part of balances can interact with the medium in only one way:

by means of collisions with molecules of the medium (for example, air). For a
galvanometer, the situation is different. Apart from mechanical contact with the
medium, the moving part of these instruments also interacts with the medium
through the electric circuit, in which electron velocity fluctuations occur. Rela-
tions (3.24) and (3.25) were derived because the galvanometer interacts with the
medium only by means of collisions of air molecules with the moveable part
of the galvanometer. But these relations can be derived under the assumption that
the entire interaction occurs as a result of fluctuations of the electrons’ velocity in
the input circuit. In general, in statistical physics, it has been established that for
fluctuations of a system, it makes no difference how the system interacts with the
medium; only the temperature of the system is important.
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Thermal fluctuations in electric circuits are usually calculated with the help of
Nyquist’s formula:

E2 = 4kTR
 f, (3.28)

where E2 is the mean-square noise of emf that is brought in a circuit with an active
resistance R and 
 f is the frequency band in which the noise emf is calculated.
Nyquist’s formula is often presented as an expression for the spectral density of
the square of the noise emf:

FE ( f ) = 4kTR. (3.29)

The spectral density may be assumed to be constant up to very high frequencies,
which correspond to the collision frequency of the charge carriers.

Consider one of the best galvanometers—a galvanometer of the type Zc manu-
factured by the Kipp Company. For T0 = 7s, β = 1,

∑
R = 50�, and Su = 1.7 ×

107mm m/V. Therefore, at room temperature (T = 293 K), we shall have (k =
1.38×10−23 J/K), E2 = π ×1.38×10−23 ×293×50/1×7 = 9.06×10−20 V2;
i.e., Ē = 3 × 10−10 V.

The galvanometer constant Cu = 1/Su = 6 × 108 V/mm m. If the beam length
is taken to be 2 m rather than 1 m, then we find that to a displacement of 1 mm,
there corresponds a voltage of about Em = 3 × 10−8 V. Further increasing of the
beam length has no effect, because the effect of the shaking of the ground and
the base to which the galvanometer is fastened usually increases correspondingly.
The difference between Em = 3 × 10−8 V and Ē = 3 × 10−10 V is very large,
and it is obvious that the galvanometer does not exhibit thermal noise. In precisely
the same way, thermal noise is also usually not observed when using balances.
The situation is different in the case of instruments with amplifiers. For example,
consider an electronic-measuring instrument having an input circuit with resistance
R and a wideband amplifier with a large gain. The thermal noise can now be
appreciable. An analogous situation exists with electromechanical devices.

The sensitivity of modern galvanometers to shaking has been radically reduced
by using taut bands and liquid dampers for damping the transverse oscillations of
the moving part, which makes it possible to increase the beam length. But, instead,
the rotation of the moving part is indicated photoelectro-optically, which is more
efficient. The noise associated with the electronic circuit is suppressed with the
help of negative feedback. Such devices can be made to be so sensitive that it is
possible to observe thermal noise in their input circuits. To calculate this noise, it is
necessary to take into account that the photoelectric amplifier and the instrument
at the output have certain inertial properties. We shall examine, as an example,
photogalvanometric self-balancing amplifiers [42].

The structural arrangement of the self-balancing amplifier is shown in Fig. 3.6.
Block 1 is a galvanometer together with its input circuit; block 2 is a photoelec-
trooptic transducer—amplifier; block 3 is the feedback block (balancing resistor);
block 4 is the output device.

We are interested in the noise at the output of the self-balancing amplifier. As
is well known, the spectral density F(ω) of the noise at the output is related to the
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Figure 3.6. Structural layout of a photogalvanometric self-balancing amplifier.

spectral density of the noise at the input FE,I (ω) by the relation

F(ω) = FE,I (ω)|W ( jω)|2, (3.30)

where |W ( jω)| is the modulus of the amplitude-frequency response of the system
and ω is the angular frequency. For the angular frequency ω = 2π f , formula (3.29),
determining the spectral density of the thermal noise at the input of the system,
assumes the form

FE (ω) = 2kTR

π
. (3.31)

The self-balancing amplifier’s transfer function, which relates the indications
of the output instrument and the measured emf, is expressed by the following
formula, if the output instrument is calibrated based on the input:

W (p) = 1

[�p3 + (1 + 2β�)p2 + 2βp + 1](q2 p2 + 2βoutq + 1)
. (3.32)

Here p = s/ω0, � = τω0, q = ω0/ωout, ω0 is the angular frequency of the charac-
teristic oscillations of the self-balancing amplifier; ωout is the angular frequency of
the characteristic oscillations of the output instrument; s is the Laplace operator;
and τ is the time constant of the photoelectro-optic transducer amplifier. In addi-
tion, βout is the damping ratio of the output instrument. The transfer function (3.32)
does not take into account the steady-state residual error of the self-balancing am-
plifier, because it is always small. It is also assumed that the damping of the output
device does not depend on the resistance of its circuit.

The operator p is dimensionless and corresponds to the relative frequency
η = ω/ω0. Substituting p = jη into (3.32), we obtain the amplitude-frequency
response in complex form. Its absolute value can be represented in the form

|W ( jη)| = 1

|C5( jη)5 + C4( jη)4 + C3( jη)3 + C2( jη)2 + C1( jη) + C0| .

In our case, C0 = 1, C1 = 2β + 2βoutq, C2 = 2β� + 4ββoutq + q2 + 1, C3 =
� + 4ββout�q + 2βoutq + 2βq2, C4 = 2βout�q + 2β�q2 + q2, and C5 = �q2.
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The spectral density of the noise at the input must also be expressed for the
relative frequency. As FE (ω)
ω = FE (η)
η,

FE (η) = FE (ω)ω0 = 2

π
kT Rω0,

or as ω0 = 2π/T0, FE (η) = 4kTR/T0.
So, the general expression for the spectral density of the noise in the indications

of the photogalvanometric self-balancing amplifier has the form

F(η) = 4kTR

T0

1

|C5( jη)5 + C4( jη)4 + C3( jη)3 + C2( jη)2 + C1( jη) + C0|2 .

(3.33)

Now we can calculate the mean-square fluctuations of the indications of the self-
balancing amplifier: E2 = ∫∞

0 F(η) dη. Integrals of expressions of the type (3.33)
for stable systems are well known; they can be found in books on automatic
control,2 and for the specific formula (3.23), the integral is given in [42]

E2 = 2πkT
∑

R

T0

× C2
2 C5 + C1C2

4 − C2C3C4 − C0C4C5

C0C2
3 C4−C1C2C3C4−2C0C1C4C5 + C2

0 C2
5 + C0C2C3C5 + C1C2

2 C5 + C2
1 C2

4

.

(3.34)

Formula (3.34) is complicated, but for a specific instrument, all coefficients are
simply numbers, so that this formula is easy to use. As shown in [42], Eq. (3.34)
yields formulas for all particular cases: an individual galvanometer, a galvanomet-
ric amplifier with noninertial transducer–amplifier (� = 0), and a galvanometric
amplifier with current output. If measurement of the current strength in the circuit
with the resistance R (including the resistance of the galvanometer) and not the
emf is studied, then bearing in mind that I = E/R, the transfer from (3.34) to the
mean-square current does not present any difficulties.

Consider a specific instrument, a H�K-1 photogalvanometric self-balancing
nanovoltmeter [42]. The modifications H�K-2 and H�K-3 of this instru-
ment have the same parameters and differ from H�K-1 only by exter-
nal finishing. One graduation of the instruments is equal to 4 × 10−10 V.
The parameters of the instrument are as follows: T0 = 0.37s, β = 12, βout = 1,

τ = 0.35s,
∑

R = 11�, and Tout = 0.8 s. Therefore, ω0 = 2π/T0 = 17 rad/s,
q = 0.8/0.37 = 2.2, � = 0.35×17 = 6, C0 =1, C1 =24 + 2 ×2.2 = 28.4, C2 =
2 × 12 × 6 + 4 × 12 × 1 × 2.2 + 2.22 + 1 = 255, C3 = 6 + 4 × 12 × 6 ×2.2 +
2 × 2.2 + 2 × 12 × 2.22 =755, C4 = 2 × 6 × 2.2 + 2 × 12 × 6 × 2.22 + 2.22 =
693, and C5 = 6 × 2.22 = 27.6.

2 These integrals were first presented in the book Theory of Servomechanisms by H.M.
James, N.B. Nichols, and R.S. Phillips (McGraw-Hill, New York, 1947).
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The cofactor in formula (3.24), consisting of the coefficients C0 − C5, is equal
to 4.2 × 10−2. At T = 293 K, we obtain

E2 = 2π × 1.38 × 10−23 × 293 × 11

0.37
× 4.2 × 10−2 = 3.2 × 10−20 V2,√

E2 = 1.8 × 10−10 V.

The experimentally estimated mean-square voltage of the fluctuations of the
nanovoltmeter is equal to 2.8 × 10−10 V, which exceeds the theoretical value by
only a factor of less than 2. Therefore, it can be considered that the sensitivity of
the H�K instruments has practically reached its theoretical limit.

3.7.2. Restrictions Imposed by Shot Noise

An electric current, as is well known, consists of a flow of electrons. When the cur-
rent becomes very weak, i.e., the number of electrons passing per second through
the transverse cross section of the conductor becomes small, it is observed that its
number fluctuates randomly. The random oscillation of the current strength arising
in this manner is caused by the randomness of the moments at which electrons
appear in the electric circuit. The noise arising is called the shot noise or Schottky
noise (sometimes this noise is also called generation–recombination noise). Shot
noise is characterized by the fact that it is observed only when current flows along
the circuit. Thermal noise, however, does not depend on whether a current flows
in the circuit; it also occurs in the absence of current.

The mean-square fluctuation produced in the current strength because of shot
noise is given by the formula

I 2
sn = 2eI
 fsn, (3.35)

where I is the current flowing in the circuit, e is the electron charge, and 
 fsn is the
equivalent bandwidth of the shot noise. Formula (3.35) was derived by replacing
the real spectrum of the squared current, caused by the shot noise, which has a
maximum at zero frequency, by the equivalent spectrum that is uniform in the band

 fsn; in addition, 
 fsn = 1/2t0, where t0 is the average transit time of an electron
or, in the case of the generation–recombination noise, the average lifetime of an
electron.

The fluctuations of the indications of the measuring instrument connected
in a circuit with current I can be calculated based on (3.35) in precisely the
same manner as was done for thermal noise. If the transmission band of the
device is 
 f and 
 f ≤ 
 fsn, then the mean-square fluctuations produced by
shot noise in the indications of the instrument can be estimated from the formula
I 2
sn = 2eI
 f .

It is sometimes convenient to estimate the shot noise based on the variance
of the number of electrons forming the current I : 
n2 = n. Thus, a current of
1 × 10−14 A is formed by the passage of approximately 6 × 104 electrons per
second through the transverse cross section of the conductor. The mean-square
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fluctuations of this number of particles is equal to 6 × 104, and the relative value
of the mean-square deviation will be√


n2

n
= 1√

n
≈ 1

2.4 × 102

or 0.4%.
A current of 1 × 10−16 A is equal to approximately only 600 electrons per

second, and the mean square of its fluctuations is already equal to 4%.
Shot and thermal noise are independent of one another. For this reason, when

both types of noise occur, the variance of the fluctuations of the measuring instru-
ment is calculated as the sum of the variances of the shot and thermal components.

3.7.3. Estimate of the Minimum Measurable Value

Shot and thermal noise in the input circuit of a measuring instrument are essen-
tially indicators of the fact that the model of the object does not correspond to the
object. In accordance with what was said in Section 1.3, measurement with a pre-
scribed accuracy is possible only if the error caused by this discrepancy (threshold
discrepancy) will be less than the permissible prescribed measurement error. But
how does one compare these errors?

The measurement error is usually established in the form of a limit of permissible
error (absolute or relative). The error caused by natural noise is usually calculated
as the mean square of the fluctuations of the indications of the instrument or the
mean-square deviation. These are entirely different indicators of the error. The
permissible limit of the measurement error must be compared not with the mean-
square deviation but with the width of the confidence interval for fluctuations of
the indications. The latter width is not so easy to calculate, because the random
process at the output of the instrument can hardly be regarded as being white
noise. It is clear, however, that for a confidence level of the order of 0.95, the width
of the confidence interval will be more than one mean-square deviation on each
side of the central line. The limit of permissible error, even for measurement of
the smallest values, cannot exceed 50%. The width of the confidence interval can

be expressed as k
√

x2 (more accurately, this is the half-width of this band), and the
limit of permissible error can be expressed as 0.5xmin. If it is assumed that these
quantities are equal, then we obtain

xmin = 2k

√
x2.

If k = 2, then xmin = 4
√

x2.
The foregoing arguments, however, are unsatisfactory in certain respects, be-

cause not all frequency components of the noise are equivalent to the observer:
High-frequency noise can be easily averaged when reading the indications of the
instrument, whereas noise of very low frequency can in many cases be neglected.
In addition, it was necessary to make an assumption and use the relation between
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the measured quantity and the limit of permissible measurement error. Is it possible
to approach this question in some other manner?

The mean-square fluctuation of the indications is an integral characteristic,
which is not related either to the time or to the frequency. Meanwhile, mea-
surements require some time, so that the temporal characteristics of these fluc-
tuations are of interest. In the theory of random processes, the average frequency
of excesses above a prescribed level is used as a temporal characteristic of the
process. The physical meaning of this characteristic is clear and simple. For ex-
ample, let the response time of the instrument, and therefore the measurement
time, be equal to 5 s, and let one overshoot per graduation of the instrument oc-
cur on average once every 60 s. It is clear that an instrument with such noise
can clearly measure a quantity corresponding to one graduation of the instrument
scale. But if one overshoot occurred on the average over a time close to the re-
sponse time of the instrument, then such a small quantity could no longer be
measured.

The overshoots above a prescribed level provide a convenient characteristic, one
that is easy to estimate experimentally. Mean-square fluctuations are difficult to
estimate experimentally. But it is easier to calculate the mean-square fluctuations
than the average frequency of overshoots.

We shall now calculate the average frequency of overshoots above a prescribed
level for a normal stationary process. Thermal noise corresponds to these condi-
tions. Let σ be the mean-square deviation of the random process and c the threshold
levels for determining overshoot values. The average frequency of overshoots N̄
can be calculated from the formula

N̄ = e−γ 2/2

√
1

σ 2

∫ ∞

0
f 2 F( f )d f ,

where γ = c/σ and F( f ) is the spectral density of the process.
Consider once again a photogalvanometric self-balancing amplifier. The vari-

ance of the indications of the instrument is given by formula (3.34), and the spec-
tral density is given by formula (3.33). The latter formula, however, pertains to
the relative frequency η. For this reason, we shall transform the integrand in the
expression so that f is replaced by η : f 2 F( f ) d f = (1/4π2) × ω2 F(ω) dω =
(ω2

0/4π2) × η2 F(η) dη.
Referring once again to the tables of integrals mentioned above, we find [42]

N̄ = 1

T0
e−γ 2/2�, � =

√
C0(C4C3 − C2C5)

C0C4C5 + C2C3C4 − C2
2C5 − C1C2

4 .

For the H�K-1 instrument,
√

E2 = 1.8 × 10−10 V and c = 4 × 10−10 V.
Hence, γ = 4 × 10−10/1.8 × 10−10 = 2.2. The coefficients C0 − C5 were pre-
sented above, and knowing them, we calculate � = 0.065. Substituting the



90 3. Inaccuracy of Measurements and Synthesis of Their Components

numerical values into the working formula, we obtain

N̄ = 1

0.37
× 0.09 × 0.065 = 1.6 × 10−2 overshoot/s,

which means that one overshoot per graduation occurs on average once per minute.
The response time of the instrument is 5 s. It is clear that noise does not prevent
indicating, with the help of the H�K-1 instrument, a quantity corresponding to
one graduation.



4
Statistical Methods for Experimental
Data Processing

4.1. Requirements for Statistical Estimations

The estimates obtained from statistical data must be consistent, unbiased, and
efficient.

An estimate Ã is said to be consistent if, as the number of observations increases,
it approaches the true value of the estimated quantity A (it converges in probability
to A):

Ã(x1, . . . , xn)
n→∞

→ A.

The estimate of A is said to be unbiased if its mathematical expectation is equal
to the true value of the estimated quantity:

E[ Ã] = A.

In the case when several unbiased estimates can be found, the estimate that has
the smallest variance is, naturally, regarded as the best estimate. The smaller the
variance of an estimate, the more efficient the estimates.

Methods for finding estimates of a measured quantity and indicators of the
quality of the estimates depend on the form of the distribution function of the
observations.

For a normal distribution of the observations, the arithmetic mean of the obser-
vations, as well as their median can be taken as an estimate of the true value of the
measured quantity. The ratio of the variances of these estimates is well known [20]:

σ 2
x̄ /σ 2

m = 0.64,

whereσ 2
x̄ is the variance of the arithmetic mean andσ 2

m is the variance of the median.
Therefore, the arithmetic mean is a more efficient estimate of A than the median.
In the case of a uniform distribution, the arithmetic mean of the observations or

the half-sum of the minimum and maximum values can be taken as an estimate of A:

Ã1 = 1

n

n∑
i=1

xi , Ã2 = xmin + xmax

2
.
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The ratio of the variances of these estimates is also well known [20]:

V [ Ã1]

V [ Ã2]
= (n + 1)(n + 2)

6n
.

For n = 2, this ratio is equal to unity, and it increases for n > 2. Thus, for n = 10,
it is already equal to 2.2. Therefore, the half-sum of the minimum and maximum
values is, in this case, already a more efficient estimate than the arithmetic mean.

4.2. Estimation of the Parameters of the
Normal Distribution

If the available data are consistent with the hypothesis that the distribution of
the observations is normal, then to describe fully the distribution, the expectation
E[X ] = A and the variance σ 2 must be estimated.

When the probability density of a random quantity is known, its parameters can
be estimated by the method of maximum likelihood. We shall use this method to
solve our problem.

The elementary probability of obtaining some result of an observation xi in
the interval xi ± 
xi/2 is equal to fi (xi , A, σ )
xi . All observational results are
independent. For this reason, the probability of encountering all experimentally
obtained observations with 
xi = · · · = 
xn is equal to

Pl =
n∏

i=1

fi (xi , A, σ )
x1 · · · 
xn.

The idea of the method is to take for the estimate of the parameters of the dis-
tribution (in our case, these are the parameters A and σ ), the values that maximize
the probability Pl . The problem is solved, as usual, by equating to zero the par-
tial derivatives of Pl with respect to the parameters being estimated. The constant
cofactors do not affect the solution, and for this reason, only the product of the
functions fi is studied; this product is called the likelihood function:

L(x1, . . . , xn; A, σ ) =
n∏

i=1

fi (x1, . . . , xn; A, σ ).

We now return to our problem. For the available group of observations
x1, . . . , xn , the values of the probability density will be

fi (xi , A, σ ) = 1

σ
√

2π
e−(xi −A)2/2σ 2

.

Therefore,

L =
(

1

σ
√

2π

)n

exp

(
− 1

2σ 2

n∑
i=1

(xi − A)2

)
.
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To find the maximum of L , it is convenient to investigate ln L:

ln L = −n

2
ln 2π − n

2
ln σ 2 − 1

2σ 2

n∑
i=1

(xi − A)2.

The maximum of L will occur when ∂L/∂ A = 0 and ∂L/∂σ 2 = 0:

∂L

L∂ A
= 1

σ 2

n∑
i=1

(xi − A) = 0,

∂L

L∂(σ 2)
= − n

2σ 2
+ 1

2σ 4

n∑
i=1

(xi − A)2 = 0.

From the first equation, we find an estimate for A:

Ã = 1

n

n∑
i=1

xi . (4.1)

The second equation gives the estimate σ̃ 2 = (1/n)
∑n

i=1(xi − A)2. But A is
unknown; taking instead of A its estimate x̄ , we obtain

σ̃ 2
∗ = 1

n

n∑
i=1

(xi − x̄)2.

We shall check to see whether the obtained estimates are consistent and unbiased.
The mathematical expectation E(xi ) = A, because all xi refer to one and the same
distribution. For this reason,

E[ Ã] = 1

n

n∑
i=1

E(xi ) = A.

Therefore, Ã is an unbiased estimate of A. It is also a consistent estimate,
because as n → ∞, Ã → A, according to the law of large numbers.

We shall now investigate σ̃ 2
∗ . In the formula derived above, the random quantities

are xi and x̄ . For this reason, we shall rewrite it as follows:

σ̃ 2
∗ = 1

n

n∑
i=1

(xi − A + A − x̄)2

= 1

n

∑
i=1

[(xi − A)2 − 2(xi − A)(x̄ − A) + (x̄ − A)2]

= 1

n

n∑
i=1

(xi − A)2 − 2

n

n∑
i=1

(xi − A)(x̄ − A) + 1

n

n∑
i=1

(x̄ − A)2

= 1

n

n∑
i=1

(xi − A)2 − (x̄ − A)2,
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because

1

n

n∑
i=1

(x̄ − A)2 = (x̄ − A)2

and

2

n

n∑
i=1

(xi − A)(x̄ − A) = 2

n
(x̄ − A)

n∑
i=1

(xi − A) = 2(x̄ − A)2.

We shall find E[σ̃ 2
∗ ]. For this result, the following relations must be used. By

definition, according to (3.8), we have E(xi − A)2 = σ 2. Therefore,

E

[
1

n

n∑
i=1

(xi − A)2

]
= 1

n
E

[
n∑

i=1

(xi − A)2

]
= σ 2.

For the random quantity x̄ , we can write analogously E(x̄ − A)2 = V [x̄]. We
shall express V [x̄] for σ 2 = V [X ]:

V [x̄] = V

[
1

n

n∑
i=1

xi

]
= 1

n2

n∑
i=1

V (xi ) = 1

n
V [X ] = σ 2

n
.

Thus,

E[σ̃ 2
∗ ] = σ 2 − σ 2

n
= n − 1

n
σ 2.

Therefore, the obtained estimate σ̃ 2
∗ is biased. But as n → ∞, E[σ̃ 2

∗ ] → σ 2, and
therefore, this estimate is consistent.

To correct the estimate, i.e., to make it unbiased, σ̃ 2
∗ must be multiplied by the

correction factor n/(n − 1). Then we obtain

σ̃ 2 = 1

n − 1

n∑
i=1

(xi − x̄)2. (4.2)

This estimate is also consistent, but, as one can easily check, it is now unbiased.
Some deviation from the maximum of the likelihood function is less important for
us than the biasness of the estimate.

The standard deviation of the random quantity X is σ = √
V [X ], and it is not

the random quantity. Instead of σ 2 we must use the estimate of the variance from
formula (4.2)—a random quantity. The extraction of a square root is a nonlinear
procedure; it introduces bias into the estimate σ̃ . To correct this estimate, a factor
kn , depending on n as follows, is introduced:

n 3 4 5 6 7 10
kn 1.13 1.08 1.06 1.05 1.04 1.03
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So,

σ̃ = kn

√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2. (4.3)

The following formula gives approximately the same result [29]:

σ̃ =
√√√√ 1

n − 1.5

n∑
i=1

(xi − x̄)2.

We have obtained estimates of the parameters of the normal distribution, but
they are also random quantities: When the measurement is repeated, we obtain a
different group of observations with different values of x̄ and σ̄ . The spread in
these estimates can be characterized by their standard deviations σ (x̄) and σ (σ̃ ).
We already obtained above that V [x̄] = σ 2/n. Therefore,

σ (x̄) =
√

V [x̄] = σ√
n
. (4.4)

As instead of σ (x̄) we shall take σ̃ (x̄), we obtain the estimate σ̃ (x̄). Often σ̃ (x̄)
is denoted by the symbols Sx̄ or S(x̄). Neglecting the value of kn , we arrive at the
well-known formula

S(x̄) =

√√√√√
n∑

i=1
(xi − x̄)2

n(n − 1)
. (4.5)

Uncertainty of the estimate given in (4.5) depends on the number of measure-
ments n and of the confidence probability α. For example, for n = 25 and α = 0.80,
the uncertainty of this estimate is about 20%; for n = 15 and α = 0.80, it is about
30%. The method of this computation is described in Section 4.4.

As the number of observations is rarely large, the error in the determination of
the standard deviation can be significant. In any case, this error is significantly
larger than the error from the biasness introduced into the estimate by extraction
of the square root (it can be eliminated by the correction factor kn). For this reason,
in practice, this biasness can usually be neglected and the formula

S(x̄) =

√√√√√
n∑

i=1
(xi − x̄)2

n − 1
(4.6)

is used instead of formula (4.3).

4.3. Outlying Results

If in the group of measurement results, one or two differ sharply from the rest, and
no slips of the pen, reading errors, and similar blunders have not been found, then
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it is necessary to check whether they are extreme events that should be excluded.
The problem is solved by statistical methods based on the fact that the distribution
to which the group of observations under study refers can be regarded as a normal
distribution. The methodology for solving the problem and the computed tables
are presented in the standard reference [11].

The solution scheme is as follows. An ordered series x1 < x2 < · · · < xn is
constructed from the obtained results. From all xi , we calculate x̄ and S, and then
t given by

t = max |xi − x̄ |
S

, (4.7)

where S is calculated using (4.6). Obviously, this result will either be

t1 = x̄ − x1

S
(4.8a)

or

tn = xn − x̄

S
. (4.8b)

Table A.3 of the Appendix gives the 0.5, 1, and 5 percentage points tq of the
corresponding unilateral check of the series x1, . . . , xn .

In performing the measurements, we cannot foresee whether x1 or xn will be
checked. Therefore, we are interested in a bilateral check. In this case, the critical
value of tq must be taken from the column of Table A.3 in which the significance
level is one half the level we adopted for checking our data.

If the value of t1,n that we calculated from (4.8) is greater than tq , then the
corresponding value of x1 or xn must be discarded: The probability of an obser-
vation giving t > tq is small; it is less than or equal to the adopted significance
level.

The described procedure is necessary and widely used. But one could say
that an “abnormal” observation may actually reflect some unknown feature of
the subject under study. Let us consider this issue in more detail. Imagine a
measurement in which one such observation occurred. What will an expert per-
forming this measurement do? Obviously, the expert will continue the experi-
ment collecting more observations until he or she either finds the physical rea-
son that explains the abnormality or concludes that this was a random error. In
the latter case, after checking with the methods described earlier in this section
that this was indeed an outlier, the expert will discard it for the following two
reasons:

1. A real measurement as a rule consists of a small number of observations, and
the probability of them including more than one outlier is extremely small.
Therefore, this outlier cannot be compensated with another one having the
opposite sign.

2. Because the outlier deviates significantly from the rest of the results, it skews
the average value of the set of data. In other words, it increases the inaccuracy
of a measurement.
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Thus, if there are no physicals reasons for the outlying result, it must be discarded.

Example. Current measurements gave the following data (the current strength in
mA): 10.07, 10.08, 10.10, 10.12, 10.13, 10.15, 10.16, 10.17, 10.20, and 10.40. The
value 10.40 differs sharply from the other values. We shall check to see whether
or not it can be discarded. We shall use the criterion presented, though we do not
have the data that would allow us to assume that these observations satisfy the
normal distribution:

x̄ = 10.16 mA,

S = 0.094 mA,

t = 10.40 − 10.16

0.094
= 2.55.

Let q = 1%. In the column of Table A.3 with the significance level 0.5% for n = 10
we find tq = 2.48. Since 2.55 > 2.48, the observation 10.40 mA can be discarded.

4.4. Construction of Confidence Intervals

Having obtained the estimate Ã, it is of interest to determine by how much it
can change in repeated measurements performed under the same conditions. This
question is clarified by constructing the confidence interval for the true value of
the measured quantity.

The confidence interval is the interval that includes, with a prescribed probability
called the confidence probability, the true value of the measurand.

In our case, the confidence interval can be constructed based on the Chebyshev
inequalities [20]:

P{|X − A| ≥ tσ } ≤ 1

t2
.

For the random quantity x̄ , we have

P

{
|x̄ − A| ≥ tσ√

n

}
≤ 1

t2
. (4.9)

It is not necessary to know the form of the distribution of the observations, but
it is necessary to know σ [X ]. However, the intervals obtained with the help of
the Chebyshev inequalities are found to be too large for practice, and they are not
used.

If the distribution of the observations can be regarded as normal with a known
standard deviation, then the confidence interval is constructed based on the ex-
pression

P

{
|x̄ − A| ≤ z 1−α

2

σ√
n

}
= α,

where z 1−α
2

is the quantile of the normalized normal distribution, corresponding to
the selected confidence probability.
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We shall show how to find the value of z 1−α
2

, using the normalized Gaussian
function (Table A.1 of the Appendix).

Let α = 0.95. With this probability, the interval[
x̄ − z 1−α

2

σ√
n
, x̄ + z 1−α

2

σ√
n

]

should include the true value of A. The probability that A falls outside this interval
is equal to 1 − α = 0.05. As the normal distribution is symmetric, the probabilities
that A exceeds the upper and lower limits of the interval are the same. Each prob-
ability is equal to (1 − α)/2 = 0.025. Therefore, the quantile z 1−α

2
is the quantile

corresponding to the probability p = 0.025. It is obvious that the probability of
the upper limit of this interval is (1 − 0.025) = 0.975. It can be calculated as

p = 1 − 1 − α

2
= 1 + α

2
.

The Gaussian function �(z) is related to the distribution function F(z) by the
relation F(z) = 0.5 + �(z).

Therefore, in our example, �(z) = F(z) − 0.5 = 0.975 − 0.5 = 0.475. In
Table A.1, we find the quantile z0.975 = 1.96 corresponding to the argument 0.475.

Often, on the other hand, the value of the quantile z 1+α
2

is given and the cor-
responding probability α is found. For example, for z 1+α

2
= 1, �(z) = 0.3413

and F(z) = �(z) + 0.5 = 0.841. Then (1 + α)/2 = 1 − F(z) = 0.159 and α =
0.682. Analogously, for z 1+α

2
= 3, we find �(z) = 0.49865, F(z) = 0.99865, (1 +

α)/2 = 0.00135, and α = 0.9973.

In practice, however, the standard deviation is rarely known. Usually we know
only its estimate S and, correspondingly, Sx̄ = S/

√
n. Then the confidence inter-

vals are constructed based on Student’s distribution, which is the distribution of
the random quantity

t = x̄ − A

Sx̄
, (4.10)

where Sx̄ is the estimate of the standard deviation of the arithmetic-mean value x̄ ,
calculated from formula (4.5).

The confidence interval [x̄ − tq Sx̄ , x̄ + tq Sx̄ ] corresponds to the probability

P{|x̄ − A| ≤ tq Sx̄ } = α,

where tq is the q percent point of Student’s distribution; the value of tq is found
from Table A.2 based on the degree of freedom ν = n − 1 and the significance
level q = 1 − α. (Note: ν = n − 1 since here is one unknown parameter A).

The confidence probability should not be too low, but even for a value that is very
high, there are usually not enough reliable starting data available. In measurement
practice, the confidence probability is increasingly often set equal to 0.95.

Existing methods make it possible to check the admissibility of the hypothesis
that the observations are described by a normal distribution and therefore the hy-
pothesis that Student’s distribution is admissible (see Section 4.5). The significance
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level q, used for constructing the confidence probability, has to be consistent with
the significance level adopted when checking the normality of the distribution, but
this problem does not yet have a definite solution.

In practice, confidence intervals are constructed based on Student’s distribution,
often without checking its admissibility. The fact that, in the process, as a rule,
no misunderstandings arise indirectly confirms the opinion stated above that real
distributions are truncated distributions that are narrower than normal distributions.

Sometimes confidence intervals are constructed for the standard deviation. So
the χ2 distribution, presented in Table A.4, is employed. The confidence interval,
with the limits (

√
n − 1/χL )σ̃ and (

√
n − 1/χU )σ̃ for the probability,

P

{√
n − 1

χL
σ̃ < σ <

√
n − 1

χU
σ̃

}
= α

is found as follows. Table A.4 gives the probabilities P{χ2 > χ2
q }. The value of

χ2
U is found from the table for pU = (1 + α)/2, and the value of χ2

L is found for
pL = (1 − α)/2.

For example, let σ̃ = 1.2 × 10−5 and n = 10. Take α = 0.90. Then pU = (1 +
0.9)/2 = 0.95 and pL = (1 − 0.9)/2 = 0.05. The degree of freedom ν = 10 −
1 = 9. From Table A.4, we find χ2

U = 3.325 and χ2
L = 16.92. The confidence

interval will be[√
10 − 1√
16.92

× 1.2 × 20−5,

√
10 − 1√
3.325

× 1.2 × 10−5

]
;

i.e., [0.88 × 10−5, 2.0 × 10−5]. The confidence probability in this case can be
taken to be less than the confidence probability when constructing the confidence
interval for the true value of the measured quantity. Often α = 0.70 is sufficient.

We return to Chebyshev’s inequality, which is attractive because it is not related
to the form of the distribution function of the observations. The measured quantity
can practically always be estimated by the arithmetic mean (although in the case
when the distribution differs from a normal distribution, the estimate will not be
the most efficient estimate), and if instead of the standard deviation its estimate is
employed, then the limits of the error of this result can be estimated with the help
of Chebyshev’s inequality.

We shall transform the inequality (4.9) so that it would determine the probability
that a deviation of the random quantity from its true value is less than tσ. The
random quantity here is the arithmetic mean x̄ . After simple transformations, we
obtain

P

{
|x̄ − A| ≤ t

σ√
n

}
≥ 1 − 1

t2
.

The variance of the results of measurements can be estimated with formula (4.6).
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The coefficient t can be calculated based on a prescribed confidence probability
α from the relation α = 1 − 1/t2, which gives

t = 1√
1 − α

.

If the distribution of the random errors can be assumed to be symmetric relative to
A,then the confidence interval can be narrowed somewhat [20], using the inequality

P

{
|x̄ − A| ≤ t

σ√
n

}
≥ 1 − 4

9

1

t2
.

Now

t = 2

3
√

1 − α
.

Unfortunately, the confidence intervals constructed in this manner are still only
approximate, because the effect of replacing the standard deviation by its estimate
is not taken into account. Moreover, as we have already mentioned, the intervals
obtained in the process are too wide; i.e., the uncertainty is exaggerated.

Confidence intervals should not be confused with statistical tolerance intervals.
The interval that, with prescribed probability α, contains not less than a pre-

scribed fraction p0 of the entire collection of values of the random quantity (popu-
lation) is said to be the statistical tolerance interval. Thus, the statistical tolerance
interval is the interval for a random quantity, and this distinguishes it in principle
from the confidence interval that is constructed to cover the value of a nonrandom
quantity.

If, for example, the sensitivity of a group of strain gauges is measured, then the
obtained data can be used to find the interval with limits l1 and l2 in which, with
prescribed probability α, the sensitivity of not less than the fraction p0 of the entire
batch (or the entire collection) of strain gauges of the given type will fail. This is
the statistical tolerance interval. Methods for constructing this tolerance interval
can be found in books on the theory of probability and mathematical statistics.

One must also guard against confusing the limits of statistical tolerance and
confidence intervals with the tolerance range for the size of some parameter. The
tolerance or the limits of the tolerance range are, as a rule, determined before the
fabrication of a manufactured object, so that the objects for which the value of
the parameter of interest falls outside the tolerance range are unacceptable and are
discarded. In other words, the limits of the tolerance range are strict limits that are
not associated with any probabilistic relations.

The statistical tolerance interval, however, is determined by objects that have
already been manufactured, and its limits are calculated so that with a prescribed
probability, the parameters of a prescribed fraction of all possible manufactured
objects fall within this interval. Thus, the limits of the statistical tolerance interval,
as also the limits of the confidence interval, are random quantities, and this is
what distinguishes them from the tolerance limits or tolerance that are nonrandom
quantities.
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4.5. Methods for Testing Hypotheses About the Form of
the Distribution Function of a Random Quantity

The problem is usually posed as follows: For a group of measurement results, it is
hypothesized that these results can be regarded as realizations of a random quantity
with a distribution function having a chosen form. Then this hypothesis is checked
by the methods of mathematical statistics and is either accepted or rejected.

For a large number of observations (n > 50), Pearson’s test (χ2 test) for grouped
observations and the Kolmogorov–Smirnov test for nongrouped observations are
regarded as the best tests. These methods are described in many books devoted to
the theory of probabilities and statistics. For example, see [20], [47], and [52].

We shall discuss the χ2 test, and for definiteness, we shall check the data on the
corresponding normal distribution.

The idea of this method is to monitor the deviations of the histogram of the
experimental data from the histogram with the same number of intervals that
is constructed based on the normal distribution. The sum of the squares of the
differences of the frequencies over the intervals must not exceed the values of χ2

for which tables were constructed as a function of the significance level of the
test q and the degree of freedom v = L − 3, where L is the number of intervals
and minus 3 is because the measurement data have two unknown parameters and
Pearson’s distribution has one.

The calculations are performed as follows:

(1) The arithmetic mean of the observations and an estimate of the standard devi-
ations are calculated.

(2) Measurements are grouped according to intervals. For about 100 measure-
ments, five to nine intervals are normally taken. For each interval, the number
of measurements ϕ̃i falling within the interval is calculated.

(3) The number of measurements that corresponds to the normal distribution is
calculated for each interval. For this reason, the range of data is first centered
and standardized.

Let xmin = a0 and xmax = b0, and divide the range [a0, b0] into L intervals of
length h0 = (b0 − a0)/L .

Centering and standardization are then achieved with the formula

xic = xi0 − x̄

σ̃
.

For example, the transformed limits of the range of the data for us will be as
follows:

ac = a0 − x̄

σ̃
, bc = b0 − x̄

σ̃
.

The length of the transformed interval hc = (bc − ac)/L . Then we mark the
limits {zi }, i = 0, 1, . . . , L , of all intervals of the transformed range [ac, bc]:

z0 = ac, z1 = ac + hc, z2 = ac + 2hc, . . . , zL = ac + Lhc = bc.
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Now we calculate the probability that a normally distributed random quantity
falls within each interval:

pi = 1

2π

∫ zi +1

zi

e−x2/2dx .

After this we calculate the number of measurements that would fall within each
interval if the population of measurements is normally distributed:

ϕi = pi n.

(4) If less than five measurements fall within some interval, then this interval in
both histograms is combined with the neighboring interval. Then the degree
of freedom v = L − 3, where L is the total number of intervals (if the inter-
vals are enlarged, then L is the number of intervals after the enlargement), is
determined.

(5) The indicator χ2 of the difference of frequencies is calculated:

χ2 =
L∑

i=1

χ2
i , χ2

i = (ϕ̃i − ϕi )2

ϕi
.

(6) The significance level of the test q is chosen. The significance level must be
sufficiently small so that the probability of rejecting the correct hypothesis
(committing false rejection) would be small. On the other hand, too small a
value of q increases the probability adopted for the incorrect hypothesis, i.e.,
for committing false retention.

From the significance level q and a degree of freedom ν in Table A.4, we find
the limit of the critical region χ2

q , so the P{χ2 > χ2
q } = q.

The probability that the value obtained for χ2 exceeds χ2
q is equal to q and

is small. For this reason, if it turns out that χ2 > χ2
q , then the hypothesis that

the distribution is normal is rejected. If χ2 < χ2
q , then the hypothesis that the

distribution is normal is accepted.
The smaller the value of q, the larger is the value of χ2

q for the same value of
v, and the more easily the condition χ2 < χ2

q is satisfied and the hypothesis being
tested is accepted. But, in this case, the probability of committing false retention
increases. For this reason, q should not be taken to be less than 0.01. For too large
a value of q , as pointed out above, the probability of false rejection increases and,
in addition, the sensitivity of the test decreases. For example, for q = 0.5 the value
of χ2 may be greater or less than χ2

q with equal probability, and therefore it is
impossible to accept or reject the hypothesis.

In order to achieve a uniform solution of the problem at hand, it is desirable
to standardize the significant levels of q adopted in metrology. To this end, for
example, we can try to limit the choice of significant level to the interval 0.01 ≤
q ≤ 0.1.

It should be noted that the test examined above makes it possible to check he cor-
respondence between the empirical data and any theoretical distribution, not only
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a normal distribution. This test, however, as also with, by the way, other goodness-
of-fit tests does not make it possible to establish the form of the distribution of the
observations; it only makes it possible to check whether the observations conform
to a normal or some other previously selected distribution.

4.6. Methods for Testing Sample Homogeneity

Measurements with large random errors require careful attention. One must make
sure that the obtained results are statistically under control, stable, i.e., that the
measurement results cluster around the same central value and have the same
variance. If the measurement method and the object of investigation have been
little studied, then the measurements must be repeated until one is sure that the
results are stable [25]. This process determines the duration of the investigation
and the required number of measurements.

The stability of measurements is often estimated intuitively based on prolonged
observations. However, mathematical methods exist that are useful for solving this
problem, so-called methods for testing homogeneity.

A necessary condition is that indications of homogeneity must be present, but
this is not sufficient for homogeneity in reality, because groups of measurements
can be incorrectly or unsuccessfully chosen.

Figure 4.1 shows the results of measurements of some quantities, presented in
the sequence in which they were obtained. Consider three groups of measurements
performed in the time intervals t2 − t1, t3 − t2, and t4 − t3. They apparently will
be homogeneous. Meanwhile, subsequent measurements would differ significantly
from the first measurements, and on the whole, the results obtained from the first

Figure 4.1. Example of a sequence of single-measurement results obtained in an
unstable measurement.
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group of measurements will give a picture of a stable, statistically under control,
measurement, which is actually not the case.

The choice of groups for monitoring homogeneity remains a problem for the
specialist-experimenter, just as does the problem of separating one group from
another. In general, it is best to have of the order of ten measurements in a group
(according to [23], from five to ten measurements), and it is better to have several
such groups than two groups with a large number of measurements.

Once the groups have been reliably determined to be homogeneous, they can
be combined and later regarded as one group of data.

We shall consider first the most common parametric methods for testing homo-
geneity. These methods are based on the normal distribution of a population. For
this reason, each group of data must first be checked for normality.

The admissibility of differences between estimates of the variances is checked
with the help of R. Fisher’s test in the case of two groups of observations and
M. Bartlett’s test if there are more than two groups. We shall present both methods.

Let the unbiased estimates of the variances of these groups be S2
1 and S2

2 , where
S2

1 > S2
2 . The number of observations in the groups is n1 and n2, so that the degrees

of freedom are, respectively, ν1 = n1 − 1 and ν2 = n2 − 1. We form the ratio

F = S2
1

S2
2

.

Next, from Tables A.5 and A.6, where the probabilities

P{F > Fq} = q

for different degrees of freedom v1 and v2 are presented, we choose the value Fq .

The hypothesis is accepted, i.e., estimates of the variances can be regarded as
corresponding to one and the same variance, if F < Fq . The significance level is
equal to 2q.

Now assume that there are L groups, and for them, unbiased estimates of the
variances of groups of observations are known, S2

1 , . . . , S2
L (L > 2), and each group

has νi = ni − 1 degrees of freedom; in addition, all νi > 3. The test of the hypoth-
esis, that the variances of the groups are equal, is based on the statistic

M = N ln

(
1

N

L∑
i=1

νi S2
i

)
−

L∑
i=1

νi lnS2
i ,

where N = ∑L
i=1 νi .

If the hypothesis that the variances are equal is correct, then the ratio

χ2
1 = M

1 + 1

3(L − 1)

(
L∑

i=1

1

νi
− 1

N

)

is distributed approximately as χ2 with ν = L − 1 degrees of freedom.
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Given the significance level q , from Table A.4, we find χ2
q , such that P{χ2 >

χ2
q } = q . If the inequality χ2

1 < χ2
q is satisfied, then differences between the esti-

mates of the variances are admissible.
The admissibility of differences between the arithmetic means is also checked

differently in the case of two or more groups of observations. We shall first examine
the comparison of the arithmetic means for two groups of observations, when there
are many observations, so that each estimate of the variances can be assumed to
be equal to its variance.

We denote by x̄1, σ 2
1 , and n1 the data belonging to one group and by x̄2, σ 2

2 ,
and n2 the data belonging to the other group. We form the difference x̄1 − x̄2 and
estimate its variance:

σ 2(x̄1 − x̄2) = σ 2
1

n1
+ σ 2

2

n2
.

Next, having chosen a definite significance level q , we find α = 1 − q , and
from Table A.1, we find the argument z 1−α

2
of the Gaussian function corresponding

to the probability 1−α
2 . A difference between the arithmetic means is regarded as

acceptable, if

|x̄1 − x̄2| ≤ z 1−α
2

σ (x̄1 − x̄2).

If the variances of the groups are not known, then the problem can be solved
only if both groups have the same variances (the estimates of this variance σ̃ 2

1 and
σ̃ 2

2 can, naturally, be different). In this case, t is calculated as

t = |x̄1 − x̄2|√
(n1 − 1)σ̃ 2

1 + (n2 − 1)σ̃ 2
2

√
n1n2(n1 + n2 − 2)

n1 + n2
.

Next, given the significance level q , from Table A.2 for Student’s distribution
with ν = n1 + n2 − 2 degrees of freedom, we find tq . A difference between the
arithmetic means is regarded as admissible if t < tq .

If the number of groups is large, the admissibility of differences between the
arithmetic means is checked with the help of Fisher’s test. It is first necessary to
check that all groups have the same variance.

Fisher’s method consists of comparing estimates of the intergroup variance S2
L

and the average variance of the groups S2:

S2
L = 1

L − 1

L∑
i=1

ni (x̄i − x̄)2,

where

x̄ =

L∑
i=1

n1 x̄i

N
, N =

L∑
i=1

ni
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(the estimate S2
L has v1 = L − 1 degrees of freedom);

S̄2 = 1

N − L

L∑
i=1

ni∑
j=1

(x ji − x̄i )
2

(the degree of freedom v2 = N − L).
Both estimates of the variances have a χ2 distribution with v1 and v2 degrees of

freedom, respectively. Their ratio has Fisher’s distribution with the same degrees
of freedom.

A spread of the arithmetic means is acceptable if F = S2
L/S̄2 for the selected

probability α lies within the interval from FL to FU :

P{FL ≤ F ≤ FU } = α.

The upper limits of Fisher’s distribution FU are presented in Tables A.5 and A.6;
the lower limits are found from the relation FL = 1/FU . If the significance levels
in finding FU and FL are taken to be the same q1 = q2 = q, then the common
significance level of the test will be 2q and

α = 1 − 2q.

A method for checking the admissibility of the spread in the arithmetic means of
the groups when the variances of the groups are different has also been developed,
but it is more complicated.

It should be noted that a significant difference between the arithmetic means
could indicate that a constant systematic error exists in the observational results
of one or another group, as well as that the interesting parameter of the model
used to describe the object of investigation is variable. The latter means that the
postulate β is not satisfied, and therefore, measurements cannot be performed with
the required accuracy.

We shall now discuss nonparametric methods for testing homogeneity. These
methods do not require any assumptions about the distribution function of the
population and are widely used in mathematical statistics.

Wilcoxon and Mann–Whitney tests. Assume that we have two samples: {xi }, i =
1, . . . , n, and {y j }, j = 1, . . . , n2, and let n1 ≤ n2. We check the hypothesis H0 :
F1 = F2, where F1 and F2 are the distribution functions of the random quantities
X and Y , respectively.

The sequence of steps in checking H0 is as follows. Both samples are combined,
and an ordered series is constructed from N = n1 + n2 elements; i.e., all xi and
y j are arranged in increasing order, irrespective of the sample to which one or
another value belongs. Next, all terms of the ordered series are enumerated. The
order number of a term is called its rank.

When the numerical values of several elements are the same, to each of them
a rank equal to the arithmetic mean of the ranks of the corresponding values is
assigned.

Next the sum of the ranks of all elements of the smaller sample is calculated.
The sum T obtained is then compared with the critical value Tq .
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For small values of n1 and n2, tables Tq (n1, n2) are given in most modern books
on statistics. For n1, n2 > 25, the critical value Tq can be calculated using the
normal distribution N (m1, σ

2):

Tq = m1 + z1−qσ,

where

m1 = [n1(N + 1) − 1]

2

and

σ 2 = [n1n2(N + 1)]

12
,

z1−q is the quantile of the level (1 − q) of the standard normal distribution N (0, 1).
The hypothesis H0 is rejected with significance level q if T > Tq . This is

Wilcoxon’s test.
A variant of Wilcoxon’s test is the Mann–Whitney test. This test is based on

calculations of the so-called inversions U , which are more difficult to calculate
than the ranks T . But U and T are uniquely related, and the values of U can be
found from the values of T :

U(1) = T(1) − n1(n1 + 1)

2
, U(2) = n1n2 + n2(n2 + 1)

2
− T(2).

The parameter U is compared with the critical value Uq , for which tables or a
calculation similar to the one performed above are employed.

Given q , we find from the standard normal distribution N (0, 1) the quantile z1−q

and calculate Uq :

Uq = n1n2 − 1

2
+ z1−q

√
n1n2(N + 1)

12
.

The hypothesis H0 is rejected if both U(1) and U(2) are greater than Uq .
For the Siegel–Tukey test, as in the case of Wilcoxon’s test, two samples xi and

y j are studied and likewise the hypothesis H0 : F1 = F2 is checked. The notation
xi is given to the sample whose number of terms n1 is less than the number n2 in
the second sample. All N = n1 + n2 values of xi and y j are likewise arranged in
increasing order, with an indication that each term belongs to the sequence X or Y .
The ranks are assigned as follows: rank 1 to the first term, rank 2 to the last (N th)
term, rank 3 to the (N − 1)st term, rank 4 to the second term, rank 5 to the third
term, rank 6 to the (N − 2)nd term, and so on. Values that are equal to one another
are assigned the average rank. Next, the sums of the ranks R1 and R2, referring to
the samples {xi } and {y j } and the standardized variable z, defined as

z =

∣∣∣∣R1 − n1(N + 1)

2

∣∣∣∣− 0.5√
n1n2(N + 1)

12

,
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Table 4.1. The example of rank determination.

Wilcoxon’s test Siegel–Tukey test
Number of

instruments with Sum of ranks Sum of ranks

a given error in Average for a given Average for a given

the sample rank of a value of the rank of a value of the
Value of given value error in the given value error in the
the error x y x + y of the error sample x of the error sample x

−0.50 1 1 2 1.5 1.5 2.5 2.5
−0.40 3 0 3 4.0 12.0 7.3 22.0
−0.30 3 0 3 7.0 21.0 13.7 41.0
−0.25 1 0 1 9.0 9.0 17.0 17.0
−0.20 13 5 18 18.5 240.5 36.5 474.5
−0.15 2 2 4 29.5 59.0 58.5 117.0
−0.10 10 8 18 40.5 405.0 80.5 805.0
−0.05 3 2 5 52.0 156.0 103.6 310.8

0.00 15 28 43 76.0 1140.0 151.5 2272.5
0.05 5 5 10 102.5 512.5 204.5 1022.5
0.10 26 35 61 138.0 3588.0 573.5 7108.4
0.15 7 4 11 174.0 1218.0 293.5 2054.5
0.20 34 41 75 217.0 7378.0 207.5 7055.0
0.25 1 3 4 256.5 256.5 128.5 128.5
0.30 17 11 28 272.5 4632.5 96.5 1640.5
0.40 13 11 24 298.5 3880.5 44.5 578.5
0.45 1 1 2 311.5 311.5 18.5 18.5
0.50 4 2 6 315.5 1262.0 10.5 42.0
0.60 0 1 1 319.0 0.0 3.0 0.0
0.80 1 0 1 320.0 320.0 2.0 2.0

are calculated. For significance level q , the hypothesis H0 is rejected if z > z1−q ,
where z1−q is a quantile of order (1 − q) of the standard normal distribution
N (0, 1).

