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Introduction

I wrote this text for a one semester course at the sophomore-junior level. Our experience with students
taking our junior physics courses is that even if they’ve had the mathematical prerequisites, they usually need
more experience using the mathematics to handle it efficiently and to possess usable intuition about the processes
involved. If you’ve seen infinite series in a calculus course, you may have no idea that they’re good for anything.
If you’ve taken a differential equations course, which of the scores of techniques that you’ve seen are really used
a lot? The world is (at least) three dimensional so you clearly need to understand multiple integrals, but will
everything be rectangular?

How do you learn intuition?
When you’ve finished a problem and your answer agrees with the back of the book or with your friends

or even a teacher, you’re not done. The way do get an intuitive understanding of the mathematics and of the
physics is to analyze your solution thoroughly. Does it make sense? There are almost always several parameters
that enter the problem, so what happens to your solution when you push these parameters to their limits? In a
mechanics problem, what if one mass is much larger than another? Does your solution do the right thing? In
electromagnetism, if you make a couple of parameters equal to each other does it reduce everything to a simple,
special case? When you’re doing a surface integral should the answer be positive or negative and does your answer
agree?

When you address these questions to every problem you ever solve, you do several things. First, you’ll find
your own mistakes before someone else does. Second, you acquire an intuition about how the equations ought
to behave and how the world that they describe ought to behave. Third, It makes all your later efforts easier
because you will then have some clue about why the equations work the way they do. It reifies algebra.

Does it take extra time? Of course. It will however be some of the most valuable extra time you can spend.
Is it only the students in my classes, or is it a widespread phenomenon that no one is willing to sketch a

graph? (“Pulling teeth” is the cliché that comes to mind.) Maybe you’ve never been taught that there are a few
basic methods that work, so look at section 1.8. And keep referring to it. This is one of those basic tools that is
far more important than you’ve ever been told. It is astounding how many problems become simpler after you’ve
sketched a graph. Also, until you’ve sketched some graphs of functions you really don’t know how they behave.

When I taught this course I didn’t do everything that I’m presenting here. The two chapters, Numerical
Analysis and Tensors, were not in my one semester course, and I didn’t cover all of the topics along the way. The
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last couple of chapters were added after the class was over. There is enough here to select from if this is a course
text. If you are reading this on your own then you can move through it as you please, though you will find that
the first five chapters are used more in the later parts than are chapters six and seven.

The pdf file that I’ve created is hyperlinked, so that you can click on an equation or section reference to
go to that point in the text. To return, there’s a Previous View button at the top or bottom of the reader or a
keyboard shortcut to do the same thing. [Command← on Mac, Alt← on Windows, Control← on Linux-GNU]
The contents and index pages are hyperlinked, and the contents also appear in the bookmark window.

If you’re using Acrobat Reader 5.0, you should enable the preference to smooth line art. Otherwise many
of the drawings will appear jagged. If you use 6.0 nothing seems to help.

I chose this font for the display version of the text because it appears better on the screen than does the
more common Times font. The choice of available mathematics fonts is more limited.

I have also provided a version of this text formatted for double-sided bound printing of the sort you can get
from commercial copiers.

I’d like to thank the students who found some, but probably not all, of the mistakes in the text. Also
Howard Gordon, who used it in his course and provided me with many suggestions for improvements.
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Basic Stuff

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks to remember (or
to derive quickly) the common identities among them? Given the sine of an angle, what is its tangent? Given
its tangent, what is its cosine? All of these simple but occasionally useful relations can be derived in about two
seconds if you understand the idea behind one picture. Suppose for example that you know the tangent of θ, what
is sin θ? Draw a right triangle and designate the tangent of θ as x, so you can draw a triangle with tan θ = x/1.

x

1

θ

The Pythagorean theorem says that the third side is
√

1 + x2. You now read the
sine from the triangle as x/

√
1 + x2, so

sin θ =
tan θ√

1 + tan2 θ

Any other such relation is done the same way. You know the cosine, so what’s the cotangent? Draw a different
triangle where the cosine is x/1.

Radians
When you take the sine or cosine of an angle, what units do you use? Degrees? Radians? Other? And who
invented radians? Why is this the unit you see so often in calculus texts? That there are 360◦ in a circle is
something that you can blame on the Sumerians, but where did this other unit come from?

R 2R

s
θ

2θ

1



1—Basic Stuff 2

It results from one figure and the relation between the radius of the circle, the angle drawn, and the length
of the arc shown. If you remember the equation s = Rθ, does that mean that for a full circle θ = 360◦ so
s = 360R? No. For some reason this equation is valid only in radians. The reasoning comes down to a couple of
observations. You can see from the drawing that s is proportional to θ — double θ and you double s. The same
observation holds about the relation between s and R, a direct proportionality. Put these together in a single
equation and you can conclude that

s = CRθ

where C is some constant of proportionality. Now what is C?
You know that the whole circumference of the circle is 2πR, so if θ = 360◦, then

2πR = CR 360◦, and C =
π

180
degree−1

It has to have these units so that the left side, s, comes out as a length when the degree units cancel. This is an
awkward equation to work with, and it becomes very awkward when you try to do calculus.

d

dθ
sin θ =

π

180
cos θ

This is the reason that the radian was invented. The radian is the unit designed so that the proportionality
constant is one.

C = 1 radian−1 then s =
(
1 radian−1

)
Rθ

In practice, no one ever writes it this way. It’s the custom simply to omit the C and to say that s = Rθ with θ
restricted to radians — it saves a lot of writing. How big is a radian? A full circle has circumference 2πR, and
this is Rθ. It says that the angle for a full circle has 2π radians. One radian is then 360/2π degrees, a bit under
60◦. Why do you always use radians in calculus? Only in this unit do you get simple relations for derivatives and
integrals of the trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are familiar, but their
hyperbolic counterparts are probably less so. They are related to the exponential function as

coshx =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

sinh x

coshx
=
ex − e−x

ex + e−x
(1)
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The other three functions are

sech x =
1

coshx
, csch x =

1

sinh x
, cothx =

1

tanh x

Drawing these is left to problem 4, with a stopover in section 1.8 of this chapter.

Just as with the circular functions there are a bunch of identities relating these functions. For the analog
of cos2 θ + sin2 θ = 1 you have

cosh2 θ − sinh2 θ = 1 (2)

For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials. Similarly the other
common trig identities have their counterpart here.

1 + tan2 θ = sec2 θ has the analog 1− tanh2 θ = sech2 θ (3)

The reason for this close parallel lies in the complex plane, because cos(ix) = coshx and sin(ix) = i sinh x. See
chapter three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding circular functions. I’ll
solve for the inverse hyperbolic sine as an example

y = sinhx means x = sinh−1 y, y =
ex − e−x

2

Multiply by 2ex to get the quadratic equation

2exy = e2x − 1 or
(
ex
)2 − 2y

(
ex
)
− 1 = 0
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The solutions to this are ex = y ±
√
y2 + 1, and because

√
y2 + 1 is always greater than |y|, you must in this

case take the positive sign to get a positive ex. Take the logarithm of ex and

sinh

sinh−1

x = sinh−1 y = ln
(
y +

√
y2 + 1

)
(−∞ < y < +∞)

As x goes through the values −∞ to +∞, the values that sinh x takes on go over the range −∞ to +∞. This
implies that the domain of sinh−1 y is −∞ < y < +∞. The graph of an inverse function is the mirror image
of the original function in the 45◦ line y = x, so if you have sketched the graphs of the original functions, the
corresponding inverse functions are just the reflections in this diagonal line.

The other inverse functions are found similarly; see problem 3

cosh−1 y = ln
(
y ±

√
y2 − 1

)
, y ≥ 1

tanh−1 y =
1

2
ln

1 + y

1− y
, |y| < 1 (4)

coth−1 y =
1

2
ln
y + 1

y − 1
, |y| > 1

The cosh−1 function is commonly written with only the + sign before the square root. What does the other sign
do? Draw a graph and find out. Also, what happens if you add the two versions of the cosh−1?

The calculus of these functions parallels that of the circular functions.

d

dx
sinh x =

d

dx

ex − e−x

2
=
ex + e−x

2
= cosh x
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Similarly the derivative of coshx is sinh x. Note the plus sign here, not minus.
Where do hyperbolic functions occur? If you have a mass in equilibrium, the total force on it is zero. If

it’s in stable equilibrium then if you push it a little to one side and release it, the force will push it back to
the center. If it is unstable then when it’s a bit to one side it will be pushed farther away from the equilibrium
point. In the first case, it will oscillate about the equilibrium position and the function of time will be a circular
trigonometric function — the common sines or cosines of time, A cosωt. If the point is unstable, the motion will
will be described by hyperbolic functions of time, sinhωt instead of sinωt. An ordinary ruler held at one end will
swing back and forth, but if you try to balance it at the other end it will fall over. That’s the difference between
cos and cosh. For a deeper understanding of the relation between the circular and the hyperbolic functions, see
section 3.3

1.2 Parametric Differentiation
The integration techniques that appear in introductory calculus courses include a variety of methods of varying
usefulness. There’s one however that is for some reason not commonly done in calculus courses: parametric
differentiation. It’s best introduced by an example.∫ ∞

0
xne−x dx

You could integrate by parts n times and that will work. For example, n = 2:

= −x2e−x

∣∣∣∣∞
0

+

∫ ∞

0
2xe−x dx = 0− 2xe−x

∣∣∣∣∞
0

+

∫ ∞

0
2e−x dx = 0− 2e−x

∣∣∣∣∞
0

= 2

Instead of this method, do something completely different. Consider the integral∫ ∞

0
e−αx dx (5)

It has the parameter α in it. The reason for this will be clear in a few lines. It is easy to evaluate, and is∫ ∞

0
e−αx dx =

1

−α
e−αx

∣∣∣∣∞
0

=
1

α
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Now differentiate this integral with respect to α,

d

dα

∫ ∞

0
e−αx dx =

d

dα

1

α
or −

∫ ∞

0
xe−αx dx =

−1

α2

And differentiate again and again:

+

∫ ∞

0
x2e−αx dx =

+2

α3
, −

∫ ∞

0
x3e−αx dx =

−2 . 3

α4

The nth derivative is

±
∫ ∞

0
xne−αx dx =

±n!

αn+1
(6)

Set α = 1 and you see that the original integral is n!. This result is compatible with the standard definition for
0!. From the equation n! = n .(n − 1)!, you take the case n = 1. This requires 0! = 1 in order to make any
sense. This integral gives the same answer for n = 0.

The idea of this method is to change the original problem into another by introducing a parameter. Then
differentiate with respect to that parameter in order to recover the problem that you really want to solve. With
a little practice you’ll find this easier than partial integration.

Notice that I did this using definite integrals. If you try to use it for an integral without limits you can
sometimes get into trouble. See for example problem 42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statistical mechanics, quantum
mechanics, and any other place with a remotely statistical aspect.∫

dx xne−αx2

The simplest and most common case is the definite integral from −∞ to +∞ or maybe from 0 to ∞.
If n is a positive odd integer, these are elementary,∫ ∞

−∞
dx xne−αx2

= 0 (n odd) (7)
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To see why this is true, sketch a graph of the integrand (start with the case n = 1).
For the integral over positive x and still for odd n, do the substitution t = αx2.∫ ∞

0
dx xne−αx2

=
1

2α(n+1)/2

∫ ∞

0
dt t(n−1)/2e−t =

1

2α(n+1)/2

(
(n− 1)/2

)
! (8)

Because n is odd, (n− 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the special case n = 0

and α = 1. Denote the integral by I, then

I =

∫ ∞

−∞
dx e−x2

, and I2 =

(∫ ∞

−∞
dx e−x2

)(∫ ∞

−∞
dy e−y2

)
In squaring the integral you must use a different label for the integration variable in the second factor or it will
get confused with the variable in the first factor. Rearrange this and you have a conventional double integral.

I2 =

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−(x2+y2)

This is something that you can recognize as an integral over the entire x-y plane. Now the trick is to switch to
polar coordinates*. The element of area dx dy now becomes r dr dθ, and the respective limits on these coordinates
are 0 to ∞ and 0 to 2π. The exponent is just r2 = x2 + y2.

I2 =

∫ ∞

0
r dr

∫ 2π

0
dθ e−r2

The θ integral simply gives 2π. For the r integral substitute r2 = z and the result is 1/2. [Or use Eq. (8).] The
two integrals together give you π.

I2 = π, so

∫ ∞

−∞
dx e−x2

=
√
π (9)

* See section 1.7 in this chapter
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Now do the rest of these integrals by parametric differentiation, introducing a parameter with which to

carry out the derivatives. Change e−x2
to e−αx2

, then in the resulting integral change variables to reduce it to
Eq. (9). You get∫ ∞

−∞
dx e−αx2

=

√
π

α
, so

∫ ∞

−∞
dx x2e−αx2

= − d

dα

√
π

α
=

1

2

( √
π

α3/2

)
(10)

You can now get the results for all the higher even powers of x by further differentiation with respect to α.

1.4 erf and Gamma
What about the same integral, but with other limits? The odd-n case is easy to do in just the same way as when
the limits are zero and infinity; just do the same substitution that led to Eq. (8). The even-n case is different
because it can’t be done in terms of elementary functions. It is used to define an entirely new function.

erf(x) =
2√
π

∫ x

0
dt e−t2 x 0. 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

erf 0. 0.276 0.520 0.711 0.843 0.923 0.967 0.987 0.995
(11)

This is called the error function. It’s well studied and tabulated and even shows up as a button on some* pocket
calculators, right along with the sine and cosine. (Is erf odd or even or neither?) (What is erf(±∞)?)

A related integral that is worthy of its own name is the Gamma function.

Γ(x) =

∫ ∞

0
dt tx−1e−t (12)

The special case in which x is a positive integer is the one that I did as an example of parametric differentiation
to get Eq. (6). It is

Γ(n) = (n− 1)!

The factorial isn’t defined if its argument isn’t an integer, but the Gamma function is perfectly well defined for
any argument as long as the integral converges. One special case is notable: x = 1/2.

Γ(1/2) =

∫ ∞

0
dt t−1/2e−t =

∫ ∞

0
2u du u−1e−u2

= 2

∫ ∞

0
du e−u2

=
√
π (13)

* See for example www.rpncalculator.net

http://www.rpncalculator.net
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I used t = u2 and then the result for the Gaussian integral, Eq. (9). A simple and useful identity is (see
problem 14).

xΓ(x) = Γ(x+ 1) (14)

From this you can get the value of Γ(11/2), Γ(21/2), etc. In fact, if you know the value of the function in the
interval between one and two, you can use this relationship to get it anywhere else on the axis. You already know
that Γ(1) = 1 = Γ(2). (You do? How?) As x approaches zero, use the relation Γ(x) = Γ(x+ 1)/x and because
the numerator for small x is approximately 1, you immediately have that

Γ(x) ≈ 1/x for small x (15)

The integral definition, Eq. (12), for the Gamma function is defined only for the case that x > 0. [The
behavior of the integrand near t = 0 is approximately tx−1. Integrate this from zero to something and see how
it depends on x.] Even though the original definition of the Gamma function fails for negative x, you can extend
the definition by using Eq. (14) to define Γ for negative arguments. What is Γ(−1/2) for example?

−1

2
Γ(−1/2) = Γ(−(1/2) + 1) = Γ(1/2) =

√
π, so Γ(−1/2) = −2

√
π

The same procedure works for other negative x, though it can take several integer steps to get to a positive value
of x for which you can use the integral definition Eq. (12).

The reason for introducing these two functions now is not that they are so much more important than a
hundred other functions that I could use, though they are among the more common ones. The point is that
the world doesn’t end with polynomials, sines, cosines, and exponentials. There are an infinite number of other
functions out there waiting for you and some of them are useful. These functions can’t be expressed in terms
of the elementary functions that you’ve grown to know and love. They’re different and have their distinctive
behaviors.

There are zeta functions and Fresnel integrals and Legendre functions and Exponential integrals and Mathieu
functions and Confluent Hypergeometric functions and . . . you get the idea. When one of these shows up, you
learn to look up its properties and to use them. If you’re interested you may even try to understand how some
of these properties are derived, but probably not the first time that you confront them. That’s why there are
tables. The “Handbook of Mathematical Functions” by Abramowitz and Stegun is a premier example of such a
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tabulation. It’s reprinted by Dover Publications (inexpensive and very good quality). There’s also a copy on the
internet* www.math.sfu.ca/˜cbm/aands/ as a set of scanned page images.

Why erf?
What can you do with this function? The most likely application is probably to probability. If you flip a coin 1000
times, you expect it to come up heads about 500 times. But just how close to 500 will it be? If you flip it only
twice, you wouldn’t be surprised to see two heads or two tails, in fact the equally likely possibilities are

TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out of 4 you expect two
tails. For only 2 out of 4 times you do the double flip do you expect exactly one head. All this is an average. You
have to try the experiment many times to get see your expectation verified, and then only by averaging many
experiments.

It’s easier to visualize the counting if you flip N coins at once and see how they come up. The number
of coins that come up heads won’t always be N/2, but it should be close. If you repeat the process, flipping N
coins again and again, you get a distribution of numbers of heads that will vary around N/2 in a characteristic
pattern. The result is that the fraction of the time it will come up with k heads and N − k tails is, to a good
approximation √

2

πN
e−2δ2/N , where δ = k − N

2
(16)

The derivation of this can wait until section 2.6. It is an accurate result if the number of coins that you flip in
each trial is large, but try it anyway for the preceding example where N = 2. This formula says that the fraction
of times predicted for k heads is

k = 0 :
√

1/π e−1 = 0.208 k = 1 : 0.564 k = 2 : 0.208

The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large error shouldn’t be
distressing.

If you flip three coins, the equally likely possibilities are

TTT TTH THT HTT THH HTH HHT HHH

* online books at University of Pennsylvania, onlinebooks.library.upenn.edu

http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://onlinebooks.library.upenn.edu/
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There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3 heads. Probability
1/8.

For the more interesting case of big N , the exponent, e−2δ2/N , varies slowly and smoothly as δ changes in
integer steps away from zero. This is a key point; it allows you to approximate a sum by an integral. If N = 1000
and δ = 10, the exponent is 0.819. It has dropped only gradually from one.

Flip N coins, then do it again and again. In what fraction of the trials will the result be between N/2−∆
and N/2 + ∆ heads? This is the sum of the fractions corresponding to δ = 0, δ = ±1, . . . , δ = ±∆. Because
the approximate function is smooth, I can replace this sum with an integral.∫ ∆

−∆
dδ

√
2

πN
e−2δ2/N

Make the substitution 2δ2/N = x2 and you have√
2

πN

∫ ∆
√

2/N

−∆
√

2/N

√
N

2
dx e−x2

=
1√
π

∫ ∆
√

2/N

−∆
√

2/N
dx e−x2

= erf
(
∆
√

2/N
)

The error function of one is 0.84, so if ∆ =
√
N/2 then in 84% of the trials heads will come up between

N/2−
√
N/2 and N/2 +

√
N/2 times. For N = 1000, this is between 478 and 522 heads.

1.5 Differentiating
When you differentiate a function in which the independent variable shows up in several places, how to you do
the derivative? For example, what is the derivative with respect to x of xx? The answer is that you treat each
instance of x one at a time, ignoring the others; differentiate with respect to that x and add the results. For
a proof, use the definition of a derivative and differentiate the function f(x, x). Start with the finite difference
quotient:

f(x+ ∆x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x) + f(x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x)

∆x
+
f(x, x+ ∆x)− f(x, x)

∆x
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The first quotient in the last equation is, in the limit that ∆x → 0, the derivative of f with respect to its first
argument. The second quotient becomes the derivative with respect to the second argument.

For example,

d

dx

∫ x

0
dt e−xt2 = e−x3

−
∫ x

0
dt t2e−xt2

The resulting integral in this example is related to an error function, see problem 13, so it’s not as bad as it looks.

Another example,

d

dx
xx = x xx−1 +

d

dx
kx at k = x

= x xx−1 +
d

dx
ex ln k = x xx−1 + ln k ex ln k

= xx + xx lnx

1.6 Integrals

What is an integral? You’ve been using them for some time. I’ve been using the concept in this introductory
chapter as if it’s something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function” or “the area under a
curve” then No. Both of these answers express an aspect of the subject but neither is a complete answer. The
first actually refers to the fundamental theorem of calculus, and I’ll describe that shortly. The second is a good
picture that applies to some special cases, but it won’t tell you how to compute it and it won’t allow you to
generalize the idea to the many other subjects in which it is needed. There are several different definitions of the
integral, and every one of them requires more than a few lines to explain. I’ll use the most common definition,
the Riemann Integral.

A standard way to picture the definition is to try to find the area under a curve. You can get successively
better and better approximations to the answer by dividing the area into smaller and smaller rectangles — ideally,
taking the limit as the number of rectangles goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval between a and b is
to be divided.
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ba

x1 x2

ξ1 ξ2 ξN

2. Pick N − 1 points between a and b. Call them x1, x2, etc.

a = x0 < x1 < x2 < · · · < xN−1 < xN = b

where for convenience I label the endpoints as x0 and xN . For the sketch , N = 8.

3. Let ∆xk = xk − xk−1. That is,

∆x1 = x1 − x0, ∆x2 = x2 − x1, · · ·

4. In each of the N subintervals, pick one point at which the function will be evaluated. I’ll label these points
by the Greek letter ξ. (That’s the Greek version of “x.”)

xk−1 ≤ ξk ≤ xk

x0 ≤ ξ1 ≤ x1, x1 ≤ ξ2 ≤ x2, · · ·

5. Form the sum that is an approximation to the final answer.

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + · · ·

6. Finally, take the limit as all the ∆xk → 0 and necessarily then, as N → ∞. These six steps form the
definition

lim
∆xk→0

N∑
k=1

f(ξk)∆xk =

∫ b

a
f(x) dx
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1 2

x

1/x

To demonstrate this numerically, pick a function and do the first five steps explicitly. Pick f(x) = 1/x and
integrate it from 1 to 2. The exact answer is the natural log of 2: ln 2 = 0.69315 . . .
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at x1 = 1.25, x2 = 1.5, x3 = 1.75

a = x0 = 1. < 1.25 < 1.5 < 1.75 < 2. = x4 = b

(3) All the ∆x’s are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use only a finite number of
divisions.

ξ1 = 1.125 ξ2 = 1.375 ξ3 = 1.625 ξ4 = 1.875

(5) The sum approximating the integral is then

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + f(ξ4)∆x4 =

1

1.125
× .25 +

1

1.375
× .25 +

1

1.625
× .25 +

1

1.875
× .25 = .69122

For such a small number of divisions, this is a very good approximation — about 0.3% error. (What do
you get if you take N = 1 or N = 2 or N = 10 divisions?)

Fundamental Thm. of Calculus
If the function that you’re integrating is complicated or if the function is itself not known to perfect accuracy

then the numerical approximation that I just did for
∫ 2
1 dx/x is often the best way to go. How can a function not

be known completely? If it’s experimental data. When you have to resort to this arithmetic way to do integrals,
are there more efficient ways to do it than simply using the definition of the integral? Yes. That’s part of the
subject of numerical analysis, and there’s a short introduction to the subject in chapter 11, section 11.4.
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The fundamental theorem of calculus unites the subjects of differentiation and integration. The integral is
defined as the limit of a sum. The derivative is defined as the limit of a quotient of two differences. The relation
between them is

IF f has an integral from a to b, that is, if
∫ b
a f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F such that dF/dx = f ,
THEN ∫ b

a
f(x) dx = F (b)− F (a) (17)

Are there cases where one of these exists without the other? Yes, though I’ll admit that you’re not likely
to come across such functions without hunting through some advanced math books.

Notice an important result that follows from Eq. (17). Differentiate both sides with respect to b

d

db

∫ b

a
f(x) dx =

d

db
F (b) = f(b) (18)

and with respect to a
d

da

∫ b

a
f(x) dx = − d

da
F (a) = −f(a) (19)

Differentiating an integral with respect to one or the other of its limits results in plus or minus the integrand.
Combine this with the chain rule and you can do such calculations as

d

dx

∫ sin x

x2
ext2 dt = ex sin2 x cosx− ex

5

2x+

∫ sin x

x2
t2ext2 dt

You may well ask why anyone would want to do such a thing, but there are more reasonable examples that show
up in real situations.

Riemann-Stieljes Integrals
Are there other useful definitions of the word integral? Yes, there are many, named after various people who
developed them, with Lebesgue being the most famous. His definition is most useful in much more advanced
mathematical contexts, and I won’t go into it here, except to say that very roughly where Riemann divided the
x-axis into intervals ∆xi, Lebesgue divided the y-axis into intervals ∆yi. Doesn’t sound like much of a change
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does it? It is. There is another definition that is worth knowing about, not because it helps you to do integrals,
but because it unites a couple of different types of computation into one. This is the Riemann-Stieljes integral.

When you try to evaluate the moment of inertia you are doing the integral∫
r2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

1

M

∫
x dm

and even though you may not yet have encountered this, the electric dipole moment is∫
~r dq

How do you integrate x with respect to m? What exactly are you doing? A possible answer is that you can
express this integral in terms of the linear density function and then dm = λ(x)dx. But if the masses are a
mixture of continuous densities and point masses, this starts to become awkward. Is there a better way?

Yes
On the interval a ≤ x ≤ b assume there are two functions, f and α. I don’t assume that either of them is
continuous, though they can’t be too badly behaved or nothing will converge. Partition the interval into a finite
number (N) of sub-intervals at the points

a = x0 < x1 < x2 < . . . < xN = b (20)

Form the sum

N∑
k=1

f(x′k)∆αk, where xk−1 ≤ x′k ≤ xk and ∆αk = α(xk)− α(xk−1) (21)
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To improve the sum, keep adding more and more points to the partition so that in the limit all the intervals
xk − xk−1 → 0. This limit is called the Riemann-Stieljes integral,∫

f dα (22)

What’s the big deal? Can’t I just say that dα = α′dx and then I have just the ordinary integral∫
f(x)α′(x) dx?

Sometimes you can, but what if α isn’t differentiable? Suppose that it has a step or several steps? The derivative
isn’t defined, but this Riemann-Stieljes integral still makes perfectly good sense.

An example. A very thin rod of length L is placed on the x-axis with one end at the origin. It has a uniform
linear mass density λ and an added point mass m0 at x = 3L/4. (a piece of chewing gum?) Let m(x) be the
function defined as

m(x) =
(
the amount of mass at coordinates ≤ x

)
=

{
λx (0 ≤ x < 3L/4)
λx+m0 (3L/4 ≤ x ≤ L)

This is of course discontinuous.

m(x)

x

The coordinate of the center of mass is
∫
x dm

/ ∫
dm. The total mass in the denominator is m0 + λL,

and I’ll go through the details to evaluate the numerator, attempting to solidify the ideas that form this integral.
Suppose you divide the length L into 10 equal pieces, then

xk = kL/10, (k = 0, 1, . . . , 10) and ∆mk =

{
λL/10 (k 6= 8)
λL/10 +m0 (k = 8)
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∆m8 = m(x8)−m(x7) = (λx8 +m0)− λx7 = λL/10 +m0.
Choose the positions x′k anywhere in the interval; for no particular reason I’ll take the right-hand endpoint,

x′k = kL/10. The approximation to the integral is now

10∑
k=1

x′k∆mk =
7∑

k=1

x′kλL/10 + x′8(λL/10 +m0) +
10∑

k=9

x′kλL/10

=
10∑

k=1

x′kλL/10 + x′8m0

As you add division points (more intervals) to the whole length this sum obviously separates into two parts. One
is the ordinary integral and the other is the discrete term from the point mass.∫ L

0
xλ dx+m03L/4 = λL2/2 +m03L/4

The center of mass is then at

xcm =
λL2/2 +m03L/4

m0 + λL

If m0 � λL, this is approximately L/2. In the reverse case is is approximately 3L/4. Both are just what you
should expect.

The discontinuity in m(x) simply gives you a discrete added term in the overall result.
Did you need the Stieljes integral to do this? Probably not. You would likely have simply added the two

terms from the two parts of the mass and gotten the same result that I did with this more complicated way. The
point of this is not that it provides an easier way to do computations. It doesn’t. It is however a unifying notation
and language that lets you avoid writing down a lot of special cases. (Is it discrete? Is it continuous?) You can
even write sums as integrals. Let α be a set of steps:

α(x) =


0 x < 1
1 1 ≤ x < 2
2 2 ≤ x < 3
etc.

= [x] for x ≥ 0
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Where that last bracketed symbol means “greatest integer less than or equal to x”. It’s a notation more common
in mathematics than in physics. Now in this notation the sum can be written as a Stieljes integral.∫

f dα =

∫ ∞

x=0
f d[x] =

∞∑
k=1

f(k) (23)

At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-Stieljes sum, Eq. (21).
That makes this integral just another way to write the sum over integers. This won’t help you to sum the series,
but it is another way to look at the subject.

Partial Integration
The method of integration by parts works perfectly well here, though I’ll leave the proof to the advanced calculus
texts. If

∫
f dα exists then so does

∫
α df and∫

f dα = fα−
∫
α df

If you have integration by parts, this says that you also have summation by parts! That’s something that you’re
not likely to think of if you restrict yourself to the more elementary notation.

∞∑
k=1

f(k) =

∫
f d[x] = f(x)[x]

∣∣∣∣∞
0

−
∫ ∞

x=0
[x] df (24)

If for example the function you’re summing is 1/kn then

∞∑
k=1

1

kn
=

∫
1

xn
d[x] =

1

xn
[x]

∣∣∣∣∞
0

−
∫ ∞

x=0
[x] d(1/xn) = 0 + n

∫ ∞

1

[x]

xn+1
dx

This particular application isn’t too useful, but there are others that are very useful, particularly in statistical
mechanics.

Still another way to define the integral is called the gauge integral. See for example
www.math.vanderbilt.edu/˜schectex/ccc/gauge.

http://www.math.vanderbilt.edu/~schectex/ccc/gauge/
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1.7 Polar Coordinates
When you compute an integral in the plane, you need the element of area appropriate to the coordinate system
that you’re using. In the most common case, that of rectangular coordinates, you find the element of area by
drawing the two lines at constant coordinates x and x+dx. Then you draw the two lines at constant coordinates
y and y + dy. The little rectangle that they circumscribe has an area dA = dx dy.

x x+ dx

y

y + dy

r r + dr

θ

θ + dθ

In polar coordinates you do exactly the same thing! The coordinates are r and θ, and the line at constant
radius r and at constant r + dr define two neighboring circles. The lines at constant angle θ and at constant
angle θ + dθ form two closely spaced rays from the origin. These four lines circumscribe a tiny area that is, for
small enough dr and dθ, a rectangle. You then know its area is the product of its two sides*: dA = (dr)(r dθ).
This is the basic element of area for polar coordinates.

The area of a circle is the sum of all the pieces of area within it∫
dA =

∫ R

0
r dr

∫ 2π

0
dθ

I find it most useful to write double integrals in this way, so that the limits of integration are right next to
the differential. The other notation can put the differential a long distance from where you show the limits of
integration. I get less confused my way.∫ R

0
r dr

∫ 2π

0
dθ =

∫ R

0
r dr 2π = 2πR2/2 = πR2

* If you’re tempted to say that the area is dA = dr dθ, look at the dimensions. This expression is a length,
not an area.
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No surprise.

b

a

For the preceding example you can do the double integral in either order with no
special care. If the area over which you’re integrating is more complicated you will have
to look more closely at the limits of integration. I’ll illustrate with an example of this in
rectangular coordinates: the area of a triangle. Take the triangle to have vertices (0, 0),
(a, 0), and (0, b). The area is∫

dA =

∫ b

0
dx

∫ b(a−x)/a

0
dy or =

∫ a

0
dy

∫ a(b−y)/b

0
dx (25)

They should both yield ab/2. See problem 25.

1.8 Sketching Graphs
How do you sketch the graph of a function? This is one of the most important tools you can use to understand
the behavior of functions, and unless you practice it you will find yourself at a loss in anticipating the outcome of
many calculations. There are a handful of rules that you can follow to do this and you will find that it’s not as
painful as you may think.

You’re confronted with a function and have to sketch its graph.
1. What is the domain? That is, what is the set of values of the independent variable that you need to be

concerned with? Is it −∞ to +∞ or is it 0 < x < L or is it −π < θ < π or what?
2. Plot any obvious points. If you can immediately see the value of the function at one or more points, do

them right away.
3. Is the function even or odd? If the behavior of the function is the same on the left as it is on the right

(or perhaps inverted on the left) then you have half as much work to do. Concentrate on one side and you can
then make a mirror image on the left if it is even or an upside-down mirror image if it’s odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the denominator vanishes?
Note these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted? Does it behave
like x? Like x2? If you concluded that it is even, then the slope is either zero or there’s a kink in the curve, such
as with the absolute value function, |x|.

6. At one of the singular points that you found, how does it behave as you approach the point from the
right? From the left? Does the function go toward +∞ or toward −∞ in each case?
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7. How does the function behave as you approach the ends of the domain? If the domain extends from
−∞ to +∞, how does the function behave as you approach these regions?

8. Is the function the sum or difference of two other much simpler functions? If so, you may find it easier
to sketch the two functions and then graphically add or subtract them. Similarly if it is a product.

9. Is the function related to another by translation? The function f(x) = (x − 2)2 is related to x2 by
translation of 2 units. Note that it is translated to the right from x2. You can see why because (x− 2)2 vanishes
at x = +2.

10. After all this, you will have a good idea of the shape of the function, so you can interpolate the behavior
between the points that you’ve found.

Example: Sketch f(x) = x/(a2 − x2).

−a a

1. The domain for independent variable wasn’t given, so take it to be −∞ < x <∞
2. The point x = 0 obviously gives the value f(0) = 0.

4. The denominator becomes zero at the two points x = ±a.
3. If you replace x by −x, the denominator is unchanged, and the numerator changes sign. The function

is odd about zero.

−a a

7. When x becomes very large (|x| � a), the denominator is mostly −x2, so f(x) behaves like x/(−x2) =
−1/x for large x. It approaches zero for large x. Moreover, when x is positive, it approaches zero through
negative values and when x is negative, it goes to zero through positive values.

−a a

5. Near the point x = 0, the x2 in the denominator is much smaller than the constant a2 (x2 � a2). That
means that near this point, the function f behaves like x/a2
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−a a
−a a

6. Go back to the places that it blows up, and ask what happens near there. If x is a little greater than a,
the x2 in the denominator is a little larger than the a2 in the denominator. This means that the denominator is
negative. When x is a little less than a, the reverse is true. Near x = a, The numerator is close to a. Combine
these, and you see that the function approaches −∞ as x → a from the right. It approaches +∞ on the left
side of a. I’ve already noted that the function is odd, so I don’t have to repeat the analysis near x = −a, I have
only to turn the behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.
OR, if you’re clever with partial fractions, you might realize that you can rearrange f as

x

a2 − x2
=
−1/2

x− a
+
−1/2

x+ a
,

and then follow the ideas of techniques 8 and 9 to sketch the graph. It’s not obvious that this is any easier; it’s
just different.
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Problems

1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one line.

1.2 Derive the identities for cosh2 θ − sinh2 θ and for 1− tanh2 θ, Equation (3).

1.3 Derive the expressions for cosh−1 y, tanh−1 y, and coth−1 y. Pay particular attention to the domains and
explain why these are valid for the set of y that you claim. What is sinh−1(y) + sinh−1(−y)?

1.4 The inverse function has a graph that is the mirror image of the original function in the 45◦ line y = x.
Draw the graphs of all six of the hyperbolic functions and all six of the inverse hyperbolic functions, comparing
the graphs you should get to the functions derived in the preceding problem.

1.5 Evaluate the derivatives of coshx, tanh x, and cothx.

1.6 What are the derivatives, d sinh−1 y
/
dy and d cosh−1 y

/
dy?

1.7 Find formulas for cosh 2y and sinh 2y in terms of hyperbolic functions of y. The second one of these should
take at most two lines. Maybe the first one too.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

(a)

∫
dt√
a2 − t2

(b)

∫
dt√
a2 + t2

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the limits are 0 and x with
x � a, then before having done the integral, estimate approximately what the value of this integral should be.
(Say x = 106a or x = 1060a.) Compare your estimate to the exact answer that you just found to see if they
match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Eqs. (7), (8), and (10). In particular, draw
graphs of the integrands to show why Eq. (7) is so.
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1.11 What is the integral
∫∞
−∞ dt tne−t2 if n = −1 or n = −2? [Careful!, no conclusion-jumping allowed]

1.12 Sketch a graph of the error function. In particular, what is it’s behavior for small x and for large x, both

positive and negative? Note: “small” doesn’t mean zero. First draw a sketch of the integrand e−t2 and from
that you can (graphically) estimate erf(x) for small x. Compare this to the short table in Eq. (11).

1.13 Put a parameter α into the defining integral for the error function, so it has e−αt2 . Differentiate and show
that ∫ x

0
dt t2e−t2 =

√
π

4
erf(x)− 1

2
xe−x2

As a check, does this agree with the previous result for x =∞, Eq. (10)?

1.14 Use partial integration or other means to derive the identity xΓ(x) = Γ(x+ 1).

1.15 What is the Gamma function of x = −1/2, −3/2, −5/2? Explain why the original definition of Γ in terms
of the integral won’t work here. Demonstrate why Eq. (12) converges for all x > 0 but does not converge for
x ≤ 0.

1.16 What is the Gamma function for x near to 1? near 0? near −1? −2? −3? Now sketch a graph of the
Gamma function from −3 through positive values.

1.17 Show how to express the integral for arbitrary positive x∫ ∞

0
dt txe−t2

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch better?

1.18 The derivative of the Gamma function at x = 1 is Γ′(1) = −0.5772 = −γ. The number γ is called Euler’s
constant, and like π or e it’s another number that simply shows up regularly. What is Γ′(2)? What is Γ′(3)?
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1.19 Show that

Γ(n+ 1/2) =

√
π

2n
(2n− 1)!!

The “double factorial” symbol mean the product of every other integer up to the given one. E.g. 5!! = 15.
(b) The double factorial of an even integer can be expressed in terms of the single factorial. Do so. What about
odd integers?

1.20 Evaluate this integral. Just find the right substitution.

∫ ∞

0
dt e−ta (a > 0)

1.21 A triangle has sides a, b, c, and the angle opposite c is γ. Express the area of the triangle in terms of a, b,
and γ. Write the law of cosines for this triangle and then use sin2 γ+cos2 γ = 1 to express the area of a triangle
solely in terms of the lengths of its three sides. The resulting formula is not especially pretty or even clearly
symmetrical in the sides, but if you introduce the semiperimeter, s = (a+ b+ c)/2, you can rearrange the answer
into a neat, symmetrical form. Check its validity in a couple of special cases. Ans:

√
s(s− a)(s− b)(s− c)

1.22 Express an arbitrary linear combination of the sine and cosine of θ, A sin θ + B cos θ, as a phase-shifted
cosine: C cos(θ + δ). Solve for C and δ in terms of A and B, deriving an identity in θ.

1.23 Solve the two simultaneous linear equations

ax+ by = e, cx+ dy = f

and do it solely by elementary manipulation (+, −, ×, ÷), not by any special formulas. Analyze all the qualitatively
different cases and draw graphs to describe each. In every case, how many if any solutions are there? Because of
its special importance later, look at the case e = f = 0 and analyze it as if it’s a separate problem. You should be
able to discern and to classify the circumstances under which there is one solution, no solution, or many solutions.

1.24 Use parametric differentiation to evaluate the integral∫
x2 sin x dx

Find a table of integrals if you want to verify your work.
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1.25 Derive all the limits on the integrals in Eq. (25) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates, dA = dx dy.

1.27 Compute the area of a triangle using polar coordinates. Make it a right triangle with vertices at (0, 0),
(a, 0), and (a, b).

1.28 Start from the definition of a derivative and derive the chain rule.

f(x) = g
(
h(x)

)
=⇒ df

dx
=
dg

dh

dh

dx

Now pick special, fairly simple cases for g and h to test whether your result really works. That is, choose functions
so that you can do the differentiation explicitly and compare the results.

1.29 Starting from the definitions, derive how to do the derivative,

d

dx

∫ f(x)

0
g(t) dt

Now pick special, fairly simple cases for f and g to test whether your result really works. That is, choose functions
so that you can do the integration and differentiation explicitly, but ones such the result isn’t trivial.

1.30 Sketch these graphs, working by hand only, no computers:

x

a2 + x2
,

x2

a2 − x2
,

x

a3 + x3
,

x− a
a2 − (x− a)2

,
x

L2 − x2
+
x

L

1.31 Sketch by hand only, graphs of

sinx (−3π < x < +4π),
1

sin x
(−3π < x < +4π), sin(x− π/2) (−3π < x < +4π)
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1.32 Sketch by hand only, graphs of

f(θ) = 1 +
1

2
sin2 θ (0 ≤ θ ≤ 2π), f(θ) =

{
θ (0 < θ < π)
θ − 2π (π < θ < 2π)

f(x) =

{
x2 (0 ≤ x < a)
(x− 2a)2 (a ≤ x ≤ 2a)

, f(r) =

{
Kr/R3 (0 ≤ r ≤ R)
K/r2 (R < r <∞)

1.33 From the definition of the Riemann integral make a numerical calculation of the integral∫ 1

0
dx

4

1 + x2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer program for an
arbitrary number of intervals, by all means do so. As with the example in the text, choose the midpoints of the
intervals to evaluate the function. To check your answer, do a trig substitution and evaluate the integral exactly.

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)

1.35 Evaluate
∫ π
0 dx sinx/x numerically. Ans: 1.85193705198247 or so.

1.36 x and y are related by the equation x3− 4xy+ 3y3 = 0. You can easily check that (x, y) = (1, 1) satisfies
it, now what is dy/dx at that point? Unless you choose to look up and plug in to the cubic formula, I suggest
that you differentiate the whole equation with respect to x and solve for dy/dx.
Generalize this to finding dy/dx if f(x, y) = 0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in the run lie between
−
(
N/2 + 2

√
N/2

)
and +

(
N/2 + 2

√
N/2

)
? What are these numbers for N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out of 24 = 16 cases.
Compare these results to the exponential approximation of Eq. (16). Ans: 0.375 and 0.399

1.39 Is the integral of Eq. (16) over all δ equal to one?
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1.40 If there are only 100 molecules of a gas bouncing around in a room, about how long will you have to wait to
find that all of them are in the left half of the room? Assume that you make a new observation every microsecond
and that the observations are independent of each other. Ans: A million times the age of the universe. [Care to
try 1023 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads and 500 tails?
What if it’s 100 coins and 100 trials, getting 50 heads? Ans: 25, 8

1.42 (a) Use parametric differentiation to evaluate
∫
x dx. Start with

∫
eαxdx. and then let α→ 0.

(b) Now that the problem has blown up in your face, change the integral from an indefinite to a definite integral

such as
∫ b
a and do it again.

1.43 The Gamma function satisfies the identity

Γ(x)Γ(1− x) = π/ sin πx

What does this tell you about the Gamma function of 1/2? What does it tell you about its behavior near the
negative integers? Compare this result to that of problem 16.

1.44 Start from the definition of a derivative, manipulate some terms, and derive the rule for differentiating the
function h, where h(x) = f(x)g(x) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration by parts.



Infinite Series

Infinite series are among the most powerful and useful tools that you’ve been introduced to in an introductory
calculus course. It’s easy to get the impression that they are simply a clever exercise in manipulating limits and in
studying convergence, but they are among the majors tools used in analyzing differential equations, in developing
methods of numerical analysis, in defining new functions, in estimating the behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should have memorized and should know just as well as you do the
multiplication table. The first of these is the geometric series,

1 + x+ x2 + x3 + x4 + · · · =
∞∑
0

xn =
1

1− x
for |x| < 1. (1)

It’s very easy derive because in this case it’s easy to sum the finite form of the series and then to take a limit.
Write the series out to the term xN and multiply it by (1− x).

(1 + x+ x2 + x3 + · · ·+ xN )(1− x) =

(1 + x+ x2 + x3 + · · ·+ xN )−(x+ x2 + x3 + x4 + · · ·+ xN+1) = 1− xN+1 (2)

If |x| < 1 then as N → ∞ this last term, xN+1, goes to zero and you have the answer. If x is outside this
domain the terms of the infinite series don’t even go to zero, so there’s no chance for the series to converge to
anything.

The finite sum up to xN is useful on its own. For example it’s what you use to compute the payments on
a loan that’s been made at some specified interest rate. You use it to find the pattern of light from a diffraction
grating.

N∑
0

xn =
1− xN+1

1− x

30
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Some other common series that you need to know are power series for elementary functions:

ex = 1 + x+
x2

2!
+ · · · =

∞∑
0

xk

k!

sin x = x− x3

3!
+ · · · =

∞∑
0

(−1)k
x2k+1

(2k + 1)!

cosx = 1− x2

2!
+ · · · =

∞∑
0

(−1)k
x2k

(2k)!

ln(1 + x) = x− x2

2
+
x3

3
− · · · =

∞∑
1

(−1)k+1x
k

k
(3)

(1 + x)α = 1 + αx+
α(α− 1)x2

2!
+ · · · =

∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk

Of course, even better than memorizing them is to understand their derivations so well that you can derive
them as fast as you can write them down. For example, the cosine is the derivative of the sine, so if you know
the latter series all you have to do is to differentiate it term by term to get the cosine series. The logarithm of
(1 + x) is an integral of 1/(1 + x) so you can get it’s series from that of the geometric series. The geometric
series is a special case of the binomial series for α = −1, but it’s easier to remember the simple case separately.
You can express all of them as special cases of the general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the answer, 0.1, or to more
accuracy, 0.1− 0.001/6 = 0.099833

What is the square root of 1.1?
√

1.1 = (1 + .1)1/2 = 1 + 1
2
. 0.1 = 1.05

What is 1/1.9? 1/(2− .1) = 1/[2(1− .05)] = 1
2(1 + .05) = .5 + .025 = .525 from the first terms of the

geometric series.

What is 3
√

1024? 3
√

1024 = 3
√

1000 + 24 = 3
√

1000(1 + 24/1000) =

10(1 + 24/1000)1/3 = 10(1 + 8/1000) = 10.08
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As you see from the last two examples you have to cast the problem into a form fitting the expansion that
you know. When you want to use the binomial series, rearrange and factor your expression so that you have(

1 + something small
)α

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such a series exists and
then to deduce its coefficients in sequence. Take the sine for example, assume that you can write

sinx = A+Bx+ Cx2 +Dx3 + Ex4 + · · ·

Evaluate this at x = 0 to get

sin 0 = 0 = A+B0 + C02 +D03 + E04 + · · · = A

so the first term, A = 0. Now differentiate the series, getting

cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·

Again set x = 0 and all the terms on the right except the first one vanish.

cos 0 = 1 = B + 2C0 + 3D02 + 4E03 + · · · = B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sin x = A+Bx+ Cx2 +Dx3 + Ex4 + · · ·
cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·
− sin x = 2C + 6Dx+ 12Ex2 + · · ·
− cosx = 6D + 24Ex+ 60Fx2 + · · ·

sin x = 24E + 120Fx+ · · ·
cosx = 120F + · · ·

sin 0 = 0 = A

cos 0 = 1 = B

− sin 0 = 0 = 2C

− cos 0 = −1 = 6D

sin 0 = 0 = 24E

cos 0 = 1 = 120F
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This shows the terms of the series for the sine as stated.
Does this show that the series converges? If it converges does it show that it converges to the sine? No

to both. Each statement requires more work, and I’ll leave the second one to advanced calculus books. Even
better, when you understand the subject of complex variables, these questions about series become much easier
to understand.

The generalization to any function is obvious. You match the coefficients in the assumed expansion, and
get

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) +

x4

4!
f ′′′′(0) + · · ·

You don’t have to do the expansion about the point x = 0. Do it about x0 instead.

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · · (4)

What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by determining a series
solution to a new differential equation.
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration, differentiation, interpola-
tion, and many other common numerical methods.
To understand the behavior of complex-valued functions of a complex variable you will need to understand these
series for the case that the variable is a complex number.

All the series that I’ve written above are power series (Taylor series), but there are many other possibilities.

ζ(z) =
∞∑
1

1

nz
(5)

x2 =
L2

3
+

2L2

π2

∞∑
1

(−1)n
1

n2
cos
(nπx
L

)
(−L ≤ x ≤ L) (6)

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in statistical mechanics
among other places.
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The second is an example of a Fourier series.
Still another is the Frobenius series, useful in solving differential equations:

∑
akx

k+s. The number s need not
be either positive or an integer.

There are a few technical details about infinite series that you have to go through. In introductory calculus
courses there can be a tendency to let these few details overwhelm the subject so that you are left with the
impression that that’s all there is, not realizing that this stuff is useful. Still, you do need to understand it.

2.3 Convergence
Does an infinite series converge? Does the limit as N → ∞ of the sum,

∑N
1 uk have a limit? There are a few

common and useful ways to answer this. The first and really the foundation for the others is the comparison test.
Let uk and vk be sequences of real numbers, positive at least after some value of k. Also assume that for

all k greater than some finite value, uk ≤ vk. Also assume that the sum,
∑

k vk does converge.
The other sum,

∑
k uk then converges too. This is almost obvious, but it’s worth the little effort that a proof

takes.
The required observation is that an increasing sequence of real numbers, bounded above, has a limit.
After some point, k = M , all the uk and vk are positive and uk ≤ vk. The sum an =

∑n
M vk then

forms an increasing sequence of real numbers. By assumption this has a limit (the series converges). The sum
bn =

∑n
M uk is an increasing sequence of real numbers also. Because uk ≤ vk you immediately have bn ≤ an

for all n.
bn ≤ an ≤ lim

n→∞
an

this simply says that the increasing sequence bn has an upper bound, so it has a limit and the theorem is proved.

Ratio Test
To apply this comparison test you need a stable of known convergent series. One that you do have is the geometric
series,

∑
xk for |x| < 1. Let this xk be the vk of the comparison test. Assume at least after some point k = K

that all the uk > 0.
Also that uk+1 ≤ xuk.

Then uK+2 ≤ xuK+1 and uK+1 ≤ xuK gives uK+2 ≤ x2uK

You see the immediate extension is
uK+n ≤ xnuK
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As long as x < 1 this is precisely set up for the comparison test using
∑

n uKx
n as the series that dominates the∑

n un. This test, the ratio test is more commonly stated for positive uk as

If
uk+1

uk
≤ x < 1 then the series

∑
uk converges (7)

This is one of the more commonly used convergence tests, not because it’s the best, but because it’s simple and
it works a lot of the time.

Integral Test
The integral test is another way to check for convergence or divergence. If f is a decreasing positive function
and you want to determine the convergence of

∑
f(n), you can look at the integral

∫∞
dx f(x) and check it for

convergence. The series and the integral converge or diverge together.

1 2 3 4 5

f(1)

f(2)
f(3)
f(4)

f(x)

From the graph you see that the function f lies between the tops of the upper and the lower rectangles.
The area under the curve of f between n and n + 1 lies between the areas of the two rectangles. That’s the
reason for the assumption that f is decreasing and positive.

f(n) . 1 >

∫ n+1

n
dx f(x) > f(n+ 1) . 1

Add these inequalities from n = k to n =∞ and you get

f(k) + f(k + 1) + · · · >
∫ k+1

k
+

∫ k+2

k+1
+ · · · =

∫ ∞

k
dx f(x)

> f(k + 1) + f(k + 2) + · · · >
∫ ∞

k+1
dx f(x) > f · · · (8)
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The only difference between the infinite series on the left and on the right is one term, so either everything
converges or everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the sum of a series that
would be too tedious to sum by itself. For example

∞∑
1

1

n2
= 1 +

1

22
+

1

32
+

∞∑
4

1

n2

This last sum lies between two integrals.∫ ∞

3
dx

1

x2
>

∞∑
4

1

n2
>

∫ ∞

4
dx

1

x2
(9)

that is, between 1/3 and 1/4. Now I’ll estimate the whole sum by adding the first three terms explicitly and
taking the arithmetic average of these two bounds.

∞∑
1

1

n2
≈ 1 +

1

22
+

1

32
+

1

2

(
1

3
+

1

4

)
= 1.653

The exact sum is more nearly 1.644934066848226, but if you use brute-force addition to achieve accuracy
equivalent to this 1.653 estimation you will need to take about 120 terms. This series converges, but not
very fast.

Quicker Comparison Test
There is another way to handle the comparison test that works very easily and quickly (if it’s applicable). Look
at the terms of the series for large n and see what the approximate behavior of the nth term is. That provides a
comparison series. This is better shown by an example:

∞∑
1

n3 − 2n+ 1/n

5n5 + sinn
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For large n, the numerator is essentially n3 and the denominator is essentially 5n5, so for large n this series is
approximately like

∞∑ 1

5n2

More precisely, the ratio of the nth term of this approximate series to that of the first series goes to one as
n→∞. This comparison series converges, so the first one does too. If one of the two series diverges, then the
other does too.

Apply the ratio test to the series for ex.

ex =
∞∑
0

xk/k! so
uk+1

uk
=
xk+1/(k + 1)!

xk/k!
=

x

k + 1

As k →∞ this quotient approaches zero no matter the value of x. This means that the series converges for all
x.

Absolute Convergence
If a series has terms of varying signs, that should help the convergence. A series is absolutely convergent if it
converges when you replace each term by its absolute value. If it’s absolutely convergent then it will certainly be
convergent when you reinstate the signs. An example of a series that is convergent but not absolutely convergent
is ∞∑

k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− . . . = ln(1 + 1) = ln 2 (10)

Change all the minus signs to plus and the series is divergent. (Use the integral test.)
Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If a series is convergent

but not absolutely convergent, then each of the two series, the positive terms and the negative terms, is separately
divergent. In this case you can rearrange the terms of the series to converge to anything you want! Take the
series above that converges to ln 2. I want to rearrange the terms so that it converges to

√
2. Easy. Just start

adding the positive terms until you’ve passed
√

2. Stop and now start adding negative ones until you’re below
that point. Stop and start adding positive terms again. Keep going and you can get to any number you want.

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
− 1

3
etc.
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2.4 Series of Series
When you have a function whose power series you need, there are sometimes easier ways to the result than a

straight-forward attack. Not always, but you should look first. If you need the expansion of eax2+bx about the
origin you can do a lot of derivatives, using the general form of the Taylor expansion. Or you can say

eax2+bx = 1 + (ax2 + bx) +
1

2
(ax2 + bx)2 +

1

6
(ax2 + bx)3 + · · ·

and if you need the individual terms, expand the powers of the binomials and collect like powers of x:

1 + bx+ (a+ b2/2)x2 + (ab+ b3/6)x3 + · · ·

If you’re willing to settle for an expansion about another point, complete the square in the exponent

eax2+bx = ea(x2+bx/a) = ea(x2+bx/a+b2/4a2)−b2/4a = ea(x+b/2a)2−b2/4a = ea(x+b/2a)2e−b2/4a

= e−b2/4a
[
1 + a(x+ b/2a)2 + a2(x+ b/2a)4/2 + · · ·

]
and this is a power series expansion about the point x0 = −b/2a.

What is the power series expansion of the secant? You can go back to the general formulation and
differentiate a lot or you can use a combination of two known series, the cosine and the geometric series.

sec x =
1

cosx
=

1

1− 1
2!x

2 + 1
4!x

4 + · · ·
=

1

1−
[

1
2!x

2 − 1
4!x

4 + · · ·
]

= 1 +
[ ]

+
[ ]2

+
[ ]3

+ · · ·

= 1 +
[

1
2!x

2 − 1
4!x

4 + · · ·
]
+
[

1
2!x

2 − 1
4!x

4 + . . .
]2

+ · · ·
= 1 + 1

2!x
2 +

(
− 1

4! + ( 1
2!)

2
)
x4 + · · ·

= 1 + 1
2!x

2 + 5
24x

4 + · · ·

This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging into the general
formula for the Taylor series Eq. (4).
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2.5 Power series, two variables
The idea of a power series can be extended to more than one variable. One way to develop it is to use exactly
the same sort of brute-force approach that I used for the one-variable case. Assume that there is some sort of
infinite series and successively evaluate its terms.

f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3 · · ·
Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with the single variable,
evaluate it at the origin, the point (0, 0).

f(0, 0) = A+ 0 + 0 + · · ·
Now differentiate, but this time you have to do it twice, once with respect to x while y is held constant and once
with respect to y while x is held constant.

∂f

∂x
(x, y) = B + 2Dx+ Ey + · · · then

∂f

∂x
(0, 0) = B

∂f

∂y
(x, y) = C + Ex+ 2Fy + · · · then

∂f

∂y
(0, 0) = C

Three more partial derivatives of these two equations gives the next terms.

∂2f

∂x2
(x, y) = 2D + 6Gx+ 2Hy · · ·

∂2f

∂x∂y
(x, y) = E + 2Hx+ 2Iy · · ·

∂2f

∂y2
(x, y) = 2F + 2Ix+ 6Jy · · ·

Evaluate these at the origin and you have the values of D, E, and F . Keep going and you have all the coefficients.
This is awfully cumbersome, but mostly because the crude notation that I’ve used. You can make it look

less messy simply by choosing a more compact notation. If you do it neatly it’s no harder to write the series as
an expansion about any point, not just the origin.

f(x, y) =
∞∑

m,n=0

Amn(x− a)m(y − b)n (11)
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Differentiate this m times with respect to x and n times with respect to y, then set x = a and y = b. Only one
term survives and that is

∂m+nf

∂xm∂yn
(a, b) = m!n!Amn

I can use subscripts to denote differentiation so that ∂f
∂x is fx and ∂3f

∂x2∂y
is fxxy. Then the two-variable

Taylor expansion is

f(x, y) = f(0)+fx(0)x+ fy(0)y+

1

2

[
fxx(0)x2 + 2fxy(0)xy + fyy(0)y

2
]
+

1

3!

[
fxxx(0)x3 + 3fxxy(0)x

2y + 3fxyy(0)xy
2 + fyyy(0)y

3
]
+ · · ·

Again put more order into the notation and rewrite the general form using Amn as

Amn =
1

(m+ n)!

(
(m+ n)!

m!n!

)
∂m+nf

∂xm∂yn
(a, b) (12)

That factor in parentheses is variously called the binomial coefficient or a combinatorial factor. Standard notations
for it are

m!

n!(m− n)!
= mCn =

(
m

n

)
(13)

The binomial series, Eq. (3), for the case of a positive integer exponent is

(1 + x)m =
m∑

n=0

(
m

n

)
xn, or more symmetrically

(a+ b)m =
m∑

n=0

(
m

n

)
anbm−n (14)

(a+ b)2 = a2 + 2ab+ b2, (a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you choose n objects from a
collection of m of them, mCn is the answer.
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2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and Gaussian integrals
provides a useful approximate value for the factorial of large n.

n! ∼
√

2πnnne−n for large n (15)

Start from the Gamma function of n+ 1.

n! = Γ(n+ 1) =

∫ ∞

0
dt tne−t =

∫ ∞

0
dt e−t+n ln t

The integrand starts at zero, increases, and drops back down to zero as t→∞. The graph roughly resembles a
Gaussian, and I can make this more precise by expanding the exponent around the point where it is a maximum.
The largest contribution to the whole integral comes from the region near this point. Differentiate the exponent
to find the maximum:

t

t = n = 5

t5e−t

21.06

d

dt

(
− t+ n ln t

)
= −1 +

n

t
= 0 gives t = n

Expand about this point

f(t) = −t+ n ln t = f(n) + (t− n)f ′(n) + (t− n)2f ′′(n)/2 + · · ·
= −n+ n lnn+ 0 + (t− n)2(−n/n2)/2 + · · ·

Keep terms only to the second order and the integral is approximately

n! ∼
∫ ∞

0
dt e−n+n ln n−(t−n)2/2n = nne−n

∫ ∞

0
dt e−(t−n)2/2n (16)
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At the lower limit of the integral, t = 0, this integrand is e−n/2, so if n is even moderately large then extending
the range of the integral to the whole line −∞ to +∞ won’t change the final answer much.

nne−n

∫ ∞

−∞
dt e−(t−n)2/2n = nne−n

√
2πn

where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).
To see how good this is, try a few numbers

n n! Stirling ratio difference
1 1 0.922 0.922 0.078
2 2 1.919 0.960 0.081
5 120 118.019 0.983 1.981

10 3628800 3598695.619 0.992 30104.381

You can see that the ratio of the exact to the approximate result is approaching one even though the difference
is getting very large. This is not a handicap, as there are many circumstances for which this is all you need. I
derived this assuming that n is large, but notice that the result is not too bad even for modest values. The error
is less than 2% for n = 5. There are even some applications, especially in statistical mechanics, in which you can
make a still cruder approximation and drop the factor

√
2πn.

Asymptotic
You may have noticed the symbol that I used in Eqs. (15) and (16). “∼” doesn’t mean “approximately equal
to” or “about,” because as you see here the difference between n! and the Stirling approximation grows with n.
That the ratio goes to one is the important point here and it gets this special symbol, “asymptotic to.”

Probability Distribution
In section 1.4 the equation (1.16) describes the distribution of the results when you toss a coin. It’s straight-
forward to derive this from Stirling’s formula. In fact it is just as easy to do a version of it for which the coin is
biased, or more generally, for any case that one of the choices is more likely than the other.

Suppose that the two choices will come up at random with fractions a and b, where a + b = 1. You can
still picture it as a coin toss, but using a very unfair coin. If you toss two coins, the possibilities are

TT HT TH HH
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and the fractions of the time that you get each pair are respectively

a2 ba ab b2

This says that the fraction of the time that you get no heads, one head, or two heads are

a2, 2ab, b2 with total (a+ b)2 = a2 + 2ab+ b2 = 1

a is the fraction for tails.
Generalize this to the case where you throw N coins at a time and determine how often you expect to see

0, 1, . . . , N heads. Equation (14) says

(a+ b)N =
N∑

k=0

(
N

k

)
akbN−k where

(
N

k

)
=

N !

k!(N − k)!

When you make a trial in which you toss N coins, you expect that the first choice will come up N times only the
fraction aN of the trials. All tails and no heads. Compare problem 27.

The problem is now to use Stirling’s formula to find an approximate result for the terms of this series. This
is the fraction of the trials in which you turn up k tails and N − k heads.

akbN−k N !

k!(N − k)!
∼ akbN−k

√
2πN NNe−N

√
2πk kke−k

√
2π(N − k) (N − k)N−ke−(N−k)

= akbN−k 1√
2π

√
N

k(N − k)
NN

kk(N − k)N−k
(17)

The complicated parts to manipulate are the factors with all the exponentials of k in them. Pull them out from
the denominator for separate handling.

kk(N − k)N−ka−kb−(N−k)

The next trick is to take a logarithm and to do all the manipulations on it.

ln→ k ln k + (N − k) ln(N − k)− k ln a− (N − k) ln b = f(k) (18)
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The original function is a maximum when this denominator is a minimum. When the numbers N and k are big,
you can treat k as a continuous variable and differentiate with respect to it. Then set this derivative to zero and
finally, expand in a power series about that point.

d

dk
f(k) = ln k + 1− ln(N − k)− 1− ln a+ ln b = 0

ln
k

N − k
= ln

a

b
,

k

N − k
=
a

b
, k = aN

At this point, what is the second derivative?

d2

dk2
f(k) =

1

k
+

1

N − k

when k = aN,
1

k
+

1

N − k
=

1

aN
+

1

N − aN
=

1

aN
+

1

bN
=

1

abN

The power series for f(k) is

f(k) = f(aN) + (k − aN)f ′(aN) +
1

2
(k − aN)2f ′′(aN) + · · ·

= N lnN +
1

2abN
(k − aN)2 + · · ·

To substitute this back into Eq. (17), take its exponential. Then because this will be a fairly sharp maximum, only
the values of k near to aN will be significant. That allows me to use this central value of k in the slowly varying
square root coefficient and also I can neglect higher order terms in the power series expansion. Let δ = k − aN .
The result is the Gaussian distribution.

1√
2π

√
N

aN(N − aN)

NN

NNeδ
2/2abN

=
1√

2abNπ
e−δ2/2abN (19)

When a = 1/2 and b = 1/2, this reduces to Eq. (1.16).
When you accumulate N trials at a time (large N) and then look for the distribution in these cumulative

results, you will always get a Gaussian. This is the central limit theorem, which says that whatever set of
probabilities that you start with, not just a coin toss, you will always get a Gaussian by averaging the data.
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2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are probably not the
sort of thing you’d think of until you’ve seen them once. Example: What is the sum of

1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·?

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce to do integrals as in
Eq. (1.5). Consider the series with the parameter x in it.

f(x) = x− x3

3
+
x5

5
− x7

7
+
x9

9
− · · ·

If I differentiate this with respect to x I get

f ′(x) = 1− x2 + x4 − x6 + x8 − · · ·

That looks a bit like the geometric series except that it has only even powers and the signs alternate. Is that
too great an obstacle? If 1/(1− x) has only the plus signs, then 1/(1 + x) alternates in sign. Instead of x as a
variable, use x2, then you get exactly what you’re looking for.

f ′(x) = 1− x2 + x4 − x6 + x8 − · · · = 1

1 + x2

Now to get back to the original series, which is f(1) recall, all that I need to do is integrate this expression for
f ′(x). The lower limit is zero, because f(0) = 0.

f(1) =

∫ 1

0
dx

1

1 + x2
= tan−1 x

∣∣∣∣1
0

=
π

4

This series converges so slowly however that you would never dream of computing π this way. If you take 100
terms, the next term is 1/201 and you can get a better approximation to π by using 22/7.

The geometric series is 1 + x+ x2 + x3 + · · ·, but what if there’s an extra factor in front of each term?

f(x) = 2 + 3x+ 4x2 + 5x3 + · · ·
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If I multiply this by x I get 2x+ 3x2 + 4x3 + 5x4 + · · · and that starts to look like a derivative.

xf(x) = 2x+ 3x2 + 4x3 + 5x4 + · · · = d

dx

(
x2 + x3 + x4 + · · ·

)
Again, the geometric series pops up, though missing a couple of terms.

xf(x) =
d

dx

(
1 + x+ x2 + x3 + · · · − 1− x

)
=

d

dx

[
1

1− x
− 1− x

]
=

1

(1− x)2
− 1

The final result is then

f(x) =
1

x

[
1− (1− x)2

(1− x)2

]
=

2− x
(1− x)2

2.8 Diffraction
When light passes through a very small opening it will be diffracted so that it will spread out in a characteristic
pattern of higher and lower intensity. The analysis of the result uses many of the tools that you’ve looked at in
the first two chapters, so it’s worth showing the derivation first.

The light that is coming from the left side of the figure has a wavelength λ and wave number k = 2π/λ.
The light passes through a narrow slit of width = a. The Huygens construction for the light that comes through
the slit says that you can effectively treat each little part of the slit as if it is a source of part of the wave that
comes through to the right. (As a historical note, the mathematical justification for this procedure didn’t come
until about 150 years after Huygens proposed it, so if you think it isn’t obvious why it works, you’re right.)

y

dy

y sin θ

θ

r

r0
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Call the coordinate along the width of the slit y, where 0 < y < a. I want to find the total light wave that
passes through the slit and that heads at the angle θ away from straight ahead. The light that passes through
between coordinates y and y + dy is a wave

Ady cos(kr − ωt)

Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy that I am considering.
The coordinate along the direction of the wave is r. The total wave that will head in this direction is the sum
(integral) over all these little pieces of the slit.

Let r0 be the distance measured from the bottom of the slit to where the light is received far away. I can
find the value of r by doing a little trigonometry to get

r = r0 − y sin θ

The total wave to be received is now the integral∫ a

0
Ady cos

(
k(r0 − y sin θ)− ωt

)
= A

sin
(
k(r0 − y sin θ)− ωt

)
−k sin θ

∣∣∣∣∣
a

0

Put in the limits to get
A

−k sin θ

[
sin
(
k(r0 − a sin θ)− ωt

)
− sin

(
kr0 − ωt

)]
I need a trigonometric identity here, one that you can easily derive with the techniques of complex algebra in
chapter 3.

sin x− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
Use this and the light amplitude is

2A

−k sin θ
sin

(
−ka

2
sin θ

)
cos
(
k(r0 −

a

2
sin θ)− ωt

)
(20)

The wave is the cosine factor. It is a cosine of (k . distance − ωt), and the distance in question is the
distance to the center of the slit. This is then a wave that appears to be coming from the middle of the slit, but
with an amplitude that varies strongly with angle. That variation comes from the other factors in Eq. (20).
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It’s the variation with angle that I want to look at. The intensity of the wave, the power per area, is
proportional to the square of the wave’s amplitude. I’m going to ignore all the constant factors, so I won’t worry
about the constant of proportionality. The intensity is then (up to a factor)

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

(21)

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth of a millimeter.
The size of ka/2 is then about

ka/2 = πa/λ ≈ 3 . 0.1 mm/500 nm ≈ 1000

When you plot this intensity versus angle, the numerator vanishes when the argument of sin2() is nπ, with n an
integer, +, −, or 0. This says that the intensity vanishes in these directions except for θ = 0. In that case the
denominator vanishes too, so you have to look closer. For the simpler case that θ 6= 0, these angles are

nπ =
ka

2
sin θ ≈ ka

2
θ n = ±1, ±2, . . .

Because ka is big, you have many values of n before the approximation that sin θ = θ becomes invalid. You can
rewrite this in terms of the wavelength because k = 2π/λ.

nπ =
2πa

2λ
θ, or θ = nλ/a

What happens at zero? Use power series expansions to evaluate this indeterminate form. The first term in
the series expansion of the sine is θ itself, so

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

−→
(
(ka/2)θ

)2
θ2

=

(
ka

2

)2

(22)

What is the behavior of the intensity near θ = 0? Again, use power series expansions, but keep another
term

sin θ = θ − 1

6
θ3 + · · · , and (1 + x)α = 1 + αx+ · · ·
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Remember, ka/2 is big! This means that it makes sense to keep only one term of the sine expansion for sin θ
itself, but you’d better keep an extra term in the expansion of the sin2(ka . . .).

I ≈
sin2

(
(ka/2)θ

)
θ2

=
1

θ2

[(
ka

2
θ

)
− 1

6

(
ka

2
θ

)3

+ · · ·

]2

=
1

θ2

(
ka

2
θ

)2
[
1− 1

6

(
ka

2
θ

)2

+ · · ·

]2

=

(
ka

2

)2
[
1− 1

3

(
ka

2
θ

)2

+ · · ·

]
When you use the binomial expansion, put the binomial in the standard form, (1 + x) as I did in the second line
of these equations. What is the shape of this function? Forget all the constants, and it looks like 1− θ2. That’s
a parabola.

The dots are the points where the intensity goes to zero, nλ/a. Between these directions it reaches a
maximum. How big is it there ? These maxima are about halfway between the points where (ka sin θ)/2 = nπ.
This is

ka

2
sin θ = (n+ 1/2)π, n = ±1, ±2, . . .

At these angles the value of I is, from Eq. (21),

I =

(
ka

2

)2(
1

(2n+ 1)π/2

)2

The intensity at θ = 0 is by Eq. (22), (ka/2)2, so the maxima off to the side have intensities that are smaller
than this by factors of

1

9π2/4
= 0.045,

1

25π2/4
= 0.016, . . .



2—Infinite Series 50

2.9 Checking Results

When you solve any problem, or at least think that you’ve solved it, you’re not done. You still have to check
to see whether your result makes any sense. If you’re dealing with a problem whose solution is in the back of
the book then do you think that the author is infallible? If there is no back of the book and you’re working on
something that you would like to publish, do you think that you’re infallible? Either way you can’t simply assume
that you’ve made no mistakes and you have to look at your answer skeptically.

There’s a second reason, at least as important, to examine your results: that’s where you can learn some
physics and gain some intuition. Solving a complex problem and getting a complicated answer may involve a lot
of mathematics but you don’t usually gain any physical insight from doing it. When you analyze your results you
can gain an understanding of how the mathematical symbols are related to physical reality. Often an approximate
answer to a complicated problem can give you more insight than an exact one, especially if the approximate
answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you are computing a
length and your result is a velocity then you’re wrong. If you have something in your result that involves adding
a time to an acceleration or an angle to a distance, then you’ve made a mistake; go back and find it. You can do
this sort of analysis everywhere, and it is the one technique that I know that provides an automatic error finding
mechanism. If an equation is dimensionally inconsistent, backtrack a few lines and see whether the units are
wrong there too. If they are correct then you know that your error occurred between those two lines; then further
narrow the region where the mistake happened by looking for the place at which the dimensions changed from
consistent to inconsistent and that’s where the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the result and to see what
happens when you vary them. Especially see what happens when you push them to an extreme value. This is
best explained by some examples. Start with some simple mechanics to see the procedure.
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m1
ax

M

m2

Two masses are attached by a string of negligible mass and that is wrapped around a pulley of mass M so
that it can’t slip on the pulley. Analyze them to determine what is wrong with each. Assume that there is no
friction between m1 and the table and that the string does not slip on the pulley.

(a) ax =
m2 −m1

m2 +m1
g (b) ax =

m2

m2 +m1 −M/2
g (c) ax =

m2 −M/2

m2 +m1 +M/2
g

(a) If m1 � m2, this is negative, meaning that the motion of m1 is being slowed down. But there’s no
friction or other such force to do this.
OR If m1 = m2, this is zero, but there are still unbalanced forces causing these masses to accelerate.

(b) If the combination of masses is just right, for example m1 = 1 kg, m2 = 1 kg, and M = 2 kg, the
denominator is zero. The expression for ax blows up — a very serious problem.
OR If M is very large compared to the other masses, the denominator is negative, meaning that ax is negative
and the acceleration is a braking. Without friction, this is impossible.

(c) If M � m1 and m2, the numerator is mostly −M/2 and the denominator is mostly +M/2. This makes
the whole expression negative, meaning that m1 and m2 are slowing down. There is no friction to do this, and
all the forces are the direction to cause acceleration toward positive x.
OR If m2 = M/2, this equals zero, saying that there is no acceleration, but in this system, ax will always be
positive.

The same picture, but with friction µk between m1 and the table.

(a) ax =
m2

m2 + µkm1 +M/2
g (b) ax =

m2 − µkm1

m2 −M/2
g (c) ax =

m2

m2 + µkm1 −M/2
g

(a) If µk is very large, this approaches zero. Large friction should cause m1 to brake to a halt quickly with
very large negative ax.
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OR If there is no friction, µk = 0, then m1 plays no role in this result but if it is big then you know that it will
decrease the downward acceleration of m2.

(b) The denominator can vanish. If m2 = M/2 this is nonsense.
(c) This suffers from both of the difficulties of (a) and (b).

a
b

c

Electrostatics Example
Still another example, but from electrostatics this time: Two thin circular rings have radii a and b and carry
charges Q1 and Q2 distributed uniformly around them. The rings are positioned in two parallel planes a distance
c apart and with axes coinciding. The problem is to compute the force of one ring on the other, and for the single
non-zero component the answer is (perhaps)

Fz =
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + (b− a)2 + 4ab sin2 θ

]3/2
. (23)

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c2)3/2 = 1/c3, where c is one
of the lengths. Combine this with the factors in front of the integral and one of the lengths (c’s) cancels, leaving
Q1Q2/ε0c

2. This is (again dimensionally) the same as Coulomb’s law, q1q2/4πε0r
2, so it passes this test.

When you’ve done the dimensional check, start to consider the parameters that control the result. The
numbers a, b, and c can be anything: small, large, or equal in any combination. For some cases you should be
able to say what the answer will be, either approximately or exactly, and then check whether this complicated
expression agrees with your expectation.

If the rings shrink to zero radius this has a = b = 0, so Fz reduces to

Fz →
Q1Q2c

2π2ε0

∫ π/2

0
dθ

1

c3
=
Q1Q2c

2π2ε0

π

2c3
=

Q1Q2

4πε0c2

and this is the correct expression for two point charges a distance c apart.
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If c� a or b then this is really not very different from the preceding case, where a and b are zero.
If a = 0 this is

Fz →
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + b2

]3/2
=
Q1Q2c

2π2ε0

π/2[
c2 + b2

]3/2
=

Q1Q2c

4πε0
[
c2 + b2

]3/2
(24)

The electric field on the axis of a ring is something that you can compute easily. The only component of the
electric field at a point on the axis is itself along the axis. You can prove this by assuming that it’s false. Suppose
that there’s a lateral component of ~E and say that it’s to the right. Rotate everything by 180◦ about the axis
and this component of ~E will now be pointing in the opposite direction. The ring of charge has not changed
however, so ~E must be pointing in the original direction. This supposed sideways component is equal to minus
itself, and the only thing that’s equal to minus itself is zero.

All the contributions to ~E except those parallel the axis add to zero. Along the axis each piece of charge
dq contributes the component

b

c
dq

4πε0[c2 + b2]
. c√

c2 + b2

The first factor is the magnitude of the field of the point charge at a distance r =
√
c2 + b2 and the last factor

is the cosine of the angle between the axis and r. Add all the dq together and you get Q1. Multiply that by Q2

and you have the force on Q2 and it agrees with the expressions Eq. (24)
If c→ 0 then Fz → 0 in Eq. (23). The rings are concentric and the outer ring doesn’t push the inner ring

either up or down.
But wait. In this case, where c → 0, what if a = b? Then the force should approach infinity instead of

zero because the two rings are being pushed into each other. If a = b then

Fz =
Q1Q2c

2π2ε0

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
(25)
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If you simply set c = 0 in this equation you get

Fz =
Q1Q20

2π2ε0

∫ π/2

0

dθ[
4a2 sin2 θ

]3/2

The numerator is zero, but look at the integral. The variable θ goes from 0 to π/2, and at the end near zero the
integrand looks like

1[
4a2 sin2 θ

]3/2
≈ 1[

4a2θ2
]3/2

=
1

8a3θ3

Here I used the first term in the power series expansion of the sine. The integral near the zero end is then
approximately ∫ ...

0

dθ

θ3
=
−1

2θ2

∣∣∣∣...
0

and that’s infinite. This way to evaluate Fz is indeterminate: 0 .∞ can be anything. It doesn’t show that this
Fz gives the right answer, but it doesn’t show that it’s wrong either.

Estimating a tough integral
Although this is more difficult, even tricky, I’m going to show you how to examine this case for small values of c
and not for c = 0. The problem is in figuring out how to estimate the integral (25) for small c, and the key is to
realize that the only place the integrand gets big is in the neighborhood of θ = 0. The trick then is to divide the
range of integration into two pieces∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
=

∫ Λ

0
+

∫ π/2

Λ

For any positive value of Λ the second piece of the integral will remain finite even as c→ 0. This means that in
trying to estimate the way that the whole integral approaches infinity I can ignore the second part of the integral.
Now I choose Λ small enough that for 0 < θ < Λ I can use the approximation sin θ = θ, the first term in the
series for sine. (Perhaps Λ = 0.1 or so.)

for small c,

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
≈
∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
+ a constant
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This is an elementary integral. Let θ = (c/2a) tanφ.∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
=

∫ Λ′

0

(c/2a) sec2 φ dφ

[c2 + c2 tan2 φ]3/2
=

1

2ac2

∫ Λ′

0
cosφ =

1

2ac2
sin Λ′

The limit Λ′ comes from Λ = (c/2a) tan Λ′, so this implies tan Λ′ = 2aΛ/c. Now given the tangent of an angle,
I want the sine — that’s the first page of chapter one.

sin Λ′ =
2aΛ/c√

1 + (2aΛ/c)2
=

2aΛ√
c2 + 4a2Λ2

As c→ 0, this approaches one. Put all of this together and you have the behavior of the integral in Eq. (25) for
small c. ∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
∼ 1

2ac2
+ a constant

Insert this into Eq. (25) to get

Fz ∼
Q1Q2c

2π2ε0
. 1

2ac2
=

Q1Q2

4π2ε0ac

Now why should I believe this any more than I believed the original integral? When you are very close to one
of the rings, it will look like a long, straight line charge and the linear charge density on it is then λ = Q1/2πa.
What is the electric field of an infinitely long uniform line charge? Er = λ/2πε0r. So now at the distance c from
this line charge you know the E-field and to get the force on Q2 you simply multiply this field by Q2.

Fz should be
λ

2πε0c
Q2 =

Q1/2πa

2πε0c
Q2

and that’s exactly what I found in the preceding equation. After all these checks I think that I may believe the
result, and more than that you begin to get an intuitive idea of what the result ought to look like. That’s at least
as valuable. It’s what makes the difference between understanding the physics underlying a subject and simply
learning how to manipulate the mathematics.
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Problems

2.1 If you borrow $200,000 to buy a house and will pay it back in monthly installments over 30 years at an annual
interest rate of 6%, what is your monthly payment and what is the total money that you have paid (neglecting
inflation)? To start, you have N payments p with monthly interest i and after all N payments your unpaid
balance must reach zero. The initial loan is L and you pay at the end of each month.

((L(1 + i)− p)(1 + i)− p)(1 + i)− p · · · N times = 0

Now carry on and find the general expression for the monthly payment.
Does your general result for arbitrary N reduce to the correct value if you pay everything back at the end of one
month? [L(1 + i) = p]
For general N , what does your result become if the interest rate is zero? Ans: $1199.10

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. What is now the total amount of
money that you’ve paid in constant dollars? That is, one hundred dollars in the year 2010 would be worth only
$100/1.0210 = $82.03 as expressed in year-2000 dollars.

2.3 Derive all the power series that you’re supposed to memorize, Eq. (3).

2.4 Sketch graphs of the functions

e−x2

xe−x2

x2e−x2

e−|x| xe−|x| x2e−|x| e−1/x2

2.5 The sample series of Eq. (6) has a simple graph (x2 between −L and +L) Sketch graphs of one, two, three
terms of this series to see if the graph is headed toward what is supposed to be the answer.

2.6 Evaluate this same Fourier series for x2 at x = L; the answer is supposed to be L2. Rearrange the result
from the series and show that you can use it to evaluate ζ(2), Eq. (5). Ans: π2/6

2.7 Determine the domain of convergence for all the series in Eq. (3).
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2.8 Determine the Taylor series for coshx and sinh x.

2.9 Working strictly by hand, evaluate 7
√

0.999. Also
√

50.

2.10 Determine the next, x6, term in the series expansion of the secant.

2.11 The power series for the tangent is not as neat and simple as for the sine and cosine. You can derive it
by taking successive derivatives as done in the text or you can use your knowledge of the series for the sine and
cosine, and the geometric series.

tan x =
sin x

cosx
=
x− x3/3! + · · ·
1− x2/2! + · · ·

=
[
x− x3/3! + · · ·

][
1− x2/2! + · · ·

]−1

Use the expansion for the geometric series to place all the x2, x4, etc. terms into the numerator. Then collect
the like powers to obtain the series at least through x5. Ans: x+ x3/3 + 2x5/15 + 17x7/315 + · · ·

2.12 What is the series expansion for csc x = 1/ sin x? As in the previous problem, use your knowledge of the
sine series and the geometric series to get this one at least through x5. Note: the first term in this series is 1/x.
Ans: 1/x+ x/6 + 7x3/360 + 31x5/15120 + · · ·

2.13 The exact relativistic expression for the kinetic energy of an object with positive mass is

K = mc2

[
1√

1− v2/c2
− 1

]

where c is the speed of light in vacuum. If the speed v is small compared to the speed of light, find an approximate
expression for K to show that it reduces to the Newtonian expression for the kinetic energy. What is the next term
in the expansion and how large the speed v must be in order that this correction term is 10% of the Newtonian
expression for the kinetic energy? Ans: v ≈ 0.36 c
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2.14 Use series expansions to evaluate

lim
x→0

1− cosx

1− coshx
and lim

x→0

sin kx

x

2.15 Evaluate using series

lim
x→0

(
1

sin2 x
− 1

x2

)
Now do it again, setting up the algebra differently and finding an easier (or harder) way. Ans: 1/3

2.16 For some more practice with series, evaluate

lim
x→0

(
2

x
+

1

1−
√

1 + x

)
Ans: Check experimentally with a pocket calculator.

2.17 Expand the integrand and find the power series expansion for

ln(1 + x) =

∫ x

0

dt

1 + t

2.18 The error function erf(x) is defined by an integral. Expand the integrand, integrate term by term, and
develop a power series representation for erf. For what values of x does it converge? Evaluate erf(1) from this
series and compare it to the result of problem 1.34. Also, as further validation of the integral in problem 1.13,
do the power series expansion of both sides and verify the expansions of the two sides of the equation.

2.19 Verify that the combinatorial factor mCn is really what results for the coefficients when you specialize the
binomial series Eq. (3) to the case that the exponent is an integer.
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2.20 Determine the double power series representation about (0, 0) of

1

(1− x/a)(1− y/b)

2.21 Determine the double power series representation about (0, 0) of

1

1− x/a− y/b

2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’s approximation to the exact
value. You may not be able to find the difference of two such large numbers. An improvement on the basic
Stirling’s formula is

√
2πnnne−n

(
1 +

1

12n

)
What is the ratio of approximate to exact for n = 1, 2, 10?
Ans: 0.99898, 0.99948, . . .

2.23 Evaluate the sum
∑∞

1 1/n(n+ 1). To do this, write the single term 1/n(n + 1) as a combination of two
fractions with denominator n and (n + 1) respectively, then start to write out the stated infinite series to a few
terms to see the pattern. When you do this you may be tempted to separate it into two series, of positive and of
negative terms. Examine the problem of convergence and show why this is wrong. Ans: 1

2.24 You can sometimes use the result of the previous problem to improve the convergence of a slow-converging
series. The sum

∑∞
1 1/n2 converges, but not very fast. If you add zero to it you don’t change the answer,

but if you’re clever about how you add it you can change this into a much faster converging series. Add
1−

∑∞
1 1/n(n+ 1) to this series and combine the sums.
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2.25 The electric potential from one point charge is kq/r. For two point charges, you add the potentials of
each: kq1/r1 + kq2/r2. Place a charge −q at the origin; place a charge +q at position (x, y, z) = (0, 0, a).
Write the total potential from these at an arbitrary position P with coordinates (x, y, z). Now suppose that

a is small compared to the distance of P to the origin (r =
√
x2 + y2 + z2) and expand your result to the

first non-vanishing power of a. This is the potential of an electric dipole. Also express your answer in spherical
coordinates. Ans: kqa cos θ/r2

2.26 Do the previous problem, but with charge −2q at the origin and charges +q at each of the two points
(0, 0, a) and (0, 0,−a). Again, you’re looking for the potential at a point far away from the charges, and up
to the lowest non-vanishing power of a. In effect you’re doing a series expansion in a/r and keeping the first
surviving term. Also express the result in spherical coordinates. The angular dependence should be proportional
to P2(cos θ) = 3

2 cos2 θ − 1
2 , a “Legendre polynomial.” This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (13) is supposed to be the number of different ways of choosing n objects
out of a set of m objects. Explicitly verify that this gives the correct number of ways for m = 1, 2, 3, 4. and all
n from zero to m.

2.28 Pascal’s triangle is a visual way to compute the values of mCn. Start with the single digit 1 on the top
line. Every new line is computed by adding the two neighboring digits on the line above. (At the end of the line,
treat the empty space as a zero.)

1

1 1

1 2 1

1 3 3 1

Write the next couple of lines of the triangle and then prove that this algorithm works, that is that the mth row
is the mCn where the top row has m = 0. Mathematical induction is the technique that I recommend.

2.29 Sum the series
1

2!
+

2

3!
+

3

4!
+ · · ·

Ans: 1
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2.30 You know the power series representation for the exponential function, but now apply it in a slightly different
context. Write out the power series for the exponential, but with an argument that is a differential operator. The
letter h represents some fixed number; interpret the square of d/dx as d2/dx2 and find

eh
d
dxf(x)

Interpret the terms of the series and show that the value of this is f(x+ h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have different formulas. The
Doppler effect for light, including relativistic effects is different still. Show that for low speeds they are all about
the same.

f ′ = f
v − vo
v

f ′ = f
v

v + vs
f ′ = f

√
1− v/c
1 + v/c

The symbols have various meanings: v is the speed of sound in the first two, with the other terms being the
velocity of the observer and the velocity of the source. In the third equation c is the speed of light and v is the
velocity of the observer. (And no, 1 = 1 isn’t good enough.)

2.32 In the equation (21) for the light diffracted through a narrow slit, the width of the central maximum is
dictated by the angle at the first dark region. How does this angle vary as you vary the width of the slit, a? What
is this angle if a = 0.1 mm and λ = 700 nm? And how wide will the central peak be on a wall 5 meters from the
slit? Take this width to be the distance between the first dark regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n. (For example, water.)
When viewed from directly above the object in air (i.e. use small angle approximation), the object appears to
be a distance below the surface given by (maybe) one of the following expressions. Show why most of these
expressions are implausible; that is, give reasons for eliminating the wrong ones.

(1)
d
√

1 + n2

n
(2)

dn√
1 + n2

(3)nd (4)
d

n
(5)

dn2

√
1 + n2
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d
ay

2.34 A mass m1 hangs from a string that is wrapped around a pulley of mass M . As the mass m1 falls with
acceleration ay, the pulley rotates. An anonymous source claims that the acceleration of m1 is one of the following
answers. Examine them to determine if any is plausible. That is, examine each and show why it could not be
correct. NOTE: solving the problem and then seeing if any of these agree is not what I want.

(1) (2) (3)

ay =
Mg

m1 −M
ay =

Mg

m1 +M
ay =

m1g

M

2.35 Combine two other series to get the series for ln(cos θ).

2.36 Subtract the series for ln(1 − x) and ln(1 + x). For what range of arguments of the logarithm does this
converge?

R θ

p q

2.37 Light travels from a point on the left (p) to a point on the right (q),
and on the left it is in vacuum while on the right of the spherical surface it
is in glass with an index of refraction n. The radius of the spherical surface
is R and you can parametrize the point on the surface by the angle θ from
the center of the sphere. Compute the time it takes light to travel on the
indicated path (two straight line segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and show that
the function T (θ) has a minimum if the distance q is small enough, but that
it switches to a maximum when q exceeds a particular value.
This is the focus.
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2.38 A function is defined by the integral

f(x) =

∫ x

0

dt

1− t2

Expand the integrand with the binomial expansion and derive the power (Taylor) series representation for f about
x = 0. Also make the hyperbolic substitution to evaluate it in closed form.