The calculations of R1 and R2 can be checked with the help of the relation

R1 + R2 = N (N + 1)

2
.

The Wilcoxon test is based on comparing the average values of two samples,
whereas the Siegel–Tukey test is based on estimates of the variances. For this
reason, these two tests supplement one another.

As an example of the application of these tests, Table 4.1 gives data from
calculations on a check of the homogeneity of two batches of 160 ammeters for a
moving-iron instrument 59 with respect to the error at marker 30 of the graduated
scale [43]. The experiment is described in Section 2.6.

Following the recommendations made above, we obtain T = 25,403. Let α =
0.05. Then z0.95 = 1.96 and

Tq = 160 × 321

2
− 0.5 + 1.96

√
160 × 160 × 321

12
= 27,620.
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As 25,403 < 27,620, the hypothesis that the samples are homogeneous is accepted
based on Wilcoxon’s test.

Consider now the Siegel–Tukey test. According to the data in the table, R1 =
23,713. Analogous calculations give R2 = 27,647. Taking R1(R1 < R2), we obtain

z =

∣∣∣∣23,713 − 160 × 321

2

∣∣∣∣− 0.5√
160 × 160 × 321

12

= 2.3.

We chose q = 0.05 and therefore z0.95 = 1.96. As z > z0.95, the hypothesis that
the samples are homogeneous is rejected based on the Siegel–Tukey test.

4.7. Trends in Applied Statistics and Experimental
Data Processing

One problem addressed in statistics has to do with accurately modeling measure-
ment data. A normal distribution is often used for this purpose. But sometimes
it is desirable to have heavier tails than this distribution allows. Mathematics of-
fers a convenient solution to add weight to the tails of a distribution called a
contaminated scheme: A normal distribution is contaminated by adding another
distribution, which is usually also a normal distribution. The general form of this
combined distribution is:

F(x) = (1 − ε)�(x) + εH (x),

where�(x) is the basic normal distribution having variance σ 2
b , H (x) is the contam-

inating normal distribution having variance σ 2
c , and ε and (1 − ε) are the weights of

the terms above. Also, σ 2
c 
 σ 2

b and ε � 1, so that the contaminating distribution
mostly affects only the tails of the basic distribution.

The contaminated scheme is simple and convenient. Nonetheless, it has been
mostly used in theoretical studies.

Another statistical problem is to decrease the influence of the form of the distri-
bution function used to model the data on the measurement result. The distribution
function by its nature is a mathematical concept. It is used in measurements as a
theoretical model for a set of measurements. As always, a complete conformance
between the model and the real set of data is impossible. Therefore, different
models can be chosen for the same data. A small difference between the models
may lead to significantly different estimation of the measurand. A solution to this
problem was offered by so-called robust estimations [16, 32]. Among the earliest
known robust estimations, the most popular are the truncated means, the Winsor’s
means, and the weighted means [32]. These methods assume that measurement
results are arranged in an ordered series; i.e.,

x1 ≤ x2 ≤ . . . ≤ xn.
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� The Truncated Means. Given the ordered series above, the method of truncated
means discards k values from the left and the right ends of this series. The number
k is obtained as k = �np�, where 0 < p < 0.5 and the notation �np� means that
k is the greatest integer number that is equal to or smaller than np. The rest of
the series provides the robust estimate of the measurand by the formula

ÃT = 1

n − 2k

n−k∑
i=k+1

xi .

Note that the truncating procedure is similar to the usual practice of eliminating
the outlying result from the sample, which is described in Section 4.3.

� The Winsor’s Means. Rather than discarding extreme items in the ordered
series, the Winsor’s method replaces them with the neighboring items. The robust
estimate of the measurand is calculated by the formula:

ÃW = 1

n

{
n−(k+1)∑
i=k+1

xi + (k + 1)(xk+1 + xn−k)

}
.

� The Weighted Means. The weighted means method obtains a robust estimate by
computing a linear combination of the measurement data. There are numerous
variations in this method [16, 31]. Here we present one such variation, which uses
the weighted average of the median of the series and two items symmetrically
located around the median in the series [32].

Median M is determined by the formula:

M =
{

xk+1 if n = 2k + 1;
1
2 (xk + xk+1) if n = 2k.

The robust estimate of the mean according to this method is then given by the
following formula:

ÃC = (1 − 2ε)M + 2ε
(xl + xn−l+1)

2
,

where (1 — 2ε) and 2ε are the weights, ε � 1, and l and (n — l + 1) are the
positions of the two symmetrical items chosen for the estimation.

Numerous other robust estimates were also proposed [16]. Thus, it is not clear
which method to choose for a given measurement. This difficulty was addressed
by Hogg as follows [31]. His method takes advantage of the natural assumption
that all density distributions are symmetrical, the assumption on which all other
robust estimates are based anyway. Symmetrical distributions can be characterized
by one parameter—the excess e (see Section 3.4):

e = µ4

σ 4
.

Hogg proposed to divide all distributions into several classes depending on the
value of e, in such a way that for all distributions in the same class, the mean value
can be calculated with the same formula. Thus, the estimate of the measurand for
each class will not depend on the distribution function. The estimate of the excess
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Table 4.2. Classes of distribution functions and formulas for
estimation of their mean values after Hogg.

Distribution Class æ Formula for the measurand estimation

A æ < 2 Ãa = 1

2
(x1 + xn)

B 2 < æ < 4 Ãb = x̄ = 1

n

n∑
i=1

xi

C 4 < æ < 5.5 Ãc = 1

n − 2�n/4�
n−�n/4�∑

i=�n/4�+1

xi

D 5.5 < æ Ãd = M

e is found from the formula:

æ =
∑n

i=1(xi − Ã)4

nS4
.

The price this method pays for the robust estimate is the loss in the efficiency of
the estimate. Therefore, a desired solution would find a compromise between the
number of classes and the loss of the efficiency. Hogg studies the system of four
classes named classes A, B, C, and D. The range of values of æ for each class and
the corresponding formulas for estimating the mean value of the data are given in
Table 4.2.

Hogg found that the four classes he proposed lead to loss in efficiency of no
more then 20%, which is acceptable.

Another system of classes was proposed later [39]. This system contains only
three classes, which are also determined by the values of æ. These classes and the
corresponding formulas for the estimation of the mean are shown in Table 4.3.

As one can see, the formulas in Table 4.3 are the same as those used in the Hogg
system: Class 1 uses the same formula as Class D, Class 2 as Class B, and Class
3 as Class A.

The estimations of variances of robust estimates are calculated in a common
way, but constructing confidence intervals presents a difficult problem that is gen-
erally not discussed in the robust estimates literature. The simplest solution is
to construct these intervals using a nonparametric method. In this method, the
confidence interval is defined by the two items located symmetrically about the
median in the ordered series.

Table 4.3. Classes of distribution functions and formulas for
estimation of their average values after Mechanikov.

Distribution Class æ Formula for the measurand estimation

1 4 < æ Ã1m = M

2 2.5 < æ < 4 Ã2m = x̄ = 1

n

n∑
i=1

xi

3 1.8 < æ < 2.5 Ã3m = x1 + xn

2
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Let the confidence interval be [xl , xr ], where xl and xr are the left and right
symmetrical items in the ordered series. The numbers l and r are found as follows
[29]: l is �1/2(n + 1 − z 1+α

2

√
n�, and r is �1/2(n + 1 − z 1+α

2

√
n�,1 where α is

the confidence probability and z 1+α
2

is the corresponding quantile of the standard
normal distribution.

For example, for the ordered series size n = 49 and α = 0.95, A ≈ M = x25

and l = 19 and r = 31. The confidence interval is [x19, x31].
The inverse calculation was proposed in [39]. Here, we first choose the items

in the ordered series as the confidence interval boundaries and then calculate the
corresponding confidence probability according the formula:

P{xl ≤ A ≤ xr } = 1

2n

n−r∑
i=l

Ci
n.

In particular, for

k = 2, P{x2 < A < xn−1} = 1 − n + 1

2n−1
,

k = 3, P{x3 < A < xn−2} = 1 − n2 + n + 2

2n
.

For k > 3, the working formulas become much more complicated. But for k = 4
and 5, approximate relations, presented in paper [39] mentioned above, can be used:

k = 4, P{x4 < A < xn−3} ≈ 1 − 0.17n3

2n−1
,

k = 5, P{x5 < A < xn−4} ≈ 1 − 0.037n4

2n−1
,

Nonparametric methods are widely used in statistical analysis. However, to con-
struct confidence intervals, they require many more observations than parametrical
methods. Unfortunately, it is not clear how to construct confidence intervals for
robust estimates using parametric methods.

4.8. Example: Analysis of Measurement Results
in Comparisons of Measures of Mass

Let us consider a measurement that determines the real value of a 1-kg mass
measure by comparing it with the reference standard measure of mass with the
same nominal value. Column 1 of Table 4.4 presents the measurement results
obtained from this comparison.

Column 2 gives the values of xi0 = (xi − 999.998 000) × 106, and columns 3
and 4 gives the results of auxiliary calculations.

1 As usual, �x� denotes the greatest integer equal to or smaller than x and �x� stands for
the smallest integer equal to or greater than x .



4.8. Example 113

Table 4.4. For calculation of the statistical characteristics based on the results of
comparison of measures of mass.

xi g xi0 × 10−6g xi0 − x̄i0 × 10−6g (xi0 − x̄i0)2 × 10−12g2

999.998 738 738 +17 289
999.998 699 699 −22 484
999.998 700 700 −21 441
999.998 743 743 +22 484
999.998 724 724 +3 9
999.998 737 737 +16 256
999.998 715 715 −6 36
999.998 738 738 +17 289
999.998 703 703 −18 324
999.998 713 713 −8 64

Sum 7210 0 2676

The measurement was performed by the methods of precise weighing, which
eliminated the error caused by the fact that the arms of the balances were not equal.
Thus, it can be assumed that there are no systematic errors.

The results of measurements in column 1 can be assumed to be discrete random
independent quantities {xi }, i = 1, . . . , n and n = 10, and therefore, we can apply
the method of moments to find the solution. The probability of all xi is the same
and is equal to pi = 1/n. To simplify the computations, column 2 presents only
the varying last three digits of xi , denoted as xi0. Following the Equation 3.7 from
Section 3.4, we compute the first initial moment:

m1 =
n∑

i=1

xi0 pi = 1

n

n∑
i=1

xi0.

Thus, we obtain the mean value x̄i0 = 1
10 · 7210 × 10−6 = 721 × 10−6g, and

the estimate of the value of the mass is

x̄ = 999.998000 + x̄i0 = 999.998721g.

Using Equation 3.8, the second central moment is

µ2 =
n∑

i=1

(xi0 − x̄0)2 pi .

After applying the known correction multiple n/(n − 1) (see Section 4.2), we
obtain the unbiased estimate of the variance:

S2(xi ) = 1

n − 1

n∑
i=1

(xi0 − x̄0)2.

Hence, the standard deviation is

S(xi0) = S(xi ) =
√

S2(xi0) =
√

2676

9
× 10−12 = 17 × 10−6g.
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An estimate of the standard deviation of the obtained real value of the mass measure
is

Sx̄ = 17 × 10−6

√
10

= 5 × 10−6g.

The sample shown in column 2 does not look like it corresponds to a normal
distribution. But the distribution of the mean values in accordance with the central
limit theorem is asymptotically normal, which allows us to find the uncertainty of
the result.

Let α = 0.95; then, using Student’s distribution (Table A.2), we find the coef-
ficient tq . The degree of freedom ν = 10 − 1 = 9 and q = 1 − α = 0.05. There-
fore, t0.05 = 2.26. In accordance with formula (4. l0), we obtain the uncertainty of
measurement result:

u = 2.26 × 5 × 10−6 = 11 × 10−6g (0.95).

Thus, with the confidence probability α = 0.95, the mass m of the measure
studied lies in the interval

999.998 710 g ≤ m ≤ 999.998 732 g.

The result obtained can be written more compactly as

m(0.95) = (999.998 721 ± 11 × 10−6) g.

If the data above were processed by the nonparametric methods, the estimate of
the measurand would be practically the same but its uncertainty would be twice as
wide.



5
Direct Measurements

5.1. Relation Between Single
and Multiple Measurements

The classical theory of measurement errors is constructed based on the well-
developed statistical methods and pertains to multiple measurements. In practice,
however, the overwhelming majority of measurements are single measurements,
and however strange it may seem, for this class of measurements, there is no
accepted method for estimating errors.

In searching for a solid method for estimating errors in single measurements, it is
first necessary to establish the relation between single and multiple measurements.

At first glance, it seems natural to regard single measurements as a particular
case of multiple measurements, when the number of measurements is equal to 1.
Formally this is correct, but it does not give anything, because statistical methods
do not work when n = 1. In addition, the question of when one measurement is
sufficient remains open. In the approach examined, to answer this question—and
this is the fundamental question—it is first necessary to perform a multiple mea-
surement, and then, analyzing the results, to decide whether a single measurement
was possible. But such an answer is in general meaningless: A multiple measure-
ment has already been performed, and nothing is gained by knowing, for example,
that in a given case, one measurement would have sufficed. Admittedly, it can be
objected that such an analysis will make it possible not to make multiple mea-
surements when future such measurements are performed. Indeed, that is what
is done, but only when preliminary measurements are performed, i.e., in scien-
tific investigations when some new object is studied. This is not done in practical
measurements.

When it is necessary to measure, for example, the voltage of some source with a
given accuracy, a voltmeter with suitable accuracy is chosen and the measurement
is performed. If, however, the numbers on the voltmeter indicator dance about,
then it is impossible to perform a measurement with the prescribed accuracy, and
the measurement problem must be reexamined rather than performing a multiple
measurement.
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For practical applications, we can state the opinion that single measurements are
well founded by experience, concentrated in the construction of the corresponding
measuring instruments, and that measuring instruments are manufactured so that
single measurements could be performed.

From the foregoing assertion a completely different point of view follows re-
garding the relationship between single and multiple measurements, namely, that
single measurements are the primary, basic form of measurement, whereas multi-
ple measurements are derived from single measurements. Multiple measurements
are performed when necessary, based on the formulation of the measuring prob-
lem. It is interesting that these problems are known beforehand; they can even be
enumerated. Namely, multiple measurements are performed as follows:

(a) When investigating a new phenomenon or a new object and relationships
between the quantities characterizing the object, as well as their connection
with other physical quantities, are being determined, or briefly, when prelim-
inary measurements, according to the classification given in Chapter 1, are
performed.

(b) When measuring the average value of some parameter, corresponding to the
goal of the measuring problem.

(c) When the effect of random errors of measuring instruments must be
reduced.

(d) In measurements for which measuring instruments have not yet been
developed.

Of the four cases presented above, the first is typical for investigations in science
and the third is typical for calibration practice.

There is another point of view, namely, that any measurement must be a multiple
measurement, because otherwise it is impossible to judge the measurement process
and its stability and to estimate its inaccuracy.

We cannot agree with this opinion. First, it contradicts practice. Second, it also
does not withstand fundamental analysis. Imagine that one and the same constant
quantity is measured simultaneously with the help of multiple and single methods
of measurement. In both cases, the measurements are performed with the same
instrument whose response time is tr .

In Fig. 5.1(a), the dots represent the results of single measurements comprising a
multiple measurement, and, Fig. 5.1(b) shows a photorecording of the indications
of the analog instrument in a single measurement.

A single measurement makes it possible to obtain the value of the measurand
immediately after the response time tr of the measuring instrument. If it is desirable
to check the stability of the measurement, then the observation must be continued.
The process of measurement is stable if the readings of the instrument over a
chosen time 
T do not change appreciably.

The reading of the instrument gives the estimation Ã of a measurand A. Of
course, Ã �= A. Methods for calculating errors and uncertainty of the results of
single measurements are given later in this chapter. Thus, in this case, a single
measurement is sufficient to obtain the measurement result and to estimate its
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Figure 5.1. Results of measurements in the case of (a) a multiple measurement and
in (b) a single measurement (a motion picture film of the indications of the measuring
instrument).

inaccuracy. As to the stability of the measurement process, a single measurement
allows one to make a better judgment than a multiple measurement because the
latter represents only separate moments of the process, whereas the former gives
the whole continuous picture.

The foregoing example does not say that a single measurement is better than
a multiple measurement. It says only that a multiple measurement should not be
performed when a single measurement can be performed. But when a multiple
measurement is necessary, a single measurement is useless, and in this case and
in this sense, a multiple measurement is better than a single measurement.

So, single measurements must be regarded as independent and the basic form
of measurement. Correspondingly, the problem of developing methods for esti-
mating the errors of single measurements must be regarded as an independent and
important problem of the theory of measurements.

This is a good point at which to discuss another aspect of the question at hand.
In many fields of measurements, modern measuring digital instruments can op-
erate so fast that over the time allotted for measurements, say, 1 s, hundreds of
measurements can be performed. Carrying out these measurements and averaging
their results, we employ all of the time allotted for measurement, and, thanks to
this, we reduce correspondingly the effect of interference and noise.

Consider now an analog instrument having the same accuracy as a fast measuring
device, but with a response time equal to the time allotted to the measurement, i.e.,
in our case, 1s. From the time constant of the instrument, the effect of interference
and noise will be suppressed to the same degree as for discrete averaging in the
first case; i.e., we shall obtain the same result.

In other words, the measurement time is of fundamental importance, and there
is no significance in how the interference and noise are filtered—in the discrete or
analog form—over this time. In practice, discrete averaging is often more conve-
nient, because in this case, the averaging time can be easily changed.
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5.2. Identification and Elimination of Systematic Errors

Taking into account and eliminating systematic errors is an important problem in
every accurate measurement. In the theory of errors, however, little attention has
been devoted to systematic errors.

In most books on methods of data processing, the question of systematic errors
is either neglected or it is stipulated that these errors are assumed to have been
eliminated.

In reality, however, systematic errors cannot be completely eliminated; some
unexcluded residuals always remain. These residuals must be taken into account to
estimate the limits of the unexcluded systematic error of the result, which determine
its systematic error.

In addition, many measurements are performed without special measures taken
to eliminate systematic errors, because either it is known a priori that they are small
or the measurement conditions make it impossible to eliminate them. For example,
suppose the mass of a body is being measured and corrections are not made for the
balances employed either because the corrections are small or because the actual
values of the masses are not known (only the limits of their errors are known).

Sometimes the unexcluded residuals of the systematic errors are assumed to be
random errors based on the fact that their values are unknown. We cannot agree
with this point of view. When classifying errors as systematic or random, attention
should be focused on their properties rather than on whether their values are
known.

For example, suppose that the resistance of a resistor is being measured and a
correction is made for the influence of the temperature. The systematic error would
be eliminated if we knew exactly the temperature coefficient of the resistor and the
temperature. We know both quantities with limited accuracy, and for this reason,
we cannot completely eliminate this error. An unexcluded residual of the error
will remain. It can be small or large; this we can and should estimate, but its real
value remains unknown. Nonetheless, this residual error has a definite value, which
remains the same when the measurement is repeated under the same conditions,
and for this reason, it is a systematic error.

Errors that have been eliminated are no longer errors. For this reason, as we
have already mentioned, the systematic error in a measurement also should be
understood to be the unexcluded residual of the systematic error, if it cannot be
neglected.

The error in a measurement can be both systematic and random, but after the
measurement has already been performed, the measurement error becomes a sys-
tematic error. Indeed, the result of a measurement has a definite numerical value,
and its difference from the true value of the measured quantity is also constant.
Even if the entire error in a measurement was random, for a measurement result,
it becomes systematic; i.e., it seemingly freezes.

We shall now discuss the classification of systematic errors. We shall base
our discussion on the work of M.F. Malikov, and following this work, we shall
distinguish systematic errors according to their sources and properties [35].



5.2. Identification and Elimination of Systematic Errors 119

The sources of systematic errors can be three components of the measurement:
the method of measurement, the measuring instrument, and the experimenter.
Correspondingly, methodological, instrumental, and personal systematic errors
are customarily distinguished.

Methodological errors arise from imperfections of the method of measurement
and from the limited accuracy of the formulas used to describe the phenomena on
which the measurement is based. We shall classify as methodological errors the
errors arising as a result of the influence of the measuring instrument on the object
whose property is being measured.

For example, the moving-coil voltmeter draws current from the measurement
circuit. Because of the voltage drop on the internal resistance of the source of
the voltage being measured, the voltage on the terminals of the voltmeter will
be less than the measured value. The indications of the voltmeter, however, are
proportional to the voltage on its terminals. The error that arises—a methodological
error—should be insignificant if the measurement is performed properly.

A methodological error can also arise in connection with the use of the mea-
suring instrument. The gain of a voltage amplifier is determined by measuring
the voltages at the input and the output. If these voltages are measured succes-
sively using the same voltmeter, as is often done in practice, then, aside from
the voltmeter error, the measurement error will include the error from the uncon-
trollable change in voltage at the amplifier input over the time during which the
voltmeter is switched on and the voltage at the output is measured (or vice versa).
This error does not arise when two voltmeters are employed. When the measure-
ment is performed using one voltmeter, however, the effect of the voltmeter error
decreases.

We note that the error from the threshold discrepancy between the model and
the object is also a methodological error.

Instrumental systematic errors are errors caused by imperfections of the mea-
suring instrument. Classic examples of such errors are errors of a measuring instru-
ment that are caused by imprecise calibration of the instrument scale and the error
of a resistive voltage divider from the inaccurate adjustment of the resistances of
its resistors.

Another group of such errors is additional and dynamic errors. These errors also
depend on the imperfections of the measuring instruments, but they are caused by
influence quantities and noninformative parameters of the input signal as well as
by the change in the input signal in time. Most often the additional and dynamic
errors are systematic errors. When the influence quantities and the forms of the
input signal are unstable, however, they can become random errors.

Setup errors, i.e., errors arising from the arrangement of the measuring instru-
ments and their effect on one another, are also instrumental errors.

Personal systematic errors are systematic errors connected with the individual
characteristics of the observer.

We shall discuss the errors in the reading of the indications of indicating instru-
ments. Such errors were investigated by H. Bäkström [17]. Although real reading
devices were simulated in this work by blanks with lines, depicting the edge of a
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scale graduation and the indicator of the instrument, drawn on them, the results
obtained are plausible.

The results of the investigation consist of the following.
The systematic errors made by every observer when estimating tenths of the

graduation of an instrument scale can reach 0.1 graduations and are much larger
than the random errors. These systematic errors are manifested by the fact that
for different tenths of a graduation, different observers characteristically make
estimates with different frequencies, and in addition, the distribution characteristic
of every observer remains constant for a long period of time. Thus, one observer
refers, more often than one would think, indications to the lines forming the edges of
graduation, and to the value 0.5 of a graduation. Another observer refers indications
to the values 0.4 and 0.6 of a graduation. A third observer prefers 0.2 and 0.8
graduations, and so on. Tenths of a graduation, which are arranged symmetrically
in the space between scale markers, are estimated with the same frequency.

The error in estimation of tenths of graduations depends on the thickness of the
markers—the lines forming the scale. The optimal thickness of these markers is
0.1 of the length of a graduation. The length of a graduation significantly affects
the error in reading tenths of a graduation. Instrument scales for which tenths of a
graduation can be read are usually made so that the length of a graduation is equal
to about 1 mm (not less than 0.7 mm and not more than 1.2 mm).

On the whole, for a random observer, the distribution of systematic errors in
the readings of tenths of a graduation can be assumed to be uniform with limits of
±0.1 graduations.

It is interesting that the components of the random error are usually not singled
out, because the random error in a measurement is, as a rule, estimated from the
experimental data and the entire error is measured at once, whereas the systematic
error is measured by components.

Constant systematic errors are distinguished from regularly varying systematic
errors. The latter errors, in turn, are subdivided into progressing and periodic errors
and errors that vary according to a complicated law.

A constant systematic error is an error that remains constant and for this reason
is repeated in each observation or measurement. For example, such an error will be
present in measurements performed using the same material measures that have
a systematic error: balances, resistors, and so on. The personal errors made by
experienced experimenters can also be classified as constant (for inexperienced
experimenters, they are usually of a random character).

Progressing errors are errors that increase or decrease throughout the mea-
surement time. Such errors are caused, for example, by the change in the work-
ing current of a potentiometer from the voltage drop of the storage battery
powering it.

Periodic errors are errors that vary with a definite period.
In the general case, a systematic error can vary according to a complicated

aperiodic law.
The discovery of systematic errors is a complicated problem. It is especially

difficult to discover a constant systematic error. To solve the problem, in this case,
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several measurements (at least two) should be performed by fundamentally differ-
ent methods. This method is ultimately decisive. It is often realized by comparing
the results of measurements of one and the same quantity that were obtained by
different experimenters in different laboratories.

It is easier to discover variable systematic errors, which can be done with the help
of statistical methods, correlation, and regression analysis. But nonmathematical
possibilities also should not be avoided. Thus, in the process of performing a mea-
surement, it is helpful to employ a graph on which the results of the measurements
are plotted in the sequence in which they were obtained. The overall arrangement
of the points obtained makes it possible to discover the presence of a systematic
change in the results of observations without mathematical analysis. The human ca-
pability of perceiving such regularities is widely employed in metrology, although
this capability has apparently still not been thoroughly studied.

If a regular change in observational results has been found and it is known
that the measured quantity did not change in the process, then this indicates the
presence of a regularly varying systematic error.

It is also helpful to measure the same quantity using two different instruments
(methods) or to measure periodically a known quantity instead of the unknown
quantity.

If the presence of a systematic error has been discovered, then it can usually be
estimated and eliminated. In precise measurements, however, this often presents
great difficulties and is not always possible.

In most fields of measurements, the most important sources of systematic errors
are known and measurement methods have been developed that eliminate the ap-
pearance of such errors or prevent them from affecting the result of a measurement.
In other words, systematic errors are eliminated not by mathematical analysis of
experimental data but rather by the use of appropriate measurement methods. The
analysis of measurement methods and the systematization and generalization of
measurement methods are important problems, but they fall outside the scope of
this book, which is devoted to the problem of analysis of experimental data. For
this reason, we shall confine our attention to a brief review of the most widely
disseminated general methods for studying such problems.

Elimination of Constant Systematic Errors

Method of replacement. This method gives the most complete solution of the
problem. It is a version of the method of comparison, when the comparison is
made by replacing the measured quantity by a known quantity and in a manner
so that in the process no changes occur in the state and operation of all measuring
instruments is employed.

Consider, for example, weighing performed by Borda’s method. The method is
designed to eliminate the error from the inequality of the arms of the balances.
Let x be the measured mass, P the mass of the balancing weights, and l1 and l2

the lengths of the arms of the balances. The measurement is performed as follows.
First the weighed body is placed in one pan of the balances and the balances are
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balanced with the help of a weight with mass T . Then

x = l2

l1
T .

Next, the mass x is removed and a mass P that once again balances the pans is
placed in the empty pan:

P = l2

l1
T .

As the right-hand sides of both equations are the same, the left sides are also equal
to one another, i.e., x = P , and the fact that l1 �= l2 has no effect on the result.

The resistance of a resistor can be measured in an analogous manner with the
help of a sensitive but inaccurate bridge and an accurate magazine of resistances.
Several other quantities can be measured analogously.

Method of contraposition. This measurement method is a version of the com-
parison method. The measurement is performed with two observations, and it is
performed so that the reason for the constant error would affect the results of
observations differently but in a known, regular fashion.

An example of this method is Gauss’s method of weighing. First the weight being
weighed is balanced by balance weights P1. Using the notation of the preceding
example, we have

x = l2

l1
P1.

Next the unknown weight is placed into the pan that held before the balancing
weights, and the two loads are once again balanced. Now we have

x = l1

l2
P2.

We now eliminate the ratio l2/ l1 from these two equalities and find

x =
√

P1 P2.

The sign method of error compensation. This method involves two measurements
performed so that the constant systematic error would appear with different signs
in each measurement.

For example, consider the measurement of an emf x with the help of a dc
potentiometer that has a parasitic thermo-emf. One measurement gives E1. Next
the polarity of the measured emf is reversed, the direction of the working current
in the potentiometer is changed, and once again the measured emf is balanced.
This, process gives E2. If the thermo-emf gives the error ϑ and E1 = x + ϑ, then
E2 = x − ϑ . From here

x = E1 + E2

2
.
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Elimination of progressing systematic errors. The simplest, but most frequent case
of a progressing error is an error that varies linearly, for example, in proportion to
the time.

An example of such an error is the error in the measurement of voltage with
the help of a potentiometer, if the voltage of the storage battery, generating the
working current, drops appreciably. Formally, if it is known that the working current
of the potentiometer varies linearly in time, then to eliminate the error arising, it
is sufficient to perform two observations at times after the working current along
the standard cell is regulated. Let

E1 = x + K t1, E2 = x + K t2,

where t1 and t2 are the time intervals between regulation of the working current and
the observations, K is the coefficient of proportionality between the measurement
error and the time, and E1 and E2 are the results of the observations. From here

x = E1t2 − E2t1
t2 − t1

.

For accurate measurements, however, it is best to use a somewhat more com-
plicated method of symmetric observations. In this method, several observations
are performed equally separated in time and then the arithmetic means of the sym-
metric observations are calculated. Theoretically, these averages must be equal,
and this makes it possible to control the course of the experiment and to eliminate
these errors.

When the errors vary according to more complicated laws, the methods for
eliminating the errors become more complicated, but the problem can always be
solved if these laws are known. If, however, the law is so complicated that it is
pointless or impossible to find it, then the systematic errors can be reduced to
random or quasirandom errors, which requires a series of observations, arranged
in a manner so that the observational errors would be as diverse as possible and
look like random errors. However, this technique is not as effective as finding the
error and eliminating it directly.

The methods listed above do not exhaust all possibilities for eliminating sys-
tematic errors. Thus, to eliminate the systematic error of a measuring instrument
from the result of a measurement, the measurement can be performed not by one
but rather by several instruments simultaneously (if the errors of the instruments
are uncorrelated). Taking for the result of the measurement a definite combination
of indications of all instruments, we can make their systematic errors, which are
different for the different instruments, compensate one another somehow, and the
error of the result obtained will be less than for an individual instrument. In this
case, the systematic errors of the instruments can be regarded as a realization of a
random quantity.

In those cases when for the measured quantity several exact relations between
it and other quantities are known, these relations can be used to reduce the mea-
surement error. For example, if the angles of a plane triangle are measured, then
the fact that their sum is equal to 180◦ must be taken into account.
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5.3. Estimation of Elementary Errors

It is difficult to describe in a generalized form a method for estimating elementary
errors, because these errors are by their nature extremely diverse. The general rules
for solving this problem can nonetheless be formulated.

To estimate measurement errors, it is first necessary to determine their possible
sources. If it is known that some corrections will be introduced (or corrections have
been introduced), then the errors in determining the corrections must be included
among the elementary errors.

All elementary measurement errors must be estimated in the same manner, i.e.,
in the form of either absolute or relative errors. Relative errors are usually more
convenient for a posteriori error estimation, and absolute errors are more convenient
for a priori error estimation. However, the tradition of each field of measurement
should be kept in mind. Thus, for lineal–angular measurement, absolute errors are
preferred, whereas for measurements of electromagnetic quantities, relative errors
are preferred.

An unavoidable elementary error in any measurement is the intrinsic error of the
measuring instrument. If the limits of this error are given in the form of absolute
or relative errors, then conversions are not required and these limits are the limits
of the given elementary error. But often the limits of intrinsic error of a measuring
instrument are given in the form of a fiducial error, i.e., as a percentage of the
fiducial value. The conversion into relative error is made using the formula

δin = γ
xN

x
,

where δin is the limit of the intrinsic error in relative form, γ is the limit of
the fiducial error, xN is the fiducial value, and x is the value of the measurand.
Conversion into the form of absolute errors is done according to the formula


in = δinx = γ xN .

Often the environmental conditions, characterized by the temperature, pressure,
humidity, vibrations, and so on, affect the result of a measurement. Each influence
quantity, in principle, engenders its elementary error. To estimate it, it is first
necessary to estimate the possible value of the corresponding influence quantity
and then compare it with the limits of the range of values of this quantity concerning
the reference condition. If the influence quantity falls outside the limits of reference
values, then it engenders a corresponding additional error; this error is also an
elementary error.

Consider an error of the temperature. Let the temperature of the medium exceed
its reference values by 
T . If T1 ≤ 
T ≤ T2 and the limit of the additional error
for the interval [T1, T2] has the same absolute value, then this limit is the limit of
the given additional error. If, however, for this interval, the limiting value of the
temperature coefficient is given, then the limits of temperature error are calculated
according to the formula

δT = ±wT 
T,
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where δT is the limit of additional temperature error and wT is the limiting value
of the absolute value of the temperature coefficient of the instrument.

In the general case, the dependence of the limit of additional error δi or 
i on
the deviations of the influence quantity outside the limits of its reference values
can be given in the form of a graph or expressed analytically (see Chapter 2). If
the influence function of some influence quantity is indicated in the specifications
provided by the manufacturer of the instrument, then a deviation of this quantity
outside the limits of its reference values can be taken into account by the corre-
sponding correction. In the process, the elementary error decreases significantly,
even if the influence function is given with a large margin of error.

Suppose, for example, instead of the limiting value of the temperature coeffi-
cient wT = ±b/T the influence function w′

T = (1 ± ε)b/T is given. To calculate
the correction, one must know the specific value of the temperature during the
measurement and therefore its deviation 
T from the reference value. Then the
additional temperature error will be

ζT = (1 ± ε)b

T

T
.

We eliminate the constant part of this error with the help of the correction

c = −b
T

T
.

There then remains the temperature error

δ′
T = ±ε

b
T

T
.

If the influence function is given comparatively inaccurately, for example,
ε = 0.2 (20%), then the temperature error even in this case decreases by a factor
of 4–6:

δT

δ′
T

= 1 ± 0.2

0.2
= 4 or 6.

It should also be kept in mind that if the influence quantity is estimated with an
appreciable error, then this error must also be taken into account when calculating
the corresponding additional error.

In many cases, the input signal in a measurement is a function of time and
therefore the measurement result may have a dynamic error.

Several peculiarities in estimating dynamic errors exist. The most important of
these peculiarities must be discussed.

First, it should be noted that although for a long time now the dynamic errors have
been taken into account in particular situations, the general theory of estimation
of dynamic errors of measurements, as the theory of dynamic measurements in
general, is still in the formative stage. In [49], an attempt is made to formulate
the basic concepts of the theory of dynamic measurements. In studying methods
for estimating dynamic errors below, we shall adhere to the concepts presented in
[49].
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Next, we have to mention that measuring instruments do not have dynamic
errors but they may have additional errors in the dynamic regime. These errors are
a special type of elementary errors of measurements.

A typical example of a measurement for which the dynamic error is significant
is a measurement in which a time-varying signal is recorded. In this case, in
accordance with the general definition of absolute error, the dynamic error can be
written as

ζd (t) = y(t)

K
− x(t), (5.1)

where ζd (t) is the dynamic error; x(t) and y(t) are the signals at the input and output,
respectively, of the measuring instrument; and K is the transduction constant.

The relation between the signals at the input and the output of the measuring
instrument can be represented by an operator equation

y = Bx, (5.2)

where B is the operator of the recording instrument.
The operator expresses in general form the entire aggregate of dynamic proper-

ties of a measuring instrument. These properties depend on the particular action
with respect to which they are studied. Thus, the dynamic properties with respect
to a variable influence quantity or interference that does not act at the input of the
measuring instrument can be different from the dynamic properties with respect
to the input signal. In (5.2), the operator B pertains to the input signal.

When measuring instruments are constructed, the transduction constant is usu-
ally made to be independent of the strength of the input. Then the measuring
instruments can be described by a linear model, and as a rule, linear models can
have lumped parameters.

Substituting Eq. (5.2), Eq. (5.1) can be represented in the operator form

ζd =
(

B

K
− I

)
x,

where I is the identity operator, I x ≡ x .
The input and output signals vary in time, and therefore, the dynamic error is a

function of time.
One would think that given the output signal y(t) and the operator of the mea-

suring instrument, it is possible using (5.2) to find the input signal x(t) and then,
using formula (5.1), to find the dynamic error. This is difficult to do, however,
because the operator of the measuring instrument is usually not known accurately
enough.

Sometimes the problem can be solved without knowing the operator of the
instrument at all. Suppose that we have an instrument and a record of some process
realized with its help. We now disconnect the instrument from the process being
studied and connect to the instrument a circuit in which we can control an analogous
process. An example of such a device is a standard-signal generator (if an electric
measuring instrument is employed). Next we record a signal at the input of the
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instrument such that at the output we obtain a process that is identical to the initially
recorded process. When the records are identical enough, the input processes are
also identical. Therefore, a we have found the input signal, and comparison of
it (after multiplication by K in accordance with (5.1)) with the given record can
produce an estimate of the dynamic error.

In measurement practice, efforts are always made to use measuring instruments
whose output signals would be close to conform to the goals of the measurement) in
form to the input signal. But in those cases when such measuring instruments are not
available and existing measuring instruments must be used, despite the distortions
created by them, the reconstruction of the form (keeping the parameters unchanged)
of the input signal becomes an important method for increasing measurement
accuracy. It should be noted, however, that reconstruction of the form of the input
signal presents great difficulties, which are associated with the fact that this problem
is a so-called improperly posed problem (in the terminology of J. Hadamard); i.e.,
in this problen, the solution does not depend continuously on the initial data,
which means that when there are small errors in the specification of the dynamic
characteristic of the measuring instrument and the reading of the values of the
output signal, the error in determining the input signal can be so large that the
solution obtained is physically meaningless.

Physically the main idea of the problem of improper formulation in application
to reconstruction of the form of the input signal consists of the following. Ulti-
mately the spectral composition of the output signal of a measuring instrument
always decreases in intensity as the frequency increases. The amplitude-frequency
response of a measuring instrument (which, naturally, is a stable system) at high
frequencies also approaches the frequency axis. Thus, it is required to find, based
on two functions with decreasing spectra, a tnird function (the input signal) that
provides a unique relation between them. At low and medium (for the given func-
tions) frequencies, where the intensity of the spectra is high, the signal sought can
be determined reliably, and the unavoidable errors in the initial data and the com-
putational procedures operate in the normal fashion; i.e., they distort the solution
without destroying its physical meaning. At high frequencies, the intensities of the
spectra drop to such an extent that their effect on the solution is comparable with
that of errors in the initial data. The effect of these errors can be so large that the
true solution is completely suppressed. Time-domain distortions usually have the
form of rapidly oscillating functions, whose amplitude is often several orders of
magnitude greater than the true solution.

Methods for solving improperly posed problems (methods of regularization) are
under active development in mathematics, mathematical physics, geophysics, and
the theory of automatic control. A list of the most important publications on this
question relevant to metrology is given in [28].

The essential feature of methods of regularization consists of filtering out the
distortions based on a priori information about the true solution. The main ques-
tion is how to establish the optimal degree of filtering to filter out noise without
distorting the true solution. Different methods of regularization require different
volumes and forms of a priori information.
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Dynamic errors are most often estimated when the choice of a recording instru-
ment is being made. The problem is solved in the following way.

The worst form of input process is chosen and expressed analytically. One com-
plete dynamic characteristic of the recording instrument is assumed to be known.
Then it is possible to compute the corresponding output process. A superposition
of these output and input processes gives the dynamic error of the expected mea-
surement. If the absolute value of dynamic error lies within the permissible limits,
then this recording instrument can be used for the measurement.

But it is inconvenient to work with an error as a function of time. For this
reason, efforts are usually made to describe the dynamic error, when recording
data, by a parameter that assumes a single value for the entire function. Most
often, the error having the maximum absolute value or its standard deviation is
used.

It should be noted that the computational scheme presented above can be mod-
ified for different measurement problems. Thus, a shift of the output signal in
time relative to the input signal is often possible. In this case, the signals can be
artificially arranged to minimize the error.

Despite the difficulty of estimating dynamic errors, the dynamic error is an
elementary error. In those cases when the dynamic error is represented by
its components, these components are regarded as elementary measurement
errors.

We shall use the symbols presented in Table 1.1 to designate elementary errors.
If an elementary error has both systematic and random components, we shall
designate it with the symbol used for the dominant component.

5.4. Method for Calculating the Errors and
Uncertainties of Single Measurements

Once the errors of a single measurement have been analyzed, we have an estimate
of the limits of all elementary errors of the measurement. We now proceed to the
problem of synthesis. First, we single out absolutely constant errors, if they exist,
and write out estimates of their limits H f :

|η f | ≤ H f or H f l ≤ η f ≤ H f r ,

where f = 1, . . . , k and k is rarely greater than 2.
The remaining elementary errors are conditionally constant:

|ϑi | ≤ θi , i = 1, . . . , n.

Above we modeled conditionally constant errors by a random quantity with a
uniform probability distribution. For direct measurements, in the overwhelming
majority of cases, elementary errors can be assumed to be independent of one
another. Starting from this fact, we calculate the limiting value of the sum of all
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conditionally constant errors. Thus, we use formula (3.13):

θα = k

√√√√ n∑
i=1

θ2
i . (5.3)

With a confidence probability α = 0.99 and n ≤ 4, it could turn out that θα >∑n
i=1 θi . But it is obvious that this result cannot happen. In this case, it is possible

to take

θ =
n∑

i=1

θi .

It would, of course, be more correct to take a more accurate value of the coeffi-
cient k from the curves presented in Fig. 3.3.

There arises, however, the question of how well founded the choice α = 0.99
is. In most cases, this limit does not correspond to the reliability of the initial data,
and the limit α = 0.95 is more appropriate. For α = 0.95, formula (5.3) assumes
the form (see tables on pages 72 and 73)

θ0.95 = 1.1

√√√√ n∑
i=1

θ2
i . (5.4)

In this case, θα <
∑n

i=1 θi . We shall show this result by investigating the last

inequality. First, let n = 2 with θ1 ≤ θ2 and consider the inequality 1.1
√

θ2
1 + θ2

2 <

(θ1 + θ2) It is not difficult to verify that the inequality holds if θ1/θ2 > 0.11. This
condition corresponds to practice, because an elementary error that is about ten
times smaller than any other elementary error can be neglected.

Consider now the three terms θ3 > θ2 > θ1. Introducing T = θ3 + θ2, we obtain
the identity

1.1
√

T 2 + θ2
1 − 2θ3θ2 < (T + θ1).

The term 2θ3θ2 > 0, and conditions of the inequality, will be stronger if this
term is dropped. Then, corresponding to the case we have just studied with two
terms, we obtain

θ1

θ2 + θ3
> 0.11.

It is obvious that this inequality holds easier than for two components. On the
whole, as the number of terms increases, the inequality is more easily satisfied.

It could happen that m of the n conditionally constant errors have un-symmetric
limits:

θ jl ≤ ϑ j ≤ θ jr , j = 1, . . . , n,

where θ jl is the left-hand limit and θ jr is the right-hand limit.
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For calculations, unsymmetric limits must be represented as symmetric limits
with a shift by a j , where

a j = θ jl + θ jr

2
.

The limits of an interval that is symmetric relative to a j are calculated according
to the formula

θ j = θ jr − θ jl

2
.

Next, the limits of the error must be calculated from the following formulas
instead of (5.3):

θr,α =
m∑

j=1

a j + k

√√√√n−m∑
i=1

θ2
i +

m∑
j=1

θ2
j ,

(5.5)

θl,α =
m∑

j=1

a j + k

√√√√n−m∑
i=1

θa
i +

m∑
j=1

θ2
j .

The absolutely constant elementary errors must now be taken into account. As
the probabilistic model is not appropriate for them, their limits must be summed
arithmetically with the limits, calculating according to (5.6), of the sum of the
conditionally constant components θr and θl or θ :


r,α =
k∑

f =1

H f r + θr,α,

(5.6)


l,α =
k∑

f =1

H f l − θl,α,

In the foregoing calculation, the conditionally constant elementary errors were
modeled by a random quantity with a uniform probability distribution. However,
elementary errors, which appear in the resulting error after some transformation,
are encountered. An example is the mismatch error in radioelectronic measure-
ments. The elementary error here is the phase shift 
ϕ f . As in the case of other
elementary errors, for this error, the limits of the phase shift are estimated, and it
is assumed that the phase shift is uniformly distributed within these limits. But the
error in the result contains not 
ϕ f , but rather cos 
ϕ f . When 
ϕ f is distributed
uniformly, he quantity cos 
ϕ f has the so-called arccosine distribution.

When transformed elementary errors are present, their composition with the
other errors must be constructed according to adopted mathematical methods. The
universal numerical method described in Section 3.6 is convenient.

The distribution of the sum of elementary errors, for each of which a uniform
distribution is adopted, can be regarded as a normal distribution, if n > 4 and
they all have approximately the same limits. If, however, n ≤ 4 or the limits of
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the elementary errors are substantially different, then the composition of these
distributions must also be constructed.

We now return to the case when the elementary error has unsymmetric limits.
The transformation of these limits to a symmetric form with a shift by a j , creates
the temptation to introduce into the measurement result a correction corresponding
to the shift a j . One must be decisively cautioned against doing this: Information
about errors is too unreliable to use for correcting the result of a measurement.

In the calculations performed above, it was assumed that the elementary errors
are independent of one another. In some cases, this assumption is not justified. An
example is the case when several measuring devices, connected into a measuring
system or forming a measurement channel, are used to perform a measurement
and some influence quantity exceeds the limits of reference conditions for these
instruments. In this case, the measuring devices will acquire additional errors and
they could be dependent, and it must be taken into consideration. The method of
such calculations relates to the indirect measurements, and therefore, it is presented
in Section 6.6.

From n elementary errors, it is possible to single out 2m dependent errors. Then
(5.3) must be transformed into the following form:

θ = k

√√√√n−m∑
i=1

θ2
i +

m∑
µ=1

(θµ1 ± θµ2 )2, (5.7)

where θµ1 and θµ2 are the limits of pairs of dependent elementary errors with their
signs.

The method presented above for calculating errors is equally suitable for a priori
and a posteriori estimation, because at the synthesis stage, there is no difference
between these cases.

In conclusion, we shall discuss the formula

θ =
√√√√ n∑

i=1

θ2
i ,

which is often used in practice. This formula can be obtained under the assump-
tion that the elementary errors have a normal distribution and their limiting values
were calculated for one and the same confidence probability. Let σi be the stan-
dard deviation of the i th elementary error and θi = zpσi , where zp is the quantile
determined according to a normal distribution and one and the same confidence
probability for all i . It is obvious that

σ 2 =
n∑

i=1

σ 2
i .

We multiply both sides of this equality by z2
p:

z2
pσ

2 =
n∑

i=1

z2
pσ

2
i .
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But θ = zpσ and θi = zpσi From here we obtain the formula

θ =
√√√√ n∑

i=1

θ2
i . (5.8)

However, the limits of elementary errors are not estimated by probabilistic
methods, and a probability cannot be assigned to them. Moreover, there are no
grounds for using a normal distribution as the mathematical model of elementary
errors.

The formula presented above can be interpreted differently, namely, as a, par-
ticular case of formula (5.3) with k = 1[45]. The value k = 1 corresponds to a
confidence probability of 0.916, which explains the commonly held opinion that
this formula somewhat underestimates the error, i.e., that this formula is not reliable
enough.

On the other hand, this formula is widely used in practice. Its wide dissemination
can be regarded as an indirect but practical confirmation of the fact that a uniformly
distributed random quantity can be used as a model of conditionally constant
elementary errors.

Sometimes the elementary components are summed according to the formula


 =
k∑

f =1

H f +
n∑

i=1

θi .

Such summation, however, means that all elementary errors are assumed to be
absolutely constant. This situation is rare. If, however, it is agreed that condi-
tionally constant errors are also present, then the arithmetic summation means
that all elementary errors simultaneously assume their limiting values, and with
the same sign. This coincidence is unlikely. Although this formula satisfies the
principle of estimating the upper limit of errors, it is used less and less, and
primarily only for obtaining a rough estimate a single measurement error or in
the extreme case, as done above on page 129 simply to eliminate an erroneous
estimate.

5.5. Example: Calculation of Uncertainty
in Voltage Measurements Performed
with a Pointer-Type Voltmeter

We shall study several examples of the application of a class 1.0 pointer-type dc
voltmeter with the following characteristics:

(i) The upper limits of measurement ranges are 3, 7.5, 15, 30, and so on, up to
300 V.

(ii) The scale of the instrument has 75 graduations and starts at the 0 marker.
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(iii) The limits of permissible intrinsic error are ±1.0% of a span (it is a fiducial
error).

(iv) Full deflection of the pointer corresponds to a current of 15 × 10−6 A ±1%.
(v) Under the reference conditions, the temperature is equal to +20 ± 5 ◦C and

the measurements are performed with the instrument positioned horizontally.
In this case, we shall ignore all other influence quantities; we shall assume
that they are identical to their normal reference values.

Additional errors. A deviation of the temperature from the reference value causes
the indications of the instrument to change by not more than ±1.0% for each 10 ◦C
change in temperature. Inclination of the instrument by 5 ◦ from the horizontal
position changes the indications by not more than ±1% of the measurement limit.

5.5.1. A priori Estimation

Suppose that some piece of equipment is to be monitored by measuring the voltage
on several resistors. The equivalent output resistance (the source resistance) of the
equipment in one case is equal to about 10 k� and in all other cases does not
exceed 1 k�. The temperature of the medium can change from +10 ◦C to +25 ◦C
The slope relative to the horizontal position does not exceed 5◦.

We are required to estimate the measurement uncertainty. The uncertainty most
be expressed in the relative form.

Before the measurement, the value of the measured quantity is unknown. It will
supposedly be less than 3 V. The overlapping of limits in the voltmeter is equal to
3/7.5 = 0.4 and 7.5/15 = 0.5, after which these numbers repeat. Thus, the indi-
cation of the instrument drops below 0.4 − 0.5 of the upper limit of measurement,
then the range of measurement must be switched. Developing this point of view,
we shall assume that if the measured voltage is less than 0.4 × 3 V = 1.2 V, then
a different voltmeter must be used.

In the range 1.2–3 V, the largest relative error will occur when a voltage of the
order of 1.2 V is being measured. The error will have to be estimated for this worst
case.

The sources of error are as follows:

(1) the intrinsic error of the voltmeter;
(2) the reading error;
(3) the temperature error;
(4) the error introduced by the inclination of the instrument; and
(5) the error from the limited input resistance of the voltmeter.

We shall estimate these errors.

(1) Intrinsic error: Its limits will be

θin = ±1% × 1

0.4
= ±2.5%, |θin| = 2.5%.
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(2) Reading error: This error does not exceed 0.25 of a graduation. When mea-
suring 1.2 V at the limit 3 V, this gives

θα = ±0.25 × 3 × 100

75 × 1.2
= ±0.83%, |θα| = 0.83%.

(3) Additional temperature error: The maximum deviation of the temperature
from the normal value is (20 − 5) − 10 = 5 ◦C. For this reason

θT = ±1% × 5

10
= ±0.5%, |θT | = 0.5%.

(4) The additional error introduced by the 5◦ inclination of the instrument when
measuring 1.2 V will be

θl = ±1% × 3

1.2
= ±2.5%, |θl | = 2.5%.

(5) The errors {εR} from the limited input resistance of the voltmeter are as
follows. The input resistance of the voltmeter at the limit 3 V is

RV = 3

1.5 × 10−5
= 2 × 105 �.

The worst case occurs with the outside resistance R′
or = 10 k�.

The indications of the voltmeter correspond to the voltage on its terminals. This
voltage U is less than the emf E in the circuit:

U = RV

RV + Ror
E .

The error is

εR = U − E

E
= −Ror

RV + Ror

For R′
or = 10 k�

ε′
R = −10 × 103

10 × 103 + 2 × 105
× 100 = −4.8%

If the outside resistance is 1 k�, then ε′′
R = −0.5%.

The errors {εR} are absolutely constant for each unit being monitored. The
remaining errors are conditionally constant.

Let us now add all conditionally constant errors. We shall use (5.4), and we shall
assume that α = 0.95:


%,0.95 = 1.1
√

2.52 + 0.832 + 0.52 + 0.252 = 4%.

We now take into account the absolutely constant error. Its limits are

HRl = −4.8%, HRr = −0.5%,

but they are not known accurately enough to eliminate them by introducing the
correction. Therefore, in accordance with (5.6), we obtain


r,0.95 = −0.5 + 4 = +3.5%, 
l,0.95 = −4.8 − 4.0 = −8.8%

Thus, the error of the planned measurement will not exceed ∼10%.
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5.5.2. An Approximate a posteriori Estimation

We shall now estimate the measurement error in the example examined above,
assuming that the measurement has already been made. The significant difference
from the foregoing case is that now we have an estimate of the measured quantity.
Let the indication of the voltmeter in the case R′

or = 10 k� be 62.3 graduations.
Hence, the voltmeter is indicated

U = 62.3
3

75
= 2.492 V.

Suppose we found out that R′
or = 10 k� ± 0.5%. The error ε′

R was calculated
above: ε′

R = −4.8%. Now we can introduce the correction C ′
R :

C ′
R = +4.8 × 10−2 × 2.492 = +0.120 V.

Taking the corrections into account, we obtain

U ′ = U + C ′
R = 2.612 V.

The errors of the corrections are determined by the errors of the available values
of the resistances RV and Ror. We shall establish the relation between them.

C ′
R = −ε′

RU = Ror

Ror + RV
U = Ror

Ror + RV
× RV

Ror + RV
E = Ror/RV

(1 + Ror/RV )2
E .

To simplify the notation, let x = Ror/RV . Then

C ′
R = x

(1 + x)2
E .

We now construct the differential relations:

dx = 1

RV
d Ror − Ror

R2
V

d RV = x

(
d Ror

Ror
− d RV

RV

)
,

dC ′
R = E

(
dx

(1 + x)2
− 2x(1 + x)dx

(1 + x)4

)
= E

1 − x

(1 + x)3
dx,

dC ′
R = E

x(1 − x)

(1 + x)3

(
d Ror

Ror
− d RV

RV

)
.

In the relative form, transforming from differentials to increments, we obtain

εc

C ′

R

C ′
R

= 1 − x

1 + x

(

Ror

Ror
− 
RV

RV

)
.

As 
Ror and 
RV are independent, we shall regard each component of error of
the correction as an elementary error of measurement. Obviously, both components
are conditionally constant:

θC1 =
(

1 − x

1 + x

)
θRor , θC2 =

(
1 − x

1 + x

)
θRv

.
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The limits of error of the internal resistance of the voltmeter are determined by the
voltmeter class and are equal to ±1%. Therefore, because x = 5 × 10−2,

|θC2| =
(

1 − x

1 + x

)
1% = 0.9 × 1% = 0.9%.

The limits of the error in determining the input resistance of our apparatus (the
outside resistance for voltmeter) are equal to ±0.5%. Therefore,

|θC1| =
(

1 − x

1 + x

)
0.5% = 0.9 × 0.5% = 0.45%.

The limits of the remaining errors are as follows:

|θin| = 1% × 75/62 = 1.2%,

|θα| = 0.25 × 100

62
= 0.4%

|θT | = 0.5%,

|θl | = 1% × 75/62 = 1.2%.

These elementary errors can be assumed to be conditionally constant. According
to formula (5.4), for α = 0.95, we obtain


0.95 = 1.1
√

0.92 + 0.452 + 1.22 + 0.42 + 0.52 + 1.22 = 2.3%.

When the result of the measurement is written in accordance with its uncertainty,
only three significant figures can be retained:

Ũ ′ = 2.16 V, 
 = ± 2.3% (α = 0.95),

U ′(0.95) = 2.16 V ± 2.3%, or U ′(0.95) = (2.16 ± 0.06) V.

5.5.3. An Accurate a posteriori Estimation

The largest elementary errors were θC2, θin, and θl . How can they be reduced?
The first two can be reduced by taking into account the individual properties of
the voltmeter. If the voltmeter has a fresh table of corrections, then this can be
done. Assume that at the limit 3 V on marker 60, the correction is equal to +0.3
graduations, whereas at marker 70, it is equal to + 0.2 graduations. It can then be
assumed that the correction to the indication at 62.3 graduations is also equal to
+0.3 graduations. Therefore,

Cin = +0.3 × 3

75
= +0.012 V.

Taking this correction into account, the voltmeter gives

U ′′ = 2.492 + 0.012 = 2.504 V.

We shall assume that the limits of error in determining the correction, i.e., the
calibration errors, are known and are equal to ±0.2%. Converting to the indication
of the instrument, we obtain |θ ′

in| = 0.2 × 75/62 = 0.24%.
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With this correction, we have eliminated the systematic component of the error
of the voltmeter. The random component, however, remains, and it must be taken
into account. The dead band, according to the indicating electric measurement
instruments, can reach a value coinciding with the class designation of the instru-
ment. In our case, this value is 1% of 3 V. The random error does not exceed half
the dead band. Thus, the limits of random error are equal to

|
| = 0.5 × 1% × 75

62
= 0.6%.

The distribution of the random error in our case, when its limits have been esti-
mated, can be assumed to be uniform, as also the distributions of other conditionally
constant elementary errors.

The input resistance of the voltmeter can be measured. Assume that this mea-
surement has been done, and RV = 201.7 k� ± 0.2%. Then

εR = 10 × 103 × 100

(10 + 201.7) × 103
= −4.72%.

The correction will be

CR = +4.72 × 10−2 × 2.504 = +0.118 V.

Taking the correction CR into account, we obtain

U ′′ = 2.504 + 0.118 = 2.622 V.

The limits of error because the input resistance of the voltmeter is not known
exactly will now become smaller:

|θ ′
C2| = 0.9 × 0.2% = 0.18%, |θC1| = 0.45%.

The error θl can be reduced by taking greater care in positioning the instru-
ment horizontally. Assume that the deviation from the horizontal position does not
exceed ±2◦. Then

|θ ′
l | = 1 × 2/5 × 75/62 = 0.48%.

The temperature error and the reading error will remain the same.
Let us calculate the uncertainty again for α = 0.95:


0.95 = 1.1
√

0.242 + 0.62 + 0.182 + 0.452 + 0.482 + 0.52 + 0.42 = 1.3%.

We now write the result of the measurement as follows:

Ũ ′′ = 2.62 V, 
 = ±1.3% (α = 0.95), or U ′′(0.95) = 2.62 V ± 1.3%.

The example examined above shows clearly how the measurement uncertainty
decreases as one transfers from a priori to a posteriori estimation and then from
approximate to accurate error estimation.
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5.6. Methods for Calculating the Uncertainty
in Multiple Measurements

Multiple measurements are a classic object of mathematical statistics and the theory
of measurement errors. Under certain restrictions on the starting data, mathemat-
ical statistics give elegant methods for analyzing observations and for estimating
measurement errors.

Unfortunately, the restrictions required by mathematics are not often satisfied in
practice. Then these methods cannot be used, and practical methods for solving the
problems must be developed. But even in this case, the methods of mathematical
statistics provide a point of reference and a theoretical foundation.

In this chapter, the principal mathematical methods for solving the problem
mentioned above are presented. The situation corresponding to direct multiple
measurements, free of systematic errors, i.e., having only random errors, is studied.
Under this restriction, mathematical methods can be fully employed.

A separate result, i.e., a separate value of the random error, cannot be predicted.
But a large collection of random errors of some measurement satifies definite
laws. These laws are statistical (probabilistic). They are established and proved
in metrology based on the methods of mathematical statistics and the theory of
probability.

The problem can be solved best if the distribution function of the observations
is available. In practice, however, distribution functions are, as a rule, unavailable.

If the random character of the observational results is caused by the measurement
errors, it is usually assumed that the observations have a normal distribution.
The computational results based on this assumption do not, as a rule, lead to
contradictions, which probably happens for two reasons. First, the measurement
errors consist of many components. According to the central limit theorem, this
leads, in the limit, to the normal distribution. In addition, the measurements for
which accuracy is important are performed under controlled conditions, as a result
of which the distributions of their errors turn out to be bounded. For this reason,
their approximation by a normal distribution, for which the random quantity can
take on arbitrary values, leads to wider confidence intervals than the intervals that
would be obtained if the true distribution were known.

There are examples, however, when the observational results do not correspond
to the normal distribution. In addition, when the measured quantity is an average
value, the distribution of the observations can have any form. For this reason, the
hypothesis that the distribution of the observations is normal must, in principle, be
checked.

The methods of statistical calculations for observations that are distributed nor-
mally have been well developed and the required tables have been constructed. If,
however, the hypothesis that the distribution is normal must be rejected, then
the statistical analysis of the observations becomes much more complicated.
Mathematicians have been working to find, if not better than, at least satisfac-
tory estimates for parameters of distributions whose form has not been precisely
established [16, 31, 32].
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Random and quasirandom errors of multiple measurements are always estimated
based on the experimental data obtained in the course of the measurements, i.e., a
posteriori.

As was shown in Chapter 1, despite the existence of random errors, a measured
quantity can only be a quantity that is defined in a model as nonrandom and
constant. The problem is to find from the experimentally obtained data the best
estimate of the measured quantity.

The mathematical–statistical methods studied in Chapter 4 form the theoreti-
cal foundation for estimating measured quantities and their errors in the case of
multiple direct measurements. These methods can also be regarded as practical
methods, if the systematic components of the measurement error are negligible
compared with the random or quasirandom component.

In the general case, both the systematic and the random components of the
error must be estimated. The random error can be estimated only a posteriori; the
systematic error, however, can also be estimated a priori.

Consider first the case when the measurements are repeated to reduce the ran-
dom errors. Having n single measurements, we obtain {xi }, i = 1, . . . , n, where
xi = A + ζi and ζi = ψi + ϑi j ; i.e., the error has both random and systematic
components.

By repeating the measurements, we obtain information about the random error.
Information about the systematic error cannot be extracted from the measurements.
To estimate this error, it is necessary to know the properties of the measuring
instrument employed, the method of measurement, and the conditions under which
the measurements are performed.

It is important to mention that random components of all conditionally constant
errors now become a part of the random error of the measurement. Thus, the
remaining parts of conditionally constant errors in multiple measurements are
purely systematic errors. But in various measurements of the same measurand
performed by the same method, the values of these errors can vary.

Assume that the systematic error of the result of each observation (single mea-
surement) is known. Then, introducing the corrections Ci = −ϑi , we obtain a
group of corrected measurement results

xi = A + ψi .

Our problem is to find the estimate A = f (xi ). A mathematically well-founded
solution, which is unbiased, consistent, and efficient, can be found if the form of
the distribution of xi is known. Measurement errors can often be assumed to have
a normal distribution. The measurement results also have the same distribution. In
principle, it is possible to check whether the data obtained conformed to a normal
distribution (see the methods presented in Chapter 4). Admittedly, this process
requires many measurements; in practice, enough measurements to make such a
check are rarely performed, and it is usually simply assumed that the distribution
is normal.

For a normal distribution, as shown in Section 4.2, the arithmetic mean is the
optimal estimate of the center of the distribution X. As noted above, the arithmetic
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mean of the measurements is an unbiased, consistent, and efficient estimate of
the true value of the measured quantity only if the observations have a normal
distribution. Irrespective of the form of the distribution of the measurement errors,
however, the arithmetic mean has two important properties.

(1) The sum of the deviations from the arithmetic mean is equal to 0. Let
xi , . . . , xn be a group of observational results whose arithmetic mean is x̄ . We
construct the differences xi − x̄ for all i = 1, . . . , n and find their sum:

n∑
i=1

(xi − x̄) =
n∑

i=1

xi −
n∑

i=1

x̄ .

As
∑n

i=1 xi = nx̄ and
∑n

i=1 x̄ = nx̄,

n∑
i=1

(xi − x̄) = 0.

This property of the arithmetic mean can be used to check the calculations.
(2) The sum of the squares of the deviations from the arithmetic mean is mini-

mum. Consider the function

Q =
n∑

i=1

(xi − Ã)2.

We shall find A to minimize Q. For this reason, we find

d Q

d Ã
= −2

n∑
i=1

(xi − Ã)

and set d Q/d Ã = 0; hence, we obtain

n∑
i=1

(xi − Ã) = 0,

n∑
i=1

xi = n Ã, and Ã = x̄ =

n∑
i=1

xi

n
.

As d Q/d Ã < 0 if Ã1 < x̄ and d Q/d Ã > 0 if Ã2 > x̄ , for Ã = x̄ , we have the
minimum of Q.1

Although the sum of the squares of the deviations from the arithmetic mean is
minimum, this only means that in the class of estimates that are a linear function
of the measurement results, the arithmetic mean is the most efficient estimate of

1 Dr. E.R. Cohen has shown me another way to get this result:

Q =
n∑

i=1

(xi − Ã)2 =
n∑

i=1

(xi − x̄ + x̄ − Ã)2 =
n∑

i=1

(xi − x̄)2

+ 2(x̄ − Ã)
n∑

i=1

(xi − x̄) +
n∑

i=1

(x − Ã)2.

The second term is equal to zero, and the third one is always positive or equal to zero if
x̄ = Ã. Therefore, the choice Ã = x̄ gives the minimal value for Q.
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the measured quantity. This estimate becomes absolutely efficient if the errors are
distributed normally. For other distributions, as pointed out in Chapter 3, estimates
exist that are more efficient than the arithmetic mean. Obviously, these estimates
are no longer a linear function of the measurement results.

Thus, for the estimate of the measured quantity, we have

Ã =

n∑
i=1

xi

n
. (5.9)

Because of random errors, the measurement results are also random quantities;
if another series of measurements is performed, then the new arithmetic mean
obtained will differ somewhat from the previously found estimate.

The spread of the arithmetic means is characterized either by the variance of
the arithmetic means or by the standard deviation. In accordance with (4.5), the
standard deviation of the arithmetic mean is estimated from the experimental data
as follows:

Sx̄ =

√√√√√
n∑

i=1
(xi − x̄)2

n(n − 1)
. (5.10)

In addition, for A, it is possible to construct the confidence interval, determin-
ing the confidence limits of the random error in the measurement results. The
confidence interval is determined by the inequalities

Ã − 
α ≤ A ≤ Ã + 
α,

where 
α = tq Sx̄ , and tq is the q percent point of Student’s distribution and depends
on the confidence probability α and the number of degrees of freedom ν = n − 1
(see Table A.2).

Therefore, the random error ψ with probability equal to the confidence proba-
bility α has the limits ±
α:


α = tq Sx̄ . (5.11)

As one can see from what was said above, the random errors and confidence limits
of these errors can be estimated from the data obtained as a result of measurements.

The situation is different in the case of the systematic errors. The biasness,
characterized by the systematic errors, of the result of a measurement can be
estimated either with the help of more accurate means of measurement or based
on indirect data, including data on the metrological properties of the measuring
instrument employed to perform the measurements. The first case is pointless;
the more accurate measurement would replace the less accurate measurement.
The problem of estimating the systematic error would remain, except that now it
would pertain to the more accurate result. For this reason, the second case is the
main one.

In the case of multiple measurements, the most common variant is the one when
the most important systematic errors are eliminated with the help of corrections.
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Then the errors in determining the corresponding corrections must be taken into
account instead of the eliminated errors.

An important characteristic of multiple measurements is that the random com-
ponents of the elementary errors are manifested in multiple measurements and
contribute to the random error of the result. For this reason, when estimating ele-
mentary errors, it is desirable to neglect their random components. We shall return
to this question at the end of the section.

By summing the elementary errors freed of random components, we obtain
the limits of the systematic error of the result of measurement. The method of
summation is presented in Section 5.4.

Thus, we obtain an estimate Sx̄ of the standard deviation of the random error
of the result of measurement with a known number of measurements n and the
estimate of the limits of the systematic component θ .

In some cases, this separate estimate of the components of the uncertainty of
measurement is sufficient. This is the case, for example, if the result of measurement
is to be used for calculations together with other data, for which separate estimates
of the components of uncertainty are also known or if the result of a measurement
is to be compared with the results of other measurements, for which the uncertainty
components are determined separately.

Often, however, it is necessary to find the total uncertainty of a measurement,
including both the random and the systematic components. Not too long ago,
specialists on accurate measurements objected to this formulation of the problem.
They said that systematic and random errors are of a different nature, and for this
reason, they cannot be added. In 1965, I still listened to these assertions. However,
most people disagreed with this reasoning. Indeed, in a completed measurement,
these components are physically indistinguishable; i.e., physically they add: By
measuring A, we obtain Ã. The difference Ã − A contains both systematic and
randon components. When analyzing the error, theoretically or experimentally, we
decompose this error into its components: systematic and random. Obviously, the
inverse problem of adding the components is legitimate.

To solve the problem, we shall take into account only the conditionally constant
and random errors. Regarding both types of errors as random quantities, to com-
bine them, we must construct the composition of the corresponding distributions.
Unfortunately, this is too difficult in practice. For this reason, the uncertainty of a
measurement is sometimes calculated according to the formula

u = θ + 
α,

where θ is the limit of the systematic error and 
α = tq Sx̄ is the confidence limit
of the random error.

This formula is simple, but it is clear that it gives an obviously overestimated
estimate. A more plausible solution can be found by the following method [41],
[44].

In the general form, the error of a measurement result has three components:

ζ = η + ϑ + ψ.
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Therefore, the variance of measurement result is

V [ζ ] = V [ϑ] + V [ψ].

V [ζ ] has only two terms because V [η] = 0.
Estimates of V [ϑ] and V [ψ] can be found using formulas (3.15) and (5.10).

Denote them S2
ϑ and S2

x̄ . Denote also the combined variance V [ζ ] = S2
c , where Sc

is the combined standard deviation. Then the combined standard deviation Sc is

Sc =
√

S2
ϑ + S2

x̄ . (5.12)

Given Sc, the uncertainty of the measurement result could be calculated from the
formula

uc = tc Sc, (5.13)

if the coefficient tc was known; unfortunately, this coefficient is unknown.
As the initial data, i.e., the data on the components of the uncertainty, are not

known accurately, an approximate estimate of the coefficient tc can be used. In
[41], following formula was proposed for making such an estimate:

tc = 
α + θα

Sx̄ + Sϑ

.

This formula was constructed based on the following considerations. The coef-
ficient tq , determining the ratio of the confidence limit and the standard deviation
of the random error, is determined by Student’s distribution and is known. Given
estimates for θα and Sϑ , it can be assumed that the analogous coefficient

tϑ = θα/Sϑ

for the systematic error is also known.
It is natural to assume that the coefficient sought tc is some function of tq and tϑ ,

which corresponds to the same probability. The weighted mean of tq and tϑ for the
weights Sϑ/(Sx̄ + Sϑ ) and Sx̄/(Sx̄ + Sϑ ), respectively, was taken for this function,
which results in the proposed formula

tc = tq Sx̄ + tϑ Sϑ

Sx̄ + Sϑ

= 
α + θα

Sx̄ + Sϑ

. (5.14)

To use this formula, its accuracy must be estimated. The extreme cases are those
when the systematic error has a normal or uniform distribution. The distribution
of the random error of the arithmetic mean may be assumed to be asymptotically
normal.

If both terms have a normal distribution, then tq = tϑ , and as follows from
formula (5.14), tc = tq . As the composition of normal distributions gives a normal
distribution, the obtained value of tc is exact.

For the second case, the results of calculations based on the approximate formula
(5.14) must be compared with the results obtained from the exactly constructed
composition of normal and uniform distributions.
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Table 5.1. Characteristic quantiles for the composition of centered normal and
uniform distributions.

h/σ 0.50 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10

z0.95 (α = 0.90) 1.71 1.90 2.49 3.22 4.00 4.81 5.65 7.34 9.10
z0.975 (α = 0.95) 2.04 2.25 2.90 3.67 4.49 5.34 6.22 8.00 9.81
z0.995 (α = 0.99) 2.68 2.94 3.66 4.49 5.36 6.26 7.17 9.02 10.90

An expression for the distribution density of the sum of two unknown centered
random quantities, one of which has a normal distribution and the other has a
uniform distribution, is known from the theory of probability:

f (z) = 1

2h

∫ h

−h

1

σ
√

2π
e−(z−y)2/2σ 2

dy,

where h is equal to one half the interval in which the random quantity y is distributed
uniformly.

Setting σ = 1 and transforming to the probability distribution function, we find

F(z)
z>0

= 0.5 + 1

2h
√

2π

∫ z

0

∫ h

−h
e−(z−y)2/2dy dz.

The starting distributions are symmetric relative to 0. For this reason, the density of
the resulting distribution also has this property. We must find the limit of the confi-
dence interval corresponding to the probability α. For this reason, it is sufficient to
find either the quantile zr of the level r or the quantile of the level 1 − r , because
|zr | = |z1−r |. As α = 1 − 2r, r = (1 − α)/2. Obviously, r < 0.5 and zr > 0.

Table 5.1 gives values of z1−r calculated using the presented formula for α =
0.90, 0.95, and 0.99.

The relative error introduced by the use of the approximate formula (5.14) will
be

δ = uc − z1−r

z1−r
.

The comparison should be made with Sc = σc, because Sx̄ = σ = 1. In so doing,

σc =
√

σ 2 + h2

3
= σ

√
1 + 1

3

(
h

σ

)2

.

For this reason, introducing the coefficient tr = z1−r/σc, we obtain

δ = tc − tr
tr

.

The coefficient tr depends only on the configuration of the resulting distribution,
i.e., on the ratio of h and σ , and not on their absolute values. For this reason, a
series of values of this coefficient can be calculated from the data in Table 5.1.
These values are presented in Table 5.2.
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Table 5.2. Values of the combined standard deviation σc and of the coefficient tr as
a function of the parameters of the normal and uniform distributions.

h/σ 0.5 1 2 3 4 5 6 8 10

σc (σ = 1) 1.04 1.15 1.53 2.00 2.52 3.06 3.51 4.72 5.85

tr α = 0.90 1.65 1.64 1.63 1.61 1.59 1.58 1.57 1.56 1.55
tr α = 0.95 1.96 1.95 1.90 1.84 1.78 1.75 1.72 1.69 1.67
tr α = 0.99 2.57 2.54 2.40 2.24 2.13 2.05 1.99 1.91 1.86

We shall now once again turn to the approximate formula (5.14). The limits of
the confidence interval, which are determined based on the uniform distribution,
give θ . As r = (h − θ )/2h and r = (1 − α)/2,

θ = (1 − 2r )h = αh. (5.15)

The limit of the confidence interval for a normal distribution with the same confi-
dence probability will be


α = z 1−α
2

σ

where z 1−α
2

is the quantile of the standard normal distribution that corresponds to
the probability α.

Formula (5.14) assumes the form

tc =
z 1−α

2
σ + αh

σ + h/
√

3
.

The values of tc, calculated for the same ratios h/σ and confidence probabilities
as were used for calculating tr , are presented in Table 5.3.

The errors δ calculated based on the data given in Tables 5.2 and 5.3 are sum-
marized in Table 5.4.

Thus, comparing the results of exact calculations with the results of calculations
performed using the approximate formula (5.14) shows that the errors from the use
of the approximate formula are in all cases negative and their absolute magnitude
does not exceed 12% for α = 0.99, 6% for α = 0.95 and 2% for α = 0.90, which
shows that formula (5.14) can be used.

It should also be noticed that the error under study decreases as the distribution
of the systematic errors approaches the normal distribution.

Table 5.3. Values of the coefficient tc as a function of the parameters of the normal
and uniform distributions.

h/σ 0.5 1 2 3 4 5 6 8 10

t1c (α = 0.90) 1.63 1.61 1.60 1.59 1.58 1.58 1.58 1.57 1.57
t2c (α = 0.95) 1.89 1.84 1.79 1.76 1.74 1.73 1.72 1.70 1.69
t3c (α = 0.99) 2.38 2.26 2.11 2.03 1.97 1.94 1.91 1.87 1.84
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Table 5.4. Deviations of the coefficient tc from tr (in %).

h/σ 0.5 1 2 3 4 5 6 8 10

δ1 (α = 0.90) −1.2 −1.9 −1.8 −1.1 −0.6 0.0 0.8 0.6 1.2
δ2 (α = 0.95) −3.6 −5.5 −5.7 −4.1 −2.2 −1.3 0.0 0.5 1.0
δ3 (α = 0.99) −7.4 −11.0 −12.1 −9.4 −7.3 −5.5 −4.0 −2.2 −1.1

The scheme presented above for estimating the uncertainty of a measurement,
which contains both random and systematic components, is a general scheme. In
different particular problem, it can be substantially modified.

We also discuss the question of when the systematic or random component of
the uncertainty can be neglected.

Figure 5.2 shows plots, constructed based on the data in Table 5.1, of z1−r (h),
which correspond to the composition of normal and uniform distributions and to the
uniform distributions. Comparing the curves 1 with the values of z1−r of a normal
distribution (the points for h = 0), we can find the error introduced by neglecting
the systematic component. It is assumed that this error does not exceed 15%,

Figure 5.2. Quantiles of the levels 0.99, 0.95, and 0.90 for a composition of the normal
and uniform distributions (curves, 1) and for uniform distribution (straight lines, 2).
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then we obtain the limiting values of the ratio h/σ. Depending on the confidence
probability, these ratios are as follows:

α 0.90 0.95 0.99
h/σ 1.2 1.1 1.1

If the random component is neglected, then the error arising is determined by
the difference of the ordinates of the exact curve 1 and the straight line 2 for
fixed h. For the same 15% error, we obtain the condition under which the random
component can be neglected:

α 0.90 0.95 0.99
h/σ 3 4 7

It is obvious that when any component is neglected, the overall error decreases.
Thus, if h/σ < 1, then the systematic error can be confidently neglected, and if

h/σ > 7, then the random component can be neglected.
Admittedly, we do not know the exact values of the parameters h and σ ; we know

only their estimates θ and S. For this reason, to be rigorous, the upper limit of the
confidence interval for σ should be used instead of σ when determining whether
the random component of the error can be neglected, and the lower limit should
be used when determining whether the systematic component can be neglected.

It should be noted that in general, the number of measurements should be chosen
so that the random error of the arithmetic mean would be negligible compared with
the systematic error.

In summing random and systematic errors, we neglected the absolutely constant
systematic error. If this error is present, then its limits must be added arithmetically
to the obtained estimate.

The method studied above pertains to measurements whose errors are estimated
exactly. For measurements whose errors are estimated approximately, the proper-
ties of the measuring instruments employed are taken into account based on the
specifications.

We must now make a remark regarding the problem of taking into account the
intrinsic error of instruments in the case of multiple measurements. The point of
doing this is to avoid taking into account the random component of this error twice.
The possibility of such an overestimation is concealed in the fact that, on the one
hand, the spread in the results of single measurements reflects all sources of random
error, including also the random component of the intrinsic error of instruments,
whereas on the other hand, when estimating the elementary component contributed
by the intrinsic error of the instrument, this component also enters the calculation
as part of the intrinsic error.

To avoid double counting the random component of the intrinsic error of the
instrument, it must be eliminated from the intrinsic error when estimating the
limits of the corresponding elementary error; it is more difficult to remove it from
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the spreads in the results of single measurements or the parameter characterizing
them.

In the case when digital instruments are employed, the problem can be solved
comparatively simply. For this reason, it is sufficient to drop into the calculation
the second term ±(b + q) in the formula or, if the error is expressed according to
formula (2.2), replace δ by δ′ = c − d .

In the case of analog instruments, this problem must be solved depending on
the properties of the particular instruments. For electric measuring instruments,
for example, the random component of the intrinsic error is standardized together
with the intrinsic error by prescribing the permissible limits of the dead band. As
pointed out above, the limit of random error is equal to one half the dead band.
When the corresponding elementary error of a multiple measurement is estimated,
the limit of intrinsic error of the instrument must be reduced by one half the limit
of the dead band.

Naturally, the elementary error need not be reduced, but this random component
can be taken into account when calculating the variance or the standard deviation
of the measurement result. For this reason, the variance of the random component
must be calculated from the random component of the intrinsic error of the instru-
ment, and then its value must be subtracted from the estimate of the variance of
the measurement result.

We shall return to the problem of combining the systematic and random compo-
nents of the uncertainty. This problem is significantly simplified, if the systematic
component has many components and it can be assumed that it has a normal dis-
tribution. For this reason, in practice, it is sufficient that the systematic component
consist of five or more elementary errors with approximately the same limits. If
the number of measurements exceeds 20, then when calculating the limits of the
systematic and random components, the quantile coefficient will be the same for
the same confidence probability. We shall have 
α = t Sx̄ and θα = t Sϑ . As before,
S2

c = S2
ϑ + S2

x̄ or t2S2
c = t2S2

ϑ + t2S2
x̄ . From here, it follows that

t Sc =
√

(t Sϑ )2 + (t Sx̄ )2

or because uc = t Sc,

uc =
√

θ2
α + 
2

α. (5.16)

Clearly, this uncertainty corresponds to the same confidence probability for which

α and θα were calculated.

Now we shall discuss the absolutely constant elementary errors. Their limits
are added to the sum of the other errors using the same procedure as that studied
above for single measurements:

ut =
k∑

f =1

H f + uc, (5.17)

where {H f }, f = 1, ..., k, are the limits of the absolutely constant elementary
errors.



5.7. Comparison of Different Methods 149

We note that if some elementary errors have unsymmetric limits, then they
are represented by symmetric limits after being shifted relative to the result of
measurement by a j . The calculations are performed by the same method as in the
case of single measurements. We recall once again that the biases a j cannot be
compensated by introducing corrections: The error estimates are too unreliable to
change the measurement result.

We shall now make some notes regarding multiple measurements with
quasirandom errors. The main problem here is how to construct the composition
of the distributions of the quasirandom and systematic errors. The distribution of
the quasirandom error is represented by a histogram, which is constructed from
the experimental data. The distribution of the systematic error, however, is most
often obtained in an analytic form, i.e., in the form of an equation. The latter
equation, however, is easily transformed into a histogram, after which the problem
of constructing the composition of two histograms is solved by the numerical
method studied in Chapter 3.

Finally, we note that when measuring average quantities (which is precisely
when quasirandom errors can appear), the systematic errors are often negligibly
small, which in general eliminates me problem of combining errors.

5.7. Comparison of Different Methods for Combining
Systematic and Random Errors

The foregoing method for combining systematic and random errors is not the only
method.

(1) The U.S. National Institute of Standards and Technology (NIST) gives in
[21] the formula

u = θ + 
α, (5.18)

where θ =
√∑m

i=1 θ2
i , if {θi }, i = 1, . . . , m, are independent systematic compo-

nents, and θ = ∑m
i=1 θi , if they are dependent, and 
α = tq Sx̄ .

First, [21] is a working document of NIST, an organization that is especially
interested in the problems of checking and calibrating measuring instruments.
Measurements in this case can have absolutely constant elementary errors more
often than in other cases. If such components predominate, then formula (5.18)
is justified. But this method of calculating errors cannot be extended to arbitrary
measurements, because in most cases, it results in overestimation of the uncertainty.
These formulas are also mentioned in [3].

It is necessary to note that NIST issued in l994 Guidelines [51], where combined
uncertainty is calculated in accordance with the Guide [1].

(2) The standard reference [3] and the manual [14] preceding it give two different
formulas for calculating the uncertainties with confidence probabilities of 0.95 and
0.99:

uc,0.99 = θ + t0.95Sx̄ , uc,0.95 =
√

θ2 + (t0.95Sx̄ )2.
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The coefficient t0.95 is chosen according to Student’s distribution in both cases for
the confidence probability 0.95(q = 0.05) and ν = n − 1.

The formulas appear to be strange. They are not related with probabilistic re-
lations, whereas they have a stated confidence probability of 0.99 or 0.95 to the
result.

(3) Before the Guide [l] was published, the working group ISO/TAG4/ WG3 is-
sued several drafts of it. The Fourth Draft contained a new method for measurement
uncertainty calculation.1 This method was reflected in [19].

The elementary systematic errors are regarded as uniformly distributed random
quantities. However, the limit of their sum is calculated with the formula θ =√∑n

i=1 θ2
i , i.e., without using the indicated model.

The systematic and random errors are combined with a formula that is essen-
tially the same as (5.13). The only difference lies in the coefficient tc. Here the
coefficient is found from Student’s distribution corresponding to the selected con-
fidence probability and the effective degree of freedom νeff . The following formula
is given to calculate νeff:

S4
c

νeff
= S4

x̄

ν
+

m∑
i=1

(
θ2

i

3

)2

.

It is assumed here that the random component of uncertainty has a degree of
freedom ν = n − 1, and each component of the systematic error has a degree of
freedom equal to one. However, the notion of a degree of freedom is not applicable
to random variables with a fully defined distribution function. Therefore it is
impossible to assume that a quantity with uniform distribution within given limits
has a degree of freedom equal to one (or to any other finite number). Thus, the
formula under discussion is not mathematically grounded.

(4) The Guide’s [l] method. In general, this method is the same method that
was described in the Fourth Draft (and in other drafts). But the shortcoming of the
Fourth Draft is avoided here as suming the coefficient tc to be constant: t ′

c = 2 for
α = 0.95 and t ′′

c = 3 for α = 0.99.
(5) Method proposed in this book. The resulting formulas are (5.13) and (5.14).
We shall compare all methods enumerated above for summing the systematic

and random errors in two numerical examples.
Suppose that as a result of some measurement the following indicators of its

errors were obtained:

Sx̄ = 1, n = 16, θ = 3.

Suppose also that the random errors have a normal distribution and that the sys-
tematic errors have a uniform distribution. Then for the exact solution we can take

1 “Guide to the Expression of Uncertainty in Measurement; Fourth Draft.” July 13, 1990.
ISO/TAG4/WG3.
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the confidence limits presented in Table 5. 1. As usual, we shall take α1 = 0.95
and α2 = 0.99. Then

uT,0.99 = 4.49, uT,0.95 = 3.67.

Here there is an error: We assumed that Sx̄ = σx̄ . But for n = 16, this error is not
significant, and we shall neglect it.

We shall present the computational results obtained using all of the methods
examined above.

(1) Reference [21]. The coefficients of Student’s distribution with ν = n − 1 =
15 and the indicated values of the confidence probabilities will be as follows:

t0.99(15) = 2.95, t0.95(15) = 2.13,


0.99 = 2.95 × 1 = 2.95, 
0.95 = 2.13 × 1 = 2.13.

Therefore, u1,0.99 = 3 + 2.95 = 5.95 and u1,0.95 = 3 + 2.13 = 5.13.

(2) Reference [3]. We shall make use of the calculations that were just
performed:

u2,0.99 = 3 + 2.13 × 1 = 5.13, u2,0.95 =
√

32 + (2.13)2 = 3.68.

(3) Reference [19].

S2
ϑ = 9/3 = 3, Sϑ = 1.73,

S2
c = 1 + 3 = 4, Sc = 2.

We shall calculate the effective number of degrees of freedom:

42

νeff
= 1

15
+ 32,

16

νeff
= 9.07, and νeff = 2.

Next, we find from Student’s distribution t3,0.99 = 9.9 and t3,0.95 = 4.3. Corre-
spondingly, we obtain

u3,0.99 = 9.9 × 2 = 19.8, u3,0.95 = 4.3 × 2 = 8.6.

(4) Reference [1]. We have, in this case, Sc =
√

S2
x̄ + S2

ϑ = √
1 + 3 = 2.0. Be-

cause t0.99 = 3 and t0.95 = 2, we obtain

u4,0.99 = 3 · 2 = 6, u4,0.95 = 2 · 2 = 4.

(5) The formulas (5.13) and (5.14) give Sϑ = 1.73 and Sc = 2.0.

t5,0.99 = 2.95 × 1 + 0.99 × 3

1 + 1.73
= 5.92

2.73
= 2.17,

t5,0.95 = 2.13 × 1 + 0.95 × 3

1 + 1.73
= 4.98

2.73
= 1.82,

u5,0.99 = 2.17 × 2 = 4.34, u5,0.95 = 1.82 × 2 = 3.64.
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Table 5.5. Errors of different methods of uncertainty
calculation, for example, with θ = 3, δx = 1, n = 16.

(ui − uT )/uT × 100%

Method of computation α = 0.99 α = 0.95

1 32 39.0
2 14 0.3
3 340 132.0
4 34 6.0
5 3 0.8

Table 5.6. Errors of different methods of uncertainty
calculation, for example, with θ = 0.5, δx = l, n = 16.

(ui − uT )/uT × 100%

Method of computation α = 0.99 α = 0.95

1 29 30
2 2 7
3 13 8
4 12 2
5 4 3

We shall compare the estimated uncertainties with the exact values uT,0.99 and
uT,0.95 initially presented for the corresponding confidence intervals. The results
are summarized in Table 5.5. The errors for the case θ = 0.5 and the previous
values Sx̄ = 1 and n = 16 were calculated analogously. The results are presented
in Table 5.6. In comparison with the previous example, method 4 and especially
method 3 in this case show a significant decrease in error. It is not surprising
because now the systematic component is insignificant relative to the random
component.

The examples presented show the following:

(a) As expected, the method of [19] cannot be used when the systematic error is
significant.1

(b) The method from the standard reference [3], irrespective of the remarks made
above, gave in both examples satisfactory results.

1 The shortcomings of this method were discussed in the report “The U.S.A. and the
U.S.S.R. Standards for Measurement Uncertainty” given by S. Rabinovich at the Mea-
surement Science Conference in Anaheim, CA, January 31 and February 1, 1991.
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(c) The method of [21], as expected, gave in the examples studied estimates that
were too high.

(d) Method 4 is good if the systematic component is small relative to the random
component.

(e) The formulas (5.13) and (5.14) gave the best results in both examples.

Examples are not, of course, proof, but they nonetheless illustrate well the
consideration stated above.

5.8. Essential Aspects of the Estimation of Measurement
Errors when the Number of Measurements Is Small

In practice, measurements are often performed with a very small number of ob-
servations, for example, two or three observations. This amount is not enough for
statistical analysis, and such measurements cannot be called multiple measure-
ments. At the same time, they are also not single measurements.

What is the point of this seemingly strange choice of the number of measure-
ments? Analysis shows that this small amount checks the suitability of the model
selected for the object of study. For example, when the diameter of a shaft is be-
ing measured, it is measured at several locations along the shaft and in different
directions. If the conditions under which the measurements are performed are suf-
ficiently stable and the model (cylinder) corresponds to the object (shaft), then the
differences between the single-measurement results should be small, and in any
case less than twice the error of a single measurement. If the difference between
the measurements is large, then it is pointless to use the selected measurement
method. If the difference between the measurements is small, then the question
arises of what should be regarded as the result of a measurement and what is its
error.

In this case, in principle, the result of any single measurement can be used
as the result of the measurement. But because the measurements have already
been performed, it would still be nice to use them somehow. For this reason, the
arithmetic mean of the observational results is used as the result of measurement.
In this respect, this case is no different from the case of multiple measurements.
However, the situation is different with regard to the measurement uncertainty.
Here two cases must be borne in mind.

(1) The difference between the observational results is insignificant, i.e., three
or more times less than the limit of error. This result means that the model cor-
responds well to the object and that the random component of the error of the
observational results is small. Regarding systematic errors, because the conditions
under which the observations are performed are constant and the measuring instru-
ments are not changed, the systematic error will be the same for all measurements.
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For this reason, in this case, the measurement error is also the error of a single
measurement.

(2) The difference between the observational results is significant. Let us see
how the measurement error can be estimated in this case.

The difference between the largest and the smallest values of n observations
is called in mathematical statistics the range Rn of the observations in a sample.
The distribution function of the range is tabulated for normally distributed random
quantities. Assuming that the random error of a single measurement has a normal
distribution, we can write

P{Rn ≤ a} = α,

where a is the limit chosen for Rn. Next, assume that we have three single mea-
surements and that α = 0.95.

From the table,1 we find, for α = 0.95 and n = 3, that a = 3.3σ or σ = a/3.3.
Let a = b
, where 
 is the limit of error of a single measurement. But for

α = 0.95, the limit of random error can be estimated as


1 = 1.96σ = 1.96

3.3
a = 0.594b


Let the systematic error consist of more than four components. Then


 =
√

θ2 + 
2
1 , θ =

√

2 − 
2

1 = 

√

1 − 0.353b2.

The radicand must be greater than 0. Then the maximum value of the coefficient
is bm = 1.7.

We shall now consider the error of the arithmetic mean. The standard deviation
in this case will be σx̄ = σ/

√
n = σ/

√
3. From here, we find the limiting value of

the random error:


0.95 = t0.95σx̄ = 
1√
3

= 0.594√
3

b
.

The limiting value of the systematic error has already been estimated:

θ = 

√

1 − 0.353b2.

For the total measurement error, we obtain from here the expression


x̄ =
√

θ2 + 
2
α = 


√
(1 − 0.353b2) +

(
0.594b√

3

)2

= 

√

1 − 0.235b2.

1 See, for example, A. Hald, Statistical Theory With Engineering Applications (Wiley, New
York, 1952).
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Now we can estimate the decrease in the error of the arithmetic mean compared
with the error of a single measurement with n = 3 measurements: µ = 
x̄/
 =√

1 − 0.235b2

b = 0.5, µ = 0.97,

b = 1.0, µ = 0.87,

b = 1.5, µ = 0.69,

b = 1.7, µ = 0.57.

The case b = 1.7 means that the entire error of a single measurement is determined
by the random component. In this case, the measurement should be designed as a
multiple measurement.

For b = 1.0, we have µ = 0.87; i.e., the error in the measurement result is equal
to the error in a single measurement.

Thus, if we assume that the range, i.e., the largest difference between the mea-
surements, for n = 3 can reach the limit of permissible error of a single mea-
surement, then the error of the arithmetic mean will be approximated the same as
the error of a single measurement. In addition, requiring that the limit of error of
a single measurement be the smallest fraction of the range will not significantly
reduce the estimate of the error of the arithmetic mean.

5.9. General Plan for Estimating
Measurement Uncertainty

The purpose of this section is to give, without getting into details, an overall plan
for estimating the uncertainties of direct measurements. This plan should help
the reader concentrate on the essential points of each step in me solution of the
problem.

1. Analyze the initial data.
1.1. Study the measurement problem. For this, one must first get an idea of

the object whose parameter is being measured, the purpose of the measurement,
and the required measurement accuracy. In connection with these questions, it is
necessary to determine a model of the object and to try to check that the parameter
to be measured (the measured quantity) corresponds to the required measurement
accuracy. Next, it is necessary to write out the physical quantities characterizing
the surrounding environment and affecting the size of the measured parameter,
to estimate their nominal values and range of variation, and to determine how
these quantities must be measured, if the measurement is being planned, or were
measured, if the measurement has already been performed.

1.2. Establish which of the metrological properties of the measuring instruments
chosen for the measurement, or already employed in performing the measurement,
are important for the given measurement.
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2. Prepare the data for the calculations.
2.1. Compile a list of all possible elementary errors in the given measurement.
2.2. Estimate the limits of all elementary errors. Express them in the form

of absolute or relative errors and scale to the input of the measuring apparatus,
instrument, or channel.

2.3. Determine whether it is useful to introduce corrections and the possibility
of obtaining point estimates of the corresponding elementary errors necessary
for this. This question must first be resolved for the dominant elementary errors.
Determine the corrections to be made. Estimate the limits of inaccuracy of each
correction, and add them to the list of elementary errors.

2.4. Check the independence of the elementary errors. If the errors ε1 and ε2

from different causes depend on some third physical quantity, then these errors
will be dependent. To eliminate this dependence, it is often sufficient to introduce
a new elementary error that reflects the effect of this third quantity on the result of
measurement. Then, instead of ε1 and ε2, we shall have new elementary errors ε′

1
and ε′

2, which can now be regarded as being independent.
2.5. Divide all elementary errors into conditionally and absolutely constant

errors, and single out those errors whose limits differ in absolute magnitude, i.e.,
are unsymmetric relative to the result of measurement. If the measurement is
multiple, then it is necessary to determine whether its error is purely random or
quasirandom. Estimate the confidence limits of this error.

2.6. Estimate the quantities necessary for calculating the additional errors. For
this reason, it is desirable to measure these quantities; this process is necessary
if one intends to introduce the corresponding corrections. In the case when the
limiting value of the additional error is estimated, it is usually sufficient to have
the limiting value of the influential quantity.

2.7. Estimate the possible change in the intrinsic error of the instruments over
the time period since they were calibrated. If there are grounds for assuming that
the intrinsic error could have exceeded permissible values, then such instruments
must be rechecked before performing the measurement and, if necessary, adjusted
or recalibrated.

3. Calculate the result of measurement.
3.1. In the case of single measurements, the result of a measurement is often

obtained directly from the indication of the measuring instrument, and no calcu-
lations are required for this. Sometimes, however, the indication of an instrument
in units of the scale graduations must be multiplied by the scale factor, corrections
must be introduced, and other nonspecific calculations must be performed. In the
case of multiple measurements, the arithmetic mean is usually taken as the result
of measurement. However, a different algorithm, determined by the definition of
the measured quantity, can also be used. The corrections, if they are the same for
all single measurements, can be introduced in the arithmetic mean and not in the
result of each measurement.

3.2. A priori estimation of error or uncertainty is usually made for the least
favorable case. If multiple measurement is planned, then the possible value of the
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standard deviation is taken based on recommendations of experts. The methods
for performing the calculations were presented in this chapter.

3.3. A posteriori estimation of error or uncertainty is performed using the meth-
ods presented in this chapter.

3.4. The form in which the results of measurement are presented and their error
or uncertainty were presented in Chapter 1.



6
Indirect Measurements

6.1. Basic Terms and Classification

Indirect measurement is a measurement in which the value of the unknown quantity
sought is calculated using measurements of other quantities related to the mea-
surand by some known relation. We shall call these other quantities measurement
arguments or, briefly, arguments.

In an indirect measurement, the true value of a measurand A is related to the true
values of arguments A j ( j = 1, . . . , N ) by a known function f . This relationship
can be represented in a general form as

A = f (A1, . . . , AN ). (6.1)

This equation is called a measurement equation. The specific forms of measure-
ment equations can be considered as mathematical models of specific indirect
measurements.

Various classifications of indirect measurement are possible. We shall limit
ourselves to classifications that will be useful for our purposes.

From the perspective of conducting a measurement, we shall distinguish single
and multiple indirect measurements. In single measurements, all arguments are
measured once. In multiple measurement, all arguments are measured several
times.

According to the form of the functional dependency (6.1), we shall distinguish
linear and nonlinear indirect measurements. In the case of a linear indirect mea-
surement, the measurement equation has the form

A = b0 +
N∑

j=1

b j A j , (6.2)

where {b j } are constant coefficients. Nonlinear indirect measurements are diverse,
and therefore, it is impossible to represent all of them with one general form of
measurement equation.

The physics of the processes of indirect measurements gives us another im-
portant classification criterion. To motivate this classification, let us compare the
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accurate measurement of the density of a solid, and the measurement of the tem-
perature coefficient of the electrical resistance of a resistor.

To measure the density of a solid, its mass and volume should be measured
independently, with consistent accuracy.

In the temperature coefficient measurement, the resistance of the resistor and
its temperature are measured simultaneously, which means that the measurements
of these arguments are not independent. Thus, we shall distinguish dependent and
independent indirect measurements.

Indirect measurements, just like direct measurements, are divided into static and
dynamic. Static indirect measurements can be different depending on the properties
of the measured arguments. If the measured arguments can be regarded as being
constant in time, then the indirectly measured quantity is also constant; i.e., we
have the usual static situation.

However, the measured quantity can also be constant when the arguments vary.
For example, suppose we are measuring the resistance of a resistor by the ammeter
and voltmeter method, and the voltage of the source changes in time according to
the conditions of the measurement. Although the measured arguments change, the
measured quantity remains unchanged.

To obtain the correct result in the case under study, the arguments must be
measured with instruments such that the arguments do not change significantly
over the time interval during which the indications of the instruments settle down.

6.2. Correlation Coefficient and its Calculation

The traditional methods for estimating the uncertainty of indirect measurements, as
pointed out in the Guide [1], include the calculation of the correlation coefficient.
Later in this book, we shall develop a new theory, which obviates any need for the
correlation coefficient. However, given the traditional importance of the correlation
coefficient and a great deal of confusion in metrology with its calculation,1 it makes
sense to describe here a clear and correct procedure for practical calculation of the
correlation coefficient.

The mathematical foundation and methods of the correlation coefficient calcu-
lations can be found in many books on the Theory of Probability and Mathematical
Statistics. I refer to Mathematical Statistics by B.L. van der Waerden [52].

Consider two random quantities X and Y with mathematical expectations equal
to zero (E[X ] = 0 and E[Y ] = 0) and finite variances. Denote their variances as
V [X ] = σ 2

X and V [Y ] = σ 2
Y .

The variance of a random quantity Z = X + Y can be calculated using the
equation

V [Z ] = E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ]. (6.3)

The last term E[XY ] is named second mixed moment or covariance.

1 I agree with R.H. Dieck that “probably one of the most misunderstood and misused
statistics is the correlation coefficient” [22].
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The covariance divided by the square root of the product of variances σ 2
Xσ 2

Y
gives the correlation coefficient ρXY :

ρXY = E[XY ]

σXσY
.

The value of the correlation coefficient always lies within [−1, +1], and if |ρXY | =
1, then there is a linear functional dependency between X and Y. When ρXY = 0, X
and Y are uncorrelated. But it does not mean they are independent. Otherwise,
when 0 < |ρXY | < 1, the nature of the dependency between X and Y cannot be
determined unambiguously: It can be stochastic as well as functional nonlinear
dependency. Therefore, in the last case, if the knowledge about the nature of the
dependency between X and Y is required, it can only be obtained based on physical
properties of the problem rather than inferred mathematically.

From the above formulas, we obtain

σ 2
Z = σ 2

X + σ 2
Y + 2ρXY σXσY . (6.4)

In practice, we have to work not with the exact values of parameters of random
quantities but with their estimates. So, instead of variances σ 2

Z , σ 2
X , σ 2

Y and the
correlation coefficient ρXY , we have to use their estimates S2

Z , S2
X , S2

Y (we will also
use interchangeably S2(A) to denote an estimate of the variance of random quantity
A), and rXY . If n is the number of measured pairs (xi , yi ) of random quantities X
and Y (i = 1, . . . , n), and x̄ and ȳ are averages over n observed values of X and
Y , then

S2
X =

n∑
i=1

(xi − x̄)2

n − 1
, S2

Y =

n∑
i=1

(yi − ȳ)2

n − 1
.

The estimate of E[XY ] will be

m XY =

n∑
i=1

(xi − x̄)(yi − ȳ)

n − 1
.

Then, rXY = m XY /SX SY .