R θ

p
q

2.39 Light travels from a point on the right (p), hits a spherically shaped
mirror and goes to a point (q). The radius of the spherical surface is R and
you can parametrize the point on the surface by the angle θ from the center
of the sphere. Compute the time it takes light to travel on the indicated path
(two straight line segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and show that
the function T (θ) has a minimum if the distance q is small enough, but that
it switches to a maximum when q exceeds a particular value.
This is the focus.

2.40 The quadratic equation ax2 + bx + c = 0 is almost a linear equation if a is small enough: bx + c = 0 ⇒
x = −c/b. You can get a solution iteratively by rewriting the equation as

x = −c
b
− a

b
x2

Solve this by neglecting the second term, then with this approximate value of x get an improved value of the root
by

x2 = −c
b
− a

b
x2

1

and you can repeat the process. For comparison take the exact solution and do a power series expansion on it
for small a. See if the results agree.
Where does the other root come from? That x is very large, so the first two terms in the quadratic are the big
ones and must nearly cancel. ax2 + bx = 0 so x = −b/a. Rearrange the equation so that you can iterate it.

x = − b
a
− c

ax
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Iterate on this and compare it to the series expansion of the exact solution.
Solve 0.001x2 + x+ 1 = 0.

2.41 Evaluate the limits

lim
x→0

sin x− tan x

x
, lim

x→0

sin x− tan x

x2
, lim

x→0

sin x− tan x

x3
,

2.42 Fill in the missing steps in the derivation of Eq. (19).

2.43 Is the result in Eq. (19) normalized properly? What is its integral dδ over all δ? Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom they will vote for as
dog-catcher-in-chief. The results are 49.0% for I. Hulk and 51.0% for Spiderman. Assuming these numbers are
representative, what is the probability that Mr. Hulk will win the final vote? What would the answer be if the
survey had asked 150 or 15000 people with the same 49-51 results? Ans: 22% = 0.5

(
1− erf(15/27.38)

)
2.45 For the function defined in problem 38, what is its behavior near x = 1? Compare this result to equation

(1.4). Note: the integral is
∫ Λ
0 +

∫ x
Λ . Also, 1− t2 = (1 + t)(1− t), and this ≈ 2(1− t) near 1.

2.46 What is the expansion in powers of 1/(1 + t2) for small t. That was easy, now what is it for large t? In
each case, what is the domain of convergence?

2.47 The “average” of two numbers a and b commonly means (a+ b)/2, the arithmetic mean. There are many
other averages however. (a, b > 0)

Mn(a, b) =
[
(an + bn)/2

]1/n

is the nth mean. Show that this includes the geometric mean as a special case:
√
ab = limn→0Mn(a, b).

2.48 Using the definition from the preceding problem, show that dMn/dn > 0. From this, write down a sequence
of inequalities for various means: arithmetic, geometric, rms, harmonic.



Complex Algebra

When the idea of negative numbers was broached a couple of thousand years ago, they were considered suspect,
in some sense not “real.” Later, when Pythagoras or one of his students discovered that numbers such as

√
2 are

irrational and cannot be written as a quotient of integers, it was so upsetting that the discovery was suppressed.
Now these are both taken for granted as ordinary numbers of no special consequence. Why should

√
−1 be any

different? Yet it was not until the middle 1800’s that complex numbers were accepted as fully legitimate. Even
then, it took the prestige of Gauss to persuade some.

3.1 Complex Numbers
What is a complex number? If the answer involves

√
−1 then an appropriate response might be “What is that?”

Yes, we can manipulate objects such as −1 + 2i and get consistent results with them. We just have to follow
certain rules, such as i2 = −1. But is that an answer to the question? You can go through the entire subject
of complex algebra and even complex calculus without learning a better answer, but it’s nice to have a more
complete answer once, if then only to relax* and forget it.

An answer to this question is to define complex numbers as pairs of real numbers, (a, b). These pairs are
subject to rules of and multiplication:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac− bd, ad+ bc)

An algebraic system has to have something called zero, so that it plus any number leaves that number alone.
Here that role is taken by (0, 0)

(0, 0) + (a, b) = (a+ 0, b+ 0) = (a, b) for all values of (a, b)

What is the identity, the number such that it times any number leaves that number alone?

(1, 0)(c, d) = (1 . c− 0 . d, 1 . d+ 0 . c) = (c, d)

* If you think that this question is an easy one, you can read about some of the difficulties that the greatest
mathematicians in history had with it: “An Imaginary Tale: The Story of

√
−1 ” by Paul J. Nahin. I recommend

it.

65
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so (1, 0) has this role. Finally, where does
√
−1 fit in?

(0, 1)(0, 1) = (0 . 0− 1 . 1, 0 . 1 + 1 . 0) = (−1, 0)

and the sum (−1, 0) + (1, 0) = (0, 0) so (0, 1) is the representation of i =
√
−1, that is i2 + 1 = 0.

[
(0, 1)2 +

(1, 0) = (0, 0)
]
.

Having shown that it is possible to express complex numbers in a precise way, using combinations of objects
that you already understand, I’ll feel free to ignore this notation and use the more conventional representation,

(a, b) ←→ a+ ib

and that complex number will in turn usually be represented by a single letter, such as z = x+ iy.

2

z

z

z   +  z

2

1

1
The graphical interpretation of complex numbers is the Cartesian geometry

of the plane. The x and y in z = x + iy indicate a point in the plane, and the
operations of addition and multiplication can be interpreted as operations in the
plane. Addition of complex numbers is simple to interpret; it’s nothing more than
common vector addition where you think of the point as being a vector from the
origin. It reproduces the parallelogram law of vector addition.

The magnitude of a complex number is defined in the same way that you
define the magnitude of a vector in the plane. It is the distance to the origin using
the Euclidean idea of distance.

|z| = |x+ iy| =
√
x2 + y2 (1)

The multiplication of complex numbers doesn’t have such a familiar interpretation in the language of
vectors. (And why should it?)

3.2 Some Functions
For the algebra of complex numbers I’ll start with some simple looking questions of the sort that you know how
to handle with real numbers. If z is a complex number, what are z2 and

√
z? Use x and y for real numbers here.

z = x+ iy, so z2 = (x+ iy)2 = x2 − y2 + 2ixy
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That was easy, what about the square root? A little more work:

√
z = w =⇒ z = w2

If z = x+ iy and the unknown is w = u+ iv (u and v real) then

x+ iy = u2 − v2 + 2iuv, so x = u2 − v2 and y = 2uv

These are two equations for the two unknowns u and v, and the problem is now to solve them.

v =
y

2u
, so x = u2 − y2

4u2
, or u4 − xu2 − y2

4
= 0

This is a quadratic equation for u2.

u2 =
x±

√
x2 + y2

2
, then u = ±

√
x±

√
x2 + y2

2
(2)

Use v = y/2u and you have four roots with the four possible combinations of plus and minus signs. You’re
supposed to get only two square roots, so something isn’t right yet; which of these four have to be thrown out?
See problem 2.

What is the reciprocal of a complex number? You can treat it the same way that I handled the square root:
Solve for it.

(x+ iy)(u+ iv) = 1, so xu− yv = 1, xv + yu = 0

Solve the two equations for u and v. The result is

1

z
=

x− iy
x2 + y2

(3)

See problem 3. At least it’s obvious that the dimensions are correct even before you verify the algebra. In both
of these cases, the square root and the reciprocal, there is another way to do it, one that is much simpler. That’s
the subject of the next section.
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Complex Exponentials
A function that is central to the analysis of differential equations and to untold other mathematical ideas: the
exponential, the familiar ex. What is this function for complex values of the exponent?

ez = ex+iy = exeiy (4)

This means that all I have to do is work out the value for the purely imaginary exponent and the general case is
then just a product. There are several ways to work this out and I’ll pick one, leaving another for you, problem 8.

Whatever eiy is, it has a real and an imaginary part,

eiy = f(y) + ig(y)

Now in order to figure out what the two function f and g are, I’ll find a differential equation that they satisfy.
Differentiate this equation with respect to y.

d

dy
eiy = ieiy = f ′(y) + ig′(y)

= i
[
f(y) + ig(y)

]
= if(y)− g(y)

Equate the real and imaginary parts.

f ′(y) = −g(y) and g′(y) = f(y) (5)

You can solve simultaneous differential equations several ways, and here the simplest is just to eliminate one of
the unknown functions between them. Differentiate the first equation and eliminate g.

f ′′ = −g′, then f ′′ = −f

This is the standard harmonic oscillator equation, so the solution is a combination of sines and cosines.

f(y) = A cos y +B sin y

You find the unknown constants A and B by using initial conditions on f , and those values come from the value
of eiy at zero.

ei0 = 1 = f(0) + ig(0), so f(0) = 1 and g(0) = 0
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f(0) = 1 = A, f ′(y) = −A sin y +B cos y, f ′(0) = −g(0) = 0 = B

This determines that f(y) = cos y and then Eq. (5) determines that g(y) = sin y. Put them together and you
have Euler’s formula

eiy = cos y + i sin y (6)

A few special cases of this are worth noting: eiπ = −1 and e2iπ = 1. In fact, e2nπi = 1 so the exponential
is a periodic function in the imaginary direction.

What is
√
i? Express it in polar form:

(
eiπ/2

)1/2
, or better,

(
ei(2nπ+π/2)

)1/2
. This is

ei(nπ+π/4) = ±eiπ/4 = ±(cosπ/4 + i sin π/4) = ±1 + i√
2

i

π/4

π/2

3.3 Applications of Euler’s Formula
The magnitude or absolute value of a complex number z = x + iy is r =

√
x2 + y2. Combine this with the

complex exponential and you have another way to represent complex numbers.

r sin θ

r cos θ

x

r

θ

reiθ

y

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ (7)

This is the polar form of a complex number and x + iy is the rectangular form of the same number. The
magnitude is |z| = r =

√
x2 + y2.
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When you’re adding or subtracting complex numbers, the rectangular form is more convenient, but when
you’re multiplying or taking powers the polar form has advantages.

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities. Use Euler’s formula

in the preceding equation and write out the two sides.

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

The factors r1 and r2 cancel. Now multiply the two binomials on the left and match the real and the imaginary
parts to the corresponding terms on the right. The result is the pair of equations

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 and sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2 (8)

and you have a much simpler than usual derivation of these common identities. You can do similar manipulations
for other trigonometric identities, and in some cases you will encounter relations for which there’s really no other
way to get the result. That is why you will find that in physics applications where you might use sines or cosines
(oscillations, waves) no one uses anything but complex exponentials. Get used to it.

The trigonometric functions of complex argument follow naturally from these.

eiθ = cos θ + i sin θ, so, for negative angle e−iθ = cos θ − i sin θ

Add these and subtract these to get

cos θ =
1

2

(
eiθ + e−iθ

)
and sin θ =

1

2i

(
eiθ − e−iθ

)
(9)

What is this if θ = iy?

cos iy =
1

2

(
e−y + e+y

)
= cosh y and sin iy =

1

2i

(
e−y − e+y

)
= i sinh y
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Apply Eq. (8) for the addition of angles to the case that θ = x+ iy.

cos(x+ iy) = cosx cos iy − sin x sin iy = cos x cosh y − i sin x sinh y and

sin(x+ iy) = sin x cosh y + i cosx sinh y (10)

You can see from this that the sine and cosine of complex angles can be real and larger than one. See problem 22.
The hyperbolic functions and the circular trigonometric functions are now the same functions. You’re just looking
in two different directions in the complex plane. It’s just as if you’re changing from the equation of a circle,
x2 + y2 = R2, to that of a hyperbola, x2 − y2 = R2.

This polar form shows a geometric interpretation for the periodicity of the exponential. ei(θ+2π) = eiθ =
ei(θ+2kπ). In the picture, you’re going around a circle and coming back to the same point. If the angle θ is
negative you’re just going around in the opposite direction. An angle of −π takes you to the same point as an
angle of +π.

Complex Conjugate
The complex conjugate of a number z = x+ iy is the number z* = x− iy. Another common notation is z̄. The
product z*z is (x− iy)(x+ iy) = x2 + y2 and that is |z|2, the square of the magnitude of z. You can use this to
rearrange complex fractions, combining the various terms with i in them and putting them in one place. This is
best shown by some examples.

3 + 5i

2 + 3i
=

(3 + 5i)(2− 3i)

(2 + 3i)(2− 3i)
=

21 + i

13

What happens when you add the complex conjugate of a number to the number, z + z*?
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?
What about their cubes?
What about z + z2 and z∗ + z∗2?
What about comparing ez = ex+iy and ez

*
?

What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.
What is the quotient of a number and its complex conjugate?
What about the magnitude of the preceding quotient?
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Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3− 4i

2− i
=

(3− 4i)(2 + i)

(2− i)(2 + i)
=

10− 5i

5
= 2− i.

(3i+ 1)2
[

1

2− i
+

3i

2 + i

]
= (−8 + 6i)

[
(2 + i) + 3i(2− i)

(2− i)(2 + i)

]
= (−8 + 6i)

5 + 7i

5
=

2− 26i

5
.

i3 + i10 + i

i2 + i137 + 1
=

(−i) + (−1) + i

(−1) + (i) + (1)
=
−1

i
= i.

Manipulate these using the polar form of the numbers, though in some cases you can do it either way.

√
i =

(
eiπ/2

)1/2
= eiπ/4 =

1 + i√
2
.(

1− i
1 + i

)3

=

(√
2e−iπ/4

√
2eiπ/4

)3

=
(
e−iπ/2

)3
= e−3iπ/2 = i.

(
2i

1 + i
√

3

)25

=

(
2eiπ/2

2
(

1
2 + i12

√
3
))25

=

(
2eiπ/2

2eiπ/3

)25

=
(
eiπ/6

)25
= eiπ(4+1/2) = i

Roots of Unity
What is the cube root of one? One of course, but not so fast; there are three cube roots, and you can easily find
all of them using complex exponentials.

1 = e2kπi, so 11/3 =
(
e2kπi

)1/3
= e2kπi/3

and k is any integer. k = 0, 1, 2 give

11/3 = 1, e2πi/3 = cos(2π/3) + i sin(2π/3),

= −1

2
+ i

√
3

2

e4πi/3 = cos(4π/3) + i sin(4π/3)

= −1

2
− i
√

3

2
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and other integers k just keep repeating these three values.

e6πi/5

e4πi/5

e8πi/5

e2πi/5

1

5th roots

The roots are equally spaced around the unit circle. If you want the nth root, you do the same sort of
calculation: the 1/n power and the integers k = 0, 1, 2, . . . , (n − 1). These are n points equally spaced around
the circle.

3.4 Logarithms
The logarithm is the inverse function for the exponential. If ew = z then w = ln z. To determine what this is, let

w = u+ iv and z = reiθ, then eu+iv = eueiv = reiθ

This implies that eu = r and so u = ln r, but it doesn’t imply v = θ. Remember the periodic nature of the
exponential function? eiθ = ei(θ+2nπ), so you can conclude instead that v = θ + 2nπ.

ln z = ln
(
reiθ

)
= ln r + i(θ + 2nπ) (11)

has an infinite number of possible values. Is this bad? You’re already familiar with the square root function, and
that has two possible values, ±. This just carries the idea farther. For example ln(−1) = iπ or 3iπ or −7iπ etc.
As with the square root, the specific problem that you’re dealing with will tell you which choice to make.
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3.5 Mapping
When you apply a complex function to a region in the plane, it takes that region into another region. When you
look at this as a geometric problem you start to get some very pretty and occasionally useful results. Start with
a simple example,

w = f(z) = ez = ex+iy = exeiy (12)

If y = 0 and x goes from −∞ to +∞, this function goes from 0 to ∞.
If y is π/4 and x goes over this same range of values, f goes from 0 to infinity along the ray at angle π/4 above
the axis.
At any fixed y, the horizontal line parallel to the x-axis is mapped to the ray that starts at the origin and goes
out to infinity.
The strip from −∞ < x < +∞ and 0 < y < π is mapped into the upper half plane.

A A

B

C
D

E

F

GB
C
D
E
F
G

0

iπ

The line B from −∞+ iπ/6 to +∞+ iπ/6 is mapped onto the ray B from the origin along the angle π/6.

For comparison, what is the image of the same strip under a different function? Try

w = f(z) = z2 = x2 − y2 + 2ixy

The image of the line of fixed y is a parabola. The real part of w has an x2 in it while the imaginary part is linear
in x. That is the parametric representation of a parabola. The image of the strip is the region among the lines
below.
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and plot that point. Do
this for several pairs, trying to get a feel for how complex multiplication works. When you do this, be sure that
you’re not simply repeating yourself. Place the numbers in qualitatively different places.

3.2 In the calculation of the square root of a complex number,Eq. (2), I found four roots instead of two. Which
ones don’t belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it. Compute its square and
square root and plot them. Do this for several more (qualitatively different) examples.

3.5 Plot ect in the plane where c is a complex constant of your choosing and the parameter t varies over
0 ≤ t < ∞. Pick another couple of values for c to see how the resulting curves change. Don’t pick values that
simply give results that are qualitatively the same; pick values sufficiently varied so that you can get different
behavior. If in doubt about how to plot these complex numbers as functions of t, pick a few numerical values:
e.g. t = 0.01, 0.1, 0.2, 0.3, etc.

3.6 Plot sin ct in the plane where c is a complex constant of your choosing and the parameter t varies over
0 ≤ t <∞. Pick another couple of qualitatively different values for c to see how the resulting curves change.

3.7 Solve the equation z2 + iz + 1 = 0

3.8 Derive Euler’s formula a different way: Use the Taylor series expansion for the exponential to write out the
infinite series for eiy. Collect the terms with i and those without it. Recognize the two collections of terms for
what the are.

3.9 From
(
eix
)3

, deduce trigonometric identities for the cosine and sine of triple angles in terms of single angles.

Ans: cos 3x = cos x− 4 sin2 x cosx
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3.10 For arbitrary integer n > 1, compute the sum of all the nth roots of one. (When in doubt, try a couple of
special n first.)

3.11 Either solve for z in the equation ez = 0 or show why it can’t be done.

3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z defined by |z−z0| = R
is a circle. Write it out in rectangular components to see what this is in conventional Cartesian coordinates.

3.14 An ellipse is the set of points z such that the sum of the distances to two fixed points is a constant:
|z − z1| + |z − z2| = 2a. Pick the two points to be z1 = −f and z2 = +f on the real axis. Write z as x + iy
and manipulate this equation for the ellipse into a simple standard form.

3.15 Repeat the previous problem, but for the set of points such that the difference of the distances from two
fixed points is a constant.

3.16 There is a vertical line x = −f and a point on the x-axis z0 = +f . Find the set of points z so that the
distance to z0 is the same as the perpendicular distance to the line x = −f .

3.17 Sketch the set of points |z − 1| < 1.

3.18 Simplify the numbers

1 + i

1− i
,

−1 + i
√

3

+1 + i
√

3
,

i5 + i3√
3
√
i− 7 3

√
17− 4i

,

(√
3 + i

1 + i

)2

3.19 Express in polar form
2− 2i,

√
3 + i, −

√
5i, −17− 23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

z1 = r1e
iθ1 , z2 = r2e

iθ2 , and z3 = z2 − z1
Compute the magnitude squared of z3 and so derive the law of cosines. You did draw a picture didn’t you?
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3.21 What is ii? Ans: If you’d like to check your result, type i ∧ i into Google.

3.22 For what argument does sin θ = 2? cos θ? Ans: 1.5708± i1.3170

3.23 What are the other trigonometric functions, tan(ix), sec(ix), etc. What are tan and sec for the general
argument x+ iy. Ans: tan(x+ iy) = (tanx+ i tanh y)/(1− i tan x tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number of parallel slits. For
light observed at an angle θ away from directly ahead, this sum is, for N + 1 slits,

d
d
d
d
d

d sin θ

θ

r0

r0 − d sin θ

cos
(
kr0 − ωt

)
+ cos

(
k(r0 − d sin θ)− ωt

)
+ cos

(
k(r0 − 2d sin θ)− ωt

)
+

. . .+ cos
(
k(r0 −Nd sin θ)− ωt

)
Express this as the real part of complex exponentials and sum the finite series. Show that the resulting wave is

sin
(

1
2(N + 1)kd sin θ

)
sin
(

1
2kd sin θ

) cos
(
k(r0 − 1

2Nd sin θ)− ωt
)

Interpret this result as a wave that appears to be coming from some particular point (where?) and with an
intensity pattern that varies strongly with θ.

http://www.google.com
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3.25 If the coefficients in a quadratic equation are real, show that if z is a complex root of the equation then so
is z*. If you do this by reference to the quadratic formula, you’d better find another way too, because the second
part of this problem is
(b) generalize this to the root of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent complex number
with z = x+ iy = reiθ showing its rectangular or polar coordinates. Assume that r and θ are functions of time
and differentiate reiθ to get the velocity. Differentiate it again to get the acceleration. You can interpret eiθ

as the unit vector along the radius and ieiθ as the unit vector perpendicular to the radius and pointing in the
direction of increasing theta. Show that

d2z

dt2
= eiθ

[
d2r

dt2
− r

(
dθ

dt

)2
]

+ ieiθ
[
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

]
(13)

and now translate this into the usual language of components of vectors, getting the radial (r̂) component of
acceleration and the theta (θ̂) component of acceleration.

3.27 Use the results of the preceding problem, and examine the case of a particle moving directly away from the
origin. What is its acceleration? (b) If instead, it is moving at r = constant, what is its acceleration?

3.28 Was it really legitimate simply to substitute x + iy for θ1 + θ2 in Eq. (10) to get cos(x + iy)? Verify the
result by substituting the expressions for cosx and for cosh y as exponentials to see if you can reconstruct the
left-hand side.

3.29 The roots of the quadratic equation z2 + bz + c = 0 are functions of the parameters b and c. For real b
and c and for both cases c > 0 and c < 0 (say ±1 to be specific) plot the trajectories of the roots in the complex
plane as b varies from −∞ to +∞.

3.30 In integral tables you can find the integrals for such functions as∫
dx eax cos bx, or

∫
dx eax sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus i times the second and then
separate the real and imaginary parts.
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3.31 Find the sum of the series ∞∑
1

in

n

3.32 Evaluate | cos z|2. Evaluate | sin z|2.

3.33 Evaluate
√

1 + i. Evaluate ln(1 + i). Evaluate tan(1 + i).

3.34 Beats occur in sound when two sources emit two frequencies that are almost the same. The perceived
wave is the sum of the two waves, so that at your ear, the wave is a sum of two cosines of ω1t and of ω2t. Use
complex algebra to evaluate this. The sum is the real part of

eiω1t + eiω2t

Notice the two identities

ω1 =
ω1 + ω2

2
+
ω1 − ω2

2
and the difference of these for ω2. Use the complex exponentials to derive the results; don’t just look up some
trig identity. Factor the resulting expression and sketch a graph of the resulting real part, interpreting the result in
terms of beats if the two frequencies are close to each other. In the process of doing this problem using complex
exponentials, what is the trigonometric identity for the sum of two cosines? While you’re about it, what is the
difference of two cosines?

3.35 Derive using complex exponentials

sin x− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
3.36 The equation (4) assumed that the usual rule for multiplying exponentials still holds when you are using
complex numbers. Does it? You can prove it by looking at the infinite series representation for the exponential
and showing that

eaeb =

[
1 + a+

a2

2!
+
a3

3!
+ · · ·

] [
1 + b+

b2

2!
+
b3

3!
+ · · ·

]
=

[
1 + (a+ b) +

(a+ b)2

2!
+ · · ·

]
You may find Eq. (2.14) useful.
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3.37 Look at the vertical lines in the z-plane as mapped by Eq. (12). I drew the images of lines y = constant,
now you draw the images of the straight line segments x = constant from 0 < y < π. The two sets of lines in
the original plane intersect at right angles. What is the angle of intersection of the corresponding curves in the
image?

3.38 Instead of drawing the image of the lines x = constant as in the previous problem, draw the image of the
line y = x tanα, the line that makes an angle α with the horizontal lines. The image of the horizontal lines were
radial lines. At a point where this curve intersects one of the radial lines, what angle does the curve make with
the radial line? Ans: α

3.39 Write each of these functions of z in the form of two real functions u and v such that f(z) = u(x, y) +
iv(x, y).

z3,
1 + z

1− z
,

1

z2
,

z

z*

3.40 Evaluate zi where z is an arbitrary complex number, z = x+ iy = reiθ.

3.41 What is the image of the domain −∞ < x < +∞ and 0 < y < π under the function w =
√
z? Ans: One

boundary is a hyperbola.

3.42 What is the image of the disk |z − a| < b under the function w = cz + d? Allow c and d to be complex.

3.43 What is the image of the disk |z − a| < b under the function w = 1/z? Assume that b < a. Ans: Another
disk

3.44 (a) Multiply (2 + i)(3 + i) and deduce the identity

tan−1

(
1

2

)
+ tan−1

(
1

3

)
=
π

4

(b) Multiply (5 + i)4(−239 + i) and deduce

4 tan−1

(
1

5

)
+ tan−1

(
1

239

)
=
π

4

For (b) a sketch will help sort out some signs.



3—Complex Algebra 82

3.45 Use Eq. (9) and look back at the development of Eq. (1.4) to find the sin−1 and cos−1 in terms of
logarithms.

3.46 Evaluate the integral
∫∞
−∞ dx e−αx2

cos βx. Ans: e−β2/4α
√
π/α

3.47 Does the equation sin z = 0 have any roots other than the real ones? How about the cosine? The tangent?

3.48 Compute (a) sin−1 i. (b) cos−1 i. (c) tan−1 i. (d) sinh−1 i.



Differential Equations

The subject of ordinary differential equations encompasses such a large field that you can make a profession of
it. There are however a small number of techniques in the subject that you have to know. These are the ones
that come up so often in physical systems that you need not only the skills to use them but the intuition about
what they will do. That small group of methods is what I’ll concentrate on in this chapter.

4.1 Linear Constant-Coefficient
A differential equation such as (

d2x

dt2

)3

+ t2x4 + 1 = 0

is not one that I’m especially eager to solve, and one of the things that makes it difficult is that it is non-linear.
This means that if I have two solutions x1(t) and x2(t) then the sum x1 + x2 is not a solution; look at all the
cross-terms you get if you try to plug the sum in to the equation. Also if you multiply x1(t) by 2 you no longer
have a solution.

An equation such as

et
d3x

dt3
+ t2

dx

dt
− x = 0

may be a mess to solve, but if you have two solutions, x1(t) and x2(t) then the sum αx1 +βx2 is also a solution.
Proof? Plug in. This is called a linear, homogeneous equation because of this property. A similar-looking
equation,

et
d3x

dt3
+ t2

dx

dt
− x = t

does not have this property, though it’s close. It’s called a linear, inhomogeneous equation. If x1(t) and x2(t) are
solutions to this, then if I try their sum as a solution I get 2t = t, and that’s no solution, but it misses working
only because of the single term on the right.

One of the most common sorts of differential equations that you see is an especially simple one to solve.
That’s part of the reason it’s so common. This is the linear, constant-coefficient, differential equation. If you
have a mass tied to the end of a spring and the other end of the spring is fixed, the force applied to the mass by

83
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the spring is to a good approximation proportional to the distance that the mass has moved from its equilibrium
position.

If the coordinate x is measured from the mass’s equilibrium position, the equation ~F = m~a says

x
m
d2x

dt2
= −kx (1)

If there’s friction (and there’s always friction), the force has another term. Now how do you describe friction
mathematically? The common model for dry friction is that the magnitude of the force is independent of the
magnitude of the mass’s velocity and opposite to the direction of the velocity. If you try to write that down in a
compact mathematical form you get something like

~Ffriction = −µkFN
~v

|~v|
(2)

This is a mess to work with. It can be done, but I’m going to do something different. See problem 31 however.
Wet friction is easier to handle mathematically because when you lubricate a surface, the friction becomes velocity
dependent in a way that is, for low speeds, proportional to the velocity.

~Ffriction = −b~v (3)

Neither of these two representations is a completely accurate description of the way friction works. That’s far
more complex than either of these simple models, but these approximations are good enough for many purposes
and I’ll settle for them.

Assume “wet friction” and the differential equation for the motion of m is

m
d2x

dt2
= −kx− bdx

dt
(4)

This is a second order, linear, homogeneous, differential equation, which simply means that the highest derivative
present is the second, the sum of two solutions is a solution, and a constant multiple of a solution is a solution.
That the coefficients are constants makes this an easy equation to solve.
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All you have to do is to recall that the derivative of an exponential is an exponential. det/dt = et. If I
substitute this exponential for x(t), of course it can’t work as a solution; it doesn’t even make sense dimensionally.
What is e to the power of a day? You have to have something in the exponent to make it dimensionless, eαt. Also,
the function x is supposed to give you a position, with dimensions of length. Use another constant: x(t) = Aeαt.
Plug this into the differential equation (4) to find

mAα2eαt + bAαeαt + kAeαt = Aeαt[mα2 + bα + k] = 0

The product of factors is zero, and the only way that a product of two numbers can be zero is if one of the
numbers is zero. The exponential never vanishes, and for a non-trivial solution A 6= 0, so all that’s left is the
polynomial in α.

mα2 + bα + k = 0, with solutions α =
−b±

√
b2 − 4km

2m
(5)

The position function is then
x(t) = Aeα1t +Beα2t (6)

where A and B are arbitrary constants and α1 and α2 are the two roots.
Isn’t this supposed to be oscillating? It is a harmonic oscillator after all, but the exponentials don’t look

very oscillatory. If you have a mass on the end of a spring and the entire system is immersed in honey, it won’t do
much oscillating! Translated into mathematics, this says that if the constant b is too large, there is no oscillation.
In the equation for α, if b is large enough the argument of the square root is positive and both α’s are real — no
oscillation. Only if b is small enough does the argument of the square root become negative; then you get complex
values for the α’s and hence oscillations.

Push this to the extreme case where the damping vanishes: b = 0. Then α1 = i
√
k/m and α2 = −i

√
k/m.

Denote ω0 =
√
k/m.

x(t) = Aeiω0t +Be−iω0t (7)

You can write this in other forms, see problem 10. To determine the arbitrary constant A and B you need two
equations. They come from some additional information about the problem, typically some initial conditions.
Take a specific example in which you start from the origin with a kick, x(0) = 0 and ẋ(0) = v0.

x(0) = 0 = A+B, ẋ(0) = v0 = iω0A− iω0B
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Solve for A and B to get A = −B = v0/(2iω0). Then

x(t) =
v0

2iω0

[
eiω0t − e−iω0t

]
=
v0
ω0

sinω0t

As a check on the algebra, use the first term in the power series expansion of the sine function to see how x
behaves for small t. The sine factor is sinω0t ≈ ω0t, and then x(t) is approximately v0t, just as it should be.
Also notice that despite all the complex numbers, the final answer is real. This is another check on the algebra.

Damped Oscillator
If there is damping, but not too much, then the α’s have an imaginary part and a negative real part. (Is it
important whether it’s negative or not?)

α =
−b± i

√
4km− b2

2m
= − b

2m
± iω′, where ω′ =

√
k

m
− b2

4m2
(8)

This represents a damped oscillation and has frequency a bit lower than the one in the undamped case. Use the
same initial conditions as above and you will get similar results (let γ = b/2m)

x(t) = Ae(−γ+iω′)t +Be(−γ−iω′)t

x(0) = A+B =0, vx(0) = (−γ + iω′)A+ (−γ − iω′)B = v0 (9)

The two equations for the unknowns A and B imply B = −A and

2iω′A = v0, so x(t) =
v0

2iω′
e−γt

[
eiω

′t − e−iω′t] =
v0
ω′
e−γt sinω′t (10)
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For small values of t, the first terms in the power series expansion of this result are

x(t) =
v0
ω′

[1− γt+ γ2t2/2− . . .][ω′t− ω′3t3/6 + . . .] = v0t− v0γt2 + . . .

The first term is what you should expect, as the initial velocity is vx = v0. The negative sign in the next term
says that it doesn’t move as far as it would without the damping, but analyze it further. Does it have the right
size as well as the right sign? It is −v0γt2 = −v0(b/2m)t2. But that’s an acceleration: axt

2/2. It says that the
acceleration just after the motion starts is ax = −bv0/m. Is that what you should expect? As the motion starts,
the mass hasn’t gone very far so the spring doesn’t yet exert much force. The viscous friction is however −bvx.
Set that equal to max and you see that −v0γt2 has precisely the right value.

What is the energy for this damped oscillator? The kinetic energy is mv2/2 and the potential energy for
the spring is kx2/2. Is the sum constant? No.

d

dt

1

2

(
mv2 + kx2

)
= mv

dv

dt
+ kx

dx

dt
= vx

(
max + kx

)
= −bv2

x = Fx,frictvx

“Force times velocity” is a common expression for power, and this says that the total energy is decreasing according
to this formula. The energy decreases exponentially on average.

4.2 Forced Oscillations
What happens if the equation is inhomogeneous? That is, what if there is a term that doesn’t involve x or its
derivatives at all. In this harmonic oscillator example, apply an extra external force. Maybe it’s a constant; maybe
it’s an oscillating force; it can be anything you want not involving x.

m
d2x

dt2
= −kx− bdx

dt
+ Fext(t) (11)

The key result that you need for this class of equations is very simple to state and not too difficult to implement.
It is a procedure for attacking any linear inhomogeneous differential equation and consists of three steps.

1. Temporarily throw out the inhomogeneous term [here Fext(t)] and completely solve the resulting
homogeneous equation. In the current case that’s what I just got through doing when I solved the
equation md2x

/
dt2 + bdx

/
dt+ kx = 0. [xhom(t)]
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2. Find any one solution to the full inhomogeneous equation. Note that for step one you have to have
all the arbitrary constants present; for step two you do not. [xinh(t)]

3. Add the results of steps one and two. [xhom(t) + xinh(t)]
I’ve already done step one. To carry out the next step I’ll start with a particular case of the forcing function.

If Fext(t) is simple enough, you should be able to guess the answer to step two. If it’s a constant, then a constant
will work for x. If it’s a sine or cosine, then you can guess that a sine or cosine or a combination of the two should
work. If it’s an exponential, then guess an exponential — remember that the derivative of an exponential is an
exponential. If it’s the sum of two terms, such as a constant and an exponential, it’s easy to verify that you add
the results that you get for the two cases separately. If the forcing function is too complicated for you to guess a
solution then there’s a general method using Green’s functions that I’ll get to later.

Choose a specific example
Fext(t) = F0

[
1− e−βt

]
(12)

This starts at zero and builds up to a final value of F0. It does it slowly or quickly depending on β.

F0

t

Start with the first term, F0, for external force in Eq. (11). Try x(t) = C and plug into that equation to
find

kC = F0

This is simple and determines C.
Next, use the second term as the forcing function, −F0e

−βt. Guess a solution x(t) = C ′e−βt and plug in.
The exponential cancels, leaving

mC ′β2 − bC ′β + kC ′ = −F0 or C ′ =
−F0

mβ2 − bβ + k

The total solution for the inhomogeneous part of the equation is then the sum of these two expressions.

xinh(t) = F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
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The homogeneous part of Eq. (11) has the solution found in Eq. (6) and the total is

x(t) = xhom(t) + xinh(t) = x(t) = Aeα1t +Beα2t + F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
There are two arbitrary constants here, and this is what you need because you have to be able to specify the
initial position and the initial velocity independently; this is a second order differential equation after all. Take for
example the conditions that the initial position is zero and the initial velocity is zero. Everything is at rest until
you start applying the external force. This provides two equations for the two unknowns.

x(0) = 0 = A+B + F0
mβ2 − bβ

k(mβ2 − bβ + k)

ẋ(0) = 0 = Aα1 +Bα2 + F0
β

mβ2 − bβ + k

Now all you have to do is solve the two equations in the two unknowns A and B. I would take the first, multiply
it by α2 and subtract the second. This gives A. Do the same with α1 instead of α2 to get B. The results are

A =
1

α1 − α2
F0
α2(mβ

2 − bβ)− kβ
k(mβ2 − bβ + k)

Interchange α1 and α2 to get B.
The final result is

x(t) =
F0

α1 − α2

(
α2(mβ

2 − bβ)− kβ
)
eα1t −

(
α1(mβ

2 − bβ)− kβ
)
eα2t

k(mβ2 − bβ + k)

+ F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
(13)

If you think this is messy and complicated, you haven’t seen messy and complicated. When it takes 20
pages to write out the equation, then you’re entitled say that it’s starting to become involved.

The problem isn’t finished until you’ve analyzed the supposed solution. After all, I may have made some
errors in algebra along the way. Also, analyzing the solution is the way you learn how these functions work.
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1. Everything in the solution is proportional to F0 and that’s not surprising.

2. I’ll leave it as an exercise to check the dimensions.

3. A key parameter to vary is β. What should happen if it is either very large or very small? In the
former case the exponential function in the force drops to zero quickly so the force jumps from zero
to F0 in a very short time — a step in the limit that β → 0.

4. If β is very small the force turns on very gradually and gently, being careful not to disturb the system.
Take point 3 above: For large β the dominant terms in both numerator and denominator everywhere are

the mβ2 terms. This result is then very nearly

x(t) ≈ F0

α1 − α2

(
α2(mβ

2)
)
eα1t −

(
α1(mβ

2)
)
eα2t

kmβ2
+ F0

(
1

k
− 1

(mβ2)
e−βt

)
≈ F0

k(α1 − α2)

[
(α2e

α1t − α1e
α2t
]
+ F0

1

k

Use the notation of Eq. (9) and you have

x(t) ≈ F0

k
(
− γ + iω′ − (−γ − iω′)

)[((−γ − iω′)e(−γ+iω′)t − (−γ + iω′)e(−γ−iω′)t]+ F0
1

k

=
F0e

−γt

k(2iω′)

[
− 2iγ sinω′t− 2iω′ cosω′t

]
+ F0

1

k

=
F0e

−γt

k

[
− γ

ω′
sinω′t− cosω′t

]
+ F0

1

k
(14)

At time t = 0 this is still zero even with the approximations. That’s comforting, but if it hadn’t happened
it’s not an insurmountable disaster. This is an approximation to the exact answer after all, so it could happen
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that the initial conditions are obeyed only approximately. The exponential terms have oscillations and damping,
so the mass oscillates about its eventual equilibrium position and after a long enough time the oscillations die out
and you are left with the equilibrium solution x = F0/k.

Look at point 4 above: For small β the β2 terms in Eq. (13) are small compared to the β terms to which
they are added or subtracted. The numerators of the terms with eαt are then proportional to β. The denominator
of the same terms has a k − bβ in it. That means that it doesn’t go to zero as β goes to zero. The last terms,
that came from the inhomogeneous part, don’t have any β in the numerator so they don’t vanish in this limit.
The approximate final result then comes just from the xinh(t) term.

x(t) ≈ F0
1

k

(
1− e−βt

)
It doesn’t oscillate at all and just gradually moves from equilibrium to equilibrium as time goes on. It’s what you
get if you go back to the differential equation (11) and say that the acceleration and the velocity are negligible.

m
d2x

dt2
[≈ 0] = −kx− bdx

dt
[≈ 0] + Fext(t) =⇒ x ≈ 1

k
Fext(t)

The spring force nearly balances the external force at all times; this is “quasi-equilibrium.”

4.3 Series Solutions
A linear, second order differential equation can always be rearranged into the form

y′′ + P (x)y′ +Q(x)y = R(x) (15)

If at some point x0 the functions P and Q are well-behaved, if they have convergent power series expansions
about x0, then this point is called a “regular point” and you can expect good behavior of the solutions there — at
least if R is also regular there.

I’ll look only at the case for which the inhomogeneous term R = 0. If P or Q has a singularity at x0,
perhaps something such as 1/(x−x0) or

√
x− x0, then x0 is called a “singular point” of the differential equation.

Regular Singular Points
The most important special case of a singular point is the “regular singular point” for which the behaviors of P



4—Differential Equations 92

and Q are not too bad. Specifically this requires that (x − x0)P (x) and (x − x0)
2Q(x) have no singularity at

x0. For example

y′′ +
1

x
y′ +

1

x2
y = 0 and y′′ +

1

x2
y′ + xy = 0

have singular points at x = 0, but the first one is a regular singular point and the second one isn’t. The importance
of a regular singular point is that there is a procedure guaranteed to find a solution near a regular singular point
(Frobenius series). For the more general singular point there is no guaranteed procedure (though there are a few
tricks* that sometimes work).

Examples of equations that show up in physics problems are

y′′ + y = 0

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0 regular singular points at ±1

x2y′′ + xy′ + (x2 − n2)y = 0 regular singular point at zero

xy′′ + (α+ 1− x)y′ + ny = 0 regular singular point at zero

(16)

These are respectively the classical simple harmonic oscillator, Legendre equation, Bessel equation, generalized
Laguerre equation.

A standard procedure to solve these equations is to use series solutions. Essentially, you assume that there
is a solution in the form of an infinite series and you systematically compute the terms of the series. I’ll pick the
Bessel equation from the above examples, as the other three equations are done the same way. The parameter
n in that equation is often an integer, but it can be anything. It’s common for it to be 1/2 or 3/2 or sometimes
even imaginary, but I don’t have to make any assumptions about it for now.

Assume a solution in the form of a :

y(x) =
∞∑
0

akx
k+s

If s = 0 or a positive integer, this is just the standard Taylor series. It often happens however that s is a fraction
or negative, but this case is no harder to handle than the Taylor series. For example, what is the series expansion

* The book by Bender and Orszag: “Advanced mathematical methods for scientists and engineers” is a very
readable source for this and many other topics.
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of 1
x cosx about the origin? This is singular there, but it’s easy to write the answer anyway because you already

know the series for the cosine.
cosx

x
=

1

x
− x

2
+
x3

24
− x5

720
+ · · ·

It starts with the term 1/x corresponding to s = −1 in the Frobenius series.
Assume that a0 6= 0, because that just defines the coefficient of the most negative power, xs. If you allow it

be zero, that’s just the same as redefining s and it gains nothing. Plug this in to the Bessel differential equation.

x2y′′ + xy′ + (x2 − n2)y = 0

x2
∞∑

k=0

ak(k + s)(k + s− 1)xk+s−2 + x
∞∑

k=0

ak(k + s)xk+s−1 + (x2 − n2)
∞∑

k=0

akx
k+s = 0

∞∑
k=0

ak(k + s)(k + s− 1)xk+s +
∞∑

k=0

ak(k + s)xk+s +
∞∑

k=0

akx
k+s+2 − n2

∞∑
0

akx
k+s = 0

∞∑
k=0

ak

[
(k + s)(k + s− 1) + (k + s)− n2

]
xk+s +

∞∑
k=0

akx
k+s+2 = 0

The coefficients of all the like powers of x must match, and in order to work out the matches efficiently, and so
as not to get myself confused in a mess of indices, I’ll make an explicit change of the index in the sums.

Let ` = k in the first sum. Let ` = k + 2 in the second. Explicitly show the limits of the index on the
sums, or your bound to get it wrong.

∞∑
`=0

a`

[
(`+ s)2 − n2

]
x`+s +

∞∑
`=2

a`−2x
`+s = 0

The lowest power of x in this equation comes from the ` = 0 term in the first sum. That coefficient of xs must
vanish. (a0 6= 0)

a0

[
s2 − n2

]
= 0

This is called the indicial equation. It determines s, or in this case, maybe two s’s. After this, set to zero the
coefficient of x`+s.

a`

[
(`+ s)2 − n2

]
+ a`−2 = 0
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This determines a2 in terms of a0; it determines a4 in terms of a2 etc.

a` = −a`−2
1

(`+ s)2 − n2
, ` = 2, 4, . . .

For example, if n = 0, the indicial equation says s = 0.

a2 = −a0
1

22
, a4 = −a2

1

42
= +a0

1

2242
, a6 = −a4

1

62
= −a0

1

224262

a2k = (−1)ka0
1

22kk!2
then y(x) = a0

∞∑
k=0

(−1)k
(x/2)2k

(k!)2
= a0J0(x) (17)

and in the last equation I rearranged the factors and used the standard notation for the Bessel function, Jn(x).
This is a second order differential equation. What about the other solution? This Frobenius series method

is guaranteed to find one solution near a regular singular point. Sometimes it gives both but not always, and in
this example it produces only one of the two solutions. There is a procedure that will let you find the second
solution to this sort of second order differential equation but I’ll leave that for elsewhere.

For the case n = 1/2 the calculations that I just worked out will produce two solutions. The indicial equation
gives s = ±1/2. After that, the recursion relation for the coefficients give

a` = −a`−2
1

(`+ s)2 − n2
= −a`−2

1

`2 + 2`s
= −a`−2

1

`(`+ 2s)
= −a`−2

1

`(`± 1)

For the s = +1/2 result

a2 = −a0
1

2 . 3

a4 = −a2
1

4 . 5
= +a0

1

2 . 3 . 4 . 5

a2k = (−1)ka0
1

(2k + 1)!

This solution is then

y(x) = a0x
1/2

[
1− x2

3!
+
x4

5!
− . . .

]
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This series looks suspiciously like the series for the sine function, but is has some of the x’s or some of the
factorials in the wrong place. You can fix that if you multiply the series in brackets by x. You then have

y(x) = a0x
−1/2

[
x− x3

3!
+
x5

5!
− . . .

]
= a0

sin x

x1/2
(18)

I’ll leave it to problem 15 to find the other solution.

4.4 Trigonometry via ODE’s
The differential equation u′′ = −u has two independent solutions. The point of this exercise is to derive all (or at
least some) of the standard relationships for sines and cosines strictly from the differential equation. The reasons
for spending some time on this are twofold. First, it’s neat. Second, you have to get used to manipulating a
differential equation in order to find properties of its solutions. This is essential in the study of Fourier series later.

Two solutions can be defined when you specify boundary conditions. Call the functions c(x) and s(x), and
specify their respective boundary conditions to be

c(0) = 1, c′(0) = 0, and s(0) = 0, s′(0) = 1 (19)

What is s′(x)? First observe that s′ satisfies the same differential equation as s and c:

u′′ = −u =⇒ (u′)′′ = (u′′)′ = −u′, and that shows the desired result.

This in turn implies that s′ is a linear combination of s and c, as that is the most general solution to the original
differential equation.

s′(x) = Ac(x) +Bs(x)

Use the boundary conditions:
s′(0) = 1 = Ac(0) +Bs(0) = A

From the differential equation you also have

s′′(0) = −s(0) = 0 = Ac′(0) +Bs′(0) = B

Put these together and you have

s′(x) = c(x) And a similar calculation shows c′(x) = −s(x) (20)
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What is c(x)2 + s(x)2? Differentiate this expression to get

d

dx
[c(x)2 + s(x)2] = 2c(x)c′(x) + 2s(x)s′(x) = −2c(x)s(x) + 2s(x)c(x) = 0

This combination is therefore a constant. What constant? Just evaluate it at x = 0 and you see that it is one.
There are many more such results that you can derive, but that’s left for the exercises.

4.5 Green’s Functions
Is there a general way to find the solution to the whole harmonic oscillator inhomogeneous differential equation?
One that does not require guessing the form of the solution and applying initial conditions? Yes there is. It’s
called the method of Green’s functions. The idea behind it is that you can think of any force as a sequence of
short, small kicks. In fact, because of the atomic nature of matter, that’s not so far from the truth. If I can figure
out the result of an impact by one molecule, I can add the results of many such kicks to get the answer for 1023

molecules.
I’ll start with the simpler case where there’s no damping, b = 0 in the harmonic oscillator equation.

mẍ+ kx = Fext(t)

Suppose that everything is at rest and then at time t′ the external force provides a small impulse. The motion
from that point on will be a sine function starting at t′,

A sin
(
ω0(t− t′)

)
(t > t′)

The amplitude will depend on the strength of the kick. A constant force F applied for a very short time, ∆t′,
will change the momentum of the mass by m∆vx = F∆t′. If this time interval is short enough the mass won’t
have had a chance to move very far before the force is turned off, so from then on it’s subject only to the −kx
force. This kick gives m a velocity F∆t′/m, and that’s what determines the unknown constant A.

Just after t = t′, vx = Aω0 = F∆t′/m, so the position of m is

x(t) =

{
F∆t′

mω0
sin
(
ω0(t− t′)

)
(t > t′)

0 (t ≤ t′)
(21)
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x

t′

impulse

t

When the external force is the sum of two terms, the total solution is the sum of the solutions for the
individual forces.

mẍ+ kx = F0 + F1 (22)

If the two terms are two steps

F0 =

{
F (t0) (t0 < t < t1)
0 (elsewhere)

and F1 =

{
F (t1) (t1 < t < t2)
0 (elsewhere)

then if x0 is the solution to Eq. (22) with only the F0 on the right, and x1 is the solution with only F1, then the
full solution to Eq. (22) is the sum, x0 + x1.

Think of a general forcing function Fx,ext(t) in the way that you would set up an integral. Approximate it
as a sequence of short steps as in the picture. Between tk and tk+1 the force is essentially F (tk). The response
of m to this piece of the total force is then

xk(t) =

{
F (tk)∆tk

mω0
sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

where ∆tk = tk+1 − tk.

F

t1 t2
t5

t
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To complete this idea, the external force is the sum of a lot of terms, the force between t1 and t2, that
between t2 and t3 etc. The total response is the sum of all these individual responses.

x(t) =
∑

k

{
F (tk)∆tk

mω0
sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

For a specified time t, only the times tk before and up to t contribute to this sum. The impulses occurring at
the times after the time t can’t change the value of x(t); they haven’t happened yet. In the limit that ∆tk → 0,
this sum becomes an integral.

x(t) =

∫ t

−∞
dt′

F (t′)

mω0
sin
(
ω0(t− t′)

)
(23)

Apply this to an example. The simplest is to start at rest and begin applying a constant force from time
zero on.

Fext(t) =

{
F0 (t > 0)
0 (t ≤ 0)

x(t) =

∫ t

0
dt′

F0

mω0
sin
(
ω0(t− t′)

)
and the last expression applies only for t > 0. It is

x(t) =
F0

mω2
0

[
1− cos(ω0t)

]
As a check for the plausibility of this result, look at the special case of small times. Use the power series expansion
of the cosine, keeping a couple of terms, to get

x(t) ≈ F0

mω2
0

[
1−

(
1− (ω0t)

2/2
)]

=
F0

mω2
0

ω2
0t

2

2
=
F0

m

t2

2

and this is just the result you’d get for constant acceleration F0/m. In this short time, the position hasn’t changed
much from zero, so the spring hasn’t had a chance to stretch very far, so it can’t apply much force, and you have
nearly constant acceleration.

For another, completely different approach to Green’s functions, see section 15.5.
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4.6 Separation of Variables
If you have a first order differential equation — I’ll be more specific for an example, in terms of x and t — and if
you are able to move the variables around until everything involving x and dx is on one side of the equation and
everything involving t and dt is on the other side, then you have “separated variables.” Now all you have to do
is integrate.

For example, the total energy in the undamped harmonic oscillator is E = mv2/2+kx2/2. Solve for dx/dt
and

dx

dt
=

√
2

m

(
E − kx2/2

)
To separate variables, multiply by dt and divide by the right-hand side.

dx√
2
m

(
E − kx2/2

) = dt

Now it’s just manipulation to put this into a convenient form to integrate.√
m

k

dx√
(2E/k)− x2

= dt, or

∫
dx√

(2E/k)− x2
=

∫ √
k

m
dt

Make the substitution x = a sin θ and you see that if a2 = 2E/k then the integral on the left simplifies.∫
a cos θ dθ

a
√

1− sin2 θ
=

∫ √
k

m
dt so θ = sin−1 x

a
= ω0t+ C

or x(t) = a sin(ω0t+ C) where ω0 =
√
k/m

An electric circuit with an inductor, a resistor, and a battery has a differential equation for the current flow:

L
dI

dt
+ IR = V0 (24)
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Manipulate this into

L
dI

dt
= V0 − IR, then L

dI

V0 − IR
= dt

Now integrate this to get

L

∫
dI

V0 − IR
= t+ C, or − L

R
ln(V0 − IR) = t+ C

Solve for the current I to get
RI(t) = V0 − e−(L/R)(t+C) (25)

Now does this make sense? Look at the dimensions and you see that it doesn’t, at least not yet. The problem is
the logarithm on the preceding line where you see that its units don’t make sense either. How can this be? The
differential equation that you started with is correct, so how did the units get messed up? It goes back the the
standard equation for integration, ∫

dx/x = ln x+ C

If x is a length for example, then the left side is dimensionless, but this right side is the logarithm of a length. It’s
a peculiarity of the logarithm that leads to this anomaly. You can write the constant of integration as C = − lnC ′

where C ′ is another arbitrary constant, then∫
dx/x = ln x+ C = ln x− lnC ′ = ln

x

C ′

If C ′ is a length this is perfectly sensible dimensionally. To see that the dimensions in Eq. (25) will work themselves
out (this time), put on some initial conditions. Set I(0) = 0 so that the circuit starts with zero current.

R . 0 = V0 − e−(L/R)(0+C) implies e−(L/R)(C) = V0

RI(t) = V0 − V0e
−Lt/R or I(t) = (1− e−Lt/R)V0/R

and somehow the units have worked themselves out. Logarithms do this, but you still better check. The current
in the circuit starts at zero and climbs gradually to its final value I = V0/R.
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4.7 Simultaneous Equations
What’s this doing in a chapter on differential equations? Patience. Solve two equations in two unknowns:

(X) ax+ by = e

(Y) cx+ dy = f
d×(X) − b×(Y):

adx+ bdy − bcx− bdy = ed− fb
(ad− bc)x = ed− fb

Similarly, multiply (Y) by a and (X) by c and subtract:

acx+ ady − acx− cby = fa− ec
(ad− bc)y = fa− ec

Divide by the factor on the left side and you have

x =
ed− fb
ad− bc

, y =
fa− ec
ad− bc

(26)

provided that ad− bc 6= 0. This expression appearing in both denominators is the determinant of the equations.
Classify all the essentially different cases that can occur with this simple-looking set of equations and draw

graphs to illustrate them. If this looks like problem 1.23, it should.

y

1.

x

y

2.

x

y

3a.

x

1. The solution is just as I found it above and nothing goes wrong. There is one and only one solution.
The two graphs of the two equations are two intersecting straight lines.

2. The denominator, the determinant, is zero and the numerator isn’t. This is impossible and there are no
solutions. When the determinant vanishes, the two straight lines are parallel and the fact that the numerator isn’t
zero implies that the two lines are distinct and never intersect. (This could also happen if in one of the equations,
say (X), a = b = 0 and e 6= 0. For example 0 = 1. This obviously makes no sense.)
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3a. The determinant is zero and so are both numerators. In this case the two lines are not only parallel,
they are the same line. The two equations are not really independent and you have an infinite number of solutions.

3b. You can get zero over zero another way. Both equations (X) and (Y) are 0 = 0. This sounds trivial,
but it can really happen. Every x and y will satisfy the equation.

4. Not strictly a different case, but sufficiently important to discuss it separately: Suppose the the right-
hand sides of (X) and (Y) are zero, e = f = 0. If the determinant is non-zero, there is a unique solution and it
is x = 0, y = 0.

5. With e = f = 0, if the determinant is zero, the two equations are the same equation and there are an
infinite number of non-zero solutions.

In the important case for which e = f = 0 and the determinant is zero, there are two cases: (3b) and (5).
In the latter case there is a one-parameter family of solutions and in the former case there is a two-parameter
family. Put another way, for case (5) the set of all solutions is a straight line, a one-dimensional set. For case
(3b) the set of all solutions is the whole plane, a two-dimensional set.

y

4.

x

y

5.

x

y

3b.

x

Example: Consider the two equations

kx+ (k − 1)y = 0, (1− k)x+ (k − 1)2y = 0

For whatever reason, I would like to get a non-zero solution for x and y. Can I? The condition depends on the
determinant, so I take the determinant and set it equal to zero.

k(k − 1)2 − (1− k)(k − 1) = 0, or (k + 1)(k − 1)2 = 0

There are two roots, k = −1 and k = +1. In the k = −1 case the two equations become

−x− 2y = 0, and 2x+ 4y = 0
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The second is just −2 times the first, so it isn’t a separate equation. The family of solutions is all those x and y
satisfying x = −2y, a straight line.

In the k = +1 case you have

x+ 0y = 0, and 0 = 0

The solution to this is x = 0 and y = anything and it is again a straight line (the y-axis).

4.8 Simultaneous ODE’s

Single point masses are an idealization that has some application to the real world, but there are many more cases
for which you need to consider the interactions among many masses. To approach this, take the first step, from
one mass to two masses.

k k k1 3 2

x1 2x

Two masses are connected to a set of springs and fastened between two rigid
walls as shown. The coordinates for the two masses (moving along a straight line
only) are x1 and x2, and I’ll pick the zero point for these coordinates to be the
positions at which everything is at equilibrium — no total force on either. When a
mass moves away from its equilibrium position there is a force on it. On m1, the
two forces are proportional to the distance by which the two springs k1 and k3 are
stretched. These two distances are x1 and x1 − x2 respectively, so Fx = max applied to each mass gives the
equations

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1) (27)

I’m neglecting friction simply to keep the algebra down. These are linear, constant coefficient, homogeneous
equations, just the same sort as Eq. (4) except that there are two of them. What made the solution of (4) easy
is that the derivative of an exponential is an exponential, so that when you substituted x(t) = Aeαt all that you
were left with was an algebraic factor — a quadratic equation in α. Exactly the same method works here.

The only way to find out if this is true is to try it. The big difference is that there are two unknowns
instead of one, and the amplitude of the two motions will probably not be the same. If one mass is a lot bigger
than the other, you expect it to move less.

Try the solution

x1(t) = Aeαt, x2(t) = Beαt
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When you plug this into the differential equations for the masses, all the factors of eαt cancel, just the way it
happens in the one variable case.

m1α
2A = −k1A− k3(A−B), and m2α

2B = −k2B − k3(B − A) (28)

Rearrange these to put them into a neater form.(
k1 + k3 +m1α

2
)
A+

(
− k3

)
B = 0(

− k3)A+
(
k2 + k3 +m2α

2
)
B = 0 (29)

The results of problem 1.23 and of section 4.7 tell you all about such equations. In particular, for the pair
of equations ax + by = 0 and cx + dy = 0, the only way to have a non-zero solution for x and y is for the
determinant of the coefficients to be zero: ad− bc = 0. Apply this result to the problem at hand. Either A = 0
and B = 0 with a trivial solution or the determinant is zero.

(k1 + k3 +m1α
2
)(
k2 + k3 +m2α

2
)
− (k3

)2
= 0 (30)

This is a quadratic equation for α2, and it determines the frequencies of the oscillation. Note the plural in the
word frequencies.

Equation (30) is only a quadratic, but it’s still messy. For a first example, try a special, symmetric case:
m1 = m2 = m and k1 = k2. There’s a lot less algebra.

(k1 + k3 +mα2
)2 − (k3

)2
= 0 (31)

You could use the quadratic formula on this, but why? It’s already set up to be factored.

(k1 + k3 +mα2 − k3)(k1 + k3 +mα2 + k3) = 0

The product is zero, so one or the other factors is zero. These determine α.

α2
1 = −k1

m
and α2

2 = −k1 + 2k3

m
(32)
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These are negative, and that’s what you should expect. There’s no damping and the springs provide restoring
forces that should give oscillations. That’s just what these imaginary α’s provide.

When you examine the equations ax+ by = 0 and cx+dy = 0 the condition that the determinant vanishes
is the condition that the two equations are really only one equation, and that the other is not independent of it;
it’s actually a multiple of the first. You still have to solve that equation for x and y. Here, I arbitrarily pick the
first of the equations (29) and find the relation between A and B.

α2
1 = −k1

m
=⇒

(
k1 + k3 +m(−(k1/m))

)
A+

(
− k3

)
B = 0 =⇒ B = A

α2
2 = −k1 + 2k3

m
=⇒

(
k1 + k3 +m(−(k1 + 2k3/m))

)
A+

(
− k3

)
B = 0 =⇒ B = −A

For the first case, α1 = ±iω1 = ±i
√
k1/m, there are two solutions to the original differential equations. These

are called ”normal modes.”
x1(t) = A1e

iω1t

x2(t) = A1e
iω1t

and
x1(t) = A2e

−iω1t

x2(t) = A2e
−iω1t

The other frequency has the corresponding solutions (27)

x1(t) = A3e
iω2t

x2(t) = −A3e
iω2t

and
x1(t) = A4e

−iω2t

x2(t) = −A4e
−iω2t

The total solution to the differential equations is the sum of all four of these.

x1(t) = A1e
iω1t + A2e

−iω1t + A3e
iω2t + A4e

−iω2t

x2(t) = A1e
iω1t + A2e

−iω1t − A3e
iω2t − A4e

−iω2t (33)

The two second order differential equations have four arbitrary constants in their solution. You can specify
the initial values of two positions and of two velocities this way. As a specific example suppose that all initial
velocities are zero and that the first mass is pushed to coordinate x0 and released.

x1(0) = x0 = A1 + A2 + A3 + A4

x2(0) = 0 = A1 + A2 − A3 − A4

vx1(0) = 0 = iω1A1 − iω1A2 + iω2A3 − iω2A4

vx2(0) = 0 = iω1A1 − iω1A2 − iω2A3 + iω2A4 (34)
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With a little thought (i.e. don’t plunge blindly ahead) you can solve these easily.

A1 = A2 = A3 = A4 =
x0

4

x1(t) =
x0

4

[
eiω1t + e−iω1t + eiω2t + e−iω2t

]
=
x0

2

[
cosω1t+ cosω2t

]
x2(t) =

x0

4

[
eiω1t + e−iω1t − eiω2t − e−iω2t

]
=
x0

2

[
cosω1t− cosω2t

]
From the results of problem 3.34, you can rewrite these as

x1(t) = x0 cos

(
ω2 + ω1

2
t

)
cos

(
ω2 − ω1

2
t

)
x2(t) = x0 sin

(
ω2 + ω1

2
t

)
sin

(
ω2 − ω1

2
t

)
(35)

As usual you have to draw some graphs to understand what these imply. If the center spring k3 is a
lot weaker than the outer ones, then Eq. (32) implies that the two frequencies are close to each other and
so |ω1 − ω2| � ω1 + ω2. Examine Eq. (35) and you see that one of the two oscillating factors oscillate at
a much higher frequency than the other. To sketch the graph of x2 for example you should draw one factor[
sin
(
(ω2 + ω1)t/2

)]
and the other factor

[
sin
(
(ω2 − ω1)t/2

)]
and graphically multiply them.

x2

The mass m2 starts without motion and its oscillations gradually build up. Later they die down and build
up again (though with reversed phase). Look at the other mass, governed by the equation for x1(t) and you see
that the low frequency oscillation from the (ω2 − ω1)/2 part is big where the one for x2 is small and vice versa.
The oscillation energy moves back and forth from one mass to the other.
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4.9 Legendre’s Equation
This equation and its solutions appear when you solve electric and gravitational potential problems in spherical
coordinates [problem 9.20]. They appear when you study Gauss’s method of numerical integration [Eq. (11.26)]
and they appear when you analyze orthogonal functions [problem 6.7]. Because it shows up so often it is worth
the time to go through the details in solving this equation.[

(1− x2)y′
]′ + Cy = 0, or (1− x2)y′′ − 2xy′ + Cy = 0 (36)

Assume a Frobenius solutions about x = 0

y =
∞∑
0

akx
k+s

and substitute into (36).

(1− x2)
∞∑
0

ak(k + s)(k + s− 1)xk+s−2 − 2x
∞∑
0

ak(k + s)xk+s−1 + C
∞∑
0

aka
k+s = 0

∞∑
0

ak(k + s)(k + s− 1)xk+s−2 +
∞∑
0

ak

[
− 2(k + s)− (k + s)(k + s− 1)

]
xk+s + C

∞∑
0

aka
k+s = 0

∞∑
n=−2

an+2(n+ s+ 2)(n+ s+ 1)xn+s −
∞∑

n=0

an

[
(n+ s)2 + (n+ s)

]
xn+s + C

∞∑
n=0

anx
n+s = 0

In the last equation I did the usual substitution k = n+ 2 for the first sum and k = n for the rest. That makes
the exponents match across the equation. In the process, I simplified some of the algebraic expressions.

The indicial equation comes from the n = −2 term, which appears only once.

a0s(s− 1) = 0, so s = 0, 1

Now set the coefficient of xn+s to zero, and solve for an+2 in terms of an.

an+2 = an
(n+ s)(n+ s+ 1)− C
(n+ s+ 2)(n+ s+ 1)

(37)
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a2 = a0
s(s+ 1)− C
(s+ 2)(s+ 1)

, then a4 = a2
(s+ 2)(s+ 3)− C

(s+ 4)(s+ 3)
, etc. (38)

This looks messier than it is. Notice that the only combination of indices that shows up is n+ s. The index s is
0 or 1, and n is an even number, so n+ s covers the non-negative integers: 0, 1, 2, . . .

The two solutions to the Legendre differential equation come from the two cases, s = 0, 1.

s = 0 : a0

[
1 +

(
−C
2

)
x2 +

(
−C
2

)(
2 . 3− C

4 . 3

)
x4 +

(
−C
2

)(
2 . 3− C

4 . 3

)(
4 . 5− C

6 . 5

)
x6 · · ·

]
s = 1 : a′0

[
x+

(
1 . 2− C

3 . 2

)
x3 +

(
1 . 2− C

3 . 2

)(
3 . 4− C

5 . 4

)
x5 + · · ·

] (39)

and the general solution is a sum of these.
This procedure gives both solutions to the differential equation, one with even powers and one with odd

powers. Both are infinite series and are called Legendre Functions. An important point about both of them is
that they blow up as x → 1. This fact shouldn’t be too surprising, because the differential equation (36) has a
singular point there.

y′′ − 2x

(1 + x)(1− x)
y′ +

C

(1 + x)(1− x)
y = 0

It’s a regular singular point, but it is still singular. A detailed calculation shows that these solutions behave as
ln(1− x).

There is an exception! If the constant C is for example C = 6, then with s = 0 the equations (38) are

a2 = a0
−6

2
, a4 = a2

6− 6

12
= 0, a6 = a8 = . . . = 0

The infinite series terminates in a polynomial

a0 + a2x
2 = a0[1− 3x2]

This (after a conventional rearrangement) is a Legendre Polynomial,

P2(x) =
3

2
x2 − 1

2
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The numerator in Eq. (37) for an+2 is [(n+ s)(n+ s+1)−C]. If this happen to equal zero for some value
of n = N , then aN+2 = 0 and so then all the rest of aN+4. . . are zero too. The series is a polynomial. This
will happen only for special values of C, such as the value C = 6 above. The values of C that have this special
property are

C = `(`+ 1), for ` = 0, 1, 2, . . . (40)

This may be easier to see in the explicit representation, Eq. (39). When a numerator equals zero, all the rest that
follow are zero too. When C = `(`+ 1) for even `, the first series terminates in a polynomial. Similarly for odd
` the second series is a polynomial. These are the Legendre polynomials, denoted P`(x), and the conventional
normalization is to require that their value at x = 1 is one.

P0(x) = 1 P1(x) = x P2(x) = 3/2x
2 − 1/2

P3(x) = 5/2x
3 − 3/2x P4(x) = 35/8x

4 − 30/8x
2 + 3/8

(41)

The special case for which the series terminates in a polynomial is by far the most commonly used solution to
Legendre’s equation. You seldom encounter the general solutions of Eq. (39).

A few properties of the P` are

(a)

(b)

(c)

(d)

∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm where δnm =

{
1 if n = m
0 if n 6= m

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

Pn(x) =
(−1)n

2nn!

dn

dxn
(1− x2)n

Pn(1) = 1 Pn(−1) = (−1)n

(42)
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Problems

4.1 If the equilibrium position x = 0 for Eq. (4) is unstable instead of stable, this reverses the sign in front of
k. Solve the problem that led to Eq. (10) under these circumstances. That is, the initial conditions are x(0) = 0
and vx(0) = v0. What is the small time and what is the large time behavior?

4.2 In the damped harmonic oscillator problem, Eq. (4), suppose that the damping term is an anti -damping
term. It has the sign opposite to the one that I used (+b dx/dt). Solve the problem with the initial condition
x(0) = 0 and vx(0) = v0 and describe the resulting behavior.

4.3 A point mass m moves in one dimension under the influence of a force Fx that has a potential energy V (x).
Recall that the relation between these is

Fx = −dV
dx

Take the specific potential energy V (x) = −V0a
2/(a2 + x2), where V0 is positive. Sketch V . Write the equation

Fx = max. There is an equilibrium point at x = 0, and if the motion is over only small distances you can do a
power series expansion of Fx about x = 0. What is the differential equation now? Keep only the lowest order
non-vanishing term in the expansion for the force and solve that equation subject to the initial conditions that at
time t = 0, x(0) = x0 and vx(0) = 0.
(b) How does the graph of V change as you vary a from small to large values and how does this same change in
a affect the behavior of your solution? Ans: ω =

√
2V0/ma2

4.4 The same as the preceding problem except that the potential energy function is V (x) = +V0a
2/(a2 + x2).

4.5 For the case of the undamped harmonic oscillator and the force Eq. (12), start from the beginning and derive
the solution subject to the initial conditions that the initial position is zero and the initial velocity is zero. At the
end, compare your result to the result of Eq. (13) to see if they agree where they should agree.

4.6 Check the dimensions in the result for the forced oscillator, Eq. (13).

4.7 Fill in the missing steps in the derivation of Eq. (13).
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4.8 For the undamped harmonic oscillator apply an extra oscillating force so that the equation to solve is

m
d2x

dt2
= −kx+ Fext(t)

where the external force is Fext(t) = F0 cosωt. Assume that ω 6= ω0 =
√
k/m.

Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will give you a cosωt
from a combination of x and its second derivative.
Add these and apply the initial conditions that at time t = 0 the mass is at rest at the origin. Be sure to check
your results for plausibility: 0) dimensions; 1) ω = 0; 2) ω →∞; 3) t small (not zero). In each case explain why
the result is as it should be. Ans: (F0/m)[− cosω0t+ cosωt]/(ω2

0 − ω2)

4.9 In the preceding problem I specified that ω 6= ω0 =
√
k/m. Having solved it, you know why this condition is

needed. Now take the final result of that problem, including the initial conditions, and take the limit as ω → ω0.
[What is the definition of a derivative?] You did draw a graph of your result didn’t you?

4.10 Show explicitly that you can write the solution Eq. (7) in any of several equivalent ways,

Aeiω0t +Be−iω0t = C cosω0t+D sinω0t = E cos(ω0t+ φ)

I.e. , given A and B, what are C and D, what are E and φ? Are there any restrictions in any of these cases?

4.11 In the damped harmonic oscillator, you can have the special case for which b2 = 4km and for which ω′ = 0.
Use a series expansion to take the limit of Eq. (10) as ω′ → 0. Also graph this solution. What would happen if
you took the same limit in Eqs. (8) and (9), before using the initial conditions?

4.12 In the limiting solution for the forced oscillator, Eq. (14), what is the nature of the result for small time?
Expand the solution through order t2 and understand what you get. Be careful to be consistent in keeping terms
to the same order in t.

4.13 The undamped harmonic oscillator equation is d2x/dt2 + ω2x = 0. Solve this by series expansion about
t = 0.
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4.14 Check the algebra in the derivation of the n = 0 Bessel equation. Explicitly verify that the general expression
for a2k in terms of a0 is correct, Eq. (17).

4.15 Work out the Frobenius series solution to the Bessel equation for the n = 1/2, s = −1/2 case. Graph both
solutions, this one and Eq. (18).

4.16 Examine the Frobenius series solution to the Bessel equation for the value of n = 1. Show that this method
doesn’t yield a second solution for this case either.

4.17 Try using a Frobenius series method on y′′ + y/x3 = 0 around x = 0.

4.18 Solve by Frobenius series x2u′′ + 4xu′ + (x2 + 2)u = 0.

4.19 The harmonic oscillator equation, d2y/dx2 + k2y = 0, is easy in terms of the variable x. What is this
equation if you change variables to z = 1/x, getting an equation in such things as d2y/dz2. What sort of
singularity does this equation have at z = 0? And of course, write down the answer for y(z) to see what this sort
of singularity can lead to. Graph it.

4.20 Solve by series solution about x = 0: y′′ + xy = 0.
Ans: 1− (x3/3!) + (1 . 4x6/6!)− (1 . 4 . 7x9/9!) + · · · is one.

4.21 From the differential equation d2u/dx2 = −u, finish the derivation for c′ in Eq. (20). Derive identities for
the functions c(x+ y) and s(x+ y).

4.22 The chain rule lets you take the derivative of the composition of two functions. The function inverse to
s is the function f that satisfies f

(
s(x)

)
= x. Differentiate this with respect to x and derive that f satisfies

df(x)/dx = 1/
√

1− x2. What is the derivative of the function inverse to c?

4.23 For the differential equation u′′ = +u (note the sign change) use the same boundary conditions for two
independent solutions that I used in Eq. (19). For this new example evaluate c′ and s′. Does c2 + s2 have the
nice property that it did before? What about c2 − s2? What are c(x+ y) and s(x+ y)? What is the derivative
of the function inverse to s? to c?
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4.24 Apply the Green’s function method for the force F0

(
1− e−βt

)
on the harmonic oscillator without damping.

Verify that it agrees with the previously derived result, Eq. (13). They should match in a special case.

4.25 An undamped harmonic oscillator with natural frequency ω0 is at rest for time t < 0. Starting at time zero
there is an added force F0 sinω0t. Use Green’s functions to find the motion for time t > 0. Analyze the solution
for both small and large time, determining if your results make sense. Compare the solution to problem 9.

4.26 Derive the Green’s function analogous to Eq. (21) for the case that the harmonic oscillator is damped.

4.27 Radioactive processes have the property that the rate of decay of nuclei is proportional to the number of
nuclei present. That translates into the differential equation dN/dt = −λN , where λ is a constant depending on
the nucleus. At time t = 0 there are N0 nuclei; how many are present at time t later? The half-life is the time
in which one-half of the nuclei decay; what is that in terms of λ? Ans: ln 2/λ

4.28 In the preceding problem, suppose that the result of the decay is another nucleus (the “daughter”) that is
itself radioactive with its own decay constant λ2. Call the first one above λ1. Write the differential equation for
the time-derivative of the number, N2 of this nucleus. You note that N2 will change for two reasons, so in time
dt the quantity dN2 has two contributions, one is the decrease because of the radioactivity of the daughter, the
other an increase due to the decay of the parent. Set up the differential equation for N2 and you will be able to
use the result of the previous problem as input to this and then to solve the resulting differential equation for the
number of daughter nuclei as a function of time. Assume that you started with none, N2(0) = 0.
(b) The “activity” is the total number of all types of decays per time. Compute the activity and graph it. For
the plot, assume that λ1 is substantially smaller than λ2 and plot the total activity as a function of time. Then
examine the reverse case, λ1 � λ2

Ans: (b) N0λ1

[
(2λ2 − λ1)e

−λ1t − λ2e
−λ2t

]
/(λ2 − λ1)

4.29 The “snowplow problem” was made famous by Ralph Agnew: A snowplow starts out at 12:00 Noon in a
heavy and steady snowstorm. In the first hour it goes 2 miles; in the second hour it goes 1 mile. When did the
snowstorm start? Ans: 11:23

4.30 Verify that the equations (33) really do satisfy the original differential equations.
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4.31 When you use the “dry friction” model Eq. (2) for the harmonic oscillator, you can solve the problem by
dividing it into pieces. Start at time t = 0 and position x = x0 (positive). The initial velocity of the mass m
is zero. As the mass is pulled to the left, set up the differential equation and solve it up to the point at which
it comes to a halt. Where is that? You can take that as a new initial condition and solve the problem as the
mass is pulled to the right until it stops. Where is that? Then keep repeating the process. Instead or further
repetition, examine the case for which the coefficient of kinetic friction is small, and determine to lowest order
in the coefficient of friction what is the change in the amplitude of oscillation up to the first stop. From that,
predict what the amplitude will be after the mass has swung back to the original side and come to its second
stop. In this small µk approximation, how many oscillations will it undergo until all motion stops. Let b = µkFN

Ans: Let tn = πn/ω0, then for tn < t < tn+1, x(t) = [x0 − (2n + 1)b/k] cosω0t + (−1)nb/k. Stops when
t ≈ πkx0/2ω0b roughly.

4.32 A mass m is in an undamped one-dimensional harmonic oscillator and is at rest. A constant external force
F0 is applied for the time interval T and is then turned off. What is the motion of the oscillator as a function of
time for all t > 0? For what value of T is the amplitude of the motion a maximum after the force is turned off?
For what values is the motion a minimum? Of course you need an explanation of why you should have been able
to anticipate these two results.

4.33 Starting from the solution Eq. (33) assume the initial conditions that both masses start from the equilibrium
position and that the first mass is given an initial velocity vx1 = v0. Find the subsequent motion of the two
masses and analyze it.

4.34 If there is viscous damping on the middle spring of Eqs. (27) so that each mass feels an extra force depending
on their relative velocity, then these equations will be

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2)− b(ẋ1 − ẋ2), and

m2
d2x2

dt2
= −k2x2 − k3(x2 − x1)− b(ẋ2 − ẋ1)

Solve these subject to the conditions that all initial velocities are zero and that the first mass is pushed to
coordinate x0 and released. Use the same assumption as before that m1 = m2 = m and k1 = k2.
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4.35 For the damped harmonic oscillator apply an extra oscillating force so that the equation to solve is

m
d2x

dt2
= −bdx

dt
− kx+ Fext(t)

where the external force is Fext(t) = F0e
iωt.

Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will give you an eiωt

from a combination of x and its first two derivatives.
This problem is easier to solve than the one using cosωt, and at the end, to get the solution for the cosine case,
all you have to do is to take the real part of your result.

4.36 You can solve the circuit equation Eq. (24) more than one way. Solve it by the methods used earlier in this
chapter.

4.37 For a second order differential equation you can pick the position and the velocity any way that you want,
and the equation then determines the acceleration. Differentiate the equation and you find that the third derivative
is determined too.

d2x

dt2
= − b

m

dx

dt
− k

m
x implies

d3x

dt3
= − b

m

d2x

dt2
− k

m

dx

dt

Assume the initial position is zero, x(0) = 0 and the initial velocity is vx(0) = v0; determine the second derivative
at time zero. Now determine the third derivative at time zero. Now differentiate the above equation again and
determine the fourth derivative at time zero.
From this, write down the first five terms of the power series expansion of x(t) about t = 0.
Compare this result to the power series expansion of Eq. (10) to this order.

4.38 Use the techniques of section 4.5, start from the equation md2x/dt2 = Fx(t) with no spring force or
damping. Find the Green’s function for this problem, that is, what is the response of the mass to a small kick
over a small time interval (the analog of Eq. (21))? Develop the analog of Eq. (23) for this case. Apply your
result to the special case that Fx(t) = F0, a constant for time t > 0.
(b) You know that the solution of this differential equation involves two integrals of Fx(t) with respect to time,
so how can this single integral do the same thing? Differentiate this Green’s function solution (for arbitrary Fx)
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twice with respect to time to verify that it really gives what it’s supposed to. This is a special case of some
general results, problems 15.19 and 15.20.

4.39 A point mass m moves in one dimension under the influence of a force Fx that has a potential energy
V (x). Recall that the relation between these is

Fx = −dV
dx

Take the specific potential energy V (x) = −V0e
−x2/a2

, where V0 is positive. Sketch V . Write the equation
Fx = max. There is an equilibrium point at x = 0, and if the motion is over only small distances you can do a
power series expansion of Fx about x = 0. What is the differential equation now? Keep only the lowest order
non-vanishing term in the expansion for the force and solve that equation subject to the initial conditions that at
time t = 0, x(0) = x0 and vx(0) = 0. As usual, analyze large and small a.

4.40 Solve by Frobenius series methods

d2y

dx2
+

2

x

dy

dx
+

1

x
y = 0

4.41 Find a series solution about x = 0 for y′′ + y sec x = 0, at least to a few terms.
Ans: a0

[
1− 1

2x
2 + 0x4 + 1

720x
6 + · · ·

]
+ a1

[
x− 1

6x
3 + 1

60x
5 + · · ·

]
4.42 Fill in the missing steps in the equations (36) to Eq. (39).

4.43 Verify the orthogonality relation Eq. (42)(a) for the Legendre polynomials of order ` = 0, 1, 2, 3.

4.44 Start with the function
(
1− 2xt + t2

)−1/2
. Use the binomial expansion and collect terms to get a power

series in t. The coefficients in this series are functions of x. Carry this out at least to the coefficient of t3 and
show that the coefficients are Legendre polynomials. This is called the generating function for the P`’s. It is∑∞

0 P`(x)t
`
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4.45 In the equation of problem 17, make the change of independent variable x = 1/z. Without actually carrying
out the solution of the resulting equation, what can you say about solving it?

4.46 Show that Eq. (42)(c) has the correct value Pn(1) = 1 for all n. Note: (1− x2) = (1 + x)(1− x) and you
are examining the point x = 1.

4.47 Solve for the complete solution of Eq. (36) for the case C = 0. For this, don’t use series methods, but get
the closed form solution.

4.48 Derive the condition in Eq. (40). Which values of s correspond to which values of `?



Fourier Series

Fourier series started life as a method to solve problems about the flow of heat through ordinary materials. It
has grown so far that if you search our library’s data base for the keyword “Fourier” you will find 425 entries as
of this date. It is a tool in abstract analysis and electromagnetism and statistics and radio communication and
. . . . People have even tried to use it to analyze the stock market. (It didn’t help.) The representation of musical
sounds as sums of waves of various frequencies is an audible example. It provides an indispensible tool in solving
partial differential equations, and a later chapter will show some of these tools at work.

5.1 Examples
The power series or Taylor series is based on the idea that you can write a general function as an infinite series of
powers. The idea of Fourier series is that you can write a function as an infinite series of sines and cosines. You
can also use functions other than trigonometric ones, but I’ll leave that generalization aside for now. Legendre
polynomials are an important example of functions used for such expansions.

An example: On the interval 0 < x < L the function x2 varies from 0 to L2. It can be written as the series
of cosines

x2 =
L2

3
+

4L2

π2

∞∑
1

(−1)n

n2
cos

nπx

L

=
L2

3
− 4L2

π2

[
cos

πx

L
− 1

4
cos

2πx

L
+

1

9
cos

3πx

L
− · · ·

]
(1)

To see if this is even plausible, examine successive partial sums of the series, taking one term, then two terms,
etc. Sketch the graphs of these partial sums to see if they start to look like the function they are supposed to
represent (left graph). The graphs of the series, using terms up to n = 5 does pretty well at representing the
given function.

118
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1

3
5

highest harmonic:   5

1

3

5

highest harmonic:   5

The same function can be written in terms of sines with another series:

x2 =
2L2

π

∞∑
1

[
(−1)n+1

n
− 2

π2n3

(
1− (−1)n)

)]
sin

nπx

L
(2)

and again you can see how the series behaves by taking one to several terms of the series. (right graph) The
graphs show the parabola y = x2 and partial sums of the two series with terms up to n = 1, 3, 5.

The second form doesn’t seem to work as smoothly as the first example, and there’s a reason for that.
The sine functions all go to zero at x = L and x2 doesn’t, making it hard for the sum of sines to approximate
the desired function. They can do it, but it takes a lot more terms in the series to get a satisfactory result. The
series Eq. (1) has terms that go to zero as 1/n2, while the terms in the series Eq. (2) go to zero only as 1/n.

5.2 Computing Fourier Series
How do you determine the details of these series starting from the original function? For the Taylor series, the trick
was to assume a series to be an infinitely long polynomial and then to evaluate it (and its successive derivatives)
at a point. You require that all of these values match those of the desired function at that one point. That
method won’t work here. (Actually it can work here too, but only after a ridiculous amount of labor.)

The idea of the procedure that works here is like one that you can use to determine the components of a
vector in three dimensions. You write such a vector as

~A = Axx̂+ Ayŷ + Az ẑ
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And then use the orthonormality of the basis vectors, x̂ . ŷ = 0 etc. Take the scalar product of the preceding
equation with x̂.

x̂ . ~A = x̂ .
(
Axx̂+ Ayŷ + Az ẑ

)
= Ax. (3)

This lets you get all the components of ~A.
There are orthogonality relations similar to the ones for x̂, ŷ, and ẑ, but for sines and cosines. Let n and

m represent integers, then ∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
=

{
0 n 6= m
L/2 n = m

(4)

This is sort of like x̂ . ẑ = 0 and ŷ . ŷ = 1.

More Examples
For a simple example, take the function f(x) = 1, the constant on the interval 0 < x < L and assume that there
is a series representation for f on this interval.

1 =
∞∑
1

an sin
(nπx
L

)
(0 < x < L) (5)

Multiply both sides by the sine of mπx/L and integrate from 0 to L.∫ L

0
dx sin

(mπx
L

)
1 =

∫ L

0
dx sin

(mπx
L

) ∞∑
n=1

an sin
(nπx
L

)
Interchange the order of the sum and the integral, and the integral that shows up is the orthogonality integral
just above. When you use the orthogonality of the sines, only one term in the infinite series survives.∫ L

0
dx sin

(mπx
L

)
1 =

∞∑
n=1

an

∫ L

0
dx sin

(mπx
L

)
sin
(nπx
L

)
=

∞∑
n=1

an .
{

0 n 6= m
L/2 n = m

(6)

= am L/2.
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Now all you have to do is to evaluate the integral on the left.∫ L

0
dx sin

(mπx
L

)
1 =

L

mπ

[
− cos

mπx

L

]L
0

=
L

mπ

[
1− (−1)m

]
This is zero for even m, and when you equate it to (6) you get

am =
4

mπ
for m odd

Relabel the indices so that the sum shows only odd integers and the Fourier series is

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L) (7)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The graphs show the sum of the series up to 2k + 1 = 5, 19, 99 respectively. It is not a very rapidly
converging series, but it’s a start. You can see from the graphs that near the end of the interval, where the
function is discontinuous, the series has a hard time handling the jump. The resulting overshoot is called the
Gibbs phenomenon. See section 5.6.

There is a compact and powerful notation that makes this look much simpler. Further exploit the analogy
with the dot product in three dimensions. In that case I can evaluate a component of the given vector by using
the scalar product:

x̂ . ~A = x̂ .
(
Axx̂+ Ayŷ + Az ẑ

)
= Ax. OR

〈
x̂, ~A

〉
= Ax

The last, with the angle brackets, is an alternate notation for the scalar product.
The orthogonality integral for the sines is another scalar product written in the same compact notation:

〈
f, g
〉

=

∫ L

0
dx f(x)*g(x) (8)
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and Eq. (4) then becomes

〈
un, um

〉
=

{
0 n 6= m
L/2 n = m

where un(x) = sin
(nπx
L

)
(9)

The Fourier series manipulations become

1 =
∞∑
1

anun, then
〈
um, 1

〉
=
〈
um,

∞∑
1

anun

〉
=

∞∑
n=1

an

〈
um, un

〉
= an

〈
un, un

〉
(10)

This is a far more compact notation than you see in the steps between Eq. (5) and Eq. (7). You still have to
evaluate the integral, but when you master this notation you’ll likely make fewer mistakes in figuring out what
integral you have to do.

The analogy between the vectors such as x̂ and functions such as sine is really far deeper, and it is central
to the subject of the next chapter. In order not to to get confused by the notation, you have to distinguish
between a whole function f , and the value of that function at a point, f(x). The former is the whole graph of
the function, and the latter is one point of the graph.

The scalar product notation of Eq. (8) is not necessarily restricted to the interval 0 < x < L. Depending
on context it can be over any interval that you happen to be considering at the time. In Eq. (8) there is a complex
conjugation symbol. The functions here have been real, so this made no difference, but you will often deal with
complex functions and then the fact that the notation

〈
f, g
〉

includes a conjugation is important. This notation
is really a special case of a far more general development, but that can wait until section 6.6.

5.3 Choice of Basis
When you work with components of vectors in two or three dimensions, you will choose the basis that is most
convenient for the problem you’re working with. If you do a simple mechanics problem with a mass moving on
an incline, you can choose a basis x̂ and ŷ that are arranged horizontally and vertically. OR, you can place them
at an angle so that they point down the incline and perpendicular to it. The latter is often a simpler choice in
that type of problem.

The same applies to Fourier series. The interval on which you’re working is not necessarily from zero to L,
and even on the interval 0 < x < L you can choose many bases:

sinnπx/L (n = 1, 2, . . .) as above, or you can choose a basis
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cosnπx/L (n = 0, 1, 2, . . .), or you can choose a basis

sin(n+ 1/2)πx/L (n = 0, 1, 2, . . .), or you can choose a basis

e2πinx/L (n = 0,±1,±2, . . .), or an infinite number of other possibilities.

Fundamental Theorem
If you want to show that each of these respective choices provides an orthogonal set of functions you can do a
lot of integration or you can do all the cases at once with an important theorem that starts from the fact that all
of these sines and cosines and complex exponentials satisfy the same differential equation, u′′ = λu, where λ is
some constant, different in each case.