Thus, the formulas for calculations are

rXY =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)SX SY
, (6.5)

S2
Z = S2

X + S2
Y + 2rXY SX SY. (6.6)

The estimates of the variances of the average values x̄ and ȳ are known to be

S2
x̄ = S2

X

n
and S2

ȳ = S2
Y

n
.
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Then, by dividing (6.6) by n, we obtain the estimate of the variance of the mean
value of Z :

S2
Z̄ = S2

x̄ + S2
ȳ + 2rXY Sx̄ Sȳ . (6.7)

The correlation coefficient estimation here is the same as in (6.5). One can also
use Sx̄ and Sȳ for the calculation of the correlation coefficient estimation using the
fact that SX SY = nSx̄ Sȳ . Then, (6.5) will change to the following:

rXY =

n∑
i=1

(xi − x̄)(yi − ȳ)

n(n − 1)Sx̄ Sȳ
. (6.8)

It is necessary to stress that the number of realizations of X and Y (e.g., the
number of measurements of X and Y ) must be the same. Moreover, each pair of
these realizations must be obtained under the same conditions, for example, at the
same time, at the same temperature, using measuring instruments with the same
dynamic characteristics (in the case of dynamic measurements), and so on.

The theory of correlations says that realizations xi and yi must belong to the
same event i . A clear illustration of this statement is given by the classic ex-
ample of the accuracy analysis of firing practice. Here, each event is one shot.
Each shot i is described by a pair of values xi and yi that express the devia-
tion of the bullet from the center of the target in orthogonal coordinates. In the
case of an indirect measurement, one event is the set of matched measurement
results of all arguments. This event corresponds to a point in the multidimen-
sional space with arguments as coordinates. We shall call this point a measurement
vector.

In the above-mentioned example of the measurement of the temperature coef-
ficient of the electrical resistance of a resistor, each pair of measurements of the
resistance and temperature is a measurement vector.

6.3. The Traditional Method of Experimental
Data Processing

The processing of experimental data obtained in a measurement consists of two
steps. In the first step, we estimate the value of the measurand, and in the second
step, we calculate the inaccuracy of this estimate.

In an indirect measurement, the first step traditionally is based on the assumption
that the estimate Ã of the measurand A can be obtained by substitution Ã j for A j

in (6.1):

Ã = f ( Ã1, . . . , ÃN ). (6.9)

The second step, also traditionally, is solved by expansion of the function (6.1) in
a Taylor series.
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Usually the Taylor series is written in the form of an approximate value of the
given function, which is brought to its true value with the help of corrections. We
want, however, to work with errors rather than with corrections. Thus, we shall
therefore write the series in such a form that the approximate value of the function
is expressed by adding something to its true value.

To simplify further calculation, suppose that the number of arguments N = 2.
Then we have the Taylor series in the form:

f ( Ã1, Ã2) = f (A1, A2) +
(

∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)
f (A1, A2)

+ 1

2!

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)2

f (A1, A2) + · · ·

+ 1

m!

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)m

f (A1, A2) + Rm+1, (6.10)

where Ã1 = A1 + ζ1, Ã2 = A2 + ζ2 (ζ1 and ζ2, the errors of Ã1 and Ã2), and Rm+1

is the remainder term.
The remainder term can be expressed in the Lagrange form:

Rm+1 = 1

(m + 1)!

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)m+1

f (A1 + v1ζ1, A2 + v2ζ2), (6.11)

where 0 < v1,2 < 1.
If the indirect measurement is linear, all terms, except the linear one, are equal

to zero.
The general form of the error of an indirect measurement is

ζ = Ã − A = f ( Ã1, Ã2) − f (A1, A2).

Turning to the Taylor series, one obtains

ζ =
(

∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)
f (A1, A2)

+ 1

2

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)2

f (A1, A2) + · · · + Rm+1. (6.12)

In practice, however, only the first linear term is used for error calculations:

ζ = ∂ f

∂ A1
ζ1 + ∂ f

∂ A2
ζ2.

The partial derivatives above are customarily called influence coefficients. We
shall denote them as follows:

w j = ∂ f

∂ A j
, j = 1, . . . , N .
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Now the above equation can be written in the general form:

ζ =
N∑

j=1

w jζ j . (6.13)

Note that all partial derivatives are calculated for the estimates Ã1, Ã2 because the
true values A1, A2 are unknown.

Putting aside for a while absolutely constant errors, we can write

ζ j = ϑ j + ψ j ,

where ϑ j and ψ j are conditionally constant and random components of the error,
respectively. So, (6.13) takes the form:

ζ =
N∑

j=1

w jϑ j +
N∑

j=1

w jψ j . (6.14)

The last formula says that, in indirect measurements, not only the systematic error
consists of components, but so also does the random error.

We shall consider in this section the random errors only, which means there are
no systematic errors in the argument estimation, i.e., that E |ζ1| = 0 and E |ζ2| = 0.
We shall take these errors into account later, in Section 6.7.

The most important characteristic of a random error is its variance. In accordance
with the mathematical definition of the variance, we obtain from (6.13), for N = 2,

V [ζ ] = E[(w1ζ1 + w2ζ2)2] = w2
1 E
[
ζ 2

1

]+ w2
2 E
[
ζ 2

2

]+ 2w1w2 E[ζ1 × ζ2].

This formula is different from (6.3) only in the notations. Therefore, one can write

σ 2 = w2
1σ

2
1 + w2

2σ
2
2 + 2ρ1,2w1w2σ1σ2, (6.15)

where

σ 2 = V [ζ ] = E[ζ 2], σ 2
1 = E

[
ζ 2

1

]
,

σ 2
2 = E

[
ζ 2

2

]
, and ρ1,2 = E[ζ1 × ζ2]

σ1σ2
.

We should like to point out that the variance of a random error of the measure-
ment result is identical to the variance of the measurement result:

V [ζ ] = V [ Ã].

Also note that (6.15) has three items, which corresponds to the case when N = 2.

When N = 3, we shall have six items. So, with the number of arguments increas-
ing, the complexity of calculations increases rapidly.

In (6.15), the values of variance σ 2
j and correlation coefficient ρk, l are unknown

and, in practice, their estimations S2
j and rk, l are used instead. Taking into account

this substitution and assuming the general case of N arguments, (6.15) becomes

S2( Ã) = S2
r =

N∑
j=1

w2
j S2( Ã j ) + 2

∑
k<l

rk, lwkwl S( Ãk)S( Ãl). (6.16)
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The notation S2
r is introduced to stress that this estimate of variance reflects the

random errors only.
For estimating the variance and correlation coefficient, we have the formulas

S2
j = S2( Ã j ) = 1

n(n − 1)

n∑
i=1

(x ji − x̄ j )
2,

rk,l =

n∑
i=1

(xki − x̄k)(xli − x̄l)

n(n − 1)S( Ãk)S( Ãl)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.17)

Here, n is the number of measurement vectors. The fact that realizations xki and
x pi have the same subscript i means that these realizations must be taken from the
same vector i .

If measurements of all arguments are independent, i.e., ρk,l = 0, then (6.16) is
simplified:

S2
r =

N∑
j=1

w2
j S2( Ã j ).

This equation gives the following expression for the standard deviation:

Sr =
√

w2
1 S2( Ã1) + · · · + w2

N S2( ÃN ). (6.18)

The last two formulas are often called the error propagation formulas, although
in reality they express the propagation of variances.

Although (6.18) was deduced for the random errors only, it have a wide use
as universal formula for the summation of all kinds of errors. This way of error
calculation has even a specific name: the square-root sum method.

The next problem is to calculate the confidence interval for the true value of
the measurand. This problem can be solved for linear indirect measurements. For
nonlinear measurements, it cannot be solved because in general it is impossible to
form the error distribution for these measurements.

Consider the linear indirect measurement. The spread in the observations from
the random error in the measurement of each argument can usually be regarded
as a normally distributed random quantity. But even if one of these distributions
must be assumed to be different from a normal distribution, the distribution of the
arithmetic mean, in practice, can still be regarded as being normal. The random
error in the result of an indirect measurement, which is determined by adding the
random errors in the measurements of the arguments, can be regarded with even
greater justification to be a normally distributed random quantity.

If the number of measurements of each argument is greater than 25–30, then
after choosing the confidence probability α, the limit of the confidence interval
will be

|
α| = z 1−α
2

Sr ,
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where z 1−α
2

is the quantile of the standardized normal distribution. Its value can
also be found in the table of Student’s distribution, in the line with the infinite
number of degrees of freedom.

A difficulty arises when the number of observations is less than 25–30. In this
case, in principle, one could use Student’s distribution, but an exact expression
for the degrees of freedom is not known. An approximate solution, which gives
an estimate of the degrees of freedom, called the effective number of degrees of
freedom, is given by the well-known Welch–Satterthwaite formula [3],

νeff =

(
m∑

i=1
b2

i S2
i ( Ãi )

)2

m∑
i=1

b4
i S4

i ( Ãi )

νi

, (6.19)

where νi = ni − 1. The limit 
α in this case can be calculated as

|
α| = tq Sr ,

where tq is found from Student’s distribution table for the degree of freedom νeff

and the chosen confidence probability α = 1 − q.
We have mentioned above that confidence intervals in general cannot be cal-

culated for nonlinear indirect measurements. Therefore, in practice uncertainty is
often calculated by the square-root sum formula

ut =
√√√√ N∑

j=1

w2
j u

2
j , (6.20)

where u j is the uncertainty of the measurement of j th argument and w j is the
influence coefficient. But the square-root sum formula is correct for summing
variances, not intervals. Therefore, obtained in this way, it is difficult to call this
result a confidence interval or uncertainty. But (6.20) is correct only if measurement
errors of all arguments after Taylor series expansion are normally distributed and
all uncertainties u j have been calculated for the same confidence probability. The
proof of this statement is obvious from the discussion of formula (5.8).

The next problem is how to calculate the systematic error of an indirect measure-
ment result, and how to combine it with the random error to obtain the uncertainty
of the indirect measurement result. A reasonable solution of this problem will be
discussed below in Section 6.7.

6.4. Shortcomings of the Traditional Method

The traditional method has been used for a long time. But as the analysis presented
in [46] showed, it has a series of shortcomings.

First, for a nonlinear function f

E[ f (X1, . . . , X N )] �= f (E[X1], . . . , E[X N ]),
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where X1, . . . , X N are random quantities. Therefore the estimate of the measurand
given by (6.9) is incorrect when the measurement equation is nonlinear. Let us
evaluate this incorrectness.

Go back to (6.10) and now retain not only the first term but the second one also.
Again, assuming N = 2 for simplicity, we get

ζ =
(

∂ f

∂ A1
ζ1 + ∂ f

∂ A2
ζ2

)
+ 1

2

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)2

f (A1, A2).

Assume, as before, ζ1 and ζ2 to be free from systematic errors: E[ζ1] = 0 and
E[ζ2] = 0. Then the mathematical expectation of the first term is equal to zero:

E

[(
∂ f

∂ A1
ζ1 + ∂ f

∂ A2
ζ2

)]
= w1 E[ζ1] + w2 E[ζ2] = 0.

But the variances of the errors ζ1 and ζ2

V [ζ1] = σ 2
1 > 0 and V [ζ2] = σ 2

2 > 0,

and therefore the mathematical expectation of the second term is not equal to zero.
Indeed

E[ζ ] = E

[
1

2

(
∂

∂ A1
ζ1 + ∂

∂ A2
ζ2

)2

f (A1, A2)

]

= 1

2

∂2 f

∂ A2
1

E
[
ζ 2

1

]+ 1

2

∂2 f

∂ A2
2

E
[
ζ 2

2

]+ ∂ f

∂ A1
· ∂ f

∂ A2
E[ζ1 × ζ2]

= 1

2

∂2 f

∂ A2
1

σ 2
1 + 1

2

∂2 f

∂ A2
2

σ 2
2 + ∂ f

∂ A1
· ∂ f

∂ A2
ρ1,2σ1σ2. (6.21)

As σ 2
1 > 0, σ 2

2 > 0 and |ρ1,2| < 1, E[ζ ] = B �= 0.
Thus, for nonlinear indirect measurements, the estimate of the measurand given

by the traditional method is biased! The bias of the measurement result can be
reduced by correction C :

C = −B.

But even after correction, the estimate of a measurand will not be exact because it
takes into account only two terms, whereas the Taylor series may have an infinite
number of terms.

This is the first deficiency of the traditional theory of indirect measurements.
It must be considered as an essential disadvantage for it affects the results of
measurements.

The second deficiency is as follows. The estimate of the variance of the mea-
surement result, given by (6.16), is imperfect because it was derived using only
one linear term in the Taylor series. In other words, the traditional theory does not
use all of the information contained in the results of measurements of arguments.

The next disadvantage of the traditional theory is the problem of the confidence
intervals. As a matter of fact, this theory does not provide solid methods to construct
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the confidence intervals for the true value of a measurand in the case of nonlinear
measurement equation.

An additional problem is the above-mentioned problem of estimating correlation
coefficients that are a part of the traditional method.

6.5. The Method of Reduction

The essence of the method of reduction is as follows. Assume that x1i , x2i , . . . , xNi

are measurement results of arguments from a measurement vector i. Recall that
a measurement vector compiles measurements of all arguments performed under
the same conditions and at the same time. Each dependent indirect measurement
always consists of a definite number of measurement vectors.

So, let n be the number of measurement vectors obtained. These vectors can be
represented as a set:

{x1i , x2i , . . . , xNi }, i = 1, . . . , n.

Substituting the results from the i th vector into the measurement equation, we
obtain the i th value of the measurand. Denote it by yi . This transformation is ob-
viously justified because it reflects the physical relationship between a measurand
and measurement arguments.

In the same way, n measurement vectors give us a set of n values of the mea-
surand:

{yi }, i = 1, . . . , n.

This set does not differ from a set of data obtained by direct measurements of the
measurand A. Hence, we can now use all simple and well-understood methods of
direct measurements, which immediately provides an estimate of the measurand

Ã = ȳ = 1

n

n∑
i=1

yi , (6.22)

and an estimate of the variance

S2( Ã) = S2
r = 1

n(n − 1)

n∑
i=1

(yi − ȳ)2. (6.23)

The method of reduction also solves the problem of the calculation of confidence
intervals, because we now have the set of n values of the measurand. The limits
of a confidence interval and therefore the uncertainty of the measurement result
are

u = tq S( Ã), (6.24)

where tq is found from Student’s distribution for the chosen confidence probability
and obtained exact number of degrees of freedom

ν = n − 1.
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One might think that the method of reduction imposes special requirements
for performing the measurement, namely that the measurements of arguments
be performed so that the results can be represented as a number of measurement
vectors. However, the traditional method imposes this requirement as well. Indeed,
if we have a dependent indirect measurement, all arguments must be measured
under the same conditions for the traditional method also, because, otherwise, it
is impossible to calculate the correlation coefficients and therefore impossible to
estimate the variance of the measurement result.

Thus, the method of reduction has some important advantages over the tradi-
tionally used method:

(1) It produces an unbiased estimate of the measurand.
(2) It uses all of the information obtained in the course of the measurement for

estimation of the variance of the indirect measurement results.
(3) It gets rid of the correlation coefficient in the measurement uncertainty calcu-

lations.
(4) It gives the exact number of degrees of freedom and allows us to calculate the

confidence intervals for the true value of the measurand.

The listed advantages lead us to conclude that the method of reduction is the
preferable method for all kinds of dependent indirect measurements.

It is important to emphasize here that the independent indirect measurements
do not need correlation coefficients. As the method of reduction eliminates the
need for correlation coefficients in the case of dependent indirect measurements,
the concept of the correlation coefficient is no longer necessary in measurement
data processing.

To conclude, I would like to note that I first proposed this method of reduction
approximately in 1970. It found immediate application in national and interna-
tional comparisons of standards of unit radium mass and in measurements of other
radioactive quantities carried at All-Union State Research Institute of Metrology
named after D.I. Mendeleev in the former Soviet Union. With the reports of these
measurements, the information about the Method of Reduction spread outside that
Institute and outside the country. The first formal publication appeared in 1975
[34]. By now this method has became well known; it is mentioned in the Guide
[1] under the name “Approach 2” and with a note that this approach is preferable
to “Approach 1” (which is the traditional method).

6.6. The Method of Transformation

The method of reduction described in Section 6.5 replaces the traditional method
for processing data obtained from indirect measurements. Unfortunately, that
method is inapplicable to independent indirect measurements and therefore there
was no alternative to the traditional method for that type of measurements. But
the traditional method satisfies neither theory nor practice of measurements be-
cause it does not provide a grounded way to construct confidence intervals and
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therefore to calculate uncertainty of a measurement result. Section 6.4 discusses
the drawbacks of this method in more detail. Consequently, we are presenting a
new method here, which we call the method of transformation and which is free
of the above drawbacks.

The essence of the method of transformation can be understood intuitively if one
considers a black box with the arguments as its input and values of the measurand
as its output. The black box transforms every observed value of each argument into
the corresponding value of the measurand. The obtained set of measurand values
provides the basis for the estimate of the measurand along with its uncertainty for
a chosen confidence probability.

Turning to a more detailed description, let A j , j = 1, . . . , N be the arguments
of an independent indirect measurement of a measurand x :

x = f (A1, . . . , AN ). (6.25)

First, we obtain the estimates of all arguments, usually as mean values Ā j . Next,
we substitute all but one arguments in (6.25) with their estimates. The remaining
argument will be denoted as Av and considered as a variable quantity. Let Av,i i =
1, . . . , . . . , nv be the values of the argument Av . Each value Av,i of the variable
Av , together with estimates of all other arguments, produces one value of the
measurand. Thus, the (6.25) can be presented in the new form

xv,i = f ( Ā1, . . . , Āv−1, Av,i , Āv+1, . . . , ĀN ), i = 1, . . . , nv. (6.26)

This formula can be written also as

xv,i = Cv�v(Av,i ), (6.27)

where

Cv = 
v( Ā j ), j �= v. (6.28)

Coefficient Cv is determined by estimates Ā j and therefore is constant for all
values Av,i . Similarly, function �v is the same for all Av,i . In this way, a set of nv

measurements of Av is transformed into the set of the corresponding values of the
measurand {xv,i }, i = 1, . . . , nv . The same calculations are performed for each
argument, producing N sets of values of the measurand. The problem now is how
to use these sets to estimate the measurand and its uncertainty.

Let us start with the analysis of error in the calculated coefficient Cv . In the
performed measurement of x (which consists of multiple measurements of argu-
ments), this coefficient is constant. Therefore, its variance is zero: V [Cv] = 0.
But because Ā j �= A j , the value of Cv is not absolutely accurate. Imagine now
a repetition of the same measurement of x (perhaps in another laboratory). The
new estimates Ā′

j would be slightly different from Ā j . Therefore, the coefficient
C ′

v would also be not the same as Cv . Thus, the error in xv,i caused by the in-
accuracy of Cv is a conditionally constant systematic error: It is constant in the
performed measurement but may vary in other possible measurements of the same
measurand. Having the estimates of the variances S2( Ā j ), the change in Cv can be
characterized by the variance S2(Cv) over possible measurements of x .
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We can now turn to the calculations. The estimate of the measurand, obtained
from a set {xv,i }, is

x̄v = 1

nv

nv∑
i=1

xv,i . (6.29)

For convenience, let us introduce a new variable yv,i to replace �(Av,i ) in (6.27):
yv,i = �(Av,i ). Then, (6.27) can be rewritten as

xv,i = Cv yv,i .

We obtain from this equation:

ζ (xv,i ) = wyζ (yv,i ) + wcζ (cv),

where ζ (xv,i ), ζ (yv,i ), and ζ (Cv) are the errors of, respectively, xv,i , yv,i , and Cv ,
and wy and wc are the influence coefficients of yv,i and Cv . This equation provides
the dependency between the variances:

S2(xv,i ) = w2
y S2(yv,i ) + w2

c S2(Cv). (6.30)

Denote the terms in Eq. (6.30) as

S2
1,i = w2

y S2(yv,i ); S2
2 = w2

c S2(Cv).

Coefficient Cv in set {xv,i } is constant as discussed earlier. Therefore, for the
performed measurement, S2

2 = 0. Then, S2(xv,i ) = S2
1,i .

The above calculation means that S2
1,i express the spread of xv,i in the performed

measurement, and hence, it can be computed in the usual way:

S2
1,i = S2(xv,i ) = 1

nv − 1

nv∑
i=1

(xv,i − x̄v)2.

Then, the variance of the estimate x̄v can be found as

S2(x̄v) = S2
1 = 1

nv(nv − 1)

nv∑
i=1

(xv,i − x̄v)2. (6.31)

Now we can turn to accounting for the variations of Cv in other possible measure-
ments of the same measurand, which will result in a nonzero value of S2(Cv). If we
knew S2(Cv), we could then compute S2

2 = w2
c S2(Cv) and estimate the combined

variance S2
c (x̄v):

S2
c (x̄v) = S2

1 + S2
2 . (6.32)

Without specifying a concrete function 
 in (6.28), we cannot provide a general
formula for S2(Cv). However, in any specific measurement, function 
 is known,
and S2(Cv) can be calculated. An example of such calculation is presented in
Section 7.2. Thus, we consider S2

c (x̄v) to be known. We will only note here that
these calculations are simpler if the estimates of the variances are expressed in the
relative form.
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Recall that the above calculation was performed for one set {xv,i } obtained
by assuming that one argument Av in (6.25) was a variable. By repeating this
calculation for each argument A j , we obtain the estimates x̄ j and S2

c (x̄ j ) for j, j =
1, . . . , N . From these estimates, we now need to find the overall estimate of the
measurand and its uncertainty.

For the estimate of the measurand, we can take the weighted mean ¯̄x of all x̄ j

and compute it according to the recommendation in Chapter 9:

¯̄x =
N∑

j=1

g j x̄ j . (6.33)

The weights g j are found as

g j = g′
j∑N

j=1 g′
j

and g′
j = 1

S2
c (x̄ j )

. (6.34)

The estimate of the variance of ¯̄x is

S2( ¯̄x) = 1∑N
j=1

1
S2

c (x̄ j )

. (6.35)

Having S2( ¯̄x), we can calculate the confidence interval for the true value of the
measurand. Let K be the total number of elements in all sets {x j,i } : K = ∑N

j=1 n j .
Then, the number of degrees of freedom is ν = K − 1. Note that this value is
accurate. The distribution function of ¯̄x can be assumed to be normal because it is
a result of the linear sum of many items. So, the Student’s distribution with inputs
ν and chosen confidence probability α provides the value of tq , which allows us to
calculate the confidence interval and hence the total uncertainty ut of measurement
result as

ut = tq S( ¯̄x). (6.36)

A detailed example of using this method is presented in Section 7.2.
In most cases, the measurement equation can be transformed into the following

form:

x = f1(A1) ⊕ f2(A2) ⊕ . . . ⊕ fN (AN ),

where ⊕ denotes an arbitrary arithmetic operation (addition, subtraction, multipli-
cation, or division), and the terms in the right-hand side are ordered according to
the order of computation (that is, the left-most operation is applied first to the first
two terms, then the second operation is applied to the result of the first operation
and the third term, and so on). Then, the calculations for the indirect measurement
processing can be simplified by a series of successive argument substitutions. Each
step of this process substitutes a pair of arguments with one new argument. After
(N − 2) steps, the original equation with N arguments will be transformed into
an equivalent measurement equation having only two arguments. The process-
ing at each step, as well as handling of the final equation, use the same simple
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calculations based on the method of transformation for a measurement with two
arguments.

To illustrate the main idea of this method, consider an indirect measurement
with four arguments:

x = f1(A1) ⊕ f2(A2) ⊕ f3(A3) ⊕ f4(A4).

We start by substituting the first two arguments, A1 and A2. To this end, we
replace the corresponding terms with a new argument B ′ = f1(A1) ⊕ f2(A2). The
measurement equation now becomes

x = B ′ ⊕ f3(A3) ⊕ f4(A4).

We now apply the method of transformation to the expression for B ′ above. (An
example of applying the method of transformation to an indirect measurement
with two arguments is described below in Section 7.2.) According to this method,
we use the measurement data for arguments A1 and A2 to obtain the data set for
B ′, {B ′

i }, i = 1, (n1 + n2), and from it the estimate B̃ ′ and its standard deviation,
to be used in the next step.

Continuing the substitution process, we substitute the first pair of arguments in
the equation that resulted from the previous step, B ′ and A3, with a new argument
B ′′ = B ′ ⊕ f3(A3). The measurement equation will now become

x = B ′′ ⊕ f4(A4).

Similar to the first step, we use the data set for B ′, its estimate and standard
deviation (from the previous step), as well as the measurement data for A3, to
produce the set {B ′′

i }, i = 1, (n1 + n2 + n3) for argument B ′′, its estimate B̃ ′′ and
its standard deviation.

The measurement equation produced by the last step contains only two argu-
ments. Using the data set and estimate for B ′′ and the measurement data for A4, we
can now obtain the data set for the measurand x , {xk}, k = 1, . . . ,

∑N
j=1 n j . This

last set, along with the standard deviation of B ′′, allows us to obtain the estimate
of the measurand and its uncertainty.

The above calculations concern the random error of the indirect measurement.
But a real measurement can also be distorted by a bias (if function f is not linear)
and systematic errors. One must check for the presence of the bias and correct it
if necessary as described in Section 6.4. The method of accounting for systematic
errors is presented later in Section 6.7.

To conclude, the method of transformation provides the uncertainty of the results
of independent indirect measurements that is well-grounded and more accurate
than what was possible with the traditional method. The method of transformation
compliments the method of reduction, which solved the same problem for the
dependent indirect measurements. Thus, these two methods together allow well-
grounded processing of data of any multiple indirect measurement.
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6.7. Errors and Uncertainty of Indirect
Measurement Results

Uncertainty of an indirect measurement result is calculated on the basis of the
estimation of its components, i.e., systematic and random errors.

Random errors are characterized by their variance whose estimate is given by
(6.16) and (6.23) for dependent indirect measurements and by (6.18) and (6.30)
for independent measurements.

Systematic errors are not apparent in the process of measurements, and there-
fore, they must be evaluated, taking into account the possible causes of them: first,
the systematic errors in the measurements of arguments. The calculations for esti-
mating these errors are the same for the two types of indirect measurements. They
are the same also for multiple and single measurements.

The relationship between the measurement errors of arguments and the error
of the indirect measurement is represented by (6.13). This equation reflects the
transformation of the errors in measurements of arguments into the error of an
indirect measurement.

In addition to the error from the measurement errors of arguments, the indi-
rect measurements have an additional source of error. It is an inaccuracy of the
measurement equation. The next example will illustrate this error.

Suppose that we are required to measure the area of a plot of land that is depicted
by a rectangle on a sketch. Here the rectangle is the model of the object. Its area
is Sm = ab, where a and b are the lengths of the sides of the rectangle.

The discrepancies between the model and the object can in this case be expressed
by the fact that the angle between the sides will not be exactly 90◦, that the
opposite sides of the section will not be precisely identical, and that the lines
bounding the area will not be strictly straight. Each discrepancy can be estimated
quantitatively and then the error introduced by it can be calculated. It is usually
obvious beforehand which source of error will be most important.

Suppose that in our example the most important source of error is that the angle
between adjoining sides differs from 90◦ by β, as shown in Fig. 6.1. Then the area
of the plot would have to be calculated according to the formula St = ab cos β.

Therefore the error from the threshold discrepancy in this case will be

S1 − S2 = ab(1 − cos β).

Figure 6.1. Rectangle and parallelogram as a model of the plot of land.
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The admissible angle βa must be estimated from the required accuracy in deter-
mining the area of the pylot of land. If β ≥ βa , then the model must be redefined
and the measured quantity must be defined differently. Correspondingly, we shall
obtain a different formula for calculating the measured area.

We should note that the inaccuracy of the measurement equation, or the threshold
discrepancy between the model of an object to be studied, and the object is a
methodological error and it is an absolutely constant systematic error.

The random errors of indirect measurements were analyzed previously in this
chapter. Let us now begin the analysis of the systematic errors of indirect mea-
surements.

The general approach to the problem of the estimation of systematic errors is
similar to the one developed for direct measurements. Still, indirect measurements
have some specifics. One difference has to do with the existence influence coef-
ficients w j . Usually their values are calculated by substituting the estimates of
arguments for their true values. In other cases, these coefficients are found from
special experiments. In all cases, they are obtained with some errors. These errors
can be avoided if the measurement equation has the form

A = Ak
1 Al

2 . . . An
m . (6.37)

In this case, the influence coefficients are determined by the expressions

w1 = ∂ A

∂ A1
= k Ak−1

1 Al
2 . . . An

N ,

w2 = ∂ A

∂ A2
= Ak

1l Al−1
2 . . . An

N ,

· · ·
wN = ∂ A

∂ AN
= Ak

1 Al
2 . . . n An−1

N .

The absolute error is determined by formula (6.13). We shall now transfer from
the absolute error to the relative error:

ε = Ã − A

A
= k Ak−1

1 Al
2 . . . An

N

A
ζ1 + l Ak

1 Al−1
2 . . . An

N

A
ζ2

+ · · · + Ak
1 Al

2 . . . n An−1
N

A
ζN .

Substituting formula (6.37) for A, we obtain

ε = k
ζ1

A1
+ l

ζ2

A2
+ · · · + n

ζN

AN
.

Thus the influence coefficients for the relative errors in the measurements of the
arguments are equal to the powers of the corresponding arguments: w′

1 = k, w′
2 =

t, w′
N = n. The coefficients k, l . . . n are known exactly a priori, so that the error

noted above does not arise.
This result can be obtained without use of (6.13), in other words, without appli-

cation of Taylor series. Indeed, let us take the logarithm of the equation (6.37). It
will be

ln A = k ln A1 + l ln A2 + · · · + n ln AN .



176 6. Indirect Measurements

The differential of it is
d A

A
= k

d A1

A1
+ l

d A2

A2
+ · · · + n

d AN

AN
.

Measurement errors are small. Therefore the differentials can be replaced by in-
criments after that the last equation gets the same form that was obtained above.

So, relative form of errors provides the uncertainty calculations with exact values
of influence coefficients. This is another advantage of expressing the measurement
errors in the form of relative errors.

The systematic error of the measurement of each argument consists of elemen-
tary components. As always, they can be divided into two categories: absolutely
and conditionally constant errors.

Absolutely constant errors are deterministic quantities. However, we cannot find
their exact values and can only estimate their limits. These limits are estimated
differently in every specific case. In general, these estimations are based on the
experience of the person performing the measurement. Usually, there are very few
such errors and they are small. But it is necessary to keep them in mind.

One example of absolutely constant errors is the error in a measurement equa-
tion considered above. Another example is the linearization error of the standard
characteristic of a thermocouple.

Conditionally constant errors can be computed using the first term of (6.14):

ϑcc =
N∑

j=1

w jϑ j ,

where ϑcc is the conditionally constant error of an indirect measurement.
This formula can be represented in the form

ϑcc =
N∑

j=1

k j∑
i=1

w jϑ j i , (6.38)

where k j is the number of conditionally constant errors in the measurement of the
j th argument.

It is necessary to note that the obtained formula is based on Taylor’s series.
The shortcomings of this approach have been discussed already in this chapter.
But unlike in the case of random errors, there is no alternative to this method in
evaluation of systematic errors.

Now we shall turn from analysis to synthesis. As was discussed in Chapter 5, it
is possible to consider all conditionally constant errors as random quantities with
a uniform distribution. But there is one peculiarity now: In the case of dependent
indirect measurements, some elementary errors in the measurements of different
arguments are caused by the same influence quantity. When such a quantity grows,
some of these errors can grow also, the rest of them go in the opposite direction.

For example, assume that two measuring instruments used in an indirect mea-
surement have temperature errors. When the temperature changes, these errors
will also change, and both of them can change either in the same direction or in
opposite directions.
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So, the sum of the elementary errors caused by the same influence quantity can
be obtained by simply adding all error values retaining their signs.

Taking into consideration this peculiarity, (6.38) becomes

ϑcc = w1

k1−m1∑
i=1

ϑ1i + · · · + wN

kN −m N∑
i=1

ϑNi

+ (w1ϑ1t ± w2ϑ2t ± · · ·) + (w1ϑ1p ± w2ϑ2p ± · · ·), (6.39)

where m j is the number of the elementary components of the measurement error
of the j th arguments, which are caused by the same influence quantity as some
components of the measurement errors of other arguments; indexes t, p denote
these influence quantities.

Equation (6.39) allows one to obtain the expression of the variance σ 2
s of the

conditionally constant error of the measurement result:

σ 2
cc = w2

1

k1−m1∑
i=1

σ 2
1i + · · · + w2

N

kN −m N∑
i=1

σ 2
Ni + (w1σ1t ± w2σ2t ± · · ·)2

+ (w1σ1p ± w2σ2p ± · · ·)2 + · · · . (6.40)

The last two terms appeared as a consequence of (6.4) for ρ1,2 = ±1. Indeed, if
ρ1,2 = ±1, then (6.4) has the form

σ 2
2 = σ 2

x + σ 2
y ± 2σxσy = (σx ± σy)2.

Recall that the variance σ 2 and the limits θ of a random quantity having a
uniform distribution function related by the formula are

σ 2 = 1

3
θ2.

Therefore, knowing the limits θ j i of all conditionally constant elementary errors,
we also know the estimates of their variances. Inserting them into (6.40), we obtain

S2
cc = 1

3

[
N−m∑
j=1

m∑
i=1

w2
jθ

2
j i +

m∑
µ=1

(wkθkµ ± wlθlµ ± · · ·)2

]
, (6.41)

where m is the number of influence quantities that affect two or more measurements
of the arguments.

The confidence limits of the conditionally constant error of an indirect measure-
ment can be calculated using the same method that was discussed in Chapter 5.
The only difference is that now we have to account for influence coefficients. So,
from (5.3), we get

θcα = k

√√√√N−m∑
j=1

m∑
i=1

w2
jθ

2
j i +

m∑
µ=1

(wkθRµ ± wlθlµ ± · · ·)2, (6.42)

where θcα is the confidence limit of a conditionally constant error. The values of k
are given in Section 3.5. In particular, for the probability α = 0.95, k = 1.1.
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If m = 0, or the indirect measurement is performed under reference conditions,
then (6.42) has the form

θcα = k

√√√√ N∑
j=1

w2
jθ

2
j . (6.43)

I would like to recall here that the random error of a multiple measure-
ment includes all random components of conditionally constant errors of this
measurement. Thus, the remains of conditionally constant errors in multiple mea-
surements are purely systematic errors.

Now let us return to the absolutely constant errors. Summarizing their limits,
we obtain the limits H of the absolutely constant error of the result of an indirect
measurement:

H = He +
N∑

j=1

w j

g j∑
i=1

Hji , (6.44)

where He are the limits of an error of the measurement equation; Hji are the limits
of the i th absolutely constant component of the measurement error of the j th argu-
ment; and q j is the number of absolutely constant components of the measurement
error of the j th argument.

Thus, we have the estimate of the variance of conditionally constant errors S2
cc

and the limits of the absolutely constant error H . We also have the estimate of the
variance of random errors S2

r . These findings are exactly the same as those used
for the uncertainty calculation in Chapter 5 for direct measurements. Therefore,
in the same way, we can now calculate the uncertainty of indirect measurements.
The resulting formulas are repeated below.

The combined standard deviation Sc can be calculated using (5.12):

Sc =
√

S2
cc + S2

r . (6.45)

The combined uncertainty can be found from (5.13)

uc = tc Sc, (6.46)

and the coefficient tc is calculated by (5.14):

tc = θcα + tq Sr

S2
cc + Sr

. (6.47)

In the case when θcα consists of many approximately equal components (five
or more), its distribution is approximately normal and therefore we can assume
tc = 1.96 for α = 0.95 and tc = 2.58 for α = 0.99.

Taking into account the limit of the absolutely constant error, we obtain the total
uncertainty ut of the measurement result:

ut = H + uc. (6.48)



7
Examples of Measurements and
Measurement Data Processing

7.1. An Indirect Measurement of the Electrical
Resistance of a Resistor

Consider the measurement of electrical resistance using an ammeter and a volt-
meter. Equation (6.1) now turns into R = U/I , where R is the electrical resistance
of the resistor, U is the voltage drop on the resistor, and I is the strength of the
current. This measurement is an example of dependent indirect measurements.
Indeed, the value of I depends on the value of U. Thus, we can use in this example
both the traditional method and the method of reduction. Let us use each in turn
and compare the calculations and results. The connections of the instruments and
the resistor are shown in Fig. 7.1. Assume that the measurement was performed
under reference conditions for the instruments, and that the input resistance of the
voltmeter is so high that its influence on the accuracy of the measurement can be
neglected.

The results of measurements of the strength of current and voltage are given in
Table 7.1. In accordance with the note given in Section 6.2, all results presented
in the table were obtained in pairs, which means that the results with the same
subscript belong to the same measurement vector.

Using the values of nŪ and n Ī given in Table 7.1 (columns 2 and 3, the last
row), we obtain the estimate for R:

R̃ = nŪ

n Ī
= 66.002

0.659 97
= 100.0075 ≈ 100.01 �.

Deviding the sums given in the colomns 2 and 3 by 11, we obtain the estimates of
I and V :

Ī = 0.059 997 ≈ 0.060 00 A, Ū = 6.000 18 ≈ 6.0002 V.

Now we must calculate the variance and the standard deviation of this result.
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Figure 7.1. The connections for the indirect measurement of an electrical resistance.

First, we will estimate the variances of Ī , Ū , their standard deviations, and the
correlation coefficient. Using (6.17), we obtain

S2( Ī ) =
∑n

i=1(Ii − Ī )2

n(n − 1)
= 74.19 × 10−10

11 × 10
= 0.674 × 10−10 A2,

S2(Ū ) =
∑n

i=1(Ui − Ū )2

n(n − 1)
= 63.61 × 10−6

11 × 10
= 0.578 × 10−6 V2.

The estimates of standard deviations are

S( Ī ) = 0.82 × 10−5 A, S(Ū ) = 0.76 × 10−3 V.

The estimate of the correlation coefficient is

rI,U =
∑n

i=1(Ii − Ī )(Ui − Ū )

n(n − 1)S(I )S(U )
= 29.6 × 10−8

110 × 0.82 × 10−5 × 0.76 × 10−3
= 0.43.

Table 7.1. Data processing for indirect measurement of electrical resistance using
the traditional method.

Ii Ui (Ii − Ī ) (Ii − Ī )2 (Ui − Ū ) (Ui − Ū )2 (Ii − Ī ) (Ui − Ū )
Num. A V ×10−5 A ×10−10 A2 ×10−3 V ×10−6 V2 ×10−8AV
1 2 3 4 5 6 7 8

1 0.059 96 6.003 −3.7 13.69 +2.82 7.95 −10.4
2 0.060 01 6.001 +1.3 1.69 +0.82 0.67 +1.1
3 0.059 98 5.998 −1.7 2.89 −2.18 4.75 +3.7
4 0.060 03 6.001 +3.3 10.89 +0.82 0.67 +2.7
5 0.060 01 5.997 +1.3 1.69 −3.18 10.11 −4.1
6 0.059 98 5.999 −1.7 2.89 −1.18 1.39 +2.0
7 0.060 03 6.004 +3.3 10.89 +3.82 14.59 +12.6
8 0.059 95 5.997 −4.7 22.09 −3.18 10.11 +14.9
9 0.060 02 6.001 +2.3 5.29 +0.82 0.67 +1.9

10 0.060 01 6.003 +1.3 1.69 +2.82 7.95 +3.7
11 0.059 99 5.998 −0.7 0.49 −2.18 4.75 +1.5

Sum 0.659 97 66.002 74.19 63.61 +29.6
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It is interesting to note that this value is statistically insignificant. Indeed, apply-
ing a standard method of [20] and [52], we can check the hypothesis H0 : ρI, U = 0
against H1 : ρI, U �= 0. The degree of freedom here is ν = 11 − 2 = 9, and we will
take the significance level to be q = 0.05 as usual, which gives the critical values

tq = 2.26 and rq = tq/
√

t2
q + v = 0.60. Because 0.43 < 0.60, we must accept H0

and conclude that the obtained value rI, U = 0.43 is not significant, which means
that, when the number of measurements n increases the estimation rI, U of the
correlation coefficient will in general decrease. However, it does not mean that
the value of rI, U obtained for a specific sample can be neglected. On the con-
trary, it must be always taken into consideration when calculating the estimation
of variance for that sample.

In our example, inserting the obtained values into (6.16), we can calculate
the desired estimation S(R̃). But before that we have to calculate the influence
coefficients. They are

w1 = ∂ R

∂U
= 1

I
, w2 = ∂ R

∂ I
= − U

I 2
,

S2(R̃) =
(

Ū

Ī 2

)2

× S2( Ī ) + 1

Ī 2
× S2(Ū ) − rI, U

Ū

I 2
× 1

I
× S( Ī )S(Ū )

=
(

6

36 × 10−4

)2

× 0.674 × 10−10 + 1

36 × 10−4
× 0.578 × 10−6

− 2 × 0.43 × 6

36 × 10−4
× 1

6 × 10−2
× 0.82 × 10−5 × 0.76 × 10−3

= 1.87 × 10−4 + 1.61 × 10−4 − 1.49 × 10−4

= 1.99 × 10−4 �2,

and

S(R̃) =
√

S2(R) = 1.41 × 10−2 �.

We now turn to the method of reduction.
The initial data from Table 7.1 are repeated in columns 2 and 3 of Table 7.2.

The calculated values of Ri (i = 1, . . . , 11) are given in column 4. Treating these
values as if they were obtained by direct measurements, we obtain immediately
the estimate of R as

R̄ = 1

n

n∑
i=1

Ri = 100.0075 ≈ 100.01 �

and the estimates of its variance and standard deviation as

S2(R̄) = 1

n(n − 1)

n∑
i=1

(Ri − R̄)2 = 2.184 × 10−2

11 × 10
= 1.99 × 10−4 �2,

S(R̄) = 1.41 × 10−2 �.
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Table 7.2. Data processing for indirect measurement of
electrical resistance using the method of reduction.

Ii Ui Ri (Ri − R̄) (Ri − R̄)2

Num. A V � � ×10−2 �2

1 2 3 4 5 6

1 0.059 96 6.003 100.117 +0.109 1.188
2 0.060 01 6.001 100.000 −0.002 0.000
3 0.059 98 5.998 100.000 −0.002 0.000
4 0.060 03 6.001 99.967 −0.041 0.168
5 0.060 01 5.997 99.933 −0.075 0.562
6 0.059 98 5.999 100.017 +0.009 0.008
7 0.060 03 6.004 100.017 +0.009 0.008
8 0.059 95 5.997 100.033 +0.025 0.0625
9 0.060 02 6.001 99.983 −0.025 0.0625

10 0.060 01 6.003 100.033 +0.025 0.0625
11 0.059 99 5.998 99.983 −0.025 0.0625

Sum 1100.083 2.184

The comparison shows the coincidence of R̃ and R̄ and S(R̃) and S(R̄), which
could have been predicted because it is a case of an accurate measurement. At the
same time, it is a measurement with a simple measurement equation. Even in this
simple case, the calculations with the method of reduction are much simpler than
with the traditional method.

Further calculations for this example are of little interest and are therefore not
presented here.

7.2. The Measurement of the Density of a Solid Body

The accurate measurement of the density of a solid body can serve as an example
of a multiple nonlinear independent indirect measurement. Either the traditional
method or the new method of transformation could be used to process the mea-
surement data in this case. We will use both of them to highlight the benefits of
the latter. We will begin with the traditional method.

The density of a solid body is given by the formula

ρ = m/V,

where m is the mass of the body and V is the volume of the body. In the experiment
considered, the mass of the body was measured by methods of precise weighing
using a collection of standard weights whose errors did not exceed 0.01 mg. The
volume of the body was determined by the method of hydrostatic weighing using
the same set of weights.

The results of measurements are presented in Table 7.3 in the first and fourth
columns.
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Table 7.3. The results of measurements of the density of a solid body and data
from initial processing.

Mass of body (mi − m̄) (mi − m̄)2 Volume of body (Vi − V̄ ) (Vi − V̄ )2

mi × 10−3 kg ×10−7 kg ×10−14 kg2 Vi × 10−6 m3 ×10−10 m3 ×10−20 m6

1 2 3 4 5 6

252.9119 −1 1 195.3799 +1 1
252.9133 +13 169 195.3830 +32 1024
252.9151 +31 961 195.3790 −8 64
252.9130 +10 100 195.3819 +21 441
252.9109 −11 121 195.3795 −3 9
252.9094 −26 676 195.3788 −10 100
252.9113 −7 49 195.3792 −6 36
252.9115 −5 25 195.3794 −4 16
252.9119 −1 1 195.3791 −7 49
252.9115 −5 25 195.3791 −7 49
252.9118 −2 4 195.3794 −4 16

The difference between the observational results is explained by the random
error of the balances. As follows from the data presented, this error is so much
larger than the systematic errors in the masses of the weights that these errors can
be neglected.

As the mass of the solid body and its volume are constants, to estimate the
density of the solid, the mass, and volume of the solid must be estimated with
the required accuracy and their ratio must be formed. For this reason, we find the
average values of the observational results and estimates of the standard deviations
for the groups of measurements:

m̄ = 252.9120 × 10−3 kg, V̄ = 195.3798 × 10−6 m3,

S2(mi ) = 1

n1 − 1

n1∑
i=1

(mi − m̄)2 = 2132 × 10−14

10
= 213.2 × 10−14 kg2,

S2(Vi ) = 1

n2 − 1

n2∑
i=1

(Vi − V̄ )2 = 1805 × 10−20

10
= 180.5 × 10−20 m6.

The estimates of the variances, in the relative form, are equal to

S2
r (mi ) = 213 × 10−14

(252.9 × 10−3)2
= 3.32 × 10−11,

S2
r (Vi ) = 180 × 10−20

(195.4 × 10−6)2
= 4.74 × 10−11.

The estimate of the measured quantity is

ρ̃ = m̄

V̄
= 252.9120 × 10−3

195.3798 × 10−6
= 1.294 463 × 103 kg/m3.
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To calculate the uncertainty of the result we use here the usual method of lin-
earization, but it is necessary to check that only the first term from the Taylor series
is enough. For this reason, it is necessary to estimate the remainder R2 according
to formula (6.11):

R2 = 1

2

[
∂2ρ

∂m2
(
m)2 + ∂2ρ

∂V 2
(
V )2 + 2

∂2ρ

∂m ∂V

m 
V

]
,

∂ρ

∂m
= 1

V
,

∂2ρ

∂m2
= 0,

∂ρ

∂V
= − m

V 2
,

∂2ρ

∂V 2
= 2m

V 3
,

∂ρ

∂m ∂V
= − 1

V 2
.

We shall calculate the partial derivatives at the point with the coordinates m̄ and
V̄ , so that the errors 
m and 
V are relatively insignificant. We obtain

R2 = m̄

V̄ 3
(
V )2− 1

V̄ 2

m 
V= m̄

V̄

(

V

V̄

)2

− m̄

V̄


m

m̄


V

V̄
= ρ̃


V

V̄

(

V

V̄
− 
m

m̄

)
or

R2

ρ̃
= 
V

V̄

(

V

V̄
− 
m

m̄

)
.

For 
V and 
m, we take the largest deviations from the average values observed
in the experiment:


V = 32 × 10−10 m3, 
m = 31 × 10−7 kg.

The relative errors are equal to


V

V̄
= 32 × 20−10

195.4 × 10−6
= 1.64 × 10−5,


m

m̄
= 31 × 10−7

252.9 × 10−3
= 1.22 × 10−5.

As the errors are random, the sign of the error should not be specified. We obtain

R2/ρ̃ = 1.64 × 10−5(1.64 + 1.22) × 10−5 = 4.7 × 10−10.

This error is so much smaller than the errors associated with 
V/V̄ and 
m/m̄ it
is obvious that linearization is possible.

We shall estimate the standard deviation in the relative form using formula (6.18)

Sr (ρ̃) =
√

S2
r (mi )

n1
+ S2

r (Vi )

n2
=
√

3.32 × 10−11 + 4.74 × 10−11

11
= 2.7 × 10−6.

Here the influence coefficients are k = 1 and l = −1 (see p. 174). For percentages,
S%(ρ̃) = 2.7 × 10−4%.
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In units of density, we obtain

S(ρ̃) = 2.7 × 10−6 × 1.294 × 103 = 3.5 × 10−3 kg/m3.

We shall now find the uncertainty of the result. Based on formula (6.14), we can
write

ψρ = ψm − ψV .

As the errors are random, the minus sign need not be included. We shall find the
uncertainty of the components. We shall take the confidence probability α = 0.95.
In addition, we have ν = 10. Then we can find from Student’s distribution tq =
2.23.

In the relative form, the uncertainties are

um% = 100tq
Sr (m̄)√

n1
= 100 × 2.23

√
3.32 × 10−11

11
= 3.88 × 10−4%,

uv% = 100tq
Sr (V̄ )√

n2
= 100 × 2.23

√
4.74 × 10−11

11
= 4.64 × 10−4%.

In accordance with (6.20), we can find the value of combined uncertainty

uc% =
√

u2
m% + u2

v% = 10−4
√

3.882 + 4.642 = 6.0 × 10−4%.

So, the combined relative uncertainty of the measurement result is

uρ% = 6 × 10−4%.

The above calculations are similar to those recommended by the Guide [1]
(Approach 1). Both methods are based on transforming the measurement equation
into a linear form by applying a Taylor series. The difference is only in the last
step of uncertainty calculation, which uses the square-root sum formula (6.20) in
the above calculations and Student distribution in the Guide. Let us reproduce the
Guide’s calculation.

As in the case of linear indirect measurements, the effective number of degrees
of freedom given by formula (6.19) is calculated. We have already obtained the
values of all terms in this formula. Note that in our case n1 = n2 = n = 11 and
ν1 = ν2 = ν = n − 1.

Thus,

νeff =

(
S2

r (mi )

n
+ S2

r (Vi )

n

)2

S4
r (mi )

n2ν
+ S4

r (Vi )

n2ν

= (3.32 + 4.74)2 × 10−22(
3.322

10
+ 4.742

10

)
× 10−22

= 64.96

33.49
×10 = 19.

For νeff = 19 and α = 0.95 we find from a table of Student’s distribution tq = 2.10.
From here

u′
ρ% = 2.1 × 2.7 × 10−6 × 100 = 5.7 × 10−4%.
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Table 7.4. The set of ρm,i and data derived from this set.

i ρm,i × 103 kg/m3 (ρm,i − ρ̄m) × 10−3kg/m3 (ρm,i − ρ̄m)2 × 10−6 (kg/m3)2

1 1.2944626 −0.3 0.1
2 1.2944698 +6.9 47.6
3 1.2944790 +16.1 259.2
4 1.2944682 +5.3 28.1
5 1.2944575 −5.4 29.2
6 1.2944498 −12.1 146.4
7 1.2944595 −3.4 11.6
8 1.2944605 −2.4 5.8
9 1.2944626 −0.3 0.1

10 1.2944605 −2.4 5.8
11 1.2944620 −0.9 0.8

This value is quite close to that obtained by the square-root sum formula but it
is also not well-grounded because, after the measurement equation was linearized,
the distribution function of errors of volume measurements of the solid body is
unknown.

Let us now turn to the method of transformation described in Section 6.6. We
start with the same measurement data that were used in the traditional method
and that are presented in Table 7.3. The measurement equation still remain as
before:

ρ = m

V
.

Let us first substitute argument V by its estimate V̄ , retaining m as a variable
argument. Then, for each value mi of argument m (6.26) gives ρm,i = mi

V̄
. Com-

paring with (6.27) and (6.28), we conclude that the constant coefficient here is
Cm = 
m(V̄ ) = 1

V̄
and �(mi ) = mi , i = 1, . . . , nm . The mean value V̄ was cal-

culated earlier when we applied the traditional method. Eleven observations mi

are given in column 1 of Table 7.3. Division mi by V̄ provides the set of individual
values ρm,i shown in column 2 of Table 7.4.

From this set, we obtain

ρ̄m = 1

nm

nm∑
i=1

ρm,i = 1.2944629 × 103kg/m3

and

S2
1 (ρ̄m) = 1

nm(nm −1)

nm∑
i=1

(ρm,i −ρ̄m)2 = 534.7×10−6

11×10
= 4.86×10−6(kg/m3)2.

The relative form of the above variance is

S2
1r (ρ̄m) = S2

1 (ρ̄m)

ρ̄2
m

= 4.86 × 10−6

1.292 × 106
= 2.93 × 10−12.
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Now the function 
m = 1
V̄

is known, and thus we can obtain the estimate of the
variance of the conditionally constant systematic error S2(Cm) using the Taylor’s
series:

S2(Cm) = w2
v S2(V̄ )

where wv is the influence coefficient of V̄ . In the relative form of the above vari-
ance, the influence coefficient wv becomes w′

v = l = −1, and S2
r (Cm) = Sr (V̄ ).

Therefore, following (6.30), we can calculate S2
2r (ρ̄m):

S2
2r (ρ̄m) = S2

r (Cm) = S2
r (V̄ ).

The estimate S2
r (Vi ) was already calculated in the course of applying the tradi-

tional method:

S2
r (Vi ) = 4.74 × 10−11.

Because nv = 11, we have

S2
r (V̄ ) = 4.74 × 10−11

11
= 4.31 × 10−12.

Thus, S2
2r (ρ̄m) = 4.31 × 10−12 and the estimate of the combined variance of

ρ̄m is

S2
rc(ρ̄m) = S2

1r (ρ̄m) + S2
2r (ρ̄m) = (2.93 + 4.31)10−12 = 7.24 × 10−12.

Now we substitute m with its estimate m̄ and take V as a variable, thus ob-
taining ρV,i = m̄

Vi
for each value Vi . Here, CV = 
V (m̄) = m̄ and �(Vi ) = 1

Vi
,

i = 1, . . . , nV . The mean value m̄ we already calculated when applying the tradi-
tional method. Thus, we can compute the set ρV,i , which is shown in column 2 of
Table 7.5.

From the data in this table, we obtain

ρ̄V = 1

nV

nV∑
i=1

ρV,i = 1.2944613 × 103kg/m3

Table 7.5. The set of ρV,i and data derived from this set.

i ρV,i × 103kg/m3 (ρV,i − ρ̄V ) × 10−3kg/m3 (ρV,i − ρ̄V )2 × 10−6 (kg/m3)2

1 1.2944606 −0.7 0.5
2 1.2944419 −19.4 376.4
3 1.2944684 +7.1 50.4
4 1.2944474 −13.9 193.2
5 1.2944633 +1.9 3.6
6 1.2944679 +6.6 43.6
7 1.2944653 +4.0 16.0
8 1.2944640 +2.7 7.3
9 1.2944659 +4.6 21.2

10 1.2944659 +4.6 21.2
11 1.2944640 +2.7 7.3
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and

S2
1 (ρ̄V ) = 1

nV (nV − 1)

nV∑
i=1

(ρV,i −ρ̄V )2 = 740.7×10−6

11×10
= 6.73×10−6(kg/m3)2.

In the relative form, the above variance becomes

S2
1r (ρ̄V ) = 6.73 × 10−6

1.292 × 106
= 4.04 × 10−12.

Let us turn to component S2
2r (ρ̄V ). Now, CV = m̄, and therefore S2

2r (ρ̄V ) =
S2

r (CV ) = S2(m̄). The value of S2
r (mi ) = 3.32 × 10−11 was found before in the

application of the traditional method. Thus,

S2
2r (ρ̄V ) = 3.32 × 10−11

11
= 3.02 × 10−12,

and the combined variance is

S2
rc(ρ̄V ) = S2

1r (ρ̄V ) + S2
2r (ρ̄V ) = (4.05 + 3.02) × 10−12 = 7.07 × 10−12.

At this point, we have obtained the results for two sets of data, {ρm,i } and {ρV,i },
and we are ready to calculate the overall result of the measurement. First, the
weights g j must be found. Following (6.34), we obtain

g′
m = 1

S2
rc(ρ̄m)

= 1

7.24 × 10−12
= 0.138 × 1012

and

g′
V = 1

S2
rc(ρ̄V )

= 1

7.07 × 10−12
= 0.141 × 1012.

Thus,

gm = g′
m

g′
m + g′

V

= 0.495

and

gV = g′
V

g′
m + g′

V

= 0.505.

Note that the above weights add to 1.
Then, in accordance with (6.33), the estimate of the measurand is

¯̄ρ = gm ρ̄m + gV ρ̄V = 1.294462 × 103kg/m3.

The estimate of the total variance is

S2
r t ( ¯̄ρ) = 1

1
S2

rc(ρ̄m) + 1
S2

rc(ρ̄V )

= 3.6 × 10−12.

The standard deviation is

Srt ( ¯̄ρ) =
√

S2
r t = 1.9 × 10−6,

or, in percents, Srt = 1.9 × 10−4%.
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Now we can calculate the uncertainty. The number of degrees of freedom is
ν = K − 1 = 21. For confidence probability α = 0.95, the percentile point of
Student’s distribution is tq = 2.08. Therefore,

ut% = 2.08 · 1.9 × 10−4 ≈ 4 × 10−4%.

The comparison of the obtained result with the result of the traditional method
shows that the estimates of the measurand are the same (the difference in one last
digit is absolutely insignificant). But uncertainty obtained by the method of trans-
formation is about 30% smaller than that produced by the traditional method. But
what is much more important is that, unlike the traditional method, the uncertainty
obtained by the method of transformation corresponds to the chosen probability
and is well-grounded.1

7.3. The Measurement of Ionization Current
by the Compensation Method

Accurate measurements of weak currents, generated, for example, by γ rays
from standards of unit radium mass, are performed by the compensation method
using an electrometer. The measured strength of current I is defined by the

1 It is easy to see that the mean value of ρm,i (see Table 7.4) is equal to

ρ̄m = 1

n

n∑
i=1

ρm,i = nm̄

nV̄
= m̄

V̄
.

Less obviously, we can also show that the mean value of ρV,i (see Table 7.5) is equal to the
same ratio. Indeed, we have

ρ̄V = 1

n

n∑
i=1

ρV,i = m̄

n

n∑
i=1

1

Vi
.

An individual measurement of the volume can be represented in the form Vi = V̄ + vi =
V̄ (l + εi ), where vi is an absolute error and εi is the relative form of it. In accordance with
the rules of approximate calculation,

1

Vi
� 1

V̄i
(1 − εi ).

As one can see from Table 7.3, the highest absolute value of νi is 32 × 10−10 m3. Thus,
εi∼ 1.6×10−3%, and the above equality can be considered precise. Therefore,

n∑
i=1

1

Vi
=

n∑
i=1

1

V̄i
(1 − εi ) = n

V̄
− 1

V̄i

n∑
i=1

εi .

As it was shown in Section 5.6,
∑n

i=1 εi = 0. Thus,
∑n

i=1
1
Vi

= n
V̄ , and therefore,

ρ̄V = m̄

n

n∑
i=1

1

Vi
= m̄

V̄

as was to be shown. Unfortunately, proving this result in general form seems difficult.
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expression

I = CU/τ,

where C is the capacitance of the capacitor, with whose help the ionization current
is compensated; U is the initial voltage on the capacitor; and τ is the compensation
time.

As U and τ are dependent, it is a dependent measurement.
We shall examine the measurement of ionization current on the special apparatus

described in [33]. A capacitor, whose capacitance C = 4006.3 pF is known to
within 0.005%, is employed. The voltage on the capacitor is established with the
help of a class 0.1 voltmeter with a measurement range of 0–15 V. The time is
measured with a timer whose scale is divided into tenths of a second.

The measurement is performed by making repeated observations. Each time the
same indication of the voltmeter U = 7 V is established and the compensation
time is measured. The results of 27 observations are given in the first column of
Table 7.6.

Table 7.6. The results of measurements of the
ionization current and data from initial processing.

τ Ii (Ii − Ī ) (Ii − Ī )2

s ×10−10 A ×10−14 A ×10−28 A2

74.4 3.7694 7 49
74.6 3.7593 −94 8836
74.3 3.7745 58 3364
74.6 3.7593 −94 8836
74.4 3.7694 7 49
74.4 3.7694 7 49
74.4 3.7694 7 49
74.4 3.7694 7 49
74.4 3.7694 7 49
74.3 3.7745 58 3364
74.5 3.7643 −44 1936
74.4 3.7694 7 49
74.5 3.7643 −44 1936
74.4 3.7694 7 49
74.6 3.7593 −94 8836
74.2 3.7705 18 324
74.5 3.7643 −44 1936
74.3 3.7745 58 3364
74.4 3.7694 7 49
74.4 3.7694 7 49
74.5 3.7643 −44 1936
74.5 3.7643 −44 1936
74.3 3.7745 58 3364
74.3 3.7745 58 3364
74.3 3.7745 58 3364
74.4 3.7694 7 49
74.5 3.7643 −44 1936
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The largest difference between the obtained values of the compensation time
is equal to 0.4 s; i.e., the deviations from the average reach 0.25%. What can
explain this spread? Obviously, the systematic errors of the measuring instrument
employed here have nothing to do with the error. We shall estimate the random
error of the instruments and their role.

According to established standards, the dead band of an electric measuring
instrument must not exceed the limit of the intrinsic error permissible for it. This
limit in indicating a voltage of 7 V is δU = 0.1 × (15/7) = 0.21%.

For this reason, when a voltage of 7 V is set on the voltmeter, voltages that can
differ from the average by not more than one half the dead band, i.e., 0.1%, will
be obtained on the capacitor.

The timer has virtually no random error.
The compensation time is a function of the voltage on the capacitor, and the

spread in the voltage on the capacitor is accompanied by the same spread in
the compensation time. The obtained spread of 0.25% is larger than expected.
Therefore, the observed phenomenon should have a different reason.

In the experiment under study, the background current could be the reason. This
current adds to the measured current and is indistinguishable from it. But it is
known that the background current can be assumed to be a stationary process over
a time interval shorter than that required to perform a measurement, which makes it
possible to eliminate the background current by measuring during the experiment
the average background current and subtracting it from the value obtained for the
ionization current. For this reason, however, the ionization current must also be
measured as an average current.

Essentially, in this manner, the model of the phenomenon was redefined and a
new definition of the specific measured quantity was given.

Our measurement is a dependent measurement. For this reason, we shall
use the method of reduction; for each value of τi (i = 1, . . . , 27), we find the
corresponding current Ii and then calculate, for the entire group of values, the
average value, giving an estimate of the measured quantity.

The values of Ii are presented in the second column of Table 7.6. The average
value Ī = 3.7687 × 10−10 A.

We shall now estimate the errors. First we shall find an estimate of the standard
deviation of the measurement result. As

27∑
i=1

(Ii − Ī )2 = 59 171 × 10−28,

we have

S( Ī ) =

√√√√√ 27∑
i=1

(Ii − Ī )2

27 × 26
= 9.2 × 10−14 A.

In the relative form, S%( Ī ) = 0.027%.
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We shall now estimate the conditionally constant errors. The influence coef-
ficients (in the relative form) wC , wU , and wτ of the errors of the estimates
of the arguments C, U, and τ are equal to wC = 1, wU = 1, and wτ = −1.
Therefore the existing conditionally constant errors are related by the relation
ϑI % = ϑC% + ϑU% − ϑτ%.

For each elementary error, we estimate its limit |ϑi | ≤ θi .
The limit of the total error of the voltmeter (neglecting the sign) is equal to

0.21%. As the voltmeter also has a random error, we shall take θU = 0.15%. For
the capacitor, θC = 0.05% is given. The limit of the error of the timer is equal to
the value of one graduation, i.e., θτ = 0.1 × 100/74 = 0.135%.

Turning to formula (6.42) and setting α = 0.95, we obtain

θI % = k
√

θ2
C + θ2

U + θ2
τ

=1.1
√

(5 × 10−2)2 + (13.5 × 10−2)2 + (15 × 10−2)2 = 0.23% (α = 0.95).

The average background current is usually equal to (0.5 − 1) × 10−12 A. It can
be measured to within 5%. With respect to the measured ionization current, this
error is equal to 0.013%, and it can obviously be neglected.

If during the measurement the average background current was equal to Ī b =
0.75 × 10−12 A, then

Ĩ = Ī − Ī b = 3.7612 × 10−10 A.

So

Ĩ = 3.7612 × 10−10 A, S( Ĩ ) = 9 × 10−14 A (n = 27),

θI = 8.7 × 10−13 A (α = 0.95).

As θ/S > 7, the random error can be neglected. After rounding off, we obtain
finally

I = (3.761 ± 0.009) × 10−10 A (α = 0.95).

7.4. The Measurement of Power at High Frequency

As an example of a single independent indirect measurement, we shall study the
measurement of the power generated by a high-frequency current in a resistor ac-
cording to the formula P = I 2 R,where P is the power measured, I is the effective
current, and R is the active resistance of the resistor.

Measurements of the current and resistance give estimates of their values Ĩ and
R̃ and the limits of the relative errors δ I = 0.5% and δR = 1%.

The errors of measurements of arguments are given in the relative form. There-
fore the influence coefficients are w′

I = 2 and w′
R = 1.

The limit of the error of the result must be found differently depending on what
is known about the errors δ I and δR. Even if these errors are determined only
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by the properties of the instruments employed, several situations are possible. We
shall study the most typical ones.

(1) The measurement is performed under reference conditions, the measuring
instruments have been recently checked, and the working standards were at least
five times more accurate than the instruments. In this case, it can be assumed that
the limits of error of the measurements of the current and resistance δ I and δR
are reliable. Assuming that within the estimated limits the actual errors εI and
εR are distributed uniformly over the set of instruments, the uncertainty of the
measurement result can be found according to the formula

u1(α) = k
√

4(δ I )2 + (δR)2.

For α = 0.95, k = 1.1, and we obtain

u1(0.95) = 1.1
√

4 × 0.25 + 1 = 1.5%.

(2) The measurement is performed under the normal operating conditions ap-
propriate for the instruments employed and the estimates of the errors δ I and δR
are determined based on several components. For this reason, the errors of argu-
ment measurements can be assumed to have normal distribution. If their limits
correspond to the same probability α.

Then the uncertainty of the result of measurement can be found from the formula
(6.20).

u2(α) =
√

4(δ I )2 + (δR)2 = 1.4%.

This uncertainty estimate is just as reliable as the estimates of its components and
corresponds to the same confidence probability.

(3) Another situation will occur if we do not have information about the origin
of the limits of errors δ I and δR. In this case, and because there are only two
components of the measurement error, we shall sum them arithmetically:

δP = 2δ I + δR = 2%.

7.5. The Measurement of Voltage with the Help
of a Potentiometer and a Voltage Divider

The measurement of voltage with the help of a potentiometer is a direct mea-
surement. However, when the errors of the potentiometers and the errors of the
standard cell are standardized separately, and when measurements are performed
using a voltage divider, the error of the result of such a measurement is estimated
by methods that are specifically designed for indirect measurements.

We shall study the case of single measurements with accurate estimation of
errors, for example, measurement of the voltage with the help of a class 0.005
P309 potentiometer, a class 0.005 standard cell, and a class 0.005 P35 voltage
divider. These instruments were manufactured in the former USSR.
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It is well known that when working with such potentiometers, at first the poten-
tiometrical current Ip is adjusted in the circuit with accurate resistors so that the
voltage drop on the section of the circuit with the resistance Rsc would balance the
emf of the standard cell Usc. In this case,

Ip = Usc/Rsc.

Next, the standard cell is disconnected and the measured voltage Up is connected
to the potentiometer circuit. By switching the potentiometer, a fraction of the
resistors of the potentiometer is introduced into the comparison circuit such that
the voltage drop on their resistance Rp would compensate Up; i.e., Up = Ip Rp.
Then

Up = Rp

Rsc
Usc,

and knowing the emf of the standard cell and the ratio Rp/Rsc, we find Up.
The indications of the potentiometer are proportional to Rp, but the error of the

potentiometer is determined not by the errors of the resistances Rp and Rsc, but
by the error of the ratio Rp/Rsc. The uncertainty associated with the operations
of comparing the voltages can be neglected, because the smoothness of the unit
controlling the potentiometer and the sensitivity of the zero indicator were designed
so that this condition would be satisfied.

The potentiometer has six decades and a built-in self-balancing amplifier. The
limit of permissible error as a function of the measured voltage U is calculated
using the formula (given in the manufacturer’s documentation)


U = ±(50U + 0.04) × 10−6 V.

The error of the potentiometer does not exceed the indicated limits if the ambient
air temperature ranges from +15 to +30 ◦C and differs by not more than 2.5 ◦C
from the temperature at which the measuring resistors of the potentiometer were
adjusted (the P309 potentiometer has built-in calibration and adjusting systems).

The emf of the class 0.005 standard cell can be determined with an error of
±10 µV. The effect of the temperature is taken into account with the help of a
well-known formula, which describes accurately the temperature dependence of
the emf.

Assume that in a measurement of one and the same voltage, performed using a
voltage divider whose voltage division ratio was set equal to 1:10, the following
potentiometer indications were obtained:

x1 = 1.256 316 V, x2 = 1.256 321 V, x3 = 1.256 318 V.

The limit of permissible error of the potentiometer in this case is


U = ±50 × 1.26 × 10−6 = ±63 µV.

For this reason, the difference of 5 µV between the results of the three obser-
vations presented above can be regarded as resulting from the random error of the
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measurement, whose magnitude is acceptable. In the calculation, therefore, any
results obtained or their average value can be used.

In the process of adjusting the measuring resistors, which is done before the
measurement, the corrections of the higher order decades were estimated. We
shall introduce them into the indications of the potentiometer.

Let the correction for indication “12” of the decade “×100 mV” equal +15 ×
10−6 V, and the correction of the indication “5” of the decade “×10 mV” equal
−3 × 10−6 V. The corrections for the other decades are so small that they are no
longer of interest. Each correction is determined with an error of ±5 × 10−8 V.
The error of the potentiometer corresponding to the indications of the remaining
decades that are 0.0063 V falls within the limits determined in accordance with
the formula given above and are equal to


U = ±(50 × 0.0063 + 0.04) × 10−6 = ±0.4 × 10−6 V.

In addition, it is necessary to take into account the possible change in the air
temperature in the room. If this change falls within permissible limits, then accord-
ing to the specifications of the potentiometer, the error can change approximately
by 1

4 of the permissible limit, i.e., by 16 µV.
We shall take for the result the average value of the observations performed,

correcting it by the amount C = (15 − 3) × 10−6 = 12 × 10−6 µV:

Up = x̄ = 1.256 318 + 0.000 012 = 1.256 330 V.

The errors of the potentiometer, which enter into this result, are

θ1 = ±16 × 10−6 V, θ2 = ±0.4 × 10−6 V.

The error in determining the corrections and the error θ2 can be neglected.
Thus, the limits of error of the potentiometer are equal to θ1:

θp = θ1 = ±16 × 10−6 V.

Next, we must estimate the errors from the standard cell and the voltage divider.
Assuming that the division coefficient of the voltage divider is equal to Kd , the
measured voltage is determined from formula Ux = KdUp, where

Up = Rp

Rsc
Usc,

and for this reason, we can write the measurement equation in the form:

Ux = Kd
Rp

Rsc
Usc.

The error of the voltage divider can reach 5 × 10−3%. But the real division
coefficient of the divider can be found and taken into account, which is precisely
what we must do in the case at hand. In the given measurement, Kd = 10.0003
and the error in determining Kd falls within the range ±2 × 10−3%.

The emf of the standard cell is taken into account with the help of the special
decades of the potentiometer. The discrepancy between the real value of the emf
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of the standard cell and the value exhibited on the potentiometer falls within the
limits of error in determining the emf of the standard cell (±10 µV).

We estimate the measured voltage Ux as

Ũx = KdUp = 10.0003 × 1.256 330 = 12.563 68 V.

To estimate the measurement error, we shall use the standard trick. First, we
shall take the logarithm of the obtained measurement equation. Then we find the
differentials of both sides of the equation, and neglecting errors that are second-
order infinitesimals, we replace the differentials by the increments. This process
gives


Ux

Ux
= 
Kd

Kd
+ 
(Rp/Rsc)

Rp/Rsc
+ 
Usc

Usc
.

For the terms, we have only estimates of the limits, and not the values of the
errors. For this reason, we shall estimate the limits of the measurement error. So,
we can use formula (5.3). First, all components must be represented in the form of
relative errors. The relative error of the potentiometer, more accurately, its limits
in percent, will be

θp% = 100θp

Up
= 100
(Rp/Rsc)

Rp/Rsc
= ±100 × 16 × 10−6

1.26
= ±1.3 × 10−3%.

The limits of the relative error of the voltage divider were estimated directly as
θK % = ±2 × 10−3%. The limits of error in determining the emf of the standard
cell in the form of a relative error will be

θsc% = ±100 × 10 × 10−6

1.018
= ±1 × 10−3%.

We now find the limit of the measurement error according to formula (5.3):

θα% = k
√

1.32 + 22 + 12 × 10−3 = k × 2.6 × 10−3%.

Let α = 0.95. Then k = 1.1 and

θ0.95% = 1.1 × 2.6 × 10−3 = 2.9 × 10−3 ≈ 3 × 10−3%.

Finally, we must check the number of significant figures in the result of mea-
surement. For this reason, we shall put the limits θ% in the form of absolute errors

θ0.95 = ±2.9 × 10−3 × 10−2 × 12.6 = ±37 × 10−5 V.

As the measurement is accurate, the error in the result of measurement is expressed
by two significant figures and no extra figures are in the result obtained. The final
result is

Ux = (12.563 68 ± 0.000 37) V (α = 0.95).

If the measurement was performed with approximate estimation of the errors,
then the errors of all components would have to be set equal to 5 × 10−3% and the
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limit of the measurement error would be

θ ′
0.95% = 1.1 × 10−3

√
3 × 52 = 0.01%.

Then θ ′ = ±0.0013 V and the result of measurement would have to be written
with fewer significant figures:

U ′
x = (12.5637 ± 0.0013) V (α = 0.95).

Here two significant figures are retained in the numerical value of the measurement
error because the value of the most significant digit is less than 3.

7.6. Calculation of the Uncertainty of the Value
of a Compound Resistor

We shall study the case in which 12 resistors with three different nominal resis-
tances are connected in series:

R� = 2R1 + 4R2 + 6R3.

This equation is a particular case of the dependence (6.2) with N = 3, b1 = 2, b2 =
4, and b3 = 6.

For resistors each having a nominal resistance Ri the limits of permissible errors
θiα are known:

Ri θiα

i � �

1 100.00 0.03
2 10.00 0.02
3 1.00 0.01

For the case at hand, we shall assume that the distribution of the actual resistance
over the collection of resistors having the same nominal resistance is normal and
truncated at the probability α = 0.98.

The nominal resistance of our compound resistor, according to relation (6.2), is
equal to

R� = 2 × 100.00 + 4 × 10.00 + 6 × 1.00 = 246.00 �.

We shall find the uncertainty in the value of the compound resistor for α = 0.98
using formula (6.20) having in mind that now w j = bi and u j = θi :

u =
√√√√ 3∑

i=1

b2
i θ

2
i =

√
22 × 0.032 + 42 × 0.022 + 62 × 0.012 = 0.11 �.
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Rounding off, we obtain u = 0.1 �. Finally, taking into account the required num-
ber of significant figures, we can write

R� = 246.0 ± 0.1 �, α = 0.98.

If it must be assumed that the real resistances of the resistors are distributed
uniformly, then the uncertainty must be calculated using formula (6.43); in which
case, we would obtain for the same confidence probability α = 0.98

u′ = ku = 1.3 × 0.11 = 0.14 �.

The difference between u′ and u for many cases is significant.
We shall consider the variant when N resistors with the same nominal resistance

and the same tolerance are connected in series:

R� = NR, θR = const.

For example, R = 100 �, θR% = 0.5%, and N = 10. What is the error of a com-
pound resistor?

The problem is not as simple as it looks, because its solution depends on the
technology employed to fabricate the resistors. Suppose that resistors fabricated
at different times using different equipment are connected together. In this case,
their errors are independent, and the error of each resistor can be regarded as a
realization of a uniformly distributed random quantity. Then, according to formula
(6.43), we have

θα = k

√√√√ N∑
i=1

θ2
R = kθR

√
N .

It is convenient to transform this formula so that it would contain the relative
errors. For this reason, we shall divide both sides of the equation by R� = NR and
write 100 × θ/R� = θ%, 100 × θR/R = θR%. Then we obtain

θ% = (k/
√

N )θR%.

In the case at hand, we must focus on a high confidence probability. Letα = 0.99.
Then k = 1.4 and

θ0.99% = 1.4/
√

10 × 0.5 = 0.2%;

i.e., the accuracy of a compound resistor is higher than that of a single resistor.
However, the increase in accuracy is limited by the accuracy of the measuring
instrument used in checking the resistance of the resistors.

Sometimes a compound resistor can be made up from resistors whose resistance
was adjusted individually by the same operator with the help of the same measuring
instrument, which is most often possible especially when accurate resistors are
fabricated. The actual errors in all resistors must become approximately equal to
one another, and because they are all, essentially, systematic, the relative error of
the compound resistor will become the same as that of the separate resistors.
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Expanding on this example, we can move on to the case when some additive
quantity is measured in several identical applications of the same measuring in-
strument, for example, measurement of the length of a flat body with the help of a
short ruler. It is obvious from the foregoing discussion that the relative systematic
component of the error of such a length measurement will be equal to the relative
systematic error of the ruler. The random component, however, must be estimated
for a concrete measurement.



8
Combined Measurements

8.1. General Remarks About the Method
of Least Squares

Combined measurements, as pointed out in Chapter 1, are measurements per-
formed so that the number of equations relating the measured quantities is larger
than the number of the latter. Because of measurement errors, it is impossible to
find values of the unknowns such that all equations would be satisfied. Under these
conditions, the estimated values of the unknowns usually are found with the help
of the method of least squares.

The method of least squares is a widely employed computational technique
that makes it possible to eliminate the nonuniqueness of experimental data. This
method is easily implemented with the help of computers, and good least-squares
software is available.

There is an extensive literature on the method of least squares, and it has been
well studied. It is known that this method does not always give results that satisfy
the criteria of optimality of estimation theory. Nevertheless, the method of least
squares is widely employed, because in general, it is simple, and the biasness of
the estimates obtained is usually not significant.

An alternative to the least-squares method is the method of minimizing the sum
of absolute deviations. This method provides even more visual results than the
first one. Nevertheless, the application of this method is not a problem now, it is
seldom used.

In the first edition of this book, the classification of measurements contained
combined and simultaneous categories of measurements.

An example of simultaneous measurements is finding the parameters of the
equation

R = R20 + a(t − 20) + b(t − 20)2,

which expresses the temperature dependence of an accurate measuring resistor.
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By measuring simultaneously R (the resistance of the resistor) and t (the temper-
ature of the resistor) and by varying the temperature, we obtain several equations,
from which it is necessary to find R20—the resistance of the resistor at t = 20 ◦C—
and the temperature coefficients a and b.

But, in accordance with the new results in the theory of indirect measurements,
this example is an example of dependent indirect measurements, and the method
of reduction is pertinent to it. So, generalizing the discussed example, we can say
that the category of simultaneous measurements is not necessary, and this category
was eliminated from this book.

We shall discuss the method of least squares, because it is the main computational
method used for combined measurements, and to use this method knowingly, it is
necessary to know its basic ideas.

We can write the basic equation in the general form

F0(A, B, C, . . . , x, y, z, . . .) = l, (8.1)

where x , y, z, and l are known coefficients and directly measured quantities, and
A, B, and C are the unknowns to be determined.

Substituting the experimentally obtained numerical values of xi , yi , and zi into
(8.1), we obtain a series of equations of the form .

Fi (A, B, C, . . . , xi , yi , zi ) = li , (8.2)

which contains only the unknown quantities A, B, and C to be found and the
numerical coefficients or numbers.

The quantities sought are found by solving the obtained equations simultane-
ously.

An example of a combined measurement is finding the capacitances of two ca-
pacitors from the measurements of the capacitance of each one of them separately,
as well as when the capacitors are connected in parallel and in series. Each mea-
surement is performed with one observation, but ultimately, we shall have four
equations for two unknowns:

C1 = x1, C2 = x2, C1 + C2 = x3,
C1C2

C1 + C2
= x4.

Substituting into these equations the experimentally found values of xi , we obtain
a system of equations analogous to (8.2).

As we have already pointed out, the number of equations in the system (8.2)
is greater than the number of unknowns, and because of measurement errors, it
is impossible to find values of the measured quantities such that all equations
would be satisfied simultaneously, even if they are equations known exactly. For
this reason, (8.2), in contrast to normal mathematical equations, are said to be
conditional equations. When the values of the unknowns found by some method
are substituted into the conditional equations (8.2), for the reasons mentioned, we
obtain

Fi ( Ã, B̃,C̃, . . .) − li = vi �= 0.
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The quantities vi are called residuals. The solution of the conditional equation that
minimizes the sum of the squares of the residuals is generally recognized. This
proposition was first published by Legendre and is called Legendre’s principle. He
implemented this principle by the method that is now called the method of least
squares.

8.2. Measurements with Linear Equally Accurate
Conditional Equations

To simplify the formulas, we shall consider the case of three unknowns. Let the
system of conditional equations have the form

Axi + Byi + Czi = li (i = 1, . . . , n, n > 3), (8.3)

where A, B, and C are the unknowns to be determined, and xi , yi , zi , and li are
the results of the i th series of measurements and known coefficients.

In the general case, the number of unknowns m < n; if m = n, then the system
of conditional equations can be solved uniquely, although the obtained results are
burdened with errors.

If some estimates of the measured quantities Ã, B̃, and C̃ are substituted into
(8.3), then we obtain the residuals

vi = Ãxi + B̃ yi + C̃zi − li .

We shall find estimates of Ã, B̃, and C̃ from the conditions

Q =
n∑

i=1

v2
i = min.

For this condition to be satisfied, it is necessary that

∂ Q

∂ Ã
= ∂ Q

∂ B̃
= ∂ Q

∂ C̃
= 0.

We shall find these particular derivatives and equate them to 0:

∂ Q

∂ Ã
= 2

n∑
i=1

(Ãxi + B̃ yi + C̃zi − li )xi = 0,

∂ Q

∂ B̃
= 2

n∑
i=1

(Ãxi + B̃ yi + C̃zi − li )yi = 0,

∂ Q

∂ C̃
= 2

n∑
i=1

(Ãxi + B̃ yi + C̃zi − li )zi = 0.
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From here we obtain a system of so-called normal equations:

Ã
n∑

i=1

x2
i + B̃

n∑
i=1

xi yi + C̃
n∑

i=1

xi zi =
n∑

i=1

xi li ,

Ã
n∑

i=1

yi xi + B̃
n∑

i=1

y2
i + C̃

n∑
i=1

yi zi =
n∑

i=1

yi li ,

Ã
n∑

i=1

zi xi + B̃
n∑

i=1

zi yi + C̃
n∑

i=1

z2
i =

n∑
i=1

zi li .

The normal equations are often written using Gauss’s notation:

n∑
i=1

x2
i = [xx],

n∑
i=1

xi yi = [xy], and so on.

It is obvious that
n∑

i=1

xi yi =
n∑

i=1

yi xi and therefore [xy] = [yx].

In Gauss’s notation, the normal equations assume the simpler form

[xx] Ã + [xy] B̃ + [xz] C̃ = [xl],

[xy] Ã + [yy] B̃ + [yz] C̃ = [yl],

[xz] Ã + [yz] B̃ + [zz] C̃ = [zl].

(8.4)

We call attention to two obvious but important properties of the matrix of coef-
ficients of the unknowns in the system of equations (8.4):

(1) The matrix of these coefficients is symmetric relative to the main diagonal.
(2) All elements on the main diagonal are positive.

These properties are general. They do not depend on the number of unknowns,
but in this example, they are shown in application to the case with three unknowns.

The number of normal equations is equal to the number of unknowns, and solving
these equations by known methods we obtain estimates of the measured quantities.
The solution can be written most compactly with the help of the determinants

Ã = Dx

D
, B̃ = Dy

D
, C̃ = Dz

D
, (8.5)

where

D =

∣∣∣∣∣∣∣
[xx] [xy] [xz]

[yx] [yy] [yz]

[zx] [zy] [zz]

∣∣∣∣∣∣∣ .
The determinant Dx is obtained from the principal determinant D of the system

by replacing the column with the coefficients of the unknown Ã with the column
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of free terms:

Dx =

∣∣∣∣∣∣∣
[xl] [xy] [xz]

[yl] [yy] [yz]

[zl] [zy] [zz]

∣∣∣∣∣∣∣ .

The determinants Dy and Dz are found analogously, i.e., by replacing the second
and third columns, respectively, with the indicated column.

Now we must estimate the errors of the obtained results. The estimate of the
variance of the conditional equations is calculated from the formula

S2 =

n∑
i=1

v2
i

n − m
, (8.6)

where vi is the residual of the i th conditional equation. Then the estimates of
the variances of the values found for the unknowns can be calculated using the
formulas

S2(Ã) = D11

D
S2, S2(B̃) = D22

D
S2, S2(C̃) = D33

D
S2, (8.7)

where D11, D22, and D33 are the algebraic complements of the elements [xx],
[yy], and [zz] of the determinant D, respectively (they are obtained by removing
from the matrix of the determinant D the column and row whose intersection is
the given element).

The confidence intervals for the true values of the measured quantities are con-
structed based on Student’s distribution. In this case, the number of degrees of
freedom for all measured quantities is equal to ν = n − m.

8.3. Reduction of Linear Unequally Accurate
Conditional Equations to Equally Accurate
Conditional Equations

In Section 8.2, we studied the case in which all conditional equations had the same
variance. Such conditional equations are said to be equally accurate. In practice,
there can be cases in which the conditional equations have different variances,
which usually happens if equations reflecting the measurements performed under
different conditions are added to the system of equations. For example, if in cal-
ibrating a collection of weights, special measures are not taken, because of the
different loading of the weights, the weighing errors will be different for different
combinations of weights. Correspondingly, the conditional equations will not be
equally accurate either.
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For unequally accurate conditional equations, the most likely set of values of
the unknowns A, B, C , . . . will be obtained if the expression

Q =
n∑

i=1

giv
2
i ,

where gi is the weight of the i th conditional equation, is minimized.
The introduction of weights is equivalent to multiplying the conditional equa-

tions by
√

gi . Finally, the cofactors gi will appear in the coefficients of the un-
knowns in the normal equations.

Thus, the first equation of the system of normal equations (8.4) will assume the
form

[gxx]Ã + [gxy]B̃ + [gxz]C̃ + [gxl] = 0.

All remaining equations will change analogously. Each coefficient in the equation
is a sum of terms of the form

[gxy] = g1x1 y1 + g2x2 y2 + · · · + gn xn yn.

The weights of the conditional equations are found from the conditions∑n
i=1 gi = 1,

g1 : g2 : · · · : gn = 1
σ 2

1
: 1

σ 2
2

: · · · : 1
σ 2

n
.

Therefore, to solve the problem, it is necessary to know the variance of the
conditional equations. If the weights have been determined (or chosen), then after
the transformations presented above, the further solution of the problem proceeds
in the manner described in Section 8.2, and finally we obtain estimates of the
measured quantities and their rms deviations. However, the weights are usually
determined approximately.

8.4. Linearization of Nonlinear Conditional Equations

For several fundamental reasons, the method of least squares has been developed
only for linear conditional equations. For this reason, nonlinear conditional equa-
tions must be put into a linear form.

The general method for doing this task is based on the assumption that the
incompatibility of the conditional equations is small; i.e., their residuals are small.
Then, taking from the system of conditional equations as many equations as there
are unknowns and solving them, we find the initial estimates of the unknowns A0,
B0, C0. Next, assuming that

A = A0 + a, B = B0 + b, C = C0 + c,
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and substituting these expressions into the conditional equations, we expand the
conditional equations in series. Let

Fi (A, B, C) = li .

Then retaining only terms with the first powers of the corrections a, b, and c, we
obtain

fi (A0, B0, C0) − li +
(

∂ fi

∂ A

)
0

a +
(

∂ fi

∂ B

)
0

b +
(

∂ fi

∂C

)
0

c = 0.

We find the partial derivatives by differentiating the functions fi (A, B, C) with
respect to A, B, and C , respectively, and then we substitute A0, B0, and C0 into
the obtained formulas and find their numerical values. In addition,

fi (A0, B0, C0) − li = λi �= 0.

Thus, we obtain a system of linear conditional equations for a, b, and c. The
solution of this system gives their estimates and standard deviations. Then

Ã = A0 + ã, B̃ = B0 + b̃, C = C0 + c̃.

As A0, B0, and C0 are nonrandom quantities, S2(Ã) = S2(ã), S2(B̃) = S2(b̃),
and so on.

In principle, once Ã, B̃, and C̃ have been obtained, the second approximation
can be constructed.

In addition to the foregoing method of linearization of the conditional equations,
the method of substitutions is employed. Thus, if, for example, the conditional
equation has the form

yi = xi sin A + zi e
−2B,

where x , y, and z are directly measured quantities, and A and B must be determined,
then the substitution

U = sin A, E = e−2B,

can be made.
Then we obtain the linear conditional equation

yi = xiU + zi E .

The solution of these equations gives Ũ and Ẽ and estimates of their variances
that can then be used to find the required quantities A and B.

The method of substitutions is convenient, but it is not always applicable. In
principle, one can imagine one other general method for solving a system of
equations when the number of equations is greater than the number of unknowns.
This method is as follows.

Take from the available conditional equations a group of equations such that
their number is equal to the number of unknowns. Such a group gives a definite
value for each unknown.
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Next, replacing in turn the equations in the group by each of the other equations
that were not in the group, we obtain other values of the same unknowns. Irre-
spective of the method used to combine the equations, all possible combinations
of equations must be sorted through, and for each combination, the values of the
unknowns must be found. As a result of such calculations, obtain for each unknown
a group of values that can be regarded as the group of observations obtained with
direct measurements.

All values in the group are equivalent, but, unfortunately, they are not inde-
pendent. This result presents difficulties in estimating the variances of the values
obtained for the unknowns.

8.5. Examples of the Applications of the
Method of Least Squares

The examples studied below are presented to demonstrate the computational tech-
nique as well as the physical meaning of the method, and for this reason, they were
chosen so that the calculations would be as simple as possible. The initial data for
the examples are taken from [35].

Example 1. Determine the angles of a trihedral prism. Each angle is measured
three times. The measurements of all angles are equally accurate. The results of
all single measurements are as follows:

x1 = 89◦ 55′, y1 = 45◦ 5′, z1 = 44◦ 57′,
x2 = 89◦ 59′, y2 = 45◦ 6′, z2 = 44◦ 55′,
x3 = 89◦ 57′, y3 = 45◦ 5′, z3 = 44◦ 58′.

If each angle is found as the arithmetic mean of the corresponding observations,
then we obtain

A0 = 89◦ 57′, B0 = 45◦ 5.33′, C0 = 44◦ 56.67′.

The sum of the angles of the traingle must satisfy the condition

A + B + C = 180◦.

We obtain A0 + B0 + C0 = 179◦ 59′. This discrepancy is the result of measure-
ment errors. The values of A0, B0, and C0 obtained must be changed so that the
exactly known condition is satisfied.

The relations between the unknowns that must be satisfied exactly are called
constraints.

In [35], the problem is solved by the method of least squares. However, in this
case, the method of least squares must be regarded only as a procedure leading to
a unique answer. Its application here can be justified because the residual is equal
to only 180◦ − 179◦ 59′ = 1′, so that the changes in the directly obtained values
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of the angles should be insignificant. Therefore, these changes need not be found
with high accuracy. We now proceed to the solution of the problem.

If we have n conditional equations, m unknowns, and k constraints, and
n > m − k and m > k, then k unknowns can be eliminated from the conditional
equations by expressing these unknowns for the remaining unknowns. Next, us-
ing the method of least square, we find the values of m − k unknowns and the
estimates of standard deviations of these estimates. We obtain the remaining k
unknowns using the constraint equations. To find their standard deviations, strictly
speaking, another cycle of calculations with the conditional equations, in which
the previously excluded unknowns are retained and the other unknowns are ex-
cluded, must be performed. This repeated calculation is not often performed, be-
cause any conclusion about the standard deviation of the previously excluded
unknowns can be made using the estimate of the standard deviation of the other
unknowns.

Let us return to our problem. To simplify the calculations, we shall assume that

A = A0 + a, B = B0 + b, C = C0 + c,

and we shall find the values of the corrections a, b, and c.
The system of conditional equations transforms into the following system:

a1 = −2′, b1 = − 0.33′, c1 = + 0.33′,
a2 = +2′, b2 = + 0.67′, c2 = −1.67′,
a3 = 0, b3 = − 0.33′, c3 = +1.33′.

The constraint equation will assume the form

A0 + a + B0 + b + C0 + c = 180◦.

Therefore

a + b + c = 180◦ − 179◦ 59′ = 1′.

We exclude c from the conditional equations using the relation

c = 1′ − a − b,

and in each equation, we indicate both unknowns. We obtain the following system
of conditional equations:

1 × ã + 0 × b̃ = − 2′, 0 × ã + 1 × b̃ = − 0.33′, 1 × ã + 1 × b̃ = + 0.67′,
1 × ã + 0 × b̃ = + 2′, 0 × ã + 1 × b̃ = 0.67′, 1 × ã + 1 × b̃ = + 2.67′,
1 × ã + 0 × b̃ = 0′, 0 × ã + 1 × b̃ = −0.33′, 1 × ã + 1 × b̃ = − 0.33′.

We now construct the system of normal equations. Its general form will be

[xx]ã + [xy]b̃ = [xl],

[xy]ã + [yy]b̃ = [yl],
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Here we obtain:

[xx] = 1 + 1 + 1 + 1 + 1 + 1 = 6,

[xy] = 1 + 1 + 1 = 3,

[yy] = 1 + 1 + 1 + 1 + 1 + 1 = 6,

[xl] = −2′ + 2′ + 0.67′ + 2.67′ − 0.33′ = +3′,
[yl] = −0.33′ + 0.67′ − 0.33′ + 0.67′ + 2.67′ − 0.33′ = +3′.

Therefore, the normal equations will assume the form

6ã + 3b̃ = 3′, 3ã + 6b̃ = 3′.

In accordance with the relations (8.5), we calculate

D =
∣∣∣∣6 3

3 6

∣∣∣∣ = 36 − 9 = 27,

Da =
∣∣∣∣3′ 3

3′ 6

∣∣∣∣ = 18′ − 9′ = 9′.

Db =
∣∣∣∣6 3′

3 3′

∣∣∣∣ = 18′ − 9′ = 9′,

and we find

ã = b̃ = 9′/27 = 0.33′.

Therefore, c̃ = 0.33′ also.
Substituting the estimates obtained into the conditional equations, we calculate

the residuals:

vi = 2.33′, v4 = 0.67′, v7 = 0,

v2 = 1.67′, v5 = −0.33′, v8 = 2′,
v3 = 0.33′, v6 = 0.67′, v9 = −1′.

From formula (8.6), we calculate an estimate of the variance of the equations

S2 =

n∑
i=1

v2
i

n − m + k
=

9∑
i=1

v2
i

9 − 2
= 14.34

7
= 2.05.

Now D11 = 6, D22 = 6 and formulas (8.7) give

S2(ã) = S2(b̃) = 6

27
× 2.05 = 0.456, S(ã) = S(b̃) = 0.675.

As the conditional equations are equally accurate and the estimates ã, b̃, and
c̃ are equal to one another, the repeated calculations need not be performed, and
we can write immediately S(c̃) = 0.675′. Finally, we obtain Ã = 89◦ 57.33′, B̃ =
45◦ 5.67′, C = 44◦ 57.00′, and S( Ã) = S(B̃) = S(C̃) = 0.68′.

We construct the confidence interval for each angle based on Student’s distribu-
tion. The number of degrees of freedom in this case is equal to 9 − 2 = 7, and for
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α = 0.95, Student’s coefficient t0.95 = 2.36. Therefore, 
0.95 = 2.36 × 0.68′ =
1.6′. Thus, we obtain finally

A(0.95) = 89◦ 57.3′ ± 1.6′, B(0.95) = 45◦ 5.7′ ± 1.6′,
C(0.95) = 44◦ 57.0′ ± 1.6′.

Example 2. We shall study the example, which was presented at the beginning of
this chapter, of combined measurements of the capacitance of two capacitors. The
results of the direct measurement are as follows:

x1 = 0.2071 µF, x2 = 0.2056 µF,

x1 + x2 = 0.4111 µF,
x1x2

x1 + x3
= 0.1035 µF.

The last equation is nonlinear. We expand it in a Taylor series, for which we first
find the partial derivatives

∂ f

∂C1
= C2(C1 + C2) − C1C2

(C1 + C2)2
= C2

2

(C1 + C2)2

and analogously

∂ f

∂C2
= C2

1

(C1 + C2)2

As C1 ≈ x1 and C2 ≈ x2, we can write

C1 = 0.2070 + e1, C2 = 0.2060 + e2.

We make the expansion for the point with the corrdinates C10 = 0.2070 and
C20 = 0.2060. We obtain

C10C20

C10 + C20
= 0.103 25,

∂ f

∂C1
= 0.2062

(0.207 + 0.206)2
= 0.249,

∂ f

∂C2
= 0.2072

(0.207 + 0.206)2
= 0.251.

We find the conditional equations, setting x1 = C1 and x2 = C2:

1 × e1 + 0 × e2 = 0.0001,

0 × e1 + 1 × e2 = −0.0004,

1 × e1 + 1 × e2 = −0.0019,

0.249e1 + 0.251e2 = 0.000 25.

We now calculate the coefficients of the normal equations

[xx] = 1 + 1 + 0.2492 = 2.062, [xy] = 1 + 0.249 × 0.251 = 1.0625,

[yy] = 1 + 1 + 0.2512 = 2.063, [xl] = −0.0004 − 0.0019 + 0.249

× 0.00025 = −0.001 738,

[yl] = −0.0004 − 0.0019 + 0.251 × 0.00025 = −0.002 237.
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The normal equations will be

2.062e1 + 1.0625e2 = −0.001 738,

1.0625e1 + 2.063e2 = −0.002 237.

We now find the unknowns e1 and e2. According to (8.5), we calculate

D =
∣∣∣∣ 2.062 1.0625
1.0625 2.063

∣∣∣∣ = 3.125,

Dx =
∣∣∣∣−0.001 738 1.0625
−0.002 237 2.063

∣∣∣∣ = −0.001 22,

Dy =
∣∣∣∣ 2.062 −0.001 738
1.0625 −0.002 237

∣∣∣∣ = −0.002 75.

From here we find

e1 = Dx

D
= −0.000 39, e2 = Dy

D
= −0.000 88.

Therefore,

C̃1 = 0.2070 − 0.000 39 = 0.206 61 µF,

C̃2 = 0.2060 = 0.000 88 = 0.205 12 µF.

We find the residuals of the conditional equations by substituting the estimates
obtained for the unknowns into the conditional equations:

v1 = 0.000 49, v3 = −0.000 63,

v2 = 0.000 58, v4 = 0.000 48.

Now we can calculate from formula (8.6) an estimate of the variance of the con-
ditional equations:

S2 =

4∑
i=2

v2
i

4 − 2
= 120 × 10−8

2
= 6 × 10−7.

The algebraic complements of the determinant D will be D11 = 2.063 and D22 =
2.062. As D11 ≈ D22,

S2(C̃1) = S2(C̃2) = D11

D
S2 = 2.063

3.125
× 6 × 10−7 = 4 × 10−7,

S(C̃1) = S(C̃2) = 6.3 × 10−4 µF.

The method, examined above, for measuring the capacitances of the capacitors
was apparently chosen to reduce somewhat the systematic error of the measure-
ment, which is different at different points of the measurement range; to reduce the
random component of the error, it would be sufficient to multiply measure each
capacitance.
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8.6. Determination of the Parameters in Formulas
from Empirical Data and Construction
of Calibration Curves

The purpose of almost any investigation in natural science is to find regularities
in the phenomena in the material world, and measurements are the characteristic
method that give objective data for achieving this goal.

It is desirable to represent the regular correlations determined between physical
quantities based on measurements in an analytic form, i.e., in the form of formulas.
The initial form of the formulas is usually established based on an unformalized
analysis of the collection of data obtained. One important prerequisite of analysis
is the assumption that the dependence sought must be expressed by a smooth curve;
physical laws usually correspond to smooth curves. Once the form of the formula
is chosen, its parameters are then found by an interpolation approximation of the
empirical data by the formula obtained, and this is most often done by the method
of least squares.

This problem is of great importance, and many mathematical and applied works
are devoted to it. We shall discuss some aspects of the solution of this problem that
are connected with the application of the method of least squares. The application
of this method is based on the assumption that the criterion for the optimal choice of
the parameter sought can be assumed to be that the sum of squares of the deviations
of the empirical data from the curve obtained is minimized. This assumption is
often justified, but not always. For example, sometimes the curve must be drawn so
that it exactly passes through all prescribed points, which is natural, if the coordi-
nates of the points mentioned are given as exact coordinates. The problem is solved
by the methods of the interpolation approximation, and it is known that the degree
of the interpolation polynomial will be only one less than the number of fixed
points.

Sometimes the maximum deviation of the experimental data from the curve is
minimized. As we have pointed out, however, most often the sum of the squares
of the indicated deviations is minimized by the method of least squares. For this
purpose, all values obtained for the quantities (in physically justified combina-
tions) are substituted successively into the chosen formula. Ultimately, a system
of conditional equations, from which the normal equations are constructed, is
obtained; the solution of these equations gives the values sought for the para-
meters.

Next, substituting the values obtained for the parameters into the conditional
equations, the residuals of these equations can be found and the standard deviation
of the conditional equations can be estimated from them.

It is significant that in this case, the standard deviation of the conditional equa-
tions is determined not only by the measurement errors but also by the imperfect
structure of the formula chosen to describe the dependence sought. For exam-
ple, it is well known that the temperature dependence of the electric resistance
of many metals is reminiscent of a parabola. In engineering, however, it is often
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found that some definition section of this dependence can be approximated by a
linear function. The inaccuracy of the chosen formula, naturally, is reflected in
the standard deviation of the conditional equations. Even if all experimental data
were free of any errors, the standard deviation would still be different from 0. For
this reason, in this case, the standard deviation characterizes not only the error of
the conditional equations, but also that the empirical formula adopted does not
correspond to the true relation between the quantities.

In connection with what we have said above, the estimates, obtained by the
method described above, of the variances of the determined parameters of the
empirical formulas become conditional in the sense that they characterize not only
the random spread in the experimental data, as usual, but also the uncertainty of
the approximation, which is nonrandom.

It should be noted that if the empirical formula can be assumed to be linear,
then the parameters of this formula can also be determined by the method of cor-
relation and regression analysis. They also make it possible to construct the confi-
dence intervals for the parameters and the confidence band for the approximating
straight line. In this case, however, methods for indirect measurements are also
effective.

Everything said above is completely relevant to the problem of constructing
calibration curves of measuring transducers and instruments.

We shall discuss the problem of constructing linear calibration curves, which
are most often encountered in practice.

Thus, the relation between a quantity y at the output of a transducer and
the quantity x at the input of the transducer must be expressed by the depen-
dence

y = a + bx . (8.8)

When calibrating the transducer, the values of {xi }, i = 1, . . . , n, in the range
[xmin, xmax] are given and the corresponding values {yi } are found.

Using this data, we have to estimate the coefficients a and b. Let us start with
the least-squares method.