You have two functions u1 and u2 that satisfy

u′′1 = λ1u1 and u′′2 = λ2u2

Make no assumption about whether the λ’s are positive or negative or even real. The u’s can also be complex.
Multiply the first equation by u*

2 and the second by u*
1, then take the complex conjugate of the second product.

u*
2u
′′
1 = λ1u

*
2u1 and u1u

∗′′
2 = λ*

2u1u
*
2

Subtract the equations.
u*

2u
′′
1 − u1u

∗′′
2 = (λ1 − λ*

2)u
*
2u1

Integrate from a to b ∫ b

a
dx
(
u*

2u
′′
1 − u1u

∗′′
2

)
= (λ1 − λ*

2)

∫ b

a
dx u*

2u1 (11)

Now do some partial integration. Work on the second term on the left:∫ b

a
dx u1u

∗′′
2 = u1u

∗′
2

∣∣∣∣b
a

− u′1u*
2

∣∣∣∣b
a

+

∫ b

a
dx u′′1u

*
2

Put this back into the Eq. (11) and the integral terms on the left cancel.

u′1u
*
2 − u1u

∗′
2

∣∣∣∣b
a

= (λ1 − λ*
2)

∫ b

a
dx u*

2u1 (12)
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This is the central identity from which all the orthogonality relations in Fourier series derive. It’s even more
important than that because it tells you what types of boundary conditions you can use in order to get the desired
orthogonality relations. (It tells you even more than that, as it tells you how to compute the adjoint of the second
derivative operator. But not now; save that for later.) The expression on the left side of the equation has a name:
“bilinear concomitant.”

The key to using this identity will be to figure out what sort of boundary conditions will cause the left-hand
side to be zero. For example if u(a) = 0 and u(b) = 0 then the left side is zero.

The first consequence comes by taking a special case, the one in which the two functions u1 and u2 are in
fact the same function. If the boundary conditions are such that the left side is zero then

0 = (λ1 − λ*
1)

∫ b

a
dx u*

1(x)u1(x)

The λ’s are necessarily the same because the u’s are. The only way the product of two numbers can be zero is
if one of them is zero. The integrand, u*

1(x)u1(x) is always non-negative and is continuous, so the integral can’t
be zero unless the function u1 is identically zero. As that would be a trivial case, I assume it’s not so. This then
implies that the other factor, (λ1 − λ*

1) must be zero, and this says that the constant λ1 is real.
To use another language that will become more familiar later, λ is an eigenvalue of the differential operator

d2/dx2 with these boundary conditions, and this guarantees that the eigenvalue is real.
Now go back the the more general case of two different functions, and I can now drop the complex

conjugation on the λ’s.

0 = (λ1 − λ2)

∫ b

a
dx u*

2(x)u1(x)

This says that if the boundary conditions on u make the left side zero, then for two solutions with different
eigenvalues (λ’s) the orthogonality integral is zero.

If λ1 6= λ2, then
〈
u2, u1

〉
=

∫ b

a
dx u*

2(x)u1(x) = 0 (13)

As an example, carry out a full analysis of the case for which a = 0 and b = L, and for the boundary
conditions u(0) = 0 and u(L) = 0. The parameter λ is positive, zero, or negative. If λ > 0, then set λ = k2 and

u(x) = A sinh kx+B cosh kx, then u(0) = B = 0

and so u(L) = A sinh kL = 0⇒ A = 0



5—Fourier Series 125

No solutions there, so try λ = 0

u(x) = A+Bx, then u(0) = A = 0 and so u(L) = BL = 0⇒ B = 0

No solutions here either. Try λ < 0, setting λ = −k2.

u(x) = A sin kx+B cos kx, then u(0) = 0 = B and so u(L) = A sin kL = 0

Now there are many solutions because sinnπ = 0 allows k = nπ/L with n any integer. But, sin(−x) = − sin(x)
so negative integers just reproduce the same functions as do the positive integers; they are redundant and you
can eliminate them. The complete set of solutions to the equation u′′ = λu with these boundary conditions have
λn = −n2π2/L2 with

un(x) = sin
(nπx
L

)
n = 1, 2, 3, . . . and〈

un, um

〉
=

∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
= 0 if n 6= m (14)

There are other choices of boundary condition that will make the bilinear concomitant vanish. For example

u(0) = 0, u′(L) = 0 gives un(x) = sin
(
n+ 1/2

)
πx/L n = 0, 1, 2, 3, . . .

and you have the orthogonality integral for non-negative integers n and m∫ L

0
dx sin

(
(n+ 1/2)πx

L

)
sin

(
(m+ 1/2)πx

L

)
= 0 if n 6= m (15)

A very common choice of boundary conditions is

u(a) = u(b), u′(a) = u′(b) (periodic boundary conditions) (16)

It’s often more convenient to use complex exponentials in this case (though of course not necessary). On
0 < x < L

u(x) = eikx, where k2 = −λ and u(0) = 1 = u(L) = eikL
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The periodic behavior of the exponential implies that kL = 2nπ. The condition that the derivatives match at
the boundaries makes no further constraint, so the basis functions are

un(x) = e2πinx/L, (n = 0, ±1,±2, . . .) (17)

Notice that in this case the index n runs over all positive and negative numbers and zero. If the interval is
symmetric about the origin as it often is, −L < x < +L, the conditions are

u(−L) = e−ikL = u(+L) = e+ikL, or e2ikL = 1

This says that 2kL = 2nπ, so

un(x) = enπix/L, (n = 0, ±1,±2, . . .)

Sometimes the real form of this basis is more convenient and you can use the combination of un and vn:

un(x) = cos(nπx/L), (n = 0, 1, 2, . . .) and vn(x) = sin(nπx/L), (n = 1, 2, . . .)

There are an infinite number of other choices, a few of which are even useful, e.g.

u′(a) = 0 = u′(b) (18)

Take the same function as in Eq. (5) and try a different basis. Choose the basis for which the boundary
conditions are u(0) = 0 and u′(L) = 0. This gives the orthogonality conditions of Eq. (15). The general structure
is always the same.

f(x) =
∑

an un(x), and use
〈
um, un

〉
= 0 (n 6= m)

Take the scalar product of this equation with um to get〈
um, f

〉
=
〈
um,

∑
an un

〉
= am

〈
um, um

〉
(19)

This is exactly as before in Eq. (10), only with a different basis. To evaluate it you still have to do the integrals.∫ L

0
dx sin

(
(m+ 1/2)πx

L

)
1 = am

∫ L

0
dx sin2

(
(m+ 1/2)πx

L

)
L

(m+ 1/2)π

[
1− cos

(
(m+ 1/2)π

)]
=
L

2
am
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am =
4

(2m+ 1)π

Then the series is
4

π

[
sin

πx

2L
+

1

3
sin

3πx

2L
+

1

5
sin

5πx

2L
+ · · ·

]
(20)

Parseval’s Identity
Let un be the set of orthogonal functions that follow from your choice of boundary conditions.

f(x) =
∑
n

anun(x)

Evaluate the integral of the absolute square of f over the domain.∫ b

a
dx |f(x)|2 =

∫ b

a
dx

[∑
m

amum(x)

]* [∑
n

anun(x)

]

=
∑
m

a*
m

∑
n

an

∫ b

a
dx um(x)*un(x) =

∑
n

|an|2
∫ b

a
dx |un(x)|2

In the more compact notation this is〈
f, f
〉

=
〈∑

m

amum,
∑
n

anun

〉
=
∑
m,n

a*
man

〈
um, un

〉
=
∑
n

|an|2
〈
un, un

〉
(21)

The first equation is nothing more than substituting the series for f . The second moved the integral under the
summation. The third equation uses the fact that all these integrals are zero except for the ones with m = n.
That reduces the double sum to a single sum. If you have chosen to normalize all of the functions un so that the
integrals of |un(x)|2 are one, then this relation takes on a simpler appearance.

What does this say if you apply it to a series I’ve just computed? Take Eq. (7) and see what it implies.〈
f, f
〉

=

∫ L

0
dx 1 = L =

∞∑
k=0

|ak|2
〈
un, un

〉
=

∞∑
k=0

(
4

π(2k + 1)

)2 ∫ L

0
dx sin2

(
(2k + 1)πx

L

)
=

∞∑
k=0

(
4

π(2k + 1)

)2
L

2
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Rearrange this to get
∞∑

k=0

1

(2k + 1)2
=
π2

8

A bonus. You have the sum of this infinite series, a result that would be quite perplexing if I handed it to you
without showing where it came from. While you have it in front of you, what do you get if you simply evaluate
the infinite series of Eq. (7) at L/2. The answer is 1, but what is the other side?

1 =
4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)π(L/2)

L
=

4

π

∞∑
k=0

1

2k + 1
(−1)k

or 1− 1

3
+

1

5
−1

7
+

1

9
− · · · = π

4

But does it Work?
If you are in the properly skeptical frame of mind, you may have noticed a serious omission on my part. I’ve done
all this work showing how to get orthogonal functions and to manipulate them to derive Fourier series for a general
function, but when did I show that this actually works? Never. How do I know that a general function, even a
well-behaved general function, can be written as such a series? I’ve proved that the set of functions sin(nπx/L)
are orthogonal on 0 < x < L, but that’s not good enough.

Maybe a clever mathematician will invent a new function that I haven’t thought of and that will be
orthogonal to all of these sines and cosines that I’m trying to use for a basis, just as k̂ is orthogonal to ı̂ and ̂.
It won’t happen. There are proper theorems proved in advanced calculus books that specify the conditions under
which all of this Fourier manipulation works.

For example if the function is continuous with a continuous derivative then the Fourier series will exist,
will converge, and will converge to the specified function (except maybe at the endpoints). If you allow it to
have a finite number of finite discontinuities then the Fourier series will converge and will (except maybe at the
discontinuities) converge to the specified function. There are a variety of other sufficient conditions that you can
use to insure that all of this stuff works, but I’ll leave that to the advanced calculus books.

5.4 Periodically Forced ODE’s
If you have a harmonic oscillator with an added external force, such as Eq. (4.11), there are systematic ways to
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solve it, such as those found in section 4.2. One part of the problem is to find a solution to the inhomogeneous
equation, and if the external force is simple enough you can do this easily. Suppose though that the external force
is complicated but periodic, as for example when you’re pushing a child on a swing.

m
d2x

dt2
= −kx− bdx

dt
+ Fext(t)

That the force is periodic means Fext(t) = Fext(t+ T ) for all times t. The period is T .

Pure Frequency Forcing
Before attacking the general problem, look at a simple special case. Take the external forcing function to be
F0 cosωet where this frequency is ωe = 2π/T . This equation is now

m
d2x

dt2
+ kx+ b

dx

dt
= F0 cosωet =

F0

2

[
eiωet + e−iωet

]
(22)

Find a solution corresponding to each term separately and add the results. To get an exponential out, put an
exponential in.

for m
d2x

dt2
+ kx+ b

dx

dt
= eiωet assume xinh(t) = Aeiωet

Substitute the assumed form and it will determine A.[
m(−ω2

e ) + b(iωe) + k
]
Aeiωet = eiωet

This tells you the value of A is

A =
1

−mω2
e + b iωe + k

(23)

The other term in Eq. (22) simply changes the sign in front of i everywhere. The total solution for Eq. (22) is
then

xinh(t) =
F0

2

[
1

−mω2
e + b iωe + k

eiωet +
1

−mω2
e − b iωe + k

e−iωet

]
(24)

This is the sum of a number and its complex conjugate, so it’s real. You can rearrange it so that it looks a
lot simpler, but I don’t need to do that right now. Instead I’ll look at what it implies for certain values of the
parameters.
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Suppose that the viscous friction is small (b is small). If the forcing frequency, ωe is such that −mω2
e +k = 0,

or is even close to zero, the denominators of the two terms become very small. This in turn implies that the
response of x to the oscillating force is huge. Resonance. See problem 27. In a contrasting case, look at ωe very
large. Now the response of the mass is very small; it barely moves.

General Periodic Force
Now I’ll go back to the more general case of a periodic forcing function, but not one that is simply a cosine. If a
function is periodic I can use Fourier series to represent it on the whole axis. The basis to use will of course be
the one with periodic boundary conditions (what else?). Use complex exponentials, then

u(t) = eiωt where eiω(t+T ) = eiωt

This is just like Eq. (17) but with t instead of x, so

un(t) = e2πint/T , (n = 0, ±1, . . .) (25)

Let ωe = 2π/T , and this is
un(t) = einωet

The external force can now be represented by the Fourier series

Fext(t) =
∞∑

k=−∞
ak e

ikωet, where

〈
einωet,

∞∑
k=−∞

ak e
ikωet

〉
= an T =

〈
einωet, Fext(t)

〉
=

∫ T

0
dt e−inωet Fext(t)

(Don’t forget the implied complex conjugation in the definition of the scalar product,
〈
,
〉
.) Because the force is

periodic I can use any other time interval of duration T , perhaps −T/2 to +T/2 if that’s more convenient.
How does this solve the differential equation? Plug in.

m
d2x

dt2
+ b

dx

dt
+ kx =

∞∑
n=−∞

an e
inωet (26)
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All that I have to do now is to solve for an inhomogeneous solution one term at a time and add the results. Take
one term alone on the right:

m
d2x

dt2
+ b

dx

dt
+ kx = einωet

This is what I just finished solving a few lines ago, Eq. (23), only with nωe instead of simply ωe. The inhomoge-
neous solution is the sum of the solutions from each term.

xinh(t) =
∞∑

n=−∞
an

1

−m(nωe)2 + binωe + k
eniωet (27)

Suppose for example that the forcing function is a simple square wave.

Fext(t) =

{
F0 (0 < t < T/2)
−F0 (T/2 < t < T )

and Fext(t+ T ) = Fext(t) (28)

The Fourier series for this function is one that you can do in problem 12. The result is

Fext(t) = F0
2

πi

∑
n odd

1

n
eniωet (29)

The solution corresponding to Eq. (27) is now

xinh(t) = F0
1

2πi

∑
n odd

1(
−m(nωe)2 + binωe + k

) 1

n
eniωet (30)

A real force ought to give a real result; does this? Yes. For every positive n in the sum, there is a
corresponding negative one and the sum of those two is real. You can see this because every n that appears is
either squared or is multiplied by an “i.” When you add the n = +5 term to the n = −5 term it’s adding a
number to its own complex conjugate, and that’s real.

What peculiar features does this result imply? With the simply cosine force the phenomenon of resonance
occurred, in which the response to a small force at a frequency that matched the intrinsic frequency

√
k/m

produced a disproportionately large response. What other things happen here?
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The natural frequency of the system is (for small damping) still
√
k/m. Look to see where a denominator

in Eq. (30) may become very small. This time it’s when −m(nωe)
2 + k = 0. This is not only when the

external frequency ωe matches the natural frequency; it’s when nωe matches it. If the natural frequency is√
k/m = 100 radians/sec you get a big response if the forcing frequency is 100 radians/sec or 33 radians/sec

or 20 radians/sec or 14 radians/sec etc. What does this mean? The square wave in Eq. (28) contains many
frequencies. It contains not only the main frequency 2π/T , it contains 3 times this and 5 times it and many
higher frequencies. When any one of these harmonics matches the natural frequency you will have the large
resonant response.

Not only do you get a large response, look at the way the mass oscillates. If the force has a frequency
20 radians/sec, the mass responds* with a large oscillation at a frequency 5 times higher.

5.5 Return to Parseval
When you have a periodic wave such as a musical note, you can Fourier analyze it. The boundary conditions to
use are naturally the periodic ones, Eq. (17) or (25), so that

f(t) =
∞∑
−∞

ane
inω0t

If this represents the sound of a flute, the amplitudes of the higher frequency components (the an) drop off rapidly
with n. If you are hearing an oboe or a violin the strength of the higher components is greater.

If this function represents the sound wave as received by your ear, the power that you receive is proportional
to the square of f . If f represent specifically the pressure disturbance in the air, the intensity (power per area)
carried by the wave is f(t)2v/B where v is the speed of the wave and B is the bulk modulus of the air. The key
property of this is that it is proportional to the square of the wave’s amplitude. That’s the same relation that
occurs for light or any other wave. Up to a known factor then, the power received by the ear is proportional to
f(t)2.

* The next time you have access to a piano, gently depress a key without making a sound, then strike the key
one octave lower. Release the lower key and listen to the sound of the upper note. Then try it with an interval
of an octave plus a fifth.
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This time average of the power is (up to that constant factor that I’m ignoring)〈
f2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t)2

Now put the Fourier series representation of the sound into the integral to get

lim
T→∞

1

2T

∫ +T

−T
dt

[ ∞∑
−∞

ane
inω0t

]2

The sound f(t) is real, so by problem 11, a−n = a*
n. Also, using the result of problem 18 the time average of

eiωt is zero unless ω = 0; then it’s one.〈
f2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt

[∑
n

ane
inω0t

][∑
m

ame
imω0t

]

= lim
T→∞

1

2T

∫ +T

−T
dt
∑
n

∑
m

ane
inω0tame

imω0t

=
∑
n

∑
m

anam lim
T→∞

1

2T

∫ +T

−T
dt ei(n+m)ω0t

=
∑
n

ana−n

=
∑
n

|an|2 (31)

Put this into words and it says that the time-average power received is the sum of many terms, each one of
which I can interpret as the amount of power coming in at that frequency nω0. The Fourier coefficients squared
(absolute-squared really) are then proportional to the part of the power at a particular frequency. The “power
spectrum.”

Other Applications
In section 10.2 Fourier series will be used to solve partial differential equations, leading to equations such as
Eq. (10.14).
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In quantum mechanics, Fourier series and its generalizations will manifest themselves in displaying the
discrete energy levels of bound atomic and nuclear systems.

Music synthesizers are all about Fourier series.

5.6 Gibbs Phenomenon
There’s a picture of the Gibbs phenomenon with Eq. (7). When a function has a discontinuity, its Fourier series
representation will not handle it in a uniform way, and the series overshoots its goal at the discontinuity. The
detailed calculation of this result is quite pretty, and it’s an excuse to pull together several of the methods from
the chapters on series and on complex algebra.

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= 1, (0 < x < L)

highest harmonic:   5 highest harmonic:  19 highest harmonic:  99

The analysis sounds straight-forward. Find the position of the first maximum. Evaluate the series there. It
really is almost that clear. First however, you have to start with the a finite sum and find the first maximum of
that. Stop the sum at k = N .

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πx

L
= fN (x) (32)

For a maximum, set the derivative to zero.

f ′N (x) =
4

L

N∑
0

cos
(2k + 1)πx

L

Write this as the real part of a complex exponential and use Eq. (2.2).

N∑
0

ei(2k+1)πx/L =
N∑
0

z2k+1 = z
N∑
0

z2k = z
1− z2N+2

1− z2
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Factor these complex exponentials in order to put this into a nicer form.

= eiπx/L e
−iπx(N+1)/L − eiπx(N+1)/L

e−iπx/L − eiπx/L

eiπx(N+1)/L

eiπx/L
=

sin(N + 1)πx/L

sin πx/L
eiπx(N+1)/L

The real part of this changes the last exponential into a cosine. Now you have the product of the sine and cosine
of (N + 1)πx/L, and that lets you use the trigonometric double angle formula.

f ′N (x) =
4

L

sin 2(N + 1)πx/L

2 sinπx/L

This is zero at the maximum. The first maximum after x = 0 is at 2(N + 1)πx/L = π, or x = L/2(N + 1).
Now for the value of fN at this point,

fN

(
L/2(N + 1)

)
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πL/2(N + 1)

L
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)π

2(N + 1)

The final step is to take the limit as N → ∞. As k varies over the set 0 to N , the argument of the sine varies
from a little more than zero to a little less than π. As N grows you have the sum over a lot of terms, each of
which is approaching zero. It’s an integral. Let tk = k/N then ∆tk = 1/N . This sum is approximately

4

π

N∑
k=0

1

2Ntk
sin tkπ =

2

π

N∑
0

∆tk
1

tk
sin tkπ −→

2

π

∫ 1

0

dt

t
sin πt

In this limit 2k + 1 and 2k are the same, and N + 1 is the same as N .
Finally, put this into a standard form by changing variables to πt = x.

2

π

∫ π

0
dx

sin x

x
=

2

π
Si(π) = 1.17898

2

π

∫ x

0
dt

sin t

t
= Si(x)

The function Si is called the “sine integral.” It’s just another tabulated function, along with erf, Γ, and others.
This equation says that as you take the limit of the series, the first part of the graph approaches a vertical line
starting from the origin, but it overshoots its target by 18%.
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Problems

5.1 Do the results in Eq. (4) by explicitly calculating the integrals.

5.2 The functions with periodic boundary conditions, Eq. (17), are supposed to be orthogonal on 0 < x < L.
That is,

〈
un, um

〉
= 0 for n 6= m. Verify this explicitly. What is the result if n = m or n = −m? The notation

is defined in Eq. (8).

5.3 Find the Fourier series for the function f(x) = 1 as in Eq. (7), but use as a basis the set of functions un

on 0 < x < L that satisfy the differential equation u′′ = λu with boundary conditions u′(0) = 0 and u′(L) = 0.
Necessarily the first step will be to find all such functions.

5.4 Compute the Fourier series for the function x2 on the interval 0 < x < L, using as a basis the functions
with boundary conditions u′(0) = 0 and u′(L) = 0.
Sketch the partial sums of the series for 1, 2, 3 terms.

5.5 Compute the Fourier series for the function x on the interval 0 < x < L, using as a basis the functions with
boundary conditions u(0) = 0 = u(L). How does the coefficient of the nth term decrease as a function of n?

5.6 In the preceding problem the sine functions that you used don’t match the qualitative behavior of the function
x on this interval because the sine is zero at x = L and x isn’t. The qualitative behavior is different from the
basis you are using for the expansion. You should be able to get better convergence for the series if you choose
functions that more closely match the function that you’re expanding, so try repeating the calculation using basis
functions that satisfy u(0) = 0 and u′(L) = 0. How does the coefficient of the nth term decrease as a function
of n?

5.7 In the preceding two series, use the values of the Fourier series to extend the original function outside the
domain 0 < x < L. That is, for the function that is f(x) = x on this interval what does the series give outside
that interval? Draw the graph of the extended function in each of the two cases. This graph should give some
insight about why the series converges better in one case than in the other.
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5.8 In the two problems 5 and 6 you improved the convergence by choosing boundary conditions that better
matched the function that you want. Can you do better? The function x vanishes at the origin, but its derivative
isn’t zero at L, so try boundary conditions u(0) = 0 and u(L) = Lu′(L). These conditions match those of x
so this ought to give even better convergence, but first you have to verify that these conditions guarantee the
orthogonality of the basis functions. You have to verify that the left side of Eq. (12) is in fact zero. When you
set up the basis, you will examine functions of the form sin kx, but you will not be able to solve explicitly for the
values of k. Don’t worry about it. When you use Eq. (19) to get the coefficients all that you need to do is to
use the equation that k satisfies to do the integrals. You do not have to have solved it. If you do all the algebra
correctly you will probably have a surprise.

5.9 Use the periodic boundary conditions on −L < x < +L and basis eπinx/L to write x2 as a Fourier series.
Sketch the sums up to a few terms. Evaluate your result at x = L where you know the answer to be L2 and
deduce from this the value of ζ(2).

5.10 On the interval −π < x < π, the function f(x) = cosx. Expand this in a Fourier series defined by u′′ = λu
and u(−π) = 0 = u(π). If you use your result for the series outside of this interval you define an extension of
the original function. Graph this extension and compare it to what you normally think of as the graph of cosx.

5.11 Represent a function f on the interval −L < x < L by a Fourier series using periodic boundary conditions

f(x) =
∞∑
−∞

an e
nπix/L

(a) If the function f is odd, prove that for all n, a−n = −an

(b) If the function f is even, prove that all a−n = an.
(c) If the function f is real, prove that all a−n = a*

n.
(d) If the function is both real and even, characterize an.
(e) If the function is imaginary and odd, characterize an.

5.12 Derive the series Eq. (29).
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5.13 For the function e−αt on 0 < t < T , express it as a Fourier series using periodic boundary conditions
[u(0) = u(T ) and u′(0) = u′(T )]. Examine for plausibility the cases of large and small α. The basis functions for
periodic boundary conditions can be expressed either as cosines and sines or as complex exponentials. Unless you
can analyze the problem ahead of time and determine that it has some special symmetry that matches that of the
trig functions, you’re usually better off with the exponentials. Ans:

[(
1 − e−αT

)/
αT
][

1 + 2
∑∞

1 [α2 cosnωt +

αnω sinnωt]
/
[α2 + n2ω2]

]
5.14 On the interval 0 < x < L, write x(L−x) as a Fourier series, using boundary conditions that the expansion
functions vanish at the endpoints.

5.15 A full-wave rectifier takes as an input a sine wave, sinωt and creates the output | sinωt|. The period of the
original wave is 2π/ω, so write the Fourier series for the output in terms of functions periodic with this period.
Graph the function first.

5.16 A half-wave rectifier takes as an input a sine wave, sinωt and creates the output

sinωt if sinωt > 0 and 0 if sinωt ≤ 0

The period of the original wave is 2π/ω, so write the Fourier series for the output in terms of functions periodic
with this period. Graph the function first. Check that the result gives the correct value at t = 0, manipulating it
into a telescoping series. Sketch a few terms of the series to see if it’s heading in the right direction.
Ans: 4/π + 1/2 sinωt− 8/π

∑
n even >0 cos(nωt)/(n2 − 1)

5.17 For the undamped harmonic oscillator, apply an oscillating force. This is a simpler version of Eq. (22).
Solve this problem and add the general solution to the homogeneous equation. Solve this subject to the initial
conditions that x(0) = 0 and vx(0) = v0.

5.18 The average (arithmetic mean) value of a function is〈
f
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t) or

〈
f
〉

= lim
T→∞

1

T

∫ T

0
dt f(t)

as appropriate for the problem.

What is
〈
sinωt

〉
? What is

〈
sin2 ωt

〉
? What is

〈
e−at2

〉
?

What is
〈
sinω1t sinω2t

〉
? What is

〈
eiωt
〉
?
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5.19 In the calculation leading to Eq. (31) I assumed that f(t) is real and then used the properties of an that
followed from that fact. Instead, make no assumption about the reality of f(t) and compute〈

|f(t)|2
〉

=
〈
f(t)*f(t)

〉
Show that it leads to the same result as before,

∑
|an|2.

5.20 The series
∞∑

n=0

an cosnθ (|a| < 1)

represents a function. Sum this series and determine what the function is. While you’re about it, sum the similar
series that has a sine instead of a cosine. Don’t try to do these separately; combine them and do them as one
problem. And check some limiting cases of course. Ans: a sin θ/

(
1 + a2 − 2a cos θ

)
5.21 Apply Parseval’s theorem to problem 9 and see what you can deduce.

5.22 If you take all the elements un of a basis and multiply each of them by 2, what happens to the result for
the Fourier series for a given function?

5.23 In the section 5.3 several bases are mentioned. Sketch a few terms of each basis.

5.24 A function is specified on the interval 0 < t < T to be

f(t) =

{
1 (0 < t < t0)
0 (t0 < t < T )

0 < t0 < T

On this interval, choose boundary conditions such that the left side of the basic identity (12) is zero. Use the
corresponding choice of basis functions to write f as a Fourier series on this interval.

5.25 Show that the boundary conditions u(0) = 0 and αu(L) + βu′(L) = 0 make the bilinear concomitant in
Eq. (12) vanish. Are there any restrictions on α and β?
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5.26 Derive a Fourier series for the function

f(x) =

{
Ax (0 < x < L/2)
A(L− x) (L/2 < x < L)

Choose the Fourier basis that you prefer. Evaluate the resulting series at x = L/2 to check the result. Sketch
the sum of a couple of terms. Ans: (2AL/π2)

∑
k odd(−1)(k−1)/2 sin(kπx/L)

/
k2

5.27 Rearrange the solution Eq. (24) into a more easily understood form. Write the first denominator as

−mω2
e + b iωe + k = Reiφ

What are R and φ? The second term does not require you to repeat this calculation, just use its results, now
combine everything and write the answer as an amplitude times a phase-shifted cosine.
(b) Assume that b is not too big and plot both R and φ versus the forcing frequency ωe. Also, and perhaps more
illuminating, plot 1/R.

5.28 Find the form of Parseval’s identity appropriate for power series. Assume a scalar product
〈
f, g
〉

=∫ 1
−1 dx f(x)*g(x) for the series f(x) =

∑∞
0 anx

n. (b) Test your result on a simple, low-order polynomial.

5.29 In the Gibbs phenomenon, after the first maximum there is a first minimum. Where is it? how big is the
function there? What is the limit of this point? That is, repeat the analysis of section 5.6 for this minimum point.
(b) While you’re about it, what will you get for the limit of the sine integral, Si(∞)? Ans: (2/π) Si(2π) = 0.9028

5.30 Make a blown-up copy of the graph preceding Eq. (32) and measure the size of the overshoot. Compare
this experimental value to the theoretical limit. Same for the first minimum.

5.31 Find the power series representation about the origin for the sine integral that appeared in section 5.6.
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out
in

5.32 An input potential in a circuit is given to be a square wave ±V0 at frequency
ω. What is the output at the other end? In particular, assume that the resistance is
small, and show that you can pick values of the capacitance and the inductance so
that the output is almost exactly a sine wave at frequency 3ω.

5.33 For the function sin(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis the trigonometric
functions with the boundary conditions u′(0) = 0 = u′(2L), the cosines.

5.34 For the function cos(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis the trigonometric
functions with the boundary conditions u(0) = 0 = u(2L), the sines.

5.35 For the function f(x) = x4, evaluate the Fourier series on the interval −L < x < L using periodic boundary
conditions

(
u(−L) = u(L) and u′(−L) = u′(L)

)
. Evaluate the series at the point x = L to derive the zeta

function value ζ(4) = π4/90. Evaluate it at x = 0 to get a related series.

5.36 Fourier series depends on the fact that the sines and cosines are orthogonal when integrated over a suitable
interval. There are other functions that allow this too, and you’ve seen one such set. The Legendre polynomials
that appeared in section 4.9 in the chapter on differential equations satisfied the equations (4.42). One of these
is ∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm

This is an orthogonality relation,
〈
Pn, Pm

〉
= 2δnm/(2n + 1), much like that for trigonometric functions. Write

a function f(x) =
∑∞

0 an Pn(x) and deduce an expression for evaluating the coefficients an. Apply this to the
function f(x) = x2.



Vector Spaces

The idea of vectors dates back to the early 1800’s, but the generality of the concept waited until Peano’s work
in 1888. Even then it took many years to understand the importance and extent of the ideas involved. This one
underlying idea can be used to describe the forces and accelerations in Newtonian mechanics and the potential
functions of electromagnetism and the states of systems in quantum mechanics and the least-square fitting of
experimental data and much more.

6.1 The Underlying Idea
What is a vector?

If your answer is along the lines “something with magnitude and direction” then you have something to
unlearn. Maybe you heard this definition in a class that I taught. If so, I lied; sorry about that. At the very least
I didn’t tell the whole truth. Does an automobile have magnitude and direction? Does that make it a vector?

The idea of a vector is far more general than the picture of a line with an arrowhead attached to its end.
That special case is an important one, but it doesn’t tell the whole story, and the whole story is one that unites
many areas of mathematics. The short answer to the question that I asked in the first paragraph is

A vector is an element of a vector space.

Roughly speaking, a vector space is some set of things for which the operation of addition is defined and
the operation of multiplication by a scalar is defined. You don’t necessarily have to be able to multiply two vectors
by each other or even to be able to define the length of a vector, though those are very useful operations and
will show up in most of the interesting cases. You can add two cubic polynomials together:(

2− 3x+ 4x2 − 7x3
)

+
(
− 8− 2x+ 11x2 + 9x3

)
makes sense, resulting in a cubic polynomial. You can multiply such a polynomial by* 17 and it’s still a cubic
polynomial. The set of all cubic polynomials in x forms a vector space and the vectors are the individual cubic
polynomials.

* The physicist’s canonical random number

142
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The common example of directed line segments (arrows) in two or three dimensions fits this idea, because
you can add such arrows by the parallelogram law and you can multiply them by numbers, changing their length
(and reversing direction for negative numbers).

Another, equally important example consists of all ordinary real-valued functions of a real variable: two such
functions can be added to form a third one; you can multiply a function by a number to get another function.
The example of cubic polynomials above is then a special case of this one.

A complete definition of a vector space requires pinning down these ideas and making them less vague.
In the end, the way to do that is to express the definition as a set of axioms. From these axioms the general
properties of vectors will derive.

A vector space is a set whose elements are called “vectors” and such that there are two operations defined
on them: you can add vectors to each other and you can multiply them by scalars (numbers). These operations
must obey certain simple rules, the axioms for a vector space.

6.2 Axioms
The precise definition of a vector space is given by listing a set of axioms. For this purpose, I’ll denote vectors by
arrows over a letter, and I’ll denote scalars by Greek letters. These scalars will, for our purpose, be either real or
complex numbers — it makes no difference which for now.*

1 There is a function, addition of vectors, denoted +, so that ~v1 + ~v2 is another vector.

2 There is a function, multiplication by scalars, denoted by juxtaposition, so that α~v is a vector.

3 (~v1 + ~v2) + ~v3 = ~v1 + (~v2 + ~v3) (the associative law).

4 There is a zero vector, so that for each ~v, ~v + ~O = ~v.

5 There is an additive inverse for each vector, so that for each ~v, there is another vector ~v ′ so that ~v+~v ′ = ~O.

6 The commutative law of addition holds: ~v1 + ~v2 = ~v2 + ~v1.

7 (α+ β)~v = α~v + β~v.

8 (αβ)~v = α(β~v).

9 α(~v1 + ~v2) = α~v1 + α~v2.

10 1~v = ~v.

* For a nice introduction online see distance-ed.math.tamu.edu/Math640, chapter three.

http://distance-ed.math.tamu.edu/Math640


6—Vector Spaces 144

In axioms 1 and 2 I called these operations “functions.” Is that the right use of the word? Yes. Without
going into the precise definition of the word (see section 12.1), you know it means that you have one or more
independent variables and you have a single output. Addition of vectors and multiplication by scalars certainly fit
that idea.

6.3 Examples of Vector Spaces
Examples of sets satisfying these axioms abound:

1 The usual picture of directed line segments in a plane, using the parallelogram law of addition.

2 The set of real-valued functions of a real variable, defined on the domain [a ≤ x ≤ b]. Addition is defined
pointwise. If f1 and f2 are functions, then the value of the function f1 + f2 at the point x is the number
f1(x) + f2(x). That is, f1 + f2 = f3 means f3(x) = f1(x) + f2(x). Similarly, multiplication by a scalar
is defined as (αf)(x) = α(f(x)). Notice a small confusion of notation in this last expression. The first
multiplication, (αf), multiplies the scalar α by the vector f ; the second multiplies the scalar α by the number
f(x).

3 Like example 2, but restricted to continuous functions. The only observation beyond the previous example is
that the sum of two continuous functions is continuous.

4 Like example 2, but restricted to bounded functions. The only observation beyond the previous example is
that the sum of two bounded functions is bounded.

5 The set of n-tuples of real numbers: (a1, a2, . . . , an) where addition and scalar multiplication are defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) α(a1, . . . , an) = (αa1, . . . , αan)

6 The set of square-integrable real-valued functions of a real variable on the domain [a ≤ x ≤ b]. That is,

restrict example two to those functions with
∫ b
a dx |f(x)|2 <∞. Axiom 1 is the only one requiring more than

a second to check.

7 The set of solutions to the equation ∂2φ/∂x2 + ∂2φ/∂y2 = 0 in any fixed domain. (Laplace’s equation)

8 Like example 5, but with n =∞.

9 Like example 8, but each vector has only a finite number of non-zero entries.

10 Like example 8, but restricting the set so that
∑∞

1 |ak|2 <∞. Again, only axiom one takes work.

11 Like example 10, but the sum is
∑∞

1 |ak| <∞.
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12 Like example 10, but
∑∞

1 |ak|p <∞. (p ≥ 1)

13 Like example 6, but
∫ b
a dx |f(x)|p <∞.

14 Any of examples 2–13, but make the scalars complex, and the functions complex valued.

15 The set of all n× n matrices, with addition being defined element by element.

16 The set of all polynomials with the obvious laws of addition and multiplication by scalars.

17 Complex valued functions on the domain [a ≤ x ≤ b] with
∑

x |f(x)|2 < ∞. (Whatever this means. See
problem 18)

18 { ~O}, the space consisting of only the zero vector.

19 The set of all solutions to the equations describing small motions of the surface of a drumhead.

20 The set of solutions of Maxwell’s equations without charges or currents and with finite energy. That is,∫
[E2 +B2]d3x <∞.

21 The set of all functions of a complex variable that are differentiable everywhere and satisfy

∫
dx dy e−x2−y2

|f(z)|2 <∞,

where z = x+ iy.

To verify that any of these is a vector space you have to run through the ten axioms, checking each one.
(Actually, in a couple of pages there’s a theorem that will greatly simplify this.) To see what is involved, take the
first, most familiar example, arrows that all start at one point, the origin. I’ll go through the details of each of
the ten axioms to show that the process of checking is very simple. There are some cases for which this checking
isn’t so simple, but the difficulty is usually confined to verifying axiom one.

The picture shows the definitions of addition of vectors and multiplication by scalars, the first two axioms.
The commutative law, axiom 6, is clear, as the diagonal of the parallelogram doesn’t depend on which side you’re
looking at.
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~B

~A

~A+ ~B

~A

2 ~A

( ~A+ ~B) + ~C ~A+ ( ~B + ~C)

The associative law, axiom 3, is also illustrated in the picture. The zero vector, axiom 4, appears in this
picture as just a point, the origin.

The definition of multiplication by a scalar is that the length of the arrow is changed (or even reversed) by
the factor given by the scalar. Axioms 7 and 8 are then simply the statement that the graphical interpretation of
multiplication of numbers involves adding and multiplying their lengths.

~A′
~A

α( ~A+ ~B )

Axioms 5 and 9 appear in this picture.
Finally, axiom 10 is true because you leave the vector alone when you multiply it by one.
This process looks almost too easy. Some of the axioms even look as though they are trivial and unnecessary.

The last one for example: why do you have to assume that multiplication by one leaves the vector alone? For an
answer, I can show you an example of something that satisfies all of axioms one through nine but not the tenth.
These processes, addition of vectors and multiplication by scalars, are functions. I could write “f(~v1, ~v2)” instead
of “~v1 +~v2” and write “g(α,~v )” instead of “α~v ”. The standard notation is just that — a common way to write
a vector-valued function of two variables. I can define any function that I want and then see if it satisfies the
required properties.

On the set of arrows that I just worked through, redefine multiplication by a scalar (the function g) to be the

zero vector for all scalars and vectors. That is, α~v = ~O for all α and ~v. Look back and you see that this definition
satisfies all the assumptions 1–9 but not 10. This observation proves that the tenth axiom is independent of the
others. If you could derive the tenth axiom from the first nine, then this example couldn’t exist. This construction
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is of course not a vector space.

3

f
f

1

2

3

f

f   +  f   =  f1 2

Function Spaces
Is example 2 a vector space? How can a function be a vector? This comes down
to your understanding of the word “function.” Is f(x) a function or is f(x) a
number? Answer: It’s a number. This is a confusion caused by the conventional
notation for functions. We routinely call f(x) a function, but it is really the result
of feeding the particular value, x, to the function f in order to get the number
f(x). This confusion in notation is so ingrained that it’s hard to change, though
in more sophisticated mathematics books it is changed.

In a better notation, the symbol f is the function, expressing the relation between all the possible inputs
and their corresponding outputs. Then f(1), or f(π), or f(x) are the results of feeding f the particular inputs,
and the results are (at least for example 2) real numbers. Think of the function f as the whole graph relating
input to output; the pair

(
x, f(x)

)
is then just one point on the graph. Adding two functions is adding their

graphs. For a precise, set theoretic definition of the word function, see section 12.1. Re-read the statement of
example 2 in light of these comments.

Special Function Space
Go through another of the examples of vector spaces written above. Number 6, the square-integrable real-valued
functions on the interval a ≤ x ≤ b. The only difficulty here is the first axiom: Is the sum of two square-integrable
functions itself square-integrable? The other nine axioms I leave to you to check.

Suppose that ∫ b

a
f(x)2 dx <∞ and

∫ b

a
g(x)2 dx <∞.

simply note the combination (
f(x) + g(x)

)2
+
(
f(x)− g(x)

)2
= 2f(x)2 + 2g(x)2

The integral of the right-hand side is by assumption finite, so the same must hold for the left side. This says that
the sum (and difference) of two square-integrable functions is square-integrable. For this example then, it isn’t
very difficult to show that it satisfies the axioms for a vector space, but it requires more than just a glance.

Theorem: If a subset of a vector space is closed under addition and multiplication by scalars, then it is
itself a vector space. This means that if you add two elements of this subset to each other they remain in the
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subset and multiplying any element of the subset by a scalar leaves it in the subset. It is a “subspace.”
Proof: The assumption of the theorem is that axioms 1 and 2 are satisfied as regards the subset. That axioms 3
through 10 hold follows because the elements of the subset inherit their properties from the larger vector space
of which they are a part.

There are a few properties of vector spaces that I seem to have left out. I used the somewhat odd notation
~v ′ for the additive inverse in axiom 5. Isn’t that just −~v ? Isn’t the zero vector simply the number zero times a
vector? Yes in both cases, but these are theorems that follow easily from the ten axioms listed. See problem 20.
I’ll do part (a) of that exercise as an example here:

Theorem: The vector ~O is unique.
Proof: Assume it is not, then there are two such vectors, ~O1 and ~O2.
By [4], ~O1 + ~O2 = ~O1 ( ~O2 is a zero vector)

By [6], the left side is ~O2 + ~O1

By [4], this is ~O2 ( ~O1 is a zero vector)

Put these together and ~O1 = ~O2.

6.4 Linear Independence
A set of non-zero vectors is linearly dependent if one element of the set can be written as a linear combination of
the others. The set is linearly independent if this cannot be done.

Bases, Dimension, Components
A basis for a vector space is a linearly independent set of vectors such that any vector in the space can be written
as a linear combination of elements of this set. The dimension of the space is the number of elements in this
basis.

If you take the usual vector space of arrows that start from the origin and lie in a plane, the common basis
is denoted ı̂, ̂. If I propose a basis consisting of

ı̂, −1
2 ı̂+

√
3

2 ̂, −1
2 ı̂−

√
3

2 ̂

these will certainly span the space. Every vector can be written as a linear combination of them. They are
however, redundant; the sum of all three is zero, so they aren’t linearly independent and aren’t a basis. (If you
use them as if they are a basis, the components of a given vector won’t be unique. Maybe that’s o.k. and you
want to do it, but either be careful or look up the mathematical subject called “frames.”)
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Beginning with the most elementary problems in physics and mathematics, it is clear that the choice of an
appropriate coordinate system can provide great computational advantages. In dealing with the usual two and
three dimensional vectors it is useful to express an arbitrary vector as a sum of unit vectors. Similarly, the use of
Fourier series for the analysis of functions is a very powerful tool in analysis. These two ideas are essentially the
same thing when you look at them as aspects of vector spaces.

If the elements of the basis are denoted ~ei, and a vector ~a is

~a =
∑

i

ai~ei,

the numbers {ai} are called the components of ~a in the specified basis. Note that you don’t have to talk about
orthogonality or unit vectors or any other properties of the basis vectors save that they span the space and they’re
independent.

Example 1 is the prototype for the subject, and the basis usually chosen is the one designated x̂, ŷ, (and ẑ
for three dimensions). Another notation for this is ı̂, ̂, k̂ — I’ll use x̂-ŷ. In any case, the two (or three) arrows
are at right angles to each other.

In example 5, the simplest choice of basis is

~e1 = ( 1 0 0 . . . 0 )

~e2 = ( 0 1 0 . . . 0 )
...

~en = ( 0 0 0 . . . 1 ) (1)

In example 6, if the domain of the functions is from −∞ to +∞, a possible basis is the set of functions

ψn(x) = xne−x2/2.

The major distinction between this and the previous cases is that the dimension here is infinite. There is a basis
vector corresponding to each non-negative integer. It’s not obvious that this is a basis, but it’s true.

If two vectors are equal to each other and you express them in the same basis, the corresponding components
must be equal. ∑

i

ai~ei =
∑

i

bi~ei =⇒ ai = bi for all i (2)
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Suppose you have the relation between two functions of time

A−Bω + γt = βt

that is, that the two functions are the same, think of this in terms of vectors: On the vector space of polynomials
in t a basis is

~e0 = 1, ~e1 = t, ~e2 = t2, etc.

Translate the preceding equation into this notation.

(A−Bω)~e0 + γ~e1 = β~e1

For this to be valid the corresponding components must match:

A−Bω = 0, and γ = β

Differential Equations
When you encounter differential equations such as

m
d2x

dt2
+ b

dx

dt
+ kx = 0, or γ

d3x

dt3
+ kt2

dx

dt
+ αe−βtx = 0, (3)

the sets of solutions to these equations form vector spaces. All you have to do is to check the axioms, and because
of the theorem in section 6.3 you don’t even have to do all of that. The solutions are functions, and as such they
are elements of the vector space of example 2. All you need to do now is to verify that the sum of two solutions
is a solution and that a constant times a solution is a solution. That’s what the phrase “linear, homogeneous”
means.

Another common differential equation is

d2θ

dt2
+
g

`
sin θ = 0

This describes the motion of an undamped pendulum, and the set of its solutions do not form a vector space.
The sum of two solutions is not a solution.
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The first of Eqs. (3) has two independent solutions,

x1(t) = e−γt cosω′t, and x2(t) = e−γt sinω′t

where γ = −b/2m and ω′ =
√

k
m −

b2

4m2 . This is from Eq. (4.8). Any solution of this differential equation is a

linear combination of these functions, and I can restate that fact in the language of this chapter by saying that
x1 and x2 form a basis for the vector space of solutions of the damped oscillator equation. It has dimension two.

The second equation of the pair (3) is a third order differential equation, and as such you will need to
specify three conditions to determine the solution and to determine all the three arbitrary constants. In other
words, the dimension of the solution space of this equation is three.

In chapter 4 on the subject of differential equations, one of the topics was simultaneous differential equations,
coupled oscillations. The simultaneous differential equations, Eq. (4.27), are

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1)

and have solutions that are pairs of functions. In the development of section 4.8 (at least for the equal mass,
symmetric case), I found four pairs of functions that satisfied the equations. Now translate that into the language
of this chapter, using the notation of column matrices for the functions. The solution is the vector(

x1(t)
x2(t)

)
and the four basis vectors for this four-dimensional vector space are

~e1 =

(
eiω1t

eiω1t

)
, ~e2 =

(
e−iω1t

e−iω1t

)
, ~e3 =

(
eiω2t

−eiω2t

)
, ~e4 =

(
e−iω2t

−e−iω2t

)
Any solution of the differential equations is a linear combination of these. In the original notation, you have
Eq. (4.33). In the current notation you have(

x1

x2

)
= A1~e1 + A2~e2 + A3~e3 + A4~e4
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6.5 Norms
The “norm” or length of a vector is a particularly important type of function that can be defined on a vector
space. It is a function, usually denoted by ‖ ‖, and that satisfies

1. ‖~v ‖ ≥ 0; ‖~v ‖ = 0 if and only if ~v = ~O

2. ‖α~v ‖ = |α| ‖~v ‖
3. ‖~v1 + ~v2‖ ≤ ‖~v1‖+ ‖~v2‖ ( the triangle inequality) The distance between two vectors ~v1 and ~v2 is taken

to be ‖~v1 − ~v2‖.

6.6 Scalar Product
The scalar product of two vectors is a scalar valued function of two vector variables. It could be denoted as
f(~u,~v ), but a standard notation for it is

〈
~u,~v

〉
. It must satisfy the requirements

1.
〈
~w, (~u+ ~v )

〉
=
〈
~w, ~u

〉
+
〈
~w,~v

〉
2.
〈
~w, α~v

〉
= α

〈
~w,~v

〉
3.
〈
~u,~v

〉*
=
〈
~v, ~u

〉
4.
〈
~v,~v

〉
≥ 0; and

〈
~v,~v

〉
= 0 if and only if ~v = ~O

When a scalar product exists on a space, a norm naturally does too:

‖~v ‖ =
√〈

~v,~v
〉
. (4)

That this is a norm will follow from the Cauchy-Schwartz inequality. Not all norms come from scalar products.

Examples
Use the examples of section 6.3 to see what these are. The numbers here refer to the numbers of that section.

1 A norm is the usual picture of the length of the line segment. A scalar product is the usual product of lengths
times the cosine of the angle between the vectors.〈

~u,~v
〉

= ~u .~v = u v cosϑ. (5)

4 A norm can be taken as the least upper bound of the magnitude of the function. This is distinguished from
the “maximum” in that the function may not actually achieve a maximum value; since it is bounded however,
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there is an upper bound (many in fact) and we take the smallest of these as the norm. On −∞ < x < +∞,
the function | tan−1 x| has π/2 for its least upper bound, though it never equals that number.

5 We can take as a scalar product

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

a*
k bk. (6)

We can just as easily have another scalar product for the same vector space, for example

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

k a*
k bk

In fact any other positive function can appear as the coefficient in the sum and it still defines a valid scalar
product. It’s surprising how often something like this happens in real situations. In studying normal modes
of oscillation the masses of different particles will appear as coefficients in a natural scalar product.

I used complex conjugation on the first factor here, but example 5 referred to real numbers only. The reason
for leaving the conjugation in place is that when you jump to example 14 you want to allow for complex
numbers, and its harmless to put it in for the real case because in that instance it leaves the number alone.

For a norm, there are many possibilities:

‖(a1, . . . , an)‖1 =

√∑n

k=1
|ak|2

‖(a1, . . . , an)‖2 =
∑n

k=1
|ak|

‖(a1, . . . , an)‖3 = maxn
k=1 |ak|

‖(a1, . . . , an)‖4 = maxn
k=1 k|ak|.

(7)

The United States Postal Service prefers the second of these norms, see problem 8.45.

6 A possible choice for a scalar product is

〈
f, g
〉

=

∫ b

a
dx f(x)* g(x). (8)
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9 Scalar products and norms used here are just like those used for example 5. The difference is that the sums
go from 1 to infinity. The problem of convergence doesn’t occur because there are only a finite number of
non-zero terms.

10 Take the norm to be

‖(a1, a2, . . .)‖ =

√∑∞

k=1
|ak|2, (9)

and this by assumption will converge. The natural scalar product is like that of example 5, but with the sum
going out to infinity. It requires a small amount of proof to show that this will converge. See problem 19.

11 A norm is ‖~v ‖ =
∑∞

i=1 |ai|. There is no scalar product that will produce this norm, a fact that you can
prove by using the results of problem 13.

13 A natural norm is

‖f‖ =

[∫ b

a
dx |f(x)|p

]1/p

. (10)

To demonstrate that this is a norm requires the use of some special inequalities found in advanced calculus
books.

15 If A and B are two matrices, a scalar product is
〈
A,B

〉
= Tr(A†B), where † is the transpose complex

conjugate of the matrix and Tr means the trace, the sum of the diagonal elements. Several possible norms

can occur. One is ‖A‖ =

√
Tr(A†A). Another is the maximum value of ‖A~u ‖, where ~u is a unit vector and

the norm of ~u is taken to be
[
|u1|2 + · · ·+ |un|2

]1/2
.

19 A valid definition of a norm for the motions of a drumhead is its total energy, kinetic plus potential. How do
you describe this mathematically? It’s something like∫

dx dy
1

2

[(
∂f

∂t

)2

+
(
∇f
)2]

I’ve left out all the necessary constants, such as mass density of the drumhead and tension in the drumhead.
You can perhaps use dimensional analysis to surmise where they go.
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6.7 Bases and Scalar Products
When there is a scalar product, a most useful type of basis is the orthonormal one, satisfying〈

~vi, ~vj

〉
= δij =

{
1 if i = j
0 if i 6= j

(11)

The notation δij represents the very useful Kronecker delta symbol.
In the example of Eq. (1) the basis vectors are orthonormal with respect to the scalar product in Eq. (6).

It is orthogonal with respect to the other scalar product mentioned there, but it is not in that case normalized to
magnitude one.

To see how the choice of even an orthonormal basis depends on the scalar product, a different scalar product
can be used on this space. Take the special case of two dimensions. The vectors are now pairs of numbers. Think
of the vectors as 2× 1 matrix column and use the 2× 2 matrix(

2 1
1 2

)
The scalar product of two vectors is〈

(a1, a2), (b1, b2)
〉

=
( a*

1 a*
2 )
(

2 1
1 2

)(
b1
b2

)
= 2a*

1b1 + a*
1b2 + a*

2b1 + 2a*
2b2 (12)

To show that this satisfies all the defined requirements for a scalar product takes a small amount of labor. The
vectors that you may expect to be orthogonal, (1 0) and (0 1), are not.

In example 6, if we let the domain of the functions be −L < x < +L and the scalar product is as in
Eq. (8), then the set of trigonometric functions can be used as a basis.

sin
nπx

L
and cos

mπx

L
n = 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . .

That a function can be written as a series

f(x) =
∞∑
1

an sin
nπx

L
+

∞∑
0

bm cos
mπx

L
(13)
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on the domain −L < x < +L is just an example of Fourier series, and the components of f in this basis are
Fourier coefficients a1, . . . , b0, . . .. An equally valid and more succinctly stated basis is

enπix/L, n = 0, ±1, ±2, . . .

Chapter 5 on Fourier series shows many other choices of bases, all orthogonal, but not usually orthonormal.

6.8 Gram-Schmidt Orthogonalization
From a basis that is not orthonormal, it is possible to construct one that is. This device is called the Gram-Schmidt
procedure. Suppose that a basis is known (finite or infinite), ~v1, ~v2, . . .

Step 1: Normalize ~v1: ~e1 = ~v1
/√〈

~v1, ~v1
〉
.

Step 2: Construct a linear combination of ~v1 and ~v2 that is orthogonal to ~v1:
Let ~e20 = ~v2 − ~e1

〈
~e1, ~v2

〉
and then normalize it.

~e2 = ~e20

/〈
~e20, ~e20

〉1/2
.

Step 3: Let ~e30 = ~v3 − ~e1
〈
~e1, ~v3

〉
− ~e2

〈
~e2, ~v3

〉
etc. repeating step 2.

What does this look like? See problem 3.

6.9 Cauchy-Schwartz inequality
For common three-dimensional vector geometry, it is obvious that for any real angle, cos2 θ ≤ 1. In terms of a
dot product, this is | ~A . ~B| ≤ AB. This can be generalized to any scalar product on any vector space:∣∣〈~u,~v〉∣∣ ≤ ‖~u ‖ ‖~v ‖. (14)

The proof starts from a simple but not-so-obvious point. The scalar product of a vector with itself is by definition
positive, so for any two vectors ~u and ~v you have the inequality〈

~u− λ~v, ~u− λ~v
〉
≥ 0. (15)

where λ is any complex number. This expands to〈
~u, ~u

〉
+ |λ|2

〈
~v,~v

〉
− λ
〈
~u,~v
〉
− λ*

〈
~v, ~u

〉
≥ 0. (16)
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How much bigger than zero the left side is will depend on the parameter λ. To find the smallest value that the
left side can have you simply differentiate. Let λ = x+ iy and differentiate with respect to x and y, setting the
results to zero. This gives (see problem 5)

λ =
〈
~v, ~u

〉/〈
~v,~v

〉
. (17)

Substitute this value into the above inequality (16)

〈
~u, ~u

〉
+

∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 ≥ 0. (18)

This becomes ∣∣〈~u,~v 〉∣∣2 ≤ 〈~u, ~u 〉〈~v,~v 〉 (19)

This isn’t quite the result I wanted, because Eq. (14) is written differently. It refers to a norm and I haven’t
established that the square root of

〈
~v,~v

〉
is a norm. When I do, then the square root of this is the inequality I

want.

For a couple of examples of this inequality, take specific scalar products. First the common directed line
segments: 〈

~u,~v
〉

= ~u .~v = uv cos θ, so |uv cos θ|2 ≤ |u|2|v|2

∣∣∣∣∣
∫ b

a
dx f(x)*g(x)

∣∣∣∣∣
2

≤

[∫ b

a
dx |f(x)|2

][∫ b

a
dx |g(x)|2

]

The first of these is familiar, but the second is not, though when you look at it from the general vector space
viewpoint they are essentially the same.

Norm from a Scalar Product

The equation (4), ‖~v ‖ =
√〈

~v,~v
〉
, defines a norm. Properties one and two for a norm are simple to check. (Do
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so.) The third requirement, the triangle inequality, takes a bit of work and uses the inequality Eq. (19).〈
~v1 + ~v2, ~v1 + ~v2

〉
=
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+
〈
~v1, ~v2

〉
+
〈
~v2, ~v1

〉
≤
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+
∣∣〈~v1, ~v2〉∣∣+ ∣∣〈~v2, ~v1〉∣∣

=
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+ 2
∣∣〈~v1, ~v2〉∣∣

≤
〈
~v1, ~v1

〉
+
〈
~v2, ~v2

〉
+ 2
√〈

~v1, ~v1
〉〈
~v2, ~v2

〉
=

(√〈
~v1, ~v1

〉
+
√〈

~v2, ~v2
〉)2

The first inequality is a property of complex numbers. The second one is Eq. (19). The square root of the last

line is the triangle inequality, thereby justifying the use of
√〈

~v,~v
〉

as the norm of ~v and in the process validating

Eq. (14).

‖~v1 + ~v2‖ =
√〈

~v1 + ~v2, ~v1 + ~v2
〉
≤
√〈

~v1, ~v1
〉

+
√〈

~v2, ~v2
〉

= ‖~v1‖+ ‖~v2‖

6.10 Infinite Dimensions
Is there any real difference between the cases where the dimension of the vector space is finite and the cases where
it’s infinite? Yes. Most of the concepts are the same, but you have to watch out for the question of convergence.
If the dimension is finite, then when you write a vector in terms of a basis ~v =

∑
ak~ek, the sum is finite and you

don’t even have to think about whether it converges or not. In the infinite-dimensional case you do.
It’s even possible to have such a series converge, but not to converge to a vector. If that sounds implausible,

let me take an example from a slightly different context, ordinary rational numbers. These are the number m/n
where m and n are integers (n 6= 0). Consider the sequence

1, 14/10, 141/100, 1414/1000, 14142/10000, 141421/100000, . . .

These are quotients of integers, but the limit is
√

2 and that’s not* a rational number. Within the confines of
rational numbers, this sequence doesn’t converge. You have to expand the context to get a limit. That context

* Proof: If it is, then express it in simplest form as m/n =
√

2 ⇒ m2 = 2n2 where m and n have no
common factor. This equation implies that m must be even: m = 2m1. Substitute this value, giving 2m2

1 = n2.
That in turn implies that n is even, and this contradicts the assumption that the original quotient was expressed
without common factors.
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is the real numbers. The same thing happens with vectors when the dimension of the space is infinite — in order
to find a limit you sometimes have to expand the context and to expand what you’re willing to call a vector.

Look at example 9 from section 6.3. These are sets of numbers (a1, a2, . . .) with only a finite number of
non-zero entries. If you take a sequence of such vectors

(1, 0, 0, . . .), (1, 1, 0, 0, . . .), (1, 1, 1, 0, 0, . . .), . . .

Each has a finite number of non-zero elements but the limit of the sequence does not. It isn’t a vector in the
original vector space. Can I expand to a larger vector space? Yes, just use example 8, allowing any number of
non-zero elements.

For a more useful example of the same kind, start with the same space and take the sequence

(1, 0, . . .), (1, 1/2, 0, . . .), (1, 1/2, 1/3, 0, . . .), . . .

Again the limit of such a sequence doesn’t have a finite number of entries, but example 10 will hold such a limit,
because

∑∞
1 |ak|2 <∞.

How do you know when you have a vector space without holes in it? That is, one in which these problems
with limits don’t occur? The answer lies in the idea of a Cauchy sequence. I’ll start again with the rational
numbers to demonstrate the idea. The sequence of numbers that led to the square root of two has the property
that even though the elements of the sequence weren’t approaching a rational number, the elements were getting
close to each other. Let {rn}, n = 1, 2, . . . be a sequence of rational numbers.

lim
n,m→∞

∣∣rn − rm∣∣ = 0 means

For any ε > 0 there is an N so that if both n and m are > N then
∣∣rn − rm∣∣ < ε.

A sequence of rational numbers converges to a real number if and only if it is a Cauchy sequence; this is a theorem
found in many advanced calculus texts. Still other texts will take a different approach and use the concept of a
Cauchy sequence to construct the definition of the real numbers.

The extension of this idea to infinite dimensional vector spaces requires only that you replace the absolute
value by a norm, so that a Cauchy sequence is defined by limn,m ‖~vn − ~vm‖ = 0. A “complete” vector space
is one in which every Cauchy sequence converges. A vector space that has a scalar product and that is also
complete using the norm that this scalar product defines is called a Hilbert Space.
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Problems

6.1 Fourier series represents a choice of basis for functions on an interval. For suitably smooth functions on the
interval 0 to L, one basis is

~en =

√
2

L
sin

nπx

L
. (20)

Use the scalar product
〈
f, g
〉

=
∫ L
0 f*(x)g(x) dx and show that this is an orthogonal basis normalized to 1,

i.e. orthonormal.

6.2 A function F (x) = x(L − x) between zero and L. Use the basis of the problem 1 to write this vector in
terms of its components:

F =
∞∑
1

αn~en. (21)

If you take the result of using this basis and write the resulting function outside the interval 0 < x < L, graph
the result.

6.3 For two dimensional real vectors with the usual parallelogram addition, interpret in pictures the first two
steps of the Gram-Schmidt process, section 6.8.

6.4 For two dimensional real vectors with the usual parallelogram addition, interpret the vectors ~u and ~v and the
parameter λ used in the proof of the Cauchy-Schwartz inequality in section 6.9. Start by considering the set of
points in the plane formed by {~u − λ~v } as λ ranges over the set of reals. In particular, when λ was picked to
minimize the left side of the inequality (16), what do the vectors look like? Go through the proof and interpret
it in the context of these pictures. State the idea of the whole proof geometrically.
Note: I don’t mean just copy the proof. Put the geometric interpretation into words.

6.5 Start from Eq. (16) and show that the minimum value of the function of λ = x + iy is given by the value
stated there. Note: this derivation applies to complex vector spaces and scalar products, not just real ones. Is
this a minimum?
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6.6 For the vectors in three dimensions,

~v1 = x̂+ ŷ, ~v2 = ŷ + ẑ, ~v3 = ẑ + x̂

use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v1.

6.7 For the vector space of polynomials in x, use the scalar product defined as

〈
f, g
〉

=

∫ 1

−1
dx f(x)*g(x)

(Everything is real here, so the complex conjugation won’t matter.) Start from the vectors

~v1 = 1, ~v2 = x, ~v3 = x2, ~v4 = x3

and use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v1. Compare these results
to the results of section 4.9. [These polynomials appear in the study of electric potentials and in the study of
angular momentum in quantum mechanics: Legendre polynomials.]

6.8 Repeat the previous problem, but use a different scalar product:

〈
f, g
〉

=

∫ ∞

−∞
dx e−x2

f(x)*g(x)

[These polynomials appear in the study of the harmonic oscillator in quantum mechanics and in the study of
certain waves in the upper atmosphere. With a conventional normalization they are called Hermite polynomials.]

6.9 Consider the set of all polynomials in x having degree ≤ N . Show that this is a vector space and find its
dimension.

6.10 Consider the set of all polynomials in x having degree ≤ N and only even powers. Show that this is a
vector space and find its dimension. What about odd powers only?
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6.11 Which of these are vector spaces?
(a) all polynomials of degree 3
(b) all polynomials of degree ≤ 3 [Is there a difference between (a) and (b)?]
(c) all functions such that f(1) = 2f(2)
(d) all functions such that f(2) = f(1) + 1
(e) all functions satisfying f(x+ 2π) = f(x)
(f) all positive functions

(g) all polynomials of degree ≤ 4 satisfying
∫ 1
−1 dx xf(x) = 0.

6.12 For the common picture of arrows in three dimensions, prove that the subset of vectors ~v that satisfy
~A .~v = 0 for fixed ~A forms a vector space. Sketch it.
(b) What if the requirement is that both ~A .~v = 0 and ~B .~v = 0 hold. Describe this and sketch it.

6.13 If a norm is defined in terms of a scalar product, ‖~v ‖ =
√〈

~v,~v
〉
, then it satisfies the “polarization identity”

(for real scalars),
‖~u+ ~v ‖2 + ‖~u− ~v ‖2 = 2‖~u ‖2 + 2‖~v ‖2. (22)

6.14 If a norm satisfies the polarization identity, then it comes from a scalar product. Again, assume real scalars.
[Consider combinations of ‖~u+ ~v ‖2, ‖~u− ~v ‖2 and construct the scalar product.]

6.15 Modify the example number 2 of section 6.3 so that f3 = f1 + f2 means f3(x) = f1(x − a) + f2(x − b)
for fixed a and b. Is this still a vector space?

6.16 The scalar product you use depends on the problem you’re solving. The fundamental equation (5.12)
started from the equation u′′ = λu and resulted in the scalar product

〈
u2, u1

〉
=

∫ b

a
dx u2(x)

*u1(x)

Start instead from the equation u′′ = λw(x)u and see what identity like that of Eq. (5.12) you come to. Assume
w is real.
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6.17 The equation describing the motion of a string that is oscillating with frequency ω about its stretched
equilibrium position is

d

dx

(
T (x)

dy

dx

)
= −ω2µ(x)y

Here, y(x) is the sideways displacement of the string from zero; T (x) is the tension in the string (not necessarily
a constant); µ(x) is the linear mass density of the string (again, it need not be a constant). The time-dependent
motion is really y(x) cos(ωt+φ), but the time dependence does not concern us here. As in the preceding problem,
derive the analog of Eq. (5.12) for this equation. For the analog of Eq. (5.13) state the boundary conditions
needed on y and deduce the corresponding orthogonality equation.

Ans:
[
T (x)(y′1y

*
2 − y1y*

2
′)
]b
a

=
(
ω*

2
2 − ω2

1

) ∫ b
a µ(x)y*

2y1 dx

6.18 The way to define the sum in example 17 is∑
x

|f(x)|2 = lim
c→0
{the sum of |f(x)|2 for those x where |f(x)|2 > c > 0}. (23)

This makes sense only if for each c > 0, |f(x)|2 is greater than c for only a finite number of values of x. Show
that the function

f(x) =
{

1/n for x = 1/n
0 otherwise

is in this vector space, and that the function f(x) = x is not. What is a basis for this space? [Take 0 ≤ x ≤ 1]
This is an example of a vector space with non-countable dimension.

6.19 In example 10, it is assumed that
∑∞

1 |ak|2 < ∞. Show that this implies that the sum used for the

scalar product also converges:
∑∞

1 a*
kbk. [Consider the sums

∑
|ak + ibk|2,

∑
|ak − ibk|2,

∑
|ak + bk|2, and∑

|ak − bk|2, allowing complex scalars.]

6.20 Prove strictly from the axioms for a vector space the following four theorems. Each step in your proof must
explicitly refer either to one of the vector space axioms or to a property of scalars.
(a) The vector ~O is unique. [Assume that there are two, ~O1 and ~O2. Show that they’re equal. First step: use
axiom 4.]

(b) The number 0 times any vector is the zero vector: 0~v = ~O.
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(c) The vector ~v ′ is unique.
(d) (−1)~v = ~v ′.

6.21 For the vector space of polynomials, are the two functions {1 + x2, x+ x3} linearly independent?

6.22 Find the dimension of the space of functions that are linear combinations of
{1, sin x, cosx, sin2 x, cos2 x, sin4 x, cos4 x, sin2 x cos2 x}

−1
0

2
3

4

1
−1

0

1
4

2
3

1
0

−1
−2

−2

6.23 A model vector space is formed by drawing equidistant parallel lines in a plane and labelling adjacent lines
by successive integers from ∞ to +∞. Define multiplication by a (real) scalar so that multiplication of the
vector by α means multiply the distance between the lines by 1/α. Define addition of two vectors by finding the
intersections of the lines and connecting opposite corners of the parallelograms to form another set of parallel
lines. The resulting lines are labelled as the sum of the two integers from the intersecting lines. (There are two
choices here, if one is addition, what is the other?) Show that this construction satisfies all the requirements for
a vector space. Just as a directed line segment is a good way to picture velocity, this construction is a good way
to picture the gradient of a function. In the vector space of directed line segments, you pin the vectors down so
that they all start from a single point. Here, you pin them down so that the lines labeled “zero” all pass through
a fixed point. Did I define how to multiply by a negative scalar? If not, then you should.

6.24 In problem 11 (g), find a basis for the space.

6.25 In problem 16, what properties must the function w have in order that this is a scalar product?



6—Vector Spaces 165

6.26 Verify that Eq. (12) does satisfy the requirements for a scalar product.

6.27 A variation on problem 15: f3 = f1 + f2 means
(a) f3(x) = Af1(x − a) + Bf2(x − b) for fixed a, b, A, B. For what values of these constants is this a vector
space?
(b) Now what about f3(x) = f1(x

3) + f2(x
3)?

6.28 Determine if these are vector spaces:
(1) Pairs of numbers with addition defined as (x1, x2)+(y1, y2) = (x1 +y2, x2 +y1) and multiplication by scalars
as c(x1, x2) = (cx1, cx2).
(2) Like example 2 of section 6.3, but restricted to those f such that f(x) ≥ 0. (real scalars)
(3) Like the preceding line, but define addition as (f + g)(x) = f(x)g(x) and (cf)(x) =

(
f(x)

)c
.

6.29 Do the same calculation as in problem 7, but use the scalar product

〈
f, g
〉

=

∫ 1

0
x2 dx f*(x)g(x)

6.30 Show that the following is a scalar product.

〈
f, g
〉

=

∫ b

a
dx
[
f*(x)g(x) + λf*′(x)g′(x)

]
where λ is a constant. What restrictions if any must you place on λ? The name Sobolev is associated with this
scalar product.

6.31 With the scalar product of problem 29, find the angle between the vectors 1 and x. Here I use the word
angle in the sense of ~A . ~B = AB cos θ. What is the angle if you use the scalar product of problem 7? Ans: 14.48◦

6.32 In the online text linked on the second page of this chapter, you will find that section two of chapter three
has enough additional problems to keep you happy.
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6.33 Show that the sequence of rational numbers an =
∑n

k=1 1/k is not a Cauchy sequence. What about∑n
k=1 1/k2?

6.34 In the vector space of polynomials of the form αx+ βx3, use the scalar product
〈
f, g
〉

=
∫ 1
0 dx f(x)∗g(x)

and construct an orthogonal basis for this space.

6.35 You can construct the Chebyshev polynomials by starting from the successive powers, xn, n = 0, 1, 2, . . .
and applying the Gram-Schmidt process. The scalar product in this case is

〈
f, g
〉

=

∫ 1

−1
dx

f(x)∗g(x)√
1− x2

The conventional normalization for these polynomials is Tn(1) = 1, so you don’t have to make the norm of the
resulting vectors one. Construct the first four of these polynomials, and show that the result is Tn(cos θ) =
cos(nθ). These polynomials are used in numerical analysis because they have the property that they oscillate
uniformly between −1 and +1 on the domain −1 < x < 1. Verify that your results satisfy the recurrence relation:
Tn+1(x) = 2xTn(x)− Tn−1(x)

6.36 In spherical coordinates (θ, φ), the angle θ is measured from the z-axis, and the function f1(θ, φ) = cos θ
can be written in terms of rectangular coordinates as

f1(θ, φ) = cos θ =
z

r
=

z√
x2 + y2 + z2

Pick up the function f1 and rotate it by 90◦ counterclockwise about the positive y-axis. Do this rotation in terms
of rectangular coordinates, but express the result in terms of spherical. Call it f2

Now pick up the same f1 and rotate it by 90◦ clockwise about the positive x-axis, again finally expressing the
result in terms of spherical coordinates. Call it f3.
If I ask you to take the original f1 and rotate it about some random axis by some random angle, show that the
resulting function f4 is a linear combination of the three functions f1, f2, and f3. I.e., all these possible rotated
functions form only a three dimensional vector space. Again, calculations such as these are easier to demonstrate
in rectangular coordinates.
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6.37 Take the functions f1, f2, and f3 from the preceding problem and sketch the shape of the functions

r e−rf1(θ, φ), r e−rf2(θ, φ), r e−rf3(θ, φ)

To sketch these, picture them as defining some sort of density in space, ignoring the fact that they are sometimes
negative. You can just take the absolute value or the square in order to visualize where they are big or small. Use
dark and light shading to picture where the functions are big and small. Start by finding where they have the
biggest and smallest magnitudes. See if you can find similar pictures in an introductory chemistry text.



Operators and Matrices

You’ve been using operators for years even if you’ve never heard the term. Differentiation falls into this category;
so does rotation; so does wheel-balancing. In the subject of quantum mechanics, familiar ideas such as energy
and momentum will be represented by operators. You probably think that pressure is simply a scalar, but no. It’s
an operator.

7.1 The Idea of an Operator

You can understand the subject of matrices as a set of rules that govern certain square or rectangular arrays of
numbers — how to add them, how to multiply them. Approached this way the subject is remarkably opaque.
Who made up these rules and why? What’s the point? If you look at it as simply a way to write simultaneous
linear equations in a compact way, it’s perhaps convenient but certainly not the big deal that people make of it.
It is a big deal.

There’s a better way to understand the subject, one that relates the matrices to more fundamental ideas
and that even provides some geometric insight into the subject. The technique of similarity transformations may
even make a little sense. This approach is precisely parallel to one of the basic ideas in the use of vectors. You
can draw pictures of vectors and manipulate the pictures of vectors and that’s the right way to look at certain
problems. You quickly find however that this can be cumbersome. A general method that you use to make
computations tractable is to write vectors in terms of their components, then the methods for manipulating the
components follow a few straight-forward rules, adding the components, multiplying them by scalars, even doing
dot and cross products.

Just as you have components of vectors, which are a set of numbers that depend on your choice of basis,
matrices are a set of numbers that are components of — not vectors, but functions (also called operators or
transformations or tensors). I’ll start with a couple of examples before going into the precise definitions.

The first example of the type of function that I’ll be interested in will be a function defined on the two-
dimensional vector space, arrows drawn in the plane with their starting points at the origin. The function that I’ll
use will rotate each vector by an angle α counterclockwise. This is a function, where the input is a vector and
the output is a vector.

168
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f(~v )
α

~v

f(~v1 + ~v2)

α ~v1 + ~v2

What happens if you change the argument of this function, multiplying it by a scalar? You know f(~v ),
what is f(c~v )? Just from the picture, this is c times the vector that you got by rotating ~v. What happens when
you add two vectors and then rotate the result? The whole parallelogram defining the addition will rotate through
the same angle α, so whether you apply the function before or after adding the vectors you get the same result.

This leads to the definition of the word linearity:

f(c~v ) = cf(~v ), and f(~v1 + ~v2) = f(~v1) + f(~v2) (1)

Keep your eye on this pair of equations! They’re central to the whole subject.

Another example of the type of function that I’ll examine is from physics instead of mathematics. A rotating
rigid body has some angular momentum. The greater the rotation rate, the greater the angular momentum will
be. Now how do I compute the angular momentum assuming that I know the shape and the distribution of masses
in the body and that I know the body’s angular velocity? The body is made of a lot of point masses (atoms),
but you don’t need to go down to that level to make sense of the subject. As with any other integral, you start
by dividing the object in to a lot of small pieces.

What is the angular momentum of a single point mass? It starts from basic Newtonian mechanics, and the
equation ~F = d~p/dt. (It’s better in this context to work with this form than with the more common expressions
~F = m~a.) Take the cross product with ~r, the displacement vector from the origin.

~r × ~F = ~r × d~p/dt
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Add and subtract the same thing on the right side of the equation (add zero) to get

~r × ~F = ~r × d~p

dt
+
d~r

dt
× ~p− d~r

dt
× ~p

=
d

dt

(
~r × ~p

)
− d~r

dt
× ~p

Now recall that ~p is m~v, and ~v = d~r/dt, so the last term in the preceding equation is zero because you’re taking
the cross product of a vector with itself. This means that when I added and subtracted the term from the right
side above I was really adding and subtracting zero.

~r × ~F is the torque applied to the point mass m and ~r × ~p is the mass’s angular momentum about the
origin. Now if I have many masses and many forces I simply put an index on this torque equation and add the
resulting equations over all the masses in the rigid body. The sums on the left and the right provide the definitions
of torque and of angular momentum.

~τtotal =
∑

k

~rk × ~Fk =
d

dt

∑
k

(
~rk × ~pk

)
=
d~L

dt

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1

For a specific example, attach two masses to the ends of a light rod and attach that rod to a second,
vertical one as sketched — at an angle. Now spin the vertical rod and figure out what the angular velocity
and angular momentum vectors are. Since I said that I’m spinning it along the vertical rod, that defines the
direction of the angular velocity vector ~ω to be upwards in the picture. (Viewed from above everything is rotating
counter-clockwise.) The angular momentum of one point mass is ~r × ~p = ~r ×m~v. The mass on the right has
a velocity pointing into the page and the mass on the left has it pointing out. Take the origin to be where the
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supporting rod is attached to the axis, then ~r× ~p for the mass on the right is pointing up and to the left. For the
other mass both ~r and ~p are reversed, so the cross product is in exactly the same direction as for the first mass.
The total angular momentum the sum of these two parallel vectors, and it is not in the direction of the angular
velocity.

Now make this quantitative and apply it to a general rigid body. There are two basic pieces to the problem:
the angular momentum of a point mass and the velocity of a point mass in terms of its angular velocity. The
position of one point mass is described by its displacement vector from the origin, ~r. Its angular momentum is
then ~r × ~p, where ~p = m~v. If the rigid body has an angular velocity vector ~ω, the linear velocity of a mass at
coordinate ~r is ~ω × ~r.

~ω

θ
~r

~v

r sin θ

~r

~ω

dm

The total angular momentum of a rotating set of masses mk at respective coordinates ~rk is the sum of all
the individual pieces of angular momentum

~L =
∑

k

~rk ×mk~vk, and since ~vk = ~ω × ~rk,

~L =
∑

k

~rk ×mk

(
~ω × ~rk

) (2)

If you have a continuous distribution of mass then using an integral makes more sense. For a given distribution of
mass, this integral (or sum) depends on the vector ~ω. It defines a function having a vector as input and a vector
~L as output. Denote the function by I, so ~L = I(~ω ).

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω ) (3)
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This function satisfies the same linearity equations as Eq. (1). When you multiply ~ω by a constant, the

output, ~L is multiplied by the same constant. When you add two ~ω’s together as the argument, the properties
of the cross product and of the integral guarantee that the corresponding ~L’s are added.

I(c~ω ) = cI(~ω ), and I(~ω1 + ~ω2) = I(~ω1) + I(~ω2)

This function I is called the “inertia operator” or more commonly the “inertia tensor.” It’s not simply multiplica-
tion by a scalar, so the rule that appears in an introductory course in mechanics (~L = I~ω) is valid only in special
cases, for example those with enough symmetry.

Note: I is not a vector and ~L is not a function. ~L is the output of the function I when you feed it the
argument ~ω. This is the same sort of observation that I made in section 6.3 under “Function Spaces.”

If an electromagnetic wave passes through a crystal, the electric field will push the electrons around, and the
bigger the electric field, the greater the distance that the electrons will be pushed. They may not be pushed in the
same direction as the electric field however, as the nature of the crystal can make it easier to push the electrons
in one direction than in another. The relation between the applied field and the average electron displacement is
a function that (for moderate size fields) obeys the same linearity relation that the two previous functions do.

~P = α( ~E )

~P is the electric dipole moment density and ~E is the applied electric field. The function α is called the polarizability.
If you have a mass attached to six springs that are in turn attached to six walls, the mass

will come to equilibrium somewhere. Now push on this mass with another (not too large) force.
The mass will move, but will it move in the direction that you push it? If the six springs are
all the same it will, but if they’re not then the displacement will be more in the direction of the
weaker springs. The displacement, ~d, will still however depend linearly on the applied force, ~F .

7.2 Definition of an Operator
An operator, also called a linear transformation, is a particular type of function. It is first of all,
a vector valued function of a vector variable. Second, it is linear; that is, if A is such a function
then A(~v) is a vector, and

A(α~v1 + β~v2) = αA(~v1) + βA(~v2). (4)

The domain is the set of variables on which the operator is defined. The range is the set of all values put out by
the function.
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7.3 Examples of Operators
The four cases that I started with, rotation in the plane, angular momentum of a rotating rigid body, polarization
of a crystal by an electric field, and the mass attached to some springs all fit this definition. Other examples:

5. The simplest example of all is just multiplication by a scalar: A(~v) ≡ c~v for all ~v. This applies to any vector
space and its domain is the entire space.

6. On the vector space of all real valued functions on a given interval, multiply any function f by 1 + x2:
(Af)(x) = (1 + x2)f(x). The domain of A is the entire space of functions of x. This is an infinite
dimensional vector space, but no matter. There’s nothing special about 1 + x2, and any other function will
do.

7. On the vector space of square integrable functions
[ ∫

dx |f(x)|2 < ∞
]

on a < x < b, define the operator
as multiplication by x. The only distinction to make here is that if the interval is infinite, then xf(x) may
not itself be square integrable. The domain of this operator is therefore not the entire space, but only those
functions such that xf(x) is also square-integrable. On the same vector space, differentiation is a linear
operator: (Af)(x) = f ′(x). This too has a restriction on the domain: It is necessary that f ′ also exist and
be square integrable.

8. On the vector space of infinitely differentiable functions, the operation of differentiation, d/dx, is itself a
linear operator. It’s certainly linear, and it takes a differentiable function into a differentiable function.

So where are the matrices? I started this chapter by saying that I’m going to show you the inside scoop on
matrices and so far I’ve failed to produce even one.

When you describe vectors you can use a basis as a computational tool and manipulate the vectors using
their components. In the common case of three-dimensional vectors we usually denote the basis in one of several
ways

ı̂, ̂, k̂, or x̂, ŷ, ẑ, or ~e1, ~e2, ~e3

and they all mean the same thing. The first form is what you see in the introductory physics texts. The second
form is one that you encounter in more advanced books, and the third one is more suitable when you want to
have a compact index notation. It’s that third one that I’ll use here; it has the advantage that it doesn’t bias you
to believe that you must be working in three spatial dimensions. The index could go beyond 3, and the vectors
that you’re dealing with may not be the usual geometric arrows. (And why does it have to start with one? Maybe
I want 0, 1, 2 instead.) These don’t have to be either perpendicular to each other or to be unit vectors.
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The way to write a vector ~v in components is

~v = vxx̂+ vyŷ + vz ẑ, or v1~e1 + v2~e2 + v3~e3 =
∑

k

vk~ek (5)

Once you’ve chosen a basis, you can find the three numbers that form the components of that vector. In
a similar way, I will define the components of an operator, only that will take nine numbers to do it (in three
dimensions). If you evaluate the effect of an operator on any one of the basis vectors, the output is a vector.
That’s part of the definition of the word operator. This output vector can itself be written in terms of this same
basis. The defining equation for the components of an operator f is

f(~ei) =
3∑

k=1

fki~ek (6)

For each input vector you have the three components of the output vector. Pay careful attention to this
equation! It is the defining equation for the entire subject of matrix theory, and everything in that subject comes
from this one innocuous looking equation. (And yes if you’re wondering, I wrote the indices in the correct order.)

Why?
Take an arbitrary input vector for f : ~u = f(~v ). Both ~u and ~v are vectors, so I can write them in terms of

my chosen basis.

~u =
∑

k

uk~ek = f(~v ) = f
(∑

i

vi~ei

)
=
∑

i

vif(~ei) (7)

The last equation is the result of the linearity property, Eq. (1), that I have assumed for f . I can pull the sum
and the numerical factors vi out in front of the function. Write it out and it’s clear:

f(v1~e1 + v2~e2) = f(v1~e1) + f(v2~e2) = v1f(~e1) + v2f(~e2)

Now you see where the defining equation for operator components comes in. Eq. (7) is∑
k

uk~ek =
∑

i

vi

∑
k

fki~ek
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For two vectors to be equal, the corresponding coefficients of ~e1, ~e2, etc. must match; their respective components
must be equal.

uk =
∑

i

vifki, usually written uk =
∑

i

fkivi (8)

so that in the latter form it starts to resemble what you may think of as matrix manipulation. frow,column is the
conventional way to write the indices, and multiplication is defined so that the following product means Eq. (8).u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 (9)

u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 is u1 = f11v1 + f12v2 + f13v3 etc.

And this is the reason behind the definition of how to multiply a matrix and a column matrix. The order in which
the indices appear is the conventional one, and the indices appear in the matrix as they do because I chose the
order of the indices the way that I did in Eq. (6).

Components of Rotations
Apply this to the first example, rotate all vectors in the plane through the angle α. I don’t want to keep using the
same symbol f for every function that I deal with, so I’ll call this function R instead, or better yet Rα. Rα(~v )
is the rotated vector. Pick two perpendicular unit vectors for a basis. You may call them x̂ and ŷ, but again I’ll
call them ~e1 and ~e2. Use the definition of components to get

Rα(~e2)

~e2

cosα

α

Rα(~e1)

sinα

~e1

Rα(~e1) =
∑

k

Rk1~ek

Rα(~e2) =
∑

k

Rk2~ek
(10)
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The rotated ~e1 has two components, so

Rα(~e1) = ~e1 cosα+ ~e2 sinα = R11~e1 +R21~e2

This determines the first column of the matrix of components,

R11 = cosα, and R21 = sinα

Similarly the effect on the other basis vector determines the second column:

Rα(~e2) = ~e2 cosα− ~e1 sinα = R12~e1 +R22~e2

Check: Rα(~e1) .Rα(~e2) = 0.

R12 = − sinα, and R22 = cosα

The component matrix is then (
Rα

)
=

(
cosα − sinα
sinα cosα

)
(11)

Components of Inertia
The definition, Eq. (3), and the figure preceding it specify the inertia tensor as the function that relates the
angular momentum of a rigid body to its angular velocity.

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω) (12)

Use the vector identity,
~A× ( ~B × ~C ) = ~B( ~A . ~C )− ~C( ~A . ~B ) (13)

then the integral is

~L =

∫
dm
[
~ω(~r .~r )− ~r(~ω .~r )

]
= I(~ω)
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Pick the common rectangular, orthogonal basis and evaluate the components of this function. Equation (6) says
~r = x~e1 + y~e2 + z~e3 so

I(~ei) =
∑

k

Iki~ek

I(~e1) =

∫
dm
[
~e1(x

2 + y2 + z2)− (x~e1 + y~e2 + z~e3)(x)
]

= I11~e1 + I21~e2 + I31~e3

from which I11 =

∫
dm (y2 + z2), I21 = −

∫
dmyx, I31 = −

∫
dmzx

This provides the first column of the components, and you get the rest of the components the same way. The
whole matrix is ∫

dm

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 (14)

These are the components of the tensor of inertia. The diagonal elements of the matrix may be familiar;
they are the moments of inertia. x2 + y2 is the distance-squared to the z-axis, so the element I33 or Izz is the
moment of inertia about that axis,

∫
dmr2⊥. The other components are less familiar and are called the products

of inertia. This particular matrix is symmetric: Iij = Iji. That’s a special property of the inertia tensor.

Components of Dumbbell
Look again at the specific case of two masses rotating about an axis, and do it quantitatively.

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1

~e2
~e1
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The integrals in Eq. (14) are simply sums this time, and the sums have only two terms. I’m making the
approximation that these are point masses. Make the coordinate system match the indicated basis, with x right
and y up, then z is zero for all terms in the sum, and the rest are∫

dm (y2 + z2) = m1r
2
1 cos2 α+m2r

2
2 cos2 α

−
∫
dmxy = −m1r

2
1 cosα sinα−m2r

2
2 cosα sinα∫

dm (x2 + z2) = m1r
2
1 sin2 α+m2r

2
2 sin2 α∫

dm (x2 + y2) = m1r
2
1 +m2r

2
2

The matrix is then

(I ) =
(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 (15)

Don’t count on all such results factoring so nicely.
In this basis, the angular velocity ~ω has only one component, so what is ~L?

(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 0
ω
0

 =

(
m1r

2
1 +m2r

2
2

)−ω cosα sinα
ω sin2 α

0


Translate this into vector form:

~L =
(
m1r

2
1 +m2r

2
2

)
ω sinα

(
− ~e1 cosα+ ~e2 sinα

)
(16)

When α = 90◦, then cosα = 0 and the angular momentum points along the y-axis. This is the symmetric special
case where everything lines up along one axis. Notice that if α = 0 then everything vanishes, but then the masses
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are both on the axis, and they have no angular momentum. In the general case as drawn, the vector ~L points to
the upper left, perpendicular to the line between the masses.

Parallel Axis Theorem
When you know the tensor of inertia about one origin, you can relate the result to the tensor about a different
origin.

The center of mass of an object is

~rcm =
1

M

∫
~r dm

where M is the total mass. Compare the operator I using an origin at the center of mass to I about another
origin.

~r

~rcm

~r − ~rcm

I(~ω ) =

∫
dm~r × (~ω × ~r ) =

∫
dm [~r − ~rcm + ~rcm]×

(
~ω × [~r − ~rcm + ~rcm]

)
=

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+

∫
dm~rcm ×

(
~ω × ~rcm

)
+ two cross terms

(17)

The two cross terms vanish, problem 17. What’s left is

I(~ω ) =

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+M rcm ×

(
~ω × ~rcm

)
= Icm(~ω ) +M rcm ×

(
~ω × ~rcm

) (18)

Put this in words and it says that the tensor of inertia about any point is equal to the tensor of inertia about the
center of mass plus the tensor of inertia of a point mass M placed at the center of mass.
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As an example, place a disk of mass M and radius R and uniform mass density so that its center is at
(x, y, z) = (R, 0, 0) and it is lying in the x-y plane. Compute the components of the inertia tensor. First get the
components about the center of mass, using Eq. (14).

x

z

y

The integrals such as

−
∫
dmxy, −

∫
dmyz

are zero. For fixed y each positive value of x has a corresponding negative value to make the integral add to
zero. It’s odd in x (or y); remember that this is about the center of the disk. Next do the I33 integral.∫

dm (x2 + y2) =

∫
dmr2 =

∫
M

πR2
dA r2

For the element of area, use dA = 2πr dr and you have

I33 =
M

πR2

∫ R

0
dr 2πr3 =

M

πR2
2π
R4

4
=

1

2
MR2

For the next two diagonal elements,

I11 =

∫
dm (y2 + z2) =

∫
dmy2 and I22 =

∫
dm (x2 + z2) =

∫
dmx2

Because of the symmetry of the disk, these two are equal, also you see that the sum is

I11 + I22 =

∫
dmy2 +

∫
dmx2 = I33 =

1

2
MR2 (19)
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This saves integration. I11 = I22 = MR2/4.
For the other term in the sum (18), you have a point mass at the distance R along the x-axis, (x, y, z) =

(R, 0, 0). Substitute this point mass into Eq. (14) and you have

M

 0 0 0
0 R2 0
0 0 R2


The total about the origin is the sum of these two calculations.