Relation (8.8) gives a system of conditional equations

b̃xi + ã = yi + vi .

The residuals vi are determined by the relation

vi = b̃xi + ã − yi .

Following the least-squares scheme presented above, we obtain the system of
normal equations

b̃
n∑

i=1

x2
i + ã

n∑
i=1

xi =
n∑

i=1

xi yi , b̃
n∑

i=1

xi + nã =
n∑

i=1

yi . (8.9)
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The principal determinant of the system (8.9) will be

D =

∣∣∣∣∣∣∣∣

n∑
i=1

x2
i

n∑
i=1

xi

n∑
i=1

xi n

∣∣∣∣∣∣∣∣
= n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2

.

The determinant Dx is given by

Dx =

∣∣∣∣∣∣∣∣

n∑
i=1

xi yi

n∑
i=1

xi

n∑
i=1

yi n

∣∣∣∣∣∣∣∣
= n

n∑
i=1

(xi yi ) −
n∑

i=1

xi

n∑
i=1

yi .

From here we find an estimate of the coefficient b:

b̃ = Dx

D
=

n
n∑

i=1
xi yi −

n∑
i=1

xi

n∑
i=1

yi

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2 =

n∑
i=1

xi yi − nx̄ ȳ

n∑
i=1

x2
i − n(x̄)2

.

It is not difficult to show that
n∑

i=1

xi yi − nx̄ ȳ =
n∑

i=1

(xi − x̄)(yi − ȳ) (8.10)

and that
n∑

i=1

x2
i − nx̄2 =

n∑
i=1

(xi − x̄)2. (8.11)

Then the expression for b̃ assumes the simpler form

b̃ =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

. (8.12)

The determinant Dy is given by

Dy =

∣∣∣∣∣∣∣∣

n∑
i=1

x2
i

n∑
i=1

xi yi

n∑
i=1

xi

n∑
i=1

yi

∣∣∣∣∣∣∣∣
= n ȳ

n∑
i=1

x2
i − nx̄

n∑
i=1

xi yi .

Therefore

ã = Dy

D
=

nȳ
n∑

i=1
x2

i − nx̄
n∑

i=1
xi yi

n
n∑

i=1
x2

i − n2(x̄)2

.
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Using the identite (8.11), we put the estimate ā into the form

ã =
ȳ

n∑
i=1

x2
i − x̄

n∑
i=1

xi yi

n∑
i=1

(xi − x̄)2

. (8.13)

Relations (8.12) and (8.13) solve the problem; i.e., they determine the calibration
curve

y = ã + b̃x . (8.14)

To evaluate the uncertainty of the calibration curve, the characteristics of each
specific problem must be carefully analyzed.

From the experimental data and the obtained estimates ã and b̃, we find the
residuals of the conditional equations

vi = ã + b̃xi − yi .

Next, according to the general scheme of the least-squares method, we calculate
the estimate of variance of the conditional equations using formula (8.6),

S2 =

n∑
i=1

v2
i

n − 2
,

and estimates of the variances of ã and b̃ using formulas (8.7). After this process,
we find the confidence limits 
a and 
b, which essentially solves the problem. As
pointed out above, the confidence limits are constructed based on Student’s distri-
bution with n − 2 degrees of freedom in our case, because for us two parameters
are being determined.

When working with measuring transducers the dependence x = f (y) and not
y = ϕ(x) is required. Obviously, there is no difficulty in marking the transformation

x = (y − ã)/b̃.

If the calibration curve is plotted, then there is no need to convert it; it can simply
be used in the “reverse” direction.

The methods of confluent analysis in application to the problem of constructing
linear dependence are reviewed in [29].

Now we shall discuss how the theory of indirect measurements can be applied
to the problem of constructing a linear calibration curve. Consider that we have an
estimate ã of the coefficient a. Then (8.8) can be transformed into the form.

b = y − ã

x
.

This equation can be considered the measurement equation for the indirect mea-
surement of the measurand b using the measuring arguments x and y. Because the
values of y depend on the values of x , it is a dependent indirect measurement.
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yi

y

y0

0 xi

xi − ∆cx xi + ∆cx

x

Line of the upper limit of uncertainty

Line of the lower limit of uncertainty

Figure 8.1. A calibration line and its band of uncertainty.

The estimate ã is easy to find: For x0 = 0, (8.8) gives

ã = y0.

Calibration provides us with n pairs of xi , yi . Using the method of reduction, we
transform this set of {xi , yi } into a set of bi :

{bi }, i = 1, . . . , n,

which allows us to get

b̃ = b̄, S(b̄)

and the band of confidence errors of b̄.
Figure 8.1 shows an example of a calibration line found using the method of

reduction and the band of its uncertainty.
Calibrating a transducer that we believe has a linear calibration curve, we have

to check its linearity. We consider the calibration curve linear if its parameter b
is constant or varies in defined permissible limits. These limits are given in the
specifications of each type of transducer.
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The total inaccuracy of a transducer is considered to be equal to the inaccuracy
of the estimate b̃, which is defined by the standard deviation S(b̄) and uncertainties
of measurements of arguments x and y. The methods presented in Chapter 6 allow
us to perform these calculations. The accuracy of the estimate a is, as a rule,
much bigger than the accuracy of b̃ because the value x0 = 0 does not need to be
measured and the value y0 can be adjusted. Thus, the inaccuracy of ã can often be
neglected.



9
Combining the Results
of Measurements

9.1. Introductory Remarks

Measurements of the same quantity are often performed in different laboratories
and, therefore, under different conditions and by different methods. Sometimes
there arises the problem of combining the data obtained to find the most accurate
estimate of the measured quantity.

In many cases, in the investigation of new phenomena, measurements of the
corresponding quantities take a great deal of time. By collecting into groups mea-
surements performed over a limited time, intermediate estimates of the measured
quantity can be obtained in the course of the measurements. It is natural to find
the final result of a measurement by combining the intermediate results.

The examples presented show that the problem of combining the results of mea-
surements is of great significance for metrology. At the same time, it is important
to distinguish situations in which one is justified in combining results from those in
which one is not justified in doing so. It is pointless to combine results of measure-
ments in which quantities in the essence of different dimension were measured.

It should be noted that when comparing results of measurements, the data anal-
ysis is often performed based on the intuition of the experimenters without using
formalized procedures. It is interesting that in the process, as a rule, the correct
conclusions are drawn. On the one hand, this indicates that modern measuring in-
struments are of high quality and on the other hand that the experimenters, who by
estimating the errors could determine all sources of error and exhibited reasonable
care, were highly qualified.

9.2. Theoretical Principles

The following problem has a mathematically rigorous solution. Consider L groups
of measurements of the same quantity A. Estimates of the measured quantity
x̄1, . . . , x̄L were made from the measurements of each group, and

E[x̄1] = · · · = E[x̄L ] = A.
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The variances of the measurements in each group σ 2
1 , . . . , σ 2

L and the number of
measurements in each group n1, . . . , nL are known.

The problem is to find an estimate of the measured quantity based on data
from all groups of measurements. This estimate is denoted as ¯̄x and is called the
combined average or weighted mean.

We shall seek ¯̄x as a linear function of x̄ j ; i.e., as their weighted mean,

¯̄x =
L∑

t=1

g j x̄ j . (9.1)

Therefore the problem reduces to finding the weights g j . As E[ ¯̄x j ] = A and
E[x̄] = A, we obtain from (9.1)

E[ ¯̄x] = E

[
L∑

j=1

g j x̄ j

]
=

L∑
j=1

g j E[x̄ j ], A = A
L∑

j=1

g j .

Therefore,

L∑
j=1

gi = 1.

Next, we require that ¯̄x be an efficient estimate of A; i.e., V [ ¯̄x ] must be minimum.
For this reason we find an expression for V [ ¯̄x ], using the formula

V [ ¯̄x]=V

[
L∑

j=1

g j x̄ j

]
=

L∑
j=1

g2
j V [x̄ j ] = g2

1σ
2(x̄1) + g2

2σ
2(x̄2) + · · · + g2

Lσ 2(x̄L ).

(9.2)

Using the condition
∑L

j=1 g j = 1, we write gL = 1 − g1 − g2 − · · · − gL−1.
We shall now find the condition under which V [ ¯̄x] has a minimum. For this reason,
we differentiate (9.2) with respect to g j and equate the derivatives to 0. As we have
L − 1 unknowns, we take L − 1 derivatives:

2g1σ
2(x̄1) − 2(1 − g1 − g2 − · · · − gL−1)σ 2(x̄L ) = 0,

2g2σ
2(x̄2) − 2(1 − g1 − g2 − · · · − gL−1)σ 2(x̄L ) = 0,

. . .

2gL−1σ
2(x̄L−1) − 2(1 − g1 − g2 − · · · − gL−1)σ 2(x̄L ) = 0,

As the second term is identical in each equation, we obtain

g1σ
2(x̄1) = g2σ

2(x̄2) = · · · = gLσ 2(x̄L ).

The transfer from gL−1 to gL is made because the elimination of gL was not
dictated by some fundamental considerations, and instead of gL , a weighting co-
efficient with any number could have been taken.
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Thus, we have found a second condition that the weights of the arithmetic means
of the groups of measurements must satisfy:

g1 : g2 : · · · : gL = 1

σ 2(x̄1)
:

1

σ 2(x̄2)
: · · · :

1

σ 2(x̄L )
. (9.3)

To find weight g j , it is necessary to know either the variances of the arithmetic
means or the ratio of the variances. If we have the variances σ 2(x̄ j ), then we can
set g′

i = 1/σ 2(x̄ j ). We then obtain

g j = g′
j

L∑
j=1

g′
j

. (9.4)

As the weights are nonrandom quantities, it is not difficult to determine the
variance for ¯̄x . According to relation (9.2), we have

V [ ¯̄x] =
L∑

j=1

g2
j V [x̄ j ] =

L∑
j=1

(g′
j )

2V [x̄ j ]

(
L∑

j=1
g′

j

)2 =

L∑
j=1

(
1

σ 2(x̄ j )

)2

σ 2(x̄ j )

(
L∑

j=1

1

σ 2(x̄ j )

)2 = 1
L∑

j=1

1

σ 2(x̄ j )

.

(9.5)

The relation (9.3) makes it possible to obtain the exact weights g j if the variances
σ 2(x̄ j ) are not known but only their ratios are known. In this case, having estimates
of the variances of the arithmetic means of the groups instead of their values, an
expression can be derived for the estimate of the variance of the weighted mean:

S2( ¯̄x) = 1

N − 1

(
L∑

j=1

g j
n j − 1

n j
S2

j +
L∑

j=1

g j (x̄ j − ¯̄x)2

)
. (9.6)

The particular case when the variances of the measurements are the same for
all groups but the number of observations in the groups is different is of interest.
In this case, we can set g′

j = n j . Then the weights of the arithmetic means will be

g j = n j/N , (9.7)

where N = ∑L
j=1 n j and the relation (9.6) will assume the form

S2( ¯̄x) = 1

N (N − 1)

(
L∑

j=1

(n j − 1)S2
j +

L∑
j=1

n j (x̄ j − ¯̄x)2

)
. (9.8)

This result can also be obtained directly, combining the measurements of all groups
into one large group of measurements.

The number of measurements in the combined group is N = ∑L
j=1 n j .



222 9. Combining the Results of Measurements

If the measurements are collected according to groups, then the combined av-
erage will be

¯̄x =

L∑
j=1

n j∑
i=1

x ji

N
.

Let us expand the numerator, which gives

¯̄x = (x11 + x12 + · · · + x1n1
) + (x21 + x22 + · · · + x2n2

) + · · ·
N

= n1 x̄1 + n2 x̄2 + · · · + nL x̄L

N
=

L∑
j=1

g j x̄ j ,

where g j = n j/N is the weight of the j th arithmetic mean.
The aggregate average ¯̄x , for this reason, is also called the weighted mean.

The estimate of standard deviation of the weighted mean can be estimated by
regarding the weighted mean as the average of the large group of combined
measurements:

S2( ¯̄x) =

N∑
k=1

(xk − ¯̄x)2

N (N − 1)
.

We gather the terms in the numerator

S2( ¯̄x) =

L∑
j=1

n j∑
i=1

(x ji − ¯̄x)2

N (N − 1)

and perform simple transformations of the numerator to simplify the calculations:

L∑
j=1

n j∑
i=1

(x ji − ¯̄x)2 =
L∑

j=1

n j∑
i=1

(x ji − x̄ j + x̄ j − ¯̄x)2

=
L∑

j=1

n j∑
i=1

(x ji − x̄ j )
2 + 2

L∑
j=1

n j∑
i=1

(x ji − x̄ j )(x̄ j − ¯̄x)

+
L∑

j=1

n j∑
i=1

(x̄ j − ¯̄x)2.

The second term in the last expression is equal to zero, because by virtue of the
properties of the arithmetic mean,

∑n j

i=1(x ji − x̄ j ) = 0. For this reason,

S2( ¯̄x) = 1

N (N − 1)

(
L∑

j=1

n j∑
i=1

(xi j − x̄ j )
2 +

L∑
j=1

n j∑
i=1

(x̄ j − ¯̄x)2

)
.
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Note that

n j∑
i=1

(x ji − x̄ j )
2 = (n j − 1)S2

j ,
∑
i=1

(x̄ j − ¯̄x)2 = n j (x̄ j − ¯̄x)2.

Then, retaining the summation over groups, we obtain

S2( ¯̄x) = 1

N (N − 1)

[
L∑

j=1

(n j − 1)S2
j +

L∑
j=1

n j (x̄ j − ¯̄x)2

]
.

The first term in the formula obtained characterizes the spread in the measure-
ments in groups, and the second term characterizes the spread of the arithmetic
means of the groups.

9.3. Effect of the Error of the Weights on the Error
of the Weighted Mean

Looking at the general form of the formula determining the weighted mean, one
would think, because the weights g j and the weighted values of x̄ j appear in it
symmetrically, that the weights must be found with the same accuracy as x̄ j . In
practice, however, the weights are usually expressed by numbers with one or two
significant figures. How is the uncertainty of the weights reflected in the error of
the weighted mean?

We shall regard weight gi in (9.1) to be fixed, constant values. In addition, as
usual, we shall assume that

∑L
j=1 g j = 1. This equality is also satisfied for the

inaccurately determined weighting coefficients, i.e., for g̃ j . Therefore,

L∑
j=1


g j = 0,

where 
g j is the error in determining the coefficient g j .
Assuming that the exact value of the weighted mean is y, we estimate the error

of its estimate:


y =
L∑

j=1

g̃ j x̄ j −
L∑

j=1

g j x̄ j =
L∑

j=1


g j x̄ j .

We shall express 
g1 for the other errors:


g1 = −(
g2 + · · · + 
gL )

and substitute it into the expression for 
y:


y = (x̄2 − x̄1)
g2 + (x̄3 − x̄1)
g3 + · · · + (x̄L − x̄1)
gL
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or in the form of relative error


y

y
=

g2(x̄2 − x̄1)

g2

g2
+ · · · + gL (x̄L − x̄1)


gL

gL
L∑

j=1
g j x̄ j

.

The errors of the weights 
g j/g j are unknown. But let us assume that we can
estimate their limits and let 
g/g be the largest absolute value of these limits.

Replacing all relative errors 
g j/g j by 
g/g, we obtain


y

y
≤ 
g

g

|g2(x̄2 − x̄1) + g3(x̄3 − x̄1) + · · · + gL (x̄L − x̄1)|
L∑

j=1
g j x̄ j

.

The numerator on the right-hand side of the inequality can be put into the following
form:

g2(x̄2 − x̄1) + g3(x̄3 − x̄1) + · · · + gL (x̄L − x̄1)

= g2 x̄2 + g3 x̄3 + · · · + gL x̄L − (g2 + g3 + · · · + gL )x̄1.

But g2 + g3 + · · · + g2 = 1 − g1, so that

g2(x̄2 − x̄1) + g3(x̄3 − x̄1) + · · · + gL (x̄L − x̄1) =
L∑

j=1

g j x̄ j − x̄1 = y − x̄1.

Thus,


y

y
≤ 
g

g

|y − x̄1|
y

.

It is obvious that if the entire derivation is repeated, but in so doing the error not
in the coefficient g1 but in some other weight is eliminated, then a weighted value
other than x̄1 will appear on the right-hand side of the inequality. Therefore, the
result obtained can be represented in the form


 ¯̄x
¯̄x

≤ 
g

g

| ¯̄x − x̄ j |
¯̄x

.

The obtained inequality shows that the error introduced into the weighted mean
as a result of the error of the weights is many times smaller than the latter error.
The cofactor | ¯̄x − x̄ j |/ ¯̄x can be assumed to be of the same order of magnitude as
the relative error of the terms. Thus, if this error is of the order of 0.01, then the
error introduced into the weighted mean as a result of the error of the weights will
be at least 100 times smaller than the latter.
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9.4. Combining the Results of Measurements in Which
the Random Errors Predominate

We shall study a variant that is possible in the case of multiple measurements
with negligibly small systematic errors. Each result being combined in this case is
usually the arithmetic mean of measurements, and the differences between them
are explained by the random spread of the measurements in the groups. However,
it must be verified that the true value of the measured quantity is the same for all
groups. This problem is solved by the methods presented in Chapter 4. If it cannot
be assumed that the same quantity is measured in all cases, then it is pointless to
combine the measurements into groups.

If the unification of the groups is justified, then it is necessary to check the
hypothesis that the variances of the measurements in the groups are equal. Methods
for solving this problem are also presented in Chapter 4.

In the case in which the variances of the groups can be assumed to be equal, the
weights for each result are calculated from formula (9.7), the combined average
is calculated from formula (9.1), and the variance of the combined average can be
determined from formula (9.8).

When the variances of the groups cannot be taken to be equal to one another
and the variances and their ratios are unknown, the weights are sometimes found
by substituting their estimates, instead of the variances, into formula (9.4). The
variance of the weighted mean obtained is estimated by substituting into formula
(9.5) estimates of the variances of the combined quantities; i.e., from the formula,

S2( ¯̄x) = 1
L∑

k=1

1

S2(x̄k)

.

The estimates of the variances are random quantities, and the weights obtained
based on them are random quantities. However, in the case in which the observa-
tions are normally distributed, the weighted mean remains an unbiased estimate
of the measured quantity. The error in estimating the standard deviation, obtained
based on the formula presented for estimating the variance of the weighted mean,
does not exceed 10% already with two groups of observations consisting of more
than nine observations.

Example. The mass of some body is being measured. In one experiment, the
value m̃1 = 409.52 g is obtained as the arithmetic mean of 15 measurements. The
variance of the group of measurements is estimated to be S2

1 = 0.1 g2. In a different
experiment, the value m̃2 = 409.44 g was obtained with n2 = 10 and S2

2 = 0.03 g2.
It is known that the systematic errors of the measurements are negligible small,
and the measurements can be assumed to be normally distributed. It is necessary
to estimate the mass of the body using data from both experiments and to estimate
the variance of the result.
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We shall first determine whether the unification is justified, i.e., whether an
inadmissible difference exists between the estimates of the measured quantity:

S2(x̄1) = S2
1

n1
= 0.1

15
= 0.0067, S2(x̄2) = 0.03

10
= 0.003,

S2(x̄1 − x̄2) = S2(x̄1) + S2(x̄2) = 0.0097,

S(x̄1 − x̄2) = 0.098,

x̄1 − x̄2 = m̃1 − m̃2 = 0.08.

As x̄1 − x̄2 < S(x̄1 − x̄2), the unification is possible.
We shall check whether both groups of observations have the same variance

(see Section 4.6):

F = S2
1/S2

2 = 0.1 : 0.03 = 3.3.

The degrees of freedom are ν1 = 14 and ν2 = 9. We shall assume that the
significance level is 2%. In addition, q = 0.01 and Fq = 5 (see Table A.5). As
F < Fq , it can be assumed that the variances of the groups are equal.

We shall now find the weights of the arithmetic means. According to (9.7),
we have g1 = 15/25 = 0.6 and g2 = 10/25 = 0.4. The weighted mean is ¯̄m =
0.6 × 409.52 + 0.4 × 409.44 = 409.49 g. Now we find S( ¯̄m). In accordance with
formula (9.8), we have

S2( ¯̄m) = 1

25 × 24
(14 × 0.1 + 9 × 0.03 + 15 × 0.032 + 10 × 0.052)

= 28 × 10−4 g2,

S( ¯̄m) = 5.3 × 10−2 g.

If in addition to estimating the standard deviation it is also necessary to find the
uncertainty, then to use Student’s distribution, the effective number of degrees of
freedom must be found using formula (6.19).

9.5. Combining the Results of Measurements
Containing both Systematic and Random Errors

Let us assume that a quantity A is measured by several methods. Each method
gives the result x j ( j = 1, . . . , L) with error ζ j :

x j = A + ζ j .

To combine in a well-founded manner the series of values of x and obtain a
more accurate estimate of the measured quantity, one must have certain information
about the errors ζ j . We shall start from the condition that none of the measurements
have absolutely constant systematic errors. However, this assumption must be
checked. If it is not true, then the problem posed cannot be solved.
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The error ζ j is the sum of realizations of the conditionally constant ϑ j and
random ψ j errors: ζ j = ϑ j + ψ j .

Having in mind a possible set of results with each method of measurement, the
unknown error ϑ j of a concrete realization of the j th method of measurement can
be regarded as the realization of a random quantity. Usually the limits θ j of ϑ j

are estimated, and they are regarded as symmetric relative to the true value of the
measured quantity: |ϑ j | ≤ θ j and E[ϑ j ] = 0.

The random error ψ j is assumed to be a centered quantity; i.e., E[ψ j ] = 0.

Thus, when there are no absolutely constant errors, for example, methodological
errors, we can write E[x j ] = A.

As follows from the theory of combining of the results of measurements, the
weights are determined by the variances of these results. In our case, we can write

V [x j ] = V [ϑ j ] + V [ψ j ].

Therefore, given the variances V [ϑ j ] and V [ψ j ], the problem can be solved
exactly and uniquely. Unfortunately, the variances are always unknown, and their
estimates must be employed. To estimate the variances of conditionally constant
errors of each method of measurement, we shall use the assumption that the errors
are uniformly distributed within the estimated limits. Although the weights need
not be found with high accuracy, it still casts some doubt on whether the weighted
mean is a better estimate of the measured quantity than the combined results.
As a result, in metrology, great care is taken in combining results of measure-
ments.

Based on what was said above, when the results of measurements must be
combined, it is always necessary to check the agreement between the starting
data and the obtained results. If some contradiction is discovered, for example, the
combined average falls outside the permissible limits of some term, then the reason
for this must be determined and the contradiction must be eliminated. Sometimes
this is difficult to do, and special experiments must be performed.

Great care must be exercised in combining the results of measurements because
in this case information about the errors is employed to refine the result of the
measurement and not to characterize its uncertainty, as is usually done.

It can happen, however, that the weighted mean is a natural estimate of the
measured quantity. An example is the accurate measurement of the activity of a
source of α particles. To increase the accuracy, the activity is measured at different
distances from the source to the detector and with different diaphragms. The mea-
sured activity remains the same. However, the estimates of the activity obtained
with different diaphragms are found to differ somewhat from one another. Their
errors are also different. For this reason, when assigning weights for the obtained
estimates of the measured quantity, in this example, one must start from estimates
of the variances of the total error of the measurement results being combined. This
process, undoubtedly, will lead to a more correct result than if all measurements
were assumed to have equal weights or weights were assigned taking into account
only the random errors.
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So, in the case at hand, the weights of the measurements being combined should
be calculated using the formula

g j =
1

S2(ϑ j ) + S2(ψ j )
L∑

j=1

1

S2(ϑ j ) + S2(ψ j )

, (9.9)

where S2(ϑ j ) is an estimate of the variance of the possible set of conditionally
constant errors of the j th measurement result and S2(ψ j ) is an estimate of the
variance of the random error of the same measurement result.

We shall now estimate the errors of the combined average. In solving this prob-
lem, because the errors of the weights are insignificant (see Section 9.3), we shall
assume that the weights of the combined measurement results are known exactly.

In the case of multiple measurements, one must have for each result x j an
estimate of the limits of the systematic error θ j and an estimate of the standard
deviation Sj of the random error. Then the corresponding indicators of accuracy
of the combined average will be

θα( ¯̄x) = k

√√√√ L∑
j=1

g2
j θ

2
j ,

S( ¯̄x) =
√√√√ L∑

j=1

g2
j S2

j .

The confidence limits of the total error of the combined average can be found
based on the estimates obtained for θ ( ¯̄x) and S( ¯̄x). The method for solving this
problem was examined in detail in Chapter 5.

In the case of single measurements, one usually knows only the estimates of the
limits of the errors of the measurements being combined, i.e., 
 j ( j = 1, . . . , L).
Based on available information about the form of the distribution of the possible
sets of actual errors of each measurement result, it is necessary to transfer from
the limits 
 j of the errors to estimates of the variances of these errors. Once
the variances have been obtained, it is not difficult to find the weights of the
measurement results being combined. Next, the uncertainty of the weighted mean
can be calculated using the scheme developed for linear indirect measurements
(see Chapter 6).

We shall discuss some particular cases of single measurements. We shall exam-
ine the measurement of one quantity with several instruments.

Let the random errors of the instruments be small compared with the limit of
permissible errors, and let the permissible errors be the same and equal to 
 for
all instruments.
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Let the indications of the instruments be x1, . . . , xn and the actual errors in the
indications be ζ1, . . . , ζq (|ζi | < 
). Then we can write

A = x1 − ζ1, . . . , A = xn − ζn. (9.10)

The natural intuitive estimate of the true value of the measured quantity, in
the case in which several instruments of equal accuracy are used to perform the
measurements, is the arithmetic mean of the instrumental indications:

Ã = 1

n

n∑
i=1

xi .

It has been proved mathematically that in the class of linear estimates, this estimate
is the best.

We must estimate the error in the result obtained. Adding the left and right sides
of (9.10) and dividing them by n,we obtain

A = 1

n

n∑
i=1

xi − 1

n

n∑
i=1

ζi .

We do not know the real errors of the instruments. We know only that |ζi | ≤ 


for all i = 1, . . . , n.

To find the limits of the sum of the random quantities ζi (and their errors over
a set of instruments of a given type can be assumed to be random quantities), it
is necessary to known their distribution functions. As pointed out above, these
functions cannot be found from the experimental data. However, it can often be
assumed that the errors of complicated instruments have symmetric distributions.
The mathematical expectation of the distribution is close to the errors of working
standards employed to calibrate these instruments. To a first approximation, we
shall assume that E[ζi ] = 0.

For example, if the errors of the instruments are distributed uniformly, then
according to formula (5.3)

θα1 = k

√√√√ n∑
i=1


2 = k

√

n.

From here, the uncertainty of the estimate Ã will be


α1 = θα1

n
= k
√

n
.

If the errors of the instruments are assumed to have a normal distribution and

 = zασ, then

θα2 = zα

√√√√ n∑
i=1

σ 2
i = zασ

√
n = 


√
n.
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Figure 9.1. The highest and lowest indications of the group of instruments and the
intervals of their possible errors.

Then


α2 = θα2

n
= 
√

n
.

This estimate corresponds to the same probability α, which was used to establish
the limit of permissible error 
. Comparing 
α1 and 
α2 shows that they differ
only by the factor k, which, depending on the confidence probability, can range
from 1.1 (α = 0.95) to 1.4 (α = 0.99). As expected, the number of instruments
plays the main role. Five to ten instruments are required to reduce the error by a
factor of 2 or 3. But we have to stress here that a real improvement of the errors is
limited by the errors of working standards employed to calibrate these instruments.

The problem can also be solved as follows. We choose the maximum and min-
imum indications of the instruments: xmax and xmin. We verify that

(xmax − xmin) ≤ 2
. (9.11)

If inequality (9.11) is not satisfied, then one of the instruments used to perform
the measurement has an inadmissably large error or the variation of some influence
quantities is too large. The reason for this phenomenon must be determined and
eliminated; i.e., inequality (9.11) must be satisfied.

Figure 9.1 illustrates the indications xmax and xmin, and the intervals correspond-
ing to the limits of permissible errors ±
 are marked off.

The true value of the measured quantity must lie in the section of the tolerance
field that belongs simultaneously to the instrument with indication xmax and the
instrument with indication xmin. In the figure, this section is hatched. Its boundaries
determine more accurately the tolerance field.

It is natural to take for the estimate of the measured quantity the center of the
interval xmax − xmin, which is found from

Ã = xmax + xmin

2
. (9.12)
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The coordinate of the point a, determining the left-hand boundary of the er-
ror in the result, will be xa = xmax − 
. The coordinate of the point b, which
determines the right-hand limit of error, is equal to xb = xmin + 
.

Therefore, the limit of error 
1 of the more accurate result is


1 = |xb − Ã| = | Ã − xa|
or


1 =
∣∣∣∣xmin + 
 − xmax + xmin

2

∣∣∣∣ =
∣∣∣∣
 − xmax − xmin

2

∣∣∣∣ .
It is easy to see that if the limit xmax − xmin = 2
, the error 
1 is formally equal

to zero. It is clear, however, that the minimum value of 
1 cannot be less than the
error of the working standard used to calibrate the instruments employed.

It is interesting to note that the estimate, based on (9.12), of the measured quantity
mathematically gives the best approximation when the errors ϑi are distributed
uniformly over the interval [−
, +
].

Based on the foregoing arguments, it can be shown that a well-known assumption
of metrology is valid: When measuring instruments having different accuracy are
used in parallel, the accuracy of the result is determined by the most accurate
measuring instrument.

For example, assume that the voltage of some source was measured simultane-
ously with three voltmeters having different accuracy but the same upper limit of
the measurement range 15 V. The measurements were performed under reference
conditions. The following results were obtained.

(1) Class 0.5 voltmeter: U1 = 10.05 V; the limit of permissible intrinsic error

1 = 0.075 V.

(2) Class 1.0 voltmeter: U2 = 9.9 V; the limit of permissible intrinsic error 
2 =
0.15 V.

(3) Class 2.5 voltmeter: U3 = 9.7 V, the limit of permissible intrinsic error 
3 =
0.375 V.

As the measurements were performed under reference conditions, we shall as-
sume that the limits of permissible intrinsic error of the instruments are equal to
the limits of the errors of measurement.

Assume that the errors of the instruments of each type have a uniform distribu-
tion. Then

σi = 
i/
√

3.

We shall find the weights of the results. As the upper limit of the measurement
range is the same for all instruments, the calculation can be performed based on
the limits of fiducial error of the instruments:

g′
1 = 1


2
1

= 1

0.25
= 4, g′

2 = 1


2
2

= 1, g′
3 = 1


2
3

= 1

6.25
= 0.16.
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From here,

g1 = g′
1

3∑
i=1

g′
i

= 4

5.16
= 0.77,

g2 = g′
2

3∑
i=1

g′
i

= 0.20

5.16
= 0.20, g3 = g′

3
3∑

i=1
g′

i

= 0.16

5.16
= 0.03.

Now we find the weighted mean

Ũ =
3∑

i=1

giUi = 0.77 × 10.05 + 0.2 × 9.9 + 0.03 × 9.7 = 10.01 V.

The confidence limits of the error in the weighted mean can be found from
formula (6.43)


Ũ = k

√√√√ 3∑
i=1

g2
i 


2
i

= k
√

0.772(7.5 × 10−2)2 + 0.22(15 × 10−2)2 + 0.032 × 0.3752

= k
√

(33 + 9 + 1.3) × 10−4 = 0.066k.

Assuming, as usual, α = 0.95, we take k = 1.1 and find 
Ũ = 0.07 V.
In Fig. 9.2, the indications of all three instruments are plotted and the limits

of permissible error of the instruments are marked. The value obtained for the
weighted mean is also indicated there. This value remained in the tolerance field of
the most accurate result, but it was shifted somewhat in the direction of indications
of the less accurate instruments; this is natural. The limits of error of the result
decreased insignificantly compared with the error of the most accurate term.

If all distributions were assumed to be normal distributions, truncated at the
same level by discarding instruments whose error exceeds zασ (zα = const), then
the weights would not change and the weighted mean would have the same value
as we found above. Only the estimate of the error limits would change, because it
must now be calculated from formula (6.43) with k = 1.

Figure 9.2. Indications of the instruments and the intervals of their possible errors.
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We obtain (
Ũ )′ = 0.066 V. However, the difference between 
Ũ and (
Ũ )′

is insignificant.
Let us see what would happen if different instruments had different distribu-

tions. For example, assume that the class 0.5 and 1.0 instruments have a uniform
distribution, that the class 2.5 instruments have a truncated normal distribution,
and that zα = 2.6. Then

σ1 = 0.075√
3

= 0.043, g′
1 = 1

σ 2
1

= 306,

σ2 = 0.15√
3

= 0.087, g′
2 = 1

σ 2
2

= 78,

σ3 = 0.375

2.6
= 0.144, g′

3 = 1

σ 2
3

= 42.

Therefore,

g1 = g′
1

3∑
i=1

g′
i

= 306

426
= 0.72,

g2 = g′
2

3∑
i=1

g′
i

= 78

426
= 0.18,

g3 = g′
3

3∑
i=1

g′
i

= 42

426
= 0.10.

From here,

Ũ1 = 0.72 × 10.05 + 0.18 × 9.9 + 0.1 × 9.7 = 9.99 V.

The values obtained for Ũ and Ũ1 are very close, which indicates that a sig-
nificant change in the form of the distribution functions in this case does not
appreciably affect the result.

The foregoing example could also have been solved by a graphical-analytic
method, similar to the method used to solve the problem of combining the indica-
tions of equally accurate instruments. Now, however, the relation determining Ã
must contain the weights of the terms. In accordance with the foregoing consid-
erations, these weights can be taken to be inversely proportional to the squares of
the limits of permissible errors of the instruments.

9.6. Example: Measurement of the Activity
of Nuclides in a Source

We shall examine the measurement of the activity of nuclides by the method of
absolute counting of α particles emitted by the source in a small solid angle. The
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Table 9.1. The results of measurements of the activity of nuclides by different
geometric factors.

Source- Estimate of Estimates of the standard deviations
detector Diaphragm measured

Number of distance radius quantity Random errors Systematic errors
group i (mm) (mm) xi × 105 of the result (%) of the result (%)

1 97.500 20.017 1.65197 0.08 0.52
2 97.500 12.502 1.65316 0.10 0.52
3 397.464 30.008 1.66785 0.16 0.22
4 198.000 20.017 1.66562 0.30 0.42
5 198.000 30.008 1.66014 0.08 0.42

measured activity is determined from the formula

A = G N0η,

where G is the geometric factor of the apparatus, N0 is the α-particle counting
rate, and η is the α-particle detection efficiency [15].

The geometric factor depends on the diameter of the source, the distance
between the source and the detector, as well as the diameter of the diaphragm,
and it is calculated from measurements of these quantities. In the course of a
measurement, G does not change, so that errors of G create a systematic error
of measurement of the activity A. Measurements of the numbers of α particles,
however, have random errors.

To reduce the error arising from the error of the geometric factor, the measure-
ments were performed for different values of this factor (by changing the distance
between the source and detector and the diameter of the diaphragm). All mea-
surements were performed using the same source 239Pu. Table 9.1 gives the five
combinations of the geometric parameters studied. In each case, 50 measurements
were performed, and estimates of the measured quantity and the parameters of
their errors, which are also presented in Table 9.1, were calculated. The rms de-
viations of the systematic errors of the results were calculated from the estimated
limiting values of all components under the assumption that they can be regarded
as centered uniformly distributed random quantities.

The data in Table 9.1 show, first of all, that the systematic errors are much larger
than the random errors, so that the number of measurements in the groups was
sufficient. The observed difference between the obtained values of the activity of
the nuclides in the groups can be explained by their different systematic errors.

In the example studied, the same quantity was measured in all cases. For this rea-
son, here the weighted mean is a well-founded estimate of the measured quantity.
Based on the considerations presented in Section 9.5, we shall use formula (9.9) to
calculate the weights. First, we shall calculate an estimate of the combined variance

S2
c (x̄i ) = S2(ψi ) + S2(ϑi ).

The results of the calculations are given in Table 9.2.
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Table 9.2. The estimates of combined variances and weights
of measurement results by different geometric factors.

Estimate of combined
Number of group variance S2

c (x̄i ) Weight gi

1 0.28 0.12
2 0.28 0.12
3 0.07 0.46
4 0.27 0.12
5 0.18 0.18

As an example, we shall calculate g1:

g1 =
1

0.28
1

0.28
+ 1

0.28
+ 1

0.07
+ 1

0.27
+ 1

0.18

= 3.57

30.7
= 0.12.

Now we find the weighted mean: Ã = ∑5
i=1 gi x̄i = 1.6625 × 105.

It remains to estimate the error in the value obtained. We shall calculate an
estimate of the variance of the weighted mean with the help of the formula

S2( Ã) = 1
5∑

i=1
[1/S2

c (x̄i )]

= 1

30.7
= 0.033.

From here SÃ = 0.18%. As the error of the weighted mean is determined by
the systematic component, it is best presented in the form of limits (in this case,
confidence limits). For the estimated value of the variance, the limits are calculated
for the normal distribution. In this case, this process is all the more justified because,
as we have seen, the error of the weighted mean consists primarily of five terms.
Even if all terms were uniformly distributed, the distribution of their composition
can be regarded as a normal distribution.

For the standard confidence probability α = 0.95, z 1−α
2

= 1.96 and u%0.95 =
1.96 × 0.18 = 0.35%. In the form of absolute uncertainty, we obtain uc0.95 =
0.006 × 105.

The result of the measurement can be given in the form

A(0.95) = (1.662 ± 0.006) × 105.

One can see that in this example the simple arithmetic mean, equal to 1.660 ×
105, of the estimates obtained for the measured quantity does not differ significantly
from the weighted mean. This agreement, however, is purely accidental. In cases
similar to the one examined above, the weighted mean, of course, is a better founded
estimate of the measurand than the simple arithmetic mean.



10
Calculation of the Errors
of Measuring Instruments

10.1. The Problems of Calculating Measuring
Instrument Errors

Measuring instruments are extremely diverse, but because they are used for a
common purpose, a general theory of their errors exists. The central problem of
this theory is to calculate the intrinsic error of measuring instruments, which is
their most important metrological characteristic. The calculation of the additional
errors, caused by controlled changes in the influence quantities, depends on the
arrangement of a measuring instrument. For this reason, the calculation of these
metrological characteristics falls within the purview of the theory of measuring
instruments with a particular principle of operation.

In general form, a measuring instrument can be considered as several function-
ally related units that transform an input signal into an output signal. During the
manufacturing process, a desirable shape of functional dependence between these
signals (a transfer function) is first obtained by adjusting some units. Then, each
instrument is graduated or calibrated. In essence, the purpose of these operations
is to fix and to represent the obtained transfer function of the instrument by means
of a scale or a graph or an equation.

No matter how accurate these operations are, the resulting instrument will have
some errors for the following reasons:

(a) inaccuracy in fixing the transfer function, that is, inaccuracy in constructing
the scale or the graph or the equation;

(b) imperfection of the reading device of the measuring instrument;
(c) variations of influence quantities (within limits of reference conditions);
(d) drifting of some properties of the measuring instrument units with time.

Each problem contributes a component to the intrinsic error of a measuring instru-
ment.

The errors of measuring instruments under normal operating conditions (i.e.,
when the influence quantities deviate from their reference values or when they
exceed the limits of the range of reference values), and their calculation based on
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known properties of the measuring instruments and the conditions of measurement,
are regarded as an integral part of the problem of estimating measurement errors.

The problem of estimating the resulting error can be formulated for a separate
instrument or a collection of instruments of a definite type. In the first case, the
problem consists of estimating the error of a particular instrument from the known
parameters of the components of this instrument. In so doing, one can find either
the errors of the instrument on definite segments of the instrument scale or an
estimate of the limits of error of the given instrument. These problems must be
solved when designing unique measuring instruments and when performing an
elementwise calibration.

In the second case, i.e., for a collection of measuring instruments, the problem is
formulated differently. The limits of error of instruments can be estimated based on
the properties of the components of the instrument (direct problem). But most often
the limits of instrument error are prescribed and it is required to find the percentage
of instruments whose error will fall within these limits (inverse problem).

Each problem admittedly, can be formulated, with some modifications, for any
type of measuring instrument—for standards, measuring transducers, or measuring
instruments and systems—only if its errors are caused by deviations from the
nominal values of the parameters of the components of the measuring instrument.

10.2. Methods for Calculating Instrument Errors

We shall examine both methods successively, i.e., the direct and inverse problems,
referring to collections of measuring instruments.

In the general form, the output signal y of an instrument is related to the in-
formative parameter of the input signal A,the parameters xi of the components
of the instrument (i = 1, . . . , n), noise, and other factors giving rise to errors
z j ( j = 1, . . . , m), by the relation

y = f (A, xi , z j ). (10.1)

For each parameter, shall establish the nominal value, i.e., the value for which
the measuring instruments would not have an error. The deviations of the real
properties of the components from the nominal properties result in the instrument
error. We shall call conventionally the deviation from the nominal values of the
parameters of the components the errors of the components, and we shall assume
that they are expressed in the form of relative errors

εi = xir − xi

xi
, (10.2)

where xi is the nominal value and xir is the real value of the parameter of the
component.

The effect of the error of each component on the instrument error is determined
in the manner studied in Chapter 6 for determining the influence coefficients of
the measurement error of the arguments on the error of an indirect measurement.
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For relative errors, we can write


y

y
= 1

y

∂ f

∂xi

xi = 1

y

∂ f

∂xi
εi xi .

From here, the influence coefficient of the error xi will be, in relative form,

Wi = 
y/y

εi
= ∂ f

∂xi

xi

y
. (10.3)

We shall express the influence coefficients for sources of additive errors, because
they cannot be represented as a deviation from some nominal values, in the standard
form

wj = ∂ f

∂z j

. (10.4)

In what follows we shall refer, somewhat arbitrarily, to the factors responsible
for the additive errors as noise.

The absolute error of an instrument at indication y is determined by the relation

ζ = y
n∑

i=1

Wiεi +
m∑

j=1

wjz j . (10.5)

We find (10.1) and the influence coefficients Wi and wi based on the structural
layout of the instrument. Having derived (10.5), we no longer need the structural
layout of the instrument, and we need study only the components of the error. In
(10.5), the error components are referred to the output of the instrument.

We shall now study in greater detail the direct problem, i.e., the problem of
estimating instrument error. We have in mind estimation of errors at any point
in the range of indication. If the point where the instrument error is maximum
is known, then in many cases, only the error for this point need be calculated.
Often this point is the end point yf of the instrument scale, because in this case,
the multiplicative components of the error are maximum.

The calculations are most conveniently performed for the relative and not for the
absolute errors. For y = yf, the relative instrument error, as follows from formula
(10.5), will be

εf =
n∑

i=1

Wiεi + 1

yf

m∑
j=1

wjzj. (10.6)

We shall divide all errors appearing on the right-hand side of formulas (10.5)
or (10.6) into systematic and random. If some term in formula (10.5) has both
systematic and random components, then we shall separate them and replace such
a term in formula (10.5) with two terms. In so doing, the systematic components
of the errors are assumed, as always, to have a fixed value for every sample of the
instrument or for each component of the instrument.

The systematic components form the systematic instrument error, and the ran-
dom components form the random instrument error.
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The random instrument error is manifested differently in each application of the
instrument. For example, if we want to estimate the largest error of the instrument,
then we must add to the estimate of the limits of its systematic error the maximum
random error.

It should be noted that in the theoretical description of the random instrument
error, this error is regarded as a random quantity, and it is most often assumed to
have a normal distribution. Such a model admits the possibility of errors of any
size, and it becomes unclear how to find the limiting random instrument error in
the model.

I would like to stress that different situations arise when measurement errors
and the errors of measuring instruments are estimated. In the first case, the random
errors have already been realized, and for this reason, the random and systematic
components can be summed statistically. In the second case, we are estimating the
largest error of the instrument that can be manifested in any future experiment,
and for this reason, the components must be added arithmetically.

The systematic errors of a collection of instrument components of the same
type can be regarded as a set of realizations of a random quantity. This quantity
is described statistically, for example, by a histogram. For components having a
systematic error, it is not difficult to construct the histogram of the distribution
of systematic errors. For components with a random error, such a description
becomes more complicated, because it becomes two dimensional: The realization
depends on both the sample of the component and the realization of the random
error of this component in a given experiment. But all components of the same
type can usually be assumed to have the same distribution of the random error,
so that the differences of their errors are determined only by the change in some
parameter of this distribution. This characteristic can be taken into account, and
one-dimensional distributions of the corresponding parameter and systematic error
of the component can be studied instead of the two-dimensional distribution of the
random quantity.

The summation of random quantities involves the construction of the composi-
tion of their distribution functions.

If the instrument consists of many components and there are many terms in
formulas (10.5) or (10.6), then the composition of the error components will give, as
is well known, a close-to-normal distribution, which makes it possible to simplify
the solution, because it is not difficult to find the parameters of the resulting
distribution:

E[εf] =
n∑

i=1

Wi E[εi ] + 1

y f

m∑
j=1

wj E[zj],

(10.7)

V [εf] =
n∑

i=1

W 2
i V [εi ] + 1

y2
f

m∑
j=1

w2
j V [zj],

Using the estimates of the mathematical expectations of the error components
and their variances, the estimate of the mathematical expectation and variance of the
resulting normal distribution can be calculated from the relations presented. This
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problem is solved first for systematic errors. Taking the percentage of instruments
whose error must be less than the computed estimate as the confidence probability
α, we find the corresponding limit of systematic error:

θr = Ẽ[εf] + zασ̃ (εf),
(10.8)

θl = Ẽ[εf] − zασ̃ (εf).

Next we estimate the practically limiting random error. Usually the number of
terms here is very small, and this error is not calculated at all but it is estimated based
on the experimental data. If we find an estimate of the standard deviation of the
resulting random error, then for the practically limiting value, we take
α = tq σ̃ (y),
where q = 1 − α, and we find tq from a table of Student’s distribution taking into
account the degree of freedom from the experimental data.

Next, in accordance with what was said above, we find the practically limiting
errors of the instruments:


r = θr + 
α, 
l = θl + 
α. (10.9)

Usually E[εf] = 0 and |θl | = |θr |, so that |
l | = |
r |.
When the number of terms is small, the problem must be solved by constructing

a composition of the distributions of the terms.
It should be noted that in the general case, the probability adopted for calculating

the limits of systematic error may not be equal to the probability corresponding to
the practically limiting random error. Both probabilities should be indicated.

If the terms are given by their permissible limits and no data favor one distribu-
tion, then the corresponding errors are best assumed to be uniformly distributed.
In this case, the confidence limit of the systematic instrument error can be found
from formula (6.42), transformed somewhat:

θα = k

√√√√ n∑
i=1

(Wiδi )2 + 1

y2

m∑
j=1

(w j
 j )2, (10.10)

where the values of the coefficient k are presented in Table 3.1; δi (i = 1, . . . , n) are
the limits of permissible systematic errors (of the instrument components) forming
the multiplicative component of the instrument error; and 
 j ( j = 1, . . . , m) is the
same, but for errors that make up the additive instrument error.

The practically limiting random error 
α(y) is found in the same manner as
in other cases, and the total instrument error is calculated in the same way. As
systematic instrument errors are assumed to be random quantities, the confidence
probability α used to calculate the limits of the systematic error indicates the
relative number of instruments whose systematic errors do not exceed these limits.

Often the errors of the instrument components are given by their permissible
limits, including both systematic and random error components. In this case, one
can proceed in two ways. The error of each instrument component can be di-
vided into separate components based on experiment, after which the problem
is solved according to the scheme presented above. But the total errors of the
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instrument components can be assumed, without separating the random error, to
be uniformly distributed within prescribed limits and they can be added statisti-
cally. In the absence of data for separating errors into components, the second
method is preferable.

The calculations of the errors are repeated for a series of indications of the
instrument. In the process, the confidence probabilities, one of which was used
to determine the limits of systematic error of a set of instruments and the other
was used to determine the practically limiting random error of the instruments,
should be kept constant. From the data obtained, it is possible to construct a graph
of the limiting instrument error as a function of instrument indication. The error
can be expressed as an absolute or relative error, but absolute error is usually more
convenient.

We now consider the second problem: The limit of permissible instrument error
is prescribed, and it is required to estimate the probability of encountering an
instrument with an error less than this limit.

We shall outline the general scheme of the solution. The probability pg of
encountering an instrument whose error does not exceed the permissible limit is
equal to

pg = 1 − (pr + pl), (10.11)

where pr and pl are the probabilities of encountering an instrument whose error
exceeds the upper limit and drops below the lower limit, respectively.

We can write

pr = P{ζ ≥ (
 − 
α)}, pl = P{ζ ≤ −(
 − 
α)},

where 
 is the limit of permissible instrument error and 
α is the practically
limiting random error.

To solve the problem, it is necessary to know the distribution function of the
systematic instrument errors over the entire collection of instruments.

But the practically limiting random error cannot always be assumed to be the
same for all instruments; it is usually different for different instruments. To obtain
a more accurate solution of the problem, it is necessary to find the distribution of
the practically limiting random instrument error. An example of a possible density
of such a distribution is presented in Fig 10.1. The probabilities pl and pr must

Figure 10.1. Possible form of the proba-
bility density of the practically limiting
random instrument error.
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now be calculated from the formulas

pl = Kl

∫ 
2


1

P{ζ < −(
 − 
α)} f (
α) d
,

(10.12)

pr = Kr

∫ 
4


3

P{ζ > (
 − 
α)} f (
α) d
,

in which the values of the probability density f (
α) play the role of weights and
Kl and Kr are normalization factors. If the probability density is f (
α) and it
is symmetric relative to the ordinate axis, then pl = pr and Kl = Kr = 2. In the
general case, however,

Kl = 1∫ 
2


1
f (
α) d


, Kr = 1∫ 
4


3
f (
α) d


.

The coefficients Kl and Kr were introduced in connection with the fact that by
construction of the distribution functions, the area under the entire curve of the
probability density is equal to unity, and we require that the area under each branch
of the curve be equal to unity (for 
α < 0 and for 
α > 0).

It is not difficult to derive formulas (10.12) if several values of 
α and the
percentage of cases when each selected value occurs are given. Having found pl

for each
α , it is natural to add them, weighting each one by a weight proportional to
the percentage of times it is encountered. From here, extrapolating to a continuous
distribution of 
α , we arrive at formulas (10.12)

Thus, we can find the probability for manufacturing a measuring instrument
whose error is less than a fixed limit, if it has a unique output signal. Examples of
such measuring instruments are single-valued measures.

Much more often, however, measuring instruments have a definite range of
measurement. In this case, the probability of getting a good instrument is equal to
the probability that the error of the selected instrument over the entire measurement
range is less than the prescribed limit. How does one estimate this probability?

One would think that for a pointer-type instrument the probability pgi can be
calculated for each marker of the instrument scale and pg can be found by mul-
tiplying the probabilities together. However, one cannot proceed in this manner,
because the errors at different points of the scale are not independent of one another,
primarily because of the multiplicative component. In addition, such calculations
would be too laborious, because the instrument scale often has 100 to 150 markers.

We shall examine a different method for solving the problem. For definiteness,
we shall consider a pointer-type instrument with one measurement range. The
method described above makes it possible to find all components of the instrument
error at any marker of the instrument scale. We shall calculate them for the final
value of the scale y f . The random component usually varies insignificantly along
the instrument scale. For this reason, once the practically limiting random error



244 10. Calculation of the Errors of Measuring Instruments

for the final value of the scale has been estimated, we can assume that we have it
for the entire scale of the instrument.