MR2

 1/4 0 0
0 5/4 0
0 0 3/2


Components of the Derivative
The set of all polynomials in x having degree ≤ 2 forms a vector space. There are three independent vectors
that I can choose to be 1, x, and x2. Differentiation is a linear operator on this space because the derivative of
a sum is the sum of the derivatives and the derivative of a constant times a function is the constant times the
derivative of the function. With this basis I’ll compute the components of d/dx. Start the indexing for the basis
from zero instead of one because it will cause less confusion between powers and subscripts.

~e0 = 1, ~e1 = x, ~e2 = x2

By the definition of the components of an operator — I’ll call this one D,

D(~e0) =
d

dx
1 = 0, D(~e1) =

d

dx
x = 1 = ~e0, D(~e2) =

d

dx
x2 = 2x = 2~e1

These define the three columns of the matrix.

(D) =

 0 1 0
0 0 2
0 0 0

 check:
dx2

dx
= 2x is

 0 1 0
0 0 2
0 0 0

 0
0
1

 =

 0
2
0


There’s nothing here about the basis being orthonormal. It isn’t.
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7.4 Matrix Multiplication
How do you multiply two matrices? There’s a rule for doing it, but where does it come from?

The composition of two functions means you first apply one function then the other, so

h = f ◦ g means h(~v ) = f
(
g(~v )

)
(20)

I’m assuming that these are vector-valued functions of a vector variable, but this is the general definition of
composition anyway. If f and g are linear, does it follow the h is? Yes, just check:

h(c~v ) = f
(
g(c~v )

)
= f

(
c g(~v )

)
= c f

(
g(~v )

)
, and

h(~v1 + ~v2) = f
(
g(~v1 + ~v2)

)
= f

(
g(~v1) + g(~v2)

)
= f

(
g(~v1)

)
+ f
(
g(~v2)

)
What are the components of h? Again, use the definition and plug in.

h(~ei) =
∑

k

hki~ek = f
(
g(~ei)

)
= f

(∑
j

gji~ej
)

=
∑

j

gjif
(
~ej
)

=
∑

j

gji
∑

k

fkj~ek

and now all I have to do is equate the corresponding coefficients of ~ek.

hki =
∑

j

gjifkj or more conventionally hki =
∑

j

fkjgji (21)

This is in the standard form for matrix multiplication, recalling the subscripts are ordered as frc for row-column.h11 h12 h13

h21 h32 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f32 f23

f31 f32 f33

 g11 g12 g13

g21 g32 g23

g31 g32 g33

 (22)

The computation of h12 from Eq. (21) ish11 h12 h13

h21 h22 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 g11 g12 g13

g21 g22 g23

g31 g32 g33


−→ h12 = f11g12 + f12g22 + f13g32
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Matrix multiplication is just the component representation of the composition of two functions, Eq. (21).
There’s nothing here that restricts this to three dimensions.

Composition of Rotations
In the first example, rotating vectors in the plane, the operator that rotates every vector by the angle α has
components (

Rα

)
=

(
cosα − sinα
sinα cosα

)
What happens if you do two such transformations, one by α and one by β? The result better be a total rotation
by α+ β. One function, Rβ is followed by the second function Rα and the composition is

Rα+β = RαRβ

This is mirrored in the components of these operators, so the matrices must obey the same equation.(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
=

(
cosα − sinα
sinα cosα

)(
cos β − sin β
sin β cos β

)
Multiply the matrices on the right to get(

cosα cos β − sinα sin β − cosα sin β − sinα cos β
sinα cos β + cosα sin β cosα cos β − sinα sin β

)
(23)

The respective components must agree, so this gives an immediate derivation of the formulas for the sine and
cosine of the sum of two angles. Cf. Eq. (3.8)

7.5 Inverses
The simplest operator is the one that does nothing. f(~v ) = ~v for all values of the vector ~v. This implies that
f(~e1) = ~e1 and similarly for all the other elements of the basis, so the matrix of its components is diagonal. The
2× 2 matrix is explicitly the identity matrix

(I ) =

(
1 0
0 1

)
or in index notation δij =

{
1 (if i = j)
0 (if i 6= j)

(24)
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and the index notation is completely general, not depending on whether you’re dealing with two dimensions or
many more. Unfortunately the words “inertia” and “identity” both start with the letter “I” and this symbol is
used for both operators. Live with it. The δ symbol in this equation is the Kronecker delta — very handy.

The inverse of an operator is defined in terms of Eq. (20), the composition of functions. If the composition
of two functions takes you to the identity operator, one function is said to be the inverse of the other. This is no
different from the way you look at ordinary real valued functions. The exponential and the logarithm are inverse
to each other because*

ln(ex) = x for all x.

For the rotation operator, Eq. (10), the inverse is obviously going to be rotation by the same angle in the opposite
direction.

RαR−α = I

Because the matrix components of these operators mirror the the original operators, this equation must also hold
for the corresponding components, as in Eqs. (22) and (23). Set β = −α in (23) and you get the identity matrix.

In an equation such as Eq. (7), or its component form Eqs. (8) or (9), if you want to solve for the vector
~u, you are asking for the inverse of the function f .

~u = f(~v ) implies ~v = f−1(~u )

The translation of these equations into components is Eq. (9)(
u1

u2

)
=

(
f11 f12

f21 f22

)(
v1
v2

)

which implies
1

f11f22 − f12f21

(
f22 −f12

−f21 f11

)(
u1

u2

)
=

(
v1
v2

)
The verification that these are the components of the inverse is no more than simply multiplying the two matrices
and seeing that you get the identity matrix.

* The reverse, eln x works only for positive x, unless you recall that the logarithm of a negative number is
complex. Then it works there too. This sort of question doesn’t occur with finite dimensional matrices.
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7.6 Areas, Volumes, Determinants
In the two-dimensional example of arrows in the plane, look what happens to areas when an operator acts. The
unit square with corners at the origin and (0, 1), (1, 1), 1, 0) gets distorted into a parallelogram. The arrows from
the origin to every point in the square become arrows that fill out the parallelogram.

What is the area of this parallelogram?
I’ll ask a more general question. (It isn’t really, but it looks like it.) Start with any region in the plane,

and say it has area A1. The operator takes all the vectors ending in this area into some new area of a size A2,
probably different from the original. What is the ratio of the new area to the old one? A2/A1. How much does
this transformation stretch or squeeze the area? What isn’t instantly obvious is that this ratio of areas depends
on the operator only, and not on how you chose the initial region to be transformed. If you accept this for the
moment, then you see that the question in the previous paragraph, in which I started with the unit square and
asked for the area into which it transformed, is the same question as finding the ratio of the two more general
areas. (Or the ratio of two volumes in three dimensions.)

This ratio is called the determinant of the operator.
The first example is the simplest. Rotations in the plane, Rα. Because rotations leave area unchanged,

this determinant is one. For almost any other example you have to do some work. Use the component form to
do the computation. The basis vector ~e1 is transformed into the vector f11~e1 + f21~e2 with a similar expression
for the image of ~e2. You can use the cross product to compute the area of the parallelogram that these define.
For another way, see problem 3. This is(

f11~e1 + f21~e2
)
×
(
f12~e1 + f22~e2

)
=
(
f11f22 − f21f12

)
~e3 (25)

The product in parentheses is the determinant of the transformation.

det(f) = f11f22 − f21f12 (26)

What if I had picked a different basis, maybe even one that isn’t orthonormal? From the definition of the
determinant it is a property of the operator and not of the particular basis and components you use to describe it,
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so you must get the same answer. But will I get the same simple formula (26) for the answer if I pick a different
basis? Now that’s a legitimate question. The answer is yes, but it takes some work to show it. What is the
determinant of Eq. (11)?

The determinant can be either positive or negative. That tells you more than simply how the transformation
alters the area; it tells you whether it changes the orientation of the area. If you place a counterclockwise loop
in the original area, does it remain counterclockwise in the image or is it reversed? In three dimensions, the
corresponding plus or minus sign for the determinant says if you’re changing from a right-handed coordinate
system (the common one) to a left-handed one in which the order of the axes x-y-z is reversed.

det > 0

det < 0

7.7 Matrices as Operators
There’s an important example of a vector space that I’ve avoided mentioning up to now. Example 5 in section
6.3 is the set of n-tuples of numbers: (a1, a2, . . . , an). I can turn this on its side, call it a column matrix, and it
forms a perfectly good vector space. The functions (operators) on this vector space are the matrices themselves.

When you have a system of linear equations, you can translate this into the language of vectors.

ax+ by = e and cx+ dy = f −→
(
a b
c d

)(
x
y

)
=

(
e
f

)
Solving for x and y is inverting a matrix.

There’s an aspect of this that may strike you as odd. This matrix is an operator on the vector space of
column matrices. What are the components of this operator? What? Isn’t the matrix a set of components
already? That depends on your choice of basis. Take an example

M =

(
1 2
3 4

)
with basis ~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
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Compute the components as usual.

M~e1 =

(
1 2
3 4

)(
1
0

)
=

(
1
3

)
= 1~e1 + 3~e2

This says that the first column of the components of M in this basis are ( 1 3 ). What else would you expect?
Now select a different basis.

~e1 =

(
1
1

)
, ~e2 =

(
1
−1

)
Again compute the component.

M~e1 =

(
1 2
3 4

)(
1
1

)
=

(
3
7

)
= 5

(
1
1

)
− 2

(
1
−1

)
= 5~e1 − 2~e2

M~e2 =

(
1 2
3 4

)(
1
−1

)
=

(
−1
−1

)
= −1~e1

The components of M in this basis are (
5 −1
−2 0

)
It doesn’t look at all the same, but it represents the same operator. Does this matrix have the same determinant,
using Eq. (26)?

Determinant of Composition
If you do one linear transformation followed by another one, that is the composition of the two functions, each
operator will then have its own determinant. What is the determinant of the composition? Let the operators be
F and G. One of them changes areas by a scale factor det(F ) and the other ratio of areas is det(G). If you use
the composition of the two functions, FG or GF , the overall ratio of areas from the start to the finish will be the
same: det(FG) = det(GF ). Recall that the the determinant measures the ratio of areas for any input area, not
just a square; it can be a parallelogram. The overall ratio of the product of the individual ratios, det(F ) det(G).
The product of these two numbers is the total ratio of a new area to the original area and it is independent of
the order of F and G, so the determinant of the composition of the functions is also independent of order.

Now what about the statement that the definition of the determinant doesn’t depend on the original area
that you start with. To show this takes a couple of steps. First, start with a square that’s not at the origin. You



7—Operators and Matrices 188

can always picture it as a piece of a square that is at the origin. The shaded square that is 1/16 the area of the
big square goes over to a parallelogram that’s 1/16 the area of the big parallelogram. Same ratio.

An arbitrary shape can be divided into a lot of squares. That’s how you do an integral. The image of
the whole area is distorted, but it retains the fact that a square that was inside the original area will become a
parallelogram that is inside the new area. In the limit as the number of squares goes to infinity you still maintain
the same ratio of areas as for the single original square.

7.8 Eigenvalues and Eigenvectors
There is a particularly important basis for an operator, the basis in which the components form a diagonal matrix.
Such a basis almost always exists, and it’s easy to see from the definition as usual just what this basis must be.

f(~ei) =
N∑

k=1

fki~ek

To be diagonal simply means that fki = 0 for all i 6= k, and that in turn means that all but one term in the sum
disappears. This defining equation reduces to

f(~ei) = fii~ei (with no sum this time) (27)
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This is called an eigenvalue equation. It says that for any one of these special vectors, the operator f on it returns
a scalar multiple of that same vector. These multiples are called the eigenvalues, and the corresponding vectors
are called the eigenvectors. The eigenvalues are then the diagonal elements of the matrix in this basis.

The inertia tensor relates the angular momentum of a rigid body to its angular velocity, and if the angular
momentum isn’t in the same direction as the angular velocity, the angular momentum vector will be spinning
about the ~ω axis. There will then be a torque necessary to keep it going, ~τ = d~L/dt, and because ~L is rotating
about ~ω, this will cause a vibration of the axis at this rotation frequency. If on the other hand the angular
momentum is parallel to the angular velocity, the angular momentum will not be changing, d~L/dt = 0, and the

torque ~τ = d~L/dt will be zero, meaning the vibrations will be absent. Have you ever taken your car in and asked
the mechanic to align the angular momentum and the angular velocity vectors of the tires? I’ve done it a number
of times; it’s called wheel-balancing.

How do you compute these eigenvectors? Just move everything to the left side of the equation.

f(~ei)− fii~ei = 0, or (f − fiiI)~ei = 0

I is the identity operator, output equals input. This notation is cumbersome. I’ll change it.

(f − λI)~v = 0 (28)

λ is the eigenvalue and ~v is the eigenvector. This operator (f − λI) takes some non-zero vector into the zero
vector. In two dimensions then it will squeeze an area down to a line or a point. In three dimensions it will
squeeze a volume down to an area (or a line or a point). In any case its determinant is zero, and that’s the key
to computing the eigenvectors. Figure out which λ’s will make this determinant vanish.

Look back at section 4.7 and you’ll see that the analysis there closely parallels what I’m doing here. In
that case I didn’t use the language of matrices or operators, but was asking about the possible solutions of two
simultaneous linear equations.

ax+ by = 0 and cx+ dy = 0, or

(
a b
c d

)(
x
y

)
=

(
0
0

)
The explicit algebra there led to the conclusion that there can be a non-zero solution to the two equations only
if the determinant of the coefficients vanishes, ad− bc = 0, and that’s the same thing that I’m looking for here:
a non-zero vector solution to Eq. (28).
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Write the problem in terms of components, and of course you aren’t yet in the basis where the matrix is
diagonal. If you were, you’re already done. The defining equation is f(~v ) = λ~v, and in components this reads

∑
fkivi = λvk, or

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1
v2
v3

 = λ

 v1
v2
v3


Here I arbitrarily wrote the equation for three dimensions. That will change with the problem. Put everything on
the left side and insert the components of the identity, the unit matrix. f11 f12 f13

f21 f22 f23

f31 f32 f33

− λ
 1 0 0

0 1 0
0 0 1

 v1
v2
v3

 =

 0
0
0


The only way that this has a non-zero solution for the vector ~v is for the determinant of the left-hand side to
be zero. In the case as written, that’s a cubic equation in λ. This equation is called the characteristic equation
of the matrix. If it has all distinct roots, no double roots, then you’re guaranteed that this procedure will work.
If this equation has a multiple root then there is no guarantee. It may work, but is may not; you have to look
closer. See section 7.11. Also, if the operator has certain symmetry properties then it’s guaranteed to work.

Example of Eigenvectors
To keep the algebra to a minimum, I’ll work in two dimensions and will specify an arbitrary but simple example:

f(~e1) = 2~e1 + ~e2, f(~e2) = 2~e2 + ~e1 with components M =

(
2 1
1 2

)
(29)

The eigenvalue equation is, in component form(
2 1
1 2

)(
v1
v2

)
= λ

(
v1
v2

)
or

[(
2 1
1 2

)
− λ

(
1 0
0 1

)](
v1
v2

)
= 0

The condition that there be a non-zero solution to this is

det

[(
2 1
1 2

)
− λ

(
1 0
0 1

)]
= 0 = (2− λ)2 − 1
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The solutions to this quadratic are λ = 1, 3. For these values then, the apparently two equation for the two
unknowns v1 and v2 are really one equation. The other is not independent. Solve this single equation in each
case. Take the first of the two linear equations for v1 and v2 as defined by Eq. (29).

2v1 + v2 = λv1

λ = 1 implies v2 = −v1, λ = 3 implies v2 = v1

The two new basis vectors are then

~e ′1 = (~e1 − ~e2) and ~e ′2 = (~e1 + ~e2) (30)

and in this basis the matrix of components is the diagonal matrix of eigenvalues.(
1 0
0 3

)
If you like to keep your basis vectors normalized, you may prefer to say that the new basis is (~e1 − ~e2)/

√
2 and

(~e1 + ~e2)/
√

2. The eigenvalues are the same, so the new matrix is the same.

Example: Coupled Oscillators
Another example drawn from physics: Two masses are connected to a set of springs and fastened between two
rigid walls. This is a problem that appeared in chapter 4, Eq. (4.27).

m1d
2x1/dt

2 = −k1x1 − k3(x1 − x2), and m2d
2x2/dt

2 = −k2x2 − k3(x2 − x1)

The exponential form of the solution that I used was

x1(t) = Aeiωt, x2(t) = Beiωt

The algebraic equations that you get by substituting these into the differential equations are a pair of linear
equations for A and B, Eq. (4.28). In matrix form these equations are, after rearranging some minus signs,(

k1 + k3 −k3

−k3 k2 + k3

)(
A
B

)
= ω2

(
m1 0
0 m2

)(
A
B

)
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You can make it look more like the previous example with some further arrangement[(
k1 + k3 −k3

−k3 k2 + k3

)
− ω2

(
m1 0
0 m2

)](
A
B

)
=

(
0
0

)
The matrix on the left side maps the column matrix to zero. That can happen only if the matrix has zero
determinant (or the column matrix is zero). If your write out the determinant of this 2 × 2 matrix you have a
quadratic equation in ω2. It’s simple but messy, so rather than looking first at the general case, look at a special
case with more symmetry. Take m1 = m2 = m and k1 = k2.

det

[(
k1 + k3 −k3

−k3 k1 + k3

)
− ω2m

(
1 0
0 1

)]
= 0 =

(
k1 + k3 −mω2

)2 − k2
3

This is now so simple that you don’t even need the quadratic formula; it factors directly.(
k1 + k3 −mω2 − k3

)(
k1 + k3 −mω2 + k3

)
= 0

The only way that the product of two numbers is zero is if one of the numbers is zero, so either

k1 −mω2 = 0 or k1 + 2k3 −mω2 = 0

This determines two possible frequencies of oscillation.

ω1 =

√
k1

m
and ω2 =

√
k1 + 2k3

m

You’re not done yet; these are only the eigenvalues. You still have to find the eigenvectors and then go back to
apply them to the original problem. This is ~F = m~a after all. Look back to section 4.8 for the development of
the solutions.

7.9 Change of Basis
In many problems in physics and mathematics, the correct choice of basis can enormously simplify a problem.
Sometimes the obvious choice of a basis turns out in the end not to be the best choice, and you then face the
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question: Do I start over with a new basis, or can I use the work that I’ve already done to transform everything
into the new basis?

For linear transformations, this becomes the problem of computing the components of an operator in a new
basis in terms of its components in the old basis.

First: Make sure that I can do this for vector components, something that I ought to be able to do. The
equation (5) defines the components with respect to a basis, any basis. If I have a second proposed basis, then
by the definition of the word basis, every vector in that second basis can be written as a linear combination of the
vectors in the first basis. I’ll call the vectors in the first basis, ~ei and those in the second basis ~e ′i, for example in
the plane you could have

~e1 = x̂, ~e2 = ŷ, and ~e ′1 = 2x̂+ 0.5ŷ, ~e ′2 = 0.5x̂+ 2ŷ (31)

Each vector ~e ′i is a linear combination* of the original basis vectors:

~e ′i = S(~ei) =
∑

j

Sji~ej (32)

This follows the standard notation of Eq. (6); you have to put the indices in this order in order to make the
notation come out right in the end. One vector expressed in two different bases is still one vector, so

~v =
∑

i

v′i~e
′
i =

∑
i

vi~ei

and I’m using the fairly standard notation of v′i for the ith component of the vector ~v with respect to the second
basis. Now insert the relation between the bases from the preceding equation (32).

~v =
∑

i

v′i
∑

j

Sji~ej =
∑

j

vj~ej

* There are two possible conventions here. You can write ~e ′i in terms of the ~ei, calling the coefficients Sji,
or you can do the reverse and call those components Sji. Naturally, both conventions are in common use. The
reverse convention will interchange the roles of the matrices S and S−1 in what follows.
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and I pulled the standard trick of changing the last dummy label of summation from i to j so that I can compare
the components more easily.∑

i

Sjiv
′
i = vj or in matrix notation (S)(v′) = (v), =⇒ (v′) = (S)−1(v)

Similarity Transformations
Now use the definition of the components of an operator to get the components in the new basis.

f
(
~e ′i
)

= =
∑

j

f ′ji~e
′
j

f
(∑

j

Sji~ej

)
=
∑

j

Sjif
(
~ej
)

=
∑

j

Sji

∑
k

fkj~ek =
∑

j

f ′ji
∑

k

Skj~ek

The final equation comes from the preceding line. The coefficients of ~ek must agree on the two sides of the
equation. ∑

j

Sjifkj =
∑

j

f ′jiSkj

Now rearrange this in order to place the indices in their conventional row,column order.∑
j

Skjf
′
ji =

∑
j

fkjSji(
S11 S12

S21 S22

)(
f ′11 f ′12
f ′21 f ′22

)
=

(
f11 f12

f21 f22

)(
S11 S12

S21 S22

) (33)

In turn, this matrix equation is usually written in terms of the inverse matrix of S,

(S)(f ′) = (f)(S) is (f ′) = (S)−1(f)(S)

and this is called a similarity transformation. For the example Eq. (31) this is

~e ′1 = 2x̂+ 0.5ŷ = S11~e1 + S21~e2
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which determines the first column of the matrix (S), then ~e ′2 determines the second column.

(S) =

(
2 0.5

0.5 2

)
then (S)−1 =

1

3.75

(
2 −0.5
−0.5 2

)
Eigenvectors
In defining eigenvalues and eigenvectors I pointed out the utility of having a basis in which the components of
an operator form a diagonal matrix. Finding the non-zero solutions to Eq. (28) is then the way to find the basis
in which this holds. Now I’ve spent time showing that you can find a matrix in a new basis by using a similarity
transformation. Is there a relationship between these two subjects? Another way to ask the question: I’ve solved
the problem to find all the eigenvectors and eigenvalues, so what is the similarity transformation that accomplishes
the change of basis (and why do I need to know it if I already know that the transformed, diagonal matrix is just
the set of eigenvalues, and I already know them.)

For the last question, the simplest answer is that you don’t need to know the explicit transformation once
you already know the answer. It is however useful to know that it exists and how to construct it. If it exists — I’ll
come back to that presently. Certain manipulations are more easily done in terms of similarity transformations,
so you ought to know how they are constructed, especially because almost all the work in constructing them is
done when you’ve found the eigenvectors.

The equation (33) tells you the answer. Suppose that you want the transformed matrix to be diagonal.
That means that f ′12 = 0 and f ′21 = 0. Write out the first column of the product on the right.(

f11 f12

f21 f22

)(
S11 S12

S21 S22

)
−→

(
f11 f12

f21 f22

)(
S11

S21

)
This equals the first column on the left of the same equation

f ′11

(
S11

S21

)
This is the eigenvector equation that you’ve supposedly already solved. The first column of the component matrix
of the similarity transformation is simply the set of components of the first eigenvector. When you write out the
second column of Eq. (33) you’ll see that it’s the defining equation for the second eigenvector. You already know
these, so you can immediately write down the matrix for the similarity transformation.
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For the example Eq. (29) the eigenvectors are given in Eq. (30). In components these are

~e ′1 →
(

1
−1

)
, and ~e ′2 →

(
1
1

)
, implying S =

(
1 1
−1 1

)
The inverse to this matrix is

S−1 =
1

2

(
1 −1
1 1

)
You should verify that S−1MS is diagonal.

7.10 Summation Convention
In all the manipulation of components of vectors and components of operators you have to do a lot of sums.
There are so many sums over indices that a convention* was invented (by Einstein) to simplify the notation.

A repeated index in a term is summed.

Eq. (6) becomes f(~ei) = fki~ek.
Eq. (8) becomes uk = fkivi.
Eq. (21) becomes hki = fkjgji.
IM = M becomes δijMjk = Mik.

What if there are three identical indices in the same term? Then you made a mistake; that can’t happen.
What about Eq. (27)? That has three indices. Yes, and there I explicitly said that there is no sum. This sort of
rare case you have to handle as an exception.

7.11 Can you Diagonalize a Matrix?
At the beginning of section 7.8 I said that the basis in which the components of an operator form a diagonal

matrix “almost always exists.” There’s a technical sense in which this is precisely true (except on a set of measure
zero), but that’s not what you need to know in order to manipulate matrices; the theorem that you need to have
is that every matrix is the limit of a sequence of diagonalizable matrices. If you encounter a matrix that cannot
be diagonalized, then you can approximate it as closely as you want by a matrix that can be diagonalized, do your
calculations, and finally take a limit. You already did this if you did problem 4.11, but in that chapter it didn’t
look anything like a problem involving matrices, much less diagonalization of matrices. Yet it is the same.

* There is a modification of this convention that appears in chapter 12, section 12.4
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Take the matrix (
1 2
0 1

)
You can’t diagonalize this. If you try the standard procedure, here is what happens:(

1 2
0 1

)(
v1
v2

)
= λ

(
v1
v2

)
then det

(
1− λ 2

0 1− λ

)
= 0 = (1− λ)2

The resulting equations you get for λ = 1 are

0v1 + 2v2 = 0 and 0 = 0

This provides only one eigenvector, a multiple of

(
1
0

)
. You need two for a basis.

Change this matrix in any convenient way to make the two roots of the characteristic equation different
from each other. For example,

Mε =

(
1 + ε 2

0 1

)
The eigenvalue equation is now

(1 + ε− λ)(1− λ) = 0

and the resulting equations for the eigenvectors are

λ = 1 : εv1 + 2v2 = 0, 0 = 0 λ = 1 + ε : 0v1 + 2v2 = 0, εv2 = 0

Now you have two distinct eigenvectors,

λ = 1 :

(
1
−ε/2

)
, and λ = 1 + ε :

(
1
0

)
Differential Equations at Critical
The problem 4.11 was to solve the damped harmonic oscillator for the critical case that b2 − 4km = 0.

m
d2x

dt2
= −kx− bdx

dt
(34)
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Write this as a pair of equations, using the velocity as an independent variable.

dx

dt
= vx and

dvx

dt
= − k

m
x− b

m
vx

In matrix form, this is a matrix differential equation.

d

dt

(
x
vx

)
=

(
0 1

−k/m −b/m

)(
x
vx

)
This is a linear, constant-coefficient differential equation, only now the constant coefficients are matrices. Don’t
let that slow you down. The reason that an exponential form of solution works is that the derivative of an
exponential is an exponential. Assume such a solution here.(

x
vx

)
=

(
A
B

)
eαt, giving α

(
A
B

)
eαt =

(
0 1

−k/m −b/m

)(
A
B

)
eαt (35)

When you divide the equation by eαt, you’re left with an eigenvector equation, where the eigenvalue is α. As
usual, to get a non-zero solution set the determinant of the coefficients to zero and the characteristic equation is

det

(
0− α 1
−k/m −b/m− α

)
= α(α+ b/m) + k/m = 0

with familiar roots
α =

(
− b±

√
b2 − 4km

)
/2m

If the two roots are equal you may not have distinct eigenvectors, and in this case you do not. No matter, you
can solve any such problem for the case that b2 − 4km 6= 0 and then take the limit as this approaches zero.

The eigenvectors come from the equation αA = B, the simpler of the two linear equations represented by
Eq. (35). Really one linear equation because of the determinant condition.(

x
vx

)
(t) = A+

(
1
α+

)
eα+t + A−

(
1
α−

)
eα−t
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Pick the initial conditions that x(0) = 0 and vx(0) = v0. You must choose some initial conditions in order to
apply this technique. In matrix terminology this is(

0
v0

)
= A+

(
1
α+

)
+ A−

(
1
α−

)
These are two equations for the two unknowns

A+ + A− = 0, α+A+ + α−A− = v0, so A+ =
v0

α+ − α−
, A− = −A+(

x
vx

)
(t) =

v0
α+ − α−

[(
1
α+

)
eα+t −

(
1
α−

)
eα−t

]
If you now take the limit as b2 → 4km, or equivalently as α− → α+, this expression is just the definition of a
derivative. (

x
vx

)
(t) −→ v0

d

dα

(
1
α

)
eαt = v0

(
teαt

(1 + αt)eαt

)
α = − b

2m
(36)

7.12 Eigenvalues and Google
The motivating idea behind the search engine Google is that you want the first items returned by a search to be
the most important items. How do you do this? How do you program a computer to decide which web sites are
the most important?

A simple idea is to count the number of sites that contain a link to a given site, and the site that is linked
to the most is then the most important site. This has the drawback that all links are treated as equal. If your
site is referenced from the home page of Al Einstein, it counts no more than if it’s referenced by Joe Blow. This
shouldn’t be.

A better idea is to assign each web page a numerical importance rating. If your site, #1, is linked from
sites #11, #59, and #182, then your rating, x1, is determined by adding those ratings (and multiplying by a
suitable constant).

x1 = K
(
x11 + x59 + x182

)
Similarly the second site’s rating is determined by what links to it, as

x2 = K
(
x137 + x157983 + x1 + x876

)
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But this assumes that you already know the ratings of the sites, and that’s what you’re trying to find!
Write this in matrix language. Each site is an element in a huge column matrix {xi}.

xi = K
N∑

j=1

αijxj or

x1

x2
...

 = K


0 0 1 0 1 . . .
1 0 0 0 0 . . .
0 1 0 1 1 . . .
. . .


x1

x2
...


An entry of 1 indicates a link and a 0 is no link. This is an eigenvector problem, with the eigenvalue 1/K. There
are many eigenvectors, but there is a constraint that lets you pick the right one. All the xis must be positive.
This algorithm is the key idea behind Google’s methods. They have gone well beyond this basic technique of
course, but the spirit of this method remains.
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Problems

7.1 Draw a picture of the effect of these linear transformations on the unit square with vertices at (0, 0), (1, 0),
(1, 1), (0, 1). The matrices representing the operators are

(a)

(
1 2
3 4

)
, (b)

(
1 −2
2 −4

)
, (c)

(
−1 2
1 2

)
Is the orientation preserved or not in each case? See the figure at the end of section 7.6

7.2 Using the same matrices as the preceding question, what is the picture resulting from doing (a) followed by
(c)? What is the picture resulting from doing (c) followed by (a)? The results of section 7.4 may prove helpful.

(a,c)

(b,d)

(a+b,c+d)
7.3 Look again at the parallelogram that is the image of the unit square in the calculation
of the determinant. In Eq. (26) I used the cross product to get its area, but sometimes a

brute-force method is more persuasive. If the transformation has components

(
a b
c d

)
The corners of the parallelogram that is the image of the unit square are at (0, 0), (a, c),
(a + b, c + d), (b, d). You can compute its area as sums and differences of rectangles
and triangles. Do so; it should give the same result as the method that I used.

7.4 In three dimensions, there is an analogy to the geometric interpretation of the cross product as the area of a
parallelogram. The triple scalar product ~A . ~B × ~C is the volume of the parallelepiped having these three vectors
as edges. Prove both of these statements starting from the geometric definitions of the two products. That is,
from the AB cos θ and AB sin θ definitions of the dot product and the magnitude of the cross product (and its
direction).

7.5 Derive the relation ~v = ~ω × ~r for a point mass rotating about an axis. Refer to the figure before Eq. (2).
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7.6 You have a mass attached to four springs in a plane and that are in turn attached to four walls, the mass is
at equilibrium. Two opposing spring have spring constant k1 and the other two are k2. Push on the mass with a
force ~F and the resulting displacement of m is ~d = f(~F ), defining a linear operator. Compute the components
of f in an obvious basis and check a couple of special cases to see if the displacement is in a plausible direction,
especially if the two k’s are quite different.

7.7 On the vector space of quadratic polynomials, degree ≤ 2, the operator d/dx is defined: the derivative of
such a polynomial is a polynomial. (a) Use the basis ~e0 = 1, ~e1 = x, and ~e2 = x2 and compute the components
of this operator. (b) Compute the components of the operator d2/dx2. (c) Compute the square of the first
matrix and compare it to the result for (b).

7.8 Repeat the preceding problem, but look at the case of cubic polynomials, a four-dimensional space.

7.9 In the preceding problem the basis 1, x, x2, x3 is too obvious. Take another basis, the Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x

and repeat the problem, finding components of the first and second derivative operators. Verify an example
explicitly to check that your matrix reproduces the effect of differentiation on a polynomial of your choice. Pick
one that will let you test your results.

7.10 What is the determinant of the inverse of an operator, explaining why?

7.11 Eight identical point masses m are places at the corners of a cube that has one corner at the origin of the
coordinates and has its sides along the axes. The side of the cube is length = a. In the basis that is placed along
the axes as usual, compute the components of the inertia tensor.
Ans: I11 = 8ma2

7.12 For the dumbbell rotating about the off-axis axis in Eq. (16), what is the time-derivative of ~L? In very

short time dt, what new direction does ~L take and what then is d~L? That will tell you d~L/dt. Prove that this is

~ω × ~L.



7—Operators and Matrices 203

7.13 A cube of uniform volume mass density, mass m, and side a has one corner at the origin of the coordinate
system and the adjacent edges are placed along the coordinate axes. Compute the components of the tensor of
inertia. Do it directly and by using the parallel axis theorem to check your result.

Ans: ma2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


7.14 Compute the cube of Eq. (11) to find the trigonometric identities for the cosine and sine of triple angles in
terms of single angle sines and cosines. Compare the results of problem 3.9.

7.15 On the vectors of column matrices, the operators are matrices. For the two dimensional case take M =(
a b
c d

)
and find its components in the basis

(
1
1

)
and

(
1
−1

)
.

What is the determinant of the resulting matrix? Ans: M11 = (a+ b+ c+ d)/2.

7.16 Show that the tensor of inertia, Eq. (3), satisfies ~ω1 . I(~ω2) = I(~ω1) . ~ω2. What does this identity tell you
about the components of the operator when you use the ordinary orthonormal basis? First determine in such a
basis what ~e1 . I(~e2) is. This identity is to linear operators (tensors) what Eq. (5.12) is to Fourier series.

7.17 Use the definition of the center of mass to show that the two cross terms in Eq. (17) are zero.

7.18 Prove the Perpendicular Axis Theorem. This says that for a mass that lies flat in a plane, the moment
of inertia about an axis perpendicular to the plane equals the sum of the two moments of inertia about the two
perpendicular axes that lie in the plane and that intersect the third axis.

7.19 Verify in the conventional, non-matrix way that Eq. (36) really does provide a solution to the original second
order differential equation (34).

7.20 The Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Show that σxσy = iσz and the same for cyclic permutations of the indices x, y, z. Compare the products σxσy

and σyσx and the other pairings of these matrices.
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7.21 Interpret ~σ . ~A as σxAx + σyAy + σzAz and prove that

~σ . ~A~σ . ~B = ~A . ~B + i~σ . ~A× ~B

where the first term on the right has to include the identity matrix for this to make sense.

7.22 Evaluate the matrix
I

I − ~σ . ~A

(What dimensions or units must ~A have for this to make sense?) You can evaluate this a couple of ways: You

may assume that ~A is in some sense small enough for you to manipulate by infinite series methods. This then
becomes a geometric series that you can sum. Use the results of the preceding problem.
(b) You can manipulate the algebra directly without series. I suggest that you recall the sort of manipulation that
allows you to write the complex number 1/(1− i) without any i’s in the denominator.
Do it both ways, perhaps using one to guide the other. I suppose you could do it a third way, writing out the
2× 2 matrix and explicitly inverting it, but I definitely don’t recommend this.

7.23 Evaluate the sum of the infinite series defined by e−iσyθ. Where have you seen this result before? The first
term in the series must be interpreted as the identity matrix.

7.24 For the moment of inertia about an axis, the integral is
∫
r2⊥ dm. State precisely what this m function must

be for this to make sense as a Riemann-Stieljes integral, Eq. (1.21). For the case that you have eight masses, all
m0 at the 8 corners of a cube, write explicitly what this function is and evaluate the moment of inertia about an
axis along one edge of the cube.

7.25 The summation convention allows you to write some compact formulas. Evaluate these, assuming that
you’re dealing with three dimensions. Note Eq. (24). Define the alternating symbol εijk to be (1) This is totally
anti-symmetric. That is, interchange any two indices and you change the sign of the value. (2) ε123 = 1.
[E.g. ε132 = −1, ε312 = +1]

δii, εijkAjBk, δijεijk, δmnAmBn, Smnumvn, unvn,

εijkεmnk = δimδjn − δinδjm
Multiply the last identity by AjBmCn and interpret.
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7.26 The set of Hermite polynomials starts out as

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, H4 = 16x4 − 48x2 + 12,

(a) For the vector space of polynomials in x of degree ≤ 3 choose a basis of Hermite polynomials and compute
the matrix of components of the differentiation operator, d/dx.
(b) Compute the components of the operator d2/dx2 and show the relation between this matrix and the preceding
one.

7.27 On the vector space of functions of x, define the translation operator

Taf = g means g(x) = f(x− a)

This picks up a function and moves it by a to the right.
(a) Pick a simple example function f and test this definition graphically to verify that it does what I said.
(b) On the space of polynomials of degree ≤ 3 and using a basis of your choice, find the components of this
operator.
(c) Square the resulting matrix and verify that the result is as it should be.
(d) What is the inverse of the matrix? (You should be able to guess the answer and then verify it. Or you can
work out the inverse the traditional way.)

7.28 The force by a magnetic field on a moving charge is ~F = q~v × ~B. The operation ~v × ~B defines a linear
operator on ~v, stated as f(~v ) = ~v × ~B. What are the components of this operator expressed in terms of the

three components of the vector ~B? What are the eigenvectors and eigenvalues of this operator? You may pick
your basis at will for the part of the problem in which you find the eigenvectors.

7.29 In section 7.7 you have an operator M expressed in two different bases. What is its determinant computed
in each basis?

7.30 In a given basis, an operator has the values

A(~e1) = ~e1 + 3~e2 and A(~e2) = 2~e1 + 4~e4

Draw a picture of what this does.
Find the eigenvalues and eigenvectors of A and see how this corresponds to the picture you just drew.
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7.31 The characteristic polynomial of a matrix M is det(M − λI). I is the identity matrix and λ is the variable
in the polynomial. Write the characteristic polynomial for the general 2 × 2 matrix. Then in place of λ in this
polynomial, put the matrix M itself. The constant term will have to include the factor I for this to make sense.
For this 2× 2 case verify the Cayley-Hamilton Theorem, that the matrix satisfies its own characteristic equation,
making this polynomial the zero matrix.

7.32 For the magnetic field operator defined in problem 28, place ẑ = ~e3 along the direction of ~B. Then take
~e1 = (x̂− iŷ)/

√
2, ~e2 = (x̂+ iŷ)/

√
2 and find the components of the linear operator representing the magnetic

field. A charged particle is placed in this field and the equations of motion are m~a = ~F = q~v× ~B. Translate this
into the operator language with a matrix like that of problem 28, and write ~F = m~a in this language and this
basis.
Ans: (part) mr̈1 = −iqBr1, where r1 = (x+ iy)/

√
2. mr̈2 = +iqBr1, where r2 = (x− iy)/

√
2.

7.33 For the operator in problem 27 part (b), what are the eigenvectors and eigenvalues?

7.34 A nilpotent operator is one such that if you take enough successive powers of the operator (a finite number)
you get the zero operator. For the operator defined in problem 8, show that it is nilpotent. How does this translate
into the successive powers of its matrix components?

7.35 A cube of uniform mass density has side a and mass m. Evaluate its moment of inertia about an axis along
a longest diagonal of the cube. Note: If you find yourself entangled in a calculation having multiple integrals with
hopeless limits of integration, toss it out and start over. You may even find problem 18 useful. Ans: ma2/6

7.36 Show that the set of all 2 × 2 matrices forms a vector space. Produce a basis for it, and so what is its
dimension?

7.37 In the vector space of the preceding problem, a similarity transformation is an operator. f(M) = S−1MS.
For S, use the rotation matrix of Eq. (11) and compute the components of this operator f . The obvious choice
of basis would be matrices with a single non-zero element 1. Instead, try the basis I, σx, σy, σz.

7.38 What are the eigenvectors and eigenvalues of the operator in the preceding problem? Now you’ll be happy
that I suggested the basis that I did.
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7.39 The commutator of two matrices is defined to be [A,B] = AB−BA. Show that this commutator satisfies
the Jacobi identity.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

The anti-commutator of two matrices is {A,B} = AB + BA. Show that there is an identity like the Jacobi
identity, but with one of the two commutators (the inner one or the outer one) replaced by an anti-commutator.
I’ll leave it to you to figure out which.

7.40 Diagonalize each of the Pauli spin matrices of problem 20. That is, find their eigenvalues and specify the
respective eigenvectors as the basis in which they are diagonal.

7.41 What are the eigenvalues and eigenvectors of the rotation matrix Eq. (11)? Translate the answer back into
a statement about rotating vectors, not just their components.

7.42 Same as the preceding problem, but replace the circular trigonometric functions with hyperbolic ones. Also
change the sole minus sign in the matrix to a plus sign. Draw pictures of what this matrix does to the basis
vectors. What is its determinant?

7.43 Compute the eigenvalues and eigenvectors of the matrix Eq. (15). Interpret each.

7.44 Look again at the vector space of problem 6.36 and use the basis f1, f2, f3 that you constructed there. In
this basis, what are the components of the two operators described in that problem?
(b) What is the product of these two matrices? Do it in the order so that it represents the composition of the
first rotation followed by the second rotation.
(c) Find the eigenvectors of this product and from the result show that the combination of the two rotations is
a third rotation about an axis that you can now specify. Can you anticipate before solving it, what one of the
eigenvalues will be?
(d) Does a sketch of this rotation axis agree with what you should get by doing the two original rotations in
order?



Multivariable Calculus

The world is not one-dimensional, and calculus doesn’t stop with a single independent variable. The ideas of
partial derivatives and multiple integrals are not too different from their single-variable counterparts, but some of
the details about manipulating them are not so obvious. Some are downright tricky.

8.1 Partial Derivatives
The basic idea of derivatives and of integrals in two, three, or more dimensions follows the same pattern as for
one dimension. They’re just more complicated.

The derivative of a function of one variable is defined as

df(x)

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(1)

You would think that the definition of a derivative of a function of x and y would then be defined as

∂f(x, y)

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(2)

and more-or-less it is. The ∂ notation instead of d is a reminder that there are other coordinates floating around
that are temporarily being treated as constants.

In order to see why I used the phrase “more-or-less” I’ll take a very simple example: f(x, y) = y. Use the
preceding definition, and because y is being held constant, the derivative ∂f/∂x = 0. What could be easier?

I don’t like these variables so I’ll switch to a different set of coordinates, x′ and y′:

y′ = x+ y and x′ = x

What is ∂f/∂x′ now?
f(x, y) = y = y′ − x = y′ − x′

Now the derivative of f with respect to x′ is −1, because I’m keeping the other coordinate fixed. Or is the
derivative still zero because x′ = x and I’m taking ∂f/∂x and why should that change just because I’m using a
different coordinate system?

208
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The problem is that the notation is ambiguous. When I write ∂f/∂x it doesn’t tell be what I’m to hold
constant. Is it to be y or y′ or yet something else? In some contexts the answer is clear and you won’t have any
difficulty deciding, but you’ve already encountered cases for which the distinction is crucial. In thermodynamics,
when you add heat to a gas to raise its temperature does this happen at constant pressure or at constant volume
or with some other constraint? The specific heat at constant pressure is not the same as the specific heat at
constant volume; it’s necessarily bigger because during an expansion some of the energy has to go into the work
of changing the volume. This sort of derivative depends on type of process that you’re using, and for a classical
ideal gas the difference between the two molar specific heats obeys the equation

cp − cv = R

If the gas isn’t ideal, this equation is replaced by a more complicated and general one, but the same observation
applies, that the two derivatives dQ/dT aren’t the same.

In thermodynamics there are so many variables in use that there is a standard notation for a partial derivative,
indicating exactly which other variables are to be held constant.(

∂U

∂V

)
T

and

(
∂U

∂V

)
P

represent the change in the internal energy of an object per change in volume during processes in which respectively
the temperature and the pressure are held constant. In the previous example with the function f = y, this says(

∂f

∂x

)
y

= 0 and

(
∂f

∂x

)
y′

= −1

This notation is a way to specify the direction in the x-y plane along which you’re taking the derivative.

8.2 Differentials
For a function of a single variable you can write

df =
df

dx
dx (3)
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and read (sort of) that the infinitesimal change in the function f is the slope times the infinitesimal change in x.
Does this really make any sense? What is an infinitesimal change? Is it zero? Is dx a number or isn’t it? What’s
going on?

It is possible to translate this intuitive idea into something fairly simple and that makes perfectly good
sense. Once you understand what it really means you’ll be able to use the intuitive idea and its notation with
more security.

Let g be a function of two variables, x and h.

g(x, h) =
df(x)

dx
h has the property that

1

h

∣∣f(x+ h)− f(x)− g(x, h)
∣∣ −→ 0 as h→ 0

That is, the function g(x, h) approximates very well the change in f as you go from x to x + h. The difference
between g and ∆f goes to zero so fast that even after you’ve divided by h the difference goes to zero.

The usual notation is to use the symbol dx instead of h and to call the function df instead* of g.

df(x, dx) = f ′(x) dx has the property that

1

dx

∣∣f(x+ dx)− f(x)− df(x, dx)
∣∣ −→ 0 as dx→ 0

(4)

In this language dx is just another variable that can go from −∞ to +∞ and df is just a specified function of
two variables. The point is that this function is useful because when the variable dx is small df provides a very
good approximation to the increment ∆f in f .

Differentials in Several Variables
The analog of Eq. (3) for several variables is

df = df(x, y, dx, dy) =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (5)

Roughly speaking, near a point in the x-y plane, the value of the function f changes as a linear function of the
coordinates as you move a (little) distance away. This function df describes this change to high accuracy.

* Who says that a variable in algebra must be only a single letter? You would never write a computer program
that way. dFred2

/
dFred = 2 Fred is perfect sensible.
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For example, take the function f(x, y) = x2 + y2. At the point (x, y) = (1, 2), the differential is

df(1, 2, dx, dy) = (2x)

∣∣∣∣
(1,2)

dx+ (2y)

∣∣∣∣
(1,2)

dy = 2dx+ 4dy

so that
f(1.01, 1.99) ≈ f(1, 2) + df(1, 2, .01,−.01) = 12 + 22 + 2(.01) + 4(−.01) = 4.98

compared to the exact answer, 4.9802.
The equation analogous to (4) is

df(x, y, dx, dy) has the property that
1

dr

∣∣f(x+ dx, y + dy)− f(x, y)− df(x, y, dx, dy)
∣∣ −→ 0 as dr → 0 (6)

where dr =
√
dx2 + dy2 is the distance to (x, y). It’s not that you will be able to do a lot more with this precise

definition than you could with the intuitive idea. You will however be able to work with a better understanding
of you’re actions. When you say that “dx is an infinitesimal” you can understand that this means simply that dx
is any number but that the equations using it are useful only for very small values of that number.

You can’t use this notation for everything as the notation for the derivative demonstrates. The symbol
“df/dx” does not mean to divide a function by a length; it refers to a well-defined limiting process. This notation
is however constructed so that it provides an intuitive guide, and even if you do think of it as the function df
divided by the variable dx, you get the right answer.

8.3 Chain Rule
If the coordinates x and y are themselves functions of another variable, perhaps time, then how does does the
function f vary as a function of t? Just use the idea of the differential to find out. At time t the differentials of
x and y are, from Eq. (3),

dx =
dx

dt
dt, and dy =

dy

dt
dt

Notational confusion reminder: The dx on the left is the function of two variables: dx(t, dt). The dx in the
numerator on the right is a part of the notation for a derivative and isn’t defined independently of dx/dt. But,
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this Leibnitz notation is designed to lead you in the right direction, so it’s not an accident that it looks like you’re
just canceling the dt’s.

Apply this to the differential of f fromEq. (5).

df = df
(
x(t), y(t), dx(t, dt), dy(t, dt)

)
=

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy

=

(
∂f

∂x

)
y

dx

dt
dt+

(
∂f

∂y

)
x

dy

dt
dt

The derivative df/dt is the coefficient of dt in this differential, just as in Eq. (3).

df

dt
=

(
∂f

∂x

)
y

dx

dt
+

(
∂f

∂y

)
x

dy

dt
(7)

Example: (When you want to check out an equation, you should construct an example so that it reveals a
lot of structure without requiring a lot of calculation.)

f(x, y) = Axy2, and x(t) = Ct3, y(t) = Dt2

First do it using the chain rule.

df

dt
=

(
∂f

∂x

)
y

dx

dt
+

(
∂f

∂y

)
x

dy

dt

=
(
Ay2

)(
3Ct2

)
+
(
2Axy

)(
2Dt

)
=
(
A(Dt2)2

)(
3Ct2

)
+
(
2A(Ct3)(Dt2)

)(
2Dt

)
= 7ACD2t6

Now repeat the calculation by first substituting the values of x and y and then differentiating.

df

dt
=

d

dt

[
A(Ct3)(Dt2)2

]
=

d

dt

[
ACD2t7

]
= 7ACD2t6
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Sometimes you see the chain rule written in a slightly different form. You can change coordinates from
(x, y) to (r, θ), switching from rectangular to polar. You can switch from (x, y) to a system such as (x′, y′) =
(x+ y, x− y). The function can be expressed in the new coordinates explicitly. Solve for x, y in terms of r, θ or
x′, y′ and then differentiate with respect to the new coordinate. OR you can use the chain rule to differentiate
with respect to the new variable.

Suppose that I know f(x, y) and I want to find the derivative of f with respect to x′ holding y′ fixed. The
equation (5) tells you the differential df in terms of the coordinates dx and dy. All that I have to do now is to
compute these in terms of dx′ and dy′. The coordinate x is a function of x′ and y′, so apply the same Eq. (5)
to them.

dx =

(
∂x

∂x′

)
y′
dx′ +

(
∂x

∂y′

)
x′
dy′ and dy =

(
∂y

∂x′

)
y′
dx′ +

(
∂y

∂y′

)
x′
dy′

I want the derivative of f with respect to x′ holding y′ constant, so that means that I’m going to compute dx
and dy given that dy′ is zero, then substitute the values of dx and dy into the Eq. (5) for df . The second term
in each of the preceding equations is zero because dy′ = 0.

df = df(x, y, dx, dy) =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (5)

df =

(
∂f

∂x

)
y

(
∂x

∂x′

)
y′
dx′ +

(
∂f

∂y

)
x

(
∂y

∂x′

)
y′
dx′ (8)

and the derivative that I want, (∂f/∂x′)y′ is the coefficient of dx′ in this equation.
Example: When you switch from rectangular to plane polar coordinates what is ∂f/∂θ in terms of the x

and y derivatives?
x = r cos θ, y = r sin θ, so(

∂f

∂θ

)
r

=

(
∂f

∂x

)
y

(
∂x

∂θ

)
r

+

(
∂f

∂y

)
x

(
∂y

∂θ

)
r

=

(
∂f

∂x

)
y

(−r sin θ) +

(
∂f

∂y

)
x

(r cos θ)

If f(x, y) = x2 + y2 this better be zero, because I’m finding how f changes when r is held fixed. Check it out;
it is.
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8.4 Geometric Interpretation
For one variable, the picture of the differential is simple. Start with a graph of the function and at a point
(x, y) = (x, f(x)), find the straight line that best approximates the function in the immediate neighborhood of
that point. Now set up a new coordinate system with origin at this (x, y) and call the new coordinates dx and
dy. In this coordinate system the straight line passes through the origin and the slope is the derivative df(x)/dx.
The equation for the straight line is then Eq. (3), describing the differential.

dy =
df(x)

dx
dx

y

x

dy

dx

For two variables, the picture parallels this one. At a point (x, y, z) = (x, y, f(x, y)) find the plane that
best approximates the function in the immediate neighborhood of that point. Set up a new coordinate system
with origin at this (x, y, z) and call the new coordinates dx, dy, and dz. The equation for a plane that passes
through this origin is α dx+β dy+γ dz = 0, and for this best approximating plane, the equation is nothing more
than the equation for the differential, Eq. (5).

dz =

(
∂f(x, y)

∂x

)
y

dx+

(
∂f(x, y)

∂y

)
x

dy

dx

dy

dz

The picture is a bit harder to draw, but with a little practice you can do it. (I didn’t say that I could.)
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For the case of three independent variables, I’ll leave the sketch to you.

Examples
The temperature on the surface of a heated disk is given to be T (r, θ) = T0 + T1

(
1− r2/a2

)
,

where a is the radius of the disk and T0 and T1 are constants. If you start at position x = c < a,
y = 0 and move parallel to the y-axis at speed v0 what is the rate of change of temperature
that you feel?

Use Eq. (7), and the relation r =
√
x2 + y2.

dT

dt
=

(
∂T

∂r

)
θ

dr

dt
+

(
∂T

∂θ

)
r

dθ

dt

=

(
∂T

∂r

)
θ

[(
∂r

∂x

)
y

dx

dt
+

(
∂r

∂y

)
x

dy

dt

]

=
(
−2T1

r

a2

)[ y√
x2 + y2

v0

]

= −2T1

√
c2 + v2

0t
2

a2
. v2

0t√
c2 + v2

0t
2

= −2T1
v2
0t

a2

As a check, the dimensions are correct (are they?). At time zero, this vanishes, and that’s what I expect
because at the beginning of the motion you’re starting to move in the direction perpendicular to the direction in
which the temperature is changing. The farther you go, the more nearly parallel to the direction of the radius
you’re moving. If you are moving exactly parallel to the radius, this time-derivative is easier to calculate; it’s then
almost a problem in a single variable.

dT

dt
≈ dT

dr

dr

dt
≈ −2T1

r

a2
v0 ≈ −2T1

V0t

a2
v0

So the approximate and the exact calculation agree. In fact they agree so well that you should try to find out
if this is a lucky coincidence or if there some special aspect of the problem that you might have seen from the
beginning and that would have made the whole thing much simpler.
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8.5 Gradient
The equation (5) for the differential has another geometric interpretation. For a function such as f(x, y) =
x2 + 4y2, the equations representing constant values of f describe curves in the x-y plane. In this example, they
are ellipses. If you start from any fixed point in the plane and start to move away from it, the rate at which
the value of f changes will depend on the direction in which you move. If you move along the curve defined by
f = constant then f won’t change at all. If you move perpendicular to that direction then f may change a lot.

The gradient of f at a point is the vector pointing in the direction in which
f is increasing most rapidly and the component of the gradient along that
direction is the derivative of f with respect to the distance in that direction.

To relate this to the partial derivatives that we’ve been using, and to understand how to compute and to
use the gradient, return to Eq. (5) and write it in vector form. Use the common notation for the basis: x̂ and ŷ.
Then let

d~r = dx x̂+ dy ŷ and ~G =

(
∂f

∂x

)
y

x̂+

(
∂f

∂y

)
x

ŷ (9)

The equation for the differential is now

df = df(x, y, dx, dy) = ~G . d~r (10)

~G

d~r

Because you know the properties of the dot product, you know that this is Gdr cos θ and it is largest when
the directions of d~r and of ~G are the same. It’s zero when they are perpendicular. You also know that df is zero
when d~r is in the direction along the curve where f is constant. The vector ~G is therefore perpendicular to this
curve. It is in the direction in which f is changing most rapidly. Also because df = Gdr cos 0, you see that G is
the derivative of f with respect to distance along that direction. ~G is the gradient.
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For the example f(x, y) = x2 + 4y2, ~G = 2xx̂ + 8yŷ. At each point in the x-y plane it provides a vector
showing the steepness of f at that point and the direction in which f is changing most rapidly.

Notice that the gradient vectors are twice as long where the ellipses are closest together as they are at the
ends where the ellipses are farthest apart. The function changes more rapidly in the y-direction.

The United States Coast and Geodetic Survey has available for sale a large number of maps, and of particular
interest to hikers are the contour maps. They show curves indicating the lines of constant altitude. As the highest
altitude in Florida is less than 100 meters, you may never have seen one of these maps, but they’re important
where there are mountains.

The gravitational potential energy of a mass m near the Earth’s surface is mgh. This divided by the mass is
the gravitational potential, gh. These lines of constant altitude are then lines of constant potential, equipotentials
of the gravitational field. Walk along such an equipotential and you are doing no work against gravity, just walking
on the level.

8.6 Electrostatics

The electric field can be described in terms of a gradient. For a single point charge at the origin the electric field
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is
~E(x, y, z) =

kq

r2
r̂

where r̂ is the unit vector pointing away from the origin and r is the distance to the origin. This vector can be
written as a gradient. Because this ~E is everywhere pointing away from the origin, it’s everywhere perpendicular
to the sphere centered at the origin.

~E = −grad
kq

r

You can verify this a several ways. The first is to go straight to the definition of a gradient. (There’s a blizzard
of minus signs in this approach, so have a little patience. It will get better.) This function is increasing most
rapidly in the direction moving toward the origin. (1/r) The derivative with respect to distance in this direction
is −d/dr, so −d/dr(1/r) = +1/r2. The direction of greatest increase is along −r̂, so grad (1/r) = −r̂(1/r2).
But the relation to the electric field has another −1 in it, so

−grad
kq

r
= +r̂

kq

r2

There’s got to be a better way.
Yes, instead of insisting that you move in the direction in which the function is increasing most rapidly,

simply move in the direction in which it is changing most rapidly. The derivative with respect to distance in that
direction is the component in that direction and the plus or minus signs take care of themselves. The derivative
with respect to r of (1/r) is −1/r2. That is the component in the direction r̂, the direction in which you took
the derivative. This says grad (1/r) = −r̂(1/r2). You get the same result as before but without so much fussing.
This also makes it look more like the familiar ordinary derivative in one dimension.

Still another way is from the “Stallone-Schwarzenegger” brute force school of computing. Express everything
in rectangular coordinates and do the partial derivatives using Eqs. (9) and (8).(

∂(1/r)

∂x

)
y,z

=

(
∂(1/r)

∂r

)
θ,φ

(
∂r

∂x

)
y,z

= − 1

r2
∂

∂x

√
x2 + y2 + z2 = − 1

r2
x√

x2 + y2 + z2

Repeat this for y and z with similar results and assemble the output.

−grad
kq

r
=
kq

r2
xx̂+ yŷ + zẑ√
x2 + y2 + z2

=
kq

r2
~r

r
=
kq

r2
r̂
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The symbol ∇ is commonly used for the gradient operator. This vector operator will appear in several other
places, the curl of a vector field will be the one you see most often.

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(11)

From Eq. (9) you have

grad f = ∇f (12)

8.7 Plane Polar Coordinates
When doing integrals in the plane there are many coordinate systems to choose from, but rectangular and polar
coordinates are the most common. You can find the element of area with a simple sketch: The lines (or curves)
of constant coordinate enclose an area that is, for small enough increments in the coordinates, a rectangle. Then
you just multiply the sides. In one case ∆x .∆y and in the other case ∆r . r∆θ.

Vibrating Drumhead
A circular drumhead can vibrate in many complicated ways. The simplest and lowest frequency mode is approxi-
mately

z(r, θ, t) = z0
(
1− r2/R2

)
cosωt (13)

where R is the radius of the drum and ω is the frequency of oscillation. (The shape is more accurately described by
Eq. (4.17) but this approximation is pretty good for a start.) The kinetic energy density of the moving drumhead

is u = 1
2σ
(
∂z/∂t

)2
. That is, in a small area ∆A, the kinetic energy is ∆K = u∆A and the limit as ∆A→ 0 of

∆K/∆A is the area-energy-density. In the same way, σ is the area mass density, dm/dA.
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What is the total kinetic energy because of this oscillation? It is
∫
u dA. To evaluate it, use polar coordinates

and integrate over the area of the drumhead.∫
u dA =

∫ R

0
r dr

∫ 2π

0
dθ
σ

2
z2
0

(
(1− r2/R2)ω sinωt

)2
=
σ

2
2πz2

0ω
2 sin2 ωt

∫ R

0
dr r

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2

∫ r=R

r=0
d(r2)

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2
R21

3

(
1− r2/R2

)3
(−1)

∣∣∣∣r=R

0

=
1

6
σR2πz2

0ω
2 sin2 ωt

(14)

See problem 10 and following for more on this.

8.8 Cylindrical, Spherical Coordinates
The three common coordinate systems used in three dimensions are rectangular, cylindrical, and spherical coor-
dinates, and these are the ones you have to master. When you need to use prolate spheroidal coordinates you
can look them up.

x

z

y

θ

r

z

φ

θ r

−∞ < x <∞ 0 < r <∞ 0 < r <∞
−∞ < y <∞ 0 < θ < 2π 0 < θ < π
−∞ < z <∞ −∞ < z <∞ 0 < φ < 2π
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The surfaces that have constant values of these coordinates are planes in rectangular coordinates; planes
and cylinders in cylindrical; planes, spheres, and cones in spherical. In every one of these cases the constant-
coordinate surfaces intersect each other at right angles, hence the name “orthogonal coordinate” systems. In
spherical coordinates I used the coordinate θ as the angle from the z-axis and φ as the angle around the axis. In
mathematics books these are typically reversed, so watch out for the notation. On the globe of the Earth, φ is
the longitude and θ the latitude except that longitude goes ±180◦ instead of zero to 2π. Latitude is ±90◦ from
the equator instead of zero to π from the pole.

The volume elements for these systems come straight from the drawings, just as the area elements do in
plane coordinates. In every case you can draw six surfaces, bounded by constant coordinates, and surrounding a
small box. Because these are orthogonal coordinates you can compute the volume of the box easily as the product
of its three edges.

In the spherical case, one side is ∆r. Another side is r∆θ. The third side is not r∆φ; it is r sin θ∆φ. The
reason for the factor sin θ is that the arc of the circle made at constant r and constant θ is not in a plane passing
through the origin. It is in a plane parallel to the x-y plane, so it has a radius r sin θ.

rectangular cylindrical spherical
volume dx dy dz r dr dθ dz r2 sin θ dr dθ dφ
area dx dy r dθ dz or r dθ dr r2 sin θ dθ dφ

Examples of Multiple Integrals
Even in rectangular coordinates integration can be tricky. That’s because you have to pay attention to the limits
of integration far more closely than you do for simple one dimensional integrals. I’ll illustrate this with two
dimensional rectangular coordinates first, and will choose a problem that is easy but still shows what you have to
look for.
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An Area
Find the area in the x-y plane between the curves y = x2/a and y = x.

(A)

∫ a

0
dx

∫ x

x2/a
dy 1 and (B)

∫ a

0
dy

∫ √
ay

y
dx 1

y

x

y

x

In the first instance I fix x and add the pieces of dy in the strip indicated. The lower limit of the dy
integral comes from the specified equation of the lower curve. The upper limit is the value of y for the given
x at the upper curve. After that the limits on the sum over dx comes from the intersection of the two curves:
y = x = x2/a gives x = a for that limit.

In the second instance I fix y and sum over dx first. The left limit is easy, x = y, and the upper limit comes
from solving y = x2/a for x in terms of y. When that integral is done, the remaining dy integral starts at zero
and goes up to the intersection at y = x = a.

Now do the integrals.

(A)

∫ a

0
dx
[
x− x2/a

]
=
a2

2
− a3

3a
=
a2

6

(B)

∫ a

0
dy
[√
ay − y

]
= a1/2a

3/2

3/2
− a2

2
=
a2

6

If you would care to try starting this calculation from the beginning, without drawing any pictures, be my guest.

b

a
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A Moment of Inertia
The moment of inertia about an axis is

∫
r2⊥ dm. What is the moment of inertia of a uniform sheet of mass M

in the shape of a right triangle of sides a and b? Take the moment about the right angled vertex. The area mass
density, σ = dm/dA is 2M/ab. The moment of inertia is then∫

(x2 + y2)σ dA =

∫ a

0
dx

∫ b(a−x)/a

0
dy σ(x2 + y2) =

∫ a

0
dx σ

[
x2y + y3/3

]b(a−x)/a

0

=

∫ a

0
dx σ

[
x2 b

a
(a− x) +

1

3

(
b

a

)3

(a− x)3
]

= σ

[
b

a

(
a4

3
− a4

4

)
+

1

3

(
b3

a3

a4

4

)]
=

1

12
σ
(
ba3 + ab3

)
=
M

6

(
a2 + b2

)
The dimensions are correct. For another check take the case where a = 0, reducing this to Mb2/6. But wait, this
now looks like a thin rod, and I remember that the moment of inertia of a thin rod about its end is Mb2/3. What
went wrong? Nothing. Look again more closely. Show why this limiting answer ought to be less than Mb2/3.

Volume of a Sphere
What is the volume of a sphere of radius R? The most obvious approach would be to use spherical coordinates.
See problem 16 for that. I’ll use cylindrical coordinates instead. The element of volume is dV = r drdθdz, and
the integrals can be done a couple of ways.∫

dV =

∫ R

0
r dr

∫ 2π

0
dθ

∫ +
√

R2−r2

−
√

R2−r2
dz =

∫ +R

−R
dz

∫ 2π

0
dθ

∫ √R2−z2

0
r dr (15)

You can finish these now, see problem 17.

A Surface Charge Density
An example that appears in electrostatics: The surface charge density, dq/dA, on a sphere of radius R is
σ(θ, φ) = σ0 sin2 θ cos2 φ. What is the total charge on the sphere?
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The element of area is R2 sin θ dθ dφ, so the total charge is
∫
σ dA,

Q =

∫ π

0
sin θ dθ R2

∫ 2π

0
dφ σ0 sin2 θ cos2 φ = R2

∫ +1

−1
d cos θ σ0

(
1− cos2 θ

) ∫ 2π

0
dφ cos2 φ

The mean value of cos2 is 1/2. so the φ integral gives π. For the rest, it is

σ0πR
2

[
cos θ − 1

3
cos3 θ

]+1

−1

=
4

3
σ0πR

2

8.9 Vectors: Cylindrical, Spherical Bases
When you describe vectors in three dimensions are you restricted to the basis x̂, ŷ, ẑ? In a different coordinate
system you should use basis vectors that are adapted to that system. In rectangular coordinates these vectors have
the convenient property that they point along the direction perpendicular to the plane where the corresponding
coordinate is constant. They also point in the direction in which the other two coordinates are constant. E.g. the
unit vector x̂ points perpendicular to the plane of constant x (the y-z plane); it also point along the line where
y and z are constant.

x

z

y
x̂

ẑ

ŷ

θ

r
ẑ

z
r̂

θ̂

φ

θ r

r̂

θ̂

φ̂

Do the same thing for cylindrical coordinates. The unit vector ẑ points perpendicular to the x-y plane.
The unit vector r̂ points perpendicular to the cylinder r = constant. The unit vector θ̂ points perpendicular to
the plane θ = constant and along the direction for which r and z are constant. The conventional right-hand rule
specifies ẑ = r̂ × θ̂.

For spherical coordinates r̂ points perpendicular to the sphere r = constant. The φ̂ vector is perpendicular
to the plane φ = constant and points along the direction where r = constant and θ = constant and toward
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increasing coordinate φ. Finally θ̂ is perpendicular to the cone θ = constant and again, points toward increasing
θ. Then φ̂ = r̂ × θ̂, and on the Earth, these vectors r̂, θ̂, and φ̂ are ûp, ˆSouth, and ˆEast.

Solenoid
A standard solenoid is cylindrical coil of wire, so that when the wire carries a current it produces a magnetic field.
To describe this field, it seems that cylindrical coordinates are advised. Until you know something about the field
the most general thing that you can write is

~B(r, θ, z) = r̂ Br(r, θ, z) + θ̂ Bθ(r, θ, z) + ẑ Bz(r, θ, z)

In a real solenoid that’s it; all three of these components are present. If you have an ideal, infinitely long solenoid
(found only in textbooks) the use of Maxwell’s equations and appropriately applied symmetry arguments will
simplify this to ẑ Bz(r).

Gravitational Field
The gravitational field of the Earth is simple, ~g = −r̂ GM/r2, pointing straight toward the center of the Earth.
Well no, not really. The Earth has a bulge at the equator; its equatorial diameter is about 43 km larger than its
polar diameter. This changes the ~g-field so that it has a noticeable θ̂ component. At least it’s noticeable if you’re
trying to place a satellite in orbit or to send a craft to another planet.

A better approximation to the gravitational field of the Earth is

~g = −r̂GM
r2
−G3Q

r4
[
r̂
(
3 cos2 θ − 1

)
/2 + θ̂ cos θ sin θ

]
(16)

The letter Q stands for the quadrupole moment. |Q| �MR2, and it’s a measure of the bulge. By convention a
football (American football) has a positive Q; the Earth’s Q is negative. (What about a European football?)

Nuclear Magnetic Field
The magnetic field from the nucleus of many atoms (even as simple an atom as hydrogen) is proportional to

1

r3
[
2r̂ cos θ + θ̂ sin θ

]
(17)

As with the preceding example these are in spherical coordinates, and the component along the φ̂ direction is
zero. This field’s effect on the electrons in the atom is small but detectable. The magnetic properties of the
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nucleus are central to the subject of nuclear magnetic resonance (NMR), and that has its applications in magnetic
resonance imaging* (MRI).

8.10 Gradient in other Coordinates
The equation for the gradient computed in rectangular coordinates is Eq. (9) or (12). How do you compute it in
cylindrical or spherical coordinates? You do it the same way that you got Eq. (9) from Eq. (5). The coordinates
r, θ, and z are just more variables, so Eq. (5) is simply

df = df(r, θ, z, dr, dθ, dz) =

(
∂f

∂r

)
θ,z

dr +

(
∂f

∂θ

)
r,z

dθ +

(
∂f

∂z

)
r,θ

dz

All that’s left is to write d~r in these coordinates, just as in Eq. (9).

d~r = r̂ dr + θ̂ r dθ + ẑ dz

The part in the θ̂ direction is the displacement of d~r in that direction. As θ changes by a small amount the
distance moved is not dθ; it is r dθ. The equation

df = df(r, θ, z, dr, dθ, dz) = grad f . d~r

defines grad f as

grad f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ ẑ

∂f

∂z
= ∇f (18)

Notice that the units work out right too.
In spherical coordinates the procedure is identical. All that you have to do is to identify what d~r is.

d~r = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ

Again with this case you have to look at the distance moved when the coordinates changes by a small amount.
Just as with cylindrical coordinates this determines the gradient in spherical coordinates.

grad f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
= ∇f (19)

The equations (9), (18), and (19) define the gradient (and correspondingly ∇) in three coordinate systems.

* In medicine MRI was originally called NMR, but someone decided that this would disconcert the patients.
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8.11 Maxima, Minima, Saddles
With one variable you can look for a maximum or a minimum by taking a derivative and setting it to zero. For
several variables you do it several times so that you will get as many equations as you have unknown coordinates.

Put this in the language of gradients: ∇f = 0. The derivative of f vanishes in every direction as you move
from such a point. As examples,

f(x, y) = x2 + y2, or = −x2 − y2, or = x2 − y2

For all three of these the gradient is zero at (x, y) = (0, 0); the first has a minimum there, the second a maximum,
and the third neither — it is a “saddle point.” Draw a picture to see the reason for the name. The generic term
for all three of these is “critical point.”

An important example of finding a minimum is “least square fitting” of functions. How close are two
functions to each other? The most commonly used, and in every way the simplest, definition of the distance
between f and g on the interval a < x < b is∫ b

a
dx
∣∣f(x)− g(x)

∣∣2 (20)

This means that a large deviation of one function from the other in a small region counts more than smaller
deviations spread over a larger domain. The square sees to that. As a specific example, I have a function f on
the interval 0 < x < L and I want to fit it to the sum of a couple of trigonometric functions. The best fit will
be the one that minimizes the distance between f and the sum. (Take f to be a real-valued function for now.)

D(α, β) =

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)2

(21)

D is the distance between the given function and the sines that I want to fit to it. To minimize the distance,
take derivatives with respect to the parameters α and β.

dD

dα
= 2

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)(
− sin

πx

L

)
= 0

dD

dβ
= 2

∫ L

0
dx

(
f(x)− α sin

πx

L
− β sin

2πx

L

)(
− sin

2πx

L

)
= 0
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These two equations determine the parameters α and β.

α

∫ L

0
dx sin2 πx

L
=

∫ L

0
dx f(x) sin

πx

L

β

∫ L

0
dx sin2 2πx

L
=

∫ L

0
dx f(x) sin

2πx

L

The other integrals vanish because of the orthogonality of sin πx/L and sin 2πx/L on this interval. What you
get is exactly the coefficients of the Fourier series expansion of f . The Fourier series is the best fit (in the least
square sense) of a sum of orthogonal functions to f . See section 11.6 for more on this

Is it a minimum? Yes. Look at the coefficients of α2 and β2 in Eq. (21). They are positive; +α2 + β2 has
a minimum, not a maximum or saddle point.

The distance function Eq. (20) is simply (the square of) the norm in the vector space sense of the difference
of the two vectors f and g. Equations(6.8) and (6.4) here become

‖f − g‖2 =
〈
f − g, f − g

〉
=

∫ b

a
dx
∣∣f(x)− g(x)

∣∣2
~e1

~e2

shortest distance
to the plane

The geometric meaning of Eq. (21) is that ~e1 and ~e2 provide a basis for the two dimensional space

α~e1 + β~e2 = α sin
πx

L
+ β sin

2πx

L

The plane is the set of all linear combinations of the two vectors, and for a general vector not in this plane, the
shortest distance to the plane defines the vector in the plane that is the best fit to the given vector. It’s the
one that’s closest. Because the vectors ~e1 and ~e2 are orthogonal it makes it easy to find the closest vector. You
require that the difference, ~v − α~e1 − β~e2 have only an ~e3 component. That is Fourier series.
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8.12 Lagrange Multipliers

This is an incredibly clever method to handle problems of maxima and minima in several variables when there are
constraints.

An example: “What is the largest rectangle?” obviously has no solution, but “What is the largest rectangle
contained in an ellipse?” does.

Another: Particles are to be placed into states of specified energies. You know the total number of particles;
you know the total energy. All else being equal, what is the most probable distribution of the number of particles
in each state?

I’ll describe this procedure for two variables; it’s the same for more. The problem stated is that I want to
find the maximum (or minimum) of a function f(x, y) given the fact that the coordinates x and y must lie on
the curve φ(x, y) = 0. If you can solve the φ equation for y in terms of x explicitly, then you can substitute it
into f and turn it into a problem in ordinary one variable calculus. What if you can’t?

Analyze this graphically. The equation φ(x, y) = 0 represents one curve in the plane. The succession of
equations f(x, y) = constant represent many curves in the plane, one for each constant. Think of equipotentials.

φ = 0

f = 0
1

2 3
4

f = 5
φ = 0

f = 0
1

2 3
4

f = 5

Look at the intersections of the φ-curve and the f -curves. Where they intersect, they will usually cross
each other. Ask if such a crossing could possibly be a point where f is a maximum. Clearly the answer is no,
because as you move along the φ-curve you’re then moving from a point where f has one value to where it has
another.

The only way to have f be a maximum at a point on the φ-curve is for them to touch and not cross. When
that happens the values of f will increase as you approach the point from one side and decrease on the other.
That makes it a maximum. In this sketch, the values of f decrease from 4 to 3 to 2 and then back to to 3, 4,
and 5. This point where the curve f = 2 touches the φ = 0 curve is then a minimum of f along φ = 0.
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To implement this picture so that you can compute with it, look at the gradient of f and the gradient of
φ. The gradient vector is perpendicular to the curve f =constant or φ =constant. At the point where the curves
are tangent to each other these gradients are in the same direction (or opposite, no matter). One vector is a
scalar times the other.

∇f = λ∇φ

In the second picture, the arrows are the gradient vectors for f and for φ. Break this into components and you
have

∂f

∂x
− λ∂φ

∂x
= 0,

∂f

∂y
− λ∂φ

∂y
= 0, φ(x, y) = 0

These are three equations in three unknowns (x, y, λ). These are the equations to solve for the position of the
maximum or minimum value of f . You’re looking for x and y, so you’ll be tempted to ignore the third variable
λ and to eliminate it. Look again; this parameter, the Lagrange multiplier, has a habit of being significant.

Examples of Lagrange Multipliers
The first example that I mentioned: What is the largest rectangle that you can inscribe in an ellipse? Let the
ellipse and the rectangle be centered at the origin. The upper right corner of the rectangle is at (x, y), then the
area of the rectangle is

Area = f(x, y) = 4xy,

with constraint φ(x, y) =
x2

a2
+
y2

b2
− 1 = 0

The equations to solve are now

∇(f − λφ) = 0, and φ = 0, which become

4y − λ2x

a2
= 0, 4x− λ2y

b2
= 0,

x2

a2
+
y2

b2
− 1 = 0 (22)

The solutions to these three equations are straight-forward. They are x = a/
√

2, y = b/
√

2, λ = 2ab. The
maximum area is then 4xy = 2ab. The Lagrange multiplier turns out to be the required area. Does this reduce
to the correct result for a circle?
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The second example said that you have several different allowed energies, typical of what happens in
quantum mechanics. The total number of particles and the total energy are given, how are the particles distributed
among the different energies?

If there are N particles and exactly two energy levels, E1 and E2,

N = n1 + n2, and E = n1E1 + n2E2

these are two equations in two unknowns and all you have to do is solve them for the numbers n1 and n2 of
particles in each state. If there are three or more possible energies the answer isn’t determined by just two
equations, and there can be many ways that you can put particles into different energy states and still have the
same number of particles and the same total energy.

If you’re dealing with four particles and three energies, you can perhaps count the possibilities by hand.
How many ways can you put four particles in three states? (400), (310), (301), (220), 211), etc. There’s only
one way to get the (400) configuration: All four particles go into state 1. For (310) there are four ways to do it;
any one of the four particles can be in the second state and the rest in the first. Keep going. If you have 1020

particles you have to find a better way.
If you have a total of N particles and you place n1 of them in the first state, the number of ways that you

can do that is N for the first particle, (N−1) for the second particle, etc. = N(N−1)(N−2) · · · (N−n1+1) =
N !/(N −n1)!. This is over-counting. You don’t care which one went into the first state first, only that it’s there.
There are n1! rearrangements of these n1 particles, so you have to divide by that to get the number of ways that
you can get this number of particles into state 1: N !/n1!(N − n1)! For example, N = 4, n1 = 4 as in the (400)
configuration in the preceding paragraph is 4!/0!4! = 1.

Once you’ve got n1 particles into the first state you want to put n2 into the second state (out of the
remaining N − n1). Then on to state 3.

The total number of ways that you can do this is the product of all of these numbers. For three allowed
energies it is

N !

n1!(N − n1)!
. (N − n1)!

n2!(N − n1 − n2)!
. (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
=

N !

n1!n2!n3!
(23)

There’s a lot of cancellation and the final factor in the denominator is one because of the constraint n1+n2+n3 =
N .

Lacking any other information about the particles, the most probable configuration is the one for which
Eq. (23) is a maximum. This calls for Lagrange multipliers because you want to maximize a complicated function
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of several variables subject to constraints on N and on E. Now all you have to do is to figure out out to
differentiate with respect to integers. Answer: If N is large you will be able to treat these variables as continuous
and to use standard calculus to manipulate them.

For large n, recall Stirling’s formula, Eq. (2.15),

n! ∼
√

2πnnne−n or its log: ln(n!) ∼ ln
√

2πn+ n lnn− n (24)

This, I can differentiate. Maximizing (23) is the same as maximizing its logarithm, and that’s easier to work with.

maximize f = ln(N !)− ln(n1!)− ln(n2!)− ln(n3!)

subject to n1 + n2 + n3 = N and n1E1 + n2E2 + n3E3 = E

There are two constraints here, so there are two Lagrange multipliers.

∇
(
f − λ1(n1 + n2 + n3 −N)− λ2(n1E1 + n2E2 + n3E3 − E)

)
= 0

For f , use Stirling’s approximation, but not quite. The term ln
√

2πn is negligible. For n as small as 106, it is
about 6× 10−7 of the whole. Logarithms are much smaller than powers. That means that I can use

∇

(
3∑

`=1

(
− n` ln(n`) + n`

)
− λ1n` − λ2n`E`

)
= 0

This is easier than it looks because each derivative involves only one coordinate.

∂

∂n1
→ − lnn1 − 1 + 1− λ1 − λ2E1 = 0, etc.

This is
n` = e−λ1−λ2E` , ` = 1, 2, 3

There are two unknowns here, λ1 and λ2. There are two equations, for N and E. The parameter λ1 simply
determines an overall constant, e−λ1 = C.

C
3∑

`=1

e−λ2E` = N, and C
3∑

`=1

E` e
−λ2E` = E
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The quantity λ2 is usually denoted β in this type of problem, and it is related to temperature by β = 1/kT
where as usual the Lagrange multiplier is important on its own. It is usual to manipulate this by defining the
“partition function”

Z(β) =
3∑

`=1

e−βE` (25)

In terms of this function Z you have

C = N/Z, and E = −N
Z

dZ

dβ
(26)

For a lot more on this subject, you can refer to one of many books on thermodynamics or statistical physics.
There for example you can find the reason that β is related to the temperature.

8.13 Solid Angle
The extension of the concept of angle to three dimensions is called “solid angle.” To explain what this is, I’ll
first show a definition of ordinary angle that’s different from what you’re accustomed to. When you see that, the
extension to one more dimension is easy.

Place an object in the plane somewhere not at the origin. You are at the origin and look at it. I want a
definition that describes what fraction of the region around you is spanned by this object. For this, draw a circle
of radius R centered at the origin and draw all the lines from everywhere on the object to the origin. These lines
will intersect the circle on an arc of length s. Define the angle subtended by the object to be θ = s/R.

s

R

A

R
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Now step up to three dimensions and again place yourself at the origin. This time place a sphere of radius
R around the origin and draw all the lines from the three dimensional object to the origin. This time the lines
intersect the sphere on an area of size A. Define the solid angle subtended by the object to be Ω = A/R2.

For the circle, the circumference is 2πR, so if you’re surrounded, the angle subtended is 2πR/R =
2π radians. For the sphere, the area is 4πR2, so this time if you’re surrounded, the solid angle subtended is
4πR2/R2 = 4π sterradians. That is the name for this unit.

All very pretty. Is it useful? Only if you want to describe radiative transfer, nuclear scattering, illumination,
the structure of the atom, or rainbows. All of these subjects can be described using one central idea, that of a
“cross section.”

Cross Section, Absorption
Before showing how to use solid angle to describe scattering, I’ll take a simpler example: absorption. There is a
hole in a wall and I propose to measure its area. Instead of taking a ruler to it I blindly fire bullets at the wall
and see how many go in. The bigger the area, the larger the fraction that will go into the hole of course, but I
have to make this quantitative to make it useful.

Define the flux of bullets: f = dN/(dt dA). That is, suppose that I’m firing all
the bullets in the same direction, but not starting from the same place. Pick an area ∆A
perpendicular to the stream of bullets and pick a time interval ∆t. How many bullets
pass through this area in this time? ∆N , and that’s proportional to both ∆A and ∆t.

lim
∆t→0
∆A→0

∆N

∆t∆A
= f (27)

The rate at which these bullets enter the hole is proportional to the size of the hole,
R = fσ, where R is the rate and σ is the area of the hole. If I can measure the rate of
absorption R and the flux f , I have measured the area of the hole, σ = R/f . This letter
is commonly used for cross sections.

Why should I go to this complicated trouble for a hole? I probably shouldn’t, but if I want to measure
absorption of neutrons hitting nuclei this is precisely what you do. I can’t use a ruler on a nucleus, but I can
throw things at it. In this example, neutron absorption by nuclei, the value of the measured absorption cross
section can vary from millibarns to kilobarns, where a barn is 10−24 cm2. The radii of nuclei vary by a factor of
only about six from hydrogen through uranium ( 3

√
238), so the cross section measured this way has little to do

with the geometric area πr2. It is instead a measure of interaction strength
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Cross Section, Scattering
There are many types of cross sections besides absorption, and the next simplest is the scattering cross section,
especially the differential scattering cross section.

θ b

b+ db

θ
∆Ω

The same flux of particles that you throw at an object may not be absorbed, but may scatter instead. You
detect the scattering by using a detector. (You were expecting a catcher’s mitt?) The detector will have an
area ∆A facing the particles and be at a distance r from the center of scattering. The detection rate will be
proportional the the area of the detector, but if I double r for the same ∆A, the detection rate will go down by a
factor of four. The detection rate is proportional to ∆A/r2, but this is just the solid angle of the detector from
the center:

∆Ω = ∆A/r2 (28)

The detection rate is proportional to the incoming flux and to the solid angle of the detector. The proportionality
is an effective scattering area, ∆σ.

∆R = f∆σ, so
dσ

dΩ
=

dR

fdΩ

This is the differential scattering cross section.
You can compute this if you know something about the interactions involved. The one thing that you need

is the relationship between where the particle comes in and the direction in which it leaves. That is, the incoming
particle is aimed to hit at a distance b (called the impact parameter) from the center and it scatters at an angle
θ from its original direction. Particles that come in at distance between b and b + db will scatter into directions
between θ and θ + dθ.
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The cross section for being sent in a direction between these two angles is the area of the ring: dσ = 2πb db.
Anything that hits in there will scatter into the outgoing angles shown. How much solid angle is this? Put the
z-axis of spherical coordinates to the right, so that θ is the usual spherical coordinate angle from z. The element
of area on the surface of a sphere is dA = r2 sin θdθdφ, so the integral over all the azimuthal angles φ around
the ring just gives a factor 2π. The element of solid angle is then

dΩ =
dA

r2
= 2π sin θdθ

As a check on this, do the integral over all theta to get the total solid angle around a point.

Divide the effective area for this scattering by the solid angle, and the result is the differential scattering
cross section.

dσ

dΩ
=

2πb db

2π sin θ dθ
=

b

sin θ

db

dθ

If I know θ as a function of b, I can compute this. There are a couple of very minor modifications that you need
in order to finish this. The first is that the derivative db/dθ can easily be negative, but both the area and the
solid angle are positive. That means that you need an absolute value here. One other complication is that one
value of θ can come from several values of b. It may sound unlikely, but it happens routinely. It even happens in
the example that comes up in the next section.

dσ

dΩ
=
∑

i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣ (29)

8.14 Rainbow
An interesting, if slightly complicated example is the rainbow. Sunlight scatters from small drops of water in the
air and the detector is your eye. The water drops are small enough that I’ll assume them to be spheres, where
surface tension is enough to hold them in this shape for the ordinary small sizes of water droplets in the air.
The first and simplest model uses geometric optics and Snell’s law to figure out where the scattered light goes.
This model ignores the wave nature of light and it does not take into account the fraction of the light that is
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transmitted and reflected at each surface.

b

β

β

β

α

α

α

α

θ

sin β = n sinα

θ = (β − α) + (π − 2α) + (β − α)

b = R sin β

(30)

The light comes in at the indicated distance b from the axis. It is then refracted, reflected, and refracted.
Snell’s law describes the first and third, and the middle one has equal angles of incidence and reflection. The
dashed lines are from the center of the sphere. The three terms in the evaluation of θ come from the three places
at which the light changes direction, and they are the amount of deflection at each place. The third equation
simply relates b to the radius of the sphere.

With these three equations, I can try to eliminate the two variables α and β to get the single relation
between b and θ that I’m looking for. When you do this, you find that the resulting equations are a bit awkward.
It’s sometimes easier to use one of the two intermediate angles as a parameter, and in this case you may choose
to use β. From the picture you know that it varies from zero to π/2. The third equation gives b in terms of β.
The first equation gives α in terms of β. The second equation determines θ in terms of β and the α that you’ve
just found.

The parametrized relation between b and θ is then

b = R sin β, θ = π + 2β − 4 sin−1

(
1

n
sin β

)
, (0 < β < π/2) (31)

or you can carry it through and eliminate β.

θ = π + 2 sin−1

(
b

R

)
− 4 sin−1

(
1

n

b

R

)
(32)
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The derivative db/dθ = 1
/
[dθ/db]. Compute this.

dθ

db
=

2√
R2 − b2

− 4√
n2R2 − b2

(33)

In the parametrized form this is

db

dθ
=
db/dβ

dθ/dβ
=

R cos β

2− 4 cos β/
√
n2 − sin2 β

In analyzing this, it’s convenient to have both forms, as you never know which one will be easier to interpret.
(Have you checked to see if they agree with each other in any special cases?)

0 90 180
0

R

θ

b

n = 1 to 1.5, left to right

0 90 180

θ

dσ/dΩ

These graphs are generated from Eq. (31) for eleven values of the index of refraction equally spaced from
1 to 1.5. The key factor that enters the cross-section calculation, Eq. (29), is db/dθ, because it goes to infinity
when the curve has a vertical tangent. For water, with n = 1.33, the b-θ curve has a vertical slope that occurs
at θ a little less than 140◦. That is the rainbow.

To complete this I should finish with dσ/dΩ. The interesting part of the problem is near the vertical part
of the curve. To see what happens near such a point I can use the power series expansion near there. Not b(θ)
but θ(b). This has zero derivative here, so near the vertical point

θ(b) = θ0 + γ(b− b0)2
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At (b0, θ0), Eq. (33) gives zero and Eq. (32) tells you θ0. The coefficient γ comes from the second derivative of
Eq. (32) at b0. What is the differential scattering cross section in this neighborhood?

b = b0 ±
√

(θ − θ0)/γ, so db/dθ = ± 1

2
√
γ(θ − θ0)

dσ

dΩ
=
∑

i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣

=
b0 +

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

+
b0 −

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

≈ b0

sin θ0
√
γ(θ − θ0)

(34)

In the final expression, because this is near θ − θ0 and because I’m doing a power series expansion of the exact
solution anyway, I dropped all the θ-dependence except the dominant factors. This is the only consistent thing
to do because I’ve previously dropped higher order terms in the expansion of θ(b).