We shall assume at first that the practically limiting random error, equal to 
α ,
is the same for all instruments studied.

Before summing the systematic error components, we separate them into ad-
ditive and multiplicative components, after which we add them separately. The
addition is performed by statistical methods. As a result, we obtain the probability
density of the additive and multiplicative error components for y = yf, i.e., for the
final value of the scale.

However, the instrument can have an inadmissibly large error at any marker of
the scale, and this must be taken into account.

The systematic error ϑy of an arbitrarily chosen instrument at the point y of
the instrument scale consists of the multiplicative component ϑmy and the additive
component ϑay:

ϑy = ϑmy + ϑay .

In addition,

|ϑmy | ≤ θmy,

where θmy = θm f y/yf and θm f is the largest multiplicative component of the error
(neglecting the sign) at y = y f .

An example of the change in the multiplicative errors of an instrument along
the instrument scale is shown in Fig. 10.2, together with the probability density of
this error at y = y f .

Figure 10.2. Example of the representation of multiplicative instrument errors
together with their probability density.
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Figure 10.3. Possible form of the probability
density of the extremal additive instrument
errors.

We recall that the multiplicative error increases from the beginning to the end
of the scale in proportion to the indications of the instrument.

The additive components of the error, however, vary along the scale in a random
manner, but so that |θay | ≤ θay , where θay = ϕ(y) is the largest additive component
of the error (neglecting the sign) at the point y of the scale. For this reason, the
additive component must be regarded as a two-dimensional random quantity: It
changes in each section of the scale (at each scale marker) as well as along the
scale.

For our problem, it is best to not study the entire collection of the additive
components of systematic instrument errors, but rather only the collection of the
largest and smallest errors, chosen separately for each instrument. Statistically
(over the set of instruments), these extremal additive components of the system-
atic error θa are determined by two distribution functions, shown in Figs. 10.3
and 10.4.

The graph presented in Fig. 10 .3 permits finding the probability of the extremal
values of θa , and the graph presented in Fig. 10.4 permits finding the probability
of encountering an extremal value (positive or negative) on one or another section
of the scale of the instrument.

Given these dependences, we can find the probability that the error of the manu-
factured instrument will be less than a predetermined limit at any point of its scale.
The solution is obtained by numerical methods. The scheme of the calculations is
as follows:

(1) We transfer from the continuous distributions f (ϑm) and f (θa) to discrete
distributions. For this reason, the ranges of possible values of the components
[−θm f , +θm f ] and [−θaf, +θaf] and divided into several intervals so that each
interval can be replaced by the average error on it θmi (i = 1, . . . , h) and θaj ( j =
1, . . . , t).

Figure 10.4. Possible form of the proba-
bility density of the extremal positive and
negative additive instrument errors along
the scale.
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We set the probability that each average will appear in the error interval equal
to the area under the curve of the probability density of the corresponding error on
this interval.

Thus, we obtain a series of multiplicative and a series of additive errors and the
corresponding probabilities:

θmi , pmi , i = q, . . . , h,

θaj , paj , j = 1, . . . , t.

We note that the multiplicative errors θmi correspond to y = yf and the additive
errors θai are independent of the position on the scale.

(2) We find the section of the scales on which inadmissibly large errors can
appear.

Inadmissably large errors, by definition, are errors that satisfy the inequalities

ζl ≤ −
, ζr ≥ +
. (10.13)

We take a pair of components θaj and θmi and find a point on the scale of the
instrument yij such that for y > yij, one inequality (10.13) can be satisfied. It is
best to study at the same time only positive or only negative components.

Based on the foregoing arguments regarding the separation of the random errors,
the inequalities (10.13) will assume the form θaj + ϑmyi ≥ 
 − 
α for positive
θaj and θmi and the form θaj + ϑmyi ≤ −
 + 
α for negative components. Here

ϑmyi = θmi yi/yf.

The solution of the inequalities gives

yij ≥ 
 − 
α − θaj

θmi
yf, if

{
θaj > 0,

θmi > 0,

yij ≥ 
 − 
α − θaj

|θmi | yf, if

{
θaj > 0,

θmi < 0,

(10.14)

Thus, the section of the scale where inadmissibly large errors can appear for
each pair of components is y f − yij.

(3) We shall calculate the probability that an instrument with an error less than
the prescribed limit is manufactured.

The probability that the selected pair of components θmi and θaj appears simul-
taneously is equal to (because they are independent)

p = pmi paj . (10.15)

The probability that the selected additive component θaj will appear in the section
of the scale yf − yij is determined based on one of the two functions f (y) and is
equal to

p =
∫ yf

yi j

f (y) dy.
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From here, we find the probability that an instrument with an inadmissibly large
error for chosen θmi and θaj will be manufactured:

pij = pmi paj

∫ yf

yij

f (y) dy. (10.16)

To each pair of components, a unique probability pij is associated. The calcula-
tion must be performed separately for positive and negative pairs of components,
because in the computational scheme presented above, the left and right-hand
branches of the distribution function of the resulting systematic instrument error
are taken into account separately.

In the cases where the functions f (ϑm) or f (θa) are unsymmetric, or the func-
tions f (y)+θa and f (y)−θa are not equal, the calculations of pij must be repeated be-
cause different probabilities now correspond to the positive and negative errors with
the same absolute value. But if the functions are symmetric and f (y)+θa = f (y)−θa ,
then the calculations can be shortened by setting

pij = 2pmi paj

∫ yf

yf−yij

f (y) dy, (10.17)

where the indices i and j now enumerate the positive and negative errors with the
same magnitude.

As a result of the calculation, we find

pl =
∑
θ<0

pij, pr =
∑
θ>0

pij,

and then the probability pg,which we seek, of manufacturing an instrument with
an error less than the prescribed limit is

pg = 1 − (pl + pr ).

We obtained the answer for the case in which the practically limiting random
error 
α is the same for all instruments. Often, however as we have already noted,
it is necessary to take into account that different instruments can have different
random errors, i.e., different 
α .

To solve this problem, formulas (10.12) must be used. It is first necessary to
establish several discrete values of 
s and the corresponding probabilities ps .
Next, using the scheme presented above, pgs can be found for each 
s . Averaging
the obtained probabilities with the weights ps , we obtain the solution.

pg =
∑

s

ps pgs. (10.18)

Thus, it is possible to find the probability of manufacturing an instrument with
an error less than the prescribed limit if the instrument has one measurement range.
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The solution of this problem for instruments with many measuring ranges is, in
principle, the same as the solution presented above.

Instruments with voltage dividers, shunts, measuring transformers, and similar
devices with a variable transfer coefficient have several measurement ranges. Every
instrument has one sample of such devices of one type or another.

One would think that to estimate the probability of getting an instrument with
an inadmissibly large error, it is necessary to have the distribution function of the
errors of all instrument components. Given these functions, all possible combina-
tions of errors in one instrument must then be sorted through, and the particular
combinations that give errors that are less (or greater) than a prescribed limit are
then selected. This process is possible but complicated.

The problem simplifies significantly if the distribution of the highest and lowest
errors of the instrument components (voltage dividers or shunts) that give the
instruments several measurement ranges are studied separately. We shall call these
devices multivalued devices.

Each multivalued unit (a particular sample of the unit) can be described by only
two errors with the largest absolute values: positive and negative errors. A set of
units of one type will then correspond to the distribution function of the largest
and smallest errors.

The largest (smallest) error of each instrument consists of the largest (small-
est) errors of its components. Correspondingly, the distribution function of the
largest (smallest) instrument errors can be constructed according to analogous
functions of the components. For multivalued units, this is the distribution func-
tion of the largest and smallest errors over the set of units. A single-valued
unit has one error distributed over the set of units. After the distribution func-
tion of the largest errors of the instruments has been determined, we find the
probability sought. An example of the described calculation is presented in
Section 10.4.

The foregoing solution contains one fundamental inconsistency. The essence of
this inconsistency is that instrument errors must be calculated when the instruments
are developed, and the calculation is based on data on the physically nonexistent
units of these instruments. It is possible to get out of this difficulty by focusing on
units of analogous instruments that are already being produced. The distribution
functions of the parameters of such units can be estimated. Of course, experts can
introduce into these data certain corrections so they can extrapolate them to the
parameters of the units being designed.

In conclusion, it should be added that the accuracy of the calculations in which
continuous distributions are replaced by discrete distributions depends on the num-
ber of discrete intervals, which can be made very large, if computers are employed.
However, the probability of manufacturing an instrument with an error less than
the prescribed limit need not be found with high accuracy.

If, however, the starting data are represented in the form of histograms, then
in the solution under study, all information contained in them is employed and
the computational uncertainty is determined primarily by the uncertainty of the
histograms.
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10.3. Calculation of the Errors of Electric Balances
(Unique Instrument)

Electric balances are an instrument in which the force of interaction of the moving
and nonmoving coils, through which the same constant current flows, is balanced
by the force of gravity of the weights. Standards of the unit of electric current
strength (ampere) have been developed in the United States and the former USSR
based on this principle. (Now the ampere is reproduced with higher accuracy using
standards of the volt and ohm. Therefore, the electric balance lost its value.)

We shall calculate the errors of Soviet-made electric balances. We shall use the
data presented in [27].

The current strength at the point of equilibrium of the electric balance is deter-
mined by the expression

I =
√

mg/F, (10.19)

where m is the mass of the balancing weight, g is the acceleration of gravity, and
F is the constant of the electric balance.

The constant of the electric balance is equal to the derivative of the mutual
inductance of the two coils (mobile and immobile) with respect to the vertical
displacement of the mobile coil and is calculated from their geometric dimensions.

The difference between the value of the current strength calculated using formula
(10.19) and its true value, i.e., the error of the electric balance, is determined by
the uncertainty in the quantities entering into this formula as well as by the effect
of the field of the wires carrying the current to the mobile coil. These sources of
error create the systematic error of the electric balance.

The equilibration of the balance, however, is also accompanied by random errors,
which are caused by friction in the supports of the cross arm of the balance,
fluctuations of the ambient air temperature, changes in the external magnetic field,
effect of air flows, and some other factors.

The systematic error of the electric balance must be estimated by a compu-
tational method; it cannot be determined experimentally (as long as one is not
concerned with comparing the national standard of the unit of current strength
with the standard of this unit in other countries). It is, however, virtually impos-
sible to calculate the parameters of the random errors, but they can be estimated
based on the experimental data. For our balances, the relative standard deviation
of the current strength is Srel = 2 × 10−6.

The uncertainty of the quantities entering into formula (10.19) is characterized
by the following data. For the mass of the balancing load, the relative error falls
within the limits ±1.25 × 10−6, and for the acceleration of gravity, the error falls
within the limits ±4 × 10−6. (At the present time, this error can be significantly
smaller.)

The error in the constant of the electric balance is in turn caused by several
factors. Table 10.1 gives the limits of the errors introduced into the constant of the
electric balance by each factor [27].
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Table 10.1. Limits of the components of the errors ε(F).

Limits of error δF
Source of error in the constant ×10−6

Uncertainty in the measurement of the radial dimensions:
Immobile coil δF(rim) ±3
First part of the moving coil δF(rm1) ±3
Second part of the moving coil δF(rm2) ±2

Uncertainty in the measurement of the axial dimensions:
Immobile coil δF(�im) ±2
First part of the moving coil δF(�m1) ±1.3
Second part of the moving coil δF(�m2) ±0.7

Deviation of the coils from the cylindrical shape δF(R) ±2

We shall find the influence coefficients of the relative errors of the measurements
of the mass ε(m), acceleration of gravity ε(g), and the calculation of the constant
of the electric balance ε(F) hi accordance with formula (10.3).

We represent expression (10.19) in the form of the product of the arguments:

I = m1/2g1/2 F−1/2.

As shown in Section 6.6, in this case, the influence coefficients are equal to the
powers of the corresponding arguments, i.e.,

wm = 1
2 , wg = 1

2 , wF = − 1
2 .

Aside from the enumerated and estimated components of the error, it is also
necessary to take into account the error mentioned above because of the influence
of the field generated by the wires conducting the current to the mobile coil.
Experiments show that this field creates an additional force on the mobile part that
falls within ±2 × 10−6 times the nominal strength of the interaction of the coils.

As the influence coefficient of the force of interaction (mq) is wmq = 1
2 , this

error has the same influence coefficient wH = 1
2 .

According to formula (10.6), the total systematic error of the electric balance
(in the relative form) will be

ε� = wHε(H ) + wmε(m) + wgε(g) + wFε(F),

where |ε(H )| ≤ 2 × 10−6, |ε(m)| ≤ 1.25 × 10−6, |ε(g)| ≤ 4 × 10−6, and a series
of components was given for the error ε(F).

All components of the error ε� are determined by their limits. For this reason,
we shall use formula (10.10) and find the confidence systematic error of the electric
balance. We shall take α = 0.95 and k = 1.1. Then

θ0.95 = 1.1
√(

1
2

)2
(22 + 1.252 + 42 + 2 × 32 + 3 × 22 + 1.32 + 0.72) × 10−12

= 1.1 × 10−6
√

13.5 = 4 × 10−6.

The practically limiting random error can be estimated if we know Srel and have
some idea about the form of the distribution of the experimental data. If it can
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be assumed that the data correspond to a normal distribution and the confidence
probability is also taken to be 0.95, then 
0.95 = 1.96Srel = 4 × 10−6. Then the
practically limiting error of the electric balance in the single-balancing regime will
be, according to formula (10.9),

δ I (0.95) = θα + 
α = 8 × 10−6.

When measuring with the help of electric balances the emf of standard cells,
several balancings can be performed and the error in the result can be reduced by
averaging the data obtained.

We underscore that the result obtained pertains to a specific sample of electric
balances, because it was obtained using data on the parameters of the components
of this instrument.

10.4. Calculation of the Error of ac Voltmeters
(Mass-Produced Instrument)

We shall study the inverse problem. The limit of permissible instrument error as the
fiducial error is given, and it is required to calculate the percentage of instruments
satisfying this requirement when they are manufactured using a technology with
a prescribed degree of development.

We shall study the voltmeter in a ferrodynamic system. Figure 10.5 shows the
block diagram of this instrument. This diagram was constructed in accordance
with the theory of instruments of this system. Figure 10.6 shows a graphical rep-
resentation of the instrument scale.

Block 1 converts the measured voltage Ux into the current of strength

I = Ux/R,

where R is the resistance of the input circuit of the voltmeter.
The current I is converted with the help of block 2 into a torque

Mt = K I 2,

where K is the electrodynamic constant of the instrument.
Block 3 generates a countertorque

Mc = Wα,

Figure 10.5. Block diagram of voltmeter.
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Figure 10.6. Graphical construction of the voltmeter scale.

where W is the stiffness of the spring and α is the angle of rotation of the moving
part.

When the moving part is in a position of equilibrium, Mt = Mc, and from
here,

α = K

WR2 U 2
x . (10.20)

When the instrument is manufactured, the particular combination of the pa-
rameters K , W , and R that is realized in the instrument is fixed by adjusting the
instrument and calibrating its scale. For this reason, instrument errors will arise
only as a result of changes in the stiffness of the spring and the input resistance
relative to their values at the moment of regulation. The constant K, however, is
virtually unchanged and does not give rise to any errors.

Regarding the parameters W and R, formula (10.20) is exact and permits fund-
ing the instrument error introduced by changes in these parameters. Structurally
it is identical to formula (6.37). For this reason, the values of the influence coeffi-
cients for the relative changes in the stiffness W and resistance R can be written
immediately:

wW = −1 and wR = −2.

In addition to the instability of the parameters of the blocks, error can also appear
from the friction in the supports of the moving part and the uncertainty of the scale.
The sources of these errors are indicated in Fig. 10.5. As these errors are additive,
it is best to express them as absolute errors. We shall express them in units of the
angle of rotation of the moving part.

Friction introduces a random error (M f is the friction moment). It is custom-
arily described as a dead band, i.e., by the difference of the indications of the
instrument that is obtained by approaching continuously from the right and left
a particular marker on the scale. The largest dead band is determined (see, for
example, the standards for electric measuring instruments). The largest random
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error from friction is equal to one half the dead band. Therefore, the limits 
t of
this error are also known. It is assumed that the random errors of each instrument
are uniformly distributed within these limits. The limits, however, can be different
for different instruments.

The error in the scale of the instrument αs for each scale marker of a particular
instrument is a systematic error. But this error varies from one marker to another.
It also varies from one instrument to another. For each particular instrument, it is
possible to find the largest error of the scale. It can be assumed that this error is
encountered with equal probability on any scale marker. The set of instruments is
characterized by the distribution of these largest scale errors.

So, the components of the instrument errors are as follows:

(a) the error from the variation of spring stiffness ϑ1 = −εW ;
(b) the error from the variation of the input resistance ϑ2 = −2εR ;
(c) the error from the friction ψ = αf; and
(d) the error from scale inaccuracies ϑ3 = αs .

The errors ϑ1 and ϑ2 are multiplicative and are expressed as a percentage; the
errors ϑ3 and ψ are additive and are expressed in units of the angle of rotation
of the moving part of the voltmeter (in degrees); i.e., they are referred to the
output. For this reason, the instrument error scaled to the output is given by the
relation

ζα = α

100
(ϑ1 + ϑ2) + ϑ3 + ψ, (10.21)

where α is the angle of rotation of the moving part of the instrument, which
corresponds to its indication Ux for which the error is calculated.

Let us assume that the limits of intrinsic error are given and they are ±1% (as the
fiducial errors). Next, we assume that the data given in Table 10.2 are known for

Table 10.2. Starting data on the sources of systematic instrument errors.

Interval of probability
distribution

Frequency of occurrence
Source of error or error Left limit Right limit of the interval

Relative change in spring stiffness εW −0.3% −0.2% 0.2
−0.2% −0.1% 0.5
−0.1% 0.0% 0.3

Relative change in resistance εR −0.3% −0.1% 0.2
−0.1% +0.1% 0.2
+0.1% +0.3% 0.6

−0.6◦ −0.2◦ 0.5
Absolute error of the instrument scale αs −0.2◦ +0.2◦ 0.0

+0.2◦ +0.6◦ 0.5
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Table 10.3. Description of histograms of distributions
of multiplicative components of the instrument error.

Interval of error distribution (%)
Frequency of

Error Left limit Right limit occurrence of interval

ϑ1 +0.2 +0.3 0.2
+0.1 +0.2 0.5

0.0 +0.1 0.3

ϑ2 +0.2 +0.6 0.2
−0.2 +0.2 0.2
−0.6 −0.2 0.6

each component of the error. These data characterize the degree of development
of the manufacturing technology.

We shall also assume that in 30% of the instruments, the practically largest dead
band does not exceed 0.8◦, and that in 70% of the instruments, it does not exceed
0.4◦. Thus, the random error falls within the limits 
α1 = ±0.4◦ for 30% of the
instruments and within the limits 
α2 = ±0.2◦ for 70% of the instruments. Given
these data, we must find the probability that the fiducial error of the voltmeters
falls within the limits 
 = ±1%.

The fiducial error must be put into the form of an absolute error. We shall express
it in degrees of rotation of the moving part, which can be done with the help of a
graph similar to that presented in Fig. 10.6. Assume that in our case, the limit of
permissible error in degrees 
 = 1◦ (neglecting the sign).

Focusing on formula (10.21), we shall first find the composition of the multi-
plicative errors ϑ1 and ϑ2. Using the data presented in Table 10.2 and the influence
coefficients found, it is not difficult to describe the histograms of the distributions
of these errors. These descriptions are given in Table 10.3.

It is convenient to solve the problem by the method of sorting, described in
Section 3.6. For this reason, the histograms must be replaced by discrete distribu-
tions. To each interval, an error is assigned equal to the center of the interval. The
probability of the appearance of this error is assumed to be equal to the frequency
of this interval.

Let the error ϑ1 be represented by the discrete random quantity η1 and the error
ϑ2 by the discrete random quantity η2. We obtain the following:

η1 +0.25 +0.15 +0.05,

p1 0.20 0.50 0.30,

η2 +0.40 0.00 −0.40,

p2 0.20 0.20 0.60.

The random quantity η = η1 + η2 corresponds to the error ϑ1 + ϑ2. Its realizations
are presented in Table 10.4.
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Table 10.4. Discrete representation of the distribution
of the multiplicative instrument error.

Number η = η1 + η2 p = p1 p2

1 +0.25 + 0.4 = +0.65 0.04

2 +0.25 + 0.0 = +0.25 0.04

3 +0.25 − 0.4 = −0.15 0.12

4 +0.15 + 0.4 = +0.55 0.10

5 +0.15 + 0.0 = +0.15 0.10

6 +0.15 − 0.4 = −0.25 0.30

7 +0.05 + 0.4 = +0.45 0.06

8 +0.05 + 0.0 = +0.05 0.06

9 +0.05 − 0.4 = −0.35 0.18

The limiting values of the total error ηmin = −0.6% and ηmax = +0.9% (see
Table 10.3); these errors correspond to probabilities of 0 and 1, respectively. The
probability distribution is constructed based on the obtained data. The numerical
values are summarized in Table 10.5.

Based on these data we construct a step curve as a first approximation to the
distribution function that is sought for the multiplicative error of the instruments,
after which the function is smoothed by the method of linear approximation. The
distribution function so obtained is presented in Fig. 10.7.

We shall now express the multiplicative error in the form of absolute error—
as fractions of the angle of rotation of the mobile part. We shall find the largest
error, i.e., the error corresponding to maximum deflection. We assume that αmax =
100◦. Then the numerical values of the error ϑm = (ϑ1 + ϑ2) (αmax/100) will
be equal to the values given in Table 10.5. Using these data and the graph in
Fig. 10.7, we construct a histogram of the multiplicative error of the instrument with

Table 10.5. Table of the computed values of the probability
distribution of multiplicative instrument error.

η −0.6 −0.35 −0.25 −0.15 +0.05

p 0 0.18 0.30 0.12 0.06

�p 0 0.18 0.48 0.60 0.66

η +0.15 +0.25 0.45 0.55 0.65 0.9

p 0.10 0.04 0.06 0.10 0.04 0.0

�p 0.76 0.80 0.86 0.96 1.00 1.0
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Figure 10.7. Step and linear approximations of the distribution function of the mul-
tiplicative errors of voltmeters.

maximum angle of rotation of the mobile part. The data for this histogram are as
follows:

Interval number i 1 2 3 4 5

Limits of interval for the error ϑm (degrees)
left +0.60 +0.30 +0.00 −0.30 −0.60
right +0.90 +0.60 +0.30 0.00 −0.30

Average value of θmi +0.75 +0.45 +0.15 −0.15 −0.45
Probability of falling

within the interval pmi 0.05 0.15 0.20 0.42 0.18

We obtain, analogously, from the data in Table 10.2, the average values of the
intervals of the distribution of the largest scale errors of the instruments and the
corresponding probabilities:

Interval number j 1 2 3

Average value θaj of the
error in the interval +0.4 0 −0.4

Probability of falling within the
interval paj 0.5 0 0.5

In accordance with formulas (10.14), we find the sections of the scale where
the instrument can be rejected. In our case, 
1 = 
 − 
α1 = 0.6◦ and 
2 =

 − 
α2 = 0.8◦ (for 30% and 70% of the instruments, respectively).
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For θaj > 0, θmi > 0, and 
1 = 0.6◦, we obtain

y11 = 0.6 − 0.4

0.75
y f = 0.27y f , y21 = 0.6 − 0.4

0.45
y f = 0.45y f ,

y12 = 0.6

0.75
y f = 0.8y f .

The remaining combinations give yi j > y f , which means that it is impossible to
obtain an inadmissibly large error.

We shall assume that the distribution function of the additive errors of the
instruments along the scale uniform and identical for positive and negative errors:
f (y) = 1/y f . Then for each scale section studied, we obtain

p′
ij =

∫ y f

yij

1

yf
dy =

(
1 − yij

y f

)
.

Therefore,

p′
11 = (1 − 0.27) = 0.73, p′

21 = (1 − 0.45) = 0.55,

p′
12 = (1 − 0.80) = 0.20.

For θaj < 0, θmi < 0, and 
1, we obtain

y53 = 0.6 − 0.4

0.45
y f = 0.45y f , p′

53 = 0.55.

From here, we find the probability that an instrument is rejected for each com-
bination of instrument components:

p11 = 0.73 × 0.05 × 0.5 = 0.018,

p21 = 0.55 × 0.15 × 0.5 = 0.041,

p12 = 0,

p53 = 0.55 × 0.18 × 0.5 = 0.050.

Therefore,

pl = p53 = 0.050, pr = p11 + p21 + p12 = 0.059.

The probability of manufacturing a high-quality instrument is

Pg1 = 1 − (0.050 + 0.059) = 0.89.

Analogous calculations for 
2 = 0.8 give

y11 = 0.8 − 0.4

0.75
y f = 0.53y f , p′

11 = 0.47,

y21 = 0.8 − 0.4

0.45
y f = 0.89y f , p′

21 = 0.11,

y53 = 0.8 − 0.4

0.45
y f = 0.89y f , p′

53 = 0.11;
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p11 = 0.47 × 0.05 × 0.5 = 0.012,

p21 = 0.11 × 0.15 × 0.5 = 0.008,

p53 = 0.11 × 0.18 × 0.5 = 0.010.

Now pl = 0.010 and pr = 0.020, and pg2 = 0.97.
The weighted-mean probability of manufacturing an instrument whose error is

less than the prescribed limit is equal to

pg = 0.3pg1 + 0.7pg2 = 0.3 × 0.89 + 0.7 × 0.97 = 0.95.

Therefore, for the properties of the instrument components and the scale fabri-
cation quality presented above, approximately 95% of the instruments will have a
fiducial error not exceeding 1%.

This calculation was performed for reference conditions and determines the
limits of intrinsic instrument error.

For a prescribed limit of instrument error, the obtained percentage of rejections
can serve as a basis for increasing the quality requirement for one or another
of the instrument components, improving the technology used to fabricate the
components, and so on. The limits of permissible errors of all components can be
calculated uniquely if the weights are assigned for their errors. These weights are
apparently difficult to determine objectively, and sometimes it is impossible to do
so. For this reason, the main method is to estimate the percentage of rejects and
select specifications of the instrument components so that the percentage of rejects
is acceptable.

10.5. Calculation of the Error of Digital Thermometers
(Mass-Produced Instrument)

Digital thermometers are usually constructed according to a scheme in which the
digital-analog integrator converts the emf of the thermocouple into a corresponding
voltage, after which this voltage is converted into a proportional time interval and
thus into the indication of the instrument. This process is explained by the graphs
presented in Fig. 10.8.

The graph in Fig. 10.8(a) refers to an analog-digital integrator. The integration
time is maintained strictly constant, and the slope of the straight lines is proportional
to the emf at the input of the integrator (in accordance with the principle of operation
of the integrator). For this reason, the voltage at the output of the integrator Ui is
proportional to the emf of the thermocouple.

The graph in Fig. 10.8(b) shows how the voltage Ui is converted into a pro-
portional time interval 
ti ; this is equivalent to conversion into a number—the
indication of the instrument.

As the temperature dependence of the thermocouple emf is known, the indica-
tions of the instrument give the measured temperature.
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Figure 10.8. Graphs explaining the principle of operation of a digital integrating
instrument.

Two special procedures are realized in the process of the conversions. One is
linearization of the temperature dependence of the thermocouple emf. The other
is compensation of the effect of a deviation of the temperature at the so-called
cold ends of the thermocouple from the reference level. The latter is assumed to
be 0 ◦C, the melting point of ice.

The specifications provided by manufacturers of thermocouple thermometers
still do not give the user clear indications of the temperature measurement accuracy
that can be achieved with the instrument. One would think that the well-known
Fluke Company, which introduced the concept of total accuracy of digital ther-
mometers [13], would have filled in this omission. The catalog of the firm shows,
however, that it gives the thermometer error without taking into account the ther-
mocouple error; i.e., it does not complete the solution of the problem.

We shall study the calculation of the error of digital thermometers based on data
on the accuracy of their components and the calibration accuracy. We shall take a
thermometer with a thermocouple of type J and a measurement range of 0–750 ◦C.
The instrument can be used in the range +25 ± 10 ◦C, and after calibration, it can
be used for one year. We shall consider the direct problem.

Focusing on [13], we shall assume that the following data are known (the num-
bers for the calculation here are arbitrary):

1. Linearity: The limits of instrument error caused by deviation from linearity of
the characteristic θL = ±0.1 ◦C.

2. Reference junction
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2.1. The limits of instrument error caused by the effect of a deviation of the
temperature by 10 ◦C from the normal temperature (+25 ◦C) on this circuit
θTJ = ±0.2 ◦C.

2.2. The limits of instrument error caused by the change in the parameters of
this circuit over a period of one year (instability), θSJ = ±0.2 ◦C.

3. Reference voltage.
3.1. The limits of instrument error caused by the effect of a deviation of the

temperature by 10 ◦C from the normal temperature on this circuit, θT U =
±0.5 ◦C.

3.2. The limits of instrument error caused by a change in the parameters of this
circuit over a period of one year (instability), θSU = ±0.2 ◦C.

4. Correspondence to NBS (NIST) data. The limits of instrument error caused
by inaccurate linearization of the standard characteristic of the thermocouple,
θsc = ±0.15 ◦C.

5. The limits of instrument error caused by the discreteness of the indications,

D = ±0.5 ◦C.

6. The limits of instrument calibration error, θC = ±0.15 ◦C.

The absolutely constant error, i.e., the error that is the same for all instruments
of a given type, will be the error caused by inconsistency with the NBS (NIST)
data.

The random error will be the error introduced by the discreteness of the instru-
ment indications. All other errors must be regarded as conditionally constant.

We shall regard conditionally constant errors as uniformly distributed random
quantities, as has already been assumed above. Their characteristic feature, in
our case, is that some of them depend on one another. Taking this dependence
into account, the total conditionally constant error of the thermometers must be
calculated using the following formula (for probability α = 0.95):

θ1 = 1.1
√

θ2
L + (θTJ + θTU )2 + (θSJ + θSU )2 + θ2

C = 1.1
√

1.01 = 1.1 ◦C.

The limits of absolutely constant error must be summed with the limits
θ1arithmetically. We obtain

θ2 = θsc + θ1 = 0.15 + 1.1 = 1.25 ◦C.

The limits of random error must also be taken into account by arithmetic sum-
mation, because we are estimating errors of the instrument in every use of the
instrument in the future:


 = θ2 + 
D = 1.25 + 0.5 = 1.75 ◦C.

Although 
 is expressed in units of the measured quantity, this is still not the
total error of the instrument as a thermometer, because it does not include the
thermocouple error, and without the thermocouple, the instrument cannot operate
as a thermometer.

According to ANSI Standard MC 96.1, the limits of error of thermocouples of
type J in the temperature range 0–750 ◦C are ±2.2 ◦C or ±0.75%, whichever is
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greater. It is easy to calculate that up to 293 ◦C, the limits of error will be ±2.2 ◦C,
after which they must be calculated using the relation ±0.75 × 100 × Tx , where
Tx is the measured temperature. At Tx = 750 ◦C, this error will fall within the
limits ±5.6 ◦C.

The thermocouple errors must be regarded as conditionally constant, and for this
reason, they must be taken into account when calculating θ1. Taking this component
into account, we obtain θ ′

1 = 1.1
√

1.01 + 5.62 = 1.1
√

32.4 = 6.3 ◦C.
After this result, we find the absolute value of the limits of the total instrument

error:


′ = θ ′
1 + θsc + 
D = 6.3 + 0.15 + 0.5 = 6.95 ≈ 7 ◦C.

If this limit is represented in the form of fiducial error, we obtain γ =
±7 ◦C/750 ◦C × 100 ≈ ±1%.

In this case, this value of the fiducial error will be identical to the limit of rel-
ative error in the range 300–750 ◦C. Under this temperature range, the limit of
relative error starts to increase. Thus, the limits of instrument error found in the
range 300–750 ◦C are also an estimate of the limits of minimum error in measuring
the temperature that one can count on when using a thermometer consisting of a
type J thermocouple and the digital indicator under study. In other words, this esti-
mate of the error characterizes the maximum temperature measurement accuracy
expected for this thermometer.

Characterizing the inaccuracy of the indicator of the thermometer is not only
insufficient for the user, but it can even mislead the user, because its error is
expressed in units of measurement of temperature, whereas it characterizes only the
indicator of the thermometer. The difference is significant: 
 = 1.75 ◦C, whereas

′ = 7 ◦C.
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Problems in the Theory
of Calibration

11.1. Types of Calibration

Every country wishes to have trustworthy measurements of all physical quantities.
One of the most important arrangements to achieve this goal is to have a system for
keeping errors of all measuring instruments within permissible limits. Therefore,
all measuring instruments in use are periodically checked. In the process, working
standards are used either to verify that the errors of the measuring instruments being
checked do not exceed their limits or the measuring instruments are recalibrated.

The general term for the above procedures is calibration. But one should dis-
tinguish between a real calibration and a simplified calibration.

Real calibration results in the determination of a relation between the indications
of a measuring instrument and the corresponding true values of a measurand. This
relation can be expressed in the form of a table, a graph, or a function. It can also be
expressed in the form of the table of corrections to the indications of the measuring
instrument.

The simplified calibration (also called verification) simply reveals whether the
errors of a measuring instrument exceed their specified limits.

Essentially, verification is a specific case of quality control, much like quality
control in manufacturing. And because it is quality control, verification results do
have some rejects.

In addition, a check of an entire set of elements is distinguished from a check of a
single element. In a complete check, the error of the checked measuring instrument
is determined as a whole, whereas in the case of an elementwise check, the errors
of the elements of the measuring instrument being checked are determined. A
complete check is always preferable; such a check gives the most reliable solution
to the problem. In some cases, however, a complete check is impossible to perform
and one must resort to an elementwise check.

In an elementwise check, the error of the measuring instrument being checked
is calculated by means of the same methods that were examined in Section 10.2 for
solving the direct problem of calculating the errors of a measuring instrument from
the errors of its components. The data required for the calculation are obtained by
measuring the parameters of the components of the measuring instrument being
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checked. Usually, however, this problem is solved completely only once, and
in so doing, the standards for the errors of the components are determined. In
the future, when a check is performed, only the parameters of the components
and the serviceability of the measuring instrument are checked. If the parame-
ters of the components satisfy the standards established for them, then the error
of the measuring instrument checked in this manner falls within the established
limits.

Elementwise calibration is often employed to check the measuring systems when
the entire system cannot be delivered to a standard laboratory and the laboratory
does not have necessary working standards that could be transported to the system’s
site.

The standardization of the metrological properties of the units of a system does
not present any difficulties, and the units must be checked by standard methods.

As a rule, the operation of measuring systems cannot be interrupted and inter-
ruption for checking is inadmissible. For this reason, in most cases, systems are
assembled with a redundant set of units, so that units that are removed for checking
could be replaced with units that are known to be serviceable. During the regular
check of the system, the units are once again interchanged.

When a system is checked, however, in addition to checking the units, it is also
necessary to check the serviceability of the system as a whole. The methods for
solving this problem depend on the arrangement of the system, and it is hardly
possible to make general recommendations here. For example, the following pro-
cedure can be used for a system with a temperature measuring channel.

After the serviceability of all units of the system has been checked, we note
some indication of the instrument at the output of the system. Assume that the
indication is +470 ◦C. Then we find from the nominal calibration characteristic
of the primary measuring transducer the output signal that should be observed for
the given value of the measured quantity. Thus, if a platinum-rhodium-platinum
thermocouple was used as the measuring transducer, then when a temperature of
+470 ◦C is measured, the emf at the output of the thermocouple must be equal to
3.916 mV. Next, disconnecting the wires from the thermocouple and connecting
them to a voltage exactly equal to the nominal output signal of the thermocouple,
we once again note the indication of the system. If it remains the same or has
changed within the limits of permissible error of the thermocouple and voltmeter,
then the system is serviceable.

Of course, this method of checking will miss the case in which the error of the
thermocouple is greater than the permissible error and the same is true for the
voltmeter, and these errors mutually cancel. However, this result can happen only
rarely. Moreover, such a combination of errors is in reality permissible for the
system.

At the same time, this method of checking permits evaluating at the same time
the state of the thermocouple. The error of the thermocouple usually makes the
largest contribution to the error of the measuring system. For this reason, the
difference of the indications—observed at the moment of the check and obtained
after the thermocouple is disconnected and its output signal is replaced by a nominal



11.2. Estimation of the Errors of Measuring Instruments in Verification 265

signal—must be less than the limit of permissible error of the thermocouples; it
is permissible for this limit to be exceeded by an insignificant amount, which is
determined by the accuracy of the system.

The foregoing method of checking the metrological state of measuring systems
based on the use of redundant units is also promising in application to many
other complicated modern measuring devices, which are technically difficult or
impossible to transport to a metrological organization, as well as to devices whose
operation cannot be interrupted.

11.2. Estimation of the Errors of Measuring
Instruments in Verification

The error ζ of a measuring instrument is defined by the formula

ζ = Ac − A,

where Ac is the indication of the instrument being checked, the nominal value
of the standard, and so on, and A is the true value of the measured quantity, the
quantity reproduced by the standard being checked, and so on.

The true value A is always unknown. If instead of the true value the correspond-
ing indication of a working standard Ar is used, then instead of ζ , we obtain

ζ ′ = Ac − Ar . (11.1)

To estimate the error ζ by ζ ′, the difference ζ ′ − ζ must be small. The error of
the working standard is

γ = Ar − A.

For this reason,

ζ − ζ ′ = γ. (11.2)

Most often, it is known only that the error of the working standard does not
exceed the limit 
s established for it. Then

|ζ ′ − ζ | ≤ 
s .

In the relative form, the error of the error ζ , as follows from the expression

ε = |ζ ′ − ζ |
ζ

,

depends on the error ζ and increases as ζ decreases.
It is natural to estimate this relative error as

ε̃ = 
s/ζ
′.

When a working standard is chosen, the limit 
 of permissible error of the
measuring instrument being checked usually serves as the starting point. In this
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case, the ratio

k = 
s/


comes into play.
The relative error of the error can be expressed in terms of k:

ε̃ = k



ζ ′ . (11.3)

For example, for k = 0.1, the error ζ ′ ≈ 0.3
 is estimated with a relative error
reaching 30%.

The errors need not be estimated accurately, but the error in estimating errors
does not exceed 30%. When the errors exceed this limit, and taking into account
the instability of the measuring instruments, the estimates obtained rapidly become
meaningless.

In practice, the value k = 0.3 is often used. Then, as follows from the relation
(11.3), an error of only ζ ≈ 
 can be estimated with an error not exceeding 30%.

It is interesting to extend the foregoing arguments to the case in which the
measuring instruments have significant random errors.

Random errors cause the indications of instruments to be non-single-valued,
and they make it difficult both to check and use instruments. If, for example, when
checking a pointer-type instrument one need only check whether its errors do not
exceed the limit established for them, then the measurements must be repeated
several times and the largest errors must be found. In many fields of measurement,
the input to an instrument can be varied continuously. In such cases, to deter-
mine the largest error at each scale marker checked, two measurements are often
sufficient: one by approaching the scale marker from below and the other by ap-
proaching from above.

We shall examine a check in which the same quantity is measured simultaneously
with a working standard and the instrument being checked. Let y denote the
indications of the working standard and x those of the instrument being checked.
The difference of the indications of the two devices is

z = x − y. (11.4)

In the general case,

xi = A + ϑx + ψxi , yi = A + ϑy + ψyi , (11.5)

where ϑx and ϑy are the systematic errors and ψxi and ψyi are the random errors
of the instruments in the i th check.

For the random instrument errors, we have

E[ψxi ] = 0, E[ψyi ] = 0.
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Assume that to find the corrections, the indications of the instruments are aver-
aged. Using relations (11.4) and (11.5), we obtain

n∑
i=1

zi

n
= ϑx +

n∑
i=1

ψxi

n
−

⎛
⎜⎜⎝ϑy +

n∑
i=1

ψyi

n

⎞
⎟⎟⎠ .

For a sufficiently large number of observations the effect of the random errors
of the instrument being checked becomes insignificant. Hence,

n∑
i=1

ψxi

n
�

n∑
i=1

zi

n
.

Assuming that the error of the working standard is also small, we obtain the
answer

C̃ = −z̄.

The obtained estimate was found with an error not less than the systematic error
of the working standard. This error can be estimated by the method described in
Section 5.6. The required number of observations can be found with the help of
the criterion presented in the same section. For this reason, S(z̄) must be compared
with the limit 
s of permissible error of the working standard:


s

S(z̄)
≥ 7.

From here,

n ≈ 7

√
n∑

i=1
(zi − z̄)2


s
.

If, for the working standard, the limit of systematic error θs is known

|ϑy | ≤ θs,

then in the relations presented, θs must be substituted for 
s .
The checking method studied above is convenient for analysis, but in practice,

it is avoided, because it is difficult to read accurately fractions of a graduation on
the scale of the instrument being checked. The results presented for this method of
checking are, however, general. In particular, they will also be valid for the main
method of verification, in which the indicator of the instrument being checked is
set every time on the scale marker being checked, and the corresponding real value
of the measured quantity is found based on the indications of a working standard.
The same is true for digital instruments.

If the check is made with a reduced number of measurements, thanks to the
smooth approach from both sides of the same scale marker of the instrument being
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checked, then the estimate of the correction is found based on the arithmetic mean
of the two estimates obtained for the error.

Even though the correction was estimated by averaging the indications of instru-
ments, it can then be introduced into each separate indication. After the correction
has been introduced, it can be assumed that for the random errors, E[ψ] = 0.

When the random errors are significant, it is sometimes desirable to estimate the
variance or the standard deviation of this error. If the check is made by measuring
an unchanged and known quantity, then (11.4) is valid and it is obvious that

S(xi ) =

√√√√√
n∑

i=1
(xi − x̄)2

n − 1

and formally there are no difficulties in solving the problem; however, it is difficult
to obtain readings xi that are accurate enough.

If, however, in each observation, the indicator of the instrument being checked
is set on the same scale marker, then from the experiment, we will not obtain the
data required to solve the problem. In this case, according to (11.1),

ζ ′
i = Ac − y′

i , (11.6)

and Ac = const. Therefore,

V [ζ ′
i ] = V [y′

i ]

and the estimate obtained for the variance in accordance with this relation depends
on both the random error of the instrument being checked and the random error of
the working standard. To solve this problem, it is necessary to have an estimate of
the standard deviation of the working standard S(y).

Let the same quantity having the true value A be provided for both instruments.
Then A = x − ζ = y − γ , and therefore,

ζ − γ = x − y.

From here, based on relations (11.2) and (11.4), we obtain

ζ ′
i = zi ,

where zi = xi − yi .
Therefore, for the indications obtained in accordance with formula (11.6), we

have

V [ζ ′
i ] = V [y′

i ] = V [xi ] + V [yi ].

Correspondingly,

S2(y′) = S2(x) + S2(y).

Knowing S2(y), and having S2(y′) based on the experimental data, we find

S2(x) = S2(y′) − S2(y). (11.7)
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Relation (11.7) indicates that it is desirable to know the standard deviation for
the working standard. However, measuring instruments, for which the standard
deviations and, for example, the limits of error of the corrections are known, are
difficult to use for checking measuring instruments that are to be made for single
measurements. In such cases, for the working standard, it would be helpful to know,
in addition to the characteristics mentioned above, the limits of total error. For this
reason, it is not necessary to determine separately both the components and the
limits of total error in each check. Obviously, the relation between the total error and
its components for each type of measuring instrument is the same. For this reason,
if such a relation is established in the course of the investigations, performed, for
example, while certifying working standards, then in the future, when measuring
instruments are routinely checked, it could be sufficient to determine only part of
the errors under study.

11.3. Rejects of Verification and Ways
to Reduce Their Number

Because of the errors of working standards, some fraction of serviceable instru-
ments, i.e., instruments whose errors do not exceed the limits established for them,
is rejected in a verification—false rejection—and some fraction of instruments
that are in reality unserviceable are accepted—false retention. This situation is
typical for monitoring production quality, and just as with quality control, here a
probabilistic analysis of the procedure is interesting.

Suppose that the same quantity is measured simultaneously by a working stan-
dard and the instrument being checked. As pointed out above, for analysis, such a
scheme is simpler than other schemes, but this is not reflected in the generality of
the obtained results. In accordance with the conditions of the experiment, we have

A = x − ζ = y − γ,

where x and y are the indications of the checked and working standard and ζ and
γ are the errors of the checked and working standard. From here,

z = x − y = ζ − γ. (11.8)

We are required to show that |ζ | ≤ 
, where 
 is the limit of permissible error
of the checked instrument. From the experimental data, we can find z; we shall
assume that if |z| ≤ 
, then the checked instrument is serviceable, and if |z| > 
,
then it is not serviceable.

To perform probabilistic analysis in this way, it is necessary to know the prob-
ability distribution for the errors of the checked and standard instruments. Let us
suppose we know them.

The probability of a false rejection is

p1 = P{|ζ − γ | > 
||ζ |≤
},
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and the probability of a false retention is

p2 = P{|ζ − γ | ≤ 
||ζ |>
}.
A false rejection is obtained for |ζ | ≤ 
 when |ζ − γ | > 
, i.e.,

ζ − γ > 
, ζ − γ < −
,

or

γ < ζ − 
, γ > ζ + 
.

If the probability distribution of the errors of the checked and working standard
are f (ζ ) and ϕ(γ ), respectively, then

p1 =
∫ 


−


f (ζ )

(∫ ζ−


−∞
ϕ(γ ) dγ +

∫ +∞

ζ+


ϕ(γ ) dγ

)
dζ.

A false retention is possible when |ζ | > 
, i.e., when ζ > +
 and ζ < −
.
In this case, |ζ − γ | ≤ 
, i.e.,

ζ − γ ≤ 
, ζ − γ ≥ −
.

From here, ζ − 
 ≤ γ ≤ ζ + 
. Therefore,

p2 =
∫ −


−∞
f (ζ )

(∫ ζ+


ζ−


ϕ(γ ) dγ

)
dζ +

∫ +∞




f (ζ )

(∫ ζ+


ζ−


ϕ(γ ) dγ

)
dζ.

Thus, if the probability densities and their parameters are known, then the cor-
responding values of p1 and p2 can be calculated, and their dependence on the re-
lations between the limits of the permissible errors of the standard and the checked
instruments can be traced.

If, in addition, cost considerations are added, then, one would think, the problem
of choosing this relation can be solved uniquely. In reality, when the accuracy of
working standards is increased, the cost of the check increases also. A rejection also
has a certain cost. Therefore, by varying the limits of error of working standards,
it is possible to find the minimum losses and this variant is regarded as optimal.

The mathematical relations for solving the problem can easily be derived. Un-
fortunately, however, in the general case, it is impossible to estimate the losses
from the use of instruments whose errors exceed the established limits. In gen-
eral, it is difficult to express in terms of money the often significant economic
effect of increasing measurement accuracy. For this reason, it is only in excep-
tional cases that economic criteria can be used to justify the choice of the relation
between the limits of permissible error of the working standard and the checked
instruments.

In addition, as has already been pointed out above, the fundamental problem
is to determine the probability distribution of the errors of the instruments. The
results, presented in Chapter 2, of the statistical analysis of data from a check of
a series of instruments showed that the sample data are unstable. Therefore, the
distribution function of the instrument errors cannot be found from these data.
However, there are no other data; they simply cannot be obtained anywhere.



11.3. Rejects of Verification and Ways to Reduce Their Number 271

Figure 11.1. Examples of possible changes in the probability densities of the errors
of measuring instruments in time.

Moreover, the fact that the sampling data are unstable could mean that the
distribution functions of the errors of the instruments change in time. There are
definite reasons for this supposition.

Suppose that the errors of a set of measuring instruments of some type, at the
moment they are manufactured, have a truncated normal distribution with zero
mean. For measures (measuring resistors, shunts, weights, etc.), a too large error
of the same sign results in certain rejection. This is taken into account when
manufacturing measures and, as a result, the distribution of the intrinsic errors of
measures is usually unsymmetric. For example, if when a weight is manufactured
its mass is found to be even slightly less than the nominal mass, then the weight is
discarded. Figure 11.1 shows both variants of the distributions.

Instrument errors change in the course of use. Usually the errors only increase.
In those cases in which, as in the case of weights, the direction of the change
of the errors is known beforehand, and this is taken into account by the rules of
manufacturing, the errors can at first be reduced, but then they will still increase.
Correspondingly, changes in the instrument errors deform the distribution func-
tions of the errors. This process, however, does not occur only spontaneously. At
the time of routine checks, measuring instruments whose errors exceed the es-
tablished limits are discarded. Figure 11.1 shows the approximate general picture
of the changes occurring in the probability distribution in time. The process ulti-
mately terminates when the measuring instruments under study no longer exist:
either their errors exceed the established limits or they are no longer serviceable
for other reasons.

The actual picture is still more complicated, because the stock of measuring
instruments of each type can also change periodically as a result of the appearance
of new measuring instruments.

It should be noted that the properties of measuring instruments, such as influ-
ence functions and influence factors of different influence quantities, as a rule, do
not change with time, and for this reason, there is a much better foundation for
describing them with the help of a probabilistic model.
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The foregoing considerations show that the probabilities of rejection in a check
must be calculated carefully.

It is nonetheless of interest to analyze purely abstract situations and to examine
a series of models to cast light on the general laws. Such an analysis has been
performed by several authors.

E. F. Dolinskiı̆ obtained the following results under the assumption that the
errors of standard and checked instruments have normal distributions [23]:

(i) Rejection in a check depends primarily on the relation between the limit of
permissible error of the checked instruments and the standard deviation of the
errors of these instruments; as the standard deviation decreases, the number
of instruments rejected in a check decreases.

(ii) The relation between the errors of the checked and standard instruments (be-
tween the permissible limits of their errors or between the standard deviations
of these errors) affects the number of rejections in a check much less than do
the properties of the distribution of the errors of the checked instruments.

Digressing from the statistical instability of the distribution of errors of checked
instruments, it should be noted that this approach toward describing the quality of a
check has a fundamental drawback. Assume that we have the distribution function
of the errors of the checked instrument; i.e., we know the error of the entire collec-
tion of instruments. For each specific batch of instruments, however, the number
rejected will depend on how many of the instruments in the batch are unservice-
able. Therefore, the probability of rejection is not a good indicator of the checking
effectiveness, because an indicator of the checking effectiveness should not depend
on whether the number of bad instruments being checked is large or small.

If batches of instruments were checked, then one could talk about distribution
functions for each batch and correspondingly about rejections for each batch and
the average number of rejections. But instruments are checked separately or in
small batches (several instruments at a time), so that in this approach, one cannot
talk about distribution functions.

This contradiction can be resolved by resorting to some conditionally chosen
distributions. To obtain an estimate of the highest probability of false retention, one
can, for example, take the distribution of errors of bad instruments, i.e., instruments
whose error exceeds the permissible limits. As in practice bad instruments are not
the only instruments that are checked, it is clear that in reality the probability of
false retention will always be less than the value obtained by this method.

Analogously, to estimate the upper limit of the probability of false rejection, one
can take some distribution of errors that do not exceed the limits of permissible
errors.

When the problem is solved in this manner, the problem of choosing the form
of the worst distributions arises. This question cannot be solved objectively, and
many variants can be proposed. Examples of such test distributions are as follows:
for “bad” instruments—the symmetric distribution, constructed from positive and
negative branches of the normal distribution, separated by 2
, with standard de-
viation σ = 
/

√
3; for “good” instruments—the uniform distribution with the
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limits ±
. The distribution of the errors of working standards, out of caution,
should be taken as uniform with permissible limits of ±
s .

However, this supposition cannot be justified, and for this reason, one cannot
insist on it.

Thus, based on the widely used checking method examined above, it is impossi-
ble to find a sufficiently convincing method for choosing in a well-founded manner
the relation between the errors of the standard and the checked instruments. For
this reason, in practice, this question is solved by a volitional method by standard-
izing the critical relation between the limits of permissible errors. Thus, in electric
measuring techniques, it is assumed that the error of working standards must not
be more than one fifth the limit of permissible error of the checked instruments. In
standards based on electronic instruments, the accuracy requirements for working
standards are not as stringent: This ratio is usually equal to 3. Other ratios (for
example, 1:10) are rarely encountered.

The ratios 1:10 and 1:5 usually are not objectionable, but it is often technically
difficult to realize them. The ratio of 1:3, however, is always criticized as being
inadequate.

Is it possible to choose a different rule for singling out unserviceable instruments
to avoid the difficulties connected with justifying on the basis of probability the
choice of the ratio between the errors of standard and checked instruments? This
problem can, in principle, be solved as follows.

Based on the definition, a serviceable instrument is an instrument for which
|x − A| ≤ 
 and an instrument is unserviceable if |x − A| > 
.

Analogous inequalities are also valid for a working standard: |y − A| ≤ 
s , if
the instrument is serviceable and |y − A| > 
s if it is not serviceable.

For x > A, for a serviceable instrument, x − A ≤ 
. But y − 
s ≤ A
≤ y + 
s . For this reason, replacing A by y − 
s , we obtain for a serviceable
instrument,

x − y ≤ 
 − 
s . (11.9)

Analogously, for x < A, for a serviceable instrument,

x − y ≥ −(
 − 
s). (11.10)

Repeating the calculations for an unserviceable instrument, it is not difficult to
derive the corresponding inequalities:

x − y > 
 + 
s, (11.11)

x − y < −(
 + 
s). (11.12)

Figure 11.2 graphically depicts the foregoing relations. Let the scale of the
checked instrument be the abscissa axis. On the ordinate axis, we mark the points
+
 and −
, and around each of these points, we mark the points displaced from
them by +
s and −
s . If 
 and 
s remain the same for the entire scale of the
instrument, then we draw from the marked points on the ordinate axis straight lines
parallel to the abscissa axis.
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Figure 11.2. Zones of definite serviceability
(I), definite rejection (II and III), and uncer-
tainty (IV and V) when verification of measur-
ing instruments with the limit 
 of permissible
error based on a working standard whose limit
of permissible error is 
s .

Region I corresponds to inequalities (11.9) and (11.10). The instrument for
which the differences x − y fall within this region are definitely serviceable irre-
spective of the ratio of the errors of the standard and checked instruments.

Inequalities (11.11) and (11.12) correspond to regions II and III. The instruments
for which the differences x − y fall within the regions II or III are definitely
unserviceable.

Some checked instruments can have errors such that


 − 
s < |x − y| < 
 + 
s .

These errors correspond to regions IV and V in Fig. 11.2. Such instruments essen-
tially cannot be either rejected or judged to be serviceable, because in reality, they
include both serviceable and unserviceable instruments. If they are assumed to be
serviceable, then the user will get some unserviceable instruments. This rejection
can harm the user. If, however, all such doubtful instruments are rejected, then
in reality, some serviceable instruments will be rejected. For instruments that are
doubtful when they are manufactured or when they are checked after servicing, it
is best that they be judged unserviceable. This tactic is helpful for anyone using in-
struments and forces the manufacturers to use more accurate standard instruments,
but this is not always possible in regular checks.

In those cases in which the percentage of doubtful instruments is significant
and the instruments are expensive and difficult to fix, it is best to check them
again. Here several variants are possible. One variant is to recheck the doubtful
instruments with the help of more accurate working standards.

In those cases in which more accurate instruments cannot be used for one reason
or another, the check can also be made with the help of other samples of working
standards that are rated at the same accuracy as those used in the initial check. As
different working standards have somewhat different errors, the results of compar-
ing the checked instruments with them will be somewhat different. As a results,
some doubtful instruments will be judged absolutely serviceable and some will be
confidently rejected.
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The best method is to increase the accuracy of the working standard. However,
the question then arises as to how much the accuracy of the standard instruments
should be increased.

If there are no technical limitations, then the accuracy of the working standard
can be increased until the instrument being checked can be judged as being either
serviceable or unserviceable. If, however, the limit of permissible error of the
standard instrument becomes 5–10 times less than the limit of permissible error
of the checked instrument, then the accuracy of the working standard should not
be increased further: The errors of instruments are usually not stable enough to be
estimated with high accuracy.

For a five- to ten-fold difference in the errors, the error of working standard can
usually always be neglected. This practice can be justified because in this case, the
probability of rejection is always low (because the zone of uncertainty is narrow,
the percentage of instruments incorrectly judged to be serviceable or rejected is
always low) and because only those instruments whose errors do not differ much
from the limit established for them can be incorrectly judged as serviceable.

Rejection of instruments in checks is eliminated completely if instead of ver-
ification the instruments are recalibrated. The accuracy of the new calibration
characteristic can be almost equal to the accuracy of the working standard, which
makes this method extremely attractive.

The drawback of this method is that the new calibration characteristic is most
often constructed with the help of a table of corrections to the old calibration
characteristic, which is not convenient for using the instrument. More importantly,
in this method, the stability of the instrument is concealed. The possessor of the
instrument must accumulate calibration results and analyze them. Analysis makes
it possible to judge the stability of an instrument, how often the instrument should
be recalibrated, and thereby the desirability of continued use of the instrument, if
it must be calibrated often.

11.4. Calculation of a Necessary Number of Standards

Calibration, testing, and verification are metrological operations, with whose help
the dimensions of decreed units of physical quantities are transferred to all mea-
suring instruments. The units, however, are reproduced with the help of reference
standards.

Reference standards are not created for all units. The circumstances under which
reference standards need to be created deserve discussion.

First, we note that reference standards are always necessary for the units of the
basic quantities. The question of whether it is desirable to create reference standards
pertains only to the units of derived quantities. Derived physical quantities include
quantities measured only by indirect methods, for example, an area. It is clear that
reference standards are not required for the units of such quantities.

But reference standards are also not always required for the units of quanti-
ties measured by direct methods. A reference standard is not necessary if the
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instrument used to measure a given quantity can be checked with adequate accu-
racy and efficiency with the help of working standards for other quantities. For
example, to check tachometers, it is sufficient to have a device for rotating the
shaft of the tachometer and a stroboscopic timer; a standard is not required in this
case.

When a reference standard is created, the reproduction of the unit is central-
ized. On the one hand, this result complicates the measures that must be taken
to ensure uniformity of measuring instruments, because some standard measuring
instruments (at a minimum, the working reference standards) must be compared
with the reference standard. On the other hand, it is found that usually complicated
indirect measurements, with whose help the starting primary setups are certified
when the reproduction of units is not centralized, are possible only for certifying
one measuring instrument—the primary reference standard.

The question of whether a reference standard should be created is answered by
comparing these contradictory factors. Thus, the solution of this question is based
on technical and economic considerations, which is why it is difficult to solve the
problem.

It should also be noted that in many cases, indirect measurements, which are re-
quired for reproducing the units of a derived quantity, do not provide the necessary
accuracy. The creation of a reference standard, i.e., centralization of reproduction
of the unit, makes it possible in this case to achieve greater uniformity of the mea-
suring instrument than in the absence of a reference standard, because when the
size of the unit reproduced with the help of the reference standard is transferred,
the systematic error of the standard can be neglected. This circumstance is often
exploited, although it is possible that the most accurate measuring instruments in
one country can have a significant systematic error compared with the analogous
measuring instruments in another country. Comparing reference standards from
different countries makes it possible to avoid misunderstandings that can arise
because of this.

The sizes of the units reproduced with the help of primary reference standards
are transferred to the working standards with the help of a system of standards.
The metrological coordination of standards, their relation with the working instru-
ments, and the principles of the methods of comparison employed in Russia are
customarily represented with the help of so-called checking or calibration schemes.

Physical standards are divided into ranks. The number of a rank indicates the
number of steps included in transferring the size of a unit from the primary reference
standard to a given working standard.

One of the most difficult questions arising in the construction of checking
schemes is the question of how many ranks of standards should be provided.
As the number of ranks increases, the error with which the size of a unit is trans-
ferred by the working measuring instrument increases. For this reason, to obtain
high accuracy, the number of ranks of standards should be reduced to a minimum.

The higher the accuracy of standards, the more expensive they are. In addition,
more accurate measurements are usually more difficult to perform. Increasing the
number of ranks makes it possible to have less accurate standards together with
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more accurate standards and makes the entire system of transferring the size of a
unit more economical. For this reason, in the fields of measurement where there
is a large margin in the accuracy of reference standards, the number of ranks of
standards can be equal to the number of gradations of accuracy of the working
measuring instruments.

Enlarging the stock of standards and increasing the number of ranks, i.e., the
number of gradations of accuracy, make the work of calibration laboratories more
difficult and involve a certain cost. At the same time, the operations of calibration
of measuring instruments usually become more efficient. One would think that it is
possible to find an economically optimal number of ranks of the checking scheme.
This process, however, requires information about the dependence of the cost of
the equipment and labor on the accuracy. This information is usually not available.
For this reason, in practice, the optimal checking schemes cannot be determined.

Checking schemes are usually constructed when reference standards and work-
ing standards are partially already available, and it is only necessary to arrange
them in a hierarchical order. In this case, it can be assumed that the number of
working measuring instruments, the frequency with which they must be calibrated,
and the permissible number of annual comparisons of the most accurate measuring
instruments with the reference standard are known. In addition, the time required
to calibrate one sample of each type of measuring instrument and working stan-
dard, or the limiting number of calibrations permitted by the reference standards
within a prescribed period of time, can be estimated. This information makes it
possible to find the minimum necessary number of ranks of the checking scheme.
The problem can be solved by the method of successive approximations.

In the general case, checking schemes can be assumed to have the structure
shown in Fig. 11.3. We shall first study the case when the checking scheme has
only one vertical (i.e., it does not have the branches 2 and 3 shown in Fig. 11.3).

Figure 11.3. Typical structure of checking schemes.
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If the j th rank has N j standards, then the maximum number of standards in the
rank ( j + 1) will be

N j+1 = N j
η j Tj+1

t j+1
, (11.13)

where η j is the utilization factor of the standards of rank j, Tj+1 is a time equal to
the time interval between calibrations of the measuring instrument of rank j + 1,
and t j+1 is the time necessary to calibrate one measuring instrument in the rank
( j + 1).

When calculating the coefficients η j , the utilization time of the measuring in-
strument must be compared with the calendar time, and the losses of working time
must be taken into account. For example, if some apparatus is used eight hours
per day and one hour is required for preparation and termination, and preventative
maintenance, servicing, and checking reduce the working time by 10%, then

η = 8 − 1

24
× 0.9 = 0.2625.

Transferring, in accordance with the checking scheme, from the primary refer-
ence standard ( j = 0, N0 = 1) to the working measuring instrument, we determine
the maximum number of standards of each rank and then the number of working
measuring instruments Nm guaranteed by calibration:

Nm = N0 N1 . . . Nm−1 =
m−1∏
j=0

η j
Tj+1

t j+1
, (11.14)

where m is the total number of steps in transferring the size of a unit from the
reference standard to the working measuring instrument, inclusively.

To solve the problem, we first choose some number or ranks j0 = m − 1. In
principle, it is possible to start with the minimum number of ranks j0 = 1. For
given j0, we find N (0)

m . If N (0)
m is less than the number of working measuring

instruments that need to be calibrated, then either the number of ranks or η j —the
utilization factor of the standards—and the efficiency of the calibration operations
must be increased; i.e., the time t j ( j = 0, 1) must be reduced. If the problem cannot
be solved in this manner, then the number of ranks must be increased.

We calculate N (1)
m for the new number of ranks. As soon as the value of N (i)

m
obtained is greater than the number of working measuring instruments that must
be calibrated, the number of ranks can be regarded as sufficient.

For a more general checking scheme (Fig. 11.3), the possibilities of each branch
of the checking scheme must be checked. It is best to start the calculation with
the branch adjoining a standard of high rank, and to perform the calculation in the
reverse order as compared with the method examined above; i.e., it is best to start
from a fixed number of working measuring instruments in each class that must
be checked along a given branch. We shall use formula (11.13) to calculate the
number of working standards N j for the lth branch that is required to calibrate
N j+1 measuring instruments. For this reason, it is useful to write formula (11.13)
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in the form

N jl = N j+1,l
t j+1,l

η jl Tj+1,l
.

The calculation proceeds up to standards servicing several branches of the check-
ing scheme. In the process, the number of these standards that is required for the
lth branch is determined. Then, for the rest of the checking scheme, N j − N jl

standards remain of the given rank. The number of measuring instruments that
must be calibrated according to the vertical of the scheme (branch 1 in Fig. 11.3)
is found using formula (11.14), taking into account the branching losses:

N (1)
m = N0(N1 − N12) . . . (N j − N jl) . . . Nm−1.

The number N (1)
m obtained must be greater than the prescribed number of mea-

suring instruments that must be calibrated along this branch. This condition is
necessary for all branches. If it is not satisfied, then the number of ranks must
be increased. As the number of ranks increases, the efficiency of the checking
network, represented by the checking scheme, increases rapidly. The checking
schemes employed have the maximum number five of ranks of standards, even for
the most developed fields of measurement.

The relations presented above pertained to the simplest case, when at each step
of transfer of the size of the unit, the period of time between calibrations and
the calibration time were the same for all measuring instruments. In reality, these
time intervals can be different for different measuring instruments. Taking this
into account makes the calculations more complicated, but it does not change their
essential features.

It is necessary to transfer from different time intervals between calibrations to
one conditionally standard Tcs time interval and to find the number of measuring
instruments of each type T cs

k that must be checked within this period. This process
is done with the help of the obvious formula

N cs
k = Nk

Tcs

Tk
.

Next, it is necessary to find the average time tav
j required to check one measuring

instrument for each step of the checking scheme:

tav
j =

n∑
k=1

tk N cs
k

n∑
k=1

N cs
k

. (11.15)

Here n is the number of different types of measuring instruments at the j th step
of the checking scheme.

We shall give a numerical example. Suppose it is required to organize a calibra-
tion of instruments of types A and B and the following data are given:
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(1) Instruments of type A: NA = 3 × 104; the time interval between calibrations
TA1 = 1 yr for NA1 = 2.5 × 104 and TA2 = 0.5 yr for NA2 = 5 × 103; the
calibration time tA = 5 h.

(2) Instruments of type B: NB = 105; TB = 1 yr; the calibration time tB = 2 h.
(3) Primary reference standard: Four comparisons per year are permitted; the

frequency of the calibration of the most accurate measuring instruments, which
can be working standards of rank 1, is 2 yr; i.e., T1 = 2 yr; for them, η1 = 0.25.
For measuring instruments that can be working standards of rank 2, T2 = 2 yr,
t2 = 40 h, and η2 = 0.25.

The possible number of first-rank standards is

N1 = N0 f T1 = 8,

because N0 = 1, f = 4 is the maximum number of comparisons with a reference
standard per year, and T1 = 2.

It is obvious that eight standards are not enough to check 130,000 working
instruments. We shall check to see if three ranks of standards are sufficient for
this.

As the time interval between checks is different for different instruments, we
introduce the conditionally standard time interval between checks Tcs = 1 yr and
find the number of instruments that must be checked within this time period.
Conversion is necessary only for instruments of type A with TA2 = 0.5yr:

N cs
A2 = NA2

Tcs

TA2
= 5 × 103 × 1

0.5
= 10 × 103.

Therefore, ∑
k=A,B

N cs
k = NAB = NA1 + N cs

A2 + NB = 135 × 103

instruments must be calibrated within the time Tcs.
Different amounts of time are required to check instruments of types A and

B. We shall find the average checking time tav
w of these working instruments. In

accordance with formula (11.15),

tav
w = (NA1 + N cs

A2)tA + NBtB
NAB

= 35 × 103 × 5 + 100 × 103 × 2

135 × 103
= 2.78 h.

Now, using formula (11.13), we shall find the required number of second-rank
standards:

N (1)
2 = NABtav

w

η2Tcs
= 135 × 103 × 2.78

0.25 × 6 × 103
= 250.

Here it was assumed that Tcs = 250 × 24 = 6 × 103 h.
It remains to verify that all working standards of the second rank can be checked.

For this reason, we calculate from formula (11.13) the maximum possible number
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of standards of this rank:

N2 = N1
η1T2

t2
= 8 × 0.25 × 2 × 6 × 103

40
= 600.

As N2 > N (1)
2 , in this case, two ranks of working standards are sufficient.

With the help of calculations similar to those presented in the foregoing example,
it is possible to choose in a well-founded manner the structure of a checking scheme
and to estimate the required number of working standards of each rank.

In calculating the checking scheme we did not take into account explicitly
the accuracy of the measuring instruments. However, the contemplated scheme
must be metrologically realizable, which means that the discrepancy between
the accuracy of the primary reference standard and the accuracy of the working
measuring instruments must make it possible to insert between them the required
number of ranks of working standards. The problem facing instrument makers and
metrologists is to provide the combination of accuracy and efficiency required to
implement the checking scheme by designing working standards and reference
standards.

Checking schemes usually have extra calibration possibilities, which makes it
possible to distribute reference and working standards to limit their transport, to
maximize the efficiency of calibration laboratories, and to take into account other
practical considerations.



12
Conclusion

12.1. Measurement Data Processing: Past,
Present, and Future

Once upon a time physicists believed that normal distribution was a mathematically
proven rule for random phenomena, whereas mathematicians considered it to be a
natural law discovered by physicists. This belief was reflected in the measurement
data processing. Namely, the calculated variance of a sample was taken for the
variance of the corresponding normal distribution. Then the empirical histogram
was changed to be equal to the histogram from that normal distribution. This
procedure was called “smoothing out the frequencies.” However, in the beginning
of last century, researchers realized that experimental data should not be distorted
and this procedure was abandoned.

During the next century, mathematical statistics was developing rapidly and
became widely used in various fields of science and industry. This same develop-
ment also happened to measurement data processing, which became dominated
by mathematical statistical methods. As a result, the science of measurement data
processing was limited to direct multiple measurements, and stayed clear from
systematic errors. This state of affairs can be clearly seen by examining books of
that period, for example, ‘Data Analysis for Scientists and Engineers’ by S. Meyer,
‘Data Reduction and Error Analysis for Physical Sciences’ by Ph. Bevington and
D. Robinson, and many others. Even books addressed specifically to practition-
ers, such as the recently published book by I. Gertsbakh [26] and excellent books
by J. Mandel [36, 37], remained within the above confines. Because this purely
mathematical theory found practical applications, even if in a restricted case of
random errors in multiple measurements, this theory obtained the status of the
classical theory of measurement data processing. However, it was not sufficient
in many practical situations. In particular, every practitioner knew that in addition
to random errors, there are systematic errors, and the overall uncertainty of the
measurement result combines both of these components. But the classical theory
ignored this fact and, furthermore, considered it incorrect to combine these two
components. There were other practical problems ignored by the classical theory.
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As a result, those who encountered these problems in their practice resorted to
ad hoc and often incorrect methods. For example, in the case of single measure-
ments, the measurement errors were often equated to the intrinsic errors of the
measuring devices used, which is wrong. To account for systematic errors in mul-
tiple measurements, people often simply added them to the random errors, which
overestimated the inaccuracy of the result.

Starting from 1970s, in various publications, I was trying to solve the practical
problems that were not served by the classical theory. One of the first publications
in this area was the article [41], which led in 1976 to a standard for methods of
measurement data processing including combining random and systematic errors
[5]. An American standard containing a solution to this problem appeared in 1985
[3], followed by a British Recommendation in 1986 [6]. Finally, in 1995, the Inter-
national Organization for Standardization published the Guide to the Expression
of Uncertainty in Measurement.1

The problem of combining random and systematic errors is just one example of
the limitations of the classical theory. Toward the end of last century, these limita-
tions became obvious, and a new theory started to take shape. This theory, which
we can call the physical theory of measurement data processing, does not obviate
but subsumes the classical theory, and augments it with methods for processing
single measurements, accounting for errors of measuring devices, combining ran-
dom and systematic errors, and other practical problems. The physical theory also
considers the foundational issues of measurements. This book offers systematic
treatment of the physical theory and in this way defines this new discipline.

At the same time, this book obviously does not exhaust this subject, and several
problems still await their solutions. We list some of these gaps below.

� The theory of single measurements requires further development, especially in
regard to accounting for the errors of measuring instruments. A complicating
factor in this problem is a large variety of measuring instrument types for which
suitable techniques must be developed.

� Although the diversity of measuring instruments prohibits the development of
the general theory of their design, it is possible and necessary to develop a general
theory of accuracy of measuring instruments. The accuracy is the common aspect
that unites these devices. This book takes an initial step toward such a theory,
but much more work is required.

� A large and common class of measurements involving recording instruments
(such as analog or digital automatic plotters, XY-recorders, etc.) came to be
known as dynamic measurements [28,49]. There are many open problems in
dynamic measurements; among them is an attractive problem to find the form
and parameters of an input signal having the recorded output signal and knowing
the dynamic properties of the recorder. Modern computers make solving this
problem feasible.

1 Although this Guide provides a method for combining systematic and random errors, it
has its drawbacks, which are discussed in detail in Section 12.3.
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� The errors and uncertainty of measurements are always estimated in an indirect
way, and the calculations include some assumptions. However, the correctness
of these assumptions, and the validity of the resulting estimates, has never been
experimentally checked. Filling this gap is therefore extremely important. A
general approach to this problem would involve measuring the same measurand
in parallel by different methods, with one method being around ten times more
accurate than the other, and then comparing the measurement results and the
calculated uncertainties.

Although this list of problems is subjective and incomplete, it suffices to show
that the physical theory of measurement data processing is a live discipline still
under development.

12.2. Remarks on the “International Vocabulary of
Basic and General Terms in Metrology”

At the end of last century, the International Organization for Standardization pub-
lished an important document, the “International Vocabulary of Basic and General
Terms in Metrology” (VIM) [2]. This document, prepared under the leadership of
BIPM, will be studied and used throughout the world. Two terms defined in the
Vocabulary, error and uncertainty, have a particular bearing on the present book,
and it is appropriate to discuss them here.

The definition of error (VIM, Section 3.10) says that it is the “result of mea-
surement minus a true value of the measurand.” There is also a note: “Since a true
value cannot be determined, in practice a conventional true value is used.” Unfor-
tunately, the above description cannot be considered a definition because it does
not explain the meaning of the term, but it attempts to provide an algorithm for its
calculation. As a matter of fact, the algorithm is unrealistic: In addition to the true
value being unknown, its replacement by the conventional true value is impossible
because no measurement has such a value. Indeed, the conventional true value can
be attributed to a reference standard and used in calibration procedures; it allows
one to estimate the concrete value of the error of the measuring instrument under
calibration, but not the error of a measurement.

I consider “error” to be properly defined as a deviation of the result of measure-
ment from the true value of the measurand. Then the note about the conventional
true value should be replaced by the following: Because the true value of a mea-
surand is always unknown, the accuracy of a measurement is characterized by the
limits of error that are calculated in an indirect way. If these calculations involve
a probabilistic model, then the term uncertainty of a measurement is used in place
of the limits of error. The latter definition of the term “error” is given in [4] and is
similar to the definition in [7].

The definition of uncertainty from VIM, Section 3.9 is provided with a note
saying that uncertainty “may be, for example, a standard deviation (or a given
multiple of it), or the half-width of an interval having a stated level of confidence.”
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This note creates ambiguity that is unacceptable in scientific terminology. Indeed,
what is the uncertainty, a standard deviation or a confidence interval?

This ambiguity was not accidental; it arose because it was not known how to
construct confidence intervals for many cases of indirect measurements. The meth-
ods of reduction and transformation described in this book allows the construction
of the confidence intervals in all cases of indirect measurements, and therefore, the
ambiguity can be eliminated. Thus, “uncertainty” would be properly defined as an
interval within which a true value of a measurand lies with the given probability.
This definition can be accompanied with a note that uncertainty is defined with its
limits and corresponding confidence probability; the limits of uncertainty are read
out from the result of a measurement.

12.3. Drawbacks of the “Guide to the Expression
of Uncertainty in Measurement”

Another important document published by ISO and prepared under the leadership
of BIPM is the “Guide to the Expression of Uncertainty in Measurement” (usually
referred to as simply “the Guide”) [1]. The goal of the Guide is unification of
methods of measurement uncertainty estimation and its presentation. The need for
such a document is obvious.

In accordance with the Guide, the uncertainty of a measurement must reflect both
random and systematic errors in the measurement. Both of these components are
characterized by estimates of their variances. The sum of them gives the combined
standard deviation. The measurement uncertainty is obtained by multiplying the
combined standard deviation by a coverage factor (recommended to be 2 or 3).
The coverage factors 2 or 3 correspond to confidence probability 0.95 or 0.99,
respectively. The above procedure is correct and in essence is the same as given
in this book. The difference, besides terminology, is that the Guide chooses the
coverage factors arbitrarily, whereas this book provides a way to calculate them.

Let us turn now to the shortcomings of the Guide. The basic philosophy of the
Guide is that the concept of the true value of a measurand is not needed because
it is the same as the value of the measurand (See Annexes B.2.3, D.3.5, etc.).
But this statement is in contradiction with VIM. In accordance to VIM, Section
1.18, the value of a measurand is the denominate number, which is the product
of the unit of measurement and a number. This value can be found as the result
of the measurement, whereas the true value is a purely theoretical concept and
cannot be obtained (see VIM, Section 1.19). Thus, the meanings of the true value
of a measurand and the value of a measurand are different and the idea to replace
the first one by the second is incorrect. Furthermore, although the true value cannot
be expressed in numbers, it is necessary to in practice for defining and verifying
the model of the object under study. We refer the reader back to Section 1.3, where
we discussed this issue in detail.

The elimination of the term true value in the Guide was motivated by the desire
to eliminate the term ‘error’. The idea to drop “error” and always replace it with
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“uncertainty” is not new and has its roots in the article [18]. However, as we
discussed in Section 3.1, this idea is misguided because it is based on the incorrect
use of “error” in [18]. Note that the unconditional replacement of “error” with
“uncertainty” also contradicts the second edition of the VIM, which defines both
terms in a similar manner to this book.

Another confusion in the Guide has to do with uncertainty. The Guide introduces
the terms ‘standard uncertainty’ and combined uncertainty. However, these terms
are redundant: the “standard uncertainty” is simply the standard deviation, and the
“combined uncertainty” is the combined standard deviation. There is no reason to
rename the existing terms.

Further, the Guide introduces two new terms, type A and type B evaluation
of uncertainty (Chapter “Definitions,” Sections 2.3.2 and 2.3.3). In accordance
with the definitions of these terms, they characterize the methods of uncertainty
estimation. But they are used in the Guide to denote components of expanded
uncertainty. (Indeed, the Guide describes how to combine uncertainty of type A
and type B, and obviously methods cannot be combined.) Beyond that, terms
type A and type B uncertainty are not expressive. The meaning of these terms
(as components of uncertainty) is clearer and more appropriately conveyed by
the terms systematic and random errors, which are included in VIM. But as we
mentioned earlier, the Guide specifically avoids the term “error” and its derivatives,
and this forced it to create the artificial terms “type A” and “type B uncertainty.”
Note that unlike systematic and random errors, these terms are not included in
VIM.

In summary, the above definitions in the Guide contradict the philosophy and
terminology of VIM. Besides, the Guide does not properly reflect some modern
results. For example, although it briefly mentions the method of reduction (as a
second approach), it does not point out its main advantage, which is the elimination
of the correlation coefficient from uncertainty calculations. Thus, the Guide must
be revised.
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Table A.1. Values of the normalized Gaussian function �(z) = 1
√

2π
∫ z

0 e−y2/2dy.

z 0 1 2 3 4 5 6 7 8 9

0.0 0.000 00 0.003 99 0.007 98 0.011 97 0.015 95 0.019 94 0.023 92 0.027 90 0.031 88 0.035 86
0.1 0.039 83 0.043 80 0.047 76 0.051 72 0.055 67 0.059 62 0.063 56 0.067 49 0.071 42 0.075 35
0.2 0.079 26 0.083 17 0.087 06 0.090 95 0.094 83 0.098 71 0.102 57 0.106 42 0.110 26 0.114 09
0.3 0.117 91 0.121 72 0.125 52 0.129 30 0.133 07 0.136 83 0.140 58 0.144 31 0.148 03 0.151 73
0.4 0.155 42 0.159 10 0.162 76 0.166 40 0.170 03 0.173 64 0.177 24 0.180 82 0.184 39 0.187 93
0.5 0.191 46 0.194 97 0.198 47 0.201 94 0.205 40 0.208 84 0.212 26 0.215 66 0.219 04 0.222 40
0.6 0.225 75 0.229 07 0.232 37 0.235 65 0.238 91 0.242 15 0.245 37 0.248 57 0.251 75 0.254 90
0.7 0.258 04 0.261 15 0.264 24 0.267 30 0.270 35 0.273 37 0.276 37 0.279 35 0.282 30 0.285 24
0.8 0.288 14 0.291 03 0.293 89 0.296 73 0.299 55 0.302 34 0.305 11 0.307 85 0.310 57 0.313 27
0.9 0.315 94 0.318 59 0.321 21 0.323 81 0.326 39 0.328 94 0.331 47 0.333 98 0.336 46 0.338 91
1.0 0.341 34 0.343 75 0.346 14 0.348 50 0.350 83 0.353 14 0.355 43 0.357 69 0.359 93 0.362 14
1.1 0.364 33 0.366 50 0.368 64 0.370 76 0.372 86 0.374 93 0.376 98 0.379 00 0.381 00 0.382 98
1.2 0.384 93 0.386 86 0.388 77 0.390 65 0.392 51 0.394 35 0.396 17 0.397 96 0.399 73 0.401 47
1.3 0.403 20 0.404 90 0.406 58 0.408 24 0.409 88 0.411 49 0.413 09 0.414 66 0.416 21 0.417 74
1.4 0.419 24 0.420 73 0.422 20 0.423 64 0.425 07 0.426 47 0.427 86 0.429 22 0.430 56 0.431 89
1.5 0.433 19 0.434 48 0.435 74 0.436 99 0.438 22 0.439 43 0.440 62 0.441 79 0.442 95 0.444 08
1.6 0.445 20 0.446 30 0.447 38 0.448 45 0.449 50 0.450 53 0.451 54 0.452 54 0.453 52 0.454 49
1.7 0.455 43 0.456 37 0.457 28 0.458 18 0.459 07 0.459 94 0.460 80 0.461 64 0.462 46 0.463 27
1.8 0.464 07 0.464 85 0.465 62 0.466 38 0.467 12 0.467 84 0.468 56 0.469 26 0.469 95 0.470 62
1.9 0.471 28 0.471 93 0.472 57 0.473 20 0.473 81 0.474 41 0.475 00 0.475 58 0.476 15 0.476 70
2.0 0.477 25 0.477 78 0.478 31 0.478 82 0.479 32 0.479 82 0.480 30 0.480 77 0.481 24 0.481 69
2.1 0.482 14 0.482 57 0.483 00 0.483 41 0.483 82 0.484 22 0.484 61 0.485 00 0.485 37 0.485 74
2.2 0.486 10 0.486 45 0.486 79 0.487 13 0.487 45 0.487 78 0.488 09 0.488 40 0.488 70 0.488 99
2.3 0.489 28 0.489 56 0.489 83 0.490 10 0.490 36 0.490 61 0.490 86 0.491 11 0.491 34 0.491 58
2.4 0.491 80 0.492 02 0.492 24 0.492 45 0.492 66 0.492 86 0.493 05 0.493 24 0.493 43 0.493 61
2.5 0.493 79 0.493 96 0.494 13 0.494 30 0.494 46 0.494 61 0.494 77 0.494 92 0.495 06 0.495 20
2.6 0.495 34 0.495 47 0.495 60 0.495 73 0.495 85 0.495 98 0.496 09 0.496 21 0.496 32 0.496 43
2.7 0.496 53 0.496 64 0.496 74 0.496 83 0.496 93 0.497 02 0.497 11 0.497 20 0.497 28 0.497 36
2.8 0.497 44 0.497 52 0.497 60 0.497 67 0.497 74 0.497 81 0.497 88 0.497 95 0.498 01 0.498 07
2.9 0.498 13 0.498 19 0.498 25 0.498 31 0.498 36 0.498 41 0.498 46 0.498 51 0.498 56 0.498 61

Note: The values of �(z) for z = 3.0−4.5 are as follows:

3.0 0.498 65 3.4 0.499 66 3.8 0.499 93
3.1 0.499 03 3.5 0.499 77 3.9 0.499 95
3.2 0.499 31 3.6 0.499 84 4.0 0.499 968
3.3 0.499 52 3.7 0.499 89 4.5 0.499 997



290 Appendix

Table A.2. Percentile points of Student’s distribution.

Significance level
q = (1 − α) × 100 (%)

10 5 1
Number of degrees
of freedom ν

1 6.31 12.71 63.66
2 2.92 4.30 9.92
3 2.35 3.18 5.84
4 2.13 2.78 4.60
5 2.02 2.57 4.03
6 1.94 2.45 3.71
7 1.90 2.36 3.50
8 1.86 2.31 3.36
9 1.83 2.26 3.25

10 1.81 2.23 3.17
12 1.78 2.18 3.06
14 1.76 2.14 2.98
16 1.75 2.12 2.92
18 1.73 2.10 2.88
20 1.72 2.09 2.84
22 1.72 2.07 2.82
24 1.71 2.06 2.80
26 1.71 2.06 2.78
28 1.70 2.05 2.76
30 1.70 2.04 2.75
∞ 1.64 1.96 2.58
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Table A.3. Critical values of the distribution of Tn = (xn − x̄)/S
or T1 = (x̄ − xi )/S (with unilateral check).

Upper 0.5% Upper 1% Upper 5%
Number of significance significance significance
observations, n level level level

3 1.155 1.155 1.153
4 1.496 1.492 1.463
5 1.764 1.749 1.672
6 1.973 1.944 1.822
7 2.139 2.097 1.938
8 2.274 2.221 2.032
9 2.387 2.323 2.110

10 2.482 2.410 2.176
11 2.564 2.485 2.234
12 2.636 2.550 2.285
13 2.699 2.607 2.331
14 2.755 2.659 2.371
15 2.806 2.705 2.409
16 2.852 2.747 2.443
17 2.894 2.785 2.475
18 2.932 2.821 2.504
19 2.968 2.854 2.532
20 3.001 2.884 2.557
21 3.031 2.912 2.580
22 3.060 2.939 2.603
23 3.087 2.963 2.624
24 3.112 2.987 2.644
25 3.135 3.009 2.663
26 3.157 3.029 2.681
27 3.178 3.049 2.698
28 3.199 3.068 2.714
29 3.218 3.085 2.730
30 3.236 3.103 2.745
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Table A.4. Percentile points of the χ2 distribution P{χ2 > χ2
q }.

Number of Significance level q (%)

99 95 90 80 70 30 20 10 5 1
degrees of
freedom v

1 0.000 16 0.003 93 0.0158 0.0642 0.148 1.074 1.642 2.706 3.841 6.635
2 0.0201 0.103 0.211 0.446 0.713 2.408 3.219 4.605 5.991 9.210
3 0.115 0.352 0.584 1.005 1.424 3.665 4.642 6.251 7.815 11.345
4 0.297 0.711 1.064 1.649 2.195 4.878 5.989 7.779 9.488 13.277
5 0.554 1.145 1.610 2.343 3.000 6.064 7.289 9.236 11.070 15.086
6 0.872 1.635 2.204 3.070 3.828 7.231 8.558 10.645 12.592 16.812
7 1.239 2.167 2.833 3.822 4.671 8.383 9.803 12.017 14.067 18.475
8 1.646 2.733 3.490 4.594 5.527 9.524 11.030 13.362 15.507 20.090
9 2.088 3.325 4.168 5.380 6.393 10.656 12.242 14.684 16.919 21.666

10 2.558 3.940 4.865 6.179 7.267 11.781 13.442 15.987 18.307 23.209
11 3.053 4.575 5.578 6.989 8.148 12.899 14.631 17.275 19.675 24.725
12 3.571 5.226 6.304 7.807 9.034 14.011 15.812 18.549 21.026 26.217
13 4.107 5.892 7.042 8.634 9.926 15.119 16.985 19.812 22.362 27.688
14 4.660 6.571 7.790 9.467 10.821 16.222 18.151 21.064 23.685 29.141
15 5.229 7.261 8.547 10.307 11.721 17.322 19.311 22.307 24.996 30.578
16 5.812 7.962 9.312 11.152 12.624 18.418 20.465 23.542 26.296 32.000
17 6.408 8.672 10.085 12.002 13.531 19.511 21.615 24.769 27.587 33.409
18 7.015 9.390 10.865 12.857 14.440 20.601 22.760 25.989 28.869 34.805
19 7.633 10.117 11.651 13.716 15.352 21.689 23.900 27.204 30.144 36.191
20 8.260 10.851 12.443 14.578 16.266 22.775 25.038 28.412 31.410 37.566
21 8.897 11.591 13.240 15.445 17.182 23.858 26.171 29.615 32.671 38.932
22 9.542 12.338 14.041 16.314 18.101 24.939 27.301 30.813 33.924 40.289
23 10.196 13.091 14.848 17.187 19.021 26.018 28.429 32.007 35.172 41.638
24 10.856 13.848 15.659 18.062 19.943 27.096 29.553 33.196 36.415 42.980
25 11.524 14.611 16.473 18.940 20.867 28.172 30.675 34.382 37.652 44.314
26 12.198 15.379 17.292 19.820 21.792 29.246 31.795 35.563 38.885 45.642
27 12.879 16.151 18.114 20.703 22.719 30.319 32.912 36.741 40.113 46.963
28 13.565 16.928 18.939 21.588 23.647 31.391 34.027 37.916 41.337 48.278
29 14.256 17.708 19.768 22.475 24.577 32.461 35.139 39.087 42.557 49.588
30 14.953 18.493 20.599 23.364 25.508 33.530 36.250 40.256 43.773 50.892
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Table A.5. Values of the upper 1% of points of the distribution F0.01 = S2
1/S2

2 .

Number of degrees of freedom

ν1

v2 2 3 4 5 6 8 12 16 24 50 ∞

2 99.00 99.17 99.25 99.30 99.33 99.36 99.42 99.44 99.46 99.48 99.50
3 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.83 26.60 26.35 26.12
4 18.00 16.69 15.98 15.52 15.21 14.80 14.37 14.15 13.93 13.69 13.46
5 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.68 9.47 9.24 9.02
6 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.52 7.31 7.09 6.88
7 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.27 6.07 5.85 5.65
8 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.48 5.28 5.06 4.86
9 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.92 4.73 4.51 4.31

10 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.52 4.33 4.12 3.91
11 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.21 4.02 3.80 3.60
12 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.98 3.78 3.56 3.36
13 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.78 3.59 3.37 3.16
14 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.62 3.43 3.21 3.00
15 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.48 3.29 3.07 2.87
16 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.37 3.18 2.96 2.75
17 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.27 3.08 2.86 2.65
18 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.20 3.00 2.79 2.57
19 5.93 5.01 4.50 4.17 3.94 3.63 3.30 3.12 2.92 2.70 2.49
20 5.85 4.94 4.43 4.10 3.87 3.56 3.23 3.05 2.86 2.63 2.42
21 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.99 2.80 2.58 2.36
22 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.94 2.75 2.53 2.31
23 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.89 2.70 2.48 2.26
24 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.85 2.66 2.44 2.21
25 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.81 2.62 2.40 2.17
26 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.78 2.58 2.36 2.13
27 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.74 2.55 2.33 2.10
28 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.71 2.52 2.30 2.06
29 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.68 2.49 2.27 2.03
30 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.66 2.47 2.24 2.01
35 5.27 4.40 3.91 3.59 3.37 3.07 2.74 2.56 2.37 2.13 1.90
40 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.48 2.29 2.05 1.80
45 5.11 4.25 3.77 3.45 3.23 2.94 2.61 2.43 2.23 1.99 1.75
50 5.06 4.20 3.72 3.41 3.19 2.89 2.56 2.38 2.18 1.94 1.68
60 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.32 2.12 1.87 1.60
70 4.92 4.07 3.60 3.29 3.07 2.78 2.45 2.28 2.07 1.82 1.53
80 4.88 4.04 3.56 3.26 3.04 2.74 2.42 2.24 2.03 1.78 1.49
90 4.85 4.01 3.53 3.23 3.01 2.72 2.39 2.21 2.00 1.75 1.45

100 4.82 3.98 3.51 3.21 2.99 2.69 2.37 2.19 1.98 1.73 1.43
125 4.78 3.94 3.47 3.17 2.95 2.66 2.33 2.15 1.94 1.69 1.37
∞ 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.99 1.79 1.52 1.00
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Table A.6. Values of the upper 5% of points of the distribution F0.05 = S2
1/S2

2 .

Number of degrees of freedom

ν1

ν2 2 3 4 5 6 8 12 16 24 50 ∞

2 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.43 19.45 19.47 19.50
3 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.69 8.64 8.58 8.53
4 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.84 5.77 5.70 5.63
5 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.60 4.53 4.44 4.36
6 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.92 3.84 3.75 3.67
7 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.49 3.41 3.32 3.23
8 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.20 3.12 3.03 2.93
9 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.98 2.90 2.80 2.71

10 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.82 2.74 2.64 2.54
11 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.70 2.61 2.50 2.40
12 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.60 2.50 2.40 2.30
13 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.51 2.42 2.32 2.21
14 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.44 2.35 2.24 2.13
15 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.39 2.29 2.18 2.07
16 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.33 2.24 2.13 2.01
17 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.29 2.19 2.08 1.96
18 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.25 2.15 2.04 1.92
19 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.21 2.11 2.00 1.88
20 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.18 2.08 1.96 1.64
21 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.15 2.05 1.93 1.81
22 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.13 2.03 1.91 1.78
23 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.11 2.00 1.88 1.76
24 3.40 3.01 2.78 2.62 2.51 2.36 2.18 2.09 1.98 1.86 1.73
25 3.38 2.99 2.76 2.60 2.49 2.34 2.16 2.07 1.96 1.84 1.71
26 3.37 2.98 2.74 2.59 2.47 2.32 2.15 2.05 1.95 1.82 1.69
27 3.35 2.96 2.73 2.57 2.46 2.30 2.13 2.03 1.93 1.80 1.67
28 3.34 2.95 2.71 2.56 2.44 2.29 2.12 2.02 1.91 1.78 1.65
29 3.33 2.93 2.70 2.54 2.43 2.28 2.10 2.00 1.90 1.77 1.64
30 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.99 1.89 1.76 1.62
35 3.26 2.87 2.64 2.48 2.37 2.22 2.04 1.94 1.83 1.70 1.57
40 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.90 1.79 1.66 1.51
45 3.21 2.81 2.58 2.42 2.31 2.15 1.97 1.87 1.76 1.63 1.48
50 3.18 2.79 2.56 2.40 2.29 2.13 1.95 1.85 1.74 1.60 1.44
60 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.81 1.70 1.56 1.39
70 3.13 2.74 2.50 2.35 2.23 2.07 1.89 1.79 1.67 1.53 1.35
80 3.11 2.72 2.49 2.33 2.21 2.06 1.88 1.77 1.65 1.51 1.32
90 3.10 2.71 2.47 2.32 2.20 2.04 1.86 1.76 1.64 1.49 1.30

100 3.09 2.70 2.46 2.30 2.19 2.03 1.85 1.75 1.63 1.48 1.28
125 3.07 2.68 2.44 2.29 2.17 2.01 1.83 1.72 1.60 1.45 1.25
∞ 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.64 1.52 1.35 1.00
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Absolute error (of a measuring instrument): The difference between a value
of a measurand obtained by a measuring instrument and the true value of this
measurand. Note: The absolute error of a material measure is the difference be-
tween the nominal value of this measure and the true value of a quantity that was
reproduced by this measure.

Absolutely constant elementary error: An elementary error that remains the
same value in repeated measurements performed under the same conditions us-
ing an arbitrarily chosen measuring instrument of a given type. The value of an
absolutely constant error is unknown, but its limits can be estimated.

Accuracy class: A class of measuring instruments that meets certain met-
rological requirements that are intended to keep errors within specified limits
(Ref. 2, no. 5.19).

Accuracy of measurement: A qualitative expression of the closeness of the
result of a measurement to the true value of the measurand.

Accuracy of a measuring instrument: The ability of a measuring instrument
to produce measurements whose results are close to the true value of a measurand.

Additional error of measuring instruments: The difference between an
error of a measuring instrument when the value of one influence quantity ex-
ceeds its reference value and the error of the measuring instrument under reference
condition.

Calibration: The set of operations that establish, under specified conditions,
the relationship between values indicated by a measuring instrument or measuring
system or values represented by material measure and the corresponding known
values of a measurand (Ref. 2, no. 6.11). Results of a calibration may be presented
in the form of a calibration curve, or a statement that the errors of an instrument
exceed or do not exceed certain limits.

Combined measurement: Measurements of several quantities of the same kind
based on results of direct measurements of different combinations of them (Ref. 4,
no. 4.4). The typical sign of combined measurement is that the number of unknown
quantities is less than the number of performed measurements. Example: Combined
measurement is performed when the masses of separate weights from one set are
found using the known value of one weight.
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Conditionally constant elementary error (of a measurement): An elementary
error that varies in repeated measurements performed under the same conditions or
with different specimens of measuring instruments of the same type having certain
limits. These limits can be calculated or estimated.

Dead band: Maximum interval through which a stimulus may be changed in
either direction without producing a change in response of a measuring instrument
(Ref. 2, no. 5.13).

Drift: A slow variation with time at an output of a measuring instrument that is
independent of a stimulus.

Elementary error (of a measurement): A component of error or uncertainty of
a measurement associated with a single source of inaccuracy of the measurement.

Error (of a measurement): The deviation of the result of a measurement from
the true value of the measurand expressed in absolute or relative form.

Fiducial error: A ratio of absolute error of a measuring instrument and a value
specified for this instrument. The specified value is called the fiducial value. It may
be, for example, the span or the upper limit of the nominal range of the measuring
instrument. Fiducial error is expressed as a percentage.

Inaccuracy (of a measurement): A qualitative characteristic of the degree of
deviation of a measurement result from the true value of the measurand. Quan-
titatively, inaccuracy can be characterized either as a measurement error or as a
measurement uncertainty.

Indicating instrument: A measuring instrument that displays the value of a
measurand.

Indirect measurement: A measurement in which the value of the measurand
is calculated using measurements of other quantities related to the measurand by
some known relation. We shall call these other quantities measured arguments or,
briefly, arguments.

Influence coefficient: A factor that is multiplied by a value of the variation of
the influence quantity relative to its reference condition limits gives an additional
error.

Influence function: A metrological characteristic of the measuring instrument
expressing the relationship between the measuring instrument errors and an influ-
ence quantity.

Informative parameter (of an input signal): A parameter of an input process
at a measuring instrument that reflects the value of a measurand.

Intrinsic error: The error of a measuring instrument, determined under refer-
ence conditions (Ref. 2, no. 5.24).

Limits of permissible error (of a measuring instrument): Extreme values of
an error permitted by specification, regulations, and so on, for a given measuring
instrument (Ref. 2, no. 5.21).

Material measure: A measuring instrument that reproduces a physical quantity
with known value.

Measurand: A particular physical quantity subject to measurement.
Measurement: The set of experimental operations that are performed using spe-

cial technical products (measuring instruments) for the purpose of determinating
the value of a physical quantity (Ref. 4, no. 4.1).
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Measurement vector: A set of matched measurements of all arguments defining
an indirect measurement.

Measuring instrument: A technical object developed for the purpose of mea-
surements (Ref. 4, no. 5.1). The measuring instrument has standardized metrolog-
ical characteristics.

Measuring standard: A measuring instrument intended to materialize and/or
conserve a unit of a physical quantity to transmit its value to other measuring
instruments (Ref. 4, no. 10.1).

Measuring system: A complete set of measuring instruments and supplemen-
tary equipment assembled for obtaining measurement results in required form and
for inputting data to a control system.

Measuring transducer: A measuring instrument that converts the measurement
signals into a form suitable for transmission or processing. The signals at the output
of a measuring transducer cannot be directly observed.

Metrological characteristic of a measuring instrument: A characteristic of
a measuring instrument that is necessary to judge the suitability of the instrument
for performing measurements in a known range or that is necessary to estimate the
inaccuracy of measurement results.

Metrology: Science of measurement (Ref. 2, no. 2.2). Metrology is an applied
science. It includes knowledge of measurements of any kind of physical quantities
and with any level of accuracy.

Normal operating conditions: Conditions of use of measuring instruments
giving the ranges of the influence quantities within which a measuring instru-
ment is designed to operate and for which the metrological characteristics of this
instrument lie within specified limits.

Primary standard: A measurement standard that has the highest accuracy in a
country.

Random error (of a measurement): A component of the inaccuracy of a
measurement that, in the course of several measurements of the same measurand
under the same conditions, varies in an unpredictable way.

Reference conditions: A complete set of values of influence quantities standard-
ized for specific types of measuring instruments to ensure a maximum accuracy
of the performing measurements and to calibrate these instruments.

Reference standard: A standard, generally having the highest metrological
quality available at a given location or in a given organization, from which mea-
surements made there are derived (Ref. 2, no. 6.6).

Relative error: Absolute error divided by a true value of the measurand
(Ref. 2, no. 3.12). The measurement result substitutes the true value, in
practice.

Repeatability of a measurement: The closeness of agreement among several
consecutive measurements for the same measurand performed, under the same
operating conditions with the same measuring instruments, over a short period of
time.

Reproducibility of a measurement: The closeness of agreement among re-
peated measurements for the same measurand performed in different locations,
under different operating conditions, or over a long period of time.
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Resolution: The smallest interval between two adjacent values of the output
signal of a measuring instrument that can be distinguished.

Response time: The time interval between the instant when a measuring in-
strument gets a stimulus and the instant when the response reaches and remains
within specified limits of its final steady value.

Result of measurement: The value of a measurand obtained by measurement
(Ref. 4, no. 8.18). The measurement result is expressed as a product of a number
and a proper unit. For example, 1.25 m is the value of the length of a body; here 1.25
is the number, and m (meter) is the unit.

Secondary standard: A measurement standard that obtains the value of a unit
from the primary standard.

Sensitivity: The change in the response of a measuring instrument divided by
the corresponding change in the stimulus (Ref. 2, no. 5.10).

Span: The absolute value of the difference between the two limits of a nominal
range of a measuring instrument (Ref. 2, no. 5.02). Span is expressed in a unit of
the measured quantity.

Example: A range is −15 to +15 V; the span is 30 V.
Systematic error (of measurement): A component of the inaccuracy of mea-

surement that, in the course of several measurements of the same measurand,
remains constant or varies in a predictable way.

True value: The value of a measurand that being known would ideally reflect
both qualitatively and quantitatively the corresponding property of an object (Ref.
4, no. 2.5).

Uncertainty of measurement: An interval within which a true value of a mea-
surand lies with given probability. Uncertainty is defined with its limits and cor-
responding confidence probability. The limits are read out from a result of mea-
surement. Uncertainty can be expressed in absolute or relative form.

Verification: A kind of calibration that reveals whether the errors of a measuring
instrument lie within their specified limits.

Working standard: A measurement standard that is used to calibrate measuring
instruments.
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