Why is this a rainbow? (1) With the sun at your back you see a bright arc of a circle in the direction for
which the scattering cross-section is very large. The angular radius of this circle is π − θ0 ≈ 42◦. (2) The value
of θ0 depends on the index of refraction, n, and that varies slightly with wavelength. The variation of this angle
of peak intensity is

dθ0
dλ

=
dθ0
db0

db0
dn

dn

dλ
(35)

When you graph Eq. (34) note carefully that it is zero on the left of θ0 (smaller θ) and large on the right.
Large scattering angles correspond to the region of the sky underneath the rainbow, toward the center of the
circular arc. This implies that there is much more light scattered toward your eye underneath the arc of the
rainbow than there is above it. Look at your next rainbow and compare the area of sky below and above the
rainbow.

There’s a final point about this calculation. I didn’t take into account the fact that when light hits a surface,
some is transmitted and some is reflected. The largest effect is at the point of internal reflection, because typically
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only a few percent of the light is reflected and the rest goes through. The cross section should be multiplied by
this factor to be complete. The detailed equations for this are called the Fresnel formulas and they tell you the
fraction of the light transmitted and reflected at a surface as a function of angle and polarization.

This is far from the whole story about rainbows. Light is a wave, and the geometric optics approximation
that I’ve used doesn’t account for everything. In fact Eq. (29) doesn’t apply to waves, so the whole development
has to be redone. To get an idea of some of the other phenomena associated with the rainbow, see for example
www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter 8.html
www.philiplaven.com/links.html

8.15 3D Visualization
Wrapping your mind around three dimensional objects is a practiced skill, one that takes time to master. For an
interesting way to enhance this ability, I recommend the Java Applet
www.ausserfern.at/pbeck/blockout/

http://www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter_8.html
http://www.philiplaven.com/links.html
http://www.ausserfern.at/pbeck/blockout/
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Problems

8.1 Let r =
√
x2 + y2, x = A sinωt, y = B cosωt. Use the chain rule to compute the derivative with respect

to t of ekr. Notice the various checks you can do on the result, verifying (or disproving) your result.

8.2 Sketch these functions* in plane polar coordinates:
(a) r = a cos θ (b) r = a sec θ (c) r = aθ (d) r = a/θ (e) r2 = a2 sin 2θ

8.3 The two coordinates x and y are related by f(x, y) = 0. What is the derivative of y with respect to x under
these conditions? [What is df along this curve? And have you drawn a sketch?] Make up a test function (with
enough structure to be a test but still simple enough to verify your answer independently) and see if your answer
is correct. Ans: −(∂f/∂x)

/
(∂f/∂y)

8.4 If x = u+ v and y = u− v, show that (
∂y

∂x

)
u

= −
(
∂y

∂x

)
v

8.5 If x = r cos θ and y = r sin θ, compute(
∂x

∂r

)
θ

and

(
∂x

∂r

)
y

8.6 What is the differential of f(x, y, z) = ln(xyz).

8.7 If f(x, y) = x3 + y3 and you switch to plane polar coordinates, use the chain rule to evaluate(
∂f

∂r

)
θ

,

(
∂f

∂θ

)
r

,

(
∂2f

∂r2

)
θ

,

(
∂2f

∂θ2

)
r

,

(
∂2f

∂r∂θ

)
,

Check one or more of these by substituting r and θ explicitly and doing the derivatives.

* See http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html for more.

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html
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8.8 When current I flows through a resistance R the heat produced is I2R. Two terminals are connected in
parallel by two resistors having resistance R1 and R2. Given that the total current is divided as I = I1 + I2, show
that the condition that the total heat generated is a minimum leads to the relation I1R1 = I2R2.

8.9 Sketch the magnetic field represented by Eq. (17). I suggest that you start by fixing r and drawing the
~B-vectors at various values of θ. It will probably help your sketch if you first compute the magnitude of B to
see how it varies around the circle. Recall, this field is expressed in spherical coordinates, though you can take
advantage of its symmetry about the z-axis to make the drawing simpler. Don’t stop with just the field at fixed
r as I suggested you begin. The field fills space, so try to describe it.

8.10 A drumhead can vibrate in more complex modes. One such mode that vibrates at a frequency higher than
that of Eq. (13) looks approximately like

z(r, θ, t) = Ar
(
1− r2/R2

)
sin θ cosω2t

Find the total kinetic energy of this oscillating drumhead.
(b) Sketch the shape of the drumhead at t = 0. Compare it to the shape of Eq. (13).
At the instant that the total kinetic energy is a maximum, what is the shape of the drumhead?

8.11 Just at there is kinetic energy in a vibrating drumhead, there is potential energy, and as the drumhead
moves its total potential energy will change because of the slight stretching of the material. The potential energy
density (dP.E./dA) in a drumhead is

up =
1

2
T
(
∇z
)2

T is the tension in the drumhead. It has units of Newtons/meter and it is the force per length you would need
if you cut a small slit in the surface and had to hold the two sides of the slit together. This potential energy
arises from the slight stretching of the drumhead as it moves away from the plane of equilibrium. For the motion
described by Eq. (13) compute the total potential energy. (Naturally, you will have checked the dimensions first
to see if the claimed expression for up is sensible.)
(b) Energy is conserved, so the sum of the total potential energy and the total kinetic energy from Eq. (14) must
be a constant. What must the frequency ω be for this to hold? Is this a plausible result? The exact result is
2.404

√
T/σR2. Ans:

√
6T/σR2
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8.12 Repeat the preceding problem for the drumhead mode of problem 10. The exact result, calculated in terms
of roots of Bessel functions is 3.832

√
T/σR2. Ans: 4

√
T/σR2

8.13 Sketch the gravitational field of the Earth from Eq. (16). Is the direction of the field plausible?

8.14 Prove that the unit vectors in polar coordinates are related to those in rectangular coordinates by

r̂ = x̂ cos θ + ŷ sin θ, θ̂ = −x̂ sin θ + ŷ cos θ

What are x̂ and ŷ in terms of r̂ and θ̂?

8.15 Prove that the unit vectors in spherical coordinates are related to those in rectangular coordinates by

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ

8.16 Compute the volume of a sphere using spherical coordinates. Also do it using rectangular coordinates. Also
do it in cylindrical coordinates.

8.17 Finish both integrals Eq. (15). Draw sketches to demonstrate that the limits stated there are correct.

8.18 Find the volume under the plane 2x + 2y + z = 8a and over the triangle bounded by the lines x = 0,
y = 2a, and x = y in the x-y plane. Ans: 8a3

8.19 Find the volume enclosed by the doughnut-shaped surface (spherical coordinates) r = a sin θ. Ans: π2a3/4

8.20 In plane polar coordinates, compute ∂r̂/∂θ, also ∂θ̂/∂θ. This means that r is fixed and you’re finding the
change in these vectors as you move around a circle. In both cases express the answer in terms of the r̂-θ̂ vectors.
Draw pictures that will demonstrate that your answers are at least in the right direction. Ans: ∂θ̂/∂θ = −r̂

8.21 Compute the gradient of the distance from the origin (in three dimensions) in three coordinate systems and
verify that they agree.
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8.22 Taylor’s power series expansion of a function of several variables was discussed in section 2.5. The Taylor
series in one variable was expressed in terms of an exponential in problem 2.30. Show that the series in three
variables can be written as

e
~h .∇f(x, y, z)

8.23 The wave equation is (1). Change variables to z = x−vt and w = x+vt and show that in these coordinates
this equation is (2).

(1)
∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 (2)

∂2u

∂z∂w
= 0

8.24 The equation (16) comes from taking the gradient of the Earth’s gravitational potential in an expansion to
terms in 1/r3.

V = −GM
r
− GQ

r3
P2(cos θ)

where P2(cos θ) = 3
2 cos2 θ − 1

2 is the second order Legendre polynomial. Compute ~g = −∇V .

8.25 In problem 2.25 you computed the electric potential at large distances from a pair of charges, −q at the
origin and +q at z = a (r � a). The result was

V =
kqa

r2
P1(cos θ)

where P1(cos θ) = cos θ is the first order Legendre polynomial. Compute the electric field from this potential,
~E = −∇V . And sketch it of course.

8.26 In problem 2.26 you computed the electric potential at large distances from a set of three charges, −2q at
the origin and +q at z = ±a (r � a). The result was

V =
kqa2

r3
P2(cos θ)

where P2(cos θ) is the second order Legendre polynomial. Compute the electric field from this potential, ~E =
−∇V . And sketch it of course.
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8.27 Compute the area of an ellipse having semi-major and semi-minor axes a and b. Compare your result to
that of Eq. (22). Ans: πab

8.28 Two equal point charges q are placed at z = ±a. The origin is a point of equilibrium, ~E = 0 there.
Compute the potential near the origin, writing V in terms of powers of x, y, and z near there, carrying the powers
high enough to describe the nature of the equilibrium point. Is V maximum, minimum, or saddle point there?
(b) Write your result for V near the origin in spherical coordinates also.

8.29 When current I flows through a resistance R the heat produced is I2R. Two terminals are connected
in parallel by three resistors having resistance R1, R2, and R3. Given that the total current is divided as
I = I1 + I2 + I3, show that the condition that the total heat generated is a minimum leads to the relation
I1R1 = I2R2 = I3R3. You can easily do problem 8 by eliminating a coordinate the doing a derivative. Here it’s
starting to get sufficiently complex that you should use Lagrange multipliers. Does λ have any significance this
time?

8.30 Given a right circular cylinder of volume V , what radius and height will provide the minimum total area for
the cylinder. Ans: r = (V/2π)1/3, h = 2r

8.31 Sometimes the derivative isn’t zero at a maximum or a minimum. Also, there are two types of maxima and
minima; local and global. The former is one that is max or min in the immediate neighborhood of a point and
the latter is biggest or smallest over the entire domain of the function. Examine these functions for maxima and
minima both inside the domains and on the boundary.

|x|, (−1 ≤ x ≤ +2)

T0

(
x2 − y2

)
/a2, (−a ≤ x ≤ a, −a ≤ y ≤ a)

V0(r
2/R2)P2(cos θ), (r ≤ R, 3 dimensions)

8.32 In Eq. (26) it is more common to specify N and β = 1/kT , the Lagrange multiplier, than it is to specify
N and E, the total energy. Pick three energies, E`, to be 1, 2, and 3 electron volts. What is the average energy,
E/N , as β →∞ (T → 0)?
(b) What is the average energy as β → 0?
(c) What are n1, n2, and n3 in these two cases?
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8.33 Find the gradient of V , where V = (x2 + y2 + z2)e−
√

x2+y2+z2
.

8.34 A billiard ball of radius R is suspended in space and is held rigidly in position. Very small pellets are thrown
at it and the scattering from the surface is completely elastic, with no friction. Compute the relation between the
impact parameter b and the scattering angle θ. Then compute the differential scattering cross section dσ/dΩ.
Finally compute the total scattering cross section, the integral of this over dΩ.

8.35 Modify the preceding problem so that the incoming object is a ball of radius R1 and the fixed billiard ball
has radius R2.

8.36 Find the differential scattering cross section from a spherical drop of water, but instead of Snell’s law, use
a pre-Snell law: β = nα, without the sines. Is there a rainbow in this case?
Ans: R2 sin 2β

/[
4 sin θ|1− 2/n|

]
, where θ = π + 2(1− 2/n)β

8.37 From the equation (29), assuming only a single b for a given θ, what is the integral over all dΩ of dσ/dΩ?

8.38 Solve Eq. (33) for b when dθ/db = 0. For n = 1.33 what value of θ does this give?

8.39 If the scattering angle θ = π
2 sin(πb/R) for 0 < b < R, what is the resulting differential scattering cross

section (with graph). What is the total scattering cross section? Ans: 2R2
/[
π2 sin θ

√
1− (2θ/π)2

]
8.40 Work out the signs of all the factors in Eq. (35), and determine from that whether red or blue is on the
outside of the rainbow. Ans: Look

8.41 If it suddenly starts to rain small, spherical diamonds instead of water, what happens to the rainbow?
n = 2.4 for diamond.

8.42 What would the rainbow look like for n = 2? You’ll have to look closely at the expansions in this case. For
small b, where does the ray hit the inside surface of the drop?

8.43 The secondary rainbow occurs because there can be two internal reflections before the light leave the drop.
What is the analog of Eqs. (30) for this case? Repeat problems 38 and 40 for this case.
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8.44 What is the shortest distance from the origin to the plane defined by ~A .(~r − ~r0) = 0? Do this using
Lagrange multipliers, and then explain why of course the answer is correct.

8.45 The U.S. Post Office has decided to use a norm like Eq. (6.7)2 to measure boxes. The size is defined
to be the sum of the height and the circumference of the rectangular box, and the circumference is around the
thickest part of the package. What is the maximum volume you can ship if this size is constrained to be less than
130 inches? Does it matter if the box is rectangular or cylindrical? See USPS

8.46 Plot θ versus b in equation (31) or (32).

8.47 A disk of radius R is at a distance c above the x-y plane and parallel to that plane. What is the solid angle
that this disk subtends from the origin?

8.48 Within a sphere of radius R, what is the volume contained between the planes defined by z = a and z = b?

8.49 Find the mean-square distance, 1
V

∫
r2 dV , from a point on the surface of a sphere to points inside the

sphere. Note: Plan ahead and try to make this problem as easy as possible.

8.50 Find the mean distance, 1
V

∫
r dV , from a point on the surface of a sphere to points inside the sphere.

8.51 A volume mass density is specified in spherical coordinates to be

ρ(r, θ, φ) = ρ0

(
1 + r2/R2

)[
1 + 1/2 cos θ sin2 φ+ 1/4 cos2 θ sin3 φ

]
Compute the total mass in the volume 0 < r < R.

http://www.usps.com/customersguide/dmm100.htm#WhatAreYouMailing


Vector Calculus 1

The first rule in understanding vector calculus is draw lots of pictures. This subject can become rather abstract

if you let it, but try to visualize all the manipulations. Try a lot of special cases and explore them. Keep relating

the manipulations to the underlying pictures and don’t get lost among the infinite series.

9.1 Fluid Flow
When water or any fluid moves through a pipe, what is the relationship between the motion of the fluid and the

total rate of flow through the pipe (volume per time)? Take a rectangular pipe of sides a and b with fluid moving

at constant speed through it and with the velocity of the fluid being the same throughout the pipe. It’s a simple

calculation: In time ∆t the fluid moves a distance v∆t down the pipe. The cross-section of the pipe has area

A = ab, so the volume that move past a given flat surface is ∆V = Av∆t. The flow rate is the volume per time,

∆V/∆t = Av. (The usual limit as ∆t→ 0 isn’t needed here.)

A

v∆t (a)

A

v∆t (b)

Just to make the problem look a little more involved I want to know what the result will be if I ask for the

flow through a surface that is tilted at an angle to the velocity. Do the calculation the same way as before, but

use the drawing (b) instead of (a). The fluid still moves a distance v∆t, but the volume that moves past this

flat but tilted surface is not its new (bigger) area A times v∆t. The area of a parallelogram is not the product

of its sides and the volume of a parallelepiped is not the area of a base times the length of another side.

248
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A

h

v∆t

α

n̂

α

The area of a parallelogram is the length of one side times the perpendicular distance from that side to its
opposite side. Similarly the volume of a parallelepiped is the area of one side times the perpendicular distance
from that side to the side opposite. The perpendicular distance is not the distance that the fluid moved (v∆t).
This perpendicular distance is smaller by a factor cosα, where α is the angle that the plane is tilted. It is most
easily described by the angle that the normal to the plane makes with the direction of the fluid velocity.

∆V = Ah = A(v∆t) cosα

The flow rate is then ∆V/∆t = Av cosα. Introduce the unit normal vector n̂, then this expression can be
rewritten in terms of a dot product,

Av cosα = A~v . n̂ = ~A .~v (1)

where α is the angle between the direction of the fluid velocity and the normal to the area. This invites the
definition of the area itself as a vector, and that’s what I wrote in the final expression. The vector ~A is a notation
for An̂, and defines the area vector. If it looks a little odd to have an area be a vector, do you remember the
geometric interpretation of a cross product? That’s the vector perpendicular to two given vectors and it has a
magnitude equal to the area of the parallelogram between the two vectors. It’s the same thing.

General Flow, Curved Surfaces
The fluid velocity will not usually be a constant in space. It will be some function of position. The surface doesn’t
have to be flat; it can be cylindrical or spherical or something more complicated. How do you handle this? That’s
why integrals were invented.

The idea behind an integral is that you will divide a complicated thing into small pieces and add the results
of the small pieces to estimate the whole. Improve the estimation by making more, smaller pieces, and in the
limit as the size of the pieces goes to zero get an exact answer. That’s the procedure to use here.

The concept of the surface integral is that you systematically divide a surface into a number (N) of pieces
(k = 1, 2, . . . N). The pieces have area ∆Ak and each piece has a unit normal vector n̂k. Within the middle of
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each of these areas the fluid has a velocity ~vk. This may not be a constant, but as usual with integrals, you pick
a point somewhere in the little area and pick the ~v there; in the limit as all the pieces of area shrink to zero it
won’t matter exactly where you picked it. The flow rate through one of these pieces is Eq. (1), ~vk

. n̂k∆Ak, and

the corresponding estimate of the total flow through the surface is, using the notation ∆ ~Ak = n̂k∆Ak,

N∑
k=1

~vk
.∆ ~Ak

This limit as the size of each piece is shrunk to zero and correspondingly the number of pieces goes to infinity is
the definition of the integral ∫

~v . d ~A = lim
∆Ak→0

N∑
k=1

~vk
.∆ ~Ak (2)

Example of Flow Calculation
In the rectangular pipe above, suppose that the flow exhibits shear, rising from zero at the bottom to v0 at the
top. The velocity field is

~v(x, y, z) = vx(y)x̂ = v0
y

b
x̂ (3)

The origin is at the bottom of the pipe and the y-coordinate is measured upward from the origin. What is the
flow rate through the area indicated, tilted at an angle φ from the vertical? The distance in and out of the plane
of the picture (the z-axis) is the length a. Can such a fluid flow really happen? Yes, real fluids such as water
have viscosity, and if you construct a very wide pipe but not too high, and make the top surface movable you can
slide the top part of the pipe to the right. That will drag the fluid with it so that the fluid just next to the top
is moving at the same speed that the top surface is while the fluid at the bottom is kept at rest by the friction
with the bottom surface. In between you get a gradual transition in the flow that is represented by Eq. (3).

y
x

φ

n̂k

b
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Now to implement the calculation of the flow rate:
Divide the area into N pieces of length ∆`k along the slant.
The length in and out is a so the piece of area is ∆Ak = a∆`k.
The unit normal is n̂k = x̂ cosφ − ŷ sinφ. (It happens to be independent of the index k, but that’s special to
this example.)
The velocity vector at the position of this area is ~v = v0 x̂ yk/b.
Put these together and you have the piece of the flow rate contributed by this area.

∆flowk = ~v .∆ ~Ak = v0
yk

b
x̂ . a∆`k

(
x̂ cosφ− ŷ sinφ

)
= v0

yk

b
a∆`k cosφ = v0

`k cosφ

b
a∆`k cosφ

In the last line I put all the variables in terms of `, using y = ` cosφ.
Now sum over all these areas and take a limit.

lim
∆`k→0

N∑
k=1

v0
`k cosφ

b
a∆`k cosφ =

∫ b/ cos φ

0
d` v0

a

b
` cos2 φ = v0

a

b

`2

2
cos2 φ

∣∣∣∣b/ cos φ

0

= v0
a

2b

(
b

cosφ

)2

cos2 φ = v0
ab

2

This turns out to be independent of the orientation of the plane; the parameter φ is absent from the result. If you
think of two planes, at angles φ1 and φ2, what flows into one flows out of the other. Nothing is lost in between.

Another Flow Calculation
Take the same sort of fluid flow in a pipe, but make it a little more complicated. Instead of a flat surface, make it
a cylinder. The axis of the cylinder is in and out in the picture and its radius is half the width of the pipe. Describe
the coordinates on the surface by the angle θ as measured from the midline. That means that −π/2 < θ < π/2.
Divide the surface into pieces that are rectangular strips of length a (in and out in the picture) and width b∆θk/2.
(The radius of the cylinder is b/2.)

∆Ak = a
b

2
∆θk, and n̂k = x̂ cos θk + ŷ sin θk (4)
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y
x

θk+1

n̂k
b

θk

ŷ

x̂
y

b/2

(b/2) sin θ

The velocity field is the same as before, ~v(x, y, z) = v0 x̂ y/b, so the contribution to the flow rate through this
piece of the surface is

~vk
.∆ ~Ak = v0

yk

b
x̂ . a

b

2
∆θk n̂k

The value of yk at the angle θk is

yk =
b

2
+
b

2
sin θk, so

yk

b
=

1

2
[1 + sin θk]

Put the pieces together and you have

v0
1

2

[
1 + sin θk

]
x̂ . a

b

2
∆θk

[
x̂ cos θk + ŷ sin θk

]
= v0

1

2

[
1 + sin θk

]
a
b

2
∆θk cos θk

The total flow is the sum of these over k and then the limit as ∆θk → 0.

lim
∆θk→0

∑
k

v0
1

2

[
1 + sin θk

]
a
b

2
∆θk cos θk =

∫ π/2

−π/2
v0

1

2

[
1 + sin θ

]
a
b

2
dθ cos θ

Finally you can do the two terms of the integral: Look at the second term first. You can of course start grinding
away and find the right trigonometric formula to do the integral, OR, you can sketch a graph of the integrand,
sin θ cos θ, on the interval −π/2 < θ < π/2 and write the answer down by inspection. The first part of the
integral is

v0
ab

4

∫ π/2

−π/2
cos θ = v0

ab

4
sin θ

∣∣∣∣π/2

−π/2

= v0
ab

2
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And this is the same result that I got for the flat surface calculation. I set it up so that the two results are the
same; it’s easier to check that way. Gauss’s theorem of vector calculus will guarantee that you get the same result
for any surface spanning this pipe and for this particular velocity function.

9.2 Vector Derivatives

I want to show the underlying ideas of the vector derivatives, divergence and curl, and as the names themselves
come from the study of fluid flow, that’s where I’ll start. You can describe the flow of a fluid, either gas or liquid
or anything else, by specifying its velocity field, ~v(x, y, z) = ~v(~r ).

For a single real-valued function of a real variable, it’s often too complex to capture all the properties of
a function at one glance, so it’s going to be even harder here. One of the uses of ordinary calculus is to provide
information about the local properties of a function without attacking the whole function at once. That is what
derivatives do. If you know that the derivative of a function is positive at a point then you know that it is
increasing there. This is such an ordinary use of calculus that you hardly give it a second thought (until you hit
some advanced calculus and discover that some continuous functions don’t even have derivatives). The geometric
concept of derivative is the slope of the curve at a point — the tangent of the angle between the x-axis and the
straight line that best approximates the curve at that point. Going from this geometric idea to calculating the
derivative takes some effort.

How can you do this for fluid flow? If I inject a small amount of dye into the fluid at some point it will
spread into a volume that depends on how much I inject. As time goes on this region will move and distort and
possibly become very complicated, too complicated to grasp in one picture.
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How can I get some simpler picture? Do it in the same spirit that you introduce the derivative: Concentrate
on a little piece of the picture. Inject only a little bit of dye and wait only a little time. To make it explicit,
assume that the initial volume of dye forms a sphere of (small) volume V and let the fluid move for a little time.

1. In a small time ∆t the center of the sphere will move.
2. The sphere can expand or contract, changing its volume.
3. The sphere can rotate.
4. The sphere can distort.

Div, Curl, Strain
The first one, the motion of the center, tells you about the velocity at the center of the sphere. It’s like knowing the
value of a function at a point, and that tells you nothing about the behavior of the function in the neighborhood
of the point.

The second one, the volume, gives new information. You can simply take the time derivative dV/dt to see
if the fluid is expanding or contracting; just check the sign and determine if it’s positive or negative. But how
big is it? That’s not yet in a useful form because the size of this derivative will depend on how much the original
volume is. If you put in twice as much dye, each part of the volume will change and there will be twice as much
rate of change in the total volume. If I divide the time derivative by the volume itself this effect will cancel.
Finally, to get the effect at one point I have to take the limit as the volume approaches a point. This defines a
kind of derivative of the velocity field called the divergence.

lim
V→0

1

V

dV

dt
= divergence of ~v (5)

This doesn’t tell you how to compute it any more than saying that the derivative is the slope tells you how to
compute an ordinary* derivative. I’ll have to work that out.

But first look at the third way that the sphere can move: rotation. Again, if you take a large object it will
distort a lot and it will be hard to define a single rotation for it. Take a very small sphere instead. The time
derivative of this rotation is its angular velocity, the vector ~ω. In the limit as the sphere approaches a point, this

* Can you start from the definition of the derivative as a slope, use it directly, and compute the derivative of
x2 with respect to x, getting 2x?



9—Vector Calculus 1 255

tells me about the rotation of the fluid in the immediate neighborhood of that point. If I place a tiny paddlewheel
in the fluid, how will it rotate?

2~ω = curl of ~v (6)

The factor of 2 is for later convenience.
The fourth way that the sphere can change after expansion and rotation is that it can change its shape.

In a very small time interval, the sphere can slightly distort into an ellipsoid. This will lead to the mathematical
concept of the strain. This is important in the subject of elasticity and viscosity, but I’ll put it aside for now
save for one observation: how much information is needed to describe whatever it is? The sphere changes to
an ellipsoid, and the first question is: what is the longest axis and how much stretch occurs along it — that’s
the three components of a vector. After that what is the shortest axis and how much contraction occurs along
it? That’s one more vector, but you need its magnitude and only one component to define its direction because
it’s perpendicular to the long axis. After this there’s nothing left. The direction of the third axis is determined
and so is its length if you assume that the total volume hasn’t changed. You can assume that is so because the
question of volume change is already handled by the divergence; you don’t need it here too. The total number
of components needed for this object is 2 + 3 = 5. It comes under the heading of tensors.

9.3 Computing the divergence
Now how do you calculate these? I’ll start with the simplest, the divergence, and compute the time derivative of
a volume from the velocity field. To do this, go back to the definition of derivative:

dV

dt
= lim

∆t→0

V (t+ ∆t)− V (t)

∆t
(7)

~v∆t

Pick an arbitrary surface to start with and see how the volume changes as the fluid moves, carrying the
surface with it. In time ∆t a point on the surface will move by a distance ~v∆t and it will carry with it a piece
of neighboring area ∆A. This area sweeps out a volume. This piece of volume is not ∆A times v∆t because
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the motion isn’t likely to be perpendicular to the surface. It’s only the component of the velocity normal to the
surface that contributes to the volume swept out. Use n̂ to denote the unit vector perpendicular to ∆A, then
this volume is ∆A n̂ .~v∆t. This is the same as the the calculation for fluid flow except that I’m interpreting the
picture differently.

If at a particular point on the surface the normal n̂ is more or less in the direction of the velocity then
this dot product is positive and the change in volume is positive. If it’s opposite the velocity then the change is
negative. The total change in volume of the whole initial volume is the sum over the entire surface of all these
changes. Divide the surface into a lot of pieces ∆Ai with accompanying unit normals n̂i, then

∆Vtotal =
∑

i

∆Ai n̂i .~vi ∆t

Not really. I have to take a limit before this becomes an equality. The limit of this as all the ∆Ai → 0 defines
an integral

∆Vtotal =

∮
dA n̂ .~v∆t

and this integral notation is special; the circle through the integral designates an integral over the whole closed
surface and the direction of n̂ is always taken to be outward. Finally, divide by ∆t and take the limit as ∆t
approaches zero.

dV

dt
=

∮
dA n̂ .~v (8)

The ~v . n̂ dA is the rate at which the area dA sweeps out volume as it’s carried with the fluid. Note: There’s
nothing in this calculation that says that I have to take the limit as V → 0; it’s a perfectly general expression for
the rate of change of volume in a surface being carried with the fluid. It’s also a completely general expression for
the rate of flow of fluid through a fixed surface as the fluid moves past it. I’m interested in the first interpretation
for now, but the second is just as valid in other contexts.

Again, use the standard notation in which the area vector combines the unit normal and the area: d ~A =
n̂ dA.

divergence of ~v = lim
V→0

1

V

dV

dt
= lim

V→0

1

V

∮
~v . d ~A (9)

If the fluid is on average moving away from a point then the divergence there is positive. It’s diverging.
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The Divergence as Derivatives
This is still a long way from something that you can easily compute. I’ll first go through a detailed analysis of
how you turn this into a simple result, and I’ll then go back to try to capture the essence of the derivation so
you can see how it applies in a wide variety of coordinate systems. At that point I’ll also show how to get to the
result with a lot less algebra. You will see that a lot of the terms that appear in this first calculation will vanish
in the end. It’s important then to go back and see what was really essential to the calculation and what was not.
As you go through this derivation then, try to anticipate which terms are going to be important and which terms
are going to disappear.

Express the velocity in rectangular components, vxx̂+vyŷ+vz ẑ. For the small volume, choose a rectangular
box with sides parallel to the axes. One corner is at point (x0, y0, z0) and the opposite corner has coordinates
that differ from these by (∆x,∆y,∆z). Expand everything in a power series about the first corner as in section
2.5. Instead of writing out (x0, y0, z0) every time, I’ll abbreviate it by (0).

(x  , y  , z   )0 00
∆

∆

y

z
x̂

x∆

vx(x, y, z) = vx(0) + (x− x0)
∂vx

∂x
(0) + (y − y0)

∂vx

∂y
(0) + (z − z0)

∂vx

∂z
(0)

+
1

2
(x− x0)

2∂
2vx

∂x2
(0) + (x− x0)(y − y0)

∂2vx

∂x∂y
(0) + · · ·

(10)

There are six integrals to do, one for each face of the box, and there are three functions, vx, vy, and vz to expand
in three variables x, y, and z. Don’t Panic. A lot of these are zero. If you look at the face on the right in the
sketch you see that it’s parallel to the y-z plane and has normal n̂ = x̂. When you evaluate ~v . n̂ only the vx

term survives; flow parallel to the surface (vy, vz) contributes nothing to volume change along this part of the
surface. Already then, many terms have simply gone away.

Write the two integrals over the two surfaces parallel to the y-z plane, one at x0 and one at x0 + ∆x.∫
right

~v . d ~A+

∫
left
~v . d ~A

=

∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz vx(x0 + ∆x, y, z)−
∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz vx(x0, y, z)

The minus sign comes from the dot product because n̂ points left on the left side. I can evaluate these integrals
by using their power series representations. You may have an infinite number of terms to integrate, but at least
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they’re all easy. Take the first of them:∫ y0+∆y

y0

dy

∫ z0+∆z

z0

dz

[
vx(0)+

(∆x)
∂vx

∂x
(0) + (y − y0)

∂vx

∂y
(0) + (z − z0)

∂vx

∂z
(0) +

1

2
(∆x)2

∂2vx

∂x2
(0) + · · ·

]
= vx(0)∆y∆z + (∆x)

∂vx

∂x
(0)∆y∆z+

1

2
(∆y)2∆z

∂vx

∂y
(0) +

1

2
(∆z)2∆y

∂vx

∂z
(0) +

1

2
(∆x)2

∂2vx

∂x2
(0)∆y∆z + · · ·

Now look at the second integral, the one that you have to subtract from this one. Before plunging in to the
calculation, stop and look around. What will cancel; what will contribute; what will not contribute? The only
difference is that this is now evaluated at x0 instead of at x0 + ∆x. The terms that have ∆x in them simply
won’t appear this time. All the rest are exactly the same as before. That means that all the terms in the above
expression that do not have a ∆x in them will be canceled when you subtract the second integral. All the terms
that do have a ∆x will be untouched. The combination of the two integrals is then

(∆x)
∂vx

∂x
(0)∆y∆z +

1

2
(∆x)2

∂2vx

∂x2
(0)∆y∆z +

1

2
(∆x)

∂2vx

∂x∂y
(0)(∆y)

2∆z + · · ·

Two down four to go, but not really. The other integrals are the same except that x becomes y and y
becomes z and z becomes x. The integral over the two faces with y constant are then

(∆y)
∂vy

∂y
(0)∆z∆x+

1

2
(∆y)2

∂2vy

∂y2
(0)∆z∆x+ · · ·

and a similar expression for the final two faces. The definition of Eq. (9) says to add all three of these expressions,
divide by the volume, and take the limit as the volume goes to zero. V = ∆x∆y∆z, and you see that this is a
common factor in all of the terms above. Cancel what you can and you have

∂vx

∂x
(0) +

∂vy

∂y
(0) +

∂vx

∂x
(0) +

1

2
(∆x)

∂2vx

∂x2
(0) +

1

2
(∆y)

∂2vy

∂y2
(0) +

1

2
(∆z)

∂2vz

∂z2
(0) + · · ·
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In the limit that the all the ∆x, ∆y, and ∆z shrink to zero the terms with a second derivative vanish, as do all
the other higher order terms. You are left then with a rather simple expression for the divergence.

divergence of ~v = div~v =
∂vx

∂x
+
∂vy

∂y
+
∂vx

∂x
(11)

This is abbreviated by using the differential operator ∇, “del.”

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(12)

Then you can write the preceding equation as

divergence of ~v = div~v = ∇ .~v (13)

The symbol ∇ will take other forms in other coordinate systems.
Now that you’ve waded through this rather technical set of manipulations, is there an easier way? Yes but,

without having gone through the preceding algebra you won’t be able to see and to understand which terms are
important and which terms are going to cancel or otherwise disappear. When you need to apply these ideas to
something besides rectangular coordinates you have to know what to keep and what to ignore. Once you know
this, you can go straight to the end of the calculation and write down only those terms that you know are going
to survive. This takes practice.

Simplifying the derivation
In the long derivation of the divergence, the essence is that you find ~v . n̂ on one side of the box (maybe take it
in the center of the face), and multiply it by the area of that side. Do this on the other side, remembering that
n̂ isn’t in the same direction there, and combine the results. Do this for each side and divide by the volume of
the box.[

vx(x0 + ∆x, y0 + ∆y/2, z0 + ∆z/2)∆y∆z − vx(x0, y0 + ∆y/2, z0 + ∆z/2)∆y∆z
]
÷
(
∆x∆y∆z

)
(14)

the ∆y and ∆z factors cancel, and what’s left is, in the limit ∆x→ 0, the derivative ∂vx/∂x.
I was careful to evaluate the values of vx in the center of the sides, but you see that it didn’t matter. In

the limit as all the sides go to zero I could just as easily taken the coordinates at one corner and simplified the
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steps still more. Do this for the other sides, add, and you get the result. It all looks very simple when you do it
this way, but what if you need to do it in cylindrical coordinates?

∆r
∆z

r∆θ

When everything is small, the volume is close to a rectangular box, so its volume is V = (∆r)(∆z)(r∆θ).
Go through the simple version for the calculation of the surface integral. The top and bottom present nothing
significantly different from the rectangular case.[

vz(r0, θ0, z0 + ∆z)− vz(r0, θ0, z0)
]
(∆r)(r0∆θ)÷ r0∆r0∆θ∆z −→

∂vz

∂z

The curved faces of constant r are a bit different, because the areas of the two opposing faces aren’t the
same. [

vr(r0 + ∆r, θ0, z0)(r0 + ∆r)∆θ∆z − vr(r0, θ0, z0)r0∆θ∆z
]
÷ r0∆r∆θ∆z −→

1

r

∂(rvr)

∂r

A bit more complex than the rectangular case, but not too bad.
Now for the constant θ sides. Here the areas of the two faces are the same, so even though they are not

precisely parallel to each other this doesn’t cause any difficulties.[
vθ(r0, θ0 + ∆θ, z0)− vz(r0, θ0, z0)

]
(∆r)(∆z)÷ r0∆r∆θ∆z −→

1

r

∂vθ

∂θ

The sum of all these terms is the divergence expressed in cylindrical coordinates.

div ~v =
1

r

∂(rvr)

∂r
+

1

r

∂vθ

∂θ
+
∂vz

∂z
(15)

The corresponding expression in spherical coordinates is found in exactly the same way, problem 4.

div ~v =
1

r2
∂(r2vr)

∂r
+

1

r sin θ

∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ

∂φ
(16)
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These are the three commonly occurring coordinates system, though the same simplified method will work
in any other orthogonal coordinate system. The coordinate system is orthogonal if the surfaces made by setting
the value of the respective coordinates to a constant intersect at right angles. In the spherical example this means
that a surface of constant r is a sphere. A surface of constant θ is a half-plane starting from the z-axis. These
intersect perpendicular to each other. If you set the third coordinate, φ, to a constant you have a cone that
intersects the other two at right angles.orthogonal coordinates

9.4 Integral Representation of Curl
The calculation of the divergence was facilitated by the fact the the equation (5) could be manipulated into the
form of an integral, Eq. (9). Is there a similar expression for the curl? Yes.

curl~v = lim
V→0

1

V

∮
d ~A × ~v (17)

For the divergence there was a logical and orderly development to derive Eq. (9) from (5). Is there a similar
intuitively clear path here? I don’t know of one. The best that I can do is to show that it gives the right answer.

And what’s that surface integral doing with a × instead of a .? No mistake. Just replace the dot product
by a cross product in the definition of the integral. This time however you have to watch the order of the factors.

~ω
θ

n̂ dA

To verify that this does give the correct answer, use a vector field that represents pure rigid body rotation.
You’re going to take the limit as ∆V → 0, so it may as well be uniform. The velocity field for this is the same
as from problem 7.5.

~v = ~ω × ~r (18)

To evaluate the integral use a sphere of radius R centered at the origin, making n̂ = r̂. You also need the identity
~A× ( ~B × ~C) = ~B( ~A . ~C)− ~C( ~A .B).

d ~A× (~ω × ~r) = ~ω(d ~A .~r )− ~r(~ω . d ~A ) (19)
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Choose a spherical coordinate system with the z-axis along ~ω.

d ~A = n̂ dA = r̂ dA, and ~ω . d ~A = ω dA cos θ∮
d ~A× ~v =

∮
~ωR dA− ~r ω dA cos θ

= ~ωR 4πR2 − ω
∫ π

0
R2 sin θ dθ

∫ 2π

0
dφ ẑ R cos θ cos θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ π

0
sin θdθ cos2 θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ 1

−1
cos2 θ d cos θ = ~ωR 4πR2 − ωẑ 2πR3 . 2

3

= ~ω
8

3
πR3

Divide by the volume of the sphere and you have 2~ω as promised. In the first term on the first line of the
calculation, ~ωR is a constant over the surface so you can pull it out of the integral. In the second term, ~r has
components in the x̂, ŷ, and ẑ directions; the first two of these integrate to zero because for every vector with a
positive x̂-component there is a negative one. Same for ŷ. All that is left of ~r is ẑ R cos θ.

The Curl in Components
With the integral representation, Eq. (17), available for the curl, the process is much like that for computing
the divergence. Start with rectangular of course. Use the same equation, Eq. (10) and the same picture that
accompanied that equation. With the experience gained from computing the divergence however, you don’t have
to go through all the complications of the first calculation. Use the simpler form that followed.

In Eq. (14) you have ~v .∆A = vx∆y∆z on the right face and on the left face. This time replace the dot
with a cross (in the right order).

On the right,

∆ ~A× ~v = ∆y∆z x̂× ~v(x0 + ∆x, y0 + ∆y/2, z0 + ∆z/2) (20)

On the left it is

∆ ~A× ~v = ∆y∆z x̂× ~v(x0, y0 + ∆y/2, z0 + ∆z/2) (21)
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When you subtract the second from the first and divide by the volume, ∆x∆y∆z, what is left is (in the limit
∆x→ 0) a derivative.

x̂×~v(x0 + ∆x, y0, z0)− ~v(x0, y0, z0)

∆x
−→ x̂× ∂~v

∂x

= x̂×
(
x̂
∂vx

∂x
+ ŷ

∂vy

∂x
+ ẑ

∂vz

∂x

)
= ẑ

∂vy

∂x
− ŷ ∂vz

∂x

Similar calculations for the other four faces of the box give results that you can get simply by changing the
labels: x → y → z → x, a cyclic permutation of the indices. The result can be expressed most succinctly in
terms of ∇.

curl v = ∇× ~v (22)

In the process of this calculation the normal vector x̂ was parallel on the opposite faces of the box (except
for a reversal of direction). Watch out in other coordinate systems and you’ll see that this isn’t always true. Just
draw the picture in cylindrical coordinates and this will be clear.

9.5 The Gradient
The gradient is the closest thing to an ordinary derivative here, taking a scalar-valued function into a vector field.
The simplest geometric definition is “the derivative of a function with respect to distance along the direction in
which the function changes most rapidly,” and the direction of the gradient vector is along that most-rapidly-
changing direction. If you’re dealing with one dimension, ordinary real-valued functions of real variables, the
gradient is the ordinary derivative. Section 8.5 has some discussion and examples of this, including its use in
various coordinate systems. It is most conveniently expressed in terms of ∇.

grad f = ∇f (23)

The equations (8.9), (8.18), and (8.19) show the gradient (and correspondingly ∇) in three coordinate
systems.

rectangular: ∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
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cylindrical: ∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z
(24)

spherical: ∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

In all nine of these components, the denominator (e.g. r sin θ dφ) is the element of displacement along the
direction indicated.

9.6 Shorter Cut for div and curl
There is another way to compute the divergence and curl in cylindrical and rectangular coordinates. A direct
application of Eqs. (13), (22), and (24) gets the the result quickly. The only caution is that you have to be
careful that the unit vectors are inside the derivative, so you have to differentiate them too.

∇ .~v is the divergence of ~v, and in cylindrical coordinates

∇ .~v =

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z

)
.
(
r̂vr + θ̂vθ + ẑvz

)
The unit vectors r̂, θ̂, and ẑ don’t change as you alter r or z. They do change as you alter θ. (except for ẑ).

∂r̂

∂r
=

∂θ̂

∂r
=

∂ẑ

∂r
=

∂r̂

∂z
=

∂θ̂

∂z
=

∂ẑ

∂z
=

∂ẑ

∂θ
= 0

Next come ∂r̂/∂θ and ∂θ̂/∂θ. This is problem 8.20. You can do this by first showing that

r̂ = x̂ cos θ + ŷ sin θ and θ̂ = −x̂ sin θ + ŷ cos θ

and differentiating with respect to θ. This gives

∂r̂/∂θ = θ̂, and ∂θ̂/∂θ = −r̂
Put these together and you have

∇ .~v =
∂vr

∂r
+ θ̂ . 1

r

∂

∂θ

(
r̂vr + θ̂vθ

)
+
∂vz

∂z

=
∂vr

∂r
+ θ̂ . 1

r

(
vr
dr̂

dθ
+ θ̂

∂vθ

∂θ

)
+
∂vz

∂z

=
∂vr

∂r
+

1

r
vr +

1

r

∂vθ

∂θ
+
∂vz

∂z
(25)



9—Vector Calculus 1 265

This agrees with equation (15).
Similarly you can use the results of problem 8.15 to find the derivatives of the corresponding vectors in

spherical coordinates. The non-zero values are

dr̂

dφ
= φ̂ sin θ

dθ̂

dφ
= φ̂ cos θ

dφ̂

dφ
= −r̂ sin θ − θ̂ cos θ

dr̂

dθ
= θ̂

dθ̂

dθ
= −r̂ (26)

The result is for spherical coordinates

∇ .~v =
1

r2
∂(r2vr)

∂r
+

1

r sin θ

∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ

∂φ
(27)

The expressions for the curl are, cylindrical:

∇× ~v = r̂

(
1

r

∂vz

∂θ
− ∂vθ

∂z

)
+ θ̂

(
∂vr

∂z
− ∂vz

∂r

)
+ ẑ

(
1

r

∂(rvθ)

∂r
− 1

r

∂vr

∂θ

)
(28)

and spherical:

∇× ~v = r̂
1

r sin θ

(
∂(sin θvφ)

∂θ
− ∂vθ

∂φ

)
+ θ̂

(
1

r sin θ

∂vr

∂φ
− 1

r

∂(rvφ)

∂r

)
+ φ̂

1

r

(
∂(rvθ)

∂r
− ∂vr

∂θ

)
(29)

9.7 Identities for Vector Operators
Some of the common identities can be proved simply by computing them in rectangular components. These are
vectors, and if you show that one vector equals another vector it doesn’t matter that you used a simple coordinate
system to demonstrate the fact.

∇ .∇× ~v = 0 ∇×∇f = 0 ∇×∇× ~v = ∇
(
∇ .~v

)
−
(
∇ .∇

)
~v (30)

There are many other identities, but these are the big three.∮
~v . d ~A =

∫
d3r∇ .~v

∮
~v . d~r =

∫
∇× ~v . d ~A (31)

are the two fundamental integral relationships, going under the names of Gauss and Stokes.
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9.8 Applications to Gravity
The basic equations to describe the gravitational field in Newton’s theory are

∇ .~g = −4πGρ, and ∇× ~g = 0 (32)

In these equations, the vector field ~g is defined by placing a (very small) test mass m at a point and measuring
the gravitational force on it. This force is proportional to m itself, and the proportionality factor is called the
gravitational field ~g. The other symbol used here is ρ, and that is the volume mass density, dm/dV of the matter
that is generating the gravitational field. G is Newton’s gravitational constant: G = 6.67× 10−11N.m2/kg2.

r̂
r

For the first example of solutions to these equations, take the case of a mass that is the source of a
gravitational field and that is spherically symmetric. The total mass is M and it occupies a sphere of radius
R with a uniform mass density. Whatever ~g is, it has only a radial component, ~g = grr̂. Proof: Suppose it
has a sideways component at some point. Rotate the whole system by 180◦ about an axis that passes through
this point and through the center of the sphere. The system doesn’t change because of this, but the sideways
component of ~g would reverse. That can’t happen.

The component gr can’t depend on either θ or φ because the source doesn’t change if you rotate it about
any axis; it’s spherically symmetric.

~g = gr(r)r̂ (33)

Now compute the divergence and the curl of this field. Use Eqs. (16) and (29) to get

∇ . gr(r)r̂ =
1

r2
d
(
r2gr

)
dr

and ∇× gr(r)r̂ = 0

The first equation says that the divergence of ~g is proportional to ρ.

1

r2
d
(
r2gr

)
dr

= −4πGρ (34)
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Outside the surface r = R, the mass density is zero, so this is

1

r2
d
(
r2gr

)
dr

= 0, implying r2gr = C, and gr =
C

r2

where C is some as yet undetermined constant. Now do this inside.

1

r2
d
(
r2gr

)
dr

= −4πGρ0, where ρ0 = 3M/4πR3

This is
d
(
r2gr

)
dr

= −4πGρ0 r
2, so r2gr = −4

3
πGρ0 r

3 + C ′,

or gr(r) = −4

3
πGρ0 r +

C ′

r2

There are two constants that you have to evaluate: C and C ′. The latter has to be zero, because C ′/r2 → ∞
as r → 0, and there’s nothing in the mass distribution that will cause this. As for the other, note that gr must
be continuous at the surface of the mass. If it isn’t, then when you try to differentiate it in Eq. (34) you’ll be
differentiating a step function and you get an infinite derivative there (and the mass density isn’t infinite there).

gr(R−) = −4

3
πGρ0R = gr(R+) =

C

R2

Solve for C and you have

C = −4

3
πGρ0R

3 = −4

3
πG

3M

4πR3
R3 = −GM

Put this all together and express the density ρ0 in terms of M and R to get

gr R

gr(r) =

{
−GM/r2 (r > R)
−GMr/R3 (r < R)

(35)

This says that outside the spherical mass distribution you can’t tell what its radius R is. It creates the same
gravitational field as a point mass. Inside the uniform sphere, the field drops to zero linearly toward the center.
For a slight variation on how to do this calculation see problem 14.
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9.9 Gravitational Potential
The gravitational potential is that function V for which

~g = −∇V (36)

That such a function even exists is not instantly obvious, but it is a consequence of the second of the two defining
equations (32). If you grant that, then you can get an immediate equation for V by substituting it into the first
of (32).

∇ .~g = −∇ .∇V = −4πGρ, or ∇2V = 4πGρ (37)

This is a scalar equation instead of a vector equation, so it will often be easier to handle. Apply it to the same
example as above, the uniform spherical mass.

The Laplacian, ∇2 is the divergence of the gradient, so to express it in spherical coordinates, combine
Eqs. (24) and (27).

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
(38)

Because the mass is spherical it doesn’t change no matter how you rotate it so the same thing holds for
the solution, V (r). Use this spherical coordinate representation of ∇2 and for this case the θ and φ derivatives
vanish.

1

r2
d

dr

(
r2
dV

dr

)
= 4πGρ(r) (39)

I changed from ∂ to d because there’s now only one independent variable. Just as with Eq. (34) I’ll divide this
into two cases, inside and outside.

Outside:
1

r2
d

dr

(
r2
dV

dr

)
= 0, so r2

dV

dr
= C

Continue solving this and you have

dV

dr
=
C

r2
−→ V (r) = −C

r
+D (r > R) (40)
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Inside:
1

r2
d

dr

(
r2
dV

dr

)
= 4πGρ0 so r2

dV

dr
= 4πGρ0

r3

3
+ C ′

Continue, dividing by r2 and integrating,

V (r) = 4πGρ0
r2

6
− C ′

r
+D′ (r < R) (41)

There are now four arbitrary constants to examine. Start with C ′. It’s the coefficient of 1/r in the domain where
r < R. That means that it blows up as r → 0, but there’s nothing at the origin to cause this. C ′ = 0. Notice
that the same argument does not eliminate C because (40) applies only for r > R.

Boundary Conditions
Now for the boundary conditions at r = R. There are a couple of ways to determine this. I find the simplest and
the most general approach is to recognize the the equations (37) and (39) must be satisfied everywhere. That
means not just outside, not just inside, but at the surface too. The consequence of this statement is the result*

V is continuous at r = R dV/dr is continuous at r = R (42)

Where do these continuity conditions come from? Assume for a moment that the first one is false, that V is
discontinuous at r = R, and look at the proposition graphically. If V changes value in a very small interval the
graphs of V , of dV/dr, and of d2V/dr2 look like

V dV/dr d2V/dr2

* Watch out for the similar looking equations that appear in electromagnetism. Only the first of these
equations holds there; the second must be modified.
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The second derivative on the left side of Eq. (39) has a double spike that does not appear on the right side.
It can’t be there, so my assumption that V is discontinuous is false and V must be continuous.

Assume next that V is continuous but its derivative is not. The graphs of V , of dV/dr, and of d2V/dr2

then look like

V dV/dr d2V/dr2

The second derivative on the left side of Eq. (39) still has a spike in it and there is no such spike in the ρ
on the right side. This is impossible, so dV/dr too must be continuous.

Back to the Problem
Of the four constants that appear in Eqs. (40) and (41), one is already known, C ′. For the rest,

V (R−) = V (R+) is 4πGρ0
R2

6
+D′ = −C

R
+D

dV

dr
(R−) =

dV

dr
(R+) is 8πGρ0

R

6
= +

C

R2

These two equations determine two of the constants.

C = 4πGρ0
R3

3
, then D −D′ = 4πGρ0

R2

6
+ 4πGρ0

R2

3
= 2πGρ0R

2

Put this together and you have

V R

V (r) =

{
2
3πGρ0r

2 − 2πGρ0R
2 +D (r < R)

−4
3πGρ0R

3
/
r +D (r > R)

(43)
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Did I say that the use of potentials is supposed to simplify the problems? Yes, but only the harder problems. The
negative gradient of Eq. (43) should be ~g. Is it? The constant D can’t be determined and is arbitrary. You may
choose it to be zero.

9.10 Summation Convention
In section 7.10 I introduced the summation convention for repeated indices. That says that when you have a
summation index involving vectors and operators you will invariably have exactly two instances of the index in
one term. The convention is then that you don’t have to write the sum symbol

∑
explicitly; it is understood to

be present. That way ~A . ~B =

AiBi means A1B1 + A2B2 + A3B3

(in three dimensions). You can use the summation convention to advantage in calculus too. The ∇ vector
operator has components

∇i or some people prefer ∂i

For unity of notation, use x1 = x and x2 = y and x3 = z. In this language,

∂1 or ∇1 =
∂

∂x
or

∂

∂x1

Note: This notation applies to rectangular component calculations only! The generalization to curved coordinate
systems will wait until chapter 12.

div~v = ∇ .~v = ∂ivi =
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

Similarly the curl is expressed using the alternating symbol that was defined in problem 7.25.

ε123 = 1 and εijk changes sign if you interchange any two indices

The immediate corollary of this definition is that the symbol equals zero if any two indices are equal. (Interchange
them and nothing happens, but it has to change sign. Only zero is equal to minus itself.)

curl~v = ∇× ~v becomes εijk∂jvk =
(
curl~v

)
i

the ith components of the curl. More generally εijkujvk =
(
~u× ~v

)
i
.
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9.11 More Complicated Potentials
The gravitational field from a point mass is ~g = −Gmr̂/r2, so the potential for this point mass is φ = −Gm/r.
This satisfies

~g = −∇φ = −∇−Gm
r

= r̂
∂

∂r

Gm

r
= −Gmr̂

r2

For several point masses, the gravitational field is the vector sum of the contributions from each mass. In the
same way the gravitational potential is the (scalar) sum of the potentials contributed by each mass. This is almost
always easier to calculate than the vector sum. If the distribution is continuous, you have an integral.

φtotal =
∑
−Gmk

rk
or −

∫
Gdm

r

~r ′

~r

x′
y′

z′

This sort of very abbreviated notation for the sums and integrals is normal once you have done a lot of them, but
when you’re just getting started it is useful to go back and forth between this terse notation and a more verbose
form. Expand the notation and you have

φtotal(~r ) = −G
∫

dm∣∣~r − ~r ′∣∣ (44)

This is still not very explicit, so expand it some more. Let

~r ′ = x̂x′ + ŷy′ + ẑz′ and ~r = x̂x+ ŷy + ẑz

then φ(x, y, z) = −G
∫
dx′dy′dz′ ρ(x′, y′, z′)

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

where ρ is the volume mass density so that dm = ρ dV , and the limits of integration are such that this extends
over the whole volume of the mass that is the source of the potential. The primed coordinates represent the
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positions of the charges, and the non-primed ones are the position of the point where you are evaluating the
potential, the field point.

For a simple example, what is the graviational potential from a uniform thin rod? Place its center at the
origin and its length = 2L along the z-axis. The potential is

φ(~r ) = −
∫
Gdm

r
= −G

∫
λdz′√

x2 + y2 + (z − z′)2

where λ = M/2L is its linear mass density. This is an elementary integral. Let u = z′ − z, and a =
√
x2 + y2.

φ = −Gλ
∫ L−z

−L−z

du√
a2 + u2

= −Gλ
∫
dθ = −Gλθ

∣∣∣∣u=L−z

u=−L−z

where u = a sinh θ. Put this back into the original variables and you have

φ = −Gλ

[
sinh−1

(
L− z√
x2 + y2

)
+ sinh−1

(
L+ z√
x2 + y2

)]
(45)

The inverse hyperbolic function is a logarithm as in Eq. (1.4), so this can be rearranged and the terms combined
into the logarithm of a function of x, y, and z, but the sinh−1s are easier to work with so there’s not much point.
This is not too complicated a result, and it is far easier to handle than the vector field you get if you take its
gradient. It’s still necessary to analyze it in order to understand it and to check for errors. See problem 49.
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Problems

9.1 Use the same geometry as that following Eq. (3), and take the velocity function to be ~v = x̂ v0xy/b
2. Take

the bottom edge of the plane to be at (x, y) = (0, 0) and calculate the flow rate. Should the result be independent
of the angle φ? Sketch the flow to understand this point. Does the result check for any special, simple value of
φ?

9.2 Repeat the preceding problem using the cylindrical surface of Eq. (4), but place the bottom point of the
cylinder at coordinate (x, y) = (x0, 0). Ans: (v0a/4)(2x0 + πb/4)

9.3 Use the same velocity function ~v = x̂ v0xy/b
2 and evaluate the flow integral outward from the closed surface

of the rectangular box, (c < x < d), (0 < y < b), (0 < z < a). The convention is that the unit normal vector
points outward from the six faces of the box. Ans: v0a(d− c)/2

9.4 Work out the details of the divergence of a vector field in spherical coordinates, Eq. (16).

9.5 For the vector field ~v = A~r, that is pointing away from the origin with a magnitude proportional to the
distance from the origin, express this in rectangular components and compute its divergence.
Repeat this in cylindrical coordinates.
Repeat this in spherical coordinates, Eq. (16).

9.6 Gauss’s law for electromagnetism says
∮
~E . d ~A = qencl/ε0. If the electric field is given to be ~E = A~r, what

is the surface integral of ~E over the whole closed surface of the cube that spans the region from the origin to
(x, y, z) = (a, a, a)? What is the charge enclosed in the cube?

(b) What is the volume integral,
∫
d3r∇ . ~E inside the same cube?

9.7 Evaluate the surface integral of ~v = r̂Ar2 sin2 θ+ θ̂Br cos θ sinφ over the surface of the sphere centered at
the origin and of radius R. Recall section 8.8.
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9.8 What is the area of the spherical cap on the surface of a sphere of radius R: 0 ≤ θ ≤ θ0?
(b) Does the result have the correct behavior for both small and large θ0?

(c) What iare the surface integrals over this cap of the vector field ~v = r̂v0 cos θ sin2 φ? Consider both
∫
~v . d ~A

and
∫
~v × d ~A.

9.9 A rectangular area is specified parallel to the x-y plane at z = d and 0 < x < a, a < y < b. A vector field
is ~v =

(
x̂Axyz + ŷByx2 + ẑCx2yz2

)
Evaluate the two integrals over this surface∫

~v . d ~A, and

∫
d ~A× ~v

9.10 For the vector field ~v = Arn~r, compute the integral over the surface of a sphere of radius R centered at
the origin:

∮
~v . d ~A.

Compute the integral over the volume of this same sphere
∫
d3r∇ .~v.

9.11 The velocity of a point in a rotating rigid body is ~v = ω×~r. See problem 7.5. Compute its divergence and
curl. Do this in rectangular, cylindrical, and spherical coordinates.

9.12 Fill in the missing steps in the calculation of Eq. (25).

9.13 Paralleling the calculation in section 9.6 for the divergence in cylindrical coordinates, compute the curl in
cylindrical coordinates, ∇× ~v. Ans: Eq. (28).

9.14 Another way to get to Eq. (35) is to work with Eq. (34) directly and to write the function ρ(r) explicitly
as two cases: r < R and r > R. Multiply Eq. (34) by r2 and integrate it from zero to r, being careful to handle
the integral differently when the upper limit is < R and when it is > R.

r2gr(r) = −4πG

∫ r

0
dr′ r′2ρ(r′)

Note: This is not simply reproducing that calculation that I’ve already done. This is doing it a different way.
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9.15 If you have a very large (assume it’s infinite) slab of mass of thickness d the gravitational field will be
perpendicular to its plane. To be specific, say that there is a mass density ρ0 between z = ±d/2 and ~g = gz(z)ẑ.
Use Eqs. (32) to find gz(z).
Be precise in your reasoning when you evaluate any constants. (What happens when you rotate the system about
the x-axis?) Does your graph of the result make sense? Ans: gz = +2πGρ0d, (z < −d/2)

9.16 Use Eqs. (32) to find the gravitational field of a very long solid cylinder of uniform mass density ρ0 and
radius R. (Assume it’s infinitely long.)

9.17 The gravitational field in a spherical region r < R is stated to be ~g(r) = −r̂C/r, where C is a constant.
What mass density does this imply?
If there is no mass for r > R, what is ~g there?

9.18 In Eq. (8.16) you have an approximate expression for the gravitational field of Earth, including the effect
of the equatorial bulge. Does it satisfy Eqs. (32)? (r > REarth)

9.19 Compute the divergence of the velocity function in problem 3 and integrate this divergence over the volume
of the box specified there.

9.20 The gravitational potential, equation (37), for the case that the mass density is zero says to set the Laplacian
Eq. (38) equal to zero. Assume a solution to ∇2V = 0 to be a function of the spherical coordinates r and θ
alone and that

V (r, θ) = Ar−(`+1)f(x), where x = cos θ

Show that this works provided that f satisfies a certain differential equation and show that it is the Legendre
equation of Eq. (4.16) and section 4.9.

9.21 The volume energy density, dU/dV in the electric field is ε0E
2/2. The electrostatic field equations are the

same as the gravitational field equations, Eq. (32).

∇ . ~E = ρ/ε0, and ∇× ~E = 0
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A uniformly charged ball of radius R has charge density ρ0 for r < R, Q = 4πρ0R
3/3. What is the electric field

everywhere due to this charge distribution?
(b) The total energy of this electric field is the integral over all space of the energy density. What is it?
(c) If you want to account for the mass of the electron by saying that all this energy that you just computed
is the electron’s mass via E0 = mc2, then what must the electron’s radius be? What is its numerical value?
Ans: re = 3/5

(
e2/4πε0mc

2
)

= 1.69 fm

9.22 The equations relating a magnetic field, ~B, to the current producing it are, for the stationary case,

∇× ~B = µ0
~J and ∇ . ~B = 0

Here ~J is the current density, current per area, defined so that across a tiny area d ~A the current that flows
through the area is dI = ~J . d ~A. (This is precisely parallel to Eq. (1) for fluid flow rate.) A cylindrical wire of
radius R carries a total current I distributed uniformly across the cross section of the wire. Put the z-axis of a
cylindrical coordinate system along the central axis of the wire with positive z in the direction of the current flow.
Write the function ~J explicitly in these coordinates (for all values of r < R, r > R). Use the curl and divergence

expressed in cylindrical coordinates to show that you can satisfy the equations relating ~J and ~B with a solution
having only one non-zero component, ~B = θ̂Bθ(r). Sketch a graph of the result.

9.23 A long cylinder of radius R has a uniform charge density inside it, ρ0 and it is rotating about its long axis
with angular speed ω. This provides an azimuthal current density ~J = ρ0rωθ̂ in cylindrical coordinates. Assume
the form of the magnetic field that this creates is ~B = Bz(r)ẑ and apply the equations of the preceding problem
to determine this field. (b) What is the field outside? Ans: −ρr2ω/2 + C

9.24 By analogy to Eqs. (9) and (17) the expression

lim
V→0

1

V

∮
φ d ~A

is the gradient of the scalar function φ. Compute this in rectangular coordinates to show that it has the correct
components.
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9.25 A fluid of possibly non-uniform mass density is in equilibrium in a possibly non-uniform gravitational field.
Pick a volume and write down the total force vector on the fluid in that volume; the things acting on it are
gravity and the surrounding fluid. Take the limit as the volume shrinks to zero, and use the result of the preceding
problem in order to get the equation for equilibrium.
(b) Apply the result to the special case of a uniform gravitational field and a constant mass density to find the
pressure variation with height. Starting from an atmospheric pressure of 1.01× 105 N/m2, how far must you go
under water to reach double this pressure? Ans: about 10 meters

9.26 The energy density, u = dU/dV , in the gravitational field is g2/8πG. Use the results found in Eq. (35) for
the gravitational field of a spherical mass and get the energy density. An extension of Newton’s theory of gravity
is that the source of gravity is energy not just mass! This energy that you just computed from the gravitational
field is then the source of more gravity, and this energy density contributes as a mass density ρ = u/c2 would.
Find the additional gravitational field gr(r) that this provides and add it to the previous result for gr(r).
(b) For our sun, its mass is 2× 1030 kg and its radius is 700, 000 km. Assume its density is constant throughout
so that you can apply the results of this problem. At the sun’s surface, what is the ratio of this correction to the
original value?
(c) What radius would the sun have to be so that this correction is equal to the original gr(R), resulting in double
gravity?

9.27 Continuing the ideas of the preceding problem, the energy density, u = dU/dV , in the gravitational field is
g2/8πG, and the source of gravity is energy not just mass. In the region of space that is empty of matter, show
that the divergence equation for gravity, (32), then becomes

∇ .~g = −4πGu/c2 = −g2/2c2

Assume that you have a spherically symmetric system, ~g = gr(r)r̂, and write the differential equation for gr.
Solve it and apply the boundary condition that as r →∞, the gravitational field should go to gr(r)→ −GM/r2.
How does this solution behave as r → 0 and compare its behavior to that of the usual gravitational field of a
point mass.
(b) Can you explain why the behavior is different? Note that in this problem it’s the gravitational field itself that
is the source of the gravitational field; mass as such isn’t present.
(c) A characteristic length appears in this calculation. Evaluate it for the sun.
Ans: (a) gr = −GM

/[
r(r +R)

]
, where R = GM/2c2
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9.28 In the preceding problem, what is the total energy in the gravitational field,
∫
u dV ? How does this (÷c2)

compare to the mass M that you used in setting the value of gr as r →∞?

9.29 Verify that the solution Eq. (43) does satisfy the continuity conditions on V and V ′.

9.30 The r-derivatives in Eq. (38) can be written in a different and more convenient form. Show that they are
equivalent to

1

r

∂2(rV )

∂r2

9.31 The gravitational potential from a point mass M is −GM/r where r is the distance to the mass. Place
a single point mass at coordinates (x, y, z) = (0, 0, d) and write its potential V . Write this expression in terms
of spherical coordinates about the origin, (r, θ), and then expand it for the case r > d in a power series in d/r,
putting together the like powers of d/r. Do this through order (d/r)3. Express the result in the language of
Eq. (4.41).

9.32 As in the preceding problem a point mass M has potential −GM/r where r is the distance to the mass.
The mass is at coordinates (x, y, z) = (0, 0, d). Write its potential V in terms of spherical coordinates about the
origin, (r, θ), but this time take r < d and expand it in a power series in r/d. Do this through order (r/d)3.
Ans: (−GM/d)[1 + (r/d)P1(cos θ) + (r2/d2)P2(cos θ) + (r3/d3)P3(cos θ) + · · ·]

9.33 Theorem: Given that a vector field satisfies ∇× ~v = 0 everywhere, then it follows that you can write ~v as
the gradient of a scalar function, ~v = −∇ψ. For each of the following vector fields find, probably by trail and
error, a function ψ that does this. First determine is the curl is zero, because if it isn’t then your hunt for a ψ
will be futile. You’re welcome to try however — it will probably be instructive.

x̂ y3 + 3ŷ xy2, x̂ y cos(xy) + ŷ x cos(xy),

x̂ x2y + ŷ xy2, x̂ y2 sinh(2xy2) + 2ŷ xy sinh(2xy2)

9.34 A hollow sphere has inner radius a, outer radius b, and mass M , with uniform mass density in this region.
Find (and sketch) its gravitational field gr(r) everywhere.
(b) What happens in the limit that a → b? In this limiting case, graph gr. Use gr(r) = −dV/dr and compute
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and graph the potential function V (r) for this limiting case. This violates Eq. (42). Why?
(c) Compute the area mass density, σ = dM/dA, in this limiting case and find the relationship between the
discontinuity in dV/dr and the value of σ.

9.35 Evaluate

δijεijk, εmjkεnjk, ∂ixi, ∂ixj , εijkεijk, δijvj

9.36 Verify the identities for arbitrary ~A,(
~A .∇

)
~r = ~A or Ai∂ixj = Aj

∇ .∇× ~v = 0 or ∂iεijk∂jvk = 0

∇×∇f = 0 or εijk∂j∂kf = 0

∇ .
(
f ~A
)

=
(
∇f
)
. ~A+ f

(
∇ . ~A

)
or ∂i(fAi) = (∂if)Ai + f∂iAi

You can try proving all these in the standard vector notation, but use the index notation instead. It’s a lot easier.

9.37 Prove ∇×∇× ~v = ∇(∇ .~v )−∇2~v. First translate it into index notation and see what identity you have
to prove about ε’s.

9.38 Is ∇× ~v perpendicular to ~v ? Either prove it’s true or give an explicit example for which it’s false.

9.39 If for arbitrary Ai and arbitrary Bj it is known that aijAiBj = 0, prove then that all the aij are zero.

9.40 Compute the divergences of
Axx̂+By2ŷ + Cẑ in rectangular coordinates.
Arr̂ +Bθ2θ̂ + Cφ̂ in spherical coordinates.

How do the pictures of these vector fields correspond to the results of these calculations?
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9.41 Compute the divergence and the curl of

yx̂− xŷ
x2 + y2

, and of
yx̂− xŷ

(x2 + y2)2

9.42 Translate the preceding vector fields into polar coordinates, then take their divergence and curl.

9.43 As a review of ordinary vector algebra, and perhaps some practice in using index notation, translate the
triple scalar product into index notation and prove first that it is invariant under cyclic permutations of the vectors.
(a) ~A . ~B × ~C = ~B . ~C × ~A = ~C . ~A× ~B. Then that

(b) ~A . ~B × ~C = ~A× ~B . ~C.
(c) What is the result of interchanging any pair of the vectors in the product?
(d) Show why the geometric interpretation of this product is as the volume of a parallelepiped.

9.44 What is the total flux,
∮
~E . d ~A, out of the cube of side a with one corner at the origin?

(a) ~E = αx̂+ βŷ + γẑ (b) ~E = αxx̂+ βyŷ + γzẑ.

9.45 The electric potential from a single point charge q is kq/r. Two charges are on the z-axis: −q at position
z = z0 and +q at position z0 + a.
(a) Write the total potential at the point (r, θ, φ) in spherical coordinates.
(b) Assume that r � a and r � z0, and use the binomial expansion to find the series expansion for the total
potential out to terms of order 1/r3.
(c) how does the coefficient of the 1/r2 term depend on z0? The coefficient of the 1/r3 term? These tell you
the total electric dipole moment and the total quadrupole moment.
(d) What is the curl of the gradient of each of these two terms?
The polynomials of section 4.9 will appear here, with argument cos θ.

9.46 For two point charges q1 and q2, the electric field very far away will look like that of a single point
charge q1 + q2. Go the next step beyond this and show that the electric field at large distances will approach a
direction such that it points along a line that passes through the “center of charge” (like the center of mass):
(q1~r1 + q2~r2)/(q1 + q2). What happens to this calculation if q2 = −q1? You may find the results of problem 31
useful. Sketches of various cases of course.
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9.47 Fill in the missing steps in deriving Eq. (45).

9.48 Analyze the behavior of Eq. (45).

(a) If z = 0 and a =
√
x2 + y2 � L what is it and what should it be?

(b) If z = 0 and a� L what is it and what should it be?
(c) If z > L and a→ 0 what is this and what should it be? Be careful with your square roots here.
(d) What is the result of (c) for z � L?

9.49 Examine the result in Eq. (45) (a) for small L, (b) for large L, (c) for x2 + y2 = 0 and |z| > L, (d) as in
(c) but z just a little bit bigger than L. The first thing you will have to do is to derive the behavior of sinh−1

in various domains and maybe to do some power series expansions. In every case seek an explanation of why the
result comes out as it does.



Partial Differential Equations

If the subject of ordinary differential equations is large, this is enormous. I am going to examine only one corner
of it, and develop only one tool to handle it: Separation of Variables. Another major tool is the method of
characteristics and I’ll not go beyond mentioning the word. When I develop a technique to handle the heat
equation or the potential equation, don’t think that it stops there. The same set of tools will work on the
Schroedinger equation in quantum mechanics and on the wave equation in its many incarnations.

10.1 The Heat Equation
The flow of heat in one dimension is described by the heat conduction equation

P = −κA∂T
∂x

(1)

where P is the power in the form of heat energy flowing toward positive x through a wall and A is the area of the
wall. κ is the wall’s thermal conductivity. Put this equation into words and it says that if a thin slab of material
has a temperature on one side different from that on the other, then heat energy will flow through the slab. If
the temperature difference is big or the wall is thin (∂T/∂x is big) then there’s a big flow. The minus sign says
that the energy flows from hot toward cold.

When more heat comes into a region than leaves it, the temperature there will rise. This is described by
the specific heat, C.

dQ = mCdT, or
dQ

dt
= mC

dT

dt
(2)

Again in words, the temperature rise in a chunk of material is proportional to the amount of heat added to it and
inversely proportional to its mass.

P (x, t)

x

A

P (x+ ∆x, t)

x+ ∆x

283
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For a slab of area A, thickness ∆x, and mass density ρ, let the coordinates of the two sides be x and
x+ ∆x.

m = ρA∆x, and
dQ

dt
= P (x, t)− P (x+ ∆x, t)

The net power into this volume is the power in from one side minus the power out from the other. Put these
three equations together.

dQ

dt
= mC

dT

dt
= ρA∆xC

dT

dt
= −κA∂T (x, t)

∂x
+ κA

∂T (x+ ∆x, t)

∂x

If you let ∆x→ 0 here, all you get is 0 = 0, not very helpful. Instead divide by ∆x first and then take the limit.

∂T

∂t
= +

κA

ρCA

(
∂T (x+ ∆x, t)

∂x
− ∂T (x, t)

∂x

)
1

∆x

and in the limit this is
∂T

∂t
=

κ

Cρ

∂2T

∂x2
(3)

I was a little cavalier with the notation in that I didn’t specify the argument of T on the left side. You could say
that it was (x + ∆x/2, t), but in the limit everything is evaluated at (x, t) anyway. I also assumed that κ, the
thermal conductivity, is constant. If not, then it stays within the derivative,

∂T

∂t
=

1

Cρ

∂

∂x

(
κ
∂T

∂x

)
(4)

In Three Dimensions
In three dimensions, this becomes

∂T

∂t
=

κ

Cρ
∇2T (5)

Roughly speaking, the temperature in a box can change because of heat flow in any of three directions. More
precisely, the correct three dimensional equation that replaces Eq. (1) is

~H = −κ∇T (6)
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where ~H is the heat flow vector, the power per area in the direction of the energy transport. ~H . d ~A = dP , the
power going across the area d ~A. The total heat flowing into a volume is

n̂

dQ

dt
= −

∮
dP = −

∮
~H . d ~A

where the minus sign occurs because I want the heat in. For a small volume ∆V , you now have m = ρ∆V and

mC
∂T

∂t
= ρ∆V C

∂T

∂t
= −

∮
~H . d ~A

Divide by ∆V and take the limit as ∆V → 0. The right hand side is the divergence

ρC
∂T

∂t
= − lim

∆V→0

1

∆V

∮
~H . d ~A = −∇ . ~H = +∇ .κ∇T = +κ∇2T

Again, this assumes that the thermal conductivity, κ, is independent of position.

10.2 Separation of Variables
How do you solve these equations? I’ll start with the one-dimensional case and use the method of separation of
variables. The trick is to start by looking for a solution to the equation in the form of a product of a function
of x and a function of t. T (x, t) = f(t)g(x). I do not assume that every solution to the equation will look
like this — that’s just not true. What will happen is that I’ll be able to express every solution as a sum of such
factored forms.

If you want to find out if you’ve got a solution, plug in:

∂T

∂t
=

κ

Cρ

∂2T

∂x2
is

df

dt
g =

κ

Cρ
f
d2g

dx2



10—Partial Differential Equations 286

Denote the constant by κ/Cρ = D and divide by the product fg.

1

f

df

dt
= D

1

g

d2g

dx2
(7)

The left side of this equation is a function of t alone, no x. The right side is a function of x alone with no t,
hence the name separation of variables. Because x and t can vary quite independently of each other, the only
way that this can happen is if the two side are constant (the same constant).

1

f

df

dt
= α and D

1

g

d2g

dx2
= α (8)

At this point, the constant α can be anything, even complex. For a particular specified problem there will be
boundary conditions placed on the functions, and those will constrain the α’s. If α is real and positive then

g(x) = A sinh
√
α/Dx+B cosh

√
α/Dx and f(t) = eαt (9)

For negative real α, the hyperbolic functions become circular functions.

g(x) = A sin
√
−α/Dx+B cos

√
−α/Dx and f(t) = eαt (10)

If α = 0 then
g(x) = Ax+B, and f(t) = constant (11)

For imaginary α the f(t) is oscillating and the g(x) has both exponential and oscillatory behavior in space. This
can really happen in very ordinary physical situations; see section 10.3.

This analysis provides a solution to the original equation (3) valid for any α. A sum of such solutions for
different α’s is also a solution, for example

T (x, t) = A1e
α1t sin

√
−α1/Dx+ A2e

α2t sin
√
−α2/Dx

or any other linear combination with various α’s

T (x, t) =
∑
{α′s}

fα(t)gα(x)
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It is only the combined product that forms a solution to the original partial differential equation, not the separate
factors. Determining the details of the sum is a job for Fourier series.

Example
A specific problem: You have a slab of material of thickness L and at a uniform temperature T0. Plunge it into
ice water at temperature T = 0 and find the temperature inside at later times. The boundary condition here is
that the surface temperature is zero, T (0, t) = T (L, t) = 0. This constrains the separated solutions, requiring
that g(0) = g(L) = 0. For this to happen you can’t use the hyperbolic functions of x that occur when α > 0,
you will need the circular functions of x, sines and cosines, implying that α < 0. That is also compatible with
your expectation that the temperature should approach zero eventually, and that needs a negative exponential in
time, Eq. (10).

g(x) = A sin kx+B cos kx, with k2 = −α/D and f(t) = e−Dk2t

g(0) = 0 implies B = 0. g(L) = 0 implies sin kL = 0.
The sine vanishes for the values nπ where n is any integer, positive, negative, or zero. This implies kL = nπ, or
k = nπ/L. The corresponding values of α are αn = −Dn2π2/L2, and the separated solution is

sin
(
nπx/L

)
e−n2π2Dt/L2

(12)

If n = 0 this whole thing vanishes, so it’s not much of a solution. (Not so fast there! See problem 2.) Notice
that the sine is an odd function so when n < 0 this expression just reproduces the positive n solution except
for an overall factor of (−1), and that factor was arbitrary anyway. The negative n solutions are redundant, so
ignore them.

The general solution is a sum of separated solutions, see problem 3.

T (x, t) =
∞∑
1

an sin
nπx

L
e−n2π2Dt/L2

(13)

The problem now is to determine the coefficients an. This is why Fourier series were invented. (Yes, literally, the
problem of heat conduction is where Fourier series started.) At time t = 0 you know the temperature distribution;
it is T = T0, a constant on 0 < x < L. This general sum must equal T0 at time t = 0.

T (x, 0) =
∞∑
1

an sin
nπx

L
(0 < x < L)
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Multiply by sin
(
mπx/L

)
and integrate over the domain to isolate the single term, n = m.∫ L

0
dx T0 sin

mπx

L
= am

∫ L

0
dx sin2 mπx

L

T0[1− cosmπ]
L

mπ
= am

L

2

This expression for am vanishes for even m, and when you assemble the whole series for the temperature you
have

T (x, t) =
4

π
T0

∑
m odd

1

m
sin

mπx

L
e−m2π2Dt/L2

(14)

For small time, this converges, but very slowly. For large time, the convergence is very fast, often needing only
one or two terms. As the time approaches infinity, the interior temperature approaches the surface temperature
of zero. The graph shows the temperature profile at a sequence of times.

0 L

T0

x

You can see that the boundary conditions on the temperature led to these specific boundary conditions
on the sines and cosines. This is exactly what happened in the general development of Fourier series when the
fundamental relationship, Eq. (5.12), required certain boundary conditions in order to get the orthogonality of
the solutions of the harmonic oscillator differential equation. That the function vanishes at the boundaries was
one of the possible ways to insure orthogonality.

10.3 Oscillating Temperatures
Take a very thick slab of material and assume that the temperature on one side of it is oscillating. Let the material
occupy the space 0 < x < ∞ and at the coordinate x = 0 the temperature is varying in time as T1 cosωt. Is
there any real situation in which this happens? Yes, the surface temperature of the Earth varies periodically from
summer to winter (at least outside of Florida). What happens to the temperature underground?
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The differential equation for the temperature is still Eq. (3), and I’ll assume that the temperature inside
the material approaches T = 0 far away from the surface. Separation of variables is the same as before, Eq. (8),
but this time I know the time dependence at the surface. It’s typical in cases involving oscillations that it is easier
to work with complex exponentials than it is to work with sines and cosines. For that reason I specify that the
surface temperature is T1e

−iωt instead of a cosine. I understand that at the end of the problem I’ll take the real
part of the result and throw away the imaginary part. The imaginary part corresponds to solving the problem for
a surface temperature of sinωt instead of cosine. It’s easier to solve the two problems together then either one
separately. (The minus sign in the exponent of e−iωt is arbitrary; you could use a plus instead.)

The equation (8) says that the time dependence that I expect is

1

f

df

dt
= α =

1

e−iωt

(
− iωe−iωt

)
= −iω

The equation for the x-dependence is then

D
d2g

dx2
= αg = −iωg

This is again a simple exponential solution, say eβx. Substitute and you have

Dβ2eβx = −iωeβx, implying β = ±
√
−iω/D (15)

Evaluate this as
√
−i =

(
e−iπ/2

)1/2
= e−iπ/4 =

1− i√
2

Let β0 =
√
ω/2D, then the solution for the x-dependence is

g(x) = Ae(1−i)β0x +Be−(1−i)β0x (16)

Look at the behavior of these two terms. The first has a factor that goes as e+x and the second goes as e−x.
The temperature at large distances is supposed to approach zero, so that says that A = 0. The solutions for the
temperature is now

Be−iωte−(1−i)β0x
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The further condition is that at x = 0 the temperature is T1e
−iωt, so that tells you that B = T1.

T (x, t) = T1e
−iωte−(1−i)β0x = T1e

−β0xei(−ωt+β0x)

When you remember that I’m solving for only the real part of this solution, the final result is

T

x T1e
−β0x cos(β0x− ωt) (17)

This has the appearance of a temperature wave moving into the material, albeit a very strongly damped
one. In a half wavelength of this wave, β0x = π, and at that point the amplitude coming from the exponential
factor out in front is down by a factor of e−π = 0.04. That’s barely noticeable. This is why wine cellars are
cellars. Also, you can see that at a distance where β0x > π/2 the temperature change is reversed from the value
at the surface. Some distance underground, summer and winter are reversed.

10.4 Spatial Temperature Distributions
The governing equation is Eq. (5). For an example of a problem that falls under this heading, take a cube that
is heated on one side and cooled on the other five sides. What is the temperature distribution within the cube?
How does it vary in time?

I’ll take a simpler version of this problem to start with. First, I’ll work in two dimensions instead of three;
make it a very long rectangular shaped rod, extending in the z-direction. Second, I’ll look for the equilibrium
solution, for which the time derivative is zero. These restrictions reduce the equation (5) to

∇2T =
∂2T

∂x2
+
∂2T

∂y2
= 0 (18)

I’ll specify the temperature T (x, y) on the surface of the rod to be zero on three faces and T0 on the fourth. Place
the coordinates so that the length of the rod is along the z-axis and the origin is in one corner of the rectangle.

T (0, y) = 0 (0 < y < b), T (x, 0) = 0 (0 < x < a)

T (a, y) = 0 (0 < y < b), T (x, b) = T0 (0 < x < a)
(19)
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O

0

b

y

0

T0

a

0

x

Look at this problem from several different angles, tear it apart, look at a lot of special cases, and see what
can go wrong. In the process you’ll see different techniques and especially a lot of applications of Fourier series.
This single problem will illustrate many of the methods used to understand boundary value problems.

Use the same method that I used before for heat flow in one dimension: separation of variables. Assume a
solution to be the product of a function of x and a function of y, then plug into the equation.

T (x, y) = f(x)g(y), then ∇2T =
d2f(x)

dx2
g(y) + f(x)

d2g(y)

dy2
= 0

Just as in Eq. (7), when you divide by fg the resulting equation is separated into a term involving x only and
one involving y only.

1

f

d2f(x)

dx2
+

1

g

d2g(y)

dy2
= 0

Because x and y can be varied independently, these must be constants adding to zero.

1

f

d2f(x)

dx2
= α, and

1

g

d2g(y)

dy2
= −α (20)

As before, the separation constant can be any real or complex number until you start applying boundary conditions.
You recognize that the solutions to these equations can be sines or cosines or exponentials or hyperbolic functions
or linear functions, depending on what α is.

The boundary conditions state that the surface temperature is held at zero on the surfaces x = 0 and
x = a. This suggests looking for solutions that vanish there, and that in turn says you should work with sines of
x. In the other direction the surface temperature vanishes on only one side so you don’t need sines in that case.
The α = 0 case gives linear functions is x and in y, and the fact that the temperature vanishes on x = 0 and
x = a kills these terms. (It does doesn’t it?) Pick α to be a negative real number: call it α = −k2.

d2f(x)

dx2
= −k2f =⇒ f(x) = A sin kx+B cos kx
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The accompanying equation for g is now

d2g(y)

dy2
= +k2g =⇒ g(y) = C sinh ky +D cosh ky

(Or exponentials if you prefer.) The combined, separated solution to ∇2T = 0 is

(A sin kx+B cos kx)(C sinh ky +D cosh ky) (21)

The general solution will be a sum of these, summed over various values of k. This is where you have to apply
the boundary conditions to determine the allowed k’s.

left: T (0, y) = 0 = B(C sinh ky +D cosh ky), so B = 0

(This holds for all y in 0 < y < b, so the second factor can’t vanish unless both C and D vanish. If that is the
case then everything vanishes.)

right: T (a, y) = 0 = A sin ka(C sinh ky +D cosh ky), so sin ka = 0

(Again, the factor with y can’t vanish or everything vanishes. If A = 0 then everything vanishes. All that’s left
is sin ka = 0.)

bottom: T (x, 0) = 0 = A sin kxD, so D = 0

(If A = 0 everything is zero, so it’s got to be D.)
You can now write a general solution that satisfies three of the four boundary conditions. Combine the

coefficients A and C into one, and since it will be different for different values of k, call it γn.

T (x, y) =
∞∑

n=1

γn sin
nπx

a
sinh

nπy

a
(22)

The nπ/a appears because sin ka = 0, and the limits on n omit the negative n because they are redundant.
Now to find all the unknown constants γn, and as before that’s where Fourier techniques come in. The

fourth side, at y = b, has temperature T0 and that implies

∞∑
n=1

γn sin
nπx

a
sinh

nπb

a
= T0
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On this interval 0 < x < a these sine functions are orthogonal, so you take the scalar product of both side with
the sine. ∫ a

0
dx sin

mπx

a

∞∑
n=1

γn sin
nπx

a
sinh

nπb

a
=

∫ a

0
dx sin

mπx

a
T0

a

2
γm sinh

mπb

a
= T0

a

mπ

[
1− (−1)m

]
Only the odd m terms are present, m = 2`+ 1, so the result is

T (x, y) =
4

π
T0

∞∑
`=0

1

2`+ 1

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
(23)

You’re not done.
Does this make sense? The dimensions are clearly correct, but after that it takes some work. There’s really

only one parameter that you have to play around with, and that’s the ratio b/a. If it’s either very big or very
small you may be able to check the result.

O

y

0

T0

a� b

a
x

O

0 0

a
b� a

If a� b, it looks almost like a one-dimensional problem. It is a thin slab with temperature T0 on one side
and zero on the other. There’s little variation along the x-direction, so the equilibrium equation is

∇2T = 0 =
∂2T

∂x2
+
∂2T

∂y2
≈ ∂2T

∂y2

This simply says that the second derivative with respect to y vanishes, so the answer is the straight line T = A+By,
and with the condition that you know the temperature at y = 0 and at y = b you easily find

T (x, y) ≈ T0y/b
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Does the exact answer look like this? It doesn’t seem to, but look closer. If b� a then because 0 < y < b you
also have y � a. The hyperbolic function factors in Eq. (23) will have very small arguments, proportional to b/a.
Recall the power series expansion of the hyperbolic sine: sinh x = x+ · · ·. These factors become approximately

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ (2`+ 1)πy/a

(2`+ 1)πb/a
=
y

b

The temperature solution is then

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1

y

b
sin

(2`+ 1)πx

a
= T0

y

b

Where did that last equation come from? The coefficient of y/b is just the Fourier series of the constant T0 in
terms of sines on 0 < x < a.

What about the opposite extreme, for which b � a? This is the second picture just above. Instead of
being short and wide it is tall and narrow. For this case, look again at the arguments of the hyperbolic sines.
Now πb/a is large and you can approximate the hyperbolic functions by going back to their definition.

sinh x =
ex + e−x

2
≈ 1

2
ex, for x� 1

The denominators in all the terms of Eq. (23) are large, ≈ eπb/a (or larger still because of the (2` + 1)). This
will make all the terms in the series extremely small unless the numerators are correspondingly large. This means
that the temperature stays near zero unless y is large. That makes sense. It’s only for y near the top end that
you are near to the wall with temperature T0.

You now have the case for which b � a and y � a. This means that I can use the approximate form of
the hyperbolic function for large arguments.

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ e(2`+1)πy/a

e(2`+1)πb/a
= e(2`+1)π(y−b)/a

The temperature distribution is now approximately

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π(b−y)/a sin

(2`+ 1)πx

a
(24)
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As compared to the previous approximation where a� b, you can’t as easily tell whether this is plausible or not.
You can however learn from it.

At the very top, where y = b this reduces to the constant T0 that you’re supposed to have at that position.
Recall again the Fourier series for a constant on 0 < x < a.

Move down from y = b by the distance a, so that b− y = a. That’s a distance from the top equal to the
width of the rectangle. It’s still rather close to the end, but look at the series for that position.

x=0
y=b

y=b−a

x=a

T (x, b− a) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π sin

(2`+ 1)πx

a

For ` = 0, the exponential factor is e−π = 0.043 and for ` = 1 this factor is e−3π = 0.00008. This means that
measured from the T0 end, within the very short distance equal to the width, the temperature has dropped 95%
of the way down to its limiting value of zero. The temperature in the rod is quite uniform until you’re very close
to the heated end.

The Heat Flow into the Box
All the preceding analysis and discussion was intended to make this problem and its solution sound oh-so-plausible.
There’s more, and it isn’t pretty.

The temperature on one of the four sides was given as different from the temperatures on the other three
sides. What will the heat flow into the region be? That is, what power must you supply to maintain the
temperature T0 on the single wall?

At the beginning of this chapter, Eq. (1), you have the equation for the power through an area A, but that
equation assumed that the temperature gradient ∂T/∂x is the same all over the area A. If it isn’t, you simply
turn it into a density.

∆P = −κ∆A∂T
∂x

, and then
∆P

∆A
→ dP

dA
= −κ∂T

∂x
(25)

Equivalently, just use the vector form from Eq. (6), ~H = −κ∇T . In Eq. (19) the temperature is T0 along y = b,
and the power density (energy / (time . area)) flowing in the +y direction is −κ∂T/∂y, so the power density
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flowing into this area has the reversed sign,
+κ ∂T/∂y (26)

The total power flow is the integral of this over the area of the top face.
Let L be the length of this long rectangular rod, its extent in the z-direction. The element of area along

the surface at y = b is then dA = Ldx, and the power flow into this face is∫ a

0
Ldxκ

∂T

∂y

∣∣∣∣
y=b

The temperature function is the solution Eq. (23), so differentiate that equation with respect to y.∫ a

0
Ldxκ

4

π
T0

∞∑
`=0

[(2`+ 1)π/a]

2`+ 1

cosh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
at y = b

=
4LκT0

a

∫ a

0
dx

∞∑
`=0

sin
(2`+ 1)πx

a

and this sum does not converge. I’m going to push ahead anyway, temporarily pretending that I didn’t notice this
minor difficulty with the series. Just go ahead and integrate the series term by term and hope for the best.

=
4LκT0

a

∞∑
`=0

a

π(2`+ 1)

[
− cos

(
(2`+ 1)π

)
+ 1
]

=
4LκT0

π

∞∑
`=0

2

2`+ 1
=∞

This infinite series for the total power entering the top face is infinite. The series doesn’t converge (use the
integral test).

This innocuous-seeming problem is suddenly pathological because it would take an infinite power source
to maintain this temperature difference. Why should that be? Look at the corners. You’re trying to maintain
a non-zero temperature difference (T0 − 0) between two walls that are touching. This can’t happen, and the
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equations are telling you so! It means that the boundary conditions that I specified in Eq. (19) are impossible to
maintain. The temperature on the boundary at y = b can’t be constant all the way to the edge. It must drop
off to zero as it approaches x = 0 and x = a. This makes the problem more difficult, but then reality is typically
more complicated than our simple, idealized models.

Does this make the solution Eq. (23) valueless? No, it simply means that you can’t push it too hard. This
solution will be good until you get near the corners, where you can’t possibly maintain the constant-temperature
boundary condition. In other regions it will be a good approximation to the physical problem.

10.5 Specified Heat Flow
In the previous examples, I specified the temperature on the boundaries and from that I determined the temperature
inside. In the particular example, the solution was not physically plausible all the way to the edge, though the
mathematics were (I hope) enlightening. Instead, I’ll reverse the process and try to specify the size of the heat
flow, computing the resulting temperature from that. This time perhaps the results will be a better reflection of
reality.

Equation (26) tells you the power density at the surface, and I’ll examine the case for which this is a
constant. Call it F0. (There’s not a conventional symbol, so this will do.) The plus sign occurs because the flow
is into the box.

+κ
∂T

∂y
(x, b) = F0

The other three walls have the same zero temperature conditions as Eq. (19). Which forms of the separated
solutions do I have to use now? The same ones as before or different ones?

Look again at the α = 0 solutions to Eqs. (20). That solution is

(A+Bx)(C +Dy)

In order to handle the fact that the temperature is zero at y = 0 and that the derivative with respect to y is
given at y = b,

(A+Bx)(C) = 0 and (A+Bx)(D) = F0/κ,

implying C = 0 = B, then AD = F0/κ =⇒ F0

κ
y (27)

This matches the boundary conditions at both y = 0 and y = b. All that’s left is to make everything work at the
other two faces.
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O

0

b

y

0

F0

a

0

x

−F0y/κ

O

b
y

0 a

−F0y/κ

x

If I can find a solution that equals −F0y/κ on the left and right faces then it will cancel the +F0y/κ that
Eq. (27) provides. But I can’t disturb the top and bottom boundary conditions. The way to do that is to find
functions that equal zero at y = 0 and whose derivative equals zero at y = b. This is a familiar sort of condition
that showed up several times in chapter five on Fourier series. It is equivalent to saying that the top surface is
insulated so that heat can’t flow through it. You then use superposition to combine the solution with uniform
heat flow and the solution with an insulated boundary.

Instead of Eq. (21), use the opposite sign for α, so the solutions are of the form

(A sin ky +B cos ky)(C sinh kx+D cosh kx)

I require that this equals zero at y = 0, so that says

(0 +B)(C sinh kx+D cosh kx) = 0

so B = 0. I require that the derivative equals zero at y = b, so

Ak cos kb = 0, or kb = (n+ 1/2)π for n = 0, 1, 2 . . .

The value of the temperature is the same on the left that it is on the right, so

C sinh k0 +D cosh k0 = C sinh ka+D cosh ka =⇒ C = D(1− cosh ka)/ sinh ka (28)

This is starting to get messy, so I think it’s time to look around and see if I’ve missed anything that could
simplify the calculation. There’s no guarantee that there is any simpler way, but it’s always worth looking. The
fact that the system is the same on the left as on the right means that the temperature will be symmetric about
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the central axis of the box, about x = a/2. That it is even about this point implies that the hyperbolic functions
of x should be even about x = a/2. You can do this simply by using a cosh about that point.

A sin ky
(
D cosh k(x− a/2)

)
Put these together and you have a sum

∞∑
n=0

an sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)π(x− a/2)

b

)
(29)

Each of these terms satisfies Laplace’s equation, satisfies the boundary conditions at y = 0 and y = b, and is even
about the centerline x = a/2. It is now a problem in Fourier series to match the conditions at x = 0. They’re
then automatically satisfied at x = a.

∞∑
n=0

an sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)πa

2b

)
= −F0

y

κ
(30)

The sines are orthogonal by the theorem Eq. (5.12), so you can pick out the component an by the orthogonality
of these basis functions.

un = sin

(
(n+ 1/2)πy

b

)
, then

〈
um, left side

〉
=
〈
um, right side

〉
or, am

〈
um, um

〉
cosh

(
(m+ 1/2)πa

2b

)
= −F0

κ

〈
um, y

〉
Write this out; do the integrals, add the linear term, and you have

T (x, y) = F0
y

κ
−8F0b

κπ2

∞∑
n=0

(−1)n

(2n+ 1)2
× (31)

sin

(
(n+ 1/2)πy

b

)
cosh

(
(n+ 1/2)π(x− a/2)

b

)
sech

(
(n+ 1/2)πa

2b

)
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Now I have to analyze this to see if it makes sense. I’ll look at the same cases that I did the last time:
b� a and a� b. The simpler case, where the box is short and wide, has b� a. This makes the arguments of
the cosh and sech large, with an a/b in them. For large argument you can approximate the cosh by

coshx ≈ ex/2, x� 1

Now examine a typical term in the sum (31), and I have to be a little more specific and choose x on the left or
right of a/2. The reason for that is the preceding equation requires x large and positive. I’ll take x on the right,
as it makes no difference. The hyperbolic functions in (31) are approximately

exp
(
(n+ 1/2)π(x− a/2)

/
b
)

exp
(
(n+ 1/2)πa

/
2b
) = e((2n+1)π(x−a)/2b)

As long as x is not near the end, that is, not near x = a, the quantity in the exponential is large and negative
for all n. The exponential in turn makes this extremely small so that the entire sum becomes negligible. The
temperature distribution is then the single term

T (x, y) ≈ F0
y

κ

It’s essentially a one dimensional problem, with the heat flow only along the −y direction.
In the reverse case for which it is tall and thin, a� b, the arguments of the hyperbolic functions are small.

This invites a power series expansion, but that approach doesn’t work. The analysis of this case is quite tricky,
and I finally concluded that it’s not worth the trouble to write it up. It leads to a rather complicated integral.

10.6 Electrostatics
The equation for the electrostatic potential in a vacuum is exactly the same as Eq. (18) for the temperature in

static equilibrium, ∇2V = 0, with the electric field ~E = −∇V . The same equation applies to the gravitational
potential, Eq. (9.37).

Perhaps you’ve looked into a microwave oven. You can see inside it, but the microwaves aren’t supposed
to get out. How can this be? Light is just another form of electromagnetic radiation, so why does one EM wave
get through while the other one doesn’t? I won’t solve the whole electromagnetic radiation problem here, but I’ll
look at the static analog to get some general idea of what’s happening.
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−L 0 L 2L x

z

y V0

Arrange a set of conducting strips in the x-y plane and with insulation between them so that they don’t
quite touch each other. Now apply voltage V0 on every other one so that the potentials are alternately zero and
V0. This sets the potential in the z = 0 plane to be independent of y and

z = 0 : V (x, y) =

{
V0 (0 < x < L)
0 (L < x < 2L)

V (x+ 2L, y) = V (x, y), all x, y (32)

What is then the potential above the plane, z > 0? Above the plane V satisfies Laplace’s equation,

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (33)

The potential is independent of y in the plane, so it will be independent of y everywhere. Separate variables in
the remaining coordinates.

V (x, z) = f(x)g(z) =⇒ d2f

dx2
g + f

d2g

dz2
= 0 =⇒ 1

f

d2f

dx2
+

1

g

d2g

dz2
= 0

This is separated as a function of x plus a function of y, so the terms are constants.

1

f

d2f

dx2
= −α2,

1

g

d2g

dz2
= +α2 (34)

I’ve chosen the separation constant in this form because the boundary condition is periodic in x, and that implies
that I’ll want oscillating functions there, not exponentials.

f(x) = eiαx and f(x+ 2L) = f(x)

=⇒ e2Liα = 1, or 2Lα = 2nπ, n = 0, ±1, ±2, . . .
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The separated solutions are then

f(x)g(z) = enπix/L
(
Aenπz/L +Be−nπz/L

)
(35)

The solution for z > 0 is therefore the sum

V (x, z) =
∞∑

n=−∞
enπix/L

(
Ane

nπz/L +Bne
−nπz/L

)
(36)

The coefficients An and Bn are to be determined by Fourier techniques. First however, look at the z-behavior.
As you move away from the plane toward positive z, the potential should not increase without bound. Terms
such as eπz/L however increase with z. This means that the coefficients of the terms that increase exponentially
in z cannot be there.

An = 0 for n > 0, and Bn = 0 for n < 0

V (x, z) = A0 +B0 +
∞∑

n=1

enπix/LBne
−nπz/L +

−1∑
n=−∞

enπix/LAne
nπz/L (37)

The combined constant A0 +B0 is really one constant; you can call it C0 if you like. Now use the usual Fourier
techniques given that you know the potential at z = 0.

V (x, 0) = C0 +
∞∑

n=1

Bne
nπix/L +

−1∑
n=−∞

Ane
nπix/L

The scalar product of emπix/L with this equation is

〈
emπix/L, V (x, 0)

〉
=

 2LC0 (m = 0)
2LBm (m > 0)
2LAm (m < 0)

(38)
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Now evaluate the integral on the left side. First, m 6= 0:〈
emπix/L, V (x, 0)

〉
=

∫ L

−L
dx e−mπix/L

{
0 (−L < x < 0)
V0 (0 < x < L)

= V0

∫ L

0
dx e−mπix/L = V0

L

−mπi
e−mπix/L

∣∣∣L
0

= V0
L

−mπi
[
(−1)m − 1

]
Then evaluate it separately for m = 0, and you have

〈
1, V (x, 0)

〉
= V0L.

Now assemble the result. Before plunging in, look at what will happen.
The m = 0 term sits by itself.
For the other terms, only odd m have non-zero values.

V (x, z) =
1

2
V0 + V0

∞∑
m=1

1

−2mπi

[
(−1)m − 1

]
emπix/Le−mπz/L

+V0

−1∑
m=−∞

1

−2mπi

[
(−1)m − 1

]
emπix/Le+mπz/L

(39)

To put this into a real form that is easier to interpret, change variables, letting m = −n in the second sum and
m = n in the first, finally changing the sum so that it is over only the odd terms.

V (x, z) =
1

2
V0 + V0

∞∑
n=1

1

−2nπi

[
(−1)n − 1

]
enπix/Le−nπz/L

+V0

∞∑
1

1

+2nπi

[
(−1)n − 1

]
e−nπix/Le−nπz/L

=
1

2
V0 + V0

∞∑
n=1

[
(−1)n − 1

] 1

−nπ
sin(nπx/L)e−nπz/L

=
1

2
V0 +

2

π
V0

∞∑
`=0

1

2`+ 1
sin
(
(2`+ 1)πx/L

)
e−(2`+1)πz/L

(40)



10—Partial Differential Equations 304

Having done all the work to get to the answer, what can I learn from it?
What does it look like?
Are there any properties of the solution that are unexpected?
Should I have anticipated the form of the result?
Is there an easier way to get to the result?

To see what it looks like, examine some values of z, the distance above the surface. If z = L, the coefficient
for successive terms is

` = 0 :
2

π
e−π = 0.028 ` = 1 :

2

3π
e−3π = 1.7× 10−5 (41)

The constant term is the average potential, and the ` = 0 term adds only a modest ripple, about 5% of the
constant average value. If you move up to z = 2L the first factor is 0.0012 and that’s a little more than 0.2%
ripple. The sharp jumps from +V0 to zero and back disappear rapidly. That the oscillations vanish so quickly
with distance is perhaps not what you would guess until you have analyzed such a problem.

The graph shows the potential function at the surface, z = 0, as it oscillates between V0 and zero. It then
shows successive graphs of Eq. (40) at z = L/2, then at z = L, then at z = 1.5L. The ripple is barely visible
at the third distance. The radiation through the screen of a microwave oven is filtered in much the same way
because the wavelength of the radiation is large compared to the size of the holes in the screen.

When you write the form of the series for the potential, Eq. (37), you can see this coming if you look for
it. The oscillating terms in x are accompanied by exponential terms in z, and the rapid damping with distance
is already apparent: e−nπz/L. You don’t have to solve for a single coefficient to see that the oscillations vanish
very rapidly with distance.
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The original potential on the surface was neither even nor odd, but except for the constant average value,
it is an odd function.

z = 0 : V (x, y) =
1

2
V0 +

{
+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

V (x+ 2L, y) = V (x, y) (42)

Solve the potential problem for the constant V0/2 and you have a constant. Solve it for the remaining odd
function on the boundary and you should expect an odd function for V (x, z). If you make these observations
before solving the problem you can save yourself some algebra, as it will lead you to the form of the solution
faster.

The potential is periodic on the x-y plane, so periodic boundary conditions are the appropriate ones. You
can express these in more than one way, taking as a basis for the expansion either complex exponentials or sines
and cosines.

enπix/L, n = 0, ±1, . . .

or the combination cos(nπx/L), n = 0, 1, . . . sin(nπx/L), n = 1, 2, . . .
(43)

For a random problem with no special symmetry the exponential choice typically leads to easier integrals. In this
case the boundary condition has some symmetry that you can take advantage of: it’s almost odd. The constant
term in Eq. (27) is the n = 0 element of the cosine set, and that’s necessarily orthogonal to all the sines. For
the rest, you do the expansion {

+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

=
∞∑
1

an sin(nπx/L)

The odd term in the boundary condition (42) is necessarily a sum of sines, with no cosines. The cosines are
orthogonal to an odd function. See problem 11.

More Electrostatic Examples
Specify the electric potential in the x-y plane to be an array, periodic in both the x and the y-directions.
V (x, y, z = 0) is V0 on the rectangle (0 < x < a, 0 < y < b) as well as in the darkened boxes in the picture; it
is zero in the white boxes. What is the potential for z > 0?
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z

a
b

x

y

The equation is still Eq. (33), but now you have to do the separation of variables along all three coordinates,
V (x, y, z) = f(x)g(y)h(z). Substitute into the Laplace equation and divide by fgh.

1

f

d2f

dx2
+

1

g

d2g

dy2
+

1

h

d2h

dz2
= 0

These terms are functions of the single variables x, y, and z respectively, so the only way this can work is if they
are separately constant.

1

f

d2f

dx2
= −k2

1,
1

g

d2g

dy2
= −k2

2,
1

h

d2h

dz2
= k2

1 + k2
2 = k2

3

I made the choice of the signs for these constants because the boundary function is periodic in x and in y, so I
expect sines and cosines along those directions. The separated solution is

(A sin k1x+B cos k1x)(C sin k2y +D cos k2y)(Ee
k3z + Fe−k3z) (44)

What about the case for separation constants of zero? Yes, I need that too; the average value of the potential on
the surface is V0/2, so just as with the example leading to Eq. (40) this will have a constant term of that value.
The periodicity in x is 2a and in y it is 2b, so this determines

k1 = nπ/a and k2 = mπ/b then k3 =

√
n2π2

a2
+
m2π2

b2
, n, m = 1, 2, . . .

where n and m are independent integers. Use the experience that led to Eq. (42) to write V on the surface as
a sum of the constant V0/2 and a function that is odd in both x and in y. As there, the odd function in x will
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be represented by a sum of sines in x, and the same statement will hold for the y coordinate. This leads to the
form of the sum

V (x, y, z) =
1

2
V0 +

∞∑
n=1

∞∑
m=1

αnm sin
(nπx

a

)
sin
(mπy

b

)
e−knmz

where knm is the k3 of the preceding equation. What happened to the other term in z, the one with the positive
exponent? Did I say that I’m looking for solutions in the domain z > 0?

At z = 0 this must match the boundary conditions stated, and as before, the orthogonality of the sines on
the two domains allows you to determine the coefficients. You simply have to do two integrals instead of one.
See problem 19.

V (x, y, z > 0) =
1

2
V0 +

8V0

π2

∞∑
odd n

∞∑
odd m

1

nm
sin
(nπx

a

)
sin
(mπy

b

)
e−knmz (45)
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Problems

10.1 The specific heat of a particular type of stainless steel (CF8M) is 490 J/kg.K. Its thermal conductivity is
13.5 W/m.K and its density is 775 kg/m3. A slab of this steel 1.00 cm thick is at a temperature 100◦C and it is
placed into ice water. Assume the simplest boundary condition that its surface temperature stays at zero, and
find the internal temperature at later times. When is the 2nd term in the series only 5% of the 1st? Sketch the
temperature distribution then, indicating the scale correctly.
metalcasting.auburn.edu/data/CF8M_Stainless_Steel/CF8MSS.html

10.2 In Eq. (12) I eliminated the n = 0 solution by a fallacious argument. What is α in this case? This gives one
more term in the sum, Eq. (13). Show that with the boundary conditions stated, this extra term is zero anyway
(this time).

10.3 In Eq. (13) you have the sum of many terms. Does it still satisfy the original differential equation, Eq. (3)?

10.4 In the example Eq. (14) the final temperature was zero. What if the final temperature is T1? Or what if
I use the Kelvin scale, so that the final temperature is 273◦? Add the appropriate extra term, making sure that
you still have a solution to the original differential equation and that the boundary conditions are satisfied.

10.5 In the example Eq. (14) the final temperature was zero on both sides. What if it’s zero on only the side at
x = L while the side at x = 0 stays at T0? What is the solution now?

Ans: T0x/L+ (2T0/π)
∑∞

1 (1/n) sin(nπx/L)e−n2π2Dt/L2

10.6 You have a slab of material of thickness L and at a uniform temperature T0. The side at x = L is insulated
so that heat can’t flow in or out of that surface. By Eq. (1), this tells you that ∂T/∂x = 0 at that surface. Plunge
the other side into ice water at temperature T = 0 and find the temperature inside at later time. The boundary
condition on the x = 0 surface is the same as in the example in the text, T (0, t) = 0. Separate variables and
find the appropriate separated solutions for these boundary conditions. Are the separated solutions orthogonal?
Use the techniques of Eq. (5.12). When the lowest order term has dropped to where its contribution to the
temperature at x = L is T0/2, how big is the next term in the series? Sketch the temperature distribution in the

slab at that time. Ans: (4T0/π)
∑∞

0 (1/2n+1) sin
[
(n+ 1/2)πx/L

]
e−(n+1/2)2π2Dt/L2

, −9.43× 10−5T0

http://metalcasting.auburn.edu/data/CF8M_Stainless_Steel/CF8MSS.html
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10.7 In the analysis leading to Eq. (23) the temperature at y = b was set to T0. If instead, you have the
temperature at x = a set to T0 with all the other sides at zero, write down the answer for the temperature within
the rod. Now use the fact that Eq. (18) is linear to write down the solution if both the sides at y = b and x = a
are set to T0.

10.8 In leading up to Eq. (22) I didn’t examine the third possibility for the separation constant, that it’s zero.
Do so.

10.9 Look at the boundary condition of Eq. (19) again. Another way to solve this problem is to use the solution
for which the separation constant is zero, and to use it to satisfy the conditions at y = 0 and y = b. You
will then have one term in the separated solution that is T0y/b, and that means that in Eq. (20) you will
have to choose the separation variable to be positive instead of negative. Why? Because now all the rest of
the terms in the sum over separated solutions must vanish at y = 0 and y = b. You’ve already satisfied the
boundary conditions on those surfaces by using the T0y/b term. Now you have to satisfy the boundary conditions
on x = 0 and x = a because the total temperature there must be zero. That in turn means that the sum
over all the rest of the separated terms must add to −T0y/b at x = 0 and x = a. When you analyze this
solution in the same spirit as the analysis of Eq. (23), compare the convergence properties of that solution to
your new one. In particular, look at a � b and a � b to see which version converges better in each case.
Ans: T0y/b+ (2T0/π)

∑∞
1

[
(−1)n/n

]
sin(nπy/b) cosh

(
nπ(x− a/2)/b

)/
cosh(nπa/2b)

10.10 Finish the reanalysis of the electrostatic boundary value problem Eq. (42) starting from Eq. (43). This
will get the potential for z 6= 0 with perhaps less work than before.

10.11 Examine the solution Eq. (39) at z = 0 in the light of problem 5.11.

10.12 A thick slab of material is alternately heated and cooled at its surface so the its surface temperature
oscillates as

T (0, t) =

{
T1 (0 < t < t0)
−T1 (t0 < t < 2t0)

T (0, t+ 2t0) = T (0, t)

That is, the period of the oscillation is 2t0. Find the temperature inside the material, for x > 0. How does this
behavior differ from the solution in Eq. (17)?
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10.13 Fill in the missing steps in finding the solution, Eq. (31).

10.14 A variation on the problem of the alternating potential strips in section 10.6. Place a grounded conducting
sheet parallel to the x-y plane at a height z = d above it. The potential there is then V (x, y, z = d) = 0. Solve
for the potential in the gap between z = 0 and z = d. A suggestion: you may find it easier to turn the coordinate
system over so that the grounded sheet is at z = 0 and the alternating strips are at z = d. This switch of
coordinates is in no way essential, but it is a bit easier. Also, I want to point out that you will need to consider
the case for which the separation constant in Eq. (34) is zero.

10.15 The equation (33) is in rectangular coordinates. In cylindrical coordinates it is

∇2V =
∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2
∂2V

∂θ2
+
∂2V

∂z2
= 0

Take the special case of a potential function that is independent of z and try a solution V (r, θ) = rnf(θ). Show
that this works and gives a simple differential equation for f . Solve that equation. Must n be positive? Must n
be an integer?

10.16 A very long conducting cylindrical shell of radius R is split in two along lines parallel to its axis. The two
halves are wired to a circuit that places one half at potential V0 and the other half at potential −V0. What is the
potential everywhere inside the cylinder? Use the results of the preceding problem and assume a solution of the
form

V (r, θ) =
∞∑
0

rn
(
an cosnθ + bn sinnθ

)
V0

−V0

Match the boundary condition that

V (R, θ) =

{
V0 (0 < θ < π)
−V0 (π < θ < 2π)
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I picked the axis for θ = 0 pointing toward the split between the cylinders. No particular reason, but you have to
make a choice. I make the approximation that the cylinder is infinitely long so that z dependence doesn’t enter.
Also, the two halves of the cylinder almost touch so I’m neglecting the distance between them.
(b) What is the electric field, −∇V on the central axis? Is this answer more or less what you would estimate
before solving the problem? Ans: (b) E = 4V0/πR.

10.17 Solve the preceding problem outside the cylinder. The integer n can be either positive or negative, and this
time you’ll need the negative values. (And why must n be an integer?) Ans: (4V0/π)

∑
n odd(1/n)(R/r)n sinnθ

10.18 In the split cylinder of problem 16, insert a coaxial wire of radius R0 < R. It is at zero potential. Now
what is the potential in the domain R0 < r < R? You will need both the positive and negative n values,∑

(Anr
n +Bnr

−n) sinnθ

10.19 Fill in the missing steps in deriving Eq. (45).

10.20 Analyze how rapidly the solution Eq. (45) approaches a constant as z increases from zero. Compare
Eq. (41).

10.21 A broad class of second order linear homogeneous differential equations can, with some manipulation, be
put into the form (Sturm-Liouville)

(p(x)u′ )′ + q(x)u = λw(x)u

Assume that the functions p, q, and w are real, and use manipulations much like those that led to the identity
Eq. (5.12). Derive the analogous identity for this new differential equation. When you use separation of variables
on equations involving the Laplacian you will typically come to an ordinary differential equation of exactly this
form. The precise details will depend on the coordinate system you are using as well as other aspects of the PDE.

10.22 Carry on from Eq. (28) and deduce the separated solution that satisfies these boundary condition. Show
that it is equivalent to Eq. (29).

10.23 The Laplacian in cylindrical coordinates is in problem 15. Separate variables for the equation ∇2V = 0
and you will see that the equations in z and θ are familiar. The equation in the r variable is less so, but you’ve
seen it (almost) in Eqs. (4.16) and (4.17). Make a change of variables in the r-differential equation, r = kr′,
and turn it into exactly the form described there.



10—Partial Differential Equations 312

10.24 In the preceding problem suppose that there’s no z-dependence. In problem 15 you found solutions for
the separated r and θ equations for the case that the separation constant is not zero. Look at the case where the
separation constant is zero and solve for both the r and θ functions, finally assembling the product of the two
for another solution of the whole equation.
The results of the preceding problem provided four different solutions, a constant, a function of r alone, a function
of θ alone, and a function of both. In each of these four cases, assume that these functions are potentials V and
that ~E = −∇V is the electric field from each potential. Sketch the vector fields for each of these cases (a lot of
arrows).

10.25 Do problem 8.23 and now solve it, finding all solutions to the wave equation. Ans: f(x− vt) + g(x+ vt)

10.26 Use the results of problem 24 to find the potential in the corner between two very large metal
plates set at right angles. One at potential zero, the other at potential V0. Compute the electric
field, −∇V and draw the results. Ans: −2V0θ̂/πr

10.27 A thin metal sheet has a straight edge for one of its boundaries. Another thin metal sheet
is cut the same way. The two straight boundaries are placed in the same plane and almost, but not
quite touching. Now apply a potential difference between them, puting one at a voltage V0 and the
other at −V0. In the region of space near to the almost touching boundary, what is the electric
potential? From that, compute and draw the electric field.

10.28 A slab of heat conducting material lies between coordinates x = −L and x = +L, which are at
temperatures T1 and T2 respectively. In the steady state (∂T/∂t ≡ 0), what is the temperature distribution
inside? Now express the result in cylindrical coordinates around the z-axis and show how it matches the sum of
cylindrical coordinate solutions of ∇2T = 0 from problem 15. What if the surfaces of the slab had been specified
at y = −L and y = +L instead?

10.29 The result of problem 16 has a series of terms that look like (xn/n) sinnθ (odd n). You can use complex
exponentials, do a little rearranging and factoring, and sum this series. Along the way you will have to figure out
what the sum z+ z3/3 + z5/5 + · · · is. Refer to section 2.7. Finally of course, the answer is real, and if you look
hard you may find a simple interpretation for the result. Be sure you’ve done problem 24 before trying this last
step. Ans: 2V0(θ1 + θ2)/π. You still have to decipher what θ1 and θ2 are.
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10.30 Sum the series Eq. (24) to get a closed-form analytic expression for the temperature distribution. You
may find the techniques of section 5.6 useful.

10.31 A generalization of the problem specified in Eq. (19). Now the four sides have temperatures given
respectively to be the constants T1, T2, T3, T4. Note: with a little bit of foresight, you won’t have to work very
hard at all to solve this.

10.32 Use the electrostatic equations from problem 9.21 and assume that the electric charge density is given by
ρ = ρ0a/r, where this is in cylindrical coordinates. What cylindrically symmetric electric field comes from this

charge distribution? (b) From ~E = −∇V what potential function V do you get?

10.33 Repeat the preceding problem, but now interpret r as refering to spherical coordinates. What is ∇2V ?

10.34 The Laplacian in spherical coordinates is Eq. (9.38). The electrostatic potential equation is ∇2V = 0 just
as before, but now take the special case of azimuthal symmetry so the the potential function is independent of
φ. Apply the method of separation of variables to find solutions of the form f(r)g(θ). You will get two ordinary
differential equations for f and g. The second of these equations is much simpler if you make the change of
independent variable x = cos θ. Use the chain rule a couple of times to do so, showing that the two differential
equations are

(1− x2)
d2g

dx2
− 2x

dg

dx
+ Cg = 0 and r2

d2f

dr2
+ 2r

df

dr
− Cf = 0

10.35 Show that there are solutions of the form f(r) = Arn, and recall the analysis in section 4.9 for the solutions
for g. What values of the separation constant C will allow solutions that are finite as x→ ±1 (θ → 0, π)? What
are the corresponding functions of r? Don’t forget that there are two solutions to the second order differential
equation for f — two roots to a quadratic equation.

10.36 Write out the separated solutions to the preceding problem (the ones that are are finite as θ approaches
0 or π) for the two smallest allowed values of the separation constant C: 0 and 2. In each of the four cases,
interpret and sketch the potential and its corresponding electric field, −∇V . How do you sketch a potential?
Draw equipotentials.
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10.37 From the preceding problem you can have a potential, a solution of Laplace’s equation, in the form(
Ar + B/r2

)
cos θ. Show that by an appropriate choice of A and B, this has an electric field that for large

distances from the origin looks like E0ẑ, and that on the sphere r = R the total potential is zero — a grounded,
conducting sphere. What does the total electric field look like for r > R; sketch some field lines. Start by asking
what the electric field is as r → R.



Numerical Analysis

You could say that some of the equations that you encounter in describing physical systems can’t be solved in
terms of familiar functions and that they require numerical calculations to solve. It would be misleading to say
this however, because the reality is quite the opposite. Most of the equations that describe the real world are
sufficiently complex that your only hope of solving them is to use numerical methods. The simple equations that
you find in introductory texts are there because they can be solved in terms of elementary calculations. When
you start to add reality, you quickly reach a point at which no amount of clever analytical ability will get you a
solution. That becomes the subject of this chapter. In all of the examples that I present I’m just showing you a
taste of the subject, but I hope that you will see the essential ideas of how to extend the concepts.

11.1 Interpolation
Given equally spaced tabulated data, the problem is to find a value between the tabulated points, and to estimate
the error in doing so. As a first example, to find a value midway between given points use a linear interpolation:

f(x0 + h/2) ≈ 1

2

[
f(x0) + f(x0 + h)

]
.

This gives no hint of the error. To compute an error estimate, it is convenient to transform the variables so that
this equation reads

f(0) ≈ 1

2

[
f(k) + f(−k)

]
,

where the interval between data points is now 2k. Use a power series expansion of f to find the error.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) + · · ·

f(−k) = f(0)− kf ′(0) +
1

2
k2f ′′(0) + · · ·

Then
1

2

[
f(k) + f(−k)

]
≈ f(0) +

[1
2
k2f ′′(0)

]
, (1)

315
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where the last term gives an estimate of the error: +h2f ′′(0)/8.
As an example, interpolate the function f(x) = 2x between 0 and 1. Here h = 1.

21/2 ≈ 1

2

[
20 + 21

]
= 1.5

The error term is
error ≈ (ln 2)22x/8 for x = .5

= (.693)2(1.5)/8 = .090,

and of course the true error is 1.5− 1.414 = .086
You can write a more general interpolation method for an arbitrary point between x0 and x0 + h. The

solution is a simple extension of the above result.
The line passing through the two points of the graph is

y − f0 = (x− x0)(f1 − f0)/h,

x0 x1

where
f0 = f(x0), f1 = f(x0 + h).

At the point x = x0 + ph you have

y = f0 + (ph)(f1 − f0)/h = f0(1− p) + f1p.

As before, this approach doesn’t suggest the error, but again, the Taylor series allows you to work it out to be[
h2p(1− p)f ′′(x0 + ph)/2

]
.

The use of only two points to do an interpolation ignores the data available in the rest of the table. By
using more points, you can greatly improve the accuracy. The simplest example of this method is the 4-point
interpolation to find the function halfway between the data points. Again, the independent variable has an
increment h = 2k, so the problem can be stated as one of finding the value of f(0) given f(±k) and f(±3k).
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−3k −k 0 k 3k

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · · . (2)

I want to isolate f(0) from this, so take

f(k) + f(−k) = 2f(0) + k2f ′′(0) +
1

12
k4f ′′′′(0) + · · ·

f(3k) + f(−3k) = 2f(0) + 9k2f ′′(0) +
81

12
k4f ′′′′(0) + · · · .

The biggest term after the f(0) is in k2f ′′(0), so I’ll eliminate this.

[
f(3k) + f(−3k)

]
− 9
[
f(k)− f(−k)

]
≈ −16f(0) +

[
81

12
− 9

12

]
k4f ′′′′(0)

f(0) ≈ 1

16

[
− f(−3k) + 9f(−k) + 9f(k)− f(3k)

]
−
[
− 3

8
k4f ′′′′(0)

]
. (3)

The error estimate is then −3h4f ′′′′(0)/128.
To apply this, take the same example as before, f(x) = 2x at x = .5

21/2 ≈ 1

16

[
−2−1 + 9 . 20 + 9 . 21 − 22

]
=

45

32
= 1.40625,

and the error is 1.40625 − 1.41421 = −.008, a tenfold improvement over the previous interpolation despite the
fact that the function changes markedly in this interval and you shouldn’t expect interpolation to work very well
here.
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11.2 Solving equations
Example: sinx− x/2 = 0

From the first graph, the equation clearly has three real solutions, but finding them is the problem. The
first method for solving f(x) = 0 is Newton’s method.

x1

x0

From the second graph, observe that if x0 is taken as a first approximation to the root of f , the straight
line tangent to the curve can be used to calculate an improved approximation. The equation of this line is

y − f(x0) = f ′(x0)(x− x0).

The root of this line is y = 0, with solution

x = x0 − f(x0)/f
′(x0).

Call this solution x1. You can use this in an iterative procedure to find

x2 = x1 − f(x1)/f
′(x1), (4)

and in turn x3 is defined in terms of x2 etc.
Example: Solve sin x− x/2 = 0. From the graph, a plausible guess for a root is x0 = 2.

x1 = x0 − (sinx0 − x0/2)/(cosx0 − 1/2)

= 1.900995594 f(x1) = .00452

x2 = x1 − (sinx1 − x1/2)/(cosx1 − 1/2)

= 1.895511645 f(x2) = −.000014

x3 = x2 − (sinx2 − x2/2)/(cosx2 − 1/2)

= 1.895494267 f(x3) = 2× 10−10
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Such iterative procedures are ideal for use on a computer, but use them with caution, as a simple example
shows:

f(x) = x1/3.

Instead of the root x = 0, the iterations in this first graph carry the supposed solution infinitely far away. This
happens here because the higher derivatives neglected in the straight line approximation are large near the root.

A milder form of non-convergence can occur if at the root the curvature changes sign and is large, as in
the second graph. This can lead to a limit cycle where the iteration simply oscillates from one side of the root to
the other without going anywhere.

A non-graphical derivation of this method starts from a Taylor series: If z0 is an approximate root and
z0 + ε is a presumed exact root, then

f(z0 + ε) = 0 = f(z0) + εf ′(z0) + · · · .

Neglecting higher terms then,

ε = −f(z0)/f
′(z0), and z1 = z0 + ε = z0 − f(z0)/f

′(z0), (5)

as before. I use z instead of x this time to remind you that this method is just as valid for complex functions as
for real ones (and has as many pitfalls).

There is a simple variation on Newton’s method that can be used to speed convergence where it is poor or
to bring about convergence where the technique would otherwise break down.

x1 = x0 − wf(x0)/f
′(x0). (6)
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W is a factor that can be chosen greater than one to increase the correction or less than one to decrease it.
Which one to do is more an art than a science (1.5 and 0.5 are common choices). You can easily verify that any
choice of w between 0 and 2/3 will cause convergence for the solution of x1/3 = 0. You can also try this method
on the solution of f(x) = x2 = 0. A straight-forward Newton method will certainly converge, but with painful
slowness. The choice of w > 1 improves this considerably.

When Newton’s method works well, it will typically double the number of significant figures at each iteration.
A drawback to Newton’s method is that it requires knowledge of f ′(x), and that may not be simple. An

alternate approach that avoids this starts from the picture in which a secant through the curve is used in place
of a tangent at a point.

Given f(x1) and f(x2), construct a straight line

y − f(x2) =

[
f(x2)− f(x1)

x2 − x1

]
(x− x2).

x1 x2

This has its root at y = 0, or

x = x2 − f(x2)
x2 − x1

f(x2)− f(x1)
. (7)

This root is taken as x3 and the method is iterated, substituting x2 and x3 for x1 and x2. As with Newton’s
method, when it works, it works very well, but you must look out for the same type of non-convergence problems.
This is called the secant method.

11.3 Differentiation
Given tabular or experimental data, how can you compute its derivative?

Approximating the tangent by a secant, a good estimate for the derivative of f at the midpoint of the
(x1, x2) interval is

[
f(x2)− f(x1)

]
/(x2 − x1)
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As usual, the geometric approach doesn’t indicate the size of the error, so it’s back to Taylor’s series.
Given data at points x = 0, ±h, ±2h, . . . . I want the derivative f ′(0).

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) + · · ·

f(−h) = f(0)− hf ′(0) +
1

2
h2f ′′(0)− 1

6
h3f ′′′(0) + · · ·

In order to isolate the term in f ′(0), it’s necessary to eliminate the larger term f(0), so subtract:

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) + · · · ,

giving f ′(0) ≈ 1

2h

[
f(h)− f(−h)

]
−
{1

6
h2f ′′′(0)

} (8)

and the last term, in braces, estimates the error in the straight line approximation.
The most obvious point about this error term is that it varies as h2, and so indicates by how much the

error should decrease as you decrease the size of the interval. (How to estimate the factor f ′′′(0) I’ll come to
presently.) This method evaluates the derivative at one of the data points; you can make it more accurate if you
evaluate it between the points, so that the distance from where the derivative is being taken to where the data
is available is smaller. As before, let h = 2k, then

1

2k

[
f(k)− f(−k)

]
= f ′(0) +

1

6
k2f ′′′(0) + · · · ,

or, in terms of h with a shifted origin,

1

h

[
f(h)− f(0)

]
≈ f ′(h/2) +

1

24
h2f ′′′

(h
2

)
, (9)

and the error is only 1/4 as big.
As with interpolation methods, you can gain accuracy by going to higher order in the Taylor series,

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) +

1

60
h5fv(0) + · · ·

f(2h)− f(−2h) = 4hf ′(0) +
8

3
h3f ′′′(0) +

32

60
h5fv(0) + · · · .
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To eliminate the largest source of error, the h3 term, multiply the first equation by 8 and subtract the second.

8
[
f(h)− f(−h)

]
−
[
f(2h)− f(−2h)

]
= 12hf ′(0)− 24

60
h5fv(0) + · · · ,

or

f ′(0) ≈ 1

12h

[
f(−2h)− 8f(−h) + 8f(h)− f(2h)

]
+
{ 1

30
h4fv(0)

}
. (10)

with an error term of order h4.
As an example of this method, let f(x) = sinx and evaluate the derivative at x = 0.2 by the 2-point

formula and the 4-point formula with h=0.1:

2-point:
1

0.2
[0.2955202− 0.0998334] = 0.9784340

4-point:
1

1.2
[0.0− 8× 0.0998334 + 8× 0.2955202− 0.3894183]

= 0.9800633

cos 0.2 = 0.9800666

Again, you have a more accurate formula by evaluating the derivative between the data points: h = 2k

f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) +

1

60
k5fv(0)

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) +

243

60
k5fv(0)

27
[
f(k)− f(−k)

]
−
[
f(3k)− f(−3k)

]
= 48f ′(0)− 216

60
k5fv(0).

Changing k to h/2 and translating the origin gives

1

24h

[
f(−h)− 27f(0) + 27f(h)− f(2h)

]
= f ′(h/2)− 3

640
h4fv(h/2), (11)

and the coefficient of the error term is much smaller.
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The previous example of the derivative of sin x at x = 0.2 with h = 0.1 gives, using this formula:

1

2.4
[0.0499792− 27× 0.1494381 + 27× 0.2474040− 0.3428978] = 0.9800661,

and the error is less by a factor of about 7.

You can find higher derivatives the same way.

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0)

f(h) + f(−h) = 2f(0) + h2f ′′(0) +
1

12
h4f ′′′′(0) + · · ·

f ′′(0) =
f(−h)− 2f(0) + f(h)

h2
− 1

12
h2f ′′′′(0) + · · · (12)

Notice that the numerical approximation for f ′′(0) is even in h because the second derivative is unchanged if x
is changed to −x.

You can get any of these expressions for higher derivatives recursively, though finding the error estimates
requires the series method. The above expression for f ′′(0) can be viewed as a combination of first derivative
formulas:

f ′′(0) ≈
[
f ′(h/2)− f ′(−h/2)

]
/h

≈ 1

h

[
f(h)− f(0)

h
− f(0)− f(−h)

h

]
=
[
f(h)− 2f(0) + f(−h)

]
/h2. (13)

Similarly, the third and higher derivatives can be computed. The numbers that appear in these numerical deriva-
tives are simply the binomial coefficients, Eq. (2.13).
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11.4 Integration
The basic definition of an integral is a limit of the sum,

ξ1 ξ2 ξ3 ξ4 ξ5

∑
f(ξi)(xi+1 − xi) (xi ≤ ξi ≤ xi+1), (14)

and this is the basis for the numerical evaluation of any integral, as in section 1.6.
The simplest choices to evaluate the integral of f(x) over the domain x0 to x0 + h would be to take the

position of ξ at one of the endpoints or maybe in the middle (here I assume h is small).∫ x0+h

x0

f(x) dx ≈f(x0)h (a)

or f(x0 + h)h (b)

or f(x0 + h/2)h (midpoint rule) (c)

or
[
f(x0) + f(x0 + h)

]
h/2 (trapezoidal rule) (d)

(15)

The last expression is the average of the first two.
I can now compare the errors in all of these approximations. Set x0 = 0.∫ h

0
dx f(x) =

∫ h

0
dx
[
f(0) + xf ′(0) +

1

2
x2f ′′(0) +

1

6
x3f ′′′(0) + · · ·

]
= hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) +

1

24
h4f ′′′(0) + · · · .

This immediately gives the error in formula (a):

error (a) = hf(0)−
∫ h

0
dx f(x) ≈ −1

2
h2f ′(0). (16)
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The error for expression (b) requires another expansion,

error (b) = hf(h)−
∫ h

0
dx f(x)

= h
[
f(0) + hf ′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) + · · ·

]
≈ 1

2
h2f ′(0). (17)

Since this is the opposite sign from the previous error, it is immediately clear that the error in (d) will be less,
because (d) is the average of (a) and (b).

error (d) =
[
f(0) + f(0) + hf ′(0) +

1

2
h2f ′′(0) + · · ·

]h
2

−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) + · · ·

]
≈
(

1

4
− 1

6

)
h3f ′′(0) =

1

12
h3f ′′(0). (18)

Similarly, the error in (c) is

error (c) = h
[
f(0) +

1

2
hf ′(0) +

1

8
h2f ′′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h2f ′′(0) + · · ·

]
≈ − 1

24
h3f ′′(0). (19)

The errors in the (c) and (d) formulas are both therefore the order of h3.
Notice that just as the errors in formulas (a) and (b) canceled to highest order when you averaged them,

the same happens between formulas (c) and (d). Here however you need a weighted average, with twice as much
of (c) as of (d). [1/12− 2/24 = 0]

1

3
(d) +

2

3
(c) =

[
f(x0) + f(x0 + h)

]h
6

+ f
(
x0 + h/2

)4
6
h. (20)



11—Numerical Analysis 326

This is known as Simpson’s rule.

Simpson’s Rule
Before applying this last result, I’ll go back and derive it in a more systematic way, putting it into the form you’ll
see most often.

Integrate Taylor’s expansion over a symmetric domain to simplify the algebra:∫ h

−h
dx f(x) = 2hf(0) +

2

6
h3f ′′(0) +

2

120
h5f ′′′′(0) + · · · .

I’ll try to approximate this by a three point formula α(−h) + βf(0) + γf(h) where α, β, and γ, are unknown.
Because of the symmetry of the problem, you can anticipate that α = γ, but let that go for now and it will come
out of the algebra.

αf(−h) + βf(0) + γf(h) =

α
[
f(0)− hf ′(0) +

1

2
h2f ′′(0)− 1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
+βf(0)

+γ
[
f(0) + hf ′(0) +

1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
You now determine the three constants by requiring that the two series for the same integral agree to as

high an order as is possible for any f.

2h = α+ β + γ

0 = −αh+ γh

1

3
h3 =

1

2
(α+ γ)h2

=⇒ α = γ = h/3, β = 4h/3

and so,

∫ h

−h
dx f(x) ≈ h

3

[
f(−h) + 4f(0) + f(h)

]
. (21)
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The error term (the “truncation error”) is

h

3

[
f(−h) + 4f(0) + f(−h)

]
−
∫ h

−h
dx f(x) ≈ 1

12
. 1

3
h5f ′′′′(0)− 1

60
h5f ′′′′(0) =

1

90
h5f ′′′′(0). (22)

Simpson’s rule is exact up through cubics, because the fourth and higher derivatives vanishes in that case.
It’s worth noting that there is also an elementary derivation of Simpson’s rule: Given three points, there is a
unique quadratic in x that passes through all of them. Take the three points to be

(
−h, f(−h)

)
,
(
0, f(0)

)
, and(

h, f(h)
)
, then integrate the resulting polynomial. Express your answer for the integral in terms of the values of

f at the three points, and you get the above Simpson’s rule. This has the drawback that it gives no estimate of
the error.

To apply Simpson’s rule, it’s necessary to divide the region of integration into an even number of pieces
and apply the above formula to each pair.∫ b

a
dx f(x) ≈ h

3

[
f(x0) + 4f(x1) + f(x2)

]
+
h

3

[
f(x2) + 4f(x3) + f(x4)

]
+ · · ·

+
h

3

[
f(xN−2) + 4f(xN−1) + f(xN )

]
=
h

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xN−1) + f(xN )

]
(23)

Example: ∫ 1

0

4

1 + x2
dx = 4 tan−1 x

∣∣∣∣1
0

= π

Divide the interval 0 to 1 into four pieces, then∫ 1

0

4

1 + x2
dx ≈ 4

12

[
1 + 4

1

1 + (1/4)2
+ 2

1

1 + (1/2)2
+ 4

1

1 + (3/4)2
+

1

1 + 1

]
= 3.1415686

as compared to π = 3.1415927 . . ..
When the function to be integrated is smooth, this gives very accurate results.
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Gaussian Integration
If the integrand is known at all points of the interval and not just at discrete locations as for tabulated or
experimental data, there is more freedom that you can use to gain higher accuracy even though using just a two
point formula: ∫ h

−h
f(x) dx ≈ α

[
f(β) + f(−β)

]
.

I could try picking two arbitrary points, not symmetrically placed, in the interval, but the previous experience with
Simpson’s rule indicates that the result will come out as indicated. (Though it’s easy to check what happens if
you pick two general points in the interval.)

2hf(0) +
1

3
h3f ′′(0) +

1

60
h5f ′′′′(0) + · · · = α

[
2f(0) + β2f ′′(0) +

1

12
β4f ′′′′(0) + · · ·

]
To make this an equality through the low orders implies

or
2h = 2α

α = h

1

3
h3 = αβ2

β = h/
√

3.
(24)

with an error term
1

60
h5f ′′′′(0)− 1

12
. 1

9
h5f ′′′′(0) =

1

135
h5f ′′′′(0),

and ∫ h

−h
f(x) dx ≈ h

[
f
(
h
/√

3
)

+ f
(
−h
/√

3
)]

+
1

135
h5f ′′′′(0). (25)

With only two points, this expression yields an accuracy equal to the three point Simpson formula.
Notice that the two points found in this way are roots of a certain quadratic(

x− 1√
3

)(
x+

1√
3

)
= x2 − 1/3,

which is proportional to
3

2
x2 − 1

2
= P2(x), (26)
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the Legendre polynomial of second order.
This approach to integration, known as Gaussian integration, can be extended to more points, as for example∫ h

−h
f(x) dx ≈ αf(−β) + γf(0) + αf(β).

The same expansion procedure leads to the result

h

9

[
5f

(
−h
√

3

5

)
+ 8f(0) + f

(
h

√
3

5

)]
, (27)

with an error proportional to h7f (6)(0). The polynomial with roots 0,±
√

3/5 is

5

2
x3 − 3

2
x = P3(x), (28)

the third order Legendre polynomial.
Many other properties of Gaussian integration are discussed in the two books by C. Lanczos, “Linear

Differential Operators,” “Applied Analysis,” both available in Dover reprints. The general expressions for the
integration points as roots of Legendre polynomials and expressions for the coefficients are there. The important
technical distinction he points out between the Gaussian method and generalizations of Simpson’s rule involving
more points is in the divergences for large numbers of points. Gauss’s method does not suffer from this defect.
In practice, there is rarely any problem with using the ordinary Simpson rule as indicated above, though it will
require more points than the more elegant Gauss’s method. When problems do arise with Gaussian integration,
they often occur because the function is ill-behaved, and the high derivatives are very large. In this case it can
be more accurate to use a method with a lower order derivative for the truncation error.

11.5 Differential Equations
To solve the first order differential equation

y′ = f(x, y) y(x0) = y0, (29)

the simplest algorithm is Euler’s method. The initial conditions are y(x0) = y0, and y′(x0) = f(x0, y0), and a
straight line extrapolation is

y(x0 + h) = y0 + hf(x0, y0). (30)



11—Numerical Analysis 330

You can now iterate this procedure using this newly found value of y as a new starting condition to go from
x0 + h to x0 + 2h.

Runge-Kutta
Euler’s method is not very accurate. For an improvement, change from a straight line extrapolation to a parabolic
one. Take x0 = 0 for this derivation and try a solution near 0 of the form y(x) = α + βx+ γx2; evaluate α, β,
and γ so that the differential equation is satisfied near x = 0,

y′ = β + 2γx = f(x, α+ βx+ γx2).

Recall the Taylor series expansion for a function of two variables, section 2.5:

f(x, y) = f(x0, y0) + (x− x0)D1f(x0, y0)+(y − y0)D2f(x0, y0) +
1

2
(x− x0)

2D1D1f(x0, y0)

+
1

2
(y − y0)2D2D2f(x0, y0) + (x− x0)(y − y0)D1D2f(x0, y0) + · · · (31)

β + 2γx = f(0, α) + xD1f(0, α) + (βx+ γx2)D2f(0, α) + · · · . (32)

The initial condition is at x = 0, y = y0, so α = y0. Equate coefficients of powers of x as high as is possible
(here through x1).

β = f(0, α) 2γ = D1f(0, α) + βD2f(0, α).

(If you set γ = 0, this is Euler’s method.)

y(h) = y0 + hf(0, y0) +
h2

2

[
D1f(0, y0) + f(0, y0)D2f(0, y0)

]
. (33)

The next problem is to evaluate these derivatives. Since they appear in a term that is multiplied by h2, it
is enough to use the simplest approximation for the numerical derivative,

D1f(0, y0) =
[
f(h, y0)− f(0, y0)

]
/h. (34)

You cannot expect to use the same interval, h, for the y variable — it might not even have the same dimensions,

D2f(0, y0) =
[
f(j, y0 + k)− f(j, y0)

]
/k. (35)
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where j and k are the order of h. Note that because this term appears in an expression multiplied by h2, it
doesn’t matter what j is. You can choose it for convenience. Possible values for these are

(1) j = 0 k = hf(0, y0)

(2) j = 0 k = hf(h, y0)

(3) j = h k = hf(0, y0)

(4) j = h k = hf(h, y0).

The third of these choices for example gives

y = y0 + hf(0, y0) +
h2

2

[
1

h

[
f(h, y0)− f(0, y0)

]
+ f(0, y0)

f(h, y0 + k)− f(h, y0)

hf(0, y0)

]
= y0 +

h

2
f(0, y0) +

h

2
f
(
h, y0 + hf(0, y0)

)
. (36)

This procedure, a second order Runge-Kutta method, is a moderately accurate method for advancing from one
point to the next in the solution of a differential equation. It requires evaluating the function twice for each step
of the iteration.
Example: y′ = 1 + y2 y(0) = 0. Let h=0.1

x y(Euler) y(RK2) tan x
0. 0. 0. 0.
0.1 0.10 0.10050 0.10053
0.2 0.20100 0.20304 0.20271
0.3 0.30504 0.30981 0.30934
0.4 0.41435 0.42341 0.42279 (37)

The error at x = 0.4 with RK2 is 0.15% and with Euler it is 2.0%. A commonly used version of this is the fourth
order Runge-Kutta method:

y = y0 +
1

6

[
k1 + 2k2 + 2k3 + k4

]
(38)

k1 = hf
(
0, y0

)
k3 = hf

(
h/2, y0 + k2/2

) k2 = hf
(
h/2, y0 + k1/2

)
k4 = hf

(
h, y0 + k3

)
.
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You can look up a fancier version of this called the Runge-Kutta-Fehlberg method. It’s one of the better techniques
around.

Higher Order Equations
How can you use either the Euler or the Runge-Kutta method to solve a second order differential equation?
Answer: Turn it into a pair of first order equations.

y′′ = f(x, y, y′) −→ y′ = v, and v′ = f(x, y, v)

The Euler method, Eq. (30) becomes

y(x0 + h) = y(x0) + hv(x0), and v(x0 + h) = v(x0) + hf
(
x0, y(x0), v(x0)

)
The construction for Runge-Kutta is essentially the same.

Adams Methods
The Runge-Kutta algorithm has the advantage that it is self-starting; it requires only the initial condition to go
on to the next step. It has the disadvantage that it is inefficient. In going from one step to the next, it ignores all
the information available from any previous steps. The opposite approach leads to the Adams methods, though
these are not as commonly used any more. I’m going to develop a little of the subject mostly to show that the
methods that I’ve used so far can lead to disaster if you’re not careful.

Shift the origin to be the point at which you want the new value of y. Assume that you already know y at
−h, −2h, . . . , −Nh. Because of the differential equation y′ = f(x, y), you also know y′ at these points.

Assume

y(0) =
N∑
1

αky(−kh) +
N∑
1

βky
′(−kh). (39)

With 2N parameters, you can get this accurate to order h2N−1,

y(−kh) =
∞∑
0

(−kh)ny
(n)(0)

n!
.
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Substitute this into the equation for y(0):

y(0) =
N∑

k=1

αk

∞∑
n=0

(−kh)ny
(n)(0)

n!
+ h

N∑
k=1

βk

∞∑
n=0

(−kh)ny
(n+1)(0)

n!
.

This should be an identity to as high an order as possible. The coefficient of h0 gives

1 =
N∑

k=1

αk. (40)

The next orders are

0 =
∑

k

αk(−kh) + h
∑

k

βk

0 =
∑

k

1

2
αk(−kh)2 + h

∑
k

βk(−kh)

... (41)

N = 1 is Euler’s method again.
N = 2 gives

α1 + α2 = 1

α1 + 4α2 = 2(β1 + 2β2)

α1 + 2α2 = β1 + β2

α1 + 8α2 = 3(β1 + 4β2).

The solution of these equations is

α1 = −4 α2 = +5 β1 = +4 β2 = +2

y(0) = −4y(−h) + 5y(−2h) + h
[
4y′(−h) + 2y′(−2h)

]
. (42)

To start this algorithm off, two pieces of information are needed: the values of y at −h and at −2h. This is in
contrast to Runge-Kutta, which needs only one point.
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Example: Solve y′ = y y(0) = 1 (h = 0.1)
I could use Runge-Kutta to start and then switch to Adams as soon as possible. For the purpose of this example,
I’ll just take the exact value of y at x = 0.1.

e.1 = 1.105170918

y(.2) = −4y(.1) + 5y(0) + .1
[
4f
(
.1, y(.1)

)
+ 2f

(
0, y(0)

)]
= −4y(.1) + 5y(0) + .4y(.1) + .2y(0)

= −3.6y(.1) + 5.2y(0)

= 1.221384695

The exact value is e.2 = 1.221402758; the first error is in the underlined term. Continuing the calculation to
higher values of x,

x y
.3 1.3499038
.4 1.491547
.5 1.648931
.6 1.81988
.7 2.0228
.8 2.1812
.9 2.666

1.0 1.74
1.1 7.59
1.2 −18.26
1.3 105.22 0. .5 1.

Everything is going very smoothly for a while, though the error is creeping up. At around x = 1, the
numerical solution goes into wild oscillation and is completely unstable. The reason for this is in the coefficients
−4 and +5 of y(−h) and y(−2h). Small errors are magnified by these large factors. (The coefficients of y′ are
not any trouble because of the factor h in front.)

Instability
You can compute the growth of this error explicitly in this simple example. The equation (42) together with
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y′ = y is
y(0) = −3.6y(−h) + 5.2y(−2h),

or in terms of an index notation
yn = −3.6yn−1 + 5.2yn−2.

This is a linear, constant coefficient, difference equation, and the method for solving it is essentially the same as
for a linear differential equation — assume an exponential form yn = kn.

kn = −3.6kn−1 + 5.2kn−2

k2 + 3.6k − 5.2 = 0

k = 1.11 and − 4.71

Just as with the differential equation, the general solution is a linear combination of these two functions of n:

yn = A(1.11)n +B(−4.71)n,

where A and B are determined by two conditions, typically specifying y1 and y2. If B = 0, then yn is proportional
to 1.11n and it is the well behaved exponential solution that you expect. If, however, there is even a little bit of B
present (perhaps because of roundoff errors), that term will eventually dominate and cause the large oscillations.
If B is as small as 10−6, then when n = 9 the unwanted term is greater than 1.

When I worked out the coefficients in Eq. (42) the manipulations didn’t look all that different from those
leading to numerical derivatives or integrals, but the result was useless. This is a caution. You’re in treacherous
territory here; tread cautiously.

Are Adams-type methods useless? No, but you have to modify the development in order to get a stable
algorithm. The difficulty in assuming the form

y(0) =
N∑
1

αky(−kh) +
N∑
1

βky
′(−kh)

is that the coefficients αk are too large. To cure this, you can give up some of the 2N degrees of freedom that
the method started with, and pick the αk a priori to avoid instability. There are two common ways to do this,
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consistent with the constraint that must be kept on the α’s,

N∑
k=1

αk = 1.

One way is to pick all the αk to equal 1/N . Another way is to pick α1 = 1 and all the others = 0, and both of
these methods are numerically stable. The book by Lanczos in the bibliography goes into these techniques, and
there are tabulations of these and other methods in Abramowitz and Stegun.

Backwards Iteration
Before leaving the subject, there is one more kind of instability that you can encounter. If you try to solve
y′′ = +y with y(0) = 1 and y′(0) = −1, the solution is e−x. If you use any stable numerical algorithm to solve
this problem, it will soon deviate arbitrarily far from the desired one. The reason is that the general solution of
this equation is y = Aex + Be−x. Any numerical method will, through rounding errors, generate a little bit of
the undesired solution, e+x. Eventually, this must overwhelm the correct solution. No algorithm, no matter how
stable, can get around this.

There is a clever trick that sometimes works in cases like this: backwards iteration. Instead of going from
zero up, start at some large value of x and iterate downward. In this direction it is the desired solution, e−x, that
is unstable, and the e+x is damped out. Pick an arbitrary value, say x = 10, and assign an arbitrary value to
y(10), say 0. Next, pick an arbitrary value for y′(10), say 1. Use these as initial conditions (terminal conditions?)
and solve the differential equation moving left; necessarily the dominant term will be the unstable one, e−x, and
independent of the choice of initial conditions, it will be the solution. At the end it is only necessary to multiply
all the terms by a scale factor to reduce the value at x = 0 to the desired one; automatically, the value of y′(0)
will be correct. What you are really doing by this method is to replace the initial value problem by a two point
boundary value problem. You require that the function approach zero for large x.

11.6 Fitting of Data

If you have a set of data in the form of independent and dependent variables {xi, yi} (i = 1, . . . , N), and you
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have proposed a model that this data is to be represented by a linear combination of some set of functions, fµ(x)

y =
M∑

µ=1

αµfµ(x), (43)

what values of αµ will represent the observations in the “best” way? There are several answers to this question
depending on the meaning of the word “best.” The most commonly used one, largely because of its simplicity, is
Gauss’s method of least squares. This criterion for best fit is that the sum

N∑
i=1

yi −
M∑

µ=1

αµfµ(xi)

2

= Nσ2 (44)

be a minimum. The mean square deviation of the theory from the experiment is to be least. This quantity σ2 is
called the variance.

Some observations to make here: N ≥ M , for otherwise there are more free parameters than data to fit
them, and almost any theory with enough parameters can be forced to fit any data. Also, the functions fµ must
be linearly independent; if not, then you can throw away some and not alter the result — the solution is not
unique. A further point: there is no requirement that all of the xi are different; you may have repeated the
measurements at some points.

This is now a problem in ordinary calculus.

∂

∂αν

N∑
i=1

yi −
M∑

µ=1

αµfµ(xi)

2

= −2
∑

i

[
yi −

∑
µ

αµfµ(xi)

]
fν(xi) = 0

rearrange:
∑
µ

[∑
i

fν(xi)fµ(xi)

]
αµ =

∑
i

yifν(xi). (45)
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These linear equations are easily expressed in terms of matrices.

Ca = b,

where

Cνµ =
∑

i

fν(xi)fµ(xi). (46)

a is the column matrix with components αµ and b has components
∑

i yifν(xi).
The solution for a is

a = C−1b. (47)

If C turned out singular, so this inversion is impossible, the functions fµ were not independent.
Example: Fit to a straight line

f1(x) = 1 f2(x) = x.

Then Ca = b is (
N

∑
xi∑

xi
∑
x2

i

)(
α1

α2

)
=

( ∑
yi∑
yixi.

)
The inverse is (

α1

α2

)
=

1[
N
∑
x2

i −
(∑

xi

)2] ( ∑
x2

i −
∑
xi

−
∑
xi N

)( ∑
yi∑
xiyi.

)
(48)

and the best fit line is
y = α1 + α2x

11.7 Euclidean Fit
In fitting data to a combination of functions, the least squares method used Eq. (44) as a measure of how far the
proposed function is from the data. If you’re fitting to a straight line (or plane if you have more variables) there’s
another way to picture the distance. Instead of measuring the distance from a point to the curve vertically using
only y, measure it as the perpendicular distance to the line. Why should this be any better? It’s not, but it does
have different uses, and the primary one is data compression.
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y

x

Do this in two dimensions, fitting the given data to a straight line, and to describe the line I’ll use vector
notation, where the line is ~u + α~v and the parameter α varies over the reals. First I need to answer the simple
question: what is the distance from a point to a line? The perpendicular distance from ~w to this line requires
that

d2 =
(
~w − ~u− α~v

)2
be a minimum. Differentiate this with respect to α and you have

(~w − ~u− α~v
)
.
(
− ~v

)
= 0 implying αv2 =

(
~w − ~u

)
.~v

For this value of α what is d2?

d2 =
(
~w − ~u

)2
+ α2v2 − 2α~v .

(
~w − ~u

)
=
(
~w − ~u

)2 − 1

v2

[
(~w − ~u ) .~v

]2 (49)

Is this plausible? (1) It’s independent of the size of ~v, depending on its direction only. (2) It depends on only the
difference vector between ~w and ~u, not on any other aspect of the vectors. (3) If I add any multiple of ~v to ~u,
the result is unchanged. See problem 37. Also, can you find an easier way to get the result? Perhaps one that
simply requires some geometric insight?

The data that I’m trying to fit will be described by a set of vectors ~wi, and the sum of the distances squared
to the line is

D2 =
N∑
1

(
~wi − ~u

)2 − N∑
1

1

v2

[
(~wi − ~u ) .~v

]2
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Now to minimize this among all ~u and ~v I’ll first take advantage of some of the observations that I made in the
preceding paragraph. Because the magnitude of ~v does not matter, I’ll make it a unit vector.

D2 =
∑(

~wi − ~u
)2 −∑[

(~wi − ~u ) . v̂
]2

(50)

Now to figure out ~u, I note that I expect the best fit line to go somewhere through the middle of the set of data
points, so move the origin to the “center of mass” of the points.

~wmean =
∑

~wi/N and let ~w′i = ~wi − ~wmean and ~u′ = ~u− ~wmean

then the sum
∑

~w′i = 0 and

D2 =
∑

w′2i +Nu′2 −
∑

(~w′i . v̂)
2 −N(~u′ . v̂)2 (51)

This depends on four variables, u′x, u′y, vx and vy. If I have to do derivatives with respect to all of them, so be
it, but maybe I can use some geometric insight to simplify the calculation. I can still add any multiple of v̂ to
~u without changing this expression. That means that for a given ~v the derivative of D2 as I change ~u′ in that
particular direction is zero. It’s only as I change ~u′ perpendicular to the direction of ~v that D2 changes. The
second and fourth term involve u′2 − (~u′ . v̂ )2 = u′2(1 − cos2 θ) = u′2 sin2 θ, where this angle θ is the angle
between ~u′ and ~v. This is the perpendicular distance to the line (squared). Call it u′⊥ = u′ sin θ.

D2 =
∑

w′2i −
∑

(~w′i . v̂)
2 +Nu′2 −N(~u′ . v̂)2 =

∑
w′2i −

∑
(~w′i . v̂)

2 +Nu′2⊥

The minimum of this obviously occurs for ~u′⊥ = 0. Also, because the component of ~u′ along the direction of ~v
is arbitrary, I may as well take it to be zero. That makes ~u′ = 0. Remember now that this is for the shifted ~w′

data. For the original ~wi data, ~u is shifted to ~u = ~wmean.

D2 =
∑

w′2i −
∑

(~w′i . v̂)
2 (52)

I’m not done. I still have to find the direction of v̂. That is, I have to find the minimum of D2 subject to
the constraint that |v̂| = 1. Use Lagrange multipliers (section 8.12).
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Minimize D2 =
∑

w′2i −
∑

(~w′i .~v )2 subject to φ = v2
x + v2

y − 1 = 0

The independent variables are vx and vy, and the problem becomes

∇
(
D2 + λφ

)
= 0, with φ = 0

Do the differentiations with respect to the independent variables and you have two linear equations for vx and vy,

− ∂

∂vx

∑(
w′xivx + w′yivy

)2
+ λ2vx = 0 or

−
∑

2
(
w′xivx + w′yivy

)
wxi + λ2vx = 0

−
∑

2
(
w′xivx + w′yivy

)
wyi + λ2vy = 0

(53)

Correlation, Principal Components
The correlation matrix of this data is

(C) =
1

N

( ∑
w′2xi

∑
wxiw

′
yi∑

w′yiw
′
xi

∑
w′2yi

)
The equations (53) are (

Cxx Cxy

Cyx Cyy

)(
vx

vy

)
= λ′

(
vx

vy

)
(54)

where λ′ = λ/N . This is a traditional eigenvector equation, and there is a non-zero solution only if the determinant
of the coefficients equals zero. Which eigenvalue do I pick? There are two of them, and one will give the best fit
while the other gives the worst fit. Just because the first derivative is zero doesn’t mean you have a minimum
of D2; it could be a maximum. Here the answer is that you pick the larger eigenvalue. You can see why this is
plausible by looking at the special case for which all the data lie along the x-axis, then Cxx > 0 and all the other
components of the matrix = 0. The eigenvalues are Cxx and zero, and the corresponding eigenvectors are x̂ and
ŷ respectively. Clearly the best fit corresponds to the former, and the best fit line is the x-axis. The general form
of the best fit line is (now using the original coordinate system for the data)

αv̂ +
1

N

∑
~wi = αv̂ + ~wmean
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and this v̂ is the eigenvector having the largest eigenvalue. More generally, look at Eq. (52) and you see that
that lone negative term is biggest if the ~w ’s are in the same direction (or opposite) as v̂.

y

x

This establishes the best fit to the line in the Euclidean sense. What
good is it? It leads into the subject of Principal Component Analysis and of
Data Reduction. The basic idea of this scheme is that if this fit is a good one,
and the original points lie fairly close to the line that I’ve found, I can replace
the original data with the points on this line. The nine points in this figure
require 9× 2 = 18 coordinates to describe their positions. The nine points that
approximate the data, but that lie on the line and are closest to the original
points require 9 × 1 = 9 coordinates along this line. Of course you have some
overhead in the data storage because you need to know the line. That takes
three more data (~u and the angle of v̂), so the total data storage is 12 numbers.
See problem 38

This doesn’t look like much of a saving, but if you have 106 points you go from 2 000 000 numbers to
1 000 003 numbers, and that starts to be significant. Remember too that this is only a two dimensional problem,
with only two numbers for each point. With more coordinates you will sometimes achieve far greater savings.
You can easily establish the equation to solve for the values of α for each point, problem 38. The result is

αi =
(
~wi − ~u

)
. v̂

11.8 Differentiating noisy data
Differentiation involves dividing a small number by another small number. Any errors in the numerator will be
magnified by this process. If you have to differentiate experimental data this will always happen. If it is data from
the output of a Monte Carlo calculation the same problem will arise.

Here is a method for differentiation that minimizes the sensitivity of the result to the errors in the input.
Assume equally spaced data where each value of the dependent variable f(x) is a random variable with mean〈
f(x)

〉
and variance σ2. Follow the procedure for differentiating smooth data and expand in a power series. Let

h = 2k and obtain the derivative between data points.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · ·
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f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) + · · ·

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) + · · ·

I’ll seek a formula of the form

f ′(0) = α
[
f(k)− f(−k)

]
+ β

[
f(3k)− f(−3k)

]
. (55)

I am assuming that the variance of f at each point is the same, σ2, and that the fluctuations in f at different
points are uncorrelated. The last statement is, for random variables f1 and f2,〈(

f1 −
〈
f1

〉)(
f2 −

〈
f2

〉)〉
= 0 which expands to

〈
f1f2

〉
=
〈
f1

〉〈
f2

〉
. (56)

Insert the preceding series expansions into Eq. (55) and match the coefficients of f ′(0). This gives an
equation for α and β:

2kα+ 6kβ = 1. (57)

One way to obtain another equation for α and β is to require that the k3f ′′′(0) term vanish; this leads back to
the old formulas for differentiation, Eq. (11). Instead, require that the variance of f ′(0) be a minimum.〈(

f ′(0)−
〈
f ′(0)

〉)2〉
=
〈[
α
(
f(k)−

〈
f(k)

〉)
+ α

(
f(−k)−

〈
f(−k)

〉)
+ · · ·

]2〉
= 2σ2α2 + 2σ2β2 (58)

This comes from the fact that the correlation between say f(k) and f(−3k) vanishes, and that all the individual
variances are σ2. That is, 〈(

f(k)−
〈
f(k)

〉)(
f(−k)−

〈
f(−k)

〉)〉
= 0

along with all the other cross terms. Problem: minimize 2σ2(α2 + β2) subject to the constraint 2kα+ 6kβ = 1.
It’s hardly necessary to resort to Lagrange multipliers for this problem.

Eliminate α:

d

dβ

[(
1

2k
− 3β

)2

+ β2

]
= 0 =⇒ −6

(
1

2k
− 3β

)
+ 2β = 0

=⇒ β = 3/20k, α = 1/20k
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f ′(.5h) ≈ −3f(−h)− f(0) + f(h) + 3f(2h)

10h
, (59)

and the variance is 2σ2(α2 + β2) = σ2/5h2. In contrast, the formula for the variance in the standard four point
differentiation formula Eq. (10), where the truncation error is least, is 65σ2/72h2, which is 4.5 times larger.

When the data is noisy, and most data is, this expression will give much better results for this derivative.
Can you do even better? Of course. You can for example go to higher order and both decrease the truncation
error and minimize the statistical error.

11.9 Partial Differential Equations
I’ll illustrate the ideas involved here and the difficulties that occur in only the simplest example of a PDE, a first
order constant coefficient equation in one space dimension

ut + cux = 0, (60)

where the subscript denotes differentiation with respect to the respective variables. This is a very simple sort of
wave equation. Given the initial condition that at t = 0, u(0, x) = f(x), you can easily check that the solution is

u(t, x) = f(x− ct). (61)

The simplest scheme to carry data forward in time from the initial values is a generalization of Euler’s
method for ordinary differential equations

u(t+ ∆t, x) = u(t, x) + ut(t, x)∆t

= u(t, x)− ux(t, x)c∆t

= u(t, x)− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
, (62)

where to evaluate the derivative, I’ve used the two point differentiation formula.
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In this equation, the value of u at point (∆t, 4∆x) depends on the values at (0, 3∆x), (0, 4∆x), and
(0, 5∆x). This diagram shows the scheme as a picture, with the horizontal axis being x and the vertical axis t.
You march the values of u at the grid points forward in time (or backward) by a set of simple equations.

The difficulties in this method are the usual errors, and more importantly, the instabilities that can occur.
The errors due to the approximations involved can be classified in this case by how they manifest themselves on
wavelike solutions. They can lead to dispersion or dissipation.

I’ll analyze the dispersion first. Take as initial data u(t, x) = A cos kx (or if you prefer, eikx). The exact
solution will be A cos(kx − ωt) where ω = ck. Now analyze the effect of the numerical scheme. If ∆x is very
small, using the discrete values of ∆x in the iteration give an approximate equation

ut = − c

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
.

A power series expansion in ∆x gives, for the first two non-vanishing terms

ut = −c
[
ux +

1

6
(∆x)2uxxx

]
. (63)

So, though I started off solving one equation, the numerical method more nearly represents quite a different
equation. Try a solution of the form A cos(kx− ωt) in this equation and you get

ω = c

[
k − 1

6
(∆x)2k3

]
, (64)

and you have dispersion of the wave. The velocity of the wave, ω/k, depends on k and so it depends on its
wavelength or frequency.

The problem of instabilities is more conveniently analyzed by the use of an initial condition u(0, x) = eikx,
then Eq. (62) is

u(∆t, x) = eikx − c∆t

2∆x

[
eik(x+∆x) − eik(x−∆x)

]
= eikx

[
1− ic∆t

∆x
sin k∆x

]
. (65)
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The n-fold iteration of this, therefore involves only the nth power of the bracketed expression; that’s why the
exponential form is easier to use in this case. If k∆x is small, the first term in the expansion of the sine says that
this is approximately

eikx
[
1− ikc∆t

]n
,

and with small ∆t and n = t/∆t a large number, this is

eikx

[
1− ikct

n

]n

≈ eik(x−ct).

Looking more closely though, the object in brackets in Eq. (65) has magnitude

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]1/2

> 1. (66)

so the magnitude of the solution grows exponentially. This instability can be pictured as a kind of negative
dissipation. This growth is reduced by requiring kc∆t� 1.

Given a finite fixed time interval, is it possible to get there with arbitrary accuracy by making ∆t small
enough? With n steps = t/∆t, rn is

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]t/2∆t

= [1 + α]β

=
[
[1 + α]1/α

]αβ
≈ eαβ

= exp

[
c2t∆t

2(∆x)2
sin2 k∆x

]
,

so by shrinking ∆t sufficiently, this is arbitrarily close to one.
There are several methods to avoid some of these difficulties. One is the Lax-Friedrichs method:

u(t+ ∆t, x) =
1

2

[
u(t, x+ ∆x) + u(t, x−∆x)

]
− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
. (67)
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By appropriate choice of ∆t and ∆x, this will have r ≤ 1, causing a dissipation of the wave. Another scheme is
the Lax-Wendroff method.

u(t+ ∆t, x) = u(t, x)− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
+
c2(∆t)2

2(∆x)2
[
u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

]
. (68)

This keeps one more term in the power series expansion.
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Problems

11.1 Show that a two point extrapolation formula is

f(0) ≈ 2f(−h)− f(−2h) + h2f ′′(0).

11.2 Show that a three point extrapolation formula is

f(0) ≈ 3f(−h)− 3f(−2h) + f(−3h) + h3f ′′′(0).

11.3 Solve x2 − a = 0 by Newton’s method, showing graphically that in this case, no matter what the initial
guess is (positive or negative), the sequence will always converge. Find

√
2. (This is the basis for the library

square root algorithm on some computers.)

11.4 Find all real roots of e−x = sinx to ±10−4.

11.5 The first root r1 of e−ax = sin x is a function of the variable a > 0. Find dr1/da at a = 1 by two means.
First find r1 for some values of a near 1 and use a four-point differentiation formula. Second, use analytical
techniques on the equation to solve for dr1/da and evaluate the derivative in terms of the known value of the
root from the previous problem.

11.6 Evaluate erf(1) = 2√
π

∫ 1
0 dt e

−t2

11.7 The principal value of an integral is (a < x0 < b)

P

∫ b

a

f(x)

x− x0
dx = lim

ε→0

[∫ x0−ε

a

f(x)

x− x0
dx+

∫ b

x0+ε

f(x)

x− x0
dx

]
.
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Show that an equal spaced integration scheme to evaluate such an integral is

P

∫ +h

−h

f(x)

x
dx = f(h)− f(−h)− 2

9
h3f ′′′(0).

Also, an integration scheme of the Gaussian type is

√
3
[
f(h
/√

3)− f(−h
/√

3)
]
+

h5

675
fv(0).

11.8 Devise a two point Gaussian integration with errors for the class of integrals∫ +∞

−∞
dx e−x2

f(x).

Find what polynomial has roots at the points where f is to be evaluated. See problem 7.26.

11.9 Same as the previous problem, but make it a three point method.

11.10 Find two and three point Gauss methods for∫ ∞

0
dx e−xf(x).

What polynomials are involved here? Look up Laguerre.

11.11 In numerical differentiation it is possible to choose the interval too small. Every computation is done to
a finite precision. (a) Do the simplest numerical differentiation of some specific function and take smaller and
smaller intervals. What happens when the interval gets very small? (b) To analyze the reason for this behavior,
assume that every number in the two point differentiation formula is kept to a fixed number of significant figures
(perhaps 7 or 8). How does the error vary with the interval? What interval gives the most accurate answer?
Compare this theoretical answer with the experimental value found in the first part of the problem.
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11.12 The same phenomenon caused by roundoff errors occurs in integration. For any of the integration schemes
discussed here, analyze the dependence on the number of significant figures kept and determine the most accurate
interval. (Surprise?)

11.13 Compute the solution of y′ = 1 + y2 and check the numbers in the table where that example was given,
(37).

11.14 If in the least square fit to a linear combination of functions, the result is constrained to pass through one
point, so that

∑
αµfµ(x0) = K is a requirement on the α’s, show that the result becomes

a = C−1
[
b+ λf0

]
,

where f0 is the vector fµ(x0) and λ satisfies

λ
〈
f0, C

−1f0

〉
= K −

〈
f0, C

−1b
〉
.

11.15 Find the variances in the formulas (8) and (10) for f ′, assuming noisy data. Ans: σ2/2h2, 65σ2/72h2

11.16 Derive Eqs. (56), (57), and (58).

11.17 The Van der Pol equation arises in (among other places) nonlinear circuits and leads to self-exciting
oscillations as in multi-vibrators

d2x

dt2
− ε(1− x2)

dx

dt
+ x = 0.

Take ε = .3 and solve subject to any non-zero initial conditions. Solve over many periods to demonstrate the
development of the oscillations.

11.18 Find a formula for the numerical third derivative. Cf. (2.13)

11.19 The equation resulting from the secant method, Eq. (7), can be simplified by placing everything over a
common denominator,

(
f(x2)− f(x1)

)
. Explain why this is a bad thing to do, how it can lead to inaccuracies.
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11.20 Rederive the first Gauss integration formula Eq. (24) without assuming the symmetry of the result∫ +h

−h
f(x) dx ≈ αf(β) + γf(δ).

11.21 Derive the coefficients for the stable two-point Adams method.

11.22 By putting in one more parameter in the differentiation algorithm for noisy data, it is possible both to
minimize the variance in f ′ and to eliminate the error terms in h2f ′′′. Find such a 6-point formula for the
derivatives halfway between data points OR one for the derivatives at the data points (with errors and variance).

11.23 In the same spirit as the method for differentiating noisy data, how do you interpolate noisy data?
That is, use some extra points to stabilize the interpolation against random variations in the data. To be
specific, do a midpoint interpolation for equally spaced points. Compare the variance here to that in Eq. (3).
Ans: f(0) ≈ [f(−3k) + f(−k) + f(k) + f(3k)]/4, σ2 is 4.8 times smaller

11.24 Find the dispersion resulting from the use of a four point formula for ux in the numerical solution of the
PDE ut + cux = 0.

11.25 Find the exact dispersion resulting from the equation

ut = −c
[
u(t, x+ ∆x)− u(t, x−∆x)

]
/2∆x.

That is, don’t do the series expansion on ∆x.

11.26 Compute the dispersion and the dissipation in the Lax-Friedrichs and in the Lax-Wendroff methods.

11.27 In the simple iteration method of Eq. (66), if the grid points are denoted x = m∆x, t = n∆t, where n
and m are integers (−∞ < n,m < +∞), the result is a linear, constant-coefficient, partial difference equation.
Solve subject to the initial condition

u(0,m) = eikm∆x.

11.28 Lobatto integration is like Gaussian integration, except that you require the end-points of the interval to
be included in the sum. The interior points are left free. Three point Lobatto is the same as Simpson; find the
four point Lobatto formula. The points found are roots of P ′n−1.
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11.29 From the equation y′ = f(x, y), one derives y′′ = fx +ffy. Derive a two point Adams type formula using
the first and second derivatives, with error of order h5 as for the standard four-point expression. This is useful
when the analytic derivatives are easy. The form is

y(0) = y(−h) + β1y
′(−h) + β2y

′(−2h) + γ1y
′′(−h) + γ2y

′′(−2h)

Ans: β1 = −h/2, β2 = 3h/2, γ1 = 17h2/12, γ2 = 7h2/12

11.30 Using the same idea as in the previous problem, find a differential equation solver in the spirit of the
original Euler method, (30), but doing a parabolic extrapolation instead of a linear one. That is, start from
(x0, y0) and fit the initial data to y = α + β(x − x0) + γ(x − x0)

2 in order to take a step. Ans: y(h) =
y0 + hf(0, y0) +

(
h2/2

)[
fx(0, y0) + fy(0, y0)f(0, y0)

]
11.31 Show that the root finding algorithm of Eq. (7) is valid for analytic functions of a complex variable with
complex roots.

11.32 In the Runge-Kutta method, pick one of the other choices for the value of D2f(0, y0) in Eq. (35). How
many function evaluations will it require at each step?

11.33 Sometimes you want an integral where the data is known outside the domain of integration. Find an

integration scheme for
∫ h
0 f(x) dx in terms of f(h), f(0), and f(−h). Ans: [−f(−h) + 8f(0) + 5f(h)]h/12,

error ∝ h4

11.34 When you must subtract two quantities that are almost the same size, you can find yourself trying to carry
ridiculously many significant figures in intermediate steps. If a and b are very close and you want to evaluate√
a−
√
b, devise an algorithm that does not necessitate carrying square roots out to many more places than you

want in the final answer. Write a = b+ ε.

11.35 Repeat the previous problem but in a more symmetric fashion. Write a = x+ ε and b = x− ε. Compare
the sizes of the truncation errors. Ans: ε/

√
x, −ε3/8x5/2

11.36 The value of π was found in the notes by integrating 4/(1 + x2) from zero to one using Simpson’s rule
and five points. Do the same calculation using Gaussian integration and two points.
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11.37 Derive Eq. (49).
(b) Explain why the plausibility arguments that follow it actually say something.

11.38 After you’ve done the Euclidean fit of data to a straight line and you want to do the data reduction
described after Eq. (54), you have to find the coordinate along the line of the best fit to each point. This is
essentially the problem: Given the line (~u and v̂) and a point (~w), the new reduced coordinate is the α in ~u+αv̂
so that this point is closest to ~w. What is it? You can do this the hard way, with a lot of calculus and algebra,
or you can draw a picture and write the answer down.

11.39 Data is given as (xi, yi) = {(1, 1), (2, 2), (3, 2)}. Compute the Euclidean best fit line. Also find the
coordinates, αi, along this line and representing the reduced data set.
Ans: ~u = (2, 5/3) v̂ = (0.88167, 0.47186) α1 = −1.1962 α2 = 0.1573 α3 = 1.0390
The approximate points are (0.945, 1.102), (2.139, 1.741), (2.916, 2.157)
[It may not warrant this many significant figures, but it should make it easier to check your work.]



Tensors

You can’t walk across a room without using a tensor (the pressure tensor). You can’t balance the wheels on
your car without using a tensor (the inertia tensor). You definitely can’t understand Einstein’s theory of gravity
without using tensors (many of them).

Some of this material overlaps that of chapter 7, but I will extend it in a different direction. The first
examples will then be familiar.

12.1 Examples
A tensor is a particular type of function. Before presenting the definition, some examples will clarify what I mean.
Start with a rotating rigid body, and compute its angular momentum. Pick an origin and assume that the body
is made up of N point masses mi at positions described by the vectors ~ri (i = 1, 2, . . . , N). The angular velocity
vector is ~ω. For each mass the angular momentum is ~ri × ~pi = ~ri × (mi~vi). The velocity ~vi is given by ~ω × ~ri
and so the angular momentum of the ith particle is mi~ri × (~ω × ~ri). The total angular momentum is therefore

m1

m2

m3

~ω

~L =
N∑

i=1

mi~ri × (~ω × ~ri). (1)

The angular momentum, ~L, will depend on the distribution of mass within the body and upon the angular velocity.
Write this as

~L = I(~ω ),

where the function I is called the tensor of inertia.
For a second example, take a system consisting of a mass suspended by six springs. At equilibrium the

springs are perpendicular to each other. If now a (small) force ~F is applied to the mass it will undergo a

displacement ~d. Clearly, if ~F is along the direction of any of the springs (call these the x, y, and z axes), then

the displacement ~d will be in the same direction as ~F . Suppose however that ~F is halfway between the k1 and k2

springs, and further that the spring k2 was taken from a railroad locomotive while k1 is a watch spring. Obviously

354
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in this case ~d will be mostly in the x direction (k1) and is not aligned with ~F . In any case there is a relation

between ~d and ~F ,
~d = f

(
~F
)
. (2)

The function f is a tensor.

In both of these examples, the functions involved were vector valued functions of vector variables. They
have the further property that they are linear functions, i.e. if α and β are real numbers,

I(α~ω1 + β~ω2) = αI(~ω1) + βI(~ω2), f
(
α~F1 + β ~F2

)
= αf

(
~F1

)
+ βf

(
~F2

)
,

These two properties are the first definition of a tensor. (A generalization will come later.) There’s a point

here that will probably cause some confusion. Notice that in the equation ~L = I(~ω), the tensor is the function
I. I didn’t refer to “the function I(~ω)” as you commonly hear in casual discussions. The reason is that I(~ω),

which equals ~L, is a vector, not a tensor. It is the output of the function I after the independent variable ~ω
has been fed into it. For an analogy, retreat to the case of a real valued function of a real variable. In common
language, you would look at the equation y = f(x) and say that f(x) is a function, but it’s better to say that
f is a function, and that f(x) is the single number obtained by feeding the number x to f in order to obtain
the number f(x). In this language, f is regarded as containing a vast amount of information, all the relations
between x and y. f(x) however is just a single number. Think of f as the whole graph of the function and f(x)
as telling you one point on the graph. This apparently trivial distinction will often make no difference, but there
are a number of cases (particularly here) where a misunderstanding of this point will cause confusion.

Definition of “Function”
An abstract definition of a function is useful: X and Y are sets (possibly the same set) and x and y are elements
of these sets (x ∈ X, y ∈ Y). A new set F is formed consisting of some collection of ordered pairs of elements,
one from X and one from Y. That is, a typical element of the set F would be (x1, y1) where x1 ∈ X and y1 ∈ Y.
Such a set is called a “relation” between X and Y.

This relation is not yet a function. One additional item is needed. We now require of F that if (x, y1) ∈ F
and (x, y2) ∈ F then y1 = y2. This is the statement that the function is single-valued. The ordinary notation for
a function is y = F (x); in the language of sets we say (x, y) ∈ F. The set F is the function. You can picture it
as a graph, containing all the information about the function; it is by definition single-valued.
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x2 + y2 = R2 is a relation between X and Y, but y =
√
R2 − x2 is a function. The domain of a function

is the set of elements x such that there is a y with (x, y) ∈ F. The range is the set of y such that there is an x
with (x, y) ∈ F.

Another physical example of a tensor is the dielectric tensor relating the electric displacement vector ~D to
the electric field vector ~E:

~D = ε( ~E ).

For the vacuum, or more generally for an isotropic linear medium, this function is nothing more than multiplication
by a scalar,

~D = ε ~E.

In a crystal however the two fields ~D and ~E are not in the same direction, though the relation between them is
still linear for small fields. This is analogous to the case above with a particle attached to a set of springs. The
electric field polarizes the crystal more easily in some directions than in others.

The stress-strain relation in a crystal is a more complex situation that can also be described in terms of
tensors. When a stress is applied, the crystal will distort slightly and this relation of strain to stress is, for small
stress, a linear one. You will be able to use the notion of a tensor to describe what happens. In order to do
this however it will be necessary to expand the notion of “tensor” to include a larger class of functions. This
generalization will require some preliminary mathematics.

Functional
Terminology: A functional is a real (scalar) valued function of one or more vector variables. In particular, a linear
functional is a function of one vector variable satisfying the linearity requirement.

f(α~v1 + β~v2) = αf(~v1) + βf(~v2). (3)

A simple example of such a functional is
f(~v ) = ~A .~v, (4)

where ~A is a fixed vector. In fact, because of the existence of a scalar product, all linear functionals are of this
form, a result that is embodied in the following theorem, the representation theorem for linear functionals.

Let f be a linear functional: that is, f is a scalar valued function of one vector variable and is linear
in that variable, f(~v ) is a real number and

f(α~v1 + β~v2) = αf(~v1) + βf(~v2) then, (5)

there is a unique vector, ~A, such that f(~v ) = ~A .~v for all ~v.
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Now obviously the function defined by ~A .~v, where ~A is a fixed vector, is a linear functional. The burden
of this theorem is that all linear functionals are of precisely this form.

Proof: Case I: It’s possible that f(~v ) equals zero for all ~v. This is the trivial case where ~A = 0.
Case II: f is not identically zero. Even here however there will generally be some vectors around where

f(~v ) = 0. Denote by M the set of all vectors where f(~v ) = 0. M is itself a vector space. This follows because
the function f is linear. I.e., if ~v1 and ~v2 are in M [f(~v1) = f(~v2) = 0], then

f(α~v1 + β~v2) = αf(~v1) + βf(~v2) = 0.

Denote by M⊥ the set of vectors that are perpendicular to every vector in M . A picture of what’s happening is
this:

M

M⊥

or maybe

M

M⊥

In three dimensions M could form a plane (two dimensional) and then M⊥ is the one dimensional line
perpendicular to this plane. Alternatively, M could be one dimensional and then M⊥ is the plane perpendicular
to this line. (In fact, the first case will turn out to be correct.) Not only is M a vector space, but M⊥ is too,
because if both ~v1 and ~v2 are perpendicular to some given vector (in M) then so is α~v1 + β~v2.

Since by assumption f(~v ) is not zero for all vectors, there is at least one vector in M⊥. Call it ~ω 6= 0.
Consequently all scalar multiples of ~ω are in M too; f(c~ω) = cf(~ω)

Let ~A =
~ωf(~ω )

|~ω |2
. (6)

Claim: This does the job as suggested in the statement of the theorem: f(~v ) = ~A .~v for all ~v. To show
this, first demonstrate that M⊥ is one dimensional. Let ~ω1 and ~ω2 be any two vectors in M⊥ (that is, f is
non-zero for each). Consider

f(α~ω1 + β~ω2) = αf(~ω1) + βf(~ω2).
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Let β =
−αf(~ω1)

f(~ω2)
.

With this choice then, f(α~ω1 + β~ω2) = 0, meaning that the combination is in M . But if a vector is in M , and
at the same time it perpendicular to every vector in M , then it must be the zero vector.

α~ω1 + β~ω2 = 0,

or, ~ω2 is a constant times ~ω1. This is just the statement that M⊥ is one dimensional.
Any vector in M⊥ is then of the form α~ω, and

~A .
(
α~ω
)

=
(
α~ω
)
. ~ωf(~ω )

|~ω|2
=
α~ω . ~ωf(~ω )

|~ω|2
= αf(~ω) = f(α~ω),

so the theorem is true for these vectors.
Let ~v be any vector in M . By the definition of M , f(~v ) = 0. Also ~ω is perpendicular to M , so

~ω .~v = 0 = ~A .~v, and you have agreement here too.
Finally, any vector can be written as the unique sum of a vector in M and one in M⊥. This is just a matter

finding the projection of ~v1 along M⊥ and subtracting it from ~v to get the vector in M .

~v = ~v1 + ~v2

f(~v ) = f(~v1 + ~v2) =f(~v1) + f(~v2)

= ~A . v1 + 0

= ~A . v. 2

v

v

v

⊥M

1

For an easier proof, see problem 3.

Multilinear Functionals
Functionals can be generalized to more than one variable. A bilinear functional is a scalar valued function of two
vector variables, linear in each

T (~v1, ~v2) = a scalar

T (α~v1 + β~v2, ~v3) = αT (~v1, ~v3) + βT (~v2, ~v3)

T (~v1, α~v2 + β~v3) = αT (~v1, ~v2) + βT (~v1, ~v3).

(7)
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Similarly for multilinear functionals, with as many arguments as you want.
Now apply the representation theorem for functionals to the subject of tensors. Start with a bilinear

functional: 0
2T (~v1, ~v2) is a scalar. This function of two variables can be looked on as a function of one variable

by holding the other one temporarily fixed. Say ~v2 is held fixed, then 0
2T (~v1, ~v2) defines a linear functional on the

variable ~v1. Apply the representation theorem now and the result is

0
2T (~v1, ~v2) = ~A .~v1.

The vector ~A however will depend (linearly) on the choice of ~v2. It defines a new function that I’ll call 1
1T

~A = 1
1T (~v2). (8)

This defines a tensor 1
1T , a vector valued function of a vector. The above paragraph shows that from a

bilinear functional you can construct a linear vector function and vice versa. With this close association between
the two concepts it is natural to extend the definition of a tensor to include bilinear functionals. To be precise, I
used a different name for the vector-valued function of one vector variable (11T ) and for the scalar-valued function
of two vector variables (02T ). This may be overly fussy, and it’s common practice to use the same symbol (T ) for
both, with the hope that the context will make clear which one you actually mean.

Until I get tired of doing so however, I’ll follow this (unconventional) notation and indicate the number of
arguments by a preceding subscript, and the nature of the output by a preceding superscript. Eventually, I’ll drop
these indices, hoping that it will be clear from context which one I mean. The rank of the tensor is the sum of
these two indices.

The next extension of the definition follows naturally from the previous reformulation. A tensor of nth rank
is an n-linear functional, or any one of the several types of functions that can be constructed from it by the
preceding argument. The meaning and significance of the last statement should become clear a little later. In
order to clarify the meaning of this terminology, some physical examples are in order. The tensor of inertia was
mentioned before:

~L = 1
1I
(
~ω
)
.

The dielectric tensor related ~D and ~E:
~D = 1

1ε
(
~E
)
.
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The conductivity tensor relates current to the electric field:

~ = 1
1σ
(
~E
)
.

In general this is not just a scalar factor, and for the a.c. case σ is a function of frequency.

∆

∆ F

cut

A

The stress tensor in matter is defined as follows: If a body has forces on it (compression
or twisting or the like) or even internal defects arising from its formation, one part of the
body will exert a force on another part. This can be made precise by the following device:
Imagine making a cut in the material, then because of the internal forces, the two parts will
tend to move with respect to each other. Apply enough force to prevent this motion. Call it
∆~F . Typically for small cuts ∆~F will be proportional to the area of the cut. The area vector
is perpendicular to the cut and of magnitude equal to the area. For small areas you have
differential relation d~F = 1

1S
(
d ~A
)
. This function S is called the stress tensor or pressure tensor.

There is another second rank tensor called the strain tensor. I described it qualitatively in section 9.2 and
I’ll simply add here that it is a second rank tensor. When you apply stress to a solid body it will develop strain.
This defines a function with a second rank tensor as input and a second rank tensor as output. It is the elasticity
tensor and it has rank four (22E).

So far, the physically defined tensors have been vector-valued functions of vector variables, and I haven’t
used the n-linear functional idea directly. However there is a very simple example of such a tensor:

work = ~F . ~d.

This is a scalar valued function of the two vectors ~F and ~d. This is of course true for the scalar product of any
two vectors ~a and ~b

0
2g
(
~a,~b

)
= ~a .~b. (9)

0
2g is a bilinear functional called the metric tensor. There are many other physically defined tensors that you will
encounter later. In addition I would like to emphasize that although the examples given here will be in three
dimensions, the formalism developed will be applicable to any number of dimensions.

12.2 Components
Up to this point, all that I’ve done is to make some rather general statements about tensors and I’ve given no
techniques for computing with them. That’s the next step. I’ll eventually develop the complete apparatus for
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computation in an arbitrary basis, but for the moment it’s a little simpler to start out with the more common
orthonormal basis vectors. (Recall that an orthonormal basis is an independent set of orthogonal unit vectors,
such as x̂, ŷ, ẑ.) Some of this material was developed in chapter seven, but I’ll duplicate some of it. Start off by
examining a second rank tensor, viewed as a vector valued function

~u = 1
1T (~v ).

The vector ~v can be written in terms of the three basis vectors line x̂, ŷ, ẑ. Or, as I shall denote them ê1, ê2, ê3
where

|ê1| = |ê2| = |ê3| = 1, and ê1 . ê2 = 0 etc. (10)

In terms of these independent vectors, ~v has components v1, v2, v3:

~v = v1ê1 + v2ê2 + v3ê3. (11)

The vector ~u = 1
1T (~v ) can also be expanded in the same way:

~u = u1ê1 + u2ê2 + u3ê3. (12)

Look at 1
1T (~v ) more closely in terms of the components

1
1T (~v ) = 1

1T (v1ê1 + v2ê2 + v3ê3)

= v1
1
1T (ê1) + v2

1
1T (ê2) + v3

1
1T (ê3)

(by linearity). Each of the three objects 1
1T (ê1),

1
1T (ê2),

1
1T
(
ê3
)

is a vector, which means that you can expand
each one in terms of the original unit vectors

1
1T (ê1) = T11ê1 + T21ê2 + T31ê3
1
1T (ê2) = T12ê1 + T22ê2 + T32ê3
1
1T (ê3) = T13ê1 + T23ê2 + T33ê3

or more compactly, 1
1T (êi) =

∑
j

Tjiêj . (13)

The numbers Tij (i, j = 1, 2, 3) are called the components of the tensor in the given basis. These numbers will
depend on the basis chosen, just as do the numbers vi, the components of the vector ~v. The ordering of the
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indices has been chosen for later convenience, with the sum on the first index of the Tji. This equation is the
fundamental equation from which everything else is derived. (It will be modified when non-orthonormal bases are
introduced later.)

Now, take these expressions for 1
1T (êi) and plug them back into the equation ~u = 1

1T (~v ):

u1ê1 + u2ê2 + u3ê3 = 1
1T (~v ) = v1

[
T11ê1 + T21ê2 + T31ê3

]
+v2

[
T12ê1 + T22ê2 + T32ê3

]
+v3

[
T13ê1 + T23ê2 + T33ê3

]
=

[
T11v1 + T12v2 + T13v3

]
ê1

+
[
T21v1 + T22v2 + T23v3

]
ê2

+
[
T31v1 + T32v2 + T33v3

]
ê3.

Comparing the coefficients of the unit vectors, you get the relations among the components

u1 = T11v1 + T12v2 + T13v3

u2 = T21v1 + T22v2 + T23v3

u3 = T31v1 + T32v2 + T33v3.

(14)

More compactly:

ui =
3∑

j=1

Tijvj or

u1

u2

u3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 v1
v2
v3

 . (15)

At this point it is convenient to use the summation convention (first* version). This convention says that if
a given term contains a repeated index, then a summation over all the possible values of that index is understood.
With this convention, the previous equation is

ui = Tijvj . (16)

* See section 12.4 for the later modification and generalization.
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Notice how the previous choice of indices has led to the conventional result, with the first index denoting the row
and the second the column of a matrix.

Now to take an example and tear it apart. Define a tensor by the equations

1
1T (x̂) = x̂+ ŷ, T (ŷ) = ŷ, (17)

where x̂ and ŷ are given orthogonal unit vectors. These two expressions, combined with linearity, suffice to
determine the effect of the tensor on all linear combinations of x̂ and ŷ. (This is a two dimensional problem.)

To compute the components of the tensor pick a set of basis vectors. The obvious ones in this instance are

ê1 = x̂, and ê2 = ŷ.

By comparison with Eq. (13), you can read off the components of T .

T11 = 1 T21 = 1

T12 = 0 T22 = 1.

Write these in the form of a matrix as in Eq. (15)

(
Trow, column

)
=

(
T11 T12

T21 T22

)
=

(
1 0
1 1

)
,

and writing the vector components in the same way, the components of the vectors x̂ and ŷ are respectively(
1
0

)
and

(
0
1

)
.

The original equations (17), that defined the tensor become the components(
1 0
1 1

)(
1
0

)
=

(
1
1

)
and

(
1 0
1 1

)(
0
1

)
=

(
0
1

)
.

Change of Basis
The above exercise is fairly trivial because the definition of the tensor lent itself to a particular basis. For practice,
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take the same tensor and compute its components in a different basis. Note: The method I’ll describe here is
rather clumsy and inefficient. It is however conceptually simple. For an efficient way to do this you can skip to
the development following equation (22).

’e
e

e

e1

1

2
2

^
^

^

’
^ ê′1 =

x̂+ ŷ√
2

=
ê1 + ê2√

2

ê′2 =
ŷ − x̂√

2
=
ê2 − ê1√

2

(18)

In order to illustrate what is happening, I’ll carry out this computation by two methods, first: the hard way, and
second: the easy way.

You already have the components Tij in one basis. They come from the defining equations (13),

1
1T (êi) = Tjiêj .

The analogous equation using ê′j defines the components of T in the other basis.

1
1T
(
ê′i
)

= T ′jiê
′
j .

To relate one set of components to the other, the key is, as usual, linearity. The left side of this last equation is
(i = 1)

1
1T
(
ê′1
)

= 1
1T

(
ê1 + ê2√

2

)
=

1√
2

[
1
1T (ê1) + 1

1T (ê2)
]

=
1√
2

[
T11ê1 + T21ê2 + T12ê1 + T22ê2

]
. (19)

The left side is (still i = 1)

T ′11ê
′
1 + T ′21ê

′
2 =

1√
2

[
T ′11(ê1 + ê2) + T ′21(ê2 − ê1)

]
. (20)
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The two expressions (19) and (20) represent the same thing, so equate the coefficients of ê1 and of ê2:

T11 + T12 = T ′11 − T ′21

T21 + T22 = T ′11 + T ′21.

Solve these simultaneous equations for T ′11 and T ′21 get

T ′11 =
1

2

[
T11 + T12 + T21 + T22

]
=

3

2
, T ′21 =

1

2

[
T21 + T22 − T11 − T12

]
=

1

2
. (21)

Repeat the process for 1
1T (ê′2):

1
1T (ê′2) = 1

1T

(
ê2 − ê1√

2

)
=

1√
2

[
1
1T (ê2)− 1

1T (ê1)
]

=
1√
2

[
T12ê1 + T22ê2 − T11ê1 − T21ê2

]
.

The left side of this is

T ′12ê
′
1 + T ′22ê

′
2 =

1√
2

[
T ′12(ê1 + ê2) + T ′22(ê2 − ê1)

]
.

Comparing coefficients, you have

T12 − T11 = T ′12 − T ′22, T22 − T21 = T ′12 + T ′22.

Solve for T ′12 and T ′22:

T ′12 =
1

2

[
T12 − T11 + T22 − T21

]
= −1

2
, T ′22 =

1

2

[
T22 − T + 21− T12 + T11

]
= +

1

2
.

So, the matrix of components in the primed basis is(
T ′11 T ′12
T ′21 T ′22

)
=

(
3/2 −1/2
1/2 1/2

)
.
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As a check to be sure nothing has gone wrong, it’s easy to compute the effect of 1
1T on the original vectors

x̂ and ŷ in this basis. Refer to the diagram accompanying equation (18),

x̂ =
ê′1 − ê′2√

2
, and ŷ =

ê′1 + ê′2√
2

.

or in component form, respectively

1√
2

(
1
−1

)
, and

1√
2

(
1
1

)
.

Operate on these column matrices with the above matrix.(
3/2 −1/2
1/2 1/2

)
1√
2

(
1
−1

)
=

1√
2

(
2
0

)
=

1√
2

(
1
−1

)
+

1√
2

(
1
1

)
and

(
3/2 −1/2
1/2 1/2

)
1√
2

(
1
1

)
=

1√
2

(
1
1

)
,

so that both of these agree with the starting point, Eq. (17)

Change of Basis (more efficient)
Next, in order to illustrate the second (and much easier) method for changing bases it’s necessary to note some
further relationships between vector valued functions and bilinear functionals. Namely, I shall prove that the Tij

defined by Eq. (13) satisfies
Tij = 0

2T (êi, êj), (22)

where this bilinear functional is the one associated with the vector valued function by

0
2T (~u,~v ) = ~u . 1

1T (~v ).

In order to prove this relationship, just write ~u and ~v in terms of their components:

~u = uiêi, ~v = viêi, and 1
1T (~v ) = vi

1
1T (êi)

then 0
2T (~u, ~v ) = 0

2T (uiêi, vj êj) = uivj
0
2T (êi, êj)
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But,
~u . 1

1T (~v ) = u iêi . vj
1
1T (~ei)

= uivj êi .(Tkj êk)

= uivjTij .

The last step comes from the orthonormality of the ê’s. Because ui and vj are arbitrary, this shows that

Tij = 0
2T (êi, êj) (23)

This is the equation that makes the transformation of bases simple. If you want to compute T ′ij this is

T ′ij = 0
2T (ê′i, ê

′
j)

Each of the ê′i is expressible In terms of the êi. For example

T ′11 = 0
2T (ê′1, ê

′
1) = 0

2T

(
ê1 + ê2√

2
,
ê1 + ê2√

2

)
Use linearity in each of the variables, and you get

T ′11 =
1

2

[
0
2T (ê1, ê1) + 0

2T (ê1, ê2) + 0
2T (ê2, ê1) + 0

2T (ê2, ê2)
]

=
1

2

[
T11 + T12 + T21 + T22

]
This is the same result as in Eq. (21), and it equals 3/2. Another case would be T ′12

T ′12 = 0
2T (ê′1, ê

′
2) = 0

2T

(
ê1 + ê2√

2
,
ê2 − ê1√

2

)
=

1

2

[
T12 − T11 + T22 − T21

]
,

with the same results as before.
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The generalization of this statement to an arbitrary rotation should now be obvious. If the components of
the tensor are Tij in the basis êi, and if the components are desired in another basis ê′i, you need only to solve
the geometrical problem of expressing the vectors ê′i in terms of the vectors êi

Say ê′i = αjiêj ,

where the α’s are a set of numbers. Then,

T ′ij = 0
2T (ê′i, ê

′
j) = 0

2T (αkiêk, α`j ê`) = αkiα`j Tk` (24)

and you have the solution.
Don’t worry about properties of the α’s for the moment. In most problems you realistically encounter, it’s

simpler to use the definitions of the relationships and some plane or solid geometry.

12.3 Relations between Tensors
Drop the clumsy extra indices on the tensors. You should be able to tell from context whether you’re dealing
with 1

1T or 0
2T , and I will simply call it T .

Go back to the fundamental representation theorem for linear functionals and see what it looks like in
component form. Evaluate f(~v ), where ~v = viêi. (The linear functional has one vector argument and a scalar
output.)

f(~v ) = f(viêi) = vi f(êi). (25)

Denote the set of numbers f(êi) (i = 1, 2, 3) by Ai = f(êi), in which case,

f(v̂ ) = Aivi = A1v1 + A2v2 + A3v3.

Now it is clear that the vector ~A of the theorem is just

~A = A1ê1 + A2ê2 + A3ê3. (26)

Again, examine the problem of starting from a bilinear functional and splitting off one of the two arguments
in order to obtain a vector valued function of a vector. I want to say

T (~u, ~v ) = ~u .T (~v )
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for all vectors ~u and ~v. You should see that using the same symbol, T , for both functions doesn’t cause any
trouble. Given the bilinear functional, what is the explicit form for T (~v )? The answer is most readily found by a
bit of trial and error until you reach the following result:

T (~v ) = êi T (êi, ~v ). (27)

(Remember the summation convention.) To verify this relation, multiply by an arbitrary vector, ~u = uj êj :

~u .T (~v ) = (uj êj) . êi T (êi, ~v ),

which is, by the orthonormality of the ê’s,

uj δji T (êi, ~v ) = ui T (êi, ~v ) = T (~u, ~v ).

This says that the above expression is in fact the correct one. Notice also the similarity between this construction
and the one in equation (26) for ~A.

Now take T (~v ) from Eq. (27) and express ~v in terms of its components

~v = vj êj , then T (~v ) = êi T (êi, vj êj) = êi T (êi, êj)vj .

The i component of this expression is
T (êi, êj)vj = Tijvj ,

a result already obtained in Eq. (16).
There’s a curiosity involved here; why should the left hand entry in T ( , ) be singled out to construct

êi T (êi, ~v )?

Why not use the right hand one instead? Answer: No reason at all. It’s easy enough to find out what happens
when you do this. Examine

êi T (~v, êi) ≡ T̃ (~v ). (28)

Put ~v = vj êj , and you get
êi T (vj êj , êi) = êi T (êj , êi)vj .
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The ith component of which is
Tjivj

If you write this as a square matrix times a column matrix, the only difference between this result and that of
Eq. (16) is that the matrix is transposed. This vector valued function T̃ is called the transpose of the tensor T .
The nomenclature comes from the fact that in the matrix representation, the matrix of one equals the transpose
of the other’s matrix.

By an extension of the language, this applies to the other form of the tensor, T :

T̃ (~u, ~v ) = T (~v, ~u )

Symmetries
Two of the common and important classifications of matrices, symmetric and antisymmetric, have their reflections
in tensors. A symmetric tensor is one that equals its transpose and an antisymmetric tensor is one that is the
negative of its transpose. It is easiest to see the significance of this when the tensor is written in the bilinear
functional form:

Tij = T (êi, êj).

This matrix will equal its transpose if and only if

T (~u, ~v ) = T (~v, ~u )

for all ~u and ~v. Similarly, if for all ~u and ~v

T (~u, ~v ) = −T (~v, ~u )

then T = −T̃ . Notice that it doesn’t matter whether I speak of T as a scalar-valued function of two variables or
as a vector-valued function of one; the symmetry properties are the same.

From these definitions, it is possible to take an arbitrary tensor and break it up into its symmetric part and
its antisymmetric part:

T =
1

2

(
T + T̃

)
+

1

2

(
T − T̃

)
= TS + TA (29)

TS(~u, ~v ) =
1

2

[
T (~u, ~v ) + T (~v, ~u )

]
TA(~u, ~v ) =

1

2

[
T (~u, ~v )− T (~v, ~u )

]
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Many of the common tensors such as the tensor of inertia and the dielectric tensor are symmetric. The
magnetic field tensor in contrast, is antisymmetric. The basis of this symmetry in the case of the dielectric tensor
is in the relation for the energy density in an electric field,

∫
~E . d ~D.* Apply an electric field in the x direction,

then follow it by adding a field in the y direction; undo the field in the x direction and then undo the field in the
y direction. The condition that the energy density returns to zero is the condition that the dielectric tensor is
symmetric.

All of the above discussions concerning the symmetry properties of tensors were phrased in terms of second
rank tensors. The extensions to tensors of higher rank are quite easy. For example in the case of a third rank
tensor viewed as a 3-linear functional, it would be called completely symmetric if

T (~u, ~v, ~w ) = T (~v, ~u, ~w ) = T (~u, ~w, ~v ) = etc.

for all permutations of ~u, ~v, ~w, and for all values of these vectors. Similarly, if any interchange of two arguments
changed the value by a sign,

T (~u, ~v, ~w ) = −T (~v, ~u, ~w ) = +T (~v, ~w, ~u ) = etc.

then the T is completely antisymmetric. It is possible to have a mixed symmetry, where there is for example
symmetry on interchange of the arguments in the first and second place and antisymmetry between the second
and third.

Alternating Tensor
A curious (and very useful) result about antisymmetric tensors is that in three dimensions there is, up to a factor,
only one totally antisymmetric third rank tensor; it is called the “alternating tensor.” So, if you take any two such
tensors, 0

3Λ and 0
3Λ

′, then one must be a multiple of the other. (The same holds true for the nth rank totally
antisymmetric tensor in n dimensions.)

* This can be proved by considering the energy in a plane parallel plate capacitor, which is, by definition of
potential,

∫
V dq. The Potential difference V is the magnitude of the ~E field times the distance between the the

capacitor plates. [V = Ed.] ( ~E is perpendicular to the plates by ∇ × ~E = 0.) The normal component of ~D

related to q by ∇ . ~D = ρ. [A ~D . n̂ = q.] Combining these, and dividing by the volume gives the energy density

as
∫
~E . d ~D.
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Proof: Consider the function Λ − αΛ′ where α is a scalar. Pick any three independent vectors ~v10, ~v20,
~v30 as long as Λ′ on this set is non-zero. Let

α =
Λ(~v10, ~v20, ~v30)

Λ′(~v10, ~v20, ~v30)
(30)

(If Λ′ gives zero for every set of ~v s then it’s a trivial tensor, zero.) This guarantees that Λ− αΛ′ will vanish for
at least one set of values of the arguments. Now take a general set of three vectors ~v1, ~v2, and ~v3 and ask for
the effect of Λ − αΛ′ on them. ~v1, ~v2, and ~v3 can be expressed as linear combinations of the original ~v10, ~v20,
and ~v30. Do so. Substitute into Λ− αΛ′, use linearity and notice that all possible terms give zero.

The above argument is unchanged in a higher number of dimensions. It is also easy to see that you cannot
have a totally antisymmetric tensor of rank n + 1 in n dimensions. In this case, one of the n + 1 variables
would have to be a linear combination of the other n. Use linearity, and note that when any two variables equal
each other, antisymmetry forces the result to be zero. These observations imply that the function must vanish
identically. See also problem 19.

12.4 Non-Orthogonal Bases
The next topic is the introduction of more general computational techniques. These will lift the restriction on the
type of basis that can be used for computing components of various tensors. Until now, the basis vectors have
formed an orthonormal set

|êi| = 1, êi . êj = 0 if i 6= j

Consider instead a more general set of vectors ~ei. These must be independent. That is, in three dimensions they
are not coplanar. Other than this there is no restriction. Since by assumption the vectors ~ei span the space you
can write

~v = viêi.

with the numbers vi being as before the components of the vector ~v.

NOTE: Here is a change in notation. Before, every index
was a subscript. (It could as easily have been a super-
script.) Now, I want to make a careful distinction between
sub- and superscripts. They will have different meanings.
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Reciprocal Basis
Immediately, when you do the basic scalar product you find complications. If ~u = uj~ej , then

~u .~v = (uj~ej) .(vi~ei) = ujvi~ej .~ej .

But since the ~ei aren’t orthonormal, this is a much more complicated result than the usual scalar product such as

uxvy + uyvy + uzvz.

You can’t assume that ~e1 .~e2 = 0 any more. In order to obtain a result that looks as simple as this familiar form,
introduce an auxiliary basis: the reciprocal basis. (This trick will not really simplify the answer; it will be the
same as ever. It will however be in a neater form and hence easier to manipulate.) The reciprocal basis is defined
by the equation

~ei .~e
j = δji =

{
1 if i = j
0 if i 6= j

(31)

The ~e j ’s are vectors. The index is written as a superscript to distinguish it from the original basis, ~ej .

e

1

2
1

e

e

e

2

To elaborate on the meaning of this equation, ~e 1 is perpendicular to the plane defined by ~e2 and ~e3 and is
therefore more or less in the direction of ~e1. Its magnitude is adjusted so that the scalar product

~e 1 .~e1 = 1.

The “direct basis” and “reciprocal basis” are used in solid state physics and especially in describing X-ray
diffraction in crystallography. In that instance, the direct basis is the fundamental lattice of the crystal and the
reciprocal basis would be defined from it. The reciprocal basis is used to describe the wave number vectors of
scattered X-rays.
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The basis reciprocal to the reciprocal basis is the direct basis.
Now to use these things: Expand the vector ~u in terms of the direct basis and ~v in terms of the reciprocal

basis.
~u = ui~ei and ~v = vj~e

j . Then ~u .~v = (ui~ei) .(vj~e
j)

= uivjδ
j
i

= uivi = u1v1 + u2v2 + u3v3.

Notation: The superscript on the components (ui) will refer to the components in the direct basis (~ei); the
subscripts (vj) will come from the reciprocal basis (~e j). You could also have expanded ~u in terms of the
reciprocal basis and ~v in the direct basis, then

~u .~v = uiv
i = uivi (32)

Summation Convention
At this point I modify the previously established summation convention: Like indices in a given term are to be
summed when one is a subscript and one is a superscript. Furthermore the notation is designed so that this is the
only kind of sum that should occur. If you find a term such as uivi then this means that you made a mistake.

The scalar product now has a simple form in terms of components (at the cost of introducing an auxiliary
basis set). Now for further applications to vectors and tensors.

Terminology: The components of a vector in the direct basis are called the contravariant components of
the vector: vi. The components in the reciprocal basis are called* the covariant components: vi.

Examine the component form of the basic representation theorem for linear functionals, as in Eqs. (25) and
(26).

f(~v ) = ~A .~v for all ~v.

Claim: ~A = ~e if(~ei) = ~eif(~e i)

The proof of this is as before: write ~v in terms of components and compute the scalar product ~A .~v.

~v = vi~ei. Then ~A .~v =
(
~e jf(~ej)

)
.
(
vi~ei
)

= vif(~ej)δ
j
i

= vif(~ei) = f(vi~ei) = f(~v ).

* These terms are of more historical than mathematical interest.
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Analogous results hold for the expression of ~A in terms of the direct basis.
You can see how the notation forced you into considering this expression for ~A. The summation convention

requires one upper index and one lower index, so there is practically no other form that you could even consider
in order to represent ~A.

The same sort of computations will hold for tensors. Start off with one of second rank. Just as there were
covariant and contravariant components of a vector, there will be covariant and contravariant components of a
tensor. T (~u, ~v ) is a scalar. Express ~u and ~v in contravariant component form:

~u = ui~ei and ~v = vj~ej . Then T (~u, ~v ) = T (ui~ei, v
j~ej)

= uivj T (~ei, ~ej)

= uivj Tij

The numbers Tij are called the covariant components of the tensor T .
Similarly, write ~u and ~v in terms of covariant components:

~u = ui~e
i and ~v = vj~e

j . Then T (~u, ~v ) = T (ui~e
i, vj~e

j)

= uivj T (~e i, ~e j)

= uivj T
ij

And T ij are the contravariant components of T . It is also possible to have mixed components:

T (~u, ~v ) = T (ui~e
i, vj~ej)

= uiv
j T (~e i, ~ej)

= uiv
j T i

j

As before, from the bilinear functional, a linear vector valued function can be formed such that

T (~u,~v ) = ~u .T (~v ) and T (~v ) = ~e iT (~ei, ~v )

= ~eiT (~e i, ~v )

For the proof of the last two lines, simply write ~u in terms of its contravariant or covariant components respectively.
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All previous statements concerning the symmetry properties of tensors are unchanged because they were
made in a way independent of basis, though it’s easy to see that the symmetry properties of the tensor are
reflected in the symmetry of the covariant or the contravariant components (but not in the mixed components
usually).

Metric Tensor
Take as an example the metric tensor:

g(~u,~v ) = ~u .~v.

The linear function found by pulling off the ~u from this is the identity operator.

g(~v ) = ~v

This tensor is symmetric, so this must be reflected in its covariant and contravariant components. Take as a basis
the vectors

e

2e

e

2

1e

1

Let |~e2| = 1 and |e1| = 2; the angle between them being 45◦. A little geometry shows that

|~e 1| = 1√
2

and |~e 2| =
√

2

Assume this problem is two dimensional in order to simplify things.
Compute the covariant components:

g11 = g(~e1, ~e1) = 4

g12 = g(~e1, ~e2) =
√

2

g21 = g(~e2, ~e1) =
√

2

g22 = g(~e2, ~e2) = 1

(
grc
)

=

(
4
√

2√
2 1

)
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Similarly
g11 = g(~e 1, ~e 1) = 1/2

g12 = g(~e 1, ~e 2) = −1/
√

2

g21 = g(~e 2, ~e 1) = −1/
√

2

g22 = g(~e 2, ~e 2) = 2

(
grc
)

=

(
1/2 −1/

√
2

−1/
√

2 2

)

The mixed components are

g1
1 = g(~e 1, ~e1) = 1

g1
2 = g(~e 1, ~e2) = 0

g2
1 = g(~e 2, ~e1) = 0

g2
2 = g(~e 2, ~e2) = 1

(
gr

c

)
=
(
δrc
)

=

(
1 0
0 1

)
(33)

I used r and c for the indices to remind you that these are the row and column variables. Multiply the first two
matrices together and you obtain the third one — the unit matrix. The matrix

(
gij
)

is therefore the inverse of

the matrix
(
gij
)
. This last result is not general, but is due to the special nature of the tensor g.

The question arises as before: how do you compute the components of a tensor in one basis when the
components are given in another basis. The question is answered as before: It is a problem in geometry to express
the new basis vectors in terms of the old one.

~e ′i = aj
i~ej (34)

The covariant components in the new system are (say for a second rank tensor)

T ′ij = T (~e ′i, ~e
′
j) = T (ak

i~ek, a
`
j~e`) = ak

ia
`
j Tk` (35)

Analogous equations will hold for the contravariant indices provided that you can find the reciprocal basis
vectors in the transformed system. That is, you need the vectors reciprocal to the ~e ′i in terms of the vectors
reciprocal to ~ei. Assume a relation:

~e ′i = b i
j ~e

j

You must find the b’s in terms of the a’s. The relationship must come from reciprocity relationships. Required:

~e ′i .~e ′j = δij =
(
b i
k ~e

k
)
.
(
~e`
)

= b i
k a

`
j ~e

k .~e` = b i
k a

`
j δ

k
` = b i

k a
k
j (36)
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In short, the matrix (b i
k ) is the inverse transpose of the matrix (ak

j). Recall, I’m using the convention that the
first index represents the row of the matrix and the second index the column, whether the index is up or down.

If you were to make the restriction to orthonormal bases then not only would the reciprocal and direct bases
be the same, the distinction between upper and lower indices would vanish, and necessarily all changes of basis
would be orthogonal transformations (rotations or reflections). In this case the above matrices (a) and (b) are
equal since an orthogonal matrix is equal to its inverse transpose.

Raising and Lowering
There is a particular basis change of general use. This is the change from direct to reciprocal basis or vice-versa.
It’s perfectly legitimate to look on this as a change of basis because these two sets of basis vectors both span the
space and so one must be expressible in terms of the other. The transformation is accomplished by means of the
components of the metric tensor:

~e i = gji~ej

You can prove this relation by multiplying both sides by ~e k.

~e k .~e i = ~e k . gji~ej = gjiδkj = gki

but this is just the definition of the components of g. Similarly,

~ei = gji~e
j

and the proof is the same, multiply by ~ek to get

~ek .~e i = ~ek . gji~e j = gjiδjk = gki

This operation also changes covariant components to contravariant and the reverse. It isn’t restricted to
vector components, but works for any rank tensor.

vi = gijvj , T ij = gikgj` Tk`, Tij = gik T
k
j , etc. (37)

These operations are called raising and lowering as you might expect, and one is the inverse of the other (consistent
with the matrix properties found in the special case of Eq. (33)). The sort of manipulation that it represents is
one of the more common tools in manipulating tensors.
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12.5 Manifolds and Fields
Until now, all definitions and computations were done in one vector space. This is the same state of affairs
as when you once learned vector algebra; the only things to do then were addition, scalar products, and cross
products. Eventually however vector calculus came up and you learned about vector fields and gradients and the
like. You have now set up enough apparatus to make the corresponding step here. First I would like to clarify
just what is meant by a vector field, because I am sure there will be some confusion on this point no matter how
clearly you think you understand the concept. Take a typical vector field such as the electrostatic field ~E. ~E will
be some function of position (presumably satisfying Maxwell’s equations) as indicated at the six different points.

E
E E E E4 E

5
61 2 3

Does it make any sense to take the vector ~E3 and add it to the vector ~E5? These are after all, vectors;
can’t you always add one vector to another vector? Suppose there is also a magnetic field present, say with
vectors ~B1, ~B2 etc. , at the same points. Take the magnetic vector at the point #3 and add it to the electric
vector there. The reasoning would be exactly the same as the previous case; these are vectors, therefore they
can be added. The second case is palpable nonsense, as should be the first. The electric vector is defined as the
force per charge at a point. If you take two vectors at two different points, then the forces are on two different
objects, so the sum of the forces is not a force on anything — it isn’t even defined.

You can’t add an electric vector at one point to an electric vector at another point.
These two vectors occupy different vector spaces. At a single point in space there are
many possible vectors; at this one point, the set of all possible electric vectors forms a
vector space because they can be added to each other and multiplied by scalars while
remaining at the same point. By the same reasoning the magnetic vectors at a point
form a vector space. Also the velocity vectors. You could not add a velocity vector to
an electric field vector even at the same point however. These too are in different vector
spaces. You can picture all these vector spaces as attached to the points in the manifold and somehow sitting
over them.

From the above discussion you can see that even to discuss one type of vector field, a vector space must be
attached to each point of space. If you wish to make a drawing of such a system, It is at best difficult. In three
dimensional space you could have a three dimensional vector space at each point. A crude way of picturing this



12—Tensors 380

is to restrict to two dimensions and draw a line attached to each point, representing the vector space attached
to that point. This pictorial representation won’t be used in anything to follow however, so you needn’t worry
about it.

The term “vector field” that I’ve been throwing around is just a prescription for selecting one vector out of
each of the vector spaces. Or, in other words, it is a function that assigns to each point a vector in the vector
space at that same point.

There is a minor confusion of terminology here in the use of the word “space.” This could be space in the
sense of the three dimensional Euclidean space in which we are sitting and doing computations. Each point of the
latter will have a vector space associated with it. To reduce confusion (I hope) I shall use the word “manifold”
for the space over which all the vector spaces are built. Thus: To each point of the manifold there is associated a
vector space. A vector field is a choice of one vector from each of the vector spaces over the manifold. This is a
vector field on the manifold. In short: The word “manifold” is substituted here for the phrase “three dimensional
Euclidean space.”

(A comment on generalizations. While using the word manifold as above, everything said about it will in
fact be more general. For example it will still be acceptable in special relativity with four dimensions of space-time.
It will also be correct in other contexts where the structure of the manifold is non-Euclidean.)

The point that I wish to emphasize here is that most of the work on tensors is already done and that the
application to fields of vectors and fields of tensors is in a sense a special case. At each point of the manifold
there is a vector space to which all previous results apply.

In the examples of vector fields mentioned above (electric field, magnetic field, velocity field) keep your eye
on the velocity. It will play a key role in the considerations to come, even in considerations of other fields.

A word of warning about the distinction between a manifold and the vector spaces at each point of the
manifold. You are accustomed to thinking of three dimensional Euclidean space (the manifold) as a vector space
itself. That is, the displacement vector between two points is defined, and you can treat these as vectors just
like the electric vectors at a point. Don’t! Treating the manifold as a vector space will cause great confusion.
Granted, it happens to be correct in this instance, but in attempting to understand these new concepts about
vector fields (and tensor fields later), this additional knowledge will be a hindrance. For our purposes therefore
the manifold will not be a vector space. The concept of a displacement vector is therefore not defined.

Just as vector fields were defined by picking a single vector from each vector space at various points of
the manifold, a scalar field is similarly an assignment of a number (scalar) to each point. In short then, a scalar
field is a function that gives a scalar (the dependent variable) for each point of the manifold (the independent
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variable).

For each vector space, you can discuss the tensors that act on that space and so, by picking one such tensor
for each point of the manifold a tensor field is defined.

A physical example of a tensor field (of second rank) is stress in a solid. This will typically vary from
point to point. But at each point a second rank tensor is given by the relation between infinitesimal area vectors
and internal force vectors at that point. Similarly, the dielectric tensor in an inhomogeneous medium will vary
with position and will therefore be expressed as a tensor field. Of course even in a homogeneous medium the
dielectric tensor would be a tensor field relating ~D and ~E at the same point. It would however be a constant
tensor field. Like a uniform electric field, the tensors at different points could be thought of as “parallel” to each
other (whatever that means).

12.6 Coordinate Systems
In order to obtain a handle on this subject and in order to be able to do computations, it is necessary to put a
coordinate system on the manifold. From this coordinate system there will come a natural way to define the basis
vectors at each point (and so reciprocal basis vectors too).

There is no need to restrict the discussion to rectangular or even to orthogonal coordinate systems. A
coordinate system is a means of identifying different points of the manifold by different sets of numbers. This
is done by specifying a set of functions: x1, x2, x3, which are the coordinates. (There will be more in more
dimensions of course.) These functions are real valued functions of points in the manifold. The coordinate axes
are defined as in the drawing by

2

x

x

x   = constant

x   = constant
x   = constant

x   = constant2
3

3
1

1

Specify the equations x2 = constant and x3 = constant for the x1 coordinate axis. For example in rectan-
gular coordinates x1 = x, x2 = y, x3 = z, and the x-axis is the line y = 0, and z = 0.
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In spherical coordinates
x1 = r, x2 = θ, x3 = φ

and the radial coordinate axis is defined by the equations θ =,constant and φ = constant.
The use of x1, x2, and x3 (xi) for the coordinate system is a matter of convenience. It will make the

notation somewhat more uniform. Despite the use of superscripts, these are not the components of any vectors.

Coordinate Basis
In order to discuss components of vectors, I’ll need basis vectors. These are defined by the following considerations:
Imagine a particle moving around in the manifold. At each instant of time the particle will have a definite position.
It will also have a definite velocity. So far no coordinate system is needed. The position of the particle is typically
described by specifying its coordinates as functions of time, xi(t). The basis vectors at a point are defined so
that the following equation holds:

~v = ~ei
dxi

dt

The summation convention still holds. This is called a coordinate basis, and it will not necessarily be a set of
unit vectors that you are accustomed to such as (x̂, ŷ, ẑ) or (r̂, θ̂, φ̂).

Look at some special cases. First, rectangular coordinates. If a particle is moving along the x1-axis (= the
x-axis) then dx2/dt = 0 = dx3/dt. Also, the velocity will be in the x direction and of size dx1/dt. This gives

~e1 = x̂

as you would expect. Similarly
~e2 = ŷ, ~e3 = ẑ.

Second, examine plane polar coordinates, so there are only x1 and x2. Let x1 = r, and x2 = θ. A particle
moving on a straight line away from the origin will have a velocity

r̂
dr

dt
, which gives ~e1 = r̂.

If the particle is moving around a circle of radius r instead, then its velocity is

θ̂ r
dθ

dt
, which gives ~e2 = rθ̂ (38)
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this is no longer just a unit vector. Not only does it have dimensions of length but its magnitude varies from
point to point. Note that θ̂ is not one of the basis vectors in this notation.

Third example: a coordinate system again in a plane, but where the axes are not orthogonal to each other,
but are rectilinear anyway.

α
x

x

1

2

0 1 2

0

1

2

Still keep the definition

~v = ~ei
dxi

dt
= ~e1

dx1

dt
+ ~e2

dx2

dt
. (39)

If the particle moves along the x1-axis (or parallel to it) then by the definition of the axes, x2 is a constant
and dx2/dt = 0. Suppose that the coordinates measure centimeters, so that the perpendicular distance between
the lines is one centimeter. The distance between the points (0, 0) and (1, 0) is then 1 cm/ sinα = cscα cm. If
in ∆t = one second, particle moves from the first to the second of these points, ∆x1 = one cm, so dx1/dt =
1 cm/sec. The speed however, is cscα cm/sec because the distance moved is greater by that factor. This means
that

|~e1| = cscα

and this is greater than one; it is not a unit vector. The magnitudes of ~e2 is the same. The dot product of these
two vectors is ~e1 .~e2 = cosα/ sin2 α.

Reciprocal Coordinate Basis
The reciprocal basis vectors are constructed from the direct basis by the equation

~e i .~ej = δij

In rectangular coordinates the direct and reciprocal bases coincide because the basis is orthonormal. For the tilted
basis of Eq. (39),

~e2 .~e 2 = 1 = |~e2| |~e 2| cos
(
90◦ − α

)
= (cscα)|~e 2| sinα = |~e 2|
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The reciprocal basis vectors in this case are unit vectors.
In plane polar coordinates, it’s easy to verify that

~e 1 = r̂ and ~e 2 =
1

r
θ̂ (40)

The direct basis is defined so that the components of velocity are as simple as possible. In contrast, the
components of the gradient of a scalar field are equally simple provided that they are expressed in the reciprocal
basis. If you try to use the same basis for both you can, but the resulting equations are a mess.

In order to compute the components of gradφ (where φ is a scalar field) start with its definition, and
an appropriate definition should not depend on the coordinate system. It ought to be some sort of geometric
statement that you can translate into any particular coordinate system that you want. One way to define gradφ
is that it is that vector pointing in the direction of maximum increase of φ and equal in magnitude to dφ/ds
where s is the distance measured in that direction. This is the first statement in section 8.5. While correct, this
definition does not easily lend itself to computations.

Instead, think of the particle moving through the manifold. As a function of time it sees changing values
of φ. The time rate of change of φ as felt by this particle is given by a scalar product of the particle’s velocity
and the gradient of φ. This is essentially the same as Eq. (8.10), though phrased in a rather different way. Write
this statement in terms of coordinates

d

dt
φ
(
x1(t), x2(t), x3(t)

)
= ~v . gradφ

The left hand side is (by the chain rule)

∂φ

∂x1

∣∣∣∣
x2,x3

dx1

dt
+

∂φ

∂x2

∣∣∣∣
x1,x3

dx2

dt
+

∂φ

∂x3

∣∣∣∣
x1,x2

dx3

dt
=

∂φ

∂x1

dx1

dt
+

∂φ

∂x2

dx2

dt
+

∂φ

∂x3

dx3

dt
(41)

~v is expressed in terms of the direct basis by

~v = ~ei
dxi

dt
,

now express gradφ in the reciprocal basis

gradφ = ~e i
(
gradφ

)
i
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The way that the scalar product looks in terms of these bases, Eq. (32) is

~v . gradφ = ~ei
dxi

dt
.~e j
(
gradφ

)
j

= vi
(
gradφ

)
i

(42)

Compare the two equations (41) and (42) and you see

gradφ = ~e i ∂φ

∂xi
(43)

For a formal proof of this statement consider three cases. When the particle is moving along the x1 direction
(x2 & x3 constant) only one term appears on each side of (41) and (42) and you can divide by v1 = dx1/dt.
Similarly for x2 and x3. As usual with partial derivatives, the symbol ∂φ

/
∂xi assumes that the other coordinates

x2 and x3 are constant.
In the case of polar coordinates this equation for the gradient reads, using Eq. (40),

gradφ = ~e 1 ∂φ

∂x1
+ ~e 2 ∂φ

∂x2
=
(
r̂
)∂φ
∂r

+
(1

r
θ̂
)∂φ
∂θ

which is the standard result, Eq. (8.18). Notice again that the basis vectors are not dimensionless. They can’t
be because ∂φ/∂r doesn’t have the same dimensions as ∂φ/∂θ.

2

x

x

1

2

e 1

e 2

0 1 2

0

1

Example
I want an example to show that all this formalism actually gives the correct answer in a
special case for which you can also compute all the results in the traditional way. Draw
parallel lines a distance 1 cm apart and another set of parallel lines also a distance 1 cm
apart intersecting at an angle α between them. These will be the constant values of the
functions defining the coordinates, and will form a coordinate system labeled x1 and x2.
The horizontal lines are the equations x2 = 0, x2 = 1 cm, etc.

Take the case of the non-orthogonal rectilinear coordinates again. The components of gradφ in the ~e 1

direction is ∂φ/∂x1, which is the derivative of φ with respect to x1 holding x2 constant, and this derivative is
not in the direction along ~e 1, but in the direction where x2 = a constant and that is along the x1-axis, along ~e1.
As a specific example to show that this makes sense, take a particular φ defined by

φ(x1, x2) = x1

For this function gradφ = ~e 1 ∂φ

∂x1
+ ~e 2 ∂φ

∂x2
= ~e 1
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~e 1 is perpendicular to the x2-axis, the line x1 =constant, (as it should be). Its magnitude is the magnitude of
~e 1, which is one.

To verify that this magnitude is correct, calculate it directly from the definition. The magnitude of the
gradient is the magnitude of dφ/ds where s is measured in the direction of the gradient, that is, in the direction
~e 1.

dφ

ds
=

∂φ

∂x1

dx1

ds
= 1 . 1 = 1

Why 1 for dx1/ds? The coordinate lines in the picture are x1 = 0, 1, 2, . . .. When you move on the straight line
perpendicular to x2 = constant (~e 1 ), and go from x1 = 1 to x2 = 2, then both ∆x1 and ∆s are one.

Metric Tensor
The simplest tensor field beyond the gradient vector above would be the metric tensor, which I’ve been implicitly
using all along whenever a scalar product arose. It is defined at each point by

g(~a,~b ) = ~a .~b (44)

Compute the components of g in plane polar coordinates. The contravariant components of g are from Eq. (38)
and (40)

gij = ~e i .~e j =

(
1 0
0 1/r2

)
Covariant:

gij = ~ei .~ej =

(
1 0
0 r2

)
Mixed:

gi
j = ~e i .~ej =

(
1 0
0 1

)
12.7 Basis Change
If you have two different sets of basis vectors you can compute the transformation on the components in going
from one basis to the other, Eq. (34). In dealing with fields, a different set of basis vectors necessarily arises from
a different set of coordinates on the manifold. It is convenient to compute the transformation matrices directly
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in terms of the different coordinate functions. Call the two sets of coordinates xi and yi. Each of them defines
a set of basis vectors such that a given velocity is expressed as

~v = ~ei
dxi

dt
= ~e ′j

dyi

dt
(45)

What you need is an expression for ~e ′j in terms of ~ei at each point. To do this, take a particular path for the

particle — along the y1-direction (y2 & y3 constant). The right hand side is then

~e ′1
dy1

dt

Divide by dy1/dt to obtain

~e ′1 = ~ei
dxi

dt

/
dy1

dt

But this quotient is just

~e ′1 = ~ei
∂xi

∂y1

∣∣∣∣
y2,y3

And in general

~e ′j = ~ei
∂xi

∂yj
(46)

Do a similar calculation for the reciprocal vectors

gradφ = ~e i ∂φ

∂xi
= ~e ′j

∂φ

∂yj

Take the case for which φ = yk, then
∂φ

∂yj
=
∂yk

∂yj
= δkj

which gives

~e ′k = ~e i∂y
k

∂xi
(47)
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As in Eq. (36), the transformation matrices for the direct and the reciprocal basis are inverses of each other,
In the present context, this becomes

e ′k .~e ′j = δkj = ~e `∂y
k

∂x`
.~ei

∂xi

∂yj

= δ`i
∂yk

∂x`

∂xi

∂yj

=
∂yk

∂xi

∂xi

∂yj
=
∂yk

∂yj

The matrices ∂xi
/
∂yj and its inverse matrix, ∂yk

/
∂xi are called Jacobian matrices. When you do multiple

integrals and have to change coordinates, the determinant of one or the other of these matrices will appear as a
factor in the integral.

As an example, compute the change from rectangular to polar coordinates

x1 = x y1 = r x2 = y y2 = θ

x = r cos θ r =
√
x2 + y2 y = r sin θ θ = tan−1 y/x

~e ′j = ~ei
∂xi

∂yj

~e ′1 = ~e1
∂x1

∂y1
+ ~e2

∂x2

∂y1
= x̂

∂x

∂r
+ ŷ

∂y

∂r

= x̂ cos θ + ŷ sin θ = r̂

~e ′2 = ~e1
∂x1

∂y2
+ ~e2

∂x2

∂y2
= x̂

∂x

∂θ
+ ŷ

∂y

∂θ

= x̂(−r sin θ) + ŷ(r cos θ) = rθ̂

Knowing the change in the basis vectors, the change of the components of any tensor follows as before as
it did after Eq. (34).

A realistic example using non-orthonormal bases appears in special relativity. Here the manifold is four
dimensional instead of three and the coordinate changes of interest represent Lorentz transformations. Points in
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space-time (”events”) can be described by rectangular coordinates (ct, x, y, z), which are concisely denoted by
xi

i = (0, 1, 2, 3) where x0 = ct, x1 = x, x2 = y, x3 = z

The introduction of the factor c into x0 is merely a question of scaling. It also makes the units the same on all
axes.

The basis vectors associated with this coordinate system point along the directions of the axes.
This manifold is not Euclidean however so that these vectors are not unit vectors in the usual sense. We

have
~e0 .~e0 = −1 ~e1 .~e1 = 1 ~e2 .~e2 = 1 ~e3 .~e3 = 1

and they are orthogonal pairwise. The reciprocal basis vectors are defined in the usual way,

~e i .~ej = δij

so that
~e 0 = −~e0 ~e 1 = ~e1 ~e 1 = ~e1 ~e 1 = ~e1

The contravariant (also covariant) components of the metric tensor are

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = gij (48)

An observer moving in the +x direction with speed v will have his own coordinate system with which to
describe the events of space-time. The coordinate transformation is

x′0 = ct′ =
x0 − v

cx
1√

1− v2/c2
=

ct− v
cx√

1− v2/c2

x′1 = x′ =
x1 − v

cx
0√

1− v2/c2
=

x− vt√
1− v2/c2

x′2 = y′ = x2 = y x′3 = z′ = x3 = z

(49)
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You can check that these equations represent the transformation to an observer moving in the +x direction by
asking where the moving observer’s origin is as a function of time: It is at x′1 = 0 or x− vt = 0, giving x = vt
as the locus of the moving observer’s origin.

The graph of the coordinates is as usual defined by the equations (say for the x′0-axis) that x′1, x′2, x′3

are constants such as zero. Similarly for the other axes.

’

x   = x

x   = ct

1

1

0 0

e

e0

0

1

1
x   = x e

e

’ ’

’
’

’

x    = ct

Find the basis vectors in the transformed system by using equation (46).

~e ′j = ~ei
∂xi

∂yj

In the present case the yj are x′j and we need the inverse of the equations (49). They are found by changing v
to −v and interchanging primed and unprimed variables.

x0 =
x′0 + v

cx
′1√

1− v2/c2
x1 =

x′1 + v
cx

′0√
1− v2/c2

~e ′0 = ~ei
∂xi

∂x′0
= ~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

~e ′1 = ~ei
∂xi

∂x′1
= ~e0

v/c√
1− v2/c2

+ ~e1
1√

1− v2/c2

(50)

It is easy to verify that these new vectors point along the primed axes as they should. They also have the
property that they are normalized to plus or minus one respectively as are the original untransformed vectors.
(How about the reciprocal vectors?)
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As an example applying all this apparatus, do the transformation of the components of a second rank tensor,
the electromagnetic field tensor. This tensor is the function that acts on the current density (four dimensional
vector) and gives the force density (also a four-vector). Its covariant components are

(
Fij

)
= F

(
~ei, ~ej

)
=


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


where the E’s and B’s are the conventional electric and magnetic field components. Compute a sample

component of this tensor in the primed coordinate system.

F ′20 = F (~e ′2, ~e
′
0) = F

(
~e2, ~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

)

=
1√

1− v2/c2
F20 +

v/c√
1− v2/c2

F21

or in terms of the E and B notation,

E′y =
1√

1− v2/c2

[
Ey −

v

c
Bz

]
Since v is a velocity in the +x direction this in turn is

E′y =
1√

1− v2/c2

[
Ey +

1

c

(
~v × ~B

)
y

]
Except possibly for the factor in front of the brackets. this is a familiar, physically correct equation of elementary
electromagnetic theory. A charge is always at rest in its own reference system. In its own system, the only force it
feels is the electric force because its velocity with respect to itself is zero. The electric field that it experiences is
~E ′, not the ~E of the outside world. This calculation tells you that this force q ~E ′ is the same thing that I would
expect if I knew the Lorentz force law, ~F = q

[
~E + ~v × ~B

]
. The factor of

√
1− v2/c2 appears because force

itself has some transformation laws that are not as simple as you would expect.
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Problems

12.1 Does the function T defined by T (v) = v + c with c a constant satisfy the definition of linearity?

12.2 Let the set X be the positive integers. Let the set Y be all real numbers. Consider the following sets and
determine if they are relations between X and Y and if they are functions.

{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (−1, e)}
{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (2, e)}
{(0, 0), (1, 2.0), (3,−π), (4, 1.0), (2, e)}
{(0, 0), (5, 5.5), (5., π) (3,−2.0) (7, 8)}

12.3 Instead of the coordinate-free proof of the representation theorem for linear functionals, Eq. (5), give a

proof in terms of the usual orthonormal basis x̂, ŷ, ẑ by letting f act on them and constructing ~A in terms of its
components. Perhaps guess an answer and show that it works.

12.4 Starting from the definition of the tensor of inertia in Eq. (1) and using the defining equation for components
of a tensor, compute the components of I.

12.5 Find the components of the tensor relating ~d and ~F in the example of Eq. (2)

12.6 The product of tensors is defined to be just the composition of functions for the second rank tensor viewed as
a vector variable. If S and T are such tensors, then (ST )(v) = S(T (v)) (by definition) Compute the components
of ST in terms of the components of S and of T . Express the result both in terms of index notation and matrices.

12.7 The two tensors 1
1T and 1

1T̃ are derived from the same bilinear functional 0
2T . Prove that for arbitrary ~u

and ~v,
~u . 1

1T (~v ) = 1
1T̃ (~u ) .~v

(If it’s less confusing to remove all the sub- and superscripts, do so.)
(b) If you did this by writing everything in terms of components, do it again without components and just using
the nature of these as functions. (If you did in without components, do it again using components.)
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12.8 What is the significance of a tensor satisfying the relation T̃ [T (~v )] = T [T̃ (~v )] = ~v for all ~v?

12.9 Carry out the construction indicated in section 12.3 to show the dielectric tensor is symmetric.

12.10 Fill in the details of the proof that the alternating tensor is unique up to a factor.

12.11 Compute the components of such an alternating tensor in two dimensions.

12.12 Take an alternating tensor in three dimensions, pull off one of the arguments in order to obtain a vector
valued function of two vector variables. See what the result looks like, and in particular, write it out in component
form.

12.13 Take a basis ~e1 = 2x̂, ~e2 = x̂ + 2ŷ. Compute the reciprocal basis. Find the components of the vectors
~A = x̂− ŷ and ~B = ŷ in in each basis and compute ~A . ~B several different ways.

O A C

B

D

v

12.14 Show that if the direct basis vectors have unit length along the directions of
−→
OA

and
−−→
OB then the components of ~v in the direct basis are the lengths OA and OB. What

are the components in the reciprocal basis?

12.15 Derive the equations (37).

12.16 What happens to the components of the alternating tensor when a change of basis is
made? Show that the only thing that can happen is that all the components are multiplied
by the same number (defined to be the determinant of the transformation). Compute this
explicitly in two dimensions. Ans: The determinant

12.17 If a tensor (viewed as a function of two vector variables) has the property that it equals zero whenever
the two arguments are the same, T (~v,~v ) = 0, then it is antisymmetric. This is also true if it is a function of
more than two variables and the above equation holds on some pair of arguments. Consider ~v = α~u+ β ~w

12.18 If the components of the alternating tensor are (in three dimensions) eijk where e123 = 1, Compute eijk.
Compute

eijke`mk, eijke`jk, eijkeijk
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12.19 In three dimensions three non-collinear vectors from a point define a volume, that of the parallelepiped
included between them. This defines a number as a function of three vectors. Show that if the volume is allowed
to be negative when one of the vectors reverses that this defines a trilinear functional and that it is completely
antisymmetric, an alternating tensor. (Note problem 17.) If the units of volume are chosen to correspond to the
units of length of the basis vectors so that three one inch long perpendicular vectors enclose one cubic inch as
opposed to 16.387 cm3 then the functional is called ”the” alternating tensor. Find all its components.

12.20 Find the direct coordinate basis in spherical coordinates, also the reciprocal basis. Ans: r̂, θ̂/r, φ̂/r sin θ
(now which is it?)

12.21 Draw examples of the direct and reciprocal bases (to scale) for the example in Eq. (39). Do this for a
wide range of angles between the axes.

12.22 Show that the angle between two surfaces φ = constant and ψ = constant is

cos θ = gij∂iφ∂jψ
/
[gmn∂mφ∂nφg

pq∂pψ∂qψ
]1/2

where ∂i = ∂/∂xi. In particular, what is the angle between two coordinate surfaces x1 = constant and x2 =
constant?

12.23 Show that the area in two dimensions enclosed by the infinitesimal parallelogram between x1 and x1 +dx1

and x2 and x2 + dx2 is
√
gdx1 dx2 where g is the determinant of (gij).

12.24 Same as the preceding problem, but in three dimensions.

12.25 The divergence of a vector field is the limit of a surface integral divided by the enclosed volume, Eqs. (9.5)
and (9.9), and the result is that when you use a coordinate basis,

div ~F = lim
V→0

1

V

∮
~F . d ~A =

1
√
g

∂

∂xk

(√
gF k

)
Verify this result explicitly in cylindrical coordinates.
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12.26 Compute the transformation laws for the other components of the electromagnetic field tensor.

12.27 The divergence of a tensor field is defined as above for a vector field. T is a tensor viewed as a vector
valued function of a vector variable

div T = lim
V→0

1

V

∮
T
(
d ~A
)

It is a vector. Note: As defined here it requires the addition of vectors at two different points of the manifold,
so it must be assumed that you can move a vector over parallel to itself and add it to a vector at another point.
Had I not made the point in the text about not doing this, perhaps you wouldn’t have noticed the assumption
involved, but now do it anyway. Compute div T in rectangular coordinates.

12.28 Compute div T in cylindrical coordinates using both the coordinate basis and the usual unit vector (r̂, θ̂, ẑ)
basis.

12.29 Show that gijgj` = δi`.

12.30 If you know what it means for vectors at two different points to be parallel, give a definition for what it
means for two tensors to be parallel.

12.31 Fill in the missing steps in the derivation following Eq. (30), and show that the alternating tensor is unique
up to a factor.



Vector Calculus 2

There’s more to the subject of vector calculus than the material in chapter nine. There are a couple of types
of line integrals and there are some basic theorems that relate the integrals to the derivatives, sort of like the
fundamental theorem of calculus that relates the integral to the anti-derivative in one dimension.

13.1 Integrals
Recall the definition of the Riemann integral from section 1.6.∫ b

a
dx f(x) = lim

∆xk→0

N∑
k=1

f(ξk) ∆xk (1)

This refers to a function of a single variable, integrated along that one dimension.
The basic idea is that you divide a complicated thing into little pieces to get an approximate answer. Then

you refine the pieces into still smaller ones to improve the answer and finally take the limit as the approximation
becomes perfect.

k

∆

∆

x

y

k

What is the length of a curve in the plane? Divide the curve into a lot of small pieces,
then if the pieces are small enough you can use the Pythagorean Theorem to estimate the
length of each piece.

∆sk =
√

(∆xk)2 + (∆yk)2

The whole curve then has a length that you estimate to be the sum of all these intervals. Finally take the limit
to get the exact answer.∑

k

∆sk =
∑√

(∆xk)2 + (∆yk)2 −→
∫
ds =

∫ √
dx2 + dy2 (2)

How do you actually do this? That will depend on the way that you use to describe the curve itself. Start with
the simplest method and assume that you have a parametric representation of the curve:

x = f(t) and y = g(t)

396
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Then dx = ḟ(t)dt and dy = ġ(t)dt, so

ds =

√(
ḟ(t)dt

)2
+
(
ġ(t)dt

)2
=

√
ḟ(t)2 + ġ(t)2 dt

and the integral for the length is ∫
ds =

∫ b

a
dt

√
ḟ(t)2 + ġ(t)2

where a and b are the limits on the parameter t. Think of this as
∫
ds =

∫
v dt, where v is the speed.

Do the simplest example first. What is the circumference of a circle? Use the parametrization

x = R cos θ, y = R sin θ then ds =
√

(−R sin θ)2 + (R cos θ)2 dθ = Rdθ (3)

The circumference is then
∫
ds =

∫ 2π
0 Rdθ = 2πR. An ellipse is a bit more of a challenge; see problem 3.

∆ k
∆θk

r
rk

If the curve is expressed in polar coordinates you may find another formulation prefer-
able, though in essence it is the same. The Pythagorean Theorem is still applicable, but you
have to see what it says in these coordinates.

∆sk =
√

(∆rk)2 + (rk∆θk)2

If this picture doesn’t seem to show much of a right triangle, remember there’s a limit
involved, as ∆rk and ∆θk approach zero this becomes more of a triangle. The integral for the length of a curve
is then ∫

ds =

∫ √
dr2 + r2 dθ2

To actually do this integral you will pick a parameter to represent the curve, and that parameter may even be θ
itself. For an example, examine one loop of a logarithmic spiral: r = r0 e

kθ.

ds =
√
dr2 + r2 dθ2 =

√(
dr/dθ

)2
+ r2 dθ

The length of the arc from θ = 0 to θ = 2π is∫ √(
r0k ekθ

)2
+
(
r0 ekθ

)2
dθ =

∫ 2π

0
dθ r0 e

kθ
√
k2 + 1 = r0

√
k2 + 1

1

k

[
e2kπ − 1

]
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If k → 0 does this give the correct answer?

Weighted Integrals
The time for a particle to travel along a short segment of a path is dt = ds/v where v is the speed. The total
time along a path is of course the integral of dt.

T =

∫
dt =

∫
ds

v

How much time does it take a particle to slide down a curve under the influence of gravity? If the speed is
determined by gravity without friction, you can use conservation of energy to compute the speed. I’ll use the
coordinate y measured downward from the top point of the curve, then

y

x

mv2/2−mgy = E, so v =
√

(2E/m) + 2gy (4)

Suppose that this particle starts at rest from y = 0, then E = 0 and v =
√

2gy. Does the total time to reach a
specific point depend on which path you take to get there? Very much so.
1 Take the straight-line path from (0, 0) to (x0, y0). The path is x = y .x0/y0.

ds =
√
dx2 + dy2 = dy

√
1 + x2

0/y
2
0, so

T =

∫
ds

v
=

∫ y0

0

dy
√

1 + x2
0/y

2
0√

2gy
=
√

1 + x2
0/y

2
0

1√
2g

1

2

√
y0 =

1

2

√
x2

0 + y2
0√

2gy0
(5)

y

x2 There are an infinite number of possible paths, and another choice of path can give
a smaller or a larger time. Take another path for which it’s easy to compute the total
time. Drop straight down in order to pick up speed, then turn a sharp corner and coast
horizontally. Compute the time along this path and it is the sum of two pieces.∫ y0

0

dy√
2gy

+

∫ x0

0

dx√
2gy0

=
1√
2g

[
1

2

√
y0 +

x0√
y0

]
=

1√
2gy0

[
x0 + y0/2

]
(6)
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Which one takes a shorter time? See problem 9.
3 What if the path is a parabola, x = y2 .x0/y

2
0? It drops rapidly at first, picking up speed, but then takes a

more direct route to the end. Use y as the coordinate, then

dx = 2y .x0/y
2
0, and ds =

√(
4y2x2

0/y
4
0

)
+ 1dy

T =

∫
dx

v
=

∫ y0

0

√(
4y2x2

0/y
4
0

)
+ 1

√
2gy

dy

This is not an integral that you’re likely to have encountered yet. I’ll refer you to a large table of integrals, where
you can perhaps find it under the heading of elliptic integrals.

In more advanced treatments of optics, the time it takes light to travel along a path is of central importance
because it is related to the phase of the light wave along that path. In that context however, you usually see it
written with an extra factor of the speed of light.

cT =

∫
c ds

v
=

∫
n ds (7)

This last form, written in terms of the index of refraction, is called the optical path. Compare problems 2.37 and
2.39.

13.2 Line Integrals
Work, done on a point mass in one dimension is an integral. If the system is moving in three dimensions, but the
force happens to be a constant, then work is a dot product:

W =

∫ xf

xi

Fx(x) dx or W = ~F .∆~r

The general case for work on a particle moving along a trajectory in space is a line integral. It combines these
two equations into a single expression for the work along an arbitrary path for an arbitrary force. There is not
then any restriction to the elementary case of constant force.

The basic idea is a combination of Eqs. (1) and (2). Divide the specified curve into a number of pieces, at
the points {~rk}. Between points k− 1 and k you had the estimate of the arc length as

√
(∆xk)2 + (∆yk)2, but
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here you need the whole vector from ~rk−1 to ~rk in order to evaluate the work done as the mass moves from one
point to the next. Let ∆~rk = ~rk − ~rk−1, then

lim
|∆~rk|→0

N∑
k=1

~F (~rk) .∆~rk =

∫
~F (~r ) . d~r

0r
r r r r r r
1

2 3 4 5
6 (8)

This is the definition of a line integral.
How do you evaluate these integrals? To repeat what I did with Eq. (2), that will depend on the way that

you use to describe the curve itself. Start with the simplest method and assume that you have a parametric
representation of the curve: ~r(t), then d~r = ~̇r dt and the integral is∫

~F (~r ) . d~r =

∫
~F
(
~r (t)

)
. ~̇r dt

This is now an ordinary integral with respect to t. In many specific examples, you may find an easier way to
represent the curve, but this is something that you can always fall back on.

In order to see exactly where this is used, start with ~F = m~a, Take the dot product with d~r and manipulate
the expression.

~F = m
d~v

dt
, so ~F . d~r = m

d~v

dt
. d~r = m

d~v

dt
. d~r

dt
dt = md~v . d~r

dt
= m~v . d~v

or ~F . d~r =
m

2
d
(
~v .~v

) (9)

The integral of this from an initial point of the motion to a final point is∫ ~rf

~ri

~F . d~r =

∫
m

2
d
(
~v .~v

)
=
m

2

[
v2
f − v2

i

]
(10)

This is a standard form of the work-energy theorem in mechanics. In most cases you have to specify the whole
path, not just the endpoints, so this way of writing the theorem is somewhat misleading.
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Example: If ~F = Axyx̂+B(x2 +L2)ŷ, what is the work done going from point (0, 0) to (L,L) along the
three different paths indicated.?∫

C1

~F . d~r =

∫
[Fxdx+ Fydy] =

∫ L

0
dx 0 +

∫ L

0
dy B2L2 = 2BL3

∫
C2

~F . d~r =

∫ L

0
dxAx2 +

∫ L

0
dy B(y2 + L2) = AL3/3 + 4BL3/3∫

C3

~F . d~r =

∫ L

0
dy B(0 + L2) +

∫ L

0
dxAxL = BL3 + AL3/2

3

12

Gradient
What is the line integral of a gradient? Recall from section 8.5 and Eq. (8.10) that df = grad f . d~r. The integral
of the gradient is then ∫ 2

1
grad f . d~r =

∫
df = f2 − f1 (11)

where the indices represent the initial and final points. When you integrate a gradient, you need the function only
at its endpoints. The path doesn’t matter. See problem 19 for a caution.

13.3 Gauss’s Theorem
The original definition of the divergence of a vector field is Eq. (9.9),

div~v = lim
V→0

1

V

dV

dt
= lim

V→0

1

V

∮
~v . d ~A

Fix a surface and evaluate the surface integral of ~v over the surface.

∮
S
~v . d ~A

d ~A

k
k′

n̂k′
n̂k
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Now divide this volume into a lot of little volumes, ∆Vk with individual bounding surfaces Sk. If you do the
surface integrals of ~v . d ~A over each of these pieces and add all of them, the result is the original surface integral.∑

k

∮
Sk

~v . d ~A =

∮
S
~v . d ~A (12)

The reason for this is that each interior face of volume Vk is matched with the face of an adjoining volume Vk′ .
The latter face will have d ~A pointing in the opposite direction, so when you add all the interior surface integrals
they cancel. All that’s left is the surface on the outside and the sum over all those faces is the original surface
integral.

In the equation (12) multiply and divide every term in the sum by the volume ∆Vk.∑
k

[
1

∆Vk

∮
Sk

~v . d ~A

]
∆Vk =

∮
S
~v . d ~A

Now increase the number of subdivisions, finally taking the limit as all the ∆Vk approach zero. The quantity
inside the brackets becomes the definition of the divergence of ~v and you then get

Gauss’s Theorem:

∫
V

div~v dV =

∮
S
~v . d ~A (13)

This* is Gauss’s theorem, the divergence theorem.

13.4 Stokes’ Theorem
The expression for the curl in terms of integrals is Eq. (9.17),

curl~v = lim
V→0

1

V

∮
d ~A × ~v (14)

* You will sometimes see the notation ∂V instead of S for the boundary surface surrounding the volume V .
Also ∂A instead of C for the boundary curve surrounding the area A. It’s probably a better and more consistent
notation, but it isn’t yet as common in physics books.
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Use exactly the same reasoning that leads from the definition of the divergence to Eqs. (12) and (13) (see
problem 6), and this leads to the analog of Gauss’s theorem, but with cross products.∮

S
d ~A× ~v =

∫
V

curl~v dV (15)

This isn’t yet in a form that is all that convenient, and a special case is both easier to interpret and more useful
in applications. First apply it to a particular volume, one that is very thin and small. Take a tiny disk of height
∆h, with top and bottom area ∆A1. Let n̂1 be the unit normal vector out of the top area. For small enough
values of these dimensions, the right side of Eq. (14) is simply the value of the vector curl~v inside the volume
times the volume ∆A1∆h itself.

∮
S
d ~A× ~v =

∫
V

curl~v dV = curl~v ∆A1∆h
n̂1

Take the dot product of both sides with n̂1, and the parts of the surface integral from the top and the bottom
faces disappear. That’s just the statement that on the top and the bottom, d ~A is in the direction of ±n̂1, so the
cross product makes d ~A× ~v perpendicular to n̂1.

I’m using the subscript 1 for the top surface and I’ll use 2 for the surface around the edge. Otherwise it’s
too easy to get the notation mixed up.

Now look at d ~A × ~v around the thin edge. The element of area has height ∆h and length ∆` along the
arc. Call n̂2 the unit normal out of the edge.

∆ ~A2 = ∆h∆` n̂2

n̂2
d~̀

The product n̂1 .∆ ~A2×~v = n̂1 . n̂2×~v∆h∆` = n̂1× n̂2 .~v∆h∆`, using the property of the triple scalar product.
The product n̂1 × n̂2 is in the direction along the arc of the edge, so

n̂1 × n̂2 ∆` = ∆~̀ (16)
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Put all these pieces together and you have

n̂1 .
∮

S
d ~A× ~v =

∮
C
~v . d~̀∆h = n̂1 . curl~v ∆A1∆h

Divide by ∆A1∆h and take the limit as ∆A1 → 0. Recall that all the manipulations above work only under the
assumption that you take this limit.

n̂1 . curl~v = lim
∆A→0

1

∆A

∮
C
~v . d~̀ (17)

You will sometimes see this equation (17) taken as the definition of the curl, and it does have an intuitive appeal.
The only drawback to doing this is that it isn’t at all obvious that the thing on the right-hand side is the dot
product of n̂1 with anything. It is, but if you start from this point you have some proving to do.

This form is easier to interpret than was the starting point with a volume integral. The line integral of ~v . d~̀

is called the circulation of ~v around the loop. Divide this by the area of the loop and take the limit as the area
goes to zero and you then have the “circulation density” of the vector field. The component of the curl along
some direction is then the circulation density around that direction. Notice that the equation (16) dictates the
right-hand rule that the direction of integration around the loop is related to the direction of the normal n̂1.

Stokes’ theorem follows in a few lines from Eq. (17). Pick a surface A with a boundary C (or ∂A in the
other notation). The surface doesn’t have to be flat, but you have to be able to tell one side from the other.*
From here I’ll imitate the procedure of Eq. (12). Divide the surface into a lot of little pieces Ak, and do the

line integral of ~v . d~̀ around each piece. Add all these pieces and the result is the whole line integral around the
outside curve.

∑
k

∮
Ck

~v . d~̀=

∮
C
~v . d~̀ k k′ (18)

As before, on each interior boundary between area Ak and the adjoining Ak′ , the parts of the line integrals on
the common boundary cancel because the directions of integration are opposite to each other. All that’s left is
the curve on the outside of the whole loop, and the sum over those intervals is the original line integral.

* That means no Klein bottles or Möbius strips.
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Multiply and divide each term in the sum (18) by ∆Ak and you have

∑
k

[
1

∆Ak

∮
Ck

~v . d~̀
]

∆Ak =

∮
C
~v . d~̀ (19)

Now increase the number of subdivisions of the surface, finally taking the limit as all the ∆Ak → 0, and the
quantity inside the brackets becomes the normal component of the curl of ~v by Eq. (17). The limit of the sum
is the definition of an integral, so

Stokes’ Theorem:

∫
A

curl~v . d ~A =

∮
C
~v . d~̀ (20)

What happens if the vector field ~v is the gradient of a function, ~v = ∇f? By Eq. (11) the line integral
in (20) depends on only the endpoints of the path, but in this integral the initial and final points are the same.
That makes the integral zero: f1 − f1. That implies that the surface integral on the left is zero no matter
what the surface spanning the contour is, and that can happen only if the thing being integrated is itself zero.
curl grad f = 0. That’s one of the common vector identities in problem 9.36. Of course this statement requires
the usual assumption that there are no singularities of ~v within the area.

^

θ0

nExample
Verify Stokes’ theorem for that part of a spherical surface r = R, 0 ≤ θ ≤ θ0, 0 ≤ φ <
2π. Use for this example the vector field

~F = r̂Ar2 sin θ + θ̂Brθ2 cosφ+ φ̂Cr sin θ cos2 φ (21)

To compute the curl of ~F , use Eq. (9.29), getting

∇× ~F = r̂
1

r sin θ

(
∂

∂θ

(
sin θ Cr sin θ cos2 φ

)
− ∂

∂φ

(
Brθ2 cosφ

))
+ · · ·

= r̂
1

r sin θ

(
Cr cos2 φ 2 sin θ cos θ +Brθ2 sinφ

)
+ · · ·
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I need only the r̂ component of the curl because the surface integral uses only the normal (r̂) component. The
surface integral of this has the area element dA = r2 sin θ dθ dφ.∫

curl ~F . d ~A =

∫ θ0

0
R2 sin θ dθ

∫ 2π

0
dφ

1

R sin θ

(
CR cos2 φ 2 sin θ cos θ +BRθ2 sinφ

)
= R2

∫ θ0

0
dθ

∫ 2π

0
dφ 2C cos2 φ sin θ cos θ

= R22Cπ sin2 θ0/2 = CR2π sin2 θ0

The other side of Stokes’ theorem is the line integral around the circle at angle θ0.∮
~F . d~̀=

∫ 2π

0
r sin θ0 dφCr sin θ cos2 φ

=

∫ 2π

0
dφCR2 sin2 θ0 cos2 φ

= CR2 sin2 θ0 π (22)

and the two sides of the theorem agree. Check! Did I get the overall signs right? The direction of integration
around the loop matters. A further check: If θ0 = π, the length of the loop is zero and both integrals give zero
as they should.

Conservative Fields
An immediate corollary of Stokes’ theorem is that if the curl of a vector field is zero throughout a region then line
integrals are independent of path in that region. To state it a bit more precisely, in a volume for which any closed

path can be shrunk to a point without leaving the region, if the curl of ~v equals zero, then
∫ b
a
~F . d~r depends on

the endpoints of the path, and not on how you get there.
To see why this follows, take two integrals from point a to point b.

∫
1
~v . d~r and

∫
2
~v . d~r

a b

1

2
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The difference of these two integrals is ∫
1
~v . d~r −

∫
2
~v . d~r =

∮
~v . d~r

This equations happens because the minus sign is the same thing that you get by integrating in the reverse
direction. For a field with ∇ × ~v = 0, Stokes’ theorem says that this closed path integral is zero, and the
statement is proved.

What was that fussy-sounding statement “for which any closed path can be shrunk to a point without
leaving the region” anyway? Consider the vector field in three dimensions

~v = A(xŷ − yx̂)/(x2 + y2) = Aθ̂/r (23)

You can verify (in either coordinate system) that its curl is zero — except for the z-axis, where it is singular. A
closed loop line integral that doesn’t encircle the z-axis will be zero, but if it does go around the axis then it is
not. See problem 18. If you have a loop that encloses the singular line, then you can’t shrink the loop without
its getting hung up on the axis.

The converse of this theorem is also true. If every closed-path line integral of ~v is zero, and if the derivatives
of ~v are continuous, then its curl is zero. Stokes’ theorem tells you that every surface integral of ∇×~v is zero, so
you can pick a point and a small ∆ ~A at this point. For small enough area whatever the curl is, it won’t change
much. The integral over this small area is then ∇×~v .∆ ~A, and by assumption this is zero. It’s zero for all values
of the area vector. The only vector whose dot product with all vectors is zero is itself the zero vector.

Potentials
The relation between the vanishing curl and the fact that the line integral is independent of path leads to the
existence of potential functions.

If curl ~F = 0 in a simply-connected domain (that’s one for which any closed loop can be shrunk to a point),

then I can write ~F as a gradient, − gradφ. The minus sign is conventional. I’ve already constructed the answer
(almost). That line integrals are independent of path in such a domain means that the integral∫ ~r

~r0

~F . d~r (24)
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is a function of the two endpoints alone. Fix ~r0 and treat this as a function of the upper limit ~r. Call it −φ(~r ).
The defining equation for the gradient is Eq. (8.10),

df = grad f . d~r

How does the integral (24) change when you change ~r a bit?∫ ~r+d~r

~r0

~F . d~r −
∫ ~r

~r0

~F . d~r =

∫ ~r+d~r

~r

~F . d~r = F . d~r

This is −dφ because I called this integral −φ(~r ). Compare the last two equations and because d~r is arbitrary
you immediately get

~F = − gradφ (25)

I used this equation in section 9.9, stating that the existence of the gravitational potential energy followed from
the fact that ∇× ~g = 0.

Vector Potentials
This is not strictly under the subject of conservative fields, but it’s a convenient place to discuss it anyway. When
a vector field has zero curl then it’s a gradient. When a vector field has zero divergence then it’s a curl. In both
cases the converse is simple, and it’s what you see first: ∇ × ∇φ = 0 and ∇ .∇ × ~A = 0 (problem 9.36). In

Eqs. (24) and (25) I was able to construct the function φ because ∇× ~F = 0. It is also possible, if ∇ . ~F = 0,

to construct the function ~A such that ~F = ∇× ~A.
In both cases, there are extra conditions needed for the statements to be completely true. To conclude

that a conservative field (∇× ~F = 0) is a gradient requires that the domain be simply-connected, allowing the

line integral to be completely independent of path. To conclude that a field satisfying ∇ . ~F = 0 can be written
as ~F = ∇× ~A requires something similar: that all closed surfaces can be shrunk to a point. This statement is
not so easy to prove, and the explicit construction of ~A from ~F is not very enlightening.

You can easily verify that ~A = ~B × ~r/2 is a vector potential for the uniform field ~B. Neither the scalar
potential nor the vector potential are unique. You can always add a constant to a scalar potential because the
gradient of a scalar is zero and it doesn’t change the result. For the vector potential you can add the gradient of
an arbitrary function because that doesn’t change the curl.

~F = −∇(φ+ C) = −∇φ, and ~B = ∇× ( ~A+∇f) = ∇× ~A
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13.5 Reynolds’ Transport Theorem
When an integral has limits that are functions of time, how do you differentiate it? That’s pretty easy for
one-dimensional integrals.

d

dt

∫ f2(t)

f1(t)
dx g(x, t) =

∫ f2(t)

f1(t)
dx

∂g(x, t)

∂t
+ g(f2(t), t)

df2(t)

dt
− g(f1(t), t)

df1(t)

dt
(26)

One of Maxwell’s equations for electromagnetism is

∇× ~E = −∂
~B

∂t
(27)

Integrate this equation over the surface S.∫
S
∇× ~E . d ~A =

∫
C

~E . d~̀=

∫
S
−∂

~B

∂t
. d ~A (28)

This used Stokes’ theorem, and I would like to be able to pull the time derivative out of the integral, but can I?
If the surface is itself time independent then the answer is yes, but what if it isn’t? What if the surface integral
has a surface that is moving? Can this happen? That’s how generators works, and you wouldn’t be reading this
now without the power they provide. The copper wire loops are rotating at high speed, and it is this motion that
provides the EMF.

I’ll work backwards and compute the time derivative of a surface integral, allowing the surface itself to
move. To do this, I’ll return to the definition of a derivative. The time variable appears in two places, so use
the standard trick of adding and subtracting a term. It’s rather like deriving the product formula for ordinary
derivatives. Call Φ the flux integral,

∫
~B . d ~A.

∆Φ =

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫

S(t)

~B(t) . d ~A

=

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫

S(t+∆t)

~B(t) . d ~A

+

∫
S(t+∆t)

~B(t) . d ~A−
∫

S(t)

~B(t) . d ~A

(29)
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~B is a function of ~r too, but I won’t write it. The first two terms have the same surface, so they combine to give∫
S(t+∆t)

∆ ~B . d ~A

and when you divide by ∆t and let it approach zero, you get∫
S(t)

∂ ~B

∂t
. d ~A

Now for the next two terms, which require some manipulation. Add and subtract the surface that forms the edge
between the boundaries C(t) and C(t+ ∆t).

= _

∫
S(t+∆t)

~B(t) . d ~A−
∫

S(t)

~B(t) . d ~A =

∮
~B(t) . d ~A−

∫
edge

~B . d ~A (30)

The strip around the edge between the two surfaces make the surface integral closed, but I then have to subtract
it as a separate term.

You can convert the surface integral to a volume integral with Gauss’s theorem, but it’s still necessary to
figure out how to write the volume element. [Yes, ∇ . ~B = 0, but this result can be applied in other cases too,

so I won’t use that fact here.] The surface is moving at velocity ~v, so an area element ∆ ~A will in time ∆t sweep

out a volume ∆ ~A .~v∆t. Note: ~v isn’t necessarily a constant in space and these surfaces aren’t necessarily flat.

∆V = ∆ ~A .~v∆t =⇒
∮

~B(t) . d ~A =

∫
d3r∇ . ~B =

∫
S(t)
∇ . ~B d ~A .~v∆t (31)

To do the surface integral around the edge, use the same method as in deriving Stokes’ theorem, Eq. (16).

∆ ~A = ∆~̀× ~v∆t



13—Vector Calculus 2 411

∫
edge

~B . d ~A =

∫
C

~B . d~̀× ~v∆t =

∫
C
~v × ~B . d~̀∆t (32)

Put Eqs. (31) and (32) into Eq. (30) and then into Eq. (29).

d

dt

∫
S(t)

~B . d ~A =

∫
S(t)

∂ ~B

∂t
. d ~A+

∫
S(t)
∇ . ~B ~v . d ~A−

∫
C(t)

~v × ~B . d~̀ (33)

This transport theorem is the analog of Eq. (26) for a surface integral.

Faraday’s Law
If you now apply the transport theorem (33) to Maxwell’s equation (28), and use the fact that ∇ . ~B = 0 you get∫

C(t)

(
~E + ~v × ~B

)
. d~̀= − d

dt

∫
S(t)

~B . d ~A (34)

This is Faraday’s law, saying that the force per charge integrated around a closed loop (called the EMF) is the
negative time derivative of the magnetic flux through the loop.

Occasionally you will find an introductory physics text that writes Faraday’s law without the ~v × ~B term.
That’s o.k. as long as the integrals involve only stationary curves and surfaces, but some will try to apply it to
generators, with moving conductors. This results in amazing contortions to try to explain the results.

The electromagnetic force on a charge is ~F = q
(
~E+~v× ~B

)
. This means that if a charge inside a conductor

is free to move, the force on it comes from both the electric and the magnetic fields in this equation. (The Lorentz

force law.) The integral of this force . d~̀ is the work done on a charge along some specified path. If this integral

is independent of path: ∇× ~E = 0 and ~v = 0, then this work divided by the charge is the potential difference,
the voltage, between the initial and final points. In the more general case, where one or the other of these
requirements is false, then it’s given the somewhat antiquated name EMF, for “electromotive force.” (It is often
called “voltage” anyway, even though it’s a minor technical mistake.)



13—Vector Calculus 2 412

Problems

13.1 In the equation (3) what happens if you start with a different parametrization for x and y, perhaps x =
R cos(φ/2) and y = R sin(φ/2) for 0 < φ < 4π. Do you get the same answer?

13.2 What is the length of the arc of the parabola y = (a2 − x2)/b, (−a < x < a)?
But First draw a sketch and make a rough estimate of what the result ought to be. Then do the calculation and
compare the answers. What limiting cases allow you to check your result?
Ans: (b/2)

[
sinh−1 c+ c

√
1 + c2

]
where c = 2a/b

13.3 You can describe an ellipse as x = a cosφ, y = b sinφ. (Prove this.)
Warm up by computing the area of the ellipse.
What is the circumference of this ellipse?

To put this integral into a standard form, note that it is 4
∫ π/2
0 . Then use cos2 φ = 1− sin2 φ and let k2 = m =

1− b2/a2. Finally, look up chapter 17 of Abramowitz and Stegun. You will find the reference to this at the end
of section 1.4.

13.4 For another derivation of the work-energy theorem, one that doesn’t use the manipulations of calculus as
in Eq. (9), go back to basics.

(a) For a constant force, start from ~F = m~a and derive by elementary manipulations that

~F .∆~r =
m

2

[
v2
f − v2

i

]
All that you need to do is to note that the acceleration is a constant so you can get ~v and ~r as functions of time.
Then eliminate t
(b) Along a specified curve Divide the curve at points

~ri = ~r0, ~r1, ~r2, . . . ~rN = ~rf

In each of these intervals apply the preceding equation. This makes sense in that if the interval is small the force
won’t change much in the interval.
(c) Add all these N equations and watch the kinetic energy terms telescope. This limit as all the ∆~rk → 0 is
Eq. (10).

http://jove.prohosting.com/~skripty/
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13.5 The manipulation in the final step of Eq. (10) seems almost too obvious. Is it? Well yes, but write out the
definition of this integral as the limit of a sum to verify that it really is easy.

13.6 In the same spirit as the derivation of Gauss’s theorem, Eq. (13), derive the identities∮
S
d ~A× ~v =

∫
V

curl~v dV, and

∮
S
φ d ~A =

∫
V

gradφ dV

13.7 The force by a magnetic field on a small piece of wire carrying a current I is d~F = (µ0/4π)I d~̀× ~B. The

total force on a wire carrying this current in a complete circuit is the integral of this. Let ~B = x̂Ay − ŷAx. The
wire consists of the line segments around the rectangle 0 < x < a, 0 < y < b. The direction of the current is in
the +ŷ direction on the x = 0 line. What is the total force on the loop?

13.8 Verify Stokes’ theorem for the field ~F = Axyx̂ + B(1 + x2y2)ŷ and for the rectangular loop a < x < b,
c < y < d.

13.9 Which of the two times in Eqs. (5) and (6) is shorter. Compare their squares.

13.10 Write the equations (9.32) in an integral form.

13.11 Start with Stokes’ theorem and shrink the boundary curve to a point. That doesn’t mean there’s no
surface left; it’s not flat, remember. The surface is pinched off like a balloon. It’s now a closed surface, and what
is the value of this integral? Now apply Gauss’s theorem to it and what do you get?

13.12 Use the same surface as in the example, Eq. (21), and verify Stokes’ theorem for the vector field

~F = r̂Ar−1 cos2 θ sinφ+Bθ̂r2 sin θ cos2 φ+ φ̂Cr−2 cos2 θ sin2 φ

13.13 Use the same surface as in the example, Eq. (21), and examine Stokes’ theorem for the vector field

~F = r̂f(r, θ, φ) + θ̂g(r, θ, φ) + φ̂h(r, θ, φ)

Show from the line integral part that the answer can depend only on the function h, not f or g. Now examine
the surface integral over this cap and show the same thing.
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13.14 For the vector field in the x-y plane: ~F =
(
xŷ− yx̂

)
/2, use Stokes’ theorem to compute the line integral

of ~F . d~r around an arbitrary closed curve. What is the significance of the sign of the result?

13.15 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface?

13.16 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface? This time however, the

surface integral uses the cross product:
∮
d ~A× ~F . If in doubt, try drawing the picture for a special case first.

13.17 Refer to Eq. (22) and check it for small θ0. Notice what the combination π(Rθ0)
2 is.

13.18 For the vector field Eq. (23) explicitly show that
∮
~v . d~r is zero for a curve such as that in

the picture and that it is not for a circle going around the singularity.

13.19 For the same vector field, Eq. (23), use Eq. (24) to try to construct a potential function.
Because within a certain domain the integral is independent of path, you can pick the most convenient
possible path, the one that makes the integration easiest. What goes wrong?

13.20 Refer to problem 9.33 and construct the solutions by integration, using the methods of this chapter.

13.21 Evaluate
∮
~F . d~r for ~F = Ax̂ xy + Bŷ x around the circle of radius R centered at the origin. (b) Do it

again, using Stokes’ theorem this time.

13.22 Same as the preceding problem, but
∮
d~r × ~F instead.

13.23 Use the same field as the preceding two problems and evaluate the surface integral of ~F . d ~A over the
hemispherical surface x2 + y2 + z2 = R2, z > 0.

13.24 The same field and surface as the preceding problem, but now the surface integral d ~A× ~F . Ans: ẑ2πBr3/3

13.25 Prove the identity ∇ .
(
~A× ~B

)
= ~B .∇× ~A− ~A .∇× ~B. (index mechanics?)

(b) Apply Gauss’s theorem to ∇ .
(
~A× ~B

)
and take the special case that ~B is a constant to derive Eq. (15).
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13.26 Prove the identity ∇ .(f ~F ) = f∇ . ~F + ~F .∇f .

(b) Apply Gauss’s theorem to ∇ .(f ~F ) for a constant ~F to derive a result found in another problem.

13.27 The vector potential is not unique, as you can add an arbitrary gradient to it without affecting its curl.
Suppose that ~B = ∇× ~A with

~A = αx̂ xyz + βŷ x2z + γẑ xyz2

Find a function f(x, y, z) such that ~A′ = ~A+∇f has the z-component identically zero. Do you get the same ~B

by taking the curl of ~A and of ~A′?

13.28 Take the vector field
~B = αx̂ xy + βŷ xy + γẑ (xz + yz)

Write out the equation ~B = ∇ × ~A in rectangular components and figure out what functions Ax(x, y, z),
Ay(x, y, z), and Az(x, y, z) will work. Note: From the preceding problem you see that you may if you wish pick

any one of the components of ~A to be zero and that will cut down on the labor. Also, you should expect that
this problem is impossible unless ~B has zero divergence. That fact should come out of your calculations even if
you don’t anticipate it. Determine the conditions on α, β, and γ that make this problem solvable, and show that
this is equivalent to ∇ . ~B = 0.

13.29 A magnetic monopole, if it exists, will have a magnetic field µ0qmr̂/4πr
2. The divergence of this magnetic

field is zero except at the origin, but that means that not every closed surface can be shrunk to a point without
running into the singularity. The necessary condition for having a vector potential is not satisfied. Try to construct
such a potential anyway. Assume a solution in spherical coordinates of the form ~A = φ̂f(r)g(θ) and figure out

what f and g will have this ~B for a curl. Sketch the resulting ~A. You will run into a singularity (or two,

depending). Ans: ~A = φ̂µ0qm(1− cos θ)/
(
4πr2 sin θ

)
(not unique)

13.30 Apply Reynolds’ transport theorem to the other of Maxwell’s equations.

∇× ~B = µ0~j + µ0ε0
∂ ~E

∂t

Don’t simply leave the result in the first form that you find. Manipulate it into what seems to be the best form.
Use µ0ε0 = 1/c2. Ans:

∫ (
~B − ~v × ~E/c2

)
. d~̀= µo

∫ (
~j − ρ~v

)
. d ~A+ µ0ε0(d/dt)

∫
~E . d ~A
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13.31 Derive the analog of Reynolds’ transport theorem for a line integral around a closed loop.

d

dt

∫
C(t)

~F (~r, t) . d~̀=

∫
C(t)

∂ ~F

∂t
. d~̀+

∫
C(t)

~v × (∇× ~F ) . d~̀

13.32 There are transport theorems for other combinations.

(a)
d

dt

∫
S(t)

φ(~r, t)d ~A (b)
d

dt

∫
C(t)

d~̀× ~F (~r, t)

13.33 Apply Eq. (33) to the velocity field itself. Suppose further the the fluid is incompressible with ∇ .~v = 0
and that the flow is stationary (no time dependence). Explain the results.

13.34 Assume that the Earth’s atmosphere obeys the density equation ρ = ρ0e
−z/h for a height z above the

surface. (a) Through what amount of air does sunlight have to travel when coming from straight overhead? Take
the measure of this to be

∫
ρ ds (called the “air mass”). (b) Through what amount of air does sunlight have to

travel when coming from just on the horizon at sunset? Neglect the fact that light will refract in the atmosphere
and that the path in the second case won’t really be a straight line. Take h = 10 km and the radius of the Earth
to be 6400 km. The integral you get for the second case is probably not familiar. You may evaluate it numerically
for the numbers that I stated, or you may look it up in a big table of integrals such as Gradshteyn and Ryzhik, or
you may use an approximation, h� R. What is the numerical value of the ratio of these two air mass integrals?
This goes far in explaining why you can look at the setting sun.
If refraction in the atmosphere is included, does the ratio increase or decrease? Ans: ≈ 36.

V

P13.35 Work in a thermodynamic system is calculated from dW = PdV . Assume an ideal gas, so
that PV = nRT . What is the total work,

∮
dW , done around this cycle as the pressure increases at

constant volume, then decreases at constant temperature, finally the volume decreases at constant
pressure.
(b) In the special case for which the changes in volume and pressure are very small, estimate from
the graph approximately what to expect for the answer. Now do an expansion of the result of
part (a) to see if it agrees with what you expect. Ans: ≈ ∆P ∆V/2
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13.36 Verify the divergence theorem for the vector field

~F = αx̂ xyz + βŷ x2z(1 + y) + γẑ xyz2

and for the volume (0 < x < a), (0 < y < b), (0 < z < c).

13.37 Evaluate
∫
~F . d ~A over the curved surface of the hemisphere x2 + y2 + z2 = R2 and z > 0. The vector

field is given by ~F = ∇×
(
αyx̂+ βxŷ + γxyẑ

)
. Ans: (β − α)πR2

13.38 A vector field is specified in cylindrical coordinates to be ~F = αr̂r2z sin2 θ + βθ̂rz + γẑzr cos2 θ. Verify
the divergence theorem for this field for the region (0 < r < R), (0 < θ < 2π), (0 < z < h).

13.39 For the function F (r, θ) = rn(A+B cos θ + C cos2 θ), compute the gradient and then the divergence of
this gradient. For what values of the constants A, B, C, and (positive or negative) integer n is this last expression
zero? These coordinates are spherical. Ans: In part, n = 2, C = −3A, B = 0.

13.40 Repeat the preceding problem, but now interpret the coordinates as cylindrical. And don’t leave your
answers in the first form that you find them.

13.41 Evaluate the integral
∫
~F . d ~A over the surface of the hemisphere x2 + y2 + z2 = 1 with z > 0. The

vector field is ~F = A(1 + x + y)x̂ + B(1 + y + z)ŷ + C(1 + z + x)ẑ. You may choose to do this problem the
hard way or the easy way. Or both. Ans: π(2A+ 2B + 5C)/3

13.42 An electric field is known in cylindrical coordinates to be ~E = f(r)r̂, and the electric charge density is

a function of r alone, ρ(r). They satisfy the Maxwell equation ∇ . ~E = ρ/ε0. If the charge density is given as

ρ(r) = ρ0 e
−r/r0 . Compute ~E. Explain why the behavior of ~E is as it is for large r and for small r.

13.43 Find a vector field ~F such that ∇ . ~F = αx+ βy + γ and ∇× ~F = ẑ.

13.44 Gauss’s law says that the total charge contained inside a surface is ε0
∮
~E . d ~A. For the electric field of

problem 10.37, evaluate this integral over a sphere of radius R1 > R and centered at the origin.



Complex Variables

In the calculus of functions of a complex variable there are three fundamental tools, the same fundamental tools
as for real variables. Differentiation, Integration, and Power Series. I’ll first introduce all three in the context of
complex variables, then show the relations between them. The applications of the subject will form the major
part of the chapter.

14.1 Differentiation
When you try to differentiate a continuous function is it always differentiable? If it’s differentiable once is it
differentiable again? The answer to both is no. Take the simple absolute value function of the real variable x.

f(x) = |x| =
{

x (x ≥ 0)
−x (x < 0)

This has a derivative for all x except zero. In that case the limit

f(x+ ∆x)− f(x)

∆x
−→

 1 (x > 0)
−1 (x < 0)

? (x = 0)
(1)

has a different result depending on whether ∆x→ 0 through positive or through negative values.
If you integrate this function,

∫ x

0
|x′| dx′ =

{
x2/2 (x ≥ 0)
−x2/2 (x < 0)

the result has a derivative everywhere, including the origin, but you can’t differentiate it twice. A few more
integrations and you can produce a function that you can differentiate 42 times but not 43.

418
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There are functions that are continuous but with no derivative anywhere. They’re harder* to construct,
but if you grant their existence then you can repeat the preceding manipulation and create a function with any
number of derivatives everywhere, but no more than that number.

For a derivative to exist at a point, the limit Eq. (1) must have the same value whether you take the limit
from the right or from the left.

Extend the idea of differentiation to complex-valued functions of complex variables. Just change the
letter x to the letter z = x + iy. Examine a function such as f(z) = z2 = x2 − y2 + 2ixy or cos z =
cosx cosh y + i sin x sinh y. Can you differentiate these (yes) and what does that mean?

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
=
df

dz
(2)

is the appropriate definition, but for it to exist there are even more restrictions than in the real case. For real
functions you have to get the same limit as ∆x→ 0 whether you take the limit from the right or from the left.
In the complex case there are an infinite number of directions through which ∆z can approach zero and you must
get the same answer from all directions. This is such a strong restriction that it isn’t obvious that any function
has a derivative. To reassure you that I’m not talking about an empty set, differentiate z2.

(z + ∆z)2 − z2

∆z
=

2z∆z + (∆z)2

∆z
= 2z + ∆z −→ 2z

It doesn’t matter whether ∆z = ∆x or = i∆y or = (1 + i)∆t. As long as it goes to zero you get the same
answer.

For a contrast take the complex conjugation function, f(z) = z* = x− iy. Try to differentiate that.

(z + ∆z)* − z*

∆z
=

(∆z)*

∆z
=

∆r e−iθ

∆r eiθ
= e−2iθ

The polar form of the complex number is more convenient here, and you see that as the distance ∆r goes to
zero, this difference quotient depends on the direction through which you take the limit. From the right and the

* Weierstrass surprised the world of mathematics with
∑∞

0 ak cos(bkx). If a < 1 while ab > 1 this is
continuous but has no derivative anywhere. This statement is much more difficult to prove than it looks.
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left you get +1. From above and below (θ = ±π/2) you get −1. The limits aren’t the same, so this function
has no derivative anywhere. Roughly speaking, the functions that you’re familiar with or are important enough
to have names (sin, cos, tanh, Bessel, elliptic, . . . ) will be differentiable as long as you don’t have an explicit

complex conjugation in them. Something such as |z| =
√
z*z does not have a derivative for any z.

For functions of a real variable, having one or fifty-one derivatives doesn’t guarantee you that it has two
or fifty-two. The amazing property of functions of a complex variable is that if a function has a single derivative
everywhere in the neighborhood of a point then you are guaranteed that it has a infinite number of derivatives.
You will also be assured that you can do a power series expansions about that point and that the series will
always converge to the function. There are important and useful integration methods that will apply to all these
functions, and for a relatively small effort they will open impressively large vistas of mathematics.

For an example of the insights that you gain using complex variables, consider the function f(x) = 1/
(
1 +

x2
)
. This is a perfectly smooth function of x, starting at f(0) = 1 and slowing dropping to zero as x → ±∞.

Look at the power series expansion about x = 0 however. This is just a geometric series in (−x2), so

(
1 + x2

)−1
= 1− x2 + x4 − x6 + · · ·

This converges only if −1 < x < +1. Why such a limitation? The function is infinitely differentiable for all x
and is completely smooth throughout its domain. This remains mysterious as long as you think of x as a real
number. If you expand your view and consider the function of the complex variable z = x+ iy, then the mystery
disappears. 1/(1 + z2) blows up when z → ±i. The reason that the series fails to converge for values of |x| > 1
lies in the complex plane, in the fact that at the distance = 1 in the i-direction there is a singularity.

Definition: A function is said to be analytic at the point z0 if
it is differentiable for every point z in the disk |z − z0| < ε.
Here the positive number ε may be small, but it is not zero.

εNecessarily if f is analytic at z0 it will also be analytic at every point within the disk |z−z0| < ε.
This follows because at any point z1 within the original disk you have a disk centered at z1 and of
radius (ε− |z1 − z0|)/2 on which the function is differentiable.
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The common formulas for differentiation are exactly the same for complex variables as they are
for real variables, and their proofs are exactly the same. For example, the product formula:

f(z + ∆z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)g(z + ∆z)− f(z)g(z + ∆z) + f(z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)− f(z)

∆z
g(z + ∆z) + f(z)

g(z + ∆z)− g(z)
∆z

As ∆z → 0, this becomes the familiar f ′g + fg′. That the numbers are complex made no difference.
For integer powers you can use induction, just as in the real case: dz/dz = 1 and

If
dzn

dz
= nzn−1, then use the product rule

dzn+1

dz
=
d(zn . z)

dz
= nzn−1 . z + zn . 1 = (n+ 1)zn

The other differentiation techniques are in the same spirit. They follow very closely from the definition. For
example, how do you handle negative powers? Simply note that znz−n = 1 and use the product formula. The
chain rule, the derivative of the inverse of a function, all the rest, are close to the surface.

14.2 Integration
The standard Riemann integral of section 1.6 is∫ b

a
f(x) dx = lim

∆xk→0

N∑
k=1

f(ξk)∆xk

The extension of this to complex functions is direct. Instead of partitioning the interval a < x < b into N pieces,
you have to specify a curve in the complex plane and partition it into N pieces. The interval is the complex
number ∆zk = zk − zk−1.∫

C
f(z) dz = lim

∆zk→0

N∑
k=1

f(ζk)∆zk

z0 z1
z2 z3 z4 z5

z6

ζ1
ζ2 ζ3 ζ4 ζ5 ζ6
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Just as ξk is a point in the kth interval, so is ζk a point in the kth interval along the curve C.
How do you evaluate these integrals? Pretty much the same way that you evaluate line integrals in vector

calculus. You can write this as∫
C
f(z) dz =

∫ (
u(x, y) + iv(x, y)

)(
dx+ idy

)
=

∫ [
(u dx− v dy) + i(u dy + v dx)

]
If you have a parametric representation for the values of x(t) and y(t) along the curve this is∫ t2

t1

[
(u ẋ− v ẏ) + i(u ẏ + v ẋ)

]
dt

For example take the function f(z) = z and integrate it around a circle centered at the origin. x = R cos θ,
y = R sin θ. ∫

z dz =

∫ [
(x dx− y dy) + i(x dy + y dx)

]
=

∫ 2π

0
dθR2

[
(− cos θ sin θ − sin θ cos θ) + i(cos2 θ − sin2 θ)

]
= 0

Wouldn’t it be easier to do this in polar coordinates? z = reiθ.∫
z dz =

∫
reiθ

[
eiθdr + ireiθdθ

]
=

∫ 2π

0
ReiθiReiθdθ = iR2

∫ 2π

0
e2iθdθ = 0 (3)

Do the same thing for the function 1/z. Use polar coordinates.∮
1

z
dz =

∫ 2π

0

1

Reiθ
iReiθdθ =

∫ 2π

0
i dθ = 2πi (4)

This is an important result! Do the same thing for zn where n is any positive or negative integer, problem 1.
Rather than spending time on more examples of integrals, I’ll jump to a different subject. The main results

about integrals will follow after that (the residue theorem).
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14.3 Power (Laurent) Series
The series that concern us here are an extension of the common Taylor or power series, and they are of the form

+∞∑
−∞

ak(z − z0)k

The powers can extend through all positive and negative integer values. This is sort of like the Frobenius series
that appear in the solution of differential equations, except that here the powers are all integers and they can
either have a finite number of negative powers or the powers can go all the way to minus infinity.

The common examples of Taylor series simply represent the case for which no negative powers appear.

sin z =
∞∑
0

(−1)k
z2k+1

(2k + 1)!
or J0(z) =

∞∑
0

(−1)k
z2k

22k(k!)2
or

1

1− z
=

∞∑
0

zk

If a function has a Laurent series expansion that has a finite number of negative powers, it is said to have a pole.

cos z

z
=

∞∑
0

(−1)k
z2k−1

(2k)!
or

sin z

z3
=

∞∑
0

(−1)k
z2k−2

(2k + 1)!

The order of the pole is the size of the largest negative power. These have respectively first order and second
order poles.

If the function has an infinite number of negative powers, and the series converges all the way down to (but
of course not at) the singularity, it is said to have an essential singularity.

e1/z =
∞∑
0

1

k! zk
or sin

[
t

(
z +

1

z

)]
= · · · or

1

1− z
=

1

z

−1

1− 1
z

= −
∞∑
1

z−k

The first two have essential singularities; the third does not.
It’s worth examining some examples of these series and especially in seeing what kinds of singularities they

have. In analyzing these I’ll use the fact that the familiar power series derived for real variables apply here too.
The binomial series, the trigonometric functions, the exponential, many more.
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1/z(z − 1) has a zero in the denominator for both z = 0 and z = 1. What is the full behavior near these
two points?

1

z(z − 1)
=

−1

z(1− z)
=
−1

z
(1− z)−1 =

−1

z

[
1 + z + z2 + z3 + · · ·

]
=
−1

z
− 1− z − z2 − · · ·

1

z(z − 1)
=

1

(z − 1)(1 + z − 1)
=

1

z − 1

[
1 + (z − 1)

]−1

=
1

z − 1

[
1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·

]
=

1

z − 1
+ 1 + (z − 1) + · · ·

This shows the full Laurent series expansions near these points. Keep your eye on the coefficient of the inverse
first power. That term alone plays a crucial role in what will follow.

csc3 z near z = 0:

1

sin3 z
=

1[
z − z3

6 + z5

120 − · · ·
]3 =

1

z3
[
1− z2

6 + z4

120 − · · ·
]3

=
1

z3

[
1 + x

]−3
=

1

z3

[
1− 3x+ 6x2 − 10x3 + · · ·

]
=

1

z3

[
1− 3

(
−z

2

6
+

z4

120
− · · ·

)
+ 6

(
−z

2

6
+

z4

120
− · · ·

)2

− · · ·

]

=
1

z3

[
1 +

z2

2
+ z4

(
1

6
− 3

120

)
+ · · ·

]
=

1

z3

[
1 +

1

2
z2 +

17

120
z4 + · · ·

]
(5)

This has a third order pole, and the coefficient of 1/z is 1/2. Are there any other singularities for this function?
Yes, every place that the sine vanishes you have a pole, at nπ. (What is the order of these other poles?) As
I commented above, you’ll soon see that the coefficient of the 1/z term plays a special role, and if that’s all
that you’re looking for you don’t have to work this hard. Now that you’ve seen what various terms do in this
expansion, you can stop carrying along so many terms and still get the 1/2z term. See problem 17
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The structure of a Laurent series is such that it will converge in an annulus. Examine the absolute
convergence of such a series.

∞∑
−∞

∣∣akz
k
∣∣ =

−1∑
−∞

∣∣akz
k
∣∣+ ∞∑

0

∣∣akz
k
∣∣

The ratio test on the second sum is

if for large enough k,
|ak+1||z|k+1

|ak||z|k
=
|ak+1|
|ak|

|z| ≤ x < 1 then the series converges.

This defines the largest value of |z| for which the sum of positive powers converges.

If |ak+1|/|ak| has a limit then |z|max = lim
|ak|
|ak+1|

Do the same analysis for the series of negative powers, applying the ratio test.

if for large enough negative k,
|ak−1||z|k−1

|ak||z|k
=
|ak−1|
|ak|

1

|z|
≤ x < 1 then the series converges.

This defines the smallest value of |z| for which the sum of negative powers converges.

If |ak−1|/|ak| has a limit as k → −∞ then |z|min = lim
|ak−1|
|ak|

If |z|min < |z|max then there is a range of z for which the series converges absolutely (and so of course it
converges).

|z|min < |z| < |z|max an annulus

|z|min

|z|max

If either of these series of positive or negative powers is finite, terminating in a polynomial, then respectively
|z|max =∞ or |z|min = 0.
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A major result is that when a function is analytic at a point (and so automatically in a neighborhood of
that point) then it will have a Taylor series expansion there. The series will converge, and the series will converge
to the given function. Is it possible for the Taylor series for a function to converge but not to converge to the
expected function? Yes, for functions of a real variable it is. See problem 3. The important result is that for
analytic functions of a complex variable this cannot happen.

14.4 Core Properties
There are four closely intertwined facts about analytic functions. Each one implies the other three. For the term
“neighborhood” of z0, take it to mean all points satisfying |z − z0| < r for some positive r.

1. The function has a single derivative in a neighborhood of z0.
2. The function has an infinite number of derivatives in a neighborhood of z0.
3. The function has a power series (positive exponents) expansion about z0 and the series

converges to the specified function in a disk centered at z0 and extending to the nearest
singularity. You can compute the derivative of the function by differentiating the series
term-by-term.

4. All contour integrals of the function around closed paths in a neighborhood of z0 are zero.

Item 3 is a special case of the result about Laurent series. There are no negative powers when the function
is analytic at the expansion point.

The second part of the statement, that it’s the presence of a singularity that stops the series from converging,
requires some computation to prove. The key step in the proof is to show that when the series converges in the
neighborhood of a point then you can differentiate term-by-term and get the right answer. Since you won’t have
a derivative at a singularity, the series can’t converge there. That key step in the proof is the one that I’ll leave to
every book on complex variables ever written. E.g. Schaum’s outline on Complex Variables by Spiegel, mentioned
in the bibliography.

Instead of a direct approach to all these ideas, I’ll spend some time showing how they’re related to each
other. The proofs that these are valid are not all that difficult, but I’m going to spend time on their applications
instead.

14.5 Branch Points
The function f(z) =

√
z has a peculiar behavior. You’re so accustomed to it that you may not think of it as

peculiar, but only an annoyance that you have to watch out for. It’s double valued. The very definition of a
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function however says that a function is single valued, so what is this? I’ll leave the answer to this until later,
section 14.7, but for now I’ll say that when you encounter this problem you have to be careful of the path along
which you move, in order to avoid going all the way around such a point.

14.6 Cauchy’s Residue Theorem
This is the fundamental result for applications in physics. If a function has a Laurent series expansion about the
point z0, the coefficient of the term 1/(z − z0) is called the residue of f at z0. The residue theorem tells you
the value of a contour integral around a closed loop in terms of the residues of the function inside the loop.

∮
f(z) dz = 2πi

∑
k

Res(f)|zk
(6)

To make sense of this result I have to specify the hypotheses. The direction of integration is counter-clockwise.
Inside and on the simple closed curve defining the path of integration, f is analytic except at isolated points of
singularity, where there is a Laurent series expansion. There are no branch points inside the curve. It says that
at each singularity zk inside the contour, find the residue; add them; the result (times 2πi) is the value of the
integral on the left. The term “simple” closed curve means that it doesn’t cross itself.

Example 1
The integral of 1/z around a circle of radius R centered at the origin is 2πi. The Laurent series expansion of
this function is trivial — it has only one term. This reproduces Eq. (4). It also says that the integral around the
same path of e1/z is 2πi. Write out the series expansion of e1/z to determine the coefficient of 1/z.

Example 2
Another example. The integral of 1/(z2− a2) around a circle centered at the origin and of
radius 2a. You can do this integral two ways. First increase the radius of the circle, pushing
it out toward infinity. As there are no singularities along the way, the value of the integral
is unchanged. The magnitude of the function goes as 1/R2 on a large (R� a) circle, and
the circumference is 2πR. the product of these goes to zero as 1/R, so the value of the
original integral (unchanged, remember) is zero.
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Another way to do the integral is to use the residue theorem. There are two poles inside the contour, at
±a. Look at the behavior of the integrand near these two points.

1

z2 − a2
=

1

(z − a)(z + a)
=

1

(z − a)(2a+ z − a)
≈ [near +a]

1

2a(z − a)

=
1

(z + a)(z + a− 2a)
≈ [near −a] 1

−2a(z + a)

The integral is 2πi times the sum of the two residues.

2πi

[
1

2a
+

1

−2a

]
= 0

For another example, with a more interesting integral, what is∫ +∞

−∞

eikxdx

a4 + x4
(7)

If these were squares instead of fourth powers, and it didn’t have the exponential in it, you could easily find a
trigonometric substitution to evaluate it. This integral would be formidable though. To illustrate the method, I’ll
start with that easier example,

∫
dx/(a2 + x2).

Example 3
The function 1/(a2 + z2) is singular when the denominator vanishes, when z = ±ia. The integral that I want is
the contour integral along the x-axis.

∫
C1

dz

a2 + z2

C1
(8)

The figure shows the two places at which the function has poles, ±ia. The method is to move the contour
around and to take advantage of the theorems about contour integrals. First remember that as long as it doesn’t
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move across a singularity, you can distort a contour at will. I will push the contour C1 up, but I have to leave
the endpoints where they are and I can’t let it cross the pole at ia. Those are my only constraints.

C2 C3 C4 C5

As I push the contour from C1 up to C2, nothing has changed, and the same applies to C3. The next two
steps however, requires some comment. In C3 the two straight-line segments that parallel the y-axis are going
in opposite directions, and as they are squeezed together, they cancel each other; they are integrals of the same
function in reverse directions. In the final step, to C5, I pushed the contour all the way to +i∞ and eliminated
it. How does that happen? On a big circle of radius R, the function 1/(a2 + z2) has a magnitude approximately
1/R2. As you push the top curve in C4 out, forming a big circle, its length is πR. The product of these is π/R,
and that approaches zero as R→∞. All that is left is the single closed loop in C5, and I evaluate that with the
residue theorem. ∫

C1

=

∫
C5

= 2πi Res
z=ia

1

a2 + z2

Compute this residue by examining the behavior near the pole at ia.

1

a2 + z2
=

1

(z − ia)(z + ia)
≈ 1

(z − ia)(2ia)
Near the point z = ia the value of z+ ia is nearly 2ia, so the coefficient of 1/(z− ia) is 1/(2ia), and that is the
residue. The integral is 2πi times this residue, so∫ ∞

−∞
dx

1

a2 + x2
= 2πi .

1

2ia
=
π

a
(9)

The most obvious check on this result is that it has the correct dimensions. [dz/z2] = L/L2 = 1/L, a reciprocal
length (assuming a is a length). What happens if you push the contour down instead of up? See problem 10

Example 4
How about the more complicated integral, Eq. (7)? There are more poles, so that’s where to start. The
denominator vanishes where z4 = −a4, or at

z = a
(
eiπ+2inπ

)1/4
= aeiπ/4einπ/2
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∫
C1

eikz dz

a4 + z4

C1

I’m going to use the same method as before, pushing the contour past some poles, but I have to be a bit more
careful this time. The exponential, not the 1/z4, will play the dominant role in the behavior at infinity. If k is

positive then if z = iy, the exponential ei
2ky = e−ky → 0 as y → +∞. It will blow up in the −i∞ direction. Of

course if k is negative the reverse holds.
Assume k > 0, then in order to push the contour into a region where I can determine that it’s zero, I have

to push it toward +i∞. That’s where the exponential drops rapidly to zero. It goes to zero faster than any
inverse power of y, so even with the length of the contour going as πR, the combination vanishes.

C2 C3 C4

As before, when you push C1 up to C2 and to C3, nothing has changed, because the contour has crossed
no singularities. The transition to C4 happens because the pairs of straight line segments cancel when they are
pushed together and made to coincide. The large contour is pushed to +i∞ where the negative exponential kills
it. All that’s left is the sum over the two residues at aeiπ/4 and ae3iπ/4.∫

C1

=

∫
C4

= 2πi
∑

Res
eikz

a4 + z4

The denominator factors as

a4 + z4 = (z − aeiπ/4)(z − ae3iπ/4)(z − ae5iπ/4)(z − ae7iπ/4)

The residue at aeiπ/4 = a(1 + i)/
√

2 is the coefficient of 1/(z − aeiπ/4), so it is

eika(1+i)/
√

2

(aeiπ/4 − ae3iπ/4)(aeiπ/4 − ae5iπ/4)(aeiπ/4 − ae7iπ/4)

1

2 3
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Do you have to do a lot of algebra to evaluate this denominator? Maybe you will prefer that to the alternative:
draw a picture. The distance from the center to a corner of the square is a, so each side has length a

√
2. The

first factor in the denominator of the residue is the line labelled “1” in the figure, so it is a
√

2. Similarly the
second and third factors are 2a(1 + i)/

√
2 and ia

√
2. This residue is then

Res
eiπ/4

=
eika(1+i)/

√
2(

a
√

2
)
(2a(1 + i)/

√
2)(ia

√
2)

=
eika(1+i)/

√
2

a32
√

2(−1 + i)
(10)

For the other pole, at e3iπ/4, the result is

Res
e3iπ/4

=
eika(−1+i)/

√
2

(−a
√

2)(2a(−1 + i)/
√

2)(ia
√

2)
=
eika(−1+i)/

√
2

a32
√

2(1 + i)
(11)

The final result for the integral Eq. (7) is then∫ +∞

−∞

eikxdx

a4 + x4
= 2πi

[
(10) + (11)

]
=
πe−ka/

√
2

a3
cos[(ka/

√
2)− π/4] (12)

This would be a challenge to do by other means, without using contour integration. I’m sure it can be done, but
I’d rather not. Does it make any sense? The dimensions work, because the [dz/z4] is the same as 1/a3. What
happens in the original integral if k changes to −k? It’s even in k of course. (Really? Why?) This result doesn’t
look even in k but then it doesn’t have to because it applies only for the case that k > 0. If you have a negative
k you simply reverse its sign.

Example 5
Another example for which it’s not immediately obvious how to use the residue theorem:

∫ ∞

−∞
dx

sin ax

x

C1 C2
(13)

This function has no singularities. The sine doesn’t, and the only place the integrand could have one is at zero.
Near that point, the sine itself is linear in x, so (sin ax)/x is finite at the origin. The trick in using the residue
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theorem here is to create a singularity where there is none. Write the sine as a combination of exponentials, then
the contour integral along C1 is the same as along C2, and

∫
C1

eiaz − e−iaz

2iz
=

∫
C2

eiaz − e−iaz

2iz
=

∫
C2

eiaz

2iz
−
∫

C2

e−iaz

2iz

I had to move the contour away from the origin in anticipation of this splitting of the integrand because I don’t
want to try integrating through this singularity that appears in the last two integrals. In the first form it doesn’t
matter because there is no singularity at the origin and I can move the contour anywhere I want as long as the
two points at ±∞ stay put. In the final two separated integrals it matters very much.

C3 C4

Assume that a > 0. In this case, eiaz → 0 as z → +i∞. For the other exponential, it vanishes toward
−i∞. This implies that I can push the contour in the first integral toward +i∞ and the integral over the contour
at infinity will vanish. As there are no singularities in the way, that means that the first integral is zero. For the
second integral you have to push the contour toward −i∞, and that hangs up on the pole at the origin. That
integral is then

−
∫

C2

e−iaz

2iz
= −

∫
C4

e−iaz

2iz
= −(−2πi) Res

e−iaz

2iz
= π

The factor −2πi in front of the residue occurs because the integral is over a clockwise contour, thereby changing
its sign. Compare the result of problem 5.29(b).

Notice that the result is independent of a > 0. You can check this fact by going to the original integral,
Eq. (13), and making a change of variables. See problem 16.

Example 6
What is

∫∞
0 dx/(a2 + x2)2? The first observation I’ll make is that by dimensional analysis alone, I expect the

result to vary as 1/a3. Next: the integrand is even, so I can use the same methods as for the previous examples



14—Complex Variables 433

if I extend the integration limits to the whole axis (times 1/2).

1

2

∫
C1

dz

(a2 + z2)2
C1

As with Eq. (8), push the contour up and it is caught on the pole at z = ia. That’s curve C5 following that
equation. This time however, the pole is second order, so it take a (little) more work to evaluate the residue.

1

2

1

(a2 + z2)2
=

1

2

1

(z − ia)2(z + ia)2
=

1

2

1

(z − ia)2(z − ia+ 2ia)2

=
1

2

1

(z − ia)2(2ia)2
[
1 + (z − ia)/2ia

]2
=

1

2

1

(z − ia)2(2ia)2

[
1− 2

(z − ia)
2ia

+ · · ·
]

=
1

2

1

(z − ia)2(2ia)2
+

1

2
(−2)

1

(z − ia)(2ia)3
+ · · ·

The residue is the coefficient of the 1/(z − ia) term, so the integral is∫ ∞

0
dx/(a2 + x2)2 = 2πi .(−1) . 1

(2ia)3
=

π

4a3

Is this plausible? The dimensions came out as I expected, and to estimate the size of the coefficient, π/4, look
back at the result Eq. (9). Set a = 1 and compare the π there to the π/4 here. The range of integration is
half as big, so that accounts for a factor of two. The integrands are always less than one, so in the second case,
where the denominator is squared, the integrand is always less than that of Eq. (9). The integral must be less,
and it is. Why less by a factor of two? Dunno, but plot a few points and sketch a graph to see if you believe it.

Example 7

A trigonometric integral:
∫ 2π
0 dθ

/
(a+b cos θ). The first observation is that unless |a| > |b| then this denominator

will go to zero somewhere in the range of integration (assuming that a and b are real). Next, the result can’t
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depend on the relative sign of a and b, because the change of variables θ′ = θ + π changes the coefficient of b
while the periodicity of the cosine means that you can leave the limits alone. I may as well assume that a and b
are positive. The trick now is to use Euler’s formula and express the cosine in terms of exponentials.

Let z = eiθ, then cos θ =
1

2

[
z +

1

z

]
and dz = i eiθdθ = iz dθ

As θ goes from 0 to 2π, the complex variable z goes around the unit circle. The integral is then∫ 2π

0
dθ

1

(a+ b cos θ)
=

∫
C

dz

iz

1

a+ b
(
z + 1

z

)
/2

The integrand obviously has some poles, so I have to locate them.

2az + bz2 + b = 0 has roots z =
−2a±

√
(2a)2 − 4b2

2b
= z±

Because a > b, the roots are real. The important question is: Are they inside or outside the unit circle? The
roots depend on the ratio a/b = λ.

z± =
[
−λ±

√
λ2 − 1

]
(14)

As λ varies from 1 to ∞, the two roots travel from −1 → −∞ and from −1 → 0, so z+ stays inside the unit
circle (problem 19). The integral is then

−2i

b

∫
C

dz

z2 + 2λz + 1
= −2i

b

∫
C

dz

(z − z+)(z − z−)
= −2i

b
2πi Res

z=z+

= −2i

b
2πi

1

z+ − z−
=

2π

b
√
λ2 − 1

=
2π√
a2 − b2
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14.7 Branch Points
Before looking at any more uses of the residue theorem, I have to return the the subject of branch points. They
are another type of singularity that an analytic function can have after poles and essential singularities.

√
z

provides the prototype.
The definition of the word function, as in section 12.1, requires that it be single-valued. The function

√
z

stubbornly refuses to conform to this. You can get around this in several ways: First, ignore it. Second, change
the definition of “function” to allow it to be multiple-valued. Third, change the domain of the function.

You know I’m not going to ignore it. Changing the definition is not very fruitful. The third way was
pioneered by Riemann and is the right way to go.

The complex plane provides a geometric picture of complex numbers, but when you try to handle square
roots it becomes a hindrance. It isn’t adequate for the task. There are several ways to develop the proper
extension, and I’ll show a couple of them. The first is a sort of algebraic way, and the second is a geometric
interpretation of the first way. There are other, even more general methods, leading into the theory of Riemann
Surfaces and their topological structure, but I won’t go into those.

Pick a base point, say z0 = 1, from which to start. This will be a kind of fiduciary point near which I know
the values of the function. Every other point needs to be referred to this base point. If I state that the square
root of z0 is one, then I haven’t run into trouble yet. Take another point z = reiθ and try to figure out the square
root there. √

z =
√
reiθ =

√
r eiθ/2 or

√
z =

√
rei(θ+2π) =

√
r eiθ/2eiπ

The key question: How did I get from z0 to z? What was the path from the starting point to z?

0 1 2 −3

z z
z z

In the picture, z appears to be at about 1.5e0.6i or so.
On the path labelled 0, the angle θ starts at zero at z0 and increases to 0.6 radians, so

√
r eiθ/2 varies continuously

from 1 to about 1.25e0.3i.
On path labeled 1, angle θ again starts at zero and increases to 0.6 + 2π, so

√
r eiθ/2 varies continuously from 1

to about 1.25e(π+0.3)i, which is minus the result along path #0.
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On the path labelled 2, angle θ goes from zero to 0.6 + 4π, and
√
r eiθ/2 varies from 1 to 1.25e(2π+0.3)i and that

is back to the same value as path #0.
For the path labeled −3, the angle is 0.6− 6π, resulting in the same value as path #1.

1

zThere are two classes of paths from z0 to z, those that go around the origin an even
number of times and those that go around an odd number of times. The “winding number”
w is the name given to the number of times that a closed loop goes counterclockwise around
a point (positive or negative), and if I take the path #1 and move it slightly so that it passes
through z0, you can more easily see that the only difference between paths 0 and 1 is the
single loop around the origin. The value for the square root depends on two variables, z
and the winding number of the path. Actually less than this, because it depends only on whether the winding
number is even or odd:

√
z →

√
(z, w).

In this notation then z0 → (z0, 0) is the base point, and the square root of that is one. The square root
of (z0, 1) is then minus one. Because the only relevant question about the winding number is whether it is even
or odd, it’s convenient simply to say that the second argument can take on the values either 0 or 1 and be done
with it.

Geometry of Branch Points
How do you picture such a structure? There’s a convenient artifice that lets you picture and manipulate functions
with branch points. In this square root example, picture two sheets and slice both along some curve starting
at the origin and going to infinity. As it’s a matter of convenience how you draw the cut I may as well make
it a straight line along the x-axis, but any other line (or simple curve) from the origin will do. As these are
mathematical planes I’ll use mathematical scissors, which have the elegant property that as I cut starting from
infinity on the right and proceeding down to the origin, the points that are actually on the x-axis are placed on
the right side of the cut and the left side of the cut is left open. I indicate this with solid and dashed lines in the
figure. (This is not an important point; don’t worry about it.)

0 1

a

b a

b
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Now I sew the sheets together along these cuts. But, I sew the top edge from sheet #0 to the bottom
edge from sheet #1. I then sew the bottom edge of sheet #0 to the top edge of sheet #1. This sort of structure
is called a Riemann surface. How can I do this? I do it the same way that you read a map in an atlas of maps. If
page 38 of the atlas shows a map with the outline of Brazil and page 27 shows a map with the outline of Bolivia,
you can flip back and forth between the two pages and understand that the two maps* represent countries that
are touching each other along their common border.

You can see where they fit even though the two countries are not even drawn to the same scale! Brazil
is a whole lot larger than Bolivia, but where the images fit along the Western border of Brazil and the Eastern
border of Bolivia is clear. You are accustomed to doing this with maps, understanding that the right edge of the
map on page 27 is the same as the left edge of the map on page 38; you probably take it for granted. Now you
get to do it with Riemann surfaces.

You have two cut planes (two maps), and certain edges are understood to be identified as identical, just as
two borders of a geographic map are understood to represent the same line on the surface of the Earth. Unlike
the maps above, you will usually draw both to the same scale, but you won’t make the cut ragged (no pinking
shears) so you need to use some notation to indicate what is attached to what. That’s what the letters a and b

* www.worldatlas.com/

http://www.worldatlas.com/
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are. Side a is the same as side a. The same for b. When you have more complicated surfaces, arising from more
complicated functions of the complex variable with many branch points, you will have a fine time sorting out the
shape of the surface.

0
1

(z0, 1)

(z0, 0)

(z0, 0)

(z0, 1)

b

a

a

b

I drew three large disks on this Riemann surface. One is entirely within the first sheet (the first map); a
second is entirely within the second sheet. The third disk straddles the two, but is is nonetheless a disk. On a
political map this might be disputed territory. Going back to the original square root example, I also indicated
the initial point at which I defined the value of the square root, (z0, 0), and because a single dot would really be
invisible I made it a little disk, which necessarily extends across both sheets.

Here is a picture of a closed loop on this surface. I’ll probably not ask you to do contour integrals along
such curves though.

0 1

a

b

b

a

Other Functions
Cube Root Take the next simple step. What about the cube root? Answer: Do exactly the same thing, except
that you need three sheets to describe the whole Riemann surface. Again, I’ll draw a closed loop. As long as you
have only a single branch point it’s no more complicated than this.
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0 1 2

a

b

b
c

c

a

Logarithm How about a logarithm? ln z = ln
(
reiθ

)
= ln r + iθ. There’s a branch point at the origin, but this

time, as the angle keeps increasing you never come back to a previous value. This requires an infinite number of
sheets. That number isn’t any more difficult to handle — it’s just like two, only bigger. In this case the whole
winding number around the origin comes into play because every loop around the origin, taking you to the next
sheet of the surface, adds another 2πiw, and w is any integer from −∞ to +∞. The picture of the surface is
like that for the cube root, but with infinitely many sheets instead of three. The complications start to come
when you have several branch points.

Two Square Roots Take
√
z2 − 1 for an example. Many other functions will do just as well. Pick a base point

z0; I’ll take 2. (Not two base points, the number 2.) f(z0, 0) =
√

3. Now follow the function around some loops.
This repeats the development as for the single branch, but the number of possible paths will be larger.

a

b

c

d

a
b

c

d

z0

Despite the two square roots, you still need only two sheets to map out this surface. I drew the ab and
cd cuts below to keep them out of the way, but they’re very flexible. Start the base point and follow the path
around the point +1; that takes you to the second sheet. You already know that if you go around +1 again it
takes you back to where you started, so explore a different path: go around −1. Now observe that this function
is the product of two square roots. Going around the first one introduced a factor of −1 into the function and
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going around the second branch point will introduce a second identical factor. As (−1)2 = +1, then when you
you return to z0 the function is back at

√
3, you have returned to the base point and this whole loop is closed.

If this were the sum of two square roots instead of their product, this wouldn’t work. You’ll need four sheets to
map that surface. See problem 22.

These cuts are rather awkward, and now that I know the general shape of the surface it’s possible to arrange
the maps into a more orderly atlas. Here are two better ways to draw the maps. They’re much easier to work
with.

0

1

a
b

b
a

c
d

d
c or

0

1

e

f

f
e

I used the dash-dot line to indicate the cuts. In the right pair, the base point is on the right-hand solid line
of sheet #0. In the left pair, the base point is on the c part of sheet #0. See problem 20.

14.8 Other Integrals
There are many more integrals that you can do using the residue theorem, and some of these involve branch
points. In some cases, the integrand you’re trying to integrate has a branch point already built into it. In other
cases you can pull some tricks and artificially introduce a branch point to facilitate the integration. That doesn’t
sound likely, but it can happen.

Example 8
The integral

∫∞
0 dx x/(a + x)3. You can do this by elementary methods (very easily in fact), but I’ll use it to

demonstrate a contour method. This integral is from zero to infinity and it isn’t even, so the previous tricks don’t
seem to apply. Instead, consider the integral (a > 0)∫ ∞

0
dx lnx

x

(a+ x)3

and you see that right away, I’m creating a branch point where there wasn’t one before.
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2

C1

C

The fact that the logarithm goes to infinity at the origin doesn’t matter
because it is such a weak singularity that any positive power, even x0.0001 times
the logarithm, gives a finite limit as x→ 0. Take advantage of the branch point
that this integrand provides.∫

C1

dz ln z
z

(a+ z)3
=

∫
C2

dz ln z
z

(a+ z)3

On C1 the logarithm is real. After the contour is pushed into position C2, there
are several distinct pieces. A part of C2 is a large arc that I can take to be a
circle of radius R if I want. The size of the integrand is only as big as (lnR)/R2,
and when I multiply this by 2πR, the circumference of the arc, it will go to zero as R→∞.
The next pieces of C2 to examine are the two straight lines between the origin and −a. The integrals along here
are in opposite directions, and there’s no branch point intervening, so these two segments simply cancel each
other.
What’s left is C3.∫ ∞

0
dx lnx

x

(a+ x)3
=

∫
C1

=

∫
C3

= 2πi Res
z=−a

+

∫ ∞

0
dx
(
lnx+ 2πi

) x

(a+ x)3

C3

Below the positive real axis, that is, below the cut that I made, the logarithm differs from its original value by the
constant 2πi. Among all these integrals, the integral with the logarithm on the left side of the equation appears
on the right side too. These terms cancel and you’re left with

0 = 2πi Res
z=−a

+

∫ ∞

0
dx 2πi

x

(a+ x)3
or

∫ ∞

0
dx

x

(a+ x)3
= − Res

z=−a
ln z

z

(a+ z)3

This is a third-order pole, so it takes a bit of work. First expand the log around −a. Here it’s probably easiest to
plug into Taylor’s formula for the power series and compute the derivatives of ln z at −a.

ln z = ln(−a) + (z + a)
1

−a
+

(z + a)2

2!

−1

(−a)2
+ · · ·
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Which value of ln(−a) do I take? That answer is dictated by how I arrived at the point −a when I pushed the
contour from C1 to C2. That is, ln a+ iπ.

− ln z
z

(a+ z)3
= −

[
ln a+ iπ − 1

a
(z + a)− 1

a2

(z + a)2

2
+ · · ·

] [
(z + a)− a

] 1

(z + a)3

I’m interested only in the residue, so I want only the coefficient of the power 1/(z + a). That is

−
[
−1

a
− 1

2a2
(−a)

]
=

1

2a

Did I have to do all this work to get this answer? Absolutely not. This falls under the classic heading of using a
sledgehammer as a fly swatter. It does show the technique though, and in the process I had an excuse to show
that third-order poles needn’t be all that intimidating.

14.9 Other Results
Polynomials: There are some other consequences of looking in the complex plane that are very different from
any of the preceding. If you did problem 3.11, you realize that the function ez = 0 has no solutions, even in the
complex plane. You’re used to finding roots of equations such as quadratics and maybe you’ve even encountered
the cubic formula too. How do you know that every polynomial even has a root? Maybe there’s an order-137
polynomial that has none. No, it doesn’t happen. That every polynomial has a root (n of them in fact) is
the Fundamental Theorem of Algebra. Gauss proved it first, but after the advent of complex variable theory it
becomes an elementary exercise.

A polynomial is f(z) = anz
n + an−1z

n−1 + · · ·+ a0. Consider the integral∫
C
dz

f ′(z)

f(z)

around a large circle. f ′(z) = nanz
n−1 + · · ·, so this is

∫
C
dz

nanz
n−1 + (n− 1)an−1z

n−2 + · · ·
anzn + an−1zn−1 + · · ·+ a0

=

∫
C
dz

n

z

1 + (n−1)an−1
nanz + · · ·

1 + an−1
anz + · · ·
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Take the radius of the circle large enough that only the first term in the numerator and the first term in the
denominator are important. That makes the integral∫

C
dz

n

z
= 2πin

It’s certainly not zero, so that means that there is a pole inside the loop, and so a root of the denominator.
Function Determined by its Boundary Values: If a function is analytic throughout a simply connected domain
and C is a simple closed curve in this domain, then the values of f inside C are determined by the values of f on
C. Let z be a point inside the contour then I will show

1

2πi

∫
C
dz

f(z′)

z′ − z
= f(z) (15)

Because f is analytic in this domain I can shrink the contour to be an arbitrarily small curve C1 around z. Because
f is continuous, I can make the curve close enough to z that f(z′) = f(z) to any accuracy that I want. That
implies that the above integral is the same as

1

2πi
f(z)

∫
C1

dz′
1

z′ − z
= f(z)

Eq. (15) is Cauchy’s integral formula, giving the analytic function in terms of its boundary values.
Derivatives: You can differentiate Cauchy’s formula any number of times.

dnf(z)

dzn
=

n!

2πi

∫
C
dz

f(z′)

(z′ − z)n+1

Entire Functions: An entire function is one that has no singularities anywhere. ez, polynomials, sines, cosines
are such. There’s a curious and sometimes useful result about such functions. A bounded entire function is
necessarily a constant. For a proof, take two points, z1 and z2 and apply Cauchy’s integral theorem.

f(z1)− f(z2) =
1

2πi

∫
C
dz f(z′)

[
1

z′ − z1
− 1

z′ − z2

]
=

1

2πi

∫
C
dz f(z′)

z1 − z2
(z′ − z1)(z′ − z2)
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By assumption, f is bounded, |f(z)| ≤ M . A basic property of complex numbers is that |u + v| ≤ |u| + |v| for
any complex numbers u and v. This means that in the defining sum for an integral,∣∣∣∣∣∑

k

f(ζk)∆zk

∣∣∣∣∣ ≤∑
k

∣∣f(ζk)
∣∣∣∣∆zk∣∣, so

∣∣∣∣∫ f(z)dz

∣∣∣∣ ≤ ∫ |f(z)||dz| (16)

Apply this.

|f(z1)− f(z2)| ≤
∫
|dz||f(z′)|

∣∣∣∣ z1 − z2
(z′ − z1)(z′ − z2)

∣∣∣∣ ≤M |z1 − z2|
∫
|dz|

∣∣∣∣ 1

(z′ − z1)(z′ − z2)

∣∣∣∣
On a big enough circle of radius R, this becomes

|f(z1)− f(z2)| ≤M |z1 − z2|2πR
1

R2
−→ 0 as R→∞

The left side doesn’t depend on R, so f(z1) = f(z2).
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Problems

14.1 Explicitly integrate zn dz around the circle of radius R centered at the origin. The number n is any positive,
negative, or zero integer.

14.2 Repeat the analysis of Eq. (3) but change it to the integral of z*dz.

14.3 For the real-valued function of a real variable,

f(x) =

{
e−1/x2

(x 6= 0)
0 (x = 0)

Work out all the derivatives at x = 0 and so find the Taylor series expansion about zero. Does it converge? Does
it converge to f? You did draw a graph didn’t you?

14.4 The function 1/(z − a) has a singularity (pole) at z = a. Assume that |z| < |a|, and write its series
expansion in powers of z/a. Next assume that |z| > |a| and write the series expansion in powers of a/z.
In both cases, determine the set of z for which the series is absolutely convergent, replacing each term by its
absolute value. Also sketch these sets.
Does your series expansion in a/z imply that this function has an essential singularity at z = 0? Since you know
that it doesn’t, what happened?

14.5 The function 1/(1 + z2) has a singularity at z = i. Write a Laurent series expansion about that point. To
do so, note that 1 + z2 = (z − i)(z + i) = (z − i)(2i + z − i) and use the binomial expansion to produce the
desired series. (Or you can find another, more difficult method.) Use the ratio test to determine the domain of
convergence of this series. Specifically, look for (and sketch) the set of z for which the absolute values of the
terms form a convergent series.
Ans: |z− i| < 2 OR |z− i| > 2 depending on which way you did the expansion. If you did one, find the other. If
you expanded in powers of (z − i), try expanding in powers of 1/(z − i).

14.6 What is
∫ i
0 dz/(1− z

2)? Ans: iπ/2
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14.7 What is a Laurent series expansion about z = 0 to at least four terms for

sin z/z4 ez/z2(1− z)

What is the residue at z = 0 for each function? Assume |z| < 1. Then assume |z| > 1 and find the series.
Ans: (−e/z3) +

(
(1− e)/z2

)
+
(
(2− e)/z

)
+ (2.5− e) + · · ·

14.8 By explicit integration, evaluate the integrals around the counterclockwise loops:

∫
C1

z2 dz

∫
C2

z3 dz
C1

1 + i

1

C2

ib
a + ib

a

14.9 Evaluate the integral along the straight line from a to a+ i∞:
∫
eizdz. Take a to be real. Ans: ieia

14.10 (a) Repeat the contour integral Eq. (8), but this time push the contour down, not up.
(b) What happens to the same integral if a is negative? And be sure to explain your answer in terms of the
contour integrals, even if you see an easier way to do it.

14.11 Carry out all the missing steps starting with Eq. (7) and leading to Eq. (12).

14.12 Sketch a graph of Eq. (12) and for k < 0 too. What is the behavior of this function in the neighborhood
of k = 0? (Careful!)

14.13 In the integration of Eq. (13) the contour C2 had a bump into the upper half-plane. What happens if the
bump is into the lower half-plane?

14.14 For the function in problem 7, ez/z2(1− z), do the Laurent series expansion about z = 0, but this time
assume |z| > 1. What is the coefficient of 1/z now? You should have no trouble summing the series that you
get for this. Now explain why this result is as it is. Perhaps review problem 1.
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C?
14.15 In the integration of Eq. (13) the contour C2 had a bump into the upper
half-plane, but the original function had no singularity at the origin, so you can start
with this curve and carry out the analysis. What answer do you get?

14.16 Use contour integration to evaluate Eq. (13) for the case that a < 0.
(b) Independently of this, make a change of variables in the original integral Eq. (13) in order to see if the answer
is independent of a. In this part, consider two cases, a > 0 and a < 0.

14.17 Recalculate the residue done in Eq. (5), but economize your labor. If all that all you really want is the
coefficient of 1/z, keep only the terms that you need in order to get it.

14.18 What is the order of all the other poles of the function csc3 z, and what is the residue at each pole?

14.19 Verify the location of the roots of Eq. (14).

14.20 Verify that the Riemann surfaces work as defined for the function
√
z2 − 1 using the alternative maps in

section 14.7.

14.21 Map out the Riemann surface for
√
z(z − 1)(z − 2). You will need four sheets.

14.22 Map out the Riemann surface for
√
z +
√
z − 1. You will need four sheets.

14.23 Evaluate ∫
C
dz e−zz−n

where C is a circle of radius R about the origin.

14.24 Evaluate ∫
C
dz tan z

where C is a circle of radius πn about the origin. Ans: −4πin
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14.25 Evaluate the residues of these functions at their singularities. a, b, and c are distinct. Six answers: you
should be able to do five of them in your head.

(a)
1

(z − a)(z − b)(z − c)
(b)

1

(z − a)(z − b)2
(c)

1

(z − a)3

14.26 Evaluate the residue at the origin for the function

1

z
ez+ 1

z

The result will be an infinite series, though if you want to express the answer in terms of a standard function you
will have to hunt. Ans: I0(2), a modified Bessel function.

14.27 Evaluate
∫∞
0 dz/(a4 + x4), and as a check, compare it to the result of example 4, Eq. (12).

14.28 Evaluate ∫ ∞

0
dx

cos bx

a2 + x2

14.29 Evaluate (a real) ∫ ∞

−∞
dx

sin2 ax

x2

Ans: |a|π

14.30 Evaluate ∫ ∞

−∞
dx

sin2 bx

x(a2 + x2)

14.31 Evaluate the integral
∫∞
0 dx

√
x /(a+x)2. Use the ideas of example 8, but without the logarithm. (a > 0)

Ans: π/2
√
a
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14.32 Evaluate ∫ ∞

0
dx

lnx

a2 + x2

(What happens if you consider (lnx)2?) Ans: (π ln a)/2a

14.33 Evaluate (λ > 1) by contour integration∫ 2π

0

dθ(
λ+ sin θ

)2
Ans: 2πλ/(λ2 − 1)3/2

14.34 Evaluate ∫ π

0
dθ sin2n θ

Recall Eq. (2.14). Ans: π 2nCn

/
22n−1 = π(2n− 1)!!/(2n)!!

14.35 Evaluate the integral of problem 33 another way. Assume λ is large and expand the integrand in a power
series in 1/λ. Use the result of the preceding problem to evaluate the individual terms and then sum the resulting
series. Ans: Still 2πλ/(λ2 − 1)3/2

14.36 Evaluate ∫ ∞

0
dx cosx2 and

∫ ∞

0
dx sin x2 by considering

∫ ∞

0
dx eix

2

Push the contour of integration toward the 45◦ line. Ans: 1
2

√
π/2

14.37

f(z) =
1

z(z − 1)(z − 2)
− 1

z2(z − 1)2(z − 2)2

What is
∫
C dz f(z) about the circle x2 + y2 = 9?



14—Complex Variables 450

14.38 Evaluate ∫ ∞

0
dx

1

a3 + x3

Ans: 2π
√

3/9a2

14.39 Go back to problem 3.45 and find the branch points of the inverse sine function.

14.40 What is the Laurent series expansion of 1/(1+z2) for small |z|? Again, for large |z|? What is the domain
of convergence in each case?

14.41 Examine the power series
∑∞

0 zn!. What is its behavior as you move out from the origin along a radius

at a rational angle? That is, z = reiπp/q for p and q integers. This result is called a natural boundary.

14.42 Evaluate the integral Eq. (7) for the case k < 0. Combine this with the result in Eq. (12) and determine
if the overall function is even or odd in k (or neither).



Fourier Analysis

Fourier series allow you to expand a function on a finite interval as an infinite series of trigonometric functions.
What if the interval is infinite? That’s the subject of this chapter. Instead of a sum over frequencies, you will
have an integral.

15.1 Fourier Transform
For the finite interval you have to specify the boundary conditions in order to determine the particular basis that
you’re going to use. On the infinite interval you don’t have this large set of choices. After all, if the boundary is
infinitely far away, how can it affect what you’re doing over a finite distance? But see section 15.6.

In section 5.3 you have several boundary condition listed that you can use on the differential equation
u′′ = λu and that will lead to orthogonal functions on your interval. For the purposes here the easiest approach is
to assume periodic boundary conditions on the finite interval and then to take the limit as the length of the interval
approaches infinity. On −L < x < +L, the conditions on the solutions of u′′ = λu are then u(−L) = u(+L)
and u′(−L) = u′(+L). The solution to this is most conveniently expressed as a complex exponential, Eq. (5.16)

u(x) = eikx, where u(−L) = e−ikL = u(L) = eikL

This implies e2ikL = 1, or 2kL = 2nπ, for integer n = 0, ±1, ±2, . . .. With these solutions, the other condition,
u′(−L) = u′(+L) is already satisfied. The basis functions are then

un(x) = eiknx = enπix/L, for n = 0, ±1, ±2, etc. (1)

On this interval you have the Fourier series expansion

f(x) =
∞∑
−∞

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
−∞

an un

〉
= am

〈
um, um

〉
(2)

In the basis of Eq. (1) this normalization is
〈
um, um

〉
= 2L.

Insert this into the series for f .

f(x) =
∞∑

n=−∞

〈
un, f

〉〈
un, un

〉un(x) =
1

2L

∞∑
n=−∞

〈
un, f

〉
un(x)

451
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Now I have to express this in terms of the explicit basis functions in order to manipulate it. When you use the
explicit form you have to be careful not to use the same symbol (x) for two different things in the same expression.
Inside the

〈
un, f

〉
there is no “x” left over — it’s the dummy variable of integration and it is not the same x

that is in the un(x) at the end. Denote kn = πn/L.

f(x) =
1

2L

∞∑
n=−∞

∫ L

−L
dx′un(x′)*f(x′)un(x) =

1

2L

∞∑
n=−∞

∫ L

−L
dx′e−iknx′f(x′) eiknx

Now for some manipulation: As n changes by 1, kn changes by ∆kn = π/L.

f(x) =
1

2π

∞∑
n=−∞

π

L

∫ L

−L
dx′ e−iknx′f(x′) eiknx

=
1

2π

∞∑
n=−∞

eiknx ∆kn

∫ L

−L
dx′ e−iknx′f(x′) (3)

For a given value of k, define the integral

gL(k) =

∫ L

−L
dx′e−ikx′f(x′)

If the function f vanishes sufficiently fast as x′ → ∞, this integral will have a limit as L → ∞. Call that limit
g(k). Look back at Eq. (3) and you see that for large L the last factor will be approximately g(kn), where the
approximation becomes exact as L→∞. Rewrite that expression as

f(x) ≈ 1

2π

∞∑
n=−∞

eiknx ∆kn g(kn) (4)

As L→∞, you have ∆kn → 0, and that turns Eq. (4) into an integral.

f(x) =

∫ ∞

−∞

dk

2π
eikxg(k), where g(k) =

∫ ∞

−∞
dx e−ikxf(x) (5)
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The function g is called* the Fourier transform of f , and f is the inverse Fourier transform of g.

Examples
For an example, take the function

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

then

g(k) =

∫ a

−a
dx e−ikx 1 =

1

−ik

[
e−ika − e+ika

]
=

2 sin ka

k

(6)

The first observation is of course that the dimensions check: If dx is a length then so is 1/k. After that,
there is only one parameter that you can vary, and that’s a. As a increases, obviously the width of the function
f increases, but now look at g. The first place where g(k) = 0 is at ka = π. This value, π/a decreases as a
increases. As f gets broader, g gets narrower (and taller). This is a general property of these Fourier transform
pairs.

Can you invert this Fourier transform, evaluating the integral of g to get back to f? Yes, using the method
of contour integration this is very easy. Without contour integration it would be extremely difficult. That is
typically the case with these transforms; complex variable methods are essential to get anywhere with them. The
same statement holds with many other transforms (Laplace, Radon, Mellin, Hilbert, etc. )
www.math.niu.edu/˜rusin/known-math/index/44-XX.html

The inverse transform is

∫ ∞

−∞

dk

2π
eikx2 sin ka

k
=

∫
C1

dk

2π
eikx e

ika − e−ika

ik

= −i
∫

C2

dk

2π

1

k

[
eik(x+a) − eik(x−a)

]
C1

C2

* Another common notation is to define g with an integral dx/
√

2π. That will require a corresponding
dk/
√

2π in the inverse relation. It’s more symmetric that way, but I prefer not to do it.

http://www.math.niu.edu/~rusin/known-math/index/44-XX.html
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1. If x > +a then both x + a and x − a are positive, which implies that both exponentials vanish rapidly as
k → +i∞. Push the contour C2 in this direction and the integrand vanishes exponentially, making the integral
zero.
2. If −a < x < +a, then only x+a is positive. The integral of the first term is then zero by exactly the preceding
reasoning, but the other term has an exponential that vanishes as k → −i∞ instead, implying that I have to
push the contour down toward −i∞.

= i

∫
C3

dk

2π

1

k
eik(x−a) =

∫
C4

= +i
1

2π
(−1)2πiRes

k=0

eik(x−a)

k
= −i 1

2π
. 2πi = 1

C3

C4

The extra (−1) factor comes because the contour is clockwise.
3. In the third domain, x < −a, both exponentials have the form e−ik, requiring you to push the contour toward
−i∞. The integrand now has both exponentials, so it is analytic at zero and there is zero residue. The integral
vanishes and the whole analysis takes you back to the original function, Eq. (6).

Another example of a Fourier transform, one that shows up often in quantum mechanics

f(x) = e−x2/σ2

, so g(k) =

∫ ∞

−∞
dx e−ikxe−x2/σ2

=

∫ ∞

−∞
dx e−ikx−x2/σ2

The trick to doing this integral is to complete the square inside the exponent.

−ikx− x2/σ2 =
−1

σ2

[
x2 + σ2ikx− σ4k2/4 + σ4k2/4

]
=
−1

σ2

[
(x+ ikσ2/2)2 + σ4k2/4

]
The integral of f is now

g(k) = e−σ2k2/4

∫ ∞

−∞
dx′e−x′2/σ2

where x′ = x+ ikσ/2
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The change of variables makes this a standard integral, Eq. (1.10), and the other factor, with the exponential of
k2, comes outside the integral. The result is

g(k) = σ
√
π e−σ2k2/4 (7)

This has the curious result that the Fourier transform of a Gaussian is* a Gaussian.

15.2 Convolution Theorem
What is the Fourier transform of the product of two functions? It is a convolution of the individual transforms.
What that means will come out of the computation. Take two functions f1 and f2 with Fourier transforms g1
and g2. ∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =

∫
dx

∫
dk′

2π
g1(k

′ )eik
′xf2(x)e

−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx eik

′xf2(x)e
−ikx

=

∫
dk′

2π
g1(k

′ )

∫
dx f2(x)e

−i(k−k′)x

=

∫ ∞

−∞

dk′

2π
g1(k

′ )g2(k − k′)

The last expression (except for the 2π) is called the convolution of g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e

−ikx =
1

2π
(g1 ∗ g2)(k) (8)

The last line shows a common notation for the convolution of g1 and g2.
What is the integral of |f |2 over the whole line?∫ ∞

−∞
dx f*(x)f(x) =

∫
dx f*(x)

∫
dk

2π
g(k)eikx

* Another function has this property: the hyperbolic secant. Look up the quantum mechanical harmonic
oscillator solution for an infinite number of others.
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=

∫
dk

2π
g(k)

∫
dx f*(x)eikx

=

∫
dk

2π
g(k)

[∫
dx f(x)e−ikx

]*
=

∫ ∞

−∞

dk

2π
g(k)g*(k) (9)

This is Parseval’s identity for Fourier transforms. There is an extension to it in problem 10.

15.3 Time-Series Analysis
Fourier analysis isn’t restricted to functions of x, sort of implying position. They’re probably more often used
in analyzing functions of time. If you’re presented with a complicated function of time, how do you analyze it?
What information is present in it? If that function of time is a sound wave you may choose to analyze it with
your ears, and if it’s music the frequency content is just what you will be listening for. That’s Fourier analysis.
The Fourier transform of the signal tells you its frequency content, and sometimes subtle periodicities will show
up in the transformed function even though they aren’t apparent in the original signal. (Fourier analyzing the
stock market hasn’t helped though.)

A function of time is f(t) and its Fourier transform is

g(ω) =

∫ ∞

−∞
dt f(t) eiωt with f(t) =

∫ ∞

−∞

dω

2π
g(ω) e−iωt

The sign convention in these equations appear backwards from the one in Eq. (5), and it is. One convention
is as good as the other, but in the physics literature you’ll find this pairing the more common because of the
importance of waves. A function ei(kx−ωt) represents a wave with (phase) velocity ω/k, and so moving to the
right. You form a general wave by taking linear combinations of these waves, usually an integral.

Example
When you hear a musical note you will perceive it as having a particular frequency. It doesn’t, and if the note
has a very short duration it becomes hard to tell its* pitch. Only if its duration is long enough do you have a real
chance to discern what note you’re hearing. This is a reflection of the facts of Fourier transforms.

* Think of a hemisemidemiquaver played at tempo prestissimo.
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If you hear what you think of as a single note, it will not last forever. It starts and it ends. Say it lasts from
t = −T to t = +T , and in that interval it maintains the frequency ω0.

f(t) = Ae−iω0t (−T < t < T ) (10)

The frequency analysis comes from the Fourier transform.

g(ω) =

∫ ∞

−∞
dt f(t)eiωt =

∫ T

−T
dtAei(ω−ω0)t = A

ei(ω−ω0)T − e−i(ω−ω0)T

i(ω − ω0)
= 2A

sin(ω − ω0)T

(ω − ω0)

This is like the function of Eq. (6) except that its center is shifted. It has a peak at ω = ω0 instead of at the
origin as in that case. The width of the function g is determined by the time interval T . As T is large, g is narrow
and high, with a sharp localization near ω0. In the reverse case of a short pulse, the range of frequencies that
constitute the note is spread over a wide range of frequencies, and you will find it difficult to tell by listening to it
just what the main pitch is supposed to be. This figure shows the frequency spectrum for two notes having the
same nominal pitch, but one of them lasts three times as long as the other before being cut off. It therefore has
a narrower spread of frequencies.

Example
Though you can do these integrals numerically, and when you’re dealing with real data you will have to, it’s nice
to have some analytic examples to play with. I’ve already shown, Eq. (7), how the Fourier transform of a Gaussian
is simple, so start from there.

If g(ω) = e−(ω−ω0)
2/σ2

then f(t) =
σ

2
√
π
e−iω0te−σ2t2/4
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If there are several frequencies, the result is a sum.

g(ω) =
∑
n

An e
−(ω−ωn)2/σ2

n ⇐⇒ f(t) =
∑
n

An
σn

2
√
π
e−iωnte−σ2

nt2/4

In a more common circumstance you will have the time series, f(t), and will want to obtain the frequency decom-
position, g(ω), though for this example I worked backwards. The function of time is real, but the transformed
function g is complex. Because f is real, it follows that g satisfies g(−ω) = g*(ω). See problem 13.

f

Real
Imag

g

This example has four main peaks in the frequency spectrum. The real part of g is an even function and
the imaginary part is odd.

f

Real

Imagg

This is another example with four main peaks.
In either case, if you simply look at the function of time on the left it isn’t obvious what sort of frequencies

are present. That’s why there are standard, well-developed computer programs to to the Fourier analysis.

15.4 Derivatives
There are a few simple, but important relations involving differentiation. What is the Fourier transform of the
derivative of a function? Do some partial integration.

F(ḟ) =

∫
dt eiωt df

dt
= eiωtf(t)

∣∣∣∞
−∞
− iω

∫
dt eiωtf(t) = −iωF(f) (11)
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Here I’ve introduced the occasionally useful notation that F(f) is the Fourier transform of f . The boundary
terms in the partial integration will go to zero if you assume that the function f approaches zero at infinity.

The nth time derivative simply give you more factors: (−iω)n on the transformed function.

15.5 Green’s Functions
This technique showed up in the chapter on ordinary differential equations, section 4.5, as a method to solve
the forced harmonic oscillator. In that instance I said that you can look at a force as a succession of impulses,
as if you’re looking at the atomic level and visualizing a force as many tiny collisions by atoms. Here I’ll get
to the same sort of result as an application of transform methods. The basic technique is to Fourier transform
everything in sight.

The damped, forced harmonic oscillator differential equation is

m
d2x

dt2
+ b

dx

dt
+ kx = F0(t) (12)

Multiply by eiωt and integrate over all time. You do the transforms of the derivatives by partial integration as in
Eq. (11). ∫ ∞

−∞
dt eiωt [Eq. (12)] = −mω2x̃− ibωx̃+ kx̃ = F̃0, where x̃(ω) =

∫ ∞

−∞
dt eiωtx(t)

This is an algebraic equation that I can solve for the function x̃(ω).

x̃(ω) =
F̃0(ω)

−mω2 − ibω + k

Now use the inverse transform to recover the function x(t).

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω) =

∫
dω

2π
e−iωt F̃0(ω)

−mω2 − ibω + k

=

∫
dω

2π

e−iωt

−mω2 − ibω + k

∫
dt′ F0(t

′ )eiωt′

=

∫
dt′ F0(t

′ )

∫
dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ (13)
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In the last line I interchanged the order of integration, and in the preceding line I had to use another symbol t′ in
the second integral, not t. Now do the ω integral.

∫ ∞

−∞

dω

2π

e−iωt

−mω2 − ibω + k
eiωt′ =

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
(14)

To do this, use contour integration. The singularities of the integrand are at the roots of the denominator,
−mω2 − ibω + k = 0. They are

ω =
−ib±

√
−b2 + 4km

2m
= ω±

C1

C2

Both of these poles are in the lower half complex plane. The contour integral C1 is along the real axis, and now
I have to decide where to push the contour in order to use the residue theorem. This will be governed by the

exponential, e−iω(t−t′).

First take the case t < t′, then e−iω(t−t′) is of the form e+iω, so in the complex ω-plane its behavior in the
±i directions is as a decaying exponential toward +i (∝ e−|ω|). It is a rising exponential toward −i (∝ e+|ω|).
This means that if I push the contour C1 up toward C2 and beyond, then this integral will go to zero. I’ve crossed
no singularities, so that means that Eq. (14) is zero for t < t′.

Next, the case that t > t′. Now e−iω(t−t′) is of the form e−iω, so its behavior is reversed from that of
the preceding paragraph. It dies off rapidly toward −i∞ and rises in the opposite direction. That means that
I can push the contour in the opposite direction, down to C3 and to C4. Because of the decaying exponential,
the large arc of the contour that I pushed down to −i∞ gives zero for its integral; the two lines that parallel the
i-axis cancel each other; only the two residues remain.
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∫ ∞

−∞

dω

2π

e−iω(t−t′)

−mω2 − ibω + k
= −2πi

∑
ω±

Res

C3

C4

(15)

The denominator in Eq. (14) is −m(ω − ω+)(ω − ω−). Use this form to compute the residues. Leave the 1/2π
aside for the moment and you have

e−iω(t−t′)

−mω2 − ibω + k
=

e−iω(t−t′)

−m(ω − ω+)(ω − ω−)

The residues of this at ω± are the coefficients of these first order poles.

at ω+:
e−iω+(t−t′)

−m(ω+ − ω−)
and at ω−:

e−iω−(t−t′)

−m(ω− − ω+)

The explicit values of ω± are

ω+ =
−ib+

√
−b2 + 4km

2m
and ω− =

−ib−
√
−b2 + 4km

2m

Let ω′ =

√
−b2 + 4km

2m
and γ =

b

2m

The difference that appears in the preceding equation is then

ω+ − ω− = (ω′ − iγ)− (−ω′ − iγ) = 2ω′
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Eq. (15) is then ∫ ∞

−∞

dω

2π
. e−iω(t−t′)

−mω2 − ibω + k
= −i

[
e−i(ω′−iγ)(t−t′)

−2mω′
+
e−i(−ω′−iγ)(t−t′)

+2mω′

]
=
−i

2mω′
e−γ(t−t′)[− e−iω′(t−t′) + e+iω′(t−t′)]

=
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
Put this back into Eq. (13) and you have

x(t) =

∫ t

−∞
dt′ F0(t

′)G(t− t′), where G(t− t′) =
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
(16)

If you eliminate the damping term, setting b = 0, this is exactly the same as Eq. (4.23). The integral stops at
t′ = t because the Green’s function vanishes beyond there. The motion at time t is determined by the force that
was applied in the past, not the future.

15.6 Sine and Cosine Transforms
Return to the first section of this chapter and look again at the derivation of the Fourier transform. It started
with the Fourier series on the interval −L < x < L and used periodic boundary conditions to define which series
to use. Then the limit as L→∞ led to the transform.

What if you know the function only for positive values of its argument? If I want to write f(x) as a series
when I know it only for 0 < x < L it doesn’t make much sense to start the way I did in section 15.1. Instead
I have to pick the boundary condition at x = 0 carefully because this time the boundary won’t go away in the
limit that L→∞. The two common choices to define the basis are

u(0) = 0 = u(L), and u′(0) = 0 = u′(L) (17)

Start with the first, then un(x) = sin(nπx/L) for positive n. The equation (2) is unchanged, save for the limits.

f(x) =
∞∑
1

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
n=1

an un

〉
= am

〈
um, um

〉
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In this basis,
〈
um, um

〉
= L/2, so

f(x) =
∞∑

n=1

〈
un, f

〉〈
un, un

〉un(x) =
2

L

∞∑
n=1

〈
un, f

〉
un(x)

Now explicitly use the sine functions to finish the manipulation, and as in the work leading up to Eq. (3), denote
kn = πn/L, and the difference ∆kn = π/L.

f(x) =
2

L

∞∑
1

∫ L

0
dx′f(x′) sin

nπx′

L
sin

nπx

L

=
2

π

∞∑
1

sin
nπx

L
∆kn

∫ L

0
dx′f(x′) sinnπx′/L (18)

For a given value of k, define the integral

gL(k) =

∫ L

0
dx′ sin(kx′)f(x′)

If the function f vanishes sufficiently fast as x′ → ∞, this integral will have a limit as L → ∞. Call that limit
g(k). Look back at Eq. (18) and you see that for large L the last factor will be approximately g(kn), where the
approximation becomes exact as L→∞. Rewrite that expression as

f(x) ≈ 2

π

∞∑
1

sin(knx)∆kn g(kn) (19)

As L→∞, you have ∆kn → 0, and that turns Eq. (19) into an integral.

f(x) =
2

π

∫ ∞

0
dk sin kx g(k), where g(k) =

∫ ∞

0
dx sin kx f(x) (20)

This is the Fourier Sine transform. For a parallel calculation leading to the Cosine transform, see problem 22,
where you will find that the equations are the same except for changing sine to cosine.

f(x) =
2

π

∫ ∞

0
dk cos kx g(k), where g(k) =

∫ ∞

0
dx cos kx f(x) (21)
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What is the sine transform of a derivative? Integrate by parts, remembering that f has to approach zero
at infinity for any of this to make sense.∫ ∞

0
dx sin kx f ′(x) = sin kxf(x)

∣∣∣∣∞
0

− k
∫ ∞

0
dx cos kx f(x) = −k

∫ ∞

0
dx cos kx f(x)

For the second derivative, repeat the process.∫ ∞

0
dx sin kx f ′′(x) = kf(0)− k2

∫ ∞

0
dx sin kx f(x)

15.7 Weiner-Khinchine Theorem
If a function of time represents the pressure amplitude of a sound wave or the electric field of an electromagnetic
wave the power received is proportional to the amplitude squared. By Parseval’s identity, the absolute square of
the Fourier transform has an integral proportional to the integral of this power. This leads to the interpretation
of the transform squared as some sort of power density in frequency. |g(ω)|2dω is then a power received in this
frequency interval. When this energy interpretation isn’t appropriate, |g(ω)|2 is called the “spectral density.” A
useful result appears by looking at the Fourier transform of this function.∫

dω

2π
|g(ω)|2e−iωt =

∫
dω

2π
g*(ω)e−iωt

∫
dt′ f(t′)eiωt′

=

∫
dt′ f(t′)

∫
dω

2π
g*(ω)eiωt′e−iωt

=

∫
dt′ f(t′)

[∫
dω

2π
g(ω)e−iω(t′−t)

]*
=

∫
dt′ f(t′)f(t′ − t)*

When you’re dealing with a real f , this last integral is called the autocorrelation function. It tells you in some
average way how closely related a signal is to the same signal at some other time. If the signal that you are
examining is just noise then what happens now will be unrelated to what happened a few milliseconds ago and
this autocorrelation function will be close to zero. If there is structure in the signal then this function gives a lot
of information about it.
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Problems

15.1 Invert the Fourier transform, g, in Eq. (7).

15.2 What is the Fourier transform of eik0x−x2/σ2
? Ans: A translation of the k0 = 0 case

15.3 What is the Fourier transform of xe−x2/σ2
?

15.4 What is the square of the Fourier transform operator? That is, what is the Fourier transform of the Fourier
transform?

15.5 A function is defined to be

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

What is the convolution of f with itself? (f ∗ f)(x) And graph it of course.

15.6 Two functions are

f1(x) =

{
1 (a < x < b)
0 (elsewhere)

and f2(x) =

{
1 (A < x < B)
0 (elsewhere)

What is the convolution of f1 with f2? And graph it.

15.7 Derive these properties of the convolution:
(a) f ∗ g = g ∗ f (b) f ∗ (g ∗ h) = (f ∗ g) ∗ h (c) δ(f ∗ g) = f ∗ δg + g ∗ δf where δf(t) = tf(t),
δg(t) = tg(t), etc. (d) What are δ2(f ∗ g) and δ3(f ∗ g)?

15.8 Show that you can rewrite Eq. (8) as

F(f ∗ g) = F(f) .F(g)

where I am using the shorthand notation of F(f) for the Fourier transform of f .
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15.9 Derive Eq. (9) from Eq. (8).

15.10 What is the analog of Eq. (9) for two different functions? That is, relate the scalar product of two
functions, 〈

f1, f2

〉
=

∫ ∞

−∞
f*
1 (x)f2(x)

to their Fourier transforms.

15.11 In the derivation of the harmonic oscillator Green’s function starting with Eq. (14), I assumed that the
oscillator is underdamped: that b2 < 4km. Now assume the reverse, the overdamped case, and repeat the
calculation.

15.12 Repeat the preceding problem, but now do the critically damped case, for which b2 = 4km. Compare your
result to the result that you get by taking the limit of critical damping in the preceding problem and in Eq. (16).

15.13 Show that if f(t) is real then the Fourier transform satisfies g(−ω) = g*(ω).
What are the properties of g if f is respectively even or odd?

15.14 Evaluate the Fourier transform of

f(x) =

{
A
(
a− |x|

)
(−a < x < a)

0 (otherwise)

How do the properties of the transform very as the parameter a varies?

15.15 Evaluate the Fourier transform of Ae−α|x|. Invert the transform to verify that it takes you back to the
original function.

15.16 Given that the Fourier transform of f(x) is g(k), what is the Fourier transform of the the function
translated a distance a to the right, f1(x) = f(x− a)?
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15.17 Schroedinger’s equation is

−ih̄∂ψ
∂t

= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ

Fourier transform the whole equation with respect to x, and find the equation for Φ(k, t), the Fourier transform
of ψ(x, t). The result will not be a differential equation. Ans: −ih̄∂Φ(k, t)/∂t = (h̄2k2/2m)Φ + (v ∗ Φ)/2π

15.18 Take the Green’s function solution to Eq. (12) as found in Eq. (16) and take the limit as both k and b go
to zero. Verify that the resulting single integral satisfies the original second order differential equation.

15.19 In problem 18 you have the result that a double integral (undoing two derivatives) can be written as a
single integral. Now solve the equation

d3x

dt3
= F (t)

C2

directly, using the same method as for Eq. (12). You will get a pole at the origin and how do you handle this,
where the contour of integration goes straight through the origin? Answer: Push the contour up as in the figure.
Why? This is what’s called the “retarded solution” for which the value of x(t) depends on only those values
of F (t′) in the past. If you try any other contour to define the integral you will not get this property. (And
sometimes there’s a reason to make another choice.)
Pick a fairly simple F and verify that this gives the right answer.

15.20 Repeat the preceding problem for the fourth derivative. Would you care to conjecture what 31/2 integrals
might be?

15.21 What is the Fourier transform of xf(x)? Ans: ig′(k)

15.22 Repeat the calculations leading to Eq. (20), but for the boundary conditions u′(0) = 0 = u′(L), leading
to the Fourier cosine transform.
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15.23 For both the sine and cosine transforms, the original function f(x) was defined for positive x only. Each
of these transforms define an extension of f to negative x. This happens because you compute g(k) and from it
get an inverse transform. Nothing stops you from putting a negative value of x into the answer. What are the
results?

15.24 What are the sine and cosine transforms of e−αx. In each case evaluate the inverse transform.

15.25 What is the sine transform of f(x) = 1 for 0 < x < L and f(x) = 0 otherwise. Evaluate the inverse
transform.

15.26 Repeat the preceding calculation for the cosine transform. Graph the two transforms and compare them,
including their dependence on L.

15.27 Choose any different way around the pole in problem 19, and compute the difference between the result
with your new contour and the result with the old one. Note: Plan ahead before you start computing.
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function 420

angular momentum, 169–172, 176–178, 189,
354

angular velocity, 170, 189
annulus, 424
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electric dipole, 59, 244, 281
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electrostatic potential, 300
electrostatics, 52, 223
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energy density, 276, 278, 370
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Fourier series, 33, 118, 120–133, 148, 155,
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bases 122
basis 156
best fit 228
does it work? 128
fundamental theorem 123
square wave 121

Fourier sine, cosine, 462
Fourier transform, 451–452, 462
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frequency, 456
Frobenius series, 33, 92–95, 112

function, 205, 380, 381, 392, 426
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addition 143
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definition of 147, 355
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operator 168

functional, 356–375
3-linear 371
bilinear 359, 360, 366, 368, 370
multilinear 358
n-linear 359
representation 356, 368, 374

fundamental theorem of calculus, 14
.
Gamma function, 8–9, 25, 41
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Gauss, 337, 442
Gauss’s Theorem, 401
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geometric optics, 236, 239
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Greens’ function 459
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heated disk, 214
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infinite-dimensional, 158
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fractional 467
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numerical 324–329
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.
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Laurent series, 422, 427, 445, 446
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linear charge density, 55
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functional 356, 359
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Lobatto integration, 351
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magnetic field, 225, 242, 277, 379, 391

tensor 205, 370
magnetic flux, 411
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diagonalize? 196
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inverse transpose 377
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scalar product 154
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messy and complicated, 89
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method 317

nilpotent, 206
noise, 342, 350
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.
operator, 168, 172–199

components 174, 193
differential 124, 181
exponential 60, 243
inverse 183
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translation 205
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order, 423
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orthogonal coordinates, 220, 260, 381
orthogonality, 120, 124, 228, 288
orthogonalization, 156
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Parseval’s identity, 127, 132, 140, 456
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partial integration, 19, 25, 29, 123
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Pascal’s triangle, 60
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PDE, numerical, 344
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pitfall, 319
Poisson, 268
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order 423, 424
polynomial, 442
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potential, 59, 268, 270, 279, 300–307
potential energy density, 242
power, 283, 296
power series, 420
power spectrum, 133
pre-Snell law, 246
pressure tensor, 359
prestissimo, 456
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principal value, 348
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product formula, 420
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quadratic equation, 63, 79
quadrupole, 60, 225, 243, 244, 281
quasi-equilibrium, 91
.
radian, 1
radioactivity, 113
rainbow, 236–239, 246
raising and lowering, 378
random variable, 342
range, 172, 355
ratio test, 34
rational number, 158
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reciprocal basis, 373, 377, 381, 383, 393
reciprocal vector, 387
rectifier, 138
regular point, 91
regular singular point, 91
relation, 355
relativity, 57, 388
residue, 427, 461
residue theorem, 427
resistor, 241, 245
resonance, 129
Reynolds’ transport theorem, 411, 415
Riemann Integral, 12, 421
Riemann Surface, 435, 436, 437, 438, 447
Riemann-Stieljes integral, 15, 204
rigid body, 169, 176, 189, 354
roots of unity, 72
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Runge-Kutta, 329, 352
Runge-Kutta-Fehlberg, 331
.
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scattering, 234–239
Schwarzenegger, 218
secant method, 320
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series, 30–46
series of series, 37
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absolute convergence, 37
common 31
comparison test 34, 36
convergence 34, 56
differential equation 91, 115
double 306, 330
examples 30
exponential 204
faster convergence 59
Frobenius 92–95, 422
geometric 204
hyperbolic sine 293
integral test 35
Laurent 422
power 32, 257, 315
ratio test 34
rearrange 37
secant 38, 56
telescoping 59, 138
two variables 38, 58

sheet, 436, 439
dσ/dΩ, 235–239, 246
similarity transformation, 193
simple closed curve, 427
simply-connected, 407, 408
Simpson’s rule, 325
simultaneous equations, 100, 104
sine integral, 135, 140
sine transform, 462
singular point, 91
singularity, 423, 427, 441
sketching, 21
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snowplow, 113
Sobolev, 165
solenoid, 225
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specific heat, 208, 283
spectral density, 464
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square-integrable, 144, 147
stainless steel, 308
Stallone, 218
sterradian, 234
Stirling’s formula, 40, 59, 232
stock market, 118
Stokes’ Theorem, 405, 409
strain, 255
stress, 359
stress-strain, 356
string, 162
Sturm-Liouville, 311
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summation by parts, 19
summation convention, 196, 204, 271, 374
sun, 278
superposition, 298
surface integral, 249, 252, 405, 409, 411
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examples 250
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.
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temperature, 232
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time of travel, 398
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trace, 154
transformation, 168

area 185
basis 367, 386
composition 187
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matrix 387
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trapezoidal integration, 325
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triangle inequality, 152, 157, 158
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.
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axioms 143
basis 148
dimension 148
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theorems 163

vector:
calculus, 378, 396
derivative 253
eigenvector 341
field 311, 378, 380
gradient 216, 218, 229
heat flow 295
identities 280
operators 265
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velocity, 382
visualization, 240
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.
wave equation, 244, 283, 312, 344
Weierstrass, 418
Weiner-Khinchine theorem, 464
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